content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def bool_to_yes_no(value): """ Turn a boolean into a yes/no string :param value eg True: :return string eg "yes": """ if value: return "yes" return "no"
4a2716519b19ff6e9ba025ad3a1d5b36600cbaec
390,631
def Finish_to_c(self): """Syntax conversion for breaking a loop.""" return f"goto break_{self.targetID};"
0ca45ac96bbeae75c0bbeead4383efa96d3ee00a
670,389
def _passes_cortex_depth(line, min_depth): """Do any genotypes in the cortex_var VCF line passes the minimum depth requirement? """ parts = line.split("\t") cov_index = parts[8].split(":").index("COV") passes_depth = False for gt in parts[9:]: cur_cov = gt.split(":")[cov_index] cur_depth = sum(int(x) for x in cur_cov.split(",")) if cur_depth >= min_depth: passes_depth = True return passes_depth
59bf4336ce5ef71054b3869725aa56d9ead8b35d
436,285
def f_line_count_fd(stream, *args, **kwargs): """ A quick utility function to count the remaining number of lines in an already opened stream. If the stream is seekable, this function will save and revert to the original position after counting :param stream A stream object which may be iterated line by line. :param offset A numeric offset to apply to the resulting line count. :return int The number of lines remaining in the given stream. """ prev = None if stream.seekable(): prev = stream.tell() lines = 0 if "offset" in kwargs: lines += kwargs["offset"] for _ in stream: lines += 1 if prev is not None: stream.seek(prev) return lines
016f1c889e18664ff4b5d9758977f241f6e148c9
404,250
import platform import struct def _ioc_encode(direction, number, structure): """ ioctl command encoding helper function Calculates the appropriate spidev ioctl op argument given the direction, command number, and argument structure in python's struct.pack format. Returns a tuple of the calculated op and the struct.pack format See Linux kernel source file /include/uapi/asm/ioctl.h """ ioc_magic = ord("k") ioc_nrbits = 8 ioc_typebits = 8 if platform.machine() == "mips": ioc_sizebits = 13 else: ioc_sizebits = 14 ioc_nrshift = 0 ioc_typeshift = ioc_nrshift + ioc_nrbits ioc_sizeshift = ioc_typeshift + ioc_typebits ioc_dirshift = ioc_sizeshift + ioc_sizebits size = struct.calcsize(structure) operation = ( (direction << ioc_dirshift) | (ioc_magic << ioc_typeshift) | (number << ioc_nrshift) | (size << ioc_sizeshift) ) return direction, operation, structure
b3f8ac548f767cdb86fbcd0e9819a2d693d24bc9
632,764
import requests from typing import Optional from datetime import datetime def get_latest_block(alchemy_request_url: str, session: requests.Session) -> Optional[str]: """Get the latest block on the network. Computing the latest block and using it throughout other methods insures for correctness if the network moves to another block while the script is running. [Alchemy API docs](https://docs.alchemy.com/alchemy/apis/ethereum/eth-blocknumber) Args: alchemy_request_url: Request URL used to query Alchemy's API session: Session object used for sharing state across requests Returns: Latest block, None if unsuccessful. If latest block returns None due to a network error, the "latest" block is taken at time of API call. """ payload = { "jsonrpc": "2.0", "id": 0, "method": "eth_blockNumber", "params": [], } try: response = session.post(alchemy_request_url, json=payload) response.raise_for_status() latest_block = response.json()['result'] print(f"Latest block as of time {str(datetime.now())} is {latest_block}") return latest_block except requests.exceptions.HTTPError as e: print(e) return None
7da8887c7d8254e34bd02970a2af3d1c77e956d3
154,741
def _is_linux_binary(fpath): """ Reads a magic byte and determines if the file given is a Linux (ELF) binary. """ with open(fpath, 'rb') as f: return f.read(4) == b'\x7fELF'
dc326401d731ea1acbbf9c29116b6fe8123c85f1
477,746
def mask_percentage(mask): """Returns the percentage of pixels in the mask that are True. :param mask: HxW bool NumPy array (False for locations to be excluded) :return: float """ return mask.sum() / mask.size
bad1c489dca2ef3a440bba1f09d48935295a8c68
285,886
def roman_to_integer(s: str) -> int: """ Returns the coresponding integer from inputed Roman Numerals. This function assumes the input is in proper Roman Numeral form. >>> III 3 >>> IV 4 >>> XL 40 """ lst = [] lst2 =[] count = 0 temp = 0 for i in s: if i == 'I': i = 1 lst.append(i) if i == 'V': i = 5 lst.append(i) if i == 'X': i = 10 lst.append(i) if i == 'L': i = 50 lst.append(i) if i == 'C': i = 100 lst.append(i) if i == 'D': i = 500 lst.append(i) if i == 'M': i = 1000 lst.append(i) for i in lst: if i > temp: i -= temp lst2.append(i) else: lst2.append(i) temp = i temp = 0 for i in lst2: if i < temp: lst2.remove(i) temp = i for i in lst2: count += i return count
6cb22e56738a3f533a3ab00e549645bcbd3f52f6
201,490
def bubble(a): """ Bubble Sort: compare adjacent elements of the list left-to-right, and swap them if they are out of order. After one pass through the list swapping adjacent items, the largest item will be in the rightmost position. The remainder is one element smaller; apply the same method to this list, and so on. """ count = 0 for i in range(len(a)-1): for j in range(len(a)-i-1): if a[j+1] < a[j]: a[j],a[j+1] = a[j+1],a[j] count += 1 return count
f2c601f60ef29c0377dd63c9dfd5937026a60ec6
333,370
def link_info_gen(C: dict, mapping: dict, link_delay, link_loss): """Generate the specified link information Args: C (dict): Capacity dictionary (key, value) = (link ID, capacity of the link). mapping (dict): Link dictionary (key, value) = (link ID, source and destination pair of the link). link_delay (float): Specified delay for the link. link_loss (float): Specified loss for the link. Returns: str: Link infomation for all specified links, seperated by ;. Examples: The return can be "link_info: s1, s17, 5, 5ms, 0, N/A, N/A; s2, s17, 5, 5ms, 0, N/A, N/A; ..." """ link_info = "link_info: " for link_id, cap in C.items(): link_info += "{}, {}, {}, {}ms, {}, N/A, N/A; ".format(*mapping[link_id], cap, link_delay, link_loss) return link_info[:-2]
36681f44eaf8537fa956d090c5a8181f5daef3cd
348,957
import difflib def generate_diff(originalLicenseText, inputLicenseText): """Generate difference of the input license text with that of SPDX license. Arguments: originalLicenseText {string} -- SPDX license text of the closely matched license. inputLicenseText {string} -- license text input by the user. Returns: list -- list of lines containing the difference between the two license texts. """ lines = [] for line in difflib.unified_diff(originalLicenseText.splitlines(), inputLicenseText.splitlines()): lines.append(line) return lines
af4cad3836f5c0302dc529b1a5fe161236e26a84
163,787
def get_sum(path, tree): """ Returns the sum of all the numbers in the path for the given tree. """ pathsum = 0 for i, row in enumerate(tree): pathsum += row[path[i]] return pathsum
018cc24c6a1dc20cd9dbf5b0db6e3b20e257c7e6
660,551
def expand_span(span, expand_length=2): """ Args: span (list): [st, ed] expand_length (int): length to add on the two sides Returns: expanded_span (list): [max(0, st-expand_length), ed + expand_length] Only use the span for indexing, no need to worry the case where (ed + expand_length) >= max_length. """ return [max(0, span[0] - expand_length), span[1] + expand_length]
083d4d8dd70a4365b4ec06fc06e6c3d3c6055804
427,365
def density_net(G0): """ Function that receives a directed network and computes the density of it """ m0 = G0.size() # Number of links in the network G0 n0 = G0.number_of_nodes() # Number of nodes in the network G0 return m0 / (n0 * (n0 - 1.0))
2cc56d31bc86def6b79ea29dc37b0d170ca2f43f
257,480
def bdev_raid_get_bdevs(client, category): """Get list of raid bdevs based on category Args: category: any one of all or online or configuring or offline Returns: List of raid bdev names """ params = {'category': category} return client.call('bdev_raid_get_bdevs', params)
ab9961e2c6eb181b641449da9db1e38c3d7ed845
498,408
import re def header_list (exprDF): """ Function to obtain a list of the miR and genes present in the dataframe Args: exprDF df Concat Dataframe rows are samples and cols are gene/mirs Return: lMir list miR List lGene list Gene List """ lAll = exprDF.columns.tolist() patMir = re.compile("^hsa-...-*") lMir = [i for i in lAll if patMir.match(i)] lGene = [i for i in lAll if not patMir.match(i)] return lMir, lGene
372bd36db1bffafb02f4063a3fb4bbfc9780d1ba
228,226
from typing import Union from pathlib import Path def find_mo(search_paths=None) -> Union[Path, None]: """ Args: search_paths: paths where ModelOptimizer may be found. If None only default paths is used. Returns: path to the ModelOptimizer or None if it wasn't found. """ default_mo_path = ('intel', 'openvino', 'deployment_tools', 'model_optimizer') default_paths = [Path.home().joinpath(*default_mo_path), Path('/opt').joinpath(*default_mo_path)] executable = 'mo.py' for path in search_paths or default_paths: path = Path(path) if not path.is_dir(): continue mo = path / executable if not mo.is_file(): continue return mo return None
4657e15649692415dd10f2daa6527cade351d8fc
6,241
import torch def apply_plot_args_to_trajectories(args, obs_traj, gt, predictions): """ Apply command line arguments to the trajectories to be plotted :param args: command line arguments containing the several changes/restrictions to the trajectories :param obs_traj: Tensor of shape [obs_traj_len, num_peds, 2]. Past trajectories of all pedestrians :param gt: Tensor of shape [pred_traj_len, num_peds, 2]. Real Future (ground truth) trajectories of all pedestrians :param predictions: Tensor of shape [num_methods, pred_traj_len, num_peds, 2]. Predicted trajectories by 'num_methods' different models, for all pedestrians :return: the three aforementioned tensors, with the arguments applied. """ squeeze_unsqueeze = obs_traj.ndim < 3 # for the case of just one pedestrian - shape (traj_len, 2) if squeeze_unsqueeze: obs_traj, gt, predictions = obs_traj.unsqueeze(1), gt.unsqueeze(1), predictions.unsqueeze(2) num_peds = obs_traj.shape[1] seq_mask = torch.ones(num_peds, device=obs_traj.device).to(torch.bool) if args.ignore_neighbours_past: seq_mask *= ~torch.all(torch.isnan(gt[:, :, 0]), dim=0) obs_traj, gt, predictions = obs_traj[:, seq_mask], gt[:, seq_mask], predictions[:, :, seq_mask] if args.switch_x_y: obs_traj[:, :, [0, 1]] = obs_traj[:, :, [1, 0]] gt[:, :, [0, 1]] = gt[:, :, [1, 0]] predictions[:, :, :, [0, 1]] = predictions[:, :, :, [1, 0]] if args.invert_x: obs_traj[:, :, 0] = - obs_traj[:, :, 0] gt[:, :, 0] = - gt[:, :, 0] predictions[:, :, :, 0] = - predictions[:, :, :, 0] if args.invert_y: obs_traj[:, :, 1] = - obs_traj[:, :, 1] gt[:, :, 1] = - gt[:, :, 1] predictions[:, :, :, 1] = - predictions[:, :, :, 1] if squeeze_unsqueeze: return obs_traj.squeeze(1), gt.squeeze(1), predictions.squeeze(2) return obs_traj, gt, predictions
fec18dc35489cbaf475ebafaba23b8f82ff23234
396,775
from typing import List import pkgutil def find_commands(command_dir: str) -> List[str]: """ Get all command names in the a folder :return: List of commands names """ if not command_dir: return [] return [name for _, name, is_pkg in pkgutil.iter_modules([command_dir]) if not is_pkg and not name.startswith('_')]
3f9ad515955293e7a91e5246e4c25126f4f83cf8
359,483
def _get_output_dir(name): """ Return the name of the main genrule's output directory """ return name + "-outputs"
5862c44d39e6f7ffd86ad3fb1f95b8240e4409cc
323,273
import zlib def _crc32_checksum(filepath): """Calculate the checksum of a file using CRC32.""" with open(filepath, "rb") as f: checksum = zlib.crc32(f.read()) return checksum
21ab0fe07580c7176dec1f0d0ea280d9f72404ae
88,313
import torch def depth_regression(p: torch.Tensor, depth_values: torch.Tensor) -> torch.Tensor: """Implements per-pixel depth regression based upon a probability distribution per-pixel. The regressed depth value D(p) at pixel p is found as the expectation w.r.t. P of the hypotheses. Args: p: probability volume [B, D, H, W] depth_values: discrete depth values [B, D] Returns: result depth: expected value, soft argmin [B, 1, H, W] """ depth_values = depth_values.view(*depth_values.shape, 1, 1) depth = torch.sum(p * depth_values, dim=1) depth = depth.unsqueeze(1) return depth
8ba923fe20bd5d87ee4acb49956dd1c0e7f105df
271,916
def get_set_sizes(df): """ get sizes of training and test sets based on size of dataset. testing set: 10% of training set :return: training_set_size, testing_set_size """ data_set_size = len(df.index) training_set_size = data_set_size * 0.9 testing_set_size = data_set_size * 0.1 return int(training_set_size), int(testing_set_size)
e07495f651814e32743cecd42d23b9f7dd187a74
658,633
import base64 def base64_decode(value): """Dencode the value in base64""" return base64.b64decode(value)
be47a54a9bcbc8782662372a4a1917db3d36535b
352,465
import torch def arrange_neighbor(neighbor1, neighbor2, assignment): """This function re-arrange the neighbor, so the neighbors will be matched Args: neighbor1: 3D tensor, [bs, num_node1, neighbor_k, dim] neighbor2: 3D tensor, [bs, num_node2, neighbor_k, dim] assignment: [bs, num_node1, num_node2, neighbor_k, 2] """ index1, index2 = torch.chunk(assignment, 2, dim=-1) # [bs, num_node1, num_node2, neighbor_k, 1] index1 = index1.repeat(1, 1, 1, 1, neighbor1.size(-1)) # [bs, num_node1, num_node2, neighbor_k, dim] index2 = index2.repeat(1, 1, 1, 1, neighbor2.size(-1)) # [bs, num_node1, num_node2, neighbor_k, dim] neighbor1 = torch.gather(neighbor1, index=index1.long(), dim=-2) neighbor2 = torch.gather(neighbor2, index=index2.long(), dim=-2) return neighbor1, neighbor2
3c71f8afeb5ded4b5cf47a9b1403e3856c8b8b39
489,350
def find_matching(text, pos, char1, char2): """Finds the matching closing character char2 corresponding to the opening character char1, starting from position pos. """ depth = 1 for i in range(pos, len(text)): if text[i] == char1: depth += 1 elif text[i] == char2: depth -= 1 if depth == 0: return i return -1
94838305f6dd7e406fd1f0a4d59c108a0e5e9376
294,441
def find_list_index(a_list, item): """ Finds the index of an item in a list. :param a_list: A list to find the index in. :type a_list: list :param item: The item to find the index for. :type item: str :return: The index of the item, or None if not in the list. :rtype: int | None """ if item in a_list: for i, value in enumerate(a_list): if value == item: return i
c9eb862b4af3eb113cca9ee55edda05b9fbfa8fe
40,940
def _compute_regularization(alpha, l1_ratio, regularization): """Compute L1 and L2 regularization coefficients for W and H.""" alpha_H = 0. alpha_W = 0. if regularization in ('both', 'components'): alpha_H = float(alpha) if regularization in ('both', 'transformation'): alpha_W = float(alpha) l1_reg_W = alpha_W * l1_ratio l1_reg_H = alpha_H * l1_ratio l2_reg_W = alpha_W * (1. - l1_ratio) l2_reg_H = alpha_H * (1. - l1_ratio) return l1_reg_W, l1_reg_H, l2_reg_W, l2_reg_H
0c25c3f68817276b8e12f0f261202e411cc9e2bf
274,837
import requests def object_store_get(api_key, object_type, object_id): """ Fetches an object of specific type from the Object Store :param api_key: Import.io API Key :param object_type: Type of object: crawlrun, extractor, etc :param object_id: Unique identifier of an object :return: response """ url = "https://store.import.io/store/{0}/{1}".format(object_type, object_id) querystring = { "_apikey": api_key } headers = { 'accept': "application/json", 'cache-control': "no-cache", } response = requests.request("GET", url, headers=headers, params=querystring) return response
23b082939bb1578b7430b5d28798572372a37d5f
233,307
def _true(*args, **kwargs): # pylint: disable=unused-argument """Return ``True``.""" return True
0496944d2d1095a6b38209f036ecd6eb930b2de2
303,484
import re def parse_extensions(extensions: str) -> re.Pattern: """ Create a regex parser to check for file extensions. Note: Separate extensions by one of [',', '`', '*', ' '] """ sep = [i for i in ',`* ' if i in extensions] pattern = '|'.join(f'\.{i}$' for i in extensions.split(sep[0] if sep else None)) pat = re.compile(pattern, re.I) return pat
67839ea427fbf94fb781301eaa8ec03e071d306c
500,943
def whitespace_lines(lines: list[str]) -> bool: """ Return whether lines are all whitespaces """ return all(not line.strip() for line in lines)
e9cb003fd57e7973d376e4680b189f3c5d9c38b6
138,517
from datetime import datetime def dict_to_dt(dt_dict): """Reverse of :func:`dt_dict_now`. :param dict dt_dict: A :class:`dict` (such as :func:`dt_dict_now` returns) that correspond with the keyword parameters of the :class:`~datetime.datetime` constructor. :return: A :class:`~datetime.datetime` object. :rtype: datetime.datetime """ return datetime(**dt_dict)
23e083badc45a593842a959e94a58857699966b1
450,465
import torch def MSE(output, gt): """Compute mean squared error.""" return torch.mean((output - gt)**2)
bcafc7baa8c318a3b94343cd966ba8db7e22239f
378,350
def bytes_to_label(label_bytes): """ Takes the bytes from a TYPE_STATELABEL packet removes the NUL char and and everything after, then converts it to unicode. :param label_bytes: The bytes from the TYPE_STATELABEL packet :returns: unicode -- The label of the device """ strlen = label_bytes.find('\x00') return label_bytes[0:strlen].decode('utf-8')
8184cf59ed7f35d9f72137c14920f4e861fcd8da
236,358
def add_xor(op_a: bytearray, op_b: bytearray) -> bytearray: """ Byte-by-byte 'xor' operation for byte objects. Args: op_a: The first operand. op_b: The second operand. Returns: Result of the byte-by-byte 'xor' operation. """ op_a = bytearray(op_a) op_b = bytearray(op_b) result_len = min(len(op_a), len(op_b)) result = bytearray(result_len) for i in range(result_len): result[i] = op_a[i] ^ op_b[i] return result
d8caee607e7ec7001f1a52e26af78fdd36226069
320,261
def delete_file_nokia_sros(ssh_conn, dest_file_system, dest_file): """Delete a remote file for a Nokia SR OS device.""" full_file_name = "{}/{}".format(dest_file_system, dest_file) cmd = "file delete {} force".format(full_file_name) cmd_prefix = "" if "@" in ssh_conn.base_prompt: cmd_prefix = "//" ssh_conn.send_command(cmd_prefix + "environment no more") output = ssh_conn.send_command_timing( cmd_prefix + cmd, strip_command=False, strip_prompt=False ) return output
ef7a5152ed01640782b30a3509df5d8a9a7cfacf
660,914
import pytz from datetime import datetime def datetimeToEpochtime(dt): """Convert a datetime object to epoch time""" if dt.tzinfo is None: dt_utc = dt else: dt_utc = dt.astimezone(pytz.utc).replace(tzinfo=None) epoch_utc = datetime.utcfromtimestamp(0) return int((dt_utc - epoch_utc).total_seconds() * 1000)
c0baf06de714811593ecc8445408ff9498de6750
591,541
def get_dict_key_from_value(dictionary, val): """ Return the key of a dictionary that stores the val Parameters ---------- dictionary: dict val: anything that can be stored in a dictionary """ for key in dictionary: value = dictionary[key] if val == value: return key return "key doesn't exist"
3cfaf464dcd7e42f809b23d39e5164e6dcef5b47
301,013
import six def di(row): """Returns a dict_items object for easier comparison""" return six.viewitems(row)
2c2f12db46925e704c13cd52d55954d734c796a1
309,871
from typing import OrderedDict def build_request_include(include, params): """Augment request parameters with includes. When one or all resources are requested an additional set of resources can be requested as part of the request. This function extends the given parameters for a request with a list of resource types passed in as a list of :class:`Resource` subclasses. Args: include([Resource class]): A list of resource classes to include params(dict): The (optional) dictionary of request parameters to extend Returns: An updated or new dictionary of parameters extended with an include query parameter. """ params = params or OrderedDict() if include is not None: params['include'] = ','.join([cls._resource_type() for cls in include]) return params
396731528670c3ee328f47ac0ab5da3d587f8897
385,539
def _CreateYumPkgRepo(messages, repo_id, display_name, repo_name): """Create a yum repo in guest policy. Args: messages: os config guest policy api messages. repo_id: 'google-cloud-logging' or 'google-cloud-monitoring'. display_name: 'Google Cloud Logging Agent Repository' or 'Google Cloud Monitoring Agent Repository'. repo_name: repository name. Returns: yum repos in guest policy. """ return messages.PackageRepository( yum=messages.YumRepository( id=repo_id, displayName=display_name, baseUrl='https://packages.cloud.google.com/yum/repos/%s' % repo_name, gpgKeys=[ 'https://packages.cloud.google.com/yum/doc/yum-key.gpg', 'https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg' ]))
9fb94e46e8fe3d976ef89c9d2e9117651c0a6e96
421,594
def checker(str): """ Quick utility function to help with our input Q&A """ valid_inputs = ['y', 'yes', 'n', 'no'] var = input(str).lower() while not var in valid_inputs: print("Valid inputs for this question are y, n, yes, and no.") var = input(str).lower() return var
8b53bcab94b9f29687ccb8707227e820742ae282
368,888
def generate_csv_url(sheet_url): """ Utility function for generating csv URL from a google sheets link This function generates a link to a csv file from a link used to edit a google sheets file. The gid must be present in the URL. Parameters ---------- sheet_url : str The URL for the google sheet file Returns ------- str URL for the csv file """ if type(sheet_url) == str: if(sheet_url.find("edit#gid") > -1): return sheet_url.replace("edit#gid", "export?format=csv&gid") else: raise ValueError("sheet_url must contain 'edit#gid' phrase") else: raise TypeError("sheet_url must be a string")
d941ef98f3400175b9db4f7ef5da858fc6426caf
13,291
def compound_fwd_query(query, rel): """ Create a compound forwards query that selects the destination nodes, which have source nodes within the subquery. :param query: The subquery. :param rel: The relation. """ smt = 'SELECT dst FROM %s WHERE src IN (%s)' return smt % (rel, query), ()
b4db27ac83bcf9ac90f30cae1ea90f68e637d251
360,717
def response_error(error_code): """Send a response erorr.""" err = ('HTTP/1.1 ' + error_code + '\r\n\r\n').encode('utf8') err += b'Sorry we could not fulfill your request.\r\n\r\n' return err
8604d888194d033ea28b2593c2bb171ec76e0433
157,501
def int2letters(x, alphabet): """ Return the alphabet representation of a non-negative integer x. For example, with alphabet=['a','b'] 0 -> 'a' 1 -> 'b' 2 -> 'aa' 3 -> 'ab' 4 -> 'ba' Modified from: http://stackoverflow.com/questions/2267362/convert-integer-to-a-string-in-a-given-numeric-base-in-python """ base = len(alphabet) if x < 0: raise ValueError('Only non-negative numbers are supported. Encounterd %s' % x) letters = [] quotient = x while quotient >= 0: quotient, remainder = divmod(quotient, base) quotient -= 1 letters.append(alphabet[remainder]) letters.reverse() return ''.join(letters)
6c536463b3bbbc52fa2362584806b75c47e14c23
134,892
def make_jinja2_filename(file_name: str) -> str: """ Add .jinja2 to a filename. :param file_name: the filename without an extension. :return: the filename. """ return f'{file_name}.jinja2'
3d8a9fe002e75b51e0b3e333bd8b7a4766bdb23b
576,966
import csv def CSVToMatrix(filename): """reads a csv file and returns a list of lists where each list item is a row in the csv""" with open(filename) as csvfile: reader = csv.reader(csvfile, delimiter=",") csvmatrix = [] for row in reader: csvmatrix.append(row) return csvmatrix
c54db6aa0c53c6b28f33fd81b0f72ee70a56bd37
191,269
def get_feedstock_name_from_meta(meta): """Resolve the feedtstock name from the parsed meta.yaml.""" if "feedstock-name" in meta.meta["extra"]: return meta.meta["extra"]["feedstock-name"] elif "parent_recipe" in meta.meta["extra"]: return meta.meta["extra"]["parent_recipe"]["name"] else: return meta.name()
1706bf74005730139f6783e4bb6c68c725be4f0b
71,765
def rect2lines(bbox): """ Given a bounding box, convert it into a path of points Parameters ---------- bbox : list or numpy array [x1 y1 x2 y2] Bounding box defined as top left and bottom right points of the box Returns ------- point_list : list List of five points defining a path to draw the bounding box as a rectangle """ point_list = [ bbox[0], bbox[1], bbox[2], bbox[1], bbox[2], bbox[3], bbox[0], bbox[3], bbox[0], bbox[1] ] return point_list
cd653172f7ca3646c91ab20b90e2d42b0eb6f269
366,816
def encode_int(i, nbytes, encoding='little'): """ encode integer i into nbytes bytes using a given byte ordering """ return i.to_bytes(nbytes, encoding)
82b8268af56fce1c4118b9b7f632d8b36d209d89
187,884
def get_mysql_client_cmd(db_username, db_password, db_host, db_port, db_schema): """ Returns a connection string according to the given variables """ if db_password: cmd = "mysql -h %s -u%s -p%s -P %s %s" % (db_host, db_username, db_password, db_port, db_schema) else: cmd = "mysql -h %s -u%s -p -P %s %s" % (db_host, db_username, db_port, db_schema) return cmd
e13c30bd93a973c606d58f45a199fbc1bdae69b9
405,886
import math def phred33_to_rate(q): """Convert a phred33 character to an error rate""" return math.pow(10,float(ord(q)-33)/-10)
0efb0d22fc9f189c87611bc6ea931b262a3cf49b
163,907
from typing import Tuple from typing import Dict def make_schema(endpoints: Tuple[str]) -> Dict: """Generate a Swagger 2.0 schema with the given endpoints. Example: If `endpoints` is ("success", "failure") then the app will contain GET /success and GET /failure """ template = { "swagger": "2.0", "info": {"title": "Example API", "description": "An API to test Schemathesis", "version": "1.0.0"}, "host": "127.0.0.1:8888", "basePath": "/api", "schemes": ["http"], "paths": {}, } for endpoint in endpoints: template["paths"][f"/{endpoint}"] = { "get": {"summary": "Endpoint", "produces": ["application/json"], "responses": {200: {"description": "OK"}}} } return template
df8d3116f8124ecd14a0e3b34eb2e335e48d393e
239,373
def sumTo(aBound): """ Return the sum of 1+2+3 ... n """ theSum = 0 aNumber = 1 while aNumber <= aBound: theSum = theSum + aNumber aNumber = aNumber + 1 return theSum
14130fdb9b062b399c04755c1a6030557c1bce52
447,799
def dict_mapper(obj): """ Converts an object to a dictionary if possible """ return obj.to_dict() if hasattr(obj, "to_dict") else obj
ab4361bfc9157ba9eebbd8fba75c71adf8904b80
151,611
import json def parse_broadcast_message(to_parse): """Parse the given string as a json and return a dictionary with the json's contents""" try: decoded = json.loads(to_parse) if decoded is not None: return decoded except ValueError: # this is a JSONDecodeError, but we are catching superclass for backwards compatibility return None
cf2db5a7b68b4bcebfbe592938084b13cbe731bf
597,949
def evaluate_precision(tp: int, fp: int) -> float: """Precision, aka Positive Predictive Value (PPV). $PPV=\dfrac{TP}{TP + FP}$ Args: tp: True Positives fp: False Positives """ try: return tp / (tp + fp) except ZeroDivisionError: return 0.0
5c591113833fffbb95cf1f638c76fa1c4e28044f
578,904
def const(a): """ The constant function. A function that returns a constant value. a -> b -> a """ return lambda b: a
1dc9fe5b12ac20fbb68cffb743b4cd4dce77c017
52,283
def _extract_group(encr_text, fst_group_pos, snd_group_pos, min_group_len): """ Extract the largest group of characters may match at each position ARGUMENT NOTES: min_group_len -- The min length of the group RETURN NOTES: If the group has no minimum size, None. Otherwise, the following tuple: (fst_group_pos, snd_group_pos, group_str) USAGE: >>> _extract_group('CSASTPKVSIQUTGQUCSASTPIUAQJB', 0, 16, 3) (0, 16, 'CSASTP') """ old_fst_group_pos, old_snd_group_pos = fst_group_pos, snd_group_pos group = "" while encr_text[fst_group_pos] == encr_text[snd_group_pos]: group += encr_text[fst_group_pos] fst_group_pos += 1 snd_group_pos += 1 if fst_group_pos >= len(encr_text) or snd_group_pos >= len(encr_text): break if not group or len(group) < min_group_len: return None else: return (old_fst_group_pos, old_snd_group_pos, group)
535c3974dc8c85b4ec6554cd8902ddf347e86bf2
248,754
import copy import time def process_like(proc): """Make an exact clone of a process, including state and all subprocesses. The creation date is updated. :param proc: process :type proc: :class:`~climlab.process.process.Process` :return: new process identical to the given process :rtype: :class:`~climlab.process.process.Process` :Example: :: >>> import climlab >>> from climlab.process.process import process_like >>> model = climlab.EBM() >>> model.subprocess.keys() ['diffusion', 'LW', 'albedo', 'insolation'] >>> albedo = model.subprocess['albedo'] >>> albedo_copy = process_like(albedo) >>> albedo.creation_date 'Thu, 24 Mar 2016 01:32:25 +0000' >>> albedo_copy.creation_date 'Thu, 24 Mar 2016 01:33:29 +0000' """ newproc = copy.deepcopy(proc) newproc.creation_date = time.strftime("%a, %d %b %Y %H:%M:%S %z", time.localtime()) return newproc
a28d3f2ed6634bcce623239df9376cef6d3f543e
561,205
import re def validate_container_name(name): """Make sure a container name accordings to the naming convention https://docs.openstack.org/developer/swift/api/object_api_v1_overview.html https://lists.launchpad.net/openstack/msg06956.html > Length of container names / Maximum value 256 bytes / Cannot contain the / character. """ validate_name = re.compile('^[^/]+$') return ( len(name) <= 256 and bool(validate_name.match(name)) )
5bef8b304c004dc3169b6984b49a0d669fc9b7b3
12,490
from typing import Iterable def _table_cell(items: Iterable[str]) -> str: """Make a row of table cell.""" return '|' + '|'.join(f" {t} " for t in items) + '|'
4b489283126900cdd371eb99c4ae3bd114232966
668,832
def get_waters(lines): """Helper function to extract waters from a PDB file""" return "".join([line for line in lines if line[17:20] == "HOH"])
468fa05f0a1213669eb1a1ac2d29b0191ba96887
61,910
def TSKVsPartGetStartSector(tsk_vs_part): """Retrieves the start sector of a TSK volume system part object. Args: tsk_vs_part: a TSK volume system part object (instance of pytsk3.TSK_VS_PART_INFO). Returns: The start sector or None. """ # Note that because pytsk3.TSK_VS_PART_INFO does not explicitly defines # start we need to check if the attribute exists. return getattr(tsk_vs_part, u'start', None)
b7899143426344d4f09ea5369b19f9d052760054
415,168
def add (x, y): """returns the sum of two vectors""" return x [0] + y [0], x [1] + y [1]
dd2d0dca541a01852ae60f5ea21e7be3becaff8b
659,416
def clean_timestamp(timestamp, format=False): """ used to remove unwanted characters from the overly long timestamp in the json data of a tweet eg: timestamp comes in as 'Thu Dec 17 13:44:24 +0000 2020' and for now we only want 'Thu Dec 17 13:44' """ cleaned_timestamp_list = str(timestamp).split(' ')[0:4] # remove the seconds from the actual time part of the string cleaned_timestamp_list[3] = cleaned_timestamp_list[3][0:5] # join them back into a string cleaned_timestamp = ' '.join(cleaned_timestamp_list) return cleaned_timestamp
5fc1846f411ea8379dccf45f0770b946c718002b
680,318
def correct_barcode(barcode, mismatch_map): """ Correct an observed raw barcode to one of a list of whitelists of mismatches. Args: barcode (string): barcode sequence to be corrected mismatch_map (list of dict dict): list of dict of mismatched sequences to real sequences Returns: string: corrected barcodes or None if barcode not correctable. """ for mismatch_whitelist in mismatch_map: corrected = mismatch_whitelist.get(barcode, None) if corrected: return corrected return None
a130d7ee285acc198eeece53641e13dd3ebebcf0
433,792
import json def get_car_parking_drift(car): """ Gets properties that can change during a parking period but aren't considered to interrupt the parking. These are things like a car charging while being parked. :param car: must be formatted in normalized electric2go dict format :return: a hashable object """ # Use json.dumps() because a dict is not hashable. # Sort keys to ensure deterministic key order in dumped JSON. # Note: using sort_keys prevents us from using e.g. ujson offer_drive_price = json.dumps(car['price_offer_details'], sort_keys=True) return (car['api_estimated_range'], car['fuel'], car['charging'], car['price_offer'], offer_drive_price)
9204321748d81ee2801a76ce0fe53de9cb81cda8
233,886
def check_utilization(nn, np, ppn, threshold=0.9, name=None): """Check whether the calculated node utilization is below threshold. This function raises a :class:`RuntimeError` if the calculated node utilization is below the given threshold or if the number of calculated required nodes is zero. :param nn: Number of requested nodes. :param np: Number of required processing units (e.g. CPUs, GPUs). :param ppn: Number of processing units available per node. :param threshold: The minimally required node utilization. :param name: A human-friendly name for the tested processing unit to be used in the error message, for example: CPU or GPU. :returns: The number of calculated nodes. :raises RuntimeError: Raised if the node utilization is below the given threshold. """ if not (0 <= threshold <= 1.0): raise ValueError("The value for 'threshold' must be between 0 and 1.") # Zero nodes are just returned and possible utilization or validation checks # must be performed elsewhere. if nn == 0: return 0 # The utilization is the number of processing units (np) required divided # by the product of the number of nodes (nn) and the number of processing # units per node (ppn). utilization = np / (nn * ppn) # Raise RuntimeError if the utilization is below the specified threshold. if utilization < threshold: raise RuntimeError( "Low{name} utilization warning: {util:.0%}\n" "Total resources requested would require {nn} node(s), " "but each node supports up to {ppn}{name} task(s).\n" "Requesting {np} total{name} task(s) would result in node underutilization. " "Use --force to ignore the warning, but users are encouraged to use --pretend to " "confirm that the submission script fully utilizes the compute resources before " "force submission" .format( util=utilization, np=np, nn=nn, ppn=ppn, name=' {}'.format(name) if name else '')) # Everything fine, return number of nodes (nn). return nn
a9d6f22ecca25d663bf8abd179f2f473debf5eea
284,716
def freq_(matrix): """ Function that return the numbers of frequency for each element in the matrix Parameters: matrix Returns: result(dictionary): as the key the element and as value the numbers of frequency for each element """ result = dict() for array in matrix: for el in array: result[el] = result.get(el,0) + 1 return result
cc7fc49404340bb41abb6a1fea9b8815227ad3d5
372,318
from typing import Iterable def field_lookup(obj, field_path): """ Lookup django model field in similar way of django query lookup. Args: obj (instance): Django Model instance field_path (str): '__' separated field path Example: >>> from django.db import model >>> from django.contrib.auth.models import User >>> class Article(models.Model): >>> title = models.CharField('title', max_length=200) >>> author = models.ForeignKey(User, null=True, >>> related_name='permission_test_articles_author') >>> editors = models.ManyToManyField(User, >>> related_name='permission_test_articles_editors') >>> user = User.objects.create_user('test_user', 'password') >>> article = Article.objects.create(title='test_article', ... author=user) >>> article.editors.add(user) >>> assert 'test_article' == field_lookup(article, 'title') >>> assert 'test_user' == field_lookup(article, 'user__username') >>> assert ['test_user'] == list(field_lookup(article, ... 'editors__username')) """ if hasattr(obj, 'iterator'): return (field_lookup(x, field_path) for x in obj.iterator()) elif isinstance(obj, Iterable): return (field_lookup(x, field_path) for x in iter(obj)) # split the path field_path = field_path.split('__', 1) if len(field_path) == 1: return getattr(obj, field_path[0], None) return field_lookup(field_lookup(obj, field_path[0]), field_path[1])
38bdf5efa75fc9f8273d1a40f719a700b86aa026
38,880
def not_0(upper, lower): """Fills both values to whichever is not equal to 0, or leaves in place.""" # Note that I compare the values to zero istead of using if not lower # This is because the values coming in can be anything, including an # empty list, which should be considered nonzero if upper == 0: return lower, lower elif lower == 0: return upper, upper else: return upper, lower
d436f764d79f1febe5dbfbf2407d5921ea06e2ab
32,228
import pathlib def is_absolute(path: str) -> bool: """Checks if path is absolute e.g j.sals.fs.is_absolute('/home/rafy/') -> True j.sals.fs.is_absolute('~/rafy/') -> False Args: path (str): path to check if it is absolute Returns: bool: True if absolute """ return pathlib.Path(path).is_absolute()
98dbb83d9db354c25f90b576de7209c480ef1e8a
145,492
def get_build_status_from_gcb(cloudbuild_api, cloud_project, build_id): """Returns the status of the build: |build_id| from cloudbuild_api.""" build_result = cloudbuild_api.get(projectId=cloud_project, id=build_id).execute() return build_result['status']
78520f1377a6fc77c3fe94b99243dd6756a07685
505,393
import re def rm_quotation_marks(sent): """ Remove single quotes used as quotation marks (e.g. some 'phrase in quotes') Remove double quotes used as quotation marks (e.g. some "phrase in quotes" or ``phrase in quotes'') """ sent = re.sub(r"\s'([\w\s]+[\w])'\s", r' \1 ', sent) return re.sub(r'["“”‘’]', r' ', sent)
0977773e9b9b72af9566ca3c31d3c30f9800e165
621,600
def _set_current_port(app_definition, service_port): """Set the service port on the provided app definition. This works for both Dockerised and non-Dockerised applications. """ try: port_mappings = app_definition['container']['docker']['portMappings'] port_mappings[0]['servicePort'] = service_port except (KeyError, IndexError): app_definition['ports'][0] = service_port return app_definition
891ec96512078cc41811a497ae4a8876728ff8e2
508,357
def makesafe(s): """Makes the given string "safe" by replacing spaces and lower-casing (less aggressive)""" def rep(c): if c.isalnum(): return c.lower() else: return '_' ret = ''.join([rep(c) for c in s]) return ret
13d8b683c348c991007ee2463e976ac1da394d29
646,611
def _get_scripts_resource(pe): """Return the PYTHONSCRIPT resource entry.""" res = None for entry in pe.DIRECTORY_ENTRY_RESOURCE.entries: if entry.name and entry.name.string == b"PYTHONSCRIPT": res = entry.directory.entries[0].directory.entries[0] break return res
3bef22589a2793b09d89c4f4552f12f1583c9274
43,952
def get_attribute_terms(product): """ Function to iterate through all variants of a variable product and compile a list of attribute terms from them. :param product: Variable product and variants information :return: list of term names """ attribute_terms = list() for variation in product['variants']: if variation['option_1_value'] not in attribute_terms: attribute_terms.append(variation['option_1_value']) return attribute_terms
3a785220eadffe20241116036e08c00b41e232fc
658,235
def improve_data(data_list: list, non_integers: list) -> list: """Takes a list of dictionaries containting the data, make sure all dictionaries have the correct data, 0's all missing entries Args: data_list (list): list of dictionaries containing the data non_integers (list): list of headers which should not be converted to an integer Returns: list: improved list of data """ headers = list(data_list[0].keys()) for data in data_list: for header in headers: if data[header] == '': data[header] = '0' for data in data_list: for header in headers: if header not in non_integers: data[header] = str(data[header]) data[header] = data[header].replace('*', '') data[header] = float(data[header]) return data_list
c9345ebfb172a76d63c88f231fba058538a9ec77
99,446
def srun(arg_dict,qos=True,time=10,mem=4): """Return srun call, with certain parameters appended. Arguments: ---------- arg_dict : dict Dictionary of arguments passed into this script, which is used to append parameters to srun call. qos : bool, optional Quality of service, set to True for interactive jobs, to increase likelihood of scheduling. mem : int, optional The memory in GB (per node) to use for this call. time : str, optional Time limit to use for this call, in the form d-hh:mm:ss. Returns: -------- call : str srun call with arguments appended.""" call = 'srun --time={0} --mem={1}GB --partition={2} --account={3}'.format(time,mem,arg_dict['partition'],arg_dict['account']) if qos: call += ' --qos qos-interactive' if arg_dict['exclude'] != '': call += ' --exclude={0}'.format(arg_dict['exclude']) if arg_dict['reservation'] != '': call += ' --reservation={0}'.format(arg_dict['reservation']) return call
7769b4023a2caa9a3b0bfe47ea12af48ecf930f6
648,451
def _prep_sge_resource(resource): """Prepare SGE resource specifications from the command line handling special cases. """ resource = resource.strip() k, v = resource.split("=") if k in set(["ar"]): return "#$ -%s %s" % (k, v) else: return "#$ -l %s" % resource
100c1152f5766a1bc68d289645ef56d152f98c14
62,579
def remove_duplicates(list_with_duplicates): """ Removes the duplicates and keeps the ordering of the original list. For duplicates, the first occurrence is kept and the later occurrences are ignored. Args: list_with_duplicates: list that possibly contains duplicates Returns: A list with no duplicates. """ unique_set = set() unique_list = [] for element in list_with_duplicates: if element not in unique_set: unique_set.add(element) unique_list.append(element) return unique_list
e72e26e69f9476669906ba2aa7864cec9eaf64d4
685,484
def get_rid_dict(contrib_element): """ For an individual contributor, get the list of their associated rids. More about rids: https://jats.nlm.nih.gov/archiving/tag-library/1.1/attribute/rid.html Used in get_contrib_info(). :param contrib_element: An article XML element with the tag <contrib> :return: dictionary matching each type of rid to its value for that contributor """ rid_dict = {} contrib_elements = contrib_element.getchildren() # get list of ref-types rid_type_list = [el.attrib.get('ref-type', 'fn') for el in contrib_elements if el.tag == 'xref'] # make dict of ref-types to the actual ref numbers (rids) for rid_type in set(rid_type_list): rid_list = [el.attrib.get('rid', None) for el in contrib_elements if el.tag == 'xref' and el.attrib.get('ref-type', 'fn') == rid_type] rid_dict[rid_type] = rid_list return rid_dict
6e106aeb0acb1bc93569df3b5e2496882e8b8ba7
583,442
import random def _apply_randomness(value, random_factor): """ Applies a random factor to the value :param value: Input value :param random_factor: Random factor, must be between 0 (no random) and 1 (output is between 0 and 2* value) :return: Value with random factor applied """ if random_factor < 0 or random_factor > 1: raise ValueError("Random factor must be in range 0 to 1") return value + (random.uniform(random_factor * -1, random_factor) * value) if random_factor != 0 else value
f9efa3839e5ac513bf3b5f8dc4dc021d1ad0d03f
657,207
def convert_tokens_to_ids(word_to_id, tokens, max_sent_length=None, unknown_token=None): """ Converts tokens to integers with a predefined given mapping from word_to_id dictionary :param Dict[str, int] vocabulary: :param List[str] tokens: :param Optional[str] unknown_token: The token to use for tokens that are not in the index. If None is given then '<OOV>' is used. :rtype: List[int] """ if unknown_token is None: unknown_token = '<OOV>' if max_sent_length is not None: tokens = [item for sublist in tokens for item in sublist] text_to_id = [ word_to_id[token] if token in word_to_id else word_to_id[unknown_token] for token in tokens ] if max_sent_length is not None: text_to_id = [text_to_id[x:x + max_sent_length] for x in range(0, len(text_to_id), max_sent_length)] return text_to_id
f28549ee24b961f775c527a7683460c2c19ca9ac
229,507
def filter_cols(df, columns=None, indices=None): """ Return the specified table filtered by the specified indices and limited to the columns of interest. """ if columns is None: if indices is None: return df return df.loc[indices] cols = columns if cols is None: return None if indices is None: indices = slice(0, None) return df.loc[indices, cols]
7111ae972b7cc44d9a6cdcbbd6f3de2187fdfec8
308,805
def remove_entitled_users_duplicates(poll_model_collection, poll_model_name): """ Takes all polls of the given model and removes any duplicate entries from entitled_users_at_stop """ def _remove_entitled_users_duplicates(apps, schema_editor): PollModel = apps.get_model(poll_model_collection, poll_model_name) for poll in PollModel.objects.all(): if poll.entitled_users_at_stop: new_entitled_users = [] entitled_users_ids = set() for entry in poll.entitled_users_at_stop: if entry["user_id"] not in entitled_users_ids: entitled_users_ids.add(entry["user_id"]) new_entitled_users.append(entry) poll.entitled_users_at_stop = new_entitled_users poll.save(skip_autoupdate=True) return _remove_entitled_users_duplicates
e3efe5edc9c60f0cb7a6648781fdde0713b4c1c0
476,898
def readATGC_buffer(buf, s, e): """ read numbers of A/T/G/C btw start and end in the path :param buf: fasta buffer with \n removed :param s: start position (inclusive), one based index :param e: end position (inclusive), one based index :return: numbers of A, T, G, C """ start = int(s)-1 end = int(e) buffer = buf[start:end] total_a = buffer.count('A') + buffer.count('a') total_t = buffer.count('T') + buffer.count('t') total_c = buffer.count('C') + buffer.count('c') total_g = buffer.count('G') + buffer.count('g') if total_a + total_t + total_g + total_c == 0: print("goes here {0} {1}".format(s, e)) return (total_a, total_t, total_g, total_c)
c00eecf95761095ff99bd2b5c57c19349caf5769
132,055
import json def deserialize_line(line, encoding="utf-8"): """ Transform a line in a file that was created as a result from a Luigi task into its metadata and main data. :param line: Line to be serialized. :type line: str :param encoding: Encoding of line (default is utf-8). :type encoding: str """ return json.loads(line, encoding=encoding)
a848c2dc505856e1706ae3e67d5657782e4187dd
336,293
def _get_intervention_string(conf): """ Consolidates all the parameters to one single string. Args: conf (dict): yaml configuration of the experiment Returns: (str): a string to identify type of intervention being run Raises: (ValueError): if RISK_MODEL is unknown """ if conf['RISK_MODEL'] == "": type_of_run = "UNMITIGATED" if conf['INTERPOLATE_CONTACTS_USING_LOCKDOWN_CONTACTS']: type_of_run = "LOCKDOWN" if conf['N_BEHAVIOR_LEVELS'] > 2: type_of_run = "POST-LOCKDOWN NO TRACING" return type_of_run risk_model = conf['RISK_MODEL'] n_behavior_levels = conf['N_BEHAVIOR_LEVELS'] hhld_behavior = conf['MAKE_HOUSEHOLD_BEHAVE_SAME_AS_MAX_RISK_RESIDENT'] type_of_run = f"{risk_model} | HHLD_BEHAVIOR_SAME_AS_MAX_RISK_RESIDENT: {hhld_behavior} | N_BEHAVIOR_LEVELS:{n_behavior_levels} |" if risk_model == "digital": type_of_run += f" N_LEVELS_USED: 2 (1st and last) |" type_of_run += f" TRACING_ORDER:{conf['TRACING_ORDER']} |" type_of_run += f" TRACE_SYMPTOMS: {conf['TRACE_SYMPTOMS']} |" type_of_run += f" INTERPOLATE_USING_LOCKDOWN_CONTACTS:{conf['INTERPOLATE_CONTACTS_USING_LOCKDOWN_CONTACTS']} |" type_of_run += f" MODIFY_BEHAVIOR: {conf['SHOULD_MODIFY_BEHAVIOR']}" return type_of_run if risk_model == "transformer": type_of_run += f" USE_ORACLE: {conf['USE_ORACLE']}" type_of_run += f" N_LEVELS_USED: {n_behavior_levels} |" type_of_run += f" INTERPOLATE_USING_LOCKDOWN_CONTACTS:{conf['INTERPOLATE_CONTACTS_USING_LOCKDOWN_CONTACTS']} |" type_of_run += f" REC_LEVEL_THRESHOLDS: {conf['REC_LEVEL_THRESHOLDS']} |" type_of_run += f" MAX_RISK_LEVEL: {conf['MAX_RISK_LEVEL']} |" type_of_run += f" MODIFY_BEHAVIOR: {conf['SHOULD_MODIFY_BEHAVIOR']} " type_of_run += f"\n RISK_MAPPING: {conf['RISK_MAPPING']}" return type_of_run if risk_model in ['heuristicv1', 'heuristicv2', 'heuristicv3', 'heuristicv4']: type_of_run += f" N_LEVELS_USED: {n_behavior_levels} |" type_of_run += f" INTERPOLATE_USING_LOCKDOWN_CONTACTS:{conf['INTERPOLATE_CONTACTS_USING_LOCKDOWN_CONTACTS']} |" type_of_run += f" MAX_RISK_LEVEL: {conf['MAX_RISK_LEVEL']} |" type_of_run += f" MODIFY_BEHAVIOR: {conf['SHOULD_MODIFY_BEHAVIOR']}" return type_of_run raise ValueError(f"Unknown risk model:{risk_model}")
ba8972b0fe2005829db64e7c83dba322584784b3
233,016
def rolling_mean(ts, window): """Calculate rolling mean of time series. Uses pandas.DataFrame.rolling() to calculate rolling mean of a given window size. If more than one column of data in ts, returns rolling mean using given window size for each column of data. Returns nans for times before first window. :param ts: Time series data as a pandas DataFrame. :param window: Window size over which to calculate mean (int). :return ts_std: DataFrame with same columns as ts but with rolling mean in place of data column. """ ts_mean = ts.rolling(window).mean() ts_mean["time"] = ts["time"] # don't want mean of time! return ts_mean
8cd2933b1a9c285666a62a5edacae8477dec1d3d
29,173
def get_output_type(operation): """ Find the name of the output type of the specified operation. This method first explores the responseMessages defined for the operation. If a successful responseMessage (i.e. response code in 200's range), has been declared with a responseModel, that will be considered output type of the operation. Otherwise, it will fallback to the 'type' attribute defined in the operation. If neither is defined, returns None. Args: operation - A Swagger operation description (dictionary) Returns: A string representing a data type name or None """ if operation.get('responseMessages'): for rm in operation['responseMessages']: if 200 <= rm['code'] < 210 and rm.get('responseModel'): return rm['responseModel'] if operation.get('type'): return operation['type'] return None
755f7717d36867b4e16cce75bb0d5e2db5343c7b
611,707
def scale_mesh(mesh, scale): """ This function scales the vertices to range from 0 to scale Parameters ---------- mesh : trimesh.base.Trimesh A Trimesh mesh object to scale scale : int Specifies the max for the new range Returns ------- scaled_mesh : trimesh.base.Trimesh Trimesh mesh object whose vertices ranges from 0 to scale """ vertices = mesh.vertices maxval = vertices.max(axis=0) minval = vertices.min(axis=0) max_nodes = scale/(maxval-minval) verts_scaled = max_nodes*(vertices - minval) scaled_mesh = mesh.copy() scaled_mesh.vertices = verts_scaled return scaled_mesh
cdec5e3ed599d9cf4412376bfef4a371a2e64f62
522,482
def symmetrize(edges): """Symmetrizes the adjacency.""" inv_edges = {(d, s) for s, d in edges} return edges.union(inv_edges)
d22652dcd29b562f916f155f5d8709fa27e09a7b
503,524
def construct_dict(genome, *dataset_names): """ Construct an allele counts dict from a genome object Parameters ---------- genome : funcgenom.Genome() a genome as from funcgenom *dataset_names : str names for the datasets represented by the genome Returns ------- dict a dictionary whose values are tables containing the coordinates and allele counts """ return { 'coordinates': dict( zip( ('chr', 'pos'), ( list(z) for z in zip( *((v.chromosome, v.position) for v in genome.variants()) ) ) ) ), **{ dataset_name: dict( zip( ('coverage', 'ref_count'), ( list(z) for z in zip( *( ( v.traits.get(dataset_name, {}).get( 'coverage' ), v.traits.get(dataset_name, {}).get( 'ref_count' ) ) for v in genome.variants() ) ) ) ) ) for dataset_name in dataset_names } }
754a22084a20c90c37387bee993ca06d7347c340
544,394
import pyarrow.cuda as cuda def pyarrow_cuda_buffer(cp_arr): """Return pyarrow.cuda.CudaBuffer view of cupy.ndarray. """ ctx = cuda.Context(cp_arr.data.device.id) return ctx.foreign_buffer(cp_arr.data.ptr, cp_arr.nbytes)
ff3a774a525588a1210931f1d800d80a4d77158a
226,092