text
stringlengths
8
6.05M
[ mean: 0.74598, std: 0.01465, params: {'base_estimator__max_depth': 3, 'base_estimator__max_features': 'sqrt'}, mean: 0.74689, std: 0.01357, params: {'base_estimator__max_depth': 3, 'base_estimator__max_features': 'log2'}, mean: 0.73473, std: 0.00446, params: {'base_estimator__max_depth': 3, 'base_estimator__max_features': 0.75}, mean: 0.74159, std: 0.02107, params: {'base_estimator__max_depth': 3, 'base_estimator__max_features': 0.5}, mean: 0.73107, std: 0.01779, params: {'base_estimator__max_depth': 3, 'base_estimator__max_features': 0.25}, mean: 0.69672, std: 0.01227, params: {'base_estimator__max_depth': 5, 'base_estimator__max_features': 'sqrt'}, mean: 0.69483, std: 0.01245, params: {'base_estimator__max_depth': 5, 'base_estimator__max_features': 'log2'}, mean: 0.70404, std: 0.01453, params: {'base_estimator__max_depth': 5, 'base_estimator__max_features': 0.75}, mean: 0.71057, std: 0.00938, params: {'base_estimator__max_depth': 5, 'base_estimator__max_features': 0.5}, mean: 0.70433, std: 0.01741, params: {'base_estimator__max_depth': 5, 'base_estimator__max_features': 0.25}, mean: 0.68317, std: 0.01573, params: {'base_estimator__max_depth': 7, 'base_estimator__max_features': 'sqrt'}, mean: 0.67883, std: 0.01533, params: {'base_estimator__max_depth': 7, 'base_estimator__max_features': 'log2'}, mean: 0.71653, std: 0.00935, params: {'base_estimator__max_depth': 7, 'base_estimator__max_features': 0.75}, mean: 0.71408, std: 0.00791, params: {'base_estimator__max_depth': 7, 'base_estimator__max_features': 0.5}, mean: 0.70697, std: 0.01221, params: {'base_estimator__max_depth': 7, 'base_estimator__max_features': 0.25}, mean: 0.68718, std: 0.01003, params: {'base_estimator__max_depth': 9, 'base_estimator__max_features': 'sqrt'}, mean: 0.67537, std: 0.01661, params: {'base_estimator__max_depth': 9, 'base_estimator__max_features': 'log2'}, mean: 0.70430, std: 0.00990, params: {'base_estimator__max_depth': 9, 'base_estimator__max_features': 0.75}, mean: 0.70682, std: 0.00701, params: {'base_estimator__max_depth': 9, 'base_estimator__max_features': 0.5}, mean: 0.70295, std: 0.01170, params: {'base_estimator__max_depth': 9, 'base_estimator__max_features': 0.25}] best_params_ = {'base_estimator__max_depth': 3, 'base_estimator__max_features': 'log2'} best_score_ = 0.74689232764 2016-03-29 11:48:04 2016-03-29 12:22:12 [ mean: 0.80816, std: 0.00435, params: {'base_estimator__max_depth': 1}, mean: 0.78206, std: 0.00357, params: {'base_estimator__max_depth': 2}, mean: 0.75502, std: 0.00785, params: {'base_estimator__max_depth': 3}, mean: 0.72800, std: 0.01070, params: {'base_estimator__max_depth': 4}] best_params_ = {'base_estimator__max_depth': 1} best_score_ = 0.808160005274 2016-03-29 12:33:52 [ mean: 0.81215, std: 0.00573, params: {'n_estimators': 140, 'base_estimator__min_samples_split': 5000}, mean: 0.80539, std: 0.00766, params: {'n_estimators': 350, 'base_estimator__min_samples_split': 5000}, mean: 0.79791, std: 0.00649, params: {'n_estimators': 550, 'base_estimator__min_samples_split': 5000}, mean: 0.78395, std: 0.00609, params: {'n_estimators': 1200, 'base_estimator__min_samples_split': 5000}, mean: 0.81053, std: 0.00261, params: {'n_estimators': 140, 'base_estimator__min_samples_split': 7000}, mean: 0.80485, std: 0.00580, params: {'n_estimators': 350, 'base_estimator__min_samples_split': 7000}, mean: 0.79943, std: 0.00639, params: {'n_estimators': 550, 'base_estimator__min_samples_split': 7000}, mean: 0.78428, std: 0.00682, params: {'n_estimators': 1200, 'base_estimator__min_samples_split': 7000}, mean: 0.81133, std: 0.00476, params: {'n_estimators': 140, 'base_estimator__min_samples_split': 9000}, mean: 0.80628, std: 0.00496, params: {'n_estimators': 350, 'base_estimator__min_samples_split': 9000}, mean: 0.79905, std: 0.00828, params: {'n_estimators': 550, 'base_estimator__min_samples_split': 9000}, mean: 0.78240, std: 0.00494, params: {'n_estimators': 1200, 'base_estimator__min_samples_split': 9000}, mean: 0.80985, std: 0.00144, params: {'n_estimators': 140, 'base_estimator__min_samples_split': 11000}, mean: 0.80367, std: 0.00724, params: {'n_estimators': 350, 'base_estimator__min_samples_split': 11000}, mean: 0.79861, std: 0.00661, params: {'n_estimators': 550, 'base_estimator__min_samples_split': 11000}, mean: 0.78314, std: 0.00582, params: {'n_estimators': 1200, 'base_estimator__min_samples_split': 11000}] best_params_ = {'n_estimators': 140, 'base_estimator__min_samples_split': 5000} best_score_ = 0.812154119164 2016-03-29 12:48:35 [ mean: 0.78992, std: 0.03749, params: {'n_estimators': 50, 'base_estimator__min_samples_split': 1000}, mean: 0.80949, std: 0.01134, params: {'n_estimators': 70, 'base_estimator__min_samples_split': 1000}, mean: 0.81179, std: 0.01267, params: {'n_estimators': 110, 'base_estimator__min_samples_split': 1000}, mean: 0.81332, std: 0.01099, params: {'n_estimators': 140, 'base_estimator__min_samples_split': 1000}, mean: 0.80947, std: 0.00738, params: {'n_estimators': 50, 'base_estimator__min_samples_split': 2000}, mean: 0.81054, std: 0.00936, params: {'n_estimators': 70, 'base_estimator__min_samples_split': 2000}, mean: 0.81210, std: 0.01519, params: {'n_estimators': 110, 'base_estimator__min_samples_split': 2000}, mean: 0.81347, std: 0.00956, params: {'n_estimators': 140, 'base_estimator__min_samples_split': 2000}, mean: 0.79785, std: 0.02069, params: {'n_estimators': 50, 'base_estimator__min_samples_split': 3000}, mean: 0.81782, std: 0.01115, params: {'n_estimators': 70, 'base_estimator__min_samples_split': 3000}, mean: 0.81396, std: 0.01551, params: {'n_estimators': 110, 'base_estimator__min_samples_split': 3000}, mean: 0.81518, std: 0.00846, params: {'n_estimators': 140, 'base_estimator__min_samples_split': 3000}, mean: 0.74942, std: 0.01609, params: {'n_estimators': 50, 'base_estimator__min_samples_split': 5000}, mean: 0.81035, std: 0.01198, params: {'n_estimators': 70, 'base_estimator__min_samples_split': 5000}, mean: 0.81586, std: 0.01099, params: {'n_estimators': 110, 'base_estimator__min_samples_split': 5000}, mean: 0.81539, std: 0.01077, params: {'n_estimators': 140, 'base_estimator__min_samples_split': 5000}] best_params_ = {'n_estimators': 70, 'base_estimator__min_samples_split': 3000} best_score_ = 0.817815135915 2016-03-29 12:51:48
import cv2 import os import numpy as np import tensorflow as tf #Data directory dat_dir = '../data' test_dir = dat_dir + '/test' # Load Images def preprocess(im): images = [] image = cv2.resize(image, (image_size, image_size),0,0, cv2.INTER_LINEAR) images.append(image) images = np.array(images, dtype=np.uint8) images = images.astype('float32') images = np.multiply(images, 1.0/255.0) return images classes = os.listdir(train_path) #Remove .DS_Store for i,j in enumerate(classes): if j == '.DS_Store': del classes[i] break x_batch = images.reshape(1, image_size,image_size,num_channels) model_path = '../tensorflow/vg-classifier-model/vg-classifier-model.meta' sess = tf.Session() saver = tf.train.import_meta_graph(model_path) saver.restore(sess, tf.train.latest_checkpoint('../tensorflow/vg-classifier-model/')) graph = tf.get_default_graph() y_pred = graph.get_tensor_by_name('y_pred:0') x = graph.get_tensor_by_name('x:0') y_true = graph.get_tensor_by_name('y_true:0') y_test_images = np.zeros((1, len(labels))) feed_dict_testing = {x: x_batch, y_true: y_test_images} result=sess.run(y_pred, feed_dict=feed_dict_testing)
#Created on 5/23/2017 #@author: rspies # Python 2.7 # This script converts individual QME datacard files to a single/merged csv file that can be imported for dss build import os import datetime from dateutil import parser os.chdir("../..") # change dir to \\AMEC\\NWS maindir = os.getcwd() ############ User input ################ RFC = 'NCRFC_FY2017' fx_group = '' # set to '' if not used data_format = 'nhds' # choices: 'usgs' or 'chps' or 'nhds' dss_csv = 'on' # options: 'on' or 'off' # create csv for dss import usgs_files = maindir + '\\Calibration_NWS\\' + RFC[:5] + os.sep + RFC + '\\data\\daily_discharge' # directory with USGS QME data chps_files = maindir + '\\Calibration_NWS\\' + RFC[:5] + os.sep + RFC + '\\datacards\\QME\\QME_CHPS_export\\' # CHPS csv output files nhds_files = maindir + '\\Calibration_NWS\\' + RFC[:5] + os.sep + RFC + '\\datacards\\QME\\' # NHDS data download (cardfiles) new_file = maindir + '\\Calibration_NWS\\' + RFC[:5] + os.sep + RFC + '\\datacards\\QME\\' # output summary tab delimited file location ######################################## if fx_group != '': nhds_files = nhds_files + os.sep + fx_group + os.sep + 'QME_Lynker_download' dss_path = maindir + '\\Calibration_NWS\\' + RFC[:5] + os.sep + RFC + '\\data_dss\\' + fx_group else: nhds_files = nhds_files + os.sep + 'QME_Lynker_download' dss_path = maindir + '\\Calibration_NWS\\' + RFC[:5] + os.sep + RFC + '\\data_dss' basins_list = []; count = 0 if data_format == 'usgs': QMEs = [f for f in os.listdir(usgs_files) if os.path.isfile(os.path.join(usgs_files, f))] if data_format == 'chps': QMEs = [f for f in os.listdir(chps_files) if os.path.isfile(os.path.join(chps_files, f))] if data_format == 'nhds': QMEs = [f for f in os.listdir(nhds_files) if os.path.isfile(os.path.join(nhds_files, f))] dss_dic = {} for QME in QMEs: print 'Reading data for: ' + QME count += 1 if data_format == 'usgs': csv_read = open(usgs_files + '\\' + QME, 'r') discharge = []; date = [] ### read card file formatted .txt files lists line_count = 0 for line in csv_read: if line_count >= 9: # ignore header lines sep = line.split() ### parse date columns month = str(sep[1])[:-2] year = str(sep[1])[-2:] if int(year) <= 17: year = int(year) + 2000 # assume years <= 14 are in the 2000s else: year = int(year) + 1900 day = str(sep[2]) full_date = datetime.datetime(year,int(month),int(day)) date.append(full_date) if line_count == 12: site_num = sep[0] discharge=sep[-1] # asssuming a single column datacard if dss_csv == 'on': if str(full_date) not in dss_dic: dss_dic[str(full_date)] = {} if float(discharge) >= 0.0: dss_dic[str(full_date)][QME]=str(float(discharge)) line_count += 1 csv_read.close() if data_format == 'chps': csv_read = open(chps_files + '\\' + QME, 'r') discharge = []; date = [] ### read card file formatted .txt files lists line_count = 0 for line in csv_read: if line_count >= 2: # ignore header lines sep = line.split(',') full_date = parser.parse(sep[0]) date.append(full_date.date()) discharge=sep[-1] # asssuming a single column datacard if dss_csv == 'on': if str(full_date) not in dss_dic: dss_dic[str(full_date)] = {} if float(discharge) >= 0.0: dss_dic[str(full_date)][QME]=str(float(discharge)) line_count += 1 csv_read.close() if data_format == 'nhds': csv_read = open(nhds_files + '\\' + QME, 'r') discharge = []; date = [] ### read card file formatted .txt files lists line_count = 0 for line in csv_read: if line_count >= 9: # ignore header lines sep = line.split() if len(sep) > 0: # ignore blank lines if len(sep) < 4 and len(sep[-1]) < 10: # some QME files (from RFC) may not have gage/basin id as 1st index sep.insert(0,'0000') ### parse date columns month = str(sep[1])[:-2] year = str(sep[1])[-2:] if int(year) <= 17: year = int(year) + 2000 # assume years <= 17 are in the 2000s else: year = int(year) + 1900 day = str(sep[2]) if len(sep[-1]) > 10: # check for large streamflow values that get combined with day column day = str(sep[2])[:-10] full_date = datetime.datetime(year,int(month),int(day)) date.append(full_date) if line_count == 12: site_num = sep[0] discharge=sep[-1] # asssuming a single column datacard if dss_csv == 'on': if str(full_date) not in dss_dic: dss_dic[str(full_date)] = {} if float(discharge) >= 0.0: dss_dic[str(full_date)][QME]=str(float(discharge)) line_count += 1 csv_read.close() if dss_csv == 'on': print 'Writing to combined dss csv...' combine_csv = open(dss_path + os.sep + 'QME_daily' + '_merged_for_dss.csv','w') combine_csv.write('Date,') for Basin in QMEs: if Basin != QMEs[-1]: combine_csv.write(Basin.split('_')[0] + ',') else: combine_csv.write(Basin.split('_')[0] + '\n') for datestep in sorted(dss_dic): combine_csv.write(str(datestep) + ',') for Basin in QMEs: if Basin in dss_dic[datestep]: combine_csv.write(dss_dic[datestep][Basin]) else: combine_csv.write('') if Basin != QMEs[-1]: combine_csv.write(',') else: combine_csv.write('\n') combine_csv.close() print 'Completed!!'
#!/usr/bin/python from bitstring import BitArray, BitStream import Image import sys import hashlib from util import getKey, getImageData def decrypt(data, key): # TODO - assert RGB/RGBA #print img.mode bits = BitArray() lbits = BitArray(32) counter = 0 # Begin for for i in data: c = counter - lbits.len p = counter % len(key) q = key[p] ^ (i[0] & 1) # Begin if if counter < lbits.len: lbits[counter] = q # print "Decrypted: " + str(q) + ". Image: " + str(i[0]) elif counter < lbits.int + 32: bits.append(1) bits[c] = q # end if counter += 1 # end for # print lbits.bin + " - " + str(lbits.int) return bits.bytes # end def def main(argv): pw = argv[0] inputfile = argv[1] # print "password: " + pw # print "Input image: " + inputfile key = getKey(pw) # print "Key: " + key.hex data = getImageData(inputfile) bytes = decrypt(data, key) print bytes if __name__ == "__main__": main(sys.argv[1:])
# -*- coding: utf-8 -*- """ Created on Wed Mar 2 21:13:53 2016 Class for a UserDevice in 3Space A UserDevice represents both a camera & viewport @author: alex """ import numpy as np from Events import ObjEvent, EventDispatcher class UserDevice(object): def __init__(self): #The Key Passed to the device on registration by the server self.key = None #Name self._name = "" #The field of view of the device self.field_of_view = {'x': 0.0, 'y': 0.0} #The location of the device (x, y, z) self.location = np.zeros(3, dtype=np.float32) #The orientation of the device (rx, ry, rz) where (0, 0, 0) is pointing up on the z direction self.orientation = np.zeros(3, dtype=np.float32) #The orientation of the device in quaternions self.orientation_quaternion = np.zeros(4, dtype=np.float32) #A list of scene ID's for which the device is registered self.scenes = []
n = int(input()) s = input() mx = 0 for i in range(1,n): cnt = 0 for j in range(ord('a'), ord('z')+1): c = chr(j) if c in s[0:i] and c in s[i:n]: cnt += 1 mx = max(cnt, mx) print(mx)
import createDB import sqlite3 import os.path from datetime import date, datetime DB = sqlite3.connect('Mailing.db') conn = DB.cursor() def firstActions(): while (1): action = raw_input("What do you want to do? 1-Register 2-Login 3-Quit \n") if (action == '3'): break elif (action == '1'): #register try: name = raw_input("name: ") family = raw_input("familyName: ") userName = raw_input("UserName: ") password = raw_input("password: ") Log = 0 conn.execute("INSERT INTO USER (name, familyname, password, UserName, Login) VALUES(?,?,?,?,?)", (name,family, password, userName, Log)) conn.execute("INSERT INTO ROLE (RoleName,Permission, UserName) VALUES(?,?,?)", ('OrdinaryUser', '0001', userName)) DB.commit() except Exception as e: DB.rollback() print "UserName has been taken. Please try again" continue elif(action =='2'): #login # try: uName = raw_input("UserName: ") passw = raw_input("Password: ") conn.execute("SELECT count(*) FROM USER where UserName = ? and password = ?",(uName, passw)) unique = conn.fetchone()[0] if (unique == 1): print "Logged in\n" conn.execute("UPDATE USER SET Login = ? WHERE userName = ?", (1, uName)) DB.commit() #LoggedUser = uName afterLogin(uName) else: print "OOPS! Try again!\n" # except Exception as e: DB.rollback() print "Try again! # --Login error" continue def afterLogin(userName): while (1): action = raw_input("What do you want to do? 1-send Message 2-Inbox 3-Sent 4-Trash 5-Delete msg 6-Logout\n") if(action == '1'): #send message conn.execute("SELECT count(*) FROM USER where UserName = ? and Login = ?",(userName, 1)) unique = conn.fetchone()[0] if (unique == 1): #try: reciever = raw_input("Reciever: ") conn.execute("SELECT count(*) FROM USER where UserName = ?",(reciever,)) unique = conn.fetchone()[0] if (unique == 1): subject = raw_input("Subject: ") msg = raw_input("Message: ") time = datetime.now() conn.execute("INSERT INTO MESSAGE(SUBJ, TIMESENT, DELTAG, READTAG, BODY, UID1, UID2) VALUES(?,?,?,?,?,?,?)",\ (subject,time, 0, 0, msg, userName,reciever)) updateAttachTable(userName, conn.lastrowid) DB.commit() else: print "UserName is not valid. Try again" continue # except Exception as e: # DB.rollback() # print "OOPS! Please try again --sending error\n" # continue else: print "You should log in to the system first!\n" elif (action == '2'): #Show Inbox conn.execute("SELECT * from INBOX where UID2 = ? and DELTAG = ?", (userName, 0)) allmsg = conn.fetchall() for msg in allmsg: print 'num: {0}, From: {1}, Subject: {2}, Body: {3}, On: {4}, Read: {5} '.format(msg[0], msg[5], msg[1], msg[4], msg[2], msg[3]) print "\n" conn.execute("SELECT FileContent, fileName from ATTACHMENT where MsgKEY = ?", (msg[0],)) allAttach = conn.fetchall() for attach in allAttach: with open(attach[1], "wb") as output_file: output_file.write(attach[0]) elif (action == '3'): #Show Sent conn.execute("SELECT * from SENT where UID1 = ? and DELTAG = ?", (userName, 0)) allmsg = conn.fetchall() for msg in allmsg: print 'num: {0}, To: {1}, Subject: {2}, Body: {3}, On: {4}, '.format(msg[0], msg[5] ,msg[1], msg[3], msg[2]) print "\n" elif (action == '4'): #Show Trash conn.execute("SELECT * from TRASH where UID1 = ? and DELTAG = 1", (userName,)) allmsg = conn.fetchall() for msg in allmsg: print 'num: {0}, To: {1}, Subject: {2}, Body: {3}, On: {4}, '.format(msg[0], msg[5] ,msg[1], msg[3], msg[2]) print "\n" elif (action == '5'): #Delete msg from inbox conn.execute("SELECT * from MESSAGE where UID2 = ?", (userName,)) #delete from inbox delmsg = raw_input("please enter the msg number: ") conn.execute("UPDATE MESSAGE SET DELTAG = ? WHERE MKEY = ?", (1, delmsg)) DB.commit() elif (action == '6'): #logout try: conn.execute("UPDATE USER SET Login = ? WHERE userName = ?", (0, userName)) DB.commit() print "Successfully Logged Out!\n" break #LoggedUser = '' except Exception as e: DB.rollback() print "Try again! --Logout error" continue def updateAttachTable(userName, lastrowid): attachment = raw_input("Do you want to attach a file? Y/N\n") while (attachment == 'y' or attachment == 'Y'): path = raw_input("Enter file path: ") name = os.path.split(path) with open(path, "rb") as att: ablob = att.read() conn.execute("INSERT INTO ATTACHMENT (FileName, FileContent, MsgKEY) VALUES(?, ?, ?)",\ (name[1], sqlite3.Binary(ablob),lastrowid)) DB.commit() attachment = raw_input("Do you want to attach another file? Y/N\n") firstActions() DB.close()
__author__ = 'samue'
import pandas as pd df1 = pd.read_csv("train.csv") df1 = df1.drop(df1.columns[0], axis=1) df2 = pd.read_csv("245_1.csv") df1 = df1.append(df2) df1.to_csv('train.csv', index=False)
n1 = float(input('Digite o primeiro número: ')) n2 = float(input('Digite o segundo: ')) print (n1 + n2)
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2019-05-20 17:48 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('quicklook', '0013_auto_20190508_0757'), ] operations = [ migrations.AlterField( model_name='food', name='list_of_pants_consumed_ql', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='food', name='no_plants_consumed_ql', field=models.CharField(blank=True, max_length=5, null=True), ), ]
__author__ = "Narwhale" import unittest from employee import Employee class TestEmployee(unittest.TestCase): '''测试employee.py文件''' def setUp(self): '''创建姓名及工资,供使用测试方法使用''' self.eric = Employee('eric', 'matthes', 65000) def test_give_default(self): '''测试默认年薪增加''' self.eric.give_raise() self.assertEqual(self.eric.salary,70000) def test_give_custom_raise(self): '''测试其他年薪增加''' self.eric.give_raise(10000) self.assertEqual(self.eric.salary,75000)
from __future__ import division import autograd.numpy as np from autograd import grad from operator import itemgetter from svae.util import monad_runner, interleave, uninterleave from svae.lds.gaussian import sample, predict, condition_on from svae.lds.gaussian import natural_sample, \ natural_condition_on, natural_rts_backward_step from svae.lds.gaussian_nochol import natural_predict, natural_lognorm from svae.lds.lds_inference import _repeat_param, natural_filter_forward_general, \ natural_sample_backward_general def _unpack_repeated(natparam, T=None): 'handle homogeneous models by repeating natural parameters if necessary' init_params, pair_params, node_params = natparam T = len(node_params) if T is None else T return init_params, _repeat_param(pair_params, T-1), _repeat_param(node_params, T) ### inference using standard parameters def filter_forward(data, mu_init, sigma_init, A, sigma_states, C, sigma_obs): def observe(y): def update_belief(mu, sigma): mu_pred, sigma_pred = predict(mu, sigma, A, sigma_states) (mu_filt, sigma_filt), ll = condition_on(mu_pred, sigma_pred, C, y, sigma_obs) return (mu_filt, sigma_filt), ll return update_belief def unit(mu, sigma): return ([mu], [sigma]), 0. def bind(result, step): (mus, sigmas), lognorm = result (mu, sigma), term = step(mus[-1], sigmas[-1]) return (mus + [mu], sigmas + [sigma]), lognorm + term (mu_filt, sigma_filt), ll = condition_on(mu_init, sigma_init, C, data[0], sigma_obs) (filtered_mus, filtered_sigmas), loglike = \ monad_runner(bind)(unit(mu_filt, sigma_filt), map(observe, data[1:])) return (filtered_mus, filtered_sigmas), loglike + ll def sample_backward(filtered_mus, filtered_sigmas, A, sigma_states): def filtered_sampler(mu_filt, sigma_filt): def sample_cond(next_state): (mu_cond, sigma_cond), _ = condition_on( mu_filt, sigma_filt, A, next_state, sigma_states) return sample(mu_cond, sigma_cond) return sample_cond def unit(sample): return [sample] def bind(result, step): samples = result sample = step(samples[0]) return [sample] + samples last_sample = sample(filtered_mus[-1], filtered_sigmas[-1]) steps = reversed(map(filtered_sampler, filtered_mus[:-1], filtered_sigmas[:-1])) samples = monad_runner(bind)(unit(last_sample), steps) return np.array(samples) def sample_lds(data, mu_init, sigma_init, A, sigma_states, C, sigma_obs): (filtered_mus, filtered_sigmas), loglike = filter_forward( data, mu_init, sigma_init, A, sigma_states, C, sigma_obs) sampled_states = sample_backward( filtered_mus, filtered_sigmas, A, sigma_states) return sampled_states, loglike ### inference using info parameters and linear node potentials def natural_filter_forward(natparam, data): T, p = data.shape init_params, pair_params, node_params = _unpack_repeated(natparam, T) def unit(J, h): return [(J, h)], 0. def bind(result, step): messages, lognorm = result new_message, term = step(messages[-1]) return messages + [new_message], lognorm + term condition = lambda node_param, y: lambda (J, h): natural_condition_on(J, h, y, *node_param) predict = lambda pair_param: lambda (J, h): natural_predict(J, h, *pair_param) steps = interleave(map(condition, node_params, data), map(predict, pair_params)) J_init, h_init, logZ_init = init_params messages, lognorm = monad_runner(bind)(unit(J_init, h_init), steps) lognorm += natural_lognorm(*messages[-1]) + logZ_init return messages, lognorm - T*p/2*np.log(2*np.pi) def natural_smooth_backward(forward_messages, natparam): prediction_messages, filter_messages = uninterleave(forward_messages) init_params, pair_params, node_params = _unpack_repeated(natparam) pair_params = map(itemgetter(0, 1, 2), pair_params) unit = lambda (J, h): [(J, h)] bind = lambda result, step: [step(result[0])] + result rts = lambda next_prediction, filtered, pair_param: lambda next_smoothed: \ natural_rts_backward_step(next_smoothed, next_prediction, filtered, pair_param) steps = map(rts, prediction_messages[1:], filter_messages, pair_params) return map(itemgetter(2), monad_runner(bind)(unit(filter_messages[-1]), steps)) def natural_lds_Estep(natparam, data): log_normalizer = lambda natparam: natural_filter_forward(natparam, data)[1] return grad(log_normalizer)(natparam) def natural_lds_inference(natparam, data): saved = lambda: None def lds_log_normalizer(natparam): saved.forward_messages, saved.lognorm = natural_filter_forward(natparam, data) return saved.lognorm expected_stats = grad(lds_log_normalizer)(natparam) sample = natural_sample_backward(saved.forward_messages, natparam) return sample, expected_stats, saved.lognorm def natural_sample_backward(forward_messages, natparam): _, filter_messages = uninterleave(forward_messages) _, pair_params, _ = _unpack_repeated(natparam, len(filter_messages)) pair_params = map(itemgetter(0, 1), pair_params) unit = lambda sample: [sample] bind = lambda result, step: [step(result[0])] + result sample = lambda (J11, J12), (J_filt, h_filt): lambda next_sample: \ natural_sample(*natural_condition_on(J_filt, h_filt, next_sample, J11, J12)) steps = reversed(map(sample, pair_params, filter_messages[:-1])) last_sample = natural_sample(*filter_messages[-1]) samples = monad_runner(bind)(unit(last_sample), steps) return np.array(samples) def natural_lds_sample(natparam, data): forward_messages, lognorm = natural_filter_forward(natparam, data) sample = natural_sample_backward(forward_messages, natparam) return sample ### slightly less efficient method for testing against main method def natural_lds_inference_general_nosaving(natparam, node_params): init_params, pair_params = natparam def lds_log_normalizer(all_natparams): init_params, pair_params, node_params = all_natparams forward_messages, lognorm = natural_filter_forward_general(init_params, pair_params, node_params) return lognorm all_natparams = init_params, pair_params, node_params expected_stats = grad(lds_log_normalizer)(all_natparams) forward_messages, lognorm = natural_filter_forward_general(init_params, pair_params, node_params) sample = natural_sample_backward_general(forward_messages, pair_params) return sample, expected_stats, lognorm
from common.run_method import RunMethod import allure @allure.step("极客数学帮(家长APP)/用户管理/删除用户设备绑定关系") def pushRelationship_delete(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极客数学帮(家长APP)/用户管理/删除用户设备绑定关系" url = f"/service-profile/pushRelationship" res = RunMethod.run_request("DELETE", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极客数学帮(家长APP)/用户管理/新增用户设备绑定关系") def pushRelationship_post(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极客数学帮(家长APP)/用户管理/新增用户设备绑定关系" url = f"/service-profile/pushRelationship" res = RunMethod.run_request("POST", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res
''' Copyright 2012 Will Rogers Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. @author Will Rogers ''' from apel.db.records import Record, InvalidRecordException from datetime import datetime, timedelta import logging # get the relevant logger log = logging.getLogger(__name__) class StorageRecord(Record): ''' Class to represent one storage record. It knows about the structure of the MySQL table and the message format. It stores its information in a dictionary self._record_content. The keys are in the same format as in the messages, and are case-sensitive. ''' MANDATORY_FIELDS = ["RecordId", "CreateTime", "StorageSystem", "StartTime", "EndTime", "ResourceCapacityUsed"] # This list specifies the information that goes in the database. DB_FIELDS = ["RecordId", "CreateTime", "StorageSystem", "Site", "StorageShare", "StorageMedia", "StorageClass", "FileCount", "DirectoryPath", "LocalUser", "LocalGroup", "UserIdentity", "Group", "StartTime", "EndTime", "ResourceCapacityUsed", "LogicalCapacityUsed", "ResourceCapacityAllocated"] ALL_FIELDS = DB_FIELDS def __init__(self): '''Provide the necessary lists containing message information.''' Record.__init__(self) # Fields which are required by the message format. self._mandatory_fields = StorageRecord.MANDATORY_FIELDS # This list specifies the information that goes in the database. self._db_fields = StorageRecord.DB_FIELDS # Fields which are accepted but currently ignored. self._ignored_fields = [] self._all_fields = self._db_fields self._datetime_fields = ["CreateTime", "StartTime", "EndTime"] # Fields which will have an integer stored in them self._int_fields = ["FileCount", "ResourceCapacityUsed", "LogicalCapacityUsed", "ResourceCapacityAllocated"] def get_apel_db_insert(self, apel_db, source): ''' Returns record content as a tuple, appending the source of the record (i.e. the sender's DN). Also returns the appropriate stored procedure. We have to go back to the apel_db object to find the stored procedure. This is because only this object knows what type of record it is, and only the apel_db knows what the procedure details are. ''' values = self.get_db_tuple(self, source) return values def get_db_tuple(self, source): ''' Last item in list is not usable for us. ''' return Record.get_db_tuple(self, source)[:-1]
from PyQt4.QtGui import QColor, QImage from images.image_converter import ImageConverter #from utils.logging import klog import math import time class ImageComparator(object): def __init__(self, image): self.image = image def get_motion_vectors(self, image2, searcher, MAD_threshold = None): """ 1) Divide self.image into blocks of 8x8 pixels 2) for each block: 4) get the X and Y 5) search block in image2 from X and Y, moving from 0 to P pixel right, left, top, bottom 6) block found? 7) if yes, get the new X and Y 8) if no, return 0 """ if isinstance(self.image, QImage): image1 = ImageConverter.qtimage_to_pil_image(self.image) else: image1 = self.image images1_pixels = image1.load() if isinstance(image2, QImage): image2 = ImageConverter.qtimage_to_pil_image(image2) images2_pixels = image2.load() width = image1.size[0] height = image1.size[1] vectors = [] for block_x_num in range(0, width/searcher.block_size): block_x_pos = searcher.block_size*block_x_num for block_y_num in range(0, height/searcher.block_size): block_y_pos = searcher.block_size*block_y_num (new_x, new_y, MAD, MAD_checks_count) = searcher.search(images1_pixels, block_x_pos, block_y_pos, images2_pixels) valid_vector = True if MAD_threshold and MAD > MAD_threshold: #Discard the vector if the MAD is over ranged valid_vector = False if valid_vector: #if (block_x_pos != new_x) or (block_y_pos != new_y): vector = { 'x': block_x_pos, 'y': block_y_pos, 'to_x' : new_x, 'to_y': new_y, 'MAD': MAD, 'MAD_checks_count': MAD_checks_count} vectors.append(vector) return vectors @classmethod def calculate_MAD_v2(cls, image1_pixels, image2_pixels): sum_MAD = 0.0 pixels_count = len(image1_pixels) for p in range(pixels_count): pixel_1 = image1_pixels[p] pixel_2 = image2_pixels[p] if isinstance(pixel_1, tuple): luminance_1 = pixel_1[0] #is already in luminance mode (red=green=blue) luminance_2 = pixel_2[0] #already in luminance mode (red=green=blue) else: luminance_1 = pixel_1 luminance_2 = pixel_2 sum_MAD += abs( luminance_1-luminance_2 ) return sum_MAD/pixels_count @classmethod def calculate_MAD(cls, image1_pixels, image2_pixels, width, height): sum_MAD = 0.0 for x in range(1, width): for y in range(1, height): luminance_1 = image1_pixels[x,y][0] #is already in luminance mode (red=green=blue) luminance_2 = image2_pixels[x,y][0] #already in luminance mode (red=green=blue) sum_MAD += abs( luminance_1-luminance_2 ) return sum_MAD/(width*height) @classmethod def calculate_PSNR(cls, image1, image2, width, height): image1_pixels = image1.load() image2_pixels = image2.load() MSE = 0 MAX = 255 for x in range(1, width): for y in range(1, height): red_1 = image1_pixels[x,y][0] red_2 = image2_pixels[x,y][0] delta_red = math.pow(red_1-red_2, 2) green_1 = image1_pixels[x,y][1] green_2 = image2_pixels[x,y][1] delta_green = math.pow(green_1-green_2, 2) blue_1 = image1_pixels[x,y][2] blue_2 = image2_pixels[x,y][2] delta_blue = math.pow(blue_1-blue_2, 2) MSE += delta_red + delta_green +delta_blue MSE /= (width*height*3) if MSE != 0: PSNR = 10* math.log( math.pow(MAX, 2)/MSE, 10) else: #Perfect Image, avoid division by zero PSNR = 100000 return PSNR @classmethod def is_valid_coordinate(cls, x, y, block_size, pixels): try: ok1 = pixels[x, y] ok2 = pixels[x+block_size-1, y+block_size-1] return True except Exception, ex: return False @classmethod def is_valid_x_coordinate(cls, x, block_size, image): return x >=0 and x+block_size <= image.size[0] @classmethod def is_valid_y_coordinate(cls, y, block_size, image): return y >=0 and y+block_size <= image.size[1] @classmethod def longest_motion_vector(cls, motion_vectors): longest_vector = {} max_distance = 0 for vector in motion_vectors: distance = math.sqrt( math.pow(vector['x']-vector['to_x'], 2) + math.pow(vector['y']-vector['to_y'], 2) ) if distance > max_distance: max_distance = distance longest_vector = vector return (longest_vector, max_distance)
from rest_framework import serializers from .models import Dictribution, Film, Activity, Message class DictributionSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Dictribution fields = '__all__' class FilmSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Film fields = ('film_name', 'url', 'id') class ActivitySerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Activity fields = '__all__' class MessageSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Message fields = '__all__'
from twilio.rest import Client account_sid = 'AC534ccef182c5e4b4efbbc315a44bbed3' auth_token = 'e505be28ef55d8fa15f158e6af95774b' client = Client(account_sid, auth_token) message = client.messages.create( to="+17743137029", from_="+16176525131", body="This is an automated message" ) print(message.sid)
from core import web, view from aiohttp.web import Response class UserController: @web.get('/login') @view.json def login(self, request): return Response(body=b'Fack the system') @web.get('/blog/{id}') @view.json def blog(self, id): return Response(body=b'{}'.format(id))
#!/usr/bin/env python # -*- coding: utf-8 -*- # django from django.contrib import admin # 3rd-party from eav.admin import BaseEntityAdmin, BaseSchemaAdmin # this app from models import Product,Schema,Choice,Category,Filter,FilterValue,Customer,Order,TopMenu,Cart,Item,MyOrder,OrderProduct,Sort from forms import ProductForm @admin.register(Product) class ProductAdmin(BaseEntityAdmin): form = ProductForm @admin.register(Category) class CategoryAdmin(admin.ModelAdmin): pass @admin.register(Customer) class CustomerAdmin(admin.ModelAdmin): list_display = ['first_name', 'second_name'] @admin.register(TopMenu) class TopMenuAdmin(admin.ModelAdmin): list_display = ['name', 'url'] @admin.register(Filter) class FilterAdmin(admin.ModelAdmin): pass @admin.register(FilterValue) class FilterValueAdmin(admin.ModelAdmin): list_display = ['filter', 'title', 'value'] @admin.register(Sort) class SortAdmin(admin.ModelAdmin): list_display = ['title', 'value'] admin.site.register(Schema, BaseSchemaAdmin) admin.site.register(Choice)
str = 'programming' print("str = ", str) # first character accessing print("str[0 = ", str[0]) # print last character print("str[-1) = ", str[-1]) # slicing 2nd to 5th character print("str[1:5) = ", str[1:5]) # slicing 6th to 2nd last character print("str[5:-2) = ", str[5:-2]) # String operators str1 = "Hello" str2 = "World" # concatenation using + print("str1 + str2 = ", str1 + str2) # concatenation using * print("str1 * 3 = ", str1 * 3) # concatenate in multiple lines with parenthesis string2 = ("Hello" " world") print(string2) # Count the occurences of a letter in a string with a for loop count = 0 for letter in "Hello World": if(letter == 'l'): count += 1 print(count, " letters 'l' found") # triple quote str = """He said, what's there?""" print(str) # escaping single quotes str = "He said, what\'s there?" print(str) # escaping double quotes str = "He said \"what's there?\"" print(str) # examples print("C:\\Python\\Lib") print("This is printed \nin two lines") print("This is \x48 \x45 \x58 representation") # ignoring escape sequency with raw string print("This is \x61 \ngood example") print(r"This is a \x61 \ngood example") # Formatting strings with Format() method print("Binary representation of {0} is {0:b}".format(12)) # formating floats print("Exponential representation of {0} is {0:e}".format(1566.345)) # round off print("One third is {0:.3f}".format(1/3)) # String alignement print("|{:<10}|{:^10}|{:>10}|".format("butter", "bread", "ham")) # old printing x = 12.3456789 print("The value of x is %3.4f" %x) # Python string methods print("PrOGrAMMinG".lower()) print("ProGRAmminG".upper()) str = "This is a phrase" # Split a word into a list listStr = str.split() print(listStr) # Join a list words into a String print(" ".join(listStr)) str = "Happy birthday" #replace a word of a string print(str.replace("birthday", "halloween"))
import unittest import coc_package class TestAddFunction(unittest.TestCase): def test_add_for_ints(self): self.assertEqual(coc_package.add(3, 5), 3 + 5) def test_add_error(self): with self.assertRaises(AttributeError): coc_package.add(3, "5") if __name__ == '__main__': unittest.main()
from django.db import models from workprogramsapp.expertise.models import Expertise, ExpertiseComments from workprogramsapp.models import Topic, WorkProgram from django.conf import settings class UserNotification(models.Model): """ Базовый класс нотификаций """ status_choices = ( ('read', 'read'), ('unread', 'unread'), ) status = models.CharField(max_length=30, choices=status_choices, verbose_name='Статус нотификации', default='unread') user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, blank=True, null=True) message = models.CharField(max_length=4096, verbose_name="Сообщение нотификации", blank=True, null=True) notification_date = models.DateTimeField(auto_now_add=True, blank=True, null=True) class Meta: ordering = ('-notification_date',) class ExpertiseNotification(UserNotification): """ Нотификации об экспертизе """ expertise = models.ForeignKey(Expertise, on_delete=models.CASCADE, blank=True, null=True) class NotificationComments(UserNotification): comment_new = models.ForeignKey(ExpertiseComments, on_delete=models.CASCADE, blank=True, null=True)
import NeuralNetwork import Neuron import Loader def main(): Neuron.eta = 0.09 Neuron.alpha = 0.015 topology = [] topology.append(1) topology.append(2) topology.append(1) net = NeuralNetwork.Network(topology) err = 0 for i in range(1): with open("dataWithTeacher.txt", 'r') as input: line = input.readline() while line != "EOF": data = Loader.loadDataWithTeacher(line) net.setInput([data.input]) net.dataProcess() net.backPropagate([data.output]) err = net.calculateError([data.output]) line = input.readline() print("Error: ", err) print("Calculating...") fails=0 attempts = 0 with open("dataWithoutTeacher.txt", 'r') as input: line = input.readline() while line != "EOF": attempts += 1 data = float(line) net.setInput([data]) net.dataProcess() line = input.readline() result = net.getResults()[0] if data<0 and abs(result-1)<abs(result-0): fails+=1 else: if data>0 and abs(result-1)>abs(result-0): fails+=1 print("% of Success: ",(attempts-fails)/attempts) if __name__ == '__main__': main()
for i in range(3): n = int(input()) count = 1 curr = n while curr > 3: curr = curr // 3 count += 1 print(count)
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-09-01 19:33 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0001_initial'), ] operations = [ migrations.AddField( model_name='client', name='note', field=models.TextField(blank=True, max_length=400, null=True), ), ]
from urllib.parse import urlparse url = '{{ .VARIABLE }}' u = urlparse(url) try: print('Scheme: ' + u.scheme) print('netloc: ' + u.netloc) print('path: ' + u.path) print('params: ' + u.params) print('query: ' + u.query) print('fragment: ' + u.fragment) print('username: ' + str(u.username)) print('password: ' + str(u.password)) print('hostname: ' + str(u.hostname)) print('port: ' + str(u.port)) except: import traceback print(traceback.print_exc())
import os os.system('docker run --rm -it -v {}:/app jmengxy/util bash'.format(os.getcwd()))
from prereise.cli.data_sources import get_data_sources_list from prereise.cli.data_sources.solar_data import ( SolarDataGriddedAtmospheric, SolarDataNationalSolarRadiationDatabase, ) from prereise.cli.data_sources.wind_data import WindDataRapidRefresh def test_get_data_sources_list(): data_sources_list = get_data_sources_list() assert isinstance(data_sources_list[0], WindDataRapidRefresh) assert isinstance(data_sources_list[1], SolarDataGriddedAtmospheric) assert isinstance(data_sources_list[2], SolarDataNationalSolarRadiationDatabase)
import argparse import os import opts.ref as ref class Opts: def __init__(self): self.parser = argparse.ArgumentParser() def init(self): self.parser.add_argument('-expID', default='default', help='Experiment ID') self.parser.add_argument('-DEBUG', type=int, default=0, help='Debug') self.parser.add_argument('-data', default='default', help='Input data file') def parse(self): self.init() self.opt = self.parser.parse_args() self.opt.nThreads = ref.nThreads self.opt.saveDir = os.path.join(ref.expDir, self.opt.expID) if self.opt.DEBUG > 0: ref.nThreads = 1 args = dict((name, getattr(self.opt, name)) for name in dir(self.opt) if not name.startswith('_')) refs = dict((name, getattr(ref, name)) for name in dir(ref) if not name.startswith('_')) if not os.path.exists(self.opt.saveDir): os.makedirs(self.opt.saveDir) file_name = os.path.join(self.opt.saveDir, 'opt.txt') with open(file_name, 'wt') as opt_file: opt_file.write('==> Args:\n') for k, v in sorted(args.items()): opt_file.write(' %s: %s\n' % (str(k), str(v))) opt_file.write('==> Args:\n') for k, v in sorted(refs.items()): opt_file.write(' %s: %s\n' % (str(k), str(v))) return self.opt
""" 孙竹鸿 """ from flask import Blueprint szh = Blueprint('szh',__name__) from .views import *
from django.shortcuts import render, render_to_response from login_and_reg.forms import userCreationForm from login_and_reg.forms import queryForm from django.shortcuts import render_to_response from django.http import HttpResponseRedirect from django.core.context_processors import csrf, request from django.contrib import auth def login(request): c = {} c.update(csrf(request)) #csrf token to improve security return render_to_response('login.html', c) def auth_view(request): username = request.POST.get('username', '') password = request.POST.get('password', '') user = auth.authenticate(username=username, password=password) if user is not None: auth.login(request, user) return HttpResponseRedirect('/login_and_reg/loggedin/') else: return HttpResponseRedirect('/login_and_reg/invalid_login/') def loggedin(request): return render_to_response('loggedin.html', {'full_name' : request.user.username} ) def invalid_login(request): return render_to_response('invalid_login.html') def logout(request): auth.logout(request) return render_to_response('logout.html') #####################REGISTER############### def register(request): if request.user.is_authenticated(): return render_to_response('loggedin.html', {'has_account': True}) #needs to be changed - already logged in if request.method=='POST': form = userCreationForm(data=request.POST) if form.is_valid(): form.save() return render_to_response('registered.html', {'has_account': True}) #needs o be changed - if everything is ok - reg user else: form=userCreationForm() return render(request, "forms.html", {"form": form, "headline":"register"}) def query(request): # if not request.user.is_authenticated(): # return render_to_response('autherror.html') if request.method=='POST': form=queryForm(data=request.POST) if form.is_valid(): form.generateQuery() else: form=queryForm() c={"form": form, "headline": 'Query' } return render(request, "forms.html",c ) # Create your views here. def help_page(request): return render_to_response('help_page.html') # Create your views here.
from ts3.query import TS3Connection, TS3QueryError import logging from waitlist.utility import config from waitlist.utility.settings import sget_active_ts_id from waitlist.storage.database import TeamspeakDatum from waitlist.base import db from time import sleep logger = logging.getLogger(__name__) def make_connection(): if config.disable_teamspeak: return None teamspeak_id = sget_active_ts_id() if teamspeak_id is None: return None teamspeak = db.session.query(TeamspeakDatum).get(teamspeak_id) try: con = TS3Connection(teamspeak.host, teamspeak.port) con.login(client_login_name=teamspeak.queryName, client_login_password=teamspeak.queryPassword) con.use(sid=teamspeak.serverID) try: con.clientupdate(CLIENT_NICKNAME=teamspeak.clientName) except TS3QueryError as ex: # this means we already have the right name # newer versions of ts server name without ip pass try: con.clientmove(cid=teamspeak.channelID, clid=0) except TS3QueryError as ex: if ex.resp.error['msg'] == "already member of channel": pass else: logger.error("Failed to connect to T3Query %s", ex.resp.error['msg']) con = None except TS3QueryError as ex: logger.error("Failed to connect to T3Query %s", ex.resp.error['msg']) con = None except Exception as ex: logger.error("Failed to connect to T3Query %s", ex) con = None return con conn = make_connection() def change_connection(): if config.disable_teamspeak: return global conn if conn is not None: conn.quit() conn = make_connection() def handle_dc(func, **kwargs): if config.disable_teamspeak: return def func_wrapper(*argsw, **kwargsw): global conn if conn is not None: try: func(*argsw, **kwargsw) except TS3QueryError as error: logger.error("TS3 Query Error: %s", str(error)) except Exception: ncon = make_connection() if ncon is None: sleep(2) ncon = make_connection() if ncon is not None: conn = ncon else: conn = ncon func(*argsw, **kwargs) else: conn = make_connection() return func_wrapper @handle_dc def send_poke(name, msg): if config.disable_teamspeak: return global conn try: response = conn.clientfind(pattern=name) except TS3QueryError as er: logger.info("TS3 ClientFind failed on %s with %s", name, str(er)) response = [] found = False for resp in response: if resp['client_nickname'] == name: conn.clientpoke(clid=resp['clid'], msg=msg) found = True # deaf people put a * in front if not found: try: response = conn.clientfind(pattern="*"+name) except TS3QueryError as er: logger.info("TS3 ClientFind failed on %s with %s", "*"+name, str(er)) return for resp in response: if resp['client_nickname'] == "*"+name: conn.clientpoke(msg=msg, clid=resp['clid']) @handle_dc def move_to_safety_channel(name: str, channel_id: int) -> None: if config.disable_teamspeak: return try: response = conn.clientfind(pattern=name) except TS3QueryError as er: logger.info("TS3 ClientFind failed on %s with %s", name, str(er)) response = [] client = None for resp in response: if resp['client_nickname'] == name: client = resp if client is None: try: response = conn.clientfind(pattern="*"+name) except TS3QueryError as er: logger.info("TS3 ClientFind failed on %s with %s", "*"+name, str(er)) return for resp in response: if resp['client_nickname'] == "*"+name: client = resp if client is None: # we didn't find a user return conn.clientmove(clid=client['clid'], cid=channel_id) return
# 单调栈,但是怎么维护真没想出来 class Solution: def totalSteps(self, nums: List[int]) -> int: stack = [] N = len(nums) ans = 0 for i in range(N): t = 1 while stack and nums[stack[-1][0]] <= nums[i]: _, pt = stack.pop() t = max(t, pt + 1) if stack: ans = max(ans, t) stack.append((i,t)) return ans
#!/usr/bin/env python3 # # Copyright (C) 2020 Cambridge Astronomical Survey Unit # # This program is free software: you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation, either version 3 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program. If not, see <https://www.gnu.org/licenses/>. # import os import subprocess import pytest import ifu.workflow import mos.workflow.mos_stage1 @pytest.fixture(scope='module') def mos_field_template(master_cat, tmpdir_factory): file_path = str( tmpdir_factory.mktemp('aux').join('mos_field_template.fits')) mos.workflow.mos_stage1.create_mos_field_template(master_cat, file_path) assert os.path.exists(file_path) return file_path def test_fitscheck_mos_field_template(mos_field_template): returncode = subprocess.call(['fitscheck', mos_field_template]) assert returncode == 0 def test_fitsdiff_mos_field_template(mos_field_template, pkg_mos_field_template): returncode = subprocess.call([ 'fitsdiff', '-k', 'CHECKSUM,DATASUM', mos_field_template, pkg_mos_field_template ]) assert returncode == 0 @pytest.fixture(scope='module') def mos_field_cat(mos_field_template, tmpdir_factory): file_path = str(tmpdir_factory.mktemp('output').join('mos_field_cat.fits')) data_dict = mos.workflow.mos_stage1._get_data_dict_for_example() trimester, author, report_verbosity, cc_report = \ mos.workflow.mos_stage1._set_keywords_info_for_example() mos.workflow.mos_stage1.create_mos_field_cat( mos_field_template, data_dict, file_path, trimester, author, report_verbosity=report_verbosity, cc_report=cc_report) assert os.path.exists(file_path) return file_path def test_fitscheck_mos_field_cat(mos_field_cat): returncode = subprocess.call(['fitscheck', mos_field_cat]) assert returncode == 0 def test_fitsdiff_mos_field_cat(mos_field_cat, pkg_mos_field_cat): returncode = subprocess.call([ 'fitsdiff', '-k', 'CHECKSUM,DATASUM,DATETIME', mos_field_cat, pkg_mos_field_cat ]) assert returncode == 0
import json import unittest import responses import pyyoutube class ApiVideoCategoryTest(unittest.TestCase): BASE_PATH = "testdata/apidata/categories/" BASE_URL = "https://www.googleapis.com/youtube/v3/videoCategories" with open(BASE_PATH + "video_category_single.json", "rb") as f: VIDEO_CATEGORY_SINGLE = json.loads(f.read().decode("utf-8")) with open(BASE_PATH + "video_category_multi.json", "rb") as f: VIDEO_CATEGORY_MULTI = json.loads(f.read().decode("utf-8")) with open(BASE_PATH + "video_category_by_region.json", "rb") as f: VIDEO_CATEGORY_BY_REGION = json.loads(f.read().decode("utf-8")) def setUp(self) -> None: self.api = pyyoutube.Api(api_key="api key") def testGetVideoCategories(self) -> None: # test params with self.assertRaises(pyyoutube.PyYouTubeException): self.api.get_video_categories() # test parts with self.assertRaises(pyyoutube.PyYouTubeException): self.api.get_video_categories(category_id="id", parts="id,not_part") with responses.RequestsMock() as m: m.add("GET", self.BASE_URL, json=self.VIDEO_CATEGORY_SINGLE) m.add("GET", self.BASE_URL, json=self.VIDEO_CATEGORY_MULTI) m.add("GET", self.BASE_URL, json=self.VIDEO_CATEGORY_BY_REGION) res_by_single = self.api.get_video_categories( category_id="17", parts=["snippet"], return_json=True, ) self.assertEqual(res_by_single["kind"], "youtube#videoCategoryListResponse") self.assertEqual(len(res_by_single["items"]), 1) self.assertEqual(res_by_single["items"][0]["id"], "17") res_by_multi = self.api.get_video_categories( category_id=["17", "18"], parts="snippet", ) self.assertEqual(len(res_by_multi.items), 2) self.assertEqual(res_by_multi.items[1].id, "18") res_by_region = self.api.get_video_categories( region_code="US", parts="snippet", ) self.assertEqual(len(res_by_region.items), 32) self.assertEqual(res_by_region.items[0].id, "1")
#!/usr/bin/env python import roslib roslib.load_manifest('baxter_rr_bridge') import rospy import baxter_interface from sensor_msgs.msg import PointCloud from sensor_msgs.msg import Imu from std_msgs.msg import UInt16 from std_msgs.msg import Empty from baxter_core_msgs.msg import SEAJointState import tf import sys, argparse import struct import time from collections import OrderedDict import RobotRaconteur as RR import thread import threading import numpy baxter_servicedef=""" #Service to provide simple interface to Baxter service BaxterPeripheral_interface option version 0.4 struct NavigatorState field uint8 ok_button field uint8 cancel_button field uint8 show_button field uint8 scroll_wheel field uint8 inner_led field uint8 outer_led end struct struct SonarPointCloud field single[] sensors field single[] distances field single[] points end struct struct framePose field double[] position field double[] quaternion end struct object BaxterPeripherals function void openGripper(string gripper) function void closeGripper(string gripper) function void calibrateGripper(string gripper) function void setGripperPosition(string gripper, double position) function void setGripperVelocity(string gripper, double velocity) function void setGripperHoldForce(string gripper, double force) function void setGripperMoveForce(string gripper, double force) function void setGripperDeadband(string gripper, double deadband) function single getGripperPosition(string gripper) function single getGripperForce(string gripper) function single getRangerValue(string arm) function single getAccelerometerValue(string arm) function void panHead(double angle) function single getHeadPanAngle() function void nodHead() function void enableSonar() function void disableSonar() property SonarPointCloud sonar_pointcloud function void suppressBodyAvoidance(string limb, uint8 suppress) function void suppressCollisionAvoidance(string limb, uint8 suppress) function void suppressContactSafety(string limb, uint8 suppress) function void suppressCuffInteraction(string limb, uint8 suppress) function void suppressGravityCompensation(string limb, uint8 suppress) property double[] gravity_compensation_torques function NavigatorState getNavigatorState(string navigator) function void setNavigatorLEDs(string navigator, uint8 inner_led, uint8 outer_led) function framePose lookUptransforms(string target_frame, string source_frame) end object """ class BaxterPeripherals_impl(object): def __init__(self): print "Initializing Node" rospy.init_node('baxter_peripherals') self._running = True self._valid_limb_names = {'left': 'left', 'l': 'left', 'right': 'right', 'r': 'right'} # gripper initialization self._grippers = {'left': baxter_interface.Gripper('left'), 'right': baxter_interface.Gripper('right')} # Set grippers to defaults self._grippers['left'].set_parameters( self._grippers['left'].valid_parameters()) self._grippers['right'].set_parameters( self._grippers['right'].valid_parameters()) # ranger initialization self._rangers = {'left': baxter_interface.AnalogIO('left_hand_range'), 'right': baxter_interface.AnalogIO('right_hand_range')} # accelerometer initialization self._accelerometers = {'left': [0.0]*3, 'right': [0.0]*3} rospy.Subscriber("/robot/accelerometer/left_accelerometer/state", Imu, self.left_accel_callback) rospy.Subscriber("/robot/accelerometer/right_accelerometer/state", Imu, self.right_accel_callback) # head control initialization self._head = baxter_interface.Head() # sonar initialization self._sonar_pointcloud = RR.RobotRaconteurNode.s.NewStructure( 'BaxterPeripheral_interface.SonarPointCloud' ) self._sonar_state_sub = rospy.Subscriber( "/robot/sonar/head_sonar/state", PointCloud, self.sonar_callback) self._sonar_enable_pub = rospy.Publisher( "/robot/sonar/head_sonar/set_sonars_enabled", UInt16, latch=True) # initially all sonar sensors on self._sonar_enabled = True self._sonar_enable_pub.publish(4095) # suppressions self._suppress_body_avoidance = {'left': False, 'right': False} self._supp_body_avoid_pubs = {'left': rospy.Publisher("/robot/limb/left/suppress_body_avoidance", Empty, latch=True), 'right': rospy.Publisher("/robot/limb/right/suppress_body_avoidance", Empty, latch=True)} self._suppress_collision_avoidance = {'left': False, 'right': False} self._supp_coll_avoid_pubs = {'left': rospy.Publisher("/robot/limb/left/suppress_collision_avoidance", Empty, latch=True), 'right': rospy.Publisher("/robot/limb/right/suppress_collision_avoidance", Empty, latch=True)} self._suppress_contact_safety = {'left': False, 'right': False} self._supp_con_safety_pubs = {'left': rospy.Publisher("/robot/limb/left/suppress_contact_safety", Empty, latch=True), 'right': rospy.Publisher("/robot/limb/right/suppress_contact_safety", Empty, latch=True)} self._suppress_cuff_interaction = {'left': False, 'right': False} self._supp_cuff_int_pubs = {'left': rospy.Publisher("/robot/limb/left/suppress_cuff_interaction", Empty, latch=True), 'right': rospy.Publisher("/robot/limb/right/suppress_cuff_interaction", Empty, latch=True)} self._suppress_gravity_compensation = {'left': False, 'right': False} self._supp_grav_comp_pubs = {'left': rospy.Publisher("/robot/limb/left/suppress_gravity_compensation", Empty, latch=True), 'right': rospy.Publisher("/robot/limb/right/suppress_gravity_compensation", Empty, latch=True)} # start suppressions background thread self._t_suppressions = threading.Thread( target=self.suppressions_worker) self._t_suppressions.daemon = True self._t_suppressions.start() # gravity compensation subscription self._grav_comp_lock = threading.Lock() self._gravity_compensation_torques = OrderedDict( zip(baxter_interface.Limb('left').joint_names() + \ baxter_interface.Limb('right').joint_names(), [0.0]*14)) rospy.Subscriber("/robot/limb/left/gravity_compensation_torques", SEAJointState, self.grav_comp_callback) rospy.Subscriber("/robot/limb/right/gravity_compensation_torques", SEAJointState, self.grav_comp_callback) # navigators self._navigators = {'left': baxter_interface.Navigator('left'), 'right': baxter_interface.Navigator('right'), 'torso_left': baxter_interface.Navigator('torso_left'), 'torso_right': baxter_interface.Navigator('torso_right')} # initialize frame transform self._listener = tf.TransformListener() def close(self): self._running = False self._t_suppressions.join() # gripper functions def openGripper(self, gripper): gripper = gripper.lower() if gripper in self._valid_limb_names.keys(): self._grippers[self._valid_limb_names[gripper]].open() def closeGripper(self, gripper): gripper = gripper.lower() if gripper in self._valid_limb_names.keys(): self._grippers[self._valid_limb_names[gripper]].close() def calibrateGripper(self,gripper): gripper = gripper.lower() if gripper in self._valid_limb_names.keys(): self._grippers[self._valid_limb_names[gripper]].calibrate() def setGripperPosition(self,gripper,position): gripper = gripper.lower() if gripper in self._valid_limb_names.keys(): self._grippers[self._valid_limb_names[gripper]].command_position( position) def setGripperVelocity(self,gripper,velocity): gripper = gripper.lower() if gripper in self._valid_limb_names.keys(): self._grippers[self._valid_limb_names[gripper]].set_velocity( velocity) def setGripperHoldForce(self,gripper,force): gripper = gripper.lower() if gripper in self._valid_limb_names.keys(): self._grippers[self._valid_limb_names[gripper]].set_holding_force( force) def setGripperMoveForce(self,gripper,force): gripper = gripper.lower() if gripper in self._valid_limb_names.keys(): self._grippers[self._valid_limb_names[gripper]].set_moving_force( force) def setGripperDeadband(self,gripper,deadband): gripper = gripper.lower() if gripper in self._valid_limb_names.keys(): self._grippers[self._valid_limb_names[gripper]].set_dead_band( deadband) def getGripperPosition(self, gripper): gripper = gripper.lower() if gripper in self._valid_limb_names.keys(): return self._grippers[self._valid_limb_names[gripper]].position() def getGripperForce(self, gripper): gripper = gripper.lower() if gripper in self._valid_limb_names.keys(): return self._grippers[self._valid_limb_names[gripper]].force() # Hand rangers def getRangerValue(self, arm): arm = arm.lower() if arm in self._valid_limb_names.keys(): return self._rangers[self._valid_limb_names[arm]].state() # Accelerometers def getAccelerometerValue(self, arm): arm = arm.lower() if arm in self._valid_limb_names.keys(): return self._accelerometers[self._valid_limb_names[arm]] def left_accel_callback(self, data): if (data.linear_acceleration): self._accelerometers['left'][0] = data.linear_acceleration.x self._accelerometers['left'][1] = data.linear_acceleration.y self._accelerometers['left'][2] = data.linear_acceleration.z def right_accel_callback(self, data): if (data.linear_acceleration): self._accelerometers['right'][0] = data.linear_acceleration.x self._accelerometers['right'][1] = data.linear_acceleration.y self._accelerometers['right'][2] = data.linear_acceleration.z # head control functions def panHead(self, angle): self._head.set_pan(angle) def getHeadPanAngle(self): return self._head.pan() def nodHead(self): self._head.command_nod() # sonar functions @property def sonar_pointcloud(self): return self._sonar_pointcloud def sonar_callback(self, data): if data.points: # fill array pCloud = [] for p in data.points: pCloud.append(p.x) pCloud.append(p.y) pCloud.append(p.z) self._sonar_pointcloud.sensors = tuple(data.channels[0].values) self._sonar_pointcloud.distances = tuple(data.channels[1].values) self._sonar_pointcloud.points = tuple(pCloud) else: self._sonar_pointcloud.sensors = None self._sonar_pointcloud.distances = None self._sonar_pointcloud.points = None def enableSonar(self): if not self._sonar_enabled: self._sonar_enabled = True self._sonar_enable_pub.publish(4095) self._sonar_state_sub = \ rospy.Subscriber("/robot/sonar/head_sonar/state", PointCloud, self.sonar_callback) def disableSonar(self): if self._sonar_enabled: self._sonar_enabled = False self._sonar_enable_pub.publish(0) self._sonar_state_sub.unregister() # Suppression functions def suppressBodyAvoidance(self, limb, suppress): limb = limb.lower() if limb in self._valid_limb_names.keys(): if self._suppress_body_avoidance[self._valid_limb_names[limb]] == \ (suppress > 0): return self._suppress_body_avoidance[self._valid_limb_names[limb]] = \ (suppress > 0) if self._suppress_body_avoidance[self._valid_limb_names[limb]]: print 'Suppressing Body Avoidance for limb ', limb else: print 'Enabling Body Avoidance for limb ', limb def suppressCollisionAvoidance(self, limb, suppress): limb = limb.lower() if limb in self._valid_limb_names.keys(): if self._suppress_collision_avoidance[ \ self._valid_limb_names[limb]] == \ (suppress > 0): return self._suppress_collision_avoidance[ \ self._valid_limb_names[limb]] = (suppress > 0) if self._suppress_collision_avoidance[ \ self._valid_limb_names[limb]]: print 'Suppressing Collision Avoidance for limb ', limb else: print 'Enabling Collision Avoidance for limb ', limb def suppressContactSafety(self, limb, suppress): limb = limb.lower() if limb in self._valid_limb_names.keys(): if self._suppress_contact_safety[ \ self._valid_limb_names[limb]] == \ (suppress > 0): return self._suppress_contact_safety[ \ self._valid_limb_names[limb]] = (suppress > 0) if self._suppress_contact_safety[self._valid_limb_names[limb]]: print 'Suppressing Contact Safety for limb ', limb else: print 'Enabling Contact Safety for limb ', limb def suppressCuffInteraction(self, limb, suppress): limb = limb.lower() if limb in self._valid_limb_names.keys(): if self._suppress_cuff_interaction[\ self._valid_limb_names[limb]] == \ (suppress > 0): return self._suppress_cuff_interaction[self._valid_limb_names[limb]] = \ (suppress > 0) if self._suppress_cuff_interaction[self._valid_limb_names[limb]]: print 'Suppressing Cuff Interaction for limb ', limb else: print 'Enabling Cuff Interaction for limb ', limb def suppressGravityCompensation(self, limb, suppress): limb = limb.lower() if limb in self._valid_limb_names.keys(): if self._suppress_gravity_compensation[\ self._valid_limb_names[limb]] == \ (suppress > 0): return self._suppress_gravity_compensation[ \ self._valid_limb_names[limb]] = \ (suppress > 0) if self._suppress_gravity_compensation[ \ self._valid_limb_names[limb]]: print 'Suppressing Gravity Compensation for limb ', limb else: print 'Enabling Gravity Compensation for limb ', limb def publishSuppressions(self, limb): if self._suppress_body_avoidance[limb]: self._supp_body_avoid_pubs[limb].publish() if self._suppress_collision_avoidance[limb]: self._supp_coll_avoid_pubs[limb].publish() if self._suppress_contact_safety[limb]: self._supp_con_safety_pubs[limb].publish() if self._suppress_cuff_interaction[limb]: self._supp_cuff_int_pubs[limb].publish() if self._suppress_gravity_compensation[limb]: self._supp_grav_comp_pubs[limb].publish() # worker function to continuously publish suppression commands at >5Hz def suppressions_worker(self): while self._running: time.sleep(0.05) self.publishSuppressions('left') self.publishSuppressions('right') # gravity compensation info functions @property def gravity_compensation_torques(self): return self._gravity_compensation_torques.values() def grav_comp_callback(self, data): with self._grav_comp_lock: if data.gravity_model_effort: for n in xrange(0,len(data.name)): self._gravity_compensation_torques[data.name[n]] = \ data.gravity_model_effort[n] # navigator functions def getNavigatorState(self, navigator): if (navigator in self._navigators.keys()): navigator_state = RR.RobotRaconteurNode.s.NewStructure( 'BaxterPeripheral_interface.NavigatorState') navigator_state.ok_button = self._navigators[navigator].button0 navigator_state.cancel_button = self._navigators[navigator].button1 navigator_state.show_button = self._navigators[navigator].button2 navigator_state.scroll_wheel = self._navigators[navigator].wheel navigator_state.inner_led = self._navigators[navigator].inner_led navigator_state.outer_led = self._navigators[navigator].outer_led return navigator_state else: return None def setNavigatorLEDs(self, navigator, inner_led, outer_led): if (navigator in self._navigators.keys()): self._navigators[navigator].inner_led = (inner_led > 0) self._navigators[navigator].outer_led = (outer_led > 0) def lookUptransforms(self, target_frame, source_frame): position, quaternion = self._listener.lookupTransform(target_frame, source_frame, rospy.Time(0)) relativePose = RR.RobotRaconteurNode.s.NewStructure( 'BaxterPeripheral_interface.framePose' ) relativePose.position = list(position) relativePose.quaternion = list(quaternion) return relativePose def main(argv): # parse command line arguments parser = argparse.ArgumentParser( description='Initialize Baxter Peripherals.') parser.add_argument('--port', type=int, default = 0, help='TCP port to host service on ' + \ '(will auto-generate if not specified)') args = parser.parse_args(argv) #Enable numpy RR.RobotRaconteurNode.s.UseNumPy=True #Set the Node name RR.RobotRaconteurNode.s.NodeName="BaxterPeripheralServer" #Create transport, register it, and start the server print "Registering Transport" t = RR.TcpTransport() t.EnableNodeAnnounce(RR.IPNodeDiscoveryFlags_NODE_LOCAL | RR.IPNodeDiscoveryFlags_LINK_LOCAL | RR.IPNodeDiscoveryFlags_SITE_LOCAL) RR.RobotRaconteurNode.s.RegisterTransport(t) t.StartServer(args.port) port = args.port if (port == 0): port = t.GetListenPort() #Register the service type and the service print "Starting Service" RR.RobotRaconteurNode.s.RegisterServiceType(baxter_servicedef) #Initialize object baxter_obj = BaxterPeripherals_impl() RR.RobotRaconteurNode.s.RegisterService("BaxterPeripherals", "BaxterPeripheral_interface.BaxterPeripherals", baxter_obj) print "Service started, connect via" print "tcp://localhost:" + str(port) + \ "/BaxterPeripheralServer/BaxterPeripherals" raw_input("press enter to quit...\r\n") baxter_obj.close() # This must be here to prevent segfault RR.RobotRaconteurNode.s.Shutdown() if __name__ == '__main__': main(sys.argv[1:])
import sunspec2.spreadsheet as spreadsheet import pytest import csv import copy import json def test_idx(): row = ['Address Offset', 'Group Offset', 'Name', 'Value', 'Count', 'Type', 'Size', 'Scale Factor', 'Units', 'RW Access (RW)', 'Mandatory (M)', 'Static (S)', 'Label', 'Description', 'Detailed Description'] assert spreadsheet.idx(row, 'Address Offset') == 0 with pytest.raises(ValueError): del row[0] assert spreadsheet.idx(row, 'Address Offset', mandatory=True) def test_row_is_empty(): row = [''] * 10 assert spreadsheet.row_is_empty(row, 0) row[0] = 'abc' assert not spreadsheet.row_is_empty(row, 0) def test_find_name(): points = [ { "name": "Inclx", "type": "int32", "mandatory": "M", "units": "Degrees", "sf": -2, "label": "X", "desc": "X-Axis inclination" }, { "name": "Incly", "type": "int32", "units": "Degrees", "sf": -2, "label": "Y", "desc": "Y-Axis inclination" }, { "name": "Inclz", "type": "int32", "units": "Degrees", "sf": -2, "label": "Z", "desc": "Z-Axis inclination" } ] assert spreadsheet.find_name(points, 'abc') is None assert spreadsheet.find_name(points, 'Incly') == points[1] def test_element_type(): pass def test_from_spreadsheet(): model_spreadsheet = [ ['Address Offset', 'Group Offset', 'Name', 'Value', 'Count', 'Type', 'Size', 'Scale Factor', 'Units', 'RW Access (RW)', 'Mandatory (M)', 'Static (S)', 'Label', 'Description', 'Detailed Description'], ['', '', 'inclinometer', '', '', 'group', '', '', '', '', '', '', 'Inclinometer Model', 'Include to support orientation measurements', ''], [0, '', 'ID', 304, '', 'uint16', '', '', '', '', 'M', 'S', 'Model ID', 'Model identifier', ''], [1, '', 'L', '', '', 'uint16', '', '', '', '', 'M', 'S', 'Model Length', 'Model length', ''], ['', '', 'inclinometer.incl', '', 0, 'group', '', '', '', '', '', '', '', '', ''], ['', 0, 'Inclx', '', '', 'int32', '', -2, 'Degrees', '', 'M', '', 'X', 'X-Axis inclination', ''], ['', 2, 'Incly', '', '', 'int32', '', -2, 'Degrees', '', '', '', 'Y', 'Y-Axis inclination', ''], ['', 4, 'Inclz', '', '', 'int32', '', -2, 'Degrees', '', '', '', 'Z', 'Z-Axis inclination', ''] ] model_def = { "id": 304, "group": { "name": "inclinometer", "type": "group", "points": [ { "name": "ID", "value": 304, "desc": "Model identifier", "label": "Model ID", "mandatory": "M", "static": "S", "type": "uint16" }, { "name": "L", "desc": "Model length", "label": "Model Length", "mandatory": "M", "static": "S", "type": "uint16" } ], "groups": [ { "name": "incl", "type": "group", "count": 0, "points": [ { "name": "Inclx", "type": "int32", "mandatory": "M", "units": "Degrees", "sf": -2, "label": "X", "desc": "X-Axis inclination" }, { "name": "Incly", "type": "int32", "units": "Degrees", "sf": -2, "label": "Y", "desc": "Y-Axis inclination" }, { "name": "Inclz", "type": "int32", "units": "Degrees", "sf": -2, "label": "Z", "desc": "Z-Axis inclination" } ] } ], "label": "Inclinometer Model", "desc": "Include to support orientation measurements" } } assert spreadsheet.from_spreadsheet(model_spreadsheet) == model_def def test_to_spreadsheet(): model_spreadsheet = [ ['Address Offset', 'Group Offset', 'Name', 'Value', 'Count', 'Type', 'Size', 'Scale Factor', 'Units', 'RW Access (RW)', 'Mandatory (M)', 'Static (S)', 'Label', 'Description'], ['', '', 'inclinometer', '', '', 'group', '', '', '', '', '', '', 'Inclinometer Model', 'Include to support orientation measurements'], [0, '', 'ID', 304, '', 'uint16', '', '', '', '', 'M', 'S', 'Model ID', 'Model identifier'], [1, '', 'L', '', '', 'uint16', '', '', '', '', 'M', 'S', 'Model Length', 'Model length'], ['', '', 'inclinometer.incl', '', 0, 'group', '', '', '', '', '', '', '', ''], ['', 0, 'Inclx', '', '', 'int32', '', -2, 'Degrees', '', 'M', '', 'X', 'X-Axis inclination'], ['', 2, 'Incly', '', '', 'int32', '', -2, 'Degrees', '', '', '', 'Y', 'Y-Axis inclination'], ['', 4, 'Inclz', '', '', 'int32', '', -2, 'Degrees', '', '', '', 'Z', 'Z-Axis inclination'] ] model_def = { "id": 304, "group": { "name": "inclinometer", "type": "group", "points": [ { "name": "ID", "value": 304, "desc": "Model identifier", "label": "Model ID", "mandatory": "M", "static": "S", "type": "uint16" }, { "name": "L", "desc": "Model length", "label": "Model Length", "mandatory": "M", "static": "S", "type": "uint16" } ], "groups": [ { "name": "incl", "type": "group", "count": 0, "points": [ { "name": "Inclx", "type": "int32", "mandatory": "M", "units": "Degrees", "sf": -2, "label": "X", "desc": "X-Axis inclination" }, { "name": "Incly", "type": "int32", "units": "Degrees", "sf": -2, "label": "Y", "desc": "Y-Axis inclination" }, { "name": "Inclz", "type": "int32", "units": "Degrees", "sf": -2, "label": "Z", "desc": "Z-Axis inclination" } ] } ], "label": "Inclinometer Model", "desc": "Include to support orientation measurements" } } assert spreadsheet.to_spreadsheet(model_def) == model_spreadsheet def test_to_spreadsheet_group(): model_def = { "group": { "desc": "DER capacity model.", "label": "DER Capacity", "name": "DERCapacity", "points": [ { "access": "R", "desc": "DER capacity model id.", "label": "DER Capacity Model ID", "mandatory": "M", "name": "ID", "static": "S", "type": "uint16", "value": 702 }, { "access": "R", "desc": "DER capacity name model length.", "label": "DER Capacity Model Length", "mandatory": "M", "name": "L", "static": "S", "type": "uint16" }, { "access": "R", "comments": [ "Nameplate Ratings - Specifies capacity ratings" ], "desc": "Maximum active power rating at unity power factor in watts.", "label": "Active Power Max Rating", "mandatory": "O", "name": "WMaxRtg", "sf": "W_SF", "type": "uint16", "units": "W", "symbols": [ { "name": "CAT_A", "value": 1 }, { "name": "CAT_B", "value": 2 } ] } ], "type": "group" }, "id": 702 } ss = [] spreadsheet.to_spreadsheet_group(ss, model_def['group'], has_notes=False) assert ss == [ ['', '', 'DERCapacity', '', '', 'group', '', '', '', '', '', '', 'DER Capacity', 'DER capacity model.'], ['', 0, 'ID', 702, '', 'uint16', '', '', '', '', 'M', 'S', 'DER Capacity Model ID', 'DER capacity model id.'], ['', 1, 'L', '', '', 'uint16', '', '', '', '', 'M', 'S', 'DER Capacity Model Length', 'DER capacity name model length.'], ['Nameplate Ratings - Specifies capacity ratings', '', '', '', '', '', '', '', '', '', '', '', '', ''], ['', 2, 'WMaxRtg', '', '', 'uint16', '', 'W_SF', 'W', '', '', '', 'Active Power Max Rating', 'Maximum active power rating at unity power factor in watts.'], ['', '', 'CAT_A', 1, '', '', '', '', '', '', '', '', '', ''], ['', '', 'CAT_B', 2, '', '', '', '', '', '', '', '', '', '']] def test_to_spreadsheet_point(): point = { "access": "R", "desc": "Abnormal operating performance category as specified in IEEE 1547-2018.", "label": "Abnormal Operating Category", "mandatory": "O", "name": "AbnOpCatRtg", "symbols": [ { "name": "CAT_1", "value": 1 }, { "name": "CAT_2", "value": 2 }, { "name": "CAT_3", "value": 3 } ], "type": "enum16" } ss = [] assert spreadsheet.to_spreadsheet_point(ss, point, has_notes=False) == 1 missing_name_p = copy.deepcopy(point) del missing_name_p['name'] with pytest.raises(Exception) as exc1: spreadsheet.to_spreadsheet_point(ss, missing_name_p, has_notes=False) assert 'Point missing name attribute' in str(exc1.value) missing_type_p = copy.deepcopy(point) del missing_type_p['type'] with pytest.raises(Exception) as exc2: spreadsheet.to_spreadsheet_point(ss, missing_type_p, has_notes=False) assert 'Point AbnOpCatRtg missing type' in str(exc2.value) unk_p_type = copy.deepcopy(point) unk_p_type['type'] = 'abc' with pytest.raises(Exception) as exc3: spreadsheet.to_spreadsheet_point(ss, unk_p_type, has_notes=False) assert 'Unknown point type' in str(exc3.value) p_size_not_int = copy.deepcopy(point) p_size_not_int['type'] = 'string' p_size_not_int['size'] = 'abc' with pytest.raises(Exception) as exc4: spreadsheet.to_spreadsheet_point(ss, p_size_not_int, has_notes=False) assert 'Point size is for point AbnOpCatRtg not an iteger value' in str(exc4.value) def test_to_spreadsheet_symbol(): symbol = {"name": "MAX_W", "value": 0} ss = [] spreadsheet.to_spreadsheet_symbol(ss, symbol, has_notes=False) assert ss[0][2] == 'MAX_W' and ss[0][3] == 0 ss = [] del symbol['value'] with pytest.raises(Exception) as exc1: spreadsheet.to_spreadsheet_symbol(ss, symbol, has_notes=False) assert 'Symbol MAX_W missing value' in str(exc1.value) ss = [] del symbol['name'] with pytest.raises(Exception) as exc2: spreadsheet.to_spreadsheet_symbol(ss, symbol, has_notes=False) assert 'Symbol missing name attribute' in str(exc2.value) def test_to_spreadsheet_comment(): ss = [] spreadsheet.to_spreadsheet_comment(ss, 'Scaling Factors', has_notes=False) assert ss[0][0] == 'Scaling Factors' def test_spreadsheet_equal(): spreadsheet_smdx_304 = [ ['Address Offset', 'Group Offset', 'Name', 'Value', 'Count', 'Type', 'Size', 'Scale Factor', 'Units', 'RW Access (RW)', 'Mandatory (M)', 'Static (S)', 'Label', 'Description', 'Detailed Description'], ['', '', 'inclinometer', '', '', 'group', '', '', '', '', '', '', 'Inclinometer Model', 'Include to support orientation measurements', ''], ['', '', 'ID', 304, '', 'uint16', '', '', '', '', 'M', 'S', 'Model ID', 'Model identifier', ''], ['', '', 'L', '', '', 'uint16', '', '', '', '', 'M', 'S', 'Model Length', 'Model length', ''], ['', '', 'inclinometer.incl', '', 0, 'group', '', '', '', '', '', '', '', '', ''], ['', '', 'Inclx', '', '', 'int32', '', -2, 'Degrees', '', 'M', '', 'X', 'X-Axis inclination', ''], ['', '', 'Incly', '', '', 'int32', '', -2, 'Degrees', '', '', '', 'Y', 'Y-Axis inclination', ''], ['', '', 'Inclz', '', '', 'int32', '', -2, 'Degrees', '', '', '', 'Z', 'Z-Axis inclination', ''] ] ss_copy = copy.deepcopy(spreadsheet_smdx_304) assert spreadsheet.spreadsheet_equal(spreadsheet_smdx_304, ss_copy) with pytest.raises(Exception) as exc1: ss_copy[0][0] = 'abc' spreadsheet.spreadsheet_equal(spreadsheet_smdx_304, ss_copy) assert 'Line 1 different' in str(exc1.value) with pytest.raises(Exception) as exc2: del ss_copy[0] spreadsheet.spreadsheet_equal(spreadsheet_smdx_304, ss_copy) assert 'Different length' in str(exc2.value) def test_from_csv(): model_def = { "id": 304, "group": { "name": "inclinometer", "type": "group", "points": [ { "name": "ID", "value": 304, "desc": "Model identifier", "label": "Model ID", "mandatory": "M", "static": "S", "type": "uint16" }, { "name": "L", "desc": "Model length", "label": "Model Length", "mandatory": "M", "static": "S", "type": "uint16" } ], "groups": [ { "name": "incl", "type": "group", "count": 0, "points": [ { "name": "Inclx", "type": "int32", "mandatory": "M", "units": "Degrees", "sf": -2, "label": "X", "desc": "X-Axis inclination" }, { "name": "Incly", "type": "int32", "units": "Degrees", "sf": -2, "label": "Y", "desc": "Y-Axis inclination" }, { "name": "Inclz", "type": "int32", "units": "Degrees", "sf": -2, "label": "Z", "desc": "Z-Axis inclination" } ] } ], "label": "Inclinometer Model", "desc": "Include to support orientation measurements" } } assert model_def == spreadsheet.from_csv('sunspec2/tests/test_data/smdx_304.csv') def test_to_csv(tmp_path): model_def = { "id": 304, "group": { "name": "inclinometer", "type": "group", "points": [ { "name": "ID", "value": 304, "desc": "Model identifier", "label": "Model ID", "mandatory": "M", "static": "S", "type": "uint16" }, { "name": "L", "desc": "Model length", "label": "Model Length", "mandatory": "M", "static": "S", "type": "uint16" } ], "groups": [ { "name": "incl", "type": "group", "count": 0, "points": [ { "name": "Inclx", "type": "int32", "mandatory": "M", "units": "Degrees", "sf": -2, "label": "X", "desc": "X-Axis inclination" }, { "name": "Incly", "type": "int32", "units": "Degrees", "sf": -2, "label": "Y", "desc": "Y-Axis inclination" }, { "name": "Inclz", "type": "int32", "units": "Degrees", "sf": -2, "label": "Z", "desc": "Z-Axis inclination" } ] } ], "label": "Inclinometer Model", "desc": "Include to support orientation measurements" } } ss = spreadsheet.to_spreadsheet(model_def) spreadsheet.to_csv(model_def, filename=tmp_path / 'smdx_304.csv') same_data = True row_num = 0 idx = 0 with open(tmp_path / 'smdx_304.csv') as csvfile: csvreader = csv.reader(csvfile) for row in csvreader: idx = 0 for i in row: if str(ss[row_num][idx]) != str(i): same_data = False idx += 1 row_num += 1 assert same_data def test_spreadsheet_from_csv(): spreadsheet_smdx_304 = [ ['Address Offset', 'Group Offset', 'Name', 'Value', 'Count', 'Type', 'Size', 'Scale Factor', 'Units', 'RW Access (RW)', 'Mandatory (M)', 'Static (S)', 'Label', 'Description', 'Detailed Description'], ['', '', 'inclinometer', '', '', 'group', '', '', '', '', '', '', 'Inclinometer Model', 'Include to support orientation measurements', ''], ['', '', 'ID', 304, '', 'uint16', '', '', '', '', 'M', 'S', 'Model ID', 'Model identifier', ''], ['', '', 'L', '', '', 'uint16', '', '', '', '', 'M', 'S', 'Model Length', 'Model length', ''], ['', '', 'inclinometer.incl', '', 0, 'group', '', '', '', '', '', '', '', '', ''], ['', '', 'Inclx', '', '', 'int32', '', -2, 'Degrees', '', 'M', '', 'X', 'X-Axis inclination', ''], ['', '', 'Incly', '', '', 'int32', '', -2, 'Degrees', '', '', '', 'Y', 'Y-Axis inclination', ''], ['', '', 'Inclz', '', '', 'int32', '', -2, 'Degrees', '', '', '', 'Z', 'Z-Axis inclination', ''] ] counter = 0 for row in spreadsheet.spreadsheet_from_csv('sunspec2/tests/test_data/smdx_304.csv'): same = True counter2 = 0 for i in row: if i != spreadsheet_smdx_304[counter][counter2]: same = False counter2 += 1 counter += 1 assert same def test_spreadsheet_to_csv(tmp_path): spreadsheet_smdx_304 = [ ['Address Offset', 'Group Offset', 'Name', 'Value', 'Count', 'Type', 'Size', 'Scale Factor', 'Units', 'RW Access (RW)', 'Mandatory (M)', 'Static (S)', 'Label', 'Description', 'Detailed Description'], ['', '', 'inclinometer', '', '', 'group', '', '', '', '', '', '', 'Inclinometer Model', 'Include to support orientation measurements', ''], [0, '', 'ID', 304, '', 'uint16', '', '', '', '', 'M', 'S', 'Model ID', 'Model identifier', ''], [1, '', 'L', '', '', 'uint16', '', '', '', '', 'M', 'S', 'Model Length', 'Model length', ''], ['', '', 'inclinometer.incl', '', 0, 'group', '', '', '', '', '', '', '', '', ''], ['', 0, 'Inclx', '', '', 'int32', '', -2, 'Degrees', '', 'M', '', 'X', 'X-Axis inclination', ''], ['', 2, 'Incly', '', '', 'int32', '', -2, 'Degrees', '', '', '', 'Y', 'Y-Axis inclination', ''], ['', 4, 'Inclz', '', '', 'int32', '', -2, 'Degrees', '', '', '', 'Z', 'Z-Axis inclination', ''] ] spreadsheet.spreadsheet_to_csv(spreadsheet_smdx_304, filename=tmp_path / 'smdx_304.csv') same_data = True rowNum = 0 idx = 0 with open(tmp_path / 'smdx_304.csv') as csvfile: csvreader = csv.reader(csvfile) for row in csvreader: idx = 0 for i in row: if str(spreadsheet_smdx_304[rowNum][idx]) != str(i): same_data = False idx += 1 rowNum += 1 assert same_data
import sys sys.path.append('.') import time import signal from multiprocessing import Pipe, Process, Event from movementControl import MovementControl from src.hardware.serialhandler.serialhandler import SerialHandler from src.hardware.camera.cameraprocess import CameraProcess from laneKeeping import LaneKeeping from src.utils.camerastreamer.camerastreamer import CameraStreamer # =============================== CONFIG ================================================= enableConstantForward = True enableLateralControl = True enableStream = False #================================ PROCESSES ============================================== allProcesses = list() lcR, lcS = Pipe(duplex = False) camStR, camStS = Pipe(duplex = False) if enableConstantForward: cfR, cfS = Pipe(duplex = False) cfProc = MovementControl([lcR], [cfS]) allProcesses.append(cfProc) shProc = SerialHandler([cfR], []) allProcesses.append(shProc) if enableLateralControl: lkR, lkS = Pipe(duplex = False) camOutPs = [] if enableStream: streamProc = CameraStreamer([camStR], []) allProcesses.append(streamProc) camOutPs = [lkS, camStS] else: camOutPs = [lkS] camProc = CameraProcess([],camOutPs) allProcesses.append(camProc) lkProc = LaneKeeping([lkR], [lcS]) allProcesses.append(lkProc) # Starting the processes print("Starting the processes!",allProcesses) for proc in allProcesses: proc.daemon = True proc.start() # Waiting for keyboard interruption blocker = Event() try: blocker.wait() except KeyboardInterrupt: print("\nCatching a KeyboardInterruption exception! Shutdown all processes.\n") for proc in allProcesses: if hasattr(proc,'stop') and callable(getattr(proc,'stop')): print("Process with stop",proc) proc.stop() proc.join() else: print("Process witouth stop",proc) proc.terminate() proc.join()
""" A model that was initially meant to learn motion probabilities using input features, the model now learns the probabilities of two states belonging to eachother. """ import os # import numpy as np from tensorflow.python.keras.models import Model, load_model from tensorflow.python.keras.layers import Input, Dense, Activation from tensorflow.python.keras.layers import BatchNormalization from tensorflow.python.keras.layers import Conv2D from tensorflow.python.keras.layers import concatenate from tensorflow.python.keras.layers import RepeatVector from tensorflow.python.keras.layers import Reshape from tensorflow.python.keras.layers import MaxPooling2D from tensorflow.python.keras.layers import AveragePooling2D from tensorflow.python.keras.layers import LeakyReLU from tensorflow.python.keras.layers import Flatten from tensorflow.python.keras.optimizers import Nadam from tensorflow.python.keras.optimizers import SGD from tensorflow.python.keras import backend as K from lib.models.util.make_parallel import make_parallel # architecture now takes two states (time t, t+1), encodes them, and # computes their probability of matching class DeepVelocity(object): def __init__(self, lr=0.00017654, lat_input_shape=(64,), screen_input_shape=(64,64,), structured_input_shape=(2,), verbose=False): """ https://keras.io/getting-started/functional-api-guide/#multi-input-and-multi-output-models https://keras.io/gett ing-started/functional-api-guide/#shared-layers https://blog.keras.io/building-autoencoders-in-keras.html """ # Gross hack, change later? self.lr = lr if verbose: print("Network structured input shape is", structured_input.get_shape()) print("Network screen input shape is", screen_input.get_shape()) print("Network latent input shape is", lat_input.get_shape()) # Create the two state encoding legs structured_input_a = Input(shape=structured_input_shape) lat_input_a = Input(shape=lat_input_shape) screen_input_a = Input(shape=screen_input_shape,) structured_input_b = Input(shape=structured_input_shape) lat_input_b = Input(shape=lat_input_shape) screen_input_b = Input(shape=screen_input_shape) eng_state_a = [structured_input_a, lat_input_a, screen_input_a] eng_state_b = [structured_input_b, lat_input_b, screen_input_b] # We want to broadcast the structured input (x, y) into their own # channels, each with the same dimension as the screen input # We can then concatenate, then convolve over the whole tensor x = RepeatVector(64*64)(structured_input_a) x = Reshape((64,64,2))(x) structured_output_a = x x = RepeatVector(64*64)(structured_input_b) x = Reshape((64,64,2))(x) structured_output_b = x # Similar with the latent vector, except it will simply be repeated # column wise x = RepeatVector(64)(lat_input_a) x = Reshape((64,64,1))(x) lat_output_a = x x = RepeatVector(64)(lat_input_b) x = Reshape((64,64,1))(x) lat_output_b = x # The screen is the correct shape, just add a channel dimension x = Reshape((64,64,1))(screen_input_a) screen_output_a = x x = Reshape((64,64,1))(screen_input_b) screen_output_b= x x = concatenate([screen_output_a, structured_output_a, lat_output_a, screen_output_b, structured_output_b, lat_output_b], axis=-1) print("Hello, World!", x.shape) x = Conv2D(16, (3,3))(x) x = BatchNormalization()(x) x = Activation('relu')(x) print("1", x.shape) x = Conv2D(32, (3,3))(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = MaxPooling2D(2)(x) print("2", x.shape) x = Conv2D(64, (3,3))(x) x = BatchNormalization()(x) x = Activation('relu')(x) print("3", x.shape) x = Conv2D(128, (3,3))(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = MaxPooling2D(2)(x) print("4", x.shape) x = Conv2D(256, (3,3))(x) x = BatchNormalization()(x) x = Activation('relu')(x) print("5", x.shape) x = Conv2D(512, (3,3))(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = MaxPooling2D(2)(x) print("6", x.shape) x = Conv2D(1024, (3,3))(x) x = BatchNormalization()(x) x = Activation('relu')(x) print("7", x.shape) x = Conv2D(2, (1,1))(x) x = Activation('linear')(x) x = AveragePooling2D()(x) print("8", x.shape) x = Activation("softmax")(x) print("9", x.shape) prob_output = Reshape((2,))(x) print("10", prob_output.shape) self.probabilityNetwork = Model(inputs=eng_state_a+eng_state_b, outputs=[prob_output]) def compile(self): # print("LR: ",self.lr) # self.lr = 10**np.random.uniform(-2.2, -3.8) optimizer = Nadam(lr=self.lr, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004) # optimizer = SGD() # self.probabilityNetwork = make_parallel(self.probabilityNetwork, 2) self.probabilityNetwork.compile( optimizer=optimizer, loss='categorical_crossentropy', metrics=['acc', 'mse', 'categorical_crossentropy']) def save_weights(self, path): self.probabilityNetwork.save_weights(path) def load(self, path): loc = os.path.join(self.path(), path) print("Loading weights", loc) self.probabilityNetwork.load_weights(loc) return self def save_model(self, path): self.probabilityNetwork.save(path) def load_model(self, path): # loc = os.path.join(self.path(), path) # print("Loading model", path) self.probabilityNetwork = load_model(path) return self def path(self): return os.path.dirname(os.path.realpath(__file__)) def contrastive_loss(y_true, y_pred): '''Contrastive loss from Hadsell-et-al.'06 http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf ''' margin = 1 return K.mean(y_true * K.square(y_pred) + (1 - y_true) * K.square(K.maximum(margin - y_pred, 0))) from tensorflow.python.keras.utils import get_custom_objects get_custom_objects().update({"contrastive_loss": contrastive_loss})
import os os.sys.path.insert(0, os.path.abspath('..\settings_folder')) import settings from utils import get_random_end_point def test(): arena_size = [60, 60, 20] total_num_of_splits = 3 print("arena_size" + str(arena_size)) print("total_num_of_splits" + str(total_num_of_splits)) for split_index in range(0, total_num_of_splits): print("-------- split_index" + str(split_index)) for i in range(0, 5): res = get_random_end_point(arena_size, split_index, total_num_of_splits) print("smapled point" + str(res)) test()
import random from typing import Tuple, Callable Strategy = Tuple[Callable[[int], int], Callable[[int], int]] def random_bit() -> int: return random.randint(0, 1) def referee(strategy: Callable[[], Strategy]) -> bool: you, eve = strategy() your_input, eve_input = random_bit(), random_bit() parity = 0 if you(your_input) == eve(eve_input) else 1 return parity == (your_input and eve_input) def est_win_probability(strategy: Callable[[], Strategy], n_games: int = 1000) -> float: return sum( referee(strategy) for _ in range(n_games) ) / n_games def constant_strategy() -> Strategy: return ( lambda your_input: 0, lambda eve_input: 0 )
"""print_property_table() function and RowTable class. These are two styles of nicely formatted text tables meant for printing to the IPython console window. """ from typing import Any, List, Tuple, Union from napari.components.experimental.chunk._commands._utils import highlight from napari.utils.translations import trans def print_property_table(table: List[Tuple[str, Any]]) -> None: """Print names and values. Example output: Layer ID: 0 Name: numbered slices Levels: 1 Shape: (20, 1024, 1024, 3) Parameters ---------- table """ heading_width = max(len(x) for x, _ in table) for heading, value in table: aligned = f"{heading:>{heading_width}}" print(f"{highlight(aligned)}: {value}") class ColumnSpec: """Specification for one column in a RowTable. Parameters ---------- spec : Union[str, dict] String column name, or a dict specification. """ def __init__(self, spec: Union[str, dict]) -> None: if isinstance(spec, str): spec = {'name': spec} # Spec is the name, then we use defaults. self.name = spec.get('name', "") self.align = spec.get('align', "right") self.width = spec.get('width') def format(self, value, width): """Return formatted value with alignment.""" value_str = str(value) if self.align == "left": return f"{value_str:<{width}}" return f"{value_str:>{width}}" class RowTable: """A printable text table with a header and rows. Example usage: table = table(["NAME", "AGE"], [10, 5]) table.add_row["Mary", "25"] table.add_row["Alice", "32"] table.print() Example output: NAME AGE Mary 25 Alice 32 Parameters ---------- headers : List[str] The column headers such as ["NAME", "AGE"]. widths: Optional[List[int]] Use these widths instead of automatic widths, 0 means auto for that column. """ # Leave room between columns. PADDING = 2 def __init__(self, columns: List[Union[str, dict]]) -> None: self.columns = [ColumnSpec(x) for x in columns] self.rows: List[list] = [] self.padding = " " * self.PADDING def add_row(self, row: List[str]) -> None: """Add one row of data to the table. Parameters ---------- row : List[str] The row values such as ["Fred", "25"]. """ row_cols = len(row) header_cols = len(self.columns) if row_cols != header_cols: raise ValueError( trans._( "Row with {row_cols} columns not compatible with headers ({header_cols} columns)", deferred=True, row_cols=row_cols, header_cols=header_cols, ) ) self.rows.append(row) def _get_max_data_width(self, index: int) -> int: """Return maximum width of this column in the data. Parameters ---------- index : int Return width of this column. Returns ------- int The maximum width of this column. """ if self.rows: return max(len(str(row[index])) for row in self.rows) return 0 def _get_widths(self) -> List[int]: """Return widths of all the columns." Returns ------- List[int] The width of each column in order. """ widths = [] for i, spec in enumerate(self.columns): if spec.width is not None: width = spec.width # A fixed width column. else: # Auto sized column so whichever is wider: data or header. data_width = self._get_max_data_width(i) width = max(data_width, len(self.columns[i].name)) widths.append(width) return widths def get_header_str(self, widths: List[int]) -> str: """Return header string with all the column names. Parameters ---------- widths : List[int] The column widths. Returns ------- str The header string. """ header_str = "" for i, spec in enumerate(self.columns): width = widths[i] value = str(spec.name) header_str += f"{value:<{width}}" + self.padding return header_str def get_row_str(self, row, widths: List[int]) -> str: """Get string depicting one row on the table.""" row_str = "" for i, spec in enumerate(self.columns): row_str += spec.format(row[i], widths[i]) + self.padding return row_str def print(self): """Print the entire table both header and rows.""" widths = self._get_widths() print(highlight(self.get_header_str(widths))) for row in self.rows: print(self.get_row_str(row, widths))
"""API utilty functions.""" from rest_framework.views import get_view_name as drf_get_view_name def get_view_name(view_cls, suffix=None): name = drf_get_view_name(view_cls, suffix=None) if name == 'Api Root': return 'API Root' else: return name
from .index import * from .alt import *
from django.db import models class Email(models.Model): created = models.DateTimeField(auto_now_add=True) fro = models.CharField(max_length=255) to = models.TextField(blank=True) cc = models.TextField(blank=True) bcc = models.TextField(blank=True) subject = models.CharField(max_length=255) text = models.TextField(blank=True) html = models.TextField(blank=True) def __unicode__(self): return "%s > %s" % (self.fro, self.subject)
import numpy as np # Zad1. # Za pomocą funkcji arange stwórz tablicę numpy składającą się z 15 kolejnych wielokrotności liczby 3. wielokrotności = np.arange(start=0, stop=3 * 15, step=3, dtype=int) print(wielokrotności) # Zad2. # Stwórz listę składającą się z wartości zmiennoprzecinkowych # a następnie zapisz do innej zmiennej jej kopię przekonwertowaną na typ int64 zmiennoprzecinkowe = np.arange(start=0, stop=10, step=1.1, dtype=float) print(zmiennoprzecinkowe) przekonwertowana = zmiennoprzecinkowe.astype('int64') print(przekonwertowana) # Zad4. # # Napisz funkcję, która będzie przyjmowała 2 parametry: # liczbę, która będzie podstawą operacji potęgowania # oraz ilość kolejnych potęg do wygenerowania. # Korzystając z funkcji logspace generuj tablicę jednowymiarową # kolejnych potęg podanej liczby, np. generuj(2,4) -> [2,4,8,16] def funkcja_zad4(podstawa, ilość_kolejnych): return np.logspace(start=1, stop=ilość_kolejnych, base=podstawa, num=ilość_kolejnych, dtype="int64") print(funkcja_zad4(2, 4)) print(funkcja_zad4(20, 20)) print(type(funkcja_zad4(2,4))) # Zad5. # Napisz funkcję, która: # Na wejściu przyjmuje jeden parametr określający długość wektora # Na podstawie parametru generuj wektor, ale w kolejności odwróconej # Generuj macierz diagonalną z w/w wektorem jako przekątną def funkcja_zad5(dl_wektora): wektor = np.arange(dl_wektora) wektor = np.flip(wektor) return np.diag(wektor) print(funkcja_zad5(10)) # Zad7. # Napisz funkcję, która wygeneruje macierz wielowymiarową postaci: # [[2 4 6] # [4 2 4] # [6 4 2]] # Przy założeniach: # funkcja przyjmuje parametr n, który określa wymiary macierzy jako n*n # i umieszcza wielokrotność liczby 2 na kolejnych jej przekątnych rozchodzących się od głównej przekątnej. def funkcja_zad7(n): dwojki_diag = np.diag([2 for a in range(n)]) dwojki = np.array([2 for a in range(n)]) for a in range(n): np.fill_diagonal(dwojki_diag[a + 1:], dwojki + 2 * a + 2) np.fill_diagonal(dwojki_diag[:, a + 1:], dwojki + 2 * a + 2) return dwojki_diag print(funkcja_zad7(5)) # Zadanie 9 # Wykorzystaj poznane na zajęciach funkcje biblioteki Numpy i stwórz macierz 5x5, # która będzie zawierała kolejne wartości ciągu Fibonacciego. def funkcja_zad9(n=5, m=5): temp = [0, 1] for i in range(n * m - 2): temp.append(sum(temp[-2:])) return np.array(temp).reshape((n, m)) print(funkcja_zad9(5, 5))
class Employee: comp_name = "sathya" def __init__(self): self.name = "ravi" self.salary = 125000.00 def displayDetails(self): print(self.name) print(self.salary) print(Employee.comp_name) #--------------------- e1 = Employee() print("1st Object ---",e1) e1.displayDetails() e2 = Employee() print("2nd Object ---",e2) e2.displayDetails()
# Maximal Rectangle # - Given a 2-d list, come up with the size of the largest rectangle # that is only consisted of 1's # Explanation: The algorithm looks at the matrix in the similar way as the recursive # algorithm does but it builds up the cumulative heights as it goes. def sol_dp(matrix): if len(matrix) == 0: return 0 curr_hist = [0] * len(matrix[0]) curr_max = 0 for r in range(len(matrix)): for c in range(len(matrix[r])): if matrix[r][c] == '0': curr_hist[c] = 0 else: curr_hist[c] += int(matrix[r][c]) for c in range(len(matrix[r])): min_height = curr_hist[c] for cc in range(c, len(matrix[r])): if curr_hist[cc] < min_height: min_height = curr_hist[cc] curr_max = max(curr_max, (cc - c + 1) * min_height) return curr_max # Helper function def change_to_cumulative(rect): new_rect = [] for r in range(len(rect)): new_r = [] cumul = 0 for c in range(len(rect[r])-1, -1, -1): curr = int(rect[r][c]) if curr == 1: cumul += curr else: cumul = 0 new_r.insert(0, cumul) new_rect.append(new_r) return new_rect # Explanation: The algorithm first changes the given matrix into a what's called # cumulative matrix. At every point, the value shows you how many # reachable 1's are there cumulatively (change_to_cumulative()). # If we think the size of matrix is equal to n, then this transformation # takes O(n) running time. # Next, with the new matrix, we now iterate through the whole matrix # from the top-left corner to the bottom right corner. At every point, # the algorithm calculates its biggest rectangle possigle by looking at # the cumulative numbers and update the possible maximum it iterates # down. At each row, we compare the current minimum cumulative number # with the current cumulative number and see if we face a smaller number. # When the current cumulative number is smaller, than that means as we # go deeper down, we will only be able to count as many 1's as that # smallest cumulative number much. So we have to keep in track of # current rectangle is biggest as we go down the rows. # Run Time: O(mn^2). We have O(n) from the change_to_cumulative(), O(n) for the # inner loop that goes deeper down, and the O(n) for the outer loop that # loops through the whole rectangle, which together become O(n^2). def sol_bruteforce(matrix): new_rect = change_to_cumulative(matrix) rtn_val = 0 for rr in range(len(new_rect)): for c in range(len(new_rect[rr])): min_cul = new_rect[rr][c] for r in range(rr, len(new_rect)): if new_rect[r][c] == 0: break else: if new_rect[r][c] < min_cul: min_cul = new_rect[r][c] rtn_val = max((r-rr+1)*min_cul, rtn_val) return rtn_val rect = [ ["1","1","1","0","0","1","1","1","0","0","1","1","1","0","0","1","1","1","0","0"], ["1","1","1","0","0","1","1","1","0","0","1","1","1","0","0","1","1","1","1","1"], ["1","1","1","0","0","1","1","1","0","0","1","1","1","0","0","1","1","1","1","1"], ["1","0","0","1","0","1","0","0","1","0","1","0","0","1","0","1","0","0","1","0"], ["1","1","1","0","0","1","1","1","0","0","1","1","1","0","0","1","1","1","0","0"] ] print(sol_dp(rect))
from time import strftime import sys,os sys.path.insert(1,os.path.abspath(os.path.join(os.path.dirname( __file__ ),'..','..','lib'))) import pytest import sys,os sys.path.insert(1,os.path.abspath(os.path.join(os.path.dirname( __file__ ),'..','..','lib'))) from clsCommon import Common import clsTestService import enums from localSettings import * import localSettings from utilityTestFunc import * class Test: #================================================================================================================================ # @Author: Tzachi Guetta # Test description: # #================================================================================================================================ testNum = "16" supported_platforms = clsTestService.updatePlatforms(testNum) status = "Pass" timeout_accured = "False" driver = None common = None # Test variables entryName = None entryDescription = "Entry description" entryTags = "entrytags1,entrytags2," flavorsList = ["Source", "Mobile (3GP)", "Basic/Small - WEB/MBL (H264/400)","Basic/Small - WEB/MBL (H264/600)", "SD/Small - WEB/MBL (H264/900)", "SD/Large - WEB/MBL (H264/1500)","HD/720 - WEB (H264/2500)","HD/1080 - WEB (H264/4000)","WebM"] filePath = localSettings.LOCAL_SETTINGS_MEDIA_PATH + r'\videos\QR30SecMidRight.mp4' #run test as different instances on all the supported platforms @pytest.fixture(scope='module',params=supported_platforms) def driverFix(self,request): return request.param def test_01(self,driverFix,env): #write to log we started the test logStartTest(self,driverFix) try: ############################# TEST SETUP ############################### #capture test start time self.startTime = time.time() #initialize all the basic vars and start playing self,self.driver = clsTestService.initialize(self, driverFix) self.common = Common(self.driver) ######################################################################## self.entryName = clsTestService.addGuidToString('entryName') self.filePathDownloaded = os.path.join(localSettings.LOCAL_SETTINGS_TEMP_DOWNLOADS, self.entryName + "_" + '(' + self.flavorsList[0] + ')' + ".mp4") writeToLog("INFO","SETUP: Going to create temp folder for download") if self.common.createFolder(localSettings.LOCAL_SETTINGS_JENKINS_NODE_SHARED_DOWNLOAD) == False: self.status = "Fail" writeToLog("INFO","SETUP: FAILED to create temp folder on") return # TO-DO: move the below line to "crate evn test" # self.common.admin.adminDownloadMedia(True) ########################## TEST STEPS - MAIN FLOW ####################### writeToLog("INFO","Step 1: Going to perform login to KMS site as user") if self.common.loginAsUser() == False: self.status = "Fail" writeToLog("INFO","Step 1: FAILED to login as user") return writeToLog("INFO","Step 2: Going to upload entry") if self.common.upload.uploadEntry(self.filePath, self.entryName, self.entryDescription, self.entryTags) == None: self.status = "Fail" writeToLog("INFO","Step 2: FAILED failed to upload entry") return writeToLog("INFO","Step 3: Going to add flavors to the entry") if self.common.editEntryPage.addFlavorsToEntry(self.entryName, [self.flavorsList[0]]) == False: self.status = "Fail" writeToLog("INFO","Step 3: FAILED add flavors to the entry") return writeToLog("INFO","Step 4: Going to Download the flavor") if self.common.entryPage.downloadAFlavor(self.entryName, self.flavorsList[0]) == False: self.status = "Fail" writeToLog("INFO","Step 4: FAILED to Download the flavor") return sleep(15) writeToLog("INFO","Step 5: Going to upload the downloaded Flavor") if self.common.upload.uploadEntry(self.filePathDownloaded, self.entryName + '_Downloaded', "downloaded description", "downloadedtags1,downloadedtags2,") == None: self.status = "Fail" writeToLog("INFO","Step 5: FAILED to upload the downloaded Flavor") return writeToLog("INFO","Step 6: Going to verify uploaded entry") if self.common.player.navigateToEntryClickPlayPause(self.entryName + '_Downloaded', "0:07") == False: self.status = "Fail" writeToLog("INFO","Step 6: FAILED to verify uploaded entry") return ######################################################################### writeToLog("INFO","TEST PASSED") # If an exception happened we need to handle it and fail the test except Exception as inst: self.status = clsTestService.handleException(self,inst,self.startTime) ########################### TEST TEARDOWN ########################### def teardown_method(self,method): try: self.common.handleTestFail(self.status) writeToLog("INFO","**************** Starting: teardown_method ****************") self.common.base.switch_to_default_content() self.common.myMedia.deleteEntriesFromMyMedia([self.entryName, self.entryName + '_Downloaded']) self.common.deleteFolder(localSettings.LOCAL_SETTINGS_JENKINS_NODE_SHARED_DOWNLOAD) writeToLog("INFO","**************** Ended: teardown_method *******************") except: pass clsTestService.basicTearDown(self) #write to log we finished the test logFinishedTest(self,self.startTime) assert (self.status == "Pass") pytest.main('test_' + testNum + '.py --tb=line')
''' adpump Nostale_FR https://adpgtrack.com/click/5d15c5d8a035945cc309af93/157000/224520/subaccount Uspd ''' from selenium.webdriver import ActionChains from selenium import webdriver from time import sleep # import xlrd import random import os import time import sys sys.path.append("..") # import email_imap as imap # import json import re # from urllib import request, parse from selenium.webdriver.support.ui import Select # import base64 import Chrome_driver import email_imap as imap import name_get import db import selenium_funcs import Submit_handle import random def web_submit(submit,chrome_driver,debug=0): # test # email_list = ['aol.com','gmail.com','hotmail.com','outlook.com'] # Mission_list = ['10052'] # print(submit['Email']) # end = submit['Email']['Email_emu'].split('@')[1] # print(end) # if end not in email_list: # email = db.read_one_selected_email(Mission_list,email_list) # print(email) # if len(email) == 0: # return # if debug == 0: # db.write_one_info(Mission_list,email,Cookie = '') # submit['Email'] = email['Email'] # print(submit['Email']) # return if debug == 1: site = 'https://w.myspicylinks.com/index.php?id_promo=5024105_1&promokeys=e180940561f0ce6b151baadf02d96fef' submit['Site'] = site chrome_driver.get(submit['Site']) chrome_driver.maximize_window() # chrome_driver.refresh() # yes next element = '//*[@id="questions"]/div[1]/div[2]/a[1]' element = selenium_funcs.scroll_and_find_up(chrome_driver,element) element.click() sleep(1) # 2 element = '//*[@id="questions"]/div[2]/div[2]/a[1]' element = selenium_funcs.scroll_and_find_up(chrome_driver,element) element.click() sleep(1) # 3 element = ['//*[@id="questions"]/div[3]/div[2]/a[1]','//*[@id="questions"]/div[3]/div[2]/a[2]','//*[@id="questions"]/div[3]/div[2]/a[3]'] num = random.randint(0,2) chrome_driver.find_element_by_xpath(element[num]).click() sleep(1) # 4 element = ['//*[@id="questions"]/div[4]/div[2]/a[1]','//*[@id="questions"]/div[4]/div[2]/a[2]','//*[@id="questions"]/div[4]/div[2]/a[3]','//*[@id="questions"]/div[4]/div[2]/a[4]','//*[@id="questions"]/div[4]/div[2]/a[5]','//*[@id="questions"]/div[4]/div[2]/a[6]'] num = random.randint(0,5) chrome_driver.find_element_by_xpath(element[num]).click() sleep(1) try: chrome_driver.find_element_by_xpath('//*[@id="questions"]/div[5]/div[2]/a[1]').click() except: pass sleep(10) # email email = submit['fr_soi']['email'] try: chrome_driver.find_element_by_xpath('//*[@id="emailPG"]').send_keys(email) except: return 1 sleep(1) element = chrome_driver.find_element_by_xpath('//*[@id="pg_submit"]') actions = ActionChains(chrome_driver) actions.move_to_element_with_offset(element,30,15).click().perform() num = random.randint(180,300) sleep(num) return 1 def test(): Mission_list = ['10000'] excel = 'fr_soi' Excel_name = ['fr_soi',''] Email_list = ['hotmail.com','outlook.com','','aol.com','gmail.com'] submit = db.read_one_excel(Mission_list,Excel_name,Email_list) # print(submit) [print(item,':',submit[excel][item]) for item in submit[excel] if submit[excel][item]!=None] # date_of_birth = Submit_handle.get_auto_birthday(submit['Uspd']['date_of_birth']) # print(date_of_birth) submit['Mission_Id'] = '10048' submit['Country'] = 'FR' chrome_driver = Chrome_driver.get_chrome(submit) web_submit(submit,chrome_driver,1) # print(submit['Email']) # print(submit['Email']['Email_emu']) # print(submit['Email']['Email_emu_pwd']) # # print(submit['Uspd']['zip']) # # print(submit['Uspd']['date_of_birth']) # # print(submit['Uspd']['ssn']) def test1(): num_gender = random.randint(0,1) print(num_gender) if __name__=='__main__': test() print('......')
# -*- coding: utf-8 -*- from typing import List class Solution: def maxSubsequence(self, nums: List[int], k: int) -> List[int]: indices_of_top_k_nums = sorted(enumerate(nums), key=lambda el: -el[1])[:k] sorted_indices_of_top_k_nums = sorted(indices_of_top_k_nums) return [num for index, num in sorted_indices_of_top_k_nums] if __name__ == "__main__": solution = Solution() assert [3, 3] == solution.maxSubsequence([2, 1, 3, 3], 2) assert [-1, 3, 4] == solution.maxSubsequence([-1, -2, 3, 4], 3) assert [3, 4] == solution.maxSubsequence([3, 4, 3, 3], 2)
from pymagnitude import * from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from graph import * from a_star import * from client import DroidClient from word2number import w2n import random, time, csv, re import numpy as np # Change this path to where you put your project folder path = "/Users/calchen/Desktop/sphero-project/" # Change this path to / name of your .magnitude file. # Do not merge this line with the previous line. vectors = Magnitude(path + "vectors/word2vecRetrofitted.magnitude") ############################################################ # Helper Function ############################################################ # Load and process training sentences def loadTrainingSentences(file_path): commandTypeDict = {} with open(file_path, "r") as fin: for line in fin: line = line.rstrip("\n") if len(line.strip()) == 0 or "##" == line.strip()[0:2]: continue commandType, command = line.split(" :: ") if commandType not in commandTypeDict: commandTypeDict[commandType] = [command] else: commandTypeDict[commandType].append(command) return commandTypeDict ############################################################ # Classification / Intent Detection ############################################################ # Calculate the cosine similarity between two vectors def cosineSim(vector1, vector2): return np.dot(vector1, vector2) / (np.linalg.norm(vector1) * np.linalg.norm(vector2)) # Given a sentence, calculate its embedding def calcPhraseEmbedding(sentence): words = re.split("\W+", sentence) words = [x.lower() for x in words if x.lower() not in ["", "a", "an", "the", "is"]] if "?" in sentence: words.append("?") return vectors.query(words).sum(axis = 0) / len(words) # Given a sentence embedding, rank training sentence embeddings # according to their similarity to the given sentence embedding def rankSentences(commandEmbedding, sentenceEmbeddings): sortList = [] for i in range(sentenceEmbeddings.shape[0]): similarity = cosineSim(commandEmbedding, sentenceEmbeddings[i, :]) sortList.append((i, similarity)) similarSentences = sorted(sortList, key = lambda x: x[1], reverse = True) return [x[0] for x in similarSentences] # Classify a given sentence def getCommandType(categories, closestSentences, indexToTrainingSentence): commandDict = {} for category in categories: commandDict[category] = 0 commandDict[indexToTrainingSentence[closestSentences[0]][1]] += 1 commandDict[indexToTrainingSentence[closestSentences[1]][1]] += 0.5 commandDict[indexToTrainingSentence[closestSentences[2]][1]] += 0.5 commandDict[indexToTrainingSentence[closestSentences[3]][1]] += 0.2 commandDict[indexToTrainingSentence[closestSentences[4]][1]] += 0.2 print(commandDict) return max(commandDict, key = commandDict.get) ############################################################ # Parsers / Slot Filling ############################################################ class Robot: def __init__(self, droidID, wordSimilarityCutoff, voice): # Initialize instance variables self.createSentenceEmbeddings() self.droid = DroidClient() self.name = "R2" self.wordSimilarityCutoff = wordSimilarityCutoff self.holoProjectorIntensity = 0 self.logicDisplayIntensity = 0 self.frontRGB = (0, 0, 0) self.backRGB = (0, 0, 0) self.voice = voice self.grid = [[]] self.speed = 0.5 self.pos = (-1, -1) self.objCoord = dict() # Load and process color data self.colorToRGB = {} with open(path + "data/colors.csv") as csvfile: readCSV = csv.reader(csvfile, delimiter = ",") for row in readCSV: self.colorToRGB[row[0]] = (int(row[2]), int(row[3]), int(row[4])) # Connect to robot connected = self.droid.connect_to_droid(droidID) while not connected: connected = self.droid.connect_to_droid(droidID) # Create training sentence embeddings def createSentenceEmbeddings(self): self.categories = ["state", "direction", "light", "animation", "head", "grid"] trainingSentences = loadTrainingSentences(path + "data/r2d2TrainingSentences.txt") self.indexToTrainingSentence = {} i = 0 for category in self.categories: sentences = trainingSentences[category + "Sentences"] for sentence in sentences: self.indexToTrainingSentence[i] = (sentence, category) i += 1 self.sentenceEmbeddings = np.zeros((len(self.indexToTrainingSentence), vectors.dim)) for i in range(len(self.indexToTrainingSentence)): sentence = self.indexToTrainingSentence[i][0] sentenceEmbedding = calcPhraseEmbedding(sentence) self.sentenceEmbeddings[i, :] = sentenceEmbedding # Process user's input command def inputCommand(self, command): commandEmbedding = calcPhraseEmbedding(command) closestSentences = rankSentences(commandEmbedding, self.sentenceEmbeddings) # print(self.indexToTrainingSentence[closestSentences[0]][0]) # print(self.indexToTrainingSentence[closestSentences[1]][0]) # print(self.indexToTrainingSentence[closestSentences[2]][0]) # print(self.indexToTrainingSentence[closestSentences[3]][0]) # print(self.indexToTrainingSentence[closestSentences[4]][0]) print("Closet sentence was: " + self.indexToTrainingSentence[closestSentences[0]][0]) print("Its cosine similarity to the command was: " + str(cosineSim(commandEmbedding, self.sentenceEmbeddings[closestSentences[0], :]))) if cosineSim(commandEmbedding, self.sentenceEmbeddings[closestSentences[0], :]) < 0.84 and not self.voice: subcommand = input(self.name + ": I could not understand your command. Do you want to add this command to the training set? (yes/no): ") if "yes" in subcommand.lower(): subcommand = input("What category do you want to add it to? Choices are state, direction, light, animation, head, or grid: ") subcommand = subcommand.lower() if subcommand in self.categories: with open(path + "data/r2d2TrainingSentences.txt", "a") as the_file: the_file.write(subcommand + "Sentences :: " + command + "\n") print("Command added. Changes will be present on restart.") else: print(subcommand + " not a valid category.") return commandType = getCommandType(self.categories, closestSentences, self.indexToTrainingSentence) result = getattr(self, commandType + "Parser")(command.lower()) if result: print(self.name + ": Done executing " + commandType + " command.") else: print(self.name + ": I could not understand your " + commandType + " command.") # Reset the robot to its initial orientation def reset(self): self.droid.roll(0, 0, 0) # Disconnect from the robot def disconnect(self): self.droid.disconnect() # Flash given light(s) in given color(s) for a given amount of time def flash_colors(self, colors, seconds = 1, front = True): if front: for color in colors: self.droid.set_front_LED_color(*color) time.sleep(seconds) else: for color in colors: self.droid.set_back_LED_color(*color) time.sleep(seconds) # If we can't detect the color for the light(s), ask the user for more info def askForColor(self, lightPosition = "both"): if lightPosition != "both": print("We detect that you want to change your " + lightPosition + " light, but could not find a color.") else: print("We parsed this as a light command, but could not find a color.") command = input("Do you want to input a color? (yes/no): ") color = False if "yes" in command.lower(): print("You may have inputted a color, but it is not in our database or is mispelled. Please input a color or rgb tuple.") command = input("If you want to add the color to the database, input color_name (one string) :: rgb tuple: ") words = re.split("\W+", command) words = [x for x in words if x != ""] for word in words: if word in self.colorToRGB: color = self.colorToRGB[word] if len(words) == 4: try: color = (int(words[1]), int(words[2]), int(words[3])) colorName = words[0] with open(path + "data/colors.csv", "a") as csvStorer: csvStorer.write("\n" + colorName + ",R2D2 " + colorName + "," + words[1] + "," + words[2] + "," + words[3]) print(colorName + " added to database. It will be available on the next restart.") except ValueError: superDumbVariable = 1 elif len(words) == 3: try: color = (int(words[0]), int(words[1]), int(words[2])) except ValueError: superDumbVariable = 1 return color # Parser for a light command def lightParser(self, command): # Slots for a light command slots = {"holoEmit": False, "logDisp": False, "lights": [], "add": False, "sub": False, "percent": False, "whichRGB": [], "colors": [], "intensities": [], "rgb": False, "increment/seconds": False} if "holoemitter" in command or "holo emitter" in command: slots["holoEmit"] = True if "logic display" in command: slots["logDisp"] = True if "dim" in command: slots["intensities"].append("dim") if "blink" in command: slots["intensities"].append("blink") if "%" in command: slots["percent"] = True # WANT TO MAKE INCREASE BETTER if "increase" in command or "add" in command: slots["add"] = True if "decrease" in command or "reduce" in command or "subtract" in command: slots["sub"] = True # Front / back too similar if "back" in command: slots["lights"].append("back") if "front" in command: slots["lights"].append("front") if slots["lights"] == []: slots["lights"] = ["front", "back"] if "red" in command: slots["whichRGB"].append("red") if "green" in command: slots["whichRGB"].append("green") if "blue" in command: slots["whichRGB"].append("blue") words = re.split("\W+", command) words = [x for x in words if x != ""] i = 0 for word in words: if i < len(words) - 2: try: slots["rgb"] = (int(words[i]), int(words[i+1]), int(words[i+2])) except ValueError: superDumbVariable = True if vectors.similarity("off", word) > self.wordSimilarityCutoff or "minimum" in command: slots["intensities"].append("off") elif vectors.similarity("on", word) > self.wordSimilarityCutoff or vectors.similarity("maximum", word) > self.wordSimilarityCutoff: slots["intensities"].append("on") if vectors.similarity("percent", word) > self.wordSimilarityCutoff: slots["percent"] = True if word in self.colorToRGB: slots["colors"].append(self.colorToRGB[word]) i += 1 try: increment = int(word) slots["increment/seconds"] = increment except ValueError: continue return self.lightSlotsToActions(slots) # Execute a light command given its slots def lightSlotsToActions(self, slots): if slots["holoEmit"]: if "off" in slots["intensities"]: self.holoProjectorIntensity = 0 self.droid.set_holo_projector_intensity(self.holoProjectorIntensity) elif "dim" in slots["intensities"]: self.holoProjectorIntensity = self.holoProjectorIntensity / 2 self.droid.set_holo_projector_intensity(self.holoProjectorIntensity) elif "on" in slots["intensities"]: self.holoProjectorIntensity = 1 self.droid.set_holo_projector_intensity(self.holoProjectorIntensity) elif "blink" in slots["intensities"]: self.droid.set_holo_projector_intensity((self.holoProjectorIntensity + 1) % 2) time.sleep(0.3) self.droid.set_holo_projector_intensity(self.holoProjectorIntensity) else: return False return True if slots["logDisp"]: if "off" in slots["intensities"]: self.logicDisplayIntensity = 0 self.droid.set_logic_display_intensity(self.logicDisplayIntensity) elif "dim" in slots["intensities"]: self.logicDisplayIntensity = self.logicDisplayIntensity / 2 self.droid.set_logic_display_intensity(self.logicDisplayIntensity) elif "on" in slots["intensities"]: self.logicDisplayIntensity = 1 self.droid.set_logic_display_intensity(self.logicDisplayIntensity) elif "blink" in slots["intensities"]: self.droid.set_logic_display_intensity((self.logicDisplayIntensity + 1) % 2) time.sleep(0.3) self.droid.set_logic_display_intensity(self.logicDisplayIntensity) else: return False return True if (slots["add"] or slots["sub"]) and (slots["percent"]): lights = slots["lights"] if not slots["increment/seconds"]: command = input("Percent not found in command, please input percent to change by here: ") try: command = command.replace("%", "") slots["increment/seconds"] = int(command) except ValueError: return False if slots["sub"]: slots["increment/seconds"] = -slots["increment/seconds"] percent = slots["increment/seconds"] if len(slots["whichRGB"]) == 0: command = input("Did not find what values (red/blue/green) to change, input what values to change: ") if "red" in command: slots["whichRGB"].append("red") if "green" in command: slots["whichRGB"].append("green") if "blue" in command: slots["whichRGB"].append("blue") if len(slots["whichRGB"]) == 0: return False if "red" in slots["whichRGB"]: for light in lights: rgb = getattr(self, light + "RGB") setattr(self, light + "RGB", (max(0, min(rgb[0] + rgb[0] * percent / 100, 255)), rgb[1], rgb[2])) getattr(self.droid, "set_" + light + "_LED_color")(*getattr(self, light + "RGB")) if "green" in slots["whichRGB"]: for light in lights: rgb = getattr(self, light + "RGB") setattr(self, light + "RGB", (rgb[0], max(0, min(rgb[1] + rgb[1] * percent / 100, 255)), rgb[2])) getattr(self.droid, "set_" + light + "_LED_color")(*getattr(self, light + "RGB")) if "blue" in slots["whichRGB"]: for light in lights: rgb = getattr(self, light + "RGB") setattr(self, light + "RGB", (rgb[0], rgb[1], max(0, min(rgb[2] + rgb[2] * percent / 100, 255)))) getattr(self.droid, "set_" + light + "_LED_color")(*getattr(self, light + "RGB")) return True if slots["add"] or slots["sub"]: lights = slots["lights"] if not slots["increment/seconds"]: command = input("Increment not found in command, please input amount to change by here: ") try: slots["increment/seconds"] = int(command) except ValueError: return False if slots["sub"]: slots["increment/seconds"] = -slots["increment/seconds"] increaseValue = slots["increment/seconds"] if len(slots["whichRGB"]) == 0: command = input("Did not find what values (red/blue/green) to change, input what values to change: ") if "red" in command: slots["whichRGB"].append("red") if "green" in command: slots["whichRGB"].append("green") if "blue" in command: slots["whichRGB"].append("blue") if len(slots["whichRGB"]) == 0: return False if "red" in slots["whichRGB"]: for light in lights: rgb = getattr(self, light + "RGB") setattr(self, light + "RGB", (max(0, min(rgb[0] + increaseValue, 255)), rgb[1], rgb[2])) getattr(self.droid, "set_" + light + "_LED_color")(*getattr(self, light + "RGB")) if "green" in slots["whichRGB"]: for light in lights: rgb = getattr(self, light + "RGB") setattr(self, light + "RGB", (rgb[0], max(0, min(rgb[1] + increaseValue, 255)), rgb[2])) getattr(self.droid, "set_" + light + "_LED_color")(*getattr(self, light + "RGB")) if "blue" in slots["whichRGB"]: for light in lights: rgb = getattr(self, light + "RGB") setattr(self, light + "RGB", (rgb[0], rgb[1], max(0, min(rgb[2] + increaseValue, 255)))) getattr(self.droid, "set_" + light + "_LED_color")(*getattr(self, light + "RGB")) return True askedForColor = False if "back" in slots["lights"] and len(slots["lights"]) == 1: if len(slots["colors"]) > 1: seconds = slots["increment/seconds"] if not seconds: seconds = 1 self.flash_colors(slots["colors"], seconds, False) elif len(slots["colors"]) == 1: self.backRGB = slots["colors"][0] else: if not slots["rgb"]: color = self.askForColor("back") askedForColor = True if not color: return False self.backRGB = color else: self.backRGB = slots["rgb"] self.droid.set_back_LED_color(*self.backRGB) return True if ("front" in slots["lights"] and len(slots["lights"]) == 1) or len(slots["colors"]) > 1: if len(slots["colors"]) > 1: seconds = slots["increment/seconds"] if not seconds: seconds = 1 self.flash_colors(slots["colors"], seconds) elif len(slots["colors"]) == 1: self.frontRGB = slots["colors"][0] else: if not slots["rgb"]: color = self.askForColor("front") askedForColor = True if not color: return False self.frontRGB = color else: self.frontRGB = slots["rgb"] self.droid.set_front_LED_color(*self.frontRGB) return True if len(slots["colors"]) == 1: self.backRGB = slots["colors"][0] self.frontRGB = slots["colors"][0] self.droid.set_back_LED_color(*self.backRGB) self.droid.set_front_LED_color(*self.frontRGB) return True if len(slots["colors"]) == 0: if slots["rgb"]: self.backRGB = slots["rgb"] self.frontRGB = slots["rgb"] self.droid.set_back_LED_color(*self.backRGB) self.droid.set_front_LED_color(*self.frontRGB) return True if "off" in slots["intensities"]: self.holoProjectorIntensity = 0 self.droid.set_holo_projector_intensity(self.holoProjectorIntensity) self.logicDisplayIntensity = 0 self.droid.set_logic_display_intensity(self.logicDisplayIntensity) self.backRGB = (0, 0, 0) self.frontRGB = (0, 0, 0) self.droid.set_back_LED_color(*self.backRGB) self.droid.set_front_LED_color(*self.frontRGB) return True elif "dim" in slots["intensities"]: self.holoProjectorIntensity = 0 self.droid.set_holo_projector_intensity(self.holoProjectorIntensity) self.logicDisplayIntensity = 0 self.droid.set_logic_display_intensity(self.logicDisplayIntensity) self.backRGB = tuple(x / 2 for x in self.backRGB) self.frontRGB = tuple(x / 2 for x in self.frontRGB) self.droid.set_back_LED_color(*self.backRGB) self.droid.set_front_LED_color(*self.frontRGB) return True elif "on" in slots["intensities"]: self.holoProjectorIntensity = 1 self.droid.set_holo_projector_intensity(self.holoProjectorIntensity) self.logicDisplayIntensity = 1 self.droid.set_logic_display_intensity(self.logicDisplayIntensity) return True elif "blink" in slots["intensities"]: self.droid.set_holo_projector_intensity((self.holoProjectorIntensity + 1) % 2) self.droid.set_logic_display_intensity((self.holoProjectorIntensity + 1) % 2) time.sleep(0.3) self.droid.set_holo_projector_intensity(self.holoProjectorIntensity) self.droid.set_logic_display_intensity(self.logicDisplayIntensity) return True if not slots["rgb"] and not askedForColor: color = self.askForColor() if color: self.backRGB = color self.frontRGB = color self.droid.set_back_LED_color(*self.backRGB) self.droid.set_front_LED_color(*self.frontRGB) return True return False # Parser for a directional command def directionParser(self, command): if re.search("(circle|donut)", command): if re.search("counter", command): for heading in range(360, 0, -30): self.droid.roll(self.speed, heading % 360, 0.6) else: for heading in range(0, 360, 30): self.droid.roll(self.speed, heading, 0.6) self.droid.roll(0, 0, 0) return True elif re.search("square", command): if re.search("counter", command): for heading in range(360, 0, -90): self.droid.roll(0, heading % 360, 0) time.sleep(0.35) self.droid.roll(self.speed, heading % 360, 0.6) else: for heading in range(0, 360, 90): self.droid.roll(0, heading, 0) time.sleep(0.35) self.droid.roll(self.speed, heading, 0.6) self.droid.roll(0, 0, 0) return True elif re.search("(speed|slow|faster|slower)", command): if re.search("(increase|faster|up)", command): if self.speed <= 0.75: self.speed += 0.25 else: if self.speed >= 0.5: self.speed -= 0.25 self.droid.animate(0) return True else: flag = False tokens = re.split("[^a-zA-Z]", command) for token in tokens: if token in {"up", "forward", "ahead", "straight", "north"}: self.droid.roll(0, 0, 0) time.sleep(0.35) self.droid.roll(self.speed, 0, 0.6) flag = True elif token in {"down", "back", "south"}: self.droid.roll(0, 180, 0) time.sleep(0.35) self.droid.roll(self.speed, 180, 0.6) flag = True elif token in {"left", "west"}: self.droid.roll(0, 270, 0) time.sleep(0.35) self.droid.roll(self.speed, 270, 0.6) flag = True elif token in {"right", "east"}: self.droid.roll(0, 90, 0) time.sleep(0.35) self.droid.roll(self.speed, 90, 0.6) flag = True self.droid.roll(0, 0, 0) return flag # Parser for a animation command def animationParser(self, command): if re.search("fall", command): self.droid.animate(14) return True elif re.search("run away", command): self.droid.animate(19) return True elif re.search("(dance|move)", command): self.droid.animate(20) return True elif re.search("(sing|sound|noise)", command): self.droid.play_sound(3) return True elif re.search("scream", command): self.droid.play_sound(7) return True return False # Parser for a head command def headParser(self, command): if re.search("(forward|ahead|straight|front)", command): self.droid.rotate_head(0) return True elif re.search("left", command): self.droid.rotate_head(-90) return True elif re.search("right", command): self.droid.rotate_head(90) return True elif re.search("(behind|back)", command): self.droid.rotate_head(180) return True return False # Parser for a state command def stateParser(self, command): if re.search("color", command): if re.search("(front|forward)", command): print("****************************************") print(self.frontRGB) print("****************************************") elif re.search("(back|rear|rare)", command): print("****************************************") print(self.backRGB) print("****************************************") else: print("****************************************") print(self.frontRGB) print(self.backRGB) print("****************************************") return True elif re.search("(name|call)", command): if re.search("(want|wanna).*you", command): if self.extractName(command) == "": print("****************************************") print("You didn't give me a name!") print("****************************************") self.droid.play_sound(7) return False else: self.name = self.extractName(command) self.droid.animate(0) else: print("****************************************") print(self.name) print("****************************************") return True elif re.search("(power|battery)", command): print("****************************************") self.droid.battery() print("****************************************") return True return False def extractName(self, command): words = re.split("[^a-zA-Z]", command) ret = "" activated = False for word in words: if activated: ret += word + " " if word == "you": activated = True if len(ret) > 0 and ret[-1] == " ": return ret[:-1] else: return ret # Parser for a grid command def gridParser(self, command): # Convert the words to lowercase # Convert numbers as words to ints # Remove duplicate spaces words = re.split("(x|[^a-zA-Z0-9])", command.lower()) command = "" for word in words: try: command += str(w2n.word_to_num(word)) + " " except: command += word + " " command = re.sub(" +", " ", command) print("****************************************") print(command) print("****************************************") if re.search("(\d+|to).*(x|by).*(\d+|to) grid", command): words = re.split("(x|[^a-zA-Z0-9])", command) x, y = self.extractCoord(words) self.grid = [["" for col in range(y)] for row in range(x)] print("****************************************") for row in self.grid: print(row) print("****************************************") self.droid.animate(0) return True elif re.search("you.*re.*at.*(\d+|to).*(\d+|to)", command): if self.pos != (-1, -1): self.grid[self.pos[0]][self.pos[1]] = "" arr = re.split("[^a-zA-Z0-9]", command) x, y = self.extractCoord(arr) if len(self.grid) == 0 or len(self.grid[0]) == 0: print("****************************************") print("Grid is not initialized yet!") print("****************************************") self.droid.play_sound(7) return False if x < 0 or x >= len(self.grid) or y < 0 or y >= len(self.grid[0]): print("****************************************") print("Coordinate is out of grid!") print("****************************************") self.droid.play_sound(7) return False self.pos = (x, y) self.grid[x][y] = "you" self.objCoord["you"] = (x, y) print("****************************************") for row in self.grid: print(row) print("****************************************") self.droid.animate(0) return True elif re.search("(s|re) .+ (at|to|on|above|below)", command): # Replace obj with its coordinates for obj in self.objCoord: words = re.split(" ", obj) for word in words: if re.search(word, command): x, y = self.objCoord[obj] if re.search("(left|west)", command): y -= 1 elif re.search("(right|east)", command): y += 1 elif re.search("(below|south|bottom)", command): x += 1 elif re.search("(above|north|top)", command): x -= 1 command = self.replaceWithCoord(command, x, y) print("****************************************") print(command) print("****************************************") break if re.search("at.*(\d+|to).*(\d+|to)", command): words = re.split("[^a-zA-Z0-9]", command) x, y = self.extractCoord(words) obj = self.extractObj(words) if len(self.grid) == 0 or len(self.grid[0]) == 0: print("****************************************") print("Grid is not initialized yet!") print("****************************************") self.droid.play_sound(7) return False if x < 0 or x >= len(self.grid) or y < 0 or y >= len(self.grid[0]): print("****************************************") print("Coordinate is out of grid!") print("****************************************") self.droid.play_sound(7) return False if obj == "": print("****************************************") print("You didn't specify what the obstacle(s) is/are!") print("****************************************") self.droid.play_sound(7) return False self.grid[x][y] = obj self.objCoord[obj] = (x, y) print("****************************************") for row in self.grid: print(row) print("****************************************") self.droid.animate(0) return True elif re.search("go.*to", command): # Replace obj with its coordinates for obj in self.objCoord: words = re.split(" ", obj) for word in words: if re.search(word, command): x, y = self.objCoord[obj] if re.search("(left|west)", command): y -= 1 elif re.search("(right|east)", command): y += 1 elif re.search("(below|south|bottom)", command): x += 1 elif re.search("(above|north|top)", command): x -= 1 command = "go to " + str(x) + " , " + str(y) print("****************************************") print(command) print("****************************************") break if re.search("(\d+|to).*(\d+|to)", command): arr = re.split("[^a-zA-Z0-9]", command) x, y = self.extractCoord(arr) if len(self.grid) == 0 or len(self.grid[0]) == 0: print("****************************************") print("Grid is not initialized yet!") print("****************************************") self.droid.play_sound(7) return False if x < 0 or x >= len(self.grid) or y < 0 or y >= len(self.grid[0]): print("****************************************") print("Coordinate is out of grid!") print("****************************************") self.droid.play_sound(7) return False if self.pos == (-1, -1): print("****************************************") print("Current position hasn't been specified!") print("****************************************") self.droid.play_sound(7) return False if (x, y) in self.objCoord.values(): print("****************************************") print("Impossible to get to the target!") print("****************************************") self.droid.play_sound(7) return False target = (x, y) if target == self.pos: print("****************************************") print("You are already there!") print("****************************************") self.droid.animate(0) return True self.grid[x][y] = "target" print("****************************************") for row in self.grid: print(row) print("****************************************") # Create a graph and calculate the moves G = Graph(self.grid) moves = A_star(G, self.pos, target, manhattan_distance_heuristic) if moves is None: print("****************************************") print("Impossible to get to the target!") print("****************************************") self.grid[x][y] = "" self.droid.play_sound(7) return False else: print("****************************************") print(moves) print("****************************************") # Store the initial position init_x, init_y = self.pos for i in range(1, len(moves)): if moves[i][1] > moves[i - 1][1]: # Move right self.droid.roll(0, 90, 0) time.sleep(0.35) self.droid.roll(self.speed, 90, 0.6) elif moves[i][1] < moves[i - 1][1]: # Move left self.droid.roll(0, 270, 0) time.sleep(0.35) self.droid.roll(self.speed, 270, 0.6) elif moves[i][0] > moves[i - 1][0]: # Move down self.droid.roll(0, 180, 0) time.sleep(0.35) self.droid.roll(self.speed, 180, 0.6) elif moves[i][0] < moves[i - 1][0]: # Move up self.droid.roll(0, 0, 0) time.sleep(0.35) self.droid.roll(self.speed, 0, 0.6) self.pos = moves[i] self.grid[x][y] = "you" self.objCoord["you"] = (x, y) self.grid[init_x][init_y] = "" print("****************************************") for row in self.grid: print(row) print("****************************************") self.droid.animate(0) return True self.droid.play_sound(7) return False # Given a sentence as an array of words, extract the coordinate as an array of ints def extractCoord(self, words): ret = [] for i in range(len(words) - 1, -1, -1): word = words[i] if word.isdigit(): ret = [int(word)] + ret if word in {"to", "too"}: ret = [2] + ret if len(ret) == 2: break return ret # Given a sentence as an array of words, extract the object as a string def extractObj(self, words): ret = "" activated = False for word in words: if word == "at": activated = False if activated and word not in {"a", "an", "the"}: ret += word + " " if word in {"s", "re", "is", "are"}: activated = True if len(ret) > 0 and ret[-1] == " ": return ret[:-1] else: return ret # Replace obj with its coordinates def replaceWithCoord(self, command, x, y): words = re.split("[^a-zA-Z0-9]", command) ret = "" for word in words: if word not in {"above", "below", "to", "on"}: ret += word + " " else: break ret += "at " + str(x) + " , " + str(y) return ret
# noinspection PyUnresolvedReferences from actuators.HBridgeActuator import HBridgeActuator as Actuator import os from controllers.Controller import Controller # noinspection PyUnresolvedReferences import RPi.GPIO as GPIO class HBridgeController(Controller): def __init__(self): GPIO.setmode(GPIO.BOARD) self.left = Actuator( pin_forward=int(os.getenv('PIN_LEFT_FORWARD')), pin_backward=int(os.getenv('PIN_LEFT_BACKWARD')), pin_pwm=int(os.getenv('PIN_LEFT_PWM')) ) self.right = Actuator( pin_forward=int(os.getenv('PIN_RIGHT_FORWARD')), pin_backward=int(os.getenv('PIN_RIGHT_BACKWARD')), pin_pwm=int(os.getenv('PIN_RIGHT_PWM')) ) self.steering = Actuator( pin_forward=int(os.getenv('PIN_STEER_LEFT')), pin_backward=int(os.getenv('PIN_STEER_RIGHT')), pin_pwm=int(os.getenv('PIN_STEER_PWM')) ) def steer_left(self): self.steering.reverse() def steer_right(self): self.steering.forward() def steer_neutral(self): self.steering.neutral() def forward(self, power: int = 100): self.left.forward(power) self.right.forward(power) def reverse(self, power: int = 100): self.left.reverse(power) self.right.reverse(power) def neutral(self): self.left.neutral() self.right.neutral() def exit(self): self.left.exit() self.right.exit() GPIO.cleanup()
from flask import Blueprint, request, make_response, session, jsonify, render_template, redirect,current_app from utils.captcha.captcha import captcha from utils.ytx_sdk.ytx_send import sendTemplateSMS import random import re import functools from models import db, UserInfo,NewsCategory,NewsInfo from utils.qiniuyun_xjzx import pic1 user_blueprint = Blueprint('user', __name__, url_prefix='/user') import datetime # 图片验证码视图 @user_blueprint.route('/image_yzm') def image_yzm(): # generate_captcha()方法生成:名字,验证码,验证码图片 name, text, content = captcha.generate_captcha() # 将验证码图片存在session中用来验证 session['image_yzm'] = text print(session['image_yzm']) # make_response函数指定发送的文件类型--->jpg response = make_response(content) response.mimetype = 'image/jpg' return response # 短信验证码 @user_blueprint.route('/msg_yzm', methods=['GET']) def msg_yzm(): dict1 = request.args mobile = dict1.get('mobile') image_yzm = dict1.get('image_yzm') # 检测手机号是否合法+ if len(mobile) != 11: return jsonify(error_info='手机号不合法') if UserInfo.query.filter_by(mobile=mobile).count(): return jsonify(error_info='该手机号已经被注册过') # 检测图片验证码是否正确 if image_yzm != session['image_yzm']: return jsonify(error_info='验证码不合法') # 发送短信验证码 # sendTemplateSMS() # 测试阶段使用以下方式代替 msg_yzm = random.randint(1000, 10000) print(msg_yzm) session['msg_yzm'] = str(msg_yzm) return jsonify(success_info="短信已发送,请注意查收") # 注册 @user_blueprint.route('/register', methods=['POST']) def register(): dict1 = request.form mobile = dict1.get('mobile') image_yzm = dict1.get('image_yzm') msg_yzm = dict1.get('msg_yzm') password = dict1.get('password') if not all((mobile, image_yzm, msg_yzm, password)): return jsonify(error_info='数据填写不完整') if len(mobile) != 11: return jsonify(error_info='手机号不合法') if UserInfo.query.filter_by(mobile=mobile).count(): return jsonify(error_info='该手机号已经被注册过') if image_yzm != session['image_yzm']: return jsonify(error_info='图片验证码不正确') if msg_yzm != session['msg_yzm']: return jsonify(error_info='短信验证码不正确') if not re.match(r'\w{6,20}', password): return jsonify(error_info='密码格式不正确') user = UserInfo() user.mobile = mobile user.nick_name = mobile user.password = password try: db.session.add(user) db.session.commit() return jsonify(success_info='注册成功,请登录') except: return jsonify(error_info='服务器出错') # 登录 @user_blueprint.route('/login', methods=['POST']) def login(): dict1 = request.form mobile = dict1.get('mobile') password = dict1.get('password') if not all((mobile, password)): return jsonify(error_info='数据填写不完整') if len(mobile) != 11: return jsonify(error_info='手机号不合法') user = UserInfo.query.filter_by(mobile=mobile).first() if not user: return jsonify(error_info='该手机号没有注册过哦') if not user.check_pwd(password): return jsonify(error_info='密码输入错误') session['user_id'] = user.id user.update_time = datetime.datetime.now() db.session.commit() # 记录时间段内的登录用户数量 now=datetime.datetime.now() name = 'active%d%d%d'%(now.year,now.month,now.day) for i in range(8,20): if not current_app.redis_client.hget(name,'%02d:15'%i): current_app.redis_client.hset(name, '%02d:15'%i,0) if now.hour<=9 or now.hour>=20: current_app.redis_client.hset(name,'08:15' if now.hour<=9 else '19:15',int(current_app.redis_client.hget(name,'08:15' if now.hour<=9 else '19:15').decode())+1) else: current_app.redis_client.hset(name, '%02d:15'%(now.hour-1) if now.minute <= 15 else '%02d:15'%now.hour, int(current_app.redis_client.hget(name, '%02d:15'%(now.hour-1) if now.minute <= 15 else '%02d:15'%now.hour).decode()) + 1) return jsonify(success_info='登录成功', nick_name=user.nick_name,avatar_url=user.avatar_url) # 退出 @user_blueprint.route('/logout') def logout(): session.pop('user_id') return jsonify(success_info='退出成功') # 设置登录过才展示以下页面 def check_login(func): @functools.wraps(func) def start(*args,**kwargs): if 'user_id' in session: return func(*args,**kwargs) else: return redirect('/') return start # 显示用户中心视图 @user_blueprint.route('/') @check_login def user_index(): user = UserInfo.query.get(session['user_id']) return render_template('news/user.html', title='用户中心',user=user) # 用户基本信息 @user_blueprint.route('/base',methods=['GET','POST']) @check_login def base(): user = UserInfo.query.get(session['user_id']) if request.method == 'GET': return render_template('news/user_base_info.html',user=user) elif request.method == 'POST': dict1 = request.form signature = dict1.get('signature') nick_name = dict1.get('nick_name') gender = bool(dict1.get('gender')) try: user.signature=signature user.nick_name=nick_name user.gender=gender db.session.commit() return jsonify(success_info='修改个人信息成功') except: return jsonify(error_info='服务器出错') # 用户头像 @user_blueprint.route('/pic',methods=['GET','POST']) @check_login def pic(): user = UserInfo.query.get(session['user_id']) if request.method == 'GET': return render_template('news/user_pic_info.html',user=user) elif request.method == 'POST': # 获得头像需要files方法 user_pic = request.files.get('avatar') # 将头像传到七牛云并返回一个文件名 avatar = pic1(user_pic) try: user.avatar = avatar db.session.commit() return jsonify(success_info='修改成功',avatar_url = user.avatar_url) except: return jsonify(error_info='服务器出错') # 用户关注的人 @user_blueprint.route('/follow') @check_login def follow(): user = UserInfo.query.get(session['user_id']) # 获取当前页码 page = int(request.args.get('page',1)) # 模板需要分页显示,需要pagination对象 pagination = user.follow_user.paginate(page,4,False) user_follow_list = pagination.items total_page = pagination.pages return render_template('news/user_follow.html',user_follow_list=user_follow_list,total_page=total_page,page=page) # 用户密码 @user_blueprint.route('/password',methods=['GET','POST']) @check_login def password(): user = UserInfo.query.get(session['user_id']) if request.method == 'GET': return render_template('news/user_pass_info.html') elif request.method == 'POST': dict1 = request.form old_password = dict1.get('old_password') new_password = dict1.get('new_password') new_password_config = dict1.get('new_password_config') if not re.match(r'\w{6,20}',old_password): return render_template('news/user_pass_info.html',error_info='旧密码输入格式不正确') if not re.match(r'\w{6,20}',new_password): return render_template('news/user_pass_info.html',error_info='新密码输入格式不正确') if new_password == old_password: return render_template('news/user_pass_info.html',error_info='新密码不能与旧密码一致哦') if new_password != new_password_config: return render_template('news/user_pass_info.html',error_info='两次新密码输入不一致') if not user.check_pwd(old_password): return render_template('news/user_pass_info.html',error_info='旧密码输入有误') try: user.password = new_password db.session.commit() session.pop('user_id') return render_template('news/user_pass_info.html',success_info='修改成功,请重新登录') except: return render_template('news/user_pass_info.html',error_info='服务器出错,请稍后重试') # 用户收藏 @user_blueprint.route('/collection') @check_login def collection(): user = UserInfo.query.get(session['user_id']) # 分页操作 page = int(request.args.get('page',1)) pagination = user.news_collect.order_by(NewsInfo.id.desc()).paginate(page,6,False) tatol_page = pagination.pages news_collect_list = pagination.items return render_template('news/user_collection.html',page=page,tatol_page=tatol_page,news_collect_list=news_collect_list) # 用户发布 @user_blueprint.route('/release',methods=['GET','POST']) @check_login def release(): user = UserInfo.query.get(session['user_id']) category_list = NewsCategory.query.all() try: # 有带新闻参数的get方式请求,认为是修改新闻的请求 news_id = int(request.args.get('news_id')) news = NewsInfo.query.get(news_id) except: news = None if request.method == 'GET': # news为NewsInfo对象或者None,当为None时,模板中即不显示值 return render_template('news/user_news_release.html', category_list=category_list,news=news) elif request.method == 'POST': dict1 = request.form title = dict1.get('title') category_id = int(dict1.get('category')) summary = dict1.get('summary') context = dict1.get('content') try: __news_pic = request.files.get('news_pic') news_picname = pic1(__news_pic) except: # 用户没有上传图片,则存值空字符串 news_picname='' if not all((title,category_id,summary,context)): # html中存在要用到news的html,错误信息回传时,也需要传news对象 return render_template('news/user_news_release.html',category_list=category_list,error_info='您的内容没有填写完整哦',news=news) try: if news: # 如果是修改操作,不用传用户id, news.update_time=datetime.now() else: news = NewsInfo() news.user_id = user.id # 如果获取到了上传的图片文件,就上传或者修改 if news_picname: news.pic = news_picname news.title = title news.category_id=category_id news.summary=summary news.status = 1 news.context = context db.session.add(news) db.session.commit() # 数据添加成功后默认去到新闻列表页 return redirect('/user/list') except: return render_template('news/user_news_release.html',category_list=category_list,error_info='服务器出错',news=news) # 用户新闻列表 @user_blueprint.route('/list') @check_login def list(): user = UserInfo.query.get(session['user_id']) page = int(request.args.get('page',1)) # 分页显示 pagination = user.news.order_by(NewsInfo.id.desc()).paginate(page,6,False) news_list = pagination.items total_news = pagination.pages return render_template('news/user_news_list.html',page=page,news_list=news_list,total_news=total_news)
import os from PIL import Image import numpy as np from keras import layers from keras.applications import DenseNet121 from keras.callbacks import Callback, ModelCheckpoint from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.optimizers import Adam import matplotlib.pyplot as plt import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import cohen_kappa_score, accuracy_score import scipy import tensorflow as tf #from tqdm import tqdm from keras.models import Sequential from keras.layers import Dense, Conv2D, Flatten from keras import layers import keras from keras.preprocessing.image import load_img from keras.preprocessing.image import save_img from keras.preprocessing.image import img_to_array from sklearn.model_selection import StratifiedShuffleSplit def get_pad_width(im, new_shape, is_rgb=True): pad_diff = new_shape - im.shape[0], new_shape - im.shape[1] t, b = math.floor(pad_diff[0]/2), math.ceil(pad_diff[0]/2) l, r = math.floor(pad_diff[1]/2), math.ceil(pad_diff[1]/2) if is_rgb: pad_width = ((t,b), (l,r), (0, 0)) else: pad_width = ((t,b), (l,r)) return pad_width def preprocess_image(image_path, desired_size=224): im = Image.open(image_path) im = im.resize((desired_size, )*2, resample=Image.LANCZOS) return im def preprocess_test_data(test_df): N = test_df.shape[0] x_test = np.empty((N, 224, 224, 3), dtype=np.uint8) j = 0 #for i, image_id in enumerate((test_df['id_code'])): #f(j%500 == 0): #print(j) #img = preprocess_image('AnotherTest/TestingSet/'+image_id+'.jpg') ##img_array = img_to_array(img) ##save_img('processed_test_images/'+image_id, img_array) #img.save('AnotherTest/TestingSet/'+image_id+'.jpg') #j = j+1; ##print(j) ##if j == 100: ## break ##x_train[i, :, :, :] = preprocess_image('train_images/'+image_id+'.png') ##j = j+1; # N = test_df.shape[0] # x_test = np.empty((N, 224, 224, 3), dtyp e=np.uint8) # j = 0 # for i, image_id in enumerate((test_df['id_code'])): # if(j%500 == 0): # print(j) # x_test[i, :, :, :] = preprocess_image('test_images/'+image_id+'.png') # j = j+1; for i, image_id in enumerate((test_df['id_code'])): x_test[i, :, :, :] = Image.open('AnotherTest/TestingSet/'+image_id+'.jpg') test_df['diagnosis'] = test_df['diagnosis'] > 0 test_df['diagnosis'] = test_df['diagnosis'] * 1.0 # print(x_train.shape) # print(y_train.shape) # #print(x_test.shape) y_test = pd.get_dummies(test_df['diagnosis']).values print("y_test shape") print(y_test.shape) y_test_multi = np.empty(y_test.shape, dtype=y_test.dtype) y_test_multi[:, 1] = y_test[:, 1] for i in range(0, -1, -1): y_test_multi[:, i] = np.logical_or(y_test[:, i], y_test_multi[:, i+1]) print("Original y_test:", y_test.sum(axis=0)) print("Multilabel version:", y_test_multi.sum(axis=0)) return x_test, y_test_multi
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'fullscreen_mode.ui', # licensing of 'fullscreen_mode.ui' applies. # # Created: Thu Jan 2 17:55:43 2020 # by: pyside2-uic running on PySide2 5.9.0~a1 # # WARNING! All changes made in this file will be lost! from PySide2 import QtCore, QtGui, QtWidgets class Ui_FullscreenMode(object): def setupUi(self, FullscreenMode): FullscreenMode.setObjectName("FullscreenMode") FullscreenMode.resize(400, 300) self.verticalLayout_2 = QtWidgets.QVBoxLayout(FullscreenMode) self.verticalLayout_2.setObjectName("verticalLayout_2") self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.wingview_layout = QtWidgets.QVBoxLayout() self.wingview_layout.setObjectName("wingview_layout") self.verticalLayout.addLayout(self.wingview_layout) self.slider_feature_size = QtWidgets.QSlider(FullscreenMode) self.slider_feature_size.setOrientation(QtCore.Qt.Horizontal) self.slider_feature_size.setObjectName("slider_feature_size") self.verticalLayout.addWidget(self.slider_feature_size) self.verticalLayout_2.addLayout(self.verticalLayout) self.retranslateUi(FullscreenMode) QtCore.QMetaObject.connectSlotsByName(FullscreenMode) def retranslateUi(self, FullscreenMode): FullscreenMode.setWindowTitle(QtWidgets.QApplication.translate("FullscreenMode", "Fullscreen Mode", None, -1)) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) FullscreenMode = QtWidgets.QWidget() ui = Ui_FullscreenMode() ui.setupUi(FullscreenMode) FullscreenMode.show() sys.exit(app.exec_())
ogrenciNotlari = { 'Deniz': 8, 'Mahir': 10, 'İbrahim': 9, 'Ulaş': 9.5 } # print(type(ogrenciNotlari)) # print(ogrenciNotlari['Deniz']) for ogrenci in ogrenciNotlari: print(ogrenci + " " + str(ogrenciNotlari[ogrenci]) + " aldı")
""" :copyright: Michael Yusko :license: MIT, see LICENSE for more details. """ __author__ = 'Michael Yusko' __version__ = '0.1.1'
print("Insira 3 números reais.") a,b,c = int(input()), int(input()), int(input()) print((a+b)*(b+c)) print(3*(a+b+c))
import pandas as pd import numpy as np from normalise_user_item_matrix import linebreak from sklearn.metrics.pairwise import cosine_similarity from sklearn.neighbors import NearestNeighbors matrix_new = pd.read_csv('user_item_matrix_normalised.csv') drop_columns_all_except_name_new = [i for i in range(linebreak[0],linebreak[5]+1)] drop_list_new = matrix_new.columns[drop_columns_all_except_name_new].tolist() name_matrix_new = matrix_new.drop(drop_list_new,axis=1) name_dict_new = dict(name_matrix_new.values) drop_columns_new = [i for i in range(1,linebreak[1]+1)] drop_list_new = matrix_new.columns[drop_columns_new].tolist() taxonomy_matrix_new = matrix_new.drop(drop_list_new,axis=1) drop_taxonomys_new = [i for i in range(linebreak[2],linebreak[5] + 1)] drop_taxonomys_names_new = matrix_new.columns[drop_taxonomys_new].tolist() classes_matrix_new = matrix_new.drop(drop_taxonomys_names_new, axis=1) X_new = taxonomy_matrix_new.drop('ID',axis=1) y_new = pd.DataFrame(taxonomy_matrix_new['ID']) knn_new = NearestNeighbors(n_neighbors=3,algorithm='brute',metric='cosine') knn_new.fit(X_new) def new_user_recommendation_new(user_taste_profile): X_test_new = pd.DataFrame(np.array(user_taste_profile).reshape(1,12), columns=X_new.columns) neighbours_new = knn_new.kneighbors(X_test_new,return_distance=False) neighbour_1_posn_new = neighbours_new[0][0] neighbour_1_ID_new = y_new.iloc[neighbours_new[0][0]].values[0] neighbour_1_name_new = name_dict_new[neighbour_1_ID_new] neighbour_2_posn_new = neighbours_new[0][1] neighbour_2_ID_new = y_new.iloc[neighbours_new[0][1]].values[0] neighbour_2_name_new = name_dict_new[neighbour_2_ID_new] neighbour_3_posn_new = neighbours_new[0][2] neighbour_3_ID_new = y_new.iloc[neighbours_new[0][2]].values[0] neighbour_3_name_new = name_dict_new[neighbour_3_ID_new] target_new = X_test_new.to_numpy().reshape(1,12) top_sim_new = round(cosine_similarity(target_new,X_new.iloc[neighbour_1_posn_new].to_numpy().reshape(1,12))[0][0],3) second_sim_new = round(cosine_similarity(target_new,X_new.iloc[neighbour_2_posn_new].to_numpy().reshape(1,12))[0][0],3) third_sim_new = round(cosine_similarity(target_new,X_new.iloc[neighbour_3_posn_new].to_numpy().reshape(1,12))[0][0],3) neighbours_similarity_dict_new = { neighbour_1_name_new:top_sim_new, neighbour_2_name_new:second_sim_new, neighbour_3_name_new:third_sim_new } class_names_new = classes_matrix_new.columns.tolist() neighbour_1_contribution_new = classes_matrix_new.iloc[neighbour_1_posn_new] neighbour_2_contribution_new = classes_matrix_new.iloc[neighbour_2_posn_new] neighbour_3_contribution_new = classes_matrix_new.iloc[neighbour_3_posn_new] recommended_classes_matrix_new = pd.Series(index=class_names_new, dtype=object) recommended_classes_matrix_new.fillna(0.0, inplace=True) for i in range(2,len(recommended_classes_matrix_new.index)): recommended_classes_matrix_new.iloc[i] += neighbour_1_contribution_new.iloc[i] * neighbours_similarity_dict_new[neighbour_1_name_new] recommended_classes_matrix_new.iloc[i] += neighbour_2_contribution_new.iloc[i] * neighbours_similarity_dict_new[neighbour_2_name_new] recommended_classes_matrix_new.iloc[i] += neighbour_3_contribution_new.iloc[i] * neighbours_similarity_dict_new[neighbour_3_name_new] recommended_classes_matrix_new.sort_values(ascending=False,inplace=True,kind='heapsort') top_3_new = [recommended_classes_matrix_new.index[0],recommended_classes_matrix_new.index[1],recommended_classes_matrix_new.index[2]] print("The people with the most aligned goals to you were: ") print(neighbours_similarity_dict_new) # print(top_3_new) return top_3_new # sample_prefs_new = [2,4,3,1,5,5,1,2,2,4,4,1] # new_user_recommendation_new(sample_prefs_new)
from django.shortcuts import render from django.shortcuts import HttpResponseRedirect from django.shortcuts import Http404 # Create your views here. from celery.result import AsyncResult from tools.tasks import add from .models import Add # from tools.db import Db import datetime def add_1(request): first = int(request.POST.get('add1')) second = int(request.POST.get('add2')) result = add.delay(first, second) dd = Add(task_id=result.id, first=first, second=second, log_date=datetime.datetime.now()) dd.save() return HttpResponseRedirect("/") # 任务结果 def result(request): # 查询所有的任务信息 # db = Db() # rows = db.get_tasksinfo() # return render_to_response('result.html', {'rows': rows}) raise Http404("Not Support for now")
#Saumit Madireddy #I pledge my honor that I have abided by the Stevens Honor System. def main(): print("This program will determine your BMI and whether or not it is healthy.") w = eval(input("How much do you weigh (lbs) ? ")) h = eval(input("How tall (inches) are you? ")) BMI = (w * 720) / (h * h) print("Your BMI is", BMI) if BMI <= 25 and BMI >= 19: print("Your BMI is healthy") else: print("Your BMI is not healthy") main()
import os, pathlib from pdfquery import PDFQuery class Applicable_Federal_Rates: @staticmethod def get_pdf(): return PDFQuery(os.path.join(pathlib.Path(__file__).parent.absolute(), 'current_afr_revenue_ruling.pdf')) @staticmethod def get_bbox_bounds(pdf): lines = pdf.extract([('afr',f'LTTextLineHorizontal:contains("120% AFR")')]) bbox_bounds = list(set([(160, float(pdf.pq(line).attr('y0')), 310, float(pdf.pq(line).attr('y1'))) for line in lines['afr']])) return sorted(bbox_bounds, key=lambda x: x[1], reverse=True) @staticmethod def get_rates(pdf, bbox_bounds): afrs = {} for i, term in enumerate(['short-term', 'mid-term', 'long-term']): rates = pdf.pq(':in_bbox("%s, %s, %s, %s")' % bbox_bounds[i]).text().split('%') rate = round(float(rates[1]),3) afrs[term] = rate return afrs @staticmethod def get_applicable_federal_rates(): pdf = Applicable_Federal_Rates.get_pdf() pdf.load(1) bbox_bounds = Applicable_Federal_Rates.get_bbox_bounds(pdf) return Applicable_Federal_Rates.get_rates(pdf, bbox_bounds)
import os import pygame class Game: def __init__(self, board, screenSize): self.images = {} self.board = board self.screenSize = screenSize self.squareSize = self.screenSize[0] // self.board.getBoardSize(), self.screenSize[ 1] // self.board.getBoardSize() self.loadImages() self.screen = pygame.display.set_mode(self.screenSize) def run(self): pygame.init() running = True while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if event.type == pygame.MOUSEBUTTONDOWN and (not self.board.getWin() or not self.board.getLose()): rightClick = pygame.mouse.get_pressed(num_buttons=3)[2] self.handleClick(pygame.mouse.get_pos(), rightClick) self.draw() pygame.display.flip() if self.board.getWin(): running = False pygame.quit() def draw(self): topLeft = (0, 0) for row in range(self.board.getBoardSize()): for square in range(self.board.getBoardSize()): cell = self.board.getCell(row, square) image = self.images[self.getImage(cell)] self.screen.blit(image, topLeft) topLeft = topLeft[0] + self.squareSize[0], topLeft[1] topLeft = 0, topLeft[1] + self.squareSize[1] def loadImages(self): """ Takes the images in the 'Images' folder and stores them in a dictionary. """ for fileName in os.listdir("images"): if fileName.endswith(".png"): image = pygame.image.load(r"images/" + fileName) image = pygame.transform.scale(image, self.squareSize) self.images[fileName.split(".")[0]] = image def getImage(self, cell): if cell.getClicked(): return "bomb-at-clicked-block" if cell.getHasMine() else str(cell.getNumAround()) if self.board.getLose(): if cell.getHasMine() == 1: return "bomb" return 'flag' if cell.getFlagged() else 'empty-block' def handleClick(self, pos, flag): index = pos[1] // self.squareSize[1], pos[0] // self.squareSize[0] cell = self.board.getCell(index[0], index[1]) self.board.handleClick(index, cell, flag)
#import the required function from the module! from pywhatkit import image_to_ascii_art #source and target path source_path = 'img.png' target_path = 'ascii_art.text' #call the method image_to_ascii_art(source_path, target_path)
import tensorflow as tf import numpy as np unique = 'helo' #. language model은 다음에 올 글자나 단어를 예측하는 모델이어서, 마지막 글자가 입력으로 들어와도 예측할 수가 없다. batch_size = 1 time_step_size = 4 rnn_size = 4 y_data = [1, 2, 2, 3] # 'ello'. index from 'helo' x_data = np.array([[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,1,0]], dtype='f') # 'hell' cells = tf.nn.rnn_cell.BasicRNNCell(4) # 출력 결과(4가지 중에서 선택) 4-> rnn_size ->output 4개 state = tf.zeros([batch_size, cells.state_size]) # shape(1, 4), [[0, 0, 0, 0]] x_data = tf.split(0, time_step_size, x_data) # layer에 포함될 cell 갯수(4). time_step_size #tf.split 함수는 데이터를 지정한 갯수로 나눈 다음, 나누어진 요소를 Tensor 객체로 만들어 리스트에 넣어서 반환한다. # outputs = [shape(1, 4), shape(1, 4), shape(1, 4), shape(1, 4)] # state = shape(1, 4) outputs, state = tf.nn.rnn(cells, x_data, state) # x_data 입력 staet 상태 # tf.reshape(tensor, shape, name=None) # tf.concat(1, outputs) --> shape(1, 16) logits = tf.reshape(tf.concat(1, outputs), [-1, rnn_size]) # shape(4, 4) targets = tf.reshape(y_data, [-1]) # shape(4), [1, 2, 2, 3] weights = tf.ones([time_step_size * batch_size]) # shape(4), [1, 1, 1, 1] loss = tf.nn.seq2seq.sequence_loss_by_example([logits], [targets], [weights]) # 예측값 실제값 weight cost = tf.reduce_sum(loss) / batch_size train_op = tf.train.RMSPropOptimizer(0.01, 0.9).minimize(cost) with tf.Session() as sess: tf.initialize_all_variables().run() for i in range(100): sess.run(train_op) r0, r1, r2, r3 = sess.run(tf.argmax(logits, 1)) # 예측값 을 찍어봄 print(r0, r1, r2, r3, ':', unique[r0], unique[r1], unique[r2], unique[r3])
import requests, re from pprint import pprint #<a href="" class="feed-post-link gui-color-primary gui-color-hover" elementtiming="text-csr">Cidade de SP fará 'xepa' para antecipar 2ª dose da vacina; veja regras</a> def getTitulos(url): req = requests.get(url) #tags = re.findall(r'(<p class="descricao">)(.+?)(<\/p>)', str(req.content)) #tags = re.findall(r'(elementtiming="text-ssr">)(.+?)(<\/a>)', str(req.content)) tags = re.findall(r'(<a href=".+?" class="feed-post-link gui-color-primary gui-color-hover" elementtiming="text-ssr">)(.+?)(<\/a>)', str(req.content)) titleList = [] for tag in tags: um,dois,tres = tag titleList.append(dois) return titleList
from __future__ import print_function import os from six.moves.configparser import RawConfigParser __author__ = 'alforbes' try: CONFIG_FILE = os.environ['ORLO_CONFIG'] except KeyError: CONFIG_FILE = '/etc/orlo/orlo.ini' config = RawConfigParser() config.add_section('main') config.set('main', 'debug_mode', 'false') config.set('main', 'propagate_exceptions', 'true') config.set('main', 'time_format', '%Y-%m-%dT%H:%M:%SZ') config.set('main', 'time_zone', 'UTC') config.set('main', 'strict_slashes', 'false') config.set('main', 'base_url', 'http://localhost:8080') config.add_section('security') config.set('security', 'enabled', 'false') config.set('security', 'passwd_file', 'none') config.set('security', 'secret_key', 'change_me') # NOTE: orlo.__init__ checks that secret_key is not "change_me" when security # is enabled. Do not change the default here without updating __init__ as well. config.set('security', 'token_ttl', '3600') config.set('security', 'ldap_server', 'localhost.localdomain') config.set('security', 'ldap_port', '389') config.set('security', 'user_base_dn', 'ou=people,ou=example,o=test') config.add_section('db') config.set('db', 'uri', 'sqlite://') config.set('db', 'echo_queries', 'false') config.set('db', 'pool_size', '50') config.add_section('logging') config.set('logging', 'level', 'info') config.set('logging', 'file', 'disabled') config.set('logging', 'format', '%(asctime)s [%(name)s] %(levelname)s %(' 'module)s:%(funcName)s:%(lineno)d - %(' 'message)s') config.add_section('deploy') config.set('deploy', 'timeout', '3600') # How long to timeout external deployer calls config.add_section('deploy_shell') config.set('deploy_shell', 'command_path', os.path.dirname(os.path.abspath(__file__)) + '/../deployer.py') config.read(CONFIG_FILE)
import json import DiscoveryDetails as dt print(json.dumps(dt.discovery.get_collection(dt.environment_id, dt.collection_id).get_result(), indent=2))
import math t = 0.0,5.4,-2.5,8,0.4 print(t) print(math.__name__)
def combinations(n): if (n == 1): combos = set() combos.add("()") return combos else: sets = combinations(n - 1) combos = set() for combo in sets: combos.add("()" + combo) combos.add("(" + combo + ")") combos.add(combo + "()") return combos def main(): combos = combinations(2) print combos combos = combinations(3) print combos if __name__ == '__main__': main()
from django import forms from django.core import exceptions, validators from django.utils.translation import ugettext_lazy as _ from topnotchdev.files_widget.conf import * class UnicodeWithAttr(str): deleted_files = None moved_files = None class FilesFormField(forms.MultiValueField): def __init__(self, max_length=None, **kwargs): super(FilesFormField, self).__init__(**kwargs) def compress(self, data_list): files = UnicodeWithAttr(data_list[0]) files.deleted_files = data_list[1] files.moved_files = data_list[2] return files def clean(self, value): """ This is a copy of MultiValueField.clean() with a BUGFIX: - if self.required and field_value in validators.EMPTY_VALUES: + if field.required and field_value in validators.EMPTY_VALUES: """ from django.forms.utils import ErrorList from django.core import validators from django.core.exceptions import ValidationError clean_data = [] errors = ErrorList() if not value or isinstance(value, (list, tuple)): if not value or not [v for v in value if v not in validators.EMPTY_VALUES]: if self.required: raise ValidationError(self.error_messages['required']) else: return self.compress(value) else: raise ValidationError(self.error_messages['invalid']) for i, field in enumerate(self.fields): try: field_value = value[i] except IndexError: field_value = None if field.required and field_value in validators.EMPTY_VALUES: raise ValidationError(self.error_messages['required']) try: clean_data.append(field.clean(field_value)) except ValidationError as e: # Collect all validation errors in a single list, which we'll # raise at the end of clean(), rather than raising a single # exception for the first error we encounter. errors.extend(e.messages) if errors: raise ValidationError(errors) out = self.compress(clean_data) self.validate(out) self.run_validators(out) return out
import mysql.connector from mysql.connector import errorcode #QUERYS queryThisWeek = "SELECT events.CourseID, events.Title, events.DueDate, events.Description FROM events WHERE WEEK(events.DueDate)=WEEK(CURRENT_DATE);" queryToday = "SELECT events.CourseID, events.Title, events.DueDate, events.Description FROM events WHERE events.DueDate=CURRENT_DATE;" queryTomorrow = "SELECT events.CourseID, events.Title, events.DueDate, events.Description FROM events WHERE events.DueDate=(CURRENT_DATE + INTERVAL 1 DAY)" queryPassedDue = "SELECT events.CourseID, events.Title, events.DueDate, events.Description FROM events WHERE events.DueDate<CURRENT_DATE;" queryFutureHomework = "SELECT events.CourseID, events.Title, events.DueDate, events.Description FROM events WHERE events.DueDate>=CURRENT_DATE AND events.Exam=0;" queryFutureExams = "SELECT events.CourseID, events.Title, events.DueDate, events.Description FROM events WHERE events.DueDate>=CURRENT_DATE AND events.Exam=1;" queryEventSearch = "SELECT events.CourseID, events.Title, events.DueDate, events.Description FROM events WHERE INSTR(events.Title, '%s') OR INSTR(events.Description, '%s');" queryAllCourses = "SELECT courses.CourseID, courses.Place, courses.Notes FROM courses;" queryCourseByDay = "SELECT courses.CourseID, courses.Place, courses.Notes FROM courses WHERE INSTR(courses.Days, '%s');" #INSERTS insertCourse = "INSERT INTO courses (CourseID, Days, Place, Notes) VALUES ('%s', '%s', '%s', '%s');" insertEvent = "INSERT INTO events (CourseID, Title, DueDate, Description, Exam) VALUES ('%s', '%s', '%s', '%s', '%s');" #REMOVES removeCourse1 = "DELETE FROM courses WHERE courses.CourseID='%s';" removeCourse2 = "DELETE FROM events WHERE events.CourseID='%s';" removeEvent = "DELETE FROM events WHERE events.CourseID='%s' AND events.Title='%s';" removePassedDue = "DELETE FROM events WHERE events.DueDate<CURRENT_DATE;" #CONFIG LOADED AT INIT config = "" def init(loadedConfig): global config config = loadedConfig print("Testing DB connection... ") #REDUNDANT cnx = cur = None try: cnx = mysql.connector.connect(**config) except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: print('Something is wrong with your user name or password') elif err.errno == errorcode.ER_BAD_DB_ERROR: print("Database does not exist") else: print(err) return 0 else: cur = cnx.cursor(buffered=True) cur.execute('use schedule;') print("OK!") return 1 #TECHNICALLY REDUNDANT, PYTHON CLOSES ON END OF DEF finally: if cur: cur.close() if cnx: cnx.close() #LOOKUPS def upcoming_homeworks(): global config cnx = mysql.connector.connect(**config) cur = cnx.cursor(buffered=True) cur.execute('use schedule;') cur.execute(queryFutureHomework) if not cur.rowcount: return 0 else: return format_result_events_wDate(cur) def upcoming_exams(): global config cnx = mysql.connector.connect(**config) cur = cnx.cursor(buffered=True) cur.execute('use schedule;') cur.execute(queryFutureExams) if not cur.rowcount: return 0 else: return format_result_events_wDate(cur) def upcoming_this_week(): global config cnx = mysql.connector.connect(**config) cur = cnx.cursor(buffered=True) cur.execute('use schedule;') cur.execute(queryThisWeek) if not cur.rowcount: return 0 else: return format_result_events_wDate(cur) def upcoming_today(): global config cnx = mysql.connector.connect(**config) cur = cnx.cursor(buffered=True) cur.execute('use schedule;') cur.execute(queryToday) if not cur.rowcount: return 0 else: return format_result_events(cur) def upcoming_tomorrow(): global config cnx = mysql.connector.connect(**config) cur = cnx.cursor(buffered=True) cur.execute('use schedule;') cur.execute(queryTomorrow) if not cur.rowcount: return 0 else: return format_result_events(cur) def passed_due(): global config cnx = mysql.connector.connect(**config) cur = cnx.cursor(buffered=True) cur.execute('use schedule;') cur.execute(queryPassedDue) if not cur.rowcount: return 0 else: return format_result_events(cur) def search_assignments(searchTerm): global config cnx = mysql.connector.connect(**config) cur = cnx.cursor(buffered=True) cur.execute('use schedule;') cur.execute(queryEventSearch % (searchTerm, searchTerm)) if not cur.rowcount: return 0 else: return format_result_events_wDate(cur) def courses_all(): global config cnx = mysql.connector.connect(**config) cur = cnx.cursor(buffered=True) cur.execute('use schedule;') cur.execute(queryAllCourses) if not cur.rowcount: return 0 else: return format_result_courses(cur); def courses_day(givenDay): global config cnx = mysql.connector.connect(**config) cur = cnx.cursor(buffered=True) cur.execute('use schedule;') cur.execute(queryCourseByDay % (givenDay)) if not cur.rowcount: return 0 else: return format_result_courses(cur); #INSERTS def insert_course(givenCourseID, givenDays, givenPlace, givenNotes): global config cnx = mysql.connector.connect(**config) cur = cnx.cursor(buffered=True) cur.execute('use schedule;') cur.execute(insertCourse % (givenCourseID, givenDays, givenPlace, givenNotes)) if not cur.rowcount: return 0 else: cnx.commit() return cur.rowcount; def insert_event(givenCourseID, givenTitle, givenDueDate, givenDescription, givenExam = None): if givenExam is None: givenExam = 0 global config cnx = mysql.connector.connect(**config) cur = cnx.cursor(buffered=True) cur.execute('use schedule;') cur.execute(insertEvent % (givenCourseID, givenTitle, givenDueDate, givenDescription, givenExam)) if not cur.rowcount: return 0 else: cnx.commit() return cur.rowcount #REMOVES def remove_course(givenCourseID): global config cnx = mysql.connector.connect(**config) cur = cnx.cursor(buffered=True) cur.execute('use schedule;') cur.execute(removeCourse1 % (givenCourseID)) if not cur.rowcount: return 0 else: cur.execute(removeCourse2 % (givenCourseID)) cnx.commit() return 1 def remove_event(givenCourseID, givenTitle): global config cnx = mysql.connector.connect(**config) cur = cnx.cursor(buffered=True) cur.execute('use schedule;') cur.execute(removeEvent % (givenCourseID, givenTitle)) if not cur.rowcount: return 0 else: cnx.commit() return cur.rowcount def prune_events(): global config cnx = mysql.connector.connect(**config) cur = cnx.cursor(buffered=True) cur.execute('use schedule;') cur.execute(removePassedDue) if not cur.rowcount: return 0 else: cnx.commit() return cur.rowcount #FORMATTING def format_result_events(cursor): temp = "" for (CourseID, Title, DueDate, Description) in cursor: temp+=("{}: {}, {}\n".format(CourseID, Title, Description)) return temp def format_result_events_wDate(cursor): temp = "" for (CourseID, Title, DueDate, Description) in cursor: temp+=("{}, {}, Due on {:%d %b %Y}: {}.\n".format(CourseID, Title, DueDate, Description)) return temp def format_result_courses(cursor): temp = "" for (CourseID, Place, Notes) in cursor: temp+=("{} at {}: {}\n".format(CourseID, Place, Notes)) return temp
spam = { 'color': 'red', 'age': 42 } for k in spam.keys(): print(k)
import os import torch import numpy as np import argparse import random import yaml from easydict import EasyDict import gensim import torch.utils.data as data import torch.backends.cudnn as cudnn import torch.optim as optim import data_helpers from models.standard import * parser = argparse.ArgumentParser(description='PyTorch for image-user CNN') parser.add_argument('--config', default='config.yaml') parser.add_argument('--resume', default='', type=str, help='path to checkpoint') # 增加属性 class ImageFolder(data.Dataset): def __init__(self, home_data, work_data, school_data, restaurant_data, shopping_data, cinema_data, sports_data, travel_data): _, self.x_image, _, self.y = data_helpers.load_data_and_labels(home_data, work_data, school_data, restaurant_data, shopping_data, cinema_data, sports_data, travel_data) self.x_image = torch.Tensor(np.array(self.x_image, dtype="float64")) self.y = torch.Tensor(np.array(self.y, dtype="float64")) def __getitem__(self, index): return self.x_image[index], self.y[index] def __len__(self): return len(self.x_image) def cal_acc(pred_img, y): pred_img = (pred_img.numpy() == pred_img.numpy().max(axis=1, keepdims=1)).astype("float64") pred_img = [np.argmax(item) for item in pred_img] y = [np.argmax(item) for item in y] pred_img, y = np.array(pred_img), np.array(y) per_img = pred_img == y image_acc = len(per_img[per_img == True]) / len(per_img) * 100 return image_acc def save_state(state, path, epoch): print("=> saving checkpoint of epoch " + str(epoch)) torch.save(state, path + 'params_' + str(epoch) + '.pth') def load_state(path, netI, optimizerI): if not os.path.isfile(path): print("=> no checkpoint found at '{}'".format(path)) else: print("=> loading checkpoint '{}'".format(path)) checkpoint = torch.load(path) netI.load_state_dict(checkpoint['state_dictI']) optimizerI.load_state_dict(checkpoint['optimizerI']) epoch = checkpoint['epoch'] + 1 return epoch def main(): global args, config args = parser.parse_args() with open(args.config) as f: config = EasyDict(yaml.load(f)) # assert torch.cuda.is_available() # device = torch.device("cuda") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # random seed setup print("Random Seed: ", config.seed) random.seed(config.seed) torch.manual_seed(config.seed) torch.cuda.manual_seed(config.seed) cudnn.benchmark = True netI = BottlenetI() criterion = nn.CrossEntropyLoss() netI = netI.to(device) criterion = criterion.to(device) optimizerI = optim.Adam(netI.parameters(), lr=config.lr_img) last_epoch = 0 if args.resume: last_epoch = load_state(args.resume, netI, optimizerI) train_dataset = ImageFolder(config.train.home_data, config.train.work_data, config.train.school_data, config.train.restaurant_data, config.train.shopping_data, config.train.cinema_data, config.train.sports_data, config.train.travel_data) train_dataloader = data.DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True, pin_memory=True, num_workers=int(config.workers)) for epoch in range(last_epoch, config.epoch - 1): for iter, [image, y] in enumerate(train_dataloader): # print("epoch: ", epoch, "iter: ", iter) # print(netI(image).shape) # print(y.shape) netI.zero_grad() image, y = image.to(device), y.to(device) pred_img = netI(image) err_img = criterion(pred_img, y.argmax(dim=1)) # print("err_img: ", err_img) err_img.backward() optimizerI.step() if (epoch + 1) % config.val_freq == 0: val(netI.eval(), device) if (epoch + 1) % config.save_freq == 0: save_state({'state_dictI': netI.state_dict(), 'optimizerI': optimizerI.state_dict(), 'epoch': epoch}, config.img_save_path, epoch) def val(netI, device): _, tr_image, _, tr_y = data_helpers.load_data_and_labels(config.train.home_data, config.train.work_data, config.train.school_data, config.train.restaurant_data, config.train.shopping_data, config.train.cinema_data, config.train.sports_data, config.train.travel_data) _, val_image, _, val_y = data_helpers.load_data_and_labels(config.val.home_data, config.val.work_data, config.val.school_data, config.val.restaurant_data, config.val.shopping_data, config.val.cinema_data, config.val.sports_data, config.val.travel_data) tr_image = torch.Tensor(np.array(tr_image, dtype="float64")) tr_y = np.array(tr_y, dtype="float64") val_image = torch.Tensor(np.array(val_image, dtype="float64")) val_y = np.array(val_y, dtype="float64") tr_image, val_image = tr_image.to(device), val_image.to(device) with torch.no_grad(): pred_tr_img = netI(tr_image) pred_val_img = netI(val_image) tr_image_acc = cal_acc(pred_tr_img.cpu(), tr_y) val_image_acc = cal_acc(pred_val_img.cpu(), val_y) print("image accuracy | train: %.3f %% | test: %.3f %% " % (tr_image_acc, val_image_acc)) if __name__ == "__main__": main()
#-*- coding: utf-8 -*- import random from lib.base_entity import BaseEntity from lib.base_animation import BaseAnimation class LifeAnimation(BaseAnimation): """Custom class : Life Animation.""" WIDTH_SPRITE = 16 HEIGHT_SPRITE = 17 def get_sprite(self, move_direction): frame = self.subsurface( 0, self.frame * self.HEIGHT_SPRITE, self.WIDTH_SPRITE, self.HEIGHT_SPRITE ).convert_alpha() return frame def update(self): """ Custom animation update. Random change for frame 1->2 Fix change for frame 2->1 """ if self.frame == 0: if random.random()*100 > 99: self.frame = (self.frame + 1) % self.max_frame self.frame_delay = self.max_frame_delay else: if self.frame_delay < 0: self.frame = (self.frame + 1) % self.max_frame self.frame_delay = self.max_frame_delay else: self.frame_delay = self.frame_delay - 1 class Life(BaseEntity): """Custom class: Life entity.""" def __init__(self, rect_data): super(Life, self).__init__( name='Life', rect_data=rect_data, speed=[0,0], max_frame=2, max_frame_delay=0, img='img/Life.png' ) def init_animation(self, max_frame, max_frame_delay, img): return LifeAnimation(max_frame, max_frame_delay, img) def update(self, movement = None): """Custom Update function update animation frame """ self.animation.update() self.setup_animation(self.direction)
# Still learning Python I love Python # If you find some problem or can make this code much better than please make so that I know where is gap in knowledge # THANK YOU!!!!! from random import randint choice = randint(1, 3) if choice is 1: computerMove = "Rock" elif choice is 2: computerMove = "Paper" else: computerMove = "Scissor" print(computerMove) userMove = input("Enter Rock (r) Paper (p) Scissor (s)").lower() if computerMove.lower() == "rock" and userMove.lower() == "r": userMove = "Rock" # Writing this UserMove again in "Rock" form beacuse I want my out to beautiful winner = f"Draw Computer plays \'{computerMove}\' and User plays \'{userMove}\'" # which let user to input First letter and when print it show the whole word elif computerMove.lower() == "paper" and userMove.lower() == "p": userMove = "Paper" winner = f"Draw Computer plays \'{computerMove}\' and User plays \'{userMove}\'" elif computerMove.lower() == "scissor" and userMove.lower() == "s": userMove = "Scissor" winner = f"Draw Computer plays \'{computerMove}\' and User plays \'{userMove}\'" elif computerMove.lower() == "rock" and userMove.lower() == "p": userMove = "Paper" winner = f"User wins plays \'{userMove}\' over Computer\'s \'{computerMove}\'" elif computerMove.lower() == "paper" and userMove.lower() == "r": userMove = "Rock" winner = f"Computer wins plays \'{computerMove}\' over User\'s \'{userMove}\'" elif computerMove.lower() == "scissor" and userMove.lower() == "p": userMove = "Paper" winner = f"Computer wins plays \'{computerMove}\' over User plays \'{userMove}\'" elif computerMove.lower() == "paper" and userMove.lower() == "s": userMove = "Scissor" winner = f"User wins plays \'{userMove} over Computer plays \'{computerMove}\'" elif computerMove.lower() == "rock" and userMove.lower() == "s": userMove = "Scissor" winner = f"Computer wins plays \'{computerMove}\' over User plays \'{userMove}\'" elif computerMove.lower() == "scissor" and userMove.lower() == "rock": userMove = "Rock" winner = f"User wins plays \'{userMove}\' over Computer plays \'{computerMove}\'" else: print(f"No this not allowed {userMove.capitalize()}") try: # 1. Using try because if the else comes True in winner variable nothing will store if winner[0] is "D": # 2. If I dont you the try function on this block it return error as NameError winner is not define print(winner) except NameError: print("") else: print("Doing Calculation") x = 10 print('_____' * x) # you can use a for loop in this section for print 2 lines i.e print('_____' * x) # for i in range(2): print("\n", winner) # print("____"*x) print('_____' * x) print('_____' * x)
# SPDX-License-Identifier: BSD-3-Clause # Copyright (C) 2017-2020, SCANOSS Ltd. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. """ Winnowing Algorithm implementation for SCANOSS. This module implements an adaptation of the original winnowing algorithm by S. Schleimer, D. S. Wilkerson and A. Aiken as described in their seminal article which can be found here: https://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf The winnowing algorithm is configured using two parameters, the gram size and the window size. For SCANOSS the values need to be: - GRAM: 30 - WINDOW: 64 The result of performing the Winnowing algorithm is a string called WFP (Winnowing FingerPrint). A WFP contains optionally the name of the source component and the results of the Winnowing algorithm for each file. EXAMPLE output: test-component.wfp component=f9fc398cec3f9dd52aa76ce5b13e5f75,test-component.zip file=cae3ae667a54d731ca934e2867b32aaa,948,test/test-file1.c 4=579be9fb 5=9d9eefda,58533be6,6bb11697 6=80188a22,f9bb9220 10=750988e0,b6785a0d 12=600c7ec9 13=595544cc 18=e3cb3b0f 19=e8f7133d file=cae3ae667a54d731ca934e2867b32aaa,1843,test/test-file2.c 2=58fb3eed 3=f5f7f458 4=aba6add1 8=53762a72,0d274008,6be2454a 10=239c7dfa 12=0b2188c9 15=bd9c4b10,d5c8f9fb 16=eb7309dd,63aebec5 19=316e10eb [...] Where component is the MD5 hash and path of the component container (It could be a path to a compressed file or a URL). file is the MD5 hash, file length and file path being fingerprinted, followed by a list of WFP fingerprints with their corresponding line numbers. """ import hashlib from crc32c import crc32 # Winnowing configuration. DO NOT CHANGE. GRAM = 30 WINDOW = 64 # ASCII characters ASCII_0 = 48 ASCII_9 = 57 ASCII_A = 65 ASCII_Z = 90 ASCII_a = 97 ASCII_z = 122 ASCII_LF = 10 ASCII_BACKSLASH = 92 MAX_CRC32 = 4294967296 def normalize(byte): """ This function normalizes a given byte as an ASCII character Parameters ---------- byte : int The byte to normalize """ if byte < ASCII_0: return 0 if byte > ASCII_z: return 0 if byte <= ASCII_9: return byte if byte >= ASCII_a: return byte if ((byte >= 65) and (byte <= 90)): return byte + 32 return 0 def diff_to_wfp(diff, md5, src_path): """ This function converts a parsed diff data structure into WFP Parameters ---------- diff : dict A dictionary containing as keys the filenames contained in the diff and as values its contents stored as a list of strings. md5 : str src_path : str Path to the component. """ if len(diff) == 0: return '' # Print pkg line wfp = 'component={0},{1}\n'.format(md5, src_path) for file, lines in diff.items(): # MD5 of the file changes lines_str = '\n'.join(lines) wfp += wfp_for_file(file, lines_str.encode()) return wfp def wfp_for_file(file: str, contents: bytes) -> str: """ Returns the WFP for a file by executing the winnowing algorithm over its contents. Parameters ---------- file: str The name of the file contents : bytes The full contents of the file as a byte array. """ file_md5 = hashlib.md5( contents).hexdigest() # Print file line wfp = 'file={0},{1},{2}\n'.format(file_md5, len(contents), file) # Initialize variables gram = "" window = [] normalized = 0 line = 1 min_hash = MAX_CRC32 last_hash = MAX_CRC32 last_line = 0 output = "" # Otherwise recurse src_content and calculate Winnowing hashes for byte in contents: if byte == ASCII_LF: line += 1 normalized = 0 else: normalized = normalize(byte) # Is it a useful byte? if normalized: # Add byte to gram gram += chr(normalized) # Do we have a full gram? if len(gram) >= GRAM: gram_crc32 = crc32(gram.encode('ascii')) window.append(gram_crc32) # Do we have a full window? if len(window) >= WINDOW: # Select minimum hash for the current window min_hash = min(window) # Is the minimum hash a new one? if min_hash != last_hash: # Hashing the hash will result in a better balanced resulting data set # as it will counter the winnowing effect which selects the "minimum" # hash in each window crc = crc32((min_hash).to_bytes(4, byteorder='little')) crc_hex = '{:08x}'.format(crc) if last_line != line: if output: wfp += output + '\n' output = "%d=%s" % (line, crc_hex) else: output += ',' + crc_hex last_line = line last_hash = min_hash # Shift window window.pop(0) # Shift gram gram = gram[1:] if output: wfp += output + '\n' return wfp
def countArrangement(N): available_dict = {} for i in xrange(1, N + 1): curr_available = [] for t in xrange(1, N + 1): if i % t == 0 or t % i == 0: curr_available.append(t) available_list.setdefault(i, curr_available) # 4 * 3 * 2 * 1 / 3*2*1 * 1 # N == 4 # 1,2,3,4 # 1,4,3,2 # 2,1,3,4 # 2,4,3,1 # 3,2,1,4 # 3,4,1,2 # 4,2,3,1 # 4,1,3,2 # 1- 1,2,3,4 # 2- 1,2,4 # 3- 1,3 # 4- 1,2,4
class Solution(object): def findKthPositive(self, arr, k): n = len(arr) j = 0 f = 0 for i in range(1,n+k+1): if j<n and i == arr[j]: j += 1 continue else: f += 1 if k == f: return i
# Copyright 2016 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from typing import Any, Type, TypeVar, cast from pants.util.frozendict import FrozenDict _T = TypeVar("_T") class RunId(int): """A unique id for a single run or `--loop` iteration of Pants within a single Scheduler. RunIds are not comparable across Scheduler instances, and only equality is meaningful, not ordering. """ class SessionValues(FrozenDict[Type, Any]): """Values set for the Session, and exposed to @rules. Generally, each type provided via `SessionValues` should have a simple rule that returns the type so that users can directly request it in a rule, rather than needing to query `SessionValues`. """ def __getitem__(self, item: Type[_T]) -> _T: try: return cast(_T, super().__getitem__(item)) except KeyError: raise KeyError(f"Expected {item.__name__} to be provided via SessionValues.")
n,k = [int(x) for x in raw_input().split(" ")] list3=[n] list1=[] def divOf(z): global list1 if z==1: list1.append(1) elif z==2 or z==3: list1.append(1) list1.append(z) else: list1.append(1) for j in range(2,(z/2)+1): if z%j==0: list1.append(j) if len(list1)>10000000: break list1.append(z) def divList(list2): global list1 for i in list2: if i>=963761198400: i=i/10000 divOf(i) if len(list1)>100000: break else: divOf(i) if len(list1)>100000: break if k>=100000: for i in range(100000): divList(list3) list3=list1[:] list1=[] else: for i in range(k): divList(list3) if len(list1)>100000: break else: list3=list1[:] list1=[] for i in list3: print i,
# predictor from data.handpose_data2 import UCIHandPoseDataset from model.lstm_pm import LSTM_PM from src.utils import * # from __future__ import print_function import argparse import pandas as pd import os import torch import torch.nn as nn from torch.autograd import Variable from collections import OrderedDict from torch.utils.data import DataLoader from printer import pred_images os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" # add parameter learning_rate = 8e-6 batch_size = 1 # save_dir = ckpt cuda = 1 # hyper parameter temporal = 5 test_data_dir = './dataset/train_data' test_label_dir = './dataset/train_label' # model_epo = [50] # load data test_data = UCIHandPoseDataset(data_dir=test_data_dir, label_dir=test_label_dir, temporal=temporal, train=False) print('Test dataset total number of images sequence is ----' + str(len(test_data))) test_dataset = DataLoader(test_data, batch_size=batch_size, shuffle=False) def load_model(): # build model net = LSTM_PM(T=temporal) net = net.cuda() # save_path = os.path.join() net.load_state_dict(torch.load('./ckpt2/ucihand_lstm_pm70.pth')) return net # **************************************** test all images **************************************** print('********* test data *********') net = load_model() net.eval() outp = [] for step, (images, label_map, center_map, imgs) in enumerate(test_dataset): images = Variable(images.cuda()) # 4D Tensor # Batch_size * (temporal * 3) * width(368) * height(368) label_map = Variable(label_map.cuda()) # 5D Tensor # Batch_size * Temporal * joint * 45 * 45 center_map = Variable(center_map.cuda()) # 4D Tensor # Batch_size * 1 * width(368) * height(368) predict_heatmaps = net(images, center_map) # get a list size: temporal * 4D Tensor predict_heatmaps = predict_heatmaps[1:] out = pred_images(predict_heatmaps, step, temporal=temporal) pd.DataFrame(out).to_csv('./values/'+str(step)+'.csv', header=None, index=None) # outp.append(out) # print(outp[1].max)
#coding:utf-8 #收盘 import cv2 as cv import numpy as np #关闭是反向打开,扩张后跟侵蚀。它可用于关闭前景对象内的小孔或对象上的小黑点。 img = cv.imread('D:/python_file/Opencv3_study_file/images/closing.png') kernel = np.ones((5,5),np.uint8) closing = cv.morphologyEx(img, cv.MORPH_CLOSE, kernel) cv.imshow('img',img) cv.imshow('erosion',closing) cv.waitKey(0) cv.destroyAllWindows()
from mtd import Document from xl import StandardExporter doc = Document('test\\otto\\test.mtd') doc.parse() xl = StandardExporter(doc, 'test\\otto\\test.xlsx') xl.export() xl.save() print('OK')
import sys import win32gui, win32con from pprint import pprint e=sys.exit def windowEnumerationHandler(hwnd, top_windows): top_windows.append((hwnd, win32gui.GetWindowText(hwnd))) if __name__ == "__main__": results = [] top_windows = [] win32gui.EnumWindows(windowEnumerationHandler, top_windows) for i in top_windows: if "jabber" in i[1].lower(): print (i) #(left, top, right, bottom) l,t, r,b = win32gui.GetWindowRect(i[0]) #win32gui.ShowWindow(i[0],5) win32gui.ShowWindow(i[0], win32con.SW_RESTORE) #win32gui.SetFocus(i[0]) win32gui.SetForegroundWindow(i[0]) #win32gui.SetWindowPos(i[0], win32con.HWND_TOPMOST, 0, 0, 300, 300, 0) #win32gui.ShowWindow(i[0],5) #win32gui.SetForegroundWindow(i[0]) print(dir(win32gui)) if l>0: print(l,t, r,b) w=r-l h=b-t e(0) win32gui.SetWindowPos(i[0], win32con.HWND_TOPMOST, l,t, w,h, 0) #win32gui.SetWindowPos(i[0], win32con.HWND_TOPMOST, 0,0, 300,300, 0) print (win32gui.GetWindowRect(i[0])) break
import requests from api import http def test_adjust_paging_with_no_params(): target = http.Http(lambda: requests.Session()) url = "https://gitlab.com/api/v4/projects/14171783/jobs" expected = "https://gitlab.com/api/v4/projects/14171783/jobs?per_page=20" actual = target.__adjust_paging__(url, 20) assert expected == actual def test_adjust_paging_with_existing_params(): target = http.Http(lambda: requests.Session()) url = "https://gitlab.com/api/v4/projects/14171783/jobs?scope=success&scope=failed" expected = "https://gitlab.com/api/v4/projects/14171783/jobs?scope=success&scope=failed&per_page=20" actual = target.__adjust_paging__(url, 20) assert expected == actual def test_adjust_paging_with_existing_per_page_query_param(): target = http.Http(lambda: requests.Session()) url = "https://gitlab.com/api/v4/projects/14171783/jobs?scope=success&scope=failed&per_page=20" expected = "https://gitlab.com/api/v4/projects/14171783/jobs?scope=success&scope=failed&per_page=10" actual = target.__adjust_paging__(url, 10) assert expected == actual
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html # class ImdbPipeline(object): # def process_item(self, item, spider): # return item import pymongo import re from scrapy.conf import settings from scrapy.exceptions import DropItem from scrapy import log import pprint class ImdbPipeline(object): def __init__(self): connection = pymongo.MongoClient( settings['MONGODB_SERVER'], settings['MONGODB_PORT'] ) self.db = connection[settings['MONGODB_DB']] # self.collection = self.db['imdb_top250'] self.collection = self.db['imdb_top250tv'] # self.collection = self.db['raj'] def process_item(self, item, spider): self.collection.update( {'name':item['name']} ,dict(item) ,upsert = True) log.msg("Quote added to MongoDB !", level=log.DEBUG, spider=spider) return item
s = { 1:'One', 2:'Two', 3:'Three', 4:'Four', 5:'Five', 6:'Six', 7:'Seven', 8:'Eight', 9:'Nine', 10:'Ten', 11:'eleven', 12:'twelve', 13:'thirteen', 14:'fourteen', 15:'fifteen', 16:'sixteen', 17:'seventeen', 18:'eighteen', 19:'nineteen', 20:'twenty', 30:'thirty', 40:'forty', 50:'fifty', 60:'sixty', 70:'seventy', 80:'eighty', 90:'ninety' } def numbertoletter(n) : if n == 0 : return 'Zero' if n in s : n = int(n) return s[n].capitalize() n = str(n) if len(n) == 2 : n = int(n) return s[n//10*10].capitalize()+' '+s[n%10].capitalize() if len(n) == 3 : n = int(n) if n%100 == 0 : return s[n//100]+' ' +"Hundred" return s[n//100]+' '+"Hundred"+' '+numbertoletter(n%100) if len(n) == 4 : n = int(n) if n%1000 == 0 : return s[n//1000]+' '+"Thousand" return s[n//1000]+' '+"Thousand"+ ' '+numbertoletter(n%1000) if len(n) == 5 : n = int(n) if n%10000 == 0 : return numbertoletter(n//1000)+ ' '+"Thousand" return numbertoletter(n//1000)+ ' ' + "Thousand" + ' ' + numbertoletter(n%1000) if len(n) == 6 : n = int(n) if n%100000 == 0 : return s[n//100000]+' ' + "Hundred Thousand" return s[n//100000]+' ' + "Hundred" + ' ' + numbertoletter(n%100000) if len(n) == 7 : n = int(n) if n%1000000 == 0 : return s[n//1000000]+' ' + "Million" return s[n//1000000]+' ' + "Million" + ' ' +numbertoletter(n%1000000) if len(n) == 8 : n = int(n) if n%10000000 == 0 : return numbertoletter(n//1000000)+ ' '+"Million" return numbertoletter(n//1000000)+ ' '+"Million" + ' ' +numbertoletter(n%1000000) if len(n) == 9 : n = int(n) if n%100000000 == 0 : return s[n//100000000]+' ' + "Hundred Million" return s[n//100000000]+' ' + "Hundred" + ' ' +numbertoletter(n%100000000) if len(n) >= 10 and len(n) <13: n = int(n) if n%1000000000 == 0 : return numbertoletter(n//1000000000)+ ' '+"Billion" return numbertoletter(n//1000000000)+ ' '+"Billion" + ' ' + numbertoletter(n%1000000000) if len(n) >= 13 : n = int(n) if n%1000000000000 == 0 : return numbertoletter(n//1000000000000)+ ' '+"Trillion" return numbertoletter(n//1000000000000)+ ' '+"Trillion" + ' ' + numbertoletter(n%1000000000000) t = int(input()) for _ in range(t) : n = int(input()) print(numbertoletter(n).strip())
import functools def pjax(pjax_template=None): def pjax_decorator(view): @functools.wraps(view) def _view(request, *args, **kwargs): resp = view(request, *args, **kwargs) # this is lame. what else though? # if not hasattr(resp, "is_rendered"): # warnings.warn("@pjax used with non-template-response view") # return resp if request.META.get('HTTP_X_PJAX', False): if pjax_template: resp.template_name = pjax_template elif "." in resp.template_name: resp.template_name = "%s-pjax.%s" % tuple(resp.template_name.rsplit('.', 1)) else: resp.template_name += "-pjax" return resp return _view return pjax_decorator
from .backend import * from ..Computation.num_properties import sign from ..testing.types import isReal class _ArbitraryPrecision: def __init__(self, man, exp, value=None): self.man = man self.exp = exp self.sign = sign(man) if value is None: self.value = man * 2 ** exp else: self.value = value if self.sign < 0: self.man = -self.man def __str__(self): return str(self.value) def __repr__(self): if self.sign > 0: return "ArbitraryPrecision({0}, {1}) = {2}".format(self.man, self.exp, self.value) else: return "ArbitraryPrecision({0}, {1}) = {2}".format(-self.man, self.exp, self.value) def __add__(self, other): man, exp = dec_add(self, other) return _ArbitraryPrecision(man, exp) def __sub__(self, other): man, exp = dec_sub(self, other) return _ArbitraryPrecision(man, exp) def __mul__(self, other): man, exp = dec_mul(self, other) return _ArbitraryPrecision(man, exp) def __truediv__(self, other): man, exp = dec_truediv(self, other) return _ArbitraryPrecision(man, exp) def __floordiv__(self, other): return dec_floordiv(self, other) def __mod__(self, other): return dec_mod(self, other) def floor(self): man, exp = dec_floor(self) return _ArbitraryPrecision(man, exp) class _MachinePrecision: pass class _UnlimitedPrecision: pass class Decimal: def __init__(self, value): if intQ(value): man, exp = from_int(value) elif isReal(value): man, exp = from_float(value) self.value = _ArbitraryPrecision(man, exp, value) def __str__(self): return str(self.value) def __repr__(self): return repr(self.value) def __add__(self, other): if isinstance(self.value, _ArbitraryPrecision): if isinstance(other.value, _ArbitraryPrecision): return Decimal((self.value + other.value).value) def __sub__(self, other): if isinstance(self.value, _ArbitraryPrecision): if isinstance(other.value, _ArbitraryPrecision): return Decimal((self.value - other.value).value) def __mul__(self, other): if isinstance(self.value, _ArbitraryPrecision): if isinstance(other.value, _ArbitraryPrecision): return Decimal((self.value * other.value).value) def __truediv__(self, other): if isinstance(self.value, _ArbitraryPrecision): if isinstance(other.value, _ArbitraryPrecision): return Decimal((self.value / other.value).value) def __floordiv__(self, other): if isinstance(self.value, _ArbitraryPrecision): if isinstance(other.value, _ArbitraryPrecision): return Decimal((self.value // other.value).value) def __mod__(self, other): if isinstance(self.value, _ArbitraryPrecision): if isinstance(other.value, _ArbitraryPrecision): return Decimal((self.value % other.value).value) def floor(self): if isinstance(self.value, _ArbitraryPrecision): return Decimal(self.value.floor().value)
'''9.4 Write a program to read through the mbox-short.txt and figureout who has sent the greatest number of mail messages. The program looks for 'From ' lines and takes the second word of those lines as the person who sent the mail. The program creates a Python dictionary that maps the sender's mail address to a count of the number of times they appear in the file. After the dictionary is produced, the program reads through the dictionary using a maximum loop to find the most prolific committer. ''' name = input("Enter file:") if len(name) < 1 : name = "mbox-short.txt" f = open(name) count = dict() emails = [] for line in f: if line.startswith('From '): words = line.split() #print(words[1]) count[words[1]] = count.get(words[1],0)+1 #print(count) highestNum = None highestItem = None for k,v in count.items(): if highestNum < int(v) or highestNum == None: highestNum = v highestItem = k print(highestItem,highestNum)
# # cogs/guild/core.py # # mawabot - Maware's selfbot # Copyright (c) 2017 Ma-wa-re, Ammon Smith # # mawabot is available free of charge under the terms of the MIT # License. You are free to redistribute and/or modify it under those # terms. It is distributed in the hopes that it will be useful, but # WITHOUT ANY WARRANTY. See the LICENSE file for more details. # ''' Has several commands that get guild information ''' import asyncio import logging import re import discord from discord.ext import commands from mawabot.utils import normalize_caseless ROLE_MENTION_REGEX = re.compile(r'<@&([0-9]+)>') logger = logging.getLogger(__name__) class Guild: __slots__ = ( 'bot', 'autonick_guilds', 'autonick_task', ) def __init__(self, bot): self.bot = bot self.autonick_guilds = {} self.autonick_task = bot.loop.create_task(self._autonick()) def __unload(self): self.autonick_task.cancel() @staticmethod async def _get_role(guild, name): id = None if name == 'everyone': return guild.default_role if name.isdigit(): id = int(name) else: match = ROLE_MENTION_REGEX.match(name) if match: id = int(match[1]) if id is None: name = name.lower() for role in guild.roles: if role.name.lower() == name: return role else: for role in guild.roles: if role.id == id: return role return None def _get_guild(self, ctx, name): if name is None: return ctx.guild if name.isdigit(): return self.bot.get_guild(int(name)) else: name = normalize_caseless(name) for guild in self.bot.guilds: if normalize_caseless(guild.name) == name: return guild return None async def _autonick(self): delay = 5 old_len = 0 while True: logger.debug('Checking autonick status...') tasks = [asyncio.sleep(delay)] if old_len != len(self.autonick_guilds): logger.info(f'Autonick list changed, resetting delay...') delay = 1 for guild, nickname in self.autonick_guilds.items(): display_name = nickname or self.bot.user.name if guild.me.display_name != display_name: logger.info(f'Changing nickname for {guild.name} to "{display_name}"') tasks.append(guild.me.edit(nick=nickname)) delay = 1 if len(tasks) == 1: logger.debug(f'No autonicks needed, increasing delay to {delay}') delay = min(delay * 2, 3600) old_len = len(self.autonick_guilds) await asyncio.gather(*tasks) @commands.command() @commands.guild_only() async def autonick(self, ctx, enable: bool, nickname: str = None, hide=False): ''' Enable/disable task to automatically reset your username periodically ''' if enable: self.autonick_guilds[ctx.guild] = nickname else: self.autonick_guilds.pop(ctx.guild) if hide: await ctx.mesage.delete() else: enabled = 'Enabled' if enable else 'Disabled' embed = discord.Embed(type='rich', description=f'**{enabled}** autonick for {ctx.guild.name}') await ctx.send(embed=embed) @commands.command() @commands.guild_only() async def ack(self, ctx, *names: str): ''' Marks all messages in the current guild as read. ''' await ctx.guild.ack() @commands.command() async def ackall(self, ctx): ''' Marks all message in all guilds as read. ''' for guild in self.bot.guilds: await guild.ack() @commands.command() @commands.guild_only() async def ginfo(self, ctx, use_current=True): ''' Prints information about the current guild ''' text_count = len(ctx.guild.text_channels) voice_count = len(ctx.guild.voice_channels) role_count = len(ctx.guild.roles) emoji_count = len(ctx.guild.emojis) created = ctx.guild.created_at.strftime('%x @ %X') members_online = sum(1 for member in ctx.guild.members if member.status != discord.Status.offline) members_total = ctx.guild.member_count members_percent = members_online / members_total * 100 text = '\n'.join(( f'Created: `{created}`', f'Text Channels: `{text_count}`', f'Voice Channels: `{voice_count}`', f'Members: `{members_online} / {members_total} ({members_percent:.1f}% online)`', f'Roles: `{role_count}`', f'Emojis: `{emoji_count}`', )) embed = discord.Embed(type='rich', description=text) if ctx.guild.icon_url: embed.set_thumbnail(url=ctx.guild.icon_url) embed.set_author(name=ctx.guild.name) embed.add_field(name='Owner:', value=ctx.guild.owner.mention) if use_current: await ctx.send(embed=embed) else: await asyncio.gather( ctx.message.delete(), self.bot.output_send(embed=embed), ) @commands.command() @commands.guild_only() async def rinfo(self, ctx, *, name: str = None, use_current=True): ''' Lists information about roles on the guild ''' if name is None: fmt_role = lambda role: f'{role.mention} ({len(role.members)})' desc = ', '.join(map(fmt_role, ctx.guild.role_hierarchy)) embed = discord.Embed(type='rich', description=desc) embed.set_author(name=f'{len(ctx.guild.roles)} roles in {ctx.guild.name}') else: role = await self._get_role(ctx.guild, name) if role is None: desc = f'**No such role:** {name}' embed = discord.Embed(type='rich', description=desc, color=discord.Color.red()) else: rgb = role.color.to_rgb() desc = '\n'.join(( role.mention, f'Members: `{len(role.members)}`', f'Hoisted: `{role.hoist}`', f'Position: `{role.position}`', f'Mentionable: `{role.mentionable}`', f'Permissions: `{role.permissions.value}`', f'Hex Color: `{rgb[0]:02x}{rgb[1]:02x}{rgb[2]:02x}`', )) embed = discord.Embed(type='rich', description=desc, color=role.color) embed.set_author(name=role.name) embed.add_field(name='ID:', value=role.id) embed.timestamp = role.created_at if use_current: await ctx.send(embed=embed) else: await asyncio.gather( ctx.message.delete(), self.bot.output_send(embed=embed), ) @commands.command() @commands.guild_only() async def roles(self, ctx, name: str = None, use_current=True): ''' Lists all roles in the current (or given) guild. ''' guild = self._get_guild(ctx, name) if guild is None: desc = f'**No such guild:** {name}' embed = discord.Embed(type='rich', description=desc, color=discord.Color.red()) else: def fmt_role(role): default = 'Default ' if role.is_default() else '' mentionable = 'Mentionable ' if role.mentionable else '' mentions_everyone = 'Mention @everyone ' if role.permissions.mention_everyone else '' admin = 'Admin ' if role.permissions.administrator else '' mention = role.mention if ctx.guild == role.guild else f'@{role.name}' count = f'({len(role.members)})' return f'`{role.id}` {mention} {count} {default}{mentionable}{mentions_everyone}{admin}' desc = '\n'.join(map(fmt_role, guild.roles)) embed = discord.Embed(type='rich', description=desc) embed.set_author(name=guild.name) if use_current: await ctx.send(embed=embed) else: await asyncio.gather( ctx.message.delete(), self.bot.output_send(embed=embed), ) @commands.command() @commands.guild_only() async def channels(self, ctx, name: str = None, use_current=True): ''' Lists all channels in the current (or given) guild. ''' guild = self._get_guild(ctx, name) if guild is None: desc = f'**No such guild:** {name}' embed = discord.Embed(type='rich', description=desc, color=discord.Color.red()) else: def fmt_chan(chan): topic = f' - {chan.topic}' if chan.topic else '' return f'`{chan.id}` {chan.mention} {topic}' is_txt_chan = lambda chan: isinstance(chan, discord.TextChannel) desc = '\n'.join(map(fmt_chan, filter(is_txt_chan, guild.channels))) embed = discord.Embed(type='rich', description=desc) embed.set_author(name=guild.name) if use_current: await ctx.send(embed=embed) else: await asyncio.gather( ctx.message.delete(), self.bot.output_send(embed=embed), ) @commands.command() @commands.guild_only() async def perms(self, ctx, *names: str, use_current=True): for name in names: role = await self._get_role(ctx.guild, name) if role is None: desc = f'**No such role:** {name}' embed = discord.Embed(type='rich', description=desc, color=discord.Color.red()) else: perms = role.permissions desc = '\n'.join(( role.mention, '', f'Administrator: `{perms.administrator}`', f'Ban members: `{perms.ban_members}`', f'Kick members: `{perms.kick_members}`', f'Manage guild: `{perms.manage_guild}`', f'Manage channels: `{perms.manage_channels}`', f'Manage nicknames: `{perms.manage_nicknames}`', f'Manage roles: `{perms.manage_roles}`', f'Manage webhooks: `{perms.manage_webhooks}`', f'Manage emojis: `{perms.manage_emojis}`', f'View audit log: `{perms.view_audit_log}`', f'Read messages: `{perms.read_messages}`', f'Send messages: `{perms.send_messages}`', f'Add reactions: `{perms.add_reactions}`', f'Send TTS messages: `{perms.send_tts_messages}`', f'Embed links: `{perms.embed_links}`', f'Attach files: `{perms.attach_files}`', f'Read message history: `{perms.read_message_history}`', f'Mention \\@everyone: `{perms.mention_everyone}`', f'External emojis: `{perms.external_emojis}`', f'Create instant invite: `{perms.create_instant_invite}`', f'Can connect to voice: `{perms.connect}`', f'Can speak in voice: `{perms.speak}`', f'Mute members: `{perms.mute_members}`', f'Deafen members: `{perms.deafen_members}`', f'Move members: `{perms.move_members}`', f'Use voice activation: `{perms.use_voice_activation}`', f'Change nickname: `{perms.change_nickname}`', )) embed = discord.Embed(type='rich', description=desc, color=role.color) if use_current: await ctx.send(embed=embed) else: await asyncio.gather( ctx.message.delete(), self.bot.output_send(embed=embed), )
from typing import Any, Dict, List, Optional, Tuple from mmic.components.blueprints import GenericComponent from mmic_autodock_vina.models.input import AutoDockComputeInput from mmic_autodock_vina.models.output import AutoDockComputeOutput from mmic_cmd.components import CmdComponent from cmselemental.util.decorators import classproperty import tempfile import os class AutoDockComputeComponent(GenericComponent): @classproperty def input(cls): return AutoDockComputeInput @classproperty def output(cls): return AutoDockComputeOutput @classproperty def version(cls): return "" def execute( self, inputs: Dict[str, Any], extra_outfiles: Optional[List[str]] = None, extra_commands: Optional[List[str]] = None, scratch_name: Optional[str] = None, timeout: Optional[int] = None, config: Optional["TaskConfig"] = None, ) -> Tuple[bool, Dict[str, Any]]: receptor, ligand = inputs.receptor, inputs.ligand receptor_fname = tempfile.NamedTemporaryFile(suffix=".pdbqt").name ligand_fname = tempfile.NamedTemporaryFile(suffix=".pdbqt").name with open(receptor_fname, "w") as fp: fp.write(receptor) with open(ligand_fname, "w") as fp: fp.write(ligand) input_model = inputs.dict() del input_model["proc_input"] input_model["receptor"] = receptor_fname input_model["ligand"] = ligand_fname # need to include flex too input_model["out"] = tempfile.NamedTemporaryFile(suffix=".pdbqt").name input_model["log"] = tempfile.NamedTemporaryFile(suffix=".log").name execute_input = self.build_input(input_model, config) execute_output = CmdComponent.compute(execute_input) input_model["proc_input"] = inputs.proc_input output = True, self.parse_output(execute_output.dict(), input_model) return output def build_input( self, input_model: Dict[str, Any], config: Optional["TaskConfig"] = None, template: Optional[str] = None, ) -> Dict[str, Any]: cmd = ["vina"] for key, val in input_model.items(): if val and key != "provenance": cmd.append("--" + key) if isinstance(val, str): cmd.append(val) else: cmd.append(str(val)) env = os.environ.copy() if config: env["MKL_NUM_THREADS"] = str(config.ncores) env["OMP_NUM_THREADS"] = str(config.ncores) scratch_directory = config.scratch_directory if config else None return { "command": cmd, "infiles": [input_model["ligand"], input_model["receptor"]], "outfiles": [ input_model["out"], input_model["log"], ], "scratch_directory": scratch_directory, "environment": env, "raise_err": True, } def parse_output( self, output: Dict[str, Any], inputs: AutoDockComputeInput ) -> AutoDockComputeOutput: stdout = output["stdout"] stderr = output["stderr"] outfiles = output["outfiles"] system = outfiles[inputs["out"]] log = outfiles[inputs["log"]] return AutoDockComputeOutput( schema_name="mmschema", schema_version=1, success=True, stdout=stdout, stderr=stderr, log=log, system=system, proc_input=inputs["proc_input"], )
s1=input() l=list(s1) for i in range(len(l)-1): if(i%2==0): l[i],l[i+1]=l[i+1],l[i] s1="".join(l) print(s1)
from django.conf import settings from django.core import signals from django_pipes.stats import PipesStats debug_stats = PipesStats() # Register an event that resets pipes debug_stats.queries # when a Django request is started. def reset_pipes_queries(**kwargs): debug_stats.queries = [] signals.request_started.connect(reset_pipes_queries) from django_pipes.main import Pipe, PipeManager, ObjectNotSavedException, ResourceNotAvailableException __all__ = ('Pipe', 'PipeManager')
# Generated by Django 3.0.3 on 2020-03-22 11:19 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main_app', '0017_auto_20200322_1022'), ] operations = [ migrations.AlterField( model_name='userprofile', name='imageProfil', field=models.ImageField(blank=True, upload_to='imagesDeProfil/', verbose_name='Image de Profil'), ), ]
c={"a":10, "b":1, "c":22} temp=list() for k,v in c.items(): temp.append((v, k)) temp=sorted(temp, reverse=True) print(temp)
# -*- coding: utf-8 -*- """ Created on Thu Sep 07 09:05:09 2017 @author: Randall """ duplicity_check = open("duplicity_check.txt", "r") duplicates = file.read().split(',') duplicity_check.close() duplicity_check = open("duplicity_check.txt", "a") text_string = "20170907_wbb_ozone" if text_string not in duplicates: duplicity_check.write(text_string + ",") duplicity_check.close()