text
stringlengths
8
6.05M
import unittest from katas.kyu_6.ipv4_to_int32 import ip_to_int32 class IPToInt32TestCase(unittest.TestCase): def test_equals(self): self.assertEqual(ip_to_int32('128.114.17.104'), 2154959208) def test_equals_2(self): self.assertEqual(ip_to_int32('0.0.0.0'), 0) def test_equals_3(self): self.assertEqual(ip_to_int32('128.32.10.1'), 2149583361)
#!/usr/bin/env python import os import sys os.environ['DJANGO_SETTINGS_MODULE'] = 'tests.settings' from django.test.utils import get_runner from django.conf import settings def runtests(): TestRunner = get_runner(settings) test_runner = TestRunner(verbosity=1, interactive=True, failfast=False) failures = test_runner.run_tests([]) sys.exit(failures) if __name__ == '__main__': runtests()
# coding: utf-8 #geling 修改注释20180424 import gym import matplotlib import numpy as np import sys from collections import defaultdict if "../" not in sys.path: sys.path.append("../") from lib.envs.halften import HalftenEnv import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import MultipleLocator, FormatStrFormatter env = HalftenEnv() # 画出的图形中文乱码时的解决方案 matplotlib.rcParams['fonts.sans-serif'] = ['SimHei'] matplotlib.rcParams['fonts.family']='sans-serif' matplotlib.rcParams['axes.unicode_minus'] = False xmajorLocator = MultipleLocator(0.5) # 刻度设置为0.5的倍数 xmajorFormatter = FormatStrFormatter('%1.1f') #设置x轴标签文本的格式 ymajorLocator = MultipleLocator(1) ymajorFormatter = FormatStrFormatter('%d') #设置y轴标签文本的格式 zmajorLocator = MultipleLocator(1) zmajorFormatter = FormatStrFormatter('%d') #设置z轴标签文本的格式 # 画图函数 figureIndex = 0 def prettyPrint(data, tile, zlabel='回报'): global figureIndex fig = plt.figure(figureIndex) figureIndex += 1 fig.suptitle(tile) fig.set_size_inches(18.5, 10.5) # 调整输出的图像大小,因为刻度划分较细,所以使用默认图像大小时刻度会重叠显示,看不清效果 ax = fig.add_subplot(111, projection='3d') axisX = [] axisY = [] axisZ = [] ax.set_xlim(0.5, 10.5) # 设置x轴刻度范围 ax.set_ylim(1,5) # 设置y轴刻度范围 ax.set_zlim(0,1) # 设置z轴刻度范围 ax.xaxis.set_major_locator(xmajorLocator) ax.xaxis.set_major_formatter(xmajorFormatter) ax.yaxis.set_major_locator(ymajorLocator) ax.yaxis.set_major_formatter(ymajorFormatter) ax.zaxis.set_major_locator(zmajorLocator) ax.zaxis.set_major_formatter(zmajorFormatter) for i in data: axisX.append(i['x']) axisY.append(i['y']) axisZ.append(i['z']) ax.scatter(axisX, axisY, axisZ) ax.set_xlabel('玩家手牌总分') ax.set_ylabel('玩家手牌数') ax.set_zlabel(zlabel) def create_random_policy(nA): """ 创建一个随机策略函数 参数: nA: 这个环境中的行为数量 返回: 一个函数,参数为当前的状态,返回为一个可能的行为向量 """ A = np.ones(nA, dtype=float) / nA def policy_fn(observation): return A return policy_fn def create_greedy_policy(Q): """ 基于Q值生成一个贪心策略 参数: Q: 一个字典,键为状态,值为动作 Returns: 一个函数,参数为当前的状态,返回为一个可能的行为向量 """ def policy_fn(state): A = np.zeros_like(Q[state], dtype=float) best_action = np.argmax(Q[state]) A[best_action] = 1.0 return A return policy_fn def mc_control_importance_sampling(env, num_episodes, behavior_policy, discount_factor=1.0): """ 使用重采样的蒙特卡罗离线策略控制 找到最优的贪心策略 参数: env: 十点半环境 num_episodes: 对样本的自行次数 behavior_policy: 行为策略 discount_factor: 折扣因子 Returns: A 元组 (Q, policy). Q 一个字典,键为状态,值为动作 policy 一个函数,参数为当前的状态,返回为一个可能的行为向量 这是一个最优的贪心策略 """ # 一个字典,键为状态, 值为动作 Q = defaultdict(lambda: np.zeros(env.action_space.n)) # 加权重要性抽样公式的累积分母(通过所有的episodes) C = defaultdict(lambda: np.zeros(env.action_space.n)) # 遵循的策略 target_policy = create_greedy_policy(Q) # 玩的场次 for i_episode in range(1, num_episodes + 1): # 处理进度(每1000次在控制台更新一次) if i_episode % 1000 == 0: print("\rEpisode {}/{}.".format(i_episode, num_episodes), end="") sys.stdout.flush() # 定义一个episode数组,用来存入(state, action, reward) episode = [] state = env._reset() for t in range(100): # 根据当前的状态返回一个可能的行为概率数组 probs = behavior_policy(state) # 根据返回的行为概率随机选择动作 action = np.random.choice(np.arange(len(probs)), p=probs) # 根据当前动作确认下一步的状态,回报,以及是否结束 next_state, reward, done, _ = env._step(action) # 将当前的轨迹信息加入episode数组中 episode.append((state, action, reward)) if done: break state = next_state episode_len = len(episode) if episode_len < 4: continue # 累计回报的值 G = 0.0 # 权重 W = 1.0 print("局数:%d"%(i_episode)) print("该局的episode",end=":") print(episode) # 对于每一个episode,倒序进行 for t in range(len(episode))[::-1]: print("第%d次计算"%t) state, action, reward = episode[t] print(episode[t]) # 从当前步更新总回报 G = discount_factor * G + reward print("G更新",end=":") print(G) # 更新加权重要性采样公式分母 C[state][action] += W print("C更新",end=":") print(C[state][action]) # 使用增量更新公式更新动作值函数 # 这也改善了我们提到Q的目标政策 Q[state][action] += (W / C[state][action]) * G - Q[state][action] print("Q更新",end=":") print(Q[state][action]) # 如果行为策略采取的行动不是目标策略采取的行动,那么概率将为0,我们可以打破 if action != np.argmax(target_policy(state)): print("行为策略采取的行动与初始1策略不符,终止执行") print("*" * 50) break W = W * 1./behavior_policy(state)[action] print("W更新:",end=":") print(W) print("*"*50) return Q, target_policy random_policy = create_random_policy(env.action_space.n) Q, policy = mc_control_importance_sampling(env, num_episodes=500, behavior_policy=random_policy) # policy_content = ["停牌","叫牌"] # # # 当手上有x张人牌时,各情况的最优策略 # action_0_pcard = [] # action_1_pcard = [] # action_2_pcard = [] # action_3_pcard = [] # action_4_pcard = [] # # for state, actions in Q.items(): # # 该状态下的最优行为值函数 # action_value = np.max(actions) # # 该状态下的最优行为 # best_action = np.argmax(actions) # # score, card_num, p_num = state # # item_0 = {"x": score, "y": int(card_num), "z": best_action} # # if p_num == 0: # action_0_pcard.append(item_0) # elif p_num == 1: # action_1_pcard.append(item_0) # elif p_num == 2: # action_2_pcard.append(item_0) # elif p_num == 3: # action_3_pcard.append(item_0) # elif p_num == 4: # action_4_pcard.append(item_0) # # print("当前手牌数之和为:%.1f,当前手牌数为:%d时,当前人牌数为%d,最优策略为:%s"%(score,card_num,p_num,policy_content[best_action])) # # prettyPrint(action_0_pcard, "没有人牌时的最优策略","采取策略") # prettyPrint(action_1_pcard, "一张人牌时的最优策略","采取策略") # prettyPrint(action_2_pcard, "两张人牌时的最优策略","采取策略") # prettyPrint(action_3_pcard, "三张人牌时的最优策略","采取策略") # prettyPrint(action_4_pcard, "四张人牌时的最优策略","采取策略") # plt.show()
import serial import sys class ArgsParse: def __init__(self): self.argMap = {} self.flags = []; offset = 0; for i in sys.argv[1:]: offset = i.find("="); if offset > -1: self.argMap[i[:offset].lower()] = i[offset+1:]; else: self.flags += [i.lower()]; def hasFlag(self, flagName): for i in self.flags: if i == flagName.lower(): return True; return False; def getValue(self, name, defaultValue): if( name.lower() in self.argMap): return self.argMap[name.lower()] return defaultValue; class PrinterProtocol: def __init__(self, port='/dev/ttyACM0', baud=115200, timeout=0.5): self.mPort = port; self.mBaud = baud; self.mTimeout = timeout; self.ser = None; self.errors = []; def open(self): self.ser = serial.Serial(self.mPort, self.mBaud, timeout=self.mTimeout); self.printResponse(); def close(self): if self.ser != None: self.ser.close(); def printResponse(self): while True: s = self.ser.readline(); if s == '': break; print("From Printer: " + s[:-1]); def readUntilOkOrError(self): while True: s = self.ser.readline(); if s.find(":") > -1: tag = s[:s.find(":")]; else: tag = ""; if s.lower() == "ok\n": return True; if(s != ''): print("From Printer: " + s[:-1]); if tag.lower() == "error": return False; def sendCmd(self, cmd): print ("App: Sending Command: " + cmd); self.ser.write(cmd + "\n"); return self.readUntilOkOrError(); def emergencyStop(self): self.sendCmd("M18"); self.sendCmd("M140 S0"); self.sendCmd("M104 S0"); self.sendCmd("M81"); class GcodeCommandBuffer: def __init__(self, filePath): self.mLines = []; self.mNextCommand = 0; f = open(filePath); l = f.readline(); lineCounter = 1; while l != '': commentPos = l.find(";"); comment = None if(commentPos > -1): comment = l[commentPos+1:].strip(); l = l[:commentPos]; l = l.strip(); if(len(l) > 0 or comment != None): self.mLines += [{"cmd":l, "comment":comment, "line":lineCounter}]; lineCounter += 1 l = f.readline(); f.close(); def nextCommand(self): if(nextCommand < len(self.mLines)): temp = self.mLines[self.mNextCommand]; self.mNextCommand += 1; return temp; return {"cmd": "", "comment":"End of commands!!!", "line":-1}; def percentComplete(self): return (1.0*self.mNextCommand) / len(self.mLines); def numCommandsLeft(self): return len(self.mLines) - self.mNextCommand; args = ArgsParse(); baud = args.getValue("baud", 115200); port = args.getValue("port", '/dev/ttyACM0'); print("Params: port=" + port + ", baud=" + str(baud)); p = PrinterProtocol(port=port, baud=baud, timeout=1.0); p.open(); trueish = ['yes', 'true', '1', 't', 'y', 'on']; falseish = ['no', 'false', '0', 'f', 'n', 'off']; running = True; while running: cmdRaw = raw_input("> ") cmd = cmdRaw.split(" ")[0].lower(); if cmd == "": print("Nop"); elif cmd == "help" or cmd == "?": print(""" Custom Commands: help / ? - shows this quit / exit / - stops console relative <true/false> - use Relative Movements pos - show current position info - show printer info endstops - show endstop status motors <true/false> - turn motors on? home - home the printer status - print avaialble info to screen stop - Emergency stop of printer * Note Any Non-Custom Commands will be treated as GCODE and be sent un-altered to printer """) elif cmd == "exit" or cmd == "quit" or cmd == "q": running = False; elif cmd == "relative": v = cmdRaw.split(" "); if len(v) > 1: temp = v[1].lower(); if temp in trueish: p.sendCmd("G91") if temp in falseish: p.sendCmd("G90") elif cmd == "pos": p.sendCmd("M114"); elif cmd == "motors": v = cmdRaw.split(" "); if len(v) > 1: temp = v[1].lower(); if temp in trueish: p.sendCmd("M17") if temp in falseish: p.sendCmd("M18") elif cmd == "info": p.sendCmd("M115"); elif cmd == "endstops": p.sendCmd("M119"); elif cmd == "status": p.sendCmd("M115"); #Capabilities string p.sendCmd("M114"); #Position p.sendCmd("M119"); #End stops p.sendCmd("M105"); # Current Temp elif cmd == "stop": p.sendCmd("M18"); #stop Motors p.sendCmd("M190 S0"); #Set bed temp to 0 p.sendCmd("M104 S0"); #Set Nozzle temp to 0 elif cmd == "home": p.sendCmd("G28") else: p.sendCmd(cmdRaw); p.close();
#!/usr/bin/env python # Copyright (c) 2011 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Verifies simplest-possible build of a "Hello, world!" program using the default build target. """ import TestGyp test = TestGyp.TestGyp(workdir='workarea_default', formats=['msvs']) # Run from down in foo. test.run_gyp('a.gyp', chdir='foo/a') sln = test.workpath('foo/a/a.sln') sln_data = open(sln, 'rb').read() vcproj = sln_data.count('b.vcproj') vcxproj = sln_data.count('b.vcxproj') if (vcproj, vcxproj) not in [(1, 0), (0, 1)]: test.fail_test() test.pass_test()
import parallel_utils3 as par import argparse import gc import random import re from collections import namedtuple from functools import partial from pathlib import Path from posixpath import join from sys import argv from time import time import dask.dataframe as dd import pandas as pd from joblib import Parallel, delayed from multiprocess import Pool import utils as u filename_rx = re.compile( r"(.*)_(\d+)\.([WAGL+FTR]+)\.treefile$") # qCF: Fraction of concordant sites supporting quartet Seq1,Seq2|Seq3,Seq4 (=qCF_N/qN) # qCF_N: Number of concordant sites supporting quartet Seq1,Seq2|Seq3,Seq4 # qDF1: Fraction of discordant sites supporting quartet Seq1,Seq3|Seq2,Seq4 (=qDF1_N/qN) # qDF1_N: Number of discordant sites supporting quartet Seq1,Seq3|Seq2,Seq4 # qDF2: Fraction of discordant sites supporting quartet Seq1,Seq4|Seq2,Seq3 (=qDF2_N/qN) # qDF2_N: Number of discordant sites supporting quartet Seq1,Seq4|Seq2,Seq3 # qN: Number of decisive sites with four taxa Seq1,Seq2,Seq3,Seq4 (=qCF_N+qDF1_N+qDF2_N) def value_mapper(d): def f(X): try: return [d[x] for x in X] except: return d[X] return f Params = namedtuple( "Params", ("filename", "prefix", "gene", "imodel") ) def parse_filename(fn: Path) -> Params: s = fn.name m = filename_rx.search(s) try: prefix, gene, imodel, = m.groups() except AttributeError as e: print(fn, filename_rx) raise e return Params( filename=fn, prefix=prefix, gene=gene, imodel=imodel ) # top2tid = {'(4,(1,(2,3)));': 3, '(4,(2,(1,3)));': 2, '(4,(3,(1,2)));': 1} def tree2pdist(tree: u.Tree, q) -> pd.DataFrame: tree = tree.copy('deepcopy') tree.prune(q) for l in tree.get_leaves(): l.name = clade_mapper[l.name.split('_')[0]] tree.set_outgroup('4') d = u.summarize(tree) d['ix'] = q return d def filter_quartet_list(quartet: list) -> bool: """Assumes that Outgroups have been merged, and the list doesn't contain more than 4 taxa""" found = 0 for clade in clade_mapper.keys(): found += any(s.find(clade) > -1 for s in quartet ) return found >= 4 splits = { '2143': {'qDF1': 'qDF1', 'qCF': 'qCF', 'qDF2': 'qDF2', 'qN': 'qN'}, '1234': {'qDF1': 'qDF1', 'qCF': 'qCF', 'qDF2': 'qDF2', 'qN': 'qN'}, '2413': {'qCF': 'qDF1', 'qDF1': 'qCF', 'qDF2': 'qDF2', 'qN': 'qN'}, '4123': {'qCF': 'qDF2', 'qDF1': 'qCF', 'qDF2': 'qDF1', 'qN': 'qN'}, '2314': {'qCF': 'qDF2', 'qDF1': 'qCF', 'qDF2': 'qDF1', 'qN': 'qN'} } class SCF: def __init__(self, filepath): # TODO : make sure scf has expected labeling self.scf = pd.read_csv( filepath, delim_whitespace=True, usecols=['qCF', 'qDF1', 'qDF2', 'qN', 'Seq1', 'Seq2', 'Seq3', 'Seq4'], index_col=['Seq1', 'Seq2', 'Seq3', 'Seq4'], ).dropna() def reorder_scf(self): rows = [] for idx, row in self.scf.iterrows(): topology = ''.join(clade_mapper[t.split('_')[0]] for t in idx) row.index = row.index.map(splits[topology]) rows.append(row) self.scf = pd.DataFrame(rows) return self @staticmethod def filter_quartet(quartet: list) -> bool: """filters for those quartets that span the internal branch""" found = 0 for clade in clade_mapper: found += sum(s.startswith(clade) for s in quartet) == 1 return found == 4 @staticmethod def clade_order(s: str): '''TODO: handle NA clade names''' for c in clade_mapper: if s.startswith(c): return clade_mapper[c] return '0' def map_index(self, ix2name): def name_mapper(tup): """sort must respect s1,s2|s3,s4 so we know which topos qCF, DF, and DF2 map to""" tup = tuple(ix2name[i] for i in tup) def s(t): return sorted(t, key=self.clade_order) left, right = sorted((s(tup[:2]), s(tup[2:]))) return (*left, *right) self.scf.index = self.scf.index.map(name_mapper) return self def sort_index(self): """This should be called after reorder scf""" def s(t): return tuple(sorted(t, key=self.clade_order)) self.scf.index = self.scf.index.map(s) self.scf.index.names = [s.split('_')[0] for s in self.scf.index[0]] def filter(self): scf = self.scf scf = scf[scf.index.map(self.filter_quartet)] if not scf.empty: scf.index.names = [s.split('_')[0] for s in scf.index[0]] self.scf = scf return self def percent(self): # convert frac to percent for consistency if u.np.allclose(self.scf.drop(columns='qN').sum(1), 1): self.scf.loc[:, ['qCF', 'qDF1', 'qDF2'] ] = self.scf[['qCF', 'qDF1', 'qDF2']]*100 @property def empty(self): return self.scf.empty @property def index(self): return self.scf.index def to_dataframe(self): return self.scf def write_quartets(filename: Path, threads: int = 4): import numpy as np from Bio import AlignIO # TODO: must first translate species name -> clade name to reorder index columns of scf. # Then select using array_agg. _, prefix, gene, imodel = parse_filename(filename) dirname = filename.parent tree = u.read_trees(filename)[0] for l in tree: l.name = clade_name_mapper(l.name) a = AlignIO.read(dirname/f'{prefix}_{gene}.nex', format='nexus') ix2name = { ix: clade_name_mapper(seq.name.replace( '@', '_')) for ix, seq in enumerate(a, 1) } scf = ( SCF(filepath=dirname/f'{prefix}_{gene}.scf') .map_index(ix2name) .filter() ) if scf.empty: # print(filename, 'no quartets found') return False scf.reorder_scf() scf.sort_index() try: scf.percent() except: print(scf, filename) raise summarize_tree = partial(tree2pdist, tree) quartet_records = Parallel(threads)( delayed(summarize_tree)(q) for q in scf.index) d = (pd .DataFrame .from_records(quartet_records, index='ix') ) d.index = pd.MultiIndex.from_tuples(d.index, names=scf.index.names) d = scf.to_dataframe().join(d) d["infer_model"] = imodel d["seq_length"] = a.get_alignment_length() d["infer_engine"] = "iqtree" d["seq_type"] = "AA" d["matrix_name"] = filename.parent.name d.to_pickle(filename.with_suffix('.quartets.pd.gz')) return True def write_hdf(s: Path, procs=4): from summarize_meta import summarize_dataset summary_stats = summarize_dataset(s, by='taxa') summary_stats.to_hdf(s.parent/'summary_stats.hdf5', key=s.stem) return summary_stats def main(args): global clade_mapper clade_mapper = dict(zip(args.clades), '1234') csize = int(5000 / args.procs) # TODO check file size, keep recmap in memory directories = list(args.seqdir.glob("*.genes")) random.shuffle(directories) if args.procs == 1: for dirname in directories: start_time = time() done = 0 for filename in dirname.glob('*.treefile'): done += write_quartets(filename, threads=args.threads) print( f'dir: {dirname}\ttime: {time()-start_time}\twrote: {done}') write_hdf(dirname) else: with Pool(args.procs) as p: for dirname in directories: start_time = time() res = p.imap_unordered( partial(write_quartets, threads=args.threads), dirname.glob('*.treefile')) print( f'dir: {dirname}\ttime: {time()-start_time}\twrote: {sum(res)}') p.imap_unordered(write_hdf, directories) print("finished updating inferred gene trees") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Process some data.") parser.add_argument( "--buffsize", type=int, default=100, help="""size of buffer for sql writes.""" ) parser.add_argument( "--csize", type=int, default=50, help="""size of chunks to pass to each proc.""" ) parser.add_argument( "--procs", type=int, default=4, help="""course-grained parallelism.""") parser.add_argument( "--threads", type=int, default=4, help="""fine-grained parallelism.""") parser.add_argument( "--seqtype", type=str, default='PROT', help="""alignment type (DNA or PROT).""") parser.add_argument( "--engine", type=str, default="iqtree", help="inference engine (fasttree/raxml). Not implemented.", ) parser.add_argument( "--clades", type=str, nargs=4, default=['ParaHoxozoa', 'Ctenophora', 'Porifera', 'Outgroup'] help="The 4 clade names. The clade in the final position will be considered the outgroup.", ) parser.add_argument( "--verbose", action="store_true", help="debug (verbose) mode.") parser.add_argument( "--ignore_errors", action="store_true", help="debug (verbose) mode." ) parser.add_argument( "--seqdir", type=Path, help="input folder containing directories containing trees and scf files", required=True) parser.add_argument( "--overwrite", action="store_true", help="overwrite existing tables." ) args = parser.parse_args() print(args) main(args)
# -*- coding:utf-8 -*- from config import application, environment, database import view app = application.app environment.configure() database.configure() view.register() if __name__ == '__main__': app.run()
class KEY(object): SERVICE_TIME = "service_time" SERVICE_TYPE = 'serv_type' DEPART_TIME = 'depart_time' ROUTE_ID = 'route_id' TRIP_ID = 'trip_id' HEADSIGN = 'headsign' DIRECTION = 'direction' STOP_ID = 'stop_id' EST_WAIT_SEC = 'est_wait_sec' DISTANCE = 'dist' POPULATION = 'pop' WEIGHT = 'weight' DAILY_DEPARTURES = 'daily_departures' DEPARTURES = 'departures' BAD_ID = 'bad_id' POINT = 'point' NAME = 'name' NOTES = 'notes' STOP_SET = 'stop_set' BUFFER_METHOD = 'buffer_method' SCORE_METHOD = 'score_method' STOP_DEMAND = 'stop_demand' SCORE_NEAREST_ONLY = 'score_nearest_only' DECAY_METHOD = 'decay_method' DECAY_FACTOR = 'decay_factor' DISTANCE_METHOD = 'distance_method' NORMALIZE_VALUE = 'normalize_value' WAIT_BANDPASS = 'wait_bandpass' STOPS_ADDED = 'stops_added' STOPS_REMOVED = 'stops_removed' LAT = 'lat' LON = 'lng' LNG = 'lng'
s,v=map(int,input().split()) l=list(map(int,input().split())) l1=[] for x in range(0,len(l)): if(l[x]%2!=0): l1.append(l[x]) print(l1[v-1])
s=[] for i in range(8): s.append(int(input())) print(max(s))
import pandas as pd import streamlit as st import joblib import numpy as np st.title('Sales Forecasting') st.write('We forecast sales') data = pd.read_csv('/Users/alyssa/Desktop/ftw-webapp-deployment/data/advertising_regression.csv') data st.sidebar.subheader('Advertising Costs') TV = st.sidebar.slider('TV Advertising Cost', 0, 300, 150) radio = st.sidebar.slider('Radio Advertising Cost', 0, 300, 150) newspaper = st.sidebar.slider('Newspaper Advertising Cost', 0, 300, 150) hist_values = np.histogram(data.radio, bins=300, range=(0,300))[0] st.bar_chart(hist_values) hist_values = np.histogram(data.newspaper, bins=300, range=(0,300))[0] st.bar_chart(hist_values) hist_values = np.histogram(data.TV, bins=300, range=(0,300))[0] st.bar_chart(hist_values) saved_model = joblib.load('advertising_model.sav') predicted_sales = saved_model.predict([[TV, radio, newspaper]]) st.write(f'Predcited sales is {predicted_sales} dollars')
import random class Character(object): "main character" def __init__(self): self.stats = {} self.setStats(str=15,dex=15,end=15, name="Nock") self.equipped = [] self.stats["damage"], self.stats["AC"] = 0, 0 self.level = 1 self.experience = [] # Health = d8 + end/2-5 # [curent/max] maxHealth = random.randint(1, 8) + ((self.stats["end"] / 2) - 5) self.health = [maxHealth, maxHealth] self.equipment = [] def __repr__(self): return self.name def setStats(self, str=0, dex=0, end=0, name=""): if str != 0: self.stats["str"] = str if dex != 0: self.stats["dex"] = dex if end != 0: self.stats["end"] = end if name != "": self.name = name def printStats(self): print self.name print "Str:", print self.stats["str"] print "Dex:", print self.stats["dex"] print "end:", print self.stats["end"] print "Damage:", print self.stats["damage"] print "AC:", print self.stats["AC"] def equip(self, equipment): if equipment.isEquipped == False: self.equipped.append(equipment) self.applyEquipStatChanges(equipment) print "Equipped " + equipment.name self.equipment.append(equipment) equipment.isEquipped = True elif equipment.isEquipped == True: print "Already Equipped" def unequip(self, equipment): if equipment.isEquipped == True: self.equipped.remove(equipment) self.unapplyEquipStatChanges(equipment) print "Unequipped " + equipment.name self.equipment.remove(equipment) equipment.isEquipped = False def applyEquipStatChanges(self, equipment): type = equipment.type if type == "weapon": self.stats["damage"] += equipment.damage if type == "armour": self.stats["AC"] += equipment.armour def unapplyEquipStatChanges(self, equipment): type = equipment.type if type == "weapon": self.stats["damage"] -= equipment.damage if type == "armour": self.stats["AC"] -= equipment.armour
import web_utility def convert(amount, home_currency_code, location_currency_code): #converts the home currency to foreign currency and returns it url_string = "https://www.google.com/finance/converter?a={}&from={}&to={}".format(amount, home_currency_code, location_currency_code) result = web_utility.load_page(url_string) if home_currency_code == location_currency_code: return -1 if not home_currency_code + " = <span class=bld>" in result: return -1 else: output_google = result[result.index('ld>'):result.index('</span>')] money = float(''.join(ele for ele in output_google if ele.isdigit() or ele == '.')) return money def get_details(country_name): #returns the details of a given country global splitted_line empty = () with open("currency_details.txt", encoding='utf8') as currency_info: for line in currency_info: splitted_line = line.split(",") if splitted_line[0] == country_name: details = (splitted_line[0], splitted_line[1], splitted_line[2].strip()) return details if splitted_line[0] != country_name: return empty def get_all_details(): country_dictionary = {} currency_txtfile = open("currency_details.txt", "r", encoding="utf8") for line in currency_txtfile: country_dictionary[line.strip().split(",")[0]] = tuple(line.strip().split(",")) return country_dictionary if __name__ == "__main__": #executed or imported def convert_testing(amount, home_currency_code, location_currency_code): convert_amount = convert(amount, home_currency_code, location_currency_code) if convert_amount < 0: return "{} {} {}->{} {}"\ .format("invalid conversion", amount, home_currency_code, location_currency_code, convert_amount) else: return "{0} {1} {2}->{3} {4} \n {5} {4} {3}->{2} {1}"\ .format("valid conversion", amount, home_currency_code, location_currency_code, convert_amount, "valid conversion reverse") def details(country_name): details_tuple = get_details(country_name) if details_tuple: valid_or_not = "valid details" else: valid_or_not = "invalid details" return "{} {} {}".format(valid_or_not, country_name, str(details_tuple)) print(convert_testing(1.00, "AUD", "AUD")) print(convert_testing(1.00, "JPY", "ABC")) print(convert_testing(1.00, "ABC", "USD")) print(convert_testing(10.95, "AUD", "JPY")) print(convert_testing(10.95, "AUD", "BGN")) print(convert_testing(200.15, "BGN", "JPY")) print(convert_testing(100, "JPY", "USD")) print(convert_testing(19.99, "USD", "BGN")) print(convert_testing(19.99, "USD", "AUD")) print("") print(details("Unknown")) print(details("Japanese")) print(details("")) print(details("Australia")) print(details("Japan")) print(details("Hong Kong"))
import os import time import numpy as np import argparse import importlib from tqdm import tqdm import matplotlib.pyplot as plt import tensorflow as tf from keras import backend as K from keras.models import load_model from keras_contrib.layers.normalization import InstanceNormalization import read_tools import gc resolution = 64 batch_size = 5 ############################################################### config={} config['train_names'] = ['chair'] for name in config['train_names']: config['X_train_'+name] = '../Data/'+name+'/train_25d/' config['Y_train_'+name] = '../Data/'+name+'/train_3d/' config['test_names']=['chair'] for name in config['test_names']: config['X_test_'+name] = '../Data/'+name+'/test_25d/' config['Y_test_'+name] = '../Data/'+name+'/test_3d/' config['resolution'] = resolution config['batch_size'] = batch_size ################################################################ # make chair40 training data dir 8x5 def make_traing_data_dir(data): for _ in range(8): x_train_batch, Y_train_batch = data.load_X_Y_voxel_grids_train_next_batch() for name in data.batch_name: if not os.path.exists(name[24:-18]+'/'+name[24:-13]): os.makedirs(name[24:-18]+'/'+name[24:-13]) # load data config data = read_tools.Data(config) make_traing_data_dir(data) # load network to generate sparse2dense 3D models data = read_tools.Data(config) autoencoder = load_model('./saved_model/g_AB_chair.h5') for _ in range(len(data.X_train_files)/batch_size): X_train_batch, Y_train_batch = data.load_X_Y_voxel_grids_train_next_batch() g = autoencoder.predict(X_train_batch) for j in range(batch_size): name = data.batch_name[j][24:-13] dir_name = name[:-5] + '/'+name print name[:-5] + '/'+name + '/fake_'+ name data.output_Voxels(dir_name + '/fake_' + name, g[j]) data.plotFromVoxels(dir_name + '/fake_' + name, g[j]) #data.plotFromVoxels(dir_name + '/'+name + '/sparse_' + name, X_train_batch[j]) #data.plotFromVoxels(dir_name + '/'+name + '/truth_' + name,Y_train_batch[j])
# Generated by Django 3.2.3 on 2021-06-12 15:46 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pizza_app', '0013_auto_20210612_1542'), ] operations = [ migrations.RemoveField( model_name='ingredientsize', name='multiple_option', ), migrations.AddField( model_name='ingredient', name='multiple_option', field=models.BooleanField(default=False), ), ]
# -*- coding: utf-8 -*- """ Created on Mon Feb 24 18:39:17 2020 @author: shaun """ import numpy as np from gaussxw import gaussxw import matplotlib.pyplot as plt N=100 #grab key points and weights from legendre polymials x,w=gaussxw(N) #define the integrand with input x,y,z def integrand(x,y,z): f=1/(((x**2)+(y**2)+(z**2))**(3.0/2)) return f #define the function z def function(z): density=(10.0*1000)/(100) G=6.674*(10**(-11)) F=G*density*z*Gmulti(-5,5,-5,5,integrand,z) return F #take the triple integral def Gmulti(a,b,c,d,f,z): global N global x global w #rescale x and weights to the domain xp=0.5*(b-a)*x + 0.5*(b+a) wpx=0.5*(b-a)*w yp=0.5*(d-c)*x + 0.5*(d+c) wpy=0.5*(d-c)*w s=0 for ym in range(0,N): #find the value of the function at every y and multiply it by the weights to get the sum for xm in range(0,N): #find the value of the function at every x and multiply it by the weights to get the sum s+=wpy[ym]*wpx[xm]*f(xp[xm],yp[ym],z) return s #plot results Z=np.linspace(0,10,100) F=function(Z) figure=plt.figure() ax=figure.add_subplot() ax.plot(Z,F) ax.set_xlabel("Z") ax.set_ylabel(r"$Force_{z}$") figure.suptitle("Force in Z direction") plt.show()
from flask import Flask from backend.config.database import init_db,db_session from backend.routes.Pekerjaan import pekerjaan_routes from backend.routes.Pekerja import pekerja_routes from backend.routes.Pekerja_pekerjaan import pekerja_pekerjaan_routes from backend.routes.Aset import Aset_routes from backend.routes.Status import Status_routes app = Flask("dashboard")
import numpy as np ; from tensorflow.keras.backend import int_shape from tensorflow.keras.layers import Input, Cropping1D, add, Conv1D, GlobalAvgPool1D, Dense, Flatten from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Model from chrombpnet.training.utils.losses import multinomial_nll import tensorflow as tf import random as rn import os os.environ['PYTHONHASHSEED'] = '0' def getModelGivenModelOptionsAndWeightInits(args, model_params): #default params (can be overwritten by providing model_params file as input to the training function) conv1_kernel_size=21 profile_kernel_size=75 num_tasks=1 # not using multi tasking filters=int(model_params['filters']) n_dil_layers=int(model_params['n_dil_layers']) counts_loss_weight=float(model_params['counts_loss_weight']) sequence_len=int(model_params["inputlen"]) out_pred_len=int(model_params["outputlen"]) print("params:") print("filters:"+str(filters)) print("n_dil_layers:"+str(n_dil_layers)) print("conv1_kernel_size:"+str(conv1_kernel_size)) print("profile_kernel_size:"+str(profile_kernel_size)) print("counts_loss_weight:"+str(counts_loss_weight)) #read in arguments seed=args.seed np.random.seed(seed) tf.random.set_seed(seed) rn.seed(seed) #define inputs inp = Input(shape=(sequence_len, 4),name='sequence') # first convolution without dilation x = Conv1D(filters, kernel_size=conv1_kernel_size, padding='valid', activation='relu', name='bpnet_1st_conv')(inp) layer_names = [str(i) for i in range(1,n_dil_layers+1)] for i in range(1, n_dil_layers + 1): # dilated convolution conv_layer_name = 'bpnet_{}conv'.format(layer_names[i-1]) conv_x = Conv1D(filters, kernel_size=3, padding='valid', activation='relu', dilation_rate=2**i, name=conv_layer_name)(x) x_len = int_shape(x)[1] conv_x_len = int_shape(conv_x)[1] assert((x_len - conv_x_len) % 2 == 0) # Necessary for symmetric cropping x = Cropping1D((x_len - conv_x_len) // 2, name="bpnet_{}crop".format(layer_names[i-1]))(x) x = add([conv_x, x]) # Branch 1. Profile prediction # Step 1.1 - 1D convolution with a very large kernel prof_out_precrop = Conv1D(filters=num_tasks, kernel_size=profile_kernel_size, padding='valid', name='prof_out_precrop')(x) # Step 1.2 - Crop to match size of the required output size cropsize = int(int_shape(prof_out_precrop)[1]/2)-int(out_pred_len/2) assert cropsize>=0 assert (int_shape(prof_out_precrop)[1] % 2 == 0) # Necessary for symmetric cropping prof = Cropping1D(cropsize, name='logits_profile_predictions_preflatten')(prof_out_precrop) # Branch 2. Counts prediction # Step 2.1 - Global average pooling along the "length", the result # size is same as "filters" parameter to the BPNet function profile_out = Flatten(name="logits_profile_predictions")(prof) gap_combined_conv = GlobalAvgPool1D(name='gap')(x) # acronym - gapcc # Step 2.3 Dense layer to predict final counts count_out = Dense(num_tasks, name="logcount_predictions")(gap_combined_conv) # instantiate keras Model with inputs and outputs model=Model(inputs=[inp],outputs=[profile_out, count_out]) model.compile(optimizer=Adam(learning_rate=args.learning_rate), loss=[multinomial_nll,'mse'], loss_weights=[1,counts_loss_weight]) return model def save_model_without_bias(model, output_prefix): # nothing to do # all model architectures have this function # defining this tosafeguard if the users uses the arugument save_model_without_bias argument on bias model accidentally return
import gym import math import random import numpy as np import matplotlib import matplotlib.pyplot as plt from collections import deque from itertools import count from PIL import Image import tensorflow.compat.v1 as tf tf.disable_v2_behavior() # testing on tensorflow 1 import time class ReplayExp(): def __init__(self, N): self.buffer = deque(maxlen = N) def add(self, experience): self.buffer.append(experience) # take a random sample of k tuples of experience def sample_exp(self, batch_size): sample = random.choices(self.buffer, k = min(len(self.buffer), batch_size)) return map(list, zip(*sample)) # return as a tuple of list #Deep Q-Network class DQN(): # @params state_dim: dimension of each state --> NN input # @params action_size: dimension of each action --> NN output def __init__(self, state_dim, action_size): #input current state self.state_in = tf.placeholder(tf.float32, shape = [None, *state_dim]) #None represents the batch size # current action a self.action_in = tf.placeholder(tf.int32, shape = [None]) #batch size # current estimate of Q-target self.q_target_in = tf.placeholder(tf.float32, shape = [None]) #batch size # encode actions in one-hot vector action_one_hot = tf.one_hot(self.action_in, depth = action_size) # hidden layer self.hidden1 = tf.layers.dense(self.state_in, 150, activation = tf.nn.relu) self.hidden2 = tf.layers.dense(self.hidden1, 120, activation = tf.nn.relu) # output Q_hat self.qhat = tf.layers.dense(self.hidden2, action_size, activation = None) # Q values of states and their corresponding actions a for each state # discard all non-taken actions self.qhat_s_a = tf.reduce_sum(tf.multiply(self.qhat, action_one_hot), axis = 1) # optimization objective self.loss = tf.reduce_mean(tf.square(self.q_target_in - self.qhat_s_a)) #mean of batch square error # We choose Adaptive Momentum as our optimization gradient descent self.optimizer = tf.train.AdamOptimizer(learning_rate = 0.001).minimize(self.loss) # update NN so that it estimate Q(s,a) closer to the target def update_nn(self, session, state, action, q_target): feed_info = {self.state_in: state, self.action_in: action, self.q_target_in: q_target} session.run(self.optimizer, feed_dict = feed_info) def get_qhat(self, session, state): return session.run(self.qhat, feed_dict = {self.state_in: state}) # fill the placeholder #The learning AI agent class agent(): def __init__(self, env): self.state_dim = env.observation_space.shape #state dimension self.action_size = env.action_space.n # discrete action space (left or right) # the agent's "brain", tell the agent what to do self.brain = DQN(self.state_dim, self.action_size) self.epsilon = 1.0 # exploring prob to avoid local optima self.gamma = 0.99 self.replay_exp = ReplayExp(N = 1000000) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) def end_session(self): self.sess.close() def get_action(self, state): qhat = self.brain.get_qhat(self.sess, [state]) # to match the placeholder dimenstion [None, *state_dim] prob = np.random.uniform(0.0, 1.0) if(prob < self.epsilon): # exploration action = np.random.randint(self.action_size) else: # exploitation action = np.argmax(qhat) return action def train(self, state, action, next_state, reward, done): # add exp to replay exp self.replay_exp.add((state, action, next_state, reward, done)) states, actions, next_states, rewards, dones = self.replay_exp.sample_exp(batch_size = 80) # Q(s', _) --> Q-values for next state qhats_next = self.brain.get_qhat(self.sess, next_states) # set all value actions of terminal state to 0 qhats_next[dones] = np.zeros((self.action_size)) q_targets = rewards + self.gamma * np.max(qhats_next, axis=1) # update greedily self.brain.update_nn(self.sess, states, actions, q_targets) if done: self.epsilon = max(0.1, 0.98 * self.epsilon) #decaying exploration factor after each episode env = gym.make("LunarLander-v2") agent = agent(env) num_episodes = 1000 #number of games for episode in range(num_episodes): state = env.reset() # reset starting state for each new episode done = False reward_total = 0 while not done: action = agent.get_action(state) next_state, reward, done, info = env.step(action) env.render() # display the environment after each action #base on the feedback from the environment, learn to update parameters for Q-value agent.train(state, action, next_state, reward, done) reward_total += reward state = next_state print("Episode number: ", episode, ", total reward:", reward_total) time.sleep(1) # test after training agent.epsilon = 0.0 # stop exploring for episode in range(100): state = env.reset() # reset starting state for each new episode done = False while not done: action = agent.get_action(state) next_state, reward, done, info = env.step(action) env.render() state = next_state time.sleep(1)
from django.conf.urls import patterns, include, url from django.views.decorators.csrf import csrf_protect from django.views.decorators.http import require_POST from .urls import urlpatterns from pikapika.common.decorators import serialize_as_json, param_from_post def generic_ajax_func(func): return require_POST( csrf_protect( serialize_as_json( param_from_post( func ) ) ) ) def _get_prefix_for_module_name(module_name): # module_name looks like: pikapika.ajax_services.module # __name__ looks like: pikapika.ajax_services.decorators parts = module_name.split(".") common_prefix = __name__.split(".")[:-1] while common_prefix: assert parts[0] == common_prefix[0] parts.pop(0) common_prefix.pop(0) assert parts return "/".join(parts) def register_service(func): global urlpatterns urlpatterns += patterns( '', url( r"^{}/{}$".format( _get_prefix_for_module_name(func.__module__), func.__name__, ), func, ), ) return func
#!/usr/bin/env python # coding: utf-8 """ Utility functions and classes @version 1.0 @author Remzi Celebi """ import datetime import pandas as pd from rdflib import Graph, URIRef, Literal, RDF, ConjunctiveGraph, Namespace DC = Namespace("http://purl.org/dc/terms/") DCAT = Namespace("http://www.w3.org/ns/dcat#") RDFS = Namespace("http://www.w3.org/2000/01/rdf-schema#") PAV = Namespace("http://purl.org/pav/") FOAF = Namespace("http://xmlns.com/foaf/0.1/") class DataResource: def __init__(self, qname, graph= None): if graph != None: self.setRDFGraph(graph) else: self.setQName(qname) self.graph = ConjunctiveGraph(identifier = self.getQName()) self.description = None self.homepage = None self.rights = None self.themes = None self.sources = None self.uri = None self.title = None self.qname = None self.create_date = None self.issued_date = None self.creator = None self.download_url = None self.retrieved_date = None self.publisher = None def setRDFGraph(self, graph): self.graph = graph def getRDFGraph(self): return self.graph def setURI(self, uri): self.uri = URIRef(uri) def getURI(self): return self.uri def setQName(self, qname): self.qname = qname def getQName(self): return self.qname def setTitle(self, title): self.title = title def getTitle(self): return self.title def setDescription(self, description): self.description = description def getDescription(self): return self.description def setPublisher(self, publisher): self.publisher = publisher def getPublisher(self): return self.publisher def setHomepage(self, homepage): self.homepage = homepage def getHomepage(self): return self.homepage def setSources(self, sources): self.sources = sources def getSources(self): return self.sources def addSource(self, source): if self.sources == None: self.sources =[] self.sources.append(source) def setCreator(self, creator): self.creator = creator def getCreator(self): return self.creator def setCreateDate(self, create_date): self.create_date = create_date def getCreateDate(self): return self.create_date def setRetrievedDate(self, retrieved_date): self.retrieved_date = retrieved_date def getRetrievedDate(self): return self.retrieved_date def setIssuedDate(self, issued_date): self.issued_date = issued_date def getIssuedDate(self): return self.issued_date def setVersion(self, version): self.version = version def getVersion(self): return self.version def setFormat(self, format): self.format = format def getFormat(self): return self.format def setMediaType(self, media_type): self.media_type = media_type def getMediaType(self): return self.media_type def setLicense(self, license): self.license = license def getLicense(self): return self.license def setRights(self, rights): self.rights = rights def getRights(self): return self.rights def addRight(self, right): if self.rights == None: self.rights =[] self.rights.append(right) def setLocation(self, location): self.location = location def getLocation(self): return self.location def setDataset(self, dataset): self.dataset = dataset def getDataset(self): return self.dataset def setDownloadURL(self, download_url): self.download_url = download_url def getDownloadURL(self): return self.download_url def toRDF(self): label = '' if self.getTitle() != None and self.getTitle() != '': label = self.getTitle() if self.getCreateDate(): label +=" generated at "+self.getCreateDate() dataset_uri = self.getURI() graph = self.getRDFGraph() graph.add((dataset_uri, RDF['type'], URIRef('http://www.w3.org/ns/dcat#Distribution'))) graph.add((dataset_uri, RDFS['label'], Literal(label))) if self.getTitle() != None: graph.add((dataset_uri, DC['title'], Literal( self.getTitle() ))) if self.getDescription() != None: graph.add((dataset_uri, DC['description'], Literal( self.getDescription() ))) if self.getCreateDate() != None: graph.add((dataset_uri, DC['created'], Literal( self.getCreateDate() ))) if self.getIssuedDate() != None: graph.add((dataset_uri, DC['issued'], Literal( self.getIssuedDate() ))) if self.getRetrievedDate() != None: graph.add((dataset_uri, PAV['retrievedOn'], Literal( self.getRetrievedDate() ))) if self.getIssuedDate() != None: graph.add((dataset_uri, DC['issued'], Literal( self.getIssuedDate() ))) if self.getSources() != None: for source in self.getSources() : if source != None : graph.add((dataset_uri, DC['source'], URIRef( source ))) if self.getDataset() != None: graph.add(( URIRef( self.getDataset() ), DCAT['distribution'], dataset_uri )) if self.getCreator() != None: graph.add((dataset_uri, DC['creator'], URIRef( self.getCreator() ))) if self.getPublisher() != None: graph.add((dataset_uri, DC['publisher'], URIRef( self.getPublisher() ))) if self.getHomepage() != None: graph.add((dataset_uri, FOAF['page'], URIRef( self.getHomepage() ))) if self.getDownloadURL() != None: graph.add((dataset_uri, DCAT['downloadURL'], URIRef( self.getDownloadURL() ))) if self.getVersion() != None: graph.add((dataset_uri, DC['hasVersion'], Literal( self.getVersion() ))) if self.getMediaType() != None: graph.add((dataset_uri, DCAT['mediaType'], Literal( self.getMediaType() ))) if self.getFormat() != None: graph.add((dataset_uri, DC['format'], Literal( self.getFormat() ))) if self.getDataset() != None: graph.add((dataset_uri, DC['source'], URIRef( self.getDataset() ))) if self.getLicense() != None: graph.add((dataset_uri, DC['license'], URIRef( self.getLicense() ))) if self.getRights() != None: for right in self.getRights() : if right != None : graph.add((dataset_uri, DC['rights'], Literal( right ))) return graph class Dataset: def __init__(self, qname, graph= None): self.rights = [] self.themes = [] self.homepage = None self.description = None self.version = None self.license = None self.download_url = None if graph != None: self.setRDFGraph(graph) else: self.setQName(qname) self.setRDFGraph( ConjunctiveGraph(identifier = self.getQName()) ) def setQName(self, qname): self.qname = qname def getQName(self): return self.qname def setRDFGraph(self, graph): self.graph = graph def getRDFGraph(self): return self.graph def setURI(self, uri): self.uri = URIRef(uri) def getURI(self): return self.uri def setVersion(self, version): self.version = version def getVersion(self): return self.version def setThemes(self, themes): self.themes = themes def getThemes(self): return self.themes def addTheme(self, theme): if self.themes == None: self.themes =[] self.themes.append(theme) def setRights(self, rights): self.rights = rights def getRights(self): return self.rights def addRight(self, right): if self.rights == None: self.rights =[] self.rights.append(right) def setLicense(self, license): self.license = license def getLicense(self): return self.license def setCatalog(self, catalog): self.catalog = catalog def getCatalog(self): return self.catalog def setTitle(self, title): self.title = title def getTitle(self): return self.title def setDescription(self, description): self.description = description def getDescription(self): return self.description def setPublisher(self, publisher): self.publisher = publisher def getPublisher(self): return self.publisher def setPublisherName(self, publisher_name): self.publisher_name = publisher_name def getPublisherName(self): return self.publisher_name def setHomepage(self, homepage): self.homepage = homepage def getHomepage(self): return self.homepage def setDownloadURL(self, download_url): self.download_url = download_url def getDownloadURL(self): return self.download_url def setRDFFile(self, rdf_file): self.rdf_file = rdf_file def getRDFFile(self): return self.rdf_file def toRDF(self): dataset_uri = self.getURI() graph = self.getRDFGraph() graph.add((dataset_uri, RDF['type'], DC['Dataset'] )) if self.getTitle() != None: graph.add((dataset_uri, DC['title'], Literal( self.getTitle() ))) if self.getDescription() != None: graph.add((dataset_uri, DC['description'], Literal( self.getDescription() ))) if self.getDownloadURL() != None: graph.add((dataset_uri, DCAT['downloadURL'], URIRef( self.getDownloadURL() ))) if self.getVersion() != None: graph.add((dataset_uri, DC['hasVersion'], Literal( self.getVersion() ))) if self.getPublisher() != None: publisher_uri = URIRef( self.getPublisher() ) graph.add((dataset_uri, DC['publisher'], publisher_uri)) if self.getPublisherName() != None: graph.add((publisher_uri, RDF.type, FOAF['Organization'] )) graph.add((publisher_uri, FOAF['name'], Literal( self.getPublisherName() ))) if self.getHomepage() != None: graph.add((dataset_uri, FOAF['page'], URIRef( self.getHomepage() ))) if self.getLicense() != None: graph.add((dataset_uri, DC['license'], URIRef( self.getLicense() ))) for right in self.getRights() : if right != None : graph.add((dataset_uri, DC['rights'], Literal( right ))) for theme in self.getThemes() : if theme != None : graph.add((dataset_uri, DCAT['theme'], URIRef( theme ))) return graph def to_rdf(g, df, column_types, row_uri): """ Parameters ---------- g : input rdflib.Graph df: DataFrame to be converted into RDF Graph column_types: dictonary of column and its type, type can be URI or Literal row_uri: rdf:type value for row index, should be URI Returns ------- g: rdflib.Graph generated from DataFrame object """ for (index, series) in df.iterrows(): g.add((URIRef(index), RDF.type, URIRef(row_uri)) ) for (column, value) in series.iteritems(): if column_types[column] == 'URI': g.add((URIRef(index), URIRef(column), URIRef(value))) else: g.add((URIRef(index), URIRef(column), Literal(value))) return g def test(): #generate dataset graphURI ='http://fairworkflows.org/openpredict_resource:fairworkflows.dataset.openpredict.interactome.R1' data_source = Dataset(qname=graphURI) data_source.setURI(graphURI) data_source.setTitle('The Human Interactome Dataset') data_source.setDescription('Human Interactome data used in "Uncovering Disease-Disease Relationships Through The Human Interactome" study') data_source.setPublisher('https://science.sciencemag.org/') data_source.setPublisherName('American Association for the Advancement of Science') data_source.addRight('no-commercial') data_source.addRight('use') data_source.addTheme('http://www.wikidata.org/entity/Q896177') data_source.addTheme('http://www.wikidata.org/entity/Q25113323') data_source.setLicense('https://www.sciencemag.org/about/terms-service') data_source.setHomepage('https://dx.doi.org/10.1126%2Fscience.1257601') data_source.setVersion('1.0') #generate dataset distribution data_dist = DataResource(qname=graphURI, graph = data_source.toRDF()) data_dist.setURI('https://media.nature.com/full/nature-assets/srep/2016/161017/srep35241/extref/srep35241-s3.txt') data_dist.setTitle('The Human Interactome Dataset (srep35241-s3.txt)') data_dist.setDescription('This file contains the Human Interactome used in "Uncovering Disease-Disease Relationships Through The Human Interactome" study') data_dist.setLicense('https://www.sciencemag.org/about/terms-service') data_dist.setVersion('1.0') data_dist.setFormat('text/tab-separated-value') data_dist.setMediaType('text/tab-separated-value') data_dist.setPublisher('https://science.sciencemag.org/') data_dist.addRight('no-commercial') data_dist.addRight('use') data_dist.setRetrievedDate(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")) data_dist.setDataset(data_source.getURI()) #generate RDF data distrubtion rdf_dist = DataResource(qname=graphURI, graph = data_dist.toRDF() ) rdf_dist.setURI('https://github.com/fair-workflows/openpredict/blob/master/data/rdf/human_interactome.nq.gz') rdf_dist.setTitle('RDF Version of the Human Interactome') rdf_dist.setDescription('This file contains the Human Interactome used in "Uncovering Disease-Disease Relationships Through The Human Interactome" study') rdf_dist.setLicense('https://www.sciencemag.org/about/terms-service') rdf_dist.setVersion('1.0') rdf_dist.setFormat('application/n-quads') rdf_dist.setMediaType('application/n-quads') rdf_dist.addRight('use-share-modify') rdf_dist.addRight('by-attribution') rdf_dist.addRight('restricted-by-source-license') rdf_dist.setCreateDate(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")) rdf_dist.setCreator('https://github.com/fair-workflows/openpredict/src/HumanInteractome.py') rdf_dist.setDownloadURL('https://github.com/fair-workflows/openpredict/blob/master/data/rdf/human_interactome.nq.gz') rdf_dist.setDataset(data_dist.getURI()) g = rdf_dist.toRDF() outfile ='../data/rdf/human_interactome.nq' g.serialize(outfile, format='nquads') print('RDF is generated at '+outfile) #test()
# AUTO GENERATED FILE - DO NOT EDIT from dash.development.base_component import Component, _explicitize_args class SyntaxHighlighter(Component): """A SyntaxHighlighter component. A component for pretty printing code. Keyword arguments: - children (string | list; optional): The text to display and highlight - id (string; optional) - language (string; optional): the language to highlight code in. - theme (a value equal to: 'light', 'dark'; optional): theme: light or dark - customStyle (dict; optional): prop that will be combined with the top level style on the pre tag, styles here will overwrite earlier styles. - codeTagProps (dict; optional): props that will be spread into the <code> tag that is the direct parent of the highlighted code elements. Useful for styling/assigning classNames. - useInlineStyles (boolean; optional): if this prop is passed in as false, react syntax highlighter will not add style objects to elements, and will instead append classNames. You can then style the code block by using one of the CSS files provided by highlight.js. - showLineNumbers (boolean; optional): if this is enabled line numbers will be shown next to the code block. - startingLineNumber (number; optional): if showLineNumbers is enabled the line numbering will start from here. - lineNumberContainerStyle (dict; optional): the line numbers container default to appearing to the left with 10px of right padding. You can use this to override those styles. - lineNumberStyle (dict; optional): inline style to be passed to the span wrapping each number. Can be either an object or a function that recieves current line number as argument and returns style object. - wrapLines (boolean; optional): a boolean value that determines whether or not each line of code should be wrapped in a parent element. defaults to false, when false one can not take action on an element on the line level. You can see an example of what this enables here - lineStyle (dict; optional): inline style to be passed to the span wrapping each line if wrapLines is true. Can be either an object or a function that recieves current line number as argument and returns style object.""" @_explicitize_args def __init__(self, children=None, id=Component.UNDEFINED, language=Component.UNDEFINED, theme=Component.UNDEFINED, customStyle=Component.UNDEFINED, codeTagProps=Component.UNDEFINED, useInlineStyles=Component.UNDEFINED, showLineNumbers=Component.UNDEFINED, startingLineNumber=Component.UNDEFINED, lineNumberContainerStyle=Component.UNDEFINED, lineNumberStyle=Component.UNDEFINED, wrapLines=Component.UNDEFINED, lineStyle=Component.UNDEFINED, **kwargs): self._prop_names = ['children', 'id', 'language', 'theme', 'customStyle', 'codeTagProps', 'useInlineStyles', 'showLineNumbers', 'startingLineNumber', 'lineNumberContainerStyle', 'lineNumberStyle', 'wrapLines', 'lineStyle'] self._type = 'SyntaxHighlighter' self._namespace = 'dash_core_components' self._valid_wildcard_attributes = [] self.available_properties = ['children', 'id', 'language', 'theme', 'customStyle', 'codeTagProps', 'useInlineStyles', 'showLineNumbers', 'startingLineNumber', 'lineNumberContainerStyle', 'lineNumberStyle', 'wrapLines', 'lineStyle'] self.available_wildcard_properties = [] _explicit_args = kwargs.pop('_explicit_args') _locals = locals() _locals.update(kwargs) # For wildcard attrs args = {k: _locals[k] for k in _explicit_args if k != 'children'} for k in []: if k not in args: raise TypeError( 'Required argument `' + k + '` was not specified.') super(SyntaxHighlighter, self).__init__(children=children, **args) def __repr__(self): if(any(getattr(self, c, None) is not None for c in self._prop_names if c is not self._prop_names[0]) or any(getattr(self, c, None) is not None for c in self.__dict__.keys() if any(c.startswith(wc_attr) for wc_attr in self._valid_wildcard_attributes))): props_string = ', '.join([c+'='+repr(getattr(self, c, None)) for c in self._prop_names if getattr(self, c, None) is not None]) wilds_string = ', '.join([c+'='+repr(getattr(self, c, None)) for c in self.__dict__.keys() if any([c.startswith(wc_attr) for wc_attr in self._valid_wildcard_attributes])]) return ('SyntaxHighlighter(' + props_string + (', ' + wilds_string if wilds_string != '' else '') + ')') else: return ( 'SyntaxHighlighter(' + repr(getattr(self, self._prop_names[0], None)) + ')')
#encoding=utf-8 ''' Created on 2014��5��22�� @author: yangluo ''' import win32api import win32con from win32api import GetSystemMetrics from ctypes import windll from win32gui import GetCursorPos screenMetrics = (GetSystemMetrics(0),GetSystemMetrics(1)) bottomOfScreen = screenMetrics preDevicePos = [0,0] # jumpButtonPos = (100,screenMetrics[1]-50) # restartButtonPos = (150,screenMetrics[1]-50) # fullscreenButtonPos = (300,screenMetrics[1]-50) # escapeButtonPos = (200,screenMetrics[1]-50) # startButtonPos = (250,screenMetrics[1]-50) keymap = { 'fullscreen': 116, 'last': 38, 'next': 32, 'escape': 27, } def execute(keytype="move",key='next',keypos=bottomOfScreen): if keytype=="move": if preDevicePos[0]==0 and preDevicePos[1]==0: preDevicePos[0] = keypos[0] preDevicePos[1] = keypos[1] print "******************first************" return _newpos = [keypos[0]-preDevicePos[0],keypos[1]-preDevicePos[1]] print "_newpos is "+str(_newpos) currpos = GetCursorPos() newpos = myVector(currpos,_newpos) print 'new pos is ' + str(newpos) setCursorPos(newpos) preDevicePos[0] = keypos[0] preDevicePos[1] = keypos[1] # mouseclick(keypos) elif keytype=="commonkey": _key = keymap.get(key) if _key == None: return False keyboardevent(key) else: print "no this keytype: %s"%keytype return False return True def mouseclick(targetCor): win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN,targetCor[0],targetCor[1]) win32api.Sleep(50) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP,targetCor[0],targetCor[1]) def setCursorPos(mousepos): windll.user32.SetCursorPos(mousepos[0],mousepos[1]) return True def keyboardevent(key, delay=45): win32api.keybd_event(key,0,0,0) win32api.Sleep(delay) win32api.keybd_event(key,0,win32con.KEYEVENTF_KEYUP,0) def myVector(currentPos, newPos): resultPos = (currentPos[0]+newPos[0], currentPos[1]+newPos[1]) return resultPos def Istolong(newpos): sub = (newpos[0]-preDevicePos[0],newpos[1]-preDevicePos[1]) if -3<sub[0]<3 and -3<sub[1]<3: return newpos _newpos = (newpos[0]+sub[0],newpos[1]+sub[1]) return _newpos
from contextlib import contextmanager from sqlalchemy import create_engine, text from sqlalchemy.engine.url import URL from sqlalchemy.orm import sessionmaker from config.db import ( db_teradata_prod ) DB_URL = 'teradata://'+ db_teradata_prod['username'] +':' + db_teradata_prod['password'] + '@'+ db_teradata_prod['system'] + '/' def db_connect(): print(DB_URL) engine = create_engine(DB_URL, pool_recycle=900) engine.dialect.supports_sane_rowcount = False return engine engine = db_connect() Session = sessionmaker(bind=engine) @contextmanager def session_scope(): """Provide a transactional scope around a series of operations.""" session = Session() try: yield session session.commit() except: session.rollback() raise finally: session.close()
import click import feedparser import os.path # import time import json @click.command() @click.option('--address', '-a', multiple=True, help="Add address of site to store, can be multiple sites \n" "Example: -a google.com -a bing.com") @click.option('--list', '-l', is_flag=True, default=False, help="Lists current addresses stored") @click.option('--remove', '-r', help="Remove address from store") #@click.option('--live', '-L', is_flag=True, default=False, help="Keeps alive, waiting for new " # i give up, no one uses etag/modified # "feed items and writing them") @click.option('--match', '-m', default=None, help="Get all news matching keyword in title") @click.option('--print', '-p', is_flag=True, default=False, help="Prints news to screen") @click.option('--clear', '-c', is_flag=True, default=False, help="Removes all saved addresses") # main function calling other functions def rss(address, list, remove, match, print, clear): if clear: if os.path.isfile('address.txt'): os.remove('address.txt') click.echo('Addresses cleared') else: click.echo('Error attempting to clear addresses, no previous addresses found to clear.') if remove: # check that remove function returns value #write_address(remove_item(remove)) r = remove_item(remove) if r: # write value to file write_address(r) else: os.remove('address.txt') #click.echo('Error attempting to write addresses after removal; addresses not found') if list: print_list(open_address()) if address: add_address(address) if print: news = parse(open_address()) print_news(news, match) ''' this whole feature is on hold until i can come up with a good way to get only the newest items from feed # pre-parse news for later comparison in while loop if live: click.echo('Live is {}'.format(live)) # debug news = parse(open_address()) i = 0 while live: news = parse(open_address()) for item in news: check_update(item, item.href) # click.echo('Going live!') # debug # check if new news have been added #new_news = parse(open_address()) # diff = list(set(new_news) - set(news)) #diff = set(new_news) - set(news) #diff = get_difference(new_news, news) #diff = set(new_news).difference(set(news)) # click.echo(diff) if i == 0: old_news = print_news(news, match) if diff: click.echo('Diff is true') # debug print_news(diff, match) else: click.echo('Diff is false') # debug # click.echo(type(diff)) click.echo(i) if i > 0: click.echo('I is greater than 1!') diff = list(set(news) - set(new_news)) list(set(news) - set(new_news)) click.echo('Diff: {}'.format(diff)) # debug if diff: click.echo('Diff is true') # debug print_news(diff, match) else: click.echo('Diff is false') # debug #news = parse(open_address()) click.echo('Sleeping 5 minutes') # debug time.sleep(300) i += 1 ''' def get_difference(list1, list2): s = set(list2) list3 = [x for x in list1 if x not in s] return list(list3) def check_update(old_feed, address): # store the etag and modified last_etag = old_feed.etag last_modified = old_feed.modified # check if new version exists feed_update = feedparser.parse(address, etag=last_etag, modified=last_modified) # return based on result if feed_update.status == 304: return False else: return True def remove_item(remove): address = open_address() if address: try: address.remove(remove) click.echo('Removed {}'.format(remove)) return address except ValueError: click.echo('Address to be removed not found') else: click.echo('Error attempting to delete address; no addresses found') def print_list(address): if address: for line in address: click.echo(line) else: click.echo('Error attempting to list addresses; no addresses found') def print_news(news, match): click.echo('\n\n') result = [] if match: # search for matching word in list of lists of news for site in news: for item in site.entries: if match in item.title: click.secho("\n{} \n {}".format(item.title, item.link), fg='yellow') # add to results result.append(item.title) result.append(item.link) else: for site in news: for item in site.entries: click.secho("\n{}".format(item.title)) click.secho("{}".format(item.link), fg='cyan') # add to results result.append(item.title) result.append(item.link) click.echo('\n\n') return result # writes list of addresses to address.list file def add_address(address): # convert address to list address = list(address) # check if values are stored in file from before if open_address(): # get old values, add new ones # click.echo('Address found in add address, appending and writing to file') # debug old = open_address() new_address = old + address #new_address = [(open_address()).append(address)] # write old + new to file with open('address.txt', 'w') as handle: json.dump(new_address, handle) # pickle.dump(new_address, handle, protocol=pickle.HIGHEST_PROTOCOL) # write values directly to file else: # click.echo('No Address found in write address, writing to file') # debug write_address(address) def write_address(address): # convert address to list to prevent # problems with tuples when adding new data if address: # click.echo('Address found in write address, writing to file') # debug new_address = list(address) with open('address.txt', 'w') as handle: json.dump(new_address, handle) # pickle.dump(new_address, handle, protocol=pickle.HIGHEST_PROTOCOL) else: click.echo('Error attempting to write address to file; no address found') # used to open address.list file def open_address(): # check if file exist if os.path.isfile('address.txt'): # click.echo('File found, opening') # debug # if it does, open it with open('address.txt', 'r') as handle: return json.load(handle) # return list(pickle.load(handle)) # no file exists, can't open file else: # click.echo('No file found, opening file failed') # debug return None def parse(urls): if urls: parsed = [] for url in urls: parsed.append(feedparser.parse(url)) return parsed else: click.echo('Error attempting to parse URLs, no URLs found') if __name__ == '__main__': rss()
# Python Standard Libraries # N/A # Third-Party Libraries from django.conf.urls import url from rest_framework.routers import SimpleRouter from rest_framework.schemas import get_schema_view from rest_framework_jwt.views import obtain_jwt_token from rest_framework_jwt.views import refresh_jwt_token from rest_framework_jwt.views import verify_jwt_token # Custom Libraries from .versions import v1 app_name = "api" urlpatterns = [] urlpatterns += [ url(r'^v1/$', get_schema_view()), url(r"^v1/login/", v1.log_in), url(r"^v1/ping/", v1.ping), url(r"^v1/signup/", v1.sign_up), url(r"^v1/dig/", v1.dig), # Diggers url(r"^v1/digger/$", v1.DiggerViewSet.as_view({"get": "list", }), name="diggers"), url(r"^v1/digger/(?P<pk>[0-9]+)/$", v1.DiggerViewSet.as_view({"get": "retrieve", }), name="digger"), # Item Shop Items url(r"^v1/shop/item/$", v1.ItemViewSet.as_view({"get": "list", "post": "create", }), name="items"), url(r"^v1/shop/item/(?P<pk>[0-9]+)/", v1.ItemViewSet.as_view({"get": "retrieve", "delete": "destroy", }), name="item"), # Item Shop Purchases url(r"^v1/shop/purchase/$", v1.PurchaseViewSet.as_view({"get": "list", "post": "create", }), name="purchases"), url(r"^v1/shop/purchase/(?P<pk>[0-9]+)/", v1.PurchaseViewSet.as_view({"get": "retrieve", "delete": "destroy", }), name="purchase"), # Gifts (Items given) url(r"^v1/gift/$", v1.GiftViewSet.as_view({"get": "list", }), name="gifts"), # Presents (Items received) url(r"^v1/present/$", v1.PresentViewSet.as_view({"get": "list", }), name="presents"), ]
import numpy as np from OpenGL.GL import * from OpenGL.GLU import * from glumpy import app, gloo, gl, glm from glumpy.graphics.text import FontManager from glumpy.graphics.collections import GlyphCollection from glumpy.transforms import Position, OrthographicProjection import glumpy import time import random from math import * import Mesh myMesh = Mesh.Mesh() print(myMesh.nV) print(myMesh.nF) myMesh.load('truck.txt', ply=True, normalize = True) print(myMesh.nV) print(myMesh.nF) asp = 1.0 angle = 0.0 cur_time = -1.0 window = app.Window(700, 600, "hello") def cameraLensSet(ratio = 1.0): # camera lens 설정 glMatrixMode(GL_PROJECTION) glLoadIdentity() # 기본 렌즈 설정 gluPerspective(60, ratio, 0.01, 100) # y 시야각, 종횡비, 가까운 면, 먼 면 glClearColor(1.0, 0.0, 0.0, 1.0) # RGBA @window.event def on_draw(dt): global angle, cur_time old_time = cur_time cur_time = time.time() dt = cur_time - old_time glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) # z-buffer를 쓰려면 여기서 지우기도 포함 # camera 위치 설정 glMatrixMode(GL_MODELVIEW) glLoadIdentity() angle += 0.01 gluLookAt(cos(angle)*20.0, 1.5, sin(3.0*angle)*3.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) #glutWireCube(1.0) #myMesh.drawShadedFace() #glDepthFunc(GL_LEQUAL) #myMesh.drawWireFast() #glDepthFunc(GL_LESS) random.seed(1) for i in range(1000): glPushMatrix() glTranslatef(i%30 - 12 + 0.5*random.random(), -1.0, i/30 - 12 + 0.5*random.random()) # random.random()*40-20, 0.0, random.random()*40-20) glRotatef(random.random()*360-180, 0, 1, 0) glRotatef(-90, 1.0, 0.0, 0.0) glScale(1.0, 1.0, 1.0) glColor3f(random.random()*0.5, 1.0, random.random()*0.5) myMesh.drawShadedFace(i) glPopMatrix() glFlush() @window.event def on_resize(width, height): global asp asp = float(width) / height cameraLensSet(asp) glViewport(0, 0, width, height) print('reshape', asp) @window.event def on_init(): glLineWidth(2) glEnable(GL_DEPTH_TEST) # z-buffer를 이용한 depth test를 수행하도록 "enable" cameraLensSet(asp) glEnable(GL_LIGHTING) glEnable(GL_LIGHT0) glEnable(GL_COLOR_MATERIAL) app.run()
import numpy as np import itertools as it class SpectralLearn : problemfile = "" order = 0 p21 = None p31 = [] sym_cnt = 0 U = None V = None Sig = None Bx = [] Sig_inv = None b0 = None binf = None p1 = None def __init__(self, probfile, ord): self.problemfile = probfile self.order = ord def initialize(self, line): line = line.strip(" ").split(" ") self.sym_cnt = int(line[1]) self.sym_cnt +=1 self.p1 = np.zeros((1,self.sym_cnt)) self.p21 = np.zeros((self.sym_cnt,self.sym_cnt)) for i in range(0,self.sym_cnt) : self.p31.append(np.zeros((self.sym_cnt,self.sym_cnt))) def learn(self): f = open(self.problemfile, "r") for i,line in enumerate(f): if(i==0): self.initialize(line) continue obs = [int(j) for j in line.strip(" ").split(" ")] obs.append(self.sym_cnt -1) self.addToP1(obs[1:]) self.addToP21(obs[1:]) self.addToP31(obs[1:]) self.normalize() self.U, self.Sig, self.V = self.svdP21() sig = np.zeros((len(self.Sig),len(self.Sig))) for i in range(0,len(self.Sig)): sig[i][i] = self.Sig[i] self.Sig = sig self.Sig_inv = np.linalg.inv(self.Sig) self.computeBx() self.computeB0_Binf() def addToP1(self, obs): for i in obs: self.p1[0][i] += 1 def addToP21(self, obs): for first, second in it.izip(obs, obs[1:]): self.p21[first][second] += 1 def addToP31(self,obs): for first, second, third in it.izip(obs, obs[1:], obs[2:]): self.p31[second][first][third] += 1 def normalize(self): if(1): self.p21 += 0.0000000001 self.p1 = self.p1 / np.sum(self.p1) self.p21 = self.p21 / np.sum(self.p21) for i,m in enumerate(self.p31): sum_m = np.sum(m) if(sum_m == 0.0): continue self.p31[i] = m / sum_m def svdP21(self): return np.linalg.svd(self.p21) def computeBx(self): for i,p31 in enumerate(self.p31): a = np.dot(np.dot(np.dot(self.U , p31) , self.V) , self.Sig_inv) self.Bx.append(a) def computeB0_Binf(self): self.b0 = np.dot(self.U , self.p1[0].T) np.linalg.inv(np.dot(self.p21.T , self.U )) self.binf = np.dot(np.linalg.inv(np.dot(self.p21.T , self.U )) , self.p1.T) def predictRanks(self, t_obs): rank = [] temp_lik = self.b0 for o in t_obs: temp_lik = np.dot(temp_lik , self.Bx[o]) for i in range(self.sym_cnt): t = np.dot(np.dot(temp_lik , self.Bx[0]) , self.binf) print(t) rank.append(t ) print(rank) r = np.argsort(rank)[::-1] r[r == self.sym_cnt -1] = -1 return r,rank
import math import time start= time.clock() def isprime(n): if n<2: return False elif n==2: return True else: for x in xrange(2, int(math.ceil(math.sqrt(n)))+1): if n%x==0: return False return True def prime(n): list=[]; i=0; while len(list)<n: if isprime(i): list.append(i) i+=1 return list[n-1] s=0 n=1 while n<2000000: if isprime(n): s+=n n+=1 print s end= time.clock() time= (end-start)/1000 print time
from backbone import * import re ''' This is to check that SAN disk connectivity is done correctly. This Script will check the following on a system of datanodes : 1. Check SAN interface 2. Check tps fs configs on datanode 3. Check SAN memory available ''' nodes = get_nodes_by_type('datanode') # Checking tps fs configs for node in nodes : output = node.cliCmd('show tps fs') if not 'Enabled: yes' in output or 'Mount point: /dev/INVALID' in output: directory = ['/data/'] logger.error('%s : DN doesnot have a SAN attached or enabled.' % node.getIp()) else : directory = filter(lambda x : 'Mount point:' in x , output.split('\n')) try : directory = map(lambda x : re.search('Mount point:(.*)',x).group(1),directory) except Exception : logger.error('%s : Error in parsing command :show tps fs for mount points.Please check' % node.getIp() ) for dir in directory : output = node.shellCmd('df -klh | grep %s' % dir) out = filter(lambda x : '%' in x, output.split(' ') ) if not len(out) == 1 : logger.error('%s : Error in parsing command df -klh. debug logs stdout : %s , after filter for percentage extraction passed. out = %s ' % ( node.getIp(),output,out) ) else : if int(out[0][:-1]) > 95 : logger.error("%s : SAN disk is full: %s" % ( node.getIp(),out[0] ) ) report.fail("%s : SAN disk is full: %s" % ( node.getIp(),out[0] ) ) else : logger.info("%s : SAN disk %s full" % ( node.getIp(),out[0] ) )
from django.contrib import admin from .models import Dprofile # Register your models here. admin.site.register(Dprofile)
from typing import List from leetcode import test def unique_paths_with_obstacles(grid: List[List[int]]) -> int: if not (grid and grid[0]): return 0 m, n = len(grid), len(grid[0]) if grid[0][0] == 1 or grid[m - 1][n - 1] == 1: return 0 dp = [0] * n for j in range(n): if grid[0][j] == 0: dp[j] = 1 else: break for i in range(1, m): dp[0] = 1 if grid[i][0] == 0 and dp[0] == 1 else 0 for j in range(1, n): if grid[i][j] == 1: dp[j] = 0 else: up = dp[j] if grid[i - 1][j] == 0 else 0 left = dp[j - 1] if grid[i][j - 1] == 0 else 0 dp[j] = up + left return dp[n - 1] # def unique_paths_with_obstacles(grid: List[List[int]]) -> int: # if not (grid and grid[0]): # return 0 # # m, n = len(grid), len(grid[0]) # if grid[0][0] == 1 or grid[m - 1][n - 1] == 1: # return 0 # # dp = [[0] * n for _ in range(m)] # dp[0][0] = 1 # for i in range(1, m): # if grid[i][0] == 0: # dp[i][0] = 1 # else: # break # for j in range(1, n): # if grid[0][j] == 0: # dp[0][j] = 1 # else: # break # # for i in range(1, m): # for j in range(1, n): # if grid[i][j] == 1: # continue # left = dp[i][j - 1] if grid[i][j - 1] == 0 else 0 # up = dp[i - 1][j] if grid[i - 1][j] == 0 else 0 # dp[i][j] = left + up # return dp[m - 1][n - 1] test(unique_paths_with_obstacles, [([[0, 0, 0], [0, 1, 0], [0, 0, 0]], 2)])
import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf import data.climate.window_generator as wg # https://www.tensorflow.org/tutorials/structured_data/time_series train_df = pd.read_csv("jena_climate_2009_2016_train.csv") val_df = pd.read_csv("jena_climate_2009_2016_val.csv") test_df = pd.read_csv("jena_climate_2009_2016_test.csv") w2 = wg.WindowGenerator(input_width=6, label_width=1, shift=1, train_df=train_df, val_df=val_df, test_df=test_df, label_columns=['T (degC)']) print(w2) example_window = tf.stack([np.array(train_df[:w2.total_window_size]), np.array(train_df[100:100+w2.total_window_size]), np.array(train_df[200:200+w2.total_window_size])]) example_inputs, example_labels = w2.split_window(example_window) print('All shapes are: (batch, time, features)') print(f'Window shape: {example_window.shape}') print(f'Inputs shape: {example_inputs.shape}') print(f'labels shape: {example_labels.shape}') # Le code ci-dessus a pris un lot de 3 fenêtres à 7 pas de temps, avec 19 fonctionnalités à chaque pas de temps. Il les a divisés en un lot de 6 pas de temps, 19 entrées de fonction et une étiquette à 1 étape de fonction. L'étiquette n'a qu'une seule fonctionnalité car le WindowGenerator été initialisé avec label_columns=['T (degC)'] w2.example = example_inputs, example_labels w2.plot() plt.show() w2.plot(plot_col='p (mbar)') plt.show()
# -*- coding: utf-8 -*- class MyHashSet: def __init__(self): self.data = [False] * (2**20) def add(self, key): self.data[key] = True def contains(self, key): return self.data[key] def remove(self, key): self.data[key] = False if __name__ == "__main__": obj = MyHashSet() obj.add(1) obj.add(2) assert obj.contains(1) assert not obj.contains(3) obj.add(2) assert obj.contains(2) obj.remove(2) assert not obj.contains(2)
from django.contrib import admin # Register your models here. from .models import Teacher, Teamim, Class, TalmudSponsor, TalmudStudy from .models import create_transcoder_job class ClassAdmin(admin.ModelAdmin): search_fields = ['division', 'segment', 'section', 'unit', 'part', 'series'] list_display = ['__str__', 'division', 'segment', 'section', 'unit', 'part', 'series', 'date'] def save_model(self, request, obj, form, change): super().save_model(request, obj, form, change) update_fields = [] if change: for key in form.initial: if form.initial[key] != form.cleaned_data[key]: update_fields.append(key) if 'audio' in update_fields: print('creating encoder job for', str(obj)) create_transcoder_job(obj.audio) class TalmudStudyAdmin(admin.ModelAdmin): search_fields=['seder', 'masechet'] def save_model(self, request, obj, form, change): super().save_model(request, obj, form, change) update_fields = [] if change: for key in form.initial: if form.initial[key] != form.cleaned_data[key]: update_fields.append(key) if 'audio' in update_fields: print('creating encoder job for', str(obj)) create_transcoder_job(obj.audio) class TeamimAdmin(admin.ModelAdmin): search_fields = ['post', 'reader'] raw_id_fields = ('post', 'reader',) list_display = ('post', 'reader',) def save_model(self, request, obj, form, change): super().save_model(request, obj, form, change) if 'audio' in form.changed_data and obj.audio: if change: print('creating encoder job for existing object', str(obj)) else: print('creating encoder job for new object', str(obj)) create_transcoder_job(obj.audio) admin.site.register(Teacher) admin.site.register(Teamim, TeamimAdmin) admin.site.register(Class, ClassAdmin) admin.site.register(TalmudSponsor) admin.site.register(TalmudStudy, TalmudStudyAdmin)
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('basketball', '0004_auto_20150629_2040'), ] operations = [ migrations.RemoveField( model_name='game', name='statlines_created', ), migrations.AlterField( model_name='playbyplay', name='assist', field=models.CharField(blank=True, max_length=30, choices=[('pot', 'POT'), ('ast', 'AST')]), ), migrations.AlterField( model_name='playbyplay', name='assist_player', field=models.ForeignKey(on_delete=models.CASCADE, blank=True, to='basketball.Player', null=True, related_name='+'), ), migrations.AlterField( model_name='playbyplay', name='secondary_player', field=models.ForeignKey(on_delete=models.CASCADE, blank=True, to='basketball.Player', null=True, related_name='secondary_plays'), ), ]
# -*- coding: UTF-8 -*- import collections import os import sys import pickle import codecs import pandas as pd import numpy as np from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split # pathDir = os.path.dirname(__file__) # curPath = os.path.abspath(pathDir) # rootPath = os.path.split(curPath)[0] # sys.path.append(os.path.split(rootPath)[0]) # sys.path.append(rootPath) from preprocess_data import clear_and_format_data2 class PreProcess(object): def __init__(self): self.max_len = 60 def flatten(self, list_args): result = [] for el in list_args: # collections.Iterable是一种迭代类型 # isinstance(x1,type)判断x1的类型是否和type相同 if isinstance(list_args, collections.Iterable) and not isinstance(el, str): result.extend(self.flatten(el)) else: result.append(el) return result def data2pkl(self, path, save_path): max_len = self.max_len datas = list() # 样本 labels = list() # 样本标签 # linedata = list() # linelabel = list() tags = set() input_data = codecs.open(os.path.join(path, 'spu_name_wordtagsplit.txt'), 'r', 'utf-8') # input_data = codecs.open('./data_t/spu_name_wordtagsplit.txt', 'r', 'utf-8') # input_data = codecs.open('./word_small.txt', 'r', 'utf-8') # input_data = codecs.open('./wordtagsplit.txt', 'r', 'utf-8') # 按行读取并且按行分析样本 for line in input_data.readlines(): # split 划分默认为空格 line = line.split() linedata = [] linelabel = [] num_noto = 0 for word in line: word = word.split('/') linedata.append(word[0]) linelabel.append(word[1]) tags.add(word[1]) if word[1] != 'O': num_noto += 1 if num_noto != 0: datas.append(linedata) labels.append(linelabel) input_data.close() # print(len(datas), tags) # print(len(labels)) all_words = self.flatten(datas) # 将所有的字转换为序列 格式如下 """ 0 牛 1 肉 2 丸 。。。 """ sr_allwords = pd.Series(all_words) # print(sr_allwords) # 统计序列中的字的个数 返回一个序列返回每个字的数量 sr_allwords = sr_allwords.value_counts() # print(sr_allwords) # 获取所有字的一个集合(不重复) set_words = sr_allwords.index # print(set_words) set_ids = range(1, len(set_words)+1) # print(set_ids) # 将集合中的元素转成列表 tags = [i for i in tags] tag_ids = range(len(tags)) # print(tag_ids) # 生成两个序列 word2id = pd.Series(set_ids, index=set_words) # print(word2id) id2word = pd.Series(set_words, index=set_ids) # print(id2word) tag2id = pd.Series(tag_ids, index=tags) id2tag = pd.Series(tags, index=tag_ids) # 添加一个不知道的索引值为 len(word2id)+1 word2id["unknow"] = len(word2id)+1 # print(word2id) # 定义一句话的长度为60 def x_padding(words): # 通过多个索引同时获取到对应的值 ids = list(word2id[words]) # 如果一句话过长就截取前max_len个字符 if len(ids) >= max_len: return ids[:max_len] # 如果不够max_len个字符就用0填补 ids.extend([0]*(max_len-len(ids))) return ids def y_padding(tags1): ids = list(tag2id[tags1]) if len(ids) >= max_len: return ids[:max_len] ids.extend([0]*(max_len-len(ids))) return ids # df_data = pd.DataFrame({'words': datas, 'tags': labels}, index=range(len(datas))) df_data['x'] = df_data['words'].apply(x_padding) df_data['y'] = df_data['tags'].apply(y_padding) x = np.asarray(list(df_data['x'].values)) y = np.asarray(list(df_data['y'].values)) path_save = os.path.join(save_path, "data0\\data.pkl") # kf = KFold(n_splits=5) # i = 1 # for train_index, test_index in kf.split(x): # path_save = os.path.join(save_path, "data{}\\data.pkl".format(i), ) # i += 1 # print(path_save) # train_x, train_y = x[train_index], y[train_index] # x_test, y_test = x[test_index], y[test_index] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.01, random_state=43) x_train, x_valid, y_train, y_valid = train_test_split(x_train, y_train, test_size=0.01, random_state=43) with open(path_save, 'wb') as outp: # with open('../Bosondata1.pkl', 'wb') as outp: pickle.dump(word2id, outp) pickle.dump(id2word, outp) pickle.dump(tag2id, outp) pickle.dump(id2tag, outp) pickle.dump(x_train, outp) pickle.dump(y_train, outp) pickle.dump(x_test, outp) pickle.dump(y_test, outp) pickle.dump(x_valid, outp) pickle.dump(y_valid, outp) print('** Finished saving the data.') @staticmethod def origin2tag(path): input_data = codecs.open(os.path.join(path, 'spu_name_origindata.txt'), 'r', 'utf-8') output_data = codecs.open(os.path.join(path, 'spu_name_wordtag.txt'), 'w', 'utf-8') # input_data = codecs.open('./spu_name_origindata.txt', 'r', 'utf-8') # output_data = codecs.open('./spu_name_wordtag.txt', 'w', 'utf-8') for line in input_data.readlines(): line = line.strip() i = 0 while i < len(line): if line[i] == '{': i += 2 temp = "" while line[i] != '}': temp += line[i] i += 1 i += 2 word = temp.split(':') sen = word[1] try: output_data.write(sen[0]+"/B_"+word[0]+" ") except Exception as e: pass # print('sen:', sen) # print('line:', line) # print('word:', word) for j in sen[1:len(sen)-1]: output_data.write(j+"/M_"+word[0]+" ") output_data.write(sen[-1]+"/E_"+word[0]+" ") else: output_data.write(line[i]+"/O ") i += 1 output_data.write('\n') input_data.close() output_data.close() @staticmethod def tagsplit(path): # with open('./data_t/xwj_wordtag.txt', 'rb') as inp: inp = open(os.path.join(path, 'spu_name_wordtag.txt'), 'r', encoding='utf-8') # inp = open('./spu_name_wordtag.txt', 'r', encoding='utf-8') # 将txt中的文本一股脑的全部读出 # texts = inp.read().decode('utf-8') sentences = inp.readlines() # print(texts) # 此处为何要划分 # sentences = re.split("[,。!?、‘’“”()]/[O]", texts) # sentences = re.split('[,。!?、‘’“”()]/[O]'.decode('utf-8'), texts) # output_data = codecs.open('./data_t/spu_name_wordtagsplit.txt', 'w', 'utf-8') output_data = codecs.open(os.path.join(path, 'spu_name_wordtagsplit.txt'), 'w', 'utf-8') for sentence in sentences: if sentence != " ": output_data.write(sentence.strip()+'\n') output_data.close() def get_predata(data_name, path_save): """ data_name:原数据路径+名称 path_save:处理后的数据保存路径 """ # org_path = 'E:\\Document\\project\\keyword_extraction\\ChineseNER\\data\\boson' # path_root = 'E:\\Document\\project\\keyword_extraction\\ChineseNER\\data\\boson\\data_t' # path_save = 'E:\\Document\\project\\keyword_extraction\\ChineseNER\\data' clear_and_format_data2(data_name, path_save) # 数据清洗和数据格式化 在路径path_save下产生文件 spu_name_origindata.txt print('----------------数据清洗完成-------------') preprocess = PreProcess() preprocess.origin2tag(path_save) # 在路径path_save下产生文件spu_name_wordtag.txt preprocess.tagsplit(path_save) # 在路径path_save下产生文件spu_name_wordtagsplit.txt preprocess.data2pkl(path_save, save_path=path_save) # 在路径path_save下产生文件 data.pkl print('----------------数据处理完成-------------') if __name__ == '__main__': path_root = 'E:\\Document\\project\\keyword_extraction\\ChineseNER\\data_\\data_original_all.txt' path_sa = 'E:\\Document\\project\\keyword_extraction\\ChineseNER\\data_\\fold_cross_validation' get_predata(path_root, path_sa)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Oct 28 12:41:12 2020 @author: kondrate """ import matplotlib.pyplot as plt import numpy as np def draw_plots(readings, point, fig_size = None, caption = 'Plot', decision = np.empty((3,1))): # Readings are pandas frame r = 0 if len(decision) == 3: fig, ax = plt.subplots(14,1, figsize=fig_size) fig.tight_layout(h_pad=2, rect=[0, 0.03, 1, 0.95]) fig.suptitle(caption) for key in readings: ax[r].plot(readings[key]) ax[r].grid(True) ax[r].set_title(key) ax[r].axvline(point, color='red', ls='dashed') r+=1 plt.draw() for i in range(14): locs = list(np.arange(-50,350,50)) locs += [point] labels = [str(w) for w in locs] ax[i].set_xticks(locs[1:]) ax[i].set_xticklabels(labels[1:]) else: fig, ax = plt.subplots(14,2, figsize=fig_size) fig.tight_layout(h_pad=2, rect=[0, 0.03, 1, 0.95]) fig.suptitle(Caption) for key in readings: ax[r,0].plot(readings[key]) ax[r,0].grid(True) ax[r,0].set_title(key) ax[r,0].axvline(point, color='red', ls='dashed') # ax[r,1].plot(decision[r,:]) ax[r,1].grid(True) ax[r,1].set_title(key) ax[r,1].axvline(point, color='red', ls='dashed') r+=1 plt.draw() for i in range(14): locs = list(np.arange(-50,350,50)) locs += [point] labels = [str(w) for w in locs] ax[i,0].set_xticks(locs[1:]) ax[i,0].set_xticklabels(labels[1:]) ax[i,1].set_xticks(locs[1:]) ax[i,1].set_xticklabels(labels[1:])
from functools import wraps def onlyonce(fn): """Wraps a function to run once and return the same result thereafter.""" result = [] @wraps(fn) def doit(*a, **k): if not result: result.append(fn(*a, **k)) return result[0] return doit
from collections import defaultdict def vec(): return set() n ,m = map(int,input().split()) d = defaultdict(vec) for t in range(m): u,v = map(int,input().split()) d[u].add(v) d[v].add(u) def dfs(i): vec[i] = 1 for j in d[i]: if vec[j] == 0: dfs(j) c = 0 vec = [0]*(n+1) for i in range(1,n+1,+1): if vec[i] == 0: dfs(i) c+=1 print(c)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from setuptools import setup from setuptools import find_packages def get_long_description() -> str: with open("README.md", "r") as file: return file.read() setup( name="hushboard", version="0.0.1", description="Mute your mic while you're typing.", long_description=get_long_description(), long_description_content_type="text/markdown", author="Stuart Langridge", author_email="sil@kryogenix.org", license="MIT", url="https://github.com/stuartlangridge/hushboard", packages=find_packages(), install_requires=[], python_requires=">=3.6", entry_points={ "console_scripts": ["hushboard=hushboard.__main__:main"], }, include_package_data=True, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: End Users/Desktop", "License :: OSI Approved :: MIT License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Operating System :: POSIX :: Linux", "Operating System :: Unix", ], extras_require={}, )
# Generated by Django 2.1.2 on 2018-10-06 10:58 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0005_project'), ] operations = [ migrations.AddField( model_name='project', name='reject_reason', field=models.CharField(blank=True, max_length=500, null=True), ), ]
# -*- coding: utf-8 -*- # pylint: disable=invalid-name,missing-docstring # Copyright 2017 IBM RESEARCH. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Quick program to test json backend """ import unittest from qiskit import qasm, unroll, QuantumProgram from .common import QiskitTestCase, Path class TestJsonOutput(QiskitTestCase): """Test Json output. This is mostly covered in test_quantumprogram.py but will leave here for convenience. """ def setUp(self): self.QASM_FILE_PATH = self._get_resource_path( 'qasm/entangled_registers.qasm', Path.EXAMPLES) def test_json_output(self): seed = 88 qp = QuantumProgram() qp.load_qasm_file(self.QASM_FILE_PATH, name="example") basis_gates = [] # unroll to base gates, change to test unroller = unroll.Unroller(qasm.Qasm(data=qp.get_qasm("example")).parse(), unroll.JsonBackend(basis_gates)) circuit = unroller.execute() self.log.info('test_json_ouptut: {0}'.format(circuit)) if __name__ == '__main__': unittest.main()
"""calculavirus URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.urls import include, path from rest_framework import routers from calculavirus.insumos import views as insumo_views from calculavirus.checklist import views as checklist_views from calculavirus.customeUsers import views as customUsers_views from django.contrib import admin from django.conf import settings from django.views.static import serve from django.conf.urls import url router = routers.DefaultRouter() router.register(r'users', customUsers_views.CustomUsersViewSet) router.register(r'groups', insumo_views.GroupViewSet) router.register(r'insumos', insumo_views.InsumoViewSet) router.register(r'lugares', insumo_views.LugarCompraViewSet) router.register(r'checklist',checklist_views.ChecklistViewSet) router.register(r'checklistinsumo',checklist_views.ChecklistInsumoViewSet) # Wire up our API using automatic URL routing. # Additionally, we include login URLs for the browsable API. urlpatterns = [ path('', include(router.urls)), path('api-auth/', include('rest_framework.urls', namespace='rest_framework')), path('admin/', admin.site.urls), # path('lugares/', insumo_views.LugarCompraViewSet.as_view(), name="lugares"), ] if settings.DEBUG: urlpatterns += [ url(r'^media/(?P<path>.*)$', serve, { 'document_root': settings.MEDIA_ROOT, }), ]
#!/usr/bin/python ##James Parks import sys import json import matplotlib.pyplot as pyplot import numpy as np from optparse import OptionParser def autolabel(rects, textOffset): # attach some text labels for rect in rects: height = rect.get_height() print height + textOffset #pyplot.text(rect.get_x() + rect.get_width() / 2., 1.05 * height, str(height)[:5], ha='center', va='bottom', fontsize=6) pyplot.text(rect.get_x() + rect.get_width() / 2., height + textOffset, str(height)[:5], ha='center', va='bottom', fontsize=6) def plotIt(allArgs): parser = OptionParser(version="%prog 1.0") #parser.add_option("-x", "--xValues", dest="xValues", help="The x axis values to plot", metavar="XVAL") #parser.add_option("-y", "--yValues", dest="yValues", help="The y axis values to plot", metavar="YVAL") parser.add_option("-d", "--data", dest="data", help="The json file that contains the data being compared", metavar="DATA", default="Unknown") parser.add_option("-g", "--type", dest="graphType", help="Type of graph to make; Line, Bar, or Pie", metavar="GRAPHTYPE", default="Line") parser.add_option("-t", "--title", dest="title", help="The title of the graph", metavar="TITLE", default="Default") parser.add_option("-p", "--path", dest="path", help="The path of the graph you want to output", metavar="PATH") parser.add_option("-l", "--legend", action="store_true", dest="legend", help="Add a legend to the graph") parser.add_option("-x", "--xkcd", action="store_true", dest="xkcd", help="Use the XKCD style") options, args = parser.parse_args(allArgs) ##Open up the JSON data file and turn it back into a dictionary dataFilePath = options.data dataFile = open(dataFilePath, "r") dataDict = json.load(dataFile) dataFile.close() ##Set up a couple of variables that will be used in all types of graphs dataKeys = dataDict.keys() colorCycle = ["r", "g", "b", "c", "m", "y", "k"] #for thisKey in dataKeys: # versions = dataDict[thisKey].keys() # versions.sort() versions = dataDict[dataKeys[0]].keys() versions.sort() #print versions textOffset = .25 smallFontSize = 6 mediumFontSize = 10 largeFontSize = 16 ##Set the resolution in a roundabout way ## you can only specify the image size in inches and the dpi ## so I made the dpi 100 for easy multiplication myFig = pyplot.figure(figsize=[5, 4], dpi=100) print myFig if options.graphType: print options.graphType ########################################################## ##I'm makin' me a line graph, jus like dem fancy injuneers ########################################################## if options.graphType == "Line": pyplot.grid(b=True) myPlots = [] for thisKey in dataKeys: ##Sanitize and Synchronize the versions and values saniVersions = [] saniValues = [] for thisVersion in versions: ##Sanitize the versions into ints strVersion = str(thisVersion) if strVersion[0] == "v": saniVer = str(strVersion[1:]) else: saniVer = str(strVersion) saniVersions.append(int(saniVer)) ##Sanitize the values into floats value = dataDict[thisKey][thisVersion] if type(value) == type(""): saniVal = float(value) else: saniVal = value saniValues.append(value) if options.xkcd: with pyplot.xkcd(): tempPlot = pyplot.plot(saniVersions, saniValues, ".-", linewidth=1, label=thisKey) else: tempPlot = pyplot.plot(saniVersions, saniValues, ".-", linewidth=1, label=thisKey) myPlots.append(tempPlot[0]) ##Write the value above the dot ## Find out the yLength yLen = pyplot.ylim()[1] - pyplot.ylim()[0] textOffset = (yLen / 100) * 2 colorChoice = 0 for thisPlot in myPlots: xyData = thisPlot.get_xydata() for entry in xyData: if options.xkcd: with pyplot.xkcd(): pyplot.text(s=str(entry[1])[:5], x=entry[0], y=entry[1] + textOffset, fontsize=smallFontSize) else: pyplot.text(s=str(entry[1])[:5], x=entry[0], y=entry[1] + textOffset, fontsize=smallFontSize) colorChoice = colorChoice + 1 pyplot.margins(.05, .05) pyplot.minorticks_off() pyplot.box(on=True) #pyplot.xticks(fontsize=6) pyplot.tick_params(top=False, right=False, labelsize=smallFontSize) #xTicks = range(int(saniX[0]), int(saniX[-1]) + 1, 1) #pyplot.xticks(xTicks) pyplot.xlabel("Version", fontsize=smallFontSize) ######################################################## ##Stone walls do not a prison make, nor iron bars a cage ######################################################## elif options.graphType == "Bar": #fig, ax = pyplot.subplots() #pyplot.figure(figsize=[5, 4], dpi=100) ##Figure out the bar info numOfBars = len(versions) barSubGroups = len(dataKeys) barWidth = 0.75 / barSubGroups ##It's much easier to make this a numpy arange instead of a default python range xPos = np.arange(numOfBars) curBarSubGroup = 0 colorChoice = 0 myRects = [] for thisKey in dataKeys: keyValues = [] #thisPos = p[] #for pos in xPos: # xPos[pos] = pos + (barwidth * curBarSubGroup) for thisVersion in versions: thisValue = dataDict[thisKey][thisVersion] keyValues.append(thisValue) if options.xkcd: with pyplot.xkcd(): #thisRects = ax.bar(xPos + (barWidth * curBarSubGroup), keyValues, barWidth, label=thisKey, color=colorCycle[colorChoice]) thisRect = pyplot.bar(xPos + (barWidth * curBarSubGroup), keyValues, barWidth, label=thisKey, color=colorCycle[colorChoice]) else: thisRect = pyplot.bar(xPos + (barWidth * curBarSubGroup), keyValues, barWidth, label=thisKey, color=colorCycle[colorChoice]) myRects.extend(thisRect) curBarSubGroup = curBarSubGroup + 1 if colorChoice == len(colorCycle) - 1: colorChoice = 0 else: colorChoice = colorChoice + 1 ##Write the value above the dot ## Find out the yLength yLen = pyplot.ylim()[1] - pyplot.ylim()[0] textOffset = (yLen / 100) for thisRect in myRects: height = thisRect.get_height() if options.xkcd: with pyplot.xkcd(): pyplot.text(thisRect.get_x() + thisRect.get_width() / 2., height + textOffset, str(height)[:5], ha='center', va='bottom', fontsize=6) else: pyplot.text(thisRect.get_x() + thisRect.get_width() / 2., height + textOffset, str(height)[:5], ha='center', va='bottom', fontsize=6) #autolabel(thisRects, textOffset) pyplot.margins(.05, .05) pyplot.xticks(range(len(versions)), versions, fontsize=smallFontSize) #pyplot.minorticks_off() pyplot.yticks(fontsize=smallFontSize) #pyplot.box(on=True) pyplot.tick_params(top=False, right=False) #################### ##Mmmmm,... half-Tau #################### elif options.graphType == "Pie": ##Determine how many subplots there are going to be ## This is specific to pie charts because it's silly ## to plot multiple versions into the same pie chart numOfPlots = len(versions) numOfCols = 5 if numOfPlots <= 16: numOfCols = 4 if numOfPlots <= 9: numOfCols = 3 if numOfPlots <= 4: numOfCols = 2 if numOfPlots == 1: numOfCols = 1 #elif 4 < numOfPlots < 6: #else: # numOfCols = numOfPlots numOfRows = numOfPlots / numOfCols if numOfPlots % 4: numOfRows = numOfRows + 1 plotNum = 1 ##Make a pie for each version for thisVersion in versions: totalValue = 0.0 allValues = [] for thisKey in dataKeys: thisValue = dataDict[thisKey][thisVersion] allValues.append(thisValue) totalValue = totalValue + thisValue #print thisVersion + " :: " + str(totalValue) percentages = [] for thisValue in allValues: percentages.append((thisValue / totalValue) * 100) if numOfPlots > 1: pyplot.subplot(numOfRows, numOfCols, plotNum) autoLabelPie = '%1.1f%%' pieLabels = None if options.legend: pieLabels = dataKeys if options.xkcd: with pyplot.xkcd(): if options.legend: patches, texts, autotexts = pyplot.pie(percentages, labels=pieLabels, autopct=autoLabelPie, shadow=False, startangle=90) else: patches, texts, autotexts = pyplot.pie(percentages, labels=pieLabels, autopct=autoLabelPie, shadow=False, startangle=90) else: if options.legend: patches, texts, autotexts = pyplot.pie(percentages, labels=pieLabels, autopct=autoLabelPie, shadow=False, startangle=90) else: patches, texts, autotexts = pyplot.pie(percentages, labels=pieLabels, autopct=autoLabelPie, shadow=False, startangle=90) texts.extend(autotexts) for thisText in texts: thisText.set_fontsize(smallFontSize) pyplot.axis('equal') pyplot.xlabel(thisVersion, fontsize=smallFontSize) plotNum = plotNum + 1 #pyplot.margins(.1, .1) else: print "I don't know what kind of graph to make" ##Let's optionally add some stuff to every type of graph #0=Best, 1=upperRight, 2=upperLeft, 3=lowerLeft, 4=lowerRight, 5=right, 6=centerLeft, 7=centerRight, 8=lowerCenter, 9=upperCenter, 10=center if options.legend and options.graphType != "Pie": pyplot.legend(loc=0, fontsize=mediumFontSize) ##Give it a title if options.title: #if options.graphType != "Pie": #myFig.title(options.title.title(), fontsize=mediumFontSize) pyplot.title(options.title.title(), fontsize=mediumFontSize) ##If there is a path specified, write to that path, otherwise show the image if options.path: pyplot.savefig(options.path) else: pyplot.show() if __name__ == '__main__': print sys.argv[1:] plotIt(sys.argv[1:])
#coding:gb2312 #比较数字 num=18 print(num==18) #检查两个数字是否相等 print(num<14) #返回结果为False print(num<=14) #返回结果为False print(num>14) #返回结果为True print(num>=18) #返回结果为True #检查多个条件 #例如检查两个人是否都小于18岁,and要都满足条件,表达式才为True age_0= 15 age_1= 19 print((age_0<=18) and (age_1<=18)) #and是测试两个人是否都小于18 age_1=17 #将age_1改为17 print((age_0<=18) and (age_1<=18)) #返回结果为True #检查至少有一个人小于18岁,or只需要有一个满足条件,表达式便为True age_0= 15 age_1= 190 print((age_0<=18) or (age_1<=18))
import os from pathlib import Path import json import random import numpy as np import pickle import tables import os def pickle_dump(item, out_file): with open(out_file, "wb") as opened_file: pickle.dump(item, opened_file) # def delete_existing_files(): # os.remove(r"/data/home/Shai/UNET_3D_NEW/debug_split/validation_ids.pkl") # os.remove(r"/data/home/Shai/UNET_3D_NEW/debug_split/training_ids.pkl") # os.remove(r"/data/home/Shai/UNET_3D_NEW/debug_split/test_ids.pkl") def create_files(cur_exp_name, training_list, validation_list, test_list): exp_folder = os.path.join(r"/datadrive/configs", cur_exp_name) Path(os.path.join(exp_folder, "debug_split")).mkdir(parents=True, exist_ok=True) pickle_dump(training_list, os.path.join(exp_folder, "debug_split", "training_ids.pkl")) pickle_dump(validation_list, os.path.join(exp_folder, "debug_split", "validation_ids.pkl")) pickle_dump(test_list, os.path.join(exp_folder, "debug_split", "test_ids.pkl")) def set_new_config(conf_to_imitate, cur_exp_name): with open(os.path.join(r"/datadrive/configs", conf_to_imitate, 'config.json')) as f: config = json.load(f) config["overwrite"] = False config["base_dir"] = os.path.join(r"/datadrive/configs", cur_exp_name) config["split_dir"] = os.path.join(config["base_dir"], "debug_split") config["training_file"] = os.path.join(config["split_dir"], "training_ids.pkl") config["validation_file"] = os.path.join(config["split_dir"], "validation_ids.pkl") config["test_file"] = os.path.join(config["split_dir"], "test_ids.pkl") #config["data_file"] = os.path.join(config["base_dir"], "fetal_data.h5") config["model_file"] = os.path.join(config["base_dir"], "fetal_net_model") with open(os.path.join(config["base_dir"], 'config.json'), mode='w') as f: json.dump(config, f, indent=2) def run_cross_val_training(existing_data_file_path, exp_names_prefix, conf_to_imitate=None): data_file = tables.open_file(existing_data_file_path, "r") all_list = list(range(len(data_file.root.subject_ids))) data_file.close() print('# of subjects: {}'.format(len(all_list))) random.shuffle(all_list) all_list_temp = all_list all_experiement_names = [] n_test = 3 n_iters = int(np.ceil(float(len(all_list_temp)) / n_test)) for i in range(n_iters): print("In round {} out of {}".format(i+1, n_iters)) test_list = all_list_temp[:n_test] # [5, 6, 23] validation_list = all_list_temp[n_test:2*n_test] training_list = all_list_temp[2*n_test:] cur_exp_name = '{}_cross_val_train_{}'.format(exp_names_prefix, i+1) create_files(cur_exp_name, training_list, validation_list, test_list) all_list_temp = all_list_temp[n_test:] + all_list_temp[:n_test] print("Created all files") for i in range(n_iters): cur_exp_name = '{}_cross_val_train_{}'.format(exp_names_prefix, i + 1) if conf_to_imitate: set_new_config(conf_to_imitate, cur_exp_name) print('Now training {}'.format(cur_exp_name)) cmd = "python3 train_fetal.py --experiment_name='{}'".format(cur_exp_name) print(cmd) os.system(cmd) print("Finished training, now running on test") conf_dir = '../../../../../datadrive/configs/' + '{}'.format(cur_exp_name) cmd = "python3 predict.py --split='test' --config='{}'".format(conf_dir) print(cmd) os.system(cmd) print('Finished forward') all_experiement_names = all_experiement_names + ['{}'.format(cur_exp_name)] return all_experiement_names #conf_to_imitate = r"20200906_single_res_new_data" #conf_to_imitate = r"20200826_reconstruct_2d_base_single_res" conf_to_imitate = r"20200911_single_res_new_data_cross_val_train_1" #existing_data_fpath = r"/datadrive/configs/20200906_single_res_new_data/fetal_data.h5" #existing_data_fpath = r"/datadrive/configs/20200826_reconstruct_2d_base_single_res/fetal_data.h5" existing_data_fpath = r"/datadrive/datafiles/fetal_data_single_res_scans_202009.h5" exp_names_prefix = r"20201007_2d_single_res_unet_depth_3_ntest_3" run_cross_val_training(existing_data_file_path=existing_data_fpath, exp_names_prefix=exp_names_prefix, conf_to_imitate=conf_to_imitate) # import glob # import nibabel as nib # data_pref = r"/data/home/Shai/placenta_data" # exps = glob.glob('/datadrive/configs/64_64_5_cross_val_*') # # for e in exps: # cur_p = os.path.join(e, 'predictions', 'test') # subs = os.listdir(cur_p) # for s_id in subs: # print("Adding prediction to subject {}".format(s_id)) # if not os.path.exists(os.path.join(data_pref, s_id, 'prediction.nii')): # a_tmp = nib.load(os.path.join(cur_p, s_id, 'prediction.nii.gz')) # nib.save(a_tmp, os.path.join(data_pref, s_id, 'prediction.nii'))
from keras.models import Sequential from keras import layers import pandas as pd from sklearn.model_selection import train_test_split import numpy as np from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import Tokenizer from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import LabelEncoder from keras.utils import np_utils from keras.models import Sequential from keras import layers from sklearn.feature_extraction.text import CountVectorizer import gensim from gensim.utils import simple_preprocess from gensim.parsing.preprocessing import STOPWORDS from nltk.stem import WordNetLemmatizer, SnowballStemmer from nltk.stem.porter import * import numpy as np np.random.seed(2018) import nltk nltk.download('wordnet') ammountCat ={} def checkKey(dict, key): if key in dict.keys(): ammountCat[dict[key]] = ammountCat[dict[key]] + 1 return dict[key] else: dict[key] = len(dict) + 1 ammountCat[dict[key]]= 1 return dict[key] import csv f = open('purchase-order-data-2012-2015-.csv', 'r',encoding='UTF8') reader = csv.reader(f) headers = next(reader, None) column = {} columnIndex = {} count = 0 for h in headers: column[h] = [] columnIndex[h]=count count = count + 1 count = 0 limit = 1000000 classDict = {} columnNames = ['Item Name', 'Item Description', 'Class'] for row in reader: if row[ columnIndex['Class']] == "" or row[ columnIndex['Item Description']] == "" or row[ columnIndex['Item Name']] == "": continue column['Class'].append(checkKey(classDict, row[ columnIndex['Class']])) column['Item Description'].append(row[ columnIndex['Item Description']] +" " + row[ columnIndex['Item Name']]) count = count + 1 if count > limit: break cutoutThreshold = 10 for key, value in ammountCat.items(): if value < cutoutThreshold: print(key,":",value) found = True while found == True: broke = False for i in range(len(column['Class'])): #print("i:",column['Class'][i],key,i) if column['Class'][i] == key: #print(key,column['Class'][i]) del column['Class'][i] del column['Item Description'][i] broke = True break if broke == False: found = False total =0 categories =0 for key, value in ammountCat.items(): if value >= cutoutThreshold: categories = categories +1 print("-",key,":",value) total = value + total print(len(column['Class']),len(column['Item Description']),total) d = {'label': column['Class'], 'sentence': column['Item Description']} column="" df_yelp =pd.DataFrame(data=d) data_text = df_yelp[['sentence']] data_text['index'] = df_yelp.index documents = data_text stemmer = SnowballStemmer("english") def lemmatize_stemming(text): return stemmer.stem(WordNetLemmatizer().lemmatize(text, pos='v')) def preprocess(text): result = [] for token in gensim.utils.simple_preprocess(text): if token not in gensim.parsing.preprocessing.STOPWORDS and len(token) > 3: result.append(lemmatize_stemming(token)) return result print(documents) doc_sample = documents[documents['index'] == 39].values[0][0] print('original document: ') words = [] for word in doc_sample.split(' '): words.append(word) print(words) print('\n\n tokenized and lemmatized document: ') print(preprocess(doc_sample)) processed_docs = documents['sentence'].map(preprocess) print(processed_docs[:10]) dictionary = gensim.corpora.Dictionary(processed_docs) count = 0 for k, v in dictionary.iteritems(): print(k, v) count += 1 if count > 10: break dictionary.filter_extremes(no_below=20, no_above=0.5, keep_n=1000000) print(len(dictionary),len(documents)) bow_corpus = [dictionary.doc2bow(doc) for doc in processed_docs] bow_doc_4310 = bow_corpus[90] for i in range(len(bow_doc_4310)): print("Word {} (\"{}\") appears {} time.".format(bow_doc_4310[i][0], dictionary[bow_doc_4310[i][0]], bow_doc_4310[i][1])) from gensim import corpora, models tfidf = models.TfidfModel(bow_corpus) corpus_tfidf = tfidf[bow_corpus] from pprint import pprint for doc in corpus_tfidf: pprint(doc) break print(categories) lda_model = gensim.models.LdaModel(bow_corpus, num_topics=100, id2word=dictionary) for idx, topic in lda_model.print_topics(-1): print('Topic: {} \nWords: {}'.format(idx, topic)) print(bow_corpus[4310],documents['sentence'][4310]) for index, score in sorted(lda_model[bow_corpus[4310]], key=lambda tup: -1*tup[1]): print("\nScore: {}\t \nTopic: {}".format(score, lda_model.print_topic(index, 10)))
#!/usr/bin/env python3 from ctypes import CDLL from os import listdir, path, times from signal import SIGHUP, SIGINT, SIGKILL, SIGQUIT, SIGTERM, signal from sys import argv, exit, stderr, stdout from time import monotonic, process_time, sleep def errprint(*text): """ """ print(*text, file=stderr, flush=True) def readf(pathname): """ """ with open(pathname, 'rb', buffering=0) as f: return f.read().decode() def write(pathname, string): """ """ with open(pathname, 'w') as f: f.write(string) def check_controllers(cg): """ """ try: c = readf('/sys/fs/cgroup/' + cg + '/cgroup.controllers') except FileNotFoundError as e: print('I: systemd and unified cgroup hierarchy are required') errprint(e) exit(1) except PermissionError as e: print('I: systemd and unified cgroup hierarchy are required') errprint(e) exit(1) if 'memory' not in c: errprint('E: memory controller is not enabled in ' + cg) exit(1) def check_write(cg): """ """ pathname = '/sys/fs/cgroup/' + cg + '/memory.high' try: string = readf(pathname) except FileNotFoundError as e: errprint(e) exit(1) except PermissionError as e: errprint(e) exit(1) try: write(pathname, string) except PermissionError as e: print('I: memory.high must be writable') errprint(e) exit(1) except FileNotFoundError as e: errprint(e) exit(1) def format_time(t): """ """ total_s = int(t) if total_s < 60: return '{}s'.format(round(t, 1)) if total_s < 3600: total_m = total_s // 60 mod_s = total_s % 60 return '{}min {}s'.format(total_m, mod_s) if total_s < 86400: total_m = total_s // 60 mod_s = total_s % 60 total_h = total_m // 60 mod_m = total_m % 60 return '{}h {}min {}s'.format(total_h, mod_m, mod_s) total_m = total_s // 60 mod_s = total_s % 60 total_h = total_m // 60 mod_m = total_m % 60 total_d = total_h // 24 mod_h = total_h % 24 return '{}d {}h {}min {}s'.format(total_d, mod_h, mod_m, mod_s) def rline(pathname): """ """ with open(pathname, 'rb', buffering=0) as f: try: return int(f.read()) except ValueError: return None def get_swappiness(): """ """ return rline('/proc/sys/vm/swappiness') def mlockall(): """ """ MCL_CURRENT = 1 MCL_FUTURE = 2 MCL_ONFAULT = 4 libc = CDLL('libc.so.6', use_errno=True) result = libc.mlockall(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT) if result != 0: result = libc.mlockall(MCL_CURRENT | MCL_FUTURE) if result != 0: errprint('ERROR: cannot lock process memory: [Errno {}]'.format( result)) exit(1) else: if debug_correction: errprint('Process memory locked with MCL_CURRENT | MCL_FUTURE') else: if debug_correction: errprint('Process memory locked with MCL_CURRENT | MCL_FUTURE | ' 'MCL_ONFAULT') def debug_cg(): """ """ print('CGroups state:') for cg in cg_dict: cur_path = cg_dict[cg]['cur_path'] high_path = cg_dict[cg]['high_path'] try: c = rline(cur_path) h = rline(high_path) except FileNotFoundError as e: print(' cgroup: {}, {}'.format(cg, e)) continue c_mib = round(c / 1024 / 1024, 1) c_pc = round(c / 1024 / mem_total * 100, 1) if h is None: hui = ' max' else: h_mib = round(h / 1024 / 1024, 1) h_pc = round(h / 1024 / mem_total * 100, 1) hui = ' {}M ({}%)'.format(h_mib, h_pc) print(' cgroup: {}, memory.current: {}M ({}%), memory.high:{}'.format( cg, c_mib, c_pc, hui)) stdout.flush() def string_to_float_convert_test(string): """ Try to interprete string values as floats. """ try: return float(string) except ValueError: return None def string_to_int_convert_test(string): """Try to interpret string values as integers.""" try: return int(string) except ValueError: return None def check_mem_and_swap(): """ """ fd['mi'].seek(0) m_list = fd['mi'].read().decode().split(' kB\n') ma = int(m_list[mem_available_index].split(':')[1]) st = int(m_list[swap_total_index].split(':')[1]) sf = int(m_list[swap_free_index].split(':')[1]) return ma, st, sf def percent(num): """Interprete num as percentage.""" return round(num * 100, 1) def sleep_after_check_mem(ma): """ """ if stable_interval: sleep(min_interval) return None t = ma / mem_fill_rate if t > max_interval: t = max_interval elif t < min_interval: t = min_interval else: pass if debug_sleep: print('Sleep', round(t, 2)) sleep(t) def unlim(): """ """ for cg in cg_dict: try: if debug_correction: print('Set memory.high for {}: max'.format(cg)) write(cg_dict[cg]['high_path'], 'max\n') except (FileNotFoundError, PermissionError) as e: if debug_correction: print(e) continue def soft_exit(num): """ """ unlim() if len(fd) > 0: for f in fd: fd[f].close() m = monotonic() - start_time user_time, system_time = times()[0:2] p_time = user_time + system_time p_percent = p_time / m * 100 print('Uptime {}, CPU time {}s (user {}s, sys {}s), avg {}%; exit.'.format( format_time(m), round(p_time, 2), user_time, system_time, round(p_percent, 2) )) exit(num) def signal_handler(signum, frame): """ """ def signal_handler_inner(signum, frame): """ """ pass for i in sig_list: signal(i, signal_handler_inner) print('Got the {} signal '.format( sig_dict[signum])) soft_exit(0) def get_uid_set(): """ """ uid_set = set() d = '/sys/fs/cgroup/user.slice/' f_list = listdir(d) for f in f_list: if (f.startswith('user-') and f.endswith('.slice') and path.isdir(d + f) and len(f) >= 12): uid = f[5:-6] try: i_uid = int(uid) if i_uid >= min_uid: uid_set.add(uid) print(uid) except ValueError: continue return uid_set def update_cg_dict(cg_dict): """ """ b = uid_d[0] if b == listdir(d): return cg_dict elif b is None: uid_d[0] = listdir(d) else: uid_d[0] = listdir(d) uid_set = get_uid_set() lus = len(uid_set) if lus == 0: return basic_cg_dict real_uid_cg_dict = dict() for cg in temp_uid_cg_dict: temp_key = temp_uid_cg_dict[cg] print(temp_key) t_fraction = temp_key['fraction'] print(t_fraction, 'F') r_fraction = t_fraction / lus for uid in uid_set: real_cg = cg.replace('$UID', uid) if real_cg in basic_cg_dict: continue print(uid) new_key = dict() new_key.update(temp_key) c = new_key['cur_path'].replace('$UID', uid) new_key['cur_path'] = c h = new_key['high_path'].replace('$UID', uid) new_key['high_path'] = h new_key['fraction'] = r_fraction real_uid_cg_dict[real_cg] = new_key cg_dict = basic_cg_dict.copy() cg_dict.update(real_uid_cg_dict) return cg_dict def correction(cg_dict): """ """ print(cg_dict) if debug_correction: print('Enter in correction') enter_time = monotonic() k0 = process_time() cg_dict = update_cg_dict(cg_dict) k1 = process_time() k = (k1 - k0) * 1000 print(k, 'ms - UPD UID') while True: # print('=============== CHECK ===============') ma, st, sf = check_mem_and_swap() # 1 ОТМЕНА ЛИМИТОВ if sf < min_swap_free: # print('# CANCEL LIMITS') if debug_correction: print('MemAvailable: {}M ({}%), SwapFree: {}M'.format( round(ma / 1024, 1), percent(ma / mem_total), round(sf / 1024, 1))) debug_cg() print('SwapFree < $CANCEL_LIMITS_BELOW_SWAP_FREE_MIB; extend' 'ing limits') unlim() if debug_sleep: print('Sleep', round(max_interval, 2)) sleep(max_interval) if debug_correction: print('Exit from correction') break # 2 КОРРЕКЦИЯ if ma < keep_memavail_min: k0 = process_time() cg_dict = update_cg_dict(cg_dict) k1 = process_time() k = (k1 - k0) * 1000 print(k, 'ms - UPD UID') print(cg_dict) # print('# CORRECTION') if debug_correction: print('MemAvailable: {}M ({}%), SwapFree: {}M'.format( round(ma / 1024, 1), percent(ma / mem_total), round(sf / 1024, 1))) debug_cg() enter_time = monotonic() c_list = [] cur_sum = 0 for cg in cg_dict: try: cur = rline(cg_dict[cg]['cur_path']) except FileNotFoundError as e: if debug_correction: print(e) continue cg_dict[cg]['real_cur'] = cur cur_sum += cur for cg in cg_dict: try: frac_cur = cg_dict[cg]['real_cur'] / cur_sum except KeyError: continue cg_dict[cg]['frac_cur'] = frac_cur frac = cg_dict[cg]['fraction'] delta = frac_cur - frac cg_dict[cg]['delta'] = delta c_list.append((cg, delta)) if len(c_list) == 0: if debug_correction: print('Nothing to limit, no cgroup found') # ! print('Exit from correction') if debug_sleep: print('Sleep', round(max_interval, 2)) sleep(max_interval) break c_list.sort(key=lambda i: i[1], reverse=True) if debug_correction: print('Queue:') for i in c_list: print(' ', i) delta = keep_memavail_mid - ma if delta > max_step: delta = max_step delta_b = delta * 1024 if debug_correction: print('Correction step: {}M'.format(round(delta / 1024, 1))) corr_ok = False pt0 = process_time() for cg, _ in c_list: cur = cg_dict[cg]['real_cur'] lim_min = cg_dict[cg]['lim_min'] if cur - delta_b < lim_min: continue new_max = cur - delta_b if debug_correction: print('Set memory.high for {}: {}M'.format( cg, round(new_max / 1024 / 1024, 1) )) try: write(cg_dict[cg]['high_path'], str(new_max) + '\n') corr_ok = True except (FileNotFoundError, PermissionError) as e: if debug_correction: print(e) continue break if debug_correction: if not corr_ok: print(' Nothing to limit') sleep_after_check_mem(ma) pt1 = process_time() pt = pt1 - pt0 print('Consumed {}ms CPU time during last correction'.format( round(pt * 1000))) if debug_sleep: print('Sleep', round(correction_interval, 3)) sleep(correction_interval) # 3 ОЖИДАНИЕ elif ma < keep_memavail_max: # print('# WAITING') enter_time = monotonic() if debug_mem: print('MemAvailable: {}M ({}%), SwapFree: {}M'.format( round(ma / 1024, 1), percent(ma / mem_total), round(sf / 1024, 1))) debug_cg() sleep_after_check_mem(ma) # 4 ОЖИДАНИЕ И ОТМЕНА ЛИМИТОВ else: # print('# WAITING OR CANCEL LIMITS') if debug_mem: print('MemAvailable: {}M ({}%), SwapFree: {}M'.format( round(ma / 1024, 1), percent(ma / mem_total), round(sf / 1024, 1))) debug_cg() if monotonic() - enter_time > correction_exit_time: if debug_correction: print('$CANCEL_LIMITS_IN_TIME_SEC expired; ' 'extending limits') unlim() if debug_correction: print('Exit from correction') break sleep_after_check_mem(ma) ############################################################################### start_time = monotonic() a = argv[1:] la = len(a) if la == 0: errprint('invalid input: missing CLI options') exit(1) elif la == 2: if a[0] == '-c': config = a[1] config = path.abspath(config) else: errprint('invalid input') exit(1) else: errprint('invalid input') exit(1) with open('/proc/meminfo') as f: mem_list = f.readlines() mem_list_names = [] for s in mem_list: mem_list_names.append(s.split(':')[0]) try: mem_available_index = mem_list_names.index('MemAvailable') except ValueError: print('ERROR: your Linux kernel is too old, Linux 3.14+ required') swap_total_index = mem_list_names.index('SwapTotal') swap_free_index = mem_list_names.index('SwapFree') mem_total = mt = int(mem_list[0].split(':')[1][:-4]) mt_b = mt * 1024 config_dict = dict() basic_cg_dict = dict() temp_uid_cg_dict = dict() try: with open(config) as f: for line in f: if line[0] == '$' and '=' in line: key, _, value = line.partition('=') key = key.rstrip() value = value.strip() if key in config_dict: errprint('config key {} duplication'.format(key)) exit(1) config_dict[key] = value if line[0] == '@' and '=' in line: if line.startswith('@LIMIT '): a_list = line.partition('@LIMIT ')[2:][0].split() lal = len(a_list) if lal != 3: errprint('invalid conf') exit(1) a_dict = dict() for pair in a_list: key, _, value = pair.partition('=') a_dict[key] = value cg = a_dict['CGROUP'].strip('/') if cg in basic_cg_dict: errprint('err, invalid conf, cgroup ({}) dupli' 'cation'.format(cg)) exit(1) cur_path = '/sys/fs/cgroup/{}/memory.current'.format(cg) high_path = '/sys/fs/cgroup/{}/memory.high'.format(cg) fraction = float(a_dict['RELATIVE_SHARE']) min_percent = a_dict['MIN_MEM_HIGH_PERCENT'] m_min = int(mem_total * 1024 / 100 * float(min_percent)) key = { 'cur_path': cur_path, 'high_path': high_path, 'fraction': fraction, 'lim_min': m_min} if '$UID' in cg: temp_uid_cg_dict[cg] = key else: basic_cg_dict[cg] = key else: print('invalid conf') except (PermissionError, UnicodeDecodeError, IsADirectoryError, IndexError, FileNotFoundError) as e: errprint('Invalid config: {}. Exit.'.format(e)) exit(1) if len(basic_cg_dict) == 0: print('ERROR: invalid config, no one cgroup set to limit') exit(1) union_cg_dict = dict() union_cg_dict.update(basic_cg_dict) union_cg_dict.update(temp_uid_cg_dict) frac_sum = 0 for cg in union_cg_dict: frac_sum += union_cg_dict[cg]['fraction'] for cg in union_cg_dict: union_cg_dict[cg]['fraction'] = round( union_cg_dict[cg]['fraction'] / frac_sum, 4) if '$MIN_UID' in config_dict: string = config_dict['$MIN_UID'] min_uid = string_to_int_convert_test(string) if min_uid is None or min_uid < 0: errprint('invalid $MIN_UID value') exit(1) else: errprint('missing $MIN_UID key') exit(1) if '$CANCEL_LIMITS_BELOW_SWAP_FREE_MIB' in config_dict: string = config_dict['$CANCEL_LIMITS_BELOW_SWAP_FREE_MIB'] min_swap_free_mib = string_to_float_convert_test(string) if min_swap_free_mib is None: errprint('invalid $CANCEL_LIMITS_BELOW_SWAP_FREE_MIB value') exit(1) min_swap_free = int(min_swap_free_mib * 1024) else: errprint('missing $CANCEL_LIMITS_BELOW_SWAP_FREE_MIB key') exit(1) if '$MAX_CORRECTION_STEP_MIB' in config_dict: string = config_dict['$MAX_CORRECTION_STEP_MIB'] max_step_mib = string_to_float_convert_test(string) if max_step_mib is None: errprint('invalid $MAX_CORRECTION_STEP_MIB value') exit(1) max_step = int(max_step_mib * 1024) else: errprint('missing $MAX_CORRECTION_STEP_MIB key') exit(1) if '$CANCEL_LIMITS_IN_TIME_SEC' in config_dict: string = config_dict['$CANCEL_LIMITS_IN_TIME_SEC'] correction_exit_time = string_to_float_convert_test(string) if correction_exit_time is None: errprint('invalid $CANCEL_LIMITS_IN_TIME_SEC value') exit(1) else: errprint('missing $CANCEL_LIMITS_IN_TIME_SEC key') exit(1) if '$MEM_FILL_RATE_MIB_IN_SEC' in config_dict: string = config_dict['$MEM_FILL_RATE_MIB_IN_SEC'] mem_fill_rate = string_to_float_convert_test(string) if mem_fill_rate is None: errprint('invalid $MEM_FILL_RATE_MIB_IN_SEC value') exit(1) mem_fill_rate = 1024 * mem_fill_rate else: errprint('missing $MEM_FILL_RATE_MIB_IN_SEC key') exit(1) if '$MIN_INTERVAL_SEC' in config_dict: string = config_dict['$MIN_INTERVAL_SEC'] min_interval = string_to_float_convert_test(string) if min_interval is None: errprint('invalid $MIN_INTERVAL_SEC value') exit(1) else: errprint('missing $MIN_INTERVAL_SEC key') exit(1) if '$MAX_INTERVAL_SEC' in config_dict: string = config_dict['$MAX_INTERVAL_SEC'] max_interval = string_to_float_convert_test(string) if max_interval is None: errprint('invalid $MAX_INTERVAL_SEC value') exit(1) else: errprint('missing $MAX_INTERVAL_SEC key') exit(1) if min_interval == max_interval: stable_interval = True else: stable_interval = False if '$CORRECTION_INTERVAL_SEC' in config_dict: string = config_dict['$CORRECTION_INTERVAL_SEC'] correction_interval = string_to_float_convert_test(string) if correction_interval is None: errprint('invalid $CORRECTION_INTERVAL_SEC value') exit(1) else: errprint('missing $CORRECTION_INTERVAL_SEC key') exit(1) if '$MIN_MEM_AVAILABLE' in config_dict: string = config_dict['$MIN_MEM_AVAILABLE'] if string.endswith('%'): keep_memavail_min_percent = string[:-1].rstrip() keep_memavail_min_percent = string_to_float_convert_test( keep_memavail_min_percent) if keep_memavail_min_percent is None: errprint('invalid $MIN_MEM_AVAILABLE value') exit(1) keep_memavail_min = int(mem_total / 100 * keep_memavail_min_percent) elif string.endswith('M'): keep_memavail_min_mib = string[:-1].rstrip() keep_memavail_min_mib = string_to_float_convert_test( keep_memavail_min_mib) if keep_memavail_min_mib is None: errprint('invalid $MIN_MEM_AVAILABLE value') exit(1) keep_memavail_min = int(keep_memavail_min_mib * 1024) else: errprint('invalid $MIN_MEM_AVAILABLE value') exit(1) else: errprint('missing $MIN_MEM_AVAILABLE key') exit(1) if '$TARGET_MEM_AVAILABLE' in config_dict: string = config_dict['$TARGET_MEM_AVAILABLE'] if string.endswith('%'): keep_memavail_mid_percent = string[:-1].rstrip() keep_memavail_mid_percent = string_to_float_convert_test( keep_memavail_mid_percent) if keep_memavail_mid_percent is None: errprint('invalid $TARGET_MEM_AVAILABLE value') exit(1) keep_memavail_mid = int(mem_total / 100 * keep_memavail_mid_percent) elif string.endswith('M'): keep_memavail_mid_mib = string[:-1].rstrip() keep_memavail_mid_mib = string_to_float_convert_test( keep_memavail_mid_mib) if keep_memavail_mid_mib is None: errprint('invalid $TARGET_MEM_AVAILABLE value') exit(1) keep_memavail_mid = int(keep_memavail_mid_mib * 1024) else: errprint('invalid $TARGET_MEM_AVAILABLE value') exit(1) else: errprint('missing $TARGET_MEM_AVAILABLE key') exit(1) if '$CANCEL_LIMITS_ABOVE_MEM_AVAILABLE' in config_dict: string = config_dict['$CANCEL_LIMITS_ABOVE_MEM_AVAILABLE'] if string.endswith('%'): keep_memavail_max_percent = string[:-1].rstrip() keep_memavail_max_percent = string_to_float_convert_test( keep_memavail_max_percent) if keep_memavail_max_percent is None: errprint('invalid $CANCEL_LIMITS_ABOVE_MEM_AVAILABLE value') exit(1) keep_memavail_max = int(mem_total / 100 * keep_memavail_max_percent) elif string.endswith('M'): keep_memavail_max_mib = string[:-1].rstrip() keep_memavail_max_mib = string_to_float_convert_test( keep_memavail_max_mib) if keep_memavail_max_mib is None: errprint('invalid $CANCEL_LIMITS_ABOVE_MEM_AVAILABLE value') exit(1) keep_memavail_max = int(keep_memavail_max_mib * 1024) else: errprint('invalid $CANCEL_LIMITS_ABOVE_MEM_AVAILABLE value') exit(1) else: errprint('missing $CANCEL_LIMITS_ABOVE_MEM_AVAILABLE key') exit(1) debug_correction = False debug_mem = False debug_sleep = False if '$VERBOSITY' in config_dict: verbosity = config_dict['$VERBOSITY'] if verbosity == '0': pass elif verbosity == '1': debug_correction = True elif verbosity == '2': debug_correction = True debug_mem = True elif verbosity == '3': debug_correction = True debug_mem = True debug_sleep = True else: errprint('invalid $VERBOSITY value') exit(1) else: errprint('missing $VERBOSITY key') exit(1) temp_uid_cg_set = set(temp_uid_cg_dict) if len(temp_uid_cg_set) > 0: check_uid = True if debug_correction: print('keep_memavail_min:', keep_memavail_min) print('keep_memavail_mid:', keep_memavail_mid) print('keep_memavail_max:', keep_memavail_max) print('max_step:', max_step) print('min_swap_free:', min_swap_free) print('correction_exit_time:', correction_exit_time) print('mem_fill_rate:', mem_fill_rate) print('min_interval:', min_interval) print('max_interval:', max_interval) print('verbosity:', verbosity) for cg in basic_cg_dict: print('cgroup: {} {}'.format(cg, '{')) x = basic_cg_dict[cg] for i in x: print(' {}: {}'.format(i, x[i])) print('}') if check_uid: for cg in temp_uid_cg_dict: print('[template] cgroup: {} {}'.format(cg, '{')) x = temp_uid_cg_dict[cg] for i in x: print(' {}: {}'.format(i, x[i])) print('}') cg_dict = basic_cg_dict d = '/sys/fs/cgroup/user.slice/' uid_d = dict() uid_d[0] = None ############################################################################### check_controllers('user.slice') check_controllers('system.slice') check_write('user.slice') check_write('system.slice') mlockall() fd = dict() fd['mi'] = open('/proc/meminfo', 'rb', buffering=0) sig_dict = { SIGKILL: 'SIGKILL', SIGINT: 'SIGINT', SIGQUIT: 'SIGQUIT', SIGHUP: 'SIGHUP', SIGTERM: 'SIGTERM' } sig_list = [SIGTERM, SIGINT, SIGQUIT, SIGHUP] for i in sig_list: signal(i, signal_handler) ########################################################################## k0 = process_time() cg_dict = update_cg_dict(cg_dict) k1 = process_time() k = (k1 - k0) * 1000 print(k, 'ms - UPD UID') print(cg_dict) for cg in cg_dict: try: if debug_correction: print('Set memory.high for {}: max'.format(cg)) write(cg_dict[cg]['high_path'], 'max\n') except (FileNotFoundError, PermissionError) as e: print(e) continue swappiness = get_swappiness() if debug_correction: print('vm.swappiness:', swappiness) if swappiness == 0: print('WARNING: vm.swappiness=0') print('Monitoring has started!') while True: ma, st, sf = check_mem_and_swap() if debug_mem: print('MemAvailable: {}M ({}%), SwapFree: {}M'.format( round(ma / 1024, 1), percent(ma / mem_total), round(sf / 1024, 1))) debug_cg() if sf < min_swap_free: sleep(max_interval) continue if ma < keep_memavail_min: correction(cg_dict) else: sleep_after_check_mem(ma)
from django.db import models from django.db.models.signals import post_delete from applications.libro.models import Libro from .managers import PrestamoManager class Lector(models.Model): nombre = models.CharField(max_length=50) apellidos = models.CharField(max_length=50) nacionalidad = models.CharField(max_length=50) edad = models.PositiveIntegerField(default=0) def __str__(self): return self.nombre + ' ' + self.apellidos class Prestamo(models.Model): libro = models.ForeignKey( Libro, on_delete=models.CASCADE, related_name='libro_prestamo') lector = models.ForeignKey(Lector, on_delete=models.CASCADE) prestamo = models.DateField('fecha_prestamo') devolucion = models.DateField( 'fecha_devolucion', blank=True, null=True) devuelto = models.BooleanField(default=False) objects = PrestamoManager() def save(self, *args, **kwargs): self.libro.stock = self.libro.stock - 1 self.libro.save() super(Prestamo, self).save(*args, **kwargs) def __str__(self): return self.libro.titulo def update_libro_stock(sender, instance, **kwargs): # actualizando el stok si se elimina un prestamo instance.libro.stock = instance.libro.stock + 1 instance.libro.save() post_delete.connect(update_libro_stock, sender=Prestamo)
default_app_config = 'namelist.apps.NamelistConfig'
class TMI: message_limit = 90 whispers_message_limit_second = 2 whispers_message_limit_minute = 90 @staticmethod def promote_to_verified(): TMI.message_limit = 7000 TMI.whispers_message_limit_second = 15 TMI.whispers_message_limit_minute = 1150
from django.conf.urls import url, include from django.urls.conf import path from rest_framework.routers import DefaultRouter from .views import AdditionalMaterialSet, StructuralUnitSet, UserStructuralUnitSet, CompetencesSet, \ ChangeSemesterInEvaluationsCorrect router = DefaultRouter() router.register(r'api/general_ch/additional_material_in_topic_of_rpd', AdditionalMaterialSet, basename='additional_material_in_topic_of_rpd') router.register(r'api/structural_unit_set', StructuralUnitSet, basename='structural_unit') router.register(r'api/user_structural_unit_set', UserStructuralUnitSet, basename='user_structural_unit_set') router.register(r'api/competences_set', CompetencesSet, basename='competences_set') urlpatterns = [ url(r'^', include(router.urls)), path('api/workprogram/make_evaluation_tools_correct', ChangeSemesterInEvaluationsCorrect), ]
import re import numpy as np import itertools as it from random import random from sympy import Symbol, poly class FitData(dict): def __init__(self, fname, path="output/"): self.__data = {} self.__name = fname self.__file = path + fname.replace(' ', '_') def __setitem__(self, key, value): if key is not "FitMatrix": key = str(key) value = str(value) try: file = open(self.__file, "r") file.close() except FileNotFoundError: print("Create file: " + self.__file) file = open(self.__file, "w") file.close() if key in self.keys(): keyexists = True else: keyexists = False if not keyexists: with open(self.__file, "a") as file: file.write(key + "=" + value + "\n") else: linenumber = 9999 with open(self.__file, "r") as file: data = file.readlines() for num, line in enumerate(data, 1): if line.startswith(key): linenumber = num break data[linenumber-1] = key + "=" + value + "\n" with open(self.__file, "w") as file: file.writelines(data) def __getitem__(self, item): with open(self.__file, "r") as file: for line in file: if line.startswith(item): return line.split('=')[1].strip("\n") raise KeyError(str(item) + " is not a key in the dictionary") def __str__(self): return str(self.getDict()) def keys(self): with open(self.__file, "r") as file: lines = file.readlines() keys = map(lambda x: x.split('=')[0], lines) return list(keys) def getDict(self): for key in self.keys(): self.__data.update({key : self.__getitem__(key)}) return self.__data def items(self): return self.getDict().items() def getCoeffs(self, pat = r'c\d{4}'): coeffs = [] regex = re.compile(pat) for key in self.keys(): if regex.search(key): coeffs.append(key) return coeffs def getFitResult(self, clean=True, pat=r'\w\d{1,4}'): if clean: matrixkey = "FitMatrixClean" else: matrixkey = "FitMatrix" mat = list(self.__getitem__(matrixkey)) mat = ''.join(mat) d = self.getDict() # for key, val in d.items(): # print(str(key) + " : " + str(val)) def fun(xx): # print(xx.group(0)) return d[xx.group(0)] mat = re.sub(pat, fun, mat) mat = mat.split('],[') for i, line in enumerate(mat): mat[i] = line.replace('[[','').replace(']]','') mat[i] = mat[i].split(',') for i, row in enumerate(mat): for j, col in enumerate(row): mat[i][j] = eval(mat[i][j]) mat = np.asarray(mat) return mat def getBaseMatrix(self): coeffs = list(self.keys()) notcoeffs = ["FitMatrix", "FitMatrixClean"] coeffs = [elem for elem in coeffs if elem not in notcoeffs] coeffgroups = [(coeffs[0][0], [coeffs[0]])] for elem in coeffs: foolist = [elem[0] == group[0] for group in coeffgroups] if not any(foolist): coeffgroups.append((elem[0], [elem])) else: for group in coeffgroups: if elem[0] == group[0] and elem not in group[1]: group[1].append(elem) reslist = list() for group in coeffgroups: p1 = float(self.__getitem__(str(group[1][0]))) p2 = float(self.__getitem__(str(group[1][1]))) p3 = float(self.__getitem__(str(group[1][2]))) p4 = float(self.__getitem__(str(group[1][3]))) p5 = float(self.__getitem__(str(group[1][4]))) mat = np.array([ [p1, p2, p3, 0, 0, 0], [p2, p1, p3, 0, 0, 0], [p3, p3, p4, 0, 0, 0], [0, 0, 0, 2 * p5, 0, 0], [0, 0, 0, 0, 2 * p5, 0], [0, 0, 0, 0, 0, p1 - p2] ]) reslist.append((group[1], mat)) return reslist def getName(self): return self.__name
import socket import random import struct from helpers.file_io_helper import save_snapshot_channel from helpers.file_io_helper import save_snapshot_state from helpers.trading_helper import unpack_list_data from helpers.trading_helper import update_logical_timestamp from helpers.trading_helper import update_vector_timestamp import time def trader_process(port_mapping, n_processes, id, asset, num_snapshots): print("port mapping: ", port_mapping) rand = random.Random() rand.seed(id) sending_probability = rand.uniform(0.4, 0.8) sockets = [] backlog = 10 types = { 'send_money': 0, 'send_widget': 1, 'marker': 2, } inv_types = {v:k for k, v in types.items()} logical_timestamp = 0 vector_timestamp = [0] * n_processes marker_received = [False] * num_snapshots channels = [[{'data':[], 'is_recording': False} for i in range(n_processes)] for j in range(num_snapshots)] # send a message to process dest_pid def send_int_list(dest_pid, type, int_list): try: sock = sockets[dest_pid] message = struct.pack('!i', type) + struct.pack('!i', len(int_list)) for item in int_list: message = message + struct.pack('!i', item) sock.sendall(message) except ConnectionAbortedError: pass except ConnectionResetError: pass # initialize sockets for i in range(id): server_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # print("port_mapping: %s", port_mapping[(i, id)]) server_sock.bind(('localhost', port_mapping[(i, id)][1])) server_sock.listen(backlog) client_sock, (host, client_port) = server_sock.accept() sockets.append(client_sock) sockets.append(None) time.sleep(0.5) for i in range(id + 1, n_processes): client_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) addr = 'localhost' (source_port, destination_port) = port_mapping[(id, i)] print("client: ", addr, source_port, destination_port) client_sock.bind((addr, source_port)) client_sock.connect((addr, destination_port)) sockets.append(client_sock) # set timeouts for sockets for i in range(n_processes): if i == id: continue sockets[i].settimeout(0.01) # main logic loop counter = 0 snapshot_id = 0 num_channels_recorded = 0 while True: # receiving invariants for i in range(n_processes): if i == id: continue try: data = sockets[i].recv(4) if len(data) == 0: continue type = struct.unpack('!i', data)[0] if inv_types[type] == 'send_money': num_items = struct.unpack('!i', sockets[i].recv(4))[0] int_list = unpack_list_data(sockets[i].recv(num_items * 4)) money_received = int_list[0] logical_timestamp_received = int_list[1] vector_timestamp_received = int_list[2:] # check if we are recording incoming channels, and record the contents of incoming channels for j in range(len(channels)): if channels[j][i]['is_recording']: channels[j][i]['data'].append([type] + int_list) # update timestamps logical_timestamp = update_logical_timestamp(logical_timestamp, logical_timestamp_received) vector_timestamp[id] = vector_timestamp[id] + 1 vector_timestamp = update_vector_timestamp(vector_timestamp, vector_timestamp_received) # update money asset[1] = asset[1] + money_received elif inv_types[type] == 'send_widget': num_items = struct.unpack('!i', sockets[i].recv(4))[0] int_list = unpack_list_data(sockets[i].recv(num_items * 4)) widgets_received = int_list[0] logical_timestamp_received = int_list[1] vector_timestamp_received = int_list[2:] # check if we are recording incoming channels, and record the contents of incoming channels for j in range(len(channels)): if channels[j][i]['is_recording']: channels[j][i]['data'].append([type] + int_list) # update timestamps logical_timestamp = update_logical_timestamp(logical_timestamp, logical_timestamp_received) vector_timestamp[id] = vector_timestamp[id] + 1 vector_timestamp = update_vector_timestamp(vector_timestamp, vector_timestamp_received) # update widgets asset[0] = asset[0] + widgets_received elif inv_types[type] == 'marker': num_items = struct.unpack('!i', sockets[i].recv(4))[0] snapshot_id_received = unpack_list_data(sockets[i].recv(num_items * 4))[0] if marker_received[snapshot_id_received] == False: marker_received[snapshot_id_received] = True save_snapshot_state(id, snapshot_id_received, (logical_timestamp, vector_timestamp, asset)) for j in range(n_processes): if j != id: channels[snapshot_id_received][j]['is_recording'] = True send_int_list(j, types['marker'], [snapshot_id_received]) else: if channels[snapshot_id_received][i]['is_recording']: channels[snapshot_id_received][i]['is_recording'] = False save_snapshot_channel(id, snapshot_id_received, channels[snapshot_id_received][i], i) if snapshot_id_received == num_snapshots - 1: num_channels_recorded = num_channels_recorded + 1 if (id == 0 and num_channels_recorded == n_processes - 1) or (id != 0 and num_channels_recorded == n_processes - 2): return else: print("Unknown type error") raise Exception("Unknown type error") except socket.timeout: pass except BlockingIOError: pass except ConnectionAbortedError: pass except ConnectionResetError: pass # sending invariants buying_attempt = rand.uniform(0, 1) if buying_attempt <= sending_probability: seller = rand.randint(0, n_processes - 2) if seller >= id: seller = seller + 1 if rand.randint(0, 1) == 0: # send money current_money = asset[1] if current_money <= 0: pass else: buying_amount = rand.randint(1, int(current_money/3)+1) asset[1] = asset[1] - buying_amount logical_timestamp = logical_timestamp + 1 vector_timestamp[id] = vector_timestamp[id] + 1 send_int_list(seller, types['send_money'], [buying_amount, logical_timestamp] + vector_timestamp) else: # send widget current_widget = asset[0] if current_widget <= 0: pass else: buying_amount = rand.randint(1, int(current_widget/3)+1) asset[0] = asset[0] - buying_amount logical_timestamp = logical_timestamp + 1 vector_timestamp[id] = vector_timestamp[id] + 1 send_int_list(seller, types['send_widget'], [buying_amount, logical_timestamp] + vector_timestamp) if id == 0 and counter == 49: marker_received[snapshot_id] = True save_snapshot_state(id, snapshot_id, (logical_timestamp, vector_timestamp, asset)) for i in range(1, n_processes): channels[snapshot_id][i]['is_recording'] = True send_int_list(i, types['marker'], [snapshot_id]) snapshot_id = snapshot_id + 1 counter = (counter + 1) % 50
from rest_framework import serializers from resume.apps.pages.models import Page class PageSerializer(serializers.ModelSerializer): class Meta: model = Page fields = ('title', 'content')
import datetime from pyspark.sql import SparkSession from pyspark.sql.functions import col, lit, avg, date_format,concat from pyspark.sql.types import DoubleType, TimestampType, DateType sparkSession = SparkSession.builder \ .config("spark.driver.maxResultSize", "2000m") \ .config("spark.sql.shuffle.partitions", 4) \ .getOrCreate() delta_path="hdfs://192.168.1.10:9820/delta/stream/search_response" pg_data_url = "jdbc:postgresql://192.168.10.10:5432/dw" pg_data_user = "report" pg_data_password = "789456123" pg_driver = 'org.postgresql.Driver' result_dataset = "flight_search_count" def flight_search_count(): search_waiting_time = sparkSession.read.format("delta").load(delta_path) \ .select(col("searched_at").cast(DateType()).alias("date"), concat(col("origin"),'-',col("destination")).alias("route"), col("channel"), col("departure_date"))\ .groupBy('date','route','channel')\ .count() search_waiting_time.write.format("jdbc") \ .option("driver", pg_driver) \ .option("url", pg_data_url) \ .option("user", pg_data_user) \ .option("password", pg_data_password) \ .option("dbtable", result_dataset) \ .option("batchsize", 50000) \ .option("isolationLevel", "NONE") \ .mode("overwrite") \ .save() def main(): flight_search_count() if __name__ == '__main__': t1 = datetime.datetime.now() print('started at :', t1) main() t2 = datetime.datetime.now() dist = t2 - t1 print('finished at:', t2, ' | elapsed time (s):', dist.seconds)
# ============LICENSE_START======================================================= # Copyright (c) 2018-2022 AT&T Intellectual Property. All rights reserved. # ================================================================================ # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============LICENSE_END========================================================= """ module for snmpv3 support - loads various USM values for engineID/users """ __docformat__ = "restructuredtext" import json import os import sys import string import time import traceback import collections import pprint from pysnmp.entity import engine, config from pysnmp.carrier.asyncore.dgram import udp from pysnmp.entity.rfc3413 import ntfrcv from pysnmp.proto.api import v2c import trapd_settings as tds from trapd_exit import cleanup_and_exit from trapd_io import stdout_logger, ecomp_logger prog_name = os.path.basename(__file__) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # module: load_snmpv3_credentials # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def load_snmpv3_credentials(_py_config, _snmp_engine, _cbs_config): """ Add V3 credentials from CBS config to receiver config so traps will be recieved from specified engines/users :Parameters: _config: snmp entity config :Exceptions: """ # add V3 credentials from CBS json structure to running config try: v3_users = _cbs_config["snmpv3_config"]["usm_users"] except Exception as e: msg = "No V3 users defined" ecomp_logger(tds.LOG_TYPE_DEBUG, tds.SEV_INFO, tds.CODE_GENERAL, msg) return _py_config, _snmp_engine for v3_user in v3_users: # engineId try: ctx_engine_id = v3_user["engineId"] except Exception as e: ctx_engine_id = None # user try: userName = v3_user["user"] except Exception as e: userName = None # authorization # find options at -> site-packages/pysnmp/entity/config.py # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # usmHMACMD5AuthProtocol try: authKey = v3_user["usmHMACMD5AuthProtocol"] authProtocol = config.usmHMACMD5AuthProtocol except Exception as e: try: authKey = v3_user["usmHMACSHAAuthProtocol"] authProtocol = config.usmHMACSHAAuthProtocol except Exception as e: try: authKey = v3_user["usmHMAC128SHA224AuthProtocol"] authProtocol = config.usmHMAC128SHA224AuthProtocol except Exception as e: try: authKey = v3_user["usmHMAC192SHA256AuthProtocol"] authProtocol = config.usmHMAC192SHA256AuthProtocol except Exception as e: try: authKey = v3_user["usmHMAC256SHA384AuthProtocol"] authProtocol = config.usmHMAC256SHA384AuthProtocol except Exception as e: try: authKey = v3_user["usmHMAC384SHA512AuthProtocol"] authProtocol = config.usmHMAC384SHA512AuthProtocol except Exception as e: try: authKey = v3_user["usmNoAuthProtocol"] authProtocol = config.usmNoAuthProtocol except Exception as e: # FMDL: default to NoAuth, or error/skip entry? msg = "No auth specified for user %s ?" % (userName) authKey = None authProtocol = config.usmNoAuthProtocol ecomp_logger(tds.LOG_TYPE_DEBUG, tds.SEV_INFO, tds.CODE_GENERAL, msg) # privacy # find options at -> site-packages/pysnmp/entity/config.py # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # usm3DESEDEPriv try: privKey = v3_user["usm3DESEDEPrivProtocol"] privProtocol = config.usm3DESEDEPrivProtocol except Exception as e: # usmAesCfb128Protocol try: privKey = v3_user["usmAesCfb128Protocol"] privProtocol = config.usmAesCfb128Protocol except Exception as e: # usmAesCfb192Protocol try: privKey = v3_user["usmAesCfb192Protocol"] privProtocol = config.usmAesCfb192Protocol except Exception as e: # usmAesBlumenthalCfb192Protocol try: privKey = v3_user["usmAesBlumenthalCfb192Protocol"] privProtocol = config.usmAesBlumenthalCfb192Protocol except Exception as e: # usmAesCfb256Protocol try: privKey = v3_user["usmAesCfb256Protocol"] privProtocol = config.usmAesCfb256Protocol except Exception as e: # usmAesBlumenthalCfb256Protocol try: privKey = v3_user["usmAesBlumenthalCfb256Protocol"] privProtocol = config.usmAesBlumenthalCfb256Protocol except Exception as e: # usmDESPrivProtocol try: privKey = v3_user["usmDESPrivProtocol"] privProtocol = config.usmDESPrivProtocol except Exception as e: # usmNoPrivProtocol try: privKey = v3_user["usmNoPrivProtocol"] privProtocol = config.usmNoPrivProtocol except Exception as e: # FMDL: default to NoPriv, or error/skip entry? msg = "No priv specified for user %s" % (userName) ecomp_logger(tds.LOG_TYPE_DEBUG, tds.SEV_INFO, tds.CODE_GENERAL, msg) privKey = None privProtocol = config.usmNoPrivProtocol # break # msg = ("userName: %s authKey: %s authProtocol: %s privKey: %s privProtocol: %s engineId: %s % (userName, authKey, authProtocol, privKey, privProtocol, ctx_engine_id)) msg = "userName: %s authKey: **** authProtocol: %s privKey: **** privProtocol: %s engineId: ****" % ( userName, authProtocol, privProtocol, ) ecomp_logger(tds.LOG_TYPE_DEBUG, tds.SEV_INFO, tds.CODE_GENERAL, msg) # user: usr-md5-des, auth: MD5, priv DES, contextEngineId: 8000000001020304 # this USM entry is used for TRAP receiving purposes # help(addV3User) returns -> # addV3User(snmpEngine, userName, authProtocol=(1, 3, 6, 1, 6, 3, 10, 1, 1, 1), authKey=None, privProtocol=(1, 3, 6, 1, 6, 3, 10, 1, 2, 1), priv Key=None, securityEngineId=None, securityName=None, contextEngineId=None) if ctx_engine_id is not None: config.addV3User( _snmp_engine, userName, authProtocol, authKey, privProtocol, privKey, contextEngineId=v2c.OctetString(hexValue=ctx_engine_id), ) else: config.addV3User(_snmp_engine, userName, authProtocol, authKey, privProtocol, privKey) return _py_config, _snmp_engine
from django.contrib import admin from sherlock.models import Profile, About, Relative, Image admin.site.register([Profile, About, Relative, Image])
from main import Handler class Information(Handler): def get(self): if not self.user: self.redirect('/login') else: error = 'You have reached this page at an error' link_src = '/' link_name = 'Home' self.render( 'information.html', error=error, link_src=link_src, link_name=link_name )
from django.contrib import admin from .models import MostRecent,Feedback admin.site.register(MostRecent) admin.site.register(Feedback)
import pandas as pd import numpy as np from lorenz_gan.submodels import SubModelGAN, AR1RandomUpdater from sklearn.neighbors import KernelDensity from sklearn.mixture import GaussianMixture from glob import glob from os.path import join import tensorflow as tf import tensorflow.compat.v1.keras.backend as K import gc def load_test_data(filename, input_columns=("X_t", "Ux_t"), output_columns=("Ux_t+1",), meta_columns=("x_index", "time", "step")): all_columns = np.concatenate([list(meta_columns), list(input_columns), list(output_columns)], axis=0) data = pd.read_csv(filename, usecols=all_columns) return data def hellinger_bad(a, b): """ Calculate hellinger distance on 2 discrete PDFs a and b. Args: a: b: Returns: """ return np.sqrt(np.sum((np.sqrt(a) - np.sqrt(b)) ** 2)) / np.sqrt(2) def hellinger(x, pdf_p, pdf_q): pdf_distances = (np.sqrt(pdf_p) - np.sqrt(pdf_q)) ** 2 return np.trapz(pdf_distances, x) / 2 def offline_gan_predictions(gan_index, data, gan_path, seed=12421, batch_size=1024): rs = np.random.RandomState(seed) gen_files = sorted(glob(join(gan_path, "gan_generator_{0:04d}_*.h5".format(gan_index)))) gen_filenames = [gf.split("/")[-1] for gf in gen_files] if gan_index < 300: rand_size = 1 elif gan_index >= 700 and gan_index < 800: rand_size = 35 elif gan_index >= 800: rand_size = 34 else: rand_size = 17 random_values = rs.normal(size=(data.shape[0], rand_size)) all_zeros = np.zeros((data.shape[0], rand_size), dtype=np.float32) #corr_noise = np.zeros((data.shape[0], rand_size), dtype=np.float32) gen_preds = dict() for pred_type in ["det", "rand"]: #gen_preds[pred_type] = pd.DataFrame(0.0, index=data.index, columns=gen_filenames) gen_preds[pred_type] = np.zeros((data.shape[0], len(gen_filenames)), dtype="float32") gen_noise = pd.DataFrame(0.0, dtype=np.float32, index=gen_filenames, columns=["corr", "noise_sd"]) for g, gen_file in enumerate(gen_files): gen_f = gen_filenames[g] gen_preds["det"][:, g], gen_preds["rand"][:, g], gen_noise.loc[gen_f] = single_gan_predictions(gen_file, data, all_zeros, random_values, seed, batch_size) gc.collect() gen_preds_out = {} del all_zeros del random_values gc.collect() for k in list(gen_preds.keys()): gen_preds_out[k] = pd.DataFrame(gen_preds[k], index=data.index, columns=gen_filenames) del gen_preds[k] gc.collect() return gen_preds_out, gen_noise def single_gan_predictions(gen_file, data, all_zeros, random_values, seed, batch_size): sess_config = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1, gpu_options=tf.GPUOptions(allow_growth=True)) sess = tf.compat.v1.Session(config=sess_config) K.set_session(sess) tf.set_random_seed(seed) print("Predicting " + gen_file) gen_model = SubModelGAN(gen_file) if gen_model.x_scaling_values.shape[0] == 1: input_cols = ["X_t"] else: input_cols = ["X_t", "Ux_t"] print(gen_file, "Det preds") det_preds = gen_model.predict_batch(data[input_cols], all_zeros, batch_size=batch_size, stochastic=0) print(gen_file, "Rand preds") rand_preds = gen_model.predict_batch(data[input_cols], random_values, batch_size=batch_size, stochastic=1) print(gen_file, "Random updater") ar1 = AR1RandomUpdater() x_indices = data["x_index"] == 0 ar1.fit(data.loc[x_indices, "Ux_t+1"].values - det_preds[x_indices].ravel()) print(gen_file, ar1.corr, ar1.noise_sd) #gen_noise.loc[gen_filenames[g]] = [ar1.corr, ar1.noise_sd] return det_preds, rand_preds, np.array([ar1.corr, ar1.noise_sd]) def calc_pdf_kde(x, x_bins, bandwidth=0.5, algorithm="kd_tree", leaf_size=100): kde = KernelDensity(bandwidth=bandwidth, algorithm=algorithm, leaf_size=leaf_size) kde.fit(x.reshape(-1, 1)) pdf = np.exp(kde.score_samples(x_bins.reshape(-1, 1))) return pdf def calc_pdf_hist(x, x_bins): return np.histogram(x, x_bins, density=True)[0] def calc_pdf_gmm(x, x_bins, n_components=4): gmm = GaussianMixture(n_components=n_components) gmm.fit(x.reshape(-1, 1)) pdf = np.exp(gmm.score_samples(x_bins.reshape(-1, 1))) return pdf def time_correlations(data, time_lags): data_series = pd.Series(data) gen_time_corr = np.zeros(time_lags.size, dtype=np.float32) for t, time_lag in enumerate(time_lags): gen_time_corr[t] = data_series.autocorr(lag=time_lag) return gen_time_corr
from collections import defaultdict from math import asin, cos, radians, sin, sqrt from random import sample import csv from operator import itemgetter import matplotlib as mpl import matplotlib.pyplot as plt class BaseAlgorithm(): #def __init__(self): # self.update_data() def update_data(self): filename = "data3.csv" self.cities = [] #self.size = len(self.cities) self.coords = [] with open(filename, 'r') as csvfile: csvreader = csv.reader(csvfile) for row in csvreader: self.coords.append([float(row[0]),float(row[1])]) self.cities = range(0,len(self.coords)) self.size = len(self.cities) self.distances = self.compute_distances() def haversine_distance(self, cityA, cityB): coord1 = self.coords[cityA] coord2= self.coords[cityB] a = (coord1[0]-coord2[0])**2+(coord1[1]-coord2[1])**2 c = sqrt(a) return c def compute_distances(self): self.distances = defaultdict(dict) for cityA in self.cities: for cityB in self.cities: if cityB not in self.distances[cityA]: distance = self.haversine_distance(cityA, cityB) self.distances[cityA][cityB] = distance self.distances[cityB][cityA] = distance return self.distances # add node k between node i and node j def add(self, i, j, k): return self.distances[i][k] + self.distances[k][j] - self.distances[i][j] class TourConstructionHeuristics(BaseAlgorithm): # find the neighbor k closest to the tour, i.e such that # cik + ckj - cij is minimized with (i, j) an edge of the tour # add k between the edge (i, j), resulting in a tour with subtour (i, k, j) # used for the cheapest insertion algorithm def __init__(self): self.update_data() #print self.cities def closest_neighbor(self, tour, node, in_tour=False, farthest=False): neighbors = self.distances[node] #print node #print neighbors.items() #print tour current_dist = [(c, d) for c, d in neighbors.items() if (c in tour)] return sorted(current_dist, key=itemgetter(1))[-farthest] def add_closest_to_tour(self, tours,tourslength,unass,veh): best_dist, new_tour = float('inf'), None tour_index = 0 city1 = 0 vehi=vehindex=None for city in unass: #print city for tour in tours: #print tour for index in range(len(tour) - 1): dist = self.add(tour[index], tour[index + 1], city) #print dist if dist < best_dist and (tourslength[tours.index(tour)]+dist)<150: best_dist = dist new_tour = tour[:index + 1] + [city] + tour[index + 1:] tour_index = tours.index(tour) city1 = city for p in range(0,3): if tours[tour_index] in veh[p]: vehi=p vehindex = veh[p].index(tours[tour_index]) #print city1 return best_dist, new_tour, tour_index,city1,vehi,vehindex def nearest_insertion(self, farthest=True): a = len(self.coords)-1 tour = [0,a] tours = [tour] tourslength = [0] cantass=[[]] unass = self.cities[1:a] #print unass while len(unass) != 0: best, best_len = None, 0 if farthest else float('inf') # (selection step) given a sub-tour,we find node r not in the # sub-tour closest to any node j in the sub-tour, # i.e. with minimal c_rj for tour in tours: for city in unass: print cantass print tour if city in cantass[tours.index(tour)]: continue # we consider only the distances to nodes already in the tour print tour,city _, length = self.closest_neighbor(tour, city, True) if (length > best_len if farthest else length < best_len): city1, best_len,tour1 = city, length,tour #print city1 # (insertion step) we find the arc (i, j) in the sub-tour which # minimizes cir + crj - cij, and we insert r between i and j best_dist, new_tour = float('inf'), None for index in range(len(tour1) - 1): dist = self.add(tour1[index], tour1[index + 1], city1) #print dist if dist < best_dist and (tourslength[tours.index(tour1)]+dist)<150: best_dist = dist new_tour = tour1[:index + 1] + [city1] + tour1[index + 1:] tour_index = tours.index(tour1) if best_dist == float('inf'): cantass[tours.index(tour1)].append(city1) if tour_index is (len(tours)-1): tour2=[0,a] tours.append(tour2) cantass.append([]) tourslength.append(0) #print tours if city1 != 0 and new_tour != None: unass.remove(city1) print unass tourslength[tour_index] += best_dist tours[tour_index]=new_tour #print unass #print self.cities #return tours,tourslength def cheapest_insertion(self): denum=5 v=0 a= len(self.coords)-denum #tour = [0,a] tours = [] tourslength = [] for i in range(0,denum): for j in range(0,denum): if ([i,j]in tours or [j,i]in tours): continue else: tours.append([i,j]) tourslength.append(self.distances[i][j]) # we find the closest node R to the first node unass = self.cities[denum:a] veh = [[],[],[]] while len(unass) != 0: length, tour, index, city1,vehi,vehindex = self.add_closest_to_tour(tours,tourslength,unass,veh) #print tour #print veh #print vehi #print vehindex if vehi!=None: veh[vehi][vehindex]=tour if city1 != 0 and tour != 0: unass.remove(city1) tourslength[index] += length tours[index]=tour if len(tours[index]) is 3: v+=1 if v<3: tour1=[tour[0],tour[2]] tours.append(tour1) tourslength.append(self.distances[tour[0]][tour[2]]) veh[v-1].append(tour) #print veh if v==3: veh[v-1].append(tour) #print veh #print veh[0] #print veh[0][0] a=tourslength #print tours i=0 while i<len(tours): tour2=tours[i] #print tour2 i+=1 if (len(tour2)==2): #print "S" tourslength.remove(a[tours.index(tour2)]) tours.remove(tour2) i-=1 #print "Y" e=tours #print e for l in range(0,3): tour3=tours[l] b=tour3[-1] #print "w" for i in range(0,denum): tours.append([b,i]) tourslength.append(self.distances[b][i]) #print"x" if v>3: c=tour[0] d=tour[-1] for i in range(0,denum): if [c,i] in tours: tourslength.remove(tourslength[tours.index([c,i])]) tours.remove([c,i]) tours.append([d,i]) tourslength.append(self.distances[d][i]) for i in range(0,3): #print veh[i][-1][-1] if veh[i][-1][-1]==tour[0]: veh[i].append(tour) break #print tours #print tours vehlength=[0,0,0] for i in range(0,3): for p in range(0,len(veh[i])): #print veh[i],veh[i][p],tours.index(veh[i][p]) #print tourslength[tours.index(veh[i][p])] vehlength[i]+=tourslength[tours.index(veh[i][p])] j=0 while(j<len(tours)): if(len(tours[j]))==2: tours.remove(tours[j]) tourslength.remove(tourslength[j]) else: j+=1 return tours, tourslength,veh,vehlength """def samedis(self,tours,tourslength): c=0.5 d=0.5 for tour1 in tours: i=1 while (i<len(tour1)-1): #print(len(tour1)) #print("!@#!") best_dist = self.add(tour1[i-1], tour1[i+1], tour1[i]) #print("!!!!") best_ratio = c*best_dist + d*(tourslength[tours.index(tour1)]) for tour in tours: #print("******") if tour != tour1 and len(tour)!=2 : for index in range(len(tour) - 1): dist = self.add(tour[index], tour[index + 1], tour1[i]) #print dist ratio = c*dist + d*(tourslength[tours.index(tour)]+tour1[i]) if ratio < best_ratio and (tourslength[tours.index(tour)]+dist)<150: best_dist = dist new_tour = tour[:index + 1] + [tour1[i]] + tour[index + 1:] tour_index = tours.index(tour) best_ratio = c*best_dist + d*(tourslength[tours.index(tour)]) if best_ratio != c*best_dist + d*(tourslength[tours.index(tour1)]): tours[tour_index]=new_tour tourslength[tour_index]+= best_dist tourslength[tours.index(tour1)]-=self.add(tour1[i-1], tour1[i + 1], tour1[i]) tour1.remove(tour1[i]) else: i+=1 #print self.distances #print(i) return tours, tourslength """ def samedis(self,tours,tourslength,veh,vehlength): c=0.5 d=0.5 for tour1 in tours: if len(tour1)!=2: i=1 while (i<len(tour1)-1): #print(len(tour1)) #print("!@#!") for j in range(0,3): if tour1 in veh[j]: o=j p=veh[j].index(tour1) b=vehlength[j] #print veh #print b,"s" best_dist = self.add(tour1[i-1], tour1[i+1], tour1[i]) #print("!!!!") best_ratio = c*best_dist + d*(b) for tour in tours: for j in range(0,3): if tour in veh[j]: a=vehlength[j] w=j s=veh[j].index(tour) #print("******") if tour != tour1 and len(tour)!=2 : #print a for index in range(len(tour) - 1): #print tour #print index dist = self.add(tour[index], tour[index + 1], tour1[i]) #print dist ratio = c*dist + d*(a+dist) if ratio < best_ratio and (tourslength[tours.index(tour)]+dist)<150: best_dist = dist w1=w s1=s new_tour = tour[:index + 1] + [tour1[i]] + tour[index + 1:] tour_index = tours.index(tour) best_ratio = c*best_dist + d*(a+dist) if best_ratio != c*best_dist + d*(b): #print veh tours[tour_index]=new_tour tourslength[tour_index]+= best_dist veh[w1][s1]=new_tour vehlength[w1]+=best_dist #print veh tourslength[tours.index(tour1)]-=self.add(tour1[i-1], tour1[i + 1], tour1[i]) #print o,i #print vehlength[o] vehlength[o]-=self.add(tour1[i-1], tour1[i + 1], tour1[i]) print veh print tour1 veh[o][p].remove(tour1[i]) print tour1 print veh if (len(tour1)==2): vehlength[o]-=self.distances[tour1[0]][tour1[1]] #tour1.remove(tour1[i]) print veh else: i+=1 #print self.distances #print(i) return tours, tourslength,veh,vehlength def plot (self,tours,color): b = ['r','b','g','b'] j=0 for tour in tours: if len(tour)!=2: for i in range (0,len(tour)-1): if i != len(self.coords)-1: plt.plot([self.coords[tour[i]][0], self.coords[tour[i+1]][0]],[self.coords[tour[i]][1],self.coords[tour[i+1]][1]], color) #plt.show(block=False) if j<3: j+=1 else: j=0 x=[] y=[] c=['bs','rs','gs','cs','ms'] for i in range(0,5): x.append(self.coords[i][0]) y.append(self.coords[i][1]) plt.plot(self.coords[i][0],self.coords[i][1],c[i]) #plt.show() #r= BaseAlgorithm() x= TourConstructionHeuristics() tours, lengths,veh,vehlength = x.cheapest_insertion() print veh print tours #print lengths #print vehlength #x.plot(tours) tours1, lengths1,veh1,vehlength1 = x.samedis(tours,lengths,veh,vehlength) print tours1 print lengths1 print veh1 print vehlength1 b = ['r','b','g','b'] for i in range(0,3): x.plot(veh[i],b[i]) plt.show() x.plot(tours1)
''' Created on Mar 5, 2013 @author: pvicente ''' from src.data import Node, City, CityMap from src.data_exceptions import NotValid2DPointFormat, WrongLink, NotCities, \ NotLinks, NotValidCitiesFormat, NotValidLinksFormat import unittest class TestNode(unittest.TestCase): def setUp(self): pass def test_str(self): ''' Test calling str operator to perform code ''' n = Node(point2D=(0,0), name='TestNode') other = Node(point2D=(1,3), name='OtherTestNode') n.addLink(other) _ = str(n) def test_format_exceptions(self): ''' Test raising NotValid2DPointFormat exceptions ''' self.assertRaises(NotValid2DPointFormat, Node, point2D=1) self.assertRaises(NotValid2DPointFormat, Node, point2D='a') self.assertRaises(NotValid2DPointFormat, Node, point2D={}) self.assertRaises(NotValid2DPointFormat, Node, point2D=['a', 2, 3]) self.assertRaises(NotValid2DPointFormat, Node, point2D=(1,'2')) def test_links_exception(self): ''' Test raising WrongLink ''' n = Node((0,0),'test') self.assertRaises(WrongLink, n.addLink, n) self.assertRaises(WrongLink,n.addLink, '') def test_instance(self): ''' Test checking construct of correct instance ''' self.assertIsInstance(Node((1,2)), Node) self.assertIsInstance(Node((1.0, 3.5)), Node) self.assertIsInstance(Node((1, 2.10)), Node) def test_equal(self): ''' Tests over equal operator and checking equality over name attribute ''' self.assertNotEqual(Node((0,0)), None) self.assertNotEqual(Node((0,0)), 1) self.assertEqual(Node((0,0)), Node((1,1))) self.assertEqual(Node((0,0),'test'), Node((1,1),'test')) self.assertNotEqual(Node((0,0), 'test1'), Node((0,0), 'test2')) def test_cmp(self): ''' Tests over cmp operator and checking comparisions over name atribute ''' self.assertEqual(cmp(Node((0,0)), 1), -1) self.assertEqual(cmp(Node((0,0)), None), -1) self.assertEqual(cmp(Node((0,0), 'test'), Node((0,1),'test')), 0) self.assertEqual(cmp(Node((0,0), 'test1'), Node((0,1),'test')), cmp('test1', 'test')) def test_hash(self): ''' Tests over hash attribute checking it over name attribute ''' self.assertEqual(hash(Node((0,0))), hash('')) self.assertEqual(hash(Node((0,0), 'test')), hash('test')) self.assertNotEqual(hash(Node((0,0))), hash('a')) self.assertNotEqual(hash(Node((0,0), 'test')), hash('test2')) def test_distance(self): ''' Test to checking euclidean distance over 2DPoints ''' origin_points = [(1,1), (1,2), (0,0), (0,0), (0,0), (10,10)] end_points = [(1,1), (1,3), (-1,-1), (10,10), (3,4), (3,4) ] distance = [0 , 1 , 1.4142 , 14.1421, 5 , 9.2195 ] for i in xrange(len(origin_points)): origin = Node(origin_points[i]) end = Node(end_points[i]) self.assertAlmostEqual(origin.distance(end), distance[i], places=4) def test_links(self): ''' Test links are created inside node ''' nodes = {'m': Node((0,0), 'm'), 'b': Node((10,10), 'b'), 'a': Node((4,3), 'a')} links = [('m','b'), ('a','m'),('b','m')] notlinks = [('b', 'a'), ('m', 'a')] for origin, end in links: nodes[origin].addLink(nodes[end]) for origin, end in links: self.assertIn(nodes[end],nodes[origin].links) for origin, end in notlinks: self.assertNotIn(nodes[end], nodes[origin].links) for node in nodes.values(): self.assertNotEqual(node.links , set(), msg='%s has not links with other nodes'%(node.name)) class TestCity(unittest.TestCase): def setUp(self): pass def test_links(self): ''' Tset links are created in both ways (origin, end) (end, origin) ''' cities={'Madrid': City('Madrid', (0,0)), 'Barcelona': City('Barcelona', (10,10)), 'Albacete': City('Albacete', (3,4))} links = [('Madrid', 'Barcelona'), ('Albacete', 'Madrid')] notlinks = [('Barcelona', 'Albacete'), ('Albacete', 'Barcelona')] for origin, end in links: cities[origin].addLink(cities[end]) for origin, end in links: self.assertIn(cities[end], cities[origin].links) self.assertIn(cities[origin], cities[end].links) for origin, end in notlinks: self.assertNotIn(cities[origin], cities[end].links) for city in cities.values(): self.assertNotEqual(city.links , set(), msg='%s has not links with other cities'%(city.name)) class TestCityMap(unittest.TestCase): def setUp(self): ''' Preparing input data to perform some tests ''' import json, tempfile self.data = {u'cities': {u'Madrid': [0,0], u'Barcelona': [10,10], u'Albacete': [3,4]}, u'links': [[u'Madrid', u'Barcelona'], [u'Albacete', u'Barcelona']]} self.json_data = json.dumps(self.data) tmp_input = tempfile.mkstemp() input_file = open(tmp_input[1], 'w') self.input_filename = tmp_input[1] json.dump(self.data, input_file) input_file.close() self.output_filename = tempfile.mkstemp()[1] def tearDown(self): ''' Removing unused files ''' import os os.remove(self.input_filename) os.remove(self.output_filename) def test_load_exceptions(self): ''' Testing raising exceptions due to not valid data format ''' self.assertRaises(NotCities, CityMap.load, {}) self.assertRaises(NotLinks, CityMap.load, {'cities': []}) self.assertRaises(NotValidCitiesFormat, CityMap.load, {'cities': [], 'links': []}) self.assertRaises(NotValidCitiesFormat, CityMap.load, {'cities': {1: [1,2]}, 'links': []}) self.assertRaises(NotValid2DPointFormat, CityMap.load, {'cities': {'name': 'wrongpoint'}, 'links': []}) self.assertRaises(NotValidLinksFormat, CityMap.load, {'cities': {'name': [1,2]}, 'links': 'wronglink'}) self.assertRaises(NotValidLinksFormat, CityMap.load, {'cities': {'Madrid': [0,0], 'Barcelona': [10,10]}, 'links': [1,2]}) self.assertRaises(WrongLink, CityMap.load, {'cities': {'Madrid': [0,0], 'Barcelona': [10,10]}, 'links': [[1,2]]}) def test_load_instance(self): ''' Testing right construction with a valid input format ''' self.assertIsInstance(CityMap.load({'cities': {'Madrid': [0,0], 'Barcelona': [10,10.0]}, 'links': [['Madrid','Barcelona']]}), CityMap) def check_load_data(self, citymap): ''' Check function to check that input data is being represented correctly ''' for cityname in self.data['cities']: city = citymap[cityname] self.assertNotEqual(city, None) x,y = self.data['cities'][cityname] self.assertEqual(city.x, x) self.assertEqual(city.y, y) related_links = [link for link in self.data['links'] if link[0] == cityname or link[1] == cityname] for link in related_links: origin, end = link if origin != cityname: end = origin self.assertIn(end, [c.name for c in city.links]) def test_load_data(self): ''' Test input data ''' citymap = CityMap.load(self.data) self.check_load_data(citymap) def test_load_string(self): ''' Test loading data from string format. ''' citymap = CityMap.loadFromString(self.json_data) self.check_load_data(citymap) def test_load_filename(self): ''' Test loading data from filename ''' citymap = CityMap.loadFromFile(self.input_filename) self.check_load_data(citymap) def test_load_bad_filename(self): ''' Test exception launched due to bad filename ''' import tempfile, os tmpfile = tempfile.mkstemp() os.remove(tmpfile[1]) self.assertRaises(IOError, CityMap.loadFromFile, tmpfile[1]) def test_not_data_in_file(self): ''' Test exception launched due to not json data in file ''' import tempfile, os tmpfile = tempfile.mkstemp() self.assertRaises(ValueError, CityMap.loadFromFile, tmpfile[1]) os.remove(tmpfile[1]) def test_not_data_in_string(self): ''' Test exception launched due to not json data in string ''' self.assertRaises(ValueError, CityMap.loadFromString, '') def test_save(self): ''' Test check that load and save processes don't modify input/output format ''' import tempfile, os, json citymap = CityMap.loadFromString(self.json_data) tmpfile = tempfile.mkstemp() citymap.save(tmpfile[1]) self.assertEqual(str(self.data), str(json.load(open(tmpfile[1])))) os.remove(tmpfile[1]) if __name__ == '__main__': unittest.main(verbosity=2)
#erster Versuch import cv2 from PIL import Image import pytesseract import numpy as np #print pytesseract.image_to_string(Image.open('roemisch2.PNG')) #path = './bilder/roemisch2.PNG' path = 'randomzahlen.jpg' img = Image.open(path) print (pytesseract.image_to_string(img)) image = cv2.imread(path) cv2.imshow('hallo', image) cv2.waitKey(0)
#MatthewMascoloCH7P1.py #I pledge my honor that I have abided #by the Stevens Honor System. Matthew Mascolo # #This program calculates BMI and determines #whether it is in a healthy range. def main(): weight = eval(input("Enter your weight in pounds: ")) height = eval(input("Enter your height in inches: ")) BMI = (weight * 720) / (pow(height, 2)) BMI = round(BMI, 1) if BMI > 25: print("Your BMI is:", BMI) print("This is ABOVE what is considered a healthy range.") else: if BMI < 19: print("Your BMI is:", BMI) print("This is BELOW what is considered a healthy range.") else: print("Your BMI is:", BMI) print("This is within a healthy range.") main()
# -*- coding: utf-8 -*- # @Time : 2020/5/23 19:49 # @Author : J # @File : 视频入门.py # @Software: PyCharm #打开摄像头 import numpy as np import cv2 as cv cap = cv.VideoCapture(0) if not cap.isOpened(): print("cannot not open camera") exit() while True: ret,frame = cap.read() #第一个参数ret 为True 或者False,代表有没有读取到图片 第二个参数frame表示截取到一帧的图片 frame = cv.flip(frame,1) #镜像处理 if not ret: print("Can't receive frame (stream end?). Exiting ...") break gray = cv.cvtColor(frame,cv.COLOR_BGR2GRAY)#灰度处理 cv.imshow("打开摄像头",frame) if cv.waitKey(1) == ord("q"): break cap.release() cv.destroyAllWindows() #播放视频 cap = cv.VideoCapture("wing.mp4") while cap.isOpened(): ret,frame = cap.read() if not ret: print("Can't receive frame (stream end?). Exiting ...") break gray = cv.cvtColor(frame,cv.COLOR_BGR2GRAY) cv.imshow("shame",gray) # cv.waitKey(30); if cv.waitKey(1) == ord("q"): break cap.release() cv.destroyAllWindows() #保存视频 cap = cv.VideoCapture(0) # FourCC是用于指定视频编解码器的4字节代码,在Fedora中:DIVX,XVID,MJPG,X264,WMV1,WMV2。 # 最好使用XVID。MJPG会生成大尺寸的视频。X264会生成非常小的尺寸的视频 fourcc = cv.VideoWriter_fourcc(*"XVID") out = cv.VideoWriter("output.avi",fourcc,20.0,(640,480)) #输出视频 解码器 帧率 大小 while cap.isOpened(): ret,frame = cap.read() if not ret: print("Can't receive frame (stream end?). Exiting ...") break frame = cv.flip(frame,1) out.write(frame) cv.imshow("frame",frame) if cv.waitKey(1) == ord("q"): break cap.release() out.release() cv.destroyAllWindows()
#!/usr/bin/env /data/mta/Script/Python3.8/envs/ska3-shiny/bin/python ######################################################################################### # # # update_html_page.py: udate html pages # # # # author: t. isobe (tisobe@cfa.harvard.edu) # # # # last update: Mar 09, 2021 # # # ######################################################################################### import os import sys import re import string import math import numpy import time import Chandra.Time # #--- reading directory list # path = '/data/mta/Script/IRU/Scripts/house_keeping/dir_list' with open(path, 'r') as f: data = [line.strip() for line in f.readlines()] for ent in data: atemp = re.split(':', ent) var = atemp[1].strip() line = atemp[0].strip() exec("%s = %s" %(var, line)) # #--- append pathes to private folders to a python directory # sys.path.append(bin_dir) sys.path.append(mta_dir) # #--- import function # import mta_common_functions as mcf # #--- temp writing file name # rtail = int(time.time()) zspace = '/tmp/zspace' + str(rtail) # #--- some data # mon_list = ['jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'] #---------------------------------------------------------------------------------- #-- update_html_page: update the html page -- #---------------------------------------------------------------------------------- def update_html_page(syear=''): """ update the html page input: syear --- starting year. if it is blank, syear is this year output: <web_dir>/iru_bias_trend_year<year>.html """ # #--- find today's date # date = time.strftime("%Y:%m:%d", time.gmtime()) atemp = re.split(':', date) tyear = int(atemp[0]) tmon = int(atemp[1]) tday = int(atemp[2]) if syear == '': syear = tyear # #--- read template # ifile = house_keeping + 'iru_template' with open(ifile, 'r') as f: template = f.read() for year in range(1999, tyear+1): mon_b = 1 mon_e = 12 if year == 1999: mon_b = 9 elif year == tyear: mon_e = tmon update_page_for_year(year, tyear, mon_b, mon_e, template) # #--- make a symbolic link to the latest year to the main page # mpage = web_dir + 'iru_bias_trend.html' cmd = 'rm -rf ' + mpage os.system(cmd) tpage = web_dir + 'iru_bias_trend_year' + str(tyear) + '.html' cmd = 'ln -s ' + tpage + ' ' + mpage os.system(cmd) #---------------------------------------------------------------------------------- #-- update_page_for_year: create html page for the given year -- #---------------------------------------------------------------------------------- def update_page_for_year(myear, tyear, mon_b, mon_e, template): """ create html page for the given year input: myear --- year to be the page is created tyear --- this year mon_b --- starting month, usually 1 (Jan) mon_e --- ending month, usualy 12 (Dec) template --- template of the page output: <web_dir>/iru_bias_trend_year<year>.html """ # #--- monthly bias/hist popup plots # plink = '<tr>\n' if mon_b > 1: plink = plink + fill_blank_plot_link(1, mon_b) for mon in range(mon_b, mon_e+1): plink = plink + create_plot_link(myear, mon) if mon_e < 12: plink = plink + fill_blank_plot_link(mon_e+1, 13) plink = plink + '</tr>\n' # #--- table link to other years # tlink = '<tr>\n' m = 0 for year in range(1999, tyear+1): if year == myear: tlink = tlink + '<th style="color:green;"><b>' + str(year) + '</b></th>\n' else: tlink = tlink + create_table_link(year) m += 1 if m % 10 == 0: tlink = tlink + '</tr>\n<tr>\n' m = 0 if m != 0: for k in range(m, 10): tlink = tlink + '<th>&#160;</th>\n' tlink = tlink + '</tr>\n' # #--- link direction buttons # direct = create_direct_button(myear, tyear) # #--- replace the table entry to the template # template = template.replace('#YEAR#', str(myear)) template = template.replace('#DIRECT#', direct) template = template.replace('#PLOTS#', plink) template = template.replace('#YTABLE#', tlink) # #--- create the table # outfile = web_dir + 'iru_bias_trend_year' + str(myear) + '.html' with open(outfile, 'w') as fo: fo.write(template) #---------------------------------------------------------------------------------- #-- create_plot_link: create table entry for a monthly plot link -- #---------------------------------------------------------------------------------- def create_plot_link(year, mon): """ create table entry for a monthly plot link input: year --- year mon --- month output: line --- table entry """ tyear = str(year) syr = tyear[2] + tyear[3] line = "<th><a href=\"javascript:WindowOpener(" line = line + "'" + str(year) + "/" + mon_list[mon-1] + syr + "_bias.png'," line = line + "'" + str(year) + "/" + mon_list[mon-1] + syr + "_hist.png')\">" line = line + mon_list[mon-1].capitalize() + "</a></th>\n" return line #---------------------------------------------------------------------------------- #-- fill_blank_plot_link: create table entry for a blank plot link -- #---------------------------------------------------------------------------------- def fill_blank_plot_link(start, stop): """ create table entry for a blank plot link input: start --- starting month stop --- stopping month output: line --- table entry """ line = '' for mon in range(start, stop): line = line + '<th>' + mon_list[mon-1].capitalize() + '</th>\n' return line #---------------------------------------------------------------------------------- #-- create_table_link: create table entry to year table -- #---------------------------------------------------------------------------------- def create_table_link(year): """ create table entry to year table input: year --- year output: line --- table entry """ line = '<th><a href="./iru_bias_trend_year' + str(year) + '.html">' line = line + str(year) + '</a></th>\n' return line #---------------------------------------------------------------------------------- #-- create_direct_button: create directional button for the page -- #---------------------------------------------------------------------------------- def create_direct_button(myear, tyear): """ create directional button for the page input: myear --- year to be the page is created tyear --- this year output: line --- the html code with the button """ if myear == 1999: line = 'Go to: <a href="./iru_bias_trend_year2000.html"><em>Next Year</em></a>' elif myear == tyear: line = 'Go to: <a href="./iru_bias_trend_year'+ str(tyear-1) + '.html"><em>Prev Year</em></a>' else: line = 'Go to: <a href="./iru_bias_trend_year'+ str(myear-1) + '.html"><em>Prev Year</em></a>' line = line + ' / ' line = line + '<a href="./iru_bias_trend_year'+ str(myear+1) + '.html"><em>Next Year</em></a>' return line #---------------------------------------------------------------------------------- if __name__ == '__main__': if len(sys.argv) > 1: year = int(float(sys.argv[1])) else: year = '' update_html_page(year)
#!/usr/bin/env python #-*- coding:UTF-8 -*- import os path='/home/tla001/myworks/zrworks/mykk/resource/iceskater1' f=open("images1.txt",'w') files = list() for pic in os.listdir(path): if(pic.find('.jpg')!=-1): files.append(pic) files.sort() for pic in files: f.write(os.path.join(path,pic)+'\n') f.close()
import requests from bs4 import BeautifulSoup from PyQt5 import QtWidgets from vindue import Ui_MainWindow import sys class MyWindow(QtWidgets.QMainWindow): def __init__(self): super(MyWindow, self).__init__() self.ui = Ui_MainWindow() self.ui.setupUi(self) self.ui.pushButton.clicked.connect(self.onsLottoClick) self.ui.pushButton_2.clicked.connect(self.lorLottoClick) def onsLottoClick(self): vinder_tal = [] kupon = [] rigtige = "" antal_rigtige = 0 antal_tal = 6 page = requests.get('https://vindertal.com/onsdags-lotto.aspx') if page.status_code == 200: soup = BeautifulSoup(page.content, 'html.parser') for i in range(antal_tal): vinder_tal.append(soup.find(id="ContentPlaceHolderDefault_CphMain_AllNumbers_5_LvWinnerNumbers_LblNumber_"+str(i)).contents) else: self.ui.label_3.setText(f'Kunne ikke hente vindertal. Prøv igen senere. Status kode: {page.status_code}') vinder_tal = [item for sublist in vinder_tal for item in sublist] kupon.append(self.ui.lineEdit.text()) kupon.append(self.ui.lineEdit_2.text()) kupon.append(self.ui.lineEdit_3.text()) kupon.append(self.ui.lineEdit_4.text()) kupon.append(self.ui.lineEdit_5.text()) kupon.append(self.ui.lineEdit_6.text()) for i in vinder_tal: if i in kupon: antal_rigtige += 1 rigtige += i+" " if antal_rigtige == 0: self.ui.label_3.setText('Ingen rigtige.') elif antal_rigtige == 1: self.ui.label_3.setText(f'{antal_rigtige} rigtig: {rigtige}') else: self.ui.label_3.setText(f'{antal_rigtige} rigtige: {rigtige}') def lorLottoClick(self): vinder_tal = [] kupon = [] rigtige = "" antal_rigtige = 0 antal_tal = 7 page = requests.get('https://vindertal.com/loerdags-lotto.aspx') if page.status_code == 200: soup = BeautifulSoup(page.content, 'html.parser') for i in range(antal_tal): vinder_tal.append(soup.find(id="ContentPlaceHolderDefault_CphMain_AllNumbers_5_LvWinnerNumbers_LblNumber_"+str(i)).contents) else: self.ui.label_4.setText(f'Kunne ikke hente vindertal. Prøv igen senere. Status kode: {page.status_code}') vinder_tal = [item for sublist in vinder_tal for item in sublist] kupon.append(self.ui.lineEdit_7.text()) kupon.append(self.ui.lineEdit_8.text()) kupon.append(self.ui.lineEdit_9.text()) kupon.append(self.ui.lineEdit_10.text()) kupon.append(self.ui.lineEdit_11.text()) kupon.append(self.ui.lineEdit_12.text()) kupon.append(self.ui.lineEdit_13.text()) for i in vinder_tal: if i in kupon: antal_rigtige += 1 rigtige += i+" " if antal_rigtige == 0: self.ui.label_4.setText('Ingen rigtige.') elif antal_rigtige == 1: self.ui.label_4.setText(f'{antal_rigtige} rigtig: {rigtige}') else: self.ui.label_4.setText(f'{antal_rigtige} rigtige: {rigtige}') app = QtWidgets.QApplication([]) application = MyWindow() application.show() sys.exit(app.exec())
class Empleado: def __init__(self, nombre, edad, legajo, sueldo): self.nombre = nombre self.edad = edad self.legajo = legajo self.sueldo = sueldo def calcular_sueldo(self, descuento, bonos): return self.sueldo-descuento+bonos class AgentesVentas(Empleado): def __init__(self, nombre, edad, legajo, sueldo, mostrador): self.numeroMostrador = mostrador super().__init__(nombre, edad, legajo, sueldo) class Tripulante(Empleado): def mostrar_Renovacion(self): if self.edad >= 58: return "La licencia tiene que ser renovada cada un año" else: return "La licencia tiene que ser renovada cada 6 meses" cercio = AgentesVentas("cercio", 24, "m618", 6000, 4) print(cercio.nombre) print(cercio.edad) print(cercio.calcular_sueldo(300, 3000)) t = Tripulante("viloria", 45, "m789", 4000) print(t.mostrar_Renovacion())
# Generated by Django 3.2.7 on 2021-10-06 05:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0006_bill_employee'), ] operations = [ migrations.RemoveField( model_name='employeebank', name='employee_id', ), migrations.AddField( model_name='company', name='bank_account_no', field=models.CharField(max_length=255, null=True), ), migrations.AddField( model_name='employee', name='bank_account_no', field=models.CharField(max_length=255, null=True), ), migrations.DeleteModel( name='CompanyBank', ), migrations.DeleteModel( name='EmployeeBank', ), ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 8 16:44:00 2018 @author: ppxee """ ### Import required libraries ### import matplotlib.pyplot as plt #for plotting from astropy.io import fits #for handling fits from astropy.table import Table #for handling tables import numpy as np #for handling arrays from astropy.stats import median_absolute_deviation import vari_funcs #my module to help run code neatly plt.close('all') #close any open plots from matplotlib.offsetbox import OffsetImage, AnnotationBbox font = {'family' : 'DejaVu Sans', 'weight' : 'normal', 'size' : 14} plt.rc('font', **font) def month_avg_lightcurve(avgflux, avgfluxerr): months = ['sep05','oct05','nov05','dec05', 'jan06', 'dec06', 'jan07', 'aug07', 'sep07', 'oct07', 'sep08', 'oct08', 'nov08', 'jul09', 'aug09', 'sep09', 'oct09', 'nov09', 'dec09', 'jan10', 'feb10', 'aug10', 'sep10', 'oct10', 'nov10', 'dec10', 'jan11', 'feb11', 'aug11', 'sep11', 'oct11', 'nov11', 'dec11', 'jan12', 'feb12', 'jul12', 'aug12', 'sep12', 'oct12', 'nov12'] #set up time variable for plot nums = fits.open('monthly_numbers.fits')[1].data t = np.linspace(1, len(nums), num=len(nums)) tdataind = np.isin(nums['Month'], months) tdata = t[tdataind] ticks = nums['Month'] mask = np.zeros(len(t)) inds = [0,4,14,16,23,26,36,38,46,53,59,65,71,77,82,86] mask[inds] = 1 mask = mask.astype(bool) ticks[~mask] = '' #Plot graph in new figure plt.figure(figsize=[19,7]) plt.xticks(t, ticks, rotation='vertical') plt.errorbar(tdata, avgflux, yerr=avgfluxerr, fmt = 'bo') plt.xlabel('Month') plt.ylabel('K-band flux of object') plt.title('Average Lightcurve') plt.tight_layout() return tbdata = fits.open('mag_flux_tables/month_mag_flux_table_best.fits')[1].data varys = fits.open('variable_tables/no06_variables_chi40.fits')[1].data obnum = 62242 #mask = fitsdata['NUMBER_1'] == ob obdata = tbdata[tbdata['NUMBER'] == obnum] obvarys = varys[varys['NUMBER_05B'] == 62243] months = ['sep05','oct05','nov05','dec05', 'jan06', 'dec06', 'jan07', 'aug07', 'sep07', 'oct07', 'sep08', 'oct08', 'nov08', 'jul09', 'aug09', 'sep09', 'oct09', 'nov09', 'dec09', 'jan10', 'feb10', 'aug10', 'sep10', 'oct10', 'nov10', 'dec10', 'jan11', 'feb11', 'aug11', 'sep11', 'oct11', 'nov11', 'dec11', 'jan12', 'feb12', 'jul12', 'aug12', 'sep12', 'oct12', 'nov12'] for month in months: # if month == 'sep05': # flux = obdata['MAG_APER_'+month][:,4] # fluxerr = obdata['MAGERR_APER_'+month][:,4] # else: # flux = np.append(flux, obdata['MAG_APER_'+month][:,4]) # fluxerr = np.append(fluxerr, obdata['MAGERR_APER_'+month][:,4]) if month == 'sep05': flux = obdata['FLUX_APER_'+month][:,4] fluxerr = obdata['FLUXERR_APER_'+month][:,4] else: flux = np.append(flux, obdata['FLUX_APER_'+month][:,4]) fluxerr = np.append(fluxerr, obdata['FLUXERR_APER_'+month][:,4]) #mask = flux == 99 mask = flux <= 0 flux[mask] = np.nan fluxerr[mask] = np.nan month_avg_lightcurve(flux, fluxerr) plt.title('Light curve for DR11 ID 62253')#%i' % obnum) ### Get little image ### semesters = ['05B', '08B', '12B']#['05B', '07B', '08B', '09B', '10B', '11B', '12B']#'06B', xcoords = [15, 50, 80] ycoords = [20000,20000,20000] artists = [] for n, sem in enumerate(semesters): print(sem) if sem == '10B': imdata = fits.getdata('cleaned_UDS_'+sem+'_K.fits') else: imdata = fits.getdata('extra_clean_no06_UDS_'+sem+'_K.fits') ### Find coordinates of objects ### x = obvarys['X_IMAGE_'+sem] x = x.astype(int)#int(x) y = obvarys['Y_IMAGE_'+sem] y = y.astype(int)#int(x) size = 30 # size of half side of square newim = imdata[y[0]-size:y[0]+size,x[0]-size:x[0]+size] del imdata # print(newim[size,size]) imuppthresh = 200 newim[newim>imuppthresh] = imuppthresh imlowthresh = 0 newim[newim<imlowthresh] = imlowthresh ### code from stack exchange ax = plt.gca() im = OffsetImage(newim, zoom=2.5) ab = AnnotationBbox(im, (xcoords[n], ycoords[n]), xycoords='data', frameon=False) artists.append(ax.add_artist(ab)) ax.update_datalim(np.column_stack([xcoords, ycoords])) ax.autoscale() ### put on arrows ### plt.arrow(12,19000,-7,-3000, head_width=1, head_length=500, color='k') # for first snapshot plt.arrow(45.5,21000,-5,0, head_width=300, head_length=1, color='k') # for first snapshot plt.arrow(80,19000,+3,-3500, head_width=1, head_length=500, color='k') # for first snapshot
def min(values): smallest = None for value in values: if smallest is None or value < smallest: smallest = value return smallest print(min([3, 4, 82, 71]))
from main import PKT_DIR_INCOMING, PKT_DIR_OUTGOING # TODO: Feel free to import any Python standard moduless as necessary. import struct import socket import time import pickle from firewall import * from helpers import * # length of header in bytes # hard coded constants data = pickle.load(open('testpacket.p', 'rb')) packets = data['packets'] rules = data['rules'] geos = data['geos'] for packet in packets: prot = get_protocol(packet[0]) if prot == UDP_PROTOCOL and is_dns(packet[1],packet[0]): pkt = packet[0] pkt_dir = packet[1] # print 'testing ip checksum' # print 'calculated: '+str(ip_checksum(pkt)) # print 'actual: '+str(struct.unpack('!H', pkt[10:12])[0]) # print 'testing tcp checksum' # print 'calculated: '+str(tcp_checksum(pkt)) # start = get_ip_header_length(pkt) + 16 # print 'actual: '+str(struct.unpack('!H', pkt[start:start+2])[0]) # print 'testing upd checksum' # print 'calculated: '+str(udp_checksum(pkt)) # start = get_ip_header_length(pkt)+6 # print 'actual: '+str(struct.unpack('!H', pkt[start:start+2])[0]) def set_string(a,b,i1,i2): resp = a[:i1] + b + a[i2:] return resp def make_tcp_response(pkt): 'fuck this stupid ass fucking dumb project' return 'assmar' resp = make_dns_response(pkt)
''' Project: AirBnB Clone File: test/user.py By: Mackenzie Adams, Gloria Bwandungi In this file we create our first test for the root of our Rest API. ''' import unittest import json from app import app import logging from app.models.base import db from app.models.user import User class FlaskrTestCase_User(unittest.TestCase): def setUp(self): #creating a test client self.app = app.test_client() #disable logging logging.disable(logging.CRITICAL) #create User table db.create_tables([User], safe=True) def tearDown(self): #delete User table db.drop_tables([User], safe=True) def test_create(self): #send a POST request to app response = self.app.post('/users', data = dict(first_name = 'Jon', last_name = 'Snow', email = 'jon@snow.com', password = 'first')) #send a POST request to app response = self.app.post('/users', data = dict(first_name = 'Jon', last_name = 'Snow', email = 'jon@snow.com', password = 'first')) def test_list(self): pass def test_get(self): pass def test_delete(self): pass def test_update(self): pass
from django import forms from django.db import models from django.forms import ModelForm
""" Author: Rokon Rahman File: training a CNN architucture using cifer-10 dataset """ import keras import numpy as np # project modules from .. import config from . import my_model, preprocess model = my_model.get_model() model.summary() #loading data #X_train, Y_train = preprocess.load_train_data() X_train, Y_train = preprocess.load_train_data() print("train data shape: ", X_train.shape) print("train data label: ", Y_train.shape) #loading model #compile model.compile(keras.optimizers.Adam(config.lr), keras.losses.categorical_crossentropy, metrics = ['accuracy']) #checkpoints model_cp = my_model.save_model_checkpoint() early_stopping = my_model.set_early_stopping() #for training model model.fit(X_train, Y_train, batch_size = config.batch_size, epochs = config.nb_epochs, verbose = 2, shuffle = True, callbacks = [early_stopping, model_cp], validation_split = 0.2)
""" CPSC-51100, SUMMER 2019 NAME: JASON HUGGY, JOHN KUAGBENU, COREY PAINTER PROGRAMMING ASSIGNMENT #6 """ import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.read_csv('ss13hil.csv') # Replaces each value with the first number in the range of amounts from # PUMS documentation def replace(TAXP): if TAXP == 1: return 0 elif (TAXP >= 2) and (TAXP <= 21): return (TAXP * 50 - 100) elif (TAXP >=22) and (TAXP <= 62): return ((TAXP-22)*100) + 1000 elif TAXP == 63: return 5500 elif TAXP >= 64: return ((TAXP-64)*1000) + 6000 df['TAXP'] = df.TAXP.apply(replace) # Plots a figure with four subplots, 2 by 2 fig, axs = plt.subplots(2, 2, figsize=(15, 8)) fig.suptitle('Sample Output', fontsize=20, y = 1) # Creates a pie chart of HHL with legend HHLcolor=['Blue','DarkOrange','Green','Red','Purple'] # Colors for chart HHL=['English only', 'Spanish', 'Other Indo-European', 'Asian and Pacific Island languages', 'Other'] label= list(HHL) axs[0, 0].pie(df.HHL.value_counts(), colors= HHLcolor, startangle= 242, radius= 1.25, counterclock= True, center= (0.5, 0.5)) axs[0, 0].set_title('Household Languages', fontsize= 12) axs[0, 0].legend(labels = label, loc=2, fontsize= '10', bbox_to_anchor= (-.72, 0.80, .1, .2), markerscale= .05) axs[0, 0].set_ylabel('HHL', labelpad = 140) # Creates a histogram of HINCP with superimposed KDE plot hincp = df.HINCP.dropna() hincp = hincp[hincp > 10] logbins = np.logspace(np.log10(10), np.log10(max(hincp)),85) #logspaces bins of the x axis axs[0, 1].hist(hincp, bins = logbins, density=True, color = 'Green', alpha= 0.5) axs[0, 1].set_xscale('log') # logspaces the x axis ticks axs[0, 1].set_xlim(5, 10**7.2) hincp.plot.kde(linestyle='--', linewidth=2, color='Black', ax = axs[0, 1]) axs[0, 1].set_yticks([0.000000, 0.000005, 0.000010, 0.000015, 0.000020]) axs[0, 1].set_title('Distribution of Household Income', fontsize=12) axs[0, 1].set_xlabel('Household Income ($) - Log Scaled') axs[0, 1].set_ylabel('Density') # Creates a bar chart of thousands of households for each vehicle value veh_x= df.VEH.unique() veh_y= df.VEH.repeat(df.WGTP).value_counts() veh_y/=1000 x_label= [1,2,3,0,4,5,6] axs[1, 0].set_xlabel("# of Vehicles") axs[1, 0].set_ylabel("Thousands of Households") axs[1, 0].bar(veh_x[~np.isnan(veh_x)], veh_y, width=.85, bottom= 0.0, align='center', color= 'red', tick_label= x_label) axs[1, 0].set_title('Vehicles Available in Households', fontsize= 12) # Creates a scatter plot of property taxes vs property value # Uses WGTP for size of each dot, and first mortage payment is represented by the color of the dot # Uses a colorbar for reference of MRGP amount scatter = df[df.VALP <= 2000000] i = axs[1, 1].scatter(scatter.VALP, scatter.TAXP, c=scatter.MRGP, s = scatter.WGTP, cmap='seismic', alpha= 0.1) cbar = plt.colorbar(i, ax=axs[1, 1], ticks= [1250, 2500, 3750, 5000]) cbar.set_label('First Mortgage Payment (Monthly $)') axs[1, 1].set_xlim(0, 1200000) axs[1, 1].set_ylim(ymin=0) axs[1, 1].set_title('Property Taxes vs. Property Values', fontsize=12) axs[1, 1].set_xlabel('Property Value ($)') axs[1, 1].set_ylabel('Taxes ($)') # Adjusts the space in between subplots plt.subplots_adjust(wspace=0.22, hspace=0.4) # Saves figure to default directory as a png file. plt.savefig('pums.png')
# Generated by Django 2.2.4 on 2019-10-01 17:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('job', '0022_auto_20190929_0352'), ] operations = [ migrations.AlterField( model_name='sharejob', name='content', field=models.TextField(blank=True, null=True), ), ]
def uppercase_letters(s): for c in s: yield c.upper() uppercase_letters('abcdefgh')
""" These are subscription related models. """ from dataclasses import dataclass, field from typing import List, Optional from .base import BaseModel from .common import BaseApiResponse, BaseResource, ResourceId, Thumbnails from .mixins import DatetimeTimeMixin @dataclass class SubscriptionSnippet(BaseModel, DatetimeTimeMixin): """ A class representing the subscription snippet info. Refer: https://developers.google.com/youtube/v3/docs/subscriptions#snippet """ publishedAt: Optional[str] = field(default=None, repr=False) channelTitle: Optional[str] = field(default=None, repr=False) title: Optional[str] = field(default=None) description: Optional[str] = field(default=None) resourceId: Optional[ResourceId] = field(default=None, repr=False) channelId: Optional[str] = field(default=None, repr=False) thumbnails: Optional[Thumbnails] = field(default=None, repr=False) @dataclass class SubscriptionContentDetails(BaseModel): """ A class representing the subscription contentDetails info. Refer: https://developers.google.com/youtube/v3/docs/subscriptions#contentDetails """ totalItemCount: Optional[int] = field(default=None) newItemCount: Optional[int] = field(default=None) activityType: Optional[str] = field(default=None, repr=False) @dataclass class SubscriptionSubscriberSnippet(BaseModel): """ A class representing the subscription subscriberSnippet info. Refer: https://developers.google.com/youtube/v3/docs/subscriptions#subscriberSnippet """ title: Optional[str] = field(default=None) description: Optional[str] = field(default=None) channelId: Optional[str] = field(default=None, repr=False) thumbnails: Optional[Thumbnails] = field(default=None, repr=False) @dataclass class Subscription(BaseResource): """ A class representing the subscription info. Refer: https://developers.google.com/youtube/v3/docs/subscriptions """ snippet: Optional[SubscriptionSnippet] = field(default=None) contentDetails: Optional[SubscriptionContentDetails] = field( default=None, repr=False ) subscriberSnippet: Optional[SubscriptionSubscriberSnippet] = field( default=None, repr=False ) @dataclass class SubscriptionListResponse(BaseApiResponse): """ A class representing the subscription's retrieve response info. Refer: https://developers.google.com/youtube/v3/docs/subscriptions/list#response_1 """ items: Optional[List[Subscription]] = field(default=None, repr=False)
def findMax(arr): maxVal = arr[0] for i in arr[1:]: if i > maxVal: maxVal = i return maxVal a = [1,3,4,5,0,-6,8] b = findMax(a) print b
# 建立空序對 a = () # 建立具有五個元素的序對 b = (1, 2.0, "3", [4], (5)) # 印出 b 的第 1 個元素 2.0 print(b[1]) # 印出 b 的第 3 個元素 [4] print(b[3]) # 檔名: typedemo05.py # 作者: Kaiching Chang # 時間: July, 2014
import unittest from katas.beta.geometric_progression import geometric_sequence_elements class GeometricSequenceElementsTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(geometric_sequence_elements(2, 3, 5), '2, 6, 18, 54, 162') def test_equals_2(self): self.assertEqual(geometric_sequence_elements(2, 2, 10), '2, 4, 8, 16, 32, 64, 128, 256, 512, 1024') def test_equals_3(self): self.assertEqual(geometric_sequence_elements(1, -2, 10), '1, -2, 4, -8, 16, -32, 64, -128, 256, -512')
import json import logging from typing import Optional import requests from core.env import Environment from services.chat_token_service import ChatTokenService class MessageService: def __init__(self, env: Environment, token_service: ChatTokenService) -> None: self._env = env self._token_service = token_service def admin(self, message: str, parse_mode: str, notification: bool = False): self.telegram(self._env.telegram_admin_id, message, parse_mode, notification) def discord(self, message: str): try: requests.post(f'{self._env.discord_listener}/message/raw', json=message, headers={ 'content-type': 'application/json' }) except Exception as e: logging.error(f'Unknown error occuring during message sending to discord: {e}') def telegram(self, chat_id: int, message: str, parse_mode: str, notification: bool = False): try: requests.post(f'{self._env.telegram_listener}/chat/{chat_id}/message?parse_mode={parse_mode}&notification={int(notification)}', json=message, headers={ 'Content-Type': 'application/json' }) except Exception as e: logging.error(f'Unknown error occuring during message sending to telegram: {e}')
import os import subprocess from gtts import gTTS from espeak_bot.utils import generate_random_string def get_text_to_speech_file(text): tmp_file_path = '/tmp/{path}.mp3'.format( path = generate_random_string(20)) tts = gTTS(text=text, lang='es') tts.save(tmp_file_path) return tmp_file_path
import pandas as pd from plotnine import * import scipy snp_regions=pd.read_csv("variant_scores.tsv",header=0,sep='\t') snp_regions[["logratio", "sig"]] = snp_regions["META_DATA"].str.split(',', expand=True).astype(float) print(scipy.stats.pearsonr(snp_regions['logratio'],snp_regions['log_probs_diff_abs_sum'])) p = (ggplot(snp_regions, aes('logratio', 'log_probs_diff_abs_sum', color='factor(sig)')) + geom_point(alpha=1.0,size=1.0) + xlab("logratio bQTL") + ylab("Log(Counts(Alt)) -\nLog(Counts(Ref)))") + geom_smooth(aes(group=1),colour="black",method="lm") + scale_color_manual(values=['#e41a1c','#377eb8'],name="Significant bQTL?") + theme_bw(20)) print() p.save("scatter_top.png")
# Changed news to community in this file import graphene from graphene_django.types import DjangoObjectType # from bootcamp.news.models import News from bootcamp.community.models import Community from bootcamp.helpers import paginate_data class CommunityType(DjangoObjectType): # Changed news to community """DjangoObjectType to acces the Community model.""" # Changed news to community count_thread = graphene.Int() count_likers = graphene.Int() class Meta: # model = News model = Community def resolve_count_thread(self, info, **kwargs): return self.get_thread().count() def resolve_count_likers(self, info, **kwargs): return self.get_likers().count() def resolve_count_attendees(self, info, **kwargs): return self.get_attendees().count() def resolve_get_thread(self, info, **kwargs): return self.get_thread() def resolve_get_likers(self, info, **kwargs): return self.get_likers() def resolve_get_attendees(self, info, **kwargs): return self.get_attendees() class CommunityPaginatedType(graphene.ObjectType): # Changed news to Community """A paginated type generic object to provide pagination to the Community graph.""" # Changed news to Community page = graphene.Int() pages = graphene.Int() has_next = graphene.Boolean() has_prev = graphene.Boolean() # objects = graphene.List(NewsType) objects = graphene.List(CommunityType) class CommunityQuery(object): # Changed news to community # all_news = graphene.List(NewsType) all_community = graphene.List(CommunityType) # paginated_news = graphene.Field(NewsPaginatedType, page=graphene.Int()) paginated_community = graphene.Field(CommunityPaginatedType, page=graphene.Int()) # news = graphene.Field(NewsType, uuid_id=graphene.String()) community = graphene.Field(CommunityType, uuid_id=graphene.String()) def resolve_all_community(self, info, **kwargs): # return News.objects.filter(reply=False) return Community.objects.filter(reply=False) def resolve_paginated_community(self, info, page): # Change news to community """Resolver functions to query the objects and turn the queryset into the PaginatedType using the helper function""" page_size = 30 # qs = News.objects.filter(reply=False) qs = Community.objects.filter(reply=False) # return paginate_data(qs, page_size, page, NewsPaginatedType) return paginate_data(qs, page_size, page, CommunityPaginatedType) def resolve_community(self, info, **kwargs): # Changed news to community uuid_id = kwargs.get("uuid_id") print("uuid_id" + uuid_id) if uuid_id is not None: # return News.objects.get(uuid_id=uuid_id) print("uuid_id" + uuid_id) return Community.objects.get(uuid_id=uuid_id) return None class CommunityMutation(graphene.Mutation): # Changed news to community """Mutation to create community objects on a efective way.""" # Changed news to community class Arguments: content = graphene.String() user = graphene.ID() parent = graphene.ID() content = graphene.String() user = graphene.ID() parent = graphene.ID() # news = graphene.Field(lambda: News) community = graphene.Field(lambda: Community) def mutate(self, **kwargs): print(kwargs)
import os from distutils.sysconfig import get_config_var # taken from https://github.com/pypa/setuptools/blob/master/setuptools/command/bdist_egg.py NATIVE_EXTENSIONS = dict.fromkeys('.dll .so .dylib .pyd'.split()) def sorted_walk(dir): """Do os.walk in a reproducible way, independent of indeterministic filesystem readdir order """ for base, dirs, files in os.walk(dir): dirs.sort() files.sort() yield base, dirs, files def only_files(headers, allowed): nheaders = [] for h in headers: is_ok = False for allw in allowed: if h.endswith(allw): is_ok = True break if is_ok: nheaders.append(h) return nheaders def get_ext_outputs(bdist_dir=None): """Get a list of relative paths to C extensions in the output distro""" all_outputs = [] if bdist_dir is None: bdist_dir = os.path.abspath(os.path.dirname(__file__)) paths = {bdist_dir: ''} for base, dirs, files in sorted_walk(bdist_dir): for filename in files: if os.path.splitext(filename)[1].lower() in NATIVE_EXTENSIONS: all_outputs.append(paths[base] + filename) for filename in dirs: paths[os.path.join(base, filename)] = (paths[base] + filename + '/') return all_outputs, bdist_dir def get_mod_suffix(): return get_config_var('EXT_SUFFIX') # e.g., '.cpython-36m-darwin.so'
import base64 import pickle import cv2 import os import mediapipe as mp # Import mediapipe mp_drawing = mp.solutions.drawing_utils mp_holistic = mp.solutions.holistic import csv import pandas as pd from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.linear_model import LogisticRegression, RidgeClassifier from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline from sklearn.metrics import accuracy_score # Accuracy metrics from flask_socketio import SocketIO, emit, send from flask_cors import CORS from flask import Flask, request, jsonify, render_template, send_from_directory import simplejpeg import numpy as np import eventlet eventlet.monkey_patch() from utils import decode_image_base64 app = Flask(__name__) app.config['SECRET_KEY'] = 'somethingsoamazingomg!!!' app.config["DEBUG"] = False app.config["environment"] = "production" socketio = SocketIO(app, message_queue='redis://redis:6379') with open('signs4.pkl', 'rb') as f: model = pickle.load(f) def isInitialized(hand): try: if hand.IsInitialized() == True: return True except: return False @app.route('/') def home(): return render_template('camera.html') @socketio.on('upload') def predict(image_data): img_binary_str = decode_image_base64(image_data) image = simplejpeg.decode_jpeg(img_binary_str) # Make Detections with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic: results = holistic.process(image) # print(results.face_landmarks) # face_landmarks, pose_landmarks, left_hand_landmarks, right_hand_landmarks # 1. Draw face landmarks mp_drawing.draw_landmarks(image, results.face_landmarks, mp_holistic.FACE_CONNECTIONS, mp_drawing.DrawingSpec( color=(80, 110, 10), thickness=1, circle_radius=1), mp_drawing.DrawingSpec( color=(80, 256, 121), thickness=1, circle_radius=1) ) # 2. Right hand mp_drawing.draw_landmarks(image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS, mp_drawing.DrawingSpec( color=(80, 22, 10), thickness=2, circle_radius=4), mp_drawing.DrawingSpec( color=(80, 44, 121), thickness=2, circle_radius=2) ) # 3. Left Hand mp_drawing.draw_landmarks(image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS, mp_drawing.DrawingSpec( color=(121, 22, 76), thickness=2, circle_radius=4), mp_drawing.DrawingSpec( color=(121, 44, 250), thickness=2, circle_radius=2) ) # 4. Pose Detections mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS, mp_drawing.DrawingSpec( color=(245, 117, 66), thickness=2, circle_radius=4), mp_drawing.DrawingSpec( color=(245, 66, 230), thickness=2, circle_radius=2) ) # Extract Pose landmarks if not isInitialized(results.pose_landmarks): emit("speak", 'move back to appear') # Extract left_hand landmarks elif not isInitialized(results.left_hand_landmarks): emit("speak", "move back one step to detect left hand") # Exract right_hand landmarks elif not isInitialized(results.right_hand_landmarks): emit("speak", "move back one step to detect right hand") # Concate rows elif isInitialized(results.pose_landmarks) and isInitialized(results.right_hand_landmarks) and isInitialized(results.left_hand_landmarks): # pose detection rowRLH = [] pose = results.pose_landmarks.landmark for landmark in pose: rowRLH.append(landmark.x) rowRLH.append(landmark.y) rowRLH.append(landmark.z) rowRLH.append(landmark.visibility) # left hand coordinates left_hand = results.left_hand_landmarks.landmark for landmark in left_hand: rowRLH.append(landmark.x) rowRLH.append(landmark.y) rowRLH.append(landmark.z) rowRLH.append(landmark.visibility) # right hand coordinates right_hand = results.right_hand_landmarks.landmark for landmark in right_hand: rowRLH.append(landmark.x) rowRLH.append(landmark.y) rowRLH.append(landmark.z) rowRLH.append(landmark.visibility) # Make Detections X = pd.DataFrame([rowRLH]) body_language_class = model.predict(X)[0] body_language_prob = model.predict_proba(X)[0] emit("speak", body_language_class) # Grab ear coords coords = tuple(np.multiply( np.array( (results.pose_landmarks.landmark[mp_holistic.PoseLandmark.LEFT_EAR].x, results.pose_landmarks.landmark[mp_holistic.PoseLandmark.LEFT_EAR].y)), [640, 480]).astype(int)) cv2.rectangle(image, (coords[0], coords[1]+5), (coords[0]+len(body_language_class) * 20, coords[1]-30), (245, 117, 16), -1) cv2.putText(image, body_language_class, coords, cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA) # Get status box cv2.rectangle(image, (0, 0), (250, 60), (245, 117, 16), -1) # Display Class cv2.putText(image, 'CLASS', (95, 12), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) cv2.putText(image, body_language_class.split(' ')[ 0], (90, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA) # Display Probability cv2.putText(image, 'PROB', (15, 12), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) cv2.putText(image, str(round(body_language_prob[np.argmax(body_language_prob)], 2)), ( 10, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA) image = simplejpeg.encode_jpeg(image) base64_image = base64.b64encode(image).decode('utf-8') base64_src = f"data:image/jpg;base64,{base64_image}" emit('prediction', base64_src) if __name__ == "__main__": CORS(app) socketio.run(app, ssl_context="adhoc")
from tkinter import * import os def delete2(): screen3.destroy() def delete3(): screen4.destroy() def delete4(): screen5.destroy() def session(): screen8 = Toplevel(screen) screen8.title("dashboard") screen8.geometry("400x400") Label(screen8, text="Welcome to Dashboard").pack() Button(screen8, text = "Create Note").pack() Button(screen8, text = "View Note").pack() Button(screen8, text = "Delete Note").pack() def login_sucess(): global screen3 screen3 = Toplevel(screen) screen3.title("Sucess") screen3.geometry("150x100") Label(screen3, text = "Login Sucess").pack() Button(screen3, text ="OK", command = delete2).pack() def password_not_recognized(): global screen4 screen4 = Toplevel(screen) screen4.title("Sucess") screen4.geometry("150x100") Label(screen4, text = "Wrong Password").pack() Button(screen4, text ="OK", command = delete3).pack() def User_not_found(): global screen5 screen5 = Toplevel(screen) screen5.title("Sucess") screen5.geometry("150x100") Label(screen5, text = "No user found").pack() Button(screen5, text ="OK", command = delete4).pack() #new funtion for register button def register_user(): username_info = username.get() #to get username details password_info = password.get() #to get password details #to enter values in text files file=open(username_info, "w") file.write(username_info+"\n") file.write(password_info) file.close() #to clear the field once user registerd succesfully username_entry.delete(0, END) password_entry.delete(0, END) #to tell user registration succesfull Label(screen1, text = "Successfully Registered",fg = "Green",font = ("Times new roman",11)).pack() def login_verify(): username1 = username_verify.get() password1 = password_verify.get() username_entry1.delete(0, END) password_entry1.delete(0,END) list_of_files = os.listdir() if username1 in list_of_files: file = open(username1, "r") verify = file.read().splitlines() #read all lines within text files and ignore all blank space if password1 in verify: login_sucess() else: password_not_recognized() else: User_not_found() def register(): global screen1 screen1 = Toplevel(screen) screen1.title("Register") screen1.geometry("300x250") #to define variables outside the fuction we globalies entries global username global password global username_entry global password_entry username = StringVar() password = StringVar() Label(screen1, text = "Please enter details below").pack() Label(screen1, text = "").pack() Label(screen1, text = "Username * ").pack() global username_entry global password_entry username_entry = Entry(screen1, textvariable = username) #to store values in stringvariable username_entry.pack() Label(screen1, text = "Password * ").pack() password_entry = Entry(screen1, textvariable = password) password_entry.pack() Label(screen1, text = "").pack() #to give space between lines Button(screen1, text = "Register", width = 10, height = 1, command = register_user).pack() def Login(): global screen2 screen2 = Toplevel(screen) screen2.title("Login") screen2.geometry("300x250") Label(screen2, text = "Please enter details below to login").pack() Label(screen2, text = "").pack() global username_verify global password_verify username_verify = StringVar() password_verify = StringVar() global username_entry1 global password_entry1 Label(screen2, text = "Username * ").pack() username_entry1 = Entry(screen2, textvariable = username_verify) username_entry1.pack() Label(screen2, text = "").pack() Label(screen2, text = "Password * ").pack() password_entry1 = Entry(screen2, textvariable = password_verify) password_entry1.pack() Label(screen2, text = "").pack() Button(screen2, text = "Login", width = 10, height=1,command=login_verify).pack() def main_screen(): global screen screen = Tk() screen.geometry("300x250") screen.title("Library Management System") Label(text = "Library Management System", bg = "white",fg="#427bff",width="300",height="2", font = ("Times New Roman",43, "bold")).pack() Label(text = "").pack() Button(text = "Login",height = "2", width = "30", command = Login).pack() Label(text = "").pack() Button(text = "Register", height = "2", width = "30", command = register).pack() screen.mainloop() main_screen()
# -*- coding: utf-8 -*- class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def pathSum(self, root, sum): result, _ = self._pathSum(root, sum) return result def _pathSum(self, root, sum): if root is None: return 0, [] leftResult, leftPathSums = self._pathSum(root.left, sum) rightResult, rightPathSums = self._pathSum(root.right, sum) result = leftResult + rightResult + (1 if root.val == sum else 0) pathSums = [root.val] for leftPathSum in leftPathSums: pathSums.append(leftPathSum + root.val) if leftPathSum + root.val == sum: result += 1 for rightPathSum in rightPathSums: pathSums.append(root.val + rightPathSum) if root.val + rightPathSum == sum: result += 1 return result, pathSums if __name__ == "__main__": solution = Solution() t0_0 = TreeNode(10) t0_1 = TreeNode(5) t0_2 = TreeNode(-3) t0_3 = TreeNode(3) t0_4 = TreeNode(2) t0_5 = TreeNode(11) t0_6 = TreeNode(3) t0_7 = TreeNode(-2) t0_8 = TreeNode(1) t0_4.right = t0_8 t0_3.right = t0_7 t0_3.left = t0_6 t0_2.right = t0_5 t0_1.right = t0_4 t0_1.left = t0_3 t0_0.right = t0_2 t0_0.left = t0_1 assert 3 == solution.pathSum(t0_0, 8)
app = None queue = None
# Generated by Django 2.2.20 on 2021-09-28 15:24 from django.db import migrations from django.db.models import DateField, ExpressionWrapper, F from django.utils.timezone import timedelta def add_created_date(apps, schema_editor): Election = apps.get_model("elections", "Election") delta = timedelta(weeks=8) expression = ExpressionWrapper( F("poll_open_date") - delta, output_field=DateField ) Election.private_objects.update(created=expression) class Migration(migrations.Migration): dependencies = [ ("elections", "0061_auto_20210928_1509"), ] operations = [ migrations.RunPython( code=add_created_date, reverse_code=migrations.RunPython.noop ) ]
import datetime import unittest from zoomus import components, util import responses def suite(): """Define all the tests of the module.""" suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(ListV1TestCase)) suite.addTest(unittest.makeSuite(ListV2TestCase)) return suite class ListV1TestCase(unittest.TestCase): def setUp(self): self.component = components.meeting.MeetingComponent( base_uri="http://foo.com", config={ "api_key": "KEY", "api_secret": "SECRET", "version": util.API_VERSION_1, }, ) @responses.activate def test_can_list(self): responses.add( responses.POST, "http://foo.com/meeting/list?host_id=ID&api_key=KEY&api_secret=SECRET", ) self.component.list(host_id="ID") def test_requires_host_id(self): with self.assertRaisesRegexp(ValueError, "'host_id' must be set"): self.component.list() @responses.activate def test_does_convert_startime_to_str_if_datetime(self): responses.add( responses.POST, "http://foo.com/meeting/list?host_id=ID&topic=TOPIC&type=TYPE&start_time=2020-01-01T01%3A01%3A00Z" "&api_key=KEY&api_secret=SECRET", ) start_time = datetime.datetime(2020, 1, 1, 1, 1) self.component.list( host_id="ID", topic="TOPIC", type="TYPE", start_time=start_time ) class ListV2TestCase(unittest.TestCase): def setUp(self): self.component = components.meeting.MeetingComponentV2( base_uri="http://foo.com", config={ "api_key": "KEY", "api_secret": "SECRET", "version": util.API_VERSION_2, }, ) @responses.activate def test_can_list(self): responses.add(responses.GET, "http://foo.com/users/ID/meetings?user_id=ID") self.component.list(user_id="ID") def test_requires_user_id(self): with self.assertRaisesRegexp(ValueError, "'user_id' must be set"): self.component.list() if __name__ == "__main__": unittest.main()
''' Defines the function that starts the gateway. .. Reviewed 11 November 2018. ''' import traceback import threading import logging import mqttgateway.mqtt_client as mqtt import mqttgateway.mqtt_map as mqtt_map from mqttgateway.app_properties import AppProperties from mqttgateway import __version__ LOG = logging.getLogger(__name__) def startgateway(gateway_interface): ''' Entry point.''' AppProperties(app_path=__file__, app_name='mqttgateway') # does nothing if already been called try: _startgateway(gateway_interface) except: LOG.error(''.join(('Fatal error: ', traceback.format_exc()))) raise def _startgateway(gateway_interface): ''' Initialisation of the application and main loop. Initialises the configuration and the log, starts the interface, starts the MQTT communication then starts the main loop. The loop can start in mono or multi threading mode. If the ``loop`` method is defined in the ``gateway_interface`` class, then the loop will operate in a single thread, and this function will actually *loop* forever, calling every time the ``loop`` method of the interface, as well as the ``loop`` method of the MQTT library. If the ``loop`` method is not defined in the ``gateway_interface`` class, then it is assumed that the ``loop_start`` method is defined and it will be launched in a separate thread. The priority given to the mono thread option is for backward compatibility. The data files are: - the configuration file (compulsory), which is necessary at least to define the MQTT broker; a path to it can be provided as first argument of the command line, or the default path will be used; - the map file (optional), if the mapping option is enabled. The rules for providing paths of files are available in the configuration file template as a comment. The same rules apply to the command line argument and to the paths provided in the configuration file. Args: gateway_interface (class): the interface class (not an instance of it!) ''' # Load the configuration ====================================================================== cfg = AppProperties().get_config() # Initialise the logger handlers ============================================================== logfilename = cfg.get('LOG', 'logfilename') if not logfilename: logfilepath = None else: logfilepath = AppProperties().get_path(logfilename, extension='.log') # create the dictionary of log configuration data for the initlogger log_data = { 'console': {'level': cfg.get('LOG', 'consolelevel')}, 'file': {'level': cfg.get('LOG', 'filelevel'), 'path': logfilepath, 'number': cfg.get('LOG', 'filenum'), 'size': cfg.get('LOG', 'filesize')}, 'email': {'host': cfg.get('LOG', 'emailhost'), 'port': cfg.get('LOG', 'emailport'), 'address': cfg.get('LOG', 'emailaddress'), 'subject': ''.join(('Error message from application ', AppProperties().get_name(), '.'))}} log_handler_msg = AppProperties().init_log_handlers(log_data) # Log the configuration used ================================================================== LOG.info('=== APPLICATION STARTED ===') LOG.info(''.join(('mqttgateway version: <', __version__, '>.'))) LOG.info('Configuration options used:') for section in cfg.sections(): for option in cfg.options(section): LOG.info(''.join((' [', section, '].', option, ' : <', str(cfg.get(section, option)), '>.'))) # Exit in case of error processing the configuration file. if cfg.has_section('CONFIG') and cfg.has_option('CONFIG', 'error'): LOG.critical(''.join(('Error while processing the configuration file:\n\t', cfg.get('CONFIG', 'error')))) raise SystemExit # log configuration of the logger handlers LOG.info(log_handler_msg) # Instantiate the gateway interface =========================================================== # Create the dictionary of the parameters for the interface from the configuration file interfaceparams = {} # Collect the interface parameters from the configuration, if any for option in cfg.options('INTERFACE'): interfaceparams[option] = str(cfg.get('INTERFACE', option)) # Create 2 message lists, one incoming, the other outgoing msglist_in = mqtt_map.MsgList() msglist_out = mqtt_map.MsgList() gatewayinterface = gateway_interface(interfaceparams, msglist_in, msglist_out) # Load the map data =========================================================================== mapping_flag = cfg.getboolean('MQTT', 'mapping') mapfilename = cfg.get('MQTT', 'mapfilename') if mapping_flag and mapfilename: try: map_data = AppProperties().get_jsonfile(mapfilename, extension='.map') except (OSError, IOError) as err: LOG.critical(''.join(('Error loading map file:/n/t', str(err)))) raise SystemExit except ValueError as err: LOG.critical(''.join(('Error reading JSON file:/n/t', str(err)))) raise SystemExit else: # use default map - take root and topics from configuration file mqtt_map.NO_MAP['root'] = cfg.get('MQTT', 'root') mqtt_map.NO_MAP['topics'] = [topic.strip() for topic in cfg.get('MQTT', 'topics').split(',')] map_data = None try: messagemap = mqtt_map.msgMap(map_data) # will raise ValueErrors if problems except ValueError as err: LOG.critical(''.join(('Error processing map file:/n/t', str(err)))) # Initialise the MQTT client and connect ====================================================== def process_mqttmsg(mqtt_msg): ''' Converts a MQTT message into an internal message and pushes it on the message list. This function will be called by the on_message MQTT call-back. Placing it here avoids passing the ``messagemap`` and the ``msglist_in`` instances but do not prevent the danger of messing up a multi-threading application. Here if the messagemap is not changed during the application's life (and for now this is not a feature), it should be fine. Args: mqtt_msg (:class:`mqtt.Message`): incoming MQTT message. ''' # TODO: Make sure this works in various cases during multi-threading. try: internal_msg = messagemap.mqtt2internal(mqtt_msg) except ValueError as err: LOG.info(str(err)) return # eliminate echo if internal_msg.sender != messagemap.sender(): msglist_in.push(internal_msg) return timeout = cfg.getfloat('MQTT', 'timeout') # for the MQTT loop() method client_id = cfg.get('MQTT', 'clientid') if not client_id: client_id = AppProperties().get_name() mqttclient = mqtt.mgClient(host=cfg.get('MQTT', 'host'), port=cfg.getint('MQTT', 'port'), keepalive=cfg.getint('MQTT', 'keepalive'), client_id=client_id, on_msg_func=process_mqttmsg, topics=messagemap.topics) mqttclient.mg_connect() def publish_msglist(block=False, timeout=None): ''' Publishes all messages in the outgoing message list.''' while True: # Publish the messages returned, if any. internal_msg = msglist_out.pull(block, timeout) if internal_msg is None: break # should never happen in blocking mode try: mqtt_msg = messagemap.internal2mqtt(internal_msg) except ValueError as err: LOG.info(str(err)) continue published = mqttclient.publish(mqtt_msg.topic, mqtt_msg.payload, qos=0, retain=False) LOG.debug(''.join(('MQTT message published with (rc, mid): ', str(published), '\n\t', mqtt.mqttmsg_str(mqtt_msg)))) return # 2018-10-19 Add code to provide multi threading support if hasattr(gatewayinterface, 'loop') and callable(gatewayinterface.loop): LOG.info('Mono Thread Loop') while True: mqttclient.loop_with_reconnect(timeout) # Call the MQTT loop. gatewayinterface.loop() # Call the interface loop. publish_msglist(block=False, timeout=None) else: # assume 'loop_start' is defined and use multi-threading LOG.info('Multi Thread Loop') publisher = threading.Thread(target=publish_msglist, name='Publisher', kwargs={'block': True, 'timeout': None}) publisher.start() mqttclient.loop_start() # Call the MQTT loop. gatewayinterface.loop_start() # Call the interface loop. block = threading.Event() block.wait() # wait forever - TODO: implement graceful termination
import SimpleHTTPServer import SocketServer Handler = SimpleHTTPServer.SimpleHTTPRequestHandler httpd = SocketServer.TCPServer(('localhost', 80), Handler) httpd.serve_forever()
from django.db.models.signals import post_save from django.contrib.auth.models import User from django.dispatch import receiver from .models import ShinyUserHash from secrets import token_hex @receiver(post_save, sender=User) def create_hash(sender, instance, created, **kwargs): if created: hash = token_hex(16) ShinyUserHash.objects.create(user=instance, user_hash=hash) @receiver(post_save, sender=User) def save_hash(sender, instance, created, **kwargs): instance.shinyuserhash.save()
from panda3d.core import Point3, NodePath, BitMask32, RenderState, ColorAttrib, Vec4, LightAttrib, FogAttrib, LineSegs from panda3d.core import Vec3, LPlane, GeomNode from PyQt5 import QtWidgets, QtCore from .BaseTool import BaseTool from .ToolOptions import ToolOptions from bsp.leveleditor.geometry.Box import Box from bsp.leveleditor.geometry.GeomView import GeomView from bsp.leveleditor.grid.GridSettings import GridSettings from bsp.leveleditor.mapobject.Entity import Entity from bsp.leveleditor import LEUtils, LEGlobals from bsp.leveleditor.actions.Create import Create from bsp.leveleditor.actions.Select import Deselect from bsp.leveleditor.actions.ChangeSelectionMode import ChangeSelectionMode from bsp.leveleditor.selection.SelectionType import SelectionType from bsp.leveleditor.actions.Select import Select from bsp.leveleditor.actions.ActionGroup import ActionGroup from bsp.leveleditor.menu.KeyBind import KeyBind from bsp.leveleditor import LEConfig import random VisState = RenderState.make( ColorAttrib.makeFlat(Vec4(0, 1, 0, 1)), LightAttrib.makeAllOff(), FogAttrib.makeOff() ) class EntityToolOptions(ToolOptions): GlobalPtr = None @staticmethod def getGlobalPtr(): self = EntityToolOptions if not self.GlobalPtr: self.GlobalPtr = EntityToolOptions() return self.GlobalPtr def __init__(self): ToolOptions.__init__(self) lbl = QtWidgets.QLabel("Entity class") self.layout().addWidget(lbl) combo = QtWidgets.QComboBox() self.layout().addWidget(combo) check = QtWidgets.QCheckBox("Random yaw") check.stateChanged.connect(self.__randomYawChecked) self.layout().addWidget(check) self.randomYawCheck = check self.combo = combo self.combo.currentTextChanged.connect(self.__handleClassChanged) self.combo.setEditable(True) self.updateEntityClasses() def setTool(self, tool): ToolOptions.setTool(self, tool) self.combo.setCurrentText(self.tool.classname) self.randomYawCheck.setChecked(self.tool.applyRandomYaw) def __handleClassChanged(self, classname): self.tool.classname = classname def __randomYawChecked(self, state): self.tool.applyRandomYaw = (state == QtCore.Qt.Checked) def updateEntityClasses(self): self.combo.clear() names = [] for ent in base.fgd.entities: if ent.class_type == 'PointClass': names.append(ent.name) names.sort() completer = QtWidgets.QCompleter(names) completer.setCompletionMode(QtWidgets.QCompleter.InlineCompletion) completer.setCaseSensitivity(QtCore.Qt.CaseInsensitive) self.combo.setCompleter(completer) for name in names: self.combo.addItem(name) # Tool used to place an entity in the level. class EntityTool(BaseTool): Name = "Entity" ToolTip = "Entity Tool" KeyBind = KeyBind.EntityTool Icon = "resources/icons/editor-entity.png" def __init__(self, mgr): BaseTool.__init__(self, mgr) self.classname = LEConfig.default_point_entity.getValue() self.applyRandomYaw = False self.pos = Point3(0, 0, 0) self.mouseIsDown = False self.hasPlaced = False # Maintain a constant visual scale for the box in 2D, # but a constant physical scale in 3D. self.size2D = 4 self.size3D = 32 self.boxSize = 0.5 # Setup the visualization of where our entity will be placed # if we use the 2D viewport. self.visRoot = NodePath("entityToolVis") self.visRoot.setColor(Vec4(0, 1, 0, 1), 1) self.visRoot.setLightOff(1) self.visRoot.setFogOff(1) self.box = Box() for vp in self.doc.viewportMgr.viewports: view = self.box.addView(GeomView.Lines, vp.getViewportMask()) if vp.is2D(): view.np.setBin("fixed", LEGlobals.BoxSort) view.np.setDepthWrite(False) view.np.setDepthTest(False) else: view.np.setScale(self.size3D) view.viewport = vp self.box.setMinMax(Point3(-self.boxSize), Point3(self.boxSize)) self.box.np.reparentTo(self.visRoot) self.box.generateGeometry() lines = LineSegs() lines.moveTo(Point3(-10000, 0, 0)) lines.drawTo(Point3(10000, 0, 0)) lines.moveTo(Point3(0, -10000, 0)) lines.drawTo(Point3(0, 10000, 0)) lines.moveTo(Point3(0, 0, -10000)) lines.drawTo(Point3(0, 0, 10000)) self.lines = self.visRoot.attachNewNode(lines.create()) self.options = EntityToolOptions.getGlobalPtr() def cleanup(self): self.classname = None self.pos = None self.mouseIsDown = None self.hasPlaced = None self.size2D = None self.size3D = None self.boxSize = None self.box.cleanup() self.box = None self.lines.removeNode() self.lines = None self.visRoot.removeNode() self.visRoot = None self.applyRandomYaw = None BaseTool.cleanup(self) def enable(self): BaseTool.enable(self) self.reset() def activate(self): BaseTool.activate(self) self.accept('mouse1', self.mouseDown) self.accept('mouse1-up', self.mouseUp) self.accept('mouseMoved', self.mouseMoved) self.accept('enter', self.confirm) self.accept('escape', self.reset) self.accept('arrow_up', self.moveUp) self.accept('arrow_down', self.moveDown) self.accept('arrow_left', self.moveLeft) self.accept('arrow_right', self.moveRight) def disable(self): BaseTool.disable(self) self.reset() def reset(self): self.hideVis() self.mouseIsDown = False self.hasPlaced = False self.pos = Point3(0, 0, 0) def updatePosFromViewport(self, vp): mouse = vp.getMouse() pos = base.snapToGrid(vp.viewportToWorld(mouse, flatten = False)) # Only update the axes used by the viewport for axis in vp.spec.flattenIndices: self.pos[axis] = pos[axis] self.visRoot.setPos(self.pos) self.doc.updateAllViews() def updatePos(self, pos): self.pos = pos self.visRoot.setPos(pos) self.doc.updateAllViews() def hideVis(self): self.visRoot.reparentTo(NodePath()) self.doc.updateAllViews() def showVis(self): self.visRoot.reparentTo(self.doc.render) self.doc.updateAllViews() def mouseDown(self): vp = base.viewportMgr.activeViewport if not vp: return if vp.is3D(): # If we clicked in the 3D viewport, try to intersect with an existing MapObject # and immediately place the entity at the intersection point. If we didn't click on any # MapObject, place the entity on the grid where we clicked. entries = vp.click(GeomNode.getDefaultCollideMask()) if entries and len(entries) > 0: for i in range(len(entries)): entry = entries[i] # Don't backface cull if there is a billboard effect on or above this node if not LEUtils.hasNetBillboard(entry.getIntoNodePath()): surfNorm = entry.getSurfaceNormal(vp.cam).normalized() rayDir = entry.getFrom().getDirection().normalized() if surfNorm.dot(rayDir) >= 0: # Backface cull continue # We clicked on an object, use the contact point as the # location of our new entity. self.pos = entry.getSurfacePoint(self.doc.render) self.hasPlaced = True # Create it! self.confirm() break else: # Didn't click on an object, intersect our mouse ray with the grid plane. plane = LPlane(0, 0, 1, 0) worldMouse = vp.viewportToWorld(vp.getMouse()) theCamera = vp.cam.getPos(render) # Ensure that the camera and mouse positions are on opposite # sides of the plane, or else the entity would place behind us. sign1 = plane.distToPlane(worldMouse) >= 0 sign2 = plane.distToPlane(theCamera) >= 0 if sign1 != sign2: pointOnPlane = Point3() ret = plane.intersectsLine(pointOnPlane, theCamera, worldMouse) if ret: # Our mouse intersected the grid plane. Place an entity at the plane intersection point. self.pos = pointOnPlane self.hasPlaced = True self.confirm() return # The user clicked in the 2D viewport, draw the visualization where they clicked. self.showVis() self.updatePosFromViewport(vp) self.mouseIsDown = True self.hasPlaced = True def mouseMoved(self, vp): if not vp: return if vp.is2D() and self.mouseIsDown: # If the mouse moved in the 2D viewport and the mouse is # currently pressed, update the visualization at the new position self.updatePosFromViewport(vp) def mouseUp(self): self.mouseIsDown = False def confirm(self): if not self.hasPlaced: return if self.applyRandomYaw: yaw = random.uniform(0, 360) else: yaw = 0 ent = Entity(base.document.getNextID()) ent.setClassname(self.classname) ent.np.setPos(self.pos) ent.np.setH(yaw) # Select the entity right away so we can conveniently move it around and # whatever without having to manually select it. base.actionMgr.performAction("Create entity", ActionGroup([ Deselect(all = True), Create(base.document.world.id, ent), ChangeSelectionMode(SelectionType.Groups), Select([ent], False) ]) ) self.reset() def getMoveDelta(self, localDelta, vp): return vp.rotate(localDelta) * GridSettings.DefaultStep def moveUp(self): vp = base.viewportMgr.activeViewport if not vp or not vp.is2D(): return self.updatePos(self.pos + self.getMoveDelta(Vec3.up(), vp)) def moveDown(self): vp = base.viewportMgr.activeViewport if not vp or not vp.is2D(): return self.updatePos(self.pos + self.getMoveDelta(Vec3.down(), vp)) def moveLeft(self): vp = base.viewportMgr.activeViewport if not vp or not vp.is2D(): return self.updatePos(self.pos + self.getMoveDelta(Vec3.left(), vp)) def moveRight(self): vp = base.viewportMgr.activeViewport if not vp or not vp.is2D(): return self.updatePos(self.pos + self.getMoveDelta(Vec3.right(), vp)) def update(self): # Maintain a constant size for the 2D views for view in self.box.views: if view.viewport.is2D(): view.np.setScale(self.size2D / view.viewport.zoom)