text
stringlengths
8
6.05M
import importlib import game.bitboard as bitop import game.util as util def run(module_name_1, module_name_2, N=1000): m1 = importlib.import_module(module_name_1) m2 = importlib.import_module(module_name_2) modules = [m1, m2] wins = [0, 0] for i in range(N): arr = util.initial_setup() p1, p2, obs = bitop.array_to_bits(arr) first = modules[i % 2] second = modules[1 - i % 2] turn = 0 while not bitop.is_terminated(p1, p2, obs): if turn == 0: if bitop.generate_moves(p1, p2, obs): move_idx = first.run(p1, p2, obs) assert bitop.generate_moves(p1, p2, obs) & (1 << move_idx) p1, p2 = bitop.resolve_move(p1, p2, move_idx) else: if bitop.generate_moves(p2, p1, obs): move_idx = second.run(p2, p1, obs) assert bitop.generate_moves(p2, p1, obs) & (1 << move_idx) p2, p1 = bitop.resolve_move(p2, p1, move_idx) turn ^= 1 res = bitop.evaluate(p1, p2, obs) if res > 0: wins[i % 2] += 1 elif res == 0: wins[0] += 0.5 wins[1] += 0.5 else: wins[1 - i % 2] += 1 print(wins) return wins if __name__ == '__main__': wins = run('engines.mcts', 'neural.nn', 100) print(wins)
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from sklearn import naive_bayes from models.binary_classifier import BinaryClassifier class GaussianNB(BinaryClassifier, naive_bayes.GaussianNB): pass
#!/usr/bin/env python3 # Write a Shannon entropy calculator: H = -sum(pi * log(pi)) # Use fileinput to get the data from nucleotides.txt # Make sure that the values are probabilities # Make sure that the distribution sums to 1 # Report with 3 decimal figures """ python3 entropy.py nucleotides.txt 1.846 """
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys from pyspark import SparkContext, SparkConf def create_mutual_friends(line): person = line[0].strip() friends = line[1] if(person != ''): person = int(person) final_friend_values = [] for friend in friends: friend = friend.strip() if(friend != ''): friend = int(friend) if(int(friend) < int(person)): val = (str(friend)+","+str(person),set(friends)) else: val = (str(person)+","+str(friend),set(friends)) final_friend_values.append(val) return(final_friend_values) def cal_length(line): key = line[0] value = len(line[1]) return(key,value) def split_user(line): friend_pair = line[0] no_of_friends = line[1] friend_pair = friend_pair.split(",") return(friend_pair[0],(friend_pair[1],no_of_friends)) def userdata_format(line): line = line.split(",") return(line[0],(line[1],line[2],line[3])) def user_data_format1(line): user1 = line[0] user2 = line[1][0][0] no_of_friends = line[1][0][1] user1_data = line[1][1] return( user2,((user1,no_of_friends),user1_data) ) def final_map(line): no_of_friends = str(line[1][0][0][1]) user1_data = line[1][0][1] user2_data = line[1][1] user1_firstname = user1_data[0] user1_lastname = user1_data[1] user1_address = user1_data[2] user2_firstname = user2_data[0] user2_lastname = user2_data[1] user2_address = user2_data[2] return("{0}\t{1}\t{2}\t{3}\t{4}\t{5}\t{6}".format(no_of_friends,user1_firstname,user1_lastname,user1_address,user2_firstname,user2_lastname,user2_address)) if __name__ == "__main__": config = SparkConf().setAppName("mutualfriends").setMaster("local[2]") sc = SparkContext(conf = config) mutual_friends = sc.textFile("soc-LiveJournal1Adj.txt") lines_split = mutual_friends.map(lambda x : x.split("\t")).filter(lambda x : len(x) == 2).map(lambda x: [x[0],x[1].split(",")]) mutual_friends1 = lines_split.flatMap(create_mutual_friends) reducerdd = mutual_friends1.reduceByKey(lambda x,y: x.intersection(y)) lengthrdd = reducerdd.map(cal_length) sortedmap = lengthrdd.takeOrdered(10, key = lambda x: -x[1]) sortedmapper = sc.parallelize(sortedmap) friends1 = sortedmapper.map(split_user) userdata = sc.textFile("userdata.txt") formatedddata = userdata.map(userdata_format) joinrdd = friends1.join(formatedddata) joinrdd_format = joinrdd.map(user_data_format1) joinrdd1 = joinrdd_format.join(formatedddata) finalrdd = joinrdd1.map(final_map) finalrdd.coalesce(1).saveAsTextFile("q2_output.txt")
# Generated by Django 2.2.1 on 2019-05-07 17:52 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('portalapp', '0007_loggedissue'), ] operations = [ migrations.AddField( model_name='loggedissue', name='url', field=models.URLField(default='https://github.com', unique=True), ), migrations.AlterField( model_name='loggedissue', name='commit_id', field=models.CharField(max_length=40, unique=True), ), ]
import base64 base64_message = input("Enter base64 String: ") base64_bytes = base64_message.encode('ascii') message_bytes = base64.b64decode(base64_bytes) message = message_bytes.decode('ascii') print("Decoded Message: " + message)
from django.db import models from django.contrib.auth.models import User # Create your models here. class timeSheetEntry(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) start = models.DateTimeField() end = models.DateTimeField() time = models.IntegerField() comment = models.TextField() completed = models.BooleanField()
# -*- coding: utf-8 -*- """ Created on Tue Jun 23 19:24:29 2020 @author: user """ import torch.nn as nn class Encoder(nn.Module): def __init__(self, isize, nz, nc, ndf, ngpu, n_extra_layers=0, add_final_conv=True): super(Encoder,self).__init__() self.ngpu = ngpu assert 16 % 16 == 0, "isize has to be a multiple of 16" main = nn.Sequential() main.add_module('initial-conv-{0}-{1}'.format(nc, ndf), nn.Conv2d(nc, ndf, 4, 2, 1, bias=False)) main.add_module('initial-relu-{0}'.format(ndf), nn.LeakyReLU(0.2, inplace=True)) csize, cndf = isize / 2, ndf for t in range(n_extra_layers): main.add_module('initial-conv-{0}-{1}'.format(nc, ndf), nn.Conv2d(nc, ndf, 4, 2, 1, bias=False)) main.add_module('extra-layers-{0}-{1}-batchnorm'.format(t, cndf), nn.BatchNorm2d(cndf)) main.add_module('extra-layers-{0}-{1}-relu'.format(t, cndf), nn.LeakyReLU(0.2, inplace=True)) while csize > 4 : in_feat = cndf out_feat = cndf*2 main.add_module('pyramid-{0}-{1}-conv'.format(in_feat,out_feat), nn.Conv2d(in_feat,out_feat,4,2,1,bias = False)) main.add_module('pyramid-{0}-batchnorm'.format(out_feat), nn.BatchNorm2d(out_feat)) main.add_module('pyramid-{0}-relu'.format(out_feat), nn.LeakyReLU(0.2, inplace=True)) cndf = cndf * 2 csize = csize / 2 if add_final_conv: main.add_module('final-{0}-{1}-conv'.format(cndf, 1), nn.Conv2d(cndf, nz, 4, 1, 0, bias=False)) self.main = main def forward(self, input): if self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) return output class Decoder(nn.Module): def __init__ (self, isize, nz, nc, ngf, ngpu, n_extra_layers=0):
#[LeetCode] 130. Surrounded Regions_Medium tag: DFS/BFS
_ID_LIST = {'Server' : (({'name':'Server', 'id':int()}), ({'name':'channel', 'id':int()})), ### ^ Dictionary is set up in this format, actual servers omitted for privacy purposes } _SERVER = 'Server' default_guild = _ID_LIST[_SERVER][0] default_channel = _ID_LIST[_SERVER][1] limit = 100
# Generated by Django 3.0.7 on 2020-06-19 09:45 from django.db import migrations def fill_new_admin_field(apps, schema_editor): Restaurant = apps.get_model("foodcartapp", "Restaurant") for restaurant in Restaurant.objects.all(): restaurant.new_admin = restaurant.admin.user restaurant.save() class Migration(migrations.Migration): dependencies = [ ("foodcartapp", "0016_restaurant_new_admin"), ] operations = [ migrations.RunPython(fill_new_admin_field), ]
import pdfx import os import sys from os import walk import csv import git # [filter(lambda item: "docker" in item or "github" in item or "pdf" in item, link_list) for link_list in l] def main(): #path = "/mnt/c/Users/Fjona/Desktop/2018-2019/UROP/icse/2018/pdfs/ICSE2018-7hDWfdAOTaSxSTuYmZ7C9S/73vOGjBkf23NHodSgD3DR2/" path = "/mnt/c/Users/Fjona/Desktop/2018-2019/UROP/icse/2018/pdfs/ICSE2018-7hDWfdAOTaSxSTuYmZ7C9S/" #path = "/mnt/c/Users/Fjona/Desktop/2018-2019/UROP" #https://weakdh.org/imperfect-forward-secrecy.pdf" # papers = ["1OWvuIr0ODMO3SiUdEDKEV.pdf"] # links = extractURLsFromPDFs(path, papers) list_of_pdfs = getRecursiveFilenames(path, '.pdf') #print(list_of_pdfs) pdf_links = extractURLsFromPDFs(list_of_pdfs) writeLinksCSV("paper_links.csv", pdf_links) def extractURLsFromPDFs(papers): links_in_papers = {} i = 1 for paper in papers: sys.stderr.write(str(i) + " extracted: " + paper + "\n") i+= 1 try: pdf = pdfx.PDFx(paper) set_of_urls = pdf.get_references() list_of_urls = [] for e in set_of_urls: list_of_urls.append(e.ref) links_in_papers[paper] = list_of_urls except UnicodeDecodeError: sys.stderr.write("This file has a UnicodeDecodeError!") return links_in_papers def writeLinksCSV(filename, pdfLinks): # download_dir = filename #where you want the file to be downloaded to csv = open(filename, "w") #"w" indicates that you're writing strings to the file #columnTitleRow = "name, email\n" #csv.write(filename) i=1 for paper, links in pdfLinks.items(): row = paper + "," + ",".join(links) + ",\n" try: csv.write(row) sys.stderr.write(str(i) + " written: " + paper + "\n") i+= 1 except: sys.stderr.write("This file has a UnicodeDecodeError!") csv.close() # Sample call: getRecurisiveFilenames(path, ".pdf") # Return: List of PDF files with complete path def getRecursiveFilenames(path, suffix): pdf_files = [] for (dirpath, dirnames, files) in walk(path): for name in files: if name.lower().endswith(suffix): pdf_files.append(os.path.join(dirpath, name)) return pdf_files def get_GitHub_links(links): """Gets the github links with username and repo""" general_links = [filter(lambda item: "docker" in item or "github" in item or "pdf" in item, link_list) for link_list in links] gh_links = [filter(lambda item: "http://github.com/" in item, link) for link in general_links] return gh_links def get_paper_titles(links): def attempt_build() # metadata = pdf.get_metadata() # references_list = # references_dict = pdf.get_references_as_dict() def build_docker(links): for link in links: repo = git.Repo.clone_from(link,os.path.join(rw_dir,'repo'),branch="master") docker_paths = repo.get_paths('Dockerfile') for dockerfile in docker_paths: os.chdir(dockerfile) stdout,st main()
""" Most codes from https://github.com/carpedm20/DCGAN-tensorflow """ from __future__ import division import math import random import pprint import scipy.misc import numpy as np from time import gmtime, strftime from six.moves import xrange import os, gzip import csv from PIL import Image from random import randint import cv2 from skimage.transform import rotate import tensorflow as tf import tensorflow.contrib.slim as slim def load_mnist(dataset_name): data_dir = os.path.join("./data", dataset_name) def extract_data(filename, num_data, head_size, data_size): with gzip.open(filename) as bytestream: bytestream.read(head_size) buf = bytestream.read(data_size * num_data) data = np.frombuffer(buf, dtype=np.uint8).astype(np.float) return data data = extract_data(data_dir + '/train-images-idx3-ubyte.gz', 60000, 16, 28 * 28) trX = data.reshape((60000, 28, 28, 1)) data = extract_data(data_dir + '/train-labels-idx1-ubyte.gz', 60000, 8, 1) trY = data.reshape((60000)) data = extract_data(data_dir + '/t10k-images-idx3-ubyte.gz', 10000, 16, 28 * 28) teX = data.reshape((10000, 28, 28, 1)) data = extract_data(data_dir + '/t10k-labels-idx1-ubyte.gz', 10000, 8, 1) teY = data.reshape((10000)) trY = np.asarray(trY) teY = np.asarray(teY) X = np.concatenate((trX, teX), axis=0) y = np.concatenate((trY, teY), axis=0).astype(np.int) seed = 547 np.random.seed(seed) np.random.shuffle(X) np.random.seed(seed) np.random.shuffle(y) y_vec = np.zeros((len(y), 10), dtype=np.float) for i, label in enumerate(y): y_vec[i, y[i]] = 1.0 return X / 255., y_vec def check_folder(log_dir): if not os.path.exists(log_dir): os.makedirs(log_dir) return log_dir def show_all_variables(): model_vars = tf.trainable_variables() slim.model_analyzer.analyze_vars(model_vars, print_info=True) # refer to M-net. img must width=height def transform_to_Polar(img): polar_img = cv2.linearPolar(img, (img.shape[0] / 2, img.shape[1] / 2), img.shape[0] / 2, cv2.WARP_FILL_OUTLIERS) rotated = rotate(polar_img,-90) return rotated # refer to M-net. img must width=height def transform_from_Polar(polared_img): origin_img = cv2.linearPolar(rotate(polared_img, 90), (polared_img.shape[0] / 2, polared_img.shape[1] / 2), polared_img.shape[0] / 2, cv2.WARP_FILL_OUTLIERS + cv2.WARP_INVERSE_MAP) return origin_img def get_image(image_path, grayscale=False,polar_transform=False): image = imread(image_path, grayscale) if polar_transform: #Remaps an image to polar coordinates space. image = transform_to_Polar(image) return np.array(image)/127.5 - 1. #save sample_num images into one image def save_images(images, size, image_path): return imsave(inverse_transform(images), size, image_path) def imread(path, grayscale = False): if (grayscale): return scipy.misc.imread(path, flatten = True).astype(np.float) else: return scipy.misc.imread(path).astype(np.float) def merge_images(images, size): return inverse_transform(images) def merge(images, size): h, w = images.shape[1], images.shape[2] if (images.shape[3] in (3,4)): c = images.shape[3] img = np.zeros((h * size[0], w * size[1], c)) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w, :] = image return img elif images.shape[3]==1: img = np.zeros((h * size[0], w * size[1])) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w] = image[:,:,0] return img else: raise ValueError('in merge(images,size) images parameter ''must have dimensions: HxW or HxWx3 or HxWx4') def imsave(images, size, path): image = np.squeeze(merge(images, size)) return scipy.misc.imsave(path, image) def center_crop(x, crop_h, crop_w, resize_h=64, resize_w=64): if crop_w is None: crop_w = crop_h h, w = x.shape[:2] j = int(round((h - crop_h)/2.)) i = int(round((w - crop_w)/2.)) return scipy.misc.imresize(x[j:j+crop_h, i:i+crop_w], [resize_h, resize_w]) def transform(image, input_height, input_width, resize_height=64, resize_width=64, crop=True): if crop: cropped_image = center_crop(image, input_height, input_width, resize_height, resize_width) else: cropped_image = scipy.misc.imresize(image, [resize_height, resize_width]) return np.array(cropped_image)/127.5 - 1. def inverse_transform(images): return (images+1.)/2. """ Drawing Tools """ # borrowed from https://github.com/ykwon0407/variational_autoencoder/blob/master/variational_bayes.ipynb # def save_scattered_image(z, id, z_range_x, z_range_y, name='scattered_image.jpg'): # N = 10 # plt.figure(figsize=(8, 6)) # plt.scatter(z[:, 0], z[:, 1], c=np.argmax(id, 1), marker='o', edgecolor='none', cmap=discrete_cmap(N, 'jet')) # plt.colorbar(ticks=range(N)) # axes = plt.gca() # axes.set_xlim([-z_range_x, z_range_x]) # axes.set_ylim([-z_range_y, z_range_y]) # plt.grid(True) # plt.savefig(name) # borrowed from https://gist.github.com/jakevdp/91077b0cae40f8f8244a # def discrete_cmap(N, base_cmap=None): # """Create an N-bin discrete colormap from the specified input map""" # # # Note that if base_cmap is a string or None, you can simply do # # return plt.cm.get_cmap(base_cmap, N) # # The following works for string, None, or a colormap instance: # # base = plt.cm.get_cmap(base_cmap) # color_list = base(np.linspace(0, 1, N)) # cmap_name = base.name + str(N) # return base.from_list(cmap_name, color_list, N) ### #the rest codes are created by langyuan mo ### def conv_out_size_same(size, stride): """calculate the output size with SAME padding(conv)""" return int(math.ceil(float(size) / float(stride))) def resize_images_from_folder(folder_path,size,save_path): """ resize images from a folder and save resized images to another folder. :param folder_path: string :param size: (h,w) :param save_path: string :return: None """ if os.path.exists(folder_path): images_path = os.listdir(folder_path) else: print('folder path not exist.') return if not os.path.exists(save_path): os.mkdir(save_path) count = 0 for image in images_path: count+=1 if count % 10 == 0: print('process %d images'%(count)) image_path = os.path.join(folder_path,image) output_path = os.path.join(save_path,image) try: resize_and_save_image(image_path,size,output_path) except Exception: print(image_path+' failed') def resize_and_save_image(image_path, size, save_path): """resize an image and save it""" img = scipy.misc.imread(image_path) resize_img = scipy.misc.imresize(img,size) scipy.misc.imsave(save_path,resize_img) # def crop_images_from_folder(folder_path,save_path_disk,save_path_cup,info_path,disk_size,cup_size): def crop_images_from_folder(folder_path, save_path_disk, info_path, disk_size): """ crop the dr images, extract the disk part and cup part from image. :param folder_path: origin images folder :param save_path_disk: saved folder for disk images :param save_path_disk: saved folder for cup images :param info_path: infomation of disk and cup of image :param disk_size: resize :param cup_size: resize :return: None """ if os.path.exists(folder_path): images_path = os.listdir(folder_path) else: print('folder path not exist.') return if not os.path.exists(save_path_disk): os.mkdir(save_path_disk) # if not os.path.exists(save_path_cup): # os.mkdir(save_path_cup) with open(info_path,'r') as f: content = csv.reader(f) crop_dict = {} for row in content: image_name = row[0] crop_regions = [[int(row[1]),int(row[2]),int(row[3]),int(row[4])],[int(row[5]),int(row[6]),int(row[7]),int(row[8])]] #disk,cup #extend regions crop_regions = adjust_disk_size(crop_regions) disk_score = float(row[9]) cup_score = float(row[10]) if disk_score == 1.0 and cup_score == 1.0: crop_dict[image_name] = crop_regions count = 0 for image in images_path: count+=1 if count % 10 == 0: print('process %d images'%(count)) image_path = os.path.join(folder_path,image) output_path_disk = os.path.join(save_path_disk,image) # output_path_cup = os.path.join(save_path_cup, image) if image in crop_dict: crop_regions = crop_dict[image] else: continue try: img = Image.open(image_path) disk_img = img.crop(crop_regions[0]) #disk_img = img.crop(crop_regions[0]).resize(disk_size) # cup_img = img.crop(crop_regions[1]).resize(cup_size) disk_img.save(output_path_disk) # cup_img.save(output_path_cup) except Exception as e: print(e) print(image_path+' failed') def adjust_disk_size(crop_regions): """extend optic disc regions, make them contain the surrounding space""" extend_min = 100 extend_max = 150 x1 = crop_regions[0][0] - randint(extend_min,extend_max) y1 = crop_regions[0][1] - randint(extend_min,extend_max) x2 = crop_regions[0][2] + randint(extend_min,extend_max) y2 = crop_regions[0][3] + randint(extend_min,extend_max) #make size W==H if x2 - x1 == y2 - y1: pass elif x2 - x1 > y2 - y1: add = (x2 - x1) - (y2 - y1) if add % 2 == 0: add_size = add/2 y1 = y1 - add_size y2 = y2 + add_size else: add_size1 = add//2 add_size2 = add//2 + 1 y1 = y1 - add_size1 y2 = y2 + add_size2 else: add = (y2 - y1) - (x2 - x1) if add % 2 == 0: add_size = add/2 x1 = x1 - add_size x2 = x2 + add_size else: add_size1 = add//2 add_size2 = add//2 + 1 x1 = x1 - add_size1 x2 = x2 + add_size2 crop_regions[0][0] = x1 crop_regions[0][1] = y1 crop_regions[0][2] = x2 crop_regions[0][3] = y2 return crop_regions # #load data directly.(abandond now) # def load_dr_images(dataset): """ load the dataset 'Diabetic Retinopathy' """ if dataset == 'dr-disc-256': pass if dataset == 'dr-disk': folder_path = '/home/molangyuan/Dataset/dr_data/dr_disk' elif dataset == 'dr-128': folder_path = '/home/molangyuan/Dataset/dr_data/128_dr_images' elif dataset == 'dr-256': folder_path = '/home/molangyuan/Dataset/dr_data/256_dr_images' elif dataset == 'dr-512': folder_path = '/home/molangyuan/Dataset/dr_data/512_dr_images' elif dataset == 'dr-1024': folder_path = '/home/molangyuan/Dataset/dr_data/1024_dr_images' else: folder_path = '/home/molangyuan/Dataset/dr_data/256_dr_images' label_path = './trainLabels.csv' if os.path.exists(folder_path): images_path = os.listdir(folder_path) else: print('dr dataset folder path not exist.') return #data x images = np.array([scipy.misc.imread(os.path.join(folder_path,filename)) for filename in images_path]) #normalization images = images/127.5 - 1. with open(label_path,'r') as f: content = csv.reader(f) head_row = next(content) #remove header label_dict = {} for row in content: image_name, label = row[0], row[1] _label = np.zeros((5, )) #one-hot vector _label[int(label)] = 1.0 label_dict[image_name] = _label #label y labels = np.array([label_dict[filename.split('.')[0]] for filename in images_path]) return (images, labels) def get_dr_labels(label_path,x_list): """load dr images' level labels(0,1,2,3,4) from path""" with open(label_path, 'r') as f: content = csv.reader(f) head_row = next(content) # remove header label_dict = {} for row in content: image_name, label = row[0], row[1] _label = np.zeros((5,)) # one-hot vector _label[int(label)] = 1.0 label_dict[image_name] = _label # label y labels = np.array([label_dict[filename.split('.jp')[0].split('/')[-1]] for filename in x_list]) return labels
from __future__ import division from __future__ import print_function import sys import os import torch from torch.autograd import Variable from collections import OrderedDict import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms import torch.optim as optim import torch.utils.model_zoo as model_zoo from torchvision import datasets, transforms from loadModelMNIST import * from ProjectImageHandler import * classes = [0,1,2,3,4,5,6,7,8,9] def get_test_acc(model,test_loader): correct = 0 total = 0 model.eval() for data in test_loader: images, labels = data images, labels = Variable(images).cuda(), Variable(labels).cuda() outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels.data).sum() return correct / total def predictImageLabel(model,image): #Note: image = Variable(tensorImage.cuda()) output = model(image) _,idx = torch.max(output,1) label = classes[idx.data[0]] return label if __name__ == "__main__": BATCH_SIZE = 32 model = loadRandom().cuda() transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]); testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) test_loader = torch.utils.data.DataLoader(testset, batch_size=BATCH_SIZE, shuffle=False, num_workers=2) test_acc = get_test_acc(model,test_loader) print('test_acc %.5f' % (test_acc)) print("\n") for i in range(0,10): tensorImage,label = testset[i] print("Testing image with label " + str(label)) image = Variable(tensorImage.cuda()) pred = predictImageLabel(model,image) print("Prediction: " + str(pred)) print("\n\nRandomly rotating images prior to predictions:") ih = ProjectImageHandler() for i in range(10,20): tensorImage,label = testset[i] print("Testing image with label " + str(label)) tensorImage = ih.unnormalizeTensor(tensorImage) tensorImage = ih.randomRotateTensor(tensorImage) tensorImage = ih.normalizeTensor(tensorImage) image = Variable(tensorImage.cuda()) pred = predictImageLabel(model,image) print("Prediction: " + str(pred))
# coding=UTF-8 import math import operator lista = [2, 6, 4, 7, -2] if all(i % 2 == 0 for i in lista): print("Todos são pares.") else: print("Tem algum impar.") print("") if not any(i <= 0 for i in lista ): print("Todos são positivos.") else: print("Tem algum negativo.") print("") lista1 = [1, 4, 9, 16, 25] lista2 = map(math.sqrt, lista1) print(list(lista2)) print("") print(any(map(operator.eq, [1, 2, 3, 4, 5], [1, 4, 2, 3, 5])))
import cv2 import numpy as np input = cv2.imread("./Desktop/OpenCV/Basics/hand.jpg") # input.shape return tuples with three value. The first value represent height(x-coordinate), second value # represent width(y-coordinate) and third value represent returns '3L' which are the RGB values of an Image print input.shape print "Height of Image is :",int(input.shape[0]),"pixels"; print "Width of Image is :",int(input.shape[1]),"pixels";
from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from django.shortcuts import render, HttpResponseRedirect, HttpResponse from .models import UserProfile from .forms import UserForm from neighborhood.models import Neighborhood, House from feed.forms import AnnouncementForm def user_login(request): """ ---USER_LOGIN--- :param request: """ if request.method == 'POST': # get username and password from input text username = request.POST['username_text'] password = request.POST['password_text'] # authenticate the credentials user = authenticate(username=username, password=password) # if we have a user the authentication was successful if user: # Is the account active? It could have been disabled. if user.is_active: # If the account is valid and active, we can log the user in. # We'll send the user back to the homepage. login(request, user) return HttpResponseRedirect('/neighborhood/home/') else: # An inactive account was used - no logging in! return HttpResponse("Your Neighbors account is disabled.") else: # Bad login details were provided. So we can't log the user in. return HttpResponse("The username and password you have entered do not match any account.") # The request is not a HTTP POST, so display the login form. # This scenario would most likely be an HTTP GET. else: # No context variables to pass to the template system. return render(request, 'accounts/login.html', {}) def demo_login(request): user = authenticate(username="demouser", password="demopass") if user: # Is the account active? It could have been disabled. if user.is_active: # If the account is valid and active, we can log the user in. # We'll send the user back to the homepage. login(request, user) return HttpResponseRedirect('/neighborhood/home/') else: # An inactive account was used - no logging in! return HttpResponse("Your Neighbors account is disabled.") @login_required def user_logout(request): """ ---USER LOGOUT--- :param request: """ logout(request) return HttpResponseRedirect('/') def register_user(request): """ ---REGISTER USER--- :param request: """ registered = False if request.method == 'POST': # Using forms to collect new user data user_form = UserForm(request.POST) if user_form.is_valid(): neighborhood = Neighborhood.objects.get(division_title=request.POST['neighborhood_text']) house = House.objects.filter(neighborhood=neighborhood, permission_code=request.POST['perm_code_text']) if house: # We have checked that the forms are valid now save the user user = user_form.save() # Now we hash the password with the set_password method. # Once hashed, we can update the user object. user.set_password(user.password) user.save() user_profile = UserProfile(user=user, house=house) user_profile.save() return HttpResponseRedirect('/') else: # no house object was returned, invalid info provided return HttpResponse("The neighborhood and permission code you have entered do not match any existing neighborhood.") # Not a HTTP POST, so we render our form using two ModelForm instances. # These forms will be blank, ready for user input. else: user_form = UserForm() # Render the template depending on the context. return render(request, 'accounts/register.html', {'user_form': user_form, 'registered': registered}) """ ---USER PROFILE--- """ @login_required def user_profile(request): user_prof = request.user.userprofile board_permissions = user_prof.is_board_member() announcement_form = AnnouncementForm() return render(request, 'accounts/profile.html', {'house': user_prof, 'board_permissions': board_permissions, 'announcement_form': announcement_form})
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-04-05 06:02 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('water_watch_api', '0007_auto_20180404_1952'), ] operations = [ migrations.CreateModel( name='SensorMaintenanceHistory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('dateTime', models.DateTimeField()), ('status', models.CharField(choices=[('ACTIVE', 'active'), ('INACTIVE', 'inactive'), ('MAINTENANCE', 'maintenance')], default='ACTIVE', max_length=15)), ('sensor', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='water_watch_api.Sensor')), ], options={ 'db_table': 'sensor_maintenance_history', 'verbose_name_plural': 'sensor maintenance history', 'ordering': ['id', 'dateTime'], }, ), migrations.AddField( model_name='station', name='current_status', field=models.CharField(choices=[('ACTIVE', 'active'), ('INACTIVE', 'inactive'), ('MAINTENANCE', 'maintenance')], default='ACTIVE', max_length=15), ), ]
# A~F 중 한 숫자 입력받기 num = input() num = int(num, 16) for i in range(1, 16): print('%X' % num, '*%X' % i, '=%X' % (num * i), sep='')
__author__ = 'YY20'
# Bài 01: Viết chương trình tính tổng, tích của các phần tử trong một list. my_list = [0, 1, 2, 3, 8, 5, 6, 7, 8, 9] tong = 0 tich = 1 for i in range(len(my_list)) : tong += my_list[i] tich *=my_list[i] print(tong) print(tich)
def display(hash_table): for i in range(len(hash_table)): print(i, end = " ") for j in hash_table[i]: print("->", end = " ") print(j, end = " ") print() def hash(key): return key % len(hash_table) def insert(hash_table, key, value): hash_key = hash(key) hash_table[hash_key].append(value) def find(hash_table, key): hash_key = hash(key) print(hash_table[hash_key]) hash_table = [[] for _ in range(10)] insert(hash_table, 50, 'Apple') insert(hash_table, 25, 'Orange') insert(hash_table, 10, 'Banana') insert(hash_table, 4, 'Kiwi') insert(hash_table, 30, 'Raspberry') insert(hash_table, 38, 'Blueberry') display(hash_table) find(hash_table, 10)
# TODO: Autenticação com usuário e senha para acessar usa conta # TODO: Manter o saldo atualizado em um arquivo JSON # TODO: Manter um histórico de depósitos e saques e permitir gerar um extrato detalhado def menu_deposito(): return float(input('Digite o valor para depósito: R$ ')) def menu_saque(): return float(input('Digite o valor para saque: R$ ')) def iniciar_caixa_eletronico(): saldo = 0 # FIXME: Verificar se usuário quer sair do sistema while True: print('Opções disponíves:') print('1 - Depósito') print('2 - Saque') opcao = int(input('Digite a opção desejada: ')) if opcao == 1: saldo = fazer_deposito(saldo) elif opcao == 2: saldo = fazer_saque(saldo) print('Seu saldo é de: {}'.format(saldo)) print('------------------------') def fazer_saque(saldo): # TODO: Retornar a quantidade de notas de cada tamanho pro usuário # TODO: Informar dentro do programa a quantidade de notas de cada tamanho disponível valor_sacado = menu_saque() if valor_sacado <= saldo: saldo -= valor_sacado print('Valor R$ {} sacado!'.format(valor_sacado)) else: print('Valor indisponível para saque!') return saldo def fazer_deposito(saldo): valor_depositado = menu_deposito() saldo += valor_depositado print('Valor R$ {} depositado!'.format(valor_depositado)) return saldo if __name__ == '__main__': print('+-----------------------------+') print('| Programa: Caixa Eletrônico |') print('+-----------------------------+') iniciar_caixa_eletronico()
import jsonlines import sys import os from shutil import copyfile import argparse import pdb import pickle import numpy as np from nltk.tokenize import sent_tokenize from tqdm import tqdm sys.path.append('/data/rsg/nlp/darsh/aggregator/crawl_websites/NUT/') from gather_annotations import _perform_tagging, _read_entity_file from get_baseline_performances import _get_entities, read_embeddings,\ _compare_causes, _compare_contains def get_phrase_embeddings(string, embeddings): representation = [0.0] * 50 word_list = [] if ' ' in string: word_list = string.split() else: word_list = [string] for word in word_list: if word in embeddings: representation += embeddings[word] norm = np.linalg.norm(representation) if norm != 0.0: representation /= norm return np.array(representation) def produce_re_outputs(input_file_path,\ model="t3_causes"): copyfile(input_file_path,"T4_causes.jsonl") os.chdir("/data/rsg/nlp/darsh/pytorch-pretrained-BERT") os.system("python examples/run_re.py --task_name "\ "re_task --do_eval --do_lower_case --data_dir /data/rsg/nlp/darsh"\ "/aggregator/crawl_websites/NUT/ --bert_model bert-base-uncased "\ "--max_seq_length 128 --train_batch_size 32 --learning_rate 5e-5"\ " --num_train_epochs 3.0 --output_dir "\ + model + " --eval_batch_size 32 --output_preds") os.chdir("/data/rsg/nlp/darsh/aggregator/crawl_websites/NUT") results_file = jsonlines.open("/data/rsg/nlp/darsh/"\ "pytorch-pretrained-BERT/"+model+"/preds.jsonl","r") results = [] for r in results_file: results.append(r) return results def produce_causes(input_file_path, model="T4_redo_causes2"): copyfile(input_file_path,"T4_dev_causes.jsonl") os.chdir("/data/rsg/nlp/darsh/pytorch-pretrained-BERT") os.system("python examples/run_causes.py --task_name "\ "re_task --do_eval --do_lower_case --data_dir /data/rsg/nlp/darsh"\ "/aggregator/crawl_websites/NUT/ --bert_model bert-base-uncased "\ "--max_seq_length 128 --train_batch_size 32 --learning_rate 5e-5"\ " --num_train_epochs 3.0 --output_dir "\ + model + " --eval_batch_size 32 --output_preds") os.chdir("/data/rsg/nlp/darsh/aggregator/crawl_websites/NUT") results_file = jsonlines.open("/data/rsg/nlp/darsh/"\ "pytorch-pretrained-BERT/"+model+"/preds.jsonl","r") results = [] for r in results_file: results.append(r) return results def create_entity_annotations_file_ind(sentences, index, file_path): output_file = open(file_path, "w") for sentence in sent_tokenize(sentences[index]): words = sentence.split() for word in words: output_file.write(word + " O\n") output_file.write("\n") output_file.close() def create_entity_annotations_file(sentences, file_path): output_file = open(file_path, "w") for sentence in sentences: words = sentence.split() for word in words: output_file.write(word + " O\n") output_file.write("\n") output_file.close() def get_sentence_entities(sentences, labels): sentence_entities = {} for sentence,label_str in zip(sentences,labels): sentence_entities[sentence] = {} for entity_type in ['Food', 'Condition', 'Nutrition']: sentence_entities[sentence][entity_type] \ = _get_entities(sentence.split(),label_str.split(),entity_type) return sentence_entities def create_relation_annotations_file(sentence_entities, file_substr): f_causes = jsonlines.open(file_substr + "_causes.jsonl","w") f_contains = jsonlines.open(file_substr + "_contains.jsonl","w") contains_dictionary = [] causes_dictionary = [] for sentence in tqdm(sentence_entities): considered = set() for x in sentence_entities[sentence]['Food']\ + sentence_entities[sentence]['Nutrition']: for y in sentence_entities[sentence]['Nutrition']: if tuple([x,y]) in considered: continue considered.add(tuple([x,y])) if x == y: continue if x not in sentence or y not in sentence: continue assert x in sentence assert y in sentence modified_text = sentence.replace(x, ' <X> ' + x + ' </X> ') modified_text = modified_text.replace(y, ' <Y> ' + y + ' </Y> ') if x not in modified_text or y not in modified_text: continue x_index = modified_text.index(x) y_index = modified_text.index(y) min_index= min(x_index,y_index) max_index= max(x_index,y_index) #if modified_text[min_index:max_index].count(" ") > 45: #print(modified_text[min_index:max_index].count(" ")) # continue #modified_text = modified_text[min_index-30:max_index+30] dict = {'sentence':modified_text, 'gold_label':'None', 'uid':0,\ 'original_sentence':sentence} contains_dictionary.append(dict) f_contains.write(dict) for x in sentence_entities[sentence]['Food']\ + sentence_entities[sentence]['Nutrition']\ + sentence_entities[sentence]['Condition']: for y in sentence_entities[sentence]['Condition']: if tuple([x,y]) in considered: continue considered.add(tuple([x,y])) if x == y: continue if x not in sentence or y not in sentence: continue modified_text = sentence.replace(x, ' <X> ' + x + ' </X> ') modified_text = modified_text.replace(y, ' <Y> ' + y + ' </Y> ') if x not in modified_text or y not in modified_text: continue x_index = modified_text.index(x) y_index = modified_text.index(y) #if modified_text[min_index:max_index].count(" ") > 45: #print(modified_text[min_index:max_index].count(" ")) # continue #min_index= min(x_index,y_index) #max_index= max(x_index,y_index) #if modified_text[min_index:max_index].count(" ") > 45: # continue #modified_text = modified_text[min_index-30:max_index+30] dict = {'sentence':modified_text, 'gold_label':'None', 'uid':0,\ 'original_sentence':sentence} causes_dictionary.append(dict) f_causes.write(dict) f_contains.close() f_causes.close() return causes_dictionary, contains_dictionary def get_predicted_relations(input_list, output_list): sentence_relations = {} for input,output in zip(input_list,output_list): original_sentence = input['original_sentence'] relation_sentence = input['sentence'] x_string = relation_sentence[relation_sentence.find("<X>")+3:\ relation_sentence.find("</X>")].strip() y_string = relation_sentence[relation_sentence.find("<Y>")+3:\ relation_sentence.find("</Y>")].strip() pred_label = output['pred_label'] if pred_label != 'None': sentence_relations[original_sentence] = \ sentence_relations.setdefault(original_sentence,[]) +\ [[x_string,y_string,pred_label]] return sentence_relations def evaluate_relations(gold_sentences, machine_sentences, gold_all_rels,\ machine_all_rels, embeddings): recalls = [] precisions = [] f1s = [] missing_list = [] for gold,machine in zip(gold_sentences,machine_sentences): missing_dict = {} missing_dict['sentence'] = gold missing_dict['output'] = machine missing_dict['missing_rels'] = [] missing_dict['matching_rels']= [] gold_relations = gold_all_rels.get(gold,[]) machine_relations = machine_all_rels.get(machine,[]) matching_relations = [_compare_causes(g_r,machine_relations,embeddings,"")\ for g_r in gold_relations] num_matching = sum(matching_relations) considered_rels= set() for matched,g_r in zip(matching_relations,gold_relations): if tuple(g_r[:2]) in considered_rels: continue else: considered_rels.add(tuple(g_r[:2])) if not matched: missing_dict['missing_rels'].append(g_r) else: missing_dict['matching_rels'].append(g_r) if len(gold_relations) > 0: recalls.append(num_matching/len(gold_relations)) #recalls.append(num_matching/len(considered_rels)) else: continue if len(machine_relations) > 0: precisions.append(num_matching/len(machine_relations)) else: assert len(gold_relations) > 0 precisions.append(0) den = 1 if precisions[-1]+recalls[-1] == 0 else\ precisions[-1] + recalls[-1] num = 2 * precisions[-1] * recalls[-1] f1s.append(num/den) missing_list.append(missing_dict) return recalls, precisions, f1s, missing_list def evaluate_entities(all_output_entities, all_target_entities, embeddings): accuracies = [] for output_entities,target_entities in zip(all_output_entities,\ all_target_entities): new_output_entities = [] for output_entity in output_entities: if output_entity.strip()[-1].isalnum(): new_output_entities.append(output_entity.strip()) else: new_output_entities.append(output_entity.strip()[:-1]) output_entities = new_output_entities if len(output_entities) == 0 or len(target_entities) == 0: accuracies.append(0) continue output_representations = np.stack([get_phrase_embeddings(output_entity,\ embeddings) for output_entity in output_entities],axis=0) target_representations = np.stack([get_phrase_embeddings(target_entity,\ embeddings) for target_entity in target_entities],axis=0) max_products = np.max(np.dot(output_representations,\ target_representations.transpose()),axis=1) #for output_entity,max_product in zip(output_entities,max_products): #if max_product <= 0.7: # pdb.set_trace() accuracies.append(sum([x>0.7 for x in max_products])/\ len(output_entities)) return accuracies def compare_results(args, analysis_file): file_names = [] gold_sentences = [] machine_sentences = [] if args.file_path is not None: input_reader = jsonlines.open(args.file_path, "r") input_instances = [] gold_string = 'gold' output_string='output' for r in input_reader: gold_sentences.append(r[gold_string].replace('\n',' ')) machine_sentences.append(r[output_string].replace('\n',' ')) input_instances.append(r) else: gold_lines = open(args.gold, "r").readlines() output_lines = open(args.output, "r").readlines() for out,gold in zip(output_lines,gold_lines): machine_sentences.append(out.strip()) gold_sentences.append(gold.strip()) machine_r_sentences = [] machine_labels = [] gold_r_sentences = [] gold_labels = [] #for i in range(len(input_instances)): # create_entity_annotations_file_ind(machine_sentences, i,\ # "/data/rsg/nlp/darsh/aggregator/crawl_websites/NUT/model_sentences.txt") # create_entity_annotations_file_ind(gold_sentences, i,\ # "/data/rsg/nlp/darsh/aggregator/crawl_websites/NUT/gold_sentences.txt") # _perform_tagging("demo.model_evaluation_decode.config") # _perform_tagging("demo.gold_evaluation_decode.config") # machine_r_sentence, machine_label = _read_entity_file(\ # "/data/rsg/nlp/darsh/aggregator/crawl_websites"\ # "/NUT/model_sentences_out.txt") # gold_r_sentence, gold_label = _read_entity_file(\ # "/data/rsg/nlp/darsh/aggregator/crawl_websites"\ # "/NUT/gold_sentences_out.txt") # machine_r_sentences.append(" ".join(machine_r_sentence).strip()) # machine_labels.append(" ".join(machine_label).strip()) # gold_r_sentences.append(" ".join(gold_r_sentence).strip()) # gold_labels.append(" ".join(gold_label).strip()) create_entity_annotations_file(machine_sentences,\ "/data/rsg/nlp/darsh/aggregator/crawl_websites/NUT/model_sentences.txt") create_entity_annotations_file(gold_sentences,\ "/data/rsg/nlp/darsh/aggregator/crawl_websites/NUT/gold_sentences.txt") _perform_tagging("demo.model_evaluation_decode.config") _perform_tagging("demo.gold_evaluation_decode.config") machine_r_sentences, machine_labels = _read_entity_file(\ "/data/rsg/nlp/darsh/aggregator/crawl_websites"\ "/NUT/model_sentences_out.txt") gold_r_sentences, gold_labels = _read_entity_file(\ "/data/rsg/nlp/darsh/aggregator/crawl_websites"\ "/NUT/gold_sentences_out.txt") machine_sentence_entities = get_sentence_entities(machine_r_sentences, \ machine_labels) machine_nutrition_entities= [] machine_condition_entities= [] file_name_m_conditions = {} file_name_m_nutritions = {} file_name_condition_counts= {} file_name_nutrition_counts= {} for m_s, m_l, f_n in zip(machine_r_sentences, machine_labels, file_names): n_e = _get_entities(m_s.split(),m_l.split(),'Nutrition') c_e = _get_entities(m_s.split(),m_l.split(),'Condition') file_name_m_conditions[f_n] = file_name_m_conditions.setdefault(f_n,[]\ ) + c_e file_name_m_nutritions[f_n] = file_name_m_nutritions.setdefault(f_n,[]\ ) + n_e file_name_condition_counts[f_n] = len(set(file_name_m_conditions[f_n])) file_name_nutrition_counts[f_n] = len(set(file_name_m_nutritions[f_n])) machine_nutrition_entities.append(n_e) machine_condition_entities.append(c_e) gold_sentence_entities = get_sentence_entities(gold_r_sentences,\ gold_labels) machine_causes_input, machine_contains_input = \ create_relation_annotations_file(machine_sentence_entities,"model") gold_causes_input, gold_contains_input = \ create_relation_annotations_file(gold_sentence_entities,"gold") machine_causes_output = produce_re_outputs("model_causes.jsonl",\ "t3_causes") machine_contains_output = produce_re_outputs("model_contains.jsonl",\ "t3_contains") gold_causes_output = produce_re_outputs("gold_causes.jsonl",\ "t3_causes") gold_contains_output = produce_re_outputs("gold_contains.jsonl",\ "t3_contains") machine_causes = get_predicted_relations(machine_causes_input,\ machine_causes_output) machine_contains = get_predicted_relations(machine_contains_input,\ machine_contains_output) gold_causes = get_predicted_relations(gold_causes_input,\ gold_causes_output) gold_contains = get_predicted_relations(gold_contains_input,\ gold_contains_output) embeddings = read_embeddings() recalls, precision, f1s, missing_list = \ evaluate_relations(gold_sentences, machine_sentences,\ gold_causes, machine_causes, embeddings) analysis_file = jsonlines.open(args.analysis_output,'w') for missing_dict in missing_list: analysis_file.write(missing_dict) if len(recalls) > 0: print(sum(recalls)/len(recalls)) else: print(0) recalls, precision, f1s, missing_list = \ evaluate_relations(machine_sentences, gold_sentences,\ machine_causes, gold_causes, embeddings) if len(recalls) > 0: print(sum(recalls)/len(recalls)) else: print(0) analysis_file.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description='Run sentiment evaluation') parser.add_argument('--file_path',default=None) parser.add_argument('--output',default='a.txt') parser.add_argument('--gold',default='b.txt') parser.add_argument('--analysis_output',default='kg_analysis.jsonl') args = parser.parse_args() compare_results(args, args.analysis_output)
# -*- coding: utf-8 -*- import docutils.core # All information about reStructeredText is here # http://docutils.sourceforge.net/docs/user/rst/quickref.html rest = ''' ======= Heading ======= SubHeading ---------- This is just a simple little subsection. Now, we'll show a bulleted list: - item one - item two - item three ''' html = docutils.core.publish_string(source=rest, writer_name='html') print(html[html.find('<body>') + 6:html.find('</body>')])
from test.core.derivatives.implementation.base import DerivativesImplementation import torch from backpack.hessianfree.hvp import hessian_vector_product from backpack.hessianfree.lop import transposed_jacobian_vector_product from backpack.hessianfree.rop import jacobian_vector_product class AutogradDerivatives(DerivativesImplementation): """Derivative implementations with autograd.""" def jac_vec_prod(self, vec): input, output, _ = self.problem.forward_pass(input_requires_grad=True) return jacobian_vector_product(output, input, vec)[0] def jac_mat_prod(self, mat): V = mat.shape[0] vecs = [mat[v] for v in range(V)] jac_vec_prods = [self.jac_vec_prod(vec) for vec in vecs] return torch.stack(jac_vec_prods) def jac_t_vec_prod(self, vec): input, output, _ = self.problem.forward_pass(input_requires_grad=True) return transposed_jacobian_vector_product(output, input, vec)[0] def jac_t_mat_prod(self, mat): V = mat.shape[0] vecs = [mat[v] for v in range(V)] jac_t_vec_prods = [self.jac_t_vec_prod(vec) for vec in vecs] return torch.stack(jac_t_vec_prods) def weight_jac_t_mat_prod(self, mat, sum_batch): return self.param_jac_t_mat_prod("weight", mat, sum_batch) def bias_jac_t_mat_prod(self, mat, sum_batch): return self.param_jac_t_mat_prod("bias", mat, sum_batch) def param_jac_t_vec_prod(self, name, vec, sum_batch): input, output, named_params = self.problem.forward_pass() param = named_params[name] if sum_batch: return transposed_jacobian_vector_product(output, param, vec)[0] else: N = input.shape[0] sample_outputs = [output[n] for n in range(N)] sample_vecs = [vec[n] for n in range(N)] jac_t_sample_prods = [ transposed_jacobian_vector_product(n_out, param, n_vec)[0] for n_out, n_vec in zip(sample_outputs, sample_vecs) ] return torch.stack(jac_t_sample_prods) def param_jac_t_mat_prod(self, name, mat, sum_batch): V = mat.shape[0] vecs = [mat[v] for v in range(V)] jac_t_vec_prods = [ self.param_jac_t_vec_prod(name, vec, sum_batch) for vec in vecs ] return torch.stack(jac_t_vec_prods) def weight_jac_mat_prod(self, mat): return self.param_jac_mat_prod("weight", mat) def bias_jac_mat_prod(self, mat): return self.param_jac_mat_prod("bias", mat) def param_jac_vec_prod(self, name, vec): input, output, named_params = self.problem.forward_pass() param = named_params[name] return jacobian_vector_product(output, param, vec)[0] def param_jac_mat_prod(self, name, mat): V = mat.shape[0] vecs = [mat[v] for v in range(V)] jac_vec_prods = [self.param_jac_vec_prod(name, vec) for vec in vecs] return torch.stack(jac_vec_prods) def ea_jac_t_mat_jac_prod(self, mat): def sample_jac_t_mat_jac_prod(sample_idx, mat): assert len(mat.shape) == 2 def sample_jac_t_mat_prod(sample_idx, mat): sample, output, _ = self.problem.forward_pass( input_requires_grad=True, sample_idx=sample_idx ) result = torch.zeros(sample.numel(), mat.size(1), device=sample.device) for col in range(mat.size(1)): column = mat[:, col].reshape(output.shape) result[:, col] = transposed_jacobian_vector_product( [output], [sample], [column], retain_graph=True )[0].reshape(-1) return result jac_t_mat = sample_jac_t_mat_prod(sample_idx, mat) mat_t_jac = jac_t_mat.t() jac_t_mat_t_jac = sample_jac_t_mat_prod(sample_idx, mat_t_jac) jac_t_mat_jac = jac_t_mat_t_jac.t() return jac_t_mat_jac N = self.problem.input.shape[0] input_features = self.problem.input.shape.numel() // N result = torch.zeros(input_features, input_features).to(self.problem.device) for n in range(N): result += sample_jac_t_mat_jac_prod(n, mat) return result / N def hessian(self, loss, x): """Return the Hessian matrix of a scalar `loss` w.r.t. a tensor `x`. Arguments: loss (torch.Tensor): A scalar-valued tensor. x (torch.Tensor): Tensor used in the computation graph of `loss`. Shapes: loss: `[1,]` x: `[A, B, C, ...]` Returns: torch.Tensor: Hessian tensor of `loss` w.r.t. `x`. The Hessian has shape `[A, B, C, ..., A, B, C, ...]`. """ assert loss.numel() == 1 vectorized_shape = (x.numel(), x.numel()) final_shape = (*x.shape, *x.shape) hessian_vec_x = torch.zeros(vectorized_shape).to(loss.device) num_cols = hessian_vec_x.shape[1] for column_idx in range(num_cols): unit = torch.zeros(num_cols).to(loss.device) unit[column_idx] = 1.0 unit = unit.view_as(x) column = hessian_vector_product(loss, [x], [unit])[0].reshape(-1) hessian_vec_x[:, column_idx] = column return hessian_vec_x.reshape(final_shape) def elementwise_hessian(self, tensor, x): """Yield the Hessian of each element in `tensor` w.r.t `x`. Hessians are returned in the order of elements in the flattened tensor. """ for t in tensor.flatten(): yield self.hessian(t, x) def tensor_hessian(self, tensor, x): """Return the Hessian of a tensor `tensor` w.r.t. a tensor `x`. Given a `tensor` of shape `[A, B, C]` and another tensor `x` with shape `[D, E]` used in the computation of `tensor`, the generalized Hessian has shape [A, B, C, D, E, D, E]. Let `hessian` denote this generalized Hessian. Then, `hessian[a, b, c]` contains the Hessian of the scalar entry `tensor[a, b, c]` w.r.t. `x[a, b, c]`. Arguments: tensor (torch.Tensor): An arbitrary tensor. x (torch.Tensor): Tensor used in the computation graph of `tensor`. Returns: torch.Tensor: Generalized Hessian of `tensor` w.r.t. `x`. """ shape = (*tensor.shape, *x.shape, *x.shape) return torch.cat(list(self.elementwise_hessian(tensor, x))).reshape(shape) def hessian_is_zero(self): """Return whether the input-output Hessian is zero. Returns: bool: `True`, if Hessian is zero, else `False`. """ input, output, _ = self.problem.forward_pass(input_requires_grad=True) zero = None for hessian in self.elementwise_hessian(output, input): if zero is None: zero = torch.zeros_like(hessian) if not torch.allclose(hessian, zero): return False return True def input_hessian(self): """Compute the Hessian of the module output w.r.t. the input.""" input, output, _ = self.problem.forward_pass(input_requires_grad=True) return self.hessian(output, input) def sum_hessian(self): """Compute the Hessian of a loss module w.r.t. its input.""" hessian = self.input_hessian() return self._sum_hessian_blocks(hessian) def _sum_hessian_blocks(self, hessian): """Sum second derivatives over the batch dimension. Assert second derivative w.r.t. different samples is zero. """ input = self.problem.input num_axes = len(input.shape) if num_axes != 2: raise ValueError("Only 2D inputs are currently supported.") N = input.shape[0] num_features = input.numel() // N sum_hessian = torch.zeros(num_features, num_features, device=input.device) hessian_different_samples = torch.zeros( num_features, num_features, device=input.device ) for n_1 in range(N): for n_2 in range(N): block = hessian[n_1, :, n_2, :] if n_1 == n_2: sum_hessian += block else: assert torch.allclose(block, hessian_different_samples) return sum_hessian
#!/usr/bin/env python # -------------------------------------------------------- # Faster R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """ Demo script showing detections in sample images. See README.md for installation instructions before running. """ #import _init_paths from fast_rcnn.config import cfg, cfg_from_file from fast_rcnn.test import im_detect from fast_rcnn.nms_wrapper import nms from utils.timer import Timer import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import scipy.io as sio import caffe, os, sys, cv2 import argparse from contextlib import contextmanager import shutil from subprocess import Popen, PIPE import shlex import tempfile import re import time import fcntl from timeit import default_timer as timer from osgeo import gdal CLASSES = ('__background__', 'ship', 'fast_ship') NETS = {'vgg16': ('VGG16', 'VGG16_faster_rcnn_final.caffemodel'), 'vgg': ('VGG_CNN_M_1024', 'VGG_faster_rcnn_final.caffemodel'), 'zf': ('ZF', 'ZF_faster_rcnn_final.caffemodel')} def fileno(file_or_fd): fd = getattr(file_or_fd, 'fileno', lambda: file_or_fd)() if not isinstance(fd, int): raise ValueError("Expected a file (`.fileno()`) or a file descriptor") return fd def vis_detections(im, class_name, dets, thresh=0.5): """Draw detected bounding boxes.""" inds = np.where(dets[:, -1] >= thresh)[0] if len(inds) == 0: return im = im[:, :, (2, 1, 0)] fig, ax = plt.subplots(figsize=(12, 12)) ax.imshow(im, aspect='equal') for i in inds: bbox = dets[i, :4] score = dets[i, -1] ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='red', linewidth=3.5) ) ax.text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') ax.set_title(('{} detections with ' 'p({} | box) >= {:.1f}').format(class_name, class_name, thresh), fontsize=14) plt.axis('off') plt.tight_layout() plt.draw() def demo(net, im_file): """Detect object classes in an image using pre-computed object proposals.""" # compute the file offset from the name iterEx = re.compile(".*?_(\d+)_(\d+)\.jpg$") itIter = iterEx.findall(im_file) if len(itIter) > 0: xoff = int(itIter[0][0]) yoff = int(itIter[0][1]) else: print("Bad Filename " + im_file + ". No offsets! Skipping file") return [] # Load the demo image as gray scale gim = cv2.imread(im_file, flags= cv2.CV_LOAD_IMAGE_GRAYSCALE) # convert to rgb repeated in each channel im = cv2.cvtColor(gim, cv2.COLOR_GRAY2BGR) # Detect all object classes and regress object bounds timer = Timer() timer.tic() scores, boxes = im_detect(net, im) timer.toc() print ('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]) # Visualize detections for each class CONF_THRESH = 0.6 NMS_THRESH = 0.3 res = [] for cls_ind, cls in enumerate(CLASSES[1:]): cls_ind += 1 # because we skipped background cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)] cls_scores = scores[:, cls_ind] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] inds = np.where(dets[:,-1] >= CONF_THRESH)[0] for i in inds: bbox = dets[i, :4] score = dets[i, -1] res.append(cls + " {0} {1} {2} {3}".format(xoff + bbox[0], yoff + bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1])) return res def parse_args(): """Parse input arguments.""" parser = argparse.ArgumentParser(description='Faster R-CNN demo') parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', default=0, type=int) parser.add_argument('--cpu', dest='cpu_mode', help='Use CPU mode (overrides --gpu)', action='store_true') parser.add_argument('--net', dest='demo_net', help='Network to use [zf]', choices=NETS.keys(), default='vgg') parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default=None, type=str) parser.add_argument('--model', dest='model_file', help='caffe model file', default=None, type=str) parser.add_argument('--proto', dest='proto_file', help='caffe prototext file', default=None, type=str) parser.add_argument('--split', dest='split_size', help='width && height for split up images', action='store', type=int) parser.add_argument('--tiles', dest='tile_path', help='image tile output path', default=None, type=str) parser.add_argument('file', help="Image file or dir to process", type=str) args = parser.parse_args() return args def split_up_file(fname, tempDir, splitSize, maxCnt): dset = gdal.Open(fname) width = dset.RasterXSize height = dset.RasterYSize baseName = os.path.basename(fname) tName = os.path.join(tempDir, baseName) fileList = [] cnt = 1 nname, ext = os.path.splitext(fname) #Here we assume tif files are 8 bit and ntf are 16 bit if ext.lower() == '.tif': bitSize = 8 else: bitSize = 16 for i in range(0, width, splitSize): for j in range(0, height, splitSize): if maxCnt > 0 and cnt > maxCnt: return fileList cnt += 1 w = min(i+splitSize, width) - i h = min(j+splitSize, height) - j xoff = i yoff = j if w < splitSize: xoff = i - (splitSize - w) if xoff < 0: xoff = 0 if h < splitSize: yoff = j - (splitSize - h) if yoff < 0: yoff = 0 tempName = tName + "_" + str(i) + "_" + str(j) + ".jpg" print("spliting up " + tempName) with timeout(6): if bitSize == 16: transStr = "/home/trbatcha/tools/bin/gdal_translate -of JPEG -ot Byte -scale 64 1024 0 255 -b 1 -srcwin " + str(xoff) + " " + str(yoff) + \ " " + str(splitSize) + " " + str(splitSize) + " " + fname + " " + tempName else: transStr = "/home/trbatcha/tools/bin/gdal_translate -of JPEG -ot Byte -b 1 -srcwin " + str(xoff) + " " + str(yoff) + \ " " + str(splitSize) + " " + str(splitSize) + " " + fname + " " + tempName #result = subprocess.check_output([transStr], shell=True) args = shlex.split(transStr) p = Popen(args, stdout=PIPE, stderr=PIPE) try: print("calling gdal_translate") stdout, stderr = p.communicate() print("gdal_translate complete") fileList.append(tempName) print (stderr) print (stdout) sys.stdout.flush() except IOError, e: if e.errno != errno.EINTR: raise e print("Timeout: gdal_translate for image " + \ tempName + " w {0} h {1}". format(width, height)) #get rid of xml file gdal_translate creates xmlfile = tempName + ".aux.xml" if os.path.exists(xmlfile): os.remove(tempName + ".aux.xml") return fileList def doWriteToHDFS(dirname, fname) : basename = os.path.basename(fname) hname = os.path.join(dirname, basename) put = Popen(["hdfs", "dfs", "-put", fname, hname], stdout=PIPE, stderr = PIPE) stdout, stderr = put.communicate() print stderr return hname def mergeTiles(src, dst): img1 = mpimg.imread(src) img2 = mpimg.imread(dst) img = np.maximum(img1, img2) mpimg.imsave(dst, img) def moveTiles(src, dst): files = os.listdir(src) if not os.path.exists(dst): os.makedirs(dst) # chmod of dirs for p,d,f in os.walk(dst): os.chmod(p, 0o777) for f in files: sname = os.path.join(src, f) dname = os.path.join(dst, f) if os.path.isdir(sname): moveTiles(sname, dname) else: fname, ext = os.path.splitext(dname) # Currently only moving the tiles since the # tilemapresource.xml is not being used by leaflet. # TODO: merge the tilemapresource.xml files by # reading the xml and updating the bounding box, and # x,y of the tiles. if os.path.exists(dname) == True and ext == '.png': mergeTiles(sname, dname) #i = 0; #dname2 = dname + str(i) #while os.path.exists(dname2) == True: # i += 1 # dname2 = dname + str(i) #shutil.move(sname, dname2) #os.chmod(dname, 0o666) pass elif ext == '.png': shutil.move(sname, dname) os.chmod(dname, 0o666) def parseRectStr(rectStr): items = rectStr.split(' ') # the first item is the class which we will ignore x = int(round(float(items[1]))) y = int(round(float(items[2]))) w = int(round(float(items[3]))) h = int(round(float(items[4]))) print("pared rect {0},{1},{2},{3}".format(x,y,w,h)) return x,y,w,h import signal, errno from contextlib import contextmanager @contextmanager def timeout(seconds): def timeout_handler(signum, frame): pass orig_handler = signal.signal(signal.SIGALRM, timeout_handler) try: signal.alarm(seconds) yield finally: signal.alarm(0) signal.signal(signal.SIGALRM, orig_handler) # # We create the tile in a temp directory and then move it to its final # destination. # def writeTilesFromDetects(tileDir, detects, origFile): if len(detects) == 0: return tempTileDir = tempfile.mkdtemp(dir='/home/trbatcha/tempDir') outputDir = os.path.join(tempTileDir, "output") if not os.path.exists(tempTileDir): os.makedirs(tempTileDir) if not os.path.exists(outputDir): os.makedirs(outputDir) vname = os.path.basename(origFile) vPath = os.path.join(tempTileDir, vname + ".vrt") listPath = os.path.join(tempTileDir, "fileList.txt") listFile = open(listPath, "w") nname, ext = os.path.splitext(origFile) #Here we assume tif files are 8 bit and ntf are 16 bit if ext.lower() == '.tif': bitSize = 8 else: bitSize = 16 for detect in detects: rectStr = detect[0] imgName = detect[1] basename = os.path.basename(imgName) x, y, w, h = parseRectStr(rectStr) print("detect = {0},{1},{2},{3}".format(x, y,w , h)) tName = basename + "_" + str(x) + "_" + str(y) + "_" + \ str(w) + "_" + str(h) + ".tif" t2Name = basename + "_" + str(x) + "_" + str(y) + "_" + \ str(w) + "_" + str(h) + "_w" + ".tif" tPath = os.path.join(tempTileDir, tName) t2Path = os.path.join(tempTileDir, t2Name) if os.path.exists(tPath) == True: os.remove(tPath) if os.path.exists(t2Path) == True: os.remove(t2Path) # Git the image clip if bitSize == 16: transStr = "/home/trbatcha/tools/bin/gdal_translate -of GTiff " +\ "-ot Byte -scale 64 1024 0 255 -b 1 -srcwin " \ + str(x) + " " + str(y) + " " + str(w) + " " + str(h) + " " \ + imgName + " " + tPath else: transStr = "/home/trbatcha/tools/bin/gdal_translate -of GTiff " +\ "-ot Byte -b 1 -srcwin " \ + str(x) + " " + str(y) + " " + str(w) + " " + str(h) + " " \ + imgName + " " + tPath args = shlex.split(transStr) print("running translate") p = Popen(args, stdout=PIPE, stderr=PIPE) stdout, stderr = p.communicate() print stderr print("translate complete") #get rid of xml file gdal_translate creates xmlfile = tPath + ".aux.xml" if os.path.exists(xmlfile): os.remove(tPath + ".aux.xml") print (stdout) warpStr = "/home/trbatcha/tools/bin/gdalwarp -of GTiff -t_srs " + \ "EPSG:3857 -overwrite " + tPath + " " + t2Path args = shlex.split(warpStr) print("running warp") p = Popen(args, stdout=PIPE, stderr=PIPE) stdout, stderr = p.communicate() print (stderr) print (stdout) print("warp complete") listFile.write(t2Path + '\n') listFile.close() vrtStr = "/home/trbatcha/tools/bin/gdalbuildvrt -srcnodata 0 -addalpha " \ + "-vrtnodata 0 -overwrite -input_file_list " + listPath + \ " " + vPath args = shlex.split(vrtStr) print("running vrt") p = Popen(args, stdout=PIPE, stderr=PIPE) stdout, stderr = p.communicate() print (stderr) print (stdout) print("virt complete") # Generate tiles for all the image chips import gdal2tiles tileStr = "-v -p mercator --zoom 13 -w none " + vPath + " " + outputDir #debug tried gdal2tiles as seperate process, it did not fix my problem so commented out #my_env = os.environ.copy() #tileStr = "/home/trbatcha/tools/bin/python gdal2tiles.py -v -p mercator -z 13 -w none " + vPath + " " + outputDir args = shlex.split(tileStr) #p = Popen(args, env=my_env, stdout=PIPE, stderr=PIPE) #stdout, stderr = p.communicate() #print (stderr) #print (stdout) print("gen tiles") tileGenFailed = False with timeout(10): try: # By default gdal turns exceptions off gdal.UseExceptions() targs = gdal.GeneralCmdLineProcessor(args) gtiles = gdal2tiles.GDAL2Tiles(targs) gtiles.process() except Exception, err: if err.errno != errno.EINTR: print("gdal2tiles FAILED!!!") print(err) sys.stdout.flush() shutil.rmtree(tempTileDir, ignore_errors=True) return print("TileGeneration TIMED OUT!! for file " + origFile) tileGenFailed = True print("gen tiles complete") # before we move tiles lets check lockfile and wait if not avail if tileGenFailed == False: with timeout(3): lockFile = os.path.join(tileDir,"tileLock") lock = open(lockFile, 'w') try: fcntl.flock(lock, fcntl.LOCK_EX) except IOError, e: if e.errno != errno.EINTR: raise e print("Tile filelock timeout") lock.close() shutil.rmtree(tempTileDir, ignore_errors=True) return moveTiles(outputDir, tileDir) fcntl.flock(lock, fcntl.LOCK_UN) lock.close() # remove the non-tiles we created shutil.rmtree(tempTileDir, ignore_errors=True) if __name__ == '__main__': #debug profiling import cProfile save_stdout = sys.stdout sys.stdout = sys.stderr #debug force stdout to flush optut sys.stdout = os.fdopen(sys.stdout.fileno(), "w", 0) #debug profiling #profile = cProfile.Profile() #profile.enable() cfg.TEST.HAS_RPN = True # Use RPN for proposals args = parse_args() if args.cfg_file is not None: print("using config " + args.cfg_file) cfg_from_file(args.cfg_file) if cfg.TRAIN.IS_COLOR == True: print("We are configured for color") else: print("We are configured for b/w") if args.split_size: print("We are to split up image by {0}".format(args.split_size)) else: print("No split applied.") tiledir = args.tile_path ifile = args.file prototxt = os.path.join(cfg.ROOT_DIR, 'models', 'VGG_CNN_M_1024', 'faster_rcnn_end2end', 'test_ships.prototxt') #caffemodel = os.path.join(cfg.ROOT_DIR, 'output', 'faster_rcnn_end2end', # 'ak47_train', 'zf_faster_rcnn_iter_70000.caffemodel') caffemodel = os.path.join(cfg.ROOT_DIR, 'output', 'faster_rcnn_end2end', 'ships_train', 'vgg_cnn_m_1024_faster_rcnn_iter_500000.caffemodel') if args.model_file is not None: caffemodel = args.model_file if args.proto_file is not None: prototxt = args.proto_file if not os.path.isfile(caffemodel): raise IOError(('{:s} not found.\nDid you train it?' ).format(caffemodel)) if args.cpu_mode: caffe.set_mode_cpu() else: caffe.set_mode_gpu() caffe.set_device(args.gpu_id) cfg.GPU_ID = args.gpu_id # Need to redirect stdout since we only want to return the results tempDir = tempfile.mkdtemp(dir = "/dev/shm") os.chmod(tempDir, 0o777) #debug doDetect = True detects = [] if args.split_size != None: fileList = split_up_file(ifile, tempDir, args.split_size, -1) ##debug only do the first one #fileList = split_up_file(ifile, tempDir, args.split_size, 90) else: fileList = [ifile] if doDetect == True: net = caffe.Net(prototxt, caffemodel, caffe.TEST) print '\n\nLoaded network {:s}'.format(caffemodel) # Warmup on a dummy image im = 128 * np.ones((300, 500, 1), dtype=np.uint8) #im = 128 * np.ones((300, 500, 3), dtype=np.uint8) for i in xrange(2): _, _= im_detect(net, im) for nextf in fileList: print('detection for ' + nextf) res = demo(net, nextf) if res != None and len(res) > 0: print("we have detection results!") for d in res: #We have to use ifile instead of nextf since #all the geo data is gone from nextf detects.append((d, ifile)) else: pass #For testing # print("appending dummp detection") # detects.append(("ship 0.0 0.0 300.0 300.0", ifile)) # dset = gdal.Open(ifile) # dxsize = 300 # dysize = 300 # width = dset.RasterXSize # height = dset.RasterYSize # cx = width /2 # cy = height /2 # if height < dysize: # dysize = height # if width < dxsize: # dxsize = width # if dxsize <= 0 or dysize <= 0: # continue # if cx + dxsize >= width or cy + dysize >= height: # detects.append(("ship {0} {1} {2} {3}".format( cx, cy, width - cx -1, height - cy -1), ifile)) # else: # detects.append(("ship {0} {1} {2} {3}".format( cx, cy, dxsize -1, dysize -1), ifile)) #detects.append( # ("ship 0.0 0.0 {0} {1}".format(dxsize, dysize), ifile)) #detects.append(("ship {0} {1} {2} {3}".format( # width - dxsize-10, height - dysize-10, dxsize, dysize), # ifile)) #detects.append(("ship {0} {1} {2} {3}".format( # width - dxsize, 0.0, dxsize, dysize), # ifile)) #detects.append(("ship {0} {1} {2} {3}".format( # 0.0, height - dysize, dxsize, dysize), # ifile)) #debug show all detects print("Printing detects for {0} detections".format(len(detects))) for d in detects: print(d[0]) writeTilesFromDetects(tiledir, detects, ifile) #shutil.rmtree(tempDir) #debug profiling #profile.disable() #profile.print_stats(sort='time') #putting stdout back so we can output the results sys.stdout.flush() sys.stdout = save_stdout # Write out the result to stdout for d in detects: print(d[0]) sys.exit(0)
import enum import itertools import string import typing from .number_set import NumberSet class AreaType(enum.Enum): ROW = 0 COLUMN = 1 BLOCK = 2 def __init__(self, index): self._index = index @property def index(self): return self._index def orthogonal_type(self) -> 'AreaType': if self is self.ROW: return self.COLUMN elif self is self.COLUMN: return self.ROW else: raise ValueError(f'{self} has no orthogonal type') def __str__(self): self.name: str return self.name.lower() class Cell: def __init__(self, row: int, col: int, board: 'Board'): assert 0 <= row < board.size, f'cell row {row} out of range' assert 0 <= col < board.size, f'cell col {col} out of range' self._row = row self._col = col self._index = board.size * row + col row_in_block = row % board.block_height col_in_block = col % board.block_width block_index = board.block_width * row_in_block + col_in_block # Cell index inside surrounding area. self._index_of_areas = { AreaType.ROW: col, AreaType.COLUMN: row, AreaType.BLOCK: block_index, } self._areas: typing.Dict[AreaType, 'Area'] = {} @property def row(self) -> int: return self._row @property def col(self) -> int: return self._col @property def index(self) -> int: return self._index def index_of_area(self, area_or_type: typing.Union[AreaType, 'Area']) -> int: if isinstance(area_or_type, Area): return self._index_of_areas[area_or_type.area_type] elif isinstance(area_or_type, AreaType): return self._index_of_areas[area_or_type] else: raise TypeError(f'Unsupported type: "{type(area_or_type)}"') def get_area(self, area_type: AreaType) -> 'Area': return self._areas[area_type] def iter_areas(self) -> typing.Iterator['Area']: return self._areas.values() def __repr__(self): return f'({self._row + 1},{self._col + 1})' class Area: def __init__(self, area_type: AreaType, index: int, board: 'Board'): assert 0 <= index < board.size, f'area index {index} out of range' self._board = board self._area_type = area_type self._index = index self._cells: typing.List[Cell] = [] @property def area_type(self) -> AreaType: return self._area_type @property def index(self) -> int: return self._index @property def first_row(self) -> int: return self._cells[0].row @property def first_col(self) -> int: return self._cells[0].col @property def last_row(self) -> int: return self._cells[-1].row @property def last_col(self) -> int: return self._cells[-1].col def get_cell(self, index_of_area: int) -> Cell: return self._cells[index_of_area] def iter_cells(self, excludes: typing.Iterable = None) -> typing.Iterator[Cell]: positions = NumberSet(0) for item in excludes or []: if isinstance(item, Cell): positions.add(item.index_of_area(self._area_type)) elif isinstance(item, Area): positions.add(item.index) elif isinstance(item, int): positions.add(item) else: raise TypeError(f'Unsupported item type of excludes "{type(item)}"') for cell in self._cells: if cell.index_of_area(self._area_type) not in positions: yield cell def __repr__(self): return f'{self._area_type.name.lower()} {self._index + 1}' def __str__(self): if self._area_type == AreaType.BLOCK: r, c = divmod(self._index, self._board.blocks_per_row) return f'({r + 1},{c + 1})' else: return f'{self._index + 1}' class Board: def __init__(self, block_width: int = 3, block_height: int = 3): self._block_width = block_width self._block_height = block_height self._size = block_width * block_height self._mapping: str = f'123456789{string.ascii_uppercase}' self._cells = [Cell(r, c, self) for r, c in itertools.product(range(self._size), repeat=2)] # self._areas = [Area(t, i, self) for t, i in itertools.product(AreaType, range(self._size))] self._areas: typing.Dict[AreaType, typing.List[Area]] = {} for t in AreaType: self._areas[t] = [Area(t, i, self) for i in range(self._size)] self._connect_area_and_cell() @property def block_width(self) -> int: return self._block_width @property def block_height(self) -> int: return self._block_height @property def blocks_per_row(self) -> int: return self._block_height @property def blocks_per_col(self) -> int: return self._block_width @property def size(self) -> int: return self._size @property def mapping(self) -> str: return self._mapping @mapping.setter def mapping(self, value): self._mapping = value def mark(self, number: int) -> str: return self._mapping[number] def lookup(self, mark: str) -> int: number = self._mapping.find(mark) return number if number >= 0 else None def iter_cells(self) -> typing.Iterator[Cell]: return iter(self._cells) def get_area(self, area_type: AreaType, index: int) -> Area: return self._areas[area_type][index] def iter_areas(self, area_type: AreaType = None) -> typing.Iterator[Area]: if area_type is None: return itertools.chain(*self._areas.values()) else: return iter(self._areas[area_type]) def get_common_area(self, cells: typing.Iterable[Cell], area_type: AreaType) -> Area: cell_iter = iter(cells) cell = next(cell_iter, None) if cell is None: return None area = cell.get_area(area_type) for cell in cell_iter: if cell.get_area(area_type) != area: return None return area def iter_common_areas(self, cells: typing.Iterable[Cell]) -> typing.Iterator[Area]: for area_type in AreaType: area = self.get_common_area(cells, area_type) if area is not None: yield area def iter_numbers(self) -> typing.Iterator[int]: return range(self._size) def _connect_area_and_cell(self): cell: Cell for cell in self._cells: # Each cell belongs to 3 areas, one for each type. area_index_mapping = { AreaType.ROW: cell.row, AreaType.COLUMN: cell.col, AreaType.BLOCK: self.blocks_per_row * (cell.row // self._block_height) + (cell.col // self._block_width), } for area_type in AreaType: area_index = area_index_mapping[area_type] area = self._areas[area_type][area_index] area._cells.append(cell) cell._areas[area_type] = area
#!/usr/bin/env python # coding: utf-8 # Copyright (c) Qotto, 2019 """ AvroSerializer class Serialize / Deserialize record to avro schema Note: In schemas folder your avro file must have the *avsc.yaml* extension Todo: * Remove workaround in constructor (os.path ...) """ import json import os import re from io import BytesIO from logging import Logger, getLogger from typing import Dict, Any, Union, Type from avro.datafile import DataFileWriter, DataFileReader from avro.io import DatumWriter, DatumReader, AvroTypeException from avro.schema import NamedSchema, Parse from yaml import (FullLoader, load_all) # type: ignore from tonga.models.handlers.base import BaseHandler from tonga.models.records.base import BaseRecord from tonga.models.store.base import BaseStoreRecordHandler from tonga.models.store.store_record import StoreRecord from tonga.services.serializer.errors import (AvroEncodeError, AvroDecodeError, AvroAlreadyRegister, NotMatchedName, MissingEventClass, MissingHandlerClass) from .base import BaseSerializer __all__ = [ 'AvroSerializer', ] AVRO_SCHEMA_FILE_EXTENSION: str = 'avsc.yaml' class AvroSerializer(BaseSerializer): """Class serializer Avro schema to class instance Serialize / Deserialize (BaseRecord & StoreRecord) to avro schema """ logger: Logger schemas_folder: str _schemas: Dict[str, NamedSchema] _events: Dict[object, Union[Type[BaseRecord], Type[StoreRecord]]] _handlers: Dict[object, Union[BaseHandler, BaseStoreRecordHandler]] def __init__(self, schemas_folder: str): """ AvroSerializer constructor Args: schemas_folder (str): Folder where are stored project avro schema (example: *os.path.join(os.path.dirname(os.path.abspath(__file__)), 'examples/coffee_bar/avro_schemas')*) Returns: None """ super().__init__() self.schemas_folder = schemas_folder self.schemas_folder_lib = os.path.dirname(os.path.abspath(__file__)) + '/../../models/avro_schema' self.logger = getLogger('tonga') self._schemas = dict() self._events = dict() self._handlers = dict() self._scan_schema_folder(self.schemas_folder) self._scan_schema_folder(self.schemas_folder_lib) def _scan_schema_folder(self, schemas_folder: str) -> None: """ AvroSerializer internal function, he was call by class constructor Args: schemas_folder (str): Folder where are stored project avro schema Returns: None """ with os.scandir(schemas_folder) as files: for file in files: if not file.is_file(): continue if file.name.startswith('.'): continue if not file.name.endswith(f'.{AVRO_SCHEMA_FILE_EXTENSION}'): continue self._load_schema_from_file(file.path) def _load_schema_from_file(self, file_path: str) -> None: """ AvroSerializer internal function, he was call by _scan_schema_folder for load schema file Args: file_path: Path to schema Raises: AvroAlreadyRegister: This error was raised when schema is already register the Avro schema Returns: None """ with open(file_path, 'r') as fd: for s in load_all(fd, Loader=FullLoader): avro_schema_data = json.dumps(s) avro_schema = Parse(avro_schema_data) schema_name = avro_schema.namespace + '.' + avro_schema.name if schema_name in self._schemas: raise AvroAlreadyRegister self._schemas[schema_name] = avro_schema def register_event_handler_store_record(self, store_record_event: Type[StoreRecord], store_record_handler: BaseStoreRecordHandler) -> None: """ Register project event & handler in AvroSerializer Args: store_record_event (Type[BaseStoreRecord]): Store record event, BaseStoreRecord can work without class override, but for more flexibility you can create your own class store_record_handler (BaseStoreRecordHandler): Store record handler, can be used with Tonga StoreRecordHandler this class work for simple usage, for more flexibility creates your own class must inherit form BaseStoreRecordHandler Returns: None """ event_name_regex = re.compile(store_record_event.event_name()) self._events[event_name_regex] = store_record_event self._handlers[event_name_regex] = store_record_handler def register_class(self, event_name: str, event_class: Type[BaseRecord], handler_class: BaseHandler = None) -> None: """Register project event & handler in AvroSerializer Args: event_name (str): Event name, Avro schema *namespace + name* event_class (Type[BaseModel]): Event class must inherit form *BaseEvent / BaseCommand / BaseResult* handler_class (BaseHandler): Handler class must inherit form *BaseHandlerEvent / BaseHandlerCommand / BaseHandlerResult* Raises: NotMatchedName: Can’t find same name in registered schema Returns: None """ event_name_regex = re.compile(event_name) matched: bool = False for schema_name in self._schemas: if event_name_regex.match(schema_name): matched = True break if not matched: raise NotMatchedName self._events[event_name_regex] = event_class self._handlers[event_name_regex] = handler_class def get_schemas(self) -> Dict[str, NamedSchema]: """ Return _schemas class attributes Returns: Dict[str, NamedSchema]: _schemas class attributes """ return self._schemas def get_events(self) -> Dict[object, Union[Type[BaseRecord], Type[StoreRecord]]]: """ Return _events class attributes Returns: Dict[object, Union[Type[BaseModel], Type[BaseStoreRecord]]]: _events class attributes """ return self._events def get_handlers(self) -> Dict[object, Union[BaseHandler, BaseStoreRecordHandler]]: """ Return _handlers class attributes Returns: Dict[object, Union[BaseHandler, BaseStoreRecordHandler]]: _handlers class attributes """ return self._handlers def encode(self, obj: BaseRecord) -> bytes: """ Encode *BaseHandlerEvent / BaseHandlerCommand / BaseHandlerResult* to bytes format This function is used by kafka-python Args: obj (BaseModel): *BaseHandlerEvent / BaseHandlerCommand / BaseHandlerResult* Raises: MissingEventClass: can’t find BaseModel in own registered BaseModel list (self._schema) AvroEncodeError: fail to encode BaseModel to bytes Returns: bytes: BaseModel in bytes """ try: schema = self._schemas[obj.event_name()] except KeyError as err: self.logger.exception('%s', err.__str__()) raise MissingEventClass try: output = BytesIO() writer = DataFileWriter(output, DatumWriter(), schema) writer.append(obj.to_dict()) writer.flush() encoded_event = output.getvalue() writer.close() except AvroTypeException as err: self.logger.exception('%s', err.__str__()) raise AvroEncodeError return encoded_event def decode(self, encoded_obj: Any) -> Dict[str, Union[BaseRecord, StoreRecord, BaseHandler, BaseStoreRecordHandler]]: """ Decode bytes format to BaseModel and return dict which contains decoded *BaseModel / BaseStoreRecord* This function is used by kafka-python / internal call Args: encoded_obj (Any): Bytes encode BaseModel / BaseStoreRecord Raises: AvroDecodeError: fail to decode bytes in BaseModel MissingEventClass: can’t find BaseModel in own registered BaseModel list (self._schema) MissingHandlerClass: can’t find BaseHandlerModel in own registered BaseHandlerModel list (self._handler) Returns: Dict[str, Union[BaseModel, BaseStoreRecord, BaseHandler, BaseStoreRecordHandler]]: example: {'event_class': ..., 'handler_class': ...} """ try: reader = DataFileReader(BytesIO(encoded_obj), DatumReader()) schema = json.loads(reader.meta.get('avro.schema').decode('utf-8')) schema_name = schema['namespace'] + '.' + schema['name'] dict_data = next(reader) except AvroTypeException as err: self.logger.exception('%s', err.__str__()) raise AvroDecodeError # Finds a matching event name for e_name, event in self._events.items(): if e_name.match(schema_name): # type: ignore record_class = event break else: raise MissingEventClass # Finds a matching handler name for e_name, handler in self._handlers.items(): if e_name.match(schema_name): # type: ignore handler_class = handler break else: raise MissingHandlerClass return {'record_class': record_class.from_dict(dict_data=dict_data), 'handler_class': handler_class}
#!/usr/bin/env python # Level Script # Use scene.when to schedule events. # Yield when you want to wait until the next event. # This is a generator. Using a busy loop will halt the game. from math import tau, pi from game.constants import GREEN from game.scripts.level import Level class Level2(Level): number = 2 name = "The Rise of Butterflies" ground = GREEN music = "butterfly.ogg" def __call__(self): self.scene.cloudy() self.scene.rocks() yield from super().__call__() self.spawn(0, 0) yield from self.rotating_circle(2, 30, 0.5) yield self.medium_pause() self.spawn(0, 0) yield from self.rotating_circle(3, 30) yield self.big_pause() yield from self.v_shape(5) yield self.big_pause() yield from self.rotating_v_shape(4) yield self.big_pause() for i in range(3): self.spawn(0, 0) yield from self.rotating_circle(5, -40) yield self.big_pause() yield from self.slow_type("They plan to swarm us.") self.spawn_powerup("M", 0, 0) yield from self.slow_type("Take this Machine Gun!", color="green") self.terminal.write_center("Press shift to change guns.", 15) t = "X / Y on controller" self.terminal.write_center(t, 17) self.terminal.write_center("X", 17, color="blue", length=len(t)) self.terminal.write_center( "Y", 17, color="yellow", length=len(t), char_offset=(4, 0) ) yield self.bigg_pause() self.terminal.clear(5) self.terminal.clear(15) self.terminal.clear(17) self.wall(8, 4, 0.2, 0.1) yield self.bigg_pause() self.spawn_powerup("M") self.medium_pause() self.wall(8, 4, 0.2, 0.1) yield self.big_pause() yield from self.combine( self.rotating_v_shape(5, angular_mult=0.5), self.rotating_v_shape(5, pi / 3, angular_mult=0.5), self.rotating_v_shape(5, tau / 3, angular_mult=0.5), ) self.spawn_powerup("M") yield self.bigg_pause() yield from self.rotating_circle(5, 10) yield from self.rotating_circle(7, 20) yield self.small_pause() yield from self.rotating_circle(11, 30) yield self.small_pause() yield from self.rotating_circle(11, 40) yield self.big_pause() # TODO: Check for level clear ? yield self.huge_pause() yield from self.slow_type("Well done!", 5, "green", clear=True)
#!/usr/bin/env python # -*- coding: utf-8 -*- # 该自定键值映射参照数据库设计文档 light_color = { 1 : 'white', 2 : 'blue', 3 : 'yellow', } class PolicyInstance: """ 策略实例类型 """ #: 实例号 instance_id = -1 #: 策略号 policy_id = -1 #: 植被号 plant_id = -1 #: 房间号 room_id = -1 #: 实例执行开始时间 start_time = -1 class AbsoluteTime: """ 绝对时间类型 对应数据库中的 tb_absolute_time 表 """ #: 步骤号 rule_id = -1 #: 实例号 instance_id = -1 #: 更改时间 change_time = '' class TableSensor: sensor_id = -1 sensor_name = '' room_id = -1 position = [] state = 1 class TablePlant: plant_id = -1 plant_name = '' class TableRoom: room_id = -1 room_description = ''
from django.contrib import admin from .models import Bootcamp, User, Course, Review # Register your models here. admin.site.register(User) admin.site.register(Bootcamp) admin.site.register(Course) admin.site.register(Review)
""" gps_util.py - parsing of GPS messages """ import datetime,traceback,logging,time,sys,math from common import UTC,excTraceback,hexDump,parseTimeString from tl_logger import TLLog,logOptions log = TLLog.getLogger( 'gps' ) logGPSD = TLLog.getLogger( 'GPSD' ) logGpsData = TLLog.getLogger( 'gpsdata' ) class Satellite(object): _lstValidGPS = range(1,65) # 1 .. 64 _lstValidGLONASS = range(65,86) # 66 .. 85 @staticmethod def isGPS(prn): return prn in Satellite._lstValidGPS @staticmethod def isGLONASS(prn): return prn in Satellite._lstValidGLONASS def __init__(self, prn, ele, azi, snr, used=None): self.prn = self._int(prn) self.ele = self._int(ele) self.azi = self._int(azi) self.snr = self._int(snr) if self.snr == None: self.snr = 0 self.used = used def _int(self,val): try: return int(val) except: return None def desc(self): s = '%4s %4s %4s %4s' % (self.prn, self.ele, self.azi, self.snr) if self.used: s += ' **' return s def __str__(self): return 'prn:%s ele:%s azi:%s snr:%s used:%s' % (self.prn, self.ele, self.azi, self.snr, self.used ) class GPS(object): """ base class for all GPS messages """ def __init__(self, msg): lst = msg.split('*') assert len(lst) == 2 self.msg = lst[0] self.checksum = int(lst[1], 16) # chk = self._checksum() if self.checksum != chk: log.warn('GPS message checksum FAIL') print('**** GPS message checksum FAIL ****') # self.lst = self.msg.split(',') def _checksum(self): val = 0 for ch in self.msg[1:]: val ^= ord(ch) return val def getMsgType(self): return self.lst[0][1:] def __str__(self): return '%5s - %s' % ('GPS', ','.join(self.lst)) class GSV(GPS): """ Abstract === GSV - Satellites in view === These sentences describe the sky position of a UPS satellite in view. Typically they're shipped in a group of 2 or 3. ------------------------------------------------------------------------------ 1 2 3 4 5 6 7 n | | | | | | | | $--GSV,x,x,x,x,x,x,x,...*hh<CR><LF> ------------------------------------------------------------------------------ Field Number: 1. total number of GSV messages to be transmitted in this group 2. 1-origin number of this GSV message within current group 3. total number of satellites in view (leading zeros sent) 4. satellite PRN number (leading zeros sent) 5. elevation in degrees (00-90) (leading zeros sent) 6. azimuth in degrees to true north (000-359) (leading zeros sent) 7. SNR in dB (00-99) (leading zeros sent) more satellite info quadruples like 4-7 n) checksum Example: $GPGSV,3,1,11,03,03,111,00, 04,15,270,00, 06,01,010,00, 13,06,292,00*74 $GPGSV,3,2,11,14,25,170,00,16,57,208,39,18,67,296,40,19,40,246,00*74 $GPGSV,3,3,11,22,42,067,42,24,14,311,43,27,05,244,00,,,,*4D Some GPS receivers may emit more than 12 quadruples (more than three GPGSV sentences), even though NMEA-0813 doesn't allow this. (The extras might be WAAS satellites, for example.) Receivers may also report quads for satellites they aren't tracking, in which case the SNR field will be null; we don't know whether this is formally allowed or not. """ def __init__(self, msg): GPS.__init__(self, msg) self.totGSV = int(self.lst[1]) self.curGSV = int(self.lst[2]) self.totSatView = int(self.lst[3]) self.lstSats = [] for i in range( 4, len(self.lst), 4): satPRN = self.lst[i] satEle = self.lst[i+1] satAzi = self.lst[i+2] satSNR = self.lst[i+3] sat = Satellite(satPRN,satEle,satAzi,satSNR) log.debug('GSV sat:%s' % sat) self.lstSats.append( sat ) def __str__(self): return '%5s - %s' % ('--GSV', ','.join(self.lst)) class GPGSV(GSV): """ === GSV - GPS Satellites in view === """ lstSatellites = [] _lstTempSats = [] @staticmethod def getSatellite(PRN): """ return satellite from lstSatellites with matching PRN """ lst = [sat for sat in GPGSV.lstSatellites if sat.prn == PRN] if len(lst) == 1: return lst[0] if len(lst) == 0: return None if len(lst) > 1: print 'getSatellite() ERROR - PRN exists for 2 satellites ... return 1st only' return lst[0] def __init__(self, msg): GSV.__init__(self, msg) self.process() def process(self): if self.totSatView == 0: GPGSV.lstSatellites = [] GPGSV._lstTempSats = [] else: GPGSV._lstTempSats.extend( self.lstSats ) if self.curGSV == self.totGSV: GPGSV.lstSatellites = [sat for sat in GPGSV._lstTempSats] GPGSV._lstTempSats = [] log.debug( 'totGSV:%s curGSV:%s' % (self.totGSV,self.curGSV)) log.debug( 'lstSatellites:%d' % len(GPGSV.lstSatellites)) log.debug( '_lstTempSats:%d' % len(GPGSV._lstTempSats)) def __str__(self): return '%5s - %s' % ('GPGSV', ','.join(self.lst)) class GLGSV(GSV): """ === GSV - GPS Satellites in view === """ lstGLONASSSats = [] _lstTempGLONASSSats = [] @staticmethod def getSatellite(PRN): """ return satellite from lstSatellites with matching PRN """ lst = [sat for sat in GLGSV.lstGLONASSSats if sat.prn == PRN] if len(lst) == 1: return lst[0] if len(lst) == 0: return None if len(lst) > 1: print 'getSatellite() ERROR - PRN exists for 2 satellites ... return 1st only' return lst[0] def __init__(self, msg): GSV.__init__(self, msg) self.process() def process(self): if self.totSatView == 0: GLGSV.lstGLONASSSats = [] GLGSV._lstTempGLONASSSats= [] else: GLGSV._lstTempGLONASSSats.extend( self.lstSats ) if self.curGSV == self.totGSV: GLGSV.lstGLONASSSats = [sat for sat in GLGSV._lstTempGLONASSSats] GLGSV._lstTempGLONASSSats = [] log.debug( 'totGSV:%s curGSV:%s' % (self.totGSV,self.curGSV)) log.debug( 'lstGLONASSSats:%d' % len(GLGSV.lstGLONASSSats)) log.debug( '_lstTempGLONASSSats:%d' % len(GLGSV._lstTempGLONASSSats)) def __str__(self): return '%5s - %s' % ('GLGSV', ','.join(self.lst)) class GSA(GPS): """ Abstract class === GSA - GPS DOP and active satellites === ------------------------------------------------------------------------------ 1 2 3 14 15 16 17 18 | | | | | | | | $--GSA,a,a,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x.x,x.x,x.x*hh<CR><LF> ------------------------------------------------------------------------------ Field Number: 1. Selection mode: M=Manual, forced to operate in 2D or 3D, A=Automatic, 3D/2D 2. Mode (1 = no fix, 2 = 2D fix, 3 = 3D fix) 3. ID of 1st satellite used for fix 4. ID of 2nd satellite used for fix 5. ID of 3rd satellite used for fix 6. ID of 4th satellite used for fix 7. ID of 5th satellite used for fix 8. ID of 6th satellite used for fix 9. ID of 7th satellite used for fix 10. ID of 8th satellite used for fix 11. ID of 9th satellite used for fix 12. ID of 10th satellite used for fix 13. ID of 11th satellite used for fix 14. ID of 12th satellite used for fix 15. PDOP 16. HDOP 17. VDOP 18. Checksum """ def __init__(self, msg): GPS.__init__(self, msg) self.selMode = self.lst[1] self.mode = self.lst[2] self.lstSatIDs = [] for val in self.lst[3:15]: try: prn = int(val) self.lstSatIDs.append(prn) except: pass log.debug('GSA - lstSatIDs:%s' % self.lstSatIDs) self.PDOP = self.lst[15] self.HDOP = self.lst[16] self.VDOP = self.lst[17] def __str__(self): return '%5s - %s' % ('--GSA', ','.join(self.lst)) class GPGSA(GSA): """ GPS satellites used only """ def __init__(self, msg): GSA.__init__(self, msg) def __str__(self): return '%5s - %s' % ('GPGSA', ','.join(self.lst)) class GLGSA(GSA): """ GLONASS satellites used only """ def __init__(self, msg): GSA.__init__(self, msg) def __str__(self): return '%5s - %s' % ('GLGSA', ','.join(self.lst)) class GNGSA(GSA): """ GPS/GLONASS active satellites When both GPS and GLONASS satellite are used together in the position solution, the talker identifier will be GN. In the third case, the receiver creates two GSA sentences for every epoch. The first GNGSA sentence is used for GPS satellites while the second one is for the GLONASS satellites. In the GSA message, the satellite ID number of the GLONASS satellite is 64+ satellite slot number. """ # We need to make sure we know the current _GPS = None _GLONASS = None def __init__(self, msg): GSA.__init__(self, msg) # GNGSA will send 2 records; GPS followed by GLONASS if self._isGPS(): self.gpsType = 'GPS' GNGSA._GPS = self else: self.gpsType = 'GLONASS' GNGSA._GLONASS = self def _isGPS(self): for satId in self.lstSatIDs: if Satellite.isGPS(satId): return True if Satellite.isGLONASS(satId): return False # should not get here s = 'GNGSA _isGPS() fail - could not determine GPS or GLONASS message type from Sat IDs *****' log.error(s) print '***** Error ' * s def __str__(self): return '%5s - %7s - %s' % ('GNGSA', self.gpsType, ','.join(self.lst)) class GPGGA(GPS): """ === GSA - Global positioning system fix data === Time, Position and fix related data for a GPS receiver. ------------------------------------------------------------------------------ 11 1 2 3 4 5 6 7 8 9 10 | 12 13 14 15 | | | | | | | | | | | | | | | $--GGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,M,x.x,xxxx*hh<CR><LF> ------------------------------------------------------------------------------ Field Number: 1. Universal Time Coordinated (UTC) 2. Latitude 3. N or S (North or South) 4. Longitude 5. E or W (East or West) 6. GPS Quality Indicator, - 0 - fix not available, - 1 - GPS fix, - 2 - Differential GPS fix (values above 2 are 2.3 features) - 3 = PPS fix - 4 = Real Time Kinematic - 5 = Float RTK - 6 = estimated (dead reckoning) - 7 = Manual input mode - 8 = Simulation mode 7. Number of satellites in view, 00 - 12 8. Horizontal Dilution of precision (meters) 9. Antenna Altitude above/below mean-sea-level (geoid) (in meters) 10. Units of antenna altitude, meters 11. Geoidal separation, the difference between the WGS-84 earth ellipsoid and mean-sea-level (geoid), "-" means mean-sea-level below ellipsoid 12. Units of geoidal separation, meters 13. Age of differential GPS data, time in seconds since last SC104 type 1 or 9 update, null field when DGPS is not used 14. Differential reference station ID, 0000-1023 15. Checksum """ def __init__(self, msg): GPS.__init__(self, msg) self.UTC = self.lst[1] self.latitude = self.lst[2] self.NorS = self.lst[3] self.longitude = self.lst[4] self.EorW = self.lst[5] self.GPSQual = self.lst[6] self.numSatsView = int(self.lst[7]) #if self.numSatsView > 12: #log.warn( 'GPGGA() -- numSatsView = %d -- Max is 12, setting to Max' % self.numSatsView) #self.numSatsView = 12 def __str__(self): return '%5s - %s' % ('GPGGA', ','.join(self.lst)) class RMC(GPS): """ Abstract class === RMC - Recommended Minimum Navigation Information === ------------------------------------------------------------------------------ 12 1 2 3 4 5 6 7 8 9 10 11| 13 | | | | | | | | | | | | | $--RMC,hhmmss.ss,A,llll.ll,a,yyyyy.yy,a,x.x,x.x,xxxx,x.x,a,m,*hh<CR><LF> ------------------------------------------------------------------------------ Field Number: 1. UTC Time 2. Status, V=Navigation receiver warning A=Valid 3. Latitude 4. N or S 5. Longitude 6. E or W 7. Speed over ground, knots 8. Track made good, degrees true 9. Date, ddmmyy 10. Magnetic Variation, degrees 11. E or W 12. FAA mode indicator (NMEA 2.3 and later) 13. Checksum A status of V means the GPS has a valid fix that is below an internal quality threshold, e.g. because the dilution of precision is too high or an elevation mask test failed. """ def __init__(self, msg): GPS.__init__(self, msg) self.UTC = self.lst[1] self.status = self.lst[2] self.latitude = self.lst[3] self.NorS = self.lst[4] self.longitude = self.lst[5] self.EorW = self.lst[6] self.speed = self.lst[7] self.track = self.lst[8] self.date = self.lst[9] def getUTC(self): """ return the UTC time as a python datetime. """ # get date/time try: year = int(self.date[4:6]) + 2000 month = int(self.date[2:4]) day = int(self.date[0:2]) hour = int(self.UTC[0:2]) minute = int(self.UTC[2:4]) second = int(self.UTC[4:6]) return datetime.datetime(year=year,month=month,day=day,hour=hour,minute=minute,second=second, tzinfo=UTC() ) except Exception,err: log.error( 'getUTC() fail - %s' % err) return None def __str__(self): return '%5s - %s' % ('--RMC', ','.join(self.lst)) #return '%5s - date:%s time:%s UTC:%s' % ('GPRMC', self.date, self.UTC, self.getUTC()) class GPRMC(RMC): """ GPS RMS message """ def __init__(self, msg): RMC.__init__(self, msg) def __str__(self): return '%5s - %s' % ('GPRMC', ','.join(self.lst)) #return '%5s - date:%s time:%s UTC:%s' % ('GPRMC', self.date, self.UTC, self.getUTC()) class GNRMC(RMC): """ GPS/GLONASS RMS message """ def __init__(self, msg): RMC.__init__(self, msg) def __str__(self): return '%5s - %s' % ('GNRMC', ','.join(self.lst)) #return '%5s - date:%s time:%s UTC:%s' % ('GPRMC', self.date, self.UTC, self.getUTC()) class GLL(GPS): """ Abstract base class for GLL - Geographic Position - Latitude/Longitude === ------------------------------------------------------------------------------ 1 2 3 4 5 6 7 8 | | | | | | | | $--GLL,llll.ll,a,yyyyy.yy,a,hhmmss.ss,a,m,*hh<CR><LF> ------------------------------------------------------------------------------ Field Number: 1. Latitude 2. N or S (North or South) 3. Longitude 4. E or W (East or West) 5. Universal Time Coordinated (UTC) 6. Status A - Data Valid, V - Data Invalid 7. FAA mode indicator (NMEA 2.3 and later) 8. Checksum """ def __init__(self, msg): GPS.__init__(self, msg) self.latitude = self.lst[1] self.NorS = self.lst[2] self.longitude = self.lst[3] self.EorW = self.lst[4] self.UTC = self.lst[5] def __str__(self): return '%5s - %s' % ('--GLL', ','.join(self.lst)) class GPGLL(GLL): """ GPS Geographic Position - Latitude/Longitude """ def __init__(self, msg): GLL.__init__(self, msg) def __str__(self): return '%5s - %s' % ('GPGLL', ','.join(self.lst)) class GNGLL(GLL): """ GPS/GLONASS Geographic Position - Latitude/Longitude """ def __init__(self, msg): GLL.__init__(self, msg) def __str__(self): return '%5s - %s' % ('GNGLL', ','.join(self.lst)) _dctNMEA = { 'GPGSV' : GPGSV, # GPS messages 'GPGSA' : GPGSA, 'GPGGA' : GPGGA, 'GPRMC' : GPRMC, 'GPGLL' : GPGLL, 'GNGLL' : GNGLL, # GPS/GLONASS messages 'GNGSA' : GNGSA, 'GNRMC' : GNRMC, 'GLGSA' : GLGSA, # GLONASS messages 'GLGSV' : GLGSV, } def parseGPSMessages( lstMsgs ): lstGPSRecs = [] for msg in lstMsgs: try: lst = msg.split(',') if len(lst) > 1 and len(lst[0]) > 1 and lst[0][0] == '$': nmea = lst[0][1:] if nmea in _dctNMEA: rec = _dctNMEA[nmea](msg) else: rec = GPS( msg ) lstGPSRecs.append( rec ) except Exception,err: log.error( 'GPS parse fail - %s' % err) log.error( 'msg:%s' % msg ) return lstGPSRecs class GPSData(object): """ Create GPS data object from gpsdata file. Expected format: GGA:2014.01.07-14:11:40,223900.000,3717.1137,N,12156.6299,W,2 DOP:3,1.84,1.02,1.52,3.825,3.825,8.74,8.74 SAT:^\31,56,137,46 SAT:^\32,51,314,51 SAT:^\11,48,262,51 SAT:^\01,45,303,46 SAT:^\14,42,045,48 SAT:^\46,39,143,44 SAT:^\22,26,100,33 SAT:^\20,16,299,45 SAT:^\19,15,228,49 SAT:^\25,06,077, SAT:^\23,05,244,40 """ _dctGGAFix = { 0:'invalid', 1:'GPS', 2:'DGPS' } _dctDOPMode = { 1:'invalid', 2:'2-D', 3:'3-D' } def __init__(self, lstData): self.lstData = lstData self.lstSats = [] for line in self.lstData: # remove the ^\ line = line.replace( '\x1c','') logGpsData.debug( line ) if line[0:4] == 'SAT:': lst = line[4:].split(',') if lst: prn = lst[0] ele = None azi = None snr = None if len(lst) > 1: ele = lst[1] if len(lst) > 2: azi = lst[2] if len(lst) > 3: snr = lst[3] if prn: sat = Satellite( prn, ele, azi, snr) self.lstSats.append( sat ) elif line[0:4] == 'GGA:': lst = line[4:].split(',') if len(lst) in [6,7,8]: curTime = lst[0].replace('-','_') curTime = curTime.replace('.','-') self.curTime = parseTimeString( curTime ) self.fix = self._dctGGAFix.get( int(lst[5]), lst[5]) self.longitude = None self.latitude = None self.NorS = None self.EorW = None if lst[1] and lst[3] and self.fix: self.longitude = self._convToDeg(float(lst[1]) / 100) self.NorS = lst[2] self.latitude = self._convToDeg(float(lst[3]) / 100) self.EorW = lst[4] elif line[0:4] == 'DOP:': self.dctDOP = {} lst = line[4:].split(',') if len(lst) == 8: mode = int(lst[0]) self.dctDOP['mode'] = self._dctDOPMode.get( mode, lst[0]) if mode > 1: self.dctDOP['PDOP'] = float(lst[1]) self.dctDOP['HDOP'] = float(lst[2]) self.dctDOP['VDOP'] = float(lst[3]) self.dctDOP['epx'] = float(lst[4]) self.dctDOP['epy'] = float(lst[5]) self.dctDOP['epv'] = float(lst[6]) self.dctDOP['epe'] = float(lst[7]) def _convToDeg(self, value): """ The fractional part is in minutes [0.0-59.9], convert to degrees [0.0-99.9] """ frac,num = math.modf(value) return num + frac / 60.0 def processGPSData(lst): """ process the lines from reading the gpsdata file on DUT return a GPSData object """ pass import socket class TelnetConn(object): _TIMEOUT = 0.5 _HOST = 'localhost' _PORT = 23 _PROMPT = 'quantenna #' def __init__(self, dct): self.host = dct.get( 'host', TelnetConn._HOST) self.port = int(dct.get( 'port', TelnetConn._PORT)) self.timeout = float(dct.get( 'timeout', TelnetConn._TIMEOUT)) self.prompt = dct.get( 'prompt', TelnetConn._PROMPT) self.sock = None self._resp = '' def connect(self): """ Perform all setup operations for communicating with the simulator. """ self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print('Connecting to %s:%d' % (self.host, self.port)) self.sock.settimeout( self.timeout ) self.sock.connect((self.host, self.port)) def close(self): """ Disconnect from the simulator. """ if self.sock: self.sock.close() self.sock = None def recv(self): """ Receive data from socket. """ try: recv = self.sock.recv(8*1024) return recv except socket.timeout, err: return None def send(self, binData): """ Write data to the socket. """ self.sock.send(binData) def readUntil(self, timeout=5.0): """ read until prompt is returned """ # make a timeout dtTimeout = datetime.datetime.now() + datetime.timedelta( seconds=timeout) while True: resp = self.recv() if resp is not None: self._resp += resp index = self._resp.find( self.prompt ) if index != -1: index += len(self.prompt) resp = self._resp[0:index] self._resp = self._resp[index+1:] return resp if datetime.datetime.now() > dtTimeout: print 'readUntil() fail -- timeout after %s seconds' % timeout return '' import serial class SerialConn(object): """ Uses a serial port for all communication """ _BAUDRATE = 115200 _TIMEOUT = 0.5 _PORT = 6 _PROMPT = 'quantenna #' def __init__(self, dct ): self.port = int(dct.get( 'port', SerialConn._PORT)) self.timeout = float(dct.get( 'timeout', SerialConn._TIMEOUT)) self.baudrate = int(dct.get( 'baudrate', SerialConn._BAUDRATE)) self.ser = None self._resp = '' def connect(self): """ Perform all setup operations for communicating with the simulator. """ print('Connecting to COM%d' % (self.port)) self.ser = serial.Serial(self.port-1) self.ser.timeout = self.timeout self.ser.baudrate = self.baudrate def close(self): """ Disconnect from the simulator. """ if self.ser: self.ser.close() self.ser = None def send(self, cmd): self.ser.write(cmd) def recv(self): """ Read data from the serial port """ dtTimeout = datetime.datetime.now() + datetime.timedelta(seconds=self.ser.timeout) while True: if self.ser.inWaiting() > 0: recv = self.ser.read(self.ser.inWaiting()) return recv if datetime.datetime.now() > dtTimeout: return None time.sleep( 0.05 ) def readUntil(self, timeout=5.0): """ read until prompt is returned """ # make a timeout dtTimeout = datetime.datetime.now() + datetime.timedelta( seconds=timeout) while True: resp = self.recv() if resp is not None: self._resp += resp index = self._resp.find( self.prompt ) if index != -1: index += len(self.prompt) resp = self._resp[0:index] self._resp = self._resp[index+1:] return resp if datetime.datetime.now() > dtTimeout: print 'readUntil() fail -- timeout after %s seconds' % timeout return '' class FileConn(object): _FILENAME = 'gps_input.txt' def __init__(self, dct): self.filename = dct.get( 'filename', FileConn._FILENAME) self._fp = None def connect(self): """ Perform all setup operations for communicating with the simulator. """ print('Opening file %s' % (self.filename)) self._fp = open(self.filename) def close(self): """ Disconnect from the simulator. """ if self._fp: self._fp.close() self._fp = None def recv(self): """ Receive data from socket. """ recv = self._fp.readline() if recv == '': raise Exception('No more lines in file %s' % self.filename) log.debug('recv:%s' % recv) return recv def send(self, binData): """ Write data to the socket. """ raise Exception( 'WE SHOULD NOT BE WRITING HERE' ) class GPSD(object): """ base class for all GPSD JSON messages """ def __init__(self, json): self.json = json def getMsgType(self): return self.json['class'] def __str__(self): return 'GPSD %s' % (self.getMsgType()) class GPSD_SKY(GPSD): """ SKY messages """ def __init__(self, json): GPSD.__init__(self, json) self.lstSats = [] for key,value in self.json.items(): if key == 'satellites': self.lstSats = [Satellite( dct['PRN'], dct['el'], dct['az'], dct['ss'], dct['used']) for dct in value] else: setattr( self, key, value ) def __str__(self): return 'SKY - sats:%d' % (len(self.lstSats)) class GPSD_TPV(GPSD): """ SKY messages """ def __init__(self, json): GPSD.__init__(self, json) for key,value in self.json.items(): if key == 'time': # Expect format 2013-09-01T00:34:02.000Z year = value[0:4] month = value[5:7] day = value[8:10] hour = value[11:13] minute = value[14:16] second = value[17:19] self.time = datetime.datetime(year=int(year),month=int(month),day=int(day), hour=int(hour),minute=int(minute),second=int(second), tzinfo=UTC() ) else: setattr( self, key, value ) def __str__(self): return 'TPV - time:%s' % getattr( self, 'time', None) import json class GPSDConn(object): """ Use a socket to communicate with gpsd process """ _TIMEOUT = 0.5 _HOST = '192.168.1.100' _PORT = 2947 def __init__(self, dct): self.host = dct.get( 'host', GPSDConn._HOST) self.port = int(dct.get( 'port', GPSDConn._PORT)) self.timeout = float(dct.get( 'timeout', GPSDConn._TIMEOUT)) self.sock = None self._resp = '' def connect(self): """ Perform all setup operations for communicating with the simulator. """ self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) logGPSD.info( 'Connecting to %s:%d' % (self.host, self.port)) self.sock.settimeout( self.timeout ) self.sock.connect((self.host, self.port)) def close(self): """ Disconnect from the simulator. """ if self.sock: self.sock.close() self.sock = None def recv(self): """ Receive data from socket. """ try: recv = self.sock.recv(8*1024) hexDump( recv, msg='recv', logFunc=logGPSD.debug ) return recv except socket.timeout, err: return None def send(self, binData): """ Write data to the socket. """ hexDump( binData, msg='send', logFunc=logGPSD.debug ) self.sock.send(binData) def enableJSONData(self): # send command to start receiving the data self.send( '?WATCH={"enable":true,"json":true}\n' ) def disableJSONData(self): # send command to start receiving the data self.send( '?WATCH={"enable":false,"json":true}\n' ) def readMsgs(self, timeout=5.0): """ read and parse into messages """ # make a timeout dtTimeout = datetime.datetime.now() + datetime.timedelta( seconds=timeout) while True: resp = self.recv() if resp is not None: #self._resp += resp #lst = self._resp.split( '\r\n' ) lst = resp.split( '\r\n' ) if lst: for n,msg in enumerate(lst): #print 'Msg %d : length=%d' % (n,len(msg)) hexDump( msg, msg='msg %d' % n, logFunc=logGPSD.debug ) # remove 0 length messages lst = [msg for msg in lst if len(msg) > 0] lstJS = [] for msg in lst: try: dct = json.loads( msg ) js = self._parseGPSJson( dct ) lstJS.append( js ) except Exception,err: #print '\nEXCEPTION : %s' % err logGPSD.error( 'readMsgs() fail - %s' % err ) return lstJS if datetime.datetime.now() > dtTimeout: logGPSD.warn('readMsgs() fail -- timeout after %s seconds .. return empty list' % timeout) return [] def _parseGPSJson( self, js ): rec = None try: if js['class'] == 'SKY': rec = GPSD_SKY( js ) elif js['class'] == 'TPV': rec = GPSD_TPV( js ) else: rec = GPSD( js ) except Exception,err: logGPSD.error( '_parseGPSJson() fail - %s' % err) return rec def dumpResp( lst, decode=True ): print( '\nlst:%s' % lst ) for gpsdMsg in lst: print( 'gpsdMsg:%s' % gpsdMsg ) if gpsdMsg.getMsgType() == 'SKY': for n,sat in enumerate(gpsdMsg.lstSats): print(' %2d : %s' % (n+1, sat)) elif gpsdMsg.getMsgType() == 'TPV': for key,value in gpsdMsg.json.items(): print ' %-15s : %s' % (key,value) def testGPSDComm(host=None, port=None): """ testing GPSDComm """ dct = {} if host is not None: dct['host'] = host if port is not None: dct['port'] = port gpsd = None try: gpsd = GPSDConn( dct ) gpsd.connect() print lst = gpsd.readMsgs() dumpResp( lst ) print # send command to start receiving the data gpsd.enableJSONData() lst = gpsd.readMsgs() dumpResp( lst ) while True: lst = gpsd.readMsgs() if lst: dumpResp( lst ) else: time.sleep( 0.5 ) finally: if gpsd: gpsd.disableJSONData() gpsd.close() def getStatus(conn2): # Now send the status cmd = 'gpsdoctl2 ST' #print '\nsending %s to conn2' % cmd conn2.send( '%s\n' % cmd ) time.sleep( 0.1 ) recv = conn2.readUntil() #print 'recv: %s' % recv if recv == '': print '***** Error -- no data in response' return None # parse to get last byte lst = str(recv).split('\n') lst = [line.strip() for line in lst] #print 'lst:%s' % lst if lst[2] == 'quantenna #' and lst[0] == cmd: lst2 = lst[1].split() if len(lst2) != 7: print '***** Error parsing the %s response -- length != 7' % cmd return None return lst2 else: print '***** Error parsing the %s response' % cmd return None def dumpResults(csv2File, gga, gsa, los, los2, lstGpsSNR, lstGlonassSNR, lstUsedSats ): """ dump results to CSV file and stdout """ # calc averages snrGPS = 0.0 snrGLONASS = 0.0 snrAvg = 0.0 if lstGpsSNR: snrGPS = sum(lstGpsSNR) / len(lstGpsSNR) if lstGlonassSNR: snrGLONASS = sum(lstGlonassSNR) / len(lstGlonassSNR) lstSNR = lstGpsSNR + lstGlonassSNR if lstSNR: snrAvg = sum(lstSNR) / len(lstSNR) # build CSV output line2 = '%s,%s,%s,%s' % (gga.UTC, gsa.mode, los, los2) line2 += ',%s' % (len(GPGSV.lstSatellites) + len(GLGSV.lstGLONASSSats)) # total sats in sky line2 += ',%s' % (len(lstSNR)) # total sats used line2 += ',%.1f' % (snrAvg) # SNR for all sats used line2 += ',%s' % (len(lstGpsSNR)) # total GPS sats used line2 += ',%.1f' % (snrGPS) # SNR for GPS sats used line2 += ',%s' % (len(lstGlonassSNR)) # total GLONASS sats used line2 += ',%.1f' % (snrGLONASS) # SNR for GLONASS sats used for sat in lstUsedSats: line2 += ',%s,%s' % (sat.prn, sat.snr) csv2File.write( line2 + '\n' ) # dump to stdout print ' los:%s los2:%s' % (los,los2) print ' GPS sats %d' % len(GPGSV.lstSatellites) for sat in GPGSV.lstSatellites: print ' %-7s : %s' % ('GPS',sat.desc()) print ' GLONASS sats %d' % len(GLGSV.lstGLONASSSats) for sat in GLGSV.lstGLONASSSats: print ' %-7s : %s' % ('GLONASS',sat.desc()) print print ' Sats %-7s : %5d (%2d)' % ('GPS',len(GPGSV.lstSatellites), len([sat for sat in GPGSV.lstSatellites if sat.used])) print ' Sats %-7s : %5d (%2d)' % ('GLONASS',len(GLGSV.lstGLONASSSats), len([sat for sat in GLGSV.lstGLONASSSats if sat.used])) print ' SNR %-7s : %.2f (%2d) ' % ('GPS', snrGPS, len(lstGpsSNR)) print ' SNR %-7s : %.2f (%2d) ' % ('GLONASS', snrGLONASS, len(lstGlonassSNR)) print ' SNR %-7s : %.2f (%2d) ' % ('All', snrAvg, len(lstSNR)) def processGPSMessages(dctRecs, conn2, gpsFile, csvFile, csv2File): """ """ try: gga = dctRecs['GPGGA'] gsa = dctRecs['GPGSA'] except KeyError,err: print 'Missing GPGGA or GPGSA. Skipping ...' return lstStatus = [] los = 'x' if conn2: # Now send the status lstStatus = getStatus( conn2 ) if lstStatus: los = lstStatus[6][-1] if gpsFile: gpsFile.write( 'PICStatus : %s\n' % ','.join( lstStatus) ) print ' PROCESS GPS only' s = 'UTC:%s mode:%s los:%s numsats:%s' % (gga.UTC, gsa.mode, los, len(GPGSV.lstSatellites)) line = '%s,%s,%s,%s' % (gga.UTC, gsa.mode, los, len(GPGSV.lstSatellites)) for sat in GPGSV.lstSatellites: s += ' [%s,%s]' % (sat.prn, sat.snr) line += ',%s,%s' % (sat.prn, sat.snr) #print ' ', s #print ' ', line if csvFile: csvFile.write( line + '\n' ) # for 2nd CSV output file if csv2File: if los != 'x' and int( los, 16) > 7: los2 = 1 else: los2 = 0 lstUsedSats = [] lstSNR = [] for n in range(gga.numSatsView): PRN = gsa.lstSatIDs[n] sat = GPGSV.getSatellite( PRN ) sat.used = True lstUsedSats.append( sat ) if sat.snr is not None: lstSNR.append( float(sat.snr)) else: logError( 'sat has no SNR - skipping for calculation - %s' % sat) # dumpResults(csv2File, gga, gsa, los, los2, lstSNR, [], lstUsedSats ) #snrAvg = sum(lstSNR) / len(lstSNR) #line2 = '%s,%s,%s,%s,%s,%s,%.1f' % (gga.UTC, gsa.mode, los, los2, len(GPGSV.lstSatellites), gga.numSatsView, snrAvg) #for sat in lstUsedSats: #line2 += ',%s,%s' % (sat.prn, sat.snr) #csv2File.write( line2 + '\n' ) def logError( msg ): log.error(msg) print '***** ERROR - ' + msg def processGPSGLONASSMessages(dctRecs, conn2, gpsFile, csvFile, csv2File): """ Process GPS/GLONASS combined messages """ sat = None gga = None gsa = None if 0: assert isinstance(gga, GPGGA) assert isinstance(gsa, GNGSA) assert isinstance(sat, Satellite) try: gga = dctRecs['GPGGA'] gsa = dctRecs['GNGSA'] except KeyError,err: logError( 'Process GPS/GLONASS fail -- Missing GPGGA or GNGSA -- Skipping ...') return lstStatus = [] los = 'x' if conn2: # Now send the status lstStatus = getStatus( conn2 ) if lstStatus: los = lstStatus[6][-1] if gpsFile: gpsFile.write( 'PICStatus : %s\n' % ','.join( lstStatus) ) print '\n PROCESSING GPS/GLONASS...' s = 'UTC:%s mode:%s los:%s numsats:%s' % (gga.UTC, gsa.mode, los, len(GPGSV.lstSatellites)+len(GLGSV.lstGLONASSSats)) line = '%s,%s,%s,%s' % (gga.UTC, gsa.mode, los, len(GPGSV.lstSatellites)+len(GLGSV.lstGLONASSSats)) # GPS sats for sat in GPGSV.lstSatellites: s += ' [%s,%s]' % (sat.prn, sat.snr) line += ',%s,%s' % (sat.prn, sat.snr) # add the GLONASS sats for sat in GLGSV.lstGLONASSSats: s += ' [%s,%s]' % (sat.prn, sat.snr) line += ',%s,%s' % (sat.prn, sat.snr) #print ' ', s #print ' ', line if csvFile: csvFile.write( line + '\n' ) # for 2nd CSV output file if csv2File: if los != 'x' and int( los, 16) > 7: los2 = 1 else: los2 = 0 lstUsedSats = [] lstGpsSNR = [] lstGlonassSNR = [] # GPS sats for PRN in gsa._GPS.lstSatIDs: sat = GPGSV.getSatellite( PRN ) sat.used = True lstUsedSats.append( sat ) if sat.snr is not None: lstGpsSNR.append( float(sat.snr)) else: logError( 'sat has no SNR - skipping for calculation - %s' % sat) # GLONASS sats for PRN in gsa._GLONASS.lstSatIDs: sat = GLGSV.getSatellite( PRN ) sat.used = True lstUsedSats.append( sat ) if sat.snr is not None: lstGlonassSNR.append( float(sat.snr)) else: logError( 'sat has no SNR - skipping for SNR calculation - %s' % sat) # dumpResults(csv2File, gga, gsa, los, los2, lstGpsSNR, lstGlonassSNR, lstUsedSats ) if __name__ == '__main__': TLLog.config( 'gps_test.log', defLogLevel=logging.INFO ) import time from optparse import OptionParser DEF_PORT = 1 DEF_OUTPUT_CSV_FILE = 'output.txt' DEF_OUTPUT2_CSV_FILE = 'output2.txt' DEF_OUTPUT_GPS_FILE = 'gps.txt' DEF_BAUDRATE = 9600 DEF_TIMEOUT = 0.5 DEF_IPADDR = '192.168.1.100' DEFAULT_LOG_ENABLE = 'gps' # build the command line arguments parser = OptionParser() parser.add_option( "-p", "--port", dest="port", default=DEF_PORT, help="set the com port to read GPS messages. Default is %d" % DEF_PORT) parser.add_option( "-f", "--outputCSVFile", dest="outputCSVFile", default=DEF_OUTPUT_CSV_FILE, help='Set the output CSV file. Default is %s' % DEF_OUTPUT_CSV_FILE ) parser.add_option( '', "--output2CSVFile", dest="output2CSVFile", default=DEF_OUTPUT2_CSV_FILE, help='Set the output CSV file fro the 2nd CSV file. Default is %s' % DEF_OUTPUT2_CSV_FILE ) parser.add_option( "-b", "--baudrate", dest="baudrate", default=DEF_BAUDRATE, help='Set the serial port baudrate. Default is %d' % DEF_BAUDRATE) parser.add_option( "-t", "--timeout", dest="timeout", default=DEF_TIMEOUT, help='Set the serial port timeout. Default is %s sec' % DEF_TIMEOUT) parser.add_option( "-g", "--outputGPSFile", dest="outputGPSFile", default=DEF_OUTPUT_GPS_FILE, help='Set the output GPS file. Default is %s' % DEF_OUTPUT_GPS_FILE ) parser.add_option( "-a", "--ipaddr", dest="ipaddr", default=DEF_IPADDR, help='Set the IP address for the telnet connection. Default is %s sec' % DEF_IPADDR) parser.add_option( "", "--gpsdTest", action="store_true", dest="gpsdTest", default=False, help='Perform testing using the gpsd daemon on board. Default is False' ) parser.add_option( "-m", "--logEnable", dest="lstLogEnable", default=DEFAULT_LOG_ENABLE, help='Comma separated list of log modules to enable, * for all. Default is "%s"' % DEFAULT_LOG_ENABLE) parser.add_option( "", "--gpsTestFile", dest="gpsTestFile", default=None, help='Set a file to input test GPS NMEA messages.' ) # parse the command line and set values (options, args) = parser.parse_args() # makes Control-break behave the same as Control-C on windows import signal signal.signal( signal.SIGBREAK, signal.default_int_handler ) port = int(options.port) outputCSVFile = options.outputCSVFile output2CSVFile = options.output2CSVFile outputGPSFile = options.outputGPSFile baudrate = int(options.baudrate) timeout = float(options.timeout) ipaddr = options.ipaddr ser = None csvFile = None gsvFile = None csv2File = None gga = None gsa = None conn = None conn2 = None sat = None gpsFile = None parseMessages = True # for wing IDE object lookup, code does not need to be run if 0: assert isinstance(gga, GPGGA) assert isinstance(gsa, GPGSA) assert isinstance(sat, Satellite) try: log.info( '*********************************************' ) log.info( 'GPS test starting .....' ) # update log options logOptions(options.lstLogEnable) if options.gpsdTest: log.info( 'GPSD testing only .....' ) testGPSDComm() if options.gpsTestFile: log.info( 'Using GPS input file %s ...' % options.gpsTestFile ) dct = { 'filename' : options.gpsTestFile } conn = FileConn( dct ) conn.connect() else: # use telnet dct = { 'host' : ipaddr } print 'Connecting telnet to %s for GPS ...' % ipaddr conn = TelnetConn( dct ) conn.connect() time.sleep(0.2) resp = conn.recv() print 'resp:%s' % resp conn.send( 'root\n' ) time.sleep(0.2) resp = conn.readUntil() #resp = conn.recv() print 'resp:%s' % resp print 'Connecting telnet to %s for status ...' % ipaddr conn2 = TelnetConn( dct ) conn2.connect() time.sleep(0.2) resp = conn2.recv() print 'resp:%s' % resp conn2.send( 'root\n' ) time.sleep(0.2) resp = conn2.readUntil() #resp = conn2.recv() print 'resp:%s' % resp # start the messages conn.send( 'cat /dev/ttyS1\n' ) # open files append csvFile = open( outputCSVFile, 'a') gpsFile = open( outputGPSFile, 'a' ) csv2File = open( output2CSVFile, 'a') #conn = SerialConn( port=port, baudrate=baudrate, timeout=timeout) respData = '' dctRecs = {} while True: recv = conn.recv() if recv is not None: try: #print 'recv:%s' % recv #print if gpsFile: gpsFile.write( recv ) # process the data respData += recv lst = respData.split('\n') #print 'lst:%s' % lst #print respData = lst[-1] lstRecs = parseGPSMessages( lst[:-1] ) for rec in lstRecs: print '%s - %s' % (datetime.datetime.now() , rec) if parseMessages: dctRecs[ rec.getMsgType() ] = rec if rec.getMsgType() == 'GPGLL': processGPSMessages(dctRecs, conn2, gpsFile, csvFile, csv2File) elif rec.getMsgType() == 'GNGLL': processGPSGLONASSMessages(dctRecs, conn2, gpsFile, csvFile, csv2File) except Exception,err: excTraceback( err, log, raiseErr=False) #s = '%s: %s' % (err.__class__.__name__, err) #log.error( s ) #print s #print '-- traceback --' #traceback.print_exc() #print print time.sleep( 0.05 ) except Exception, err: excTraceback( err, log, raiseErr=False) #s = '%s: %s' % (err.__class__.__name__, err) #log.error( s ) #print s #print '-- traceback --' #traceback.print_exc() #print finally: if ser: ser.close() if gpsFile: gpsFile.close() if csvFile: csvFile.close() if csv2File: csv2File.close() log.info( 'gps_test exiting' )
# -*- coding: utf-8 -*- """Utils.""" from zope.component import getUtility from plone.behavior.interfaces import IBehavior # from plone.memoize.ram import cache from dexterity.localrolesfield.interfaces import IBaseLocalRoleField def cache_key(fun, fti): return fti # @cache(cache_key) a test with profilehooks.timecall give 0.000s for this method with ten fields and some behaviors def get_localrole_fields(fti): """Get all local role(s) fields for given fti. Lookup local role(s) fields on content from its schema and its behaviors. Return field name and field object for each found field. """ fti_schema = fti.lookupSchema() fields = [(n, f) for n, f in fti_schema.namesAndDescriptions(all=True) if IBaseLocalRoleField.providedBy(f)] # also lookup behaviors for behavior_id in fti.behaviors: behavior = getUtility(IBehavior, behavior_id).interface fields.extend( [(n, f) for n, f in behavior.namesAndDescriptions(all=True) if IBaseLocalRoleField.providedBy(f)]) return fields
from django.conf.urls import url, include #from django.views.generic import TemplateView from . import views urlpatterns = [ # url(r'^shipping-address/$', TemplateView.as_view( # template_name='users/user_shipping_address_view.html')), url(r'^shipping-address/$', views.ShippingAddressView.as_view(), name='user_shipping_address_view'), ]
#!python # Fetch one or more book's fpgen source from fadedpage, # rerun fpgen, and send the resulting mobi # output back to fadedpage. # # scp should be setup to work without a password # # Args is a list of fadedpage book ids # Old .mobi file is left in 20######.save.mobi # New .mobi file is left in 20######.mobi import sys import os def fatal(line): sys.stderr.write("ERROR " + line) exit(1) def repair(id): # Retrieve the .mobi file for backup purposes if not os.path.exists(id + ".save.mobi"): os.system("scp fadedpage@ssh.fadedpage.com:books/{0}/{0}.mobi {0}.save.mobi".format(id)) # Retrieve the source file, and all images os.system("rm -rf images") os.system("scp fadedpage@ssh.fadedpage.com:books/{0}/{0}-src.txt {0}-src.txt".format(id)) os.system(f"scp -r fadedpage@ssh.fadedpage.com:books/{id}/images images") # Rerun fpgen just for mobi output exit = os.system(f"fpgen -f k {id}-src.txt") if exit != 0: fatal(f"{0}: fpgen failed with exit code {exit}") # Send the new mobi file back to the server os.system("scp {0}.mobi fadedpage@ssh.fadedpage.com:books/{0}/{0}.mobi".format(id)) if len(sys.argv) < 2: fatal("Usage: rerun-mobi book-id ...") for src in sys.argv[1:]: repair(src)
import os.path as osp import pandas as pd from .manager import BaseManager from utils import seed_everything, make_datapath_list from dataset import TrainDataset, Anno_xml2list, DataTransform, od_collate_fn, get_dataloader from models import ObjectDetectionModel class Train(BaseManager): def __call__(self): print("Training") if self.get("train_flag"): for seed in self.seeds: self.train_by_seed(seed) def train_by_seed(self, seed): seed_everything(seed) train_img_list, train_anno_list, val_img_list, val_anno_list = make_datapath_list(self.data_path) if self.debug: train_img_list = train_img_list[:2] train_anno_list = train_anno_list[:2] val_img_list = val_img_list[:2] val_anno_list = val_anno_list[:2] self.params["epochs"] = 1 train_dataset = TrainDataset( train_img_list, train_anno_list, phase="train", transform=DataTransform(self.image_size, self.get("tr_transform_params")), transform_anno=Anno_xml2list(self.voc_classes) ) val_dataset = TrainDataset( val_img_list, val_anno_list, phase="val", transform=DataTransform(self.image_size, self.get("val_transform_params")), transform_anno=Anno_xml2list(self.voc_classes) ) trainloader = get_dataloader( dataset=train_dataset, batch_size=self.get("batch_size"), num_workers=self.get("num_workers"), shuffle=True, collate_fn=od_collate_fn, drop_last=False ) validloader = get_dataloader( dataset=val_dataset, batch_size=self.get("batch_size"), num_workers=self.get("num_workers"), shuffle=False, collate_fn=od_collate_fn, drop_last=False ) self.params["seed"] = seed self.params["phase"] = "train" model = ObjectDetectionModel(self.params) model.fit(trainloader, validloader) # valid predict, no detect, 最後にdetectしてもいいかもね val_preds = model.val_preds try: print(val_preds[0].shape) print(val_preds[1].shape) print(val_preds[2].shape) except: pass #val_preds = pd.DataFrame(val_preds, columns=[f"pred_{n}" for n in range(self.params["output_size"])]) #val_preds.to_csv(osp.join(self.val_preds_path, f"preds_{seed}_{fold}.csv"), index=False)
#!/usr/bin/env python3 import sys def main(inputfile): with open(inputfile, 'r') as rd: print("Resulting frequency:", find_rep_freq(0, rd)) def find_rep_freq(start, rd): current = start counter = 0 mutations = [int(x.strip()) for x in rd.readlines()] max_mut = len(mutations) found_freqs = set() while True: mut = mutations[counter % max_mut] counter += 1 current += mut if current in found_freqs: break found_freqs.add(current) return current def calculate_freq(start, rd): mutations = [int(x.strip()) for x in rd.readlines()] for mut in mutations: start += mut return start if __name__ == "__main__": if len(sys.argv) < 2: print("Usage: %s inputfile", sys.argv[0]) sys.exit(0) main(sys.argv[1])
#!/usr/bin/python import requests,pprint,bs4 page=requests.get('https://dataquestio.github.io/web-scraping-pages/simple.html') print(page) print(page.status_code) #print status code #print(page.content) #print the content of the page #from bs4 import BeautifulSoup #soup=BeautifulSoup(page.content,'html.parser') #print(soup.prettify()) #print(list(soup.children)) #print([type(item) for item in list(soup.children)]) #html=list(soup.children)[2] #print(list(html.children)) #seond #page2=requests.get('http://dataquestio.github.io/web-scraping-pages/ids_and_classes.html') #print(page2.status_code) #from bs4 import BeautifulSoup #soup1=BeautifulSoup(page2.content,'html.parser') #print(list(soup1.children)) #print('find all ') #print(soup1.find_all('p',class_='outer-text')) #txt=[soup1.get_text() for e in soup1] #print (txt[0]) #third print('SCMS Site') page3=requests.get('http://scmsgroup.org/sstm/objectives') print(page3.status_code) from bs4 import BeautifulSoup soup2=BeautifulSoup(page3.content,'html.parser') soup2.find_all('p',class_='head-h3') txt=[soup2.get_text() for e in soup2] print(txt[0])
#Worked prefix = "ffmpeg -i gd691108d" d_v = 1 t_v = 1 mids = ".shn gd69-11-08-" nt_v = 1 file = open("slate2.txt", "w") def tracks(): global t_v global nt_v file.write("\n" + prefix + str(d_v) + "t0" + str(t_v) + mids + "0" + str(nt_v)+".flac"+"\n") t_v += 1 nt_v += 1 def trackx(): global t_v global nt_v file.write("\n" + prefix + str(d_v) + "t0" + str(t_v) + mids + str(nt_v) +".flac"+"\n") t_v +=1 nt_v +=1 while t_v < 8: tracks() d_v = 2 t_v = 1 file.write("\n" + prefix + str(d_v) + "t0" + str(t_v) + mids + "0" + str(nt_v)+".flac"+"\n") t_v += 1 nt_v += 1 file.write("\n" + prefix + str(d_v) + "t0" + str(t_v) + mids + "0" + str(nt_v)+".flac"+"\n") t_v += 1 nt_v += 1 while t_v < 9: trackx() file.close()
import json import datetime import h5py import numpy as np from pelops.datasets.chip import ChipDataset, Chip class FeatureDataset(ChipDataset): def __init__(self, filename): super().__init__(filename) self.chip_index_lookup, self.chips, self.feats = self.load(filename) self.filename_lookup = {} for chip_key, chip in self.chips.items(): self.filename_lookup[chip.filepath] = chip_key def get_feats_for_chip(self, chip): chip_key = self.filename_lookup[chip.filepath] return self.feats[self.chip_index_lookup[chip_key]] @staticmethod def load(filename): with h5py.File(filename) as fIn: feats = np.array(fIn['feats']) num_items = fIn['feats'].shape[0] # Hack to deal with performance of extracting single items local_hdf5 = {} local_hdf5['chip_keys'] = np.array(fIn['chip_keys']) local_hdf5['filepath'] = np.array(fIn['filepath']) local_hdf5['car_id'] = np.array(fIn['car_id']) local_hdf5['cam_id'] = np.array(fIn['cam_id']) local_hdf5['time'] = np.array(fIn['time']) local_hdf5['misc'] = np.array(fIn['misc']) chips = {} chip_index_lookup = {} for i in range(num_items): filepath = local_hdf5['filepath'][i].decode('utf-8') car_id = local_hdf5['car_id'][i] cam_id = local_hdf5['cam_id'][i] timestamp = local_hdf5['time'][i] if isinstance(timestamp, str) or isinstance(timestamp, bytes): # Catch the case where we have encoded time as a string timestamp timestamp = datetime.datetime.fromtimestamp(float(timestamp)) misc = json.loads(local_hdf5['misc'][i].decode('utf-8')) chip_key = local_hdf5['chip_keys'][i] if isinstance(chip_key, bytes): chip_key = chip_key.decode('utf-8') chip_index_lookup[chip_key] = i chips[chip_key] = Chip(filepath, car_id, cam_id, timestamp, misc) return chip_index_lookup, chips, feats @staticmethod def _save_field(fOut, field_example, field_name, value_array): if isinstance(field_example, datetime.datetime): # Encode time as a string seconds since epoch times = np.array([str(val.timestamp()).encode('ascii', 'ignore') for val in value_array]) fOut.create_dataset(field_name, data=times, dtype=h5py.special_dtype(vlen=bytes)) elif isinstance(field_example, str): output_vals = [val.encode('ascii', 'ignore') for val in value_array] fOut.create_dataset(field_name, data= output_vals, dtype=h5py.special_dtype(vlen=bytes)) elif isinstance(field_example, dict): output_vals = [json.dumps(val).encode('ascii', 'ignore') for val in value_array] fOut.create_dataset(field_name, data=output_vals, dtype=h5py.special_dtype(vlen=bytes)) else: fOut.create_dataset(field_name, data=value_array) @staticmethod def save(filename, chip_keys, chips, features): """ Save a feature dataset """ with h5py.File(filename, 'w') as fOut: fOut.create_dataset('feats', data=features) FeatureDataset._save_field(fOut, chip_keys[0], 'chip_keys', chip_keys) first_chip = chips[0] fields = first_chip._fields for field in fields: field_example = getattr(first_chip, field) output_data = [getattr(chip, field) for chip in chips] FeatureDataset._save_field(fOut, field_example, field, output_data)
import time from inc import * import os import sys reload(sys) sys.setdefaultencoding('utf-8') def CheckTable(tablename): conn, cursor = Mysql() try: cursor.execute("select count(1) from `%s` limit 1" %(tablename)) except: print "%s not exist" % (tablename) print "%s exist" % (tablename) conn.commit() CloseMysql(conn, cursor) CheckTable("avg_cloudtchhome-service-provider_20171101")
import splitter import unittest class TestSplitFunction(unittest.TestCase): """docstring for TestSplitFunction""" # def __init__(self, arg): # super(TestSplitFunction, self).__init__() # self.arg = arg def setUp(self): pass def tearDown(self): pass def testSimpleString(self): r = splitter.split('Goog 100 490.50') self.assertEqual(r,['Goog','100','490.50']) def testTypeConvert(self): r = splitter.split('Goog 100 490.50',[str,int,float]) self.assertEqual(r,['Goog',100,490.50]) def testDelimeter(self): pass if __name__ == '__main__': unittest.main()
from rest_framework import permissions from rest_framework.permissions import IsAdminUser class IsOwner(permissions.BasePermission): """ Custom permission to only allow owners of an object to edit it or see it. """ def has_object_permission(self, request, view, obj): # Read permissions are allowed to any request, # so we'll always allow GET, HEAD or OPTIONS requests. if request.method in permissions.SAFE_METHODS and obj.user == request.user: return True else: return False # Write permissions are only allowed to the owner of the snippet. return obj.user == request.user class CustomObjectPermissions(permissions.DjangoObjectPermissions): """ Similar to `DjangoObjectPermissions`, but adding 'view' permissions. """ perms_map = { 'GET': ['%(app_label)s.view_%(model_name)s'], 'OPTIONS': ['%(app_label)s.view_%(model_name)s'], 'HEAD': ['%(app_label)s.view_%(model_name)s'], 'POST': ['%(app_label)s.add_%(model_name)s'], 'PUT': ['%(app_label)s.change_%(model_name)s'], 'PATCH': ['%(app_label)s.change_%(model_name)s'], 'DELETE': ['%(app_label)s.delete_%(model_name)s'], } class IsAdminOrSelf(IsAdminUser): """ Allow access to admin users or the user himself. """ def has_object_permission(self, request, view, obj): if request.user and request.user.is_staff: return True elif (request.user and type(obj) == type(request.user) and obj == request.user): return True return False
import torch import transformers import turbo_transformers from turbo_transformers.layers.utils import convert2tt_tensor, try_convert, convert_returns_as_type, ReturnType import time model = transformers.BertModel.from_pretrained('bert-base-uncased') model.eval() torch.set_grad_enabled(False) bertlayer = model.encoder.layer[0] qbertlayer = turbo_transformers.QBertLayer.from_torch(bertlayer) torchqbertlayer = torch.quantization.quantize_dynamic(bertlayer) lens = [10,20,40,60,80,100,200,300] loops = 100 for l in lens: input_tensor = torch.rand((1, l, 768)) attention_mask = torch.ones((1, l)) attention_mask = attention_mask[:, None, None, :] attention_mask = (1.0 - attention_mask) * -10000.0 print("seq length =", l) start = time.time() for i in range(loops): res = bertlayer(input_tensor, attention_mask, output_attentions=True) end = time.time() print("torch fp32 layer QPS =", loops/(end-start)) start = time.time() for i in range(loops): res2 = qbertlayer(input_tensor, attention_mask, output_attentions=True) end = time.time() print("turbo fp32+int8 layer QPS =", loops/(end-start)) start = time.time() for i in range(loops): res3 = torchqbertlayer(input_tensor, attention_mask, output_attentions=True) end = time.time() print("torch int8 layer QPS =", loops/(end-start)) print("max error against torch fp32 =", max( torch.max(torch.abs(res[0]-res2[0])), torch.max(torch.abs(res[1]-res2[1])))) print("max error against torch int8 =", max( torch.max(torch.abs(res3[0]-res2[0])), torch.max(torch.abs(res3[1]-res2[1])))) print("max error between torch int8 and torch fp32 =", max( torch.max(torch.abs(res3[0]-res[0])), torch.max(torch.abs(res3[1]-res[1]))))
from django.http import Http404, HttpResponse from rest_framework import generics from rest_framework.generics import get_object_or_404 from clasificador.models import ClassifierModel from documentos.models import DocumentGroup from gerente.datatxt_helpers import Datatxt from pruebas.models import BaseTestResult, DocumentTestResult from pruebas.serializers import BaseTestResultSerializer, \ DocumentTestResultSerializer, DocumentAnnotationSerializer, \ DocumentTestResultSmallSerializer from pruebas.tasks import test_model, test_document_set import json def model_test(request, datatxt_id): try: model = ClassifierModel.objects.get(datatxt_id=datatxt_id) except ClassifierModel.DoesNotExist: raise Http404 #create a new classifier on datatxt dt = Datatxt() req = dt.create_model(model.json_model) res = req.json() model_id = res.get('id') #launch a celery task with this model task = test_model.delay(model_id, model) model.testing_task_id = task model.save() return HttpResponse( json.dumps({'task': task.id}), 'application/json' ) def model_document_group(request, dg_pk, datatxt_id): try: model = ClassifierModel.objects.get(datatxt_id=datatxt_id) except ClassifierModel.DoesNotExist: raise Http404 try: dg = DocumentGroup.objects.get(pk=dg_pk) except DocumentGroup.DoesNotExist: raise Http404 try: threshold = float(request.GET.get('threshold')) except ValueError: threshold = 0.25 #launch a celery task with this model task = test_document_set.delay(model, dg, threshold) dg.testing_task_id = task dg.save() return HttpResponse( json.dumps({'task': task.id}), 'application/json' ) class ClassifierModelList(generics.ListAPIView): serializer_class = BaseTestResultSerializer def get_queryset(self): datatxt_id = self.kwargs['datatxt_id'] return BaseTestResult.objects.filter( model_version__datatxt_id=datatxt_id).order_by('created') def check_permissions(self, request): return True def perform_authentication(self, request): pass class BaseDocumentTestDetails(generics.RetrieveAPIView): serializer_class = DocumentTestResultSerializer queryset = DocumentTestResult.objects.all() def check_permissions(self, request): return True def perform_authentication(self, request): pass class BaseDocumentTestList(generics.ListAPIView): serializer_class = DocumentTestResultSmallSerializer def get_queryset(self): """ This view should return a list of all the purchases for the user as determined by the username portion of the URL. """ doc_group = self.kwargs['doc_pk'] return DocumentTestResult.objects.filter(document_group__pk=doc_group).order_by('-created') def check_permissions(self, request): return True def perform_authentication(self, request): pass class DocumentAnnotationDetails(generics.RetrieveAPIView): serializer_class = DocumentAnnotationSerializer def get_object(self): test_results = DocumentTestResult.objects.get( pk=self.kwargs['test_pk']) queryset = test_results.documentannotation_set.filter() filter = { 'document__pk': self.kwargs['doc_pk'] } return get_object_or_404(queryset, **filter) def check_permissions(self, request): return True def perform_authentication(self, request): pass
#!/usr/bin/env python # -*- coding:utf-8 -*- def fetcher(obj, index): """该函数用于索引""" return obj[index] x = [1, 2] try: fetcher(x, 4) except IndexError: print('got exception!') print('contining...')
from django.contrib import admin from .models import StaffMember, Department @admin.register(StaffMember) class StaffMemberAdmin(admin.ModelAdmin): list_display = ( 'id', 'name', 'work_department', 'phone_num', 'grade', 'school_department', 'major', 'personal_signature', 'brief_introduction', 'start_entry', 'end_quit', 'is_incumbent', 'is_first_generation', 'is_man', 'is_delisting', ) @admin.register(Department) class DepartmentAdmin(admin.ModelAdmin): list_display = ('id', 'name', 'brief_introduction', 'is_delete')
try: from kfp.components import InputPath from kfp.components import OutputPath except ImportError: def InputPath(c): return c def OutputPath(c): return c metrics = "Metrics" def wikiqa_test( dataset_path: InputPath(str), wikiqa_path: InputPath(str), prev_model_path: InputPath(str), shared_path, run_id, sent_size_th, ques_size_th, num_epochs, num_steps, eval_period, save_period, device, device_type, num_gpus, mlpipeline_metrics_path: OutputPath(metrics), model_path: OutputPath(str), ): input_dir = wikiqa_path + "/wikiqa-class" output_dir = model_path + "/out/wikiqa" import shutil src = prev_model_path + "/out/wikiqa" dst = model_path + "/out/wikiqa" shutil.copytree(src, dst) full_shared_path = dataset_path + shared_path import os import tensorflow as tf flags = tf.app.flags # Names and directories flags.DEFINE_string("model_name", "basic-class", "Model name [basic | basic-class]") flags.DEFINE_string("data_dir", input_dir, "Data dir [data/squad]") flags.DEFINE_string("run_id", run_id, "Run ID [0]") flags.DEFINE_string("out_base_dir", output_dir, "out base dir [out]") flags.DEFINE_string("forward_name", "single", "Forward name [single]") flags.DEFINE_string("answer_path", "", "Answer path []") flags.DEFINE_string("eval_path", "", "Eval path []") flags.DEFINE_string("load_path", "", "Load path []") flags.DEFINE_string("shared_path", full_shared_path, "Shared path []") # Device placement flags.DEFINE_string( "device", device, "default device for summing gradients. [/cpu:0]" ) flags.DEFINE_string( "device_type", device_type, "device for computing gradients (parallelization). cpu | gpu [gpu]", ) flags.DEFINE_integer( "num_gpus", int(num_gpus), "num of gpus or cpus for computing gradients [1]" ) # Essential training and test options flags.DEFINE_string("mode", "test", "train | test | forward [test]") flags.DEFINE_boolean("load", True, "load saved data? [True]") flags.DEFINE_bool("single", False, "supervise only the answer sentence? [False]") flags.DEFINE_boolean("debug", False, "Debugging mode? [False]") flags.DEFINE_bool( "load_ema", True, "load exponential average of variables when testing? [True]" ) flags.DEFINE_bool("eval", True, "eval? [True]") flags.DEFINE_bool("train_only_output", False, "Train only output module?") flags.DEFINE_bool("load_trained_model", False, "Load SQUAD trained model") flags.DEFINE_bool("freeze_phrase_layer", False, "Freeze phrase layer") flags.DEFINE_bool("freeze_att_layer", False, "Freeze att layer") flags.DEFINE_bool( "freeze_span_modelling_layer", False, "Freeze modelling layer for span" ) flags.DEFINE_bool("using_shared", False, "using pre-created shared.json") flags.DEFINE_bool("load_shared", False, "load shared.json for each batch") flags.DEFINE_string("dev_name", "test", "using dev or test?") flags.DEFINE_string("test_name", "test", "using test or dev?") # Training / test parameters flags.DEFINE_integer("batch_size", 60, "Batch size [60]") flags.DEFINE_integer("val_num_batches", 100, "validation num batches [100]") flags.DEFINE_integer("test_num_batches", 0, "test num batches [0]") flags.DEFINE_integer( "num_epochs", int(num_epochs), "Total number of epochs for training [12]" ) flags.DEFINE_integer("num_steps", int(num_steps), "Number of steps [20000]") flags.DEFINE_integer("load_step", 0, "load step [0]") flags.DEFINE_float("init_lr", 0.5, "Initial learning rate [0.5]") flags.DEFINE_float( "input_keep_prob", 0.8, "Input keep prob for the dropout of LSTM weights [0.8]" ) flags.DEFINE_float( "keep_prob", 0.8, "Keep prob for the dropout of Char-CNN weights [0.8]" ) flags.DEFINE_float("wd", 0.0, "L2 weight decay for regularization [0.0]") flags.DEFINE_integer("hidden_size", 100, "Hidden size [100]") flags.DEFINE_integer("char_out_size", 100, "char-level word embedding size [100]") flags.DEFINE_integer("char_emb_size", 8, "Char emb size [8]") flags.DEFINE_string( "out_channel_dims", "100", "Out channel dims of Char-CNN, separated by commas [100]", ) flags.DEFINE_string( "filter_heights", "5", "Filter heights of Char-CNN, separated by commas [5]" ) flags.DEFINE_bool("finetune", False, "Finetune word embeddings? [False]") flags.DEFINE_bool("highway", True, "Use highway? [True]") flags.DEFINE_integer("highway_num_layers", 2, "highway num layers [2]") flags.DEFINE_bool("share_cnn_weights", True, "Share Char-CNN weights [True]") flags.DEFINE_bool( "share_lstm_weights", True, "Share pre-processing (phrase-level) LSTM weights [True]", ) flags.DEFINE_float( "var_decay", 0.999, "Exponential moving average decay for variables [0.999]" ) flags.DEFINE_string("classifier", "maxpool", "[maxpool, sumpool, default]") # Optimizations flags.DEFINE_bool("cluster", True, "Cluster data for faster training [False]") flags.DEFINE_bool("len_opt", True, "Length optimization? [False]") flags.DEFINE_bool( "cpu_opt", False, "CPU optimization? GPU computation can be slower [False]" ) # Logging and saving options flags.DEFINE_boolean("progress", True, "Show progress? [True]") flags.DEFINE_integer("log_period", 100, "Log period [100]") flags.DEFINE_integer("eval_period", int(eval_period), "Eval period [1000]") flags.DEFINE_integer("save_period", int(save_period), "Save Period [1000]") flags.DEFINE_integer("max_to_keep", 20, "Max recent saves to keep [20]") flags.DEFINE_bool("dump_eval", True, "dump eval? [True]") flags.DEFINE_bool("dump_answer", False, "dump answer? [True]") flags.DEFINE_bool("vis", False, "output visualization numbers? [False]") flags.DEFINE_bool("dump_pickle", True, "Dump pickle instead of json? [True]") flags.DEFINE_float( "decay", 0.9, "Exponential moving average decay for logging values [0.9]" ) # Thresholds for speed and less memory usage flags.DEFINE_integer("word_count_th", 10, "word count th [100]") flags.DEFINE_integer("char_count_th", 50, "char count th [500]") flags.DEFINE_integer("sent_size_th", int(sent_size_th), "sent size th [64]") flags.DEFINE_integer("num_sents_th", 1, "num sents th [8]") flags.DEFINE_integer("ques_size_th", int(ques_size_th), "ques size th [32]") flags.DEFINE_integer("word_size_th", 16, "word size th [16]") flags.DEFINE_integer("para_size_th", 256, "para size th [256]") # Advanced training options flags.DEFINE_bool("lower_word", True, "lower word [True]") flags.DEFINE_bool("squash", False, "squash the sentences into one? [False]") flags.DEFINE_bool("swap_memory", True, "swap memory? [True]") flags.DEFINE_string("data_filter", "max", "max | valid | semi [max]") flags.DEFINE_bool("use_glove_for_unk", True, "use glove for unk [False]") flags.DEFINE_bool( "known_if_glove", True, "consider as known if present in glove [False]" ) flags.DEFINE_string("logit_func", "tri_linear", "logit func [tri_linear]") flags.DEFINE_string("answer_func", "linear", "answer logit func [linear]") flags.DEFINE_string("sh_logit_func", "tri_linear", "sh logit func [tri_linear]") # Ablation options flags.DEFINE_bool("use_char_emb", True, "use char emb? [True]") flags.DEFINE_bool("use_word_emb", True, "use word embedding? [True]") flags.DEFINE_bool("q2c_att", True, "question-to-context attention? [True]") flags.DEFINE_bool("c2q_att", True, "context-to-question attention? [True]") flags.DEFINE_bool("dynamic_att", False, "Dynamic attention [False]") def main(_): from basic.main import main as m config = flags.FLAGS config.model_name = "basic-class" config.out_dir = os.path.join( config.out_base_dir, config.model_name, str(config.run_id).zfill(2) ) print(config.out_dir) evaluator = m(config) """Generating metrics for the squad model""" metrics = { "metrics": [ { "name": "accuracy-score", "numberValue": str(evaluator.acc), "format": "RAW", }, { "name": "loss", "numberValue": str(evaluator.loss), "format": "RAW", }, ] } import json with open(mlpipeline_metrics_path, "w") as f: json.dump(metrics, f) tf.app.run(main)
import glob import os import re import cv2 import face_recognition as fr # predictor_path = 'dlib_data/shape_predictor_5_face_landmarks.dat' # face_rec_model_path = 'dlib_data/dlib_face_recognition_resnet_model_v1.dat' known_people_folder = 'images' cam = cv2.VideoCapture(0) color_green = (0, 255, 0) line_width = 2 tolerance = 0.6 def main(): # face_image = fr.load_image_file('{}/img_20181030_172355.jpg'.format(faces_folder_path)) # known_face = fr.face_encodings(face_image) known_people = scan_known_people(known_people_folder) process_this_frame = True while True: # Capture frame-by-frame ret_val, img = cam.read() rgb_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) face_locations = fr.face_locations(rgb_image, number_of_times_to_upsample=1, model='hog') unknown_face_encodings = fr.face_encodings(img) # Draw rectangles in detected faces # for face_location in face_locations: # cv2.rectangle(img, (face_location[3], face_location[0]), (face_location[1], face_location[2]), color_green, line_width) # Rec face face_names = [] for unknown_encoding in unknown_face_encodings: for person in known_people.items(): matches = fr.compare_faces(person[1], unknown_encoding) name = "Unknown" # If a match was found in known_face_encodings, just use the first one. if True in matches: name = person[0] face_names.append(name) break # distances = fr.face_distance(person[1], unknown_encoding) # result = list(distances <= tolerance) # if True in result: # face_names.append(person[0]) # # print("Recognized: " + person[0]) # break process_this_frame = not process_this_frame # Display the results print(face_names) for (top, right, bottom, left), name in zip(face_locations, face_names): # Draw a box around the face # cv2.rectangle(img, (left, top), (right, bottom), color_green, line_width) cv2.rectangle(img, (left, top), (right, bottom), color_green, line_width) # Draw a label with a name below the face cv2.rectangle(img, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(img, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Draw captured image to screen cv2.imshow('my webcam', img) if cv2.waitKey(1) == 27: break # esc to quit cam.release() cv2.destroyAllWindows() def image_files_in_folder(folder): return [os.path.join(folder, f) for f in os.listdir(folder) if re.match(r'.*\.(jpg|jpeg|png)', f, flags=re.I)] def scan_known_people(known_people_folder): """ :param image folder which store subfolder using person's name or identity: :return: dict of key = person names, value = list of face encodings for that person """ known_person_names = [d for d in os.listdir(known_people_folder)] result = {} for name in known_person_names: files = [os.path.abspath(f) for f in glob.glob('{}/{}/*.jpg'.format(known_people_folder, name))] known_face_encodings = [] for file in files: img = fr.load_image_file(file) encodings = fr.face_encodings(img) if len(encodings) > 1: print("WARNING: More than one face found in {}. Only considering the first face.".format(file)) if len(encodings) == 0: print("WARNING: No faces found in {}. Ignoring file.".format(file)) else: known_face_encodings.append(encodings[0]) result[name] = known_face_encodings return result if __name__ == '__main__': main()
import sys if len(sys.argv) != 3: print("Usage: python convert_shp_to_json.py SHAPE_FILE OUT_FILE") exit(2) print("Importing modules...") import geopandas as gpd print("Reading file...") gdf = gpd.read_file(sys.argv[1]) print("Writing to file...") jsonfile = gdf.to_json() with open(sys.argv[2], "w+") as f: f.write(jsonfile) print("Done !")
""" This app creates an animated sidebar using the dbc.Nav component and some local CSS. Each menu item has an icon, when the sidebar is collapsed the labels disappear and only the icons remain. Visit www.fontawesome.com to find alternative icons to suit your needs! dcc.Location is used to track the current location, a callback uses the current location to render the appropriate page content. The active prop of each NavLink is set automatically according to the current pathname. To use this feature you must install dash-bootstrap-components >= 0.11.0. For more details on building multi-page Dash applications, check out the Dash documentation: https://dash.plot.ly/urls """ import dash import dash_bootstrap_components as dbc from dash import Input, Output, dcc, html PLOTLY_LOGO = "https://images.plot.ly/logo/new-branding/plotly-logomark.png" app = dash.Dash( external_stylesheets=[dbc.themes.BOOTSTRAP, dbc.icons.FONT_AWESOME] ) sidebar = html.Div( [ html.Div( [ # width: 3rem ensures the logo is the exact width of the # collapsed sidebar (accounting for padding) html.Img(src=PLOTLY_LOGO, style={"width": "3rem"}), html.H2("Sidebar"), ], className="sidebar-header", ), html.Hr(), dbc.Nav( [ dbc.NavLink( [html.I(className="fas fa-home me-2"), html.Span("Home")], href="/", active="exact", ), dbc.NavLink( [ html.I(className="fas fa-calendar-alt me-2"), html.Span("Calendar"), ], href="/calendar", active="exact", ), dbc.NavLink( [ html.I(className="fas fa-envelope-open-text me-2"), html.Span("Messages"), ], href="/messages", active="exact", ), ], vertical=True, pills=True, ), ], className="sidebar", ) content = html.Div(id="page-content", className="content") app.layout = html.Div([dcc.Location(id="url"), sidebar, content]) # set the content according to the current pathname @app.callback(Output("page-content", "children"), Input("url", "pathname")) def render_page_content(pathname): if pathname == "/": return html.P("This is the home page!") elif pathname == "/calendar": return html.P("This is your calendar... not much in the diary...") elif pathname == "/messages": return html.P("Here are all your messages") # If the user tries to reach a different page, return a 404 message return html.Div( [ html.H1("404: Not found", className="text-danger"), html.Hr(), html.P(f"The pathname {pathname} was not recognised..."), ], className="p-3 bg-light rounded-3", ) if __name__ == "__main__": app.run_server(debug=True)
from hue import HueControlUtil as hue from wemo import WemoControlUtil as wemo from alexa import AlexaControlUtil as alexa from googleApis.googleSheetController import GoogleSheetController from googleApis.googleDriveController import GoogleDriveController from googleApis.gmailController import GmailController import time, os, sys, argparse, datetime import shutil import uuid datetimeFormat = "%Y-%m-%d %H-%M-%S.%f" #turn on hue lights when wemo switch is turned on def testWemoHueRecipe(argv): parser = argparse.ArgumentParser() parser.add_argument("resultFile") parser.add_argument("-iterNum", default = 5, type = int) parser.add_argument("-lightId", default = 2, type = int) parser.add_argument("-interval", default = 1, type = float) parser.add_argument("-wemoport", type = int, default = 10085) options = parser.parse_args(argv) resultFile = options.resultFile hueController = hue.HueController() bind = "0.0.0.0:{}".format(options.wemoport) switchName = "WeMo Switch" lightId = options.lightId wemoController = wemo.WemoController(bind = bind) switch = wemoController.discoverSwitch(switchName) if switch is None: print("error to locate the switch") sys.exit(1) else: print("switch discoverred") #test recipe: when wemo switch is truned on, turn on lights in living room time.sleep(3) resultStatList = [] resultFd = open(resultFile, "a") preState = wemoController.getState(switchName) for index in range(options.iterNum): print("start test iteration {}".format(index)) #monitor trigger event while (True): currState = wemoController.getState(switchName) if currState != preState and currState == 1: triggerObservedTime = datetime.datetime.now() preState = currState break preState = currState time.sleep(options.interval) hueController.turnonLight(lightId) print("light turned one") endTime = datetime.datetime.now() timeDiff = endTime - triggerObservedTime timeCost = timeDiff.seconds + timeDiff.microseconds / float(1000000) testUuid = uuid.uuid4() statStr = "executionUuid: {}->triggerObservedTime: {}->wemo_hue".format(testUuid, triggerObservedTime.strftime(datetimeFormat)) print(statStr) resultStatList.append(statStr) resultFd.write(statStr + "\n") resultFd.flush() statStr = "testUuid: {}->actionExecutionTime: {}->wemo_hue".format(testUuid, endTime.strftime(datetimeFormat)) print(statStr) resultStatList.append(statStr) resultFd.write(statStr + "\n") resultFd.flush() statStr = "testUuid: {}->time cost for wemo_hue iter {} is {} seconds".format(testUuid, index, timeCost) print(statStr) resultStatList.append(statStr) resultFd.write(statStr + "\n") resultFd.flush() time.sleep(5) resultFd.close() #when any new email arrives in gmail, blink lights. #https://ifttt.com/applets/93876p-when-any-new-email-arrives-in-gmail-blink-lights def testGmailHueRecipe(argv): ''' test the following recipe: If You say "Alexa trigger turn on hue light", then turn on lights in Living room ''' parser = argparse.ArgumentParser() parser.add_argument("resultFile") parser.add_argument("-iterNum", default = 5, type = int) #parser.add_argument("-gmailSenderName", default = "senmuxing", type = str) parser.add_argument("-gmailName", default = "xianghangmi", type = str) parser.add_argument("-lightId", default = 2, type = int) parser.add_argument("-interval", default = 0.1, type = float) options = parser.parse_args(argv) hueController = hue.HueController() lightId = options.lightId gmailController = GmailController(options.gmailName) resultStatList = [] resultFd = open(options.resultFile, "a") #test recipe: when wemo switch is truned on, turn on lights in living room preMsgList = gmailController.listMessagesMatchingQuery() for index in range(options.iterNum): #check new emails #hueController.clearAlert(lightId) nowDate = datetime.datetime.now() nowStr = nowDate.strftime("%Y-%m-%d %H-%M-%S") #detect reception of the email while True: latestMsgList = gmailController.listMessagesMatchingQuery() latestMsgId = latestMsgList[0]["id"] preMsgId = preMsgList[0]["id"] if latestMsgId == preMsgId: time.sleep(options.interval) continue else: preMsgList = latestMsgList triggerObservedTime = datetime.datetime.now() break print("receive email at ", triggerObservedTime.strftime("%Y-%m-%d %H-%M-%S")) hueController.alertLight(lightId) endTime = datetime.datetime.now() timeDiff = endTime - triggerObservedTime timeCost = timeDiff.seconds + timeDiff.microseconds / float(1000000) testUuid = uuid.uuid4() statStr = "testUuid: {}->triggerObservedTime: {}->gmail_hue".format(testUuid, triggerObservedTime.strftime(datetimeFormat)) print(statStr) resultStatList.append(statStr) resultFd.write(statStr + "\n") resultFd.flush() statStr = "testUuid: {}->actionExecutionTime: {}->gmail_hue".format(testUuid, endTime.strftime(datetimeFormat)) print(statStr) resultStatList.append(statStr) resultFd.write(statStr + "\n") resultFd.flush() statStr = "testUuid: {}->time cost for iter {} is {} seconds".format(testUuid, index, timeCost) print(statStr) resultStatList.append(statStr) resultFd.write(statStr + "\n") resultFd.flush() resultFd.close() open(options.resultFile, "w").write("\n".join(resultStatList) + "\n") #if my wemo switch is activated, add line to spreadsheet #https://ifttt.com/applets/67307p-if-my-wemo-switch-is-activated-add-line-to-spreadsheet def testWemoGoogleSheetRecipe(argv): ''' test the following recipe: If You say "Alexa trigger turn on hue light", then turn on lights in Living room ''' parser = argparse.ArgumentParser() parser.add_argument("resultFile") parser.add_argument("-iterNum", default = 5, type = int) parser.add_argument("-interval", default = 1, type = float) parser.add_argument("-wemoport", type = int, default = 10085) spreadsheetId = "1TwPsEXIQ0tZPnFABwKqePshDw3x0kFozaP69Nsw95ug" sheetName = "Sheet1" options = parser.parse_args(argv) bind = "0.0.0.0:{}".format(options.wemoport) switchName = "WeMo Switch" wemoController = wemo.WemoController(bind = bind) switch = wemoController.discoverSwitch(switchName) if switch is None: print("error to locate the switch") sys.exit(1) else: print("switch discoverred") sheetController = GoogleSheetController() spreadsheet = sheetController.getSpreadSheet(spreadsheetId) print("got spreadsheet: ", sheetController.getSpreadSheet(spreadsheetId)) retrievedSheetName = spreadsheet["sheets"][0]["properties"]["title"] print("title of first sheet is ", spreadsheet["sheets"][0]["properties"]["title"]) if retrievedSheetName != sheetName: print("sheet name doesn't match, use retrieved one: preconfigured one: {}, retrieved one {}".format(sheetName, retrievedSheetName)) sheetName = retrievedSheetName resultStatList = [] resultFd = open(options.resultFile, "a") #test recipe: when wemo switch is truned on, write a log to the google spreadsheet preSwitchState = wemoController.getState(switchName) for index in range(options.iterNum): while True: currSwitchState = wemoController.getState(switchName) if currSwitchState == 1 and currSwitchState != preSwitchState: preSwitchState = currSwitchState triggerObservedTime = datetime.datetime.now() break preSwitchState = currSwitchState time.sleep(options.interval) print("switch turned on is observed") nowDate = datetime.datetime.now() nowStr = nowDate.strftime("%Y-%m-%d %H-%M-%S") values = [ ["switch turned on", nowStr], ] responseAppend = sheetController.appendFile(spreadsheetId, range = "Sheet1", valueList = values) endTime = datetime.datetime.now() timeDiff = endTime - triggerObservedTime timeCost = timeDiff.seconds + timeDiff.microseconds / float(1000000) testUuid = uuid.uuid4() statStr = "testUuid: {}->triggerObservedTime: {}->wemo_sheet".format(testUuid, triggerObservedTime.strftime(datetimeFormat)) print(statStr) resultStatList.append(statStr) resultFd.write(statStr + "\n") resultFd.flush() statStr = "testUuid: {}->actionExecutionTime: {}->wemo_sheet".format(testUuid, endTime.strftime(datetimeFormat)) print(statStr) resultStatList.append(statStr) resultFd.write(statStr + "\n") resultFd.flush() statStr = "testUuid: {}->time cost for iter {} is {} seconds".format(testUuid, index, timeCost) print(statStr) resultStatList.append(statStr) resultFd.write(statStr + "\n") resultFd.flush() #generate trigger event: speak to alexa: change a music resultFd.close() print(resultStatList) #automatically save new email attachments in gmail to google drive #https://ifttt.com/applets/99068p-automatically-save-new-email-attachments-in-gmail-to-google-drive def testGmailDrive(argv): parser = argparse.ArgumentParser() parser.add_argument("resultFile") parser.add_argument("-iterNum", default = 5, type = int) parser.add_argument("-interval", default = 0.1, type = float) parser.add_argument("-gmailName", default = "xianghangmi", type = str) parentId = "0B2Edbo2pC3d4MzEzSzRBN1BnSVU" options = parser.parse_args(argv) gmailController = GmailController(options.gmailName) driveController = GoogleDriveController() resultStatList = [] resultFd = open(options.resultFile, "a") for index in range(options.iterNum): preMsgList = gmailController.listMessagesMatchingQuery() nowDate = datetime.datetime.now() nowStr = nowDate.strftime("%Y-%m-%d %H-%M-%S") #send email from senmuxing@gmail.com to xianghangmi@gmail.com subject = "ifttt test at {}".format(nowStr) tempFile = "ifttTest_engine_{}.txt".format(nowStr) open(tempFile, "w").write(subject) #detect reception of the email while True: latestMsgList = gmailController.listMessagesMatchingQuery() latestMsgId = latestMsgList[0]["id"] preMsgId = preMsgList[0]["id"] if latestMsgId == preMsgId: time.sleep(options.interval) continue else: preMsgList = latestMsgList triggerObservedTime = datetime.datetime.now() break driveController.uploadFile(tempFile, tempFile, dstParentList = [ parentId ]) endTime = datetime.datetime.now() timeDiff = endTime - triggerObservedTime timeCost = timeDiff.seconds + timeDiff.microseconds / float(1000000) testUuid = uuid.uuid4() statStr = "testUuid: {}->triggerObservedTime: {}->gmail_drive".format(testUuid, triggerObservedTime.strftime(datetimeFormat)) print(statStr) resultStatList.append(statStr) resultFd.write(statStr + "\n") resultFd.flush() statStr = "testUuid: {}->actionExecutionTime: {}->gmail_drive".format(testUuid, endTime.strftime(datetimeFormat)) print(statStr) resultStatList.append(statStr) resultFd.write(statStr + "\n") resultFd.flush() statStr = "testUuid: {}->time cost for iter {} is {} seconds".format(testUuid, index, timeCost) print(statStr) resultStatList.append(statStr) resultFd.write(statStr + "\n") resultFd.flush() os.remove(tempFile) time.sleep(10) print(resultStatList) resultFd.close() recipeTypeDict = { #"alexa_wemo" : testAlexaWemoRecipe, #"alexa_hue" : testAlexaHueRecipe, "wemo_hue" : testWemoHueRecipe, #"alexa_sheet" : testAlexaGoogleSheetRecipe, "gmail_hue" : testGmailHueRecipe, "wemo_sheet" : testWemoGoogleSheetRecipe, "gmail_drive" : testGmailDrive, } if __name__ == "__main__": recipeName = sys.argv[1] print(recipeName) if recipeName not in recipeTypeDict: print("please provide recipeType from this list: ", recipeTypeDict.keys()) sys.exit(1) recipeFunc = recipeTypeDict[recipeName] recipeFunc(sys.argv[2:])
# Generated by Django 2.2 on 2019-04-26 08:18 import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AlterField( model_name='card', name='idm', field=models.CharField(max_length=16, unique=True, validators=[django.core.validators.MinLengthValidator, django.core.validators.RegexValidator(message='IDm must be 16-digit hexadecimal number', regex='^[0-9A-F]{16}$')], verbose_name='FeliCa ID'), ), migrations.AlterField( model_name='temporary', name='idm', field=models.CharField(max_length=16, unique=True, validators=[django.core.validators.MinLengthValidator, django.core.validators.RegexValidator(message='IDm must be 16-digit hexadecimal number', regex='^[0-9A-F]{16}$')], verbose_name='FeliCa ID'), ), ]
from rest_framework import serializers from watchlist_app.models import WatchList, StreamPlatform, Review class ReviewSerializer(serializers.ModelSerializer): review_user = serializers.StringRelatedField(read_only=True) class Meta: model = Review exclude = ('watchlist',) # fields = "__all__" class WatchListSerializer(serializers.ModelSerializer): # reviews = ReviewSerializer(many=True, read_only=True) platform = serializers.CharField(source='platform.name') class Meta: model = WatchList fields = "__all__" class StreamPlatformSerializer(serializers.ModelSerializer): watchlist = WatchListSerializer(many=True, read_only=True) class Meta: model = StreamPlatform fields = "__all__"
# Service monitor - updates the service status every configured interval # Service configruations refer from pprint import pprint import urllib2 import json import base64 import time import ConfigParser import os import sys from monitors.baseMonitor import BaseMonitor import ha_engine.ha_infra as infra # ========================== Configurable Parameters ====================== # Ip address based service filter # If IP_FILTER is empty all services will be selected else only ip from IP_FILTER considerd for display # ========================================================================= class NagiosMonitor(BaseMonitor): headers = ['host_name', 'description', 'time_critical', 'time_ok', 'time_indeterminate_nodata'] polling_interval = 20 ip_filter = [] url = "http://%s:8080/state" # path = '/Users/pradeech/HA1/Cloud_HA_Testframework_v1/configs/user_configs/nagios_config.cfg' path = os.getcwd() + os.sep + 'configs/user_configs/nagios_config.cfg' def stop(self): pass def report(self): pass def stable(self): pass def is_module_exeution_completed(self, finish_exection): pass def start(self, sync=None, finish_execution=None): format_string = "%s %s %s %s %s " i = 0 inputs = sys.argv[1:] for arg in inputs: if arg == 'ip': IP_FILTER = inputs[i + 1].split(',') elif arg == 'fre': POLLING_INTERVAL = float(inputs[i + 1]) i = i + 1 ip_address = self.get_config('nagios_ip') # Execution starts here entries = 0 #while (not finish_execution): reportList = {} run = True run_count = 0 while(run): data = self.getdata(self.url, ip_address) ret = [] for ip in data: hostService = data[ip]["services"] for key in hostService: result = {} result["ip"] = ip result["description"] = key if data[ip]["services"][key]["current_state"] == '0': result["status"] = "OK" result["output"] = data[ip]["services"][key][ "plugin_output"] else: result["status"] = self.get_severity_color("CRITICAL", "CRITICAL") result["output"] = self.get_severity_color( "CRITICAL", data[ip]["services"][key]["plugin_output"]) #self.validate_critical_data(ip,key,reportList,result["output"]) # if self.validate_critical_data(ip,key,critical_data): #critical_data.append({ip+key:{'timestamp':int(time.time()),'status':'CRITICAL'}}) ret.append(result) #print critical_data # os.system("clear") if sync: infra.notify_all_waiters(sync) print self.get_severity_color('INFO', format_string % ( 'IP address'.ljust(20), "Service Description".ljust(45), "Status".ljust(7), "Status Information", "")) print "Polling Interval %s " % (self.polling_interval) print "IP Filter : %s " % self.ip_filter for item in ret: # tuncating the description to 30 char for better visibilty ljust() if self.ip_filter != []: if item.get("ip") in self.ip_filter: print format_string % (item.get("ip").ljust(20), item.get(self.headers[1])[:40].ljust( 45), item.get("status").ljust(10), item.get("output"), "") entries = entries + 1 else: print format_string % (item.get("ip").ljust(20), item.get(self.headers[1])[:40].ljust(45), item.get("status").ljust(7), item.get("output"), "") entries = entries + 1 if run_count < 10: run_count+=1 time.sleep(2) else: run = False infra.set_execution_completed(finish_execution) #time.sleep(20) @staticmethod def getdata(url, ipaddress): try: request = urllib2.Request(url % (ipaddress)) result = urllib2.urlopen(request) except urllib2.HTTPError as e: print "%s" % e.reason() json_data = result.read() data = json.loads(json_data) return data["content"] # ["services"] @staticmethod def get_severity_color(severity, text): # print severity, text if severity == 'CRITICAL': return "\033[" + '31' + "m" + text + "\033[0m" elif severity == 'WARNING': return "\033[" + '33' + "m" + text + "\033[0m" elif severity == 'INFO': return "\033[" + '32' + "m" + text + "\033[0m" @staticmethod def do_calc(starttime, endtime, value): delta = float((endtime - starttime) / 1000) return round((float(value) / delta) * 100, 2) def filter_objs(self, objs): filter_objs = [] for obj in objs: if obj.get('host_name') in self.ip_filter: filter_objs.append(obj) return filter_objs def get_config(self, key, section='Default'): config = ConfigParser.ConfigParser() config.readfp(open(self.path)) return config.get(section, key) @staticmethod def validate_critical_data(ip,desc,reportList,status): # under progress if reportList.has_key(ip+desc): ipDescStatusList = reportList.get(ip+desc) timeStampStatusTup = ipDescStatusList[0] if timeStampStatusTup[1] != status: tsst=(time.time(),status) ipDescStatusList.insert(tsst,0) elif status != 'OK': ipDescStatusList=[] tsst=(time.time(),status) ipDescStatusList.insert(tsst,0) reportList[ip+desc]=ipDescStatusList
from charm.adapters.ibenc_adapt_hybrid import HybridIBEnc from charm.adapters.ibenc_adapt_identityhash import HashIDAdapter from charm.schemes.ibenc.ibenc_bb03 import IBE_BB04 from charm.schemes.ibenc.ibenc_bf01 import IBE_BonehFranklin from charm.schemes.ibenc.ibenc_ckrs09 import IBE_CKRS from charm.schemes.ibenc.ibenc_lsw08 import IBE_Revoke from charm.schemes.ibenc.ibenc_sw05 import IBE_SW05_LUC from charm.schemes.ibenc.ibenc_waters05 import IBE_N04 from charm.schemes.ibenc.ibenc_waters09 import DSE09 from charm.toolbox.pairinggroup import PairingGroup,ZR,GT from charm.toolbox.hash_module import Waters import unittest debug = False class HybridIBEncTest(unittest.TestCase): def testHybridIBEnc(self): groupObj = PairingGroup('SS512') ibe = IBE_BB04(groupObj) hashID = HashIDAdapter(ibe, groupObj) hyb_ibe = HybridIBEnc(hashID, groupObj) (pk, mk) = hyb_ibe.setup() kID = 'waldoayo@gmail.com' sk = hyb_ibe.extract(mk, kID) msg = b"This is a test message." ct = hyb_ibe.encrypt(pk, kID, msg) if debug: print("Ciphertext") print("c1 =>", ct['c1']) print("c2 =>", ct['c2']) decrypted_msg = hyb_ibe.decrypt(pk, sk, ct) if debug: print("Result =>", decrypted_msg) assert decrypted_msg == msg del groupObj class HashIDAdapterTest(unittest.TestCase): def testHashIDAdapter(self): group = PairingGroup('SS512') ibe = IBE_BB04(group) hashID = HashIDAdapter(ibe, group) (pk, mk) = hashID.setup() kID = 'waldoayo@email.com' sk = hashID.extract(mk, kID) if debug: print("Keygen for %s" % kID) if debug: print(sk) m = group.random(GT) ct = hashID.encrypt(pk, kID, m) orig_m = hashID.decrypt(pk, sk, ct) assert m == orig_m if debug: print("Successful Decryption!!!") if debug: print("Result =>", orig_m) class IBE_BB04Test(unittest.TestCase): def testIBE_BB04(self): # initialize the element object so that object references have global scope groupObj = PairingGroup('MNT224') ibe = IBE_BB04(groupObj) (params, mk) = ibe.setup() # represents public identity kID = groupObj.random(ZR) key = ibe.extract(mk, kID) M = groupObj.random(GT) cipher = ibe.encrypt(params, kID, M) m = ibe.decrypt(params, key, cipher) assert m == M, "FAILED Decryption!" if debug: print("Successful Decryption!! M => '%s'" % m) class IBE_BonehFranklinTest(unittest.TestCase): def testIBE_BonehFranklin(self): groupObj = PairingGroup('MNT224', secparam=1024) ibe = IBE_BonehFranklin(groupObj) (pk, sk) = ibe.setup() id = 'user@email.com' key = ibe.extract(sk, id) m = "hello world!!!!!" ciphertext = ibe.encrypt(pk, id, m) msg = ibe.decrypt(pk, key, ciphertext) assert msg == m, "failed decrypt: \n%s\n%s" % (msg, m) if debug: print("Successful Decryption!!!") class IBE_CKRSTest(unittest.TestCase): def testIBE_CKRS(self): groupObj = PairingGroup('SS512') ibe = IBE_CKRS(groupObj) (mpk, msk) = ibe.setup() # represents public identity ID = "bob@mail.com" sk = ibe.extract(mpk, msk, ID) M = groupObj.random(GT) ct = ibe.encrypt(mpk, ID, M) m = ibe.decrypt(mpk, sk, ct) if debug: print('m =>', m) assert m == M, "FAILED Decryption!" if debug: print("Successful Decryption!!! m => '%s'" % m) class IBE_RevokeTest(unittest.TestCase): def testIBE_Revoke(self): # scheme designed for symmetric billinear groups grp = PairingGroup('SS512') n = 5 # total # of users ibe = IBE_Revoke(grp) ID = "user2@email.com" S = ["user1@email.com", "user3@email.com", "user4@email.com"] (mpk, msk) = ibe.setup(n) sk = ibe.keygen(mpk, msk, ID) if debug: print("Keygen...\nsk :=", sk) M = grp.random(GT) ct = ibe.encrypt(mpk, M, S) if debug: print("Ciphertext...\nct :=", ct) m = ibe.decrypt(S, ct, sk) assert M == m, "Decryption FAILED!" if debug: print("Successful Decryption!!!") class IBE_SW05_LUCTest(unittest.TestCase): def testIBE_SW05_LUC(self): # initialize the element object so that object references have global scope groupObj = PairingGroup('SS512') n = 6; d = 4 ibe = IBE_SW05_LUC(groupObj) (pk, mk) = ibe.setup(n, d) if debug: print("Parameter Setup...") print("pk =>", pk) print("mk =>", mk) w = ['insurance', 'id=2345', 'oncology', 'doctor', 'nurse', 'JHU'] #private identity wPrime = ['insurance', 'id=2345', 'doctor', 'oncology', 'JHU', 'billing', 'misc'] #public identity for encrypt (w_hashed, sk) = ibe.extract(mk, w, pk, d, n) M = groupObj.random(GT) cipher = ibe.encrypt(pk, wPrime, M, n) m = ibe.decrypt(pk, sk, cipher, w_hashed, d) assert m == M, "FAILED Decryption: \nrecovered m = %s and original m = %s" % (m, M) if debug: print("Successful Decryption!! M => '%s'" % m) class IBE_N04Test(unittest.TestCase): def testIBE_N04(self): # initialize the element object so that object references have global scope groupObj = PairingGroup('SS512') waters = Waters(groupObj) ibe = IBE_N04(groupObj) (pk, mk) = ibe.setup() # represents public identity ID = "bob@mail.com" kID = waters.hash(ID) #if debug: print("Bob's key =>", kID) key = ibe.extract(mk, kID) M = groupObj.random(GT) cipher = ibe.encrypt(pk, kID, M) m = ibe.decrypt(pk, key, cipher) #print('m =>', m) assert m == M, "FAILED Decryption!" if debug: print("Successful Decryption!!! m => '%s'" % m) del groupObj class DSE09Test(unittest.TestCase): def testDSE09(self): grp = PairingGroup('SS512') ibe = DSE09(grp) ID = "user2@email.com" (mpk, msk) = ibe.setup() sk = ibe.keygen(mpk, msk, ID) if debug: print("Keygen...\nsk :=", sk) M = grp.random(GT) ct = ibe.encrypt(mpk, M, ID) if debug: print("Ciphertext...\nct :=", ct) m = ibe.decrypt(ct, sk) assert M == m, "Decryption FAILED!" if debug: print("Successful Decryption!!!") if __name__ == "__main__": unittest.main()
from tkinter import * from PIL import ImageTk,Image root = Tk() root.title('Dropdown Meny') root.iconbitmap('images/diablo.ico') root.geometry("200x200") def show(): lbl = Label(root, text=clicked.get()).pack() options = [ 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', ] clicked = StringVar() clicked.set(options[0]) drop = OptionMenu(root, clicked, *options) drop.pack() btn = Button(root, text='Show Selection', command=show) btn.pack() Button(root, text='Exit', command=root.quit).pack() root.mainloop()
# Generated by Django 2.2.7 on 2020-01-15 09:13 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('statics', '0013_auto_20200114_2217'), ] operations = [ migrations.AddField( model_name='review', name='index', field=models.PositiveIntegerField(default=1, verbose_name='순서'), ), ]
import os import time source = ['/Users/YanYu/Desktop/'] target_dir = '/Users/YanYu/Desktop/' target = target_dir+time.strftime('%Y%m%d%H%M%S')+'.zip' zip_command = "zip -qr '%s' %s"%(target, ''.join(source)) if os.system(zip_command) == 0: print 'Successful backup to', target else: print 'Backup failed'
from collections import OrderedDict favorite_languages=OrderedDict() favorite_languages['a']='python' favorite_languages['b']='c++' favorite_languages['c']='c' favorite_languages['d']='ruby' for name,language in favorite_languages.items(): print(name.title()+" 's favorite_language is "+language.title()+" .")
import numpy as np from qiskit import ( #IBMQ, QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, ) from math import pi from qiskit.visualization import plot_histogram from qiskit.tools.visualization import circuit_drawer from rpy2 import robjects as robjects def dec2bin(n): a = 1 list = [] while a > 0: a, b = divmod(n, 2) list.append(str(b)) n = a s = "" for i in range(len(list) - 1, -1, -1): s += str(list[i]) s = s.zfill(10)#input的位数 return s def inverse(s): s_list = list(s) for i in range(len(s_list)): if s_list[i] == '0': s_list[i] = '1' else: s_list[i] ='0' s = "".join(s_list) return s def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft_rotations(circuit, qubit, p): """Performs qft on the first n qubits in circuit (without swaps)""" # if n == 0: # return circuit # n -= 1 # circuit.h(9-n) # for qubit in range(n): # circuit.cu1(pi/2**(n-qubit), qubit, n) # # At the end of our function, we call the same function again on # # the next qubits (we reduced n by one earlier in the function) # qft_rotations(circuit, n) # for qubit in range(n): # circuit.h(qubit) # p = 1 # for j in range(qubit + 1, 10): # circuit.cu1(pi/2**(p), qubit, j) # p += 1 # circuit.barrier() # return circuit # for qubit in range(n): # circuit.h(qubit) # p = 1 for j in range(qubit + 1, 10): circuit.cu1(pi/2**(p), qubit, j) p += 1 circuit.barrier() return circuit def IQFT(input, count_times): simulator = Aer.get_backend('qasm_simulator') q = QuantumRegister(10) c = ClassicalRegister(10) qc = QuantumCircuit(q,c) input_string = dec2bin(input) for i in range(10): if input_string[9-i] == '1': qc.x(q[i]) qc.barrier() swap_registers(qc,10) #qft_rotations(qc,10) for qubit in range(10): qc.h(qubit) p = 1 qft_rotations(qc,qubit,p) qc.barrier() qc.measure(q,c) #circuit_drawer(qc, filename='./IQFT_circuit') job = execute(qc, simulator, shots=count_times * 100) result = job.result() counts = result.get_counts(qc) return counts def IQFT_M1(input, count_times): simulator = Aer.get_backend('qasm_simulator') q = QuantumRegister(10) c = ClassicalRegister(10) qc = QuantumCircuit(q,c) input_string = dec2bin(input) for i in range(10): if input_string[9-i] == '1': qc.x(q[i]) qc.barrier() qc.ch(q[3],q[4])#M1 swap_registers(qc,10) #qft_rotations(qc,10) for qubit in range(10): qc.h(qubit) qft_rotations(qc,qubit,1) qc.barrier() qc.measure(q,c) #circuit_drawer(qc, filename='./IQFT_M1_circuit') job = execute(qc, simulator, shots=count_times * 100) result = job.result() counts = result.get_counts(qc) return counts def IQFT_M2(input, count_times): simulator = Aer.get_backend('qasm_simulator') q = QuantumRegister(10) c = ClassicalRegister(10) qc = QuantumCircuit(q,c) input_string = dec2bin(input) for i in range(10): if input_string[9-i] == '1': qc.x(q[i]) qc.barrier() swap_registers(qc,10) for qubit in range(3): qc.h(qubit) p = 1 qft_rotations(qc,qubit,p) qc.ch(q[4],q[2])#M2 for qubit in range(3,10): qc.h(qubit) p = 1 qft_rotations(qc,qubit,p) qc.barrier() qc.measure(q,c) #circuit_drawer(qc, filename='./IQFT_M2_circuit') job = execute(qc, simulator, shots=count_times * 100) result = job.result() counts = result.get_counts(qc) return counts def IQFT_M3(input, count_times): simulator = Aer.get_backend('qasm_simulator') q = QuantumRegister(10) c = ClassicalRegister(10) qc = QuantumCircuit(q, c) input_string = dec2bin(input) for i in range(10): if input_string[9 - i] == '1': qc.x(q[i]) qc.barrier() swap_registers(qc, 10) for qubit in range(3): qc.h(qubit) p = 1 qft_rotations(qc, qubit, p) qc.ch(q[4],q[3])#M3 qft_rotations(qc,3,1) for qubit in range(4,10): qc.h(qubit) p = 1 qft_rotations(qc,qubit,p) qc.barrier() qc.measure(q, c) #circuit_drawer(qc, filename='./IQFT_M3_circuit') job = execute(qc, simulator, shots=count_times * 100) result = job.result() counts = result.get_counts(qc) return counts def IQFT_M4(input, count_times): simulator = Aer.get_backend('qasm_simulator') q = QuantumRegister(10) c = ClassicalRegister(10) qc = QuantumCircuit(q, c) input_string = dec2bin(input) for i in range(10): if input_string[9 - i] == '1': qc.x(q[i]) qc.barrier() qc.ch(q[2], q[4])#M4 swap_registers(qc, 10) for qubit in range(10): qc.h(qubit) p = 1 qft_rotations(qc, qubit, p) qc.barrier() qc.measure(q, c) #circuit_drawer(qc, filename='./IQFT_M4_circuit') job = execute(qc, simulator, shots=count_times * 100) result = job.result() counts = result.get_counts(qc) return counts def IQFT_M5(input, count_times): simulator = Aer.get_backend('qasm_simulator') q = QuantumRegister(10) c = ClassicalRegister(10) qc = QuantumCircuit(q, c) input_string = dec2bin(input) for i in range(10): if input_string[9 - i] == '1': qc.x(q[i]) qc.barrier() swap_registers(qc, 10) for qubit in range(6): qc.h(qubit) p = 1 qft_rotations(qc, qubit, p) qc.ch(q[8],q[3])#M5 for qubit in range(6,10): qc.h(qubit) p = 1 qft_rotations(qc, qubit, p) qc.barrier() qc.measure(q, c) #circuit_drawer(qc, filename='./IQFT_M5_circuit') job = execute(qc, simulator, shots=count_times * 100) result = job.result() counts = result.get_counts(qc) return counts def IQFT_specification(input): simulator = Aer.get_backend('statevector_simulator') q = QuantumRegister(10) c = ClassicalRegister(10) qc = QuantumCircuit(q,c) input_string = dec2bin(input) for i in range(10): if input_string[9-i] == '1': qc.x(q[i]) qc.barrier() swap_registers(qc,10) #qft_rotations(qc,10) for qubit in range(10): qc.h(qubit) p = 1 qft_rotations(qc,qubit,p) qc.barrier() vector = execute(qc, simulator).result().get_statevector() return vector def probabilityComputing(input): pt = [] t = IQFT_specification(input) for i in range(1024): pt.append(abs(t[i])**2) return pt if __name__ == '__main__': # print(probabilityComputing(16)) # print(probabilityComputing_M2(16)) # print(probabilityComputing_M3(16)) f = open("iqft_M3_test.txt","a") for i in range(1023): f.write('--------------------') f.write('\n') f.write(str(i)) f.write(str(probabilityComputing_M3(i))) f.write('\n') f.close() # print(QRAM(0,2)) # print(QRAM_M1(0, 2)) # print(QRAM_M2(0, 2)) # print(QRAM_M3(0, 2)) # print(QRAM_M4(0, 2)) # print(QRAM_M5(0, 2)) #print(probabilityComputing(104)) #IQFT(0,1024) #print(IQFT_M(8,1024)) # print(IQFT(0,1024)) # print(IQFT_M1(0,1024)) # print(IQFT_M2(0, 1024)) #print(IQFT_M3(0, 1024)) # print(IQFT_M4(0, 1024)) # print(IQFT_M5(0, 1024)) # temp = IQFT_M1(200,1024) # print(temp) # fre = [] # p = probabilityComputing(8) # print(p) # for i in range(1024): # j_s = dec2bin(i) # if j_s in temp: # fre.append(temp[j_s]) # else: # fre.append(0) # fre = np.array(fre) # p = np.array(p) # fre = robjects.FloatVector(fre) # p = robjects.FloatVector(p) # print(fre) # print(p) # robjects.r(''' # chitest<-function(observed,theoretical){ # test_result <- chisq.test(x = observed,p = theoretical) # pvalue = test_result$p.value # return (pvalue) # } # ''') # t = robjects.r['chitest'](fre,p) # pvalue = t[0] # print(pvalue) # a = probabilityComputing(8) # for i in range(1024): # print(a[i]) # print(sum(a)) # AmplitudeAmplification(3,1) # AmplitudeAmplification_M1(3,1) # AmplitudeAmplification_M2(3,1) # AmplitudeAmplification_M3(3,1) # AmplitudeAmplification_M4(3,1) # AmplitudeAmplification_M5(3,1) # AmplitudeAmplification_M6(3,1) # # # f = open('./specification.txt','a') # f1 = open('./counts.txt','a') # a = probabilityComputing(400) # # for i in range(len(a)): # # f.write(str(a[i])) # # f.write('\n') # temp = AmplitudeAmplification(400,1) # for i in range(len(a)): # i_s = dec2bin(i) # if i_s not in temp: # fre.append(0) # else: # fre.append(temp[i_s]) # f1.write(str(fre[i])) # f1.write('\n')
import random import numpy as np import matplotlib.pyplot as plt def rand_seed(m, b, num=2): # create empty list x_coor = [] y_coor = [] label = [] # positive and negtive point number pos_num = int(num / 2) neg_num = num - pos_num # random create point for i in range(pos_num): x = random.randint(0, 30) r = random.randint(1, 30) y = m * x + b - r # save the coordinate of x and y x_coor.append(x) y_coor.append(y) # save label, right=1, left=0 label.append(1 if m >= 0 else -1) for i in range(neg_num): x = random.randint(0, 30) r = random.randint(1, 30) y = m * x + b + r x_coor.append(x) y_coor.append(y) label.append(-1 if m >= 0 else 1) return x_coor, y_coor, label if __name__ == '__main__': # set value of m and b m, b = 1, 2 # plot the function curve x = np.arange(30) # x = [0, 1,..., 29] y = m * x + b plt.plot(x, y) # plot the random point # blue for positive and red for negative x_coor, y_coor, label = rand_seed(m, b, num=30) plt.plot(x_coor[:15], y_coor[:15], 'o', color='blue') plt.plot(x_coor[15:], y_coor[15:], 'o', color='red') plt.show()
""" Edanur Demir EENet models """ from torch import nn from flops_counter import get_model_complexity_info from resnet import ResNet, ResNet6n2 __all__ = ['EENet', 'eenet18', 'eenet34', 'eenet50', 'eenet101', 'eenet152', 'eenet20', 'eenet32', 'eenet44', 'eenet56', 'eenet110',] def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): """Basic Block defition. Basic 3X3 convolution blocks for use on ResNets with layers <= 34. Follows improved proposed scheme in http://arxiv.org/pdf/1603.05027v2.pdf """ expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): """Bottleneck Block defition. Bottleneck architecture for > 34 layer ResNets. Follows improved proposed scheme in http://arxiv.org/pdf/1603.05027v2.pdf """ expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = conv1x1(inplanes, planes) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes, stride) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = conv1x1(planes, planes * self.expansion) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ExitBlock(nn.Module): """Exit Block defition. This allows the model to terminate early when it is confident for classification. """ def __init__(self, inplanes, num_classes, input_shape, exit_type): super(ExitBlock, self).__init__() _, width, height = input_shape self.expansion = width * height if exit_type == 'plain' else 1 self.layers = [] if exit_type == 'bnpool': self.layers.append(nn.BatchNorm2d(inplanes)) if exit_type != 'plain': self.layers.append(nn.AdaptiveAvgPool2d(1)) self.confidence = nn.Sequential( nn.Linear(inplanes * self.expansion, 1), nn.Sigmoid(), ) self.classifier = nn.Sequential( nn.Linear(inplanes * self.expansion, num_classes), nn.Softmax(dim=1), ) def forward(self, x): for layer in self.layers: x = layer(x) x = x.view(x.size(0), -1) conf = self.confidence(x) pred = self.classifier(x) return pred, conf class EENet(nn.Module): """Builds a EENet like architecture. Arguments are * is_6n2model: Whether the architecture of the model is 6n+2 layered ResNet. * block: Block function of the architecture either 'BasicBlock' or 'Bottleneck'. * total_layers: The total number of layers. * repetitions: Number of repetitions of various block units. * num_ee: The number of early exit blocks. * distribution: Distribution method of the early exit blocks. * num_classes: The number of classes in the dataset. * zero_init_residual: Zero-initialize the last BN in each residual branch, so that the residual branch starts with zeros, and each residual block behaves like an identity. This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 * input_shape: Input shape of the model according to dataset. Returns: The nn.Module. """ def __init__(self, is_6n2model, block, total_layers, num_ee, distribution, num_classes, input_shape, exit_type, loss_func, repetitions=None, zero_init_residual=False, **kwargs): super(EENet, self).__init__() if is_6n2model: self.inplanes = 16 repetitions = [(total_layers-2) // 6]*3 counterpart_model = ResNet6n2(block, total_layers, num_classes, input_shape) else: self.inplanes = 64 counterpart_model = ResNet(block, repetitions, num_classes, input_shape) self.stages = nn.ModuleList() self.exits = nn.ModuleList() self.cost = [] self.complexity = [] self.layers = nn.ModuleList() self.stage_id = 0 self.num_ee = num_ee self.total_layers = total_layers self.exit_type = exit_type self.distribution = distribution self.num_classes = num_classes self.input_shape = input_shape self.exit_threshold = 0.5 if loss_func == 'v3': self.exit_threshold = 1./self.num_ee channel, _, _ = input_shape total_flops, total_params = self.get_complexity(counterpart_model) self.set_thresholds(distribution, total_flops) if is_6n2model: self.layers.append(nn.Sequential( nn.Conv2d(channel, 16, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(16), nn.ReLU(inplace=True), )) else: self.layers.append(nn.Sequential( nn.Conv2d(channel, 64, kernel_size=7, stride=2, padding=3, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), )) planes = self.inplanes stride = 1 for repetition in repetitions: downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), nn.BatchNorm2d(planes * block.expansion), ) self.layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion if self.is_suitable_for_exit(): self.add_exit_block(exit_type, total_flops) for _ in range(1, repetition): self.layers.append(block(self.inplanes, planes)) if self.is_suitable_for_exit(): self.add_exit_block(exit_type, total_flops) planes *= 2 stride = 2 assert len(self.exits) == num_ee, \ 'The desired number of exit blocks is too much for the model capacity.' planes = 64 if is_6n2model else 512 self.layers.append(nn.AdaptiveAvgPool2d(1)) #self.fully_connected = nn.Linear(planes * block.expansion, num_classes) self.classifier = nn.Sequential( nn.Linear(planes * block.expansion, num_classes), nn.Softmax(dim=1), ) self.confidence = nn.Sequential( nn.Linear(planes * block.expansion, 1), nn.Sigmoid(), ) self.stages.append(nn.Sequential(*self.layers)) self.softmax = nn.Softmax(dim=1) self.complexity.append((total_flops, total_params)) self.parameter_initializer(zero_init_residual) def get_complexity(self, model): """get model complexity in terms of FLOPs and the number of parameters""" flops, params = get_model_complexity_info(model, self.input_shape,\ print_per_layer_stat=False, as_strings=False) return flops, params def add_exit_block(self, exit_type, total_flops): """add early-exit blocks to the model Argument is * total_flops: the total FLOPs of the counterpart model. This add exit blocks to suitable intermediate position in the model, and calculates the FLOPs and parameters until that exit block. These complexity values are saved in the self.cost and self.complexity. """ self.stages.append(nn.Sequential(*self.layers)) self.exits.append(ExitBlock(self.inplanes, self.num_classes, self.input_shape, exit_type)) intermediate_model = nn.Sequential(*(list(self.stages)+list(self.exits)[-1:])) flops, params = self.get_complexity(intermediate_model) self.cost.append(flops / total_flops) self.complexity.append((flops, params)) self.layers = nn.ModuleList() self.stage_id += 1 def set_thresholds(self, distribution, total_flops): """set thresholds Arguments are * distribution: distribution method of the early-exit blocks. * total_flops: the total FLOPs of the counterpart model. This set FLOPs thresholds for each early-exit blocks according to the distribution method. """ gold_rate = 1.61803398875 flop_margin = 1.0 / (self.num_ee+1) self.threshold = [] for i in range(self.num_ee): if distribution == 'pareto': self.threshold.append(total_flops * (1 - (0.8**(i+1)))) elif distribution == 'fine': self.threshold.append(total_flops * (1 - (0.95**(i+1)))) elif distribution == 'linear': self.threshold.append(total_flops * flop_margin * (i+1)) else: self.threshold.append(total_flops * (gold_rate**(i - self.num_ee))) def is_suitable_for_exit(self): """is the position suitable to locate an early-exit block""" intermediate_model = nn.Sequential(*(list(self.stages)+list(self.layers))) flops, _ = self.get_complexity(intermediate_model) return self.stage_id < self.num_ee and flops >= self.threshold[self.stage_id] def parameter_initializer(self, zero_init_residual): """ Zero-initialize the last BN in each residual branch, so that the residual branch starts with zeros, and each residual block behaves like an identity. This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 """ for module in self.modules(): if isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') elif isinstance(module, nn.BatchNorm2d): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) if zero_init_residual: for module in self.modules(): if isinstance(module, Bottleneck): nn.init.constant_(module.bn3.weight, 0) elif isinstance(module, BasicBlock): nn.init.constant_(module.bn2.weight, 0) def set_multiple_gpus(self): for idx, stage in enumerate(self.stages): self.stages[idx] = nn.DataParallel(stage) for idx, exitblock in enumerate(self.exits): self.exits[idx] = nn.DataParallel(exitblock) def forward(self, x): preds, confs = [], [] for idx, exitblock in enumerate(self.exits): x = self.stages[idx](x) pred, conf = exitblock(x) if not self.training and conf.item() > self.exit_threshold: return pred, idx, self.cost[idx] preds.append(pred) confs.append(conf) x = self.stages[-1](x) x = x.view(x.size(0), -1) pred = self.classifier(x) conf = self.confidence(x) if not self.training: return pred, len(self.exits), 1.0 preds.append(pred) confs.append(conf) return preds, confs, self.cost def eenet18(**kwargs): """EENet-18 model""" model = EENet(is_6n2model=False, block=BasicBlock, total_layers=18, repetitions=[2, 2, 2, 2], **kwargs) return model def eenet34(**kwargs): """EENet-34 model""" model = EENet(is_6n2model=False, block=BasicBlock, total_layers=34, repetitions=[3, 4, 6, 3], **kwargs) return model def eenet50(**kwargs): """EENet-50 model""" model = EENet(is_6n2model=False, block=Bottleneck, total_layers=50, repetitions=[3, 4, 6, 3], **kwargs) return model def eenet101(**kwargs): """EENet-101 model""" model = EENet(is_6n2model=False, block=Bottleneck, total_layers=101, repetitions=[3, 4, 23, 3], **kwargs) return model def eenet152(**kwargs): """EENet-152 model""" model = EENet(is_6n2model=False, block=Bottleneck, total_layers=152, repetitions=[3, 8, 36, 3], **kwargs) return model def eenet20(**kwargs): """EENet-20 model""" model = EENet(True, BasicBlock, 20, **kwargs) return model def eenet32(**kwargs): """EENet-32 model""" model = EENet(True, BasicBlock, 32, **kwargs) return model def eenet44(**kwargs): """EENet-44 model""" model = EENet(True, BasicBlock, 44, **kwargs) return model def eenet56(**kwargs): """EENet-56 model""" model = EENet(True, BasicBlock, 56, **kwargs) return model def eenet110(**kwargs): """EENet-110 model""" model = EENet(True, BasicBlock, 110, **kwargs) return model
# Greg Elgin, Connor Hamilton # CS 205: Warm up project # Last Updated: 02/10/20 # Parsing system to take a string input and return token values # Calls query function with tokens as parameters import shlex region_list = ["Great Lakes", "Harrisburg Scranton", "Hartford Springfield", "Houston", "Indianapolis", "Jacksonville", "Las Vegas", "Los Angeles", "Louisville", "Miami Ft Lauderdale", "Nashville", "New Orleans Mobile", "New York", "Northeast", "Northern New England"] # Initialize search to allow for user to quit without searching search = False # Initialize tokens tokens = list() def get_info(): print() print("You can search for avocado average price, total volume, or best month (of sales)") print("Begin your search by specifying one of these fields followed by 'region' + region name") print("Enter 'region list' for a list of regions") print("Enter q to quit") def get_user_input(): usr_input = str(input("")) return usr_input def get_region_list(): return region_list def parse(): # Initialize valid to enter while loop valid = False global search while not valid: try: # get user input, turn into list of words, initialize empty token list user_input = get_user_input() user_input = user_input.lower() input_list = shlex.split(user_input) tokens.clear() # Save length of user input length = len(input_list) # If user types "region list" display a list of regions if length >= 2 and input_list[0] == "region" and input_list[1] == "list": print("Region list: ") for item in region_list: print(item) print() # First word needs to be "average price" or "total volume" or "best month if length >= 2 and (input_list[0] == "average" and input_list[1] == "price" or input_list[0] == "total" and input_list[1] == "volume" or input_list[0] == "best" and input_list[1] == "month"): if input_list[0] == "average" and input_list[1] == "price": tokens.append("AveragePrice") elif input_list[0] == "total" and input_list[1] == "volume": tokens.append("TotalVolume") elif input_list[0] == "best" and input_list[1] == "month": tokens.append("BestMonth") # Next word should be 'region' followed by a valid region name if length >= 4 and input_list[2] == "region": region_list_lower = [x.lower() for x in region_list] if input_list[3] in region_list_lower: tokens.append(input_list[3]) # Next item should be 'month' followed by an int 1-12 # This field is optional for AvgPrice, mandatory for TotalVol, and empty for BestMonth if length >= 6 and input_list[4] == "month": if input_list[0] == "best": print("When searching for Best Month you do not need to input a month") valid = False elif input_list[0] == "average": if (input_list[5] == "1" or input_list[5] == "2" or input_list[5] == "3" or input_list[5] == "4" or input_list[5] == "5" or input_list[5] == "6" or input_list[5] == "7" or input_list[5] == "8" or input_list[5] == "9" or input_list[5] == "10" or input_list[5] == "11" or input_list[5] == "12"): tokens.append(int(input_list[5])) else: print("you must specify a month between 1 and 12") valid = False elif input_list[0] == "total": try: if int(input_list[5]) in range(1, 13): tokens.append(int(input_list[5])) else: print("you must specify a month between 1 and 12") valid = False except ValueError: print("you must specify a month between 1 and 12") # Last item should be 'type' followed by 'conventional' or 'organic' if length >= 8 and input_list[6] == "type": if input_list[7] == 'conventional' or input_list[7] == "organic": tokens.append(input_list[7]) if length == 8: valid = True search = True else: print("You input too much information") else: print("type must be 'organic' or 'conventional'") valid = False else: print("You must specify a type after month") valid = False elif length >= 5 and input_list[4] != "month" and (input_list[0] == "best" or input_list[0] == 'average'): tokens.append("") # Last item should be 'type' followed by 'conventional' or 'organic' if length >= 6 and input_list[4] == "type": if input_list[5] == 'conventional' or input_list[5] == "organic": tokens.append(input_list[5]) if length == 6: valid = True search = True else: print("You input too much information") else: print("type must be 'organic' or 'conventional'") valid = False else: print("You must specify a type after region") valid = False elif input_list[0] != "best": print("You must enter month followed by a number 1-12 after you specify region") valid = False else: print("You must specify a type after region") valid = False else: print("That is not a valid region") print("Input 'region list' to see valid regions") print("If region is multiple words input it in quotes") valid = False else: print("Please input 'region' followed by a region name after you specify average price, " "total volume, or best month") valid = False # exit program if input is "q" elif length >= 1 and input_list[0] == "q": valid = True search = False else: print("Please begin your search with 'average price', 'total volume', or 'best month'") print("Or input 'q' to quit") valid = False except ValueError: print("Invalid input") print("Did you forget to close your quotes?") valid = False # FOR TESTING PURPOSES def query(tokens_list): print(tokens_list)
"""SCT URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.8/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add an import: from blog import urls as blog_urls 2. Add a URL to urlpatterns: url(r'^blog/', include(blog_urls)) """ from django.conf.urls import include, url from django.contrib import admin from app0.views import * urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'^$', home, name='home'), url(r'^search/$', search, name = 'search'), url(r'^insert/$', insert, name = 'insert'), url(r'^update/$', update, name = 'update'), url(r'delete/$', delete, name = 'delete'), url(r'^search_query/$', search_query, name='search_query'), url(r'^insert_query/$', insert_query, name='insert_query'), url(r'^update_query/$', update_query, name = 'update_query'), ]
############################################################################ # LOGISTIC REGRESSION # # Note: NJUST Machine Learning Assignment. # # Task: Binary Classification, Multi-class Classification. # # Optimization: Grediant Descent (GD), Stochastic Grediant Descent(SGD). # # Author: Edmund Sowah # ############################################################################ import numpy as np import matplotlib import matplotlib.pyplot as plt class softmax_regression(): def __init__(self, data, label, num_class): self.label = label self.num_class = num_class self.num_data = len(data) data = self.preprocess(data) bias = np.ones(len(data),) self.data = np.vstack((data.T, bias)).T self.num_feature = self.data.shape[1] self.theta = np.random.randn(self.num_feature, self.num_class) if num_class == 2: self.lr = 1 elif num_class == 3: self.lr = 1.5 self.color_list = ['r', 'g', 'b', 'y'] def preprocess(self, data): data = data - np.mean(data, axis=0, keepdims=True) data = data / (np.max(data, axis=0, keepdims=True) - np.min(data, axis=0, keepdims=True)) return data def softmax(self, data): ''' Calculate Softmax Prediction Vector. ''' # `Feature` is an n by num_class matrix feature = np.dot(data, self.theta) # Prevent overflow by subtracting the maximum vector feature -= np.max(feature, axis=1, keepdims=True) exp_feature = np.exp(feature) sum_exp_feature = np.sum(exp_feature, axis=1, keepdims=True) return exp_feature / sum_exp_feature def loss(self): ''' Use Log-likelihood estimation to compute loss function. ''' score = np.dot(self.data, self.theta) score -= np.max(score, axis=1, keepdims=True) sum_exp_score = np.sum(np.exp(score), axis=1) loss = np.log(sum_exp_score) # Remove redundant terms: the correct term loss -= score[np.arange(self.num_data), self.label] loss = (1. / self.num_data) * np.sum(loss) return loss def update_parameter(self, stochastic=0): ''' Calculate Grediant. ''' if stochastic != 0: rand_i = np.random.randint(0, self.num_data, stochastic) if stochastic == 1: self.lr = 10 x = self.data[rand_i] y = self.label[rand_i] else: self.lr = 5 x = self.data[rand_i] y = self.label[rand_i] else: x = self.data y = self.label softmax = self.softmax(x) softmax[np.arange(len(x)), y] -= 1. gred = (1. / self.num_data) * np.dot(x.T, softmax) self.theta -= self.lr * gred print('theta:\n', self.theta) if __name__ == '__main__': cl = input('Input Classification number: ') opt = input('Input Optimization strategy''s number: ') if cl == '2': # Import Binary data exam_data = np.loadtxt('Exam\exam_x.dat') exam_label = np.loadtxt('Exam\exam_y.dat', dtype=int) data = exam_data label = exam_label elif cl == '3': # Import Multi-class data iris_data = np.loadtxt('Iris\iris_x.dat') iris_label = np.loadtxt('Iris\iris_y.dat', dtype=int) data = iris_data label = iris_label else: print('no {}-class task available!'.format(cl)) softmax_reg = softmax_regression(data, label, int(cl)) print('Initiated theta value is:\n', softmax_reg.theta) loss_list = [] step_list = [] acc_list = [] plt.ion() fig, ax = plt.subplots(1, 4, figsize=(16, 5)) for steps in range(300): step_list.append(steps) pred = softmax_reg.softmax(softmax_reg.data) classification = np.argmax(pred, 1) loss = softmax_reg.loss() print('Current Loss is:\n', loss) loss_list.append(loss) plt.subplot(1, 4, 1) plt.title('Ground Truth') for i in range(int(cl)): data_x = np.array(data.T[0][label == i]) data_y = np.array(data.T[1][label == i]) plt.scatter(data_x, data_y, c=softmax_reg.color_list[i]) plt.subplot(1, 4, 2) plt.title('Classification Plot') for i in range(int(cl)): data_x = np.array(data.T[0][classification == i]) data_y = np.array(data.T[1][classification == i]) if len(data_x) == 0: continue plt.scatter(data_x, data_y, c=softmax_reg.color_list[i]) ax[1].cla() plt.subplot(1, 4, 3) plt.title('Loss') ax[2].cla() plt.plot(step_list, loss_list, c='b', ls='-', marker='o') plt.subplot(1, 4, 4) acc = sum(label == classification) / softmax_reg.num_data acc_list.append(acc) plt.plot(step_list, acc_list, c='g', ls='-', marker='*') plt.title('Accuracy') plt.pause(0.1) if opt == 0: softmax_reg.update_parameter() else: softmax_reg.update_parameter(int(opt))
#coding:utf8 #https://www.jianshu.com/p/c307d04eee56 #1。适合度分析(拟合性分析) # 某科学家预言抛一个色子,各面向上的几率都相同。为了验证自己理论的正确性,该科学家抛了600次硬币, # 结果为一点102次,二点102次,三点96次,四点105次,五点95次,六点100次。 # 显然这个结果和理论预期并不完全一样,那么,科学家的理论有错吗?我们就用Python来验证一下。 from scipy import stats import numpy as np from scipy import stats obs = [102, 102, 96, 105, 95, 100] exp = [100, 100, 100, 100, 100, 100] stats.chisquare(obs, f_exp = exp) #p>0.95很合适 没错 #2 独立性分析 #“独立性检验”验证从两个变量抽出的配对观察值组是否互相独立(例如:每次都从A国和B国各抽一个人,看他们的反应是否与国籍无关)。 #https://www.cnblogs.com/Yuanjing-Liu/p/9252844.html#_label1_1 #https://blog.csdn.net/QimaoRyan/article/details/72824766 #e.g. 三种农药的杀虫数据 # 杀虫效果 甲 乙 丙 # 死亡数 37 49 23 # 未死亡数 150 100 57 # 分析杀虫效果与农药类型是否有关 import numpy as np from scipy.stats import chi2_contingency d = np.array([[37, 49, 23], [150, 100, 57]]) print chi2_contingency(d) #p=0.02 0。05 拒绝,杀虫效果与农药类型有关系,不独立 #第一个值为卡方值,第二个值为P值,第三个值为自由度,第四个为与原数据数组同维度的对应理论值
from flask import render_template, redirect import helper def create_link(): return redirect('/') def get_liks(): return render_template( 'index.html', dar = helper.dar(), user = 'teste' )
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'winter2021_updated_nocheckboxes.ui' # # Created by: PyQt5 UI code generator 5.15.0 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(400, 250) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.horizontalLayout_2 = QtWidgets.QHBoxLayout(self.centralwidget) self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.verticalLayout_3 = QtWidgets.QVBoxLayout() self.verticalLayout_3.setObjectName("verticalLayout_3") self.imageLabel = QtWidgets.QLabel(self.centralwidget) self.imageLabel.setAlignment(QtCore.Qt.AlignCenter) self.imageLabel.setObjectName("imageLabel") self.verticalLayout_3.addWidget(self.imageLabel) self.verticalLayout_5 = QtWidgets.QVBoxLayout() self.verticalLayout_5.setObjectName("verticalLayout_5") self.gridLayout = QtWidgets.QGridLayout() self.gridLayout.setObjectName("gridLayout") self.recordbutton = QtWidgets.QPushButton(self.centralwidget) self.recordbutton.setMinimumSize(QtCore.QSize(0, 0)) self.recordbutton.setMaximumSize(QtCore.QSize(88, 21)) self.recordbutton.setObjectName("recordbutton") self.gridLayout.addWidget(self.recordbutton, 2, 0, 1, 1) self.sendbutton = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.sendbutton.sizePolicy().hasHeightForWidth()) self.sendbutton.setSizePolicy(sizePolicy) self.sendbutton.setMaximumSize(QtCore.QSize(88, 21)) self.sendbutton.setObjectName("sendbutton") self.gridLayout.addWidget(self.sendbutton, 2, 1, 1, 1) # self.serialCloseButton = QtWidgets.QPushButton(self.centralwidget) # self.serialCloseButton.setEnabled(True) # sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) # sizePolicy.setHorizontalStretch(0) # sizePolicy.setVerticalStretch(0) # sizePolicy.setHeightForWidth(self.serialCloseButton.sizePolicy().hasHeightForWidth()) # self.serialCloseButton.setSizePolicy(sizePolicy) # self.serialCloseButton.setMaximumSize(QtCore.QSize(88, 21)) # self.serialCloseButton.setObjectName("serialCloseButton") # self.gridLayout.addWidget(self.serialCloseButton, 0, 1, 1, 1) # self.clearbutton = QtWidgets.QPushButton(self.centralwidget) # self.clearbutton.setMinimumSize(QtCore.QSize(0, 0)) # self.clearbutton.setMaximumSize(QtCore.QSize(88, 21)) # self.clearbutton.setObjectName("clearbutton") # self.gridLayout.addWidget(self.clearbutton, 2, 0, 1, 1) self.plotbutton = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.plotbutton.sizePolicy().hasHeightForWidth()) self.plotbutton.setSizePolicy(sizePolicy) self.plotbutton.setMaximumSize(QtCore.QSize(88, 21)) self.plotbutton.setObjectName("plotbutton") self.gridLayout.addWidget(self.plotbutton, 3, 0, 1, 1) self.savebutton = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.savebutton.sizePolicy().hasHeightForWidth()) self.savebutton.setSizePolicy(sizePolicy) self.savebutton.setMaximumSize(QtCore.QSize(88, 21)) self.savebutton.setObjectName("savebutton") self.gridLayout.addWidget(self.savebutton, 3, 1, 1, 1) self.com_port = QtWidgets.QComboBox() self.gridLayout.addWidget(self.com_port, 0, 0, 1, 1) self.serialOpenButton = QtWidgets.QPushButton(self.centralwidget) self.serialOpenButton.setMinimumSize(QtCore.QSize(0, 0)) self.serialOpenButton.setMaximumSize(QtCore.QSize(88, 21)) self.serialOpenButton.setObjectName("serialOpenButton") self.gridLayout.addWidget(self.serialOpenButton, 1, 0, 1, 1) self.settingsButton = QtWidgets.QPushButton(self.centralwidget) self.settingsButton.setMinimumSize(QtCore.QSize(0, 0)) self.settingsButton.setMaximumSize(QtCore.QSize(88, 21)) self.settingsButton.setObjectName("settingsButton") self.gridLayout.addWidget(self.settingsButton, 1, 1, 1, 1) # self.settings = QtWidgets.QPushButton(self.centralwidget) # sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) # sizePolicy.setHorizontalStretch(0) # sizePolicy.setVerticalStretch(0) # sizePolicy.setHeightForWidth(self.settings.sizePolicy().hasHeightForWidth()) # self.settings.setSizePolicy(sizePolicy) # self.settings.setMinimumSize(QtCore.QSize(0, 0)) # self.settings.setMaximumSize(QtCore.QSize(300, 21)) # self.settings.setObjectName("settings") # self.gridLayout.addWidget(self.settings, 3, 0, 1, 2) self.verticalLayout_5.addLayout(self.gridLayout) self.verticalLayout_3.addLayout(self.verticalLayout_5) spacerItem = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.verticalLayout_3.addItem(spacerItem) self.horizontalLayout_2.addLayout(self.verticalLayout_3) self.verticalLayout_2 = QtWidgets.QVBoxLayout() self.verticalLayout_2.setObjectName("verticalLayout_2") # self.graphWidgetOutput = PlotWidget(self.centralwidget) # self.graphWidgetOutput.setObjectName("graphWidgetOutput") # self.verticalLayout_2.addWidget(self.graphWidgetOutput) # self.graphWidgetInput = PlotWidget(self.centralwidget) # self.graphWidgetInput.setObjectName("graphWidgetInput") # self.verticalLayout_2.addWidget(self.graphWidgetInput) self.horizontalLayout_2.addLayout(self.verticalLayout_2) MainWindow.setCentralWidget(self.centralwidget) # self.menubar = QtWidgets.QMenuBar(MainWindow) # self.menubar.setGeometry(QtCore.QRect(0, 0, 1000, 20)) # self.menubar.setObjectName("menubar") # self.menuLayout = QtWidgets.QMenu(self.menubar) # self.menuLayout.setObjectName("menuLayout") # MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) # self.actionStatics = QtWidgets.QAction(MainWindow) # self.actionStatics.setObjectName("actionStatics") # self.actionBeam = QtWidgets.QAction(MainWindow) # self.actionBeam.setObjectName("actionBeam") # self.actionSound = QtWidgets.QAction(MainWindow) # self.actionSound.setObjectName("actionSound") # self.menuLayout.addAction(self.actionStatics) # self.menuLayout.addAction(self.actionBeam) # self.menuLayout.addAction(self.actionSound) # self.menubar.addAction(self.menuLayout.menuAction()) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "CU@Home DAQ")) self.imageLabel.setText(_translate("MainWindow", "Image Label (DON\'T CHANGE)")) self.recordbutton.setText(_translate("MainWindow", "Record Data")) self.sendbutton.setText(_translate("MainWindow", "Send Data")) # self.serialCloseButton.setText(_translate("MainWindow", "Close Serial")) # self.clearbutton.setText(_translate("MainWindow", "Clear Plot")) self.plotbutton.setText(_translate("MainWindow", "Plot Data")) self.savebutton.setText(_translate("MainWindow", "Save Data")) self.serialOpenButton.setText(_translate("MainWindow", "Open Serial")) self.settingsButton.setText(_translate("MainWindow", "Settings")) # self.settings.setText(_translate("MainWindow", "Settings")) # self.menuLayout.setTitle(_translate("MainWindow", "Course")) # self.actionStatics.setText(_translate("MainWindow", "Statics")) # self.actionBeam.setText(_translate("MainWindow", "Experimentation Beam")) # self.actionSound.setText(_translate("MainWindow", "Experimentation Speed of Sound")) class Ui_Dialog(object): def setupUi(self, Dialog, COM, fs, N): Dialog.setObjectName("Dialog") Dialog.resize(250, 300) Dialog.setMinimumSize(QtCore.QSize(250, 300)) Dialog.setMaximumSize(QtCore.QSize(250, 300)) self.horizontalLayout_2 = QtWidgets.QHBoxLayout(Dialog) self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.topGroupBox = QtWidgets.QGroupBox(Dialog) self.topGroupBox.setMinimumSize(QtCore.QSize(230, 122)) self.topGroupBox.setMaximumSize(QtCore.QSize(230, 122)) self.topGroupBox.setObjectName("topGroupBox") self.gridLayoutWidget = QtWidgets.QWidget(self.topGroupBox) self.gridLayoutWidget.setGeometry(QtCore.QRect(9, 20, 211, 91)) self.gridLayoutWidget.setObjectName("gridLayoutWidget") self.gridLayout_3 = QtWidgets.QGridLayout(self.gridLayoutWidget) self.gridLayout_3.setContentsMargins(0, 0, 0, 0) self.gridLayout_3.setObjectName("gridLayout_3") # self.timeoutLabel = QtWidgets.QLabel(self.gridLayoutWidget) # self.timeoutLabel.setObjectName("timeoutLabel") # self.gridLayout_3.addWidget(self.timeoutLabel, 2, 0, 1, 1) # self.baudrateLabel = QtWidgets.QLabel(self.gridLayoutWidget) # self.baudrateLabel.setObjectName("baudrateLabel") # self.gridLayout_3.addWidget(self.baudrateLabel, 1, 0, 1, 1) self.portsLabel = QtWidgets.QLabel(self.gridLayoutWidget) self.portsLabel.setObjectName("portsLabel") self.gridLayout_3.addWidget(self.portsLabel, 0, 0, 1, 1) self.timeout = QtWidgets.QLineEdit(self.gridLayoutWidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) # sizePolicy.setHeightForWidth(self.timeout.sizePolicy().hasHeightForWidth()) # self.timeout.setSizePolicy(sizePolicy) # self.timeout.setAlignment(QtCore.Qt.AlignCenter) # self.timeout.setObjectName("timeout") # self.gridLayout_3.addWidget(self.timeout, 2, 1, 1, 1) # self.baudrate = QtWidgets.QComboBox(self.gridLayoutWidget) # self.baudrate.setObjectName("baudrate") # self.baudrate.addItem("") # self.baudrate.addItem("") # self.baudrate.addItem("") # self.baudrate.addItem("") # self.gridLayout_3.addWidget(self.baudrate, 1, 1, 1, 1) self.ports = QtWidgets.QComboBox(self.gridLayoutWidget) self.ports.setObjectName("ports") self.gridLayout_3.addWidget(self.ports, 0, 1, 1, 1) self.verticalLayout.addWidget(self.topGroupBox) self.bottomGroupBox = QtWidgets.QGroupBox(Dialog) self.bottomGroupBox.setMinimumSize(QtCore.QSize(230, 121)) self.bottomGroupBox.setMaximumSize(QtCore.QSize(230, 121)) self.bottomGroupBox.setObjectName("bottomGroupBox") self.gridLayoutWidget_2 = QtWidgets.QWidget(self.bottomGroupBox) self.gridLayoutWidget_2.setGeometry(QtCore.QRect(10, 20, 211, 91)) self.gridLayoutWidget_2.setObjectName("gridLayoutWidget_2") self.gridLayout_4 = QtWidgets.QGridLayout(self.gridLayoutWidget_2) self.gridLayout_4.setContentsMargins(0, 0, 0, 0) self.gridLayout_4.setObjectName("gridLayout_4") self.samplingrate = QtWidgets.QLineEdit(self.gridLayoutWidget_2) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.samplingrate.sizePolicy().hasHeightForWidth()) self.samplingrate.setSizePolicy(sizePolicy) self.samplingrate.setAlignment(QtCore.Qt.AlignCenter) self.samplingrate.setObjectName("samplingrate") self.gridLayout_4.addWidget(self.samplingrate, 2, 1, 1, 1) self.datawindowsizeLabel = QtWidgets.QLabel(self.gridLayoutWidget_2) self.datawindowsizeLabel.setObjectName("datawindowsizeLabel") self.gridLayout_4.addWidget(self.datawindowsizeLabel, 0, 0, 1, 1) self.datawindowsize = QtWidgets.QLineEdit(self.gridLayoutWidget_2) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.datawindowsize.sizePolicy().hasHeightForWidth()) self.datawindowsize.setSizePolicy(sizePolicy) self.datawindowsize.setAlignment(QtCore.Qt.AlignCenter) self.datawindowsize.setObjectName("datawindowsize") self.gridLayout_4.addWidget(self.datawindowsize, 0, 1, 1, 1) self.sampletime = QtWidgets.QLineEdit(self.gridLayoutWidget_2) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.sampletime.sizePolicy().hasHeightForWidth()) self.sampletime.setSizePolicy(sizePolicy) self.sampletime.setAlignment(QtCore.Qt.AlignCenter) self.sampletime.setObjectName("sampletime") self.gridLayout_4.addWidget(self.sampletime, 1, 1, 1, 1) self.sampletimeLabel = QtWidgets.QLabel(self.gridLayoutWidget_2) self.sampletimeLabel.setObjectName("sampletimeLabel") self.gridLayout_4.addWidget(self.sampletimeLabel, 1, 0, 1, 1) self.samplingrateLabel = QtWidgets.QLabel(self.gridLayoutWidget_2) self.samplingrateLabel.setObjectName("samplingrateLabel") self.gridLayout_4.addWidget(self.samplingrateLabel, 2, 0, 1, 1) self.verticalLayout.addWidget(self.bottomGroupBox) self.buttonBox = QtWidgets.QDialogButtonBox(Dialog) self.buttonBox.setStandardButtons(QtWidgets.QDialogButtonBox.Cancel|QtWidgets.QDialogButtonBox.Ok) self.buttonBox.setCenterButtons(True) self.buttonBox.setObjectName("buttonBox") self.verticalLayout.addWidget(self.buttonBox) self.horizontalLayout_2.addLayout(self.verticalLayout) self.retranslateUi(Dialog, COM, fs, N) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog, COM, fs, N): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "Settings")) self.topGroupBox.setTitle(_translate("Dialog", "Serial Communication")) # self.timeoutLabel.setText(_translate("Dialog", "Timeout (s)")) # self.baudrateLabel.setText(_translate("Dialog", "Baud Rate")) self.portsLabel.setText(_translate("Dialog", "Ports")) # self.timeout.setText(_translate("Dialog", "0.1")) # self.baudrate.setItemText(0, _translate("Dialog", "9600")) # self.baudrate.setItemText(1, _translate("Dialog", "500000")) # self.baudrate.setItemText(2, _translate("Dialog", "1000000")) # self.baudrate.setItemText(3, _translate("Dialog", "2000000")) self.bottomGroupBox.setTitle(_translate("Dialog", "Data")) self.samplingrateLabel.setText(_translate("Dialog", "Sampling Rate (fs)")) self.samplingrate.setText(_translate("Dialog", str(fs))) self.datawindowsizeLabel.setText(_translate("Dialog", "Number of Samples (N)")) self.datawindowsize.setText(_translate("Dialog", str(N))) # self.sampletime.setText(_translate("Dialog", "100")) # self.sampletimeLabel.setText(_translate("Dialog", "Sample Time (s)")) # self.samplingrateLabel.setText(_translate("Dialog", "Sampling Time (s)")) from pyqtgraph import PlotWidget if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
import errno import os import pandas as pd import math import json import time from project_thesis.visualization.visualizer import ( visualize_solution, visualize_test_instance, ) class Instance: def __init__( self, scooters: pd.DataFrame, delivery_nodes: pd.DataFrame, depot: tuple, service_vehicles: tuple, optimal_state: list, number_of_sections: int, number_of_zones: int, T_max: int, is_percent_t_max: bool, computational_limit: int, bound: tuple, model_class, **kwargs, ): """ Wrapper class for a Model class. Contains both raw input data and model input data :param scooters: dataframe with lat lon and battery in % :param delivery_nodes: dataframe with lat lon of delivery nodes :param depot: (lat, lon) :param service_vehicles: dict - ["type"]: (#numbers, scooter capacity, battery capacity) :param optimal_state: list of optimal state for each zone of the problem :param number_of_sections: int number_of_sections :param T_max: int - time limit for vehicles :param computational_limit: int - max solution time for model :param bound: tuple that defines the bound of the geographical area in play """ # Save raw data self.scooters = scooters self.delivery_nodes = delivery_nodes self.depot = depot self.service_vehicles = service_vehicles self.T_max = T_max self.is_percent_T_max = is_percent_t_max self.computational_limit = computational_limit self.optimal_state = optimal_state self.number_of_sections = number_of_sections self.number_of_zones = number_of_zones self.seed = kwargs.get("seed", None) # Context self.bound = bound # Model self.model_input = model_class.get_input_class()( scooters, delivery_nodes, depot, service_vehicles, optimal_state, T_max, is_percent_t_max, self.number_of_zones, theta=kwargs.get("theta", 0.05), beta=kwargs.get("beta", 0.8), ) self.model = model_class( self.model_input, time_limit=computational_limit, valid_inequalities=kwargs.get("valid_inequalities", None), symmetry=kwargs.get("symmetry", None), subsets=kwargs.get("subsets", None), ) def run(self): """ Runs the model of the instance """ self.model.optimize_model() def visualize_solution( self, save=False, edge_plot=False, time_stamp=time.strftime("%d-%m %H.%M") ): """ See documentation of visualize_solution function from visualization """ visualize_solution(self, save, edge_plot, time_stamp) def visualize_raw_data_map( self, model_name="", save=False, time_stamp=time.strftime("%d-%m %H.%M") ): """ See documentation of visualize_solution function from visualization """ visualize_test_instance( self.scooters, self.delivery_nodes, self.bound, self.number_of_sections, model_name, save, time_stamp, ) def print_instance(self): print("\n-------------- INSTANCE --------------\n") print(self.get_model_name(True)) print("\n--------------------------------------\n") def get_runtime(self): """ :return: the elapsed time in seconds to get to optimal solution in gurobi """ return self.model.m.Runtime def get_number_of_nodes(self): return len(self.scooters) + len(self.delivery_nodes) + 1 def save_model_and_instance(self, time_stamp): """ Function to save gurobi models, file name represents: zones per axis_nodes per zone_Tmax_#vehicles_computational limit """ path = "saved_models/" + time_stamp try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise file_path_solution = f"{path}/{self.get_model_name()}.json" self.model.m.write(file_path_solution) with open(file_path_solution, "r") as jsonFile: data = json.load(jsonFile) visits = [self.model.y[key].x for key in self.model.y if 0 < key[0]] visit_percentage = sum(visits) / (len(self.model_input.locations) - 1) data["Visit Percentage"] = visit_percentage data["Deviation Before"] = self.deviation_before() deviation_after, deviation_after_squared = self.deviation_from_optimal_state() data["Deviation After"] = deviation_after data["Deviation After Squared"] = deviation_after_squared data["Instance"] = self.instance_to_dict() data["Variables"] = self.get_model_variables() data["Seed"] = self.seed if self.model.valid_inequalities: data["Valid Inequalities"] = self.model.valid_inequalities else: data["Valid Inequalities"] = "-" if self.model.symmetry: data["Symmetry constraint"] = self.model.symmetry else: data["Symmetry constraint"] = "-" with open(file_path_solution, "w") as jsonFile: json.dump(data, jsonFile) def instance_to_dict(self): return { "scooters": self.scooters.to_dict(), "delivery_nodes": self.delivery_nodes.to_dict(), "depot": self.depot, "service_vehicles": self.service_vehicles, "optimal_state": self.optimal_state, "number_of_sections": self.number_of_sections, "T_max": self.model_input.shift_duration, "is_percent_T_max": (self.is_percent_T_max, self.T_max), "computational_limit": self.computational_limit, "bound": self.bound, "model_class": self.model.to_string(False), "theta": self.model_input.theta if self.model.to_string() == "A" else "x", "beta": self.model_input.beta if self.model.to_string() == "A" else "x", } def get_model_variables(self): variables = {} for var in self.model.m.getVars(): variables[var.VarName] = var.X return variables def get_model_name(self, print_mode=False): num_of_service_vehicles, scooter_cap, battery_cap = self.service_vehicles scooters_per_section = int(len(self.scooters) / (self.number_of_sections * 2)) if not self.model.symmetry: symmetry = "None" else: symmetry = self.model.symmetry if not self.model.valid_inequalities: valid_inequalities = "None" else: valid_inequalities = self.model.valid_inequalities if self.is_percent_T_max: percent = ( f"T max calculated from TSP - {self.is_percent_T_max}\n" + f"Shift duration as percent of TSP - {int(self.T_max*100)}%\n" ) else: percent = f"T max calculated from TSP - {self.is_percent_T_max}\n" return ( f"Number of sections - {self.number_of_sections}\n" + f"Scooters per zone - {scooters_per_section}\n" + f"Number of service vehicles - {num_of_service_vehicles}\n" + percent + f"Shift duration - {int(self.model_input.shift_duration)}\n" + f"Computational limit - {self.computational_limit}\n" + f"Model type - {self.model.to_string(False)}\n" + f"Symmetry constraint - {' '.join(['%-2s,' % (x,) for x in symmetry])}\n" + f"Valid Inequalities - {' '.join(['%-2s,' % (x,) for x in valid_inequalities])}\n" + f"Seed - {self.seed}" if print_mode else f"model_{self.number_of_sections}_{scooters_per_section}_{num_of_service_vehicles}_" + f"{int(self.model_input.shift_duration)}_{self.computational_limit}_" + f"{self.model.to_string()}_{round(self.model_input.theta,4)}_{round(self.model_input.beta,3)}_" f"{symmetry}_{valid_inequalities}" ) def is_feasible(self): return self.model.m.MIPGap != math.inf def deviation_from_optimal_state(self): optimal_state = self.calculate_optimal_state() deviation = 0 deviation_squared = 0 for z in self.model_input.zones: battery_in_zone = 0 for s in self.model_input.zone_scooters[z]: battery = 0 visited = False for v in self.model_input.service_vehicles: if s in self.model_input.scooters and self.model.p[(s, v)].x == 1: visited = True elif self.model.y[(s, v)].x == 1: visited = True battery += 1 if not visited and s in self.model_input.scooters: battery += self.model_input.battery_level[s] battery_in_zone += battery deviation += abs(optimal_state - battery_in_zone) deviation_squared += (optimal_state - battery_in_zone) ** 2 return deviation, deviation_squared def deviation_before(self): optimal_state = self.calculate_optimal_state() deviation = 0 for z in self.model_input.zones: battery_in_zone = sum( [ self.model_input.battery_level[s] for s in self.model_input.zone_scooters[z] if s in self.model_input.scooters ] ) deviation += abs(optimal_state - battery_in_zone) return deviation def calculate_optimal_state(self): return self.model_input.num_scooters / (self.number_of_sections ** 2)
import time from django.core.exceptions import ValidationError from rest_framework import serializers def hh_mm_to_minutes(str_hh_mm): """Перевести строку формата 'HH:MM' во время.""" minutes = time.strptime(str_hh_mm, '%H:%M') return minutes.tm_hour * 60 + minutes.tm_min def interval_validator(value): """Проверить является ли строка интервалом времени в формате 'HH:MM-HH:MM' и вернуть времена начала и конца периода.""" try: value = value.split('-') begin = hh_mm_to_minutes(value[0]) end = hh_mm_to_minutes(value[1]) except ValueError: raise serializers.ValidationError( 'Значение не является интервалом времени в формате "HH:MM-HH:MM"' ) return begin, end def interval_list_validator(interval_list): """Проверить список интервалов и вернуть список кортежей с валидным интервалом и временами начала и конца интервала.""" new_list = [] for interval in interval_list: begin, end = interval_validator(interval) new_list.append((interval, begin, end)) return new_list def weight_validator(value): """Проверить, что вес соответствует нормам сервиса.""" if not (0 < value <= 50): raise ValidationError('Недопустимый вес заказа') def check_unknown_fields(fields, data): """Проверить, что в сериализуемый контент не содержит необъявленных полей.""" if data is not serializers.empty: unknown_fields = set(data) - set(fields) if unknown_fields: errors = [f for f in unknown_fields] raise serializers.ValidationError({ 'unknown_fields': errors, })
import urllib.request from bs4 import BeautifulSoup import csv from time import sleep import pandas as pd import json import urllib.request import os from PIL import Image import yaml import requests import sys import argparse import Levenshtein vol = 6 curation_uri = "https://raw.githubusercontent.com/nakamura196/genji_curation/master/docs/iiif/kuronet/"+str(vol).zfill(2)+".json" curation_data = requests.get(curation_uri).json() page_text_map = {} with open('data/'+str(vol)+".csv", 'r') as f: reader = csv.reader(f) header = next(reader) # ヘッダーを読み飛ばしたい時 index = 0 for row in reader: if row[1] != "": page_text_map[index] = int(row[1]) index += 1 members2 = [] members = curation_data["selections"][0]["members"] for index in page_text_map: member = members[index] p = int(page_text_map[index]) member2 = { "@id": member["@id"], "@type": "sc:Canvas", "description": "", "label": "新編日本古典文学全集 p."+str(p), "metadata": [ { "label": "p", "value": p } ] } members2.append(member2) curation_data["selections"][0]["members"] = members2 f2 = open("../../docs/iiif/saga/"+str(vol).zfill(2)+".json", 'w') json.dump(curation_data, f2, ensure_ascii=False, indent=4, sort_keys=True, separators=(',', ': '))
# https://wikidocs.net/42528 ''' Q1. 주어진 자연수가 홀수인지 짝수인지 판별해 주는 함수(is_odd)를 작성해 보자. ''' def is_odd(num): return '홀수' if num % 2 == 1 else '짝수' print(is_odd(2)) ''' Q2. 입력으로 들어오는 모든 수의 평균 값을 계산해 주는 함수를 작성해 보자. (단 입력으로 들어오는 수의 개수는 정해져 있지 않다.) ''' numbers = input('Input the numbers: ') toString = filter(lambda x: x, numbers.split(' ')) toInt = list(map(int, toString)) print(sum(toInt) / len(toInt)) ''' Q3. 다음은 두 개의 숫자를 입력받아 더하여 돌려주는 프로그램이다. input1 = input("첫번째 숫자를 입력하세요:") input2 = input("두번째 숫자를 입력하세요:") total = input1 + input2 print("두 수의 합은 %s 입니다" % total) 이 프로그램을 수행해 보자. 첫번째 숫자를 입력하세요:3 두번째 숫자를 입력하세요:6 두 수의 합은 36 입니다 3과 6을 입력했을 때 9가 아닌 36이라는 결괏값을 돌려주었다. 이 프로그램의 오류를 수정해 보자. ※ int 함수를 사용해 보자. ''' input1 = int(input("첫번째 숫자를 입력하세요:")) input2 = int(input("두번째 숫자를 입력하세요:")) total = input1 + input2 print("두 수의 합은 %s 입니다" % total) ''' Q4. 다음 중 출력 결과가 다른 것 한 개를 골라 보자. print("you" "need" "python") print("you"+"need"+"python") print("you", "need", "python") print("".join(["you", "need", "python"])) ''' print("you", "need", "python") ''' Q5. 다음은 "test.txt"라는 파일에 "Life is too short" 문자열을 저장한 후 다시 그 파일을 읽어서 출력하는 프로그램이다. f1 = open("test.txt", 'w') f1.write("Life is too short") f2 = open("test.txt", 'r') print(f2.read()) 이 프로그램은 우리가 예상한 "Life is too short"라는 문장을 출력하지 않는다. 우리가 예상한 값을 출력할 수 있도록 프로그램을 수정해 보자. ''' f1 = open("test.txt", 'w') f1.write("Life is too short\n") f1.close() f2 = open("test.txt", 'r') print(f2.read()) ''' Q6. 사용자의 입력을 파일(test.txt)에 저장하는 프로그램을 작성해 보자. (단 프로그램을 다시 실행하더라도 기존에 작성한 내용을 유지하고 새로 입력한 내용을 추가해야 한다.) ''' f = open('test.txt', 'a') f.write('Some body help me!') f.close() f1 = open('test.txt', 'r') print(f1.readlines()) ''' Q7. 다음과 같은 내용을 지닌 파일 test.txt가 있다. 이 파일의 내용 중 "java"라는 문자열을 "python"으로 바꾸어서 저장해 보자. Life is too short you need java ''' f = open('text.txt', 'r') lines = f.readlines() f.close() f = open('text.txt', 'w') result = [] for line in lines: f.write(line.replace('java', 'python')) f.close()
""" Script that streams the emotion detected in the camera feed to a local web-application. Faces are detected in frames, then for each face detected in a frame, a rectangle is draw around the face. Once this is done, the emotion displayed in the face is written to the rectangle. There are a few errors in readings due to lighting and face angles. """ from flask import Flask, render_template, Response import cv2 import imutils app = Flask(__name__) @app.route('/') def index(): """Video streaming .""" return render_template('index.html') def gen(): # Initialise video capture with OpenCV cap = cv2.VideoCapture(0) # Use pretrained face detection cascade classifier available with OpenCV faceCascade = cv2.CascadeClassifier("/Users/yenji/opencv/data/haarcascades/haarcascade_frontalface_default.xml") # Use fisher_face face detector that has been trained to detect emotions. fisher_face = cv2.face.FisherFaceRecognizer_create() fisher_face.read('/Users/yenji/Desktop/Emotion-Detection/emotion_detection_model_Haar(fisher).xml') emotions = ["neutral", "anger", "disgust", "fear", "happy", "sadness", "surprise"] # Removed Contempt while (True): # Capture frame-by-frame ret, frame = cap.read() frame = imutils.resize(frame, width=600) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) face = faceCascade.detectMultiScale(gray) print (len(face)) #maybe need to create an array of faces instead of one face (dimensions get confused, which face are we talking about???) if len(face) == 1: #Comment out to detect more than one face. # Draw rectangle around face for (x, y, w, h) in face: # get coordinates and size of rectangle containing face cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) gray = gray[y:y + h, x:x + w] # Cut rectangle to face size gray = cv2.resize(gray, (350, 350)) label, confidence = fisher_face.predict(gray) # Get current emotion in face cv2.putText(frame, emotions[label], (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 255, 0), 1) # Put emotion found in face on rectangle containing face # Display the resulting frame cv2.imwrite('pic.jpg', frame) ## yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + open('pic.jpg', 'rb').read() + b'\r\n') if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap.release() cv2.destroyAllWindows() @app.route('/video_feed') def video_feed(): """Video streaming route. Put this in the src attribute of an img tag.""" return Response(gen(), mimetype='multipart/x-mixed-replace; boundary=frame') if __name__ == '__main__': app.run(host='0.0.0.0', port=80, debug=True, threaded=True)
from app import create_app from config import Config import os import logging import pytest from pandas import DataFrame, read_csv from flask_jwt_extended import create_access_token TEST_ROOT: str = os.path.dirname(os.path.abspath(__file__)) TEST_USER: dict = {"id": 1, "username": "test", "password": "password"} CSV_TESTING_FILENAME: str = "destinations_testing_data.csv" CSV_TESTING_FILEPATH: str = os.path.join(TEST_ROOT, CSV_TESTING_FILENAME) class TestConfig(Config): TESTING: bool = True SQLALCHEMY_DATABASE_URI: str = "sqlite://" @pytest.fixture() def client(): yield create_app(TestConfig).test_client() @pytest.fixture() def auth_header(): app = create_app(TestConfig) with app.app_context(): token: str = create_access_token(TEST_USER) headers: dict = {"Authorization": "Bearer {}".format(token)} return headers @pytest.fixture() def df(): df: DataFrame = read_csv(CSV_TESTING_FILEPATH) logging.debug(f"filepath: {CSV_TESTING_FILEPATH} size: {df.shape}") return df @pytest.fixture() def data(df): DATA: list = [ {"latitude": df.latitude.iloc[i], "longitude": df.longitude.iloc[i],} for i in range(len(df)) ] return DATA
class Solution: # @param A : string # @param B : integer # @return a list of integers def findPerm(self, A, B): """ Just walk through an array of size B increasing or decreasing numbers as necessary, keeping track of the current largest and smallest numbers, and then make a pass over the array adding (1 - smallest) to each number so they'll all be positive. I would have gotten more points and a faster time except that InterviewBit kept giving me a "Internal Error. We are working on fixing this issue ASAP" when I would click Submit. """ smallest = largest = 1 results = [1] * B for i, c in enumerate(A): if c == "I": results[i + 1] = largest + 1 largest += 1 else: results[i + 1] = smallest - 1 smallest -= 1 return [num + (1 - smallest) for num in results]
import socket import sys size = 1024 client= socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.connect(('',8000)) #Leaving the host part blank means 'localhost' print client.getsockname() print '%' name='' while 1: # read from keyboard while not name: name=raw_input("Name:") client.send(name) data=raw_input("Data:") if data: client.send(data) data='' data=client.recv(size) if data: print data,'%' client.close()
from __future__ import unicode_literals from django.db import models from django.contrib.auth.models import User from datetime import datetime import time class Team(models.Model): """ Team model class. """ scoreboard = models.ForeignKey('Scoreboard', related_name='teams', related_query_name='team') team_name = models.CharField(max_length=60, unique=True) points = models.IntegerField(default=0) correct_flags = models.IntegerField(default=0) wrong_flags = models.IntegerField(default=0) user = models.OneToOneField(User, related_name='team', related_query_name='team') solved = models.ManyToManyField('Challenge', blank=True, related_name='solved', through='ChallengeTimestamp') last_timestamp = models.DateTimeField(default=datetime.fromtimestamp(0)) created = models.DateTimeField(auto_now_add=True) class Meta: verbose_name_plural = 'Teams' def __unicode__(self): return '{}'.format(self.team_name) def solves(self): challenge_timestamps = [] team_challenge_timestamps = self.challenge_timestamps.all() for timestamp in team_challenge_timestamps: _time = int(time.mktime(timestamp.created.timetuple())) _id = timestamp.challenge.id challenge_timestamps.append((_id, _time)) return challenge_timestamps def lasttimestamp(self): return int(self.last_timestamp.strftime('%s')) def team(self): """ Alias for teamname. Created for ctftime api. """ return self.team_name def score(self): """ Alias for points. Created for ctftime api. """ return self.points
# a=[1,4,5,6,7,9,12,11] # a.insertion_sort(a) # print(a) def insertionSort(arr): i=1 while i>len(arr): key = arr[i] j = i+1 while j >=0 and key < arr[j] : arr[j+1] = arr[j] j += 1 arr[j+1] = key arr = [12, 11, 13, 5, 6] insertionSort(arr) print ("Sorted array is:") for i in range(len(arr)): print ("%d" %arr[i])
# -*- coding: utf-8 -*- from typing import List class Solution: def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int: intervals.sort(key=lambda interval: interval[1]) current_end, result = float("-inf"), 0 for interval in intervals: if interval[0] >= current_end: current_end = interval[1] else: result += 1 return result if __name__ == "__main__": solution = Solution() assert 1 == solution.eraseOverlapIntervals([[1, 2], [2, 3], [3, 4], [1, 3]]) assert 2 == solution.eraseOverlapIntervals([[1, 2], [1, 2], [1, 2]]) assert 0 == solution.eraseOverlapIntervals([[1, 2], [2, 3]])
print("LETTER K HAS BEEN SUCCESSFULLY EXECUTED")
# -*- coding: utf-8 -*- class Parser: def __init__(self, tokens, tabelaDeSimbolos): self.tokens = tokens # lista de todos os tokens lidos do arquivo self.tokenAtual = "" # token sendo analisado no momento self.posicaoAtual = 0 # posição do token atual na lista "tokens" self.errosAtuais = [] # lista utilizada para guardar os erros encontrados self.tabelaDeSimbolos = tabelaDeSimbolos # tabela de símbolos self.paraExcluir = [] # indíces da tabela de símbolos que serão excluídos # método auxilizar que verifica se o token esperado pelo analisado é o token a ser analisado, # retorna True se sim, False se não def match(self, tokenEsperado): if (self.tokenAtual == tokenEsperado): return True return False # método auxiliar que faz a leitura do próximo token def proximoToken(self): if ((self.posicaoAtual >= len(self.tokens)) or self.posicaoAtual == -1): self.posicaoAtual = -1 return False else: if ((self.tokens[self.posicaoAtual].tipo == "identificador") or (self.tokens[self.posicaoAtual].tipo == "constNumerica")): self.tokenAtual = self.tabelaDeSimbolos[self.tokens[self.posicaoAtual].valor - 1][1] else: self.tokenAtual = self.tokens[self.posicaoAtual].valor self.posicaoAtual += 1 # método auxiliar que adiciona os erros encontrado em self.errosAtuais def erro(self): if ((self.tokens[self.posicaoAtual - 1].tipo == "identificador") or (self.tokens[self.posicaoAtual - 1].tipo == "constNumerica")): self.errosAtuais.append("Erro sintático na linha " + str(self.tokens[self.posicaoAtual - 1].linha) + " e coluna " + str(self.tokens[self.posicaoAtual - 1].coluna) + " : " + str(self.tabelaDeSimbolos[int(self.tokens[self.posicaoAtual - 1].valor) - 1][1])) else: self.errosAtuais.append("Erro sintático na linha " + str(self.tokens[self.posicaoAtual - 1].linha) + " e coluna " + str(self.tokens[self.posicaoAtual - 1].coluna) + " : " + str(self.tokens[self.posicaoAtual - 1].valor)) # método auxiliar para remover erros repetidos de self.errosAtuais def removeErrosRepetidos(self): self.errosAtuais = list(set(self.errosAtuais)) # remove elementos repetidos # método auxiliar para verificar se o expoente ao qual um número está elevado está correto, # retorna True se sim, False se não def verificaExpoente(self, indiceExpoente, expoente): indice = self.posicaoAtual self.proximoToken() indiceExpoente[0] = int(self.tokens[self.posicaoAtual - 1].valor - 1) numero = self.tokenAtual expoente[0] = numero self.tokenAtual = numero[0] if ((self.match("+")) or (self.match("-")) or (self.digito())): i = 1 if not(self.digito()): self.tokenAtual = numero[1] i += 1 if (self.digito()): aux = True while (i < len(numero)): self.tokenAtual = numero[i] if not(self.digito()): # GENTE, acredito que ele nunca vá entrar aqui aux = False i += 1 return aux else: self.voltaPosicao(indice) return False # método auxiliar para verificar se um número com vírgula (utilizamos '.' na representação) # está correto, retorna True se sim, False se não def verificaPontoFlutuante(self, indiceMantissa, mantissa): self.proximoToken() indiceMantissa[0] = int(self.tokens[self.posicaoAtual - 1].valor - 1) i = 1 numero = self.tokenAtual mantissa[0] = numero self.tokenAtual = numero[0] if (self.digito()): aux = True while (i < len(numero)): self.tokenAtual = numero[i] if not(self.digito()): # GENTE, acredito que ele nunca vá entrar aqui aux = False i += 1 indice = self.posicaoAtual self.proximoToken() if (self.match("E")): expoente = [0] indiceExpoente = [0] if (self.verificaExpoente(indiceExpoente, expoente)): mantissa[0] = mantissa[0] + "E" + expoente[0] self.paraExcluir.append(indiceExpoente[0]) return True return False else: self.voltaPosicao(indice) return aux # método auxiliar utilizado para retornar a uma posição da lista de tokens, isso acontece durante # as tentativas de métodos para encontrar algum que encaixe na sequência de tokens def voltaPosicao(self, indice): self.posicaoAtual = indice - 1 self.proximoToken() def programa(self): print() self.proximoToken() if (self.declaracaoLista()): print("\n\nO código do arquivo não contém erros sintáticos\n") self.paraExcluir.sort(key = int, reverse = True) for i in range(len(self.paraExcluir)): del self.tabelaDeSimbolos[self.paraExcluir[i]] else: print("\n\nO código do arquivo contém erros sintáticos\n") # self.removeErrosRepetidos() # for i in range(len(self.errosAtuais)): # print(self.errosAtuais[i]) def declaracaoLista(self): continuaDeclaracao = self.declaracao() if (True): self.proximoToken() aux = True while (self.posicaoAtual != -1): continuaDeclaracao = self.declaracao() if not(continuaDeclaracao): if ((self.tokens[self.posicaoAtual - 1].tipo == "identificador") or (self.tokens[self.posicaoAtual - 1].tipo == "constNumerica")): print("Erro sintático na linha " + str(self.tokens[self.posicaoAtual - 1].linha) + " e coluna " + str(self.tokens[self.posicaoAtual - 1].coluna) + " : " + str(self.tabelaDeSimbolos[int(self.tokens[self.posicaoAtual - 1].valor) - 1][1])) else: print("Erro sintático na linha " + str(self.tokens[self.posicaoAtual - 1].linha) + " e coluna " + str(self.tokens[self.posicaoAtual - 1].coluna) + " : " + str(self.tokens[self.posicaoAtual - 1].valor)) aux = False self.proximoToken() while (((self.tokenAtual != "{") and (self.tokenAtual != ";") and (self.tokenAtual != "}")) and (self.posicaoAtual != -1)): self.proximoToken() continuaDeclaracao = True self.proximoToken() return aux else: return False def declaracao(self): indice = self.posicaoAtual if (self.var_declaracao()): return True self.voltaPosicao(indice) if (self.fun_declaracao()): return True return False def var_declaracao(self): indice = self.posicaoAtual if (self.tipo_especificador()): self.proximoToken() if (self.ident()): self.proximoToken() if (self.match(";")): return True elif (self.abre_colchete()): self.proximoToken() if (self.num_int()): self.proximoToken() if (self.fecha_colchete()): self.proximoToken() if (self.match(";")): return True while (self.abre_colchete()): self.proximoToken() if (self.num_int()): self.proximoToken() if (self.fecha_colchete()): self.proximoToken() return self.match(";") else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False def tipo_especificador(self): if ((self.match("int")) or (self.match("float")) or (self.match("char")) or (self.match("void"))): return True elif (self.match("struct")): self.proximoToken() if (self.ident()): self.proximoToken() if (self.abre_chave()): self.proximoToken() if (self.atributos_declaracao()): if (self.fecha_chave()): return True else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False def atributos_declaracao(self): retorno = self.var_declaracao() self.proximoToken() while (retorno): if (self.tokenAtual == "}"): return True retorno = self.var_declaracao() self.proximoToken() return retorno def fun_declaracao(self): if (self.tipo_especificador()): self.proximoToken() if (self.ident()): self.proximoToken() if (self.match("(")): self.proximoToken() if (self.params()): if (self.match(")")): self.proximoToken() if (self.composto_decl()): return True else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False def params(self): indice = self.posicaoAtual if (self.param_lista()): return True self.posicaoAtual = indice - 1 self.proximoToken() if (self.match("void")): self.proximoToken() return True self.erro() return False def param_lista(self): if (self.param()): while (self.match(",")): self.proximoToken() if not(self.param()): self.erro() return False return True else: self.erro() return False def param(self): if (self.tipo_especificador()): self.proximoToken() if (self.ident()): self.proximoToken() if (self.abre_colchete()): self.proximoToken() if (self.fecha_colchete()): self.proximoToken() return True else: self.erro() return False else: return True else: self.erro() return False else: self.erro() return False def composto_decl(self): if (self.abre_chave()): self.proximoToken() if (self.local_declaracoes()): if (self.comando_lista()): self.proximoToken() if (self.fecha_chave()): return True else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False def local_declaracoes(self): continua = self.var_declaracao() while (continua): indice = self.posicaoAtual self.proximoToken() continua = self.var_declaracao() if not(continua): self.posicaoAtual = indice - 1 self.proximoToken() return True def comando_lista(self): continua = self.comando() while (continua): indice = self.posicaoAtual self.proximoToken() continua = self.comando() if not(continua): self.posicaoAtual = indice - 1 self.proximoToken() return True def comando(self): indice = self.posicaoAtual if (self.expressao_decl()): return True self.voltaPosicao(indice) if (self.composto_decl()): return True self.voltaPosicao(indice) if (self.selecao_decl()): return True self.voltaPosicao(indice) if (self.iteracao_decl()): return True self.voltaPosicao(indice) if (self.retorno_decl()): return True self.erro() return False def expressao_decl(self): indice = self.posicaoAtual if (self.expressao()): if (self.match(";")): return True else: self.erro() return False self.voltaPosicao(indice) if (self.match(";")): return True self.erro() return False def selecao_decl(self): if (self.match("if")): self.proximoToken() if (self.match("(")): self.proximoToken() if (self.expressao()): if (self.match(")")): self.proximoToken() if (self.comando()): indice = self.posicaoAtual self.proximoToken() if (self.match("else")): self.proximoToken() if (self.comando()): return True else: self.erro() return False else: self.voltaPosicao(indice) return True else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False def iteracao_decl(self): if (self.match("while")): self.proximoToken() if (self.match("(")): self.proximoToken() if (self.expressao()): if (self.match(")")): self.proximoToken() if (self.comando()): return True else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False def retorno_decl(self): if (self.match("return")): self.proximoToken() if (self.match(";")): return True elif (self.expressao()): if (self.match(";")): return True else: self.erro() return False else: self.erro() return False else: self.erro() return False def expressao(self): indice = self.posicaoAtual if (self.var()): self.proximoToken() if (self.match("=")): self.proximoToken() if (self.expressao()): return True else: self.erro() return False else: self.erro() self.voltaPosicao(indice) if (self.expressao_simples()): return True else: self.erro() return False def var(self): if (self.ident()): indice = self.posicaoAtual self.proximoToken() if (self.abre_colchete()): self.proximoToken() if (self.expressao()): if (self.fecha_colchete()): indice = self.posicaoAtual self.proximoToken() while (self.abre_colchete()): self.proximoToken() if (self.expressao()): self.proximoToken() if not(self.fecha_colchete()): return False else: return False self.voltaPosicao(indice) return True else: self.erro() return False else: self.erro() return False else: self.voltaPosicao(indice) return True else: self.erro() return False def expressao_simples(self): if (self.expressao_soma()): indice = self.posicaoAtual if (self.relacional()): self.proximoToken() if (self.expressao_soma()): return True else: self.erro() return False else: return True else: self.erro() return False def relacional(self): if ((self.match("<=")) or (self.match("<")) or (self.match(">")) or (self.match(">=")) or (self.match("==")) or (self.match("!="))): return True else: self.erro() return False def expressao_soma(self): if (self.termo()): self.proximoToken() continua = self.soma() if (continua): while (continua): self.proximoToken() if not(self.termo()): self.erro() return False self.proximoToken() continua = self.soma() return True else: return True else: self.erro() return False def soma(self): if ((self.match("+")) or (self.match("-"))): return True else: self.erro() return False def termo(self): if (self.fator()): indice = self.posicaoAtual self.proximoToken() continua = self.mult() if (continua): indice1 = self.posicaoAtual while (continua): indice = self.posicaoAtual self.proximoToken() if not(self.fator()): self.erro() return False self.proximoToken() continua = self.mult() self.voltaPosicao(indice + 1) return True else: self.voltaPosicao(indice) return True else: self.erro() return False def mult(self): if ((self.match("*")) or (self.match("/"))): return True else: self.erro() return False def fator(self): indice = self.posicaoAtual if (self.match("(")): self.proximoToken() if (self.expressao()): if (self.match(")")): return True else: self.erro() return False else: self.erro() return False if (self.ativacao()): return True self.voltaPosicao(indice) if (self.var()): return True self.voltaPosicao(indice) if (self.num()): return True self.voltaPosicao(indice) if (self.num_int()): return True self.erro() return False def ativacao(self): if (self.ident()): self.proximoToken() if (self.match("(")): self.proximoToken() if (self.match(")")): return True elif (self.args()): if (self.match(")")): return True else: self.erro() return False else: self.erro() return False else: self.erro() return False else: self.erro() return False def args(self): return self.arg_lista() def arg_lista(self): if (self.expressao()): while (self.match(",")): self.proximoToken() if not(self.expressao()): self.erro() return False return True else: self.erro() return False def num(self): numero = self.tokenAtual self.tokenAtual = numero[0] if ((self.match("+")) or (self.match("-")) or (self.digito())): i = 1 if not(self.digito()): self.tokenAtual = numero[1] i += 1 indiceTabela = int(self.tokens[self.posicaoAtual - 1].valor - 1) if (self.digito()): aux = True while (i < len(numero)): self.tokenAtual = numero[i] if not(self.digito()): # GENTE, acredito que ele nunca vá entrar aqui aux = False i += 1 indice = self.posicaoAtual self.proximoToken() if (self.match(".")): mantissa = [0] indiceMantissa = [0] if (self.verificaPontoFlutuante(indiceMantissa, mantissa)): self.tabelaDeSimbolos[indiceTabela][1] = numero + "." + mantissa[0] self.paraExcluir.append(indiceMantissa[0]) return True self.erro() return False elif (self.match("E")): expoente = [0] indiceExpoente = [0] if (self.verificaExpoente(indiceExpoente, expoente)): self.tabelaDeSimbolos[indiceTabela][1] = numero + "E" + expoente[0] self.paraExcluir.append(indiceExpoente[0]) return True self.erro() return False else: self.voltaPosicao(indice) return aux else: self.erro() return False else: self.erro() return False def num_int(self): i = 1 numero = self.tokenAtual self.tokenAtual = numero[0] if (self.digito()): aux = True while (i < len(numero)): self.tokenAtual = numero[i] if not(self.digito()): aux = False i += 1 return aux else: self.erro() return False def digito(self): if ((self.match("0")) or (self.match("1")) or (self.match("2")) or (self.match("3")) or (self.match("4")) or (self.match("5")) or (self.match("6")) or (self.match("7")) or (self.match("8")) or (self.match("9"))): return True else: self.erro() return False def ident(self): i = 1 palavra = self.tokenAtual palavra = str(palavra) self.tokenAtual = palavra[0] if (self.letra()): aux = True while (i < len(palavra)): self.tokenAtual = palavra[i] if not((self.letra()) or (self.digito())): aux = False i += 1 return aux else: self.erro() return False def letra(self): if ((self.match("a")) or (self.match("b")) or (self.match("c")) or (self.match("d")) or (self.match("e")) or (self.match("f")) or (self.match("g")) or (self.match("h")) or (self.match("i")) or (self.match("j")) or (self.match("k")) or (self.match("l")) or (self.match("m")) or (self.match("n")) or (self.match("o")) or (self.match("p")) or (self.match("q")) or (self.match("r")) or (self.match("s")) or (self.match("t")) or (self.match("u")) or (self.match("v")) or (self.match("w")) or (self.match("x")) or (self.match("y")) or (self.match("z"))): return True else: self.erro() return False def abre_chave(self): if not(self.match("{")): self.erro() return False return True def fecha_chave(self): if not(self.match("}")): self.erro() return False return True def abre_colchete(self): if not(self.match("[")): self.erro() return False return True def fecha_colchete(self): if not(self.match("]")): self.erro() return False return True
from operator import itemgetter from collections import OrderedDict from matplotlib import font_manager, rc, style import requests, io, json import matplotlib.pyplot as plt import numpy as np links = [] sourcePath = "/home/hanjung/intern/files/" f = open("links_cpp.txt", "r") #get the links which used on hashing.py for i in f: translation_table = dict.fromkeys(map(ord, '\n'), None) i = i.translate(translation_table) links.append(i) f.close() result = [] # results of info from iotcuber opensource = [] hcnt=0 f_1 = open("IOTCUBE_1.txt", "r") f_2 = open("IOTCUBE_2.txt", "r") odd = 0 for i in links: odd += 1 if (odd <= 300): source = sourcePath + i.split('/')[4] name = i.split('/')[4] opensource.append({'name':name}) for r in f_1: r = r.replace('\'', '\"') result.append(json.loads(r)) odd = 0 for r in f_2: r = r.replace('\'', '\"') result.append(json.loads(r)) f_1.close() f_2.close() cwe_list = {} cve_list = {} cve_high = [] cve_middle = [] cve_low = [] index = 0 for js in result: # processing the result count = js[0]['total_cve'] opensource[index]["high"] = {} opensource[index]["middle"] = {} opensource[index]["low"] = {} num_cve = 0 for j in range(1,count+1): cve = js[j]['cveid'] cwe = js[j]['cwe'] cvss = float(js[j]['cvss']) if cvss < 4: vul = "low" cve_low.append(cve) cve = "l_" + cve elif cvss < 7: vul = "middle" cve_middle.append(cve) cve = "m_" + cve else: vul = "high" cve_high.append(cve) cve = "h_" + cve if cve not in opensource[index][vul]: opensource[index][vul][cve] = 1 num_cve += 1 else: opensource[index][vul][cve] += 1 if cwe not in cwe_list: cwe_list[cwe] = [cve] else: if cve not in cwe_list[cwe]: cwe_list[cwe].append(cve) if cve not in cve_list: cve_list[cve] = [1, opensource[index]['name']] else: if opensource[index]['name'] not in cve_list[cve]: cve_list[cve][0] += 1 cve_list[cve].append(opensource[index]['name']) cve_high = list(dict.fromkeys(cve_high)) cve_middle = list(dict.fromkeys(cve_middle)) cve_low = list(dict.fromkeys(cve_low)) opensource[index]['total_cve'] = num_cve index += 1 # make the result file opensource = sorted(opensource, key=itemgetter("total_cve"), reverse = True) o_text = '' for element in opensource: o_text += "open source: " + element['name'] + "\n" + "\t" + "detected CVEs : " + str(element['total_cve']) + "\n" for vul in element: if vul in ('name', 'total_cve'): continue o_text += "\t[" + vul + "]\n" for cve in element[vul]: o_text += "\t\t" + cve + " : " + str(element[vul][cve]) + "\n" o_text += "\n" f = open('opensource_cpp.txt', 'w') f.write(o_text) f.close() cve_list = dict(OrderedDict(sorted(cve_list.items(), key=lambda kv: kv[1][0], reverse = True))) c_text = '' for element in cve_list: c_text += element + "\n" for source in cve_list[element]: if type(source) == int: temp = "\t ->" + "appearance : " + str(source) + "\n" else: c_text += "\t" + source + "\n" c_text += temp c_text += "\n" f = open('cve_list_cpp.txt', 'w') f.write(c_text) f.close()
# Generated by Django 2.2.4 on 2019-08-31 01:28 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0002_auto_20190831_0039'), ] operations = [ migrations.AddField( model_name='video', name='filterpath', field=models.FileField(blank=True, upload_to=''), ), migrations.AlterField( model_name='video', name='pub_date', field=models.DateTimeField(auto_now_add=True), ), ]
#!/usr/bin/python # -*- coding: utf-8 -*- import requests import time from datetime import datetime BITCOIN_PRICE_THRESHOLD = 10000 BITCOIN_API_URL = 'https://api.coinmarketcap.com/v1/ticker/bitcoin/' IFTTT_WEBHOOKS_URL = 'https://maker.ifttt.com/trigger/{}/with/key/cMCIlvY3aJFHAY6C1bllqDBbPev0cIPfg5QXEWIuXr5' def get_latest_bitcoin_price(): response = requests.get(BITCOIN_API_URL) response_json = response.json() return float(response_json[0]['price_usd']) # Конвертирует курс в число с плавающей запятой def post_ifttt_webhook(event, value): data = {'value1': value} ifttt_event_url = IFTTT_WEBHOOKS_URL.format(event) # Вставка желаемого события requests.post(ifttt_event_url, json=data) # Отправка запроса HTTP POST в URL вебхука def format_bitcoin_history(bitcoin_history): rows = [] for bitcoin_price in bitcoin_history: date = bitcoin_price['date'].strftime('%d.%m.%Y %H:%M') # Форматирует дату в строку: '24.02.2018 15:09' price = bitcoin_price['price'] # тег <b> делает текст полужирным row = '{}: $<b>{}</b>'.format(date, price) # 24.02.2018 15:09: $<b>10123.4</b> rows.append(row) # Используйте тег <br> для создания новой строки return '<br>'.join(rows) def main(): bitcoin_history = [] while True: price = get_latest_bitcoin_price() date = datetime.now() bitcoin_history.append({'date': date, 'price': price}) # Отправка срочного уведомления if price > BITCOIN_PRICE_THRESHOLD: post_ifttt_webhook('bitcoin_price_emergency', price) # Отправка уведомления в Telegram if len(bitcoin_history) == 5: # После получения 5 объектов в bitcoin_history – отправляем обновление post_ifttt_webhook('bitcoin_price_update', format_bitcoin_history(bitcoin_history)) # Сброс истории bitcoin_history = [] time.sleep(3600) # Сон на 5 минут(Для тестовых целей вы можете указать меньшее число) if __name__ == '__main__': main()
from django.db import models from django.template.defaultfilters import slugify from django.utils.html import strip_tags from tinymce import HTMLField from filebrowser.fields import FileBrowseField # Create your models here. class Page(models.Model): is_published = models.BooleanField(default=False, help_text='Check the box to publish page.') meta_title = models.CharField(max_length=100, unique=True, blank=False, help_text='Title that shows up in Google search.') header_title = models.CharField(max_length=100, unique=True, blank=True, help_text='Title that shows on page. Should typically match meta title.') meta_description = models.CharField(blank=True, max_length=250, help_text='Brief description that shows up in Google search. Approx. 160 characters.') featured_image = FileBrowseField('Featured image', max_length=500, extensions=['.jpg', '.jpeg', '.gif', '.png', '.tif', '.tiff'], blank=True, help_text='Image featured on page. Must be at least 1,000px X 1,000px') show_cta = models.BooleanField(default=False, help_text='Check the box to show CTA.') page_content = HTMLField('Content', blank=True) page_slug = models.SlugField(max_length=255, blank=True, unique=True, help_text='Text that shows in URL. Will automatically populate when object is saved.') custom_js = models.TextField(blank=True) custom_css = models.TextField(blank=True) def save(self, *args, **kwargs): if not self.page_slug: self.page_slug = slugify(self.meta_title) if not self.meta_description: self.meta_description = strip_tags(self.page_content[:230]) + '...' if not self.header_title: self.header_title = self.meta_title super(Page, self).save(*args, **kwargs) def __str__(self): return self.meta_title
### importing modules #################################################################################### import sys import math import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.text import TextPath from matplotlib.patches import PathPatch from matplotlib.font_manager import FontProperties ### Functions used #################################################################################### def aa_info(aa, x, y, yscale=1, ax=None): text = aas[aa] t = mpl.transforms.Affine2D().scale(1*globalscale, yscale*globalscale) + \ mpl.transforms.Affine2D().translate(x,y) + ax.transData p = PathPatch(text, lw=0, fc=aa_clr[aa], transform=t) if ax != None: ax.add_artist(p) return p def log2(p): if p == 0: log_aa = 0 else: log_aa = math.log2(p) return(log_aa) file_f = sys.argv[1] file_r = open(file_f, "r") fast_f = file_r.readlines() seq_list = [] for line in fast_f: if line[0] != ">": seq_list.append(line.strip()) def score_order(score): lst = len(score) for i in range(0, lst): for j in range(0, lst-i-1): if (score[j][1] > score[j + 1][1]): temp = score[j] score[j]= score[j + 1] score[j + 1]= temp return score ### Fasta file handling and bit_score calculation #################################################################################### rm_ls = ['','\n','\t'] for item in rm_ls: while item in seq_list: seq_list.remove(item) aa_scores = [] for i in range(0,len(seq_list[0])): A = C = D = E = F = G = H = I = K = L = M = N = P = Q = R = S = T = W = Y = V = O = U = 0 for data in seq_list: if data[i] == "A": A += 1 elif data[i] == "C": C += 1 elif data[i] == "D": D += 1 elif data[i] == "E": E += 1 elif data[i] == "F": F += 1 elif data[i] == "G": G += 1 elif data[i] == "H": H += 1 elif data[i] == "I": I += 1 elif data[i] == "K": K += 1 elif data[i] == "L": L += 1 elif data[i] == "M": M += 1 elif data[i] == "N": N += 1 elif data[i] == "P": P += 1 elif data[i] == "Q": Q += 1 elif data[i] == "R": R += 1 elif data[i] == "S": S += 1 elif data[i] == "T": T += 1 elif data[i] == "W": W += 1 elif data[i] == "Y": Y += 1 elif data[i] == "V": V += 1 elif data[i] == "O": O += 1 elif data[i] == "U": U += 1 tot = A + C + D + E + F + G + H + I + K + L + M + N + P + Q + R + S + T + W + Y + V + O + U pA = A/tot pC = C/tot pD = D/tot pE = E/tot pF = F/tot pG = G/tot pH = H/tot pI = I/tot pK = K/tot pL = L/tot pM = M/tot pN = N/tot pP = P/tot pQ = Q/tot pR = R/tot pS = S/tot pT = T/tot pW = W/tot pY = Y/tot pV = V/tot pO = O/tot pU = U/tot i = (math.log2(4.0)) + (pA*log2(pA)) + (pC*log2(pC)) +(pD*log2(pD)) + (pE*log2(pE)) + (pF*log2(pF)) + (pG*log2(pG)) +(pH*log2(pH)) + (pI*log2(pI)) +(pK*log2(pK)) + (pL*log2(pL)) +(pM*log2(pM)) + (pN*log2(pN)) + (pP*log2(pP)) + (pQ*log2(pQ)) +(pR*log2(pR)) + (pS*log2(pS)) + (pT*log2(pT)) + (pW*log2(pW)) +(pY*log2(pY)) + (pV*log2(pV)) +(pO*log2(pO)) + (pU*log2(pU)) score = [("A", pA*i), ("C", pC*i), ("D", pD*i), ("E", pE*i), ("F", pF*i), ("G", pG*i), ("H", pH*i), ("I", pI*i), ("K", pK*i), ("L", pL*i), ("M", pM*i), ("N", pN*i), ("P", pP*i), ("Q", pQ*i), ("R", pR*i), ("S", pS*i), ("T", pT*i), ("W", pW*i), ("Y", pY*i), ("V", pV*i),("O", pO*i), ("U", pU*i)] aa_scores.append(score_order(score)) A = C = D = E = F = G = H = I = K = L = M = N = P = Q = R = S = T = W = Y = V = O = U = 0 ### plotting the bit_score for amino acids #################################################################################### font_p = FontProperties(weight="bold") globalscale = 1.35 aas = {"G" : TextPath((-0.3, 0), "G", size=1, prop=font_p), "S" : TextPath((-0.3, 0), "S", size=1, prop=font_p), "T" : TextPath((-0.3, 0), "T", size=1, prop=font_p), "Y" : TextPath((-0.3, 0), "Y", size=1, prop=font_p), "C" : TextPath((-0.3, 0), "C", size=1, prop=font_p), "Q" : TextPath((-0.3, 0), "Q", size=1, prop=font_p), "N" : TextPath((-0.3, 0), "N", size=1, prop=font_p), "K" : TextPath((-0.3, 0), "K", size=1, prop=font_p), "R" : TextPath((-0.3, 0), "R", size=1, prop=font_p), "H" : TextPath((-0.3, 0), "H", size=1, prop=font_p), "D" : TextPath((-0.3, 0), "D", size=1, prop=font_p), "E" : TextPath((-0.3, 0), "E", size=1, prop=font_p), "A" : TextPath((-0.3, 0), "A", size=1, prop=font_p), "V" : TextPath((-0.3, 0), "V", size=1, prop=font_p), "L" : TextPath((-0.3, 0), "L", size=1, prop=font_p), "I" : TextPath((-0.3, 0), "I", size=1, prop=font_p), "P" : TextPath((-0.3, 0), "P", size=1, prop=font_p), "W" : TextPath((-0.3, 0), "W", size=1, prop=font_p), "F" : TextPath((-0.3, 0), "F", size=1, prop=font_p), "M" : TextPath((-0.3, 0), "M", size=1, prop=font_p), "U" : TextPath((-0.3, 0), "U", size=1, prop=font_p), "O" : TextPath((-0.3, 0), "O", size=1, prop=font_p)} aa_clr = {'C': 'limegreen', 'G': 'limegreen','S': 'limegreen','T': 'limegreen','Y': 'limegreen', 'Q': 'purple','N': 'purple', 'K': 'blue','R': 'blue','H': 'blue', 'D': 'red','E': 'red', 'A':'black','V':'black','L':'black','I':'black','P':'black','W':'black','F':'black','M':'black', 'O':'yellow','U':'yellow'} fig, ax = plt.subplots(figsize=(10,3)) x = 1 maxi = 0 for scores in aa_scores: y = 0 for aa, score in scores: aa_info(aa, x,y, score, ax) y += score x += 1 maxi = max(maxi, y) plt.xticks(range(1,x)) plt.xlim((0, x)) plt.ylim((0, maxi)) plt.tight_layout() plt.show()
#Map the column back to Gene #Written by Ruiqi Zhong April 8, 2017 import pickle import pandas import glob import csv paths = glob.glob("KEGG_6k/*.pkl") print paths for path in paths: gene_name = [] data = pickle.load(open(path,"rb")) data = data[data.columns[[1]]] for i in range(1,data.shape[0]): gene_name.append(data[1][i]) out = csv.writer(open("./name_maps_kegg/"+path.split('/')[1].split('.')[0]+"_name_map.csv","w"), delimiter=',',quoting=csv.QUOTE_ALL) out.writerow(gene_name) #print(data.to_csv(sep=' ',index=False))
import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms import argparse import os from models import * from utils import load_pretrained_net, fetch_target, fetch_nearest_poison_bases, fetch_poison_bases from trainer import make_convex_polytope_poisons, train_network_with_poison class Logger(object): def __init__(self, path): self.terminal = sys.stdout self.log = open(path, "a+") def write(self, message): self.terminal.write(message) self.log.write(message) def flush(self): # this flush method is needed for python 3 compatibility. # this handles the flush command by doing nothing. # you might want to specify some extra behavior here. pass if __name__ == '__main__': # ======== arg parser ================================================= parser = argparse.ArgumentParser(description='PyTorch Poison Attack') parser.add_argument('--gpu', default='0', type=str) # The substitute models and the victim models parser.add_argument('--end2end', default=False, choices=[True, False], type=bool, help="Whether to consider an end-to-end victim") parser.add_argument('--substitute-nets', default=['ResNet50', 'ResNet18'], nargs="+", required=False) parser.add_argument('--target-net', default=["DenseNet121"], nargs="+", type=str) parser.add_argument('--model-resume-path', default='models-chks-release', type=str, help="Path to the pre-trained models") parser.add_argument('--net-repeat', default=1, type=int) parser.add_argument("--subs-chk-name", default=['ckpt-%s-4800.t7'], nargs="+", type=str) parser.add_argument("--test-chk-name", default='ckpt-%s-4800.t7', type=str) parser.add_argument('--subs-dp', default=[0], nargs="+", type=float, help='Dropout for the substitute nets, will be turned on for both training and testing') # Parameters for poisons parser.add_argument('--target-dset', default='cifar10', choices=['cifar10', '102flowers']) parser.add_argument('--target-label', default=6, type=int) parser.add_argument('--target-index', default=1, type=int, help='index of the target sample') parser.add_argument('--poison-label', '-plabel', default=8, type=int, help='label of the poisons, or the target label we want to classify into') parser.add_argument('--poison-num', default=5, type=int, help='number of poisons') parser.add_argument('--poison-lr', '-plr', default=4e-2, type=float, help='learning rate for making poison') parser.add_argument('--poison-momentum', '-pm', default=0.9, type=float, help='momentum for making poison') parser.add_argument('--poison-ites', default=4000, type=int, help='iterations for making poison') parser.add_argument('--poison-decay-ites', type=int, metavar='int', nargs="+", default=[]) parser.add_argument('--poison-decay-ratio', default=0.1, type=float) parser.add_argument('--poison-epsilon', '-peps', default=0.1, type=float, help='maximum deviation for each pixel') parser.add_argument('--poison-opt', default='adam', type=str) parser.add_argument('--nearest', default=False, action='store_true', help="Whether to use the nearest images for crafting the poison") parser.add_argument('--subset-group', default=0, type=int) parser.add_argument('--original-grad', default=True, choices=[True, False], type=bool) parser.add_argument('--tol', default=1e-6, type=float) # Parameters for re-training parser.add_argument('--retrain-lr', '-rlr', default=0.1, type=float, help='learning rate for retraining the model on poisoned dataset') parser.add_argument('--retrain-opt', default='adam', type=str, help='optimizer for retraining the attacked model') parser.add_argument('--retrain-momentum', '-rm', default=0.9, type=float, help='momentum for retraining the attacked model') parser.add_argument('--lr-decay-epoch', default=[30, 45], nargs="+", help='lr decay epoch for re-training') parser.add_argument('--retrain-epochs', default=60, type=int) parser.add_argument('--retrain-bsize', default=64, type=int) parser.add_argument('--retrain-wd', default=0, type=float) parser.add_argument('--num-per-class', default=50, type=int, help='num of samples per class for re-training, or the poison dataset') # Checkpoints and resuming parser.add_argument('--chk-path', default='chk-black', type=str) parser.add_argument('--chk-subdir', default='poisons', type=str) parser.add_argument('--eval-poison-path', default='', type=str, help="Path to the poison checkpoint you want to test") parser.add_argument('--resume-poison-ite', default=0, type=int, help="Will automatically match the poison checkpoint corresponding to this iteration " "and resume training") parser.add_argument('--train-data-path', default='datasets/CIFAR10_TRAIN_Split.pth', type=str, help='path to the official datasets') parser.add_argument('--dset-path', default='datasets', type=str, help='path to the official datasets') parser.add_argument('--mode', default='convex', type=str, help='if convex, run the convexpolytope attack proposed by the paper, otherwise just run the mean shifting thing') parser.add_argument('--device', default='cuda', type=str) args = parser.parse_args() # Set visible CUDA devices os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu cudnn.benchmark = True # load the pre-trained models sub_net_list = [] for n_chk, chk_name in enumerate(args.subs_chk_name): for snet in args.substitute_nets: if args.subs_dp[n_chk] > 0.0: net = load_pretrained_net(snet, chk_name, model_chk_path=args.model_resume_path, test_dp=args.subs_dp[n_chk]) elif args.subs_dp[n_chk] == 0.0: net = load_pretrained_net(snet, chk_name, model_chk_path=args.model_resume_path) else: assert False sub_net_list.append(net) print("subs nets, effective num: {}".format(len(sub_net_list))) print("Loading the victims networks") targets_net = [] for tnet in args.target_net: target_net = load_pretrained_net(tnet, args.test_chk_name, model_chk_path=args.model_resume_path) targets_net.append(target_net) cifar_mean = (0.4914, 0.4822, 0.4465) cifar_std = (0.2023, 0.1994, 0.2010) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(cifar_mean, cifar_std), ]) # Get the target image if args.target_dset == 'cifar10': target = fetch_target(args.target_label, args.target_index, 50, subset='others', path=args.train_data_path, transforms=transform_test) elif args.target_dset == '102flowers': from utils import fetch_target_102flower_dset target = fetch_target_102flower_dset(args.target_index, transforms) if args.mode == 'mean': chk_path = os.path.join(args.chk_path, 'mean') else: chk_path = os.path.join(args.chk_path, args.mode) if args.net_repeat > 1: chk_path = '{}-{}Repeat'.format(chk_path, args.net_repeat) chk_path = os.path.join(chk_path, str(args.poison_ites)) chk_path = os.path.join(chk_path, str(args.target_index)) if not os.path.exists(chk_path): os.makedirs(chk_path) import sys sys.stdout = Logger('{}/log.txt'.format(chk_path)) # Load or craft the poison! if args.eval_poison_path != "": state_dict = torch.load(args.eval_poison_path) poison_tuple_list, base_idx_list = state_dict['poison'], state_dict['idx'] print("=" * 100) print("=" * 100) print("Poisons loaded") print("Now evaluating on the target nets") t = 0 tt = 0 else: print(args) print("Path: {}".format(chk_path)) # Otherwise, we craft new poisons if args.nearest: base_tensor_list, base_idx_list = fetch_nearest_poison_bases(sub_net_list, target, args.poison_num, args.poison_label, args.num_per_class, 'others', args.train_data_path, transform_test) else: # just fetch the first poison_num samples base_tensor_list, base_idx_list = fetch_poison_bases(args.poison_label, args.poison_num, subset='others', path=args.train_data_path, transforms=transform_test) base_tensor_list = [bt.to('cuda') for bt in base_tensor_list] print("Selected base image indices: {}".format(base_idx_list)) if args.resume_poison_ite > 0: state_dict = torch.load(os.path.join(chk_path, "poison_%05d.pth" % args.resume_poison_ite)) poison_tuple_list, base_idx_list = state_dict['poison'], state_dict['idx'] poison_init = [pt.to('cuda') for pt, _ in poison_tuple_list] # re-direct the results to the resumed dir... chk_path += '-resume' if not os.path.exists(chk_path): os.makedirs(chk_path) else: poison_init = base_tensor_list import time t = time.time() poison_tuple_list = make_convex_polytope_poisons(sub_net_list, target_net, base_tensor_list, target, device='cuda', opt_method=args.poison_opt, lr=args.poison_lr, momentum=args.poison_momentum, iterations=args.poison_ites, epsilon=args.poison_epsilon, decay_ites=args.poison_decay_ites, decay_ratio=args.poison_decay_ratio, mean=torch.Tensor(cifar_mean).reshape(1, 3, 1, 1), std=torch.Tensor(cifar_std).reshape(1, 3, 1, 1), chk_path=chk_path, poison_idxes=base_idx_list, poison_label=args.poison_label, tol=args.tol, end2end=args.end2end, start_ite=args.resume_poison_ite, poison_init=poison_init, mode=args.mode, net_repeat=args.net_repeat) tt = time.time() res = [] print("Evaluating against victims networks") for tnet, tnet_name in zip(targets_net, args.target_net): print(tnet_name) pred = train_network_with_poison(tnet, target, poison_tuple_list, base_idx_list, chk_path, args, save_state=False) res.append(pred) print("--------") print("------SUMMARY------") print("TIME ELAPSED (mins): {}".format(int((tt - t) / 60))) print("TARGET INDEX: {}".format(args.target_index)) for tnet_name, r in zip(args.target_net, res): print(tnet_name, int(r == args.poison_label))
import os import getopt from dataclasses import dataclass from config import Config @dataclass class Arguments(): verbose: bool = False help: bool = False target_dir: str = None branch: str = None commit_range: str = None config: Config = None @staticmethod def helptext(): return "USAGE: python main.py --target-dir=/path/to/your/code [--verbose] [--commit-range=rev1..rev2]" @staticmethod def parse(args): config_filename = None result = Arguments() try: opts, args = getopt.getopt(args, "hv=", ["help", "verbose=", "conf-file=", "target-dir=", "commit-range="]) except getopt.GetoptError as e: print(e) return None for o, a in opts: if o in ("-v", "--verbose"): result.verbose = (a != "no") elif o in ("-h", "--help"): result.help = True elif o in ("--conf-file"): config_filename = a elif o in ("--target-dir"): result.target_dir = a elif o in ("--commit-range"): result.commit_range = a if a else None if result.target_dir: if not config_filename: config_filename = ".devsecops-ci" conf_file = os.path.join(result.target_dir, config_filename) result.config = Config.load(conf_file) if result.config is None: result.config = Config() return result
n = int(input()) c, r, s = 0, 0, 0 for i in range(0, n): q, e = input().split(' ') if e == 'C': c += int(q) elif e == 'R': r += int(q) elif e == 'S': s += int(q) print('Total: {} cobaias'.format(c + r + s)) print('Total de coelhos: {}'.format(c)) print('Total de ratos: {}'.format(r)) print('Total de sapos: {}'.format(s)) print('Percentual de coelhos: {:.2f} %'.format(c / (c + r + s) * 100)) print('Percentual de ratos: {:.2f} %'.format(r / (c + r + s) * 100)) print('Percentual de sapos: {:.2f} %'.format(s / (c + r + s) * 100))
import numpy as np import re regex = 'position=<[ ]*(?P<x>\-*\d+),[ ]*(?P<y>\-*\d+)> velocity=<[ ]*(?P<vx>\-*\d+),[ ]*(?P<vy>\-*\d+)>' p = re.compile(regex) data = [] n_points = 0 with open('input.txt') as f: for l in f: match = p.match(l.strip()).groupdict() data.append( list(map(int, [match['x'], match['y'], match['vx'], match['vy']]))) n_points += 1 points = np.zeros((n_points, 2)) velocity = np.zeros((n_points, 2)) for i, [x, y, vx, vy] in enumerate(data): points[i][0] = x points[i][1] = y velocity[i][0] = vx velocity[i][1] = vy def get_size(points): min_ = points.min(0) max_ = points.max(0) return (max_ - min_).prod() def draw(points): min_ = points.min(0) max_ = points.max(0) points -= min_ diff = max_ - min_ + 1 draw = [['_' for _ in range(int(diff[0]))] for _ in range(int(diff[1]))] for i in range(n_points): draw[int(points[i][1])][int(points[i][0])] = '#' print('\n'.join([''.join(d) for d in draw])) min_size = get_size(points) min_points = points.copy() for i in range(20000): points += velocity s = get_size(points) if s < min_size: min_size = s min_points = points.copy() print(i, min_size) draw(min_points)
import collections import itertools import random import sys def frequentsets(k,prev,s,f): if k==1: dsingles={} f=open("new_toivonen.txt") for line in f: line=line.rstrip() items=line.split(',') items.sort() for item in items: if item in dsingles: dsingles[item]=dsingles[item]+1 else: dsingles[item]=1 fitemsets1=[] negative_border1=[] for item in dsingles: if dsingles[item]>=s: fitemsets1.append(item) else: negative_border1.append(item) negative_border1.sort() fitemsets1.sort() candidatepairs=[] i=0 while i<(len(fitemsets1)-1): j=i+1 while j<len(fitemsets1): candidatepairs.append([fitemsets1[i],fitemsets1[j]]) j=j+1 i=i+1 negative_border=[] pairs={i:0 for i in range(0,len(candidatepairs))} f=open("new_toivonen.txt") for line in f: line=line.rstrip() items=line.split(',') items.sort() p=itertools.combinations(items,2) for item in p: item=list(item) count=0 for j in item: if j in fitemsets1: count=count+1 if count==2: if item not in negative_border: negative_border.append(item) for index,k in enumerate(candidatepairs): if item==k: pairs[index]=pairs[index]+1 break negative_border.sort() fpairs=[] for item in pairs: if pairs[item]>=s: fpairs.append(candidatepairs[item]) fpairs.sort() neg_bor2=[] for item in negative_border: if item not in fpairs: neg_bor2.append(item) return fitemsets1,fpairs, negative_border1, neg_bor2 candidateitems=[] f=open("new_toivonen.txt") for line in f: line=line.rstrip() items=line.split(',') items.sort() trip=itertools.combinations(items,k) for o in trip: o=list(o) pai=itertools.combinations(o,k-1) count=0 for u in pai: u=list(u) if u in prev: count=count+1 if count==k: if o not in candidateitems: candidateitems.append(o) ditemsets={i:0 for i in range(len(candidateitems))} f=open("new_toivonen.txt") for line in f: line=line.rstrip() items=line.split(',') items.sort() trip=itertools.combinations(items,k) for o in trip: o=list(o) for index,i in enumerate(candidateitems): if o==i: ditemsets[index]=ditemsets[index]+1 break fitems=[] ng_br=[] for item in ditemsets: if ditemsets[item]>=s: fitems.append(candidateitems[item]) else: ng_br.append(candidateitems[item]) fitems.sort() ng_br.sort() return fitems,ng_br def sample_pass(s): prev=[] k=1 s=float(s) size=0.5 f=open(sys.argv[1]) file1=open("new_toivonen.txt",'w') countlines=0 d={} for line in f: d[countlines]=line countlines=countlines+1 aman_items=[i for i in range(countlines)] random.shuffle(aman_items) for i in range(int(countlines*size)): file1.write(d[aman_items[i]]) file1.close() ori_items={} neg_items={} if k==1 and prev==[]: res=frequentsets(k,prev,int(s*size*0.9),f) prev=res[1] singles=res[0] if prev==[] and singles==[]: return None neg1=res[2] neg2=res[3] ori_items[1]=singles neg_items[1]=neg1 ori_items[2]=prev neg_items[2]=neg2 k=3 while prev!=[]: res=frequentsets(k,prev,int(s*size*0.9),f) prev=res[0] ori_items[k]=prev neg_items[k]=res[1] k=k+1 return ori_items,neg_items def whole_pass(dicts,s): fitems=dicts[0] neg_bord=dicts[1] fitems_list=[] neg_bord_list=[] for item in fitems: fitems_list.extend(fitems[item]) for item in neg_bord: neg_bord_list.extend(neg_bord[item]) fitems_dict={i:0 for i in range(len(fitems_list))} fneg_dict={i:0 for i in range(len(neg_bord_list))} f=open(sys.argv[1]) for line in f: line=line.rstrip() items=line.split(',') items.sort() for k in fitems: trip=itertools.combinations(items,k) for o in trip: o=list(o) for index,q in enumerate(fitems_list): if o==list(q): fitems_dict[index]=fitems_dict[index]+1 break trip=itertools.combinations(items,k) for o in trip: o=list(o) for index,q in enumerate(neg_bord_list): if o==list(q): fneg_dict[index]=fneg_dict[index]+1 break freq_itemsets=[] for item in fitems_dict: if fitems_dict[item]>=s: freq_itemsets.append(fitems_list[item]) for item in fneg_dict: if fneg_dict[item]>=s: a=[] return 0,a return 1,freq_itemsets iterations=0 def toivonen(): s=int(sys.argv[2]) size_perc=0.5 global iterations iterations=iterations+1 dicts=sample_pass(s) if dicts == None: return toivonen() a,freq=whole_pass(dicts,s) if a==1: sys.stdout.write(str(iterations)+"\n") sys.stdout.write(str(size_perc)+"\n") max_len = max(map(len, freq)) res = {i:[] for i in range(1, max_len + 1)} for item in freq: if len(item) == 1: res[len(item)].append([item]) else: res[len(item)].append(item) for item in res: sys.stdout.write(str(res[item])+"\n") # sys.stdout.write(str(freq)+"\n") return else: toivonen() toivonen()
# encoding: utf-8 ''' @Version: V1.0 @Author: JE2Se @Contact: admin@je2se.com @Website: https://www.je2se.com @Github: https://github.com/JE2Se/ @Time: 2020/6/10 12:39 @File: StrutsScan.py @Desc: ''' from lib.ModelLoad import ONLoad from lib import * import os import logging dlist = [] #文件遍历 def StrutsScan(url): for file in os.listdir("./exphub/struts2/"): if os.path.splitext(file)[1] == '.py': if os.path.join(file) != "__init__.py" and os.path.join(file) != "StrutsScan.py": dlist.append(os.path.join(os.path.splitext(file)[0])) ONLoad(dlist) try: for defclass in dlist: print(Vcolors.OKGREEN + "[?] 正在执行" + defclass + "脚本检测.......\r" + Vcolors.ENDC) exec("from exphub.struts2.{0} import {1}".format(defclass, defclass)) defclass += "(url)" exec(defclass) except: logging.error("StrutsScan脚本出现异常")
# 23415 # 13425 ++ # 12435 ++ # 12345 ++ #!/bin/python3 import math import os import random import re import sys # Complete the minimumSwaps function below. def minimumSwaps(arr): temp = [0] * (len(arr) + 1) for pos, val in enumerate(arr): temp[val] = pos pos += 1 count = 0 for i in range(len(arr)): if arr[i] != i+1: count += 1 t = arr[i] # t é o valor que está na posição errada arr[i] = i+1 # botamos o valor correto na posição que estamos arr[temp[i+1]] = t #no arr no index do elemento certo botamos o elemento errado, ou seja é apenas uma troca botando o valor errado no lugar do valor certo por exemplo 21 12 temp[t] = temp[i+1] # atualizamos o index do elemento errado para onde ele esta agora que é o index do elemento correto antes da mudança return count if __name__ == '__main__': arr = [4, 3, 1, 2] res = minimumSwaps(arr) print(res)
import flask app = flask.Flask(__name__) app.config["DEBUG"] = True @app.route('/', methods=['GET']) def home(): return "<iframe src='https://airtw.epa.gov.tw/AirQuality_APIs/WebWidget.aspx?site=18' width='320px' height='380px' scrolling='yes'></iframe><iframe src='https://airtw.epa.gov.tw/AirQuality_APIs/WebWidget.aspx?site=43' width='320px' height='380px' scrolling='yes'></iframe><iframe src='https://airtw.epa.gov.tw/AirQuality_APIs/WebWidget.aspx?site=8' width='320px' height='380px' scrolling='yes'></iframe><iframe src='https://airtw.epa.gov.tw/AirQuality_APIs/WebWidget.aspx?site=12' width='320px' height='380px' scrolling='yes'></iframe><iframe src='https://airtw.epa.gov.tw/AirQuality_APIs/WebWidget.aspx?site=73' width='320px' height='380px' scrolling='yes'></iframe><iframe src='https://airtw.epa.gov.tw/AirQuality_APIs/WebWidget.aspx?site=76' width='320px' height='380px' scrolling='yes'></iframe><iframe src='https://airtw.epa.gov.tw/AirQuality_APIs/WebWidget.aspx?site=92' width='320px' height='380px' scrolling='yes'></iframe>" app.run()
import time from selenium import webdriver #브라우저 열기 browser = webdriver.Edge("./msedgedriver.exe") #네이버로 이동 browser.get("http://naver.com") #로그인 버튼 클릭 elem = browser.find_element_by_class_name("link_login") elem.click() time.sleep(3) #로그인 browser.find_element_by_id("id").send_keys("naverID") browser.find_element_by_id("pw").send_keys("passward") browser.find_element_by_id("log.login").click() time.sleep(1) browser.find_element_by_id("id").clear() browser.find_element_by_id("id").send_keys("another_Id") print(browser.page_source) time.sleep(2) browser.quit()
class Solution: def lengthOfLongestSubstring(self, s: str) -> int: result = 0 l = 0 dict = set() for r in range(len(s)): if s[r] in dict: while l < r: if s[l] == s[r]: l += 1 break dict.remove(s[l]) l += 1 dict.add(s[r]) result = max(result, r - l + 1) return result
from django import forms class DateInput(forms.DateInput): input_type = 'date' class SearchForm(forms.Form): start_date = forms.DateField( label='Статистика с', widget=forms.widgets.DateInput(attrs={'type': 'date'})) end_date = forms.DateField( label='Статистика по', widget=forms.widgets.DateInput(attrs={'type': 'date'}))