content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def isready() -> bool: """Is the embedded R ready for use.""" INITIALIZED = RPY_R_Status.INITIALIZED return bool( rpy2_embeddedR_isinitialized == INITIALIZED.value )
ce9bc69c897004f135297331c33101e30e71dca7
3,649,600
def yolo2_loss(args, anchors, num_classes, label_smoothing=0, use_crossentropy_loss=False, use_crossentropy_obj_loss=False, rescore_confidence=False): """YOLOv2 loss function. Parameters ---------- yolo_output : tensor Final convolutional layer features. true_boxes : tensor Ground truth boxes tensor with shape [batch, num_true_boxes, 5] containing box x_center, y_center, width, height, and class. y_true : array output of preprocess_true_boxes, with shape [conv_height, conv_width, num_anchors, 6] anchors : tensor Anchor boxes for model. num_classes : int Number of object classes. rescore_confidence : bool, default=False If true then set confidence target to IOU of best predicted box with the closest matching ground truth box. Returns ------- total_loss : float total mean YOLOv2 loss across minibatch """ (yolo_output, true_boxes, y_true) = args num_anchors = len(anchors) yolo_output_shape = K.shape(yolo_output) input_shape = yolo_output_shape[1:3] * 32 object_scale = 5 no_object_scale = 1 class_scale = 1 coordinates_scale = 1 object_mask = y_true[..., 4:5] pred_xy, pred_wh, pred_confidence, pred_class_prob = yolo2_head( yolo_output, anchors, num_classes, input_shape) # Unadjusted box predictions for loss. # TODO: Remove extra computation shared with yolo2_head. batch_size = yolo_output_shape[0] # batch size, tensor batch_size_f = K.cast(batch_size, K.dtype(yolo_output)) feats = K.reshape(yolo_output, [ -1, yolo_output_shape[1], yolo_output_shape[2], num_anchors, num_classes + 5 ]) pred_boxes = K.concatenate( (K.sigmoid(feats[..., 0:2]), feats[..., 2:4]), axis=-1) # TODO: Adjust predictions by image width/height for non-square images? # IOUs may be off due to different aspect ratio. # Expand pred x,y,w,h to allow comparison with ground truth. # batch, conv_height, conv_width, num_anchors, num_true_boxes, box_params pred_xy = K.expand_dims(pred_xy, 4) pred_wh = K.expand_dims(pred_wh, 4) pred_wh_half = pred_wh / 2. pred_mins = pred_xy - pred_wh_half pred_maxes = pred_xy + pred_wh_half true_boxes_shape = K.shape(true_boxes) # batch, conv_height, conv_width, num_anchors, num_true_boxes, box_params true_boxes = K.reshape(true_boxes, [ true_boxes_shape[0], 1, 1, 1, true_boxes_shape[1], true_boxes_shape[2] ]) true_xy = true_boxes[..., 0:2] true_wh = true_boxes[..., 2:4] # Find IOU of each predicted box with each ground truth box. true_wh_half = true_wh / 2. true_mins = true_xy - true_wh_half true_maxes = true_xy + true_wh_half intersect_mins = K.maximum(pred_mins, true_mins) intersect_maxes = K.minimum(pred_maxes, true_maxes) intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.) intersect_areas = intersect_wh[..., 0] * intersect_wh[..., 1] pred_areas = pred_wh[..., 0] * pred_wh[..., 1] true_areas = true_wh[..., 0] * true_wh[..., 1] union_areas = pred_areas + true_areas - intersect_areas iou_scores = intersect_areas / union_areas # Best IOUs for each location. best_ious = K.max(iou_scores, axis=4) # Best IOU scores. best_ious = K.expand_dims(best_ious) # A detector has found an object if IOU > thresh for some true box. object_detections = K.cast(best_ious > 0.6, K.dtype(best_ious)) # TODO: Darknet region training includes extra coordinate loss for early # training steps to encourage predictions to match anchor priors. # Determine confidence weights from object and no_object weights. # NOTE: YOLOv2 does not use binary cross-entropy. Here we try it. no_object_weights = (no_object_scale * (1 - object_detections) * (1 - object_mask)) if use_crossentropy_obj_loss: no_objects_loss = no_object_weights * K.binary_crossentropy(K.zeros(K.shape(pred_confidence)), pred_confidence, from_logits=False) if rescore_confidence: objects_loss = (object_scale * object_mask * K.binary_crossentropy(best_ious, pred_confidence, from_logits=False)) else: objects_loss = (object_scale * object_mask * K.binary_crossentropy(K.ones(K.shape(pred_confidence)), pred_confidence, from_logits=False)) else: no_objects_loss = no_object_weights * K.square(-pred_confidence) if rescore_confidence: objects_loss = (object_scale * object_mask * K.square(best_ious - pred_confidence)) else: objects_loss = (object_scale * object_mask * K.square(1 - pred_confidence)) confidence_loss = objects_loss + no_objects_loss # Classification loss for matching detections. # NOTE: YOLOv2 does not use categorical cross-entropy loss. # Here we try it. matching_classes = K.cast(y_true[..., 5], 'int32') matching_classes = K.one_hot(matching_classes, num_classes) if label_smoothing: matching_classes = _smooth_labels(matching_classes, label_smoothing) if use_crossentropy_loss: classification_loss = (class_scale * object_mask * K.expand_dims(K.categorical_crossentropy(matching_classes, pred_class_prob, from_logits=False), axis=-1)) else: classification_loss = (class_scale * object_mask * K.square(matching_classes - pred_class_prob)) # Coordinate loss for matching detection boxes. matching_boxes = y_true[..., 0:4] coordinates_loss = (coordinates_scale * object_mask * K.square(matching_boxes - pred_boxes)) confidence_loss_sum = K.sum(confidence_loss) / batch_size_f classification_loss_sum = K.sum(classification_loss) / batch_size_f coordinates_loss_sum = K.sum(coordinates_loss) / batch_size_f total_loss = 0.5 * ( confidence_loss_sum + classification_loss_sum + coordinates_loss_sum) # Fit for tf 2.0.0 loss shape total_loss = K.expand_dims(total_loss, axis=-1) return total_loss, coordinates_loss_sum, confidence_loss_sum, classification_loss_sum
bd0c123872e564beee45c0a9084bb043eb03b778
3,649,601
from typing import Optional from typing import Dict from typing import Any from typing import Tuple import types def create_compressed_model(model: tf.keras.Model, config: NNCFConfig, compression_state: Optional[Dict[str, Any]] = None) \ -> Tuple[CompressionAlgorithmController, tf.keras.Model]: """ The main function used to produce a model ready for compression fine-tuning from an original TensorFlow Keras model and a configuration object. :param model: The original model. Should have its parameters already loaded from a checkpoint or another source. :param config: A configuration object used to determine the exact compression modifications to be applied to the model. :param compression_state: compression state to unambiguously restore the compressed model. Includes builder and controller states. If it is specified, trainable parameter initialization will be skipped during building. :return: A tuple (compression_ctrl, compressed_model) where - compression_ctrl: The controller of the compression algorithm. - compressed_model: The model with additional modifications necessary to enable algorithm-specific compression during fine-tuning. """ model = get_built_model(model, config) original_model_accuracy = None if is_accuracy_aware_training(config, compression_config_passed=True): if config.has_extra_struct(ModelEvaluationArgs): evaluation_args = config.get_extra_struct(ModelEvaluationArgs) original_model_accuracy = evaluation_args.eval_fn(model) builder = create_compression_algorithm_builder(config, should_init=not compression_state) if compression_state: builder.load_state(compression_state[BaseController.BUILDER_STATE]) compressed_model = builder.apply_to(model) compression_ctrl = builder.build_controller(compressed_model) compressed_model.original_model_accuracy = original_model_accuracy if isinstance(compressed_model, tf.keras.Model): compressed_model.accuracy_aware_fit = types.MethodType(accuracy_aware_fit, compressed_model) return compression_ctrl, compressed_model
42ffc9c9426ce8b95db05e042fa2d51098fc544f
3,649,602
def load_misc_config(): """Load misc configuration. Returns: Misc object for misc config. """ return Misc(config.load_config('misc.yaml'))
b1eb2e8cc3e836b846d292c03bd28c4449d80805
3,649,603
def filter_activations_remove_neurons(X, neurons_to_remove): """ Filter activations so that they do not contain specific neurons. .. note:: The returned value is a view, so modifying it will modify the original matrix. Parameters ---------- X : numpy.ndarray Numpy Matrix of size [``NUM_TOKENS`` x ``NUM_NEURONS``]. Usually the output of ``interpretation.utils.create_tensors`` neurons_to_remove : list or numpy.ndarray List of neurons to remove Returns ------- filtered_X : numpy.ndarray view Numpy Matrix of size [``NUM_TOKENS`` x ``NUM_NEURONS - len(neurons_to_remove)``] """ neurons_to_keep = np.arange(X.shape[1]) neurons_to_keep[neurons_to_remove] = -1 neurons_to_keep = np.where(neurons_to_keep != -1)[0] return X[:, neurons_to_keep]
711a858f8d28e5d0909991d85538a24bf063c523
3,649,604
def adaptive_threshold(im, block_size, constant, mode=cv2.THRESH_BINARY): """ Performs an adaptive threshold on an image Uses cv2.ADAPTIVE_THRESH_GAUSSIAN_C: threshold value is the weighted sum of neighbourhood values where weights are a gaussian window. Uses cv2.THRESH_BINARY: Pixels below the threshold set to black Pixels above the threshold set to white Parameters ---------- img: numpy array containing an image block_size: the size of the neighbourhood area constant: subtracted from the weighted sum """ out = cv2.adaptiveThreshold( im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, mode, block_size, constant ) return out
c237a0bb05dc8a43495f60ef9d8157c4b9c4bf1f
3,649,605
def get_loss(stochastic, variance_regularizer): """Get appropriate loss function for training. Parameters ---------- stochastic : bool determines if policy to be learned is deterministic or stochastic variance_regularizer : float regularization hyperparameter to penalize high variance policies Returns ------- Keras loss function to use for imitation learning. """ if stochastic: return negative_log_likelihood_loss(variance_regularizer) else: return tf.keras.losses.mean_squared_error
e78d47c31a7762bcb091ea1a314348c27f2174b7
3,649,606
import copy def simul_growth_ho_amir(nbstart, run_time, params, name): """Simulate the Ho and Amir model (Front. in Microbiol. 2015) with inter-initiation per origin adder and timer from initiation to division Parameters ---------- nbstart : int number of cells to simulate run_time: int number of iterations params: dict experimental parameters name: str name of runs Returns ------- cells : list of dict Each element of the list is a cell cycle defined by a dictionary of features (Lb, Ld etc.) """ #initialize birth length and growth rate L0 = np.exp(np.random.normal(params['Lb_logn_mu'],params['Lb_logn_sigma'],size=nbstart)) tau = np.exp(np.random.normal(params['tau_logn_mu'], params['tau_logn_sigma'], size=nbstart)) #standard value of growth rate. Used to scale the noise appropriately normval = np.exp(params['tau_logn_mu']) #initialize the inter-initiation adder (exact procedure doesn't really matter here) #as all cells start with n_ori = 1, there's no initiation to division adder running DLi = np.random.normal(params['DLi_mu'], params['DLi_sigma'], size=nbstart) #time from initiation to division tid_mu = 90 tid_var = 5 Tid = np.random.normal(tid_mu, tid_var, size=nbstart) #initialize cell infos as a list of dictionaries. All cells start with n_ori = 1 cells = {} for x in range(nbstart): dict1 = {'Lb': L0[x],'L':L0[x], 'gen': str(x), 'tau':tau[x], 'Lt': [[0,L0[x],1]], 'finish': False, 'born':0, 'DLi': [[0,DLi[x]]],'DLdLi': [],'Li':[],'Ti':[], 'numori':1,'Ld':np.nan, 'numori_born':1,'name': name,'mLi':np.nan, 'mLd':np.nan, 'rfact':0.5, 'Tid': [[0,Tid[x]]]} cells[str(x)] = dict1 for t in range(run_time): divide_cell = [] for x in cells: if cells[x]['finish']==False: #update cell size cells[x]['L'] = cells[x]['L']*(2**(1/cells[x]['tau'])) cells[x]['Lt'].append([t,cells[x]['L'],cells[x]['numori']]) #increment the most recent inter-initiation adder cells[x]['DLi'][-1][0] = cells[x]['DLi'][-1][0]+(cells[x]['Lt'][-1][1]-cells[x]['Lt'][-2][1]) #if at least one volume counter since RI is running, increment all of them if len(cells[x]['DLdLi'])>0: cells[x]['DLdLi'] = [[k[0]+(cells[x]['Lt'][-1][1]-cells[x]['Lt'][-2][1]),k[1]] for k in cells[x]['DLdLi']] cells[x]['Tid'] = [[k[0]+1,k[1]] for k in cells[x]['Tid']] #if a volume counter has reached its limit divide if len(cells[x]['DLdLi'])>0: if (cells[x]['numori']>1) and (cells[x]['Tid'][0][0]>cells[x]['Tid'][0][1]): cells[x]['finish'] = True#tag cell as finished cells[x]['Ld'] = cells[x]['L'] cells[x]['Td'] = len(cells[x]['Lt']) cells[x]['Td_abs'] = t cells[x]['d_Ld_Lb'] = cells[x]['L']-cells[x]['Lb'] #assign the correct adders (the oldest ones) to the cell that just divided cells[x]['final_DLdLi'] = cells[x]['DLdLi'][0][0] cells[x]['final_DLi'] = cells[x]['DLi'][0][1] cells[x]['final_Li'] = cells[x]['Li'][0] cells[x]['final_Tid'] = cells[x]['Tid'][0][1] #for each accumulated variable suppress the oldest one if len(cells[x]['DLdLi'])==1: cells[x]['DLdLi'] = [] else: cells[x]['DLdLi'].pop(0) if len(cells[x]['Tid'])==1: cells[x]['Tid'] = [] else: cells[x]['Tid'].pop(0) if len(cells[x]['DLi'])==1: cells[x]['DLi'] = [] else: cells[x]['DLi'].pop(0) if len(cells[x]['Li'])==1: cells[x]['Li'] = [] else: cells[x]['Li'].pop(0) divide_cell.append(x) #if the added volume has reached its limit make new RI if cells[x]['DLi'][-1][0]>cells[x]['DLi'][-1][1]: #duplicate origin cells[x]['numori'] = cells[x]['numori']*2 #Version where adder is noisy itself newdli = cells[x]['numori']*np.random.normal(params['DLi_mu'], params['DLi_sigma']) cells[x]['DLi'].append([0,newdli]) cells[x]['Li'].append(cells[x]['L']) #temporarilly store TL_S as absolute time cells[x]['Ti'].append(t) #Version where adder itself is noisy new_dv = cells[x]['numori']*np.exp(np.random.normal(params['DLdLi_logn_mu'], params['DLdLi_logn_sigma'])) cells[x]['DLdLi'].append([0,new_dv]) cells[x]['Tid'].append([0,np.random.normal(tid_mu, tid_var, size=1)]) for x in divide_cell: #Draw division ratio rfact = 1/(1+np.random.normal(1,params['div_ratio'])) #Create new cell using mother information new_tau = np.exp(correlated_normal(np.log(cells[x]['tau']), params['tau_logn_mu'], params['tau_logn_sigma'], params['tau_corr'])) new_Lb = copy.deepcopy(rfact*cells[x]['L']) new_L = copy.deepcopy(rfact*cells[x]['L']) new_Lt = [[t,copy.deepcopy(rfact*cells[x]['L']),copy.deepcopy(cells[x]['numori'])/2]] new_DLi = copy.deepcopy([[rfact*y[0],rfact*y[1]] for y in cells[x]['DLi']]) new_DLdLi = copy.deepcopy([[rfact*y[0],rfact*y[1]] for y in cells[x]['DLdLi']]) new_Tid = copy.deepcopy(cells[x]['Tid']) new_Li = copy.deepcopy([rfact*y for y in cells[x]['Li']]) new_numori = copy.deepcopy(cells[x]['numori'])/2 mother_initL = copy.deepcopy(cells[x]['final_Li'])/2 mother_Ld = copy.deepcopy(cells[x]['Ld']) dict1 = {'Lb': new_Lb,'L': new_L, 'gen': str(x)+'B', 'tau': new_tau,'Lt': new_Lt, 'finish': False, 'born':t, 'DLi': new_DLi,'DLdLi': new_DLdLi,'Tid': new_Tid, 'Li':new_Li,'Ti':[], 'numori':new_numori, 'numori_born':copy.deepcopy(new_numori),'Ld':np.nan, 'name': name,'mLi': mother_initL, 'mLd':mother_Ld, 'rfact':rfact} cells[x+'B'] = copy.deepcopy(dict1) #keep oldest timer as final timer and give daughter remaining ones. Caclulate initiation time based on cell birth. TL_S_val = copy.deepcopy(cells[x]['Ti'].pop(0)) cells[x+'B']['Ti'] = copy.deepcopy(cells[x]['Ti']) cells[x]['Ti'] = TL_S_val-copy.deepcopy(cells[x]['born']) for x in cells: if len(cells[x]['Li'])>0: cells[x]['Li'] = np.nan return cells
fa4d35cfd26dbcb08217b3ffee6cf4e3e7431a08
3,649,607
def variable_id(variable): """Return variable identification for .dot file""" if isinstance(variable, FileAccess): return "a_{}".format(variable.id) act_id = variable.activation_id act_id = "global" if act_id == -1 else act_id return "v_{}_{}".format(act_id, variable.id)
b68fd9d6b08a537768dc82b7925f0cb6f383428e
3,649,608
def node_set_power_state(request, node_id, state, soft=False): """Set power state for a given node. :param request: HTTP request. :param node_id: The UUID or name of the node. :param state: the power state to set ['on', 'off', 'reboot']. :param soft: flag for graceful power 'off' or reboot :return: node. http://docs.openstack.org/developer/python-ironicclient/api/ironicclient.v1.node.html#ironicclient.v1.node.NodeManager.set_power_state """ return ironicclient(request).node.set_power_state(node_id, state, soft)
e94a13f4a797d31bd0eae24803a782b049ea44dc
3,649,609
import sympy def __sympyToC_Grad(exprs: list, doOpts: bool = False) -> str: """ creates C code from a list of sympy functions (somewhat optimized). source: https://stackoverflow.com/questions/22665990/optimize-code-generated-by-sympy and modified """ tmpsyms = sympy.numbered_symbols("tmp") if doOpts: symbols, simple = sympy.cse(exprs, symbols=tmpsyms, optimizations="basic", order='none') else: symbols, simple = sympy.cse(exprs, symbols=tmpsyms) c_code = "" for s in symbols: c_code += " double " +sympy.ccode(s[0]) + " = " + sympy.ccode(s[1]) + ";\n" for i,s in enumerate(simple): c_code += f" out({i}) = " + sympy.ccode(s) + ";\n" return c_code
33a95d99b19458ac7b8dd8d8e4272485b0f5f206
3,649,610
import os import logging import sys def startServer(mock=True, mockS3=False): """ Test cases that communicate with the server should call this function in their setUpModule() function. """ # If the server starts, a database will exist and we can remove it later dbName = cherrypy.config['database']['uri'].split('/')[-1] usedDBs[dbName] = True # By default, this passes "[]" to "plugins", disabling any installed plugins server = setupServer(mode=ServerMode.TESTING, plugins=enabledPlugins) if mock: cherrypy.server.unsubscribe() cherrypy.engine.start() # Make server quiet (won't announce start/stop or requests) cherrypy.config.update({'environment': 'embedded'}) # Log all requests if we asked to do so if 'cherrypy' in os.environ.get('EXTRADEBUG', '').split(): cherrypy.config.update({'log.screen': True}) logHandler = logging.StreamHandler(sys.stdout) logHandler.setLevel(logging.DEBUG) cherrypy.log.error_log.addHandler(logHandler) # Tell CherryPy to throw exceptions in request handling code cherrypy.config.update({'request.throw_errors': True}) mockSmtp.start() if mockS3: global mockS3Server mockS3Server = mock_s3.startMockS3Server() return server
02bd95f96adda8a9af194952bcbe82c71235d07e
3,649,611
def index(): """User friendly index page at the root of the server guides the user to the reportss """ return render_template('index.html')
0e810716e0bbfae98736bc13f458636eb33dc87d
3,649,612
def read_lookup(infile): """ ----------------------------------------------------------------------------- Read data from a lookup database. Inputs: infile [string] Input file containing the lookup data base. Outputs: [tuple] each element of the tuple is a numpy array. The elements in order are x-coordinates, y-coordinates, data value at those coordiantes. The data values are real or complex depending on whether the lookup table has an 'imag_value' column ----------------------------------------------------------------------------- """ if not isinstance(infile, str): raise TypeError('Input parameter infile must be of string data type') try: cols = ascii.read(infile, data_start=1, comment='#') except IOError: raise IOError('Could not read the specified file: '+infile) if 'imag_value' in cols.colnames: return cols['x'].data, cols['y'].data, cols['real_value'].data+1j*cols['imag_value'].data else: return cols['x'].data, cols['y'].data, cols['real_value'].data
a86a2e8da2580e66656f8328488941c402383c60
3,649,613
import traceback import sys def sum_function(context, nodeset, string): """ The dyn:sum function calculates the sum for the nodes passed as the first argument, where the value of each node is calculated dynamically using an XPath expression passed as a string as the second argument. http://www.exslt.org/dyn/functions/sum/index.html """ nodeset = nodeset.evaluate_as_nodeset(context) string = string.evaluate_as_string(context) try: expr = parse_xpath(string) except XPathError: lines = traceback.format_exception(*sys.exc_info()) lines[:1] = [("Syntax error in XPath expression '%(expr)s', " "lower-level traceback:\n") % {'expr': string}] context.processor.warning(''.join(lines)) return datatypes.nodeset() return sum(map(datatypes.number, _map(context, nodeset, expr)))
dac1abae26522db33826f0a0e635e9afb4b3efc1
3,649,614
import json def event_detail(request, id): """ Return a JSON dict mapping for event given id """ event = get_object_or_404(Event, pk=id) event_dict = { "success": 1, "result": [{ "id": event.id, "title": event.title, "description": event.description, "created_date": event.created_date.strftime('%Y/%m/%d'), "location": event.location }] } return HttpResponse(json.dumps(event_dict), content_type="application/json")
4b4083a81d5de90e9156f05d9f7b0375981a42d0
3,649,615
import logging def prepare_state(qubits: list[cirq.Qid], x: int) -> list[cirq.Gate]: """Prepare qubits into an initial state. Args: qubits: The qubits to prepare. x: The initial state of the qubits. Must be non-negative. Returns: A list of gates to prepare the qubits. Raises: ValueError: If `x` is negative. """ gates = list() if size_in_bits(x) > len(qubits): logging.warning(f"prepare_state: `x` ({x}) cannot fit into {len(qubits)} qubits; some bits will be dropped.") for q in qubits: if x % 2: gates.append(cirq.X(q)) x >>= 1 return gates
f11a4ddd83a6e2d1d7348c8ef3b5693a26e3e26d
3,649,616
def manage(id): """Manage room request.""" room_request = RoomRequest.query.get(id) if room_request is None: return abort(404) return render_template('room_request/manage.html', room_request=room_request)
5a565342adbe53a647cb622e4688d1c26d88078d
3,649,617
def ger(self, y): """Computer an outer product between two vectors""" assert self.dim() == 1 and y.dim() == 1, "Outer product must be on 1D tensors" return self.view((-1, 1)).matmul(y.view((1, -1)))
003dda3dd678fdcf35f63f80c064586320c97d23
3,649,618
def load_data(database_filepath): """ Input: 1. database_filepath: the path of cleaned datasets Output: 1. X: all messages 2. y: category columns generated by cleaning process 3. category_names: category columns' names Process: 1. Read-in the datafrmae 2. Select required datasets 3. Generate category columns' names """ # 1. Read-in dataframe engine = create_engine('sqlite:///{}'.format(database_filepath)) df = pd.read_sql_table(database_filepath, engine) # 2. Select required datasets X = df['message'] y = df.iloc[:, 4:] # 3. Generate category columns' names category_names = y.columns return X, y, category_names
15ec78cfac2dfde9294061432514001b21967b93
3,649,619
def lh_fus(temp): """latent heat of fusion Args: temp (float or array): temperature [K] Returns: float or array: latent heat of fusion """ return 3.336e5 + 1.6667e2 * (FREEZE - temp)
8127970612b031d2aaf7598379f41b549a3268e1
3,649,620
def to_eaf(file_path, eaf_obj, pretty=True): """ modified function from https://github.com/dopefishh/pympi/blob/master/pympi/Elan.py Write an Eaf object to file. :param str file_path: Filepath to write to, - for stdout. :param pympi.Elan.Eaf eaf_obj: Object to write. :param bool pretty: Flag to set pretty printing. """ def rm_none(x): try: # Ugly hack to test if s is a string in py3 and py2 basestring def isstr(s): return isinstance(s, basestring) except NameError: def isstr(s): return isinstance(s, str) return {k: v if isstr(v) else str(v) for k, v in x.items() if v is not None} # Annotation Document ADOCUMENT = etree.Element('ANNOTATION_DOCUMENT', eaf_obj.adocument) # Licence for m in eaf_obj.licenses: n = etree.SubElement(ADOCUMENT, 'LICENSE', {'LICENSE_URL': m[1]}) n.text = m[0] # Header HEADER = etree.SubElement(ADOCUMENT, 'HEADER', eaf_obj.header) # Media descriptiors for m in eaf_obj.media_descriptors: etree.SubElement(HEADER, 'MEDIA_DESCRIPTOR', rm_none(m)) # Linked file descriptors for m in eaf_obj.linked_file_descriptors: etree.SubElement(HEADER, 'LINKED_FILE_DESCRIPTOR', rm_none(m)) # Properties for k, v in eaf_obj.properties: etree.SubElement(HEADER, 'PROPERTY', {'NAME': k}).text = str(v) # Time order TIME_ORDER = etree.SubElement(ADOCUMENT, 'TIME_ORDER') for t in sorted(eaf_obj.timeslots.items(), key=lambda x: int(x[0][2:])): etree.SubElement(TIME_ORDER, 'TIME_SLOT', rm_none( {'TIME_SLOT_ID': t[0], 'TIME_VALUE': t[1]})) # Tiers for t in sorted(eaf_obj.tiers.items(), key=lambda x: x[1][3]): tier = etree.SubElement(ADOCUMENT, 'TIER', rm_none(t[1][2])) for a in t[1][0].items(): ann = etree.SubElement(tier, 'ANNOTATION') alan = etree.SubElement(ann, 'ALIGNABLE_ANNOTATION', rm_none( {'ANNOTATION_ID': a[0], 'TIME_SLOT_REF1': a[1][0], 'TIME_SLOT_REF2': a[1][1], 'SVG_REF': a[1][3]})) etree.SubElement(alan, 'ANNOTATION_VALUE').text = a[1][2] for a in t[1][1].items(): ann = etree.SubElement(tier, 'ANNOTATION') rean = etree.SubElement(ann, 'REF_ANNOTATION', rm_none( {'ANNOTATION_ID': a[0], 'ANNOTATION_REF': a[1][0], 'PREVIOUS_ANNOTATION': a[1][2], 'SVG_REF': a[1][3]})) etree.SubElement(rean, 'ANNOTATION_VALUE').text = a[1][1] # Linguistic types for l in eaf_obj.linguistic_types.values(): etree.SubElement(ADOCUMENT, 'LINGUISTIC_TYPE', rm_none(l)) # Locales for lc, (cc, vr) in eaf_obj.locales.items(): etree.SubElement(ADOCUMENT, 'LOCALE', rm_none( {'LANGUAGE_CODE': lc, 'COUNTRY_CODE': cc, 'VARIANT': vr})) # Languages for lid, (ldef, label) in eaf_obj.languages.items(): etree.SubElement(ADOCUMENT, 'LANGUAGE', rm_none( {'LANG_ID': lid, 'LANG_DEF': ldef, 'LANG_LABEL': label})) # Constraints for l in eaf_obj.constraints.items(): etree.SubElement(ADOCUMENT, 'CONSTRAINT', rm_none( {'STEREOTYPE': l[0], 'DESCRIPTION': l[1]})) # Controlled vocabularies for cvid, (descriptions, cv_entries, ext_ref) in\ eaf_obj.controlled_vocabularies.items(): cv = etree.SubElement(ADOCUMENT, 'CONTROLLED_VOCABULARY', rm_none({'CV_ID': cvid, 'EXT_REF': ext_ref})) for lang_ref, description in descriptions: des = etree.SubElement(cv, 'DESCRIPTION', {'LANG_REF': lang_ref}) if description: des.text = description for cveid, (values, ext_ref) in cv_entries.items(): cem = etree.SubElement(cv, 'CV_ENTRY_ML', rm_none({ 'CVE_ID': cveid, 'EXT_REF': ext_ref})) for value, lang_ref, description in values: val = etree.SubElement(cem, 'CVE_VALUE', rm_none({ 'LANG_REF': lang_ref, 'DESCRIPTION': description})) val.text = value # Lexicon refs for l in eaf_obj.lexicon_refs.values(): etree.SubElement(ADOCUMENT, 'LEXICON_REF', rm_none(l)) # Exteral refs for eid, (etype, value) in eaf_obj.external_refs.items(): etree.SubElement(ADOCUMENT, 'EXTERNAL_REF', rm_none( {'EXT_REF_ID': eid, 'TYPE': etype, 'VALUE': value})) # https://github.com/dopefishh/pympi/blob/master/pympi/Elan.py return '<?xml version="1.0" encoding="UTF-8"?>'+etree.tostring(ADOCUMENT, encoding='utf-8').decode("utf-8")
605e7f711f34661daae6869419d6f8bebb05a2c4
3,649,621
def delete_station(station_id): """Delete station from stations :param station_id: :return: string """ logger.debug(f"Call delete_stations: {station_id}") # Load old data into structure stations = load_stations() # Find index in list of stations target_index = find_index_in_list_of_dict( lst=stations, key='StationID', value=station_id ) # remove from list by index stations.remove(stations[target_index]) # save changes save_stations(stations) return {"status": "success"}
d377f2b029cb206ec78acf220a83bf88df8fd758
3,649,622
def query_for_build_status(service, branch, target, starting_build_id): """Query Android Build Service for the status of the 4 builds in the target branch whose build IDs are >= to the provided build ID""" try: print ('Querying Android Build APIs for builds of {} on {} starting at' ' buildID {}').format(target, branch, starting_build_id) return service.build().list(buildType='submitted', branch=branch, target=target, maxResults='4', startBuildId=starting_build_id).execute() except errors.HttpError as error: print 'HTTP Error while attempting to query the build status.' print error return None
4e1e04dae1ce13217374207a1b57d7380552dfc5
3,649,623
def create_pool( dsn=None, *, min_size=10, max_size=10, max_queries=50000, max_inactive_connection_lifetime=300.0, setup=None, init=None, loop=None, authenticator=None, **connect_kwargs, ): """Create an Asyncpg connection pool through Approzium authentication. Takes same arguments as ``asyncpg.create_pool`` in addition to the `authenticator` argument :return: An instance of :class:`~approzium.asyncpg.pool._ApproziumPool`. Example: .. code-block:: python >>> import approzium >>> from approzium.asyncpg import create_pool >>> auth = approzium.AuthClient("myauthenticator.com:6001", disable_tls=True) >>> pool = await create_pool(user='postgres', authenticator=auth) >>> con = await pool.acquire() >>> try: ... await con.fetch('SELECT 1') ... finally: ... await pool.release(con) """ return _ApproziumPool( dsn, connection_class=Connection, min_size=min_size, max_size=max_size, max_queries=max_queries, loop=loop, setup=setup, init=init, max_inactive_connection_lifetime=max_inactive_connection_lifetime, authenticator=authenticator, **connect_kwargs, )
0b50a4cba07fb4797e04cc384dd46d1e21deed12
3,649,624
import logging def _get_all_schedule_profile_entries_v1(profile_name, **kwargs): """ Perform a GET call to get all entries of a QoS schedule profile :param profile_name: Alphanumeric name of the schedule profile :param kwargs: keyword s: requests.session object with loaded cookie jar keyword url: URL in main() function :return: Dictionary containing schedule profile entry URIs """ target_url = kwargs["url"] + "system/qos/%s/queues" % profile_name response = kwargs["s"].get(target_url, verify=False) if not common_ops._response_ok(response, "GET"): logging.warning("FAIL: Getting dictionary of URIs of entries in QoS schedule profile '%s' failed with status code %d: %s" % (profile_name, response.status_code, response.text)) else: logging.info("SUCCESS: Getting dictionary of URIs of entries in QoS schedule profile '%s' succeeded" % profile_name) schedule_profile_entries = response.json() # for some reason, this API returns a list when empty, and a dictionary when there is data # make this function always return a dictionary if not schedule_profile_entries: return {} else: return schedule_profile_entries
32d6278ce6704feb5831012c2d0050b226fc7dfa
3,649,625
def loadSource(path): """Loads a list of transportReactions. Format: R("Macgamb_Transp") R("Madnb_Transp") R("MalaDb_Transp")...""" file = open(path, 'r') sources = [line.strip() for line in file] file.close() return sources
244e9e5619a5039822ef14dfbb3d99b55cb6cc74
3,649,626
from typing import Optional import struct def frombin( __data: Bitcode, __dtype: SupportedDataType | bytes, num: int = 1, *, encoding: Optional[str] = None, signed: bool = True, ) -> ValidDataset: """converts a string of 0 and 1 back into the original data Args: data (BinaryCode): a string of 0 and 1 dtype (Union[int, float, str]): the desired data type to convert to Raises: TypeError: if the desired datatype is not of the integer, floats or strings data type Returns: Union[int, float, str]: converted data """ if __dtype is int: stop = len(__data) step = stop // num if signed: decoded_data = [None] * num for index, i in enumerate(range(0, stop, step)): bindata = __data[i : i + step] decoded_data[index] = int("-%s" % (bindata) if bindata[0] == "1" else bindata, 2) else: decoded_data = [int(__data[i : i + step], 2) for i in range(0, stop, step)] return decoded_data if num != 1 else decoded_data[0] bytedata = int(__data, 2).to_bytes((len(__data) + 7) // 8, config.ENDIAN) if __dtype in ("s", str): return "".join(bytes.decode(bytedata, encoding or config.DEFAULT_STR_FORMAT)) else: try: decoded_data = list( struct.unpack("%s%s%s" % (">" if config.ENDIAN == "big" else "<", num, __dtype), bytedata) ) return decoded_data if num != 1 else decoded_data[0] except struct.error: raise TypeError(f"cannot convert byte data to '{__dtype}'")
6fa7219ea8622071c7bb3277c8b59717543e9286
3,649,627
def check_size(): """Assumes the problem size has been set by set_size before some operation. This checks if the size was changed Size is defined as (PIs, POs, ANDS, FF, max_bmc) Returns TRUE is size is the same""" global npi, npo, nands, nff, nmd #print n_pis(),n_pos(),n_ands(),n_latches() result = ((npi == n_pis()) and (npo == n_pos()) and (nands == n_ands()) and (nff == n_latches()) ) return result
361edb3b4f20a3ae4920c784ad2d1c56fe35e2d6
3,649,628
def vrms2dbm(vp): """ Converts a scalar or a numpy array from volts RMS to dbm assuming there is an impedence of 50 Ohm Arguments: - vp: scalar or numpy array containig values in volt RMS to be converted in dmb Returns: - scalar or numpy array containing the result """ return 10. * np.log10(20. * (vp) ** 2.)
7d0f76ab74cf82d2d56f97840153f1b9bc3cb8a8
3,649,629
def aa_i2c_read (aardvark, slave_addr, flags, data_in): """usage: (int return, u08[] data_in) = aa_i2c_read(Aardvark aardvark, u16 slave_addr, AardvarkI2cFlags flags, u08[] data_in) All arrays can be passed into the API as an ArrayType object or as a tuple (array, length), where array is an ArrayType object and length is an integer. The user-specified length would then serve as the length argument to the API funtion (please refer to the product datasheet). If only the array is provided, the array's intrinsic length is used as the argument to the underlying API function. Additionally, for arrays that are filled by the API function, an integer can be passed in place of the array argument and the API will automatically create an array of that length. All output arrays, whether passed in or generated, are passed back in the returned tuple.""" if not AA_LIBRARY_LOADED: return AA_INCOMPATIBLE_LIBRARY # data_in pre-processing __data_in = isinstance(data_in, int) if __data_in: (data_in, num_bytes) = (array_u08(data_in), data_in) else: (data_in, num_bytes) = isinstance(data_in, ArrayType) and (data_in, len(data_in)) or (data_in[0], min(len(data_in[0]), int(data_in[1]))) if data_in.typecode != 'B': raise TypeError("type for 'data_in' must be array('B')") # Call API function (_ret_) = api.py_aa_i2c_read(aardvark, slave_addr, flags, num_bytes, data_in) # data_in post-processing if __data_in: del data_in[max(0, min(_ret_, len(data_in))):] return (_ret_, data_in)
59cca99e3ae811e957f9dd053205f3639c1451a4
3,649,630
import os def get_log_dir(env=None): """ Get directory to use for writing log files. There are multiple possible locations for this. The ROS_LOG_DIR environment variable has priority. If that is not set, then ROS_HOME/log is used. If ROS_HOME is not set, $HOME/.ros/log is used. @param env: override os.environ dictionary @type env: dict @return: path to use use for log file directory @rtype: str """ if env is None: env = os.environ if ROS_LOG_DIR in env: return env[ROS_LOG_DIR] else: return os.path.join(get_ros_home(env), 'log')
9ede24a3afdf9869171c49f7f238b5b0a608830b
3,649,631
def urbandictionary_search(search): """ Searches urbandictionary's API for a given search term. :param search: The search term str to search for. :return: definition str or None on no match or error. """ if str(search).strip(): urban_api_url = 'http://api.urbandictionary.com/v0/define?term=%s' % search response = util.web.http_get(url=urban_api_url, json=True) if response['json'] is not None: try: definition = response['json']['list'][0]['definition'] return definition.encode('ascii', 'ignore') except (KeyError, IndexError): return None else: return None
3cd63486adc11f3ca20d4cd6216006d3f2d2239f
3,649,632
def Performance(ALGORITHM_CONFIG, CELLULAR_MODEL_CONFIG, alog_name): """ Performance testing """ # Server profile: num_ues=200, APs=16, Scale=200.0, explore_radius=1 loadbalanceRL = interface.Rainman2(SETTINGS) loadbalanceRL.algorithm_config = ALGORITHM_CONFIG loadbalanceRL.environment_config = CELLULAR_MODEL_CONFIG if alog_name=='linear': result_linear = loadbalanceRL.run_experiment( 'Cellular', 'Qlearning', 'LinearRegression') return result_linear if alog_name=='Naive': result_Naive = loadbalanceRL.run_experiment( 'Cellular', 'Qlearning', 'Naive') return result_Naive if alog_name=='NN': result_NN = loadbalanceRL.run_experiment( 'Cellular', 'Qlearning', 'NN') return result_NN if alog_name=='DQN': result_DQN = loadbalanceRL.run_experiment( 'Cellular', 'Qlearning', 'DQN') return result_DQN
87e5d6b0c400af0262b6a2c746e855b9b71a5c35
3,649,633
def launch(sid): """ Launch a scan Launch the scan specified by the sid. """ data = connect('POST', '/scans/{0}/launch'.format(sid)) return data['scan_uuid']
fa99e7a50e9e2ddb30ba131ebd61c998c2cdabaa
3,649,634
import ast def transpose_dict(data, data_key): """Function: transpose_dict Description: Transpose specified keys in a list of dictionaries to specified data types or None. Arguments: (input) data -> Initial list of dictionaries. (input) data_key -> Dictionary of keys and data types. (output) mod_data -> Modified list of dictionaries. """ data = list(data) data_key = dict(data_key) mod_data = list() literal_list = ["bool", "list"] for list_item in data: list_item = dict(list_item) for item in set(list_item.keys()) & set(data_key.keys()): if not list_item[item] or list_item[item] == "None": list_item[item] = None elif data_key[item] == "int": list_item[item] = int(list_item[item]) elif data_key[item] in literal_list: list_item[item] = ast.literal_eval(list_item[item]) mod_data.append(list_item) return mod_data
7675ea2f80e9e85993dc99a2a31df04abfeba2c8
3,649,635
def aligner_to_symbol(calls): """ Assign symbols to different aligners in the input file Set the attribute of the class instances return a list of indices for which each aligner is found uniquely and all aligners sorted by aligners """ symbols = ['o', '+', 'x', 'v', '*', 'D', 's', 'p', '8', 'X'] aligners = sorted(set([c.aligner for c in calls]), reverse=True) aligner_to_symbol_dict = {a: s for a, s in zip(aligners, symbols)} for c in calls: c.shape = aligner_to_symbol_dict[c.aligner] index_and_aligners = zip([[c.aligner for c in calls].index(i) for i in aligners], aligners) return zip(*sorted(index_and_aligners, key=lambda x: x[1]))
b9cef3ae33b6ce84daf78a8bc8ce528f97d7a8a6
3,649,636
import sys def timestamped_filename(line): """Given a line like '.... filename <timestamp>', return filename.""" m = re_timestamped_line.search(line) if m: return m.group("filename") else: print >> sys.stderr, "Error: could not find filename in:", line return None
5c63f976b1b56f347ab5926bd4247dad342b44e6
3,649,637
def nfvi_create_subnet(network_uuid, subnet_name, ip_version, subnet_ip, subnet_prefix, gateway_ip, dhcp_enabled, callback): """ Create a subnet """ cmd_id = _network_plugin.invoke_plugin('create_subnet', network_uuid, subnet_name, ip_version, subnet_ip, subnet_prefix, gateway_ip, dhcp_enabled, callback=callback) return cmd_id
383a0ffeb6e364f761c8d4038bf8e53f367021c1
3,649,638
def convertCRS(powerplants, substations, towers, crs, grid): """ :param powerplants: :param substations: :param towers: :param crs: :return: """ substations.to_crs(crs) # powerplants = powerplants.set_crs(crs) # powerplants = powerplants.to_crs(crs) # print(powerplants.crs) towers = towers.to_crs(crs) return(substations, powerplants, towers, grid)
9fcb8c51323c00935ba2c882502a273f2bf532ff
3,649,639
def get_pathway(page_name, end_pg, max_len, trail, paths): """ Finds a list of all paths from a starting wikipedia page to an end page Assumes page_name is a valid wikipedia article title and end_pg is a valid Wikipedia Page Object Args: page_name: (Str) The name of the current article end_pg: (Wikipedia Page) The page the path should end at max_len: (Int) The number of maximum steps between the start page and the end page trail: (List) The current path being searched Paths: (List) A set of all the paths between the starting page and the end page Returns nothing but appends a given list of paths """ trail.append(page_name) # add the current page to the current trail # Check if the page has the the end page as a link and # add it to thhe list of paths if h.has_end(page_name, end_pg): # if the page contains a link to the end page # add the end page to the trail, and add the trail to the paths list trail.append(end_pg.title) paths.append(trail) print(f"**Pathway {len(paths)}**: {h.plot_path(trail)}") return None # if the trail is above the maximum length return none elif max_len <= 1: print(f"Not a path: {trail}") return None else: # Check each of the links in the page # Continue branching looking for the end for link in h.get_links(page_name): if link not in trail: if h.is_page(link): get_pathway(link, end_pg, max_len - 1, trail[:], paths)
3b8effcb1f5295a854d32cc6438093f5ba7c1fa4
3,649,640
def clip_to_ndc(point_clip_space, name="clip_to_ndc"): """Transforms points from clip to normalized device coordinates (ndc). Note: In the following, A1 to An are optional batch dimensions. Args: point_clip_space: A tensor of shape `[A1, ..., An, 4]`, where the last dimension represents points in clip space. name: A name for this op. Defaults to "clip_to_ndc". Raises: ValueError: If `point_clip_space` is not of size 4 in its last dimension. Returns: A tensor of shape `[A1, ..., An, 3]`, containing `point_clip_space` in normalized device coordinates. """ with tf.name_scope(name): point_clip_space = tf.convert_to_tensor(value=point_clip_space) shape.check_static( tensor=point_clip_space, tensor_name="point_clip_space", has_dim_equals=(-1, 4)) w = point_clip_space[..., -1:] return point_clip_space[..., :3] / w
ee49d891da941b6da48797035c5b976f5d10762d
3,649,641
def korrektur(wordfile, datei): """Patch aus korrigierten Einträgen""" if not datei: datei = 'korrektur.todo' teste_datei(datei) korrekturen = {} for line in open(datei, 'r'): if line.startswith('#'): continue # Dekodieren, Zeilenende entfernen line = line.decode('utf8').strip() if not line: continue # Eintrag ggf. komplettieren if u';' not in line: line = u'%s;%s' % (join_word(line), line) entry = WordEntry(line) key = entry[0] entry.regelaenderungen() # teste auf Dinge wie s-t/-st korrekturen[key] = entry wortliste = list(wordfile) wortliste_neu = [] # korrigierte Liste for entry in wortliste: key = entry[0] if key in korrekturen: entry = korrekturen.pop(key) wortliste_neu.append(entry) if korrekturen: print korrekturen # übrige Einträge return (wortliste, wortliste_neu)
31b37d0787738d3424d8daacc4af945e883aeb9d
3,649,642
def read_number(dtype, prompt='', floor=None, ceil=None, repeat=False): """ Reads a number within specified bounds. """ while True: try: result = dtype(input(prompt)) if floor is not None and result < floor: raise ValueError(f'Number must be no less than {floor}.') if ceil is not None and result > ceil: raise ValueError(f'Number must be no greater than {ceil}.') except ValueError as e: print(e) result = None if result is not None or not repeat: return result
a528b1f5912ba4bab0b87c87004311778eaa8187
3,649,643
from typing import Optional def dem_adjust( da_elevtn: xr.DataArray, da_flwdir: xr.DataArray, da_rivmsk: Optional[xr.DataArray] = None, flwdir: Optional[pyflwdir.FlwdirRaster] = None, connectivity: int = 4, river_d8: bool = False, logger=logger, ) -> xr.DataArray: """Returns hydrologically conditioned elevation. The elevation is conditioned to D4 (`connectivity=4`) or D8 (`connectivity=8`) flow directions based on the algorithm described in Yamazaki et al. [1]_ The method assumes the original flow directions are in D8. Therefore, if `connectivity=4`, an intermediate D4 conditioned elevation raster is derived first, based on which new D4 flow directions are obtained used to condition the original elevation. Parameters ---------- da_elevtn, da_flwdir, da_rivmsk : xr.DataArray elevation [m+REF] D8 flow directions [-] binary river mask [-], optional flwdir : pyflwdir.FlwdirRaster, optional D8 flow direction raster object. If None it is derived on the fly from `da_flwdir`. connectivity: {4, 8} D4 or D8 flow connectivity. river_d8 : bool If True and `connectivity==4`, additionally condition river cells to D8. Requires `da_rivmsk`. Returns ------- xr.Dataset Dataset with hydrologically adjusted elevation ('elevtn') [m+REF] References ---------- .. [1] Yamazaki et al. (2012). Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modeling. Journal of Hydrology, 436-437, 81–91. https://doi.org/10.1016/j.jhydrol.2012.02.045 See Also -------- pyflwdir.FlwdirRaster.dem_adjust pyflwdir.FlwdirRaster.dem_dig_d4 """ # get flow directions for entire domain and for rivers if flwdir is None: flwdir = flwdir_from_da(da_flwdir, mask=False) if connectivity == 4 and river_d8 and da_rivmsk is None: raise ValueError('Provide "da_rivmsk" in combination with "river_d8"') elevtn = da_elevtn.values nodata = da_elevtn.raster.nodata logger.info(f"Condition elevation to D{connectivity} flow directions.") # get D8 conditioned elevation elevtn = flwdir.dem_adjust(elevtn) # get D4 conditioned elevation (based on D8 conditioned!) if connectivity == 4: rivmsk = da_rivmsk.values == 1 if da_rivmsk is not None else None # derive D4 flow directions with forced pits at original locations d4 = pyflwdir.dem.fill_depressions( elevtn=flwdir.dem_dig_d4(elevtn, rivmsk=rivmsk, nodata=nodata), nodata=nodata, connectivity=connectivity, idxs_pit=flwdir.idxs_pit, )[1] # condition the DEM to the new D4 flow dirs flwdir_d4 = pyflwdir.from_array( d4, ftype="d8", transform=flwdir.transform, latlon=flwdir.latlon ) elevtn = flwdir_d4.dem_adjust(elevtn) # condition river cells to D8 if river_d8: flwdir_river = flwdir_from_da(da_flwdir, mask=rivmsk) elevtn = flwdir_river.dem_adjust(elevtn) # assert np.all((elv2 - flwdir_d4.downstream(elv2))>=0) # save to dataarray da_out = xr.DataArray( data=elevtn, coords=da_elevtn.raster.coords, dims=da_elevtn.raster.dims, ) da_out.raster.set_nodata(nodata) da_out.raster.set_crs(da_elevtn.raster.crs) return da_out
d59f5bae1df44cc84c4eb98d8dd14ca923dc4809
3,649,644
from copy import copy from numpy import zeros, unique from itertools import product def trainModel(label,bestModel,obs,trainSet,testSet,modelgrid,cv,optMetric='auc'): """ Train a message classification model """ pred = zeros(len(obs)) fullpred = zeros((len(obs),len(unique(obs)))) model = copy(bestModel.model) #find the best model via tuning grid for tune in [dict(list(zip(modelgrid, v))) for v in product(*list(modelgrid.values()))]: for k in list(tune.keys()): setattr(model,k,tune[k]) i = 0 for tr, vl in cv: model.fit(trainSet.ix[tr].values,obs[tr]) pred[vl] = model.predict_proba(trainSet.ix[vl].values)[:,1] fullpred[vl,:] = model.predict_proba(trainSet.ix[vl].values) i += 1 bestModel.updateModel(pred,fullpred,obs,model,trainSet.columns.values,tune,optMetric=optMetric) #re-train with all training data bestModel.model.fit(trainSet.values,obs) print(bestModel) return {label: {'pred': pred, 'test_pred':bestModel.model.predict_proba(testSet)[:,1]}}
fdf60d23894bfd997cdf7fa82cb59257ad7b2954
3,649,645
def vm_deploy(vm, force_stop=False): """ Internal API call used for finishing VM deploy; Actually cleaning the json and starting the VM. """ if force_stop: # VM is running without OS -> stop cmd = 'vmadm stop %s -F >/dev/null 2>/dev/null; vmadm get %s 2>/dev/null' % (vm.uuid, vm.uuid) else: # VM is stopped and deployed -> start cmd = 'vmadm start %s >/dev/null 2>/dev/null; vmadm get %s 2>/dev/null' % (vm.uuid, vm.uuid) msg = 'Deploy server' lock = 'vmadm deploy ' + vm.uuid meta = { 'output': { 'returncode': 'returncode', 'stderr': 'message', 'stdout': 'json' }, 'replace_stderr': ((vm.uuid, vm.hostname),), 'msg': msg, 'vm_uuid': vm.uuid } callback = ('api.vm.base.tasks.vm_deploy_cb', {'vm_uuid': vm.uuid}) return execute(ERIGONES_TASK_USER, None, cmd, meta=meta, lock=lock, callback=callback, queue=vm.node.fast_queue, nolog=True, ping_worker=False, check_user_tasks=False)
324dffa2a181d4b796a8f263eeb57d1452826c78
3,649,646
import sys def get_cpuinfo(): """Returns the flags of the processor.""" if sys.platform == 'darwin': return platforms.osx.get_cpuinfo() if sys.platform == 'win32': return platforms.win.get_cpuinfo() if sys.platform == 'linux2': return platforms.linux.get_cpuinfo() return {}
2ac223337d54426d36c9fda8d88f3545c6d4c30a
3,649,647
from datetime import datetime def previous_analytics(request, package, id): """ Return a list of previous analytics for the given package. Only shows analytics which the user can access. Also limits to the last 100 of them! """ context = [] profile = request.user.get_profile() #TODO: this code block needs to go into a separate method # together with the cut-off logic in _appdetails_get_objects_fast() if profile.is_subscribed(): if (profile.get_subscription_plan_name() == 'Beaker'): # show everything cut_off = datetime.now() else: # show everything older than one week cut_off = datetime.now() - timedelta(days=7) else: # show everything older than one month cut_off = datetime.now() - timedelta(days=30) #TODO: this query can be very slow if there are # large number of previous analytics available for adv in Advisory.objects.filter( status=STATUS_LIVE, old__package=id, new__released_on__lte=cut_off, ).order_by( '-new__released_on', '-old__released_on' )[:100]: context.append( { 'name' : adv.__unicode__(), 'url' : adv.get_full_path(), } ) return render( request, 'previous_analytics.html', { 'context' : context } )
9722cd424de89cfe8e189b425fe2db64cb1e129b
3,649,648
def get_monitor_value(image, monitor_key): """Return the monitor value from an image using an header key. :param fabio.fabioimage.FabioImage image: Image containing the header :param str monitor_key: Key containing the monitor :return: returns the monitor else returns 1.0 :rtype: float """ if monitor_key is None or monitor_key == "": return 1.0 try: monitor = header_utils.get_monitor_value(image, monitor_key) return monitor except header_utils.MonitorNotFound: logger.warning("Monitor %s not found. No normalization applied.", monitor_key) return 1.0 except Exception as e: logger.warning("Fail to load monitor. No normalization applied. %s", str(e)) return 1.0
cf74ab608837b6f5732a70d997afa1fe424b2ee1
3,649,649
import os def resources(request): """ Page for accessing RMG resources, including papers and presentations """ folder = os.path.join(settings.STATIC_ROOT, 'presentations') files = [] if os.path.isdir(folder): files = os.listdir(folder) toRemove = [] for f in files: if not os.path.isfile(os.path.join(folder, f)): # Remove any directories toRemove.append(f) elif f[0] == '.': # Remove any hidden files toRemove.append(f) for item in toRemove: files.remove(item) # Parse file names for information to display on webpage presentations = [] if files: files.sort() for f in files: name = os.path.splitext(f)[0] parts = name.split('_') date = parts[0] date = date[0:4] + '-' + date[4:6] + '-' + date[6:] title = ' '.join(parts[1:]) title = title.replace('+', ' and ') presentations.append((title, date, f)) return render(request, 'resources.html', {'presentations': presentations})
857d4a89571da2270ca072965c64840f0a022268
3,649,650
def default_thread_index (value, threads): """ find index in threads array value :param value: :param threads: :return: """ value_index = threads.index(value) return value_index
7be2efb6579f2880f53dac11705ba6a068c2d92d
3,649,651
import requests def new_things(url): """Attempts to register new things on the directory Takes 1 argument: url - URL containing thing descriptions to register """ response = requests.post('{}/things/register_url'.format(settings.THING_DIRECTORY_HOST), headers={ 'Authorization': settings.THING_DIRECTORY_KEY, }, json={'url':url}) response.raise_for_status() return response.json()['uuids']
0336d094e9581f3382dd33ac8a9bf8fd43754d82
3,649,652
def isID(value): """Checks if value looks like a Ulysses ID; i.e. is 22 char long. Not an exact science; but good enougth to prevent most mistakes. """ return len(value) == 22
527db9446adc2b88c2117bd35c74474c3e7bad24
3,649,653
def tool_on_path(tool: str) -> str: """ Helper function to determine if a given tool is on the user's PATH variable. Wraps around runspv.tool_on_path(). :param tool: the tool's filename to look for. :return: the path of the tool, else ToolNotOnPathError if the tool isn't on the PATH. """ return runspv.tool_on_path(tool)
52963a818bcea59eaaec1d20000d3a4a1296ee26
3,649,654
def DefineDecode(i, n, invert=False): """ Decode the n-bit number i. @return: 1 if the n-bit input equals i """ class _Decode(Circuit): name = 'Decode_{}_{}'.format(i, n) IO = ['I', In(Bits[ n ]), 'O', Out(Bit)] @classmethod def definition(io): if n <= 8: j = 1 << i if invert: m = 1 << n mask = (1 << m) - 1 j = mask & (~j) decode = ROMN(j, n) else: nluts = (n + 3) // 4 data = nluts * [0] for j in range(nluts): data[j] = (i >> 4*j) & 0xf # 4-bit pieces decode = FlatHalfCascade(n, 4, data, ZERO, 1) wire(io.I, decode.I) wire(decode.O, io.O) return _Decode
9be19b191a1048dffd8a6fe82caabdcb1dd33f42
3,649,655
def absent(name, database, **client_args): """ Ensure that given continuous query is absent. name Name of the continuous query to remove. database Name of the database that the continuous query was defined on. """ ret = { "name": name, "changes": {}, "result": True, "comment": "continuous query {0} is not present".format(name), } if __salt__["influxdb.continuous_query_exists"](database, name, **client_args): if __opts__["test"]: ret["result"] = None ret["comment"] = ( "continuous query {0} is present and needs to be removed" ).format(name) return ret if __salt__["influxdb.drop_continuous_query"](database, name, **client_args): ret["comment"] = "continuous query {0} has been removed".format(name) ret["changes"][name] = "Absent" return ret else: ret["comment"] = "Failed to remove continuous query {0}".format(name) ret["result"] = False return ret return ret
f280dad71275cd576edbefac9376463a2ab91fc7
3,649,656
def get_ads(client, customer_id, new_ad_resource_names): """Retrieves a google.ads.google_ads.v4.types.AdGroupAd instance. Args: client: A google.ads.google_ads.client.GoogleAdsClient instanc e. customer_id: (str) Customer ID associated with the account. new_ad_resource_names: (str) Resource name associated with the Ad group. Returns: An instance of the google.ads.google_ads.v4.types.AdGroupAd message class of the newly created ad group ad. """ def formatter(given_string): """This helper function is used to assign ' ' to names of resources so that this formatted string can be used within an IN clause. Args: given_string: (str) The string to be formatted. """ results = [] for i in given_string: results.append(repr(i)) return ','.join(results) resouce_names = formatter(new_ad_resource_names) ga_service = client.get_service('GoogleAdsService', version='v4') query = ('SELECT ad_group_ad.ad.id, ' 'ad_group_ad.ad.expanded_text_ad.headline_part1, ' 'ad_group_ad.ad.expanded_text_ad.headline_part2, ' 'ad_group_ad.status, ad_group_ad.ad.final_urls, ' 'ad_group_ad.resource_name ' 'FROM ad_group_ad ' 'WHERE ad_group_ad.resource_name in ({}) '. format(resouce_names)) response = ga_service.search(customer_id, query, PAGE_SIZE) response =iter(response) ads = [] while response: try: current_row = next(response) ads.append(current_row.ad_group_ad) except StopIteration: break return ads
3e1bc99901490c53c66418a63238cf76de282896
3,649,657
def corrfact_vapor_rosolem(h, h_ref=None, const=0.0054): """Correction factor for vapor correction from absolute humidity (g/m3). The equation was suggested by Rosolem et al. (2013). If no reference value for absolute humidity ``h_ref`` is provided, the average value will be used. Parameters ---------- h : float or array of floats Absolute humidity (g / m3) h_ref : float Reference value for absolute humidity const : float Empirical constant, defaults to 0.0054 Returns ------- output : float or array of floats Correction factor for water vapor effect (dimensionless) """ if h_ref is None: h_ref = np.mean(h) return 1 + const * (h - h_ref)
6add20bf118e85e77f245776101169efb9ba4eac
3,649,658
def sine_ease_out(p): """Modeled after quarter-cycle of sine wave (different phase)""" return sin(p * tau)
58a78ad44e04df42f0533b6a94e51d04398407a9
3,649,659
def _extract_codes_from_element_text(dataset, parent_el_xpath, condition=None): # pylint: disable=invalid-name """Extract codes for checking from a Dataset. The codes are being extracted from element text. Args: dataset (iati.data.Dataset): The Dataset to check Codelist values within. parent_el_xpath (str): An XPath to locate the element(s) with the attribute of interest. condition (str): An optional XPath expression to limit the scope of what is extracted. Returns: list of tuple: A tuple in the format: `(str, int)` - The `str` is a matching code from within the Dataset; The `int` is the sourceline at which the parent element is located. """ # include the condition if condition: parent_el_xpath = parent_el_xpath + '[' + condition + ']' parents_to_check = dataset.xml_tree.xpath(parent_el_xpath) located_codes = list() for parent in parents_to_check: located_codes.append((parent.text, parent.sourceline)) return located_codes
45e4ec2a61dc38066ad9a71d41e63a48c6ccde23
3,649,660
def rotate_im(img, angle, interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_REFLECT_101, value=None): """Rotate the image. Rotate the image such that the rotated image is enclosed inside the tightest rectangle. The area not occupied by the pixels of the original image is colored black. Parameters ---------- image : numpy.ndarray numpy image angle : float angle by which the image is to be rotated Returns ------- numpy.ndarray Rotated Image """ # grab the dimensions of the image and then determine the # centre (h, w) = img.shape[:2] (cX, cY) = (w // 2, h // 2) # grab the rotation matrix (applying the negative of the # angle to rotate clockwise), then grab the sine and cosine # (i.e., the rotation components of the matrix) M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0) cos = np.abs(M[0, 0]) sin = np.abs(M[0, 1]) # compute the new bounding dimensions of the image nW = int((h * sin) + (w * cos)) nH = int((h * cos) + (w * sin)) # adjust the rotation matrix to take into account translation M[0, 2] += (nW / 2) - cX M[1, 2] += (nH / 2) - cY warp_fn = _maybe_process_in_chunks( cv2.warpAffine, M=M, dsize=(nW, nH), flags=interpolation, borderMode=border_mode, borderValue=value ) return warp_fn(img)
40ab5d9761bdb2044fe99af4d5a51187edd34327
3,649,661
def list_modules(curdir=CURDIR, pattern=MOD_FILENAME_RE): """List names from {ok,ng}*.py. """ return sorted( m.name.replace('.py', '') for m in curdir.glob('*.py') if pattern.match(m.name) )
249b276ec5f42534a4ad162c02110bcf1f9cadf0
3,649,662
def encode_set_validator_config_and_reconfigure_script( validator_account: AccountAddress, consensus_pubkey: bytes, validator_network_addresses: bytes, fullnode_network_addresses: bytes, ) -> Script: """# Summary Updates a validator's configuration, and triggers a reconfiguration of the system to update the validator set with this new validator configuration. Can only be successfully sent by a Validator Operator account that is already registered with a validator. # Technical Description This updates the fields with corresponding names held in the `ValidatorConfig::ValidatorConfig` config resource held under `validator_account`. It then emits a `DiemConfig::NewEpochEvent` to trigger a reconfiguration of the system. This reconfiguration will update the validator set on-chain with the updated `ValidatorConfig::ValidatorConfig`. # Parameters | Name | Type | Description | | ------ | ------ | ------------- | | `validator_operator_account` | `&signer` | Signer reference of the sending account. Must be the registered validator operator for the validator at `validator_address`. | | `validator_account` | `address` | The address of the validator's `ValidatorConfig::ValidatorConfig` resource being updated. | | `consensus_pubkey` | `vector<u8>` | New Ed25519 public key to be used in the updated `ValidatorConfig::ValidatorConfig`. | | `validator_network_addresses` | `vector<u8>` | New set of `validator_network_addresses` to be used in the updated `ValidatorConfig::ValidatorConfig`. | | `fullnode_network_addresses` | `vector<u8>` | New set of `fullnode_network_addresses` to be used in the updated `ValidatorConfig::ValidatorConfig`. | # Common Abort Conditions | Error Category | Error Reason | Description | | ---------------- | -------------- | ------------- | | `Errors::NOT_PUBLISHED` | `ValidatorConfig::EVALIDATOR_CONFIG` | `validator_address` does not have a `ValidatorConfig::ValidatorConfig` resource published under it. | | `Errors::REQUIRES_ROLE` | `Roles::EVALIDATOR_OPERATOR` | `validator_operator_account` does not have a Validator Operator role. | | `Errors::INVALID_ARGUMENT` | `ValidatorConfig::EINVALID_TRANSACTION_SENDER` | `validator_operator_account` is not the registered operator for the validator at `validator_address`. | | `Errors::INVALID_ARGUMENT` | `ValidatorConfig::EINVALID_CONSENSUS_KEY` | `consensus_pubkey` is not a valid ed25519 public key. | | `Errors::INVALID_STATE` | `DiemConfig::EINVALID_BLOCK_TIME` | An invalid time value was encountered in reconfiguration. Unlikely to occur. | # Related Scripts * `Script::create_validator_account` * `Script::create_validator_operator_account` * `Script::add_validator_and_reconfigure` * `Script::remove_validator_and_reconfigure` * `Script::set_validator_operator` * `Script::set_validator_operator_with_nonce_admin` * `Script::register_validator_config` """ return Script( code=SET_VALIDATOR_CONFIG_AND_RECONFIGURE_CODE, ty_args=[], args=[ TransactionArgument__Address(value=validator_account), TransactionArgument__U8Vector(value=consensus_pubkey), TransactionArgument__U8Vector(value=validator_network_addresses), TransactionArgument__U8Vector(value=fullnode_network_addresses), ], )
8b5e5d259750eecf3cea78e9abba82300baa2626
3,649,663
def _do_ecf_reference_data_import( import_method, widget, logwidget=None, specification_items=None, ecfdate=None, datecontrol=None, ): """Import a new ECF club file. widget - the manager object for the ecf data import tab """ ecffile = widget.datagrid.get_data_source().dbhome # The commented code fails if tkinter is compiled without --enable-threads # as in OpenBSD 5.7 i386 packages. The standard build from FreeBSD ports # until early 2015 at least, when this change was introduced, is compiled # with --enable-threads so the commented code worked. Not sure if the # change in compiler on FreeBSD from gcc to clang made a difference. The # Microsoft Windows' Pythons seem to be compiled with --enable-threads # because the commented code works in that environment. The situation on # OS X, and any GNU-Linux distribution, is not known. # Comparison with the validate_and_copy_ecf_ogd_players_post_2006_rules() # method in the sibling module sqlite3ecfogddataimport, which worked on # OpenBSD 5.7 as it stood, highlighted the changes needed. # ecfdate = widget.get_ecf_date() if not ecffile: return False if not ecfdate: return False results = widget.get_appsys().get_results_database() if not results: return False results.do_database_task( import_method, logwidget=logwidget, taskmethodargs=dict( ecffile=ecffile, ecfdate=ecfdate, parent=widget.get_widget(), # datecontrol=widget.ecfdatecontrol.get(), datecontrol=datecontrol, # See --enable-threads comment just above. ), use_specification_items=specification_items, ) return True
593b1ac77688c92c9fcd3ea8fafb3f5089849293
3,649,664
import ast import inspect def ast_operators(node): """Return a set of all operators and calls in the given AST, or return an error if any are invalid.""" if isinstance(node, (ast.Name, ast.Constant)): return set() elif isinstance(node, ast.BinOp): return {type(node.op)} | ast_operators(node.left) | ast_operators(node.right) elif isinstance(node, ast.UnaryOp): return {type(node.op)} | ast_operators(node.operand) elif isinstance(node, ast.Call): if node.func.id not in METRIC_OPS: raise ValueError(f"Unknown fn `{node.func.id}` in metric equation.") # Make sure the number of args matches the fn signature fn_argspec = inspect.getfullargspec(METRIC_OPS[node.func.id]) if (not node.args or (fn_argspec.varargs is None and fn_argspec.varkw is None and len(node.args) != len(fn_argspec.args))): raise ValueError(f"Unexpected number of args to {node.func.id}") return {node.func.id}.union(*(ast_operators(arg) for arg in node.args)) else: raise TypeError(node)
ce5c69e228fbab682cd41330a058b6f16b8d5d1a
3,649,665
def calibrate_clock(out, tolerance=0.002, dcor=False): """\ currently for F2xx only: recalculate the clock calibration values and write them to the flash. """ device = get_msp430_type() >> 8 variables = {} if device == 0xf2: # first read the segment form the device, so that only the calibration values # are updated. any other data in SegmentA is not changed. segment_a = memory.Memory() segment_a.append(memory.Segment(0x10c0, jtag._parjtag.memread(0x10c0, 64))) # get the settings for all the frequencies for frequency in calibvalues_memory_map: measured_frequency, dco, bcs1 = clock.setDCO( frequency * (1 - tolerance), frequency * (1 + tolerance), maxrsel=15, dcor=dcor ) variables['f%dMHz_dcoctl' % (frequency / 1e6)] = TYPE_8BIT, dco variables['f%dMHz_bcsctl1' % (frequency / 1e6)] = TYPE_8BIT, bcs1 out.write('BCS settings for %s: DCOCTL=0x%02x BCSCTL1=0x%02x\n' % ( nice_frequency(measured_frequency), dco, bcs1) ) segment_a.setMem(calibvalues_memory_map[frequency]['DCO'], chr(dco)) segment_a.setMem(calibvalues_memory_map[frequency]['BCS1'], chr(bcs1)) # erase segment and write new values jtag._parjtag.memerase(jtag.ERASE_SEGMENT, segment_a[0].startaddress) jtag._parjtag.memwrite(segment_a[0].startaddress, segment_a[0].data) else: raise NotImplementedError("--calibrate is not supported on %Xxx" % device) return variables
6ad9940a0b43aff54317ff0b054a5a8e84fa5f73
3,649,666
def get_rejection_listings(username): """ Get Rejection Listings for a user Args: username (str): username for user """ activities = models.ListingActivity.objects.for_user(username).filter( action=models.ListingActivity.REJECTED) return activities
47f7078f193de651f282d1823900cd876bf9fd93
3,649,667
def quadratic_weighted_kappa(y_true, y_pred): """ QWK (Quadratic Weighted Kappa) Score Args: y_true: target array. y_pred: predict array. must be a discrete format. Returns: QWK score """ return cohen_kappa_score(y_true, y_pred, weights='quadratic')
fe3208d58cfbed7fdc51ee6069bb4d72584ea6d7
3,649,668
def statistika(): """Posodobi podatke in preusmeri na statistika.html""" check_user_id() data_manager.load_data_from_file() data_manager.data_for_stats() return bottle.template("statistika.html", data_manager=data_manager)
afc72610e4ca245089b131d06dfb5ed8a172615c
3,649,669
def decrement(x): """Given a number x, returns x - 1 unless that would be less than zero, in which case returns 0.""" x -= 1 if x < 0: return 0 else: return x
56b95324c147a163d3bdd0e9f65782095b0a4def
3,649,670
def get_dagmaf(maf: msa.Maf) -> DAGMaf.DAGMaf: """Converts MAF to DagMaf. Args: maf: MAF to be converted. Returns: DagMaf built from the MAF. """ sorted_blocks = sort_mafblocks(maf.filecontent) dagmafnodes = [ DAGMaf.DAGMafNode(block_id=b.id, alignment=b.alignment, orient=b.orient, order=b.order(), out_edges=b.out_edges) for b in sorted_blocks ] return DAGMaf.DAGMaf(dagmafnodes)
40fd06a9429874f1ca7188f2ff185c4dd8b64e01
3,649,671
def optdat10(area,lpdva,ndvab,nglb): """Fornece dados para a otimizacao""" # Tipo de funcao objetivo: tpobj==1 ---Peso # tpobj==2 ---Energia # tpobj==3 ---Máxima tensão # tpobj==4 ---Máximo deslocamento # tpobj = 1 # # Tipo de funcao restrição: tpres==1 ---Peso # tpres==2 ---Tensão # tpres==3 ---Tensão e deslocamento # tpres==4 ---Deslocamento # tpres==5 ---Energia tpres = 2 # # Entrar com os valores limites das variáveis de projeto # vlb---limite inferiores # vub---limite superiores # x0 --- valor inicial # xpdva = np.zeros(ndvab) for idvab in range(ndvab): iel = lpdva[idvab] xpdva[idvab] = area[iel] x0 = xpdva vlb = 0.1 * np.ones(ndvab) vlb = 0.1 * np.ones(ndvab) vub = 10 * np.ones(ndvab) # # Entrar com os valores limites das restrições # clb---limites inferiores # cub---limites superiores cones = np.ones(len(area)) # relacionado ao nº de elementos cones2 = np.ones(nglb) # relacionado ao nº de graus de liberdade clb1 = -250 * cones cub1 = 250 * cones # clb1 = -20*cones # cub1 = 20*cones # dlb1 = -0.4*cones2 # dub1 = 0.4*cones2 clbv = 1.5e+06 - 2.2204e-16 # 0 cubv = 1.5e+06 clbd = -1 * (10 ** -3) * cones2 cubd = 1 * (10 ** -3) * cones2 elbv = 2e-2 eubv = 2e-2 if tpres == 1: # VOLUME cub = cubv clb = clbv elif tpres == 2: # TENSOES clb = clb1 cub = cub1 elif tpres == 3: # TENSOES e DESLOCAMENTOS clb = [clb1, clbd] cub = [cub1, cubd] elif tpres == 4: # DESLOCAMENTOS clb = clbd cub = cubd else: # ENERGIA clb = elbv cub = eubv dadosoptdat10= [tpobj,tpres,vlb,vub,x0,clb,cub] return dadosoptdat10
064813cb2e66adfed6cb5e694614b88343a7613c
3,649,672
def rotvec2quat(vec): """ A rotation vector is a 3 dimensional vector which is co-directional to the axis of rotation and whose norm gives the angle of rotation (in radians). Args: vec (list or np.ndarray): a rotational vector. Its norm represents the angle of rotation. Returns: np.ndarray: quaternion [x,y,z,w] (shape: :math:`[4,]`). """ r = R.from_rotvec(vec) return r.as_quat()
a19b7b67e9cd5877cc5045887d071e069892e0a6
3,649,673
def generate_pop(pop_size, length): """ 初始化种群 :param pop_size: 种群容量 :param length: 编码长度 :return bin_population: 二进制编码种群 """ decim_population = np.random.randint(0, 2**length-1, pop_size) print(decim_population) bin_population = [('{:0%sb}'%length).format(x) for x in decim_population] return bin_population
d1248fe59161d2a75eaf08ffe2b180537c2d1af5
3,649,674
import argparse import sys def prepare_argument_parser(): """ Set up the argument parser for the different commands. Return: Configured ArgumentParser object. """ argument_parser = argparse.ArgumentParser( description='Build source code libraries from modules.') argument_parser.add_argument( '-r', '--repository', metavar="REPO", dest='repositories', action='append', default=[], help="Repository file(s) which should be available for the current library. " "The loading of repository files from a VCS is only supported through " "the library configuration file.") argument_parser.add_argument( '-c', '--config', dest='config', default='project.xml', help="Project configuration file. " "Specifies the required repositories, modules and options " "(default: '%(default)s').") argument_parser.add_argument( '-C', '--cwd', dest='cwd', default=None, help="Current working directory (default: '.').") argument_parser.add_argument( '-p', '--path', dest='path', default=None, help="Path in which the library will be generated (default: CWD).") argument_parser.add_argument( '-D', '--option', metavar='OPTION', dest='options', action='append', type=str, default=[], help="Additional options. Options given here will be merged with options " "from the configuration file and will overwrite the configuration " "file definitions.") argument_parser.add_argument( '--collect', metavar='COLLECTOR', dest='collectors', action='append', type=str, default=[], help="Additional collectors. Values given here will be merged with collectors " "from the configuration file.") argument_parser.add_argument( '-v', '--verbose', action='count', default=0, dest='verbose') argument_parser.add_argument( "--plain", dest="plain", action="store_true", default=(not sys.stdout.isatty() or not sys.stderr.isatty()), help="Disable styled output, only output plain ASCII.") argument_parser.add_argument( '--version', action='version', version='%(prog)s {}'.format(__version__), help="Print the lbuild version number and exit.") subparsers = argument_parser.add_subparsers( title="Actions", dest="action") actions = [ DiscoverAction(), DiscoverOptionsAction(), SearchAction(), ValidateAction(), BuildAction(), CleanAction(), InitAction(), UpdateAction(), DependenciesAction(), ] for action in actions: action.register(subparsers) return argument_parser
e57c3609ff54139dbb42ce95795f43acba9b3d25
3,649,675
def CountClusterSizes(clusterLabels): """ This function takes the labels produced by spectral clustering (or other clustering algorithm) and counts the members in each cluster. This is primarily to see the distribution of cluster sizes over all windows, particularly to see if there singleton clusters or a significant number of clusters with a small number of members. Parameters --------- clusterLabels: numpy array of int (clustered customers) - the cluster label of each customer Returns ------- clusterCounts: numpy array of int (0,k) - the number of customers in each cluster """ currentK = len(np.unique(clusterLabels)) clusterCounts = np.zeros((1,currentK),dtype=int) for clustCtr in range(0,currentK): indices = np.where(clusterLabels==clustCtr)[0] clusterCounts[0,clustCtr] = len(indices) return clusterCounts
25bf78a83e55b72c7a33546450655efe7ee84874
3,649,676
def solver_problem1(digits_list): """input digits and return numbers that 1, 4, 7, 8 occurs""" cnt = 0 for digits in digits_list: for d in digits: if len(d) in [2, 3, 4, 7]: cnt += 1 return cnt
d1946d00d368ad498c9bb0a8562ec0ea76d26449
3,649,677
def spam_dotprods(rhoVecs, povms): """SPAM dot products (concatenates POVMS)""" nEVecs = sum(len(povm) for povm in povms) ret = _np.empty((len(rhoVecs), nEVecs), 'd') for i, rhoVec in enumerate(rhoVecs): j = 0 for povm in povms: for EVec in povm.values(): ret[i, j] = _np.vdot(EVec.todense(), rhoVec.todense()); j += 1 # todense() gives a 1D array, so no need to transpose EVec return ret
95adc6ea8e1d33899a7dc96ba99589ef9bffb7fe
3,649,678
import sys def is_just_monitoring_error(unique_message): """ Return True if the unique_message is an intentional error just for monitoring (meaning that it contains the one of the JUST_MONITORING_ERROR_MARKERS somewhere in the exc_text) """ if sys.version_info == 2: exc_text = unicode(unique_message.exc_text) message = unicode(unique_message.message) else: exc_text = str(unique_message.exc_text) message = str(unique_message.message) return any([(marker in exc_text or marker in message) for marker in setting('MONITORING_ERROR_MARKERS')])
d566174d8f7f46aad588594aded7e78ef3a91957
3,649,679
def get_chi_atom_indices(): """Returns atom indices needed to compute chi angles for all residue types. Returns: A tensor of shape [residue_types=21, chis=4, atoms=4]. The residue types are in the order specified in rc.restypes + unknown residue type at the end. For chi angles which are not defined on the residue, the positions indices are by default set to 0. """ chi_atom_indices = [] for residue_name in rc.restypes: residue_name = rc.restype_1to3[residue_name] residue_chi_angles = rc.chi_angles_atoms[residue_name] atom_indices = [] for chi_angle in residue_chi_angles: atom_indices.append([rc.atom_order[atom] for atom in chi_angle]) for _ in range(4 - len(atom_indices)): atom_indices.append( [0, 0, 0, 0] ) # For chi angles not defined on the AA. chi_atom_indices.append(atom_indices) chi_atom_indices.append([[0, 0, 0, 0]] * 4) # For UNKNOWN residue. return chi_atom_indices
5ac6f2208e2819b8e0d04329cbfb94cb5dcd26ba
3,649,680
def get_all_device_stats(): """Obtain and return statistics for all attached devices.""" devices = get_devices() stats = {} for serial in devices: model, device_stats = get_device_stats(serial) if not stats.get(model): stats[model] = {} stats[model][serial] = device_stats return stats
9f2a50c4f6008120bc9527260f501f7e261dd19f
3,649,681
def plot_coefs(coefficients, nclasses): """ Plot the coefficients for each label coefficients: output from clf.coef_ nclasses: total number of possible classes """ scale = np.max(np.abs(coefficients)) p = plt.figure(figsize=(25, 5)) for i in range(nclasses): p = plt.subplot(1, nclasses, i + 1) p = plt.imshow(coefficients[i].reshape(28, 28), cmap=plt.cm.RdBu, vmin=-scale, vmax=scale) p = plt.axis('off') p = plt.title('Class %i' % i) return None
356c6c4bb96b08a370b8c492275e638b059594e2
3,649,682
import json def infect(): """Return a function that calls the infect endpoint on app.""" def inner(users, qs): app.debug = True with app.test_client() as client: headers = {'Content-Type': 'application/json'} data = json.dumps(users) rv = client.post('/infect?{0}'.format(qs), data=data, headers=headers) return json.loads(rv.data.decode()) return inner
3c6798b39b8545425d671c6ece8d0220c2630b5c
3,649,683
from datetime import datetime def get_description(): """ Return a dict describing how to call this plotter """ desc = dict() desc['data'] = True desc['description'] = """This plot shows the number of days with a high temperature at or above a given threshold. You can optionally generate this plot for the year to date period. """ today = datetime.date.today() desc['arguments'] = [ dict(type='station', name='station', default='IA2203', label='Select Station:', network='IACLIMATE'), dict(type="year", name="year", default=today.year, label="Year to Compare:"), dict(type='select', options=PDICT, default='full', label='Day Period Limit:', name='limit'), ] return desc
479d98e9ab19dcc03332c1a95ccc0624cdcfe24d
3,649,684
def calc_cost_of_buying(count, price): """株を買うのに必要なコストと手数料を計算 """ subtotal = int(count * price) fee = calc_fee(subtotal) return subtotal + fee, fee
391909bbff35c6eb7d68c965e3f36317e4164b1a
3,649,685
def add_units_to_query(df, udict=None): """ """ for k, u in udict.items(): if k not in df.colnames: continue try: df[k].unit except Exception as e: print(e) setattr(df[k], 'unit', u) else: df[k] *= u / df[k].unit # TODO in-place return df
984113ed8306d7734ac5351de347f331982c4251
3,649,686
import signal def update_lr(it_lr, alg, test_losses, lr_info=None): """Update learning rate according to an algorithm.""" if lr_info is None: lr_info = {} if alg == 'seung': threshold = 10 if 'change' not in lr_info.keys(): lr_info['change'] = 0 if lr_info['change'] >= 4: return it_lr, lr_info # Smooth test_losses then check to see if they are still decreasing if len(test_losses) > threshold: smooth_test = signal.savgol_filter(np.asarray(test_losses), 3, 2) check_test = np.all(np.diff(smooth_test)[-threshold:] < 0) if check_test: it_lr = it_lr / 2. lr_info['change'] += 1 return it_lr, lr_info elif alg is None or alg == '' or alg == 'none': return it_lr, lr_info else: raise NotImplementedError('No routine for: %s' % alg)
de6ef7d700a9c4b549b6d500f6737c84dc032c95
3,649,687
def ocr_page_image( doc_path, page_num, lang, **kwargs ): """ image = jpg, jpeg, png On success returns ``mglib.path.PagePath`` instance. """ logger.debug("OCR image (jpeg, jpg, png) document") page_path = PagePath( document_path=doc_path, page_num=page_num, step=Step(1), # jpeg, jpg, png are 1 page documents page_count=1 ) notify_pre_page_ocr( page_path, page_num=page_num, lang=lang, file_name=doc_path.file_name, **kwargs ) # resize and eventually convert (png -> jpg) resize_img( page_path, media_root=settings.MEDIA_ROOT ) extract_txt( page_path, lang=lang, media_root=settings.MEDIA_ROOT ) notify_txt_ready( page_path, page_num=page_num, lang=lang, file_name=doc_path.file_name, **kwargs ) # First quickly generate preview images for step in Steps(): page_path.step = step resize_img( page_path, media_root=settings.MEDIA_ROOT ) # reset page's step page_path.step = Step(1) # Now OCR each image for step in Steps(): if not step.is_thumbnail: extract_hocr( page_path, lang=lang, media_root=settings.MEDIA_ROOT ) notify_hocr_ready( page_path, page_num=page_num, lang=lang, # step as integer number step=step.current, file_name=doc_path.file_name, **kwargs ) return page_path
d1b87d4bdad967e40971eeb9e4b1e881781b87ad
3,649,688
from functools import reduce def factors(n): """ return set of divisors of a number """ step = 2 if n%2 else 1 return set(reduce(list.__add__, ([i, n//i] for i in range(1, int(sqrt(n))+1, step) if n % i == 0)))
687608f5397181892aa338c96ee299f91d7b5431
3,649,689
import decimal def round_decimal(x, digits=0): """This function returns the round up float. Parameters ---------- x : a float digits : decimal point Returns ---------- Rounded up float """ x = decimal.Decimal(str(x)) if digits == 0: return int(x.quantize(decimal.Decimal("1"), rounding='ROUND_HALF_UP')) if digits > 1: string = '1e' + str(-1 * digits) else: string = '1e' + str(-1 * digits) return float(x.quantize(decimal.Decimal(string), rounding='ROUND_HALF_UP'))
8670fa1e9063376e012ebbc71df0a19c6205ea9c
3,649,690
def basic_gn_stem(model, data, **kwargs): """Add a basic ResNet stem (using GN)""" dim = 64 p = model.ConvGN( data, 'conv1', 3, dim, 7, group_gn=get_group_gn(dim), pad=3, stride=2 ) p = model.Relu(p, p) p = model.MaxPool(p, 'pool1', kernel=3, pad=1, stride=2) return p, dim
7cd1c1e0ff58431fc89acdec0f6c1d5f6fa9daa8
3,649,691
def log_scale(start,end,num): """Simple wrapper to generate list of numbers equally spaced in logspace Parameters ---------- start: floar Inital number end: Float Final number num: Float Number of number in the list Returns ------- list: 1d array List of number spanning start to end, equally space in log space """ return np.logspace(np.log10(start), np.log10(end), num = num)
32d3976cb9cbcceb4cef9af15da373ea84e4d0c7
3,649,692
def measure_xtran_params(neutral_point, transformation): """ Description: Assume that the transformation from robot coord to camera coord is: RotX -> RotY -> RotZ -> Tranl In this case: RotX = 180, RotY = 0; RotZ = -90; Tranl: unknown But we know coords of a determined neutral point in 2 coord systems, hence we can measure Transl from robot centroid to camera centroid.(Step 2) :param neutral_point : Dict, list of 2 coords of neutral_point in 2 coord systems :param transformation : Dict, list of 3 rotating transformations :return: r2c_xtran : Matrix 4x4 floats, transformation from robot coord to camera coord :return: c2r_xtran : Matrix 4x4 floats, transformation from camera coord to robot coord # :return: tranl : Matrix 4x4 floats, translation from robot coord to camera coord """ # 1: Load coords of the neutral point neutral_robot = mm2m(coords=np.array(neutral_point['robot_coord'])) # neutral point coord in robot coord system neutral_camera = mm2m(coords=np.array(neutral_point['camera_coord'])) # neutral point coord in camera coord system rotx = create_rotx_matrix(theta=-transformation['rotx']) # load transformation matrix of rotation around x roty = create_roty_matrix(theta=-transformation['roty']) # load transformation matrix of rotation around y rotz = create_rotz_matrix(theta=-transformation['rotz']) # load transformation matrix of rotation around z # 2: Find transformation between robot coord centroid and camera coord centroid rotxyz = np.dot(np.dot(rotz, roty), rotx) # determine transformation matrix after rotate sequently around x, y, z neutral_robot3 = np.dot(rotxyz, np.append(neutral_robot, 1))[:3] # find coord of neutral point after RotXYZ Oc_in_3 = neutral_robot3 - neutral_camera # find coord of robot centroid in camera coord system tranl = create_tranl_matrix(vector=-Oc_in_3) # 3: Find transformation matrix from robot to camera # r2c_xtran = np.dot(np.dot(np.dot(tranl, rotz), roty), rotx) # c2r_xtran = np.linalg.inv(r2c_xtran) return rotx, roty, rotz, tranl
c2758158d545dbc6c2591f7f64f1df159a0c82db
3,649,693
def getPrefix(routetbl, peer_logical): """ FUNCTION TO GET THE PREFIX """ for route in routetbl: if route.via == peer_logical: return route.name else: pass
2ca32a1fd63d6fcefbcc9ac23e8636c73e88455b
3,649,694
def Logger_log(level, msg): """ Logger.log(level, msg) logs a message to the log. :param int level: the level to log at. :param str msg: the message to log. """ return _roadrunner.Logger_log(level, msg)
af552b17aaeebef9713efffedcabd75946c961f1
3,649,695
import typing def obj_test(**field_tests: typing.Callable[[typing.Any], bool]) -> typing.Callable[[typing.Any], bool]: """Return a lambda that tests for dict with string keys and a particular type for each key""" def test(dat: typing.Any) -> bool: type_test(dict)(dat) dom_test = type_test(str) for dom, rng in dat.items(): dom_test(dom) if dom not in field_tests: continue rng_test = field_tests[dom] rng_test(rng) missing = set(field_tests.keys()) - set(dat.keys()) if missing: raise Exception(f"{dat!r} lacks fields {missing}") return True return test
0439821b634807e178539b0444b69305c15e2e4e
3,649,696
def hist2D(x, y, xbins, ybins, **kwargs): """ Create a 2 dimensional pdf vias numpy histogram2d""" H, xedg, yedg = np.histogram2d(x=x, y=y, bins=[xbins,ybins], density=True, **kwargs) xcen = (xedg[:-1] + xedg[1:]) / 2 ycen = (yedg[:-1] + yedg[1:]) / 2 return xcen, ycen, H
7f192f4db38e954aad96abc66fa4dc9c190acd82
3,649,697
def generate_ngram_dict(filename, tuple_length): """Generate a dict with ngrams as key following words as value :param filename: Filename to read from. :param tuple_length: The length of the ngram keys :return: Dict of the form {ngram: [next_words], ... } """ def file_words(file_pointer): """Generator for words in a file""" for line in file_pointer: for word in line.split(): yield word ngrams = defaultdict(lambda: set()) with open(filename, 'r') as fp: word_list = [] for word in file_words(fp): if len(word_list) < tuple_length: word_list.append(word) continue ngrams[tuple(word_list)].add(word) word_list = word_list[1:] + [word] return {key: tuple(val) for key, val in ngrams.items()}
45f7eccae852e61f20044448955cade00174998c
3,649,698
def get_end_point(centerline, offset=0): """ Get last point(s) of the centerline(s) Args: centerline (vtkPolyData): Centerline(s) offset (int): Number of points from the end point to be selected Returns: centerline_end_point (vtkPoint): Point corresponding to end of centerline. """ centerline_end_points = [] for i in range(centerline.GetNumberOfLines()): line = extract_single_line(centerline, i) centerline_end_points.append(line.GetPoint(line.GetNumberOfPoints() - 1 - offset)) return centerline_end_points
f476e93b55bb046cfb6afb61a2e3ae37a172def3
3,649,699