text
stringlengths
8
6.05M
#!/usr/bin/env python3 import requests import os import hashlib import io URL_BASE = "https://cse6040.gatech.edu/datasets/" def on_vocareum(): return os.path.exists('.voc') def localize_file(filebase): if on_vocareum(): local_dir = "../resource/asnlib/publicdata/" else: local_dir = "" return "{}{}".format(local_dir, filebase) def download(filebase, local_dir="", url_base=URL_BASE, checksum=None): local_file = localize_file(filebase) if not os.path.exists(local_file): url = "{}{}".format(url_base, filebase) print("Downloading: {} ...".format(url)) r = requests.get(url) with open(local_file, 'wb') as f: f.write(r.content) if checksum is not None: with io.open(local_file, 'rb') as f: body = f.read() body_checksum = hashlib.md5(body).hexdigest() assert body_checksum == checksum, \ "Downloaded file '{}' has incorrect checksum: '{}' instead of '{}'".format(local_file, body_checksum, checksum) print("'{}' is ready!".format(local_file)) return local_file def download_dataset(filebases, **kwargs): for filebase, checksum in filebases.items(): download(filebase, checksum=checksum, **kwargs) # eof
filename='programming.txt' #写入方式写入文件 #with open(filename,'w') as file: #追加方式写入文件 with open(filename,'a') as file: file.write("\nI also love finding meaning in large datasets.\n") file.write("I love creating apps that can run in a browser.\n")
from collections import OrderedDict def clean_list(list_to_clean): return list(OrderedDict.fromkeys(list_to_clean)) if __name__ == '__main__': print(clean_list([32, 32.1, 32.0, -123]))
import cv2 import sys import numpy as np import os if len(sys.argv) < 3: print "Usage : " + sys.argv[0] + " <classifier> <image path>" sys.exit() if not os.path.exists("output"): os.makedirs("output") def getAdaptiveIndices(ar, loc, mAr, mLoc): # Make it adaptive l1, l2, a1, a2 = 0.6, 2.0, 0.6, 2.0 count = len(np.where((ar > a1*mAr) & (ar < a2*mAr))[0]) #while not count == 7 or count == 8: return np.where((ar > a1*mAr) & (ar < a2*mAr))[0] cas = cv2.CascadeClassifier(sys.argv[1]) mva = [] for img in sys.argv[2:]: name = img img = cv2.imread(img, 0) cv2.imshow("img", img); cv2.waitKey(0) #cv2.imwrite("output/" + "input" + ".jpg", img); roi = [] idx = 0 for (a,b,c,d) in cas.detectMultiScale(img, 1.3, 2): if idx == 0: roi = [a, b, c, d] idx = idx + 1 if c > roi[2] or d > roi[3]: roi = [a, b, c, d] if len(roi) == 4: roi = img[roi[1]:roi[1]+roi[3], roi[0]:roi[0]+roi[2]] #cv2.imshow("roi", roi); cv2.waitKey(0); _, otsu = cv2.threshold(roi, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) cv2.imshow("roi", otsu); cv2.waitKey(0) #cv2.imwrite("output/" + "otsu" + ".jpg", otsu); otsuBkup = otsu.copy() contours, hierarchy = cv2.findContours(otsu, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) contours = np.array(contours) ar = [] loc = [] for cnt in contours: ar.append(cv2.contourArea(cnt)) loc.append([np.mean(cnt[:, 0, 0]), np.mean(cnt[:, 0, 1])]) ar = np.array(ar) loc = np.array(loc) mAr = np.mean(ar) mLoc = np.mean(loc) t = getAdaptiveIndices(ar, loc, mAr, mLoc) contoursFil = contours[t] roi_nos = [] idx = 0 l = len(contoursFil) for cnt in contoursFil: x, y, w, h = cv2.boundingRect(cnt) temp = otsuBkup[y:y+h, x:x+w] temp = cv2.resize(temp, (20, 20)) blkCount = len(np.where(temp == 0)[0]) whiteCount = len(np.where(temp == 255)[0]) mva.append(1.0*whiteCount/blkCount) # print blkCount, whiteCount # Compare number of black and white pixels temp = ~temp cv2.imshow("roi_"+str(idx), temp); if idx == l-1: cv2.waitKey(0); #cv2.imwrite("output/" + str(idx) + ".jpg", temp); roi_nos.append(temp) idx = idx + 1
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score # Preprocessing the dataset df = pd.read_csv('../iris.csv') X = df.drop(['variety'], axis=1).values y = df['variety'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # Training the dataset mlp = MLPClassifier(solver='sgd', activation='logistic', batch_size=20, learning_rate_init=0.01, max_iter=1000, hidden_layer_sizes=(6, 3)) mlp.fit(X_train, y_train) # Testing pred = mlp.predict(X_test) print("train = " + str(mlp.score(X_train, y_train))) # on training dataset print("test = " + str(accuracy_score(y_test, pred))) # on testing dataset
# -*- coding: utf-8 -*- """ Created on Tue Feb 20 16:44:24 2018 @author: XuL """ import re import pandas as pd from nltk import tokenize def find_case(x): try: st = re.search(r'Bankr\.|Bank\.', x).span()[0] end = re.search(r'Case No + \d\d_\d\d\d\d\d|\d_\d\d\d\d\d', x).span()[1] case = x[st:end] except: try: rge = re.search(r'Case No +\d\d_\d\d\d\d\d|\d_\d\d\d\d\d', x).span() st = rge[0] end = rge[1] case = x[st:end] except: try: rge = re.search(r' and +\d\d_\d\d\d\d\d|\d_\d\d\d\d\d', x).span() st = rge[0] end = rge[1] case = x[st:end] except: case = "" x = x.replace(case,"") return x def remov_case(x): new_x = find_case(x) while new_x != x: x = new_x new_x = find_case(x) return new_x def pre_process(text): # remove web address try: st = re.search(r'http', text).span()[0] end = re.search(r'\.+(net|com)', text).span()[1] s = text.replace(text[st:end],"") except: s = text # remove dashed line in title search = re.search(r'--------', s) if not (pd.isnull(search)): st = search.span()[0] ed = st while s[ed] == '-': ed += 1 s = re.sub(s[(st-1):(ed)],'.',s) # substitude hyphen in joint words s = re.sub(r'--',',',s) s = re.sub(r'-','_',s) # remove backslash s = re.sub(r'/','',s) # remove comma before and dot after s = re.sub(r', Inc\.', ' INC', s) s = re.sub(r' Inc\.', ' INC', s) s = re.sub(r' INC,', ' INC', s) s = re.sub(r', INC', ' INC', s) s = re.sub(r'Incs', 'INC\'s', s) s = re.sub(r', Esq\.', ' Esq', s) s = re.sub(r' Esq\.', ' Esq', s) s = re.sub(r' Esq,', ' Esq', s) s = re.sub(r', Esq', ' Esq', s) s = re.sub(r', L\.L\.C\.', ' LLC', s) s = re.sub(r' L\.L\.C\.', ' LLC', s) s = re.sub(r' LLC\.', ' LLC', s) s = re.sub(r' LLC,', ' LLC', s) s = re.sub(r', LLC', ' LLC', s) s = re.sub(r', L\.P\.', ' LP', s) s = re.sub(r' L\.P\.', ' LP', s) s = re.sub(r' LP\.', ' LP', s) s = re.sub(r' LP,', ' LP', s) s = re.sub(r', LP', ' LP', s) s = re.sub(r', P\.C\.',' PC', s) s = re.sub(r' P\.C\.',' PC', s) s = re.sub(r' PC\.',' PC', s) s = re.sub(r' PC,',' PC', s) s = re.sub(r', PC',' PC', s) s = re.sub(r', P\.A\.',' PA', s) s = re.sub(r' P\.A\.',' PA', s) s = re.sub(r' PA\.',' PA', s) s = re.sub(r' PA,',' PA', s) s = re.sub(r', PA',' PA', s) s = re.sub(r'General Partnership', 'GP', s) s = re.sub(r', GP', ' GP', s) s = re.sub(r' GP,', ' GP', s) s = re.sub(r', APC', ' APC', s) s = re.sub(r' APC,', ' APC', s) s = re.sub(r' No\.', ' No', s) s = re.sub(r' Nos\.', ' No', s) s = re.sub(r' Nos', ' No', s) s = re.sub(r' et.\ al\.', ' et al', s) s = re.sub(r' et al\.', ' et al', s) s = re.sub(r' et al\.', ' et al', s) s = re.sub(r' et al,', ' et al', s) s = re.sub(r', et al', ' et al', s) s = re.sub(r' et al', ' Et Al', s) # switch uppercase and lowercase s = re.sub(r' Debtors', ' debtors', s) s = re.sub(r' Debtor', ' debtor', s) s = re.sub(r's Motion', '\'s motion', s) s = re.sub(r' Motion', ' motion', s) s = re.sub(r' Is ', ' is ', s) s = re.sub(r' Not ', ' not ', s) s = re.sub(r' Cannot ', ' can not ', s) s = re.sub(r' Files', ' files', s) s = re.sub(r' Filed', ' filed', s) s = re.sub(r' File', ' file', s) s = re.sub(r' Filing', ' filing', s) s = re.sub(r', which filed ', ' filing ', s) s = re.sub(r' dba ', ' DBA ', s) s = re.sub(r' fdba ', ' FDBA ', s) s = re.sub(r' fka ', ' FKA ', s) # convert abbrivations s = re.sub(r' the U\.S\. Bankruptcy Court', ' the court', s) s = re.sub(r' the US Bankruptcy Court', ' the court', s) s = re.sub(r' the United States Bankruptcy Court', ' the court', s) s = re.sub(r' the Court', ' the court', s) s = re.sub(r' Corp\.', ' CORP', s) s = re.sub(r' Co\. ', ' Co ', s) s = re.sub(r' Dev\.', ' Dev', s) s = re.sub(r' Assoc\.', ' Association', s) s = re.sub(r'Mil\.', 'million', s) s = re.sub(r' Hon\. ', ' Hon ', s) s = re.sub(r' Ind\. ', ' Ind ', s) # remove short forms s = s.replace("′", "'").replace("’", "'").\ replace("won't", "will not").replace("cannot", "can not").\ replace("can't", "can not").replace("n't", " not").\ replace("what's", "what is").replace("'ve", " have").\ replace("I'm", "I am").replace("'re", " are").\ replace("%", " percent ").replace("$", " dollar ").\ replace("'ll", " will").replace(" it's ", " its ") # remove bankruptcy case numbers s = remov_case(s) # remove middle names s = re.sub(r'([A-Z])\.([A-Z])\.',r'\1\2',s) # remove non ASCII characters s = s.encode("ascii", errors='ignore') s = str(s, 'utf-8') # remove double commas s = re.sub(r" , ,", ",", s) # remove additional white spaces s = ' '.join(s.split()) return s def sentence_split(text): return tokenize.sent_tokenize(text) def process_filename(s): last = re.search("_\d\d\d\d\d\d\d\d_",s).span()[0] s = s[0:last] s = s.replace("_", " ") return s
# BSD 3-Clause License. # # Copyright (c) 2019-2023 Robert A. Milton. All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE G00DS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Contains the calculation of a single closed Sobol index without storing it.""" from __future__ import annotations from romcomma.base.definitions import * from romcomma.gpr.models import GPR from romcomma.gsa.base import Calibrator, Gaussian, diag_det class ClosedSobol(gf.Module, Calibrator): """ Calculates closed Sobol Indices.""" def _serialize_to_tensors(self): raise NotImplementedError() def _restore_from_tensors(self, restored_tensors): raise NotImplementedError() @classmethod @property def META(cls) -> Dict[str, Any]: """ Default calculation meta. Returns: An empty dictionary. """ return {} def marginalize(self, m: TF.Slice) -> Dict[str, TF.Tensor]: """ Calculate everything. Args: m: A Tf.Tensor pair of ints indicating the slice [m[0]:m[1]]. Returns: The Sobol ClosedSobol of m. """ G, Phi = self.G[..., m[0]:m[1]], self.Phi[..., m[0]:m[1]] result = {'V': self._V(G, Phi)} result['S'] = result['V'] / self.V[2] return result def _V(self, G: TF.Tensor, Phi: TF.Tensor) -> TF.Tensor: """ Calculate V. Args: G: marginalized Gamma: marginalized Returns: V[m], according to marginalization. """ Gamma = 1 - Phi Psi = tf.expand_dims(tf.expand_dims(Gamma, axis=2), axis=2) + Gamma[tf.newaxis, tf.newaxis, ...] # Symmetric in L^4 Psi = Psi - tf.einsum('lLM, jJM -> lLjJM', Gamma, Gamma) # Symmetric in L^4 PsiPhi = tf.einsum('lLjJM, lLM -> lLjJM', Psi, Phi) # Symmetric in L^4 PhiG = tf.expand_dims(tf.einsum('lLM, jJnM -> lLjJnM', Phi, G), axis=2) # Symmetric in L^4 N^2 # print(sym_check(PhiG, [3, 4, 5, 0, 1, 2, 6])) note the symmetry. PhiGauss = Gaussian(mean=G, variance=Phi, is_variance_diagonal=True, LBunch=2) H = Gaussian(mean=PhiG, variance=PsiPhi, ordinate=G[..., tf.newaxis, tf.newaxis, tf.newaxis, :], is_variance_diagonal=True, LBunch=2) H /= PhiGauss.expand_dims([-1, -2, -3]) # Symmetric in L^4 N^2 # print(sym_check(H, [0, 1, 2, 4, 3, 5])) note the symmetry. V = tf.einsum('lLN, lLNjJn, jJn -> lj', self.g0KY, H.pdf, self.g0KY) # Symmetric in L^2 return V def _calibrate(self): """ Called by constructor to calculate all available quantities prior to marginalization. These quantities suffice to calculate V[0], V[M]. """ pre_factor = tf.sqrt(diag_det(self.Lambda2[1][0] * self.Lambda2[-1][1])) * self.F self.g0 = tf.exp(Gaussian(mean=self.gp.X[tf.newaxis, tf.newaxis, ...], variance=self.Lambda2[1][1], is_variance_diagonal=True, LBunch=2).exponent) self.g0 *= pre_factor[..., tf.newaxis] # Symmetric in L^2 self.g0KY = self.g0 * self.K_inv_Y # NOT symmetric in L^2 self.g0KY -= tf.einsum('lLN -> l', self.g0KY)[..., tf.newaxis, tf.newaxis]/tf.cast(tf.reduce_prod(self.g0KY.shape[1:]), dtype=FLOAT()) self.G = tf.einsum('lLM, NM -> lLNM', self.Lambda2[-1][1], self.gp.X) # Symmetric in L^2 self.Phi = self.Lambda2[-1][1] # Symmetric in L^2 self.V = {0: self._V(self.G, self.Phi)} # Symmetric in L^2 self.V |= {1: tf.linalg.diag_part(self.V[0])} V = tf.sqrt(self.V[1]) self.V |= {2: tf.einsum('l, i -> li', V, V)} self.S = self.V[0]/self.V[2] def _Lambda2(self) -> Dict[int, Tuple[TF.Tensor]]: """ Calculate and cache the required powers of <Lambda^2 + J>. Returns: {1: <Lambda^2 + J>, -1: <Lambda^2 + J>^(-1)} for J in {0,1,2}. """ if self.is_F_diagonal: result = tf.einsum('lM, lM -> lM', self.Lambda, self.Lambda)[:, tf.newaxis, :] else: result = tf.einsum('lM, LM -> lLM', self.Lambda, self.Lambda) result = tuple(result + j for j in range(3)) return {1: result, -1: tuple(value**(-1) for value in result)} def __init__(self, gp: GPR, **kwargs: Any): """ Construct a ClosedSobol object. A wide range of values are collected or calculated and cached, especially via the final call to self._calibrate. Args: gp: The gp to analyze. **kwargs: The calculation meta to override META. """ super().__init__() self.gp = gp self.meta = self.META | kwargs # Unwrap data self.L, self.M, self.N = self.gp.L, self.gp.M, self.gp.N self.Ms = tf.constant([0, self.M], dtype=INT()) self.F = tf.constant(self.gp.kernel.data.frames.variance.tf, dtype=FLOAT()) # Cache the training data kernel self.K_cho = tf.constant(self.gp.K_cho, dtype=FLOAT()) self.K_inv_Y = tf.constant(self.gp.K_inv_Y, dtype=FLOAT()) # Determine if F is diagonal self.is_F_diagonal = self.meta.pop('is_F_diagonal', None) if self.is_F_diagonal is None: gp_options = self.gp.read_meta() if self.gp._meta_json.exists() else self.gp.META self.is_F_diagonal = not gp_options.pop('kernel', {}).pop("covariance", False) # Reshape according to is_F_diagonal if self.is_F_diagonal: self.F = self.F if self.F.shape[0] == 1 else tf.linalg.diag_part(self.F) self.F = tf.reshape(self.F, [self.L, 1]) else: self.K_inv_Y = tf.transpose(self.K_inv_Y, [1, 0, 2]) # Set Lambdas self.Lambda = tf.broadcast_to(tf.constant(self.gp.kernel.data.frames.lengthscales.np, dtype=FLOAT()), [self.L, self.M]) self.Lambda2 = self._Lambda2() # Calculate and store values for m=0 and m=M self._calibrate() class ClosedSobolWithError(ClosedSobol): """ Calculates closed Sobol Indices with Errors.""" @classmethod @property def META(cls) -> Dict[str, Any]: """ Default calculation meta. ``is_T_partial`` forces W[Mm] = W[MM] = 0. Returns: is_T_partial: If True this effectively asserts the full ['M'] model is variance free, so WmM is not calculated or returned. """ return {'is_T_partial': True} class RankEquation(NamedTuple): l: str i: str j: str k: str class RankEquations(NamedTuple): DIAGONAL: Any MIXED: Any RANK_EQUATIONS: RankEquations = RankEquations(DIAGONAL=(RankEquation(l='j', i='k', j='l', k='i'), RankEquation(l='k', i='j', j='i', k='l')), MIXED=(RankEquation(l='k', i='k', j='j', k='i'),)) def _equateRanks(self, liLNjkJM: TF.Tensor, rank_eq: RankEquation) -> TF.Tensor: """ Equate the ranks of a tensor, according to eqRanks. Args: liLNjkJM: A tensor which must have ranks liLNjkJM. rank_eq: Which ranks to equate. Returns: LNjkS or LNjiS. """ shape = liLNjkJM.shape.as_list() eqRanks_j = 'j' if shape[4] == 1 else rank_eq.j eqRanks_k = 'k' if shape[5] == 1 else rank_eq.k liLNjkJM = tf.reshape(liLNjkJM, shape[:-2] + [-1]) # TensorFlow only does einsum up to rank 6! if rank_eq in self.RANK_EQUATIONS.MIXED: result = tf.einsum(f'iiLNjkS -> LNjiS', liLNjkJM) else: result = tf.einsum(f'liLN{eqRanks_j}{eqRanks_k}S -> LN{rank_eq.j}{rank_eq.k}S', liLNjkJM) result = tf.reshape(result, result.shape[:-1].as_list() + shape[-2:]) # TensorFlow only does einsum up to rank 6! return tf.einsum(f'LNjjJM -> LNjJM', result)[..., tf.newaxis, :, :] if rank_eq.j == 'i' else result def _equatedRanksGaussian(self, mean: TF.Tensor, variance: TF.Tensor, ordinate: TF.Tensor, rank_eqs: Tuple[RankEquation]) -> List[Gaussian]: """ Equate ranks and calculate Gaussian. Args: mean: liLNjkJn. variance: liLjkJM. ordinate: liLNM and jkJnM. rank_eqs: A tuple of RankEquators to apply. Returns: liLNjkJn. """ result = [] N_axis = 3 for rank_eq in rank_eqs: eq_ranks_variance = self._equateRanks(tf.expand_dims(variance, N_axis), rank_eq)[..., tf.newaxis, :] eq_ranks_mean = self._equateRanks(mean, rank_eq)[..., tf.newaxis, :] shape = tf.concat([eq_ranks_mean.shape[:-2], ordinate.shape[-2:]], axis=0) if tf.rank(ordinate) > 2 else None eq_ranks_mean = (eq_ranks_mean if shape is None else tf.broadcast_to(eq_ranks_mean, shape)) - ordinate result += [Gaussian(mean=eq_ranks_mean, variance=eq_ranks_variance, is_variance_diagonal=True, LBunch=10000)] return result def _OmegaGaussian(self, mp: TF.Slice, G: TF.Tensor, Phi: TF.Tensor, Upsilon: TF.Tensor, rank_eqs: Tuple[RankEquation]) -> List[Gaussian]: """ The Omega integral for m=mp or m=mp=[:M]. Does not apply when m=[0:0]. Args: mp: The marginalization m_primed. G: Un-marginalized. lLNM and jJnM. Phi: Un-marginalized. ikM and jJM. Upsilon: Un-marginalized. ikM. rank_eqs: A tuple of RankEquators to apply. Returns: liLNjkJn. """ Gamma = 1 - Phi Gamma_inv = 1 / Gamma Pi = 1 + Phi + tf.einsum('ikM, ikM, ikM -> ikM', Phi, Gamma_inv, Phi) Pi = 1 / Pi B = tf.einsum('jJM, jJM -> jJM', Gamma, Phi)[tf.newaxis, :, tf.newaxis, ...] B += tf.einsum('jJM, ikM, jJM -> ijkJM', Phi, Pi, Phi) Gamma_reshape = Gamma[:, tf.newaxis, :, tf.newaxis, :] C = Gamma_reshape / (1 - tf.einsum('lLM, ikM -> liLkM', Phi, Upsilon)) C = tf.einsum('ikM, liLkM -> liLkM', (1 - Upsilon), C) Omega = tf.einsum('ikM, ikM, ikM -> ikM', Pi, Phi, Gamma_inv) Omega = tf.einsum('jJM, ikM -> ijkJM', Phi, Omega) mean = tf.einsum('ijkJM, liLkM, lLM, lLNM -> liLNjkJM', Omega, C, Gamma_inv, G) variance = B[tf.newaxis, :, tf.newaxis, ...] + tf.einsum('ijkJM, liLkM, ijkJM -> liLjkJM', Omega, C, Omega) if mp is not self.Ms: variance = variance[..., mp[0]:mp[1]] mean = mean[..., mp[0]:mp[1]] G = G[..., mp[0]:mp[1]] return self._equatedRanksGaussian(mean, variance, G[:, tf.newaxis, ...], rank_eqs) def _UpsilonGaussian(self, G: TF.Tensor, Phi: TF.Tensor, Upsilon: TF.Tensor, rank_eqs: Tuple[RankEquation]) -> List[Gaussian]: """ The Upsilon integral. Args: G: lLNM. Phi: lLM. Upsilon: ikM. rank_eqs: A tuple of RankEquators to apply. Returns: liLNjkJn. """ Upsilon_cho = tf.sqrt(Upsilon) mean = tf.einsum('ikM, lLNM -> liLNkM', Upsilon_cho, G)[..., tf.newaxis, :, tf.newaxis, :] variance = 1 - tf.einsum('ikM, lLM, ikM -> liLkM', Upsilon_cho, Phi, Upsilon_cho)[..., tf.newaxis, :, tf.newaxis, :] return self._equatedRanksGaussian(mean, variance, tf.constant(0, dtype=FLOAT()), rank_eqs) def _mu_phi_mu(self, GGaussian: Gaussian, UpsilonGaussians: List[Gaussian], OmegaGaussians: List[Gaussian], rank_eqs: Tuple[RankEquation]) -> TF.Tensor: """ Calculate E_m E_mp (mu[m] phi[m][mp] mu[mp]). Args: GGaussian: jJn. UpsilonGaussians: liLNjk. OmegaGaussians: liLNjkJn. rank_eqs: A tuple of RankEquators to apply. Returns: li. """ GGaussian = GGaussian.expand_dims([2]) mu_phi_mu = 0.0 for i, rank_eq in enumerate(rank_eqs): OmegaGaussians[i] /= GGaussian OmegaGaussians[i].exponent += UpsilonGaussians[i].exponent if UpsilonGaussians[i].cho_diag.shape[-1] == GGaussian.cho_diag.shape[-1]: OmegaGaussians[i].cho_diag *= UpsilonGaussians[i].cho_diag else: OmegaGaussians[i].cho_diag = (diag_det(OmegaGaussians[i].cho_diag) * diag_det(UpsilonGaussians[i].cho_diag))[..., tf.newaxis] if rank_eq in self.RANK_EQUATIONS.MIXED: result = tf.einsum('kLN, LNjkJn, jJn -> jk', self.g0KY, OmegaGaussians[i].pdf, self.g0KY) mu_phi_mu += tf.einsum('k, jk -> jk', self.mu_phi_mu['pre-factor'], result) mu_phi_mu = tf.linalg.set_diag(mu_phi_mu, 2 * tf.linalg.diag_part(mu_phi_mu)) elif rank_eq.l == 'k' and rank_eq.i == 'j': result = tf.einsum('jLN, LNjkJn, jJn -> j', self.g0KY, OmegaGaussians[i].pdf, self.g0KY) mu_phi_mu += tf.linalg.diag(tf.einsum('j, j -> j', self.mu_phi_mu['pre-factor'], result)) else: result = tf.einsum(f'jLN, LNjkJn, jJn -> jk', self.g0KY, OmegaGaussians[i].pdf, self.g0KY) mu_phi_mu += tf.einsum(f'k, jk -> jk', self.mu_phi_mu['pre-factor'], result) return mu_phi_mu def _psi_factor(self, G: TF.Tensor, Phi: TF.Tensor, GGaussian: Gaussian) -> TF.Tensor: """ Calculate the psi_factor E_m or E_mp for E_m E_mp (mu[m] psi[m][mp] mu[mp]) Args: G: lLNm Phi: lLm GGaussian: lLn Returns: liS """ D = Phi[..., tf.newaxis, tf.newaxis, :] - tf.einsum('lLM, iIM, lLM -> lLiIM', Phi, Phi, Phi) mean = tf.einsum('lLM, iInM -> lLiInM', Phi, G) mean = mean[:, :, tf.newaxis, ...] - G[..., tf.newaxis, tf.newaxis, tf.newaxis, :] gaussian = Gaussian(mean=mean, variance=D, is_variance_diagonal=True, LBunch=2) gaussian /= GGaussian.expand_dims([-1, -2, -3]) factor = tf.einsum('lLN, iIn, lLNiIn -> liIn', self.g0KY, self.g0, gaussian.pdf) if tf.rank(self.K_cho) == 2 and factor.shape[-2] == 1: factor = tf.einsum('lNiI -> liIN', tf.linalg.diag(tf.einsum('liIN -> lNi', factor))) factor = tf.reshape(factor, factor.shape[:-2].as_list() + [-1, 1]) factor = tf.squeeze(tf.linalg.triangular_solve(self.K_cho, factor), axis=-1) return factor def _mu_psi_mu(self, psi_factor: TF.Tensor, rank_eqs: Tuple[RankEquation]) -> TF.Tensor: """ Multiply psi_factors to calculate mu_psi_mu. Args: psi_factor: liS. rank_eqs: A tuple of RankEquators to apply. Returns: li """ first_psi_factor = self.psi_factor if rank_eqs is self.RANK_EQUATIONS.MIXED else psi_factor first_ein = 'liS' if rank_eqs is self.RANK_EQUATIONS.DIAGONAL else 'iiS' result = tf.einsum(f'{first_ein}, liS -> li', first_psi_factor, psi_factor) return tf.linalg.set_diag(result, 2 * tf.linalg.diag_part(result)) def _W(self, mu_phi_mu: TF.Tensor, mu_psi_mu: TF.Tensor) -> TF.Tensor: """ Calculate W. Returns: W[mm] if is_T_partial, else W{mm, Mm} """ W = mu_phi_mu - mu_psi_mu W += tf.transpose(W) return W def _T(self, Wmm: TF.Tensor, WMm: TF.Tensor = None, Vm: TF.Tensor = None) -> TF.Tensor: """ Calculate T Args: Wmm: li WMm: li Vm: li Returns: The closed index uncertainty T. """ if self.meta['is_T_partial']: Q = Wmm else: Q = Wmm - 2 * Vm * WMm / self.V[1] + Vm * Vm * self.Q return tf.sqrt(tf.abs(Q) / self.V[4]) def marginalize(self, m: TF.Slice) -> Dict[str: TF.Tensor]: """ Calculate everything. Args: m: A Tf.Tensor pair of ints indicating the slice [m[0]:m[1]]. Returns: The Sobol ClosedSobol of m, with errors (T and W). """ result = super().marginalize(m) G, Phi, Upsilon = tuple(tensor[..., m[0]:m[1]] for tensor in (self.G, self.Phi, self.Upsilon)) GGaussian = Gaussian(G, Phi, is_variance_diagonal=True, LBunch=2) psi_factor = self._psi_factor(G, Phi, GGaussian) if self.meta['is_T_partial']: UpsilonGaussians = self._UpsilonGaussian(G, Phi, Upsilon, self.RANK_EQUATIONS.DIAGONAL) OmegaGaussians = self._OmegaGaussian(m, self.G, self.Phi, self.Upsilon, self.RANK_EQUATIONS.DIAGONAL) Wmm = self._W(self._mu_phi_mu(GGaussian, UpsilonGaussians, OmegaGaussians, self.RANK_EQUATIONS.DIAGONAL), self._mu_psi_mu(psi_factor, self.RANK_EQUATIONS.DIAGONAL)) result |= {'W': Wmm, 'T': self._T(Wmm)} else: UpsilonGaussians = self.RankEquations(*(self._UpsilonGaussian(G, Phi, Upsilon, rank_eqs) for i, rank_eqs in enumerate(self.RANK_EQUATIONS))) OmegaGaussians = self.RankEquations(*(self._OmegaGaussian(m, self.G, self.Phi, self.Upsilon, rank_eqs) for i, rank_eqs in enumerate(self.RANK_EQUATIONS))) Wmm = (self._W(self._mu_phi_mu(GGaussian, UpsilonGaussians.DIAGONAL, OmegaGaussians.DIAGONAL, self.RANK_EQUATIONS.DIAGONAL), self._mu_psi_mu(psi_factor, self.RANK_EQUATIONS.DIAGONAL))) WMm = self._W(self._mu_phi_mu(GGaussian, self.UpsilonGaussians.MIXED, OmegaGaussians.MIXED, self.RANK_EQUATIONS.MIXED), self._mu_psi_mu(psi_factor, self.RANK_EQUATIONS.MIXED)) result |= {'W': Wmm, 'T': self._T(Wmm, WMm, result['V'])} return result def _calibrate(self): """ Called by constructor to calculate all available quantities prior to marginalization. These quantities suffice to calculate V[0], V[M], A[00], self.A[m0]=A[M0] and self.A[mm]=A[MM] """ super()._calibrate() if not self.is_F_diagonal: raise NotImplementedError('If the MOGP kernel covariance is not diagonal, the Sobol error calculation is unstable.') self.Upsilon = self.Lambda2[-1][2] self.V |= {4: tf.einsum('li, li -> li', self.V[2], self.V[2])} self.mu_phi_mu = {'pre-factor': tf.reshape(tf.sqrt(tf.reduce_prod(self.Lambda2[1][0] * self.Lambda2[-1][2], axis=-1)) * self.F, [-1])} self.mu_phi_mu['pre-factor'] = tf.reshape(self.mu_phi_mu['pre-factor'], [-1]) self.GGaussian = Gaussian(mean=self.G, variance=self.Phi, is_variance_diagonal=True, LBunch=2) self.psi_factor = self._psi_factor(self.G, self.Phi, self.GGaussian) if self.meta['is_T_partial']: self.UpsilonGaussians = self._UpsilonGaussian(self.G, self.Phi, self.Upsilon, self.RANK_EQUATIONS.DIAGONAL) self.OmegaGaussians = self._OmegaGaussian(self.Ms, self.G, self.Phi, self.Upsilon, self.RANK_EQUATIONS.DIAGONAL) self.W = self._W(self._mu_phi_mu(self.GGaussian, self.UpsilonGaussians, self.OmegaGaussians, self.RANK_EQUATIONS.DIAGONAL), self._mu_psi_mu(self.psi_factor, self.RANK_EQUATIONS.DIAGONAL)) else: self.UpsilonGaussians = self.RankEquations(*(self._UpsilonGaussian(self.G, self.Phi, self.Upsilon, rank_eq) for i, rank_eq in enumerate(self.RANK_EQUATIONS))) self.OmegaGaussians = self.RankEquations(*(self._OmegaGaussian(self.Ms, self.G, self.Phi, self.Upsilon, rank_eq) for i, rank_eq in enumerate(self.RANK_EQUATIONS))) self.W = self.RankEquations(*(self._W(self._mu_phi_mu(self.GGaussian, self.UpsilonGaussians[i], self.OmegaGaussians[i], rank_eq), self._mu_psi_mu(self.psi_factor, rank_eq)) for i, rank_eq in enumerate(self.RANK_EQUATIONS))) self.Q = tf.linalg.diag_part(self.W.MIXED) / (4.0 * self.V[1] * self.V[1]) self.Q = self.Q[tf.newaxis, ...] + self.Q[..., tf.newaxis] + 2.0 * tf.linalg.diag(self.Q) self.T = self._T(self.W.DIAGONAL, self.W.MIXED, self.V[0]) class ClosedSobolWithRotation(ClosedSobol): """ Encapsulates the calculation of closed Sobol indices with a rotation U = Theta X.""" def _matrix_inverse(self, tensor: TF.Tensor, I: tf.Tensor = None) -> TF.Tensor: """ Invert the inner matrix of an (L,L,M,M) or (L,L,L,L,M,M) Tensor. Args: tensor: A tensor whose shape matches identity. I: Supply the (L,L,M,M) identity matrix, otherwise the (L,L,L,L,M,M) identity matrix is used. Returns: The inner matrix inverse of tensor. """ if I is None: I = tf.eye(self.M, batch_shape=[1, 1, 1, 1], dtype=FLOAT()) ein = 'IiLlmM, IiLlmJ -> IiLlMJ' else: ein = 'LlmM, LlmJ -> LlMJ' result = tf.linalg.cholesky(tensor) result = tf.linalg.triangular_solve(result, I) return tf.einsum(ein , result, result)
from wtforms_alchemy import ModelForm, ModelFieldList import wtforms as wtf
from eos import SourceManager, JsonDataHandler, JsonCacheHandler from eos.data.exception import ExistingSourceError from flask_migrate import Migrate from flask_sqlalchemy import SQLAlchemy from flask_cache import Cache db = SQLAlchemy() migrate = Migrate() cache = Cache() def configure_extensions(app): """Registers all relevant extensions.""" db.init_app(app) migrate.init_app(app, db) cache.init_app(app) # Eos isn't a proper Flask extension at this time but it still needs app config to but initialized. # If we decide we want to support multiple sources or share this with other Flask applications # we should consider turning this into an extension. data_handler = JsonDataHandler(app.config['EOS_JSON_DATA']) cache_handler = JsonCacheHandler(app.config['EOS_CACHE']) # The test suite is causing this error to be raised... lets just ignore it for now. try: SourceManager.add('tq', data_handler, cache_handler, make_default=True) except ExistingSourceError: pass
from nose.tools import assert_raises, eq_ from eelbrain.plot import _base from eelbrain.plot._base import Layout class InfoObj: "Dummy object to stand in for objects with an info dictionary" def __init__(self, **info): self.info = info def assert_layout_ok(*args, **kwargs): error = None l = Layout(*args, **kwargs) if l.nrow * l.ncol < l.nax: error = ("%i rows * %i cols = %i < %i (nax). args=%%r, kwargs=%%r" % (l.nrow, l.ncol, l.nrow * l.ncol, l.nax)) if error: raise AssertionError(error % (args, kwargs)) def test_layout(): "Test the Layout class" for nax in xrange(1, 100): assert_layout_ok(nax, 1.5, 2, True, w=5) assert_layout_ok(nax, 1.5, 2, True, h=5) assert_layout_ok(nax, 1.5, 2, True, axw=5) assert_layout_ok(nax, 1.5, 2, True, axh=5) assert_layout_ok(nax, 1.5, 2, True, axw=5, w=20) assert_layout_ok(nax, 1.5, 2, True, axw=5, h=20) assert_layout_ok(nax, 1.5, 2, True, axh=5, w=20) assert_layout_ok(nax, 1.5, 2, True, axh=5, h=20) # single axes larger than figure assert_raises(ValueError, Layout, 2, 1.5, 2, True, h=5, axh=6) assert_raises(ValueError, Layout, 2, 1.5, 2, True, w=5, axw=6) def test_vlims(): "Test vlim determination" meas = 'm' # symmetric sym_cmap = 'polar' v1 = InfoObj(meas=meas, cmap=sym_cmap, vmax=2) lims = _base.find_fig_vlims([[v1]]) eq_(lims[meas], (-2, 2)) lims = _base.find_fig_vlims([[v1]], 1) eq_(lims[meas], (-1, 1)) lims = _base.find_fig_vlims([[v1]], 1, 0) eq_(lims[meas], (-1, 1)) # zero-based zero_cmap = 'sig' v2 = InfoObj(meas=meas, cmap=zero_cmap, vmax=2) lims = _base.find_fig_vlims([[v2]]) eq_(lims[meas], (0, 2)) lims = _base.find_fig_vlims([[v2]], 1) eq_(lims[meas], (0, 1)) lims = _base.find_fig_vlims([[v2]], 1, -1) eq_(lims[meas], (0, 1))
import unittest, platform, sys, os import platform from selenium import webdriver from selenium.webdriver.common.keys import Keys from main.activity.desktop_v3.activity_register import registerActivity from main.page.base import * from main.page.desktop_v3.header import * from utils.function.setup import * from utils.function.logger import * fullname = "Mirehehe Hahaha" phone = "081394859148" gender = "Female" email = "tkpd.qc+29@gmail.com" passwd = "12345678" conf_passwd = "12345678" check_tos = "yes" class TokopediaRegister(unittest.TestCase): dict = { "site" : "live", "loop" : 5, "inc" : 800000, "name" : "name", "phone" : "085780548872", "gender" : "Male", "prefix_email" : "tkpd.qc+", "password" : "1234asdf", "confirm_password" : "1234asdf", "check_tos" : "yes" } def setUp(self): #self.driver = webdriver.Firefox() #self.driver = webdriver.Chrome("C:\driver\chromedriver\chromedriver.exe") self.driver = tsetup('chrome') self.obj = registerActivity(self.driver) #sys.stdout = Logger() #function to create log file def test_loop_register(self): print("Automation register loop!") self.obj.set_param(self.dict) self.obj.loop_reg(self.dict['loop']) """def test_fill_registration_form(self): print('================================') print('TEST CASE #1 : REGISTRASI NORMAL') print('================================') driver = self.driver #object activity register = registerActivity() register.test_do_register(driver, fullname, phone, gender, email, passwd, conf_passwd, check_tos)""" """ def test_check_error_message_case1(self): print('======================================================') print('TEST CASE #2 : CHECK ERROR MESSAGE IF ALL FIELD = NULL') print('======================================================') driver = self.driver register = registerActivity(driver) register.check_validasi_input_null(driver)""" """def test_link_register_via_fb(self): print('======================================') print('TEST CASE #3 : REGISTRASI VIA FACEBOOK') print('======================================') driver = self.driver register = registerActivity() register.check_link_register_via_fb(driver) def test_link_register_via_google(self): print('======================================') print('TEST CASE #4 : REGISTRASI VIA GOOGLE+') print('======================================') driver = self.driver register = registerActivity() register.check_link_register_via_google(driver)""" def tearDown(self): print("") self.driver.quit() if __name__ == "__main__": unittest.main(warnings='ignore') #test
import redis client = redis.Redis() client.set('visitor:home', 1) for i in range(0,10): client.incr('visitor:home') print(client.get('visitor:home').decode('utf-8')) print("=======") for i in range(0,10): client.decr('visitor:home') print(client.get('visitor:home').decode('utf-8')) client.delete('visitor:home')
#!/bin/python2 """ openssl enc -d -a -aes-128-cbc -K 41414141414141414141414141414141 -iv 00000000000000000000000000000000 -in <(echo -e $(python2 challenge9.py)) """ import binascii import base64 from Crypto.Cipher import AES from base64 import * def xor(msg, key): ret = bytearray() for i in range(len(msg)): ret.append((msg[i]) ^ (key[i % len(key)])) return ret def read_file(): return b64decode(open("7.txt", "rb").read()) def encrypt_block(msg, key): cipher = AES.new(key, AES.MODE_ECB) return cipher.encrypt(msg) def decrypt_block(msg, key): cipher = AES.new(key, AES.MODE_ECB) return cipher.decrypt(msg) def pad(msg, l): padding = chr(l - len(msg)) * (l - len(msg)) return bytearray(msg + padding) def aes_cbc_encrypt(msg, key, iv = None): block_size = 16 so_far = 0 if iv == None: iv = "\x00" * block_size previous_cipher = iv crypted = bytearray() while True: curent_block = pad(msg[so_far:so_far + block_size], 16) #print curent_block xored_block = xor(bytearray(curent_block), bytearray(previous_cipher)) cipher = encrypt_block(buffer(xored_block),key) previous_cipher = cipher crypted += cipher so_far += 16 if so_far >= len(msg): break return crypted def aes_cbc_decrypt(msg, key, iv = None): block_size = 16 so_far = 0 if iv == None: iv = "\x00" * block_size previous_cipher = iv decrypted = bytearray() while True: curent_block = msg[so_far:so_far + block_size] if len(curent_block) != block_size: raise Exception("bad decrypt: incorrect block size") dec = decrypt_block(buffer(curent_block), key) xored_block = xor(bytearray(dec), bytearray(previous_cipher)) previous_cipher = curent_block decrypted += xored_block so_far += 16 if so_far >= len(msg): break return decrypted if __name__ == '__main__': file_contents = base64.b64decode(open("10.txt","rb").read()) print aes_cbc_decrypt(file_contents, "YELLOW SUBMARINE", "0" * 16)
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.shortcuts import render from default.models import ContentTemplates # Create your views here. def index(request): template_data = ContentTemplates.objects.get(template_name='index') return render(request, 'index.html', {'template_data':template_data}) def aboutus(request): template_data = ContentTemplates.objects.get(template_name='aboutus') return render(request, 'aboutus.html', {'template_data':template_data})
# Generated by Django 2.2.1 on 2019-05-17 23:54 from django.db import migrations import tinymce.models class Migration(migrations.Migration): dependencies = [ ('partners', '0002_partner_partner_logo'), ] operations = [ migrations.AddField( model_name='partner', name='partner_description', field=tinymce.models.HTMLField(blank=True, verbose_name='Content'), ), ]
import unittest from katas.kyu_7.remove_duplicates import unique class UniqueTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(unique([]), []) def test_equals_2(self): self.assertEqual(unique([5, 2, 1, 3]), [5, 2, 1, 3]) def test_equals_3(self): self.assertEqual(unique([1, 5, 2, 0, 2, -3, 1, 10]), [1, 5, 2, 0, -3, 10])
import Mumble_pb2, socket, ssl, struct, sys, select from datetime import datetime from threading import Thread class Mumbot: ca_file = 'mumble-ca.crt' payloads = { 0: Mumble_pb2.Version, 1: Mumble_pb2.UDPTunnel, 2: Mumble_pb2.Authenticate, 3: Mumble_pb2.Ping, 4: Mumble_pb2.Reject, 5: Mumble_pb2.ServerSync, 6: Mumble_pb2.ChannelRemove, 7: Mumble_pb2.ChannelState, 8: Mumble_pb2.UserRemove, 9: Mumble_pb2.UserState, 10: Mumble_pb2.BanList, 11: Mumble_pb2.TextMessage, 12: Mumble_pb2.PermissionDenied, 13: Mumble_pb2.ACL, 14: Mumble_pb2.QueryUsers, 15: Mumble_pb2.CryptSetup, 16: Mumble_pb2.ContextActionModify, 17: Mumble_pb2.ContextAction, 18: Mumble_pb2.UserList, 19: Mumble_pb2.VoiceTarget, 20: Mumble_pb2.PermissionQuery, 21: Mumble_pb2.CodecVersion, 22: Mumble_pb2.UserStats, 23: Mumble_pb2.RequestBlob, 24: Mumble_pb2.ServerConfig, 25: Mumble_pb2.SuggestConfig } def __init__(self, host, username, password): self.host = host self.username = username self.password = password def savecert(self): sock = ssl.wrap_socket( socket.socket(socket.AF_INET, socket.SOCK_STREAM), ssl_version=ssl.PROTOCOL_TLSv1) # Connect to server without checking cert try: sock.connect((self.host, 64738)) except ssl.SSLError: pass else: # Save cert to ca file c = ssl.DER_cert_to_PEM_cert(sock.getpeercert(True)) with open(Mumbot.ca_file, 'a') as certfile: certfile.write(c) sock.close() def recv(self): # Payload prefix prefix = self.sock.recv(6) if (len(prefix) <= 0): return (-1, None) type, length = struct.unpack('>hL', prefix) # Receive payload data = self.sock.recv(length) if (len(data) <= 0): return (-1, None) # Return protobuf obj obj = Mumbot.payloads[type]() try: obj.ParseFromString(data) return (type, obj) except: return (type, None) def send(self, payload): type = 0 data = payload.SerializeToString() length = len(data) # Find type no. for t in Mumbot.payloads: if isinstance(payload, Mumbot.payloads[t]): type = t break self.sock.send(struct.pack('>hL', type, length) + data) def start(self): self.sock = ssl.wrap_socket( socket.socket(socket.AF_INET, socket.SOCK_STREAM), ca_certs=Mumbot.ca_file, cert_reqs=ssl.CERT_REQUIRED, ssl_version=ssl.PROTOCOL_TLSv1) print('Connecting..') self.sock.connect((self.host, 64738)) print('Connected.') print('Exchanging versions') self.recv() # Read server version ver = Mumbot.payloads[0]() ver.version = 66053 # 1.2.5 ver.release = '1.2.5-233-gafa6ee4' ver.os = 'Mumbot' ver.os_version = 'v0.1' self.send(ver) # Send Mumbot version print('Authenticating') auth = Mumbot.payloads[2]() auth.username = self.username auth.password = self.password self.send(auth) # Authenticate # Wait for CryptSetup # Holds key and nonces for connecting to voice using UDP t, crypt = self.recv() if t == 4: # Reject print('Authentication rejected.') self.sock.close() return else: # Start UDP thread print('Authenticated') print('Syncing with server') while True: t, o = self.recv() if t == 5: # ServerSync print('Finished syncing') print('Welcome message: ' + o.welcome_text) break self.recv() # Discard ServerConfig # Main loop ping = 10 timer = datetime.now() while True: ready = select.select([self.sock], [], [], ping) if ready[0]: t, o = self.recv() if t in [1, 3]: pass # Ignore TCP voip tunneling and pings else: print(o) # Print interesting things if (datetime.now() - timer).seconds >= ping: self.send(Mumbot.payloads[3]()) # Send empty Ping payload timer = datetime.now() def main(): if (len(sys.argv) != 4): print('Usage: ' + sys.argv[0] + ' <host> <username> <password>') return _, host, username, password = sys.argv m = Mumbot(host, username, password) try: m.start() except ssl.SSLError: print('Server certificate unknown.') if raw_input('Wanna save it? [yN]: ').lower() == 'y': m.savecert() m.start() main()
"""ChanLun URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin from Main import views urlpatterns = [ url(r'^main$', views.Main), url(r'^KXian$', views.KXian), url(r'^getOneData$', views.getOneData, name='getOneData'), url(r'^getUserId$', views.getUserId, name='getUserId'), url(r'^RealNewPrice$', views.getNewPrice, name='getNewPrice'), url(r'^ZXG_Recommend$', views.getZXG_Recommend, name='ZXG_Recommend'), url(r'^MyZXG$', views.getMyZXG, name='getMyZXG'), url(r'^OneQuotation$', views.getOneQuotation, name='getOneQuotation'), url(r'^getKLines', views.GetKLines, name='GetKLines') ]
'''server.py -- A simple tornado server 2014.May : Mendez ''' import os import sys import tornado.web import tornado.ioloop import weather import reddit from datetime import datetime HOSTNAME = 'localhost' PORT = 5555 # TODO: create a scheduler to run updates at specific times w = weather.Weather() w.update() r = reddit.Reddit() r.load() class MainHandler(tornado.web.RequestHandler): '''Handles the web requests''' def get(self): items = ['a','b'] time = datetime.now() self.render('home.html', items=items, time=time, weather=w.display(), # weather=None, reddit=r.display()) sys.stdout.write('.') sys.stdout.flush() def server(hostname, port): '''Setup the server on this port''' print 'Starting the Server: http://{}:{}'.format(hostname,port) try: mainpath = os.path.dirname(__file__) settings = dict( template_path = os.path.join(mainpath, "templates"), debug = True, ) handlers = [ (r"/", MainHandler), (r"/static/(.*)", tornado.web.StaticFileHandler, {"path": os.path.join(mainpath,'static')}), ] application = tornado.web.Application(handlers, **settings) application.listen(port) tornado.ioloop.IOLoop.instance().start() except KeyboardInterrupt: print 'Bye!' except: raise if __name__ == '__main__': server(HOSTNAME, PORT)
lines = [] for _ in range(100): try: line = input() lines.append(line) except EOFError: break [print(line) for line in lines]
# -*- coding: utf-8 -*- """asyncio unit tests with Django transactional support.""" # :copyright: (c) 2015 Alex Hayes and individual contributors, # All rights reserved. # :license: MIT License, see LICENSE for more details. from collections import namedtuple version_info_t = namedtuple( 'version_info_t', ('major', 'minor', 'micro', 'releaselevel', 'serial'), ) VERSION = version_info_t(0, 2, 2, '', '') __version__ = '{0.major}.{0.minor}.{0.micro}{0.releaselevel}'.format(VERSION) __author__ = 'Alex Hayes' __contact__ = 'alex@alution.com' __homepage__ = 'http://github.com/alexhayes/django-async-test' __docformat__ = 'restructuredtext' # -eof meta- # Import all of asynctest from asynctest.case import * from asynctest.mock import * from asynctest.helpers import * from asynctest.selector import * # Now import our TestCase from .testcase import TestCase
# -*- coding: utf-8 -*- from django.contrib.auth import login from django.shortcuts import redirect, get_object_or_404 from django.contrib.auth.decorators import login_required from django.contrib.auth.decorators import user_passes_test from annoying.decorators import render_to from django.contrib.auth.models import User from Professor.models import Professor, Monitor from Professor.views.utils import prof_monit_exist from Avaliacao.models import TemplateAvaliacao, Avaliacao from Avaliacao.Questao.models import QuestaoDeAvaliacao from Avaliacao.Questao.forms import AlterarNotaQuestaoForm @prof_monit_exist @login_required @render_to('professor/consultar.html') def consultar(request): prof=None monitor=None try: prof = request.user.professor_set.get() except Professor.DoesNotExist: try: monitor = request.user.monitor_set.get() except Monitor.DoesNotExist: return redirect('/') template_id = request.GET.get('template',None) avaliacao_id = request.GET.get('avaliacao',None) questao_id = request.GET.get('questao',None) template = None if template_id != None: template = get_object_or_404(TemplateAvaliacao,id=template_id) elif avaliacao_id != None: avaliacao = get_object_or_404(Avaliacao,id=avaliacao_id) template=avaliacao.templateAvaliacao elif questao_id != None: questao = get_object_or_404(QuestaoDeAvaliacao,id=questao_id) if request.POST: form_questao = AlterarNotaQuestaoForm(request.POST, instance=questao) form_questao.save() else: form_questao = AlterarNotaQuestaoForm(instance=questao) template=questao.avaliacao.templateAvaliacao if prof != None: if template == None: templates = TemplateAvaliacao.objects.filter(turma__in=prof.turmas.all(),ativa=False) return locals() if not template.verifica_professor(prof): return redirect('/') else: if template == None: templates = TemplateAvaliacao.objects.filter(turma__in=monitor.materia.turmas.all(),ativa=False) return locals() if not template.verifica_monitor(monitor): return redirect('/') template = None if template_id == None else template return locals()
import csv import spacy import pandas as pd from gensim.models import word2vec import os import csv import sys import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader import pickle TEST_X_PATH = sys.argv[1] test_data = pd.read_csv(TEST_X_PATH) test_x = test_data['comment'].values nlp = spacy.load("en_core_web_sm") useless_word = ['.@user', '@user', '..', '...', '@', '*', '#', '&', 'URL', ' ', ' ', ' '] def loadpkl(): with open('word_to_ix.pkl', 'rb') as f: return pickle.load(f) word_to_ix =loadpkl() test_data = [] # should be a list of lists!!! for row in test_x: doc = nlp(row) inner_list = [] for token in doc: if token.text in useless_word: continue inner_list.append(token.text) test_data.append(inner_list) with open('corpus.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile, delimiter=' ') for row in test_data : writer.writerow(row) sentences = word2vec.LineSentence('corpus.csv') test_data = [] for i, data in enumerate(sentences): test_data.append(data) cuda = True if torch.cuda.is_available() else False # sentences = word2vec.LineSentence(seg_test_x) # test_data = [] # for i, data in enumerate(sentences): # test_data.append(data) def text2index(corpus, to_ix): # corpus: 語料庫 should be a list of lists new_corpus = [] for seq in corpus: vec = np.zeros(len(to_ix)) for word in seq: vec[word_to_ix[word]] += 1 new_corpus.append(vec) return np.array(new_corpus, dtype=np.float32) test_data = text2index(test_data, word_to_ix) test_loader = DataLoader(dataset=test_data, batch_size=32, shuffle=False, num_workers=4) class BoWClassifier(nn.Module): def __init__(self, num_labels, vocab_size): super(BoWClassifier, self).__init__() self.linear = nn.Linear(vocab_size, num_labels) def forward(self, bow_vec): return F.log_softmax(self.linear(bow_vec), dim=1) model =torch.load("bow_dnn_best.pkl",map_location = "cpu") ans = [] model.eval() with torch.no_grad(): for instance in test_loader: if cuda: instance = instance.cuda() log_probs = model(instance) _, predicted = torch.max(log_probs.data, 1) predicted = predicted.cpu().numpy() ans.extend(predicted) ### Write file with open(sys.argv[2],"w") as f: # 'results/predict.csv' w = csv.writer(f) title = ['id','label'] w.writerow(title) for i in range(len(ans)): content = [i,ans[i]] w.writerow(content)
data = "" elf_counter = {} with open("inputData.txt", "r") as infile: """ Process inputData.txt and put it into the data array. """ for line in infile: data = int(line) def get_factors(number): """ Note: Taken from Stack Overflow http://stackoverflow.com/a/6800214 :param number: Number to factorize :return: Set of factors for this number """ return set(reduce(list.__add__, ([i, number // i] for i in range(1, int(number ** 0.5) + 1) if number % i == 0))) def get_result(number): """ :param number: House number :return: The number of presents in the house of that number """ result = get_factors(number) result = remove_unwanted_elves(result) register_delivery(result) return sum(result) * 11 def remove_unwanted_elves(elves): """ Removes elves that have already delivered to 50 houses :param elves: set of elves to check :return: new set, with disqualified elves removed """ new_set = elves.copy() for elf in elves: if elf in elf_counter and elf_counter[elf] >= 50: new_set.discard(elf) return new_set def register_delivery(elves): """ Ticks every elf up by 1 in the elf_counter :param elves: set of elves to tick up :return: nothing """ for elf in elves: if elf in elf_counter: elf_counter[elf] += 1 else: elf_counter[elf] = 1 result_so_far = 0 ticker = 0 while result_so_far < data: ticker += 1 result_so_far = get_result(ticker) print("Answer: House #" + str(ticker))
# -*- python -*- # Insertion Sort # # Build an algorithm for insertion sort. Please watch the video here to understand how insertion sort works and implement the code. The following gif also shows how insertion sort is done. # # Again, write the pseudo-code first and test your base cases before you build your code next. # # Please refrain from checking other people's code. If your code does NOT work as intended make sure (1) that you're writing pseudo-code first, (2) that your pseudo-code solves your base case, and (3) that your pseudo-code solves other base cases you have specified. # # Sometimes, if you are stuck for too long, you need to just start all over as this can be more efficient to do than dwelling on old code with bugs that are hard to trace. # def insertion_sort( ary ): # for n in range( 1, len( ary ) ): # i = n - 1 # print "Debug: insertion_sort: (before) ary={} n={} i={}".format( ary, n, i ) # while i >= 0: # if ary[n] < ary[i]: # i -= 1 # else: # print "Debug: insertion_sort: (during) ary={} n={} i={}".format( ary, n, i ) # ary = ary[0:i-1] + ary[n:n+1] + ary[i:n-1] # break # print "Debug: insertion_sort: (after) ary={} n={} i={}".format( ary, n, i ) # return( ary ) # # return( ary ) def insertion_sort( ary ): for n in range( 1, len( ary ) ): n_ins = -1 for i in range( n ): if ary[n] < ary[i]: n_ins = i break if n_ins != -1: ary = ary[0:n_ins] + ary[n:n+1] + ary[n_ins:n] + ary[n+1:] return( ary ) # Testing ary0 = [1, 5, 3, 4, 2] print "Ary:", ary0 aryR = insertion_sort( ary0 ) print "Sorted:", aryR ary1 = [5, 4, 3, 2, 1] print "Ary:", ary1 aryR = insertion_sort( ary1 ) print "Sorted:", aryR ary2 = [1, 2, 3, 4, 5] print "Ary:", ary2 aryR = insertion_sort( ary1 ) print "Sorted:", aryR
import os import re import sys import shutil import logging SPARK_VERSIONS_FILE_PATTERN = "spark-(.*)-bin-(?:hadoop)?(.*)" SPARK_VERSIONS_URL = "https://raw.githubusercontent.com/rstudio/spark-install/master/common/versions.json" WINUTILS_URL = "https://github.com/steveloughran/winutils/archive/master.zip" NL = os.linesep def _verify_java(): import subprocess try: import re output = subprocess.check_output(["java", "-version"], stderr=subprocess.STDOUT) logging.debug(output) match = re.search(b"(\d+\.\d+)", output) if match: logging.debug("Found a match") if match.group() == b'1.8': logging.info("Found Java version 8, continuing.") return True else: logging.info("Did not detect Java Version 8, please install Java 8 before continuing.") return False else: logging.info("Java could not be detected on this system, please install Java 8 before continuing.") return False except: logging.info("Warning: Java was not found in your path. Please ensure that Java 8 is configured correctly otherwise launching the gateway will fail") return False def _file_age_days(jsonfile): from datetime import datetime ctime = os.stat(jsonfile).st_ctime return (datetime.fromtimestamp(ctime) - datetime.now()).days def _combine_versions(spark_version, hadoop_version): return spark_version + " " + hadoop_version def _download_file(url, local_file): try: from urllib import urlretrieve except ImportError: from urllib.request import urlretrieve urlretrieve(url, local_file) def spark_can_install(): install_dir = spark_install_dir() if not os.path.isdir(install_dir): os.makedirs(install_dir) def spark_versions_initialize(connecting=False): import json spark_can_install() jsonfile = os.path.join(spark_install_dir(), "versions.json") if not os.path.isfile(jsonfile) or _file_age_days(jsonfile) > 30 or connecting: logging.info("Downloading %s to %s" % (SPARK_VERSIONS_URL, jsonfile)) _download_file(SPARK_VERSIONS_URL, jsonfile) with open(jsonfile) as jf: return json.load(jf) def spark_versions(connecting=False): versions = spark_versions_initialize(connecting) installed = set([_combine_versions(v["spark"], v["hadoop"]) for v in spark_installed_versions()]) for v in versions: v["installed"] = _combine_versions(v["spark"], v["hadoop"]) in installed return versions def spark_versions_info(spark_version, hadoop_version): versions = [v for v in spark_versions() if v["spark"] == spark_version and v["hadoop"] == hadoop_version] if versions == []: raise ValueError("Unable to find Spark version: %s and Hadoop version: %s" % (spark_version, hadoop_version)) package_name = versions[0]["pattern"]%(spark_version, hadoop_version) component_name = os.path.splitext(package_name)[0] package_remote_path = versions[0]["base"] + package_name return {"component_name": component_name, "package_name": package_name, "package_remote_path": package_remote_path} def spark_installed_versions(): base_dir = spark_install_dir() versions = [] for candidate in os.listdir(base_dir): match = re.match(SPARK_VERSIONS_FILE_PATTERN, candidate) fullpath = os.path.join(base_dir, candidate) if os.path.isdir(fullpath) and match: versions.append({"spark": match.group(1), "hadoop": match.group(2), "dir": fullpath}) return versions def spark_install_available(spark_version, hadoop_version): info = spark_install_info(spark_version, hadoop_version) return os.path.isdir(info["spark_version_dir"]) def spark_install_find(spark_version=None, hadoop_version=None, installed_only=True, connecting=False): versions = spark_versions(connecting) if installed_only: versions = filter(lambda v: v["installed"], versions) if spark_version: versions = filter(lambda v: v["spark"] == spark_version, versions) if hadoop_version: versions = filter(lambda v: v["hadoop"] == hadoop_version, versions) versions = list(versions) if versions == []: logging.critical("Please select an available version pair for Spark and Hadoop from the following list: ") available_versions = spark_versions_initialize(connecting) sep = "+" + "-"*18 + "+" fmt = "|{:>8}| {:>8}|" logging.critical(NL + NL.join([sep] + [fmt.format("Spark", "Hadoop")] + [sep] + [fmt.format(v["spark"], v["hadoop"]) for v in available_versions] + [sep])) raise RuntimeError("Unrecognized combination of Spark/Hadoop versions: (%s, %s). Please select a valid pair of Spark and Hadoop versions to download."%(spark_version, hadoop_version)) candidate = sorted(versions, key=lambda rec: _combine_versions(rec["spark"], rec["hadoop"]))[-1] return spark_install_info(candidate["spark"], candidate["hadoop"]) def spark_default_version(): if len(spark_installed_versions()) > 0: version = spark_install_find() else: version = sorted(spark_versions_initialize(), key=lambda rec: _combine_versions(rec["spark"], rec["hadoop"]))[-1] return {"spark": version["spark"], "hadoop": version["hadoop"]} def spark_install_info(spark_version, hadoop_version): info = spark_versions_info(spark_version, hadoop_version) component_name = info["component_name"] package_name = info["package_name"] package_remote_path = info["package_remote_path"] spark_dir = spark_install_dir() spark_version_dir = os.path.join(spark_dir, component_name) return {"spark_dir": spark_dir, "package_local_path": os.path.join(spark_dir, package_name), "package_remote_path": package_remote_path, "spark_version_dir": spark_version_dir, "spark_conf_dir": os.path.join(spark_version_dir, "conf"), "spark": spark_version, "hadoop": hadoop_version, "installed": os.path.isdir(spark_version_dir)} def spark_uninstall(spark_version, hadoop_version): logging.debug("Inside uninstall routine.") info = spark_versions_info(spark_version, hadoop_version) spark_dir = os.path.join(spark_install_dir(), info["component_name"]) shutil.rmtree(spark_dir, ignore_errors=True) logging.debug("File tree removed.") def spark_install_dir(): homedir = os.getenv("LOCALAPPDATA") if sys.platform == "win32" else os.getenv("HOME") return os.getenv("SPARK_INSTALL_DIR", os.path.join(homedir, "spark")) def spark_conf_log4j_set_value(install_info, properties, reset): log4jproperties_file = os.path.join(install_info["spark_conf_dir"], "log4j.properties") if not os.path.isfile(log4jproperties_file) or reset: template = os.path.join(install_info["spark_conf_dir"], "log4j.properties.template") shutil.copyfile(template, log4jproperties_file) with open(log4jproperties_file, "r") as infile: lines = infile.readlines() for i in range(len(lines)): if lines[i].startswith("#") or "=" not in lines[i]: continue k, v = lines[i].split("=") lines[i] = "=".join((k, properties.get(k, v))) if k in properties: del properties[k] with open(log4jproperties_file, "w") as outfile: outfile.writelines([line + NL for line in lines]) #Now write out values in Properties that didn't have base values in the template for key, value in properties.items(): newline = "=".join((key, value)) outfile.writelines([newline + NL]) def spark_hive_file_set_value(hive_path, properties): with open(hive_path, "w") as hive_file: hive_file.write("<configuration>" + NL) for k, v in properties.items(): hive_file.write(NL.join([" <property>", " <name>" + k + "</name>", " <value>" + str(v) + "</value>", " </property>" + NL])) hive_file.write("</configuration>" + NL) def spark_conf_file_set_value(install_info, properties, reset): spark_conf_file = os.path.join(install_info["spark_conf_dir"], "spark-defaults.conf") if not os.path.isfile(spark_conf_file) or reset: template = os.path.join(install_info["spark_conf_dir"], "spark-defaults.conf.template") shutil.copyfile(template, spark_conf_file) max_key_len = 35 with open(spark_conf_file, "r") as infile: lines = infile.readlines() for i in range(len(lines)): if lines[i].startswith("#") or " " not in lines[i]: continue k, v = lines[i].split() lines[i] = ' '.join((k.lpad(max_key_len), properties.get(k, v))) with open(spark_conf_file, "w") as outfile: outfile.writelines([line + NL for line in lines]) def spark_set_env_vars(spark_version_dir): import glob zipfiles = glob.glob(os.path.join(spark_version_dir, "python", "lib", "*.zip")) if zipfiles != [] and zipfiles[0] not in sys.path: position = [index for (index, path) in enumerate(sys.path) if re.match(SPARK_VERSIONS_FILE_PATTERN, path)] or len(sys.path) sys.path = sys.path[:position] + zipfiles + sys.path[position:] persistent_vars = {} path_delim = ";" if sys.platform == "win32" else ":" path_values = os.environ.get("PYTHONPATH", "").split(path_delim) if zipfiles != [] and zipfiles[0] not in path_values: position = [index for (index, path) in enumerate(path_values) if re.match(SPARK_VERSIONS_FILE_PATTERN, path)] or len(path_values) path_values = path_values[:position] + zipfiles + path_values[position:] os.environ["PYTHONPATH"] = path_delim.join(path_values) persistent_vars["PYTHONPATH"] = path_delim.join(path_values) if os.environ.get("SPARK_HOME", "") != spark_version_dir: os.environ["SPARK_HOME"] = spark_version_dir persistent_vars["SPARK_HOME"] = spark_version_dir if persistent_vars == {}: return if sys.platform == "win32": try: import _winreg as winreg except ImportError: import winreg logging.info("Setting the following variables in your registry under HKEY_CURRENT_USER\\Environment:") for k, v in persistent_vars.items(): logging.info("%s = %s (REG_SZ)" % (k, v)) with winreg.OpenKey(winreg.HKEY_CURRENT_USER, "Environment", 0, winreg.KEY_SET_VALUE) as hkey: for value, value_data in persistent_vars.items(): winreg.SetValueEx(hkey, value, 0, winreg.REG_SZ, value_data) try: import win32gui, win32con win32gui.SendMessageTimeout(win32con.HWND_BROADCAST, win32con.WM_SETTINGCHANGE, 0, "Environment", win32con.SMTO_ABORTIFHUNG, 5000) except ImportError: logging.warning("Could not refresh the registry, please install the PyWin32 package") else: logging.info("Set the following environment variables in your initialization file such as ~/.bashrc: ") for k, v in persistent_vars.items(): logging.info("export %s = %s" % (k, v)) def spark_remove_env_vars(): # Remove env variables since there's no other spark installed. os.environ.pop("SPARK_HOME") os.environ.pop("PYTHONPATH") os.unsetenv("SPARK_HOME") os.unsetenv("PYTHONPATH") def spark_install_winutils(spark_dir, hadoop_version): import glob if not os.path.isdir(os.path.join(spark_dir, "winutils-master")): _download_file(WINUTILS_URL, os.path.join(spark_dir, "winutils-master.zip")) from zipfile import ZipFile with ZipFile(os.path.join(spark_dir, "winutils-master.zip")) as zf: zf.extractall(spark_dir) candidates = glob.glob(os.path.join(spark_dir, "winutils-master", "hadoop-" + hadoop_version + "*")) if candidates == []: logging.info("No compatible WinUtils found for Hadoop version %s." % hadoop_version) return os.environ["HADOOP_HOME"] = candidates[-1] def spark_install(spark_version=None, hadoop_version=None, reset=True, loglevel="INFO"): info = spark_install_find(spark_version, hadoop_version, installed_only=False) spark_can_install() logging.info("Installing and configuring Spark version: %s, Hadoop version: %s" % (info["spark"], info["hadoop"])) if not os.path.isdir(info["spark_version_dir"]): if not os.path.isfile(info["package_local_path"]): import urllib logging.info("Downloading %s into %s" % (info["package_remote_path"], info["package_local_path"])) _download_file(info["package_remote_path"], info["package_local_path"]) logging.info("Extracting %s into %s" % (info["package_local_path"], info["spark_dir"])) import tarfile with tarfile.open(info["package_local_path"]) as tf: tf.extractall(info["spark_dir"]) if loglevel: from collections import OrderedDict configs = OrderedDict() configs["log4j.rootCategory"] = ",".join((loglevel, "console", "localfile")) configs["log4j.appender.localfile"] = "org.apache.log4j.DailyRollingFileAppender" configs["log4j.appender.localfile.file"] = "log4j.spark.log" configs["log4j.appender.localfile.layout"] = "org.apache.log4j.PatternLayout" configs["log4j.appender.localfile.layout.ConversionPattern"] = "%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n" spark_conf_log4j_set_value(info, configs, reset) hive_site_path = os.path.join(info["spark_conf_dir"], "hive-site.xml") hive_path = None if not os.path.isfile(hive_site_path) or reset: hive_properties = OrderedDict() hive_properties["javax.jdo.option.ConnectionURL"] = "jdbc:derby:memory:databaseName=metastore_db;create=true", hive_properties["javax.jdo.option.ConnectionDriverName"] = "org.apache.derby.jdbc.EmbeddedDriver" if sys.platform == "win32": hive_path = os.path.join(info["spark_version_dir"], "tmp", "hive") hive_properties["hive.exec.scratchdir"] = hive_path hive_properties["hive.exec.local.scratchdir"] = hive_path hive_properties["hive.metastore.warehouse.dir"] = hive_path spark_hive_file_set_value(hive_site_path, hive_properties) if hive_path: spark_properties = OrderedDict() spark_properties["spark.sql.warehouse.dir"] = hive_path spark_conf_file_set_value(info, spark_properties, reset) spark_set_env_vars(info["spark_version_dir"]) if sys.platform == "win32": spark_install_winutils(info["spark_dir"], info["hadoop"]) def main(): import argparse parser = argparse.ArgumentParser(description="Spark Installation Script") parser.add_argument("-sv", "--spark-version", help="Spark Version to be used.", required=False, dest="spark_version") parser.add_argument("-hv", "--hadoop-version", help="Hadoop Version to be used.", required=False, dest="hadoop_version") parser.add_argument("-u", "--uninstall", help="Uninstall Spark", action="store_true", default=False, required=False) parser.add_argument("-i", "--information", help="Show installed versions of Spark", action="store_true", default=False, required=False) parser.add_argument("-l", "--log-level", help="Set the log level", choices=["DEBUG", "INFO", "WARNING"], default="WARNING", required=False, dest="log_level") args = parser.parse_args() # Set up logging parameters logging.basicConfig(filename="install_spark.log", format="%(asctime)s %(name)-12s %(levelname)-8s %(message)s", level=getattr(logging, args.log_level)) logging.getLogger().addHandler(logging.StreamHandler()) logging.info("Logging started") # Debug log the values logging.debug("Spark Version specified: %s" % args.spark_version) logging.debug("Hadoop Version specified: %s" % args.hadoop_version) logging.debug("Uninstall argument: %s" % args.uninstall) logging.debug("Information argument: %s" % args.information) # Check for uninstall or information flags and react appropriately if args.uninstall: if args.spark_version and args.hadoop_version: spark_uninstall(args.spark_version, args.hadoop_version) else: logging.critical("Spark and Hadoop versions must be specified for uninstallation. Use -i to view installed versions.") elif args.information: installedversions = list(spark_installed_versions()) fmt = "{:>8}| {:>8}| {:<}" print(fmt.format("Spark", "Hadoop", "Location")) for elem in installedversions: print(fmt.format(elem["spark"], elem["hadoop"], elem["dir"])) else: # Verify that Java 1.8 is running on the system and if it is, run the install. if _verify_java(): logging.debug("Prerequisites checked successfully, running installation.") logging.debug("Spark Version: %s" % args.spark_version) logging.debug("Hadoop Version: %s" % args.hadoop_version) spark_install(args.spark_version, args.hadoop_version, True, "INFO") logging.debug("Completed the install") else: logging.critical("A prerequisite for installation has not been satisfied. Please check output log for details.") if __name__ == "__main__": main()
# 練習問題1 # from tkinter import * # # # def triangle(x, y, w, h): # canvas.create_line(x, y, x + w, y) # canvas.create_line(x + w, y, x, y + h) # canvas.create_line(x, y + h, x, y) # # # tk = Tk() # canvas = Canvas(tk, width=500, height=500) # canvas.pack() # triangle(100, 100, 200, 300) # canvas.mainloop() # 処理の後に書く '-------------------------------------------------' # # 練習問題2 # from tkinter import * # # # def triangle(x, y, w, h): # canvas.create_line(x, y, x + w, y) # canvas.create_line(x + w, y, x, y + h) # canvas.create_line(x, y + h, x, y) # # # tk = Tk() # canvas = Canvas(tk, width=500, height=500) # canvas.pack() # for x in range(5): # triangle(100 + x*5, 100 + x*5, 100 - x*15, 100 - x*15) # canvas.mainloop() # 処理の後に書く '-------------------------------------------------' # # 練習問題3 # from tkinter import * # # # def tile(x, y, size): # global canvas # グローバル変数canvasのキャンバスを使うことを明示 # canvas.create_rectangle(x, y, x + size, y + size) # canvas.create_rectangle(x, y, x + size / 2, y + size / 2, fill="black") # canvas.create_rectangle(x + size / 2, y + size / 2, x + size, y + size, fill="black") # # # tk = Tk() # canvas = Canvas(tk, width=500, height=500) # canvas.pack() # tile(100, 100, 200) # canvas.mainloop() # 処理の後に書く '--------------------------------------------------------------' # 練習問題4 # from tkinter import * # # # def convert16(value): # return f"{int(value * 255) :02x}" # 16進数に変換 02x=2桁 # # # def convertRGB(r, g, b): # return f"#{convert16(r)}{convert16(g)}{convert16(b)}" # rgb の値をとれる # # # def tile(x, y, size, lcolor, rcolor): # global canvas # グローバル変数canvasのキャンバスを使うことを明示 # canvas.create_rectangle(x, y, x + size, y + size) # canvas.create_rectangle(x, y, x + size / 2, y + size / 2, fill=rcolor) # canvas.create_rectangle(x + size / 2, y + size / 2, x + size, y + size, fill=lcolor) # # # tk = Tk() # canvas = Canvas(tk, width=500, height=500) # canvas.pack() # tile(100, 100, 200, convertRGB(0, 0, 1), convertRGB(0, 1, 0)) # canvas.mainloop() # 処理の後に書く '--------------------------------------------------------------------' # 練習問題5 # from tkinter import * # # # def square(x, y, size): # global canvas # グローバル変数canvasのキャンバスを使うことを明示 # canvas.create_rectangle(x, y, x + size, y + size) # # # def circle(x, y, size, start, extent): # 四角形に内接する円(概念) # canvas.create_arc(x, y, x + size, y + size, start=start, extent=extent, style=ARC) # start=始めの角度 extant=何度進むか # # style=とりあえず書く # # tk = Tk() # canvas = Canvas(tk, width=500, height=500) # canvas.pack() # square(100, 100, 200) # circle(0, 100, 200, -90, 180) # circle(200, 100, 200, 90, 180) # canvas.mainloop() # 処理の後に書く '--------------------------------------------------' # 練習問題6,7 # from tkinter import * # # # def square(x, y, size): # global canvas # グローバル変数canvasのキャンバスを使うことを明示 # canvas.create_rectangle(x, y, x + size, y + size) # # # def circle(x, y, size, start, extent): # 四角形に内接する円(概念) # canvas.create_arc(x, y, x + size, y + size, start=start, extent=extent, style=ARC) # start=始めの角度 extant=何度進むか # # style=とりあえず書く # # # def polygon(ps, fill, outline): # ps=リスト # global canvas # canvas.create_polygon(ps[0][0], ps[0][1], ps[1][0], ps[1][1], ps[2][0], ps[2][1], ps[3][0], ps[3][1], ps[4][0], ps[4][1], # ps[5][0], ps[5][1], ps[6][0], ps[6][1], ps[7][0], ps[7][1], fill=fill, outline=outline) # # # tk = Tk() # canvas = Canvas(tk, width=500, height=500) # canvas.pack() # # square(100, 100, 300) # ps = [[200, 200], [250, 100], [300, 200], [400, 250], [300, 300], [250, 400], [200, 300], [100, 250]] # polygon(ps, fill="gray", outline="gray") # canvas.mainloop() # 処理の後に書く '-----------------------------------------------------------------' # 練習問題8 # from tkinter import * # # # def square(x, y, size): # global canvas # グローバル変数canvasのキャンバスを使うことを明示 # canvas.create_rectangle(x, y, x + size, y + size) # # # def circle(x, y, size, start, extent): # 四角形に内接する円(概念) # canvas.create_arc(x, y, x + size, y + size, start=start, extent=extent, style=ARC) # start=始めの角度 extant=何度進むか # # style=とりあえず書く # # # def polygon(ps, fill, outline): # ps=リスト # global canvas # canvas.create_polygon(ps[0][0], ps[0][1], ps[1][0], ps[1][1], ps[2][0], ps[2][1], ps[3][0], ps[3][1], fill=fill, outline=outline) # # # tk = Tk() # canvas = Canvas(tk, width=500, height=500) # canvas.pack() # ps = [[100, 100], [200, 100], [200, 200], [100, 200]] # canvas.create_polygon(ps[0][0], ps[0][1], ps[1][0]-50, ps[1][1], ps[2][0]-50, ps[2][1], ps[3][0], ps[3][1], fill="", outline="black") # canvas.create_polygon(ps[0][0], ps[0][1], ps[1][0], ps[1][1], ps[2][0], ps[2][1], ps[3][0], ps[3][1], fill="", outline="black") # canvas.create_text(150, 120, text="左揃え", anchor=W) # canvas.create_text(150, 150, text="中央揃え") # canvas.create_text(150, 180, text="右揃え", anchor=E) # canvas.create_text(150, 180, text="右揃えS", anchor=S) # canvas.create_text(150, 180, text="右揃えN", anchor=N) # canvas.mainloop() # 処理の後に書く '-----------------------------------------------------------------------' # 演習問題1、ヒント from tkinter import * def on_click(event): # イベントハンドラはon_をつける # 書き方は決まり global counter # global変数を使えるようになる(関数を出ても保持させる) counter += 1 print(f"{counter}:{event.x},{event.y}") tk = Tk() canvas = Canvas(tk, width=500, height=500) canvas.pack() canvas.bind("<Button-1>", on_click) # クリック処理 # 書き方は決まり 1=左クリック,2=中央クリック,3=右クリック counter = 0 canvas.mainloop() # 処理の後に書く
# 3. Найти самое длинное слово в введенном предложении. # Учтите что в предложении есть знаки препинания. # Подсказки: my_string.split([chars]) возвращает список строк. # len(list) - количество элементов в списке # каждый проходи цикла сохраняес в c самое длинное слово, # без знаков препинания, если слово короче предыдущего, # переходи к следующему my_sent = input('Введите предложение: ') my_sent = my_sent.split() final_sent = '' for i in my_sent: i = i.strip(',!.?:;()"') if len(i) > len(final_sent): final_sent = i print(final_sent, '- самое длинное слово в предложении')
from random import randint, choice repeticiones = 10 informantes = 20 respuestas_min = 0 respuestas_max = 100 for n in range(0, repeticiones): for respuestas in range(respuestas_min, respuestas_max): caso = [] for x in range(0, respuestas): opinion = randint(1, informantes), randint(1, informantes) * choice((-1, 1)) while (opinion[0], opinion[1]) in caso or (opinion[0], -opinion[1]) in caso : opinion = randint(1, informantes), randint(1, informantes) * choice((-1, 1)) caso.append(opinion) print('{} {}'.format(informantes, respuestas)) for agenteX, agenteY in caso: print('{} {}'.format(agenteX, agenteY)) print('0 0')
# Define a function def say_hello(): # block belonging to the function. print('Hello World') # End of function say_hello() # call the function say_hello() # call the function again # OUTPUT # python functions_basics.py # Hello World # Hello World
''' Created on Dec 3, 2015 @author: Benjamin Jakubowski (buj201) ''' import unittest import pandas as pd from get_and_clean_data import * from graph_grades_over_time import * from test_grades import * class Test(unittest.TestCase): def test_clean_Grade(self): bad_grades = pd.DataFrame.from_dict({1:{'GRADE':'A'}, 2:{'GRADE':'B'}, 3:{'GRADE':'C'}, 4:{'GRADE':'not_a_grade'}}, orient='index') self.assertIs(len(clean_GRADE(bad_grades)), 3) def test_clean_BORO(self): bad_boros = pd.DataFrame.from_dict({1:{'BORO':'BROOKLYN'}, 2:{'BORO':'BRONX'}, 3:{'BORO':'MANHATTAN'}, 4:{'BORO':'QUEENS'}, 5:{'BORO':'STATEN ISLAND'}, 6:{'BORO':'not_a_BORO'}}, orient='index') self.assertIs(len(clean_BORO(bad_boros)), 5) def test_plot_num_restaurants_by_grade_by_year(self): self.assertRaises(ValueError, plot_num_restaurants_by_grade_by_year, 'not_a_BORO') def test_restaurant_grades_over_time_class(self): self.assertIsInstance(restaurant_grades_over_time(['A', 'B', 'C', 'B', 'A', 'A', 'B']), restaurant_grades_over_time) self.assertRaises(TypeError, restaurant_grades_over_time('a string not a list').validate_grade_list, 'a string not a list') self.assertRaises(ValueError, restaurant_grades_over_time(['A', 'B', 'C', 'D']).validate_grade_list, ['A', 'B', 'C', 'D']) def test_no_change(self): self.assertEqual(restaurant_grades_over_time(['A', 'A', 'A']).test_grades(), 0) def test_improve(self): self.assertEqual(restaurant_grades_over_time(['C', 'B', 'A']).test_grades(), 1) def test_decline(self): self.assertEqual(restaurant_grades_over_time(['A', 'B', 'C']).test_grades(), -1) if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main()
#Import streamlit import streamlit as st #Import NumPy and Pandas for data manipulation import pandas as pd import numpy as np from fbprophet import Prophet from fbprophet.diagnostics import performance_metrics from fbprophet.diagnostics import cross_validation from fbprophet.plot import plot_cross_validation_metric #for encoding binary data to printable ASCII characters and decoding it #back to binary form import base64 st.title('Time Series Forecasting Using Streamlit') st.write("IMPORT DATA") st.write("Import the time series CSV file. It should have two columns labelled as 'ds' and 'y'. The 'ds' column should be of DateTime format by Pandas. The 'y' column must be numeric representing the measurement to be forecasted.") data = st.file_uploader('Upload here',type='csv') if data is not None: appdata = pd.read_csv(data) #read the data fro appdata['ds'] = pd.to_datetime(appdata['ds'],errors='coerce') st.write(data) #display the data max_date = appdata['ds'].max() #compute latest date in the data st.write("SELECT FORECAST PERIOD") #text displayed periods_input = st.number_input('How many hours forecast do you want?',min_value = 1, max_value = 24) #The minimum number of hours a user can select is one, while the maximum is #24 (yearly forecast) if data is not None: obj = Prophet() #Instantiate Prophet object obj.fit(appdata) #fit the data #text to be displayed st.write("VISUALIZE FORECASTED DATA") st.write("The following plot shows future predicted values. 'yhat' is the predicted value.") if data is not None: future = obj.make_future_dataframe(periods=periods_input,freq='H') #Prophet.make_future_dataframe() takes the Prophet model object and #extends the time series dataframe for specified period for which user needs #the forecast fcst = obj.predict(future) #make prediction for the extended data forecast = fcst[['ds', 'yhat']] #The predict() method assigns each row in the ‘future’ dataframe a predicted #value denoted as yhat #Choose only the forecasted records (having date after the latest date in #original data) forecast_filtered = forecast[forecast['ds'] > max_date] st.write(forecast_filtered) #Display some forecasted records st.write(" The next visual shows the actual (black dots) and predicted(blue line) values over time.") figure1 = obj.plot(fcst) #plot the actual and predicted values st.write(figure1) #display the plot #Plot the trends using Prophet.plot_components() st.write("The following plots show a high level trend of predicted values, day of week trends and yearly trends (if dataset contains multiple years’ data).Blue shaded area represents upper and lower confidence intervals.") figure2 = obj.plot_components(fcst) st.write(figure2)
from fitnessCalc import FitnessCalc from population import Population from algorithm import Algorithm from time import time start = time() FitnessCalc.set_solution("1111000000000000000000000000000000000000000000000000000000001111") my_pop = Population(50, True) generation_count = 0 while my_pop.fitness_of_the_fittest() != FitnessCalc.get_max_fitness(): generation_count += 1 print("Generation : %s\nFittest : %s " % (generation_count, my_pop.fitness_of_the_fittest())) my_pop = Algorithm.evolve_population(my_pop) print("******************************************************") genes_the_fittest = [] for i in range(len(FitnessCalc.Solution)): genes_the_fittest.append(my_pop.get_fittest().genes[i]) print("Solution found !\nGeneration : %s\nFittest : %s " % (generation_count + 1, my_pop.fitness_of_the_fittest())) print("Genes of the Fittest : %s " % (genes_the_fittest)) finish = time() print ("Time elapsed : %s " % (finish - start))
# -*- coding: utf-8 -*- class Queue(object): def __init__(self): self.items = [] def isEmpty(self): return self.items == [] def enqueue(self,item): self.items.insert(0,item) def dequeue(self): return self.items.pop() def peek(self): if not self.isEmpty(): print self.items[-1] else: raise Exception ("Queue is empty") def size(self): print "Length of the queue{0}".format(len(self.items)) def elements(self): print "Elements of the queue" for element in self.items: print element def main(): queue = Queue() queue.enqueue(1) queue.enqueue(2) queue.enqueue(10) queue.size() queue.elements() queue.peek() if __name__ == '__main__': main()
# Created by Elivelton S. from selenium import webdriver from selenium.webdriver.common.keys import Keys import argparse import os import sys import time parser = argparse.ArgumentParser() parser.add_argument('-u', '--user') parser.add_argument('-p', '--password') parser.add_argument('-t', '--tag') args = parser.parse_args() class instagramBot: def __init__(self, username, password): self.username = username self.password = password self.drive = webdriver.Firefox(executable_path='/home/r3tr0/Documentos/geckodriver') def login(self): driver = self.drive driver.get('https://www.instagram.com/') time.sleep(3) username = driver.find_element_by_xpath("//input[@name='username']") password = driver.find_element_by_xpath("//input[@name='password']") username.clear() username.click() username.send_keys(self.username) password.clear() password.click() password.send_keys(self.password) password.send_keys(Keys.RETURN) time.sleep(3) self.likePost(args.tag) def likePost(self, hashtag): driver = self.drive driver.get('https://www.instagram.com/explore/tags/'+ hashtag +'/') time.sleep(3) for i in range(1,3): driver.execute_script("window.scrollBy(0,document.body.scrollHeight || document.documentElement.scrollHeight)", "") time.sleep(3) divs = driver.find_elements_by_xpath("//div[@class='v1Nh3 kIKUG _bz0w']") hrefs = [elem.find_element_by_xpath(".//a[@href]") for elem in divs] pic_hrefs = [elem.get_attribute('href') for elem in hrefs] [href for href in pic_hrefs if hashtag in href] print("Na #"+ hashtag + ' tem ' + str(len(pic_hrefs)) + ' links') count = 0 for pic_href in pic_hrefs: driver.get(pic_href) driver.execute_script("window.scrollBy(0,document.body.scrollHeight || document.documentElement.scrollHeight)", "") try: count += 1 driver.find_element_by_xpath("//button[@class='wpO6b ']").click() print("Curtindo: %s de %s publicacoes" %(count, str(len(pic_hrefs)))) time.sleep(19) except Exception as e: print(e) time.sleep(3) bot = instagramBot(args.user, args.password) bot.login()
class Super: def method(self): print('in Super.method') class Sub(Super): def method(self): # Override method print('starting Sub.method') # Add actions here Super.method(self) # Run default action print('ending Sub.method') x = Super() x.method() y = Sub() y.method()
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2020-04-09 23:08:50 # @Author : Fallen (xdd043@qq.com) # @Link : https://github.com/fallencrasher/python-learning # @Version : $Id$ #判断对象是否是迭代器 with open('file1',encoding='utf-8',mode='w') as f1: print(('__iter__' in dir(f1)) and ('__next__' in dir(f1))) #可迭代对象可以转化为迭代器 s1 = 'jofjs' obj = iter(s1) #或者 s1.__iter__() 都可以 print(obj) #迭代器可以一个一个取值,下边这俩都行,每写一次迭代代码,就弹出来一个值 print(next(obj)) #print(obj.__next__()) print(next(obj)) #print(obj.__next__()) print(next(obj)) #print(obj.__next__()) print(next(obj)) #print(obj.__next__()) print(next(obj)) #print(obj.__next__()) #如果迭代超出范围了,就会报错
import csv import os from typing import Any, Dict, Optional from parseridge.parser.evaluation.callbacks.base_eval_callback import EvalCallback class EvalCSVReporter(EvalCallback): _order = 10 def __init__(self, csv_path: Optional[str] = None): self.csv_path = csv_path if self.csv_path: os.makedirs(os.path.dirname(self.csv_path), exist_ok=True) self.file = open(csv_path, mode="w") fieldnames = [ "epoch", "train_las", "train_uas", "dev_las", "dev_uas", "test_las", "test_uas", "train_loss", ] self.writer = csv.DictWriter(self.file, fieldnames=fieldnames) self.writer.writeheader() def on_shutdown(self, **kwargs: Any) -> None: if self.csv_path: self.file.close() def on_eval_end( self, scores: Dict[str, Dict[str, float]], loss: float, epoch: int, **kwargs: Any ) -> None: if self.csv_path: self.writer.writerow( { "epoch": epoch, "train_las": scores["train"]["las"], "train_uas": scores["train"]["uas"], "dev_las": scores["dev"]["las"], "dev_uas": scores["dev"]["uas"], "test_las": scores["test"]["las"] or 0.0, "test_uas": scores["test"]["uas"] or 0.0, "train_loss": loss, } )
#import multiprocessing import socket import time from downloader import Downloader import asyncio import redis from beletag_callback import BeletagCallback from redis_cache import RedisCache SLEEP_TIME = 1 socket.setdefaulttimeout(60) class Beletag: def __init__(self): self.cb = BeletagCallback() self.cb.setCategoriesPages() self.redisClient = redis.StrictRedis(host='localhost', port=6379, db=1) self.cache = RedisCache(client=self.redisClient) self.max_tasks = 20 def getAllPages(self): loop = asyncio.get_event_loop() tasks = [] D = Downloader(cache=self.cb.redisClientPages) async def process_queue(url): while len(self.cb.pages_queue): if not url or 'http' not in url: continue html = D(url, num_retries=5) if not html: continue self.cb.pageParse(url, html) while tasks or len(self.cb.pages_queue): while len(tasks) < self.max_tasks and len(self.cb.pages_queue): tasks.append(asyncio.ensure_future(process_queue(self.cb.pages_queue.pop()))) time.sleep(SLEEP_TIME) loop.run_until_complete(asyncio.wait(tasks)) loop.close() """" def mp_threaded_crawler(*args, **kwargs): # create a multiprocessing threaded crawler processes = [] num_procs = multiprocessing.cpu_count() for _ in range(num_procs): proc = multiprocessing.Process(target=threaded_crawler_rq, args=args, kwargs=kwargs) proc.start() processes.append(proc) # wait for processes to complete for proc in processes: proc.join() """ if __name__ == '__main__': start_time = time.time() b = Beletag() b.getAllPages() print('Total time: %ss' % (time.time() - start_time))
""" Given a non-empty binary tree, return the average value of the nodes on each level in the form of an array. Example 1: Input: 3 / \ 9 20 / \ 15 7 Output: [3, 14.5, 11] Explanation: The average value of nodes on level 0 is 3, on level 1 is 14.5, and on level 2 is 11. Hence return [3, 14.5, 11]. Note: The range of node's value is in the range of 32-bit signed integer. """ # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def averageOfLevels(self, root: TreeNode) -> List[float]: if not root: return [] averages = self.level_order_v2(root) return averages def level_order_v2(self, root): """ We perform bfs to traverse the tree, and calculate each levels sum """ queue = deque([root]) average_of_levels = [] curr_level = [] while len(queue) != 0: # for each level curr_level = [] for i in range(len(queue)): # pop the value node = queue.popleft() curr_level.append(node.val) # the we add the children if node.left: queue.append(node.left) if node.right: queue.append(node.right) average = sum(curr_level) / len(curr_level) average_of_levels.append(average) return average_of_levels
import traceback import time import pdb GRID_SIZE = 15 WINNING_LENGTH = 5 X = 1 O = -1 def whoWonRow(row): streak = 0 for value in row: if streak >= 0 and value == 1: streak += 1 elif streak <= 0 and value == -1: streak -= 1 else: streak = value if streak >= WINNING_LENGTH: return 1 if streak <= -WINNING_LENGTH: return -1 return 0 class Board: SIZE = 15 def generate_rows(self): rows = [] for i in range(self.SIZE): row = [] for j in range(self.SIZE): row.append(0) rows.append(row) return rows def generate_diagonals(self): diagonals = [] delka = 1 for i in range(self.SIZE): diagonal = [] for j in range(delka): diagonal.append(0) diagonals.append(diagonal) delka += 1 delka = 14 for i in range(self.SIZE - 1): diagonal = [] for j in range(delka): diagonal.append(0) diagonals.append(diagonal) delka -= 1 return diagonals def __init__(self): self.rows = self.generate_rows() self.columns = self.generate_rows() self.diagonals_descending = self.generate_diagonals() self.diagonals_ascending = self.generate_diagonals() def new_turn(self, row, column, player): self.rows[row][column] = player self.columns[column][row] = player ascending_diagonal_number = row + column if (row + column < self.SIZE): self.diagonals_ascending[ascending_diagonal_number][column] = player else: self.diagonals_ascending[ascending_diagonal_number][self.SIZE - 1 - row] = player descending_diagonal_number = self.SIZE - 1 - row + column if (descending_diagonal_number < 15): self.diagonals_descending[descending_diagonal_number][column] = player else: self.diagonals_descending[descending_diagonal_number][row] = player def get_lines(self): return self.rows + self.columns + self.diagonals_ascending + self.diagonals_descending def get(self, row, col): return self.rows[row][col] class GomokuTournament: def __init__(self, playerX, playerO, time_limit): self.playerX = playerX self.playerO = playerO self.timer = {} self.timer[playerX] = time_limit self.timer[playerO] = time_limit self.board = Board() self.history = [] def game(self): print(f'started game X:{self.playerX.name} vs. O:{self.playerO.name}') coordsO = None coordsX = None while True: coordsX = self.player_move(self.playerX, coordsO) coordsX = self.placeSymbol(X, coordsX) if (self.whoWon() != 0): break coordsO = self.player_move(self.playerO, coordsX) coordsO = self.placeSymbol(O, coordsO) if (self.whoWon() != 0): break if (coordsX == None and coordsO == None): print('nobody played a valid move in this round. it is a split.') return 0 winner = self.whoWon() return winner def player_move(self, player, opponent_move): coords = None start_time = time.time() print(f'{player.name} thinking...', flush=True) try: coords = player.play(opponent_move) except Exception as e: print(f'player {player.name} crashed') print(e) traceback.print_exc() duration = time.time() - start_time self.timer[player] -= duration print(f'{player.name} played {coords}') print(f'{player.name} has {self.timer[player]:.2f} s left') return coords def whoWon(self): if self.timer[self.playerX] < 0: print(f'{self.playerX.name} ran out of time') return -1 if self.timer[self.playerO] < 0: print(f'{self.playerO.name} ran out of time') return 1 for line in self.board.get_lines(): score = whoWonRow(line) if score != 0: return score return 0 def save_logs(self): with open('logs.txt', 'a') as output_file: output_file.write(f'X: {self.playerX.name} vs. O:{self.playerO.name}\n') for line in self.history: output_file.write(f'{"X" if line[0] == 1 else "O"}\t{line[1]}\t{line[2]}\n') def placeSymbol(self, player, coords): try: row, col = coords if row >= 15 or row < 0 or col >= 15 or col < 0: print(f'invalid coordinates {coords}') return None if self.board.get(row, col) != 0: print(f'invalid move. {coords} is already taken') return None self.board.new_turn(row, col, player) self.history.append((player, row, col)) return (row, col) except Exception as err: print(err) print(f'cannot place on coordinates {coords}') return None
# simulated_data.py import itertools import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans if __name__ == "__main__": np.random.seed(1) # Set the number of samples, the means and # variances of each of the three simulated clusters samples = 100 mu = [(7, 5), (8, 12), (1, 10)] cov = [ [[0.5, 0], [0, 1.0]], [[2.0, 0], [0, 3.5]], [[3, 0], [0, 5]], ] # Generate a list of the 2D cluster points norm_dists = [ np.random.multivariate_normal(m, c, samples) for m, c in zip(mu, cov) ] X = np.array(list(itertools.chain(*norm_dists))) # Apply the K-Means Algorithm for k=3, which is # equal to the number of true Gaussian clusters km3 = KMeans(n_clusters=3) km3.fit(X) km3_labels = km3.labels_ # Apply the K-Means Algorithm for k=4, which is # larger than the number of true Gaussian clusters km4 = KMeans(n_clusters=4) km4.fit(X) km4_labels = km4.labels_ # Create a subplot comparing k=3 and k=4 # for the K-Means Algorithm fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14,6)) ax1.scatter(X[:, 0], X[:, 1], c=km3_labels.astype(np.float)) ax1.set_xlabel("$x_1$") ax1.set_ylabel("$x_2$") ax1.set_title("K-Means with $k=3$") ax2.scatter(X[:, 0], X[:, 1], c=km4_labels.astype(np.float)) ax2.set_xlabel("$x_1$") ax2.set_ylabel("$x_2$") ax2.set_title("K-Means with $k=4$") plt.show()
""" 4. Faça um Programa que peça as 4 notas bimestrais e mostre a média. """ nota1 = int(input("Digite a primeira nota do bimestre: ")) nota2 = int(input("Digite a segunda nota do bimestre: ")) nota3 = int(input("Digite a terceira nota do bimestre: ")) nota4 = int(input("Digite a quarta nota do bimestre: ")) media = (nota1 + nota2 + nota3 + nota4)/ 4 # media = soma/4 print(f"A média das notas bimestrais é igual a {media}")
import os import hashlib from torrent_parser import flatten_list, rread_dir from constants import DEF_BLOCK_LENGTH, DEF_PIECE_LENGTH import math def pieces_gen(fpath, piece_length=DEF_PIECE_LENGTH): # Dividir multiples archivos en bloques/piezas pieces = [] pieces_hash = [] piece = b"" if os.path.isdir(fpath): files = os.listdir(fpath) scanned_files = [] if len(files) > 0: # En caso de encontrar multiples archivos if len(files) > 1: for file in files: nested_file_fpath = "".join([fpath, "/", file]) if os.path.isdir(nested_file_fpath): # Encontrar todos los archivos no directorio # dentro del directorio del archivo raiz files = flatten_list(rread_dir(nested_file_fpath)) if len(files) > 0: scanned_files.append(files) else: print( f"[ADVERTENCIA] Directorio {nested_file_fpath} esta vacio" ) elif os.path.isfile(nested_file_fpath): scanned_files.append( { "path": nested_file_fpath, "length": os.path.getsize(nested_file_fpath), } ) flatten_flist = flatten_list(scanned_files) for file in flatten_flist: with open(file["path"], "rb") as open_file: counter = 0 while counter < file["length"]: piece = open_file.read(piece_length) pieces.append(piece) # print(f"Nueva pieza {piece}") pieces_hash.append(hashlib.sha1(piece).digest()) counter += len(piece) # Piezas de un solo archivo elif os.path.isfile(fpath): file_size = os.path.getsize(fpath) counter = 0 with open(fpath, "rb") as open_file: while counter < file_size: piece = open_file.read(piece_length) pieces.append(piece) # print(f"Nueva pieza {piece}") pieces_hash.append(hashlib.sha1(piece).digest()) counter += len(piece) return pieces, pieces_hash def gen_block(piece, start_offset, block_length=DEF_BLOCK_LENGTH): piece_length = len(piece) if start_offset + block_length > piece_length: return piece[start_offset:piece_length] else: return piece[start_offset : start_offset + block_length] def piece_toblocks(piece: bytes, block_length=DEF_BLOCK_LENGTH): piece_frac, piece_whole = math.modf(len(piece) / block_length) if piece_frac: lpiece_size = int(piece_frac * block_length) blocks = [ { "block_start": x, "block": piece[x : x + block_length], "length": block_length, } for x in range(len(piece) - lpiece_size) if x % block_length == 0 ] blocks.append( { "block_start": len(piece) - lpiece_size, "block": piece[len(piece) - lpiece_size : len(piece)], "length": lpiece_size, } ) print(f"Uttimo bloque de ultima pieza inicia {len(piece) - lpiece_size} tamaño:{lpiece_size}") return blocks else: blocks = [ { "block_start": x, "block": piece[x : x + block_length], "length": block_length, } for x in range(len(piece)) if x % block_length == 0 ] return blocks
import sys import glob import argparse import re import os parser = argparse.ArgumentParser(description='Convert cachegrind to csv') parser.add_argument('--cap', default="0", type=int, help="exclude function calls below this threshold (microseconds)") parser.add_argument("--i", default=".", help="directory containing cachegrind files") parser.add_argument("--o", default=".", help="directory to generate csv file to") args = parser.parse_args() if args.o == ".": args.o = args.i if not os.path.exists(args.o): os.makedirs(args.o) files = glob.glob("/".join([args.i, "cachegrind.*"])) outname = args.o + "/all.csv" with open(outname, 'w') as outfile: for filename in files: if ".csv" not in filename and ".svg" not in filename: inname = filename # outname = "/".join([args.o, inname.split("/").pop() + '.csv']) key = inname.split("/").pop() key = key.split(".") key.pop() key = ".".join(key) timestamp = inname.split(".").pop().replace("_", ".") def append (outfile, key, timestamp, fl, fn, li, tm): if int(tm) >= args.cap: # only save the call, if it has taken more than args.cap microseconds outfile.write(",".join([key, timestamp, fl, fn, li, tm]) + "\n") with open(inname, 'r') as infile: print "converting", inname, "-->", outname fl = "" fn = "" li = "" tm = "" for line in infile: numbers = re.match(r"([0-9]+)\ ([0-9]+)", line) # find linenumber and microseconds, like this: 26 26 if numbers: li = numbers.group(1) tm = numbers.group(2) elif line.startswith("fl") or line.startswith("cfl"): # save the old one, if it exists if fl and fn and li and tm: append(outfile, key, timestamp, fl, fn, li, tm) fl = line.replace("\n", '').split('=')[1] # get the function name elif line.startswith("fn") or line.startswith("cfn"): fn = line.replace("\n", '').split('=')[1] # get the function name if fl and fn and li and tm: append(outfile, key, timestamp, fl, fn, li, tm)
print("{:^80}".format("Python Shop")) print("{:<6}{:<30} ".format("NO.",": 1078718855")) print("{:<6}{:<30} ".format("Addr.",": 서울시 종로구 종로3가")) print("{:<6}{:<30} ".format("Name",": 김사장")) print("{:<6}{:<30} ".format("H.P",": 070-1234-5678")) print("{:-^80}".format("-")) print("{:^20}{:^20}{:^20}{:^20}".format("Items","Unit","QTY","Price")) print("{:-^80}".format("-")) print("{:^20}{:>20}{:>20,}{:>20,}".format("blue-Tooth",85000,1,85000)) print("{:^20}{:>20,}{:>20}{:>20,}".format("usb3.0 8G",85000,1,85000)) print("{:-^80}".format("-")) print("{:<20}{:^20}{:^20}{:>20,}".format("Total","","",93000)) print("{:-^80}".format("-")) print("{:<20}{:^20}{:^20}{:>20,}".format("Total","","",93000)) print("{:<20}{:^20}{:^20}{:>20,}".format("Total","","",93000)) print("{:<20}{:^20}{:^20}{:>20,}".format("Total","","",93000)) print("{:-^80}".format("-"))
# Generated by Django 3.2.7 on 2021-09-07 03:53 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('stock', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='category', options={'ordering': ['id'], 'verbose_name': 'Categoria', 'verbose_name_plural': 'Nombres'}, ), migrations.AlterModelOptions( name='product', options={'ordering': ['id'], 'verbose_name': 'Productos', 'verbose_name_plural': 'Nombres'}, ), migrations.AlterField( model_name='category', name='name', field=models.CharField(max_length=50, verbose_name='Categoria'), ), migrations.AlterField( model_name='product', name='name', field=models.CharField(max_length=50, verbose_name='Productos'), ), ]
suku=int(input()) print(suku*(suku-1)//2)
from itertools import permutations M, N = list(map(int, input().split())) Result = [] for i in range(1, M + 1): Result.append(i) for i in list(permutations(Result, N)): for j in range(len(i)): print(i[j], end=' ') print()
import random import socket import string from sys import path path.append('liblsl-Python\\') from pylsl import StreamOutlet, StreamInfo tcpport = int(raw_input('TCP Port: ')) tcpaddress = raw_input('TCP Address (default: 127.0.0.1): ') or '127.0.0.1' # opening socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((tcpaddress, tcpport)) # opening stream outlet randomid = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) info = StreamInfo('TCP Marker Stream', 'Markers', 1, 0, 'string', randomid) outlet = StreamOutlet(info) print("waiting for input...") while True: # waiting for data data = sock.recv(1) # sending marker if data: outlet.push_sample([data]) print "marker: ", data
class linknode: def __init__(self, key=None, value=None,next=None): self.key = key self.value = value; self.next = next; class lrucache: def __init__(self, capacity): self.head = linknode() self.tail = self.head self.capacity = capacity self.hash = {} def get(self, key): if key not in self.hash: return None result = self.hash[key].next.value pre = self.hash[key] self.movenode(pre) return result def set(self, key, value): if key not in self.hash: node = linknode(key,value) self.pushback(node) if len(self.hash) > self.capacity: self.popfront() else: self.hash[key].next.value = value def popfront(self): del self.hash[self.head.next.key] head.next = head.next.next self.hash[head.next.key] = head def pushback(self, node): self.tail.next = node self.hash[node.key] = self.tail self.tail = node def movenode(self,pre): if( pre.next == self.tail): return node = pre.next pre.next = node.next self.hash[node.next.key] = pre node.next = None self.pushback(node) mycache = lrucache(5) mycache.set("jessie",9) mycache.set("cathy",36) mycache.set("jim",40) print(mycache.head.next.value) print(mycache.tail.value) print(mycache.get("cathy"))
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Aug 14 21:59:46 2020 @author: thomas """ import numpy as np import pandas as pd import os, sys import time as t import subprocess from shutil import copyfile import pathlib #CONSTANTS cwd_PYTHON = os.getcwd() + '/' # constructs a filepath for the pos data of Re = $Re def filename(cwd): return cwd+"startLData_Re2_.csv" def GetLData(cwd): data = pd.read_csv(filename(cwd),delimiter=' ') data['parHy'] *= 2.0 data['parHx'] *= 2.0 data = data[data['parThetaBW'] == 112.5].copy() data = data.sort_values(by=['parThetaBW','parHx','parHy']) data = data.reset_index(drop=True) return data if __name__ == '__main__': #READ NOTAList.txt to get all sims that did not complete #Whether through error or through no end state #Pull Hx, Hy, Theta parameters for each #Change directory to Theta$Theta/Hx$Hx/Hy$Hy #Modify 'script_restart.sh and copy to specified directory #Copy input2D_restart into directory #Submit with subprocess the command "sbatch script_restart.sh" cwd_PYTHON = os.getcwd() + '/' data = GetLData(cwd_PYTHON+'../') #Restart simulation where it left off. Some at 40s. Some at 20s. for idx in range(len(data['endTime'])): parTheta = np.round(data.loc[idx,'parThetaBW'],1) parHx = np.round(data.loc[idx,'parHx'],1) parHy = int(np.round(data.loc[idx,'parHy'],1)) cwd_VTK = cwd_PYTHON+"../Fluid/Theta{0}/Hx{1}/Hy{2}/VTK/AVG".format(parTheta,parHx,parHy) strSBATCH = "sbatch -J AvgVTK_T{0}_Hx{1}_Hy{2}_ -t 1-0 -n 1 -p general -o %x.out --mem-per-cpu=25000 scriptAvg.sh {3} {4} {5}".format(parTheta,parHx,parHy,parTheta,parHx,parHy) print(strSBATCH) os.system(strSBATCH)
import unittest from katas.beta.sum_of_values_from_1_to_n_inclusive import total class SumFromOneToNTestCase(unittest.TestCase): def test_equal_1(self): self.assertEqual(total(10), 55) def test_equal_2(self): self.assertEqual(total(123), 7626) def test_equal_3(self): self.assertEqual(total(1000), 500500) def test_equal_4(self): self.assertEqual(total(54321), 1475412681) def test_equal_5(self): self.assertEqual(total(12345), 76205685) def test_equal_6(self): self.assertEqual(total(35765), 639585495) def test_equal_7(self): self.assertEqual(total(98765), 4877311995) def test_equal_8(self): self.assertEqual(total(56478), 1594910481) def test_equal_9(self): self.assertEqual(total(1111111), 617284382716) def test_equal_10(self): self.assertEqual(total(2222222), 2469136419753) def test_equal_11(self): self.assertEqual(total(3333333), 5555556111111) def test_equal_12(self): self.assertEqual(total(4444444), 9876543456790) def test_equal_13(self): self.assertEqual(total(5555555), 15432098456790) def test_equal_14(self): self.assertEqual(total(6666666), 22222221111111) def test_equal_15(self): self.assertEqual(total(7777777), 30246911419753)
import argparse import numpy as np from algorithm import Surfing parser = argparse.ArgumentParser() parser.add_argument('dataset_path', help='Path to where the dataset is located') parser.add_argument('-d', '--delimiter', default=',', help='Change dataset parser delimiter definition') parser.add_argument('-s', '--skip-header', action='store_true', help='Determine if the dataset parser should skip a header (i.e. if the file has a header)') if __name__ == '__main__': args = parser.parse_args() header = 1 if args.skip_header else 0 dataset = np.genfromtxt(args.dataset_path, delimiter=args.delimiter, skip_header=header) unlabeled_dataset = dataset[:,:-1] #unlabeled_dataset = np.random.uniform(0, 1, (1000, 4)) model = Surfing(k=3) model.fit(unlabeled_dataset)
for x in xrange(1,10): print x for chx in 'ABC': print chx from collections import Iterable bool = isinstance('abc', Iterable) print bool for i, value in enumerate(['A', 'B', 'C']): print i, value for x, y in [(1,2), (2,4), (3,9)]: print x, y d = {'a':1, 'b':2, 'c':3} for k in d.keys(): print k for v in d.values(): print v for k,v in d.items(): print k, v
import ujson as json from celery import shared_task from django.dispatch import receiver from django.db.models.signals import pre_save, post_save from annoying.functions import get_object_or_None from .signals import create_message from .models import Room, Notification, Message, MessageChart from speakifyit.users.models import ContactRequest from .serializers import NotificationSerializer from django.core import serializers from django.forms.models import model_to_dict @shared_task def create_message_task(**kwargs): if kwargs['msg_type'] == 4: content = '{} joined the room'.format(kwargs['user'].username) elif kwargs['msg_type'] == 5: content = '{} left the room'.format(kwargs['user'].username) if not content: content = kwargs['content'] room = get_object_or_None(Room, kwargs['room']) if room: msg = Message.objects.create( user = kwargs['user'], content = content, msg_type = kwargs['msg_type'] ) @shared_task def send_notification(**kwargs): notification = Notification.objects.create( from_user = kwargs['from_user'], to_user = kwargs['to_user'], msg_type = kwargs['msg_type'], content = kwargs['content'], icon = kwargs['icon'], link = kwargs['link'], contact_request = kwargs['contact_request'] ) user = kwargs['from_user'] data = NotificationSerializer(notification).data user.websocket_group.send( {"text": json.dumps(data)} ) @shared_task def message_edit(**kwargs): message = get_object_or_None(Nessage, pk=kwargs['message']) if message: message.content = kwargs['content'] message.is_editable = False nessage.save() chart = MessageChart.objects.create(message=message) @receiver(create_message, sender=Room) def receiver_create_message(sender, *args, **kwargs): create_message_task.apply_async(kwargs=kwargs) @receiver(post_save, sender=Room) def send_created_room_notification(sender, instance, created, **kwargs): if created: pass @receiver(post_save, sender=ContactRequest) def send_requset_notification(sender, instance, created, **kwargs): if created: content = 'User {} wants to add you to the chat'.format(instance.request_from) msg_type = 'create_request' from_user = instance.request_to to_user = instance.request_from else: if instance.accepted is True: content = 'User {} added you to the chat'.format(instance.request_to), msg_type = 'create_request' from_user = instance.request_from to_user = instance.request_to room = Room.objects.create() room.users.add(instance.request_from, instance.request_to) room.save() else: from_user = instance.request_to to_user = instance.request_from content = 'User {} wants to add you to the chat'.format(instance.request_from), msg_type = 'create_request' send_notification.apply_async(kwargs={ 'from_user': from_user, 'to_user': to_user, 'msg_type': msg_type, 'content': content, 'icon':'', 'link':'', 'contact_request': instance })
#!/usr/bin/env python # https://github.com/anishathalye/dotbot/wiki/Tips-and-Tricks#uninstall-script import yaml import os import logging import glob logging.basicConfig() logging.getLogger().setLevel(logging.INFO) dotfile_groups = os.getenv("DOTFILE_GROUPS") groups = dotfile_groups.split(",") if dotfile_groups else None if groups and len(groups) > 0: logging.info(f"""Remove links from {", ".join(map(lambda f: f"{f}.yml", groups))}.""") for group in groups: stream = open(f"{group}.yml", "r") conf = yaml.load(stream, yaml.FullLoader) for section in conf: if "link" in section: for target in section["link"]: realpath = os.path.expanduser(target) logging.debug(f"Checking path: {realpath}") if os.path.islink(realpath): logging.info(f"Removing link: {realpath}") os.unlink(realpath) else: logging.warning("No groups found. Set DOTFILE_GROUPS environment variable to uninstall.") available_config_files = filter(lambda f: f if f not in ["uninstall.yml"] else None, glob.glob("*.yml")) available_dotfile_groups = ", ".join(map(lambda f: os.path.splitext(f)[0], available_config_files)) logging.info(F"Available DOTFILE_GROUPS: {available_dotfile_groups}.")
import sys have_numpy = True try: import numpy except ImportError: have_numpy = False raise have_gdcm = True try: import gdcm except ImportError: have_gdcm = False raise can_use_gdcm = have_gdcm and have_numpy def supports_transfer_syntax(dicom_dataset): return True def get_pixeldata(dicom_dataset): # read the file using GDCM # FIXME this should just use dicom_dataset.PixelData # instead of dicom_dataset.filename # but it is unclear how this should be achieved using GDCM if not can_use_gdcm: msg = ("GDCM requires both the gdcm package and numpy " "and one or more could not be imported") raise ImportError(msg) gdcm_image_reader = gdcm.ImageReader() gdcm_image_reader.SetFileName(dicom_dataset.filename) if not gdcm_image_reader.Read(): raise TypeError("GDCM could not read DICOM image") gdcm_image = gdcm_image_reader.GetImage() # determine the correct numpy datatype gdcm_numpy_typemap = { gdcm.PixelFormat.INT8: numpy.int8, gdcm.PixelFormat.UINT8: numpy.uint8, gdcm.PixelFormat.UINT16: numpy.uint16, gdcm.PixelFormat.INT16: numpy.int16, gdcm.PixelFormat.UINT32: numpy.uint32, gdcm.PixelFormat.INT32: numpy.int32, gdcm.PixelFormat.FLOAT32: numpy.float32, gdcm.PixelFormat.FLOAT64: numpy.float64 } gdcm_pixel_format = gdcm_image.GetPixelFormat().GetScalarType() if gdcm_pixel_format in gdcm_numpy_typemap: numpy_dtype = gdcm_numpy_typemap[gdcm_pixel_format] else: raise TypeError('{0} is not a GDCM supported ' 'pixel format'.format(gdcm_pixel_format)) # GDCM returns char* as type str. Under Python 2 `str` are # byte arrays by default. Python 3 decodes this to # unicode strings by default. # The SWIG docs mention that they always decode byte streams # as utf-8 strings for Python 3, with the `surrogateescape` # error handler configured. # Therefore, we can encode them back to their original bytearray # representation on Python 3 by using the same parameters. pixel_bytearray = gdcm_image.GetBuffer() if sys.version_info >= (3, 0): pixel_bytearray = pixel_bytearray.encode("utf-8", "surrogateescape") # if GDCM indicates that a byte swap is in order, make # sure to inform numpy as well if gdcm_image.GetNeedByteSwap(): numpy_dtype = numpy_dtype.newbyteorder('S') # Here we need to be careful because in some cases, GDCM reads a # buffer that is too large, so we need to make sure we only include # the first n_rows * n_columns * dtype_size bytes. n_bytes = (dicom_dataset.Rows * dicom_dataset.Columns * numpy.dtype(numpy_dtype).itemsize) if len(pixel_bytearray) > n_bytes: # We make sure that all the bytes after are in fact zeros padding = pixel_bytearray[n_bytes:] if numpy.any(numpy.fromstring(padding, numpy.byte)): pixel_bytearray = pixel_bytearray[:n_bytes] else: # We revert to the old behavior which should then result # in a Numpy error later on. pass pixel_array = numpy.fromstring(pixel_bytearray, dtype=numpy_dtype) length_of_pixel_array = pixel_array.nbytes expected_length = dicom_dataset.Rows * dicom_dataset.Columns try: expected_length *= dicom_dataset.NumberOfFrames except Exception: pass try: expected_length *= dicom_dataset.SamplesPerPixel except Exception: pass if dicom_dataset.BitsAllocated > 8: expected_length *= (dicom_dataset.BitsAllocated // 8) if length_of_pixel_array != expected_length: raise AttributeError("Amount of pixel data %d does " "not match the expected data %d" % (length_of_pixel_array, expected_length)) return pixel_array
import matplotlib.pyplot as plt hfont = {'fontname' : 'Karla'} years = [1900, 1950, 1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015] pops = [1.6, 2.5, 2.6, 3.0, 3.3, 3.6, 4.2, 4.4, 4.8, 5.3, 5.7, 6.1, 6.5, 6.9, 7.3] plt.plot(years, pops, color=(255/255, 100/255, 100/255), linewidth=6.0) plt.ylabel("World Population by Billions") plt.xlabel("Population Growth by year") plt.title("World Population Growth", pad="20", **hfont) plt.show()
#!/usr/bin/env python ROOT_DATA = "/home/conrad/Downloads/data/" # ---- DO NOT CHANGE BELOW THIS LINE ---- # import os import re from lxml import etree legit_path = re.compile("(?P<course_id>\d+)/User/(?P<username>[a-zA-Z0-9]+)/\d+") # ROOT/Forum/{{ course_id }}/User/{{ username }}/{{ readlist_file }} def list_readlist_files(root): result = [] for root, dirs, file in os.walk(os.path.join(root, "Forum")): for f in file: fullpath = os.path.join(root, f) research = re.search(legit_path, fullpath) if research != None: course_id = research.groupdict()["course_id"] username = research.groupdict()["username"] result.append(dict(course_id=course_id, username=username, filename=fullpath)) return result def extract_file_contents(root, files): """ files is of the form [{'course_id':23, 'username':"a2828", 'filename':"..."}, ...] result is the the files dict with the updated info: ... 'readlist':[34,12,34,54,], ... """ for entry in files: print "working on", entry["filename"] f = open(entry["filename"], "r") content = f.read() f.close() readlist = [int(x) for x in content.split("\n")[:-1]] entry["readlist"] = readlist # NOTE: open the associated /Forum/{{ course_id }}/Data/{{ file }}.xml # file in order to extract the <entries nid="{{ nid }}"> attribute # only with {{ nid }} is the {{ id }} unique. # Example: username: a0848375 # course_id: 119 # file: 3.xml # # and # username: a0848375 # course_id: 119 # file: 1.xml # # there are duplicate ids: [80, 81, 82, 83] which can only be uniquely # determined via the associated {{ nid }} filename = os.path.basename(entry["filename"]) xml_path = os.path.join(root,"Forum", str(entry["course_id"]), "Data", "%s.xml" % filename) f = open(xml_path, "r") content = f.read() f.close() print "associated xml:", xml_path tree = etree.fromstring(content) nid = tree.xpath("//entries")[0].get("nid") entry["nid"] = int(nid) return files def to_csv(files, filename): """ [d,...] where d keys are: ['username', 'course_id', 'nid', 'readlist'] """ f = open(filename, "w") f.write("service,course_id,username,nid,id\n") for entry in files: for entry_id in entry["readlist"]: values = [ "Forum", str(entry["course_id"]), entry["username"], str(entry["nid"]), str(entry_id) ] f.write(",".join(values)) f.write("\n") f.close() if __name__ == '__main__': files = list_readlist_files(ROOT_DATA) to_csv( extract_file_contents ( ROOT_DATA, files ), "forum_readlist.csv" )
from .budget.budget import Budget from .budget.budget_doc import BudgetDoc from .grant.grant import Grant from .grant.financing_agency import FinancingAgency from .grant.grant_domain import Grantdomain from .costcenter.costcenter import CostCenter from .project.project import Project from .project.expense_code import ExpenseCode
""" 25-Mile Marathon Mary wants to run a 25-mile marathon. When she attempts to sign up for the marathon, she notices the sign-up sheet doesn't directly state the marathon's length. Instead, the marathon's length is listed in small, different portions. Help Mary find out how long the marathon actually is. Return True if the marathon is 25 miles long, otherwise, return False. Examples: marathon_distance([1, 2, 3, 4]) ➞ False marathon_distance([1, 9, 5, 8, 2]) ➞ True marathon_distance([-6, 15, 4]) ➞ True Notes: Items in the list will always be integers. Items in the list may be negative or positive, but since negative distance isn't possible, find a way to convert the sum of the distance into a positive integer. Return False if the arguments are empty or not provided. """ def marathon_distance(lst, expected_distance=25): return expected_distance == sum([abs(x) for x in lst])
from django.contrib import admin from .models import Question, Choice # Register your models here. class ChoiceAdmin(admin.ModelAdmin): list_display = ['__str__','choice','vote_count'] class Meta: model = Choice admin.site.register(Question) admin.site.register(Choice,ChoiceAdmin)
from flask import Blueprint, request, jsonify, current_app as app import uuid from werkzeug.security import generate_password_hash, check_password_hash import jwt import datetime from functools import wraps from emailer import send import random import math authentication_bp = Blueprint('authentication_bp', __name__) from models import Users from models import OTPS from database import db # ============================ # OTP GENERATOR # ============================ def OTP_generator(): digits = [i for i in range(0, 10)] random_str = "" for i in range(6): index = math.floor(random.random()*10) random_str += str(digits[index]) return random_str # ============================ # CHECK PRESENCE OF TOKEN # ============================ def token_required(f): @wraps(f) def decorated(*args, **kwargs): token = request.headers.get('Authentication') if not token: return jsonify({ 'message': 'Token missing' }), 401 try: data = jwt.decode(token, app.config['SECRET_KEY']) current_user = Users.query.filter_by(public_id=data['public_id']).first() except: return jsonify({ 'message': 'Token invalid', }), 401 return f(current_user, *args, **kwargs) return decorated # ==================== # USER SIGNUP # ==================== @authentication_bp.route('/signup', methods=['POST']) def user_signup(): data = request.get_json() user = Users.query.filter_by(email=data['email']).first() if user: return jsonify( { 'success': False, 'message': 'User already exists!' } ), 400 hashed_password = generate_password_hash(data['password'], method='sha256') new_user = Users( public_id=str(uuid.uuid4()), name=data['name'], email=data['email'], password=hashed_password, admin=False ) token = jwt.encode( { 'public_id': new_user.public_id, 'exp': datetime.datetime.utcnow() + datetime.timedelta(hours=24) }, app.config['SECRET_KEY'] ) db.session.add(new_user) db.session.commit() return jsonify( { 'success': True, 'message': 'Signup successfull', 'token': token, 'name': new_user.name, 'email': new_user.email } ) # ==================== # USER LOGIN # ==================== @authentication_bp.route('/login', methods=['POST']) def user_login(): data = request.get_json() user = Users.query.filter_by(email=data['email']).first() # user not found if not user: return jsonify( { 'success': False, 'message': 'Authentication failed' } ), 401 # password matched if check_password_hash(user.password, data['password']): token = jwt.encode( { 'public_id': user.public_id, 'exp': datetime.datetime.utcnow() + datetime.timedelta(hours=24) }, app.config['SECRET_KEY'] ) return jsonify( { 'success': True, 'message': 'Login successfull', 'token': token, 'name': user.name, 'email': user.email } ) # password not matched return jsonify( { 'success': False, 'message': 'Authentication failed' } ), 401 # ==================== # GET ALL USERS # ==================== @authentication_bp.route('/users', methods = ['GET']) @token_required def get_all_users(current_user): if not current_user.admin: return jsonify({ 'message': 'Cannot perform that function!' }) users = Users.query.all() output = [] for user in users: user_data = {} user_data['id'] = user.id user_data['public_id'] = user.public_id user_data['name'] = user.name user_data['email'] = user.email user_data['password'] = user.password user_data['admin'] = user.admin output.append(user_data) return jsonify({'users': output}) # ==================== # PASSWORD CHANGE # ==================== @authentication_bp.route('/change-password', methods=['POST']) @token_required def changepassword(current_user): public_id = current_user.public_id user = Users.query.filter_by(public_id = public_id).first() # user not found # if not user: # return jsonify( # { # 'success': False, # 'message': 'Authentication failed' # } # ), 401 data = request.get_json() # password matching if check_password_hash(user.password, data['password']): if data['newpassword'] == data['confirmpassword']: hashed_password = generate_password_hash(data['newpassword'], method='sha256') user.password = hashed_password db.session.commit() return jsonify( { 'success': True, 'message': 'Password changed successfully!', } ) else: return jsonify( { 'success': False, 'message': 'Passwords did not match. Enter again!', } ) # password not matched return jsonify( { 'success': True, 'message': 'Please enter correct password!' } ), 200 # ==================== # FORGOT PASSWORD # ==================== @authentication_bp.route('/forgot-password', methods=['POST']) def forgotpassword(): data = request.get_json() user = Users.query.filter_by(email = data['email']).first() # user not found if not user: return jsonify( { 'success': False, 'message': 'User not found!' } ), 401 # token = jwt.encode( # { # 'public_id': user.public_id, # 'exp': datetime.datetime.utcnow() + datetime.timedelta(minutes=10) # }, # app.config['SECRET_KEY'] # ) OTP = OTP_generator() row = OTPS.query.filter_by(user_id = user.id).first() if not row: new_otp = OTPS( user_id = user.id, email = data['email'], otp = OTP ) db.session.add(new_otp) db.session.commit() else: row.otp = OTP db.session.commit() # Call to send email function in emailer.py status = send(data['email'], OTP) # token_str = token.decode("utf-8") lnk = 'http://127.0.0.1:5000/reset-password?token=' if status == 202: return jsonify( { 'success': True, 'message': 'Email sent succesfully!!', 'OTP': OTP, 'Link': lnk } ), 200 else: return jsonify( { 'success': False, 'message': 'Please Try Again!!', } ), 200 # ==================== # VERIFY OTP # ==================== @authentication_bp.route('/verify-otp', methods=['POST']) def verifyotp(): data = request.get_json() row = OTPS.query.filter_by(email=data['email'],otp=data['otp']).first() if not row: return jsonify( { 'success': False, 'message': 'OTP is Incorrect. Enter Again!' } ), 200 if data['otp'] == row.otp: return jsonify( { 'success': True, 'message': 'Verification Successful!' } ), 200 # ==================== # RESET PASSWORD # ==================== @authentication_bp.route('/reset-password', methods=['POST']) def resetpassword(): passw = request.get_json() user = Users.query.filter_by(email = passw['email']).first() if passw['newpassword'] == passw['confirmpassword']: hashed_password = generate_password_hash(passw['newpassword'], method='sha256') user.password = hashed_password db.session.commit() return jsonify( { 'success': True, 'message': 'Password changed successfully!', } ), 200 else: return jsonify( { 'success': False, 'message': 'Password did not match. Enter again!', } )
# coding: utf-8 from __future__ import unicode_literals import os import platform from itertools import imap def get_A_B(x1, y1, x2, y2): if x1 == x2: return 'undf', 'undf' x1 = float(x1) x2 = float(x2) y1 = float(y1) y2 = float(y2) if not x1: b = y1 a = (y2-b)/x2 elif not x2: b = y2 a = (y1-b)/x1 else: x_diff = x1/x2 b = (y1-x_diff*y2)/(1-x_diff) a = (y1-b)/x1 return [a, b] def coord_processing(pol_id, icoords): to_return = [] prev, next = icoords.next(), icoords.next() while next: y1 = prev[0] x1 = prev[1] cut_ind_y1 = y1.index('.')+10 cut_ind_x1 = x1.index('.')+10 cut_y1, prec_y1 = y1[:cut_ind_y1], y1[cut_ind_y1:] cut_x1, prec_x1 = float(x1[:cut_ind_x1]), x1[cut_ind_x1:] y2 = next[0] x2 = next[1] cut_ind_y2 = y2.index('.')+10 cut_ind_x2 = x2.index('.')+10 cut_y2, prec_y2 = y2[:cut_ind_y2], y2[cut_ind_y2:] cut_x2, prec_x2 = float(x2[:cut_ind_x2]), x2[cut_ind_x2:] if cut_x1 < cut_x2: li = [float(x1), prec_x1, x1, y1, x2, y2, ] elif cut_x2 < cut_x1: li = [float(x2), prec_x2, x2, y2, x1, y1, ] else: if prec_x1 < prec_x2: li = [float(x1), prec_x1, x1, y1, x2, y2, ] elif prec_x2 < prec_x1: li = [float(x2), prec_x2, x2, y2, x1, y1, ] else: print 'Warning, pol_id={0} has vertical line, what to do???'.format(pol_id) print 'x1: ', x1, 'y1: ', y1, 'x2: ', x2, 'y2: ', y2 try: prev = next next = icoords.next() except StopIteration: next = None continue li.append(pol_id) li.extend(get_A_B(x1, y1, x2, y2)) to_return.append(li) try: prev = next next = icoords.next() except StopIteration: next = None return to_return if platform.system() == 'Windows': # fixme прописать нужное files_dir = 'c://python27/tree/EttonProducts/offline/Files/{0}' # dma_file = 'c://python27/tree/EttonProducts/offline/dma.data' dma_file = 'c://python27/tree/EttonProducts/offline/dma-cut' else: files_dir = '/home/damir/Projects/Tree/outer_sort/Files/{0}' dma_file = '/home/damir/Projects/Tree/outer_sort/dma.data' with open(dma_file) as dma: # 210 polygons, 9797 coordinates (8792) j = 0 l = [] for line in dma: pol_id, s, coords = line.split('\t') icoords = imap(lambda x: x.split(), coords.split(',')) l.extend(coord_processing(pol_id, icoords)) if len(l) > 1000: print len(l), 'len is up 1000' l.sort(key=lambda el: (el[0], el[1])) with open(files_dir.format('f{0}'.format(j)), 'w') as f: for li in l: f.write(' '.join(imap(str, li))+'\n') l = [] j += 1 # if j == 2: # break files_ = next(os.walk(files_dir.format('')))[2] def get_file_next_line(filename): """ Returns next line of opened file or None """ try: f_line = filename.next() except StopIteration: # print filename, 'Stop ietr' f_line = None return f_line def merge(files): # не обрабатывается, если все данные уместились в один файл изначально if len(files) > 1: f1_name, f2_name = files[:2] with open(files_dir.format(f1_name+f2_name), 'w') as f_merge: with open(files_dir.format(f1_name)) as f1: with open(files_dir.format(f2_name)) as f2: f1_line = get_file_next_line(f1) f2_line = get_file_next_line(f2) while 1: if f1_line and f2_line: f1_info = f1_line.split() f2_info = f2_line.split() f1_x = float(f1_info[0]) f2_x = float(f2_info[0]) if f1_x < f2_x: f_merge.write(f1_line) f1_line = get_file_next_line(f1) elif f1_x > f2_x: f_merge.write(f2_line) f2_line = get_file_next_line(f2) else: if f1_info[1] < f2_info[1]: f_merge.write(f1_line) f1_line = get_file_next_line(f1) elif f1_info[1] > f2_info[1]: f_merge.write(f2_line) f2_line = get_file_next_line(f2) else: f_merge.write(f1_line) f_merge.write(f2_line) f1_line = get_file_next_line(f1) f2_line = get_file_next_line(f2) elif f1_line is None and f2_line is None: break elif f2_line is None: while f1_line: f_merge.write(f1_line) f1_line = get_file_next_line(f1) break else: # f1_line is None while f2_line: f_merge.write(f2_line) f2_line = get_file_next_line(f2) break os.remove(files_dir.format(f1_name)) os.remove(files_dir.format(f2_name)) new_files = files[2:] + [f1_name+f2_name, ] merge(new_files) # либо в конце остался только последний отсортированный, # либо изначально был только 1 файл тоже отсортированный else: pass merge(files_)
#cd d:05learn/python_learn/selflearning # print(r) # print(1 == 2) # print(1==2) # print(1!=2) # print("a" in "basic") #import random #r = random.randrange(1,10000) #if r%2 == 0: # print(r,'is even.') #else: # print(r,'is odd.') #for i in range(10): # if i%2 !=0: # print(i) #for n in range(2,100): # if n == 2: # print(n) # continue # for i in range(2,int(n**0.5) + 1): # if(n%i) == 0: # break # else: # print(n) #a = abs(-3.1415926) #print(a) # 判断一个数据是否为质数 #def is_prime(n): # if n<2: # return False # if n == 2: # return True # for m in range(2,int(n**0.5) + 1): # if(n%m) == 0: # return False # else: # return True #for i in range(80,110): # if(is_prime(i)): # print(i) x=0 x+= 2 print(x)
# Verifizierung der Zertifikate... openssl verify -CAfile rootcrt.pem servercrt.pem from cryptography.hazmat.primitives import serialization from ..Config import Config from pathlib import Path from flask import current_app from cryptography.x509.base import rsa, Certificate class FileSystemProvider(): cert_installation_path = Path(Config.certInstallationPath) def __init__(self) -> None: pass def getInstallationPath(self) -> Path: return self.cert_installation_path def check_prerequisite(self): if not self.cert_installation_path.exists(): current_app.logger.info("Specified installationpath: " + str(self.cert_installation_path)) current_app.logger.error("The default installationpath for the certificates does not exist! You have to create manually yourself! :(") @classmethod def checkDomainExists(cls, persistence_identifier: str) -> bool: domainDependingDirectory = cls.cert_installation_path.joinpath(persistence_identifier) return domainDependingDirectory.exists() @classmethod def createNamespaceForDomainForSavingKeysAndCertificate(cls, persistence_identifier: str) -> bool: domainNamespace = cls.cert_installation_path.joinpath(persistence_identifier) if not cls.checkDomainExists(persistence_identifier): domainNamespace.mkdir(mode=0o777) return True else: return domainNamespace.exists() @classmethod def checkKeyExists(cls, persistence_identifier: str) -> bool: keyFilename = persistence_identifier + Config.keyDefaultFiletype return cls.cert_installation_path.joinpath(persistence_identifier, keyFilename).exists() @classmethod def createKeyEntry(cls, persistence_identifier: str, key: rsa.RSAPrivateKey) -> bool: if not cls.createNamespaceForDomainForSavingKeysAndCertificate(persistence_identifier): return False else: if not cls.checkKeyExists(persistence_identifier): keyFilename = persistence_identifier + Config.keyDefaultFiletype keyFile = cls.cert_installation_path.joinpath(persistence_identifier, keyFilename) keyFile.touch() keyFile.write_bytes(key.private_bytes( serialization.Encoding.PEM, serialization.PrivateFormat.TraditionalOpenSSL, serialization.NoEncryption() )) return True else: return False @classmethod def checkCertExists(cls, persistence_identifier: str) -> bool: certFilename = persistence_identifier + Config.certDefaultFiletype return cls.cert_installation_path.joinpath(persistence_identifier, certFilename).exists() @classmethod def createCertEntry(cls, persistence_identifier: str, cert: Certificate) -> bool: if not cls.createNamespaceForDomainForSavingKeysAndCertificate(persistence_identifier): return False else: if not cls.checkCertExists(persistence_identifier): certFilename = persistence_identifier + Config.certDefaultFiletype certFile = cls.cert_installation_path.joinpath(persistence_identifier, certFilename) certFile.touch() certFile.write_bytes(cert.public_bytes( serialization.Encoding.PEM )) return True else: return False @classmethod def checkCSRExists(cls, persistence_identifier: str): pass
""" Project functionality. """ from ace import config from ace import client import json import sys def dump_project(args): """ Dumps the project to standard out. """ if not config.get_active_project(args): raise ValueError('Must specify project.') project_resource = client.get_resource('axilent.library','project',config.get_library_key(args),args) project_data = project_resource.get() sys.stdout.write(json.dumps(project_data['project-data'])) def load_project(args): """ Loads the project from the data file. """ if not (config.get_active_project(args) and args.data_file): raise ValueError('Must specify both project and data file.') project_resource = client.get_resource('axilent.library','project',config.get_library_key(args),args) data = None with open(args.data_file,'r') as data_file: data = data_file.read() project_resource.put(data={'project-data':data}) print 'Project data loaded.' def ping_library(args): """ Pings the project library. """ c = client.get_client('axilent.library',config.get_library_key(args),args) c.ping() print 'pong'
import _thread import pickle import socket from game import Game server = "192.168.0.102" # Local IP address of the server port = 5555 # Port to listen # Instantiate server s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Setup server try: s.bind((server, port)) except socket.error as e: print(e) # Start server s.listen(2) print("Server started, waiting for connection...") connected = set() # Holds the IDs of connected players games = {} # gameId: Game instance idCount = 0 # Holds the count of connected players def threaded_client(conn, p, gameId): """ A new instance of this client is created for every new client that connects. All the instances run on their own thread. This implements all the server side functionality for the client :param conn: socket connection instance :param p: [0, 1] player number :param gameId: to which game the player belongs :return: None """ global idCount # As soon as the player is connected, his player number is send as encoded string conn.send(str.encode(str(p))) reply = "" while True: # Data from client is an encoded string as defined in Network data = conn.recv(4096).decode() try: # if the game exists, fetch its instance if gameId in games: game = games[gameId] if not data: break # if we have data else: if data == 'reset': game.reset() # if it is a move, 'rock', 'paper' or 'scissors' elif data != 'get': game.play(p, data) # Any required operations are done and the whole game instance is sent reply = game conn.send(pickle.dumps(reply)) else: break except socket.error as e: print(e) break print("Lost connection") # If the game still exists try: del games[gameId] print("Closing game: ", gameId) except KeyError as e: print(e) idCount -= 1 conn.close() while True: conn, addr = s.accept() print("Connected to", addr) # Increment player count idCount += 1 # Assume player 1 p = 0 # Game ID is int division of idCount gameId = (idCount - 1) // 2 # If he's 1st player, create a new game with gameId if idCount % 2 == 1: games[gameId] = Game(gameId) print("Creating new game") # Else, ready the game with gameId and make that player player 2 else: games[gameId].ready = True p = 1 # Start the player's thread _thread.start_new_thread(threaded_client, (conn, p, gameId))
# linux: curl https://raw.githubusercontent.com/CrazyVideoGamer/auto-backup/main/get_auto_backup.py | python3 <-- not yet tested # windows cmd: curl https://raw.githubusercontent.com/CrazyVideoGamer/auto-backup/main/get_auto_backup.py | python <-- not yet tested from pathlib import Path import argparse import sys, platform, subprocess def does_git_exist(): system = platform.system() if system == "Linux": log = subprocess.run("command -v git >/dev/null 2>&1 || { echo 'error: git not found' >&2;}", shell=True) if log.stdout == b'error: git not found': return False return True elif system == "Windows": log = subprocess.run("where git >nul 2>&1 || ( echo error: git not found )", shell=True) if log.stdout == b'error: git not found': return False return True def error_message(message: str) -> None: # \u001b[31m makes it red, \u001b[0m makes the color reset system = platform.system() if system == "Windows": subprocess.run("color", shell=True) print("\u001b[31;1m" + message + "\u001b[0m", file=sys.stderr) sys.exit(0) def create_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser(description="Install or uninstall auto-backup") parser.add_argument("--uninstall", action='store_true') return parser args = create_parser().parse_args() system = platform.system() if system == "Linux": install_path = Path.home() / ".auto-backup" if not args.uninstall: if (install_path.exists() and (install_path / '.is-auto-backup').exists()): error_message("Already installed auto-backup") elif (install_path.exists() and not (install_path / '.is-auto-backup').exists()): error_message("Could not create the ~/.auto-backup directory: directory already exists") else: # this else statement only runs if ~/.auto-backup doesn't exist install_path.mkdir(exist_ok=True) (install_path / ".is-auto-backup").touch() # add this git repository (and also leave out the .git directory and name it `backup`) if does_git_exist(): if not (install_path / "backup").exists(): print("Installing auto-backup...") subprocess.run("git clone --quiet --depth=1 --branch=main https://github.com/CrazyVideoGamer/auto-backup.git backup", cwd=install_path, shell=True) subprocess.run("rm -rf ./backup/.git", cwd=install_path, shell=True) subprocess.run("pip install -r requirements.txt -t lib2 > /dev/null 2>&1", cwd=(install_path / "backup"), shell=True) print("Done!\n") else: error_message("Please install git using `sudo apt install git`") print(f"add `export PATH={str(install_path / 'auto-backup' / 'backup' / 'bin')}:$PATH` to ~/.bashrc to complete the installation") else: if (not install_path.exists() or (install_path.exists() and not (install_path / '.is-auto-backup').exists())): error_message("auto-backup is not installed") print("Uninstalling auto-backup...") subprocess.run(f"rm -r {str(install_path)}", shell=True) print("Done!") elif system == "Windows": install_path = Path.home() / "auto-backup" if not args.uninstall: if (install_path.exists() and (install_path / 'is-auto-backup').exists()): error_message("Already installed auto-backup") elif (install_path.exists() and not (install_path / 'is-auto-backup').exists()): error_message(f"Could not create the {str(install_path)} directory: directory already exists") else: install_path.mkdir(exist_ok=True) (install_path / "is-auto-backup").touch() # note that it is "is-auto-backup", not ".is-auto-backup" # add this git repository (and also leave out the .git directory and name it `backup`) if does_git_exist(): if not (install_path / "backup").exists(): print("Installing auto-backup...") subprocess.run("git clone --quiet --depth=1 --branch=main https://github.com/CrazyVideoGamer/auto-backup.git backup", cwd=install_path, shell=True) subprocess.run("rd /s /q \"backup/.git\"", cwd=install_path, shell=True) subprocess.run("pip install -r requirements.txt -t lib > nul 2>&1", cwd=(install_path / "backup"), shell=True) print("Done!\n") else: error_message("Please install git first (go to https://git-scm.com/) ") print(f"add {str(install_path / 'auto-backup' / 'backup' / 'bin')} to PATH to complete the installation") else: if (not install_path.exists() or (install_path.exists() and not (install_path / 'is-auto-backup').exists())): error_message("auto-backup is not installed") print("Uninstalling auto-backup...") subprocess.run(f"rd /s /q {str(install_path)}", shell=True) print("Done!") else: error_message("System {system} is not supported")
class Event: def __init__(self, eventName, eventDate, eventDesc, eventWeb, eventCategory, eventFood): self.eventName = eventName self.eventDate = eventDate self.eventDesc = eventDesc self.eventWeb = eventWeb self.eventCategory = eventCategory self.eventFood = eventFood
import A A.txt_line("D://hello.txt","D://hello2.txt")
# -*- coding: utf-8 -*- """ Created on Thu Jun 7 20:15:16 2018 @author: user 質數 """ def compute(x): i=2 while i < x: if (x%i)==0: return False i+=1 return True x=int(input()) if x <= 1: print("Not Prime") elif x == 2: print("Prime") else: r=compute(x) if r ==True: print("Prime") else: print("Not Prime")
#!/usr/bin/env python import unittest from main.activity.activity_login import * from main.activity.activity_logout import * from main.activity.activity_myshop_editor import * from main.lib.user_data import * from main.function.setup import * class Test_add_etalase(unittest.TestCase): _site = "live" def setUp(self): print ('[VALIDATION TEST] "Myshop-Etalase"') self.driver = tsetup("firefox") def test_1_check_add_and_edit_etalase(self): print ("TEST #1 : [Validation] Add and Edit Etalase using Unknown Character") driver = self.driver email = user2['email'] pwd = user2['pwd'] #Object activity login = loginActivity() myshop_etalase = myshopEditorActivity() logout = logoutActivity() #Object initiation myshop_etalase.setObject(driver) #Action login.do_login(driver, email, pwd, self._site) myshop_etalase.goto_myshop_editor(self._site) myshop_etalase.click_tab_etalase(self.driver) myshop_etalase.add_then_edit_etalase(self.driver) #self.etalse.do_validation() logout.do_logout(driver,self._site) def test_2_check_act_n_times(self): #test_user_login(self.driver, self.dict_user['email'], self.dict_user['password'], self._site) print ("TEST #2 : [Validation] Act N-times ") driver = self.driver email = user2['email'] pwd = user2['pwd'] #Object activity login = loginActivity() myshop_etalase = myshopEditorActivity() logout = logoutActivity() #Object initiation myshop_etalase.setObject(driver) #Action login.do_login(driver, email, pwd, self._site) myshop_etalase.goto_myshop_editor(self._site) myshop_etalase.click_tab_etalase(self.driver) # print ("==========") print ("Act - Edit") print ("==========") myshop_etalase.act_n_times(self.driver, "edit", 15) #self.etalse.do_validation() logout.do_logout(driver,self._site) def tearDown(self): print("Testing akan selesai dalam beberapa saat..") time.sleep(3) self.driver.close() # main if __name__ == "__main__": unittest.main(warnings='ignore')
#!/usr/bin/python import numpy as np import pandas as pd import random import sys import csv def create_data(self): data_frame = pd.read_csv(sys.argv[1]) #sluzi na vygenerovanie testovacieho datasetu o velkosti 250 zaznamov, zaznamy #zmaze z povodneho suboru,vo vysledku ostane dataset o velkosti 1315 zaznamov #na tvorbu mensich datasetov sample_frame_indexes = random.sample(data_frame.index,250) sample_frame = data_frame.ix[sample_frame_indexes] print(sample_frame) sample_frame.to_csv('test250_data_new.csv') new_frame = data_frame.drop(sample_frame_indexes) print(new_frame) new_frame.to_csv('train_data_cleaned_new.csv') create_data(sys.argv[1]) #create_test_frame(sys.argv[1]) #count_frame(sys.argv[1]) #edit_data(sys.argv[1]) #create_data(sys.argv[1]) #count_results(sys.argv[1])
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'IpTracker.ui' # # Created by: PyQt5 UI code generator 5.13.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.setEnabled(True) MainWindow.resize(547, 451) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setStatusTip("") self.centralwidget.setObjectName("centralwidget") self.textBrowser = QtWidgets.QTextBrowser(self.centralwidget) self.textBrowser.setGeometry(QtCore.QRect(10, 10, 331, 391)) font = QtGui.QFont() font.setPointSize(12) self.textBrowser.setFont(font) self.textBrowser.setObjectName("textBrowser") self.widget = QtWidgets.QWidget(self.centralwidget) self.widget.setGeometry(QtCore.QRect(360, 20, 161, 187)) self.widget.setObjectName("widget") self.verticalLayout = QtWidgets.QVBoxLayout(self.widget) self.verticalLayout.setContentsMargins(0, 0, 0, 0) self.verticalLayout.setObjectName("verticalLayout") self.pushButtonRefresh = QtWidgets.QPushButton(self.widget) font = QtGui.QFont() font.setPointSize(12) self.pushButtonRefresh.setFont(font) self.pushButtonRefresh.setObjectName("pushButtonRefresh") self.verticalLayout.addWidget(self.pushButtonRefresh) self.label = QtWidgets.QLabel(self.widget) font = QtGui.QFont() font.setPointSize(12) self.label.setFont(font) self.label.setObjectName("label") self.verticalLayout.addWidget(self.label) self.labelcurrentIP = QtWidgets.QLabel(self.widget) font = QtGui.QFont() font.setPointSize(12) self.labelcurrentIP.setFont(font) self.labelcurrentIP.setObjectName("labelcurrentIP") self.verticalLayout.addWidget(self.labelcurrentIP) self.label_3 = QtWidgets.QLabel(self.widget) font = QtGui.QFont() font.setPointSize(12) self.label_3.setFont(font) self.label_3.setText("") self.label_3.setObjectName("label_3") self.verticalLayout.addWidget(self.label_3) self.labelPastIP = QtWidgets.QLabel(self.widget) font = QtGui.QFont() font.setPointSize(12) self.labelPastIP.setFont(font) self.labelPastIP.setText("") self.labelPastIP.setObjectName("labelPastIP") self.verticalLayout.addWidget(self.labelPastIP) self.pushButtonClose = QtWidgets.QPushButton(self.widget) font = QtGui.QFont() font.setPointSize(12) self.pushButtonClose.setFont(font) self.pushButtonClose.setObjectName("pushButtonClose") self.verticalLayout.addWidget(self.pushButtonClose) self.labelTimeNow = QtWidgets.QLabel(self.widget) font = QtGui.QFont() font.setPointSize(12) self.labelTimeNow.setFont(font) self.labelTimeNow.setObjectName("labelTimeNow") self.verticalLayout.addWidget(self.labelTimeNow) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 547, 21)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Ip_Time_Loger")) self.textBrowser.setHtml(_translate("MainWindow", "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n" "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n" "p, li { white-space: pre-wrap; }\n" "</style></head><body style=\" font-family:\'MS Shell Dlg 2\'; font-size:12pt; font-weight:400; font-style:normal;\">\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">1</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">2</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">3</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">4</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">5</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">6</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">7</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">8</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">9</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">10</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">11</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">12</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">13</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">14</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">15</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">16</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">17</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">18</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">19</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'MS Shell Dlg 2\';\">20</span></p></body></html>")) self.pushButtonRefresh.setText(_translate("MainWindow", "Обновить")) self.label.setText(_translate("MainWindow", "Текущий IP")) self.labelcurrentIP.setText(_translate("MainWindow", "127.0.0.255")) self.pushButtonClose.setText(_translate("MainWindow", "Закрыть")) self.labelTimeNow.setText(_translate("MainWindow", "Time"))
from enum import Enum, IntEnum from typing import Dict, List from spectree import BaseFile, ExternalDocs, SecurityScheme, SecuritySchemeData, Tag from spectree._pydantic import BaseModel, Field, root_validator from spectree.utils import hash_module_path api_tag = Tag( name="API", description="🐱", externalDocs=ExternalDocs(url="https://pypi.org") ) class Order(IntEnum): asce = 0 desc = 1 class Query(BaseModel): order: Order class FormFileUpload(BaseModel): file: BaseFile class Form(BaseModel): name: str limit: str class JSON(BaseModel): name: str limit: int class ListJSON(BaseModel): __root__: List[JSON] class StrDict(BaseModel): __root__: Dict[str, str] class Resp(BaseModel): name: str score: List[int] class Language(str, Enum): en = "en-US" zh = "zh-CN" class Headers(BaseModel): lang: Language @root_validator(pre=True) def lower_keys(cls, values): return {key.lower(): value for key, value in values.items()} class Cookies(BaseModel): pub: str class DemoModel(BaseModel): uid: int limit: int name: str = Field(..., description="user name") class DemoQuery(BaseModel): names1: List[str] = Field(...) names2: List[str] = Field(..., style="matrix", explode=True, non_keyword="dummy") def get_paths(spec): paths = [] for path in spec["paths"]: if spec["paths"][path]: paths.append(path) paths.sort() return paths # data from example - https://swagger.io/docs/specification/authentication/ SECURITY_SCHEMAS = [ SecurityScheme( name="auth_apiKey", data=SecuritySchemeData.parse_obj( {"type": "apiKey", "name": "Authorization", "in": "header"} ), ), SecurityScheme( name="auth_apiKey_backup", data=SecuritySchemeData.parse_obj( {"type": "apiKey", "name": "Authorization", "in": "header"} ), ), SecurityScheme( name="auth_BasicAuth", data=SecuritySchemeData.parse_obj({"type": "http", "scheme": "basic"}), ), SecurityScheme( name="auth_BearerAuth", data=SecuritySchemeData.parse_obj({"type": "http", "scheme": "bearer"}), ), SecurityScheme( name="auth_openID", data=SecuritySchemeData.parse_obj( { "type": "openIdConnect", "openIdConnectUrl": "https://example.com/.well-known/openid-cfg", } ), ), SecurityScheme( name="auth_oauth2", data=SecuritySchemeData.parse_obj( { "type": "oauth2", "flows": { "authorizationCode": { "authorizationUrl": "https://example.com/oauth/authorize", "tokenUrl": "https://example.com/oauth/token", "scopes": { "read": "Grants read access", "write": "Grants write access", "admin": "Grants access to admin operations", }, }, }, } ), ), ] WRONG_SECURITY_SCHEMAS_DATA = [ { "name": "auth_apiKey_name", "data": {"type": "apiKey", "name": "Authorization"}, }, { "name": "auth_apiKey_in", "data": {"type": "apiKey", "in": "header"}, }, { "name": "auth_BasicAuth_scheme", "data": {"type": "http"}, }, { "name": "auth_openID_openIdConnectUrl", "data": {"type": "openIdConnect"}, }, { "name": "auth_oauth2_flows", "data": {"type": "oauth2"}, }, { "name": "empty_Data", "data": {}, }, {"name": "wrong_Data", "data": {"x": "y"}}, ] def get_model_path_key(model_path: str) -> str: """ generate short hashed prefix for module path (instead of its path to avoid code-structure leaking) :param model_path: `str` model path in string """ model_path, _, model_name = model_path.rpartition(".") if not model_path: return model_name return f"{model_name}.{hash_module_path(module_path=model_path)}"
def findNumbers(num): if(num%5==0): return None f = num*5 for i in range(f,f+5): print(i) num = 2 findNumbers(24)
from django.http import HttpResponse from django.shortcuts import render from .models import Animal, AnimalPhoto, Seviye def home(request): return HttpResponse(render(request, 'giris.html')) def oyun(request): seviyes = Seviye.objects.all() animals = Animal.objects.all() animalPh = AnimalPhoto.objects.all() context = {'animal': animals, 'animalPhoto': animalPh, 'seviye': seviyes} return render(request, 'index.html', context)
import numpy as np import warnings class CorrectionWarning(Warning): """ Warning type used when something fishy is detected in our correction steps to use: >>> import warnings >>> warnings.warn('message', category=CorrectionWarning) By default, only one identical warning will be shown originating on a particular line, and subsequent identical warnings will be ignored. This can be controlled using the warnings API documented at https://docs.python.org/3/library/warnings.html """ def warn_if_any_true(possible_warnings_series): """ Raise a CorrectionWarning if any of the values in a boolean series are True. Args: possible_warnings_series: pandas Series of booleans, which if True, should raise a warning. Returns: None Warns: uses the warnings API and CorrectionWarning if any red flags are present. """ if possible_warnings_series.dtype != np.bool_: raise ValueError( f"possible warnings {possible_warnings_series} must be a boolean series" ) # Filter only to True values (`possible_warnings_series` itself is a boolean series which can be used to filter) raised_warnings = possible_warnings_series[possible_warnings_series] if raised_warnings.any(): warnings.warn( f"Diagnostic warning flags: {raised_warnings.index.values}", category=CorrectionWarning, stacklevel=2, # Raise on the immediate caller's level, not this level )
from bs4 import BeautifulSoup import urllib2 import csv import random import time import os ## setting working directory ------------------------------------------------ os.chdir("C:/Users/wooki/Documents/GitHub/pythoncourse2018/homeworks/hw2") with open('hw2_lim.csv', 'wb') as f: w = csv.DictWriter(f, fieldnames = ("Title", "Published date", "Issues", "Number of signatures")) w.writeheader() still_petitions = True i=0 while still_petitions: web_address='https://petitions.whitehouse.gov/?page=%i' %i i += 1 web_page = urllib2.urlopen(web_address) all_html = BeautifulSoup(web_page.read()) all_petition = all_html.find_all("h3") for p in all_petition[3:] : petition = {} ## empty dictionary to fill in petition["Title"] = p.get_text().encode("utf-8") address = p.find('a') extension = address["href"] #date pet_page = urllib2.urlopen('https://petitions.whitehouse.gov%s' % extension) petition_html = BeautifulSoup(pet_page.read()) fordate= petition_html.find('h4', {'class': "petition-attribution"}) pre= fordate.text.strip() petition["Published date"] =pre.split("on")[1].encode("utf-8") #issue issue= petition_html.find('div', {'class': "field-item even"}) petition["Issues"] =issue.text.strip().encode("utf-8") #Number of signature num_sig= petition_html.find("span", {'class':"signatures-number"}) petition["Number of signatures"] =num_sig.text.strip().encode("utf-8") ## write observation to csv w.writerow(petition) try: page= all_html.find('div', {'class':"page-load-next"}).text except AttributeError: still_petitions = False
""" This program includes methods used to simulate basic battle simulations for the game StarCraft II """ import random from sim_units import get_Units Units = get_Units() def combat_sim(army_comp1, army_comp2, MAX_ROUNDS=200): """ Army 1 is enemy, Army 2 is test Input two army compositions written as dictionary with unit names as keys, unit counts as values. Simulates combat with the two army. The first army is assumed to be the enemy army, the second army is the army composition we are testing viability for. If combat takes longer than 200 seconds then it is assumed to be a stalemate and army2 is forcibly killed off Returns remaining army composition of army2 """ army1 = build_army(army_comp1) army2 = build_army(army_comp2) round1 = True rounds = 0 while ((get_health(army1) > 0) and (get_health(army2) > 0) and (rounds <= MAX_ROUNDS)): if round1: deal_ranged_dps(army1, army2) deal_ranged_dps(army2, army1) round1 = False else: healing_units(army1) healing_units(army2) deal_damage(army1, army2) deal_damage(army2, army1) army1 = remove_dead_units(army1) army2 = remove_dead_units(army2) build_Interceptor(army1) build_Interceptor(army2) track_Locust_Broodlings(army1) track_Locust_Broodlings(army2) rounds += 1 if rounds >= MAX_ROUNDS: army2.clear() return army2 class Unit: """ This class is used to represent each unit in an army """ def __init__(self, name, army): """ Creates a new Unit object with the stats of the given name """ self.name = name if Units[name]['armor'] > 0: self.hp = Units[name]['hp'] * Units[name]['armor'] * 1.5 else: self.hp = Units[name]['hp'] self.max_hp = self.hp self.dps = Units[name]['dps'] self.ranged = Units[name]['ranged'] self.attributes = Units[name]['attributes'] self.type = Units[name]['type'] self.targetable = Units[name]['targetable'] self.bonuses = Units[name]['bonuses'] self.bonus_dps = Units[name]['bonus_dps'] self.time = Units[name]['time'] self.healer = Units[name]['healer'] # self.repaired is used only for healing units so that they cannot # repair and attack in the same round # repaired = True if Unit has repaired that round self.repaired = False # Carrier/Interceptor interaction if name == 'Carrier': self.child = {} for n in range(8): self.child[n] = Unit('Interceptor', army) army.append(self.child[n]) # child_time is used to keep track of time until able to # build a new Interceptor child self.child_time = 0 # SwarmHost/Locust interaction if name == 'SwarmHost': self.child = {} for n in range(2): self.child[n] = Unit('Locust', army) army.append(self.child[n]) if name == 'Locust': self.live_time = 18 # BroodLord/Broodling interaction if name == 'BroodLord': self.spawn_time = 0 if name == 'Broodling': self.live_time = 6 def __str__(self): return self.name def __repr__(self): return str(self.name) + "_HP:" + str(self.hp) def healing_units(army): """ Input is a list of Units in an army If applicable, Units with the "healer" tag restore health to friendly Units in their army. Medivacs are allowed to split their healing, but we are restricting SCVs to only heal one target due to the variablity of the SCV repair ability """ for unit in army: if unit.healer: allies = army.copy() allies.remove(unit) if unit.name == 'Medivac': heal = 12.6 attribute = 'Biological' # Medivacs split their hps the same way other units can split dps while ((heal > 0) and (get_healable_units(allies, attribute) is not None)): target = get_healable_units(allies, attribute) restore = target.max_hp - target.hp temp_heal = heal heal -= restore restore -= temp_heal target.hp = target.max_hp - restore # prevent overhealing if target.hp > target.max_hp: target.hp = target.max_hp unit.repaired = True elif unit.name == 'SCV': # SCVs will only be allowed to repair a single target attribute = 'Mechanical' if get_healable_units(allies, attribute) is not None: target = get_healable_units(allies, attribute) heal = target.max_hp / target.time target.hp += heal # prevent overhealing if target.hp > target.max_hp: target.hp = target.max_hp unit.repaired = True def get_healable_units(allies, attribute): """ Helper function to be used with healing_units allies is list of friendly Units, attribute is a string either "Biological" or "Mechanical" that determines the type of unit that can be healed Randomly chooses an allied Unit that can be healed returns that chosen Unit, returns None if no unit can be healed """ heal_targets = [] for ally in allies: if (attribute in ally.attributes) and (ally.hp < ally.max_hp): heal_targets.append(ally) if len(heal_targets) == 0: return None else: index = random.randint(0,len(heal_targets)-1) target = heal_targets[index] return target def get_health(army): """ Input is list of Units in an army Returns the sum of the remaining units in that army """ health = 0 for unit in army: health += unit.hp return health def get_damage(army): """ Input is a list of Units in an army Returns the total dps of that army """ damage = 0 for unit in army: damage += unit.dps return damage def build_army(army_comp): """ Input is a dictionary representing an army composition Returns a list of Units matching the army composition """ army = [] for name in army_comp: count = army_comp[name] while count >= 1: army.append(Unit(name, army)) count -= 1 return army def get_attackable_unit(unit, enemy_army): """ Input is attacking Unit and list of Units in enemy army Returns a random Unit in enemy army that attacking unit can attack If no enemy Unit can be attacked, return None """ # create list of enemies unit can attack # targeting type (ground/air) and if enemy has hp>0 enemies = [] for enemy in enemy_army: if enemy.hp > 0: targetable = 0 for target_type in unit.targetable: for enemy_type in enemy.type: targetable += int(enemy_type == target_type) if targetable > 0: enemies.append(enemy) if len(enemies) == 0: return None else: # randomly chooses an enemy to attack index = random.randint(0,len(enemies)-1) enemy = enemies[index] return enemy def deal_damage(army, enemy_army): """ Input army is a list of attacking Units, enemy_army is list of Units being attacked. Calculates the damage dealt to enemy_army by all attacking units Updates the list of enemy Units with damaged health numbers """ for unit in army: deal_unit_dps(unit, enemy_army, army) def deal_unit_dps(unit, enemy_army, ally_army): """ Input is attacking Unit and list of Units being attacked Calculates the damage dealt to enemy army by the single unit Updates the list of enemy Units with damaged health numbers """ if not unit.repaired: damage = unit.dps bonus_dmg = unit.bonus_dps while (damage > 0) and (get_attackable_unit(unit, enemy_army) is not None): enemy = get_attackable_unit(unit, enemy_army) # check for bonus damage. bonus damage is kept seperate from # normal damage bonus = 0 # so long as there is some bonus dps to damage, check if # there is at least one matching attribute if bonus_dmg > 0: for bonus_att in unit.bonuses: for att in enemy.attributes: bonus += int(bonus_att == att) if bonus > 0: bonus_dmg_tmp = bonus_dmg bonus_dmg -= enemy.hp enemy.hp -= bonus_dmg_tmp dmg_temp = damage damage -= enemy.hp enemy.hp -= dmg_temp # Banelings kill themselves after attacking if unit.name == 'Baneling': unit.hp = 0 # BroodLords spawn Broodlings on hit, every 1.79 seconds # This will be rounded to spawn a Broodling every other round if unit.name == 'BroodLord': if unit.spawn_time == 0: ally_army.append(Unit('Broodling')) unit.spawn_time = 1 else: unit.spawn_time -= 1 # reset repaired status for next round unit.repaired = False def deal_ranged_dps(army, enemy_army): """ Input army is a list of attacking Units, enemy_army is list of Units being attacked. Calculates the damage dealt to enemy_army only by ranged units Updates the list of enemy Units with damaged health numbers """ for unit in army: if unit.ranged: deal_unit_dps(unit, enemy_army, army) def remove_dead_units(army): """ Input is a list of Units in an army Removes all Units with hp <=0 from that list Returns updated list """ new_army = [] # removes normal dead units for unit in army: if unit.hp >= 0: new_army.append(unit) # if Interceptor dies, free up that child space for the Carrier if unit.name == 'Carrier': for n in unit.child: if unit.child[n] is not None: if unit.child[n].hp <= 0: unit.child[n] = None # removes alive Interceptors if parent Carrier is dead for unit in army: if (unit.name == 'Carrier') and (unit.hp <= 0): for n in unit.child: if unit.child[n] in new_army: new_army.remove(unit.child[n]) return new_army def build_Interceptor(army): """ Input is an army. For every Carrier in that army, if an Interceptor slot is availible, build a new Interceptor and add that Interceptor back into the army """ for unit in army: if unit.name == 'Carrier': for n in unit.child: if unit.child[n] is None: if unit.child_time == 0: unit.child[n] = Unit('Interceptor', army) army.append(unit.child[n]) unit.child_time = 9 def track_Locust_Broodlings(army): """ Input is a list of Units in an army Locusts can only live for 18 rounds and Broodlings can only live for 6 rounds Kills Locusts and Broodlings after exceeding their respective time limits """ for unit in army: if unit.name == 'Locust': if unit.live_time <= 0: army.remove(unit) else: unit.live_time -= 1 if unit.name == 'Broodling': if unit.live_time <= 0: army.remove(unit) else: unit.live_time -= 1
''' imputationflask.views ------------------- Define routes render by flask ''' # external imports from flask import render_template, request, current_app, Blueprint from werkzeug.exceptions import HTTPException from matplotlib import cm import json frontend = Blueprint('frontend', __name__) def make_graph_data(pred_description): colormap_name = 'tab20c' graph_data = dict() for key, pred in pred_description.items(): if key in current_app.persistent.binaries_dict['numeric_mappers'].keys(): graph_data[key] = json.dumps([{'label': current_app.persistent.binaries_dict['recordname2description'][key], 'data': [{'x': float(x), 'y': float(y)} for x, y in zip(pred['x'], pred['y'])], 'showLine': True, 'pointRadius': 0, 'borderColor': "#00468C", 'borderWidth': 1, 'backgroundColor': "#3e95cdcc"}]) else: N = len(pred['y']) cmap = cm.get_cmap(colormap_name, N) colors = [f'#{"".join(str(hex(int(255*c))[2:]) for c in color[:3] )}' for color in cmap.colors] # TODO: This probably has a more elegant solution graph_data[key] = json.dumps([{ 'label': pred['x'][i], 'data': [round(float(pred['y'][i]), 2)], 'backgroundColor': colors[i], 'borderWidth': 1} for i in range(N)]) return graph_data @frontend.route('/') @frontend.route('/web_app', methods=["GET", "POST"]) def web_app(): form = current_app.persistent.census_form.get_instance( request_form=request.form) # we got some data, time to make predictions if request.method == 'POST': pred_description = current_app.persistent.predictor(request.form) graph_data = make_graph_data(pred_description) else: graph_data = None return render_template('webapp.html', form=form, graph_data=graph_data, description_dict=(current_app .persistent .binaries_dict['recordname2description']), numeric_keys=list(current_app .persistent .binaries_dict['numeric_mappers'] .keys())) @frontend.route('/privacy') def privacy(): return render_template('privacy.html') @frontend.route('/how_it_works') def how_it_works(): return render_template('under_construction.html') @frontend.route('/about_api') def about_api(): return render_template('under_construction.html') def handle_error(e): code = 500 if isinstance(e, HTTPException): code = e.code return render_template('error.html', error_code=code), code
import sys #http://www.scipy.org/ try: from numpy import dot from numpy.linalg import norm except: print "Error: Requires numpy from http://www.scipy.org/. Have you installed scipy?" sys.exit() def removeDuplicates(list): """ remove duplicates from a list """ return set((item for item in list)) def cosine(vector1, vector2): """ related documents j and q are in the concept space by comparing the vectors : cosine = ( V1 * V2 ) / ||V1|| x ||V2|| """ return float(dot(vector1,vector2) / (norm(vector1) * norm(vector2))) def jaccard(vector1, vector2): orr = 0 andd = 0 zipped = zip(vector1,vector2) for (i, j) in zipped: if(i > 0 and j > 0): andd += 1 if(i > 0 or j > 0): orr += 1 return float(andd) / float(orr)
from django.shortcuts import render from django.core import serializers from features.models import Feature from tickets.models import Ticket from features.forms import featureForm from cart.views import add_to_cart from django.utils import timezone from django.http import JsonResponse import json # Create your views here. def index(request): """A view that displays the index page""" features = Feature.objects.filter(status=4) productFeatures = Feature.objects.filter(status=2) devFeatures = Feature.objects.filter(status=3) tickets = Ticket.objects.all() """See functions below""" bugData = get_bugData() featureDevData, featureVarData = get_featureData() return render(request, 'index.html', {'features': features, 'productFeatures': productFeatures, 'devFeatures': devFeatures, 'tickets': tickets, 'featureDevData': featureDevData, 'featureVarData':featureVarData, 'bugData': bugData}) def get_bugData(): """To get the correct data regarding bugs that have been resolved and how long that has taken""" bugs = Ticket.objects.filter(status=3) bugs_list = [] for ticket in bugs: deltaT = ticket.fixed_date-ticket.published_date bugs_list.append(round(deltaT.total_seconds()/3600/24)) bugs_list_set = list(set(bugs_list)) count_list = ['Days to Resolve',] for n in bugs_list_set: count_list.append(bugs_list.count(n)) bugT = ['bugT'] for bug in bugs_list_set: bugT.append(bug) bugData = [bugT, count_list] return bugData def get_featureData(): """To get data on how often new features are developed""" features = Feature.objects.filter(status=4).order_by('feature_added_date') flist = [] dlist = ['Timeline',] nlist = ['Number of Features over Time',] for feature in features: flist.append(feature.version) dlist.append(str(feature.feature_added_date)[0:19]) for i in range(0, len(dlist)-1): nlist.append(i+1) featureDevData = [dlist, nlist] featureVarData = flist return featureDevData, featureVarData
#!/usr/bin/python3 if __name__ == "__main__": import sys sum = 0 count = len(sys.argv) for nums in range(1, count): sum = sum + int(sys.argv[nums]) print("{}".format(sum))
import os from datetime import datetime import pandas # python3 -m pip install pandas import progressbar # python3 -m pip install progressbar2 import DiffMon class DiffMonTest: def __init__(self, outputDir, diffDataset, diffDatasetPath, chkptSize, maxDiffDrop, maxWaitTime, waitTimeEnable, restartAppr): """ Construct a difficulty monitor tester class. Args: outputDir : The path to the output directory. diffDataset : The dataset that contains all historical block difficulty values and block times, in Pandas object. diffDatasetPath : The path to the dataset that contains all historical block difficulty values and block times. (optional, ignored if `diffDataset` is not `None`) chkptSize : Checkpoint size. maxDiffDrop : Maximum difficulty drop allowed, in percentage. maxWaitTime : Maximum wait time. waitTimeEnable : Do we want to enable maximum wait time or not? restartAppr : Approach of restart process. Integer begin from 1. Currently there're two different approaches. """ self.diffDataset = diffDataset if diffDataset is not None else pandas.read_csv(diffDatasetPath) self.chkptSize = chkptSize self.diffMon = DiffMon.DiffMon(chkptSize, maxDiffDrop, maxWaitTime, waitTimeEnable, restartAppr) self.outFileName = 'chkpt_{chkpt}_maxdrop_{maxdrop}_maxwait_{maxwait}_wait_{wait}_rs_{rs}.csv'.format( chkpt=chkptSize, maxdrop=maxDiffDrop, maxwait=maxWaitTime, wait=waitTimeEnable, rs=restartAppr) self.testName = self.outFileName self.outFile = open(os.path.join(outputDir, self.outFileName), 'w') self.outFile.write('\"Block_Number\",\"Block_Time\",\"Timestamp\",\"Diff_Ref\",\"Diff_Drop\",\"BTime_Shutdown\",\"Diff_Shutdown\",\"Checkpt_Start\",\"Checkpt_End\",\"Ref_BlockNum\",\"At_Checkpt\"\n') self.outFile.flush() # Number of shutdown we found self.shutdownCount = 0 self.btShutdownCount = 0 self.dfShutdownCount = 0 self.totalSteps = len(self.diffDataset.index) self.currentStep = 0; self.maxDiffDrop = 0; def __del__(self): self.outFile.close() def Begin(self): """ Start the test """ try: bnumIndex = self.diffDataset.columns.get_loc('Block_Number') timeIndex = self.diffDataset.columns.get_loc('Block_Time') diffIndex = self.diffDataset.columns.get_loc('Difficulty') self.currentStep = 0 prevTime = 0 #with progressbar.ProgressBar(max_value=self.totalSteps) as bar: for block in self.diffDataset.itertuples(index=False): # Getting basic values bNum = block[bnumIndex] time = block[timeIndex] diff = block[diffIndex] blockTime = time - prevTime # Send to difficulty monitor res = self.diffMon.Update(bNum, diff, blockTime) if res is not None: # Count num of shutdowns self.shutdownCount += 1 if res[2] is True: self.btShutdownCount += 1 elif res[3] is True: self.dfShutdownCount += 1 # check max drop if res[1] < self.maxDiffDrop: self.maxDiffDrop = res[1] timeReadable = datetime.fromtimestamp(time) self.outFile.write('{bNum},{bTime},\"{time}\",{diffRef},{diffDrop},{btDown},{dfDown},{chkpt_s},{chkpt_e},{ref_bnum},{chkpt_pos}\n'.format( bNum = bNum, bTime = blockTime, time = str(timeReadable), diffRef = res[0], diffDrop= res[1], btDown = res[2], dfDown = res[3], chkpt_s = res[4], chkpt_e = res[5], ref_bnum= res[6], chkpt_pos=self.diffMon.chkptCount)) # Updates for the loop prevTime = time self.currentStep += 1 #bar.update(self.currentStep) # Finished processing all blocks self.outFile.write('\"#####TABLE_ENDS#####\"\n\n') # output summary self.outFile.write('\"Checkpoint Size: {chkptSize}\"\n'.format(chkptSize=self.chkptSize)) self.outFile.write('\"Num of Shutdown: {shutdownCount}\"\n'.format(shutdownCount=self.shutdownCount)) self.outFile.write('\"Max Diff. Drop : {maxDiffDrop}\"\n'.format(maxDiffDrop=self.maxDiffDrop)) self.outFile.write('\"Num of Chkpts : {chkptCount}\"\n'.format(chkptCount=self.diffMon.chkptCount)) self.outFile.write('\n') self.outFile.write('\"Num of BlockTime Shutdown: {shutdownCount}\"\n'.format(shutdownCount=self.btShutdownCount)) self.outFile.write('\"Num of Difficulty Shutdown: {shutdownCount}\"\n'.format(shutdownCount=self.dfShutdownCount)) self.outFile.flush() except: self.currentStep = self.totalSteps raise
import datetime ano = datetime.date.today().year r = input ('A confederação do brazil precisa de um atleta \n para você se cadastrar primeiro digite seu nome : ') r1 = int (input ('Agora digite seu ano de nascimento: ')) r4 = r.upper() r2 = ano - r1 # saber a idade do mesmo. if r2 <= 9 : print ('MIRIN') elif r2 <=14 and r2 > 9 : print (f'OLA {r4} VOCÊ TEM {r2} ANOS E ESTA NA CATEGORIA INFANTIL') elif r2 <= 19 and r2 > 14 : print (f'OLÁ {r4} VOCÊ TEM {r2} ANOS E ESTA NA CATEGORIA JUNIOR ') elif r2 == 20 : print (f'OLÁ {r4} VOCÊ TEM {r2} ANOS E ESTA NA CATEGORIA SÊNIOR') elif r2 > 20 : print (f'OLÁ {r4} VOCÊ TEM {r2} ANOS E ESTA NA CATEGORIA MASTER') else: print ('Desculpe não conseguimos entender oque você digitou.')
from django import forms from .models import song, album, vocalist, hashtag, language, mood import django_filters class addSong(forms.ModelForm): class Meta: model = song exclude = ['isDeleted'] class updateSong(forms.ModelForm): class Meta: model = song fields = ['title'] class updateAlbum(forms.ModelForm): class Meta: model = song fields = ['album_name'] class addAlbum(forms.ModelForm): class Meta: model = album fields = ['album_name'] class updateVocalist(forms.ModelForm): class Meta: model = song fields = ['vocalist_name'] class addVocalist(forms.ModelForm): class Meta: model = vocalist fields = ['vocalist_name'] class updateHashtag(forms.ModelForm): class Meta: model = song fields = ['hashtags'] class addHashtag(forms.ModelForm): class Meta: model = hashtag fields = ['hashtags'] class updateLanguage(forms.ModelForm): class Meta: model = song fields = ['languages'] class addLanguage(forms.ModelForm): class Meta: model = language fields = ['languages'] class updateMood(forms.ModelForm): class Meta: model = song fields = ['moods'] class addMood(forms.ModelForm): class Meta: model = mood fields = ['moods']
import os import json class DecryptorOptions(): def __init__(self): configurationOptions = self.configurationOptions() self.decryptorApplicationPath = configurationOptions['decryptorApplicationPath'] self.decryptorSlots = int(configurationOptions['decryptorSlots']) def allKeys(self): return ['decryptorApplicationPath', 'decryptorSlots'] def pathKeys(self): return ['decryptorApplicationPath'] def folderKeys(self): return [] def configurationPath(self): return os.path.join(os.path.dirname(os.path.realpath(__file__)), 'options.json') def configurationOptions(self): if not os.path.exists(self.configurationPath()): raise Exception('No configuration file found!!') configurationOptions = None errors = [] with open(self.configurationPath(), 'r') as f: configurationOptions = json.loads(f.read()) for element in self.allKeys(): if element not in configurationOptions.keys(): errors.append('Configuration Errors: No value found for %s' % (element)) for element in self.pathKeys(): if not os.path.exists(configurationOptions[element]): errors.append('Configuration Errors: No file found at path for %s' % (element)) for element in self.folderKeys(): if not os.path.exists(os.path.dirname(configurationOptions[element])): errors.append('Configuration Errors: No folder found at path for %s' % (element)) if len(errors)>0: print "\n".join(errors) print "\n" raise Exception('Configuration Errors Found!!!!!') return configurationOptions def decryptorOptionsWithInputAssetAndDestinationFile(self, inputAsset, destinationFile): return [self.decryptorApplicationPath, inputAsset, destinationFile] if __name__ == '__main__': print DecryptorOptions().decryptorSlots, type(DecryptorOptions().decryptorSlots)
# pylint: disable=E1101 """This module sends requests to a Borda server in order to create an election, register candidates and voters, and issue votes on behalf of the voters.""" import argparse import json import sys import logging import requests def resource(path): """Append a path to an entrypoint to form a REST resource""" base_url = 'http://localhost:1031/' return base_url + path def create_new_election(args): """Create a new election on the server""" try: election = requests.post(resource('election')) return election.status_code == requests.codes.ok except requests.exceptions.ConnectionError as ex: logging.error(ex.message) return False def add_candidate(args): """Add a new candidate to the open election""" candidate = {'name': args.name} try: candidate_request = requests.put( resource('election'), data=candidate) return candidate_request.status_code == requests.codes.ok except requests.exceptions.ConnectionError as ex: logging.error(ex.message) return False def list_candidates(args): """List all candidates""" try: candidates_request = requests.get(resource('vote')) js = candidates_request.json() candidates = json.loads(js) for num, candidate in enumerate(candidates): print "{0}: {1}".format(num + 1, candidate) return candidates_request == requests.codes.ok except requests.exceptions.ConnectionError as ex: logging.error(ex.message) return False def add_voter(args): """Add a voter to the open election""" voter = {'name': args.name} try: voter_request = requests.post( resource('vote'), data=voter) return voter_request.status_code == requests.codes.ok except requests.exceptions.ConnectionError as ex: logging.error(ex.message) return False def voter_votes(args): """A named voter issues a sorted list of votes""" voter = { 'name': args.name, 'votes': args.votes} try: voter_votes_request = requests.put( resource('vote'), data=voter) return voter_votes_request.status_code == requests.codes.ok except requests.exceptions.ConnectionError as ex: logging.error(ex.message) return False def get_election_winner(args): """Get the winner of the open election""" try: winner = requests.get(resource('election')) print winner.text return winner.status_code == requests.codes.ok except requests.exceptions.ConnectionError as ex: logging.error(ex.message) return False def comma_separated_strings(votes_string): """Argparse type check for a comma separated list of strings""" try: return votes_string.split(',') except ValueError: msg = "%r is not a comma separated list of strings" % votes_string raise argparse.ArgumentTypeError(msg) def run(): """Main entry point""" parser = argparse.ArgumentParser(prog='borda') subparsers = parser.add_subparsers(help='sub-command help') parse_create_new_election = subparsers.add_parser('election') parse_create_new_election.set_defaults(func=create_new_election) parse_add_candidate = subparsers.add_parser('candidate') parse_add_candidate.add_argument('-n', '--name', required=True) parse_add_candidate.set_defaults(func=add_candidate) parse_add_voter = subparsers.add_parser('voter') parse_add_voter.add_argument('-n', '--name', required=True) parse_add_voter.set_defaults(func=add_voter) parse_vote = subparsers.add_parser('vote') parse_vote.add_argument('-n', '--name', required=True) parse_vote.add_argument('-v', '--votes', required=True, type=comma_separated_strings) parse_vote.set_defaults(func=voter_votes) parse_winner = subparsers.add_parser('winner') parse_winner.set_defaults(func=get_election_winner) args = parser.parse_args() logging.basicConfig( level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s') success = args.func(args) if success: sys.exit(0) else: sys.exit(1)
#-*- encoding:utf-8 -*- from hello import Major,db f= open('major.txt', 'rt',encoding="utf-8") for x in f: db.session.add(Major(mname=x[:-1])) db.session.commit() f.close()
# variables 了解变量 import keyword print(keyword.kwlist) keyWord = input("pls input a string:") flag = keyword.iskeyword(keyWord) if flag: print("true") else : print("false")
# Using text2 from the nltk book corpa, create your own version of the # MadLib program. # Requirements: # 1) Only use the first 150 tokens # 2) Pick 5 parts of speech to prompt for, including nouns # 3) Replace nouns 15% of the time, everything else 10% ## # Deliverables: # 1) Print the orginal text (150 tokens) # 1) Print the new text print("START*******") import nltk import random from nltk import word_tokenize, sent_tokenize nltk.download('punkt') debug = False if debug: print ("Getting information from file madlib_test.txt...\n") firststring = (text2 [:150]) #finds the first 150 tokens para = ' '.join(firststring) tokens = nltk.word_tokenize(para) print("TOKENS") print(tokens) #printing the tokens from the nltk text2 book taggedtokens = nltk.pos_tag(tokens) print("TAGGED TOKENS") print(taggedtokens) #printing the tagged tokens if debug: print ("First few tagged tokens are:") for tup in taggedtokens[:5]: #sets the limit of 5 tagged tokens that I am looking for print (tup) tagmap = {"NN":"a noun","NNS":"a plural noun","NNP":"Proper noun, singular","VB":"a verb","JJ":"an adjective"} substitution_probabilities = {"NN":.15,"NNS":.10,"NNP":.10,"VB":.10,"JJ":.10, "VPB":.10} #gives the possibilities of what it is looking for and the probability def spaced(word): if word in [",", ".", "?", "!", ":"]: return word else: return " " + word final_words = [] for (word, tag) in taggedtokens: #using a tuble to iterate through taggedtokens if tag not in substitution_probabilities or random.random() > substitution_probabilities[tag]: final_words.append(spaced(word)) #appending the final_words if it meets the requirements above else: new_word = input("Please enter %s:\n" % (tagmap[tag])) final_words.append(spaced(new_word)) #appending new_word if it meets the requirement above print ("".join(final_words)) print("\n\nEND*******")
from django.urls import path from . import views from .engine.hier_deploy import views as hier_deploy_views app_name = 'inventory' urlpatterns = [ path('v1', views.InventoryListView.as_view(), name='inventory_list'), path('v1/inventory-create', hier_deploy_views.InventoryCreateView.as_view(), name='inventory_create'), path('v1/inventory-create/data.json', hier_deploy_views.InventoryCreateJSONView.as_view(), name='inventory_json_create'), path('v1/inventory-check', views.InventoryCheckView.as_view(), name='inventory_check'), path('v1/<inventory_name>', views.InventoryDetailView.as_view(), name='inventory_detail'), path('v1/<inventory_name>/sync', views.InventorySyncView.as_view(), name='inventory_sync'), path('v1/<inventory_name>/delete', views.InventoryDeleteView.as_view(), name='inventory_delete'), path('v1/<inventory_name>/data.json', views.InventoryDetailJSONView.as_view(), name='inventory_json_detail'), path('v1/<inventory_name>/create', views.ResourceCreateView.as_view(), name='resource_create'), path('v1/<inventory_name>/node-create', hier_deploy_views.NodeCreateView.as_view(), name='node_create'), path('v1/<inventory_name>/node/<node_name>', hier_deploy_views.NodeDetailView.as_view(), name='node_detail'), path('v1/<inventory_name>/node/<node_name>/update', hier_deploy_views.NodeUpdateView.as_view(), name='node_update'), path('v1/<inventory_name>/param-create', hier_deploy_views.ParamCreateView.as_view(), name='param_create'), path('v1/<inventory_name>/param/<param_name>/update', hier_deploy_views.ParamUpdateView.as_view(), name='param_update'), path('v1/<inventory_name>/param/<param_name>/delete', hier_deploy_views.ParamDeleteView.as_view(), name='param_delete'), path('v1/<inventory_name>/classify', views.ResourceClassifyView.as_view(), name='resource_classify'), path('v1/<inventory_name>/resource/<resource_name>', views.ResourceDetailView.as_view(), name='resource_detail'), path('v1/<inventory_name>/resource/<resource_name>/delete', views.ResourceDeleteView.as_view(), name='resource_delete'), path('v1/<inventory_name>/<resource_name>/data.json', views.ResourceDetailJSONView.as_view(), name='resource_json_detail'), path('v1/<inventory_name>/model/<form_name>/simple-generate', views.ClassGenerateView.as_view(), name='model_generate'), path('v1/<inventory_name>/model/<form_name>/wizard-generate', views.ClassGenerateWizardView.as_view(), name='model_generate_wizard'), ]
# tboz203 # 2015-05-12 # reyna_tests/models.py from decimal import Decimal from django.db import models class Test(models.Model): ''' A collection of questions ''' name = models.CharField(max_length=64) def __str__(self): return self.name class Meta: ordering = ('name',) class Question(models.Model): ''' A question on a test. ''' # consider adding an order field? text = models.CharField(max_length=200) test = models.ForeignKey(Test) def __str__(self): return self.text class Meta: ordering = ('text',) class Choice(models.Model): ''' One possible answer to a question (multiple choice or true/false) ''' question = models.ForeignKey(Question) text = models.CharField(max_length=256) is_correct = models.BooleanField() def __str__(self): return self.text class Meta: ordering = ('text',) class Attempt(models.Model): ''' One test-taker's attempt to pass a test. ''' user = models.CharField(max_length=64) test = models.ForeignKey(Test) date = models.DateTimeField() choices = models.ManyToManyField(Choice) score = models.DecimalField(max_digits=5, decimal_places=2, default=Decimal('0')) def __str__(self): return "{} - {}".format(self.user, self.test) class Meta: ordering = ('user', 'test', 'date')
""" Given the triangle of consecutive odd numbers: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 ... Calculate the row sums of this triangle from the row index (starting at index 1) e.g.: row_sum_odd_numbers(1); # 1 row_sum_odd_numbers(2); # 3 + 5 = 8 """ def row_sum_odd_numbers(n): # start = ((n - 1) * n // 2 + 1) * 2 - 1 # return sum(list(range(start, start + (n - 1) * 2 + 1, 2))) return sum(list(range(n**2 - n + 1, n**2 + n, 2))) print(row_sum_odd_numbers(1)) print(row_sum_odd_numbers(2)) print(row_sum_odd_numbers(3)) print(row_sum_odd_numbers(4)) print(row_sum_odd_numbers(5)) print(row_sum_odd_numbers(13)) print(row_sum_odd_numbers(19)) print(row_sum_odd_numbers(41)) """ Test.assert_equals(row_sum_odd_numbers(1), 1) Test.assert_equals(row_sum_odd_numbers(2), 8) Test.assert_equals(row_sum_odd_numbers(13), 2197) Test.assert_equals(row_sum_odd_numbers(19), 6859) Test.assert_equals(row_sum_odd_numbers(41), 68921) """
""" Minutiae Extractor to get Minutia from files (fingerprint templates) """ from Minutia import MinutiaNBIS class MinutiaeExtractor: NBIS_FORMAT = 1 def __init__(self, extractor_format=NBIS_FORMAT): self.extractor_type = extractor_format def extract_minutiae_from_xyt(self, file_path): """ Extracts minutiae from a fingerprint .xyt file :returns a list of Minutia with descending order of quality """ minutiae_list = [] with open(file_path, 'r') as file: for line in file: x, y, theta, quality = line.split(' ') minutia = MinutiaNBIS(int(x), int(y), int(theta), int(quality)) minutiae_list.append(minutia) # sort list according to quality of minutiae minutiae_list.sort(key=lambda m: int(m.quality), reverse=True) return minutiae_list
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri May 3 00:36:08 2019 @author: leiyuan """ #colors reference guide #https://matplotlib.org/api/colors_api.html ''' https://matplotlib.org/examples/color/colormaps_reference.html Sequential: These colormaps are approximately monochromatic colormaps varying smoothly between two color tones---usually from low saturation (e.g. white) to high saturation (e.g. a bright blue). Sequential colormaps are ideal for representing most scientific data since they show a clear progression from low-to-high values. Diverging: These colormaps have a median value (usually light in color) and vary smoothly to two different color tones at high and low values. Diverging colormaps are ideal when your data has a median value that is significant (e.g. 0, such that positive and negative values are represented by different colors of the colormap). Qualitative: These colormaps vary rapidly in color. Qualitative colormaps are useful for choosing a set of discrete colors. For example:: color_list = plt.cm.Set3(np.linspace(0, 1, 12)) ''' import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors # Have colormaps separated into categories: # http://matplotlib.org/examples/color/colormaps_reference.html cmaps = [('Perceptually Uniform Sequential', [ 'viridis', 'plasma', 'inferno', 'magma']), ('Sequential', [ 'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds', 'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu', 'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn']), ('Sequential (2)', [ 'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink', 'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia', 'hot', 'afmhot', 'gist_heat', 'copper']), ('Diverging', [ 'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', 'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic']), ('Qualitative', [ 'Pastel1', 'Pastel2', 'Paired', 'Accent', 'Dark2', 'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b', 'tab20c']), ('Miscellaneous', [ 'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern', 'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg', 'hsv', 'gist_rainbow', 'rainbow', 'jet', 'nipy_spectral', 'gist_ncar'])] nrows = max(len(cmap_list) for cmap_category, cmap_list in cmaps) #select the cmap category which has most cmap so the height is largest gradient = np.linspace(0, 1, 256) gradient = np.vstack((gradient, gradient))# for imshow ''' imshow(x) X : array-like or PIL image The image data. Supported array shapes are: (M, N): an image with scalar data. The data is visualized using a colormap. (M, N, 3): an image with RGB values (float or uint8). (M, N, 4): an image with RGBA values (float or uint8), i.e. including transparency. ''' def plot_color_gradients(cmap_category, cmap_list, nrows): fig, axes = plt.subplots(nrows=nrows) #fig.subplots_adjust(top=0.95, bottom=0.01, left=0.2, right=0.99) axes[0].set_title(cmap_category + ' colormaps', fontsize=14) for ax, name in zip(axes, cmap_list): ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(name)) pos = list(ax.get_position().bounds) x_text = pos[0] - 0.01 y_text = pos[1] + pos[3]/2. fig.text(x_text, y_text, name, va='center', ha='right', fontsize=10) # Turn off *all* ticks & spines, not just the ones with colormaps. for ax in axes: ax.set_axis_off() for cmap_category, cmap_list in cmaps: plot_color_gradients(cmap_category, cmap_list, nrows) plt.show() #for a single cmap #no.1 256 for sequential gradient = np.linspace(0, 1, 256) gradient = np.vstack((gradient, gradient))# for imshow fig, axes = plt.subplots(nrows = 4,figsize = (5,12)) axes[0].imshow(gradient, aspect='auto', cmap=plt.get_cmap('ocean')) #no.2 12 for sequential gradient = np.linspace(0, 1, 20) gradient = np.vstack((gradient, gradient))# for imshow axes[1].imshow(gradient, aspect='auto', cmap=plt.get_cmap('ocean')) #no.3 20 for Set1(9) which is qualitative(listed colormap) gradient = np.linspace(0, 1, 20) gradient = np.vstack((gradient, gradient))# for imshow axes[2].imshow(gradient, aspect='auto', cmap=plt.get_cmap('Set1')) #no.4 make cmap num equal to X color_list = plt.cm.Set1(np.linspace(0, 1, 9)) color_list = np.concatenate((color_list,color_list,color_list[:2])) cmap = colors.ListedColormap(color_list) gradient = np.linspace(0, 1, 20) gradient = np.vstack((gradient, gradient))# for imshow axes[3].imshow(gradient, aspect='auto', cmap=cmap) plt.show() #1 matplotlib.colors.cnames from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt fig = plt.figure() ax = fig.gca(projection='3d') # Plot a sin curve using the x and y axes. x = np.linspace(0, 1, 100) y = np.sin(x * 2 * np.pi) / 2 + 0.5 ax.plot(x, y, zs=0, zdir='z', label='curve in (x,y)') # Plot scatterplot data on the x and z axes. color_list = plt.cm.ocean(np.linspace(0, 1, 100)) # By using zdir='y', the y value of these points is fixed to the zs value 0 # and the (x,y) points are plotted on the x and z axes. ax.scatter(x, y, zs=0, zdir='y', c=color_list, label='points in (x,z)') # Make legend, set axes limits and labels ax.legend() ax.set_xlim(0, 1) ax.set_ylim(0, 1) ax.set_zlim(0, 1) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') # Customize the view angle so it's easier to see that the scatter points lie # on the plane y=0 ax.view_init(elev=20., azim=-35) plt.show() from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np def f(t): s1 = np.cos(2*np.pi*t) e1 = np.exp(-t) return np.multiply(s1, e1) ################ # First subplot ################ t1 = np.arange(0.0, 5.0, 0.1) t2 = np.arange(0.0, 5.0, 0.02) t3 = np.arange(0.0, 2.0, 0.01) # Twice as tall as it is wide. fig = plt.figure(figsize=plt.figaspect(2.)) fig.suptitle('A tale of 2 subplots') ax = fig.add_subplot(2, 1, 1) l = ax.plot(t1, f(t1), 'bo', t2, f(t2), 'k--', markerfacecolor='green') ax.grid(True) ax.set_ylabel('Damped oscillation') ################# # Second subplot ################# ax = fig.add_subplot(2, 1, 2, projection='3d') X = np.arange(-5, 5, 0.25) xlen = len(X) Y = np.arange(-5, 5, 0.25) ylen = len(Y) X, Y = np.meshgrid(X, Y) R = np.sqrt(X**2 + Y**2) Z = np.sin(R) surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, linewidth=0, antialiased=False) ax.set_zlim3d(-1, 1) plt.show() """ animation example 1 """ from matplotlib import pyplot as plt import numpy as np import mpl_toolkits.mplot3d.axes3d as p3 from matplotlib import animation fig = plt.figure() ax = p3.Axes3D(fig) def gen(n): phi = 0 while phi < 2*np.pi: yield np.array([np.cos(phi), np.sin(phi), phi]) phi += 2*np.pi/n def update(num, data, line): line.set_data(data[:2, :num]) line.set_3d_properties(data[2, :num]) N = 100 data = np.array(list(gen(N))).T line, = ax.plot(data[0, 0:1], data[1, 0:1], data[2, 0:1]) # Setting the axes properties ax.set_xlim3d([-1.0, 1.0]) ax.set_xlabel('X') ax.set_ylim3d([-1.0, 1.0]) ax.set_ylabel('Y') ax.set_zlim3d([0.0, 10.0]) ax.set_zlabel('Z') ani = animation.FuncAnimation(fig, update, N, fargs=(data, line), interval=10000/N, blit=False) ani.save('matplot001.gif', writer='pillow') plt.show() """ animation example 2 """ import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation fig, ax = plt.subplots() xdata, ydata = [], [] ln, = ax.plot([], [], 'r-', animated=False) def init(): ax.set_xlim(0, 2*np.pi) ax.set_ylim(-1, 1) return ln, def update(frame): xdata.append(frame) ydata.append(np.sin(frame)) ln.set_data(xdata, ydata) return ln, ani = FuncAnimation(fig, update, frames=np.linspace(0, 2*np.pi, 128), init_func=init, blit=True) plt.show() ani.save('matplot002.gif', writer='pillow') """ animation example 3 """ fig, ax = plt.subplots() x = np.linspace(0, 2*np.pi, 200) y = np.sin(x) l = ax.plot(x, y) dot, = ax.plot([], [], 'ro') def init(): ax.set_xlim(0, 2*np.pi) ax.set_ylim(-1, 1) return l def gen_dot(): for i in np.linspace(0, 2*np.pi, 200): newdot = [i, np.sin(i)] yield newdot def update_dot(newd): dot.set_data(newd[0], newd[1]) return dot, ani = animation.FuncAnimation(fig, update_dot, frames = gen_dot(), interval = 100, init_func=init) ani.save('matplot003.gif', writer='pillow', fps=30) """ animation example 4 """ from math import sin, cos from scipy.integrate import odeint g = 9.8 leng = 1.0 b_const = 0.2 # no decay case: def pendulum_equations1(w, t, l): th, v = w dth = v dv = - g/l * sin(th) return dth, dv # the decay exist case: def pendulum_equations2(w, t, l, b): th, v = w dth = v dv = -b/l * v - g/l * sin(th) return dth, dv t = np.arange(0, 20, 0.1) track = odeint(pendulum_equations1, (1.0, 0), t, args=(leng,)) #track = odeint(pendulum_equations2, (1.0, 0), t, args=(leng, b_const)) xdata = [leng*sin(track[i, 0]) for i in range(len(track))] ydata = [-leng*cos(track[i, 0]) for i in range(len(track))] fig, ax = plt.subplots() ax.grid() line, = ax.plot([], [], 'o-', lw=2) time_template = 'time = %.1fs' time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes) def init(): ax.set_xlim(-2, 2) ax.set_ylim(-2, 2) time_text.set_text('') return line, time_text def update(i): newx = [0, xdata[i]] newy = [0, ydata[i]] line.set_data(newx, newy) time_text.set_text(time_template %(0.1*i)) return line, time_text ani = animation.FuncAnimation(fig, update, range(1, len(xdata)), init_func=init, interval=50) #ani.save('single_pendulum_decay.gif', writer='imagemagick', fps=100) ani.save('matplot004.gif', writer='pillow', fps=100) plt.show() '''   a.fig 绘制动图的画布名称   b.func自定义动画函数,即下边程序定义的函数update   c.frames动画长度,一次循环包含的帧数,在函数运行时,其值会传递给函数update(n)的形参“n”   d.init_func自定义开始帧,即传入刚定义的函数init,初始化函数   e.interval更新频率,以ms计   f.blit选择更新所有点,还是仅更新产生变化的点。应选择True,但mac用户请选择False,否则无法显 '''
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import tensorflow as tf import argparse if __name__ == "__main__": parser = argparse.ArgumentParser('Plot Evaluation') parser.add_argument('--patterns', type=str, nargs='+') parser.add_argument('--names', type=str, nargs='+') parser.add_argument('--epoch-len', type=int, default=1000) parser.add_argument('--tag', type=str, default='ray/tune/evaluation/episode-reward-mean') parser.add_argument('--csv-file', type=str, default='data.csv') parser.add_argument('--plt-file', type=str, default='data.png') parser.add_argument('--title', type=str, default='Evaluation') parser.add_argument('--style', type=str, default='darkgrid') args = parser.parse_args() sns.set(style=args.style) df = pd.DataFrame(columns=['Algorithm', 'Type', 'Timestep', 'Average Return']) i = 0 for pattern, name in zip(args.patterns, args.names): all_paths = [] all_path_returns = [] for t in tf.io.gfile.glob(pattern): path = [] path_return = 0.0 for e in tf.compat.v1.train.summary_iterator(t): for v in e.summary.value: if v.tag == args.tag and e.step <= 100: path_return += v.simple_value path.append([name, "All", e.step * args.epoch_len, v.simple_value]) df.loc[i] = path[-1] i += 1 all_paths.append(path) all_path_returns.append(path_return) for e in all_paths[np.argmax(all_path_returns)]: df.loc[i] = [e[0], "Max", *e[2:]] i += 1 for e in all_paths[np.argmin(all_path_returns)]: df.loc[i] = [e[0], "Min", *e[2:]] i += 1 df.to_csv(args.csv_file) sns.lineplot(x="Timestep", y="Average Return", hue="Algorithm", style="Type", data=df) plt.title(args.title) plt.savefig(args.plt_file)