content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
|---|---|---|
def find_point_of_region(vor, ireg):
"""Return the index of point within region ireg.
Args:
vor (Voronoi): Voronoi object.
ireg (int): index of region.
Returns:
int: index of the Voronoi point for region ireg.
"""
for ip, iregx in enumerate(vor.point_region):
if iregx == ireg:
return ip
return None
|
7ea3fd05edf5331e16f913e909c995911555fc67
| 474,791
|
import torch
def angle_axis_to_rotation_matrix(angle_axis: torch.Tensor) -> torch.Tensor:
"""Convert 3d vector of axis-angle rotation to 4x4 rotation matrix
Args:
angle_axis (torch.Tensor): tensor of 3d vector of axis-angle rotations.
Returns:
torch.Tensor: tensor of 4x4 rotation matrices.
Shape:
- Input: :math:`(N, 3)`
- Output: :math:`(N, 4, 4)`
Example:
>>> input = torch.rand(1, 3) # Nx3
>>> output = kornia.angle_axis_to_rotation_matrix(input) # Nx4x4
"""
def _compute_rotation_matrix(angle_axis, theta2, eps=1e-6):
# We want to be careful to only evaluate the square root if the
# norm of the angle_axis vector is greater than zero. Otherwise
# we get a division by zero.
k_one = 1.0
theta = torch.sqrt(theta2)
wxyz = angle_axis / (theta + eps)
wx, wy, wz = torch.chunk(wxyz, 3, dim=1)
cos_theta = torch.cos(theta)
sin_theta = torch.sin(theta)
r00 = cos_theta + wx * wx * (k_one - cos_theta)
r10 = wz * sin_theta + wx * wy * (k_one - cos_theta)
r20 = -wy * sin_theta + wx * wz * (k_one - cos_theta)
r01 = wx * wy * (k_one - cos_theta) - wz * sin_theta
r11 = cos_theta + wy * wy * (k_one - cos_theta)
r21 = wx * sin_theta + wy * wz * (k_one - cos_theta)
r02 = wy * sin_theta + wx * wz * (k_one - cos_theta)
r12 = -wx * sin_theta + wy * wz * (k_one - cos_theta)
r22 = cos_theta + wz * wz * (k_one - cos_theta)
rotation_matrix = torch.cat(
[r00, r01, r02, r10, r11, r12, r20, r21, r22], dim=1)
return rotation_matrix.view(-1, 3, 3)
def _compute_rotation_matrix_taylor(angle_axis):
rx, ry, rz = torch.chunk(angle_axis, 3, dim=1)
k_one = torch.ones_like(rx)
rotation_matrix = torch.cat(
[k_one, -rz, ry, rz, k_one, -rx, -ry, rx, k_one], dim=1)
return rotation_matrix.view(-1, 3, 3)
# stolen from ceres/rotation.h
_angle_axis = torch.unsqueeze(angle_axis, dim=1)
theta2 = torch.matmul(_angle_axis, _angle_axis.transpose(1, 2))
theta2 = torch.squeeze(theta2, dim=1)
# compute rotation matrices
rotation_matrix_normal = _compute_rotation_matrix(angle_axis, theta2)
rotation_matrix_taylor = _compute_rotation_matrix_taylor(angle_axis)
# create mask to handle both cases
eps = 1e-6
mask = (theta2 > eps).view(-1, 1, 1).to(theta2.device)
mask_pos = (mask).type_as(theta2)
mask_neg = (mask == False).type_as(theta2) # noqa
# create output pose matrix
batch_size = angle_axis.shape[0]
rotation_matrix = torch.eye(4).to(angle_axis.device).type_as(angle_axis)
rotation_matrix = rotation_matrix.view(1, 4, 4).repeat(batch_size, 1, 1)
# fill output matrix with masked values
rotation_matrix[..., :3, :3] = \
mask_pos * rotation_matrix_normal + mask_neg * rotation_matrix_taylor
return rotation_matrix
|
461779558e8cf06e05a018253961e4756ada1a47
| 52,576
|
def promptChoice(prompt):
"""
Returns the numerical choice of a prompt. Otherwise returns None.
"""
try:
return int(input(prompt))
except ValueError:
return None
|
6301bda8ebecfa49e7451e6a996607fcae7bca9c
| 559,797
|
def gradient_descent(f, initial_guess, n_steps, step_size, plotting_cb):
"""
Run gradient descent to optimize the cost function f.
args:
f: a function taking a single jnp.array of decision variables and returning a
tuple (cost, cost_gradient)
initial_guess: a starting point for the decision variables
n_steps: the number of gradient descent steps to run
step_size: the step size parameter for gradient descent
plotting_cb: a function taking an integer for the current iteration, a jnp.array
of decision variables, and a list of costs seen so far. Can plot
results, but should not block. No return value needed or used.
returns:
a tuple containing
- the optimized decision variables, in a jnp.array
- a list of costs at each step
- a list of jnp.arrays of the decision variables at each step
"""
# Set up lists to store results
cost_trace = []
decision_var_trace = []
decision_vars = initial_guess.clone()
# Do gradient descent
for i in range(n_steps):
# Get the cost and gradient
cost, cost_grad = f(decision_vars)
# Save the cost and decision vars
cost_trace.append(cost)
decision_var_trace.append(decision_vars)
# Plot performance
plotting_cb(i, decision_vars, cost_trace)
# Update the decision variables
decision_vars = decision_vars - step_size * cost_grad
# Do a final evaluation and plotting
cost, _ = f(decision_vars)
cost_trace.append(cost)
decision_var_trace.append(decision_vars)
plotting_cb(n_steps, decision_vars, cost_trace)
# Return the desired information
return decision_vars, cost_trace, decision_var_trace
|
99a22cf3f93a2c54d4d39f16f2f29374cf20c5c1
| 180,074
|
def get_spectral_w(w_pars,energy):
"""
Return spectral weight of an event
Parameters
----------
w_pars: parameters obtained with get_spectral_w_pars() function
energy: energy of the event in GeV
Returns
-------
float w
"""
E0 = w_pars[0]
index = w_pars[1]
index_w = w_pars[2]
R = w_pars[3]
N_ = w_pars[4]
w = ((energy/E0)**(index_w-index))*R/N_
return w
|
9a9d9479a8f62ac007dddee1f1bf742ddce44bec
| 649,878
|
from datetime import datetime
def date_delta(y1, m1, d1, y2, m2, d2):
""" Return timedelta object of two date, eg:
d = date_delta(2015, 3, 2, 2016, 3, 2)
"""
y1, m1, d1 = int(y1), int(m1), int(d1)
y2, m2, d2 = int(y2), int(m2), int(d2)
d1 = datetime(y1, m1, d1, 0, 0, 0)
d2 = datetime(y2, m2, d2, 0, 0, 0)
return d2 - d1 if d2 > d1 else d1 - d2
|
f54f55cbfc8558fc5d1e7077e0b29b5d023fafbb
| 118,864
|
import torch
def DotScorer(dec_out, enc_outs, **kwargs):
"""
Score for query decoder state and the ith encoder state is given
by their dot product.
dec_outs: (trg_seq_len x batch x hid_dim)
enc_outs: (src_seq_len x batch x hid_dim)
output: ((trg_seq_len x) batch x src_seq_len)
"""
score = torch.bmm(
# (batch x src_seq_len x hid_dim)
enc_outs.transpose(0, 1),
# (batch x hid_dim x trg_seq_len)
dec_out.transpose(0, 1).transpose(1, 2))
# (batch x src_seq_len x trg_seq_len) => (trg_seq_len x batch x src_seq_len)
return score.transpose(0, 1).transpose(0, 2)
|
79a56c45d83ca3f525191c089900c49095917fa3
| 529,998
|
from typing import Optional
def optional(variable: Optional[object], default: object):
""" Optional parameter that is default if None.
"""
return default if variable is None else variable
|
57ec55f83a89f558ea3fbec35e820e3950f88af5
| 398,875
|
import struct
def two_ints_to_long(intl, inth):
""" Interpert two ints as one long """
longint = struct.pack(">I", inth) + struct.pack(">I", intl)
return struct.unpack('>q', longint)[0]
|
c503e00f1ed934ad22590b942be85b7fd877bb47
| 693,756
|
def get_shapefile_record_name_from_location(shapefile_record_names_df, location):
"""
Get the shapefile record name for the location given.
Args:
shapefile_record_names_df (pandas DataFrame) : dataframe of shapefile record names and the associated locations
location (str) : name of the location
Returns:
str: Record name for the location as listed in the shapefiles used.
"""
return shapefile_record_names_df.loc[shapefile_record_names_df['location'] == location].record_name.values[0]
|
46e52c302736a77a549046cb15243ff375136cb6
| 97,060
|
def parse_comma_list(s):
"""Parse comma-separated list in env var to Python list."""
if not s.strip():
return []
return [b.strip() for b in s.split(',')]
|
d1fbe2e4ad0b0cfb84636798fa5c146142c9114a
| 354,172
|
def 取最大数(数值列表):
"""
传入要对比的列表,如(1,2,3),返回里面最大的数字
:param 数值列表: (1,2,3)
:return: 3
"""
return max(数值列表)
|
111eba5c9c37e7656ca410447e1ac5a3f0041ea7
| 40,239
|
import random
def uniform_crossover(dna1, dna2):
"""randomly crossover genes between dna1 and dna2"""
child1 = []
child2 = []
for ind in range(len(dna1)):
p = random.random()
if p < 0.5:
child1.append(dna1[ind])
child2.append(dna2[ind])
else:
child2.append(dna1[ind])
child1.append(dna2[ind])
return (child1, child2)
|
9c72b7b43f41f76c3d00c3430f398ae7e44a0e70
| 433,511
|
def get_prefix_length(oracle):
"""Finds the length of the prefix that mysterious_encrypt adds to the plaintext before encrypting."""
# Encrypt two different ciphertexts
ciphertext_a = oracle.encrypt(b'A')
ciphertext_b = oracle.encrypt(b'B')
# Since the stream ciphers encrypts bit by bit, the prefix length will be equal to
# the number of bytes that are equal in the two ciphertext.
prefix_length = 0
while ciphertext_a[prefix_length] == ciphertext_b[prefix_length]:
prefix_length += 1
return prefix_length
|
9f884797c2cdc25fca0b8bde39f5b9700eb5372b
| 597,284
|
def config_file(tmpdir_factory):
"""Creates a sample looker.ini file and returns it"""
filename = tmpdir_factory.mktemp("settings").join("looker.ini")
filename.write(
"""
[Looker]
# API version is required
api_version=3.1
# Base URL for API. Do not include /api/* in the url
base_url=https://host1.looker.com:19999
# API 3 client id
client_id=your_API3_client_id
# API 3 client secret
client_secret=your_API3_client_secret
# Set to false if testing locally against self-signed certs. Otherwise leave True
verify_ssl=True
looker_url=https://webserver.looker.com:9999
redirect_uri=https://alice.com/auth
[NO_CREDENTIALS]
base_url=https://host1.looker.com:19999
[EMPTY_STRING_CREDENTIALS]
base_url=https://host1.looker.com:19999
client_id=
client_secret=
"""
)
return filename
|
749e80a61af42a7940b9251c7f326185224d8160
| 243,642
|
def listDistInts(refSeqs, querySeqs, self=True):
"""Gets the ref and query ID for each row of the distance matrix
Returns an iterable with ref and query ID pairs by row.
Args:
refSeqs (list)
List of reference sequence names.
querySeqs (list)
List of query sequence names.
self (bool)
Whether a self-comparison, used when constructing a database.
Requires refSeqs == querySeqs
Default is True
Returns:
ref, query (str, str)
Iterable of tuples with ref and query names for each distMat row.
"""
num_ref = len(refSeqs)
num_query = len(querySeqs)
if self:
if refSeqs != querySeqs:
raise RuntimeError('refSeqs must equal querySeqs for db building (self = true)')
for i in range(num_ref):
for j in range(i + 1, num_ref):
yield(j, i)
else:
comparisons = [(0,0)] * (len(refSeqs) * len(querySeqs))
for i in range(num_query):
for j in range(num_ref):
yield(j, i)
return comparisons
|
da589e1f24bcacdcc607bf889a1fba0a2ceb25dc
| 558,381
|
def parse_sam_region(string):
"""Parse 1-based genomic region string into 0-based tuple."""
if not string:
return ()
parts = string.strip().split(":")
if len(parts) == 1:
chrom = parts[0]
return (chrom,)
else:
chrom = parts[0]
positions = parts[1].split("-")
positions = [int(s) for s in positions]
positions[0] = positions[0] - 1 # offset
return (chrom,) + tuple(positions)
|
5c3a0c1b4033e02c2e94b10933ae96bcbca27b00
| 265,909
|
def recover_bad_token(stream: str) -> str:
"""Pull the leading non-whitespace string off the input stream"""
return stream.split(' ')[0]
|
f3726aa6826b741eaedcdc9be430efbfa5e83ca2
| 427,176
|
import re
def split_alpha_number(symbol):
"""
分离字母开头,然后接数字的情况,如果后面有别的字符会被截断
print(split_alpha_number("TF1703.CFE"))
('TF', '1703')
:param symbol:
:return:
"""
pattern = re.compile(r'([A-Za-z]+)(\d+)')
match = pattern.match(symbol)
if match:
return match.group(1, 2)
return None
|
70688acbe7c6a09504dd3b1c4881b24f2ee64715
| 91,257
|
import base64
def backend_internal_api_token(testconfig):
"""
Returns the token for the internal api.
The token is 'username: password' encoded in base64, where username and password
are defined in the backend-internal-api secret
"""
return base64.b64encode(
f'{testconfig["threescale"]["backend_internal_api"]["username"].decode("ascii")}:'
f'{testconfig["threescale"]["backend_internal_api"]["password"].decode("ascii")}'
.encode("ascii")).decode("ascii")
|
8e6c78327ef79ecf3e0893fb9b715c3e7d456337
| 196,810
|
def _element_in_child_template(root, e):
"""
detect if the element is trapped inside a nested bind: tag
relative to e
:type root: UIElement
:type e: UIElement
:rtype: bool
"""
return any(x.typeid.startswith('bind:template') for x in root.path_to(e))
|
05d1497653766f057771d923276f5c586834bac6
| 459,284
|
def set_default_schedule(chronos_job):
"""
Given a chronos job, return a new job identical to the first, but with the
schedule replaced with one that will set the job to run now.
:param chronos_job: a chronos job dictionary suitable for POSTing to
Chronos
:returns: the chronos_job parameter, with the 'schedule' field modified to
a schedule for chronos to run the job now and only once. The interval field
of the schedule is irrelevant, but required by Chronos.
"""
chronos_job['schedule'] = 'R1//PT1M'
return chronos_job
|
900617b0befdf6e31b8e84714e2dba4604eea762
| 329,168
|
def are_all_0(lists, index):
"""Check if the values at the same index in different list are all to 0.
:param list lists: a list of lists to check the value in.
:param int index: the index of the values to check in the lists.
:returns: True if all the values at the index in the lists are set to 0, False if at least one of them is not 0.
"""
for l in lists:
if l[index] != 0:
return False
return True
|
1fe4f8777618eed459907b2995170691be639e5b
| 47,506
|
def get_damage(attacker, defender):
"""Get damage dealt by attacker to defender."""
damage = attacker['Damage'] - defender['Armor']
return damage if damage > 0 else 1
|
3bb570cb84b2a54a9c6e209eb0db152eae6b17c8
| 599,079
|
def diminuir(num, porcentagem):
"""
-> Calcula o valor reduzido de uma determinada porcentagem
:param num: numero que será acrescido da porcentagem
:param porcentagem: valor da porcentagem a ser calculada
:return: o resultado do cálculo
"""
resultado = num - (num * (porcentagem / 100))
return resultado
|
c4515886adb6be846710b964dccc6c55ce982ab9
| 588,644
|
def cents_to_dollars(cents):
"""
Convert cents to dollars.
:param cents: Amount in cents
:type cents: int
:return: float
"""
return round(cents / 100.0, 2)
|
dc0d33c34de70b1591a82d8195848418a6ef2fed
| 495,833
|
def conv_lin(a, b=1.0, c=0.0, inverse=False):
"""Simple linear transform
will I think store parameters against each sensor then they are handy
>>> conv_lin(4,2,3)
11
>>> conv_lin(11,2,3.0,True)
4.0
>>>"""
if inverse is False:
return a * b + c
else:
return (a - c) / b
|
a41d3254c933f59a5fb24253dcebc684a4211108
| 676,303
|
import random
def random_index(seed, N):
""" Args: seed - initial index, N - maximum index
Return: A random index between [0, N] except for seed
"""
offset = random.randint(1, N-1)
idx = (seed + offset) % N
assert(seed != idx)
return idx
|
72394a6687265234b131524fdb37583c6f56105b
| 393,527
|
def plur_sing(count, word, suffix=None):
""" Conditionally add an 's' for example, if count isn't 1. """
if suffix is None:
suffix = "s"
return f"{count} {word}{suffix * (count != 1)}"
|
519651c1b020619cc3c0ace4d76e47fb57eae17b
| 571,206
|
def date_convert_RU(date, short=False):
"""
Convert date object to string in Russian with month name:
'2018-01-06' -> '1 июня'.
:param date: date object <datetime.date>
:param short: set to True to get abbreviated month name, use for graph labels.
:return: date <string>
"""
months_ru = ['января', 'февраля', 'марта',
'апреля', 'мая', 'юня', 'июля',
'августа', 'сентября', 'октября',
'ноября', 'декабря']
months_ru_short = ['янв', 'фев', 'мар',
'апр', 'мая', 'июн', 'июл',
'авг', 'сент', 'окт',
'нояб', 'дек']
if short:
for index, month in enumerate(months_ru_short, 1):
if index == date.month:
return "{} {}".format(date.day, month)
else:
for index, month in enumerate(months_ru, 1):
if index == date.month:
return "{} {}".format(date.day, month)
|
cc7a292dd95d8a328d1fe87c7f8dce3c55ba471d
| 231,934
|
def process_data(data: str) -> tuple[str, dict[str, str]]:
""" Process one row of template, then an empty line, then rows of rules
Returns:
tuple[str, dict[str, str]]: (template, rules-dict)
where rules-dict looks like {'CH':'B', 'HH':'N', ...}
"""
template, _, rules_lines = data.partition('\n\n')
rules = {}
for line in rules_lines.splitlines():
if len(line) > 0:
pair, element = line.split(" -> ")
rules[pair] = element
return template, rules
|
a0c66cf7d1c12edaa1610fea8bdd43e61c5ba0ca
| 500,112
|
def _is_water_file(f):
"""
Is this the filename of a water file?
:type f: str
:rtype: bool
>>> _is_water_file('LS7_ETM_WATER_144_-037_2007-11-09T23-59-30.500467.tif')
True
>>> _is_water_file('createWaterExtents_r3450_3752.log')
False
>>> _is_water_file('LC81130742014337LGN00_B1.tif')
False
>>> _is_water_file('LS8_OLITIRS_OTH_P51_GALPGS01-032_113_074_20141203')
False
>>> # We only currently care about the Tiffs:
>>> _is_water_file('LS_WATER_150_-022_1987-05-27T23-23-00.443_2014-03-10T23-55-40.796.nc')
False
"""
return 'WATER' in f and f.endswith('.tif')
|
2a4171c5a121a16d635ab7c7469f1092310c7d60
| 508,778
|
import time
async def with_ratelimit(client, method, *args, **kwargs):
"""
Call a client method with 3s backoff if rate limited.
"""
func = getattr(client, method)
response = await func(*args, **kwargs)
if getattr(response, "status_code", None) == "M_LIMIT_EXCEEDED":
time.sleep(3)
return with_ratelimit(client, method, *args, **kwargs)
return response
|
7ba1d295b770d217a10e6d74a7ea9e47c4c60615
| 211,576
|
from typing import Any
def validate_data_type(point_type: int, value: Any) -> bool:
"""
Validate data type,1:number,2:str,3:boolean,4: datetime, 5:location
:param point_type: data point type
:param value: value
:return: True if valid else False
"""
validate_result = True
if (point_type in (1, 4)) and not isinstance(value, (int, float)):
validate_result = False
elif point_type == 2 and not isinstance(value, str):
validate_result = False
elif point_type == 3 and not isinstance(value, bool):
validate_result = False
elif point_type == 5 and not isinstance(value, float):
validate_result = False
return validate_result
|
72aa4dc642a7a9a8d8e365a176a880ae732fb31f
| 155,518
|
def rivers_with_station(stations):
"""Takes a list of stations and returns a set of all the rivers
in alphabetic order upon which those stations are located"""
rivers = set()
for station in stations:
rivers.add(station.river)
rivers = sorted(rivers)
return rivers
|
d0c6579906a7d4063ee979aa219d273cfc5b6099
| 566,289
|
def doc_label_name(context_type):
"""
Takes a string `context_type` and makes that a standard 'label' string.
This functions is useful for figuring out the specific label name in
metadata given the context_type.
:param context_type: A type of tokenization.
:type context_type: string
:returns: label name for `context_type` as string.
"""
return str(context_type) + '_label'
|
da6e18ad15a40c7898b9617208038ca7a8528973
| 288,150
|
def can_loop_over(maybe):
"""Test value to see if it is list like"""
try:
iter(maybe)
except:
return 0
else:
return 1
|
7dc0b759f7287c7722c98687aa715b768c7b47ad
| 526,925
|
def list_eval_keys(prefix='kitti'):
"""List the keys of the dictionary returned by the evaluate function."""
return [
prefix + '-EPE(occ)',
prefix + '-EPE(noc)',
prefix + '-ER(occ)',
prefix + '-ER(noc)',
prefix + '-inf-time(ms)',
prefix + '-eval-time(s)',
prefix + '-occl-f-max',
prefix + '-best-occl-thresh',
]
|
1d3b195a95789d7ec5c818056072a60dc1e0b16b
| 143,961
|
import copy
def resample_list(spec_to_resample, specList, **kwargs):
"""
Resample a single EchelleSpectrum or Spectrum1D object into a EchelleSpectrumList object.
Useful for converting models into echelle spectra with multiple orders.
Parameters
----------
spec_to_resample: EchelleSpectrum or specutils Spectrum1D object
Object storing spectrum (typically of a model) to be resampled onto the same grid as specList.
specList: EchelleSpectrumList object
Object storing an echelle spectrum (spectrum with multiple orders) with the wavelength grid to
which spec_to_resample will be resampled.
**kwargs: optional
Extra arguments to be passed to specutils.manipulation.resample which is run to resample
spec_to_resample to each order in specList
"""
spec_out = copy.deepcopy(specList)
for i in range(len(specList)):
spec_out[i] = spec_to_resample.resample(specList[i], **kwargs)
return spec_out
|
4ef582f164965189d40f01185143069b5bdf551c
| 382,042
|
def value_to_bitval(value, bits=8, min=0, max=1):
""" Converts a value to a bits-bit number for range min to max
:param value: (float) value to convert
:param bits: (int) number of bits of resolution
:param min: (float) minimum of range
:param max: (float) maximum of range
:return: (int) value in bits-bit (e.g. 8-bit from 0 to 2^8-1)
"""
# Convert value to scale of 0 to 1
scaled_value = (value - min) / (max - min)
return int(scaled_value * (2**bits - 1))
|
48979fdf737e5c4ab3dcde72104b7a7035f6173f
| 260,817
|
def calc_doublelayer_dielectric_capacitance(eps_fluid, lamb, Cdl):
"""
Total capacitance due to Debye layer and surface capacitance (Stern layer or dielectric coating)
units: F/m^2
Notes:
Adjari, 2006 - "The overall capacitance per unit area in the Debye-Huckel limit"
Inputs:
eps_fluid = permittivity of the fluid (F/m)
lamb = Debye length (m)
Cdl = Capacitance due to Stern/dielectric layer (F/m^2)
"""
C_total_Adjari = (1/(1+(eps_fluid/lamb/Cdl)))*(eps_fluid/lamb)
return C_total_Adjari
|
95f4c5abf7eaf4478fc120f633ca9c7f32d88a1e
| 532,804
|
def submit(jobs, job_attributes={}, serial=False, dump_job=True):
""" lets you submit multiple jobs serial to each other or in parallel
Args:
jobs (:obj:`list` or `tuple` :obj:`Job`): jobs to submit
job_attributes (dict): effective overrides to all job attributes
serial (bool): if True jobs will be serial to each other
dump_job (bool): if True it will store the job as alf file.
Returns:
list: job ids
"""
ids = []
parent_id = None
for job in jobs:
job.job_attributes.update(job_attributes)
if serial and parent_id:
# setting serial relationship
job.job_attributes["afterjids"] = [parent_id]
parent_id = job.submit(dump_job=dump_job, **job.job_attributes)
ids.append(parent_id)
return ids
|
d9eb4ca69d4fd6528385a14c21729d987fe21cd9
| 185,739
|
import random
def generate_number() -> int:
"""Generate a random number from 1 to 10.
Returns:
int: Random number.
"""
return random.randint(1, 10)
|
f9d4c000bc1e0103f0548924b326c0fa7c27700c
| 107,982
|
def pad_bounds(bounds, percent=0):
"""Pad the bounds by a percentage
Parameters
----------
bounds : list-like of (west, south, east, north)
percent : int, optional
percent to pad the bounds
Returns
-------
(west, south, east, north)
"""
xmin, ymin, xmax, ymax = bounds
x_pad = (xmax - xmin) * (percent / 100)
y_pad = (ymax - ymin) * (percent / 100)
return [xmin - x_pad, ymin - y_pad, xmax + x_pad, ymax + y_pad]
|
b2c94bb5da16efef629bde0d61d361a005b06565
| 612,773
|
def has_ext(filename, ext):
"""
>>> has_ext('test.mp3',['opus','mp3','aac'])
True
>>> has_ext('test.mp4',['opus','mp3','aac'])
False
>>> has_ext('test.opus.gz',['opus','mp3','aac'])
False
>>> has_ext('test.1.OPUS',['opus','mp3','aac'])
True
"""
return filename.split(".")[-1].lower() in ext
|
672c77eab94a15bee226fce9037feea73a83584c
| 518,451
|
def is_prefix(x, pref) -> bool:
"""Check if pref is a prefix of x.
Args:
x: Label ID sequence.
pref: Prefix label ID sequence.
Returns:
: Whether pref is a prefix of x.
"""
if len(pref) >= len(x):
return False
for i in range(len(pref)):
if pref[i] != x[i]:
return False
return True
|
ec34e3e08d9ea5822481d1eaf70f1c72caf2e6d2
| 516,739
|
import re
def remove_whitespace(some_string):
"""Remove whitespace and punctuations from a string"""
some_string = some_string.lower()
splitter = r'[\; \, \* \n \.+\- \( \) - \/ : \? \ — \' \’]'
parts = re.split(splitter, some_string)
new_string = ''.join(parts)
return new_string
|
929d702e7c96830c867a928d3461b09e7b41f1d0
| 201,055
|
def lauegroup_to_lattice(lauegroup):
"""Convert a Laue group representation (from pointless, e.g. I m m m)
to something useful, like the implied crystal lattice (in this
case, oI.)"""
# this has been calculated from the results of Ralf GK's sginfo and a
# little fiddling...
#
# 19/feb/08 added mI record as pointless has started producing this -
# why??? this is not a "real" spacegroup... may be able to switch this
# off...
# 'I2/m': 'mI',
lauegroup_to_lattice = {
"Ammm": "oA",
"C2/m": "mC",
"Cmmm": "oC",
"Fm-3": "cF",
"Fm-3m": "cF",
"Fmmm": "oF",
"H-3": "hR",
"H-3m": "hR",
"R-3:H": "hR",
"R-3m:H": "hR",
"I4/m": "tI",
"I4/mmm": "tI",
"Im-3": "cI",
"Im-3m": "cI",
"Immm": "oI",
"P-1": "aP",
"P-3": "hP",
"P-3m": "hP",
"P2/m": "mP",
"P4/m": "tP",
"P4/mmm": "tP",
"P6/m": "hP",
"P6/mmm": "hP",
"Pm-3": "cP",
"Pm-3m": "cP",
"Pmmm": "oP",
}
updated_laue = ""
for l in lauegroup.split():
if not l == "1":
updated_laue += l
return lauegroup_to_lattice[updated_laue]
|
57d7e6851675785b55339046416af35b5cecf6e0
| 240,668
|
def _plural_s(cnt, word):
"""Return word in plural if cnt is not equal 1"""
if cnt == 1:
return word
return '%ss' % word
|
fa9f5a319caacfaacf1acf4ae02942691a34d0c0
| 515,636
|
from typing import List
def make_ngrams(text: str, n: int) -> List[str]:
"""Turn a term string into a list of ngrams of size n
:param text: a text string
:type text: str
:param n: the ngram size
:type n: int
:return: a list of ngrams
:rtype: List[str]"""
if not isinstance(text, str):
raise TypeError('text must be a string')
if not isinstance(n, int):
raise TypeError('n must be a positive integer')
if n < 1:
raise ValueError('n must be a positive integer')
if n > len(text):
return []
text = "#{t}#".format(t=text)
max_start = len(text) - n + 1
return [text[start:start + n] for start in range(0, max_start)]
|
a574e78a9873a6f2dbbc3643197a9f23d72d84ab
| 83,913
|
def _divisible_slice(perm, divisor, start_index):
"""Check if a three digit slice of a permutation is divisible by divisor"""
perm_slice = perm[start_index:start_index + 3]
number = int(''.join(perm_slice))
return number % divisor == 0
|
2698381efd0e7f720f474eb57dc25bc6b8f25dac
| 476,468
|
def calculate_reliability(data):
""" Calculates the reliability rating of the smartcab during testing. """
success_ratio = data['success'].sum() * 1.0 / len(data)
if success_ratio == 1: # Always meets deadline
return ("A+", "green")
else:
if success_ratio >= 0.90:
return ("A", "green")
elif success_ratio >= 0.80:
return ("B", "green")
elif success_ratio >= 0.70:
return ("C", "#EEC700")
elif success_ratio >= 0.60:
return ("D", "#EEC700")
else:
return ("F", "red")
|
d1c9ad7bba220beeae06c568cfd269aaaebfb994
| 1,545
|
import tempfile
def get_temp_filename(mode="w+b", buffering=-1, encoding=None, newline=None, suffix=None, prefix=None, dir=None) -> str:
"""Get temp filename
e.g
j.sals.fs.get_temp_filename(dir="/home/rafy/") -> '/home/rafy/tmp6x7w71ml'
Args:
mode (str, optional): [description]. Defaults to "w+b".
buffering (int, optional): buffering. Defaults to -1.
encoding ([type], optional): encoding . Defaults to None.
newline ([type], optional): Defaults to None.
suffix ([type], optional): ending suffix. Defaults to None.
prefix ([type], optional): prefix . Defaults to None.
dir ([type], optional): where to create the file. Defaults to None.
Returns:
[str]: temp filename
"""
return tempfile.NamedTemporaryFile(mode, buffering, encoding, newline, suffix, prefix, dir).name
|
6ee213a5d2acf782b4ac24b2581bfcd733a23156
| 116,559
|
def last_elem_in_list(working_list):
"""
returns the last element of a list.
"""
return working_list[-1]
|
c6bb6c538b2474a504358dc4a51f6a3537e11388
| 242,592
|
def parse_email_remediation_key(key):
"""Returns the tuple (message_id, recipient) for the key created using create_email_remediation_key."""
return key.split(':', 1)
|
495eff306e89ada4430bc4995d96fb88e0c4f032
| 645,900
|
def decdeg2dms(dd):
""" Convert decimal degrees to deg,min,sec """
is_positive = dd >= 0
dd = abs(dd)
minutes, seconds = divmod(dd * 3600, 60)
degrees, minutes = divmod(minutes, 60)
degrees = degrees if is_positive else -degrees
return (degrees, minutes, seconds)
|
f369e4f17960238cbb070e6e000dbb24dcba9011
| 582,167
|
def getAllContribsOutputStrFromSpectraOutput( spectraOutput, energyFmt=None, intensityFmt=None ):
""" Gets a str to write all contributions to spectraOutput (e.g. fragA-S-3p contribution)
Args:
spectraOutput: (GenSpectraOutput object) This contains all information for a generated spectrum
energyFmt: (Str, optional) The format string for the energies. Default = "{:.9g}"
intensityFmt: (Str, optional) The format string for the intensities. Default = "{:.9g}"
Returns
outStr: (Str) String containing data on the contributions to the spectrum
"""
energyFmt = "{:.9g}" if energyFmt is None else energyFmt
intensityFmt = "{:.9g}" if intensityFmt is None else intensityFmt
labelList = spectraOutput.label
dataList = spectraOutput.spectralContributions
#Get the labels
labelStrs = ", ".join( ["{}-{}-{}".format(x.fragKey, x.eleKey, x.aoKey) for x in labelList] )
labelStrs = "#labels = " + labelStrs
outStrList = [labelStrs]
outStrList.append( "#Energy, Intensities" )
dataStrFmt = energyFmt + ", " + ", ".join( [intensityFmt for x in range(len(dataList))] )
for idx,x in enumerate(dataList[0]):
energy = x[0]
currData = [ a[idx][1] for a in dataList ]
outStrList.append( dataStrFmt.format( energy, *currData) )
return "\n".join(outStrList)
|
03b10fa3bcdc9a0458478da0b602a8eaaa770d33
| 51,031
|
def find_indexes(s, ch='\n'):
"""Finds all instances of given char and returns list of indexes """
return [i for i, ltr in enumerate(s) if ltr == ch]
|
b94bfcf277de7e10f2adee0aabc441b20bc18467
| 434,008
|
def comma_synonyms(f, e):
"""
Expands comma separated words as synonyms.
For example: ('house, home') -> ('house'), ('home')
:param f:
:param e:
:return:
"""
if ',' in e:
parts = list(filter(lambda x: x, map(lambda x: x.strip(), e.split(','))))
if len(parts) > 1:
print(">COMMA_SYNS", f, e, '-->', parts)
return [(f, p) for p in parts]
return [(f, e)]
|
0c5966c191fc87c01d0bd7dccf6f071d0672f5b7
| 532,515
|
def hash_table_size(item, tablesize):
"""
A hashing technique that involves
1. Converting the characters in a string to a list of ordinal values
2. Get the sum of the list
3. Get the remained by doing a modulo using tablesize
item - string
tablesize
"""
ordinal_list = [ord(i) for i in item]
return sum(ordinal_list) % tablesize
|
cf47a023c35693681485331878dfd3eb9164a7bf
| 9,448
|
def _isIterable(maybeIterable):
"""Is the argument an iterable object? Taken from the Python Cookbook, recipe 1.12"""
try:
iter(maybeIterable)
except:
return False
else:
return True
|
bd1e60aa5eba5dcbfe3433531d26a671dd65f9eb
| 218,088
|
def _grad_nll(p, gp, y):
"""
Given parameters and data, compute the gradient of the negative log
likelihood of the data under the george Gaussian process.
Parameters
----------
p : array
GP hyperparameters
gp : george.GP
y : array
data to condition GP on
Returns
-------
gnll : float
gradient of the negative log-likelihood of y under gp
"""
gp.set_parameter_vector(p)
return -gp.grad_log_likelihood(y, quiet=True)
|
600f22945036454621860d2289fcfdd9a29fdd1e
| 637,081
|
def get_doc_info(result):
"""Get the index, doc_type, and id associated with a document.
Parameters
----------
result : dict
A document from an Elasticsearch search result.
Returns
-------
dict
A dictionary with keys 'index', 'doc_type', and 'id',
containing the name of the index in which the document resides,
the doc_type of the document, and its id.
"""
return {
'index': result['_index'],
'doc_type': result['_type'],
'id': result['_id']
}
|
f4eb4b235c75d53862974e8937ca5c845b2734c5
| 145,383
|
def format_percentage(number):
"""
Formats a number into a percentage string
:param number: a number assumed to be between 0 and 1
:return: str
"""
return '{}%'.format(round(number * 100))
|
5736b141b316d2de63804ddb248a45d9e4748ba4
| 669,440
|
import re
def you_to_yall(text: str) -> str:
"""Convert all you's to y'all."""
pattern = r'\b(y)(ou)\b'
return re.sub(pattern, r"\1'all", text, flags=re.IGNORECASE)
|
1a3ee7ebf2394f84ad296e18da789dff8ca50a12
| 7,860
|
import re
def run(text, meta):
"""Remove refs from the text.
Returns text with a regex substitution and unchanged META."""
pat = re.compile(meta.get("ref_regex", "[[(]*ref:[0-9a-f]+[])]*"))
text = pat.sub("", text)
return text, meta
|
5ff0034a9269594b994819f7c9df2719f9d009f1
| 583,530
|
import hashlib
def md5hash(filename, size=50000):
"""
Helper function to calculate MD5 hash of the file contents
(up to a given number of bytes).
@param filename file path of file to process
@param size the maximum number of bytes to read
"""
f = open(filename, 'rb')
data = f.read(size)
f.close()
hash = hashlib.md5(data).hexdigest()
del data
return hash
|
59891ca50f72e8d3c62504887b0c1480a0753345
| 613,975
|
def is_scheduler_like(thing):
"""
Test if an object can be used as a scheduler.
:meta private:
"""
# Pytorch doesn't have a unified inheritance class for these things.
# So we call it a scheduler if it has a "step" attribute that itself is callable
return callable(getattr(thing, "step", None))
|
224c1696798df17b11812aa1cfcf0cd79f3f3afe
| 516,674
|
from typing import Any
from typing import Union
from typing import List
from typing import Sequence
def _list_convert(x: Any) -> Union[Any, List[Any]]:
"""Converts argument to list if not already a sequence."""
return [x] if not isinstance(x, Sequence) else x
|
79a913305a931378e2cb2b8f46a74f1381850ac4
| 44,112
|
def clean_string(s):
"""
Clean all the HTML/Unicode nastiness out of a string.
Replaces newlines with spaces.
"""
return s.replace('\r', '').replace('\n', ' ').replace('\xa0', ' ').strip()
|
04568d67be1c966eec1ba7cb09ac7303667f66d6
| 152,224
|
def get_expected_log_files_dict(base_out):
"""
:param base_out: Base path structure for log files. For example, if the expected path for
the log is 'work/step.path/log/step.conda_info.txt', the argument should be
'work/step.path/log/step'.
:type base_out: str
:return: Returns dictionary with expected path for log files based on the provided input.
"""
# Define expected
expected = {
"conda_info": base_out + ".conda_info.txt",
"conda_info_md5": base_out + ".conda_info.txt.md5",
"conda_list": base_out + ".conda_list.txt",
"conda_list_md5": base_out + ".conda_list.txt.md5",
"log": base_out + ".log",
"log_md5": base_out + ".log.md5",
}
# Return
return expected
|
95046fca053fc3da9c03989e79a88e88d4daaec8
| 562,319
|
from pathlib import Path
def data_paths(root):
"""Get the paths for the processed data
Note:
This first requires that you use `frame`'s cli
to preprocess the framenet data into json files.
Args:
root: root path to the json preprocessed data
Raises:
`ValueError`: if the files do not exist in the `root`
directory. Make sure to prepocess the data using `frame`'s
frame.cli:preprocess-framenet before loading the data.
"""
path = Path(root).glob("**/*")
paths = [str(p) for p in path]
if len(paths) == 0:
raise ValueError(
f"Preprocessed data not found at <{root}>! Use frame.cli:preprocess-framenet"
)
return paths
|
4d5a0d460b7af8de2d22fc1a709974163dd8c23b
| 496,886
|
def is_string(value):
"""Check if the value is actually a string or not"""
try:
float(value)
return False
except ValueError:
if value.lower() in ["true", "false"]:
return False
return True
|
7cb61dcb81c6baa824a1537fd6c94f2b237c0669
| 128,917
|
def is_present(marks, text):
"""
return True, if all marks present in given text
"""
return all([mark in text for mark in marks])
|
0ea198520b1e46f1c9b26a9533e0785140348776
| 70,873
|
def get_frame(path):
"""Get frame for animation from text file."""
with open(path) as file:
return file.read()
|
4b5d7a55d85004f757acdedaf3bdc68d59d84cf8
| 543,553
|
def format_timestamp(timestamp):
"""
Format a timestamp to a string.
"""
return timestamp.strftime('%Y-%M-%d %H:%M:%S')
|
fad6ae95f4745e4a13bd5ea9667ed0dc370413d8
| 380,108
|
def join(string, iterable, *, on_empty=None):
"""
A functional version of ``str.join()`` providing more flexibility via the ``on_empty`` parameter.
Arguments are not checked.
:param string:
:param iterable:
:param on_empty:
:return:
"""
if on_empty == 'drop':
return string.join(item for item in iterable if item)
if on_empty == 'abort' and '' in iterable:
return ''
return string.join(iterable)
|
8e61d544914f76b5b8f1c2023fe6c3d1d5fa1106
| 535,043
|
def snake_case_to_camel_case(string):
"""Converts a snake case string to a camel case string."""
result = ''
capitalize = True
for c in string:
if c == '_':
capitalize = True
else:
result += c.upper() if capitalize else c
capitalize = False
return result
|
fa34d39760a3f7760b94b3bdb3bf4fd6cf9f5262
| 173,154
|
def Kml(nodes):
"""Returns a tuple representing a KML Document node.
Args:
nodes: Iterable of child nodes representing top-level KML objects.
Returns:
Tuple for pyfo to produce the <kml> node.
"""
return ('kml', ('Document', nodes),
dict(xmlns='http://www.opengis.net/kml/2.2'))
|
c8863135e7ea2e806da4070766d5fe510e1bc87e
| 557,964
|
def count_vars_vcf(vcf_path):
""" Counts the number of variants in a VCF file.
"""
in_file = open(vcf_path)
num_records = 0
for line in in_file:
if line.startswith('#'):
continue
num_records += 1
return num_records
|
053316c4aae21fe75e96d31a9563dc499b5dea71
| 113,612
|
def row_check_tile_direction(row,direction,index) :
"""Returns the value of the first tile encountered when moving from index in the direction given and the position of this tile. "-1" is a wall"""
taille = len(row)
currentPosition = index
if direction =="left" :
currentPosition -= 1
while currentPosition >= 0 and row[currentPosition] == " " :
currentPosition -= 1
if currentPosition == -1 :
return("-1", -1)
else :
return (row[currentPosition], currentPosition)
if direction == "right" :
currentPosition += 1
while currentPosition < taille and row[currentPosition] == " " :
currentPosition += 1
if currentPosition == taille :
return("-1", taille)
else :
return (row[currentPosition], currentPosition)
|
dbbdfa03639eafd2a784eb65553282706bde729a
| 309,900
|
from typing import IO
import csv
def startfile_csv(ARG_filewriter: IO):
"""Writes the header for the .csv suncalc results file.
Parameters
----------
ARG_filewriter : IO
The file writing IO object.
Returns
-------
csvwriter : csv._writer
The IO object formatted specifically for this csv file.
"""
csvwriter = csv.writer(ARG_filewriter, lineterminator="\n", quoting=csv.QUOTE_NONNUMERIC)
csvheaders = ["DAY", "HOUR24", "MINUTE", "FRACTIONAL DAY", "DATESTRING", "ALTITUDE", "AZIMUTH"]
csvwriter.writerow (csvheaders)
return csvwriter
|
f28eb1466b8945acc424635a5c1cd56d2a0d7cd3
| 592,140
|
def get_jssimporter(recipe):
"""Return the JSSImporter processor section or None."""
processors = [processor for processor in recipe["Process"] if
processor.get("Processor") == "JSSImporter"]
if len(processors) == 1:
result = processors.pop()
else:
result = None
return result
|
79135db06159fcf3d30bc2f0c1dbf6493a475fd3
| 302,891
|
def catalan_dynamic(n: int) -> int:
"""
Returns the nth catalan number with polynomial time complexity.
>>> catalan_dynamic(5)
42
>>> catalan_dynamic(10)
16796
>>> catalan_dynamic(0)
1
>>> catalan_dynamic(-5)
1
>>> catalan_dynamic(1.5)
-1
"""
if not isinstance(n, int):
return -1
if n <= 1:
return 1
numbers = [0] * (n + 1)
numbers[0], numbers[1] = 1, 1
for i in range(2, n + 1):
for j in range(i):
numbers[i] += numbers[j] * numbers[i - j - 1]
return numbers[-1]
|
0b33dd7e9d32653d7c3109232de3a127baf4c88b
| 472,550
|
def epsIndicator(frontOld, frontNew):
"""
This function computes the epsilon indicator
:param frontOld: Old Pareto front
:type frontOld: list
:param frontNew: New Pareto front
:type frontNew: list
:return: epsilon indicator between the old and new Pareto fronts
:rtype: float
"""
epsInd = 0
firstValueAll = True
for indNew in frontNew:
tempEpsInd = 0
firstValue = True
for indOld in frontOld:
(aOld, bOld, cOld) = indOld.fitness.values
(aNew, bNew, cNew) = indNew.fitness.values
compare = max(aOld-aNew, bOld-bNew, cOld-cNew)
if firstValue:
tempEpsInd = compare
firstValue = False
if compare < tempEpsInd:
tempEpsInd = compare
if firstValueAll:
epsInd = tempEpsInd
firstValueAll = False
if tempEpsInd > epsInd:
epsInd = tempEpsInd
return epsInd
|
8ec7b18b36a32b963c148aa7592557c2724bde0d
| 686,534
|
import string
def extract_prefix(name):
"""Return the library or sample name prefix
Arguments:
name: the name of a sample or library
Returns:
The prefix consisting of the name with trailing numbers
removed, e.g. 'LD_C' for 'LD_C1'
"""
return str(name).rstrip(string.digits)
|
892fe3b74ee42918244aa4bb83e362d7f316d050
| 391,598
|
def positive_cap(num):
""" Cap a number to ensure positivity
:param num: positive or negative number
:returns: (overflow, capped_number)
"""
if num < 0:
return 0, abs(num)
else:
return num, 0
|
577f1b82979424e405e9e7b7ce06a905619b96e7
| 549,237
|
from typing import Sequence
from typing import Tuple
from typing import Optional
def get_fan_in_fan_out(
shape: Sequence[int]) -> Tuple[Optional[int], Optional[int]]:
"""Returns (fan_in, fan_out) of a weight variable of the given shape."""
if not shape:
return None, None
if len(shape) < 1:
return 1, 1
elif len(shape) == 1:
# Following _compute_fans() from TF's init_ops.py.
return shape[0], shape[0]
else:
receptive_field_size = 1
for s in shape[:-2]:
receptive_field_size *= s
fan_in = shape[-2] * receptive_field_size
fan_out = shape[-1] * receptive_field_size
return fan_in, fan_out
|
231372e76b549ffd44482b0835634bbb29c07a49
| 574,492
|
def get_end_connection(road):
"""
Returns the intersection that is connected to the end of the road
:param road: The road that the intersection is connected to
:type road: Road
:return: the intersection that is connected to the end of the road
"""
return road.get_end_connection()
|
795a672d8dc297fbcf1a36e10761e032ca2a7f1f
| 182,596
|
import struct
def inet_aton(string):
"""inet_aton(string) -> packed 32-bit IP representation
Convert an IP address in string format (123.45.67.89) to the 32-bit packed
binary format used in low-level network functions."""
a, b, c, d = map(int, string.split(".", 3))
return struct.pack("BBBB", a, b, c, d)
|
0dddf2bcd48eb1596c6a9677ac589998c472fba0
| 165,837
|
def validate_sequence_characters(sequence):
"""
Validates that the sequence passed into it consists only of A, T, G and Cs.
"""
sequence = set(sequence.upper())
allowed = ['A', 'T', 'G', 'C']
for s in sequence:
try:
assert s in allowed
return True
except AssertionError:
return False
|
9fa5e8aa14685c4e98d7cec1df264968137f8257
| 516,492
|
import logging
def _check_downsampling_mismatch(downsample, num_pooled_features, output_layer_size):
"""
If downsample is flagged True, but no downsampling size is given, then automatically
downsample model. If downsample flagged false, but there is a size given, set downsample
to true.
Parameters:
----------
downsample : bool
Boolean flagging whether model is being downsampled
num_pooled_features : int
the desired number of features to downsample to
output_layer_size : int
number of nodes in the output layer being downsampled
Returns:
-------
downsample : boolean
Updated boolean flagging whether model is being downsampled
num_pooled_features : int
Updated number of features model output is being downsample to
"""
# If num_pooled_features left uninitialized, and they want to downsample,
# perform automatic downsampling
if num_pooled_features == 0 and downsample:
if output_layer_size % 2 == 0:
num_pooled_features = output_layer_size // 2
logging.warning('Automatic downsampling to {}. If you would like to set custom '
'downsampling, pass in an integer divisor of {} to '
'num_pooled_features.'.format(num_pooled_features, output_layer_size))
else:
raise ValueError('Sorry, no automatic downsampling available for this model.')
# If they have initialized num_pooled_features, but not turned on
# downsampling, downsample to what they entered
elif num_pooled_features != 0 and not downsample:
logging.info('Downsampling to {}.'.format(num_pooled_features))
downsample = True
return downsample, num_pooled_features
|
3ecd17596cccf3c84542dcd8c7ab7c9e35c2e65f
| 438,287
|
def fastaRecordSizer(recordLines):
"""
Returns the number of charcters in every line excluding:
the first (header) line
whitespace at the start and end of lines
"""
size=0
for i in range(1,len(recordLines)):
size+=len(recordLines[i].strip())
return size
|
328b2e6fca07098616ba305520c7c64d754d4225
| 625,387
|
def get_accel_y(fore_veh, back_veh, ego_vy, idm_model):
"""
A wrapper around IDM, given a front and a back vehicle (and the absolute
speed), and a longitudinal driver model, this function returns the
desired acceleration of the back vehicle.
Arguments
fore_vehicle:
A vehicle object, for the vehicle that is currently in front.
back_vehicle:
A vehicle object, representing the vehicle that is behind the fore_veh.
ego_vy:
A float, indicating the absolute speed of the ego vehicle. This is
necessary because the vehicle objects only contain relative speeds.
idm_model:
A longitudinal driver model consisting of a propagate() function.
"""
v = back_veh.rel_vy + ego_vy
gap = fore_veh.rel_y - back_veh.rel_y
dV = back_veh.rel_vy - fore_veh.rel_vy # positive -> back veh approachin
return idm_model.propagate(v, gap, dV)
|
847cc4c7ed02bb27dcfb0bfed966ad2699cd90b6
| 645,215
|
def check_direct(element, list_to_check):
""" Returns a boolean indicating whether the direct should be update.
Inputs:
- element: direct that needs to be checked;
- list_to_check: operational mode or pb_type and port of the direct to select.
"""
interconnect = element.getparent()
mode_or_pb_type = interconnect.getparent()
if mode_or_pb_type.tag not in ['mode', 'pb_type']:
return False
for mode_or_pb_type_to_check, port_to_check in list_to_check:
if mode_or_pb_type.attrib[
'name'] == mode_or_pb_type_to_check and element.attrib[
'name'] == port_to_check:
return True
return False
|
4ace09e83cbdbf9999402373e986916fa5592905
| 366,986
|
def ceildiv(a: int, b: int) -> int:
"""Safe integer ceil function"""
return -(-a // b)
|
9dabd15a396fd1e3c743074d56081d5181a17775
| 528,125
|
import pathlib
def unique_directories(files):
"""Returns a list of directories (pathlib.Path objects) for the files
passed without repetitions."""
return list({pathlib.Path(x).parent for x in files})
|
326ed8b251b21fb36f03c5ddc7edd0b18918e868
| 49,297
|
def delete_nth(order, max_e):
"""Create new list that contains each number at most N times."""
counting = {x: 0 for x in order}
final = []
for i in order:
if counting[i] < max_e:
counting[i] += 1
final.append(i)
return final
|
4125728945022026e8969c47c50b5312b651e0c3
| 542,801
|
def blank_line(sROIID_, sComment_, iIndexCount_):
""" Return correctly sized filler line for when extract is not possible. """
iCommaCount = 2 * iIndexCount_ + 1
return f'"{sROIID_}"{"," * iCommaCount}{sComment_}'
|
f86a4296c34bf71d527f9d34264a8c1730ef3a15
| 491,401
|
def dict_map_leaves(nested_dicts, func_to_call):
"""
Applies a given callable to the leaves of a given tree / set of nested dictionaries, returning the result (without
modifying the original dictionary)
:param nested_dicts: Nested dictionaries to traverse
:param func_to_call: Function to call on the 'leaves' of those nested dictionaries
:return: Result of the transformation (dict)
Note that this and all the functions above use the exact same algorithm/pattern for tree traversal. We could reduce
duplication by refactoring it into a function, but that might make the code less readable.
"""
to_update = dict(nested_dicts)
for k, v in nested_dicts.items():
if isinstance(v, dict):
to_update[k] = dict_map_leaves(v, func_to_call)
else:
to_update[k] = func_to_call(v)
return to_update
|
42139741a5a0e3dca7b0662086e0dbe1c16f6c8b
| 543,309
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.