content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def centerxywh_to_xyxy(boxes): """ args: boxes:list of center_x,center_y,width,height, return: boxes:list of x,y,x,y,cooresponding to top left and bottom right """ x_top_left = boxes[0] - boxes[2] / 2 y_top_left = boxes[1] - boxes[3] / 2 x_bottom_right = boxes[0] + boxes[2] / 2 y_bottom_right = boxes[1] + boxes[3] / 2 return [x_top_left, y_top_left, x_bottom_right, y_bottom_right]
2d1afd843a34d1a0bdd7b44b8a76127eda2b3e5d
283,533
import torch def batch_randperm(n_batch: int, n: int, device: str = 'cpu') -> torch.Tensor: """ Returns multiple random permutations. :param n_batch: Number of permutations. :param n: Length of permutations. :param device: PyTorch Device to put the permutations on. :return: Returns a torch.Tensor of integer type of shape [n_batch, n] containing the n_batch permutations. """ # batched randperm: # https://discuss.pytorch.org/t/batched-shuffling-of-feature-vectors/30188/4 # https://github.com/pytorch/pytorch/issues/42502 return torch.stack([torch.randperm(n, device=device) for i in range(n_batch)], dim=0)
2067703054ec87404f109d9246c52e918d216596
503,190
def isValidArgument(s): """Returns whether s is strictly a valid argument for an IRC message.""" return '\r' not in s and '\n' not in s and '\x00' not in s
0d613d30088cb0fdf92b795997b16ff358f48913
203,778
from typing import Sequence def is_sequence(s): """Check for sequence Args: s: object to check Returns: bool: True if `s` is a sequence (but not a `str`), False otherwise. """ return isinstance(s, Sequence) and not isinstance(s, str)
1871f5ea513658ad6bf00de817ccf06554f08aa0
324,226
from textwrap import dedent def dedent_nodetext_formatter(nodetext, has_options, caller=None): """ Just dedent text. """ return dedent(nodetext)
7a4a06a68470f75eba26aa311b99f85a2859367a
42,039
import random def split_train_val_test(annos, randomize=True, splits=(0.6, 0.2, 0.2), seed=1): """Convert annotation index into splits based on classes :param annos: (list) of filepaths :param randomize: (bool) randomize list :param splits: (tuple) splits of train, val, test :param seed: (int) random seed :returns (dict) of train, val, test lists """ if randomize: random.seed(seed) random.shuffle(annos) n_annos = len(annos) n_train, n_val, n_test = splits n_train = int(n_annos * n_train) n_val = int(n_annos * n_val) result = { 'train': annos[:n_train], 'val': annos[n_train:n_train + n_val], 'test': annos[n_train + n_val:], } return result
b160710cddafe335ab6698948ecab83c8f6af488
163,571
def get_env_id(task_type, aircraft) -> str: """ Creates an env ID from the environment's components :param task_type: Task class, the environment's task :param aircraft: Aircraft namedtuple, the aircraft to be flown """ return f'JSBSim-{task_type.__name__}-{aircraft.name}-v0'
f119690037861f880a7ef341be75b2de0adff519
560,600
def strip_quotes(arg): """ Strip outer quotes from a string. Applies to both single and double quotes. :param arg: str - string to strip outer quotes from :return str - same string with potentially outer quotes stripped """ quote_chars = '"' + "'" if len(arg) > 1 and arg[0] == arg[-1] and arg[0] in quote_chars: arg = arg[1:-1] return arg
97c8cefe2d0de2b3cecb8b6ed94a40ce4be89b94
37,134
from typing import Iterable from typing import Callable from typing import Any from typing import Generator def argzip(sequence: Iterable[Callable], *args: Any) -> Generator: """ Similar to zip, but instead of zipping iterables, It zips an argument(s) with all the values of the iterable. for example. >>> list(argzip([1,2,3,4], "number")) [(1, 'number'), (2, 'number'), (3, 'number'), (4, 'number')] >>> list(argzip([1,2,3,4], "number", "int")) [(1, 'number', 'int'), (2, 'number', 'int'), (3, 'number', 'int'), (4, 'number', 'int')] """ return ((a, *args) for a in sequence)
f93a84298559eee1565d9f3c4537cc83be00738c
535,358
import re def _parse_string(s): """parse strings such as '1^ 2' into a term form ((1, 1), (2, 0))""" s = s.strip() if s == "": return () s = re.sub(" +", " ", s) terms = s.split(" ") processed_terms = [] for term in terms: if term[-1] == "^": dagger = True term = term[:-1] else: dagger = False orb_nr = int(term) processed_terms.append((orb_nr, int(dagger))) return tuple(processed_terms)
cfea06ee4f6a7067a0d95ca03f7864b76189005a
457,161
def parse_int(token): """Convert a token of a integer literal to its integer value. >>> parse_int("100") 100 >>> parse_int("0xA") 10 """ if token.startswith("0x"): return int(token, base=16) elif token.startswith("0o"): return int(token, base=8) else: return int(token)
ec73eedf190226ba68519f645f4043d256726a46
194,292
def scapozza(rho): """ Compute Young's modulus (MPa) from density (kg/m^3). Arguments --------- rho : float or ndarray Density (kg/m^3). Returns ------- E : float or ndarray Young's modulus (MPa). """ rho = rho*1e-12 # Convert to t/mm^3 rho0 = 917e-12 # Desity of ice in t/mm^3 E = 5.07e3*(rho/rho0)**5.13 # Young's modulus in MPa return E
866d4775a5c251998e4dc07205346093e0ac5095
403,722
def make_extended_read_name(original_name: str, probe: str, umi: str) -> str: """Generate read name that contains probe name and UMI.""" assert len(original_name) > 0 assert len(probe) > 0 return '%s:::pr_%s:::umi_%s' % (original_name, probe, umi)
a66f76229e3378fa7acbb307163e010f41bd3a9c
207,520
def file_to_set(file_name): """Read a file and convert each line to set of items Args: file_name (str): name of file Returns: results (set): set of words from file """ results = set() with open(file_name, 'rt') as f: for line in f: results.add(line.replace('\n', '')) return results
389646aa4030b1c1992418c5cf6b0e558bc00736
112,185
import cmath import math def robustlog(x): """Returns log(x) if x > 0, the complex log cmath.log(x) if x < 0, or float('-inf') if x == 0. """ if x == 0.: return float('-inf') elif type(x) is complex or (type(x) is float and x < 0): return cmath.log(x) else: return math.log(x)
718db8bb90905eb7e0ea7f82fc4d42efc99503be
268,065
def normalize(image): """ Normalize image along channel axis. Args: image: Image array. Returns: Normalized image. """ # std and mean are dataset specific std = [0.25472827, 0.25604966, 0.26684684] mean = [0.48652189, 0.50312634, 0.44743868] new_image = image / 255. new_image = (new_image - mean) / std return new_image
01ee94d6796c92b03e8792844e7e2481724e5627
395,920
def WaitEvent(event): """Waits for an event without timeout, without blocking signals. event.wait() masks all signals until the event is set; this can be used instead to make sure that the signal is delivered within 100 ms. Returns: True if the event is set (i.e., always, since there is no timeout). This return value is used so that this method behaves the same way as event.wait(). """ while not event.is_set(): event.wait(0.1) return True
e5eec03edc59dbaf62ddd8ef941450e3a497deca
526,480
import math def get_photon_density_gaussian( elec_x, elec_y, elec_z, ct, photon_n_lab_max, inv_laser_waist2, inv_laser_ctau2, laser_initial_z0, gamma_boost, beta_boost ): """ Get the photon density in the scattering Gaussian laser pulse, at the position of a given electron, and at the current time. Parameters ---------- elec_x, elec_y, elec_z: floats The position of the given electron (in the frame of the simulation) ct: float Current time in the simulation frame (multiplied by c) photon_n_lab_max: float Peak photon density (in the lab frame) (i.e. at the peak of the Gaussian pulse) inv_laser_waist2, inv_laser_ctau2, laser_initial_z0: floats Properties of the Gaussian laser pulse (in the lab frame) gamma_boost, beta_boost: floats Properties of the Lorentz boost between the lab and simulation frame. Returns ------- photon_n_sim: float The photon density in the frame of the simulation """ # Transform electrons coordinates from simulation frame to lab frame elec_zlab = gamma_boost*( elec_z + beta_boost*ct ) elec_ctlab = gamma_boost*( ct + beta_boost*elec_z ) # Get photon density *in the lab frame* photon_n_lab = photon_n_lab_max * math.exp( - 2*inv_laser_waist2*( elec_x**2 + elec_y**2 ) \ - 2*inv_laser_ctau2*(elec_zlab - laser_initial_z0 + elec_ctlab)**2 ) # Get photon density *in the simulation frame* photon_n_sim = gamma_boost*photon_n_lab*( 1 + beta_boost) return( photon_n_sim )
8766a342fcfe6b03321de32a50efe1641426d9d9
118,588
def iterate_ngrams(text, n): """Generator to yield ngrams in ``text``. Example: >>> for ngram in iterate_ngrams("example", 4): ... print(ngram) exam xamp ampl mple Args: text (str): text to iterate over n (int): size of window for iteration Returns: Generator expression to yield the next ngram in the text Raises: ValueError: If n is non positive """ if n <= 0: raise ValueError("n must be a positive integer") return [text[i: i + n] for i in range(len(text) - n + 1)]
78454188e265f23eb255cedddc55c53955e49734
499,864
def encode_int(i): """Encode an integer for a bytes database.""" return bytes(str(i), "utf-8")
96f405d02c1fd53316ad9b81cfc8e5eceac453f1
648,463
def compose_ngrams_regex(emoji_regex): """ Compose a regex expression to parse out Ngrams :param emoji_regex: a regular expression that matches emojis :return: a compiled regular expression that matches ngrams """ pattern = '(' + emoji_regex pattern += r"|(&\S+;)" pattern += r"|(https?:\/\/\w+\.\S+)" pattern += r"|((?:\b|[@\#\$\£\¥\¢]|[\u20a0-\u20cf])[\u20a0-\u20cf\$\£\¥\¢\w\@\.\#\‘\’\'\&\:\,\]\*\-\/\[\=]+([\'\']|\b))" pattern += r"|([\-\.]+)" pattern += r"|(\S)" + ')' return pattern
fb5a138286bf4d9717da01d6fc6053901e7c6bd9
638,224
def translate_backend_state_name(state: str): """ Translate state-machine state from backend into actual state name. :param state: new state given from the backend :return: translated state for state_machine """ switcher = { 'installation': 'waitingForOvershoot', 'blinking': 'blinking', 'sensing': 'waitingForOvershoot', 'custom1': 'waitingForOvershoot', 'custom2': 'waitingForOvershoot', 'custom3': 'bootloader' } return switcher.get(state, 'error')
f7d5ed2bfacc0b105059b5dcbd54baf702b6d336
536,202
def cubic_hermite_spline(x, p0, m0, p1, m1): """The third order polynomial p(x) with p(0)=p0, p'(0)=m0, p(1)=p1, p'(1)=m1.""" a3 = m0 + m1 + p0 + p0 - p1 - p1 a2 = p1 - a3 - m0 - p0 return p0 + x * (m0 + x * (a2 + x * a3))
a51ec24914c6926dde893aa78ba7abca1ab29e54
459,142
def nodestrength(mtx, mean=False): """ Compute the node strength of a graph. Parameters ---------- mtx : numpy.ndarray A matrix depicting a graph. mean : bool, optional If True, return the average node strength along the last axis of mtx. Returns ------- numpy.ndarray The node strength. """ ns = abs(mtx).sum(axis=0) if mean: ns = ns.mean(axis=-1) return ns
0b8a30a6b1ab2218368c0af0f6bf8036b819d431
18,723
import re def prepare_defines(defines, fmt, excluded = None): """Prepare defines for a C++ or Assembly program. """ lines = [] for name, value in defines.items(): if excluded and re.match(excluded + '$', name): continue try: lines.append(fmt % (name, value)) except TypeError: pass return '\n'.join(lines)
6d1713c2aa82ea711cd976f7078d8d6f36759de1
391,297
def max_in(values): """ Returns the largest value in `values`, or `None` if the input list is empty. """ max_value = None for v in values: if max_value is None or v > max_value: max_value = v return max_value
4672ca12b61c91332a05f705661907ef96d0bb34
480,009
import re def parse_countdown_length(string): """Given a countdown length string, return the number of seconds to run for. Raises a ValueError if the string cannot be parsed. """ match = re.match( r'^(?:(?P<hours>[0-9]+)h\s*)?' r'(?:(?P<minutes>[0-9]+)m\s*)?' r'(?:(?P<seconds>[0-9]+)s)?$', string.strip().lower(), ) if not match: raise ValueError('Unable to parse countdown length %r' % string) seconds = 0 if match.group('hours'): seconds += int(match.group('hours')) * 60 * 60 if match.group('minutes'): seconds += int(match.group('minutes')) * 60 if match.group('seconds'): seconds += int(match.group('seconds')) return seconds
4ccc705050363668544bae7fba0ca8eb36a0b864
315,886
def convert_bin_to_int(list_string_col): """ Convert a list of strings to a list of integers Args: list_string_col: list of strings (characters 0 or 1) Returns: list of integer """ int_from_string_col = [int(x, 2) for x in list_string_col] return int_from_string_col
af03589bf06210cac28d2125ab014f50a893a54e
315,209
def default(value, default): """ Return `default` is `value` is :data:`None`, otherwise return `value`. """ if value is None: return default return value
517ffb3c6f67ad9290d8c44be5bd54a90bc4e37c
52,995
from typing import Callable from typing import List from typing import Tuple from typing import Type import inspect def parameters(method: Callable) -> List[Tuple[str, Type]]: """ Inspect the desired method extracting a list of parameters needed to execute it. Parameters: method: The type.Callable that will be inspected Returns: A list of Tuples with the parameter name and its annotation """ output: List[Tuple[str, Type]] = list() if callable(method): spec: inspect.FullArgSpec = inspect.getfullargspec(method) if spec.args: for index in range(0, len(spec.args)): arg: str = spec.args[index] if arg == 'self' or arg == 'cls': continue output.append((arg, spec.annotations[arg])) return output
7cb60dfb1ec9bc0adb4d5753699e9d955d3a9516
576,527
import math def quaternion_to_euler_list(quaternion:list, degrees = False, axis_qw=0, axis_front=1, axis_left=2, axis_up=3): """ Returns the euler representation of a quaternion [qw, qi, qj, qk] into yaw = [-pi, pi] pitch = [-pi/2, pi/2] roll = [-pi, pi] If the quaternion is not in the order [qw, qi, qj, qk], you can specify these variables to set the index of the dimension: - `axis_qw` > Contains the scalar factor of the quaternion - `axis_front` > Contains the axis indicating the POSITIVE-FRONT in the coordinate reference system - `axis_left` > Contains the axis indicating the POSITIVE-LEFT in the coordinate reference system - `axis_up` > Contains the axis indicating the POSITIVE-UP in the coordinate reference system Based on Eq 2.9 of the Technical report in: https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=08A583E84796E221D446200475B7841A?doi=10.1.1.468.5407&rep=rep1&type=pdf :param quaternion: Unit quaternion representation :type quaternion: list of length 4 :return: [yaw, pitch, roll] in radians, or degrees if `degrees=True` :rtype: list of length 3 """ qr = quaternion[axis_qw] qi= quaternion[axis_front] qj = quaternion[axis_left] qk = quaternion[axis_up] # Squares of vector components to speed-up calculations sqi = qi*qi sqj = qj*qj sqk = qk*qk ### Euler angles # roll (x-axis rotation) sinr_cosp = 2 * (qr * qi + qj * qk) cosr_cosp = 1 - 2 * (sqi + sqj) roll = math.atan2(sinr_cosp, cosr_cosp) # pitch (y-axis rotation) sinp = 2 * (qr * qj - qk * qi) # Evaluates singularity at +/- 90 degrees to prevent GIMBAL LOCK. Happening at north/south pole. pitch = 0 if (abs(sinp) >= 1): print("GIMBAL LOCK!! with quaternion", quaternion) pitch = math.copysign(math.pi / 2, sinp) # use 90 degrees if out of range else: pitch = math.asin(sinp) # yaw (z-axis rotation) siny_cosp = 2 * (qr * qk + qi * qj) cosy_cosp = 1 - 2 * (sqj + sqk) yaw = math.atan2(siny_cosp, cosy_cosp) # Transform from radians to degrees factor = 1 if(degrees): ## CONVERT FROM RADIANS TO DEGREES factor = 180.0 / math.pi return [yaw*factor, pitch*factor, roll*factor]
92eda45932a20045ca578fcf5696bb567f32d330
489,780
def mock_context_one_device_read_endpoint_no_write(mock_context_class, mock_device, mock_interface_settings_endpoint_factory, valid_read_endpoint_address): """ Fixture that yields a mock USB context that yields one device that matches on class, subclass, and protocol but only has a valid read endpoint. """ settings = mock_interface_settings_endpoint_factory(valid_read_endpoint_address) mock_device.iterSettings.return_value = [settings] mock_context_class.getDeviceList.return_value = [mock_device] return mock_context_class
052e4d1748a17fc77cbce178ee57792a13a579a3
427,089
def valid_page_name(page): """ Checks for valid mainspace Wikipedia page name Args: page: The page name to validate Returns: True if `page` is valid, False otherwise """ NON_MAINSPACE = ['File:', 'File talk:', 'Wikipedia:', 'Wikipedia talk:', 'Project:', 'Project talk:', 'Portal:', 'Portal talk:', 'Special:', 'Help:', 'Help talk:', 'Template:', 'Template talk:', 'Talk:', 'Category:', 'Category talk:'] return all(not page.startswith(non_main) for non_main in NON_MAINSPACE)
5a6ab243b70294db3d61903168444f531521c86c
561,796
from typing import Tuple def get_sift_bin_ksize_stride_pad(patch_size: int, num_spatial_bins: int) -> Tuple: """Returns a tuple with SIFT parameters, given the patch size and number of spatial bins. Args: patch_size: (int) num_spatial_bins: (int) Returns: ksize, stride, pad: ints """ ksize: int = 2 * int(patch_size / (num_spatial_bins + 1)) stride: int = patch_size // num_spatial_bins pad: int = ksize // 4 out_size: int = (patch_size + 2 * pad - (ksize - 1) - 1) // stride + 1 if out_size != num_spatial_bins: raise ValueError( f"Patch size {patch_size} is incompatible with \ requested number of spatial bins {num_spatial_bins} \ for SIFT descriptor. Usually it happens when patch size is too small\ for num_spatial_bins specified" ) return ksize, stride, pad
e05426294afbc3c2a0c2a06d6b30903e72b25c39
465,506
def pltime(self, tmin="", tmax="", **kwargs): """Defines the time range for which data are to be displayed. APDL Command: PLTIME Parameters ---------- tmin Minimum time (defaults to the first point stored). tmax Maximum time (defaults to the last point stored). Notes ----- Defines the time (or frequency) range (within the range stored) for which data are to be displayed. Time is always displayed in the Z-axis direction for 3-D graph displays. If XVAR = 1, time is also displayed in the X-axis direction and this control also sets the abscissa scale range. """ command = f"PLTIME,{tmin},{tmax}" return self.run(command, **kwargs)
c2d65b2cb221f83972c9fbe9ba615266a308550f
106,789
def rpc_plugins_list(handler): """ Return information regarding enabled plugins in the server. :return: A dictionary representing enabled plugins and their meta-data. :rtype: dict """ plugin_manager = handler.server.plugin_manager plugins = {} for _, plugin in plugin_manager: plugins[plugin.name] = { 'description': plugin.formatted_description, 'name': plugin.name, 'title': plugin.title, 'version': plugin.version } return plugins
d534e3ba9379947821fc2a49b0439b4a4269d9ff
20,289
from typing import List def get_effective_lindbladian_object_names() -> List[str]: """Return the list of valid effective-lindbladian-related object names.""" names = [] names.append("hamiltonian_vec") names.append("hamiltonian_mat") names.append("effective_lindbladian_mat") names.append("effective_lindbladian") return names
7c5f63e2ab48fd9cb6e0f53fcab895261311e5b5
31,601
def calculate_chunk_slices(items_per_chunk, num_items): """Calculate slices for indexing an adapter. Parameters ---------- items_per_chunk: (int) Approximate number of items per chunk. num_items: (int) Total number of items. Returns ------- list of slices """ assert items_per_chunk > 0 assert num_items > 0 return [slice(i, min(i + items_per_chunk, num_items)) for i in range(0, num_items, items_per_chunk)]
fd42f9be9149d7a59498e17bb76329a8e96a6ae7
654,976
import csv def get_urls_from_data(data_path: str, sample): """ Finds and returns a list of URLs from the recipes.csv dataset. :param data_path: path to the input csv list :param sample: if given, the function will return only n=sample urls :return: list of urls """ bbc_urls = [] all_recipes_urls = [] with open(data_path) as csv_file: csv_reader = csv.reader(csv_file) for index, row in enumerate(csv_reader): if sample > 0: if bbc_urls.__len__() < sample and "www.bbcgoodfood.com" in row[0]: bbc_urls.append(row[0]) elif "www.bbcgoodfood.com" in row[0]: bbc_urls.append(row[0]) return { "bbc": bbc_urls, "all_recipes": all_recipes_urls }
7eb492e57f7060ca3c4384147fa792ef72c21fef
468,425
def exists(dict, key): """ Check if a key exists in a dict """ return key in dict.keys()
3dd531b8a13af2e8905f721e05756bd8184e24c4
696,741
def _Shorten(s, prefixofs, suffixofs, maxlen): """Shorten the given string if its length is >= maxlen. Note: maxlen should generally be considerably bigger than prefixofs + suffixofs. It's disconcerting to a reader when you have a "..." to replace 10 bytes, but it feels fine when the "..." replaces 500 bytes. Args: s: the string to shorten. prefixofs: the number of chars to keep at the beginning of s. suffixofs: the number of chars to keep at the end of s. maxlen: if the string is longer than this, shorten it. Returns: A shortened version of the string. """ s = str(s) if len(s) >= maxlen: # When the string exceeds the limit, we deliberately shorten it to # considerably less than the limit, because it's disconcerting when # you have a "..." to replace 10 bytes, but it feels right when the # "..." replaces 500 bytes. s = s[0:prefixofs] + '.....' + s[-suffixofs:] return s
00dbbf636e3aa39af8cf73984fbffec33b454349
54,281
def cal_origin_responsetime(dfs): """ calculates origin_responsetime as, sum("turnaroundtimemsec") where cachestatus == 0 and cacherefreshsrc == 'origin' sample output, ``` "origin_response_time": 0, ``` """ return int( dfs.query("cachestatus == 0 and cacherefreshsrc == 'origin'")[ "turnaroundtimemsec" ].sum() )
1150635d20916f97a731c4bb6e513c34b33e59f2
88,255
def getSancaiWuxing(x_ge): """ 根据天格、人格、地格计算得出五行属性 尾数为1,2五行为木;尾数为3,4五行为火;尾数为5,6五行为土;尾数为7,8五行为金;尾数为9,0五行为水 :param x_ge: x格 :return: 五行 """ wuxing = '' if (x_ge % 10) in [1, 2]: wuxing = '木' elif (x_ge % 10) in [3, 4]: wuxing = '火' elif (x_ge % 10) in [5, 6]: wuxing = '土' elif (x_ge % 10) in [7, 8]: wuxing = '金' elif (x_ge % 10) in [9, 0]: wuxing = '水' return wuxing
047b25d00630d6d1efd695ff03f8733b6f70af64
270,677
def is_entry_a_header(key, value, entry): """Returns whether the given entry in the header is a expected header.""" return (key.lower() in entry.lower() or value.lower() in entry.lower())
c0b8b0acf3231939dd92f13ed19829916dba647a
426,301
def create_model_dict(input_channels, num_classes=[4, 1], name='2d'): """ Creates `model_dict` dictionary from parameters. Parameters ---------- input_channels: int 1 indicates gray-channle image, 3 indicates RGB image. num_classes: list [4, 1] -> 4 indicates offset in x, offset in y, margin in x, margin in y; 1 indicates seediness score name: string """ model_dict = { 'name': 'branched_erfnet' if name=='2d' else 'branched_erfnet_3d', 'kwargs': { 'num_classes': num_classes, 'input_channels': input_channels, } } print( "`model_dict` dictionary successfully created with: \n -- num of classes equal to {}, \n -- input channels equal to {}, \n -- name equal to {}".format( input_channels, num_classes, name)) return model_dict
00c57affbb449847cf7edb2ef55778c13ea031d9
147,412
def permutation_as_config_number( p ): """ A numeric representation of a numeric list. Example: >>> permutation_as_config_number( [ 1, 1, 0, 0, 1 ] ) 11001 """ tot = 0 for num in p: tot *= 10 tot += num return tot
9cc81dd7d45cc42a654014f6007746ad3da1492e
525,377
from typing import Sequence import random def gen_rhythm( beats: int = 4, note_values: Sequence[int] = (8, 6, 4, 3, 2, 1) ) -> Sequence[int]: """Generates a rhythm of the given length with the given note values. Args: beats: Length of the rhythm to generate in quarter notes (default 4) note_values: The note values in 8th notes to use when generating the rhythm. For instance, a quarter note's note value would be 2 (two 8th notes). (default (8, 6, 4, 3, 2, 1)) Returns: A sequence of notes by their values in 8ths. For example, [1, 3] would be an 8th note followed by a dotted quarter note. Raises: ValueError: It may not be possible to generate a rhythm of a given length given specific note values. If that happens, this error is raised. """ iter_max = 500 notes = [0] eighths = beats * 2 current_eighths = 0 iter_counter = 0 while current_eighths != eighths: iter_counter += 1 if iter_counter > iter_max: raise ValueError( "Given note values cannot create rhythm of the given length" ) current_eighths -= notes.pop() while current_eighths < eighths: note_val = random.choice(note_values) notes.append(note_val) current_eighths += note_val return notes
081d860f801709dca856a52f213faff67ec9cf0d
219,746
def bbands_inside_kchannels(dataframe_name): """Creates signals for long position Args: dataframe_name (df): Dataframe containing indicator data for Bollinger Bands and Keltner Channels Returns: A dataframe of: original data passed to function, bbkc_squeeze (flt): Signals column (1.0 = True, 0.0 = False) """ # Create signal for bollinger band is inside keltner channel selection = dataframe_name.loc[((dataframe_name['bb_upper'] < dataframe_name['kc_upper']) & (dataframe_name['bb_lower'] >= dataframe_name['kc_lower'])), :].index dataframe_name['bbkc_squeeze'] = 0.0 dataframe_name.loc[selection, 'bbkc_squeeze'] = 1.0 # Return dataframe with features and target return dataframe_name
9f7bbc5da186183eae1e9d1808edbc3d4df0e1e0
583,016
def cos_angle(left_side: float, right_side: float, third_side: float) -> float: """ Calculate cos of angle if give 3 side of triangle """ return (left_side ** 2 + right_side ** 2 - third_side ** 2) / (2 * left_side * right_side)
7d1de7b032ceb21ede48f8ad55a3b7009e9b9b0a
551,652
def extract_tracklist_begin_num(content): """Return list of track names extracted from messy web content. The name of a track is defined as a line which begins with a number (excluding whitespace). """ tracklist = [] for line in content.splitlines(): # Empty line if not line: continue # Strip leading and trailing whitespace line.lstrip() line.rstrip() if line[0].isdigit(): tracklist.append(line) return tracklist
7d860fb0ea444ae0d9bd536a4644fa6b1c11a826
10,299
def edge_list_get_tail_index(edge_list, tail_index): """ Takes a list of edges and returns an edge if the tail_index matches the given index, or None otherwise. """ for edge in edge_list : if edge.tail_index == tail_index : return edge return None
1d7f55afec3fb9da269d1c45dd111ce05cb10bd5
28,575
def to_lbs(amount): """Converts an amount from grams to lbs rounded to two decimal places""" return round(amount*.0022, 2)
12ec52a2e43ddc9d225281f7d893403fb8050b74
312,819
import uuid def is_valid_uuid(val): """ Check if a string is a valid uuid :param val: uuid String :return: Returns true if is a string is a valid uuid else False """ try: uuid.UUID(str(val)) return True except ValueError: return False
d04f658d3ae2fa85377e110b0a6716bc34ee9df0
9,689
def prefix(pattern, k): """we define PREFIX(Pattern) as the first (k-1)-mers in a k-mer Pattern""" return pattern[k - 1:]
a5ba03c9710943fd4126b54a3ad95840ac401658
163,621
def is_palindrome(num): """ Returns true if num is a palindrome. """ return str(num) == str(num)[::-1]
490ca1326254e525bcefb21e7822c82ad730962a
40,119
from typing import List def is_subcat(c: List[str], sub_c: List[str]) -> bool: """ Return True if sub_c is a subcategory of c. """ # if c is more precize category then sub_c can't be subcategory of c. if len(c) > len(sub_c): return False for c_el, x_el in zip(c, sub_c): if c_el != x_el: return False return True
0307399f695daf04f0d31a5c0b7d7def5fdcaa3a
449,985
from functools import reduce def iterative_hash(s): """Compute the has code of the given string as in: net/traffic_annotation/network_traffic_annotation.h Args: s: str The seed, e.g. unique id of traffic annotation. Returns: int A hash code. """ return reduce(lambda acc, c: (acc*31 + ord(c)) % 138003713, s, 0)
90a1820fc4b389dbed35f0339bac429f3c71baa5
537,881
def filter_headline(df, non_disaggregation_columns): """Given a dataframe filter it down to just the headline data. In the case of multiple units it will keep all headline for each unit. """ special_cols = [col for col in non_disaggregation_columns if col in df.columns] # Select the non-data rows and filter rows that are all missing (nan) disag = df.drop(special_cols, axis=1) headline_rows = disag.isnull().all(axis=1) headline = df.filter(special_cols, axis=1)[headline_rows] return headline
3e2697a9802a6d5493ea8b81366ca5bf591d17e4
71,409
def condition(cond, fn, x): """ Only apply fn if condition is true """ if cond(x): return fn(x) else: return x
63283409fe05f5eae26e3c7b55320c5349690515
206,158
import time def time_function(function, *args, n=10000, **kwargs): """ time how long it takes for a function to evaluate n times """ initial_time = time.time(); for _ in range(n): function(*args, **kwargs); final_time = time.time(); return final_time - initial_time;
c1b094f5ae9f58aaa68dfad10802ac6b9dce4290
530,586
import torch def evaluate_sce(confidences: torch.Tensor, true_labels: torch.Tensor, n_bins: int = 15) -> float: """ Args: confidences (Tensor): a tensor of shape [N, K] of predicted confidences. true_labels (Tensor): a tensor of shape [N,] of ground truth labels. n_bins (int): the number of bins used by the histrogram binning. Returns: sce (float): static calibration error of predictions. """ ticks = torch.linspace(0, 1, n_bins + 1) bin_lowers = ticks[:-1] bin_uppers = ticks[ 1:] n_objects, n_classes = confidences.size() sce = torch.zeros(1, device=confidences.device) for cur_class in range(n_classes): for bin_lower, bin_upper in zip(bin_lowers, bin_uppers): cur_class_conf = confidences[:, cur_class] in_bin = cur_class_conf.gt( bin_lower.item() ) * cur_class_conf.le( bin_upper.item() ) bin_acc = true_labels[in_bin].eq(cur_class) bin_conf = cur_class_conf[in_bin] bin_size = torch.sum(in_bin) if bin_size > 0: avg_confidence_in_bin = torch.mean(bin_conf.float()) avg_accuracy_in_bin = torch.mean(bin_acc.float()) delta = torch.abs(avg_confidence_in_bin - avg_accuracy_in_bin) sce += delta * bin_size / (n_objects * n_classes) return sce.item()
cb0ac9e02a0b8d27c5b65b599c71d766268f2993
592,654
from typing import Tuple from typing import Callable import re import operator def parse_condition(condition: str) -> Tuple[Callable[[int, int], bool], int]: """ Parse a string representing a comparison like 'x < 1', returning a function representing the operation, and the int value 1, in the example case. If a string like '1 > x' is used, it will be converted to 'x < 1' first. """ condition_regex = re.compile(r'^(x|\d+) ?(<|>|<=|>=|==|!=) ?(x|\d+)') matches = condition_regex.match(str(condition)) if not matches: raise ValueError('Unrecognized condition string') if matches[1] == 'x': op, val = matches[2], int(matches[3]) else: op, val = matches[2], int(matches[1]) op_dict = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } opposite_op = {'<': '>', '<=': '>=', '==': '==', '>': '<', '>=': '<=', '!=': '!='} try: if matches[1] == 'x': real_op = op_dict[op] else: real_op = op_dict[opposite_op[op]] except KeyError: raise ValueError('Unrecognized operation "%s"' % op) return real_op, val
55efdc48031b12edabf8890fbec58fefeb0104aa
174,929
from datetime import datetime def MicrosecondsToDatetime(microseconds): """Returns a datetime given the number of microseconds, or None.""" if microseconds: return datetime.utcfromtimestamp(float(microseconds) / 1000000) return None
69fd3dc3b8d1a97e7a64037cabe988365b2c6e63
709,075
def insertion_sort(arr): """ My Python implementation of insertion sort Sorts a list of numbers and returns the sorted list Time complexity: O(n^2) Space complexity: O(1) """ for i in range(len(arr)): # Store current value current_value = arr[i] # Initialize j to current index j = i # Move all previous values greater than current value to the right while j > 0 and arr[j - 1] > current_value: arr[j] = arr[j - 1] j -= 1 # Add current value to the empty slot arr[j] = current_value return arr
1cd171f10085d28a33db09c13875e447975d2ecd
284,360
from typing import Dict from typing import Optional def format_name(data: Dict, is_recipe=True) -> Optional[str]: """ Returns recipe 'externalName' if it exists, otherwise returns 'name'. Default returns 'name' for non-recipe (ingredient) types if 'name' exists. If 'name' doesn't exist, returns None. """ if data.get('externalName') and is_recipe: return data['externalName'] return data.get('name') or None
c662dc6f131bd1be3fd56bbba5c98bc186a87c12
223,114
def transpose_batch_sizes(lengths): """ Given a list of sequence lengths per batch size (ie for an RNN where sequence lengths vary), converts this into a list of batch sizes per timestep :param lengths: Sorted (descending order) list of ints :return: A list of length lengths[0] """ max_len = lengths[0] length_pointer = len(lengths) - 1 end_inds = [] for i in range(max_len): while (length_pointer > 0) and lengths[length_pointer] <= i: length_pointer -= 1 end_inds.append(length_pointer + 1) return end_inds
e24a2a2f73fea0d50693260c0eee960b0507dc72
399,625
import copy import random def staticDepthLimit(max_depth): """Implement a static limit on the depth of a GP tree, as defined by Koza in [Koza1989]. It may be used to decorate both crossover and mutation operators. When an invalid (too high) child is generated, it is simply replaced by one of its parents. This operator can be used to avoid memory errors occuring when the tree gets higher than 90-95 levels (as Python puts a limit on the call stack depth), because it ensures that no tree higher than *max_depth* will ever be accepted in the population (except if it was generated at initialization time). :param max_depth: The maximum depth allowed for an individual. :returns: A decorator that can be applied to a GP operator using \ :func:`~deap.base.Toolbox.decorate` .. note:: If you want to reproduce the exact behavior intended by Koza, set the *max_depth* param to 17. .. [Koza1989] J.R. Koza, Genetic Programming - On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, MA, 1992) """ def decorator(func): def wrapper(*args, **kwargs): keep_inds = [copy.deepcopy(ind) for ind in args] new_inds = list(func(*args, **kwargs)) for i, ind in enumerate(new_inds): if ind.height > max_depth: new_inds[i] = random.choice(keep_inds) return new_inds return wrapper return decorator
cdcb1e58a681b622ced58e9aa36562e1fedb6083
6,104
def _collect_column_constraints(column, unique): """ Collect constraints for a column. Use column information as well as unique constraint information. Note: for a unique constraint on a single column we set column / constraints / unique = True (and store all multicolumn uniques in the table realm) """ res = {} if 'null' in column: res['required'] = not column['null'] for constr_i, constr in enumerate(unique): if column['column_name'] in constr['fields']: if len(constr['fields']) == 1: res['unique'] = True return res
d6e8636e15d45378bc406986df87f694f58e604e
521,018
def contains_subsets(iter_of_sets): """ Checks whether a collection of sets contains any sets which are subsets of another set in the collection """ for si in iter_of_sets: for sj in iter_of_sets: if si != sj and set(sj).issubset(si): return True return False
2b5055f0a31f5f00d975b49b08a4976c3c251fc5
17,285
def to_cert_dat(key): """ Convert input raw key to list :param key: Input raw key :return: Key as list format """ cert_data = list() for i in key: cert_data.append(ord(i)) return cert_data
91a3336da9d2abe8055bc98089acb0e0cca527bb
523,432
def infer_dpdk_machine(user_cflags): """Infer the DPDK machine identifier (e.g., 'ivb') from the space-separated string of user cflags by scraping the value of `-march` if it is present. The default if no architecture is indicated is 'native'. """ arch = 'native' # `-march` may be repeated, and we want the last one. # strip features, leave only the arch: armv8-a+crc+crypto -> armv8-a for flag in user_cflags.split(): if flag.startswith('-march'): arch = flag[7:].split('+')[0] MAPPING = { 'native': 'native', 'nehalem': 'nhm', 'westmere': 'wsm', 'sandybridge': 'snb', 'ivybridge': 'ivb', 'armv8-a': 'armv8a', } return MAPPING.get(arch, 'native')
67257b4aac088581c399bc20d4d4e89ad17c9dae
451,689
def format_remove_duplicates(text, patterns): """Removes duplicated line-basis patterns. Based on simple pattern matching, removes duplicated lines in a block of lines. Lines that match with a same pattern are considered as duplicates. Designed to be used as a filter function for Jinja2. Args: text: A str of multi-line text. patterns: A list of str where each str represents a simple pattern. The patterns are not considered as regexp, and exact match is applied. Returns: A formatted str with duplicates removed. """ pattern_founds = [False] * len(patterns) output = [] for line in text.split('\n'): to_be_removed = False for i, pattern in enumerate(patterns): if pattern not in line: continue if pattern_founds[i]: to_be_removed = True else: pattern_founds[i] = True if to_be_removed: continue output.append(line) # Let |'\n'.join| emit the last newline. if output: output.append('') return '\n'.join(output)
0547ec746f0d2d8bce916916c2b235de1569886b
106,936
def to_uint256(value: int) -> bytes: """Encodes an unsigned integer as a big endian uint256.""" return value.to_bytes(32, "big")
236f5f16d13258ed1ad9bf194b2cebbc14666305
611,765
def get_index_names(df): """ Get names from either single or multi-part index """ if df.index.name is not None: df_index_names = [df.index.name] else: df_index_names = list(df.index.names) df_index_names = [x for x in df_index_names if x is not None] return df_index_names
143f7e86594d39ccb19ab1e4e36cd9933cb07304
44,949
def floor_log2(x): """ floor of log2 of abs(`x`) Embarrassingly, from https://en.wikipedia.org/wiki/Binary_logarithm Parameters ---------- x : int Returns ------- L : None or int floor of base 2 log of `x`. None if `x` == 0. Examples -------- >>> floor_log2(2**9+1) 9 >>> floor_log2(-2**9+1) 8 >>> floor_log2(0.5) -1 >>> floor_log2(0) is None True """ ip = 0 rem = abs(x) if rem > 1: while rem >= 2: ip += 1 rem //= 2 return ip elif rem == 0: return None while rem < 1: ip -= 1 rem *= 2 return ip
428283df49a4ede4f3a9ab41ccaa8fd7e266109a
325,865
def fix_ical_datetime_format(dt_str): """ ICAL generation gives timezones in the format of 2018-06-30T14:00:00-04:00. The Timezone offset -04:00 has a character not recognized by the timezone offset code (%z). The being the colon in -04:00. We need it to instead be -0400 """ if dt_str and ":" == dt_str[-3:-2]: dt_str = dt_str[:-3] + dt_str[-2:] return dt_str return dt_str
640d7222eac4e32b954502e740f537db96fac7f1
203,020
import random def des_num_exposures(bands=''): """ Sample from the effective number of exposures for DES """ # Figure 5 in https://arxiv.org/pdf/1501.02802.pdf dist = {'g': {'VALUES': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'WEIGHTS': [0.040, 0.113, 0.267, 0.311, 0.178, 0.062, 0.019, 0.007, 0.003]}, 'r': {'VALUES': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'WEIGHTS': [0.041, 0.119, 0.284, 0.321, 0.167, 0.046, 0.014, 0.006, 0.002]}, 'i': {'VALUES': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'WEIGHTS': [0.043, 0.121, 0.291, 0.334, 0.165, 0.033, 0.009, 0.003, 0.001]}, 'z': {'VALUES': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'WEIGHTS': [0.039, 0.106, 0.272, 0.332, 0.183, 0.048, 0.013, 0.005, 0.002]}, 'Y': {'VALUES': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'WEIGHTS': [0.034, 0.074, 0.195, 0.305, 0.241, 0.099, 0.035, 0.012, 0.005]} } return [random.choices(dist[b]['VALUES'], dist[b]['WEIGHTS'])[0] for b in bands.split(',')]
55ab17b4853cdcf952c79698313622aecf4c7915
464,288
def pick_first_not_none(*values): """Returns first of values that is *not* None (or None if all are/were).""" for val in values: if val is not None: return val return None
2b7408236137708687f39b28c5c28d8214337627
293,108
def scale_down(src_size, size): """Scales down crop size if it's larger than image size. If width/height of the crop is larger than the width/height of the image, sets the width/height to the width/height of the image. Parameters ---------- src_size : tuple of int Size of the image in (width, height) format. size : tuple of int Size of the crop in (width, height) format. Returns ------- tuple of int A tuple containing the scaled crop size in (width, height) format. Example -------- >>> src_size = (640,480) >>> size = (720,120) >>> new_size = mx.img.scale_down(src_size, size) >>> new_size (640,106) """ w, h = size sw, sh = src_size if sh < h: w, h = float(w * sh) / h, sh if sw < w: w, h = sw, float(h * sw) / w return int(w), int(h)
7ee38185ac72ac8835d0203dc8d63d7db88e3809
316,145
def _ListTypeFormatString(value): """Returns the appropriate format string for formatting a list object.""" if isinstance(value, tuple): return '({0})' if isinstance(value, set): return '{{{0}}}' return '[{0}]'
d535b78c9604566a86df5300af53f4bbe60fd4b8
340,157
def flat_list(list_): """ Flat the nested lists `list_`. Example: ---------- >>> flat_list([0, 2, [1, 4, 2], [1, 3, 4]]) [0, 2, 1, 4, 2, 1, 3, 4] """ # Deprecated realization of the function, as elements may be strings with characters '[' or ']'. # items = str(list_).replace('[', '').replace(']', '').split(',') # return list(eval(','.join([x for x in items if x.strip() != '']))) flattened = [] for x in list_: if isinstance(x, list): flattened.extend(flat_list(x)) else: flattened.append(x) return flattened
2bb676d067088afa7698caa0c0b60b8b9a05d973
480,132
def dict_enter(dct, key, default): """Access dictionary entry with a default value""" if key not in dct: dct[key] = default return dct[key]
a903b29a34cb5cad511297fee73b0b0f4d3d94ad
201,804
def sal_res_crain(resistivity, temperature): """Return salinity following Crain's petrophysical handbook. Salinity is calculated as a function of resistivity and temperature. Note ---- Resistivity OR temperature can be arrays, but not both at the same time. Parameters ---------- resistivity : float or array Resistivity in Ohm.m. temperature : float or array Temperature in °C. Returns ------- salinity : float or array Salinity in parts per million (ppm). """ return 400000/(temperature*9/5 + 32)/resistivity**1.14
32de84bf6c74efed730d52531a4078006eb7d7e6
161,412
def findPathsWithoutStats(cursor): """ =========================================================================== Find Path without stats =========================================================================== **Args**: * cursor: cursor db connection **Returns**: Tuple: ``(id, count)`` """ cursor.execute("SELECT id, count FROM lmp_logPathsT WHERE duration_avg IS NULL") return cursor.fetchall()
f9bef5e0b4273b605ee3e62e8197d74813e7df99
543,991
from typing import Union from typing import List from typing import Tuple def list_unpack(some_list: Union[List, Tuple]) -> List: """ Функция для распаковки списков. Распаковывает вложенные списки на один уровень. Parameters ---------- some_list: list or Tuple Список c уровнем вложенности равным n Return ------ new_list: Tuple Список,с уровнем вложенности n - 1; n - 1 >= 1 Example ------- >>> some_list = [1, 2, [3, 4], [5, [6]]] >>> list_unpack(some_list) (1, 2, 3, 4, 5, [6]) """ new_list = [] for element in some_list: if isinstance(element, (list, tuple)): for i in element: new_list.append(i) else: new_list.append(element) return new_list
868cdbb6bf9d26c3c0af0d36f58e7b2572ad7b2b
228,919
def blocks_to_table(blocks, block_struct): """A function that takes a codon table represented in block structure form and returns the representation as a traditional codon table Parameters ---------- dict blocks: a python dict representing the codon table in block form dict block_struct: a python dict representing the table block structure Returns ------- dict table: a python dict representing the codon table bool False: an "exception" if input table does not match block_struct """ # declare table to return table = {} # loop over blocks in block_struct and assign to table using blocks for block_ind, codon_list in block_struct.items(): block_aa = blocks[block_ind] for codon in codon_list: table[codon] = block_aa # return filled codon table return table
8f99a5483ab4a3c508d542c492fb89f1c89657f1
133,889
import torch def apply_linear_constraint(lin, a, x, *args, inequality=False, v=None, **kwargs): """Apply a linear constraint Parameters ---------- lin : Callable the linear constraint of the form lin(x, *args, **kwargs) = a that is linear in x inequality : bool assume that lin(x, *args, **kwargs) >= a Returns ------- y : Tensor x transformed to satisfy the constraint """ val_x = lin(x, *args, **kwargs) # use a constant adjustment # x - alpha * v if v is None: v = torch.ones(x.size(-1)) val_v = lin(v, *args, **kwargs) alpha = (val_x - a) if inequality: alpha = alpha.clamp(max=0) return x - v * (alpha / val_v)
e46de92b38a641373056ac5965120f84a35f7b70
94,565
def overlaps(df, idx): """ Check if the note at the given index in the given dataframe overlaps any other notes in the dataframe. Parameters ---------- df : pd.DataFrame The DataFrame to check for overlaps. idx : int The index of the note within df that might overlap. Returns ------- overlap : boolean True if the note overlaps some other note. False otherwise. """ note = df.loc[idx] df = df.loc[ (df["pitch"] == note.pitch) & (df["track"] == note.track) & (df.index != idx) ] overlap = any( (note.onset < df["onset"] + df["dur"]) & (note.onset + note.dur > df["onset"]) ) return overlap
382c21c7b2232b40ce7c563d677afa8a70f5bfcc
44,038
def empirical_power(n_tp, n_at): """Computer empirical power. Input arguments: ================ n_tp : int The observed number of true positives. n_at : int The number of hypotheses for which the alternative is true. Output arguments: ================= epwr : float Empirical power. """ """Compute the empirical power. Check that the result is in [0, 1].""" pwr = float(n_tp) / float(n_at) if ((pwr > 1) | (pwr < 0)): raise Exception('Invalid input parameters!') return pwr
e95e99376401b8a520a44b01412503ca4dc16cf4
159,361
def _get_plugin_id_set(plugin_info_list): """ Return a set with the ids from plugin info list. """ return {plugin_info.id for plugin_info in plugin_info_list}
c816854edd31c6d3a6a8e25b90193c776914bf80
212,906
def make_sagemaker_input_data_configs(data_channels: list): """restructures a list of data names as sagemaker input data configs""" return {name: {} for name in data_channels}
6ca5a8178ac2e8f8bdc9f07709d32427be395197
132,535
import time def datetime_to_timestamp(d): """convert a datetime object to seconds since Epoch. Args: d: a naive datetime object in default timezone Return: int, timestamp in seconds """ return int(time.mktime(d.timetuple()))
356ac090b0827d49e9929a7ef26041b26c6cc690
709,688
from typing import OrderedDict def dedupedlist(mylist): """Dedupe a list""" return list(OrderedDict.fromkeys(mylist))
f51ddf538a226ab22c9dfcda1335a7c025b8a4df
584,999
def vehicle_type_and_mav_sys_id(vehicle_id, vehicle_color): """Get the vehicle_type and mav_sys_id from the vehicle's id and color.""" # valid MAV_SYS_IDs 1 to 250 # the first 25 vehicles per team are iris # the second 25 vehicles per team are plane (delta_wing) vehicle_type = 'iris' if vehicle_id <= 25 else 'delta_wing' # BLUE uses 1 to 50 # GOLD uses 101 to 150 mav_sys_id = vehicle_id if vehicle_color == 'gold': mav_sys_id += 100 return vehicle_type, mav_sys_id
0f2f415f4242f8586e46b542380c280989fb6ec1
604,502
def qiskit_1qb(qc): """ Returns the list of the qiskit gate methods that affect 1 qubit and take no parameter. """ return [qc.x, qc.y, qc.z, qc.iden, qc.s, qc.t, qc.sdg, qc.tdg, qc.h]
3746023802daac90d13b9ce00f803fed310a98e0
515,941
from typing import Callable from typing import Any def lazy_property(f: Callable): """Decorator that makes a property lazy-evaluated. Args: f: the function to convert to a lazy property. """ attr_name = '_lazy_' + f.__name__ @property def _lazy_property(self) -> Any: if not hasattr(self, attr_name): setattr(self, attr_name, f(self)) return getattr(self, attr_name) return _lazy_property
45486f2ed0dba328d2dd3c727ec2a733ee8e704b
284,372
import pickle def _to_pickle(data): """Dump data into a PICKLE string.""" return pickle.dumps(data)
6bd05b95445b67d16b44d9beecd19ff961d5c1c4
205,189
def get_intel_doc_label_item(intel_doc_label: dict) -> dict: """ Gets the relevant fields from a given intel doc label. :type intel_doc_label: ``dict`` :param intel_doc_label: The intel doc label obtained from api call :return: a dictionary containing only the relevant fields. :rtype: ``dict`` """ return { 'ID': intel_doc_label.get('id'), 'Name': intel_doc_label.get('name'), 'Description': intel_doc_label.get('description'), 'IndicatorCount': intel_doc_label.get('indicatorCount'), 'SignalCount': intel_doc_label.get('signalCount'), 'CreatedAt': intel_doc_label.get('createdAt'), 'UpdatedAt': intel_doc_label.get('updatedAt'), }
578467798f08bfd0776aa285790dc95d4686a830
45,731
def check_bounds(fit_result): """ Check if the obtained fit result is within bounds""" for param in fit_result.model.params: value = fit_result.params[param.name] if value < param.min: return False elif value > param.max: return False return True
d2b40665c7265c0acf1ca933411b31f661ec76c0
578,213
def process_uri(uri, tls=False, user=None, password=None): """ Extracts hostname, protocol, user and passworrd from URI Parameters ---------- uri: str or None Connection string in the form username:password@hostname:port tls: boolean Whether TLS is enabled username: str or None Username if not supplied as part of the URI password: str or None Password if not supplied as part of the URI """ if '://' in uri: protocol, uri = uri.split('://') else: protocol = 'grpc+tls' if tls else 'grpc+tcp' if '@' in uri: if user or password: raise ValueError( "Dremio URI must not include username and password " "if they were supplied explicitly." ) userinfo, hostname = uri.split('@') user, password = userinfo.split(':') elif not (user and password): raise ValueError( "Dremio URI must include username and password " "or they must be provided explicitly." ) else: hostname = uri return protocol, hostname, user, password
a1c2f4e6665dd7762a3fc9f8712a4b0f1fef8e76
403,776