text
stringlengths
8
6.05M
# <<Instagram hashtag crawler>> # leejihee950430@gmail.com # # Copyright (c) 2018, Jihee Lee # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the <ORGANIZATION> nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER # OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import json class instagramCrawlHashtagPipeline(object): def __init__(self): self.count = 1 def open_spider(self, spider): file_name = 'hashtag_' + str(spider.search_tag) + '.json' self.file = open(file_name, 'w', encoding='utf-8') self.file.write('{\n') def process_item(self, item, spider): line = '\t"tag' + str(self.count) + '":' + json.dumps(dict(item), ensure_ascii=False) + ",\n" self.file.write(line) self.count += 1 return item def close_spider(self, spider): print('######크롤링 끝!######') self.file.seek(self.file.tell() - 3) self.file.write("\n}") # 파일에 기록 self.file.close()
import math as math from sklearn.cluster import Birch from .generic_clustering import GenericClustering __author__ = "Konstantin Bogdanoski" __copyright__ = "Copyright 2020, BlanketClusterer" __credits__ = ["Konstantin Bogdanoski", "Prof. PhD. Dimitar Trajanov", "MSc. Kostadin Mishev"] __license__ = "MIT" __version__ = "2.0.0" __maintainer__ = "Konstantin Bogdanoski" __email__ = "konstantin.b@live.com" __status__ = "Production" class BirchClustering(GenericClustering): def clusterize_cluster(self, this_cluster): """ Function used to clusterize a cluster :param this_cluster: Cluster needed to be clusterized :return: Dictionary of new clusters """ if (len(this_cluster)) <= self.items_in_cluster: return this_cluster if (len(this_cluster)) > (self.items_in_cluster * self.items_in_cluster): birch = Birch(n_clusters=self.n_clusters, branching_factor=self.items_in_cluster) else: birch = Birch(n_clusters=(math.ceil(len(this_cluster) / self.items_in_cluster)), branching_factor=self.items_in_cluster) birch.fit(this_cluster) labels = birch.fit_predict(this_cluster) this_clusters = {} n = 0 for item in labels: if item in this_clusters: this_clusters[item].append(this_cluster[n]) else: this_clusters[item] = [this_cluster[n]] n += 1 return this_clusters
class Knight: def __init__(self, name): self.__name = " ".join(["Sir", name]) self.__bruises = 0 self.__curr_pos = 0 self.__tactical_card = -1 self.__accept_heavy_blows = True self.__points = 0 self.__fail_start = False self.__fail_start_count = 0 self.__won_rps = False self.__strike_modifier = 0 self.__unhorsed = False def get_name(self): return self.__name def move(self, spaces): self.__curr_pos += spaces def get_current_position(self): return self.__curr_pos def add_bruise(self): self.__bruises += 1 def get_bruises(self): return self.__bruises def set_tactical_card(self, card): self.__tactical_card = card def get_tactical_card(self): return self.__tactical_card def set_accept_heavy_blows(self, accept): self.__accept_heavy_blows = accept def get_accept_heavy_blows(self): return self.__accept_heavy_blows def add_fail_start(self): self.__fail_start_count += 1 def determine_failed_to_start(self): if self.get_current_position() < 7: self.__fail_start = True def get_failed_to_start(self): return self.__fail_start def add_points(self, points): self.__points += points def get_points(self): return self.__points def get_disqualified(self): return self.__fail_start_count >= 2 def set_won_rps(self, won_rps): self.__won_rps = won_rps def get_won_rps(self): return self.__won_rps def set_strike_modifier(self, modifier): self.__strike_modifier = modifier def get_strike_modifier(self): return self.__strike_modifier def set_unhorsed(self, unhorsed): self.__unhorsed = unhorsed def get_unhorsed(self): return self.__unhorsed def reset_for_round(self): self.__curr_pos = 0 self.__fail_start = False
#B I,PA=input().split() if (int(I)+int(PA))%2==0: print('even') else: print('odd')
from django.contrib.gis.db import models class EventType(models.Model): name = models.CharField(max_length=120) description = models.TextField(blank=True) class Event(models.Model): name = models.CharField(max_length=120) location = models.PointField(blank=True, null=True) eventType = models.ForeignKey(EventType, on_delete=models.SET_DEFAULT, default = 1) date = models.IntegerField()
import click import pika from pika.exceptions import AMQPConnectionError from rabbitmq_util import RABBITMQ_DEFAULT_HOST from rabbitmq_util import RABBITMQ_DEFAULT_PORT @click.command() @click.option('--mode', type=str, prompt='"send" or "recv" from server', help='Specify if send-ing or recv-ing messages from server.') @click.option('--host', type=str, default=RABBITMQ_DEFAULT_HOST, prompt='Enter hostname', help='Server address for rabbitmq.') @click.option('--port', type=int, default=RABBITMQ_DEFAULT_PORT, prompt='Server port number to use.', help='The port to use for host server.') @click.option('-m', '--message', default="Hello, RabbitMQ!", prompt='Enter a message to send (ignore if recv)', help='Message to send to the queue.') def send_or_recv(mode, host, port, message): if mode == 'send': send(host, port, message) elif mode == 'recv': recv(host, port) else: click.echo('Invalid mode "%s", exiting.' % mode) def send(host, port, message): connection = pika.BlockingConnection(pika.ConnectionParameters( host=str(host), port=port)) channel = connection.channel() channel.queue_declare(queue='hello') channel.basic_publish(exchange='', routing_key='hello', body=message) print(" [x] Sent '%s'" % message) connection.close() def recv(host, port): try: connection = pika.BlockingConnection(pika.ConnectionParameters( host=str(host), port=port)) channel = connection.channel() channel.queue_declare(queue='hello') def callback(ch, method, prolsperties, body): print(" [x] Received %r" % body) try: channel.basic_consume(callback, queue='hello', no_ack=True) print(' [*] Waiting for messages. To exit press CTRL+C') channel.start_consuming() except KeyboardInterrupt: exit('KeyboardInterrupt detected! Exiting.') except pika.exceptions.AMQPConnectionError, e: exit(str(e)) if __name__ == '__main__': send_or_recv()
import unittest from katas.kyu_7.the_most_amicable_of_numbers import amicable_numbers class AmicableNumbersTestCase(unittest.TestCase): def test_true(self): self.assertTrue(amicable_numbers(220, 284)) def test_true_2(self): self.assertTrue(amicable_numbers(1184, 1210)) def test_true_3(self): self.assertTrue(amicable_numbers(10744, 10856)) def test_true_4(self): self.assertTrue(amicable_numbers(122265, 139815)) def test_true_5(self): self.assertTrue(amicable_numbers(220, 284)) def test_true_6(self): self.assertTrue(amicable_numbers(220, 284)) def test_false(self): self.assertFalse(amicable_numbers(220, 280)) def test_false_2(self): self.assertFalse(amicable_numbers(220221, 282224)) def test_false_3(self): self.assertFalse(amicable_numbers(299920, 9284)) def test_false_4(self): self.assertFalse(amicable_numbers(999220, 2849))
import numpy as np import subprocess import argparse import h5py import tempfile import os def fetch_tomtom_args(): parser = argparse.ArgumentParser() parser.add_argument("-m", "--modisco_h5py", required=True, type=str, help="path to the output .h5py file generated by the run_modisco.py script") parser.add_argument("-o", "--output_prefix", required=True, type=str, help="Path and name of the TSV file to store the tomtom output") parser.add_argument("-d", "--meme_motif_db", required=True, type=str, help="path to motif database") parser.add_argument("-n", "--top_n_matches", type=int, default=3, help="Max number of matches to return from TomTom") parser.add_argument("-tt", "--tomtom_exec", type=str, default='tomtom', help="Command to use to execute tomtom") parser.add_argument("-th", "--trim_threshold", type=float, default=0.3, help="Trim threshold for trimming long motif, trim to those with at least prob trim_threshold on both ends") parser.add_argument("-tm", "--trim_min_length", type=int, default=3, help="Minimum acceptable length of motif after trimming") args = parser.parse_args() return args def write_meme_file(ppm, bg, fname): f = open(fname, 'w') f.write('MEME version 4\n\n') f.write('ALPHABET= ACGT\n\n') f.write('strands: + -\n\n') f.write('Background letter frequencies (from unknown source):\n') f.write('A %.3f C %.3f G %.3f T %.3f\n\n' % tuple(list(bg))) f.write('MOTIF 1 TEMP\n\n') f.write('letter-probability matrix: alength= 4 w= %d nsites= 1 E= 0e+0\n' % ppm.shape[0]) for s in ppm: f.write('%.5f %.5f %.5f %.5f\n' % tuple(s)) f.close() def fetch_tomtom_matches(ppm, cwm, background=[0.25, 0.25, 0.25, 0.25], tomtom_exec_path='tomtom', motifs_db='HOCOMOCOv11_core_HUMAN_mono_meme_format.meme', n=5, trim_threshold=0.3, trim_min_length=3): """Fetches top matches from a motifs database using TomTom. Args: ppm: position probability matrix- numpy matrix of dimension (N,4) background: list with ACGT background probabilities tomtom_exec_path: path to TomTom executable motifs_db: path to motifs database in meme format n: number of top matches to return, ordered by p-value temp_dir: directory for storing temp files trim_threshold: the ppm is trimmed from left till first position for which probability for any base pair >= trim_threshold. Similarly from right. Returns: list: a list of up to n results returned by tomtom, each entry is a dictionary with keys 'Target ID', 'p-value', 'E-value', 'q-value' """ _, fname = tempfile.mkstemp() score = np.sum(np.abs(cwm), axis=1) trim_thresh = np.max(score) * trim_threshold # Cut off anything less than 30% of max score pass_inds = np.where(score >= trim_thresh)[0] trimmed = ppm[np.min(pass_inds): np.max(pass_inds) + 1] # can be None of no base has prob>t if trimmed is None: return [] # trim and prepare meme file write_meme_file(trimmed, background, fname) # run tomtom cmd = '%s -no-ssc -oc . -verbosity 1 -text -min-overlap 5 -mi 1 -dist pearson -evalue -thresh 10.0 %s %s' % (tomtom_exec_path, fname, motifs_db) #print(cmd) out = subprocess.check_output(cmd, shell=True) # prepare output dat = [x.split('\\t') for x in str(out).split('\\n')] schema = dat[0] # meme v4 vs v5: if 'Target ID' in schema: tget_idx = schema.index('Target ID') else: tget_idx = schema.index('Target_ID') pval_idx, eval_idx, qval_idx =schema.index('p-value'), schema.index('E-value'), schema.index('q-value') r = [] for t in dat[1:min(1+n, len(dat)-1)]: if t[0]=='': break mtf = {} mtf['Target_ID'] = t[tget_idx] mtf['p-value'] = float(t[pval_idx]) mtf['E-value'] = float(t[eval_idx]) mtf['q-value'] = float(t[qval_idx]) r.append(mtf) os.system('rm ' + fname) return r def main(): args = fetch_tomtom_args() modisco_results = h5py.File(args.modisco_h5py, 'r') # get pfms ppms = [] cwms = [] seqlet_tally = [] names = [] for metacluster_name in modisco_results['metacluster_idx_to_submetacluster_results']: metacluster = modisco_results['metacluster_idx_to_submetacluster_results'][metacluster_name] all_pattern_names = [x.decode("utf-8") for x in list(metacluster["seqlets_to_patterns_result"]["patterns"]["all_pattern_names"][:])] for pattern_name in all_pattern_names: ppm = np.array(metacluster['seqlets_to_patterns_result']['patterns'][pattern_name]['sequence']['fwd']) num_seqlets = len(metacluster['seqlets_to_patterns_result']['patterns'][pattern_name]['seqlets_and_alnmts']['seqlets']) cwm = np.array(metacluster['seqlets_to_patterns_result']['patterns'][pattern_name]["task0_contrib_scores"]['fwd']) ppms.append(ppm) seqlet_tally.append(num_seqlets) cwms.append(cwm) names.append(metacluster_name + '.' + pattern_name) modisco_results.close() res = [] for i,x in enumerate(ppms): res.append(fetch_tomtom_matches(x, cwms[i], tomtom_exec_path=args.tomtom_exec, motifs_db=args.meme_motif_db, n=args.top_n_matches, trim_threshold=args.trim_threshold, trim_min_length=args.trim_min_length)) # write output. Skipping those patterns which disappear after trimming or have no matches with open(args.output_prefix, 'w') as f: # write header f.write("Pattern") f.write("\tNum_Seqlets") for i in range(args.top_n_matches): f.write("\tMatch_{}\tq-value".format(i+1)) f.write("\n") assert len(res) == len(names) for i,r in enumerate(res): f.write(names[i]) f.write("\t{}".format(seqlet_tally[i])) for match in r: f.write("\t{}\t{}".format(match['Target_ID'], match['q-value'])) # when fewer than n matches are found if len(r) != args.top_n_matches: f.write("\t\t"*(args.top_n_matches-len(r))) f.write("\n") if __name__=="__main__": main()
# Generated by Django 3.1.6 on 2021-02-11 12:01 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('spareparts', '0003_auto_20210208_1217'), ] operations = [ migrations.AlterField( model_name='local_comparison_sparepart', name='part_number', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comparison_sparepart', to='spareparts.sparepart', unique=True), ), ]
#!/usr/bin/env python # -*- coding: utf-8 -*- # author: cylisery@outlook.com # depth first search # return True if value is found, else False def dfs(node, val): stack = [node] visited = [] while len(stack) != 0: item = stack.pop() print "%s -> " % item.val if item.val == val: return True visited.append(item) for subitem in item.connections: if subitem not in visited and subitem not in stack: stack.append(subitem) return False
import pickle import os from datetime import datetime import getopt import sys def get_pickle_file_content(full_path_pickle_file): pickle_file = open(full_path_pickle_file,'rb') pickle_list = pickle.load(pickle_file, encoding='latin1') pickle_file.close() return pickle_list def get_all_pickle_filenames(pickle_file_dir): files = os.listdir(pickle_file_dir) tar_files = list() for f in files: if f.endswith(".pickle"): tar_files.append(f) return tar_files def save_vocab_size(full_path_vocab_file, vocab_size): file = open(full_path_vocab_file,'w+') file.write(str(vocab_size)) file.close() def save_sequence_length(full_path_seq_file, biggest): file = open(full_path_seq_file,'w+') file.write(str(biggest)) file.close() def build_vocab_dict_from_set(vocab_set): vocab_dict = dict() c = 1 for w in vocab_set: vocab_dict[w] = c c += 1 return vocab_dict def save_vocab(full_path_vocabfile, unique_vocab): pickle_file = open(full_path_vocabfile,'wb+') pickle.dump(unique_vocab, pickle_file) pickle_file.close() def parseArgs(): short_opts = 'hp:' long_opts = ['pickle-dir='] config = dict() config['pickle_dir'] = '/tmp/save_dir' try: args, rest = getopt.getopt(sys.argv[1:], short_opts, long_opts) except getopt.GetoptError as msg: print(msg) print(f'Call with argument -h to see help') exit() for option_key, option_value in args: if option_key in ('-p', '--pickle-dir'): print(f'found p') config['pickle_dir'] = option_value[1:] elif option_key in ('-h'): print(f'<optional> -p or --pickle-dir The directory with disassemblies,etc. Default: /tmp/save_dir') return config def main(): start=datetime.now() config = parseArgs() bag_styled_file_dir = config['pickle_dir'] full_path_vocab_file = "/tmp/vocab_size.txt" full_path_seq_file = "/tmp/sequence_length.txt" full_path_vocabfile = "/tmp/vocab.pickle" unique_vocab = set() print(f'Read out all tokenized pickle files in >{bag_styled_file_dir}<') all_files = get_all_pickle_filenames(bag_styled_file_dir) if len(all_files) == 0: print(f'Error: No tokenized files in dir >{bag_styled_file_dir}<') exit() counter = 0 biggest = 0 longest_disas = 30000 shortest_disas = 50 len_all_files = len(all_files) len_all_files_counter = 1 for file in all_files: content = get_pickle_file_content(bag_styled_file_dir + '/' + file) print(f'Building vocab from file >{file}< nr >{len_all_files_counter}/{len_all_files}<', end='\r') len_all_files_counter += 1 for disas,ret_type in content: #print(f'len disas >{len(disas)}<') ### we filter out some #if (len(disas) <= longest_disas) and ( len(disas) >= shortest_disas): if (len(disas) >= shortest_disas): for disas_item in disas.split(): unique_vocab.add(disas_item) if len(disas) > biggest: biggest = len(disas) #break stop = datetime.now() #vocab_dict = build_vocab_dict_from_set(unique_vocab) print(f'Run took:{stop-start} Hour:Min:Sec') print(f'We save Vocabulary in file >{full_path_vocab_file}<') print(f'Vocab size is >{len(unique_vocab)}<') print(f'Biggest sequence length is >{biggest}<') save_vocab(full_path_vocabfile, unique_vocab) save_vocab_size(full_path_vocab_file, len(unique_vocab)) save_sequence_length(full_path_seq_file, biggest) #print(unique_vocab) if __name__ == "__main__": main()
# Generated by Django 3.0.6 on 2020-06-04 13:02 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('musicRun', '0004_auto_20200604_1401'), ] operations = [ migrations.AlterField( model_name='song', name='artists', field=models.CharField(max_length=64), ), migrations.AlterField( model_name='song', name='bpm', field=models.IntegerField(), ), migrations.AlterField( model_name='song', name='danceability', field=models.FloatField(), ), migrations.AlterField( model_name='song', name='energy', field=models.FloatField(), ), migrations.AlterField( model_name='song', name='name', field=models.CharField(max_length=64), ), migrations.AlterField( model_name='song', name='valence', field=models.FloatField(), ), ]
# -*- coding: utf-8 -*- from sys import hexversion import random from .context import sortedcontainers from sortedcontainers import SortedListWithKey from nose.tools import raises if hexversion < 0x03000000: from itertools import izip as zip range = xrange def modulo(val): return val % 10 def test_init(): slt = SortedListWithKey(key=modulo) slt._check() slt = SortedListWithKey(load=10000, key=modulo) assert slt._load == 10000 assert slt._twice == 20000 assert slt._half == 5000 slt._check() slt = SortedListWithKey(range(10000), key=modulo) assert all(tup[0] == tup[1] for tup in zip(slt, sorted(range(10000), key=modulo))) slt.clear() assert slt._len == 0 assert slt._maxes == [] assert slt._lists == [] slt._check() def test_key(): slt = SortedListWithKey(range(10000), key=lambda val: val % 10) slt._check() values = sorted(range(10000), key=lambda val: (val % 10, val)) assert slt == values assert all(val in slt for val in range(10000)) def test_key2(): class Incomparable: pass a = Incomparable() b = Incomparable() slt = SortedListWithKey(key=lambda val: 1) slt.add(a) slt.add(b) assert slt == [a, b] def test_add(): random.seed(0) slt = SortedListWithKey(key=modulo) for val in range(1000): slt.add(val) slt._check() slt = SortedListWithKey(key=modulo) for val in range(1000, 0, -1): slt.add(val) slt._check() slt = SortedListWithKey(key=modulo) for val in range(1000): slt.add(random.random()) slt._check() def test_update(): slt = SortedListWithKey(key=modulo) slt.update(range(1000)) assert all(tup[0] == tup[1] for tup in zip(slt, sorted(range(1000), key=modulo))) assert len(slt) == 1000 slt._check() slt.update(range(10000)) assert len(slt) == 11000 slt._check() def test_contains(): slt = SortedListWithKey(key=modulo, load=7) assert 0 not in slt slt.update(range(100)) for val in range(100): assert val in slt assert 100 not in slt slt._check() slt = SortedListWithKey(range(100), key=modulo, load=4) assert all(val not in slt for val in range(100, 200)) def test_discard(): slt = SortedListWithKey(key=modulo) assert slt.discard(0) == None assert len(slt) == 0 slt._check() slt = SortedListWithKey([1, 2, 2, 2, 3, 3, 5], load=4, key=modulo) slt.discard(6) slt._check() slt.discard(4) slt._check() slt.discard(2) slt._check() slt.discard(11) slt.discard(12) slt.discard(13) slt.discard(15) assert all(tup[0] == tup[1] for tup in zip(slt, [1, 2, 2, 3, 3, 5])) def test_remove(): slt = SortedListWithKey(key=modulo) assert slt.discard(0) == None assert len(slt) == 0 slt._check() slt = SortedListWithKey([1, 2, 2, 2, 3, 3, 5], load=4, key=modulo) slt.remove(2) slt._check() assert all(tup[0] == tup[1] for tup in zip(slt, [1, 2, 2, 3, 3, 5])) @raises(ValueError) def test_remove_valueerror1(): slt = SortedListWithKey(key=modulo) slt.remove(0) @raises(ValueError) def test_remove_valueerror2(): slt = SortedListWithKey(range(100), load=10, key=modulo) slt.remove(100) @raises(ValueError) def test_remove_valueerror3(): slt = SortedListWithKey([1, 2, 2, 2, 3, 3, 5], key=modulo) slt.remove(4) @raises(ValueError) def test_remove_valueerror4(): slt = SortedListWithKey([1, 1, 1, 2, 2, 2], key=modulo) slt.remove(13) @raises(ValueError) def test_remove_valueerror5(): slt = SortedListWithKey([1, 1, 1, 2, 2, 2], key=modulo) slt.remove(12) def test_delete(): slt = SortedListWithKey(range(20), load=4, key=modulo) slt._check() for val in range(20): slt.remove(val) slt._check() assert len(slt) == 0 assert slt._maxes == [] assert slt._lists == [] def test_getitem(): random.seed(0) slt = SortedListWithKey(load=17, key=modulo) slt.append(5) slt._build_index() slt._check() slt.clear() lst = list(random.random() for rpt in range(100)) slt.update(lst) lst.sort(key=modulo) assert all(slt[idx] == lst[idx] for idx in range(100)) assert all(slt[idx - 99] == lst[idx - 99] for idx in range(100)) def test_getitem_slice(): random.seed(0) slt = SortedListWithKey(load=17, key=modulo) lst = list() for rpt in range(100): val = random.random() slt.add(val) lst.append(val) lst.sort(key=modulo) assert all(slt[start:] == lst[start:] for start in [-75, -25, 0, 25, 75]) assert all(slt[:stop] == lst[:stop] for stop in [-75, -25, 0, 25, 75]) assert all(slt[::step] == lst[::step] for step in [-5, -1, 1, 5]) assert all(slt[start:stop] == lst[start:stop] for start in [-75, -25, 0, 25, 75] for stop in [-75, -25, 0, 25, 75]) assert all(slt[:stop:step] == lst[:stop:step] for stop in [-75, -25, 0, 25, 75] for step in [-5, -1, 1, 5]) assert all(slt[start::step] == lst[start::step] for start in [-75, -25, 0, 25, 75] for step in [-5, -1, 1, 5]) assert all(slt[start:stop:step] == lst[start:stop:step] for start in [-75, -25, 0, 25, 75] for stop in [-75, -25, 0, 25, 75] for step in [-5, -1, 1, 5]) def test_getitem_slice_big(): slt = SortedListWithKey(range(4), key=modulo) lst = sorted(range(4), key=modulo) itr = ((start, stop, step) for start in [-6, -4, -2, 0, 2, 4, 6] for stop in [-6, -4, -2, 0, 2, 4, 6] for step in [-3, -2, -1, 1, 2, 3]) for start, stop, step in itr: assert slt[start:stop:step] == lst[start:stop:step] @raises(ValueError) def test_getitem_slicezero(): slt = SortedListWithKey(range(100), load=17, key=modulo) slt[::0] @raises(IndexError) def test_getitem_indexerror1(): slt = SortedListWithKey(key=modulo) slt[5] @raises(IndexError) def test_getitem_indexerror2(): slt = SortedListWithKey(range(100), key=modulo) slt[200] @raises(IndexError) def test_getitem_indexerror3(): slt = SortedListWithKey(range(100), key=modulo) slt[-101] def test_delitem(): random.seed(0) slt = SortedListWithKey(range(100), load=17, key=modulo) while len(slt) > 0: del slt[random.randrange(len(slt))] slt._check() def test_delitem_slice(): slt = SortedListWithKey(range(100), load=17, key=modulo) del slt[10:40:1] del slt[10:40:-1] del slt[10:40:2] del slt[10:40:-2] def test_setitem(): random.seed(0) slt = SortedListWithKey(range(0, 100), load=17, key=modulo) slt[0] = 100 slt[99] = 99 slt[55] = 45 def test_setitem_slice(): slt = SortedListWithKey(range(100), load=17, key=modulo) slt[:10] = [90, 80, 70, 60, 50, 40, 30, 20, 10, 0] slt[:10:2] = [0, 10, 20, 30, 40] slt[:] = sorted(range(100), key=modulo) slt[90:] = [] slt[:10] = [] assert len(slt) == 80 @raises(ValueError) def test_setitem_slice_bad(): slt = SortedListWithKey(range(100), load=17, key=modulo) slt[:10] = list(reversed(range(10))) @raises(ValueError) def test_setitem_slice_bad1(): slt = SortedListWithKey(range(100), load=17, key=modulo) slt[10:20] = range(20, 30) @raises(ValueError) def test_setitem_slice_bad2(): slt = SortedListWithKey(range(100), load=17, key=modulo) slt[20:30] = range(10, 20) @raises(ValueError) def test_setitem_extended_slice_bad1(): slt = SortedListWithKey(range(100), load=17, key=modulo) slt[20:80:3] = list(range(10)) @raises(ValueError) def test_setitem_extended_slice_bad2(): slt = SortedListWithKey(range(100), load=17, key=modulo) slt[40:90:5] = list(range(10)) @raises(ValueError) def test_setitem_valueerror1(): slt = SortedListWithKey(range(10), key=modulo) slt[9] = 10 @raises(ValueError) def test_setitem_valueerror2(): slt = SortedListWithKey(range(10), key=modulo) slt[0] = 9 def test_iter(): slt = SortedListWithKey(range(10000), key=modulo) itr = iter(slt) assert all(tup[0] == tup[1] for tup in zip(sorted(range(10000), key=modulo), itr)) def test_reversed(): slt = SortedListWithKey(range(10000), key=modulo) rev = reversed(slt) assert all(tup[0] == tup[1] for tup in zip(reversed(sorted(range(10000), key=modulo)), rev)) def test_len(): slt = SortedListWithKey(key=modulo) for val in range(10000): slt.add(val) assert len(slt) == (val + 1) def test_bisect_left(): slt = SortedListWithKey(key=modulo) assert slt.bisect_left(0) == 0 slt = SortedListWithKey(range(100), load=17, key=modulo) slt.update(range(100)) slt._check() assert slt.bisect_left(50) == 0 assert slt.bisect_left(0) == 0 def test_bisect(): slt = SortedListWithKey(key=modulo) assert slt.bisect(10) == 0 slt = SortedListWithKey(range(100), load=17, key=modulo) slt.update(range(100)) slt._check() assert slt.bisect(10) == 20 assert slt.bisect(0) == 20 def test_bisect_right(): slt = SortedListWithKey(key=modulo) assert slt.bisect_right(10) == 0 slt = SortedListWithKey(range(100), load=17, key=modulo) slt.update(range(100)) slt._check() assert slt.bisect_right(10) == 20 assert slt.bisect_right(0) == 20 def test_bisect_key_left(): slt = SortedListWithKey(key=modulo) assert slt.bisect_key_left(10) == 0 slt = SortedListWithKey(range(100), load=17, key=modulo) slt.update(range(100)) slt._check() assert slt.bisect_key_left(0) == 0 assert slt.bisect_key_left(5) == 100 assert slt.bisect_key_left(10) == 200 def test_bisect_key_right(): slt = SortedListWithKey(key=modulo) assert slt.bisect_key_right(0) == 0 slt = SortedListWithKey(range(100), load=17, key=modulo) slt.update(range(100)) slt._check() assert slt.bisect_key_right(0) == 20 assert slt.bisect_key_right(5) == 120 assert slt.bisect_key_right(10) == 200 def test_bisect_key(): slt = SortedListWithKey(key=modulo) assert slt.bisect_key(0) == 0 slt = SortedListWithKey(range(100), load=17, key=modulo) slt.update(range(100)) slt._check() assert slt.bisect_key(0) == 20 assert slt.bisect_key(5) == 120 assert slt.bisect_key(10) == 200 def test_copy(): slt = SortedListWithKey(range(100), load=7, key=modulo) two = slt.copy() slt.add(100) assert len(slt) == 101 assert len(two) == 100 def test_copy_copy(): import copy slt = SortedListWithKey(range(100), load=7, key=modulo) two = copy.copy(slt) slt.add(100) assert len(slt) == 101 assert len(two) == 100 def test_count(): slt = SortedListWithKey(load=7, key=modulo) assert slt.count(0) == 0 for iii in range(100): for jjj in range(iii): slt.add(iii) slt._check() for iii in range(100): assert slt.count(iii) == iii slt = SortedListWithKey(range(8), key=modulo) assert slt.count(9) == 0 def test_append(): slt = SortedListWithKey(load=4, key=modulo) slt.append(0) for val in range(1, 10): slt.append(val) slt._check() @raises(ValueError) def test_append_valueerror(): slt = SortedListWithKey(range(100), key=modulo) slt.append(5) def test_extend(): slt = SortedListWithKey(load=4, key=modulo) slt.extend(range(5)) slt._check() slt.extend(range(6, 10)) slt._check() @raises(ValueError) def test_extend_valueerror1(): slt = SortedListWithKey(key=modulo) slt.extend([1, 2, 3, 5, 4, 6]) @raises(ValueError) def test_extend_valueerror2(): slt = SortedListWithKey(range(20), load=4, key=modulo) slt.extend([17, 18, 19, 20, 21, 22, 23]) def test_insert(): slt = SortedListWithKey(range(10), load=4, key=modulo) slt.insert(-100, 0) slt._check() slt.insert(-1, 9) slt._check() slt.insert(0, 10) slt._check() slt = SortedListWithKey(load=4, key=modulo) slt.insert(0, 5) slt._check() slt = SortedListWithKey(range(5, 15), load=4, key=modulo) for rpt in range(8): slt.insert(0, 10) slt._check() slt = SortedListWithKey(range(10), load=4, key=modulo) slt.insert(8, 8) slt._check() @raises(ValueError) def test_insert_valueerror1(): slt = SortedListWithKey(range(10), load=4, key=modulo) slt.insert(10, 5) @raises(ValueError) def test_insert_valueerror2(): slt = SortedListWithKey(range(10), load=4, key=modulo) slt.insert(0, 9) @raises(ValueError) def test_insert_valueerror3(): slt = SortedListWithKey(range(10), load=4, key=modulo) slt.insert(5, 3) @raises(ValueError) def test_insert_valueerror4(): slt = SortedListWithKey(range(10), load=4, key=modulo) slt.insert(5, 7) def test_pop(): slt = SortedListWithKey(range(10), load=4, key=modulo) slt._check() assert slt.pop() == 9 slt._check() assert slt.pop(0) == 0 slt._check() assert slt.pop(-2) == 7 slt._check() assert slt.pop(4) == 5 slt._check() @raises(IndexError) def test_pop_indexerror1(): slt = SortedListWithKey(range(10), load=4, key=modulo) slt.pop(-11) @raises(IndexError) def test_pop_indexerror2(): slt = SortedListWithKey(range(10), load=4, key=modulo) slt.pop(10) def test_index(): slt = SortedListWithKey(range(100), load=7, key=modulo) for pos, val in enumerate(sorted(range(100), key=modulo)): assert val == slt.index(pos) assert slt.index(9, 0, 1000) == 90 slt = SortedListWithKey((0 for rpt in range(100)), load=7, key=modulo) for start in range(100): for stop in range(start, 100): assert slt.index(0, start, stop + 1) == start for start in range(100): assert slt.index(0, -(100 - start)) == start assert slt.index(0, -1000) == 0 @raises(ValueError) def test_index_valueerror1(): slt = SortedListWithKey([0] * 10, load=4, key=modulo) slt.index(0, 10) @raises(ValueError) def test_index_valueerror2(): slt = SortedListWithKey([0] * 10, load=4, key=modulo) slt.index(0, 0, -10) @raises(ValueError) def test_index_valueerror3(): slt = SortedListWithKey([0] * 10, load=4, key=modulo) slt.index(0, 7, 3) @raises(ValueError) def test_index_valueerror4(): slt = SortedListWithKey([0] * 10, load=4, key=modulo) slt.index(1) @raises(ValueError) def test_index_valueerror5(): slt = SortedListWithKey(key=modulo) slt.index(1) @raises(ValueError) def test_index_valueerror6(): slt = SortedListWithKey(range(100), load=4, key=modulo) slt.index(91, 0, 15) @raises(ValueError) def test_index_valueerror7(): slt = SortedListWithKey([0] * 10 + [1] * 10 + [2] * 10, load=4, key=modulo) slt.index(1, 0, 10) @raises(ValueError) def test_index_valueerror8(): slt = SortedListWithKey(range(10), load=4, key=modulo) slt.index(4, 5) @raises(ValueError) def test_index_valueerror9(): slt = SortedListWithKey(load=4, key=modulo) slt.index(5) @raises(ValueError) def test_index_valueerror10(): slt = SortedListWithKey(range(10), load=4, key=modulo) slt.index(19) def test_mul(): this = SortedListWithKey(range(10), load=4, key=modulo) that = this * 5 this._check() that._check() assert this == sorted(range(10), key=modulo) assert that == sorted(list(range(10)) * 5, key=modulo) assert this != that def test_imul(): this = SortedListWithKey(range(10), load=4, key=modulo) this *= 5 this._check() assert this == sorted(list(range(10)) * 5, key=modulo) def test_op_add(): this = SortedListWithKey(range(10), load=4, key=modulo) assert (this + this + this) == (this * 3) that = SortedListWithKey(range(10), load=4, key=modulo) that += that that += that assert that == (this * 4) def test_eq(): this = SortedListWithKey(range(10), load=4, key=modulo) that = SortedListWithKey(range(20), load=4, key=modulo) assert not (this == that) that.clear() that.update(range(10)) assert this == that def test_lt(): this = SortedListWithKey(range(10), load=4, key=modulo) that = SortedListWithKey(range(10, 20), load=5, key=modulo) assert this < that assert not (that < this) that = SortedListWithKey(range(1, 10), load=4, key=modulo) assert not (this < that) def test_lte(): this = SortedListWithKey(range(10), load=4, key=modulo) that = SortedListWithKey(range(10), load=5, key=modulo) assert this <= that assert that <= this del this[-1] assert this <= that assert not (that <= this) def test_gt(): this = SortedListWithKey(range(10), load=4, key=modulo) that = SortedListWithKey(range(10, 20), load=5, key=modulo) assert that > this assert not (this > that) that = SortedListWithKey(range(1, 10), load=4, key=modulo) assert not (that > this) def test_gte(): this = SortedListWithKey(range(10), load=4, key=modulo) that = SortedListWithKey(range(10), load=5, key=modulo) assert this >= that assert that >= this del this[-1] assert that >= this assert not (this >= that) def test_repr(): this = SortedListWithKey(range(10), load=4, key=modulo) assert repr(this).startswith('SortedListWithKey([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], key=<function modulo at ') def test_repr_subclass(): class CustomSortedListWithKey(SortedListWithKey): pass this = CustomSortedListWithKey(range(10), load=4, key=modulo) assert repr(this).startswith('CustomSortedListWithKey([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], key=<function modulo at ') @raises(AssertionError) def test_check(): slt = SortedListWithKey(range(10), load=4, key=modulo) slt._len = 5 slt._check() if __name__ == '__main__': import nose nose.main()
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import threading import time from datetime import datetime from pytz import timezone, UTC import requests import pysolr from shapely import wkt SOLR_CON_LOCK = threading.Lock() thread_local = threading.local() EPOCH = timezone('UTC').localize(datetime(1970, 1, 1)) SOLR_FORMAT = '%Y-%m-%dT%H:%M:%SZ' ISO_8601 = '%Y-%m-%dT%H:%M:%S%z' class SolrProxy(object): def __init__(self, config): self.solrUrl = config.get("solr", "host") self.solrCore = config.get("solr", "core") solr_kargs = {} if config.has_option("solr", "time_out"): solr_kargs["timeout"] = config.get("solr", "time_out") self.logger = logging.getLogger('nexus') with SOLR_CON_LOCK: solrcon = getattr(thread_local, 'solrcon', None) if solrcon is None: solr_url = '%s/solr/%s' % (self.solrUrl, self.solrCore) self.logger.info("connect to solr, url {} with option(s) = {}".format(solr_url, solr_kargs)) solrcon = pysolr.Solr(solr_url, **solr_kargs) thread_local.solrcon = solrcon self.solrcon = solrcon def find_tile_by_id(self, tile_id): search = 'id:%s' % tile_id params = { 'rows': 1 } results, start, found = self.do_query(*(search, None, None, True, None), **params) assert len(results) == 1, "Found %s results, expected exactly 1" % len(results) return [results[0]] def find_tiles_by_id(self, tile_ids, ds=None, **kwargs): if ds is not None: search = 'dataset_s:%s' % ds else: search = '*:*' additionalparams = { 'fq': [ "{!terms f=id}%s" % ','.join(tile_ids) ] } self._merge_kwargs(additionalparams, **kwargs) results = self.do_query_all(*(search, None, None, False, None), **additionalparams) assert len(results) == len(tile_ids), "Found %s results, expected exactly %s" % (len(results), len(tile_ids)) return results def find_min_date_from_tiles(self, tile_ids, ds=None, **kwargs): if ds is not None: search = 'dataset_s:%s' % ds else: search = '*:*' kwargs['rows'] = 1 kwargs['fl'] = 'tile_min_time_dt' kwargs['sort'] = ['tile_min_time_dt asc'] additionalparams = { 'fq': [ "{!terms f=id}%s" % ','.join(tile_ids) if len(tile_ids) > 0 else '' ] } self._merge_kwargs(additionalparams, **kwargs) results, start, found = self.do_query(*(search, None, None, True, None), **additionalparams) return self.convert_iso_to_datetime(results[0]['tile_min_time_dt']) def find_max_date_from_tiles(self, tile_ids, ds=None, **kwargs): if ds is not None: search = 'dataset_s:%s' % ds else: search = '*:*' kwargs['rows'] = 1 kwargs['fl'] = 'tile_max_time_dt' kwargs['sort'] = ['tile_max_time_dt desc'] additionalparams = { 'fq': [ "{!terms f=id}%s" % ','.join(tile_ids) if len(tile_ids) > 0 else '' ] } self._merge_kwargs(additionalparams, **kwargs) results, start, found = self.do_query(*(search, None, None, True, None), **additionalparams) return self.convert_iso_to_datetime(results[0]['tile_max_time_dt']) def find_min_max_date_from_granule(self, ds, granule_name, **kwargs): search = 'dataset_s:%s' % ds kwargs['rows'] = 1 kwargs['fl'] = 'tile_min_time_dt' kwargs['sort'] = ['tile_min_time_dt asc'] additionalparams = { 'fq': [ "granule_s:%s" % granule_name ] } self._merge_kwargs(additionalparams, **kwargs) results, start, found = self.do_query(*(search, None, None, False, None), **additionalparams) start_time = self.convert_iso_to_datetime(results[0]['tile_min_time_dt']) kwargs['fl'] = 'tile_max_time_dt' kwargs['sort'] = ['tile_max_time_dt desc'] additionalparams = { 'fq': [ "granule_s:%s" % granule_name ] } self._merge_kwargs(additionalparams, **kwargs) results, start, found = self.do_query(*(search, None, None, False, None), **additionalparams) end_time = self.convert_iso_to_datetime(results[0]['tile_max_time_dt']) return start_time, end_time def get_data_series_list(self): datasets = self.get_data_series_list_simple() for dataset in datasets: min_date = self.find_min_date_from_tiles([], ds=dataset['title']) max_date = self.find_max_date_from_tiles([], ds=dataset['title']) dataset['start'] = (min_date - EPOCH).total_seconds() dataset['end'] = (max_date - EPOCH).total_seconds() dataset['iso_start'] = min_date.strftime(ISO_8601) dataset['iso_end'] = max_date.strftime(ISO_8601) return datasets def get_data_series_list_simple(self): search = "*:*" params = { 'rows': 0, "facet": "true", "facet.field": "dataset_s", "facet.mincount": "1", "facet.limit": "-1" } response = self.do_query_raw(*(search, None, None, False, None), **params) l = [] for g, v in zip(*[iter(response.facets["facet_fields"]["dataset_s"])]*2): l.append({ "shortName": g, "title": g, "tileCount": v }) l = sorted(l, key=lambda entry: entry["title"]) return l def get_data_series_stats(self, ds): search = "dataset_s:%s" % ds params = { "facet": "true", "facet.field": ["dataset_s", "tile_max_time_dt"], "facet.limit": "-1", "facet.mincount": "1", "facet.pivot": "{!stats=piv1}dataset_s", "stats": "on", "stats.field": ["{!tag=piv1 min=true max=true sum=false}tile_max_time_dt","{!tag=piv1 min=true max=false sum=false}tile_min_val_d","{!tag=piv1 min=false max=true sum=false}tile_max_val_d"] } response = self.do_query_raw(*(search, None, None, False, None), **params) stats = {} for g in response.facets["facet_pivot"]["dataset_s"]: if g["value"] == ds: stats["start"] = self.convert_iso_to_timestamp(g["stats"]["stats_fields"]["tile_max_time_dt"]["min"]) stats["end"] = self.convert_iso_to_timestamp(g["stats"]["stats_fields"]["tile_max_time_dt"]["max"]) stats["minValue"] = g["stats"]["stats_fields"]["tile_min_val_d"]["min"] stats["maxValue"] = g["stats"]["stats_fields"]["tile_max_val_d"]["max"] stats["availableDates"] = [] for dt in response.facets["facet_fields"]["tile_max_time_dt"][::2]: stats["availableDates"].append(self.convert_iso_to_timestamp(dt)) stats["availableDates"] = sorted(stats["availableDates"]) return stats def find_tile_by_polygon_and_most_recent_day_of_year(self, bounding_polygon, ds, day_of_year): search = 'dataset_s:%s' % ds params = { 'fq': [ "{!field f=geo}Intersects(%s)" % bounding_polygon.wkt, "tile_count_i:[1 TO *]", "day_of_year_i:[* TO %s]" % day_of_year ], 'rows': 1 } results, start, found = self.do_query( *(search, None, None, True, ('day_of_year_i desc',)), **params) return [results[0]] def find_days_in_range_asc(self, min_lat, max_lat, min_lon, max_lon, ds, start_time, end_time, **kwargs): search = 'dataset_s:%s' % ds search_start_s = datetime.utcfromtimestamp(start_time).strftime(SOLR_FORMAT) search_end_s = datetime.utcfromtimestamp(end_time).strftime(SOLR_FORMAT) additionalparams = { 'fq': [ "geo:[%s,%s TO %s,%s]" % (min_lat, min_lon, max_lat, max_lon), "{!frange l=0 u=0}ms(tile_min_time_dt,tile_max_time_dt)", "tile_count_i:[1 TO *]", "tile_min_time_dt:[%s TO %s] " % (search_start_s, search_end_s) ], 'rows': 0, 'facet': 'true', 'facet.field': 'tile_min_time_dt', 'facet.mincount': '1', 'facet.limit': '-1' } self._merge_kwargs(additionalparams, **kwargs) response = self.do_query_raw(*(search, None, None, False, None), **additionalparams) daysinrangeasc = sorted( [(datetime.strptime(a_date, SOLR_FORMAT) - datetime.utcfromtimestamp(0)).total_seconds() for a_date in response.facets['facet_fields']['tile_min_time_dt'][::2]]) return daysinrangeasc def find_all_tiles_in_box_sorttimeasc(self, min_lat, max_lat, min_lon, max_lon, ds, start_time=0, end_time=-1, **kwargs): search = 'dataset_s:%s' % ds additionalparams = { 'fq': [ "geo:[%s,%s TO %s,%s]" % (min_lat, min_lon, max_lat, max_lon), "tile_count_i:[1 TO *]" ] } if 0 <= start_time <= end_time: search_start_s = datetime.utcfromtimestamp(start_time).strftime(SOLR_FORMAT) search_end_s = datetime.utcfromtimestamp(end_time).strftime(SOLR_FORMAT) time_clause = "(" \ "tile_min_time_dt:[%s TO %s] " \ "OR tile_max_time_dt:[%s TO %s] " \ "OR (tile_min_time_dt:[* TO %s] AND tile_max_time_dt:[%s TO *])" \ ")" % ( search_start_s, search_end_s, search_start_s, search_end_s, search_start_s, search_end_s ) additionalparams['fq'].append(time_clause) self._merge_kwargs(additionalparams, **kwargs) return self.do_query_all( *(search, None, None, False, 'tile_min_time_dt asc, tile_max_time_dt asc'), **additionalparams) def find_all_tiles_in_polygon_sorttimeasc(self, bounding_polygon, ds, start_time=0, end_time=-1, **kwargs): search = 'dataset_s:%s' % ds additionalparams = { 'fq': [ "{!field f=geo}Intersects(%s)" % bounding_polygon.wkt, "tile_count_i:[1 TO *]" ] } if 0 <= start_time <= end_time: search_start_s = datetime.utcfromtimestamp(start_time).strftime(SOLR_FORMAT) search_end_s = datetime.utcfromtimestamp(end_time).strftime(SOLR_FORMAT) time_clause = "(" \ "tile_min_time_dt:[%s TO %s] " \ "OR tile_max_time_dt:[%s TO %s] " \ "OR (tile_min_time_dt:[* TO %s] AND tile_max_time_dt:[%s TO *])" \ ")" % ( search_start_s, search_end_s, search_start_s, search_end_s, search_start_s, search_end_s ) additionalparams['fq'].append(time_clause) self._merge_kwargs(additionalparams, **kwargs) return self.do_query_all( *(search, None, None, False, 'tile_min_time_dt asc, tile_max_time_dt asc'), **additionalparams) def find_all_tiles_in_polygon(self, bounding_polygon, ds, start_time=0, end_time=-1, **kwargs): search = 'dataset_s:%s' % ds additionalparams = { 'fq': [ "{!field f=geo}Intersects(%s)" % bounding_polygon.wkt, "tile_count_i:[1 TO *]" ] } if 0 <= start_time <= end_time: search_start_s = datetime.utcfromtimestamp(start_time).strftime(SOLR_FORMAT) search_end_s = datetime.utcfromtimestamp(end_time).strftime(SOLR_FORMAT) time_clause = "(" \ "tile_min_time_dt:[%s TO %s] " \ "OR tile_max_time_dt:[%s TO %s] " \ "OR (tile_min_time_dt:[* TO %s] AND tile_max_time_dt:[%s TO *])" \ ")" % ( search_start_s, search_end_s, search_start_s, search_end_s, search_start_s, search_end_s ) additionalparams['fq'].append(time_clause) self._merge_kwargs(additionalparams, **kwargs) return self.do_query_all( *(search, None, None, False, None), **additionalparams) def find_distinct_bounding_boxes_in_polygon(self, bounding_polygon, ds, start_time=0, end_time=-1, **kwargs): search = 'dataset_s:%s' % ds additionalparams = { 'fq': [ "{!field f=geo}Intersects(%s)" % bounding_polygon.wkt, "tile_count_i:[1 TO *]" ], 'rows': 0, 'facet': 'true', 'facet.field': 'geo_s', 'facet.limit': -1, 'facet.mincount': 1 } if 0 <= start_time <= end_time: search_start_s = datetime.utcfromtimestamp(start_time).strftime(SOLR_FORMAT) search_end_s = datetime.utcfromtimestamp(end_time).strftime(SOLR_FORMAT) time_clause = "(" \ "tile_min_time_dt:[%s TO %s] " \ "OR tile_max_time_dt:[%s TO %s] " \ "OR (tile_min_time_dt:[* TO %s] AND tile_max_time_dt:[%s TO *])" \ ")" % ( search_start_s, search_end_s, search_start_s, search_end_s, search_start_s, search_end_s ) additionalparams['fq'].append(time_clause) self._merge_kwargs(additionalparams, **kwargs) response = self.do_query_raw(*(search, None, None, False, None), **additionalparams) distinct_bounds = [wkt.loads(key).bounds for key in response.facets["facet_fields"]["geo_s"][::2]] return distinct_bounds def find_tiles_by_exact_bounds(self, minx, miny, maxx, maxy, ds, start_time=0, end_time=-1, **kwargs): search = 'dataset_s:%s' % ds additionalparams = { 'fq': [ "tile_min_lon:\"%s\"" % minx, "tile_min_lat:\"%s\"" % miny, "tile_max_lon:\"%s\"" % maxx, "tile_max_lat:\"%s\"" % maxy, "tile_count_i:[1 TO *]" ] } if 0 <= start_time <= end_time: search_start_s = datetime.utcfromtimestamp(start_time).strftime(SOLR_FORMAT) search_end_s = datetime.utcfromtimestamp(end_time).strftime(SOLR_FORMAT) time_clause = "(" \ "tile_min_time_dt:[%s TO %s] " \ "OR tile_max_time_dt:[%s TO %s] " \ "OR (tile_min_time_dt:[* TO %s] AND tile_max_time_dt:[%s TO *])" \ ")" % ( search_start_s, search_end_s, search_start_s, search_end_s, search_start_s, search_end_s ) additionalparams['fq'].append(time_clause) self._merge_kwargs(additionalparams, **kwargs) return self.do_query_all( *(search, None, None, False, None), **additionalparams) def find_all_tiles_in_box_at_time(self, min_lat, max_lat, min_lon, max_lon, ds, search_time, **kwargs): search = 'dataset_s:%s' % ds the_time = datetime.utcfromtimestamp(search_time).strftime(SOLR_FORMAT) time_clause = "(" \ "tile_min_time_dt:[* TO %s] " \ "AND tile_max_time_dt:[%s TO *] " \ ")" % ( the_time, the_time ) additionalparams = { 'fq': [ "geo:[%s,%s TO %s,%s]" % (min_lat, min_lon, max_lat, max_lon), "tile_count_i:[1 TO *]", time_clause ] } self._merge_kwargs(additionalparams, **kwargs) return self.do_query_all(*(search, None, None, False, None), **additionalparams) def find_all_tiles_in_polygon_at_time(self, bounding_polygon, ds, search_time, **kwargs): search = 'dataset_s:%s' % ds the_time = datetime.utcfromtimestamp(search_time).strftime(SOLR_FORMAT) time_clause = "(" \ "tile_min_time_dt:[* TO %s] " \ "AND tile_max_time_dt:[%s TO *] " \ ")" % ( the_time, the_time ) additionalparams = { 'fq': [ "{!field f=geo}Intersects(%s)" % bounding_polygon.wkt, "tile_count_i:[1 TO *]", time_clause ] } self._merge_kwargs(additionalparams, **kwargs) return self.do_query_all(*(search, None, None, False, None), **additionalparams) def find_all_tiles_within_box_at_time(self, min_lat, max_lat, min_lon, max_lon, ds, time, **kwargs): search = 'dataset_s:%s' % ds the_time = datetime.utcfromtimestamp(time).strftime(SOLR_FORMAT) time_clause = "(" \ "tile_min_time_dt:[* TO %s] " \ "AND tile_max_time_dt:[%s TO *] " \ ")" % ( the_time, the_time ) additionalparams = { 'fq': [ "geo:\"Within(ENVELOPE(%s,%s,%s,%s))\"" % (min_lon, max_lon, max_lat, min_lat), "tile_count_i:[1 TO *]", time_clause ] } self._merge_kwargs(additionalparams, **kwargs) return self.do_query_all(*(search, "product(tile_avg_val_d, tile_count_i),*", None, False, None), **additionalparams) def find_all_boundary_tiles_at_time(self, min_lat, max_lat, min_lon, max_lon, ds, time, **kwargs): search = 'dataset_s:%s' % ds the_time = datetime.utcfromtimestamp(time).strftime(SOLR_FORMAT) time_clause = "(" \ "tile_min_time_dt:[* TO %s] " \ "AND tile_max_time_dt:[%s TO *] " \ ")" % ( the_time, the_time ) additionalparams = { 'fq': [ "geo:\"Intersects(MultiLineString((%s %s, %s %s),(%s %s, %s %s),(%s %s, %s %s),(%s %s, %s %s)))\"" % ( min_lon, max_lat, max_lon, max_lat, min_lon, max_lat, min_lon, min_lat, max_lon, max_lat, max_lon, min_lat, min_lon, min_lat, max_lon, min_lat), "-geo:\"Within(ENVELOPE(%s,%s,%s,%s))\"" % (min_lon, max_lon, max_lat, min_lat), "tile_count_i:[1 TO *]", time_clause ] } self._merge_kwargs(additionalparams, **kwargs) return self.do_query_all(*(search, None, None, False, None), **additionalparams) def find_all_tiles_by_metadata(self, metadata, ds, start_time=0, end_time=-1, **kwargs): """ Get a list of tile metadata that matches the specified metadata, start_time, end_time. :param metadata: List of metadata values to search for tiles e.g ["river_id_i:1", "granule_s:granule_name"] :param ds: The dataset name to search :param start_time: The start time to search for tiles :param end_time: The end time to search for tiles :return: A list of tile metadata """ search = 'dataset_s:%s' % ds additionalparams = { 'fq': metadata } if 0 <= start_time <= end_time: additionalparams['fq'].append(self.get_formatted_time_clause(start_time, end_time)) self._merge_kwargs(additionalparams, **kwargs) return self.do_query_all( *(search, None, None, False, None), **additionalparams) def get_formatted_time_clause(self, start_time, end_time): search_start_s = datetime.utcfromtimestamp(start_time).strftime(SOLR_FORMAT) search_end_s = datetime.utcfromtimestamp(end_time).strftime(SOLR_FORMAT) time_clause = "(" \ "tile_min_time_dt:[%s TO %s] " \ "OR tile_max_time_dt:[%s TO %s] " \ "OR (tile_min_time_dt:[* TO %s] AND tile_max_time_dt:[%s TO *])" \ ")" % ( search_start_s, search_end_s, search_start_s, search_end_s, search_start_s, search_end_s ) return time_clause def get_tile_count(self, ds, bounding_polygon=None, start_time=0, end_time=-1, metadata=None, **kwargs): """ Return number of tiles that match search criteria. :param ds: The dataset name to search :param bounding_polygon: The polygon to search for tiles :param start_time: The start time to search for tiles :param end_time: The end time to search for tiles :param metadata: List of metadata values to search for tiles e.g ["river_id_i:1", "granule_s:granule_name"] :return: number of tiles that match search criteria """ search = 'dataset_s:%s' % ds additionalparams = { 'fq': [ "tile_count_i:[1 TO *]" ], 'rows': 0 } if bounding_polygon: min_lon, min_lat, max_lon, max_lat = bounding_polygon.bounds additionalparams['fq'].append("geo:[%s,%s TO %s,%s]" % (min_lat, min_lon, max_lat, max_lon)) if 0 <= start_time <= end_time: additionalparams['fq'].append(self.get_formatted_time_clause(start_time, end_time)) if metadata: additionalparams['fq'].extend(metadata) self._merge_kwargs(additionalparams, **kwargs) results, start, found = self.do_query(*(search, None, None, True, None), **additionalparams) return found def do_query(self, *args, **params): response = self.do_query_raw(*args, **params) return response.docs, response.raw_response['response']['start'], response.hits def do_query_raw(self, *args, **params): if 'fl' not in list(params.keys()) and args[1]: params['fl'] = args[1] if 'sort' not in list(params.keys()) and args[4]: params['sort'] = args[4] # If dataset_s is specified as the search term, # add the _route_ parameter to limit the search to the correct shard if 'dataset_s:' in args[0]: ds = args[0].split(':')[-1] params['shard_keys'] = ds + '!' with SOLR_CON_LOCK: response = self.solrcon.search(args[0], **params) return response def do_query_all(self, *args, **params): results = [] response = self.do_query_raw(*args, **params) results.extend(response.docs) limit = min(params.get('limit', float('inf')), response.hits) while len(results) < limit: params['start'] = len(results) response = self.do_query_raw(*args, **params) results.extend(response.docs) assert len(results) == limit return results def convert_iso_to_datetime(self, date): return datetime.strptime(date, "%Y-%m-%dT%H:%M:%SZ").replace(tzinfo=UTC) def convert_iso_to_timestamp(self, date): return (self.convert_iso_to_datetime(date) - EPOCH).total_seconds() def ping(self): solrAdminPing = '%s/solr/%s/admin/ping' % (self.solrUrl, self.solrCore) try: r = requests.get(solrAdminPing, params={'wt': 'json'}) results = json.loads(r.text) return results except: return None @staticmethod def _merge_kwargs(additionalparams, **kwargs): # Only Solr-specific kwargs are parsed # And the special 'limit' try: additionalparams['limit'] = kwargs['limit'] except KeyError: pass try: additionalparams['_route_'] = kwargs['_route_'] except KeyError: pass try: additionalparams['rows'] = kwargs['rows'] except KeyError: pass try: additionalparams['start'] = kwargs['start'] except KeyError: pass try: kwfq = kwargs['fq'] if isinstance(kwargs['fq'], list) else list(kwargs['fq']) except KeyError: kwfq = [] try: additionalparams['fq'].extend(kwfq) except KeyError: additionalparams['fq'] = kwfq try: kwfl = kwargs['fl'] if isinstance(kwargs['fl'], list) else [kwargs['fl']] except KeyError: kwfl = [] try: additionalparams['fl'].extend(kwfl) except KeyError: additionalparams['fl'] = kwfl try: s = kwargs['sort'] if isinstance(kwargs['sort'], list) else [kwargs['sort']] except KeyError: s = None try: additionalparams['sort'].extend(s) except KeyError: if s is not None: additionalparams['sort'] = s
def hot_singles(arr1, arr2): output = [] for x in arr1: if x not in output and x not in arr2: output.append(x) for x in arr2: if x not in output and x not in arr1: output.append(x) return output ''' Write a function that takes two arguments, and returns a new array populated with the elements that only appear once, in either one array or the other, taken only once; display order should follow what appears in arr1 first, then arr2: hot_singles([1, 2, 3, 3], [3, 2, 1, 4, 5]) # [4, 5] hot_singles(["tartar", "blanket", "cinnamon"], ["cinnamon", "blanket", "domino"]) # ["tartar", "domino"] hot_singles([77, "ciao"], [78, 42, "ciao"]) # [77, 78, 42] hot_singles([1, 2, 3, 3], [3, 2, 1, 4, 5, 4]) # [4,5] '''
#!/usr/bin/env python # encoding: utf-8 ''' @author: songyunlong @license: (C) Copyright 2018-2021, Node Supply Chain Manager Corporation Limited. @contact: 1243049371@qq.com @software: pycharm @file: ceshi @time: 2019/3/3 11:13 @desc: ''' import tensorflow as tf import numpy as np from tensorflow_own.Routine_operation import SaveFile, LoadFile from tensorflow_own.TFrecord_operation import FileoOperation if __name__ == '__main__': for i in range(0, 10, 2): print(i)
import pickle as pkl import json import random import numpy as np import torch from sklearn import preprocessing from sklearn.cluster import KMeans def read_pickle(file_path): with open(file_path, 'rb') as f: vec = pkl.load(f) return vec def dump_pickle(file_path, obj): with open(file_path, 'wb') as f: pkl.dump(obj, f) def read_json(file_path): with open(file_path, 'r') as f: return json.load(f) def dump_json(file_path, obj): with open(file_path, 'w') as f: json.dump(obj, f) def remove_unseen_relation(data, seen_relations, dataset='fewrel'): cleaned_data = [] for data in data: neg_cands = [cand for cand in data[1] if cand in seen_relations] if len(neg_cands) > 0: if dataset == 'fewrel': cleaned_data.append([data[0], neg_cands, data[2], data[3], data[4], data[5]]) else: cleaned_data.append([data[0], neg_cands, data[2]]) else: if dataset == 'fewrel': cleaned_data.append([data[0], data[1][-2:], data[2], data[3], data[4], data[5]]) else: cleaned_data.append([data[0], data[1][-2:], data[2]]) return cleaned_data def ranking_sequence(sequence): word_lengths = torch.tensor([len(sentence) for sentence in sequence]) rankedi_word, indexs = word_lengths.sort(descending = True) ranked_indexs, inverse_indexs = indexs.sort() #print(indexs) sequence = [sequence[i] for i in indexs] return sequence, inverse_indexs def get_que_embed(model, sample_list, all_relations, batch_size, device, before_alignment=False): ret_que_embeds = [] for i in range((len(sample_list)-1)//batch_size+1): samples = sample_list[i*batch_size:(i+1)*batch_size] questions = [] for item in samples: this_question = torch.tensor(item[2], dtype=torch.long).to(device) questions.append(this_question) #print(len(questions)) model.init_hidden(device, len(questions)) ranked_questions, alignment_question_indexs = \ ranking_sequence(questions) question_lengths = [len(question) for question in ranked_questions] #print(ranked_questions) pad_questions = torch.nn.utils.rnn.pad_sequence(ranked_questions) que_embeds = model.compute_que_embed(pad_questions, question_lengths, alignment_question_indexs, None, before_alignment) ret_que_embeds.append(que_embeds.detach().cpu().numpy()) return np.concatenate(ret_que_embeds) # get the embedding of relations. If before_alignment is False, then the # embedding after the alignment model will be returned. Otherwise, the embedding # before the alignment model will be returned def get_rel_embed(model, sample_list, all_relations, alignment_model, batch_size, device, before_alignment=False): ret_rel_embeds = [] for i in range((len(sample_list)-1)//batch_size+1): samples = sample_list[i*batch_size:(i+1)*batch_size] relations = [] for item in samples: this_relation = torch.tensor(all_relations[item[0]], dtype=torch.long).to(device) relations.append(this_relation) #print(len(relations)) model.init_hidden(device, len(relations)) ranked_relations, alignment_relation_indexs = \ ranking_sequence(relations) relation_lengths = [len(relation) for relation in ranked_relations] #print(ranked_relations) pad_relations = torch.nn.utils.rnn.pad_sequence(ranked_relations) rel_embeds = model.compute_rel_embed(pad_relations, relation_lengths, alignment_relation_indexs, alignment_model, before_alignment) ret_rel_embeds.append(rel_embeds.detach().cpu().numpy()) return np.concatenate(ret_rel_embeds) def select_data(model, samples, num_sel_data, all_relations, batch_size, device): que_embeds = get_que_embed(model, samples, all_relations, batch_size, device) # sentence embedding,400d que_embeds = preprocessing.normalize(que_embeds) # sklearn normalize #print(que_embeds[:5]) num_clusters = min(num_sel_data, len(samples)) # cluster samples into min(num_sel_data, len(samples))clusters, get one for each cluster as memory distances = KMeans(n_clusters=num_clusters, random_state=0).fit_transform(que_embeds) selected_samples = [] for i in range(num_clusters): sel_index = np.argmin(distances[:,i]) selected_samples.append(samples[sel_index]) return selected_samples def random_select_data(current_train_data, task_memory_size): return random.sample(current_train_data, task_memory_size) # process the data by adding questions def process_testing_samples(sample_list, all_relations, device): questions = [] relations = [] gold_relation_indexs = [] relation_set_lengths = [] for sample in sample_list: question = torch.tensor(sample[2], dtype=torch.long).to(device) #print(relations[sample[0]]) #print(sample) gold_relation_indexs.append(sample[0]) neg_relations = [torch.tensor(all_relations[index - 1], dtype=torch.long).to(device) for index in sample[1]] relation_set_lengths.append(len(neg_relations)) relations += neg_relations #questions += [question for i in range(relation_set_lengths[-1])] questions += [question] * relation_set_lengths[-1] return gold_relation_indexs, questions, relations, relation_set_lengths def process_samples(sample_list, all_relations, device): questions = [] relations = [] relation_set_lengths = [] for sample in sample_list: question = torch.tensor(sample[2], dtype=torch.long).to(device) #print(relations[sample[0]]) #print(sample) pos_relation = torch.tensor(all_relations[sample[0] - 1], dtype=torch.long).to(device) # pos tensor neg_relations = [torch.tensor(all_relations[index - 1], dtype=torch.long).to(device) for index in sample[1]] # candidate neg tensor relation_set_lengths.append(len(neg_relations)+1) relations += [pos_relation] + neg_relations # merge #questions += [question for i in range(relation_set_lengths[-1])] questions += [question] * relation_set_lengths[-1] return questions, relations, relation_set_lengths def ranking_sequence(sequence): word_lengths = torch.tensor([len(sentence) for sentence in sequence]) ranked_word, indexs = word_lengths.sort(descending = True) ranked_indexs, inverse_indexs = indexs.sort() #print(indexs) sequence = [sequence[i] for i in indexs] return sequence, inverse_indexs def append_log(file_name, line): with open(file_name, 'a+') as f: f.writelines(line + '\n') f.flush()
import Horcner as H import numpy as np import matplotlib.pyplot as plt import math def diff(y): n = len(y) delta = np.zeros((n, n)) delta[:, 0] = y for i in range(1, n): for j in range(0, n - i): delta[j, i] = delta[j+1, i-1] - delta[j, i-1] return delta
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jan 16 15:38:32 2018 @author: ppxee """ from astropy.io import fits #for handling fits sem05B = fits.open('SE_outputs_yearstacks/05B_output.fits')
import time from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as ec from selenium.webdriver.common.by import By class WeatherUi: def __init__(self, logger): self.logger = logger self.driver = webdriver.Chrome('C:\\Users\\mahes\\Downloads\\chromedriver') self.url = 'https://weather.com/' self.temp = dict() def get_weather_details(self, cities): self.logger.info('Starting to get weather details from web url {}'.format(self.url)) try: self.driver.get(self.url) self.driver.implicitly_wait(10) for ct in cities: WebDriverWait(self.driver, 10).until(ec.element_to_be_clickable((By.XPATH, "//input[@id='LocationSearch_input']" ))).click() search_elem = self.driver.find_element_by_id('LocationSearch_input') search_elem.clear() search_elem.send_keys(ct) WebDriverWait(self.driver, 10).until(ec.visibility_of_all_elements_located((By.ID, "LocationSearch_listbox"))) time.sleep(5) search_elem.send_keys(Keys.RETURN) temp_elem = self.driver.find_element_by_xpath('//span[@data-testid="TemperatureValue"]') temperature = temp_elem.text[:-1] self.temp[ct] = temperature self.logger.info(self.temp) return self.temp except Exception: self.logger.error('Failed to access web url') raise Exception("Failed to access web url") finally: self.logger.info('Going to close browser') self.driver.quit()
import re import nltk import math from pickle import load from random import randint from keras.preprocessing.text import Tokenizer from keras.utils import to_categorical from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Embedding from keras.models import load_model from keras.callbacks import ModelCheckpoint, EarlyStopping import matplotlib.pyplot as plt from pickle import dump from nltk.corpus import gutenberg import numpy as np np.set_printoptions(threshold=np.inf) def generate_seq(model, tokenizer, max_length, seed_text, n_words): in_text = seed_text for _ in range(n_words): encoded = tokenizer.texts_to_sequences([in_text])[0] encoded = pad_sequences([encoded], maxlen=max_length, padding='pre') yhat = model.predict_classes(encoded, verbose=0) out_word = '' for word, index in tokenizer.word_index.items(): if index == yhat: out_word = word break in_text += ' ' + out_word return in_text model = load_model('weights_word.best.hdf5') mapping = load(open('mapping_words.pkl', 'rb')) print(generate_seq(model, mapping, 179, 'she did', 10))
#!/usr/bin/python # Import the required modules import cv2, os import numpy as np from PIL import Image import Train_Common as tc import sys, getopt help_message = ''' USAGE: Train_Recognizer_LBP.py [--path <Path>] [--model-name <ModelName>] [--label-name <LabelName>] ''' if __name__ == "__main__": print (help_message) args, opts = getopt.getopt(sys.argv[1:], '', ['path=', 'model-name=', 'label-name=']) # For face recognition we will the the LBPH Face Recognizer recognizer = cv2.createLBPHFaceRecognizer() print "-----------------------------" args = dict(args) path = args.get('--path', "./FaceRecData_LBPH_Test") ModelName = args.get('--model-name', "Model_default.yml") LabelName = args.get('--label-name', "Label_default.txt") format = ".png" print "Gen list of all sample image.....\n" tc.Gen_List_All_Sample_Image(path, format) print "Gen list of label.....\n" tc.Gen_List_Label(path, LabelName) print "Assign image and label list.....\n" images, labels = tc.get_images_and_labels_Assign_Format(path, format) print "Train face reconition model.....\n" recognizer = tc.TrainModel(recognizer, images, labels, ModelName)
''' Usage: test longestSubstrLen_3.py by using pytest ''' import pytest import os import sys # append parent path sys.path.append(os.path.pardir) from longestSubstrLen_3 import Solution from longestSubstrLen_3 import Solution2 test_data = [ ("abcabcbb", 3), ('bbbbbb', 1), ('c', 1), ('aab', 2), ('pwwkew', 3) ] @pytest.mark.parametrize("strings,expected", test_data) def test_solution(strings, expected): cs = Solution() assert cs.lengthOfLongestSubstring(strings) == expected cs2 = Solution2() assert cs2.lengthOfLongestSubstring(strings) == expected
#!/usr/bin/env python3 import numpy as np import matplotlib from matplotlib.collections import LineCollection import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d from mpl_toolkits.mplot3d.art3d import Line3DCollection def plot(graph, **kwargs): """ Plots a 2d or 3d graph given an FEA LatticeGraph object (the output of the fea function) Arguments: graph: FEA Lattice Graph to Plot Named Arguments: figure: The figure to plot on cmap: color map (defaults to inferno) x: specify variable name for X-axis y: specify variable name for Y-axis z: specify variable name for Z-axis c: specify variable name for color-axis vertices: Default True. Whether or not to plot vertices edges: Default True. Whether or not to plot edges Returns: Tuple of matplotlib figure and plot Example: solution = fea(model, [x,y,z]) solfigure, solplot = plot(solution, x='x', y='y', z='z') solfigure.savefix('solution_figure.svg') """ figure=kwargs.get('figure',plt.figure()) cm=kwargs.get('cmap',matplotlib.cm.get_cmap('inferno')) if kwargs.get('z',None) is not None: plot=kwargs.get('plot',figure.add_subplot(111,projection='3d')) plot.set_xlabel(str(kwargs.get('x',''))) plot.set_ylabel(str(kwargs.get('y',''))) plot.set_zlabel(str(kwargs.get('z',''))) dname=[str(kwargs['x']),str(kwargs['y']),str(kwargs['z'])] else: plot=kwargs.get('plot',figure.add_subplot(111)) plot.set_xlabel(str(kwargs.get('x',''))) plot.set_ylabel(str(kwargs.get('y',''))) dname=[str(kwargs.get('x','')),str(kwargs.get('y',''))] dmat=np.zeros([len(dname),graph.N]) vnames=[str(v) for v in graph._variables] if kwargs.get('c',None) in vnames: c=None cmat=np.zeros(graph.N) cmat[vnames.index(kwargs['c'])]=1 else: c=kwargs.get('c','k') cmat=None for i,n in enumerate(dname): dmat[i,vnames.index(str(n))]=1 # Plot vertices (if desired) if kwargs.get('vertices',True): verts=list(graph.get_vertices(real=kwargs.get('real',True),complete=kwargs.get('complete',True))) if c is None: ccurr=[np.dot(cmat,v.point) for v in verts] else: ccurr=c sc=plot.scatter(*np.transpose([np.dot(dmat,v.point) for v in verts]),c=ccurr,cmap=cm) # Plot Edges (if desired) if kwargs.get('edges',True): edges=list(graph.get_nodes_of_level(1,real=kwargs.get('real',True),complete=kwargs.get('complete',True))) edge_collection=[] if c is None: ccurr=[] else: ccurr=c for e in edges: verts=list(graph.get_vertices(e,real=kwargs.get('real',True),complete=kwargs.get('complete',True))) if len(verts)==2: if c is None: dat_range=np.array([np.dot(dmat,v.point) for v in verts]) c_range=np.array([np.dot(cmat,v.point) for v in verts]) steps=50 points=np.array([np.linspace(r[0],r[1],steps) for r in dat_range.T]).T.reshape(-1,1,len(dname)) segs=np.concatenate([points[:-1],points[1:]], axis=1) edge_collection.extend(list(segs)) ccurr.extend(np.linspace(c_range[0],c_range[1],steps-1)) else: edge_collection.append([np.dot(dmat,v.point) for v in verts]) ax = plot.axes if c is None: if len(dname)==3: lc=Line3DCollection(edge_collection, array=np.array(ccurr),cmap=cm) ax.add_collection3d(lc) else: lc=LineCollection(np.array(edge_collection), array=np.array(ccurr),cmap=cm) ax.add_collection(lc) else: if len(dname)==3: lc=Line3DCollection(np.array(edge_collection)) ax.add_collection3d(lc) else: lc=LineCollection(np.array(edge_collection)) ax.add_collection(lc) return figure,plot # def fix_clims(f,p,bounds=None,mul=[1,1]): # f.show() # if bounds is None: # print([c.get_clim() for c in p.collections]) # lims=np.array([c.get_clim() for c in p.collections]) # bounds=[min((i for i in lims.T[0] if i is not None)),max((i for i in lims.T[1] if i is not None))] # bounds=np.multiply(bounds,mul) # for c in p.collections: # c.set_clim(*bounds) # f.colorbar(p.collections[0]) # return bounds __exports__ = [plot]
from django import template register = template.Library() @register.simple_tag(takes_context=True) def set_global_context(context, key, value): context.dicts[0][key] = value return ''
__author__ = "Narwhale" import string # def func(name): # return name.title() # # assert func("lilei") #title # assert func("hanmeimei") # assert func("Hanmeimei") # def func(name,callback=None): # if callback == None: # return name.title() # else: # return callback(name) # # def ff(name): # return name.lower() # def f(name): # return name.upper() # # # print(func("LILEI",callback=ff) == "lilei") # assert func("lilei") == "Lilei" # assert func("LILEI",callback=ff) == "lilei" # assert func("lilei",callback=f)== "LILEI" def getitem(*kargs): return kargs l = getitem(5,3,4,5,6) print(l)
from panda3d.core import Vec3 from .ObjectProperty import ObjectProperty class TransformProperty(ObjectProperty): def __init__(self, mapObject): ObjectProperty.__init__(self, mapObject) self.valueType = "vec3" self.defaultValue = Vec3(0) self.value = self.defaultValue self.group = "Transform" class OriginProperty(TransformProperty): def __init__(self, mapObject): TransformProperty.__init__(self, mapObject) self.name = "origin" def clone(self, mapObject): prop = OriginProperty(mapObject) self.copyBase(prop) return prop def getDisplayName(self): return "Origin" def getDescription(self): return "Translational origin of the object." def setValue(self, value): TransformProperty.setValue(self, value) self.mapObject.setOrigin(value) def getValue(self): return self.mapObject.getOrigin() class AnglesProperty(TransformProperty): def __init__(self, mapObject): TransformProperty.__init__(self, mapObject) self.name = "angles" def clone(self, mapObject): prop = AnglesProperty(mapObject) self.copyBase(prop) return prop def getDisplayName(self): return "Angles (Yaw Pitch Roll)" def getDescription(self): return "Orientation of the object, expressed in yaw/pitch/roll Euler angles." def setValue(self, value): TransformProperty.setValue(self, value) self.mapObject.setAngles(value) def getValue(self): return self.mapObject.getAngles() class ScaleProperty(TransformProperty): def __init__(self, mapObject): TransformProperty.__init__(self, mapObject) self.defaultValue = Vec3(1) self.name = "scale" def clone(self, mapObject): prop = ScaleProperty(mapObject) self.copyBase(prop) return prop def getDisplayName(self): return "Scale" def getDescription(self): return "Scale of the object. 0 is invalid" def getMinValue(self): # We can't have a scale of 0 return 0.00001 def testMinValue(self, value): minVal = self.getMinValue() return value.x >= minVal and value.y >= minVal and value.z >= minVal def setValue(self, value): TransformProperty.setValue(self, value) self.mapObject.setScale(value) def getValue(self): return self.mapObject.getScale() class ShearProperty(TransformProperty): def __init__(self, mapObject): TransformProperty.__init__(self, mapObject) self.name = "shear" def clone(self, mapObject): prop = ShearProperty(mapObject) self.copyBase(prop) return prop def getDisplayName(self): return "Shear" def getDescription(self): return "Shear/skew of the object." def setValue(self, value): TransformProperty.setValue(self, value) self.mapObject.setShear(value) def getValue(self): return self.mapObject.getShear()
''' Created on Jan 24, 2016 @author: Andrei Padnevici @note: This is an exercise: 9.1 ''' file = open("romeo.txt") wordsDict = dict() for line in file: words = line.split() for word in words: wordsDict[word] = wordsDict.get(word, 0) print("window: ","window"in wordsDict) print("wdsfsindow: ","wdsfsindow"in wordsDict) print(wordsDict)
# Submitter: loganw1(Wang, Logan) # Defined below is a special exception for use with the Graph class methods # Use it like any exception: e.g., raise GraphError('Graph.method" ...error indication...') class GraphError(Exception): pass # Inherit all methods, including __init__ class Graph: # HELPER METHODS: used for checking legal arguments to methods below def legal_tuple2(self, t): return type(t) is tuple and len(t) == 2 and \ type(t[0]) is str and type(t[1]) is str def legal_tuple3(self, t): return type(t) is tuple and len(t) == 3 and \ type(t[0]) is str and type(t[1]) is str and self.is_legal_edge_value(t[2]) # __str__ and many bsc tests use the name self.edges for the outer/inner-dict. # So __init__ should use self.edges for the name for this dictionary # self should store NO other attributes: compute all results from self.edges ONLY # Each value in an edges tuple represents either a # (a) str : origin node, or # (b) 3-tuple: (origin node, destination node, edge value) def __init__(self, legal_edge_value_predicate, *edges): self.__setattr__.__dict__['initialization_done'] = False self.is_legal_edge_value = legal_edge_value_predicate d = dict() # constructs pieces for all keys in outer dictionary, does not include outlier edges for edge in edges: if self.legal_tuple3(edge) or type(edge) == str: if type(edge) == str: if edge not in d: d[edge] = dict() else: raise GraphError('outlier edge already has existing dictionary') else: # assumes if not outlider edge, must be a valid 3 tuple if edge[0] not in d: try: if self.is_legal_edge_value(edge[2]): d[edge[0]] = dict() d[edge[0]][edge[1]] = edge[2] if edge[1] not in d.keys(): d[edge[1]] = dict() else: raise GraphError('Graph.__init__: value is not a valid value: ' + str(edge[2])) except: raise GraphError('Graph.__init__: value is not a valid value: ' + str(edge[2])) else: if edge[1] in d[edge[0]]: raise GraphError('Start/Destination pair already exists') else: try: if self.is_legal_edge_value(edge[2]): d[edge[0]][edge[1]] = edge[2] if edge[1] not in d.keys(): d[edge[1]] = dict() else: raise GraphError('Graph.__init__: value is not a valid value: ' + str(edge[2])) except: raise GraphError('Graph.__init__: value is not a valid value: ' + str(edge[2])) else: raise GraphError('graph.py __init__: invalid edge type or invalid tuple: ' + str(type(edge))) # lots of complexity but catches any edges involved in tuples that did not act as a starting point edges_missed = [] for outer_val in d.values(): for inner_val in outer_val.keys(): if inner_val not in d.keys(): edges_missed.append(inner_val) for i in edges_missed: d[i] = dict() self.edges = d self.__setattr__.__dict__['initialization_done'] = True # Put all other methods here def __str__(self): s = '\nGraph:\n' for edge, endpoints in sorted([(x, y) for x, y in self.edges.items()]): s += ' ' + str(edge) + ': ' for key, val in sorted([(u, z) for u, z in endpoints.items()]): s += str(key) + '(' + str(val) + '), ' if len(endpoints) > 0: s = s[:-2] else: s = s[:-1] s += '\n' s = s[:-1] return s def __getitem__(self, item): if type(item) == None: raise GraphError('Graph.__getitem__: item is not valid type to look up:' + str(type(item))) if type(item) == str or self.legal_tuple2(item): if type(item) == str: if item in self.edges: return self.edges[item] else: raise GraphError('Graph.__getitem__: ' + item + 'cannot be found in self.edges:' + str(self.edges)) else: if item[0] in self.edges: if item[1] in self.edges[item[0]]: return self.edges[item[0]][item[1]] else: raise GraphError( 'Graph.__getitem__: ' + str(item[1]) + 'cannot be found in self.edges[' + str( item[0]) + ']: ' + str(self.edges[item[0]])) else: raise GraphError( 'Graph.__getitem__: ' + str(item[0]) + 'cannot be found in self.edges:' + str(self.edges)) else: raise GraphError('Graph.__getitem__: item is not valid type to look up:' + str(type(item))) def __setitem__(self, key, value): if self.legal_tuple2(key): if key[0] in self.edges.keys(): if key[1] in self.edges.keys(): if self.is_legal_edge_value(value): self.edges[key[0]][key[1]] = value else: raise GraphError('Graph.__setitem__: value is not a valid value: ' + str(value)) else: if self.is_legal_edge_value(value): self.edges[key[0]][key[1]] = value self.edges[key[1]] = dict() # updating edges to include new point else: raise GraphError('Graph.__setitem__: value is not a valid value: ' + str(value)) else: if self.is_legal_edge_value(value): self.edges[key[0]] = dict() self.edges[key[0]][key[1]] = value if key[1] not in self.edges.keys(): self.edges[key[1]] = dict() else: raise GraphError('Graph.__setitem__: value is not a valid value: ' + str(value)) else: raise GraphError('Graph.__setitem__: key is not a valid 2 tuple: ' + str(key)) def node_count(self): return len(self.edges) def __len__(self): sum = 0 for edge in self.edges.values(): sum += len(edge) return sum def out_degree(self, node): if type(node) == None: raise GraphError('Graph.out_degree(): argument is of type None') if type(node) == str and node in self.edges.keys(): return len(self.edges[node]) else: raise GraphError('Graph.out_degree(): argument(' + str( node) + ') is either not of type String or cannot be found in self.edges: ' + str(self.edges)) def in_degree(self, node): if type(node) == None: raise GraphError('Graph.in_degree(): argument is of type None') if type(node) == str and node in self.edges.keys(): sum = 0 for edge in self.edges.values(): if node in edge: sum += 1 return sum else: raise GraphError('Graph.in_degree(): argument(' + str( node) + ') is either not of type String or cannot be found in self.edges: ' + str(self.edges)) def __contains__(self, item): if type(item) not in (str, tuple): raise GraphError( 'Graph.__contains__(): item(' + str(item) + ') is of invalid type, must be String or Tuple') if type(item) == str: if item in self.edges.keys(): return True else: return False elif self.legal_tuple2(item): if item[0] in self.edges.keys(): if item[1] in self.edges[item[0]].keys(): return True else: return False else: return False elif self.legal_tuple3(item): if item[0] in self.edges.keys(): if item[1] in self.edges[item[0]].keys(): if item[2] == self.edges[item[0]][item[1]]: return True else: return False else: return False else: return False else: raise GraphError( 'Graph.__contains__(): item(' + str(item) + ') is of invalid type, must be String or Tuple') def __delitem__(self, item): if type(item) not in (str, tuple): raise GraphError( 'Graph.__contains__(): item(' + str(item) + ') is of invalid type, must be String or Tuple') if type(item) == str: if item in self.edges: del (self.edges[item]) # delets outer node for node, edges in self.edges.items(): d = dict() for dest, val in edges.items(): if item != dest: d[dest] = val self.edges[node] = d elif self.legal_tuple2(item): if item[0] in self.edges.keys(): if item[1] in self.edges[item[0]].keys(): del (self.edges[item[0]][item[1]]) else: raise GraphError( 'Graph.__contains__(): item(' + str(item) + ') is of invalid type, must be String or Tuple') def __call__(self, d): if type(d) != str: raise GraphError( 'Graph.__call__(): d(' + str(d) + ') is of invalid type, must be String') if d in self.edges.keys(): temp_d = dict() for node, value in self.edges.items(): if d in value.keys(): temp_d[node] = value[d] return temp_d else: raise GraphError( 'Graph.__call__(): d(' + str(d) + ') is not a node in self.edges: ' + str(self.edges)) def clear(self): l = [str(x) for x in self.edges.keys()] for i in l: del (self.edges[i]) # self.edges = dict() def dump(self, open_file, sep=':', fnctn=str): l = [] for edge, endpoints in sorted([(x, y) for x, y in self.edges.items()]): s = fnctn(edge) + str(sep) for key, val in sorted([(u, z) for u, z in endpoints.items()]): s += fnctn(key) + str(sep) + fnctn(val) + str(sep) s = s[:-1] + '\n' l.append(s) open_file.writelines(l) open_file.close() def load(self, open_file, sep=':', fnctn=int): l = [] d = dict() for text in open_file: point_edge_split_text = text.strip().split(sep, 1) if len(point_edge_split_text) > 1: point, edges = point_edge_split_text l.append((point, edges)) d[point] = dict() else: d[text.strip()] = dict() for point, edges in l: i = 0 s = edges.split(sep) for p in range(0, len(s), 2): d[point][s[i]] = fnctn(s[i + 1]) i += 2 self.clear() for point, edges in d.items(): self.edges[point] = edges open_file.close() def reverse(self): reverse_g = Graph(self.is_legal_edge_value) for point, values in self.edges.items(): if len(values.items()) == 0: if point not in reverse_g.edges.keys(): reverse_g.edges[point] = dict() for dest, value in values.items(): reverse_g.__setitem__((dest, point), value) return reverse_g def natural_subgraph(self, *nodes): g = Graph(self.is_legal_edge_value) l=[] for node in nodes: if type(node) != str: raise GraphError('Graph.natural_subgraph(): argument: ' + str(node) + ' is not of type String') for key in nodes: if key in self.edges.keys(): g.edges[key] = dict() for point,edges in self.edges.items(): if point in nodes: for edge,value in edges.items(): if edge in nodes: g[point][edge] = value return g def __iter__(self): def gen(l): for item in l: yield item l = [] for edge, endpoints in sorted([(x, y) for x, y in self.edges.items()]): if len(endpoints.items()) == 0: r = False for p, v in self.edges.items(): if edge in v.keys(): r = True if r == False: l.append(edge) for key, val in sorted([(u, z) for u, z in endpoints.items()]): l.append((edge, key, val)) return gen(l) def __eq__(self, compareObj: 'Graph') -> bool: if type(compareObj) == Graph: if len(self.edges.keys()) == len(compareObj.edges.keys()): for point, edges in self.edges.items(): if edges != compareObj.edges[point]: return False return True else: return False else: return False def __le__(self, compareObj: 'Graph') -> bool: if type(compareObj) == Graph: for point, edges in self.edges.items(): for dest, val in edges.items(): if val != compareObj.edges[point][dest]: return False if len(edges.items()) == 0: if point not in compareObj.edges.keys(): return False return True else: return False # maybe raise Graph exception instead def __setattr__(self, name, value): if self.__setattr__.initialization_done: raise AssertionError('Graph.__setattr__: Cannot assign or rebind attributes after __init__') else: self.__dict__[name] = value if name == 'edges': self.__setattr__.__dict__['initialization_done'] = True def make_graph_copy(self): d = dict() for point,edges in self.edges.items(): d[point] = dict() for edge,value in edges.items(): d[point][edge]=value g = Graph(self.is_legal_edge_value) for point, edges in d.items(): g.edges[point] = edges return g #returns new instance of exact replica of current Graph def __add__(self, other): if type(other) not in (Graph,str,tuple): raise GraphError('Graph.__add__: item being added not of type Graph,str, or tuple') if type(other) == Graph: g1 = self.make_graph_copy() g2 = other.make_graph_copy() for point,edges in g1.edges.items(): if point not in g2.edges.keys(): g2.edges[point] = dict() for edge,value in edges.items(): g2.edges[point][edge] = value return g2 elif type(other) == str: g = self.make_graph_copy() if other not in self.edges.keys(): g.edges[other] = dict() return g elif self.legal_tuple3(other): g = self.make_graph_copy() if other[0] in self.edges.keys(): if self.is_legal_edge_value(other[2]): g.edges[other[0]][other[1]] = other[2] if other[1] not in g.edges.keys(): g.edges[other[1]] = dict() return g else: raise GraphError('Graph.__add__: value being added/updated: ' + str(other[2]) +' is not valid') else: g.edges[other[0]] = dict() if self.is_legal_edge_value(other[2]): g.edges[other[0]][other[1]] = other[2] if other[1] not in g.edges.keys(): g.edges[other[1]] = dict() return g else: raise GraphError('Graph.__add__: value being added/updated: ' + str(other[2]) + ' is not valid') else: raise GraphError('Graph.__add__: item being added not of type Graph,str, or legal 3 tuple') def __radd__(self, other): if type(other) not in (str,tuple): raise GraphError('Graph.__add__: item being added not of type Graph,str, or tuple') if type(other) == str: g = self.make_graph_copy() if other not in self.edges.keys(): g.edges[other] = dict() return g elif self.legal_tuple3(other): g = self.make_graph_copy() if other[0] in self.edges.keys(): if self.is_legal_edge_value(other[2]): g.edges[other[0]][other[1]] = other[2] if other[1] not in g.edges.keys(): g.edges[other[1]] = dict() return g else: raise GraphError('Graph.__add__: value being added/updated: ' + str(other[2]) +' is not valid') else: g.edges[other[0]] = dict() if self.is_legal_edge_value(other[2]): g.edges[other[0]][other[1]] = other[2] if other[1] not in g.edges.keys(): g.edges[other[1]] = dict() return g else: raise GraphError('Graph.__add__: value being added/updated: ' + str(other[2]) + ' is not valid') else: raise GraphError('Graph.__add__: item being added not of type Graph,str, or legal 3 tuple') def __iadd__(self, other): if type(other) not in (Graph,str,tuple): raise GraphError('Graph.__add__: item being added not of type Graph,str, or tuple') if type(other) == Graph: g1 = self.make_graph_copy() g2 = other.make_graph_copy() for point,edges in g1.edges.items(): if point not in g2.edges.keys(): g2.edges[point] = dict() for edge,value in edges.items(): g2.edges[point][edge] = value self.clear() for point, edges in g2.edges.items(): self.edges[point] = edges return self elif type(other) == str: if other not in self.edges.keys(): self.edges[other] = dict() return self elif self.legal_tuple3(other): if other[0] in self.edges.keys(): if self.is_legal_edge_value(other[2]): self.edges[other[0]][other[1]] = other[2] if other[1] not in self.edges.keys(): self.edges[other[1]] = dict() return self else: raise GraphError('Graph.__add__: value being added/updated: ' + str(other[2]) +' is not valid') else: self.edges[other[0]] = dict() if self.is_legal_edge_value(other[2]): self.edges[other[0]][other[1]] = other[2] if other[1] not in self.edges.keys(): self.edges[other[1]] = dict() return self else: raise GraphError('Graph.__add__: value being added/updated: ' + str(other[2]) + ' is not valid') else: raise GraphError('Graph.__add__: item being added not of type Graph,str, or legal 3 tuple') if __name__ == '__main__': # Simple tests before running driver # Put your own test code here to test DictList before doing bsc tests print('Start simple testing') g = Graph((lambda x: type(x) is int), ('a', 'b', 1), ('a', 'c', 3), ('b', 'a', 2), ('d', 'b', 2), ('d', 'c', 1), 'e') print(g) print(g['a']) print(g['a', 'b']) print(g.node_count()) print(len(g)) print(g.out_degree('c')) print(g.in_degree('a')) print('c' in g) print(('a', 'b') in g) print(('a', 'b', 1) in g) print(g('c')) print(g.reverse()) print(g.natural_subgraph('a','b','c')) print() import driver driver.default_file_name = 'bscp22W21.txt' # driver.default_show_exception = True # driver.default_show_exception_message = True # driver.default_show_traceback = True driver.driver()
from .midi_csv import midicsv, csvmidi
from django.apps import AppConfig class GamerConfig(AppConfig): name = 'Gamer'
import graphene from copy import deepcopy from graphene import relay from graphene_django.filter import DjangoFilterConnectionField from graphene_django.types import DjangoObjectType from graphql import GraphQLError from graphql_relay import from_global_id from django.db import IntegrityError from api.models import Interest, Category, AndelaUserProfile class InterestNode(DjangoObjectType): class Meta: model = Interest filter_fields = {} interfaces = (relay.Node,) class JoinCategory(relay.ClientIDMutation): """Join a category""" class Input: categories = graphene.List(graphene.ID) joined_category_list = graphene.List(InterestNode) @classmethod def mutate_and_get_payload(cls, root, info, **input): """ create bulk category and add category for user Args: root(dict): root query field data info(dict): authentication and user information input(dict): the request input sent by the user Returns: return bulk category created """ category_id_list = [category for category in input.pop('categories')] user = AndelaUserProfile.objects.get(user=info.context.user) user_category_list = [Category.objects.get(pk=from_global_id(category_id)[1]) for category_id in category_id_list] try: joined_category_list = [] for user_category in user_category_list: joined_category = Interest(follower=user, follower_category=user_category) joined_category_list.append(joined_category) Interest.objects.bulk_create(joined_category_list) except IntegrityError: raise GraphQLError( 'You have previously added an interest. Please try again' ) return JoinCategory(joined_category_list=joined_category_list) class UnJoinCategory(relay.ClientIDMutation): """Unsubscribe from a category""" class Input: categories = graphene.List(graphene.ID) unjoined_categories = graphene.List(InterestNode) @classmethod def mutate_and_get_payload(cls, root, info, **input): """ remove user category/intrest Args: root(dict): root query field data info(dict): authentication and user information input(dict): the request input sent by the user Returns: UnJoinCategory method """ categories = input.get('categories') user = AndelaUserProfile.objects.get(user=info.context.user) categories = list(map(lambda category_id: from_global_id(category_id)[1], categories)) unjoined_categories_qs = Interest.objects.filter( follower_category_id__in=categories, follower_id=user.id ) unjoined_categories = deepcopy(unjoined_categories_qs) if not unjoined_categories: raise GraphQLError( "Oops. We were not able to find some of the interests you are trying to remove") unjoined_categories_qs.delete() return UnJoinCategory(unjoined_categories=unjoined_categories) class InterestQuery(object): """ Handle interest queries """ interest = relay.Node.Field(InterestNode) interests_list = DjangoFilterConnectionField(InterestNode) joined_categories = graphene.List(InterestNode) def resolve_joined_categories(self, info): """ resolve user interest/categories Args: info(dict): authentication and user information root(dict): root query field data input(dict): the request input sent by the user Returns: return user interests """ andela_user_profile = AndelaUserProfile.objects.get(user_id=user.id) user = info.context.user return Interest.objects.filter( follower_id=andela_user_profile.id).all() class InterestMutation(graphene.ObjectType): """ Handles user mutation""" join_category = JoinCategory.Field() unjoin_category = UnJoinCategory.Field()
import random print("WELCOME TO THE GAME OF ROCK , PAPER AND SCISSORS..............") print("THE RULES ARE AS FOLLOWS::") print("ROCK BLUNTS SCISSORS,PAPER COVERS ROCKS,SCISSORS CUTS PAPER") print("WOULD YOU LIKE TO PLAY rock , paper , scissor?(y/n)") reply=input() while(reply=="y"): player_score = 0 computer_score = 0 print("HOW MANY TIMES YOU WANT TO PLAY") n = int(input()) for i in range (0,n): player_choice = input("ENTER YOUR CHOICE OF rock,paper or scissor ") print ("YOUR CHOICE = ", player_choice) computer_choice = random.randint(1,3) if (computer_choice == 1): computer = "rock" elif (computer_choice == 2): computer = "paper" elif(computer_choice == 3): computer = "scissors" print("COMPUTER CHOICE = ",computer) if(player_choice == computer): print("tie") print("PLAYER SCORE = ",player_score) print("COMPUTER SCORE = ",computer_score) elif(player_choice == "rock"): if (computer == "paper"): print("COMPUTER WINS") computer_score +=1 else: print("YOU WIN") player_score +=1 print("PLAYER SCORE = ",player_score) print("COMPUTER SCORE = ",computer_score) elif(player_choice == "paper"): if (computer == "rock"): print("YOU WIN") player_score +=1 else: print("COMPUTER WINS") computer_score +=1 print("PLAYER SCORE = ",player_score) print("COMPUTER SCORE = ",computer_score) elif(player_choice == "scissor"): if (computer == "rock"): print("COMPUTER WINS") computer_score +=1 else: print("YOU WIN") player_score +=1 print("PLAYER SCORE = ",player_score) print("COMPUTER SCORE = ",computer_score) if (player_score>computer_score): print(" ######################## FINALLY YOU WON ##################### ") elif(player_score==computer_score): print(" ###################### THE MATCH IS FINALLY TIE ##################### ") else: print(" ###################### THE COMPUTER WON ####################### ") print("WOULD YOU LIKE TO PLAY rock, paper, scissors? y/n") reply=input() if(reply=="n"): print("****************************** THANKS FOR PLAYING *****************************")
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Mar 3 04:58:22 2019 @author: kanchana """ import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score,confusion_matrix, classification_report import warnings warnings.filterwarnings("ignore") dataR2 = pd.read_csv('dataR2.csv') X = dataR2.iloc[:,0:-1] y = dataR2.iloc[:,-1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=123) from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2,weights='distance') classifier.fit(X_train, y_train) # Predicting the Test set results y_pred = classifier.predict(X_test) print("Confusion Matrix") print(confusion_matrix(y_test, y_pred)) print("Accuracy score: %f" %(accuracy_score(y_test, y_pred))) print('-------------------------------------------------------') target_names = ['Controls', 'Patients'] print(classification_report(y_test, y_pred, target_names=target_names))
# Dependencies import json import requests as req # Save config information api_key = "25bc90a1196e6f153eece0bc0b0fc9eb" url = "http://api.openweathermap.org/data/2.5/weather?" city = "London" # Build query URL query_url = url + "appid=" + api_key + "&q=" + city # Get weather data weather_response = req.get(query_url) weather_json = weather_response.json() # Get the temperature from the response print("The weather API responded with: " + str(weather_json) + ".")
import os import urllib2 import cookielib import re import htmlentitydefs import codecs import time from BeautifulSoup import BeautifulSoup print 'a' URL_REQUEST_DELAY = 1 BASE = 'http://www.nytimes.com' TXDATA = None TXHEADERS = {'User-agent': 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'} OUTPUT_FILE = 'nyt_articles.txt' def request_url(url, txdata, txheaders): """Gets a webpage's HTML.""" req = Request(url, txdata, txheaders) handle = urlopen(req) html = handle.read() return html def remove_html_tags(data): """Removes HTML tags""" p = re.compile(r'< .*?>') return p.sub('', data) def unescape(text): """ Converts HTML character codes to Unicode code points. @param text the HTML (or XML) source text in any encoding. @return The plain text, as a Unicode string, if necessary. """ def fixup(m): text = m.group(0) if text[:2] == "&#": try: if text[:3] == "&#x": return unichr(int(text[3:-1], 16)) else: return unichr(int(text[2:-1])) except ValueError: pass else: try: text = unichr(htmlentitydefs.name2codepoint[text[1:-1]]) except KeyError: pass return text return re.sub("&#?\w+;", fixup, text) urlopen = urllib2.urlopen Request = urllib2.Request # Install cookie jar in opener for fetching URL cookiejar = cookielib.LWPCookieJar() opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookiejar)) urllib2.install_opener(opener) html = request_url('http://global.nytimes.com/', TXDATA, TXHEADERS) # Use BeautifulSoup to easily navigate HTML tree soup = BeautifulSoup(html) # Retrieves html from each url on NYT Global homepage under "story" divs # with h2, h3, or h5 headlines urls = [] for story in soup.findAll('article', {'class': 'story'}): # print story for hTag in story.findAll({'h2': True, 'h3': True, 'h5': True}, recursive=False): if hTag.find('a'): urls.append(hTag.find('a')['href']) # print "urls: " + str(urls) # Removes URLs that aren't news articles. # Create a copy of list b/c # you can't modify a list while iterating over it. for url in urls[:]: if not url.startswith(BASE): urls.remove(url) # print "urls: " + str(urls) # Extracts headline, byline, dateline and content; outputs to file if os.path.exists(OUTPUT_FILE): os.remove(OUTPUT_FILE) output = codecs.open(OUTPUT_FILE, 'a', 'utf-8') counter = 0 for url in urls: print url content = '' html = request_url(url, TXDATA, TXHEADERS) html = unicode(html, 'utf-8') if (counter == 0): output.write(html) counter += 1 soup = BeautifulSoup(html) # Gets HTML from single page link if article is > 1 page # if soup.find('li', {'class': 'singlePage'}): # single = soup.find('li', {'class': 'singlePage'}) # html = request_url(BASE + single.find('a')['href'], TXDATA, TXHEADERS) # html = unicode(html, 'utf-8') # soup = BeautifulSoup(html) # # print html if not soup.find('header'): continue headline = soup.find({'class': 'story-header'}).renderContents() print headline output.write(unicode(headline + "\n", 'utf-8')) byline = soup.find('byline').find('h6').renderContents() byline = remove_html_tags(byline) print byline output.write(unicode(byline + "\n", 'utf-8')) dateline = soup.find('h6', {'class': 'dateline'}).renderContents() output.write(unicode(dateline, 'utf-8')) for p in soup.findAll('p', {'class': None, 'style': None}): # Removes potential ad at the bottom of the page. if p.findParents('div', {'class': 'singleAd'}): continue # Prevents contents of nested <p> tags from being printed twice. if p.findParents('div', {'class': 'authorIdentification'}): continue content = content + "\n\n" + p.renderContents().strip() content = remove_html_tags(content) content = re.sub(" +", " ", content) content = unescape(unicode(content, 'utf-8')) content = content + "\n\n\n\n" output.write(content) time.sleep(URL_REQUEST_DELAY) output.close()
import unittest from katas.kyu_8.find_maximum_and_minimum_values_of_a_list import min, max class MinMaxOfListTestCase(unittest.TestCase): def test_equal_1(self): self.assertEqual(min([-52, 56, 30, 29, -54, 0, -110]), -110) def test_equal_2(self): self.assertEqual(min([42, 54, 65, 87, 0]), 0) def test_equal_3(self): self.assertEqual(min([1, 2, 3, 4, 5, 10]), 1) def test_equal_4(self): self.assertEqual(min([-1, -2, -3, -4, -5, -10]), -10) def test_equal_5(self): self.assertEqual(min([9]), 9) def test_equal_6(self): self.assertEqual(max([-52, 56, 30, 29, -54, 0, -110]), 56) def test_equal_7(self): self.assertEqual(max([4, 6, 2, 1, 9, 63, -134, 566]), 566) def test_equal_8(self): self.assertEqual(max([5]), 5) def test_equal_9(self): self.assertEqual( max([534, 43, 2, 1, 3, 4, 5, 5, 443, 443, 555, 555]), 555 ) def test_equal_10(self): self.assertEqual(max([9]), 9)
from django.shortcuts import render #render:渲染 from django.http import HttpResponse from . import models # Create your views here. def index(request): articles = models.Article.objects.all() return render(request,'blog/index.html',{'articles':articles}) #HttpResponse('hello world!') #{'hello':'hello wonderful world! guess why是噢简单'}#可以作为第三个参数 def article_page(request,article_id): article = models.Article.objects.get(pk=article_id) return render(request,'blog/article_page.html',{'article':article}) def edit_page(request,article_id): if str(article_id)=='0': return render(request,'blog/edit_page.html') article = models.Article.objects.get(pk=article_id) return render(request,'blog/edit_page.html',{'article':article}) def edit_action(request): title = request.POST.get('title','TITLE') content = request.POST.get('content','CONTENT') article_id = request.POST.get('article_id','0') if article_id == '0': models.Article.objects.create(title=title, content=content) articles = models.Article.objects.all() return render(request,'blog/index.html',{'articles':articles}) article = models.Article.objects.get(pk=article_id) article.title = title article.content=content article.save() return render(request,'blog/article_page.html',{'article':article})
def calPrize(mydice): sorted_dice = sorted(mydice) count = len(set(sorted_dice)) if count == 1: return 50000 + sorted_dice[0] * 5000 elif count == 2: if sorted_dice[1] == sorted_dice[2]: return 10000 + sorted_dice[1] * 1000 return 2000 + sorted_dice[1] * 500 + sorted_dice[2]*500 elif count == 3: if sorted_dice[0] == sorted_dice[1] or sorted_dice[1] == sorted_dice[2]: return 1000 + sorted_dice[1] * 100 elif sorted_dice[2] == sorted_dice[3]: return 1000 + sorted_dice[2] * 100 else: return max(sorted_dice) * 100 N = int(input()) prizes = [] for n in range(N): prize = calPrize([int(x) for x in input().split()]) prizes.append(prize) print(max(prizes))
import pygame as pg from asset import FLOOR, get_sprite, get_player_sprites, OHNOES1, OHNOES2, get_light_halo from config import SCREEN_HEIGHT, SCREEN_WIDTH, TILE_WIDTH, TILE_HEIGHT, PLAYER_WIDTH, PLAYER_HEIGHT from events import schedule_event from screen import Screen class DefeatScreen(Screen): def __init__(self): self.step = 0 schedule_event(lambda: self.set_step(1), 8, oneshot=True) schedule_event(lambda: self.set_step(2), 13, oneshot=True) schedule_event(lambda: self.set_step(3), 21, oneshot=True) self.light = 128 def set_step(self, step): if step == 3: schedule_event(self.decrease_light, 1, oneshot=False) else: self.step = step def decrease_light(self): if self.light > 8: self.light -= 8 def draw(self, screen: pg.Surface, clock: pg.time.Clock): cx, cy = SCREEN_WIDTH // 2, SCREEN_HEIGHT // 2 for i in range(-2, 3): for j in range(-2, 3): screen.blit(get_sprite(FLOOR), (cx + i*TILE_WIDTH, cy + j * TILE_HEIGHT)) if self.step == 1: screen.blit(get_sprite(OHNOES1), (cx - TILE_WIDTH // 2, cy - TILE_HEIGHT // 2)) if self.step == 2: screen.blit(get_sprite(OHNOES2), (cx - TILE_WIDTH // 2, cy - TILE_HEIGHT // 2)) screen.blit(get_player_sprites()[3][0], (cx, cy)) light_mask = pg.Surface((screen.get_width(), screen.get_height()), flags=pg.SRCALPHA) light_mask.fill(pg.Color(0, 0, 0)) halo = get_light_halo(self.light) light_mask.blit(halo, (cx - self.light + PLAYER_WIDTH // 2, cy - self.light + PLAYER_HEIGHT // 2), special_flags=pg.BLEND_RGBA_MIN) screen.blit(light_mask, (0, 0)) if self.light <= 8: from title_screen.title_screen import TitleScreen return TitleScreen
from turtle import * color('red') for i in range(4): if i == 2: left(120) else: left(60) fd(100) left(60) for i in range (4): if i == 0: left(30) elif i == 2: right(120) else: right(60) fd(100) left(30) for i in range (4): if i == 0: right(30) elif i == 2: left(120) else: left(60) fd(100) right(120) for i in range (4): if i == 0: right(30) elif i == 2: left(120) else: left(60) fd(100) mainloop()
import win32com import win32com.client import pythoncom class XASessionEvents: logInState = 0 def OnLogin(self, code, msg): print("OnLogin method is called") if str(code) == '0000': XASessionEvents.logInState = 1 def OnLogout(self): print("OnLogout method is called") def OnDisconnect(self): print("OnDisconnect method is called") class XAQueryEvents: queryState = 0 def OnReceiveData(self,szTrCode): print("ReceiveData") XAQueryEvents.queryState = 1 def OnReceiveMessage(self, systemError, messageCode, message): print("ReceiveMessage") if __name__ == "__main__": server_addr = "hts.ebestsec.co.kr" server_port = 20001 server_type = 0 user_id = "songdh10" user_pass ="gusdl57" user_certificate_pass="gusdlsla57" inXASession = win32com.client.DispatchWithEvents("XA_Session.XASession", XASessionEvents) inXASession.ConnectServer(server_addr, server_port) inXASession.Login(user_id, user_pass, user_certificate_pass, server_type, 0) while XASessionEvents.logInState == 0: pythoncom.PumpWaitingMessages() class XARealEvents: def OnReceiveRealData(self, *args): hotime = XAReal.GetFieldData('OutBlock', 'hotime') offerho1 = XAReal.GetFieldData('OutBlock', 'offerho1') bidho1 = XAReal.GetFieldData('OutBlock', 'bidho1') print ("%s %s %s" % (hotime, offerho1, bidho1)) XAReal = win32com.client.DispatchWithEvents("XA_DataSet.XAReal", XARealEvents) XAReal.LoadFromResFile("C:\\eBEST\\xingAPI\\Res\\" + "H1_.res") XAReal.SetFieldData('InBlock', 'shcode', '000270') XAReal.AdviseRealData() XARealEvents().OnReceiveRealData() while XAQueryEvents.queryState == 0: pythoncom.PumpWaitingMessages()
from django.shortcuts import render # Create your views here. def upload(request): return render(request,"upload/upload.html")
# -*- coding: utf-8 -*- import logging import markdown import base64 from django.conf import settings from django.shortcuts import resolve_url from Crypto.Cipher import AES from docutils.core import publish_parts from custom.cryptographer import Wrapper try: from django.utils.six.moves import cPickle as pickle except ImportError: import pickle CRYPT_COOKIE_SID = '_xxx_session_id' CRYPT_SIGN_SALT = 'custom_crypt_cookies' CRYPT_KEY = settings.SECRET_KEY[:16] CRYPT_IV = settings.SECRET_KEY[-16:] CRYPT_MODE = AES.MODE_CBC logger = logging.getLogger(__name__) _crypto_wrapper = Wrapper(AES) def md2html(md): """解析markdown格式文本 Args: md: raw markdown text """ markdown_processor = markdown.Markdown(extensions=['codehilite']) # Setup Markdown with the code highlighter html = markdown_processor.convert(md) # Convert the md (markdown) into html # to mimic the same output as Docutils, I'm wrapping the output in a classed div. # html = '<div class="document">'+html+'</div>' return html def rst2html(str): """rst2html(str) By default, docutils tries to read configuration files from various locations. But this will fail in the App Engine environment. So you have to disable it by overwriting the default settings. changed to return 'html_body' instead of 'fragment'; 'fragment' doesn't include beginning headings unless there is a paragraph before it. Args: str: string - raw text """ import docutils.parsers.rst.directives.sourcecode parts = publish_parts(source=str, writer_name='html4css1', settings_overrides={'_disable_config': True}) return "\n".join([parts['body_pre_docinfo'], parts['body']]) def encrypt_str(plain): _crypto_wrapper.new(CRYPT_KEY, CRYPT_MODE, CRYPT_IV) return _crypto_wrapper.encrypt(plain) def decrypt_str(ciph): _crypto_wrapper.new(CRYPT_KEY, CRYPT_MODE, CRYPT_IV) return _crypto_wrapper.decrypt(ciph) def set_user_cookie(response, vars, *args, **kwargs): data_string = encrypt_str(pickle.dumps(vars)) response.set_cookie(CRYPT_COOKIE_SID, base64.urlsafe_b64encode(data_string), **kwargs) return response def unset_user_cookie(response, *args, **kwargs): response.delete_cookie(CRYPT_COOKIE_SID, *args, **kwargs) return response def get_user_cookie(request): cookie = request.COOKIES.get(CRYPT_COOKIE_SID, None) if cookie is None: return cookie data_string = base64.urlsafe_b64decode(cookie) return pickle.loads(decrypt_str(data_string)) def render_to_alter(request, msg, level=None, title=None, next_url=None): """输出警示窗口 Args: msg: string, 警告信息 leve: string, 层级(error, info) title: stirng, 标题 Returns: object, HttpResponse """ if isinstance(msg, (dict, )): vars = msg else: if level is None: level = 'info' if 'error' == level: level = 'danger' if title is None: title = u'提示' vars = locals() from django.shortcuts import render if not vars.get('next_url'): vars['next_url'] = resolve_url('base.views.home') return render(request, 'admin/alert.html', vars) def signin_required(handler_method): """A decorator to require that a user be logged in to access a handler. To use it, decorate your get() method like this: @signin_required def get(): ... We will redirect to a login page if the user is not logged in. """ def check_login(request, *args, **kwargs): assert hasattr(request, 'account') if request.account.get('is_login'): return handler_method(request, *args, **kwargs) else: path = request.get_full_path() from django.contrib.auth.views import redirect_to_login return redirect_to_login(path, 'admin.views.signin', 'next') return check_login
# Generated by Django 2.2.24 on 2021-10-31 20:54 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('estudiantes', '0003_auto_20211031_1446'), ] operations = [ migrations.RenameModel( old_name='Clases', new_name='Clase', ), ]
import RPi.GPIO as GPIO import time import sys import socket GPIO.setmode(GPIO.BCM) GPIO_PIN = 24 GPIO.setup(GPIO_PIN,GPIO.IN,pull_up_down = GPIO.PUD_UP) delay_time = 1.0 Host = "127.0.0.5" Port = 5000 sensor_socket = socket.socket(socket.AF_INET,socket.SOCK_STREAM) sensor_socket.connect((Host,Port)) print("Sensor de Linea KY-033 [Presione CTR + C para finalizar]") try: while True: raw_data = GPIO.input(GPIO_PIN) data = str(raw_data) + '\n' sensor_socket.send(data) time.sleep(delay_time) except KeyboardInterrupt: GPIO.cleanup()
import os from easydict import EasyDict as edict cfg2 = edict() cfg2.PATH = edict() cfg2.PATH.DATA = ['/home/liuhaiyang/dataset/CUB_200_2011/images.txt', '/home/liuhaiyang/dataset/CUB_200_2011/train_test_split.txt', '/home/liuhaiyang/dataset/CUB_200_2011/images/'] cfg2.PATH.LABEL = '/home/liuhaiyang/dataset/CUB_200_2011/image_class_labels.txt' cfg2.PATH.EVAL = ['/home/liuhaiyang/dataset/CUB_200_2011/images.txt', '/home/liuhaiyang/dataset/CUB_200_2011/train_test_split.txt', '/home/liuhaiyang/dataset/CUB_200_2011/images/'] cfg2.PATH.TEST = '/home/liuhaiyang/liu_kaggle/cifar/dataset/cifar-10-batches-py/data_batch_1' cfg2.PATH.RES_TEST = './res_imgs/' cfg2.PATH.EXPS = './exps/' cfg2.PATH.NAME = 'rest_cub_v3_stone' cfg2.PATH.MODEL = '/model.pth' cfg2.PATH.BESTMODEL = '/bestmodel.pth' cfg2.PATH.LOG = '/log.txt' cfg2.PATH.RESULTS = '/results/' cfg2.DETERMINISTIC = edict() cfg2.DETERMINISTIC.SEED = 60 cfg2.DETERMINISTIC.CUDNN = True cfg2.TRAIN = edict() cfg2.TRAIN.EPOCHS = 60 cfg2.TRAIN.BATCHSIZE = 8 cfg2.TRAIN.L1SCALING = 100 cfg2.TRAIN.TYPE = 'sgd' cfg2.TRAIN.LR = 1e-3 cfg2.TRAIN.BETA1 = 0.9 cfg2.TRAIN.BETA2 = 0.999 cfg2.TRAIN.LR_TYPE = 'cos' cfg2.TRAIN.LR_REDUCE = [26,36] cfg2.TRAIN.LR_FACTOR = 0.1 cfg2.TRAIN.WEIGHT_DECAY = 1e-4 cfg2.TRAIN.NUM_WORKERS = 16 cfg2.TRAIN.WARMUP = 0 cfg2.TRAIN.LR_WARM = 1e-7 #-------- data aug --------# cfg2.TRAIN.USE_AUG = True cfg2.TRAIN.CROP = 224 cfg2.TRAIN.PAD = 0 cfg2.TRAIN.RESIZE = 300 cfg2.TRAIN.ROATION = 30 cfg2.MODEL = edict() cfg2.MODEL.NAME = 'resnext' cfg2.MODEL.IN_DIM = 3 cfg2.MODEL.CLASS_NUM = 200 cfg2.MODEL.USE_FC = True cfg2.MODEL.PRETRAIN = None cfg2.MODEL.PRETRAIN_PATH = './exps/pretrain/' cfg2.MODEL.DROPOUT = 0 cfg2.MODEL.LOSS = 'bce_only_g' #-------- for resnet --------# cfg2.MODEL.BLOCK = 'bottleneck' cfg2.MODEL.BLOCK_LIST = [3,4,6,3] cfg2.MODEL.CONV1 = (7,2,3) cfg2.MODEL.OPERATION = 'B' cfg2.MODEL.STRIDE1 = 1 cfg2.MODEL.MAX_POOL = True cfg2.MODEL.BASE = 64 #-------- for regnet --------# cfg2.MODEL.REGNET = edict() cfg2.MODEL.REGNET.STEM_TYPE = "simple_stem_in" cfg2.MODEL.REGNET.STEM_W = 32 cfg2.MODEL.REGNET.BLOCK_TYPE = "res_bottleneck_block" cfg2.MODEL.REGNET.STRIDE = 2 cfg2.MODEL.REGNET.SE_ON = True cfg2.MODEL.REGNET.SE_R = 0.25 cfg2.MODEL.REGNET.BOT_MUL = 1.0 cfg2.MODEL.REGNET.DEPTH = 20 cfg2.MODEL.REGNET.W0 = 232 cfg2.MODEL.REGNET.WA = 115.89 cfg2.MODEL.REGNET.WM = 2.53 cfg2.MODEL.REGNET.GROUP_W = 232 #-------- for anynet -------# cfg2.MODEL.ANYNET = edict() cfg2.MODEL.ANYNET.STEM_TYPE = "res_stem_in" cfg2.MODEL.ANYNET.STEM_W = 64 cfg2.MODEL.ANYNET.BLOCK_TYPE = "res_bottleneck_block" cfg2.MODEL.ANYNET.STRIDES = [1,2,2,2] cfg2.MODEL.ANYNET.SE_ON = False cfg2.MODEL.ANYNET.SE_R = 0.25 cfg2.MODEL.ANYNET.BOT_MULS = [0.5,0.5,0.5,0.5] cfg2.MODEL.ANYNET.DEPTHS = [3,4,6,3] cfg2.MODEL.ANYNET.GROUP_WS = [4,8,16,32] cfg2.MODEL.ANYNET.WIDTHS = [256,512,1024,2048] #-------- for effnet --------# cfg2.MODEL.EFFNET = edict() cfg2.MODEL.EFFNET.STEM_W = 32 cfg2.MODEL.EFFNET.EXP_RATIOS = [1,6,6,6,6,6,6] cfg2.MODEL.EFFNET.KERNELS = [3,3,5,3,5,5,3] cfg2.MODEL.EFFNET.HEAD_W = 1408 cfg2.MODEL.EFFNET.DC_RATIO = 0.0 cfg2.MODEL.EFFNET.STRIDES = [1,2,2,2,1,2,1] cfg2.MODEL.EFFNET.SE_R = 0.25 cfg2.MODEL.EFFNET.DEPTHS = [2, 3, 3, 4, 4, 5, 2] cfg2.MODEL.EFFNET.GROUP_WS = [4,8,16,32] cfg2.MODEL.EFFNET.WIDTHS = [16,24,48,88,120,208,352] cfg2.GPUS = [0] cfg2.PRINT_FRE = 300 cfg2.DATASET_TRPE = 'cub200_2011' cfg2.SHORT_TEST = False if __name__ == "__main__": from utils import load_cfg2 logger = load_cfg2(cfg2) print(cfg2)
invocations = list() with open('message.txt') as f: lines = f.readlines() for line in lines : if line not in invocations : invocations.append(line) outF = open("sortie.txt", "w") for line in invocations : outF.write(line) print("Ligne : {}".format(line))
# -*- coding: utf-8 -*- import inject import logging import psycopg2 import asyncio from asyncio import coroutine from autobahn.asyncio.wamp import ApplicationSession from model.config import Config from model.systems.task.task import Task from model.profiles import Profiles class WampTask(ApplicationSession): def __init__(self, config=None): logging.debug('instanciando') ApplicationSession.__init__(self, config) self.serverConfig = inject.instance(Config) self.task = inject.instance(Task) self.profiles = inject.instance(Profiles) @coroutine def onJoin(self, details): logging.debug('registering methods') yield from self.register(self.getTasks_async,'task.getTasks') yield from self.register(self.createTask_async,'task.createTask') yield from self.register(self.updateStatus_async,'task.updateStatus') yield from self.register(self.removeTask_async,'task.removeTask') yield from self.register(self.removeTaskByStatus_async,'task.removeTaskByStatus') def _getDatabase(self): host = self.serverConfig.configs['database_host'] dbname = self.serverConfig.configs['database_database'] user = self.serverConfig.configs['database_user'] passw = self.serverConfig.configs['database_password'] return psycopg2.connect(host=host, dbname=dbname, user=user, password=passw) def getTasks(self, sessionId): con = self._getDatabase() try: userId = self.profiles.getLocalUserId(sessionId) return self.task.getTasks(con,userId) except Exception as e: logging.exception(e) return None finally: con.close() @coroutine def getTasks_async(self, sessionId): loop = asyncio.get_event_loop() r = yield from loop.run_in_executor(None, self.getTasks, sessionId) return r def createTask(self, sessionId, text): con = self._getDatabase() try: userId = self.profiles.getLocalUserId(sessionId) id = self.task.createTask(con,userId,text) con.commit() task = self.task.find(con,id) self.publish('task.newTaskEvent', task) return id except Exception as e: logging.exception(e) return None finally: con.close() @coroutine def createTask_async(self, sessionId, text): loop = asyncio.get_event_loop() r = yield from loop.run_in_executor(None, self.createTask, sessionId, text) return r def updateStatus(self, sessionId, taskId, status): con = self._getDatabase() try: id = self.task.updateStatus(con,taskId,status) con.commit() task = self.task.find(con,id) self.publish('task.changeTaskEvent', task) return id except Exception as e: logging.exception(e) return None finally: con.close() @coroutine def updateStatus_async(self, sessionId, taskId, status): loop = asyncio.get_event_loop() r = yield from loop.run_in_executor(None, self.updateStatus, sessionId, taskId, status) return r def removeTask(self, sessionId, taskId): con = self._getDatabase() try: userId = self.profiles.getLocalUserId(sessionId) id = self.task.removeTask(con,taskId) con.commit() self.publish('task.removeTaskEvent', id) return id except Exception as e: logging.exception(e) return None finally: con.close() @coroutine def removeTask_async(self, sessionId, taskId): loop = asyncio.get_event_loop() r = yield from loop.run_in_executor(None, self.removeTask, sessionId, taskId) return r def removeTaskByStatus(self, sessionId, status): con = self._getDatabase() try: userId = self.profiles.getLocalUserId(sessionId) ids = self.task.removeTaskByStatus(con,userId,status) con.commit() for id in ids: self.publish('task.removeTaskEvent', id) return ids except Exception as e: logging.exception(e) return None finally: con.close() @coroutine def removeTaskByStatus_async(self, sessionId, status): loop = asyncio.get_event_loop() r = yield from loop.run_in_executor(None, self.removeTaskByStatus, sessionId, status) return r
import unittest import os import numpy as np from gmc.core.models import cnn from gmc.dataset import musicset, reduce from gmc.conf import settings @unittest.skipIf(os.environ.get("DUMMY") == "TRUE", "not necessary when real dataset not supplied") class TestNN(unittest.TestCase): def test_training(self): dataset = musicset.MusicSet(dirname='features_m_10_fl100') dataset.load_files() dataset.load_train_data() dataset.load_test_data() if settings.PCA: components = reduce.pca_comp(dataset.train.music) k = components.shape[1] dataset.train.music = np.matmul(components.T, dataset.train.music.T) dataset.train.music = dataset.train.music.T dataset.test.music = np.matmul(components.T, dataset.test.music.T) dataset.test.music = dataset.test.music.T cnn_t = cnn.CNN(dataset) cnn_t.train(display_step=100)
from typing import Tuple from sympy import Expr, Symbol, I, pi, cos, arg, sqrt, cancel, simplify __all__ = [ "expend_cos", "amp_and_shift", ] def expend_cos(expr: Expr, x: Symbol) -> Tuple[Expr, Expr]: while True: term = expr.subs(x, pi / 2) yield term expr = cancel((expr - term) / cos(x)) if expr == 0: return def amp_and_shift(expr: Expr, x: Symbol) -> Tuple[Expr, Expr]: amp = simplify(cancel(sqrt(expr ** 2 + expr.diff(x) ** 2).subs(x, 0))) shift = arg(expr.subs(x, 0) + I * expr.diff(x).subs(x, 0)) return amp, shift
""" This File generates the header files defining the trained and quantized network. The following files are required - [project_root]/data/config.json containing the QuantLab configuration how the network was trained - [project_root]/data/net.npz, containing the entire network """ __author__ = "Tibor Schneider" __email__ = "sctibor@student.ethz.ch" __version__ = "0.0.2" __date__ = "2020/01/28" __license__ = "Apache 2.0" __copyright__ = """ Copyright (C) 2020 ETH Zurich. All rights reserved. Author: Tibor Schneider, ETH Zurich SPDX-License-Identifier: Apache-2.0 Licensed under the Apache License, Version 2.0 (the License); you may not use this file except in compliance with the License. You may obtain a copy of the License at www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import json import numpy as np from header_file import HeaderFile, HeaderConstant, HeaderScalar, HeaderArray, HeaderComment from header_file import align_array, align_array_size import convert_torch_format as convert DEFAULT_HEADER_NAME = "../src/cl/net/net.h" DEFAULT_CONFIG_JSON = "config.json" DEFAULT_NET_NPZ = "net.npz" WEIGHT_L1_PAD = 4 * 0 def gen_net_header(net_file, config_file, output_file): # load network net = np.load(net_file) # load configuration file with open(config_file, "r") as _f: config = json.load(_f) # we only need the network parameters net_params = config["indiv"]["net"]["params"] # only allow nets with 255 levels assert net_params["weightInqNumLevels"] == 255 assert net_params["actSTENumLevels"] == 255 assert net_params["F2"] % 4 == 0 assert net_params["N"] == 4 # prepare params if net_params["F2"] is None: net_params["F2"] = net_params["F1"] * net_params["D"] # only allow F2 = F1 * D assert net_params["F2"] == net_params["F1"] * net_params["D"] # start the header file header = HeaderFile(output_file, "__NET_NET_H__", with_c=True) # add network dimensions header.add(HeaderComment("Network Dimensions", blank_line=False)) header.add(HeaderConstant("NET_F1", net_params["F1"], blank_line=False)) header.add(HeaderConstant("NET_F2", net_params["F2"], blank_line=False)) header.add(HeaderConstant("NET_D", net_params["D"], blank_line=False)) header.add(HeaderConstant("NET_C", net_params["C"], blank_line=False)) header.add(HeaderConstant("NET_C_ALIGN", align_array_size(net_params["C"]), blank_line=False)) header.add(HeaderConstant("NET_T", net_params["T"], blank_line=False)) header.add(HeaderConstant("NET_T_ALIGN", align_array_size(net_params["T"]), blank_line=False)) header.add(HeaderConstant("NET_T8", net_params["T"] // 8, blank_line=False)) header.add(HeaderConstant("NET_T8_ALIGN", align_array_size(net_params["T"] // 8), blank_line=False)) header.add(HeaderConstant("NET_T64", (net_params["T"] // 8) // 8, blank_line=False)) header.add(HeaderConstant("NET_T64_ALIGN", align_array_size((net_params["T"] // 8) // 8), blank_line=False)) header.add(HeaderConstant("NET_N", net_params["N"], blank_line=True)) # Layer 1 input_scale = convert.ste_quant(net, "quant1") weight, weight_scale = convert.inq_conv2d(net, "conv1") weight = weight.reshape(net_params["F1"], 64) weight_reverse, _ = convert.inq_conv2d(net, "conv1", store_reversed=True) weight_reverse = weight_reverse.reshape(net_params["F1"], 64) bn_scale, bn_offset = convert.batch_norm(net, "batch_norm1") output_scale = convert.ste_quant(net, "quant2") factor, offset = convert.div_factor_batch_norm(input_scale, weight_scale, output_scale, bn_scale, bn_offset) # add padding to the weight vector of 4 if WEIGHT_L1_PAD > 0: weight_reverse_pad = np.zeros((net_params["F1"], 64 + WEIGHT_L1_PAD)) weight_reverse_pad[:, :-WEIGHT_L1_PAD] = weight_reverse else: weight_reverse_pad = weight_reverse header.add(HeaderComment("Layer 1\n" "=======\n" "Convolution + BN\n\n" "Input: [C, T]\n" "Weight: [F1, 64]\n" "Output: [F1, C, T]", mode="/*")) header.add(HeaderConstant("NET_L1_PAD_START", 31)) header.add(HeaderConstant("NET_L1_PAD_END", 32)) header.add(HeaderConstant("NET_L1_PAD_INPUT_LEN", net_params["T"] + 31 + 32)) header.add(HeaderConstant("NET_L1_PAD_INPUT_LEN_ALIGN", align_array_size(net_params["T"] + 31 + 32))) header.add(HeaderArray("net_l1_factor", "int32_t", factor.ravel())) header.add(HeaderArray("net_l1_offset", "int32_t", offset.ravel())) header.add(HeaderConstant("NET_L1_WEIGHT_LEN", weight.shape[-1])) header.add(HeaderConstant("NET_L1_WEIGHT_LEN_ALIGN", weight_reverse_pad.shape[-1])) header.add(HeaderArray("net_l1_weight", "int8_t", weight.ravel())) header.add(HeaderArray("net_l1_weight_reverse", "int8_t", weight_reverse.ravel())) header.add(HeaderArray("net_l1_weight_reverse_pad", "int8_t", weight_reverse_pad.ravel())) # layer2 input_scale = convert.ste_quant(net, "quant2") weight, weight_scale = convert.inq_conv2d(net, "conv2", store_reversed=True) bn_scale, bn_offset = convert.batch_norm(net, "batch_norm2") output_scale = convert.ste_quant(net, "quant3") factor, offset = convert.div_factor_batch_norm(input_scale, weight_scale, output_scale, bn_scale, bn_offset, pool=8) weight = weight.reshape(net_params["F2"], net_params["C"]) weight = align_array(weight) header.add(HeaderComment("Layer 2\n" "=======\n" "Convolution + BN + ReLU + Pooling\n\n" "Input: [F1, C, T]\n" "Weight: [F2, C] (aligned to [F2, 24]\n" "Output: [F2, T // 8]", mode="/*")) header.add(HeaderArray("net_l2_factor", "int32_t", factor.ravel())) header.add(HeaderArray("net_l2_offset", "int32_t", offset.ravel())) header.add(HeaderConstant("NET_L2_WEIGHT_LEN", weight.shape[-1])) header.add(HeaderArray("net_l2_weight", "int8_t", weight.ravel())) header.add(HeaderArray("net_l2_weight_32", "int32_t", weight.ravel())) # layer3 input_scale = convert.ste_quant(net, "quant3") weight, weight_scale = convert.inq_conv2d(net, "sep_conv1") output_scale = convert.ste_quant(net, "quant4") factor = convert.div_factor(input_scale, weight_scale, output_scale) weight = weight.reshape(net_params["F2"], 16) header.add(HeaderComment("Layer 3\n" "=======\n" "Convolution\n\n" "Input: [F2, T // 8]\n" "Weight: [F2, 16]\n" "Output: [F2, T // 8]", mode="/*", blank_line=False)) header.add(HeaderConstant("NET_L3_PAD_START", 7)) header.add(HeaderConstant("NET_L3_PAD_END", 8)) header.add(HeaderConstant("NET_L3_PAD_INPUT_LEN", net_params["T"] // 8 + 7 + 8)) header.add(HeaderConstant("NET_L3_PAD_INPUT_LEN_ALIGN", align_array_size(net_params["T"] // 8 + 7 + 8))) header.add(HeaderConstant("NET_L3_FACTOR", factor)) header.add(HeaderConstant("NET_L3_WEIGHT_LEN", weight.shape[-1])) header.add(HeaderArray("net_l3_weight", "int8_t", weight.ravel())) # layer4 input_scale = convert.ste_quant(net, "quant4") weight, weight_scale = convert.inq_conv2d(net, "sep_conv2") output_scale = convert.ste_quant(net, "quant5") bn_scale, bn_offset = convert.batch_norm(net, "batch_norm3") factor, offset = convert.div_factor_batch_norm(input_scale, weight_scale, output_scale, bn_scale, bn_offset, pool=8) weight = weight.reshape(net_params["F2"], net_params["F2"]) header.add(HeaderComment("Layer 4\n" "=======\n" "Convolution + BN + ReLU + Pooling\n\n" "Input: [F2, T // 8]\n" "Weight: [F2, F2]\n" "Output: [F2, T // 64]", mode="/*")) header.add(HeaderArray("net_l4_factor", "int32_t", factor.ravel())) header.add(HeaderArray("net_l4_offset", "int32_t", offset.ravel())) header.add(HeaderConstant("NET_L4_WEIGHT_LEN", weight.shape[-1])) header.add(HeaderArray("net_l4_weight", "int8_t", weight.ravel())) # layer5 input_scale = convert.ste_quant(net, "quant5") output_scale = convert.ste_quant(net, "quant6") weight, bias, weight_scale = convert.inq_linear(net, "fc") weight = weight.reshape(net_params["N"], net_params["F2"] * (net_params["T"] // 64)) #weight = align_array(weight) # we want to align, not for the product F2*T//64, but for T//64 itself. t64 = net_params["T"] // 64 t64_align = align_array_size(t64) weight_align = np.zeros((net_params["N"], net_params["F2"] * t64_align), dtype=int) for i in range(net_params["F2"]): weight_align[:, i * t64_align: i * t64_align + t64] = weight[:, i * t64: (i + 1) * t64] factor = convert.div_factor(input_scale, weight_scale, output_scale) header.add(HeaderComment("Layer 5\n" "=======\n" "Linear Layer (without scaling in the end)\n\n" "Input: [F2, T // 64]\n" "Weight: [N, F2 * (T // 64)]\n" "Bias: [N]\n" "Output: [N]", mode="/*")) header.add(HeaderConstant("NET_L5_FACTOR", factor)) header.add(HeaderArray("net_l5_bias", "int8_t", bias.ravel())) header.add(HeaderConstant("NET_L5_WEIGHT_LEN", weight_align.shape[-1])) header.add(HeaderArray("net_l5_weight", "int8_t", weight_align.ravel())) # store the header file header.write() if __name__ == "__main__": parser = argparse.ArgumentParser("Generates the header file defining the trained EEGNet") parser.add_argument("-o", "--output", help="Export header file name", default=DEFAULT_HEADER_NAME) parser.add_argument("-n", "--net", help="numpy file containing the network", default=DEFAULT_NET_NPZ) parser.add_argument("-c", "--config", help="configuration file name", default=DEFAULT_CONFIG_JSON) args = parser.parse_args() gen_net_header(args.net, args.config, args.output)
#!/bin/evn python # encoding:utf-8 ''' #============================================================================= # FileName: cmdLine.py # Desc: 解析命令行参数,供zoomeye使用 # Author: Crow # Email: lrt_no1@163.com # HomePage: @_@" # Version: 2.0.1 # LastChange: 2017-01-01 17:25:04 # History: #============================================================================= ''' import sys #from optparse import OptionError #from optparse import OptionGroup from optparse import OptionParser #from optparse import SUPPRESS_HELP from lib.core.data import asys def cmdLineParser(argv=None): if not argv: argv = sys.argv try: parser = OptionParser() """ parser.add_option("--hh",dest="advancedHelp", action="store_true", help="Show advanced help message and exit") parser.add_option("--version",dest="showVersion", action="store_true", help="Show program's version number and exit") parser.add_option("-v",dest="verbose",type="int", help="") """ parser.add_option("-d", action="store_true",dest="qiantai", help="") parser.add_option("-s", action="store_true",dest="houtai", help="") parser.add_option("--app",dest="app",help="") (options, args) = parser.parse_args() if options.app: asys.RUN_APPS_NAME = options.app.split(',') if options.qiantai: asys.RUN_MODULE = 1 elif options.houtai: asys.RUN_MODULE = 0 except Exception,e: print str(e) pass return parser
import random import json # station = ["beijing","shanghai","nanjing","hangzhou","wuxi","ningbo","qingdao","wenzhou","shenzhen","tianjing"] # stationID = ['10010','10011','10012','10013','10014','10015','10016','10017','10018','10019',"10020"] # weekdays = ["Mon","Tues","Wed","Thurs","Fri","Sat",'Sun'] # def init(): # # 每次使用的d 必须是临时变量 不能定义成全局变量 # for i in range(10): # d = {} # src = int(random.random() * 10) # d['FightID'] = stationID[i] # d['StaStat'] = station[src] # des = int(random.random() * 10) # des = (src + des) // 2 # if des == src and des <= 9: # des = src + 1 # else: # des = src // 2 -1 # d['EndStat'] = station[des] # m = int(random.random() * 10) // 2 # d['DataSch'] = weekdays[m] # planeSet.append(d) def uploadFile(fileName,planeSet): fp = open(fileName,'wb') data = json.dumps(planeSet).encode('utf-8') fp.write(data) fp.close() pass def loadFile(fileName): fp = open(fileName,'rb') data = fp.readline() planeSet = json.loads(data) return planeSet pass def displayTicket(planeSet): print("\033[41;1mSTART END TIME \033[0m") for res in planeSet: print("\033[2;31;42;1m{:<9} {:<8} {:<5}\033[0m".format(res['StaStat'],res['EndStat'],res['DataSch'])) pass def addFligtINFO(planeSet): d = {} res = input("-->") pass if __name__ == "__main__": # init() # print(planeSet) # uploadFile('planeSchedule',planeSet) planeSet = [] planeSet = loadFile('planeSchedule') # print(planeSet) displayTicket(planeSet) res = input("==>") print(res,type(res))
import os import re import datetime def whoisFunc(name): # выполняем команду whois с переданным доменом try: output = os.popen("whois "+name) except OSError: return False # разбиваем информацию, которую выдал whois на массив через "\n" отступ output = str(output.read()).split("\n") # словарь результата arResult = {} # массив в который будет записываться список name server'ов arServers = [] # флаг того, что у нас есть дата создания, изначально равен False flagSuccess = False for elem in output: # т.к. формат вывода информации у whois для разных доменов может быть разный, попадаются домены, # в которых перед выводом информации о домене, находится не нужная информация помеченная % # нужно исключиим эту информацию поиском % #исключим строки где есть "%" и которые совсем пустые if elem.find("%", 0) != -1 or elem.strip() == "": continue # выходим из массива, как доходим до строчки, где написано про последнее обновление if elem.lower().find("last update") != -1: break # разделяем элемент массива на два значения (ключ:значение) elem = elem.strip().split(": ") # если значение в массиве только одно, пропускаем строку if len(elem) <= 1: continue # приводим ключ к нижнему регистру elem[0] = elem[0].strip().lower() # ищем в ключе подстроку "creat", т.е дату создания. # Именно "creat", т.к. формат вывода ключей у whois для разных доменов может быть разный if elem[0].find("creat", 0) != -1: # В случае успеха, обрабатываем дату и записываем в словарь arResult arResult[elem[0]] = datetime.datetime.strptime(elem[1].strip(), "%Y-%m-%dT%H:%M:%SZ") # Устанавливаем флаг присутствия даты = True flagSuccess = True # ищем в ключе подстроку "server", т.е имя сервера. Исключаем подстроку whois, т.к. # в списке, который выдает whois есть ключ Registrar WHOIS Server if elem[0].find("server", 0) != -1 and elem[0].find("whois", 0) == -1: # В случае успеха, записываем имя в массив серверов arServers.append(elem[1].strip()) # ищем в ключе подстроку "org", т.е список name server'ов. if elem[0].find("org", 0) != -1: # В случае успеха, записываем имя организации arResult[elem[0].strip()] = elem[1].strip() # записываем в словарь результатов массив name server'ов если там есть хотябы один сервер if len(arServers) > 0: arResult["server lists"] = arServers # если дата есть, вызвращаем словарь arResult if flagSuccess: return arResult else: return False print(whoisFunc("drweb.com")) print(" ") print(whoisFunc("drweb.ru")) print(" ") print(whoisFunc("drweb.net")) print(" ") print(whoisFunc("drweb.de"))
#! /usr/bin/python import pandas as pd import matplotlib.pyplot as plt import numpy as np plt.rc('axes', titlesize=16) # fontsize of the axes title plt.rc('axes', labelsize=16) # fontsize of the x and y labels plt.rc('xtick', labelsize=12) # fontsize of the tick labels plt.rc('ytick', labelsize=12) # fontsize of the tick labels plt.rc('legend', fontsize=12) # legend fontsize fig, (ax1, ax2) = plt.subplots(2, figsize=(6, 5)) fig.subplots_adjust(hspace=.5) #========================= # RPA cache #======================== x1=(1, 2, 3, 4, 5, 6) rpao_x_lable=('4B', '8B', '16B', '32B', '64B', '128B') youtube_rpao_hit_rate = (0.370, 0.579, 0.725, 0.824, 0.891, 0.934) lj_rpao_hit_rate = (0.307, 0.496, 0.656, 0.778, 0.861, 0.916) pokec_rpao_hit_rate = (0.242, 0.412, 0.590, 0.738, 0.840, 0.906) rmat19_32_rpao_hit_rate = (0.211, 0.372, 0.557, 0.716, 0.826, 0.899) rmat21_32_rpao_hit_rate = (0.180, 0.322, 0.504, 0.678, 0.808, 0.892) ax1.set_title('RPA prefetch buffer') ax1.plot(x1, youtube_rpao_hit_rate, '-<') ax1.plot(x1, lj_rpao_hit_rate, '-s') ax1.plot(x1, pokec_rpao_hit_rate, '->') ax1.plot(x1, rmat19_32_rpao_hit_rate, '-^') ax1.plot(x1, rmat21_32_rpao_hit_rate, '-p') ax1.set_ylabel('Hit rate') ax1.set_xticks(x1) ax1.set_xticklabels(rpao_x_lable) vals=ax1.get_yticks() ax1.set_yticklabels(['{:3.1f}%'.format(100*x) for x in vals]) ax1.grid(linewidth=0.5) ax1.xaxis.grid(False) #============================== # CIA Cache #=============================== x2=(1, 2, 3, 4, 5, 6) ciao_x_lable=('4B', '8B', '16B', '32B', '64B', '128B') youtube_ciao_hit_rate = (0.0600, 0.475, 0.718, 0.844, 0.912, 0.950) lj_ciao_hit_rate = (0.0028, 0.489, 0.734, 0.858, 0.922, 0.956) pokec_ciao_hit_rate = (0.0002, 0.489, 0.734, 0.857, 0.920, 0.954) rmat19_32_ciao_hit_rate = (0.0002, 0.497, 0.746, 0.871, 0.934, 0.966) rmat21_32_ciao_hit_rate = (0.0001, 0.496, 0.745, 0.869, 0.932, 0.964) ax2.set_title('CIA prefetch buffer') ax2.plot(x2, youtube_ciao_hit_rate, '-<') ax2.plot(x2, lj_ciao_hit_rate, '-s') ax2.plot(x2, pokec_ciao_hit_rate, '->') ax2.plot(x2, rmat19_32_ciao_hit_rate, '-^') ax2.plot(x2, rmat21_32_ciao_hit_rate, '-p') ax2.set_ylabel('Hit rate') ax2.set_xticks(x2) ax2.set_xticklabels(ciao_x_lable) vals=ax2.get_yticks() ax2.set_yticklabels(['{:3.1f}%'.format(100*x) for x in vals]) ax2.grid(linewidth=0.5) ax2.xaxis.grid(False) #========================= # Depth read cache #======================== #fig.subplots_adjust(hspace=.6) #x3=(1, 2, 3, 4, 5, 6, 7) #depth_x_lable=('1Kx64B', '2Kx64B', '4Kx64B', '8Kx64B', '16Kx64B', '32Kx64B', '64Kx64B') #youtube_depth_read_rate = (0.57, 0.65, 0.75, 0.86, 0.95, 0.97, 0.97) #lj_depth_read_rate = (0.35, 0.40, 0.46, 0.56, 0.70, 0.86, 0.99) #pokec_depth_read_rate = (0.16, 0.23, 0.35, 0.57, 0.89, 0.99, 0.99) #rmat19_32_depth_read_rate = (0.12, 0.25, 0.50, 0.99, 0.99, 0.99, 0.99) #rmat21_32_depth_read_rate = (0.03, 0.06, 0.13, 0.26, 0.51, 0.99, 0.99) #ax3.set_title('Depth read cache') # #ax3.plot(x3, youtube_depth_read_rate, '-<') #ax3.plot(x3, lj_depth_read_rate, '-s') #ax3.plot(x3, pokec_depth_read_rate, '->') #ax3.plot(x3, rmat19_32_depth_read_rate, '-^') #ax3.plot(x3, rmat21_32_depth_read_rate, '-p') #ax3.set_ylabel('Hit rate') #ax3.set_xticks(x3) #ax3.set_xticklabels(depth_x_lable) #for tick in ax3.get_xticklabels(): # tick.set_rotation(15) # # #vals=ax3.get_yticks() #ax3.set_yticklabels(['{:3.1f}%'.format(100*x) for x in vals]) #ax3.grid(linewidth=0.5) #ax3.xaxis.grid(False) # ##========================= ## Depth write cache ##======================== #x4=(1, 2, 3, 4, 5, 6, 7) #depth_x_lable=('1Kx64B', '2Kx64B', '4Kx64B', '8Kx64B', '16Kx64B', '32Kx64B', '64Kx64B') #youtube_depth_write_rate = (0.73, 0.77, 0.84, 0.91, 0.98, 0.99, 0.99) #lj_depth_write_rate = (0.40, 0.44, 0.49, 0.57, 0.70, 0.87, 0.99) #pokec_depth_write_rate = (0.20, 0.26, 0.37, 0.58, 0.88, 0.99, 0.99) #rmat19_32_depth_write_rate = (0.12, 0.25, 0.50, 0.99, 0.99, 0.99, 0.99) #rmat21_32_depth_write_rate = (0.03, 0.06, 0.13, 0.26, 0.51, 0.99, 0.99) #ax4.set_title('Depth write cache') # #ax4.plot(x4, youtube_depth_write_rate, '-<') #ax4.plot(x4, lj_depth_write_rate, '-s') #ax4.plot(x4, pokec_depth_write_rate, '->') #ax4.plot(x4, rmat19_32_depth_write_rate, '-^') #ax4.plot(x4, rmat21_32_depth_write_rate, '-p') #ax4.set_ylabel('Hit rate') #ax4.set_xticks(x4) #ax4.set_xticklabels(depth_x_lable) #vals=ax4.get_yticks() #ax4.set_yticklabels(['{:3.1f}%'.format(100*x) for x in vals]) #ax4.grid(linewidth=0.5) #ax4.xaxis.grid(False) #ax4.set_xlabel('prefetch buffer/cache Size') # Adding the legend and showing the plot #ax1.legend(['youtube', 'lj', 'pokec', 'ramt-19-32', 'rmat-21-32'], # loc='lower right', # ncol=3) ax1.legend(['Youtube', 'LJ', 'Pokec', 'R-MATI', 'R-MATII'], loc='lower right', ncol=3) #ax3.legend(['youtube', 'lj', 'pokec', 'ramt-19-32', 'rmat-21-32'], # loc='lower right', # ncol=3) #======================================================================= #ret.get_frame().set_alpha(0.4) plt.savefig("../prefetch-hit.pdf", bbox_inches='tight') #plt.show()
from tastypie.resources import ModelResource, ALL, ALL_WITH_RELATIONS from tastypie.authentication import SessionAuthentication from tastypie import fields from .models import Review, Book from django.contrib.auth.models import User class UserResource(ModelResource): class Meta: queryset = User.objects.all() fields = ['username'] # Only username field authentication = SessionAuthentication() # Access only for authenticated user class BookResource(ModelResource): class Meta: queryset = Book.objects.all() allowed_methods = ['get'] authentication = SessionAuthentication() # Access only for authenticated user class ReviewResource(ModelResource): book = fields.ToOneField(BookResource, 'book') user = fields.ToOneField(UserResource, 'user', full=True) class Meta: queryset = Review.objects.all() allowed_methods = ['get'] authentication = SessionAuthentication() # Access only for authenticated user filtering = {'book': ALL_WITH_RELATIONS}
../../Sum-Exp-Data.py
s,b2=map(str,input().split()) d3=s+b2 print(d3)
# intraday_ml_strategy.py import numpy as np import pandas as pd from sklearn.externals import joblib from qstrader.price_parser import PriceParser from qstrader.event import (SignalEvent, EventType) from qstrader.strategy.base import AbstractStrategy class IntradayMachineLearningPredictionStrategy(AbstractStrategy): """ Requires: tickers - The list of ticker symbols events_queue - A handle to the system events queue """ def __init__( self, tickers, events_queue, model_pickle_file, lags=5 ): self.tickers = tickers self.events_queue = events_queue self.model_pickle_file = model_pickle_file self.lags = lags self.invested = False self.cur_prices = np.zeros(self.lags+1) self.cur_returns = np.zeros(self.lags) self.minutes = 0 self.qty = 10000 self.model = joblib.load(model_pickle_file) def _update_current_returns(self, event): """ Updates the array of current returns "features" used by the machine learning model for prediction. """ # Adjust the feature vector to move all lags by one # and then recalculate the returns for i, f in reversed(list(enumerate(self.cur_prices))): if i > 0: self.cur_prices[i] = self.cur_prices[i-1] else: self.cur_prices[i] = event.close_price/float( PriceParser.PRICE_MULTIPLIER ) if self.minutes > (self.lags + 1): for i in range(0, self.lags): self.cur_returns[i] = (( self.cur_prices[i]/self.cur_prices[i+1] )-1.0)*100.0 def calculate_signals(self, event): """ Calculate the intraday machine learning prediction strategy. """ if event.type == EventType.BAR: self._update_current_returns(event) self.minutes += 1 # Allow enough time to pass to populate the # returns feature vector if self.minutes > (self.lags + 2): pred = self.model.predict(self.cur_returns.reshape((1, -1)))[0] # Long only strategy if not self.invested and pred == 1: print("LONG: %s" % event.time) self.events_queue.put( SignalEvent(self.tickers[0], "BOT", self.qty) ) self.invested = True if self.invested and pred == -1: print("CLOSING LONG: %s" % event.time) self.events_queue.put( SignalEvent(self.tickers[0], "SLD", self.qty) ) self.invested = False
from loguru import logger from sc2.data import Race from sc2.constants import * from sc2.ids.unit_typeid import * from sc2.ids.ability_id import * from sc2.unit import Unit from sc2.units import Units class ArmyGroup: """ Army groups allow control of an individual group of units Units in an army group are generally organized such that they all follow the same behavior i.e. all units in the marine army group focus banelings when they're nearby while all units in the marauder army group focus lurkers first Usage in bot class: self.my_army = ArmyGroup(self) # make sure to pass self as an argument when initializing self.my_army.add_to(self.forces) # add to army for unit in my_army.get_units(): # for unit in self.units.tags_in(self.my_army.unit_tags): # how to get units object # do things with army units """ def __init__(self, bot): self.bot = bot self.unit_tags = set() self.state = "DEFENDING" self.attack_position = self.bot.enemy_start_locations[0] self.defense_idle_position = self.bot.start_location.sort_by_distance(self.bot.expansion_locations_list)[1].towards(self.bot.game_info.map_center, 16) self.defense_range = 30 # Attack threats this distance from any friendly townhalls self.threats = None # use get_threats() instead of getting this #self.respond_to_nearby_threats = True #self.target_fire_units = set() # set of UnitTypeIds # Marine - {BANELING, INFESTOR, HIGHTEMPLAR, DARKTEMPLAR} # Marauder - {BANELING, INFESTOR, ULTRALISK, HIGHTEMPLAR, DARKTEMPLAR, STALKER, SIEGETANKSIEGED, SIEGETANK} def set_state(self, s): assert s in ["DEFENDING", "ATTACKING"] # possible states self.state = s def trigger_attack(self, pos=None): if pos: self.attack_position = pos self.state = "ATTACKING" #for u in self.get_units(): u.attack(self.attack_position) # sends all forces, even if doing something else self.do_state() def end_attack(self, pos=None): if pos: self.defense_idle_position = pos self.state = "DEFENDING" for u in self.get_units(): u.attack(self.defense_idle_position) self.do_state() def do_state(self): # this should be called often if self.state == "DEFENDING": for u in self.get_units().idle: if self.bot.iteration % 4 == 0: u.attack(self.defense_idle_position) elif self.state == "ATTACKING": for u in self.get_units().idle: # only sends idle forces u.attack(self.attack_position) # TODO: if nearby threats attack those instead else: raise Exception # invalid state for ArmyGroup def get_units(self, of_type=None): """ Returns a Units object. of_type (optional) - a {set} of UnitTypeIds (i.e. MARINE) or single UnitTypeId """ if of_type: assert isinstance(of_type, (set, UnitTypeId)) if self.bot.units: return_units = self.bot.units.tags_in(self.unit_tags) if of_type: return return_units.of_type(of_type) else: return return_units def add_to(self, to_add): """ Input: Units, Unit, tag or list Add to this army group if not already added """ if isinstance(to_add, Units): # if units object, feed each unit back in for unit in to_add: self.add_to(unit) elif isinstance(to_add, Unit): # if unit, convert to tag and feed back in self.add_to(to_add.tag) elif isinstance(to_add, int): # if tag, save to set if to_add not in self.unit_tags: self.unit_tags.add(to_add) elif isinstance(to_add, list): # if list, iterate and feed back in for e in to_add: # e could be a tag or a unit self.add_to(e) else: raise Exception # invalid argument type in ArmyGroup.add_to() def remove_from(self, to_rm): """ Input: Units, Unit, tag or list Remove from this army group if a member """ if isinstance(to_rm, Units): # if units object, feed each unit back in for unit in to_rm: self.remove_from(unit) elif isinstance(to_rm, Unit): # if unit, convert to tag and feed back in self.remove_from(to_rm.tag) elif isinstance(to_rm, int): # if tag, save to set if to_rm not in self.unit_tags: self.unit_tags.discard(to_rm) # discard instead of remove because we don't want an exception if the tag isn't in the group elif isinstance(to_rm, list): # if list, iterate and feed back in for e in to_rm: self.remove_from(e) else: raise Exception # invalid argument type in ArmyGroup.remove_from() def get_threats(self): for townhall in self.bot.townhalls: # threats are visible units closer than self.defense_range to a nearby townhall self.threats = self.bot.enemy_units.visible.closer_than(self.defense_range, townhall.position) # overwrites it every time ughhhh return self.threats.exclude_type({LARVA}) ### From burny-bots-python-sc2 CreepyBot ### def get_unit_info(bot, unit, field="food_required"): # get various unit data, see list below # usage: get_unit_info(ROACH, "mineral_cost") assert isinstance(unit, (Unit, UnitTypeId)) if isinstance(unit, Unit): # unit = unit.type_id unit = unit._type_data._proto else: unit = bot._game_data.units[unit.value]._proto # unit = bot._game_data.units[unit.value] # print(vars(unit)) # uncomment to get the list below if hasattr(unit, field): return getattr(unit, field) else: return None """ name: "Drone" available: true cargo_size: 1 attributes: Light attributes: Biological movement_speed: 2.8125 armor: 0.0 weapons { type: Ground damage: 5.0 attacks: 1 range: 0.10009765625 speed: 1.5 } mineral_cost: 50 vespene_cost: 0 food_required: 1.0 ability_id: 1342 race: Zerg build_time: 272.0 sight_range: 8.0 """ # update scouting info depending on visible units that we can see # if we see buildings that are not # depot, rax, bunker, spine crawler, spore, nydus, pylon, cannon, gateway # then assume that is the enemy spawn location def process_scouting(bot): if not hasattr(bot, 'opponent_data'): bot.opponent_data = { "spawn_location": None, # for 4player maps "expansions": [], # stores a list of Point2 objects of expansions "expansions_tags": set(), # stores the expansions above as tags so we dont count them double "race": None, "army_tags_scouted": [], # list of dicts with entries: {"tag": 123, "scout_time": 15.6, "supply": 2} "army_supply_scouted": 0, "army_supply_nearby": 0, "army_supply_visible": 0 } # set enemy spawn location ignore_these_buildings = [SUPPLYDEPOT, SUPPLYDEPOTLOWERED, BARRACKS, BUNKER, SPINECRAWLER, SPORECRAWLER, NYDUSNETWORK, NYDUSCANAL, PYLON, PHOTONCANNON, GATEWAY] if bot.opponent_data["spawn_location"] is None and len(bot.enemy_start_locations) > 0: if bot.enemy_structures.exists: filtered_units = bot.enemy_structures.filter(lambda x:x.type_id not in ignore_these_buildings) if filtered_units.exists: bot.opponent_data["spawn_location"] = filtered_units.random.position.closest(bot.enemy_start_locations) # figure out the race of the opponent if bot.opponent_data["race"] is None and bot.enemy_units.exists: unit_race = get_unit_info(bot, bot.enemy_units.random, "race") racesDict = { Race.Terran.value: "Terran", Race.Zerg.value: "Zerg", Race.Protoss.value: "Protoss", } bot.opponent_data["race"] = unit_race # figure out how much army supply enemy has: visible_enemy_units = bot.enemy_units.not_structure.filter(lambda x:x.type_id not in [DRONE, SCV, PROBE, LARVA, EGG]) for unit in visible_enemy_units: isUnitInInfo = next((x for x in bot.opponent_data["army_tags_scouted"] if x["tag"] == unit.tag), None) if isUnitInInfo is not None: bot.opponent_data["army_tags_scouted"].remove(isUnitInInfo) # if unit.tag not in bot.opponent_data["army_tags_scouted"]: if bot.townhalls.ready.exists: bot.opponent_data["army_tags_scouted"].append({ "tag": unit.tag, "scout_time": bot.time, "supply": get_unit_info(bot, unit) or 0, "distance_to_base": bot.townhalls.ready.closest_to(unit).distance_to(unit), }) # get opponent army supply (scouted / visible) scout_timeout_duration = 300 # TODO: set the time on how long until the scouted army supply times out bot.opponent_data["army_supply_scouted"] = sum(x["supply"] for x in bot.opponent_data["army_tags_scouted"] if x["scout_time"] > bot.time - scout_timeout_duration) bot.opponent_data["army_supply_nearby"] = sum(x["supply"] for x in bot.opponent_data["army_tags_scouted"] if x["scout_time"] > bot.time - scout_timeout_duration and x["distance_to_base"] < 60) bot.opponent_data["army_supply_visible"] = sum(get_unit_info(bot, x) or 0 for x in visible_enemy_units) # get opponent expansions if bot.iteration % 20 == 0: enemy_townhalls = bot.enemy_structures.filter(lambda x:x.type_id in [HATCHERY, LAIR, HIVE, COMMANDCENTER, PLANETARYFORTRESS, ORBITALCOMMAND, NEXUS]) for th in enemy_townhalls: if len(bot.opponent_data["expansions"]) > 0 and th.position.closest(bot.opponent_data["expansions"]).distance_to(th.position.to2) < 20: continue if th.tag not in bot.opponent_data["expansions_tags"]: bot.opponent_data["expansions_tags"].add(th.tag) bot.opponent_data["expansions"].append(th.position.to2) logger.success(f"Found New Enemy Townhall at {th.position.to2}") def is_valid_chrono_target(unit: Unit): # do not chrono idle buildings or buildings that already have chrono if unit.is_idle or unit.has_buff(BuffId.CHRONOBOOSTENERGYCOST): # what a terrible ID for this return False else: # just to make it clear return True
import unittest import doctest def additional_tests(): import simplejson import simplejson.encoder import simplejson.decoder suite = unittest.TestSuite() for mod in (simplejson, simplejson.encoder, simplejson.decoder): suite.addTest(doctest.DocTestSuite(mod)) suite.addTest(doctest.DocFileSuite('../../index.rst')) return suite def main(): suite = additional_tests() runner = unittest.TextTestRunner() runner.run(suite) if __name__ == '__main__': import os import sys sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) main()
"""Functionality for specifying and cycling through multiple calculations.""" from __future__ import print_function from distutils.version import LooseVersion from multiprocessing import cpu_count import dask import dask.bag as db import distributed import itertools import logging import pprint import traceback from .calc import Calc, _TIME_DEFINED_REDUCTIONS from .region import Region from .var import Var _OBJ_LIB_STR = 'library' _PROJECTS_STR = 'projects' _MODELS_STR = 'models' _RUNS_STR = 'runs' _REGIONS_STR = 'regions' _VARIABLES_STR = 'variables' _TAG_ATTR_MODIFIERS = dict(all='', default='default_') class AospyException(Exception): """Base exception class for the aospy package.""" pass def _get_attr_by_tag(obj, tag, attr_name): """Get attribute from an object via a string tag. Parameters ---------- obj : object from which to get the attribute attr_name : str Unmodified name of the attribute to be found. The actual attribute that is returned may be modified be 'tag'. tag : str Tag specifying how to modify 'attr_name' by pre-pending it with 'tag'. Must be a key of the _TAG_ATTR_MODIFIERS dict. Returns ------- the specified attribute of obj """ attr_name = _TAG_ATTR_MODIFIERS[tag] + attr_name return getattr(obj, attr_name) def _permuted_dicts_of_specs(specs): """Create {name: value} dict, one each for every permutation. Each permutation becomes a dictionary, with the keys being the attr names and the values being the corresponding value for that permutation. These dicts can then be directly passed to the Calc constructor. """ permuter = itertools.product(*specs.values()) return [dict(zip(specs.keys(), perm)) for perm in permuter] def _merge_dicts(*dict_args): """Merge the given dictionaries into single dict. Given any number of dicts, shallow copy and merge into a new dict, precedence goes to key value pairs in latter dicts. From http://stackoverflow.com/a/26853961/1706640 """ result = {} for dictionary in dict_args: result.update(dictionary) return result def _user_verify(prompt='Perform these computations? [y/n] '): """Prompt the user for verification.""" if not input(prompt).lower()[0] == 'y': raise AospyException('Execution cancelled by user.') def _get_all_objs_of_type(type_, parent): """Get all attributes of the given type from the given object. Parameters ---------- type_ : The desired type parent : The object from which to get the attributes with type matching 'type_' Returns ------- A list (possibly empty) of attributes from 'parent' """ return set([obj for obj in parent.__dict__.values() if isinstance(obj, type_)]) class CalcSuite(object): """Suite of Calc objects generated from provided specifications.""" _CORE_SPEC_NAMES = {_OBJ_LIB_STR, _PROJECTS_STR, _MODELS_STR, _RUNS_STR} _AUX_SPEC_NAMES = {_VARIABLES_STR, _REGIONS_STR, 'date_ranges', 'input_time_intervals', 'input_time_datatypes', 'input_time_offsets', 'input_vertical_datatypes', 'output_time_intervals', 'output_time_regional_reductions', 'output_vertical_reductions'} _NAMES_SUITE_TO_CALC = { _PROJECTS_STR: 'proj', _MODELS_STR: 'model', _RUNS_STR: 'run', _VARIABLES_STR: 'var', _REGIONS_STR: 'region', 'date_ranges': 'date_range', 'input_time_intervals': 'intvl_in', 'input_time_datatypes': 'dtype_in_time', 'input_time_offsets': 'time_offset', 'input_vertical_datatypes': 'dtype_in_vert', 'output_time_intervals': 'intvl_out', 'output_time_regional_reductions': 'dtype_out_time', 'output_vertical_reductions': 'dtype_out_vert', } def __init__(self, calc_suite_specs): self._specs_in = calc_suite_specs self._obj_lib = self._specs_in[_OBJ_LIB_STR] def _get_requested_spec(self, obj, spec_name): """Helper to translate user specifications to needed objects.""" requested = self._specs_in[spec_name] if isinstance(requested, str): return _get_attr_by_tag(obj, requested, spec_name) else: return requested def _permute_core_specs(self): """Generate all requested combinations of the core objects.""" obj_trees = [] projects = self._get_requested_spec(self._obj_lib, _PROJECTS_STR) for project in projects: models = self._get_requested_spec(project, _MODELS_STR) for model in models: runs = self._get_requested_spec(model, _RUNS_STR) for run in runs: obj_trees.append({ self._NAMES_SUITE_TO_CALC[_PROJECTS_STR]: project, self._NAMES_SUITE_TO_CALC[_MODELS_STR]: model, self._NAMES_SUITE_TO_CALC[_RUNS_STR]: run, }) return obj_trees def _get_regions(self): """Get the requested regions.""" if self._specs_in[_REGIONS_STR] == 'all': return [_get_all_objs_of_type( Region, getattr(self._obj_lib, 'regions', self._obj_lib) )] else: return [set(self._specs_in[_REGIONS_STR])] def _get_variables(self): """Get the requested variables.""" if self._specs_in[_VARIABLES_STR] == 'all': return _get_all_objs_of_type( Var, getattr(self._obj_lib, 'variables', self._obj_lib) ) else: return set(self._specs_in[_VARIABLES_STR]) def _get_date_ranges(self): """Parse the input to get the desired date ranges.""" if self._specs_in['date_ranges'] == 'default': return ['default'] else: return self._specs_in['date_ranges'] def _get_time_reg_reducts(self): """Parse the input to get the desired spatiotemporal reductions.""" return [self._specs_in['output_time_regional_reductions']] def _get_aux_specs(self): """Get and pre-process all of the non-core specifications.""" # Drop the "core" specifications, which are handled separately. specs = self._specs_in.copy() [specs.pop(core) for core in self._CORE_SPEC_NAMES] specs[_REGIONS_STR] = self._get_regions() specs[_VARIABLES_STR] = self._get_variables() specs['date_ranges'] = self._get_date_ranges() specs['output_time_regional_reductions'] = self._get_time_reg_reducts() return specs def _permute_aux_specs(self): """Generate all permutations of the non-core specifications.""" # Convert to attr names that Calc is expecting. calc_aux_mapping = self._NAMES_SUITE_TO_CALC.copy() # Special case: manually add 'library' to mapping calc_aux_mapping[_OBJ_LIB_STR] = None [calc_aux_mapping.pop(core) for core in self._CORE_SPEC_NAMES] specs = self._get_aux_specs() for suite_name, calc_name in calc_aux_mapping.items(): specs[calc_name] = specs.pop(suite_name) return _permuted_dicts_of_specs(specs) def _combine_core_aux_specs(self): """Combine permutations over core and auxilliary Calc specs.""" all_specs = [] for core_dict in self._permute_core_specs(): for aux_dict in self._permute_aux_specs(): all_specs.append(_merge_dicts(core_dict, aux_dict)) return all_specs def create_calcs(self): """Generate a Calc object for each requested parameter combination.""" specs = self._combine_core_aux_specs() for spec in specs: spec['dtype_out_time'] = _prune_invalid_time_reductions(spec) return [Calc(**sp) for sp in specs] def _prune_invalid_time_reductions(spec): """Prune time reductions of spec with no time dimension.""" valid_reductions = [] if not spec['var'].def_time and spec['dtype_out_time'] is not None: for reduction in spec['dtype_out_time']: if reduction not in _TIME_DEFINED_REDUCTIONS: valid_reductions.append(reduction) else: msg = ("Var {0} has no time dimension " "for the given time reduction " "{1} so this calculation will " "be skipped".format(spec['var'].name, reduction)) logging.info(msg) else: valid_reductions = spec['dtype_out_time'] return valid_reductions def _compute_or_skip_on_error(calc, compute_kwargs): """Execute the Calc, catching and logging exceptions, but don't re-raise. Prevents one failed calculation from stopping a larger requested set of calculations. """ try: return calc.compute(**compute_kwargs) except Exception: msg = ("Skipping aospy calculation `{0}` due to error with the " "following traceback: \n{1}") logging.warning(msg.format(calc, traceback.format_exc())) return None def _submit_calcs_on_client(calcs, client, func): """Submit calculations via dask.bag and a distributed client""" logging.info('Connected to client: {}'.format(client)) if LooseVersion(dask.__version__) < '0.18': dask_option_setter = dask.set_options else: dask_option_setter = dask.config.set with dask_option_setter(get=client.get): return db.from_sequence(calcs).map(func).compute() def _n_workers_for_local_cluster(calcs): """The number of workers used in a LocalCluster An upper bound is set at the cpu_count or the number of calcs submitted, depending on which is smaller. This is to prevent more workers from being started than needed (but also to prevent too many workers from being started in the case that a large number of calcs are submitted). """ return min(cpu_count(), len(calcs)) def _exec_calcs(calcs, parallelize=False, client=None, **compute_kwargs): """Execute the given calculations. Parameters ---------- calcs : Sequence of ``aospy.Calc`` objects parallelize : bool, default False Whether to submit the calculations in parallel or not client : distributed.Client or None The distributed Client used if parallelize is set to True; if None a distributed LocalCluster is used. compute_kwargs : dict of keyword arguments passed to ``Calc.compute`` Returns ------- A list of the values returned by each Calc object that was executed. """ if parallelize: def func(calc): """Wrap _compute_or_skip_on_error to require only the calc argument""" if 'write_to_tar' in compute_kwargs: compute_kwargs['write_to_tar'] = False return _compute_or_skip_on_error(calc, compute_kwargs) if client is None: n_workers = _n_workers_for_local_cluster(calcs) with distributed.LocalCluster(n_workers=n_workers) as cluster: with distributed.Client(cluster) as client: result = _submit_calcs_on_client(calcs, client, func) else: result = _submit_calcs_on_client(calcs, client, func) if compute_kwargs['write_to_tar']: _serial_write_to_tar(calcs) return result else: return [_compute_or_skip_on_error(calc, compute_kwargs) for calc in calcs] def _serial_write_to_tar(calcs): for calc in calcs: if calc.proj.tar_direc_out: for dtype_out_time in calc.dtype_out_time: calc._write_to_tar(dtype_out_time) def _print_suite_summary(calc_suite_specs): """Print summary of requested calculations.""" return ('\nRequested aospy calculations:\n' + pprint.pformat(calc_suite_specs) + '\n') def submit_mult_calcs(calc_suite_specs, exec_options=None): """Generate and execute all specified computations. Once the calculations are prepped and submitted for execution, any calculation that triggers any exception or error is skipped, and the rest of the calculations proceed unaffected. This prevents an error in a single calculation from crashing a large suite of calculations. Parameters ---------- calc_suite_specs : dict The specifications describing the full set of calculations to be generated and potentially executed. Accepted keys and their values: library : module or package comprising an aospy object library The aospy object library for these calculations. projects : list of aospy.Proj objects The projects to permute over. models : 'all', 'default', or list of aospy.Model objects The models to permute over. If 'all', use all models in the ``models`` attribute of each ``Proj``. If 'default', use all models in the ``default_models`` attribute of each ``Proj``. runs : 'all', 'default', or list of aospy.Run objects The runs to permute over. If 'all', use all runs in the ``runs`` attribute of each ``Model``. If 'default', use all runs in the ``default_runs`` attribute of each ``Model``. variables : list of aospy.Var objects The variables to be calculated. regions : 'all' or list of aospy.Region objects The region(s) over which any regional reductions will be performed. If 'all', use all regions in the ``regions`` attribute of each ``Proj``. date_ranges : 'default' or a list of tuples The range of dates (inclusive) over which to perform calculations. If 'default', use the ``default_start_date`` and ``default_end_date`` attribute of each ``Run``. Else provide a list of tuples, each containing a pair of start and end dates, such as ``date_ranges=[(start, end)]`` where ``start`` and ``end`` are each ``datetime.datetime`` objects, partial datetime strings (e.g. '0001'), ``np.datetime64`` objects, or ``cftime.datetime`` objects. output_time_intervals : {'ann', season-string, month-integer} The sub-annual time interval over which to aggregate. - 'ann' : Annual mean - season-string : E.g. 'JJA' for June-July-August - month-integer : 1 for January, 2 for February, etc. Each one is a separate reduction, e.g. [1, 2] would produce averages (or other specified time reduction) over all Januaries, and separately over all Februaries. output_time_regional_reductions : list of reduction string identifiers Unlike most other keys, these are not permuted over when creating the :py:class:`aospy.Calc` objects that execute the calculations; each :py:class:`aospy.Calc` performs all of the specified reductions. Accepted string identifiers are: - Gridpoint-by-gridpoint output: - 'av' : Gridpoint-by-gridpoint time-average - 'std' : Gridpoint-by-gridpoint temporal standard deviation - 'ts' : Gridpoint-by-gridpoint time-series - Averages over each region specified via `region`: - 'reg.av', 'reg.std', 'reg.ts' : analogous to 'av', 'std', 'ts' output_vertical_reductions : {None, 'vert_av', 'vert_int'}, optional How to reduce the data vertically: - None : no vertical reduction - 'vert_av' : mass-weighted vertical average - 'vert_int' : mass-weighted vertical integral input_time_intervals : {'annual', 'monthly', 'daily', '#hr'} A string specifying the time resolution of the input data. In '#hr' above, the '#' stands for a number, e.g. 3hr or 6hr, for sub-daily output. These are the suggested specifiers, but others may be used if they are also used by the DataLoaders for the given Runs. input_time_datatypes : {'inst', 'ts', 'av'} What the time axis of the input data represents: - 'inst' : Timeseries of instantaneous values - 'ts' : Timeseries of averages over the period of each time-index - 'av' : A single value averaged over a date range input_vertical_datatypes : {False, 'pressure', 'sigma'}, optional The vertical coordinate system used by the input data: - False : not defined vertically - 'pressure' : pressure coordinates - 'sigma' : hybrid sigma-pressure coordinates input_time_offsets : {None, dict}, optional How to offset input data in time to correct for metadata errors - None : no time offset applied - dict : e.g. ``{'hours': -3}`` to offset times by -3 hours See :py:meth:`aospy.utils.times.apply_time_offset`. exec_options : dict or None (default None) Options regarding how the calculations are reported, submitted, and saved. If None, default settings are used for all options. Currently supported options (each should be either `True` or `False`): - prompt_verify : (default False) If True, print summary of calculations to be performed and prompt user to confirm before submitting for execution. - parallelize : (default False) If True, submit calculations in parallel. - client : distributed.Client or None (default None) The dask.distributed Client used to schedule computations. If None and parallelize is True, a LocalCluster will be started. - write_to_tar : (default True) If True, write results of calculations to .tar files, one for each :py:class:`aospy.Run` object. These tar files have an identical directory structures the standard output relative to their root directory, which is specified via the `tar_direc_out` argument of each Proj object's instantiation. Returns ------- A list of the return values from each :py:meth:`aospy.Calc.compute` call If a calculation ran without error, this value is the :py:class:`aospy.Calc` object itself, with the results of its calculations saved in its ``data_out`` attribute. ``data_out`` is a dictionary, with the keys being the temporal-regional reduction identifiers (e.g. 'reg.av'), and the values being the corresponding result. If any error occurred during a calculation, the return value is None. Raises ------ AospyException If the ``prompt_verify`` option is set to True and the user does not respond affirmatively to the prompt. """ if exec_options is None: exec_options = dict() if exec_options.pop('prompt_verify', False): print(_print_suite_summary(calc_suite_specs)) _user_verify() calc_suite = CalcSuite(calc_suite_specs) calcs = calc_suite.create_calcs() if not calcs: raise AospyException( "The specified combination of parameters yielded zero " "calculations. Most likely, one of the parameters is " "inadvertently empty." ) return _exec_calcs(calcs, **exec_options)
#buh usgiig jijgeer a = input() print(str.lower(a))
import pandas as pd import numpy as np import os import json import logging import sys logging.basicConfig(filename='logs.log', filemode='a', format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s', datefmt='%H:%M:%S', level=logging.DEBUG) #amount = invoice amount #This function removes payments having single subset def removing_single_subsets(read_from, write_to): for i in os.listdir(read_from): logging.info('Processing '+str(i).split('.')[0]) dataset = pd.read_csv(r'' + read_from + os.sep + str(i), sep=',') temp = dataset.groupby(['payment_id'])['subset_number'].nunique().reset_index() valid_payments = temp[temp['subset_number']>1]['payment_id'].unique() dataset = dataset[dataset['payment_id'].isin(valid_payments)] if len(dataset)>1: logging.info('Customer have multiple subsets.') dataset.to_csv(write_to + str(i)) else: logging.info('Customer ' + str(i).split('.')[0] + ' removed due to all single subsets') #This function will populate output def output_logic(read_from, write_to): for i in os.listdir(read_from): dataset = pd.read_csv(r'' + read_from + os.sep + str(i), sep=',',index_col=0) temp=dataset.copy() temp['diff_payment_id_&_payment_hdr_id'] = abs(temp['payment_id'] - temp['payment_hdr_id']) agg_obj = temp[['payment_id', 'subset_number', 'diff_payment_id_&_payment_hdr_id', 'payment_hdr_id']].groupby(['payment_id', 'subset_number']).agg({'payment_hdr_id':'var','diff_payment_id_&_payment_hdr_id':'sum'}).reset_index() agg_obj['payment_hdr_id']=agg_obj['payment_hdr_id'].fillna(0) dataset['output'] = temp.apply(lambda row: 1 if ((agg_obj[(agg_obj['payment_id'] == row['payment_id']) & ( agg_obj['subset_number'] == row['subset_number'])][ 'diff_payment_id_&_payment_hdr_id'].values[ 0] == 0) & (agg_obj[(agg_obj['payment_id'] == row['payment_id']) & (agg_obj['subset_number'] == row['subset_number'])]['payment_hdr_id'].values[ 0] == 0)) else 0, axis=1) dataset.to_csv(write_to + str(i)) #This function assigns rank to average_delay_categorical feature #This function calculates the variance of delay of all invoices in each subset def variance_and_avg_delay_categorical(read_from, write_to): for i in os.listdir(read_from): dataset = pd.read_csv(r'' + read_from + os.sep + str(i), sep=',',index_col=0) dataset['payment_date'] = pd.to_datetime(dataset['payment_date']) dataset['invoice_date'] = pd.to_datetime(dataset['invoice_date']) dataset['delay'] = dataset['payment_date'].subtract(dataset['invoice_date'], axis=0) dataset['delay'] = dataset['delay'].apply(lambda x: pd.Timedelta(x).days) temp = dataset.groupby(['payment_id', 'subset_number']).agg({'delay':'var'}).reset_index() temp['delay']=temp['delay'].fillna(0) temp['delay']=round(temp['delay'],5) temp['variance_categorical']=temp.groupby(['payment_id'])['delay'].rank(ascending=True,method='dense') dataset['variance']=dataset.apply(lambda row : temp[(temp['payment_id']==row['payment_id']) & (temp['subset_number']==row['subset_number'])]['delay'].values[0],axis=1) dataset['variance_categorical']=dataset.apply(lambda row : temp[(temp['payment_id']==row['payment_id']) & (temp['subset_number']==row['subset_number'])]['variance_categorical'].values[0],axis=1) dataset['variance_categorical'] = dataset['variance_categorical'] - 1 temp2 = dataset.groupby(['payment_id', 'subset_number']).agg({'delay':'mean'}).reset_index() temp2['delay'] = round(temp2['delay'],5) temp2['avg_delay_categorical'] = temp2.groupby(['payment_id'])['delay'].rank(ascending=False,method='dense') dataset['average_delay'] = dataset.apply(lambda row : temp2[(temp2['payment_id']==row['payment_id']) & (temp2['subset_number']==row['subset_number'])]['delay'].values[0],axis=1) dataset['avg_delay_categorical']=dataset.apply(lambda row : temp2[(temp2['payment_id']==row['payment_id']) & (temp2['subset_number']==row['subset_number'])]['avg_delay_categorical'].values[0],axis=1) dataset['avg_delay_categorical'] = dataset['avg_delay_categorical'] - 1 dataset.to_csv(write_to + str(i)) #This function will create the feature number_invoices_closed def number_unique_invoice_count(read_from, write_to): for i in os.listdir(read_from): dataset = pd.read_csv(r'' + read_from + os.sep + str(i), sep=',', index_col=0) dataset['number_invoices_closed']=0 subset_invoice_count = dataset.groupby(['payment_id','subset_number'])['invoice'].nunique().reset_index() payment_invoice_count = dataset.groupby('payment_id')['invoice'].nunique().reset_index() dataset['number_invoices_closed'] = dataset.apply(lambda row: (subset_invoice_count[(subset_invoice_count['payment_id']==row['payment_id']) & (subset_invoice_count['subset_number']==row['subset_number'])]['invoice'].values[0]/payment_invoice_count[payment_invoice_count['payment_id']==row['payment_id']]['invoice'].values[0]), axis=1) dataset['unique_invoice_count'] = dataset.apply(lambda row: payment_invoice_count[payment_invoice_count['payment_id']==row['payment_id']]['invoice'].values[0],axis=1) dataset.to_csv(write_to + str(i)) def variance_categorical_old(read_from, write_to): for i in os.listdir(read_from): dataset = pd.read_csv(r'' + read_from + os.sep + str(i), sep=',',index_col=0) if len(dataset)>1: # dataset['subset_number'] = dataset.index dataset['payment_date'] = pd.to_datetime(dataset['payment_date']) dataset['invoice_date'] = pd.to_datetime(dataset['invoice_date']) dataset['delay'] = dataset['payment_date'].subtract(dataset['invoice_date'], axis=0) dataset['delay'] = dataset['delay'].apply(lambda x: pd.Timedelta(x).days) group = dataset.groupby(by=['payment_id', 'subset_number']) new_data = pd.DataFrame() for name, data in group: payment_id, subset_number = name[0], name[1] data['output'] = 0 if len(data) > 1: data['variance'] = data['delay'].var() if data['payment_hdr_id'].unique()[0] == payment_id and data['payment_hdr_id'].var() == 0: data['output'] = 1 else: data['variance'] = 0 if data['payment_hdr_id'].unique()[0] == payment_id: data['output'] = 1 data['average_delay'] = data['delay'].mean() logging.info("here", name) data['payment_id'] = payment_id data['subset_number'] = subset_number new_data = pd.concat([new_data, data]) logging.info("here 2", name) grouped_payment_id = new_data.groupby(by=['payment_id']) new_data['variance_categorical'] = 0 new_data_more_new = pd.DataFrame() for name, data in grouped_payment_id: unique_variance = data['variance'].unique() logging.info(unique_variance) data['payment_id'] = name unique_variance.sort() data['variance_categorical'] = data['variance'].apply(rank, args=(unique_variance,)) new_data_more_new = pd.concat([new_data_more_new, data]) new_data_more_new.to_csv(write_to + str(i)) # This function defines and assigns bins to the open invoice amount for each subset def LMH_assign(val): if val<=100: return 'L1' elif val<=500: return 'L2' elif val<=1000: return 'L3' elif val<=5000: return 'M' else: return 'H' #This function calculates LMH cumulative def LMH_cumulative(read_from,write_to, customer_level_json): local = json.load(open(customer_level_json, 'r')) for i in os.listdir(read_from): dataset = pd.read_csv(r'' + read_from + os.sep + str(i), sep=',',index_col=0) cust_num=dataset['customer_number'].unique()[0] if type(cust_num)!=str: cust_num=cust_num.astype(str) dataset['LMH'] = dataset['amount'].apply(LMH_assign) # dataset['LMH'] = pd.cut(dataset['amount'], [0, 100, 500, 1000, 5000, 10000000000], labels=['L1', 'L2', 'L3', 'M', 'H']) if local.get(cust_num).get('buckets_invoice').get('L1_perc'): L1_perc = dataset['L1_perc'] = local.get(cust_num).get('buckets_invoice').get('L1_perc')[0] else: L1_perc = dataset['L1_perc'] = 0 if local.get(cust_num).get('buckets_invoice').get('L2_perc'): L2_perc = dataset['L2_perc'] = local.get(cust_num).get('buckets_invoice').get('L2_perc')[0] else: L2_perc = dataset['L2_perc'] = 0 if local.get(cust_num).get('buckets_invoice').get('L3_perc'): L3_perc = dataset['L3_perc'] = local.get(cust_num).get('buckets_invoice').get('L3_perc')[0] else: L3_perc = dataset['L3_perc'] = 0 if local.get(cust_num).get('buckets_invoice').get('M_perc'): M_perc = dataset['M_perc'] = local.get(cust_num).get('buckets_invoice').get('M_perc')[0] else: M_perc = dataset['M_perc'] = 0 if local.get(cust_num).get('buckets_invoice').get('H_perc'): H_perc = dataset['H_perc'] = local.get(cust_num).get('buckets_invoice').get('H_perc')[0] else: H_perc = dataset['H_perc'] = 0 dataset['LMH_cumulative']=0 for j in dataset['payment_id'].unique(): for k in dataset[dataset['payment_id']==j]['subset_number'].unique(): temp=dataset[(dataset['payment_id']==j) & (dataset['subset_number']==k)] L1 = len(temp[temp['LMH'] == 'L1'])/len(temp) L2 = len(temp[temp['LMH'] == 'L2']) / len(temp) L3 = len(temp[temp['LMH'] == 'L3']) / len(temp) M = len(temp[temp['LMH'] == 'M']) / len(temp) H = len(temp[temp['LMH'] == 'H']) / len(temp) dataset.loc[(dataset['payment_id'] == j) & (dataset['subset_number'] == k), 'LMH_cumulative']=L1*L1_perc + L2*L2_perc + L3*L3_perc + M*M_perc + H*H_perc dataset.to_csv(write_to + str(i)) #This function populates quarter level payment and invoice level features AND avg_of_all_delays feature def quarter_level_features(read_from, write_to, customer_level_json): for i in os.listdir(read_from): dictionary = json.load(open(customer_level_json, 'r')) dataset = pd.read_csv(r''+read_from + os.sep + str(i), sep=',', index_col=0) cust_num = dataset['customer_number'].unique()[0] if type(cust_num)!=str: cust_num=cust_num.astype(str) dataset['avg_of_invoices_closed'] = dictionary.get(cust_num).get('avg_of_invoices_closed') dataset['avg_of_all_delays'] = dictionary.get(cust_num).get('avg_of_all_delays') dataset['payment_count_quarter_q1'] = dictionary.get(cust_num).get('payment_count_quarter').get('q1') dataset['payment_count_quarter_q2'] = dictionary.get(cust_num).get('payment_count_quarter').get('q2') dataset['payment_count_quarter_q3'] = dictionary.get(cust_num).get('payment_count_quarter').get('q3') dataset['payment_count_quarter_q4'] = dictionary.get(cust_num).get('payment_count_quarter').get('q4') dataset['invoice_count_quarter_q1'] = dictionary.get(cust_num).get('invoice_count_quarter').get('q1') dataset['invoice_count_quarter_q2'] = dictionary.get(cust_num).get('invoice_count_quarter').get('q2') dataset['invoice_count_quarter_q3'] = dictionary.get(cust_num).get('invoice_count_quarter').get('q3') dataset['invoice_count_quarter_q4'] = dictionary.get(cust_num).get('invoice_count_quarter').get('q4') dataset['avg_of_invoices_closed'] = dictionary.get(cust_num).get('avg_of_invoices_closed') dataset['avg_of_all_delays'] = dictionary.get(cust_num).get('avg_of_all_delays') dataset.to_csv(write_to + str(i)) #supporting function for avg_delay_categorical def rank(x, un_var): index = np.where(un_var == x) return index[0][0] def avg_delay_categorical_old(read_from,write_to): for i in os.listdir(read_from): data = pd.read_csv(r''+read_from + os.sep + str(i), sep=',',index_col=0) if len(data)>1: grouped_payment_id = data.groupby(by=['payment_id']) new_data_final=pd.DataFrame() for name,group in grouped_payment_id: unique_delay = group['average_delay'].unique() sorted_delay = np.asarray(sorted(unique_delay, reverse=True)) group['avg_delay_categorical'] = group['average_delay'].apply(rank, args=(sorted_delay,)) new_data_final = pd.concat([new_data_final, group], axis=0) new_data_final.to_csv(write_to + str(i)) #This function rolls up the payment information to the subsets level def subset_rolled_up(read_from, write_to): variables = ['account_id','customer_number', 'payment_id', 'subset_number', 'output', 'variance_categorical','avg_delay_categorical', 'L1_perc', 'L2_perc', 'L3_perc', 'M_perc', 'H_perc', 'LMH_cumulative', 'avg_of_invoices_closed', 'avg_of_all_delays', 'payment_count_quarter_q1', 'payment_count_quarter_q2', 'payment_count_quarter_q3', 'payment_count_quarter_q4', 'invoice_count_quarter_q1', 'invoice_count_quarter_q2', 'invoice_count_quarter_q3', 'invoice_count_quarter_q4', 'payment_amount', 'number_invoices_closed', 'payment_date','unique_invoice_count'] for i in os.listdir(read_from): final = pd.DataFrame() dataset = pd.read_csv(r''+read_from + os.sep + str(i), sep=',', index_col=0) for j in dataset['payment_id'].unique(): for k in dataset[dataset['payment_id'] == j]['subset_number'].unique(): temp = dataset[(dataset['payment_id'] == j) & (dataset['subset_number'] == k)][variables] final = final.append(temp.iloc[[0]], ignore_index=True) final['subset_count']=final.groupby(['payment_id'])['payment_id'].transform('count') final=final[final['subset_count']>=1] final.to_csv(write_to + str(i)) def create_all_features(read_from_, read_from, write_to, write_to_, customer_level_json): logging.info('Feature Creation Started.') #Removing Single Subsets logging.info('Removing Single Subsets..') removing_single_subsets(read_from_, write_to) logging.info('Single Subsets Removed.') #Output Logic logging.info('Output Variable getting created.') output_logic(read_from, write_to) logging.info('Output Variable got created.') #Variance and Average Categorical Feature logging.info('Avg delay categorical started.') variance_and_avg_delay_categorical(read_from, write_to) logging.info('Avg delay categorical Finished.') #Number of invoices in a subset divided by the total open invoices logging.info('unique invoice count started.') number_unique_invoice_count(read_from, write_to) logging.info('unique invoice count finished.') # LMH_cumulative logging.info('LMH Started') LMH_cumulative(read_from,write_to, customer_level_json) logging.info('LMH Finished') #quarter_level logging.info('Quarter Features Started.') quarter_level_features(read_from, write_to, customer_level_json) logging.info('Quarter Features Finished.') logging.info('Feature Generation Ended.') #Subset Filtering and rolling up logging.info('Subsets Rolling up.') subset_rolled_up(read_from, write_to_) logging.info('Subsets Rolled up.') def prepare_predictions_data(read_from, write_to): predictions_data = pd.DataFrame() for i in os.listdir(read_from): data = pd.read_csv(r'' + read_from + os.sep + str(i), sep=',',index_col=0) predictions_data = predictions_data.append(data) predictions_data.to_csv(write_to) if __name__ == '__main__': acct_id = str(sys.argv[1]) path = str(sys.argv[2]) read_from_ = path+"/account_"+acct_id+"/customer_wise_subsets" read_from = path+"/account_"+acct_id+"/customer_subsets_features" write_to = path+"/account_"+acct_id+"/customer_subsets_features/" write_to_ = path+"/account_"+acct_id+"/subsets_rolled_up/" customer_level_json = path+"/account_"+acct_id+"/customersJson/customersJson.json" log_path=path+'/account_'+str(acct_id)+'/logs/' #create features for all subsets create_all_features(read_from_, read_from, write_to, write_to_, customer_level_json) progress=pd.read_csv(log_path+"progress.csv") progress['Status']='FeaturesCreation.py' progress.to_csv(log_path+"progress.csv",index=False)
import pynetbox import napalm import pprint import secrets import role_mapping class Network_Device: '''An object of the network device you are connecting to. Attributes: facts: network device facts available from NAPALM interfaces: network device interfaces available from NAPALM ''' def __init__(self,name,driver): self.name = name self.network_device_username = secrets.Secrets.napalm_username self.network_device_password = secrets.Secrets.napalm_password self.network_device_driver = napalm.get_network_driver(driver) self.network_device = {'hostname':self.name,'username':self.network_device_username,'password':self.network_device_password} self.network_device_facts = self.get_device_facts(network_device_driver=self.network_device_driver, network_device=self.network_device) self.network_device_hostname = self.network_device_facts['hostname'] # self.network_device_interfaces = self.get_device_interfaces(network_device_driver=self.network_device_driver, network_device=self.network_device) # self.network_device_interfaces_ip = self.get_device_interfaces_ip(network_device_driver=self.network_device_driver, network_device=self.network_device) # self.network_device_bgp_neighbors = self.get_device_bgp_neighbors(network_device_driver=self.network_device_driver, network_device=self.network_device) # self.network_device_lldp_neighbors = self.get_device_lldp_neighbors(network_device_driver=self.network_device_driver, network_device=self.network_device) def get_device_facts(self, network_device_driver, network_device): # with network_device_driver(**network_device) as device: # return device.get_interfaces() device = network_device_driver(**network_device) device.open() device_facts = device.get_facts() device.close() return device_facts def get_device_interfaces(self, network_device_driver, network_device): with network_device_driver(**network_device) as device: return device.get_interfaces() def get_device_interfaces_ip(self, network_device_driver, network_device): with network_device_driver(**network_device) as device: return device.get_interfaces_ip() def get_device_bgp_neighbors(self, network_device_driver, network_device): with network_device_driver(**network_device) as device: return device.get_bgp_neighbors() def get_device_lldp_neighbors(self, network_device_driver, network_device): with network_device_driver(**network_device) as device: return device.get_lldp_neighbors() class Netbox_Connection: ''' Netbox connection using pynetbox ''' def __init__(self): self.netbox_url = secrets.Secrets.netbox_url self.netbox_ssl_validation = False self.netbox_token = secrets.Secrets.netbox_token self.netbox_connection = pynetbox.api(self.netbox_url, token=self.netbox_token, ssl_verify=self.netbox_ssl_validation) self.netbox_1g_sfp_id = 1100 self.netbox_10g_sfpp_id = 1200 self.netbox_1g_base_t_id = 1000 self.netbox_virtual_id = 0 self.netbox_lag_id = 200 self.netbox_40g_qsfpp_id = 1400 class Netbox_Device: ''' A device as represented in NetBox ''' pass def main(): device = Network_Device('172.16.216.39','junos') netbox_connection = Netbox_Connection() def get_netbox_device_id(): device_object = netbox_connection.netbox_connection.dcim.devices.get(name=device.network_device_hostname) return device_object.id if str(device.network_device_hostname) in str(netbox_connection.netbox_connection.dcim.devices.all()): for interface in device.network_device_facts['interface_list']: if interface.startswith('ge'): try: netbox_connection.netbox_connection.dcim.interfaces.create(device=str(get_netbox_device_id()),name=interface,type=netbox_connection.netbox_1g_sfp_id,enabled=True) except: pass elif interface.startswith('xe'): try: netbox_connection.netbox_connection.dcim.interfaces.create(device=str(get_netbox_device_id()),name=interface,type=netbox_connection.netbox_10g_sfpp_id,enabled=True) except: pass elif interface.startswith('lo'): try: netbox_connection.netbox_connection.dcim.interfaces.create(device=str(get_netbox_device_id()),name=interface,type=netbox_connection.netbox_virtual_id,enabled=True) except: pass # elif interface.startswith('ae'): # try: # netbox_connection.netbox_connection.dcim.interfaces.create(device=str(get_netbox_device_id()),name=interface,type=netbox_connection.netbox_lag_id,enabled=True) # except: pass elif interface.startswith('me'): try: netbox_connection.netbox_connection.dcim.interfaces.create(device=str(get_netbox_device_id()),name=interface,type=netbox_connection.netbox_1g_base_t_id,enabled=True) except: pass elif interface.startswith('em0'): try: netbox_connection.netbox_connection.dcim.interfaces.create(device=str(get_netbox_device_id()),name=interface,type=netbox_connection.netbox_1g_base_t_id,enabled=True) except: pass elif interface.startswith('em1'): try: netbox_connection.netbox_connection.dcim.interfaces.create(device=str(get_netbox_device_id()),name=interface,type=netbox_connection.netbox_1g_sfp_id,enabled=True) except: pass elif interface.startswith('fxp'): try: netbox_connection.netbox_connection.dcim.interfaces.create(device=str(get_netbox_device_id()),name=interface,type=netbox_connection.netbox_1g_base_t_id,enabled=True) except: pass if __name__ == "__main__": main()
#!/usr/bin/env python # This file is part of beets. # Copyright 2016, Adrian Sampson. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. import os import re import sys import unittest pkgpath = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) or '..' sys.path.insert(0, pkgpath) def suite(): s = unittest.TestSuite() # Get the suite() of every module in this directory beginning with # "test_". for fname in os.listdir(os.path.join(pkgpath, 'test')): match = re.match(r'(test_\S+)\.py$', fname) if match: modname = match.group(1) s.addTest(__import__(modname).suite()) return s if __name__ == '__main__': unittest.main(defaultTest='suite')
from django.test import TestCase class ExchangeTests(TestCase): pass
#!/usr/bin/python # Orthanc - A Lightweight, RESTful DICOM Store # Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics # Department, University Hospital of Liege, Belgium # Copyright (C) 2017-2020 Osimis S.A., Belgium # # This program is free software: you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import time import sys import RestToolbox import md5 ## ## Print help message ## if len(sys.argv) != 3: print(""" Sample script that anonymizes patients in real-time. A patient gets anonymized as soon as she gets stable (i.e. when no DICOM instance has been received for this patient for a sufficient amount of time - cf. the configuration option "StableAge"). Usage: %s [hostname] [HTTP port] For instance: %s 127.0.0.1 8042 """ % (sys.argv[0], sys.argv[0])) exit(-1) URL = 'http://%s:%d' % (sys.argv[1], int(sys.argv[2])) ## ## The following function is called whenever a patient gets stable ## COUNT = 1 def AnonymizePatient(path): global URL global COUNT patient = RestToolbox.DoGet(URL + path) patientID = patient['MainDicomTags']['PatientID'] # Ignore anonymized patients if not 'AnonymizedFrom' in patient: print('Patient with ID "%s" is stabilized: anonymizing it...' % (patientID)) # The PatientID after anonymization is taken as the 8 first # characters from the MD5 hash of the original PatientID anonymizedID = md5.new(patientID).hexdigest()[:8] anonymizedName = 'Anonymized patient %d' % COUNT COUNT += 1 RestToolbox.DoPost(URL + path + '/anonymize', { 'Replace' : { 'PatientID' : anonymizedID, 'PatientName' : anonymizedName } }) # Delete the source patient after the anonymization RestToolbox.DoDelete(URL + change['Path']) ## ## Main loop that listens to the changes API. ## current = 0 while True: r = RestToolbox.DoGet(URL + '/changes', { 'since' : current, 'limit' : 4 # Retrieve at most 4 changes at once }) for change in r['Changes']: if change['ChangeType'] == 'StablePatient': AnonymizePatient(change['Path']) current = r['Last'] if r['Done']: print('Everything has been processed: Waiting...') time.sleep(1)
# Generated by Django 2.2.13 on 2020-07-12 06:07 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('product', '0020_auto_20200710_2318'), ] operations = [ migrations.AlterField( model_name='category', name='status', field=models.CharField(choices=[('T', 'T'), ('F', 'F')], max_length=20), ), ]
from django.contrib import admin # Register your models here. from location.models import Location, Student, Grade class LocationAdmin(admin.ModelAdmin): list_display = ('lat', 'long', 'student', 'timestamp') list_filter = ('student', 'timestamp') class GradeAdmin(admin.ModelAdmin): list_display = ('date', 'item', 'itemCode', 'grade', 'passed', 'student') list_filter = ('student', 'item', 'itemCode', 'item') class StudentAdmin(admin.ModelAdmin): list_display = ('id', 'givenName', 'mail') search_fields = ['u', 'givenName'] admin.site.register(Location, LocationAdmin) admin.site.register(Student, StudentAdmin) admin.site.register(Grade, GradeAdmin)
#!/usr/bin/env python # -*- coding: utf-8 -*- # Note: Cleaner library is property of isMOOD and is not publicly distributed # The script fails without this library at the moment from future import print_function import Cleaner # TO IMPLEMENT import csv import re import settings import spacy __author__ = 'Zoe Kotti' __email__ = 'kotti@ismood.com' __copyright__ = 'Copyright 2019, isMOOD' # Prepare Cleaner -- TO IMPLEMENT class_setter = { 'polytonic': True, 'lower': True } # Load Cleaner -- TO IMPLEMENT cleaner = Cleaner(class_setter) # Load Greek core from spacy nlp = spacy.load('el_core_news_md') # Sources of Greek terms INPUT_FILE_ASPELL = 'lexicons/el_GR-0.9.csv' INPUT_FILE_WIKI = 'lexicons/elwords_from_wiktionary.csv' INPUT_FILE_LEMMAS = 'lexicons/greek_lemmas.csv' # Mapping dictionary for the spacy POS tags found at: # https://spacy.io/api/annotation#pos-tagging POS_DICT = { 'ADJ': 'adjective', 'ADP': 'adposition', 'ADV': 'adverb', 'AUX': 'auxiliary', 'CONJ': 'conjunction', 'CCONJ': 'coordinating_conjunction', 'DET': 'determiner', 'INTJ': 'interjection', 'NOUN': 'noun', 'NUM': 'numeral', 'PART': 'particle', 'PRON': 'pronoun', 'PROPN': 'proper_noun', 'PUNCT': 'punctuation', 'SCONJ': 'subordinating_conjunction', 'SYM': 'symbol', 'VERB': 'verb', 'X': 'other', 'SPACE': 'space' } def find_sentiment(pos_score, neg_score, obj_score): scores = [pos_score, neg_score, obj_score] scores.sort(reverse=True) magic_number = (scores[0] - scores[1]) + (scores[0] - scores[2]) # Priority is given first to positive, then to negative, and lastly to objective if scores[0] == pos_score: majority = 'positive' elif scores[0] == neg_score: majority = 'negative' else: majority = 'objective' sentiment = { 'PosScore': round(pos_score, 3), 'NegScore': round(neg_score, 3), 'ObjScore': round(obj_score, 3), 'magic_number': round(magic_number, 3), 'majority': majority } return sentiment def prepare_insert(term, source): words_count = len(re.split('\s+', term)) insert = { '_id': term, 'sources': [source], 'sources_count': 1, 'clean': cleaner.clean_text(term)['text'], 'words_count': words_count } if words_count == 1: doc = nlp(term.encode('utf-8')) spacy = { 'lemma': doc[0].lemma_, 'pos': doc[0].pos_, 'tag': doc[0].tag_, 'dep': doc[0].dep_, 'shape': doc[0].shape_, 'is_alpha': doc[0].is_alpha, 'is_stop': doc[0].is_stop } insert['spacy'] = spacy return insert def init_greek_terms(greek_terms): # Aspell with open(INPUT_FILE_ASPELL, 'r') as dict_aspell: csv_reader = csv.DictReader(dict_aspell) for row in csv_reader: insert = prepare_insert(row['term'], 'aspell') greek_terms.insert_one(insert) # Wiktionary with open(INPUT_FILE_WIKI, 'r') as dict_wiki: csv_reader = csv.DictReader(dict_wiki) for row in csv_reader: term = row['term'] if greek_terms.count({'_id': term}) == 0: insert = prepare_insert(term, 'wiktionary') greek_terms.insert_one(insert) else: existing_term = greek_terms.find_one({'_id': term}, {'sources_count': 1}) update = { '$addToSet': {'sources': 'wiktionary'}, '$set': {'sources_count': existing_term['sources_count'] + 1} } greek_terms.update({'_id': term}, update) # Greek Lemmas with open(INPUT_FILE_LEMMAS, 'r') as dict_lemmas: csv_reader = csv.DictReader(dict_lemmas) for row in csv_reader: term = row['term'] if greek_terms.count({'_id': term}) == 0: insert = prepare_insert(term, 'greek_lemmas') greek_terms.insert_one(insert) else: existing_term = greek_terms.find_one({'_id': term}, {'sources_count': 1}) update = { '$addToSet': {'sources': 'greek_lemmas'}, '$set': {'sources_count': existing_term['sources_count'] + 1} } greek_terms.update({'_id': term}, update) def populate_lemmas(greek_terms): documents = greek_terms.find({'spacy': {'$exists': 1}}, {'spacy': 1}, no_cursor_timeout=True) lemmas = set() ids = set() for doc in documents: spacy = doc['spacy'] lemmas.add(spacy['lemma'].lower()) ids.add(doc['_id'].lower()) for lemma in lemmas: if lemma in ids: # Ignore case sensitivity of ids existing_lemmas = greek_terms.find({'_id': {'$regex': '^{}$'.format(lemma.encode('utf-8')), '$options': '-i'}}, {'sources': 1, 'sources_count': 1}) for existing in existing_lemmas: update = { '$addToSet': {'sources': 'lemmas_generated'}, '$set': {'sources_count': existing['sources_count'] + 1} } greek_terms.update({'_id': existing['_id']}, update) else: insert = prepare_insert(lemma, 'lemmas_generated') greek_terms.insert_one(insert) documents.close() def map_sentiment(greek_terms, english_sentiment_terms): english_documents = english_sentiment_terms.find({}, {'sentiment': 1, 'translation': 1}, no_cursor_timeout=True).sort('_id', 1) index = 0 for doc in english_documents: print("Index: {}".format(index)) translation = doc['translation'] translation_lowercase = translation['lowercase'] en_sentiment = doc['sentiment'] greek_documents = greek_terms.find({'_id': {'$regex': '^{}$'.format(translation_lowercase.encode('utf-8')), '$options': '-i'}}, {'sentiment': 1}) if greek_documents.count(): for gr_doc in greek_documents: if 'sentiment' in gr_doc.keys(): gr_sentiment = gr_doc['sentiment'] pos_score = gr_sentiment['PosScore'] + en_sentiment['PosScore'] neg_score = gr_sentiment['NegScore'] + en_sentiment['NegScore'] obj_score = gr_sentiment['ObjScore'] + en_sentiment['ObjScore'] occurrences = gr_sentiment['occurrences'] + 1 else: pos_score = en_sentiment['PosScore'] neg_score = en_sentiment['NegScore'] obj_score = en_sentiment['ObjScore'] occurrences = 1 update = { '$set': { 'sentiment': { 'PosScore': pos_score, 'NegScore': neg_score, 'ObjScore': obj_score, 'occurrences': occurrences } } } greek_terms.update({'_id': gr_doc['_id']}, update) print("Index: {} -- Term: {}".format(index, gr_doc['_id'].encode('utf-8'))) index += 1 english_documents.close() greek_documents = greek_terms.find({'sentiment': {'$exists': 1}}, {'sentiment': 1}, no_cursor_timeout=True) for doc in greek_documents: gr_sentiment = doc['sentiment'] pos_score = gr_sentiment['PosScore'] / gr_sentiment['occurrences'] neg_score = gr_sentiment['NegScore'] / gr_sentiment['occurrences'] obj_score = gr_sentiment['ObjScore'] / gr_sentiment['occurrences'] sentiment = find_sentiment(pos_score, neg_score, obj_score) greek_terms.update({'_id': doc['_id']}, {'$set': {'sentiment': sentiment}}) greek_documents.close() def init_greek_sentiment_terms(greek_terms, greek_sentiment_terms): gr_terms_documents = greek_terms.find({'$and': [{'sentiment': {'$exists': 1}}, {'words_count': 1}]}, {'clean': 1, 'sentiment': 1, 'spacy': 1}, no_cursor_timeout=True) for doc in gr_terms_documents: clean = doc['clean'] spacy = doc['spacy'] sentiment = doc['sentiment'] pos_score = sentiment['PosScore'] neg_score = sentiment['NegScore'] obj_score = sentiment['ObjScore'] gr_doc = greek_sentiment_terms.find_one({'_id': clean}) # Clean term exists if gr_doc: # Clean term has sentiment if 'sentiment' in gr_doc.keys(): gr_sentiment = gr_doc['sentiment'] pos_score += gr_sentiment['PosScore'] neg_score += gr_sentiment['NegScore'] obj_score += gr_sentiment['ObjScore'] update = { '$push': { 'pos': POS_DICT[spacy['pos']] }, '$set': { 'sources_count': gr_doc['sources_count'] + 1, 'sentiment': { 'PosScore': pos_score, 'NegScore': neg_score, 'ObjScore': obj_score } } } greek_sentiment_terms.update({'_id': clean}, update) # Clean term does not exist else: insert = { '_id': clean, 'sources_count': 1, 'words_count': len(re.split('\s+', clean)), 'pos': [POS_DICT[spacy['pos']]], 'sentiment': { 'PosScore': pos_score, 'NegScore': neg_score, 'ObjScore': obj_score } } greek_sentiment_terms.insert_one(insert) gr_terms_documents.close() greek_documents = greek_sentiment_terms.find({}, {'sentiment': 1, 'pos': 1, 'sources_count': 1}, no_cursor_timeout=True) for gr_doc in greek_documents: gr_sentiment = gr_doc['sentiment'] pos_score = gr_sentiment['PosScore'] / gr_doc['sources_count'] neg_score = gr_sentiment['NegScore'] / gr_doc['sources_count'] obj_score = gr_sentiment['ObjScore'] / gr_doc['sources_count'] sentiment = find_sentiment(pos_score, neg_score, obj_score) update = { '$set': { 'sentiment': sentiment, 'pos': max(gr_doc['pos'], key=gr_doc['pos'].count) } } greek_sentiment_terms.update({'_id': gr_doc['_id']}, update) greek_documents.close() def main(): greek_terms = settings.MONGO_CLIENT.lexicondb.greek_terms greek_sentiment_terms = settings.MONGO_CLIENT.lexicondb.greek_sentiment_terms english_sentiment_terms = settings.MONGO_CLIENT.lexicondb.english_sentiment_terms init_greek_terms(greek_terms) populate_lemmas(greek_terms) map_sentiment(greek_terms, english_sentiment_terms) init_greek_sentiment_terms(greek_terms, greek_sentiment_terms) if __name__ == '__main__': main()
# Generated by Django 3.2 on 2021-04-24 12:19 import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('Tour_app', '0007_auto_20210424_1745'), ] operations = [ migrations.RenameField( model_name='tour_package', old_name='dests', new_name='places', ), migrations.AlterField( model_name='tour_package', name='departure', field=models.DateField(default=datetime.datetime(2021, 4, 24, 12, 19, 57, 919313, tzinfo=utc)), ), ]
def negativePower(a,b): a=float(a) if(a>0 and b==-1): return (1/a) #base case return (1/a)*negativePower(a,b+1) result1=negativePower(2,-1) result2=negativePower(5,-3) result3=negativePower(10,-2) print ("The results are:",result1,result2,result3)
x = a x.find def osamäärä(a,b): """ :param a: jaettava :param b: jakaja :return c: osamäärän arvo """ c = a/b return c osamäärä
import numpy as np from ..constants import COLOR_CHANNEL_INDICES # Default trimmedness: discard anything more than 4 standard deviations from a central value DEFAULT_TRIM_STDEV = 4 def _trim_data_to_stdev(sample, trim_stdev): """ Trim the farther reaches of a data set based on a central value and standard deviation Arguments: sample: 1-dimensional numpy array to be trimmed trim_stdev: number of standard deviations away from the median to keep e.g. if 0, only values matching the median will be kept. If 2, anything within 2 standard deviations of the median will be kept Return: trimmed version of the sample with anything outside of `trim_stdev` standard deviations of the mean removed """ median = np.median(sample) stdev = np.std(sample) allowed_half_width = stdev * trim_stdev min_ = median - allowed_half_width max_ = median + allowed_half_width trimmed_sample = sample[(sample >= min_) & (sample <= max_)] return trimmed_sample def median_seeded_outlier_removed_mean(sample, trim_stdev=DEFAULT_TRIM_STDEV): """ Calculate the Median-Seeded, Outlier-Removed Mean (~MSORM~) of a flat data sample Arguments: sample: n-dimensional numpy array to find the central value of. NOTE: if you are trying to get msorms of an image or a stack of images, you probably want to use one of the other functions in this file. trim_stdev: number of standard deviations away from the median to keep Return: the mean of the sample after outliers have been removed. Outliers are removed based on their distance from the median """ trimmed_sample = _trim_data_to_stdev(sample, trim_stdev) return np.mean(trimmed_sample) msorm = median_seeded_outlier_removed_mean def _validate_rgb_image_shape(rgb_image, image_name): shape = rgb_image.shape if len(shape) != 3: raise ValueError( f"{image_name} is expected to have 3 dimensions but had shape {rgb_image.shape}" ) num_color_channels = rgb_image.shape[2] expected_num_color_channels = len(COLOR_CHANNEL_INDICES) if num_color_channels != expected_num_color_channels: raise ValueError( f"{image_name} is expected to have {expected_num_color_channels} " f"channels but had {num_color_channels}. (shape={rgb_image.shape})" ) def image_msorm(image, trim_stdev=DEFAULT_TRIM_STDEV): """ Calculate the Median-Seeded, Outlier-Removed Mean (~MSORM~ for short) of an RGB image Arguments: image: RGB image numpy array to find the central value of trim_stdev: number of standard deviations away from the median to keep Return: 1D numpy array: for each channel, the mean of the sample after outliers have been removed. Outliers are removed based on their distance from the median """ _validate_rgb_image_shape(image, "Image passed to image_msorm()") flattened_channels = [ image[:, :, channel].flatten() for channel in COLOR_CHANNEL_INDICES ] return np.array([msorm(channel, trim_stdev) for channel in flattened_channels]) def image_stack_msorm(image_stack, trim_stdev=DEFAULT_TRIM_STDEV): """ Calculate the Median-Seeded, Outlier-Removed Mean (~MSORM~ for short) of a "stack" of RGB images Arguments: image_stack: RGB image "stack" numpy array to find the central value of. This is a 4-dimensional numpy array where the first dimension iterates over images. trim_stdev: number of standard deviations away from the median to keep Return: 1D numpy array: for each channel, the mean of the sample (across all images) after outliers have been removed. Outliers are removed based on their distance from the median """ _validate_rgb_image_shape( image_stack[0], "First image in stack passed to image_stack_msorm()" ) flattened_channels = [ image_stack[:, :, :, channel].flatten() for channel in COLOR_CHANNEL_INDICES ] return np.array([msorm(channel, trim_stdev) for channel in flattened_channels])
# -*- coding: utf-8 -*- """ Created on Mon Jun 17 18:36:34 2019 @author: MAGESHWARAN """ import os import json import cv2 import numpy as np from tqdm import tqdm base_dir = os.getcwd() data_folder = os.path.join(base_dir, "Dataset") images_folder = os.path.join(data_folder, "Images") crops_folder = os.path.join(data_folder, "Crops") sample_testset = os.path.join(data_folder, "sample_testset") model_sample_result = os.path.join(sample_testset, "sample_result.json") sample_images = os.path.join(sample_testset, "images") sample_crops = os.path.join(sample_testset, "crops") def ModifiedFLANN(img1, img2): mini_match_count = 10 FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=10) sift = cv2.xfeatures2d.SIFT_create() kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None) orgBorder = None flannMatch = True if (des1 is None) or (des2 is None): flannMatch = False return flannMatch, orgBorder flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1, des2, k=2) good_matches = [] for match1, match2 in matches: if match1.distance < (0.7 * match2.distance): good_matches.append((match1)) if len(good_matches) > mini_match_count: cropImg = [] orgImg = [] for m in good_matches: cropImg.append(kp1[m.queryIdx].pt) orgImg.append(kp2[m.trainIdx].pt) cropImg, orgImg = np.float32((cropImg, orgImg)) H, _ = cv2.findHomography(cropImg, orgImg, cv2.RANSAC, 3.0) if H is None: return flannMatch, orgBorder h, w, _ = img1.shape cropBorder = np.float32([[[0, 0], [0, h-1], [w-1, h-1], [w-1, 0]]]) orgBorder = cv2.perspectiveTransform(cropBorder, H) return flannMatch, orgBorder def findMinMax(border): x, y = np.absolute(np.transpose(border)[0]), np.absolute(np.transpose(border)[1]) x1, x2 = int(x.min()), int(x.max()) y1, y2 = int(y.min()), int(y.max()) return [x1, y1, x2, y2] completeTracker = {} noAssociationCropImages = os.listdir(sample_crops) noAssociationImages = os.listdir(sample_images) for imagefile in tqdm(os.listdir(sample_images)): img = cv2.imread(os.path.join(sample_images, imagefile)) imageTracker = [] for cropfile in os.listdir(sample_crops): crop_img = cv2.imread(os.path.join(sample_crops, cropfile)) flannMatch, crop_border = ModifiedFLANN(crop_img, img) if flannMatch: if crop_border is not None: pts = findMinMax(crop_border[0]) imageTracker.append((cropfile.replace(".jpg", ""), pts)) if cropfile in noAssociationCropImages: noAssociationCropImages.remove(cropfile) completeTracker[imagefile.replace(".jpg", "")] = imageTracker NA_Crops = [] for crop in noAssociationCropImages: NA_Crops.append([crop.replace(".jpg", ""), []]) completeTracker["NA"] = NA_Crops with open(model_sample_result, "w") as f: json.dump(completeTracker, f, sort_keys=True, indent = 4) print("Output Json File is generated")
import re def show_me(name): return bool(re.match(r'(-[A-Z][a-z]+)+$', '-' + name))
list = [] n = int(input("Enter number of elements : ")) for i in range(0, n): ele = int(input()) list.append(ele) print(list) for ele in list: if(ele>0): print(ele, end = " ")
# -*- coding: utf-8 -*- import base64 from django.core.urlresolvers import resolve from django.contrib.auth.models import AnonymousUser from rest_framework import exceptions from rest_framework import authentication from rest_framework.permissions import BasePermission from django.contrib.auth.models import User ALLOWED_PATHS = [ 'customer-list', ] ALLOWED_PATHS_ADMIN = [ 'fleet-list', 'fleet-detail' ] class Authenticate(authentication.BasicAuthentication): """ Custom auth method to authenticate the user trought the token """ def _get_path(self, request): return resolve(request.path).url_name def _allowed_path(self, request): url_name = self._get_path(request) return True if url_name in ALLOWED_PATHS else False def _allowed_path_admin(self, request): url_name = self._get_path(request) return True if url_name in ALLOWED_PATHS_ADMIN else False def bad_credentials(self): raise exceptions.AuthenticationFailed('Bad credentials') def get_authorization_header(self, request): auth = request.META.get('HTTP_AUTHORIZATION', b'') if type(auth) == type(''): auth = auth.encode('iso-8859-1') return auth def authenticate_credentials(self, username=None, password=None, anonymous=False, request=None): if anonymous: return (AnonymousUser(), None) try: user = User.objects.get(username=username) if not user.check_password(password): self.bad_credentials() if self._allowed_path_admin(request) and not user.is_superuser: self.bad_credentials() except User.DoesNotExist: self.bad_credentials() return (user, None) def authenticate(self, request, simple=False): auth = self.get_authorization_header(request).split() if not auth and self._allowed_path(request) or self._allowed_path(request): return self.authenticate_credentials(anonymous=True) try: auth_parts = base64.b64decode(auth[1]).decode('iso-8859-1').partition(':') except (IndexError, TypeError): self.bad_credentials() username, password = auth_parts[0], auth_parts[2] return self.authenticate_credentials(username, password, request=request)
import unittest from katas.kyu_7.sir_show_me_your_id import show_me class ShowMeTestCase(unittest.TestCase): def test_true_1(self): self.assertTrue(show_me('Francis')) def test_true_2(self): self.assertTrue(show_me('Jean-Eluard')) def test_true_3(self): self.assertTrue(show_me('Bernard-Henry-Levy')) def test_false_1(self): self.assertFalse(show_me('Le Mec')) def test_false_2(self): self.assertFalse(show_me('Meme Gertrude')) def test_false_3(self): self.assertFalse(show_me('A-a-a-a----a-a')) def test_false_4(self): self.assertFalse(show_me('Z-------------')) def test_false_5(self): self.assertFalse(show_me('Jean-luc')) def test_false_6(self): self.assertFalse(show_me('Jean--Luc')) def test_false_7(self): self.assertFalse(show_me('JeanLucPicard')) def test_false_8(self): self.assertFalse(show_me('-Jean-Luc')) def test_false_9(self): self.assertFalse(show_me('Jean-Luc-Picard-'))
# KVM-based Discoverable Cloudlet (KD-Cloudlet) # Copyright (c) 2015 Carnegie Mellon University. # All Rights Reserved. # # THIS SOFTWARE IS PROVIDED "AS IS," WITH NO WARRANTIES WHATSOEVER. CARNEGIE MELLON UNIVERSITY EXPRESSLY DISCLAIMS TO THE FULLEST EXTENT PERMITTEDBY LAW ALL EXPRESS, IMPLIED, AND STATUTORY WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY RIGHTS. # # Released under a modified BSD license, please see license.txt for full terms. # DM-0002138 # # KD-Cloudlet includes and/or makes use of the following Third-Party Software subject to their own licenses: # MiniMongo # Copyright (c) 2010-2014, Steve Lacy # All rights reserved. Released under BSD license. # https://github.com/MiniMongo/minimongo/blob/master/LICENSE # # Bootstrap # Copyright (c) 2011-2015 Twitter, Inc. # Released under the MIT License # https://github.com/twbs/bootstrap/blob/master/LICENSE # # jQuery JavaScript Library v1.11.0 # http://jquery.com/ # Includes Sizzle.js # http://sizzlejs.com/ # Copyright 2005, 2014 jQuery Foundation, Inc. and other contributors # Released under the MIT license # http://jquery.org/license __author__ = 'Sebastian' """ A simple Python script to handle Secure Key Agreement communication through USB using ADB. """ import time import json import os.path import socket from adb.usb_exceptions import AdbCommandFailureException from adb.adb_commands import AdbCommands, M2CryptoSigner from ska_device_interface import ISKADevice from pycloud.pycloud.security import rsa from pycloud.pycloud.utils import fileutils from pycloud.pycloud.ska import ska_constants LOCAL_TEMP_FOLDER = 'adb/keys' REMOTE_FOLDER = '/sdcard/cloudlet/adb/' IN_DATA_SERVICE = 'edu.cmu.sei.cloudlet.client/.ska.adb.InDataService' IN_FILE_SERVICE = 'edu.cmu.sei.cloudlet.client/.ska.adb.StoreFileService' OUT_DATA_SERVICE = 'edu.cmu.sei.cloudlet.client/.ska.adb.OutDataService' OUT_DATA_REMOTE_FILEPATH = REMOTE_FOLDER + 'out_data.json' CLEANUP_SERVICE = 'edu.cmu.sei.cloudlet.client/.ska.adb.CleanupService' # Global to store root folder. root_data_folder = './data/' ###################################################################################################################### # Returns the full path for the adbkey file. ###################################################################################################################### def get_adb_key_path(): return os.path.join(root_data_folder, LOCAL_TEMP_FOLDER, 'adbkey') ###################################################################################################################### # Attempts to connect to an ADB daemon on a given USB device. Returns a proxy to that daemon if successful, or None if # unsuccessful. ###################################################################################################################### def connect_to_adb_daemon(device): # Load host keypair to authenticate with ADB daemon. keySigner = M2CryptoSigner(get_adb_key_path()) try: print 'Connecting to USB device' device.Open() print 'Connecting to ADB daemon' adbDaemon = AdbCommands.Connect(device, banner="cloudlet", rsa_keys=[keySigner], auth_timeout_ms=15000) return adbDaemon except Exception, e: print 'Error connecting to ADB daemon: ' + str(e) return None ###################################################################################################################### # ###################################################################################################################### def disconnect_from_adb_daemon(adbDaemon, device): if adbDaemon: adbDaemon.Close() if device: device.Close() ###################################################################################################################### # Starts the given service on the given daemon. ###################################################################################################################### def start_service(adbDaemon, service_name, extras={}): command = 'am startservice -n ' + service_name for extra_key in extras: command += ' -e ' + extra_key + ' ' + extras[extra_key] print command adbDaemon.Shell(command, timeout_ms=20000) ###################################################################################################################### # Implementation of a SKA device through ADB. ###################################################################################################################### class ADBSKADevice(ISKADevice): serial_number = None adb_daemon = None usb_device = None #################################################################################################################### # Sets up basic ADB stuff. #################################################################################################################### @staticmethod def initialize(root_folder): global root_data_folder root_data_folder = root_folder #################################################################################################################### # Creates a device using the provided device info. #################################################################################################################### def __init__(self, serial_number): self.serial_number = serial_number #################################################################################################################### # Returns an name for the device. #################################################################################################################### def get_name(self): return self.serial_number #################################################################################################################### # Not used in ADB. #################################################################################################################### def get_port(self): return 0 #################################################################################################################### # Not different in ADB. #################################################################################################################### def get_friendly_name(self): return self.serial_number #################################################################################################################### # Sets up basic ADB stuff. #################################################################################################################### @staticmethod def bootstrap(): # Set the data folder. adb_data_folder = os.path.join(os.path.abspath(root_data_folder), LOCAL_TEMP_FOLDER) fileutils.recreate_folder(adb_data_folder) # Generate the adb keys. NOTE: this is a key pair required to connect to the ADB daemon on the Android device. adb_private_key_path = get_adb_key_path() adb_public_key_path = adb_private_key_path + '.pub' adb_public_rsa_key_path = adb_private_key_path + '_rsa.pub' # We create a stanard RSA key pair, but the format used by ADB is different, so we need to convert the public key. rsa.create_key_pair(adb_private_key_path, adb_public_rsa_key_path) rsa.convert_pub_rsa_to_adb(adb_public_rsa_key_path, adb_public_key_path) #################################################################################################################### # Returns a list of ADBSKADevices. (Actually, it contains all USB devices connected to the computer). #################################################################################################################### @staticmethod def list_devices(): usb_devices = [] for device in AdbCommands.Devices(): usb_devices.append(ADBSKADevice(device.serial_number)) return usb_devices #################################################################################################################### # Connects to the adb daemon on the given device (by serial number). #################################################################################################################### def connect(self): if self.serial_number is None: print 'No serial number configured for device.' return False for device in AdbCommands.Devices(): if device.serial_number == self.serial_number: self.adb_daemon = connect_to_adb_daemon(device) if self.adb_daemon is not None: self.usb_device = device return True else: print 'Unable to connect to ADB daemon on device ' + self.serial_number + '.' return False print 'Given device ' + self.serial_number + ' not found.' return False #################################################################################################################### # Disconnects from the ADB daemon, and the USB device. #################################################################################################################### def disconnect(self): if self.adb_daemon: disconnect_from_adb_daemon(self.adb_daemon, self.usb_device) #################################################################################################################### # Gets a file from the device, retrying until the timeout is reached. #################################################################################################################### def get_data_from_device(self, timeout=5): # Wait some time to ensure the device creates the output file with the result. start_time = time.time() while time.time() - start_time < timeout: print 'Attempting to download file with data.' try: # Wait a bit to ensure the data out file has been written. time.sleep(1) # Get and pars the result. pull_timeout = 2000 data = self.adb_daemon.Pull(OUT_DATA_REMOTE_FILEPATH, timeout_ms=pull_timeout) print 'Successfully downloaded output file.' json_data = json.loads(data) # Check error and log it. if json_data[ska_constants.RESULT_KEY] != ska_constants.SUCCESS: error_messge = 'Error processing command on device: ' + json_data[ska_constants.ERROR_MSG_KEY] raise Exception(error_messge) # Clean up remote output file, and give it some time to ensure it is cleaned. start_service(self.adb_daemon, CLEANUP_SERVICE, {}) time.sleep(1) return json_data except AdbCommandFailureException, e: print 'Could not get data file, file may not be ready. Will wait and retry.' print 'Problem details: ' + str(e) print 'Could not get data file, file may not exist on device.' return [] #################################################################################################################### # Gets simple data through pulling a file with adb. # DATA needs to be a dictionary of key-value pairs (the value is not used, only the key). #################################################################################################################### def get_data(self, data): print 'Starting data retrieval service.' start_service(self.adb_daemon, OUT_DATA_SERVICE, data) print 'Getting result.' result = self.get_data_from_device() return result #################################################################################################################### # Sends simple data through pushing a file with adb. # DATA needs to be a dictionary of key-value pairs. #################################################################################################################### def send_data(self, data): data['cloudlet_name'] = socket.gethostname() # Everything is called "in" since, from the point of view of the Service, it is getting data. print 'Starting data receiving service.' start_service(self.adb_daemon, IN_DATA_SERVICE, data) print 'Data sent.' print 'Checking result.' result = self.get_data_from_device() #################################################################################################################### # #################################################################################################################### def send_file(self, file_path, file_id): print 'Pushing file.' self.adb_daemon.Push(file_path, REMOTE_FOLDER + file_id) data = {} data['cloudlet_name'] = socket.gethostname() data['file_id'] = file_id print 'Starting file receiver service.' start_service(self.adb_daemon, IN_FILE_SERVICE, data) print 'File sent.' print 'Checking result.' result = self.get_data_from_device() #################################################################################################################### # Test script. #################################################################################################################### def test(): devices = ADBSKADevice.list_devices() if len(devices) > 0: device = devices[0] print device print device.serial_number adbDevice = ADBSKADevice(device.serial_number) try: adbDevice.connect() print 'Getting id' data = adbDevice.get_data({'data': 'none'}) print data print 'Sending files' print 'Files sent' finally: adbDevice.disconnect() # Execute the test. #test()
import unittest from katas.kyu_5.palindrome_chain_length import palindrome_chain_length class PalindromeChainLengthTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(palindrome_chain_length(87), 4) def test_equals_2(self): self.assertEqual(palindrome_chain_length(1), 0) def test_equals_3(self): self.assertEqual(palindrome_chain_length(88), 0) def test_equals_4(self): self.assertEqual(palindrome_chain_length(89), 24) def test_equals_5(self): self.assertEqual(palindrome_chain_length(10), 1)
#!/usr/bin/env /data/mta/Script/Python3.8/envs/ska3-shiny/bin/python ################################################################################# # # # update_html_page.py: update disk space html page # # # # author: t. isobe (tisobe@cfa.harvard.edu) # # # # last update: Mar 04, 2021 # # # ################################################################################# import os import sys import re import string import time import random # #--- reading directory list # path = '/data/mta/Script/Disk_check/house_keeping/dir_list_py' with open(path, 'r') as f: data = [line.strip() for line in f.readlines()] for ent in data: atemp = re.split(':', ent) var = atemp[1].strip() line = atemp[0].strip() exec("%s = %s" %(var, line)) # #--- append a path to a private folder to python directory # sys.path.append(bin_dir) sys.path.append(mta_dir) # #--- converTimeFormat contains MTA time conversion routines # import mta_common_functions as mcf # #--- set a temporary file name # rtail = int(time.time() * random.random()) zspace = '/tmp/zspace' + str(rtail) #----------------------------------------------------------------------------------------------- #-- update_html_page: update html page -- #----------------------------------------------------------------------------------------------- def update_html_page(): """ update html page input none, but read <house_keeping>/disk_space_backup_py.html as a template output: <web_dir>/disk_space.html """ # #--- today's date # update = 'Last Update: ' + mcf.today_date_display() # #--- read the current disk capacities # cap1 = get_disk_capacity('/data/mta/') cap2 = get_disk_capacity('/data/mta_www/') cap3 = get_disk_capacity('/data/mta4/') cap4 = get_disk_capacity('/data/mays/') cap5 = get_disk_capacity('/data/swolk/') cap6 = get_disk_capacity('/data/mta1/') cap7 = get_disk_capacity('/data/mta2/') cap8 = get_disk_capacity('/proj/rac/ops/') # #--- read template # line = house_keeping + 'disk_space_backup_py.html' with open(line, 'r') as f: data = f.read() # #--- update the blank lines # data = data.replace("#UPDATE#", update) data = data.replace('#CAP1#', cap1) data = data.replace('#CAP2#', cap2) data = data.replace('#CAP3#', cap3) data = data.replace('#CAP4#', cap4) data = data.replace('#CAP5#', cap5) data = data.replace('#CAP6#', cap6) data = data.replace('#CAP7#', cap7) data = data.replace('#CAP8#', cap8) # #--- print out the data # out = web_dir + 'disk_space.html' with open(out, 'w') as fo: fo.write(data) #----------------------------------------------------------------------------------------------- #-- get_disk_capacity: read a disk capacity -- #----------------------------------------------------------------------------------------------- def get_disk_capacity(dname): """ read a disk capacity input: dname --- disk name output: capacity --- capacity """ cmd = 'df -k ' + dname + '>' + zspace os.system(cmd) data = mcf.read_data_file(zspace, remove=1) atemp = re.split('\s+', data[1]) capacity = atemp[1] return capacity #-------------------------------------------------------------------- if __name__ == '__main__': update_html_page()
import numpy as np class Metric_Accuracy: def calculate(self, output, y): predictions = np.argmax(output, axis=1) accuracy = np.mean(predictions == y) return accuracy
from BasicFunctions import * player1 = Player("Player 1", 1) player2 = Player("Player 2", 2) player3 = Player("Player 3", 3) player4 = Player("Player 4", 4) talon = Player("Talon",5) PLAYERS = [player1,player2,player3,player4] GAMENUM = 0 ROUNDNUM = 0 MONDASOK = ["Négy király", "Dupla játék", "Tuletroá", "Centrum", "Kismadár", "Nagymadár", "Pagátkismadár", "Saskismadár", "Királykismadár","Pagát ulti", "Sas ulti","Király ulti","Pagát uhu", "Sas uhu","Király uhu", "Párosfácan", "Volát", "Huszonegyes fogás", "Színcsalád", "Három király", "Káró", "Kőr", "Treff", "Pikk"] def findTarokk(player): index = 0 findThat = False for i in range(len(player.hand)): if player.hand[i].suit == "Tarokk": index = i findThat = True break if findThat: return index else: return 0 def findTheCard(temp, player): index = 0 findThat = False for i in range(len(player.hand)): if temp[0].suit == player.hand[i].suit: index = i findThat = True break if findThat == False: if temp[0].suit == "Tarokk": index = 0 else: index = findTarokk(player) if findTarokk(player) == 0: index = 0 return index def findIndex(list,card): index = 0 for i in range(len(list)): if card.suit == list[i].suit and card.value == list[i].value: index = i break return index def tempShow(temp): for c in temp: c.show() def whosNextPlayer(temp): nextplayer = 0 if temp[0].suit == temp[1].suit and temp[1].suit == temp[2].suit and temp[2].suit == temp[3].suit: maxvalue = 0 for i in range(0,4): if temp[i].value > maxvalue: maxvalue = temp[i].value nextplayer = temp[i].whichPlayer else: maxvalue2 = 0 for i in range(0,4): if temp[i].suit == "Tarokk" and temp[i].value > maxvalue2: maxvalue2 = temp[i].value nextplayer = temp[i].whichPlayer return nextplayer ############ INICIALIZALAS ########### def gameInitialize(): deck = Deck() deck.shuffle() print("A pakli megkeverve") for i in range(0,6): talon.draw(deck) for i in range(0,5): player1.draw(deck) player2.draw(deck) player3.draw(deck) player4.draw(deck) for i in range(0,4): player1.draw(deck) player2.draw(deck) player3.draw(deck) player4.draw(deck) print("A lapook kiosztva") for p in PLAYERS: p.sortingCards(p.hand) def gameCounter(roundcounter, gamenumber): if roundcounter == 9: gamenumber+=1 return gamenumber ########### LICITALAS ########### def orderOfBidding(startingplayer): licitOrder = [] if startingplayer == PLAYERS[0]: licitOrder.append(PLAYERS[0]) licitOrder.append(PLAYERS[1]) licitOrder.append(PLAYERS[2]) licitOrder.append(PLAYERS[3]) elif startingplayer == PLAYERS[1]: licitOrder.append(PLAYERS[1]) licitOrder.append(PLAYERS[2]) licitOrder.append(PLAYERS[3]) licitOrder.append(PLAYERS[0]) elif startingplayer == PLAYERS[2]: licitOrder.append(PLAYERS[2]) licitOrder.append(PLAYERS[3]) licitOrder.append(PLAYERS[0]) licitOrder.append(PLAYERS[1]) else: licitOrder.append(PLAYERS[3]) licitOrder.append(PLAYERS[0]) licitOrder.append(PLAYERS[1]) licitOrder.append(PLAYERS[2]) return licitOrder def gainingCard(order,actuallicit): if actuallicit == 3: if order[0].winBidding: order[0].gainingCard = 3 order[1].gainingCard = 1 order[2].gainingCard = 1 order[3].gainingCard = 1 elif order[1].winBidding: order[1].gainingCard = 3 order[2].gainingCard = 1 order[3].gainingCard = 1 order[0].gainingCard = 1 elif order[2].winBidding: order[2].gainingCard = 3 order[3].gainingCard = 1 order[0].gainingCard = 1 order[1].gainingCard = 1 else: order[3].gainingCard = 3 order[0].gainingCard = 1 order[1].gainingCard = 1 order[2].gainingCard = 1 elif actuallicit == 2: if order[0].winBidding: order[0].gainingCard = 2 order[1].gainingCard = 2 order[2].gainingCard = 1 order[3].gainingCard = 1 elif order[1].winBidding: order[1].gainingCard = 2 order[2].gainingCard = 2 order[3].gainingCard = 1 order[0].gainingCard = 1 elif order[2].winBidding: order[2].gainingCard = 2 order[3].gainingCard = 2 order[0].gainingCard = 1 order[1].gainingCard = 1 else: order[3].gainingCard = 2 order[0].gainingCard = 2 order[1].gainingCard = 1 order[2].gainingCard = 1 elif actuallicit == 1: if order[0].winBidding: order[0].gainingCard = 1 order[1].gainingCard = 2 order[2].gainingCard = 2 order[3].gainingCard = 1 elif order[1].winBidding: order[1].gainingCard = 1 order[2].gainingCard = 2 order[3].gainingCard = 2 order[0].gainingCard = 1 elif order[2].winBidding: order[2].gainingCard = 1 order[3].gainingCard = 2 order[0].gainingCard = 2 order[1].gainingCard = 1 else: order[3].gainingCard = 1 order[0].gainingCard = 2 order[1].gainingCard = 2 order[2].gainingCard = 1 else: if order[0].winBidding: order[0].gainingCard = 0 order[1].gainingCard = 2 order[2].gainingCard = 2 order[3].gainingCard = 2 elif order[1].winBidding: order[1].gainingCard = 0 order[2].gainingCard = 2 order[3].gainingCard = 2 order[0].gainingCard = 2 elif order[2].winBidding: order[2].gainingCard = 0 order[3].gainingCard = 2 order[0].gainingCard = 2 order[1].gainingCard = 2 else: order[3].gainingCard = 0 order[0].gainingCard = 2 order[1].gainingCard = 2 order[2].gainingCard = 2 def searchPartner(partnertarock,player): for card in player1.hand: if card.suit == "Tarokk" and card.value == partnertarock: player.partnerNumber = 1 player1.partnerNumber = player.position break for card in player2.hand: if card.suit == "Tarokk" and card.value == partnertarock: player.partnerNumber = 2 player2.partnerNumber = player.position break for card in player3.hand: if card.suit == "Tarokk" and card.value == partnertarock: player.partnerNumber = 3 player3.partnerNumber = player.position break for card in player4.hand: if card.suit == "Tarokk" and card.value == partnertarock: player.partnerNumber = 4 player4.partnerNumber = player.position break return player.partnerNumber def isMondasIn(mondas,mondasok): isin = False for m in mondasok: if mondas == m: isin = True break return isin def getMondasok(mondasok,partnertarock): mondasokback = [] pnumber = searchPartner(partnertarock,player1) partnerplayer = 0 if pnumber == 1: partnerplayer = player1 if pnumber == 2: partnerplayer = player2 if pnumber == 3: partnerplayer = player3 if pnumber == 4: partnerplayer = player4 if partnertarock == 20: if isMondasIn("Négy király", mondasok): if hasHuszegy(partnerplayer) or hasSkiz(partnerplayer): mondasokback.append("Tuletroá") if hasTnyolc(partnerplayer) and tarokkCounter(partnerplayer) >=7: mondasokback.append("Dupla játék") if isMondasIn("Dupla játék", mondasok): if hasHuszegy(partnerplayer) or hasSkiz(partnerplayer): mondasokback.append("Tuletroá") if hasTkilenc(partnerplayer): mondasokback.append("Négy király") if isMondasIn("Tuletroá",mondasok): if hasTkilenc(partnerplayer): mondasokback.append("Négy király") if hasTnyolc(partnerplayer) and tarokkCounter(partnerplayer) >=7: mondasokback.append("Dupla játék") def wantToBiddingMore(player,actuallicit,order): want = False if hasTwoBig(player): want = True if hasPagat(player) and not hasHusz(player) and not hasTkilenc(player): want = True if gainingCard(order,actuallicit) == 1: want = True if hasSkiz(player) and tarokkCounter(player) >=5: want = True if hasHuszegy(player) and tarokkCounter(player) >=7: want = True if hasHuszegy(player) and tarokkCounter(player)<=4 and gainingCard(order,actuallicit) == 2: want = False return want def cardBidding(): order = [] gamenum = gameCounter(ROUNDNUM,GAMENUM) licit = 0 if gamenum % 4 == 0: order = orderOfBidding(player1) if gamenum % 4 == 1: order = orderOfBidding(player2) if gamenum % 4 == 2: order = orderOfBidding(player3) if gamenum % 4 == 3: order = orderOfBidding(player4) if order[0].canLicit(order[0].hand): licit = 3 #HÁRMAS print("--HARMAS--") order[0].winBidding = True if order[1].canLicit(order[1].hand) and wantToBiddingMore(order[1],licit,order): licit = 3 #TARTOM print("--TARTOM--") order[0].winBidding = False order[1].winBidding = True if order[2].canLicit(order[2].hand) and wantToBiddingMore(order[2],licit,order): licit = 2 #KETTES PASSZ print("--KETTES--") order[1].winBidding = False order[2].winBidding = True elif order[3].canLicit(order[3].hand) and wantToBiddingMore(order[3],licit,order): licit = 2 print("--KETTES--") order[1].winBidding = False #KETTES PASSZ order[3].winBidding = True else: if wantToBiddingMore(order[0],licit, order): licit = 2 #KETTES print("--KETTES--") order[1].winBidding = False order[0].winBidding = True if wantToBiddingMore(order[1],licit,order): licit = 2 #TARTOM print("--TARTOM--") order[1].winBidding = True order[0].winBidding = False if wantToBiddingMore(order[0],licit,order): licit = 1 #EGYES print("--EGYES--") order[0].winBidding = True order[1].winBidding = False if wantToBiddingMore(order[1],licit,order): licit = 1 #TARTOM print("--TARTOM--") order[1].winBidding = True order[0].winBidding = False if wantToBiddingMore(order[0],licit,order): licit = 0 #SZÓLÓ print("--SZÓLÓ--") order[0].winBidding = True order[1].winBidding = False if wantToBiddingMore(order[1],licit,order): licit = 0 #TARTOM print("--TARTOM--") order[1].winBidding = True order[0].winBidding = False else: licit = 3 order[0].winBidding = False order[1].winBidding = True elif order[1].canLicit(order[1].hand) and wantToBiddingMore(order[1],licit,order): licit = 3 #HÁRMAS order[1].winBidding = True if order[2].canLicit(order[2].hand) and wantToBiddingMore(order[2],licit,order): licit = 3 #TARTOM order[1].winBidding = False order[2].winBidding = True if order[3].canLicit(order[3].hand) and wantToBiddingMore(order[3],licit,order): licit = 2 #KETTES PASSZ order[2].winBidding = False order[3].winBidding = True elif order[0].canLicit(order[0].hand) and wantToBiddingMore(order[0],licit,order): licit = 2 order[2].winBidding = False #KETTES PASSZ order[0].winBidding = True else: if wantToBiddingMore(order[1],licit,order): licit = 2 #KETTES order[2].winBidding = False order[1].winBidding = True if wantToBiddingMore(order[2],licit,order): licit = 2 #TARTOM order[2].winBidding = True order[1].winBidding = False if wantToBiddingMore(order[1],licit,order): licit = 1 #EGYES order[1].winBidding = True order[2].winBidding = False if wantToBiddingMore(order[2],licit,order): licit = 1 #TARTOM order[2].winBidding = True order[1].winBidding = False if wantToBiddingMore(order[1],licit,order): licit = 0 #SZÓLÓ order[1].winBidding = True order[2].winBidding = False if wantToBiddingMore(order[2],licit,order): licit = 0 #TARTOM order[2].winBidding = True order[1].winBidding = False elif order[2].canLicit(order[2].hand) and wantToBiddingMore(order[2],licit,order): licit = 3 #HÁRMAS order[2].winBidding = True if order[3].canLicit(order[3].hand) and wantToBiddingMore(order[3],licit,order): licit = 3 #TARTOM order[2].winBidding = False order[3].winBidding = True if order[0].canLicit(order[0].hand) and wantToBiddingMore(order[0],licit,order): licit = 2 #KETTES PASSZ order[3].winBidding = False order[0].winBidding = True elif order[1].canLicit(order[1].hand) and wantToBiddingMore(order[1],licit,order): licit = 2 order[3].winBidding = False #KETTES PASSZ order[1].winBidding = True else: if wantToBiddingMore(order[2],licit,order): licit = 2 #KETTES order[3].winBidding = False order[2].winBidding = True if wantToBiddingMore(order[3],licit,order): licit = 2 #TARTOM order[3].winBidding = True order[2].winBidding = False if wantToBiddingMore(order[2],licit,order): licit = 1 #EGYES order[2].winBidding = True order[3].winBidding = False if wantToBiddingMore(order[3],licit,order): licit = 1 #TARTOM order[3].winBidding = True order[2].winBidding = False if wantToBiddingMore(order[2],licit,order): licit = 0 #SZÓLÓ order[2].winBidding = True order[3].winBidding = False if wantToBiddingMore(order[3],licit,order): licit = 0 #TARTOM order[3].winBidding = True order[2].winBidding = False elif order[3].canLicit(order[3].hand) and wantToBiddingMore(order[3],licit,order): licit = 3 #HÁRMAS order[3].winBidding = True if order[0].canLicit(order[0].hand) and wantToBiddingMore(order[0],licit,order): licit = 3 #TARTOM order[3].winBidding = False order[0].winBidding = True if order[1].canLicit(order[1].hand) and wantToBiddingMore(order[1],licit,order): licit = 2 #KETTES PASSZ order[0].winBidding = False order[1].winBidding = True elif order[2].canLicit(order[2].hand) and wantToBiddingMore(order[2],licit,order): licit = 2 order[0].winBidding = False #KETTES PASSZ order[2].winBidding = True else: if wantToBiddingMore(order[3],licit,order): licit = 2 #KETTES order[0].winBidding = False order[3].winBidding = True if wantToBiddingMore(order[0],licit,order): licit = 2 #TARTOM order[0].winBidding = True order[3].winBidding = False if wantToBiddingMore(order[3],licit,order): licit = 1 #EGYES order[3].winBidding = True order[0].winBidding = False if wantToBiddingMore(order[0],licit,order): licit = 1 #TARTOM order[0].winBidding = True order[3].winBidding = False if wantToBiddingMore(order[3],licit,order): licit = 0 #SZÓLÓ order[3].winBidding = True order[0].winBidding = False if wantToBiddingMore(order[0],licit,order): licit = 0 #TARTOM order[0].winBidding = True order[3].winBidding = False return licit ########### MAIN ########### gameInitialize()
# -*- coding: utf-8 -*- """ Created on Tue Jul 22 20:04:07 2014 @author: Goren """ import csv import os import numpy as np import random class train_loader: """Loads data """ TestcasesRatio=0.1 def __init__(self,csv_name,shuffle=False): self.readcsv(csv_name,shuffle) def readcsv (self,csv_name,shuffle=False): """Load the data from the csv file""" csv_file=os.getcwd()+'\\data\\{}.csv'.format(csv_name) #read csv infile=open(csv_file,"rb") reader=csv.reader(infile,delimiter=',') next(reader, None)#skip the headers x=list(reader) if (shuffle): random.shuffle(x) self.data=np.array(x).astype('float') def scale(self,cols,scale_min=0,scale_max=0): """ Scales the columns such that: 1 = maximal value of each column 0 = minimal value of each column """ for col in cols: col_min=scale_min col_max=scale_max #if scale bounds aren't specified or invalid: if (scale_min>=scale_max): col_min=self.data[:,col].min() col_max=self.data[:,col].max() #do the scaling self.data[:,col]=(self.data[:,col]-col_min)/(col_max-col_min) def training_data(self,data_cols,target_col): """ returns a partial list of (1-TestcasesRatio) percent of the data for training purposes and splits the input data into data and target """ test_size=int(round(self.data.shape[0]*self.TestcasesRatio)) X= self.data[0:-test_size,data_cols] y=self.data[0:-test_size,target_col] return (X,y) def test_data(self,data_cols,target_col): """ returns a partial list of TestcasesRatio percent of the data for the test set and splits the input data into data and target """ test_size=int(round(self.data.shape[0]*self.TestcasesRatio)) X= self.data[-test_size:,data_cols] y=self.data[-test_size:,target_col] return (X,y) class bikeshare_loader(train_loader): def __init__(self): self.readcsv('train_processed',True) def preprocess(self): """Preprocessing for the bikeshare problem""" self.scale([1,4,8])#season(1-4),weather(1-4),humidity,windspeed self.scale([5,6,7],0,100)#temp,atemp,humidity self.data[:,0]=(1/24)*(self.data[:,0]%24)#time of day #for tests if __name__=='__main__': loader=bikeshare_loader() loader.preprocess() (X,y)=loader.training_data(range(9),9) print X[:,0] #print train[:,[6,11]]
# Generated by Django 3.1 on 2020-08-04 17:34 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='CONtacts', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('lastname', models.CharField(max_length=50)), ('email', models.EmailField(max_length=254)), ('phone', models.IntegerField()), ], ), migrations.CreateModel( name='LastDay', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('month', models.IntegerField()), ('year', models.IntegerField()), ], ), migrations.CreateModel( name='Employer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('identifier', models.IntegerField()), ('phone', models.IntegerField()), ('email', models.EmailField(max_length=254)), ('contacts', models.ManyToManyField(to='employer.CONtacts')), ], ), ]
#!/usr/bin/env python3 """Script to run the auacm cli app""" import sys from auacm import main main.main(sys.argv[1:])
from Token import Token class AST(object): def __init__(self, nome): self.nome = nome; self.children = [] self.tipo = None #tipo do nó. Compound, Assign, ArithOp, etc self.value = None def __str__(self, level=0): ret = "\t"*level+ repr(self) +"\n" for child in self.children: if (child != None): ret += child.__str__(level+1) #level+1 return ret def __repr__(self): return self.nome def __evaluate__(self): for child in self.children: if (child != None): return child.__evaluate__() class Compound(AST): """Represents a 'BEGIN ... END' block""" def __init__(self): AST.__init__(self,'Block') print('Criando um nó do tipo Block.') #self.children = [] def __repr__(self): return self.nome class Assign(AST): def __init__(self, left, op, right): AST.__init__(self,'Assign'); print('Criando um nó do tipo Assign.') if(not(left is None)): self.children.append(left) if(not(right is None)): self.children.append(right) self.left = left self.token = self.op = op self.right = right def __repr__(self): return self.nome class If(AST): def __init__(self, exp, c_true, c_false): AST.__init__(self, 'If') print('Criando um nó do tipo If.') if(not(exp is None)): self.children.append(exp) if(not(c_true is None)): self.children.append(c_true) if(not(c_false is None)): self.children.append(c_false) self.exp = exp; self.c_true = c_true; self.c_false = c_false; def __repr__(self): return self.nome class While(AST): def __init__(self, exp, commands): AST.__init__(self,'While') print('Criando um nó do tipo While.') if(not(exp is None)): self.children.append(exp) if(not (commands is None)): self.children.append(commands) self.exp = exp; self.commands = commands; def __repr__(self): return self.nome class For(AST): def __init__(self, attr, exp, attr2, commands): AST.__init__(self,'For') print('Criando um nó do tipo For.') if (not(attr is None)): self.children.append(attr) self.attr = attr if(not(exp is None)): self.children.append(exp) self.exp = exp; if (not(attr is None)): self.children.append(attr2) self.attr2 = attr2 if(not (commands is None)): self.children.append(commands) self.commands = commands def __repr__(self): return self.nome class Read(AST): def __init__(self, id_): AST.__init__(self,'Read') print('Criando um nó do tipo Read.') if(not(id_ is None)): self.children.append(id_) self.id = id_; def __repr__(self): return self.nome class Print(AST): def __init__(self, exp): AST.__init__(self,'Print') print('Criando um nó do tipo Print.') if(not(exp is None)): self.children.append(exp) self.exp = exp; def __repr__(self): return self.nome class Expr(AST): def __init__(self, nome, op, left, right): AST.__init__(self,nome) if(not(left is None)): self.children.append(left) if(not(right is None)): self.children.append(right) self.left = left self.op = op self.right = right def __repr__(self): #self.left.repr(); return self.op class LogicalOp(Expr): def __init__(self, op, left, right): Expr.__init__(self,'LogicalOp', op, left, right) print('Criando um nó do tipo LogicalOp com operador ' + str(op)) class ArithOp(Expr): def __init__(self, op, left, right): Expr.__init__(self,'ArithOp', op, left, right) print('Criando um nó do tipo ArithOp com operador ' + str(op)) class RelOp(Expr): def __init__(self, left, op, right): Expr.__init__(self,'RelOp', op, left, right) print('Criando um nó do tipo RelOp com operador ' + str(op)) class Id(AST): """The Var node is constructed out of ID token.""" def __init__(self, token): AST.__init__(self,'Id') print('Criando um nó do tipo Id.') #self.children.append(token) self.token = token self.value = token.value def __repr__(self): return repr(self.token.getLexema()) def __evaluate__(self): return self.value class Num(AST): def __init__(self, token): AST.__init__(self,'Num') print('Criando um nó do tipo Num.') #self.children.append(token) self.token = token self.value = token.value #em python, não precisamos nos preocupar com o tipo de value def __repr__(self): return repr(self.token.getLexema()) def __evaluate__(self): return self.value def print_tree(current_node, indent="", last='updown'): nb_children = lambda node: sum(nb_children(child) for child in node.children) + 1 size_branch = {child: nb_children(child) for child in current_node.children} """ Creation of balanced lists for "up" branch and "down" branch. """ up = sorted(current_node.children, key=lambda node: nb_children(node)) down = [] while up and sum(size_branch[node] for node in down) < sum(size_branch[node] for node in up): down.append(up.pop()) """ Printing of "up" branch. """ for child in up: next_last = 'up' if up.index(child) is 0 else '' next_indent = '{0}{1}{2}'.format(indent, ' ' if 'up' in last else '│', " " * len(current_node.__repr__())) print_tree(child, indent=next_indent, last=next_last) """ Printing of current node. """ if last == 'up': start_shape = '┌' elif last == 'down': start_shape = '└' elif last == 'updown': start_shape = ' ' else: start_shape = '├' if up: end_shape = '┤' elif down: end_shape = '┐' else: end_shape = '' print('{0}{1}{2}{3}'.format(indent, start_shape, current_node.__repr__(), end_shape)) """ Printing of "down" branch. """ for child in down: next_last = 'down' if down.index(child) is len(down) - 1 else '' next_indent = '{0}{1}{2}'.format(indent, ' ' if 'down' in last else '│', " " * len(current_node.__repr__())) print_tree(child, indent=next_indent, last=next_last) class ToXML: @staticmethod def toXML(no): count = 1 arvoreToXML = open('../../tp2/output/arvoreToXML.txt','w') arvoreToXML.close() arvoreToXML = open('../../tp2/output/arvoreToXML.txt','w') arvoreToXML.write('<' + no.nome + '>\r\n') for child in no.children: i = 0 for i in range(0,count): arvoreToXML.write('\t') if(child.nome == 'Id' or child.nome == 'Num'): arvoreToXML.write('<' + child.nome + ToXML.classifierPrint(child) + '/\r\n') else: arvoreToXML.write('<' + child.nome + ToXML.classifierPrint(child) + '>\r\n') ToXML.deepSearch(child, count, arvoreToXML) for i in range(0,count): arvoreToXML.write('\t') arvoreToXML.write('</' + child.nome + '>\r\n') arvoreToXML.write('</' + no.nome + '>\r\n') @staticmethod def deepSearch( no, count,arvoreToXML): count = count + 1 for child in no.children: i = 0 for i in range(0,count): arvoreToXML.write('\t') if(child.nome == 'Id' or child.nome == 'Num'): arvoreToXML.write('<' + child.nome + ToXML.classifierPrint(child) + '/>\r\n') else: arvoreToXML.write('<' + child.nome + ToXML.classifierPrint(child) + '>\r\n') ToXML.deepSearch(child, count, arvoreToXML) for i in range(0,count): arvoreToXML.write('\t') arvoreToXML.write('</' + child.nome + '>\r\n') @staticmethod def classifierPrint(no): if(no.nome == 'Id'): return ' lexema=\'' + no.token.getLexema() + '\'' elif(no.nome == 'Num'): return ' value=\'' + no.token.getLexema() + ' type:\'' + no.value + '\'' elif(no.nome == 'ArithOp' or no.nome == 'RelOp' or no.nome == 'LogicalOp'): return ' op=\'' + no.op + '\'' else: return ''
# import urllib.request # url = 'http://www.pythonchallenge.com/pc/def/linkedlist.php?nothing=' # data = urllib.request.urlopen(url + '37278').read().decode('utf-8') # while data.startswith('and'): # print(data) # data = urllib.request.urlopen(url + data.split(' ')[-1]).read().decode('utf-8') # print(data) # peak.html import requests url = 'http://www.pythonchallenge.com/pc/def/linkedlist.php?nothing=' num = '63579' while True: text = requests.get(url + num).text print(text) if text.startswith('and'): # and the next nothing is 53548 num = text.split()[-1] else: break # initail num = 12345 # hint1: <font color=red>Your hands are getting tired </font>and the next nothing is 94485 # hint2: and the next nothing is 16044 # Yes. Divide by two and keep going. # hint3: There maybe misleading numbers in the # text. One example is 82683. Look only for the next nothing and the next nothing is 63579 # hint4: peak.html
#!usr/bin/env python3 # @File:send_email.py # @Date:2018/05/27 # Author:Cat.1 from email.mime.text import MIMEText import smtplib import config msg_from = config.getConfig("send_email", "msg_from") passwd = config.getConfig("send_email", "passwd") msg_to = config.getConfig("send_email", "msg_to") smtp_server = config.getConfig("send_email", "smtp_server") subject = "测试专用" content = "厉害了我的哥" msg = MIMEText(content) msg['Subject'] = subject msg['From'] = msg_from msg['To'] = msg_to server = smtplib.SMTP_SSL(smtp_server, 465) server.login(msg_from, passwd) server.sendmail(msg_from, msg_to, msg.as_string()) server.quit() # print(server.set_debuglevel(1))
#2. 读入文件‘a.txt’.统计文件中每个单词的数量并且进行输出。 #txt的文本文件为 #a:a. Every single time you access a website, # you leave tracks. Tracks that others can access. # If you don't like the idea, find out what software can help you cover them f=open("D://a.txt","r") a=f.readlines() print(a)
#! -*- coding:utf8 -*- import os import sys import json reload(sys) sys.setdefaultencoding("utf-8") program_path = os.path.abspath(__file__ + "/../..") def gen_file_abspath(file_path, root_path=None): if root_path is None: return program_path + "/" + file_path else: return root_path + "/" + file_path
#!/usr/bin/env python3 """ Revision By Changes --------------------------------------------------------------- 0.0.1 Ramanuj Pandey[ramanuj.p7@gmail.com] Ported whole to code to Python3 from CPP, level one optimization on code done which reduces source lines to less than half. License ------- Same as original CPP code. """ import os import sys import logging import argparse # TODO: Change variable names and functions to more meaningful ones, # Initially I didn't changed them to keep my porting easy when comparing to original source. pgm_ver = '0.0.1-beta' separator = '\t' rules = {} words = {} weights = {} check = 0 index = [0,] no_of_splits = [0,] split = [] rule_applied = ['',] new_splits = [] new_rule_applied = [] initial = 0 op = {} costs = {} final_costs = [] output1 = {} temp_result_file='temp_result' ltproc_bin = '/usr/bin/lt-proc' # morph_bin = '../../../morph_bin/skt_morf.bin' morph_bin = '../scl/morph_bin/all_morf.bin' temp_res_intrm_file = 'temp_result_mo' res_file = 'result' input_files = { 'sandhi': ('sandhi_rules.txt', 'sandhi_words.txt', 'skt_morf.bin'), 'samasa': ('samAsa_rules.txt', 'samAsa_words.txt', 'skt_samAsanoun_morf.bin'), 'both': ('all_rules.txt', 'word_freq.txt', 'all_morf.bin') } """ Datastructure selection thoughts: 1. We need a better searchable datastructure as search happens very frequently to find words and their expansion. 2. We need dict item to be a list so that we can add components, as for same result many expansions are possible. With above considerations, rule db is a dictonary which has value as a list. """ def load_rules_and_words(rules_file, words_file): logging.info("Rule loader called with option: (" + rules_file + ', ' + words_file + ')') global separator rules['tot_freq'] = 0 rule_val_extra = '' # If we load with default utf encoding some strings from file fail to load. with open(rules_file, encoding='latin-1') as fr: for line in fr: line_by_line = line.strip().split('{}'.format(separator)) rules['tot_freq'] += int(line_by_line[2]) with open(rules_file, encoding='latin-1') as fr: for line in fr: line_by_line = line.strip().split('{}'.format(separator)) rule_index = line_by_line[0] rule_val = line_by_line[1] if args.choice == 'sandhi': weights[rule_val+'='+rule_index] = int(line_by_line[2])/rules['tot_freq'] elif args.choice == 'samasa': rule_val = rule_val.split('+')[0]+"-+"+rule_val.split('+')[1]+'='+rule_index weights[rule_val] = int(line_by_line[2])/rules['tot_freq'] elif args.choice == 'both': rule_val_extra = rule_val.split('+')[0]+"-+"+rule_val.split('+')[1]+'='+rule_index weights[rule_val_extra] = int(line_by_line[2])/rules['tot_freq'] weights[rule_val+'='+rule_index[0]] = int(line_by_line[2])/rules['tot_freq'] if rule_index in rules.keys(): rules[rule_index].append(rule_val) if rule_val_extra != '': rules[rule_index].append(rule_val_extra) else: rules[rule_index] = [rule_val] if rule_val_extra != '': rules[rule_index] = [rule_val_extra] separator = ' ' words['corpus_size'] = 0 with open(words_file, encoding='latin-1') as fr: for line in fr: line_by_line = line.strip().split('{}'.format(separator)) words[line_by_line[1]] = line_by_line[0] words['corpus_size'] += 1 def split_word(input_word): global check, index, no_of_splits, split, rule_applied, rules first = 0 split.append(input_word[0]) while check == 0: check = 1 temp_split = [] temp_index = [] temp_no_of_splits = [] temp_rule_applied = [] for split_cntr in range(0, len(split)): if no_of_splits[split_cntr] <= 4: if index[split_cntr] >= len(input_word): temp_split.append(split[split_cntr]) temp_index.append(index[split_cntr]) temp_no_of_splits.append(no_of_splits[split_cntr]) temp_rule_applied.append(rule_applied[split_cntr]) else: one_char_tok = input_word[index[split_cntr]] two_char_tok = input_word[index[split_cntr] : (index[split_cntr] + 2)] tre_char_tok = input_word[index[split_cntr] : (index[split_cntr] + 3)] tokens=[one_char_tok, two_char_tok, tre_char_tok] if first == 0: temp_split.append(one_char_tok) else: temp_split.append(split[split_cntr]+one_char_tok) temp_index.append(index[split_cntr]+1) temp_no_of_splits.append(no_of_splits[split_cntr]) temp_rule_applied.append(rule_applied[split_cntr]) if index[split_cntr] + 1 < len(input_word): check = 0 for token in tokens: if token in rules.keys(): for rule_cntr in range(0, len(rules[token])): sutra = rules[token][rule_cntr] if first == 0: temp_split.append(sutra) else: temp_split.append(split[split_cntr] + sutra) temp_index.append(index[split_cntr] + len(token)) temp_no_of_splits.append(no_of_splits[split_cntr]+1) temp_rule_applied.append(rule_applied[split_cntr]+sutra+"="+token+"|"); if index[split_cntr] + 1 < len(input_word): check = 0 first = 1 split = temp_split index = temp_index no_of_splits = temp_no_of_splits rule_applied = temp_rule_applied def split_final(): vechar = [] vechar1 = [] output = {} global new_splits, new_rule_applied, initial, temp_result_file, op, res_file for cntr in range(0, len(split)): split_word = split[cntr] if split_word[-2] != '+': rule_token = rule_applied[cntr] pada_list = split_word.split('+') rule_list = rule_token[:-1].split('|') vechar.append(pada_list) vechar1.append(rule_list) for p in pada_list: output[p] = 1 new_splits = vechar new_rule_applied = vechar1 initial=initial + len(split) with open(temp_result_file, mode='wt', encoding='utf-8') as myfile: myfile.write('\n'.join(output.keys())) myfile.write('\n') cmd_buf = "%s -c %s < %s > %s; grep '*' %s > %s" % (ltproc_bin, morph_bin, temp_result_file, temp_res_intrm_file, temp_res_intrm_file, res_file) logging.info("Going to call ltproc as: " + cmd_buf) if os.system(cmd_buf): logging.error("Executing command (%s) failed" % cmd_buf) sys.exit(1) with open(res_file) as myfile: content = myfile.readlines() for val in content: op[val.split('/')[0].split('^')[1]] = 1 def calculate_costs(): global tot_cost, costs, final_costs, output1, op output = op tot_cost = [1] * len(new_splits) for cntr in range(1, len(new_splits)): flag = 0 for k in range(0, len(new_splits[cntr]) -1): if not new_splits[cntr][k] in output.keys(): output[new_splits[cntr][k]] = 0 if not new_splits[cntr][k+1] in output.keys(): output[new_splits[cntr][k+1]] = 0 if ((output[new_splits[cntr][k]] == 1) or (output[new_splits[cntr][k+1]] == 1)): logging.debug("Got %s or %s in ouput keys" % (new_splits[cntr][k],new_splits[cntr][k+1])) flag = 1 break else: if new_splits[cntr][k][:-1] == '-': val = new_splits[cntr][k].split('-') if not words[val[0]]: tot_cost[cntr] = tot_cost[cntr] * (1 / (words['corpus_size'] * 1.0) ) * weights[new_rule_applied[cntr][k]] else: tot_cost[cntr] = tot_cost[cntr] * (words[val[0]] / words['corpus_size'] * 1.0 ) * weights[new_rule_applied[cntr][k]] else: if not new_splits[cntr][k] in words.keys(): tot_cost[cntr] = tot_cost[cntr] * (1 / (words['corpus_size'] * 1.0) ) * weights[new_rule_applied[cntr][k]] logging.debug("1 Total cost is %s for %s" % (tot_cost[cntr], new_splits[cntr][k])) else: tot_cost[cntr] = tot_cost[cntr] * (int(words[new_splits[cntr][k]]) / words['corpus_size'] * 1.0 ) * weights[new_rule_applied[cntr][k]] logging.debug("1.5 Total cost is %s for %s" % (tot_cost[cntr], new_splits[cntr][k])) if not (new_splits[cntr][-1] in words.keys()): tot_cost[cntr] = tot_cost[cntr] * (1 / (words['corpus_size'] * 1.0)) logging.debug("2 Got %s %s in ouput keys" % (new_splits[cntr][-1], tot_cost[cntr])) else: tot_cost[cntr] = tot_cost[cntr] * ((int(words[new_splits[cntr][-1]]) / (words['corpus_size'] * 1.0 ))) logging.debug("3 Got %s %s in ouput keys" % (new_splits[cntr][-1], tot_cost[cntr])) if not flag: logging.debug("Came in cost updater.") tot_cost[cntr] = tot_cost[cntr] / (len(new_splits[cntr])) if not (tot_cost[cntr] in costs.keys()): final_costs.append(tot_cost[cntr]) costs[tot_cost[cntr]] = 1 if tot_cost[cntr] in output1.keys(): output1[tot_cost[cntr]].append(new_splits[cntr]) else: output1[tot_cost[cntr]] = [new_splits[cntr],] logging.debug(tot_cost) if not len(output1): if args.switch == "compare": print("%s\t=>\t%s" % (args.word, args.word)) else: print("%s\t=>No splittings found" % args.word) print("%s\t=>\t0" % args.word) def is_readable(binary): return os.path.isfile(binary) and os.access(binary, os.R_OK) def is_executable(binary): return os.path.isfile(binary) and os.access(binary, os.X_OK) def is_writable(binary): return os.path.isfile(binary) and os.access(binary, os.W_OK) # ---------------------------------------------------- Main section ---------------------------------------------------- if __name__ == "__main__": parser = argparse.ArgumentParser(description='Sandhi splitting program:\nVersion: %s.' % pgm_ver) parser.add_argument( '-c', '--choice', nargs='?', choices=('sandhi', 'samasa', 'both'), default='sandhi', help="Choose what openration to do.") parser.add_argument('-m', '--morphbin', required=True, help='Path of morph binary to use.') parser.add_argument('-o', '--output', help='Result should be written to this file.') parser.add_argument( '-s', '--switch', nargs='?', choices=('compare', 'testing'), default='testing', help="Choose the right switch.") parser.add_argument('-v', '--verbose', type=int, choices=[1,2], help='Adjust verbocity level.') parser.add_argument('word', nargs='?', help='Word to split.') args = parser.parse_args() if not args.verbose: logging.basicConfig(level=logging.WARNING) elif args.verbose == 1: logging.basicConfig(level=logging.INFO) elif args.verbose == 2: logging.basicConfig(level=logging.DEBUG) logging.info("Arguments to program status: \n %s" % args) logging.info("This run is for: " + args.choice) ''' Load rules ''' optn_selected = input_files[args.choice] load_rules_and_words(optn_selected[0], optn_selected[1]) ''' Load rule ends''' ''' Sanity begins ''' # Not doing sanity on rule and word files as we are not taking these from user now. if not args.output: logging.info("Will use default file name and location.") if not is_readable(args.morphbin): logging.error("Morph bin not reable, Exiting...") sys.exit(1) if not (is_readable(optn_selected[0]) and is_readable(optn_selected[1])): logging.error("Check rules and word file, Exiting...") sys.exit(1) if not args.word: logging.error("Provide word to split. Exiting...") sys.exit(2) ''' Sanity ends ''' logging.info("Loaded corpus size: %d" % words['corpus_size']) logging.info("Total frequency of rules: %d" % rules['tot_freq']) logging.debug("Loaded rules: %s " % rules) logging.debug("Loaded weight: %s" % weights) ''' Call word split routing and update globals with output. ''' split_word(args.word) logging.debug("------------------------") logging.debug("Printing Split: \n%s" % split) logging.debug("Printing Index: \n%s" % index) logging.debug("Printing no of splits: \n%s" % no_of_splits) logging.debug("Printing rules applied: \n%s" % rule_applied) logging.debug("------------------------") ''' Does further split of rules and words and queries morpholigical place and writes result in a result file ''' split_final() ''' Output of result file is matching in b/w Python and CPP code with only order difference. ''' logging.debug("New splits are: %s" % new_splits) logging.debug("Size of new splits is: %d" % len(new_splits)) logging.debug("New rules applied are: %s" % new_rule_applied) logging.debug("Value loaded in os is: %s" % op) # Many of the code snippets are just translated, not optimized calculate_costs() logging.debug('Total cost (tot_cost) :\n %s' % tot_cost) logging.debug('Cost (costs) :\n %s' % costs) logging.debug('Output1 (output1) :\n %s' % output1) logging.debug('Final_cost before sorting :\n %s' % final_costs) final_costs.sort(reverse = True) logging.debug('Final cost after sorting :\n %s' % final_costs) count = 0 fount = 0 correct_ones = 0 for each in range(0, len(final_costs)): temp1 = output1[final_costs[each]] count = each + 1 logging.debug(temp1[0]) word = "+".join(temp1[0]) logging.debug(args.switch) if args.switch == "testing" and (count == 1): print("%s = %s\t%s" % (args.word, word, final_costs[each])) found = 1 elif args.switch == "compare" and (word == 'sandhi'): correct_ones += 1 print("\nThe expected split for : " + args.word) print("%s\t %s\t %s" % (word, final_costs[i], count)) found = 1 # Put ranks logic # ranks[count]=ranks[count]+1; # Not porting further as it seems all is for -C option, which is not used.
from django.conf.urls import url, include from django.contrib import admin import helpdesk_portal.views as views from django.conf import settings from django.conf.urls.static import static urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^admin/', admin.site.urls), url(r'^accounts/', include('accounts.urls')), url(r'^accounts/', include('django.contrib.auth.urls', namespace='accounts')), url(r'^tickets/', include('tickets.urls', namespace='tickets')), ] + static(settings.MEDIA_URL, document_root= settings.MEDIA_ROOT)
from django.shortcuts import render from django.shortcuts import render_to_response from .email import send_welcome_email from django.views.generic.edit import FormView from django.utils import timezone from django.contrib.gis.geos import Point from django.contrib.gis.db.models.functions import Distance from .forms import SignUpForm, PlacesForm, LookupForm, NowForm, ProneForm, ProfileForm from .models import Places, Profile, RiotPronePlaces, NowRioting from django.contrib.auth.decorators import login_required from django.views.generic.base import View from django.template import RequestContext # Create your views here. class LookupView(View): form_class = LookupForm def get(self, request): return render(request, 'riot/lookup.html') def form_valid(self, form): # Get data latitude = form.cleaned_data['latitude'] longitude = form.cleaned_data['longitude'] # Get today's date now = timezone.now() # Get next week's date next_week = now + timezone.timedelta(weeks=1) # Get Point location = Point(longitude, latitude, srid=4326) # Look up events events = Profile.objects.filter(datetime__gte=now).filter(datetime__lte=next_week).annotate(distance=Distance('venue__location', location)).order_by('distance')[0:5] # Render the template return render_to_response('riot/lookupresults.html', { 'events': events }) def signUp(request): form = SignUpForm(request.POST) if request.method == 'POST': if form.is_valid(): username = form.cleaned_data['your_name'] email = form.cleaned_data['email'] recipient = Profile(username = username,email =email) recipient.save() send_welcome_email(username,email) HttpResponseRedirect('home') #................. return render(request, 'registration/signUp.html', {"SignUpForm":form})
import copy from typing import List, Any from kts_linguistics.string_transforms.abstract_transform import AbstractTransform class TransformPipeline: def __init__(self, do_cache=False, cache=None): self.transforms = list() self.cache = cache if cache is not None else dict() self.do_cache = do_cache def add_transform(self, transform: AbstractTransform): self.transforms.append(transform) def remove_transform_by_class(self, cls): self.transforms = [t for t in self.transforms if not isinstance(t, cls)] def copy(self): c = copy.copy(self) c.transforms = [it for it in c.transforms] # copy list return c def fit(self, groups: List[List[str]]): for t in self.transforms: t.fit(groups, pipeline=self) def transform(self, s: Any) -> Any: if isinstance(s, list): s = tuple(s) if s in self.cache: return self.cache[s] transformed_s = s for t in self.transforms: transformed_s = t.transform(transformed_s) if self.do_cache: if isinstance(transformed_s, list): transformed_s = tuple(transformed_s) self.cache[s] = transformed_s return transformed_s def custom_transform(self, s: Any, apply_before_transform: AbstractTransform) -> Any: for t in self.transforms: if t == apply_before_transform: break s = t.transform(s) return s
# Definition for a singly-linked list class ListNode: def __init__(self, x): self.val = x self.next = None def __str__(self): result = str(self.val) if self.next: result += str(self.next) return result class Solution: # ex. head = 1,2,3,4 def reverseList(self, head): # CALL STACK 1 reverseList(1) if head is None or head.next is None: return head p = self.reverseList(head.next) # p = reverseList(2) head.next.next = head # head.next.next = 1 head.next = None # head.next = None return p # CALL STACK 2 reverseList(2) node = ListNode(1) node.next = ListNode(2) node.next.next = ListNode(3) node.next.next.next = ListNode(4) print(Solution().reverseList(node)) # 4321
from __future__ import print_function import torch # somehow contains values x = torch.empty(5, 3) print(x) x = torch.rand(5, 3) print(x) x = torch.zeros(5, 3, dtype=torch.long) print(x) x = torch.tensor([5.5, 3]) print(x) x = x.new_ones(5, 3, dtype=torch.double) print(x) x = torch.randn_like(x, dtype=torch.float) print(x) print(x.size()) # add, get result y = torch.rand(5, 3) print(x + y) # add, get result syntax 2 print(torch.add(x, y)) # add and set result to other tensor result = torch.empty(5, 3) torch.add(x, y, out=result) print(result) # add x to y, overwriting y y.add_(x) print(y) # all rows, first column print(x[:, 1]) x = torch.randn(4, 4) y = x.view(16) z = x.view(-1, 8) # the size -1 is inferred from other dimensions print(x.size(), y.size(), z.size()) # tensor with one element, get value as number x = torch.randn(1) print(x) print(x.item()) if torch.cuda.is_available(): device = torch.device("cuda") y = torch.ones_like(x, device=device) # tensor on GPU x = x.to(device) z = x + y print(z) print(z.to("cpu", torch.double))