text
stringlengths
8
6.05M
import requests payload={'key1':'value1','key2':['value2','value3']} headers={'user-agent':'1'} r=requests.get("https://www.baidu.com",params=payload,headers=headers) # print (r.url) # print (r.text) # print (r.status_code) # print (r.headers) r.headers['Content-Type|...'] r.headers.get('content-type|...') # print (r.encoding) # print (r.apparent_encoding) # print (r.content) # print (r.json()) # 二进制内容 比如图片 # from PIL import Image # from io import BytesIO # # i=Image.open(BytesIO(r.content)) # Post请求 Json格式 # url='https://api.github.com/some/endpoint' # payload={'some':'data'} # r=requests.post(url,json=payload) # 上传文件 # files={'file':('report.xls',open('report.xls','rb'),'application/vd.ms-excel',{'Expires':'0'})} # r=requests.post(url,files=files) # r.text # 发送cookie到服务器 # cookies=dict(cookies_are='working') # r.request.get(url,cookies=cookies) # 禁止重定向处理 # r=requests.get(url,allow_redirects=False) # 服务器返回给我们的响应头部信息 # r.headers # 发送到服务器的请求的头部 # r.request.headers # 身份验证 # from requests.auth import AuthBase # # class PizzaAuth(AuthBase): # def __init__(self,username): # self.username=username # # def __call__(self,r): # r.headers['']=self.username # return r # # requests.get('http://pizzabin.org/admin',auth=PizzaAuth('rockyfire')) def getHtmlText(url): try: headers = {'user-agent': '1'} r=requests.get(url,timeout=3000,verify=True) r.raise_for_status() # if r.status_code==request.codes.ok r.encoding=r.apparent_encoding return r.status_code except: return "Something Wrong!" if __name__=="__main__": # url = "https://www.baidu.com" url = "https://www.github.com" print (getHtmlText(url))
__author__ = 'QC1' from main.page.base import * from selenium.webdriver.common.by import By from utils.function.general import * import os, time, sys, json, requests import urllib.parse import urllib.request class AdminPage(BasePage): _tokopedia_backend_image_loc = (By.XPATH, "/html/body/div[1]/div/div/a/img") #backend tabs locator _general_tab_loc = (By.XPATH, "/html/body/div[1]/div/ul/li[1]") _user_tab_loc = (By.XPATH, "/html/body/div[1]/div/ul/li[2]") _shop_tab_loc = (By.XPATH, "/html/body/div[1]/div/ul/li[3]") _catalog_tab_loc = (By.XPATH, "/html/body/div[1]/div/ul/li[4]") _product_tab_loc = (By.XPATH, "/html/body/div[1]/div/ul/li[5]") _transaction_tab_loc = (By.XPATH, "/html/body/div[1]/div/ul/li[6]") _order_tab_loc = (By.XPATH, "/html/body/div[1]/div/ul/li[7]") _statistic_tab_loc = (By.XPATH, "/html/body/div[1]/div/ul/li[8]") _monitor_tab_loc = (By.XPATH, "/html/body/div[1]/div/ul/li[9]") _shipping_agency_tab_loc = (By.XPATH, "/html/body/div[1]/div/ul/li[10]") _seo_tab_loc = (By.XPATH, "/html/body/div[1]/div/ul/li[11]") _marketing_tab_loc = (By.XPATH, "/html/body/div[1]/div/ul/li[12]") _system_tab_loc = (By.XPATH, "/html/body/div[1]/div/ul/li[13]") _abuser_name_input_loc = (By.XPATH, "/html/body/div[2]/div/div[1]/div[1]/div[1]/input") _total_abuse_input_loc = (By.XPATH, "/html/body/div[2]/div/div[1]/div[1]/div[2]/input") _search_abuser_button_loc = (By.XPATH, "/html/body/div[2]/div/div[1]/div[2]/button") _view_abuse_button_loc = (By.XPATH, "/html/body/div[2]/div/div[2]/div/div[4]/div[2]/table/tbody/tr/td[5]/a[1]") #look for the report description and compare it with dict ['description'] _reason_message_loc = (By.CSS_SELECTOR, "html.dialog-mode body.img-down.admin-page div#dialog.jqmWindow.jqmID1 div.jqm-inner div.content div#content-table div#admin-view-abuse_wrapper.dataTables_wrapper table#admin-view-abuse.display.data-table tbody tr.odd td.fs-12 div") def domain(self, site, x=""): self._open(site, x) self.target_domain = x def check_admin_page(self): print("Inspecting elements on backend page #1: tokopedia image...") self.mouse_hover_to(*self._tokopedia_backend_image_loc) print("Inspecting elements on backend page #1 succeeded: tokopedia image found!") time.sleep(1) print("Inspecting elements on backend page #2: general tab...") self.mouse_hover_to(*self._general_tab_loc) print("Inspecting elements on backend page #2 succeeded: general tab found!") time.sleep(1) print("Inspecting elements on backend page #3: user tab...") self.mouse_hover_to(*self._user_tab_loc) print("Inspecting elements on backend page #3 succeeded: user tab found!") time.sleep(1) print("Inspecting elements on backend page #4: shop tab...") self.mouse_hover_to(*self._shop_tab_loc) print("Inspecting elements on backend page #4 succeeded: shop tab found!") time.sleep(1) print("Inspecting elements on backend page #5: catalog tab...") self.mouse_hover_to(*self._catalog_tab_loc) print("Inspecting elements on backend page #5 succeeded: catalog tab found!") time.sleep(1) print("Inspecting elements on backend page #6: product tab...") self.mouse_hover_to(*self._product_tab_loc) print("Inspecting elements on backend page #6 succeeded: product tab found!") time.sleep(1) print("Inspecting elements on backend page #7: transaction tab...") self.mouse_hover_to(*self._transaction_tab_loc) print("Inspecting elements on backend page #7 succeeded: transaction tab found!") time.sleep(1) print("Inspecting elements on backend page #8: order tab...") self.mouse_hover_to(*self._order_tab_loc) print("Inspecting elements on backend page #8 succeeded: order tab found!") time.sleep(1) print("Inspecting elements on backend page #9: statistic tab...") self.mouse_hover_to(*self._statistic_tab_loc) print("Inspecting elements on backend page #9 succeeded: statistic tab found!") time.sleep(1) print("Inspecting elements on backend page #10: monitor tab...") self.mouse_hover_to(*self._monitor_tab_loc) print("Inspecting elements on backend page #10 succeeded: monitor tab found!") time.sleep(1) print("Inspecting elements on backend page #11: shipping tab...") self.mouse_hover_to(*self._shipping_agency_tab_loc) print("Inspecting elements on backend page #11 succeeded: shipping tab found!") time.sleep(1) print("Inspecting elements on backend page #12: seo tab...") self.mouse_hover_to(*self._seo_tab_loc) print("Inspecting elements on backend page #12 succeeded: seo tab found!") time.sleep(1) print("Inspecting elements on backend page #13: marketing tab...") self.mouse_hover_to(*self._marketing_tab_loc) print("Inspecting elements on backend page #13 succeeded: marketing tab found!") time.sleep(1) print("Inspecting elements on backend page #14: system tab...") self.mouse_hover_to(*self._system_tab_loc) print("Inspecting elements on backend page #14 succeeded: system tab found!") time.sleep(1) print("All elements found! Backend element inspection completed!") def search_abuser_name_and_report(self, abuserName, desc): print("Searching for the report started") print("Sending the abuser name..") self.find_element(*self._abuser_name_input_loc).send_keys(abuserName) self.find_element(*self._search_abuser_button_loc).click() print("Finding the abuser name. . .") time.sleep(1) print("Name found! Checking reason. . .") self.find_element(*self._view_abuse_button_loc).click() time.sleep(2) print ("The reason message in the backend is : ", self.find_element(*self._reason_message_loc).text) time.sleep(2) reasonMessage = self.find_element(*self._reason_message_loc).text return reasonMessage
# -*- coding: utf-8 -*- """ ytelapi This file was automatically generated by APIMATIC v2.0 ( https://apimatic.io ). """ class Body73(object): """Implementation of the 'body_73' model. TODO: type model description here. Attributes: number_type (NumberType2Enum): The capability the number supports. area_code (string): Specifies the area code for the returned list of available numbers. Only available for North American numbers. quantity (string): A positive integer that tells how many number you want to buy at a time. leftover (string): If desired quantity is unavailable purchase what is available . """ # Create a mapping from Model property names to API property names _names = { "number_type":'NumberType', "area_code":'AreaCode', "quantity":'Quantity', "leftover":'Leftover' } def __init__(self, number_type=None, area_code=None, quantity=None, leftover=None): """Constructor for the Body73 class""" # Initialize members of the class self.number_type = number_type self.area_code = area_code self.quantity = quantity self.leftover = leftover @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary number_type = dictionary.get('NumberType') area_code = dictionary.get('AreaCode') quantity = dictionary.get('Quantity') leftover = dictionary.get('Leftover') # Return an object of this model return cls(number_type, area_code, quantity, leftover)
import subprocess cmd = input().split() subprocess.run(cmd)
#文件的读和写 f=open("D://hello.txt","r") a=f.readlines() print(a) f.close() b=open("D://hello2.txt","w") c=b.writelines(a) b.close() print("成功啦")
import time,re from selenium import webdriver from selenium.webdriver.common.keys import Keys import pandas as pd def spider(artist): driver = webdriver.Chrome() driver.implicitly_wait(5) driver.get("http://tool.liumingye.cn/music/?page=searchPage") input_tag = driver.find_element_by_id('input') input_tag.send_keys('周杰伦') input_tag.send_keys(Keys.ENTER) download_icons = driver.find_elements_by_class_name('init') for item in download_icons: # Attention:class name 中包含空格时会出现BUG,用CSS选择器可以实现 downloader_icon = item.find_element_by_css_selector("[class='aplayer-list-download iconfont icon-xiazai']") downloader_icon.click() links = driver.find_elements_by_css_selector("[class='btn btn-outline-secondary download']") # 解析完成下载链接之后,要关闭dialog,返回上一级,从而实现遍历 for link in links: print(link.get_attribute('outerHTML')) time.sleep(2) driver.quit() #spider(' ') # token_m=re.compile('resourceType=') # musical_urls=[['http://218.205.239.34/MIGUM2.0/v1.0/content/sub/listenSong.do?toneFlag=LQ&netType=00&copyrightId=0&contentId=600907000009041441&resourceType=2&channel=0'], ['http://218.205.239.34/MIGUM2.0/v1.0/content/sub/listenSong.do?toneFlag=PQ&netType=00&copyrightId=0&contentId=600907000009041441&resourceType=2&channel=0'], ['http://218.205.239.34/MIGUM2.0/v1.0/content/sub/listenSong.do?toneFlag=HQ&netType=00&copyrightId=0&contentId=600907000009041441&resourceType=2&channel=0'], ['http://218.205.239.34/MIGUM2.0/v1.0/content/sub/listenSong.do?toneFlag=SQ&netType=00&copyrightId=0&contentId=600907000009041441&resourceType=E&channel=0'], [], [], []] # musical_urls=list(filter(None,musical_urls)) # musical_urls=[musical_url[0] for musical_url in musical_urls] # # for url in musical_urls: # type_pos=token_m.search(url).span()[1] # type=url[type_pos:type_pos+1] # # # # print(type) download_df = pd.DataFrame(columns=['Artist', 'Music_name', 'Quality', 'Url']) a=['a']*4 download_df['Artist']=a print(download_df)
from bs4 import BeautifulSoup from urllib2 import urlopen def retrieveRecipe(url): recipePage = urlopen(url) soup = BeautifulSoup(recipePage.read()) recipeInfo = {} # Recipe Components recipeInfo["title"] = soup.find(id="itemTitle").string recipeInfo["rating"] = soup.find(itemprop="ratingValue")["content"] recipeInfo["author"] = soup.find("span", {"id": "lblSubmitter"}).text recipeInfo["servings"] = soup.find(id="lblYield").string recipeInfo["time"] = soup.find_all("span", {"class":"time"}) if recipeInfo["time"]: recipeInfo["time"] = recipeInfo["time"][0].text ingredientsListing = soup.findAll(itemprop="ingredients") ingredients = [] for ingredient in ingredientsListing: if ingredient.find_next(id="lblIngName"): nextEl = ingredient.find_next(id="lblIngName") if nextEl["class"][0] == "ingred-heading" or nextEl.string.replace(u'\xa0', u' ') == " ": continue else: amount = "" name = "" if ingredient.find_next(id="lblIngAmount"): amount = ingredient.find_next(id="lblIngAmount").string if ingredient.find_next(id="lblIngName"): name = ingredient.find_next(id="lblIngName").string ingredients.append({"name": name, "amount": amount}) recipeInfo["ingredients"] = ingredients directionsListing = soup.find_all("span", {"class":"plaincharacterwrap break"}) directions = [] for direction in directionsListing: directions.append(direction.string) recipeInfo["directions"] = directions return recipeInfo
def calculate_sum(a, N): m = N / a sum = m * (m + 1) / 2 ans = a * sum print("Sum of multiples of ", a, " up to ", N, " = ", ans) calculate_sum(7, 49)
import numpy as np import readData import matplotlib.pyplot as plt days = readData.days flow = np.array(readData.flow) flowList = np.array(readData.flowList) time = np.array(readData.time) postMile = np.array(readData.postMile) fPM = 67.99 timeSlot = 24*12 points = 136 flowAtPoint = np.empty((0, days)) ''' indexTmp = np.where(postMile == fPM) print (indexTmp) for i in range(0, np.size(indexTmp)): if(time[indexTmp[0][i]] == fTime): indexT = indexTmp[0][i] print (indexT) tmpArray = np.array([]) for i in range (0, days): flowAtPoint = np.append(flowAtPoint, flow[i][indexT]) print (flowAtPoint) ''' def Analysis(fTime): indexTmp = np.where(postMile == fPM) for i in range(0, np.size(indexTmp)): if(time[indexTmp[0][i]] == fTime): indexT = indexTmp[0][i] tmpArray = np.array([]) for i in range (0, days): tmpArray = np.append(tmpArray, flow[i][indexT]) print(np.size(tmpArray)) return tmpArray for i, val in enumerate (np.unique(time)): print(val) tmpArray = Analysis(val) flowAtPoint = np.append(flowAtPoint, [tmpArray], axis=0) print (flowAtPoint) print(np.shape(flowAtPoint)) pCoeffT = np.empty([0, np.size(np.unique(time))]) print(pCoeffT) print(np.shape(pCoeffT)) for i in range(0, np.size(np.unique(time))): pCoeffT = np.append(pCoeffT, np.corrcoef(flowAtPoint[160], flowAtPoint[i])[0][1]) print (pCoeffT) plt.figure(1) plt.plot(pCoeffT) plt.xlabel("Time slot") plt.ylabel("Correlation") plt.show()
N = [-10, -5, 1, 2, 3, 6, 5] def print_positive(array: list): for num in array: if num > 0: print(num) print_positive(N)
from django.conf.urls import url from rest_framework.urlpatterns import format_suffix_patterns from note import views app_name = 'note' urlpatterns = [ url(r'^api/notes/$', views.AllNote.as_view()), url(r'^api/ready_notes/$', views.ListReadyNotes.as_view()), url(r'^api/no_ready_notes/$', views.ListNotReadyList.as_view()), url(r'^api/notes/(?P<pk>[0-9]+)/$', views.NoteDetail.as_view()), ] urlpatterns = format_suffix_patterns(urlpatterns)
# This file makes the python files in this folder accessible from other folders
# -*- coding: utf-8 -*- """ Created on Tue Jul 14 13:54:10 2020 https://gist.github.com/CMCDragonkai/dd420c0800cba33142505eff5a7d2589 """ import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import cv2 def surface_plot (matrix, **kwargs): # acquire the cartesian coordinate matrices from the matrix # x is cols, y is rows (x, y) = np.meshgrid(np.arange(matrix.shape[1]), np.arange(matrix.shape[0])) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') surf = ax.plot_surface(x, y, matrix, **kwargs) return (fig, ax, surf) if __name__ == "__main__": img = cv2.imread('pueba3d.png',0) (fig2, ax2, surf) = surface_plot(img, cmap=plt.cm.coolwarm) fig2.colorbar(surf) ax2.set_xlabel('X (cols)') ax2.set_ylabel('Y (rows)') ax2.set_zlabel('Z (values)') plt.show()
from office365.runtime.client_value import ClientValue from office365.sharepoint.principal.principal_source import PrincipalSource from office365.sharepoint.principal.principal_type import PrincipalType class ClientPeoplePickerQueryParameters(ClientValue): def __init__(self, queryString, allowEmailAddresses=True, allowMultipleEntities=True, allowOnlyEmailAddresses=False, allUrlZones=False, enabledClaimProviders=None, forceClaims=False, maximumEntitySuggestions=1, principalSource=PrincipalSource.All, principalType=PrincipalType.All, urlZone=0, urlZoneSpecified=False, sharePointGroupID=0): """ Specifies the properties of a principal query :type int urlZone: Specifies a location in the topology of the farm for the principal query. :param int sharePointGroupID: specifies a group containing allowed principals to be used in the principal query. :param str queryString: Specifies the value to be used in the principal query. :param int principalType: Specifies the type to be used in the principal query. :param int principalSource: Specifies the source to be used in the principal query. :param int maximumEntitySuggestions: Specifies the maximum number of principals to be returned by the principal query. :param bool forceClaims: Specifies whether the principal query SHOULD be handled by claims providers. :param bool enabledClaimProviders: Specifies the claims providers to be used in the principal query. :param bool allUrlZones: Specifies whether the principal query will search all locations in the topology of the farm. :param bool allowOnlyEmailAddresses: Specifies whether to allow the picker to resolve only email addresses as valid entities. This property is only used when AllowEmailAddresses (section 3.2.5.217.1.1.1) is set to True. Otherwise it is ignored. :param bool allowMultipleEntities: Specifies whether the principal query allows multiple values. :param bool allowEmailAddresses: Specifies whether the principal query can return a resolved principal matching an unverified e-mail address when unable to resolve to a known principal. """ super().__init__() self.QueryString = queryString self.AllowEmailAddresses = allowEmailAddresses self.AllowMultipleEntities = allowMultipleEntities self.AllowOnlyEmailAddresses = allowOnlyEmailAddresses self.AllUrlZones = allUrlZones self.EnabledClaimProviders = enabledClaimProviders self.ForceClaims = forceClaims self.MaximumEntitySuggestions = maximumEntitySuggestions self.PrincipalSource = principalSource self.PrincipalType = principalType self.UrlZone = urlZone self.UrlZoneSpecified = urlZoneSpecified self.SharePointGroupID = sharePointGroupID @property def entity_type_name(self): return "SP.UI.ApplicationPages.ClientPeoplePickerQueryParameters"
#!/usr/bin/env python # # Copyright (c) 2019 Opticks Team. All Rights Reserved. # # This file is part of Opticks # (see https://bitbucket.org/simoncblyth/opticks). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ tgltf.py : Shakedown analytic geometry ========================================================== Loads test events from Opticks Create the events by running tgltf-transitional Huh, top of cyl-z should not be there:: In [8]: lpos[lpos[:,2] > 1500 ][:100] Out[8]: A()sliced A([[ -367.125 , 236.7812, 1535. , 1. ], [ 337. , -1032. , 1535. , 1. ], [ 568.8125, -1328.9688, 1535. , 1. ], [ 1212.875 , -858.375 , 1535. , 1. ], [ 137.0625, -371.6875, 1535. , 1. ], [ 849.6875, 997.6562, 1545.9814, 1. ], [ -936.5625, 868.7812, 1547.71 , 1. ], [ 196.3125, 411.9688, 1535. , 1. ], [ -55.625 , -304.75 , 1535. , 1. ], [ -144.5 , -538.3125, 1535. , 1. ], [ 1299.0625, -612.9375, 1535. , 1. ], [ -407.5 , 13.3438, 1535. , 1. ], [ 865.375 , 370.4062, 1535. , 1. ], [ 416.75 , 478.5938, 1535. , 1. ], [ 431.75 , 800.6875, 1535. , 1. ], [ -8.5625, 1549.9375, 1526.9644, 1. ], [ 948.25 , -512.3438, 1535. , 1. ], [ 229. , -32.5625, 1535. , 1. ], [-1007.125 , -461.25 , 1535. , 1. ], [ -74.6875, -607.125 , 1535. , 1. ], [ 503.625 , -807.9062, 1535. , 1. ], [ 160.125 , -1057.0625, 1535. , 1. ], [ -798.3125, 67.3125, 1535. , 1. ], [-1278.25 , 865.4062, 1535. , 1. ], [ -509.625 , 477.1562, 1535. , 1. ], [ -141.875 , 1289.5 , 1535. , 1. ], """ import os, sys, logging, argparse, numpy as np import numpy.linalg as la log = logging.getLogger(__name__) from opticks.ana.base import opticks_main from opticks.ana.nbase import vnorm from opticks.ana.evt import Evt from opticks.analytic.sc import gdml2gltf_main if __name__ == '__main__': np.set_printoptions(precision=4, linewidth=200) os.environ['OPTICKS_QUERY']="range:3159:3160" args = opticks_main(doc=__doc__, tag="1", src="torch", det="gltf" ) sc = gdml2gltf_main(args) tx = sc.get_transform(3159) print tx itx = la.inv(tx) print itx log.info("tag %s src %s det %s " % (args.utag,args.src,args.det)) seqs=[] try: a = Evt(tag="%s" % args.utag, src=args.src, det=args.det, seqs=seqs, args=args) except IOError as err: log.fatal(err) #sys.exit(args.mrc) this causes a sysrap-t test fail from lack of a tmp file sys.exit(0) log.info( " a : %s " % a.brief) print a.seqhis_ana.table a.sel = "TO SA" ox = a.ox print ox.shape # masked array with those photons pos = ox[:,0,:4] pos[:,3] = 1. lpos = np.dot( pos, itx )
#!/usr/local/bin/python3 import asyncio import aiohttp import logging logger = logging.getLogger('discord') async def download_page(url): headers = {} headers['User-Agent'] = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36" loop = asyncio.get_event_loop() try: async with aiohttp.ClientSession(loop=loop) as session: async with session.get(url, headers=headers) as r: if r.status == 200: return await r.text() except Exception as e: logger.error(e) return None
# -*- coding: utf-8 -*- import ch.systemsx.cisd.openbis.generic.server.jython.api.v1.DataType as DataType print("Importing Flow Core Technology Master Data...") tr = service.transaction() # ============================================================================== # # FILE FORMATS # # ============================================================================== # CSV file_type_CSV = tr.getOrCreateNewFileFormatType('CSV') file_type_CSV.setDescription('files with values separated by comma or semicolon') # FCS file_type_FCS = tr.getOrCreateNewFileFormatType('FCS') file_type_FCS.setDescription('Flow Cytometry Standard file.') # UNKOWN file_type_UNKNOWN = tr.getOrCreateNewFileFormatType('UNKNOWN') file_type_UNKNOWN.setDescription('Unknown file format') # ============================================================================== # # VOCABULARIES # # ============================================================================== # BD LSR FORTESSA # ------------------------------------------------------------------------------ # LSR_FORTESSA_PLATE_GEOMETRY vocabulary_LSR_FORTESSA_PLATE_GEOMETRY = tr.getOrCreateNewVocabulary('LSR_FORTESSA_PLATE_GEOMETRY') vocabulary_LSR_FORTESSA_PLATE_GEOMETRY.setDescription('Plate geometries for the BD LSR Fortessa Flow Cytometer.') vocabulary_LSR_FORTESSA_PLATE_GEOMETRY.setUrlTemplate(None) vocabulary_LSR_FORTESSA_PLATE_GEOMETRY.setManagedInternally(False) vocabulary_LSR_FORTESSA_PLATE_GEOMETRY.setInternalNamespace(False) vocabulary_LSR_FORTESSA_PLATE_GEOMETRY.setChosenFromList(True) # LSR_FORTESSA_PLATE_GEOMETRY_96_WELLS_8X12 vocabulary_term_LSR_FORTESSA_PLATE_GEOMETRY_96_WELLS_8X12 = tr.createNewVocabularyTerm('96_WELLS_8X12') vocabulary_term_LSR_FORTESSA_PLATE_GEOMETRY_96_WELLS_8X12.setDescription(None) vocabulary_term_LSR_FORTESSA_PLATE_GEOMETRY_96_WELLS_8X12.setLabel(None) vocabulary_term_LSR_FORTESSA_PLATE_GEOMETRY_96_WELLS_8X12.setOrdinal(1) vocabulary_LSR_FORTESSA_PLATE_GEOMETRY.addTerm(vocabulary_term_LSR_FORTESSA_PLATE_GEOMETRY_96_WELLS_8X12) # LSR_FORTESSA_PLATE_GEOMETRY_384_WELLS_16X24 vocabulary_term_LSR_FORTESSA_PLATE_GEOMETRY_384_WELLS_16X24 = tr.createNewVocabularyTerm('384_WELLS_16X24') vocabulary_term_LSR_FORTESSA_PLATE_GEOMETRY_384_WELLS_16X24.setDescription(None) vocabulary_term_LSR_FORTESSA_PLATE_GEOMETRY_384_WELLS_16X24.setLabel(None) vocabulary_term_LSR_FORTESSA_PLATE_GEOMETRY_384_WELLS_16X24.setOrdinal(2) vocabulary_LSR_FORTESSA_PLATE_GEOMETRY.addTerm(vocabulary_term_LSR_FORTESSA_PLATE_GEOMETRY_384_WELLS_16X24) # BC CYTOFLEX S # ------------------------------------------------------------------------------ # CYTOFLEX_S_PLATE_GEOMETRY vocabulary_CYTOFLEX_S_PLATE_GEOMETRY = tr.getOrCreateNewVocabulary('CYTOFLEX_S_PLATE_GEOMETRY') vocabulary_CYTOFLEX_S_PLATE_GEOMETRY.setDescription('Plate geometries for the BC CytoFLEX S Flow Cytometer.') vocabulary_CYTOFLEX_S_PLATE_GEOMETRY.setUrlTemplate(None) vocabulary_CYTOFLEX_S_PLATE_GEOMETRY.setManagedInternally(False) vocabulary_CYTOFLEX_S_PLATE_GEOMETRY.setInternalNamespace(False) vocabulary_CYTOFLEX_S_PLATE_GEOMETRY.setChosenFromList(True) # CYTOFLEX_S_PLATE_GEOMETRY_96_WELLS_8X12 vocabulary_term_CYTOFLEX_S_PLATE_GEOMETRY_96_WELLS_8X12 = tr.createNewVocabularyTerm('96_WELLS_8X12') vocabulary_term_CYTOFLEX_S_PLATE_GEOMETRY_96_WELLS_8X12.setDescription(None) vocabulary_term_CYTOFLEX_S_PLATE_GEOMETRY_96_WELLS_8X12.setLabel(None) vocabulary_term_CYTOFLEX_S_PLATE_GEOMETRY_96_WELLS_8X12.setOrdinal(1) vocabulary_CYTOFLEX_S_PLATE_GEOMETRY.addTerm(vocabulary_term_CYTOFLEX_S_PLATE_GEOMETRY_96_WELLS_8X12) # ============================================================================== # # EXPERIMENT/COLLECTION TYPES # # ============================================================================== # COLLECTION exp_type_COLLECTION = tr.getOrCreateNewExperimentType('COLLECTION') exp_type_COLLECTION.setDescription('Used as a folder for things.') # ============================================================================== # # SAMPLE TYPES # # ============================================================================== # COMMON # ------------------------------------------------------------------------------ # ORGANIZATION_UNIT samp_type_ORGANIZATION_UNIT = tr.getOrCreateNewSampleType('ORGANIZATION_UNIT') samp_type_ORGANIZATION_UNIT.setDescription('Used to create different organisations for samples since they can\'t belong to more than one experiment.') samp_type_ORGANIZATION_UNIT.setListable(True) samp_type_ORGANIZATION_UNIT.setShowContainer(False) samp_type_ORGANIZATION_UNIT.setShowParents(True) samp_type_ORGANIZATION_UNIT.setSubcodeUnique(False) samp_type_ORGANIZATION_UNIT.setAutoGeneratedCode(True) samp_type_ORGANIZATION_UNIT.setShowParentMetadata(False) samp_type_ORGANIZATION_UNIT.setGeneratedCodePrefix('OU.') # BD FACS ARIA # ------------------------------------------------------------------------------ # FACS_ARIA_EXPERIMENT samp_type_FACS_ARIA_EXPERIMENT = tr.getOrCreateNewSampleType('FACS_ARIA_EXPERIMENT') samp_type_FACS_ARIA_EXPERIMENT.setDescription('Experiments from the BD FACS Aria III Cell Sorter.') samp_type_FACS_ARIA_EXPERIMENT.setListable(True) samp_type_FACS_ARIA_EXPERIMENT.setShowContainer(False) samp_type_FACS_ARIA_EXPERIMENT.setShowParents(True) samp_type_FACS_ARIA_EXPERIMENT.setSubcodeUnique(False) samp_type_FACS_ARIA_EXPERIMENT.setAutoGeneratedCode(False) samp_type_FACS_ARIA_EXPERIMENT.setShowParentMetadata(False) samp_type_FACS_ARIA_EXPERIMENT.setGeneratedCodePrefix('FACS_ARIA_EXPERIMENT.') # FACS_ARIA_SPECIMEN samp_type_FACS_ARIA_SPECIMEN = tr.getOrCreateNewSampleType('FACS_ARIA_SPECIMEN') samp_type_FACS_ARIA_SPECIMEN.setDescription('A specimen for the BD FACS Aria III Cell Sorter.') samp_type_FACS_ARIA_SPECIMEN.setListable(True) samp_type_FACS_ARIA_SPECIMEN.setShowContainer(False) samp_type_FACS_ARIA_SPECIMEN.setShowParents(True) samp_type_FACS_ARIA_SPECIMEN.setSubcodeUnique(False) samp_type_FACS_ARIA_SPECIMEN.setAutoGeneratedCode(True) samp_type_FACS_ARIA_SPECIMEN.setShowParentMetadata(False) samp_type_FACS_ARIA_SPECIMEN.setGeneratedCodePrefix('FACS_ARIA_SPECIMEN.') # FACS_ARIA_TUBE samp_type_FACS_ARIA_TUBE = tr.getOrCreateNewSampleType('FACS_ARIA_TUBE') samp_type_FACS_ARIA_TUBE.setDescription('A tube for the BD FACS Aria III Cell Sorter.') samp_type_FACS_ARIA_TUBE.setListable(True) samp_type_FACS_ARIA_TUBE.setShowContainer(False) samp_type_FACS_ARIA_TUBE.setShowParents(True) samp_type_FACS_ARIA_TUBE.setSubcodeUnique(False) samp_type_FACS_ARIA_TUBE.setAutoGeneratedCode(True) samp_type_FACS_ARIA_TUBE.setShowParentMetadata(False) samp_type_FACS_ARIA_TUBE.setGeneratedCodePrefix('FACS_ARIA_TUBE.') # FACS_ARIA_TUBESET samp_type_FACS_ARIA_TUBESET = tr.getOrCreateNewSampleType('FACS_ARIA_TUBESET') samp_type_FACS_ARIA_TUBESET.setDescription('A virtual container for tubes for the BD FACS Aria III Cell Sorter.') samp_type_FACS_ARIA_TUBESET.setListable(False) samp_type_FACS_ARIA_TUBESET.setShowContainer(False) samp_type_FACS_ARIA_TUBESET.setShowParents(True) samp_type_FACS_ARIA_TUBESET.setSubcodeUnique(False) samp_type_FACS_ARIA_TUBESET.setAutoGeneratedCode(True) samp_type_FACS_ARIA_TUBESET.setShowParentMetadata(False) samp_type_FACS_ARIA_TUBESET.setGeneratedCodePrefix('FACS_ARIA_TUBESET.') # BD INFLUX # ------------------------------------------------------------------------------ # INFLUX_EXPERIMENT samp_type_INFLUX_EXPERIMENT = tr.getOrCreateNewSampleType('INFLUX_EXPERIMENT') samp_type_INFLUX_EXPERIMENT.setDescription('Experiments from the BD Influx Cell Sorter.') samp_type_INFLUX_EXPERIMENT.setListable(True) samp_type_INFLUX_EXPERIMENT.setShowContainer(False) samp_type_INFLUX_EXPERIMENT.setShowParents(True) samp_type_INFLUX_EXPERIMENT.setSubcodeUnique(False) samp_type_INFLUX_EXPERIMENT.setAutoGeneratedCode(False) samp_type_INFLUX_EXPERIMENT.setShowParentMetadata(False) samp_type_INFLUX_EXPERIMENT.setGeneratedCodePrefix('INFLUX_EXPERIMENT.') # INFLUX_SPECIMEN samp_type_INFLUX_SPECIMEN = tr.getOrCreateNewSampleType('INFLUX_SPECIMEN') samp_type_INFLUX_SPECIMEN.setDescription('A specimen for the BD Influx Cell Sorter.') samp_type_INFLUX_SPECIMEN.setListable(True) samp_type_INFLUX_SPECIMEN.setShowContainer(False) samp_type_INFLUX_SPECIMEN.setShowParents(True) samp_type_INFLUX_SPECIMEN.setSubcodeUnique(False) samp_type_INFLUX_SPECIMEN.setAutoGeneratedCode(True) samp_type_INFLUX_SPECIMEN.setShowParentMetadata(False) samp_type_INFLUX_SPECIMEN.setGeneratedCodePrefix('INFLUX_SPECIMEN.') # INFLUX_TUBE samp_type_INFLUX_TUBE = tr.getOrCreateNewSampleType('INFLUX_TUBE') samp_type_INFLUX_TUBE.setDescription('A tube for the BD Influx Cell Sorter.') samp_type_INFLUX_TUBE.setListable(True) samp_type_INFLUX_TUBE.setShowContainer(False) samp_type_INFLUX_TUBE.setShowParents(True) samp_type_INFLUX_TUBE.setSubcodeUnique(False) samp_type_INFLUX_TUBE.setAutoGeneratedCode(True) samp_type_INFLUX_TUBE.setShowParentMetadata(False) samp_type_INFLUX_TUBE.setGeneratedCodePrefix('INFLUX_TUBE.') # INFLUX_TUBESET samp_type_INFLUX_TUBESET = tr.getOrCreateNewSampleType('INFLUX_TUBESET') samp_type_INFLUX_TUBESET.setDescription('A virtual container for tubes for the BD Influx Cell Sorter.') samp_type_INFLUX_TUBESET.setListable(True) samp_type_INFLUX_TUBESET.setShowContainer(False) samp_type_INFLUX_TUBESET.setShowParents(True) samp_type_INFLUX_TUBESET.setSubcodeUnique(False) samp_type_INFLUX_TUBESET.setAutoGeneratedCode(True) samp_type_INFLUX_TUBESET.setShowParentMetadata(False) samp_type_INFLUX_TUBESET.setGeneratedCodePrefix('INFLUX_TUBESET.') # BD LSR FORTESSA # ------------------------------------------------------------------------------ # LSR_FORTESSA_EXPERIMENT samp_type_LSR_FORTESSA_EXPERIMENT = tr.getOrCreateNewSampleType('LSR_FORTESSA_EXPERIMENT') samp_type_LSR_FORTESSA_EXPERIMENT.setDescription('Experiments from the BD LSR Fortessa Flow Cytometer.') samp_type_LSR_FORTESSA_EXPERIMENT.setListable(True) samp_type_LSR_FORTESSA_EXPERIMENT.setShowContainer(False) samp_type_LSR_FORTESSA_EXPERIMENT.setShowParents(True) samp_type_LSR_FORTESSA_EXPERIMENT.setSubcodeUnique(False) samp_type_LSR_FORTESSA_EXPERIMENT.setAutoGeneratedCode(False) samp_type_LSR_FORTESSA_EXPERIMENT.setShowParentMetadata(False) samp_type_LSR_FORTESSA_EXPERIMENT.setGeneratedCodePrefix('LSR_FORTESSA_EXPERIMENT.') # LSR_FORTESSA_PLATE samp_type_LSR_FORTESSA_PLATE = tr.getOrCreateNewSampleType('LSR_FORTESSA_PLATE') samp_type_LSR_FORTESSA_PLATE.setDescription('A plate for the BD LSR Fortessa Flow Cytometer.') samp_type_LSR_FORTESSA_PLATE.setListable(True) samp_type_LSR_FORTESSA_PLATE.setShowContainer(False) samp_type_LSR_FORTESSA_PLATE.setShowParents(True) samp_type_LSR_FORTESSA_PLATE.setSubcodeUnique(False) samp_type_LSR_FORTESSA_PLATE.setAutoGeneratedCode(True) samp_type_LSR_FORTESSA_PLATE.setShowParentMetadata(False) samp_type_LSR_FORTESSA_PLATE.setGeneratedCodePrefix('LSR_FORTESSA_PLATE.') # LSR_FORTESSA_SPECIMEN samp_type_LSR_FORTESSA_SPECIMEN = tr.getOrCreateNewSampleType('LSR_FORTESSA_SPECIMEN') samp_type_LSR_FORTESSA_SPECIMEN.setDescription('A specimen for the BD LSR Fortessa Flow Cytometer.') samp_type_LSR_FORTESSA_SPECIMEN.setListable(True) samp_type_LSR_FORTESSA_SPECIMEN.setShowContainer(False) samp_type_LSR_FORTESSA_SPECIMEN.setShowParents(True) samp_type_LSR_FORTESSA_SPECIMEN.setSubcodeUnique(False) samp_type_LSR_FORTESSA_SPECIMEN.setAutoGeneratedCode(True) samp_type_LSR_FORTESSA_SPECIMEN.setShowParentMetadata(False) samp_type_LSR_FORTESSA_SPECIMEN.setGeneratedCodePrefix('LSR_FORTESSA_SPECIMEN.') # LSR_FORTESSA_TUBE samp_type_LSR_FORTESSA_TUBE = tr.getOrCreateNewSampleType('LSR_FORTESSA_TUBE') samp_type_LSR_FORTESSA_TUBE.setDescription('A tube for the BD LSR Fortessa Flow Cytometer.') samp_type_LSR_FORTESSA_TUBE.setListable(True) samp_type_LSR_FORTESSA_TUBE.setShowContainer(False) samp_type_LSR_FORTESSA_TUBE.setShowParents(True) samp_type_LSR_FORTESSA_TUBE.setSubcodeUnique(False) samp_type_LSR_FORTESSA_TUBE.setAutoGeneratedCode(True) samp_type_LSR_FORTESSA_TUBE.setShowParentMetadata(False) samp_type_LSR_FORTESSA_TUBE.setGeneratedCodePrefix('LSR_FORTESSA_TUBE.') # LSR_FORTESSA_TUBESET samp_type_LSR_FORTESSA_TUBESET = tr.getOrCreateNewSampleType('LSR_FORTESSA_TUBESET') samp_type_LSR_FORTESSA_TUBESET.setDescription('A virtual container for tubes for the BD LSR Fortessa Flow Cytometer.') samp_type_LSR_FORTESSA_TUBESET.setListable(False) samp_type_LSR_FORTESSA_TUBESET.setShowContainer(False) samp_type_LSR_FORTESSA_TUBESET.setShowParents(True) samp_type_LSR_FORTESSA_TUBESET.setSubcodeUnique(False) samp_type_LSR_FORTESSA_TUBESET.setAutoGeneratedCode(True) samp_type_LSR_FORTESSA_TUBESET.setShowParentMetadata(False) samp_type_LSR_FORTESSA_TUBESET.setGeneratedCodePrefix('LSR_FORTESSA_TUBESET.') # LSR_FORTESSA_WELL samp_type_LSR_FORTESSA_WELL = tr.getOrCreateNewSampleType('LSR_FORTESSA_WELL') samp_type_LSR_FORTESSA_WELL.setDescription('A well for the BD LSR Fortessa Flow Cytometer.') samp_type_LSR_FORTESSA_WELL.setListable(True) samp_type_LSR_FORTESSA_WELL.setShowContainer(True) samp_type_LSR_FORTESSA_WELL.setShowParents(True) samp_type_LSR_FORTESSA_WELL.setSubcodeUnique(False) samp_type_LSR_FORTESSA_WELL.setAutoGeneratedCode(True) samp_type_LSR_FORTESSA_WELL.setShowParentMetadata(False) samp_type_LSR_FORTESSA_WELL.setGeneratedCodePrefix('LSR_FORTESSA_WELL.') # BC CYTOFLEX S # ------------------------------------------------------------------------------ # CYTOFLEX_S_EXPERIMENT samp_type_CYTOFLEX_S_EXPERIMENT = tr.getOrCreateNewSampleType('CYTOFLEX_S_EXPERIMENT') samp_type_CYTOFLEX_S_EXPERIMENT.setDescription('Experiments from the BC CytoFLEX S Flow Cytometer.') samp_type_CYTOFLEX_S_EXPERIMENT.setListable(True) samp_type_CYTOFLEX_S_EXPERIMENT.setShowContainer(False) samp_type_CYTOFLEX_S_EXPERIMENT.setShowParents(True) samp_type_CYTOFLEX_S_EXPERIMENT.setSubcodeUnique(False) samp_type_CYTOFLEX_S_EXPERIMENT.setAutoGeneratedCode(False) samp_type_CYTOFLEX_S_EXPERIMENT.setShowParentMetadata(False) samp_type_CYTOFLEX_S_EXPERIMENT.setGeneratedCodePrefix('CYTOFLEX_S_EXPERIMENT.') # CYTOFLEX_S_PLATE samp_type_CYTOFLEX_S_PLATE = tr.getOrCreateNewSampleType('CYTOFLEX_S_PLATE') samp_type_CYTOFLEX_S_PLATE.setDescription('A plate for the BC CytoFLEX S Flow Cytometer.') samp_type_CYTOFLEX_S_PLATE.setListable(True) samp_type_CYTOFLEX_S_PLATE.setShowContainer(False) samp_type_CYTOFLEX_S_PLATE.setShowParents(True) samp_type_CYTOFLEX_S_PLATE.setSubcodeUnique(False) samp_type_CYTOFLEX_S_PLATE.setAutoGeneratedCode(True) samp_type_CYTOFLEX_S_PLATE.setShowParentMetadata(False) samp_type_CYTOFLEX_S_PLATE.setGeneratedCodePrefix('CYTOFLEX_S_PLATE.') # CYTOFLEX_S_SPECIMEN samp_type_CYTOFLEX_S_SPECIMEN = tr.getOrCreateNewSampleType('CYTOFLEX_S_SPECIMEN') samp_type_CYTOFLEX_S_SPECIMEN.setDescription('A specimen for the BC CytoFLEX S Flow Cytometer.') samp_type_CYTOFLEX_S_SPECIMEN.setListable(True) samp_type_CYTOFLEX_S_SPECIMEN.setShowContainer(False) samp_type_CYTOFLEX_S_SPECIMEN.setShowParents(True) samp_type_CYTOFLEX_S_SPECIMEN.setSubcodeUnique(False) samp_type_CYTOFLEX_S_SPECIMEN.setAutoGeneratedCode(True) samp_type_CYTOFLEX_S_SPECIMEN.setShowParentMetadata(False) samp_type_CYTOFLEX_S_SPECIMEN.setGeneratedCodePrefix('CYTOFLEX_S_SPECIMEN.') # CYTOFLEX_S_TUBE samp_type_CYTOFLEX_S_TUBE = tr.getOrCreateNewSampleType('CYTOFLEX_S_TUBE') samp_type_CYTOFLEX_S_TUBE.setDescription('A tube for the BC CytoFLEX S Flow Cytometer.') samp_type_CYTOFLEX_S_TUBE.setListable(True) samp_type_CYTOFLEX_S_TUBE.setShowContainer(False) samp_type_CYTOFLEX_S_TUBE.setShowParents(True) samp_type_CYTOFLEX_S_TUBE.setSubcodeUnique(False) samp_type_CYTOFLEX_S_TUBE.setAutoGeneratedCode(True) samp_type_CYTOFLEX_S_TUBE.setShowParentMetadata(False) samp_type_CYTOFLEX_S_TUBE.setGeneratedCodePrefix('CYTOFLEX_S_TUBE.') # CYTOFLEX_S_TUBESET samp_type_CYTOFLEX_S_TUBESET = tr.getOrCreateNewSampleType('CYTOFLEX_S_TUBESET') samp_type_CYTOFLEX_S_TUBESET.setDescription('A virtual container for tubes for the BC CytoFLEX S Flow Cytometer.') samp_type_CYTOFLEX_S_TUBESET.setListable(False) samp_type_CYTOFLEX_S_TUBESET.setShowContainer(False) samp_type_CYTOFLEX_S_TUBESET.setShowParents(True) samp_type_CYTOFLEX_S_TUBESET.setSubcodeUnique(False) samp_type_CYTOFLEX_S_TUBESET.setAutoGeneratedCode(True) samp_type_CYTOFLEX_S_TUBESET.setShowParentMetadata(False) samp_type_CYTOFLEX_S_TUBESET.setGeneratedCodePrefix('CYTOFLEX_S_TUBESET.') # CYTOFLEX_S_WELL samp_type_CYTOFLEX_S_WELL = tr.getOrCreateNewSampleType('CYTOFLEX_S_WELL') samp_type_CYTOFLEX_S_WELL.setDescription('A well for the BC CytoFLEX S Flow Cytometer.') samp_type_CYTOFLEX_S_WELL.setListable(True) samp_type_CYTOFLEX_S_WELL.setShowContainer(True) samp_type_CYTOFLEX_S_WELL.setShowParents(True) samp_type_CYTOFLEX_S_WELL.setSubcodeUnique(False) samp_type_CYTOFLEX_S_WELL.setAutoGeneratedCode(True) samp_type_CYTOFLEX_S_WELL.setShowParentMetadata(False) samp_type_CYTOFLEX_S_WELL.setGeneratedCodePrefix('CYTOFLEX_S_WELL.') # BC MOFLO XDP # ------------------------------------------------------------------------------ # MOFLO_XDP_EXPERIMENT samp_type_MOFLO_XDP_EXPERIMENT = tr.getOrCreateNewSampleType('MOFLO_XDP_EXPERIMENT') samp_type_MOFLO_XDP_EXPERIMENT.setDescription('Experiments from the BC MoFlo XDP Cell Sorter.') samp_type_MOFLO_XDP_EXPERIMENT.setListable(True) samp_type_MOFLO_XDP_EXPERIMENT.setShowContainer(False) samp_type_MOFLO_XDP_EXPERIMENT.setShowParents(True) samp_type_MOFLO_XDP_EXPERIMENT.setSubcodeUnique(False) samp_type_MOFLO_XDP_EXPERIMENT.setAutoGeneratedCode(False) samp_type_MOFLO_XDP_EXPERIMENT.setShowParentMetadata(False) samp_type_MOFLO_XDP_EXPERIMENT.setGeneratedCodePrefix('MOFLO_XDP_EXPERIMENT.') # MOFLO_XDP_SPECIMEN samp_type_MOFLO_XDP_SPECIMEN = tr.getOrCreateNewSampleType('MOFLO_XDP_SPECIMEN') samp_type_MOFLO_XDP_SPECIMEN.setDescription('A specimen for the BC MoFlo XDP Cell Sorter.') samp_type_MOFLO_XDP_SPECIMEN.setListable(True) samp_type_MOFLO_XDP_SPECIMEN.setShowContainer(False) samp_type_MOFLO_XDP_SPECIMEN.setShowParents(True) samp_type_MOFLO_XDP_SPECIMEN.setSubcodeUnique(False) samp_type_MOFLO_XDP_SPECIMEN.setAutoGeneratedCode(True) samp_type_MOFLO_XDP_SPECIMEN.setShowParentMetadata(False) samp_type_MOFLO_XDP_SPECIMEN.setGeneratedCodePrefix('MOFLO_XDP_SPECIMEN.') # MOFLO_XDP_TUBE samp_type_MOFLO_XDP_TUBE = tr.getOrCreateNewSampleType('MOFLO_XDP_TUBE') samp_type_MOFLO_XDP_TUBE.setDescription('A tube for the BC MoFlo XDP Cell Sorter.') samp_type_MOFLO_XDP_TUBE.setListable(True) samp_type_MOFLO_XDP_TUBE.setShowContainer(False) samp_type_MOFLO_XDP_TUBE.setShowParents(True) samp_type_MOFLO_XDP_TUBE.setSubcodeUnique(False) samp_type_MOFLO_XDP_TUBE.setAutoGeneratedCode(True) samp_type_MOFLO_XDP_TUBE.setShowParentMetadata(False) samp_type_MOFLO_XDP_TUBE.setGeneratedCodePrefix('MOFLO_XDP_TUBE.') # MOFLO_XDP_TUBESET samp_type_MOFLO_XDP_TUBESET = tr.getOrCreateNewSampleType('MOFLO_XDP_TUBESET') samp_type_MOFLO_XDP_TUBESET.setDescription('A virtual container for tubes for the BC MoFlo XDP Cell Sorter.') samp_type_MOFLO_XDP_TUBESET.setListable(True) samp_type_MOFLO_XDP_TUBESET.setShowContainer(False) samp_type_MOFLO_XDP_TUBESET.setShowParents(True) samp_type_MOFLO_XDP_TUBESET.setSubcodeUnique(False) samp_type_MOFLO_XDP_TUBESET.setAutoGeneratedCode(True) samp_type_MOFLO_XDP_TUBESET.setShowParentMetadata(False) samp_type_MOFLO_XDP_TUBESET.setGeneratedCodePrefix('MOFLO_XDP_TUBESET.') # BIORAD S3E # ------------------------------------------------------------------------------ # S3E_EXPERIMENT samp_type_S3E_EXPERIMENT = tr.getOrCreateNewSampleType('S3E_EXPERIMENT') samp_type_S3E_EXPERIMENT.setDescription('Experiments from the BIORAD S3e Cell Sorter.') samp_type_S3E_EXPERIMENT.setListable(True) samp_type_S3E_EXPERIMENT.setShowContainer(False) samp_type_S3E_EXPERIMENT.setShowParents(True) samp_type_S3E_EXPERIMENT.setSubcodeUnique(False) samp_type_S3E_EXPERIMENT.setAutoGeneratedCode(False) samp_type_S3E_EXPERIMENT.setShowParentMetadata(False) samp_type_S3E_EXPERIMENT.setGeneratedCodePrefix('S3E_EXPERIMENT.') # S3E_SPECIMEN samp_type_S3E_SPECIMEN = tr.getOrCreateNewSampleType('S3E_SPECIMEN') samp_type_S3E_SPECIMEN.setDescription('A specimen for the BIORAD S3e Cell Sorter.') samp_type_S3E_SPECIMEN.setListable(True) samp_type_S3E_SPECIMEN.setShowContainer(False) samp_type_S3E_SPECIMEN.setShowParents(True) samp_type_S3E_SPECIMEN.setSubcodeUnique(False) samp_type_S3E_SPECIMEN.setAutoGeneratedCode(True) samp_type_S3E_SPECIMEN.setShowParentMetadata(False) samp_type_S3E_SPECIMEN.setGeneratedCodePrefix('S3E_SPECIMEN.') # S3E_TUBE samp_type_S3E_TUBE = tr.getOrCreateNewSampleType('S3E_TUBE') samp_type_S3E_TUBE.setDescription('A tube for the BIORAD S3e Cell Sorter.') samp_type_S3E_TUBE.setListable(True) samp_type_S3E_TUBE.setShowContainer(False) samp_type_S3E_TUBE.setShowParents(True) samp_type_S3E_TUBE.setSubcodeUnique(False) samp_type_S3E_TUBE.setAutoGeneratedCode(True) samp_type_S3E_TUBE.setShowParentMetadata(False) samp_type_S3E_TUBE.setGeneratedCodePrefix('S3E_TUBE.') # S3E_TUBESET samp_type_S3E_TUBESET = tr.getOrCreateNewSampleType('S3E_TUBESET') samp_type_S3E_TUBESET.setDescription('A virtual container for tubes for the BIORAD S3e Cell Sorter.') samp_type_S3E_TUBESET.setListable(True) samp_type_S3E_TUBESET.setShowContainer(False) samp_type_S3E_TUBESET.setShowParents(True) samp_type_S3E_TUBESET.setSubcodeUnique(False) samp_type_S3E_TUBESET.setAutoGeneratedCode(True) samp_type_S3E_TUBESET.setShowParentMetadata(False) samp_type_S3E_TUBESET.setGeneratedCodePrefix('S3E_TUBESET.') # SONY SH800S # ------------------------------------------------------------------------------ # SONY_SH800S_EXPERIMENT samp_type_SONY_SH800S_EXPERIMENT = tr.getOrCreateNewSampleType('SONY_SH800S_EXPERIMENT') samp_type_SONY_SH800S_EXPERIMENT.setDescription('Experiments from the SONY SH800S Cell Sorter.') samp_type_SONY_SH800S_EXPERIMENT.setListable(True) samp_type_SONY_SH800S_EXPERIMENT.setShowContainer(False) samp_type_SONY_SH800S_EXPERIMENT.setShowParents(True) samp_type_SONY_SH800S_EXPERIMENT.setSubcodeUnique(False) samp_type_SONY_SH800S_EXPERIMENT.setAutoGeneratedCode(False) samp_type_SONY_SH800S_EXPERIMENT.setShowParentMetadata(False) samp_type_SONY_SH800S_EXPERIMENT.setGeneratedCodePrefix('SONY_SH800S_EXPERIMENT.') # SONY_SH800S_SPECIMEN samp_type_SONY_SH800S_SPECIMEN = tr.getOrCreateNewSampleType('SONY_SH800S_SPECIMEN') samp_type_SONY_SH800S_SPECIMEN.setDescription('A specimen for the SONY SH800S Cell Sorter.') samp_type_SONY_SH800S_SPECIMEN.setListable(True) samp_type_SONY_SH800S_SPECIMEN.setShowContainer(False) samp_type_SONY_SH800S_SPECIMEN.setShowParents(True) samp_type_SONY_SH800S_SPECIMEN.setSubcodeUnique(False) samp_type_SONY_SH800S_SPECIMEN.setAutoGeneratedCode(True) samp_type_SONY_SH800S_SPECIMEN.setShowParentMetadata(False) samp_type_SONY_SH800S_SPECIMEN.setGeneratedCodePrefix('SONY_SH800S_SPECIMEN.') # SONY_SH800S_TUBE samp_type_SONY_SH800S_TUBE = tr.getOrCreateNewSampleType('SONY_SH800S_TUBE') samp_type_SONY_SH800S_TUBE.setDescription('A tube for the SONY SH800S Cell Sorter.') samp_type_SONY_SH800S_TUBE.setListable(True) samp_type_SONY_SH800S_TUBE.setShowContainer(False) samp_type_SONY_SH800S_TUBE.setShowParents(True) samp_type_SONY_SH800S_TUBE.setSubcodeUnique(False) samp_type_SONY_SH800S_TUBE.setAutoGeneratedCode(True) samp_type_SONY_SH800S_TUBE.setShowParentMetadata(False) samp_type_SONY_SH800S_TUBE.setGeneratedCodePrefix('SONY_SH800S_TUBE.') # SONY_SH800S_TUBESET samp_type_SONY_SH800S_TUBESET = tr.getOrCreateNewSampleType('SONY_SH800S_TUBESET') samp_type_SONY_SH800S_TUBESET.setDescription('A virtual container for tubes for the SONY SH800S Cell Sorter.') samp_type_SONY_SH800S_TUBESET.setListable(False) samp_type_SONY_SH800S_TUBESET.setShowContainer(False) samp_type_SONY_SH800S_TUBESET.setShowParents(True) samp_type_SONY_SH800S_TUBESET.setSubcodeUnique(False) samp_type_SONY_SH800S_TUBESET.setAutoGeneratedCode(True) samp_type_SONY_SH800S_TUBESET.setShowParentMetadata(False) samp_type_SONY_SH800S_TUBESET.setGeneratedCodePrefix('SONY_SH800S_TUBESET.') # SONY MA900 # ------------------------------------------------------------------------------ # SONY_MA900_EXPERIMENT samp_type_SONY_MA900_EXPERIMENT = tr.getOrCreateNewSampleType('SONY_MA900_EXPERIMENT') samp_type_SONY_MA900_EXPERIMENT.setDescription('Experiments from the SONY MA900 Cell Sorter.') samp_type_SONY_MA900_EXPERIMENT.setListable(True) samp_type_SONY_MA900_EXPERIMENT.setShowContainer(False) samp_type_SONY_MA900_EXPERIMENT.setShowParents(True) samp_type_SONY_MA900_EXPERIMENT.setSubcodeUnique(False) samp_type_SONY_MA900_EXPERIMENT.setAutoGeneratedCode(False) samp_type_SONY_MA900_EXPERIMENT.setShowParentMetadata(False) samp_type_SONY_MA900_EXPERIMENT.setGeneratedCodePrefix('SONY_MA900_EXPERIMENT.') # SONY_MA900_SPECIMEN samp_type_SONY_MA900_SPECIMEN = tr.getOrCreateNewSampleType('SONY_MA900_SPECIMEN') samp_type_SONY_MA900_SPECIMEN.setDescription('A specimen for the SONY MA900 Cell Sorter.') samp_type_SONY_MA900_SPECIMEN.setListable(True) samp_type_SONY_MA900_SPECIMEN.setShowContainer(False) samp_type_SONY_MA900_SPECIMEN.setShowParents(True) samp_type_SONY_MA900_SPECIMEN.setSubcodeUnique(False) samp_type_SONY_MA900_SPECIMEN.setAutoGeneratedCode(True) samp_type_SONY_MA900_SPECIMEN.setShowParentMetadata(False) samp_type_SONY_MA900_SPECIMEN.setGeneratedCodePrefix('SONY_MA900_SPECIMEN.') # SONY_MA900_TUBE samp_type_SONY_MA900_TUBE = tr.getOrCreateNewSampleType('SONY_MA900_TUBE') samp_type_SONY_MA900_TUBE.setDescription('A tube for the SONY MA900 Cell Sorter.') samp_type_SONY_MA900_TUBE.setListable(True) samp_type_SONY_MA900_TUBE.setShowContainer(False) samp_type_SONY_MA900_TUBE.setShowParents(True) samp_type_SONY_MA900_TUBE.setSubcodeUnique(False) samp_type_SONY_MA900_TUBE.setAutoGeneratedCode(True) samp_type_SONY_MA900_TUBE.setShowParentMetadata(False) samp_type_SONY_MA900_TUBE.setGeneratedCodePrefix('SONY_MA900_TUBE.') # SONY_MA900_TUBESET samp_type_SONY_MA900_TUBESET = tr.getOrCreateNewSampleType('SONY_MA900_TUBESET') samp_type_SONY_MA900_TUBESET.setDescription('A virtual container for tubes for the SONY MA900 Cell Sorter.') samp_type_SONY_MA900_TUBESET.setListable(False) samp_type_SONY_MA900_TUBESET.setShowContainer(False) samp_type_SONY_MA900_TUBESET.setShowParents(True) samp_type_SONY_MA900_TUBESET.setSubcodeUnique(False) samp_type_SONY_MA900_TUBESET.setAutoGeneratedCode(True) samp_type_SONY_MA900_TUBESET.setShowParentMetadata(False) samp_type_SONY_MA900_TUBESET.setGeneratedCodePrefix('SONY_MA900_TUBESET.') # ============================================================================== # # DATASET TYPES # # ============================================================================== # COMMON # ------------------------------------------------------------------------------ # ATTACHMENT data_set_type_ATTACHMENT = tr.getOrCreateNewDataSetType('ATTACHMENT') data_set_type_ATTACHMENT.setDescription('Used to attach files to entities.') data_set_type_ATTACHMENT.setMainDataSetPattern(None) data_set_type_ATTACHMENT.setMainDataSetPath(None) data_set_type_ATTACHMENT.setDeletionDisallowed(False) # BD FACS ARIA # ------------------------------------------------------------------------------ # FACS_ARIA_FCSFILE data_set_type_FACS_ARIA_FCSFILE = tr.getOrCreateNewDataSetType('FACS_ARIA_FCSFILE') data_set_type_FACS_ARIA_FCSFILE.setDescription('An FCS file from the BD FACS Aria III Cell Sorter.') data_set_type_FACS_ARIA_FCSFILE.setMainDataSetPattern('.*\.fcs') data_set_type_FACS_ARIA_FCSFILE.setMainDataSetPath(None) data_set_type_FACS_ARIA_FCSFILE.setDeletionDisallowed(False) # FACS_ARIA_ACCESSORY_FILE data_set_type_FACS_ARIA_ACCESSORY_FILE = tr.getOrCreateNewDataSetType('FACS_ARIA_ACCESSORY_FILE') data_set_type_FACS_ARIA_ACCESSORY_FILE.setDescription('An accessory dataset file associated with a FACS Aria experiment.') data_set_type_FACS_ARIA_ACCESSORY_FILE.setMainDataSetPattern(None) data_set_type_FACS_ARIA_ACCESSORY_FILE.setMainDataSetPath(None) data_set_type_FACS_ARIA_ACCESSORY_FILE.setDeletionDisallowed(False) # BD INFLUX # ------------------------------------------------------------------------------ # INFLUX_FCSFILE data_set_type_INFLUX_FCSFILE = tr.getOrCreateNewDataSetType('INFLUX_FCSFILE') data_set_type_INFLUX_FCSFILE.setDescription('An FCS file from the BD Influx Cell Sorter.') data_set_type_INFLUX_FCSFILE.setMainDataSetPattern('.*\.fcs') data_set_type_INFLUX_FCSFILE.setMainDataSetPath(None) data_set_type_INFLUX_FCSFILE.setDeletionDisallowed(False) # INFLUX_ACCESSORY_FILE data_set_type_INFLUX_ACCESSORY_FILE = tr.getOrCreateNewDataSetType('INFLUX_ACCESSORY_FILE') data_set_type_INFLUX_ACCESSORY_FILE.setDescription('An accessory dataset file associated with an Influx experiment.') data_set_type_INFLUX_ACCESSORY_FILE.setMainDataSetPattern(None) data_set_type_INFLUX_ACCESSORY_FILE.setMainDataSetPath(None) data_set_type_INFLUX_ACCESSORY_FILE.setDeletionDisallowed(False) # BD LSR FORTESSA # ------------------------------------------------------------------------------ # LSR_FORTESSA_FCSFILE data_set_type_LSR_FORTESSA_FCSFILE = tr.getOrCreateNewDataSetType('LSR_FORTESSA_FCSFILE') data_set_type_LSR_FORTESSA_FCSFILE.setDescription('An FCS file from the BD LSR Fortessa Flow Cytometer.') data_set_type_LSR_FORTESSA_FCSFILE.setMainDataSetPattern('.*\.fcs') data_set_type_LSR_FORTESSA_FCSFILE.setMainDataSetPath(None) data_set_type_LSR_FORTESSA_FCSFILE.setDeletionDisallowed(False) # LSR_FORTESSA_ACCESSORY_FILE data_set_type_LSR_FORTESSA_ACCESSORY_FILE = tr.getOrCreateNewDataSetType('LSR_FORTESSA_ACCESSORY_FILE') data_set_type_LSR_FORTESSA_ACCESSORY_FILE.setDescription('An accessory dataset file associated with an LSR Fortessa experiment.') data_set_type_LSR_FORTESSA_ACCESSORY_FILE.setMainDataSetPattern(None) data_set_type_LSR_FORTESSA_ACCESSORY_FILE.setMainDataSetPath(None) data_set_type_LSR_FORTESSA_ACCESSORY_FILE.setDeletionDisallowed(False) # BC CYTOFLEX S # ------------------------------------------------------------------------------ # CYTOFLEX_S_FCSFILE data_set_type_CYTOFLEX_S_FCSFILE = tr.getOrCreateNewDataSetType('CYTOFLEX_S_FCSFILE') data_set_type_CYTOFLEX_S_FCSFILE.setDescription('An FCS file from the BC CytoFLEX S Flow Cytometer.') data_set_type_CYTOFLEX_S_FCSFILE.setMainDataSetPattern('.*\.fcs') data_set_type_CYTOFLEX_S_FCSFILE.setMainDataSetPath(None) data_set_type_CYTOFLEX_S_FCSFILE.setDeletionDisallowed(False) # CYTOFLEX_S_ACCESSORY_FILE data_set_type_CYTOFLEX_S_ACCESSORY_FILE = tr.getOrCreateNewDataSetType('CYTOFLEX_S_ACCESSORY_FILE') data_set_type_CYTOFLEX_S_ACCESSORY_FILE.setDescription('An accessory dataset file associated with a CytoFLEX S experiment.') data_set_type_CYTOFLEX_S_ACCESSORY_FILE.setMainDataSetPattern(None) data_set_type_CYTOFLEX_S_ACCESSORY_FILE.setMainDataSetPath(None) data_set_type_CYTOFLEX_S_ACCESSORY_FILE.setDeletionDisallowed(False) # BC MOFLO XDP # ------------------------------------------------------------------------------ # MOFLO_XDP_FCSFILE data_set_type_MOFLO_XDP_FCSFILE = tr.getOrCreateNewDataSetType('MOFLO_XDP_FCSFILE') data_set_type_MOFLO_XDP_FCSFILE.setDescription('An FCS file from the BC MoFlo XDP Cell Sorter.') data_set_type_MOFLO_XDP_FCSFILE.setMainDataSetPattern('.*\.fcs') data_set_type_MOFLO_XDP_FCSFILE.setMainDataSetPath(None) data_set_type_MOFLO_XDP_FCSFILE.setDeletionDisallowed(False) # MOFLO_XDP_ACCESSORY_FILE data_set_type_MOFLO_XDP_ACCESSORY_FILE = tr.getOrCreateNewDataSetType('MOFLO_XDP_ACCESSORY_FILE') data_set_type_MOFLO_XDP_ACCESSORY_FILE.setDescription('An accessory dataset file associated with a MOFLO XDP experiment.') data_set_type_MOFLO_XDP_ACCESSORY_FILE.setMainDataSetPattern(None) data_set_type_MOFLO_XDP_ACCESSORY_FILE.setMainDataSetPath(None) data_set_type_MOFLO_XDP_ACCESSORY_FILE.setDeletionDisallowed(False) # BIORAD S3E # ------------------------------------------------------------------------------ # S3E_FCSFILE data_set_type_S3E_FCSFILE = tr.getOrCreateNewDataSetType('S3E_FCSFILE') data_set_type_S3E_FCSFILE.setDescription('An FCS file from the BIORAD S3e Cell Sorter.') data_set_type_S3E_FCSFILE.setMainDataSetPattern('.*\.fcs') data_set_type_S3E_FCSFILE.setMainDataSetPath(None) data_set_type_S3E_FCSFILE.setDeletionDisallowed(False) # S3E_ACCESSORY_FILE data_set_type_S3E_ACCESSORY_FILE = tr.getOrCreateNewDataSetType('S3E_ACCESSORY_FILE') data_set_type_S3E_ACCESSORY_FILE.setDescription('An accessory dataset file associated with an S3E experiment.') data_set_type_S3E_ACCESSORY_FILE.setMainDataSetPattern(None) data_set_type_S3E_ACCESSORY_FILE.setMainDataSetPath(None) data_set_type_S3E_ACCESSORY_FILE.setDeletionDisallowed(False) # SONY SH800S # ------------------------------------------------------------------------------ # SONY_SH800S_FCSFILE data_set_type_SONY_SH800S_FCSFILE = tr.getOrCreateNewDataSetType('SONY_SH800S_FCSFILE') data_set_type_SONY_SH800S_FCSFILE.setDescription('An FCS file from the SONY SH800S Cell Sorter.') data_set_type_SONY_SH800S_FCSFILE.setMainDataSetPattern('.*\.fcs') data_set_type_SONY_SH800S_FCSFILE.setMainDataSetPath(None) data_set_type_SONY_SH800S_FCSFILE.setDeletionDisallowed(False) # SONY_SH800S_ACCESSORY_FILE data_set_type_SONY_SH800S_ACCESSORY_FILE = tr.getOrCreateNewDataSetType('SONY_SH800S_ACCESSORY_FILE') data_set_type_SONY_SH800S_ACCESSORY_FILE.setDescription('An accessory dataset file associated with a SONY SH800S experiment.') data_set_type_SONY_SH800S_ACCESSORY_FILE.setMainDataSetPattern(None) data_set_type_SONY_SH800S_ACCESSORY_FILE.setMainDataSetPath(None) data_set_type_SONY_SH800S_ACCESSORY_FILE.setDeletionDisallowed(False) # SONY MA900 # ------------------------------------------------------------------------------ # SONY_MA900_FCSFILE data_set_type_SONY_MA900_FCSFILE = tr.getOrCreateNewDataSetType('SONY_MA900_FCSFILE') data_set_type_SONY_MA900_FCSFILE.setDescription('An FCS file from the SONY MA900 Cell Sorter.') data_set_type_SONY_MA900_FCSFILE.setMainDataSetPattern('.*\.fcs') data_set_type_SONY_MA900_FCSFILE.setMainDataSetPath(None) data_set_type_SONY_MA900_FCSFILE.setDeletionDisallowed(False) # SONY_MA900_ACCESSORY_FILE data_set_type_SONY_MA900_ACCESSORY_FILE = tr.getOrCreateNewDataSetType('SONY_MA900_ACCESSORY_FILE') data_set_type_SONY_MA900_ACCESSORY_FILE.setDescription('An accessory dataset file associated with a SONY MA900 experiment.') data_set_type_SONY_MA900_ACCESSORY_FILE.setMainDataSetPattern(None) data_set_type_SONY_MA900_ACCESSORY_FILE.setMainDataSetPath(None) data_set_type_SONY_MA900_ACCESSORY_FILE.setDeletionDisallowed(False) # ============================================================================== # # PROPERTY TYPES # # ============================================================================== # COMMON # ------------------------------------------------------------------------------ # ANNOTATIONS_STATE prop_type_ANNOTATIONS_STATE = tr.getOrCreateNewPropertyType('ANNOTATIONS_STATE', DataType.XML) prop_type_ANNOTATIONS_STATE.setLabel('Annotations State') prop_type_ANNOTATIONS_STATE.setManagedInternally(False) prop_type_ANNOTATIONS_STATE.setInternalNamespace(True) # DEFAULT_OBJECT_TYPE prop_type_DEFAULT_OBJECT_TYPE = tr.getOrCreateNewPropertyType('DEFAULT_OBJECT_TYPE', DataType.VARCHAR) prop_type_DEFAULT_OBJECT_TYPE.setLabel('Default Object Type') prop_type_DEFAULT_OBJECT_TYPE.setManagedInternally(False) prop_type_DEFAULT_OBJECT_TYPE.setInternalNamespace(True) # DESCRIPTION prop_type_DESCRIPTION = tr.getOrCreateNewPropertyType('DESCRIPTION', DataType.VARCHAR) prop_type_DESCRIPTION.setLabel('Description') prop_type_DESCRIPTION.setManagedInternally(False) prop_type_DESCRIPTION.setInternalNamespace(False) # NAME prop_type_NAME = tr.getOrCreateNewPropertyType('NAME', DataType.VARCHAR) prop_type_NAME.setLabel('Name') prop_type_NAME.setManagedInternally(False) prop_type_NAME.setInternalNamespace(True) # NOTES prop_type_NOTES = tr.getOrCreateNewPropertyType('NOTES', DataType.VARCHAR) prop_type_NOTES.setLabel('Notes') prop_type_NOTES.setManagedInternally(False) prop_type_NOTES.setInternalNamespace(False) # RESOLUTION prop_type_RESOLUTION = tr.getOrCreateNewPropertyType('RESOLUTION', DataType.VARCHAR) prop_type_RESOLUTION.setLabel('Resolution') prop_type_RESOLUTION.setManagedInternally(False) prop_type_RESOLUTION.setInternalNamespace(True) # XMLCOMMENTS prop_type_XMLCOMMENTS = tr.getOrCreateNewPropertyType('XMLCOMMENTS', DataType.XML) prop_type_XMLCOMMENTS.setLabel('XML Comments') prop_type_XMLCOMMENTS.setManagedInternally(False) prop_type_XMLCOMMENTS.setInternalNamespace(True) # BD FACS ARIA # ------------------------------------------------------------------------------ # FACS_ARIA_EXPERIMENT_ACQ_HARDWARE prop_type_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE = tr.getOrCreateNewPropertyType('FACS_ARIA_EXPERIMENT_ACQ_HARDWARE', DataType.VARCHAR) prop_type_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE.setLabel('Acquisition hardware') prop_type_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE.setManagedInternally(False) prop_type_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE.setInternalNamespace(False) # FACS_ARIA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME prop_type_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.getOrCreateNewPropertyType('FACS_ARIA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME', DataType.VARCHAR) prop_type_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setLabel('Acquisition station name') prop_type_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setManagedInternally(False) prop_type_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setInternalNamespace(False) # FACS_ARIA_EXPERIMENT_ACQ_SOFTWARE prop_type_FACS_ARIA_EXPERIMENT_ACQ_SOFTWARE = tr.getOrCreateNewPropertyType('FACS_ARIA_EXPERIMENT_ACQ_SOFTWARE', DataType.VARCHAR) prop_type_FACS_ARIA_EXPERIMENT_ACQ_SOFTWARE.setLabel('Acquisition software') prop_type_FACS_ARIA_EXPERIMENT_ACQ_SOFTWARE.setManagedInternally(False) prop_type_FACS_ARIA_EXPERIMENT_ACQ_SOFTWARE.setInternalNamespace(False) # FACS_ARIA_EXPERIMENT_DATE prop_type_FACS_ARIA_EXPERIMENT_DATE = tr.getOrCreateNewPropertyType('FACS_ARIA_EXPERIMENT_DATE', DataType.TIMESTAMP) prop_type_FACS_ARIA_EXPERIMENT_DATE.setLabel('Experiment date') prop_type_FACS_ARIA_EXPERIMENT_DATE.setManagedInternally(False) prop_type_FACS_ARIA_EXPERIMENT_DATE.setInternalNamespace(False) # FACS_ARIA_EXPERIMENT_DESCRIPTION prop_type_FACS_ARIA_EXPERIMENT_DESCRIPTION = tr.getOrCreateNewPropertyType('FACS_ARIA_EXPERIMENT_DESCRIPTION', DataType.MULTILINE_VARCHAR) prop_type_FACS_ARIA_EXPERIMENT_DESCRIPTION.setLabel('Description') prop_type_FACS_ARIA_EXPERIMENT_DESCRIPTION.setManagedInternally(False) prop_type_FACS_ARIA_EXPERIMENT_DESCRIPTION.setInternalNamespace(False) # FACS_ARIA_EXPERIMENT_NAME prop_type_FACS_ARIA_EXPERIMENT_NAME = tr.getOrCreateNewPropertyType('FACS_ARIA_EXPERIMENT_NAME', DataType.VARCHAR) prop_type_FACS_ARIA_EXPERIMENT_NAME.setLabel('Experiment name') prop_type_FACS_ARIA_EXPERIMENT_NAME.setManagedInternally(False) prop_type_FACS_ARIA_EXPERIMENT_NAME.setInternalNamespace(False) # FACS_ARIA_EXPERIMENT_OWNER prop_type_FACS_ARIA_EXPERIMENT_OWNER = tr.getOrCreateNewPropertyType('FACS_ARIA_EXPERIMENT_OWNER', DataType.VARCHAR) prop_type_FACS_ARIA_EXPERIMENT_OWNER.setLabel('Owner') prop_type_FACS_ARIA_EXPERIMENT_OWNER.setManagedInternally(False) prop_type_FACS_ARIA_EXPERIMENT_OWNER.setInternalNamespace(False) # FACS_ARIA_EXPERIMENT_VERSION prop_type_FACS_ARIA_EXPERIMENT_VERSION = tr.getOrCreateNewPropertyType('FACS_ARIA_EXPERIMENT_VERSION', DataType.INTEGER) prop_type_FACS_ARIA_EXPERIMENT_VERSION.setLabel('Version') prop_type_FACS_ARIA_EXPERIMENT_VERSION.setManagedInternally(False) prop_type_FACS_ARIA_EXPERIMENT_VERSION.setInternalNamespace(False) # FACS_ARIA_FCSFILE_ACQ_DATE prop_type_FACS_ARIA_FCSFILE_ACQ_DATE = tr.getOrCreateNewPropertyType('FACS_ARIA_FCSFILE_ACQ_DATE', DataType.TIMESTAMP) prop_type_FACS_ARIA_FCSFILE_ACQ_DATE.setLabel('Acquisition date') prop_type_FACS_ARIA_FCSFILE_ACQ_DATE.setManagedInternally(False) prop_type_FACS_ARIA_FCSFILE_ACQ_DATE.setInternalNamespace(False) # FACS_ARIA_FCSFILE_PARAMETERS prop_type_FACS_ARIA_FCSFILE_PARAMETERS = tr.getOrCreateNewPropertyType('FACS_ARIA_FCSFILE_PARAMETERS', DataType.MULTILINE_VARCHAR) prop_type_FACS_ARIA_FCSFILE_PARAMETERS.setLabel('FCS parameters') prop_type_FACS_ARIA_FCSFILE_PARAMETERS.setManagedInternally(False) prop_type_FACS_ARIA_FCSFILE_PARAMETERS.setInternalNamespace(False) # FACS_ARIA_TUBE_ISINDEXSORT prop_type_FACS_ARIA_TUBE_ISINDEXSORT = tr.getOrCreateNewPropertyType('FACS_ARIA_TUBE_ISINDEXSORT', DataType.BOOLEAN) prop_type_FACS_ARIA_TUBE_ISINDEXSORT.setLabel('Index sort') prop_type_FACS_ARIA_TUBE_ISINDEXSORT.setManagedInternally(False) prop_type_FACS_ARIA_TUBE_ISINDEXSORT.setInternalNamespace(False) # BD INFLUX # ------------------------------------------------------------------------------ # INFLUX_EXPERIMENT_ACQ_HARDWARE prop_type_INFLUX_EXPERIMENT_ACQ_HARDWARE = tr.getOrCreateNewPropertyType('INFLUX_EXPERIMENT_ACQ_HARDWARE', DataType.VARCHAR) prop_type_INFLUX_EXPERIMENT_ACQ_HARDWARE.setLabel('Acquisition hardware') prop_type_INFLUX_EXPERIMENT_ACQ_HARDWARE.setManagedInternally(False) prop_type_INFLUX_EXPERIMENT_ACQ_HARDWARE.setInternalNamespace(False) # INFLUX_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME prop_type_INFLUX_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.getOrCreateNewPropertyType('INFLUX_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME', DataType.VARCHAR) prop_type_INFLUX_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setLabel('Acquisition station name') prop_type_INFLUX_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setManagedInternally(False) prop_type_INFLUX_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setInternalNamespace(False) # INFLUX_EXPERIMENT_ACQ_SOFTWARE prop_type_INFLUX_EXPERIMENT_ACQ_SOFTWARE = tr.getOrCreateNewPropertyType('INFLUX_EXPERIMENT_ACQ_SOFTWARE', DataType.VARCHAR) prop_type_INFLUX_EXPERIMENT_ACQ_SOFTWARE.setLabel('Acquisition software') prop_type_INFLUX_EXPERIMENT_ACQ_SOFTWARE.setManagedInternally(False) prop_type_INFLUX_EXPERIMENT_ACQ_SOFTWARE.setInternalNamespace(False) # INFLUX_EXPERIMENT_DATE prop_type_INFLUX_EXPERIMENT_DATE = tr.getOrCreateNewPropertyType('INFLUX_EXPERIMENT_DATE', DataType.TIMESTAMP) prop_type_INFLUX_EXPERIMENT_DATE.setLabel('Experiment date') prop_type_INFLUX_EXPERIMENT_DATE.setManagedInternally(False) prop_type_INFLUX_EXPERIMENT_DATE.setInternalNamespace(False) # INFLUX_EXPERIMENT_DESCRIPTION prop_type_INFLUX_EXPERIMENT_DESCRIPTION = tr.getOrCreateNewPropertyType('INFLUX_EXPERIMENT_DESCRIPTION', DataType.MULTILINE_VARCHAR) prop_type_INFLUX_EXPERIMENT_DESCRIPTION.setLabel('Description') prop_type_INFLUX_EXPERIMENT_DESCRIPTION.setManagedInternally(False) prop_type_INFLUX_EXPERIMENT_DESCRIPTION.setInternalNamespace(False) # INFLUX_EXPERIMENT_NAME prop_type_INFLUX_EXPERIMENT_NAME = tr.getOrCreateNewPropertyType('INFLUX_EXPERIMENT_NAME', DataType.VARCHAR) prop_type_INFLUX_EXPERIMENT_NAME.setLabel('Experiment name') prop_type_INFLUX_EXPERIMENT_NAME.setManagedInternally(False) prop_type_INFLUX_EXPERIMENT_NAME.setInternalNamespace(False) # INFLUX_EXPERIMENT_OWNER prop_type_INFLUX_EXPERIMENT_OWNER = tr.getOrCreateNewPropertyType('INFLUX_EXPERIMENT_OWNER', DataType.VARCHAR) prop_type_INFLUX_EXPERIMENT_OWNER.setLabel('Owner') prop_type_INFLUX_EXPERIMENT_OWNER.setManagedInternally(False) prop_type_INFLUX_EXPERIMENT_OWNER.setInternalNamespace(False) # INFLUX_EXPERIMENT_VERSION prop_type_INFLUX_EXPERIMENT_VERSION = tr.getOrCreateNewPropertyType('INFLUX_EXPERIMENT_VERSION', DataType.INTEGER) prop_type_INFLUX_EXPERIMENT_VERSION.setLabel('Version') prop_type_INFLUX_EXPERIMENT_VERSION.setManagedInternally(False) prop_type_INFLUX_EXPERIMENT_VERSION.setInternalNamespace(False) # INFLUX_FCSFILE_ACQ_DATE prop_type_INFLUX_FCSFILE_ACQ_DATE = tr.getOrCreateNewPropertyType('INFLUX_FCSFILE_ACQ_DATE', DataType.TIMESTAMP) prop_type_INFLUX_FCSFILE_ACQ_DATE.setLabel('Acquisition date') prop_type_INFLUX_FCSFILE_ACQ_DATE.setManagedInternally(False) prop_type_INFLUX_FCSFILE_ACQ_DATE.setInternalNamespace(False) # INFLUX_FCSFILE_PARAMETERS prop_type_INFLUX_FCSFILE_PARAMETERS = tr.getOrCreateNewPropertyType('INFLUX_FCSFILE_PARAMETERS', DataType.MULTILINE_VARCHAR) prop_type_INFLUX_FCSFILE_PARAMETERS.setLabel('FCS parameters') prop_type_INFLUX_FCSFILE_PARAMETERS.setManagedInternally(False) prop_type_INFLUX_FCSFILE_PARAMETERS.setInternalNamespace(False) # INFLUX_TUBE_ISINDEXSORT prop_type_INFLUX_TUBE_ISINDEXSORT = tr.getOrCreateNewPropertyType('INFLUX_TUBE_ISINDEXSORT', DataType.BOOLEAN) prop_type_INFLUX_TUBE_ISINDEXSORT.setLabel('Index sort') prop_type_INFLUX_TUBE_ISINDEXSORT.setManagedInternally(False) prop_type_INFLUX_TUBE_ISINDEXSORT.setInternalNamespace(False) # BD LSR FORTESSA # ------------------------------------------------------------------------------ # LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE prop_type_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE = tr.getOrCreateNewPropertyType('LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE', DataType.VARCHAR) prop_type_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE.setLabel('Acquisition hardware') prop_type_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE.setManagedInternally(False) prop_type_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE.setInternalNamespace(False) # LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME prop_type_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.getOrCreateNewPropertyType('LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME', DataType.VARCHAR) prop_type_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setLabel('Acquisition station name') prop_type_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setManagedInternally(False) prop_type_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setInternalNamespace(False) # LSR_FORTESSA_EXPERIMENT_ACQ_SOFTWARE prop_type_LSR_FORTESSA_EXPERIMENT_ACQ_SOFTWARE = tr.getOrCreateNewPropertyType('LSR_FORTESSA_EXPERIMENT_ACQ_SOFTWARE', DataType.VARCHAR) prop_type_LSR_FORTESSA_EXPERIMENT_ACQ_SOFTWARE.setLabel('Acquisition software') prop_type_LSR_FORTESSA_EXPERIMENT_ACQ_SOFTWARE.setManagedInternally(False) prop_type_LSR_FORTESSA_EXPERIMENT_ACQ_SOFTWARE.setInternalNamespace(False) # LSR_FORTESSA_EXPERIMENT_DATE prop_type_LSR_FORTESSA_EXPERIMENT_DATE = tr.getOrCreateNewPropertyType('LSR_FORTESSA_EXPERIMENT_DATE', DataType.TIMESTAMP) prop_type_LSR_FORTESSA_EXPERIMENT_DATE.setLabel('Experiment date') prop_type_LSR_FORTESSA_EXPERIMENT_DATE.setManagedInternally(False) prop_type_LSR_FORTESSA_EXPERIMENT_DATE.setInternalNamespace(False) # LSR_FORTESSA_EXPERIMENT_DESCRIPTION prop_type_LSR_FORTESSA_EXPERIMENT_DESCRIPTION = tr.getOrCreateNewPropertyType('LSR_FORTESSA_EXPERIMENT_DESCRIPTION', DataType.MULTILINE_VARCHAR) prop_type_LSR_FORTESSA_EXPERIMENT_DESCRIPTION.setLabel('Description') prop_type_LSR_FORTESSA_EXPERIMENT_DESCRIPTION.setManagedInternally(False) prop_type_LSR_FORTESSA_EXPERIMENT_DESCRIPTION.setInternalNamespace(False) # LSR_FORTESSA_EXPERIMENT_NAME prop_type_LSR_FORTESSA_EXPERIMENT_NAME = tr.getOrCreateNewPropertyType('LSR_FORTESSA_EXPERIMENT_NAME', DataType.VARCHAR) prop_type_LSR_FORTESSA_EXPERIMENT_NAME.setLabel('Experiment name') prop_type_LSR_FORTESSA_EXPERIMENT_NAME.setManagedInternally(False) prop_type_LSR_FORTESSA_EXPERIMENT_NAME.setInternalNamespace(False) # LSR_FORTESSA_EXPERIMENT_OWNER prop_type_LSR_FORTESSA_EXPERIMENT_OWNER = tr.getOrCreateNewPropertyType('LSR_FORTESSA_EXPERIMENT_OWNER', DataType.VARCHAR) prop_type_LSR_FORTESSA_EXPERIMENT_OWNER.setLabel('Owner') prop_type_LSR_FORTESSA_EXPERIMENT_OWNER.setManagedInternally(False) prop_type_LSR_FORTESSA_EXPERIMENT_OWNER.setInternalNamespace(False) # LSR_FORTESSA_EXPERIMENT_VERSION prop_type_LSR_FORTESSA_EXPERIMENT_VERSION = tr.getOrCreateNewPropertyType('LSR_FORTESSA_EXPERIMENT_VERSION', DataType.INTEGER) prop_type_LSR_FORTESSA_EXPERIMENT_VERSION.setLabel('Version') prop_type_LSR_FORTESSA_EXPERIMENT_VERSION.setManagedInternally(False) prop_type_LSR_FORTESSA_EXPERIMENT_VERSION.setInternalNamespace(False) # LSR_FORTESSA_FCSFILE_ACQ_DATE prop_type_LSR_FORTESSA_FCSFILE_ACQ_DATE = tr.getOrCreateNewPropertyType('LSR_FORTESSA_FCSFILE_ACQ_DATE', DataType.TIMESTAMP) prop_type_LSR_FORTESSA_FCSFILE_ACQ_DATE.setLabel('Acquisition date') prop_type_LSR_FORTESSA_FCSFILE_ACQ_DATE.setManagedInternally(False) prop_type_LSR_FORTESSA_FCSFILE_ACQ_DATE.setInternalNamespace(False) # LSR_FORTESSA_FCSFILE_PARAMETERS prop_type_LSR_FORTESSA_FCSFILE_PARAMETERS = tr.getOrCreateNewPropertyType('LSR_FORTESSA_FCSFILE_PARAMETERS', DataType.MULTILINE_VARCHAR) prop_type_LSR_FORTESSA_FCSFILE_PARAMETERS.setLabel('FCS parameters') prop_type_LSR_FORTESSA_FCSFILE_PARAMETERS.setManagedInternally(False) prop_type_LSR_FORTESSA_FCSFILE_PARAMETERS.setInternalNamespace(False) # LSR_FORTESSA_PLATE_GEOMETRY prop_type_LSR_FORTESSA_PLATE_GEOMETRY = tr.getOrCreateNewPropertyType('LSR_FORTESSA_PLATE_GEOMETRY', DataType.CONTROLLEDVOCABULARY) prop_type_LSR_FORTESSA_PLATE_GEOMETRY.setLabel('Plate Geometry') prop_type_LSR_FORTESSA_PLATE_GEOMETRY.setManagedInternally(False) prop_type_LSR_FORTESSA_PLATE_GEOMETRY.setInternalNamespace(False) prop_type_LSR_FORTESSA_PLATE_GEOMETRY.setVocabulary(vocabulary_LSR_FORTESSA_PLATE_GEOMETRY) # BC CYTOFLEX S # ------------------------------------------------------------------------------ # CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE prop_type_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE = tr.getOrCreateNewPropertyType('CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE', DataType.VARCHAR) prop_type_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE.setLabel('Acquisition hardware') prop_type_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE.setManagedInternally(False) prop_type_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE.setInternalNamespace(False) # CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME prop_type_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.getOrCreateNewPropertyType('CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME', DataType.VARCHAR) prop_type_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setLabel('Acquisition station name') prop_type_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setManagedInternally(False) prop_type_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setInternalNamespace(False) # CYTOFLEX_S_EXPERIMENT_ACQ_SOFTWARE prop_type_CYTOFLEX_S_EXPERIMENT_ACQ_SOFTWARE = tr.getOrCreateNewPropertyType('CYTOFLEX_S_EXPERIMENT_ACQ_SOFTWARE', DataType.VARCHAR) prop_type_CYTOFLEX_S_EXPERIMENT_ACQ_SOFTWARE.setLabel('Acquisition software') prop_type_CYTOFLEX_S_EXPERIMENT_ACQ_SOFTWARE.setManagedInternally(False) prop_type_CYTOFLEX_S_EXPERIMENT_ACQ_SOFTWARE.setInternalNamespace(False) # CYTOFLEX_S_EXPERIMENT_DATE prop_type_CYTOFLEX_S_EXPERIMENT_DATE = tr.getOrCreateNewPropertyType('CYTOFLEX_S_EXPERIMENT_DATE', DataType.TIMESTAMP) prop_type_CYTOFLEX_S_EXPERIMENT_DATE.setLabel('Experiment date') prop_type_CYTOFLEX_S_EXPERIMENT_DATE.setManagedInternally(False) prop_type_CYTOFLEX_S_EXPERIMENT_DATE.setInternalNamespace(False) # CYTOFLEX_S_EXPERIMENT_DESCRIPTION prop_type_CYTOFLEX_S_EXPERIMENT_DESCRIPTION = tr.getOrCreateNewPropertyType('CYTOFLEX_S_EXPERIMENT_DESCRIPTION', DataType.MULTILINE_VARCHAR) prop_type_CYTOFLEX_S_EXPERIMENT_DESCRIPTION.setLabel('Description') prop_type_CYTOFLEX_S_EXPERIMENT_DESCRIPTION.setManagedInternally(False) prop_type_CYTOFLEX_S_EXPERIMENT_DESCRIPTION.setInternalNamespace(False) # CYTOFLEX_S_EXPERIMENT_NAME prop_type_CYTOFLEX_S_EXPERIMENT_NAME = tr.getOrCreateNewPropertyType('CYTOFLEX_S_EXPERIMENT_NAME', DataType.VARCHAR) prop_type_CYTOFLEX_S_EXPERIMENT_NAME.setLabel('Experiment name') prop_type_CYTOFLEX_S_EXPERIMENT_NAME.setManagedInternally(False) prop_type_CYTOFLEX_S_EXPERIMENT_NAME.setInternalNamespace(False) # CYTOFLEX_S_EXPERIMENT_OWNER prop_type_CYTOFLEX_S_EXPERIMENT_OWNER = tr.getOrCreateNewPropertyType('CYTOFLEX_S_EXPERIMENT_OWNER', DataType.VARCHAR) prop_type_CYTOFLEX_S_EXPERIMENT_OWNER.setLabel('Owner') prop_type_CYTOFLEX_S_EXPERIMENT_OWNER.setManagedInternally(False) prop_type_CYTOFLEX_S_EXPERIMENT_OWNER.setInternalNamespace(False) # CYTOFLEX_S_EXPERIMENT_VERSION prop_type_CYTOFLEX_S_EXPERIMENT_VERSION = tr.getOrCreateNewPropertyType('CYTOFLEX_S_EXPERIMENT_VERSION', DataType.INTEGER) prop_type_CYTOFLEX_S_EXPERIMENT_VERSION.setLabel('Version') prop_type_CYTOFLEX_S_EXPERIMENT_VERSION.setManagedInternally(False) prop_type_CYTOFLEX_S_EXPERIMENT_VERSION.setInternalNamespace(False) # CYTOFLEX_S_FCSFILE_ACQ_DATE prop_type_CYTOFLEX_S_FCSFILE_ACQ_DATE = tr.getOrCreateNewPropertyType('CYTOFLEX_S_FCSFILE_ACQ_DATE', DataType.TIMESTAMP) prop_type_CYTOFLEX_S_FCSFILE_ACQ_DATE.setLabel('Acquisition date') prop_type_CYTOFLEX_S_FCSFILE_ACQ_DATE.setManagedInternally(False) prop_type_CYTOFLEX_S_FCSFILE_ACQ_DATE.setInternalNamespace(False) # CYTOFLEX_S_FCSFILE_PARAMETERS prop_type_CYTOFLEX_S_FCSFILE_PARAMETERS = tr.getOrCreateNewPropertyType('CYTOFLEX_S_FCSFILE_PARAMETERS', DataType.MULTILINE_VARCHAR) prop_type_CYTOFLEX_S_FCSFILE_PARAMETERS.setLabel('FCS parameters') prop_type_CYTOFLEX_S_FCSFILE_PARAMETERS.setManagedInternally(False) prop_type_CYTOFLEX_S_FCSFILE_PARAMETERS.setInternalNamespace(False) # CYTOFLEX_S_PLATE_GEOMETRY prop_type_CYTOFLEX_S_PLATE_GEOMETRY = tr.getOrCreateNewPropertyType('CYTOFLEX_S_PLATE_GEOMETRY', DataType.CONTROLLEDVOCABULARY) prop_type_CYTOFLEX_S_PLATE_GEOMETRY.setLabel('Plate Geometry') prop_type_CYTOFLEX_S_PLATE_GEOMETRY.setManagedInternally(False) prop_type_CYTOFLEX_S_PLATE_GEOMETRY.setInternalNamespace(False) prop_type_CYTOFLEX_S_PLATE_GEOMETRY.setVocabulary(vocabulary_CYTOFLEX_S_PLATE_GEOMETRY) # BC MOFLO XDP # ------------------------------------------------------------------------------ # MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE prop_type_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE = tr.getOrCreateNewPropertyType('MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE', DataType.VARCHAR) prop_type_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE.setLabel('Acquisition hardware') prop_type_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE.setManagedInternally(False) prop_type_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE.setInternalNamespace(False) # MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME prop_type_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.getOrCreateNewPropertyType('MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME', DataType.VARCHAR) prop_type_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setLabel('Acquisition station name') prop_type_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setManagedInternally(False) prop_type_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setInternalNamespace(False) # MOFLO_XDP_EXPERIMENT_ACQ_SOFTWARE prop_type_MOFLO_XDP_EXPERIMENT_ACQ_SOFTWARE = tr.getOrCreateNewPropertyType('MOFLO_XDP_EXPERIMENT_ACQ_SOFTWARE', DataType.VARCHAR) prop_type_MOFLO_XDP_EXPERIMENT_ACQ_SOFTWARE.setLabel('Acquisition software') prop_type_MOFLO_XDP_EXPERIMENT_ACQ_SOFTWARE.setManagedInternally(False) prop_type_MOFLO_XDP_EXPERIMENT_ACQ_SOFTWARE.setInternalNamespace(False) # MOFLO_XDP_EXPERIMENT_DATE prop_type_MOFLO_XDP_EXPERIMENT_DATE = tr.getOrCreateNewPropertyType('MOFLO_XDP_EXPERIMENT_DATE', DataType.TIMESTAMP) prop_type_MOFLO_XDP_EXPERIMENT_DATE.setLabel('Experiment date') prop_type_MOFLO_XDP_EXPERIMENT_DATE.setManagedInternally(False) prop_type_MOFLO_XDP_EXPERIMENT_DATE.setInternalNamespace(False) # MOFLO_XDP_EXPERIMENT_DESCRIPTION prop_type_MOFLO_XDP_EXPERIMENT_DESCRIPTION = tr.getOrCreateNewPropertyType('MOFLO_XDP_EXPERIMENT_DESCRIPTION', DataType.MULTILINE_VARCHAR) prop_type_MOFLO_XDP_EXPERIMENT_DESCRIPTION.setLabel('Description') prop_type_MOFLO_XDP_EXPERIMENT_DESCRIPTION.setManagedInternally(False) prop_type_MOFLO_XDP_EXPERIMENT_DESCRIPTION.setInternalNamespace(False) # MOFLO_XDP_EXPERIMENT_NAME prop_type_MOFLO_XDP_EXPERIMENT_NAME = tr.getOrCreateNewPropertyType('MOFLO_XDP_EXPERIMENT_NAME', DataType.VARCHAR) prop_type_MOFLO_XDP_EXPERIMENT_NAME.setLabel('Experiment name') prop_type_MOFLO_XDP_EXPERIMENT_NAME.setManagedInternally(False) prop_type_MOFLO_XDP_EXPERIMENT_NAME.setInternalNamespace(False) # MOFLO_XDP_EXPERIMENT_OWNER prop_type_MOFLO_XDP_EXPERIMENT_OWNER = tr.getOrCreateNewPropertyType('MOFLO_XDP_EXPERIMENT_OWNER', DataType.VARCHAR) prop_type_MOFLO_XDP_EXPERIMENT_OWNER.setLabel('Owner') prop_type_MOFLO_XDP_EXPERIMENT_OWNER.setManagedInternally(False) prop_type_MOFLO_XDP_EXPERIMENT_OWNER.setInternalNamespace(False) # MOFLO_XDP_EXPERIMENT_VERSION prop_type_MOFLO_XDP_EXPERIMENT_VERSION = tr.getOrCreateNewPropertyType('MOFLO_XDP_EXPERIMENT_VERSION', DataType.INTEGER) prop_type_MOFLO_XDP_EXPERIMENT_VERSION.setLabel('Version') prop_type_MOFLO_XDP_EXPERIMENT_VERSION.setManagedInternally(False) prop_type_MOFLO_XDP_EXPERIMENT_VERSION.setInternalNamespace(False) # MOFLO_XDP_FCSFILE_ACQ_DATE prop_type_MOFLO_XDP_FCSFILE_ACQ_DATE = tr.getOrCreateNewPropertyType('MOFLO_XDP_FCSFILE_ACQ_DATE', DataType.TIMESTAMP) prop_type_MOFLO_XDP_FCSFILE_ACQ_DATE.setLabel('Acquisition date') prop_type_MOFLO_XDP_FCSFILE_ACQ_DATE.setManagedInternally(False) prop_type_MOFLO_XDP_FCSFILE_ACQ_DATE.setInternalNamespace(False) # MOFLO_XDP_FCSFILE_PARAMETERS prop_type_MOFLO_XDP_FCSFILE_PARAMETERS = tr.getOrCreateNewPropertyType('MOFLO_XDP_FCSFILE_PARAMETERS', DataType.MULTILINE_VARCHAR) prop_type_MOFLO_XDP_FCSFILE_PARAMETERS.setLabel('FCS parameters') prop_type_MOFLO_XDP_FCSFILE_PARAMETERS.setManagedInternally(False) prop_type_MOFLO_XDP_FCSFILE_PARAMETERS.setInternalNamespace(False) # MOFLO_XDP_TUBE_ISINDEXSORT prop_type_MOFLO_XDP_TUBE_ISINDEXSORT = tr.getOrCreateNewPropertyType('MOFLO_XDP_TUBE_ISINDEXSORT', DataType.BOOLEAN) prop_type_MOFLO_XDP_TUBE_ISINDEXSORT.setLabel('Index sort') prop_type_MOFLO_XDP_TUBE_ISINDEXSORT.setManagedInternally(False) prop_type_MOFLO_XDP_TUBE_ISINDEXSORT.setInternalNamespace(False) # BIORAD S3E # ------------------------------------------------------------------------------ # S3E_EXPERIMENT_ACQ_HARDWARE prop_type_S3E_EXPERIMENT_ACQ_HARDWARE = tr.getOrCreateNewPropertyType('S3E_EXPERIMENT_ACQ_HARDWARE', DataType.VARCHAR) prop_type_S3E_EXPERIMENT_ACQ_HARDWARE.setLabel('Acquisition hardware') prop_type_S3E_EXPERIMENT_ACQ_HARDWARE.setManagedInternally(False) prop_type_S3E_EXPERIMENT_ACQ_HARDWARE.setInternalNamespace(False) # S3E_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME prop_type_S3E_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.getOrCreateNewPropertyType('S3E_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME', DataType.VARCHAR) prop_type_S3E_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setLabel('Acquisition station name') prop_type_S3E_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setManagedInternally(False) prop_type_S3E_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setInternalNamespace(False) # S3E_EXPERIMENT_ACQ_SOFTWARE prop_type_S3E_EXPERIMENT_ACQ_SOFTWARE = tr.getOrCreateNewPropertyType('S3E_EXPERIMENT_ACQ_SOFTWARE', DataType.VARCHAR) prop_type_S3E_EXPERIMENT_ACQ_SOFTWARE.setLabel('Acquisition software') prop_type_S3E_EXPERIMENT_ACQ_SOFTWARE.setManagedInternally(False) prop_type_S3E_EXPERIMENT_ACQ_SOFTWARE.setInternalNamespace(False) # S3E_EXPERIMENT_DATE prop_type_S3E_EXPERIMENT_DATE = tr.getOrCreateNewPropertyType('S3E_EXPERIMENT_DATE', DataType.TIMESTAMP) prop_type_S3E_EXPERIMENT_DATE.setLabel('Experiment date') prop_type_S3E_EXPERIMENT_DATE.setManagedInternally(False) prop_type_S3E_EXPERIMENT_DATE.setInternalNamespace(False) # S3E_EXPERIMENT_DESCRIPTION prop_type_S3E_EXPERIMENT_DESCRIPTION = tr.getOrCreateNewPropertyType('S3E_EXPERIMENT_DESCRIPTION', DataType.MULTILINE_VARCHAR) prop_type_S3E_EXPERIMENT_DESCRIPTION.setLabel('Description') prop_type_S3E_EXPERIMENT_DESCRIPTION.setManagedInternally(False) prop_type_S3E_EXPERIMENT_DESCRIPTION.setInternalNamespace(False) # S3E_EXPERIMENT_NAME prop_type_S3E_EXPERIMENT_NAME = tr.getOrCreateNewPropertyType('S3E_EXPERIMENT_NAME', DataType.VARCHAR) prop_type_S3E_EXPERIMENT_NAME.setLabel('Experiment name') prop_type_S3E_EXPERIMENT_NAME.setManagedInternally(False) prop_type_S3E_EXPERIMENT_NAME.setInternalNamespace(False) # S3E_EXPERIMENT_OWNER prop_type_S3E_EXPERIMENT_OWNER = tr.getOrCreateNewPropertyType('S3E_EXPERIMENT_OWNER', DataType.VARCHAR) prop_type_S3E_EXPERIMENT_OWNER.setLabel('Owner') prop_type_S3E_EXPERIMENT_OWNER.setManagedInternally(False) prop_type_S3E_EXPERIMENT_OWNER.setInternalNamespace(False) # S3E_EXPERIMENT_VERSION prop_type_S3E_EXPERIMENT_VERSION = tr.getOrCreateNewPropertyType('S3E_EXPERIMENT_VERSION', DataType.INTEGER) prop_type_S3E_EXPERIMENT_VERSION.setLabel('Version') prop_type_S3E_EXPERIMENT_VERSION.setManagedInternally(False) prop_type_S3E_EXPERIMENT_VERSION.setInternalNamespace(False) # S3E_FCSFILE_ACQ_DATE prop_type_S3E_FCSFILE_ACQ_DATE = tr.getOrCreateNewPropertyType('S3E_FCSFILE_ACQ_DATE', DataType.TIMESTAMP) prop_type_S3E_FCSFILE_ACQ_DATE.setLabel('Acquisition date') prop_type_S3E_FCSFILE_ACQ_DATE.setManagedInternally(False) prop_type_S3E_FCSFILE_ACQ_DATE.setInternalNamespace(False) # S3E_FCSFILE_PARAMETERS prop_type_S3E_FCSFILE_PARAMETERS = tr.getOrCreateNewPropertyType('S3E_FCSFILE_PARAMETERS', DataType.MULTILINE_VARCHAR) prop_type_S3E_FCSFILE_PARAMETERS.setLabel('FCS parameters') prop_type_S3E_FCSFILE_PARAMETERS.setManagedInternally(False) prop_type_S3E_FCSFILE_PARAMETERS.setInternalNamespace(False) # S3E_TUBE_ISINDEXSORT prop_type_S3E_TUBE_ISINDEXSORT = tr.getOrCreateNewPropertyType('S3E_TUBE_ISINDEXSORT', DataType.BOOLEAN) prop_type_S3E_TUBE_ISINDEXSORT.setLabel('Index sort') prop_type_S3E_TUBE_ISINDEXSORT.setManagedInternally(False) prop_type_S3E_TUBE_ISINDEXSORT.setInternalNamespace(False) # SONY SH800S # ------------------------------------------------------------------------------ # SONY_SH800S_EXPERIMENT_ACQ_HARDWARE prop_type_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE = tr.getOrCreateNewPropertyType('SONY_SH800S_EXPERIMENT_ACQ_HARDWARE', DataType.VARCHAR) prop_type_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE.setLabel('Acquisition hardware') prop_type_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE.setManagedInternally(False) prop_type_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE.setInternalNamespace(False) # SONY_SH800S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME prop_type_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.getOrCreateNewPropertyType('SONY_SH800S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME', DataType.VARCHAR) prop_type_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setLabel('Acquisition station name') prop_type_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setManagedInternally(False) prop_type_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setInternalNamespace(False) # SONY_SH800S_EXPERIMENT_ACQ_SOFTWARE prop_type_SONY_SH800S_EXPERIMENT_ACQ_SOFTWARE = tr.getOrCreateNewPropertyType('SONY_SH800S_EXPERIMENT_ACQ_SOFTWARE', DataType.VARCHAR) prop_type_SONY_SH800S_EXPERIMENT_ACQ_SOFTWARE.setLabel('Acquisition software') prop_type_SONY_SH800S_EXPERIMENT_ACQ_SOFTWARE.setManagedInternally(False) prop_type_SONY_SH800S_EXPERIMENT_ACQ_SOFTWARE.setInternalNamespace(False) # SONY_SH800S_EXPERIMENT_DATE prop_type_SONY_SH800S_EXPERIMENT_DATE = tr.getOrCreateNewPropertyType('SONY_SH800S_EXPERIMENT_DATE', DataType.TIMESTAMP) prop_type_SONY_SH800S_EXPERIMENT_DATE.setLabel('Experiment date') prop_type_SONY_SH800S_EXPERIMENT_DATE.setManagedInternally(False) prop_type_SONY_SH800S_EXPERIMENT_DATE.setInternalNamespace(False) # SONY_SH800S_EXPERIMENT_DESCRIPTION prop_type_SONY_SH800S_EXPERIMENT_DESCRIPTION = tr.getOrCreateNewPropertyType('SONY_SH800S_EXPERIMENT_DESCRIPTION', DataType.MULTILINE_VARCHAR) prop_type_SONY_SH800S_EXPERIMENT_DESCRIPTION.setLabel('Description') prop_type_SONY_SH800S_EXPERIMENT_DESCRIPTION.setManagedInternally(False) prop_type_SONY_SH800S_EXPERIMENT_DESCRIPTION.setInternalNamespace(False) # SONY_SH800S_EXPERIMENT_NAME prop_type_SONY_SH800S_EXPERIMENT_NAME = tr.getOrCreateNewPropertyType('SONY_SH800S_EXPERIMENT_NAME', DataType.VARCHAR) prop_type_SONY_SH800S_EXPERIMENT_NAME.setLabel('Experiment name') prop_type_SONY_SH800S_EXPERIMENT_NAME.setManagedInternally(False) prop_type_SONY_SH800S_EXPERIMENT_NAME.setInternalNamespace(False) # SONY_SH800S_EXPERIMENT_OWNER prop_type_SONY_SH800S_EXPERIMENT_OWNER = tr.getOrCreateNewPropertyType('SONY_SH800S_EXPERIMENT_OWNER', DataType.VARCHAR) prop_type_SONY_SH800S_EXPERIMENT_OWNER.setLabel('Owner') prop_type_SONY_SH800S_EXPERIMENT_OWNER.setManagedInternally(False) prop_type_SONY_SH800S_EXPERIMENT_OWNER.setInternalNamespace(False) # SONY_SH800S_EXPERIMENT_VERSION prop_type_SONY_SH800S_EXPERIMENT_VERSION = tr.getOrCreateNewPropertyType('SONY_SH800S_EXPERIMENT_VERSION', DataType.INTEGER) prop_type_SONY_SH800S_EXPERIMENT_VERSION.setLabel('Version') prop_type_SONY_SH800S_EXPERIMENT_VERSION.setManagedInternally(False) prop_type_SONY_SH800S_EXPERIMENT_VERSION.setInternalNamespace(False) # SONY_SH800S_FCSFILE_ACQ_DATE prop_type_SONY_SH800S_FCSFILE_ACQ_DATE = tr.getOrCreateNewPropertyType('SONY_SH800S_FCSFILE_ACQ_DATE', DataType.TIMESTAMP) prop_type_SONY_SH800S_FCSFILE_ACQ_DATE.setLabel('Acquisition date') prop_type_SONY_SH800S_FCSFILE_ACQ_DATE.setManagedInternally(False) prop_type_SONY_SH800S_FCSFILE_ACQ_DATE.setInternalNamespace(False) # SONY_SH800S_FCSFILE_PARAMETERS prop_type_SONY_SH800S_FCSFILE_PARAMETERS = tr.getOrCreateNewPropertyType('SONY_SH800S_FCSFILE_PARAMETERS', DataType.MULTILINE_VARCHAR) prop_type_SONY_SH800S_FCSFILE_PARAMETERS.setLabel('FCS parameters') prop_type_SONY_SH800S_FCSFILE_PARAMETERS.setManagedInternally(False) prop_type_SONY_SH800S_FCSFILE_PARAMETERS.setInternalNamespace(False) # SONY_SH800S_TUBE_ISINDEXSORT prop_type_SONY_SH800S_TUBE_ISINDEXSORT = tr.getOrCreateNewPropertyType('SONY_SH800S_TUBE_ISINDEXSORT', DataType.BOOLEAN) prop_type_SONY_SH800S_TUBE_ISINDEXSORT.setLabel('Index sort') prop_type_SONY_SH800S_TUBE_ISINDEXSORT.setManagedInternally(False) prop_type_SONY_SH800S_TUBE_ISINDEXSORT.setInternalNamespace(False) # SONY MA900 # ------------------------------------------------------------------------------ # SONY_MA900_EXPERIMENT_ACQ_HARDWARE prop_type_SONY_MA900_EXPERIMENT_ACQ_HARDWARE = tr.getOrCreateNewPropertyType('SONY_MA900_EXPERIMENT_ACQ_HARDWARE', DataType.VARCHAR) prop_type_SONY_MA900_EXPERIMENT_ACQ_HARDWARE.setLabel('Acquisition hardware') prop_type_SONY_MA900_EXPERIMENT_ACQ_HARDWARE.setManagedInternally(False) prop_type_SONY_MA900_EXPERIMENT_ACQ_HARDWARE.setInternalNamespace(False) # SONY_MA900_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME prop_type_SONY_MA900_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.getOrCreateNewPropertyType('SONY_MA900_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME', DataType.VARCHAR) prop_type_SONY_MA900_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setLabel('Acquisition station name') prop_type_SONY_MA900_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setManagedInternally(False) prop_type_SONY_MA900_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setInternalNamespace(False) # SONY_MA900_EXPERIMENT_ACQ_SOFTWARE prop_type_SONY_MA900_EXPERIMENT_ACQ_SOFTWARE = tr.getOrCreateNewPropertyType('SONY_MA900_EXPERIMENT_ACQ_SOFTWARE', DataType.VARCHAR) prop_type_SONY_MA900_EXPERIMENT_ACQ_SOFTWARE.setLabel('Acquisition software') prop_type_SONY_MA900_EXPERIMENT_ACQ_SOFTWARE.setManagedInternally(False) prop_type_SONY_MA900_EXPERIMENT_ACQ_SOFTWARE.setInternalNamespace(False) # SONY_MA900_EXPERIMENT_DATE prop_type_SONY_MA900_EXPERIMENT_DATE = tr.getOrCreateNewPropertyType('SONY_MA900_EXPERIMENT_DATE', DataType.TIMESTAMP) prop_type_SONY_MA900_EXPERIMENT_DATE.setLabel('Experiment date') prop_type_SONY_MA900_EXPERIMENT_DATE.setManagedInternally(False) prop_type_SONY_MA900_EXPERIMENT_DATE.setInternalNamespace(False) # SONY_MA900_EXPERIMENT_DESCRIPTION prop_type_SONY_MA900_EXPERIMENT_DESCRIPTION = tr.getOrCreateNewPropertyType('SONY_MA900_EXPERIMENT_DESCRIPTION', DataType.MULTILINE_VARCHAR) prop_type_SONY_MA900_EXPERIMENT_DESCRIPTION.setLabel('Description') prop_type_SONY_MA900_EXPERIMENT_DESCRIPTION.setManagedInternally(False) prop_type_SONY_MA900_EXPERIMENT_DESCRIPTION.setInternalNamespace(False) # SONY_MA900_EXPERIMENT_NAME prop_type_SONY_MA900_EXPERIMENT_NAME = tr.getOrCreateNewPropertyType('SONY_MA900_EXPERIMENT_NAME', DataType.VARCHAR) prop_type_SONY_MA900_EXPERIMENT_NAME.setLabel('Experiment name') prop_type_SONY_MA900_EXPERIMENT_NAME.setManagedInternally(False) prop_type_SONY_MA900_EXPERIMENT_NAME.setInternalNamespace(False) # SONY_MA900_EXPERIMENT_OWNER prop_type_SONY_MA900_EXPERIMENT_OWNER = tr.getOrCreateNewPropertyType('SONY_MA900_EXPERIMENT_OWNER', DataType.VARCHAR) prop_type_SONY_MA900_EXPERIMENT_OWNER.setLabel('Owner') prop_type_SONY_MA900_EXPERIMENT_OWNER.setManagedInternally(False) prop_type_SONY_MA900_EXPERIMENT_OWNER.setInternalNamespace(False) # SONY_MA900_EXPERIMENT_VERSION prop_type_SONY_MA900_EXPERIMENT_VERSION = tr.getOrCreateNewPropertyType('SONY_MA900_EXPERIMENT_VERSION', DataType.INTEGER) prop_type_SONY_MA900_EXPERIMENT_VERSION.setLabel('Version') prop_type_SONY_MA900_EXPERIMENT_VERSION.setManagedInternally(False) prop_type_SONY_MA900_EXPERIMENT_VERSION.setInternalNamespace(False) # SONY_MA900_FCSFILE_ACQ_DATE prop_type_SONY_MA900_FCSFILE_ACQ_DATE = tr.getOrCreateNewPropertyType('SONY_MA900_FCSFILE_ACQ_DATE', DataType.TIMESTAMP) prop_type_SONY_MA900_FCSFILE_ACQ_DATE.setLabel('Acquisition date') prop_type_SONY_MA900_FCSFILE_ACQ_DATE.setManagedInternally(False) prop_type_SONY_MA900_FCSFILE_ACQ_DATE.setInternalNamespace(False) # SONY_MA900_FCSFILE_PARAMETERS prop_type_SONY_MA900_FCSFILE_PARAMETERS = tr.getOrCreateNewPropertyType('SONY_MA900_FCSFILE_PARAMETERS', DataType.MULTILINE_VARCHAR) prop_type_SONY_MA900_FCSFILE_PARAMETERS.setLabel('FCS parameters') prop_type_SONY_MA900_FCSFILE_PARAMETERS.setManagedInternally(False) prop_type_SONY_MA900_FCSFILE_PARAMETERS.setInternalNamespace(False) # SONY_MA900_TUBE_ISINDEXSORT prop_type_SONY_MA900_TUBE_ISINDEXSORT = tr.getOrCreateNewPropertyType('SONY_MA900_TUBE_ISINDEXSORT', DataType.BOOLEAN) prop_type_SONY_MA900_TUBE_ISINDEXSORT.setLabel('Index sort') prop_type_SONY_MA900_TUBE_ISINDEXSORT.setManagedInternally(False) prop_type_SONY_MA900_TUBE_ISINDEXSORT.setInternalNamespace(False) # ============================================================================== # # PROPERTY ASSIGNMENTS # # ============================================================================== # COMMON # ------------------------------------------------------------------------------ # DATA_SET_ATTACHMENT_NAME assignment_DATA_SET_ATTACHMENT_NAME = tr.assignPropertyType(data_set_type_ATTACHMENT, prop_type_NAME) assignment_DATA_SET_ATTACHMENT_NAME.setMandatory(False) assignment_DATA_SET_ATTACHMENT_NAME.setSection(None) assignment_DATA_SET_ATTACHMENT_NAME.setPositionInForms(1) assignment_DATA_SET_ATTACHMENT_NAME.setShownEdit(False) # DATA_SET_ATTACHMENT_DESCRIPTION assignment_DATA_SET_ATTACHMENT_DESCRIPTION = tr.assignPropertyType(data_set_type_ATTACHMENT, prop_type_DESCRIPTION) assignment_DATA_SET_ATTACHMENT_DESCRIPTION.setMandatory(False) assignment_DATA_SET_ATTACHMENT_DESCRIPTION.setSection(None) assignment_DATA_SET_ATTACHMENT_DESCRIPTION.setPositionInForms(2) assignment_DATA_SET_ATTACHMENT_DESCRIPTION.setShownEdit(False) # DATA_SET_ATTACHMENT_NOTES assignment_DATA_SET_ATTACHMENT_NOTES = tr.assignPropertyType(data_set_type_ATTACHMENT, prop_type_NOTES) assignment_DATA_SET_ATTACHMENT_NOTES.setMandatory(False) assignment_DATA_SET_ATTACHMENT_NOTES.setSection(None) assignment_DATA_SET_ATTACHMENT_NOTES.setPositionInForms(3) assignment_DATA_SET_ATTACHMENT_NOTES.setShownEdit(False) # DATA_SET_ATTACHMENT_XMLCOMMENTS assignment_DATA_SET_ATTACHMENT_XMLCOMMENTS = tr.assignPropertyType(data_set_type_ATTACHMENT, prop_type_XMLCOMMENTS) assignment_DATA_SET_ATTACHMENT_XMLCOMMENTS.setMandatory(False) assignment_DATA_SET_ATTACHMENT_XMLCOMMENTS.setSection(None) assignment_DATA_SET_ATTACHMENT_XMLCOMMENTS.setPositionInForms(4) assignment_DATA_SET_ATTACHMENT_XMLCOMMENTS.setShownEdit(False) # EXPERIMENT_COLLECTION_NAME assignment_EXPERIMENT_COLLECTION_NAME = tr.assignPropertyType(exp_type_COLLECTION, prop_type_NAME) assignment_EXPERIMENT_COLLECTION_NAME.setMandatory(False) assignment_EXPERIMENT_COLLECTION_NAME.setSection(None) assignment_EXPERIMENT_COLLECTION_NAME.setPositionInForms(1) assignment_EXPERIMENT_COLLECTION_NAME.setShownEdit(False) # EXPERIMENT_COLLECTION_DEFAULT_OBJECT_TYPE assignment_EXPERIMENT_COLLECTION_DEFAULT_OBJECT_TYPE = tr.assignPropertyType(exp_type_COLLECTION, prop_type_DEFAULT_OBJECT_TYPE) assignment_EXPERIMENT_COLLECTION_DEFAULT_OBJECT_TYPE.setMandatory(False) assignment_EXPERIMENT_COLLECTION_DEFAULT_OBJECT_TYPE.setSection(None) assignment_EXPERIMENT_COLLECTION_DEFAULT_OBJECT_TYPE.setPositionInForms(2) assignment_EXPERIMENT_COLLECTION_DEFAULT_OBJECT_TYPE.setShownEdit(False) # SAMPLE_ORGANIZATION_UNIT_NAME assignment_SAMPLE_ORGANIZATION_UNIT_NAME = tr.assignPropertyType(samp_type_ORGANIZATION_UNIT, prop_type_NAME) assignment_SAMPLE_ORGANIZATION_UNIT_NAME.setMandatory(False) assignment_SAMPLE_ORGANIZATION_UNIT_NAME.setSection(None) assignment_SAMPLE_ORGANIZATION_UNIT_NAME.setPositionInForms(1) assignment_SAMPLE_ORGANIZATION_UNIT_NAME.setShownEdit(False) # SAMPLE_ORGANIZATION_UNIT_DESCRIPTION assignment_SAMPLE_ORGANIZATION_UNIT_DESCRIPTION = tr.assignPropertyType(samp_type_ORGANIZATION_UNIT, prop_type_DESCRIPTION) assignment_SAMPLE_ORGANIZATION_UNIT_DESCRIPTION.setMandatory(False) assignment_SAMPLE_ORGANIZATION_UNIT_DESCRIPTION.setSection(None) assignment_SAMPLE_ORGANIZATION_UNIT_DESCRIPTION.setPositionInForms(2) assignment_SAMPLE_ORGANIZATION_UNIT_DESCRIPTION.setShownEdit(False) # SAMPLE_ORGANIZATION_UNIT_XMLCOMMENTS assignment_SAMPLE_ORGANIZATION_UNIT_XMLCOMMENTS = tr.assignPropertyType(samp_type_ORGANIZATION_UNIT, prop_type_XMLCOMMENTS) assignment_SAMPLE_ORGANIZATION_UNIT_XMLCOMMENTS.setMandatory(False) assignment_SAMPLE_ORGANIZATION_UNIT_XMLCOMMENTS.setSection(None) assignment_SAMPLE_ORGANIZATION_UNIT_XMLCOMMENTS.setPositionInForms(3) assignment_SAMPLE_ORGANIZATION_UNIT_XMLCOMMENTS.setShownEdit(False) # SAMPLE_ORGANIZATION_UNIT_ANNOTATIONS_STATE assignment_SAMPLE_ORGANIZATION_UNIT_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_ORGANIZATION_UNIT, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_ORGANIZATION_UNIT_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_ORGANIZATION_UNIT_ANNOTATIONS_STATE.setSection(None) assignment_SAMPLE_ORGANIZATION_UNIT_ANNOTATIONS_STATE.setPositionInForms(4) assignment_SAMPLE_ORGANIZATION_UNIT_ANNOTATIONS_STATE.setShownEdit(False) # BD FACS ARIA # ------------------------------------------------------------------------------ # SAMPLE_FACS_ARIA_EXPERIMENT_NAME assignment_SAMPLE_FACS_ARIA_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_FACS_ARIA_EXPERIMENT, prop_type_NAME) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_NAME.setSection('General Info') assignment_SAMPLE_FACS_ARIA_EXPERIMENT_NAME.setPositionInForms(1) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_NAME.setShownEdit(False) # SAMPLE_FACS_ARIA_EXPERIMENT_ANNOTATIONS_STATE assignment_SAMPLE_FACS_ARIA_EXPERIMENT_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_FACS_ARIA_EXPERIMENT, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_ANNOTATIONS_STATE.setSection('General Info') assignment_SAMPLE_FACS_ARIA_EXPERIMENT_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_ANNOTATIONS_STATE.setShownEdit(False) # SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_NAME assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_FACS_ARIA_EXPERIMENT, prop_type_FACS_ARIA_EXPERIMENT_NAME) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_NAME.setSection(None) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_NAME.setPositionInForms(3) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_NAME.setShownEdit(False) # SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_DATE assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_DATE = tr.assignPropertyType(samp_type_FACS_ARIA_EXPERIMENT, prop_type_FACS_ARIA_EXPERIMENT_DATE) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_DATE.setMandatory(False) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_DATE.setSection(None) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_DATE.setPositionInForms(4) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_DATE.setShownEdit(False) # SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_DESCRIPTION assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_DESCRIPTION = tr.assignPropertyType(samp_type_FACS_ARIA_EXPERIMENT, prop_type_FACS_ARIA_EXPERIMENT_DESCRIPTION) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_DESCRIPTION.setMandatory(False) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_DESCRIPTION.setSection(None) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_DESCRIPTION.setPositionInForms(5) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_DESCRIPTION.setShownEdit(True) # SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE = tr.assignPropertyType(samp_type_FACS_ARIA_EXPERIMENT, prop_type_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE.setMandatory(False) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE.setSection(None) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE.setPositionInForms(6) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE.setShownEdit(False) # SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_SOFTWARE assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_SOFTWARE = tr.assignPropertyType(samp_type_FACS_ARIA_EXPERIMENT, prop_type_FACS_ARIA_EXPERIMENT_ACQ_SOFTWARE) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_SOFTWARE.setMandatory(False) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_SOFTWARE.setSection(None) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_SOFTWARE.setPositionInForms(7) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_SOFTWARE.setShownEdit(False) # SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_VERSION assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_VERSION = tr.assignPropertyType(samp_type_FACS_ARIA_EXPERIMENT, prop_type_FACS_ARIA_EXPERIMENT_VERSION) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_VERSION.setMandatory(False) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_VERSION.setSection(None) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_VERSION.setPositionInForms(8) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_VERSION.setShownEdit(False) # SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_OWNER assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_OWNER = tr.assignPropertyType(samp_type_FACS_ARIA_EXPERIMENT, prop_type_FACS_ARIA_EXPERIMENT_OWNER) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_OWNER.setMandatory(False) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_OWNER.setSection(None) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_OWNER.setPositionInForms(9) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_OWNER.setShownEdit(False) # SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.assignPropertyType(samp_type_FACS_ARIA_EXPERIMENT, prop_type_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setMandatory(False) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setSection(None) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setPositionInForms(10) assignment_SAMPLE_FACS_ARIA_EXPERIMENT_FACS_ARIA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setShownEdit(True) # DATA_SET_FACS_ARIA_FCSFILE_FACS_ARIA_FCSFILE_PARAMETERS assignment_DATA_SET_FACS_ARIA_FCSFILE_FACS_ARIA_FCSFILE_PARAMETERS = tr.assignPropertyType(data_set_type_FACS_ARIA_FCSFILE, prop_type_FACS_ARIA_FCSFILE_PARAMETERS) assignment_DATA_SET_FACS_ARIA_FCSFILE_FACS_ARIA_FCSFILE_PARAMETERS.setMandatory(False) assignment_DATA_SET_FACS_ARIA_FCSFILE_FACS_ARIA_FCSFILE_PARAMETERS.setSection(None) assignment_DATA_SET_FACS_ARIA_FCSFILE_FACS_ARIA_FCSFILE_PARAMETERS.setPositionInForms(2) assignment_DATA_SET_FACS_ARIA_FCSFILE_FACS_ARIA_FCSFILE_PARAMETERS.setShownEdit(False) # DATA_SET_FACS_ARIA_FCSFILE_FACS_ARIA_FCSFILE_ACQ_DATE assignment_DATA_SET_FACS_ARIA_FCSFILE_FACS_ARIA_FCSFILE_ACQ_DATE = tr.assignPropertyType(data_set_type_FACS_ARIA_FCSFILE, prop_type_FACS_ARIA_FCSFILE_ACQ_DATE) assignment_DATA_SET_FACS_ARIA_FCSFILE_FACS_ARIA_FCSFILE_ACQ_DATE.setMandatory(False) assignment_DATA_SET_FACS_ARIA_FCSFILE_FACS_ARIA_FCSFILE_ACQ_DATE.setSection(None) assignment_DATA_SET_FACS_ARIA_FCSFILE_FACS_ARIA_FCSFILE_ACQ_DATE.setPositionInForms(3) assignment_DATA_SET_FACS_ARIA_FCSFILE_FACS_ARIA_FCSFILE_ACQ_DATE.setShownEdit(False) # DATA_SET_FACS_ARIA_FCSFILE_NAME assignment_DATA_SET_FACS_ARIA_FCSFILE_NAME = tr.assignPropertyType(data_set_type_FACS_ARIA_FCSFILE, prop_type_NAME) assignment_DATA_SET_FACS_ARIA_FCSFILE_NAME.setMandatory(False) assignment_DATA_SET_FACS_ARIA_FCSFILE_NAME.setSection(None) assignment_DATA_SET_FACS_ARIA_FCSFILE_NAME.setPositionInForms(3) assignment_DATA_SET_FACS_ARIA_FCSFILE_NAME.setShownEdit(False) # SAMPLE_FACS_ARIA_SPECIMEN_NAME assignment_SAMPLE_FACS_ARIA_SPECIMEN_NAME = tr.assignPropertyType(samp_type_FACS_ARIA_SPECIMEN, prop_type_NAME) assignment_SAMPLE_FACS_ARIA_SPECIMEN_NAME.setMandatory(False) assignment_SAMPLE_FACS_ARIA_SPECIMEN_NAME.setSection('General Info') assignment_SAMPLE_FACS_ARIA_SPECIMEN_NAME.setPositionInForms(1) assignment_SAMPLE_FACS_ARIA_SPECIMEN_NAME.setShownEdit(True) # SAMPLE_FACS_ARIA_SPECIMEN_ANNOTATIONS_STATE assignment_SAMPLE_FACS_ARIA_SPECIMEN_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_FACS_ARIA_SPECIMEN, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_FACS_ARIA_SPECIMEN_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_FACS_ARIA_SPECIMEN_ANNOTATIONS_STATE.setSection('General Info') assignment_SAMPLE_FACS_ARIA_SPECIMEN_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_FACS_ARIA_SPECIMEN_ANNOTATIONS_STATE.setShownEdit(False) # SAMPLE_FACS_ARIA_TUBE_NAME assignment_SAMPLE_FACS_ARIA_TUBE_NAME = tr.assignPropertyType(samp_type_FACS_ARIA_TUBE, prop_type_NAME) assignment_SAMPLE_FACS_ARIA_TUBE_NAME.setMandatory(False) assignment_SAMPLE_FACS_ARIA_TUBE_NAME.setSection('General Info') assignment_SAMPLE_FACS_ARIA_TUBE_NAME.setPositionInForms(1) assignment_SAMPLE_FACS_ARIA_TUBE_NAME.setShownEdit(True) # SAMPLE_FACS_ARIA_TUBESET_NAME assignment_SAMPLE_FACS_ARIA_TUBESET_NAME = tr.assignPropertyType(samp_type_FACS_ARIA_TUBESET, prop_type_NAME) assignment_SAMPLE_FACS_ARIA_TUBESET_NAME.setMandatory(False) assignment_SAMPLE_FACS_ARIA_TUBESET_NAME.setShownEdit(False) # SAMPLE_FACS_ARIA_TUBE_FACS_ARIA_TUBE_ISINDEXSORT assignment_SAMPLE_FACS_ARIA_TUBE_FACS_ARIA_TUBE_ISINDEXSORT = tr.assignPropertyType(samp_type_FACS_ARIA_TUBE, prop_type_FACS_ARIA_TUBE_ISINDEXSORT) assignment_SAMPLE_FACS_ARIA_TUBE_FACS_ARIA_TUBE_ISINDEXSORT.setMandatory(False) assignment_SAMPLE_FACS_ARIA_TUBE_FACS_ARIA_TUBE_ISINDEXSORT.setSection(None) assignment_SAMPLE_FACS_ARIA_TUBE_FACS_ARIA_TUBE_ISINDEXSORT.setPositionInForms(3) assignment_SAMPLE_FACS_ARIA_TUBE_FACS_ARIA_TUBE_ISINDEXSORT.setShownEdit(False) # DATA_SET_FACS_ARIA_ACCESSORY_FILE_NAME assignment_DATA_SET_FACS_ARIA_ACCESSORY_FILE_NAME = tr.assignPropertyType(data_set_type_FACS_ARIA_ACCESSORY_FILE, prop_type_NAME) assignment_DATA_SET_FACS_ARIA_ACCESSORY_FILE_NAME.setMandatory(False) assignment_DATA_SET_FACS_ARIA_ACCESSORY_FILE_NAME.setSection(None) assignment_DATA_SET_FACS_ARIA_ACCESSORY_FILE_NAME.setPositionInForms(1) assignment_DATA_SET_FACS_ARIA_ACCESSORY_FILE_NAME.setShownEdit(False) # BD INFLUX # ------------------------------------------------------------------------------ # SAMPLE_INFLUX_EXPERIMENT_NAME assignment_SAMPLE_INFLUX_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_INFLUX_EXPERIMENT, prop_type_NAME) assignment_SAMPLE_INFLUX_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_INFLUX_EXPERIMENT_NAME.setSection('General Info') assignment_SAMPLE_INFLUX_EXPERIMENT_NAME.setPositionInForms(1) assignment_SAMPLE_INFLUX_EXPERIMENT_NAME.setShownEdit(True) # SAMPLE_INFLUX_EXPERIMENT_ANNOTATIONS_STATE assignment_SAMPLE_INFLUX_EXPERIMENT_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_INFLUX_EXPERIMENT, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_INFLUX_EXPERIMENT_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_INFLUX_EXPERIMENT_ANNOTATIONS_STATE.setSection('General Info') assignment_SAMPLE_INFLUX_EXPERIMENT_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_INFLUX_EXPERIMENT_ANNOTATIONS_STATE.setShownEdit(False) # SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_DESCRIPTION assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_DESCRIPTION = tr.assignPropertyType(samp_type_INFLUX_EXPERIMENT, prop_type_INFLUX_EXPERIMENT_DESCRIPTION) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_DESCRIPTION.setMandatory(False) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_DESCRIPTION.setSection(None) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_DESCRIPTION.setPositionInForms(3) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_DESCRIPTION.setShownEdit(True) # SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_NAME assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_INFLUX_EXPERIMENT, prop_type_INFLUX_EXPERIMENT_NAME) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_NAME.setSection(None) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_NAME.setPositionInForms(4) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_NAME.setShownEdit(False) # SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_DATE assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_DATE = tr.assignPropertyType(samp_type_INFLUX_EXPERIMENT, prop_type_INFLUX_EXPERIMENT_DATE) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_DATE.setMandatory(False) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_DATE.setSection(None) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_DATE.setPositionInForms(5) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_DATE.setShownEdit(True) # SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_HARDWARE assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_HARDWARE = tr.assignPropertyType(samp_type_INFLUX_EXPERIMENT, prop_type_INFLUX_EXPERIMENT_ACQ_HARDWARE) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_HARDWARE.setMandatory(False) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_HARDWARE.setSection(None) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_HARDWARE.setPositionInForms(6) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_HARDWARE.setShownEdit(False) # SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_SOFTWARE assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_SOFTWARE = tr.assignPropertyType(samp_type_INFLUX_EXPERIMENT, prop_type_INFLUX_EXPERIMENT_ACQ_SOFTWARE) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_SOFTWARE.setMandatory(False) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_SOFTWARE.setSection(None) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_SOFTWARE.setPositionInForms(7) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_SOFTWARE.setShownEdit(False) # SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_OWNER assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_OWNER = tr.assignPropertyType(samp_type_INFLUX_EXPERIMENT, prop_type_INFLUX_EXPERIMENT_OWNER) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_OWNER.setMandatory(False) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_OWNER.setSection(None) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_OWNER.setPositionInForms(8) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_OWNER.setShownEdit(True) # SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.assignPropertyType(samp_type_INFLUX_EXPERIMENT, prop_type_INFLUX_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setMandatory(False) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setSection(None) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setPositionInForms(9) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setShownEdit(True) # SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_VERSION assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_VERSION = tr.assignPropertyType(samp_type_INFLUX_EXPERIMENT, prop_type_INFLUX_EXPERIMENT_VERSION) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_VERSION.setMandatory(False) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_VERSION.setSection(None) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_VERSION.setPositionInForms(10) assignment_SAMPLE_INFLUX_EXPERIMENT_INFLUX_EXPERIMENT_VERSION.setShownEdit(False) # DATA_SET_INFLUX_FCSFILE_INFLUX_FCSFILE_PARAMETERS assignment_DATA_SET_INFLUX_FCSFILE_INFLUX_FCSFILE_PARAMETERS = tr.assignPropertyType(data_set_type_INFLUX_FCSFILE, prop_type_INFLUX_FCSFILE_PARAMETERS) assignment_DATA_SET_INFLUX_FCSFILE_INFLUX_FCSFILE_PARAMETERS.setMandatory(False) assignment_DATA_SET_INFLUX_FCSFILE_INFLUX_FCSFILE_PARAMETERS.setSection(None) assignment_DATA_SET_INFLUX_FCSFILE_INFLUX_FCSFILE_PARAMETERS.setPositionInForms(2) assignment_DATA_SET_INFLUX_FCSFILE_INFLUX_FCSFILE_PARAMETERS.setShownEdit(False) # DATA_SET_INFLUX_FCSFILE_INFLUX_FCSFILE_ACQ_DATE assignment_DATA_SET_INFLUX_FCSFILE_INFLUX_FCSFILE_ACQ_DATE = tr.assignPropertyType(data_set_type_INFLUX_FCSFILE, prop_type_INFLUX_FCSFILE_ACQ_DATE) assignment_DATA_SET_INFLUX_FCSFILE_INFLUX_FCSFILE_ACQ_DATE.setMandatory(False) assignment_DATA_SET_INFLUX_FCSFILE_INFLUX_FCSFILE_ACQ_DATE.setSection(None) assignment_DATA_SET_INFLUX_FCSFILE_INFLUX_FCSFILE_ACQ_DATE.setPositionInForms(3) assignment_DATA_SET_INFLUX_FCSFILE_INFLUX_FCSFILE_ACQ_DATE.setShownEdit(False) # DATA_SET_INFLUX_FCSFILE_NAME assignment_DATA_SET_NFLUX_FCSFILE_NAME = tr.assignPropertyType(data_set_type_INFLUX_FCSFILE, prop_type_NAME) assignment_DATA_SET_NFLUX_FCSFILE_NAME.setMandatory(False) assignment_DATA_SET_NFLUX_FCSFILE_NAME.setSection(None) assignment_DATA_SET_NFLUX_FCSFILE_NAME.setPositionInForms(3) assignment_DATA_SET_NFLUX_FCSFILE_NAME.setShownEdit(False) # SAMPLE_INFLUX_SPECIMEN_NAME assignment_SAMPLE_INFLUX_SPECIMEN_NAME = tr.assignPropertyType(samp_type_INFLUX_SPECIMEN, prop_type_NAME) assignment_SAMPLE_INFLUX_SPECIMEN_NAME.setMandatory(False) assignment_SAMPLE_INFLUX_SPECIMEN_NAME.setSection('General Info') assignment_SAMPLE_INFLUX_SPECIMEN_NAME.setPositionInForms(1) assignment_SAMPLE_INFLUX_SPECIMEN_NAME.setShownEdit(True) # SAMPLE_INFLUX_SPECIMEN_ANNOTATIONS_STATE assignment_SAMPLE_INFLUX_SPECIMEN_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_INFLUX_SPECIMEN, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_INFLUX_SPECIMEN_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_INFLUX_SPECIMEN_ANNOTATIONS_STATE.setSection('General Info') assignment_SAMPLE_INFLUX_SPECIMEN_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_INFLUX_SPECIMEN_ANNOTATIONS_STATE.setShownEdit(False) # SAMPLE_INFLUX_TUBE_NAME assignment_SAMPLE_INFLUX_TUBE_NAME = tr.assignPropertyType(samp_type_INFLUX_TUBE, prop_type_NAME) assignment_SAMPLE_INFLUX_TUBE_NAME.setMandatory(False) assignment_SAMPLE_INFLUX_TUBE_NAME.setSection('General Info') assignment_SAMPLE_INFLUX_TUBE_NAME.setPositionInForms(1) assignment_SAMPLE_INFLUX_TUBE_NAME.setShownEdit(True) # SAMPLE_INFLUX_TUBESET_NAME assignment_SAMPLE_INFLUX_TUBESET_NAME = tr.assignPropertyType(samp_type_INFLUX_TUBESET, prop_type_NAME) assignment_SAMPLE_INFLUX_TUBESET_NAME.setMandatory(False) assignment_SAMPLE_INFLUX_TUBESET_NAME.setShownEdit(False) # SAMPLE_INFLUX_TUBE_INFLUX_TUBE_ISINDEXSORT assignment_SAMPLE_INFLUX_TUBE_INFLUX_TUBE_ISINDEXSORT = tr.assignPropertyType(samp_type_INFLUX_TUBE, prop_type_INFLUX_TUBE_ISINDEXSORT) assignment_SAMPLE_INFLUX_TUBE_INFLUX_TUBE_ISINDEXSORT.setMandatory(False) assignment_SAMPLE_INFLUX_TUBE_INFLUX_TUBE_ISINDEXSORT.setSection(None) assignment_SAMPLE_INFLUX_TUBE_INFLUX_TUBE_ISINDEXSORT.setPositionInForms(4) assignment_SAMPLE_INFLUX_TUBE_INFLUX_TUBE_ISINDEXSORT.setShownEdit(False) # DATA_SET_INFLUX_ACCESSORY_FILE_NAME assignment_DATA_SET_INFLUX_ACCESSORY_FILE_NAME = tr.assignPropertyType(data_set_type_INFLUX_ACCESSORY_FILE, prop_type_NAME) assignment_DATA_SET_INFLUX_ACCESSORY_FILE_NAME.setMandatory(False) assignment_DATA_SET_INFLUX_ACCESSORY_FILE_NAME.setSection(None) assignment_DATA_SET_INFLUX_ACCESSORY_FILE_NAME.setPositionInForms(1) assignment_DATA_SET_INFLUX_ACCESSORY_FILE_NAME.setShownEdit(False) # BD LSR FORTESSA # ------------------------------------------------------------------------------ # SAMPLE_LSR_FORTESSA_EXPERIMENT_NAME assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_LSR_FORTESSA_EXPERIMENT, prop_type_NAME) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_NAME.setSection('General Info') assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_NAME.setPositionInForms(1) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_NAME.setShownEdit(False) # SAMPLE_LSR_FORTESSA_EXPERIMENT_ANNOTATIONS_STATE assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_LSR_FORTESSA_EXPERIMENT, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_ANNOTATIONS_STATE.setSection('General Info') assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_ANNOTATIONS_STATE.setShownEdit(False) # SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_NAME assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_LSR_FORTESSA_EXPERIMENT, prop_type_LSR_FORTESSA_EXPERIMENT_NAME) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_NAME.setSection(None) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_NAME.setPositionInForms(3) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_NAME.setShownEdit(False) # SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_DATE assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_DATE = tr.assignPropertyType(samp_type_LSR_FORTESSA_EXPERIMENT, prop_type_LSR_FORTESSA_EXPERIMENT_DATE) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_DATE.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_DATE.setSection(None) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_DATE.setPositionInForms(4) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_DATE.setShownEdit(False) # SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_DESCRIPTION assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_DESCRIPTION = tr.assignPropertyType(samp_type_LSR_FORTESSA_EXPERIMENT, prop_type_LSR_FORTESSA_EXPERIMENT_DESCRIPTION) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_DESCRIPTION.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_DESCRIPTION.setSection(None) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_DESCRIPTION.setPositionInForms(5) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_DESCRIPTION.setShownEdit(True) # SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE = tr.assignPropertyType(samp_type_LSR_FORTESSA_EXPERIMENT, prop_type_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE.setSection(None) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE.setPositionInForms(6) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE.setShownEdit(False) # SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_SOFTWARE assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_SOFTWARE = tr.assignPropertyType(samp_type_LSR_FORTESSA_EXPERIMENT, prop_type_LSR_FORTESSA_EXPERIMENT_ACQ_SOFTWARE) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_SOFTWARE.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_SOFTWARE.setSection(None) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_SOFTWARE.setPositionInForms(7) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_SOFTWARE.setShownEdit(False) # SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_OWNER assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_OWNER = tr.assignPropertyType(samp_type_LSR_FORTESSA_EXPERIMENT, prop_type_LSR_FORTESSA_EXPERIMENT_OWNER) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_OWNER.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_OWNER.setSection(None) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_OWNER.setPositionInForms(8) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_OWNER.setShownEdit(False) # SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_VERSION assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_VERSION = tr.assignPropertyType(samp_type_LSR_FORTESSA_EXPERIMENT, prop_type_LSR_FORTESSA_EXPERIMENT_VERSION) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_VERSION.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_VERSION.setSection(None) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_VERSION.setPositionInForms(9) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_VERSION.setShownEdit(False) # SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.assignPropertyType(samp_type_LSR_FORTESSA_EXPERIMENT, prop_type_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setSection(None) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setPositionInForms(10) assignment_SAMPLE_LSR_FORTESSA_EXPERIMENT_LSR_FORTESSA_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setShownEdit(True) # DATA_SET_LSR_FORTESSA_FCSFILE_LSR_FORTESSA_FCSFILE_PARAMETERS assignment_DATA_SET_LSR_FORTESSA_FCSFILE_LSR_FORTESSA_FCSFILE_PARAMETERS = tr.assignPropertyType(data_set_type_LSR_FORTESSA_FCSFILE, prop_type_LSR_FORTESSA_FCSFILE_PARAMETERS) assignment_DATA_SET_LSR_FORTESSA_FCSFILE_LSR_FORTESSA_FCSFILE_PARAMETERS.setMandatory(False) assignment_DATA_SET_LSR_FORTESSA_FCSFILE_LSR_FORTESSA_FCSFILE_PARAMETERS.setSection(None) assignment_DATA_SET_LSR_FORTESSA_FCSFILE_LSR_FORTESSA_FCSFILE_PARAMETERS.setPositionInForms(2) assignment_DATA_SET_LSR_FORTESSA_FCSFILE_LSR_FORTESSA_FCSFILE_PARAMETERS.setShownEdit(False) # DATA_SET_LSR_FORTESSA_FCSFILE_LSR_FORTESSA_FCSFILE_ACQ_DATE assignment_DATA_SET_LSR_FORTESSA_FCSFILE_LSR_FORTESSA_FCSFILE_ACQ_DATE = tr.assignPropertyType(data_set_type_LSR_FORTESSA_FCSFILE, prop_type_LSR_FORTESSA_FCSFILE_ACQ_DATE) assignment_DATA_SET_LSR_FORTESSA_FCSFILE_LSR_FORTESSA_FCSFILE_ACQ_DATE.setMandatory(False) assignment_DATA_SET_LSR_FORTESSA_FCSFILE_LSR_FORTESSA_FCSFILE_ACQ_DATE.setSection(None) assignment_DATA_SET_LSR_FORTESSA_FCSFILE_LSR_FORTESSA_FCSFILE_ACQ_DATE.setPositionInForms(3) assignment_DATA_SET_LSR_FORTESSA_FCSFILE_LSR_FORTESSA_FCSFILE_ACQ_DATE.setShownEdit(False) # DATA_SET_LSR_FORTESSA_FCSFILE_NAME assignment_DATA_SET_LSR_FORTESSA_FCSFILE_NAME = tr.assignPropertyType(data_set_type_LSR_FORTESSA_FCSFILE, prop_type_NAME) assignment_DATA_SET_LSR_FORTESSA_FCSFILE_NAME.setMandatory(False) assignment_DATA_SET_LSR_FORTESSA_FCSFILE_NAME.setSection(None) assignment_DATA_SET_LSR_FORTESSA_FCSFILE_NAME.setPositionInForms(4) assignment_DATA_SET_LSR_FORTESSA_FCSFILE_NAME.setShownEdit(False) # SAMPLE_LSR_FORTESSA_PLATE_LSR_FORTESSA_PLATE_GEOMETRY assignment_SAMPLE_LSR_FORTESSA_PLATE_LSR_FORTESSA_PLATE_GEOMETRY = tr.assignPropertyType(samp_type_LSR_FORTESSA_PLATE, prop_type_LSR_FORTESSA_PLATE_GEOMETRY) assignment_SAMPLE_LSR_FORTESSA_PLATE_LSR_FORTESSA_PLATE_GEOMETRY.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_PLATE_LSR_FORTESSA_PLATE_GEOMETRY.setSection(None) assignment_SAMPLE_LSR_FORTESSA_PLATE_LSR_FORTESSA_PLATE_GEOMETRY.setPositionInForms(1) assignment_SAMPLE_LSR_FORTESSA_PLATE_LSR_FORTESSA_PLATE_GEOMETRY.setShownEdit(True) # SAMPLE_LSR_FORTESSA_PLATE_NAME assignment_SAMPLE_LSR_FORTESSA_PLATE_NAME = tr.assignPropertyType(samp_type_LSR_FORTESSA_PLATE, prop_type_NAME) assignment_SAMPLE_LSR_FORTESSA_PLATE_NAME.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_PLATE_NAME.setSection('General Info') assignment_SAMPLE_LSR_FORTESSA_PLATE_NAME.setPositionInForms(1) assignment_SAMPLE_LSR_FORTESSA_PLATE_NAME.setShownEdit(True) # SAMPLE_LSR_FORTESSA_SPECIMEN_NAME assignment_SAMPLE_LSR_FORTESSA_SPECIMEN_NAME = tr.assignPropertyType(samp_type_LSR_FORTESSA_SPECIMEN, prop_type_NAME) assignment_SAMPLE_LSR_FORTESSA_SPECIMEN_NAME.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_SPECIMEN_NAME.setSection('General Info') assignment_SAMPLE_LSR_FORTESSA_SPECIMEN_NAME.setPositionInForms(1) assignment_SAMPLE_LSR_FORTESSA_SPECIMEN_NAME.setShownEdit(True) # SAMPLE_LSR_FORTESSA_SPECIMEN_ANNOTATIONS_STATE assignment_SAMPLE_LSR_FORTESSA_SPECIMEN_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_LSR_FORTESSA_SPECIMEN, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_LSR_FORTESSA_SPECIMEN_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_SPECIMEN_ANNOTATIONS_STATE.setSection('General Info') assignment_SAMPLE_LSR_FORTESSA_SPECIMEN_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_LSR_FORTESSA_SPECIMEN_ANNOTATIONS_STATE.setShownEdit(False) # SAMPLE_LSR_FORTESSA_TUBE_NAME assignment_SAMPLE_LSR_FORTESSA_TUBE_NAME = tr.assignPropertyType(samp_type_LSR_FORTESSA_TUBE, prop_type_NAME) assignment_SAMPLE_LSR_FORTESSA_TUBE_NAME.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_TUBE_NAME.setSection('General Info') assignment_SAMPLE_LSR_FORTESSA_TUBE_NAME.setPositionInForms(1) assignment_SAMPLE_LSR_FORTESSA_TUBE_NAME.setShownEdit(True) # SAMPLE_LSR_FORTESSA_TUBESET_NAME assignment_SAMPLE_LSR_FORTESSA_TUBESET_NAME = tr.assignPropertyType(samp_type_LSR_FORTESSA_TUBESET, prop_type_NAME) assignment_SAMPLE_LSR_FORTESSA_TUBESET_NAME.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_TUBESET_NAME.setShownEdit(False) # SAMPLE_LSR_FORTESSA_WELL_NAME assignment_SAMPLE_LSR_FORTESSA_WELL_NAME = tr.assignPropertyType(samp_type_LSR_FORTESSA_WELL, prop_type_NAME) assignment_SAMPLE_LSR_FORTESSA_WELL_NAME.setMandatory(False) assignment_SAMPLE_LSR_FORTESSA_WELL_NAME.setSection('General Info') assignment_SAMPLE_LSR_FORTESSA_WELL_NAME.setPositionInForms(1) assignment_SAMPLE_LSR_FORTESSA_WELL_NAME.setShownEdit(True) # DATA_SET_LSR_FORTESSA_ACCESSORY_FILE_NAME assignment_DATA_SET_LSR_FORTESSA_ACCESSORY_FILE_NAME = tr.assignPropertyType(data_set_type_LSR_FORTESSA_ACCESSORY_FILE, prop_type_NAME) assignment_DATA_SET_LSR_FORTESSA_ACCESSORY_FILE_NAME.setMandatory(False) assignment_DATA_SET_LSR_FORTESSA_ACCESSORY_FILE_NAME.setSection(None) assignment_DATA_SET_LSR_FORTESSA_ACCESSORY_FILE_NAME.setPositionInForms(1) assignment_DATA_SET_LSR_FORTESSA_ACCESSORY_FILE_NAME.setShownEdit(False) # BC CYTOFLEX S # ------------------------------------------------------------------------------ # SAMPLE_CYTOFLEX_S_EXPERIMENT_NAME assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_CYTOFLEX_S_EXPERIMENT, prop_type_NAME) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_NAME.setSection('General Info') assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_NAME.setPositionInForms(1) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_NAME.setShownEdit(False) # SAMPLE_CYTOFLEX_S_EXPERIMENT_ANNOTATIONS_STATE assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_CYTOFLEX_S_EXPERIMENT, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_ANNOTATIONS_STATE.setSection('General Info') assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_ANNOTATIONS_STATE.setShownEdit(False) # SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_NAME assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_CYTOFLEX_S_EXPERIMENT, prop_type_CYTOFLEX_S_EXPERIMENT_NAME) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_NAME.setSection(None) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_NAME.setPositionInForms(3) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_NAME.setShownEdit(False) # SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_DATE assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_DATE = tr.assignPropertyType(samp_type_CYTOFLEX_S_EXPERIMENT, prop_type_CYTOFLEX_S_EXPERIMENT_DATE) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_DATE.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_DATE.setSection(None) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_DATE.setPositionInForms(4) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_DATE.setShownEdit(False) # SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_DESCRIPTION assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_DESCRIPTION = tr.assignPropertyType(samp_type_CYTOFLEX_S_EXPERIMENT, prop_type_CYTOFLEX_S_EXPERIMENT_DESCRIPTION) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_DESCRIPTION.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_DESCRIPTION.setSection(None) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_DESCRIPTION.setPositionInForms(5) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_DESCRIPTION.setShownEdit(True) # SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE = tr.assignPropertyType(samp_type_CYTOFLEX_S_EXPERIMENT, prop_type_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE.setSection(None) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE.setPositionInForms(6) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE.setShownEdit(False) # SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_SOFTWARE assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_SOFTWARE = tr.assignPropertyType(samp_type_CYTOFLEX_S_EXPERIMENT, prop_type_CYTOFLEX_S_EXPERIMENT_ACQ_SOFTWARE) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_SOFTWARE.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_SOFTWARE.setSection(None) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_SOFTWARE.setPositionInForms(7) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_SOFTWARE.setShownEdit(False) # SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_OWNER assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_OWNER = tr.assignPropertyType(samp_type_CYTOFLEX_S_EXPERIMENT, prop_type_CYTOFLEX_S_EXPERIMENT_OWNER) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_OWNER.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_OWNER.setSection(None) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_OWNER.setPositionInForms(8) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_OWNER.setShownEdit(False) # SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_VERSION assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_VERSION = tr.assignPropertyType(samp_type_CYTOFLEX_S_EXPERIMENT, prop_type_CYTOFLEX_S_EXPERIMENT_VERSION) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_VERSION.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_VERSION.setSection(None) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_VERSION.setPositionInForms(9) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_VERSION.setShownEdit(False) # SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.assignPropertyType(samp_type_CYTOFLEX_S_EXPERIMENT, prop_type_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setSection(None) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setPositionInForms(10) assignment_SAMPLE_CYTOFLEX_S_EXPERIMENT_CYTOFLEX_S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setShownEdit(True) # DATA_SET_CYTOFLEX_S_FCSFILE_CYTOFLEX_S_FCSFILE_PARAMETERS assignment_DATA_SET_CYTOFLEX_S_FCSFILE_CYTOFLEX_S_FCSFILE_PARAMETERS = tr.assignPropertyType(data_set_type_CYTOFLEX_S_FCSFILE, prop_type_CYTOFLEX_S_FCSFILE_PARAMETERS) assignment_DATA_SET_CYTOFLEX_S_FCSFILE_CYTOFLEX_S_FCSFILE_PARAMETERS.setMandatory(False) assignment_DATA_SET_CYTOFLEX_S_FCSFILE_CYTOFLEX_S_FCSFILE_PARAMETERS.setSection(None) assignment_DATA_SET_CYTOFLEX_S_FCSFILE_CYTOFLEX_S_FCSFILE_PARAMETERS.setPositionInForms(2) assignment_DATA_SET_CYTOFLEX_S_FCSFILE_CYTOFLEX_S_FCSFILE_PARAMETERS.setShownEdit(False) # DATA_SET_CYTOFLEX_S_FCSFILE_CYTOFLEX_S_FCSFILE_ACQ_DATE assignment_DATA_SET_CYTOFLEX_S_FCSFILE_CYTOFLEX_S_FCSFILE_ACQ_DATE = tr.assignPropertyType(data_set_type_CYTOFLEX_S_FCSFILE, prop_type_CYTOFLEX_S_FCSFILE_ACQ_DATE) assignment_DATA_SET_CYTOFLEX_S_FCSFILE_CYTOFLEX_S_FCSFILE_ACQ_DATE.setMandatory(False) assignment_DATA_SET_CYTOFLEX_S_FCSFILE_CYTOFLEX_S_FCSFILE_ACQ_DATE.setSection(None) assignment_DATA_SET_CYTOFLEX_S_FCSFILE_CYTOFLEX_S_FCSFILE_ACQ_DATE.setPositionInForms(3) assignment_DATA_SET_CYTOFLEX_S_FCSFILE_CYTOFLEX_S_FCSFILE_ACQ_DATE.setShownEdit(False) # DATA_SET_CYTOFLEX_S_FCSFILE_NAME assignment_DATA_SET_CYTOFLEX_S_FCSFILE_NAME = tr.assignPropertyType(data_set_type_CYTOFLEX_S_FCSFILE, prop_type_NAME) assignment_DATA_SET_CYTOFLEX_S_FCSFILE_NAME.setMandatory(False) assignment_DATA_SET_CYTOFLEX_S_FCSFILE_NAME.setSection(None) assignment_DATA_SET_CYTOFLEX_S_FCSFILE_NAME.setPositionInForms(4) assignment_DATA_SET_CYTOFLEX_S_FCSFILE_NAME.setShownEdit(False) # SAMPLE_CYTOFLEX_S_PLATE_CYTOFLEX_S_PLATE_GEOMETRY assignment_SAMPLE_CYTOFLEX_S_PLATE_CYTOFLEX_S_PLATE_GEOMETRY = tr.assignPropertyType(samp_type_CYTOFLEX_S_PLATE, prop_type_CYTOFLEX_S_PLATE_GEOMETRY) assignment_SAMPLE_CYTOFLEX_S_PLATE_CYTOFLEX_S_PLATE_GEOMETRY.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_PLATE_CYTOFLEX_S_PLATE_GEOMETRY.setSection(None) assignment_SAMPLE_CYTOFLEX_S_PLATE_CYTOFLEX_S_PLATE_GEOMETRY.setPositionInForms(1) assignment_SAMPLE_CYTOFLEX_S_PLATE_CYTOFLEX_S_PLATE_GEOMETRY.setShownEdit(True) # SAMPLE_CYTOFLEX_S_PLATE_NAME assignment_SAMPLE_CYTOFLEX_S_PLATE_NAME = tr.assignPropertyType(samp_type_CYTOFLEX_S_PLATE, prop_type_NAME) assignment_SAMPLE_CYTOFLEX_S_PLATE_NAME.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_PLATE_NAME.setSection('General Info') assignment_SAMPLE_CYTOFLEX_S_PLATE_NAME.setPositionInForms(1) assignment_SAMPLE_CYTOFLEX_S_PLATE_NAME.setShownEdit(True) # SAMPLE_CYTOFLEX_S_SPECIMEN_NAME assignment_SAMPLE_CYTOFLEX_S_SPECIMEN_NAME = tr.assignPropertyType(samp_type_CYTOFLEX_S_SPECIMEN, prop_type_NAME) assignment_SAMPLE_CYTOFLEX_S_SPECIMEN_NAME.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_SPECIMEN_NAME.setSection('General Info') assignment_SAMPLE_CYTOFLEX_S_SPECIMEN_NAME.setPositionInForms(1) assignment_SAMPLE_CYTOFLEX_S_SPECIMEN_NAME.setShownEdit(True) # SAMPLE_CYTOFLEX_S_SPECIMEN_ANNOTATIONS_STATE assignment_SAMPLE_CYTOFLEX_S_SPECIMEN_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_CYTOFLEX_S_SPECIMEN, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_CYTOFLEX_S_SPECIMEN_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_SPECIMEN_ANNOTATIONS_STATE.setSection('General Info') assignment_SAMPLE_CYTOFLEX_S_SPECIMEN_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_CYTOFLEX_S_SPECIMEN_ANNOTATIONS_STATE.setShownEdit(False) # SAMPLE_CYTOFLEX_S_TUBE_NAME assignment_SAMPLE_CYTOFLEX_S_TUBE_NAME = tr.assignPropertyType(samp_type_CYTOFLEX_S_TUBE, prop_type_NAME) assignment_SAMPLE_CYTOFLEX_S_TUBE_NAME.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_TUBE_NAME.setSection('General Info') assignment_SAMPLE_CYTOFLEX_S_TUBE_NAME.setPositionInForms(1) assignment_SAMPLE_CYTOFLEX_S_TUBE_NAME.setShownEdit(True) # SAMPLE_CYTOFLEX_S_TUBESET_NAME assignment_SAMPLE_CYTOFLEX_S_TUBESET_NAME = tr.assignPropertyType(samp_type_CYTOFLEX_S_TUBESET, prop_type_NAME) assignment_SAMPLE_CYTOFLEX_S_TUBESET_NAME.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_TUBESET_NAME.setShownEdit(False) # SAMPLE_CYTOFLEX_S_WELL_NAME assignment_SAMPLE_CYTOFLEX_S_WELL_NAME = tr.assignPropertyType(samp_type_CYTOFLEX_S_WELL, prop_type_NAME) assignment_SAMPLE_CYTOFLEX_S_WELL_NAME.setMandatory(False) assignment_SAMPLE_CYTOFLEX_S_WELL_NAME.setSection('General Info') assignment_SAMPLE_CYTOFLEX_S_WELL_NAME.setPositionInForms(1) assignment_SAMPLE_CYTOFLEX_S_WELL_NAME.setShownEdit(True) # DATA_SET_CYTOFLEX_S_ACCESSORY_FILE_NAME assignment_DATA_SET_CYTOFLEX_S_ACCESSORY_FILE_NAME = tr.assignPropertyType(data_set_type_CYTOFLEX_S_ACCESSORY_FILE, prop_type_NAME) assignment_DATA_SET_CYTOFLEX_S_ACCESSORY_FILE_NAME.setMandatory(False) assignment_DATA_SET_CYTOFLEX_S_ACCESSORY_FILE_NAME.setSection(None) assignment_DATA_SET_CYTOFLEX_S_ACCESSORY_FILE_NAME.setPositionInForms(1) assignment_DATA_SET_CYTOFLEX_S_ACCESSORY_FILE_NAME.setShownEdit(False) # BC MOFLO XDP # ------------------------------------------------------------------------------ # SAMPLE_MOFLO_XDP_EXPERIMENT_NAME assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_MOFLO_XDP_EXPERIMENT, prop_type_NAME) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_NAME.setSection('General Info') assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_NAME.setPositionInForms(1) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_NAME.setShownEdit(True) # SAMPLE_MOFLO_XDP_EXPERIMENT_ANNOTATIONS_STATE assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_MOFLO_XDP_EXPERIMENT, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_ANNOTATIONS_STATE.setSection('General Info') assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_ANNOTATIONS_STATE.setShownEdit(False) # SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_DESCRIPTION assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_DESCRIPTION = tr.assignPropertyType(samp_type_MOFLO_XDP_EXPERIMENT, prop_type_MOFLO_XDP_EXPERIMENT_DESCRIPTION) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_DESCRIPTION.setMandatory(False) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_DESCRIPTION.setSection(None) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_DESCRIPTION.setPositionInForms(3) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_DESCRIPTION.setShownEdit(True) # SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_NAME assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_MOFLO_XDP_EXPERIMENT, prop_type_MOFLO_XDP_EXPERIMENT_NAME) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_NAME.setSection(None) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_NAME.setPositionInForms(4) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_NAME.setShownEdit(False) # SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_DATE assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_DATE = tr.assignPropertyType(samp_type_MOFLO_XDP_EXPERIMENT, prop_type_MOFLO_XDP_EXPERIMENT_DATE) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_DATE.setMandatory(False) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_DATE.setSection(None) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_DATE.setPositionInForms(5) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_DATE.setShownEdit(True) # SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE = tr.assignPropertyType(samp_type_MOFLO_XDP_EXPERIMENT, prop_type_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE.setMandatory(False) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE.setSection(None) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE.setPositionInForms(6) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE.setShownEdit(False) # SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_SOFTWARE assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_SOFTWARE = tr.assignPropertyType(samp_type_MOFLO_XDP_EXPERIMENT, prop_type_MOFLO_XDP_EXPERIMENT_ACQ_SOFTWARE) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_SOFTWARE.setMandatory(False) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_SOFTWARE.setSection(None) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_SOFTWARE.setPositionInForms(7) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_SOFTWARE.setShownEdit(False) # SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_OWNER assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_OWNER = tr.assignPropertyType(samp_type_MOFLO_XDP_EXPERIMENT, prop_type_MOFLO_XDP_EXPERIMENT_OWNER) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_OWNER.setMandatory(False) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_OWNER.setSection(None) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_OWNER.setPositionInForms(8) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_OWNER.setShownEdit(True) # SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.assignPropertyType(samp_type_MOFLO_XDP_EXPERIMENT, prop_type_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setMandatory(False) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setSection(None) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setPositionInForms(9) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setShownEdit(True) # SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_VERSION assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_VERSION = tr.assignPropertyType(samp_type_MOFLO_XDP_EXPERIMENT, prop_type_MOFLO_XDP_EXPERIMENT_VERSION) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_VERSION.setMandatory(False) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_VERSION.setSection(None) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_VERSION.setPositionInForms(10) assignment_SAMPLE_MOFLO_XDP_EXPERIMENT_MOFLO_XDP_EXPERIMENT_VERSION.setShownEdit(False) # DATA_SET_MOFLO_XDP_FCSFILE_MOFLO_XDP_FCSFILE_PARAMETERS assignment_DATA_SET_MOFLO_XDP_FCSFILE_MOFLO_XDP_FCSFILE_PARAMETERS = tr.assignPropertyType(data_set_type_MOFLO_XDP_FCSFILE, prop_type_MOFLO_XDP_FCSFILE_PARAMETERS) assignment_DATA_SET_MOFLO_XDP_FCSFILE_MOFLO_XDP_FCSFILE_PARAMETERS.setMandatory(False) assignment_DATA_SET_MOFLO_XDP_FCSFILE_MOFLO_XDP_FCSFILE_PARAMETERS.setSection(None) assignment_DATA_SET_MOFLO_XDP_FCSFILE_MOFLO_XDP_FCSFILE_PARAMETERS.setPositionInForms(2) assignment_DATA_SET_MOFLO_XDP_FCSFILE_MOFLO_XDP_FCSFILE_PARAMETERS.setShownEdit(False) # DATA_SET_MOFLO_XDP_FCSFILE_MOFLO_XDP_FCSFILE_ACQ_DATE assignment_DATA_SET_MOFLO_XDP_FCSFILE_MOFLO_XDP_FCSFILE_ACQ_DATE = tr.assignPropertyType(data_set_type_MOFLO_XDP_FCSFILE, prop_type_MOFLO_XDP_FCSFILE_ACQ_DATE) assignment_DATA_SET_MOFLO_XDP_FCSFILE_MOFLO_XDP_FCSFILE_ACQ_DATE.setMandatory(False) assignment_DATA_SET_MOFLO_XDP_FCSFILE_MOFLO_XDP_FCSFILE_ACQ_DATE.setSection(None) assignment_DATA_SET_MOFLO_XDP_FCSFILE_MOFLO_XDP_FCSFILE_ACQ_DATE.setPositionInForms(3) assignment_DATA_SET_MOFLO_XDP_FCSFILE_MOFLO_XDP_FCSFILE_ACQ_DATE.setShownEdit(False) # DATA_SET_MOFLO_XDP_FCSFILE_NAME assignment_DATA_SET_MOFLO_XDP_NAME = tr.assignPropertyType(data_set_type_MOFLO_XDP_FCSFILE, prop_type_NAME) assignment_DATA_SET_MOFLO_XDP_NAME.setMandatory(False) assignment_DATA_SET_MOFLO_XDP_NAME.setSection(None) assignment_DATA_SET_MOFLO_XDP_NAME.setPositionInForms(4) assignment_DATA_SET_MOFLO_XDP_NAME.setShownEdit(False) # SAMPLE_MOFLO_XDP_SPECIMEN_NAME assignment_SAMPLE_MOFLO_XDP_SPECIMEN_NAME = tr.assignPropertyType(samp_type_MOFLO_XDP_SPECIMEN, prop_type_NAME) assignment_SAMPLE_MOFLO_XDP_SPECIMEN_NAME.setMandatory(False) assignment_SAMPLE_MOFLO_XDP_SPECIMEN_NAME.setSection('General Info') assignment_SAMPLE_MOFLO_XDP_SPECIMEN_NAME.setPositionInForms(1) assignment_SAMPLE_MOFLO_XDP_SPECIMEN_NAME.setShownEdit(True) # SAMPLE_MOFLO_XDP_SPECIMEN_ANNOTATIONS_STATE assignment_SAMPLE_MOFLO_XDP_SPECIMEN_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_MOFLO_XDP_SPECIMEN, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_MOFLO_XDP_SPECIMEN_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_MOFLO_XDP_SPECIMEN_ANNOTATIONS_STATE.setSection('General Info') assignment_SAMPLE_MOFLO_XDP_SPECIMEN_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_MOFLO_XDP_SPECIMEN_ANNOTATIONS_STATE.setShownEdit(False) # SAMPLE_MOFLO_XDP_TUBE_NAME assignment_SAMPLE_MOFLO_XDP_TUBE_NAME = tr.assignPropertyType(samp_type_MOFLO_XDP_TUBE, prop_type_NAME) assignment_SAMPLE_MOFLO_XDP_TUBE_NAME.setMandatory(False) assignment_SAMPLE_MOFLO_XDP_TUBE_NAME.setSection('General Info') assignment_SAMPLE_MOFLO_XDP_TUBE_NAME.setPositionInForms(1) assignment_SAMPLE_MOFLO_XDP_TUBE_NAME.setShownEdit(True) # SAMPLE_MOFLO_XDP_TUBESET_NAME assignment_SAMPLE_MOFLO_XDP_TUBESET_NAME = tr.assignPropertyType(samp_type_MOFLO_XDP_TUBESET, prop_type_NAME) assignment_SAMPLE_MOFLO_XDP_TUBESET_NAME.setMandatory(False) assignment_SAMPLE_MOFLO_XDP_TUBESET_NAME.setShownEdit(False) # SAMPLE_MOFLO_XDP_TUBE_MOFLO_XDP_TUBE_ISINDEXSORT assignment_SAMPLE_MOFLO_XDP_TUBE_MOFLO_XDP_TUBE_ISINDEXSORT = tr.assignPropertyType(samp_type_MOFLO_XDP_TUBE, prop_type_MOFLO_XDP_TUBE_ISINDEXSORT) assignment_SAMPLE_MOFLO_XDP_TUBE_MOFLO_XDP_TUBE_ISINDEXSORT.setMandatory(False) assignment_SAMPLE_MOFLO_XDP_TUBE_MOFLO_XDP_TUBE_ISINDEXSORT.setSection(None) assignment_SAMPLE_MOFLO_XDP_TUBE_MOFLO_XDP_TUBE_ISINDEXSORT.setPositionInForms(4) assignment_SAMPLE_MOFLO_XDP_TUBE_MOFLO_XDP_TUBE_ISINDEXSORT.setShownEdit(False) # DATA_SET_MOFLO_XDP_ACCESSORY_FILE_NAME assignment_DATA_SET_MOFLO_XDP_ACCESSORY_FILE_NAME = tr.assignPropertyType(data_set_type_MOFLO_XDP_ACCESSORY_FILE, prop_type_NAME) assignment_DATA_SET_MOFLO_XDP_ACCESSORY_FILE_NAME.setMandatory(False) assignment_DATA_SET_MOFLO_XDP_ACCESSORY_FILE_NAME.setSection(None) assignment_DATA_SET_MOFLO_XDP_ACCESSORY_FILE_NAME.setPositionInForms(1) assignment_DATA_SET_MOFLO_XDP_ACCESSORY_FILE_NAME.setShownEdit(False) # BIORAD S3E # ------------------------------------------------------------------------------ # SAMPLE_S3E_EXPERIMENT_NAME assignment_SAMPLE_S3E_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_S3E_EXPERIMENT, prop_type_NAME) assignment_SAMPLE_S3E_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_S3E_EXPERIMENT_NAME.setSection('General Info') assignment_SAMPLE_S3E_EXPERIMENT_NAME.setPositionInForms(1) assignment_SAMPLE_S3E_EXPERIMENT_NAME.setShownEdit(True) # SAMPLE_S3E_EXPERIMENT_ANNOTATIONS_STATE assignment_SAMPLE_S3E_EXPERIMENT_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_S3E_EXPERIMENT, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_S3E_EXPERIMENT_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_S3E_EXPERIMENT_ANNOTATIONS_STATE.setSection('General Info') assignment_SAMPLE_S3E_EXPERIMENT_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_S3E_EXPERIMENT_ANNOTATIONS_STATE.setShownEdit(False) # SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_DESCRIPTION assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_DESCRIPTION = tr.assignPropertyType(samp_type_S3E_EXPERIMENT, prop_type_S3E_EXPERIMENT_DESCRIPTION) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_DESCRIPTION.setMandatory(False) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_DESCRIPTION.setSection(None) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_DESCRIPTION.setPositionInForms(3) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_DESCRIPTION.setShownEdit(True) # SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_NAME assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_S3E_EXPERIMENT, prop_type_S3E_EXPERIMENT_NAME) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_NAME.setSection(None) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_NAME.setPositionInForms(4) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_NAME.setShownEdit(False) # SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_DATE assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_DATE = tr.assignPropertyType(samp_type_S3E_EXPERIMENT, prop_type_S3E_EXPERIMENT_DATE) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_DATE.setMandatory(False) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_DATE.setSection(None) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_DATE.setPositionInForms(5) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_DATE.setShownEdit(True) # SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_HARDWARE assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_HARDWARE = tr.assignPropertyType(samp_type_S3E_EXPERIMENT, prop_type_S3E_EXPERIMENT_ACQ_HARDWARE) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_HARDWARE.setMandatory(False) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_HARDWARE.setSection(None) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_HARDWARE.setPositionInForms(6) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_HARDWARE.setShownEdit(False) # SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_SOFTWARE assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_SOFTWARE = tr.assignPropertyType(samp_type_S3E_EXPERIMENT, prop_type_S3E_EXPERIMENT_ACQ_SOFTWARE) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_SOFTWARE.setMandatory(False) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_SOFTWARE.setSection(None) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_SOFTWARE.setPositionInForms(7) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_SOFTWARE.setShownEdit(False) # SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_OWNER assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_OWNER = tr.assignPropertyType(samp_type_S3E_EXPERIMENT, prop_type_S3E_EXPERIMENT_OWNER) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_OWNER.setMandatory(False) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_OWNER.setSection(None) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_OWNER.setPositionInForms(8) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_OWNER.setShownEdit(True) # SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.assignPropertyType(samp_type_S3E_EXPERIMENT, prop_type_S3E_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setMandatory(False) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setSection(None) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setPositionInForms(9) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setShownEdit(True) # SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_VERSION assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_VERSION = tr.assignPropertyType(samp_type_S3E_EXPERIMENT, prop_type_S3E_EXPERIMENT_VERSION) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_VERSION.setMandatory(False) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_VERSION.setSection(None) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_VERSION.setPositionInForms(10) assignment_SAMPLE_S3E_EXPERIMENT_S3E_EXPERIMENT_VERSION.setShownEdit(False) # DATA_SET_S3E_FCSFILE_S3E_FCSFILE_PARAMETERS assignment_DATA_SET_S3E_FCSFILE_S3E_FCSFILE_PARAMETERS = tr.assignPropertyType(data_set_type_S3E_FCSFILE, prop_type_S3E_FCSFILE_PARAMETERS) assignment_DATA_SET_S3E_FCSFILE_S3E_FCSFILE_PARAMETERS.setMandatory(False) assignment_DATA_SET_S3E_FCSFILE_S3E_FCSFILE_PARAMETERS.setSection(None) assignment_DATA_SET_S3E_FCSFILE_S3E_FCSFILE_PARAMETERS.setPositionInForms(2) assignment_DATA_SET_S3E_FCSFILE_S3E_FCSFILE_PARAMETERS.setShownEdit(False) # DATA_SET_S3E_FCSFILE_S3E_FCSFILE_ACQ_DATE assignment_DATA_SET_S3E_FCSFILE_S3E_FCSFILE_ACQ_DATE = tr.assignPropertyType(data_set_type_S3E_FCSFILE, prop_type_S3E_FCSFILE_ACQ_DATE) assignment_DATA_SET_S3E_FCSFILE_S3E_FCSFILE_ACQ_DATE.setMandatory(False) assignment_DATA_SET_S3E_FCSFILE_S3E_FCSFILE_ACQ_DATE.setSection(None) assignment_DATA_SET_S3E_FCSFILE_S3E_FCSFILE_ACQ_DATE.setPositionInForms(3) assignment_DATA_SET_S3E_FCSFILE_S3E_FCSFILE_ACQ_DATE.setShownEdit(False) # DATA_SET_S3E_FCSFILE_NAME assignment_DATA_SET_S3E_FCSFILE_NAME = tr.assignPropertyType(data_set_type_S3E_FCSFILE, prop_type_NAME) assignment_DATA_SET_S3E_FCSFILE_NAME.setMandatory(False) assignment_DATA_SET_S3E_FCSFILE_NAME.setSection(None) assignment_DATA_SET_S3E_FCSFILE_NAME.setPositionInForms(4) assignment_DATA_SET_S3E_FCSFILE_NAME.setShownEdit(False) # SAMPLE_S3E_SPECIMEN_NAME assignment_SAMPLE_S3E_SPECIMEN_NAME = tr.assignPropertyType(samp_type_S3E_SPECIMEN, prop_type_NAME) assignment_SAMPLE_S3E_SPECIMEN_NAME.setMandatory(False) assignment_SAMPLE_S3E_SPECIMEN_NAME.setSection(None) assignment_SAMPLE_S3E_SPECIMEN_NAME.setPositionInForms(1) assignment_SAMPLE_S3E_SPECIMEN_NAME.setShownEdit(True) # SAMPLE_S3E_SPECIMEN_ANNOTATIONS_STATE assignment_SAMPLE_S3E_SPECIMEN_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_S3E_SPECIMEN, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_S3E_SPECIMEN_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_S3E_SPECIMEN_ANNOTATIONS_STATE.setSection(None) assignment_SAMPLE_S3E_SPECIMEN_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_S3E_SPECIMEN_ANNOTATIONS_STATE.setShownEdit(True) # SAMPLE_S3E_TUBE_NAME assignment_SAMPLE_S3_TUBE_NAME = tr.assignPropertyType(samp_type_S3E_TUBE, prop_type_NAME) assignment_SAMPLE_S3_TUBE_NAME.setMandatory(False) assignment_SAMPLE_S3_TUBE_NAME.setSection('General Info') assignment_SAMPLE_S3_TUBE_NAME.setPositionInForms(1) assignment_SAMPLE_S3_TUBE_NAME.setShownEdit(True) # SAMPLE_S3E_TUBESET_NAME assignment_SAMPLE_S3_TUBESET_NAME = tr.assignPropertyType(samp_type_S3E_TUBESET, prop_type_NAME) assignment_SAMPLE_S3_TUBESET_NAME.setMandatory(False) assignment_SAMPLE_S3_TUBESET_NAME.setShownEdit(False) # SAMPLE_S3E_TUBE_S3E_TUBE_ISINDEXSORT assignment_SAMPLE_S3E_TUBE_S3E_TUBE_ISINDEXSORT = tr.assignPropertyType(samp_type_S3E_TUBE, prop_type_S3E_TUBE_ISINDEXSORT) assignment_SAMPLE_S3E_TUBE_S3E_TUBE_ISINDEXSORT.setMandatory(False) assignment_SAMPLE_S3E_TUBE_S3E_TUBE_ISINDEXSORT.setSection(None) assignment_SAMPLE_S3E_TUBE_S3E_TUBE_ISINDEXSORT.setPositionInForms(4) assignment_SAMPLE_S3E_TUBE_S3E_TUBE_ISINDEXSORT.setShownEdit(False) # DATA_SET_S3E_ACCESSORY_FILE_NAME assignment_DATA_SET_S3E_ACCESSORY_FILE_NAME = tr.assignPropertyType(data_set_type_S3E_ACCESSORY_FILE, prop_type_NAME) assignment_DATA_SET_S3E_ACCESSORY_FILE_NAME.setMandatory(False) assignment_DATA_SET_S3E_ACCESSORY_FILE_NAME.setSection(None) assignment_DATA_SET_S3E_ACCESSORY_FILE_NAME.setPositionInForms(1) assignment_DATA_SET_S3E_ACCESSORY_FILE_NAME.setShownEdit(False) # SONY SH800S # ------------------------------------------------------------------------------ # SAMPLE_SONY_SH800S_EXPERIMENT_NAME assignment_SAMPLE_SONY_SH800S_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_SONY_SH800S_EXPERIMENT, prop_type_NAME) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_NAME.setSection('General Info') assignment_SAMPLE_SONY_SH800S_EXPERIMENT_NAME.setPositionInForms(1) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_NAME.setShownEdit(True) # SAMPLE_SONY_SH800S_EXPERIMENT_ANNOTATIONS_STATE assignment_SAMPLE_SONY_SH800S_EXPERIMENT_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_SONY_SH800S_EXPERIMENT, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_ANNOTATIONS_STATE.setSection('General Info') assignment_SAMPLE_SONY_SH800S_EXPERIMENT_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_ANNOTATIONS_STATE.setShownEdit(False) # SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_DESCRIPTION assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_DESCRIPTION = tr.assignPropertyType(samp_type_SONY_SH800S_EXPERIMENT, prop_type_SONY_SH800S_EXPERIMENT_DESCRIPTION) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_DESCRIPTION.setMandatory(False) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_DESCRIPTION.setSection(None) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_DESCRIPTION.setPositionInForms(3) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_DESCRIPTION.setShownEdit(True) # SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_NAME assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_SONY_SH800S_EXPERIMENT, prop_type_SONY_SH800S_EXPERIMENT_NAME) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_NAME.setSection(None) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_NAME.setPositionInForms(4) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_NAME.setShownEdit(False) # SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_DATE assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_DATE = tr.assignPropertyType(samp_type_SONY_SH800S_EXPERIMENT, prop_type_SONY_SH800S_EXPERIMENT_DATE) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_DATE.setMandatory(False) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_DATE.setSection(None) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_DATE.setPositionInForms(5) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_DATE.setShownEdit(True) # SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE = tr.assignPropertyType(samp_type_SONY_SH800S_EXPERIMENT, prop_type_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE.setMandatory(False) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE.setSection(None) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE.setPositionInForms(6) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE.setShownEdit(False) # SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_SOFTWARE assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_SOFTWARE = tr.assignPropertyType(samp_type_SONY_SH800S_EXPERIMENT, prop_type_SONY_SH800S_EXPERIMENT_ACQ_SOFTWARE) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_SOFTWARE.setMandatory(False) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_SOFTWARE.setSection(None) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_SOFTWARE.setPositionInForms(7) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_SOFTWARE.setShownEdit(False) # SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_OWNER assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_OWNER = tr.assignPropertyType(samp_type_SONY_SH800S_EXPERIMENT, prop_type_SONY_SH800S_EXPERIMENT_OWNER) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_OWNER.setMandatory(False) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_OWNER.setSection(None) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_OWNER.setPositionInForms(8) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_OWNER.setShownEdit(True) # SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.assignPropertyType(samp_type_SONY_SH800S_EXPERIMENT, prop_type_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setMandatory(False) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setSection(None) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setPositionInForms(9) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setShownEdit(True) # SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_VERSION assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_VERSION = tr.assignPropertyType(samp_type_SONY_SH800S_EXPERIMENT, prop_type_SONY_SH800S_EXPERIMENT_VERSION) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_VERSION.setMandatory(False) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_VERSION.setSection(None) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_VERSION.setPositionInForms(10) assignment_SAMPLE_SONY_SH800S_EXPERIMENT_SONY_SH800S_EXPERIMENT_VERSION.setShownEdit(False) # DATA_SET_SONY_SH800S_FCSFILE_SONY_SH800S_FCSFILE_PARAMETERS assignment_DATA_SET_SONY_SH800S_FCSFILE_SONY_SH800S_FCSFILE_PARAMETERS = tr.assignPropertyType(data_set_type_SONY_SH800S_FCSFILE, prop_type_SONY_SH800S_FCSFILE_PARAMETERS) assignment_DATA_SET_SONY_SH800S_FCSFILE_SONY_SH800S_FCSFILE_PARAMETERS.setMandatory(False) assignment_DATA_SET_SONY_SH800S_FCSFILE_SONY_SH800S_FCSFILE_PARAMETERS.setSection(None) assignment_DATA_SET_SONY_SH800S_FCSFILE_SONY_SH800S_FCSFILE_PARAMETERS.setPositionInForms(2) assignment_DATA_SET_SONY_SH800S_FCSFILE_SONY_SH800S_FCSFILE_PARAMETERS.setShownEdit(False) # DATA_SET_SONY_SH800S_FCSFILE_SONY_SH800S_FCSFILE_ACQ_DATE assignment_DATA_SET_SONY_SH800S_FCSFILE_SONY_SH800S_FCSFILE_ACQ_DATE = tr.assignPropertyType(data_set_type_SONY_SH800S_FCSFILE, prop_type_SONY_SH800S_FCSFILE_ACQ_DATE) assignment_DATA_SET_SONY_SH800S_FCSFILE_SONY_SH800S_FCSFILE_ACQ_DATE.setMandatory(False) assignment_DATA_SET_SONY_SH800S_FCSFILE_SONY_SH800S_FCSFILE_ACQ_DATE.setSection(None) assignment_DATA_SET_SONY_SH800S_FCSFILE_SONY_SH800S_FCSFILE_ACQ_DATE.setPositionInForms(3) assignment_DATA_SET_SONY_SH800S_FCSFILE_SONY_SH800S_FCSFILE_ACQ_DATE.setShownEdit(False) # DATA_SET_SONY_SH800S_FCSFILE_NAME assignment_DATA_SET_NFLUX_FCSFILE_NAME = tr.assignPropertyType(data_set_type_SONY_SH800S_FCSFILE, prop_type_NAME) assignment_DATA_SET_NFLUX_FCSFILE_NAME.setMandatory(False) assignment_DATA_SET_NFLUX_FCSFILE_NAME.setSection(None) assignment_DATA_SET_NFLUX_FCSFILE_NAME.setPositionInForms(3) assignment_DATA_SET_NFLUX_FCSFILE_NAME.setShownEdit(False) # SAMPLE_SONY_SH800S_SPECIMEN_NAME assignment_SAMPLE_SONY_SH800S_SPECIMEN_NAME = tr.assignPropertyType(samp_type_SONY_SH800S_SPECIMEN, prop_type_NAME) assignment_SAMPLE_SONY_SH800S_SPECIMEN_NAME.setMandatory(False) assignment_SAMPLE_SONY_SH800S_SPECIMEN_NAME.setSection('General Info') assignment_SAMPLE_SONY_SH800S_SPECIMEN_NAME.setPositionInForms(1) assignment_SAMPLE_SONY_SH800S_SPECIMEN_NAME.setShownEdit(True) # SAMPLE_SONY_SH800S_SPECIMEN_ANNOTATIONS_STATE assignment_SAMPLE_SONY_SH800S_SPECIMEN_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_SONY_SH800S_SPECIMEN, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_SONY_SH800S_SPECIMEN_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_SONY_SH800S_SPECIMEN_ANNOTATIONS_STATE.setSection('General Info') assignment_SAMPLE_SONY_SH800S_SPECIMEN_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_SONY_SH800S_SPECIMEN_ANNOTATIONS_STATE.setShownEdit(False) # SAMPLE_SONY_SH800S_TUBE_NAME assignment_SAMPLE_SONY_SH800S_TUBE_NAME = tr.assignPropertyType(samp_type_SONY_SH800S_TUBE, prop_type_NAME) assignment_SAMPLE_SONY_SH800S_TUBE_NAME.setMandatory(False) assignment_SAMPLE_SONY_SH800S_TUBE_NAME.setSection('General Info') assignment_SAMPLE_SONY_SH800S_TUBE_NAME.setPositionInForms(1) assignment_SAMPLE_SONY_SH800S_TUBE_NAME.setShownEdit(True) # SAMPLE_SONY_SH800S_TUBESET_NAME assignment_SAMPLE_SONY_SH800S_TUBESET_NAME = tr.assignPropertyType(samp_type_SONY_SH800S_TUBESET, prop_type_NAME) assignment_SAMPLE_SONY_SH800S_TUBESET_NAME.setMandatory(False) assignment_SAMPLE_SONY_SH800S_TUBESET_NAME.setShownEdit(False) # SAMPLE_SONY_SH800S_TUBE_SONY_SH800S_TUBE_ISINDEXSORT assignment_SAMPLE_SONY_SH800S_TUBE_SONY_SH800S_TUBE_ISINDEXSORT = tr.assignPropertyType(samp_type_SONY_SH800S_TUBE, prop_type_SONY_SH800S_TUBE_ISINDEXSORT) assignment_SAMPLE_SONY_SH800S_TUBE_SONY_SH800S_TUBE_ISINDEXSORT.setMandatory(False) assignment_SAMPLE_SONY_SH800S_TUBE_SONY_SH800S_TUBE_ISINDEXSORT.setSection(None) assignment_SAMPLE_SONY_SH800S_TUBE_SONY_SH800S_TUBE_ISINDEXSORT.setPositionInForms(4) assignment_SAMPLE_SONY_SH800S_TUBE_SONY_SH800S_TUBE_ISINDEXSORT.setShownEdit(False) # DATA_SET_SONY_SH800S_ACCESSORY_FILE_NAME assignment_DATA_SET_SONY_SH800S_ACCESSORY_FILE_NAME = tr.assignPropertyType(data_set_type_SONY_SH800S_ACCESSORY_FILE, prop_type_NAME) assignment_DATA_SET_SONY_SH800S_ACCESSORY_FILE_NAME.setMandatory(False) assignment_DATA_SET_SONY_SH800S_ACCESSORY_FILE_NAME.setSection(None) assignment_DATA_SET_SONY_SH800S_ACCESSORY_FILE_NAME.setPositionInForms(1) assignment_DATA_SET_SONY_SH800S_ACCESSORY_FILE_NAME.setShownEdit(False) # SONY MA900 # ------------------------------------------------------------------------------ # SAMPLE_SONY_MA900_EXPERIMENT_NAME assignment_SAMPLE_SONY_MA900_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_SONY_MA900_EXPERIMENT, prop_type_NAME) assignment_SAMPLE_SONY_MA900_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_SONY_MA900_EXPERIMENT_NAME.setSection('General Info') assignment_SAMPLE_SONY_MA900_EXPERIMENT_NAME.setPositionInForms(1) assignment_SAMPLE_SONY_MA900_EXPERIMENT_NAME.setShownEdit(True) # SAMPLE_SONY_MA900_EXPERIMENT_ANNOTATIONS_STATE assignment_SAMPLE_SONY_MA900_EXPERIMENT_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_SONY_MA900_EXPERIMENT, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_SONY_MA900_EXPERIMENT_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_SONY_MA900_EXPERIMENT_ANNOTATIONS_STATE.setSection('General Info') assignment_SAMPLE_SONY_MA900_EXPERIMENT_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_SONY_MA900_EXPERIMENT_ANNOTATIONS_STATE.setShownEdit(False) # SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_DESCRIPTION assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_DESCRIPTION = tr.assignPropertyType(samp_type_SONY_MA900_EXPERIMENT, prop_type_SONY_MA900_EXPERIMENT_DESCRIPTION) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_DESCRIPTION.setMandatory(False) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_DESCRIPTION.setSection(None) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_DESCRIPTION.setPositionInForms(3) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_DESCRIPTION.setShownEdit(True) # SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_NAME assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_NAME = tr.assignPropertyType(samp_type_SONY_MA900_EXPERIMENT, prop_type_SONY_MA900_EXPERIMENT_NAME) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_NAME.setMandatory(False) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_NAME.setSection(None) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_NAME.setPositionInForms(4) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_NAME.setShownEdit(False) # SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_DATE assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_DATE = tr.assignPropertyType(samp_type_SONY_MA900_EXPERIMENT, prop_type_SONY_MA900_EXPERIMENT_DATE) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_DATE.setMandatory(False) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_DATE.setSection(None) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_DATE.setPositionInForms(5) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_DATE.setShownEdit(True) # SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_HARDWARE assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_HARDWARE = tr.assignPropertyType(samp_type_SONY_MA900_EXPERIMENT, prop_type_SONY_MA900_EXPERIMENT_ACQ_HARDWARE) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_HARDWARE.setMandatory(False) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_HARDWARE.setSection(None) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_HARDWARE.setPositionInForms(6) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_HARDWARE.setShownEdit(False) # SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_SOFTWARE assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_SOFTWARE = tr.assignPropertyType(samp_type_SONY_MA900_EXPERIMENT, prop_type_SONY_MA900_EXPERIMENT_ACQ_SOFTWARE) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_SOFTWARE.setMandatory(False) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_SOFTWARE.setSection(None) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_SOFTWARE.setPositionInForms(7) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_SOFTWARE.setShownEdit(False) # SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_OWNER assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_OWNER = tr.assignPropertyType(samp_type_SONY_MA900_EXPERIMENT, prop_type_SONY_MA900_EXPERIMENT_OWNER) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_OWNER.setMandatory(False) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_OWNER.setSection(None) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_OWNER.setPositionInForms(8) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_OWNER.setShownEdit(True) # SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME = tr.assignPropertyType(samp_type_SONY_MA900_EXPERIMENT, prop_type_SONY_MA900_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setMandatory(False) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setSection(None) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setPositionInForms(9) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_ACQ_HARDWARE_FRIENDLY_NAME.setShownEdit(True) # SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_VERSION assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_VERSION = tr.assignPropertyType(samp_type_SONY_MA900_EXPERIMENT, prop_type_SONY_MA900_EXPERIMENT_VERSION) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_VERSION.setMandatory(False) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_VERSION.setSection(None) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_VERSION.setPositionInForms(10) assignment_SAMPLE_SONY_MA900_EXPERIMENT_SONY_MA900_EXPERIMENT_VERSION.setShownEdit(False) # DATA_SET_SONY_MA900_FCSFILE_SONY_MA900_FCSFILE_PARAMETERS assignment_DATA_SET_SONY_MA900_FCSFILE_SONY_MA900_FCSFILE_PARAMETERS = tr.assignPropertyType(data_set_type_SONY_MA900_FCSFILE, prop_type_SONY_MA900_FCSFILE_PARAMETERS) assignment_DATA_SET_SONY_MA900_FCSFILE_SONY_MA900_FCSFILE_PARAMETERS.setMandatory(False) assignment_DATA_SET_SONY_MA900_FCSFILE_SONY_MA900_FCSFILE_PARAMETERS.setSection(None) assignment_DATA_SET_SONY_MA900_FCSFILE_SONY_MA900_FCSFILE_PARAMETERS.setPositionInForms(2) assignment_DATA_SET_SONY_MA900_FCSFILE_SONY_MA900_FCSFILE_PARAMETERS.setShownEdit(False) # DATA_SET_SONY_MA900_FCSFILE_SONY_MA900_FCSFILE_ACQ_DATE assignment_DATA_SET_SONY_MA900_FCSFILE_SONY_MA900_FCSFILE_ACQ_DATE = tr.assignPropertyType(data_set_type_SONY_MA900_FCSFILE, prop_type_SONY_MA900_FCSFILE_ACQ_DATE) assignment_DATA_SET_SONY_MA900_FCSFILE_SONY_MA900_FCSFILE_ACQ_DATE.setMandatory(False) assignment_DATA_SET_SONY_MA900_FCSFILE_SONY_MA900_FCSFILE_ACQ_DATE.setSection(None) assignment_DATA_SET_SONY_MA900_FCSFILE_SONY_MA900_FCSFILE_ACQ_DATE.setPositionInForms(3) assignment_DATA_SET_SONY_MA900_FCSFILE_SONY_MA900_FCSFILE_ACQ_DATE.setShownEdit(False) # DATA_SET_SONY_MA900_FCSFILE_NAME assignment_DATA_SET_NFLUX_FCSFILE_NAME = tr.assignPropertyType(data_set_type_SONY_MA900_FCSFILE, prop_type_NAME) assignment_DATA_SET_NFLUX_FCSFILE_NAME.setMandatory(False) assignment_DATA_SET_NFLUX_FCSFILE_NAME.setSection(None) assignment_DATA_SET_NFLUX_FCSFILE_NAME.setPositionInForms(3) assignment_DATA_SET_NFLUX_FCSFILE_NAME.setShownEdit(False) # SAMPLE_SONY_MA900_SPECIMEN_NAME assignment_SAMPLE_SONY_MA900_SPECIMEN_NAME = tr.assignPropertyType(samp_type_SONY_MA900_SPECIMEN, prop_type_NAME) assignment_SAMPLE_SONY_MA900_SPECIMEN_NAME.setMandatory(False) assignment_SAMPLE_SONY_MA900_SPECIMEN_NAME.setSection('General Info') assignment_SAMPLE_SONY_MA900_SPECIMEN_NAME.setPositionInForms(1) assignment_SAMPLE_SONY_MA900_SPECIMEN_NAME.setShownEdit(True) # SAMPLE_SONY_MA900_SPECIMEN_ANNOTATIONS_STATE assignment_SAMPLE_SONY_MA900_SPECIMEN_ANNOTATIONS_STATE = tr.assignPropertyType(samp_type_SONY_MA900_SPECIMEN, prop_type_ANNOTATIONS_STATE) assignment_SAMPLE_SONY_MA900_SPECIMEN_ANNOTATIONS_STATE.setMandatory(False) assignment_SAMPLE_SONY_MA900_SPECIMEN_ANNOTATIONS_STATE.setSection('General Info') assignment_SAMPLE_SONY_MA900_SPECIMEN_ANNOTATIONS_STATE.setPositionInForms(2) assignment_SAMPLE_SONY_MA900_SPECIMEN_ANNOTATIONS_STATE.setShownEdit(False) # SAMPLE_SONY_MA900_TUBE_NAME assignment_SAMPLE_SONY_MA900_TUBE_NAME = tr.assignPropertyType(samp_type_SONY_MA900_TUBE, prop_type_NAME) assignment_SAMPLE_SONY_MA900_TUBE_NAME.setMandatory(False) assignment_SAMPLE_SONY_MA900_TUBE_NAME.setSection('General Info') assignment_SAMPLE_SONY_MA900_TUBE_NAME.setPositionInForms(1) assignment_SAMPLE_SONY_MA900_TUBE_NAME.setShownEdit(True) # SAMPLE_SONY_MA900_TUBESET_NAME assignment_SAMPLE_SONY_MA900_TUBESET_NAME = tr.assignPropertyType(samp_type_SONY_MA900_TUBESET, prop_type_NAME) assignment_SAMPLE_SONY_MA900_TUBESET_NAME.setMandatory(False) assignment_SAMPLE_SONY_MA900_TUBESET_NAME.setShownEdit(False) # SAMPLE_SONY_MA900_TUBE_SONY_MA900_TUBE_ISINDEXSORT assignment_SAMPLE_SONY_MA900_TUBE_SONY_MA900_TUBE_ISINDEXSORT = tr.assignPropertyType(samp_type_SONY_MA900_TUBE, prop_type_SONY_MA900_TUBE_ISINDEXSORT) assignment_SAMPLE_SONY_MA900_TUBE_SONY_MA900_TUBE_ISINDEXSORT.setMandatory(False) assignment_SAMPLE_SONY_MA900_TUBE_SONY_MA900_TUBE_ISINDEXSORT.setSection(None) assignment_SAMPLE_SONY_MA900_TUBE_SONY_MA900_TUBE_ISINDEXSORT.setPositionInForms(4) assignment_SAMPLE_SONY_MA900_TUBE_SONY_MA900_TUBE_ISINDEXSORT.setShownEdit(False) # DATA_SET_SONY_MA900_ACCESSORY_FILE_NAME assignment_DATA_SET_SONY_MA900_ACCESSORY_FILE_NAME = tr.assignPropertyType(data_set_type_SONY_MA900_ACCESSORY_FILE, prop_type_NAME) assignment_DATA_SET_SONY_MA900_ACCESSORY_FILE_NAME.setMandatory(False) assignment_DATA_SET_SONY_MA900_ACCESSORY_FILE_NAME.setSection(None) assignment_DATA_SET_SONY_MA900_ACCESSORY_FILE_NAME.setPositionInForms(1) assignment_DATA_SET_SONY_MA900_ACCESSORY_FILE_NAME.setShownEdit(False) print("Import of Flow Cytometry Core Technology Master Data finished.")
import os os.system("thorq --add --mode single --device gpu/7970 ./test")
reservation_schema = { "id": int, "customer_id": int, "start_latitude": float, "start_longitude": float, "srid": int, "net_price": int, "location_id": int } location_schema = { "id": int, "wgs84_polygon": str, "title": str }
import numpy as np class Calculadora: def __init__(self): print ("Se creo una calculadora") def sumar(self,x,y): return x + y def restar(self,x,y): return x - y def multiplicar(self,x,y): return x*y def dividir(self,x,y): return x/y class CalcAleatorea(Calculadora): def __init__(self): Calculadora.__init__(self) def media(self,x): return (np.sum(x))/len(x) def mediaCuadratica(self,x): z = np.power(x,2) return (np.sum(z))/len(z) def varianza(self,x): media = self.media(x) return self.mediaCuadratica(x-media) def desviacionEstandar(self,x): return np.sqrt(self.varianza(x)) def correlacion(self,x,y): return self.media(x*y) calc2 = CalcAleatorea() t = np.linspace(0,20,2000000) y = np.exp(-0.5*t) media = calc2.media(y) print("media de y es: " , media)
from django.shortcuts import render from django.views.generic import View import fredboardScales as gs import random # Create your views here. postcount = 0 class ScalesPage(View): def get(self, request, *args, **kwargs): add = gs.create_svg('C', 'Ionian', 0) svg = add.draw_single_box() svg1 = ''.join(svg) return render(request, "scales.html", {'svg': svg1}) # def post(self, request, *args, **kwargs): # color = random.randrange(0, 3) # x1 = request.POST.get('note', 'C') # x2 = request.POST.get('shape', 'M7') # x3 = request.POST.get('stringset', 'strS1') # add = gs.create_svg(x1 + x2, 'drop2_inv1_' + x3, color) # add = add.create() # svg = ''.join(add) # title = x1 + x2 # return render(request, 'scales.html', {'svg': svg, 'title': title}) class AjaxScales(View): def post(self, request, *args, **kwargs): color = random.randrange(0, 2) print(request.POST) x1 = request.POST.get('note', 'C') x2 = request.POST.get('mode', 'Ionian') x3 = request.POST.get('box', 1) print(x1 + x2, x3) add1 = gs.create_svg(x1, x2, int(x3)) add1 = add1.draw_single_box() svg3 = ''.join(add1) print('POST request was recieved on AjaxScales') return render(request, 'scales.html', {'svg': svg3})
from kivy.app import App from kivy.uix.scatter import Scatter from kivy.uix.label import Label from kivy.uix.floatlayout import FloatLayout from kivy.uix.textinput import TextInput from kivy.uix.boxlayout import BoxLayout from kivy.properties import ListProperty import random """ Kivy example by Alexander Taylor: https://www.youtube.com/user/kivycrashcourse """ class ScatterTextWidget(BoxLayout): text_colour = ListProperty([0, 0 ,1, 1]) def change_label_colour(self, *args): colour = [random.random() for i in xrange(3)] + [1] self.text_colour = colour pass class TutorialApp(App): def build(self): return ScatterTextWidget() if __name__ == "__main__": TutorialApp().run()
from classes.util.date_formater import DateFormater from classes.lock_modifier.result import Result from classes.lock_replacer import LockReplacer from classes.yaml_parser import YamlParser from classes.package_matcher.match import Match from pathlib import Path from typing import Any, IO, List, Optional class LockModifier: def __init__(self, config_path: str): self.yaml_parser: YamlParser = YamlParser(config_path) def update_package(self, match: Match, fields: List[str]) -> Result: lock_path: Path = match.lock_path package: str = match.package_name sha: str = match.package_x.get_value(fields) result: Result = Result(package) stream: Optional[IO] = None try: stream, data = self.__get_stream_with_data(lock_path) time: str = DateFormater.get_current_utc_datetime() replacer: LockReplacer = LockReplacer(data) if replacer.find_package(package): result.directory = lock_path.resolve().parent if not replacer.replace_required(sha): result.set_ignored("Current sha, no required action") else: lock_content: str = replacer.replace(sha, time) length: int = self.__save_content(stream, lock_content) if length == len(lock_content): result.set_success() else: result.set_warning("Saved {expected} characters instead of {actual}".format( expected=len(lock_content), actual=length )) except Exception as exception: result.set_failed(self.__get_exception_message(exception)) self.__close_stream(stream) return result def __save_content(self, stream: IO, content: str) -> int: stream.seek(0) length: int = stream.write(content) stream.truncate() return length def __get_stream_with_data(self, path: Path) -> List: stream: IO = path.open("r+", encoding="utf8") data: Any = stream.read() return [stream, data] def __close_stream(self, stream: Optional[IO]): if isinstance(stream, IO) and not stream.closed: stream.close() def __get_exception_message(self, exception: Exception) -> Optional[str]: return exception.message if hasattr(exception, "message") else None
# -*- coding: utf-8 -*- # from __future__ import unicode_literals from django.db import models INVESTMENTHOUSE = ( ('ALT', 'אלטשולר שחם'), ('EXL', 'אקסלנט'), ('PSA', 'פסגות'), ('LAP', 'לפידות'), ('YAL', 'ילין לפידות'), ('MEI', 'מיטב - דש'), ) PLAN = ( ('GEM', 'קרן גמל'), ('HIS', 'קרן השתלמות'), ) PLANSTATE = ( ('ACT', 'פעיל'), ('OFR', 'הצעה'), ('PAI', 'מסולק'), ) INSURANCECOMPANY = ( ('HAR', 'הראל'), ('MIG', 'מגדל'), ('HAF', 'הפניקס'), ('CLA', 'כלל'), ('MEN', 'מנורה'), ) HEALTHLIFEPOLICY = ( ('HEA', 'בריאות'), ('LIF', 'חיים'), ('NUR', 'סיעוד'), ) #גמל והשתלמות class ProvidentFund(models.Model): nameId = models.CharField('תעודת זהות', max_length=10) name = models.CharField('שם', max_length=30) investmentHouse = models.CharField('בית השקעות', max_length=3, choices=INVESTMENTHOUSE, default='ALT') plan = models.CharField('סוג תוכנית', max_length=3, choices=PLAN, default='GEM') placeholderID = models.IntegerField('מספר עמית', null=True) monthlyDeposit = models.DecimalField('הפקדות חודשיות', max_digits=6, decimal_places=2, default=1.00) managementFeeFunded = models.DecimalField('דמי ניהול מצבירה', max_digits=4, decimal_places=2, default=1.00) fullyFunded = models.DecimalField('סך צבירה', max_digits=12, decimal_places=2, default=1.00) yearlCommissionFunded = models.DecimalField('עמלה מצבירה שנתית', max_digits=12, decimal_places=2, blank=True, null=True, editable=False) payee = models.DecimalField('נפרעים', max_digits=12, decimal_places=2, blank=True, null=True, editable=False) planState = models.CharField('מצב תכנית', max_length=3, choices=PLANSTATE, default='ACT') # created_at = models.DateTimeField(auto_now_add=True) # updated_at = models.DateTimeField(auto_now=True) def calc_total1(self): amount1 = (self.managementFeeFunded / 100 * self.fullyFunded) return amount1 def calc_total2(self): amount2 = (self.managementFeeFunded / 100 * self.fullyFunded / 12) return amount2 def save(self): self.yearlCommissionFunded = self.calc_total1() self.payee = self.calc_total2() super(ProvidentFund, self).save() class Meta: verbose_name = 'לקוח' verbose_name_plural = 'גמול והשתלמות' #חיסכון פיננסי class FinancialSavings(models.Model): name = models.CharField('שם', max_length=30) nameId = models.CharField('תעודת זהות', max_length=10) investmentHouse = models.CharField('בית השקעות', max_length=3, choices=INSURANCECOMPANY, default='HAR') policyType = models.CharField('סוג פוליסה', max_length=10, default='חיסכון פיננסי', editable=False) policyID = models.IntegerField('מספר פוליסה', null=True) monthlyDeposit = models.DecimalField('הפקדות חודשיות', max_digits=6, decimal_places=0, default=0) managementFeeFunded = models.DecimalField('דמי ניהול מצבירה', max_digits=2, decimal_places=1, default=1.0) yearlyPremium = models.IntegerField('פרמיה שנתית', null=True, editable=False) fullyFunded = models.DecimalField('צבירות', max_digits=5, decimal_places=0, default=0) yearlCommissionFunded = models.DecimalField('עמלה מצבירה שנתית', max_digits=12, decimal_places=2, blank=True, null=True, editable=False) planState = models.CharField('מצב תכנית', max_length=3, choices=PLANSTATE, default='ACT') # created_at = models.DateTimeField(auto_now_add=True) # updated_at = models.DateTimeField(auto_now=True) def calc_total1(self): amount1 = (self.monthlyDeposit * 12) return amount1 def calc_total2(self): amount2 = (self.managementFeeFunded / 100 * self.monthlyDeposit) return amount2 def save(self): self.yearlyPremium = self.calc_total1() self.yearlCommissionFunded = self.calc_total2() super(FinancialSavings, self).save() class Meta: verbose_name = 'לקוח' verbose_name_plural = 'חיסכון פיננסי' #ביטוח מנהלים class seniorEmployeesInsurance (models.Model): name = models.CharField('שם', max_length=30) nameId = models.CharField('תעודת זהות', max_length=10) insuranceCompany = models.CharField('חברת ביטוח', max_length=3, choices=INSURANCECOMPANY, default='HAR') policyType = models.CharField('סוג פוליסה', max_length=10, default='ביטוח מנהלים', editable=False) policyID = models.IntegerField('מספר פוליסה', null=True) monthlyPremium = models.DecimalField('פרמיה חודשית', decimal_places=0, max_digits=6, default=0) managementFeePremium = models.DecimalField('דמי ניהול מפרמיה', max_digits = 6, decimal_places=0, default=0) yearlyPremium = models.DecimalField('פרמיה שנתית', decimal_places=0, max_digits=6, default=0, null=True, editable=False) payee = models.DecimalField('נפרעים', max_digits=5, decimal_places=0, default=0, editable=False) yearlCommissionFunded = models.DecimalField('סך הכל עמלה בשנה', max_digits=12, decimal_places=2, blank=True, null=True, editable=False) planState = models.CharField('מצב תכנית', max_length=3, choices=PLANSTATE, default='ACT') # created_at = models.DateTimeField(auto_now_add=True) # updated_at = models.DateTimeField(auto_now=True) def calc_total1(self): amount1 = (self.monthlyPremium * 12) return amount1 def calc_total2(self): amount2 = (self.managementFeePremium * self.monthlyPremium) return amount2 def calc_total3(self): amount3 = (self.managementFeePremium * self.monthlyPremium * 12) return amount3 def save(self): self.yearlyPremium = self.calc_total1() self.payee = self.calc_total2() self.yearlCommissionFunded = self.calc_total3() super(seniorEmployeesInsurance, self).save() class Meta: verbose_name = 'לקוח' verbose_name_plural = 'ביטוח מנהלים' #קרן פנסיה class pensionFund (models.Model): name = models.CharField('שם', max_length=30) nameId = models.CharField('תעודת זהות', max_length=10) insuranceCompany = models.CharField('חברת ביטוח', max_length=3, choices=INSURANCECOMPANY, default='HAR') policyType = models.CharField('סוג פוליסה', max_length=10, default='קרן פנסיה', editable=False) policyID = models.IntegerField('מספר עמית', null=True) monthlyPremium = models.DecimalField('פרמיה חודשית', decimal_places=0, max_digits=6, default=0) managementFeePremium = models.DecimalField('דמי ניהול מפרמיה', max_digits = 6, decimal_places=0, default=6) managementFeeFunded = models.DecimalField('דמי ניהול מצבירה', max_digits=2, decimal_places=1, default=0.5) yearlyPremium = models.DecimalField('פרמיה שנתית', decimal_places=0, max_digits=6, default=0, null=True, editable=False) payee = models.DecimalField('נפרעים', max_digits=5, decimal_places=0, default=0, editable=False) extendCommission = models.DecimalField('אחוז עמלת היקף', max_digits=5, decimal_places=0, default=6) yearlypExtendCommission = models.DecimalField('עמלת היקף', max_digits=5, decimal_places=0, default=0, editable=False) yearlCommissionFunded = models.DecimalField('סך הכל עמלה בשנה', max_digits=12, decimal_places=0, blank=True, null=True, editable=False) planState = models.CharField('מצב תכנית', max_length=3, choices=PLANSTATE, default='ACT') # created_at = models.DateTimeField(auto_now_add=True) # updated_at = models.DateTimeField(auto_now=True) def calc_total1(self): amount1 = (self.monthlyPremium * 12) return amount1 def calc_total2(self): amount2 = (self.managementFeePremium / 100 * self.monthlyPremium) return amount2 def calc_total3(self): amount3 = (self.extendCommission / 100 * self.monthlyPremium * 12) return amount3 def calc_total4(self): amount4 = (self.managementFeePremium / 100 * self.monthlyPremium * 12) return amount4 def save(self): self.yearlyPremium = self.calc_total1() self.payee = self.calc_total2() self.yearlypExtendCommission = self.calc_total3() self.yearlCommissionFunded = self.calc_total4() super(pensionFund, self).save() class Meta: verbose_name = 'לקוח' verbose_name_plural = 'קרן פנסיה' #בריאות וחיים class healthLife (models.Model): name = models.CharField('שם', max_length=30) nameId = models.IntegerField('תעודת זהות', null=True) insuranceCompany = models.CharField('חברת ביטוח', max_length=3, choices=INSURANCECOMPANY, default='HAR') policyType = models.CharField('סוג פוליסה', max_length=3, choices=HEALTHLIFEPOLICY, default='HEA') policyID = models.IntegerField('מספר פוליסה', null=True) monthlyPremium = models.DecimalField('פרמיה חודשית', decimal_places=2, max_digits=6, default=0) yearlyPremium = models.DecimalField('פרמיה שנתית', decimal_places=0, max_digits=6, default=0, editable=False) payeeCommission = models.DecimalField('אחוז עמלת נפרעים', max_digits = 6, decimal_places=0, default=24) payee = models.DecimalField('נפרעים', max_digits=5, decimal_places=0, default=0, editable=False) extendCommission = models.DecimalField('אחוז עמלת היקף', max_digits=5, decimal_places=0, default=50) yearlypExtendCommission = models.DecimalField('עמלת היקף', max_digits= 6, decimal_places=2, editable=False) yearlCommissionFunded = models.DecimalField('סך עמלה בשנה', max_digits=12, decimal_places=2, blank=True, null=True, editable=False) planState = models.CharField('מצב תכנית', max_length=3, choices=PLANSTATE, default='ACT') # created_at = models.DateTimeField(auto_now_add=True) # updated_at = models.DateTimeField(auto_now=True) def calc_total1(self): amount1 = (self.monthlyPremium * 12) return amount1 def calc_total2(self): amount2 = (self.payeeCommission / 100 * self.monthlyPremium) return amount2 def calc_total3(self): amount3 = (self.extendCommission / 100 * self.monthlyPremium * 12) return amount3 def calc_total4(self): amount4 = (self.extendCommission / 100 * self.monthlyPremium * 12 + (self.payeeCommission / 100 * self.monthlyPremium)) return amount4 def save(self): self.yearlyPremium = self.calc_total1() self.payee = self.calc_total2() self.yearlypExtendCommission = self.calc_total3() self.yearlCommissionFunded = self.calc_total4() super(healthLife, self).save() class Meta: verbose_name = 'לקוח' verbose_name_plural = 'בריאות וחיים' #סיכום עמלות ויעדים class summary (models.Model): target = models.CharField('יעד', max_length=30) # nameId = models.IntegerField('תעודת זהות', null=True) # insuranceCompany = models.CharField('חברת ביטוח', max_length=3, choices=INSURANCECOMPANY, default='HAR') # policyType = models.CharField('סוג פוליסה', max_length=3, choices=HEALTHLIFEPOLICY, default='HEA') # policyID = models.IntegerField('מספר פוליסה', null=True) # monthlyPremium = models.DecimalField('פרמיה חודשית', decimal_places=2, max_digits=6, default=0) # yearlyPremium = models.DecimalField('פרמיה שנתית', decimal_places=0, max_digits=6, default=0, editable=False) # payeeCommission = models.DecimalField('אחוז עמלת נפרעים', max_digits = 6, decimal_places=0, default=24) # payee = models.DecimalField('נפרעים', max_digits=5, decimal_places=0, default=0, editable=False) # extendCommission = models.DecimalField('אחוז עמלת היקף', max_digits=5, decimal_places=0, default=50) # yearlypExtendCommission = models.DecimalField('עמלת היקף', max_digits= 6, decimal_places=2, editable=False) # yearlCommissionFunded = models.DecimalField('סך עמלה בשנה', max_digits=12, decimal_places=2, blank=True, # null=True, editable=False) # planState = models.CharField('מצב תכנית', max_length=3, choices=PLANSTATE, default='ACT') # # created_at = models.DateTimeField(auto_now_add=True) # # updated_at = models.DateTimeField(auto_now=True) # # def calc_total1(self): # amount1 = (self.monthlyPremium * 12) # return amount1 # # def calc_total2(self): # amount2 = (self.payeeCommission / 100 * self.monthlyPremium) # return amount2 # # def calc_total3(self): # amount3 = (self.extendCommission / 100 * self.monthlyPremium * 12) # return amount3 # # def calc_total4(self): # amount4 = (self.extendCommission / 100 * self.monthlyPremium * 12 + (self.payeeCommission / 100 * self.monthlyPremium)) # return amount4 # # def save(self): # self.yearlyPremium = self.calc_total1() # self.payee = self.calc_total2() # self.yearlypExtendCommission = self.calc_total3() # self.yearlCommissionFunded = self.calc_total4() # super(healthLife, self).save() class Meta: verbose_name = 'טבלה' verbose_name_plural = 'סיכום עמלות ויעדים'
from flask import Flask, render_template import requests app = Flask(__name__) # 1. 사용자가 접속할 경로를 작성 @app.route('/') def hello_world(): print('hello word') #수정위해원래코드 @app.route('/service.html') def service(): # HTML 반환해주기 # 반드시 templates 폴더 안에 위치해야합니다. # render_template 불러와주기 menu_db = [ 'BBQ 황금 올리브치킨', 'BHC 뿌링클', '네네치킨 오리엔탈파닭', '교촌치킨 레드콤보', '페리카나 양념치킨', '굽네치킨 고추바사삭', '호식이두마리치킨 매운간장치킨', 'BHC 맛초킹', '파파존스 수퍼파파스', '도미노 베스트콰트로', '피자스쿨 고구마피자', '피자에땅 달피자', ] ans = random.choice(menu_db) return render_template('service.html', random_menu=ans)
from pywebio.output import * from pywebio.input import * from pywebio.session import * from functools import partial class CRUDTable(): ''' Generalizable Create, Read, Update, Delete Table class. :param gen_data_func: custom function that has procedure for generating the table data :param edit_func: custom function that edits, requires parameter "i" (index) :param del_func: custom function that deletes, requires parameter "i" (index) ''' def __init__(self, gen_data_func, edit_func, del_func): self.datatable = gen_data_func() self.gen_data_func = gen_data_func self.edit_func = edit_func self.del_func = del_func def put_crud_table(self): # the CRUD table without the header table = [] for i, table_row in enumerate(self.datatable): # skip the header row if i == 0: pass else: # full row of a table # get each row element of the data table row table_row = [put_text(row_element) for row_element in table_row] + [ # use i - 1 here so that it counts after the header row. put_buttons(["◀️"], onclick=partial(self.handle_edit_delete, custom_func=self.edit_func,i=i)), put_buttons(["✖️"], onclick=partial(self.handle_edit_delete, custom_func=self.del_func, i=i)) ] table.append(table_row) with use_scope("table_scope", clear=True): put_table(table, header= self.datatable[0] + ["Edit", "Delete"] ) def handle_edit_delete(self, dummy, custom_func, i): '''when edit/delete button is pressed, execute the custom edit/delete function as well as update CRUD table''' # originally had it in the custom functions in step5_filemanager.py, # but thought its probably best to have it within the crud_table class to # requery all the filepaths and refresh the crud_table if custom_func == self.edit_func: # if edit function, just do custom_func(i) without confirmation custom_func(i) # refresh table self.datatable = self.gen_data_func() self.put_crud_table() # if it's the delete function, ask for confirmation if custom_func == self.del_func: # melt the data (row becomes key, value) datatable_melt = list(zip(self.datatable[0], self.datatable[i+1])) popup( '⚠️ Are you sure you want to delete?', [ put_table(datatable_melt, header=["row", "data"]), put_buttons(['confirm', 'cancel'], onclick = lambda x: self.handle_confirm(i) if x == 'confirm' else close_popup()) ] ) def handle_confirm(self, i): ''' if confirm button pressed in deletion confirmation, delete, and also close popup''' self.del_func(i) close_popup() # refresh table self.datatable = self.gen_data_func() self.put_crud_table() sample_table = [ ['Month', 'YouTube views', 'MoM growth'], ['2020-11', '167', '-'], ['2020-12', '233', '4%'], ['2021-01', '337', '200%'], ['2021-02', '440', '218%'], ['2021-03', '785', '15%'], ['2021-04', '6124', '174%'], ['2021-05', '88588', '1125%'], ['2021-05', '6500', '100%'] ] def generate_datatable(): ''' custom generate function to use for the CRUD table function for generating data. index 0 should be the headers. ''' # datatable = [['header1', 'header2']] + data # here, data should be format [[row1col1,row1col2], [row2col1,row2col2]] # (notice that sublist size = 2 = # of header labels # I use [[filepath] for filepath... because pwl.find_blogfile() # generates list of strings. doing list addition without [filepath] # breaks strings and puts an alphabet in each table. return sample_table def edit_table(i): ''' custom edit function to use for the CRUD table load an old blog post, edit it ''' sample_table[i][1] = input('input new view data for %s'% sample_table[i][0]) def delete_table(i): ''' custom delete function to use for the CRUD table delete specific file ''' sample_table.pop(i) def main(): '''CRUD table demo''' # Header # datatable = [header, row1, row2, row3] for the crud table growth_table = CRUDTable(gen_data_func=generate_datatable, edit_func=edit_table, del_func=delete_table) growth_table.put_crud_table() hold()
""" Script to check conversion from nPE to MeV of neutrons and protons, respectively, which were simulated with tut_detsim.py of JUNO offline version J18v1r1-pre1. Results of this script are used to convert neutron/proton/positron with specific energy in MeV to number of PE in the JUNO detector. With this conversion the cut on the energy of a possible prompt signal can be made in the PE-regime and efficiency of this cut can be calculated. More information: info_conversion_proton_neutron.odt (/home/astro/blum/juno/atmoNC/data_NC/conversion_nPE_MeV/) """ import datetime import NC_background_functions import numpy as np from matplotlib import pyplot as plt from decimal import Decimal from matplotlib.colors import LogNorm """ define gaussian function: """ def gaussian(x, a, b, c): return a * np.exp(- (x-b)**2 / (2*c**2)) def get_info_from_file(start, stop, filename, num_entries, radius_cut): """ :param start: number of first file :param stop: number of last file :param filename: path and name of the file :param num_entries: number of entries per file :param radius_cut: radius, that define the volume cut, in mm :return: """ """ preallocate arrays: """ # number of PE of each event: number_pe = np.array([]) # initial total momentum of each event in MeV: momentum_init = np.array([]) # deposit energy in each event in MeV: edep = np.array([]) # quenched deposit energy in each event in MeV: qedep = np.array([]) # loop over files of proton = 10 MeV: for num in range(start, stop+1, 1): # path to file: input_file = filename + "_{0:d}.root".format(num) # get number of PE per event (array of int), hit-times of the last event in ns (array of float), # initial momentum per event in MeV (array of float), deposit energy per event in MeV and quenched deposit # energy per event in MeV: num_pe, momentum, e, qe = NC_background_functions.conversion_npe_mev(input_file, num_entries, radius_cut) # append arrays to array: number_pe = np.append(number_pe, num_pe) momentum_init = np.append(momentum_init, momentum) edep = np.append(edep, e) qedep = np.append(qedep, qe) return number_pe, momentum_init, edep, qedep def save_array_to_file(arr, out_path, file_name, number_events): """ function to save an array (either number_pe or qedep) to txt file to save time, because you must read the file only once :param arr: array that should be saved (array of float) :param out_path: path, where the txt file should be saved (string) :param file_name: file name of the txt file (string) :param number_events: number of events in the array/root-file :return: """ np.savetxt(out_path + file_name + ".txt", arr, fmt='%1.5f', header="{0} of {1:d} events analyzed with function get_info_from_file() in script\n " "check_conversion_npe_mev.py (number of photo-electron per event OR \n" "quenched deposited energy/ visible energy per event in MeV).\n" "({2})\n" "(volume cut (R <= {3:d} mm) applied on initial position):" .format(file_name, number_events, now, r_cut)) return # get the date and time, when the script was run: date = datetime.datetime.now() now = date.strftime("%Y-%m-%d %H:%M") # set the path of the input files: input_path = "/local/scratch1/pipc51/astro/blum/conversion_nPE_MeV/" input_proton = input_path + "proton_output/" input_neutron = input_path + "neutron_output/" # set path, where results should be saved: output_path = "/home/astro/blum/juno/atmoNC/data_NC/conversion_nPE_MeV/" # set the number of the first file and number of the last file that should be read: start_number = 0 stop_number_p = 99 stop_number_n = 99 # number of entries in the input files: Number_entries_input = 10 # total number of events: number_events_p = (stop_number_p - start_number + 1) * Number_entries_input number_events_n = (stop_number_n - start_number + 1) * Number_entries_input # set the radius for the volume cut in mm: r_cut = 16000 # set maximum visible energy for plots and fit in MeV: max_evis = 120.0 # Set boolean variables: PLOT_INITENERGY = False READ_P_10MEV = True READ_N_10MEV = True READ_P_100MEV = True READ_N_100MEV = True READ_N_300MEV = True READ_N_500MEV = True READ_N_500MEV_2 = True READ_N_500MEV_3 = True READ_N_500MEV_4 = True READ_N_500MEV_5 = True READ_N_500MEV_6 = True READ_N_500MEV_7 = True READ_N_500MEV_8 = True READ_P_1GEV = True READ_N_1GEV = True """ 10 MeV proton: """ if READ_P_10MEV: print("\nstart reading 10 MeV proton files...") # file name: file_p_10MeV = input_proton + "user_proton_10_MeV" # read info of all files of 10 MeV protons: number_pe_p_10MeV, momentum_init_p_10MeV, edep_p_10MeV, qedep_p_10MeV = \ get_info_from_file(start_number, stop_number_p, file_p_10MeV, Number_entries_input, r_cut) # save number of pe to txt file: save_array_to_file(number_pe_p_10MeV, output_path, "number_pe_p_10MeV", number_events_p) # save qedep to txt file: save_array_to_file(qedep_p_10MeV, output_path, "qedep_p_10MeV", number_events_p) else: # load number of pe and qedep array from txt file: number_pe_p_10MeV = np.loadtxt(output_path + "number_pe_p_10MeV.txt") qedep_p_10MeV = np.loadtxt(output_path + "qedep_p_10MeV.txt") """ 10 MeV neutron: """ if READ_N_10MEV: print("\nstart reading 10 MeV neutron files...") # file name: file_n_10MeV = input_neutron + "user_neutron_10_MeV" # read info of all files of 10 MeV neutrons: number_pe_n_10MeV, momentum_init_n_10MeV, edep_n_10MeV, qedep_n_10MeV = \ get_info_from_file(start_number, stop_number_n, file_n_10MeV, Number_entries_input, r_cut) # save number of pe to txt file: save_array_to_file(number_pe_n_10MeV, output_path, "number_pe_n_10MeV", number_events_n) # save qedep to txt file: save_array_to_file(qedep_n_10MeV, output_path, "qedep_n_10MeV", number_events_n) else: # load number of pe and qedep array from txt file: number_pe_n_10MeV = np.loadtxt(output_path + "number_pe_n_10MeV.txt") qedep_n_10MeV = np.loadtxt(output_path + "qedep_n_10MeV.txt") """ 100 MeV proton: """ if READ_P_100MEV: print("\nstart reading 100 MeV proton files...") # file name: file_p_100MeV = input_proton + "user_proton_100_MeV" # read info of all files of 100 MeV protons: number_pe_p_100MeV, momentum_init_p_100MeV, edep_p_100MeV, qedep_p_100MeV = \ get_info_from_file(start_number, stop_number_p, file_p_100MeV, Number_entries_input, r_cut) # save number of pe to txt file: save_array_to_file(number_pe_p_100MeV, output_path, "number_pe_p_100MeV", number_events_p) # save qedep to txt file: save_array_to_file(qedep_p_100MeV, output_path, "qedep_p_100MeV", number_events_p) else: # load number of pe and qedep array from txt file: number_pe_p_100MeV = np.loadtxt(output_path + "number_pe_p_100MeV.txt") qedep_p_100MeV = np.loadtxt(output_path + "qedep_p_100MeV.txt") """ 100 MeV neutron: """ if READ_N_100MEV: print("\nstart reading 100 MeV neutron files...") # file name: file_n_100MeV = input_neutron + "user_neutron_100_MeV" # read info of all files of 100 MeV neutrons: number_pe_n_100MeV, momentum_init_n_100MeV, edep_n_100MeV, qedep_n_100MeV = \ get_info_from_file(start_number, stop_number_n, file_n_100MeV, Number_entries_input, r_cut) # save number of pe to txt file: save_array_to_file(number_pe_n_100MeV, output_path, "number_pe_n_100MeV", number_events_n) # save qedep to txt file: save_array_to_file(qedep_n_100MeV, output_path, "qedep_n_100MeV", number_events_n) else: # load number of pe and qedep array from txt file: number_pe_n_100MeV = np.loadtxt(output_path + "number_pe_n_100MeV.txt") qedep_n_100MeV = np.loadtxt(output_path + "qedep_n_100MeV.txt") """ 300 MeV neutron: """ if READ_N_300MEV: print("\nstart reading 300 MeV neutron files...") # file name: file_n_300MeV = input_neutron + "user_neutron_300_MeV" # read info of all files of 300 MeV neutrons: number_pe_n_300MeV, momentum_init_n_300MeV, edep_n_300MeV, qedep_n_300MeV = \ get_info_from_file(start_number, stop_number_n, file_n_300MeV, Number_entries_input, r_cut) # save number of pe to txt file: save_array_to_file(number_pe_n_300MeV, output_path, "number_pe_n_300MeV", number_events_n) # save qedep to txt file: save_array_to_file(qedep_n_300MeV, output_path, "qedep_n_300MeV", number_events_n) else: # load number of pe and qedep array from txt file: number_pe_n_300MeV = np.loadtxt(output_path + "number_pe_n_300MeV.txt") qedep_n_300MeV = np.loadtxt(output_path + "qedep_n_300MeV.txt") """ 500 MeV neutron (user_neutron_500_MeV_0.root to user_neutron_500_MeV_99.root): """ if READ_N_500MEV: print("\nstart reading 500 MeV neutron files...") # file name: file_n_500MeV = input_neutron + "user_neutron_500_MeV" # read info of all files of 500 MeV neutrons: number_pe_n_500MeV, momentum_init_n_500MeV, edep_n_500MeV, qedep_n_500MeV = \ get_info_from_file(start_number, stop_number_n, file_n_500MeV, Number_entries_input, r_cut) # save number of pe to txt file: save_array_to_file(number_pe_n_500MeV, output_path, "number_pe_n_500MeV", number_events_n) # save qedep to txt file: save_array_to_file(qedep_n_500MeV, output_path, "qedep_n_500MeV", number_events_n) else: # load number of pe and qedep array from txt file: number_pe_n_500MeV = np.loadtxt(output_path + "number_pe_n_500MeV.txt") qedep_n_500MeV = np.loadtxt(output_path + "qedep_n_500MeV.txt") """ 500 MeV neutron (user_neutron_500_MeV_100.root to user_neutron_500_MeV_199.root): """ if READ_N_500MEV_2: print("\nstart reading 500 MeV neutron files 2...") # file name: file_n_500MeV_2 = input_neutron + "user_neutron_500_MeV" # read info of all files of 500 MeV neutrons: number_pe_n_500MeV_2, momentum_init_n_500MeV_2, edep_n_500MeV_2, qedep_n_500MeV_2 = \ get_info_from_file(start_number+100, stop_number_n+100, file_n_500MeV_2, Number_entries_input, r_cut) # save number of pe to txt file: save_array_to_file(number_pe_n_500MeV_2, output_path, "number_pe_n_500MeV_2", number_events_n) # save qedep to txt file: save_array_to_file(qedep_n_500MeV_2, output_path, "qedep_n_500MeV_2", number_events_n) else: # load number of pe and qedep array from txt file: number_pe_n_500MeV_2 = np.loadtxt(output_path + "number_pe_n_500MeV_2.txt") qedep_n_500MeV_2 = np.loadtxt(output_path + "qedep_n_500MeV_2.txt") """ 500 MeV neutron (user_neutron_500_MeV_200.root to user_neutron_500_MeV_299.root): """ if READ_N_500MEV_3: print("\nstart reading 500 MeV neutron files 3...") # file name: file_n_500MeV_3 = input_neutron + "user_neutron_500_MeV" # read info of all files of 500 MeV neutrons: number_pe_n_500MeV_3, momentum_init_n_500MeV_3, edep_n_500MeV_3, qedep_n_500MeV_3 = \ get_info_from_file(start_number+200, stop_number_n+200, file_n_500MeV_3, Number_entries_input, r_cut) # save number of pe to txt file: save_array_to_file(number_pe_n_500MeV_3, output_path, "number_pe_n_500MeV_3", number_events_n) # save qedep to txt file: save_array_to_file(qedep_n_500MeV_3, output_path, "qedep_n_500MeV_3", number_events_n) else: # load number of pe and qedep array from txt file: number_pe_n_500MeV_3 = np.loadtxt(output_path + "number_pe_n_500MeV_3.txt") qedep_n_500MeV_3 = np.loadtxt(output_path + "qedep_n_500MeV_3.txt") """ 500 MeV neutron (user_neutron_500_MeV_300.root to user_neutron_500_MeV_399.root): """ if READ_N_500MEV_4: print("\nstart reading 500 MeV neutron files 4...") # file name: file_n_500MeV_4 = input_neutron + "user_neutron_500_MeV" # read info of all files of 500 MeV neutrons: number_pe_n_500MeV_4, momentum_init_n_500MeV_4, edep_n_500MeV_4, qedep_n_500MeV_4 = \ get_info_from_file(start_number+300, stop_number_n+300, file_n_500MeV_4, Number_entries_input, r_cut) # save number of pe to txt file: save_array_to_file(number_pe_n_500MeV_4, output_path, "number_pe_n_500MeV_4", number_events_n) # save qedep to txt file: save_array_to_file(qedep_n_500MeV_4, output_path, "qedep_n_500MeV_4", number_events_n) else: # load number of pe and qedep array from txt file: number_pe_n_500MeV_4 = np.loadtxt(output_path + "number_pe_n_500MeV_4.txt") qedep_n_500MeV_4 = np.loadtxt(output_path + "qedep_n_500MeV_4.txt") """ 500 MeV neutron (user_neutron_500_MeV_400.root to user_neutron_500_MeV_499.root): """ if READ_N_500MEV_5: print("\nstart reading 500 MeV neutron files 5...") # file name: file_n_500MeV_5 = input_neutron + "user_neutron_500_MeV" # read info of all files of 500 MeV neutrons: number_pe_n_500MeV_5, momentum_init_n_500MeV_5, edep_n_500MeV_5, qedep_n_500MeV_5 = \ get_info_from_file(start_number+400, stop_number_n+400, file_n_500MeV_5, Number_entries_input, r_cut) # save number of pe to txt file: save_array_to_file(number_pe_n_500MeV_5, output_path, "number_pe_n_500MeV_5", number_events_n) # save qedep to txt file: save_array_to_file(qedep_n_500MeV_5, output_path, "qedep_n_500MeV_5", number_events_n) else: # load number of pe and qedep array from txt file: number_pe_n_500MeV_5 = np.loadtxt(output_path + "number_pe_n_500MeV_5.txt") qedep_n_500MeV_5 = np.loadtxt(output_path + "qedep_n_500MeV_5.txt") """ 500 MeV neutron (user_neutron_500_MeV_500.root to user_neutron_500_MeV_599.root): """ if READ_N_500MEV_6: print("\nstart reading 500 MeV neutron files 6...") # file name: file_n_500MeV_6 = input_neutron + "user_neutron_500_MeV" # read info of all files of 500 MeV neutrons: number_pe_n_500MeV_6, momentum_init_n_500MeV_6, edep_n_500MeV_6, qedep_n_500MeV_6 = \ get_info_from_file(start_number+500, stop_number_n+500, file_n_500MeV_6, Number_entries_input, r_cut) # save number of pe to txt file: save_array_to_file(number_pe_n_500MeV_6, output_path, "number_pe_n_500MeV_6", number_events_n) # save qedep to txt file: save_array_to_file(qedep_n_500MeV_6, output_path, "qedep_n_500MeV_6", number_events_n) else: # load number of pe and qedep array from txt file: number_pe_n_500MeV_6 = np.loadtxt(output_path + "number_pe_n_500MeV_6.txt") qedep_n_500MeV_6 = np.loadtxt(output_path + "qedep_n_500MeV_6.txt") """ 500 MeV neutron (user_neutron_500_MeV_600.root to user_neutron_500_MeV_699.root): """ if READ_N_500MEV_7: print("\nstart reading 500 MeV neutron files 7...") # file name: file_n_500MeV_7 = input_neutron + "user_neutron_500_MeV" # read info of all files of 500 MeV neutrons: number_pe_n_500MeV_7, momentum_init_n_500MeV_7, edep_n_500MeV_7, qedep_n_500MeV_7 = \ get_info_from_file(start_number+600, stop_number_n+600, file_n_500MeV_7, Number_entries_input, r_cut) # save number of pe to txt file: save_array_to_file(number_pe_n_500MeV_7, output_path, "number_pe_n_500MeV_7", number_events_n) # save qedep to txt file: save_array_to_file(qedep_n_500MeV_7, output_path, "qedep_n_500MeV_7", number_events_n) else: # load number of pe and qedep array from txt file: number_pe_n_500MeV_7 = np.loadtxt(output_path + "number_pe_n_500MeV_7.txt") qedep_n_500MeV_7 = np.loadtxt(output_path + "qedep_n_500MeV_7.txt") # """ 500 MeV neutron (user_neutron_500_MeV_700.root to user_neutron_500_MeV_799.root): """ # if READ_N_500MEV_8: # print("\nstart reading 500 MeV neutron files 8...") # # file name: # file_n_500MeV_8 = input_neutron + "user_neutron_500_MeV" # # read info of all files of 500 MeV neutrons: # number_pe_n_500MeV_8, momentum_init_n_500MeV_8, edep_n_500MeV_8, qedep_n_500MeV_8 = \ # get_info_from_file(start_number+700, stop_number_n+700, file_n_500MeV_8, Number_entries_input, r_cut) # # save number of pe to txt file: # save_array_to_file(number_pe_n_500MeV_8, output_path, "number_pe_n_500MeV_8", number_events_n) # # save qedep to txt file: # save_array_to_file(qedep_n_500MeV_8, output_path, "qedep_n_500MeV_8", number_events_n) # else: # # load number of pe and qedep array from txt file: # number_pe_n_500MeV_8 = np.loadtxt(output_path + "number_pe_n_500MeV_8.txt") # qedep_n_500MeV_8 = np.loadtxt(output_path + "qedep_n_500MeV_8.txt") """ 1 GeV proton: """ if READ_P_1GEV: print("\nstart reading 1 GeV proton files...") # file name: file_p_1GeV = input_proton + "user_proton_1000_MeV" # read info of all files of 1 GeV protons: number_pe_p_1GeV, momentum_init_p_1GeV, edep_p_1GeV, qedep_p_1GeV = \ get_info_from_file(start_number, stop_number_p, file_p_1GeV, Number_entries_input, r_cut) # save number of pe to txt file: save_array_to_file(number_pe_p_1GeV, output_path, "number_pe_p_1GeV", number_events_p) # save qedep to txt file: save_array_to_file(qedep_p_1GeV, output_path, "qedep_p_1GeV", number_events_p) else: # load number of pe and qedep array from txt file: number_pe_p_1GeV = np.loadtxt(output_path + "number_pe_p_1GeV.txt") qedep_p_1GeV = np.loadtxt(output_path + "qedep_p_1GeV.txt") """ 1 GeV neutron: """ if READ_N_1GEV: print("\nstart reading 1 GeV neutron files...") # file name: file_n_1GeV = input_neutron + "user_neutron_1000_MeV" # read info of all files of 1 GeV neutrons: number_pe_n_1GeV, momentum_init_n_1GeV, edep_n_1GeV, qedep_n_1GeV = \ get_info_from_file(start_number, stop_number_n, file_n_1GeV, Number_entries_input, r_cut) # save number of pe to txt file: save_array_to_file(number_pe_n_1GeV, output_path, "number_pe_n_1GeV", number_events_n) # save qedep to txt file: save_array_to_file(qedep_n_1GeV, output_path, "qedep_n_1GeV", number_events_n) else: # load number of pe and qedep array from txt file: number_pe_n_1GeV = np.loadtxt(output_path + "number_pe_n_1GeV.txt") qedep_n_1GeV = np.loadtxt(output_path + "qedep_n_1GeV.txt") """ linear fit to qedep vs. nPE diagram: """ # build one array for qedep: qedep_total = np.concatenate((qedep_p_10MeV, qedep_n_10MeV, qedep_p_100MeV, qedep_n_100MeV, qedep_n_300MeV, qedep_n_500MeV, qedep_n_500MeV_2, qedep_n_500MeV_3, qedep_n_500MeV_4, qedep_n_500MeV_5, qedep_n_500MeV_6, qedep_n_500MeV_7, qedep_p_1GeV, qedep_n_1GeV)) # build one array for number of p.e.: number_pe_total = np.concatenate((number_pe_p_10MeV, number_pe_n_10MeV, number_pe_p_100MeV, number_pe_n_100MeV, number_pe_n_300MeV, number_pe_n_500MeV, number_pe_n_500MeV_2, number_pe_n_500MeV_3, number_pe_n_500MeV_4, number_pe_n_500MeV_5, number_pe_n_500MeV_6, number_pe_n_500MeV_7, number_pe_p_1GeV, number_pe_n_1GeV)) """ take only values for qedep below max_evis: """ # preallocate arrays: qedep_total_interesting = np.array([]) number_pe_total_interesting = np.array([]) # loop over qedep_total: for index in range(len(qedep_total)): if qedep_total[index] <= max_evis: qedep_total_interesting = np.append(qedep_total_interesting, qedep_total[index]) number_pe_total_interesting = np.append(number_pe_total_interesting, number_pe_total[index]) """ do linear fit """ # do linear fit with np.linalg.lstsq: # The model is y = a * x; x = number_pe_total_interesting, y = qedep_total_interesting # x needs to be a column vector instead of a 1D vector for this, however. number_pe_total_interesting_columnvector = number_pe_total_interesting[:, np.newaxis] # first value of output is slope of linear fit (fir_result is array with one entry): fit_result = np.linalg.lstsq(number_pe_total_interesting_columnvector, qedep_total_interesting, rcond=None)[0] # take first entry of fit_result: fit_result = fit_result[0] # set x axis for linear fit: fit_x_axis = np.arange(0, max(number_pe_total_interesting), 100) # set y axis for linear fit: fit_y_axis = fit_result * fit_x_axis print("n_500MeV = {0:d}".format(len(number_pe_n_500MeV) + len(number_pe_n_500MeV_2) + len(number_pe_n_500MeV_3) + len(number_pe_n_500MeV_4) + len(number_pe_n_500MeV_5) + len(number_pe_n_500MeV_6) + len(number_pe_n_500MeV_7))) """ plot Qedep as function of nPE for all energies: """ h1 = plt.figure(1, figsize=(15, 8)) num_proton = len(number_pe_p_10MeV) + len(number_pe_p_100MeV) + len(number_pe_p_1GeV) num_neutron = len(number_pe_n_10MeV) + len(number_pe_n_100MeV) + len(number_pe_n_300MeV) + len(number_pe_n_1GeV) + \ len(number_pe_n_500MeV) + len(number_pe_n_500MeV_2) + len(number_pe_n_500MeV_3) + \ len(number_pe_n_500MeV_4) + len(number_pe_n_500MeV_5) + len(number_pe_n_500MeV_6) + \ len(number_pe_n_500MeV_7) plt.plot(number_pe_p_10MeV, qedep_p_10MeV, "rx", label="proton ({0:d} entries)".format(num_proton)) plt.plot(number_pe_n_10MeV, qedep_n_10MeV, "bx", label="neutron ({0:d} entries)".format(num_neutron)) plt.plot(number_pe_p_100MeV, qedep_p_100MeV, "rx") plt.plot(number_pe_n_100MeV, qedep_n_100MeV, "bx") plt.plot(number_pe_n_300MeV, qedep_n_300MeV, "bx") plt.plot(number_pe_n_500MeV, qedep_n_500MeV, "bx") plt.plot(number_pe_n_500MeV_2, qedep_n_500MeV_2, "bx") plt.plot(number_pe_n_500MeV_3, qedep_n_500MeV_3, "bx") plt.plot(number_pe_n_500MeV_4, qedep_n_500MeV_4, "bx") plt.plot(number_pe_n_500MeV_5, qedep_n_500MeV_5, "bx") plt.plot(number_pe_n_500MeV_6, qedep_n_500MeV_6, "bx") plt.plot(number_pe_n_500MeV_7, qedep_n_500MeV_7, "bx") # plt.plot(number_pe_n_500MeV_8, qedep_n_500MeV_8, "bx") plt.plot(number_pe_p_1GeV, qedep_p_1GeV, "rx") plt.plot(number_pe_n_1GeV, qedep_n_1GeV, "bx") plt.xlabel("number of p.e.") plt.ylabel("visible energy in JUNO detector (in MeV)") plt.title("Visible energy vs. number of p.e.") plt.legend() plt.grid() plt.savefig(output_path + "qedep_vs_nPE_all_energies.png") """ plot Qedep as function of nPE for qedep <= max_evis: """ h3 = plt.figure(3, figsize=(15, 8)) plt.plot(number_pe_total_interesting, qedep_total_interesting, "rx", label="{0:d} entries".format(len(number_pe_total_interesting))) plt.xlabel("number of p.e.") plt.ylabel("visible energy in JUNO detector (in MeV)") plt.title("Visible energy vs. number of p.e.") plt.legend() plt.grid() plt.savefig(output_path + "qedep_vs_nPE_interesting.png") """ plot Qedep as function of nPE with fit for qedep <= max_evis: """ h4 = plt.figure(4, figsize=(15, 8)) plt.plot(number_pe_total_interesting, qedep_total_interesting, "rx", label="{0:d} entries".format(len(number_pe_total_interesting))) plt.plot(fit_x_axis, fit_y_axis, "b", label="linear fit: f(x) = {0:.3E} * x" .format(fit_result)) plt.xlabel("number of p.e.") plt.ylabel("visible energy in JUNO detector (in MeV)") plt.title("Visible energy vs. number of p.e.\n(with linear fit)") plt.legend() plt.grid() plt.savefig(output_path + "fit_qedep_vs_nPE_interesting.png") """ display Qedep as function of nPE in 2D histogram for qedep <= max_evis: """ h5 = plt.figure(5, figsize=(15, 8)) bins_edges_nPE = np.arange(0, max(number_pe_total_interesting), 2000) bins_edges_Qedep = np.arange(0, max_evis+2, 2) plt.hist2d(number_pe_total_interesting, qedep_total_interesting, [bins_edges_nPE, bins_edges_Qedep], norm=LogNorm(), cmap="rainbow") plt.xlabel("number of p.e.") plt.ylabel("visible energy in JUNO detector (in MeV)") plt.title("Visible energy vs. number of p.e.") plt.colorbar() plt.legend() plt.grid() plt.savefig(output_path + "hist2d_Qedep_vs_nPE_interesting.png") """ display Qedep as function of nPE in 2D histogram for qedep <= max_evis with fit: """ h6 = plt.figure(6, figsize=(15, 8)) bins_edges_nPE = np.arange(0, max(number_pe_total_interesting), 2000) bins_edges_Qedep = np.arange(0, max_evis+2, 2) plt.hist2d(number_pe_total_interesting, qedep_total_interesting, [bins_edges_nPE, bins_edges_Qedep], norm=LogNorm(), cmap="rainbow") plt.plot(fit_x_axis, fit_y_axis, "k", label="{1:d} entries\nlinear fit: f(x) = {0:.3E} * x" .format(fit_result, len(number_pe_total_interesting))) plt.xlabel("number of p.e.") plt.ylabel("visible energy in JUNO detector (in MeV)") plt.title("Visible energy vs. number of p.e.\nwith linear fit") plt.colorbar() plt.legend() plt.grid() plt.savefig(output_path + "hist2d_Qedep_vs_nPE_interesting_fit.png") # plot initial energy of proton/neutron: if PLOT_INITENERGY and READ_P_10MEV and READ_N_10MEV and READ_P_100MEV and READ_N_100MEV and READ_N_300MEV and \ READ_P_1GEV and READ_N_1GEV: h3 = plt.figure(3, figsize=(15, 8)) bin_width = 0.1 Bins = np.arange(9.5, 1000.5, bin_width) plt.hist(momentum_init_p_10MeV, bins=Bins, color='r', align='mid', label="{0:d} protons".format(number_events_p) + " with $E_{kin}$ = 10 MeV") plt.hist(momentum_init_n_10MeV, bins=Bins, color='b', align='mid', label="{0:d} neutrons".format(number_events_n) + " with $E_{kin}$ = 10 MeV") plt.hist(momentum_init_p_100MeV, bins=Bins, color='r', linestyle="--", align='mid', label="{0:d} protons".format(number_events_p) + " with $E_{kin}$ = 100 MeV") plt.hist(momentum_init_n_100MeV, bins=Bins, color='b', linestyle="--", align='mid', label="{0:d} neutrons".format(number_events_n) + " with $E_{kin}$ = 100 MeV") plt.hist(momentum_init_n_300MeV, bins=Bins, color='b', linestyle="-.", align='mid', label="{0:d} neutrons".format(number_events_n) + " with $E_{kin}$ = 300 MeV") plt.hist(momentum_init_p_1GeV, bins=Bins, color='r', linestyle=":", align='mid', label="{0:d} protons".format(number_events_p) + " with $E_{kin}$ = 1 GeV") plt.hist(momentum_init_n_1GeV, bins=Bins, color='b', linestyle=":", align='mid', label="{0:d} neutrons".format(number_events_n) + " with $E_{kin}$ = 1 GeV") plt.xlabel("initial kinetic energy in MeV", fontsize=13) plt.ylabel("entries per bin (bin-width = {0:0.3f} MeV)".format(bin_width), fontsize=13) plt.title("Initial neutron/proton energy", fontsize=18) plt.legend() plt.grid() plt.savefig(output_path + "init_energy.png") """ Efficiency of the conversion fit: """ # the prompt energy cut is defined by min_ecut and max_ecut in MeV: min_ecut = 10.0 max_ecut = 100.0 # total number of simulated events: number_entries = len(number_pe_total) # preallocate number of 'real' entries inside energy window: number_entries_real = 0 # preallocate number of 'calculated' entries inside energy window: number_entries_calculated = 0 # preallocate number of events that are counted too less: number_too_less = 0 # preallocate number of events that are counted too much: number_too_much = 0 # calculate Qedep for each entry in number_pe_total with the function of the linear fit: qedep_calculated = fit_result * number_pe_total # loop over qedep_total (same like looping over qedep_calculated, since len(qedep_total) == len(qedep_calculated)). # Therefore check lengths before: if len(qedep_total) != len(qedep_calculated): print("--------------------ERROR: len(qedep_total) != len(qedep_calculated)") for index in range(len(qedep_total)): # preallocate indices to check difference between real and calculated data: index_real = 0 index_calc = 0 # get the number of entries from the simulated data, where min_ecut <= Qedep <= max_ecut: # check min_ecut <= Qedep <= max_ecut: if min_ecut <= qedep_total[index] <= max_ecut: # entry inside energy window: number_entries_real += 1 # get index: index_real = index # get the number of entries from the calculated data, where min_ecut <= qedep_calc <= max_ecut: # check min_ecut <= Qedep <= max_ecut: if min_ecut <= qedep_calculated[index] <= max_ecut: # entry inside energy window: number_entries_calculated += 1 # get index: index_calc = index # check entry, where there is an entry in real data, but not in calculated data (events are counted too much): if index_real != 0 and index_calc == 0: number_too_less += 1 print("\nindex_real = {0:d}, index_calc = {1:d}".format(index_real, index_calc)) print("qedep_total = {0:.2f} MeV".format(qedep_total[index])) print("qedep_calculated = {0:.2f} MeV".format(qedep_calculated[index])) # check entry, where there is an entry in calculated data, but not in real data (events are counted too less): if index_real == 0 and index_calc != 0: number_too_much += 1 print("\nindex_real = {0:d}, index_calc = {1:d}".format(index_real, index_calc)) print("qedep_total = {0:.2f} MeV".format(qedep_total[index])) print("qedep_calculated = {0:.2f} MeV".format(qedep_calculated[index])) # calculate the efficiency of the prompt energy cut (describes the 'error', when using the conversion from nPE to Qedep) # in percent: efficiency_prompt_energy_cut = 100 + float(number_too_less - number_too_much) / float(number_entries_calculated) * 100 print("total number of simulated events = {0:d}\n".format(number_entries)) print("number of 'real' entries from simulated data with {0:.1f} MeV <= Qedep_real <= {1:.1f} MeV: {2:d}\n" .format(min_ecut, max_ecut, number_entries_real)) print("number of entries calculated with linear fit with {0:.1f} MeV <= Qedep_calc <= {1:.1f} MeV: {2:d}\n" .format(min_ecut, max_ecut, number_entries_calculated)) print("number of events counted too less = {0:d}".format(number_too_less)) print("number of events counted too much = {0:d}".format(number_too_much)) print("efficiency of prompt energy cut = {0:.4f} % (1 + (number_too_less - number_too_much) / number_calculated)" .format(efficiency_prompt_energy_cut))
'''A module that contains classes and functions for using tensorflow.''' from contextlib import contextmanager import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import (Dense, Conv2D, MaxPooling2D, Flatten, InputLayer) def wrap_in_session(function, session=None): ''' Wraps an object returned by a function in a SessionWrapper. :param function: (callable) A callable that returns an object. :param session: (None or tensorflow.Session) A session that is wrapped over all methods and attributes of the returned object. :return: (SessionWrapper) A session wrapped object. ''' def _wrapped_function(*args, **kwargs): config = tf.ConfigProto() config.gpu_options.allow_growth = True graph = session.graph if session else tf.Graph() with graph.as_default(): new_session = session or tf.Session(graph=graph, config=config) with new_session.as_default(): returned_object = function(*args, **kwargs) return SessionWrapper(returned_object, new_session) return _wrapped_function def call_in_session(function, session): ''' Wraps a function call in a session scope. :param function: (callable) A callable to call within a session scope. :param session: (None or tensorflow.Session) A session that is scoped over the function call. :return: () Returns the result of function. ''' def _wrapped_function(*args, **kwargs): config = tf.ConfigProto() config.gpu_options.allow_growth = True graph = session.graph with graph.as_default(): with session.as_default(): return function(*args, **kwargs) return _wrapped_function @wrap_in_session def create_conv_net(input_shape, output_size, kernel_sizes=(3, 3), filter_sizes=(32, 64), layers=(256, 256), activation='relu'): ''' Create a wrapped keras convnet with its own private session. :param input_shape: (Sequence) The shape of the expected input. :param output_size: (int) The number of labels intended to be predicted. :param kernel_sizes: (Sequence) Defines the sizes of the kernels. :param filter_sizes: (Sequence) Defines the number of filters. :param layers: (Sequence) Defines the number of hidden layers. :param activations: (str) Defines the activation function to use. :return: (WrappedSession(tf.keras.Model)) A keras model ''' model = Sequential() model.add(InputLayer(input_shape)) for k_size, f_size in zip(kernel_sizes, filter_sizes): model.add(Conv2D( f_size, kernel_size=k_size, activation=activation, padding='same' )) model.add(MaxPooling2D(2)) model.add(Flatten()) for hidden_units in layers: model.add(Dense(hidden_units, activation=activation)) model.add(Dense(output_size, activation='softmax')) model.compile( optimizer="adam", loss='binary_crossentropy', metrics=['accuracy'] ) return model @wrap_in_session def create_neural_net(input_shape, output_size, layers=(256, 256), activation='relu'): ''' Create a wrapped keras neural network with its own private session. :param input_shape: (Sequence) The shape of the expected input. :param output_size: (int) The number of labels intended to be predicted. :param layers: (Sequence) Defines the number of hidden layers. :param activations: (str) Defines the activation function to use. :return: (WrappedSession(tf.keras.Model)) A keras model ''' model = Sequential() model.add(InputLayer(input_shape)) if len(input_shape) > 1: model.add(Flatten()) for hidden_units in layers: model.add(Dense(hidden_units, activation=activation)) model.add(Dense(output_size, activation='softmax')) model.compile( optimizer="adam", loss='binary_crossentropy', metrics=['accuracy'] ) return model class SessionWrapper: '''A class that encapsulates all methods of a class in a session.''' def __init__(self, model, session): ''' Create a session wrapper. :param model: () An object that will have all its methods wrapped with a session. :param session: (tensorflow.Session) Used to wrap all method calls. ''' self._wrapped_model = model self._session = session def __getattr__(self, attr): if attr in self.__dict__: return getattr(self, attr) with self.with_scope(): returned_attr = getattr(self._wrapped_model, attr) if callable(returned_attr): return call_in_session(returned_attr, self._session) return returned_attr def __repr__(self): return '<SessionWrapper<{!r}>>'.format(self._wrapped_model) @contextmanager def with_scope(self): '''Enter into the owned session's scope.''' with self._session.as_default(), self._session.graph.as_default(): yield
import pkg_resources default_app_config = "pinax.badges.apps.AppConfig" __version__ = pkg_resources.get_distribution("pinax-badges").version
import os import os.path as ops import urllib.request import gzip import numpy as np import pickle def get_mnist_data(datadir): dataroot = 'http://yann.lecun.com/exdb/mnist/' key_file = { 'train_img': 'train-images-idx3-ubyte.gz', 'train_label': 'train-labels-idx1-ubyte.gz', 'test_img': 't10k-images-idx3-ubyte.gz', 'test_label': 't10k-labels-idx1-ubyte.gz' } os.makedirs(datadir, exist_ok=True) for key, filename in key_file.items(): if ops.exists(ops.join(datadir, filename)): print(f"already downloaded : {filename}") else: urllib.request.urlretrieve(ops.join(dataroot, filename), ops.join(datadir, filename)) with gzip.open(ops.join(datadir, key_file["train_img"]), "rb") as f: train_img = np.frombuffer(f.read(), np.uint8, offset=16) train_img = train_img.reshape(-1, 784) with gzip.open(ops.join(datadir, key_file["train_label"]), "rb") as f: train_label = np.frombuffer(f.read(), np.uint8, offset=8) with gzip.open(ops.join(datadir, key_file["test_img"]), "rb") as f: test_img = np.frombuffer(f.read(), np.uint8, offset=16) test_img = test_img.reshape(-1, 784) with gzip.open(ops.join(datadir, key_file["test_label"]), "rb") as f: test_label = np.frombuffer(f.read(), np.uint8, offset=8) return train_img, train_label, test_img, test_label def get_cifar10_data(datadir): datadir = os.path.join(datadir, "cifar-10-batches-py") # == train == train_img = [] train_label = [] for i in range(1, 6): path = os.path.join(datadir, f"data_batch_{i}") with open(path, 'rb') as f: data = pickle.load(f, encoding="latin-1") train_img.append(data['data']) train_label.append(data['labels']) train_img = np.concatenate(train_img, axis=0).reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1) train_label = np.concatenate(train_label, axis=0) # == test == path = os.path.join(datadir, f"test_batch") with open(path, 'rb') as f: data = pickle.load(f, encoding="latin-1") test_img = np.array(data['data']).reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1) test_label = np.array(data['labels']) return train_img, train_label, test_img, test_label def get_cifar100_data(datadir): datadir = os.path.join(datadir, "cifar-100-python") # == train = path = os.path.join(datadir, "train") with open(path, 'rb') as f: data = pickle.load(f, encoding="latin-1") train_img = np.array(data['data']).reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1) train_label = np.array(data['fine_labels']) # == test == path = os.path.join(datadir, "test") with open(path, 'rb') as f: data = pickle.load(f, encoding="latin-1") test_img = np.array(data['data']).reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1) test_label = np.array(data['fine_labels']) return train_img, train_label, test_img, test_label
# -*- coding: utf-8 -*- import torch import os from torchvision import transforms from PIL import Image import torch.nn as nn from math import log10 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def calc_psnr(pred_path, gt_path, result_save_path, epoch): if not os.path.exists(result_save_path): os.makedirs(result_save_path) transform = transforms.Compose([ transforms.ToTensor(), ]) criterionMSE = nn.MSELoss().to(device) psnr, total_psnr, avg_psnr = 0.0, 0.0, 0.0 epoch_result = result_save_path + 'PSNR_epoch_' + str(epoch) + '.csv' epochfile = open(epoch_result, 'w') epochfile.write('image_name' + ','+ 'psnr' + '\n') total_result = result_save_path + 'PSNR_total_results_epoch_avgpsnr.csv' totalfile = open(total_result, 'a+') print('======================= start to calculate PSNR =======================') test_imgs = [f for f in os.listdir(pred_path)] valid_i = 0 for i, img in enumerate(test_imgs): pred_pil = Image.open(os.path.join(pred_path, img)) pred_tensor = transform(pred_pil) pred = pred_tensor.to(device) imgName, _, _ = img.rsplit('_', 2) gt_imgName = imgName + '.bmp' gt_pil = Image.open(os.path.join(gt_path, gt_imgName)) gt_tensor = transform(gt_pil) gt = gt_tensor.to(device) gt = torch.cat([gt,gt,gt], dim=0) mse = criterionMSE(pred, gt) # psnr = 10 * log10(1 / mse.item()) eps = 0.00001 psnr = 10 * log10(1 / (mse.item() + eps)) if mse.item() > eps: total_psnr += psnr valid_i += 1 epochfile.write(gt_imgName + ',' + str(round(psnr, 6)) + '\n') if i % 200 == 0: print("=== PSNR is processing {:>3d}-th image ===".format(i)) print("======================= Complete the PSNR test of {:>3d} images ======================= ".format(i+1)) # avg_psnr = total_psnr / i avg_psnr = total_psnr / valid_i epochfile.write('Average' + ',' + str(round(avg_psnr, 6)) + '\n') epochfile.close() totalfile.write(str(epoch) + ',' + str(round(avg_psnr, 6)) + '\n') totalfile.close() print('valid_i is ', valid_i) return avg_psnr
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('basketball', '0017_auto_20150724_1914'), ] operations = [ migrations.AlterField( model_name='playbyplay', name='primary_play', field=models.CharField(max_length=30, choices=[('fgm', 'FGM'), ('fga', 'FGA'), ('threepm', '3PM'), ('threepa', '3PA'), ('blk', 'BLK'), ('to', 'TO'), ('pf', 'FOUL'), ('sub_out', 'OUT'), ('misc', 'Misc')]), ), migrations.AlterField( model_name='playbyplay', name='top_play_rank', field=models.CharField(max_length=30, choices=[('t01', 'T1'), ('t02', 'T2'), ('t03', 'T3'), ('t04', 'T4'), ('t05', 'T5'), ('t06', 'T6'), ('t07', 'T7'), ('t08', 'T8'), ('t09', 'T9'), ('t10', 'T10'), ('nt01', 'NT1'), ('nt02', 'NT2'), ('nt03', 'NT3'), ('nt04', 'NT4'), ('nt05', 'NT5'), ('nt06', 'NT6'), ('nt07', 'NT7'), ('nt08', 'NT8'), ('nt09', 'NT9'), ('nt10', 'NT10')], help_text='Refers to weekly rank', blank=True), ), ]
#贪心算法,在表示一个较大整数的时候,“罗马数字”不会让你都用 11 加起来, #肯定是写出来的“罗马数字”的个数越少越好。 #类似找零钱 def intTOrome(num): # 把阿拉伯数字与罗马数字可能出现的所有情况和对应关系,放在两个数组中 #此时不适合用字典,索引不方便 # 并且按照阿拉伯数字的大小降序排列,这是贪心选择思想 nums=[1000,900,500,400,100,90,50,40,10,9,5,4,1] romes=['M','CM','D','CD','C','XC','L','XL','x','IX','V','IV','I'] n=len(nums) res='' index=0 while index<n:#不超过数组的长度 while num>=nums[index]:# 注意:这里是等于号,表示尽量使用大的"面值" res+=romes[index] num-=nums[index] index+=1 return res num=3 print(intTOrome(num))
""" route schema """ import typing from vbml import Patcher, PatchedValidators from vbml import Pattern from kumquat.exceptions import KumquatException from kumquat._types import Method class Route: """ app route with path and func """ def __init__(self, path: str, func: typing.Callable, methods: typing.Tuple[Method]): if not path.startswith("/"): raise KumquatException("Path must startswith from '/'") self.methods = methods self.path = path self.func = func def __repr__(self): return f'Route("{self.path}", {self.func})' class Validators(PatchedValidators): """ validator for routes paths """ def route(self, value): if "/" not in value: return value return None class RoutePattern(Pattern): def __init__( self, text: str = None, pattern: str = "{}$", lazy: bool = True, **context ): super().__init__(text, pattern, lazy, **context) def __repr__(self): return f'RoutePattern("{self.text}")' class RoutePatcher(Patcher): def __init__( self, disable_validators: bool = False, validators: typing.Type[PatchedValidators] = None, **pattern_inherit_context, ): super().__init__(disable_validators, validators, **pattern_inherit_context) def pattern(self, _pattern: typing.Union[str, Pattern], **context): context.update(self.pattern_context) if isinstance(_pattern, Pattern): return _pattern.context_copy(**context) return RoutePattern(_pattern, **context) class Router: """ class for saving all app routes """ def __init__(self): self.patcher = RoutePatcher(validators=Validators, default_validators=["route"]) self.pattern = self.patcher.pattern self.routes: typing.Dict[ typing.Tuple[typing.Tuple[Method], Pattern], Route ] = {} def add_route(self, route: Route) -> None: """ add route with vbml pattern path to stack :param route: :return: """ self.routes[(route.methods, self.pattern(route.path))] = route def get_route( self, path: str, method: str ) -> typing.Tuple[typing.Dict[str, str], typing.Optional[Route]]: """ get route object from string path :param method: :param path: :return: """ for route_methods, route_pattern in self.routes: if path == route_pattern.text: return {}, self.routes.get((route_methods, route_pattern)) if self.patcher.check(path, route_pattern): return ( self.patcher.check(path, route_pattern), self.routes.get((route_methods, route_pattern)), ) return {}, None
# Generated by Django 2.2.3 on 2020-09-12 09:12 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('reviewapp', '0001_initial'), ] operations = [ migrations.RenameField( model_name='product', old_name='Ticket', new_name='image', ), ]
''' Created on May 13, 2019 @author: ab75812 ''' print('DeeSub')
from .structs import Currency, Scope, Claim, ClaimStatus, Balance from .errors import MissingScope, BadRequest, NotFound from .client import VirtualCryptoClientBase, VIRTUALCRYPTO_TOKEN_ENDPOINT, VIRTUALCRYPTO_API from typing import Optional, List import datetime import aiohttp import asyncio class AsyncVirtualCryptoClient(VirtualCryptoClientBase): def __init__(self, client_id: str, client_secret: str, scopes: List[Scope], loop=asyncio.get_event_loop()): super().__init__(client_id, client_secret, scopes) self.loop = loop self.session = aiohttp.ClientSession(loop=self.loop) self.wait_ready = asyncio.Event(loop=self.loop) async def wait_for_ready(self): await self.wait_ready.wait() async def start(self): await self.set_token() self.wait_ready.set() async def close(self): await self.session.close() async def set_token(self): body = { 'scope': ' '.join(map(lambda x: x.value, self.scopes)), 'grant_type': 'client_credentials' } async with self.session.post( VIRTUALCRYPTO_TOKEN_ENDPOINT, data=body, auth=aiohttp.BasicAuth(self.client_id, self.client_secret)) as response: data = await response.json() self.token = data['access_token'] self.expires_in = data['expires_in'] self.token_type = data['token_type'] self.when_set_token = datetime.datetime.utcnow() async def get_headers(self): if (datetime.datetime.utcnow() - self.when_set_token).seconds >= self.expires_in: await self.set_token() return { "Authorization": "Bearer " + self.token } async def get(self, path, params) -> aiohttp.ClientResponse: headers = await self.get_headers() return await self.session.get(VIRTUALCRYPTO_API + path, params=params, headers=headers) async def post(self, path, data) -> aiohttp.ClientResponse: headers = await self.get_headers() return await self.session.post(VIRTUALCRYPTO_API + path, data=data, headers=headers) async def patch(self, path, data) -> aiohttp.ClientResponse: headers = await self.get_headers() return await self.session.patch(VIRTUALCRYPTO_API + path, data=data, headers=headers) async def get_currency_by_unit(self, unit: str) -> Optional[Currency]: response = await self.get("/currencies", {"unit": unit}) return Currency.by_json(await response.json()) async def get_currency_by_guild(self, guild_id: int) -> Optional[Currency]: response = await self.get("/currencies", {"guild": str(guild_id)}) return Currency.by_json(await response.json()) async def get_currency_by_name(self, name: str) -> Optional[Currency]: response = await self.get("/currencies", {"name": name}) return Currency.by_json(await response.json()) async def get_currency(self, currency_id: int): response = await self.get("/currencies/" + str(currency_id), {}) return Currency.by_json(await response.json()) async def create_user_transaction(self, unit: str, receiver_discord_id: int, amount: int) -> None: if Scope.Pay not in self.scopes: raise MissingScope("vc.pay") response = await self.post( "/users/@me/transactions", { "unit": unit, "receiver_discord_id": str(receiver_discord_id), "amount": str(amount) } ) if response.status == 400: raise BadRequest((await response.json())["error_info"]) pay = create_user_transaction async def get_claims(self): if Scope.Claim not in self.scopes: raise MissingScope("vc.claim") response = await self.get( "/users/@me/claims", {} ) return list(map(Claim.by_json, await response.json())) async def get_claim(self, claim_id: int): response = await self.get("/users/@me/claims/" + str(claim_id), {}) return Claim.by_json(await response.json()) async def update_claim(self, claim_id: int, status: ClaimStatus): if status == ClaimStatus.Pending: raise ValueError("can't update to pending") response = await self.patch( "/users/@me/claims/" + str(claim_id), {"status": status.value} ) if response.status == 404: raise NotFound((await response.json())["error_description"]) elif response.status == 400: raise BadRequest((await response.json())["error_info"]) return response async def get_balances(self): response = await self.get( "/users/@me/balances", {} ) return list(map(Balance.by_json, await response.json()))
#Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def getIntersectionNode(self, headA, headB): #Determine lengths len1, len2 = 0, 0 currA, currB = headA, headB while currA != None: len1 += 1 currA = currA.next while currB != None: len2 += 1 currB = currB.next #Get to same Starting Point currA, currB = headA, headB while len1 > len2: currA = currA.next len1 -= 1 while len2 > len1: currB = currB.next len2 -= 1 #Loop until intersect is found while currA != None and currB !=None: if currA == currB: return currA currA = currA.next currB = currB.next return None head1 = ListNode(1) head1.next = ListNode(2) intersect = ListNode(3) head1.next.next = intersect intersect.next = ListNode(4) head2 = ListNode(1) head2.next = intersect print(Solution().getIntersectionNode(head1, head2).val) #3 print(Solution().getIntersectionNode(head1, head1).val) #1 head2.next = ListNode(5) print(Solution().getIntersectionNode(head1, head2))
def computepay(h,r): if h <= 40: pay = r * h else: pay = r * 40 + r * 1.5 * (h-40) return pay h = float(input("Enter Hours:")) r = float(input("Enter Rate:")) p = computepay(h,r) print("Pay",p)
import pandas as pd import lightgbm as lgb from datetime import timedelta from tqdm import tqdm from data import data_frames, optimize_df, melt_and_merge, features, lgb_dataset # Global constants MAX_LAG = timedelta(days=57) def next_day_features(df, forecast_date): """ Create features of the next day to forecast. Args: df = [pd.DataFrame] long format dataframe forecast_date = [datetime] forecast date Returns [pd.DataFrame]: Dataframe with features for the next day to forecast. """ forecast_df = df[ (df['date'] >= forecast_date - MAX_LAG) & (df['date'] <= forecast_date) ].copy() forecast_df = features(forecast_df, submission=True) return forecast_df def make_submission(df, first_date): """ Create dataframe in the correct format for submission. Args: df = [pd.DataFrame] pandas dataframe Returns [pd.DataFrame]: Submission dataframe. """ cols = [f"F{i}" for i in range(1, 29)] submission = df.loc[df['date'] >= first_date, ['id', 'sales']].copy() submission['F'] = [f'F{rank}' for rank in submission.groupby('id')['id'].cumcount() + 1] submission = submission.set_index(['id', 'F']).unstack()['sales'][cols].reset_index() submission.fillna(0., inplace=True) submission.sort_values("id", inplace=True) submission.reset_index(drop=True, inplace=True) # make a dummy evaluation forecast submission_eval = submission.copy() submission_eval['id'] = submission_eval['id'].str.replace('validation', 'evaluation') submission = pd.concat([submission, submission_eval], axis=0, sort=False) return submission def infer(model, calendar, prices, sales, filename=''): """ Infer the unit sales with the model. Args: model = [lgb.Booster] trained LightGBM model calendar = [pd.DataFrame] dates of product sales prices = [pd.DataFrame] price of the products sold per store and date sales = [pd.DataFrame] historical daily unit sales data per product and store Returns [pd.DataFrame]: Submission dataframe. """ # create test dataset for submission df = melt_and_merge(calendar, prices, sales, submission=True) # set first forecast date first_date = df.date[pd.isnull(df.sales)].min().to_pydatetime() # forecast the 28 days for validation for day in tqdm(range(0, 28)): forecast_date = first_date + timedelta(days=day) forecast_df = next_day_features(df, forecast_date) drop_cols = ['id', 'date', 'sales', 'd', 'wm_yr_wk', 'weekday'] keep_cols = forecast_df.columns[~forecast_df.columns.isin(drop_cols)] forecast_df = forecast_df.loc[forecast_df['date'] == forecast_date, keep_cols] df.loc[df['date'] == forecast_date, 'sales'] = model.predict(forecast_df) # create the submission file submission = make_submission(df, first_date) submission.to_csv(f'submission{filename}.csv', index=False) return submission if __name__ == "__main__": # Make 4 submission for the report DATAPATH = '../kaggle/input/m5-forecasting-accuracy/' calendar, prices, sales = data_frames(DATAPATH) MODELPATH = '../models/' runs = [(f'{MODELPATH}lgb_year.pt', 365), (f'{MODELPATH}lgb_all.pt', 1000)] val_test = [('val', 28), ('test', 0)] for model_file, days in runs: print(f'Starting submissions for {model_file}') model = lgb.Booster(model_file=model_file) for label, val_days in val_test: print(f'# {label} set') calendar_opt, prices_opt, sales_opt = optimize_df(calendar.copy(), prices.copy(), sales.copy(), days=days, val_days=val_days) sub_suffix = f'_lgb_{days}d_{label}' submission = infer(model, calendar_opt, prices_opt, sales_opt, filename=sub_suffix)
print("Modular multiplicative inverse") def modolu(a, m): a = a % m for x in range(1, m): if (a * x) % m == 1: return x return 1 a = int(input("a = ")) m = int(input("m = ")) print(modolu(a, m))
import numpy as np import os os.system('cls') class arrayRow_DataStructure(): def __init__(self, num_columns): self.num_columns = num_columns self.arr = np.empty((0, self.num_columns)) return def append(self, record): self.arr = np.append(self.arr, record, axis=0) def delete(self, index): self.arr = np.delete(self.arr, index, axis=0) def row_size(self): return len(self.arr) people = arrayRow_DataStructure(4) print(people.arr, people.row_size()) print() # ================================================== col_01_first_name = 'Joseph' col_02_last_name = 'Fischetti' col_03_eye_color = 'green' col_04_age = 75 people.append(np.array([ [col_01_first_name, col_02_last_name, col_03_eye_color, col_04_age]])) print(people.arr, people.row_size()) print() # ================================================== col_01_first_name = 'Mary' col_02_last_name = 'Smith' col_03_eye_color = 'blue' col_04_age = 35 people.append(np.array([ [col_01_first_name, col_02_last_name, col_03_eye_color, col_04_age]])) print(people.arr, people.row_size()) print() # ================================================== col_01_first_name = 'Susan' col_02_last_name = 'Mosley' col_03_eye_color = 'brown' col_04_age = 16 people.append(np.array([ [col_01_first_name, col_02_last_name, col_03_eye_color, col_04_age]])) print(people.arr, people.row_size()) print() # ================================================== people.delete((0, 2)) print(people.arr, people.row_size()) print()
from django.apps import AppConfig class GetSkuConfig(AppConfig): name = 'get_sku'
number = int(input()) last = [] def geacha(n): if n == 0: return 1 else: return 6 * (n) + last[n - 1] i = 0 while True: last.append(geacha(i)) if number <= last[-1]: break i += 1 print(i+1)
import botostubs import os import logging import datetime import boto3 import operator from botocore.exceptions import ClientError boto_session = boto3.Session(profile_name='default') def does_the_bucket_exist(bucketname): s3: botostubs.S3 = boto_session.client('s3') try: response = s3.head_bucket(Bucket=bucketname) except ClientError as e: logging.debug(e) return False return True def main(): bucket_name = "testbucket" logging.basicConfig(level=logging.DEBUG, format='%(levelname)s: %(asctime)s: %(message)s') if does_the_bucket_exist(bucket_name) == True: logging.info( f'{bucket_name} exists and you have permission to access it.') else: logging.info( f'{bucket_name} does not exist or you dont have permission to access it.') if __name__ == '__main__': main()
# Justin J # Fall 2017 # Computational Complexity # Mapping SAT -> 3SAT # Clause helper class class Clause: def __init__(self, a, b, c): self.a = str(a) self.b = str(b) self.c = str(c) def toString(self): return '( ' + self.a + ' + ' + self.b + ' + ' + self.c + ')' # Convert any given clause, convert it to string of clauses with length 3 # Recursively calls itself until 3CNF is satisfied def convertTo3SAT(clauseArray, wCount): # if clause has 3 variables, return its string representation if len(clauseArray) == 3: return Clause(clauseArray[0], clauseArray[1], clauseArray[2]).toString() # if clause has more than 3 variables # introduce new variable w s.t w = 1 iff c[0] and c[1] both equal 0 elif len(clauseArray) > 3: c1 = clauseArray[0] c2 = clauseArray[1] w = 'w' + str(wCount) # create a new clause with c1, c2, and our new w clauseToAdd = Clause(c1, c2, w) # insert !w into front of clauseArray clauseArray = ['!w' + str(wCount)] + clauseArray[2:] # return 3CNF as string and recurse on the long clauseArray return clauseToAdd.toString() + convertTo3SAT(clauseArray, wCount + 1) # if clause has less than 3 variables, add 1 or 2 variables until length 3 met while len(clauseArray) < 3: clauseArray.append(clauseArray[0]) return clauseArray.toString() # For simplification, let our long clause be represented in an array longClause = ['x', 'y', '!r', 's', '!t', 'a', '!f', '!d', 'q'] result = convertTo3SAT(longClause, 1) print'\nConverting instance of SAT into instance of 3SAT recursively...\n' print '\nOriginal disjunctive clause variables:\n ' + str(longClause) print '\n3SAT Result: \n' + result + '\n'
import dash_bootstrap_components as dbc from dash import Input, Output, State, html offcanvas = html.Div( [ dbc.Button( "Open scrollable offcanvas", id="open-offcanvas-scrollable", n_clicks=0, ), dbc.Offcanvas( html.P("The contents on the main page are now scrollable."), id="offcanvas-scrollable", scrollable=True, title="Scrollable Offcanvas", is_open=False, ), ] ) @app.callback( Output("offcanvas-scrollable", "is_open"), Input("open-offcanvas-scrollable", "n_clicks"), State("offcanvas-scrollable", "is_open"), ) def toggle_offcanvas_scrollable(n1, is_open): if n1: return not is_open return is_open
name = input('please say something: ') print('Hi', name)
"""Funcionality for representing a physical variable in aospy.""" import numpy as np class Var(object): """An object representing a physical quantity to be computed. Attributes ---------- name : str The variable's name alt_names : tuple of strings All other names that the variable may be referred to in the input data names : tuple of strings The combination of `name` and `alt_names` description : str A description of the variable func : function The function with which to compute the variable variables : sequence of aospy.Var objects The variables passed to `func` to compute it units : str The variable's physical units domain : str The physical domain of the variable, e.g. 'atmos', 'ocean', or 'land' def_time, def_vert, def_lat, def_lon : bool Whether the variable is defined, respectively, in time, vertically, in latitude, and in longitude math_str : str The mathematical representation of the variable colormap : str The name of the default colormap to be used in plots of this variable valid_range : length-2 tuple The range of values outside which to flag as unphysical/erroneous """ def __init__(self, name, alt_names=None, func=None, variables=None, units='', plot_units='', plot_units_conv=1, domain='atmos', description='', def_time=False, def_vert=False, def_lat=False, def_lon=False, math_str=False, colormap='RdBu_r', valid_range=None): """Instantiate a Var object. Parameters ---------- name : str The variable's name alt_names : tuple of strings All other names that the variable might be referred to in any input data. Each of these should be unique to this variable in order to avoid loading the wrong quantity. description : str A description of the variable func : function The function with which to compute the variable variables : sequence of aospy.Var objects The variables passed to `func` to compute it. Order matters: whenever calculations are performed to generate data corresponding to this Var, the data corresponding to the elements of `variables` will be passed to `self.function` in the same order. units : str The variable's physical units domain : str The physical domain of the variable, e.g. 'atmos', 'ocean', or 'land'. This is only used by aospy by some types of `DataLoader`, including `GFDLDataLoader`. def_time, def_vert, def_lat, def_lon : bool Whether the variable is defined, respectively, in time, vertically, in latitude, and in longitude math_str : str The mathematical representation of the variable. This is typically a raw string of LaTeX math-mode, e.g. r'$T_\mathrm{sfc}$' for surface temperature. colormap : str (Currently not used by aospy) The name of the default colormap to be used in plots of this variable. valid_range : length-2 tuple The range of values outside which to flag as unphysical/erroneous """ # noqa: W605 self.name = name if alt_names is None: self.names = tuple([name]) else: self.alt_names = alt_names self.names = tuple([name] + list(alt_names)) if func is None: self.func = lambda x: x self.variables = None else: self.func = func self.variables = variables self.units = units if not description: if self.func.__doc__ is None: self.description = '' else: self.description = self.func.__doc__ else: self.description = description self.domain = domain self.def_time = def_time self.def_vert = def_vert self.def_lat = def_lat self.def_lon = def_lon self.math_str = math_str self.colormap = colormap self.valid_range = valid_range def __str__(self): return 'Var instance "' + self.name + '"' __repr__ = __str__ def to_plot_units(self, data, dtype_vert=False): """Convert the given data to plotting units.""" if dtype_vert == 'vert_av' or not dtype_vert: conv_factor = self.units.plot_units_conv elif dtype_vert == ('vert_int'): conv_factor = self.units.vert_int_plot_units_conv else: raise ValueError("dtype_vert value `{0}` not recognized. Only " "bool(dtype_vert) = False, 'vert_av', and " "'vert_int' supported.".format(dtype_vert)) if isinstance(data, dict): return {key: val*conv_factor for key, val in data.items()} return data*conv_factor def mask_unphysical(self, data): """Mask data array where values are outside physically valid range.""" if not self.valid_range: return data else: return np.ma.masked_outside(data, np.min(self.valid_range), np.max(self.valid_range))
def fun1(a): print(a) fun1(a=1) def fun2 (a, **kwargs): print(a) print(kwargs) fun2(10, a1=1,b=2) def fun3(a, *args): print(a) print(args) fun3(12, 1,3) f = lambda a1,a2:a1+a2 print(f(1,2)) sum = 0 def f1(): global sum sum = sum+1 print(sum) f1()
import enum class AuthConstants(enum.Enum): noMatch = "Wrong username and password combination" noUser = "User does not exist" sucessLogout = "You have been successfully logged out" passwordUpdated = "Successfully updated your password" codeMail = "A 6 digit verification code has been sent to your mail id" askUsername = "Please enter your username again for security purposes" loginAgain = "Please login to your account again for security purposes" sameUsername = "User with that username already exists" class ImageConstant(enum.Enum): defaultImage = "images/default/default_profile_img.jpg" class ResetConstants(enum.Enum): timeExceeded = "Time limit exceeded" newVerfication = "A new verification code has been sent on your email" noMatch = "Security code does not match"
# Generated by Django 2.0.7 on 2018-09-21 06:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rocky', '0007_auto_20180915_1454'), ] operations = [ migrations.AddField( model_name='book', name='introduction', field=models.TextField(default='', max_length=1500, verbose_name='内容简介'), ), ]
"""add article page view Revision ID: 2a1c4da978f8 Revises: 4058a1c2b44d Create Date: 2015-11-26 10:34:54.369011 """ # revision identifiers, used by Alembic. revision = '2a1c4da978f8' down_revision = '4058a1c2b44d' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('articles', sa.Column('page_view', sa.Integer(), nullable=True)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('articles', 'page_view') ### end Alembic commands ###
from Node import Node class BinaryTree: root = None def __init__(self): print("Tree created") def __str__(self): print(self.root.value) self.root.Print("") def Add(self, value): if self.root == None: self.root = Node(value) #print("Root was zero, new Node created") else: self.root.AddValue(value) #print("Root wasn't zero, other Node created") def Print(self): if self.root != None: self.root.Print("") else: print("Tree is empty, nothing here to print") def Print2(self): if self.root != None: data = ["└──── " + str(self.root.value)] self.root.Print2(data, 0, 0) for x in data: print(x) else: print("Tree is empty, nothing here to print") def display(self): lines, *_ = self.root._display_aux() for line in lines: print(line) def Print3(self): data = [] if(self.root.left != None): self.root.left.Print3(data, 6, "┌──── ") data.append("└──── " + str(self.root.value)) if self.root.right != None: self.root.right.Print3(data, 6, "└──── ") returnStr = "" for x in data: returnStr += x + "\n" return returnStr
from rest_framework import serializers class PredictorSerializer(serializers.Serializer): name = serializers.CharField(max_length=30)
import util import os tutorial_path = os.path.expandvars("$desktop/mans/manim_ce/example_scenes/tutorial_final.py") lines = [] with open(tutorial_path, "r") as f: lines = f.readlines() modules = [] for aline in lines: if aline[0] == 'c': modules.append(aline.split("(")[0][6:]) for amodule in modules: cmd = "/home/peter/setup/bin/manim_with_scene {} {}".format(tutorial_path, amodule) print("cmd : {}".format( cmd )) os.system(cmd)
import time from flask import request from flask_restplus import Api, Resource from server import db from server.operation.register import Register from .. import api import server.document as document ns = api.namespace('opeartion', description="用户留言") class Opeartion(Resource): """ 用户留言模块 """ def get(self): """ 随机查看一条留言 """ try: data = db.query_one( "SELECT content, FROM_UNIXTIME(create_time, '%Y-%m-%d %h') as create_time FROM `work_msg` ORDER BY RAND() DESC LIMIT 0, 1") return {'status': 200, 'msg': data} except Exception as err: return {'status': 400, 'msg': '失败'} def post(self): "用户留言模块" try: kwords = request.json except Exception as err: return {'status': 400, 'msg': '失败,你的数据格式不对 %s' % err} if not kwords: return {'status': 400, 'msg': '失败,你的数据格式不对'} kwargs = {} try: kwargs['msg'] = kwords['msg'] kwargs['mobile'] = kwords['mobile'] kwargs['name'] = kwords['name'] except Exception as e: return {'status': 400, 'msg': '失败,你的数据格式不对 %s ' % e} kwargs['create_time'] = int(time.time()) result = db.insert(""" insert into work_msg (mobile, name, content, create_time) value (:mobile, :name, :msg, :create_time) """, kwargs) if result: return {'status': 200, 'msg': '成功'} return {'status': 400, 'msg': '失败,你的数据格式不对'} class OpeartionAll(Resource): def get(self): "获取用户所有留言" try: data = db.query( "SELECT content, FROM_UNIXTIME(create_time, '%Y-%m-%d %h') as create_time FROM `work_msg` ORDER BY id DESC") return {'status': 200, 'msg': data} except Exception as err: return {'status': 400, 'msg': '失败'} ns.add_resource(Opeartion, '/') ns.add_resource(OpeartionAll, '/all/')
import unittest from katas.beta.nothing_special import nothing_special class NothingSpecialTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(nothing_special('Hello World!'), 'Hello World') def test_equals_2(self): self.assertEqual(nothing_special('%^Take le$ft ##quad%r&a&nt'), 'Take left quadrant') def test_equals_3(self): self.assertEqual(nothing_special('M$$$$$$$y ally!!!!!'), 'My ally') def test_equals_4(self): self.assertEqual(nothing_special(25), 'Not a string!')
# Dependencies import tweepy import json import numpy as np # Twitter API Keys. Place your keys here. consumer_key = "" consumer_secret = "" access_token = "" access_token_secret = "" # Setup Tweepy API Authentication auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) # Target User Account target_user = "@DalaiLama" # Lists for holding sentiments compound_list = [] positive_list = [] negative_list = [] neutral_list = [] # for page in tweepy.Cursor(api.user_timeline, id=target_user).pages(200): # page is a list of statuses # Loop through all tweets for tweet in page: tweet_text = json.dumps(tweet._json, indent=3) tweet = json.loads(tweet_text) # Parse the tweet to identify its text # Analyze the sentiment of the tweet # Add the sentiment analyses to the respective lists # Print the average sentiments of the tweets
# https://www.sqlite.org/json1.html import sqlite3 import json db_name = 'yt.db' def open(): conn = sqlite3.connect(db_name) cursor = conn.cursor() sql = 'create table stats (ts varchar(64), video_id varchar(64), data json)' try: cursor.execute(sql) conn.commit() except sqlite3.OperationalError: # maybe table already exists pass return conn def put(conn, now, video_id, stats): cursor = conn.cursor() sql = 'insert into stats values (?,?,?)' cursor.execute(sql, (now, video_id, json.dumps(stats))) conn.commit()
from scripted import ScriptedJobPlugin from staging import StagingJobPlugin _jobplugins_by_name = { 'scripted': ScriptedJobPlugin, 'staging': StagingJobPlugin, } def register_jobplugin(cls): _jobplugins_by_name[cls.name] = cls def load_jobplugin(name): return _jobplugins_by_name[name]
import numpy as np from blob_mask import blob_mask, blob_mask_dim from constants import image_height, image_width def get_true_mask(data): all_blobs = data["army"] + data["enemy"] all_masks = [] for blob in all_blobs: if (blob["alive"]): mask = np.zeros((image_height, image_width, 1), dtype=np.int) - 1 if (abs(blob["x"] - .5) < .4) & (abs(blob["y"] - .5) < .4): y_k = 1 else: y_k = -1 x_init = int(blob["x"] * 742) - 26 y_init = int(blob["y"] * 594) - 31 for i in range(blob_mask_dim[0]): for j in range(blob_mask_dim[1]): y = i + y_init x = j + x_init if (x >= 0) & (y >= 0) & (y < image_height) & (x < image_width): if (blob_mask[i][j] == 1): mask[y][x][0] = 1 all_masks.append((mask, y_k)) return all_masks
# Copyright (c) 2013 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import sys, os.path sys.argv[1] = os.path.basename(sys.argv[1]) with open('msbuild_rule.out', 'w') as f: f.write(' '.join(sys.argv))
# coding: utf-8 """ AuthProvidersApi.py Copyright 2016 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class AuthProvidersApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def get_ads_provider_controllers(self, id, **kwargs): """ List all ADS controllers. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_ads_provider_controllers(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: (required) :return: AdsProviderControllers If the method is called asynchronously, returns the request thread. """ all_params = ['id'] all_params.append('callback') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_ads_provider_controllers" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_ads_provider_controllers`") resource_path = '/platform/1/auth/providers/ads/{Id}/controllers'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['Id'] = params['id'] query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['basic_auth'] response = self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='AdsProviderControllers', auth_settings=auth_settings, callback=params.get('callback')) return response def get_ads_provider_domain(self, ads_provider_domain_id, id, **kwargs): """ Retrieve the ADS domain information. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_ads_provider_domain(ads_provider_domain_id, id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str ads_provider_domain_id: Retrieve the ADS domain information. (required) :param str id: (required) :return: AdsProviderDomains If the method is called asynchronously, returns the request thread. """ all_params = ['ads_provider_domain_id', 'id'] all_params.append('callback') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_ads_provider_domain" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'ads_provider_domain_id' is set if ('ads_provider_domain_id' not in params) or (params['ads_provider_domain_id'] is None): raise ValueError("Missing the required parameter `ads_provider_domain_id` when calling `get_ads_provider_domain`") # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_ads_provider_domain`") resource_path = '/platform/1/auth/providers/ads/{Id}/domains/{AdsProviderDomainId}'.replace('{format}', 'json') path_params = {} if 'ads_provider_domain_id' in params: path_params['AdsProviderDomainId'] = params['ads_provider_domain_id'] if 'id' in params: path_params['Id'] = params['id'] query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['basic_auth'] response = self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='AdsProviderDomains', auth_settings=auth_settings, callback=params.get('callback')) return response def get_ads_provider_domains(self, id, **kwargs): """ List all ADS domains. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_ads_provider_domains(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: (required) :param str scope: If specified as \"effective\" or not specified, all fields are returned. If specified as \"user\", only fields with non-default values are shown. If specified as \"default\", the original values are returned. :return: AdsProviderDomains If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'scope'] all_params.append('callback') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_ads_provider_domains" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_ads_provider_domains`") resource_path = '/platform/1/auth/providers/ads/{Id}/domains'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['Id'] = params['id'] query_params = {} if 'scope' in params: query_params['scope'] = params['scope'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['basic_auth'] response = self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='AdsProviderDomains', auth_settings=auth_settings, callback=params.get('callback')) return response def get_ads_provider_search(self, id, **kwargs): """ Retrieve search results. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_ads_provider_search(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: (required) :param str domain: The domain to search in. :param str description: The user or group description to search for. :param str resume: Continue returning results from previous call using this token (token should come from the previous call, resume cannot be used with other options). :param bool search_users: If true, search for users. :param str filter: The LDAP filter to apply to the search. :param int limit: Return no more than this many results at once (see resume). :param str user: The user name for the domain if untrusted. :param str password: The password for the domain if untrusted. :param bool search_groups: If true, search for groups. :return: AdsProviderSearch If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'domain', 'description', 'resume', 'search_users', 'filter', 'limit', 'user', 'password', 'search_groups'] all_params.append('callback') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_ads_provider_search" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_ads_provider_search`") if 'limit' in params and params['limit'] < 1.0: raise ValueError("Invalid value for parameter `limit` when calling `get_ads_provider_search`, must be a value greater than or equal to `1.0`") resource_path = '/platform/1/auth/providers/ads/{Id}/search'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['Id'] = params['id'] query_params = {} if 'domain' in params: query_params['domain'] = params['domain'] if 'description' in params: query_params['description'] = params['description'] if 'resume' in params: query_params['resume'] = params['resume'] if 'search_users' in params: query_params['search_users'] = params['search_users'] if 'filter' in params: query_params['filter'] = params['filter'] if 'limit' in params: query_params['limit'] = params['limit'] if 'user' in params: query_params['user'] = params['user'] if 'password' in params: query_params['password'] = params['password'] if 'search_groups' in params: query_params['search_groups'] = params['search_groups'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['basic_auth'] response = self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='AdsProviderSearch', auth_settings=auth_settings, callback=params.get('callback')) return response
from django.db import models from django.core.validators import RegexValidator from django.contrib.auth.models import User from django.core.validators import MinValueValidator class Customer(models.Model): firstName = models.CharField (max_length=50, verbose_name="First Name") lastName = models.CharField (max_length=50, verbose_name="Last Name") # phone number validation phoneMessage = 'Phone number must be 11 digits format \'00000000000\'' phone_regex = RegexValidator(regex='^\\d{11}$',message=phoneMessage) number = models.CharField(max_length=11, validators=[phone_regex], verbose_name="Phone Number") email = models.EmailField(max_length = 254, blank= True, null=True, verbose_name="Email Address") address = models.TextField(blank=True, verbose_name="Address") def __str__(self): return self.firstName + ' ' + self.lastName class Ticket(models.Model): TICKET_STATUS = [('Open', 'Open'), ('Waiting on Customer', 'Waiting on Customer'), ('Waiting for Parts', 'Waiting for Parts'), ('Closed', 'Closed')] DEVICE_TYPES = [('Mobile Phone', 'Mobile Phone'), ('Laptop', 'Laptop'), ('Desktop', 'Desktop'), ('Games Console', 'Games Console'), ('Tablet', 'Tablet'), ('Smart device', 'Smart Device'), ('Other', 'Other')] ticketName = models.CharField(max_length=100, verbose_name="Ticket Name") deviceMake = models.CharField (max_length=30, verbose_name="Device Make") deviceModel = models.CharField(max_length=50, verbose_name="Device Model") deviceType = models.CharField(max_length=15, choices=DEVICE_TYPES, verbose_name="Device Type") customer = models.ForeignKey(Customer, on_delete=models.PROTECT, verbose_name="Customer") assigned = models.ForeignKey(User, on_delete=models.SET_NULL, null=True, blank=True, editable=True, related_name="assignedTechnician", verbose_name="Assigned") ticketStatus = models.CharField(max_length=30, choices=TICKET_STATUS, verbose_name="Ticket Status") createdDate = models.DateTimeField(auto_now_add=True, editable=False, verbose_name="Created On") createdBy = models.ForeignKey(User, on_delete=models.DO_NOTHING, null=True, editable=False, related_name="createdByTechnician", verbose_name="createdBy") lastUpdated = models.DateTimeField(auto_now=True, verbose_name="Last Update Date") updatedBy = models.ForeignKey(User, on_delete=models.DO_NOTHING, null=True, editable=False, related_name="updatedByTechnician", verbose_name="Updated By") ticketDescription = models.TextField(verbose_name="Ticket Description") def __str__(self): return self.ticketName def getAssigned(self): return self.assigned class meta: ordering = ['-id'] class inventoryItem(models.Model): ITEM_TYPES = [('Mobile Phone', 'Mobile Phone'), ('Laptop', 'Laptop'), ('Desktop', 'Desktop'), ('Games Console', 'Games Console'), ('Tablet', 'Tablet'), ('Smart device', 'Smart Device'),('Monitor', 'Monitor'), ('Peripherals', 'Peripherals'), ('Component', 'Component'),('Accessory', 'Accessory'), ('Software', 'Software'), ('Other', 'Other')] itemName = models.CharField(max_length=150, verbose_name="Item Name") itemType = models.CharField(max_length = 50,choices=ITEM_TYPES,verbose_name="Item Type") quantityInStock = models.PositiveIntegerField (verbose_name="In Stock") price = models.DecimalField (decimal_places=2, validators=[MinValueValidator(0.00)], max_digits=9, verbose_name="Price") orderLink = models.URLField(blank = True, verbose_name="Order Link") lastOrdered = models.DateTimeField(auto_now=True, verbose_name="Last Ordered On") def __str__(self): return self.itemName + "(" + self.itemType + ")"
import pandas as pd import numpy as np import json import time from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import TfidfVectorizer from nltk.corpus import stopwords import re import string from nltk.stem import WordNetLemmatizer from nltk import word_tokenize from nltk.corpus import stopwords df = pd.read_csv("IMDB_movies_big_dataset_clean.csv", low_memory=False, error_bad_lines=False) def get_title_from_id(id): return df[df.id == id]["original_title"].values[0] def get_year_from_id(id): return df[df.id == id]["year"].values[0] def get_genre_from_id(id): return df[df.id == id]["genre"].values[0] def get_director_from_id(id): return df[df.id == id]["director"].values[0] def get_actors_from_id(id): return df[df.id == id]["actors"].values[0] def get_id_from_title(title): return df[df.original_title == title]["id"].values[0] def get_rating_from_id(id): return df[df.id == id]["avg_vote"].values[0] stop = stopwords.words('english') stop_words_ = set(stopwords.words('english')) wn = WordNetLemmatizer() def black_txt(token): #scoate punctuatia si cuvintele nefolositoare return token not in stop_words_ and token not in list(string.punctuation) and len(token)>2 def clean_txt(text): clean_text = [] clean_text2 = [] text = re.sub("'", "",text) text=re.sub("(\\d|\\W)+"," ",text) text = text.replace("nbsp", "") clean_text = [ wn.lemmatize(word, pos="v") for word in word_tokenize(text.lower()) if black_txt(word)] clean_text2 = [word for word in clean_text if black_txt(word)] return " ".join(clean_text2) def get_recommended_movies(movie): # features = ['original_title','description','actors','genre','director'] # for feature in features: # df[feature] = df[feature].fillna('') # df["combined_features"] = df.apply(combine_features,axis=1) # df["combined_features"] = df["combined_features"].apply(clean_txt) # tfidf_vectorizer = TfidfVectorizer() # tfidf_matrix = tfidf_vectorizer.fit_transform((df['combined_features'])) # cv = CountVectorizer() # count_matrix = cv.fit_transform(df["combined_features"]) # cosine_sim = cosine_similarity(tfidf_matrix) # np.save('cosine_matrix.npy',cosine_sim) cosine_sim=np.load('cosine_matrix.npy',allow_pickle=True) movie_index = get_id_from_title(movie) similar_movies = list(enumerate(cosine_sim[movie_index])) sorted_similar_movies = sorted(similar_movies,key=lambda x:x[1],reverse=True) final_list = [] i = 0 for element in sorted_similar_movies: if i>0: list_element = { 'title' : str(get_title_from_id(element[0])), 'year' : str(get_year_from_id(element[0])), 'genre' : get_genre_from_id(element[0]), 'director' : get_director_from_id(element[0]), 'actors' : get_actors_from_id(element[0]), 'rating' : get_rating_from_id(element[0]) } final_list.append(list_element) i=i+1 if i>20: break return json.dumps(final_list) # # Se citeste fisierul CSV ce contine datele despre filme # print("Introduceti titlul filmului si apasati ENTER: ") # movie_user_likes = str(input()) # start_time = time.time() # t1 = time.time() # df = pd.read_csv("IMDB_movies_big_dataset_clean.csv", low_memory=False, error_bad_lines=False) # print("Fisierul CSV a fost citit ... (%.2f secunde)" % (time.time()-t1)) # # Se selecteaza caracteristicile ce vor fi luate in seama pentru a calcula scorul de similaritate # t2 = time.time() # features = ['original_title','description','actors','genre','director'] # for feature in features: # df[feature] = df[feature].fillna('') # # Se creeaza o coloana in obiectul DF ce va contine caracteristicile importante pentru scorul de similaritate def combine_features(row): try: return row["original_title"] + " " + row["description"] + " " + row['actors'] +" " + row['genre'] + " " + row["director"] except: print("Error in combining features at :", row) # df["combined_features"] = df.apply(combine_features,axis=1) # print("S-a creat coloana ce contine caracteristicile pentru recomandare ...(%.2f secunde)" % (time.time()-t2)) # # Se creeaza matricea de frecvente pentru filme, luand in considerare caracteristicile extrase # # Matrice ce contine pe linii filmele si pe coloane cuvintele unice de pe coloana "combined_features" # t3 = time.time() # cv = CountVectorizer() # count_matrix = cv.fit_transform(df["combined_features"]) # # print(count_matrix.toarray().shape[0]) # # print(count_matrix.toarray().shape[1]) # print("S-a creat matricea de frecvente ...(%.2f secunde)" % (time.time()-t3)) # # Se calculeaza cosine similarity in functie de matricea de frecvente # # Matrice patratica 16313 x 16313 ( = numarul de filme din fisierul CSV ) # t4 = time.time() # cosine_sim = cosine_similarity(count_matrix) # print(cosine_sim.shape) # print("S-a efectuat cosine similarity pe matricea de frecvente ... (%.2f secunde)" % (time.time()-t4)) # # movie_user_likes = "The Avengers" # # movie_user_likes = "Titanic" # # movie_user_likes = "John Wick" # # Se preia id-ul filmului din titlul oferit de catre utilizator # movie_index = get_id_from_title(movie_user_likes) # # Se preia randul din matricea de similaritate ce contine filmul oferit de utilizator si se creeaza o enumeratie de tipul # # (id_film, scor de silimaritate) cu care se construieste lista de filme similare # similar_movies = list(enumerate(cosine_sim[movie_index])) # # Se preia o lista cu filme similare, sortata in ordine descrescatoare dupa scorul de similaritate # # x[0] = id-ul filmului # # x[1] = scorul de similaritate al filmului din enumeratie # sorted_similar_movies = sorted(similar_movies,key=lambda x:x[1],reverse=True) # # sorted_by_rating = sorted_similar_movies[0:14] # # Se afiseaza in consola primele 30 de filme similare cu filmul introdus de utilizator # i=0 # print("Top 30 filme similare cu "+movie_user_likes+" sunt :\n") # for element in sorted_similar_movies: # # Se extrage element[0] din enumeratie, ce reprezinta id-ul unui film din setul de date si se extrage apoi titlul filmului cu acest id # print(get_title_from_id(element[0])) # i=i+1 # if i>30: # break # total_time = time.time() - start_time # print("--- Timpul total de executie al algoritmului : %.2f secunde ---" % (total_time))
# -*- test-case-name: mimic.test.test_ironic -*- """ API Mock for Ironic. http://docs.openstack.org/developer/ironic/webapi/v1.html """ from __future__ import absolute_import, division, unicode_literals from mimic.rest.mimicapp import MimicApp class IronicApi(object): """ Rest endpoints for the Ironic API. """ app = MimicApp() def __init__(self, core): """ :param MimicCore core: The core to which the Ironic Api will be communicating. """ self.core = core @app.route('/nodes', methods=['POST']) def create_node(self, request): """ Responds with response code 201 and returns the newly created node. """ return self.core.ironic_node_store.create_node(request) @app.route('/nodes/<string:node_id>', methods=['DELETE']) def delete_node(self, request, node_id): """ Responds with response code 204 and delete the node. """ return self.core.ironic_node_store.delete_node(request, node_id) @app.route('/nodes', methods=['GET']) def list_nodes(self, request): """ Responds with response code 200 with a list of nodes. """ return self.core.ironic_node_store.list_nodes(include_details=False) @app.route('/nodes/detail', methods=['GET']) def list_nodes_with_details(self, request): """ Responds with response code 200 with a list of nodes and its details. """ return self.core.ironic_node_store.list_nodes(include_details=True) @app.route('/nodes/<string:node_id>', methods=['GET']) def get_node_details(self, request, node_id): """ Responds with response code 200 with details of the nodes. """ return self.core.ironic_node_store.get_node_details(request, node_id) @app.route('/nodes/<string:node_id>/states/provision', methods=['PUT']) def set_node_provision_state(self, request, node_id): """ Responds with response code 202 and sets the provision state of the node. """ return self.core.ironic_node_store.set_node_provision_state( request, node_id) @app.route('/nodes/<string:node_id>/vendor_passthru/<string:method>', methods=['POST']) def vendor_passthru_cache_image(self, request, node_id, method): """ Responds with response code 202 and sets the :obj:`Node`'s cache_image_id and cache_status. Returns 400 if `node_id` does not exist or if the `method` is not `cache_image` """ return self.core.ironic_node_store.cache_image_using_vendor_passthru( request, node_id, method)
#!/usr/bin/env python import os from Tkinter import * from tkMessageBox import * from tkFileDialog import * from reedsolo import RSCodec, ReedSolomonError from simplecrypt import encrypt, decrypt, DecryptionException class Notepad: #variables __root = Tk() #Reed - Solomon codec for error detection and correction #Enough to correct the file even if 15% of characters are corrupted __rs = RSCodec(120) #default window width and height __thisWidth = 300 __thisHeight = 300 __thisFileFrame = Frame(__root, borderwidth=1) __thisFileFrame.pack(fill=X) __thisOpenFile = Button(__thisFileFrame, text="Select File", width=10, font=("TkDefaultFont", 10)) __thisOpenFile.pack(side=LEFT); __thisClearFile = Button(__thisFileFrame, text="Clear", width=10, font=("TkDefaultFont", 10)) __thisClearFile.pack(side=LEFT); __noFile = "[no file selected]" __thisFileLabelText = StringVar(); __thisFileLabelText.set(__noFile) __thisFileLabel = Label(__thisFileFrame, textvariable=__thisFileLabelText, font=("TkDefaultFont", 10)) __thisFileLabel.pack(side=LEFT, expand=True, fill=BOTH); __thisCmdFrame = Frame(__root, borderwidth=1) __thisCmdFrame.pack(fill=X) __thisPassLabel = Label(__thisCmdFrame, text="Enter Key: ", width=13, font=("TkDefaultFont", 10)) __thisPassLabel.pack(side=LEFT); __thisPassEntry = Entry(__thisCmdFrame, show='*', font=("TkFixedFont", 14)) __thisPassEntry.pack(side=LEFT, expand=True, fill=BOTH); __thisSaveFile = Button(__thisCmdFrame, text="Save", font=("TkDefaultFont", 10)) __thisSaveFile.pack(side=LEFT); __thisLoadFile = Button(__thisCmdFrame, text="Load", font=("TkDefaultFont", 10)) __thisLoadFile.pack(side=LEFT); __thisTextArea = Text(__root, font=("TkFixedFont", 12), undo=TRUE) __thisScrollBar = Scrollbar(__thisTextArea) __file = None def __init__(self,**kwargs): #initialization #set icon try: appdir = os.path.dirname(os.path.abspath(__file__)) self.__root.tk.call('wm','iconphoto',self.__root._w, PhotoImage(file=os.path.join(appdir, "icon.png"))) except: pass #set window size (the default is 300x300) try: self.__thisWidth = kwargs['width'] except KeyError: pass try: self.__thisHeight = kwargs['height'] except KeyError: pass #set the window text self.__root.title(self.__noFile + " - CryptoNotepad") #center the window screenWidth = self.__root.winfo_screenwidth() screenHeight = self.__root.winfo_screenheight() left = (screenWidth / 2) - (self.__thisWidth / 2) top = (screenHeight / 2) - (self.__thisHeight /2) self.__root.geometry('%dx%d+%d+%d' % (self.__thisWidth, self.__thisHeight, left, top)) #add controls (widget) self.__thisTextArea.pack(fill=BOTH, expand=True) self.__thisScrollBar.pack(side=RIGHT, fill=Y) self.__thisScrollBar.config(command=self.__thisTextArea.yview) self.__thisTextArea.config(yscrollcommand=self.__thisScrollBar.set, wrap=CHAR) self.__thisOpenFile.config(command=self.__openFile) self.__thisClearFile.config(command=self.__clearFile) self.__thisSaveFile.config(command=self.__saveFile) self.__thisLoadFile.config(command=self.__loadFile) def __quitApplication(self): self.__root.destroy() #exit() def __showAbout(self): showinfo("CryptoNotepad", "Created by an unnamed programmer") def __openFile(self): self.__file = askopenfilename(defaultextension=".bin",filetypes=[("Encrypted Text Files","*.bin"),("All Files","*.*")]) if self.__file == "": #no file to open self.__file = None else: self.__root.title(self.__noFile + " - CryptoNotepad") self.__thisFileLabelText.set(self.__file) def __clearFile(self): self.__file = None self.__root.title(self.__noFile + " - CryptoNotepad") self.__thisFileLabelText.set(self.__noFile) def __encodeFile(self, filestr): #Encrypt with AES-256 encrypted = bytearray(encrypt(self.__getKey(), filestr)) #Encode with Reed-Solomon codec capable of correcting 15% of byte errors #And test the decoding on encoded file to be sure encoded = self.__rs.encode(encrypted) try: decoded = self.__rs.decode(encoded) decrypted = decrypt(self.__getKey(), buffer(decoded)).decode('utf-8') if decoded == encrypted and filestr == decrypted: return encoded else: showerror("Weird Encoding Error", "This error should never happen. Sorry, cannot save your file, try other programs. There is something wrong with reedsolo.py or simplecrypt.py") return None except: print sys.exc_info()[0] return None def __decodeFile(self, filestr): #decode RS code decodedText = '' try: decodedText = self.__rs.decode(bytearray(filestr)) except ReedSolomonError: showerror("Decoding Error", "The program cannot decode your file because it is corrupted beyond repair. Be careful and don't forget to make backups") return '' #decrypt try: decryptedText = decrypt(self.__getKey(), buffer(decodedText)) except DecryptionException as d: print "DecryptionException: ", d showerror("Decryption Error", "The program cannot decrypt contents of your file. Either your key is invalid or the password is corrupted. There is no way to decrypt your data if you lose the password. Be careful and don't forget to make backups") decryptedText = '' return decryptedText def __getKey(self): return self.__thisPassEntry.get() def __loadFile(self): if (len(self.__getKey()) > 0 and self.__file): file = open(self.__file,"rb") ftext = file.read() text = self.__decodeFile(ftext); self.__thisTextArea.delete(1.0,END) self.__thisTextArea.insert(1.0, text) else: if not self.__file: showerror("Error", "No file selected.") if len(self.__thisPassEntry.get()) == 0: showerror("Error", "No key entered.") def __saveFile(self): if self.__file == None: self.__file = asksaveasfilename(initialfile='text.bin',defaultextension=".bin",filetypes=[("Encrypted Text Files","*.bin"),("All Files","*.*")]) self.__thisFileLabelText.set(self.__file) if (len(self.__getKey()) > 0): #try to save the file, note 'end-1c' insted of END to get rid of last newline text = self.__thisTextArea.get(1.0, 'end-1c') encodedText = self.__encodeFile(text); file = open(self.__file, "wb") if (encodedText != None): file.write(encodedText) file.close() #change the window title self.__root.title(os.path.basename(self.__file) + " - CryptoNotepad") else: if not len(self.__thisPassEntry.get()) > 0: showerror("Error", "No key entered.") def __cut(self): self.__thisTextArea.event_generate("<<Cut>>") def __copy(self): self.__thisTextArea.event_generate("<<Copy>>") def __paste(self): self.__thisTextArea.event_generate("<<Paste>>") def run(self): #run main application self.__root.mainloop() #run main application notepad = Notepad(width=600,height=400) notepad.run()
import pyglet from pyglet.gl import * #import random #from random import uniform,randrange,choice from numpy.random import uniform,randint,choice import loaders from pymunk import Vec2d import PiTweener import itertools ## http://stackoverflow.com/questions/14885349/how-to-implement-a-particle-engine ## Performance? http://docs.cython.org/src/userguide/tutorial.html ## or PyPy def omni_spread(speed_x,speed_y): def _omni_spread(particle): particle.x += speed_x particle.y += speed_y return _omni_spread def init_vel(x,y): def _init_vel(particle): particle.x += particle.vel[0] particle.y += particle.vel[1] particle.vel += Vec2d(x,y) return _init_vel def gravity(strength_x,strength_y): def _gravity(particle): particle.x += particle.vel[0] particle.y += particle.vel[1] particle.vel += Vec2d(strength_x,strength_y) return _gravity def scale(scale): def _scale(particle): particle.sprite.scale = scale return _scale def rotate(speed): def _rotate(particle): particle.sprite.rotation += speed return _rotate def sprite_color_overlay(color): def _sprite_color_overlay(particle): particle.sprite.color = color return _sprite_color_overlay class FadeToColor(object): def __init__(self, color): self.r,self.g,self.b = 255,255,255 self.tweener = PiTweener.Tweener() self.tweener.add_tween(self, r = color[0], g = color[1], b = color[2], tween_time = uniform(.25,.5), tween_type = self.tweener.LINEAR,) def sprite_color_overlay_flash(color): fader = FadeToColor(color) def _sprite_color_overlay_flash(particle): fader.tweener.update() particle.sprite.color = fader.r,fader.g,fader.b return _sprite_color_overlay_flash def age(amount): def _age(particle): particle.alive += amount return _age class AgeDecay(object): def __init__(self, age, fade=False): self.tweenable = 1 self.opacity = 255 self.tweener = PiTweener.Tweener() if not fade: self.tweener.add_tween(self, tweenable = 0, tween_time = age, tween_type = self.tweener.LINEAR,) else: self.tweener.add_tween(self, tweenable = 0, tween_time = age, tween_type = self.tweener.OUT_CUBIC, on_complete_function = self.fade) def fade(self): self.tweener.add_tween(self, opacity = 0, tween_time = .25, tween_type = self.tweener.LINEAR) def age_kill(age): age_decay = AgeDecay(age) def _age_kill(particle): age_decay.tweener.update() if age_decay.tweenable == 0: particle.kill() return _age_kill def age_fade_kill(age): age_decay = AgeDecay(age, fade=True) def _age_fade_kill(particle): age_decay.tweener.update() particle.sprite.opacity = age_decay.opacity if particle.sprite.opacity == 0: particle.kill() return _age_fade_kill def age_scale_fade_kill(rate): def _age_scale_fade_kill(particle): particle.alive -= 1 if particle.alive < 13: particle.sprite.opacity -= 15 particle.sprite.scale += rate if particle.alive < 0: particle.kill() return _age_scale_fade_kill def kill_at(max_x,max_y): def _kill_at(particle): if particle.x < -max_x or particle.x > max_x or particle.y < -max_y or particle.y > max_y: particle.kill() return _kill_at def fade_kill_at(max_x,max_y): def _kill_at(particle): if particle.x < -max_x or particle.x > max_x or particle.y < -max_y or particle.y > max_y: particle.sprite.opacity -= 15 if particle.sprite.opacity < 20: particle.kill() return _kill_at def ascending(speed): def _ascending(particle): particle.y += speed return _ascending def fan_out(modifier): def _fan_out(particle): d = particle.alive / modifier d += 1 particle.x += randint(int(-d),int(d)) return _fan_out def wind(direction, strength): def _wind(particle): if randint(0,100) < strength: particle.x += direction return _wind def fan(modifier): def _fan(particle): d = particle.alive / modifier d += 1 particle.x += randint(-d, d) return _fan def spark_machine(age,img,batch,group): def create(): for _ in range(choice([0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4])): behavior = ( omni_spread(uniform(0.4,-0.4), uniform(0.2,-0.2)), age_fade_kill(age+uniform(0,.5)), #scale(uniform(2,5)), #fade_kill_at(260,160), rotate(uniform(0.2,-0.2)), scale(uniform(2,5)) ) p = Particle(age,img,batch,group,*behavior) yield p while True: yield create() def powerup(age, i_vel, img, color_overlay=(0,0,0), batch=None, group=None): def create(): for _ in range(20): behavior = (gravity(0,-.08), #sprite_color_overlay_flash(color_overlay), age_fade_kill(age)) p = Particle(age,img,batch,group,*behavior) p.sprite.color = color_overlay p.sprite.scale = uniform(.5,1) p.vel = (uniform(i_vel[0][0],i_vel[0][1]), uniform(i_vel[1][0],i_vel[1][1])) yield p while True: yield create() def finish_confetti(age, i_vel, img, batch=None, group=None): behavior = (fan(3), gravity(0,-0.05), age_kill(age+randint(0,2)),) def create(): for _ in range(50): p = Particle(age,img,batch,group,*behavior) p.sprite.rotation = randint(-90,90) p.sprite.scale = randint(3,4) p.vel = (uniform(i_vel[0][0],i_vel[0][1]), uniform(i_vel[1][0],i_vel[1][1])) yield p while True: yield create() class Spurt(object): def __init__(self, emitter): self.emitter = emitter self.tweener = PiTweener.Tweener() self.tweenable = 1 def update(self): self.emitter.update() self.tweener.update() def add_factory(self, factory, duration): self.factory = factory self.emitter.add_factory(self.factory, pre_fill = 0) self.tweener.add_tween(self, tweenable = 0, tween_time = duration, tween_type = self.tweener.LINEAR, on_complete_function = self.remove_factory) def remove_factory(self): self.emitter.factories.remove(self.factory) class Particle(): def __init__(self,age,img,batch=None,group=None,*strategies,age_offset=(0,100)): self.x,self.y = 0,0 self.vel = Vec2d(0,0) self.sprite = loaders.image_sprite_loader(img, pos = (self.x,self.y), anchor = ('center', 'center'), batch = batch, group = group, linear_interpolation = True) self.age = age + randint(age_offset[0],age_offset[1]) self.alive = age self.strategies = strategies def set_scale(self, scale): self.sprite.scale = scale def kill(self): self.alive = -1 def move(self): for s in self.strategies: s(self) if self.alive > 0: return self class Emitter(object): def __init__(self, pos=(0,0), max_num = (1500), *args, **kwargs): self.particles = [] self.pos = pos self.factories = [] self.max_num = max_num def add_factory(self,factory,pre_fill=300): self.factories.append(factory) tmp = [] for _ in range(pre_fill): n = next(factory) tmp.extend(n) for p in tmp: p.move() self.particles.extend(tmp) def move(self, p): p.sprite.x, p.sprite.y = self.pos[0]+p.x,self.pos[1]+p.y return p def update(self): #if self.emit: # for f in self.factories: # if len(self.particles) < self.max_num: # self.particles.extend(next(f)) # for p in self.particles[:]: # p.move() # if p.alive == -1: # self.particles.remove(p) tmp = itertools.chain(self.particles, *map(next, self.factories)) tmp2 = filter(Particle.move, tmp) # side effect! self.particles = list(tmp2) for p in self.particles: p.sprite.x,p.sprite.y = self.pos[0]+p.x,self.pos[1]+p.y
# app building library import streamlit as st # dataframe libraries import numpy as np import pandas as pd # model libraries import gensim from gensim.models import Doc2Vec # miscellany import pickle import gzip # custom functions for this app from functions_app import * # load poetry dataframe with gzip.open('data/poems_df_rec_system.pkl', 'rb') as hello: df = pickle.load(hello) # load doc2vec dataframe with gzip.open('data/features_doc2vec_df.pkl', 'rb') as hello: df_docvec = pickle.load(hello) # load doc2vec model model = Doc2Vec.load('data/doc2vec_final.model') # image of PO-REC st.image('data/PO-REC.png', width=300) # message from the recommender-bot st.title('Greetings! It is I, PO-REC.') st.header('I am designed to recommend poetry based on certain parameters.') st.subheader('You can fiddle with my settings on the left of your screen.') # number of poem recommendations in sidebar # NOTE: text in separate markdown because couldn't figure out # how to change font size within number_input st.sidebar.markdown('#### How many poems shall I compute?') num_option = st.sidebar.number_input( '', min_value=1, max_value=len(df), value=100) # format blank space st.sidebar.markdown('') # select a function to run, word_similarity, text_similarity, or poem_similarity st.sidebar.markdown('#### What method shall I use to compute?') initialize_option = st.sidebar.radio( '', ['word', 'phrase', 'poem']) # format blank space st.sidebar.markdown('') # for word option if initialize_option == 'word': # format blank space st.markdown('') st.markdown('') # format larger label st.markdown('#### Give me a word.') # ask user for a word word_option = st.text_input('') # upon user input if word_option: # determine if word (reformatted) in model's vocabulary if word_option.lower() in model.wv.vocab.keys(): # message st.sidebar.markdown( 'I merely vectorized the word and compared its alignment to all of the \ poems in my vast collection.') # run function similar_poems = word_similarity(word_option.lower(), df, model, n=num_option) # filter filter_process(similar_poems, df) # PO-REC's message if word not in model's vocabulary else: st.markdown(f'### It may surprise you to learn that I do not know the word\ ***{word_option}***.') st.markdown(f'### Please try another.') # for text option elif initialize_option == 'phrase': # format blank space st.markdown('') st.markdown('') # format larger label st.markdown('#### Give me a phrase, or a bunch of words.') # ask user for words phrase_option = st.text_input('') # upon user input if phrase_option: # message st.sidebar.markdown( 'I merely processed the text, inferred its vector, and compared its \ alignment to all of the poems in my vast collection of poetry.') # run function similar_poems = phrase_similarity(phrase_option, df, model, n=num_option) # filter filter_process(similar_poems, df) # for poem option elif initialize_option == 'poem': # format blank space st.markdown('') st.markdown('') # initialize blank list poets = [''] # add all poets from dataframe poets.extend(df['poet'].unique()) # format larger label st.markdown('#### Pick a poet:') # prompt user to select poet poet_option = st.selectbox( '', poets) # initialize blank list poet_titles = [''] # add all titles from that poet poet_titles.extend(df[df.poet == poet_option].title.unique()) # prompt user to select title (only after poet is selected) if poet_option: # format blank space st.markdown('') # format larger label st.markdown('#### Pick a poem:') title_option = st.selectbox( '', poet_titles) # upon title selection if title_option: # message st.sidebar.markdown( 'I merely found the vector for this particular poem and compared its \ alignment to all of the other poems in my vast collection.') # run function similar_poems = poem_similarity( title_option, poet_option, df, df_docvec, model, n=num_option) # filter filter_process(similar_poems, df)
from django.http import HttpResponse, JsonResponse from rest_framework import viewsets from rest_framework.decorators import detail_route from rest_framework.exceptions import ParseError from rest_framework.generics import GenericAPIView from rest_framework.response import Response from landscapesim import models from landscapesim.report import Report from landscapesim.serializers import projects, reports, scenarios, regions class LibraryViewset(viewsets.ReadOnlyModelViewSet): queryset = models.Library.objects.all() serializer_class = projects.LibrarySerializer class ProjectViewset(viewsets.ReadOnlyModelViewSet): queryset = models.Project.objects.all() serializer_class = projects.ProjectSerializer @detail_route(methods=['get']) def definitions(self, *args, **kwargs): context = {'request': self.request} return Response(projects.ProjectDefinitionsSerializer(self.get_object(), context=context).data) @detail_route(methods=['get']) def scenarios(self, *args, **kwargs): context = {'request': self.request} return Response(projects.ScenarioSerializer( models.Scenario.objects.filter(project=self.get_object()), many=True, context=context ).data) class ScenarioViewset(viewsets.ReadOnlyModelViewSet): queryset = models.Scenario.objects.all() serializer_class = projects.ScenarioSerializer @detail_route(methods=['get']) def project(self, *args, **kwargs): context = {'request': self.request} return Response(projects.ProjectSerializer(self.get_object().project, context=context).data) @detail_route(methods=['get']) def library(self, *args, **kwargs): context = {'request': self.request} return Response(projects.LibrarySerializer(self.get_object().project.library, context=context).data) @detail_route(methods=['get']) def reports(self, *args, **kwargs): context = {'request': self.request} return Response(reports.QueryScenarioReportSerializer(self.get_object(), context=context).data) @detail_route(methods=['get']) def config(self, *args, **kwargs): context = {'request': self.request} return Response(scenarios.ScenarioConfigSerializer(self.get_object(), context=context).data) def get_queryset(self): if not self.request.query_params.get('results_only'): return self.queryset else: is_result = self.request.query_params.get('results_only') if is_result not in ['true', 'false']: raise ParseError('Was not true or false.') return self.queryset.filter(is_result=is_result == 'true') class StratumViewset(viewsets.ReadOnlyModelViewSet): queryset = models.Stratum.objects.all() serializer_class = projects.StratumSerializer def get_queryset(self): pid = self.request.query_params.get('pid', None) if pid is None: return self.queryset return self.queryset.filter(project__pid=pid) class StateClassViewset(viewsets.ReadOnlyModelViewSet): queryset = models.StateClass.objects.all() serializer_class = projects.StateClassSerializer class SecondaryStratumViewset(viewsets.ReadOnlyModelViewSet): queryset = models.SecondaryStratum.objects.all() serializer_class = projects.SecondaryStratumSerializer class TransitionTypeViewset(viewsets.ReadOnlyModelViewSet): queryset = models.TransitionType.objects.all() serializer_class = projects.TransitionTypeSerializer @detail_route(methods=['get']) def groups(self, *args, **kwargs): tgrps = [ models.TransitionGroup.objects.get(pk=obj['transition_group']) for obj in models.TransitionTypeGroup.objects.filter( transition_type=self.get_object()).values('transition_group') ] return Response(projects.TransitionGroupSerializer(tgrps, many=True).data) class TransitionGroupViewset(viewsets.ReadOnlyModelViewSet): queryset = models.TransitionGroup.objects.all() serializer_class = projects.TransitionGroupSerializer @detail_route(methods=['get']) def types(self, *args, **kwargs): tts = [ models.TransitionType.objects.get(pk=obj['transition_type']) for obj in models.TransitionTypeGroup.objects.filter( transition_group=self.get_object()).values('transition_type') ] return Response(projects.TransitionTypeSerializer(tts, many=True).data) class TransitionTypeGroupViewset(viewsets.ReadOnlyModelViewSet): queryset = models.TransitionTypeGroup.objects.all() serializer_class = projects.TransitionTypeGroupSerializer class TransitionMultiplierTypeViewset(viewsets.ReadOnlyModelViewSet): queryset = models.TransitionMultiplierType.objects.all() serializer_class = projects.TransitionMultiplierTypeSerializer class AttributeGroupViewset(viewsets.ReadOnlyModelViewSet): queryset = models.AttributeGroup.objects.all() serializer_class = projects.AttributeGroupSerializer class StateAttributeTypeViewset(viewsets.ReadOnlyModelViewSet): queryset = models.StateAttributeType.objects.all() serializer_class = projects.StateAttributeTypeSerializer class TransitionAttributeTypeViewset(viewsets.ReadOnlyModelViewSet): queryset = models.TransitionAttributeType.objects.all() serializer_class = projects.TransitionAttributeTypeSerializer """ Scenario configuration viewsets """ class DeterministicTransitionViewset(viewsets.ReadOnlyModelViewSet): queryset = models.DeterministicTransition.objects.all() serializer_class = scenarios.DeterministicTransitionSerializer class TransitionViewset(viewsets.ReadOnlyModelViewSet): queryset = models.Transition.objects.all() serializer_class = scenarios.TransitionSerializer class InitialConditionsNonSpatialViewset(viewsets.ReadOnlyModelViewSet): queryset = models.InitialConditionsNonSpatial.objects.all() serializer_class = scenarios.InitialConditionsNonSpatialSerializer class InitialConditionsNonSpatialDistributionViewset(viewsets.ReadOnlyModelViewSet): queryset = models.InitialConditionsNonSpatialDistribution.objects.all() serializer_class = scenarios.InitialConditionsNonSpatialDistributionSerializer class InitialConditionsSpatialViewset(viewsets.ReadOnlyModelViewSet): queryset = models.InitialConditionsSpatial.objects.all() serializer_class = scenarios.InitialConditionsSpatialSerializer class TransitionTargetViewset(viewsets.ReadOnlyModelViewSet): queryset = models.TransitionTarget.objects.all() serializer_class = scenarios.TransitionTargetSerializer class TransitionMultiplierValueViewset(viewsets.ReadOnlyModelViewSet): queryset = models.TransitionMultiplierValue.objects.all() serializer_class = scenarios.TransitionMultiplierValueSerializer class TransitionSizeDistributionViewset(viewsets.ReadOnlyModelViewSet): queryset = models.TransitionSizeDistribution.objects.all() serializer_class = scenarios.TransitionSizeDistributionSerializer class TransitionSizePrioritizationViewset(viewsets.ReadOnlyModelViewSet): queryset = models.TransitionSizePrioritization.objects.all() serializer_class = scenarios.TransitionSizePrioritizationSerializer class TransitionSpatialMultiplierViewset(viewsets.ReadOnlyModelViewSet): queryset = models.TransitionSpatialMultiplier.objects.all() serializer_class = scenarios.TransitionSpatialMultiplierSerializer class StateAttributeValueViewset(viewsets.ReadOnlyModelViewSet): queryset = models.StateAttributeValue.objects.all() serializer_class = scenarios.StateAttributeValueSerializer class TransitionAttributeValueViewset(viewsets.ReadOnlyModelViewSet): queryset = models.TransitionAttributeValue.objects.all() serializer_class = scenarios.TransitionAttributeValueSerializer class TransitionAttributeTargetViewset(viewsets.ReadOnlyModelViewSet): queryset = models.TransitionAttributeTarget.objects.all() serializer_class = scenarios.TransitionAttributeTargetSerializer """ Report viewsets """ class StateClassSummaryReportViewset(viewsets.ReadOnlyModelViewSet): queryset = models.StateClassSummaryReport.objects.all() serializer_class = reports.StateClassSummaryReportSerializer class TransitionSummaryReportViewset(viewsets.ReadOnlyModelViewSet): queryset = models.TransitionSummaryReport.objects.all() serializer_class = reports.TransitionSummaryReportSerializer class TransitionByStateClassSummaryReportViewset(viewsets.ReadOnlyModelViewSet): queryset = models.TransitionByStateClassSummaryReport.objects.all() serializer_class = reports.TransitionByStateClassSummaryReportSerializer class StateAttributeSummaryReportViewset(viewsets.ReadOnlyModelViewSet): queryset = models.StateAttributeSummaryReport.objects.all() serializer_class = reports.StateAttributeSummaryReportSerializer class TransitionAttributeSummaryReportViewset(viewsets.ReadOnlyModelViewSet): queryset = models.TransitionAttributeSummaryReport.objects.all() serializer_class = reports.TransitionAttributeSummaryReportSerializer class ReportViewBase(GenericAPIView): serializer_class = reports.GenerateReportSerializer def _response(self, report): raise NotImplementedError def post(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) data = serializer.validated_data config = data['configuration'] name = config.pop('report_name') return self._response(Report(name, config)) class GenerateCSVReportView(ReportViewBase): def _response(self, report): csv_data = report.get_csv_data() response = HttpResponse(content=csv_data, content_type='text/csv') response['Content-Disposition'] = 'attachment; filename={}.csv'.format(report.report_name) return response class RequestSpatialDataView(ReportViewBase): def _response(self, report): return JsonResponse(report.request_zip_data()) class RequestPDFReportView(ReportViewBase): def _response(self, report): return JsonResponse(report.request_pdf_data()) class RegionViewset(viewsets.ReadOnlyModelViewSet): queryset = models.Region.objects.all() serializer_class = regions.RegionSerializer @detail_route(methods=['get']) def reporting_units(self, *args, **kwargs): context = {'request': self.request} return Response({ 'type': 'FeatureCollection', 'features': regions.ReportingUnitSerializer( self.get_object().reporting_units.all(), many=True, context=context ).data }) class ReportingUnitViewset(viewsets.ReadOnlyModelViewSet): queryset = models.ReportingUnit.objects.all() serializer_class = regions.ReportingUnitSerializer
from collections import defaultdict class Solution: def calcEquation(self, equations: List[List[str]], values: List[float], queries: List[List[str]]) -> List[float]: graph = defaultdict(list) for i in range(len(equations)): graph[equations[i][0]].append([equations[i][1],values[i]]) graph[equations[i][1]].append([equations[i][0],(1/values[i])]) output_list = [] def dfs(curr_node,dst,val,visited): if(curr_node in visited or curr_node not in graph): return False visited.add(curr_node) if(curr_node==dst): output_list.append(val) return True for node in graph[curr_node]: if(dfs(node[0],dst,val*node[1],visited)): return True return False for query in queries: src = query[0] dst = query[1] visited = set() if(not dfs(src,dst,1,visited)): output_list.append(-1) return output_list
"""quiz_app URL Configuration """ from django.contrib import admin from django.urls import path, include from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('admin/', admin.site.urls), path('',include('quizes.urls',namespace='quizes')), path('user/', include(('user.urls','user'), namespace='user')), ]+ static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
from flask import Flask, request from flask_restful import Resource, Api import mysql.connector, json app = Flask(__name__) api = Api(app) class Product(Resource): #config for login credentials config = { 'user':'root','password':'root', 'host': 'db-mysql','port':'3306', 'database':'products' } def get(self): #accessing the config and connecting to the mysql database connection = mysql.connector.connect(**self.config) cursor = connection.cursor() #to retrieve data from mysql table cursor.execute("SELECT * FROM items_on_sale") #making a json format of the data results = [{"item":name, 'qty':qty,'price':price} for (name,qty,price) in cursor] return {'products':results} def post(self): #to receive the form data from the php admin page data = request.get_json() #accessing the config and connecting to the mysql database connection = mysql.connector.connect(**self.config) cursor = connection.cursor() cursor = connection.cursor(buffered=True) #checking if there is already an existing product name by checking the row number it returns sql = "SELECT COUNT(*) FROM items_on_sale WHERE name = %s " val = (str(data['user']['Pname']),) cursor.execute(sql,val) result=cursor.fetchone() #if there are none existing name that was entered then add a new record if(result[0] == 0): sql = "insert into items_on_sale (name,qty,price) values (%s,%s,%s) " val = (str(data['user']['Pname']),str(data['user']['Quantity']),str(data['user']['Price'])) cursor.execute(sql,val) connection.commit() #if there is an existing record then just update quantity else: sql = "UPDATE items_on_sale SET qty = %s, price= %s WHERE name = %s" val = (str(data['user']['Quantity']),str(data['user']['Price']),str(data['user']['Pname'])) cursor.execute(sql,val) connection.commit() api.add_resource(Product, '/') if __name__=='__main__': app.run(host='0.0.0.0',port=80,debug=True)
import os import math from utct.common.data_source_template import DataSourceTemplate class MnistDataSourceTemplate(DataSourceTemplate): def __init__(self, use_augmentation=True, data_h5_path=None): super(MnistDataSourceTemplate, self).__init__(use_augmentation) self.param_bounds = { #'dat_batch_size': (10, 200), 'dat_gaussian_blur_sigma_max': (0.0, 1.0), 'dat_gaussian_noise_sigma_max': (0.0, 0.05), 'dat_perspective_transform_max_pt_deviation': (0.0, 2.99), 'dat_max_scale_add': (0.0, 2.0 / (28.0 / 2)), 'dat_max_translate': (0.0, 3.0), 'dat_rotate_max_angle_rad': (0.0, math.pi / 12)} #self.param_bounds = { # 'dat_batch_size': (10, 200)} self.params = { 'data_h5_path': '../TEMP/mnist/mnist.h5'} self.use_augmentation = use_augmentation if data_h5_path is not None: self.params['data_h5_path'] = data_h5_path self.n_dim = 10 self.img_h = 28 self.img_w = 28 self.cache_data_dirname = None self.data_loaded = False self.train_img = None self.train_lbl = None self.val_img = None self.val_lbl = None self.batch_size = None def update_project_dirname(self, project_dirname): self.cache_data_dirname = os.path.join(project_dirname, 'cache_data') if not os.path.exists(self.cache_data_dirname): os.makedirs(self.cache_data_dirname) def update_cache_data_dirname(self, cache_data_dirname): self.cache_data_dirname = cache_data_dirname
#/usr/bin/env python3 # -*- encoding:utf8 -*- from shutil import * import os,sys,datetime import subprocess from subprocess import PIPE from pprint import pprint from muninn_config import JUPYTER_NOTEBOOK_ROOT_FOLDER,HTML_DST_FOLDER import pickle, traceback SEP = os.path.sep def transData(clist,from_source=JUPYTER_NOTEBOOK_ROOT_FOLDER,to_source="source"+SEP): """用来转移文件的胶水层,耦合fatch_data 使用clist提供的期望的地址来寻找""" print("="*10,"正在迁移指定文件夹下的ipynb文件以及其附带的媒体文件","="*10) def getAllowedFolders(clist): af = [] res = "" for course in clist: af.append(course.sourceuri) res += course.sourceuri + "::" return res, af def transfile(reset=False,fast=True,from_source="source/",to_source="new_source/",allowed_folder=[]): "只拷贝出现在允许列表的文件夹以及其文件" print("正在遍历文件树",from_source) fast_copytree(src=from_source,dst=to_source,symlinks=False,allowed_folder=allowed_folder) def fast_copytree(src,dst,symlinks=False,allowed_folder=[],needconvert=""): """从src文件夹拷贝数据到dst文件夹,这是一个copytree的简化版本""" #首先遍历所有的src文件夹的子文件夹 names = os.listdir(src) #遍历的文件中一定包含那些文件夹,因此-1可以取出这些文件夹,然后创建它们 if src.split(SEP)[-1] in allowed_folder: # print("创建文件夹",src.split(SEP)[-1]) try: os.makedirs(dst) except: pass errors = [] #对于每个子文件夹 for name in names: srcname = os.path.join(src,name) dstname = os.path.join(dst,name) try: if os.path.isdir(srcname): fast_copytree(srcname,dstname,symlinks,allowed_folder=allowed_folder) else: if src.split(SEP)[-1] in allowed_folder: # print("现在正在处理:",src,dst) srcname = srcname.replace(SEP,"/") dstname = dstname.replace(SEP,"/") #没有文件或者文件有更新 if not os.path.isfile(dstname) or os.stat(srcname).st_mtime > os.stat(dstname).st_mtime: try: if os.path.isfile(dstname): os.remove(dstname) print("发现旧文件,正在删除..") except: print("删除旧文件出错",dstname) print("正在复制文件到",dstname) #dstname source/coursera_learn_computer/chapter2_x86_mips.ipynb copy2(srcname,dstname) except OSError as why: errors.append((srcname,dstname,str(why))) except Error as err: errors.extend(err.args[0]) try: copystat(src.replace(SEP,"/"), dst.replace(SEP,"/")) except: pass if errors: raise Error(errors) res, JUPYTER_NOTEBOOK_ALLOWED_FOLDER = getAllowedFolders(clist) print("Allowed Floder is",res) transfile(from_source=from_source,to_source=to_source,allowed_folder=JUPYTER_NOTEBOOK_ALLOWED_FOLDER) print("文件转移完毕") def findIpynb(clist,from_source=JUPYTER_NOTEBOOK_ROOT_FOLDER,to_source="source"+SEP): needfiles = [] try: print("正在根据配置文件寻找需要进行转换的ipynb文件(ipynb文件日期新于html文件)") count = 0 for course in clist: for chapter in course.chapters: # coursera_learn_models\WEEK2_model_thinking.html address = chapter.sourceuri # coursera_learn_models\WEEK2_model_thinking.ipynb filename = address.replace(".html",".ipynb") # C:\Users\Administrator\Desktop\jupyter\coursera_learn_models\WEEK2_model_thinking.ipynb from_filename = os.path.join(from_source,filename) # source\coursera_learn_models\WEEK2_model_thinking.ipynb to_filename = os.path.join(to_source,filename) to_filename_html = to_filename.replace(".ipynb",".html") # 如果不存在html文件或者ipynb文件有更新,则进行下一步 if not os.path.isfile(to_filename_html) or os.stat(from_filename).st_mtime > os.stat(to_filename_html).st_mtime: count += 1 print("%s. 以下文件应该被找到并且更新"%count,to_filename) needfiles.append(filename) except: print(traceback.format_exc()) return needfiles def convertNotes(clist,chapter_dir,needfiles=[]): """对每一个Notebook,进行转换,胶水层,耦合fatch_data""" print("="*10,"正在转换IPYNB文件","="*10) # print("需要处理的文件为",needfiles) print("更改CWD到",chapter_dir) cwd = os.getcwd() #之后均在source目录下运行 os.chdir(chapter_dir) def convert(filename,fname): """调用命令行工具对ipynb文件进行html转换, 放在其原始文件夹下,fname为其所在文件夹,filename为其文件名""" current = os.getcwd() os.chdir(fname) c = "jupyter nbconvert %s"%filename print("切换目录为: ",os.getcwd(),"正在执行指令:",c) p = subprocess.Popen(c,shell=True,stdout=subprocess.PIPE,stdin=subprocess.PIPE) p.wait() if p.returncode != 0: print("转换出错,错误原因为",str(p.communicate()[0],"utf-8"),p.communicate()[1]) os.chdir(current) return 0 os.chdir(current) return 1 co = "" for course in clist: co += str(course.name) + " :: " print("课程列表为",co) #获取需要转换的课程和笔记,这一步是因为需要在同一个目录下运行convert conf = {} for course in clist: conf[(course.sourceuri,course.id)] = [] count = 0 for chapter in course.chapters: filename = chapter.sourceuri #对象生成的是html地址,这显然是不对的,现在还没有转换,因此转换成为ipynb文件类型 if filename.endswith(".html"): filename = filename.replace(".html",".ipynb") #如果此文件不能找到,则跳过转换 xxx/xxx.ipynb if not os.path.isfile(filename): print(filename,"此文件无法被找到,但是存在于配置文件中,请手动检查,目前已跳过转换") continue if not filename in needfiles: count += 1 continue #获得文件名,不含地址 name = filename.split(SEP)[-1] conf[(course.sourceuri,course.id)].append(name) #遍历这些课程,同一课程笔记统一处理(多个笔记文件) print("需要处理的章节和课程为",conf) for path,id in conf: alist = conf[(path,id)] if len(alist) == 0: continue fnames = "" for a in alist: fnames += "%s"%a + " " try: convert(fnames,path) except Exception as e: print(traceback.format_exc()) print("转换 [%s] 此文件夹内容出错"%path,e) os.chdir(cwd) print("CWD切换回",cwd) print("转换完毕") if __name__ == "__main__": clist = pickle.load(open("muninn_test_last.data","rb")) transData(clist,from_source=JUPYTER_NOTEBOOK_ROOT_FOLDER,to_source="source"+SEP) needfiles = findIpynb(clist,from_source=JUPYTER_NOTEBOOK_ROOT_FOLDER,to_source="source"+SEP) convertNotes(clist,"source",needfiles=needfiles) def get_status(): c = "git status" process = subprocess.Popen(c,shell=True,stdout=PIPE,stdin=PIPE) process.wait() rc = process.returncode print("正在检查状态信息\n") print(process.communicate()[0]) if rc != 0: print("初始化状态检查出错:",process.communicate()) return 0 else: return 1 def add_stuff(): c = "git add --all" process = subprocess.Popen(c,shell=True,stdout=PIPE,stdin=PIPE) print("正在添加到本地缓冲区\n") print(process.communicate()[0]) process.wait() if process.returncode != 0: print("添加到缓存区出错",process.communicate()) return 0 else: return 1 def commit_stuff(): # i = input("请输入提交内容:____\b\b\b\b") i = datetime.datetime.today() c = "git commit -m last" process = subprocess.Popen(c,shell=True,stdout=PIPE,stdin=PIPE) print("提交本地仓库中...\n") print(process.communicate()[0]) process.wait() if process.returncode != 0: print("提交到本地仓库失败",process.communicate()) return 0 else: return 1 def pull_stuff(): c = "git pull" process = subprocess.Popen(c,shell=True,stdout=PIPE,stdin=PIPE) print("正在拉取远程代码\n") print(process.communicate()[0]) process.wait() if process.returncode != 0: print("拉取远程代码失败",process.communicate()) return 0 else: return 1 def push_stuff(): c = "git push" process = subprocess.Popen(c,shell=True,stdout=PIPE,stdin=PIPE) print("正在上传到服务器\n") print(process.communicate()[0]) process.wait() if process.returncode != 0: print("上传到远程服务器失败",process.communicate()) return 0 else: return 1 def submit(): """将当前文件夹提交到Git服务器""" if get_status(): if add_stuff(): if commit_stuff(): if push_stuff(): print("成功!") return 1 print("失败!") return 0 def get_file(): """获取Jupyter笔记文件夹,根据允许列表,自动进行html的转换""" if transfile(from_source=JUPYTER_NOTEBOOK_ROOT_FOLDER, to_source=HTML_DST_FOLDER, allowed_folder=JUPYTER_NOTEBOOK_ALLOWED_FOLDER): if convert_all(root_folder=HTML_DST_FOLDER): print("Convert all done!") # if __name__ == "__main__": # # convert("week5_problem_soving.ipynb","notebook") # # if transfile(fast=True,from_source=from_source,\ # # to_source=to_source): submit() # # main() # get_file() # submit()
from keras.preprocessing.image import load_img, img_to_array, save_img from keras.models import Sequential from keras.layers import Conv2D, MaxPool2D, UpSampling2D import numpy as np import os import argparse import csv import matplotlib.pyplot as plt curdir = os.path.dirname(os.path.abspath(__file__)) parser = argparse.ArgumentParser() parser.add_argument("--data", choices=['bottle','carpet'], default='bottle') parser.add_argument('--optimizer', choices=['adam','sgd','adagrad','rmsprop'], default='adam') parser.add_argument('--loss', choices=['mean_squared_error', 'binary_crossentropy'], default='binary_crossentropy') parser.add_argument('--epochs', type=int, default=50) parser.add_argument('--batch_size', type=int, default=32) parser.add_argument('--test_samples', type=float, default=0.2) parser.add_argument('--training', choices=[True,False],default=False) parser.add_argument('--saveweights', choices=[True,False],default=True) parser.add_argument('--predict', choices=[True,False],default=True) def load_data(data_set, target_size=None): images = [] directory = './' + data_set + '/train/good/' for filename in os.listdir(directory): img = load_img(os.path.join(directory,filename), target_size = target_size) img = img_to_array(img) images.append(img) images = np.stack(images) return images def load_model(): input_shape=(224,224,3) n_channels = input_shape[-1] model = Sequential() model.add(Conv2D(32, (3,3), activation='relu', padding='same', input_shape=input_shape)) model.add(MaxPool2D(padding='same')) model.add(Conv2D(16, (3,3), activation='relu', padding='same')) model.add(MaxPool2D(padding='same')) model.add(Conv2D(8, (3,3), activation='relu', padding='same')) model.add(UpSampling2D()) model.add(Conv2D(16, (3,3), activation='relu', padding='same')) model.add(UpSampling2D()) model.add(Conv2D(32, (3,3), activation='relu', padding='same')) model.add(Conv2D(n_channels, (3,3), activation='sigmoid', padding='same')) model.compile(optimizer=args.optimizer, loss=args.loss) return model def main(args): # instantiate model model = load_model() train = load_data(args.data, (224,224)) train = train.astype('float32') / 255.0 model.summary() if(args.training): print('Training...') model.fit(x=train, y=train, batch_size=args.batch_size, epochs=args.epochs, validation_split=args.test_samples) if(args.saveweights): print('Saving Model...') model.save_weights('./models/cae/cae_'+ args.data + '_' + str(args.epochs) + '_' + args.loss + '_' + args.optimizer + '_weights.h5') plt.plot(model.history.history['loss'], label = 'loss') plt.plot(model.history.history['val_loss'], label='val_loss') plt.legend() plt.savefig('./images/cae/cae_loss_' + args.data + '_' + str(args.epochs) + '_' + args.loss + '_' + args.optimizer + '.png') else: print('Loading weights…') model.load_weights('./models/cae/cae_'+ args.data + '_' + str(args.epochs) + '_' + args.loss + '_' + args.optimizer + '_weights.h5') print('Done') if(args.predict): print('Predicting...') csv_name='losses.csv' max_error = model.evaluate(train,train,batch_size=args.batch_size) test_directory = './' + args.data + '/test/' result_directory = './results/CAE/' + args.data + '/E' + str(args.epochs) + '_' + args.loss + '_' + args.optimizer + '/' if not os.path.exists(result_directory): os.makedirs(result_directory) anomaly_list=list() for dir in os.listdir(test_directory): print(dir) mse_list=list() dir_list = list() dir_list.append(dir) if not os.path.exists(os.path.join(result_directory,dir)): os.mkdir(os.path.join(result_directory,dir)) for filename in os.listdir(os.path.join(test_directory,dir)): img = load_img(os.path.join(test_directory,dir,filename), target_size = (224,224)) img = img_to_array(img) img = np.expand_dims(img,axis=0) img = img.astype('float32') / 255.0 prediction = model.predict(img) predict_name = filename + '_predict.png' save_img(os.path.join(result_directory,dir,predict_name),prediction[0]) this_error = model.evaluate(img,img) mse_list.append(this_error) print('This error:' + str(this_error) + ', Max Error:' + str(max_error + max_error*0.05)) if(this_error < max_error + max_error*0.05): dir_list.append(False) else: dir_list.append(True) dir_accuracy = 0 if 'good' in dir_list: dir_accuracy += dir_list.count(False)/(len(dir_list)-1) else: dir_accuracy += dir_list.count(True)/(len(dir_list)-1) dir_accuracy_file = open(os.path.join(result_directory,dir,"accuracy.txt"), "w") dir_accuracy_file.write(str(dir_accuracy)) dir_accuracy_file.close() anomaly_list.append(dir_list) with open(os.path.join(result_directory,dir,csv_name), 'w', newline='') as myfile: wr = csv.writer(myfile, quoting=csv.QUOTE_ALL) wr.writerow(mse_list) # calculate accuracy accuracy = 0 element_count = 0 for i in range(len(anomaly_list)): element_count += len(anomaly_list[i]) - 1 if 'good' in anomaly_list[i]: accuracy += anomaly_list[i].count(False) else: accuracy += anomaly_list[i].count(True) print('Anomaly Detection Accuracy: ' + str(accuracy/element_count*100) + '%') accuracy_file = open(os.path.join(result_directory,"accuracy.txt"), "w") accuracy_file.write(str(accuracy/element_count)) accuracy_file.close() del(model) if __name__ == '__main__': args = parser.parse_args() main(args)
def f(a, b): # 매개변수 2개를 더하는 함수 return a + b print(f(3, 5)) print(f(2, 1))
__author__ = 'Justin' import os import networkx as nx from datetime import datetime from SetNetworkTime import set_network_time from WeightFunction import weightfunction from ZenScore import zenscore from random import choice from geopy.distance import vincenty as latlondist import geojson from DisplayNetwork import networkdisplay # DESCRIPTION: This script will generate the ideal ZenRoute based on a user's desired factor weights # # INPUT: factor weights- [a,b,c] corresponding to [Zenness, time, distance] # # OUTPUT: ZenRoute (as a networkx object or geojson output) # Load Network cwd = os.getcwd() filename = "OSMNetworkReducedSet.gexf" filepath = os.path.abspath(os.path.join(cwd, '..', 'Project Data','Networks',filename)) print(filepath) fh=open(filepath,'rb') G = nx.read_gexf(fh) fh.close # Update Time Segments set = 0 if set == 1: now = datetime.now() G = set_network_time(G,'currenttime',now,1800) # Update "Zenness" set = 0 if set == 1: for edge in G.edges(): nodeA = edge[0] nodeB = edge[1] G[nodeA][nodeB]['Zenness'] = zenscore(G[nodeA][nodeB]) # Update Total Edge Weights weights = [1,1,1] keys = ['Zenness','distance','currenttime'] for edge in G.edges(): nodeA = edge[0] nodeB = edge[1] dict = G[nodeA][nodeB] G[nodeA][nodeB]['weight'] = weightfunction(weights,dict,keys) # Save Network Graph filename = "OSMNetworkReducedSet.gexf" filepath = os.path.abspath(os.path.join(cwd, '..', 'Project Data','Networks',filename)) nx.write_gexf(G,filepath) # Generate Source and Destination distancelimit = 3 # distance in miles lons = nx.get_node_attributes(G,'lon') lats = nx.get_node_attributes(G,'lat') nodesdist = 0 connected = False while(nodesdist < distancelimit or not(connected)): randomnodes = [choice(G.nodes()),choice(G.nodes())] origin = randomnodes[0] destination = randomnodes[1] nodesdist = latlondist([lats[origin],lons[origin]],[lats[destination],lons[destination]]).miles if nx.has_path(G,origin,destination): connected = True else: connected = False print('Source:',[lats[randomnodes[0]],lons[randomnodes[0]]]) print('Destination',[lats[randomnodes[1]],lons[randomnodes[1]]]) # Djkistra's Shortest Path path = nx.shortest_path(G,source = randomnodes[0],target = randomnodes[1],weight = 'weight') # IV) Plot Network and Routes routestyles = [{'color':' #ccffcc','width':12}] # greenish zenMAX = max(nx.get_edge_attributes(G,'Zenness').values()) networkdisplay(G,routes=[path],graphstyle='RdYlBu_r',routestyles = routestyles, weightstring='Zenness',maxValue=zenMAX, title='Example') # Export Route Features = [] for node in path: Features.append(geojson.Feature(geometry=geojson.Point((lons[node], lats[node])))) Collection = geojson.FeatureCollection(Features) dump = geojson.dumps(Collection) filename = "ShortestPath.txt" filepath = os.path.abspath(os.path.join(cwd, '..', 'Project Data','Paths',filename)) text_file = open(filepath, "w") text_file.write(dump) text_file.close()
"""empty message Revision ID: 430e1e04753b Revises: e6d8ccbfb29d Create Date: 2020-03-24 22:50:23.344042 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '430e1e04753b' down_revision = 'e6d8ccbfb29d' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('courseoffTest', sa.Column('course_name', sa.String(length=256), nullable=False), sa.Column('course_type', sa.String(length=256), nullable=False), sa.Column('course_id', sa.Integer(), nullable=False), sa.Column('time', sa.String(length=256), nullable=True), sa.PrimaryKeyConstraint('course_name', 'course_type', 'course_id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('courseoffTest') # ### end Alembic commands ###
class Stack: def __init__(self): self.__list = [] def __str__(self): result = "Here is a stack: " for item in self.__list: result += str(item) + ", " return result def push(self, item): self.__list.append(item) def pop(self): self.__list.pop() def clear(): self.__list.clear() stack = Stack() stack.push(1) stack.push(2) stack.push(3) stack.push(4) stack.push(5) stack.pop() stack.pop() print(stack)
import os import tensorflow as tf import numpy as np import preprocess_utils def _preprocess_zero_mean_unit_range(inputs): """Map image values from [0, 255] to [-1, 1].""" return (2.0 / 255.0) * tf.to_float(inputs) - 1.0 def preprocess_image(image, crop_height, crop_width, min_resize_value=None, max_resize_value=None, resize_factor=None, min_scale_factor=1., max_scale_factor=1., scale_factor_step_size=0, is_training=True): original_image = image processed_image = tf.cast(image, tf.float32) if (min_resize_value is not None or max_resize_value is not None): [processed_image] = \ preprocess_utils.resize_to_range( image=processed_image, min_size=min_resize_value, max_size=max_resize_value, factor=resize_factor, align_corners=True) # The `original_image` becomes the resized image. original_image = tf.identity(processed_image) ''' # Data augmentation by randomly scaling the inputs. scale = preprocess_utils.get_random_scale( min_scale_factor, max_scale_factor, scale_factor_step_size) processed_image = preprocess_utils.randomly_scale_image( processed_image, scale) processed_image.set_shape([None, None, 3]) # Pad image with mean pixel value. if is_training: # Pad image and label to have dimensions >= [crop_height, crop_width] image_shape = tf.shape(processed_image) image_height = image_shape[0] # vis 508 image_width = image_shape[1] mean_pixel = tf.reshape([127.5, 127.5, 127.5], [1, 1, 3]) target_height = image_height + tf.maximum(crop_height - image_height, 0) # 448 target_width = image_width + tf.maximum(crop_width - image_width, 0) # 256 processed_image = preprocess_utils.pad_to_bounding_box( processed_image, 0, 0, target_height, target_width, mean_pixel) ''' # Randomly crop the image and label. if is_training: [processed_image] = preprocess_utils.random_crop( [processed_image], crop_height, crop_width) else: processed_image = tf.image.resize_image_with_crop_or_pad(processed_image, crop_height, crop_width) processed_image.set_shape([crop_height, crop_width, 3]) if is_training: # Randomly left-right flip the image and label. processed_image, _ = preprocess_utils.flip_dim( [processed_image], 0.5, dim=1) processed_image = _preprocess_zero_mean_unit_range(processed_image) return processed_image class ImageNetDataSet(object): def __init__(self, data_dir, subset='train', use_distortion=True): self.data_dir = data_dir self.subset = subset self.use_distortion = use_distortion def get_filenames(self): if self.subset in ['train', 'validation', 'eval']: return [os.path.join(self.data_dir, self.subset + '.tfrecords')] else: raise ValueError('Invalid data subset "%s"' % self.subset) def parser(self, serialized_example): features = tf.parse_single_example( serialized_example, features={ 'image': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([], tf.int64), 'height': tf.FixedLenFeature([], tf.int64), 'width': tf.FixedLenFeature([], tf.int64) }) image = tf.image.decode_jpeg(features['image'], channels=3) height = tf.cast(features['height'], tf.int32) width = tf.cast(features['width'], tf.int32) image = tf.reshape(image, [height, width, 3]) label = tf.cast(features['label'], tf.int32) image = tf.cast(image, tf.float32) image = self.preprocess(image) return image, label def preprocess(self, image): """Preprocess a single image in [height, width, depth] layout.""" if self.subset == 'train' and self.use_distortion: return preprocess_image(image, 224,224, 256,None,None,0.25,1,0,True) else: return preprocess_image(image, 224,224, 256,None,None,1.0,1.0,0,False) def make_batch(self, batch_size): """Read the images and labels from 'filenames'.""" filenames = self.get_filenames() # Repeat infinitely. dataset = tf.data.TFRecordDataset(filenames) # Parse records. #dataset = dataset.map( # self.parser, num_threads=batch_size, output_buffer_size=2 * batch_size) dataset = dataset.map(self.parser, num_parallel_calls=batch_size) dataset = dataset.repeat(None) # Potentially shuffle records. if self.subset == 'train': min_queue_examples = int( ImageNetDataSet.num_examples_per_epoch(self.subset) * 0.04) # Ensure that the capacity is sufficiently large to provide good random # shuffling. #dataset = dataset.shuffle(buffer_size=min_queue_examples + 3 * batch_size) dataset = dataset.shuffle(buffer_size=20480, reshuffle_each_iteration=True) # Batch it up. dataset = dataset.batch(batch_size) iterator = dataset.make_one_shot_iterator() image_batch, label_batch = iterator.get_next() return image_batch, label_batch @staticmethod def num_examples_per_epoch(subset='train'): if subset == 'train': return 1281167 elif subset == 'validation': return 50000 elif subset == 'eval': return 50000 else: raise ValueError('Invalid data subset "%s"' % subset)
import turtle import math import random bob = turtle.Turtle() bob.speed(30) turtle.getscreen().bgcolor("black") turtle.hideturtle() for i in range(100): if i%2 == 0: bob.hideturtle() bob.circle(100) bob.color("orange") bob.left(25) else: bob.hideturtle() bob.circle(-100) bob.color("green") bob.left(25) turtle.done()
from flask import request, jsonify, make_response from functools import wraps from flask_restful import abort from models import User import jwt import os import sys AUTH_ERROR_MESSAGE = "The server could not verify that you are authorized to access the URL requested. You either supplied the wrong credentials (e.g. a bad password), or your browser doesn't understand how to supply the credentials required." def authenticate(function): @wraps(function) def wrapper(*args, **kwargs): if request.headers.get('Authorization') is None: abort(make_response(jsonify(error=AUTH_ERROR_MESSAGE), 401)) token = request.headers['Authorization'].split(',')[0] try: jwt_token = jwt.decode(token, os.environ['JWT_SECRET'], algorithms=['HS256']) except: abort(make_response(jsonify(error=AUTH_ERROR_MESSAGE), 401)) user = User.query.filter_by(id=str(jwt_token['id'])).first() if user is None: abort(make_response(jsonify(error=AUTH_ERROR_MESSAGE), 401)) kwargs['user'] = user return function(**kwargs) return wrapper def get_user(token: str): try: jwt_token = jwt.decode(token, os.environ['JWT_SECRET'], algorithms=['HS256']) except: abort(make_response(jsonify(error=AUTH_ERROR_MESSAGE), 401)) user = User.query.filter_by(id=jwt_token['id']).first() if user is None: abort(make_response(jsonify(error=AUTH_ERROR_MESSAGE), 401)) return user
# -*- coding: utf-8 -*- import re from typing import Iterable, Text from urllib.error import HTTPError from urllib.parse import urlencode from urllib.request import BaseHandler import execjs # noinspection PyProtectedMember from bs4 import BeautifulSoup, SoupStrainer from .base import FeedFetcher, Item class IAppsFetcher(FeedFetcher): DOMAIN = 'www.iapps.im' FILTER = SoupStrainer('div', id='articleLeft') def __init__(self): super().__init__() self.handler = BrowserHandler(self.DOMAIN) self.fetcher.opener.add_handler(self.handler) self.fetcher.browser = 'random' self.fetcher.wait = 5 def fetch(self) -> Iterable[Item]: try: self.fetcher.fetch(self.url()) except HTTPError: url = self.handler.url if url: self.fetcher.open(url).close() finally: self.handler.url = None return super().fetch() def url(self) -> Text: return 'http://%s/feed' % self.DOMAIN def description(self, url) -> Text: data = '' soup = self.fetcher.soup(url, parse_only=self.FILTER) content = soup.find('div', 'entry-content') a = content.find('a', 'chat-btn') if a: a.extract() data += str(content) carousel = soup.find('div', 'carousel') if carousel: data += str(carousel) self.cache.set(url, data) return data # noinspection PyUnusedLocal @staticmethod def callback(result, item): result['id'] = result['link'].split('/')[-1] return True class BrowserHandler(BaseHandler): handler_order = 999 # after all other processing def __init__(self, domain): self.domain = domain self.url = None def check(self, response): soup = BeautifulSoup(response, 'lxml') script = soup.find('script') lines = ['function run() {', 'var a = {};'] for line in script.text.splitlines(): line = line.strip() if re.match('^var [^a]', line): lines.append(line) elif line.startswith(';'): lines.append('t = "%s";' % self.domain) lines.append(line) lines.append('return a.value;}') script = '\n'.join(lines) value = execjs.compile(script).call('run') data = {} form = soup.find('form') for item in form.find_all('input'): data[item['name']] = item.get('value', value) return 'http://%s%s?%s' % (self.domain, form['action'], urlencode(data)) # noinspection PyUnusedLocal def http_response(self, request, response): if response.code == 503: self.url = self.check(response) return response https_response = http_response
from .bbox_3d import * from .evaluation import *
# temp_file = open('input.txt', 'r') # for line in temp_file: # print(line, end='') input_object = open('input.txt', 'r') output_object = open('output.txt', 'w') for line_str in input_object: new_str = '' line_str = line_str.strip() for char in line_str: new_str = char + new_str print(new_str, file=output_object) #line reversed is print("Line: {:12s} reversed is : {:s}".format(line_str, new_str)) input_object.close() output_object.close()
# -*- coding: utf-8 -*- """ Created on Thu Jun 7 20:16:31 2018 @author: user 矩陣相加 """ a=[] b=[] print("Enter matrix 1:") for i in range(2): a.append([]) for j in range(2): print("[%d, %d]: " % (i+1, j+1), end = '') a[i].append(int(input())) print("Enter matrix 2:") for i in range(2): b.append([]) for j in range(2): print("[%d, %d]: " % (i+1, j+1), end = '') b[i].append(int(input())) print("Matrix 1:") for i in range(2): for j in range(2): print(a[i][j],end=" ") print("") print("Matrix 2:") for i in range(2): for j in range(2): print(b[i][j],end=" ") print("") print("Sum of 2 matrices:") a1=a[0][0]+b[0][0] a2=a[0][1]+b[0][1] a3=a[1][0]+b[1][0] a4=a[1][1]+b[1][1] print("{:} {:} ".format(a1,a2)) print("{:} {:} ".format(a3,a4))
a = [int(i) for i in input().split()] b = int(input()) result = '' for i in range(len(a)): if b == a[i]: result += str(i) + " " if result != '': print(result) else: print("Отсутствует")
print("Or "*100) num1=28 print(num1) num2=num1/2 print(num2) kobi = [1,2,3] for i in range(len(kobi)): print(kobi[i])
a = [0,1,2,4,3] # indexing print(a[3]) # index print(a.index(1)) # slice print(a[1:3]) # append a.append('6') print(a) # insert a.insert(0,'7') print(a) # del del a[1] print(a) # remove a.remove('6') print(a) # pop b = a.pop(0) print(a) print(b) # sort a.sort() print(a) # reverse a.reverse() print(a) # count print(a.count(2)) # clear a.clear() print(a) # extend a.extend([3,4]) print(a)
import json import os.path import secrets from abc import ABC, abstractmethod from csv import DictWriter from datetime import datetime from faker import Faker from lib.common import FAKER_SEED class FakeDataGenerator(ABC): """ Abstract Data Generator class, subclasses needs to implement the generate_pipeline_row method specific for each customer. """ def __init__(self, number_records: int = 0): self._records_count = number_records if number_records else 1 self._faker = Faker() self._faker.random.seed(FAKER_SEED) self._random = secrets.SystemRandom() @abstractmethod def generate_pipeline_row(row, file_size): pass def generate_fake_data(self, file_type: str, path: str): output_file = self.generate_output_file(path, self._records_count, file_type) print(f"Start: {output_file}") final_list = [] for i in range(self._records_count): line = self.generate_pipeline_row(i, self._records_count) final_list.append(line) if file_type == "csv": self.output_csv(final_list, output_file) else: self.output_json(final_list, output_file) print(f"Done: {output_file}") def generate_output_file(self, path: str, file_length: int, file_type: str) -> str: pipeline = path.split('/')[-1] file_name = f'{pipeline}_{file_length}.{file_type}' output_file = "" while not output_file: # file = f'cloversub/{path}/input_files/{file_name}' file = f'script/input_files/{file_name}' if os.path.isfile(file): print(f"File '{file}' already exists") override = input("Do you want to override file (Y/N)? ") if override.lower() in ("n", "no"): file_name = input("Please give another file name: ") else: output_file = file else: output_file = file return output_file def output_json(self, final_list, output_file): with open(output_file, "w") as handle: for obj in final_list: handle.write(json.dumps(obj)) handle.write('\n') def output_csv(self, final_list, output_file): with open(output_file, 'w') as handle: writer = DictWriter(handle, fieldnames=final_list[0].keys()) writer.writeheader() writer.writerows(final_list) def create_start_end_date(self): date = self._faker.date() # 2017-09-16 format end_month = f"{int(date[5:7]) + 1}" if int(date[5:7]) < 12 else "01" if len(end_month) == 1: end_month = f"0{end_month}" end_date = f"{date[:5]}{end_month}{date[7:]}" return date, end_date def random_or_empty(self, element, empty=''): return self._faker.random_element([element, empty]) def get_current_date(self): return datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%S') def get_time_string(self): return f"{self._random.randint(10,99)}:{self._random.randint(10,99)}:{self._random.randint(10,99)}"
import datetime import os import random import pandas as pd random.seed(1) import numpy as np np.random.seed(1) # import tensorflow as tf # tf.random.set_random_seed(1) from train_and_test import train_and_evaluate_dae_ff # from train_fasttext import train_and_evaluate_fasttext if __name__ == "__main__": # results_file = "data/fasttext-abstract-time.tsv" results_file = "data/dae-title-time.tsv" result_dict = {} # input_dir = "../CitationScreeningReplicability/data/processed/" input_dir = "data/processed/" for infile in os.listdir(input_dir)[6:]: print(infile) if infile not in ["SkeletalMuscleRelaxants.tsv", "proton_beam.tsv"]: continue if infile[-3:] != "tsv": continue single_file_dict = train_and_evaluate_dae_ff( input_data_file=f"{input_dir}/{infile}", num_dae_epochs=150, num_ff_epochs=100, drop_out=0.7, dae_minibatch=32, ff_minibatch=128, ) single_file_dict["date"] = datetime.datetime.now() single_file_dict["pretrained"] = "no" single_file_dict["model"] = "dae" # single_dict = { # "wss95": wss95, # "wss100": wss100, # "date": datetime.datetime.now(), # "pretrained": "no", # "model": "no undersampling, spacy tokenizer", # } result_dict[infile] = single_file_dict if os.path.isfile(results_file): df = pd.read_csv(results_file, sep="\t") df = df.drop_duplicates() df = df.append( pd.DataFrame.from_dict(result_dict).transpose().reset_index(), ignore_index=True, ) else: df = pd.DataFrame.from_dict(result_dict).transpose().reset_index() df.to_csv(results_file, sep="\t", index=False)
# -*- coding: utf-8 -*- # Module author: @GovnoCodules import requests from .. import loader, utils @loader.tds class WeatherMod(loader.Module): """Weather Module""" strings = {'name': 'Weather'} async def pwcmd(self, message): """"Кидает погоду картинкой.\nИспользование: .pw <город>; ничего.""" args = utils.get_args_raw(message).replace(' ', '+') await message.edit("Узнаем погоду...") city = requests.get( f"https://wttr.in/{args if args != None else ''}.png").content await message.client.send_file(message.to_id, city) await message.delete() async def awcmd(self, message): """Кидает погоду ascii-артом.\nИспользование: .aw <город>; ничего.""" city = utils.get_args_raw(message) await message.edit("Узнаем погоду...") r = requests.get( f"https://wttr.in/{city if city != None else ''}?0?q?T&lang=ru") await message.edit(f"<code>Город: {r.text}</code>") @loader.sudo async def wcmd(self, message): """.w <город>""" message.edit("<b>Погода by wttr.in</b>") city = utils.get_args(message) msg = [] if city: await message.edit("Обрабатываем запрос...") for i in city: r = requests.get( "https://wttr.in/" + i + "?format=%l:+%c+%t,+%w+%m" ) msg.append(r.text) await message.edit("".join(msg)) else: await message.edit("Обрабатываем запрос...") r = requests.get("https://wttr.in/?format=%l:+%c+%t,+%w+%m") await message.edit(r.text)
import matplotlib import matplotlib.pyplot as plt import numpy as np n1, n2, n10, n100 = np.loadtxt("standard.txt", usecols=(0,1,2,3), delimiter=' ', unpack='true') n_bins = 50 n, bins, patches = plt.hist(n1, n_bins, range=(0,1)) plt.xlabel('ciao') plt.ylabel('prova') plt.title('Histogram loaded from file!') plt.grid(True) plt.figure() n, bins, patches = plt.hist(n2, n_bins, range=(0,1)) plt.xlabel('ciao') plt.ylabel('prova') plt.title('Histogram loaded from file!') plt.grid(True) plt.figure() n, bins, patches = plt.hist(n10, n_bins, range=(0.1, 0.9)) plt.xlabel('ciao') plt.ylabel('prova') plt.title('Histogram loaded from file!') plt.grid(True) plt.figure() n, bins, patches = plt.hist(n100, n_bins, range=(0.35, 0.65)) plt.xlabel('ciao') plt.ylabel('prova') plt.title('Histogram loaded from file!') plt.grid(True) plt.show()
#!/usr/bin/env python # -*- coding:utf-8 -*- from __future__ import division import time from inc import * import os import sys reload(sys) sys.setdefaultencoding('utf-8') #加区间报警 #加failure def SelectApplicationSql(module,today): sql = "select sum(failureCount + successCount) as num from `avg_%s_%s`" % (module, today) return sql def UpdateApplicationSql(num,module): sql = "update application set num = %s where name = '%s'" %(num,module) #print sql return sql def TodayAvgFailSql(module,date,today): sql = "select serviceInterface,method,failureCount,successCount from `avg_%s_%s` where failureCount > 0 and timestamp = '%s' order by id desc limit 1" % (module,today, date) return sql def UpdateApplication(module,today): conn, cursor = Mysql() cursor.execute(SelectApplicationSql(module,today)) res = cursor.fetchone() #print res[0] cursor.execute(UpdateApplicationSql(res[0],module)) conn.commit() CloseMysql(conn, cursor) def TodayAvgFail(module,date,today): conn, cursor = Mysql() cursor.execute(TodayAvgFailSql(module,date,today)) res = cursor.fetchall() if res == None: return 0 for row in res: serviceInterface, method , failureCount , successCount = row[0] , row[1] , row[2] , row[3] per = round(failureCount * 100 / (failureCount + successCount) , 2 ) print module,serviceInterface, method,failureCount , successCount , per if failureCount > 30: str = '严重:[%s]%s里的%s的%s方法调用失败%s%%' % (date, module, serviceInterface, method, per) else: if per > 50: str = '严重:[%s]%s里的%s的%s方法调用失败%s次' % (date, module, serviceInterface, method, failureCount) else: str = '告警:[%s]%s里的%s的%s方法调用失败%s%%' % (date, module, serviceInterface, method, per) AlarmWeixin(str) CloseMysql(conn, cursor) return 0 def loop(module,date,today): TodayAvgFail(module, date, today) def main(): date,today,timestamp = MinTime(300) Modules = GetModules() for m in Modules: try: UpdateApplication(m, today) except: pass #print m , date , today, timestamp loop(m , date , today) if __name__ == '__main__': main()
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2016-01-24 05:03 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Message', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('msg', models.TextField(max_length=10000, verbose_name='Сообещние')), ], options={ 'verbose_name_plural': 'Сообщения', 'verbose_name': 'Сообщение', }, ), migrations.CreateModel( name='Theme', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200, verbose_name='Название темы')), ], options={ 'verbose_name_plural': 'Темы', 'verbose_name': 'Тема', }, ), migrations.AddField( model_name='message', name='theme', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='iboard.Theme', verbose_name='Тема'), ), ]
import os import re os.chdir(path) for fo in os.listdir(): #get list of artist folders if fo != '.DS_Store': os.chdir(fo) for al in os.listdir(): #for each artist folder, list of album folders if al != '.DS_Store': os.chdir(al) for so in os.listdir(): #for each album, get names of files ma = re.match('.*? - (.*)', so) if ma: #add files w/ ' - ' to list to make sure it works os.rename(so, ma.group(1)) #rename files os.chdir('..') os.chdir('..')
from abc import abstractmethod import copy import pickle import numpy as np from scipy.stats import pearsonr import matplotlib.pyplot as plt import pandas as pd from joblib import Parallel, delayed from sklearn.model_selection import KFold, train_test_split from sklearn.preprocessing import StandardScaler class Model(object): """ Modelクラス X_obs, y_obs : 入力値そのまま X, y : ndarrayになったデータフレーム """ def __init__(self): self.layers = {} self._n = 0 self._has_input = False self._is_trained = False def add_layer(self, layer): if layer.layer_type == 'input': assert not self._has_input, "Model already has Inputs Layer" self._has_input = True self.layers[self._n] = layer self._n += 1 def train(self, X, y): for idx, layer in self.layers.items(): layer.train(X, y) X = layer.forward(X) #: X, y are retained only for summary information self.X = X self.y = y self._is_trained = True def get_dataset(self): if not self._is_trained: print("Model is not already trained") return return self.X, self.y def save(self, outpath): with open(outpath, 'wb') as f: pickle.dump(self, f) def predict_proba(self, X): for idx, layer in self.layers.items(): X = layer.forward(X) return (X[:, 0], X[:, 1]) def predict(self, X): for idx, layer in self.layers.items(): X = layer.forward(X) return X[:, 0] def score(self, X, y): """ 入力も出力もリストに変換 """ y_pred = list(self.predict(X).flatten()) return pearsonr(y_pred, list(y))[0]**2 def summary(self): if not self._is_trained: print("Model is not already trained") return info = [] info.append("__________"*6) info.append(f"Input Dataset: X {self.X.shape}, y {self.y.shape}") info.append("") info.append("Layer(type)") info.append("=========="*6) for idx, layer in self.layers.items(): info.append(f"{idx}_{layer.name}({layer.layer_type})") info.append(f"Output shape: {layer.outputs_shape}") info.append(f"Description: {layer}") info.append(" ") info.append("=========="*6) info.append(self.model_check()) info.append("__________"*6) for line in info: print(line) def model_check(self): layer_types = [layer.layer_type for layer in self.layers.values()] if 'input' not in layer_types: return "Invalid model structure: Missing Inputs layer" if 'output' not in layer_types: return "Invalid model structure: Missing Outputs layer" if self.layers[self._n-1].outputs_shape[1] != 2: return "Invalid outputs shape" return "Model check: OK" def valid(self, X, y, n=3, cv='KFold'): """ available cv : 'KFold' or 'random' """ if cv == 'random': self.random_splitCV(X, y, n) elif cv == 'KFold': self.kfoldCV(X, y, n) else: NotImplementedError() def random_splitCV(self, X, y, n): test_size = 0.3 scores = [] y_train_preds = [] y_train_trues = [] y_test_preds = [] y_test_trues = [] for _ in range(n): X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=test_size) self.train(X_train, y_train) scores.append(self.score(X_test, y_test)) y_train_preds += list(self.predict(X_train).reshape(1, -1)) y_train_trues += list(y_train.reshape(1, -1)) y_test_preds += list(self.predict(X_test).reshape(1, -1)) y_test_trues += list(y_test.reshape(1, -1)) plt.scatter(y_train_trues, y_train_preds, color='steelblue', alpha=0.7, label='Train') plt.scatter(y_test_trues, y_test_preds, color='darkred', alpha=0.7, label='Test') plt.xlabel('y_obs') plt.ylabel('y_pred') plt.title(f'Train-Test-Split (test_size={test_size}) \ [R2={round(np.array(scores).mean(), 3)}]') plt.legend() plt.show() def kfoldCV(self, X, y, n): scores = [] y_train_preds = [] y_train_trues = [] y_test_preds = [] y_test_trues = [] kf = KFold(n_splits=n, shuffle=True) for train, test in kf.split(X): X_train, X_test = X.iloc[train], X.iloc[test] y_train, y_test = y.iloc[train], y.iloc[test] self.train(X_train, y_train) scores.append(self.score(X_test, y_test)) y_train_preds += list(self.predict(X_train).reshape(1, -1)[0]) y_train_trues += list(y_train.reshape(1, -1)[0]) y_test_preds += list(self.predict(X_test).reshape(1, -1)[0]) y_test_trues += list(y_test.reshape(1, -1)[0]) plt.scatter(y_train_trues, y_train_preds, color='steelblue', alpha=0.7, label='Train') plt.scatter(y_test_trues, y_test_preds, color='darkred', alpha=0.7, label='Test') plt.xlabel('y_obs') plt.ylabel('y_pred') plt.title(f'Train-Test-Split (K={n}) \ [R2={round(np.array(scores).mean(), 3)}]') plt.legend() plt.show() class Layer(object): """ベースレイヤクラス train: モデルの構築 outputs: 予測値あるいはtransformの結果を返す ---------------------- Layer_type :'input' self.X : ndarray self.y : ndarray """ def __init__(self, name, layer_type): self.name = name self.layer_type = layer_type if self.layer_type not in ['input', 'models', 'transformer', 'output']: raise NotImplementedError('Invalid layer type') self.outputs_shape = None def __repr__(self): return "No Desctiption" @abstractmethod def train(self, X, y): """ Train `input layer` : check type and add outputs_shape `models` : train model and add outputs_shape `transformer` : check format and add outputs_shape """ raise NotImplementedError def transform(self, X): raise NotImplementedError @abstractmethod def forward(self, X): """ Forward `input layer` : check input type and shape, transfrom input to ndarray 'transformer' : check input type and shape, transfrom input to ndarray """ raise NotImplementedError class EnsembleBaseLayer(Layer): def __init__(self, layer_name, layer_type, n_models, row_ratio, col_ratio, scale): super().__init__(layer_name, layer_type) self.n_models = n_models self.row_ratio = row_ratio self.col_ratio = col_ratio self.scale = scale self.opt = None def __repr__(self): return ("Ensemble Base Layer") def train(self, X, y): self.model = self.get_basemodel() self.model.fit(X, y) self.outputs_shape = self.model.predict(X).shape def forward(self, X): return self.model.predict(X) @abstractmethod def get_basemodel(self): """ Return basemodel """ raise NotImplementedError class EnsembleBaseModel(object): """Ridge with Random Patches and Random Subspaces 抽象クラス:モデルの最小単位 """ def __init__(self, n_models, col_ratio, row_ratio, scale): self.n_models = n_models self.col_size = col_ratio self.row_size = row_ratio self.scale = scale def fit(self, X, y): self.models = {} self.scalers = {} self.masks = {} self.model_rprs(X, y) def predict(self, X): df_result = pd.DataFrame() for i in range(self.n_models): model = self.models[i] mask = self.masks[i] scaler = self.scalers[i] X_ = X[:, mask] if self.scale: X_ = scaler.transform(X_) y_pred = model.predict(X_) df_result[i] = list(y_pred) return df_result.values def model_rprs(self, X, y): results = Parallel(n_jobs=-1)( [delayed(self._train)(X, y, i) for i in range(self.n_models)]) for i, (mask, model, scaler) in enumerate(results): self.masks[i] = mask self.models[i] = model self.scalers[i] = scaler def _train(self, X, y, i): sample_mask = [bool(np.random.binomial(1, self.col_size)) for i in range(X.shape[0])] mask = [bool(np.random.binomial(1, self.col_size)) for i in range(X.shape[1])] X_rprs = copy.deepcopy(X[:, mask][sample_mask]) if self.scale: scaler = StandardScaler() scaler.fit(X_rprs) X_rprs = scaler.transform(X_rprs) else: scaler = None y_rp = copy.deepcopy(y[sample_mask]) model = self.get_model() model.fit(X_rprs, y_rp) mask = copy.deepcopy(mask) model = copy.deepcopy(model) scaler = copy.deepcopy(scaler) return mask, model, scaler def get_model(self): raise NotImplementedError
#!/usr/bin/python import time import argparse import requests from prometheus_client import start_http_server from prometheus_client.core import GaugeMetricFamily, CounterMetricFamily, REGISTRY parser = argparse.ArgumentParser(description='K8S API Server exporter') parser.add_argument('--master','-ip', type=str, help='K8S API Server IP', required=True) parser.add_argument('--interval','-t',type=float, help='Interval between scrapes', required=True) args = parser.parse_args() class MicroServiceCollector(object): def collect(self): base_url = 'http://'+args.master+':8080' yield GaugeMetricFamily('k8s_nodes', 'Total nodes in K8S cluster', value=getNodes(base_url)) yield GaugeMetricFamily('k8s_pods', 'Total pods in K8S cluster', value=getPods(base_url)) yield GaugeMetricFamily('k8s_running_pods' , 'Total pods in Running state' , value=totalRunningPods(base_url)) yield GaugeMetricFamily('k8s_rc', 'Total replication controllers in K8S cluster', value=getRCs(base_url)) yield GaugeMetricFamily('k8s_deployments', 'Total deployments in K8S cluster', value=getDeployments(base_url)) yield GaugeMetricFamily('k8s_version', 'Version of k8s cluster', value=getVersion(base_url)) nodes = getNodes(base_url) node_url = base_url+'/api/v1/nodes' for node in range(0,nodes): ip = requests.get(node_url).json()['items'][node]['spec']['externalID'] node_disk_status= requests.get(node_url).json()['items'][node]['status']['conditions'][0]['status'] if node_disk_status == 'False': status = 1 else: status = 0 sufficient_disk_metric = GaugeMetricFamily('k8s_node_sufficient_disk' , 'Disk Metrics' , labels=['node']) sufficient_disk_metric.add_metric([ip], status) yield sufficient_disk_metric node_memory_status = requests.get(node_url).json()['items'][node]['status']['conditions'][1]['status'] if node_memory_status == 'False': status = 1 else: status = 0 sufficient_memory_metric = GaugeMetricFamily('k8s_node_sufficient_memory' , 'Node Memory Metrics' , labels=['node']) sufficient_memory_metric.add_metric([ip], status) yield sufficient_memory_metric node_disk_pressure_status = requests.get(node_url).json()['items'][node]['status']['conditions'][2]['status'] if node_disk_pressure_status == 'False': status = 1 else: status = 0 disk_pressure_metric = GaugeMetricFamily('k8s_node_disk_pressure' , 'Node Disk Pressure Metric' , labels=['node']) disk_pressure_metric.add_metric([ip], status) yield disk_pressure_metric node_ready_status = requests.get(node_url).json()['items'][node]['status']['conditions'][3]['status'] if node_ready_status == 'False': status = 0 else: status = 1 node_ready_metric = GaugeMetricFamily('k8s_node_ready' , 'Node Ready Metric' , labels=['node']) node_ready_metric.add_metric([ip], status) yield node_ready_metric def getNodes(base_url): node_url = base_url+'/api/v1/nodes' return len(requests.get(node_url).json()['items']) def getDeployments(base_url): dp_url = base_url+'/apis/extensions/v1beta1/deployments' return len(requests.get(dp_url).json()['items']) def getPods(base_url): pod_url = base_url+'/api/v1/pods' return len(requests.get(pod_url).json()['items']) def totalRunningPods(base_url): pod_url = base_url+'/api/v1/pods' total = len(requests.get(pod_url).json()['items']) count = 0 for pod in range(0 , total): state = requests.get(pod_url).json()['items'][pod]['status']['phase'] if state == 'Running': count += 1 return count def getRCs(base_url): rc_url = base_url+'/api/v1/replicationcontrollers' return len(requests.get(rc_url).json()['items']) def getVersion(base_url): version_url = base_url+'/version' return float(requests.get(version_url).json()['major']+'.'+requests.get(version_url).json()['minor']) if __name__ == "__main__": REGISTRY.register(MicroServiceCollector()) start_http_server(9116) while True: time.sleep(args.interval)