text
stringlengths
8
6.05M
def simplerec(number): if number > high_num: return high_num if number % 15 == 0: print ("Fizz Buzz") elif number % 5 == 0: print ("Buzz") elif number % 3 == 0: print("Fizz") else: print(number) simplerec(number + 1) low_num = 1 high_num = 100 simplerec(low_num)
lst=input("Enter a sentence:\n ").split() len_list=[] for i in lst: len_list.append(len(i)) for i in range(0,len(lst)): for j in range(0,len(lst)-i-1): if len_list[j]>len_list[j+1]: t=len_list[j] len_list[j]=len_list[j+1] len_list[j+1]=t t=lst[j] lst[j]=lst[j+1] lst[j+1]=t mx=max(len_list) m=0 n=0 for i in len_list: if i<mx: m=i n=len_list.index(m) print("The second largest word(s) is/are :\n") for i in range(len(len_list)): if len_list[i]==m: print(lst[i])
from __future__ import division import os import os.path import sys import time class DULED(object): SIDES = ['left', 'right'] def __init__(self, path): self._path = path self.roll() def run(self): while True: used = self.percent_used() print "%0.0f%% used" % used self.setpct(used) time.sleep(10) def percent_used(self): try: stat = os.statvfs(self._path) except OSError: self.blink() raise return (1 - (stat.f_bavail / stat.f_blocks)) * 100 def setpct(self, percent): if percent > 95: self.blink() return for i in xrange(0, 8): cutoff = (i / 8) * 100 if percent > cutoff: self._ledon(i) else: self._ledoff(i) def blink(self): for i in xrange(0, 8): self._ledblink(i) def roll(self): for i in xrange(0, 8): self._ledon(i) time.sleep(0.250) for i in xrange(0, 8): self._ledoff(i) time.sleep(0.250) def _ledpath(self, led): if not 0 <= led <= 7: raise ValueError("0 <= led <= 7") side = DULED.SIDES[led // 4] led = led % 4 return "/sys/class/leds/status:white:%s%d" % (side, led) def _ledwrite(self, led, state, target="trigger"): path = self._ledpath(led) path = os.path.join(path, target) open(path, "w").write(state) def _ledon(self, led): self._ledwrite(led, 'default-on') def _ledoff(self, led): self._ledwrite(led, 'none') def _ledblink(self, led): self._ledwrite(led, 'timer') self._ledwrite(led, '250', 'delay_on') self._ledwrite(led, '250', 'delay_off') def main(argv): if len(argv) < 2: sys.stderr.write("Usage: %s <filesystem>\n") sys.exit(1) du = DULED(argv[1]) du.run() if __name__ == "__main__": main(sys.argv)
#!/usr/bin/env python3 # # This script shows how to set up an D/Ne SPI scenario in an ITER-like setting. # The injection can either be separated into one stage with pure D and one stage with pure NE, # or be made as a single stage injection with a similar total amount of particles. # ################################################################################################ import numpy as np import scipy as sp import sys from scipy import integrate from scipy.special import kn sys.path.append('../../py/') from DREAM.DREAMSettings import DREAMSettings from DREAM.DREAMOutput import DREAMOutput from DREAM import runiface import DREAM.Settings.Equations.IonSpecies as Ions import DREAM.Settings.Solver as Solver import DREAM.Settings.CollisionHandler as Collisions import DREAM.Settings.Equations.ElectricField as Efield import DREAM.Settings.Equations.RunawayElectrons as RE import DREAM.Settings.Equations.HotElectronDistribution as FHot import DREAM.Settings.Equations.ColdElectronTemperature as T_cold import DREAM.Settings.TimeStepper as TimeStep import DREAM.Settings.Equations.SPI as SPI import DREAM.Settings.TransportSettings as Transport import DREAM.Settings.RadialGrid as RGrid from DREAM.Settings.Equations.ElectricField import ElectricField from DREAM.Settings.Equations.ColdElectronTemperature import ColdElectronTemperature # Makes sure this script generates exactly the same result every time the same settings are used np.random.seed(1) ds = DREAMSettings() ####################################### # Set numerical simulation parameters # ####################################### # Choose which parts of the disruption should be simulated run_init=True # Includes a single-step run to extract the conductivity and # another one to set the efield according to the wanted current profiel run_injection_init=True # Accelerate the distribution function to carry the right current run_injection=True # D or D/Ne injection run_CQ=True # Second Ne injection (if any), beginning of the CQ # Specify number of restarts to do during the CQ nCQ_restart_start=2 # Number of CQ restart to start from nCQ_restart=1 # How many CQ restarts to run # Temperature and electron distribution settings T_selfconsistent = True hotTailGrid_enabled = False use_fluid_runaways = True use_heat_transport=True use_f_hot_transport=False transport_CQ_only=False dBOverB=1e-3/np.sqrt(2) # Time steps during the various restarts Tmax_init = 1e-11 # simulation time in seconds Nt_init = 2 # number of time steps Tmax_init2 = 3e-3 Nt_init2 = 300 Tmax_injection = 3.4e-3 Nt_injection = 1360 # For single stage # Tmax_injection = 6e-3 # Nt_injection = 3000 Tmax_CQ = 17e-3 Nt_CQ = 3000 Tmax_CQ_restart = 129.6e-3 Nt_CQ_restart = 40000 # Grid parameters Nr = 11 # number of radial grid points Np = 120 # number of momentum grid points Nxi = 5 # number of pitch grid points pMax = 3 # maximum momentum in m_e*c times = [0] # times at which parameters are given radius = [0, 2] # span of the radial grid dr=(radius[1]-radius[0])/(Nr+1) radialgrid = np.linspace(radius[0]+dr/2,radius[-1]-dr/2,Nr) radius_wall = 2.15 # location of the wall B0 = 5.3 # magnetic field strength in Tesla # Set up radial grid R0 = 6.2 kappa = 1.0 """ ds.radialgrid.setType(RGrid.TYPE_ANALYTIC_TOROIDAL) mu0 = sp.constants.mu_0 # R0_set = np.inf R0_set = R0 a = radius[-1] rref = np.linspace(0, a, 20) #IpRef = 15e6 # reference plasma current which generates the poloidal magnetic field (assumed uniform profile) #psiref = -mu0 * IpRef * (1-(rref/a)**2) * a psiref = np.zeros(rref.size) # Ignore the poloidal magnetic field component for simplicity rDelta = np.linspace(0, radius_wall, 20) Delta = np.linspace(0.2*radius_wall, 0, rDelta.size) rdelta = np.linspace(0, radius_wall, 20) delta = np.linspace(0, 0.0, rdelta.size) ds.radialgrid.setShaping(psi=psiref, rpsi=rref, GOverR0=B0/R0, kappa=kappa, delta=delta, rdelta=rdelta, Delta=Delta, rDelta=rDelta) ds.radialgrid.setMinorRadius(a) ds.radialgrid.setWallRadius(radius_wall) ds.radialgrid.setMajorRadius(R0_set) ds.radialgrid.setNr(Nr) """ # Set up cylindrical radial grid ds.radialgrid.setB0(B0) ds.radialgrid.setMinorRadius(radius[-1]) ds.radialgrid.setNr(Nr) ds.radialgrid.setWallRadius(radius_wall) Delta = [0,0] #ds.radialgrid.visualize_analytic(nr=8, ntheta=40) ####################################### # Set physical simulation parameters # ####################################### # Set E_field E_initial = 0.00032 # initial electric field in V/m E_wall = 0.0 # boundary electric field in V/m inverse_wall_time = 2 # s^{-1} efield = E_initial*np.ones((len(times), len(radius))) ds.eqsys.E_field.setPrescribedData(efield=efield, times=times, radius=radius) ds.eqsys.E_field.setBoundaryCondition() # Set runaway generation rates if use_fluid_runaways: ds.eqsys.n_re.setCompton(RE.COMPTON_RATE_ITER_DMS) ds.eqsys.n_re.setAvalanche(RE.AVALANCHE_MODE_FLUID_HESSLOW) ds.eqsys.n_re.setDreicer(RE.DREICER_RATE_NEURAL_NETWORK) ds.eqsys.n_re.setTritium(True) # Set temperature profile T_initial = 20e3 # initial temperature in eV temp_prof=(1-0.99*(radialgrid/radialgrid[-1])**2).reshape(1,-1) temperature = T_initial*temp_prof ds.eqsys.T_cold.setPrescribedData(temperature=temperature, times=times, radius=radialgrid) # Settings for the first SPI (presumably consisting mostly of deuterium) nShardD=3843 # Number of shards NinjD=2.5e24 # Number of atoms alpha_maxD=0.17 # Divergence angle abs_vp_meanD=800 # Mean shard speed abs_vp_diffD=0.2*abs_vp_meanD # Width of the uniform shard speed distribution molarFractionNe=0 # Molar fraction of neon (the rest is deuterium) # The shard velocities are set to zero for now, # and will be changed later when the injections are supposed to start if molarFractionNe>0: ds.eqsys.spi.setParamsVallhagenMSc(nShard=nShardD, Ninj=NinjD, Zs=[1,10], isotopes=[2,0], opacity_modes=[Ions.ION_OPACITY_MODE_GROUND_STATE_OPAQUE, Ions.ION_OPACITY_TRANSPARENT], molarFractions=[1-molarFractionNe,molarFractionNe], ionNames=['D_inj_mix','Ne_inj_mix'], abs_vp_mean=0, abs_vp_diff=0, alpha_max=alpha_maxD, shatterPoint=np.array([radius_wall+Delta[-1],0,0])) else: ds.eqsys.spi.setParamsVallhagenMSc(nShard=nShardD, Ninj=NinjD, Zs=[1], isotopes=[2], opacity_modes=[Ions.ION_OPACITY_MODE_GROUND_STATE_OPAQUE], molarFractions=[1], ionNames=['D_inj'], abs_vp_mean=0, abs_vp_diff=0, alpha_max=alpha_maxD, shatterPoint=np.array([radius_wall+Delta[-1],0,0])) # Settings for the second Neon SPI nShardNe=50 NinjNe=1e24 alpha_maxNe=0.17 abs_vp_meanNe=200 abs_vp_diffNe=0.2*abs_vp_meanNe if nShardNe>0: ds.eqsys.spi.setParamsVallhagenMSc(nShard=nShardNe, Ninj=NinjNe, Zs=[10], isotopes=[0], molarFractions=[1], ionNames=['Ne_inj'], abs_vp_mean=0, abs_vp_diff=0, alpha_max=alpha_maxNe, shatterPoint=np.array([radius_wall+Delta[-1],0,0])) # Set geometrical parameters used to rescale VpVol when calculting the size of the flux surfaces if ds.radialgrid.type == RGrid.TYPE_CYLINDRICAL: ds.eqsys.spi.setVpVolNormFactor(R0*kappa) elif np.isinf(R0_set) and ds.radialgrid.type == RGrid.TYPE_ANALYTIC_TOROIDAL: ds.eqsys.spi.setVpVolNormFactor(R0) # Set models for advancing the shard motion and ablation ds.eqsys.spi.setVelocity(SPI.VELOCITY_MODE_PRESCRIBED) # Constant prescribed velocities ds.eqsys.spi.setAblation(SPI.ABLATION_MODE_FLUID_NGS) # Parks NGS formula based on T_cold # ds.eqsys.spi.setDeposition(SPI.DEPOSITION_MODE_LOCAL_GAUSSIAN) # Use a gaussian deposition kernel of width rcl ds.eqsys.spi.setDeposition(SPI.DEPOSITION_MODE_LOCAL) # Delta function deposition kernel # ds.eqsys.spi.setHeatAbsorbtion(SPI.HEAT_ABSORBTION_MODE_LOCAL_FLUID_NGS) # Remove all heat flowing through a disc # of radius rcl from background plasma. # when assuming a local and immediate deposition # the heat absorbed by the ablated material is # immediately returned, so this term should then # be switched off # ds.eqsys.spi.setCloudRadiusMode(SPI.CLOUD_RADIUS_MODE_PRESCRIBED_CONSTANT) # Size of the neutral cloud (only relevant when using gaussian deposition or heat absorbtion) rcl=0.01 ds.eqsys.spi.setRclPrescribedConstant(rcl) # Set background ions n_D = 1e20 ds.eqsys.n_i.addIon(name='D', Z=1, iontype=Ions.IONS_DYNAMIC_FULLY_IONIZED, n=0.5*n_D, opacity_mode=Ions.ION_OPACITY_MODE_GROUND_STATE_OPAQUE) ds.eqsys.n_i.addIon(name='T', Z=1, iontype=Ions.IONS_DYNAMIC_FULLY_IONIZED, n=0.5*n_D, tritium=True, opacity_mode=Ions.ION_OPACITY_MODE_GROUND_STATE_OPAQUE) # set collision settings ds.collisions.collfreq_mode = Collisions.COLLFREQ_MODE_FULL ds.collisions.collfreq_type = Collisions.COLLFREQ_TYPE_PARTIALLY_SCREENED #ds.collisions.bremsstrahlung_mode = Collisions.BREMSSTRAHLUNG_MODE_NEGLECT ds.collisions.bremsstrahlung_mode = Collisions.BREMSSTRAHLUNG_MODE_STOPPING_POWER #ds.collisions.lnlambda = Collisions.LNLAMBDA_CONSTANT ds.collisions.lnlambda = Collisions.LNLAMBDA_ENERGY_DEPENDENT ds.collisions.pstar_mode = Collisions.PSTAR_MODE_COLLISIONAL # Kinetic grid settings if not hotTailGrid_enabled: ds.hottailgrid.setEnabled(False) else: ds.hottailgrid.setNxi(Nxi) ds.hottailgrid.setNp(Np) ds.hottailgrid.setPmax(pMax) ds.hottailgrid.setBiuniformGrid(psep=0.07,npsep=70) nfree_initial, rn0 = ds.eqsys.n_i.getFreeElectronDensity() ds.eqsys.f_hot.setInitialProfiles(rn0=rn0, n0=nfree_initial, rT0=radialgrid, T0=temperature.flatten()) ds.eqsys.f_hot.setBoundaryCondition(bc=FHot.BC_F_0) ds.eqsys.f_hot.setAdvectionInterpolationMethod(ad_int=FHot.AD_INTERP_TCDF) #ds.eqsys.f_hot.enableIonJacobian(False) # Disable runaway grid ds.runawaygrid.setEnabled(False) ###################### # Run the simulation # ###################### # Use the nonlinear solver ds.solver.setType(Solver.NONLINEAR) ds.solver.setLinearSolver(linsolv=Solver.LINEAR_SOLVER_LU) ds.solver.setMaxIterations(maxiter = 500) ds.solver.setTolerance(reltol=0.001) #ds.solver.setVerbose(True) ds.other.include('fluid', 'scalar') filename_ending='nShardD'+str(nShardD)+'NinjD'+str(NinjD)+'nShardNe'+str(nShardNe)+'NinjNe'+str(NinjNe)+'vpD'+str(abs_vp_meanD)+'vpNe'+str(abs_vp_meanNe)+'LyOpaque_hottail'+str(hotTailGrid_enabled)+'heat_transport'+str(use_heat_transport)+'f_hot_transport'+str(use_f_hot_transport)+'dBB'+str(dBOverB) folder_name='finite_wall_time/with_runaways/' #if ds.radialgrid.type == RGrid.TYPE_ANALYTIC_TOROIDAL: # filename_ending = filename_ending + 'analyticB' #filename_ending = filename_ending +'kappa'+ str(kappa) #filename_ending = filename_ending +'delta_edge'+ str(delta[-1]) #filename_ending = filename_ending +'Delta_core'+ str(Delta[0]) #filename_ending = filename_ending + 'toroidal' filename_ending = filename_ending + 'inverse_wall_time'+str(inverse_wall_time) # Set time stepper ds.timestep.setTmax(Tmax_init) ds.timestep.setNt(Nt_init) if run_init: # Save settings to HDF5 file ds.save(folder_name+'init_settings'+filename_ending+'.h5') runiface(ds, folder_name+'output_init'+filename_ending+'.h5', quiet=False) ####################### # RESTART set current # ####################### do=DREAMOutput(folder_name+'output_init'+filename_ending+'.h5') conductivity=do.other.fluid.conductivity.getData() jprof=(1-(1-0.001**(1/0.41))*(radialgrid/radialgrid[-1])**2)**0.41 I0=15e6 j0=I0/np.trapz(2*np.pi*radialgrid*jprof,radialgrid) efield=j0*jprof/conductivity[-1,:] ds.eqsys.E_field.setPrescribedData(efield=efield, radius=radialgrid) if run_init: # Save settings to HDF5 file ds.save(folder_name+'init_settings_'+filename_ending+'.h5') runiface(ds, folder_name+'output_init_'+filename_ending+'.h5', quiet=False) ########################## # RESTART injection init # ########################## # Used to accelerate the distribution to carry the right current ds2 = DREAMSettings(ds) ds2.fromOutput(folder_name+'output_init_'+filename_ending+'.h5') ds2.timestep.setTmax(Tmax_init2) ds2.timestep.setNt(Nt_init2) if run_injection_init: ds2.save(folder_name+'init2_restart_settings_'+filename_ending+'.h5') runiface(ds2, folder_name+'output_init2_'+filename_ending+'.h5', quiet=False) ##################### # RESTART injection # ##################### # Here we actually make the first injection ds3 = DREAMSettings(ds2) # From now on, the temperature and electric field should be calculated self-consistently if T_selfconsistent: ds3.eqsys.T_cold.setType(ttype=T_cold.TYPE_SELFCONSISTENT) #ds3.eqsys.T_cold.setRecombinationRadiation(T_cold.RECOMBINATION_RADIATION_INCLUDED) ds3.eqsys.E_field.setType(Efield.TYPE_SELFCONSISTENT) #ds3.eqsys.E_field.setBoundaryCondition(bctype = Efield.BC_TYPE_PRESCRIBED, inverse_wall_time = 0, V_loop_wall_R0 = E_wall*2*np.pi) ds3.eqsys.E_field.setBoundaryCondition(bctype = Efield.BC_TYPE_SELFCONSISTENT, inverse_wall_time = inverse_wall_time, R0=R0) ds3.fromOutput(folder_name+'output_init2_'+filename_ending+'.h5',ignore=['v_p']) # Now make the shards from the first injection start moving ds3.eqsys.spi.setShardVelocitiesUniform(nShard=None,abs_vp_mean=abs_vp_meanD,abs_vp_diff=abs_vp_diffD,alpha_max=alpha_maxD,nDim=2,add=False, shards=slice(0,nShardD)) # If the first injection contains any impurities, the pressure and current will be # significantly perturbed already during this injection stage, and then we # turn on the transport when the shards reach the plasma boundary if use_heat_transport and molarFractionNe>0: print('Turn on transport already during first injection') dBB_mat=np.sqrt(R)*dBOverB*np.vstack((np.zeros((2,Nr)),np.ones((2,Nr)))) t_edge=(radius_wall-radius[1])/np.max(-ds3.eqsys.spi.vp) print(t_edge) ds3.eqsys.T_cold.transport.setMagneticPerturbation(dBB=dBB_mat,r=radialgrid,t=[0,t_edge-1e-8,t_edge,1]) ds3.eqsys.T_cold.transport.setBoundaryCondition(Transport.BC_F_0) if use_f_hot_transport and hotTailGrid_enabled: ds3.eqsys.n_re.transport.prescribeDiffusion(drr=sp.constants.pi*sp.constants.c*R*dBOverB**2*np.vstack((np.zeros((2,Nr)),np.ones((2,Nr)))),r=radialgrid,t=[0,0.00015999,0.00016,1]) ds3.eqsys.n_re.transport.setBoundaryCondition(Transport.BC_F_0) ds3.eqsys.f_hot.transport.setMagneticPerturbation(dBB=np.sqrt(R)*dBOverB*np.ones(radialgrid.shape).reshape(1,-1),r=radialgrid,t=[0]) ds3.eqsys.f_hot.transport.setBoundaryCondition(Transport.BC_F_0) ds3.timestep.setTmax(Tmax_injection) ds3.timestep.setNt(Nt_injection) ds3.timestep.setNumberOfSaveSteps(int(Tmax_injection/1e-4)) if run_injection: ds3.save(folder_name+'injection_restart_settings_'+filename_ending+'.h5') runiface(ds3, folder_name+'output_restart_injection_'+filename_ending+'.h5', quiet=False) ############## # Restart CQ # ############## ds4 = DREAMSettings(ds3) ds4.fromOutput(folder_name+'output_restart_injection_'+filename_ending+'.h5',ignore=['x_p','v_p']) ds4.timestep.setTmax(Tmax_CQ) ds4.timestep.setNt(Nt_CQ) ds4.timestep.setNumberOfSaveSteps(int(Tmax_CQ/1e-4)) # Turn on transport, if any if use_heat_transport: ds4.eqsys.T_cold.transport.setMagneticPerturbation(dBB=np.sqrt(R0)*dBOverB*np.ones(radialgrid.shape).reshape(1,-1),r=radialgrid,t=[0]) ds4.eqsys.T_cold.transport.setBoundaryCondition(Transport.BC_F_0) if use_f_hot_transport and hotTailGrid_enabled: ds4.eqsys.n_re.transport.prescribeDiffusion(drr=sp.constants.pi*sp.constants.c*R*dBOverB**2*np.ones(radialgrid.shape).reshape(1,-1),r=radialgrid,t=[0]) ds4.eqsys.n_re.transport.setBoundaryCondition(Transport.BC_F_0) ds4.eqsys.f_hot.transport.setMagneticPerturbation(dBB=np.sqrt(R)*dBOverB*np.ones(radialgrid.shape).reshape(1,-1),r=radialgrid,t=[0]) ds4.eqsys.f_hot.transport.setBoundaryCondition(Transport.BC_F_0) if run_CQ: ds4.save(folder_name+'CQ_restart_settings_'+filename_ending+'.h5') # Set the shards of the second injection into motion and advance them until # the fastest shards reach the plasma edge do4=DREAMOutput(folder_name+'output_restart_injection_'+filename_ending+'.h5') ds4.eqsys.spi.vp=do4.eqsys.v_p.data[-1,:].flatten() ds4.eqsys.spi.xp=do4.eqsys.x_p.data[-1,:].flatten() if(nShardNe>0): ds4.eqsys.spi.setShardVelocitiesUniform(nShard=None,abs_vp_mean=abs_vp_meanNe,abs_vp_diff=abs_vp_diffNe,alpha_max=alpha_maxNe,nDim=3,add=False, shards=slice(-nShardNe,None)) t_edge=(radius_wall-radius[1])/np.max(-ds4.eqsys.spi.vp[-3*nShardNe::3]) ds4.eqsys.spi.xp[-3*nShardNe:]=ds4.eqsys.spi.xp[-3*nShardNe:]+ds4.eqsys.spi.vp[-3*nShardNe:]*t_edge runiface(ds4, folder_name+'output_restart_CQ_'+filename_ending+'.h5', quiet=False) ################# # Restart CQ 2+ # ################# ds5 = DREAMSettings(ds4) for iCQ in range(nCQ_restart_start-2,nCQ_restart): if iCQ==0: ds5.fromOutput(folder_name+'output_restart_CQ_'+filename_ending+'.h5') else: ds5.fromOutput(folder_name+'output_restart_CQ'+str(iCQ+2)+'_'+filename_ending+'.h5') ds5.timestep.setTmax(Tmax_CQ_restart) ds5.timestep.setNt(Nt_CQ_restart) ds5.timestep.setNumberOfSaveSteps(int(Tmax_CQ_restart/1e-4)) if iCQ==0: do5=DREAMOutput(folder_name+'output_restart_CQ_'+filename_ending+'.h5') else: do5=DREAMOutput(folder_name+'output_restart_CQ'+str(iCQ+2)+'_'+filename_ending+'.h5') ds5.eqsys.spi.setInitialData(rp=do5.eqsys.Y_p.calcRadii(t=-1).flatten(),xp=do5.eqsys.x_p.data[-1,:].flatten(),vp=do5.eqsys.v_p.data[-1,:].flatten()) ds5.save(folder_name+'CQ'+str(iCQ+3)+'_restart_settings_'+filename_ending+'.h5') runiface(ds5, folder_name+'output_restart_CQ'+str(iCQ+3)+'_'+filename_ending+'.h5', quiet=False)
import networkx as nx import numpy as np import scipy.sparse as sp import torch from math import ceil def load_data(ds_name, use_node_labels): node2graph = {} Gs = [] with open("datasets/%s/%s_graph_indicator.txt"%(ds_name,ds_name), "r") as f: c = 1 for line in f: node2graph[c] = int(line[:-1]) if not node2graph[c] == len(Gs): Gs.append(nx.Graph()) Gs[-1].add_node(c) c += 1 with open("datasets/%s/%s_A.txt"%(ds_name,ds_name), "r") as f: for line in f: edge = line[:-1].split(",") edge[1] = edge[1].replace(" ", "") Gs[node2graph[int(edge[0])]-1].add_edge(int(edge[0]), int(edge[1])) if use_node_labels: with open("datasets/%s/%s_node_labels.txt"%(ds_name,ds_name), "r") as f: c = 1 for line in f: node_label = int(line[:-1]) Gs[node2graph[c]-1].node[c]['label'] = node_label c += 1 labels = [] with open("datasets/%s/%s_graph_labels.txt"%(ds_name,ds_name), "r") as f: for line in f: labels.append(int(line[:-1])) labels = np.array(labels, dtype = np.float) return Gs, labels def process_node_labels(Gs): node_labels = dict() for G in Gs: for node in G.nodes(): if G.node[node]["label"] not in node_labels: node_labels[G.node[node]["label"]] = len(node_labels) n_node_labels = len(node_labels) for G in Gs: for node in G.nodes(): G.node[node]["label"] = node_labels[G.node[node]["label"]] return Gs, n_node_labels def generate_batches(Gs, use_node_labels, n_feat, y, batch_size, radius, device, shuffle=False): N = len(Gs) if shuffle: index = np.random.permutation(N) else: index = np.array(range(N), dtype=np.int32) n_batches = ceil(N/batch_size) adj_lst = list() features_lst = list() idx_lst = list() y_lst = list() for i in range(0, N, batch_size): n_nodes = 0 for j in range(i, min(i+batch_size, N)): n_nodes += Gs[index[j]].number_of_nodes() y_batch = np.zeros(min(i+batch_size, N)-i) idx_batch = np.zeros(min(i+batch_size, N)-i+1, dtype=np.int64) idx_batch[0] = 0 idx_node = np.zeros(n_nodes, dtype=np.int64) edges_batch = list() for _ in range(radius*2): edges_batch.append(list()) tuple_to_idx = list() features_batch = list() for _ in range(radius+1): tuple_to_idx.append(dict()) features_batch.append(list()) for j in range(i, min(i+batch_size, N)): n = Gs[index[j]].number_of_nodes() feat = dict() if use_node_labels: for node in Gs[index[j]].nodes(): v = np.zeros(n_feat) v[Gs[index[j]].node[node]["label"]] = 1 feat[node] = v else: for node in Gs[index[j]].nodes(): feat[node] = [Gs[index[j]].degree(node)] for k,n1 in enumerate(Gs[index[j]].nodes()): idx_node[idx_batch[j-i]+k] = j-i ego = nx.ego_graph(Gs[index[j]], n1, radius=radius) dists = nx.single_source_shortest_path_length(ego, n1) for n2 in ego.nodes(): tuple_to_idx[dists[n2]][(n1,n2)] = len(tuple_to_idx[dists[n2]]) features_batch[dists[n2]].append(feat[n2]) for n2 in ego.nodes(): for n3 in ego.neighbors(n2): if dists[n3] > dists[n2]: edges_batch[2*dists[n2]].append((tuple_to_idx[dists[n2]][(n1,n2)], tuple_to_idx[dists[n2]+1][(n1,n3)])) elif dists[n3] == dists[n2]: edges_batch[2*dists[n2]-1].append((tuple_to_idx[dists[n2]][(n1,n2)], tuple_to_idx[dists[n2]][(n1,n3)])) idx_batch[j-i+1] = idx_batch[j-i] + n y_batch[j-i] = y[index[j]] adj_batch = list() for i in range(2*radius): if i%2 == 0: edges = np.vstack(edges_batch[i]) adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:,0], edges[:,1])), shape=(len(features_batch[i//2]), len(features_batch[i//2+1])), dtype=np.float32) else: if len(edges_batch[i]) == 0: adj = sp.coo_matrix((len(features_batch[i//2+1]), len(features_batch[i//2+1])), dtype=np.float32) else: edges = np.vstack(edges_batch[i]) adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:,0], edges[:,1])), shape=(len(features_batch[i//2+1]), len(features_batch[i//2+1])), dtype=np.float32) adj_batch.append(sparse_mx_to_torch_sparse_tensor(adj).to(device)) for i in range(radius+1): features_batch[i] = torch.FloatTensor(features_batch[i]).to(device) adj_lst.append(adj_batch) features_lst.append(features_batch) idx_lst.append(torch.LongTensor(idx_node).to(device)) y_lst.append(torch.LongTensor(y_batch).to(device)) return adj_lst, features_lst, idx_lst, y_lst def sparse_mx_to_torch_sparse_tensor(sparse_mx): """Convert a scipy sparse matrix to a torch sparse tensor.""" sparse_mx = sparse_mx.tocoo().astype(np.float32) indices = torch.from_numpy(np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64)) values = torch.from_numpy(sparse_mx.data) shape = torch.Size(sparse_mx.shape) return torch.sparse.FloatTensor(indices, values, shape) def accuracy(output, labels): preds = output.max(1)[1].type_as(labels) correct = preds.eq(labels).double() correct = correct.sum() return correct / len(labels) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count
#!/usr/bin/env python # # Copyright (c) 2019 Opticks Team. All Rights Reserved. # # This file is part of Opticks # (see https://bitbucket.org/simoncblyth/opticks). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Hmm the CtrlReturn* does not need to be a mask, but the CtrlLoop* does. Maybe split. """ CtrlReturnMiss = 0x1 << 1 CtrlReturnLeft = 0x1 << 2 CtrlReturnRight = 0x1 << 3 CtrlReturnFlipRight = 0x1 << 4 CtrlLoopLeft = 0x1 << 5 CtrlLoopRight = 0x1 << 6 _ctrl_index = { CtrlReturnMiss : 1, CtrlReturnLeft : 2, CtrlReturnRight : 3, CtrlReturnFlipRight : 4, CtrlLoopLeft : 5, CtrlLoopRight : 6, } _ctrl_color = { 0:'c', 1:'k', 2:'m', 3:'b', 4:'r', 5:'y', 6:'r' } def ctrl_index(ctrl): return _ctrl_index[ctrl] def desc_ctrl(ctrl): s = "" if ctrl & CtrlReturnMiss: s+= "CtrlReturnMiss " if ctrl & CtrlReturnLeft: s+= "CtrlReturnLeft " if ctrl & CtrlReturnRight: s+= "CtrlReturnRight " if ctrl & CtrlReturnFlipRight: s+= "CtrlReturnFlipRight " if ctrl & CtrlLoopLeft: s+= "CtrlLoopLeft " if ctrl & CtrlLoopRight: s+= "CtrlLoopRight " return s def desc_ctrl_cu(seqcu, label=""): try: ret = "\n".join([label]+[" %s : %2d %5d : %6d : %s " % (_ctrl_color[index], index, 0x1 << int(index), count, desc_ctrl(0x1 << int(index))) for index, count in seqcu]) except KeyError: ret = repr(seqcu) pass return ret
# # JiWER - Jitsi Word Error Rate # # Copyright @ 2018 - present 8x8, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This file implements methods for calculating a number of similarity error measures between a ground-truth sentence and a hypothesis sentence, which are commonly used to measure the performance for an automatic speech recognition (ASR) system. The following measures are implemented: - Word Error Rate (WER), which is where this library got its name from. This has has long been (and arguably still is) the de facto standard for computing ASR performance. - Match Error Rate (MER) - Word Information Lost (WIL) - Word Information Preserved (WIP) """ import Levenshtein from typing import List, Mapping, Tuple, Union import jiwer.transforms as tr __all__ = ["wer", "mer", "wil", "wip", "compute_measures", "ops"] ################################################################################ # Implementation of the WER method, exposed publicly _default_transform = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.SentencesToListOfWords(), tr.RemoveEmptyStrings(), ] ) _standardize_transform = tr.Compose( [ tr.ToLowerCase(), tr.ExpandCommonEnglishContractions(), tr.RemoveKaldiNonWords(), tr.RemoveWhiteSpace(replace_by_space=True), ] ) def ops( truth: Union[str, List[str]], hypothesis: Union[str, List[str]], truth_transform: Union[tr.Compose, tr.AbstractTransform] = _default_transform, hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = _default_transform, **kwargs ): """ return edit ops """ all_ops = get_operations( truth, hypothesis, truth_transform, hypothesis_transform, **kwargs ) return all_ops def wer( truth: Union[str, List[str]], hypothesis: Union[str, List[str]], truth_transform: Union[tr.Compose, tr.AbstractTransform] = _default_transform, hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = _default_transform, **kwargs ) -> float: """ Calculate word error rate (WER) between a set of ground-truth sentences and a set of hypothesis sentences. See `compute_measures` for details on the arguments. :return: WER as a floating point number """ measures = compute_measures( truth, hypothesis, truth_transform, hypothesis_transform, **kwargs ) return measures["wer"] def mer( truth: Union[str, List[str]], hypothesis: Union[str, List[str]], truth_transform: Union[tr.Compose, tr.AbstractTransform] = _default_transform, hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = _default_transform, **kwargs ) -> float: """ Calculate match error rate (MER) between a set of ground-truth sentences and a set of hypothesis sentences. See `compute_measures` for details on the arguments. :return: MER as a floating point number """ measures = compute_measures( truth, hypothesis, truth_transform, hypothesis_transform, **kwargs ) return measures["mer"] def wip( truth: Union[str, List[str]], hypothesis: Union[str, List[str]], truth_transform: Union[tr.Compose, tr.AbstractTransform] = _default_transform, hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = _default_transform, **kwargs ) -> float: """ Calculate Word Information Preserved (WIP) between a set of ground-truth sentences and a set of hypothesis sentences. See `compute_measures` for details on the arguments. :return: WIP as a floating point number """ measures = compute_measures( truth, hypothesis, truth_transform, hypothesis_transform, **kwargs ) return measures["wip"] def wil( truth: Union[str, List[str]], hypothesis: Union[str, List[str]], truth_transform: Union[tr.Compose, tr.AbstractTransform] = _default_transform, hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = _default_transform, **kwargs ) -> float: """ Calculate Word Information Lost (WIL) between a set of ground-truth sentences and a set of hypothesis sentences. See `compute_measures` for details on the arguments. :return: WIL as a floating point number """ measures = compute_measures( truth, hypothesis, truth_transform, hypothesis_transform, **kwargs ) return measures["wil"] def compute_measures( truth: Union[str, List[str]], hypothesis: Union[str, List[str]], truth_transform: Union[tr.Compose, tr.AbstractTransform] = _default_transform, hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = _default_transform, **kwargs ) -> Mapping[str, float]: """ Calculate error measures between a set of ground-truth sentences and a set of hypothesis sentences. The set of sentences can be given as a string or a list of strings. A string input is assumed to be a single sentence. A list of strings is assumed to be multiple sentences. Each word in a sentence is separated by one or more spaces. A sentence is not expected to end with a specific token (such as a `.`). If the ASR does delimit sentences it is expected that these tokens are filtered out. The optional `transforms` arguments can be used to apply pre-processing to respectively the ground truth and hypotheses input. Note that the transform should ALWAYS include `SentencesToListOfWords`, as that is the expected input. :param truth: the ground-truth sentence(s) as a string or list of strings :param hypothesis: the hypothesis sentence(s) as a string or list of strings :param truth_transform: the transformation to apply on the truths input :param hypothesis_transform: the transformation to apply on the hypothesis input :return: a dict with WER, MER, WIP and WIL measures as floating point numbers """ # deal with old API if "standardize" in kwargs: truth = _standardize_transform(truth) hypothesis = _standardize_transform(hypothesis) if "words_to_filter" in kwargs: t = tr.RemoveSpecificWords(kwargs["words_to_filter"]) truth = t(truth) hypothesis = t(hypothesis) # Preprocess truth and hypothesisi truth, hypothesis = _preprocess( truth, hypothesis, truth_transform, hypothesis_transform ) # Get the operation counts (#hits, #substitutions, #deletions, #insertions) H, S, D, I = _get_operation_counts(truth, hypothesis) # Compute Word Error Rate wer = float(S + D + I) / float(H + S + D) # Compute Match Error Rate mer = float(S + D + I) / float(H + S + D + I) # Compute Word Information Preserved wip = (float(H) / len(truth)) * (float(H) / len(hypothesis)) if hypothesis else 0 # Compute Word Information Lost wil = 1 - wip return { "wer": wer, "mer": mer, "wil": wil, "wip": wip, } def get_operations( truth: Union[str, List[str]], hypothesis: Union[str, List[str]], truth_transform: Union[tr.Compose, tr.AbstractTransform] = _default_transform, hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = _default_transform, **kwargs ): """ blah """ # deal with old API if "standardize" in kwargs: truth = _standardize_transform(truth) hypothesis = _standardize_transform(hypothesis) if "words_to_filter" in kwargs: t = tr.RemoveSpecificWords(kwargs["words_to_filter"]) truth = t(truth) hypothesis = t(hypothesis) # Preprocess truth and hypothesisi truth, hypothesis = _preprocess( truth, hypothesis, truth_transform, hypothesis_transform ) # Get the operation counts (#hits, #substitutions, #deletions, #insertions) operations = _get_editops(truth, hypothesis) return operations ################################################################################ # Implementation of helper methods def _preprocess( truth: Union[str, List[str]], hypothesis: Union[str, List[str]], truth_transform: Union[tr.Compose, tr.AbstractTransform], hypothesis_transform: Union[tr.Compose, tr.AbstractTransform], ) -> Tuple[str, str]: """ Pre-process the truth and hypothesis into a form that Levenshtein can handle. :param truth: the ground-truth sentence(s) as a string or list of strings :param hypothesis: the hypothesis sentence(s) as a string or list of strings :param truth_transform: the transformation to apply on the truths input :param hypothesis_transform: the transformation to apply on the hypothesis input :return: the preprocessed truth and hypothesis """ # Apply transforms. By default, it collapses input to a list of words truth = truth_transform(truth) hypothesis = hypothesis_transform(hypothesis) # raise an error if the ground truth is empty if len(truth) == 0: raise ValueError("the ground truth cannot be an empty") # tokenize each word into an integer vocabulary = set(truth + hypothesis) word2char = dict(zip(vocabulary, range(len(vocabulary)))) truth_chars = [chr(word2char[w]) for w in truth] hypothesis_chars = [chr(word2char[w]) for w in hypothesis] truth_str = "".join(truth_chars) hypothesis_str = "".join(hypothesis_chars) return truth_str, hypothesis_str def _get_operation_counts( source_string: str, destination_string: str ) -> Tuple[int, int, int, int]: """ Check how many edit operations (delete, insert, replace) are required to transform the source string into the destination string. The number of hits can be given by subtracting the number of deletes and substitutions from the total length of the source string. :param source_string: the source string to transform into the destination string :param destination_string: the destination to transform the source string into :return: a tuple of #hits, #substitutions, #deletions, #insertions """ editops = Levenshtein.editops(source_string, destination_string) substitutions = sum(1 if op[0] == "replace" else 0 for op in editops) deletions = sum(1 if op[0] == "delete" else 0 for op in editops) insertions = sum(1 if op[0] == "insert" else 0 for op in editops) hits = len(source_string) - (substitutions + deletions) return hits, substitutions, deletions, insertions def _get_editops( source_string: str, destination_string: str ): editops = Levenshtein.editops(source_string, destination_string) # type(editops) # substitutions = sum(1 if op[0] == "replace" else 0 for op in editops) # deletions = sum(1 if op[0] == "delete" else 0 for op in editops) # insertions = sum(1 if op[0] == "insert" else 0 for op in editops) # hits = len(source_string) - (substitutions + deletions) return editops
# 数论 # 关键是思考 因数 之间的关系 # 学习下枚举n及n以下的每个数的因子 n = 10000 divides = [] for i in range(1, n+1): for j in range(i, n+1, i): divides[j].append(i) class Solution: def countPairs(self, nums: List[int], k: int) -> int: divisors = [] d = 1 while d * d <= k: # 预处理 k 的所有因子 if k % d == 0: divisors.append(d) if d * d < k: divisors.append(k / d) d += 1 ans = 0 cnt = defaultdict(int) for v in nums: # 得到smallest数的个数 ans += cnt[k / gcd(v, k)] for d in divisors: if v % d == 0: cnt[d] += 1 return ans
# Generated by Django 2.2.4 on 2019-08-31 00:39 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0001_initial'), ] operations = [ migrations.AlterField( model_name='video', name='filepath', field=models.FileField(upload_to=''), ), migrations.AlterField( model_name='video', name='thumbnail', field=models.FileField(upload_to=''), ), ]
import pandas as pd import pysam import argparse import pdb def parse_args(): parser=argparse.ArgumentParser(description="get gc content from a bed file") parser.add_argument("--chrom_sizes") parser.add_argument("--ref_fasta") parser.add_argument("--out_prefix") parser.add_argument("--region_size",type=int,default=1000) parser.add_argument("--stride",type=int,default=50) parser.add_argument("--output_format",choices=['tsv','hdf5'],help="store output track as either a .tsv or an .hdf5 file") return parser.parse_args() def main(): args=parse_args() ref=pysam.FastaFile(args.ref_fasta) chrom_sizes=pd.read_csv(args.chrom_sizes,header=None,sep='\t') region_dict=dict() for index,row in chrom_sizes.iterrows(): chrom=row[0] print(chrom) chrom_size=row[1] for bin_start in range(0,chrom_size,args.stride): if bin_start%1000000==0: print(str(bin_start)) bin_end=bin_start+args.region_size seq=ref.fetch(chrom,bin_start,bin_end).upper() g=seq.count('G') c=seq.count('C') gc=g+c fract=round(gc/args.region_size,2) region_dict[tuple([chrom,bin_start,bin_end])]=fract #generate pandas df from dict print("making df") df=pd.DataFrame.from_dict(region_dict,orient='index') print("made df") new_index=pd.MultiIndex.from_tuples(df.index, names=('CHR', 'START','END')) df = pd.DataFrame(df[0], new_index) if args.output_format=="tsv": df.to_csv(args.out_prefix+".tsv",sep='\t', header=True, index=True, index_label=['CHROM','START','END']) else: assert args.output_format=="hdf5" df.to_hdf(args.out_prefix+".hdf5",key='data',mode='w',append=False,format='table',min_itemsize=30) if __name__=="__main__": main()
from django.shortcuts import ( render, redirect ) from django.http import HttpResponse from django.views import View from django.contrib import messages from account.forms import ( UserCreationForm, PasswordChangeForm ) from django.contrib.auth import ( authenticate, login, logout, update_session_auth_hash ) from django.contrib.auth.views import logout_then_login from django.contrib.auth.decorators import login_required from django.core.exceptions import ValidationError from .forms import ( CustomerLoginForm, ReviewForm ) from .models import Review from mainapp.models import Product # Create your views here. class ReviewView(View): def get(self, request, *args, **kwargs): product_id = kwargs.get('product_id', 0) product = Product.objects.filter(product_id = product_id)[0] review = Review.objects.filter(product_id = product_id) if request.user.is_authenticated: form = ReviewForm({'product':product}) return render(request, "customer/addreview.html", {'form':form, 'product':product}) else: form = ReviewForm({'review_content':"Your are not authorised to access this form."}) return render(request, "customer/addreview.html", {'form':form, 'product':product}) def post(self, request, *args, **kwargs): form = ReviewForm(request.POST) if form.is_valid(): product_id = kwargs.get('product_id', 0) product = Product.objects.filter(product_id = product_id)[0] review = form.save(commit=False) review.user = request.user review.product = product review.save() return redirect(f'/productDetail/{product.product_id}') return render(request, "customer/addreview.html", {'form':form, 'product':product}) class ReplywView(View): def get(self, request, *args, **kwargs): previous_review_id = kwargs.get('review_id', 0) previous_review = Review.objects.filter(review_id = previous_review_id)[0] if request.user.is_authenticated: form = ReviewForm() return render(request, "customer/addreply.html", {'form':form, 'previous_review':previous_review}) else: form = ReviewForm({'review_content':"Your are not authorised to access this form."}) return render(request, "customer/addreply.html", {'form':form, 'previous_review':previous_review}) def post(self, request, *args, **kwargs): form = ReviewForm(request.POST) if form.is_valid(): previous_review_id = kwargs.get('review_id', 0) previous_review = Review.objects.filter(review_id = previous_review_id)[0] review = form.save(commit=False) review.user = request.user review.previous_review = previous_review review.save() product = self._traverse_back_to_product(previous_review) return redirect(f'/productDetail/{product.product_id}') return render(request, "customer/addreply.html", {'form':form, 'previous_review':previous_review}) def _traverse_back_to_product(self, previous_review): if previous_review.product: return previous_review.product return self._traverse_back_to_product(previous_review.previous_review) class ChangePasswordView(View): def get(self, request, *args, **kwargs): form = PasswordChangeForm() return render(request, "customer/change_password.html", {'form':form}) def post(self, request, *args, **kwargs): form = PasswordChangeForm(request.POST, Request=request) if form.is_valid(): useremail = request.user.email password = form.cleaned_data.get("password") user = authenticate(request, email=useremail, password=password) if user is not None: user.set_password(form.cleaned_data["password1"]) user.save() update_session_auth_hash(request, user) # Important! messages.success(request, 'Your password was successfully updated!') return redirect('/') return render(request, "customer/change_password.html", {'form':form}) class RegisterView(View): def get(self, request, *args, **kwargs): if request.user.is_authenticated: messages.success(request,f"You have been already logged in using user {request.user.username}") return redirect('/') form = UserCreationForm() return render(request, "customer/register.html", {'form': form}) def post(self, request, *args, **kwargs): form = UserCreationForm(request.POST) if form.is_valid(): user = form.save() user_name = user.username messages.success(request, f'{user_name} is registered successfully.') user = authenticate(request, email=user.email, password=form.cleaned_data.get("password1")) if user is not None: login(request, user) messages.success(request, f'{user_name} is logedin successfully.') return redirect('/') return render(request, "customer/register.html", {'form': form}) class LoginView(View): def get(self, request, *args, **kwargs): if request.user.is_authenticated: messages.success(request,f"You have been already logged in using user {request.user.username}") return redirect('/') form = CustomerLoginForm() return render(request, "customer/login.html", {"form":form}) def post(self, request, *args, **kwargs): form = CustomerLoginForm(request.POST) if form.is_valid(): email = form.cleaned_data['email'] password = form.cleaned_data['password'] user = authenticate(request, email=email, password=password) if user is not None: login(request, user) messages.success(request, f"user loged in successfuly {user.username}") return redirect('/') else: messages.error(request, "Invalid User name or password.") return render(request, "customer/login.html", {"form":form}) @login_required(login_url='/customer/login/') def logout_view(request): return logout_then_login(request, login_url='/customer/login/')
"""Installs and configures Treadmill locally. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import os import click from treadmill import bootstrap from treadmill import cli from treadmill import context _LOGGER = logging.getLogger(__name__) def init(): """Return top level command handler.""" @click.command() @click.option('--gssapi', help='use gssapi auth.', is_flag=True, default=False) @click.option('-p', '--rootpw', help='password hash, generated by slappass -s <pwd>.') @click.option('-o', '--owner', help='root user.', required=True) @click.option('--env', help='Treadmill environment', required=True, envvar='TREADMILL_ENV') @click.option('-s', '--suffix', help='suffix (e.g dc=example,dc=com).', required=False) @click.option('-u', '--uri', help='uri, e.g: ldap://...:20389', required=True) @click.option('-m', '--masters', help='list of masters.', type=cli.LIST) @click.option('--first-time/--no-first-time', is_flag=True, default=False) @click.option('--run/--no-run', is_flag=True, default=False) @click.pass_context def openldap(ctx, gssapi, rootpw, owner, suffix, uri, masters, first_time, run, env): """Installs Treadmill Openldap server.""" dst_dir = ctx.obj['PARAMS']['dir'] profile = ctx.obj['PARAMS'].get('profile') run_script = None if run: run_script = os.path.join(dst_dir, 'bin', 'run.sh') ctx.obj['PARAMS']['env'] = env ctx.obj['PARAMS']['treadmillid'] = owner if uri: ctx.obj['PARAMS']['uri'] = uri if rootpw: ctx.obj['PARAMS']['rootpw'] = rootpw if gssapi: ctx.obj['PARAMS']['gssapi'] = gssapi ctx.obj['PARAMS']['rootpw'] = '' if masters: ctx.obj['PARAMS']['masters'] = masters else: ctx.obj['PARAMS']['masters'] = [] if first_time: ctx.obj['PARAMS']['first_time'] = first_time if suffix: ctx.obj['PARAMS']['suffix'] = suffix else: ctx.obj['PARAMS']['suffix'] = context.GLOBAL.ldap_suffix bootstrap.install( 'openldap', dst_dir, ctx.obj['PARAMS'], run=run_script, profile=profile, ) return openldap
#!/usr/bin/env python """ v0.1 Tool used for initating an Ipython (v0.9.1+) cluster using multiple nodes This actually uses ipcontroller and ipengine rather than the obsolete ipcluster. NOTE: if installing ipython controller (and engines) on a new computer, - need to rm ~/.ipython/security/ipcontroller-engine.furl prior to running ipython_cluster_setup.py NOTE: Requires prior setup of ssh tunneling for: - from controller computer to engine client computers - from engine client computers to controller computer TO SETUP a remote, ssh tunneled ipengine node: - install OpenSSL for python apt-get install python-openssl - Make a passwordless ssh tunnel to the ipengine client so that you can scp (or you can let the script by uncommenting scp ~/.ipython/ipcontroller-engine.furl to the ipengine client. - SETUP an ssh tunnel on the ipengine client for controller/engine (worms2) ssh -L 23610:localhost:23611 pteluser@lyra.berkeley.edu - SETUP an ssh tunnel on the ipcontroller computer for controller/engine (transx) ssh -R 23611:localhost:23612 pteluser@lyra.berkeley.edu - EDIT the ipcontroller-engine.furl on the ipengine client computer so that the 2nd IP is 127.0.0.1 and the portforwared port. Eg: e.g.: ipcontroller computer ipcontroller-engine.furl is: pb://3r___rcx@127.0.0.1:23612,192.168.1.25:23612/ec___yi and once edited on ipengine client computer, looks like: pb://3r___rcx@127.0.0.1:23612,127.0.0.1:23610/ec___yi - Also ensure that TCP environ var setting will work duing mec.execute(): os.environ['TCP_SEX_BIN']=os.path.expandvars('$HOME/bin/sex') os.environ['TCP_WCSTOOLS_DIR']=os.path.expandvars('$HOME/src/install/wcstools-3.6.4/bin/') os.environ['TCP_DIR']=os.path.expandvars('$HOME/src/TCP/') os.environ['TCP_DATA_DIR']=os.path.expandvars('$HOME/scratch/TCP_scratch/') - NOW you are ready to run ipython_cluster_setup.py, which will kill and start the ipcontroller, start ipengines, and run a TaskClient test. TODO: Eventually have this script run by testsuite.py? TODO: Is ipcontroller doing some logging? - Is this essentially a memory leak/growth? TODO: EC2 connection? """ import os, sys import time import threading # used for scp/ssh tasks. from IPython.kernel import client class Setup_System: """ Setup Ipython controller and engines. """ def __init__(self, pars={}): self.pars = pars def kill_existing_controller(self): """ """ # Default is SIGTERM exec_str = "pkill -f .*ipcontroller.*" #KILLS SCREEN NOOOO! #exec_str = "pkill -f .*ipengine.*" os.system(exec_str) def initialize_controller(self): """ initialize controller on local machine. """ # -y -x flags turn off engine and client security, which is ok since SSH tunnels are used. #exec_str = "ipcontroller -y -x --client-port=%d --engine-port=%d &" % \ exec_str = "ipcontroller --client-port=%d --engine-port=%d &" % \ (self.pars['client_port'], self.pars['engine_port']) os.system(exec_str) def scp_furls_to_clients(self): """ scp controller furl file to task client machines. Also modifies the generated_enginefurl to have the correct ports for port-forward use. """ lines = open(self.pars['generated_engine_furl_fpath']).readlines() new_line = lines[0].replace('192.168.1.25:%d' % (self.pars['engine_port']),\ '127.0.0.1:%d' % (self.pars['tunneled_engine_client_port'])) new_furl_fp = open(self.pars['modified_engine_furl_fpath'],'w') new_furl_fp.write(new_line) new_furl_fp.close() thread_list = [] for client_dict in self.pars['client_defs']: if ('__local__' in client_dict['name']): continue # skip the scp since generated on same machine elif ('__trans' in client_dict['name']): exec_str = "scp -C -P %d %s %s@%s:%s/ipcontroller-engine.furl" % (client_dict['ssh_port'], self.pars['generated_engine_furl_fpath'], client_dict['username'], client_dict['hostname'], client_dict['furl_dirpath']) t = threading.Thread(target=os.system, args=[exec_str]) t.start() thread_list.append(t) else: exec_str = "scp -C -P %d %s %s@%s:%s/ipcontroller-engine.furl" % (client_dict['ssh_port'], self.pars['modified_engine_furl_fpath'], client_dict['username'], client_dict['hostname'], client_dict['furl_dirpath']) t = threading.Thread(target=os.system, args=[exec_str]) t.start() thread_list.append(t) for t in thread_list: print "scp/ssh thread (%s) waiting..." % (client_dict['hostname']) t.join(10.0) # wait 10 seconds for scp/ssh if t.isAlive(): print "! Thread (%s) has not returned! (dead host?)" % (client_dict['hostname']) def kill_engines_on_taskclients(self): """ pkill any existing ipengines on local and remote ipengine client machines. """ thread_list = [] #DISABLED: try doing this 2x: for i in xrange(1): for client_dict in self.pars['client_defs']: # Comment this out if I want to KILL engines on trans[123] #if ('__trans' in client_dict['name']): # continue # KLUDGE dont kill ipengines on trans[123] computers #exec_str = "ssh -fn -p %d %s@%s pkill -9 -f .*bin.ipengine" % ( \ # client_dict['ssh_port'], # client_dict['username'], # client_dict['hostname']) home_dirpath = client_dict['furl_dirpath'][:client_dict['furl_dirpath'].find('.ipython')] exec_str = "ssh -fn -p %d %s@%s %ssrc/TCP/Algorithms/ipengine_kill.py" % ( \ client_dict['ssh_port'], client_dict['username'], client_dict['hostname'], home_dirpath) print exec_str t = threading.Thread(target=os.system, args=[exec_str]) t.start() thread_list.append(t) for t in thread_list: print "scp/ssh thread (%s) waiting..." % (client_dict['hostname']) t.join(10.0) # wait 10 seconds for scp/ssh if t.isAlive(): print "! Thread (%s) has not returned! (dead host?)" % (client_dict['hostname']) def start_engines_on_taskclients(self): """ Start ipengine clients on local and remote machines """ # IF CURRENT IMPLEMENTATION POSES PROBLEMS: # Maybe have a daemon on the remote machine which can be given # a config file & restarted (which kills existing # engines), and the daemon will spawn the engines # without need of a continuous ssh session from # ipython_clister_setup.py host. # - This would allow for the ~dozen engines to be easily spawned thread_list = [] for client_dict in self.pars['client_defs']: for i in xrange(client_dict['n_engines']): if ('__local__' in client_dict['name']): exec_str = "ipengine &" os.system(exec_str) else: # here we spawn a remote ssh session. ### NOTE: nice -19 works, but since I run on my onw machines, I dont do: #exec_str = "ssh -fn -p %d %s@%s nice -19 ipengine &" % ( \ if client_dict.has_key('nice'): exec_str = "ssh -fn -p %d %s@%s nice -%d ipengine &" % ( \ client_dict['ssh_port'], client_dict['username'], client_dict['hostname'], client_dict['nice']) else: exec_str = "ssh -fn -p %d %s@%s ipengine &" % ( \ client_dict['ssh_port'], client_dict['username'], client_dict['hostname']) print exec_str t = threading.Thread(target=os.system, args=[exec_str]) t.start() thread_list.append(t) for t in thread_list: print "scp/ssh thread (%s) waiting..." % (client_dict['hostname']) t.join(20.0) # wait 10 seconds for scp/ssh if t.isAlive(): print "! Thread (%s) has not returned! (dead host?)" % (client_dict['hostname']) def main(self): """ Main function. """ flag_done = False while not flag_done: try: self.kill_existing_controller() time.sleep(5) self.initialize_controller() time.sleep(20) # we need to wait for the ipcontroller to generate new .furl files self.scp_furls_to_clients() self.kill_engines_on_taskclients() #sys.exit() time.sleep(5) self.start_engines_on_taskclients() flag_done = True except: print "Setup_System.main() Except. sleeping(20)" time.sleep(20) # wait a couple seconds, probably an incomplete file scp or .mec() initialization failure. class Test_System: """ Run a test case of Ipython parallelization. """ def __init__(self, pars={}): self.pars = pars def main(self): """ Main function for Testing. """ # This tests the Multi-engine interface: mec = client.MultiEngineClient() exec_str = """import os os.environ['TCP_SEX_BIN']=os.path.expandvars('$HOME/bin/sex') os.environ['TCP_WCSTOOLS_DIR']=os.path.expandvars('$HOME/src/install/wcstools-3.6.4/bin/') os.environ['TCP_DIR']=os.path.expandvars('$HOME/src/TCP/') os.environ['TCP_DATA_DIR']=os.path.expandvars('$HOME/scratch/TCP_scratch/') os.environ['CLASSPATH']=os.path.expandvars('$HOME/src/install/weka-3-5-7/weka.jar') """ #if os.path.exists(os.path.expandvars("$HOME/.ipython/custom_configs")): execfile(os.path.expandvars("$HOME/.ipython/custom_configs")) mec.execute(exec_str) # This tests the task client interface: tc = client.TaskClient() task_list = [] n_iters_total = 8 n_iters_per_clear = 10 for i in xrange(n_iters_total): task_str = """cat = os.getpid()""" # os.getpid() # os.environ taskid = tc.run(client.StringTask(task_str, pull="cat")) task_list.append(taskid) ### NOTE: This can be used to thin down the ipcontroller memory storage of ### finished tasks, but afterwards you cannot retrieve values (below): #if (i % n_iters_per_clear == 0): # tc.clear() print '!!! NUMBER OF TASKS STILL SCHEDULED: ', tc.queue_status()['scheduled'] for i,taskid in enumerate(task_list): ### NOTE: The following retrieval doesnt work if ### tc.clear() was called earlier: task_result = tc.get_task_result(taskid, block=True) print task_result['cat'] print 'done' print tc.queue_status() #del tc #time.sleep(1) if __name__ == '__main__': if len(sys.argv) > 1: # We can assume we were given a python file to exec() which contains a pars={} dict. # TODO: read pars from file. f = open(os.path.abspath(os.path.expandvars(sys.argv[1])))# Import the standard Parameter file exec f f.close() else: pars = { \ 'client_port':10113, # Controller listen port for python taskclient connections 'engine_port':23612, # Controller listen port for engine connections 'tunneled_engine_client_port':23610, # port used on the engine client to get back to ipcontroller 'generated_engine_furl_fpath':'/home/pteluser/.ipython/security/ipcontroller-engine.furl', 'modified_engine_furl_fpath':'/tmp/temp_engine_furl_fpath', 'engine-cert-file':'', # this is shared by all engines. ?Maybe it is manually copied over once, initially? Although this .pem is not identical to the ipcontroller computer. 'client_defs':[ \ {'name':'__local__', 'hostname':'127.0.0.1', 'furl_dirpath':'/home/pteluser/.ipython/security', 'username':'pteluser', 'ssh_port':22, 'n_engines':10}, ], } SetupSystem = Setup_System(pars=pars) SetupSystem.main() # FOR TESTING: time.sleep(20) # (70) # We give some time for controller to initialize (sgn02 requires > 30secs) TestSystem = Test_System() TestSystem.main() time.sleep(0.01) # This seems to fix a traceback where Ipython/Twisted trips on itself while shutting down """ {'name':'__local__', 'hostname':'127.0.0.1', 'furl_dirpath':'/home/pteluser/.ipython/security', 'username':'pteluser', 'ssh_port':22, 'n_engines':8}, {'name':'__trans_betsy__', 'hostname':'192.168.1.85', 'furl_dirpath':'/home/pteluser/.ipython/security', 'username':'pteluser', 'ssh_port':22, 'n_engines':8}, {'name':'__trans1__', 'hostname':'192.168.1.45', 'furl_dirpath':'/home/pteluser/.ipython/security', 'username':'pteluser', 'ssh_port':22, 'n_engines':2}, {'name':'__trans2__', 'hostname':'192.168.1.55', 'furl_dirpath':'/home/pteluser/.ipython/security', 'username':'pteluser', 'ssh_port':22, 'n_engines':2}, {'name':'__trans3__', 'hostname':'192.168.1.65', 'furl_dirpath':'/home/pteluser/.ipython/security', 'username':'pteluser', 'ssh_port':22, 'n_engines':2}, {'name':'__worms2__', 'hostname':'localhost', 'furl_dirpath':'/home/starr/.ipython/security', 'username':'starr', 'ssh_port':32151, 'n_engines':6}, {'name':'__cch1__', 'hostname':'localhost', 'furl_dirpath':'/home/dstarr/.ipython/security', 'username':'dstarr', 'nice':19, 'ssh_port':32161, 'n_engines':1}, {'name':'__sgn02__', 'hostname':'localhost', 'furl_dirpath':'/global/homes/d/dstarr/datatran/.ipython/security', 'username':'dstarr', 'ssh_port':32141, 'n_engines':0}, # 6 """
import turtle def draw_square(some_turtle): for i in range(1,5): some_turtle.forward(100) some_turtle.right(90) def draw_triangle(some_turtle): for i in range(1,4): some_turtle.forward(100) some_turtle.right(120) def draw_art(): window = turtle.Screen() window.bgcolor('green') n = 0 while n < 360: brad = turtle.Turtle() brad.right(n) draw_triangle(brad) n+= 10 window.exitonclick() draw_art()
from django.conf.urls import patterns, url, include from django.views.generic import ListView from ideacalculator.views import getideas urlpatterns = patterns('', (r'^getidea/$', getideas), )
# Generated by Django 3.0.3 on 2020-06-04 20:10 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('dimensoes', '0014_dimensaomodel_profundidade_media'), ] operations = [ migrations.RemoveField( model_name='dimensaomodel', name='construcao', ), migrations.RemoveField( model_name='dimensaomodel', name='contra_piso', ), migrations.RemoveField( model_name='dimensaomodel', name='escavacao', ), migrations.RemoveField( model_name='dimensaomodel', name='instalacao_vinil', ), migrations.RemoveField( model_name='dimensaomodel', name='isomanta_m2', ), migrations.RemoveField( model_name='dimensaomodel', name='perfil_fixo_m', ), migrations.RemoveField( model_name='dimensaomodel', name='preco', ), migrations.RemoveField( model_name='dimensaomodel', name='produto', ), migrations.RemoveField( model_name='dimensaomodel', name='remocao_terra', ), migrations.RemoveField( model_name='dimensaomodel', name='vinil_m2', ), ]
import sqlite3 from fastapi import APIRouter, HTTPException from models.customers import Customer router = APIRouter() @router.on_event("startup") async def startup(): router.db_connection = sqlite3.connect("chinook.db") router.db_connection.row_factory = sqlite3.Row @router.on_event("shutdown") async def shutdown(): router.db_connection.close() @router.put("/customers/{customer_id}") async def customers(customer_id, customer: Customer = {}): cursor = router.db_connection.cursor() selected_customer = cursor.execute( "SELECT * FROM customers WHERE customerid = ?", (customer_id,), ).fetchone() if not selected_customer: raise HTTPException(status_code=404, detail={"error": "Not Found"}) column_names = [value[0] for value in customer if value[1] is not None] values = [value[1] for value in customer if value[1] is not None] columns = " = ?,".join(column_names) + "= ?" cursor.execute( f"UPDATE customers SET {columns} WHERE customerid = ?", (*values, customer_id,), ) router.db_connection.commit() return selected_customer @router.get("/sales") async def sales(category: str): if category == "customers": cursor = router.db_connection.cursor() sales = cursor.execute( """ SELECT customerid, email, phone, ROUND(SUM(total),2) AS Sum FROM invoices JOIN customers USING(customerid) GROUP BY customerid ORDER BY Sum DESC, customerid """ ).fetchall() return sales if category == "genres": cursor = router.db_connection.cursor() genres = cursor.execute( """ SELECT g.name, Sum(quantity) AS Sum FROM invoice_items JOIN tracks USING(trackid) JOIN genres g USING(genreid) GROUP BY genreid ORDER BY Sum DESC, g.name""" ).fetchall() return genres raise HTTPException(status_code=404, detail={"error": "Not Found"})
from django.conf.urls import url from players import views urlpatterns = [ url(r'^(?P<season>\d{4}-\d{2})/$', views.PlayerListView.as_view(), name='ranking'), url(r'^(?P<season>\d{4}-\d{2})/vote/$', views.PlayerVoteModalView.as_view(), name='vote_modal'), url(r'^vote_save/(?P<signed_data>[\w:=_-]+)/$', views.PlayerVoteSaveView.as_view(), name='vote_save'), ]
import os import re import math import sys from fnmatch import fnmatch pattern = "*.txt" word_list = [] spam = 1 ham = 0 dict_spam = {} dict_ham = {} lw = [] learning_rate = sys.argv[1] iterations = sys.argv[2] cwd = os.getcwd() with open('stopwords.txt') as f: stop_words = f.read().splitlines() def get_words(x,y): for line in x: for word in line.split(): word = word.lower() y += filter(None,re.split(r'\W+|_', word)) def word_frequency(doc,list,ws): temp_w = sorted(set(ws)) for i in temp_w: count = 0 for j in ws: if i == j: count = count + 1 list.append(words(i,count)) def extractwords(dir,dict): os.chdir(cwd) global word_list for path, subdirs, files in os.walk(dir): os.chdir(dir) for name in files: words_obj = [] words = [] if fnmatch(name, pattern): with open(name,'r') as file: get_words(file,words) if(sys.argv[3] == 'yes'): filtered_word_list = words[:] for word in words: if word in stop_words: filtered_word_list.remove(word) words = filtered_word_list word_frequency(file,words_obj,words) word_list = word_list + words dict[name] = words_obj class Vocabulary(object): def __init__(self, word, weight): self.word = word self.weight = weight class words(object): def __init__(self, word, count): self.word = word self.count = count extractwords('train/spam',dict_spam) extractwords('train/ham',dict_ham) V = sorted(set(word_list)) print len(V) def initialize_weights(V): for i in V: lw.append(Vocabulary(i,0)) initialize_weights(V) def match(words): for i in range(len(lw)): if words == lw[i].word: return lw[i].weight return 0 def learn_weights_helper(list): sum = 0 for i in range(len(list)): w = match(list[i].word) sum = sum + w * list[i].count if sum >= 0: return 1 else: return 0 def update_weights(val,cs,ls): error = cs - val for i in range(len(ls)): for j in range(len(lw)): if ls[i].word == lw[j].word: lw[j].weight = float(lw[j].weight) + (float(learning_rate) * error * ls[i].count) def learn_weights(dict,exp): for key in dict.keys(): ls = dict[key] prediction = learn_weights_helper(ls) update_weights(prediction,exp,ls) for i in range(int(iterations)): print "learning weights - iteration... ",i learn_weights(dict_spam,spam) learn_weights(dict_ham,ham) def apply_p_helper(dict,exp): global count for key in dict.keys(): ls = dict[key] prediction = learn_weights_helper(ls) if prediction == exp: count = count + 1 count = 0 def apply_p(): print "applying...." test_spam = {} test_ham = {} os.chdir(cwd) extractwords('test/spam',test_spam) extractwords('test/ham',test_ham) apply_p_helper(test_spam,spam) apply_p_helper(test_ham,ham) total_docs = len(test_spam) + len(test_ham) accuracy = float(count)/float(total_docs) * 100 print total_docs,count,accuracy apply_p()
from django.contrib import admin from home.models import Post, Comment, LikeDislike admin.site.register(Post) admin.site.register(Comment) admin.site.register(LikeDislike)
from read_input import * from itertools import zip_longest from pprint import pprint def left_factoring(nonterminal_list,production_list): left_part = [] # left part of productions list right_part = [] # right part of productions list remove_nonterminal_index_list = [] #index of productions to be removed new_productions = [] #new productions to be added,will contain object new_productions_final = [] #all new productions to be added,will contain object new_nonterminal_list = [] #new nonterminal to be added new_nonterminal_list_final = [] #all new nonterminal to be added for production in production_list: for left,right in production.items(): left_part.append(left) right_part.append(right) for nonterminal in nonterminal_list: nonterminal_index_list = [i for i,x in enumerate(left_part) if x == nonterminal and right_part[i] != ""] #list of indexes of production that derive from same nonterminal and that do not derive to epsilon/null string if len(nonterminal_index_list) != 1: right_part_list = [right_part[index] for index in nonterminal_index_list] # print(nonterminal,right_part_list) prefixes_list = find_prefixes(right_part_list) # print(prefixes_list) if (len(prefixes_list) != len(right_part_list)): remove_nonterminal_index_list += nonterminal_index_list prefix_sufixes_dict = find_prefix_suffixes(right_part_list, prefixes_list) # print("prefix_sufixes_dict",nonterminal,prefix_sufixes_dict) new_nonterminal_list, new_productions = create_new_productions_and_nonterminal(nonterminal, prefix_sufixes_dict) # print("new_nonterminal_list before",new_nonterminal_list) # print("new_productions before",new_productions) new_nonterminal_list, new_productions = left_factoring(new_nonterminal_list,new_productions) #recursion # print("new_nonterminal_list after",new_nonterminal_list) # print("new_productions after",new_productions) new_nonterminal_list_final += new_nonterminal_list new_productions_final += new_productions # print("Index of nonterminal to remove",remove_nonterminal_index_list) # print("Productions",production_list) production_list = [elem for index,elem in enumerate(production_list) if index not in remove_nonterminal_index_list] # print("Productions",production_list) # print("New Productions",new_productions_final) production_list += new_productions_final # print("New nonterminals",new_nonterminal_list_final) nonterminal_list += new_nonterminal_list_final # print("Nonterminals",nonterminal_list) # print("Productions",production_list) return nonterminal_list,production_list def find_prefixes(strings): zipped = zip_longest(*strings, fillvalue='') for index, letters in enumerate(zipped): if index == 0: prefixes = letters # assumes there will always be a prefix else: poss_prefixes = [prefix + letters[i] for i, prefix in enumerate(prefixes)] prefixes = [prefix if poss_prefixes.count(prefix) == letters.count(prefix) or poss_prefixes.count(prefix)==prefixes.count(prefix[:-1]) else prefixes[i] for i, prefix in enumerate(poss_prefixes)] return list(set(prefixes)) def find_prefix_suffixes(strings, prefixes): prefix_suffix = {} for s in strings: for prefix in prefixes: if s.startswith(prefix): if prefix in prefix_suffix: prefix_suffix[prefix].append(s.replace(prefix, '', 1)) break else: prefix_suffix[prefix] = list([s.replace(prefix, '', 1)]) break return prefix_suffix def create_new_productions_and_nonterminal(nonterminal, prefix_sufixes_dict): new_productions = [] new_nonterminal_list = [] counter = 0 for key, value_list in prefix_sufixes_dict.items(): if len(value_list) == 1: if value_list[0] == "": new_productions.append({nonterminal:key}) else: new_productions.append({nonterminal:key+value_list[0]}) else: counter+=1 new_nonterminal = nonterminal+str(counter) new_productions.append({nonterminal:key+new_nonterminal}) for value in value_list: new_productions.append({new_nonterminal:value}) new_nonterminal_list.append(new_nonterminal) return new_nonterminal_list, new_productions input_dict["Grammar"]["Nonterminal"],input_dict["Grammar"]["Productions"] = left_factoring(input_dict["Grammar"]["Nonterminal"],input_dict["Grammar"]["Productions"]) print("\nData after left factoring\n") pprint(input_dict)
class Hero: def __init__(self, name, level): self.name = name self.level = level class Creature: def __init__(self, name, the_level): self.name = name self.level = the_level health1 = the_level * 7 def __repr__(self): return "{}, Level {}".format( self.name, self.level )
#!/usr/bin/python3.4 # -*-coding:Utf-8 def aff_float(fl) : """ This function take a float in param and return a string with the troncature of this float with 3 decimal""" if type(fl) is not float : raise TypeError("Le paramètre doit être un float") else : flottant = str(fl) entier, virgule = flottant.split(".") return ",".join([entier, virgule[:3]])
# MQTT Library Import import paho.mqtt.client as mqtt import paho.mqtt.publish as publish import psutil, datetime # Generate intial CPU Utilization Counters psutil.cpu_percent(); # Generate CPU Stats cpuCount = psutil.cpu_count(); print "CPU Count: ",cpuCount; # Generate Memory Stats virtualmemoryStats = psutil.virtual_memory(); totalVM = virtualmemoryStats[0]; availVM = virtualmemoryStats[1]; print "Total Memory: ",totalVM print "Availible Memory: ",availVM # Root Parition Space rootStats = psutil.disk_usage('/') rootTotal = rootStats[0]; rootUsed = rootStats[1]; rootFree = rootStats[2]; rootPercent = rootStats[3]; print "Root Parition: ",rootTotal," total - ",rootUsed," used - ",rootFree," free - ",rootPercent," % free" # Determine Uptime lastBoot = datetime.datetime.fromtimestamp(psutil.boot_time()).strftime("%Y-%m-%d %H:%M:%S") print "Last Boot Time/Date: ",lastBoot # Generating CPU Utilization Usage (Can hang the program) cpuUtil = psutil.cpu_percent(interval=5, percpu=True) print "CPU Utilization: ",cpuUtil[0],"% Proc 1 ",cpuUtil[1],"% Proc 2 ",cpuUtil[2],"$ Proc 3 ",cpuUtil[3],"% Proc 4" #mqttc = mqtt.Client(client_id="chomper") #mqttc.connect("octokong", 1883) #mqttc.publish("uptime", uptime()) #mqttc.loop(2)
import pandas import pandasql import json import requests import pprint li = [] li.ap def add_full_name(path_to_csv, path_to_new_csv): #Assume you will be reading in a csv file with the same columns that the #Lahman baseball data set has -- most importantly, there are columns #called 'nameFirst' and 'nameLast'. #1) Write a function that reads a csv #located at "path_to_csv" into a pandas dataframe and adds a new column #called 'nameFull' with a player's full name. # #For example: # for Hank Aaron, nameFull would be 'Hank Aaron', # #2) Write the data in the pandas dataFrame to a new csv file located at #path_to_new_csv #WRITE YOUR CODE HERE df = pandas.read_csv(path_to_csv) df['nameFull'] = df['nameFirst'] + ' ' + df['nameLast'] df.to_csv(path_to_new_csv) if __name__ == "__main__": # For local use only # If you are running this on your own machine add the path to the # Lahman baseball csv and a path for the new csv. # The dataset can be downloaded from this website: http://www.seanlahman.com/baseball-archive/statistics # We are using the file Master.csv path_to_csv = "" path_to_new_csv = "" add_full_name(path_to_csv, path_to_new_csv) def select_first_50(filename): # Read in our aadhaar_data csv to a pandas dataframe. Afterwards, we rename the columns # by replacing spaces with underscores and setting all characters to lowercase, so the # column names more closely resemble columns names one might find in a table. aadhaar_data = pandas.read_csv(filename) aadhaar_data.rename(columns = lambda x: x.replace(' ', '_').lower(), inplace=True) # Select out the first 50 values for "registrar" and "enrolment_agency" # in the aadhaar_data table using SQL syntax. # # Note that "enrolment_agency" is spelled with one l. Also, the order # of the select does matter. Make sure you select registrar then enrolment agency # in your query. # # You can download a copy of the aadhaar data that we are passing # into this exercise below: # https://s3.amazonaws.com/content.udacity-data.com/courses/ud359/aadhaar_data.csv q = "SELECT registrar, enrolment_agency FROM aadhaar_data limit 50" #Execute your SQL command against the pandas frame aadhaar_solution = pandasql.sqldf(q.lower(), locals()) return aadhaar_solution def aggregate_query(filename): # Read in our aadhaar_data csv to a pandas dataframe. Afterwards, we rename the columns # by replacing spaces with underscores and setting all characters to lowercase, so the # column names more closely resemble columns names one might find in a table. aadhaar_data = pandas.read_csv(filename) aadhaar_data.rename(columns = lambda x: x.replace(' ', '_').lower(), inplace=True) # Write a query that will select from the aadhaar_data table how many men and how # many women over the age of 50 have had aadhaar generated for them in each district. # aadhaar_generated is a column in the Aadhaar Data that denotes the number who have had # aadhaar generated in each row of the table. # # Note that in this quiz, the SQL query keywords are case sensitive. # For example, if you want to do a sum make sure you type 'sum' rather than 'SUM'. # # The possible columns to select from aadhaar data are: # 1) registrar # 2) enrolment_agency # 3) state # 4) district # 5) sub_district # 6) pin_code # 7) gender # 8) age # 9) aadhaar_generated # 10) enrolment_rejected # 11) residents_providing_email, # 12) residents_providing_mobile_number # # You can download a copy of the aadhaar data that we are passing # into this exercise below: # https://s3.amazonaws.com/content.udacity-data.com/courses/ud359/aadhaar_data.csv q = "SELECT gender, district, sum(aadhaar_generated) from aadhaar_data where age > 50 GROUP BY gender, district" # Execute your SQL command against the pandas frame aadhaar_solution = pandasql.sqldf(q.lower(), locals()) return aadhaar_solution def api_get_request(url): # In this exercise, you want to call the last.fm API to get a list of the # top artists in Spain. The grader will supply the URL as an argument to # the function; you do not need to construct the address or call this # function in your grader submission. # # Once you've done this, return the name of the number 1 top artist in # Spain. data = requests.get(url).text data = json.loads(data) pp = pprint.PrettyPrinter() pp.pprint(data) toparts = data['topartists'] attr = toparts['artist'][0] name = attr['name'] print(name) return name # return the top artist in Spain
import json import os import sys import boto3 import botocore from garage import config from garage.misc import console def setup_iam(): iam_client = boto3.client( "iam", aws_access_key_id=AWS_ACCESS_KEY, aws_secret_access_key=AWS_ACCESS_SECRET, ) iam = boto3.resource( 'iam', aws_access_key_id=AWS_ACCESS_KEY, aws_secret_access_key=AWS_ACCESS_SECRET) # delete existing role if it exists try: existing_role = iam.Role('garage') existing_role.load() # if role exists, delete and recreate if not config.query_yes_no( ("There is an existing role named garage. " "Proceed to delete everything garage-related and recreate?"), default="no"): sys.exit() print("Listing instance profiles...") inst_profiles = existing_role.instance_profiles.all() for prof in inst_profiles: for role in prof.roles: print("Removing role %s from instance profile %s" % (role.name, prof.name)) prof.remove_role(RoleName=role.name) print("Deleting instance profile %s" % prof.name) prof.delete() for policy in existing_role.policies.all(): print("Deleting inline policy %s" % policy.name) policy.delete() for policy in existing_role.attached_policies.all(): print("Detaching policy %s" % policy.arn) existing_role.detach_policy(PolicyArn=policy.arn) print("Deleting role") existing_role.delete() except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == 'NoSuchEntity': pass else: raise e print("Creating role garage") iam_client.create_role( Path='/', RoleName='garage', AssumeRolePolicyDocument=json.dumps({ 'Version': '2012-10-17', 'Statement': [{ 'Action': 'sts:AssumeRole', 'Effect': 'Allow', 'Principal': { 'Service': 'ec2.amazonaws.com' } }] })) role = iam.Role('garage') print("Attaching policies") role.attach_policy(PolicyArn='arn:aws:iam::aws:policy/AmazonS3FullAccess') role.attach_policy( PolicyArn='arn:aws:iam::aws:policy/ResourceGroupsandTagEditorFullAccess' ) print("Creating inline policies") iam_client.put_role_policy( RoleName=role.name, PolicyName='CreateTags', PolicyDocument=json.dumps({ "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Action": ["ec2:CreateTags"], "Resource": ["*"] }] })) iam_client.put_role_policy( RoleName=role.name, PolicyName='TerminateInstances', PolicyDocument=json.dumps({ "Version": "2012-10-17", "Statement": [{ "Sid": "Stmt1458019101000", "Effect": "Allow", "Action": ["ec2:TerminateInstances"], "Resource": ["*"] }] })) print("Creating instance profile garage") iam_client.create_instance_profile(InstanceProfileName='garage', Path='/') print("Adding role garage to instance profile garage") iam_client.add_role_to_instance_profile( InstanceProfileName='garage', RoleName='garage') def setup_s3(): print("Creating S3 bucket at s3://%s" % S3_BUCKET_NAME) s3_client = boto3.client( "s3", aws_access_key_id=AWS_ACCESS_KEY, aws_secret_access_key=AWS_ACCESS_SECRET, ) try: s3_client.create_bucket( ACL='private', Bucket=S3_BUCKET_NAME, ) except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == 'BucketAlreadyExists': raise ValueError( "Bucket %s already exists. Please reconfigure S3_BUCKET_NAME" % S3_BUCKET_NAME) from e elif e.response['Error']['Code'] == 'BucketAlreadyOwnedByYou': print("Bucket already created by you") else: raise e print("S3 bucket created") def setup_ec2(): for region in ["us-east-1", "us-west-1", "us-west-2"]: print("Setting up region %s" % region) ec2 = boto3.resource( "ec2", region_name=region, aws_access_key_id=AWS_ACCESS_KEY, aws_secret_access_key=AWS_ACCESS_SECRET, ) ec2_client = boto3.client( "ec2", region_name=region, aws_access_key_id=AWS_ACCESS_KEY, aws_secret_access_key=AWS_ACCESS_SECRET, ) existing_vpcs = list(ec2.vpcs.all()) assert len(existing_vpcs) >= 1 vpc = existing_vpcs[0] print("Creating security group in VPC %s" % str(vpc.id)) try: security_group = vpc.create_security_group( GroupName='garage-sg', Description='Security group for garage') except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == 'InvalidGroup.Duplicate': sgs = list( vpc.security_groups.filter(GroupNames=['garage-sg'])) security_group = sgs[0] else: raise e ALL_REGION_AWS_SECURITY_GROUP_IDS[region] = [security_group.id] ec2_client.create_tags( Resources=[security_group.id], Tags=[{ 'Key': 'Name', 'Value': 'garage-sg' }]) try: security_group.authorize_ingress( FromPort=22, ToPort=22, IpProtocol='tcp', CidrIp='0.0.0.0/0') except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == 'InvalidPermission.Duplicate': pass else: raise e print("Security group created with id %s" % str(security_group.id)) key_name = 'garage-%s' % region try: print("Trying to create key pair with name %s" % key_name) key_pair = ec2_client.create_key_pair(KeyName=key_name) except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == 'InvalidKeyPair.Duplicate': if not config.query_yes_no( ("Key pair with name %s exists. " "Proceed to delete and recreate?") % key_name, "no"): sys.exit() print("Deleting existing key pair with name %s" % key_name) ec2_client.delete_key_pair(KeyName=key_name) print("Recreating key pair with name %s" % key_name) key_pair = ec2_client.create_key_pair(KeyName=key_name) else: raise e key_pair_folder_path = os.path.join(config.PROJECT_PATH, "private", "key_pairs") file_name = os.path.join(key_pair_folder_path, "%s.pem" % key_name) print("Saving keypair file") console.mkdir_p(key_pair_folder_path) with os.fdopen( os.open(file_name, os.O_WRONLY | os.O_CREAT, 0o600), 'w') as handle: handle.write(key_pair['KeyMaterial'] + '\n') # adding pem file to ssh os.system("ssh-add %s" % file_name) ALL_REGION_AWS_KEY_NAMES[region] = key_name def setup(): setup_s3() setup_iam() setup_ec2() if __name__ == "__main__": from garage.config_personal import * setup()
def readfile(name, fabric): for s in open(name): a = s.split('@') id = a[0] b = a[1].split(':') from_edge = b[0].split(',') from_left = int(from_edge[0]) from_top = int(from_edge[1]) d= b[1].split('x') width = int(d[0]) height = int(d[1]) top_left = (from_left, from_top) bottom_right = (from_left+width, from_top+height) for x in range(top_left[0], bottom_right[0]): for y in range(top_left[1], bottom_right[1]): if fabric[x][y] == '.': fabric[x][y] = id else: fabric[x][y] = 'x' return fabric def fabric(size): fabric = [] for y in range(size): fabric.append( ['.'] * size) return fabric count=0 for a in readfile('aoc3.txt', fabric(1000)): for b in a: if b == 'x': count +=1 print("Result ", count)
import logging import json import os from pathlib import Path from flask import Flask, request from flask_cors import CORS from flask_restplus import Api, Resource from flask_restplus import abort from enigma_docker_common.config import Config from enigma_docker_common.logger import get_logger env_defaults = {'K8S': './config/k8s_config.json', 'TESTNET': './config/testnet_config.json', 'MAINNET': './config/mainnet_config.json', 'COMPOSE': './config/compose_config.json'} config = Config(config_file=env_defaults[os.getenv('ENIGMA_ENV', 'COMPOSE')]) logger = get_logger('km.server') logging.getLogger("urllib3.connectionpool").setLevel(logging.ERROR) logging.getLogger("werkzeug").setLevel(logging.ERROR) application = Flask(__name__) CORS(application) api = Api(app=application, version='1.0') ns = api.namespace('km', description='Contract operations') @ns.route("/address") class GetAddress(Resource): """ returns a list of tracked addresses for a chain/network. If parameters are empty, will return all addresses """ @ns.param('name', 'Key management address filename -- by default right now can only be principal-sign-addr.txt', 'query') def get(self): filename = request.args.get('name') try: if filename not in config["KM_FILENAME"]: logger.error(f'Tried to retrieve file which was not in allowed file names: {filename}') return abort(404) contract_filename = f'{config["KEYPAIR_DIRECTORY"]}{filename}' with open(contract_filename) as f: return f.read() except FileNotFoundError as e: logger.error(f'File not found: {e}') return abort(404) except json.JSONDecodeError as e: logger.error(f'Error decoding config file. Is it valid JSON? {e}') return abort(500) def run(port): logger.debug("using port:"+str(port)) application.run(host='0.0.0.0', port=port, debug=False) if __name__ == '__main__': from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('-p', '--port', default=8081, type=int, help='port to listen on') args = parser.parse_args() run(args.port)
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures #from sklearn.preprocessing import StandardScaler #Input dataset data = pd.read_csv('Position_Salaries.csv') X = data.iloc[:,1:2].values y = data.iloc[:,2].values #Splitting the dataset into the Training set and Test set #X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=42) ''' #Feature Scaling sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) ''' lin_reg = LinearRegression() lin_reg.fit(X,y) print(lin_reg.predict([[6.5]])) poly_reg = PolynomialFeatures(degree = 4) X_poly = poly_reg.fit_transform(X) lin_reg_2 = LinearRegression() lin_reg_2.fit(X_poly,y) X_grid = np.arange(min(X),max(X),0.1) X_grid = X_grid.reshape((len(X_grid),1)) plt.scatter(X, y,color = 'r',s=15) plt.plot(X_grid,lin_reg_2.predict(poly_reg.fit_transform(X_grid)),color = 'b') plt.title('Polynomial Regression') plt.xlabel('Position level') plt.ylabel('Salary') plt.show()
# Copyright 2022 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations import os import re from typing import Any, Mapping import pytest from pants.backend.visibility.glob import PathGlob, PathGlobAnchorMode, TargetGlob from pants.engine.addresses import Address from pants.engine.internals.target_adaptor import TargetAdaptor @pytest.mark.parametrize( "base, pattern_text, expected", [ ( "base", "foo", PathGlob( raw="foo", anchor_mode=PathGlobAnchorMode.FLOATING, glob=re.compile(r"/?\bfoo$"), uplvl=0, ), ), ( "base", ".", PathGlob( raw="", anchor_mode=PathGlobAnchorMode.INVOKED_PATH, glob=re.compile("$"), uplvl=0 ), ), ( "base", "./foo", PathGlob( raw="foo", anchor_mode=PathGlobAnchorMode.INVOKED_PATH, glob=re.compile("foo$"), uplvl=0, ), ), ( "base", ("../foo/../bar", "../bar"), PathGlob( raw="bar", anchor_mode=PathGlobAnchorMode.INVOKED_PATH, glob=re.compile("bar$"), uplvl=1, ), ), ( "base", ("/foo", "base/foo"), PathGlob( raw="base/foo", anchor_mode=PathGlobAnchorMode.DECLARED_PATH, glob=re.compile("base/foo$"), uplvl=0, ), ), ( "base/sub", ("/../bar", "base/bar"), PathGlob( raw="base/bar", anchor_mode=PathGlobAnchorMode.DECLARED_PATH, glob=re.compile("base/bar$"), uplvl=0, ), ), ( "base", ("/foo/../baz", "base/baz"), PathGlob( raw="base/baz", anchor_mode=PathGlobAnchorMode.DECLARED_PATH, glob=re.compile("base/baz$"), uplvl=0, ), ), ( "base", "//foo", PathGlob( raw="foo", anchor_mode=PathGlobAnchorMode.PROJECT_ROOT, glob=re.compile(r"foo$"), uplvl=0, ), ), ( "base", "foo/**/bar", PathGlob( raw="foo/**/bar", anchor_mode=PathGlobAnchorMode.FLOATING, glob=re.compile(r"/?\bfoo(/.*)?/bar$"), uplvl=0, ), ), ( "base", ("foo/../bar", "bar"), PathGlob( raw="bar", anchor_mode=PathGlobAnchorMode.FLOATING, glob=re.compile(r"/?\bbar$"), uplvl=0, ), ), ( "base", "my_file.ext", PathGlob( raw="my_file.ext", anchor_mode=PathGlobAnchorMode.FLOATING, glob=re.compile(r"/?\bmy_file\.ext$"), uplvl=0, ), ), ( "base", "*my_file.ext", PathGlob( raw="*my_file.ext", anchor_mode=PathGlobAnchorMode.FLOATING, glob=re.compile(r"[^/]*my_file\.ext$"), uplvl=0, ), ), ( "base", ".ext", PathGlob( raw=".ext", anchor_mode=PathGlobAnchorMode.FLOATING, glob=re.compile(r"\.ext$"), uplvl=0, ), ), ( "base", "**/path", PathGlob( raw="**/path", anchor_mode=PathGlobAnchorMode.FLOATING, glob=re.compile(r"/?\bpath$"), uplvl=0, ), ), ], ) def test_pathglob_parse(base: str, pattern_text: str | tuple[str, str], expected: PathGlob) -> None: if isinstance(pattern_text, tuple): pattern, text = pattern_text else: pattern, text = (pattern_text,) * 2 actual = PathGlob.parse(pattern, base) assert expected.anchor_mode == actual.anchor_mode assert expected.glob.pattern == actual.glob.pattern assert text == str(actual) assert expected == actual @pytest.mark.parametrize( "glob, tests", [ ( PathGlob.parse("./foo/bar", "base"), ( # path, base, expected ("tests/foo", "src", None), ("src/foo", "src", "foo"), ("src/foo", "src/a", None), ), ), ( PathGlob.parse("../foo/bar", "base"), ( # path, base, expected ("src/foo/bar", "src/qux", "foo/bar"), ), ), ], ) def test_pathglob_match_path( glob: PathGlob, tests: tuple[tuple[str, str, str | None], ...] ) -> None: for path, base, expected in tests: assert expected == glob._match_path(path, base) @pytest.mark.parametrize( "glob, tests", [ ( PathGlob.parse("//foo/bar", "base"), ( ("tests/foo", "src", False), ("src/foo", "src", False), ("foo/bar", "src/a", True), ("foo/bar/baz", "src/a", False), ), ), ( PathGlob.parse("/foo/bar", "base"), ( ("foo/bar", "src", False), ("base/foo/bar", "src", True), ("src/foo/bar", "src", False), ), ), ( PathGlob.parse("./foo/bar", "base"), ( ("foo/bar", "src", False), ("base/foo/bar", "src", False), ("src/foo/bar", "src", True), ), ), ( PathGlob.parse(".", "base"), ( ("foo/bar", "src", False), ("base/foo/bar", "src", False), ("src/foo/bar", "src", False), ("src/proj", "src/proj", True), ), ), ( PathGlob.parse("./foo", "base"), ( ("foo/bar", "src", False), ("base/foo/bar", "src", False), ("src/foo/bar", "src", False), ("src/foo", "src", True), ), ), ( PathGlob.parse("foo/bar", "base"), ( ("foo/bar", "src", True), ("base/foo/bar", "src", True), ("src/foo/bar", "src", True), ("foo/bar/baz", "src", False), ), ), ], ) def test_pathglob_match(glob: PathGlob, tests: tuple[tuple[str, str, bool], ...]) -> None: for path, base, expected in tests: assert expected == glob.match(path, base) @pytest.mark.parametrize( "target_spec, expected", [ ({"path": ""}, "!*"), ("[]", "!*"), (dict(type="resources"), "<resources>"), (dict(type="file", path="glob/*/this.ext"), "<file>[glob/*/this.ext]"), (dict(path="glob/*/this.ext"), "glob/*/this.ext"), (dict(tags=["tagged"]), "(tagged)"), (dict(tags=["tag-a", "tag-b , b", "c"]), "(tag-a, 'tag-b , b', c)"), (dict(type="file*", tags=["foo", "bar"], path="baz.txt"), "<file*>[baz.txt](foo, bar)"), ("<resources>", "<resources>"), ("<file>[glob/*/this.ext]", "<file>[glob/*/this.ext]"), ("glob/*/this.ext", "glob/*/this.ext"), ("(tag-a)", "(tag-a)"), ("(tag-a , tag-b)", "(tag-a, tag-b)"), ("<file*>(foo, bar)[baz.txt]", "<file*>[baz.txt](foo, bar)"), (":name", ":name"), (dict(name="name"), ":name"), (dict(path="src/*", name="name"), "src/*:name"), (dict(type="target", path="src", name="name"), "<target>[src:name]"), ], ) def test_target_glob_parse_spec(target_spec: str | Mapping[str, Any], expected: str) -> None: assert expected == str(TargetGlob.parse(target_spec, "base")) @pytest.mark.parametrize( "expected, target_spec", [ (True, "*"), (True, "<file>"), (True, "(tag-c)"), (True, "(tag-*)"), (False, "(tag-b)"), (True, "[file.ext]"), (False, "[files.ext]"), (True, "//src/*"), (True, "<file>(tag-a, tag-c)[src/file.ext]"), (False, "<file>(tag-a, tag-b)[src/file.ext]"), (False, "<resource>"), (False, ":name"), (True, ":src"), (True, ":*"), (False, "other.txt:src"), (True, "file.ext:src"), (True, "src/file.ext:src"), ], ) def test_targetglob_match(expected: bool, target_spec: str) -> None: path = "src/file.ext" adaptor = TargetAdaptor( "file", None, tags=["tag-a", "tag-c"], __description_of_origin__="BUILD:1" ) address = Address(os.path.dirname(path), relative_file_path=os.path.basename(path)) assert expected == TargetGlob.parse(target_spec, "src").match(address, adaptor, "src") @pytest.mark.parametrize( "address, path", [ (Address("src", relative_file_path="file"), "src/file"), (Address("src", target_name="name"), "src"), (Address("src", target_name="gen", generated_name="name"), "src/gen#name"), (Address("", relative_file_path="file"), "file"), (Address("", target_name="name"), ""), (Address("", target_name="gen", generated_name="name"), "gen#name"), ], ) def test_address_path(address: Address, path: str) -> None: assert TargetGlob.address_path(address) == path
val, par, impar = [], [], [] while True: cont = ' ' val.append(int(input('Digite um número: '))) while cont not in 'ns': cont = str(input('Deseja continuar? [S/N] ')).lower()[0] if cont == 'n': break for i in val: if i%2 == 0: par.append(i) else: impar.append(i) print(f'Lista digitada: {val}') print(f'Lista dos pares: {par}') print(f'Lista dos ímpares: {impar}')
#Module for handling the configuration and submission of jobs via condor import subprocess import os import time class CondorJob: def __init__(self, **kwargs): self.workingdir=kwargs.get('workingdir') self.universe=kwargs.get('universe') self.executable=kwargs.get('executable') self.arguments=kwargs.get('arguments') self.requirements=kwargs.get('requirements') self.log=kwargs.get('log') self.output=kwargs.get('output') self.error=kwargs.get('error') if 'subid' in kwargs.keys(): self.subid=kwargs.get('subid') else: self.subid = '' self.image_size = '' if 'image_size' in kwargs.keys(): self.image_size = kwargs.get('image_size') if 'environment' in kwargs.keys(): self.environment = kwargs.get('environment') if not self.workingdir.endswith('/'): self.workingdir=self.workingdir+'/' self.exitstatus=None self.write_submit_file() self.status='configured' #Method for writing the condor submit file def write_submit_file(self): self.submit_filename = self.workingdir + 'condor_' + self.subid + '.sub' with open(self.submit_filename,'w') as sf: sf.write("Universe = " + self.universe + '\n') sf.write("Executable = " + self.executable + '\n') sf.write("Arguments = " + self.arguments + '\n') sf.write("Requirements = " + self.requirements + '\n') sf.write("Environment = " + self.environment + '\n') sf.write("GetEnv = True" + '\n') if self.image_size != '': sf.write("image_size = " + self.image_size + '\n') sf.write("want_graceful_removal = True" + '\n') sf.write("max_retries = 100" + '\n') sf.write('\n') sf.write("Output = " + self.workingdir + self.output + '\n') sf.write("Error = " + self.workingdir + self.error + '\n') sf.write("Log = " + self.workingdir + self.log + '\n') sf.write('\n') sf.write("Queue") #Method for getting information on the job from the first two lines of the condor log file def get_job_id(self): log_filename= self.workingdir + self.log loginfo_lines=[] try: lf = open(log_filename, 'r') except OSError: raise CondorLogError('Condor log file cannot be opended for reading. I need a log file to function!') else: loginfo_lines=lf.readlines() lf.close() jobid_tmp = loginfo_lines[0].split('(')[1].split(')')[0] jobid_num = jobid_tmp.split('.')[0] jobid_subidx = jobid_tmp.split('.')[2] jobid_subidx = jobid_subidx[:2].lstrip('0') + jobid_subidx[2] self.jobid = jobid_num + '.' + jobid_subidx def submit(self): #check for old logfile and remove if found. log_filename = self.workingdir + self.log if os.path.isfile(log_filename): os.remove(log_filename) sp=subprocess.Popen(['condor_submit', self.submit_filename], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) sub_out=sp.stdout.read().decode('utf-8') #Make sure the job actually submitted... while(sp.poll() == None): time.sleep(0.05) if sp.poll() != 0: err_str = 'Condor submission failed:\n {0}'.format(sub_out) raise CondorSubmissionError(err_str) #errors = [] #for line in sub_out: # err_idx = line.lower().find('error') # if err_idx != -1: # errors.append(line) #if len(errors) != 0: # err_str="" # for e in errors: # err_str = err_str + e + '\n' # raise CondorSubmissionError(err_str) self.get_job_id() self.status='submitted' def execute(self): self.submit() #checks the status of the job using the logfile def update_status(self): log_filename = self.workingdir + self.log with open(log_filename) as lf: for line in lf.readlines(): line = line.lower() if line.find('job terminated') != -1 and self.status in ['submitted', 'executing']: self.status='terminated' elif line.find('aborted') != -1 and self.status in ['submitted', 'executing']: self.status='terminated' self.exitstatus = '1' elif line.find('job executing') != -1 and self.status == 'submitted': self.status='executing' #Check the exit status of the job if it has terminated if line.find('return value ') != -1 and self.status == 'terminated': self.exitstatus=line.split('return value ')[1][0] def get_status(self): self.update_status() return self.status def kill(self): subprocess.run(['condor_rm', self.jobid]) self.update_status() class CondorSubmissionError(Exception): pass class CondorLogError(Exception): pass
from backpack.core.derivatives.batchnorm1d import BatchNorm1dDerivatives from backpack.extensions.curvmatprod.ggnmp.ggnmpbase import GGNMPBase class GGNMPBatchNorm1d(GGNMPBase): def __init__(self): super().__init__( derivatives=BatchNorm1dDerivatives(), params=["weight", "bias"] ) def weight(self, ext, module, g_inp, g_out, backproped): h_out_mat_prod = backproped def weight_ggnmp(mat): result = self.derivatives.weight_jac_mat_prod(module, g_inp, g_out, mat) result = h_out_mat_prod(result) result = self.derivatives.weight_jac_t_mat_prod( module, g_inp, g_out, result ) return result return weight_ggnmp def bias(self, ext, module, g_inp, g_out, backproped): h_out_mat_prod = backproped def bias_ggnmp(mat): result = self.derivatives.bias_jac_mat_prod(module, g_inp, g_out, mat) result = h_out_mat_prod(result) result = self.derivatives.bias_jac_t_mat_prod(module, g_inp, g_out, result) return result return bias_ggnmp
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-09-18 08:02 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('resources', '0002_auto_20170903_0845'), ] operations = [ migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('service_name', models.CharField(max_length=32, verbose_name='业务线的名字')), ('module_letter', models.CharField(db_index=True, max_length=10, verbose_name='业务线字母简称')), ('op_interface', models.CharField(max_length=150, verbose_name='运维对接人')), ('dev_interface', models.CharField(max_length=150, verbose_name='业务对接人')), ('pid', models.IntegerField(db_index=True, verbose_name='上级业务线id')), ], options={ 'db_table': 'resources_my_product', 'ordering': ['id'], }, ), migrations.CreateModel( name='Server', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('supplier', models.IntegerField(null=True, verbose_name='供应商')), ('manufacturers', models.CharField(max_length=50, null=True, verbose_name='生产厂商')), ('manufacture_date', models.DateField(null=True, verbose_name='生产日期')), ('server_type', models.CharField(max_length=20, null=True, verbose_name='服务器类型')), ('sn', models.CharField(db_index=True, max_length=60, null=True, verbose_name='SN码')), ('os', models.CharField(max_length=50, null=True, verbose_name='操作系统')), ('hostname', models.CharField(db_index=True, max_length=50, null=True, verbose_name='主机名')), ('inner_ip', models.CharField(max_length=32, null=True, unique=True, verbose_name='管理ip')), ('mac_address', models.CharField(max_length=50, null=True, verbose_name='mac地址')), ('ip_info', models.CharField(max_length=255, null=True, verbose_name='ip信息')), ('server_cpu', models.CharField(max_length=250, null=True, verbose_name='cpu信息')), ('server_disk', models.CharField(max_length=100, null=True, verbose_name='磁盘信息')), ('server_mem', models.CharField(max_length=100, null=True, verbose_name='内存信息')), ('status', models.CharField(db_index=True, max_length=100, null=True, verbose_name='服务器状态')), ('remark', models.TextField(null=True)), ('service_id', models.IntegerField(db_index=True, null=True)), ('server_purpose', models.IntegerField(db_index=True, null=True)), ('check_update_time', models.DateTimeField(auto_now=True, null=True)), ('vm_status', models.IntegerField(db_index=True, null=True, verbose_name='虚拟机状态')), ('uuid', models.CharField(db_index=True, max_length=100, null=True, verbose_name='虚拟机uuid')), ('idc', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='resources.Idc')), ], options={ 'db_table': 'resources_my_server', 'ordering': ['id'], }, ), ]
from collections import namedtuple from .base import BasePlugin Plugin = namedtuple("Plugin", ("name", "package", "class_name")) PLUGINS = { "base": Plugin(".base", __name__, "BasePlugin"), "flask": Plugin(".flask_plugin", __name__, "FlaskPlugin"), "quart": Plugin(".quart_plugin", __name__, "QuartPlugin"), "falcon": Plugin(".falcon_plugin", __name__, "FalconPlugin"), "falcon-asgi": Plugin(".falcon_plugin", __name__, "FalconAsgiPlugin"), "starlette": Plugin(".starlette_plugin", __name__, "StarlettePlugin"), } __all__ = ["BasePlugin", "PLUGINS", "Plugin"]
def scramble(s1,s2): for letter in set(s2): # after we convert the s2 to a set() , we limit the loop for max 26 letters instead of going through and each letter in a time! if s1.count(letter) < s2.count(letter): return False return True
import warnings import tensorflow as tf from tensorflow import keras from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, Lambda from tensorflow.keras.layers import Activation from tensorflow.keras.layers import Conv2D from tensorflow.keras.layers import GlobalAveragePooling2D, GlobalMaxPooling2D, MaxPooling2D from tensorflow.keras.layers import Input from tensorflow.keras.layers import concatenate, add from tensorflow.keras.layers import BatchNormalization from tensorflow.keras.regularizers import l2 from tensorflow.keras.utils import convert_all_kernels_in_model from tensorflow.keras.utils import get_file from tensorflow.keras.utils import get_source_inputs import tensorflow.keras.backend as K ''' from ResNeXt3D_blocks import __initial_conv_block from ResNeXt3D_blocks import __initial_conv_block_imagenet from ResNeXt3D_blocks import __grouped_convolution_block from ResNeXt3D_blocks import __bottleneck_block ''' def __create_res_next(nb_classes, img_input, include_top, depth=29, cardinality=8, width=4, weight_decay=5e-4, pooling=None): ''' Creates a ResNeXt model with specified parameters Args: nb_classes: Number of output classes img_input: Input tensor or layer include_top: Flag to include the last dense layer depth: Depth of the network. Can be an positive integer or a list Compute N = (n - 2) / 9. For a depth of 56, n = 56, N = (56 - 2) / 9 = 6 For a depth of 101, n = 101, N = (101 - 2) / 9 = 11 cardinality: the size of the set of transformations. Increasing cardinality improves classification accuracy, width: Width of the network. weight_decay: weight_decay (l2 norm) pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. Returns: a Keras Model ''' if type(depth) is list or type(depth) is tuple: # If a list is provided, defer to user how many blocks are present N = list(depth) else: # Otherwise, default to 3 blocks each of default number of group convolution blocks N = [(depth - 2) // 9 for _ in range(3)] filters = cardinality * width filters_list = [] for i in range(len(N)): filters_list.append(filters) filters *= 2 # double the size of the filters x = __initial_conv_block(img_input, weight_decay) # block 1 (no pooling) for i in range(N[0]): x = __bottleneck_block(x, filters_list[0], cardinality, strides=1, weight_decay=weight_decay) N = N[1:] # remove the first block from block definition list filters_list = filters_list[1:] # remove the first filter from the filter list # block 2 to N for block_idx, n_i in enumerate(N): for i in range(n_i): if i == 0: x = __bottleneck_block(x, filters_list[block_idx], cardinality, strides=2, weight_decay=weight_decay) else: x = __bottleneck_block(x, filters_list[block_idx], cardinality, strides=1, weight_decay=weight_decay) if include_top: x = GlobalAveragePooling2D()(x) x = Dense(nb_classes, use_bias=False, kernel_regularizer=l2(weight_decay), kernel_initializer='he_normal', activation='softmax')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) return x def __create_res_next_imagenet(nb_classes, img_input, include_top, depth, cardinality=32, width=4, weight_decay=5e-4, pooling=None): ''' Creates a ResNeXt model with specified parameters Args: nb_classes: Number of output classes img_input: Input tensor or layer include_top: Flag to include the last dense layer depth: Depth of the network. List of integers. Increasing cardinality improves classification accuracy, width: Width of the network. weight_decay: weight_decay (l2 norm) pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. Returns: a Keras Model ''' if type(depth) is list or type(depth) is tuple: # If a list is provided, defer to user how many blocks are present N = list(depth) else: # Otherwise, default to 3 blocks each of default number of group convolution blocks N = [(depth - 2) // 9 for _ in range(3)] filters = cardinality * width filters_list = [] for i in range(len(N)): filters_list.append(filters) filters *= 2 # double the size of the filters x = __initial_conv_block_imagenet(img_input, weight_decay) # block 1 (no pooling) for i in range(N[0]): x = __bottleneck_block(x, filters_list[0], cardinality, strides=1, weight_decay=weight_decay) N = N[1:] # remove the first block from block definition list filters_list = filters_list[1:] # remove the first filter from the filter list # block 2 to N for block_idx, n_i in enumerate(N): for i in range(n_i): if i == 0: x = __bottleneck_block(x, filters_list[block_idx], cardinality, strides=2, weight_decay=weight_decay) else: x = __bottleneck_block(x, filters_list[block_idx], cardinality, strides=1, weight_decay=weight_decay) if include_top: x = GlobalAveragePooling2D()(x) x = Dense(nb_classes, use_bias=False, kernel_regularizer=l2(weight_decay), kernel_initializer='he_normal', activation='softmax')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) return x
from django.db import models from django.conf import settings from django.utils.encoding import force_unicode from django.utils.hashcompat import md5_constructor from django.contrib.auth.models import User from pygments import highlight from pygments.lexers import get_lexer_by_name from pygments.formatters import HtmlFormatter from utils.models import ImageField, RenameFilesModel, DateMixin from datetime import datetime import os.path EXTENSIONS = frozenset(('.bmp', '.gif', '.jpg', '.png')) FORMAT_EXT = { 'BMP': '.bmp', 'GIF': '.gif', 'JPEG': '.jpg', 'PNG': '.png' } def get_temp_path(instance, filename): ext = FORMAT_EXT[instance.file.format] timestamp = datetime.now().isoformat() key = md5_constructor(timestamp).hexdigest()[:12] return 'uploads/temp/%s%s' % (key, ext) class TemporaryImageManager(models.Manager): def get_query_set(self): query = super(TemporaryImageManager, self).get_query_set() return query.filter(is_temporary=True) class Image(DateMixin): width = models.IntegerField(null=True, blank=True) height = models.IntegerField(null=True, blank=True) format = models.CharField(max_length=8, null=True, blank=True) file = ImageField( upload_to=get_temp_path, width_field='width', height_field='height', format_field='format' ) title = models.CharField(max_length=75, null=True, blank=True) author = models.ForeignKey(User, related_name='images') is_temporary = models.BooleanField(default=True) objects = models.Manager() temporary = TemporaryImageManager() def finalize(self): file_name = force_unicode(self.file) name, ext = os.path.splitext(file_name) final_name = os.path.join('uploads/images', '%s%s' % (self.pk, ext)) if file_name != final_name: self.file.storage.delete(final_name) self.file.storage.save(final_name, self.file) self.file.storage.delete(file_name) self.file = final_name self.is_temporary = False self.save() def __unicode__(self): return force_unicode(self.file) class Markup(DateMixin): CONTENT_LEXER = get_lexer_by_name('html', stripall=True) CONTENT_FORMATTER = HtmlFormatter(linenos=False, cssclass='syntax') title = models.CharField(max_length=75, null=True, blank=True) description = models.TextField(blank=True, default="") content = models.TextField() author = models.ForeignKey(User, related_name='snippets') def get_highlighted_content(self): return highlight(self.content, self.CONTENT_LEXER, self.CONTENT_FORMATTER) def __unicode__(self): if self.title: return u"#%s: %s" % (self.id, self.title) else: return u"#%s" % self.id class MediaType(models.Model): name = models.CharField(max_length=30) description = models.TextField(blank=True, default="") class Meta: ordering = ('name',) def __unicode__(self): return self.name class Style(DateMixin): CONTENT_LEXER = get_lexer_by_name('css', stripall=True) CONTENT_FORMATTER = HtmlFormatter(linenos=False, cssclass='syntax') title = models.CharField(max_length=75, null=True, blank=True) description = models.TextField(blank=True, default="") content = models.TextField() media_types = models.ManyToManyField(MediaType, blank=True, related_name='styles') author = models.ForeignKey(User, related_name='styles') @property def media(self): return ','.join(map(force_unicode, self.media_types.all())) def get_highlighted_content(self): return highlight(self.content, self.CONTENT_LEXER, self.CONTENT_FORMATTER) def __unicode__(self): if self.title: return u"#%s: %s" % (self.id, self.title) else: return u"#%s" % self.id
n1 = int(input('Digite a primeira nota: ')) n2 = int(input('Digite a segunda nota: ')) m = (n1+n2)/2 if(m < 5): print('Reprovado!') elif(m >= 5 and m < 7): print('Recuperação!') else: print('Aprovado!')
from django.urls import path from .views import ( TagsList, TagDetails ) urlpatterns = [ path('', TagsList.as_view()), path('<int:pk>/', TagDetails.as_view()) ]
from django.db import migrations from ..services import * from django.conf import settings def initialize_client(apps, schema_editor): client_data = {'email': settings.EMAIL_TEST, 'client_name':'client1', 'address':'HN', 'name': 'client1_name'} client = create_client(data=client_data) class Migration(migrations.Migration): dependencies = [ ('clients', '0001_initial'), ] operations = [ migrations.RunPython(initialize_client), ]
# Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import logging import os import sys import time from contextlib import contextmanager from threading import Lock from typing import Dict, Tuple from pants.base.exiter import PANTS_FAILED_EXIT_CODE, ExitCode from pants.bin.local_pants_runner import LocalPantsRunner from pants.engine.env_vars import CompleteEnvironmentVars from pants.engine.internals.native_engine import PySessionCancellationLatch from pants.init.logging import stdio_destination from pants.option.options_bootstrapper import OptionsBootstrapper from pants.pantsd.pants_daemon_core import PantsDaemonCore logger = logging.getLogger(__name__) class ExclusiveRequestTimeout(Exception): """Represents a timeout while waiting for another request to complete.""" class DaemonPantsRunner: """A RawFdRunner (callable) that will be called for each client request to Pantsd.""" def __init__(self, core: PantsDaemonCore) -> None: super().__init__() self._core = core self._run_lock = Lock() @staticmethod def _send_stderr(stderr_fileno: int, msg: str) -> None: """Used to send stderr on a raw filehandle _before_ stdio replacement. TODO: This method will be removed as part of #7654. """ with os.fdopen(stderr_fileno, mode="w", closefd=False) as stderr: print(msg, file=stderr, flush=True) @contextmanager def _one_run_at_a_time( self, stderr_fileno: int, cancellation_latch: PySessionCancellationLatch, timeout: float ): """Acquires exclusive access within the daemon. Periodically prints a message on the given stderr_fileno while exclusive access cannot be acquired. TODO: This method will be removed as part of #7654, so it currently polls the lock and cancellation latch rather than waiting for both of them asynchronously, which would be a bit cleaner. """ render_timeout = 5 should_poll_forever = timeout <= 0 start = time.time() render_deadline = start + render_timeout deadline = None if should_poll_forever else start + timeout def should_keep_polling(now): return not cancellation_latch.is_cancelled() and (not deadline or deadline > now) acquired = self._run_lock.acquire(blocking=False) if not acquired: # If we don't acquire immediately, send an explanation. length = "forever" if should_poll_forever else f"up to {timeout} seconds" self._send_stderr( stderr_fileno, f"Another pants invocation is running. Will wait {length} for it to finish before giving up.\n" "If you don't want to wait for the first run to finish, please press Ctrl-C and run " "this command with PANTS_CONCURRENT=True in the environment.\n", ) while True: now = time.time() if acquired: try: yield break finally: self._run_lock.release() elif should_keep_polling(now): if now > render_deadline: self._send_stderr( stderr_fileno, f"Waiting for invocation to finish (waited for {int(now - start)}s so far)...\n", ) render_deadline = now + render_timeout acquired = self._run_lock.acquire(blocking=True, timeout=0.1) else: raise ExclusiveRequestTimeout( "Timed out while waiting for another pants invocation to finish." ) def single_daemonized_run( self, args: Tuple[str, ...], env: Dict[str, str], working_dir: str, cancellation_latch: PySessionCancellationLatch, ) -> ExitCode: """Run a single daemonized run of Pants. All aspects of the `sys` global should already have been replaced in `__call__`, so this method should not need any special handling for the fact that it's running in a proxied environment. """ try: logger.debug("Connected to pantsd") logger.debug(f"work dir: {working_dir}") # Capture the client's start time, which we propagate here in order to get an accurate # view of total time. env_start_time = env.get("PANTSD_RUNTRACKER_CLIENT_START_TIME", None) if not env_start_time: # NB: We warn rather than erroring here because it eases use of non-Pants nailgun # clients for testing. logger.warning( "No start time was reported by the client! Metrics may be inaccurate." ) start_time = float(env_start_time) if env_start_time else time.time() options_bootstrapper = OptionsBootstrapper.create( env=env, args=args, allow_pantsrc=True ) # Run using the pre-warmed Session. complete_env = CompleteEnvironmentVars(env) scheduler, options_initializer = self._core.prepare(options_bootstrapper, complete_env) runner = LocalPantsRunner.create( complete_env, working_dir, options_bootstrapper, scheduler=scheduler, options_initializer=options_initializer, cancellation_latch=cancellation_latch, ) return runner.run(start_time) except Exception as e: logger.exception(e) return PANTS_FAILED_EXIT_CODE except KeyboardInterrupt: print("Interrupted by user.\n", file=sys.stderr) return PANTS_FAILED_EXIT_CODE def __call__( self, command: str, args: Tuple[str, ...], env: Dict[str, str], working_dir: str, cancellation_latch: PySessionCancellationLatch, stdin_fileno: int, stdout_fileno: int, stderr_fileno: int, ) -> ExitCode: request_timeout = float(env.get("PANTSD_REQUEST_TIMEOUT_LIMIT", -1)) # NB: Order matters: we acquire a lock before mutating either `sys.std*`, `os.environ`, etc. with self._one_run_at_a_time( stderr_fileno, cancellation_latch=cancellation_latch, timeout=request_timeout, ): # NB: `single_daemonized_run` implements exception handling, so only the most primitive # errors will escape this function, where they will be logged by the server. logger.info(f"handling request: `{' '.join(args)}`") try: with stdio_destination( stdin_fileno=stdin_fileno, stdout_fileno=stdout_fileno, stderr_fileno=stderr_fileno, ): return self.single_daemonized_run( ((command,) + args), env, working_dir, cancellation_latch ) finally: logger.info(f"request completed: `{' '.join(args)}`")
# -*- coding: utf-8 -*- """ SVL 2016 TP1 Méthodes formelles avec contracts.py Auteur: Honore Nintunze, antonin Durey Classes """ class Disque: """ inv[self.taille]: self.taille > 0 """ def __init__(self,taille): self.taille = taille class Tour: """ Une tour pour contenir les disques ordonnées inv[self.disques]: # array is ordered forall([self.disques[i-1].taille > self.disques[i].taille for i in range(1, len(self.disques))]) """ def __init__(self, disques): """ post: len(self.disques) == len(disques) """ self.disques = disques def pop(self): """ Retourne le sommet post[self.disques]: len(self.disques) == len(__old__.self.disques) - 1 __return__ == __old__.self.disques[-1] """ return self.disques.pop() def push(self,disque): """ Dépose un disque sur la tour pre[self.disques]: len(self.disques) == 0 or disque.taille < self.disques[-1].taille post[self.disques]: self.disques[-1].taille == disque.taille len(self.disques) == len(__old__.self.disques) + 1 """ self.disques.append(disque) class Hanoi: """ Jeu des Tours de Hanoi """ def __init__(self,tours): """ Un jeu de Hanoi initialisé avec une seule tour possédant des disques pre: len(filter(lambda t: len(t.disques) > 0,tours)) == 1 post: len(self.tours) == len(tours) """ self.tours = tours def deplacer(self,source,dest): """ Deplacer un disque d'une tour à une autre pre[self.tours]: source >= 0 and source < len(self.tours) dest >= 0 and dest < len(self.tours) post[self.tours]: __old__.self.tours[source].disques[-1] == self.tours[dest].disques[-1] """ self.tours[dest].push(self.tours[source].pop()) def jeu(self,n, D, A, I): """ Execute le jeu de Hanoi """ if n > 0: jeu(n-1,D,I,A) self.deplacer(D,A) jeu(n-1,I,A,D) import contract contract.checkmod(__name__) if __name__ == "__main__": # Initialisation d'un jeu à 3 disques tour0 = Tour([Disque(i) for i in range(3, 0, -1)]) # si une autre tour contient des disques ça ne passe plus tour0.pop() tour0.push(Disque(1)) # avec 2 ou 0 ça ne passe plus tour1 = Tour([]) tour2 = Tour([]) hanoi = Hanoi([tour0, tour1,tour2]) hanoi.deplacer(0, 1) # hanoi.jeu(len(tour0),0,2,1)
from django.conf.urls import url from . import views urlpatterns = [ url(r'^confirm/$', views.payment_confirm, name='w1-payment-confirm'), ]
def twoForLoops(n): n = n * 2 counter = 1 for x in range(n): m = min(n - counter, counter) counter += 1 for y in range(m): print("*", end="") print("") def twoWhileLoops(n): n = n * 2 counter = 1 x = 0 y = 0 while x < n: m = min(n - counter, counter) counter += 1 x += 1 while y < m: y += 1 print("*", end="") y = 0 print("") def inverseTwoForloop(n): n = n * 2 counter = 1 for x in range(n): m = min(n - counter, counter) counter += 1 string = "" for y in range(m): string += '*' print('{:>{}}'.format(string, n//2))
#-*- coding: utf-8 -*- import operator from math import log import pprint # 加载数据 def loadData(filename): # 打开数据文件 fr = open(filename) # 读取生成列表后存入lenses列表 lenses = [inst.strip().split('\t') for inst in fr.readlines()] # 构建标签列表 lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate'] return lenses, lensesLabels # 计算香农熵 def calcShannonEnt(dataSet): # 获得数据集的大小 numEntries = len(dataSet) labelCounts = {} # 遍历数据集 for featVec in dataSet: # 提取数据中的类型,本例中为医生推荐的隐形眼镜类型 currentLabel = featVec[-1] # 计算该类型眼镜在数据集中出现的次数 if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 # 初始化香农熵 shannonEnt = 0.0 # 遍历隐形眼镜的类型字典计算香农熵 for key in labelCounts: # 见书P35的计算香农熵的公式 prob = float(labelCounts[key])/numEntries shannonEnt -= prob * log(prob,2) #log base 2 return shannonEnt # 划分数据集 def splitDataSet(dataSet, axis, value): retDataSet = [] # 遍历数据集 for featVec in dataSet: # 判断当前划分的特征对应的值是否是需要返回的值 if featVec[axis] == value: # 将当前处理的数据列表featVec进行重构组合 reducedFeatVec = featVec[:axis] reducedFeatVec.extend(featVec[axis+1:]) retDataSet.append(reducedFeatVec) return retDataSet # 获取最好的数据划分方式 def chooseBestFeatureToSplit(dataSet): # 用来划分的特征数量,数据集中最后一列是分类不是特征 numFeatures = len(dataSet[0]) - 1 # 计算数据集的香农熵 baseEntropy = calcShannonEnt(dataSet) # 初始化 bestInfoGain = 0.0; bestFeature = -1 # 遍历所有特征 for i in range(numFeatures): # 提取该特征对应的所有值 featList = [example[i] for example in dataSet] # 去重 uniqueVals = set(featList) newEntropy = 0.0 # 循环使用该特征值作为参数进行数据集划分尝试 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) # 对划分后的数据集计算香农熵,并进行求和操作 prob = len(subDataSet)/float(len(dataSet)) newEntropy += prob * calcShannonEnt(subDataSet) # 计算信息增益 infoGain = baseEntropy - newEntropy # 获取最好的信息增益 if (infoGain > bestInfoGain): bestInfoGain = infoGain bestFeature = i return bestFeature # 构建决策树 def createTree(dataSet,labels): # 提取数据集中的所有分类标签 classList = [example[-1] for example in dataSet] # 数据集的类别完全相同时则停止继续对数据集进行划分,并返回分类标签 if classList.count(classList[0]) == len(classList): return classList[0] # 如果所有的特征值都已经遍历结束 if len(dataSet[0]) == 1: # 计算出现频次最多的分类标签并返回 classCount={} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0 classCount[vote] += 1 sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] # 获取最好的划分特征 bestFeat = chooseBestFeatureToSplit(dataSet) bestFeatLabel = labels[bestFeat] # 以当前数据集中获取的最好的特征初始化树 myTree = {bestFeatLabel:{}} del(labels[bestFeat]) # 提取该特征对应的所有特征值 featValues = [example[bestFeat] for example in dataSet] # 去重,需要根据唯一的特征值进行划分分支 uniqueVals = set(featValues) # 划分数据集,创建树的分支,将不同的特征值对应的数据集进行递归划分 for value in uniqueVals: subLabels = labels[:] myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels) return myTree dataFile = '/home/shiyanlou/mylab4/lenses.txt' lenses, lensesLabels = loadData(dataFile) tree = createTree(lenses, lensesLabels) pprint.pprint(tree)
#!/usr/bin/python import re import unittest import glue2.EntryTest EntryTest = glue2.EntryTest.EntryTest class EntityTest(unittest.TestCase): def setUp(self): self.good_entry = { 'dn' : ['EntityId=test,o=GLUE2'], 'objectClass' : ['GLUE2Entity'], 'GLUE2EntityId' : ['test'], } def test_good_entryTest(self): '''Test a good entry.''' entry = self.good_entry suite = unittest.TestSuite() test_names = unittest.TestLoader().getTestCaseNames(EntryTest) for test_name in test_names: suite.addTest(EntryTest(test_name, entry)) self.assertTrue(unittest.TextTestRunner().run(suite).wasSuccessful()) def test_bad_object_class(self): '''Test a bad object class''' entry = self.good_entry entry['objectClass'] = ['BadObject'] suite = unittest.TestSuite() test_names = unittest.TestLoader().getTestCaseNames(EntryTest) for test_name in test_names: suite.addTest(EntryTest(test_name, entry)) self.assertFalse(unittest.TextTestRunner().run(suite).wasSuccessful()) self.assertEqual(len(unittest.TextTestRunner().run(suite).failures),1) if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(EntityTest) unittest.TextTestRunner(verbosity=2).run(suite)
# -*- coding: utf-8 -*- import sys import pygame import nucleo from pygame.locals import * WIDTH = 700 HEIGHT = 700 def load_image(filename): """Carga la imagen de la ruta que se pasa como argumento""" try: image = pygame.image.load(filename) except pygame.error.message: raise SystemExit.message image = image.convert() return image def cargarImagenes(): """Carga una serie de imagenes necesarias para representar el 'juego'""" azul = load_image("images/azul.png") cabazul = load_image("images/cabazul.png") azulchoque = load_image("images/azulchoque.png") azulvacio = load_image("images/azulvacio.png") rojo = load_image("images/rojo.png") cabrojo = load_image("images/cabrojo.png") rojochoque = load_image("images/rojochoque.png") rojovacio = load_image("images/rojovacio.png") choquetotal = load_image("images/choquetotal.png") error = load_image("images/verde.png") return azul, cabazul, azulchoque, azulvacio, rojo, cabrojo, rojochoque, rojovacio, choquetotal, error def texto(texto): """Presenta texto en la pantalla""" color = (0, 0, 0) fuente = pygame.font.Font("images/DroidSans.ttf", 25) salida = pygame.font.Font.render(fuente, texto, 1, color) return salida def dibujaMatriz(matriz, screen, images): """Esta funcion se encarga de dibujar en pantalla la matriz pasada como argumento. En 'images' se deberá pasar una tupla de imagenes para tal fin.""" for y in range(102): for x in range(102): ordenadas = 44+6*y abscisas = 44+6*x if matriz[y][x] == 3: screen.blit(images[1], (abscisas, ordenadas)) elif matriz[y][x] == 4: screen.blit(images[0], (abscisas, ordenadas)) elif matriz[y][x] == 13: screen.blit(images[5], (abscisas, ordenadas)) elif matriz[y][x] == 15: screen.blit(images[4], (abscisas, ordenadas)) elif matriz[y][x] == 18: screen.blit(images[2], (abscisas, ordenadas)) elif matriz[y][x] == 34: screen.blit(images[3], (abscisas, ordenadas)) elif matriz[y][x] == 17: screen.blit(images[6], (abscisas, ordenadas)) elif matriz[y][x] == 44: screen.blit(images[7], (abscisas, ordenadas)) elif matriz[y][x] == 16: screen.blit(images[8], (abscisas, ordenadas)) elif matriz[y][x] == 7: screen.blit(images[2], (abscisas, ordenadas)) elif matriz[y][x] == 28: screen.blit(images[6], (abscisas, ordenadas)) elif not(matriz[y][x] == 0): screen.blit(images[9], (abscisas, ordenadas)) def mostrarResultado(resultado, screen): """Muestra un texto con el resultado.""" coordenadas = (250, 300) textoAux = texto("Error") if resultado[0] == 1: textoAux = texto("Jugador 1 gana") elif resultado[0] == 2: textoAux = texto("Jugador 2 gana") elif resultado[0] == 3: if resultado[1] == 10: textoAux = texto("¡Ostia terrible!") else: textoAux = texto("Empate") screen.blit(textoAux, coordenadas) def visualizarMatriz(matriz): """Este metodo ofrece una version grafica de la matriz pasada como argumento""" pygame.init() screen = pygame.display.set_mode((WIDTH, HEIGHT)) pygame.display.set_caption("Instantanea") clock = pygame.time.Clock() background = load_image('images/fondo.png') images = cargarImagenes() time = clock.tick(60) screen.blit(background, (50, 50)) dibujaMatriz(matriz, screen, images) pygame.display.flip() while True: keys = pygame.key.get_pressed() for eventos in pygame.event.get(): if eventos.type == QUIT: sys.exit(0) def main(uno, dos): """Como su propio nombre indica, la funcion principal. inicia un juego entre los jugadores pasados como argumento. NOTA: Para reiniciar el juego, hay que pulsar 'Backspace'""" pygame.init() screen = pygame.display.set_mode((WIDTH, HEIGHT)) pygame.display.set_caption("Pruebas Tron") clock = pygame.time.Clock() background = load_image('images/fondo.png') images = cargarImagenes() matriz = nucleo.creaMatriz(102) matriz[50][25] = 3 matriz[50][75] = 13 while True: time = clock.tick(60) keys = pygame.key.get_pressed() for eventos in pygame.event.get(): if eventos.type == QUIT: sys.exit(0) resultado = nucleo.resultado(matriz) if keys[K_BACKSPACE]: matriz = nucleo.creaMatriz(102) matriz[50][25] = 3 matriz[50][75] = 13 if resultado[0] == 0: direct = uno.actualizar(matriz) matriz = nucleo.actualizaMatriz(matriz, 1, direct) direct = dos.actualizar(matriz) matriz = nucleo.actualizaMatriz(matriz, 2, direct) screen.blit(background, (50, 50)) dibujaMatriz(matriz, screen, images) if not resultado[0] == 0: mostrarResultado(resultado, screen) pygame.display.flip()
from django import forms from apps.users.models import UserProfile import logging logger = logging.getLogger(__name__) class CommissionForm(forms.Form): """Form to handle the commission""" handyman = forms.ModelMultipleChoiceField( queryset=UserProfile.objects.filter(user_type=1, is_active=True)) def __init__(self, *args, **kwargs): super(CommissionForm, self).__init__(*args, **kwargs) self.fields['handyman'].widget.attrs.update( {'class': 'form-control'})
#produce an SQLite database that contains a User, Course, and Member table #and populate the tables from the data file. import json import sqlite3 conn = sqlite3.connect('rosterdb.sqlite') cur = conn.cursor() cur.executescript(''' DROP TABLE IF EXISTS User; DROP TABLE IF EXISTS Course; DROP TABLE IF EXISTS Member ''') cur.executescript(''' CREATE TABLE User( id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT ); CREATE TABLE Course( id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT ); CREATE TABLE Member( course_id INTEGER, user_id INTEGER, role INTEGER, PRIMARY KEY(course_id, user_id) ) ''') file = open('roster_data.json').read() data = json.loads(file) #parse the json file for entry in data: #read through each entry of the data, and get name, title, and role name = entry[0] title = entry[1] role = entry[2] cur.execute('INSERT OR IGNORE INTO Course(title) VALUES (?)', (title,)) cur.execute('SELECT id FROM Course WHERE title = ?', (title,)) course_id = cur.fetchone()[0] cur.execute('INSERT OR IGNORE INTO User(name) VALUES (?)', (name,)) cur.execute('SELECT id FROM User WHERE name = ?', (name,)) user_id = cur.fetchone()[0] cur.execute('''INSERT INTO Member(course_id,user_id,role) VALUES (?,?,?)''',(course_id,user_id,role)) conn.commit()
def unique(n): return [i for c,i in enumerate(n) if n[0:c].count(i) == 0 or c == 0] ''' Remove Duplicates You are to write a function called unique that takes an array of integers and returns the array with duplicates removed. It must return the values in the same order as first seen in the given array. Thus no sorting should be done, if 52 appears before 10 in the given array then it should also be that 52 appears before 10 in the returned array. Assumptions All values given are integers (they can be positive or negative). You are given an array but it may be empty. They array may have duplicates or it may not. You cannot use the uniq method on Arrays (don't even try it), or the nub function from Data.List. Example print unique([1, 5, 2, 0, 2, -3, 1, 10]) [1, 5, 2, 0, -3, 10] print unique([]) [] print unique([5, 2, 1, 3]) [5, 2, 1, 3] '''
import paho.mqtt.client as mqtt from pymongo import MongoClient broker = "192.168.10.15" port = 1883 dbClient = MongoClient('localhost', 27017) db = dbClient.cpu_useage def on_connect(client, userdata, flags, rc): print("Connected with result code "+str(rc)) client.subscribe("rpi/useage") def on_message(client, userdata, msg): print(msg.topic+" "+str(msg.payload)) #useage = {} #posts = db.posts #post = {"useage": (msg.payload)} #result = posts.insert_one(post) #post_id client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message client.connect(broker, port) client.loop_forever()
""" make_fig3.py Reproduces Figure 3 in O'Shaughnessy et al., 'Generative causal explanations of black-box classifiers,' Proc. NeurIPS 2020: global explanation for CNN classifier trained on MNIST 3/8 digits. """ import numpy as np import scipy.io as sio import os import torch import util import plotting from GCE import GenerativeCausalExplainer # --- parameters --- gray = False dataset = 'cifar' data_classes = [3, 5] # classifier classifier_path = 'C:/Users/Dylan/Desktop/FACT/src/pretrained_models/cifar_35_classifier' # vae K = 1 L = 16 train_steps = 3000 Nalpha = 25 Nbeta = 70 lam = 0.01 batch_size = 128 lr = 1e-3 # other randseed = 0 gce_path = 'C:/Users/Dylan/Desktop/FACT/src/outputs/cifar_35_gce_K1_L16_lambda001' retrain_gce = False # train explanatory VAE from scratch save_gce = False # save/overwrite pretrained explanatory VAE at gce_path # --- initialize --- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # device = torch.device('cpu') if randseed is not None: np.random.seed(randseed) torch.manual_seed(randseed) ylabels = range(0, len(data_classes)) # --- load data --- if dataset == 'mnist': from load_mnist import load_mnist_classSelect X, Y, tridx = load_mnist_classSelect('train', data_classes, ylabels) vaX, vaY, vaidx = load_mnist_classSelect('val', data_classes, ylabels) ntrain, nrow, ncol, c_dim = X.shape x_dim = nrow*ncol elif dataset == 'cifar': from load_cifar import load_cifar_classSelect X, Y, _ = load_cifar_classSelect('train', data_classes, ylabels, gray=gray) vaX, vaY, _ = load_cifar_classSelect('val', data_classes, ylabels, gray=gray) X, vaX = X / 255, vaX / 255 ntrain, nrow, ncol, c_dim = X.shape x_dim = nrow * ncol # --- load classifier --- from models.CNN_classifier import CNN classifier = CNN(len(data_classes), c_dim).to(device) checkpoint = torch.load('%s/model.pt' % classifier_path, map_location=device) classifier.load_state_dict(checkpoint['model_state_dict_classifier']) # --- train/load GCE --- from models.CVAEImageNet import Decoder, Encoder if retrain_gce: encoder = Encoder(K+L, c_dim, x_dim).to(device) decoder = Decoder(K+L, c_dim, x_dim).to(device) encoder.apply(util.weights_init_normal) decoder.apply(util.weights_init_normal) gce = GenerativeCausalExplainer(classifier, decoder, encoder, device, save_dir=gce_path) traininfo = gce.train(X, K, L, steps=train_steps, Nalpha=Nalpha, Nbeta=Nbeta, lam=lam, batch_size=batch_size, lr=lr) if save_gce: if not os.path.exists(gce_path): os.makedirs(gce_path) torch.save(gce, os.path.join(gce_path,'model.pt')) sio.savemat(os.path.join(gce_path, 'training-info.mat'), { 'data_classes' : data_classes, 'classifier_path' : classifier_path, 'K' : K, 'L' : L, 'train_step' : train_steps, 'Nalpha' : Nalpha, 'Nbeta' : Nbeta, 'lam' : lam, 'batch_size' : batch_size, 'lr' : lr, 'randseed' : randseed, 'traininfo' : traininfo}) else: # load pretrained model gce = torch.load(os.path.join(gce_path, 'model.pt'), map_location=device) # --- compute final information flow --- I = gce.informationFlow() Is = gce.informationFlow_singledim(range(0, K+L)) print('Information flow of K=%d causal factors on classifier output:' % K) print(Is[:K]) print('Information flow of L=%d noncausal factors on classifier output:' % L) print(Is[K:]) # --- generate explanation and create figure --- sample_ind = np.concatenate((np.where(vaY == 0)[0][:4], np.where(vaY == 1)[0][:4])) x = torch.from_numpy(vaX[sample_ind]) zs_sweep = [-3., -2., -1., 0., 1., 2., 3.] Xhats, yhats = gce.explain(x, zs_sweep) plotting.plotExplanation(1. - Xhats, yhats, save_path='/Fig3CIFAR')
import threading import time valor = 100 valor1 = 5 def soma(num, num1): result = num + num1 print("soma:", result) def sub(num, num1): result = num - num1 print("subtração:", result) def div(num, num1): result = num / num1 print("divisão:", result) s = threading.Thread(target=soma(valor,valor1),args=("thread sendo executada")) ss= threading.Thread(target=sub(valor,valor1),args=("thread sendo executada")) d = threading.Thread(target=div(valor,valor1),args=("thread sendo executada")) s,ss,d.start()
from time import sleep from vcenter import get_all_host_info, get_all_vm_info from sqlit import insert_host_info, insert_vm_info import logging logging.basicConfig(level=logging.DEBUG,filename="log.txt",format="%(asctime)s;%(levelname)s;%(message)s") while True: try: count = 0 host_info = get_all_host_info() logging.info(host_info) insert_host_info(host_info) while True: vm_info = get_all_vm_info() logging.info(vm_info) insert_vm_info(vm_info) count = count +1 if count%12 == 0: break sleep(300) except Exception as err: logging.exception(err)
# -*- coding:utf-8 -*- from threading import Thread from time import sleep # 调用sleep函数让线程休眠 # 在Python中创建线程,需要让类像线程一样工作 # 继承Thread类 class CookBook(Thread): def __init__(self): Thread.__init__(self) self.message = "Hello Parallel Python Cookbook!!\n" def print_message(self): """ 打印消息 :return: """ print (self.message) def run(self): """ 消息打印10次 :return: """ print ("Thread starting\n") x = 0 while (x < 10): self.print_message() sleep(2) x += 1 print ("Thread Ended\n") print "Process Started" # 开启主进程 hello_Python = CookBook() # 创建CB类的一个实例 hello_Python.start() # 打印消息,启动线程 print "Process Ended" # 终止主进程
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Coloque o quadrado giratorio e a bolinha dos exercícios anteriores no mesmo programa. Isto é, o programa deve consistir em uma animação com um quadrado giratório crescendo constantemente e uma bolinha "rolando" pela tela e quicando nas bordas também em velocidade constante. ''' from htdp_pt_br.universe import * FREQUENCIA = 200 LARGURA = 600 ALTURA = 500 tela = criar_tela_base(LARGURA,ALTURA) '''constantes para Bola''' RAIO = 20 BOLA = circulo(RAIO,Cor('green')) BORDA_DIREITA = LARGURA - RAIO BORDA_ESQUERDA = RAIO BORDA_BAIXO = ALTURA - RAIO BORDA_CIMA = RAIO ''' Bola x é um int entre BORDA_DIREITA e BORDA_ESQUERDA y é um int entre BORDA_CIMA e BORDA_BAIXO ''' Bola = definir_estrutura("Bola", "x,y,ax,ay") Bola.x = LARGURA // 2 Bola.y = ALTURA // 2 Bola.ax = 3 Bola.ay = 3 '''constantes para quadrado''' variacao_tamanho = 2 variacao_angulo = 2 TAMANHO_INICIAL = LARGURA//10 ANGULO_INICIAL = 1 ''' Quadrado tamanho = int (> 0) angulo = int (entre 0 e 359) ''' Quadrado = definir_estrutura("Quadrado", "tamanho,angulo") Quadrado.tamanho = TAMANHO_INICIAL Quadrado.angulo = ANGULO_INICIAL QUADRADO_X = LARGURA//2 QUADRADO_Y = ALTURA//2 ''' Mundo contem Bola Quadrado ''' Mundo = definir_estrutura("Mundo","Bola,Quadrado") def gira(Quadrado): ''' modifica a variavel Quadrado.angulo :param Quadrado: Quadrado :return: Quadrado ''' if Quadrado.angulo > 360: Quadrado.angulo = ANGULO_INICIAL return Quadrado elif (Quadrado.angulo % 360) == 0: Quadrado.angulo = ANGULO_INICIAL return Quadrado else: Quadrado.angulo = Quadrado.angulo + variacao_angulo return Quadrado def aumentar(Quadrado): ''' modifica a variavel Quadrado.tamanho :param Quadrado: Quadrado :return: Quadrado ''' Quadrado.tamanho = Quadrado.tamanho + variacao_tamanho return Quadrado def desenha(mundo): ''' :param mundo: Posicao :return: imagem ''' img_quadrado = quadrado(mundo.Quadrado.tamanho, Cor('black')) img_quadrado = girar(img_quadrado, mundo.Quadrado.angulo) colocar_imagem(img_quadrado, tela, LARGURA // 2, ALTURA // 2) colocar_imagem(BOLA, tela, mundo.Bola.x, mundo.Bola.y) return tela def tecla(mundo,tecla): ''' retrna ao estado inicial quando SPACE é precionado :param Quadrado: Quadrado :param tecla: tecla :return: Quadrado ''' mesmabola = mundo.Bola(mundo.Bola.x, mundo.Bola.y, mundo.Bola.ax, mundo.Bola.ay) if tecla == pg.K_SPACE: novoquadrado = Quadrado(TAMANHO_INICIAL,ANGULO_INICIAL) return Mundo(mesmabola, novoquadrado) else: return Mundo #TODO def mover(mundo): ''' :param Posicao: Posicao :return: Posicao ''' novoax = 0 novoay = 0 proximo_x = (mundo.Bola.x + mundo.Bola.ax) proximo_y = (mundo.Bola.y + mundo.Bola.ay) tamanho_q = mundo.Quadrado.tamanho // 2 #Bordas horizontais if (proximo_x) > BORDA_DIREITA or (proximo_x) < BORDA_ESQUERDA: novoax = mundo.Bola.ax * (-1) #Bordas verticais if (proximo_y) > BORDA_BAIXO or (proximo_y) < BORDA_CIMA: novoay = mundo.Bola.ay * (-1) #colisao com quadrado if (QUADRADO_X + tamanho_q) > proximo_x > (QUADRADO_X - tamanho_q) and (QUADRADO_X + tamanho_q) > proximo_y > (QUADRADO_X - tamanho_q): novoax = mundo.Bola.ax * (-1) if (QUADRADO_X + tamanho_q) > proximo_y > (QUADRADO_X - tamanho_q) and (QUADRADO_X + tamanho_q) > proximo_x > (QUADRADO_X - tamanho_q): novoay = mundo.Bola.ay * (-1) novotamanho = aumentar(mundo.Quadrado) novoangulo = gira(mundo.Quadrado) novox = Bola.x + novoax novoy = Bola.y + novoay novomundo = Mundo(Bola(novox,novoy),Quadrado(novotamanho,novoangulo)) return novomundo
from common.run_method import RunMethod import allure @allure.step("极师通/作业/学生作业查阅情况详情") def homework_readStatusOfStudentDetails_get(params=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极师通/作业/学生作业查阅情况详情" url = f"/service-profile/homework/readStatusOfStudentDetails" res = RunMethod.run_request("GET", url, params=params, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极师通/作业/草稿列表") def homework_draft_get(params=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极师通/作业/草稿列表" url = f"/service-profile/homework/draft" res = RunMethod.run_request("GET", url, params=params, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极师通/作业/布置或保存草稿") def homework_post(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极师通/作业/布置或保存草稿" url = f"/service-profile/homework" res = RunMethod.run_request("POST", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极师通/作业/详情") def homework_get(params=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极师通/作业/详情" url = f"/service-profile/homework" res = RunMethod.run_request("GET", url, params=params, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极师通/作业/查阅情况") def homework_consultSituation_get(params=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极师通/作业/查阅情况" url = f"/service-profile/homework/consultSituation" res = RunMethod.run_request("GET", url, params=params, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极师通/作业/删除作业") def homework_delete(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极师通/作业/删除作业" url = f"/service-profile/homework" res = RunMethod.run_request("DELETE", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极师通/作业/提醒学生查看作业") def homework_remind_post(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极师通/作业/提醒学生查看作业" url = f"/service-profile/homework/remind" res = RunMethod.run_request("POST", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极师通/作业/已发布列表") def homework_published_get(params=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极师通/作业/已发布列表" url = f"/service-profile/homework/published" res = RunMethod.run_request("GET", url, params=params, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极师通/作业/发布作业") def homework_publishHomework_post(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极师通/作业/发布作业" url = f"/service-profile/homework/publishHomework" res = RunMethod.run_request("POST", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极师通/作业/作业列表") def homework_homeworkList_post(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极师通/作业/作业列表" url = f"/service-profile/homework/homeworkList" res = RunMethod.run_request("POST", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极师通/作业/班级列表") def homework_myClasses_get(params=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极师通/作业/班级列表" url = f"/service-profile/homework/myClasses" res = RunMethod.run_request("GET", url, params=params, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极师通/作业/学生作业查阅情况") def homework_readStatusOfStudent_get(params=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极师通/作业/学生作业查阅情况" url = f"/service-profile/homework/readStatusOfStudent" res = RunMethod.run_request("GET", url, params=params, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极师通/作业/作业详情") def homework_homeworkDetails_get(params=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极师通/作业/作业详情" url = f"/service-profile/homework/homeworkDetails" res = RunMethod.run_request("GET", url, params=params, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极师通/作业/删除作业") def homework_delHomework_delete(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极师通/作业/删除作业" url = f"/service-profile/homework/delHomework" res = RunMethod.run_request("DELETE", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极师通撤回作业") def homework_recall_get(params=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极师通撤回作业" url = f"/service-profile/homework/recall" res = RunMethod.run_request("GET", url, params=params, header=header, return_json=return_json, name=name, **kwargs) return res
import re import requests from bs4 import BeautifulSoup def get_movie_id(url): # e.g. "https://tw.rd.yahoo.com/referurl/movie/thisweek/info/*https://tw.movies.yahoo.com/movieinfo_main.html/id=6707" # -> match.group(0): "/id=6707" pattern = '/id=\d+' match = re.search(pattern, url) if match is None: return url else: return match.group(0).replace('/id=', '') def get_movies(): Y_MOVIE_URL = 'https://tw.movies.yahoo.com/movie_thisweek.html' dom = requests.get(Y_MOVIE_URL) soup = BeautifulSoup(dom.text, 'html.parser') movies = [] rows = soup.select('.release_list li') #rows = soup.select('#content_l li') Y_INTRO_URL = 'https://tw.movies.yahoo.com/movieinfo_main.html' # 詳細資訊 for row in rows: movie = dict() movie['ch_name'] = row.select('.release_movie_name .gabtn')[0].text.strip() movie['eng_name'] = row.select('.en .gabtn')[0].text.strip() #movie['movie_id'] = get_movie_id(row.select('.release_movie_name .gabtn')[0]['href']) movie['poster_url'] = row.select('img')[0]['src'] #movie['release_date'] = get_date(row.select('.release_movie_time')[0].text) movie['intro'] = row.select('.release_text')[0].text.strip().replace(u'...詳全文', '').replace('\n', '')[0:15] + '...' #movie['info_url'] = row.select('.release_movie_name .gabtn')[0]['href'] #movie['info_url'] = Y_INTRO_URL + '/id=' + get_movie_id(row.select('.release_movie_name .gabtn')[0]['href']) movie['info_url'] = get_movie_id(row.select('.release_movie_name .gabtn')[0]['href']) movies.append(movie) return movies
""" @description: 跟数据有关的函数库 """ """ import """ import numpy as np import cv2 import torch import os def encode_gray_label(labels): """ 将标签图的灰度值转换成类别id 注意:ignoreInEval为True的都当分类0处理 @param labels: 标签灰度图 """ encoded_labels = np.zeros_like(labels) # 除了下面特意转换的,其余都属于类别0 # 1 encoded_labels[labels == 200] = 1 encoded_labels[labels == 204] = 1 encoded_labels[labels == 209] = 1 # 2 encoded_labels[labels == 201] = 2 encoded_labels[labels == 203] = 2 # 3 encoded_labels[labels == 217] = 3 # 4 encoded_labels[labels == 210] = 4 # 5 encoded_labels[labels == 214] = 5 # 6 encoded_labels[labels == 220] = 6 encoded_labels[labels == 221] = 6 encoded_labels[labels == 222] = 6 encoded_labels[labels == 224] = 6 encoded_labels[labels == 225] = 6 encoded_labels[labels == 226] = 6 # 7 encoded_labels[labels == 205] = 7 encoded_labels[labels == 227] = 7 encoded_labels[labels == 250] = 7 return encoded_labels def decode_gray_label(labels): """ 将类别id恢复成灰度值 @params labels: shape=(h, w) """ decoded_labels = np.zeros_like(labels, dtype=np.int8) # 1 decoded_labels[labels == 1] = 204 # 2 decoded_labels[labels == 2] = 203 # 3 decoded_labels[labels == 3] = 217 # 4 decoded_labels[labels == 4] = 210 # 5 decoded_labels[labels == 5] = 214 # 6 decoded_labels[labels == 6] = 224 # 7 decoded_labels[labels == 7] = 227 return decoded_labels def decode_color_label(labels): """ 将类别id恢复成RGB值 @params labels: shape=(h, w) """ decoded_labels = np.zeros((3, labels.shape[0], labels.shape[1]), dtype=np.int8) # 1 decoded_labels[0][labels == 1] = 220 decoded_labels[1][labels == 1] = 20 decoded_labels[2][labels == 1] = 60 # 2 decoded_labels[0][labels == 2] = 119 decoded_labels[1][labels == 2] = 11 decoded_labels[2][labels == 2] = 32 # 3 decoded_labels[0][labels == 3] = 220 decoded_labels[1][labels == 3] = 220 decoded_labels[2][labels == 3] = 0 # 4 decoded_labels[0][labels == 4] = 128 decoded_labels[1][labels == 4] = 64 decoded_labels[2][labels == 4] = 128 # 5 decoded_labels[0][labels == 5] = 190 decoded_labels[1][labels == 5] = 153 decoded_labels[2][labels == 5] = 153 # 6 decoded_labels[0][labels == 6] = 180 decoded_labels[1][labels == 6] = 165 decoded_labels[2][labels == 6] = 180 # 7 decoded_labels[0][labels == 7] = 178 decoded_labels[1][labels == 7] = 132 decoded_labels[2][labels == 7] = 190 return decoded_labels def crop_resize_data(image, labels, out_size, height_crop_offset): """ @param out_size: (w, h) """ roi_image = image[height_crop_offset:] # crop roi_image = cv2.resize(roi_image, out_size, interpolation=cv2.INTER_LINEAR) # resize if labels is not None: roi_label = labels[height_crop_offset:] roi_label = cv2.resize(roi_label, out_size, interpolation=cv2.INTER_NEAREST) # label必须用最近邻来,因为每个像素值是一个分类id else: roi_label = None return roi_image, roi_label def train_data_generator(image_list, label_list, batch_size, out_size, height_crop_offset): """ 训练数据生成器 :@param image_list: 图片文件的绝对地址 :@param label_list: 标签文件的绝对地址 :@param batch_size: 每批取多少张图片 :@param image_size: 输出的图片尺寸 :@param crop_offset: 在高度的方向上,将原始图片截掉多少 """ indices = np.arange(0, len(image_list)) # 索引 out_images = [] out_labels = [] out_images_filename = [] while True: # 可以无限生成 np.random.shuffle(indices) for i in indices: try: image = cv2.imread(image_list[i]) labels = cv2.imread(label_list[i], cv2.IMREAD_GRAYSCALE) except: continue # crop & resize image, labels = crop_resize_data(image, labels, out_size, height_crop_offset) # encode labels = encode_gray_label(labels) out_images.append(image) out_labels.append(labels) out_images_filename.append(image_list[i]) if len(out_images) == batch_size: out_images = np.array(out_images, dtype=np.float32) out_labels = np.array(out_labels, dtype=np.int64) # 转换成RGB out_images = out_images[:, :, :, ::-1] # 维度改成 (n, c, h, w) out_images = out_images.transpose(0, 3, 1, 2) # 归一化 -1 ~ 1 out_images = out_images*2/255 - 1 yield torch.from_numpy(out_images), torch.from_numpy(out_labels).long(), out_images_filename out_images = [] out_labels = [] out_images_filename = [] def test_data_generator(images_root, batch_size, out_size, height_crop_offset): """ 测试数据生成器 :@param image_root: 测试图片文件的所在目录 :@param batch_size: 每批最多取多少张图片 :@param image_size: 输出的图片尺寸 :@param crop_offset: 在高度的方向上,将原始图片截掉多少 """ # 遍历测试图片目录 out_images = [] out_images_filename = [] for file in os.listdir(images_root): if not file.endswith('.jpg'): continue try: image = cv2.imread(os.path.join(images_root, file)) except: continue # crop & resize image, _ = crop_resize_data(image, None, out_size, height_crop_offset) out_images.append(image) out_images_filename.append(file) if len(out_images) == batch_size: out_images = np.array(out_images, dtype=np.float32) # 转换成RGB out_images = out_images[:, :, :, ::-1] # 维度改成 (n, c, h, w) out_images = out_images.transpose(0, 3, 1, 2) # 归一化 -1 ~ 1 out_images = out_images*2/255 - 1 yield torch.from_numpy(out_images), out_images_filename out_images = [] out_images_filename = [] def decodePredicts(predicts, out_size, height_pad_offset, mode='color'): """ 将推断的结果恢复成图片 @param predicts: shape=(n, c, h, w) @param out_size: 恢复的尺寸 (w, h) @param height_pad_offset: 在高度维度上填充回多少 @param mode: color | gray """ # softmax predicts = np.argmax(predicts, axis=1) # reshape to (n, -1) n, h, w = predicts.shape predicts = predicts.reshape((n, -1)) if mode == 'color': predicts = decode_color_label(predicts) predicts = predicts.reshape((3, n, h, w)) predicts = predicts.transpose((1, 2, 3, 0)) # to (n, h, w, c) c = 3 elif mode == 'gray': predicts = decode_gray_label(predicts) predicts.reshape((n, 1, h, w)) predicts = predicts.transpose((0, 2, 3, 1)) # to (n, h, w, c) c = 1 else: raise ValueError('mode supports: color / gary') # resize & pad (必须用最近邻) dsize = (out_size[0], out_size[1]-height_pad_offset) outs = [] for i in range(n): out = np.zeros((out_size[1], out_size[0], c), dtype=np.uint8) out[height_pad_offset:] = cv2.resize(predicts[i], dsize, interpolation=cv2.INTER_NEAREST) # label outs.append(out) return outs
""" Provides a touchstone to the project root for resolution of project-relative paths. """ import os ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
# Generated by Django 2.0.9 on 2018-12-18 20:02 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('empresas', '0003_acao'), ] operations = [ migrations.AlterField( model_name='acao', name='data', field=models.DateTimeField(default=datetime.datetime(2018, 12, 18, 20, 2, 41, 383835)), ), ]
# !/usr/bin/env python3 # -*- coding: utf-8 -*- import setuptools __author__ = 'ingbyr' setuptools.setup( name='BUPTNetLogin', version='0.0.9', author='ingbyr', author_email='dev@ingbyr.com', url='http://www.ingbyr.com', description='Command line tool to login the BUPT net', packages=['BUPTLogin'], install_requires=[ 'beautifulsoup4', 'lxml' ], include_package_data=True, entry_points={ 'console_scripts': [ 'bnl = BUPTLogin.login:do_login', 'bnlo = BUPTLogin.logout:logout' ] }, )
import speech_recognition as sr import pyttsx3 engine = pyttsx3.init() rate = engine.getProperty('rate') print (rate) r = sr.Recognizer() with sr.Microphone() as source: # use the default microphone as the audio source audio = r.listen(source) # listen for the first phrase and extract it into audio data try: print("You said " + r.recognize_google(audio)) # recognize speech using Google Speech Recognition - ONLINE print("You said " + r.recognize_sphinx(audio)) # recognize speech using CMUsphinx Speech Recognition - OFFLINE except LookupError: # speech is unintelligible print("Could not understand audio") engine.setProperty('rate', 150) if r.recognize_sphinx(audio) == "brown bear what do you see": engine.say("I see a yellow bird looking at me") engine.runAndWait() # pip install pocketsphinx pyaudio pyttsx3 # https://stackoverflow.com/questions/12239080/getting-started-with-speech-recognition-and-python
import torch.nn as nn import torch.nn.functional as F import torch from torch.autograd import Variable class LSTMClassifier(nn.Module): # class torch.nn.Module # 官方文档 # 所有网络的基类 # 你的模型也应该继承这个类。 # Model description # model = LSTMC.LSTMClassifier(embedding_dim=embedding_dim,hidden_dim=hidden_dim, # vocab_size=len(corpus.dictionary),label_size=nlabel, batch_size=batch_size, use_gpu=use_gpu) def __init__(self, embedding_dim, hidden_dim, vocab_size, label_size, batch_size, use_gpu): super(LSTMClassifier, self).__init__() # _init__()确保父类被正确的初始化了: self.hidden_dim = hidden_dim self.batch_size = batch_size self.use_gpu = use_gpu self.word_embeddings = nn.Embedding(vocab_size, embedding_dim) # create model, regulate size # Input should be module containing 23590 tensors of size 100 # 模块的输入是一个下标的列表,输出是对应的词嵌入。 # 官方文档 # class torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2, scale_grad_by_freq=False, sparse=False) # 参数: # num_embeddings(int) - 嵌入字典的大小 # embedding_dim(int) - 每个嵌入向量的大小 # padding_idx(int, optional) - 如果提供的话,输出遇到此下标时用零填充 # max_norm(float, optional) - 如果提供的话,会重新归一化词嵌入,使它们的范数小于提供的值 # norm_type(float, optional) - 对于max_norm选项计算p范数时的p # scale_grad_by_freq(boolean, optional) - 如果提供的话,会根据字典中单词频率缩放梯度 # 变量: # weight(Tensor) - 形状为(num_embeddings, embedding_dim)的模块中可学习的权值 # 形状: # 输入: LongTensor(N, W), N = mini - batch, W = 每个mini - batch中提取的下标数 # 输出: (N, W, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim) # Applies a multi - layer long short - term memory(LSTM) RNN to an input sequence. # input layer size is 100, hidden layer size is 50 # 层数为单层可能是这里的 num_layer 没有设定 ????????????? # 官方文档 https://pytorch.org/docs/stable/nn.html # 参数说明: # input_size – 输入的特征维度 # hidden_size – 隐状态的特征维度 # num_layers – 层数(和时序展开要区分开) # bias – 如果为False,那么LSTM将不会使用bias weights b_ih and b_hh 默认为True。 # batch_first – 如果为True,那么输入和输出Tensor的形状为(batch, seq, feature) # dropout – 如果非零的话,将会在RNN的输出上加个dropout,最后一层除外。 # bidirectional – 如果为True,将会变成一个双向RNN,默认为False。 self.hidden2label = nn.Linear(hidden_dim, label_size) # x1 = nn.Linear(hidden_dim, label_size).weight.shape torch.Size([8, 50]) # x2 = nn.Linear(hidden_dim, label_size).bias.shape torch.Size([8]) # 输入应该是一个 8 * 50 的torch # 有点难理解这里的数据结构 ??????????????????? # Create linear layer # Applies a linear transformation to the incoming data: y = xA ^ T + b, x is a matrix # in_features - 每个输入样本的大小 # out_features - 每个输出样本的大小 # bias - 若设置为False,这层不会学习偏置。默认值:True # 形状: # 输入: # vector(N, in_features) # vector(N, in_features) # 输出: # (N, out_features) # (N, out_features) # 变量: # weight - 形状为(out_features x in_features)的模块中可学习的权值 # bias - 形状为(out_features) 的模块中可学习的偏置 self.hidden = self.init_hidden() # 返回保存着batch中每个元素的初始化隐状态的Tensor # 返回batch中每个元素的初始化细胞状态的Tensor def init_hidden(self): if self.use_gpu: h0 = Variable(torch.zeros(1, self.batch_size, self.hidden_dim).cuda()) c0 = Variable(torch.zeros(1, self.batch_size, self.hidden_dim).cuda()) else: # 在Torch中的Variable就是一个存放会变化的值的地理位置.里面的值会不停的变化.值是Tensor如果用一个 Variable进行计算, 那返回的也是一个同类型的 # Variable # Create two size 5 * 50 tensors, filling with 0 这里的5应该是LSTM对应的5个状态还是? ??????? # 一开始那个1意味着小数点后一位 # print(torch.zeros(1, 3, 5)) # tensor([[[0., 0., 0., 0., 0.], # [0., 0., 0., 0., 0.], # [0., 0., 0., 0., 0.]]]) h0 = Variable(torch.zeros(1, self.batch_size, self.hidden_dim)) c0 = Variable(torch.zeros(1, self.batch_size, self.hidden_dim)) # LSTM输入: input, (h_0, c_0) # input(seq_len, batch, input_size): 包含输入序列特征的Tensor。也可以是packed variable ,详见[pack_padded_sequence]( # torch.nn.utils.rnn.pack_padded_sequence(input, lengths, batch_first=False[source]) # h_0(num_layers * num_directions, batch, hidden_size): 保存着batch中每个元素的初始化隐状态的Tensor # c_0(num_layers * num_directions, batch, hidden_size): 保存着batch中每个元素的初始化细胞状态的Tensor return (h0, c0) def forward(self, sentence): # 之前创建的Embedding层是用VOCAB SIZE,然后再FORWARD里面用的是SENTENCE Size, 有点搞不懂 ????????? # self.word_embeddings = nn.Embedding(vocab_size, embedding_dim) # create model, regulate size # Sentence should be module containing 23590 tensors of size 100 #输出: (N, W, embedding_dim embeds = self.word_embeddings(sentence) # Input : Sentence tensor size 32 *5 print (sentence.size()) torch.Size([32, 5]) # Output: Embeds tensor 32* 5* 10 print (embeds.size()) torch.Size([32, 5, 100])t # x = embeds x = embeds.view(len(sentence), self.batch_size, -1) #直接使用也是一样的 # 好像本来就是32,5,100的tensor,转化结果前后应该是一样的 ???????????? # Input : Embeds.torch.Size([32, 5, 100]) # Output: x.torch.Size([32,5,100]) print (x.shape) torch.Size([32, 5, 100]) # -1 means no sure about the size of one row # View() method can regroup the tensor into different size , but does not change content. # e.g. a = torch.arange(1, 17) # a's shape is (16,) # a.view(4, 4) # output below # 1 2 3 4 # 5 6 7 8 # 9 10 11 12 # 13 14 15 16 # [torch.FloatTensor of size 4x4] lstm_out, self.hidden = self.lstm(x, self.hidden) # 右边相当于把X作为输入,h0和c0作为初始状态变量 == input, (h_0, c_0) h0和 c0 是两个5* 50 tensors,初始值都为0.0,然后不断迭代 # 怎么看出循环过程 ??????????? # 左边是LSTM输出 output, (h_n, c_n) 对于LSTM,size()为 torch.Size([32, 5, 50]),最后一步为torch.Size([32, 4, 50]) # output(seq_len, batch, hidden_size * num_directions): # print (lstm_out.size()) # 保存RNN最后一层的输出的Tensor。 # 如果输入是torch.nn.utils.rnn.PackedSequence,那么输出也是torch.nn.utils.rnn.PackedSequence。 # h_n(num_layers * num_directions, batch, hidden_size): Tensor,保存着RNN最后一个时间步的隐状态。 # c_n(num_layers * num_directions, batch, hidden_size): Tensor,保存着RNN最后一个时间步的细胞状态 y = self.hidden2label(lstm_out[-1]) # print (lstm_out[-1].shape) # Input: The last output of LSTM_Out (-1 means last output) print ( lstm_out[-1].shape)---torch.Size([5, 50]) # Output: print( y.shape) 一开始都是torch.Size([5, 8]),最后一个是 torch.Size([4, 8]) ???????????????????????? # 在 t 时刻,LSTM 的输入有三个:当前时刻网络的输入值 x_t、上一时刻 LSTM 的输出值 h_t-1、以及上一时刻的单元状态 c_t-1; # LSTM 的输出有两个:当前时刻 LSTM 输出值 h_t、和当前时刻的单元状态 c_t. 应该是对应着5个状态和8个label的得分,然后最后一次结束有一个状态没有了,所以是4,8 ?????? # X的值最后是torch.Size([32, 4, 100]) # print (x.shape) # print("This is X") # print(len(sentence)) # print("This is len(sentence)") # print(lstm_out[-1].shape) # print("This is Lstm_out[-1]") # print(y.shape) # print("A") # print(y.size()) # print ("This is Y") return y # 最后返回的是一个4.8的tensor torch.Size([5, 8]) torch.Size([4, 8]) # 编写前向过程 # '''def forward(self, inputs): # embeds = self.embeddings(inputs).view((1, -1)) # Input is voc vecture and project to Embed layer # out = F.relu(self.linear1(embeds)) # Calculate Hidden layer output, Relu activation function # out = self.linear2(out) # Self.linear2 is output layer # log_probs = F.log_softmax(out) # Calculate forward process # ''''''return log_probs # # # 第二个前向 # 预处理文本转成稠密向量 # embeds=self.embedding((inputs)) # #根据文本的稠密向量训练网络 # out,self.hidden=self.lstm(embeds.view(len(inputs),1,-1),self.hidden) # #做出预测 # tag_space=self.out2tag(out.view(len(inputs),-1)) # tags=F.log_softmax(tag_space,dim=1) # return tags
"""Configuration module""" # noqa # System Imports # Framework / Library Imports # Application Imports # Local Imports import env_creds as creds APP_VERSION = '0.0.1' APP_DATE = '2020-11-02 1900' APP_NODE = creds.APP_NODE API_PREFIX = creds.API_PREFIX DEBUG = creds.DEBUG # RabbitMQ Queue Configuration RABBITMQ = { "server": creds.RABBIT_SERVER, "port": creds.RABBIT_PORT, "user": creds.RABBIT_USER, "password": creds.RABBIT_PASS }
def is_unique_string(string): try: iterator = iter(string) except TypeError: return False chars = {} for char in iterator: if chars.get(char) != None: return False chars[char] = True return True assert is_unique_string(()) assert is_unique_string({}) assert is_unique_string('') assert is_unique_string('a') assert is_unique_string('ab') assert is_unique_string('abc') assert is_unique_string('123') assert is_unique_string('123!') assert not is_unique_string('!abcc') assert not is_unique_string(None) assert not is_unique_string(123)
#!/usr/bin/env python3 import os import requests from lxml import etree from ..lib import utils ''' desc: save the data into a file ''' def save_linux_data(file_name, data): with open(file_name, "w", encoding='utf-8') as f: f.write(data) def replace_bad_character(ori_str): new_str = ori_str.replace("Â", "") new_str = new_str.replace("¶", "") new_str = new_str.replace("’", "'") new_str = new_str.replace("‘", "'") # ‘ new_str = new_str.replace("’", "'") # ’ new_str = new_str.replace("“", "'") # “ new_str = new_str.replace("”", "'") # ” new_str = new_str.replace("â€", "...") # … new_str = new_str.replace(" ", " ") # return new_str ''' desc: get infomation of linux get per-function infomation in Linux Core API page - basic description, Parameters, Description, Note concern: may have some absent situations using lxml to filter xpath ''' def get_linux_info(content): info = "" sections = content.xpath("div[@class='section']") if len(sections) > 0: for section in sections: info += get_linux_info(section) elif len(content.xpath("section")) > 0: for section in content.xpath("section"): info += get_linux_info(section) else: for element in content: if "h" == element.tag[0]: continue if 'class' in element.attrib: if element.attrib['class'] in ['function', 'c function']: info += "\n" + "=" * 20 + "\n" elif element.attrib['class'] == 'c macro': continue if 'class' in element.attrib and element.attrib['class'] == 'simple': info += replace_bad_character(element.text) if element.text != None else "" for e in element: info += replace_bad_character(e.xpath("string(.)")) + "\n" else: info += replace_bad_character(element.xpath("string(.)")) + "\n" if element.tag == "p": info += "\n" return info ''' doc_dir - the storage directory of data Now the default version is set to v5.15. See the versions at https://www.kernel.org/doc/html/. Note: This is an empirical implementation for the version <= v6.1, which may not support the future version because the websites are updating. ''' def handle_linux(doc_dir): print("===============================================") print("==== Handling linux info =====") print("==== From linux Core API page =====") dir = os.path.join(doc_dir, "linux") utils.mkdir(dir) source_linux = requests.get("https://www.kernel.org/doc/html/v5.15/core-api/kernel-api.html") parser = etree.HTMLParser(encoding='utf-8') html_elements = etree.HTML(source_linux.text, parser=parser).xpath("//*[@id='the-linux-kernel-api']") saved_data = "" for content in html_elements: saved_data += get_linux_info(content) source_linux = requests.get("https://www.kernel.org/doc/html/v5.15/core-api/mm-api.html") parser = etree.HTMLParser(encoding='utf-8') html_elements = etree.HTML(source_linux.text, parser=parser).xpath("//*[@id='memory-management-apis']") for content in html_elements: saved_data += get_linux_info(content) save_linux_data(os.path.join(dir, "linux_api.txt"), saved_data) print("===============================================")
# Generated by Django 2.2 on 2022-06-10 02:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('basketball', '0065_auto_20180722_2036'), ] operations = [ migrations.AlterModelOptions( name='award', options={'ordering': ('-date',)}, ), migrations.AddField( model_name='dailystatline', name='fta', field=models.PositiveIntegerField(default=0), ), migrations.AddField( model_name='dailystatline', name='ftm', field=models.PositiveIntegerField(default=0), ), migrations.AddField( model_name='recordstatline', name='fta', field=models.PositiveIntegerField(default=0), ), migrations.AddField( model_name='recordstatline', name='ftm', field=models.PositiveIntegerField(default=0), ), migrations.AddField( model_name='seasonstatline', name='fta', field=models.PositiveIntegerField(default=0), ), migrations.AddField( model_name='seasonstatline', name='ftm', field=models.PositiveIntegerField(default=0), ), migrations.AddField( model_name='statline', name='fta', field=models.PositiveIntegerField(default=0), ), migrations.AddField( model_name='statline', name='ftm', field=models.PositiveIntegerField(default=0), ), migrations.AlterField( model_name='dailystatline', name='points_to_win', field=models.CharField(choices=[('11', '11'), ('30', '30'), ('other', 'Other')], default='other', max_length=30), ), migrations.AlterField( model_name='game', name='points_to_win', field=models.CharField(choices=[('11', '11'), ('30', '30'), ('other', 'Other')], default='other', max_length=30), ), migrations.AlterField( model_name='playbyplay', name='primary_play', field=models.CharField(choices=[('fgm', 'FGM'), ('fga', 'FGA'), ('threepm', '3PM'), ('threepa', '3PA'), ('ftm', 'FTM'), ('fta', 'FTA'), ('blk', 'BLK'), ('to', 'TO'), ('pf', 'FOUL'), ('sub_out', 'OUT'), ('misc', 'Misc')], max_length=30), ), migrations.AlterField( model_name='player', name='is_active', field=models.BooleanField(blank=True, default=True, help_text='Determine if a player should be selectable when creating games'), ), migrations.AlterField( model_name='recordstatline', name='points_to_win', field=models.CharField(choices=[('11', '11'), ('30', '30'), ('other', 'Other')], default='other', max_length=30), ), migrations.AlterField( model_name='seasonper100statline', name='points_to_win', field=models.CharField(choices=[('11', '11'), ('30', '30'), ('other', 'Other')], default='other', max_length=30), ), migrations.AlterField( model_name='seasonstatline', name='points_to_win', field=models.CharField(choices=[('11', '11'), ('30', '30'), ('other', 'Other')], default='other', max_length=30), ), ]
#coding:gb2312 #给文件添加内容 filename = 'write.txt' with open(filename,'a') as f: f.write("\nPython 是一门解释性语言。")
"""读取源数据,定义数据加载函数 """ import numpy as np def data_gen(data, lookback, delay, min_index, max_index, shuffle=False, batch_size=128, step=6): """生成历史和预测数据集 算法执行过程:首先在合理区间里找出一系列时间基准值保存在 rows 中, 根据 shuffle 的取值以及上次取值结束位置(保存在 i 中), 这个合理区间可能是:(min_index + lookback, max_index), 或者 (i, i + batch_size), (i, max_index)。 对 rows 的每个元素 row,以 row - lookback 为左边界、 row 为右边界、step 为间隔,生成一系列历史数据采样点, 将这些时间点上所有 14 个测量值被放入 samples 中, 将 row + delay 时间点上的温度值作为标签(预测值,与算法给出的预测结果比较) 放入 target 里。 本例中,一个批量取 128 个样本,一个样本有一个基准时间, 向前推10天,在这个区间内等间隔取240个点(每1小时采样一次), 每个点上取源数据中所有14个物理测量值,形成一个 240 x 14 的矩阵作为预测依据, 再取基准时间后1天的温度作为预测目标。 Parameters: data (numpy.ndarray): 本例中为 420551 行,14 列 lookback (int): 历史数据长度,本例中为 1440,即 10 天(原始数据间隔为10分钟); delay: 从基准时间(lookback 的结束时间点)向后推 delay 时间,预测目标是这个时间点上的温度值 min_index (int): 历史区间的左边界 max_index (int): 历史区间的右边界 batch_size (int): 样本个数 step: 采样点时间间隔,本例中 6 表示每 6 个点采样一次,即采用间隔为 1 小时 Returns: tuple: 包含(历史 预测)二元组, 第一部分是形状为 (batch_size, lookback/step, feature_number), 本例中为 (128, 240, 14) 的 numpy.ndarray, 第二部分(预测)是一个长度为 batch_size 的一元 ndarray, 本例中形状为 (128,)。 """ if max_index is None: max_index = len(data) - delay - 1 # 防止 target 取值时数组下标右越界 i = min_index + lookback # 防止 samples 向回取历史值(保存在 indices 里)时左越界 while 1: if shuffle: rows = np.random.randint(min_index + lookback, max_index, size=batch_size) # rows 的每个元素以自己为右边界,生成一个时间序列作为历史和一个预测值, # 彼此之间没有顺序,所以可以乱序。 else: if i + batch_size >= max_index: i = min_index + lookback rows = np.arange(i, min(i + batch_size, max_index)) i += len(rows) samples = np.zeros((len(rows), lookback // step, data.shape[-1])) # data 的最后一个维度,即除时间戳外的特征数,14 targets = np.zeros((len(rows),)) for j, row in enumerate(rows): indices = range(rows[j] - lookback, rows[j], step) samples[j] = data[indices] targets[j] = data[rows[j] + delay][1] yield samples, targets fname = './jena_climate_2009_2016.csv' with open(fname, 'r') as f: rawlines = f.readlines() striped = map(lambda x: x.strip(), rawlines) header = next(striped).split(',') lines = list(striped) print('Header:', header) print('Number of data lines:', len(lines)) float_data = np.zeros((len(lines), len(header) - 1)) # 在 header 包含的列数上 -1 是因为不包含时间列 for i, line in enumerate(lines): values = [float(x) for x in line.split(',')[1:]] float_data[i] = values mean = float_data[:200000].mean(axis=0) float_data -= mean std = float_data[:200000].std(axis=0) float_data /= std
from tkinter import * root = Tk() with open("file.txt", "r") as f: Label(root, text=f.read()).pack() root.mainloop()
from JapaneseTokenizer.mecab_wrapper import MecabWrapper from JapaneseTokenizer.juman_wrapper import JumanWrapper from JapaneseTokenizer.kytea_wrapper import KyteaWrapper from JapaneseTokenizer.datamodels import TokenizedSenetence from JapaneseTokenizer.datamodels import FilteredObject
from script.base_api.service_finance.app import * from script.base_api.service_finance.web import * from script.base_api.service_finance.finance import * from script.base_api.service_finance.handCash import * from script.base_api.service_finance.v2 import * from script.base_api.service_finance.applet import *
import random def guess(x): random_number=random.randint(1,10) guess=0 while guess!=random_number: guess=input(f'guess a number between 1 and {x}') if int(guess)<random_number: print("Sorry,guess again, too low") elif int(guess)>random_number: print("Sorry, guess again, too high") elif int(guess)==random_number: print(f'Congrats, right number {random_number}') guess(10)
import numpy as np import pytest import osmo_camera.tiff.save as module class TestGuardImageFitsIn32Bits: def setup_method(self): self.test_image = np.zeros(shape=(2, 2, 3)) @pytest.mark.parametrize( "name, in_range_value", [ ("zero", 0), ("value within range", 1), ("value near min", -64), ("value near max", 63.9999), ], ) def test_does_not_raise_if_in_range(self, name, in_range_value): self.test_image[0][0][0] = in_range_value module._guard_rgb_image_fits_in_padded_range(self.test_image) @pytest.mark.parametrize( "name, out_of_range_value", [ ("value just below min", -64.1), ("value well below min", -10000), ("value just above max", 64), ("value well above max", 10000), ], ) def test_raises_if_out_of_range(self, name, out_of_range_value): self.test_image[0][0][0] = out_of_range_value with pytest.raises(module.DataTruncationError): module._guard_rgb_image_fits_in_padded_range(self.test_image)
from hamcrest import assert_that, equal_to from ..utils.geometry import RectSize from ..utils.image import ScreenshotFromPngBytes class Window(object): def __init__(self, browser): self._browser = browser @property @RectSize.wrapped def outer_size(self): size = self._browser.get_window_size() return (size['width'], size['height']) @property @RectSize.wrapped def inner_size(self): return self._browser.execute_script( 'return [window.innerWidth, window.innerHeight];') @property def virtual_pixel_ratio(self): return self._browser.execute_script('return window.devicePixelRatio;') @property def physical_pixel_ratio(self): return self.virtual_pixel_ratio @property def address_bar_height(self): if hasattr(self._browser, 'address_bar_height'): return self._browser.address_bar_height else: return 0 @property def bar_shadow_height(self): if hasattr(self._browser, 'bar_shadow_height'): return self._browser.bar_shadow_height else: return 0 def get_screenshot(self): png_bytes = self._browser.get_screenshot_as_png() return ScreenshotFromPngBytes(png_bytes) class ResizableWindow(Window): @Window.outer_size.setter def outer_size(self, value): self._browser.set_window_size(*value) assert_that(self.outer_size, equal_to(value), 'Outer Window Size') @Window.inner_size.setter def inner_size(self, value): size_adjustment = value - self.inner_size try: self.outer_size += size_adjustment except AssertionError: pass assert_that(self.inner_size, equal_to(value), 'Inner Window Size') def maximize(self): self._browser.maximize_window()
#Sean Kim #Unit 1 What's Your Order? print ("Welcome to the Respass Deli!") print ("What type of sandwich would you like?") sandwich = input () print ("What size fries would you like (small/medium/large)?") fries = input () print ("What type of soda would you like?") soda = input () print ("You have ordered: \n" + "\t" + sandwich.title() +" Sandwich\n" + "\t" + fries.title() + " Fries \n" + "\t" + soda.title() +" to Drink\n" "Enjoy")
# Generated by Django 2.1 on 2018-10-02 13:15 from django.db import migrations, models import tinymce.models class Migration(migrations.Migration): dependencies = [ ('mainapp', '0028_price'), ] operations = [ migrations.CreateModel( name='News', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=256, verbose_name='Наименовение')), ('desc', tinymce.models.HTMLField()), ('date', models.DateTimeField(auto_now_add=True)), ], ), migrations.AlterField( model_name='price', name='file', field=models.FileField(blank=True, null=True, upload_to='price', verbose_name='Файл'), ), ]
from __future__ import print_function import sys from operator import add from pyspark import SparkContext from csv import reader import re def check_y_coord_cd(input): if len(input) == 0: return 'NULL\tNULL\tNULL' try: x = int(input) return 'INT\tY-COORDINATE\tVALID' if x >= 110618 and x<= 278254 else 'INT\tY-COORDINATE\tINVALID/OUTLIER' except ValueError as err: return 'INT\tY-COORDINATE\tINVALID/OUTLIER' if __name__ == "__main__": sc = SparkContext() lines = sc.textFile(sys.argv[1], 1) lines = lines.mapPartitions(lambda x: reader(x)).filter(lambda x: x[0] != 'CMPLNT_NUM') results = lines.map(lambda x: check_y_coord_cd(x[20])) \ results.saveAsTextFile('check_y_coord_cd.out') sc.stop()
from .base import FunctionalTest class LayoutAndStylingTest(FunctionalTest): def test_layout_and_styling(self): # For a simple layout and styling test check user area is near to top right corner # Visitor goes to the home page self.browser.get(self.server_url) # He notice user area is at top right user_area = self.browser.find_element_by_id('navbar-tray') self.assertAlmostEqual(user_area.location['y'], 0, delta=20)
brian = "Hello life" # Assign your variables below, each on its own line! caesar = "Graham" praline = "John" viking = "Teresa" # Put your variables above this line print caesar print praline print viking """ The string "PYTHON" has six characters, numbered 0 to 5, as shown below: +---+---+---+---+---+---+ | P | Y | T | H | O | N | +---+---+---+---+---+---+ 0 1 2 3 4 5 So if you wanted "Y", you could just type "PYTHON"[1] (always start counting from 0!) """ fifth_letter = "MONTY"[4] print fifth_letter parrot = "Norwegian Blue" print len(parrot) print parrot.lower() pi = 3.14 print str(pi) print "Spam "+"and "+"eggs" print "The value of pi is around " + str(3.14) string_1 = "Camelot" string_2 = "place" print "Let's not go to %s. 'Tis a silly %s." % (string_1, string_2) name = raw_input("What is your name?") quest = raw_input("What is your quest?") color = raw_input("What is your favorite color?") print "Ah, so your name is %s, your quest is %s, " \ "and your favorite color is %s." % (name, quest, color)
# -*- coding: utf-8 -*- import re, os, time, sys import urllib, urllib2, urlparse import xbmcplugin, xbmcgui, xbmcaddon from resources.lib import kokolib, hellotools addon = xbmcaddon.Addon() addonname = addon.getAddonInfo('name') addon_handle = int(sys.argv[1]) sysaddon = sys.argv[0] xbmcplugin.setContent(addon_handle, 'movies') COOKIEPATH = unicode(addon.getAddonInfo('path') + os.path.sep + "cookies",'utf-8') cookieFile = COOKIEPATH + os.path.sep + 'koko.cookie' baseUrl = 'http://kokosik1207.pl' mainMenu = [ ["[COLOR=blue]Ostatnio dodane[/COLOR]",'/newposts/',"FilmList"], ["Seriale",'/seriale/',"FilmList"], ["Kolekcje filmowe",'/kolekcje-filmowe',"FilmList"], ["Filmy na prosbe",'/filmy-na-prosbe',"FilmList"], ["Gatunek",'g',"SubCategory"], ["Wersja",'w',"SubCategory"], ["Rok",'r',"SubCategory"], ["[COLOR=green]Szukaj[/COLOR]","0","Search"] ] gatMenu = [ ["Akcja",'/akcja',"FilmList"], ["Animowane",'/animowane',"FilmList"], ["Biograficzne",'/biograficzne',"FilmList"], ["Dokumentalne",'/dokument',"FilmList"], ["Dramat","/dramat","FilmList"], ["Familijny","/familijny","FilmList"], ["Fantasy","/fantasy","FilmList"], ["Historyczny","/historyczny","FilmList"], ["Horror","/horror","FilmList"], ["Katastroficzny","/katastroficzny","FilmList"], ["Komedia","/komedia","FilmList"], ["Kryminal","/kryminal","FilmList"], ["Przygodowy","/przygodowy","FilmList"], ["Psychologiczny","/psychologiczny","FilmList"], ["Romans","/romans","FilmList"], ["Sci-Fi","/sci-fi","FilmList"], ["Sensacyjny","/sensacyjny","FilmList"], ["Thriller","/thriller","FilmList"], ["Western","/western","FilmList"] ] werMenu = [ ["Film polski",'/xfsearch/polski',"FilmList"], ["Napisy PL",'/xfsearch/napisy+pl',"FilmList"], ["Lektor PL",'/xfsearch/lektor+pl',"FilmList"], ["Lektor amatorski",'/xfsearch/lektor+amatorski',"FilmList"], ["Dubbing PL",'/xfsearch/dubbing',"FilmList"], ["Inne",'/xfsearch/inne',"FilmList"] ] rokMenu = [ ["2017",'/xfsearch/2017',"FilmList"], ["2016",'/xfsearch/2016',"FilmList"], ["2015",'/xfsearch/2015',"FilmList"], ["2014",'/xfsearch/2014',"FilmList"], ["2013","/xfsearch/2013","FilmList"], ["2012","/xfsearch/2012","FilmList"], ["2011","/xfsearch/2011","FilmList"], ["2010","/xfsearch/2010","FilmList"] ] def addMenu(name,url,mode,folder,contextmenu='',info='',icon='',isPlayable = False, img = ''): liz=xbmcgui.ListItem(name, iconImage="DefaultFolder.png", thumbnailImage=icon) liz.setInfo( type="video", infoLabels = info ) if img: liz.setArt({ "poster": img }) # "fanart": "https://image.tmdb.org/t/p/w185/weUSwMdQIa3NaXVzwUoIIcAi85d.jpg" if isPlayable: liz.setProperty('IsPlayable', 'True') if contextmenu: liz.addContextMenuItems(contextmenu) u=sysaddon+"?url="+urllib.quote_plus(url)+"&mode="+str(mode)+"&name="+urllib.quote_plus(name)+"&icon="+urllib.quote_plus(icon)+"&content=" ok=xbmcplugin.addDirectoryItem(handle=addon_handle,url=u,listitem=liz,isFolder=folder) return ok def buildMenu(menuList): for i in menuList: addMenu(i[0],i[1],i[2],True) def subCategory(url): if(url == 'g'): buildMenu(gatMenu) if(url == 'w'): buildMenu(werMenu) if(url == 'r'): buildMenu(rokMenu) xbmcplugin.endOfDirectory(addon_handle) def filmList(url): html = hellotools.httpRequest({ 'url':url, 'use_cookie': True, 'cookiefile': cookieFile, 'save_cookie': False, 'load_cookie': True, 'return_data': True }) movieList = kokolib.getTitleList(html) pageing = kokolib.getNextPage(html) for mm in movieList: info = { "genre":mm[2], "plot": "[COLOR=blue]" + mm[2] + "[/COLOR]. " + mm[3], "title": mm[1] } addMenu(mm[1],mm[0],'MovieDetails',True, '', info, '', False, mm[4]) if pageing: addMenu('[COLOR=blue]> Następna strona >[/COLOR] ' + pageing[1], pageing[0],'FilmList', True, '', {"plot":pageing[0]}) xbmcplugin.endOfDirectory(addon_handle) # play2 dziala def play2(stream_url): listitem = xbmcgui.ListItem("play2") xbmc.Player().play(stream_url, listitem) # uses urlresolver - but urlresolver is shitty #def findAndPlayStream(url): # try: # import urlresolver # movieUrl = urlresolver.resolve(url) # if isinstance(movieUrl, basestring): # play2(movieUrl) # else: # xbmcgui.Dialog().ok(addonname, 'Brak filmu', 'Info: %s' % movieUrl) # except urlresolver.resolver.ResolverError as e: # xbmcgui.Dialog().ok(addonname, 'ResolverError: %s' % e) # except: # xbmcgui.Dialog().ok(addonname, 'KokoError: %s' % str(sys.exc_info()[0]), str(sys.exc_info()[1]), str(sys.exc_info()[2])) #traceback.format_exc() def findAndPlayStream(url): movieUrl = kokolib.findMovieUrl(url) if movieUrl[0]: play2(movieUrl[1]) else: xbmcgui.Dialog().ok(addonname, movieUrl[1]) def checkHasCredentials(): if not addon.getSetting('kokosik.user') or not addon.getSetting('kokosik.pass'): xbmcgui.Dialog().ok(addonname, 'Zaloguj sie', 'Aby ogladac filmy musisz byc zalogowany') addon.openSettings() return False return True def isLoggedin(html): return html.find('index.php?action=logout') > 0 def login(): query_data = { 'url': 'http://kokosik1207.pl/', 'use_cookie': True, 'cookiefile': cookieFile, 'save_cookie': True, 'load_cookie': False, 'use_post': True, 'return_data': True } loginData = { 'login_name': addon.getSetting('kokosik.user'), 'login_password': addon.getSetting('kokosik.pass'), 'login':'submit' } html = hellotools.httpRequest(query_data, loginData) loggedin = isLoggedin(html) xbmcgui.Dialog().ok(addonname, 'Podane login lub haslo sa nieprawidlowe', addon.getSetting('kokosik.user') + ":" + addon.getSetting('kokosik.pass')) return loggedin def movieDetails(url): query_data2 = { 'url': url, 'use_cookie': True, 'cookiefile': cookieFile, 'save_cookie': False, 'load_cookie': True, 'return_data': True } html = hellotools.httpRequest(query_data2) loggedin = isLoggedin(html) if(not loggedin): checkHasCredentials() loggedin = login() if(loggedin): html = kokolib.httpRequest(query_data2) lst = kokolib.listVideoProviders(html) movie = kokolib.getTitleList(html)[0] for z in lst: info = { "plot":str(movie[1]) + "\n" + movie[3] + "\n\n" + z[3], "title":movie[1], "rating":"4" } addMenu(z[0] + " " + z[1] + " "+ z[2],z[3],'FindAndPlay', True, '', info, '', False, movie[4]) xbmcplugin.endOfDirectory(addon_handle) def inputSearchText(text=''): textnew = None kb = xbmc.Keyboard(text) kb.doModal() if (kb.isConfirmed()): textnew = kb.getText() return textnew def search(key): query_data = { 'url': 'http://kokosik1207.pl/', 'use_cookie': True, 'cookiefile': cookieFile, 'save_cookie': False, 'load_cookie': True, 'use_post': True, 'return_data': True } postData = { 'do': 'search', 'subaction':'search', 'story':key, 'x':'0', 'y':'0' } html = hellotools.httpRequest(query_data, postData) data = kokolib.parseSearchHtml(html) for mm in data: info = { "genre":mm[1], "plot": "[COLOR=blue]" + mm[1] + "[/COLOR]. " + mm[3], "title": mm[0] } addMenu(mm[0],mm[2],'MovieDetails',True, '', info) #pageing = kokolib.getNextPage(html) #if pageing: # addMenu('[COLOR=blue]> Następna strona >[/COLOR] ' + pageing[1], pageing[0],'FilmList', True, '', {"plot":pageing[0]}) xbmcplugin.endOfDirectory(addon_handle) ## MAIN LOOP params = dict(urlparse.parse_qsl(sys.argv[2].replace('?',''))) if not os.path.isdir(COOKIEPATH): os.mkdir(COOKIEPATH) url = params.get('url') or None name = params.get('name') or None mode = params.get('mode') or None content = params.get('content') or '' icon = params.get('icon') or None premium = params.get('premium') or '' param1 = params.get('param1') or None param2 = params.get('param2') or None param3 = params.get('param3') or None ###################################### if mode==None: buildMenu(mainMenu) xbmcplugin.endOfDirectory(addon_handle) checkHasCredentials() elif mode=='FilmList': if 'http' not in url: url = baseUrl + url filmList(url) elif mode=='MovieDetails': movieDetails(url) elif mode=='FindAndPlay': findAndPlayStream(url) elif mode=='SubCategory': subCategory(url) elif mode=='Tools': toolsMenu() elif mode=='Search': key = inputSearchText() if key: search(key) #key=repPolChars(key) #addHistoryItem(my_addon_name, key) #xbmc.executebuiltin('Container.Refresh') elif mode=='SearchFromList': searchFromList(url)
number = 19 swap = [1, 1, 2] fib = [] if number == 1: fib.append(1) print(fib) elif number == 2: fib.append(1) fib.append(1) print(fib) else: fib.append(1) fib.append(1) fib.append(2) for i in range(0, number-3): swap[0] = swap[1] swap[1] = swap[2] swap[2] = swap[0] + swap[1] fib.append(swap[2]) print(fib)
""" 计算句子相似度 输入参数: 2个句子 s1,s2 返回参数: 句子相似度 """ import numpy as np from scipy.linalg import norm from sklearn.feature_extraction.text import CountVectorizer def tf_similarity(s1, s2): def add_space(s): return ' '.join(list(s)) # 将字中间加入空格 s1, s2 = add_space(s1), add_space(s2) # 转化为TF矩阵 cv = CountVectorizer(tokenizer=lambda s: s.split()) corpus = [s1, s2] vectors = cv.fit_transform(corpus).toarray() # 计算TF系数 return np.dot(vectors[0], vectors[1]) / (norm(vectors[0]) * norm(vectors[1]))
number = "+18684732335"
#!/usr/bin/env python # coding: utf-8 # Copyright (c) Qotto, 2019 from .events import CoffeeOrdered from .events import CoffeeServed from .events import CoffeeFinished __all__ = [ 'CoffeeOrdered', 'CoffeeServed', 'CoffeeFinished', ]
from django import forms from .models import Hamyar class HamyarForm(forms.ModelForm): password = forms.CharField(widget=forms.PasswordInput) class Meta: model = Hamyar fields = ['country', 'city', 'address', 'postal_code', 'phone_number'] def __init__(self, *args, **kwargs): super(HamyarForm, self).__init__(*args, **kwargs) # self.fields['first_name'].label = "نام" # self.fields['last_name'].label = "نام خانوادگی" # self.fields['email'].label = "پست الکترونیکی" # self.fields['password'].label = "رمز عبور" # self.fields['national_id'].label = "کد ملی" # self.fields['country'].label = "کشور" # self.fields['city'].label = 'شهر' # self.fields['address'].label = 'آدرس' # self.fields['postal_code'].label = 'کد پستی' # self.fields['phone_number'].label = 'شماره تلفن' # self.fields['first_name'].widget.attrs[ # 'style'] = 'width:400px; height:20px; border-radius=5px; direction:rtl; float:left;' # self.fields['email'].widget.attrs['style'] = 'width:400px; height:20px; border-radius=5px; float:left;' # self.fields['last_name'].widget.attrs[ # 'style'] = 'width:400px; height:20px; border-radius=5px; direction:rtl; float:left;' # self.fields['country'].widget.attrs[ # 'style'] = 'width:400px; height20px; border-radius=5px; direction:rtl; float:left;'
# -*- coding: utf-8 -*- import psycopg2 class Requests: def __init__(self): self.registerQuery = 'select id,dni,student_number,name,lastname,email,reason,password,hash,confirmed from account_requests.requests' def convertToDict(self, d): r = { 'id':d[0], 'dni':d[1], 'studentNumber':d[2], 'name':d[3], 'lastname':d[4], 'email':d[5], 'reason':d[6], 'password':d[7], 'hash':d[8], 'confirmed':d[9] } return r def listRequests(self, con): cur = con.cursor() cur.execute(self.registerQuery); data = cur.fetchall(); if data == None: return [] ''' transformo a diccionario la respuesta ''' rdata = [] for d in data: rdata.append(self.convertToDict(d)) return rdata def findRequest(self, con, id): cur = con.cursor() cur.execute(self.registerQuery + ' where id = %s',(id,)); d = cur.fetchone() if d == None: return None ''' transformo a diccionario la respuesta ''' rdata = self.convertToDict(d) return rdata def findRequestByHash(self, con, hash): cur = con.cursor() cur.execute(self.registerQuery + ' where hash = %s',(hash,)); d = cur.fetchone() if d == None: return None ''' transformo a diccionario la respuesta ''' rdata = self.convertToDict(d) return rdata def confirmRequest(self, con, rid): cur = con.cursor() cur.execute('update account_requests.requests set confirmed = true where id = %s', (rid,)) def createRequest(self, con, req): rreq = (req['id'],req['dni'],req['studentNumber'],req['name'],req['lastname'],req['email'],req['reason'],req['password'],req['hash']) cur = con.cursor() cur.execute('insert into account_requests.requests (id,dni,student_number,name,lastname,email,reason,password,hash) values (%s,%s,%s,%s,%s,%s,%s,%s,%s)', rreq) def removeRequest(self, con, rid): cur = con.cursor() cur.execute('delete from account_requests.requests where id = %s', (rid,))
from crawler import Crawler class FindWordCrawler(Crawler): def __init__(self, word_to_find): super().__init__() self.word_to_find = word_to_find self.word_found = False def process_data(self, data, url): print(self.visited_urls) for line in data: if self.word_to_find in line: self.word_found = True print("Word found on page: {}, line: {}".format(url, line.strip())) break def is_ended(self): return self.word_found
from urllib.parse import urlparse from crawler import Crawler class CountWordCrawler(Crawler): def __init__(self, word_to_count, visit_limit=100): super().__init__() self.word_to_count = word_to_count self.word_counter = 0 self.pages_left = visit_limit self.base_url_netloc = ""; def init_crawler(self, base_url): self.base_url_netloc = urlparse(base_url).netloc def process_data(self, data, url): for line in data: self.word_counter += line.strip().split(' ').count(self.word_to_count) def filter_links(self, links): filtered_links = [] for link in links: parsed_link = urlparse(link) if parsed_link.netloc == self.base_url_netloc: filtered_links.append(link) return filtered_links def update(self): self.pages_left -= 1 def is_ended(self): return self.pages_left <= 0 def value_to_return(self): return self.word_counter if __name__ == "__main__": crawler = CountWordCrawler("word") word_occurencies = crawler.crawl("your_address_goes_here") print("Word occurencies: {}".format(word_occurencies))
# Copyright 2009-2010, BlueDynamics Alliance - http://bluedynamics.com from zope.interface import implements from zope.catalog.catalog import Catalog from zope.catalog.field import FieldIndex from zope.catalog.text import TextIndex from zope.catalog.keyword import KeywordIndex from cornerstone.soup.interfaces import ICatalogFactory from cornerstone.soup.ting import TingIndex class MyCatalogFactory(object): """ICatalogFactory implementation used for testing. """ implements(ICatalogFactory) def create_catalog(self): catalog = Catalog() catalog[u'user'] = FieldIndex(field_name='user', field_callable=False) catalog[u'text'] = TextIndex(field_name='text', field_callable=False) catalog[u'keywords'] = KeywordIndex(field_name='keywords', field_callable=False) return catalog def __call__(self): self.catalog = self.create_catalog() return self.catalog class TingCatalogFactory(object): """ICatalogFactory implementation for testing textindex NG integration to soup. """ implements(ICatalogFactory) def create_catalog(self): catalog = Catalog() catalog[u'ting'] = TingIndex(field_name=('foo', 'bar', 'baz'), field_callable=False) return catalog def __call__(self): self.catalog = self.create_catalog() return self.catalog class SortCatalogFactory(object): """ICatalogFactory implementation for testing sorting in soup. """ implements(ICatalogFactory) def __call__(self): catalog = Catalog() catalog[u'date'] = FieldIndex(field_name='date', field_callable=False) return catalog
import torch from torch import nn import torch.nn.functional as F class DeConv1(nn.Module): # Conv1 反卷积 def __init__(self, in_channel, out_channel, kernel_size=(7, 7), stride=2, padding=3): super(DeConv1, self).__init__() self.deconv = nn.ConvTranspose2d(in_channel, out_channel, kernel_size=kernel_size, stride=stride, padding=padding) self.init() def init(self, pth_path='runs/cifar10_resnet18_experiment_1/56_epoch_para.pkl'): resnet_state_dict = torch.load(pth_path) self.deconv.weight.data = resnet_state_dict['conv1.0.weight'] def forward(self, featuremap): return self.deconv(featuremap) class DeResBlock(nn.Module): def __init__(self,in_channel,out_channel,stride): super(DeResBlock,self).__init__() self.relu = nn.ReLU(inplace=True) self.deshortcut = nn.ConvTranspose2d(in_channel,out_channel,kernel_size=1,stride=stride,padding=0,bias=False) self.deleft = nn.Sequential( nn.ConvTranspose2d(in_channel,in_channel,kernel_size=3,stride=1,padding=1,bias=False), nn.ReLU(inplace=True), nn.ConvTranspose2d(in_channel,out_channel,kernel_size=3,stride=stride,padding=1,bias=False) ) def forward(self, x): x = self.relu(x) # x = self.deshortcut(x) x = self.deleft(x) return x class DeConv4(nn.Module): # 反卷积第五层 def __init__(self): super(DeConv4,self).__init__() # self.delayer4 = DeResBlock(512,256,stride=2) self.delayer3 = DeResBlock(256,128, stride=2) self.delayer2 = DeResBlock(128,64,stride=2) self.delayer1 = DeResBlock(64,64,stride=2) self.derelu = nn.ReLU(inplace=True) self.conv1 = DeConv1(64,3,kernel_size=(7,7),stride=2,padding=3) self.init() def forward(self, x): # x = self.delayer4(x) x = self.delayer3(x) x = self.delayer2(x) x = self.delayer1(x) x = self.derelu(x) x = self.conv1(x) return x def init(self,pth_path='runs/cifar10_resnet18_experiment_1/56_epoch_para.pkl'): resnet_state_dict = torch.load(pth_path) self.conv1.deconv.weight.data = resnet_state_dict['conv1.0.weight'] self.delayer1.deshortcut.weight.data = resnet_state_dict['layer1.0.shortcut.0.weight'] self.delayer2.deshortcut.weight.data = resnet_state_dict['layer2.0.shortcut.0.weight'] self.delayer3.deshortcut.weight.data = resnet_state_dict['layer3.0.shortcut.0.weight'] # self.delayer4.deshortcut.weight.data = resnet_state_dict['layer4.0.shortcut.0.weight'] self.delayer1.deleft[0].weight.data = resnet_state_dict['layer1.0.left.3.weight'] self.delayer1.deleft[2].weight.data = resnet_state_dict['layer1.0.left.0.weight'] self.delayer2.deleft[0].weight.data = resnet_state_dict['layer2.0.left.3.weight'] self.delayer2.deleft[2].weight.data = resnet_state_dict['layer2.0.left.0.weight'] self.delayer3.deleft[0].weight.data = resnet_state_dict['layer3.0.left.3.weight'] self.delayer3.deleft[2].weight.data = resnet_state_dict['layer3.0.left.0.weight'] # self.delayer4.deleft[0].weight.data = resnet_state_dict['layer4.0.left.3.weight'] # self.delayer4.deleft[2].weight.data = resnet_state_dict['layer4.0.left.0.weight'] def plot_reconstruction(conv1_feature, conv4_feature, device): conv1_deconv = DeConv1(64, 3, kernel_size=(7, 7), stride=2, padding=3) conv1_deconv.to(device) conv1_reconstruction = conv1_deconv(conv1_feature) print(conv1_reconstruction.shape) # print(conv1_reconstruction) conv4_deconv = DeConv4() conv4_deconv.to(device) conv4_deconstruction = conv4_deconv(conv4_feature) print(conv4_deconstruction.shape) return conv1_reconstruction, conv4_deconstruction
from tkinter import * from tkinter import ttk import customerquery as query import cx_Oracle class Customer: def __init__(self, root): self.root = root self.root.title("Customer") self.root.geometry("1000x450+0+0") self.root.config(bg="grey") # =============== Left Frame ================== frame1 = Frame(self.root, bg="white") frame1.place(x=0, y=0, width=500, height=450) title = Label(frame1, text = "LIBRARY", font=("times new roman", 20, "bold"), bg="white", fg="green").place(x=10, y=30) #=========== GenreLabel =================== MODES = [ ("Romance", "Romance"), ("Action", "Action"), ("Comedy", "Comedy"), ("Adventure", "Adventure"), ("All", "All") ] genre_lbl = Label(frame1, text="Genre", font=("times new roman", 15, "bold"), bg="white", fg="gray").place(x=10, y=70) self.genre = StringVar() self.genre.set("All") print("THIS IS {}".format(self.genre)) x=30 y= 100 for text, mode in MODES: Radiobutton(frame1, text=text, variable =self.genre, value=mode, bg="white", font=("times new roman", 14)).place(x=x, y=y) y+=22 #============= Movie,book selection ======= type_lbl = Label(frame1, text="Item Type", font=("times new roman", 15, "bold"), bg="white", fg="gray").place(x=10, y=214) self.type_select = StringVar() self.type_select.set("BOTH") self.r1= Radiobutton(frame1, text="Books", variable=self.type_select, value="BOOKS", bg="white", font=("times new roman", 14)).place(x=30, y=242) self.r2= Radiobutton(frame1, text="Videos", variable=self.type_select, value="VIDEOS", bg="white", font=("times new roman", 14)).place(x=30,y=264) self.r3= Radiobutton(frame1, text="Both", variable=self.type_select, value="BOTH", bg="white", font=("times new roman", 14)).place(x=30,y=285) #=========== availability_lbl = Label(frame1, text="Availability", font=("times new roman", 15, "bold"), bg="white", fg="gray").place(x=10, y=307) self.availability = IntVar() Radiobutton(frame1, text="Available", variable=self.availability, value=1, bg="white", font=("times new roman", 14)).place(x=30, y=328) Radiobutton(frame1, text="Unavailable", variable=self.availability, value=2, bg="white", font=("times new roman", 14)).place(x=30,y=350) Radiobutton(frame1, text="All", variable=self.availability, value=3, bg="white", font=("times new roman", 14)).place(x=30,y=372) #================ Book Title ============ book_title_lbl = Label(frame1, text="Item Title", font=("times new roman", 15, "bold"), bg="white", fg="gray").place(x=160, y=70) self.txt_user = Entry(frame1, font=("times new roman", 15), bg = "lightgray") self.txt_user.place(x=160, y=100, width = 250, height=30) #=========== Author author_lbl = Label(frame1, text="Author", font=("times new roman", 15, "bold"), bg="white", fg="gray").place(x=160, y=140) self.txt_author = Entry(frame1, font=("times new roman", 15), bg = "lightgray") self.txt_author.place(x=160, y=170, width = 250, height=30) #========= Item Number item_number_lbl = Label(frame1, text="Item Number", font=("times new roman", 15, "bold"), bg="white", fg="gray").place(x=160, y=210) self.txt_author = Entry(frame1, font=("times new roman", 15), bg = "lightgray") self.txt_author.place(x=160, y=240, width = 250, height=30) #============ Buttons reset_selection= Button(frame1, text="Reset Selection",fg="white", bg="#0B547C", font=("Arial", 15, "bold"), command = self.reset).place(x=160, y=290, width = 250, height=30) search= Button(frame1, text="Search Library",fg="white", bg="#0B547C", font=("Arial", 15, "bold"), command=self.search).place(x=160, y=340, width = 250, height=30) cols = ('Item #', 'Title', 'Genre', 'Availability', 'Rating') self.listBox = ttk.Treeview(root, columns=cols, show='headings') for col in cols: self.listBox.heading(col, text=col) self.listBox.column(col, minwidth=0, width=100, stretch=NO) self.listBox.place(x=510, y=100, width=480) def reset(self): self.genre.set("All") self.type_select.set("BOTH") def search(self): #print(self.genre.get(), self.type_select.get(), self.txt_user.get(), self.txt_author.get()) dsnStr = cx_Oracle.makedsn("oracle.scs.ryerson.ca", "1521", "orcl") db = cx_Oracle.connect(user="j65gill", password="09260785", dsn=dsnStr) cursor = db.cursor() # genre_search = """ # SELECT l.ITEMID, l.GENRE, l.AVAILABILITYSTATUS, l.RATING # FROM LIBRARYITEM L # WHERE GENRE = '{}' # """.format(genre) if self.genre and self.type_select: print(self.genre.get(), self.type_select.get()) if self.genre.get()!="All" and self.type_select.get()=="BOTH": print(self.genre.get(), self.type_select.get()) print(self.type_select) #for i in self.listBox.get self.remove_all() genre = self.genre.get() cursor.execute(query.genre_search.format(genre)) tables = cursor.fetchall() # for t in tables: # print(t[1]) for table in tables: self.listBox.insert("", "end", values=(table[0],table[1], table[2], table[3], table[4])) elif self.type_select.get()!="BOTH" and self.genre.get()=="All": print(self.genre.get(), self.type_select.get()) self.remove_all() type = self.type_select.get() print(type) cursor.execute(query.type_book.format(type)) tables = cursor.fetchall() for table in tables: self.listBox.insert("", "end", values=(table[0],table[1], table[2], table[3], table[4])) elif self.type_select.get()=="BOTH" and self.genre.get()=="All": self.remove_all() cursor.execute(query.all_books) tables = cursor.fetchall() for table in tables: self.listBox.insert("", "end", values=(table[0],table[1], table[2], table[3], table[4])) else: self.remove_all() genre = self.genre.get() type = self.type_select.get() cursor.execute(query.genre_and_type.format(type, genre)) tables = cursor.fetchall() for table in tables: self.listBox.insert("", "end", values=(table[0],table[1], table[2], table[3], table[4])) # elif self.genre and self.type_select==None: # print(self.type_select) # #for i in self.listBox.get # self.remove_all() # genre = self.genre.get() # cursor.execute(query.genre_search.format(genre)) # tables = cursor.fetchall() # # for t in tables: # # print(t[1]) # for table in tables: # self.listBox.insert("", "end", values=(table[0],table[1], table[2], table[3], table[4])) # # elif self.type_select and self.genre==None: # self.remove_all() # type = self.type_select.get() # print(type) # cursor.execute(query.type_book.format(type)) # tables = cursor.fetchall() # for table in tables: # self.listBox.insert("", "end", values=(table[0],table[1], table[2], table[3], table[4])) # # def remove_all(self): for record in self.listBox.get_children(): self.listBox.delete(record) root = Tk() obj = Customer(root) root.mainloop()
#!/usr/bin/env python3 # Import the ZMQ module import zmq # Import the Thread, Lock and Event objects from the threading module from threading import Thread, Lock, Event # Import the uuid4 function from the UUID module from uuid import uuid4 # Import the system method from the OS module from os import system, name # Import the Pause method from the Signal module from signal import pause # Import the Time method from the Time module from time import time # Import the ArgParse module import argparse # Received delay of 10 sec RECV_DELAY = 30*10000 # Clear terminal screen def cls(): # Perform action based on the current platform system('cls' if name == 'nt' else 'clear') def parse_cli_args(): # Instantiate ArgumentParser object parser = argparse.ArgumentParser(description='End-to-End Hyperstrator') parser.add_argument( '--cn_ip', type=str, default='134.226.55.122', required=False, help='CN orchestrator IP') parser.add_argument( '--cn_port', type=int, default=2300, required=False, help='CN orchestrator port') parser.add_argument( '--tn_ip', type=str, default='134.226.55.106', required=False, help='TN orchestrator IP') parser.add_argument( '--tn_port', type=int, default=2200, required=False, help='TN orchestrator port') parser.add_argument( '--ran_ip', type=str, default='134.226.55.90', required=False, help='RAN orchestrator IP') parser.add_argument( '--ran_port', type=int, default=2100, required=False, help='RAN orchestrator port') parser.add_argument( '-c', '--skip_cn', required=False, action='store_true', help='Skip the CN segment') parser.add_argument( '-t', '--skip_tn', required=False, action='store_true', help='Skip the TN segment') parser.add_argument( '-r', '--skip_ran', required=False, action='store_true', help='Skip the RAN segment') # Parse CLI arguments arg_dict = vars(parser.parse_args()) return arg_dict class orch_base(object): def __init__(self, **kwargs): # Extract parameters from keyword arguments self.name = kwargs.get("name", "") self.type = kwargs.get('type', '') self.host_key = kwargs.get("host_key", "") self.port_key = kwargs.get("port_key", "") self.default_host = kwargs.get("default_host", "127.0.0.1") self.default_port = kwargs.get("default_port", "3000") self.request_key = kwargs.get("request_key", "") self.reply_key = kwargs.get("reply_key", "") # Parse keyword arguments self._parse_kwargs(**kwargs) # Connect to the server self._server_connect(**kwargs) # Extract message headers from keyword arguments def _parse_kwargs(self, **kwargs): # Get the error message header from keyword arguments self.error_msg = kwargs.get("error_msg", "msg_err") self.info_msg = kwargs.get("info_msg", "bo_nsi") self.info_ack = "_".join([self.info_msg.split('_')[-1], "ack"]) self.info_nack = "_".join([self.info_msg.split('_')[-1], "nack"]) self.create_msg = kwargs.get("create_msg", "bo_crs") self.create_ack = "_".join([self.create_msg.split('_')[-1], "ack"]) self.create_nack = "_".join([self.create_msg.split('_')[-1], "nack"]) self.request_msg = kwargs.get("request_msg", "bo_rrs") self.request_ack = "_".join([self.request_msg.split('_')[-1], "ack"]) self.request_nack = "_".join([self.request_msg.split('_')[-1], "nack"]) self.update_msg = kwargs.get("update_msg", "bo_urs") self.update_ack = "_".join([self.update_msg.split('_')[-1], "ack"]) self.update_nack = "_".join([self.update_msg.split('_')[-1], "nack"]) self.delete_msg = kwargs.get("delete_msg", "bo_drs") self.delete_ack = "_".join([self.delete_msg.split('_')[-1], "ack"]) self.delete_nack = "_".join([self.delete_msg.split('_')[-1], "nack"]) def _server_connect(self, **kwargs): # Default Server host host = kwargs.get(self.host_key, self.default_host) # Default Server port port = kwargs.get(self.port_key, self.default_port) # Create a ZMQ context self.context = zmq.Context() # Specity the type of ZMQ socket self.socket = self.context.socket(zmq.REQ) # Connect ZMQ socket to host:port self.socket.connect("tcp://" + host + ":" + str(port)) # Timeout reception every 5 seconds self.socket.setsockopt(zmq.RCVTIMEO, RECV_DELAY) # # Allow multiple requests and replies self.socket.setsockopt(zmq.REQ_RELAXED, 1) # # Add IDs to ZMQ messages self.socket.setsockopt(zmq.REQ_CORRELATE, 1) def _send_msg(self, ack, nack, **kwargs): # Send request to the orchestrator self.socket.send_json({self.request_key: kwargs}) try: # Wait for command msg = self.socket.recv_json().get(self.reply_key, None) # If nothing was received during the timeout except zmq.Again: # Try again return False, "Connection timeout to " + self.name + " Orchestrator" # If the message is not valid if msg is None: # Return proper error return False, "Received invalid message: " + str(msg) # The orchestrator couldn't decode message elif self.error_msg in msg: # Return message and error code return False, msg[self.error_msg] # If the request succeeded elif ack in msg: # Return host and port return True, msg[ack] # If the create slice request failed elif nack in msg: # Return the failure message return False, msg[nack] else: return False, "Missing ACK or NACK: " + str(msg) def network_info(self, **kwargs): # Send Info message success, msg = self._send_msg(self.info_ack, self.info_nack, **{self.info_msg: kwargs}) # If the message failed if not success: # Inform the hyperstrator about the failure print('\t', 'Failed requesting information about the ' + self.name) return False, msg # Otherwise, it succeeded else: # Inform the hyperstrator about the success print('\t', 'Succeeded requesting information about the ' + \ self.name) return True, msg def create_slice(self, **kwargs): # Send Creation message success, msg = self._send_msg(self.create_ack, self.create_nack, **{self.create_msg: kwargs}) # If the slice allocation failed if not success: # Inform the hyperstrator about the failure print('\t', 'Failed creating a ' + self.type + ' Slice in ' + \ self.name) return False, msg # Otherwise, it succeeded else: # Inform the hyperstrator about the success print('\t', 'Succeeded creating a ' + self.type + ' Slice in ' + \ self.name) return True, msg def request_slice(self, **kwargs): # Send request message success, msg = self._send_msg(self.request_ack, self.request_nack, **{self.request_msg: kwargs}) # If the slice request failed if not success: # Inform the hyperstrator about the failure print('\t', 'Failed requesting a ' + self.type + ' Slice in ' + \ self.name) return False, msg # Otherwise, it succeeded else: # Inform the hyperstrator about the success print('\t', 'Succeeded requesting a ' + self.type + ' Slice in ' + self.name) return True, msg return msg def update_slice(self): # Send update message success, msg = self._send_msg(self.update_ack, self.update_nack, **{self.update_msg: kwargs}) # If the slice update failed if not success: # Inform the hyperstrator about the failure print('\t', 'Failed updating a ' + self.type + ' Slice in ' + \ self.name) return False, msg # Otherwise, it succeeded else: # Inform the hyperstrator about the success print('\t', 'Succeeded updating a ' + self.type + ' Slice in ' + \ self.name) return True, msg return msg def delete_slice(self, **kwargs): # Send removal message success, msg = self._send_msg(self.delete_ack, self.delete_nack, **{self.delete_msg: kwargs}) # If the slice removal failed if not success: # Inform the hyperstrator about the failure print('\t', 'Failed deleting a ' + self.type + ' Slice in ' + \ self.name) return False, msg # Otherwise, it succeeded else: # Inform the hyperstrator about the success print('\t', 'Succeeded deleting a ' + self.type + ' Slice in ' + \ self.name) return True, msg return msg class hyperstrator_server(Thread): def __init__(self, **kwargs): # Initialize the parent class Thread.__init__(self) # Flat to exit gracefully self.shutdown_flag = Event() # Parse keyword arguments self._parse_kwargs(**kwargs) # Bind the server self._server_bind(**kwargs) # Container to hold the list of current services self.s_ids = [] # Create an instance of the CN orchestrator handler self.cn_orch = orch_base( name="Core Network", host_key="cn_host", port_key="cn_port", default_host=kwargs.get('cn_ip', '134.226.55.122'), default_port=str(kwargs.get('cn_port', 2300)), info_msg="ns_cn", create_msg="cn_cc", request_msg="cn_rc", update_msg="cn_uc", delete_msg="cn_dc", request_key="cn_req", reply_key="cn_rep") # Create an instance of the TN orchestrator handler self.tn_orch = orch_base( name="Transport Network", host_key="tn_host", port_key="tn_port", default_host=kwargs.get('tn_ip', '134.226.55.106'), default_port=str(kwargs.get('tn_port', 2200)), info_msg="ns_tn", create_msg="tn_cc", request_msg="tn_rc", update_msg="tn_uc", delete_msg="tn_dc", request_key="tn_req", reply_key="tn_rep") # Create an instance of the RAN orchestrator handler self.ran_orch = orch_base( name="Radio Access Network", host_key="ran_host", port_key="ran_port", default_host=kwargs.get('ran_ip', '134.226.55.90'), default_port=str(kwargs.get('ran_port', 2100)), info_msg="ns_rn", create_msg="rn_cc", request_msg="rn_rc", update_msg="rn_uc", delete_msg="rn_dc", request_key="rn_req", reply_key="rn_rep") # Make printing easier. TODO: Implement real logging def _log(self, *args, head=False): print("-" if head else '\t' ,*args) # Extract message headers from keyword arguments def _parse_kwargs(self, **kwargs): # Get the error message header from keyword arguments self.error_msg = kwargs.get('error_msg', 'msg_err') # Get the network info message from keyword arguments self.info_msg = kwargs.get('info_msg', 'ns_ni') # Get the network info acknowledgment from keyword arguments self.info_ack = "_".join([self.info_msg.split('_')[-1], "ack"]) # Get the network info not acknowledgment from keyword arguments self.info_nack = "_".join([self.info_msg.split('_')[-1], "nack"]) # Get the create service message from keyword arguments self.create_msg = kwargs.get('create_msg', 'sr_cs') # Get the create service acknowledgment from keyword arguments self.create_ack = "_".join([self.create_msg.split('_')[-1], "ack"]) # Get the create service not acknowledgment from keyword arguments self.create_nack = "_".join([self.create_msg.split('_')[-1], "nack"]) # Get the request service message from keyword arguments self.request_msg = kwargs.get('request_msg', 'sr_rs') # Get the request service acknowledgment from keyword arguments self.request_ack = "_".join([self.request_msg.split('_')[-1], "ack"]) # Get the request service not acknowledgment from keyword arguments self.request_nack = "_".join([self.request_msg.split('_')[-1], "nack"]) # Get the update service message from keyword arguments self.update_msg = kwargs.get('update_msg', 'sr_us') # Get the update service acknowledgment from keyword arguments self.update_ack = "_".join([self.update_msg.split('_')[-1], "ack"]) # Get the update service not acknowledgment from keyword arguments self.update_nack = "_".join([self.update_msg.split('_')[-1], "nack"]) # Get the delete service message from keyword arguments self.delete_msg = kwargs.get('delete_msg', 'sr_ds') # Get the delete service acknowledgment from keyword arguments self.delete_ack = "_".join([self.delete_msg.split('_')[-1], "ack"]) # Get the delete service not acknowledgment from keyword arguments self.delete_nack = "_".join([self.delete_msg.split('_')[-1], "nack"]) # Debug flags self.skip_radio = kwargs.get('skip_ran', True) self.skip_transport= kwargs.get('skip_tn', True) self.skip_core = kwargs.get('skip_cn', True) # Bind server to socket def _server_bind(self, **kwargs): # Default HS Server host host = kwargs.get('host', '0.0.0.0') # Default HS Server port port = kwargs.get('port', 1000) # Create a ZMQ context self.context = zmq.Context() # Specify the type of ZMQ socket self.socket = self.context.socket(zmq.REP) # Bind ZMQ socket to host:port self.socket.bind("tcp://" + host + ":" + str(port)) # Timeout reception every 500 milliseconds self.socket.setsockopt(zmq.RCVTIMEO, RECV_DELAY) def _send_msg(self, message_type, message): # Send a message with a header self.socket.send_json({message_type: message}) def run(self): self._log('Started Hyperstrator', head=True) # Run while thread is active while not self.shutdown_flag.is_set(): try: # Wait for transaction transactions = self.socket.recv_json() # If nothing was received during the timeout except zmq.Again: # Try again continue # Received a command else: # Info transaction, network segments info_transaction = transactions.get(self.info_msg, None) # If the message worked if info_transaction is not None: self._network_info(info_transaction) # Service transaction, new service create_transaction = transactions.get(self.create_msg, None) # If the message worked if create_transaction is not None: self._create_service(create_transaction) # Service transaction, request service request_transaction = transactions.get(self.request_msg, None) # If the flag exists if request_transaction is not None: self._request_service(request_transaction) # Service transaction, update service update_transaction = transactions.get(self.update_msg, None) # If the flag exists if update_transaction is not None: self._update_service(update_transaction) # Service transaction, delete service delete_transaction = transactions.get(self.delete_msg, None) # If the flag exists if delete_transaction is not None: self._delete_service(delete_transaction) # Check for unknown messages unknown_msg = [x for x in transactions if x not in [self.create_msg, self.request_msg, self.update_msg, self.delete_msg, self.info_msg] ] # If there is at least an existing unknown message if unknown_msg: self._log('Unknown message', head=True) self._log('Message:', unknown_msg[0]) msg = {self.error_msg: "Unknown message:" + \ str(unknown_msg[0])} # Send message self._send_msg(self.error_msg, msg) # Terminate zmq self.socket.close() self.context.term() # Method for stopping the server thread nicely def safe_shutdown(self): self._log('Exiting', head=True) self.shutdown_flag.set() self.join() def _network_info(self, info_transaction): # Start time counter st = time() self._log('Network Information Transaction', head=True) self._log('Gather information about:', str(info_transaction['s_ns'])[1:-1]) # Container to hold information about network segments network_info = {} # If doing the CN if 'cn' in info_transaction['s_ns'] or not info_transaction['s_ns']: if not self.skip_core: self._log('Send message to CN orchestrator') # Send message to the CN orchestrator core_success, core_msg = self.cn_orch.network_info( **{'s_ns': info_transaction['s_ns']}) # If there was an error at the CN orchestrator if not core_success: self._log('Failed requesting CN info') # Inform the user about the failure self._send_msg(self.info_nack, core_msg) # Finish here return # Fill in the network segment info network_info['cn'] = core_msg.get('cn', "Not reported by CN") # If debugging else: # Fill in the network info with a stub network_info.update({'cn': 'stub'}) # If doing the TN if 'tn' in info_transaction['s_ns'] or not info_transaction['s_ns']: if not self.skip_transport: self._log('Send message to TN orchestrator') # Send message to the TN orchestrator transport_success, transport_msg = self.tn_orch.network_info( **{'s_ns': info_transaction['s_ns']}) # If there was an error at the TN orchestrator if not transport_success: self._log('Failed requesting TN info') # Inform the user about the failure self._send_msg(self.info_nack, transport_msg) # Finish here return # Fill in the network segment info network_info['tn'] = transport_msg.get('tn', "Not reported by TN") # If debugging else: # Fill in the network info with a stub network_info.update({'tn': 'stub'}) # If doing the RAN if 'ran' in info_transaction['s_ns'] or not info_transaction['s_ns']: if not self.skip_radio: self._log('Send message to RAN orchestrator') # Send message to the CN orchestrator radio_success, radio_msg = self.ran_orch.network_info( **{'s_ns': info_transaction['s_ns']}) # If there was an error at the RAN orchestrator if not radio_success: self._log('Failed requesting RAN info') # Inform the user about the failure self._send_msg(self.info_nack, radio_msg) # Finish here return # Fill in the network segment info network_info['ran'] = radio_msg.get('ran', "Not reported by RAN") # If debugging else: # Fill in the network info with a stub network_info.update({'ran': 'stub'}) # Inform the user about the slice information self._send_msg(self.info_ack, network_info) # Measure elapsed time self._log('Get time:', (time() - st)*1000, 'ms') def _create_service(self, create_transaction): # Start time counter st = time() self._log('Create Service Transaction', head=True) # Create a Service ID s_id = str(uuid4()) self._log('Service ID:', s_id) # If allocating CN slices if not self.skip_core: self._log('Send message to the CN orchestrator') # Otherwise, send message to the CN orchestrator core_success, core_msg = self.cn_orch.create_slice( **{ 's_id': s_id, 'service': create_transaction['service'], 'application': create_transaction['application'], 'requirements': create_transaction['requirements'] }) # If the core allocation failed if not core_success or 'source' not in core_msg: self._log('Failed creating Core Slice') # Inform the user about the failure self._send_msg( self.create_nack, core_msg if not core_success else "Malformatted message from CN orchestrator.") # Measured elapsed time self._log('Failed core, took:', (time() - st)*1000, 'ms') # Finish the main loop here return # Otherwise, the CN allocation succeeded self._log('Succeeded creating a CN slice') # In case of tests else: self._log('Skipping CN') # Use a fake source IP core_msg = {'s_id': s_id, 'source': '30.0.7.1'} # If allocating RAN slices if not self.skip_radio: self._log('Send message to the RAN orchestrator') # Otherwise, send message to the CN orchestrator radio_success, radio_msg = self.ran_orch.create_slice( **{ 's_id': s_id, 'service': create_transaction['service'], 'application': create_transaction['application'], 'requirements': create_transaction['requirements'] }) # If the radio allocation failed if not radio_success or 'destination' not in radio_msg: self._log('Failed creating Radio Slice') # Inform the user about the failure self._send_msg( self.create_nack, radio_msg if not radio_success else "Malformatted message from RAN orchestrator.") # Measured elapsed time self._log('Failed radio, took:', (time() - st)*1000, 'ms') # Clear up existing network segment slices if not self.skip_core: core_success, core_msg = self.cn_orch.delete_slice( **{'s_id': s_id}) # If the core delete failed if not core_success: self._log('Failed cleaning up Core Slice') # Finish the main loop here return # Otherwise, the RAN allocation succeeded self._log('Succeeded creating a RAN slice') # In case of tests else: self._log('Skipping RAN') # Use a fake source IP #radio_msg = {'s_id': s_id, 'destination': '10.30.0.179'} radio_msg = {'s_id': s_id, 'destination': '10.0.0.160'} # If allocating TN slices if not self.skip_transport: self._log('Send message to the TN orchestrator') # Send UUID and requirements to the TN orchestrator transport_success, transport_msg = \ self.tn_orch.create_slice( **{ 's_id': s_id, 'requirements': create_transaction['requirements'], 'source': core_msg['source'], 'destination': radio_msg['destination'] }) # If the transport allocation failed if not transport_success: self._log('Failed creating Transport Slice') # Inform the user about the failure self._send_msg( self.create_nack, transport_msg if not transport_success else "Malformatted message from TN orchestrator.") # Measured elapsed time self._log('Failed transport, took:', (time() - st)*1000, 'ms') # Clear up existing network segment slices if not self.skip_core: core_success, core_msg = self.cn_orch.delete_slice( **{'s_id': s_id}) # If the core delete failed if not core_success: self._log('Failed cleaning up Core Slice') # Clear up existing network segment slices if not self.skip_radio: radio_success, radio_msg = self.ran_orch.delete_slice( **{'s_id': s_id}) # If the radio delete failed if not radio_success: self._log('Failed cleaning up Radio Slice') # Finish here return # Otherwise, the transport allocation succeeded self._log('Succeeded creating a TN Slice') # In case of tests else: self._log('Skipping TN') # Use a fake return message transport_msg = {'s_id': s_id} # Append it to the list of service IDs self.s_ids.append(s_id) # Inform the user about the configuration success self._send_msg(self.create_ack, { 's_id': s_id }) self._log('Creation time:', (time() - st)*1000, 'ms') def _request_service(self, request_transaction): # Start time counter st = time() self._log('Request Service Transaction', head=True) # If missing the slice ID: if 's_id' not in request_transaction: self._log("Missing Service ID.") # Send message self._send_msg(self.request_nack, "Missing Service ID") # Leave if clause return # If there is an S_ID but it doesn't exist elif request_transaction['s_id'] and \ (request_transaction['s_id'] not in self.s_ids): self._log('Service ID does not exist') # Send message self._send_msg(self.request_nack, 'The service does not exist: ' + \ request_transaction['s_id']) # Leave if clause return # If gathering information about a slice if request_transaction['s_id']: self._log('Service ID:', request_transaction['s_id']) # If set to gather information about all slices else: self._log('Gather information about all Service IDs') # Container to hold information about the slices slice_info = dict((s_id, {}) for s_id in self.s_ids) \ if not request_transaction['s_id'] else \ {request_transaction['s_id']: {}} # If doing the CN if not self.skip_core: self._log('Send message to CN orchestrator') # Otherwise, send message to the CN orchestrator core_success, core_msg = self.cn_orch.request_slice( **{'s_id': request_transaction['s_id']}) # If there was an error at the CN orchestrator if not core_success: self._log('Failed requesting Core Slice') # Inform the user about the failure self._send_msg(self.request_nack, core_msg) # Finish here return # Fill in the slice info for s_id in slice_info: slice_info[s_id]['cn'] = \ core_msg.get(s_id, "Not reported by CN") # If debugging else: # Fill in the slice info with a stub for s_id in slice_info: slice_info[s_id].update({'cn': 'stub'}) # If doing the TN if not self.skip_transport: self._log('Send message to TN orchestrator') # Otherwise, send message to the TN orchestrator transport_success, transport_msg = \ self.tn_orch.request_slice( **{'s_id': request_transaction['s_id']}) # If there was an error at the TN orchestrator if not transport_success: self._log('Failed requesting Transport Slice') # Inform the user about the failure self._send_msg(self.request_nack, transport_msg) # Finish here return # Fill in the slice info for s_id in slice_info: slice_info[s_id]['tn'] = \ transport_msg.get(s_id, "Not reported by TN") # If debugging else: # Fill in the slice info with a stub for s_id in slice_info: slice_info[s_id].update({'tn': 'stub'}) # If doing the RAN if not self.skip_radio: self._log('Send message to RAN orchestrator') # Otherwise, send message to the RAN orchestrator radio_success, radio_msg = \ self.ran_orch.request_slice( **{'s_id': request_transaction['s_id']}) # If there was an error at the RAN orchestrator if not radio_success: self._log('Failed requesting Radio Slice') # Inform the user about the failure self._send_msg(self.request_nack, radio_msg) # Finish here return # Fill in the slice info for s_id in slice_info: slice_info[s_id]['ran'] = \ radio_msg.get(s_id, "Not reported by RAN") # If debugging else: # Fill in the slice info with a stub for s_id in slice_info: slice_info[s_id].update({'ran': 'stub'}) # Inform the user about the slice information self._send_msg(self.request_ack, slice_info) # Measure elapsed time self._log('Get time:', (time() - st)*1000, 'ms') def _update_service(self, update_transaction): self._log('Update Service Transaction', head=True) self._log("Not implemented yet.") return def _delete_service(self, delete_transaction): # Start time counter st = time() self._log('Delete Service Transaction', head=True) # If missing the slice ID: if 's_id' not in delete_transaction or not \ delete_transaction['s_id']: self._log("Missing Service ID.") # Send message self._send_msg(self.delete_nack, "Missing Service ID") # Leave if clause return # If this service doesn't exist elif delete_transaction['s_id'] not in self.s_ids: self._log('Service ID does not exist') # Send message self._send_msg(self.delete_nack, 'The service does not exist: ' + \ delete_transaction['s_id']) # Leave if clause return self._log('Service ID:', delete_transaction['s_id']) # If doing the CN if not self.skip_core: self._log('Send message to CN orchestrator') # Otherwise, send message to the CN orchestrator core_success, core_msg = self.cn_orch.delete_slice( **{'s_id': delete_transaction['s_id']}) # If the core allocation failed if not core_success: self._log('Failed deleting Core Slice') # Inform the user about the failure self._send_msg(self.delete_nack, core_msg) # Finish here return # In case of testing else: self._log('Skipping CN') # If doing the RAN if not self.skip_radio: self._log('Send message to RAN orchestrator') # Otherwise, send message to the RAN orchestrator radio_success, radio_msg = self.ran_orch.delete_slice( **{'s_id': delete_transaction['s_id']}) # If the radio allocation failed if not radio_success: self._log('Failed deleting Radio Slice') # Inform the user about the failure self._send_msg(self.delete_nack, radio_msg) # Finish here return # In case of testing else: self._log('Skipping RAN') # If doing the TN if not self.skip_transport: self._log('Send message to the TN orchestrator') # Otherwise, send message to the TN orchestrator transport_success, transport_msg = \ self.tn_orch.delete_slice( **{'s_id': delete_transaction['s_id']}) # If the TN allocation failed if not transport_success: self._log('Failed deleting Transport Slice') # Inform the user about the failure self._send_msg(self.delete_nack, transport_msg) # Finish here return # In case of testing else: self._log('Skipping TN') # Remove it to the list of service IDs self.s_ids.remove(delete_transaction['s_id']) # Inform the user about the removal success self._send_msg(self.delete_ack, {'s_id': delete_transaction['s_id']}) if __name__ == "__main__": # Clear screen cls() # Parse CLI arguments kwargs = parse_cli_args() # Handle keyboard interrupt (SIGINT) try: # Instantiate the Hyperstrator Server hyperstrator_thread = hyperstrator_server( host='127.0.0.1', port=1100, error_msg='msg_err', info_msg='ns_ni', create_msg='sr_cs', request_msg='sr_rs', update_msg='sr_us', delete_msg='sr_ds', **kwargs ) # Start the Hyperstrator Thread hyperstrator_thread.start() # Pause the main thread pause() except KeyboardInterrupt: # Terminate the Hyperstrator hyperstrator_thread.safe_shutdown()
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2020-04-08 16:03:08 # @Author : Fallen (xdd043@qq.com) # @Link : https://github.com/fallencrasher/python-learning # @Version : $Id$ a = "外部定义的变量" list1 = ['外部定义的变量'] def func(): print(a) print(list1) def func1(): global a #我们在函数里声明将要修改全局变量,那我们在函数内的修改不需要返回值就可以改变外部变量 a = a + "hhhhh" list1.append(a) print(a) print(list1) def func2(): #如果我们声明要使用全局变量,我们函数里用的各种变量都随便是什么名字,跟外边都没关系 a = "莫哈哈" list1 = [1,2,3,4] print(a) print(list1) func() # 这个打印出来的是 "外部定义的变量" func1() # 这个打印出来的是 "外部定义的变量hhhhh" func2() # 这个打印出来的是 "莫哈哈"
#Author: Xing Cui #NetID: xc918 #Data: 12/3 import unittest from unittest import TestCase import pandas as pd import numpy as np import matplotlib.pyplot as plt import data_cleanser as ds from data_cleanser import * from assignment10_functions import * from visualization import * class hw10_unittest(unittest.TestCase): """This class is testing for assigment10. """ def setUp(self): pass def test_test_grades(self): self.assertTrue(1, test_grades(['C', 'B', 'A'])) self.assertEqual(-1, test_grades(['A', 'B', 'C'])) self.assertEqual(0, test_grades(['B', 'B', 'B'])) if __name__ == "__main__": unittest.main()
""" Useful utilities. """ import logging import re import unidecode from kyoukai.asphalt import HTTPRequestContext logger = logging.getLogger("OWAPI") HOUR_REGEX = re.compile(r"([0-9]*) hours?") MINUTE_REGEX = re.compile(r"([0-9]*) minutes?") SECOND_REGEX = re.compile(r"([0-9]*\.?[0-9]*) seconds?") PERCENT_REGEX = re.compile(r"([0-9]{1,3})\s?\%") async def with_cache(ctx: HTTPRequestContext, func, *args, expires: int = None, cache_404=False): """ Run a coroutine with cache. Stores the result in redis. Unless we don't have redis. """ if expires is None: expires = 300 if ctx.app.config["owapi_cache_time"] is not None: expires = ctx.app.config["owapi_cache_time"] if not ctx.app.config["owapi_use_redis"]: # no caching without redis, just call the function logger.info("Loading `{}` with disabled cache".format(repr(args))) result = await func(ctx, *args) return result else: import aioredis assert isinstance(ctx.redis, aioredis.Redis) built = func.__name__ + repr(args) # Check for the key. # Uses a simple func name + repr(args) as the key to use. got = await ctx.redis.get(built) if got and got != "None": if await ctx.redis.ttl(built) == -1: logger.info("Caching `{}` for `{}` seconds".format(built, expires)) await ctx.redis.expire(built, expires) logger.info("Cache hit for `{}`".format(built)) return got.decode() logger.info("Cache miss for `{}`".format(built)) # Call the function. result = await func(ctx, *args) if result is None and not cache_404: # return None, no caching for 404s. return None # Store the result as cached. to_set = result if result else "None" logger.info("Storing {} with expiration {}".format(built, expires)) await ctx.redis.set(built, to_set, expire=expires) if to_set == "None": return None return result def int_or_string(val: str): """ Loads a value from MO into either an int or string value. String is returned if we can't turn it into an int. """ new_s = val.replace(",", "") try: return float(new_s) except ValueError: return val def parse_time(val: str) -> float: """ Parse the time out into minutes. """ unit = val.split(" ")[1] if "minute" in unit: # Calculate the hour. mins = int(val.split(" ")[0]) hours = round(mins / 60, 3) return hours else: hours = val.split(" ")[0] return float(hours) def try_extract(value): """ Attempt to extract a meaningful value from the time. """ if value.lower() in ("--", "null"): return 0 get_float = int_or_string(value) # If it's changed, return the new int value. if get_float != value: return get_float # Next, try and get a time out of it. matched = HOUR_REGEX.match(value) if matched: val = matched.groups()[0] val = float(val) return val matched = MINUTE_REGEX.match(value) if matched: val = matched.groups()[0] val = float(val) val /= 60 return val matched = SECOND_REGEX.match(value) if matched: val = matched.groups()[0] val = float(val) val = val / 60 / 60 return val matched = PERCENT_REGEX.match(value) if matched: val = matched.groups()[0] val = float(val) val = val / 100 return val # Check if there's an ':' in it. if ":" in value: sp = value.split(":") # If it's only two, it's mm:ss. # Formula is (minutes + (seconds / 60)) / 60 if len(sp) == 2: mins, seconds = map(int, sp) mins += seconds / 60 hours = mins / 60 return hours # If it's three, it's hh:mm:ss. # Formula is hours + ((minutes + (seconds / 60)) / 60). elif len(sp) == 3: try: hours, mins, seconds = map(int, sp) except ValueError: # weird thousands values if "," in sp[0]: sp[0] = sp[0].replace(",", "") else: raise hours, mins, seconds = map(int, sp) mins += seconds / 60 hours += mins / 60 return hours else: # Just return the value. return value def sanitize_string(string): """ Convert an arbitrary string into the format used for our json keys """ space_converted = re.sub(r"[-\s]", "_", unidecode.unidecode(string).lower()) removed_nonalphanumeric = re.sub(r"\W", "", space_converted) underscore_normalized = re.sub(r"_{2,}", "_", removed_nonalphanumeric) return underscore_normalized.replace("soldier_76", "soldier76") # backwards compatability def correct_plural_name(name: str, value): """ Convert the argument for Plural Bug """ one = name[name.find("_one_") + 5 : name.find("_other_")] other = name[name.find("_other_") + 7 : name.rfind(one) + len(one) + 1] if value == 1: return name[: name.find("count_")] + one + name[name.find(other) + len(other) :] return name[: name.find("count_")] + other + name[name.find(other) + len(other) :]
from __future__ import print_function import boto3 import sys import time import threading from multiprocessing import Queue from lab_config import boto_args queue = Queue() def parallel_scan(tableName, totalsegments, threadsegment): dynamodb = boto3.resource(**boto_args) table = dynamodb.Table(tableName) totalbytessent = 0 pageSize = 10000 fe = "responsecode <> :f" eav = {":f": 200} response = table.scan( FilterExpression=fe, ExpressionAttributeValues=eav, Limit=pageSize, TotalSegments=totalsegments, Segment=threadsegment, ProjectionExpression='bytessent' ) for i in response['Items']: totalbytessent += i['bytessent'] while 'LastEvaluatedKey' in response: response = table.scan( FilterExpression=fe, ExpressionAttributeValues=eav, Limit=pageSize, TotalSegments=totalsegments, Segment=threadsegment, ExclusiveStartKey=response['LastEvaluatedKey'], ProjectionExpression='bytessent') for i in response['Items']: totalbytessent += i['bytessent'] queue.put(totalbytessent) if __name__ == "__main__": args = sys.argv[1:] tablename = args[0] total_segments = int(args[1]) print('Scanning 1 million rows of table %s to get the total of bytes sent' %(tablename)) begin_time = time.time() # BUGFIX https://github.com/boto/boto3/issues/1592 boto3.resource(**boto_args) # thread_list = [] for i in range(total_segments): thread = threading.Thread(target=parallel_scan, args=(tablename, total_segments, i)) thread.start() thread_list.append(thread) time.sleep(.1) for thread in thread_list: thread.join() totalbytessent = 0 for i in range(total_segments): totalbytessent = totalbytessent + queue.get() print('Total bytessent %s in %s seconds' %(totalbytessent, time.time() - begin_time))
Variables are a way to store and save data for use This is called assignment. You are assigning a value to a variable Declaring Variables Do not need to use var Cannot start with a number Cannot declare with special characters Written in snake case Data Types Strings Strings are immutable. Once they are declared they cannot be changed. You can add strings together to create a new string but you cannot mutate an already existing one Numbers Floats decimals Integers whole number Booleans 0 False Supports PEMDAS ==, !=, <=, >=, <, > if/else statements If an expression you passed in is True do something Else do something else Acknowledge: You don't need parenthesis Put a semi colon after the expression you want to evaluate if to elif to else Tab to show what part of the function belongs where IF you wanted to store more data: Can be assigned to variables Can hold different data types at once The values are indexed for us starting at zero Functions and Statements We declare our functions with the word def for define Functions follow the same naming principles as declaring variables Snake case Do not start with numbers or special characters LOOPS One of the core functionalities of programming are loops Loops are used to run a code block (a piece of code) over and over again until a condition is met item is a placeholder for the current element in the list. The word item could be any name you want it to be. Here's one more example using range() method WHILE LOOP: Like the For Loop we use this to run a code block over and over again. The main difference is instead of passing an iterable data structure, we will be running the code block until a condition is no longer true.