content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
|---|---|---|
def generate_by_embedding_model(lex, embedding_model, k=25):
"""Described in "Exploring Word Embeddings for Unsupervised Textual User-Generated
Content Normalization, Bertaglia and Nunes(2016)"
Args:
lex (dict): The lexicon dictionary.
embedding_model (obj): The embedding model in word2vec format. Must be readable by gensim.
k (int): Number of neares neighbours to evaluate (all experiments ran with k=25).
Returns:
dict(str: list(str)): A list of possible corrections for each word.
"""
cands = {}
corrs = {}
cands = {
word: [
sims[0]
for sims in embedding_model.most_similar(word, topn=k)
if sims[0] not in lex
]
for word in lex
if word in embedding_model
}
for word in cands:
for c in cands[word]:
if c not in corrs:
corrs[c] = []
corrs[c].append(word)
return corrs
|
3d5ec8d9769b6cd7858d71c67d6f7daddb473218
| 408,310
|
def del_keys(src_dict, del_keys):
"""Deletes redundant_keys from conf.
:param src_dict: a dict
:param del_keys: a list/set/etc with key names that we want to delete.
:return: the copy of dict without keys from del_keys.
"""
return {key: value for key, value in src_dict.items() if key not in del_keys}
|
6c3b7189e47ae8bc1f713943b443fed3c8e42573
| 301,227
|
def same_record(lr, rr):
"""
A test to see if two records name the same zone entry.
"""
return lr["rrset_name"] == rr["rrset_name"] and lr["rrset_type"] == rr["rrset_type"]
|
29074052a2a503242540cdda9d6ed2c737f6fda7
| 141,809
|
def Eq(state, command, *column_values):
"""Equals filter
Accepts one or more column-value pairs. Keep only rows where value in the column equals specified value.
Example: Eq~column1~1
"""
df = state.df()
for c,v in state.expand_column_values(column_values):
state.log_info(f"Equals: {c} == {v}")
index = df[c] == v
try:
index = index | (df[c] == int(v))
except:
pass
try:
index = index | (df[c] == float(v))
except:
pass
df = df.loc[index,:]
return state.with_df(df)
|
df3297444d3c91d1b88a118593f429583e9b4e94
| 56,101
|
def types_of_elements(elements):
"""
Characterises whether all the elements passed in the input list
are 'diagonals' (i.e. if elements=['11', '22', '33']),
'off-diagonals' (i.e. if elements=['12', '21', '42']), or 'both'
(i.e. if elements=['11', '22', '21', '12']). String descriptions
of 'diagonals', 'off-diagonals', or 'all' may also be passed.
Parameters
----------
elements : list of str
A list of string represntations of the elements of a
matrix, numbered with indexing starting at 1; i.e ['11',
'12', '21', '22']. Alternatively, the string description
can also be passed, in accordance with the specification
for the elements argument to the
figures.complex_space_time() method.
Returns
-------
str
The characterisation of the list of elements as a whole,
returning either 'diagonals', 'off-diagonals', or 'both'.
None
If the value of elements is passed as None.
"""
# If elements is passed as None
if elements is None:
return None
# If elements pass as 'all', 'off_diagonals', or 'diagonals'
if isinstance(elements, str):
assert elements in ['all', 'off-diagonals', 'diagonals']
if elements == 'all':
return 'both'
return elements
# If elements are passed in list form i.e. ['11', '21', ...]
if isinstance(elements, list):
if all([int(element[0]) == int(element[1]) for element in elements]):
return 'diagonals'
if all([int(element[0]) != int(element[1]) for element in elements]):
return 'off-diagonals'
return 'both'
raise ValueError('Incorrect format for elements')
|
18ca6bd4e9f04bbfda98016f20b6b2fabb211274
| 382,717
|
import mimetypes
def get_mimetype(filename):
"""
Get mimetype for local file
filename: string representation of file's path
"""
mime, mime_sub = mimetypes.guess_type(filename)
if not mime:
mime = "application/octet-stream"
elif mime_sub:
mime = f"{mime}+{mime_sub}"
return mime
|
0090bec93a7028e9c9e2791c01fed5bd2565b091
| 180,981
|
def isotopeMaxBD(isotope):
"""Setting the theoretical max BD shift of an isotope
(if 100% incorporation).
Parameters
----------
isotope : str
name of isotope
Returns
-------
float : max BD value
"""
psblIsotopes = {'13C' : 0.036,
'15N' : 0.016}
try:
return psblIsotopes[isotope.upper()]
except KeyError:
raise KeyError('Isotope "{}" not supported.'.format(isotope))
|
7fff5bc6a54034e68357af6a08e000de34d59283
| 43,081
|
from datetime import datetime
def parse_iso8601(string):
"""
Parses a string such as 2020-01-15T12:29:59.432228Z
and returns a matching datetime object.
"""
return datetime.strptime(string, "%Y-%m-%dT%H:%M:%S.%fZ")
|
ec93ad26eb06fc1c67344a39baee6e7f83405fd5
| 467,565
|
def _impaired_or_not(z_score, cutoff):
""" Dichotimize z-score by applying a cutoff
:param z_score: the z-score, i.e. performance relative to a reference population
:param cutoff: the cut-off to decide impaired (<=) or preserved (>) on the cognitive domain
:return: 1 if impaired, 0 if preserved
"""
if z_score <= cutoff:
return 1
else:
return 0
|
8d53497beca4f4f7962cf3a49086c366f4c64fea
| 198,030
|
def play_episode(env, policy, render_option, min_steps):
"""
Play an episode with the given policy.
:param min_steps: the minimum steps the game should be played
:param env: the OpenAI gym environment
:param policy: the policy that should be used to generate actions
:param render_option: how the game play should be rendered
:return: episode reward
"""
state = env.reset()
done = False
episode_reward = 0.0
step_cnt = 0
while not done or step_cnt < min_steps:
if render_option == 'collect':
env.render()
action = policy(state)
next_state, reward, done, _ = env.step(action)
episode_reward += reward
state = next_state
step_cnt += 1
print('episode finished with reward {0}'.format(episode_reward))
return episode_reward
|
4644d80df0dcbfc1ca6172ec949235ea9b2b1f0e
| 109,355
|
def selectnpop(dic, lis, i=0):
"""If `dic[lis[i]]` exists, return it after popping `lis[i]`.
Falls back on `dic[None]`.
"""
try:
selection = dic[lis[i]]
except (IndexError, KeyError):
return dic[None]
lis.pop(i)
return selection
|
80af9794c0663c013dfc79d80dc083bc0e7bc8d4
| 286,695
|
def node_list_to_path(G, node_list):
"""
Given a list of nodes, return a list of lines that together
follow the path
defined by the list of nodes.
Parameters
----------
G : networkx multidigraph
route : list
the route as a list of nodes
Returns
-------
lines : list of lines given as pairs ( (x_start, y_start),
(x_stop, y_stop) )
"""
edge_nodes = list(zip(node_list[:-1], node_list[1:]))
lines = []
for u, v in edge_nodes:
# if there are parallel edges, select the shortest in length
data = min(G.get_edge_data(u, v).values(),
key=lambda x: x['length'])
# if it has a geometry attribute
if 'geometry' in data:
# add them to the list of lines to plot
xs, ys = data['geometry'].xy
lines.append(list(zip(xs, ys)))
else:
# if it doesn't have a geometry attribute,
# then the edge is a straight line from node to node
x1 = G.nodes[u]['x']
y1 = G.nodes[u]['y']
x2 = G.nodes[v]['x']
y2 = G.nodes[v]['y']
line = [(x1, y1), (x2, y2)]
lines.append(line)
return lines
|
861f2155ebf2a57b4b266fe347d688052c1bcb89
| 502,598
|
def get_suspecious_items(_items):
"""Items with libraryCatalog==Zotero
These items are suspecious, cause they were imported from
pdf files and maybe Zotero did not import the metadata properly.
:param _items: Zotero library items
:type _items: list containing dicts
:returns: list containing dicts
"""
list_catalog_zotero = []
for item in _items:
if "libraryCatalog" in item["data"]:
catalog = item["data"]["libraryCatalog"]
if catalog == "Zotero":
list_catalog_zotero.append(item)
return list_catalog_zotero
|
d067dc2756630b814552b461927c31530cb67e4f
| 636,843
|
def stable_softminus(x):
"""
Calculating log(1 - exp(x)) (x < 0) in a numerically stable way
"""
# negative normal range
y1 = (1 - x.exp()).log()
# negative zero
y2 = (- x - x.pow(2)/2 - x.pow(3)/6).log()
# negative infinity
y3 = - x.exp() - (2*x).exp()/2 - (3*x).exp()/3
switch2 = (1 - x.exp()) == 0
switch3 = (1 - x.exp()) == 1
switch1 = ~switch2 ^ switch3
y1[~switch1] = 0
y2[~switch2] = 0
y3[~switch3] = 0
y = y1 + y2 + y3
return y
|
da6f017da496c3f49158c90073faab30dd2b7af2
| 183,093
|
def to_alnum(string):
"""Get rid of non alpahunmeric characters except underscores
"""
return ''.join(char for char in string if char.isalnum() or char == '_')
|
21a8179d98bd6ba6668aabe6b945751ed7821f9f
| 351,840
|
def get_bbox_inside_image(label_bbox: list, image_bbox: list) -> list:
"""
Corrects label_bbox so that all points are inside image bbox.
Returns the corrected bbox.
"""
xA = max(label_bbox[0], image_bbox[0])
yA = max(label_bbox[1], image_bbox[1])
xB = min(label_bbox[2], image_bbox[2])
yB = min(label_bbox[3], image_bbox[3])
corrected_label_bbox = [xA, yA, xB, yB]
return corrected_label_bbox
|
c14d06796d1668d06d39ffec6f66e1bc6929b677
| 683,308
|
def get_X_Y(**cosmo):
"""The fraction of baryonic mass in hydrogen and helium.
Assumes X_H + Y_He = 1.
You must specify either 'X_H', or 'Y_He', or both.
"""
if 'X_H' in cosmo and 'Y_He' not in cosmo:
X_H = cosmo['X_H']
Y_He = 1. - X_H
elif 'Y_He' in cosmo and 'X_H' not in cosmo:
Y_He = cosmo['Y_He']
X_H = 1. - Y_He
else:
X_H = cosmo['X_H']
Y_He = cosmo['Y_He']
return X_H, Y_He
|
02268d861543ba0bc7deaafa3c31d0cc50231112
| 670,645
|
import json
def parse_user_parameters(params_str):
"""Parses a given UserParameters string.
A UserParameters string must be a JSON object.
:type params_str: str
:param params_str: UserParameters string to be parsed.
:rtype: dict
:return: parsed user parameters.
:raises JSONDecodeError: if ``params_str`` is not a valid JSON text.
:raises ValueError: if ``params_str`` is not a JSON object.
"""
params = json.loads(params_str)
if not isinstance(params, dict):
raise ValueError(f'UserParameters must be a JSON object not {type(params)}')
return params
|
2e464aba708b2249323c3eec4855d72e8900eac3
| 76,104
|
def replacer(svgFile, toReplace, newData):
"""
Searches through SVG file until it finds a toReplace, once found, replaces it with newData
"""
for count in range(0,len(svgFile)):
found = svgFile[count].find(toReplace) #Check if the current line in the SVG file has the required string
if not (found == -1):
location = (svgFile[count]).find(toReplace) #We know exact location on the line that Name and Twitter are
partone = (str(svgFile[count])[:location]) #Grab part of line before the searched for string
parttwo = (str(svgFile[count])[(location+len(toReplace)):]) #Grab part of line after the searched for string
svgFile[count] = partone + newData + parttwo
break
return svgFile
|
36cc896bb12e9e8d9539b072986ea4c255912a34
| 680,728
|
def _invoice_or_bill_status_to_classname(invoice_or_bill):
"""
Return the appropriated css classname for the invoice/bill status
"""
if not invoice_or_bill.pass_full_checking():
checks = invoice_or_bill.full_check()
for c in checks:
if c.level == c.LEVEL_ERROR:
return 'danger'
return 'warning'
if invoice_or_bill.is_fully_paid():
return 'success'
elif invoice_or_bill.is_partially_paid():
return 'info'
else:
return ''
|
673e7ed4fb10fc10154efd2f9072cc8b92ae6a43
| 424,128
|
def output_notebook(name: str, input: str) -> str:
"""Generate name for output notebook.
If an output name is given it is returned as it is. Otherwise, the name
of the input notebook will have the suffix ``.ipynb`` replaced by ``.out.ipynb``.
If the input notebook does not have a suffix ``.ipynb`` the suffix ``.out.ipynb``
is appended to the input notebook name.
Parameters
----------
name: string
User-provided name for the output notebook. This value may be None.
input: string
Name of the input notebook.
Returns
-------
string
"""
if name:
return name
return input[:-6] + '.out.ipynb' if input.endswith('.ipynb') else input + '.out.ipynb'
|
1e56dd877888b591345f67d7e2537716d6b07ba9
| 229,983
|
def _py_not(a):
"""Default Python implementation of the "not_" operator."""
return not a
|
f259dff4c26846543851f470e2b168f75e3e3fd1
| 254,665
|
def _get_h3_range_lst(h3_min, h3_max):
"""Helper to get H3 range list."""
return list(range(h3_min, h3_max + 1))
|
f179d2ed880a87cf7a8ef37972b805ced4406a1e
| 313,370
|
def get_slice(img, ori, slc):
"""
Extract one slice from a 3D numpy.ndarray image.
:param img: np.array. input image to extract slice.
:param ori: int. orientation to extract slice. 1. sagittal. 2. coronal. 3. axial.
:param slc: int. slice number to extract.
:return: extracted 2D slice: np.array.
"""
if ori == 1 and 0 <= slc < img.shape[0]:
return img[slc, :, :]
elif ori == 2 and 0 <= slc < img.shape[1]:
return img[:, slc, :]
elif ori == 3 and 0 <= slc < img.shape[2]:
return img[:, :, slc]
else:
raise Exception('Invalid orientation or slice number')
|
dcf03eec0d16c68f55f701b2d312dbf4fa946ee7
| 697,503
|
def rest_api_port_number(port_generator):
""" Unique port for the REST API server. """
return next(port_generator)
|
5c4343d4dd44321acada2b155bb9294a98154d83
| 446,678
|
def classname(value, options=''):
"""
Returns classname.
If options is given, checks if class name is in there before returning,
else it returns None.
"""
cn = value.__class__.__name__.lower()
if not options or cn in options:
return cn
return ''
|
396fd12ec4de7516c99f7ca4dea601d18119b525
| 386,273
|
def count_tracks_by_artist(df, artist):
"""returns count of tracks given dataframe and artist name;
dataframe has to have `name_artist` and `track_id` columns"""
mask = df["name_artist"] == artist
return df.loc[mask, "track_id"].count()
|
cac9d343e1293981f5173d4ec151d4e25dc121c6
| 207,090
|
def calculate_new_average(avg, N, new_val):
"""Calculate new average given a new value and an existing average.
Args:
avg: The old average value.
N: The old number of data points averaged over.
new_val: The new value to recalculate the average with.
Returns:
The new average value.
"""
return (avg * N + new_val) / (N + 1)
|
d810f590a3a46b16019e78861384ad754bc13ba0
| 378,999
|
def stringify(sentence, vocab):
"""
Given a numericalized sentence, fetch the correct word from the vocab and
return it along with token indices in the new sentence
Example:
sentence :
"1 2 3"
vocab :
{
1 : "Get"
2 : "me"
3 : "water"
}
return value :
[
["Get", [0, 3]],
["me", [4, 6]],
["water", [7, 12]],
]
"""
return_val = []
length_so_far = -1
for idx in sentence.strip().split(" "):
beg_index = length_so_far + 1
word = vocab[int(idx)]
end_index = beg_index + len(word)
length_so_far = end_index
return_val.append([word, [beg_index, end_index]])
return return_val
|
ed66d167ca03a22b5a249710dbb652358218ed4e
| 393,817
|
def strftime(datetime, formatstr):
"""
Uses Python's strftime with some tweaks
"""
return datetime.strftime(formatstr).lstrip("0").replace(" 0", " ")
|
413d552bb95a25d87eff2fd7400bf1114ee5d4a2
| 389,115
|
def calculate_zf_NAP(df, z_id):
"""
Assign the zf with respect to NAP to each layer of a DataFrame.
:param df: Original DataFrame.
:param z_id: (float) Elevation with respect to the NAP of my field.
:return: DataFrame with zf_NAP column.
"""
df["zf_NAP"] = z_id - df["zf"]
return df
|
90421d94043d5c53c34b5934897d84948b6fec36
| 300,611
|
def select_year(movie_list:list, year:int):
"""
Select movies filmed in a specific year and returns a list of tuples (name, location)
"""
n_year_movies = []
for movie in movie_list:
if year in movie:
n_year_movies.append((movie[0],movie[-1]))
print(f"Selected {len(n_year_movies)} movies/shows filmed in {year}.")
return n_year_movies
|
95aa1c4a9fa6e163f6df734648a8caa077fdbdd4
| 674,991
|
import random
def get_random_int() -> str:
"""
Returns random int number
"""
number = str(random.randint(-2147483648, 2147483648))
return number
|
b4b24c8cd746038b6571e7c80b882ebdc2392786
| 138,982
|
from typing import Callable
from datetime import datetime
def on_date(month: int, day: int) -> Callable[[datetime], bool]:
"""
Filter that allows events that match a specific date in any year
Args:
- month (int): the month as a number (1 = January)
- day (int): the day as a number
Returns:
- Callable[[datetime], bool]: a filter function
"""
def _filter_fn(dt: datetime) -> bool:
return (dt.month, dt.day) == (month, day)
return _filter_fn
|
4f2c166a12505b1d1e0e9aec55e06e0e94d5efc7
| 634,167
|
from pathlib import Path
def _getname(infile):
"""
Get file names only.
Examples
--------
>>> _getname("drop/path/filename.txt")
'filename.txt'
>>> _getname(["drop/path/filename.txt", "other/path/filename2.txt"])
['filename.txt', 'filename2.txt']
"""
if isinstance(infile, (list, tuple)):
return [Path(f).name for f in infile]
return Path(infile).name
|
2384a747a72ea28f107610bc4aa609096366c433
| 620,289
|
def _pad_b64(b64):
"""Fix padding for base64 value if necessary"""
pad_len = len(b64) % 4
if pad_len != 0:
missing_padding = (4 - pad_len)
b64 += '=' * missing_padding
return b64
|
b07e96004946573bef11543b6b6983e5b265276a
| 529,986
|
def remove_terms(pos_synsets, remove_dict, issynset=False):
"""
Remove synsets from the part of speech synset dictionary
based on the word.
:param pos_synsets: dictionary mapping pos to list of
bi-tuples, where first item is the word
and second item is the synset
:type pos_synsets: dict
:param remove_dict: dictionary mapping pos to list of words to remove
:type remove_dict: dict
:param issynset: is remove_dict refering to words or synsets
:type issynset: bool
:returns: dictionary of pos_synsets after removal
:rtype: dict
"""
out_dict = {}
for pos, synsets in pos_synsets.items():
remaining_synsets = []
for synset in synsets:
if issynset:
if not (synset[1].name() in remove_dict[pos]):
# print(synset[1])
remaining_synsets.append(synset)
else:
if not (synset[0] in remove_dict[pos]):
remaining_synsets.append(synset)
out_dict[pos] = remaining_synsets
return out_dict
|
cf4f65584f16fe5a3105ecc78b696af0281dbfe7
| 466,046
|
def check_bracket_sequence(bracket_sequence: str) ->bool:
"""
Checks bracket sequence is correct or not.
:param bracket_sequence: string sequence of brackets
:return: True if sequence is correct, e.g. each open bracket has its closed variant, else False
"""
opening_brackets = ['(', '[', '{']
closing_brackets = [')', ']', '}']
stack = []
for element in bracket_sequence:
if element in opening_brackets:
stack.append(element)
else:
if opening_brackets.index(stack[-1]) != closing_brackets.index(element):
return False
stack.pop(-1)
if len(stack):
return False
return True
|
18374afcfe9e8ba562e9099a55ec5d2dac5df4e1
| 556,188
|
def get_filtered_atom_list(struct):
"""Filters out unwanted atoms in PDB structure.
Removes heteroatoms from atoms when finding neighbor residues.
Parameters
----------
struct : Bio.PDB structure
biopython structure object
Returns
-------
atom_list : list
list of atoms after filtering
"""
atom_list = []
for model in struct:
for chain in model:
for residue in chain:
# ignore hetero residues
if not (residue.get_full_id()[3][0] == ' '):
continue
# add residue atoms
atom_list.extend(residue.get_list())
return atom_list
|
b839067b026a346332f6a5b3220ca010f1d4cca5
| 470,270
|
def test_func(context):
"""
OCID thread function for testing purposes.
Parameters
----------
context : dict
The thread context.
Returns
-------
dict
The new context.
"""
if 'fname' not in context:
raise ValueError("fname must be defined in the context")
if 'counter' not in context:
raise ValueError("counter must be defined in the context")
with open(context['fname'], "w+") as f:
f.write("hello %d\n" % context['counter'])
context['counter'] += 1
return context
|
6c24a8c6601e9d975900217f626b58e87f6cac29
| 188,844
|
from unittest.mock import Mock
from unittest.mock import patch
from typing import cast
def timer() -> Mock:
"""Mock our periodic timer"""
with patch("edge.edge.PeriodicTimer", autospec=True) as mock:
return cast(Mock, mock.return_value)
|
07ab8821f7bacc53ab11e0d8a37cc03c24218253
| 569,627
|
import warnings
def upsert_into(self, table):
"""
Deprecated. Use `upsert_into_on_conflict_do_nothing` instead
"""
warnings.warn(
"`upsert_into` is deprecated. Please use `upsert_into_on_conflict_do_nothing`",
DeprecationWarning,
)
return self.upsert_into_on_conflict_do_nothing(table)
|
d08217f8bf2160836898177edd40cb1ed3d00836
| 397,229
|
import re
def getmatches(datafilelist, regex=None):
"""Takes list of search strings + regex. Returns a list of match objects"""
if not regex:
regex = re.compile(
r"""
(?P<ftype>[A-Z0-9]{5}) # band type of data file
_[a-z]+ # sat id
_d(?P<date>\d{8}) # acq date
_t(?P<time>\d{7}) # granule start time UTC
_e\d+ # granule end time UTC
_b(?P<orbit>\d+) # orbit number
_c\d+ # file creation date/time
_\w+.h5 # more stuff
""", re.X
)
return [regex.search(filename) for filename in datafilelist]
|
99f7684e9fae3a3beed5a2a26f28ea2fe3ab9f14
| 421,892
|
def groupby(iterable, key=None):
"""
Group items from iterable by key and return a dictionary where values are
the lists of items from the iterable having the same key.
:param key: function to apply to each element of the iterable.
If not specified or is None key defaults to identity function and
returns the element unchanged.
:Example:
>>> groupby([0, 1, 2, 3], key=lambda x: x % 2 == 0)
{True: [0, 2], False: [1, 3]}
"""
groups = {}
for item in iterable:
if key is None:
key_value = item
else:
key_value = key(item)
groups.setdefault(key_value, []).append(item)
return groups
|
dccd69a0ffdc30e6d8b3950f14e3e2649e4c4409
| 657,456
|
def divisible_by_5(s):
"""Return list of binary numbers that are divisible by 5."""
return ','.join([x for x in s.split(',') if int(x, 2) % 5 == 0])
|
46ab315bd313790e64e057081049736b675606ab
| 554,213
|
def interval_cover(I):
"""Minimum interval cover
:param I: list of closed intervals
:returns: minimum list of points covering all intervals
:complexity: O(n log n)
"""
S = []
for start, end in sorted(I, key=lambda v: (v[1], v[0])):
if not S or S[-1] < start:
S.append(end)
return S
|
df312f84af73cb1fa04b2d83e8d7133a0b0bfa00
| 387,506
|
def get_table_title(line):
"""Get table name.
Args:
line(str): output
"""
if ":" in line:
table_title = line.split(":")[0]
return table_title
else:
return None
|
bfb9e3db2b95e8e087492ff9c6c5e6a9f3284ec6
| 541,541
|
def clean_cases(text: str) -> str:
"""Makes text all lowercase.
Arguments:
text:
The text to be converted to all lowercase.
Returns:
The lowercase text.
"""
return text.lower()
|
35f2c5ec1088f9e2fe0bba7a3f2f3f4b82333925
| 539,715
|
import io
def parse_prompt_file(prompt_file):
"""
Parse the UltraSuite prompt file. First line contains the prompt and the second contains the date and time.
:param prompt_file:
:return:
"""
with io.open(prompt_file, mode="r", encoding='utf-8', errors='ignore') as prompt_f:
return [prompt_f.readline().rstrip(),
prompt_f.readline().rstrip()]
|
f93030d61d03d44890fa3333454fa2b124056363
| 480,427
|
def build_sprint(operational_year, operational_quarter, sprint_length, sprint_index):
"""
Helper function to build Sprint name for JIRA.
:param String operational_year:
:param String operational_quarter:
:param String sprint_length:
:param String sprint_index:
:return: Formatted Sprint name
:rtype: String
"""
return 'Y%s-Q%s-L%s-S%s' % (
operational_year, operational_quarter, sprint_length, sprint_index
)
|
a3b6ec2c0bf370b0b4d08eb3b5e0a3cbba2386b6
| 217,210
|
def shorten_task_names(configs, common_task_prefix):
"""
Shorten the task names of the configs by remove the common task prefix.
"""
new_configs = []
for config in configs:
config.task_name = config.task_name.replace(common_task_prefix, "")
new_configs += [config]
return new_configs
|
b73ce8be7adece6da1f6ed218f3d78c52c5b1d94
| 625,522
|
def make_date_string(date_tuple):
"""Accepts a date tuple (year,month,day) and returns a formatted
string of the form YYYY-MM-DD."""
year,month,day = date_tuple
return "%4d-%02d-%02d" % (year,month,day)
|
f9b7728ffe39eff38f3fb27783de70a8a84c36af
| 528,555
|
def _make_intro_dict(request):
"""
make poet's introduction dict
:param request: wsgi request
:return: dict
"""
param = request.args
return {
'poet': param.get('poet', '李白'),
'dynasty': param.get('dynasty', '唐')
}
|
0de7636f774880517527867094095dee4b7ca1d7
| 582,706
|
def win(game_df, verbose=False):
"""
if game_df.iloc[-1].status == 'GAME_END', adds win loss label columns
Args:
game_df (pd.DataFrame)
verbose (Bool): print dataframe after
- takes the last row
- checks if the status is 'GAME_END'
- then adds new columns for the winner of the game based on the score
"""
case = ""
last_row = game_df.iloc[-1, :]
status = last_row.status
ret = None
if status == "GAME_END":
if last_row.a_pts > last_row.h_pts:
a_win = True
h_win = False
case = f"away {last_row.a_team} win"
elif last_row.a_pts < last_row.h_pts:
a_win = False
h_win = True
case = f"home {last_row.h_team} win"
else:
case = "game tie"
a_win = False
h_win = False
game_df["a_win"] = a_win
game_df["h_win"] = h_win
ret = game_df
else:
case = "no game end status"
if verbose:
print(case)
return ret
|
25691da33aa6c3cffeb0ca7443448e4f0967a0d4
| 155,410
|
import re
def __replace_all(repls: dict, input: str) -> str:
""" Replaces from the string **input** all the occurrence of the
keys element of the dictionary **repls** with their relative
value.
:param dict repls: dictionary containing the mapping
between the values to be changed and their
appropriate substitution;
:param str input: original string.
:return: *(str)*, string with the appropriate values replaced.
"""
return re.sub('|'.join(re.escape(key) for key in repls.keys()),
lambda k: repls[k.group(0)], input)
|
dedfce66d06122d88b9f7ca799480c0d4a0af956
| 622,981
|
from pathlib import Path
def list_of_files(tmpdir_factory):
"""Create a dummie list of files for s3 list objects by date."""
tmp_file = tmpdir_factory.mktemp("tmp").join("temp_text_file_1.txt")
tmp_file2 = tmpdir_factory.mktemp("tmp").join("temp_text_file_2.txt")
tmp_file3 = tmpdir_factory.mktemp("tmp").join("temp_text_file_3.txt")
for file in [tmp_file, tmp_file2, tmp_file3]:
file.write_text("botree test!", encoding="utf-8")
return [Path(tmp_file), Path(tmp_file2), Path(tmp_file3)]
|
415554c4aa7dd0983562d1de1a79d45cb7fb5430
| 412,585
|
def get_doc(collection, doc_id):
"""Retrieve a Firestore doc, with retries to allow Function time to trigger"""
doc = collection.document(doc_id).get()
if doc.exists:
return doc
|
37d97f47f1c556cb7009e23d1c04f46c67902a49
| 32,343
|
import torch
def swish(x):
"""
Swish activation function,
from Ramachandran, Zopf, Le 2017. "Searching for Activation Functions"
"""
return x * torch.sigmoid(x)
|
f630c0851e1afe0ac72ff2f5dd06d787fa556194
| 598,510
|
def create_histogram_dict(words_list):
"""Return a dictionary representing a histogram of words in a list.
Parameters:
words_list(list): list of strings representing words
Returns:
histogram(dict): each key a unique word, values are number of
word appearances
"""
histogram = dict()
words = histogram.keys()
for word in words_list:
if word.lower() not in words:
histogram[word.lower()] = 1
else:
histogram[word.lower()] += 1
return histogram
|
1da2d02b888cc5eca5e40dca2814a11bdb69cebb
| 514,275
|
def realtag(element):
"""Strip namespace poop off the front of a tag."""
try:
return element.tag.rsplit('}', 1)[1]
except ValueError:
return element.tag
|
8db0494b0651b78d7437cdd88301ace4005f3971
| 495,198
|
def find_and_assign(current_function, order_list, l_in, start_index):
"""
Assigns the values in front of the monomial to the appropriate element of transform matrix L
Parameters
----------
current_function : Poly
i-th Lie derivative
order_list : List[tuple]
Order of monomials
l_in : csr_matrix
Coefficient matrix which maps monomials to polynomials
start_index : int
start point of Lie derivative in the linear matrix L
Returns
-------
linear matrix L
"""
# Get dimension of current Lie derivative
n = len(current_function)
# iterate over each element of Lie derivative
for i in range(0, n):
# Get monomials of Lie derivative
monomials_i = current_function[i].monoms()
# Get coefficients of monomials
coefficients_i = current_function[i].coeffs()
# Iterate over each monomial
for j in range(0, len(monomials_i)):
# Find the corresponding column number for the monomial
col_number = order_list.index(monomials_i[j])
# Update element of linear matrix L
l_in[start_index + i, col_number] += coefficients_i[j]
return l_in
|
3c65ef92952556575f14b7b9fd3463af93c9aa9f
| 347,814
|
def check_invalid(string,*invalids,defaults=True):
"""Checks if input string matches an invalid value"""
# Checks string against inputted invalid values
for v in invalids:
if string == v:
return True
# Checks string against default invalid values, if defaults=True
if defaults == True:
default_invalids = ['INC','inc','incomplete','NaN','nan','N/A','n/a','missing']
for v in default_invalids:
if string == v:
return True
# For valid strings
return False
|
6e9e20beebe8e0b0baed680219fd93453d7f4ce3
| 706,167
|
import logging
def data_compare(real_out, expect_out, atol=0.001, rtol=0.001):
"""Compare the output between the real and the expect.
:param real_out: the real output
:type real_out: list
:param expect_out: the expect putput, or the benchmark
:type expect_out: list
:param atol: the absolute error, defaults to 0.001
:type atol: float, optional
:param rtol: the relative error, defaults to 0.001
:type rtol: float, optional
:return: return the error count and the error ratio
:rtype: [type]
"""
error_count = 0
if len(real_out) != len(expect_out):
raise ValueError("The size of real_out and expect_out must be equal.")
for n in range(len(real_out)):
if abs(real_out[n] - expect_out[n]) > atol or abs(real_out[n] - expect_out[n]) / abs(expect_out[n]) > rtol:
logging.warning("pos: {}, real_out: {}, expect_out: {}, diff: {} "
.format([n], real_out[n], expect_out[n], real_out[n] - expect_out[n]))
error_count += 1
return error_count, error_count / len(real_out)
|
4c7b048d64f83cd189885ba08a37f0d937cd91a5
| 308,848
|
import torch
def invSquare(input, axis=1):
"""
Apply inverse square normalization on input at certain axis.
Parammeters:
----------
input: Tensor (N*L or rank>2)
axis: the axis to apply softmax
Returns: Tensor with softmax applied on that dimension.
"""
input_size = input.size()
trans_input = input.transpose(axis, len(input_size)-1)
trans_size = trans_input.size()
input_2d = trans_input.contiguous().view(-1, trans_size[-1])
square_2d = input_2d**(-2)
sum_square_2d = torch.sum(square_2d, 1, keepdim=True)
square_norm_2d = square_2d/sum_square_2d
square_norm_nd = square_norm_2d.view(*trans_size)
return square_norm_nd.transpose(axis, len(input_size)-1)
|
ca7c7702ab1d36cf2ae474dbf10981bf1dab7f4b
| 73,062
|
import textwrap
import re
def unwrap(text: str) -> str:
"""
Unwraps multi-line text to a single line
"""
# remove initial line indent
text = textwrap.dedent(text)
# remove leading/trailing whitespace
text = text.strip()
# remove consecutive whitespace
return re.sub(r"\s+", " ", text)
|
107c192765c798216ccc49b972c8d0fa49c4a470
| 82,714
|
def apply_weighting(object_to_be_weighted, weights):
"""
Replicate the components of object_to_be_weighted using the corresponding weights to define the number of replicates.
Args:
object_to_be_weighted: could be a list or an array
weights: a list of integers
Returns: the transformed object
"""
zipped = zip(object_to_be_weighted, weights)
weighted_object = []
for item in zipped:
for j in range(item[1]):
weighted_object.append(item[0])
return weighted_object
|
51161b4ed6e6540390487c40613838083f00fd3b
| 691,675
|
def adam_args(parser, dbeta1=0.99, dbeta2=0.99, depsilon='1e-8',
dbeta1_fb=0.99, dbeta2_fb=0.99, depsilon_fb='1e-8'):
"""
Training options for the Adam optimizer
Args:
parser (argparse.ArgumentParser): argument parser
(....): Default values for the arguments
Returns:
The created argument group, in case more options should be added.
"""
agroup = parser.add_argument_group('Training options for the '
'Adam optimizer')
agroup.add_argument('--beta1', type=float, default=dbeta1,
help='beta1 training hyperparameter for the adam '
'optimizer. Default: %(default)s')
agroup.add_argument('--beta2', type=float, default=dbeta2,
help='beta2 training hyperparameter for the adam '
'optimizer. Default: %(default)s')
agroup.add_argument('--epsilon', type=str, default=depsilon,
help='epsilon training hyperparameter for the adam '
'optimizer. Default: %(default)s')
agroup.add_argument('--beta1_fb', type=float, default=dbeta1_fb,
help='beta1 training hyperparameter for the adam '
'feedback optimizer. Default: %(default)s')
agroup.add_argument('--beta2_fb', type=float, default=dbeta2_fb,
help='beta2 training hyperparameter for the adam '
'feedback optimizer. Default: %(default)s')
agroup.add_argument('--epsilon_fb', type=str, default=depsilon_fb,
help='epsilon training hyperparameter for the adam '
'feedback optimizer. Default: %(default)s')
return agroup
|
5e85c476c00ed824f6b4392bfb5f6a36d8fc93ab
| 147,331
|
def sanitizeStr(data):
"""
Escape all char that will trigger an error.
Parameters
----------
data: str
the str to sanitize
Returns
-------
str
The sanitized data.
"""
data = " ".join(data.split())
new_msg = []
for letter in data:
if letter in ['"',"\\"]:
new_msg.append("\\")
new_msg.append(letter)
return "".join(new_msg)
|
6fcd1455a01997d526cfd178d98ee3e9eca3c888
| 28,915
|
import ast
def subscript(value: ast.expr, idx: ast.expr) -> ast.Subscript:
"""Generate an ast subscript operation"""
return ast.Subscript(value=value, slice=idx, ctx=ast.Load())
|
976d08a2c320f66e5c8afe09c2ef26d45fceabac
| 163,794
|
def mesh_size(mesh, unit_length):
"""
Return the maximum extent of the mesh along any of the x/y/z axes.
"""
coords = mesh.coordinates()
max_extent = max(coords.max(axis=0) - coords.min(axis=0))
return max_extent * unit_length
|
52f80c17df7be749742a7c99f779cef8734da65d
| 304,926
|
def check_number(x, lower=None, upper=None):
"""
This function returns True if the first argument is a number and it lies between the next two arguments.
Othwerise, returns False.
:param x: Value to be checked
:type x: number
:param lower: minimum value accepted
:type lower: number
:param upper: maximum value accepted
:type upper: number
:return: if 'x' check pass
:rtype: bool
"""
if x is None:
return False
lower = lower if lower is not None else float("-inf")
upper = upper if upper is not None else float("inf")
is_number = isinstance(x, float) or isinstance(x, int)
return is_number and (x >= lower and x <= upper)
|
cfd16e876b2dc111679ceb3d49164f2718d73825
| 419,213
|
import pkgutil
import importlib
def scan_for_agents(do_registration=True):
"""Identify and import ocs Agent plugin scripts. This will find all
modules in the current module search path (sys.path) that begin
with the name 'ocs_plugin\_'.
Args:
do_registration (bool): If True, the modules are imported,
which likely causes them to call register_agent_class on
each agent they represent.
Returns:
The list of discovered module names.
"""
items = []
for modinfo in pkgutil.iter_modules():
if modinfo.name.startswith('ocs_plugin_'):
items.append(modinfo.name)
if do_registration:
importlib.import_module(modinfo.name)
return items
|
0052fafa9dc3936f64b502b8e4b9384835551445
| 325,548
|
def is_pow2(n):
"""
Check whether a number is power of 2
Parameters
----------
n: int
A positive integer number
Returns
-------
bool
"""
return n > 0 and ((n & (n - 1)) == 0)
# Solution 2
# return math.log2(n) % 1 == 0
|
6f386513eb4931339faf61c2552a3a8b7cde3053
| 639,692
|
def plug_parent(plug):
"""Return ``plug`` parent, if it has one, None otherwise.
Args:
plug (MPlug): Plug we want the parent of.
Returns:
MPlug, None:
Example:
>>> modifier = OpenMaya.MDagModifier()
>>> node = OpenMaya.MFnDagNode(modifier.createNode('transform'))
>>> modifier = modifier.doIt()
>>> translate = node.findPlug('translate', False)
>>> translate_x = node.findPlug('translateX', False)
>>> plug_parent(translate) == None
True
>>> plug_parent(translate_x) == translate
True
"""
if plug.isChild:
return plug.parent()
elif plug.isElement:
return plug.array()
return None
|
c4b32e13fd50d07b70db8db5ef3b7ca033034119
| 287,542
|
def get_simple_rl_task_names(task_names: list) -> list:
"""Simplifies the task name.
For each task name in the provided list, this function splits the names using an underscore as
delimiter, then returns the last element in the split list as the simplified name.
Args:
task_names (list): The list of task names to simplify.
Returns:
list: The list of simplified task names.
"""
simple_names = []
for t in task_names:
splits = str.split(t, "_")
simple_names.append(splits[-1].lower())
return simple_names
|
83c6b658d8ff5e19c330910c1184befcd1b57ff1
| 571,075
|
import requests
def censusvar(src, year, var):
"""Download information on a list of variables from Census API.
Args:
src (str): Census data source: 'acs1' for ACS 1-year estimates, 'acs5' for ACS 5-year estimates, 'acs3' for
ACS 3-year estimates, 'acsse' for ACS 1-year supplemental estimates, 'sf1' for SF1 data.
year (int): Year of data.
var (list of str): Names of Census variable.
Returns:
dict: Dictionary with keys 'concept' (overall concept the variable falls under), 'label' (variable label),
and 'predicateType' (variable type).
Examples::
censusdata.censusvar('sf1', 2010, ['P0010001']) # Returns information on the variable P0010001 from the 2010 Census SF1.
"""
assert src == 'acs1' or src == 'acs3' or src == 'acs5' or src == 'acsse' or src == 'sf1'
ret = dict()
for v in var:
if src == 'acsse' or src == 'sf1' or v[0] == 'B':
tabletype = ''
elif v[0] == 'S':
tabletype = 'subject/'
elif v[:2] == 'DP':
tabletype = 'profile/'
elif v[:2] == 'CP':
tabletype = 'cprofile/'
elif v[0] == 'C':
tabletype = ''
else:
raise ValueError(u'Unknown table type for variable {0}!'.format(v))
if (src == 'acs1' or src == 'acs5' or src == 'acsse') and year >= 2010: presrc = 'acs/'
elif src == 'acs3': presrc = 'acs/'
elif src == 'sf1': presrc = 'dec/'
else: presrc = ''
r = requests.get('https://api.census.gov/data/{year}/{presrc}{src}/{tabletype}variables/{v}.json'.format(src=src, year=year, v=v, tabletype=tabletype, presrc=presrc))
try:
data = r.json()
except:
raise ValueError(u'Unexpected response (URL: {0.url}): {0.text} '.format(r))
try:
assert data['name'] == v
except AssertionError:
raise AssertionError(u'JSON variable information does not include key "name"', data)
expectedKeys = ['group', 'label', 'limit', 'name',]
try:
assert [k for k in sorted(data.keys()) if k != 'attributes' and k != 'concept' and k != 'predicateType'] == expectedKeys
except AssertionError:
print(u'JSON variable information does not include expected keys ({0} and possibly attributes, concept, predicateType) or includes extra keys: '.format(expectedKeys), data)
try:
ret[v] = [data.get('concept', ''), data['label'], data.get('predicateType', '')] # Concept, predicate type not provided for all years; default to empty if not provided
except KeyError:
raise KeyError(u'JSON variable information does not include expected keys: ', data)
return ret
|
433c3676860b232a803b8c5b0aff6fffad55dab4
| 244,800
|
import torch
def get_numerical_characteristics(data):
"""
返回数据(data)的 4 个数字特征(numerical characteristics):
1. mean:均值
2. std:标准差
3. skewness: 偏度
4. kurtosis: 峰度
:param data: 数据
:return: 一维数据: torch.Size([4])
"""
mean = torch.mean(data)
diffs = data - mean
var = torch.mean(torch.pow(diffs, 2.0))
std = torch.pow(var, 0.5)
z_scores = diffs / std
# 偏度:数据分布偏斜方向、程度的度量, 是数据分布非对称程度的数字特征
# 定义: 偏度是样本的三阶标准化矩
skewness = torch.mean(torch.pow(z_scores, 3.0))
# excess kurtosis, should be 0 for Gaussian
# 峰度(kurtosis): 表征概率密度分布曲线在平均值处峰值高低的特征数
# 若峰度(kurtosis) > 3, 峰的形状会比较尖, 会比正态分布峰陡峭
kurtoses = torch.mean(torch.pow(z_scores, 4.0)) - 3.0
# reshape(1, ):将常量转化为torch.Size([1])型张量(Tensor)
final = torch.cat((mean.reshape(1, ), std.reshape(1, ), skewness.reshape(1, ), kurtoses.reshape(1, )))
return final
|
9ea636b38f98d83304753a9e68712d1f4e81edd5
| 593,955
|
from pathlib import Path
def extract_params(s3_filepath):
"""Extrai mês, ano e periodicidade do caminho do bucket."""
prefix = "tcmbapublicconsultation/"
start_index = s3_filepath.find(prefix) + len(prefix)
relative_path = Path(s3_filepath[start_index:])
folders = relative_path.parts
year = folders[0]
period = folders[1]
month = None
if period == "mensal":
month = folders[2]
return {"year": year, "period": period, "month": month}
|
ef055d3292defd1b5f38c9ba9dae5961d68628be
| 386,269
|
def clamp(x, inf=0, sup=1):
"""Clamps x in the range [inf, sup]."""
return inf if x < inf else sup if x > sup else x
|
42c178afc0bdfc02fd31fe3f211f23cc04b40d2e
| 701,901
|
def is_empty_line(line):
"""
Return true iff line contains only whitespaces or is empty.
Preconditions: None
@type line: str
@rtype: bool
"""
return len(line.lstrip()) == 0
|
22de3b36f2246ecc2333cc971bc72bc0369c99e7
| 446,553
|
def get_anion_neighbors(site, structure, radius, anions, get_distance=False):
"""
Gets neighboring anions of sites
Args:
:param site: (Site) target site to find anion neighbors of
:param structure: (Structure) structure that contains target site
:param radius: (float) radius to which anion neighbors should be looked for
:param anions: (List of Strings) list of species considered anions
:param get_distance: (boolean) whether or not to get distance between cation and anion
:return: (List of either Sites or [Site, float]) list of either anion neighboring sites or [Site, float] if
getDistance is True
"""
anion_neighbors = []
neighbors = structure.get_neighbors(site, radius)
for neighbor in neighbors:
if neighbor[0].species_string in anions and neighbor[1] < radius:
if get_distance:
anion_neighbors.append(neighbor)
else:
anion_neighbors.append(neighbor[0])
return anion_neighbors
|
e9473f77ee2b5006e79503ebb14890c0e85904cf
| 78,193
|
import math
def MCC_calc(TP, TN, FP, FN):
"""
Calculate MCC (Matthews correlation coefficient).
:param TP: true positive
:type TP : int
:param TN: true negative
:type TN : int
:param FP: false positive
:type FP : int
:param FN: false negative
:type FN : int
:return: MCC as float
"""
try:
result = (TP * TN - FP * FN) / \
(math.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)))
return result
except ZeroDivisionError:
return "None"
|
bb11c6eac895692221ed444af64762831ffd92d9
| 384,070
|
def create_track_dict(loved_track):
"""Method that creates a dictionary for a given LovedTrack object from LastFM API
in such format:
{'artist': artist-name, 'title': track-title}"""
return {'artist': loved_track.track.artist.get_name(),
'title': loved_track.track.title}
|
3f2090e077cfbcbeaf561a0779c156502fb0960d
| 159,557
|
import itertools
def test_product_combinator(container_, repeat_times):
"""
cartesian product, equivalent to a nested for-loop
product('ABCD', repeat=2)
AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD
"""
return list(itertools.product(container_, repeat=repeat_times))
|
647a390bb8effe08132a6e506fdf1aca69289e7f
| 161,585
|
def get_data_center(hostname):
"""Guess data center from Keeper server hostname
hostname(str): The hostname component of the Keeper server URL
Returns one of "EU", "US", "US GOV", or "AU"
"""
if hostname.endswith('.eu'):
data_center = 'EU'
elif hostname.endswith('.com'):
data_center = 'US'
elif hostname.endswith('govcloud.keepersecurity.us'):
data_center = 'US GOV'
elif hostname.endswith('.au'):
data_center = 'AU'
else:
# Ideally we should determine TLD which might require additional lib
data_center = hostname
return data_center
|
43a36cf6edb559361101a6444d9346b50254af0f
| 417,542
|
def krueger12_eta(lpc):
"""Ratio of 56Ni to total iron-peak yield from Krueger+ 2012
Fitting formula for K12 central density results. Based on looking at
iron-peak yields from Khokhlov, Mueller & Hoflich 1993, I assign a
flat prior eta = 0.9 below a central density of 1e+9 g/cm^3.
Could probably do better by incorporating other results e.g. from the
MPA group (Seitenzahl+ 2013). Input lpc (log10 of central density),
output eta = MNi/(MNi + MFe).
"""
pc9 = 1e-9 * 10**lpc
return min(0.95, 0.95 - 0.05*pc9), max(0.025, 0.03*pc9)
|
96f87a9c490b0ad0feff6859399977bc58f6b48a
| 36,928
|
def has_length(dataset):
"""
Checks if the dataset implements __len__() and it doesn't raise an error
"""
try:
return len(dataset) is not None
except TypeError:
# TypeError: len() of unsized object
return False
|
c39ebe97b05f00badc1290be64a11dfdbb28579a
| 380,629
|
def inverse(dict_):
"""
Return the inverse of dictionary dict_.
(I.e. return a dictionary with keys that are the values of dict_,
and values that are the corresponding keys from dict_.)
The values of dict_ must be unique.
"""
idict = dict([(value,key) for key,value in dict_.iteritems()])
if len(idict)!=len(dict_):
raise ValueError("Dictionary has no inverse (values not unique).")
return idict
|
c814540835f4da3601824e42b0596068a25dd461
| 554,371
|
def create_url(event_id: int) -> str:
"""
Return the correct link to the event by its id
:param event_id: id of the event
:return: link to the event
"""
return f'https://olimpiada.ru/activity/{event_id}'
|
afa3443a158d00b9480adb358a16fc37125ec9de
| 101,282
|
import re
def natural_key(string):
"""Key to use for "natural sorting".
Based on https://blog.codinghorror.com/sorting-for-humans-natural-sort-order/
Args:
string: The input string to produce key for
Returns:
key to use for natural sorting in conjunction with Python's built-in sort.
"""
return [int(c) if c.isdigit() else c for c in re.split(r'(\d+)', string)]
|
638ecb3a110dd00521dc1e773e4e1654db2ecbcd
| 212,570
|
def aumentar(p=0, tax=0):
"""
-> Aumenta o valor inicial em uma porcentagem definida pelo usuário
:param p: valor inicial
:param tax: valor da taxa
:return: valor inicial somada a taxa
"""
res = p + (p * tax/100)
return res
|
75b8fbaddbc7bfa464a47c8f2d0a38ff49242151
| 427,397
|
def clean_col(col):
"""
This function cleans the column names and add the year information
"""
if col == 'Unnamed: 0': # Special case for contry column
return 'Country'
elif col[0] == 'U': # Take care for the annual summary column
return 'Total, {}'.format(str(int(col.split(':')[1])//17 + 2014))
elif (len(col.split('.')) == 1) & (col[0] != 'U'):
return col + ', 2015'
elif col.split('.')[1] == '1':
return col.split('.')[0]+', 2016'
elif col.split('.')[1] == '2':
return col.split('.')[0]+', 2017'
elif col.split('.')[1] == '3':
return col.split('.')[0]+', 2018'
elif col.split('.')[1] == '4':
return col.split('.')[0]+', 2019'
elif col.split('.')[1] == '5':
return col.split('.')[0]+', 2020'
|
0ee72161fafacf0aa7c9d7cc5d1d40ad11ede33e
| 419,042
|
def is_number(s):
"""
Checks if the given string is an int or a float. Numbers with thousands
separators (e.g. "1,000.12") are also recognised. Returns true of the string
contains only digits and punctuation, e.g. 12/23
"""
try:
float(s)
is_float = True
except ValueError:
is_float = False
is_only_digits_or_punct = True
for ch in s:
if ch.isalpha():
is_only_digits_or_punct = False
break
return is_float or is_only_digits_or_punct
|
5d17e85f7c0fd53fa184774bb05976457c05853b
| 260,394
|
import time
from datetime import datetime
import pytz
def parse_datetime(dt_str, format):
"""Create a timezone-aware datetime object from a datetime string."""
t = time.strptime(dt_str, format)
return datetime(t[0], t[1], t[2], t[3], t[4], t[5], t[6], pytz.UTC)
|
fbe341216c52db7f09add26ff9575caa44de1cb8
| 155,046
|
def get_parent_position(position: int) -> int:
"""
heap helper function get the position of the parent of the current node
>>> get_parent_position(1)
0
>>> get_parent_position(2)
0
"""
return (position - 1) // 2
|
f9c282f608033b2eb2604d981bf7c8a141e1beab
| 276,080
|
from functools import reduce
def getitems(obj, items, default=None):
"""
Get items from obj
:param obj: object
:param items: string or iterable object
:param default: default value
:return: obj item value if existed, otherwise default value
"""
if isinstance(items, str):
items = (items,)
try:
return reduce(lambda x, i: x[i], items, obj)
except (IndexError, KeyError):
return default
|
94828589d01481a5d7d1cddc1abd6972d11656e9
| 457,975
|
def isHtml(res):
""" Determines whether or not a response dictionary contains raw HTML """
return res["error"] is None \
and res["status"] == 200 \
and "text/html" in res["type"]
|
6c3e0bde091989c1faa42390d7964aa3ebfb1973
| 551,953
|
def remove_cover_attachment_previews(cover_attachment):
"""
Remove the previews element from cover_attachment. It contains a lot of data. Then, return.
"""
del cover_attachment["previews"]
return cover_attachment
|
26ba731ae29cabae958d89bb1d912218b41154c6
| 527,713
|
def change2(line, old, new):
"""replace line with new if line.startswith(old)"""
if line.startswith(old):
return new + "\n"
return line
|
6ce0288a1dc592f66cb89d9cd1d23f2288d6e5e5
| 180,937
|
import filecmp
def files_match(file1: str, file2: str):
"""Compares two files, returns True if they both exist and match."""
# filecmp.cmp does not invoke any subprocesses.
return filecmp.cmp(file1, file2, shallow=False)
|
bdb4053d7b10284315b59e5e751ea0e04d8fa4d7
| 359,935
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.