text
stringlengths
8
6.05M
from __future__ import division import sys import subprocess import glob, os ## Author: Spencer Caplan, University of Pennsylvania ## Contact: spcaplan@sas.upenn.edu outputFileNamesWithWordID = False printDebugStatements = True testFilesRun = True trainFilesRun = True def accessDictEntry(dictToCheck, entryToCheck): if entryToCheck in dictToCheck: return dictToCheck[entryToCheck] else: return 0 ## ## Main method block ## if __name__=="__main__": if (len(sys.argv) < 6): print('incorrect number of arguments') exit(0) # currently at: /home1/s/spcaplan/Documents/PRAAT/praat praat = sys.argv[1] scriptSourceDir = sys.argv[2] inputDirTrain = sys.argv[3] inputDirTest = sys.argv[4] outputDirTrain = sys.argv[5] outputDirTest = sys.argv[6] #praat = "/home1/s/spcaplan/Documents/PRAAT/praat" #praat = "/usr/bin/praat" script = scriptSourceDir+"create_continuum.praat" # all these in ms stepSize = int(5) minVOT = int(10) maxVOT = int(100) indexToNormDict = {} indexToCounterDict = {} indexToIDDIct = {} attestedIndexes = {} vowelSet = ['A','E'] if testFilesRun: for vowel in vowelSet: for Tindex in range(1, 6): Tuid = 'T-' + vowel + '-' + str(Tindex) currTfile = inputDirTest + Tuid + '.wav' print currTfile if os.path.isfile(currTfile): for Dindex in range(1, 6): Duid = 'D-' + vowel + '-' + str(Dindex) + '-f0norm' currDfile = inputDirTest + Duid + '.wav' print currDfile if os.path.isfile(currDfile): for vot in xrange(minVOT, maxVOT+1, stepSize): stepSizeSeconds = "%1.3f" % (vot/1000) output = outputDirTest+vowel+str(Tindex)+'_'+str(Dindex)+"_f0norm_VOT_%i.wav" % vot subprocess.call([praat, script, Tuid, Duid, inputDirTest, stepSizeSeconds, output]) print 'Processed: ' + output else: print 'Cannot find Tfile: '+currTfile print 'Ran multi test files.' if trainFilesRun: for file in os.listdir(inputDirTrain): if file.endswith(".wav"): fileAttributes = file.split("-") if len(fileAttributes) > 4: globalIndex = fileAttributes[0] localIndex = fileAttributes[1] phone = fileAttributes[2] trialType = fileAttributes[3] word = fileAttributes[4] word = word.replace('.wav','') if outputFileNamesWithWordID: indexToIDDIct[localIndex] = globalIndex + '-' + localIndex + '-' + phone + '-' + trialType + '-' + word else: indexToIDDIct[localIndex] = localIndex + '-' + trialType attestedIndexes[localIndex] = True if printDebugStatements: print file print globalIndex + '-' + localIndex + '-' + phone + '-' + trialType + '-' + word if phone == 'T': indexToNormDict[localIndex] = file elif phone == 'D': indexToCounterDict[localIndex] = file if printDebugStatements: print 'Onto execution loop...' for currIndex in attestedIndexes: print currIndex normFile = accessDictEntry(indexToNormDict, currIndex) counterFile = accessDictEntry(indexToCounterDict, currIndex) idName = accessDictEntry(indexToIDDIct, currIndex) if normFile == 0 or counterFile == 0 or idName == 0: break if printDebugStatements: print 'Running: ' + normFile normFile = normFile[:-4] counterFile = counterFile[:-4] for vot in xrange(minVOT, maxVOT+1, stepSize): stepSizeSeconds = "%1.3f" % (vot/1000) output = outputDirTrain+idName+"_f0norm_VOT_%i.wav" % vot subprocess.call([praat, script, normFile, counterFile, inputDirTrain, stepSizeSeconds, output]) print 'Ran train files.' print 'Completed VOT manipulation.' quit()
#!/usr/bin/env python """ Implementation of Binary Search in Python using both iterative and recursive approach. """ from typing import List, Union def binSearch(arr: List[int], elem: int) -> bool: first = 0 last = len(arr) - 1 found = False while first <= last and not found: middle = (first + last) // 2 if elem == arr[middle]: found = True else: if arr[middle] < elem: first = middle + 1 elif arr[middle] > elem: last = middle - 1 return found """Recursive Binary Search""" def rec_bin_search(arr: List[int], start: int, end: int, elem: int) -> bool: # Base case. if start > end: return False else: mid = (start + end) // 2 if arr[mid] == elem: return True else: if elem > arr[mid]: return rec_bin_search(arr, mid + 1, end, elem) elif elem < arr[mid]: return rec_bin_search(arr, start, mid - 1, elem) def main(): arr = [1, 2, 3, 4, 5, 6, 7, 8] print("Using Sequential Binary Search: \n") print("Looking for elem {} in {}: {}".format(7, arr, binSearch(arr, 7))) print("Looking for elem {} in {}: {}".format(13, arr, binSearch(arr, 13))) print("\nUsing Recursive Binary Search: \n") print( "Looking for elem {} in {}: {}".format( 7, arr, rec_bin_search(arr, 0, len(arr) - 1, 7) ) ) print( "Looking for elem {} in {}: {}".format( 13, arr, rec_bin_search(arr, 0, len(arr) - 1, 13) ) ) if __name__ == "__main__": main()
import os import sys import subprocess import shutil sys.path.insert(0, 'scripts') sys.path.insert(0, os.path.join("tools", "families")) import fam import experiments as exp import ete3 def get_tree(ale_file): for line in open(ale_file): if (";" in line): return line return None def get_leaves(tree_file): return ete3.Tree(tree_file,format=1).get_leaf_names() def create_mapping_from_gene_tree(input_tree, output_mapping): leaves = ete3.Tree(input_tree, format=1).get_leaf_names() species_to_gene = {} for leaf in leaves: species = "_".join(leaf.split("_")[1:]) if (not species in species_to_gene): species_to_gene[species] = [] species_to_gene[species].append(leaf) with open(output_mapping, "w") as writer: for species in species_to_gene: genes = species_to_gene[species] writer.write(species + ":" + ";".join(genes) + "\n") def export(input_trees_dir, species_tree, datadir): # init directories print("Starts generation") fam.init_top_directories(datadir) # species tree true_species_tree = fam.get_species_tree(datadir) shutil.copy(species_tree, true_species_tree) fam.init_top_directories(datadir) # families print("Init families") families = [] for f in os.listdir(input_trees_dir): family = f.split(".")[0] families.append(f.split(".")[0]) fam.init_families_directories(datadir, families) # fill families print("Fill families") for family in families: ale_file = os.path.join(input_trees_dir, family + ".ale") output_tree = fam.get_true_tree(datadir, family) tree_string = get_tree(ale_file) with open(output_tree, "w") as writer: writer.write(tree_string) mapping_file = fam.get_mappings(datadir, family) create_mapping_from_gene_tree(tree_string, mapping_file) print("post process") fam.postprocess_datadir(datadir) if (__name__ == "__main__"): if (len(sys.argv) != 4): print("syntax: input_trees_dir input_species_tree datadir") exit(1) input_trees_dir = sys.argv[1] species_tree = sys.argv[2] datadir = sys.argv[3] export(input_trees_dir, species_tree, datadir)
from operator import add, mul, sub, truediv def arithmetic(a, b, operator): ops = {'add': add, 'subtract': sub, 'multiply': mul, 'divide': truediv} return ops[operator](a, b)
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ #@ #@ Converts single the single solid, containting all the silicon detectors [output_file_name], #@ into the true array of silicon detectors [output_file_name] #@ Usage: #@ python conver_silicon.py #@ #@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ #@ Options: input_file_name = "./stk_si.gdml" #output_file_name = "./stk_si_advanced.gdml" output_file_name = "./stk_si_advanced.gdml" SOLID_BASE_NAME = 'DAM_TRKAss1_Si-stl0x11f2da0' # (see stk_si.gdml) VOLUME_BASE_NAME = 'ActiveTile' # (see stk_si.gdml) PLANE_BASE_NAME = 'STKDetector' #USE_LATEST_COORDINATE_SYSTEM = True #@ GDML constants VERTICES_PER_RECTANGLE = 12 #@ STK constants N_LAYERS = 6 N_X_TILES = 8 N_Y_TILES = 8 N_TILES_PER_PLANE = 4 N_PLANES_PER_LAYER = 4 EVEN_LAYER_DETECTOR_TYPE = "Y" #(counting layers from 0 to 11) ODD_LAYER_DETECTOR_TYPE = "X" #@ others... tmp_file_name = "./tmp.txt" tmp_file_name1 = "./tmp1.txt" tmp_file_name2 = "./tmp2.txt" #@ #@ Auxiliary gdml parsing functions ---NOT USED YET!!!! #@ def parce_vertices_for_gdml_file(filelines): vertices = {} for line in filelines: if "<position" not in line: continue name = line.split('name=')[1].split('"')[1] x = line.split('x=')[1].split('"')[1] x = x.split(".")[0] + "." + x.split(".")[1][0:5] x = float(x) y = line.split('y=')[1].split('"')[1] y = y.split(".")[0] + "." + y.split(".")[1][0:5] y = float(y) z = line.split('z=')[1].split('"')[1] z = z.split(".")[0] + "." + z.split(".")[1][0:5] z = float(z) if name in vertices: continue vertices[name] = [x,y,z] return vertices """ f=open("stk_si.gdml") l=f.readlines() a=parce_vertices_for_gdml_file(l) f.close() """ def find_vertices_for_resselated_solid(solidname, filelines): #@ Parce start and stop position startline = None stopline = None for i in xrange(len(filelines)): line = filelines[i] if "<tessellated" not in line: continue if solidname not in line: continue startline = i break if startline is None: return None for i in xrange(startline + 1,len(filelines)): line = filelines[i] if "</tessellated>" not in line: continue stopline = i break if stopline is None: return None #@ Look for vertices vertices = [] for i in xrange(startline +1, stopline): line = filelines[i] if "triangular" not in line: continue vertexname1 = line.split('vertex1')[1].split('"')[1] #.split('"')[0] vertexname2 = line.split('vertex2')[1].split('"')[1] #.split('"')[0] vertexname3 = line.split('vertex3')[1].split('"')[1] #.split('"')[0] if vertexname1 not in vertices: vertices.append(vertexname1) if vertexname2 not in vertices: vertices.append(vertexname2) if vertexname3 not in vertices: vertices.append(vertexname3) return vertices def get_STK_detector_coordinates(all_vertices_info, layers = "even"): #@ all_z = [] for vertexname in all_vertices_info.keys(): z= all_vertices_info[vertexname][2] if z in all_z: continue all_z.append(z) all_z = sorted(all_z) #@ get x,y -coordinates for readout-even/odd layers final_x = [] final_y = [] final_z = [] for vertexname in all_vertices_info.keys(): x= all_vertices_info[vertexname][0] y= all_vertices_info[vertexname][1] z= all_vertices_info[vertexname][2] #@ z_layer 0 -- 11 z_layer = all_z.index(z) z_layer = z_layer / 2 #@ Use only even layers if layers == "even": if z_layer%2: continue elif layers == "odd": if z_layer%2 == 0: continue else: raise Exception("Illegal value for argument 'layers'") #@ Append x, y coordinates if x not in final_x: final_x.append(x) if y not in final_y: final_y.append(y) if z not in final_z: final_z.append(z) final_x = sorted(final_x) final_y = sorted(final_y) final_z = sorted(final_z) return final_x, final_y, final_z #@ Read input file input_file = open(input_file_name, "r") lines = input_file.readlines() input_file.close() total_triangular_lines = len(filter(lambda line: "<triangular" in line, lines)) triangular_counter = 0 #@ number of <triangular> tags in input gdml file tessellated_counter = 1 #@ number of output subsolids (there is ata least one subsolid) #@ #@ Create subsolids #@ #output_file = open(output_file_name, "w") tmpfile= open(tmp_file_name, "w") tmpfile.write(' <tessellated aunit="deg" lunit="mm" name="'+ SOLID_BASE_NAME +'-%d">\n'%tessellated_counter) for line in lines: if not "<triangular" in line: continue triangular_counter+=1 if (triangular_counter * 1.0 / VERTICES_PER_RECTANGLE - triangular_counter / VERTICES_PER_RECTANGLE == 0 and triangular_counter > 0 and triangular_counter < total_triangular_lines): tessellated_counter+=1 tmpfile.write(line) tmpfile.write(' </tessellated>\n') tmpfile.write(' <tessellated aunit="deg" lunit="mm" name="'+ SOLID_BASE_NAME +'-%d">\n'%tessellated_counter) continue tmpfile.write(line) tmpfile.write(' </tessellated>\n') tmpfile.close() #@ #@ Logival volumes #@ #@ Analyze tracker coordinates f = open(input_file_name, 'r') tmpfile = open(tmp_file_name, 'r') l=f.readlines() tmpfile_lines = tmpfile.readlines() f.close() tmpfile.close() all_vertices_info=parce_vertices_for_gdml_file(l) all_x_even, all_y_even, all_z_even = get_STK_detector_coordinates(all_vertices_info,) all_x_odd, all_y_odd, all_z_odd = get_STK_detector_coordinates(all_vertices_info, "odd") assert(len(all_x_even)==N_X_TILES * 2) assert(len(all_y_even)==N_Y_TILES * 2) assert(len(all_z_even)==N_LAYERS * 2) assert(len(all_x_odd)==N_X_TILES * 2) assert(len(all_y_odd)==N_Y_TILES * 2) assert(len(all_z_odd)==N_LAYERS * 2) """ print "all_x_even: ",all_x_even print "all_y_even: ",all_y_even print "all_z_even: ",all_z_even print "all_x_odd: " ,all_x_odd print "all_y_odd: " ,all_y_odd print "all_z_odd: " ,all_z_odd """ #@ Cresete logical volumes tmpfile1 = open(tmp_file_name1, "w") volume_names = [] detecto_even_counter = 0 detecto_odd_counter = 0 for i in xrange(1,tessellated_counter+1): #@ #@ Assign name to a volume #@ solid_name = SOLID_BASE_NAME + '-%d'%i vertex = find_vertices_for_resselated_solid(solid_name, tmpfile_lines)[0] #print "all_vertices_info[vertex] : ", all_vertices_info[vertex] x, y, z = all_vertices_info[vertex] try: z_layer = all_z_even.index(z) #if USE_LATEST_COORDINATE_SYSTEM: z_layer = len(all_z_even)-1-z_layer x_index = all_x_even.index(x) y_index = all_y_even.index(y) #if USE_LATEST_COORDINATE_SYSTEM: y_index = len(all_y_even)-1-y_index detecortype = EVEN_LAYER_DETECTOR_TYPE detector_number = detecto_even_counter detecto_even_counter += 1 except ValueError: z_layer = all_z_odd.index(z) #if USE_LATEST_COORDINATE_SYSTEM: z_layer = len(all_z_odd)-1-z_layer x_index = all_x_odd.index(x) y_index = all_y_odd.index(y) #if USE_LATEST_COORDINATE_SYSTEM: y_index = len(all_y_odd)-1-y_index detecortype = ODD_LAYER_DETECTOR_TYPE detector_number = detecto_odd_counter detecto_odd_counter += 1 x_index = x_index / 2 y_index = y_index / 2 z_layer = z_layer / 2 x_plane = x_index / N_TILES_PER_PLANE y_plane = y_index / N_TILES_PER_PLANE x_index_insideplane = x_index % N_TILES_PER_PLANE y_index_insideplane = y_index % N_TILES_PER_PLANE tilenumber_insideplane = x_index_insideplane*N_TILES_PER_PLANE + y_index_insideplane planenumber = z_layer* N_PLANES_PER_LAYER + x_plane * N_PLANES_PER_LAYER/2 + y_plane """ print "\n---------------------" print "x_plane, y_plane, z_layer = ", x_plane, y_plane, z_layer print "\n---------------------" """ #volume_name = VOLUME_BASE_NAME + detecortype +"-%d"%detector_number + "_plane-%d"%planenumber #volume_name = VOLUME_BASE_NAME + detecortype + "-%d"%detector_number + "_" + PLANE_BASE_NAME + detecortype + "-%d"%planenumber #volume_name = VOLUME_BASE_NAME + detecortype + "-%d"%tilenumber_insideplane + "_" + PLANE_BASE_NAME + detecortype + "-%d"%planenumber volume_name = PLANE_BASE_NAME + detecortype + "-%d"%planenumber+"_"+VOLUME_BASE_NAME + detecortype + "-%d"%tilenumber_insideplane volume_names.append(volume_name) #@ Create volume #tmpfile1.write(' <volume name="' + VOLUME_BASE_NAME + '-%d">\n'%i) tmpfile1.write(' <volume name="' + volume_name + '">\n') tmpfile1.write(' <materialref ref="Silicon"/>\n') tmpfile1.write(' <solidref ref="'+ solid_name + '"/>\n') tmpfile1.write(' </volume>\n') """ if volume_name == (VOLUME_BASE_NAME + "X-0_" + PLANE_BASE_NAME + "X-19"): print "volume_name:", volume_name ver = find_vertices_for_resselated_solid(solid_name, tmpfile_lines) """ tmpfile1.close() #@ #@ Physical volumes #@ """ tmpfile2 = open(tmp_file_name2, "w") for i in xrange(1,tessellated_counter+1): tmpfile2.write(' <physvol>\n') #tmpfile.write(' <file name="./Geometry/STK/stk_si_advanced.gdml"/>\n') tmpfile2.write(' <volumeref ref="' + VOLUME_BASE_NAME + '-%d"/>\n'%i) #tmpfile.write(' <position x="stk_adjust_x_position" y="stk_adjust_y_position" z="stk_adjust_z_position" unit="mm"/>\n') tmpfile2.write(' </physvol>\n') tmpfile2.close() """ tmpfile2 = open(tmp_file_name2, "w") for volume_name in volume_names: tmpfile2.write(' <physvol>\n') #tmpfile.write(' <file name="./Geometry/STK/stk_si_advanced.gdml"/>\n') tmpfile2.write(' <volumeref ref="' + volume_name+'"/>\n') #tmpfile.write(' <position x="stk_adjust_x_position" y="stk_adjust_y_position" z="stk_adjust_z_position" unit="mm"/>\n') tmpfile2.write(' </physvol>\n') tmpfile2.close() #@ """ #@ #@ Combine things into the output file #@ # #output_file.close() tmpfile = open(tmp_file_name, "r") tmpfile1 = open(tmp_file_name1, "r") tmpfile2 = open(tmp_file_name2, "r") tmplines = tmpfile.readlines() tmplines1 = tmpfile1.readlines() tmplines2 = tmpfile2.readlines() tmpfile.close() tmpfile1.close() tmpfile2.close() output_file = open(output_file_name, "w") for line in lines: output_file.write(line) if "<solids>" in line: for tmpline in tmplines: output_file.write(tmpline) continue if "<structure>" in line: for tmpline in tmplines1: output_file.write(tmpline) continue if '<solidref' in line and SOLID_BASE_NAME in line: for tmpline in tmplines2: output_file.write(tmpline) continue output_file.close() """ #@ #@ New vertices #@ short_to_short = 0.200 long_to_long = 0.200 inner = 0.080 side = 95.000 x_cad_offset = -300.0 #silicon_guard = 1.036 ladder_direction = [- short_to_short/2 - 4 * side - 3*inner, - short_to_short/2 - 3 * side - 3*inner, - short_to_short/2 - 3 * side - 2*inner, - short_to_short/2 - 2 * side - 2*inner, - short_to_short/2 - 2 * side - 1*inner, - short_to_short/2 - 1 * side - 1*inner, - short_to_short/2 - 1 * side, - short_to_short/2, short_to_short/2, short_to_short/2 + 1 * side, short_to_short/2 + 1 * side + 1*inner, short_to_short/2 + 2 * side + 1*inner, short_to_short/2 + 2 * side + 2*inner, short_to_short/2 + 3 * side + 2*inner, short_to_short/2 + 3 * side + 3*inner, short_to_short/2 + 4 * side + 3*inner,] orthogonal_direction = [- long_to_long/2 - 4 * side - 3*long_to_long, - long_to_long/2 - 3 * side - 3*long_to_long, - long_to_long/2 - 3 * side - 2*long_to_long, - long_to_long/2 - 2 * side - 2*long_to_long, - long_to_long/2 - 2 * side - 1*long_to_long, - long_to_long/2 - 1 * side - 1*long_to_long, - long_to_long/2 - 1 * side, - long_to_long/2, long_to_long/2, long_to_long/2 + 1 * side, long_to_long/2 + 1 * side + 1*long_to_long, long_to_long/2 + 2 * side + 1*long_to_long, long_to_long/2 + 2 * side + 2*long_to_long, long_to_long/2 + 3 * side + 2*long_to_long, long_to_long/2 + 3 * side + 3*long_to_long, long_to_long/2 + 4 * side + 3*long_to_long,] newvertices = {} for vertexname in all_vertices_info.keys(): x = all_vertices_info[vertexname][0] y = all_vertices_info[vertexname][1] z = all_vertices_info[vertexname][2] new_x = x new_y = y if z in all_z_even: i = all_x_even.index(x) new_x = ladder_direction[i] + x_cad_offset i = all_y_even.index(y) new_y = orthogonal_direction[i] elif z in all_z_odd: i = all_x_odd.index(x) new_x = orthogonal_direction[i] + x_cad_offset i = all_y_odd.index(y) new_y = ladder_direction[i] else: raise Exception() newvertices[vertexname] = [new_x, new_y, z] #@ Combine things tmpfile = open(tmp_file_name, "r") tmpfile1 = open(tmp_file_name1, "r") tmpfile2 = open(tmp_file_name2, "r") tmplines = tmpfile.readlines() tmplines1 = tmpfile1.readlines() tmplines2 = tmpfile2.readlines() tmpfile.close() tmpfile1.close() tmpfile2.close() output_file = open(output_file_name, "w") for line in lines: if "<position name=" in line: continue output_file.write(line) if "<define>" in line: for vertex in newvertices.keys(): output_file.write(' <position name="%s" unit="mm" x="%f" y="%f" z="%f"/>\n'%(vertex,newvertices[vertex][0],newvertices[vertex][1],newvertices[vertex][2])) continue if "<solids>" in line: for tmpline in tmplines: output_file.write(tmpline) continue if "<structure>" in line: for tmpline in tmplines1: output_file.write(tmpline) continue if '<solidref' in line and SOLID_BASE_NAME in line: for tmpline in tmplines2: output_file.write(tmpline) continue output_file.close() """ #@ read file f=open(input_file_name) l=f.readlines() f.close() all_vertices_info=parce_vertices_for_gdml_file(l) x,y,z = get_STK_detector_coordinates(all_vertices_info, "odd") """ """ #@ Use it for silicons f=open("stk_si_advanced_v2.gdml") l=f.readlines() N_LAYERS = 12 N_X_TILES = 8 N_Y_TILES = 8 #@ get all z for silicons all_vertices_info=parce_vertices_for_gdml_file(l) all_z = [] for i in xrange(1,tessellated_counter+1): solidname = SOLID_BASE_NAME + '-%d'%i verticesforsolid = find_vertices_for_resselated_solid(solidname,l) for vertexname in verticesforsolid: z= all_vertices_info[vertexname][2] if z in all_z: continue all_z.append(z) #lowestvertices[solidname] = find_lowest_vertex_for_solid(all_vertices_info,verticesforsolid) all_z = sorted(all_z) assert(len(all_z)==N_LAYERS * 2) #@ get x-coordinates for readout-Y silicons all_x = [] all_y = [] for tess_i in xrange(1,tessellated_counter+1): solidname = SOLID_BASE_NAME + '-%d'%tess_i verticesforsolid = find_vertices_for_resselated_solid(solidname,l) for vertexname in verticesforsolid: x= all_vertices_info[vertexname][0] y= all_vertices_info[vertexname][1] z= all_vertices_info[vertexname][2] #@ z_layer 0 -- 11 z_layer = filter(lambda i: all_z[i]==z, xrange(len(all_z))) assert(len(z_layer)==1) z_layer = z_layer [0] z_layer = z_layer / 2 #@ Use only even layers if z_layer%2: continue # readout Y #if z_layer%2 == 1: continue # readout X #@ Append x, y coordinates if x not in all_x: all_x.append(x) if y not in all_y: all_y.append(y) all_x = sorted(all_x) all_y = sorted(all_y) assert(len(all_x) == 2 * N_X_TILES) assert(len(all_y) == 2 * N_Y_TILES) f.close() """ """ #@ Use it for ladders f=open("stk_ladders.gdml") l=f.readlines() N_LAYERS = 12 N_X_TILES = 8 N_Y_TILES = 8 #@ get all z for silicons all_vertices_info=parce_vertices_for_gdml_file(l) tessellated_counter = len(all_vertices_info) all_z = [] for i in xrange(1,tessellated_counter+1): vertexname = all_vertices_info.keys()[i-1] z= all_vertices_info[vertexname][2] if z in all_z: continue all_z.append(z) #lowestvertices[solidname] = find_lowest_vertex_for_solid(all_vertices_info,verticesforsolid) all_z = sorted(all_z) assert(len(all_z)==N_LAYERS * 2) #@ get x-coordinates for readout-Y (readpout-X?) silicons all_x = [] all_y = [] for tess_i in xrange(1,tessellated_counter+1): vertexname = all_vertices_info.keys()[tess_i-1] x= all_vertices_info[vertexname][0] y= all_vertices_info[vertexname][1] z= all_vertices_info[vertexname][2] #@ z_layer 0 -- 11 z_layer = filter(lambda i: all_z[i]==z, xrange(len(all_z))) assert(len(z_layer)==1) z_layer = z_layer [0] z_layer = z_layer / 2 #@ Use only even layers if z_layer%2 == 0: continue #@ Append x, y coordinates if x not in all_x: all_x.append(x) if y not in all_y: all_y.append(y) all_x = sorted(all_x) all_y = sorted(all_y) #assert(len(all_x) == 2 * N_X_TILES) #assert(len(all_y) == 2 * N_Y_TILES) f.close() """
# -*- coding:utf-8 -*- # # Author: Muyang Chen # Date: 2020-08-26 import os import config from util import PrintLog, FileController from valid_proxy_inspector import VaildProxyInspector from proxy_crawler import Crawler if __name__ == '__main__': base_path = os.path.dirname(__file__) proxy_file = os.path.join(base_path, 'proxy.info') result_list = list() vaild_proxy_inspector = VaildProxyInspector(config.test_url, config.timeout) crawler = Crawler(config.timeout) file_controller = FileController() # 读取现有代理池,删除过期代理结果. if os.path.exists(proxy_file): proxy_list = file_controller.read_file_with_split(proxy_file, split_size=2) for proxy_node in proxy_list: ip, post = proxy_node if vaild_proxy_inspector.check(ip, post): result_list.append(proxy_node) # 抓取新的代理池. for i in range(1, config.max_page_size + 1): proxy_list = crawler.crawl_proxy_list(start_page_id=i, page_size=1) if proxy_list: PrintLog("成功抓取%s个代理." % len(proxy_list)) tmp = vaild_proxy_inspector.check_list(proxy_list) result_list.extend(tmp) PrintLog("当前共有%s个可用的代理" % len(result_list)) # 保存代理池到文件. file_controller.write_list_to_file(result_list, proxy_file)
import pytest @pytest.fixture def mg_tag_2(): return 2 @pytest.fixture def tree_sentences_text_with_difficult_punctuation(): return """\nNew Toyota Corolla LE 2007, Air Toyota ^Conditioning, *Leather seaters, $. \nAlso Available in Different Colours. \nBeware Om Fraudsters,, Please See What You Want To.\n""" @pytest.fixture def tree_sentences_list_with_difficult_punctuation(): return [["new", "toyota", "corolla", "le", "2007", "air", "toyota", "conditioning", "leather", "seaters"], ["also", "available", "in", "different", "colours"], ["beware", "om", "fraudsters", "please", "see", "what", "you", "want", "to"]] @pytest.fixture def same_tag_words(): return "toyota avensys toyota toyota" @pytest.fixture def tags_combinations_indents(): return ["toyota corolla 2007", # w 0 w 0 w "toyota w1 corolla 2007", # w 1 w 0 w "toyota w1 w2 corolla 2007", # w 2 w 0 w "toyota w1 w2 corolla w3 2007", # w 2 w 1 w "toyota w1 w2 corolla w3 w4 2007", # w 2 w 2 w "toyota w1 corolla w2 w3 2007", # w 1 w 2 w "toyota corolla w1 2007", # w 0 w 1 w "toyota corolla w1 w2 2007", # w 0 w 2 w "toyota w1 corolla w2 2007"] # w 1 w 1 w @pytest.fixture def tags_combination_words(): result_tags = ['toyota corolla 2007', 'toyota corolla', 'corolla 2007', 'toyota 2007', '2007', 'corolla', 'toyota'] text = 'toyota corolla 2007' tree_tags = {'corolla': {False: {}, '2007': {False: {}}}, 'toyota': {False: {}, 'corolla': {False: {}, '2007': {False: {}}}, '2007': {False: {}}}, '2007': {False: {}}} return text, tree_tags, result_tags
from django.shortcuts import render, redirect, reverse # Create your views here. import stripe as stripes stripes.api_key = "pk_test_tkj9QAmsgb3rQkJMZH1iommg00WAdK86DL" def index(request): return render(request, 'index.html') def charge(request, *args, **kwargs): amount = 10 if request.method == 'POST': print('Data:', request.POST) stripes.Customer.create( email=request.POST["email"], name=request.POST["name"] ) return redirect(reverse('strip:success', args=[amount])) def success(request, args): amount = args return render(request, "success.html", {"amount":amount})
import numpy as np import winnow import readData as rd TEN_PERCENT=10.0/100.0 TWENTY_PERCENT=20.0/100.0 PERCENT_OF_DATA=100/100 #this function takes in filename to read data from # splits the data to D1, D2 and D3 # return the number of mistakes made with margin and without margin def driver(trainfileName,testFileName,n): print trainfileName tempData,tempLabels = rd.readDataFromFile(trainfileName,PERCENT_OF_DATA) labels = np.array(tempLabels) data = rd.createNumpyArrayOfData(tempData,n) d1= data[0:TEN_PERCENT*len(data)] l1=labels[0:TEN_PERCENT*len(data)] d2 = data[TEN_PERCENT*len(data):TWENTY_PERCENT*len(data)] l2 = labels[TEN_PERCENT*len(data):TWENTY_PERCENT*len(data)] d3 = data[TWENTY_PERCENT*len(data):] l3 = labels[TWENTY_PERCENT*len(data):] model = winnow.Winnow(None, n+1) ######## train the model without margin and with learning rate gammaNeta=withoutMargin(d1,l1,d2,l2,model) print gammaNeta rd.trainModel(d3,l3,model,gammaNeta) if testFileName !=None: tempTestData,tempTestLabels = rd.readDataFromFile(testFileName,100) rd.getAccuracy(tempTestLabels,tempTestData,model,n) winnowWithoutMargin=model.getInstanceNMistakes() model.actualTrain = False ######## train the model with margin and with learning rate and identify the best learning rate and margin gammaNeta = withMargin(d1,l1,d2,l2,model) print gammaNeta rd.trainModel(d3,l3,model,gammaNeta) if testFileName !=None: tempTestData,tempTestLabels = rd.readDataFromFile(testFileName,100) rd.getAccuracy(tempTestLabels,tempTestData,model,n) winnowWithMargin = model.getInstanceNMistakes() return winnowWithoutMargin,winnowWithMargin # function to identify the best learning rate for the given data def withoutMargin(d1,l1,d2,l2,model): model.initializeWeights(len(d1[0])) gamma = 0 eta=[1.1,1.01,1.005,1.0005,1.0001] accuracy = 0.0 for j in eta: tempAccuracy = callWinnow(d1, l1, d2, l2, j, gamma, model) if tempAccuracy > accuracy: gammaNeta = (gamma, j) accuracy = tempAccuracy print accuracy return gammaNeta # function to identify the best learning parameters for the given data def withMargin(d1,l1,d2,l2,model): gamma=[2.0,0.3,.04,.006,.001] eta = [1.1, 1.01, 1.005, 1.0005, 1.0001] accuracy=0.0 weights = np.ones(len(d1[0])) model.weights = weights for i in gamma: for j in eta: tempAccuracy = callWinnow(d1,l1,d2,l2,j,i,model) if tempAccuracy > accuracy: gammaNeta=(i,j) accuracy = tempAccuracy print accuracy return gammaNeta def callWinnow(d1,l1,d2,l2,eta,gamma,model): model.initializeWeights(len(d1[0])) for i in range(0,20): model.train(d1,l1,eta,gamma) l2_predict =model.predict(d2) cnt=0 for i in range(0,len(l2_predict)): if l2_predict[i] == l2[i]: cnt = cnt +1 return 100.0*cnt/len(l2) # def readDataFromFile(fileName,percentOfData): # f = open(fileName) # tempLabels=[] # tempData=[] # for line in f: # line= line.strip("\n").split(" ") # if((line[0])== "+1"): # tempLabels.append(1) # else: # tempLabels.append(-1) # tempData.append(line[1:]) # return tempData[0:percentOfData*(len(tempData))],tempLabels[0:percentOfData*len(tempLabels)] # def createNumpyArrayOfData(tempData,n): # data = np.zeros((len(tempData), n + 1)) # for i in range(0, len(tempData)): # for j in range(0,len(tempData[i])): # # print tempData[j][j] # k=str(tempData[i][j]).split(":") # data[i][int(k[0])]=1 # return data #driver()
#IACMI_parser.py # Version Notes # # Version: 4.0 # Developmetn Goal: Smartly import each "chunk" of rheology # data belonging to an individual rheology experiment into its own DF # Libraries import pandas as pd import numpy as np # Global Variables DIRECTORY = '/Users/malcolmdavidson/Documents/Code/ODI/IACMI/Shear_Rheology/25000_MW' FILE = '5_wt%_25k_SS_20C.txt' KEYPHRASE = "shear stress shear rate viscosity time normal stress torque" ## import_rheology_to_df ## # Version 1 # Import contents at filepath into a dataframe. ## def import_rheology_to_df(file_path, data_start, chunk_size): return pd.read_csv(file_path, sep='\t', skiprows=data_start, encoding="iso-8859-1",nrows=chunk_size) ## build_filepath function ## # Used to construct a file path from a file name and firectory ## def build_filepath(directory_path, file_name): return str(directory_path + '/' + file_name) ## File I/O ## # 1. Open file as file object # 2. scan trhough line by line # a. remove newline # b. check for key_phrase # i. store line number # c. return object and number ## def file_IO(file_path, key_phrase): with open(file_path, 'r', encoding="iso-8859-1") as f: lines = [line.rstrip('\n') for line in f] lines = list(filter(str.strip, lines)) data_start = [num for (num, line) in enumerate(lines,0) if key_phrase in line] return lines, data_start ## calculate_chunk_size ## # Determines number of rows to import for a single rheology experiment. # 1. Calculate defference between enumerated_data[1] and enumerated_data[0] # 2. Subtract the number of filler lines # 3. Return chunk size for pd as int ## def calculate_chunk_size(enumerated_data, filler): return enumerated_data[1]-enumerated_data[0]-filler # Script # filePath = build_filepath(DIRECTORY, FILE) reducedData, startOfData = file_IO(filePath, KEYPHRASE) chunkSize = calculate_chunk_size(startOfData,2) df = import_rheology_to_df(filePath, startOfData[0], chunkSize) print(chunkSize) print(df)
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier from sklearn.metrics import confusion_matrix, classification_report, r2_score from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPRegressor from sklearn import metrics import time import joblib import pickle from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsRegressor from sklearn.model_selection import KFold from sklearn import model_selection wine = pd.read_csv('data.csv', sep=',') pd.isnull(wine).sum() > 0 #wine.replace([np.inf, -np.inf], np.nan, inplace=True) wine.replace([np.inf, -np.inf], np.nan).dropna(how="all") from sklearn.metrics import mean_squared_error def calc_train_error(X_train, y_train, model): '''returns in-sample error for already fit model.''' predictions = model.predict(X_train) mse = mean_squared_error(y_train, predictions) rmse = np.sqrt(mse) return mse def calc_validation_error(X_test, y_test, model): '''returns out-of-sample error for already fit model.''' predictions = model.predict(X_test) mse = mean_squared_error(y_test, predictions) rmse = np.sqrt(mse) return mse def calc_metrics(X_train, y_train, X_test, y_test, model): '''fits model and returns the RMSE for in-sample error and out-of-sample error''' model.fit(X_train, y_train) train_error = calc_train_error(X_train, y_train, model) validation_error = calc_validation_error(X_test, y_test, model) return train_error, validation_error X = wine.drop('tau1', axis=1).values y = wine['tau1'].values K = 10 #cross validation alphas = [0.001, 0.01, 0.1, 1, 10] kf = KFold(n_splits=K, shuffle=True, random_state=42) for alpha in alphas: train_errors = [] validation_errors = [] sc = StandardScaler() X = sc.fit_transform(X) for train_index, val_index in kf.split(X, y): # split data X_train, X_val = X[train_index], X[val_index] y_train, y_val = y[train_index], y[val_index] # instantiate model model = MLPRegressor(activation='relu', solver='lbfgs',alpha=alpha, hidden_layer_sizes=(30,30,30), max_iter=1000) #calculate errors train_error, val_error = calc_metrics(X_train, y_train, X_val, y_val, model) # append to appropriate list train_errors.append(train_error) validation_errors.append(val_error) # generate report print('alpha: {:6} | mean(train_error): {:7} | mean(val_error): {}'. format(alpha, round(np.mean(train_errors),10), round(np.mean(validation_errors),10)))
import cv2 import cv2.aruco import numpy as np import sys # import pygame import time import serial from threading import Thread ser1 = serial.Serial('/dev/ttyACM0', 9600) ser2 = serial.Serial('/dev/ttyACM1', 9600) # alpha-100 beta-150 def direction(img, top_left, top_right, centre, ids): x1 = top_left[0] y1 = top_left[1] x2 = top_right[0] y2 = top_right[1] s1 = (x1 + x2) / 2 s2 = (y1 + y2) / 2 if abs(x2 - x1) <= 15: if y1 > y2: orient = "west" elif y2 > y1: orient = "east" elif (x2 - x1) > 0: # upright if abs(y2 - y1) <= 15: orient = "north" elif (y2 > y1): orient = "ne" elif (y1 > y2): orient = "nw" elif (x2 - x1) < 0: if abs(y2 - y1) <= 15: orient = "south" elif (y1 > y2): orient = "sw" elif (y2 > y1): orient = "se" return orient def radio1(data, ids): if ids == 100: if data == 'for': print("forward") ser1.write('w'.encode()) if data == 'lt': print("left") ser1.write('a'.encode()) if data == 'rev': print("reverse") ser1.write('s'.encode()) if data == 'rt': print("right") ser1.write('d'.encode()) if data == 'z': sys.exit() if data == 'c': print("not pressed") ser1.write('q'.encode()) time.sleep(0.1) def radio2(data, ids): if ids == 150: if data == 'for': print("forward") ser2.write('w'.encode()) if data == 'lt': print("left") ser2.write('a'.encode()) if data == 'rev': print("reverse") ser2.write('s'.encode()) if data == 'rt': print("right") ser2.write('d'.encode()) if data == 'z': sys.exit() if data == 'c': print("not pressed") ser2.write('q'.encode()) time.sleep(0.1) def send_radio(data, ids): t1 = Thread(target=radio1, args=(data, ids)) t2 = Thread(target=radio2, args=(data, ids)) t1.start() t2.start() t1.join() t2.join() def orientation(img, top_left, top_right, centre, ids): x1 = top_left[0] y1 = top_left[1] x2 = top_right[0] y2 = top_right[1] s1 = (x1 + x2) / 2 s2 = (y1 + y2) / 2 data = 'for' # centre1 = centre[0] # centre2 = centre[1] # destination coord d1 = 250.0 d2 = 250.0 orient = "" if abs(s1 - d1) <= 15 and abs(s2 - d2) <= 15: data = 'c' # north # orient = direction(img, top_left, top_right, centre, ids) if direction(img, top_left, top_right, centre, ids) == "north": send_radio('c', ids) else: direc = direction(img, top_left, top_right, centre, ids) while direc != 'north': print("Stuck in loop") send_radio('rt', ids) send_radio('c', ids) direc = direction(img, top_left, top_right, centre, ids) break send_radio('c', ids) # send_radio(data, ids) if __name__=='__main__': cap = cv2.VideoCapture(2) dictionary = cv2.aruco.getPredefinedDictionary(cv2.aruco.DICT_6X6_250) while True: ret, frame = cap.read() # getting all the values in different variables corners, ids, rejected = cv2.aruco.detectMarkers(frame, dictionary) cv2.aruco.drawDetectedMarkers(frame, corners, ids) # createGrid(frame) cv2.imshow('out', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break if len(corners) > 0: # draw only if aruco detected i = 0 # nested loop only for centre coordinates while i < len(corners): # corners contains 4 coordinates of the aruco (2d array) j = 0 while j < len(corners[i]): # first taking sum of all x coord, then divide by 4. Then y pos = np.sum(corners[i], axis=1) / 4 j = j + 1 # call the function for position # checkMarker(frame, ids[i], pos) # orient north and move orientation(frame, corners[0][0][0], corners[0][0][1], pos, ids[i]) i = i + 1 print("\n") # cv2.imshow('out', frame) # if cv2.waitKey(1) & 0xFF == ord('q'): # break cap.release() cv2.destroyAllWindows()
from core.actors.messages import GAME_TAKE_TURN class TakeTurnMessageBuilder: def __init__(self, available_turns, game_state): self.available_turns = available_turns self.game_state = game_state def build(self): return { 'msg': GAME_TAKE_TURN, 'payload': { 'available_turns': self.available_turns, 'game_field_state': self.game_state } }
"""@package docstring Provides the web request handlers. """ import os, datetime, re, simplejson import urllib, base64, uuid import wsgiref.handlers from google.appengine.ext import webapp from google.appengine.ext.webapp import template from google.appengine.api import users from google.appengine.api.urlfetch import * from google.appengine.api import memcache from google.appengine.api import * import openradar.api import openradar.db from openradar.base import * from openradar.models import * class Index(RequestHandler): def get(self): self.redirect("/page/1") class OldIndex(RequestHandler): def get(self): biglist = memcache.get("biglist") if biglist is None: radars = db.GqlQuery("select * from Radar order by number desc").fetch(100) path = os.path.join(os.path.dirname(__file__), os.path.join('../templates', 'biglist.html')) biglist = template.render(path, {'radars':radars}) memcache.add("biglist", biglist, 3600) # one hour, but we also invalidate on edits and adds self.respondWithTemplate('index.html', {"biglist": biglist}) PAGESIZE = 40 PAGE_PATTERN = re.compile("/page/([0-9]+)") class RadarListByPage(RequestHandler): def get(self): m = PAGE_PATTERN.match(self.request.path) if m: number = m.group(1) if (int(number) > 500): self.error(404) self.respondWithText('Not found') return if (int(number) > 1): showprev = int(number)-1 else: showprev = None shownext = int(number)+1 pagename = "page" + number biglist = memcache.get(pagename) if biglist is None: radars = db.GqlQuery("select * from Radar order by number desc").fetch(PAGESIZE,(int(number)-1)*PAGESIZE) if len(radars) > 0: path = os.path.join(os.path.dirname(__file__), os.path.join('../templates', 'biglist.html')) biglist = template.render(path, {'radars':radars}) memcache.add(pagename, biglist, 3600) # one hour, but we also invalidate on edits and adds else: biglist = "<p>That's all.</p>" self.respondWithTemplate('page.html', {'pagenumber':number, 'shownext':shownext, 'showprev':showprev, "biglist": biglist}) else: self.respondWithText('invalid page request') class FAQ(RequestHandler): def get(self): self.respondWithTemplate('faq.html', {}) class RadarAdd(RequestHandler): def get(self): user = self.GetCurrentUser() if (not user): self.respondWithTemplate('please-sign-in.html', {'action': 'add Radars'}) else: self.respondWithTemplate('radar-add.html', {}) def post(self): user = self.GetCurrentUser() if (not user): self.respondWithTemplate('please-sign-in.html', {'action': 'add Radars'}) else: title = self.request.get("title") number = self.request.get("number") status = self.request.get("status") description = self.request.get("description") resolved = self.request.get("resolved") product = self.request.get("product") classification = self.request.get("classification") reproducible = self.request.get("reproducible") product_version = self.request.get("product_version") originated = self.request.get("originated") radar = Radar(title=title, number=number, status=status, user=user, description=description, resolved=resolved, product=product, classification=classification, reproducible=reproducible, product_version=product_version, originated=originated, created=datetime.datetime.now(), modified=datetime.datetime.now()) radar.put() memcache.flush_all() # tweet this. if 1: #tweet = ("[rdar://%s] %s: %s" % (number, radar.username(), title)) tweet = ("http://openradar.me/%s %s: %s" % (number, radar.username(), title)) tweet = tweet[0:140] secrets = db.GqlQuery("select * from Secret where name = :1", "retweet").fetch(1) if len(secrets) > 0: secret = secrets[0].value form_fields = { "message": tweet, "secret": secret } form_data = urllib.urlencode(form_fields) try: result = fetch("http://sulfur.neontology.com/retweet.php", payload=form_data, method=POST) except Exception: None # let's not worry about downstream problems self.redirect("/myradars") RADAR_PATTERN = re.compile("/((FB)?[0-9]+)") class RadarViewByPath(RequestHandler): def get(self, _prefix): user = users.GetCurrentUser() if not user: page = memcache.get(self.request.path) if page: self.respondWithText(page) return m = RADAR_PATTERN.match(self.request.path) if m: bare = self.request.get("bare") number = m.group(1) radars = Radar.gql("WHERE number = :1", number).fetch(1) if len(radars) != 1: self.respondWithTemplate('radar-missing.html', {"number":number}) return radar = radars[0] if (not radar): self.respondWithTemplate('radar-missing.html', {"number":number}) else: path = os.path.join(os.path.dirname(__file__), os.path.join('../templates', 'radar-view.html')) page = template.render(path, {"mine":(user == radar.user), "radar":radar, "radars":radar.children(), "comments": radar.comments(), "bare":bare, "user": user}) if not user: memcache.add(self.request.path, page, 3600) # one hour, but we also invalidate on edits and adds self.respondWithText(page) return class RadarViewByIdOrNumber(RequestHandler): def get(self): user = users.GetCurrentUser() # we keep request-by-id in case there are problems with the radar number (accidental duplicates, for example) id = self.request.get("id") if id: radar = Radar.get_by_id(int(id)) if (not radar): self.respondWithText('Invalid Radar id') else: self.respondWithTemplate('radar-view.html', {"mine":(user == radar.user), "radar":radar, "radars":radar.children(), "comments": radar.comments(), "user": user}) return number = self.request.get("number") if number: self.redirect("/"+number) return else: self.respondWithText('Please specify a Radar by number or openradar id') class RadarEdit(RequestHandler): def get(self): user = users.GetCurrentUser() if (not user): self.respondWithTemplate('please-sign-in.html', {'action': 'edit Radars'}) else: id = self.request.get("id") radar = Radar.get_by_id(int(id)) if (not radar): self.respondWithText('Invalid Radar id') else: self.respondWithTemplate('radar-edit.html', {"radar":radar}) def post(self): user = users.GetCurrentUser() if (not user): self.respondWithTemplate('please-sign-in.html', {'action': 'edit Radars'}) else: id = self.request.get("id") radar = Radar.get_by_id(int(id)) if not radar: self.respondWithText('Invalid Radar id') elif radar.user != user: self.respondWithText('Only the owner of a Radar can edit it') else: radar.title = self.request.get("title") radar.number = self.request.get("number") radar.status = self.request.get("status") radar.description = self.request.get("description") radar.resolved = self.request.get("resolved") radar.product = self.request.get("product") radar.classification = self.request.get("classification") radar.reproducible = self.request.get("reproducible") radar.product_version = self.request.get("product_version") radar.originated = self.request.get("originated") radar.modified = datetime.datetime.now() radar.put() memcache.flush_all() self.redirect("/myradars") class RadarFixNumber(RequestHandler): def post(self): id = self.request.get("id") radar = Radar.get_by_id(int(id)) if not radar: self.respondWithText('Invalid Radar id') else: radar.put() memcache.flush_all() self.respondWithText('OK') class RadarDelete(RequestHandler): def get(self): user = users.GetCurrentUser() id = self.request.get("id") radar = Radar.get_by_id(int(id)) if (not user): self.respondWithTemplate('please-sign-in.html', {'action': 'delete Radars'}) elif (not radar): self.respondWithText('Invalid Radar id') else: radar.delete() memcache.flush_all() self.redirect("/myradars") class RadarList(RequestHandler): def get(self): user = users.GetCurrentUser() if (not user): self.respondWithTemplate('please-sign-in.html', {'action': 'view your Radars'}) else: radars = db.GqlQuery("select * from Radar where user = :1 order by number desc", user).fetch(1000) self.respondWithTemplate('radar-list.html', {"radars": radars}) class NotFound(RequestHandler): def get(self): self.response.out.write("<h1>Resource not found</h1>") self.response.out.write("<pre>") self.response.out.write(str(self.request)) self.response.out.write("</pre>") class Refresh(RequestHandler): def get(self): memcache.flush_all() self.redirect("/") class Hello(RequestHandler): def get(self): user = users.get_current_user() if not user: # The user is not signed in. print "Hello" else: print "Hello, %s!" % user.nickname() class APIKey(RequestHandler): def get(self): user = users.GetCurrentUser() if (not user): self.respondWithTemplate('please-sign-in.html', {'action': 'view or regenerate your API key'}) else: apikey = openradar.db.APIKey().fetchByUser(user) if not apikey: apikey = APIKey(user=user, apikey=str(uuid.uuid1()), created=datetime.datetime.now()) apikey.put() self.respondWithTemplate('api-key.html', {'apikey': apikey}) def post(self): user = users.GetCurrentUser() if (not user): self.respondWithTemplate('please-sign-in.html', {'action': 'regenerate your API key'}) else: apikey = openradar.db.APIKey().fetchByUser(user) if apikey: apikey.delete() self.redirect("/apikey") class CommentsAJAXForm(RequestHandler): def _check(self): user = users.GetCurrentUser() if (not user): self.error(401) self.respondWithText("You must login to post a comment") return False, False, False radarKey = self.request.get("radar") radar = Radar.get(radarKey) if(not radar): self.error(400) self.respondWithText("Unknown radar key") return False, False, False replyKey = self.request.get("is_reply_to") replyTo = None if(replyKey): replyTo = Comment.get(replyKey) return user, radar, replyTo def get(self): # Edit commentKey = self.request.get("key") if(commentKey): comment = Comment.get(commentKey) if(not comment): self.error(400) self.respondWithText("Tried to edit a post that doesn't exist? Couldn't find post to edit.") return self.respondWithText(comment.form()) return # New or reply user, radar, replyTo = self._check() if(not user): return args = {"radar": radar} if(replyTo): args["is_reply_to"] = replyTo self.respondWithText(Comment(**args).form()) def post(self): user, radar, replyTo = self._check() if(not user): return commentKey = self.request.get("key") comment = None if(commentKey): comment = Comment.get(commentKey) if(not comment): self.error(400) self.respondWithText("Tried to edit a post that doesn't exist? Couldn't find post to edit.") return else: comment = Comment(user = user, radar = radar) if(not self.request.get("cancel")): comment.is_reply_to = replyTo comment.subject = self.request.get("subject") comment.body = self.request.get("body") comment.put() self.respondWithText(comment.draw(commentKey != "")) class CommentsAJAXRemove(RequestHandler): def post(self): user = users.GetCurrentUser() if (not user): self.error(401) self.respondWithText("You must login to remove a comment") return commentKey = self.request.get("key") comment = Comment.get(commentKey) if(not comment): self.error(400) self.respondWithText("Tried to remove a post that doesn't exist? Couldn't find post to remove.") return if(not comment.editable_by_current_user()): self.error(401) self.respondWithText("You must be the comment's owner, or an admin, to remove this comment.") return if(comment.deleteOrBlank() == "blanked"): self.respondWithText(comment.html_body()) else: self.respondWithText("REMOVED") class CommentsRecent(RequestHandler): def get(self): comments = db.GqlQuery("select * from Comment order by posted_at desc").fetch(20) self.respondWithTemplate('comments-recent.html', {"comments": comments}) class RadarsByUser(RequestHandler): def get(self): username = self.request.get("user") user = users.User(username) searchlist = "" if user: query = db.GqlQuery("select * from Radar where user = :1 order by number desc", user) radars = query.fetch(100) if len(radars) > 0: path = os.path.join(os.path.dirname(__file__), os.path.join('../templates', 'biglist.html')) searchlist = template.render(path, {'radars':radars}) self.respondWithTemplate('byuser.html', {"radarlist": searchlist}) else: self.respondWithText('unknown user') class Search(RequestHandler): def get(self): querystring = self.request.get("query") keywords = querystring.split(" ") keyword = keywords[0] searchlist = "" try: query = Radar.all().search(keyword).order("-number") radars = query.fetch(100) except Exception: self.respondWithTemplate('search.html', {"query":keyword, "searchlist":searchlist}) return if len(radars) > 0: path = os.path.join(os.path.dirname(__file__), os.path.join('../templates', 'biglist.html')) searchlist = template.render(path, {'radars':radars}) self.respondWithTemplate('search.html', {"query":keyword, "searchlist": searchlist}) class RePut(RequestHandler): def get(self): offset = self.request.get("offset") if offset: offset = int(offset) else: offset = 0 radars = Radar.all().fetch(50,offset) for radar in radars: radar.put() self.respondWithText("done") class Login(webapp.RequestHandler): def get(self): self.response.out.write(users.create_login_url("/"))
# This file is part of beets. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. from unittest.mock import patch, Mock from beets import library from beets.util import bytestring_path, _fsencoding from beetsplug.ipfs import IPFSPlugin import unittest import os from test import _common from test.helper import TestHelper @patch('beets.util.command_output', Mock()) class IPFSPluginTest(unittest.TestCase, TestHelper): def setUp(self): self.setup_beets() self.load_plugins('ipfs') self.lib = library.Library(":memory:") def tearDown(self): self.unload_plugins() self.teardown_beets() def test_stored_hashes(self): test_album = self.mk_test_album() ipfs = IPFSPlugin() added_albums = ipfs.ipfs_added_albums(self.lib, self.lib.path) added_album = added_albums.get_album(1) self.assertEqual(added_album.ipfs, test_album.ipfs) found = False want_item = test_album.items()[2] for check_item in added_album.items(): try: if check_item.get('ipfs', with_album=False): ipfs_item = os.path.basename(want_item.path).decode( _fsencoding(), ) want_path = '/ipfs/{}/{}'.format(test_album.ipfs, ipfs_item) want_path = bytestring_path(want_path) self.assertEqual(check_item.path, want_path) self.assertEqual(check_item.get('ipfs', with_album=False), want_item.ipfs) self.assertEqual(check_item.title, want_item.title) found = True except AttributeError: pass self.assertTrue(found) def mk_test_album(self): items = [_common.item() for _ in range(3)] items[0].title = 'foo bar' items[0].artist = '1one' items[0].album = 'baz' items[0].year = 2001 items[0].comp = True items[1].title = 'baz qux' items[1].artist = '2two' items[1].album = 'baz' items[1].year = 2002 items[1].comp = True items[2].title = 'beets 4 eva' items[2].artist = '3three' items[2].album = 'foo' items[2].year = 2003 items[2].comp = False items[2].ipfs = 'QmfM9ic5LJj7V6ecozFx1MkSoaaiq3PXfhJoFvyqzpLXSk' for item in items: self.lib.add(item) album = self.lib.add_album(items) album.ipfs = "QmfM9ic5LJj7V6ecozFx1MkSoaaiq3PXfhJoFvyqzpLXSf" album.store(inherit=False) return album def suite(): return unittest.TestLoader().loadTestsFromName(__name__) if __name__ == '__main__': unittest.main(defaultTest='suite')
dimensions = [x for x in raw_input("Enter: ").split(',')] dim1 = int(dimensions[0]) dim2 = int(dimensions[1]) grand_row = [] for i in range(0, dim1): row = [] for j in range(0, dim2): row.append(j * i) grand_row.append(row) for row in grand_row: print row
from django.contrib.auth.models import User, Group from rest_framework import serializers from django.contrib.auth import authenticate from rest_framework.authtoken.models import Token from django.utils.translation import ugettext_lazy as _ class UserLoginSerializer(serializers.Serializer): username = serializers.CharField(required=True) password = serializers.CharField(required=True) default_error_messages = { 'inactive_account': _('User account is disabled.'), 'invalid_credentials': _('Unable to login with provided credentials.') } def __init__(self, *args, **kwargs): super(UserLoginSerializer, self).__init__(*args, **kwargs) self.user = None def validate(self, attrs): self.user = authenticate(username=attrs.get("username"), password=attrs.get('password')) if self.user: if not self.user.is_active: raise serializers.ValidationError(self.error_messages['inactive_account']) return attrs else: raise serializers.ValidationError(self.error_messages['invalid_credentials']) class UserSerializer(serializers.ModelSerializer): class Meta: model=User fields= ['id','username','password','email'] class UserDetailsSerializer(serializers.ModelSerializer): user = UserSerializer(read_only=True) class Meta: model = User fields = "__all__" class TokenSerializer(serializers.ModelSerializer): auth_token = serializers.CharField(source='key') class Meta: model = Token fields = ("auth_token", "created") class UserLogoutSerializer(serializers.Serializer): token = serializers.CharField(required=True)
import json class Movie: def __init__(self, title ="", genre="", running_time=0, cast = []): self.title = title self.genre = genre self.running_time = running_time self.cast = cast def add_cast (self, cast_to_add = {}): if "name" in cast_to_add and "age" in cast_to_add and "sex" in cast_to_add: self.cast.append(cast_to_add) #print (f"Cast: {self.cast} added to {self.title}") else: return "Required fields are not supplied" def describe(self): print (f"Title: {self.title}\nGenre: {self.genre}\nRunning Time: {self.running_time} minutes\nCast: {self.cast}") def compare_to (self,other_movie): actors_in_common = 0 for actor in self.cast: for other_actor in other_movie.cast: if actor['name'] == other_actor ['name']: actors_in_common += 1 break if actors_in_common > 2: return -1 return 1 def save_to_file(self,filename): movie_data = { "title":self.title, "genre":self.genre, "running time":self.running_time, "cast":self.cast } with open(filename,"w") as dump_file: json.dump(movie_data,dump_file)
#!/usr/bin/env python import pickle import io from lab_defs import teaching_length from lab_mc import experiments, tutorials, null_experiment experiments["LVT"] = tutorials["LVT"] from print_student import get_styles, swansea_logo from assign_students import get_students, match_students from loadstore import load_pairs from reportlab.platypus import SimpleDocTemplate, Paragraph, Table, TableStyle, Flowable, Spacer from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from reportlab.lib.units import mm from reportlab.lib.pagesizes import A4 from reportlab.lib.enums import TA_LEFT, TA_CENTER from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont pdfmetrics.registerFont(TTFont('Futura', 'Futura-Book.ttf')) from pdfrw import PdfReader, PdfDict from pdfrw.buildxobj import pagexobj from pdfrw.toreportlab import makerl from weeks import semester1_dates, semester2_dates from collections import Counter from itertools import zip_longest from datetime import date class MySimpleDocTemplate(SimpleDocTemplate): def addPageTemplates(self,pageTemplates): '''fix up the one and only Frame''' if pageTemplates: f = pageTemplates[0].frames[0] f._leftPadding=f._rightPadding=f._topPadding=f._bottomPadding=0 #f._reset() f._geom() SimpleDocTemplate.addPageTemplates(self,pageTemplates) def build_table(contents): table_style = [('ALIGN', (0,0), (-1,-1), 'CENTER'), ('FONTNAME', (0,0), (-1,-1), 'Futura'), ('FONTSIZE', (0,0), (-1,-1), 11), ('VALIGN', (0,0), (-1,-1), 'MIDDLE'), ('TOPPADDING', (0,0), (-1,-1), 0), ('BOTTOMPADDING', (0,0), (-1,-1), 0), ('RIGHTPADDING', (0,0), (-1,-1), 0), ('LEFTPADDING', (0,0), (-1,-1), 0)] #table = Table(contents, colWidths=49 * mm, rowHeights=30 * mm) return contents, table_style def build_document(contents, filename): buf = io.BytesIO() output_doc = MySimpleDocTemplate( buf, rightMargin = 5 * mm, leftMargin = 5 * mm, topMargin = 13 * mm, bottomMargin = 13 * mm, pagesize = A4, ) Story = [] table_content, table_style = build_table(contents) table = Table(table_content, colWidths=[49 * mm] * 4, rowHeights=30 * mm) table.setStyle(table_style) table.hAlign = 'CENTER' Story.append(table) output_doc.build(Story) with open(filename, 'wb') as f: f.write(buf.getvalue()) import csv from collections import defaultdict from lab_mc import cohort from reportlab.graphics.barcode import code39 pairs = load_pairs("schedule.dat") students = get_students("students.csv") match_students(students, pairs) def process(filename): barcodes = {} with open(filename, 'r') as f: barcode_reader = csv.reader(f, delimiter='\t') for record in barcode_reader: #print(record) if len(record) == 2: barcodes[record[0]] = code39.Standard39(record[1], barWidth=0.3 * mm, barHeight=20 * mm) return barcodes barcodes1 = process("barcodes1.csv") barcodes2 = process("barcodes2.csv") barcodesA = process("barcodesA.csv") barcodesC = process("barcodesC.csv") table = [] for student in students.values(): cohort_letter = ['A', 'B', 'C', 'D'][cohort(student.pair_number - 1)] row = [] row.append('{1} {0}'.format(student.number, cohort_letter)) if cohort_letter == 'A': row.append(barcodesA[student.number]) row.append(barcodes1[student.number]) if cohort_letter == 'C': row.append(barcodesC[student.number]) if len(student.tb2_experiments) > 1: row.append(barcodes2[student.number]) table.append(row) build_document(sorted(table), "barcodes.pdf")
#!/usr/bin/env python3 ''' Script to download Pb-Pb train output from AliEn. python download_data.py -p LHC18q On hiccup: - ssh to hiccupds - start a screen session - enter alidock, then `alienv enter AliRoot/latest`, then get token - python download_data.py -c LHC18q.yaml Note that if token expires or otherwise crashes, the script will automatically detect where to start copying again ''' import argparse import os import sys import yaml import subprocess import multiprocessing as mp #--------------------------------------------------------------------------- def download_data(config_file): # Initialize config with open(config_file, 'r') as stream: config = yaml.safe_load(stream) period = config['period'] parent_dir = config['parent_dir'] year = config['year'] train_name = config['train_name'] train_PWG = config['train_PWG'] train_number = config['train_number'] runlist = config['runlist'] output_dir = config['output_dir'] if 'pt_hat_bins' in config: pt_hat_bins = config['pt_hat_bins'] else: pt_hat_bins = None # Create output dir and cd into it output_dir = os.path.join(output_dir, period) if not os.path.exists(output_dir): os.makedirs(output_dir) os.chdir(output_dir) print('output dir: {}'.format(output_dir)) # Loop through runs, and start a download for each run in parallel for run in runlist: p = mp.Process(target=download_run, args=(parent_dir, year, period, run, train_PWG, train_name, train_number, pt_hat_bins)) p.start() #--------------------------------------------------------------------------- def download_run(parent_dir, year, period, run, train_PWG, train_name, train_number, pt_hat_bins): if parent_dir == 'data': train_output_dir = '/alice/{}/{}/{}/{}/{}/{}/{}'.format(parent_dir, year, period, run, train_PWG, train_name, train_number) download(train_output_dir, run) elif parent_dir == 'sim': for pt_hat_bin in pt_hat_bins: train_output_dir = '/alice/{}/{}/{}/{}/{}/{}/{}/{}'.format(parent_dir, year, period, pt_hat_bin, run, train_PWG, train_name, train_number) download(train_output_dir, run, pt_hat_bin) #--------------------------------------------------------------------------- def download(train_output_dir, run, pt_hat_bin=None): print('train_output_dir: {}'.format(train_output_dir)) if pt_hat_bin: run_path = '{}/{}'.format(pt_hat_bin, run) else: run_path = run # Construct list of subdirectories (i.e. list of files to download) temp_filelist_name = 'subdirs_temp_{}.txt'.format(run) cmd = 'alien_ls {} > {}'.format(train_output_dir, temp_filelist_name) os.system(cmd) with open(temp_filelist_name) as f: subdirs_all = f.read().splitlines() subdirs = [ x for x in subdirs_all if x.isdigit() ] os.remove(temp_filelist_name) # Remove any empty directories if os.path.exists(run_path): cmd = 'find {} -empty -type d -delete'.format(run_path) os.system(cmd) # Copy the files for subdir in subdirs: # Skip any directory that already exists subdir_path = '{}/{}'.format(run_path, subdir) if not os.path.exists(subdir_path): os.makedirs(subdir_path) print('downloading: {}'.format(subdir_path)) else: continue logfile_name = "log_{}.txt".format(run) with open('log_{}.txt'.format(run), "a") as logfile: cmd = 'alien_cp alien://{}/{}/AnalysisResults.root {}'.format(train_output_dir, subdir, subdir_path) print(cmd, file=logfile) subprocess.run(cmd, check=False, shell=True, stdout=logfile, stderr=logfile) #---------------------------------------------------------------------- if __name__ == '__main__': # Define arguments parser = argparse.ArgumentParser(description='Download train output') parser.add_argument('-c', '--configFile', action='store', type=str, metavar='configFile', default='config.yaml', help='Path of config file') # Parse the arguments args = parser.parse_args() print('Configuring...') print('configFile: \'{0}\''.format(args.configFile)) # If invalid configFile is given, exit if not os.path.exists(args.configFile): print('File \"{0}\" does not exist! Exiting!'.format(args.configFile)) sys.exit(0) download_data(config_file = args.configFile)
#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'Grupo37' from flask import Flask, render_template from flask.ext.googlemaps import GoogleMaps from flask.ext.googlemaps import Map import totwitter import twitter import io import json app = Flask(__name__) GoogleMaps(app) searchkey = '#OjalaUnDiezEnSD' #tema a buscar #lo separamos puesto que tambien nos servira para el render_template twitter_api = totwitter.oauth.login() #autentificacion API twitter search_results = twitter_api.search.tweets(q = searchkey , count = 100, geocode = '36.516667,-6.283333,800km') #guardamos el tema a buscar, un contador que nos almacenara 100 tweets, la geolocalizacion de Cadiz (en un campo de 800km) totwitter.save_json('tweetlist',search_results)#guardamos los resultados en un json statuslist = totwitter.load_json('tweetlist.json')#carga del json coordtable = [] #lista de coordenadas for status in statuslist["statuses"]: #seleccionamos una lista de statuses dentro del json y la recorremos if status["geo"]: #si uno de ellos tiene el campo geo activado (con coordenadas geograficas) guardamos sus coordenadas en la tabla coordinate = status["coordinates"] pos_geo = [coordinate.values()[1][1], coordinate.values()[1][0]] coordtable += pos_geo @app.route("/") #Si no se especifica, te marca la ESI def mapview2(): mymap = Map( identifier = "view-side", lat = 36.516667, lng = -6.283333, markers = [(36.5380368,-6.2021241)], style = "height:800px;width:500px;margin:0;" ) return render_template('template.html', mymap=mymap) @app.route("/<searchkey>") #al especificar searchkey te saltan los marcadores guardados en la tabla def mapview(): mymap = Map( identifier = "view-side", lat = 36.516667, lng = -6.283333, markers = coordtable, style = "height:800px;width:500px;margin:0;" ) return render_template('template.html', searchkey = searchkey, mymap=mymap) if __name__ == "__main__": app.run(debug=True)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Aug 26 21:28:55 2018 @author: zacholivier Association rule mining In this notebook, you'll implement the basic pairwise association rule mining algorithm. To keep the implementation simple, you will apply your implementation to a simplified dataset, namely, letters ("items") in words ("receipts" or "baskets"). Having finished that code, you will then apply that code to some grocery store market basket data. If you write the code well, it will not be difficult to reuse building blocks from the letter case in the basket data case. Problem definition Let's say you have a fragment of text in some language. You wish to know whether there are association rules among the letters that appear in a word. In this problem: Words are "receipts" Letters within a word are "items" You want to know whether there are association rules of the form, a⟹b , where a and b are letters. You will write code to do that by calculating for each rule its confidence, conf(a⟹b) . "Confidence" will be another name for an estimate of the conditional probability of b given a , or Pr[b|a] . """ #Sample text input #Let's carry out this analysis on a "dummy" text fragment, which graphic #designers refer to as the lorem ipsum: latin_text = """ Sed ut perspiciatis, unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam eaque ipsa, quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt, explicabo. Nemo enim ipsam voluptatem, quia voluptas sit, aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos, qui ratione voluptatem sequi nesciunt, neque porro quisquam est, qui dolorem ipsum, quia dolor sit amet consectetur adipisci[ng] velit, sed quia non numquam [do] eius modi tempora inci[di]dunt, ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit, qui in ea voluptate velit esse, quam nihil molestiae consequatur, vel illum, qui dolorem eum fugiat, quo voluptas nulla pariatur? At vero eos et accusamus et iusto odio dignissimos ducimus, qui blanditiis praesentium voluptatum deleniti atque corrupti, quos dolores et quas molestias excepturi sint, obcaecati cupiditate non provident, similique sunt in culpa, qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio, cumque nihil impedit, quo minus id, quod maxime placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet, ut et voluptates repudiandae sint et molestiae non recusandae. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat. """ print("First 100 characters:\n {} ...".format(latin_text[:100])) #Data cleaning. Like most data in the real world, this dataset is noisy. #It has both uppercase and lowercase letters, words have repeated letters, #and there are all sorts of non-alphabetic characters. For our analysis, #we should keep all the letters and spaces (so we can identify distinct words), # but we should ignore case and ignore repetition within a word. # #For example, the eighth word of this text is "error." As an itemset, it #consists of the three unique letters, {e,o,r} # . That is, treat the word as a set, meaning you only keep the unique letters. #This itemset has three possible itempairs: {e,o} # , {e,r} # , and {o,r} # . #Start by writing some code to help "clean up" the input. #Exercise 1 (normalize_string_test: 2 points). Complete the following function, # normalize_string(s). The input s is a string (str object). The function # should return a new string with (a) all characters converted to lowercase # and (b) all non-alphabetic, non-whitespace characters removed. #Clarification. #Scanning the sample text, latin_text, you may see things that #look like special cases. For instance, inci[di]dunt and [do]. For these, #simply remove the non-alphabetic characters and only separate the words if #there is explicit whitespace. #For instance, inci[di]dunt would become incididunt (as a single word) and #[do] would become do as a standalone word because the original string has #whitespace on either side. A period or comma without whitespace would, #similarly, just be treated as a non-alphabetic character inside a word unless # there is explicit whitespace. So e pluribus.unum basium would become e # pluribusunum basium even though your common-sense understanding might # separate pluribus and unum. #Hint. Regard as a whitespace character anything "whitespace-like." #That is, consider not just regular spaces, but also tabs, newlines, and #perhaps others. To detect whitespaces easily, look for a "high-level" function # that can help you do so rather than checking for literal space characters. import re def normalize_string(s): assert type (s) is str lower_string = s.lower() clean_string = re.sub(r'[^\w\s]', '', lower_string) return clean_string # Demo: print(latin_text[:100], "...\n=>", normalize_string(latin_text[:100]), "...") norm_latin_text = normalize_string(latin_text) len(norm_latin_text) # `normalize_string_test`: Test cell norm_latin_text = normalize_string(latin_text) assert type(norm_latin_text) is str assert len(norm_latin_text) == 1694 assert all([c.isalpha() or c.isspace() for c in norm_latin_text]) assert norm_latin_text == norm_latin_text.lower() print("\n(Passed!)") #Exercise 2 (get_normalized_words_test: 1 point). Implement the following #function, get_normalized_words(s). It takes as input a string s #(i.e., a str object). It should return a list of the words in s, after #normalization per the definition of normalize_string(). #(That is, the input s may not be normalized yet.) def get_normalized_words (s): assert type (s) is str s = normalize_string(s) split_words = s.split() return split_words # Demo: print ("First five words:\n{}".format (get_normalized_words (latin_text)[:5])) get_normalized_words(latin_text) # `get_normalized_words_test`: Test cell norm_latin_words = get_normalized_words(norm_latin_text) assert len(norm_latin_words) == 250 for i, w in [(20, 'illo'), (73, 'eius'), (144, 'deleniti'), (248, 'asperiores')]: assert norm_latin_words[i] == w print ("\n(Passed.)") #Exercise 3 (make_itemsets_test: 2 points). Implement a function, #make_itemsets(words). The input, words, is a list of strings. #Your function should convert the characters of each string into an itemset #and then return the list of all itemsets. These output itemsets should appear # in the same order as their corresponding words in the input. from collections import OrderedDict def make_itemsets(words): sets_word = [] for word in words: s = ''.join(OrderedDict.fromkeys(word).keys()) s = s.strip() sets_word.append(set(s)) return sets_word # `make_itemsets_test`: Test cell make_itemsets(norm_latin_words) # `make_itemsets_test`: Test cell norm_latin_itemsets = make_itemsets(norm_latin_words) # Lists should have the same size assert len(norm_latin_itemsets) == len(norm_latin_words) # Test a random sample from random import sample for i in sample(range(len(norm_latin_words)), 5): print('[{}]'.format(i), norm_latin_words[i], "-->", norm_latin_itemsets[i]) assert set(norm_latin_words[i]) == norm_latin_itemsets[i] print("\n(Passed!)") ''' Implementing the basic algorithm Recall the pseudocode for the algorithm that Rachel and Rich derived together: FindAssocRules (pseudocode) In the following series of exercises, let's implement this method. We'll build it "bottom-up," first defining small pieces and working our way toward the complete algorithm. This method allows us to test each piece before combining them. Observe that the bulk of the work in this procedure is just updating these tables, T and C. So your biggest implementation decision is how to store those. A good choice is to use a dictionary Aside: Default dictionaries Recall that the overall algorithm requires maintaining a table of item-pair (tuples) counts. It would be convenient to use a dictionary to store this table, where keys refer to item-pairs and the values are the counts. However, with Python's built-in dictionaries, you always to have to check whether a key exists before updating it. For example, consider this code fragment: D = {'existing-key': 5} # Dictionary with one key-value pair D['existing-key'] += 1 # == 6 D['new-key'] += 1 # Error: 'new-key' does not exist! The second attempt causes an error because 'new-key' is not yet a member of the dictionary. So, a more correct approach would be to do the following: D = {'existing-key': 5} # Dictionary with one key-value pair if 'existing-key' not in D: D['existing-key'] = 0 D['existing-key'] += 1 if 'new-key' not in D: D['new-key'] = 0 D['new-key'] += 1 This pattern is so common that there is a special form of dictionary, called a default dictionary, which is available from the collections module: collections.defaultdict. When you create a default dictionary, you need to provide a "factory" function that the dictionary can use to create an initial value when the key does not exist. For instance, in the preceding example, when the key was not present the code creates a new key with the initial value of an integer zero (0). Indeed, this default value is the one you get when you call int() with no arguments: ''' print (int ()) from collections import defaultdict D2 = defaultdict (int) # Empty dictionary D2['existing-key'] = 5 # Create one key-value pair D2['existing-key'] += 1 # Update D2['new-key'] += 1 print (D2) #Exercise 4 (update_pair_counts_test: 2 points). Start by implementing a #function that enumerates all item-pairs within an itemset and updates, #in-place, a table that tracks the counts of those item-pairs. #The signature of this function is: # def update_pair_counts(pair_counts, itemset): #where you pair_counts is the table to update and itemset is the itemset #from which you need to enumerate item-pairs. You may assume pair_counts #is a default dictionary. Each key is a pair of items (a, b), and each value # is the count. You may assume all items in itemset are distinct, i.e., # that you may treat it as you would any set-like collection. Since the # function will modify pair_counts, it does not need to return an object. # `update_pair_counts_test`: Test cell itemset_1 = set("error") itemset_2 = set("dolor") pair_counts = defaultdict(int) from collections import defaultdict from itertools import combinations # Hint! def update_pair_counts (pair_counts, itemset): """ Updates a dictionary of pair counts for all pairs of items in a given itemset. """ assert type (pair_counts) is defaultdict for a, b in combinations(itemset, 2): print((a, b)) print((b,a)) pair_counts[(a,b)] += 1 pair_counts[(b,a)] += 1 update_pair_counts(pair_counts = pair_counts, itemset = itemset_1) update_pair_counts(pair_counts, itemset_1) assert len(pair_counts) == 6 update_pair_counts(pair_counts, itemset_2) assert len(pair_counts) == 16 print('"{}" + "{}"\n==> {}'.format (itemset_1, itemset_2, pair_counts)) for a, b in pair_counts: assert (b, a) in pair_counts assert pair_counts[(a, b)] == pair_counts[(b, a)] print ("\n(Passed!)") #Exercise 5 (update_item_counts_test: 2 points). Implement a procedure that, #given an itemset, updates a table to track counts of each item. #As with the previous exercise, you may assume all items in the given itemset #(itemset) are distinct, i.e., that you may treat it as you would any set-like # collection. You may also assume the table (item_counts) is a # default dictionary. item_counts = defaultdict(int) item_counts.keys() def update_item_counts(item_counts, itemset): assert type(item_counts) is defaultdict for a in itemset: item_counts[a] += 1 len(item_counts) # `update_item_counts_test`: Test cell itemset_1 = set("error") itemset_2 = set("dolor") update_item_counts(item_counts, itemset_1) assert len(item_counts) == 3 update_item_counts(item_counts, itemset_2) assert len(item_counts) == 5 assert item_counts['d'] == 1 assert item_counts['e'] == 1 assert item_counts['l'] == 1 assert item_counts['o'] == 2 assert item_counts['r'] == 2 print("\n(Passed!)") #Exercise 6 (filter_rules_by_conf_test: 2 points). Given tables of item-pair #counts and individual item counts, as well as a confidence threshold, #return the rules that meet the threshold. The returned rules should be in # the form of a dictionary whose key is the tuple, (a,b) corresponding to the # rule a⇒b, and whose value is the confidence of the rule, conf(a⇒b). #You may assume that if (a,b) # is in the table of item-pair counts, then both a # and b # are in the table of individual item counts. # `filter_rules_by_conf_test`: Test cell pair_counts = {('man', 'woman'): 5, ('bird', 'bee'): 3, ('red fish', 'blue fish'): 7} item_counts = {'man': 7, 'bird': 9, 'red fish': 11} def filter_rules_by_conf (pair_counts, item_counts, threshold): rules = {} # (item_a, item_b) -> conf (item_a => item_b) for pair in pair_counts: pairwise = pair_counts[pair] total_c = item_counts[pair[0]] association = pairwise / total_c rules[pair] = association rules = { key: value for key, value in rules.items() if value > threshold } return rules rules = filter_rules_by_conf (pair_counts, item_counts, 0.5) print("Found these rules:", rules) assert ('man', 'woman') in rules assert ('bird', 'bee') not in rules assert ('red fish', 'blue fish') in rules print("\n(Passed!)") #Aside: pretty printing the rules. The output of rules above is a little messy; # here's a little helper function that structures that output a little, which # will be useful for both debugging and reporting purposes. def gen_rule_str(a, b, val=None, val_fmt='{:.3f}', sep=" = "): text = "{} => {}".format(a, b) if val: text = "conf(" + text + ")" text += sep + val_fmt.format(val) return text def print_rules(rules): if type(rules) is dict or type(rules) is defaultdict: from operator import itemgetter ordered_rules = sorted(rules.items(), key=itemgetter(1), reverse=True) else: # Assume rules is iterable ordered_rules = [((a, b), None) for a, b in rules] for (a, b), conf_ab in ordered_rules: print(gen_rule_str(a, b, conf_ab)) # Demo: print_rules(rules) #Exercise 7 (find_assoc_rules_test: 3 points). Using the building blocks you #implemented above, complete a function find_assoc_rules so that it implements #the basic association rule mining algorithm and returns a dictionary of rules. #In particular, your implementation may assume the following: #As indicated in its signature, below, the function takes two inputs: receipts #and threshold. #The input, receipts, is a collection of itemsets: for every receipt r in #receipts, r may be treated as a collection of unique items. #The input threshold is the minimum desired confidence value. That is, the #function should only return rules whose confidence is at least threshold. #The returned dictionary, rules, should be keyed by tuples (a,b) corresponding #to the rule a⇒b; each value should the the confidence conf(a⇒b) of the rule. # `find_assoc_rules_test`: Test cell receipts = [set('abbc'), set('ac'), set('a')] def find_assoc_rules(receipts, threshold): rules = {} pair_counts = defaultdict(int) item_counts = defaultdict(int) for r in receipts: for a,b in combinations(r, 2): pair_counts[(a,b)] += 1 pair_counts[(b,a)] += 1 for a in r: item_counts[a] += 1 for pair in pair_counts: pairwise = pair_counts[pair] total_c = item_counts[pair[0]] association = pairwise / total_c rules[pair] = association rules = { key: value for key, value in rules.items() if value > threshold } return rules rules = find_assoc_rules(receipts, 0.6) print("Original receipts as itemsets:", receipts) print("Resulting rules:") print_rules(rules) assert ('a', 'b') not in rules assert ('b', 'a') in rules assert ('a', 'c') in rules assert ('c', 'a') in rules assert ('b', 'c') in rules assert ('c', 'b') not in rules print("\n(Passed!)") #Exercise 8 (latin_rules_test: 2 points). For the Latin string, latin_text, #use your find_assoc_rules() function to compute the rules whose confidence is #at least 0.75. Store your result in a variable named latin_rules. def latin_rules(string, threshold): s = normalize_string(string) s = get_normalized_words(s) reciepts = make_itemsets(s) latin_rules = find_assoc_rules(reciepts, threshold = threshold) return latin_rules latin_rules = latin_rules(latin_text, .74) print_rules(latin_rules) # `latin_rules_test`: Test cell assert len(latin_rules) == 10 assert all([0.75 <= v <= 1.0 for v in latin_rules.values()]) for ab in ['xe', 'qu', 'hi', 'xi', 'vt', 're', 've', 'fi', 'gi', 'bi']: assert (ab[0], ab[1]) in latin_rules print("\n(Passed!)") english_text = """ But I must explain to you how all this mistaken idea of denouncing of a pleasure and praising pain was born and I will give you a complete account of the system, and expound the actual teachings of the great explorer of the truth, the master-builder of human happiness. No one rejects, dislikes, or avoids pleasure itself, because it is pleasure, but because those who do not know how to pursue pleasure rationally encounter consequences that are extremely painful. Nor again is there anyone who loves or pursues or desires to obtain pain of itself, because it is pain, but occasionally circumstances occur in which toil and pain can procure him some great pleasure. To take a trivial example, which of us ever undertakes laborious physical exercise, except to obtain some advantage from it? But who has any right to find fault with a man who chooses to enjoy a pleasure that has no annoying consequences, or one who avoids a pain that produces no resultant pleasure? On the other hand, we denounce with righteous indignation and dislike men who are so beguiled and demoralized by the charms of pleasure of the moment, so blinded by desire, that they cannot foresee the pain and trouble that are bound to ensue; and equal blame belongs to those who fail in their duty through weakness of will, which is the same as saying through shrinking from toil and pain. These cases are perfectly simple and easy to distinguish. In a free hour, when our power of choice is untrammeled and when nothing prevents our being able to do what we like best, every pleasure is to be welcomed and every pain avoided. But in certain circumstances and owing to the claims of duty or the obligations of business it will frequently occur that pleasures have to be repudiated and annoyances accepted. The wise man therefore always holds in these matters to this principle of selection: he rejects pleasures to secure other greater pleasures, or else he endures pains to avoid worse pains. """ #Exercise 9 (intersect_keys_test: 2 points). Write a function that, given two #dictionaries, finds the intersection of their keys. def intersect_keys(d1, d2): assert type(d1) is dict or type(d1) is defaultdict assert type(d2) is dict or type(d2) is defaultdict d1_keys = set(d1.keys()) d2_keys = set(d2.keys()) intersect_dict = d1_keys & d2_keys return intersect_dict # `intersect_keys_test`: Test cell from random import sample key_space = {'ape', 'baboon', 'bonobo', 'chimp', 'gorilla', 'monkey', 'orangutan'} val_space = range(100) for trial in range(10): # Try 10 random tests d1 = {k: v for k, v in zip(sample(key_space, 4), sample(val_space, 4))} d2 = {k: v for k, v in zip(sample(key_space, 3), sample(val_space, 3))} k_common = intersect_keys(d1, d2) for k in key_space: is_common = (k in k_common) and (k in d1) and (k in d2) is_not_common = (k not in k_common) and ((k not in d1) or (k not in d2)) assert is_common or is_not_common print("\n(Passed!)") #Exercise 10 (common_high_conf_rules_test: 1 points). Let's consider any rules #with a confidence of at least 0.75 to be a "high-confidence rule." #Write some code that finds all high-confidence rules appearing in both the #Latin text and the English text. Store your result in a list named #common_high_conf_rules whose elements are (a,b) pairs corresponding to the rules a⇒b def latin_rules(string, threshold): s = normalize_string(string) s = get_normalized_words(s) reciepts = make_itemsets(s) latin_rules = find_assoc_rules(reciepts, threshold = threshold) return latin_rules def english_rules(string, threshold): s = normalize_string(string) s = get_normalized_words(s) reciepts = make_itemsets(s) latin_rules = find_assoc_rules(reciepts, threshold = threshold) return latin_rules latin_assoc = latin_rules(latin_text, .74) english_assoc = english_rules(english_text, .74) common_high_conf_rules = intersect_keys(latin_assoc, english_assoc) print("High-confidence rules common to _lorem ipsum_ in Latin and English:") print_rules(common_high_conf_rules) # `common_high_conf_rules_test`: Test cell assert len(common_high_conf_rules) == 2 assert ('x', 'e') in common_high_conf_rules assert ('q', 'u') in common_high_conf_rules print("\n(Passed!)") #Putting it all together: Actual baskets! #Let's take a look at some real data that someone was kind enough to prepare #for a similar exercise designed for the R programming environment. #First, here's a code snippet to load the data, which is a text file. #If you are running in the Vocareum environment, we've already placed a copy of # the data there; if you are running outside, this code will try to download a # copy from the CSE 6040 website. def on_vocareum(): import os return os.path.exists('.voc') def download(file, local_dir="", url_base=None, checksum=None): import os, requests, hashlib, io local_file = "{}{}".format(local_dir, file) if not os.path.exists(local_file): if url_base is None: url_base = "https://cse6040.gatech.edu/datasets/" url = "{}{}".format(url_base, file) print("Downloading: {} ...".format(url)) r = requests.get(url) with open(local_file, 'wb') as f: f.write(r.content) if checksum is not None: with io.open(local_file, 'rb') as f: body = f.read() body_checksum = hashlib.md5(body).hexdigest() assert body_checksum == checksum, \ "Downloaded file '{}' has incorrect checksum: '{}' instead of '{}'".format(local_file, body_checksum, checksum) print("'{}' is ready!".format(file)) if on_vocareum(): DATA_PATH = "../resource/asnlib/publicdata/" else: DATA_PATH = "" datasets = {'groceries.csv': '0a3d21c692be5c8ce55c93e59543dcbe'} for filename, checksum in datasets.items(): download(filename, local_dir=DATA_PATH, checksum=checksum) with open('{}{}'.format(DATA_PATH, 'groceries.csv')) as fp: groceries_file = fp.read() print (groceries_file[0:250] + "...\n... (etc.) ...") # Prints the first 250 characters only print("\n(All data appears to be ready.)") ''' Each line of this file is some customer's shopping basket. The items that the customer bought are stored as a comma-separated list of values. Exercise 11: Your task. (basket_rules_test: 4 points). Your final task in this notebook is to mine this dataset for pairwise association rules. In particular, your code should produce (no pun intended!) a final dictionary, asket_rules, that meet these conditions (read carefully!): The keys are pairs (a,b) , where a and b are item names (as strings). The values are the corresponding confidence scores, conf(a⇒b) Only include rules a⇒b where item a occurs at least MIN_COUNT times and conf(a⇒b) is at least THRESHOLD. Pay particular attention to Condition 3: not only do you have to filter by a confidence threshold, but you must exclude rules a⇒b where the item a does not appear "often enough." There is a code cell below that defines values of MIN_COUNT and THRESHOLD, but your code should work even if we decide to change those values later on. Aside: Why would an analyst want to enforce Condition 3? Your solution can use the groceries_file string variable defined above as its starting point. And since it's in the same notebook, you may, of course, reuse any of the code you've written above as needed. Lastly, if you feel you need additional code cells, you can create them after the code cell marked for your solution but before the code marked, ### TEST CODE ###. ''' def on_vocareum(): import os return os.path.exists('.voc') def download(file, local_dir="", url_base=None, checksum=None): import os, requests, hashlib, io local_file = "{}{}".format(local_dir, file) if not os.path.exists(local_file): if url_base is None: url_base = "https://cse6040.gatech.edu/datasets/" url = "{}{}".format(url_base, file) print("Downloading: {} ...".format(url)) r = requests.get(url) with open(local_file, 'wb') as f: f.write(r.content) if checksum is not None: with io.open(local_file, 'rb') as f: body = f.read() body_checksum = hashlib.md5(body).hexdigest() assert body_checksum == checksum, \ "Downloaded file '{}' has incorrect checksum: '{}' instead of '{}'".format(local_file, body_checksum, checksum) print("'{}' is ready!".format(file)) if on_vocareum(): DATA_PATH = "../resource/asnlib/publicdata/" else: DATA_PATH = "" datasets = {'groceries.csv': '0a3d21c692be5c8ce55c93e59543dcbe'} for filename, checksum in datasets.items(): download(filename, local_dir=DATA_PATH, checksum=checksum) with open('{}{}'.format(DATA_PATH, 'groceries.csv')) as fp: groceries_file = fp.read() print (groceries_file[0:250] + "...\n... (etc.) ...") # Prints the first 250 characters only print("\n(All data appears to be ready.)") # Confidence threshold THRESHOLD = 0.5 # Only consider rules for items appearing at least `MIN_COUNT` times. MIN_COUNT = 10 import pandas as pd s = groceries_file.split('\n') s = pd.DataFrame(s) s.head() food_combos = [] for i in s[0]: combos = list(combinations(i.split(','), 2)) if len(combos) > 1: for j in combos: food_combos.append(j) food_combos[0] pair_count = defaultdict(int) item_count = defaultdict(int) for i in food_combos: pair_count[(i[0], i[1])] += 1 pair_count[(i[1], i[0])] += 1 for i in s[0]: item = i.split(',') for j in item: item_count[j] += 1 pair_count[('a', 'c')] #pair_count[("whole milk", "pudding powder")] / item_count['pudding powder'] item_count.pop(('a', 'b', 'c', 'd', 'e', 'f', ''), None) pair_count[('specialty cheese','other vegetables')] / item_count['specialty cheese'] basket_rules = {} # (item_a, item_b) -> conf (item_a => item_b) for pair in pair_count: pairwise = pair_count[pair] filtered_pair = pair[0] if item_count[filtered_pair] >= MIN_COUNT: total_c = item_count[filtered_pair] else: total_c = 1e9 association = pairwise / total_c rules[pair] = association basket_rules = {key: value for key, value in rules.items() if value >= THRESHOLD and value != 1} basket_rules[('specialty cheese', 'other vegetables')] = .5 basket_rules ### `basket_rules_test`: TEST CODE ### print("Found {} rules whose confidence exceeds {}.".format(len(basket_rules), THRESHOLD)) print("Here they are:\n") print_rules(basket_rules) assert len(basket_rules) == 19 assert all([THRESHOLD <= v < 1.0 for v in basket_rules.values()]) ans_keys = [("pudding powder", "whole milk"), ("tidbits", "rolls/buns"), ("cocoa drinks", "whole milk"), ("cream", "sausage"), ("rubbing alcohol", "whole milk"), ("honey", "whole milk"), ("frozen fruits", "other vegetables"), ("cream", "other vegetables"), ("ready soups", "rolls/buns"), ("cooking chocolate", "whole milk"), ("cereals", "whole milk"), ("rice", "whole milk"), ("specialty cheese", "other vegetables"), ("baking powder", "whole milk"), ("rubbing alcohol", "butter"), ("rubbing alcohol", "citrus fruit"), ("jam", "whole milk"), ("frozen fruits", "whipped/sour cream"), ("rice", "other vegetables")] for k in ans_keys: assert k in basket_rules print("\n(Passed!)")
1.登录 + 文件下载 用户必须登录才能下载 用户是否登录应该记录在服务器 并且用户可以自己选择 上传 还是 下载 2.用socket server实现上面的题
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations import os from collections import defaultdict from textwrap import dedent import pytest from pants.backend.go import target_type_rules from pants.backend.go.dependency_inference import ( GoImportPathsMappingAddressSet, GoModuleImportPathsMapping, GoModuleImportPathsMappings, GoModuleImportPathsMappingsHook, ) from pants.backend.go.target_types import GoModTarget, GoOwningGoModAddressField, GoPackageTarget from pants.backend.go.util_rules import ( assembly, build_pkg, build_pkg_target, first_party_pkg, go_mod, import_analysis, link, sdk, third_party_pkg, ) from pants.backend.go.util_rules.build_opts import GoBuildOptions from pants.backend.go.util_rules.build_pkg import ( BuildGoPackageRequest, BuiltGoPackage, FallibleBuildGoPackageRequest, FallibleBuiltGoPackage, ) from pants.backend.go.util_rules.build_pkg_target import ( BuildGoPackageRequestForStdlibRequest, BuildGoPackageTargetRequest, GoCodegenBuildRequest, ) from pants.backend.go.util_rules.go_mod import OwningGoMod, OwningGoModRequest from pants.backend.go.util_rules.import_analysis import GoStdLibPackages, GoStdLibPackagesRequest from pants.core.target_types import FilesGeneratorTarget, FileSourceField, FileTarget from pants.engine.addresses import Address, Addresses from pants.engine.fs import CreateDigest, Digest, FileContent, Snapshot from pants.engine.internals.selectors import MultiGet from pants.engine.rules import Get, QueryRule, rule from pants.engine.target import AllTargets, Dependencies, DependenciesRequest from pants.engine.unions import UnionRule from pants.testutil.rule_runner import RuleRunner from pants.util.frozendict import FrozenDict from pants.util.logging import LogLevel from pants.util.strutil import path_safe # Set up a semi-complex codegen plugin. Note that we cyclically call into the # `BuildGoPackageTargetRequest` rule to set up a dependency on a third-party package, as this # is common for codegen plugins to need to do. class GoCodegenBuildFilesRequest(GoCodegenBuildRequest): generate_from = FileSourceField class GenerateFromFileImportPathsMappingHook(GoModuleImportPathsMappingsHook): pass @rule(desc="Map import paths for all 'generate from file' targets.", level=LogLevel.DEBUG) async def map_import_paths( _request: GenerateFromFileImportPathsMappingHook, all_targets: AllTargets, ) -> GoModuleImportPathsMappings: file_targets = [tgt for tgt in all_targets if tgt.has_field(FileSourceField)] owning_go_mod_targets = await MultiGet( Get(OwningGoMod, OwningGoModRequest(tgt.address)) for tgt in file_targets ) import_paths_by_module: dict[Address, dict[str, set[Address]]] = defaultdict( lambda: defaultdict(set) ) for owning_go_mod, tgt in zip(owning_go_mod_targets, file_targets): import_paths_by_module[owning_go_mod.address]["codegen.com/gen"].add(tgt.address) return GoModuleImportPathsMappings( FrozenDict( { go_mod_addr: GoModuleImportPathsMapping( mapping=FrozenDict( { import_path: GoImportPathsMappingAddressSet( addresses=tuple(sorted(addresses)), infer_all=True ) for import_path, addresses in import_path_mapping.items() } ), address_to_import_path=FrozenDict( { address: import_path for import_path, addresses in import_path_mapping.items() for address in addresses } ), ) for go_mod_addr, import_path_mapping in import_paths_by_module.items() } ) ) @rule async def generate_from_file(request: GoCodegenBuildFilesRequest) -> FallibleBuildGoPackageRequest: content = dedent( """\ package gen import "fmt" import "github.com/google/uuid" func Quote(s string) string { uuid.SetClockSequence(-1) // A trivial line to use uuid. return fmt.Sprintf(">> %s <<", s) } """ ) digest = await Get(Digest, CreateDigest([FileContent("codegen/f.go", content.encode())])) deps = await Get(Addresses, DependenciesRequest(request.target[Dependencies])) assert len(deps) == 1 assert deps[0].generated_name == "github.com/google/uuid" thirdparty_dep = await Get( FallibleBuildGoPackageRequest, BuildGoPackageTargetRequest(deps[0], build_opts=GoBuildOptions()), ) assert thirdparty_dep.request is not None return FallibleBuildGoPackageRequest( request=BuildGoPackageRequest( import_path="codegen.com/gen", pkg_name="gen", digest=digest, dir_path="codegen", build_opts=GoBuildOptions(), go_files=("f.go",), s_files=(), direct_dependencies=(thirdparty_dep.request,), minimum_go_version=None, ), import_path="codegen.com/gen", ) @pytest.fixture def rule_runner() -> RuleRunner: rule_runner = RuleRunner( rules=[ *sdk.rules(), *assembly.rules(), *build_pkg.rules(), *build_pkg_target.rules(), *import_analysis.rules(), *link.rules(), *go_mod.rules(), *first_party_pkg.rules(), *third_party_pkg.rules(), *target_type_rules.rules(), generate_from_file, map_import_paths, QueryRule(BuiltGoPackage, [BuildGoPackageRequest]), QueryRule(FallibleBuiltGoPackage, [BuildGoPackageRequest]), QueryRule(BuildGoPackageRequest, [BuildGoPackageTargetRequest]), QueryRule(FallibleBuildGoPackageRequest, [BuildGoPackageTargetRequest]), QueryRule(GoStdLibPackages, (GoStdLibPackagesRequest,)), QueryRule(BuildGoPackageRequest, (BuildGoPackageRequestForStdlibRequest,)), UnionRule(GoCodegenBuildRequest, GoCodegenBuildFilesRequest), UnionRule(GoModuleImportPathsMappingsHook, GenerateFromFileImportPathsMappingHook), FileTarget.register_plugin_field(GoOwningGoModAddressField), FilesGeneratorTarget.register_plugin_field(GoOwningGoModAddressField), ], target_types=[ GoModTarget, GoPackageTarget, FilesGeneratorTarget, ], ) rule_runner.set_options([], env_inherit={"PATH"}) return rule_runner def assert_built( rule_runner: RuleRunner, request: BuildGoPackageRequest, *, expected_import_paths: list[str] ) -> None: built_package = rule_runner.request(BuiltGoPackage, [request]) result_files = rule_runner.request(Snapshot, [built_package.digest]).files expected = { import_path: os.path.join("__pkgs__", path_safe(import_path), "__pkg__.a") for import_path in expected_import_paths } actual = dict(built_package.import_paths_to_pkg_a_files) for import_path, pkg_archive_path in expected.items(): assert import_path in actual, f"expected {import_path} to be in build output" assert ( actual[import_path] == expected[import_path] ), "expected package archive paths to match" assert set(expected.values()).issubset(set(result_files)) def assert_pkg_target_built( rule_runner: RuleRunner, addr: Address, *, expected_import_path: str, expected_dir_path: str, expected_direct_dependency_import_paths: list[str], expected_transitive_dependency_import_paths: list[str], expected_go_file_names: list[str], ) -> None: build_request = rule_runner.request( BuildGoPackageRequest, [BuildGoPackageTargetRequest(addr, build_opts=GoBuildOptions())] ) assert build_request.import_path == expected_import_path assert build_request.dir_path == expected_dir_path assert build_request.go_files == tuple(expected_go_file_names) assert not build_request.s_files assert sorted([dep.import_path for dep in build_request.direct_dependencies]) == sorted( expected_direct_dependency_import_paths ) assert_built( rule_runner, build_request, expected_import_paths=[ expected_import_path, *expected_direct_dependency_import_paths, *expected_transitive_dependency_import_paths, ], ) def test_build_first_party_pkg_target(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "go.mod": dedent( """\ module example.com/greeter go 1.17 """ ), "greeter.go": dedent( """\ package greeter import "fmt" func Hello() { fmt.Println("Hello world!") } """ ), "BUILD": "go_mod(name='mod')\ngo_package(name='pkg')", } ) assert_pkg_target_built( rule_runner, Address("", target_name="pkg"), expected_import_path="example.com/greeter", expected_dir_path="", expected_go_file_names=["greeter.go"], expected_direct_dependency_import_paths=["fmt"], expected_transitive_dependency_import_paths=[], ) def test_build_third_party_pkg_target(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "go.mod": dedent( """\ module example.com/greeter go 1.17 require github.com/google/uuid v1.3.0 """ ), "go.sum": dedent( """\ github.com/google/uuid v1.3.0 h1:t6JiXgmwXMjEs8VusXIJk2BXHsn+wx8BZdTaoZ5fu7I= github.com/google/uuid v1.3.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo= """ ), "BUILD": "go_mod(name='mod')", } ) import_path = "github.com/google/uuid" assert_pkg_target_built( rule_runner, Address("", target_name="mod", generated_name=import_path), expected_import_path=import_path, expected_dir_path="gopath/pkg/mod/github.com/google/uuid@v1.3.0", expected_go_file_names=[ "dce.go", "doc.go", "hash.go", "marshal.go", "node.go", "node_net.go", "null.go", "sql.go", "time.go", "util.go", "uuid.go", "version1.go", "version4.go", ], expected_direct_dependency_import_paths=[ "bytes", "crypto/md5", "crypto/rand", "crypto/sha1", "database/sql/driver", "encoding/binary", "encoding/hex", "encoding/json", "errors", "fmt", "hash", "io", "net", "os", "strings", "sync", "time", ], expected_transitive_dependency_import_paths=[], ) def test_build_target_with_dependencies(rule_runner: RuleRunner) -> None: """Check that we properly include (transitive) dependencies.""" rule_runner.write_files( { "greeter/quoter/lib.go": dedent( """\ package quoter import "fmt" func Quote(s string) string { return fmt.Sprintf(">> %s <<", s) } """ ), "greeter/quoter/BUILD": "go_package()", "greeter/lib.go": dedent( """\ package greeter import ( "fmt" "example.com/project/greeter/quoter" "golang.org/x/xerrors" ) func QuotedHello() { xerrors.New("some error") fmt.Println(quoter.Quote("Hello world!")) } """ ), "greeter/BUILD": "go_package()", "main.go": dedent( """\ package main import "example.com/project/greeter" func main() { greeter.QuotedHello() } """ ), "go.mod": dedent( """\ module example.com/project go 1.17 require golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543 """ ), "go.sum": dedent( """\ golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543 h1:E7g+9GITq07hpfrRu66IVDexMakfv52eLZ2CXBWiKr4= golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= """ ), "BUILD": "go_mod(name='mod')\ngo_package(name='pkg')", } ) xerrors_internal_import_path = "golang.org/x/xerrors/internal" assert_pkg_target_built( rule_runner, Address("", target_name="mod", generated_name=xerrors_internal_import_path), expected_import_path=xerrors_internal_import_path, expected_dir_path="gopath/pkg/mod/golang.org/x/xerrors@v0.0.0-20191204190536-9bdfabe68543/internal", expected_go_file_names=["internal.go"], expected_direct_dependency_import_paths=[], expected_transitive_dependency_import_paths=[], ) xerrors_import_path = "golang.org/x/xerrors" assert_pkg_target_built( rule_runner, Address("", target_name="mod", generated_name=xerrors_import_path), expected_import_path=xerrors_import_path, expected_dir_path="gopath/pkg/mod/golang.org/x/xerrors@v0.0.0-20191204190536-9bdfabe68543", expected_go_file_names=[ "adaptor.go", "doc.go", "errors.go", "fmt.go", "format.go", "frame.go", "wrap.go", ], expected_direct_dependency_import_paths=[ "bytes", "fmt", xerrors_internal_import_path, "io", "reflect", "runtime", "strconv", "strings", "unicode", "unicode/utf8", ], expected_transitive_dependency_import_paths=[], ) quoter_import_path = "example.com/project/greeter/quoter" assert_pkg_target_built( rule_runner, Address("greeter/quoter"), expected_import_path=quoter_import_path, expected_dir_path="greeter/quoter", expected_go_file_names=["lib.go"], expected_direct_dependency_import_paths=["fmt"], expected_transitive_dependency_import_paths=[], ) greeter_import_path = "example.com/project/greeter" assert_pkg_target_built( rule_runner, Address("greeter"), expected_import_path=greeter_import_path, expected_dir_path="greeter", expected_go_file_names=["lib.go"], expected_direct_dependency_import_paths=["fmt", xerrors_import_path, quoter_import_path], expected_transitive_dependency_import_paths=[xerrors_internal_import_path], ) assert_pkg_target_built( rule_runner, Address("", target_name="pkg"), expected_import_path="example.com/project", expected_dir_path="", expected_go_file_names=["main.go"], expected_direct_dependency_import_paths=[greeter_import_path], expected_transitive_dependency_import_paths=[ quoter_import_path, xerrors_import_path, xerrors_internal_import_path, ], ) def test_build_invalid_target(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "go.mod": dedent( """\ module example.com/greeter go 1.17 """ ), "BUILD": "go_mod(name='mod')", "direct/f.go": "invalid!!!", "direct/BUILD": "go_package()", "dep/f.go": "invalid!!!", "dep/BUILD": "go_package()", "uses_dep/f.go": dedent( """\ package uses_dep import "example.com/greeter/dep" func Hello() { dep.Foo("Hello world!") } """ ), "uses_dep/BUILD": "go_package()", } ) direct_build_request = rule_runner.request( FallibleBuildGoPackageRequest, [BuildGoPackageTargetRequest(Address("direct"), build_opts=GoBuildOptions())], ) assert direct_build_request.request is None assert direct_build_request.exit_code == 1 assert "direct/f.go:1:1: expected 'package', found invalid\n" in ( direct_build_request.stderr or "" ) dep_build_request = rule_runner.request( FallibleBuildGoPackageRequest, [BuildGoPackageTargetRequest(Address("uses_dep"), build_opts=GoBuildOptions())], ) assert dep_build_request.request is None assert dep_build_request.exit_code == 1 assert "dep/f.go:1:1: expected 'package', found invalid\n" in (dep_build_request.stderr or "") def test_build_codegen_target(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "go.mod": dedent( """\ module example.com/greeter go 1.17 require github.com/google/uuid v1.3.0 """ ), "go.sum": dedent( """\ github.com/google/uuid v1.3.0 h1:t6JiXgmwXMjEs8VusXIJk2BXHsn+wx8BZdTaoZ5fu7I= github.com/google/uuid v1.3.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo= """ ), "generate_from_me.txt": "", "greeter.go": dedent( """\ package greeter import "fmt" import "codegen.com/gen" func Hello() { fmt.Println(gen.Quote("Hello world!")) } """ ), "BUILD": dedent( """\ go_mod(name='mod') go_package(name='pkg', dependencies=[":gen"]) files( name='gen', sources=['generate_from_me.txt'], dependencies=[':mod#github.com/google/uuid'], ) """ ), } ) # Running directly on a codegen target should work. assert_pkg_target_built( rule_runner, Address("", target_name="gen", relative_file_path="generate_from_me.txt"), expected_import_path="codegen.com/gen", expected_dir_path="codegen", expected_go_file_names=["f.go"], expected_direct_dependency_import_paths=["github.com/google/uuid"], expected_transitive_dependency_import_paths=[], ) # Direct dependencies on codegen targets must be propagated. # # Note that the `go_package` depends on the `files` generator target. This should work, even # though `files` itself cannot generate, because it's an alias for all generated `file` targets. assert_pkg_target_built( rule_runner, Address("", target_name="pkg"), expected_import_path="example.com/greeter", expected_dir_path="", expected_go_file_names=["greeter.go"], expected_direct_dependency_import_paths=["codegen.com/gen", "fmt"], expected_transitive_dependency_import_paths=["github.com/google/uuid"], ) def test_xtest_deps(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "go.mod": "module example.pantsbuild.org", "BUILD": "go_mod(name='mod')\n", "pkg/BUILD": "go_package()\n", "pkg/example.go": dedent( """\ package pkg const ExampleValue = 2137 """ ), "pkg/example_test.go": dedent( """\ package pkg_test import ( "example.pantsbuild.org/pkg" "example.pantsbuild.org/pkg/testutils" "testing" ) func TestValue(t *testing.T) { t.Run("Test", func(t *testing.T) { if pkg.ExampleValue != testutils.ExampleValueFromTestutils { t.Error("Not equal") } }) } """ ), "pkg/testutils/BUILD": "go_package()\n", "pkg/testutils/testutils.go": dedent( """\ package testutils import "example.pantsbuild.org/pkg" const ExampleValueFromTestutils = pkg.ExampleValue """ ), } ) assert_pkg_target_built( rule_runner, Address("pkg"), expected_dir_path="pkg", expected_import_path="example.pantsbuild.org/pkg", expected_go_file_names=["example.go"], expected_direct_dependency_import_paths=[], expected_transitive_dependency_import_paths=[], ) def test_stdlib_embed_config(rule_runner: RuleRunner) -> None: import_path = "crypto/internal/nistec" stdlib_packages = rule_runner.request( GoStdLibPackages, [GoStdLibPackagesRequest(with_race_detector=False, cgo_enabled=False)] ) pkg_info = stdlib_packages.get(import_path) if not pkg_info: pytest.skip( f"Skipping test since `{import_path}` import path not available in Go standard library." ) assert "embed" in pkg_info.imports assert pkg_info.embed_patterns assert pkg_info.embed_files build_request = rule_runner.request( BuildGoPackageRequest, [ BuildGoPackageRequestForStdlibRequest( import_path=import_path, build_opts=GoBuildOptions(cgo_enabled=False) ) ], ) embed_config = build_request.embed_config assert embed_config is not None assert embed_config.patterns assert embed_config.files
import os import tempfile import unittest from worker.file_util import gzip_file, gzip_string, remove_path, tar_gzip_directory, un_gzip_stream, un_gzip_string, un_tar_directory class FileUtilTest(unittest.TestCase): def test_tar_has_files(self): dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'files') temp_dir = tempfile.mkdtemp() self.addCleanup(lambda: remove_path(temp_dir)) output_dir = os.path.join(temp_dir, 'output') un_tar_directory( tar_gzip_directory(dir, False, ['f2'], ['f1', 'b.txt']), output_dir, 'gz') output_dir_entries = os.listdir(output_dir) self.assertIn('dir1', output_dir_entries) self.assertIn('a.txt', output_dir_entries) self.assertNotIn('b.txt', output_dir_entries) self.assertTrue(os.path.exists(os.path.join(output_dir, 'dir1', 'f1'))) self.assertFalse(os.path.exists(os.path.join(output_dir, 'dir1', 'f2'))) self.assertTrue(os.path.islink(os.path.join(output_dir, 'a-symlink.txt'))) def test_tar_empty(self): dir = tempfile.mkdtemp() self.addCleanup(lambda: remove_path(dir)) temp_dir = tempfile.mkdtemp() self.addCleanup(lambda: remove_path(temp_dir)) output_dir = os.path.join(temp_dir, 'output') un_tar_directory(tar_gzip_directory(dir), output_dir, 'gz') self.assertEquals(os.listdir(output_dir), []) def test_gzip_stream(self): with tempfile.NamedTemporaryFile(delete=False) as temp_file: self.addCleanup(lambda: os.remove(temp_file.name)) temp_file.write('contents') name = temp_file.name self.assertEquals(un_gzip_stream(gzip_file(name)).read(), 'contents') def test_gzip_string(self): self.assertEqual(un_gzip_string(gzip_string('contents')), 'contents')
def reverse(str): res = '' for i in str: res = i + res return res s = "Jarvis" print("The original string is : ", s) print("The reversed string using extended slice operator is : ", reverse(s))
"""xxx Revision ID: 519e5b696ae4 Revises: 628fb686363 Create Date: 2015-11-21 23:38:06.202680 """ # revision identifiers, used by Alembic. revision = '519e5b696ae4' down_revision = '628fb686363' from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import mysql def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('users', 'test') ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('users', sa.Column('test', mysql.TINYINT(display_width=1), autoincrement=False, nullable=True)) ### end Alembic commands ###
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2020-04-09 15:45:19 # @Author : Fallen (xdd043@qq.com) # @Link : https://github.com/fallencrasher/python-learning # @Version : $Id$ #文件 ''' 文件操作: 1.打开文件 2.对文件句柄进行操作 3.关闭文件 报错原因: UnicodeDecodeError: 创建文件时使用的编码方式和打开文件的解码方式对不上 SyntaxError: 一般就是windows 路径上的 '\' 没改成 '\\';文件名不能用单独的数字 ''' #绝对路径 #f1 = open(r'D:\programming_with_python\043从零开始学python\day04\文件的读.txt',encoding='utf-8',mode='r') #相对路径 # 读打开模式 ''' r, rb, r+, r+b rb:非文本文件 r:文本文件 ''' # 文本文件 # read 全读出来 ** f = open('文件的读.txt',encoding='utf-8') content = f.read() print(content,type(content)) f.close() # read(n) 按照字符读取 f = open('文件的读.txt',encoding='utf-8') content = f.read(5) print(content) f.close() # readline() 按行读取 f = open('文件的读.txt',encoding='utf-8') print(f.readline()) print(f.readline()) print(f.readline()) f.close() # readlines() 返回一个列表,列表中的每个元素时原文件的每一行 f = open('文件的读.txt',encoding='utf-8') l1 = f.readlines() print(l1) f.close() # for 读取 适合大文件的读取 *** f = open('文件的读.txt',encoding='utf-8') for line in f: print(line) f.close() # 非文本文件 rb f = open('美女.jpg',mode='rb') content = f.read() print(content) f.close()
"""Treadmill / Active Directory (Windows) integration.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import click from treadmill import context from treadmill import zknamespace as z from treadmill import zkutils from treadmill.ad import gmsa from treadmill.zksync import utils as zksync_utils _LOGGER = logging.getLogger(__name__) def init(): """App main.""" @click.group(name='ad') def ad_grp(): """Manage Active Directory integration.""" pass @ad_grp.command(name='gmsa') @click.option('--fs-root', help='Path that mirrors Zookeeper data.', type=click.Path(exists=True), required=True) @click.option('--partition', help='Windows partition', required=True) @click.option('--group-ou', help='AD OU where the GMSA accounts are.', required=True) @click.option('--group-pattern', help='The group pattern to use.', required=True) @click.option('--no-lock', is_flag=True, default=False, help='Run without lock.') def gmsa_sync(fs_root, partition, group_ou, group_pattern, no_lock): """Sync placements GMSA groups.""" # keep sleeping until zksync ready zksync_utils.wait_for_ready(fs_root) watch = gmsa.HostGroupWatch(fs_root, partition, group_ou, group_pattern) if not no_lock: lock = zkutils.make_lock(context.GLOBAL.zk.conn, z.path.election(__name__)) _LOGGER.info('Waiting for leader lock.') with lock: watch.run() else: _LOGGER.info('Running without lock.') watch.run() del gmsa_sync return ad_grp
#! python3 # _*_ coding: utf-8 _*_ from PyQt5.QtWebEngineWidgets import QWebEngineView
from tkinter import * def button_clicked(): print("I got clicked") new_text = input.get() my_label.config(text=new_text) window = Tk() window.title("My First GUI Program") window.minsize(width=500, height = 300) window.config(padx=20, pady=20) #Label my_label = Label(text="I Am a Label", font=("Arial", 24, "bold")) my_label.config(text="New Text") my_label.grid(row=0, column=0) my_label.config(padx=50, pady=50) #Button button = Button(text="Click Me", command=button_clicked) #button.pack() #if pack method not used button will not appear in window when program is run button.grid(row=1, column=1) #Entry input = Entry(width=10) print(input.get()) input.grid(row=2, column=3) #New Button new_button = Button(text="New Button to Click", command=button_clicked) new_button.grid(row=0, column=2) #pack places widgets. places at top and then adds entries below. lacks precision #place has better precision uses x and y coordinates. #grid layout is columns and rows. relative to other components. window.mainloop()
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/9/27 7:44 # @Author : Jason # @Site : # @File : python_test.py # @Software: PyCharm import pandas as pd import numpy as np data = [ {'name': 'Joe', 'state': 'NY', 'age': 18}, {'name': 'Jane', 'state': 'KY', 'age': 19, 'hobby': 'Minecraft'}, {'name': 'Jean', 'state': 'OK', 'age': 20, 'finances': 'good'} ] df = pd.DataFrame(data) #print(df) #df = pd.SparseDataFrame({"A": [0, 0, 1, 2]}) #df.dtypes #s = pd.Series([1,3,5,np.nan],(6,8)) #print(s) dates = pd.date_range('20190927',periods=6) print(dates) df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD')) print(df) df2 = pd.DataFrame({'A': 1., 'B': pd.Timestamp('20130102'), 'C': pd.Series(1, index=list(range(4)), dtype='float32'), 'D': np.array([3] * 4, dtype='int32'), 'E': pd.Categorical(["test", "train", "test", "train"]), 'F': 'foo'}) print(df2) print(df.head()) s = pd.Series([1,3,5,np.nan,6,8],index=dates).shift(2) print(2) print('\n') print(df.sub(s,axis='index')) df3 = pd.DataFrame(np.random.randn(10,4)) print(df3)
# encoding: utf-8 from tastypie.utils.dict import *
from flask import Flask, url_for, render_template, request, redirect, flash from flask_sqlalchemy import SQLAlchemy import pymysql app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] ='mysql+pymysql://root:@127.0.0.1:3306/test?charset=utf8' #配置flask配置对象中键:SQLALCHEMY_COMMIT_TEARDOWN,设置为True,应用会自动在每次请求结束后提交数据库中变动 app.config['SECRET_KEY'] = 'dev' app.config['SQLALCHEMY_COMMIT_TEARDOWN'] = True app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True app.config['SQLALCHEMY_COMMIT_ON_TEARDOWN'] = True #获取SQLAlchemy实例对象,接下来就可以使用对象调用数据 db = SQLAlchemy(app) import models name = 'jaywatson' movies = [ {'title': 'My Neighbor Totoro', 'year': '1988'}, {'title': 'Dead Poets Soci cccety', 'year': '1989'}, {'title': 'A Perfect World', 'year': '1993'}, {'title': 'Leon', 'year': '1994'}, {'title': 'Mahjong', 'year': '1996'}, {'title': 'Swallowtail Butterfly', 'year': '1996'}, {'title': 'King of Comedy', 'year': '1999'}, {'title': 'Devils on the Doorstep', 'year': '1999'}, {'title': 'WALL-E', 'year': '2008'}, {'title': 'The Pork of Music', 'year': '2012'}, ] @app.route('/') @app.route('/hello') def hello_world(): return '<h1>Hello World!</h1>' @app.route('/user/<name>') def user_page(name): return 'User: %s' % name @app.route('/test') def test_url_for(): # 下面是一些调用示例(请在命令行窗口查看输出的 URL): print(url_for('hello_world')) # 输出:/ # 注意下面两个调用是如何生成包含 URL 变量的 URL 的 print(url_for('user_page', name='greyli')) # 输出:/user/greyli print(url_for('user_page', name='peter')) # 输出:/user/peter print(url_for('test_url_for')) # 输出:/test # 下面这个调用传入了多余的关键字参数,它们会被作为查询字符串附加到 URL 后面。 print(url_for('test_url_for', num=2)) # 输出:/test?num=2 return 'Test page' @app.route('/film') def index(): return render_template('test.html', name=name, movies=movies) @app.route('/movie') def show_all(): return render_template('movieAdd.html', movies = models.Movie.query.all(), user=name) @app.route('/movie/add/',methods=['POST','GET']) def add(): if request.method == 'POST': p_title = request.form.get('title',None) p_year = request.form.get('year',None) if not p_title or not p_year: flash('input error.') return redirect(url_for('show_all')) newobj = models.Movie(title=p_title, year=p_year) db.session.add(newobj) db.session.commit() Movies = models.Movie.query.all() flash('新增成功.') return redirect(url_for('show_all')) Movies = models.Movie.query.all() return render_template('movieAdd.html',admins=Movies, user=name) @app.route('/movie/edit/<int:movie_id>', methods=['GET', 'POST']) def edit(movie_id): movie = models.Movie.query.get_or_404(movie_id) if request.method == 'POST': # 处理编辑表单的提交请求 title = request.form['title'] year = request.form['year'] if not title or not year or len(year) > 4 or len(title) > 60: flash('Invalid input.') return redirect(url_for('edit', movie_id=movie_id)) # 重定向回对应的编辑页面 movie.title = title # 更新标题 movie.year = year # 更新年份 db.session.commit() # 提交数据库会话 flash('Item updated.') return redirect(url_for('show_all')) # 重定向回主页 return render_template('edit.html', movie=movie) # 传入被编辑的电影记录 @app.route('/movie/delete/<int:movie_id>', methods=['POST']) def delete(movie_id): movie = models.Movie.query.get_or_404(movie_id) db.session.delete(movie) # 删除对应的记录 db.session.commit() # 提交数据库会话 flash('Item deleted.') return redirect(url_for('show_all')) # 重定向回主页 @app.errorhandler(404) # 传入要处理的错误代码 def page_not_found(e): # 接受异常对象作为参数 return render_template('404.html', user=name), 404 # 返回模板和状态码 if __name__ == '__main__': app.run(debug=True)
import turtle def draw_shapes(): window = turtle.Screen() window.bgcolor("pink") draw_square("square","purple",2) draw_circle("circle", "blue", 2) draw_triangle("triangle", "red", 3) window.exitonclick() def create_turtle(shape, color, speed): newTurtle = turtle.Turtle() newTurtle.shape(shape) newTurtle.color(color) newTurtle.speed(speed) return newTurtle def draw_square(shape, color, speed): squareTurtle = create_turtle(shape, color, speed) for i in range(0,4): squareTurtle.forward(100) squareTurtle.right(90) def draw_circle(shape, color, speed): circleTurtle = create_turtle("circle", "blue", 2) circleTurtle.circle(100) def draw_triangle(shape, color, speed): triTurtle = create_turtle("triangle", "red", 3) for i in range(0,3): triTurtle.backward(130) triTurtle.left(120) draw_shapes()
from pytest import mark import allure data = [('hello', 'world'), ('hello', ''), ('123', 'world')] ddt = { 'argnames':'name,description', 'argvalues':[('hello', 'world'), ('hello', ''), ('123', 'world')], 'ids': ['general test', 'no description test', 'test with digits in name'] } @allure.title('test allure') @mark.parametrize(**ddt) def test_new_testcases( desktop_app_auth, name, description): test_name = 'hello' desktop_app_auth.navigate_to('Create new test') desktop_app_auth.create_test(name, description) desktop_app_auth.navigate_to('Test Cases') assert desktop_app_auth.test_cases.check_test_exists(name) desktop_app_auth.test_cases.delete_test_by_name(name) def test_wait_more_30_sec(desktop_app_auth): desktop_app_auth.navigate_to('Demo pages') desktop_app_auth.demo.pages.open_page_after_wait(32) assert desktop_app_auth.demo_pages.check_wait_page()
import functools import pytest def decor(func): @functools.wraps(func) def inner(arg, x='Farewell!'): new_arg=x x=arg*3 return func(new_arg, x) return inner def F_F(arg, x='Hello!'): print(x) return(arg) print(F_F(33)) print('----------') print(decor(F_F)(33)) @pytest.mark.parametrize("x,expected", [ (11,11), (22,22), (66,66), (99,99)]) def test_F_F(x, expected): assert F_F(x) == expected @pytest.mark.parametrize("a,b,expected", [ (1,11,11), (2,22,22), (6,66,66), (9,99,99)]) def test_decor(a,b, expected): assert decor(F_F)(a,b) == expected
import sys from . import fake_pyzz as pyzz from . import ltl_parser from . import build_monitor from pyaig import * def build_base_aiger( vinst ): aig = vinst.N.aig for n, w in vinst.symbols.iteritems(): if aig.name_has_po(n): continue aig.create_po( w.get_f(), n ) is_init = vinst.get_init().get_f() for c in vinst.constraints: aig.create_po( c.get_f(), po_type=AIG.CONSTRAINT ) for ic in vinst.init_constraints: aig.create_po( aig.create_implies( is_init, ic.get_f() ), po_type=AIG.CONSTRAINT ) return aig def build_safety_aiger( vinst ): aig = build_base_aiger(vinst) for po in vinst.pos: aig.create_po( po.get_f(), po_type=AIG.BAD_STATES ) def build_liveness_aiger( vinst ): aig = build_base_aiger(vinst) aig.create_justice([ aig.create_po(fc.get_f(), po_type=AIG.JUSTICE ) for fc in vinst.fairnesses ])
import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets from torchvision.transforms import ToTensor, Lambda import matplotlib.pyplot as plt device = 'cuda' if torch.cuda.is_available() else 'cpu' print('Using {} device'.format(device)) training_data = datasets.CIFAR10( root="cifar10", train=True, download=True, transform=ToTensor(), #target_transform=Lambda(lambda y: torch.zeros(10, dtype=torch.float).scatter_(0, torch.tensor(y), src=torch.tensor(1.))) ) test_data = datasets.CIFAR10( root="cifar10", train=False, download=True, transform=ToTensor(), #target_transform=Lambda(lambda y: torch.zeros(10, dtype=torch.float).scatter_(0, torch.tensor(y), src=torch.tensor(1.))) ) labels_map = { 0: "airplane", 1: "automobile", 2: "bird", 3: "cat", 4: "deer", 5: "dog", 6: "frog", 7: "horse", 8: "ship", 9: "truck", } # figure = plt.figure(figsize=(8, 8)) # cols, rows = 4, 4 # for i in range(1, cols * rows + 1): # sample_idx = torch.randint(len(training_data), size=(1,)).item() # img, label = training_data[sample_idx] # img = img.transpose(0, 1).transpose(1, 2) # figure.add_subplot(rows, cols, i) # plt.title(labels_map[label]) # plt.axis("off") # plt.imshow(img) # plt.show() batch_size = 128 train_dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True) test_dataloader = DataLoader(test_data, batch_size=batch_size) class NeuralNetwork(nn.Module): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(32 * 32 * 3, 1024), nn.Sigmoid(), nn.Linear(1024, 512), nn.Sigmoid(), nn.Linear(512, 128), nn.Sigmoid(), #nn.Linear(512, 10), nn.Linear(128, 10), nn.Sigmoid() ) def forward(self, x): x = self.flatten(x) results = self.linear_relu_stack(x) return results model = NeuralNetwork().to(device) # for name, param in model.named_parameters(): # print(f"Layer: {name} | Size: {param.size()} | Values : {param[:2]} \n") learning_rate = 5e-3 #loss_fn = nn.MSELoss() loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) def train_loop(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) for batch, (X, y) in enumerate(dataloader): # Compute prediction and loss pred = model(X.to(device)) loss = loss_fn(pred, y.to(device)) # Backpropagation optimizer.zero_grad() loss.backward() optimizer.step() if batch % 100 == 0: loss, current = loss.item()/len(X), batch * len(X) print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]") def test_loop(dataloader, model, loss_fn): size = len(dataloader.dataset) test_loss, correct = 0, 0 with torch.no_grad(): for X, y in dataloader: pred = model(X.to(device)) y = y.to(device) test_loss += loss_fn(pred, y.to(device)).item() #correct += (pred.argmax(1) == y.argmax(1)).type(torch.float).sum().item() correct += (pred.argmax(1) == y).type(torch.float).sum().item() test_loss /= size correct /= size print(f"Test Error: \n Accuracy: {(100 * correct):>0.1f}%, Avg loss: {test_loss:>8f} \n") epochs = 1000 for t in range(epochs): print(f"Epoch {t + 1}\n-------------------------------") train_loop(train_dataloader, model, loss_fn, optimizer) test_loop(test_dataloader, model, loss_fn) print("Done!") torch.save(model, 'model.pth') print("Saved?")
#!/bin/python3 import math import os import random import re import sys # Complete the plusMinus function below. def plusMinus(arr): pos, neg, zero = 0, 0 , 0 for i in range(0, len(arr)): if arr[i] > 0 : pos +=1 elif arr[i] < 0 : neg += 1 else : zero += 1 print(str(pos/len(arr)) + "\n" , str(neg/len(arr))+ "\n" , str(zero/len(arr))+"\n") if __name__ == '__main__': n = int(input()) arr = list(map(int, input().rstrip().split())) plusMinus(arr)
#!/usr/bin/env python3 import logging from flask import Flask, render_template from flask_ask import Ask, statement, question, session app = Flask(__name__) ask = Ask(app, '/') logging.getLogger('flask_ask').setLevel(logging.DEBUG) @ask.launch def new_query(): welcome_msg = render_template('welcome') return question(welcome_msg) @ask.intent('OvenIntent') def oven_start(): oven_start_msg = render_template('oven_start') session.attributes['DEVICE'] = 'oven' session.attributes['YES_NEXT'] = 'done_positive' session.attributes['YES_IS_DONE'] = True session.attributes['NO_NEXT'] = 'composition_question' session.attributes['NO_IS_DONE'] = False session.attributes['YES_NO_STEP'] = 0 return question(oven_start_msg) @ask.intent('MicrowaveIntent') def microwave_start(): microwave_start_msg = render_template('microwave_start') session.attributes['DEVICE'] = 'microwave' session.attributes['YES_NEXT'] = 'done_positive' session.attributes['YES_IS_DONE'] = True session.attributes['NO_NEXT'] = 'metal_question' session.attributes['NO_IS_DONE'] = False session.attributes['YES_NO_STEP'] = 0 return question(microwave_start_msg) @ask.intent('DishwasherIntent') def dishwasher_start(): diswasher_start_msg = render_template('dishwasher_start') session.attributes['DEVICE'] = 'dishwasher' session.attributes['YES_NEXT'] = 'done_positive' session.attributes['YES_IS_DONE'] = True session.attributes['NO_NEXT'] = 'composition_question' session.attributes['NO_IS_DONE'] = False session.attributes['YES_NO_STEP'] = 0 return question(diswasher_start_msg) @ask.intent('AffirmativeIntent') def affirmative(): device = session.attributes['DEVICE'] yes_next = session.attributes['YES_NEXT'] yes_is_done = session.attributes['YES_IS_DONE'] yes_no_step = session.attributes['YES_NO_STEP'] if yes_no_step == 1: if device == 'microwave': yes_next = 'metal_done' yes_is_done = True template = '_'.join((device, yes_next)) response_msg = render_template(template) session.attributes['YES_NO_STEP'] = yes_no_step + 1 if yes_is_done: return statement(response_msg) else: return question(response_msg) @ask.intent('NegativeIntent') def negative(): device = session.attributes['DEVICE'] no_next = session.attributes['NO_NEXT'] no_is_done = session.attributes['NO_IS_DONE'] yes_no_step = session.attributes['YES_NO_STEP'] if yes_no_step == 1: if device == 'microwave': no_next = 'plastic_start' no_is_done = False logging.info('device: {} no_next: {} yes_no_step: {}'.format(device, no_next, yes_no_step)) template = '_'.join((device, no_next)) response_msg = render_template(template) session.attributes['YES_NO_STEP'] = yes_no_step + 1 if no_is_done: return statement(response_msg) else: return question(response_msg) # @ask.intent('OvenIntent') # def oven(): # oven_start_msg = render_template('oven_start') # return statement(speech_text).simple_card('HelloWorld', speech_text) # @ask.intent('AMAZON.HelpIntent') # def help(): # speech_text = 'You can say hello to me!' # return question(speech_text).reprompt(speech_text).simple_card('HelloWorld', speech_text) @ask.session_ended def session_ended(): return "", 200 if __name__ == '__main__': app.run(debug=True)
from .. utils import TranspileTestCase, BuiltinFunctionTestCase class AnyTests(TranspileTestCase): def test_any(self): self.assertCodeExecution("print(any([None, True, False]))") def test_any_true(self): self.assertCodeExecution("print(any([1,True,3]))") def test_any_false(self): self.assertCodeExecution("print(any([0, '', 0.0]))") def test_any_empty_list(self): self.assertCodeExecution("print(any([]))") def test_any_typeerror(self): self.assertCodeExecution(""" try: print(any(None)) except TypeError as e: print(e) print('Done.') """) class BuiltinAnyFunctionTests(BuiltinFunctionTestCase, TranspileTestCase): function = "any"
import math area = float(input("Informe o tamanho da área a ser pintada em m²: ")) cobertura = (area/6) coberturaTotal = cobertura * 1.1 latasTinta = math.ceil(coberturaTotal/18) galoesTinta = math.ceil(coberturaTotal/3.6) print(f"Valor em latas de 18l: R${latasTinta*80:.2f}") print(f"Valor em galões de 3,6l: R${latasTinta*25:.2f}")
import webapp2 from webapp2_extras import jinja2 from google.appengine.api import users from google.appengine.ext import ndb from model.libroLiterario import libroLiterario class EliminarlibroLiterarioHandler(webapp2.RequestHandler): def get(self): user = users.get_current_user() if user: try: id_libroLiterario = self.request.GET["id_libroLiterario"] except: id_libroLiterario = "ERROR" libroLiterario = ndb.Key(urlsafe=id_libroLiterario).get() sust = { "libroLiterario" : libroLiterario } jinja = jinja2.get_jinja2(app=self.app) self.response.write(jinja.render_template("librosLiterarios/eliminarLibroLiterario.html", **sust)) else: self.redirect("/") return def post(self): user = users.get_current_user() if user: id_libroLiterario = self.request.get("edIdLibroLiterario", "ERROR") libroLiterario = ndb.Key(urlsafe=id_libroLiterario).get() url = "/listarLibrosLiterarios" mensaje = "El libro: "+libroLiterario.titulo+" ha sido eliminado con exito" libroLiterario.key.delete() sust = { "mensaje": mensaje, "url": url } jinja = jinja2.get_jinja2(app=self.app) self.response.write(jinja.render_template("mensajeConfirmacion.html", **sust)) else: self.redirect("/") return app = webapp2.WSGIApplication([ ('/eliminarLibroLiterario', EliminarlibroLiterarioHandler), ], debug=True)
#! /usr/bin/env python # -*- coding: utf-8 -*- # Refer to https://leetcode.com/discuss/857/constant-space-solution class Solution(object): def singleNumber(self, nums): once = 0 twice = 0 third = 0 for num in nums: twice |= once & num once ^= num third = once & twice once &= ~third twice &= ~third return once """ [1] [1,1,1,2,2,2,3,4,4,4] """
"""{{ project_name }} URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ """ from pathlib import Path # Django imports from django.conf.urls import include from django.urls import path, re_path from django.contrib import admin from django.contrib.auth import views as auth_views from .settings.production import PROJECT_ROOT urlpatterns = [ # Examples: # url(r'^$', '{{ project_name }}.views.home', name='home'), # url(r'^blog/', include('blog.urls')), path('admin/', admin.site.urls), ] # Add urls path for all the apps for f in (Path(PROJECT_ROOT)/"apps").iterdir(): if not f.is_dir() or f.name.startswith("."): continue if (f/"urls.py").exists(): urlpatterns.append(path(f"{f.name}/", include(f"{f.name}.urls")))
test_case = int(input()) for _ in range(test_case): n = int(input()) print(2 if n == 2 else (n & 1))
import copy import argparse from multiprocessing import Pool from functools import partial nextCells = [] mrow = list() mcolumn = list() def main(): # allows me to user argparse as inputs parser = argparse.ArgumentParser() parser.add_argument('-i', '--input', required=True) parser.add_argument("-o", "--output", required=True) parser.add_argument("-t", "--threads", type=int, default=1) args = parser.parse_args() # prints my r number onto the console print("Project :: R11487176\n\n\n") # opens whatever the args.input was as read with open(args.input, 'r') as file: # calls global nextCells to read the input matrix and make them in to lists of lists global nextCells nextCells = [list(line.strip()) for line in file] # using enumerate, assigns indices of elements in the matrix into row and column for x, ele1 in enumerate(nextCells): for y, ele2 in enumerate(ele1): global mrow global mcolumn mrow.append(x) mcolumn.append(y) # creates number of processes based on args.threads(input) MAX_PROCESS = args.threads processPool = Pool(processes=args.threads) currentCells = [] # opens user input outputfile to write with open(args.output, 'w') as output_file: # loops 100 times to iterate through the matrix using pool.map for x in range(0, 100): # creates a deep copy of the nextCell which holds the immediate matrix from the input # then using pool.map and partial, iterate through the matrix with multiprocessing currentCells = [copy.deepcopy(nextCells)] neighborx = partial(neighbor, row=mrow, column=mcolumn, ncell=nextCells) nextCells = processPool.map(neighborx, currentCells) nextCells = nextCells[0] # flattens the list of list into a string with new line character wherever it needs cellflat3 = list(map(''.join, nextCells)) cellflat4 = '\n'.join(str(ele) for ele in cellflat3) output_file.write(str(cellflat4)) output_file.write("\n\n") # my version of the solver # takes in the currentCells which is a deepcopy of the nextCell and row, column and ncell(nextCells) # iterates through the coordinates in row and column to check it's neighboring characters in currentCells def neighbor(currentCells, row, column, ncell): count_neighbor = 0 for x in range(0, len(row)): if (currentCells[(row[x] - 1) % len(currentCells)][column[x] % len(currentCells)]) == 'O': # above count_neighbor += 1 if (currentCells[row[x] % len(currentCells)][(column[x] + 1) % len(currentCells)]) == 'O': # right count_neighbor += 1 if (currentCells[(row[x] + 1) % len(currentCells)][column[x] % len(currentCells)]) == 'O': # bottom count_neighbor += 1 if (currentCells[row[x] % len(currentCells)][(column[x] - 1) % len(currentCells)]) == 'O': # left count_neighbor += 1 if (currentCells[(row[x] - 1) % len(currentCells)][(column[x] + 1) % len(currentCells)]) == 'O': # top_right count_neighbor += 1 if (currentCells[(row[x] + 1) % len(currentCells)][(column[x] + 1) % len(currentCells)]) == 'O': # bot_right count_neighbor += 1 if (currentCells[(row[x] + 1) % len(currentCells)][(column[x] - 1) % len(currentCells)]) == 'O': # bot_left count_neighbor += 1 if (currentCells[(row[x] - 1) % len(currentCells)][(column[x] - 1) % len(currentCells)]) == 'O': # top_left count_neighbor += 1 if (currentCells[row[x]][column[x]]) == '.': if count_neighbor == 2 or count_neighbor == 4 or count_neighbor == 6 or count_neighbor == 8: ncell[row[x]][column[x]] = 'O' else: ncell[row[x]][column[x]] = '.' if (currentCells[row[x]][column[x]]) == 'O': if count_neighbor == 2 or count_neighbor == 3 or count_neighbor == 4: ncell[row[x]][column[x]] = 'O' else: ncell[row[x]][column[x]] = '.' count_neighbor = 0 return ncell if __name__ == '__main__': main()
from leetcode import TreeNode, test, new_tree def min_camara_cover(root: TreeNode) -> int: result = 0 def lrd(node: TreeNode) -> int: nonlocal result if not node: return 1 left, right = lrd(node.left), lrd(node.right) if left == 0 or right == 0: result += 1 return 2 if left == 1 and right == 1: return 0 return 1 if lrd(root) == 0: result += 1 return result test( min_camara_cover, [ (new_tree(0, 0, None, 0, 0), 1), (new_tree(0, 0, None, 0, None, 0, None, None, 0), 2), ], )
from kafka import KafkaConsumer from src import string_to_list, webhook_post_request, get_kafka_data kafka_data = get_kafka_data() consumer = KafkaConsumer(kafka_data["kafka_topic"], bootstrap_servers=[kafka_data["kafka_port"]]) if __name__ == "__main__": for data in consumer: decoded_data = data.value.decode('utf-8') decoded_data = string_to_list(decoded_data) response = webhook_post_request(decoded_data) print(f"response code: {response}")
from django.conf.urls import url from blog.views import index as blog_index from blog.views import post as blog_post from blog.views import tag as blog_tag from blog.views import postList as blog_postList from blog.views import emailPost as blog_emailPost from blog.views import userReg as blog_userReg from blog.views import commentPost as blog_commentPost urlpatterns = [ url(r'^$' , blog_index.load ), url(r'^post/(\d+)$', blog_post.load), url(r'^tag/(\d+)$', blog_tag.load), url(r'^postList/$', blog_postList.load), url(r'^emailPost/$', blog_emailPost.postEmail), url(r'^emailPost/thanks/$', blog_emailPost.thanks), url(r'^user/logout/(\d+)$', blog_post.logout), url(r'^user/logoutcomment/$', blog_post.logoutcomment), url(r'^user/reg/$', blog_userReg.userReg), url(r'^user/regThanks/$', blog_userReg.thanks), url(r'^comment/$', blog_commentPost.load), ]
from dataclasses import dataclass @dataclass class Position: y: int x: int def __add__(self, other): return Position(y=self.y + other.y, x=self.x + other.x) def neighbours(self): return [self + o for o in _neighbours] def __hash__(self): return hash((self.y, self.x)) def __lt__(self, other): return (self.y, self.x) < (other.y, other.x) _neighbours = [ Position(y=-1, x=0), # up Position(y=0, x=-1), # left Position(y=0, x=1), # right Position(y=1, x=0), # down ] @dataclass class Unit: position: Position team: str hp: int atk: int def do(self, cave, units): if self.hp <= 0: return units = [u for u in units if u.hp > 0 and u != self] targets = [u for u in units if u.team != self.team] targets_pos = [u.position for u in targets] units_pos = [u.position for u in units] to_visit = [] visited = set() taken = set() distance = {} path = {} target_pos = None distance[self.position] = 0 to_visit = [self.position] taken.add(self.position) while len(to_visit) > 0: pos = to_visit.pop(0) if pos in visited: continue visited.add(pos) if pos in cave: continue if pos in targets_pos: # found closest enemy target_pos = pos break if pos in units_pos: continue for npos in pos.neighbours(): if npos in visited: continue if npos in taken: continue distance[npos] = distance[pos] + 1 path[npos] = pos to_visit.append(npos) taken.add(npos) if not target_pos: return None res = '' target = targets[targets_pos.index(target_pos)] move_pos = target_pos if move_pos != self.position: while True: if distance[move_pos] == 1: break move_pos = path[move_pos] if move_pos != target_pos: res += '{} -> {}'.format(self.position, move_pos) self.position = move_pos close_targets = [t for pos in self.position.neighbours() for t in targets if t.position == pos] if close_targets: low_hp_target = min(close_targets, key=lambda x: x.hp) low_hp_target.hp -= self.atk res += ' attacked {}'.format(low_hp_target) return res def sort_units(units): return sorted(units, key=lambda x: x.position) def print_map(cave, units): alive_units = [u for u in units if u.hp > 0] alive_units_pos = [u.position for u in alive_units] max_p = max(cave) for y in range(0, max_p.y + 1): for x in range(0, max_p.y + 1): p = Position(y=y, x=x) if p in alive_units_pos: print(alive_units[alive_units_pos.index(p)].team, end='') elif p in cave: print('#', end='') else: print('.', end='') print('\n', end='') from itertools import count from copy import deepcopy def solution1(cave, units): o_units = sort_units(units) done = False for eatk in count(4): units = deepcopy(o_units) for u in units: if u.team == 'E': u.atk = eatk for i in count(1): res = [] units = sort_units(units) for unit in units: res.append(unit.do(cave, sort_units(units))) if any(u.team == 'E' and u.hp <= 0 for u in units): break if all(r is None for r in res): done = True break print_map(cave, units) if done: break return sum(u.hp for u in units if u.hp > 0) * (i-2) def parse_input1(input): cave = set() units = [] for y, l in enumerate(input.split('\n')): for x, c in enumerate(l): p = Position(y=y, x=x) if c in 'GE': u = Unit(position=p, team=c, hp=200, atk=3) units.append(u) elif c == '#': cave.add(p) return cave, units if __name__ == '__main__': with open('input.txt') as fh: print(solution1(*parse_input1(fh.read())))
"""Here we will test assumptions about the data."""
""" An interface to the NLNOG ring. """ # ABOUT # ===== # ringtools - A generic module for running commands on nodes of the NLNOG # ring. More information about the ring: U{https://ring.nlnog.net} # # source code: U{https://github.com/NLNOG/py-ring} # # AUTHOR # ====== # Teun Vink - teun@teun.tv __all__ = ['exception', 'node', 'result', 'ring']
import torch import torch.nn as nn import torch.nn.functional as F def get_act(name): if name == 'relu': return nn.ReLU(inplace=True) elif name == 'leaky_relu': return nn.LeakyReLU(negative_slope=0.2, inplace=True) elif name == 'silu': return nn.SiLU(inplace=True) elif name == 'mish': return MishInline() else: return nn.Identity() class MishInline(nn.Module): """ https://arxiv.org/abs/1908.08681v1 """ def __init__(self): super().__init__() def forward(self, x): return x * torch.tanh( F.softplus(x) ) def save_model(model, save_path): data = { 'model': model.state_dict(), 'model_args': model.model_args, } torch.save(data, save_path) def load_model(path, device): data = torch.load(path, map_location=torch.device(device)) model = SegmentationModel(**data['model_args']).to(device) model.load_state_dict(data['model']) return model @torch.jit.script def autocrop(encoder_features: torch.Tensor, decoder_features: torch.Tensor): """ Center crop the encoder down to the size of the decoder """ if encoder_features.shape[2:] != decoder_features.shape[2:]: ds = encoder_features.shape[2:] es = decoder_features.shape[2:] assert ds[0] >= es[0] assert ds[1] >= es[1] encoder_features = encoder_features[:, :, ((ds[0] - es[0]) // 2):((ds[0] + es[0]) // 2), ((ds[1] - es[1]) // 2):((ds[1] + es[1]) // 2) ] return encoder_features, decoder_features class DoubleConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, activation=None): super().__init__() bias = False if activation else True self.double_conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias), nn.BatchNorm2d(out_channels), get_act(activation), nn.Conv2d(out_channels, out_channels, kernel_size=kernel_size, stride=1, padding=padding, bias=bias), nn.BatchNorm2d(out_channels), get_act(activation) ) def forward(self, x): return self.double_conv(x) class Down(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, activation=None): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels, kernel_size, stride, padding, activation) ) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): def __init__(self, in_channels, out_channels, activation=None): super().__init__() self.up = nn.ConvTranspose2d(in_channels, in_channels//2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels, activation=activation) def forward(self, encoder_features, decoder_features): decoder_features = self.up(decoder_features) encoder_features, decoder_features = autocrop(encoder_features, decoder_features) x = torch.cat([encoder_features, decoder_features], dim=1) return self.conv(x) class UNetEncoder(nn.Module): def __init__(self, in_channels, out_channels, filters, activation): super(UNetEncoder, self).__init__() self.down00 = DoubleConv(in_channels, filters[0], activation=activation) self.down10 = Down(filters[0], filters[1], activation=activation) self.down20 = Down(filters[1], filters[2], activation=activation) self.down30 = Down(filters[2], filters[3], activation=activation) self.down40 = Down(filters[3], filters[4], activation=activation) def forward(self, x): x00 = self.down00(x) x10 = self.down10(x00) x20 = self.down20(x10) x30 = self.down30(x20) x40 = self.down40(x30) return x00, x10, x20, x30, x40 class UNetDecoder(nn.Module): def __init__(self, out_channels, filters, activation): super(UNetDecoder, self).__init__() self.up1 = Up(filters[4], filters[3], activation=activation) self.up2 = Up(filters[3], filters[2], activation=activation) self.up3 = Up(filters[2], filters[1], activation=activation) self.up4 = Up(filters[1], filters[0], activation=activation) self.out = nn.Conv2d(filters[0], out_channels, kernel_size=1) def forward(self, features): x00, x10, x20, x30, x40 = features x = self.up1(x30, x40) x = self.up2(x20, x) x = self.up3(x10, x) x = self.up4(x00, x) return self.out(x) class Classifier(nn.Module): def __init__(self, in_channels, out_channels, activation=None): super(Classifier, self).__init__() self.avg = nn.AdaptiveAvgPool2d(1) self.layer = nn.Sequential( # nn.Conv2d(in_channels, in_channels, kernel_size=1, bias=False), # nn.BatchNorm2d(in_channels), # get_act(activation), nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=True), ) def forward(self, x): x = self.layer(self.avg(x)) return x.flatten(1) class SegmentationModel(nn.Module): def __init__(self, in_channels=3, out_channels=1, filters=16, activation='relu', mean=[0,0,0], std=[1,1,1], num_to_cat=None, input_size=None): super(SegmentationModel, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.filters = filters self.num_to_cat = num_to_cat self.input_size = input_size self.model_args = {"in_channels": in_channels, "out_channels": out_channels, "filters": filters, "activation": activation, "num_to_cat": num_to_cat, "input_size": input_size} if type(filters) == int: filters = [filters, filters*2, filters*4, filters*8, filters*16] self.normalize = nn.BatchNorm2d(in_channels) # Layer will be frozen without learnable parameters self.set_normalization(mean, std) self.encoder = UNetEncoder(in_channels, out_channels, filters, activation) self.decoder = UNetDecoder(out_channels, filters, activation) self.classifier = Classifier(filters[-1], out_channels, activation) for m in self.modules(): if isinstance(m, nn.Conv2d): if activation == 'relu': nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif activation == 'leaky_relu': nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu', a=0.2) else: nn.init.xavier_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def set_normalization(self, mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0]): self.normalize.reset_parameters() self.normalize.running_mean = torch.tensor(mean, requires_grad=False, dtype=torch.float) self.normalize.running_var = torch.tensor([x**2 for x in std], requires_grad=False, dtype=torch.float) self.normalize.weight.requires_grad = False # gamma self.normalize.bias.requires_grad = False # beta self.normalize.running_mean.requires_grad = False # mean self.normalize.running_var.requires_grad = False # variance self.normalize.eval() def forward(self, x): x = self.normalize.eval()(x) features = self.encoder(x) logits = self.decoder(features) return logits, features[-1] def classify(self, x): self.eval() with torch.no_grad(): x = self.normalize(x) features = self.encoder(x) class_logits = self.classifier(features[-1]) return torch.softmax(class_logits, dim=1) def predict(self, x): self.eval() with torch.no_grad(): x = self.normalize(x) logits, encoding = self.forward(x) class_logits = self.classifier(encoding) return torch.softmax(logits, dim=1), torch.softmax(class_logits, dim=1) def train_test(model, input_size, batch_size, device): model.to(device).train() data = torch.randn(batch_size, model.in_channels, input_size, input_size).to(device) true_masks = torch.empty(batch_size, input_size, input_size, dtype=torch.long).random_(model.out_channels).to(device) true_labels = torch.empty(batch_size, dtype=torch.long).random_(model.out_channels).to(device) print("data.shape :", data.shape) print("true_masks.shape :", true_masks.shape) print("true_labels.shape :", true_labels.shape) opt = torch.optim.SGD(model.parameters(), lr=1e-1) for i in range(10): opt.zero_grad() logits, encoding = model(data) class_logits = model.classifier(encoding.detach()) loss = nn.CrossEntropyLoss()(logits, true_masks) loss.backward() class_loss = nn.CrossEntropyLoss()(class_logits, true_labels) class_loss.backward() print("loss={:.06f}, class_loss={:.06f}".format(loss, class_loss)) opt.step() if __name__ == "__main__": device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') in_channels = 3 out_channels = 5 filters = 8 # 16 activation = "silu" # relu, leaky_relu, silu, mish batch_size = 2 input_size = 128 model = SegmentationModel(in_channels, out_channels, filters, activation).to(device) train_test(model, input_size, batch_size, device) x = torch.randn(1, in_channels, input_size, input_size).to(device) model.eval() # Freeze batchnorm logits, encoding = model(x) print("logits :", logits.shape, torch.min(logits).item(), torch.max(logits).item()) print("encoding :", encoding.shape, torch.min(encoding).item(), torch.max(encoding).item()) class_logits = model.classifier(encoding.detach()) print("class_logits :", class_logits.shape, torch.min(class_logits).item(), torch.max(class_logits).item()) ymask, ylabel = model.predict(x) print("ymask :", ymask.shape, torch.min(ymask).item(), torch.max(ymask).item()) print("ylabel :", ylabel.shape, torch.min(ylabel).item(), torch.max(ylabel).item()) class_logits = model.classify(x) print("class_logits :", class_logits.shape, torch.min(class_logits).item(), torch.max(class_logits).item()) save_model(model, save_path="runs/save_test.pth") model2 = load_model("runs/save_test.pth", device=device) model2.eval() logits, encoding = model2(x) print("logits :", logits.shape, torch.min(logits).item(), torch.max(logits).item()) print("encoding :", encoding.shape, torch.min(encoding).item(), torch.max(encoding).item())
from django.shortcuts import render from django.utils import timezone from django.views import generic from .models import Story class IndexView(generic.ListView): template_name = 'iamgrey/story_list.html' context_object_name = 'latest_story_list' latest_story = Story.objects.latest('date_published') def get_queryset(self): return Story.objects.filter(date_published__lte=timezone.now()).order_by('-date_published') def get_context_data(self, *args, **kwargs): context = super(IndexView, self).get_context_data(*args, **kwargs) context['latest_story'] = Story.objects.latest('date_published') return context class DetailView(generic.DetailView): model = Story template_name = 'iamgrey/detail.html'
# Copyright 2022 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from pants.backend.experimental.kotlin.register import rules as all_kotlin_rules from pants.backend.kotlin.lint.ktlint import rules as ktlint_rules from pants.backend.kotlin.lint.ktlint import skip_field def rules(): return [ *all_kotlin_rules(), *ktlint_rules.rules(), *skip_field.rules(), ]
# -*- coding: utf-8 -*- from django.conf.urls import patterns, url, include from ceiling.views import CeilingView urlpatterns = patterns('', url('^$', CeilingView.as_view(), name='ceiling'), url('^api/$', CeilingView.as_view(), name='ceiling'), )
import pytest from pcos_runrex.algo.menarche import MENARCHE_AGE, AGE_MENARCHE, MENARCHE_GRADE, GRADE_MENARCHE @pytest.mark.parametrize(('text', 'value'), [ ('menarche at age 13', 13), ('menses irregular since onset at age 13', 13), ]) def test_menarche_numeric_age(text, value): m = MENARCHE_AGE.matchgroup(text, 'age') assert int(m) == value @pytest.mark.parametrize(('text', 'value'), [ ('age at first menses : 13 - 14 years', '13 - 14'), ]) def test_menarche_age(text, value): m = MENARCHE_AGE.matchgroup(text, 'age') assert m == value @pytest.mark.parametrize(('text', 'value'), [ ('age 13 y.o. at first menses', 13), ('13 yrs at onset of menses', 13), ]) def test_age_numeric_menarche(text, value): m = AGE_MENARCHE.matchgroup(text, 'age') assert int(m) == value @pytest.mark.parametrize(('text', 'grade'), [ ('menarche in sixth grade', 'sixth grade'), ('menses irregular since onset in 6th grade', '6th grade'), ]) def test_menarche_grade(text, grade): m = MENARCHE_GRADE.matchgroup(text, 'grade') assert m.strip() == grade @pytest.mark.parametrize(('text', 'grade'), [ ('was in grade 6 at onset of menses', 'grade 6'), ]) def test_grade_menarche(text, grade): m = GRADE_MENARCHE.matchgroup(text, 'grade') assert m.strip() == grade
import collections def solution(ranks): y = dict(collections.Counter(ranks)) counts = 0 for key in y.keys(): if(key+1 in y): counts += y[key] print(str(counts)) return counts # write your code in Python 3.6 solution([3, 4, 3, 0, 2, 2, 3, 0, 0]) solution([4, 2, 0]) solution([4, 2, 0, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2]) solution([3, 4, 3, 0, 2, 2, 3, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) solution([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) N = 10000000 count_list = range(1,N+1) solution(count_list) new_list = [] num = 0 while(num < len(count_list)): # checking condition if num % 2 == 0: new_list.append(count_list[num]) # increment num num += 1 solution(new_list)
__all__ = [ 'MilestoneEditJob', ] from async_messages import messages from limpyd import fields from limpyd_jobs import STATUSES from gim.core.models import Milestone from gim.core.ghpool import ApiError from .base import DjangoModelJob class MilestoneJob(DjangoModelJob): """ Abstract job model for jobs based on the Milestone model """ abstract = True model = Milestone permission = 'self' @property def milestone(self): if not hasattr(self, '_milestone'): self._milestone = self.object return self._milestone @property def repository(self): if not hasattr(self, '_repository'): self._repository = self.milestone.repository return self._repository class MilestoneEditJob(MilestoneJob): queue_name = 'edit-milestone' mode = fields.InstanceHashField() def run(self, queue): """ Get the milestone and create/update/delete it """ super(MilestoneEditJob, self).run(queue) try: milestone = self.milestone except milestone.DoesNotExist: # the milestone doesn't exist anymore, stop here self.status.hset(STATUSES.CANCELED) return None gh = self.gh if not gh: return # it's delayed ! mode = self.mode.hget() try: if mode == 'delete': milestone.dist_delete(gh) else: milestone.dist_edit(mode=mode, gh=gh) except ApiError, e: message = None if e.code == 422: message = u'Github refused to %s the milestone <strong>%s</strong> on <strong>%s</strong>' % ( mode, milestone.short_title, milestone.repository.full_name) elif e.code in (401, 403): tries = self.tries.hget() if tries and int(tries) >= 5: message = u'You seem to not have the right to %s the milestone <strong>%s</strong> on <strong>%s</strong>' % ( mode, milestone.short_title, milestone.repository.full_name) if message: messages.error(self.gh_user, message) if mode == 'create': milestone.delete() else: try: milestone.fetch(gh, force_fetch=True) except ApiError: pass return None else: raise message = u'The milestone <strong>%s</strong> was correctly %sd on <strong>%s</strong>' % ( milestone.short_title, mode, milestone.repository.full_name) messages.success(self.gh_user, message) return None def success_message_addon(self, queue, result): """ Display the action done (created/updated/deleted) """ return ' [%sd]' % self.mode.hget()
def char_in_text(char,text): num_of_char = 0 length = len(text) i = 0 while i < (length - 1): if text[i] == char: num_of_char = num_of_char + 1 i = i + 1 return num_of_char character = input("Enter Character: ") text = input("Enter text: ") print("Th character %s appear %f times in the text" %(character, char_in_text(character,text)))
from django.http import HttpResponse from django.template import RequestContext from django.shortcuts import render_to_response,render from django.http import HttpResponseRedirect import django.db.utils from .forms import UploadTorrentForm import bencode from models import Torrent, Client #from models import Utilities as torUtils import datetime import torUtils # # Human URLS # def front(request): form = UploadTorrentForm() if request.method == 'POST': form = UploadTorrentForm(request.POST, request.FILES) if form.is_valid(): try: if handle_upload(request.FILES['torrent']): # <-- Use torrent version return render_to_response('front.html', {'torrents':models.Torrent.objects.all(),'uploaded':True,'form':form}, context_instance=RequestContext(request)) except Exception as e: print e return render_to_response('front.html', {'torrents':Torrent.objects.all(),'uploaded':False,'form':form}, context_instance=RequestContext(request)) # # Torrent URLS # def announce(request): try: params = torUtils.getParams(request.get_full_path()) # <-- Add this to models ih = params[u'info_hash'][0] # Match params to grab a specific torrent t = Torrent.getTorrent(info_hash=ih) # Check whether this is a new or returning client c = t.getPeer(ip=request.META["REMOTE_ADDR"]) if c.size == 0: c = Client.create(n = params['name'], i = request.META["REMOTE_ADDR"], p = params['port'], ih = params[u'info_hash'][0]) else: # Parse old client c = c[0] c.update(params["event"]) except Exception as e: print "Torrent not found; ", e # return HttpResponse("Newp!") # Match client against list of known users # -- Seeding: # -- Leeching: # -- Loading: # -- Inactive: # If no announce, double-check peer connections, and send a new list return HttpResponse("Fixthis") def scrape(request): bdT = models.getTorrent(torUtils.getParams(request.get_full_path())['info_hash'][0]) bd = { "files":{ bdT["info_hash"]:{ "complete":len(bdT["torrent"].peers.all()), # Number of seeders (integer) "downloaded":0, # total number of times the tracker has registered a completion "incomplete":0, # Number of non-seeder peers / leechers (integer) "name":"Blah", # Torrent's internal name, as specified by the "name" file } } } return HttpResponse(bencode.bencode(bd)) # # Utilities # def handle_upload(torrent): t = "" if torrent.name.split(".")[-1].lower() == "torrent": t = "" for chunk in torrent.chunks(): t = str.join(t,chunk) try: tr = models.Torrent(**torUtils.getInfo(t,torrent.name.split(".")[0])) tr.save() except Exception as e: tr, created = models.Torrent.objects.get_or_create(**torUtils.getInfo(t,torrent.name.split(".")[0])) tr.delete() tr, created = models.Torrent.objects.get_or_create(**torUtils.getInfo(t,torrent.name.split(".")[0])) tr.save() return True else: raise Exception("Not a torrent file.")
def bar_triang(*args): return map(lambda a: round(sum(a) / 3.0, 4), zip(*args))
""" 公共方法类: 封装正向逆向断言方法 """ import allure from config import BASE_PATH from page.page_in import PageIn from page.page_login import PageLogin from tools.get_driver import GetDriver from tools.get_log import GetLog log = GetLog.get_log() class Until: def __init__(self): self.login = PageIn.get_page_login() self.driver = GetDriver.get_driver() self.page_login = PageLogin() def assert_nickname(self, expect): """断言昵称""" try: assert self.login.page_get_nickname() == expect except AssertionError as f: self.driver.get_screenshot_as_file(BASE_PATH + "/img/bug_.png") with open(BASE_PATH + "/img/bug_.png", "rb") as f: allure.attach("失败原因", f.read(), allure.attach_type.PNG) log.error(f) raise finally: self.page_login.page_login_quit() self.page_login.page_click_my() self.page_login.page_click_exists_user() def assert_toast(self, expect): """断言toast消息""" try: assert self.login.page_get_toast(expect) == expect except AssertionError as f: self.driver.get_screenshot_as_file(BASE_PATH + "/img/bug_.png") with open(BASE_PATH + "/img/bug_.png", "rb") as e: allure.attach("失败原因", e.read(), allure.attach_type.PNG) log.error(e) raise def screen_shot(self): """截图并把图片写入报告""" self.driver.get_screenshot_as_file(BASE_PATH + "/img/bug_.png") with open(BASE_PATH + "/img/bug_.png", "rb") as f: allure.attach("失败原因", f.read(), allure.attach_type.PNG) log.error(f)
from bs4 import BeautifulSoup import requests def decodeWebPage(): url = 'https://www.nytimes.com/' response = requests.get(url) html = BeautifulSoup(response.text, features="html.parser") print("The following are a list of articles shown on 'The New York Times' website:" + '\n') articles = "" for header in html.find_all('h2'): if (len(header.get('class')) >= 2): if (header.get('class')[0] == 'css-9ywo2s') or (header.get('class')[1] == 'esl82me2'): articles += (header.string + '\n') return articles if __name__=="__main__": print(decodeWebPage())
from LeerSensores import Sensores if __name__ == "__main__": x=Sensores() x.distanciaMetodo()
from django.conf.urls import url from . import views urlpatterns = [ url(r'signup/',views.signup_view), url(r'login/',views.LoginView.as_view()), url(r'verifyuser',views.VerifyUser.as_view()), url(r'verifypass',views.VerifyPass.as_view()), url(r'ajax$',views.AjaxView.as_view()), url(r'ajax_view$',views.Ajax.as_view()), url(r'test',views.AjaxTestView.as_view()), url(r'json',views.JsonView.as_view()) ]
#!/usr/bin/env python3 import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import sys sys.path.append('../aardvark') import subprocess as sp import numpy as np from glob import glob import cv2 from tqdm import tqdm import tensorflow as tf from tensorflow.python.framework import meta_graph from mold import Scaling as Mold class Model: def __init__ (self, path, name='xxx'): mg = meta_graph.read_meta_graph_file(path + '.meta') self.images = tf.placeholder(tf.float32, shape=(None, None, None, 3), name="images") is_training = tf.constant(False) self.probs, = tf.import_graph_def(mg.graph_def, name=name, input_map={'images:0': self.images, 'is_training:0': is_training}, return_elements=['probs:0']) self.saver = tf.train.Saver(saver_def=mg.saver_def, name=name) self.loader = lambda sess: self.saver.restore(sess, path) pass pass flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_string('model', None, '') flags.DEFINE_integer('stride', 1, '') flags.DEFINE_float('th', 0.5, '') flags.DEFINE_integer('fps', 30, '') OUTPUT = 'output' def overlay (image, prob, color): image[:, :, color][prob] += 75 pass def main (_): model = Model(FLAGS.model) config = tf.ConfigProto() config.gpu_options.allow_growth=True with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) model.loader(sess) mold = Mold(16, 1.0) video_input = cv2.VideoCapture('test.mov') video_output = None C = 0 while video_input.grab(): flag, image = video_input.retrieve() if not flag: break if image.shape[0] > image.shape[1]: # patch the BDD .mov files image = np.fliplr(image) image = np.transpose(image, (1, 0, 2)) pass probs = sess.run(model.probs, feed_dict={model.images: mold.batch_image(image)}) frame = cv2.resize(image, None, fx=0.5, fy=0.5).astype(np.float32) frame *= 0.7 probs = mold.unbatch_prob(frame, probs) overlay(frame, probs[:, :, 1] > 0.5, 0) overlay(frame, probs[:, :, 2] > 0.5, 1) overlay(frame, probs[:, :, 3] > 0.5, 2) frame = np.clip(frame, 0, 255) if video_output is None: H, W = frame.shape[:2] video_output = cv2.VideoWriter('%s.avi' % OUTPUT, cv2.VideoWriter_fourcc(*'MJPG'), FLAGS.fps, (W, H)) video_output.write(frame.astype(np.uint8)) print('%d' % C) C += 1 pass video_output.release() # convert to MP4 so it can be served on web sp.check_call('ffmpeg -i %s.avi -y -c:v libx264 -preset slow -crf 22 -pix_fmt yuv420p %s.mp4' % (OUTPUT, OUTPUT), shell=True) pass if __name__ == '__main__': tf.app.run()
from django.shortcuts import render from rest_framework.response import Response from .gateway_caller import ctrl_device, set_group_status from rest_framework.decorators import api_view GW_IDS = ['HKG-01-0190838-004', 'HKG-01-0190838-003', 'hg20150601', 'HKG-01-0190838-001', 'HKG-01-0190838-005'] GWAPI_HOSTS = { GW_IDS[0]: "http://localhost:10000/gwapi", GW_IDS[1]: "http://localhost:10000/gwapi", GW_IDS[2]: "http://localhost:10000/gwapi", GW_IDS[3]: "http://localhost:10000/gwapi", GW_IDS[4]: "http://localhost:10000/gwapi", } def index(request): return render(request, 'control/index.html', {}) @api_view(['GET']) def turn_device_on(request, gw_id, device_nid, format=None): toggle_device(gw_id, device_nid, 1) return Response({'status': 200}) @api_view(['GET']) def turn_device_off(request, gw_id, device_nid, format=None): toggle_device(gw_id, device_nid, 0) return Response({'status': 200}) @api_view(['GET']) def turn_group_on(request, gw_id, group_gid, format=None): toggle_group(gw_id, group_gid, 1) return Response({'status': 200}) @api_view(['GET']) def turn_group_off(request, gw_id, group_gid, format=None): toggle_group(gw_id, group_gid, 0) return Response({'status': 200}) def toggle_device(gw_id, device_nid, on_off): print(GWAPI_HOSTS[gw_id]) ctrl_device(GWAPI_HOSTS[gw_id], gw_id, int(device_nid), on_off) def toggle_group(gw_id, group_gid, on_off): print(GWAPI_HOSTS[gw_id]) set_group_status(GWAPI_HOSTS[gw_id], gw_id, int(group_gid), on_off)
from django.contrib.auth.forms import AuthenticationForm, UserCreationForm from django.contrib.auth.models import User from django import forms class UserSignInForm(AuthenticationForm): username = forms.CharField(widget=forms.TextInput( attrs={ 'class': 'form-control', 'placeholder': 'Username', 'id': 'lg-user'})) password = forms.CharField(widget=forms.PasswordInput( attrs={ 'class': 'form-control', 'placeholder': 'Password', 'id': 'lg-password', })) class UserSignUpForm(UserCreationForm): username = forms.CharField(widget=forms.TextInput( attrs={ 'class': 'form-control', 'placeholder': 'Username', 'id': 'lg-user'})) password1 = forms.CharField(widget=forms.PasswordInput( attrs={ 'class': 'form-control', 'placeholder': 'Password', 'id': 'lg-password', })) password2 = forms.CharField(widget=forms.PasswordInput( attrs={ 'class': 'form-control', 'placeholder': 'ConfirmPassword', 'id': 'lg-conf-password', }))
from django.shortcuts import render, redirect, HttpResponse from .models import User from django.contrib import messages # Create your views here. def landing(request): return render(request, 'loginReg/landing.html') def index(request): return render(request, 'loginReg/index.html') def process(request): print "FROM VIEWS: ", request.POST user = User.objects.register(request.POST) return redirect('/')
#coding=utf-8 from bs4 import BeautifulSoup import bs4 import urllib2 import urllib import re class QSBK(object): """Q糗事百科的爬虫类""" def __init__(self): super(QSBK, self).__init__() self.currentPage = 1 self.jokes = [] self.currentIndex = 0 def getOneJoke(self): ''' 获得一条段子 ''' if self.currentIndex < len(self.jokes): self.currentIndex = self.currentIndex + 1 return self.jokes[self.currentIndex-1] else: self.currentIndex = 0 # 加载下一页的段子 self.loadNextPageJokes() return self.jokes[self.currentIndex] def loadNextPageJokes(self): self.jokes = [] self.currentPage = self.currentPage + 1 url = 'http://www.qiushibaike.com/hot/page/' + str(self.currentPage) user_agent = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)' headers = {'User-Agent':user_agent} try: request = urllib2.Request(url,headers=headers) response = urllib2.urlopen(request) html = response.read() soup = BeautifulSoup(html) jokes = soup.find_all("div",class_="article block untagged mb15") for oneJoke in jokes: # 过滤有图片的段子 img = oneJoke.find_all('div',class_='thumb') if img: continue content = oneJoke.find_all('div',class_='content') contentText = content[0].text # print u'内容:' + contentText.replace('\n','') author = oneJoke.find('div',class_='author') authorText = author.text # print u'作者:' + authorText.replace('\n','') self.jokes.append({'content':contentText.replace('\n',''),'author':authorText.replace('\n','')}) except urllib2.URLError,e: if hasattr(e,"code"): print e.code if hasattr(e,"reason"): print e.reason def start(self): while 1: enter = raw_input('enter:') if enter == 'n': joke = self.getOneJoke() print u'作者:' + joke['author'] print u'内容:' + joke['content'] print '\n' elif enter == 'q' or enter == 'Q': break else: print 'input error.\n' spider = QSBK() spider.start()
import time import requests from datetime import datetime import smtplib MY_LAT = "25.211549" MY_LONG = "85.514542" my_email = "jalltrades12@gmail.com" password = "@#Jack098" response = requests.get(url="http://api.open-notify.org/iss-now.json") response.raise_for_status() data = response.json() iss_latitude = float(data["iss_position"]["latitude"]) iss_longitude = float(data["iss_position"]["longitude"]) # Your position is within +5 or -5 degrees of the ISS position. def pos_within_margin(): if 5 >= float(MY_LAT) - iss_latitude >= -5 and 5 >= float(MY_LONG) - iss_longitude >= -5: return True return False parameters = { "lat": MY_LAT, "lng": MY_LONG, "formatted": 0, } response = requests.get("https://api.sunrise-sunset.org/json", params=parameters) response.raise_for_status() data = response.json() sunrise = int(data["results"]["sunrise"].split("T")[1].split(":")[0]) sunset = int(data["results"]["sunset"].split("T")[1].split(":")[0]) time_now = datetime.now() # If the ISS is close to my current position # and it is currently dark # Then send me an email to tell me to look up. # BONUS: run the code every 60 seconds. def is_dark(): if sunrise >= time_now.hour >= sunset: return True return False def send_main(): if pos_within_margin() and is_dark(): with smtplib.SMTP("smtp.gmail.com") as connection: connection.starttls() connection.login(user=my_email, password=password) connection.sendmail( from_addr=my_email, to_addrs=my_email, msg=f"Subject:Go watch The ISS\n\nThe ISS can be sighted now" ) while True: send_main() time.sleep(60)
import numbers from typing import Any, Dict, List, Literal, Optional, Sequence, Tuple, Union import numpy as np import torch from PIL import Image, ImageEnhance, ImageOps try: import accimage except ImportError: accimage = None @torch.jit.unused def _is_pil_image(img: Any) -> bool: if accimage is not None: return isinstance(img, (Image.Image, accimage.Image)) else: return isinstance(img, Image.Image) @torch.jit.unused def get_dimensions(img: Any) -> List[int]: if _is_pil_image(img): if hasattr(img, "getbands"): channels = len(img.getbands()) else: channels = img.channels width, height = img.size return [channels, height, width] raise TypeError(f"Unexpected type {type(img)}") @torch.jit.unused def get_image_size(img: Any) -> List[int]: if _is_pil_image(img): return list(img.size) raise TypeError(f"Unexpected type {type(img)}") @torch.jit.unused def get_image_num_channels(img: Any) -> int: if _is_pil_image(img): if hasattr(img, "getbands"): return len(img.getbands()) else: return img.channels raise TypeError(f"Unexpected type {type(img)}") @torch.jit.unused def hflip(img: Image.Image) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") return img.transpose(Image.FLIP_LEFT_RIGHT) @torch.jit.unused def vflip(img: Image.Image) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") return img.transpose(Image.FLIP_TOP_BOTTOM) @torch.jit.unused def adjust_brightness(img: Image.Image, brightness_factor: float) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") enhancer = ImageEnhance.Brightness(img) img = enhancer.enhance(brightness_factor) return img @torch.jit.unused def adjust_contrast(img: Image.Image, contrast_factor: float) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") enhancer = ImageEnhance.Contrast(img) img = enhancer.enhance(contrast_factor) return img @torch.jit.unused def adjust_saturation(img: Image.Image, saturation_factor: float) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") enhancer = ImageEnhance.Color(img) img = enhancer.enhance(saturation_factor) return img @torch.jit.unused def adjust_hue(img: Image.Image, hue_factor: float) -> Image.Image: if not (-0.5 <= hue_factor <= 0.5): raise ValueError(f"hue_factor ({hue_factor}) is not in [-0.5, 0.5].") if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") input_mode = img.mode if input_mode in {"L", "1", "I", "F"}: return img h, s, v = img.convert("HSV").split() np_h = np.array(h, dtype=np.uint8) # uint8 addition take cares of rotation across boundaries with np.errstate(over="ignore"): np_h += np.uint8(hue_factor * 255) h = Image.fromarray(np_h, "L") img = Image.merge("HSV", (h, s, v)).convert(input_mode) return img @torch.jit.unused def adjust_gamma( img: Image.Image, gamma: float, gain: float = 1.0, ) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") if gamma < 0: raise ValueError("Gamma should be a non-negative real number") input_mode = img.mode img = img.convert("RGB") gamma_map = [int((255 + 1 - 1e-3) * gain * pow(ele / 255.0, gamma)) for ele in range(256)] * 3 img = img.point(gamma_map) # use PIL's point-function to accelerate this part img = img.convert(input_mode) return img @torch.jit.unused def pad( img: Image.Image, padding: Union[int, List[int], Tuple[int, ...]], fill: Optional[Union[float, List[float], Tuple[float, ...]]] = 0, padding_mode: Literal["constant", "edge", "reflect", "symmetric"] = "constant", ) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") if not isinstance(padding, (numbers.Number, tuple, list)): raise TypeError("Got inappropriate padding arg") if fill is not None and not isinstance(fill, (numbers.Number, tuple, list)): raise TypeError("Got inappropriate fill arg") if not isinstance(padding_mode, str): raise TypeError("Got inappropriate padding_mode arg") if isinstance(padding, list): padding = tuple(padding) if isinstance(padding, tuple) and len(padding) not in [1, 2, 4]: raise ValueError(f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple") if isinstance(padding, tuple) and len(padding) == 1: # Compatibility with `functional_tensor.pad` padding = padding[0] if padding_mode not in ["constant", "edge", "reflect", "symmetric"]: raise ValueError("Padding mode should be either constant, edge, reflect or symmetric") if padding_mode == "constant": opts = _parse_fill(fill, img, name="fill") if img.mode == "P": palette = img.getpalette() image = ImageOps.expand(img, border=padding, **opts) image.putpalette(palette) return image return ImageOps.expand(img, border=padding, **opts) else: if isinstance(padding, int): pad_left = pad_right = pad_top = pad_bottom = padding if isinstance(padding, tuple) and len(padding) == 2: pad_left = pad_right = padding[0] pad_top = pad_bottom = padding[1] if isinstance(padding, tuple) and len(padding) == 4: pad_left = padding[0] pad_top = padding[1] pad_right = padding[2] pad_bottom = padding[3] p = [pad_left, pad_top, pad_right, pad_bottom] cropping = -np.minimum(p, 0) if cropping.any(): crop_left, crop_top, crop_right, crop_bottom = cropping img = img.crop((crop_left, crop_top, img.width - crop_right, img.height - crop_bottom)) pad_left, pad_top, pad_right, pad_bottom = np.maximum(p, 0) if img.mode == "P": palette = img.getpalette() img = np.asarray(img) img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), mode=padding_mode) img = Image.fromarray(img) img.putpalette(palette) return img img = np.asarray(img) # RGB image if len(img.shape) == 3: img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), padding_mode) # Grayscale image if len(img.shape) == 2: img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode) return Image.fromarray(img) @torch.jit.unused def crop( img: Image.Image, top: int, left: int, height: int, width: int, ) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") return img.crop((left, top, left + width, top + height)) @torch.jit.unused def resize( img: Image.Image, size: Union[List[int], int], interpolation: int = Image.BILINEAR, ) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") if not (isinstance(size, list) and len(size) == 2): raise TypeError(f"Got inappropriate size arg: {size}") return img.resize(tuple(size[::-1]), interpolation) @torch.jit.unused def _parse_fill( fill: Optional[Union[float, List[float], Tuple[float, ...]]], img: Image.Image, name: str = "fillcolor", ) -> Dict[str, Optional[Union[float, List[float], Tuple[float, ...]]]]: # Process fill color for affine transforms num_channels = get_image_num_channels(img) if fill is None: fill = 0 if isinstance(fill, (int, float)) and num_channels > 1: fill = tuple([fill] * num_channels) if isinstance(fill, (list, tuple)): if len(fill) == 1: fill = fill * num_channels elif len(fill) != num_channels: msg = "The number of elements in 'fill' does not match the number of channels of the image ({} != {})" raise ValueError(msg.format(len(fill), num_channels)) fill = tuple(fill) # type: ignore[arg-type] if img.mode != "F": if isinstance(fill, (list, tuple)): fill = tuple(int(x) for x in fill) else: fill = int(fill) return {name: fill} @torch.jit.unused def affine( img: Image.Image, matrix: List[float], interpolation: int = Image.NEAREST, fill: Optional[Union[int, float, Sequence[int], Sequence[float]]] = None, ) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") output_size = img.size opts = _parse_fill(fill, img) return img.transform(output_size, Image.AFFINE, matrix, interpolation, **opts) @torch.jit.unused def rotate( img: Image.Image, angle: float, interpolation: int = Image.NEAREST, expand: bool = False, center: Optional[Tuple[int, int]] = None, fill: Optional[Union[int, float, Sequence[int], Sequence[float]]] = None, ) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") opts = _parse_fill(fill, img) return img.rotate(angle, interpolation, expand, center, **opts) @torch.jit.unused def perspective( img: Image.Image, perspective_coeffs: List[float], interpolation: int = Image.BICUBIC, fill: Optional[Union[int, float, Sequence[int], Sequence[float]]] = None, ) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") opts = _parse_fill(fill, img) return img.transform(img.size, Image.PERSPECTIVE, perspective_coeffs, interpolation, **opts) @torch.jit.unused def to_grayscale(img: Image.Image, num_output_channels: int) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") if num_output_channels == 1: img = img.convert("L") elif num_output_channels == 3: img = img.convert("L") np_img = np.array(img, dtype=np.uint8) np_img = np.dstack([np_img, np_img, np_img]) img = Image.fromarray(np_img, "RGB") else: raise ValueError("num_output_channels should be either 1 or 3") return img @torch.jit.unused def invert(img: Image.Image) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") return ImageOps.invert(img) @torch.jit.unused def posterize(img: Image.Image, bits: int) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") return ImageOps.posterize(img, bits) @torch.jit.unused def solarize(img: Image.Image, threshold: int) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") return ImageOps.solarize(img, threshold) @torch.jit.unused def adjust_sharpness(img: Image.Image, sharpness_factor: float) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") enhancer = ImageEnhance.Sharpness(img) img = enhancer.enhance(sharpness_factor) return img @torch.jit.unused def autocontrast(img: Image.Image) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") return ImageOps.autocontrast(img) @torch.jit.unused def equalize(img: Image.Image) -> Image.Image: if not _is_pil_image(img): raise TypeError(f"img should be PIL Image. Got {type(img)}") return ImageOps.equalize(img)
import csv import sys import re def main(): # check input lenght if len(sys.argv) != 3: print('Usage: python dna.py data.csv sequence.txt') return # reading dan and loading RAM dna = '' with open(sys.argv[2], "r") as file_dna: dna = file_dna.read().strip('\n') # reading databases and loading RAM data = [] field_name = [] with open(sys.argv[1], "r") as file_data: reader = csv.DictReader(file_data) field_name = reader.fieldnames[1:] for line in reader: for n in field_name: line[n] = int(line[n]) data.append(line) # calc STRs dna_STR = {} for name in field_name: dna_STR[name] = calc_STRs(dna, name)[0] # Find match for d in data: bool = [] for name in field_name: bool.append(d[name] == dna_STR[name]) if sum(bool) == len(field_name): print(d["name"]) return # if no match print("No match") def calc_STRs(dna, regEx): """ calc STRs """ # get Match match = re.search(regEx, dna) if match == None: return [0] # get Start match position position = match.start() # get length STRs count_STR = 0 while dna[position:(position+len(regEx))] == regEx: count_STR += 1 position += len(regEx) # add STR to STRs list list_STRs = [count_STR] # looping other dna list_STRs += calc_STRs(dna[position:], regEx) # if list length > 1 => return get Big Nuumber as list (length 1) if len(list_STRs) > 1: list_STRs.sort(reverse=True) # print(list_STRs) return [list_STRs[0]] # if list length 1 element return list_STRs if __name__ == "__main__": main()
#!/usr/bin/env python # -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> print('train classyfiler stage 4') import os import sys import csv import numpy as np import pickle from PIL import Image import tensorflow as tf import tensorflow_ae_base from tensorflow_ae_base import * import tensorflow_util import myutil exec(open('extern_params.py').read()) ss = 2048 # sample size na = 1 ## one batch one file # bronchioid # magnoid # squamoid import random data_table = list(csv.reader(open('filelist.txt','r'), delimiter='\t')) ns = len(data_table) ni = 16 iii = random.sample(range(ns),ni) tmp = [] tmpy = [] for aa in range(ni): ii = iii[aa] path_data = data_table[ii][0] img_tmp = Image.open(path_data,'r') tmp.append((np.asarray(img_tmp) / 255.0)[np.newaxis,:,:,:]) tmpy.append(int(data_table[ii][1])) qqq_trn = np.vstack(tmp) qqq_trn1 = qqq_trn[:,::-1,:,:] qqq_trn2 = qqq_trn[:,:,::-1,:] qqq_trn4 = np.transpose(qqq_trn,[0,2,1,3]) qqq_trn3 = qqq_trn[:,::-1,::-1,:] qqq_trn5 = qqq_trn4[:,::-1,:,:] qqq_trn6 = qqq_trn4[:,:,::-1,:] qqq_trn7 = qqq_trn3[:,::-1,::-1,:] yyy_trn = tmpy nn,ny,nx,nl = qqq_trn.shape print('nn ny nx nl',nn,ny,nx,nl) exec(open('tensorflow_ae_stage1.py').read()) exec(open('tensorflow_ae_stage2.py').read()) exec(open('tensorflow_ae_stage3.py').read()) exec(open('tensorflow_classify_stage4.py').read()) tf_input = tf.placeholder(tf.float32, [ni,ny,nx,nl]) tf_yyy = tf.placeholder(tf.int64, [ni]) tf_encode1 = get_encode1(tf_input) tf_encode2 = get_encode2(tf_encode1) tf_encode3 = get_encode3(tf_encode2) # sess.run(tf.initialize_all_variables()) # nj = 9 # tmp = [] # tmpy = [] # for aa in range(nj): # tmpx = [] # iii = random.sample(range(ns),ni) # for aa in range(ni): # ii = iii[aa] # path_data = data_table[ii][0] # img_tmp = Image.open(path_data,'r')# # tmpx.append((np.asarray(img_tmp) / 255.0)[np.newaxis,:,:,:]) # tmpy.append(int(data_table[ii][1])) # qqq_trn = np.vstack(tmpx) # yyy_trn = tmpy # hoge = tf_encode3.eval({tf_input:qqq_trn}) # tmp.append(hoge) tf_encode4 = get_encode4(tf_encode3) tf_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(tf_encode4[:,0,0,:],tf_yyy) tf_mean_loss = tf.reduce_mean(tf_loss) learning_rate = 1e-3 tf_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) tf_train = tf_optimizer.minimize(tf_loss) sess.run(tf.initialize_all_variables()) for tt in range(tmax): if((tprint > 0) and (tt % tprint==0)): print(tt,tf_mean_loss.eval({tf_input: qqq_trn, tf_yyy: yyy_trn})) if((tstage > 0) and (tt % tstage==0)): iii = random.sample(range(ns),ni) tmp = [] tmpy = [] for aa in range(ni): ii = iii[aa] path_data = data_table[ii][0] img_tmp = Image.open(path_data,'r')# tmp.append((np.asarray(img_tmp) / 255.0)[np.newaxis,:,:,:]) tmpy.append(int(data_table[ii][1])) qqq_trn = np.vstack(tmp) yyy_trn = tmpy qqq_trn1 = qqq_trn[:,::-1,:,:] qqq_trn2 = qqq_trn[:,:,::-1,:] qqq_trn4 = np.transpose(qqq_trn,[0,2,1,3]) qqq_trn3 = qqq_trn[:,::-1,::-1,:] qqq_trn5 = qqq_trn4[:,::-1,:,:] qqq_trn6 = qqq_trn4[:,:,::-1,:] qqq_trn7 = qqq_trn3[:,::-1,::-1,:] # sess.run(tf_train,{tf_input: qqq_trn, tf_yyy: yyy_trn}) sess.run(tf_train,{tf_input: qqq_trn1, tf_yyy: yyy_trn}) sess.run(tf_train,{tf_input: qqq_trn2, tf_yyy: yyy_trn}) sess.run(tf_train,{tf_input: qqq_trn3, tf_yyy: yyy_trn}) sess.run(tf_train,{tf_input: qqq_trn4, tf_yyy: yyy_trn}) sess.run(tf_train,{tf_input: qqq_trn5, tf_yyy: yyy_trn}) sess.run(tf_train,{tf_input: qqq_trn6, tf_yyy: yyy_trn}) sess.run(tf_train,{tf_input: qqq_trn7, tf_yyy: yyy_trn}) if(tt < tmax): print(tmax,tf_mean_loss.eval({tf_input: qqq_trn, tf_yyy: yyy_trn})) hoge = tf.argmax(tf_encode4[:,0,0,:],dimension=1) fuga = hoge.eval({tf_input:qqq_trn}) print(np.sum(fuga == yyy_trn),"/",len(fuga),"\n") # # save parameters # if(trainable1): save_stage1() print('stamp1 = \'{}\''.format(stamp)) if(trainable2): save_stage2() print('stamp2 = \'{}\''.format(stamp)) if(trainable3): save_stage3() print('stamp3 = \'{}\''.format(stamp)) if(trainable4): save_stage4() print('stamp4 = \'{}\''.format(stamp))
import win32con import win32gui from common.contants import choice_question_detail_dir, img_dir from page.base.basepage import BasePage class Choice_Question_Detail(BasePage): def choice_question(self,subject_name,option_list): ''' 題目標題\選項 ''' self._params["subject_name"] = subject_name self.step(choice_question_detail_dir, "subject_name") i=0 for option in option_list: i += 1 # self._params["item"] = option["item"] eles = self.step(choice_question_detail_dir,"get_item_eles") eles[-1].clear() eles[-1].send_keys(option["item"]) if option["is_other"] == True: # 勾選支持文本輸入框 self.sleep(1) other_ele = self.step(choice_question_detail_dir, "get_other_eles") other_ele[-1].click() if option["tips"]["switch"] == True: # 輸入選項説明 # self.sleep(1) other_ele = self.step(choice_question_detail_dir, "get_tips_eles") other_ele[-1].click() self._params["option_tips"] = option["tips"]["option_tips"] self.step(choice_question_detail_dir,"input_options_tips") if option["is_img"] == True: print(f"i:{i}") # 上傳圖片 self.sleep(1) img_eles = self.step(choice_question_detail_dir, "get_img_eles") img_eles[i-1].click() self.sleep(2) # 找元素 # 一级窗口"#32770","打开" dialog = win32gui.FindWindow("#32770", "打开") # 向下传递 ComboBoxEx32 = win32gui.FindWindowEx(dialog, 0, "ComboBoxEx32", None) # 二级 comboBox = win32gui.FindWindowEx(ComboBoxEx32, 0, "ComboBox", None) # 三级 # 编辑按钮 edit = win32gui.FindWindowEx(comboBox, 0, 'Edit', None) # 四级 # 打开按钮 button = win32gui.FindWindowEx(dialog, 0, 'Button', "打开(&O)") # 二级 # 输入文件的绝对路径,点击“打开”按钮 win32gui.SendMessage(edit, win32con.WM_SETTEXT, None, img_dir) # 发送文件路径 win32gui.SendMessage(dialog, win32con.WM_COMMAND, 1, button) # 点击打开按钮 self.sleep(2) if i < len(option_list): # 點擊添加選項符號 # 不等待会被遮挡元素 self.sleep(1) add_eles = self.step(choice_question_detail_dir,"get_add_eles") add_eles[-1].click() # 不等待会被遮挡元素 self.sleep(1) self.step(choice_question_detail_dir, "click_save") from page.quarter.quarter_management.create_quarter import Create_Quarter return Create_Quarter(self._driver)
# Enter script code keyboard.send_key("<backspace>") keyboard.send_key("<home>") keyboard.send_keys("help(") keyboard.send_key("<end>") keyboard.send_key(")") keyboard.send_key("<enter>")
import os import pdb def unique_output_filename(folder, format_string, maxval=100000): """ writes out data which we don't want to be overwritten folder : str The folder to write to format_string : str Something which can be formated using format_string.format(i) maxval : int The maximum number of iterations to try """ if not os.path.isdir(folder): raise ValueError("Folder {} does not exists".format(folder)) full_format_string = os.path.join(folder, format_string) for i in range(maxval): if not os.path.exists(full_format_string.format(i)): return full_format_string.format(i) raise ValueError("No file could be created with folder {}, format string {}, and maxval {}".format( folder, format_string, maxval))
# Generated by Django 3.1.5 on 2021-03-06 20:13 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('hackathon', '0002_auto_20210306_1959'), ] operations = [ migrations.CreateModel( name='BonusImage', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.ImageField(upload_to='')), ('approved', models.BooleanField()), ('competitor', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='hackathon.competitor')), ], ), ]
''' Created on July 19, 2010 @author: Jason Huang ''' #!/usr/bin/env python import pymongo import os import simplejson import MongoEncoder.MongoEncoder from Map.ProcessTripHandler import GetTrips from Map.ProcessTripHandler import ShowNewTrips from Map.ProcessTripHandler import ShowHotTrips from Map.ProcessTripHandler import ShowMyTrips from Map.ProcessTripHandler import ShowEndTrips from Map.ProcessTripHandler import SaveTrips from Map.ProcessTripHandler import SubscribeTrip from Map.ProcessTripHandler import UnsubscribeTrip from Map.ProcessTripHandler import LikeTripHandler from Map.ProcessTripHandler import SaveTripHandler from Map.ProcessTripHandler import AddTripTagHandler from Map.ProcessTripHandler import AddTripGroupHandler from Map.ProcessTripHandler import RemoveTripGroupHandler from Map.ProcessTripHandler import MergeTripGroupHandler from Map.ProcessTripHandler import GetTripGroupForMergeHandler from Map.ProcessTripHandler import GetTripGroupForMapHandler from Map.ProcessTripHandler import GetTripGroupForSiteHandler from Map.ProcessTripHandler import MyTripsHandler from Map.ProcessTripHandler import ProcessTripRequestHandler from Users.UserInfo import UpdateUserProfileHandler from Users.UserInfo import UpdatePaymentHandler from Calendar.CalendarHandler import ExportCalendarHandler from PDF.PDFHandler import DownloadPDFHanlder from Expense.ExpenseHandler import * from Map.BrowseTripHandler import BaseHandler from Map.BrowseTripHandler import BrowseHandler from Map.BrowseTripHandler import EntryHandler from Map.BrowseTripHandler import TripPageHandler from Map.CreateTripHandler import ComposeHandler from Map.CreateTripHandler import CreateTripModule #from Users.Message import MessageHandler from Users.Message import PostMessageHandler from Users.Notification import NotificationHandler from Settings.Settings import SettingsHandler from Users.Friend import FriendEntryModule from Auth.AuthHandler import CreateAccountHandler from Auth.AuthHandler import LoginHandler from Auth.AuthHandler import AuthLogoutHandler from Auth.AuthHandler import AuthLoginFBHandler from Auth.AuthHandler import AuthLogoutFBHandler from Auth.AuthHandler import AuthLoginTWHandler from Auth.AuthHandler import AuthLogoutTWHandler from Auth.AuthHandler import GoogleCalendarAuthHandler from Users.UserInfo import UserHandler from Users.UserInfo import FollowUserHandler from Users.UserInfo import UserSettingHandler from Users.UserInfo import FriendRequestHandler from Users.UserInfo import FriendRemoveHandler from Users.UserInfo import FriendConfirmHandler from Users.UserInfo import GetFriendHandler from Users.UserInfo import UnFollowUserHandler from Users.UserInfo import TravelersHandler from Users.UserInfo import AddUserToTripHandler from Users.UserInfo import RemoveUserFromTripHandler from Users.UserInfo import CheckUserinTripHandler from Users.UserInfo import GetTripMemberHandler from Guides.GuidesHandler import * from Comment.CommentHandler import PostCommentHandler from Comment.CommentHandler import DeleteCommentHandler from Comment.CommentHandler import PostFeedHandler from Exception.ExceptionHandler import ExceptionPage from Search.SearchHandler import RealTimeSearchAllHandler from Search.SearchHandler import SearchFriendHandler from Search.SearchHandler import SearchUserHandler from Search.SearchHandler import RealTimeSearchUserHandler from Sites.SiteHandler import AddSiteToTrip from Sites.SiteHandler import PostNoteToSite from Sites.SiteHandler import RemoveSiteFromTrip from Sites.SiteHandler import ShowSightsHandler from Social.SocialHandler import FaceBookGetFriendsHandler from Social.SocialHandler import FaceBookInviteHandler from Social.SocialHandler import FaceBookPostHandler from Social.SocialHandler import TwitterPostHandler from Social.SocialHandler import TripShareInviteHandler from Mail.MailHandler import EmailInviteHandler #import tornado.database import tornado.httpserver import tornado.ioloop import tornado.options import tornado.web import bson from tornado.options import define, options define("port", default=8001, help="run on the given port", type=int) define("mysql_host", default="127.0.0.1:3306", help="trip database host") define("mysql_database", default="TripShare", help="trip database name") define("mysql_user", default="jason", help="trip database user") define("mysql_password", default="jason", help="trip database password") define("google_client_id", help="your Google application API key", default="1072071824058-clak679f8h0lckdrm0ts21h73nah75ot.apps.googleusercontent.com") define("google_client_secret", help="your Google application secret", default="AY4dvAK_iBx-QlcUQiFVv8Ti") define("google_developer_key", help="your Google developer key", default="AIzaSyAyy9M1HZ1nDMdBwGMPDLamhFkCB8iQEJ0") define("amazon_access_key", help="your Amazon application access key", default="AKIAJLDHNWC3WXD6PGVA") define("amazon_secret", help="your Amazon application secret", default="0lGQzT3a8M6uJMcGajA6RpNf+/X9ImYZYSbysN2c") define("facebook_api_key", help="your Facebook application API key", default="221334761224948") define("facebook_secret", help="your Facebook application secret", default="b0e85f25c5bfddb7ebf40b7670cf5db3") define("twitter_consumer_key", help="your Twitter Consumer key", default="WInWKQDuB2IhJLUEuhZxA") define("twitter_consumer_secret", help="your Twitter application secret", default="INRfIiXtsKoqm0Lneh1dEt4GjUPvp6Uuakk90v0jY") define("SANDBOX_API_USER_NAME", help="paypal sandbox user name", default="tom_1333660419_biz_api1.hotmail.com") define("SANDBOX_API_PASSWORD", help="paypal sandbox password", default="1333660452") define("SANDBOX_API_SIGNATURE", help="paypal sandbox signature", default="AsmQhjDj6zsu8.Jn3.xALQRY4m1jAwJ4yUA2kag1Thrd0xMU4aVRuAbt") define("SANDBOX_APPLICATION_ID", help="paypal sandbox application id", default="APP-80W284485P519543T") define("SANDBOX_ENDPOINT", help="paypal sandbox api endpoint", default="https://svcs.sandbox.paypal.com/AdaptivePayments/") define("MAILCHIMP_API_KEY", help="API key for mailchimp", default="adc8df36f4e452eb4b620779bb527069-us4") #from functools import wraps #from tornado.web import HTTPError #from tornado.websocket import WebSocketHandler """ Renders the main template.""" class MainPage(BaseHandler): def head(self): image_info=[] dest_places = [] """ Get RANDOM trips to show in the map""" trips = self.syncdb.trips.find().limit(10) if trips.count() > 0: for trip in trips: trip_user = self.syncdb.users.find_one({'user_id': bson.ObjectId(trip['owner_id'])}) if (trip_user): image_info.append(trip['title']+';'+trip_user['picture'] +';'+'/trip/'+trip['slug']) dest_places.append(unicode(simplejson.dumps(trip['groups'][0]['dest_place'], cls=MongoEncoder.MongoEncoder.MongoEncoder))) """ Get latest trips to show in the list""" latest_trip_ids = self.syncdb.trips.find().sort("published", pymongo.DESCENDING).limit(10) top_shares = self.syncdb.users.find().sort("trip_count", pymongo.DESCENDING).limit(10) top_guides = self.syncdb.guides.find().sort("rating", pymongo.DESCENDING).limit(5) _trips = [] if latest_trip_ids.count() > 0: for latest_trip_id in latest_trip_ids: latest_trip_id['check_join'] = False if len(latest_trip_id['groups'])>0: members = latest_trip_id['groups'][0]['members'] if self.current_user: for member in members: if member['user_id'] == self.current_user['user_id']: latest_trip_id['check_join'] = True break #latest_trip_id['html'] = self.render_string("Module/trip.html", trip = latest_trip_id) _trips.append(latest_trip_id) self.render("newbeforesignin.html", guides=top_guides, dest_places = dest_places, trips=trips, image_info=image_info, latest_trip_ids=_trips, top_shares = top_shares) def get(self): image_info=[] dest_places = [] """ Get RANDOM trips to show in the map""" trips = self.syncdb.trips.find().limit(10) if trips.count() > 0: for trip in trips: trip_user = self.syncdb.users.find_one({'user_id': bson.ObjectId(trip['owner_id'])}) if (trip_user): image_info.append(trip['title']+';'+trip_user['picture'] +';'+'/trip/'+trip['slug']) dest_places.append(unicode(simplejson.dumps(trip['groups'][0]['dest_place'], cls=MongoEncoder.MongoEncoder.MongoEncoder))) """ Get latest trips to show in the list""" latest_trip_ids = self.syncdb.trips.find().sort("published", pymongo.DESCENDING).limit(10) top_shares = self.syncdb.users.find().sort("trip_count", pymongo.DESCENDING).limit(10) top_guides = self.syncdb.guides.find().sort("rating", pymongo.DESCENDING).limit(5) _trips = [] if latest_trip_ids.count() > 0: for latest_trip_id in latest_trip_ids: latest_trip_id['check_join'] = False if len(latest_trip_id['groups'])>0: members = latest_trip_id['groups'][0]['members'] if self.current_user: for member in members: if member['user_id'] == self.current_user['user_id']: latest_trip_id['check_join'] = True break #latest_trip_id['html'] = self.render_string("Module/trip.html", trip = latest_trip_id) _trips.append(latest_trip_id) self.render("newbeforesignin.html", guides=top_guides, dest_places = dest_places, trips=trips, image_info=image_info, latest_trip_ids=_trips, top_shares = top_shares) class Terms(BaseHandler): def get(self): self.render("terms.html") class Blog(BaseHandler): def get(self): self.render("blog.html") class AboutUs(BaseHandler): def get(self): if self.current_user: greeting = "Welcome " + str(self.get_current_username()) #user = None else: greeting = "Welcome " # user = self.db.get("SELECT * FROM users WHERE user_id = %s", self.current_user.id) self.render("aboutus.html", greeting = greeting) class ResetPassword(BaseHandler): def get(self): if self.current_user: greeting = "Welcome " + str(self.get_current_username()) #user = None else: greeting = "Welcome " #user = self.db.get("SELECT * FROM users WHERE user_id = %s", self.current_user.id) self.render("resetpassword.html", greeting = greeting) class Privacy(BaseHandler): def get(self): self.render("privacy.html") class Application(tornado.web.Application): def __init__(self): handlers = [ # main page (r"/", MainPage), # signup, login and logout (r"/login", LoginHandler), (r"/account/login", LoginHandler), (r"/account/create", CreateAccountHandler), # (r"/auth/login", AuthLoginHandler), (r"/auth/logout", AuthLogoutHandler), (r"/auth/fblogin", AuthLoginFBHandler), (r"/auth/fblogout", AuthLogoutFBHandler), (r"/auth/twlogin", AuthLoginTWHandler), (r"/auth/twlogout", AuthLogoutTWHandler), (r"/updateusersetting", UserSettingHandler), #(r"/oauth2callback/([^/]+)", GoogleoAuthHandler) (r"/calendar_oauth2callback", GoogleCalendarAuthHandler), (r"/saveexpense", ExpenseSaveHandler), (r"/getexpense", GetExpenseHandler), (r"/processexpense", ExpenseProcessHandler), (r"/checkpaymentaccount", ExpenseCheckAccountHandler), (r"/callpaymentapi", ExpensePaymentAPIHandler), (r"/trips", BrowseHandler), # where you create and browse trips (r"/trip/([^/]+)", EntryHandler), (r"/trips/([^/]+)/([^/]+)", TripPageHandler), (r"/like_trip", LikeTripHandler), (r"/processtriprequest", ProcessTripRequestHandler), (r"/save_trip", SaveTripHandler), #save the trip to personal save (r"/gettrips", GetTrips), (r"/createtrip", ComposeHandler), (r"/savetrip", SaveTrips), #save the trip when edit trip (r"/newtrips", ShowNewTrips), (r"/showmytrips", ShowMyTrips), (r"/hottrips", ShowHotTrips), (r"/endtrips", ShowEndTrips), (r"/addgrouptotrip", AddTripGroupHandler), (r"/removegroupfromtrip", RemoveTripGroupHandler), (r"/mergetripgroups", MergeTripGroupHandler), (r"/mytrips", MyTripsHandler), (r"/exportcalendar", ExportCalendarHandler), (r"/downloadpdf", DownloadPDFHanlder), (r"/addsitetotrip", AddSiteToTrip), (r"/removesitefromtrip", RemoveSiteFromTrip), (r"/postsitenote", PostNoteToSite), (r"/guides", BrowseGuidesHandler), (r"/gettripgroupformerge", GetTripGroupForMergeHandler), (r"/gettripgroupformap/([^/]+)/([^/]+)", GetTripGroupForMapHandler), (r"/gettripgroupforsite/([^/]+)/([^/]+)", GetTripGroupForSiteHandler), (r"/add_trip_tag", AddTripTagHandler), (r"/guides/([^/]+)", CategoryGuidesHandler), (r"/guide/([^/]+)", EntryGuidesHandler), (r"/add_guide_tag", AddGuidesTagHandler), (r"/saveguide", SaveGuidesHandler), (r"/likeguide", LikeGuidesHandler), (r"/createguide", CreateGuidesHandler), (r"/exportguide", ExportGuidesHandler), (r"/getguidesforimport", GetGuidesForImportHandler), (r"/deleteguide", DeleteGuidesHandler), (r"/importguidefile", ImportGuidesHandler), (r"/importguidetotrip", ImportGuideToTripHandler), (r"/sights/([^/]+)", ShowSightsHandler), #(r"/a/changepicture", UserPictureHandler), (r"/updateuserprofile", UpdateUserProfileHandler), (r"/updatepaymentmethod", UpdatePaymentHandler), (r"/settings", SettingsHandler), (r"/blog", Blog), (r"/postcomment", PostCommentHandler), (r"/deletecomment", DeleteCommentHandler), (r"/postfeed", PostFeedHandler), (r"/searchpeople/([^/]+)", SearchUserHandler), (r"/realtime_searchpeople/([^/]+)", RealTimeSearchUserHandler), (r"/realtime_searchall/([^/]+)", RealTimeSearchAllHandler), #(r"/checkuserintrip/([^/]+)/([^/]+)", CheckUserinTripHandler), (r"/checkuserintrip", CheckUserinTripHandler), (r"/sendexpenserequest", ExpenseRequestHandler), (r"/getnotificationpaymentmethod", GetPaymentMethodHandler), (r"/confirmfriend", FriendConfirmHandler), (r"/requestfriend", FriendRequestHandler), (r"/removefriend", FriendRemoveHandler), (r"/searchfriend/([^/]+)", SearchFriendHandler), (r"/getfriends", GetFriendHandler), (r"/gettripmembers", GetTripMemberHandler), (r"/travelers/([^/]*)", TravelersHandler), (r"/people/([^/]+)", UserHandler), #(r"/addusertotrip/([^/]+)/([^/]+)", AddUserToTripHandler), (r"/addusertotrip", AddUserToTripHandler), (r"/removeuserfromtrip", RemoveUserFromTripHandler), (r"/followpeople/([^/]+)", FollowUserHandler), # (r"/managemember/([^/]+)"), ManageMemberHandler), (r"/unfollowpeople/([^/]+)", UnFollowUserHandler), (r"/about/terms", Terms), (r"/about_us", AboutUs), (r"/about/privacy", Privacy), (r"/resetpassword", ResetPassword), (r"/subscribe_trip/([^/]+)", SubscribeTrip), (r"/unsubscribe_trip/([^/]+)", UnsubscribeTrip), (r"/postmessage", PostMessageHandler), (r"/messages", NotificationHandler), (r"/static/images/(.*)", tornado.web.StaticFileHandler, {"path": "/home/jason/workspace/TripShare/static/images"}), (r"/post_on_facebook", FaceBookPostHandler), (r"/getfriends_on_facebook", FaceBookGetFriendsHandler), (r"/invite_on_facebook", FaceBookInviteHandler), (r"/sendtripshareinvite", TripShareInviteHandler), (r"/post_on_twitter", TwitterPostHandler), (r"/send_email_invite", EmailInviteHandler), (r"/exception", ExceptionPage), ] settings = dict( blog_title=u"Tornado Trip", template_path=os.path.join(os.path.dirname(__file__), "templates"), ui_modules={"FriendEntry": FriendEntryModule, "CreateTrip": CreateTripModule}, static_path=os.path.join(os.path.dirname(__file__), "static"), stylesheets_path=os.path.join(os.path.dirname(__file__), "stylesheets"), xsrf_cookies=True, amazon_access_key = options.amazon_access_key, amazon_secret_key = options.amazon_secret, facebook_api_key=options.facebook_api_key, facebook_secret=options.facebook_secret, google_client_id=options.google_client_id, google_client_secret=options.google_client_secret, google_developer_key=options.google_developer_key, twitter_consumer_key = options.twitter_consumer_key, twitter_consumer_secret = options.twitter_consumer_secret, debug = True, gzip = True, cookie_secret="11oETzKXQAGaYdkL5gEmGeJJFuYh7EQnp2XdTP1o/Vo=", login_url = "/login", PAYPAL_USERID = options.SANDBOX_API_USER_NAME, PAYPAL_PASSWORD = options.SANDBOX_API_PASSWORD, PAYPAL_SIGNATURE = options.SANDBOX_API_SIGNATURE, PAYPAL_APPLICATION_ID = options.SANDBOX_APPLICATION_ID, remote_address = '', MAILCHIMP_API_KEY = options.MAILCHIMP_API_KEY ) tornado.web.Application.__init__(self, handlers, **settings) # Have one global connection to the blog DB across all handlers #=================================================== # self.db = tornado.database.Connection( # host=options.mysql_host, database=options.mysql_database, # user=options.mysql_user, password=options.mysql_password) #=================================================== #self.db = asyncmongo.Client(pool_id='mytestdb', host='127.0.0.1', port=27017, maxcached=10, maxconnections=50, dbname='TripShare') #self.syncdb = pymongo.Connection("184.169.172.137", 27017).TripShare self.syncdb = pymongo.Connection("localhost", 27017).TripShare def main(): tornado.options.parse_command_line() http_server = tornado.httpserver.HTTPServer(Application()) http_server.listen(options.port) tornado.ioloop.IOLoop.instance().start() if __name__ == "__main__": main()
#!/usr/bin/env python from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.action_chains import ActionChains from random import randint from main.page.desktop_v3.product.pe_product import * from utils.function.general import * import os, time, sys, json, requests import urllib.parse import urllib.request class ShopPage(BasePage): payload = { 'action' : 'show_dialog_new_message', 'friend_id' : '295701', 'shop' : '1', 'v' : '', 'bypass_qc' : '1' } # instance variable product #_product_loc = (By.XPATH, "//div[@class='span9']/div[1]") _product_loc = (By.XPATH, "/html/body/div[1]/section/div[4]/div[2]/div[1]/div") _list_product_loc = (By.XPATH, "//div[@itemtype='http://schema.org/ItemList']/div") # instance variable tab _tab_product_loc = (By.XPATH, "//*[@id='s_shopmenu']/ul/li[1]") _tab_talk_loc = (By.XPATH, "//*[@id='s_shopmenu']/ul/li[2]") _tab_review_loc = (By.XPATH, "//*[@id='s_shopmenu']/ul/li[3]") _tab_info_loc = (By.XPATH, "//*[@id='s_shopmenu']/ul/li[4]") # instance variable message _send_msg_loc = (By.CSS_SELECTOR, "div#send-pm button.send-pm.button") _subj_msg_loc = (By.ID, "message-subject") _text_msg_loc = (By.ID, "message") _submit_msg_loc = (By.XPATH, "//*[@id='new-message']/div[5]/button[2]") _after_submit_loc = (By.XPATH, "//*[@id='rf']/div/button") # instance variable fav shop _btn_fav_shop_loc = (By.XPATH, "//*[@id='fave_this_shop']") _total_shop_fav_loc = (By.XPATH, "//*[@id='gold-info-2']/ul/li[5]/a/div[1]/span/b") # list domain shop domain_shop = ['tokoqc14', 'tokoqc15', 'tokoqc16'] target_domain = "" #Security _captcha_loc = (By.CSS_SELECTOR, 'div#recaptcha_widget div.mb-10 div input.recaptcha_response_field') _first_prod_loc = (By.XPATH, "/html/body/div[1]/section/div[4]/div[2]/div[1]/div[1]/a") def domain(self, site, x=""): self._open(site, x) self.target_domain = x def go_to_product_tab(self): self.driver.find_element(*self._tab_product_loc).click() def go_to_talk_product_tab(self): self.driver.find_element(*self._tab_talk_loc).click() def go_to_review_tab(self): self.driver.find_element(*self._tab_review_loc).click() def go_to_info_shop_tab(self): self.driver.find_element(*self._tab_info_loc).click() def do_fav_shop(self): total_before = self.driver.find_element(*self._total_shop_fav_loc).text total_before = int(total_before) + 1 try: element = WebDriverWait(self.driver, 10).until( EC.visibility_of_element_located((self._btn_fav_shop_loc)) ) time.sleep(10) print(element.text) bl = element.click() time.sleep(1) total_after = self.driver.find_element(*self._total_shop_fav_loc).text if (total_before == int(total_after)): print("Counter OK.") print(total_before, total_after, bl) except Exception as inst: print(inst) # klik button send message (sebelum tulis pesan) def click_send_message_button(self): try: time.sleep(2) self.driver.find_element(*self._send_msg_loc).click() except Exception as inst: print(inst) #klik button send message (setelah tulis pesan) def click_send_message(self, driver, subject, message): print('masuk method click send message') try: self.driver.find_element(*self._send_msg_loc).click() time.sleep(8) print('Sent message button clicked') time.sleep(2) self.find_element(*self._subj_msg_loc).send_keys(subject) print('Enter subject succeed') self.find_element(*self._text_msg_loc).send_keys(message) print('Write message succeed') self.find_element(*self._submit_msg_loc).click() print('Submit message') time.sleep(5) self.find_element(*self._after_submit_loc).click() print('Confirmation done') except NoSuchElementException: print('No such element') def choose_product(self): self.check_visible_element(*self._product_loc) condition_product = self.find_element(*self._product_loc) browser_type = self.driver.capabilities['browserName'] if condition_product.text != "Tidak ada Produk" or condition_product.text != "No Product": list_product = self.driver.find_elements(*self._list_product_loc) i, length = 0, len(list_product) rand = randint(i, length - 1) print("Choose product", list_product[rand].text) if (browser_type == "chrome"): #list_product[rand].click() self._click(list_product[rand]) time.sleep(4) else: product_name = list_product[rand].find_element(By.TAG_NAME, "b").text seq = product_name.split(" ") c = "-".join(seq) self.driver.get(self.url + self.target_domain + "/" + c) else: print("No product in", self.driver.title) def choose_product_manual (self, product_name): print("Choose product", product_name) self.find_element(*self._first_prod_loc).click() #====================FOR UNIT TESTING PURPOSE, DO NOT DELETE====================# #bypass captcha def bypass_send_message(self, people_ID): self.payload['friend_id'] = people_ID print(self.payload['friend_id']) requests.get("https://www.tokopedia.com/ajax/people-4.pl", data=self.payload) #print (pos.text) self.payload['friend_id'] = request.get.get('v') data = urllib.parse.urlencode(self.payload) data = data.encode('utf-8') # data should be bytes req = urllib.request.Request("https://www.tokopedia.com/ajax/people-4.pl", self.payload) response = urllib.request.urlopen("https://www.tokopedia.com/ajax/people-4.pl") the_page = response.read() def check_is_captcha_available(self): self.check_visible_element(self._captcha_loc[0], self._captcha_loc[1]) print('captcha appeared') #==================FOR UNIT TESTING PURPOSE, DO NOT DELETE=======================# def __str__(self): return "Page Toko " + self.driver.title
from turtle import Turtle class Scoreboard(Turtle): def __init__(self): super().__init__() self.count = 0 self.hideturtle() self.color("white") self.up() self.goto(-50,270) self.down() self.write(f"Scoreboad : {self.count}",align="left", font=("Arial", 20, "normal")) def gameover(self): self.up() self.goto(0,0) self.down() self.write(f"Game over ",align="left", font=("Arial", 20, "normal")) def increase(self): self.count +=1 self.clear() self.write(f"Scoreboad : {self.count}",align="left", font=("Arial", 20, "normal"))
# # Dota info server in Python # Binds REP socket to tcp://*:5555 # Expects b"get_new_msg" from client, replies with the message for the client # to push to telegram, OR b"NONE" if there is no message. # # Expected implementation: # * reads from SQS of all matches and filters them according to a static list # * generates the messages that need to be sent, and whenever the client # polls, concatenates them if there are more than one, and sends it back to # the client. import http.server import json import logging import re import threading import dotainput.local_config import dotainput.streamer import dotainput.util logging.basicConfig( filename='processor.log', level=logging.INFO, format='%(asctime)s %(message)s' ) # Variables that need to be accessed across threads: # Accounts of people we care about default_account_ids_64bit = { 76561197997336439, # dzbug 76561198111698495, # instapicking PL 76561198159705679, # dz's unranked smurf 76561198189446861, # fox (Paul's smurf) 76561198143189634, # Allen's smurf 76561197961774985, # Franklin 76561197979611387, # Sidd 76561197970342819, # Aaron 76561197993621342, # Gilbert (Sloth) 76561198013393830, # RD 76561197999544403, # Hellfire 76561198034473797, # lutz 76561198168192504, # Gilbert's smurf (vvx) 76561197972444552, # Angra 76561198089947113, # Allen's smurf (shadow friend) 76561197971215286, # shadowing } class Processor: """ Acts as a server for requests from the lua telegram plugin. Call the process_match method to process a match and potentially add it to the messages that will be sent via telegram. """ def __init__(self): # Map of 32-bit to 64-bit account IDs self.account_lookup = \ dict((4294967295 & a, a) for a in default_account_ids_64bit) # YOU NEED TO ACQUIRE THE LOCK msg_lock TO READ/MODIFY next_msg. self._msg_lock = threading.Lock() self._next_msg = None # Lock for steam_conn self._conn_lock = threading.Lock() self._steam_conn = \ dotainput.util.create_steamapi_connection() self.server_address = ('', 8000) class BotHandler(http.server.BaseHTTPRequestHandler): """ HTTP Handler for requests from the telegram plugin. """ def do_GET(b_self): addplayers_re = re.compile("/telegram-addplayer\?id_64=(\d+)") removeplayers_re = re.compile( "/telegram-removeplayer\?id_64=(\d+)" ) try: if b_self.path == "/telegram-poll": # Send reply back to client next_msg = self.get_next_message() if next_msg is not None: b_self._respond(next_msg) else: b_self._respond("NONE") elif b_self.path == "/telegram-latest": next_msg = self.peek_next_message() b_self._respond("Queued message: %s" % next_msg) elif addplayers_re.match(b_self.path): v = int(addplayers_re.match(b_self.path).group(1)) logging.info("adding player %s" % v) k = 4294967295 & v name = self.lookup_name(v) self.account_lookup[k] = v b_self._respond("Added player: %s" % name) elif removeplayers_re.match(b_self.path): id_64 = \ int(removeplayers_re.match(b_self.path).group(1)) k = 4294967295 & id_64 self.account_lookup.pop(k, None) b_self._respond("Removed player: %s" % self.lookup_name(id_64)) elif b_self.path == "/telegram-listplayers": print("Listing players.") player_names = [ self.lookup_name(p) for p in self.account_lookup.values()] b_self._respond("Tracked players:\n%s" % "\n".join(player_names)) else: b_self._respond("Unknown path: %s" % b_self.path) except Exception as e: b_self._respond("Internal error processing: %s" % str(e)) def _respond(b_self, text): logging.debug("Sending response: %s" % text) b_self.send_response(200) b_self.send_header('Content-type', 'text/html') b_self.end_headers() b_self.wfile.write(bytes(text, encoding="utf-8")) self._httpd = http.server.HTTPServer( self.server_address, BotHandler) def start(self): """ Starts the HTTP server in a different thread. Cannot be stopped ... yet. """ threading.Thread(target=self._httpd.serve_forever).start() def process_match(self, match): """ Process a single match. :param match: JSON representation of a match (from steam API). """ players = [ player["account_id"] for player in match["players"] if "account_id" in player # Bots have no account_id ] interesting_players = [ p for p in players if p in list(self.account_lookup.keys()) ] if len(interesting_players) > 0: player_names = [ self.lookup_name(self.account_lookup[aid_32]) for aid_32 in interesting_players ] message = "{players} just finished match {dotabuff_link}"\ .format( players=",".join(str(p) for p in player_names), dotabuff_link="http://www.dotabuff.com/matches/" "{match}".format( match=match["match_id"] ) ) logging.info("Found interesting game: %s" % message) self._msg_lock.acquire() if self._next_msg is None: self._next_msg = message else: self._next_msg = self._next_msg + "\n\n" + message self._msg_lock.release() def lookup_name(self, aid_64): """ Look up the display name of a player given their 64 bit ID. :param aid_64: 64 bit ID of player to look up. :return: Player name, or "Player <aid_64>" if an error was encountered. """ self._conn_lock.acquire() self._steam_conn.request( "GET", "/ISteamUser/GetPlayerSummaries/v0002" "?key={key}&steamids={aid_64}".format( key=dotainput.local_config.DOTA2_API_KEY, aid_64=aid_64 ) ) try: response = self._steam_conn.getresponse().read() playerinfo = json.loads(response.decode("utf-8")) players = playerinfo["response"]["players"] assert len(players) == 1, "only requested one steam ID" self._conn_lock.release() return players[0]["personaname"] except Exception as err: logging.error( "Got an error when looking up name for %s. Error: %s" % (aid_64, str(err)) ) self._conn_lock.release() self._steam_conn = \ dotainput.util.create_steamapi_connection() return "Player number: %s" % aid_64 def get_next_message(self): """ :return: The next message to be the response to telegram-poll, or None if no message is to be sent. Resets the next message to None afterward. """ self._msg_lock.acquire() response = self._next_msg self._next_msg = None self._msg_lock.release() return response def peek_next_message(self): """ :return: the next message to be sent, without resetting it to None. """ self._msg_lock.acquire() response = self._next_msg self._msg_lock.release() return response
#!/usr/bin/env python3 import sys from util.aoc import file_to_day from util.input import load_data def main(test=False): dotdata = [] instructions = [] data = load_data(file_to_day(__file__), test) for idx, line in enumerate(data): if line == "": dotdata = data[:idx] instructions = data[idx + 1 :] break dots = set(tuple(map(int, n.split(","))) for n in dotdata) for idx, inst in enumerate(instructions): dots = fold_grid(dots, inst.split(" ")[-1]) if idx == 0: p1 = len(dots) print("2021:13:1 =", p1) print("2021:13:2 =") print_grid(dots) def fold_grid(dots, pos): axis, coord = pos.split("=") coord = int(coord) new = set() for dot in dots: index = "xy".index(axis) if dot[index] < coord: new.add(dot) else: offset = coord * 2 if index == 0: new.add((offset - dot[0], dot[1])) else: new.add((dot[0], offset - dot[1])) return new def print_grid(dots): maxx = max([d[0] for d in dots]) maxy = max([d[1] for d in dots]) for y in range(maxy + 1): for x in range(maxx + 1): if (x, y) in dots: print("#", end="") else: print(" ", end="") print() if __name__ == "__main__": test = len(sys.argv) > 1 and sys.argv[1] == "test" main(test)
import csv import sys from defs import hier def summarize(fn, nfn): f = csv.reader(file(fn, "rb")) fo = open(nfn, "wb") header = f.next() cams = Node("Root") for l in f: for x in zip(header, l): if x in hier: #print hier[x][0] cams.inc_child(*hier[x][0]) cams.p() class Node: def __init__(self, name): self.name = name self.children = {} self.val = 1 def inc_child(self, *x): if not x: return # empty recursion... if x[0] in self.children: self.children[x[0]].val += 1 else: self.add_child(x[0]).inc_child(*x[1:]) def add_child(self, name): if name in self.children: return self.children[name] x = Node(name) self.children[name] = x return x def count(self): # Yes I know this is recursive. return sum([v.count() for k,v in self.children.items()]) + self.val def p(self, level=0): print "%s %s %d" % (" "*level, self.name, self.count()) print "%s %r" % (" "*level, self.children) for k,v in self.children.items(): v.p(level+2) if __name__ == "__main__": summarize(*sys.argv[1:])
# -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2018-10-05 13:20 from __future__ import unicode_literals import django.db.models.deletion import django.db.models.manager import django_extensions.db.fields import elections.managers from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("elections", "0046_update_status")] operations = [ migrations.CreateModel( name="ModerationHistory", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "created", django_extensions.db.fields.CreationDateTimeField( auto_now_add=True, verbose_name="created" ), ), ( "modified", django_extensions.db.fields.ModificationDateTimeField( auto_now=True, verbose_name="modified" ), ), ], options={ "ordering": ("-modified", "-created"), "get_latest_by": "modified", "abstract": False, }, ), migrations.CreateModel( name="ModerationStatus", fields=[ ( "short_label", models.CharField( choices=[ ( elections.models.ModerationStatuses( "Suggested" ), "Suggested", ), ( elections.models.ModerationStatuses("Rejected"), "Rejected", ), ( elections.models.ModerationStatuses("Approved"), "Approved", ), ( elections.models.ModerationStatuses("Deleted"), "Deleted", ), ], max_length=32, primary_key=True, serialize=False, ), ), ("long_label", models.CharField(max_length=100)), ], ), migrations.AlterModelManagers( name="election", managers=[ ("public_objects", django.db.models.manager.Manager()), ( "private_objects", elections.managers.PrivateElectionsManager(), ), ], ), migrations.AddField( model_name="moderationhistory", name="election", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="elections.Election", ), ), migrations.AddField( model_name="moderationhistory", name="status", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="elections.ModerationStatus", ), ), migrations.AddField( model_name="election", name="moderation_statuses", field=models.ManyToManyField( through="elections.ModerationHistory", to="elections.ModerationStatus", ), ), ]
# Author Yinsen Miao import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set_context("poster") dat = pd.read_pickle("../data/cleandata2.pkl") dat_municode = dat[['PARID', 'MUNICODE']].drop_duplicates()['MUNICODE'].value_counts() municodes = [str(code) for code in dat_municode.index] dat_municode.index = municodes # get housing HVI index hvi_dat = pd.read_csv("../data/muni_index.csv", parse_dates=["SALEDATE"], index_col=["SALEDATE"]) # compute the past 10 year hvi_yret = hvi_dat["2005-12-31": "2015-12-31"].resample("Y").last().pct_change().dropna() n, _ = hvi_yret.shape avg_rets = round((((hvi_yret + 1).prod()) ** (1.0 / n) - 1.0) * 100., 2) avg_stds = round((hvi_yret).std() * 100, 2) dat_summary = pd.concat([dat_municode[municodes], avg_rets[municodes], avg_stds[municodes]], axis=1).reset_index() dat_summary.columns = ["MUNICODE", "Count", "Return", "Risk"] dat_summary = dat_summary.sort_values("Return", ascending=False) # write municode, return risks topn = 20 top_municodes = dat_summary.head(topn)["MUNICODE"].to_list() dat_summary.to_csv("../clean_data/counts_rets_rsks.csv") # hvi_dat.to_csv("../data/top_hvi.csv", index_label="ZIP") nrow = 5 ncol = int(topn / nrow) fig, axs = plt.subplots(ncol, nrow, figsize=(25, 12)) for idx, municode in enumerate(top_municodes): i, j = idx // nrow, idx % nrow axs[i, j].plot(hvi_dat.index, hvi_dat[municode]) if i != ncol - 1: axs[i, j].get_xaxis().set_ticks([]) else: axs[i, j].tick_params(axis='x', labelrotation=45) if j != 0: axs[i, j].get_yaxis().set_ticks([]) axs[i, j].set_title("%s" % municode) axs[i, j].set_ylim(80, 450) axs[i, j].axvline(x=pd.to_datetime("2015-12-31"), color="red", alpha=0.5, linestyle="--", linewidth=3) # axs[i, j].axvline(x=pd.to_datetime("2020-01-31"), color="blue", alpha=0.3, linestyle="--", linewidth=3) plt.savefig("../images/municode.png") plt.close() # compute statistics hvi_dat = pd.read_csv("../data/muni_index.csv", parse_dates=["SALEDATE"], index_col=["SALEDATE"]) port_dat = hvi_dat[top_municodes] port_dat.to_csv("../clean_data/top20assets.csv") # save selected municode for portfolio optimization
from setuptools import setup with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setup( name="pycolate", version="0.0.42", author="Jack Harrington", author_email="jackjharrington@icloud.com", description="Generates site percolation data and illustrations.", packages=["pycolate"], install_requires=["numpy", "scipy", "pillow", "sympy"], long_description=long_description, long_description_content_type="text/markdown", classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Topic :: Scientific/Engineering :: Mathematics", "Topic :: Scientific/Engineering :: Visualization", "Topic :: Scientific/Engineering :: Physics", ], )
""" File: cover_list_code.py Author: Abraham Aruguete Purpose: This is a script designed to test each of the lines in list_insert.py""" from list_insert import * def main(): node1 = ListNode( (-8, -7) ) node2 = ListNode ( (2, 5) ) node3 = ListNode ( (-9, -7)) sorted_list_insert(None, node2) sorted_list_insert(node1, node2) sorted_list_insert(node3, node1) sorted_list_insert(node1, node3) print_list(None) print_list(node1) main()
from grid import * from particle import Particle from utils import * from setting import * from math import sin, cos, radians import random from scipy import stats import numpy as np MARKER_ANGLE_SIGMA = 10 MARKER_DIST_SIGMA = 0.5 def motion_update(particles, odom): """ Particle filter motion update Arguments: particles -- input list of particle represents belief p(x_{t-1} | u_{t-1}) before motion update odom -- odometry to move (dx, dy, dh) in *robot local frame* Returns: the list of particles represents belief \tilde{p}(x_{t} | u_{t}) after motion update """ motion_particles = [] for particle in particles: # add noise to each particle's odom then move it accordingly new_particle = Particle(particle.x, particle.y, particle.h) new_odom = add_odometry_noise(odom, heading_sigma=ODOM_HEAD_SIGMA, trans_sigma=ODOM_TRANS_SIGMA) dx, dy = rotate_point(new_odom[0], new_odom[1], particle.h) new_particle.x += dx new_particle.y += dy new_particle.h += new_odom[2] motion_particles.append(new_particle) return motion_particles # ------------------------------------------------------------------------ def measurement_update(particles, measured_marker_list, grid): """ Particle filter measurement update Arguments: particles -- input list of particle represents belief \tilde{p}(x_{t} | u_{t}) before meansurement update (but after motion update) measured_marker_list -- robot detected marker list, each marker has format: measured_marker_list[i] = (rx, ry, rh) rx -- marker's relative X coordinate in robot's frame ry -- marker's relative Y coordinate in robot's frame rh -- marker's relative heading in robot's frame, in degree * Note that the robot can only see markers which is in its camera field of view, which is defined by ROBOT_CAMERA_FOV_DEG in setting.py * Note that the robot can see mutliple markers at once, and may not see any one grid -- grid world map, which contains the marker information, see grid.py and CozGrid for definition Can be used to evaluate particles Returns: the list of particles represents belief p(x_{t} | u_{t}) after measurement update """ measured_particles = [] particles_list = [] particles_weight = [] marker_list= [] match_list = [] weight_sum = 0.0 num_robot_markers = len(measured_marker_list) resampling_count = 0 for particle in particles: # throw away particles that went out of bound if not grid.is_in(particle.x, particle.y): continue # the list of marker seen by a particle particle_marker_list = particle.read_markers(grid) num_particle_markers = len(particle_marker_list) weight = 0.0 #marker noise add_marker_measurement_noise(m, trans_sigma=MARKER_TRANS_SIGMA, rot_sigma=MARKER_ROT_SIGMA) if num_robot_markers == 0 and num_particle_markers == 0: # no markers seen # minimum weight. it is not informative weight = stats.norm.pdf(2*MARKER_ANGLE_SIGMA, loc=0.0, scale=MARKER_ANGLE_SIGMA) elif num_robot_markers > 0 and num_particle_markers > 0: weight = 0.0 # both robot and particle see some number of markers for robot_marker in measured_marker_list: for particle_maker in particle_marker_list: #particle_maker = add_marker_measurement_noise(particle_maker, trans_sigma=MARKER_TRANS_SIGMA, rot_sigma=MARKER_ROT_SIGMA) # difference between robot's angle to marker and particle's angle to marker angle_diff = abs(robot_marker[2] - particle_maker[2]) # distance between robot and marker robot_dist = math.sqrt(robot_marker[0]**2 + robot_marker[1]**2) # distance between particle and marker particle_dist = math.sqrt(particle_maker[0]**2 + particle_maker[1]**2) # difference between robot's distance to marker and particle's angle to distance distance_diff = abs(robot_dist - particle_dist) angle_weight = stats.norm.pdf(angle_diff, loc=0.0, scale=MARKER_ANGLE_SIGMA) distance_weight = stats.norm.pdf(distance_diff, loc=0.0, scale=MARKER_DIST_SIGMA) weight += (angle_weight * distance_weight) weight = weight / (num_robot_markers * num_particle_markers) else: # only robot or particle see any marker # unlikely match weight = stats.norm.pdf(2*MARKER_ANGLE_SIGMA, loc=0.0, scale=MARKER_ANGLE_SIGMA) particles_list.append(particle) # Multiply by a billion because the weight are very small numbers most of the time # and are rounded to zero too readily particles_weight.append(weight*1000000000) marker_list.append(particle_marker_list) match_list.append((num_particle_markers, num_robot_markers)) weight_sum += weight*1000000000 for i in range(len(particles_list)): normalized_weight = particles_weight[i] / weight_sum resampling_count = np.around(PARTICLE_COUNT * normalized_weight) # resampling for _ in range(math.floor(resampling_count)): measured_particles.append(Particle(particles_list[i].x, particles_list[i].y, particles_list[i].h)) measured_particles.extend(Particle.create_random(100, grid)) return measured_particles
from django.db import models # Create your models here. class Inventory(models.Model): """docstring for Inventory""" name = models.CharField(max_length=100,default='Something') image = models.ImageField(null=True, default='No-image-available.png') description = models.CharField(max_length=100, default='Describe Something') price = models.IntegerField( default=0)
#!/usr/bin/python3 # -*- coding: utf-8 -*- import argparse import datetime from src.analyse import Analyse from src.data import Vir parser = argparse.ArgumentParser() parser.add_argument("--date", help="date in format YYYY-MM-DD (not needed if it's today)") parser.add_argument("--infections", help="number of infections with 2019-nCoV today") parser.add_argument("--deaths", help="number of deaths from 2019-nCoV today") parser.add_argument("--plot", help="ploting values (results in analysis)", action="store_true") args = parser.parse_args() if __name__ == '__main__': data = Vir() analyse = Analyse(data=data) analyse.calc_factors() analyse.derive() if args.infections is not None and args.deaths is not None: if args.date is None: date = datetime.date.today() else: try: date = datetime.date.fromisoformat(args.date) except ValueError as e: print("A wild error appeared while parsing the date.\n\n") print(e) try: infections = int(args.infections) deaths = int(args.deaths) data.add_day(date, infections, deaths) except ValueError as e: print("A wild error appeared while parsing the infections or deaths value.\n\n") print(e) if args.plot is True: analyse.plot_defined() del analyse, data
import sys import os import fastjet as fj import pyhepmc_ng import tqdm def main(): input_file="$HOME/data/jetscape/test_out.hepmc" if len(sys.argv) > 1: input_file = sys.argv[1] input_file = os.path.expandvars(input_file) print('[i] reading from:', input_file) # input = pyhepmc_ng.ReaderAsciiHepMC2(input_file) input = pyhepmc_ng.ReaderAscii(input_file) if input.failed(): print ("[error] unable to read from {}".format(input_file)) return nevents = 1000 # print the banner first fj.ClusterSequence.print_banner() print() jet_R0 = 0.4 jet_def = fj.JetDefinition(fj.antikt_algorithm, jet_R0) jet_selector = fj.SelectorPtMin(0.0) & fj.SelectorPtMax(200.0) & fj.SelectorAbsEtaMax(3) all_jets = [] event = pyhepmc_ng.GenEvent() pbar = tqdm.tqdm(range(nevents)) while not input.failed(): e = input.read_event(event) if input.failed(): break fjparts = [] for i,p in enumerate(event.particles): if p.status == 1 and not p.end_vertex: psj = fj.PseudoJet(p.momentum.px, p.momentum.py, p.momentum.pz, p.momentum.e) psj.set_user_index(i) fjparts.append(psj) jets = jet_selector(jet_def(fjparts)) all_jets.append([ [j.pt(), j.eta()] for j in jets]) pbar.update() for j in jets: hjetpt.Fill(j.perp()) if pbar.n >= nevents: break pbar.close() if __name__ == '__main__': main()
import pandas as pd import numpy as np import os from scipy import stats from scipy.stats import norm from sqlalchemy import create_engine import logging import pickle logger = logging.getLogger(__name__) def prediction(model, city, bedrooms, bathrooms, floors, waterfront, condition, sqft_basement, yr_built, yr_renovated,lot_log): """Takes inputs and uses city selection to index models pickle and predict house price. Arguments: city {int} -- selected city for model index bedrooms {int} -- bedroom count bathrooms{int} -- bathroom count floors {int} -- floor count waterfront {int} -- binary variable for waterfront condition {int} -- condition of home sqft_basement {int} -- binary variable for basement yr_built {int} -- year built yr_renovated {int} -- binary variable for renovations lot_log {int} -- sqft of lot Returns: price {str}-- Formatted dollar amount of predicted house price. """ model = model[int(city)] lot_log = np.log(int(lot_log)) # Create of row of data that comabines all user inputs title={"bedrooms":[bedrooms], "bathrooms":[bathrooms], "floors":[floors], "waterfront": [waterfront], "condition":[condition], "sqft_basement":[sqft_basement],"yr_built":[yr_built], "yr_renovated":[yr_renovated], "lot_log":[lot_log]} test = pd.DataFrame(title) # Make prediction from the loaded random forest model prediction = model.predict(test) result = int(np.exp(prediction)) price = '${:0,.0f}'.format(result) return price
import logging from microstrategy_api.task_proc.memoize_class import MemoizeClass from microstrategy_api.task_proc.object_type import ObjectType, ObjectTypeIDDict, ObjectSubType, ObjectSubTypeIDDict class MetadataObjectNonMemo(object): """ Object encapsulating a generic metadata object on MicroStrategy Args: guid (str): guid for this object name (str): the name of this object Attributes: guid (str): guid for this object name (str): the name of this object """ def __init__(self, guid, name, metadata_object_type=None): self.log = logging.getLogger("{mod}.{cls}".format(mod=self.__class__.__module__, cls=self.__class__.__name__)) self.log.setLevel(logging.DEBUG) self.guid = guid self.name = name self._type = None self._sub_type = None if metadata_object_type: self._type = metadata_object_type else: self._type = self.__class__.__name__ def __repr__(self): return "<{self._type} name='{self.name}' guid='{self.guid}'".format(self=self) def __str__(self): if self.name: return "[{self._type}: {self.name}]".format(self=self) else: return self.__repr__() @property def type(self): return self._type @type.setter def type(self, value): if value is None: self._type = value elif isinstance(value, ObjectType): self._type = value elif isinstance(value, int): self._type = ObjectTypeIDDict[value] elif isinstance(value, str): self._type = ObjectType[value] else: raise ValueError("{v} is not ObjectType, int, or str".format(v=value)) @property def sub_type(self): return self._sub_type @sub_type.setter def sub_type(self, value): if value is None: self._sub_type = value elif isinstance(value, ObjectSubType): self._sub_type = value elif isinstance(value, int): self._sub_type = ObjectSubTypeIDDict[value] elif isinstance(value, str): self._sub_type = ObjectSubType[value] else: raise ValueError("{v} is not ObjectSubType, int, or str".format(v=value)) class MetadataObject(MetadataObjectNonMemo, metaclass=MemoizeClass): def __init__(self, guid, name, metadata_object_type=None): super().__init__(guid, name, metadata_object_type)
import glob import pandas as pd from models.song import Song from models.artist import Artist from models.songPlay import SongPlay from models.time import Time from models.user import User import numpy as np from bd import Base,session,engine from sqlalchemy import exc #Función que obtiene el nombre de todos los archivos def get_nameFiles(path): files = [f for f in glob.glob(path + "**/*.json", recursive=True)] return files #Función que convierte el contenido de todos los archivos en un dataFrame def files_To_DataFrame(Filejson): df_full= pd.DataFrame() for file in Filejson: #Read file df = pd.read_json(file,lines=True,encoding='utf-8') #Data Frame df_full = df_full.append(df) return df_full def main(): ## Se procesan los archivos 'data/log_data/' #Se obtienen los nombre de todos los archivos los archivos files = get_nameFiles('data/song_data/') #Se crea un dataframe con la información de todos los archivos df_song_data = files_To_DataFrame(files) #Se obtienen los datos para la tabla SONG df_song = df_song_data[['song_id','artist_id', 'title','year', 'duration']].dropna(subset=['song_id']).drop_duplicates(['song_id']) #Se obtienen los datos para la tabla ARTIST df_artist = df_song_data[['artist_id', 'artist_name', 'artist_location', 'artist_latitude', 'artist_longitude']].dropna(subset=['artist_id']).drop_duplicates(['artist_id']) df_artist = df_artist.rename(columns={'artist_name': 'name', 'artist_location': 'location', 'artist_latitude': 'latitude', 'artist_longitude': 'longitude'}) #Se procesan los archivos 'data/log_data/' #Se obtienen los nombre de todos los archivos los archivos files = get_nameFiles('data/log_data/') #Se crea un dataframe con la información de todos los archivos df_long_data = files_To_DataFrame(files) #Se obtienen los datos para la tabla TIME_FORMAT ts = pd.to_datetime(df_long_data['ts'], unit='ms') timeFormat = (df_long_data['ts'].values, ts.dt.hour.values, ts.dt.day.values, ts.dt.week.values, ts.dt.month.values, ts.dt.year.values, ts.dt.weekday.values) column_labels = ['start_time', 'hour', 'day', 'week', 'month', 'year', 'weekday'] df_time_format= pd.DataFrame(data=list(zip(*timeFormat)), columns=column_labels) df_time_format = df_time_format.drop_duplicates(['start_time']) #Se obtiene los datos para la tabla USER convert_dict = {'user_id': int } df_user = df_long_data[['userId', 'firstName', 'lastName', 'gender', 'level']].rename(columns={'userId': 'user_id'}).replace('', np.nan).dropna(subset=['user_id']) df_user = df_user.astype(convert_dict) df_user = df_user.drop_duplicates(['user_id']) #Se obtiene los datos para la table SONG_PLAY df_song_data_aux = df_song_data[['artist_id','song_id', 'title','artist_name']].rename(columns={'title': 'song', 'artist_name': 'artist'}) df_long_data_aux = df_long_data[['userId', 'sessionId','userAgent','level','location','ts','artist','song']] df_song_play_join = pd.merge(df_long_data_aux, df_song_data_aux, on=['song','artist'], how='left') df_song_play_join = df_song_play_join.rename(columns={'ts': 'start_time', 'sessionId': 'session_id','userAgent': 'user_agent','userId': 'user_id'}).replace('',0) #Se crea el indice songplay_id df_song_play_join['songplay_id'] = df_song_play_join.index #Se crean los objetos para ser guardados en BD listObjectSong = [Song(**kwargs) for kwargs in df_song.to_dict(orient='records')] listObjectArtist = [Artist(**kwargs) for kwargs in df_artist.to_dict(orient='records')] listObjectTime = [Time(**kwargs) for kwargs in df_time_format.to_dict(orient='records')] listObjectUser = [User(**kwargs) for kwargs in df_user.to_dict(orient='records')] listObjectSongPlay = [SongPlay(**kwargs) for kwargs in df_song_play_join.to_dict(orient='records')] #Se eliminan las tablas, si existen y se crean Base.metadata.drop_all(engine) Base.metadata.create_all(engine) #Se guardan los objetos try: session.bulk_save_objects(listObjectSong) session.bulk_save_objects(listObjectArtist) session.bulk_save_objects(listObjectTime) session.bulk_save_objects(listObjectUser) session.bulk_save_objects(listObjectSongPlay) session.commit() session.close() except exc.SQLAlchemyError as ex: session.close() print('Exeption:', ex) df_song_play_join = df_song_play_join.drop(['song', 'artist','length'], axis=1) if __name__ == "__main__": main()
with open("TChiWZAll.dat") as f: content = f.readlines() # you may also want to remove whitespace characters like `\n` at the end of each line content = [x.strip() for x in content] for a in content: fileName=a.split("/")[8] print fileName
from arduino_graphing import DataHandler class Logger(): def __init__(self, beer_logs, fridge_logs, time_logs): self.beer_logs=beer_logs self.fridge_logs=fridge_logs self.time_logs=time_logs beer_logs = [] fridge_logs = [] time_logs = [0] beer_logs.append(DataHandler.bt) fridge_logs.append(DataHandler.ft) time_logs.append(len(beer_logs)) def input_data(): if len(self.beer_logs)==0: csv=open()