content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
|---|---|---|
def _approx_equal(a, b, tolerance):
"""Check if difference between two numbers is inside tolerance range."""
if abs(a - b) <= tolerance * a:
return True
else:
return False
|
2f2c2a15b21e96f7d34e669d99acd1f06c333829
| 664,126
|
def cycle_list(k, n):
"""
Returns the elements of the list ``range(n)`` shifted to the
left by ``k`` (so the list starts with ``k`` (mod ``n``)).
Examples
========
>>> from sympy.crypto.crypto import cycle_list
>>> cycle_list(3, 10)
[3, 4, 5, 6, 7, 8, 9, 0, 1, 2]
"""
k = k % n
return list(range(k, n)) + list(range(k))
|
0be03fd6e1a11c656b632161a3cd302bb88b769b
| 76,140
|
def get_lda_topics(lda, top_n=30):
"""Wrapper function to extract topics from trained tomotopy LDA model (adapted from
@ecoronado's get_hdp_topics() method)
** Inputs **
lda:obj -> LDAModel trained model
top_n: int -> top n words in topic based on frequencies
** Returns **
topics: dict -> per topic, an array with top words and associated frequencies
"""
# Get most important topics by # of times they were assigned (i.e. counts)
sorted_topics = [k for k, v in sorted(enumerate(lda.get_count_by_topics()), key=lambda x: x[1], reverse=True)]
topics = dict()
# For topics found, extract only those that are still assigned
for k in sorted_topics:
topic_wp = []
for word, prob in lda.get_topic_words(k, top_n=top_n):
topic_wp.append((word, prob))
topics[k] = topic_wp # store topic word/frequency array
return topics
|
1c2a239a53c75eb795b2c01156621da40b5eb154
| 193,831
|
def label_annotations(annotations, inside_label, tokenize=None):
"""
Creates a list of labels for each character in a list of annotations
:param annotations: A list of tuples, where the first is the shape of the
annotations, and the second is its label
:type annotations: list of (str, str)
:param inside_label: The label to use for characters that do not begin an
annotation
:param tokenize: The function that should be used to tokenize the
annotation shapes. Defaults to calling list()
:type tokenize: callable
:return: A list of labels for the combined annotations
:rtype: list of str
"""
labels = []
tokenize = tokenize or list
for shape, label in annotations:
for i, _ in enumerate(tokenize(shape)):
if i == 0:
labels.append(label)
else:
labels.append(inside_label)
return labels
|
9662c59616444874cadb070e01289f0e895cbaac
| 432,169
|
def calculate_szymkiewicz_simpson_coefficient(set_1, set_2):
"""Calculate Szymkiewicz-Simpson coefficient between two sets.
:param set set_1: set 1
:param set set_2: set 2
:return: similarity of the two sets
:rtype: float
"""
intersection = len(set_1.intersection(set_2))
smaller_set = min(len(set_1), len(set_2))
return intersection / smaller_set
|
1b06925383ea1fc35e8436921c8cc4e89796cf23
| 297,843
|
def read_scoring_matrix(filename):
"""
Helper function to read a scoring matrix from a file.
Returns the scoring matrix as a dictionary.
"""
matrix_file = open(filename, 'r')
scoring_matrix = dict()
# Read the first line and create a list
column_values = matrix_file.readline().split()
# Read the other lines
for line in matrix_file.readlines():
scores = line.split()
row_value = scores.pop(0)
scoring_matrix[row_value] = dict()
for column_value, score in zip(column_values, scores):
scoring_matrix[row_value][column_value] = int(score)
matrix_file.close()
return scoring_matrix
|
45598efb8fc8d8e50de4e7344430eea7ae5002aa
| 475,524
|
def diag(x1, y1, x2, y2):
"""Tests for direct diagonalness."""
if abs(x1 - x2) == abs(y1 - y2):
return True
return False
|
d8a56cdbd417aa00a59116eccb6ca8fcfd2b8a44
| 348,357
|
import socket
import time
def waitForSSHAvailable(ipAddress, timeout=600):
"""
Wait until SSH is available, that is its network interface is up
:param ipAddress: ipAddress
:type ipAddress: str
:param timeout: timeout
:type timeout: int
:returns: whether SSH is available
:rtype: bool
"""
sshSocket = socket.socket()
sshSocket.settimeout(1)
start = time.time()
end = start + timeout
while time.time() < end:
try:
sshSocket.connect((ipAddress, 22))
sshSocket.recv(256)
sshSocket.close()
break
except socket.error:
time.sleep(1)
return time.time() <= end
|
adda2e6b7e7e4ee8cbf57000fd74e7726a2c90f2
| 160,617
|
def _format_results(results: dict):
"""Return formatted dictionary containing term and relevance.
Args:
results (dict): JSON dictionary of Google Autocomplete results.
Returns:
suggestions (dict): Formatted dictionary containing term and relevance.
"""
if results:
suggestions = []
for index, value in enumerate(results[1]):
suggestion = {'term': value, 'relevance': results[4]['google:suggestrelevance'][index]}
suggestions.append(suggestion)
return suggestions
|
8f0a1431bbaeac2f6f5381d032a1a1d6d36a3e15
| 584,113
|
def _is_decoy_suffix(psm, suffix='_DECOY'):
"""Given a PSM dict, return :py:const:`True` if all protein names for
the PSM end with `suffix`, and :py:const:`False` otherwise.
Parameters
----------
psm : dict
A dict, as yielded by :py:func:`read`.
suffix : str, optional
A suffix used to mark decoy proteins. Default is `'_DECOY'`.
Returns
-------
out : bool
"""
return all(prot['label'].endswith(suffix) for prot in psm['protein'])
|
f578a126a9838d761cb64bd85bffbb223f23684e
| 155,646
|
def addcss(value, arg):
""" Adds a css class to a form field """
css_classes = value.field.widget.attrs.get('class', '').split(' ')
if css_classes and arg not in css_classes:
css_classes = '%s %s' % (css_classes, arg)
return value.as_widget(attrs={'class': css_classes})
|
9d28ab6e18e9c3fdb6de9044c95ea3c794ffa29d
| 648,587
|
def path(index, height):
"""Return the path from a leaf to the root of a binary hash tree.
Keyword arguments:
index -- the leaf's index, in range [0, 2^height - 1]
height -- the height of the binary hash tree
Returns:
The path from the leaf at the given index to the root of the binary tree as
a list of nodes. Each node is represented as a tuple consisting of the
node's layer, and the node's index within this layer.
"""
# Current layer
layer = 0
path = []
while layer < height:
path.append((layer, index))
layer += 1
index >>= 1
return path
|
27d5397209bb914d689ffc193ae995781a5e73ba
| 460,724
|
def slugify_iarc_name(obj):
"""
Converts ratings body's or rating's iarc_name to a slug-like label
(e.g. "USK" to "usk").
"""
return obj.iarc_name.lower().replace(' ', '-')
|
fb2798f2ce171db7125a1d990815c5fe5a57e761
| 539,186
|
def get_yxs_tuples(points, shape):
"""
Get a matrix of found points.
:param shape: shape of the template.
:param points: iterable of points.
:return: return a matrix with y and x as
row for every found matching.
"""
yxs = []
yx_saved = (-1, -1)
height, width = shape
for y, x in points:
if yx_saved == (-1, -1) or y > (yx_saved[0] + height) or x > (yx_saved[1] + width):
yx_saved = [y, x]
yxs.append(yx_saved)
return yxs
|
8749d3ed57451fc1b2eda74b58c3953f4c55a78a
| 355,132
|
def measure_raw(state_vect, shots=1_000_000, random_seed=1):
"""
Make measurements along the z basis, return raw data
:param state_vect: qiskit.quantum_info.Statevector object
:param shots: int, representing # of measurements
:param random_seed: int, for setting the 'randomness'
:return: a list of np.arrays containing the measurement results shape = (shots, num_qbits)
"""
state_vect.seed(random_seed)
data_lst = state_vect.sample_memory(shots)
results = []
for measurement in data_lst:
results.append([float(j) for j in list(measurement)])
return results
|
b1f35efe8d86330fec52bd11f9f167a2625e1e70
| 154,533
|
from typing import Dict
def string_to_dict(input_string: str) -> Dict[str, str]:
"""
Takes a string of a form `key1=val1,key2=val2` and returns the corresponding dict
"""
items_list = input_string.split(",")
output_dict = {}
for pair in items_list:
pair = pair.split("=") # type: ignore
output_dict[pair[0]] = pair[1]
return output_dict
|
11ae154a0f4203048537c965bace016b5cbd4eeb
| 562,629
|
def get_coding_annotation_fasta(seq_record):
"""
When passed a sequence record object returns an array of FASTA strings for each annotation.
:param seq_record: A Biopython sequence record object.
:return: A FASTA file string containing all sequences record object CDS sequence features.
"""
fasta = []
features = seq_record.features # Each sequence has a list (called features) that stores seqFeature objects.
for feature in features: # For each feature on the sequence
if feature.type == "CDS": # CDS means coding sequence (These are the only feature we're interested in)
feat_qualifiers = feature.qualifiers # Each feature contains a dictionary called qualifiers which contains
# data about the sequence feature (for example the translation)
start = int(feature.location.start) # Type-casting to int strips fuzzy < > characters.
end = int(feature.location.end)
strand = feature.location.strand
if strand is None:
strand = "?"
elif int(strand) < 0:
strand = "-"
elif int(strand) > 0:
strand = "+"
else:
strand = "?"
location = "[" + str(start) + ":" + str(end) + "](" + strand + ")"
# Gets the required qualifiers. Uses featQualifiers.get to return the qualifiers or a default value if the qualifiers
# is not found. Calls strip to remove unwanted brackets and ' from qualifiers before storing it as a string.
protein_id = str(feat_qualifiers.get('protein_id', 'no_protein_id')).strip('\'[]')
if protein_id == 'no_protein_id':
continue # Skips the iteration if protein has no id.
protein_locus = str(feat_qualifiers.get('locus_tag', 'no_locus_tag')).strip('\'[]')
gene = str(feat_qualifiers.get('gene', 'no_gene_name')).strip('\'[]')
product = str(feat_qualifiers.get('product', 'no_product_name')).strip('\'[]')
translated_protein = str(feat_qualifiers.get('translation', 'no_translation')).strip('\'[]')
fasta_part_one = ">" + protein_id + " " + gene + "-" + product + " (Locus: " + protein_locus + ")"
fasta_part_two = " (Location: " + location + ")" + "\n" + translated_protein + "\n"
fasta.append(fasta_part_one + fasta_part_two)
fasta_string = "".join(fasta)
return fasta_string
|
4fa24279ebb89ea7c61eeae6614c1fa309ffad87
| 13,936
|
def verbose_name_plural(obj):
"""
Returns the plural verbose name for a Django Model instance.
"""
return obj._meta.verbose_name_plural
|
bdaa38bfb308419d244c6e552475778810dc9088
| 77,105
|
def merge(b, c):
"""
Arguments:
Array1, Array2: Two sorted arrays b and c.
Return:
array_d: The merged version of b and c
"""
i = 0
j = 0
k = 0
n1 = len(b)
n2 = len(c)
array_d = [None]*(n1+n2)
# traverse both arrays
while i<n1 and j<n2:
if b[i] <= c[j]:
array_d[k] = b[i]
i+=1
k+=1
else:
array_d[k] = c[j]
j+=1
k+=1
while i < n1:
array_d[k] = b[i]
i+=1
k+=1
while j < n2:
array_d[k] = c[j]
j+=1
k+=1
return array_d
|
b66bd792cf72a3fd8eac314d0c9c1960b94fd158
| 549,639
|
def get_valid_moves(board, moves):
"""
Return the moves that can be played on the board
@param board: board of the current game
@param moves: a list of moves
@return: moves that are valid
"""
for move in moves:
if not board[move.line, move.column] == 0:
moves.remove(move)
return moves
|
23ee3a8c51a4677dfa017c8f33196f480f712f07
| 418,729
|
def get_dataframe_head(dataframe, number=5):
"""
Gets the first number of results (5 by default) from the dataframe
Arguments are the dataframe and the first number of rows to return
Number can also be a negative amount, in which case it will
return everything but the last number of rows
"""
df = dataframe.head(number)
return df
|
67df19665338948c52a1805c2492a5a5a1a3e5fe
| 559,167
|
def logReSubn(subnExpr, preComment, postComment, errorMsg='') -> str:
"""
Takes in the result of a re.subn call, subnExpr, and
logs preComment to stdout, then logs postComment and specifies the
number of subs.
Prints errorMsg in case of 0 subs.
Returns the string from subnExpr with replacements made.
"""
out = subnExpr[0]
subs = subnExpr[1]
print(preComment)
print(str(subs) + ' ' + postComment)
if (subs == 0 and errorMsg != ''):
print(errorMsg)
return out
|
141c9b6e00b55b1d70d54cb1a32a478c42f55452
| 446,414
|
def get_events(data):
""" dict -> list
Return the events from a Meetup request
"""
return data["events"]
|
314c46771758d86994ecd926d992376d8055f383
| 460,675
|
def split_castep(filename):
"""
Split .castep file into each calculation
Running CASTEP several times yields a single .castep file with concatenated output.
This function splits the outputs into a list of each calculation run.
Parameters
--------
filename : str
path to the .castep file
Returns
--------
run_list : list
list of lines of castep output for each run
"""
with open(filename, "rt") as f:
lines = f.readlines()
castep_header = [
' +-------------------------------------------------+\n',
' | |\n',
' | CCC AA SSS TTTTT EEEEE PPPP |\n',
' | C A A S T E P P |\n',
' | C AAAA SS T EEE PPPP |\n',
' | C A A S T E P |\n',
' | CCC A A SSS T EEEEE P |\n',
' | |\n',
' +-------------------------------------------------+\n'
]
header_position_list = list()
for l in range(len(lines) - 9):
if lines[l: l + 9] == castep_header:
header_position_list.append(l)
header_position_list.append(-1)
run_list = [lines[l_s:l_e] for l_s, l_e in zip(header_position_list[:-1], header_position_list[1:])]
return run_list
|
0b069f198833ec0f4db3d76f001be51b7b84b7b2
| 328,605
|
import re
def split_bucket(s3_key):
"""
Returns the bucket name and the key from an s3 location string.
"""
match = re.match(r'(?:s3://)?([^/]+)/(.*)', s3_key, re.IGNORECASE)
if not match:
return None, s3_key
return match.group(1), match.group(2)
|
6b854bdc9d105643a9fa528e6fefd19672451e63
| 1,261
|
import math
def trackDistance(mPoint1, mPoint2):
"""
Return the triangulated distance between two tracking locations
"""
x1, y1 = mPoint1
x2, y2 = mPoint2
trackLen = abs(math.hypot(x2 - x1, y2 - y1))
return trackLen
|
177b21b3d31cac918dc694759603d759c41a0fe2
| 496,599
|
def _create_into_array_list(phrase):
"""Create load or store into array instructions
For example, with the phrase 'astore':
[
'iastore',
'fastore',
...
'aastore'
]
"""
# noinspection SpellCheckingInspection
return [letter + phrase for letter in 'lfdibcsa']
|
3ae0bfbcd1ef3b6fcb8538ccb02c3a150151458e
| 661,390
|
def escape(inp, char_pairs):
"""Escape reserved characters specified in the list of tuples `char_pairs`
Parameters
----------
inp : str
Input string
chair_pairs : list
List of tuples of (character, escape sequence for character)
Returns
-------
str
Escaped output
See also
--------
unescape_GFF3
"""
for char_, repl in char_pairs:
inp = inp.replace(char_, repl)
return inp
|
80a00957e3ecc3ce7bf33953a430da82ad3350c5
| 478,149
|
from typing import List
from typing import Tuple
def has_valid_order(indexed_files: List[Tuple[int, str]], location: str) -> bool:
"""Verify that sequence numbers are in order without gaps or duplicates.
Args:
files: List of seqnum, filename for a list of Flyway files.
location: Where the list of files came from (for error reporting).
Returns:
True if the file list is valid.
"""
last_index = 0
valid = True
for seqnum, filename in indexed_files:
if seqnum == last_index:
print('duplicate Flyway file sequence number found in %s: %s' %
(location, filename))
valid = False
elif seqnum < last_index:
print('File %s in %s is out of order.' % (filename, location))
valid = False
elif seqnum != last_index + 1:
print('Missing Flyway sequence number %d in %s. Next file is %s' %
(last_index + 1, location, filename))
valid = False
last_index = seqnum
return valid
|
f2243de1dd8a43eac6ce250e0b6552eed4256ba9
| 426,649
|
import pickle
def load_from_file(filename):
"""Load a past state from file.
"""
f=open(filename,'rb')
try:
return pickle.load(f)
except EOFError:
print('Nothing written to file.')
|
3ccc2938e90bd886a18b583568391b2a975d2a52
| 649,227
|
def define_options(enable=[], disable=[]):
"""
Define the options for the subscribed events.
Valid options:
- CRfile: file created
- CRdir: directory created
- MDfile: file modified
- MDdir: directory modified
- MVfile: file moved
- MVdir: directory moved
- DLfile: file deleted
- DLdir: directory deleted
- all: for disable only. Disables all options.
By default all options are enabled.
If all options are disabled, 'enable' options are applied.
If all options are not disabled, 'disable' options are disabled.
"""
default_options = [
'CRfile', 'CRdir', 'MDfile', 'MDdir',
'MVfile', 'MVdir', 'DLfile', 'DLdir'
]
if disable == enable == []:
return default_options
elif 'all' in disable:
return list(set(enable) & set(default_options))
else:
return list(set(default_options) - set(disable))
|
a0b35008bebe70d3ec7b964122e24746ee89d1cc
| 658,583
|
def bit_string_to_bitlist(strarray):
"""Convert a string into a list of ordinals to do bit operations on."""
return map(ord, strarray)
|
78c03b690e3000eea786b2d91b6d0e430209238a
| 360,926
|
def read_file(path: str) -> str:
"""Method to read content of a file.
Args:
path (str): path to file.
Returns:
str: content of the file.
"""
with open(path, 'r', encoding='utf8') as file:
content = file.read()
return content
|
7c96bb59505ec19d31b2e0aff534c5aeb3da8ac2
| 582,254
|
def check_view_filter_and_group_by_criteria(filter_set, group_by_set):
"""Return a bool for whether a view can be used."""
no_view_group_bys = {"project", "node"}
# The dashboard does not show any data grouped by OpenShift cluster, node, or project
# so we do not have views for these group bys
if group_by_set.intersection(no_view_group_bys) or filter_set.intersection(no_view_group_bys):
return False
return True
|
8baeeb827ba092a3b5262f076ba1fa77aaf55b5f
| 697,335
|
from pathlib import Path
def get_path_context(filename):
"""
Takes a filename as input (string).
Returns path to file. Path is preceded by "file:\\"
"""
filepath = Path.cwd() / "negation" / "KB" / "lexicon" / filename
filepath = "file:\\" + str(filepath)
return(filepath)
|
166f05a52ec1481c3f6691b41c4047fb325ed2d4
| 424,367
|
def _add_param(name, value, result, param_appearance_counters):
"""Add a parameter to the parse result dictionary.
If the parameter name already exists in the dictionary then a counter
is appended - e.g. myparam-2, myparam-3 etc.
Arguments:
name - The name of the parameter to add
value - The value of the parameter to add
result - The parse result dictionary to add the parameter to.
param_appearance_counters - Dictionary that tracks how many times parameter
names have already been used.
Returns:
The unique name used in the dictionary for the param. Will be the name
specified in the call to the function unless that name already existed in
the dictionary, in which case it will have an incrementing number appended.
"""
if name not in result:
param_appearance_counters[name] = 1
unique_name = name
else:
# Param name already exists - append a counter
param_appearance_counters[name] += 1
unique_name = '{0}-{1}'.format(name, param_appearance_counters[name])
result[unique_name] = value
return unique_name
|
3acca2335db952eefd26d4d6ff17b8e6273709a2
| 131,637
|
def gen_waveform_name(ch, cw):
"""
Return a standard waveform name based on channel and codeword number.
Note the use of 1-based indexing of the channels. To clarify, the
'ch' argument to this function is 0-based, but the naming of the actual
waveforms as well as the signal outputs of the instruments are 1-based.
The function will map 'logical' channel 0 to physical channel 1, and so on.
"""
return 'wave_ch{}_cw{:03}'.format(ch+1, cw)
|
bfd8ebea77ae490ed0e2a2ceffd0227e02367239
| 185,491
|
def normalize_acl(acl):
"""
Normalize the grant and/or revoke lists we were given. Handle single item, list of items, etc.
We want to end up with just a list of IDs. Used by Project object to handle modify_access function.
:param acl: a list of Person objects or just a Person object
:return: a list of integers representing the IDs of the Person objects in the list given
"""
try:
acl = [int(a) for a in acl] # convert Person objects to list of ID integers
except TypeError: # ok maybe we got a single Person instead of a list of them
acl = [int(acl)]
return acl
|
6a84d093967d4bbc03dd93e729a85b638fb059bc
| 370,992
|
import click
def check(fn, error_message=None):
"""
Creates callback function which raises click.BadParameter when `fn` returns `False` on given input.
>>> @click.command()
>>> @click.option('--probability', callback=check(lambda x: 0 <= x <= 1, "--probability must be between 0 and 1 (inclusive)"))
>>> def f(probability):
>>> print('P:', probability)
"""
def f(ctx, param, value):
if fn(value):
return value
else:
if error_message is None:
msg = str(value)
else:
msg = '{}. Value: {}'.format(error_message, value)
raise click.BadParameter(msg)
return f
|
8519e6c29a1cb2843260570a8888b551d8c4987c
| 36,676
|
import torch
def directional_derivatives(lin_op, directions, device):
"""``lin_op`` represents a curvature matrix (either ``GGNLinearOperator`` or
``HessianLinearOperator`` from ``vivit.hessianfree``). ``directions`` is a
``D x nof_directions`` matrix, where ``nof_directions`` directions are stored
column-wise. For every direction ``d``, we compute ``d.T @ lin_op_matrix @ d``.
"""
nof_directions = directions.shape[1]
derivs = torch.zeros(nof_directions)
for d_idx in range(nof_directions):
# Pick direction and convert to numpy
d = directions[:, d_idx]
d_np = torch.clone(d).cpu().numpy()
# Compute directional derivative
mat_vec_product = torch.from_numpy(lin_op.matvec(d_np)).to(device)
derivs[d_idx] = torch.inner(mat_vec_product, d).item()
return derivs
|
b91f1f09159d1f09933f007b3b1b4cec1da3513d
| 668,688
|
def multi_powmod(bases, exponents, modulus):
"""
raise all bases in xs to the respective powers in ys mod n:
:math:`\prod_{i=1}^{len(bases)} base_i^{exponent_i} \pmod{modulus}`
:param bases: the bases
:param exponents: the exponents
:param modulus: the modulus
:return: the calculated result
"""
if len(bases) != len(exponents):
raise ValueError("xs and ys don't have the same size")
result = 1
for base, power in zip(bases, exponents):
result = (result * pow(base, power, modulus)) % modulus
return result
|
b8b0bcc32e7938996d20044fcd4e0649273d0ee5
| 17,626
|
def sets_to_mapping(s):
"""
Input: {cluster_name: set([cluster_items])} dictionary
Output: {cluster_item: cluster_name} dictionary
"""
return {m: k for k, ms in s.items() for m in ms}
|
b9ee3aa9cfaf47a0bc956ddc0a53ae16d51d269b
| 586,194
|
import click
def parse_version_str(version_str):
"""
Parse a string with 3 positive integers seperated by period (CIM version
string) into a 3 integer tuple and return the tuple. Used to parse the
version value of the DMTF Version qualifier.
Parameters:
version_str (:term: str):
String defining 3 components of a CIM version
Returns:
tuple containing 3 integers
Raises:
click.ClickException if the version_str is invalid (not integers,
not seperated by ".", not 3 values)
"""
try:
version_tuple = [int(x) for x in version_str.split('.')]
except ValueError:
raise click.ClickException('--since option value invalid. '
'Must contain 3 integer elements: '
'int.int.int". {} received'.
format(version_str))
if len(version_tuple) != 3:
raise click.ClickException('Version value must contain 3 integer '
'elements (int.int.int). '
'{} received'.format(version_str))
return version_tuple
|
f896c5f6da20370c06fa3b93f6e76da38b1bc7f3
| 534,953
|
def td_print(td):
""" Print formatter for pd.timedelta """
comps = td.round("1s").components
retval = ""
for i, s in enumerate(["days", "hours", "min", "sec"]):
if comps[i] > 0:
retval += f"{comps[i]}{s} "
if retval == "":
retval = "$\\cdot$"
return retval
|
968ec2fcfcb11b90ce17df5eb713d46f6c0e4441
| 514,866
|
import pickle
import dill
def maybe_dill_dumps(o):
"""Pickle using cPickle or the Dill pickler as a fallback."""
# We need to use the dill pickler for objects of certain custom classes,
# including, for example, ones that contain lambdas.
try:
return pickle.dumps(o, pickle.HIGHEST_PROTOCOL)
except Exception: # pylint: disable=broad-except
return dill.dumps(o)
|
d4fe01daff1ba77a9d02718ad04341960d606e10
| 519,041
|
def normalize(path):
"""Replace spaces with underscores, everything to lowercase, remove double
slashes
:returns: normalized string
"""
return path.replace(" ", "_").lower().replace("//", "/")
|
2e0e9dedd4b33114b30e107f59555d83efaf6dc9
| 449,104
|
import math
def color_distance(color1, color2):
"""
calculate distance between two colors
"""
channels = zip(color1, color2)
sum_distance_squared = 0
for c1, c2 in channels:
sum_distance_squared += (c1 - c2) ** 2
return math.sqrt(sum_distance_squared)
|
994dccd5e6d3a56b292ba7138b58f133ee6557a3
| 539,335
|
def single_l1(value_1, value_2):
""" compute L1 metric """
return abs(value_1 - value_2)
|
d9f5b91f9318995d91266632c904cc135181bec7
| 528,384
|
def appropriate_number(user_input, lower_limit=1, upper_limit=10):
"""Returns true if user input is a number that is bigger than or equal to
the lower limit and smaller than the upper limit. Returns false otherwise.
"""
try:
a = int(user_input)
if a < lower_limit:
return False
elif a >= upper_limit:
return False
else:
return True
except ValueError:
return False
|
4e88c2ed242bb592d55e25666d3c8407eab57fb7
| 285,259
|
from datetime import datetime
def to_datetime(s):
"""Parse a datetime string from docker logs to a Python datetime object
Args:
s (str): Docker datetime string
Returns:
datetime: Python datetime object
"""
s = s.split(' ')[0]
s = s.replace('T', ' ')
s = s.replace('Z', '')
s = s[:s.find('.') + 7]
return datetime.strptime(s, '%Y-%m-%d %H:%M:%S.%f')
|
1498fd6864bcc2d92ba8cc20a36ebe97e89673e1
| 439,745
|
def names(name_instance, fields=None):
"""Return of dict of name variations for the name class.
Args:
name_instance: BaseName subclass instance
fields: list, limit the returned dict to include only elements whose
keys are in this list.
Returns:
dict, example
{
'name_for_file': 'File Name',
'name_for_search': 'Search Name',
'name_for_url': 'Url Name',
}
"""
name_dict = {
'name_for_file': name_instance.for_file(),
'name_for_search': name_instance.for_search(),
'name_for_url': name_instance.for_url(),
}
if fields is not None:
name_dict = dict(
[(x, name_dict[x]) for x in list(name_dict.keys()) if x in fields])
return name_dict
|
930dce71186bdaec525a25daa867c2498567e3e5
| 210,463
|
def unsplit_complex(list_real, list_imag):
"""Returns complex list by combining the real and imaginary parts from two separate lists.
"""
return [complex(x,y) for x,y in zip(list_real, list_imag)]
|
4a5fb1fcdd604525abdebf3556b88e973a8b3dbf
| 498,439
|
def argsort(seq):
""" Argsort a list of string
Parameters:
-----------
seq: list of words
list of words to sort
Returns:
--------
sorted_seq: list of int (indices)
list of indices (same size as input seq) sorted
(eg. seq=['foo', 'bar','foo','toto'] => out=[1,0,2,3])
"""
return sorted(range(len(seq)), key=seq.__getitem__)
|
69dc07786bd4ebfe00ab573c2148eb52c9e7b442
| 599,672
|
def ParseBool(text):
"""Parse a boolean value.
Args:
text: Text to parse.
Returns:
Boolean values parsed
Raises:
ValueError: If text is not a valid boolean.
"""
if text in ('true', 't', '1', 'True'):
return True
elif text in ('false', 'f', '0', 'False'):
return False
else:
raise ValueError('Expected "true" or "false".')
|
75b4aab71b9bfd7772dc609bb45654b94790c7f7
| 296,607
|
def firstNN(*args):
"""
Return the first argument not None.
Example
-------
>>> firstNN(None, False, True)
False
>>> firstNN(True, False, True)
True
>>> firstNN(None, None, True)
True
>>> firstNN(None, 2, True)
2
>>> firstNN(None, None, None)
None
>>> firstNN()
None
"""
return next(filter(lambda x: x is not None, args), None)
|
f8f0e2d573c46edbbd1458fdba9195d44248d17b
| 278,568
|
def add_links(self, value):
"""
This creates a Link header from the links
Parameters
----------
self : lib.schema.riak.objects.Link
The Link schema object
value : dict
The headers of the request to add the links to
"""
links = getattr(self, 'links', [])
if links:
value['Link'] = ', '.join(
link._as_dict()['location'] for link in links)
return value
|
3d507ce928b227399ca325d5a55cab6b5ae07791
| 12,777
|
import requests
def get_jobdesc_config(job):
"""Function for extracting job description config file."""
job_desc_url = '%s/job_description.json' % job['job_url']
r = requests.get(job_desc_url, verify=False)
r.raise_for_status()
return job_desc_url
|
33d03c0267f8d55a61c25163c586c138e302fee2
| 676,321
|
def user_exists(ssh_fn, name):
"""Test is a user exists.
The ssh_fn is a function that takes a command and runs it on the remote
system. It requires the the ssh_fn raises an exception if the command
fails.
:param ssh_fn: a ssh_fn that can run commands on the unit.
:type ssh_fn: Callable[[str], str]
:param name: the name of the user to test if exists.
:type name: str
:returns: True if the user exists
:rtype: bool
"""
cmd = ["grep", "-c", "^{name}:".format(name=name), "/etc/passwd"]
try:
ssh_fn(cmd)
except Exception:
return False
return True
|
17d1eceff1017263316ad4e47f2e5c60643204aa
| 297,385
|
from typing import Iterable
from typing import Any
def only_one(iterable: Iterable[Any]) -> Any:
"""Consume and return first and only item of an iterable.
If the iterable has exactly one item, return that item, otherwise raise
an exception.
Arguments:
iterable: iterator or collection expected to contain only one item
Returns:
single item of iterable
Raises:
ValueError: the iterable is empty or has more than one item
Examples:
>>> only_one([])
Traceback (most recent call last):
...
ValueError: expected 1 item, got empty iterable
>>> only_one(['test'])
'test'
>>> only_one(['this', 'should', 'fail'])
Traceback (most recent call last):
...
ValueError: expected only 1 item in iterable
"""
iterator = iter(iterable)
try:
value = next(iterator)
except StopIteration:
msg = f'expected 1 item, got empty iterable'
raise ValueError(msg)
try:
next(iterator)
except StopIteration:
return value
else:
msg = f'expected only 1 item in iterable'
raise ValueError(msg)
|
9f660922689f11d1e374d7fc88af9a19a8ba9b4c
| 470,807
|
def get_maintainers_account_creation_date(pypi_profiles):
"""Retrieve dates that maintainers' PyPI accounts were created"""
dates = []
# Loop through beautiful soup-ified maintainer data to extract dates
for soup in pypi_profiles["maintainers_data"]:
# Because 'time' elements will appear in multiple locations on
# a PyPI maintainer profile page, filter in only those html
# tags associated with author metadata
author_metadata_elements = soup.findAll(
"div", {"class": "author-profile__metadiv"}
)
for elem in author_metadata_elements:
# Extract any time-related elements and add to dates list
# if it exists
date = elem.find("time")
if date:
# The [0] slice is because contents is a list and
# strip() is not a valid method for lists
dates.append(date.contents[0].strip())
return dates
|
06de38d26db877ff0c3ad8bcc197744cac31f3de
| 385,410
|
import re
def cqlstr(string):
"""Makes a string safe to use in Cassandra CQL commands
Args:
string: The string to use in CQL
Returns:
str: A safe string replacement
"""
return re.sub('[-:.]', '_', string)
|
e505d855e374109edee0a1d5e76ff0cdeab64581
| 25,529
|
from typing import Sequence
from typing import Hashable
def all_items_present(sequence: Sequence[Hashable], values: Sequence[Hashable]) -> bool:
"""
Check whether all provided `values` are present at any index
in the provided `sequence`.
Arguments:
sequence: An iterable of Hashable values to check for values in.
values: An iterable of Hashable values for whose presence to
check `sequence` for.
Returns:
`True` if all `values` are present somewhere in `sequence`,
else `False`.
"""
return all(k in sequence for k in values)
|
f43a881159ccf147d3bc22cfeb261620fff67d7a
| 703,955
|
import re
def parse_time(time_string) -> int:
""" Parse a time stamp in seconds (default) or milliseconds (with "ms" unit)
The "s" unit is optional and implied if left out.
Args:
time_string(str): timestamp, e.g., "0.23s", "5.234" (implied s), "1234 ms"
must be a number followed by "s", "ms" or nothing.
Returns:
int: time represented by time_string in milliseconds
"""
time_pattern = re.compile(
r"""
\s* # ignore leading spaces
([0-9.]+) # Numerical part
\s* # optional spaces
(
(s|ms) # optional units: s (seconds) or ms (milliseconds)
\s* # ignore trailing spaces
)?
""",
re.VERBOSE,
)
match = time_pattern.fullmatch(time_string)
if match:
units = match[3]
if units == "ms":
return int(match[1])
else:
return int(1000 * float(match[1]))
else:
raise ValueError(
f'cannot convert "{time_string}" to a time in seconds or milliseconds'
)
|
b9d3d1cc4f388def47b3dd620a656f60f7c50929
| 684,384
|
def is_unweighted(matrix):
"""Quick function to determine if a Matrix is likely an unweighted adjacency matrix"""
return matrix[matrix.nonzero()].min() == 1 and matrix.max() == 1
|
37fe5491aa13da8bf48236fa351ba5b58c74ab21
| 618,923
|
def defaultkeys(defaults, keywords):
"""
Return dictionary of default keywords. Overwrite any keywords in
``defaults`` using keywords from ``keywords``, except if they are None.
Parameters
----------
defaults, keywords : dict
Dictionary of default and replacing keywords.
Returns
-------
keywords : dict
"""
# overwrite value with the one in kwargs, if not then use the default
for key, value in defaults.items():
if keywords.setdefault(key, value) is None:
keywords[key] = value
return keywords
|
96094a2d58f3fb60b430fa731d985a0e955d4e48
| 443,405
|
def avoid_wrapper(source_host, host):
"""
Check if this combination of source and destination host should avoid
running virt-v2v.
"""
return source_host and source_host.avoid_wrapper(host)
|
1256743e505e3fe8dea81dc2cb92fac48033127f
| 551,659
|
def header_exists(header_name, headers):
"""Check that a header is present."""
return header_name.lower() in (k.lower() for (k, _) in headers)
|
bf0dd31a9febbed20efb7e8078bc085b5fe4f792
| 646,576
|
import json
def get_titles_from_bill_meta(bill_meta_path: str):
"""
Parses the bill meta file and returns a list of titles.
"""
with open(bill_meta_path, 'r') as f:
bill_meta = json.load(f)
titles = bill_meta['titles']
return titles
|
c32ddf642cb54f04a1299752496750e969d18bf1
| 423,345
|
import torch
def convert_tensors_recursively_to(val, *args, **kwargs):
""" Applies `.to(*args, **kwargs)` to each tensor inside val tree. Other values remain the same."""
if isinstance(val, torch.Tensor):
return val.to(*args, **kwargs)
if isinstance(val, (tuple, list)):
return type(val)(convert_tensors_recursively_to(item, *args, **kwargs) for item in val)
return val
|
76525788cf89732ef2eed2822ac98e2be0fe14a6
| 49,709
|
def rotation_angles(step=5, limit=45):
"""
Create a list rotation angles
"""
angles=[0,-90,90]
for angle in range(step,limit,step):
for sign in [-1,1]:
for base in [0,-90,90]:
angles.append(base+sign*angle)
return angles
|
b687c347e170f6d7ac27e7c4622ca779fca9f088
| 308,920
|
def fill_nan(df,list):
"""
Fill nan values with either mean or mode
Parameters
----------
df : dataframe
dataframe used for checking and filling nan values
list: list
list of columns to be checked
Returns
-------
df : dataframe
modified dataframe with no nan values
"""
for col in list:
replacement=df[col].dropna().mean()
df[col]=df[col].fillna(replacement)
return df
|
5f07eb835c4e20b08e98d319b4749694ad81474f
| 655,518
|
def var_data(f, N):
"""
Variance of MLE of beta for quantitative trait, assuming var(y) = 1
Args:
f: minor allele freq
N: sample size
Returns:
variance of MLE beta
"""
return 1 / (2 * N * f * (1 - f))
|
4aedc7fb5c4dcfa18c373785404666d6fd645d2e
| 366,884
|
def find_and_set_gpus(gpu_mon, force_GPU, num_GPUs):
"""
Given a MultiPlanarUnet GPUMonitor object and the parsed command-line
arguments, either looks for free GPUs and sets them, or sets a forced
GPU visibility.
Specifically, if args.force_GPU is set, set the visibility accordingly,
count the number of GPUs set and return this number.
If not, use args.num_GPUs currently available GPUs and return args.num_GPUs
Args:
gpu_mon: (GPUMonitor) Initialized GPUMonitor
force_GPU: (string) A CUDA_VISIBLE_DEVICES type string to be set
num_GPUs: (int) Number of free/available GPUs to automatically
select using 'gpu_mon' when 'force_GPU' is not
set.
Returns:
(int) The actual number of GPUs now visible
"""
if not force_GPU:
gpu_mon.await_and_set_free_GPU(N=num_GPUs, stop_after=True)
else:
gpu_mon.set_GPUs = force_GPU
return gpu_mon.num_currently_visible
|
6906fb279289de08b9dca8e46b656cdb0833b4b9
| 325,723
|
def tensor2npy(x):
"""Convert Tensor to Numpy"""
out = x.detach().cpu().numpy().transpose(1, 2, 0)
return out
|
8607b113a78c90deb9932d4236b44ff1617d5edb
| 558,466
|
import re
def remove_comments(text: str) -> str:
"""Removes comments from given text.
Args:
text: str. The text from which comments should be removed.
Returns:
str. Text with all its comments removed.
"""
return re.sub(r' //.*\n', r'', text)
|
68a9e0b4b823f17e24e4c3e393b56b7d410aec17
| 302,781
|
def make_safe_filename(name):
"""Replace characters that are not allowed in windows file names."""
for char in ('/', '\\', ':', '*', '?', '"', '<', '>', '|'): # Windows illegal folder chars
if char in name:
name = name.replace(char, " ")
# replacables: ['∕','⧵' ,'˸','⁎','ॽ','“','ᑄ','ᑀ','┃'] #similar chars
return name
|
776da54097ce3fcb0f4aae23f80ac0932654d800
| 670,286
|
import logging
def get_logger(logger_name, propagate=True):
"""
This function provides a simple wrapper to add a null handler to the logger
requested so that we make sure not to dump stuff to terminal as defined by
default configuration in case the library user do not want to use logging
(or didn't care about configuring it).
Args:
logger_name (str): the logger instance name (usually the module name
with __name__)
propagate (bool): whether to propagate the messages up to ancestor
loggers
Returns:
logging.Logger: Logger instance
Raises:
None
"""
# if logger instance does not exist it will be created upon call
logger = logging.getLogger(logger_name)
logger.propagate = propagate
# add the null handler to make sure nothing is written in case user didn't
# configure logging
logger.addHandler(logging.NullHandler())
return logger
|
74bf3497b7fb062182bdd56b9e6ffb8d550512dd
| 692,358
|
def filter_hadgem_stream2(queryset):
"""
From a queryset of pdata_app.DataRequest objects return just the data
requests that are required in the PRIMAVERA Stream 2 simulations for
HadGEM data.
:param django.db.models.query.QuerySet queryset:
:returns: Just the Stream 2 data requests
:rtype: django.db.models.query.QuerySet
"""
low_freq = queryset.filter(
variable_request__frequency__in=['mon', 'day']
).exclude(
variable_request__table_name='CFday'
).distinct()
cfday = queryset.filter(
variable_request__table_name='CFday',
variable_request__cmor_name='ps'
).distinct()
six_hr = queryset.filter(
variable_request__table_name='Prim6hr',
variable_request__cmor_name='wsgmax'
).distinct()
three_hr = queryset.filter(
variable_request__table_name__in=['3hr', 'E3hr', 'E3hrPt', 'Prim3hr',
'Prim3hrPt'],
variable_request__cmor_name__in=['rsdsdiff', 'rsds', 'tas', 'uas',
'vas', 'ua50m', 'va50m', 'ua100m',
'va100m', 'ua7h', 'va7h', 'sfcWind',
'sfcWindmax', 'pr', 'psl', 'zg7h']
).distinct()
# Combine together and return
return low_freq | cfday | six_hr | three_hr
|
2f431befbf1c6a05ac953afc061a5b29566215e8
| 452,775
|
def longest_word_len(filename):
""" Find the length of the longest word """
with open(filename, 'r') as file_p:
words = file_p.read().split()
max_len = len(max(words, key=len))
return max_len
|
94006ecbe986dfc4bbf0db8e6250f9e6bfde5e7f
| 440,560
|
def get_ax_location(legend_style):
""" Get the legend location from the verticalAlign key or return default """
align = legend_style.get('align', None)
vertical_align = legend_style.get('verticalAlign', None)
if not align or not vertical_align:
return 'best'
vertical_align = vertical_align.replace('top', 'upper').replace(
'bottom', 'lower')
return f'{vertical_align} {align}'
|
fc9f7096bc59c96237cb13c17799f7138271355e
| 485,733
|
def nchw2nlc2nchw(module, x, contiguous=False, **kwargs):
"""Flatten [N, C, H, W] shape tensor `x` to [N, L, C] shape tensor. Use the
reshaped tensor as the input of `module`, and the convert the output of
`module`, whose shape is.
[N, L, C], to [N, C, H, W].
Args:
module (Callable): A callable object the takes a tensor
with shape [N, L, C] as input.
x (Tensor): The input tensor of shape [N, C, H, W].
contiguous:
contiguous (Bool): Whether to make the tensor contiguous
after each shape transform.
Returns:
Tensor: The output tensor of shape [N, C, H, W].
Example:
>>> import torch
>>> import torch.nn as nn
>>> norm = nn.LayerNorm(4)
>>> feature_map = torch.rand(4, 4, 5, 5)
>>> output = nchw2nlc2nchw(norm, feature_map)
"""
B, C, H, W = x.shape
if not contiguous:
x = x.flatten(2).transpose(1, 2)
x = module(x, **kwargs)
x = x.transpose(1, 2).reshape(B, C, H, W)
else:
x = x.flatten(2).transpose(1, 2).contiguous()
x = module(x, **kwargs)
x = x.transpose(1, 2).reshape(B, C, H, W).contiguous()
return x
|
5cf89b8519ca4f7997efbf4ef532e8188f560140
| 368,230
|
def mojang_time_format(dt):
"""
Formats datetime to Mojang's format.
:param datetime dt: datetime
>>> mojang_time_format(datetime(2010, 4, 25, 23, 43, 20))
'2010-04-25 23:43:20 +0000'
"""
return dt.strftime('%Y-%m-%d %H:%M:%S +0000')
|
3f97639754818a005d414c0f9e0e76e1b18cc03d
| 545,557
|
def compare_complete_match(span1, span2):
"""
Compare two spans and return true, if lower words in those spans are equal (stop words excluded)
Parameters
----------
span1: Span
First span to compare.
span2: Span
Second span to compare.
Returns
-------
bool
True if spans match.
"""
if " ".join([t.lemma_.lower() for t in span1 if not t.is_stop]) == " ".join([a.lemma_.lower() for a in span2 if not a.is_stop]):
return True
return False
|
84c31a2d621f4b17f80ec9f37d272b4967d23505
| 220,663
|
def _format_recipients(recipients):
"""Take a list of recipient emails and format it nicely for emailing."""
return ", ".join(recipients)
|
6f0d7c0c4d9637d204b9a70dbb996c2b65fdbed9
| 504,925
|
import torch
from typing import OrderedDict
def load_model(fname,model):
"""
Load saved model's parameter dictionary to initialized model.
The function will remove any ``.module`` string from parameter's name.
Parameters
----------
fname : :py:class:`str`
Path to saved model
model : :py:class:`torch.nn.Module`
Initialized network network architecture
Returns
-------
model : :py:class:`torch.nn.Module`
Up-to-date neural network model
"""
checkpoint = torch.load(fname,map_location=lambda storage, loc: storage)
state_dict = checkpoint['model']
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if k.startswith('module.'):
k = k[7:]
new_state_dict[k] = v
checkpoint['model'] = new_state_dict
model.load_state_dict(checkpoint['model'])
return model
|
561a0d2557aa92321cd8a3603cfc9d0f3cbb4b29
| 664,391
|
from typing import Tuple
def ntp2parts(ntp: int) -> Tuple[int, int]:
"""Split NTP time into seconds and fraction."""
return ntp >> 32, ntp & 0xFFFFFFFF
|
729b3f9ce912e1be54c0c5bafd9c5577a78091b9
| 691,877
|
from typing import Union
from pathlib import Path
import json
def parse_metadata_file(metadata_path: Union[str, Path]) -> dict:
"""
Parse a json file containing metadata about a compendium's samples
Arguments
---------
metadata_path: The file containing metadata for all samples in the compendium
Returns
-------
metadata: The json object stored at metadata_path
"""
with open(metadata_path) as metadata_file:
metadata = json.load(metadata_file)
return metadata
|
c160948ea9f47476f34c71157b3f74ddca106a92
| 273,157
|
def get_data(file_name):
"""Transforms text from file into a list."""
data_lst = []
with open(file_name, 'r') as f:
for line in f:
data_lst.extend(line.split())
return data_lst
|
4a5c0caf5ea7c6c86fee8581b73e23e7f4dbb2c4
| 353,882
|
import re
import click
def prepare_url(url):
"""Validate and prepare the URL of the test"""
parsed = re.search(r'(http[s]*://.*)/tests/([0-9]*)[#|/]*.*', url)
if parsed:
click.echo('Detected test %s/tests/%s instance' % (parsed.group(2), parsed.group(1)) )
return parsed.group(1)+'/tests/'+parsed.group(2)
else:
click.echo('The URL cannot be detected!')
exit(1)
|
736e217db0eac020e8e7f4075ae32e85809f7bbc
| 276,550
|
def complete_out_of_view(to_check_box, im_w, im_h):
"""
check if the bounding box is completely out of view from the image
:param to_check_box: bounding box, numpy array, [x, y, x, y]
:param im_w: image width, int
:param im_h:image height, int
:return: out of view flag, bool
"""
complete_OofV_left = (to_check_box[0] < 0) and (to_check_box[2] < 0)
complete_OofV_top = (to_check_box[1] < 0) and (to_check_box[3] < 0)
complete_OofV_right = (to_check_box[2] > im_w) and (to_check_box[0] > im_w)
complete_OofV_bottom = (to_check_box[1] > im_h) and (to_check_box[3] > im_h)
complete_OofV = complete_OofV_left or complete_OofV_top or complete_OofV_right or complete_OofV_bottom
return complete_OofV
|
671d9a774bcab4b45df7ac3f6f1266f95d7674c1
| 666,320
|
def format_dict(dict_: dict) -> str:
"""Method to take a dictionary and
return a string of comma seperated key, value
in below format
>>> d = {"key1": "value1", "key2": "value2"}
>>> s = format_dict(d)
>>> assert s == "key1=value1, key2=value2"
"""
pairs = []
for key, value in dict_.items():
pairs.append(f"{key}={value}")
return ", ".join(pairs)
|
23203899394a60dd068666b1e08ce61c901aa8b2
| 241,424
|
def check_for_contest(cvr, contest_name):
"""
check if a single cvr contains a given contest
Parameters:
-----------
cvr : list
a single CVR
contest_name: string
name of contest
Returns:
--------
contest_present : boolean
whether contest is present in the CVR
"""
if contest_name in cvr.votes.keys():
contest_present = True
else:
contest_present = False
return contest_present
|
09ac5fdbfe2c3c5adfa70e435b2a810caa6b66ad
| 502,904
|
def get_eta_transmission(district_type):
"""
Returns efficency of lhn based on Fraunhofer Umsicht: Leitfaden Nahwaerme (p.51)
Parameters
----------
district_type : string
type of district (big, medium, small)
Returns
-------
eta_transmission : float
efficiency factor for transmission
"""
if district_type is 'big':
eta_transmission = 0.93
elif district_type is 'small':
eta_transmission = 0.85
else: # medium
eta_transmission = 0.9
return eta_transmission
|
6282433d8ce7d78072123b64253c3bdff6eb2017
| 515,254
|
import glob
def get_files_list(folder_path, filter_term):
"""Return the list of files, applying filter."""
query = folder_path + filter_term
files_list = glob.glob(query)
return files_list
|
735bddd01a1ac2769c23771378c96dcafae9661a
| 444,942
|
def checkIfDuplicates_2(listOfElems):
""" Check if given list contains any duplicates """
setOfElems = set()
for elem in listOfElems:
if elem in setOfElems:
return True
else:
setOfElems.add(elem)
return False
|
a7d9f322faefa4b0b0191ca96097bbf38c61ee3d
| 699,649
|
def _parse_fasta_input(fasta: str) -> dict:
"""
The expected input of the protein sequences are in FASTA format.
http://genetics.bwh.harvard.edu/pph/FASTA.html
Parse the input to retrieve the entries and sequences.
:param fasta: the FASTA formatted string.
:return: Return a dictionary of each entry and its corresponding sequences.
"""
entry_dict = {}
entries = fasta.split(">")
for entry in entries:
if entry == "":
continue
entry = entry.replace("\r", "").replace(" ", "")
entry_split_by_newline = entry.split("\n")
if len(entry_split_by_newline) < 1:
continue
entry_dict[entry_split_by_newline[0]] = "".join(entry_split_by_newline[1:])
return entry_dict
|
9da935f8bd22afecbbbcc890417e9338b729aeb5
| 402,955
|
def hyperplane_mem(concept, plane, eta: float = 1e-12) -> bool:
"""
Tests whether a specified atom (hyperplane) belongs to a concept (point in parameter space)
Here we assume that membership holds if point is below the plane (ie higher values of parameter result in stricter predicate)
"""
height = concept[1:] @ plane[:-1] + plane[-1]
return concept[0] - height < 0
|
1055fa8cc5650368834d7a30a8b084407bddf0ae
| 231,511
|
def extract_keys(list_of_dicts, *keys):
"""Turn a lists of dicts into a tuple of lists, with one entry for every given key."""
res = []
for k in keys:
res.append([d[k] for d in list_of_dicts])
return tuple(res)
|
cb832fcd9834190891235bd09a1c410a306e422b
| 412,139
|
import string
import random
def random_int(length: int = 4) -> str:
"""
generate a random str(int) and len == length
:param length: Specified length,default = 4
:return: str
"""
all_char = string.digits
lis = list()
for _ in range(length):
lis.extend(random.choices(all_char, k=1))
return ''.join(lis)
|
860fcc07c63960c77cc9d4f0ddfd2219bda46ce4
| 238,728
|
def real_ip(request):
"""
Returns the IP Address contained in the HTTP_X_REAL_IP headers, if
present. Otherwise, `None`.
Should handle Nginx and some other WSGI servers.
"""
return request.META.get('HTTP_X_REAL_IP')
|
aaec43d8abbf4a330c7ec61e9131dd2ec1591360
| 336,702
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.