content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import re def tokenize(text): """ The function to tokenize and lemmatize the text. Inputs: text: the text which needs to be tokenized Outputs: tokens: tokens which can be used in machine learning """ stop_words = stopwords.words("english") lemmatizer = WordNetLemmatizer() text = re.sub(r"[^a-zA-Z0-9]", " ", text.lower()) tokens = word_tokenize(text) tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words] return tokens
b41e66c4a065d898b2c3cf05fa261f6100d0f413
3,649,500
def remove_task(name: str): """ Delete a task based on information "name": - **name**: each tasks must have a name """ name_idx = _db_has_name(name) if name_idx == None: raise HTTPException(status_code = 400, detail = {"message" : "name doesn't exists"}) else: del db["tasks"][name_idx] _write_json() return name
4190e3e6a0ac55defe5ba6dcac3036f7c7df290b
3,649,501
def set_dj_definition(cls, type_map: dict = None) -> None: """Set the definition property of a class by inspecting its attributes. Params: cls: The class whose definition attribute should be set type_map: Optional additional type mappings """ # A mapping between python types and DataJoint types _type_map = { "int": "int", "str": "varchar(256)", "float": "float", "Quantity": "float", "datetime": "datetime", "datetime.datetime": "datetime", "bool": "tinyint", "list": "longblob", } # A list of python types which have no DataJoint # equivalent and so are unsupported unsupported = [dict] if type_map: _type_map.update(type_map) dj_def = "%s_id: int auto_increment\n---\n" % cls.__name__.lower() cls_items = cls.__annotations__.items() for attr, type_hint in cls_items: if type_hint in unsupported: continue name = getattr(type_hint, "__name__", type_hint) default = getattr(cls, attr) if isinstance(default, str): default = '"%s"' % default elif isinstance(default, bool): default = int(default) else: default = "NULL" if getattr(type_hint, '_name', "") == 'Dict': cls = handle_dict(cls, _type_map, attr, type_hint) continue elif name in _type_map: dj_def += "%s = %s : %s\n" % (attr, default, _type_map[name]) else: dj_def += "-> %s\n" % name cls.definition = dj_def return cls
9335e1b4413ce03f98ca885bcf4a888af9d014a1
3,649,502
def mmap_zeros(shape, dtype): """ Create an empty shared memory array. """ new = anonymousmemmap(shape, dtype) new[:] = 0.0 return new
5f78b5e227ab7f5115bc04af2e3f7ea62a769cd8
3,649,503
from typing import Iterable def edge_disjoint_paths(g: Graph, source: Node, sink: Node) -> Iterable: """ Given directed graph G, and two nodes s and t, find k paths from s to t such that no two paths share an edge. Menger’s Theorem: Given a directed graph G with nodes s,t the maximum number of edge-disjoint s-t paths equals the minimum number of edges whose removal separates s from t. Suppose you want to send k large files from s to t but never have two files use the same network link (to avoid congestion on the links). """ for u in g: for v in g[u]: g[u][v].cap = 1 fifo_push_relabel(g, source, sink) # use dfs to find the paths S, paths = [source], [] visited = defaultdict(lambda: False) pred = defaultdict(lambda: None) while S: u = S.pop() if u == sink: path = [sink] current = pred[sink] while current is not None: path.append(current) current = pred[current] paths.append(tuple(reversed(path))) continue if visited[u]: continue visited[u] = True for v in adjacency(g, u): if not visited[u] and g[u][v].flow: S.append(v) pred[v] = u return iter(paths)
d638923e9091eefcee0c0e2623adba095e33cc0c
3,649,504
def listToMLlibVectorUDF(col): """ Map struct column from list to MLlib vector """ return Column(default().listToMLlibVectorUDF(col._jc))
9b785839234bc2dfcb44c193cc12930e4f26f1a8
3,649,505
def change_file_paths_to_showcase(df, showcase_dir="/showcase_data/raw_data"): """Changes file paths to use showcase directory""" output = df.copy() if "file_path" in df.columns: output.loc[:, "file_path"] = df.file_path.apply( lambda x: add_path(x, showcase_dir) ) if "file_path_feature_values" in df.columns: output.loc[:, "file_path_feature_values"] = df.file_path_feature_values.apply( lambda x: add_path(x, showcase_dir) ) if "cluster_id_path" in df.columns: output.loc[:, "cluster_id_path"] = df.cluster_id_path.apply( lambda x: add_path(x, showcase_dir) ) if "thumbnail_path" in df.columns: output.loc[:, "thumbnail_path"] = df.thumbnail_path.apply( lambda x: add_path(x, showcase_dir) ) if "file_path_small" in df.columns: output.loc[:, "file_path_small"] = df.file_path_small.apply( lambda x: add_path(x, showcase_dir) ) return output
6789ff426794b620eebb1d80ae96b1a18c9a2dc8
3,649,506
def match_conftest_error(line): """ Extract `ConftestImportFailure` error message from a string. :param line: A string to pattern match against. :returns: A dictionary where the key `file_path` holds the file path and the key `error` the error description. If not matched, the dictionary is empty. """ return match_pattern( r"^E\s+.*ConftestImportFailure: " "\(local\('(?P<file_path>.*)'\), \((?P<error>.*)\)\)$", line, )
90b10831b672bb053cc46e5adbefaea5597607e3
3,649,507
import string def modifyModlist( old_entry,new_entry,ignore_attr_types=None,ignore_oldexistent=0 ): """ Build differential modify list for calling LDAPObject.modify()/modify_s() old_entry Dictionary holding the old entry new_entry Dictionary holding what the new entry should be ignore_attr_types List of attribute type names to be ignored completely ignore_oldexistent If non-zero attribute type names which are in old_entry but are not found in new_entry at all are not deleted. This is handy for situations where your application sets attribute value to '' for deleting an attribute. In most cases leave zero. """ ignore_attr_types = list_dict(map(string.lower,(ignore_attr_types or []))) modlist = [] attrtype_lower_map = {} for a in old_entry.keys(): attrtype_lower_map[string.lower(a)]=a for attrtype in new_entry.keys(): attrtype_lower = string.lower(attrtype) if ignore_attr_types.has_key(attrtype_lower): # This attribute type is ignored continue # Filter away null-strings new_value = filter(lambda x:x!=None,new_entry[attrtype]) if attrtype_lower_map.has_key(attrtype_lower): old_value = old_entry.get(attrtype_lower_map[attrtype_lower],[]) old_value = filter(lambda x:x!=None,old_value) del attrtype_lower_map[attrtype_lower] else: old_value = [] if not old_value and new_value: # Add a new attribute to entry modlist.append((ldap.MOD_ADD,attrtype,new_value)) elif old_value and new_value: # Replace existing attribute replace_attr_value = len(old_value)!=len(new_value) if not replace_attr_value: old_value_dict=list_dict(old_value) new_value_dict=list_dict(new_value) delete_values = [] for v in old_value: if not new_value_dict.has_key(v): replace_attr_value = 1 break add_values = [] if not replace_attr_value: for v in new_value: if not old_value_dict.has_key(v): replace_attr_value = 1 break if replace_attr_value: modlist.append((ldap.MOD_DELETE,attrtype,None)) modlist.append((ldap.MOD_ADD,attrtype,new_value)) elif old_value and not new_value: # Completely delete an existing attribute modlist.append((ldap.MOD_DELETE,attrtype,None)) if not ignore_oldexistent: # Remove all attributes of old_entry which are not present # in new_entry at all for a in attrtype_lower_map.keys(): if ignore_attr_types.has_key(a): # This attribute type is ignored continue attrtype = attrtype_lower_map[a] modlist.append((ldap.MOD_DELETE,attrtype,None)) return modlist
f28814b4659ccc8e9e27eec0dee5da8700a732ac
3,649,508
def regnety_3200m(**kwargs): """ Constructs a RegNet-Y model under 3200M FLOPs. """ model = RegNet(regnetY_3200M_config, **kwargs) return model
6799f96df72769e6f8bd0819e47353e141acefd0
3,649,509
import operator import numpy def _get_exposure(fname, stop=None): """ :param fname: path of the XML file containing the exposure :param stop: node at which to stop parsing (or None) :returns: a pair (Exposure instance, list of asset nodes) """ [exposure] = nrml.read(fname, stop=stop) if not exposure.tag.endswith('exposureModel'): raise InvalidFile('%s: expected exposureModel, got %s' % (fname, exposure.tag)) description = exposure.description try: conversions = exposure.conversions except AttributeError: conversions = Node('conversions', nodes=[Node('costTypes', [])]) try: inslimit = conversions.insuranceLimit except AttributeError: inslimit = Node('insuranceLimit', text=True) try: deductible = conversions.deductible except AttributeError: deductible = Node('deductible', text=True) try: area = conversions.area except AttributeError: # NB: the area type cannot be an empty string because when sending # around the CostCalculator object we would run into this numpy bug # about pickling dictionaries with empty strings: # https://github.com/numpy/numpy/pull/5475 area = Node('area', dict(type='?')) try: occupancy_periods = exposure.occupancyPeriods.text or '' except AttributeError: occupancy_periods = '' try: tagNames = exposure.tagNames except AttributeError: tagNames = Node('tagNames', text='') tagnames = ~tagNames or [] tagnames.insert(0, 'taxonomy') # read the cost types and make some check cost_types = [] retrofitted = False for ct in conversions.costTypes: with context(fname, ct): ctname = ct['name'] if ctname == 'structural' and 'retrofittedType' in ct.attrib: if ct['retrofittedType'] != ct['type']: raise ValueError( 'The retrofittedType %s is different from the type' '%s' % (ct['retrofittedType'], ct['type'])) if ct['retrofittedUnit'] != ct['unit']: raise ValueError( 'The retrofittedUnit %s is different from the unit' '%s' % (ct['retrofittedUnit'], ct['unit'])) retrofitted = True cost_types.append( (ctname, valid.cost_type_type(ct['type']), ct['unit'])) if 'occupants' in cost_types: cost_types.append(('occupants', 'per_area', 'people')) cost_types.sort(key=operator.itemgetter(0)) cost_types = numpy.array(cost_types, cost_type_dt) insurance_limit_is_absolute = il = inslimit.get('isAbsolute') deductible_is_absolute = de = deductible.get('isAbsolute') cc = CostCalculator( {}, {}, {}, True if de is None else de, True if il is None else il, {name: i for i, name in enumerate(tagnames)}, ) for ct in cost_types: name = ct['name'] # structural, nonstructural, ... cc.cost_types[name] = ct['type'] # aggregated, per_asset, per_area cc.area_types[name] = area['type'] cc.units[name] = ct['unit'] assets = [] asset_refs = [] exp = Exposure( exposure['id'], exposure['category'], description.text, cost_types, occupancy_periods, insurance_limit_is_absolute, deductible_is_absolute, retrofitted, area.attrib, assets, asset_refs, cc, TagCollection(tagnames)) return exp, exposure.assets
d782826c427fb30e5561908f4342b2f6983ab46b
3,649,510
def dcos_api_session(dcos_api_session_factory): """ Overrides the dcos_api_session fixture to use exhibitor settings currently used in the cluster """ args = dcos_api_session_factory.get_args_from_env() exhibitor_admin_password = None expanded_config = get_expanded_config() if expanded_config['exhibitor_admin_password_enabled'] == 'true': exhibitor_admin_password = expanded_config['exhibitor_admin_password'] api = dcos_api_session_factory( exhibitor_admin_password=exhibitor_admin_password, **args) api.wait_for_dcos() return api
ab677802d1228b3af4bfc8ecc2cbf6040edbc6b0
3,649,511
def BarycentricInterpolation(bins, pnts): """ barycentricinterpolation for given points, return the barycentric coordinates for points within the grids INPUT bins - grids for discretization, m-length array where bins[i] indicates the mesh along dimension i pnts - an array of pnts, each points is an m-length indicates the Cartesian coordinates can be n pnts in total RETURN indices - an n-length list of indices, each indices is d-length (d=m+1) for interpolating points invovled coeffs - an n-length list of coefficients, each coefficients is d-length for reconstructing points n A pythonic version barycentricinterpolation from Russ' drake utility function does not support dcoefs currently... """ #note here the layout of input and output is different from the C++ version of drake m = pnts.shape[1] n = pnts.shape[0] d = m+1 if len(bins) != m: print 'The number of bins must equal to the dimension of the points.' #validation return None, None binsize = [len(bins[i]) for i in range(m)] nskip = np.concatenate([[1], np.cumprod([binsize[i] for i in range(m-1)])]) #a list of bary points for future sorting... b = [{'dim':0, 'fracway':0.0, 'dfracway':0.0} for i in range(d)] indices = np.zeros((n, d)) coeffs = np.zeros((n, d)) for j in range(n): sidx = 0 # 0-index in our case... for i in range(m): pt = pnts[j, i] curr_bin = bins[i] curr_bin_size = binsize[i] b[i]['dim'] = i if curr_bin_size == 1: #singleton dimensions #sidx is unchanged b[i]['fracway'] = 1.0 elif pt > curr_bin[curr_bin_size-1]: #larger than max bound of bin sidx += nskip[i] * (curr_bin_size-1) b[i]['fracway'] = 1.0 b[i]['dfracway'] = 0.0 elif pt < curr_bin[0]: #less than min bound of bin sidx += nskip[i] b[i]['fracway'] = 0.0 b[i]['dfracway'] = 0.0 else: #Russ commented that smarter search can be done here... #i guess we can do it in a pythonic way... next_bin_index = np.argmax(curr_bin>pt) sidx += nskip[i]*next_bin_index b[i]['fracway'] = (pt - curr_bin[next_bin_index-1])/(curr_bin[next_bin_index]- curr_bin[next_bin_index-1]) b[i]['dfracway'] = 1./(curr_bin[next_bin_index]- curr_bin[next_bin_index-1]) #sort dimension based on fracway (lowest to highest) b_sorted = sorted(b[:-1], key=lambda b_elem: b_elem['fracway']) # final element of b_sorted, b_sorted.append({'dim':m-1,'fracway':1.0, 'dfracway':0.0}) # top right corner indices[j, 0] = sidx coeffs[j, 0] = b_sorted[0]['fracway'] for i in range(m): if binsize[b_sorted[i]['dim']] > 1: #support singletone dimension sidx -= nskip[b_sorted[i]['dim']] indices[j, i+1] = sidx coeffs[j, i+1] = b_sorted[i+1]['fracway'] - b_sorted[i]['fracway'] return indices, coeffs
aa12be78a581cae154887da4546b0a9e94297e00
3,649,512
from pathlib import Path import shutil def submit_rgi_job(sample_instance: AnalysisSample) -> RGIResult: """ Given an input AnalysisSample instance, runs RGI and stores result in the database :param sample_instance: Instance of AnalysisSample object :return: Populated RGIResult object generated by the method """ logger.info(f"Received RGI job request for {sample_instance}") assembly_instance = SampleAssemblyData.objects.get(sample_id=sample_instance.sample_id) rgi_dir_name = f'RGI_{sample_instance.user}_{sample_instance.pk}' root_sample_instance = Sample.objects.get(sample_id=sample_instance.sample_id) outdir = MEDIA_ROOT / Path(str(sample_instance.sample_id.fwd_reads)).parent / rgi_dir_name if not assembly_instance.assembly_exists(): logger.warning(f"Could not find assembly for {assembly_instance} - cannot proceed with job") return else: assembly_path = assembly_instance.get_assembly_path() # Remove previous analysis if it exists if outdir.exists(): shutil.rmtree(outdir, ignore_errors=True) outdir.mkdir(parents=True) # Call RGI rgi_text_results, rgi_json_results = call_rgi_main(fasta=assembly_path, outdir=outdir, sample_id=root_sample_instance.sample_id) # Populate database with results rgi_result_object = RGIResult.objects.create(analysis_sample=sample_instance) rgi_result_object.rgi_main_text_results = upload_analysis_file(instance=root_sample_instance, filename=rgi_text_results.name, analysis_folder=rgi_dir_name) rgi_result_object.rgi_main_json_results = upload_analysis_file(instance=root_sample_instance, filename=rgi_json_results.name, analysis_folder=rgi_dir_name) rgi_result_object.save() logger.info(f"Completed running RGI on {sample_instance}") return rgi_result_object
3610f59fe62c01c211fcbf93658bc0c70eb25b12
3,649,513
def forwardslash2shift(args=None): """ Make forward slash shift when pressed with another key """ run_mapper(premade.ForwardSlash2Shift) return 0
cb9cbbe3272fbfd2cdf16fc4d5fce90b378b4b32
3,649,514
def plotly_figure(figure, id: str): """ :param figure: plotly graph object or px figure :param id: unique id string of format 'id_xxx' with x representin a number :return: html style string containing a plotly figure """ json_figure = figure.to_json() html = """ <div id="""+id+"""></div> <script> var plotly_data = {} Plotly.react("""+id+""", plotly_data.data, plotly_data.layout); </script> """ local_text = html.format(json_figure) return local_text
949415c70d467c48ee3aa1f028c9e3539099febf
3,649,515
def _add_resources_to_vault_obj(obj, data, columns): """Add associated resources to column and data tuples """ i = 0 for s in obj.resources: if obj.resources[i].id: name = 'resource_id_' + str(i + 1) data += (obj.resources[i].id,) columns = columns + (name,) name = 'resource_type_' + str(i + 1) data += (obj.resources[i].type,) columns = columns + (name,) i += 1 return data, columns
3a6dd7541ac853a7c62b638abf4d0eeb21bb6cb2
3,649,516
def classify_helmet_belt_worn(x): """ This function returns a strinig representation of the int value of the field which specifies whether the person was wearing a setabelt or a helmet. This specification is from the Road Crash Statistics Victoria , 2013 Edition document. :param x: int value representing the classify helmet belt worn field :return: string representation of the integer value """ if x == 1: return 'Seatbelt Worn' elif x == 2: return 'Seatbelt Not Worn' elif x == 3: return 'Child Restraint Worn' elif x == 4: return 'Child Restraint Not Worn' elif x == 5: return 'Seatbelt/restraint Not fitted' elif x == 6: return 'Crash Helmet Worn' elif x == 7: return 'Crash Helmet Not Worn' elif x == 8: return 'Not Appropriate' else: return 'Not Known'
cba05be8d03c933e767a75400032d07e296e0ec3
3,649,517
def history_kernels ( estimated_stimulus_kernel, estimated_response_kernel, ci_kernels, ax=None, presentation="left/right", ground_truth=None ): """plot history kernels :Parameters: *estimated_stimulus_kernel* stimulus kernel estimated from the data *estimated_response_kernel* response kernel estimated from the data *ci_kernels* a sequence of confidence regions for the kernels as returned by statistics.history_kernel_ci() *ax* pylab.axes where the plot should go *presentation* how should the kernels be presented? Selection of either 'left/right' or 'correct/incorrect' :Example: >>> skernel = [1.2,.5,.3,.1] >>> rkernel = [.1,.1,0,0] >>> ci_kernels = [ [[1.3,.6,.4,.2],[.8,.3,.1,-.05]],[[.2,.2,.1,.1],[-.05,0.,-.1,-.1]],[[1.5,.8,.5,.3],[.7,.3,0.,-.2]],[[1.2,.5,.5,.2],[.9,.2,0.,-.05]] ] >>> history_kernels ( skernel, rkernel, ci_kernels ) >>> pl.savefig ( 'test/history_kernels.png' ); pl.close() """ if presentation=="left/right": kernels = (estimated_stimulus_kernel,estimated_response_kernel) colors = (stimulus_color,response_color) labels = ("stimulus","response") if not ci_kernels is None: CI = np.array(ci_kernels[:2]) else: CI = None if not ground_truth is None: true_kernels = ground_truth['stimulus_kernel'],\ ground_truth['response_kernel'] elif presentation=="correct/incorrect": kernels = (estimated_stimulus_kernel+estimated_response_kernel,-estimated_stimulus_kernel+estimated_response_kernel) colors = (correct_color,incorrect_color) labels = ("correct","incorrect") if not ci_kernels is None: CI = np.array(ci_kernels[2:]) else: CI = None if not ground_truth is None: true_kernels = ground_truth['stimulus_kernel']+\ ground_truth['response_kernel'],\ -ground_truth['stimulus_kernel']+\ ground_truth['response_kernel'] else: raise ValueError("presentation should be either 'left/right' or 'correct/incorrect'") if CI is None: CI = np.array([[kernels[0],kernels[0]],[kernels[1],kernels[1]]]) if ax is None: ax = pl.gca() ax = prepare_axes ( ax ) # Plot confidence regions lags = np.arange ( len(estimated_stimulus_kernel) ) + 1 for i in [0,1]: fc = 0.5*np.array(colors[i])+0.5*np.ones(3) ax.fill ( np.concatenate ( (lags,lags[::-1]) ), np.concatenate ( (CI[i,0,:],CI[i,1,::-1]) ), facecolor=fc, edgecolor=0.5*colors[i], alpha=0.7 ) kernellines = [] for i in [0,1]: if not ground_truth is None: ax.plot ( lags, true_kernels[i], color=0.5*colors[i] ) kernellines += ax.plot ( lags, kernels[i], 'o', markerfacecolor=colors[i], markeredgecolor=0.5*colors[i], label=labels[i] ) ax.set_xlim ( 1-0.01*len(estimated_stimulus_kernel),len(estimated_stimulus_kernel)+0.01*len(estimated_stimulus_kernel) ) ax.set_xticks ( lags ) # label_axes ( title="history kernels", xlabel="lag", ylabel="equivalent stimulus strength", legend='best', ax=ax ) return kernellines
c25751759079dbf11b7b63e9ed66b73d3552c040
3,649,518
def init_application(): """Main entry point for initializing the Deckhand API service. Create routes for the v1.0 API and sets up logging. """ config_files = _get_config_files() paste_file = config_files[-1] CONF([], project='deckhand', default_config_files=config_files) setup_logging(CONF) policy.Enforcer(CONF) LOG.debug('Starting WSGI application using %s configuration file.', paste_file) db_api.drop_db() db_api.setup_db(CONF.database.connection) app = deploy.loadapp('config:%s' % paste_file, name='deckhand_api') return app
3bc5b9d8f0378c4e19ce61f9ab4ef66a9a6733d6
3,649,519
def specs_url(self): """ The Swagger specifications absolute url (ie. `swagger.json`) :rtype: str """ return url_for(self.endpoint('specs'), _external=False)
1620c8eb4d0b8e61c9a67aadca677b2acae5074f
3,649,520
import sqlite3 def construct_db(db: str) -> sqlite3: """Build empty database 'db'.""" conn = sqlite3.connect(db) c = conn.cursor() c.executescript(''' CREATE TABLE files ( ID INTEGER PRIMARY KEY, Name TEXT, Path TEXT, FullPath TEXT, isDir INTEGER, Size INTEGER, Mtime INTEGER, Atime INTEGER, Ctime INTEGER, Btime INTEGER, UID INTEGER, GID INTEGER, iNode INTEGER, DevID INTEGER, DP INTEGER, XCount INTEGER, MIME INTEGER, Type INTEGER, Offset INTEGER ); CREATE TABLE xattrs ( ID INTEGER PRIMARY KEY AUTOINCREMENT, FileID INTEGER, Key TEXT, Value TEXT, Raw BLOB ); CREATE TABLE mtypes( ID INTEGER PRIMARY KEY AUTOINCREMENT, MIME TEXT ); CREATE TABLE ftypes ( ID INTEGER PRIMARY KEY, Type TEXT ); CREATE VIEW localtime as select files.ID, Name, Path, FullPath, isDir, Size, datetime(mtime, 'unixepoch', 'localtime') as Mtime, datetime(atime, 'unixepoch', 'localtime') as Atime, datetime(ctime, 'unixepoch', 'localtime') as Ctime, datetime(btime, 'unixepoch', 'localtime') as Btime, UID, GID, iNode, DevID as DeviceID, mtypes.MIME, ftypes.Type, Xcount as ExtraAttrs, 'Offset' as ZipOffset, Key as XattrKey, Value as XattrValue, Raw from files left join xattrs on files.ID = xattrs.FileID left join mtypes on files.MIME = mtypes.ID left join ftypes on files.Type = ftypes.ID; CREATE VIEW utc as select files.ID, Name, Path, FullPath, isDir, Size, datetime(mtime, 'unixepoch') as Mtime, datetime(atime, 'unixepoch') as Atime, datetime(ctime, 'unixepoch') as Ctime, datetime(btime, 'unixepoch') as Btime, UID, GID, iNode, DevID as DeviceID, mtypes.MIME, ftypes.Type, Xcount as ExtraAttrs, 'Offset' as ZipOffset, Key as XattrKey, Value as XattrValue, Raw from files left join xattrs on files.ID = xattrs.FileID left join mtypes on files.MIME = mtypes.ID left join ftypes on files.Type = ftypes.ID; ''') conn.commit() return conn
22759b9b8e68e7c39f8fdd6fc33124c0ecea3a24
3,649,521
def class_javadoc(ns, stmt): """ Generate javadoc for class (string without '/**' and '*/' but with * on new line) """ description = '' desc_stmt = search_one(stmt, 'description') if desc_stmt is not None: description += ''.join([str(desc_stmt.arg).replace('\n', '\n * ')]) description += ''.join(['\n * <br/>\n * Namespace: ', ns]) return description
9bfc093362bdb573ba8b41ca17b037b57da3891e
3,649,522
def r_precision(r): """Score is precision after all relevant documents have been retrieved Relevance is binary (nonzero is relevant). Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) Returns: R Precision """ r = np.asarray(r) != 0 z = r.nonzero()[0] if not z.size: return 0. return np.mean(r[:z[-1] + 1])
998ff6750ce51455fa09ae5970a94934a4c3f383
3,649,523
import sklearn.metrics import sklearn.utils.multiclass from rasa.test import get_evaluation_metrics from typing import List from typing import Optional from typing import Dict import os def evaluate_response_selections( response_selection_results: List[ResponseSelectionEvaluationResult], output_directory: Optional[Text], successes: bool, errors: bool, disable_plotting: bool, ) -> Dict: # pragma: no cover """Creates summary statistics for response selection. Only considers those examples with a set response. Others are filtered out. Returns a dictionary of containing the evaluation result. Args: response_selection_results: response selection evaluation results output_directory: directory to store files to successes: if True success are written down to disk errors: if True errors are written down to disk disable_plotting: if True no plots are created Returns: dictionary with evaluation results """ # remove empty response targets num_examples = len(response_selection_results) response_selection_results = remove_empty_response_examples( response_selection_results ) logger.info( f"Response Selection Evaluation: Only considering those " f"{len(response_selection_results)} examples that have a defined response out " f"of {num_examples} examples." ) response_to_intent_target = {} for result in response_selection_results: response_to_intent_target[result.response_target] = result.intent_target target_responses, predicted_responses = _targets_predictions_from( response_selection_results, "response_target", "response_prediction" ) confusion_matrix = sklearn.metrics.confusion_matrix( target_responses, predicted_responses ) labels = sklearn.utils.multiclass.unique_labels( target_responses, predicted_responses ) if output_directory: report, precision, f1, accuracy = get_evaluation_metrics( target_responses, predicted_responses, output_dict=True ) report = _add_confused_labels_to_report(report, confusion_matrix, labels) report_filename = os.path.join( output_directory, "response_selection_report.json" ) io_utils.dump_obj_as_json_to_file(report_filename, report) logger.info(f"Classification report saved to {report_filename}.") else: report, precision, f1, accuracy = get_evaluation_metrics( target_responses, predicted_responses ) if isinstance(report, str): log_evaluation_table(report, precision, f1, accuracy) if successes: successes_filename = "response_selection_successes.json" if output_directory: successes_filename = os.path.join(output_directory, successes_filename) # save classified samples to file for debugging write_response_successes(response_selection_results, successes_filename) if errors: errors_filename = "response_selection_errors.json" if output_directory: errors_filename = os.path.join(output_directory, errors_filename) # log and save misclassified samples to file for debugging write_response_errors(response_selection_results, errors_filename) if not disable_plotting: confusion_matrix_filename = "response_selection_confusion_matrix.png" if output_directory: confusion_matrix_filename = os.path.join( output_directory, confusion_matrix_filename ) _labels = [ response_to_intent_target[label] if label in response_to_intent_target else f"'{label[:20]}...' (response not present in test data)" for label in labels ] plot_utils.plot_confusion_matrix( confusion_matrix, classes=_labels, title="Response Selection Confusion Matrix", output_file=confusion_matrix_filename, ) histogram_filename = "response_selection_histogram.png" if output_directory: histogram_filename = os.path.join(output_directory, histogram_filename) plot_attribute_confidences( response_selection_results, histogram_filename, "response_target", "response_prediction", title="Response Selection Prediction Confidence Distribution", ) predictions = [ { "text": res.message, "intent_target": res.intent_target, "response_target": res.response_target, "response_predicted": res.response_prediction, "confidence": res.confidence, } for res in response_selection_results ] return { "predictions": predictions, "report": report, "precision": precision, "f1_score": f1, "accuracy": accuracy, }
cf108c5db93785a2ee8ab963cd6dc318c6a871fe
3,649,524
from typing import Callable from typing import Coroutine from typing import Any def _async_climate_updater( lookin_protocol: LookInHttpProtocol, uuid: str, ) -> Callable[[], Coroutine[None, Any, Remote]]: """Create a function to capture the cell variable.""" async def _async_update() -> Climate: return await lookin_protocol.get_conditioner(uuid) return _async_update
b4160385fe7f304096de6bb9196822d3230c342f
3,649,525
def load_natural_movies(cpd=1.00): """load natural movies dataset Parameters ---------- - cpd: float of cycles per degree, should be 1.00 or 1.33 """ if cpd not in {1.00, 1.33}: raise Exception('cpd must be in {1.00, 1.33}') if cpd == 1.00: cpd = '1.00' elif cpd == 1.33: cpd = '1.33' else: raise Exception('cpd must be in {1.00, 1.33}') # load X X_path = '/auto/k6/nbilenko/preproc_data/movie/dir{cpd}cpd_{dataset}stim.npy' Xtrain = np.load(X_path.format(cpd=cpd, dataset='t')) Xtest = np.load(X_path.format(cpd=cpd, dataset='v')) # load Y Y_path = 'auto/k8/anunez/proj/snmovies/datasets/snmovies_braindata_AH3T.hdf' cci = glabtools.io.get_cc_interface('anunez_raid', verbose=False) Y_data = cci.cloud2dict(Y_path, verbose=False) Ytrain = Y_data['Ytrain'] Ytest = Y_data['Yval'] return { 'natural_movies_gabor_pyramid': { 'Xtrain': Xtrain, 'Ytrain': Ytrain, 'Xtest': Xtest, 'Ytest': Ytest, }, 'natural_movies_mean_gabor': { 'Xtrain': Xtrain.mean(1, keepdims=True), 'Ytrain': Ytrain, 'Xtest': Xtest.mean(1, keepdims=True), 'Ytest': Ytest, }, }
bff8dd14cc2afac89aceb9407651f5cb91509a9a
3,649,526
import collections def sort_dataset_by_len(dataset): """ returns a dict mapping length -> list of items of that length an OrderedDict is used to that the mapping is sorted from smallest to largest """ sorted_dataset = collections.OrderedDict() lengths = sorted(list(set(len(x[1]) for x in dataset))) for l in lengths: sorted_dataset[l] = [] for item in dataset: sorted_dataset[len(item[1])].append(item) return sorted_dataset
1e67da963c6d968fba39730cc33e100242fcafca
3,649,527
def rule_VisibleTo_if_in_same_visible_container(x, actor, world) : """Anything in the same visible container to the actor is visible if the visible container is lit. We treat doors specially: if x is in the get_room_doors of the visible container, then the door is visible, too.""" actor_vis_cont = world[VisibleContainer(world[Location(actor)])] if x in world.activity.get_room_doors(actor_vis_cont) : return True if actor_vis_cont == x : # otherwise we'd be looking too many levels high x_vis_cont = x else : loc = world[Location(x)] if not loc : raise NotHandled() x_vis_cont = world[VisibleContainer(loc)] if actor_vis_cont == x_vis_cont and world[ContainsLight(actor_vis_cont)] : return True raise NotHandled()
8e4465d7684c95a9890e4271b2dbb75b665d2efd
3,649,528
import copy import random def select_random_user_goals(user_goals_no_req_slots, user_goals_with_req_slots, cardinality_no_req, cardinality_req): """ Helper method to randomly select user goals """ random_user_goals = {} random_user_goals['all'] = [] # select randomly user goals without request slots random_user_goals['all'].extend(copy.deepcopy(random.sample(user_goals_no_req_slots, cardinality_no_req))) # select randomly user goals with request slots random_user_goals['all'].extend(copy.deepcopy(random.sample(user_goals_with_req_slots, cardinality_req))) return random_user_goals
ff51361d45cdbd62cc9ee9e8263d47870435b326
3,649,529
import copy def dict_items_recursive_apply(config_dict, apply_method, **apply_method_parameters): """Recursive apply method to dict elements >>> dict_items_recursive_apply( ... {"foo": {"bar":"baz"}, "qux": ["a","b"]}, ... lambda k,v,x: v.upper()+x, **{"x":"!"} ... ) == {'foo': {'bar': 'BAZ!'}, 'qux': ['A!', 'B!']} True :param config_dict: input nested dictionnary :type config_dict: dict :param apply_method: method to be applied to dict elements :type apply_method: :func:`apply_method` :param apply_method_parameters: optional parameters passed to the method :type apply_method_parameters: dict :returns: updated dict :rtype: dict """ result_dict = copy.deepcopy(config_dict) for dict_k, dict_v in result_dict.items(): if isinstance(dict_v, dict): result_dict[dict_k] = dict_items_recursive_apply( dict_v, apply_method, **apply_method_parameters ) elif any(isinstance(dict_v, t) for t in (list, tuple)): result_dict[dict_k] = list_items_recursive_apply( dict_v, apply_method, **apply_method_parameters ) else: result_dict[dict_k] = apply_method( dict_k, dict_v, **apply_method_parameters ) return result_dict
760e3de8e414dcd5300aa79cc703b0941a5852fd
3,649,530
def d_B_nu_d_T_d_nu_dimensionless(x): """ Calculates d^2(B_nu) / d (T) / d (nu), as a function of dimensionless units, x = (h nu / k_B T) Parameters ---------- x : float Returns ------- d_B_nu_d_T_d_nu_dimensionless : float Not normalized to anything meaningful """ return - np.exp(x)*x**3 * (np.exp(x)*(x-4)+x+4) / (np.exp(x)-1)**3
eb1e42d48e15cbc5ea17877868cca27422d89346
3,649,531
def node_to_get_batch_value(shape_node: Node): """ The function returns a node that produces the batch value which is usually the element of the shape with index 0 :param shape_node: the node of 1D output shape to get batch from :return: the node producing batch value """ return node_to_get_shape_value_of_range(shape_node, [0])
126570b69895cd34bb6821f179076d6d005c36db
3,649,532
def re2_full_match(input, pattern): # pylint: disable=redefined-builtin """Extract regex groups Args: input: A `tf.string` tensor pattern: A pattern string. """ return core_ops.io_re2_full_match(input, pattern)
d9ca2606eae8faf21bf2cf7ec1730c69f609d4c5
3,649,533
import os import socket import requests def user_agent(): """ Return a User-Agent that identifies this client. Example: python-requests/2.9.1 edx-rest-api-client/1.7.2 ecommerce The last item in the list will be the application name, taken from the OS environment variable EDX_REST_API_CLIENT_NAME. If that environment variable is not set, it will default to the hostname. """ client_name = 'unknown_client_name' try: client_name = os.environ.get("EDX_REST_API_CLIENT_NAME") or socket.gethostbyname(socket.gethostname()) except: # pylint: disable=bare-except pass # using 'unknown_client_name' is good enough. no need to log. return "{} edx-rest-api-client/{} {}".format( requests.utils.default_user_agent(), # e.g. "python-requests/2.9.1" __version__, # version of this client client_name )
b0e65ba2ddb3af1f0fc5b0ae1a561b330426d9de
3,649,534
import click def optional_tools_or_packages_arg(multiple=False): """ Decorate click method as optionally taking in the path to a tool or directory of tools or a Conda package. If no such argument is given the current working directory will be treated as a directory of tools. """ name = "paths" if multiple else "path" nargs = -1 if multiple else 1 return click.argument( name, metavar="TARGET", nargs=nargs, )
4a34da51b4a644df70c5ce3ea8afb8b86ae2281d
3,649,535
import numpy def linear_interpolate_cdf(base_cdf): """Linear interpolate regions of straight lines in the CDF. Parameters: base_cdf (list): n elements of non-decreasing order. Returns: list of length base_cdf where consecutive elements of straight lines are linearly interpolated between the left and right sides. """ target_cdf = list(base_cdf) index = 0 left_val = 0 while index < len(base_cdf)-1: if base_cdf[index] == base_cdf[index+1]: # search for where it ends offset = index+1 while (offset < len(base_cdf)-1 and base_cdf[offset] == base_cdf[offset+1]): offset += 1 # linearly interpolate between index and offset right_val = base_cdf[offset] interp_val = numpy.interp( list(range(index, offset+1, 1)), [index-1, offset], [float(left_val), float(right_val)]) target_cdf[index:offset+1] = interp_val left_val = right_val index = offset+1 else: left_val = base_cdf[index] index += 1 return target_cdf
8f119d1698a44e90253920decf1b3253db9171be
3,649,536
def hash_str(string: str) -> int: """ Create the hash for a string (poorly). """ hashed = 0 results = map(ord, string) for result in results: hashed += result return hashed
b80c177974437966361e4117ba235c1563fee5c4
3,649,537
import plotly.graph_objects as go import plotly.io as pio def graph(g: nx.Graph, s: Optional[list] = None, plot_size: Tuple = (500, 500)): # pragma: no cover """Creates a plot of the input graph. This function can plot the input graph only, or the graph with a specified subgraph highlighted. Graphs are plotted using the Kamada-Kawai layout with an aspect ratio of 1:1. **Example usage:** >>> graph = nx.complete_graph(10) >>> fig = plot.graph(graph, [0, 1, 2, 3]) >>> fig.show() .. image:: ../../_static/complete_graph.png :width: 40% :align: center :target: javascript:void(0); Args: g (nx.Graph): input graph s (list): optional list of nodes comprising the subgraph to highlight plot_size (int): size of the plot in pixels, given as a pair of integers ``(x_size, y_size)`` Returns: Figure: figure for graph and optionally highlighted subgraph """ try: except ImportError: raise ImportError(plotly_error) try: in_notebook = get_ipython().__class__.__name__ == "ZMQInteractiveShell" except NameError: in_notebook = False if not in_notebook: pio.renderers.default = "browser" l = nx.kamada_kawai_layout(g) g_nodes = go.Scatter( **_node_coords(g, l), mode="markers", hoverinfo="text", marker=dict(color=graph_node_colour, size=graph_node_size, line_width=2), ) g_edges = go.Scatter( **_edge_coords(g, l), line=dict(width=1, color=graph_edge_colour), hoverinfo="none", mode="lines", ) g_nodes.text = [str(i) for i in g.nodes()] layout = go.Layout( showlegend=False, hovermode="closest", xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), margin=dict(b=0, l=0, r=0, t=25), height=plot_size[1], width=plot_size[0], plot_bgcolor="#ffffff", ) if s is not None: s = g.subgraph(s) s_edges = go.Scatter( **_edge_coords(s, l), line=dict(width=2, color=subgraph_edge_colour), hoverinfo="none", mode="lines", ) s_nodes = go.Scatter( **_node_coords(s, l), mode="markers", hoverinfo="text", marker=dict(color=subgraph_node_colour, size=subgraph_node_size, line_width=2), ) s_nodes.text = [str(i) for i in s.nodes()] f = go.Figure(data=[g_edges, s_edges, g_nodes, s_nodes], layout=layout) else: f = go.Figure(data=[g_edges, g_nodes], layout=layout) return f
9830ef44f3a85234002c11d0da1913a89c332491
3,649,538
def intersect(p1x, p1y, p2x, p2y, x0, y0): """Intersect segment defined by p1 and p2 with ray coming out of x0,y0 ray can be horizontal y=y0 x=x0+dx , want dx>0. Args: p1x (float): x coordinate of point 1 of segment p1y (float): y coordinate of point 1 of segment p2x (float): x coordinate of point 2 of segment p2y (float): y coordinate of point 2 of segment x0 (float): x coordinate anchoring the intersection ray y0 (float): y coordinate anchoring the intersection ray Returns: boolean int: (1) if intersecting, (0) if not intersecting """ if p1x != p2x and p1y != p2y: m = (p2y - p1y) / (p2x - p1x) x_inter = (y0 - p1y) / m + p1x if x_inter >= x0 and np.min([p1y, p2y]) <= y0 <= np.max([p1y, p2y]): ans = 1 else: ans = 0 else: if p1x == p2x: # vertical segment if x0 <= p1x and np.min([p1y, p2y]) <= y0 <= np.max([p1y, p2y]): ans = 1 else: ans = 0 if p1y == p2y: # horizontal segment if y0 == p1y: ans = 1 else: ans = 0 return ans
b58ae51cf179183689a7ed4b0854eefaeb28b895
3,649,539
from scipy import linalg def impulse_matrix(params, dt, reduced=False): """Calculate the matrix exponential for integration of MAT model""" a1, a2, b, w, R, tm, t1, t2, tv, tref = params if not reduced: A = - np.matrix([[1 / tm, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 1 / t1, 0, 0, 0], [0, 0, 0, 1 / t2, 0, 0], [0, 0, 0, 0, 1 / tv, -1], [b / tm, -b, 0, 0, 0, 1 / tv]]) else: A = - np.matrix([[1 / tm, -1, 0, 0], [0, 0, 0, 0], [0, 0, 1 / tv, -1], [b / tm, -b, 0, 1 / tv]]) return linalg.expm(A * dt)
4305d588680dd5de91765e79b170d26e43f82a01
3,649,540
def get_vimg(request): """ 获取验证码 :param request: :return: """ text, image = vcode.gen_captcha_text_and_image() v_key = request.GET.get('vk') ex_key = request.GET.get('ex') if ex_key: try: redis_conn.delete(ex_key) except Exception as e: logger.error(e) redis_conn.set(v_key, text, 60*3) return HttpResponse(image.getvalue(), content_type='image/jpg')
f3398236cb4d69f21a04519de472d85dca885a2c
3,649,541
def generate_fcm_token(): """Generate an FCM token nLAUJTr5RIJ:MNmSQ8O52FoJSvfWEPF4KvWopcNScNFRPHHbXdepwzuXJJMfadpEfb2JlHoqEhWanFz7-N0sfPg-pW4gNubNdxyikiI0lrvGeWGTp86fn9-NA3sZ-Eizv9QE7YKHCOIa70fR38N1ZYsb """ return '{}:{}-{}-{}-{}-{}'.format(random_all(11), random_all(68), random_all(6), random_all(30), random_all(5), random_all(27))
e535584bf630e1353a8f7458ff45cf2f0c1433fb
3,649,542
from typing import Optional import grp def _create_group(username: str, gid: Optional[int] = None, system: bool = False) -> Result[Group]: """ Create a new group. """ try: get_group(username) except KeyError: pass else: raise ValueError("Username {!r} is already in use".format(username)) args = ["/usr/sbin/addgroup", username] if gid: try: group = grp.getgrgid(gid) except KeyError: args[-1:-1] = ["--gid", str(gid)] else: raise ValueError("GID {} is already in use by {!r}".format(gid, group.gr_name)) if system: args[-1:-1] = ["--system"] command(args) group = get_group(username) LOG.debug("Created UNIX group: %r", group) return Result(State.created, group)
117e25e91c9f3e37bc58a005d3e036dc8cc9f4d3
3,649,543
def evaluate(data_loader): """Evaluate given the data loader Parameters ---------- data_loader : DataLoader Returns ------- avg_loss : float Average loss real_translation_out : list of list of str The translation output """ translation_out = [] all_inst_ids = [] avg_loss_denom = 0 avg_loss = 0.0 for _, (src_seq, tgt_seq, src_valid_length, tgt_valid_length, inst_ids) \ in enumerate(data_loader): src_seq = src_seq.as_in_context(ctx) tgt_seq = tgt_seq.as_in_context(ctx) src_valid_length = src_valid_length.as_in_context(ctx) tgt_valid_length = tgt_valid_length.as_in_context(ctx) # Calculating Loss out, _ = model(src_seq, tgt_seq[:, :-1], src_valid_length, tgt_valid_length - 1) loss = loss_function(out, tgt_seq[:, 1:], tgt_valid_length - 1).mean().asscalar() all_inst_ids.extend(inst_ids.asnumpy().astype(np.int32).tolist()) avg_loss += loss * (tgt_seq.shape[1] - 1) avg_loss_denom += (tgt_seq.shape[1] - 1) # Translate samples, _, sample_valid_length =\ translator.translate(src_seq=src_seq, src_valid_length=src_valid_length) max_score_sample = samples[:, 0, :].asnumpy() sample_valid_length = sample_valid_length[:, 0].asnumpy() for i in range(max_score_sample.shape[0]): translation_out.append( [tgt_vocab.idx_to_token[ele] for ele in max_score_sample[i][1:(sample_valid_length[i] - 1)]]) avg_loss = avg_loss / avg_loss_denom real_translation_out = [None for _ in range(len(all_inst_ids))] for ind, sentence in zip(all_inst_ids, translation_out): real_translation_out[ind] = sentence return avg_loss, real_translation_out
f7697e9f22e5bda3af6b0892b3cc5c3b047771f0
3,649,544
def adding_equation(thetas, eta0, eta1, eta2, eta3, kappa3 = 0.0, polarized=False, tau1=0.0, tau2=0.0): """ Return the reflectance of a 4 layers material (3 interfaces) with all inter-reflections, using adding equation """ zeros = [np.zeros_like(thetas),np.zeros_like(thetas)] if polarized else np.zeros_like(thetas) R01 = fresnel(np.cos(thetas), eta1/eta0, polarized=polarized) if eta1 != eta0 else zeros ones = np.ones_like(R01) T01 = ones - R01 thetas_t1 = clamp(np.arcsin(eta0 / eta1 * np.sin(thetas))) thetas_t1 = np.where(thetas_t1 is not np.nan, thetas_t1, 0.0); R10 = fresnel(np.cos(thetas_t1), eta0/eta1, polarized=polarized) if eta1 != eta0 else zeros R12 = fresnel(np.cos(thetas_t1), eta2/eta1, polarized=polarized) if eta1 != eta2 else zeros T12 = ones - R12 thetas_t2 = clamp(np.arcsin(eta1/eta2 * np.sin(thetas_t1))) thetas_t2 = np.where(thetas_t2 is not np.nan, thetas_t2, 0.0); R21 = fresnel(np.cos(thetas_t2), eta1/eta2, polarized=polarized) if eta1 != eta2 else zeros k = 0.0 if kappa3 == 0.0 else kappa3/eta2 R23 = fresnel(np.cos(thetas_t2), eta3/eta2, k, polarized=polarized) if polarized: res = [] for i in range(2): R13 = add_with_absorption(R12[i], R23[i], tau2, thetas_t2) R03 = add_with_absorption(R01[i], R13, tau1, thetas_t1) #R13 = add(R12[i], T12[i], R21[i], R23[i]) #R03 = add(R01[i], T01[i], R10[i], R13) res.append(np.where(np.isfinite(R03), R03, ones[0])) return res #R13 = add(R12, T12, R21, R23) #R03 = add(R01, T01, R10, R13) R13 = add_with_absorption(R12, R23, tau2, thetas_t2) R03 = add_with_absorption(R01, R13, tau1, thetas_t1) return np.where(np.isfinite(R03), R03, 1.0)
1e1f7e56096d712f04354cca52987b2010fd322f
3,649,545
import logging def text_expand(context): """ Give context, pick out the bible indexes, turn them into normalized scripture, and put the scripture back into the context """ output = [] end = 0 for m in candidate_filter(context): output.append(m.group('out')) try: bucket = get_bucket(m) formated = format_bucket(bucket) output.extend(['《',':'.join(list(formated)), '》']) except KeyError: output.append(m.group(0)) except AttributeError: output.append(m.group(0)) except: logging.warning(print(context)) end = m.end() output.append(context[end:]) return ''.join(output)
146cd85a1007215cc8bed53341418a7b3c23b532
3,649,546
from typing import Iterable from datetime import datetime def json_custom_parser(obj): """ A custom json parser to handle json.dumps calls properly for Decimal and Datetime data types. """ if not isinstance(obj, string_types) and isinstance(obj, Iterable): return list(obj) elif isinstance(obj, datetime.datetime) or isinstance(obj, datetime.date): dot_ix = 19 # 'YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM'.find('.') return obj.isoformat()[:dot_ix] else: raise TypeError(obj)
dbee1501376d2b1fc235b5351236e857fc9c5750
3,649,547
def like(): """ Function to automatically like a picture :return: 0 or 1 where 1 = one picture liked :rtype: int """ like_icons = driver.find_elements_by_xpath("//*[contains(@aria-label, 'Like')]") unlike_icons = driver.find_elements_by_xpath("//*[contains(@aria-label, 'Unlike')]") for icon in unlike_icons or like_icons: height = icon.get_attribute("height") fill_color = icon.get_attribute("fill") # Ensuring it is the correct icon and that it has not been liked before if height == "24" and fill_color == "#ed4956": # Fill color of a post already liked is #ed4956 print("Picture already liked.") return 0 elif height == "24" and fill_color == "#262626": # Fill color of post NOT liked is #262626 # ('..') is used here to fetch the parent of icon using xpath like_button = icon.find_element_by_xpath('..') like_button.click() print("Picture liked :)") sleep(2) return 1 else: # pragma: no cover pass
5db4a43c4b29a3cb49d62bddf755a9e374f0ac4e
3,649,548
import os def entity_tsv(args): """ Get list of entities in TSV format. Download files for which the encoding is undetected (e.g. ZIP archives). """ r = fapi.get_entities_tsv(args.project, args.workspace, args.entity_type, args.attrs, args.model) fapi._check_response_code(r, 200) if r.apparent_encoding is not None: return r.content.decode(r.apparent_encoding) else: content = r.headers['Content-Disposition'].split('; ')[-1].split('=') if len(content) == 2 and content[0] == 'filename': filename = content[1] if os.path.exists(filename) and (args.yes or not _confirm_prompt( 'This will overwrite {}'.format(filename))): return with open(filename, 'wb') as outfile: for chunk in r: outfile.write(chunk) print('Downloaded {}.'.format(filename)) return else: eprint("Unable to determine name of file to download.") return 1
14f966144e21d91801f9e4b5966e0499699da83e
3,649,549
def compare_files(file_name1, file_name2): """ Compare two files, line by line, for equality. Arguments: file_name1 (str or unicode): file name. file_name2 (str or unicode): file name. Returns: bool: True if files are equal, False otherwise. """ with open(file_name1) as file1, open(file_name2) as file2: for line1, line2 in zip(file1, file2): if line1 != line2: file1.close() file2.close() return False file1.close() file2.close() return True
3f77cf177ba60ddd121b95648379fff845d9877b
3,649,550
def like(request, pk): """Add a user to those who liked the post. Only authenticated users are able to like a post. """ if request.method == 'POST': # query the post in question try: post = Post.objects.get(pk=pk) except Post.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) # add a user to the list of those who liked this post # won't duplicate the relationship post.users_who_liked.add(request.user) return Response({'message': f'Liked the post {pk}.'})
d3ef1d9728592872a73b900c60e4021078d2ef2e
3,649,551
import os import sys import subprocess def calc_power_VARIANT(input_data, working_dir, t_pt=0): """Calculate the power distributions from VARIANT Parameters ---------- data : dict DASSH input data dictionary working_dir : str Path to current working directory Returns ------- dict DASSH Power objects for each type of assembly in the problem; different objects are required because different assemblies can have different unrodded region specifications """ cwd = os.getcwd() if working_dir != '': os.chdir(working_dir) # Identify VARPOW keys for fuel and coolant fuel_type = input_data['Power']['ARC']['fuel_material'].lower() fuel_id = _FUELS[fuel_type] if type(fuel_id) == dict: alloy_type = input_data['Power']['ARC']['fuel_alloy'].lower() fuel_id = fuel_id[alloy_type] coolant_heating = input_data['Power']['ARC']['coolant_heating'] if coolant_heating is None: coolant_heating = input_data['Core']['coolant_material'] if coolant_heating.lower() not in _COOLANTS.keys(): module_logger.error('Unknown coolant specification for ' 'heating calculation; must choose ' 'from options: Na, NaK, Pb, Pb-Bi') else: cool_id = _COOLANTS[coolant_heating.lower()] # Run VARPOW, rename output files path2varpow = os.path.dirname(os.path.abspath(__file__)) if sys.platform == 'darwin': path2varpow = os.path.join(path2varpow, 'varpow_osx.x') elif 'linux' in sys.platform: path2varpow = os.path.join(path2varpow, 'varpow_linux.x') else: raise SystemError('DASSH currently supports only Linux and OSX') with open('varpow_stdout.txt', 'w') as f: subprocess.call([path2varpow, str(fuel_id), str(cool_id), input_data['Power']['ARC']['pmatrx'][t_pt], input_data['Power']['ARC']['geodst'][t_pt], input_data['Power']['ARC']['ndxsrf'][t_pt], input_data['Power']['ARC']['znatdn'][t_pt], input_data['Power']['ARC']['nhflux'][t_pt], input_data['Power']['ARC']['ghflux'][t_pt]], stdout=f) subprocess.call(['mv', 'MaterialPower.out', 'varpow_MatPower.out']) subprocess.call(['mv', 'VariantMonoExponents.out', 'varpow_MonoExp.out']) subprocess.call(['mv', 'Output.VARPOW', 'VARPOW.out']) os.chdir(cwd) return import_power_VARIANT(input_data, working_dir, t_pt)
acd58904ae1f67ef1f27de5e5399d21175c0ef9e
3,649,552
def from_float32(buffer): """Interprets an arbitrary string or NumPy array as Vax single-precision floating-point binary values, and returns the equivalent array in IEEE values.""" # Convert the buffer to 2-byte elements if isinstance(buffer, (str, np.str_, bytes, bytearray)): pairs = np.fromstring(buffer, dtype='uint16') pairs = pairs.reshape(pairs.size//2, 2) newshape = (pairs.size//2,) else: buffer = np.asarray(buffer) pairs = buffer.view('uint16') assert pairs.shape[-1] % 2 == 0, \ 'buffer shape is incompatible with 4-byte elements' if buffer.itemsize == 1: newshape = buffer.shape[:-1] + (buffer.shape//4,) elif buffer.itemsize == 2: newshape = buffer.shape[:-1] + (buffer.shape//2,) elif buffer.itemsize == 4: newshape = buffer.shape[:-1] + (1,) else: newshape = buffer.shape + (buffer.itemsize//4,) if newshape[-1] == 1: newshape = newshape[:-1] # Perform a pairwise swap of the two-byte elements swapped = np.empty(pairs.shape, dtype='uint16') swapped[...,:] = pairs[...,::-1] # The results are in LSB IEEE format aside from a scale factor of four ieee = swapped.view('<f4') / 4. return ieee.reshape(newshape)
2ab310b2d5cc6fcd7f9f094d97de319a1643dc7e
3,649,553
def get_file_stats(file_name, entity_type='file', lineno=None, cursorpos=None, plugin=None, language=None, local_file=None): """Returns a hash of information about the entity.""" language = standardize_language(language, plugin) stats = { 'language': language, 'dependencies': [], 'lines': None, 'lineno': lineno, 'cursorpos': cursorpos, } if entity_type == 'file': lexer = get_lexer(language) if not language: language, lexer = guess_language(file_name, local_file) parser = DependencyParser(local_file or file_name, lexer) stats.update({ 'language': use_root_language(language, lexer), 'dependencies': parser.parse(), 'lines': number_lines_in_file(local_file or file_name), }) return stats
b1ccf3d0eb2af676fce690e5f81182d89d50596b
3,649,554
def setup(app: sphinx.application.Sphinx) -> dict[str, object]: """Called by Sphinx to set up the extension.""" app.add_config_value("gaphor_models", {}, "env", [dict]) app.add_directive("diagram", DiagramDirective) app.connect("config-inited", config_inited) return { "version": "0.1", "parallel_read_safe": True, "parallel_write_safe": True, }
992d7436d31cd18b7cd50b02b013d9c56179eacb
3,649,555
from nipype.interfaces.afni import utils as afni_utils def create_vmhc(use_ants, flirt_only=False, name='vmhc_workflow', ants_threads=1): """ Compute the map of brain functional homotopy, the high degree of synchrony in spontaneous activity between geometrically corresponding interhemispheric (i.e., homotopic) regions. Parameters ---------- None Returns ------- vmhc_workflow : workflow Voxel Mirrored Homotopic Connectivity Analysis Workflow Notes ----- `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/vmhc/vmhc.py>`_ Workflow Inputs:: inputspec.brain : string (existing nifti file) Anatomical image(without skull) inputspec.symmetric_brain : string (existing nifti file) MNI152_T1_2mm_symmetric_brain.nii.gz inputspec.rest_res_filt : string (existing nifti file) Band passed Image with nuisance signal regressed out(and optionally scrubbed). Recommended bandpass filter (0.001,0.1) ) inputspec.reorient : string (existing nifti file) RPI oriented anatomical data inputspec.example_func2highres_mat : string (existing affine transformation .mat file) Specifies an affine transform that should be applied to the example_func before non linear warping inputspec.standard_for_func: string (existing nifti file) MNI152_T1_standard_resolution_brain.nii.gz inputspec.symmetric_skull : string (existing nifti file) MNI152_T1_2mm_symmetric.nii.gz inputspec.twomm_brain_mask_dil : string (existing nifti file) MNI152_T1_2mm_brain_mask_symmetric_dil.nii.gz inputspec.config_file_twomm_symmetric : string (existing .cnf file) T1_2_MNI152_2mm_symmetric.cnf inputspec.rest_mask : string (existing nifti file) A mask functional volume(derived by dilation from motion corrected functional volume) fwhm_input.fwhm : list (float) For spatial smoothing the Z-transformed correlations in MNI space. Generally the value of this parameter is 1.5 or 2 times the voxel size of the input Image. inputspec.mean_functional : string (existing nifti file) The mean functional image for use in the func-to-anat registration matrix conversion to ITK (ANTS) format, if the user selects to use ANTS. Workflow Outputs:: outputspec.highres2symmstandard : string (nifti file) Linear registration of T1 image to symmetric standard image outputspec.highres2symmstandard_mat : string (affine transformation .mat file) An affine transformation .mat file from linear registration and used in non linear registration outputspec.highres2symmstandard_warp : string (nifti file) warp file from Non Linear registration of T1 to symmetrical standard brain outputspec.fnirt_highres2symmstandard : string (nifti file) Non Linear registration of T1 to symmetrical standard brain outputspec.highres2symmstandard_jac : string (nifti file) jacobian determinant image from Non Linear registration of T1 to symmetrical standard brain outputspec.rest_res_2symmstandard : string (nifti file) nonlinear registration (func to standard) image outputspec.VMHC_FWHM_img : string (nifti file) pearson correlation between res2standard and flipped res2standard outputspec.VMHC_Z_FWHM_img : string (nifti file) Fisher Z transform map outputspec.VMHC_Z_stat_FWHM_img : string (nifti file) Z statistic map Order of commands: - Perform linear registration of Anatomical brain in T1 space to symmetric standard space. For details see `flirt <http://www.fmrib.ox.ac.uk/fsl/flirt/index.html>`_:: flirt -ref MNI152_T1_2mm_symmetric_brain.nii.gz -in mprage_brain.nii.gz -out highres2symmstandard.nii.gz -omat highres2symmstandard.mat -cost corratio -searchcost corratio -dof 12 -interp trilinear - Perform nonlinear registration (higres to standard) to symmetric standard brain. For details see `fnirt <http://fsl.fmrib.ox.ac.uk/fsl/fnirt/>`_:: fnirt --in=head.nii.gz --aff=highres2symmstandard.mat --cout=highres2symmstandard_warp.nii.gz --iout=fnirt_highres2symmstandard.nii.gz --jout=highres2symmstandard_jac.nii.gz --config=T1_2_MNI152_2mm_symmetric.cnf --ref=MNI152_T1_2mm_symmetric.nii.gz --refmask=MNI152_T1_2mm_brain_mask_symmetric_dil.nii.gz --warpres=10,10,10 - Perform spatial smoothing on the input functional image(inputspec.rest_res_filt). For details see `PrinciplesSmoothing <http://imaging.mrc-cbu.cam.ac.uk/imaging/PrinciplesSmoothing>`_ `fslmaths <http://www.fmrib.ox.ac.uk/fslcourse/lectures/practicals/intro/index.htm>`_:: fslmaths rest_res_filt.nii.gz -kernel gauss FWHM/ sqrt(8-ln(2)) -fmean -mas rest_mask.nii.gz rest_res_filt_FWHM.nii.gz - Apply nonlinear registration (func to standard). For details see `applywarp <http://www.fmrib.ox.ac.uk/fsl/fnirt/warp_utils.html#applywarp>`_:: applywarp --ref=MNI152_T1_2mm_symmetric.nii.gz --in=rest_res_filt_FWHM.nii.gz --out=rest_res_2symmstandard.nii.gz --warp=highres2symmstandard_warp.nii.gz --premat=example_func2highres.mat - Copy and L/R swap the output of applywarp command (rest_res_2symmstandard.nii.gz). For details see `fslswapdim <http://fsl.fmrib.ox.ac.uk/fsl/fsl4.0/avwutils/index.html>`_:: fslswapdim rest_res_2symmstandard.nii.gz -x y z tmp_LRflipped.nii.gz - Calculate pearson correlation between rest_res_2symmstandard.nii.gz and flipped rest_res_2symmstandard.nii.gz(tmp_LRflipped.nii.gz). For details see `3dTcorrelate <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTcorrelate.html>`_:: 3dTcorrelate -pearson -polort -1 -prefix VMHC_FWHM.nii.gz rest_res_2symmstandard.nii.gz tmp_LRflipped.nii.gz - Fisher Z Transform the correlation. For details see `3dcalc <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcalc.html>`_:: 3dcalc -a VMHC_FWHM.nii.gz -expr 'log((a+1)/(1-a))/2' -prefix VMHC_FWHM_Z.nii.gz - Calculate the number of volumes(nvols) in flipped rest_res_2symmstandard.nii.gz(tmp_LRflipped.nii.gz) :: -Use Nibabel to do this - Compute the Z statistic map :: 3dcalc -a VMHC_FWHM_Z.nii.gz -expr 'a*sqrt('${nvols}'-3)' -prefix VMHC_FWHM_Z_stat.nii.gz Workflow: .. image:: ../images/vmhc_graph.dot.png :width: 500 Workflow Detailed: .. image:: ../images/vmhc_detailed_graph.dot.png :width: 500 References ---------- .. [1] Zuo, X.-N., Kelly, C., Di Martino, A., Mennes, M., Margulies, D. S., Bangaru, S., Grzadzinski, R., et al. (2010). Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(45), 15034-43. doi:10.1523/JNEUROSCI.2612-10.2010 Examples -------- >>> vmhc_w = create_vmhc() >>> vmhc_w.inputs.inputspec.symmetric_brain = 'MNI152_T1_2mm_symmetric_brain.nii.gz' >>> vmhc_w.inputs.inputspec.symmetric_skull = 'MNI152_T1_2mm_symmetric.nii.gz' >>> vmhc_w.inputs.inputspec.twomm_brain_mask_dil = 'MNI152_T1_2mm_brain_mask_symmetric_dil.nii.gz' >>> vmhc_w.inputs.inputspec.config_file_twomm = 'T1_2_MNI152_2mm_symmetric.cnf' >>> vmhc_w.inputs.inputspec.standard_for_func= 'MNI152_T1_2mm.nii.gz' >>> vmhc_w.inputs.fwhm_input.fwhm = [4.5, 6] >>> vmhc_w.get_node('fwhm_input').iterables = ('fwhm', [4.5, 6]) >>> vmhc_w.inputs.inputspec.rest_res = os.path.abspath('/home/data/Projects/Pipelines_testing/Dickstein/subjects/s1001/func/original/rest_res_filt.nii.gz') >>> vmhc_w.inputs.inputspec.reorient = os.path.abspath('/home/data/Projects/Pipelines_testing/Dickstein/subjects/s1001/anat/mprage_RPI.nii.gz') >>> vmhc_w.inputs.inputspec.brain = os.path.abspath('/home/data/Projects/Pipelines_testing/Dickstein/subjects/s1001/anat/mprage_brain.nii.gz') >>> vmhc_w.inputs.inputspec.example_func2highres_mat = os.path.abspath('/home/data/Projects/Pipelines_testing/Dickstein/subjects/s1001/func/original/reg/example_func2highres.mat') >>> vmhc_w.inputs.inputspec.rest_mask = os.path.abspath('/home/data/Projects/Pipelines_testing/Dickstein/subjects/s1001/func/original/rest_mask.nii.gz') >>> vmhc_w.run() # doctest: +SKIP """ vmhc = pe.Workflow(name=name) inputNode = pe.Node(util.IdentityInterface(fields=['rest_res', 'example_func2highres_mat', 'rest_mask', 'standard_for_func', 'mean_functional', 'brain', 'flirt_linear_aff', 'fnirt_nonlinear_warp', 'ants_symm_initial_xfm', 'ants_symm_rigid_xfm', 'ants_symm_affine_xfm', 'ants_symm_warp_field']), name='inputspec') outputNode = pe.Node(util.IdentityInterface(fields=['rest_res_2symmstandard', 'VMHC_FWHM_img', 'VMHC_Z_FWHM_img', 'VMHC_Z_stat_FWHM_img']), name='outputspec') inputnode_fwhm = pe.Node(util.IdentityInterface(fields=['fwhm']), name='fwhm_input') if use_ants == False: # Apply nonlinear registration (func to standard) func_to_standard = pe.Node(interface=fsl.ApplyWarp(), name='func_to_standard') elif use_ants == True: # ANTS warp image etc. fsl_to_itk_vmhc = create_wf_c3d_fsl_to_itk(0, name='fsl_to_itk_vmhc') collect_transforms_vmhc = create_wf_collect_transforms(0, name='collect_transforms_vmhc') apply_ants_xfm_vmhc = create_wf_apply_ants_warp(map_node=False, name='apply_ants_xfm_vmhc', ants_threads=ants_threads) # this has to be 3 instead of default 0 because it is a 4D file apply_ants_xfm_vmhc.inputs.inputspec.input_image_type = 3 # copy and L/R swap file copy_and_L_R_swap = pe.Node(interface=fsl.SwapDimensions(), name='copy_and_L_R_swap') copy_and_L_R_swap.inputs.new_dims = ('-x', 'y', 'z') # calculate vmhc pearson_correlation = pe.Node(interface=preprocess.TCorrelate(), name='pearson_correlation') pearson_correlation.inputs.pearson = True pearson_correlation.inputs.polort = -1 pearson_correlation.inputs.outputtype = 'NIFTI_GZ' try: z_trans = pe.Node(interface=preprocess.Calc(), name='z_trans') z_stat = pe.Node(interface=preprocess.Calc(), name='z_stat') except AttributeError: z_trans = pe.Node(interface=afni_utils.Calc(), name='z_trans') z_stat = pe.Node(interface=afni_utils.Calc(), name='z_stat') z_trans.inputs.expr = 'log((1+a)/(1-a))/2' z_trans.inputs.outputtype = 'NIFTI_GZ' z_stat.inputs.outputtype = 'NIFTI_GZ' NVOLS = pe.Node(util.Function(input_names=['in_files'], output_names=['nvols'], function=get_img_nvols), name='NVOLS') generateEXP = pe.Node(util.Function(input_names=['nvols'], output_names=['expr'], function=get_operand_expression), name='generateEXP') smooth = pe.Node(interface=fsl.MultiImageMaths(), name='smooth') if use_ants == False: vmhc.connect(inputNode, 'rest_res', smooth, 'in_file') vmhc.connect(inputnode_fwhm, ('fwhm', set_gauss), smooth, 'op_string') vmhc.connect(inputNode, 'rest_mask', smooth, 'operand_files') vmhc.connect(inputNode, 'standard_for_func', func_to_standard, 'ref_file') if not flirt_only: vmhc.connect(inputNode, 'fnirt_nonlinear_warp', func_to_standard, 'field_file') vmhc.connect(smooth, 'out_file', func_to_standard, 'in_file') vmhc.connect(inputNode, 'example_func2highres_mat', func_to_standard, 'premat') else: func_to_anat = pe.Node(interface=fsl.ApplyWarp(), name='func_to_anat') vmhc.connect(smooth, 'out_file', func_to_anat, 'in_file') vmhc.connect(inputNode, 'brain', func_to_anat, 'ref_file') vmhc.connect(inputNode, 'example_func2highres_mat', func_to_anat, 'premat') vmhc.connect(func_to_anat, 'out_file', func_to_standard, 'in_file') vmhc.connect(inputNode, 'flirt_linear_aff', func_to_standard, 'premat') vmhc.connect(func_to_standard, 'out_file', copy_and_L_R_swap, 'in_file') vmhc.connect(func_to_standard, 'out_file', pearson_correlation, 'xset') elif use_ants == True: # connections for ANTS stuff # functional apply warp stuff vmhc.connect(inputNode, 'rest_res', smooth, 'in_file') vmhc.connect(inputnode_fwhm, ('fwhm', set_gauss), smooth, 'op_string') vmhc.connect(inputNode, 'rest_mask', smooth, 'operand_files') vmhc.connect(smooth, 'out_file', apply_ants_xfm_vmhc, 'inputspec.input_image') vmhc.connect(inputNode, 'ants_symm_initial_xfm', collect_transforms_vmhc, 'inputspec.linear_initial') vmhc.connect(inputNode, 'ants_symm_rigid_xfm', collect_transforms_vmhc, 'inputspec.linear_rigid') vmhc.connect(inputNode, 'ants_symm_affine_xfm', collect_transforms_vmhc, 'inputspec.linear_affine') vmhc.connect(inputNode, 'ants_symm_warp_field', collect_transforms_vmhc, 'inputspec.warp_file') # func->anat matrix (bbreg) vmhc.connect(inputNode, 'example_func2highres_mat', fsl_to_itk_vmhc, 'inputspec.affine_file') vmhc.connect(inputNode, 'brain', fsl_to_itk_vmhc, 'inputspec.reference_file') vmhc.connect(inputNode, 'mean_functional', fsl_to_itk_vmhc, 'inputspec.source_file') vmhc.connect(fsl_to_itk_vmhc, 'outputspec.itk_transform', collect_transforms_vmhc, 'inputspec.fsl_to_itk_affine') vmhc.connect(inputNode, 'standard_for_func', apply_ants_xfm_vmhc, 'inputspec.reference_image') vmhc.connect(collect_transforms_vmhc, 'outputspec.transformation_series', apply_ants_xfm_vmhc, 'inputspec.transforms') vmhc.connect(apply_ants_xfm_vmhc, 'outputspec.output_image', copy_and_L_R_swap, 'in_file') vmhc.connect(apply_ants_xfm_vmhc, 'outputspec.output_image', pearson_correlation, 'xset') vmhc.connect(copy_and_L_R_swap, 'out_file', pearson_correlation, 'yset') vmhc.connect(pearson_correlation, 'out_file', z_trans, 'in_file_a') vmhc.connect(copy_and_L_R_swap, 'out_file', NVOLS, 'in_files') vmhc.connect(NVOLS, 'nvols', generateEXP, 'nvols') vmhc.connect(z_trans, 'out_file', z_stat, 'in_file_a') vmhc.connect(generateEXP, 'expr', z_stat, 'expr') if use_ants == False: vmhc.connect(func_to_standard, 'out_file', outputNode, 'rest_res_2symmstandard') elif use_ants == True: # ANTS warp outputs to outputnode vmhc.connect(apply_ants_xfm_vmhc, 'outputspec.output_image', outputNode, 'rest_res_2symmstandard') vmhc.connect(pearson_correlation, 'out_file', outputNode, 'VMHC_FWHM_img') vmhc.connect(z_trans, 'out_file', outputNode, 'VMHC_Z_FWHM_img') vmhc.connect(z_stat, 'out_file', outputNode, 'VMHC_Z_stat_FWHM_img') return vmhc
4c71974d962d86385de8de9d6752dc59b1e205d0
3,649,556
def get_chunk_index(connection, db, # pylint: disable=too-many-arguments tbl, chunk, ch_db='percona', ch_tbl='checksums'): """ Get index that was used to cut the chunk :param connection: MySQLDb connection :param db: database of the chunk :param tbl: table of the chunk :param chunk: chunk id :param ch_db: Database where checksums are stored. Default percona. :param ch_tbl: Table where checksums are stored. Default checksums. :return: index name or None if no index was used """ cur = connection.cursor() query = "SELECT chunk_index FROM `%s`.`%s` " \ "WHERE db='%s' AND tbl='%s' AND chunk = %s" LOG.info('Executing %s', query % (ch_db, ch_tbl, db, tbl, chunk)) cur.execute(query % (ch_db, ch_tbl, db, tbl, chunk)) return cur.fetchone()[0]
6cf59174d766d68dc635e9c578c9d4d12dba55bf
3,649,557
import subprocess import json def _get_tree(code): """Return an AST tree of the JS passed in `code`.""" if not code: return # Acceptable unicode characters still need to be stripped. Just remove the # slash: a character is necessary to prevent bad identifier errors. code = JS_ESCAPE.sub("u", unicodehelper.decode(code)) shell_obj = subprocess.Popen( ["node", "./acorn.js"], shell=False, stdin=subprocess.PIPE, stderr=subprocess.PIPE, stdout=subprocess.PIPE) data, stderr = shell_obj.communicate(code.encode('utf-8')) if stderr: raise RuntimeError('Error calling acorn: %s' % stderr) if not data: raise JSReflectException("Reflection failed") parsed = json.loads(unicodehelper.decode(data), strict=False) if parsed.get("error"): raise JSReflectException( parsed["error_message"]).line_num(parsed["line_number"]) return parsed
7705ca63765a4408651b310f604141fc1ebc1d6e
3,649,558
from typing import List def initial_assignment_alpha_MSS(agents: List[AdditiveAgent], items: List[str], alpha: float)->Allocation: """ Initial division for allocting agents according to their alpha-MMS. :param agents: valuations of agents, normalized such that MMS=1 for all agents, and valuation are ordered in ascending order :param items: items names sorted from the highest valued to the lowest :param alpha: parameter for how much to approximate MMS allocation. :return Allocation: whats been allocated so far (in this function), items and agents are update during function >>> ### allocation for 1 agent, 1 object (this pass!) >>> a = AdditiveAgent({"x": 1}, name="Alice") >>> agents=[a] >>> a1 = initial_assignment_alpha_MSS(agents,['x'],0.75) >>> print(a1, agents) Alice gets {x} with value nan. [] >>> ### allocation for 1 agent, 2 object >>> b = AdditiveAgent({"x": 0.5, "y": 0.4}, name="Blice") >>> agents=[b] >>> a1 = initial_assignment_alpha_MSS(agents,['x','y'],0.6) >>> print(a1, agents) Blice gets {x,y} with value nan. [] >>> ### allocation for 2 agent, 2 object >>> a = AdditiveAgent({"x": 0.8, "y": 0.7}, name="Alice") >>> b = AdditiveAgent({"x": 0.7, "y": 0.7}, name="Blice") >>> agents=[a,b] >>> a1= initial_assignment_alpha_MSS(agents,['x','y'],0.6) >>> print(a1, agents) Alice gets {x} with value nan. Blice gets {y} with value nan. [] >>> ### allocation for 2 agent, 8 object >>> a = AdditiveAgent({"x1": 0.647059, "x2": 0.588235, "x3": 0.470588, "x4": 0.411765, "x5": 0.352941, "x6": 0.294118, "x7": 0.176471, "x8": 0.117647}, name="A") >>> b = AdditiveAgent({"x1": 1.298701, "x2": 0.714286, "x3": 0.649351, "x4": 0.428571, "x5": 0.155844, "x6": 0.064935, "x7": 0.051948, "x8": 0.012987}, name="B") >>> c = AdditiveAgent({"x1": 0.6, "x2": 0.6, "x3": 0.48, "x4": 0.36, "x5": 0.32, "x6": 0.32, "x7": 0.28, "x8": 0.04}, name="C") >>> agents=[a,b,c] >>> a1 = initial_assignment_alpha_MSS(agents,['x1','x2','x3','x4','x5','x6','x7','x8'],0.75) >>> print(a1, agents) # x6, x7, x8 weren't divided A gets {x3,x4} with value nan. B gets {x1} with value nan. C gets {x2,x5} with value nan. [] """ ag_alloc = {} n = len(agents)-1 #if thereare less object than agents, mms is 0 for every one. if(n+1>len(items)): return Allocation(ag_alloc,agents) #return None names_agents=agent_names_from(agents) while(True): # for every agents check if s1/s2/s3/s3>=alpha num_items=len(items) #fill si bundles s1_bundle,s2_bundle,s3_bundle,s4_bundle=[],[],[],[] #check index not out of bound if num_items>0: s1_bundle=[items[0]] if num_items>n+1: s2_bundle=[items[n] , items[n+1]] if num_items>2*(n+1): if 2*(n+1)-2>0: s3_bundle=[items[(2*(n+1))-2], items[2*(n+1)-1] , items[2*(n+1)]] s4_bundle=[items[0], items[2*(n+1)]] s=[s1_bundle,s2_bundle,s3_bundle, s4_bundle] for si in s: willing_agent_index=willing_agent(agents,si,alpha) if willing_agent_index!=None: # give bundle to agent ag_alloc[agents[willing_agent_index]._name] = si # remove given items agent for item in si: items.remove(item) agents.pop(willing_agent_index) # update number of agents n = n - 1 # go to begining of outside loop and redefine the si bundles break elif si==s4_bundle: # no agent is satisfied by any of the si bundles return Allocation (names_agents,ag_alloc)
5ac7fa947ee555dfd963c679696224e58e2c343a
3,649,559
import os def find_furious_yaml(config_file=__file__): """ Traverse directory trees to find a furious.yaml file Begins with the location of this file then checks the working directory if not found Args: config_file: location of this file, override for testing Returns: the path of furious.yaml or None if not found """ checked = set() result = _find_furious_yaml(os.path.dirname(config_file), checked) if not result: result = _find_furious_yaml(os.getcwd(), checked) return result
b2b3354fc411123f9360d01d0123946c9cf9fe24
3,649,560
def comp_axes( self, axes_list, machine=None, axes_dict_in=None, is_periodicity_a=None, is_periodicity_t=None, per_a=None, is_antiper_a=None, per_t=None, is_antiper_t=None, ): """Compute simulation axes such as time / angle / phase axes, with or without periodicities and including normalizations Parameters ---------- self : Input an Input object machine : Machine a Machine object axes_list: list List of axes name to return in axes dict axes_dict: {Data} dict of axes containing time and angle axes (with or without (anti-)periodicity) is_periodicity_a: bool True if spatial periodicity is requested is_periodicity_t: bool True if time periodicity is requested per_a : int angle periodicity is_antiper_a : bool if the angle axis is antiperiodic per_t : int time periodicity is_antiper_t : bool if the time axis is antiperiodic Returns ------- axes_dict: {Data} dict of axes containing requested axes """ if len(axes_list) == 0: raise Exception("axes_list should not be empty") if self.parent is not None: simu = self.parent else: simu = None if hasattr(simu, "parent") and simu.parent is not None: output = simu.parent else: output = None if (axes_list is None or len(axes_list) == 0) and ( axes_dict_in is None or len(axes_dict_in) == 0 ): raise Exception( "Cannot calculate axes if both axes list and axes dict are None" ) if machine is None: # Fetch machine from input if hasattr(simu, "machine") and simu.machine is not None: machine = simu.machine else: raise Exception("Cannot calculate axes if simu.machine is None") # Get machine pole pair number p = machine.get_pole_pair_number() # Fill periodicity parameters that are None if per_a is None or is_antiper_a is None or per_t is None or is_antiper_t is None: if output is not None: # Get time and space (anti-)periodicities from the output ( per_a_0, is_antiper_a_0, per_t_0, is_antiper_t_0, ) = output.get_machine_periodicity() else: # Compute time and space (anti-)periodicities from the machine per_a_0, is_antiper_a_0 = machine.comp_periodicity_spatial() per_t_0, is_antiper_t_0, _, _ = machine.comp_periodicity_time() if is_periodicity_t is None or is_periodicity_t: # Enforce None values to machine time periodicity per_t = per_t_0 if per_t is None else per_t is_antiper_t = is_antiper_t_0 if is_antiper_t is None else is_antiper_t if is_periodicity_t is None: # Check time periodicity is included is_periodicity_t = per_t > 1 or is_antiper_t elif not is_periodicity_t: # Remove time periodicity per_t = 1 is_antiper_t = False if is_periodicity_a is None or is_periodicity_a: # Enforce None values to machine periodicity per_a = per_a_0 if per_a is None else per_a is_antiper_a = is_antiper_a_0 if is_antiper_a is None else is_antiper_a if is_periodicity_a is None: # Enforce requested angle periodicity is_periodicity_a = per_a > 1 or is_antiper_a elif not is_periodicity_a: # Remove angle periodicity per_a = 1 is_antiper_a = False # Init axes_dict axes_dict = dict() # Get time axis if "time" in axes_list: # Check if Time is already in input dict of axes if axes_dict_in is not None and "time" in axes_dict_in: Time_in = axes_dict_in["time"] else: Time_in = None # Calculate time axis Time = self.comp_axis_time(p, per_t, is_antiper_t, Time_in) # Store time axis in dict axes_dict["time"] = Time # Get angle axis if "angle" in axes_list: # Airgap radius Rag = machine.comp_Rgap_mec() # Check if Angle is already in input dict of axes if axes_dict_in is not None and "angle" in axes_dict_in: Angle_in = axes_dict_in["angle"] else: Angle_in = None # Calculate angle axis Angle = self.comp_axis_angle(p, Rag, per_a, is_antiper_a, Angle_in) # Store angle axis in dict axes_dict["angle"] = Angle if "phase_S" in axes_list: # Check if Phase is already in input dict of axes stator_label = "phase_" + machine.stator.get_label() if axes_dict_in is not None and stator_label in axes_dict_in: Phase_in = axes_dict_in[stator_label] else: Phase_in = None # Calculate stator phase axis Phase = self.comp_axis_phase(machine.stator, Phase_in) if Phase is not None: # Store phase axis in dict axes_dict[stator_label] = Phase if "phase_R" in axes_list: # Check if Phase is already in input dict of axes rotor_label = "phase_" + machine.rotor.get_label() if axes_dict_in is not None and rotor_label in axes_dict_in: Phase_in = axes_dict_in[rotor_label] else: Phase_in = None # Calculate rotor phase axis per_a_phase = 2 * per_a if is_antiper_a else per_a Phase = self.comp_axis_phase(machine.rotor, per_a_phase, Phase_in) if Phase is not None: # Store phase axis in dict axes_dict[rotor_label] = Phase return axes_dict
d01cb4efb2b1676cc2548e3e57324733708e4764
3,649,561
def clean_vehicles(country): """Delete all vehicles from given country.""" with elastic() as client: search = Vehicle.search(using=client).filter("term", country=country) count = search.count() search.delete() return count
021189a68ec6035af2b5140f79a29ce71caa12fd
3,649,562
from typing import Union from pathlib import Path from typing import Any def render_template( env: NativeEnvironment, template: Union[Text, Path], context: Any, ) -> Any: """Utility function for rendering Jinja2 text or file templates. Args: env: The Jinja2 environment to use for rendering template: The template string or file to render context: The context variables to use for rendering Returns: The rendered template string or data structure """ # convert strings to template if isinstance(template, Path): _template = env.get_template(str(template)) else: _template = env.from_string(template) value = _template.render(**context) if isinstance(value, Undefined): value._fail_with_undefined_error() return value
61585cf76896afd70be8b3a620cb4dbe8620c567
3,649,563
import os def _get_template_dirs(type="plugin"): """Return a list of directories where templates may be located. """ template_dirs = [ os.path.expanduser(os.path.join("~", ".rapport", "templates", type)), os.path.join("rapport", "templates", type) # Local dev tree ] return template_dirs
b0c6351d0e346310f5d36c6d010332cc1e1b54ea
3,649,564
def aspect_ToCString(*args): """ * Translates an ExtendedString to a CString depending of the local format. :param aString: :type aString: TCollection_ExtendedString & :rtype: char * """ return _Aspect.aspect_ToCString(*args)
e5f5b352b60610f3a18e0757a98b8e58f31c84ff
3,649,565
def suites_list(request): """List suites.""" return TemplateResponse( request, "manage/suite/suites.html", { "suites": model.Suite.objects.select_related().annotate( case_count=NotDeletedCount("cases", distinct=True)), } )
55e1cd86a0d82bc6fd2a6b75248a1a4b06264bb5
3,649,566
def push_gitlab_event_dict(): """ Cleared version of the push gitlab webhook content. """ return { "object_kind": "push", "event_name": "push", "before": "0e27f070efa4bef2a7c0168f07a0ac36ef90d8cb", "after": "cb2859505e101785097e082529dced35bbee0c8f", "ref": "refs/heads/build-branch", "checkout_sha": "cb2859505e101785097e082529dced35bbee0c8f", "user_id": 5647360, "user_name": "Shreyas Papinwar", "user_username": "shreyaspapi", "user_email": "", "user_avatar": "https://assets.gitlab-static.net/uploads/-" "/system/user/avatar/5647360/avatar.png", "project_id": 18032222, "project": { "id": 18032222, "name": "Hello there", "description": "Hehehehe", "web_url": "https://gitlab.com/the-namespace/repo-name", "git_ssh_url": "git@gitlab.com:the-namespace/repo-name.git", "git_http_url": "https://gitlab.com/the-namespace/repo-name.git", "namespace": "Testing packit", "visibility_level": 20, "path_with_namespace": "the-namespace/repo-name", "default_branch": "master", "homepage": "https://gitlab.com/the-namespace/repo-name", "url": "git@gitlab.com:the-namespace/repo-name.git", "ssh_url": "git@gitlab.com:the-namespace/repo-name.git", "http_url": "https://gitlab.com/the-namespace/repo-name.git", }, "commits": [ { "id": "cb2859505e101785097e082529dced35bbee0c8f", "message": "Update README.md", "title": "Update README.md", "timestamp": "2020-06-04T23:14:57+00:00", "url": "https://gitlab.com/the-namespace/repo-name/-/commit/" "cb2859505e101785097e082529dced35bbee0c8f", "author": {"name": "Shreyas Papinwar", "email": "spapinwar@gmail.com"}, "added": [], "modified": ["README.md"], "removed": [], } ], "total_commits_count": 1, "push_options": {}, "repository": { "name": "Hello there", "url": "git@gitlab.com:the-namespace/repo-name.git", "description": "Hehehehe", "homepage": "https://gitlab.com/the-namespace/repo-name", "git_http_url": "https://gitlab.com/the-namespace/repo-name.git", "git_ssh_url": "git@gitlab.com:the-namespace/repo-name.git", "visibility_level": 20, }, }
3a0134774f828e233c8b1e3fd2d6b94d6fae699f
3,649,567
def compute_rotation_effects(VD, settings, EW_small, GAMMA, len_mach, X, CHORD, XLE, XBAR, rhs, COSINP, SINALF, PITCH, ROLL, YAW, STB, RNMAX): """ This computes the effects of the freestream and aircraft rotation rate on CLE, the induced flow at the leading edge Assumptions: Several of the values needed in this calculation have been computed earlier and stored in VD Normally, VORLAX skips the calculation implemented in this function for linear chordwise spacing (the if statement below). However, since the trends are correct, albeit underestimated, this calculation is being forced here. """ LE_ind = VD.leading_edge_indices RNMAX = VD.panels_per_strip ##spacing = settings.spanwise_cosine_spacing ##if spacing == False: # linear spacing is LAX==1 in VORLAX ## return 0 #CLE not calculated till later for linear spacing # Computate rotational effects (pitch, roll, yaw rates) on LE suction # pick leading edge strip values for EW and reshape GAMMA -> gamma accordingly EW = EW_small[: ,LE_ind, :] n_tot_strips = EW.shape[1] gamma = np.array(np.split(np.repeat(GAMMA, n_tot_strips, axis=0), len_mach)) CLE = (EW*gamma).sum(axis=2) # Up till EFFINC, some of the following values were computed in compute_RHS_matrix(). # EFFINC and ALOC are calculated the exact same way, except for the XGIRO term. # LOCATE VORTEX LATTICE CONTROL POINT WITH RESPECT TO THE # ROTATION CENTER (XBAR, 0, ZBAR). THE RELATIVE COORDINATES # ARE XGIRO, YGIRO, AND ZGIRO. XGIRO = X - CHORD*XLE - np.repeat(XBAR, RNMAX[LE_ind]) YGIRO = rhs.YGIRO ZGIRO = rhs.ZGIRO # VX, VY, VZ ARE THE FLOW ONSET VELOCITY COMPONENTS AT THE LEADING # EDGE (STRIP MIDPOINT). VX, VY, VZ AND THE ROTATION RATES ARE # REFERENCED TO THE FREE STREAM VELOCITY. VX = rhs.VX VY = (COSINP - YAW *XGIRO + ROLL *ZGIRO) VZ = (SINALF - ROLL *YGIRO + PITCH*XGIRO) # CCNTL, SCNTL, SID, and COD were computed in compute_RHS_matrix() # EFFINC = COMPONENT OF ONSET FLOW ALONG NORMAL TO CAMBERLINE AT # LEADING EDGE. EFFINC = VX *rhs.SCNTL + VY *rhs.CCNTL *rhs.SID - VZ *rhs.CCNTL *rhs.COD CLE = CLE - EFFINC[:,LE_ind] CLE = np.where(STB > 0, CLE /RNMAX[LE_ind] /STB, CLE) return CLE
6184f0732c4da4726a5f17e99bd7329bd55c4907
3,649,568
def introduction(course): """This method represents route to 'courses/<course>/intro.html' where the character introduction is rendered. This method handles both GET and POST requests. Args: course (string): Name of the course. Returns: render_template: Returns rendered 'courses/<course>/intro.html' template. """ courseClass = class_for_name("project.models", course.capitalize()) introLevel = courseClass.query.filter_by(email=current_user.email).first().get_introLevel() letters = introduceLetters(course, introLevel) return render_template('courses/introduction.html', letters=letters, course=course)
7c569f98afbced4a0e1c45b0956d3ba15147384f
3,649,569
import pesummary.core.file.formats import pesummary.gw.file.formats import pkgutil import importlib def available_formats(): """Return the available formats for reading and writing Returns ------- tuple: tuple of sets. First set are the available formats for reading. Second set are the available sets for writing. """ read_formats, write_formats = [], [] modules = { "gw": pesummary.gw.file.formats, "core": pesummary.core.file.formats } for package in ["core", "gw"]: formats = [ a for _, a, _ in pkgutil.walk_packages(path=modules[package].__path__) ] for _format in formats: _submodule = importlib.import_module( "pesummary.{}.file.formats.{}".format(package, _format) ) if hasattr(_submodule, "write_{}".format(_format)): write_formats.append(_format) if hasattr(_submodule, "read_{}".format(_format)): read_formats.append(_format) return set(read_formats), set(write_formats)
1419092210d0cf5dfa116d43c0354c309afc831e
3,649,570
import json def bbox_from_openpose(openpose_file, rescale=1.2, detection_thresh=0.2): """Get center and scale for bounding box from openpose detections.""" with open(openpose_file, 'r') as f: keypoints = json.load(f)['people'][0]['pose_keypoints_2d'] keypoints = np.reshape(np.array(keypoints), (-1, 3)) valid = keypoints[:, -1] > detection_thresh valid_keypoints = keypoints[valid][:, :-1] center = valid_keypoints.mean(axis=0) bbox_size = (valid_keypoints.max(axis=0) - valid_keypoints.min(axis=0)).max() # adjust bounding box tightness scale = bbox_size / 200.0 scale *= rescale return center, scale
c91397fbe42a15d8bce1f1018303e6ff7328c467
3,649,571
def calc_KPs(TempC, Sal, P=None): """ Calculate equilibrium constants for P species. KP1 = H3PO4 KP2 = H2PO4 KP3 = HPO4 Chapter 5, Section 7.2.5 of Dickson, Sabine and Christian (2007, http://cdiac.ornl.gov/oceans/Handbook_2007.html) **WITHOUT APPROX PH SCALE CONVERSION IN CONSTANT** (See footnote 5 in 'Best Practices' Guide) This produces constants on SWS pH Scale. Must be converted to Total scale before use. Parameters ---------- TempC : array-like Temperature in Celcius. Sal : array-like Salinity in PSU P : array-like Pressure in bar Returns ------- dict of KPs """ TempK = TempC + 273.15 lnTempK = np.log(TempK) a0, a1, a2, a3, a4, a5, a6 = ( -4576.752, 115.54, -18.453, -106.736, 0.69171, -0.65643, -0.01844, ) b0, b1, b2, b3, b4, b5, b6 = ( -8814.715, 172.1033, -27.927, -160.340, 1.3566, 0.37335, -0.05778, ) c0, c1, c3, c4, c5, c6 = (-3070.75, -18.126, 17.27039, 2.81197, -44.99486, -0.09984) KP1 = np.exp( a0 / TempK + a1 + a2 * lnTempK + (a3 / TempK + a4) * Sal ** 0.5 + (a5 / TempK + a6) * Sal ) KP2 = np.exp( b0 / TempK + b1 + b2 * lnTempK + (b3 / TempK + b4) * Sal ** 0.5 + (b5 / TempK + b6) * Sal ) KP3 = np.exp( c0 / TempK + c1 + (c3 / TempK + c4) * Sal ** 0.5 + (c5 / TempK + c6) * Sal ) # parameters from Table 5 of Millero 2007 (doi:10.1021/cr0503557) # Checked against CO2SYS if P is not None: ppar = { "KP1": [-14.51, 0.1211, -0.000321, -2.67, 0.0427], "KP2": [-23.12, 0.1758, -2.647e-3, -5.15, 0.09], "KP3": [-26.57, 0.2020, -3.042e-3, -4.08, 0.0714], } KP1 *= prescorr(P, TempC, *ppar["KP1"]) KP2 *= prescorr(P, TempC, *ppar["KP2"]) KP3 *= prescorr(P, TempC, *ppar["KP3"]) return {"KP1": KP1, "KP2": KP2, "KP3": KP3}
a850fb9a85946d4fc9607f8b6744291157b980d1
3,649,572
def evaluate_model_sector_prediction( model, test_data_x, test_data_y, test_data_industry, test_data_size, mode_classifier=True, max_seq_length=512, batch_size=8, ): """This is a function to predict the sector given the input text ids""" model = model.eval() pred_label_test = [] answer_label_test = [] pred_industry_test = [] answer_indesutry_test = [] pred_label_prob_list = [] pred_industry_prob_list = [] for data_index in range(0, len(test_data_x), batch_size): data_batch = test_data_x[data_index : data_index + batch_size] doc_batch = [doc[0] for doc in data_batch] logits = 0 industry_logits_all = 0 """formatting the input data""" input_array_doc = [] for doc_batch_index, input_ids in enumerate(doc_batch): input_array = np.zeros(max_seq_length, dtype=np.int) input_array[: min(max_seq_length, 1)] = input_ids[: min(max_seq_length, 1)] input_array_doc.append(input_array) input_ids = LongTensor(np.array(input_array_doc).astype(np.int32)) """getting the model's output""" label_logits, industry_logits = model(input_ids) """getting the values of the predicted probabilities""" logits += label_logits industry_logits_all += industry_logits pred_label = np.argmax(logits.detach().to("cpu").numpy(), axis=1) pred_industry = np.argmax( industry_logits_all.detach().to("cpu").numpy(), axis=1 ) """creating the output lists for the predicted values""" pred_label_test += list(pred_label) pred_industry_test += list(pred_industry) answer_label_test += list(test_data_y[data_index : data_index + batch_size]) answer_indesutry_test += list( test_data_industry[data_index : data_index + batch_size] ) """printing classification metrics of the sectors""" target_sectors = [0, 1, 2, 3, 4, 5, 6, 7, 8] print(classification_report(answer_label_test, pred_label_test, target_sectors)) return ( pred_label_test, answer_label_test, pred_industry_test, answer_indesutry_test, )
4b0d97c647f9e49600a149a0f5144744ea78f8bc
3,649,573
def is_no_op(module: Module) -> bool: """Return whether the module does no operation in graph. Args: module: module Returns: whether module is no operation """ no_op_modules = (Sequential, _Branch, Parallel, ReduceTuple, GraphModule) return isinstance(module, no_op_modules)
6b5a765be41353596a500e6827800868daa16386
3,649,574
import os def has_ext(path_name, *, multiple=None, if_all_ext=False): """ Determine if the given path name has an extension """ base = os.path.basename(path_name) count = base.count(EXT) if not if_all_ext and base[0] == EXT and count != 0: count -= 1 if multiple is None: return count >= 1 elif multiple: return count > 1 else: return count == 1
53fc639b44b2a1791220ec24f2b1fc6922152482
3,649,575
import os import multiprocessing def index_directory(directory, labels, formats, class_names=None, shuffle=True, seed=None, follow_links=False): """Make list of all files in the subdirs of `directory`, with their labels. Args: directory: The target directory (string). labels: Either "inferred" (labels are generated from the directory structure), None (no labels), or a list/tuple of integer labels of the same size as the number of valid files found in the directory. Labels should be sorted according to the alphanumeric order of the image file paths (obtained via `os.walk(directory)` in Python). formats: Allowlist of file extensions to index (e.g. ".jpg", ".txt"). class_names: Only valid if "labels" is "inferred". This is the explict list of class names (must match names of subdirectories). Used to control the order of the classes (otherwise alphanumerical order is used). shuffle: Whether to shuffle the data. Default: True. If set to False, sorts the data in alphanumeric order. seed: Optional random seed for shuffling. follow_links: Whether to visits subdirectories pointed to by symlinks. Returns: tuple (file_paths, labels, class_names). file_paths: list of file paths (strings). labels: list of matching integer labels (same length as file_paths) class_names: names of the classes corresponding to these labels, in order. """ if labels is None: # in the no-label case, index from the parent directory down. subdirs = [''] class_names = subdirs else: subdirs = [] for subdir in sorted(os.listdir(directory)): if os.path.isdir(os.path.join(directory, subdir)): subdirs.append(subdir) if not class_names: class_names = subdirs else: if set(class_names) != set(subdirs): raise ValueError( 'The `class_names` passed did not match the ' 'names of the subdirectories of the target directory. ' 'Expected: %s, but received: %s' % (subdirs, class_names)) class_indices = dict(zip(class_names, range(len(class_names)))) # Build an index of the files # in the different class subfolders. pool = multiprocessing.pool.ThreadPool() results = [] filenames = [] for dirpath in (os.path.join(directory, subdir) for subdir in subdirs): results.append( pool.apply_async(index_subdirectory, (dirpath, class_indices, follow_links, formats))) labels_list = [] for res in results: partial_filenames, partial_labels = res.get() labels_list.append(partial_labels) filenames += partial_filenames if labels not in ('inferred', None): if len(labels) != len(filenames): raise ValueError('Expected the lengths of `labels` to match the number ' 'of files in the target directory. len(labels) is %s ' 'while we found %s files in %s.' % ( len(labels), len(filenames), directory)) else: i = 0 labels = np.zeros((len(filenames),), dtype='int32') for partial_labels in labels_list: labels[i:i + len(partial_labels)] = partial_labels i += len(partial_labels) if labels is None: print('Found %d files.' % (len(filenames),)) else: print('Found %d files belonging to %d classes.' % (len(filenames), len(class_names))) pool.close() pool.join() file_paths = [os.path.join(directory, fname) for fname in filenames] if shuffle: # Shuffle globally to erase macro-structure if seed is None: seed = np.random.randint(1e6) rng = np.random.RandomState(seed) rng.shuffle(file_paths) rng = np.random.RandomState(seed) rng.shuffle(labels) return file_paths, labels, class_names
474886eecf2515e53d2120357a8c5405e89a45fb
3,649,576
def colors_from_cmap(length=50, cmap=None, start=None, stop=None): """Return color cycle from a given colormap. Parameters ---------- length : int The number of colors in the cycle. When `length` is large (> ~10), it is difficult to distinguish between successive lines because successive colors are very similar. cmap : str Name of a matplotlib colormap (see matplotlib.pyplot.cm). start, stop: 0 <= float <= 1 Limit colormap to this range (start < stop 1). You should limit the range of colormaps with light values (assuming a white background). Some colors have default start/stop values (see `CMAP_RANGE`). Returns ------- colors : list List of RGBA colors. See Also -------- cycle_cmap """ if cmap is None: cmap = config['color']['cmap'] if isinstance(cmap, basestring): cmap = getattr(plt.cm, cmap) crange = CMAP_RANGE.get(cmap.name, (0, 1)) if start is not None: crange[0] = start if stop is not None: crange[1] = stop assert 0 <= crange[0] <= 1 assert 0 <= crange[1] <= 1 idx = np.linspace(crange[0], crange[1], num=length) return cmap(idx)
e2c7c117ab3d463ee20548c15d3e7deee3a1879a
3,649,577
def mag_thresh(img, sobel_kernel=3, mag_thresh=(30, 100)): """ Return the magnitude of the gradient for a given sobel kernel size and threshold values """ # Apply the following steps to img # 1) Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # 2) Take the gradient in x and y separately sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) # 3) Calculate the gradient magnitude mag_sobel = np.sqrt(sobelx**2 + sobely**2) # 4) Scale to 8-bit (0 - 255) and convert to type = np.uint8 scaled_sobel = np.uint8(255*mag_sobel/np.max(mag_sobel)) # 5) Create a binary mask where mag thresholds are met, zeros otherwise binary_output = np.zeros_like(scaled_sobel) binary_output[(scaled_sobel >= mag_thresh[0] ) & (scaled_sobel <= mag_thresh[1])] = 1 # 6) Return this mask as your binary_output image return binary_output
c079ca591c4e35e69821d871d7f451aaaf867ef9
3,649,578
def mean_absolute_percentage_error(predictions, targets): """Calculate mean absolute percentage error""" mask = (targets != 0.0) return (np.fabs(targets - predictions)/targets)[mask].mean()*100.0
1f37da29c47035a3656d3d07b34ec26f862a80ac
3,649,579
def make_net_xds_list(data_xds_list, coords_per_xds): """Construct a list of dicts of xarray.Datasets to house the net gains. Args: data_xds_list: A List of xarray.Dataset objects containing MS data. coords_per_xds: A List of Dicts containing dataset coords. Returns: net_gain_xds_list: A List of xarray.Dataset objects to house the net gains. """ net_gain_xds_list = [] for data_xds, xds_coords in zip(data_xds_list, coords_per_xds): net_t_chunks = np.tile(data_xds.UTIME_CHUNKS, 2).reshape(2, -1) net_f_chunks = np.tile(data_xds.chunks["chan"], 2).reshape(2, -1) # Create a default config object, consistent with the net gain. # NOTE: If we have a direction-dependent model, assume the net gain # is also direction dependent. config = Gain(direction_dependent=bool(data_xds.dims["dir"])) net_obj = TERM_TYPES["complex"]("NET", config, data_xds, xds_coords, net_t_chunks, net_f_chunks) net_gain_xds_list.append(net_obj.make_xds()) return net_gain_xds_list
1546555e76d0f6bab4abc7985707f8be9fc19558
3,649,580
import collections def sort_dict(d, key=None, reverse=False): """ Sorts a dict by value. Args: d: Input dictionary key: Function which takes an tuple (key, object) and returns a value to compare and sort by. By default, the function compares the values of the dict i.e. key = lambda t : t[1] reverse: Allows to reverse sort order. Returns: OrderedDict object whose keys are ordered according to their value. """ kv_items = list(d.items()) # Sort kv_items according to key. if key is None: kv_items.sort(key=lambda t: t[1], reverse=reverse) else: kv_items.sort(key=key, reverse=reverse) # Build ordered dict. return collections.OrderedDict(kv_items)
9ca904a5e0df3e3c50b29967adfe9061e778dfc9
3,649,581
import requests def check_builds(): """Base task""" response = requests.get( url=urljoin(Config.SISENSE_URL, "v2/builds"), headers=Config.SISENSE_HEADERS ) builds = pd.DataFrame(data=response.json()) failed_builds = builds.loc[(builds.status == "failed")] # for each failed cube: for build in failed_builds.to_dict(orient="records"): # check if failed cube is already recorded (oid), if not record recorded_failure = ( session.query(FailedBuilds).filter(FailedBuilds.oid == build["oid"]).first() ) if recorded_failure is None: # record record_failure( build["oid"], build["datamodelId"], build["datamodelTitle"], build["instanceId"], ) # save log and get elements for log card error_dict = get_logs(build["datamodelId"], build["datamodelTitle"]) # prepare card (so look into log) card = make_teams_card( build["datamodelTitle"], error_dict["timestamp"], error_dict["error_message"], error_dict["file_link"], ) # send card send_teams_card(card) return error_dict
38820f314ff8a57cbf5b7242a52b557905b0f1eb
3,649,582
def comp_neworig(tileid,dirn='/global/cfs/cdirs/desi/survey/catalogs/testfiberassign/SV3rerun/orig/'): """ check that new matches the original """ ts = str(tileid).zfill(6) fa = fitsio.read('/global/cfs/cdirs/desi/target/fiberassign/tiles/trunk/'+ts[:3]+'/fiberassign-'+ts+'.fits.gz') fn = fitsio.read(dirn+'fba-'+ts+'.fits') w = fn['DEVICE_TYPE'] == 'POS' fn = fn[w] wn = fn['TARGETID'] >= 0 fn = fn[wn] print(len(fn)) wa = fa['TARGETID'] >= 0 fa = fa[wa] print(len(fa)) ws = np.isin(fn['TARGETID'],fa['TARGETID']) print(np.sum(ws)) if np.sum(ws) == len(fa) and len(fa) == len(fn): return True else: return False
e7d1d4202b024508712e14de86341d3597c85314
3,649,583
def _get_widget_handler(webmanager): """ Returns a handler to get the widgets :param WebManager webmanager: :return tornado.web.RequestHandler: """ class WidgetHandler(web.RequestHandler): """ Handler for all communications over WebSockets """ def get(self): """ Called when a client connection is closed """ webmanager.on_get_widgets(self) return WidgetHandler
734b081e3b92180356e88ca21418785d45662b64
3,649,584
def get_model_field_type(model, field_label): """ Returns model's field type. """ return FIELD_TYPES_MAPPING.get(type(get_model_field(model, field_label)), 'STRING')
aeba374954b25f0383015f56be41cdc5f9917ae3
3,649,585
def Normalize_Column_Scores(df, columns, norm_type = 'divide_by_max'): """Normalizes scores for specified columns in a pandas dataframe Parameters ---------- df : a pandas DataFrame object that contains the specified columns columns: a list object that includes the columns to normalize norm_type : a string specifying the type of normalization to perform - 'divide_by_max' divides all values by the maximum value - 'range_norm' divides all values (+ the min) by the range of values in the column - 'z_norm' computes a z-score based on the mean and standard deviation of values - 'divide_by_sum' divides all values by the sum of the values - 'vector' dives all values by the square root of the sum of the squares of all values Yields ------ temp_df: a copy of the passed dataframe with the normalizations performed Examples -------- >>> import pandas as pd >>> import numpy as np >>> import mcdm_functions as mcfunc >>> data_dict = {'Product': ['A', 'B', 'C', 'D'], 'Product Advantage': [13.1,13.2,12.2,13.2], 'Strategic Alignment': [9.8,8.2,10.0,9.6], 'Technical Feasibility': [20.0,18.7,18.5,17.1], 'Market Attractiveness': [15.5,12.3,13.1,13.1]} >>> score_data = pd.DataFrame(data_dict) >>> score_data = score_data.set_index('Product') >>> print(score_data) Market Attractiveness Product Advantage Strategic Alignment \ Product A 15.5 13.1 9.8 B 12.3 13.2 8.2 C 13.1 12.2 10.0 D 13.1 13.2 9.6 Technical Feasibility Product A 20.0 B 18.7 C 18.5 D 17.1 >>> columns = ['Market Attractiveness','Product Advantage'] >>> temp = mcfunc.Normalize_Column_Scores(score_data,columns) >>> print(temp) Market Attractiveness Product Advantage Strategic Alignment \ Product A 1.000000 13.1 9.8 B 0.793548 13.2 8.2 C 0.845161 12.2 10.0 D 0.845161 13.2 9.6 Technical Feasibility Product A 20.0 B 18.7 C 18.5 D 17.1 """ temp_df = df.copy() for column in columns: if norm_type is 'divide_by_max': max_entry = temp_df[column].max() temp_df[column] = temp_df[column]/max_entry elif norm_type is 'range_norm': min_entry = temp_df[column].min() max_entry = temp_df[column].max() temp_df[column] = (temp_df[column]-min_entry)/(max_entry - min_entry) elif norm_type is 'z_norm': mean = temp_df[column].mean() sd = temp_df[column].std() temp_df[column] = (temp_df[column]-mean)/sd elif norm_type is 'divide_by_sum': temp_df[column] = temp_df[column]/temp_df[column].sum() elif norm_type is 'vector': values = temp_df[column].values values_squared = values**2 vector_norm = values/np.sqrt(np.sum(values_squared)) temp_df[column] = vector_norm else: print('You did not enter a valid type, so no changes were made') return temp_df
906fcf944b676e04120eb915e7ead24c97900f56
3,649,586
import json import os def custom_pdf_merge(doctype,docid,attach_to_og_doc=False,doc_to_merge={}): """ doc_to_merge = { "dt_to_merge": "", ##doctype on which merge is to be performed "dt_to_merge_id": "", ##docid on which merge is to be performed "attach_fieldname": "", ##fieldname of the attach field through which CAD doc is uploaded (Ex:assembly_drawing) "print_format": "", ##preferred print format of docid "attach_to_doc": True/False, ##should the merged pdf be attached to dt_to_merge_id "other_attachments_to_merge": [list of file names] ##list of pdfs attached to dt_to_merge_id that need to be merged along with attach_fieldname } """ doc_to_merge=json.loads(doc_to_merge) file_path = frappe.utils.get_url() dir_path_idx = file_path.find('/')+2 dir_path =file_path[dir_path_idx:] mergeFile = PyPDF2.PdfFileMerger() final_merged_file = _("/private/files/Merged_{}.pdf").format(doc_to_merge['dt_to_merge_id']) # Generate pdf of original record org_pdf = doc_to_merge['dt_to_merge_id'] + ".pdf" doc_pdf = frappe.attach_print(doc_to_merge['dt_to_merge'], doc_to_merge['dt_to_merge_id'], str(doc_to_merge['dt_to_merge_id']), print_format=doc_to_merge['print_format']) docfile = open(org_pdf,"wb") docfile.write(doc_pdf["fcontent"]) # Append pdf of original record og_doc_to_merge = PyPDF2.PdfFileReader(org_pdf,'rb') mergeFile.append(og_doc_to_merge,'rb') attachment_filename = frappe.get_value(doc_to_merge['dt_to_merge'], doc_to_merge['dt_to_merge_id'], doc_to_merge['attach_fieldname']) idx = attachment_filename.rfind('/')+1 attachment_filename = attachment_filename[idx:] # Fetch attachment details attached_doc = frappe.get_all("File", fields=["name", "file_name", "file_url"] , filters = { "attached_to_name": doc_to_merge['dt_to_merge_id'], "attached_to_doctype": doc_to_merge['dt_to_merge'], "file_name":attachment_filename}) if 'other_attachments_to_merge' in doc_to_merge: other_attachments_str = ",".join(doc_to_merge['other_attachments_to_merge']) else: other_attachments_str = '' other_attached_docs = frappe.get_all("File", fields=['name','file_name','file_url'], filters={ "attached_to_name": doc_to_merge['dt_to_merge_id'], "attached_to_doctype": doc_to_merge['dt_to_merge'], "file_name":['in',other_attachments_str] }) old_merged_doc = frappe.get_all("File", fields=['name','file_name','file_url'], filters={ "attached_to_name": ['in',(docid,doc_to_merge['dt_to_merge_id'])], "attached_to_doctype": ['in',(doctype,doc_to_merge['dt_to_merge'])], "file_name":['like','Merged_'+doc_to_merge['dt_to_merge_id']+'.pdf'] }) # Delete old Merged file for doc in old_merged_doc: frappe.delete_doc("File",doc.name) # Append main attachment to merge file if attached_doc: if not attached_doc[0].file_url.startswith('/private'): url = '/public' + attached_doc[0].file_url to_merge =PyPDF2.PdfFileReader(dir_path + url) mergeFile.append(to_merge,'rb') # Append other attachments to final pdf for pdfs in other_attached_docs: if not pdfs.file_url.startswith('/private'): url = '/public' + pdfs.file_url to_merge =PyPDF2.PdfFileReader(dir_path + url) mergeFile.append(to_merge,'rb') if mergeFile: mergeFile.write(dir_path + final_merged_file) mergeFile.close() file_stats = os.stat(dir_path + final_merged_file) file_size = file_stats.st_size if attach_to_og_doc == 1: merged_file = frappe.get_doc({ "doctype": "File", "file_name": "Merged_"+doc_to_merge['dt_to_merge_id']+".pdf", "file_url": final_merged_file, "attached_to_doctype": doctype, "attached_to_name": docid, "file_size":file_size, "is_private": 1 }) merged_file.insert() merged_file = frappe.get_doc({ "doctype": "File", "file_name": "Merged_"+doc_to_merge['dt_to_merge_id']+".pdf", "file_url":final_merged_file, "attached_to_doctype": 'BOM', "attached_to_name": doc_to_merge['dt_to_merge_id'], "file_size":file_size, "is_private": 1 }) merged_file.insert() return {'file_url' : merged_file.file_url, 'attached_to' : merged_file.attached_to_name}
070caf97c60139841bf0471f75442ea0a6397336
3,649,587
def find_most_common_word(sentence): """Return the most common word in the sentence.""" # Change to lowercase and strip out punctuation sentence = clean_sentence(sentence) list_of_words = sentence.split() word_to_count = dict() # Create a histogram of the occurrence of all words for word in list_of_words: if word not in word_to_count: word_to_count[word] = 1 else: word_to_count[word] += 1 most_common_word = '' highest_count = 0 # Find highest count in the histogram for word, count in word_to_count.items(): if count > highest_count: most_common_word, highest_count = word, count return most_common_word
0c9e03fb4324999e73e2d036ab3dec53f1857fe8
3,649,588
def fast_rcnn_inference(boxes, scores, image_shapes, predictions, score_thresh, nms_thresh, topk_per_image): """ Call `fast_rcnn_inference_single_image` for all images. Args: boxes (list[Tensor]): A list of Tensors of predicted class-specific or class-agnostic boxes for each image. Element i has shape (Ri, K * 4) if doing class-specific regression, or (Ri, 4) if doing class-agnostic regression, where Ri is the number of predicted objects for image i. This is compatible with the output of :meth:`FastRCNNOutputLayers.predict_boxes`. scores (list[Tensor]): A list of Tensors of predicted class scores for each image. Element i has shape (Ri, K + 1), where Ri is the number of predicted objects for image i. Compatible with the output of :meth:`FastRCNNOutputLayers.predict_probs`. image_shapes (list[tuple]): A list of (width, height) tuples for each image in the batch. score_thresh (float): Only return detections with a confidence score exceeding this threshold. nms_thresh (float): The threshold to use for box non-maximum suppression. Value in [0, 1]. topk_per_image (int): The number of top scoring detections to return. Set < 0 to return all detections. Returns: instances: (list[Instances]): A list of N instances, one for each image in the batch, that stores the topk most confidence detections. kept_indices: (list[Tensor]): A list of 1D tensor of length of N, each element indicates the corresponding boxes/scores index in [0, Ri) from the input, for image i. """ result_per_image = [ fast_rcnn_inference_single_image( boxes_per_image, scores_per_image, image_shape, score_thresh, nms_thresh, topk_per_image, prediction ) for scores_per_image, boxes_per_image, image_shape, prediction in zip(scores, boxes, image_shapes, predictions) ] return [x[0] for x in result_per_image], [x[1] for x in result_per_image]
24fec22cdd285d50b4512115b638f3b7499f47be
3,649,589
def GetVar(doc:NexDoc, varNumber, varType) -> NexVar: """Returns the reference to the specified variable.""" return NexRun("GetVar", locals())
355f51f3ffa9b0d5c5f835546ee38bc3e0784328
3,649,590
def putversenotes(): """Serves AJAX call for json data to save notes. See also [M:NOTESAVE.putVerseNotes][notesave.NOTESAVE.putVerseNotes]. Client code: [{noteverse.sendnotes}][noteversesendnotes] """ session.forget(response) Books = BOOKS() Note = NOTE(Books) NoteSave = NOTESAVE(Note) return NoteSave.putVerseNotes()
b1fece391a6e47c2f500a540d57e12c1c0c11279
3,649,591
def _valid_multiview_args(cfg_user, logger): """ Validates the "multiview" parameters of a json configuration file used for training. The function returns False if an error has occurred and True if all settings have passed the check. :param cfg_user: EasyDict, json configuration file imported as dictionary :param logger: logger instance :return: boolean, True if no errors have been detected, False otherwise """ error = False # Extract the input channel configuration (use the default setting if not specified by the user) if 'model' in cfg_user and 'input_channels' in cfg_user.model: # Use user setting input_config = cfg_user.model.input_channels else: # Use default setting input_config = cfg_default.model.input_channels if input_config != 'geom-multiview' and 'multiview' in cfg_user: logger.warning(f"The argument 'model': 'input_channels' is set to '{input_config}'. Hence, the multiview " "settings will be ignored.\n") elif input_config == 'geom-multiview' and 'multiview' in cfg_user: if not all_keys_known(cfg_user.multiview, arguments.MULTIVIEW_KEYS, logger): error = True if 'config' in cfg_user.multiview and cfg_user.multiview.config not in arguments.MULTIVIEW_CONFIG: logger.error(f"Unknown multiview configuration: '{cfg_user.multiview.config}'. Choose among " f"{arguments.MULTIVIEW_CONFIG} to specify 'config'.\n") error = True if error: logger.info('\n') else: logger.info('Settings check: ok.\n\n') return not error
1a60afbf956b5b7096ec21a52669b1aa85f54c7d
3,649,592
import os def generate_extension(project=None, outdir=None, *, _project_from_raw=info.Project.from_raw, _abspath=os.path.abspath, _projfiles=None, _gen=None, ): """Produce all needed files to build an extension from the given root.""" project = _project_from_raw(project) # No need to validate. if outdir: outdir = _abspath(outdir) else: outdir = os.path.join(project.root, OUT_DIR) if _projfiles is None: _projfiles = _get_project_files(project.root) return (_gen or _generate)( project.root, project.cfg, _projfiles, outdir, )
966b1539c5b90a4ae53d13c8fdc71f88fb76ea99
3,649,593
def apply_gradient_descent(var_list, obj, learning_rate = 0.01): """ Sets up the gradient descent optimizer Args: var_list: List of variables to optimizer over. obj: Node of the objective to minimize Notes: learning_rate: What learning rate to run with. (Default = ``0.01``) Set with ``LR`` """ back_prop = tf.train.GradientDescentOptimizer( learning_rate = learning_rate, name = 'gradient_descent' ).minimize(loss = obj, \ var_list = var_list ) return back_prop
97ed8db3e02412f2dfbe4e44b6835ed8fe754c57
3,649,594
from re import T from typing import Callable import inspect from typing import get_type_hints def make_cls_accept_cls_annotated_deps(cls: type[T]) -> type[T]: """ Make class `cls` accept class-annotated dependencies, performing following modifications: - Update `__init__` function to set any class-annotated dependencies as instance attributes - Update `__signature__` attribute to indicate to FastAPI what arguments should be passed to the initializer """ old_init: Callable[..., None] = cls.__init__ old_signature = inspect.signature(old_init) old_params = list(old_signature.parameters.values())[1:] # drop `self` param new_params = [ param for param in old_params if param.kind not in {Parameter.VAR_POSITIONAL, Parameter.VAR_KEYWORD} ] dep_names: list[str] = [] for name, hint in get_type_hints(cls).items(): if is_classvar(hint): continue dep_names.append(name) new_params.append( Parameter( name=name, kind=Parameter.KEYWORD_ONLY, annotation=hint, default=getattr(cls, name, Ellipsis), ) ) new_signature = old_signature.replace(parameters=new_params) def new_init(self: T, *args, **kwargs) -> None: for dep_name in dep_names: dep_value = kwargs.pop(dep_name) setattr(self, dep_name, dep_value) old_init(self, *args, **kwargs) setattr(cls, "__init__", new_init) setattr(cls, "__signature__", new_signature) return cls
529b73cd76adde9868bebec2a91b323c679fcdd0
3,649,595
def getReviewRedirect(entity, params): """Returns the redirect to review the specified entity. """ return '/%s/review/%s' % ( params['url_name'], entity.key().id_or_name())
959ff6d0297ec54248ee725e93a79702512d00d7
3,649,596
def leapfrog_step(state, target_log_prob_fn, kinetic_energy_fn, step_size, rng=None): """Single step of leapfrog. Notes ===== The canonical distribution is related to the energy of the system by p(p, \theta) = 1/Zexp(-H(\theta, p)/T) For now, we assume that the kinetic energy takes the form K(p) = sum_i(p_i^2/(2m_i)) """ del rng p, q, q_grad = state.momentum, state.state, state.state_grads p_half = tree_util.tree_multimap(lambda p, qg: p + 0.5 * step_size * qg, p, q_grad) _, grad_p_half = utils.call_fn_value_and_grad(kinetic_energy_fn, p_half) q_full = tree_util.tree_multimap(lambda q, ph: q + step_size * ph, q, grad_p_half) logprob, q_full_grad = utils.call_fn_value_and_grad(target_log_prob_fn, q_full) p_full = tree_util.tree_multimap(lambda ph, qg: ph + 0.5 * step_size * qg, p_half, q_full_grad) return IntegratorState(q_full, q_full_grad, logprob, p_full)
78a98c9edaabefd0d6d13b8b83ee080b4a11e941
3,649,597
import requests def get_plugins_json(url: str = "https://repobee.org/plugins.json") -> dict: """Fetch and parse the plugins.json file. Args: url: URL to the plugins.json file. Returns: A dictionary with the contents of the plugins.json file. """ resp = requests.get(url) if resp.status_code != 200: plug.log.error(resp.content.decode("utf8")) raise plug.PlugError(f"could not fetch plugins.json from '{url}'") return resp.json()
f6d795d88d124d8cb68e2dad4d8a354af88525c1
3,649,598
def add_available_prefixes(parent, prefix_list): """ Create fake Prefix objects for all unallocated space within a prefix. """ # Find all unallocated space available_prefixes = IPSet(parent) ^ IPSet([p.prefix for p in prefix_list]) available_prefixes = [Prefix(prefix=p) for p in available_prefixes.iter_cidrs()] # Concatenate and sort complete list of children prefix_list = list(prefix_list) + available_prefixes prefix_list.sort(key=lambda p: p.prefix) return prefix_list
1df9f991f33e1a77b81b43de08c5f86f6acc7a20
3,649,599