content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def ask_the_user(runner: Runner) -> Direction: """Ask the user what to do (in absolute UP, DOWN, etc.)""" return runner.ask_absolute()
2f289aba30e1368abd675a9b9bb2be0924984d3d
3,648,200
import pandas as pd import os def patents_hgh(path): """Dynamic Relation Between Patents and R\\&D a panel of 346 observations from 1975 to 1979 *number of observations* : 1730 *observation* : production units *country* : United States A dataframe containing : obsno firm index year year cusip Compustat's identifying number for the firm (Committee on Uniform Security Identification Procedures number) ardsic a two-digit code for the applied R&D industrial classification (roughly that in Bound, Cummins, Griliches, Hall, and Jaffe, in the Griliches R&D, Patents, and Productivity volume) scisect is the firm in the scientific sector ? logk the logarithm of the book value of capital in 1972. sumpat the sum of patents applied for between 1972-1979. logr the logarithm of R&D spending during the year (in 1972 dollars) logr1 the logarithm of R&D spending (one year lag) logr2 the logarithm of R&D spending (two years lag) logr3 the logarithm of R&D spending (three years lag) logr4 the logarithm of R&D spending (four years lag) logr5 the logarithm of R&D spending (five years lag) pat the number of patents applied for during the year that were eventually granted pat1 the number of patents (one year lag) pat2 the number of patents (two years lag) pat3 the number of patents (three years lag) pat4 the number of patents (four years lag) Hall, Bronwyn , Zvi Griliches and Jerry Hausman (1986) “Patents and R&D: Is There a Lag?”, *International Economic Review*, **27**, 265-283. Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `patents_hgh.csv`. Returns: Tuple of np.ndarray `x_train` with 1730 rows and 18 columns and dictionary `metadata` of column headers (feature names). """ path = os.path.expanduser(path) filename = 'patents_hgh.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/Ecdat/PatentsHGH.csv' maybe_download_and_extract(path, url, save_file_name='patents_hgh.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
a3093aa59ea567f37560fb0d591e0cb9544e24f8
3,648,201
def optimize_spot_bid(ctx, instance_type, spot_bid): """ Check whether the bid is sane and makes an effort to place the instance in a sensible zone. """ spot_history = _get_spot_history(ctx, instance_type) if spot_history: _check_spot_bid(spot_bid, spot_history) zones = ctx.ec2.get_all_zones() most_stable_zone = choose_spot_zone(zones, spot_bid, spot_history) logger.info("Placing spot instances in zone %s.", most_stable_zone) return most_stable_zone
25bd3d9c952c256df12c3cc7efa257629d127af9
3,648,202
def new_hassle_participants(): """Select participants for the room helpers.""" # Get a list of all current members. members = helpers.get_all_members() return flask.render_template('hassle_new_participants.html', members=members)
c8062ae498691ac72a17a969cf2ba7547e08eb9c
3,648,203
import json def data_store_remove_folder(request): """ remove a sub-folder/sub-collection in hydroshareZone or any federated zone used for HydroShare resource backend store. It is invoked by an AJAX call and returns json object that include a status of 'success' if succeeds, and HttpResponse of status code of 403, 400, or 500 if fails. The AJAX request must be a POST request with input data passed in for res_id and folder_path where folder_path is the relative path for the folder to be removed under res_id collection/directory. """ res_id = request.POST.get('res_id', None) if res_id is None: return HttpResponse('Bad request - resource id is not included', status=status.HTTP_400_BAD_REQUEST) res_id = str(res_id).strip() try: resource, _, user = authorize(request, res_id, needed_permission=ACTION_TO_AUTHORIZE.EDIT_RESOURCE) except NotFound: return HttpResponse('Bad request - resource not found', status=status.HTTP_400_BAD_REQUEST) except PermissionDenied: return HttpResponse('Permission denied', status=status.HTTP_401_UNAUTHORIZED) folder_path = request.POST.get('folder_path', None) if folder_path is None: return HttpResponse('Bad request - folder_path is not included', status=status.HTTP_400_BAD_REQUEST) folder_path = str(folder_path).strip() if not folder_path: return HttpResponse('Bad request - folder_path cannot be empty', status=status.HTTP_400_BAD_REQUEST) if not folder_path.startswith('data/contents/'): return HttpResponse('Bad request - folder_path must start with data/contents/', status=status.HTTP_400_BAD_REQUEST) if folder_path.find('/../') >= 0 or folder_path.endswith('/..'): return HttpResponse('Bad request - folder_path must not contain /../', status=status.HTTP_400_BAD_REQUEST) try: remove_folder(user, res_id, folder_path) except SessionException as ex: return HttpResponse(ex.stderr, status=status.HTTP_500_INTERNAL_SERVER_ERROR) except Exception as ex: return HttpResponse(ex.message, status=status.HTTP_500_INTERNAL_SERVER_ERROR) return_object = {'status': 'success'} return HttpResponse( json.dumps(return_object), content_type="application/json" )
d6583dca0967fdf282a3510defcdeeb70da6c7f7
3,648,204
import math def distance(x1: float, y1: float, x2: float, y2: float) -> float: """ Finds distance between two given points Parameters: x1, y1 : The x and y coordinates of first point x2, y2 : The x and y coordinates of second point Returns: Distance upto two decimal places. """ distance = math.sqrt( ((x1-x2)**2)+((y1-y2)**2) ) return round(distance,2)
63f103f46b52aae146b52f385e15bc3441f042e5
3,648,205
def load_target_class(input_dir): """Loads target classes.""" df = pd.read_csv(join(input_dir, "target_class.csv"), header=None, index_col=0, names=["Target"]) return df
58fea2aebd6c04dd0b51ec3ef3fc627212aa2b29
3,648,206
import os import io import PIL import hashlib def dict_to_tf_example(data, dataset_directory, label_map_path, ignore_difficult_instances=False, image_subdirectory='Images', is_debug=False): """Convert XML derived dict to tf.Example proto. Notice that this function normalizes the bounding box coordinates provided by the raw data. Args: data: dict holding PASCAL XML fields for a single image (obtained by running dataset_util.recursive_parse_xml_to_dict) dataset_directory: Path to root directory holding PASCAL dataset label_map_path: the prototxt file that contains a map from string label names to integers ids. ignore_difficult_instances: Whether to skip difficult instances in the dataset (default: False). image_subdirectory: String specifying subdirectory within the PASCAL dataset directory holding the actual image data. Returns: example: The converted tf.Example. Raises: ValueError: if the image pointed to by data['filename'] is not a valid JPEG """ label_map_dict = label_map_util.get_label_map_dict(label_map_path) img_path = os.path.join(data['folder'], image_subdirectory, data['filename']) full_path = os.path.join(dataset_directory, img_path) with tf_gfile.GFile(full_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = PIL.Image.open(encoded_jpg_io) if image.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() width = int(data['size']['width']) height = int(data['size']['height']) xmin = [] ymin = [] xmax = [] ymax = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] if 'object' in data: for obj in data['object']: difficult = bool(int(obj['difficult'])) if ignore_difficult_instances and difficult: continue difficult_obj.append(int(difficult)) xmin.append(float(obj['bndbox']['xmin']) / width) ymin.append(float(obj['bndbox']['ymin']) / height) xmax.append(float(obj['bndbox']['xmax']) / width) ymax.append(float(obj['bndbox']['ymax']) / height) classes_text.append(obj['name'].encode('utf8')) classes.append(label_map_dict[obj['name']]) truncated.append(int(obj['truncated'])) poses.append(obj['pose'].encode('utf8')) example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature( data['filename'].encode('utf8')), 'image/source_id': dataset_util.bytes_feature( data['filename'].encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), 'image/object/truncated': dataset_util.int64_list_feature(truncated), 'image/object/view': dataset_util.bytes_list_feature(poses), })) if is_debug: # Each box is ymin, xmin, ymax, xmax = box in [0, 1] bboxes_array = np.array([ymin, xmin, ymax, xmax]) bboxes_array = np.transpose(bboxes_array) classes_array = np.array(classes) scores_array = None category_index = label_map_util.create_category_index_from_labelmap(\ label_map_path, use_display_name=True) display_bbox(np.array(image), bboxes_array, classes_array, scores_array, category_index) return example
af307dacf5b0b2ccfbc2ceaa74059794dbf872f2
3,648,207
def fix_labels(ply_gt, ply_seg): """ Remove extra vertices from the ground truth """ size = len(ply_gt.elements[0]["x"]) gt_x = np.array(ply_gt.elements[0]["x"]) seg_x = np.array(ply_seg.elements[0]["x"]) new_gt_label = np.zeros_like(seg_x) gt_label = np.array(ply_gt.elements[0]["label"]) for i in range(size): if seg_x.shape[0] > i: if abs(gt_x[i] - seg_x[i]) < 1e-16: new_gt_label[i] = gt_label[i] new_gt_label = clean_gt(new_gt_label).astype(np.int) return new_gt_label
291fedd887b82e6099f5aba6a006fd0e33a7fb18
3,648,208
import requests def get_coin_price(api_url: str, currency: str) -> float: """ Get the USD price of a coin from Gemini Args: api_url: The API URL for Gemini currency: The cryptocurrency the bot is monitoring Returns: coin_price: The price the coin currently holds in USD """ # Instantiate Gemini and query the price coin_price = -1 api_query = "/v1/pricefeed" try: price_feeds = requests.get(api_url + api_query).json() for feed in price_feeds: if feed.get('pair') == currency + "USD": coin_price = float(feed.get('price')) except Exception as err: print("ERROR: Unable to get price due to %s" % err) print("Price feed: %s" % price_feeds) return coin_price
0683554aea85faa1dd105cbf81144685d7d2deec
3,648,209
import hmac import base64 def GenerateAuthToken(key_name, user_id, action_id='', when=None): """Generates a URL-safe token based on XSRFToken but for generla purpose. Args: key_name (str): name of secret key to generate token. user_id (str): the user ID of the authenticated user. action_id (str): a string identifier of the action they requested authorization for. when (datetime): the time when the user was authorized for this action. If not set the current utc time is used. Returns: A string token. """ key = SecretKey.GetSecretKey(key_name) when = when or time_util.GetUTCNow() when_timestamp = time_util.ConvertToTimestamp(when) digester = hmac.new(key) digester.update(str(user_id)) digester.update(_DELIMITER) digester.update(action_id) digester.update(_DELIMITER) digester.update(str(when_timestamp)) digest = digester.digest() return base64.urlsafe_b64encode('%s%s%d' % (digest, _DELIMITER, when_timestamp))
8375889ba4cdc1fc996c48330cf0cd23824f5946
3,648,210
import os def download_dataset(file_url, file_name): """ Utility to download a dataset """ # %% new_dir = up(up(up(up(os.path.abspath(__file__))))) os.chdir(new_dir) file_path = r'artificial_neural_networks/datasets/' + file_name exists = os.path.isfile(file_path) if exists: print(file_name + ' already exists.') print('You have to delete it first, if you want to re-download it.') else: urlretrieve(file_url, file_path) print(file_name + ' was downloaded succesfully.') # %% return file_path
90a2cf4da99b1a69e60e160dd69db3df333924bb
3,648,211
import torch def get_dataset_psnr(device, model, dataset, source_img_idx_shift=64, batch_size=10, max_num_scenes=None): """Returns PSNR for each scene in a dataset by comparing the view predicted by a model and the ground truth view. Args: device (torch.device): Device to perform PSNR calculation on. model (models.neural_renderer.NeuralRenderer): Model to evaluate. dataset (misc.dataloaders.SceneRenderDataset): Dataset to evaluate model performance on. Should be one of "chairs-test" or "cars-test". source_img_idx_shift (int): Index of source image for each scene. For example if 00064.png is the source view, then source_img_idx_shift = 64. batch_size (int): Batch size to use when generating predictions. This should be a divisor of the number of images per scene. max_num_scenes (None or int): Optionally limit the maximum number of scenes to calculate PSNR for. Notes: This function should be used with the ShapeNet chairs and cars *test* sets. """ num_imgs_per_scene = dataset.num_imgs_per_scene # Set number of scenes to calculate num_scenes = dataset.num_scenes if max_num_scenes is not None: num_scenes = min(max_num_scenes, num_scenes) # Calculate number of batches per scene assert (num_imgs_per_scene - 1) % batch_size == 0, "Batch size {} must divide number of images per scene {}." # Comparison are made against all images except the source image (and # therefore subtract 1 from total number of images) batches_per_scene = (num_imgs_per_scene - 1) // batch_size # Initialize psnr values psnrs = [] for i in range(num_scenes): # Extract source view source_img_idx = i * num_imgs_per_scene + source_img_idx_shift img_source = dataset[source_img_idx]["img"].unsqueeze(0).repeat(batch_size, 1, 1, 1).to(device) render_params = dataset[source_img_idx]["render_params"] azimuth_source = torch.Tensor([render_params["azimuth"]]).repeat(batch_size).to(device) elevation_source = torch.Tensor([render_params["elevation"]]).repeat(batch_size).to(device) # Infer source scene scenes = model.inverse_render(img_source) # Iterate over all other views of scene num_points_in_batch = 0 data_list = [] scene_psnr = 0. for j in range(num_imgs_per_scene): if j == source_img_idx_shift: continue # Do not compare against same image # Add new image to list of images we want to compare to data_list.append(dataset[i * num_imgs_per_scene + j]) num_points_in_batch += 1 # If we have filled up a batch, make psnr calculation if num_points_in_batch == batch_size: # Create batch for target data img_target, azimuth_target, elevation_target = create_batch_from_data_list(data_list) img_target = img_target.to(device) azimuth_target = azimuth_target.to(device) elevation_target = elevation_target.to(device) # Rotate scene and render image rotated = model.rotate_source_to_target(scenes, azimuth_source, elevation_source, azimuth_target, elevation_target) img_predicted = model.render(rotated).detach() scene_psnr += get_psnr(img_predicted, img_target) data_list = [] num_points_in_batch = 0 psnrs.append(scene_psnr / batches_per_scene) print("{}/{}: Current - {:.3f}, Mean - {:.4f}".format(i + 1, num_scenes, psnrs[-1], torch.mean(torch.Tensor(psnrs)))) return psnrs
0ce2274aac72d2510fd0c9c067a6efa542c103ec
3,648,212
def smallest_continuous_multiple(max_multiple): """ Function takes an int, and returns the smallest natural number evenly divisible by all numbers less than or equal to the input max_multiple. REQ: max_multiple >= 0 and whole :param max_multiple: {int} :return: smallest natural number evenly divisible by all number less than or equal to input Function reduces time complexity by iteratively removing redundant factors from the check_list, ie. suppose 12 exists in the list, then 6, 4, 3, 2 and 1 will have been removed. This check is done to remove the factors of every int, to reduce the lookup time later. """ # all numbers less than or equal to 2 are evenly divisible by themselves and below if max_multiple <= 2: return max_multiple check_list = [] # make a list of all ints from 1 to input for i in range(max_multiple): check_list.append(i + 1) # loop through check list backwards for i in reversed(check_list): # get factors of i without i included temp_factors = get_factors(i) temp_factors.remove(i) # loop through the remaining factors, removing them from the check_list for j in temp_factors: try: check_list.remove(j) except ValueError: pass temp_num = max_multiple # loop indefinitely until find smallest int that that satisfies exit condition while True: # if all factors less than max_multiple divide evenly into curr, return if all(temp_num % n == 0 for n in check_list): return temp_num else: temp_num += max_multiple
57423ed0941d18b54a1da33bc561f79ed19ae145
3,648,213
def context_list_entities(context): """ Returns list of entities to be displayed in list view """ # log.info(context['List_rows']) if 'List_rows' in context: return context['List_rows']['field_value'] elif 'entities' in context: return context['entities'] log.warning("No entity list found in context %r"%(context.keys())) return None
1b00e5cd6593a7e0c8770e9bbeaae5c3b47ac78a
3,648,214
def run(arg): """Entry point""" error_map = {} validate_path(arg, None, error_map) if len(error_map) > 0: error_count = 0 for file, errors in error_map.items(): print(f"Error in {file}:") for error in errors: print(f" {error}") error_count+=1 print("") print(f"{error_count} error(s) found in {len(error_map)} file(s)") return 1 return 0
0e124b87b62076af713b8caea686e3c44a4e83a2
3,648,215
import struct def _bitcode_symbols_partial_impl( *, actions, binary_artifact, bitcode_symbol_maps, dependency_targets, label_name, output_discriminator, package_bitcode, platform_prerequisites): """Implementation for the bitcode symbols processing partial.""" bitcode_dirs = [] bitcode_symbols = {} if bitcode_symbol_maps: bitcode_symbols.update(bitcode_symbol_maps) if binary_artifact and bitcode_symbols: bitcode_files = [] copy_commands = [] for arch in bitcode_symbols: bitcode_file = bitcode_symbols[arch] if not bitcode_file: continue bitcode_files.append(bitcode_file) # Get the UUID of the arch slice and use that to name the bcsymbolmap file. copy_commands.append( ("cp {bitcode_file} " + "${{OUTPUT_DIR}}/$(dwarfdump -u {binary} " + "| grep \"({arch})\" | cut -d' ' -f2).bcsymbolmap").format( arch = arch, binary = binary_artifact.path, bitcode_file = bitcode_file.path, ), ) if bitcode_files: bitcode_dir = intermediates.directory( actions = actions, target_name = label_name, output_discriminator = output_discriminator, dir_name = "bitcode_files", ) bitcode_dirs.append(bitcode_dir) apple_support.run_shell( actions = actions, apple_fragment = platform_prerequisites.apple_fragment, inputs = [binary_artifact] + bitcode_files, outputs = [bitcode_dir], command = "mkdir -p ${OUTPUT_DIR} && " + " && ".join(copy_commands), env = {"OUTPUT_DIR": bitcode_dir.path}, mnemonic = "BitcodeSymbolsCopy", xcode_config = platform_prerequisites.xcode_version_config, ) transitive_bitcode_files = depset( direct = bitcode_dirs, transitive = [ x[_AppleBitcodeInfo].bitcode for x in dependency_targets if _AppleBitcodeInfo in x ], ) if package_bitcode: bundle_files = [(processor.location.archive, "BCSymbolMaps", transitive_bitcode_files)] else: bundle_files = [] return struct( bundle_files = bundle_files, providers = [_AppleBitcodeInfo(bitcode = transitive_bitcode_files)], )
64606e63a7831a110585ceb83fb34699b373db0a
3,648,216
def _str_trim_left(x): """ Remove leading whitespace. """ return x.str.replace(r"^\s*", "")
2718086073706411929b45edf80a1d464dfaeff6
3,648,217
def zipcompress(items_list, flags_list): """ SeeAlso: vt.zipcompress """ return [compress(list_, flags) for list_, flags in zip(items_list, flags_list)]
e8f85c058db442a967d89ef2f74e5e32cc58a737
3,648,218
def test_config_file_fails_missing_value(monkeypatch, presence, config): """Check if test fails with missing value in database configuration.""" def mock_file_config(self): return {'database': {}} monkeypatch.setattr(presence.builder, "fetch_file_config", mock_file_config) status, msg = presence.check_configuration_file() assert status == "Skipping" assert "No configuration" in msg assert presence.db_config == {}
34e14fa3b72fbd3a64930b9ce46da61e76138650
3,648,219
def construct_run_config(iterations_per_loop): """Construct the run config.""" # Parse hparams hparams = ssd_model.default_hparams() hparams.parse(FLAGS.hparams) return dict( hparams.values(), num_shards=FLAGS.num_shards, num_examples_per_epoch=FLAGS.num_examples_per_epoch, resnet_checkpoint=FLAGS.resnet_checkpoint, val_json_file=FLAGS.val_json_file, model_dir=FLAGS.model_dir, iterations_per_loop=iterations_per_loop, steps_per_epoch=FLAGS.num_examples_per_epoch // FLAGS.train_batch_size, eval_samples=FLAGS.eval_samples, transpose_input=False if FLAGS.input_partition_dims is not None else True, use_spatial_partitioning=True if FLAGS.input_partition_dims is not None else False, dataset_threadpool_size=FLAGS.dataset_threadpool_size )
d2989e795ab14a9931837356cb7a6c3752538429
3,648,220
def bezier_curve(points, nTimes=1000): """ Given a set of control points, return the bezier curve defined by the control points. Control points should be a list of lists, or list of tuples such as [ [1,1], [2,3], [4,5], ..[Xn, Yn] ] nTimes is the number of time steps, defaults to 1000 See http://processingjs.nihongoresources.com/bezierinfo/ """ nPoints = len(points) xPoints = np.array([p[0] for p in points]) yPoints = np.array([p[1] for p in points]) t = np.linspace(0.0, 1.0, nTimes) polynomial_array = np.array([ bernstein_poly(i, nPoints-1, t) for i in range(0, nPoints) ]) xvals = np.dot(xPoints, polynomial_array) yvals = np.dot(yPoints, polynomial_array) return xvals, yvals
3d4ea2a42e3e4bb7ff739b262e3fc69784656fed
3,648,221
def _compact_temporaries(exprs): """ Drop temporaries consisting of isolated symbols. """ # First of all, convert to SSA exprs = makeit_ssa(exprs) # What's gonna be dropped mapper = {e.lhs: e.rhs for e in exprs if e.lhs.is_Symbol and (q_leaf(e.rhs) or e.rhs.is_Function)} processed = [] for e in exprs: if e.lhs not in mapper: # The temporary is retained, and substitutions may be applied expr = e while True: handle = uxreplace(expr, mapper) if handle == expr: break else: expr = handle processed.append(handle) return processed
b28b839cc17124b83b6b26b972394486cd7d8741
3,648,222
def print_formula(elements): """ The input dictionary, atoms and their amount, is processed to produce the chemical formula as a string Parameters ---------- elements : dict The elements that form the metabolite and their corresponding amount Returns ------- formula : str The formula of the metabolite """ formula = "".join([f"{k}{int(v)}" for k, v in elements.items()]) return formula
a3c404ef0d18c417e44aee21106917f4ee203065
3,648,223
def try_get_code(url): """Returns code of URL if exists in database, else None""" command = """SELECT short FROM urls WHERE full=?;""" result = __execute_command(command, (url,)) if result is None: return None return result[0]
63a88471f6fdfc44bc22383edda0eb65f9bf1b84
3,648,224
import unicodedata def is_chinese_char(cc): """ Check if the character is Chinese args: cc: char output: boolean """ return unicodedata.category(cc) == 'Lo'
d376e6097e628ac2f3a7934ba42ee2772177f857
3,648,225
import json def _get_ec2_on_demand_prices(region_name: str) -> pd.DataFrame: """ Returns a dataframe with columns instance_type, memory_gb, logical_cpu, and price where price is the on-demand price """ # All comments about the pricing API are based on # https://www.sentiatechblog.com/using-the-ec2-price-list-api # us-east-1 is the only region this pricing API is available and the pricing # endpoint in us-east-1 has pricing data for all regions. pricing_client = boto3.client("pricing", region_name="us-east-1") filters = [ # only get prices for the specified region { "Type": "TERM_MATCH", "Field": "regionCode", "Value": region_name, }, # filter out instance types that come with SQL Server pre-installed { "Type": "TERM_MATCH", "Field": "preInstalledSw", "Value": "NA", }, # limit ourselves to just Linux instances for now # TODO add support for Windows eventually { "Type": "TERM_MATCH", "Field": "operatingSystem", "Value": "Linux", }, # Shared is a "regular" EC2 instance, as opposed to Dedicated and Host {"Type": "TERM_MATCH", "Field": "tenancy", "Value": "Shared"}, # This relates to EC2 capacity reservations. Used is correct for when we don't # have any reservations {"Type": "TERM_MATCH", "Field": "capacitystatus", "Value": "Used"}, ] records = [] for product_json in _boto3_paginate( pricing_client.get_products, Filters=filters, ServiceCode="AmazonEC2", FormatVersion="aws_v1", ): product = json.loads(product_json) attributes = product["product"]["attributes"] instance_type = attributes["instanceType"] # We don't expect the "warnings" to get hit, we just don't want to get thrown # off if the data format changes unexpectedly or something like that. if "physicalProcessor" not in attributes: print( f"Warning, skipping {instance_type} because physicalProcessor is not " "specified" ) continue # effectively, this skips Graviton (ARM-based) processors # TODO eventually support Graviton processors. if ( "intel" not in attributes["physicalProcessor"].lower() and "amd" not in attributes["physicalProcessor"].lower() ): # only log if we see non-Graviton processors if "AWS Graviton" not in attributes["physicalProcessor"]: print( "Skipping non-Intel/AMD processor " f"{attributes['physicalProcessor']} in {instance_type}" ) continue if "OnDemand" not in product["terms"]: print( f"Warning, skipping {instance_type} because there was no OnDemand terms" ) continue on_demand = list(product["terms"]["OnDemand"].values()) if len(on_demand) != 1: print( f"Warning, skipping {instance_type} because there was more than one " "OnDemand SKU" ) continue price_dimensions = list(on_demand[0]["priceDimensions"].values()) if len(price_dimensions) != 1: print( f"Warning, skipping {instance_type} because there was more than one " "priceDimensions" ) continue pricing = price_dimensions[0] if pricing["unit"] != "Hrs": print( f"Warning, skipping {instance_type} because the pricing unit is not " f"Hrs: {pricing['unit']}" ) continue if "USD" not in pricing["pricePerUnit"]: print( f"Warning, skipping {instance_type} because the pricing is not in USD" ) continue usd_price = pricing["pricePerUnit"]["USD"] try: usd_price_float = float(usd_price) except ValueError: print( f"Warning, skipping {instance_type} because the price is not a float: " f"{usd_price}" ) continue memory = attributes["memory"] if not memory.endswith(" GiB"): print( f"Warning, skipping {instance_type} because memory doesn't end in GiB: " f"{memory}" ) continue try: memory_gb_float = float(memory[: -len(" GiB")]) except ValueError: print( f"Warning, skipping {instance_type} because memory isn't an float: " f"{memory}" ) continue try: vcpu_int = int(attributes["vcpu"]) except ValueError: print( f"Warning, skipping {instance_type} because vcpu isn't an int: " f"{attributes['vcpu']}" ) continue records.append((instance_type, memory_gb_float, vcpu_int, usd_price_float)) return pd.DataFrame.from_records( records, columns=["instance_type", "memory_gb", "logical_cpu", "price"] )
8946260abee2f11f47c9ed93f1b6e2c90cd17c31
3,648,226
def resize_image(image, min_dim=None, max_dim=None, padding=False): """ Resizes an image keeping the aspect ratio. min_dim: if provided, resizes the image such that it's smaller dimension == min_dim max_dim: if provided, ensures that the image longest side doesn't exceed this value. padding: If true, pads image with zeros so it's size is max_dim x max_dim Returns: image: the resized image window: (y1, x1, y2, x2). If max_dim is provided, padding might be inserted in the returned image. If so, this window is the coordinates of the image part of the full image (excluding the padding). The x2, y2 pixels are not included. scale: The scale factor used to resize the image padding: Padding added to the image [(top, bottom), (left, right), (0, 0)] """ # Default window (y1, x1, y2, x2) and default scale == 1. h, w = image.shape[:2] window = (0, 0, h, w) scale = 1 # Scale? if min_dim: # Scale up but not down scale = max(1, min_dim / min(h, w)) # Does it exceed max dim? if max_dim: image_max = max(h, w) if round(image_max * scale) > max_dim: scale = max_dim / image_max # Resize image and mask if scale != 1: image = cv2.resize( image, (round(w * scale), round(h * scale))) # Need padding? if padding: # Get new height and width h, w = image.shape[:2] top_pad = (max_dim - h) // 2 bottom_pad = max_dim - h - top_pad left_pad = (max_dim - w) // 2 right_pad = max_dim - w - left_pad padding = [(top_pad, bottom_pad), (left_pad, right_pad), (0, 0)] image = np.pad(image, padding, mode='constant', constant_values=0) window = (top_pad, left_pad, h + top_pad, w + left_pad) return image, window, scale, padding
17c8cb953753321f1aea169ebcb199598b7fd2f1
3,648,227
def idwt(approx, wavelets, h=np.array([1.0 / np.sqrt(2), -1.0 / np.sqrt(2)]), g=np.array([1.0 / np.sqrt(2), 1.0 / np.sqrt(2)])): """ Simple inverse discrete wavelet transform. for good reference: http://www.mathworks.com/help/wavelet/ref/dwt.html @param approx: approximation of signal at low resolution @param h: high pass filter (for details space) @param g: low pass filter (for approximation space) @return: recovered signal """ wave_level = iter(wavelets[::-1]) h, g = g[::-1], h[::-1] recovered = approx for wave in wave_level: #upsample recovered = np.column_stack([recovered, np.zeros(recovered.size)]).flatten() wave_up = np.column_stack([wave, np.zeros(wave.size)]).flatten() recovered = np.convolve(recovered, h)[:-(h.size - 1)] recovered = recovered + np.convolve(wave_up, g)[:-(g.size - 1)] return recovered
a41cd22d81de733428123681bbea10837d4c7237
3,648,228
import json def app_durations(): """Generate JavaScript for appDurations.""" return 'appDurations = ' + json.dumps(supported_durations)
3be9ecc801cd650a5cd1a3c4db1c50957ccfa1c0
3,648,229
def generic_cc(mag=10,dmag=8,band='K'): """Returns a generic contrast curve. Keyword arguments: mag -- magnitude of target star in passband dmag -- can currently be either 8 or 4.5 (two example generic cc's being used) band -- passband of observation. """ if dmag==8: return fpp.ContrastCurveFromFile('%s/data/contrast_curves/ex8_K.txt' % KEPLERDIR,band,mag) elif dmag==4.5: return fpp.ContrastCurveFromFile('%s/data/contrast_curves/ex4.5_K.txt' % KEPLERDIR,band,mag)
04ca148c2a5b8d9eb2d0c60a0d6ad8e177901c5f
3,648,230
from typing import Any def read_routes(*, db: Session = Depends(deps.get_db),data_in: schemas.DictDataCreate,current_user: models.User = Depends(deps.get_current_active_user)) -> Any: """ Retrieve Mock Data. """ db.add(models.Dict_Data(**jsonable_encoder(data_in))) return { "code": 20000, "data": "", "message":"修改成功", }
09e575a8262a0818c7904e4e077d86f492f3407e
3,648,231
def get_companies_pagination_from_lagou(city_id=0, finance_stage_id=0, industry_id=0, page_no=1): """ 爬取拉勾公司分页数据 :param city_id: 城市 id :param finance_stage_id: 融资阶段 id :param industry_id: 行业 id :param page_no: 页码 :return: 拉勾公司分页数据 :rtype: utils.pagination.Pagination """ url = constants.COMPANIES_URL.format(city_id=city_id, finance_stage_id=finance_stage_id, industry_id=industry_id) params = {'pn': page_no, 'sortField': constants.SORTED_BY_JOBS_COUNT} response_json = utils.http_tools.requests_get(url=url, params=params).json() pagination = utils.pagination.Pagination(per_page=int(response_json['pageSize']), total=int(response_json['totalCount'])) return pagination
7a82e0dd7ad8ab960dbabb749e68867607b70878
3,648,232
def is_quant_contam(contam_model): """Get the flag for quantitative contamination""" # the list of quantitative models quant_models = ['GAUSS', 'FLUXCUBE'] # set the default value isquantcont = True # check whether the contamination is not quantitative if not contam_model.upper() in quant_models: # re-set the flag isquantcont = False # return the flag return isquantcont
8a88609857ac8eb61bfddfa8d8227ffa237d2641
3,648,233
def nms_wrapper(scores, boxes, threshold = 0.7, class_sets = None): """ post-process the results of im_detect :param scores: N * K numpy :param boxes: N * (K * 4) numpy :param class_sets: e.g. CLASSES = ('__background__','person','bike','motorbike','car','bus') :return: a list of K-1 dicts, no background, each is {'class': classname, 'dets': None | [[x1,y1,x2,y2,score],...]} """ num_class = scores.shape[1] if class_sets is None else len(class_sets) assert num_class * 4 == boxes.shape[1],\ 'Detection scores and boxes dont match' class_sets = ['class_' + str(i) for i in range(0, num_class)] if class_sets is None else class_sets res = [] for ind, cls in enumerate(class_sets[1:]): ind += 1 # skip background cls_boxes = boxes[:, 4*ind : 4*(ind+1)] cls_scores = scores[:, ind] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, thresh=0.3) dets = dets[keep, :] dets = dets[np.where(dets[:, 4] > threshold)] r = {} if dets.shape[0] > 0: r['class'], r['dets'] = cls, dets else: r['class'], r['dets'] = cls, None res.append(r) return res
7f6a260811a1c20da40e41cc179488440bfc5164
3,648,234
def Rbf( gamma: float = 1.0) -> InternalLayer: """Dual activation function for normalized RBF or squared exponential kernel. Dual activation function is `f(x) = sqrt(2)*sin(sqrt(2*gamma) x + pi/4)`. NNGP kernel transformation correspond to (with input dimension `d`) `k = exp(- gamma / d * ||x - x'||^2) = exp(- gamma*(q11 + q22 - 2 * q12))`. Args: gamma: related to characteristic length-scale (l) that controls width of the kernel, where `gamma = 1 / (2 l^2)`. Returns: `(init_fn, apply_fn, kernel_fn)`. """ def fn(x): return np.sqrt(2) * np.sin(np.sqrt(2 * gamma) * x + np.pi/4) @_requires(diagonal_spatial=_Diagonal()) # pytype:disable=wrong-keyword-args def kernel_fn(k: Kernel) -> Kernel: """Compute new kernels after an `Rbf` layer.""" cov1, nngp, cov2, ntk = k.cov1, k.nngp, k.cov2, k.ntk sum11, sum12, sum22 = _get_diagonal_outer_prods(cov1, cov2, k.diagonal_batch, k.diagonal_spatial, op.add) def nngp_ntk_fn(nngp, sum_, ntk): nngp = np.exp(gamma * (-sum_ + 2 * nngp)) if ntk is not None: ntk *= 2 * gamma * nngp return nngp, ntk def nngp_fn_diag(nngp): return np.ones_like(nngp) nngp, ntk = nngp_ntk_fn(nngp, sum12, ntk) if k.diagonal_batch and k.diagonal_spatial: cov1 = nngp_fn_diag(cov1) if cov2 is not None: cov2 = nngp_fn_diag(cov2) else: cov1, _ = nngp_ntk_fn(cov1, sum11, None) if cov2 is not None: cov2, _ = nngp_ntk_fn(cov2, sum22, None) return k.replace(cov1=cov1, nngp=nngp, cov2=cov2, ntk=ntk) return _elementwise(fn, f'Rbf({gamma})', kernel_fn)
c7c44f6227d0d337da40a1afe8eff359ccaebbf5
3,648,235
from typing import Dict from typing import Any import os def upgrade_state_dict_with_xlm_weights( state_dict: Dict[str, Any], pretrained_xlm_checkpoint: str, ) -> Dict[str, Any]: """ Load XLM weights into a Transformer encoder or decoder model. Args: state_dict: state dict for either TransformerEncoder or TransformerDecoder pretrained_xlm_checkpoint: checkpoint to load XLM weights from Raises: AssertionError: If architecture (num layers, attention heads, etc.) does not match between the current Transformer encoder or decoder and the pretrained_xlm_checkpoint """ if not os.path.exists(pretrained_xlm_checkpoint): raise IOError("Model file not found: {}".format(pretrained_xlm_checkpoint)) state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_xlm_checkpoint) xlm_state_dict = state["model"] for key in xlm_state_dict.keys(): for search_key in ["embed_tokens", "embed_positions", "layers"]: if search_key in key: subkey = key[key.find(search_key) :] assert subkey in state_dict, ( "{} Transformer encoder / decoder " "state_dict does not contain {}. Cannot " "load {} from pretrained XLM checkpoint " "{} into Transformer.".format( str(state_dict.keys()), subkey, key, pretrained_xlm_checkpoint ) ) state_dict[subkey] = xlm_state_dict[key] return state_dict
4f73d82117cb0fa6a07926a9527ef5a0f185c1cf
3,648,236
def create_returns_tear_sheet(returns, positions=None, transactions=None, live_start_date=None, cone_std=(1.0, 1.5, 2.0), benchmark_rets=None, bootstrap=False, turnover_denom='AGB', header_rows=None, return_fig=False): """ Generate a number of plots for analyzing a strategy's returns. - Fetches benchmarks, then creates the plots on a single figure. - Plots: rolling returns (with cone), rolling beta, rolling sharpe, rolling Fama-French risk factors, drawdowns, underwater plot, monthly and annual return plots, daily similarity plots, and return quantile box plot. - Will also print the start and end dates of the strategy, performance statistics, drawdown periods, and the return range. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in create_full_tear_sheet. positions : pd.DataFrame, optional Daily net position values. - See full explanation in create_full_tear_sheet. transactions : pd.DataFrame, optional Executed trade volumes and fill prices. - See full explanation in create_full_tear_sheet. live_start_date : datetime, optional The point in time when the strategy began live trading, after its backtest period. cone_std : float, or tuple, optional If float, The standard deviation to use for the cone plots. If tuple, Tuple of standard deviation values to use for the cone plots - The cone is a normal distribution with this standard deviation centered around a linear regression. benchmark_rets : pd.Series, optional Daily noncumulative returns of the benchmark. - This is in the same style as returns. bootstrap : boolean, optional Whether to perform bootstrap analysis for the performance metrics. Takes a few minutes longer. turnover_denom : str, optional Either AGB or portfolio_value, default AGB. - See full explanation in txn.get_turnover. header_rows : dict or OrderedDict, optional Extra rows to display at the top of the perf stats table. return_fig : boolean, optional If True, returns the figure that was plotted on. """ if benchmark_rets is not None: returns = utils.clip_returns_to_benchmark(returns, benchmark_rets) plotting.show_perf_stats(returns, benchmark_rets, positions=positions, transactions=transactions, turnover_denom=turnover_denom, bootstrap=bootstrap, live_start_date=live_start_date, header_rows=header_rows) plotting.show_worst_drawdown_periods(returns) vertical_sections = 11 if live_start_date is not None: vertical_sections += 1 live_start_date = ep.utils.get_utc_timestamp(live_start_date) if benchmark_rets is not None: vertical_sections += 1 if bootstrap: vertical_sections += 1 fig = plt.figure(figsize=(14, vertical_sections * 6)) gs = gridspec.GridSpec(vertical_sections, 3, wspace=0.5, hspace=0.5) ax_rolling_returns = plt.subplot(gs[:2, :]) i = 2 ax_rolling_returns_vol_match = plt.subplot(gs[i, :], sharex=ax_rolling_returns) i += 1 ax_rolling_returns_log = plt.subplot(gs[i, :], sharex=ax_rolling_returns) i += 1 ax_returns = plt.subplot(gs[i, :], sharex=ax_rolling_returns) i += 1 if benchmark_rets is not None: ax_rolling_beta = plt.subplot(gs[i, :], sharex=ax_rolling_returns) i += 1 ax_rolling_volatility = plt.subplot(gs[i, :], sharex=ax_rolling_returns) i += 1 ax_rolling_sharpe = plt.subplot(gs[i, :], sharex=ax_rolling_returns) i += 1 ax_drawdown = plt.subplot(gs[i, :], sharex=ax_rolling_returns) i += 1 ax_underwater = plt.subplot(gs[i, :], sharex=ax_rolling_returns) i += 1 ax_monthly_heatmap = plt.subplot(gs[i, 0]) ax_annual_returns = plt.subplot(gs[i, 1]) ax_monthly_dist = plt.subplot(gs[i, 2]) i += 1 ax_return_quantiles = plt.subplot(gs[i, :]) i += 1 plotting.plot_rolling_returns( returns, factor_returns=benchmark_rets, live_start_date=live_start_date, cone_std=cone_std, ax=ax_rolling_returns) ax_rolling_returns.set_title( 'Cumulative returns') plotting.plot_rolling_returns( returns, factor_returns=benchmark_rets, live_start_date=live_start_date, cone_std=None, volatility_match=(benchmark_rets is not None), legend_loc=None, ax=ax_rolling_returns_vol_match) ax_rolling_returns_vol_match.set_title( 'Cumulative returns volatility matched to benchmark') plotting.plot_rolling_returns( returns, factor_returns=benchmark_rets, logy=True, live_start_date=live_start_date, cone_std=cone_std, ax=ax_rolling_returns_log) ax_rolling_returns_log.set_title( 'Cumulative returns on logarithmic scale') plotting.plot_returns( returns, live_start_date=live_start_date, ax=ax_returns, ) ax_returns.set_title( 'Returns') if benchmark_rets is not None: plotting.plot_rolling_beta( returns, benchmark_rets, ax=ax_rolling_beta) plotting.plot_rolling_volatility( returns, factor_returns=benchmark_rets, ax=ax_rolling_volatility) plotting.plot_rolling_sharpe( returns, ax=ax_rolling_sharpe) # Drawdowns plotting.plot_drawdown_periods( returns, top=5, ax=ax_drawdown) plotting.plot_drawdown_underwater( returns=returns, ax=ax_underwater) plotting.plot_monthly_returns_heatmap(returns, ax=ax_monthly_heatmap) plotting.plot_annual_returns(returns, ax=ax_annual_returns) plotting.plot_monthly_returns_dist(returns, ax=ax_monthly_dist) plotting.plot_return_quantiles( returns, live_start_date=live_start_date, ax=ax_return_quantiles) if bootstrap and (benchmark_rets is not None): ax_bootstrap = plt.subplot(gs[i, :]) plotting.plot_perf_stats(returns, benchmark_rets, ax=ax_bootstrap) elif bootstrap: raise ValueError('bootstrap requires passing of benchmark_rets.') for ax in fig.axes: plt.setp(ax.get_xticklabels(), visible=True) if return_fig: return fig
5d01bb52ed3bd642ed8c7743ee41b4d57f732c2f
3,648,237
def vectorize_text(text_col: pd.Series, vec_type: str = 'count', **kwargs): """ Vectorizes pre-processed text. Instantiates the vectorizer and fit_transform it to the data provided. :param text_col: Pandas series, containing preprocessed text. :param vec_type: string indicating what type of vectorization (count or tfidf currently). :param **kwargs: dict of keyworded arguments for sklearn vectorizer functions. :return: A tuple containing vectorized (doc-feature matrix that as d rows and f columns for count and tfidf vectorization) and vectorizer_obj (vectorization sklearn object representing trained vectorizer). """ # Check if vectorization type is supported assert vec_type in ['count', 'tfidf'] # Get raw values from pandas series text_raw = text_col.tolist() # Lets the vectorizer know the input has already been pre-tokenized # and is now delimited by whitespaces kwargs['analyzer'] = str.split # Apply proper vectorization if vec_type == 'count': count_vec = CountVectorizer(**kwargs) vectorized = count_vec.fit_transform(text_raw) vectorizer_obj = count_vec elif vec_type == 'tfidf': tfidf_vec = TfidfVectorizer(**kwargs) vectorized = tfidf_vec.fit_transform(text_raw) vectorizer_obj = tfidf_vec # Return vectorized object return vectorized, vectorizer_obj
fd1b720c5eee83d788684a49f5fe7ad26e955016
3,648,238
def creation_LS(X,y,N): """Generates a random learning set of size N from the data in X (containing the input samples) and in y (containing the corresponding output values). Parameters ---------- X: array containing the input samples y: array containing the corresponding output values Return ------ X_random_rows : array of shape [N, (number of columns of X)] y_random_rows : array of shape [N] """ number_of_rows = X.shape[0] random_indices = np.random.choice(number_of_rows, size=N, replace=False) X_random_rows = X[random_indices, :] y_random_rows= y[random_indices] return X_random_rows, y_random_rows
fdcf5fe96082a75b096b43747f940b8cf46f326b
3,648,239
def print_summary(show="all", blocks=False, cid=True, blobs=True, size=True, typ=False, ch=False, ch_online=True, name=True, title=False, path=False, sanitize=False, start=1, end=0, channel=None, invalid=False, reverse=False, file=None, fdate=False, sep=";", server="http://localhost:5279"): """Print a summary of the items downloaded from the LBRY network. Parameters ---------- show: str, optional It defaults to `'all'`, in which case it shows all items. If it is `'incomplete'` it will show claims that are missing blobs. If it is `'full'` it will show claims that have all blobs. If it is `'media'` it will show claims that have the media file (mp4, mp3, mkv, etc.). Normally only items that have all blobs also have a media file; however, if the claim is currently being downloaded a partial media file may be present. If it is `'missing'` it will show claims that don't have the media file, whether the full blobs are present or not. blocks: bool, optional It defaults to `False`, in which case it won't print the `height` block of the claims. If it is `True` it will print this value, which gives some idea of when the claim was registered in the blockchain. cid: bool, optional It defaults to `True`. Show the `'claim_id'` of the claim. It is a 40 character alphanumeric string. blobs: bool, optional It defaults to `True`. Show the number of blobs in the file, and how many are complete. size: bool, optional It defaults to `True`. Show the length of the stream in minutes and seconds, like `14:12`, when possible (audio and video), and also the size in mebibytes (MB). typ: bool, optional It defaults to `False`. Show the type of claim (video, audio, document, etc.) ch: bool, optional It defaults to `False`. Show the name of the channel that published the claim. This is slow if `ch_online=True`. ch_online: bool, optional It defaults to `True`, in which case it searches for the channel name by doing a reverse search of the item online. This makes the search slow. By setting it to `False` it will consider the channel name stored in the input dictionary itself, which will be faster but it won't be the full name of the channel. If no channel is found offline, then it will set a default value `'_None_'` just so it can be printed with no error. This parameter only has effect if `ch=True`, or if `channel` is used, as it internally sets `ch=True`. name: bool, optional It defaults to `True`. Show the name of the claim. title: bool, optional It defaults to `False`. Show the title of the claim. path: bool, optional It defaults to `False`. Show the full path of the saved media file. sanitize: bool, optional It defaults to `False`, in which case it will not remove the emojis from the name of the claim and channel. If it is `True` it will remove these unicode characters. This option requires the `emoji` package to be installed. start: int, optional It defaults to 1. Show claims starting from this index in the list of items. end: int, optional It defaults to 0. Show claims until and including this index in the list of items. If it is 0, it is the same as the last index in the list. channel: str, optional It defaults to `None`. It must be a channel's name, in which case it shows only the claims published by this channel. Using this parameter sets `ch=True`. invalid: bool, optional It defaults to `False`, in which case it prints every single claim previously downloaded. If it is `True` it will only print those claims that are 'invalid', that is, those that cannot be resolved anymore from the online database. This probably means that the author decided to remove the claims at some point after they were downloaded originally. This can be verified with the blockchain explorer, by following the claim ID for an 'unspent' transaction. Using this parameter sets `ch_online=False` as the channel name of invalid claims cannot be resolved online, only from the offline database. reverse: bool, optional It defaults to `False`, in which case older items come first in the output list. If it is `True` newer claims are at the beginning of the list. file: str, optional It defaults to `None`. It must be a writable path to which the summary will be written. Otherwise the summary will be printed to the terminal. fdate: bool, optional It defaults to `False`. If it is `True` it will add the date to the name of the summary file. sep: str, optional It defaults to `;`. It is the separator character between the data fields in the printed summary. Since the claim name can have commas, a semicolon `;` is used by default. server: str, optional It defaults to `'http://localhost:5279'`. This is the address of the `lbrynet` daemon, which should be running in your computer before using any `lbrynet` command. Normally, there is no need to change this parameter from its default value. Returns ------- bool It returns `True` if it printed the summary successfully. If there is any error it will return `False`. """ if not funcs.server_exists(server=server): return False output = sort.sort_items_size(reverse=False, invalid=invalid, server=server) items = output["claims"] if not items or len(items) < 1: if file: print("No file written.") return False if invalid: ch_online = False print() status = prnt.print_items(items=items, show=show, blocks=blocks, cid=cid, blobs=blobs, size=size, typ=typ, ch=ch, ch_online=ch_online, name=name, title=title, path=path, sanitize=sanitize, start=start, end=end, channel=channel, reverse=reverse, file=file, fdate=fdate, sep=sep, server=server) return status
6888917bd6a944c6e91c0d9796383b279db68315
3,648,240
def nice_number_en(number, speech, denominators=range(1, 21)): """ English helper for nice_number This function formats a float to human understandable functions. Like 4.5 becomes "4 and a half" for speech and "4 1/2" for text Args: number (int or float): the float to format speech (bool): format for speech (True) or display (False) denominators (iter of ints): denominators to use, default [1 .. 20] Returns: (str): The formatted string. """ result = convert_to_mixed_fraction(number, denominators) if not result: # Give up, just represent as a 3 decimal number return str(round(number, 3)) whole, num, den = result if not speech: if num == 0: # TODO: Number grouping? E.g. "1,000,000" return str(whole) else: return '{} {}/{}'.format(whole, num, den) if num == 0: return str(whole) den_str = _FRACTION_STRING_EN[den] if whole == 0: if num == 1: return_string = 'a {}'.format(den_str) else: return_string = '{} {}'.format(num, den_str) elif num == 1: return_string = '{} and a {}'.format(whole, den_str) else: return_string = '{} and {} {}'.format(whole, num, den_str) if num > 1: return_string += 's' return return_string
9816277c3374ddc5ba8c9b598f5ef27893fb3f1b
3,648,241
import os import re def read_dataframe_by_substring(directory, substring, index_col=None, parse_dates=False, **kwargs): """Return a dataframe for the file containing substring. Parameters ---------- directory : str substring : str identifier for output file, must be unique in directory index_col : str | int | None Index column name or index kwargs : kwargs Passed to underlying library for dataframe conversion. Returns ------- pd.DataFrame """ files = [x for x in os.listdir(directory) if substring in x] # Exclude any files that may have rolled, such as # Circuits-Losses-1-2.feather.1.gz regex = re.compile(r"\.\w+\.\d+(?:\.\w+)?$") files = [x for x in files if regex.search(x) is None] if not files: return None assert len(files) == 1, f"found multiple {substring} files in {directory}" filename = files[0] return read_dataframe( os.path.join(directory, filename), index_col=index_col, parse_dates=parse_dates, **kwargs )
c4b8d10c36f8262263b45fbaae0cdb6306e5d6cc
3,648,242
import logging def load_embeddings(path): """ Load embeddings from file and put into dict. :param path: path to embeddings file :return: a map word->embedding """ logging.info('Loading embeddings...') embeddings = dict() with open(path, 'r') as f: for line in f: line = line.split(' ') embeddings[line[0]] = np.array([float(a) for a in line[1:]]) return embeddings
3e7e05cc9131dfb9d06c4c220d5e13d6965180b7
3,648,243
def helm_preserve(preserve): """Convert secret data to a "--set" string for Helm deployments. Args: preserve (Iterable): Set of secrets we wish to get data from to assign to the Helm Chart. Returns: str: String containing variables to be set with Helm release. """ env_vars = [] for item in preserve: if isinstance(item, tuple): item = HelmPreserve(*item) elif not isinstance(item, HelmPreserve): raise TypeError("Items in preserve array must be HelmPerserve named tuples") secret_data = secret_read(item.secret_name, item.secret_namespace) env_vars.append(HelmSet(item.values_path, secret_data[item.data_item])) # Environmental variables # TODO: This may well be its own subfunction env_vars_string = "".join( [ " --set{} {}={}".format( "-string" if item.set_string else "", item.key, item.value ) for item in env_vars ] ) return env_vars_string
095d5b914feb327c81e4630347ab04d1954d2f14
3,648,244
def format_component_descriptor(name, version): """ Return a properly formatted component 'descriptor' in the format <name>-<version> """ return '{0}-{1}'.format(name, version)
2edb92f20179ae587614cc3c9ca8198c9a4c240e
3,648,245
import sqlite3 def dbconn(): """ Initializing db connection """ sqlite_db_file = '/tmp/test_qbo.db' return sqlite3.connect(sqlite_db_file, detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES)
b0c6dd235490cee93ada20f060d681a319b120f0
3,648,246
import hashlib def md5(fname): """ Compute the md5 of a file in chunks. Avoid running out of memory when hashing large files. """ hash_md5 = hashlib.md5() with open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest()
9e0bfbd625df6a46d5bff4cd0e9f065d1eaf8a4b
3,648,247
def get_r(x, y, x1, y1): """ Get r vector following Xu et al. (2006) Eq. 4.2 x, y = arrays; x1, y1 = single points; or vice-versa """ return ((x-x1)**2 + (y-y1)**2)**0.5
424408f86e6e3301ee6eca72e2da7da5bf1f8140
3,648,248
import re def replace_empty_bracket(tokens): """ Remove empty bracket :param tokens: List of tokens :return: Fixed sequence """ merged = "".join(tokens) find = re.search(r"\{\}", merged) while find: merged = re.sub(r"\{\}", "", merged) find = re.search(r"\{\}", merged) return list(merged)
fd2c9f2f1c2e199056e89dbdba65f92e4d5834eb
3,648,249
def presentation(): """ This route is the final project and will be test of all previously learned skills. """ return render_template("")
c592ae4b28c5c9b89592c3842e73c0e76cc4bd66
3,648,250
def extra_credit(grades,students,bonus): """ Returns a copy of grades with extra credit assigned The dictionary returned adds a bonus to the grade of every student whose netid is in the list students. Parameter grades: The dictionary of student grades Precondition: grades has netids as keys, ints as values. Parameter netids: The list of students to give extra credit Precondition: netids is a list of valid (string) netids Parameter bonus: The extra credit bonus to award Precondition: bonus is an int """ # DICTIONARY COMPREHENSION #return { k:(grades[k]+bonus if k in students else grades[k]) for k in grades } # ACCUMULATOR PATTERN result = {} for k in grades: if k in students: result[k] = grades[k]+bonus else: result[k] = grades[k] return result
334a9edb3d1d045832009e20c6cba7f24e5c181d
3,648,251
def get_geo_signal_combos(data_source): """ Get list of geo type-signal type combinations that we expect to see. Cross references based on combinations reported available by COVIDcast metadata. """ meta = covidcast.metadata() source_meta = meta[meta['data_source'] == data_source] # Need to convert np.records to tuples so they are hashable and can be used in sets and dicts. geo_signal_combos = list(map(tuple, source_meta[["geo_type", "signal"]].to_records(index=False))) print("Number of expected geo region-signal combinations:", len(geo_signal_combos)) return geo_signal_combos
90d030372b3e7d9ed2de0d53b6aa42fdf3723355
3,648,252
def absolute_(x, track_types = True, **kwargs): """Compute the absolute value of x. Parameters ---------- x : :obj:`xarray.DataArray` Data cube containing the values to apply the operator to. track_types : :obj:`bool` Should the operator promote the value type of the output object, based on the value type of the input object? **kwargs: Ignored. Returns ------- :obj:`xarray.DataArray` A data cube with the same shape as ``x`` containing the results of all evaluated expressions. Note ----- When tracking value types, this operator uses the following type promotion manual, with the keys being the supported value types of ``x``, and the corresponding value being the promoted value type of the output. .. exec_code:: :hide_code: from semantique.processor.types import TYPE_PROMOTION_MANUALS obj = TYPE_PROMOTION_MANUALS["absolute"] obj.pop("__preserve_labels__") print(obj) """ if track_types: promoter = TypePromoter(x, function = "absolute") promoter.check() f = lambda x: np.absolute(x) out = xr.apply_ufunc(f, x) if track_types: out = promoter.promote(out) return out
b88c6662890832b0d54f752e59c97c9a9ca9ceb5
3,648,253
def any_input(sys_, t, input_signal=0, init_cond=None, *, plot=True): """ Accept any input signal, then calculate the response of the system. :param sys_: the system :type sys_: TransferFunction | StateSpace :param t: time :type t: array_like :param input_signal: input signal accepted by the system :type input_signal: numbers.Real | np.ndarray :param init_cond: initial condition of the system :type init_cond: None | numbers.Real | np.ndarray :param plot: If plot is True, it will show the response curve. :type plot: bool :return: system output and time array :rtype: tuple[np.ndarray, np.ndarray] """ if isinstance(sys_, TransferFunction): sys_ = tf2ss(sys_) u = _setup_input_signal(input_signal, t, sys_.inputs) y, t = _any_input(sys_, t, u, init_cond) if plot: plot_response_curve(y, t, "response", sys_.is_ctime) return y, t
fc6d72b5c22d585a4ba7c5be895b1266e72e70dd
3,648,254
import os def get_combinations(suite_dir, fields, subset, limit, filter_in, filter_out, include_facet): """ Describes the combinations of a suite, optionally limiting or filtering output based on the given parameters. Includes columns for the subsuite and facets when include_facet is True. Returns a tuple of (headers, rows) where both elements are lists of strings. """ configs = [(combine_path(suite_dir, item[0]), item[1]) for item in build_matrix(suite_dir, subset)] num_listed = 0 rows = [] facet_headers = set() dirs = {} max_dir_depth = 0 for _, fragment_paths in configs: if limit > 0 and num_listed >= limit: break if filter_in and not any([f in path for f in filter_in for path in fragment_paths]): continue if filter_out and any([f in path for f in filter_out for path in fragment_paths]): continue fragment_fields = [extract_info(path, fields) for path in fragment_paths] # merge fields from multiple fragments by joining their values with \n metadata = {} for fragment_meta in fragment_fields: for field, value in fragment_meta.items(): if value == '': continue if field in metadata: metadata[field] += '\n' + str(value) else: metadata[field] = str(value) if include_facet: # map final dir (facet) -> filename without the .yaml suffix for path in fragment_paths: facet_dir = os.path.dirname(path) facet = os.path.basename(facet_dir) metadata[facet] = os.path.basename(path)[:-5] facet_headers.add(facet) facet_dirs = facet_dir.split('/')[:-1] for i, dir_ in enumerate(facet_dirs): if i not in dirs: dirs[i] = set() dirs[i].add(dir_) metadata['_dir_' + str(i)] = os.path.basename(dir_) max_dir_depth = max(max_dir_depth, i) rows.append(metadata) num_listed += 1 subsuite_headers = [] if include_facet: first_subsuite_depth = max_dir_depth for i in range(max_dir_depth): if len(dirs[i]) > 1: first_subsuite_depth = i break subsuite_headers = ['subsuite depth ' + str(i) for i in range(0, max_dir_depth - first_subsuite_depth + 1)] for row in rows: for i in range(first_subsuite_depth, max_dir_depth + 1): row[subsuite_headers[i - first_subsuite_depth]] = \ row.get('_dir_' + str(i), '') headers = subsuite_headers + sorted(facet_headers) + fields return headers, sorted([[row.get(field, '') for field in headers] for row in rows])
27fa774468b8fcb8aa34579ab0e1868375d7683e
3,648,255
from .mnext import mnext def mnext_mbv2_cfg(pretrained=False,in_chans=3,drop_rate=0.2,drop_connect_rate=0.5,bn_tf=False,bn_momentum=0.9,bn_eps=0.001, global_pool=False, **kwargs): """Creates a MNeXt Large model. Tensorflow compatible variant """ model = mnext(**kwargs) return model
5f8fcdcaa6abf4047b4fc06ea7dcb92f6fbeade7
3,648,256
def _embeddings_from_arguments(column, args, weight_collections, trainable, output_rank=2): """Returns embeddings for a column based on the computed arguments. Args: column: the column name. args: the _DeepEmbeddingLookupArguments for this column. weight_collections: collections to store weights in. trainable: whether these embeddings should be trainable. output_rank: the desired rank of the returned `Tensor`. Inner dimensions will be combined to produce the desired rank. Returns: the embeddings. Raises: ValueError: if not possible to create. """ # pylint: disable=protected-access input_tensor = layers._inner_flatten(args.input_tensor, output_rank) weight_tensor = None if args.weight_tensor is not None: weight_tensor = layers._inner_flatten(args.weight_tensor, output_rank) # pylint: enable=protected-access # This option is only enabled for scattered_embedding_column. if args.hash_key: embeddings = contrib_variables.model_variable( name="weights", shape=[args.vocab_size], dtype=dtypes.float32, initializer=args.initializer, trainable=(trainable and args.trainable), collections=weight_collections) return embedding_ops.scattered_embedding_lookup_sparse( embeddings, input_tensor, args.dimension, hash_key=args.hash_key, combiner=args.combiner, name="lookup") if args.shared_embedding_name is not None: shared_embedding_collection_name = ( "SHARED_EMBEDDING_COLLECTION_" + args.shared_embedding_name.upper()) graph = ops.get_default_graph() shared_embedding_collection = ( graph.get_collection_ref(shared_embedding_collection_name)) shape = [args.vocab_size, args.dimension] if shared_embedding_collection: if len(shared_embedding_collection) > 1: raise ValueError( "Collection %s can only contain one " "(partitioned) variable." % shared_embedding_collection_name) else: embeddings = shared_embedding_collection[0] if embeddings.get_shape() != shape: raise ValueError( "The embedding variable with name {} already " "exists, but its shape does not match required " "embedding shape here. Please make sure to use " "different shared_embedding_name for different " "shared embeddings.".format(args.shared_embedding_name)) else: embeddings = contrib_variables.model_variable( name=args.shared_embedding_name, shape=shape, dtype=dtypes.float32, initializer=args.initializer, trainable=(trainable and args.trainable), collections=weight_collections) graph.add_to_collection(shared_embedding_collection_name, embeddings) else: embeddings = contrib_variables.model_variable( name="weights", shape=[args.vocab_size, args.dimension], dtype=dtypes.float32, initializer=args.initializer, trainable=(trainable and args.trainable), collections=weight_collections) if _is_variable(embeddings): embeddings = [embeddings] else: embeddings = embeddings._get_variable_list() # pylint: disable=protected-access # pylint: disable=protected-access _maybe_restore_from_checkpoint(column._checkpoint_path(), embeddings) return embedding_ops.safe_embedding_lookup_sparse( embeddings, input_tensor, sparse_weights=weight_tensor, combiner=args.combiner, name=column.name + "weights", max_norm=args.max_norm)
30c305bfbf20d48af48dd25aa32c1648f8f95fce
3,648,257
def stuw_laagstedoorstroombreedte(damo_gdf=None, obj=None, damo_doorstroombreedte="DOORSTROOMBREEDTE", damo_kruinvorm="WS_KRUINVORM"): """ als LAAGSTEDOORSTROOMHOOGTE is NULL en WS_KRUINVORM =3 (rechthoek) dan LAAGSTEDOORSTROOMBREEDTE = DOORSTROOMBREEDTE """ return damo_gdf.apply( lambda x: _stuw_get_laagstedoorstroombreedte_rechthoek(x[damo_kruinvorm], x[damo_doorstroombreedte]), axis=1)
534d917326222ef77fc0a8022ed84ea08bb0be0a
3,648,258
def manage_categories(): """ Display all categories to manage categories page (admin only) """ # Denied user access to manage_categories page if session["user"] != "admin": return redirect(url_for('error', code=403)) # query for all categories from categories collection manage_categories = list(mongo.db.categories.find().sort( "category_name", 1)) # get the categories that are in use for navigation menu nav_categories = mongo.db.recipes.distinct("category_name") # call the paginated function to display only the # specific number of categories per page paginated_categories = paginated(manage_categories) # get the page pagination pagination = get_pagination(manage_categories) # total number of categories found total = len(manage_categories) # set up the page_set object page_set = { "title": "Manage Categories", "type": "form" } return render_template("pages/manage_categories.html", page_set=page_set, nav_categories=nav_categories, manage_categories=paginated_categories, pagination=pagination, total=total)
5002375f904240f2274aa8040b426da8515122a7
3,648,259
def callback(id): """ 获取指定记录 """ # 检查用户权限 _common_logic.check_user_power() _positions_logic = positions_logic.PositionsLogic() # 读取记录 result = _positions_logic.get_model_for_cache(id) if result: # 直接输出json return web_helper.return_msg(0, '成功', result) else: return web_helper.return_msg(-1, "查询失败")
3451cc1ebb18004f46847f6538c751afd86bdf74
3,648,260
import json def setup_exps_rllib(flow_params, n_cpus, n_rollouts): """Return the relevant components of an RLlib experiment. Parameters ---------- flow_params : dict flow-specific parameters (see flow/utils/registry.py) n_cpus : int number of CPUs to run the experiment over n_rollouts : int number of rollouts per training iteration Returns ------- str name of the training algorithm str name of the gym environment to be trained dict training configuration parameters """ horizon = flow_params['env'].horizon alg_run = "PPO" agent_cls = get_agent_class(alg_run) config = deepcopy(agent_cls._default_config) config["num_workers"] = n_cpus config["num_cpus_per_worker"] = 1 config["use_pytorch"] = False config["num_gpus"] = 0 config["train_batch_size"] = horizon * n_rollouts config["gamma"] = 0.999 # discount rate # config["model"].update({"fcnet_hiddens": [32, 32, 32]}) config["use_gae"] = True config["lambda"] = 0.97 config["kl_target"] = 0.02 config["num_sgd_iter"] = 10 config['clip_actions'] = True # FIXME(ev) temporary ray bug config["horizon"] = horizon config["callbacks"] = MyCallbacks # save the flow params for reply flow_json = json.dumps( flow_params, cls=FlowParamsEncoder, sort_keys=True, indent=4) config['env_config']['flow_params'] = flow_json config['env_config']['run'] = alg_run create_env, gym_name = make_create_env(params=flow_params) # Register as rllib env register_env(gym_name, create_env) return alg_run, gym_name, config
af4f1bb6a11b2502efcfae77ae7dbaf4bb30c1b3
3,648,261
def sort_cluster(x: list, t: np.ndarray) -> list: """ sort x according to t :param x: :param t: :return: """ return [x[i] for i in np.argsort(t)]
a2bcd57bb9c402aa19f12483e792f1e4379c4481
3,648,262
def gettof(*args): """gettof(flags_t F) -> ushort""" return _idaapi.gettof(*args)
d377fc28b7515a45112083fc38c722b82caee0b9
3,648,263
def generate(temp): """ Wrapper that checks generated names against the base street names to avoid a direct regurgitation of input data. returns list """ is_in_dict = True while is_in_dict: result = textgen.generate(temperature=temp, return_as_list=True) str = ' '.join(result) is_in_dict = basenames.get(str, False) return result
2bfc6d366d0543d6ada762539c0c6cb301d729a8
3,648,264
import re def __create_pyramid_features(backbone_dict, ndim=2, feature_size=256, include_final_layers=True, lite=False, upsample_type='upsamplelike', interpolation='bilinear', z_axis_convolutions=False): """Creates the FPN layers on top of the backbone features. Args: backbone_dict (dictionary): A dictionary of the backbone layers, with the names as keys, e.g. ``{'C0': C0, 'C1': C1, 'C2': C2, ...}`` feature_size (int): The feature size to use for the resulting feature levels. include_final_layers (bool): Add two coarser pyramid levels ndim (int): The spatial dimensions of the input data. Must be either 2 or 3. lite (bool): Whether to use depthwise conv instead of regular conv for feature pyramid construction upsample_type (str): Choice of upsampling methods from ``['upsamplelike','upsamling2d','upsampling3d']``. interpolation (str): Choice of interpolation mode for upsampling layers from ``['bilinear', 'nearest']``. Returns: dict: The feature pyramid names and levels, e.g. ``{'P3': P3, 'P4': P4, ...}`` Each backbone layer gets a pyramid level, and two additional levels are added, e.g. ``[C3, C4, C5]`` --> ``[P3, P4, P5, P6, P7]`` Raises: ValueError: ``ndim`` is not 2 or 3 ValueError: ``upsample_type`` not in ``['upsamplelike','upsampling2d', 'upsampling3d']`` """ # Check input to ndims acceptable_ndims = [2, 3] if ndim not in acceptable_ndims: raise ValueError('Only 2 and 3 dimensional networks are supported') # Check if inputs to ndim and lite are compatible if ndim == 3 and lite: raise ValueError('lite models are not compatible with 3 dimensional ' 'networks') # Check input to interpolation acceptable_interpolation = {'bilinear', 'nearest'} if interpolation not in acceptable_interpolation: raise ValueError('Interpolation mode "{}" not supported. ' 'Choose from {}.'.format( interpolation, list(acceptable_interpolation))) # Check input to upsample_type acceptable_upsample = {'upsamplelike', 'upsampling2d', 'upsampling3d'} if upsample_type not in acceptable_upsample: raise ValueError('Upsample method "{}" not supported. ' 'Choose from {}.'.format( upsample_type, list(acceptable_upsample))) # Get names of the backbone levels and place in ascending order backbone_names = get_sorted_keys(backbone_dict) backbone_features = [backbone_dict[name] for name in backbone_names] pyramid_names = [] pyramid_finals = [] pyramid_upsamples = [] # Reverse lists backbone_names.reverse() backbone_features.reverse() for i, N in enumerate(backbone_names): level = int(re.findall(r'\d+', N)[0]) pyramid_names.append('P{}'.format(level)) backbone_input = backbone_features[i] # Don't add for the bottom of the pyramid if i == 0: if len(backbone_features) > 1: upsamplelike_input = backbone_features[i + 1] else: upsamplelike_input = None addition_input = None # Don't upsample for the top of the pyramid elif i == len(backbone_names) - 1: upsamplelike_input = None addition_input = pyramid_upsamples[-1] # Otherwise, add and upsample else: upsamplelike_input = backbone_features[i + 1] addition_input = pyramid_upsamples[-1] pf, pu = create_pyramid_level(backbone_input, upsamplelike_input=upsamplelike_input, addition_input=addition_input, upsample_type=upsample_type, level=level, ndim=ndim, lite=lite, interpolation=interpolation, z_axis_convolutions=z_axis_convolutions) pyramid_finals.append(pf) pyramid_upsamples.append(pu) # Add the final two pyramid layers if include_final_layers: # "Second to last pyramid layer is obtained via a # 3x3 stride-2 conv on the coarsest backbone" N = backbone_names[0] F = backbone_features[0] level = int(re.findall(r'\d+', N)[0]) + 1 P_minus_2_name = 'P{}'.format(level) if ndim == 2: P_minus_2 = Conv2D(feature_size, kernel_size=(3, 3), strides=(2, 2), padding='same', name=P_minus_2_name)(F) else: P_minus_2 = Conv3D(feature_size, kernel_size=(1, 3, 3), strides=(1, 2, 2), padding='same', name=P_minus_2_name)(F) pyramid_names.insert(0, P_minus_2_name) pyramid_finals.insert(0, P_minus_2) # "Last pyramid layer is computed by applying ReLU # followed by a 3x3 stride-2 conv on second to last layer" level = int(re.findall(r'\d+', N)[0]) + 2 P_minus_1_name = 'P{}'.format(level) P_minus_1 = Activation('relu', name='{}_relu'.format(N))(P_minus_2) if ndim == 2: P_minus_1 = Conv2D(feature_size, kernel_size=(3, 3), strides=(2, 2), padding='same', name=P_minus_1_name)(P_minus_1) else: P_minus_1 = Conv3D(feature_size, kernel_size=(1, 3, 3), strides=(1, 2, 2), padding='same', name=P_minus_1_name)(P_minus_1) pyramid_names.insert(0, P_minus_1_name) pyramid_finals.insert(0, P_minus_1) pyramid_dict = dict(zip(pyramid_names, pyramid_finals)) return pyramid_dict
956a04a1ebe14e11061de009894b27e7c2640cb2
3,648,265
def graphviz(self, filename=None, directory=None, isEdge=False,showLabel=True, **kwargs): """Return graphviz source for visualizing the lattice graph.""" return lattice(self, filename, directory, isEdge, showLabel, **kwargs)
1c7426efe0f0379822c4c9c0a765a615f26f04a1
3,648,266
def get_rectangle(origin, end): """Return all points of rectangle contained by origin and end.""" size_x = abs(origin[0]-end[0])+1 size_y = abs(origin[1]-end[1])+1 rectangle = [] for x in range(size_x): for y in range(size_y): rectangle.append((origin[0]+x, origin[1]+y)) return rectangle
36badfd8aefaaeda806215b02ed6e92fce6509a3
3,648,267
def corr_list(df, target, thresh=0.1, sort=True, fill=True): """ List Most Correlated Features Returns a pandas Series with the most correlated features to a certain target variable. The function will return features with a correlation value bigger than some threshold, which can be adjusted. Parameters ---------- df : pandas DataFrame `df` must contain only numerical values. target : str or int String or integer indicating the target variable. thresh : float, optional Float indicating the minimum correlation between a feature and the target above wich the feature will be present in the returned list. Default value is 0.1. sort : bool, optional Wheter to sort the returned pandas Series. If True, it will be sorted descending. Default value is False. fill : bool, optional Wheter to fill null values. If True, Null values will be replaced with 0's. Default value is False. Returns ------- pandas Series """ if fill: interest = df.corr().fillna(0)[target] else: interest = df.corr()[target] interest = interest[np.abs(interest) > thresh] if len(interest) > 0: if sort: return interest.sort_values(ascending=False) else: return interest else: return []
d9562d1bbc7947338cf87ddc6703ef54a21554e0
3,648,268
def compute_epsilon(steps): """Computes epsilon value for given hyperparameters.""" if FLAGS.noise_multiplier == 0.0: return float('inf') orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) sampling_probability = FLAGS.batch_size / NUM_TRAIN_EXAMPLES rdp = compute_rdp(q=sampling_probability, noise_multiplier=FLAGS.noise_multiplier, steps=steps, orders=orders) # Delta is set to 1e-5 because MNIST has 60000 training points. return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
9819cafafeec66cd29b13a916432c839e4365ded
3,648,269
def get_native_includes(object): """ After method association, check which native types an object uses and return a corresponding string list of include file This will also add the include needed for inheritance """ includes = set() for proc in object.procs: for argname,arg in proc.args.items(): if arg.native: includes.add(arg.type.type) if arg.type.matrix and not opts.no_fmat: includes.add(matrix_classname) if arg.type.type=='CHARACTER' and arg.intent!='in': if opts.std_string: # The use of angle brackets is handled specially # in the output code includes.add('<string>') else: includes.add(string_classname) if proc.retval and proc.retval.type.dt and proc.retval.pointer: includes.add(proc.retval.type.type) # For inheritance: if object.extends: includes.add(object.extends) return includes
0c09d39bd61b5a711bd718dcb38fab7e4e1e01bf
3,648,270
from sys import path def libraries_data_path(): """ Path to Packages/User/Deviot/pio/libraries.json """ user_data = user_pio_path() return path.join(user_data, 'libraries.json')
1e60f00544d8008bf44b47536ed19ebdc32bed33
3,648,271
import torch def dice_coeff(input, target): """Dice coeff for batches""" if input.is_cuda: s = torch.FloatTensor(1).to(device_f).zero_() else: s = torch.FloatTensor(1).zero_() for i, c in enumerate(zip(input, target)): s = s + DiceCoeff().forward(c[0], c[1]) return s / (i + 1)
da390729d2e1d8e2ae53814f8ac398a6c7e5380a
3,648,272
def group_error_rates(labels, predictions, groups): """Returns a list containing error rates for each protected group.""" errors = [] for jj in range(groups.shape[1]): if groups[:, jj].sum() == 0: # Group is empty? errors.append(0.0) else: signed_labels_jj = 2 * labels[groups[:, jj] == 1] - 1 predictions_jj = predictions[groups[:, jj] == 1] errors.append(np.mean(signed_labels_jj * predictions_jj <= 0)) return errors
0b390dfde16910332f10afacaa2f9031c04d846a
3,648,273
def get_emails_by_user_names(user_names): """Get emails by user names.""" emails_service = emails_digest_service.DailyEmailsService() emails_service.open_emails_digest() user_emails_dict = dict.fromkeys(user_names) for user_name in user_names: user_emails_dict[user_name] = emails_service.get_email_by_user_name( user_name) return user_emails_dict
331d5799bac79c08240770260306ba84bf2f568b
3,648,274
def inbound_and_outbound_node_sets(C, CT): """ Returns the set of nodes that can reach an event and can be reached by an event, and the difference between those sets (outbound / inbound). """ inbound = defaultdict(set) for node, event in zip(*np.nonzero(C)): inbound[event].add(node) outbound = defaultdict(set) for node, event in zip(*np.nonzero(CT)): outbound[event].add(node) difference = {} for event, in_nodes in inbound.items(): difference[event] = outbound[event] - in_nodes return inbound, outbound, difference
517746700a7a978a49a597237db362eee98d91b6
3,648,275
def policy(Q): """Hard max over prescriptions Params: ------- * Q: dictionary of dictionaries Nested dictionary representing a table Returns: ------- * policy: dictonary of states to policies """ pol = {} for s in Q: pol[s] = max(Q[s].items(), key=lambda x: x[1])[0] return pol
e69f66fba94b025034e03428a5e93ba1b95918e8
3,648,276
def fft(series): """ FFT of a series Parameters ---------- series Returns ------- """ signal = series.values time = series.index dt = np.mean(np.diff(time)) #n = 11*len(time) n = 50000 frequencies = np.fft.rfftfreq(n=n, d=dt) # [Hz] dft = np.abs(np.fft.rfft(signal, n=n)) return frequencies, dft
a6d1f7cfa45d504a86b434702a49eafa08737006
3,648,277
def local_variance(V, tsize=5): """ local non-linear variance calculation Parameters ---------- V : numpy.array, size=(m,n), dtype=float array with one velocity component, all algorithms are indepent of their axis. Parameters ---------- sig_V : numpy.array, size=(m,n), dtype=float statistical local variance, based on the procedure described in [1],[2] References ---------- .. [1] Joughin "Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach", Annuals of glaciology vol.34 pp.195-201. .. [2] Joughin et al. "Greenland ice mapping project 2 (GIMP-2) algorithm theoretical basis document", Making earth system data records for use in research environment (MEaSUREs) documentation. """ V_class = local_mad_filter(V, tsize=tsize) V[V_class] = np.nan V_0 = local_infilling_filter(V, tsize=tsize) # running mean adjustment mean_kernel = np.ones((tsize, tsize), dtype=float)/(tsize**2) V = ndimage.convolve(V, mean_kernel) # plane fitting and variance of residual sig_V = local_nonlin_var_filter(V, tsize=tsize) return sig_V
e7e10f8c73f01b20a27ad06813defdd406bf977a
3,648,278
def get_virtual_device_configuration(device): """Get the virtual device configuration for a PhysicalDevice. Returns the list of VirtualDeviceConfiguration objects previously configured by a call to `tf.config.experimental.set_virtual_device_configuration()`. For example: >>> physical_devices = tf.config.experimental.list_physical_devices('CPU') >>> assert len(physical_devices) == 1, "No CPUs found" >>> configs = tf.config.experimental.get_virtual_device_configuration( ... physical_devices[0]) >>> try: ... assert configs is None ... tf.config.experimental.set_virtual_device_configuration( ... physical_devices[0], ... [tf.config.experimental.VirtualDeviceConfiguration(), ... tf.config.experimental.VirtualDeviceConfiguration()]) ... configs = tf.config.experimental.get_virtual_device_configuration( ... physical_devices[0]) ... assert len(configs) == 2 ... except: ... # Cannot modify virtual devices once initialized. ... pass Args: device: PhysicalDevice to query Returns: List of `tf.config.experimental.VirtualDeviceConfiguration` objects or `None` if no virtual device configuration has been set for this physical device. """ return context.context().get_virtual_device_configuration(device)
49a99c17c2859bb40a7bfbbac840bf82310428e1
3,648,279
def user_directory_path(instance, filename): """Sets path to user uploads to: MEDIA_ROOT/user_<id>/<filename>""" return f"user_{instance.user.id}/{filename}"
84be5fe74fa5059c023d746b2a0ff6e32c14c10d
3,648,280
def setup(app): """Setup the Sphinx extension.""" # Register builder. app.add_builder(BeamerBuilder) # Add setting for allowframebreaks. app.add_config_value("beamer_allowframebreaks", True, "beamer") # Add setting for Beamer theme. app.add_config_value("beamer_theme", "Warsaw", "beamer") # Adjust titles upon doctree-resolved. app.connect("doctree-resolved", adjust_titles) return { "version": "1.0", "parallel_read_safe": True, "parallel_write_safe": True, }
cc5f48eeff65876a2d052dad285a77bc76e115c0
3,648,281
def extract_text(arg: Message_T) -> str: """ 提取消息中的纯文本部分(使用空格合并纯文本消息段)。 参数: arg (nonebot.typing.Message_T): """ arg_as_msg = Message(arg) return arg_as_msg.extract_plain_text()
06d19c9ca4e907edf433f910600161d142ca914e
3,648,282
def dtw(x, y, dist, warp=1): """ Computes Dynamic Time Warping (DTW) of two sequences. :param array x: N1*M array :param array y: N2*M array :param func dist: distance used as cost measure :param int warp: how many shifts are computed. Returns the minimum distance, the cost matrix, the accumulated cost matrix, and the wrap path. """ assert len(x) assert len(y) r, c = len(x), len(y) D0 = zeros((r + 1, c + 1)) D0[0, 1:] = inf D0[1:, 0] = inf D1 = D0[1:, 1:] # view for i in range(r): for j in range(c): D1[i, j] = dist(x[i], y[j]) C = D1.copy() for i in range(r): for j in range(c): min_list = [D0[i, j]] for k in range(1, warp + 1): i_k = min(i + k, r - 1) j_k = min(j + k, c - 1) min_list += [D0[i_k, j], D0[i, j_k]] D1[i, j] += min(min_list) if len(x) == 1: path = zeros(len(y)), range(len(y)) elif len(y) == 1: path = range(len(x)), zeros(len(x)) else: path = _traceback(D0) return D1[-1, -1], C, D1, path
a30a492d816e5234590d9fadfbba722db0ae9f72
3,648,283
def format_line_count_break(padding: int) -> str: """Return the line count break.""" return format_text( " " * max(0, padding - len("...")) + "...\n", STYLE["detector_line_start"] )
2fe4d4b8195468787f31b3407d32a4e039f7bb6c
3,648,284
from typing import Tuple from typing import get_args def identify_generic_specialization_types( cls: type, generic_class: type ) -> Tuple[type, ...]: """ Identify the types of the specialization of generic class the class cls derives from. :param cls: class which derives from a specialization of generic class. :param generic_class: a generic class. :return: specialization types. """ return get_args(find_generic_specialization_parent_class(cls, generic_class))
3932062a5a4543b280ebc8601126e10d11136717
3,648,285
def Metadata(): """Get a singleton that fetches GCE metadata. Returns: _GCEMetadata, An object used to collect information from the GCE metadata server. """ def _CreateMetadata(unused_none): global _metadata if not _metadata: _metadata = _GCEMetadata() _metadata_lock.lock(function=_CreateMetadata, argument=None) _metadata_lock.unlock() return _metadata
096ac4f0278e0048944d5a10c4153be7c60aae88
3,648,286
def pa11y_counts(results): """ Given a list of pa11y results, return three integers: number of errors, number of warnings, and number of notices. """ num_error = 0 num_warning = 0 num_notice = 0 for result in results: if result['type'] == 'error': num_error += 1 elif result['type'] == 'warning': num_warning += 1 elif result['type'] == 'notice': num_notice += 1 return num_error, num_warning, num_notice
346c1efe0cae5934e623a8643b0f23f85300181d
3,648,287
def parse_properties(df, columns_to_integer=None, columns_to_datetime=None, columns_to_numeric=None, columns_to_boolean=None, columns_to_string = None, dt_unit = 'ms', boolean_dict = {'true': True, 'false': False, '': None}): """ Parse string columns to other formats. This function is used in hubspot routine, its not yet scaled to other routines df: pd.DataFrame columns_to_: list with names of the columns to parse return: pd.DataFrame with parsed columns """ if columns_to_integer: df[columns_to_integer] = df[columns_to_integer].apply(string_to_integer) if columns_to_datetime: df[columns_to_datetime] = df[columns_to_datetime].apply(pd.to_datetime, unit = dt_unit) if columns_to_numeric: df[columns_to_numeric] = df[columns_to_numeric].apply(pd.to_numeric, errors = 'coerce', downcast='float') if columns_to_boolean: df[columns_to_boolean] = df[columns_to_boolean].replace(boolean_dict).astype('boolean') if columns_to_string: df[columns_to_string] = df[columns_to_string].apply(int_to_string) return df
a162397308d98faac6ab24f07aceee439aa32095
3,648,288
import requests def http_request(method, url, headers, data=None): """ Request util :param method: GET or POST or PUT :param url: url :param headers: headers :param data: optional data (needed for POST) :return: response text """ response = requests.request(method, url, headers=headers, data=data) if response.status_code not in [200, 201, 204]: http_error_msg = u'%s HTTP request failed: %s for url: %s' % (response.status_code, response.text, url) #print ("utils.http_request ", http_error_msg) raise requests.exceptions.HTTPError(response.text) return response.text
6d0453be79b3ae0f7ed60b5a8759b9295365dd6c
3,648,289
import time def beNice(obj): """Be nice : exponential backoff when over quota""" wait = 1 while wait : try : return_value = obj.execute() wait = 0 except : #FIXME : we should test the type of the exception print("EXCEPT : Wait for %d seconds" % wait) time.sleep(wait) wait *= 2 return(return_value)
a68d4369c02ec37c48518a109f8c27fa1e014aa3
3,648,290
def parse_title(line): """if this is title, return Tuple[level, content], @type line: str @return: Optional[Tuple[level, content]] """ line = line.strip() if not line.startswith('#'): return None sharp_count = 0 for c in line: if c == '#': sharp_count += 1 else: break if sharp_count == len(line): return None title = line[sharp_count:].strip() return sharp_count, title
7c170f417755c878d225b780b8475a379501c19f
3,648,291
import typing def issubtype(cls: type, clsinfo: type) -> bool: """ Return whether ``cls`` is a subclass of ``clsinfo`` while also considering generics. :param cls: the subject. :param clsinfo: the object. :return: True if ``cls`` is a subclass of ``clsinfo`` considering generics. """ info_generic_type, info_args = _split_generic(clsinfo) if clsinfo in (typing.Any, object): result = True elif info_args: result = _issubtype_generic(cls, info_generic_type, info_args) else: result = issubclass(_without_generic(cls), _without_generic(clsinfo)) return result
942d5760c3de4d63bcd9c3f5934fcc89727dc958
3,648,292
def delete_status(id): """Delete an existing status The status to be deleted should be posted as JSON using 'application/json as the content type. The posted JSON needs to have 2 required fields: * user (the username) * api_key An example of the JSON:: { "user": "r1cky", "api_key": "qwertyuiopasdfghjklzxcvbnm1234567890" } """ db = get_session(current_app) # The data we need user = request.json.get('user') if not (id and user): return jsonify(dict(error='Missing required fields.')), 400 status = db.query(Status).filter_by(id=id) if not status.count(): return jsonify(dict(error='Status does not exist.')), 400 if not status[0].user.username == user: return jsonify(dict(error='You cannot delete this status.')), 403 status.delete() db.commit() return jsonify(dict(id=id))
d6a9ebbc787283f3ac247935f3fe5ad9080d2bd0
3,648,293
def process_data(data): """ Change labels, group by planner and format for latex.""" data = data.replace( { "grid_run_1": "Grid", "prm_run_1": "PRM A", "prm_run_2": "PRM B", "prm_run_3": "PRM C", } ) data = data.rename( columns={"num_samples": "samples", "cc_checks": "collision checks"} ) df = data.groupby(["run"]).sum()[["samples", "jvm", "time", "collision checks"]] df["samples"] = np.round(df["samples"]) df["time"] = np.round(df["time"]) df["samples"] = np.round(df["collision checks"]) sr = data.groupby(["run"]).sum()[["success"]] df["solved"] = sr.astype(int).astype(str) + "/14" latex = df.to_latex( formatters={ "samples": "{:,.0f}".format, "jvm": "{:.2f}".format, "collision checks": "{:,.0f}".format, "time": "{:.0f}".format, } ) return df, latex
24ac1c2ee872c5051eccc9774943f922671267b1
3,648,294
def detect_outlier(TS, samples_wind=60, order=3): """Find outliers in TS by interpolate one sample at a time, measure diff. between rec. sample and interpolated, and getting the peaks in the int diff across recording. Parameters ------------- TS : array (x, y) x n_samples Times series to extract features samples_wind : int Window length of segment where a sample is interpolated. order : int B-sline interpolation order Returns -------- outliers: list of array n_chans [n_outliers] Indices of outliers per chans outliers_int: list of array n_chans [n_outliers] New interpolated values of the outliers """ s_win_half = int(samples_wind/2) outliers = [] outliers_int = [] zdiffs = [] for ts in TS: n_samples, = ts.shape diff = [np.nan] ts_int_one = [np.nan] for w in range(1,n_samples-1): wix = [w-s_win_half,w+s_win_half] # Bound beg or end if outside wix[0] = 0 if wix[0]<0 else wix[0] wix[1] = n_samples if wix[1]>n_samples else wix[1] seg1, seg2 = ts[wix[0]:w], ts[w+1:wix[1]] seg = np.concatenate((seg1,seg2)) # make indexes ts with and without sample ixs = np.arange(seg.shape[0]+1) ixs_out =np. delete(ixs, np.argwhere(ixs == seg1.shape[0])) # Interpolate and measure diff fcubic = interpolate.interp1d(ixs_out, seg, kind=order) ts_int_out = fcubic(ixs) smpl_int = ts_int_out[seg1.shape[0]] diff.append(np.abs(smpl_int-ts[w])) ts_int_one.append(smpl_int) diff_z = zscore(diff) pks_p, _ = feat_ext.find_maxmin_peaks(diff_z[1:], height=5) pks_p = pks_p + 1 # add 1 sampl ( first is nan) int_smp = np.array(ts_int_one)[pks_p] outliers.append(pks_p) outliers_int.append(int_smp) zdiffs.append(diff_z) return outliers, outliers_int, np.array(zdiffs)
91515770554155ddb0da507e94e4cffc611202d9
3,648,295
def postprocess(backpointers, best_tag_id): """Do postprocess.""" best_tag_id = best_tag_id.asnumpy() batch_size = len(best_tag_id) best_path = [] for i in range(batch_size): best_path.append([]) best_local_id = best_tag_id[i] best_path[-1].append(best_local_id) for bptrs_t in reversed(backpointers): bptrs_t = bptrs_t[0].asnumpy() local_idx = bptrs_t[i] best_local_id = local_idx[best_local_id] best_path[-1].append(best_local_id) # Pop off the start tag (we dont want to return that to the caller) best_path[-1].pop() best_path[-1].reverse() return best_path
5be856610a3c81453c11c584507dcb4ad0e4cf61
3,648,296
def carnatic_string_to_ql_array(string_): """ :param str string_: A string of carnatic durations separated by spaces. :return: The input string converted to a quarter length array. :rtype: numpy.array. >>> carnatic_string_to_ql_array('oc o | | Sc S o o o') array([0.375, 0.25 , 0.5 , 0.5 , 1.5 , 1. , 0.25 , 0.25 , 0.25 ]) """ split_string = string_.split() vals = [] for token in split_string: try: if carnatic_symbols[token] is not None: vals.append(carnatic_symbols[token]["value"]) except KeyError: pass return np.array(vals)
19386ac13233c3f5cc70eea7f75d287784f6a969
3,648,297
import tqdm import json import os def get_examples(fpath, doc_dir, max_seq_len=-1, max_sent_num=200, sent_level=True): """ Get data from tsv files. Input: fpath -- the file path. Assume number of classes = 2 Output: ts -- a list of strings (each contain the text) ys -- float32 np array (num_example, ) zs -- float32 np array (num_example, ) ss -- float32 np array (num_example, num_sent, sequence_length) szs -- float32 np array (num_example, num_sent) """ n = -1 ts = [] ys = [] zs = [] ss = [] s_labels = [] min_len = 10000 max_len = 0 avg_z_len = 0. avg_num_sent = 0. real_max_sent_num = 0 avg_r_num = 0. with open(fpath, "r") as f: for line in tqdm(f): json_data = json.loads(line.strip()) doc_filename = json_data['annotation_id'] file_doc = open(os.path.join(doc_dir, doc_filename)) sentences = file_doc.readlines() s_masks = [] sentences = [s.strip().split() for s in sentences] t = [inner for outer in sentences for inner in outer] cur_id = 0 for sentence in sentences: if len(s_masks) < max_sent_num: s_masks.append([0.0] * len(t)) for token in sentence: s_masks[-1][cur_id] = 1.0 cur_id += 1 avg_num_sent += len(s_masks) if len(s_masks) > real_max_sent_num: real_max_sent_num = len(s_masks) if max_seq_len > 0: t = t[:max_seq_len] # print(t) if len(t) > max_len: max_len = len(t) if len(t) < min_len: min_len = len(t) y = json_data['classification'] if y == 'POS': y = 1 elif y == 'NEG': y = 0 else: print('ERROR: label {}'.format(y)) evidences = json_data['evidences'] z = [0] * len(t) z_len = 0 for evidence_list in evidences: for evidence in evidence_list: z_start = evidence['start_token'] z_end = evidence['end_token'] z_end = min(z_end, len(t)) z_text = evidence['text'] for idx in range(z_start, z_end): z[idx] = 1 z_len += 1 if max_seq_len < 0: assert z_text == ' '.join(t[z_start:z_end]), z_text + '<->' + ' '.join(t[z_start:z_end]) else: if z_end < max_seq_len: assert z_text == ' '.join(t[z_start:z_end]), z_text + '<->' + ' '.join(t[z_start:z_end]) # print(z_text) # print(t[z_start:z_end]) avg_z_len += z_len if sent_level: s_label = [0.] * len(s_masks) new_z = [0] * len(t) for sid, s_mask in enumerate(s_masks): is_rationale = False for idx, val in enumerate(s_mask): if idx >= max_seq_len: continue if val == 1.0: if z[idx] == 1: is_rationale = True break if is_rationale: avg_r_num += 1 s_label[sid] = 1. for idx, val in enumerate(s_mask): if idx >= max_seq_len: continue if val == 1.0: new_z[idx] = 1 # z = new_z # break # s_spans = json_data['sentences'] # # if len(s_spans) > max_sent_num: # # max_sent_num = len(s_spans) # # # print(line) # s_masks = [] # for sid, s_span in enumerate(s_spans): # (b, e) = s_span # if b >= max_seq_len: # break # # print(len(s_masks)) # # print(max_sent_num) # if len(s_masks) < max_sent_num: # s_masks.append([0.0] * len(t)) # for i in range(b, e): # # print(len(s_masks[-1]), i) # if i >= max_seq_len: # break # s_masks[-1][i] = 1.0 # if len(s_masks) > real_max_sent_num: # real_max_sent_num = len(s_masks) ts.append(t) ys.append(y) zs.append(z) ss.append(s_masks) if sent_level: s_labels.append(s_label) # print('len s_mask:', len(s_masks)) # print('len s_label:', len(s_label)) assert len(s_masks) == len(s_label) n += 1 # print(avg_z_len) print("Number of examples: %d" % n) print("Maximum doc length: %d" % max_len) print("Minimum doc length: %d" % min_len) print("Average length of rationales: %.4f" % (avg_z_len / n) ) print("Average sent number: %d" % (avg_num_sent/n)) print("Maximum sent number: %d" % real_max_sent_num) print("Average rationle-sent number: %d" % (avg_r_num / n)) if sent_level: return ts, ys, zs, ss, s_labels return ts, ys, zs, ss
54c1743528d27e9c2a2dbf176172a29c2ab48d50
3,648,298
def login_redirect(request: HttpRequest) -> HttpResponse: """ Redirects the user to the Strava authorization page :param request: HttpRequest :return: HttpResponse """ strava_uri = get_strava_uri() return redirect(strava_uri)
80eb714ab8f1fde25f2a3ce57bdc540a5a7a980d
3,648,299