content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def get_available_adapters() -> dict: """Get information on all available adapters Returns: (dict) Where keys are adapter names and values are descriptions """ return _output_plugin_info(ExtensionManager(namespace='materialsio.adapter'))
5384931189492a6369a885498f4dfeaed315cb94
3,648,100
def _must_find_n(session, obj_outer, cls_inner, name_inner): """Searches the database for a "namespaced" object, such as a nic on a node. Raises NotFoundError if there is none. Otherwise returns the object. Arguments: session - a SQLAlchemy session to use. obj_outer - the "owner" object cls_inner - the "owned" class name_inner - the name of the "owned" object """ obj_inner = _namespaced_query(session, obj_outer, cls_inner, name_inner) if obj_inner is None: raise NotFoundError("%s %s on %s %s does not exist." % (cls_inner.__name__, name_inner, obj_outer.__class__.__name__, obj_outer.label)) return obj_inner
25546e1f528c54ae7283f6a0d404065a337eb977
3,648,101
def list_providers(): """ Get list of names of all supported cloud providers :rtype: list """ return [cls.provider_name() for cls in BaseHandler.__subclasses__()]
96f75695a40c9969cbd1507b3b3214df44039f1e
3,648,102
def GetRPCProxy(address=None, port=None, url=GOOFY_RPC_URL): """Gets an instance (for client side) to access the goofy server. Args: address: Address of the server to be connected. port: Port of the server to be connected. url: Target URL for the RPC server. Default to Goofy RPC. """ address = address or DEFAULT_GOOFY_ADDRESS port = port or DEFAULT_GOOFY_PORT return jsonrpc.ServerProxy( 'http://%s:%d%s' % (address, port, url))
3e66abf1e6961c9d2dd2f2fa562e43528d6e99a4
3,648,103
import argparse def getparser(): """ Use argparse to add arguments from the command line Parameters ---------- createlapserates : int Switch for processing lapse rates (default = 0 (no)) createtempstd : int Switch for processing hourly temp data into monthly standard deviation (default = 0 (no)) Returns ------- Object containing arguments and their respective values. """ parser = argparse.ArgumentParser(description="select pre-processing options") # add arguments parser.add_argument('-createlapserates', action='store', type=int, default=0, help='option to create lapse rates or not (1=yes, 0=no)') parser.add_argument('-createtempstd', action='store', type=int, default=0, help='option to create temperature std of daily data or not (1=yes, 0=no)') return parser
6ccde8f0e02124fa537205da398a842c88a62046
3,648,104
def dict_hash_table_100_buckets(): """Test for hash table with 100 buckets, dictionary.""" ht = HashTable(100, naive_hash) for word in dictionary_words: ht.set(word, word) return ht
eef6fa89811f6ac9d1ad17d11dc5aa38346a4e16
3,648,105
def white(N): """ White noise. :param N: Amount of samples. White noise has a constant power density. It's narrowband spectrum is therefore flat. The power in white noise will increase by a factor of two for each octave band, and therefore increases with 3 dB per octave. """ return np.random.randn(N)
5404c24b0cb79e3866d10eed1630ccdfebe9fae1
3,648,106
import warnings def read_HiCPro(bedfile, matfile): """ Fast loading of the .matrix and .bed files derived from HiC-Pro Parameters ---------- bedfile : str, path to the .bed file which contains fragments info matfile : str, path to the .matrix file which contains contact counts Returns ------- counts : the interaction contacts map lengths : the lengths of each chromosomes chrs : the chromosome names """ ### read and parse fragments file at first bed_df = pd.read_csv(bedfile, sep='\t', comment="#", header=None, names=['chrs', 'starts', 'ends', 'idxs']) # get lengths for each chromosome chrs, indices, lengths = np.unique(bed_df.chrs.values, return_index=True, return_counts=True) chrs = list(chrs[indices.argsort()]) lengths = lengths[indices.argsort()] base = bed_df.idxs[0] # start index: 0 or 1 ### read and parse counts file then n = lengths.sum() shape = (n, n) # This is the interaction count files mat_df = pd.read_csv(matfile, sep='\t', comment="#", header=None) row, col, data = mat_df.values.T row = row.astype(int) col = col.astype(int) # If there are NAs remove them mask = np.isnan(data) if np.any(mask): warnings.warn(f'NAs detected in {mat_file}. Removing NAs and replacing with 0.') row = row[np.invert(mask)] # invert True and False for mask col = col[np.invert(mask)] data = data[np.invert(mask)].astype(int) # if index start from 1 if base not in [0, 1]: raise ValueError('indices should start either at 0 or 1') if base == 1: col -= 1 row -= 1 # convert to a coo_matrix (lower triangular) counts = coo_matrix((data, (row, col)), shape=shape) # whether the matrix is lower or upper triangular if np.all(row <= col): triangular_upper = True elif np.all(row >= col): triangular_upper = False else: raise ValueError('The HiC matrix is neither lower nor upper triangular!') # We need to deal with the fact that we should not duplicate entries for the diagonal counts = counts.toarray() if triangular_upper: counts = counts + np.triu(counts, 1).T else: counts = counts + np.tril(counts, -1).T return counts, lengths, chrs
1c52cdf62a20d4ff8168919afbd890890653de93
3,648,107
def get_objective_by_task(target, task): """Returns an objective and a set of metrics for a specific task.""" if task == 'classification': if target.nunique() == 2: objective = 'binary' else: objective = 'multi' elif task == 'regression': objective = 'regression' else: raise_invalid_task_error(task) return objective
7859f84ba89246b735c61b3b31e421b38692de34
3,648,108
def pileupGenes(GenePositions,filename,pad=500000,doBalance=False, TPM=0,CTCFWapldKO=False,TPMlargerthan=True, minlength=0,maxlength=5000000,OE=None, useTTS=False): """ This function piles up Hi-C contact maps around genes, centered on TSSs or TTSs. Inputs ------ GenePositions - pandas dataframe - with genes and their transcription intensity filename - str - is path to cooler file pad - int - half of the window size in bp OE - str or None - path to scaling data to use as "expected" to compute observed over expected useTTS - bool - False to pile on TSS, True to pile on TTS other parameters do some optional filtering of the data frame """ sortString="start" if useTTS: sortString="end" OrderedPositions=GenePositions.sort_values(sortString) c = cooler.Cooler(filename) res = c.info['bin-size'] chromsizes = bioframe.fetch_chromsizes('mm9') chrmList = list(chromsizes.index) runningCount = 0 pile = [] for mychr in chrmList: #Iterate over chromosomes mychrstrCooler=mychr mychrstrDataFrame=mychr#Chromosomes in the dataframe GenePositions #are labeled 1 to 19, X Y and M, while in the cooler file they are labeld 0 to 21 current = OrderedPositions[OrderedPositions["chrom"] == mychrstrDataFrame] if len(current) <= 0: continue #identify + and - so we can reorient genes #genes for which strand is +, and current gene is not too long and not too short currentPlusStrand=current[(current['strand']=='+')&(current['gene_length']<maxlength) &(current['gene_length']>minlength)] #genes for which strand is -, and current gene is not too long and not too short currentMinusStrand=current[(current['strand']=='-')&(current['gene_length']<maxlength) &(current['gene_length']>minlength)] if TPMlargerthan: #filter by TPM > threshold if CTCFWapldKO: currentPlusStrand=currentPlusStrand[(currentPlusStrand['TPM_dKO+Adeno-Cre_30251-30253']>=TPM)] currentMinusStrand=currentMinusStrand[(currentMinusStrand['TPM_dKO+Adeno-Cre_30251-30253']>=TPM)] else: currentPlusStrand=currentPlusStrand[(currentPlusStrand['TPM_wildtype']>=TPM)] currentMinusStrand=currentMinusStrand[(currentMinusStrand['TPM_wildtype']>=TPM)] else: #filter by TPM < thresh if CTCFWapldKO: currentPlusStrand=currentPlusStrand[(currentPlusStrand['TPM_dKO+Adeno-Cre_30251-30253']<=TPM)&(currentPlusStrand['next_TPM_dKO']>0)] currentMinusStrand=currentMinusStrand[(currentMinusStrand['TPM_dKO+Adeno-Cre_30251-30253']<=TPM) &(currentPlusStrand['TPM_dKO+Adeno-Cre_30251-30253']>0)] else: currentPlusStrand=currentPlusStrand[(currentPlusStrand['TPM_wildtype']<=TPM) &(currentPlusStrand['next_TPM_wildtype']>0)] currentMinusStrand=currentMinusStrand[(currentMinusStrand['TPM_wildtype']<=TPM) &(currentMinusStrand['TPM_wildtype']>0)] centerString="start" if useTTS: centerString="end" for st, end in zip(currentPlusStrand[centerString].values, currentPlusStrand[centerString].values): reg1 = '{}:{}-{}'.format(mychrstrCooler, int(np.floor((st - pad) / res) * res), int(np.floor((st + pad) / res) * res),) reg2 = '{}:{}-{}'.format(mychrstrCooler,int(np.floor((end - pad) / res) * res), int(np.floor((end + pad) / res) * res)) #from balanced matrix, fetch regions try: mat = c.matrix(balance=doBalance).fetch(reg1, reg2) if OE!=None:#Divide by expected mat=mat/OE[mychr] pile.append(mat) except Exception as e: print(e) #mat = np.nan * np.ones((pad * 2 //res, pad * 2 //res)) print('Cannot retrieve a window:', reg1, reg2) centerString="end" if useTTS: centerString="start" for st, end in zip(currentMinusStrand[centerString].values, currentMinusStrand[centerString].values): reg1 = '{}:{}-{}'.format(mychrstrCooler, int(np.floor((st - pad) / res) * res), int(np.floor((st + pad) / res) * res),) reg2 = '{}:{}-{}'.format(mychrstrCooler,int(np.floor((end - pad) / res) * res), int(np.floor((end + pad) / res) * res)) try: temp=c.matrix(balance=doBalance).fetch(reg1, reg2) if OE!=None:#Divide by expected temp=temp/OE[mychr] mat = temp[::-1].T[::-1].T #Rotate matrix 180 degrees to align genes pile.append(mat) except Exception as e: print(e) #mat = np.nan * np.ones((pad * 2 //res, pad * 2 //res)) print('Cannot retrieve a window:', reg1, reg2) return pile
671f575b09131f44f07d659bc8e195a16cd9e2f9
3,648,109
def model_cnn_2layer(in_ch, in_dim, width, linear_size=128): """ CNN, small 2-layer (default kernel size is 4 by 4) Parameter: in_ch: input image channel, 1 for MNIST and 3 for CIFAR in_dim: input dimension, 28 for MNIST and 32 for CIFAR width: width multiplier """ model = nn.Sequential( nn.Conv2d(in_ch, 4 * width, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(4 * width, 8 * width, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(8 * width * (in_dim // 4) * (in_dim // 4), linear_size), nn.ReLU(), nn.Linear(linear_size, 10) ) return model
a08ec035cde3dd024ec32d85adb0af045fe845eb
3,648,110
import sys import os from unittest.mock import call def snack_raw_formants_tcl(wav_fn, frame_shift, window_size, pre_emphasis, lpc_order, tcl_shell_cmd): """Implement snack_formants() by calling Snack through Tcl shell tcl_shell_cmd is the name of the command to invoke the Tcl shell. Note this method can only be used if Tcl is installed. The vectors returned here are the raw Snack output, without padding. For more info, see documentation for snack_raw_formants(). """ # File path for wav file provided to Tcl script in_file = wav_fn # ERROR: wind_dur parameter must be between [0.0001, 0.1]. # ERROR: frame_step parameter must be between [1/sampling rate, 0.1]. # invalid/inconsistent parameters -- exiting. # HACK: Tcl shell expects double backslashes in Windows path if sys.platform == 'win32' or sys.platform == 'cygwin': # pragma: no cover in_file = in_file.replace('\\', '\\\\') tcl_file = os.path.join(os.path.dirname(wav_fn), 'tclforsnackformant.tcl') # Write Tcl script to compute Snack formants f = open(tcl_file, 'w') script = "#!/usr/bin/env bash\n" script += '# the next line restarts with tclsh \\\n' script += 'exec {} "$0" "$@"\n\n'.format(tcl_shell_cmd) # HACK: The variable user_snack_lib_path is a hack we use in continous # integration testing. The reason is that we may not have the # permissions to copy the Snack library to the standard Tcl library # location. This is a workaround to load the Snack library from a # different location, where the location is given by # user_snack_lib_path. if user_snack_lib_path is not None: script += 'pkg_mkIndex {} snack.tcl libsnack.dylib libsound.dylib\n'.format(user_snack_lib_path) script += 'lappend auto_path {}\n\n'.format(user_snack_lib_path) script += 'package require snack\n\n' script += 'snack::sound s\n\n' script += 's read {}\n\n'.format(in_file) script += 'set fd [open [file rootname {}].frm w]\n'.format(in_file) script += 'puts $fd [join [s formant -windowlength {} -framelength {} -windowtype Hamming -lpctype 0 -preemphasisfactor {} -ds_freq 10000 -lpcorder {}]\n\n]\n'.format(window_size / 1000, frame_shift / 1000, pre_emphasis, lpc_order) script += 'close $fd\n\n' script += 'exit' f.write(script) f.close() # Run Tcl script try: return_code = call([tcl_shell_cmd, tcl_file]) except OSError: # pragma: no cover os.remove(tcl_file) raise OSError('Error while attempting to call Snack via Tcl shell. Is Tcl shell command {} correct?'.format(tcl_shell_cmd)) else: if return_code != 0: # pragma: no cover os.remove(tcl_file) raise OSError('Error when trying to call Snack via Tcl shell script.') # Load results from f0 file and save into return variables frm_file = os.path.splitext(wav_fn)[0] + '.frm' num_cols = len(sformant_names) if os.path.isfile(frm_file): frm_results = np.loadtxt(frm_file, dtype=float).reshape((-1, num_cols)) estimates_raw = {} for i in range(num_cols): estimates_raw[sformant_names[i]] = frm_results[:, i] # Cleanup and remove f0 file os.remove(frm_file) else: # pragma: no cover raise OSError('Snack Tcl shell error -- unable to locate .frm file') # Cleanup and remove Tcl script file os.remove(tcl_file) return estimates_raw
a9ac0dcbfd1568774b15db6fa28fb228e50ab29e
3,648,111
from datasets.posetrack.poseval.py import evaluate_simple def _run_eval(annot_dir, output_dir, eval_tracking=False, eval_pose=True): """ Runs the evaluation, and returns the "total mAP" and "total MOTA" """ (apAll, _, _), mota = evaluate_simple.evaluate( annot_dir, output_dir, eval_pose, eval_tracking, cfg.TRACKING.DEBUG.UPPER_BOUND_4_EVAL_UPPER_BOUND) return apAll[-1][0], mota[-4][0]
e851006974b51c44c7ac7a59c4d54a3725b36004
3,648,112
def reserve_api(): """Helper function for making API requests to the /reserve API endpoints :returns: a function that can be called to make a request to /reserve """ def execute_reserve_api_request(method, endpoint, **kwargs): master_api_client = master_api() return master_api_client(method, "/reserve%s" % endpoint, **kwargs) return execute_reserve_api_request
d9e07fcd72742685443cd83f44eaed074a8152dc
3,648,113
import re def extract_user_id(source_open_url): """ extract the user id from given user's id :param source_open_url: "sslocal://profile?refer=video&uid=6115075278" example :return: """ if source_open_url[10:17] != 'profile': return None try: res = re.search("\d+$", source_open_url).group(0) return res.strip() except (AttributeError, KeyError): return None
36d3e41c4361a29306650fc67c9f396efe92cd66
3,648,114
def prolog_rule(line): """Specify prolog equivalent""" def specify(rule): """Apply restrictions to rule""" rule.prolog.insert(0, line) return rule return specify
dde4840dc2f8f725d4c4c123aed7c978ec1948f9
3,648,115
def load_GloVe_model(path): """ It is a function to load GloVe model :param path: model path :return: model array """ print("Load GloVe Model.") with open(path, 'r') as f: content = f.readlines() model = {} for line in content: splitLine = line.split() word = splitLine[0] embedding = np.array((splitLine[1:])) model[word] = embedding print("Done.", len(model), " words loaded!\n") return model
40e8fe203b195621b776ea3650bb531956769b48
3,648,116
import numpy def quadratic_program() -> MPQP_Program: """a simple mplp to test the dimensional correctness of its functions""" A = numpy.array( [[1, 1, 0, 0], [0, 0, 1, 1], [-1, 0, -1, 0], [0, -1, 0, -1], [-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]) b = numpy.array([350, 600, 0, 0, 0, 0, 0, 0]).reshape(8, 1) c = 25 * make_column([1, 1, 1, 1]) F = numpy.array([[0, 0], [0, 0], [-1, 0], [0, -1], [0, 0], [0, 0], [0, 0], [0, 0]]) Q = 2.0 * numpy.diag([153, 162, 162, 126]) CRa = numpy.vstack((numpy.eye(2), -numpy.eye(2))) CRb = numpy.array([1000, 1000, 0, 0]).reshape(4, 1) H = numpy.zeros((F.shape[1], Q.shape[0])) prog = MPQP_Program(A, b, c, H, Q, CRa, CRb, F) prog.scale_constraints() return prog
71d5d9b872572e05b86e640006c58cc407c76ec4
3,648,117
import os import base64 def load_img(str_img): """ """ str_b64 = None if os.path.exists(str_img) and is_path_img(str_img): with open(str_img, 'rb') as f: content = f.read() content_b64 = base64.b64encode(content) str_b64 = content_b64.decode('utf-8') elif str_img.startswith('http'): res = rq.get(str_img) if res.status_code == 200: content_b64 = base64.b64encode(res.content) str_b64 = content_b64.decode('utf-8') elif isinstance(str_img, bytes): str_img = str_img return str_b64
6a2549794003b1c4218ce985162e25f4bc8680f3
3,648,118
def snr(flux, axis=0): """ Calculates the S/N ratio of a spectra. Translated from the IDL routine der_snr.pro """ signal = np.nanmedian(flux, axis=axis) noise = 1.482602 / np.sqrt(6.) * np.nanmedian(np.abs(2.*flux - \ np.roll(flux, 2, axis=axis) - np.roll(flux, -2, axis=axis)), \ axis=axis) return signal, noise, signal / noise
964362545e2fb8a0e7f15df71d90c5ce3e2f5815
3,648,119
def subtract_images(img_input, img_output, img_height, img_width): """Subtract input and output image and compute difference image and ela image""" input_data = img_input.T output_data = img_output.T if len(input_data) != len(output_data): raise Exception("Input and Output image have different sizes!") diff = abs(input_data - output_data) diff = diff.reshape(img_height, img_width, 3) diff = np.clip(diff, 0, 255) if auto: args.multiplier = np.divide(255, diff.max()) diff_multiplied = diff * args.multiplier diff_multiplied = np.clip(diff_multiplied, 0, 255) if args.cupy: diff_img = Image.fromarray(np.asnumpy(diff).astype(np.uint8), 'RGB') diff_img_multiplied = Image.fromarray(np.asnumpy(diff_multiplied).astype(np.uint8), 'RGB') else: diff_img = Image.fromarray(diff.astype(np.uint8), 'RGB') diff_img_multiplied = Image.fromarray(diff_multiplied.astype(np.uint8), 'RGB') return diff_img, diff_img_multiplied
7b2b2df57055cc73bec85bed2a5bece8187ddcdf
3,648,120
import ctypes def k4a_playback_get_track_name(playback_handle, track_index, track_name, track_name_size): """ K4ARECORD_EXPORT k4a_buffer_result_t k4a_playback_get_track_name(k4a_playback_t playback_handle, size_t track_index, char *track_name, size_t *track_name_size); """ _k4a_playback_get_track_name = record_dll.k4a_playback_get_track_name _k4a_playback_get_track_name.restype = k4a_buffer_result_t _k4a_playback_get_track_name.argtypes = (k4a_playback_t,\ ctypes.c_size_t,\ ctypes.POINTER(ctypes.c_char),\ ctypes.POINTER(ctypes.c_size_t)) return _k4a_playback_get_track_name(playback_handle, track_index, track_name, track_name_size)
872c5aa73f9520f178fdbdfe47c314f9043282c0
3,648,121
def recommend_lowercase_d(data: pd.Series, **kwargs) -> int: """Returns the recommended value of differencing order 'd' to use Parameters ---------- data : pd.Series The data for which the differencing order needs to be calculated *kwargs: Keyword arguments that can be passed to the difference test. Values are: alpha : float, optional Significance Value, by default 0.05 test : str, optional The test to use to test the order of differencing, by default 'kpss' max_d : int, optional maximum differencing order to try, by default 2 Returns ------- int The differencing order to use """ recommended_lowercase_d = ndiffs(data, **kwargs) return recommended_lowercase_d
a249ed104c00e62f386f82c5c4aaecc7cf0c4001
3,648,122
from typing import Dict import json def get_player_current_games_to_move(username: str) -> Dict: """Public method that returns an array of Daily Chess games where it is the player's turn to act Parameters: username -- username of the player """ r = _internal.do_get_request(f"/player/{username}/games/to-move") return json.loads(r.data.decode('utf-8'))
1ce906d24fa278703d708d41ed753c2cb24b48d0
3,648,123
def get_rb_data_attribute(xmldict, attr): """Get Attribute `attr` from dict `xmldict` Parameters ---------- xmldict : dict Blob Description Dictionary attr : str Attribute key Returns ------- sattr : int Attribute Values """ try: sattr = int(xmldict["@" + attr]) except KeyError: raise KeyError( f"Attribute @{attr} is missing from " "Blob Description. There may be some " "problems with your file" ) return sattr
dfc48ad47f67b2303874154ce4a164a176c1f4bf
3,648,124
from PythonPhot import photfunctions import pdb import pdb def dopythonphot(image, xc, yc, aparcsec=0.4, system='AB', ext=None, psfimage=None, psfradpix=3, recenter=False, imfilename=None, ntestpositions=100, snthresh=0.0, zeropoint=None, filtername=None, exptime=None, pixscale=None, skyannarcsec=[6.0, 12.0], skyval=None, skyalgorithm='sigmaclipping', target=None, printstyle=None, exact=True, fitsconvention=True, phpadu=None, returnflux=False, showfit=False, verbose=False, debug=False): """ Measure the flux through aperture(s) and/or psf fitting using the PythonPhot package. Inputs: image : string giving image file name OR a list or 2-tuple giving the header and data array as [hdr,data] xc,yc : aperture center in pixel coordinates aparcsec : aperture radius in arcsec, or a string with a comma-separated list of aperture radii psfimage : filename for a fits file containing a psf model system : report AB or Vega mags ('AB','Vega') snthresh : If the measured flux is below <snthresh>*fluxerr then the resulting magnitude is reported as a lower limit. zeropoint : fix the zeropoint (if not provided, we look it up from hardcoded tables) skyannarcsec : inner and outer radius of the sky annulus (in arcsec) target : name of the target object (for printing in snanastyle) printstyle : None or 'default' = report MJD, filter, and photometry 'verbose' or 'long' = include target name and position 'snana' = report mags in the format of a SNANA .dat file. fitsconvention : xc,yc position follows the fits convention with (1,1) as the lower left pixel. Otherwise, follow the python/pyfits convention with (0,0) as the lower left pixel. returnflux : instead of returning a list of strings containing all the flux and magnitude information, simply return a single flux val Note : No recentering is done (i.e. this does forced photometry at the given pixel position) """ if debug == 1: pdb.set_trace() imhdr, imdat = getheaderanddata(image, ext=ext) if imfilename is None: if isinstance(image, str): imfilename = image elif 'FILENAME' in imhdr: imfilename = imhdr['FILENAME'] else: imfilename = 'unknown' if imdat.dtype != 'float64': imdat = imdat.astype('float64', copy=False) if not filtername: if 'FILTER1' in imhdr: if 'CLEAR' in imhdr['FILTER1']: filtername = imhdr['FILTER2'] else: filtername = imhdr['FILTER1'] else: filtername = imhdr['FILTER'] if not exptime: if 'EXPTIME' in imhdr: exptime = imhdr['EXPTIME'] else: raise exceptions.RuntimeError( "Cannot determine exposure time for %s" % imfilename) if not pixscale: pixscale = getpixscale(imhdr, ext=ext) if not np.iterable(aparcsec): aparcsec = np.array([aparcsec]) elif not isinstance(aparcsec, np.ndarray): aparcsec = np.array(aparcsec) appix = np.array([ap / pixscale for ap in aparcsec]) skyannpix = np.array([skyrad / pixscale for skyrad in skyannarcsec]) if len(appix) >= 1: assert skyannpix[0] >= np.max( appix), "Sky annulus must be >= largest aperture." camera = getcamera(imhdr) # Define the conversion factor from the values in this image # to photons : photons per ADU. if phpadu is None: if 'BUNIT' not in imhdr: if camera == 'WFC3-IR' and 'EXPTIME' in imhdr: phpadu = imhdr['EXPTIME'] else: phpadu = 1 elif imhdr['BUNIT'].lower() in ['cps', 'electrons/s']: phpadu = imhdr['EXPTIME'] elif imhdr['BUNIT'].lower() in ['counts', 'electrons']: phpadu = 1 assert ( phpadu is not None), "Can't determine units from the image header." if fitsconvention: xpy, ypy = xc - 1, yc - 1 else: xpy, ypy = xc, yc if recenter: xim, yim = getxycenter([imhdr, imdat], xc, yc, fitsconvention=True, radec=False, verbose=verbose) if verbose: print("Recentered position (x,y) : %.2f %.2f" % (xim, yim)) ra, dec = xy2radec(imhdr, xim, yim) print("Recentered position (ra,dec) : %.6f %.6f" % (ra, dec)) output_PythonPhot = photfunctions.get_flux_and_err( imdat, psfimage, [xpy, ypy], psfradpix=psfradpix, apradpix=appix, ntestpositions=ntestpositions, skyannpix=skyannpix, skyalgorithm=skyalgorithm, setskyval=skyval, recenter_target=False, recenter_fakes=True, exact=exact, exptime=exptime, ronoise=1, phpadu=phpadu, showfit=showfit, verbose=verbose, debug=debug) apflux, apfluxerr, psfflux, psffluxerr, sky, skyerr = output_PythonPhot if not np.iterable(apflux): apflux = np.array([apflux]) apfluxerr = np.array([apfluxerr]) # Define aperture corrections for each aperture if zeropoint is not None: zpt = zeropoint apcor = np.zeros(len(aparcsec)) aperr = np.zeros(len(aparcsec)) else: zpt = hstzpt_apcorr.getzpt(image, system=system) if camera == 'WFC3-IR': # TODO: allow user to choose an alternate EE table? apcor, aperr = hstzpt_apcorr.apcorrWFC3IR(filtername, aparcsec) elif camera == 'WFC3-UVIS': apcor, aperr = hstzpt_apcorr.apcorrWFC3UVIS(filtername, aparcsec) elif camera == 'ACS-WFC': apcor, aperr = hstzpt_apcorr.apcorrACSWFC(filtername, aparcsec) # record the psf flux as a final infinite aperture for printing purposes if psfimage is not None: aparcsec = np.append(aparcsec, np.inf) apflux = np.append(apflux, [psfflux]) apfluxerr = np.append(apfluxerr, [psffluxerr]) apcor = np.append(apcor, 0) # apply aperture corrections to flux and mags # and define upper limit mags for fluxes with significance <snthresh mag, magerr = np.zeros(len(apflux)), np.zeros(len(apflux)) for i in range(len(apflux)): if np.isfinite(aparcsec[i]): # For actual aperture measurements (not the psf fitting flux), # apply aperture corrections to the measured fluxes # Flux rescaled to larger aperture: apflux[i] *= 10 ** (0.4 * apcor[i]) # Flux error rescaled: df = apfluxerr[i] * 10 ** (0.4 * apcor[i]) # Systematic err from aperture correction : dfap = 0.4 * np.log(10) * apflux[i] * aperr[i] apfluxerr[i] = np.sqrt(df ** 2 + dfap ** 2) # total flux err if verbose > 1: print(" FERRTOT FERRSTAT FERRSYS") print(" %.5f %.5f %.5f" % (apfluxerr[i], df, dfap)) if apflux[i] < abs(apfluxerr[i]) * snthresh: # no real detection. Report mag as an upper limit sigmafactor = snthresh or 3 mag[i] = -2.5 * np.log10(sigmafactor * abs(apfluxerr[i])) \ + zpt - apcor[i] magerr[i] = -9.0 else: # Good detection. convert to a magnitude (ap correction already # applied) mag[i] = -2.5 * np.log10(apflux[i]) + zpt magerr[i] = 1.0857 * apfluxerr[i] / apflux[i] if debug: pdb.set_trace() if returnflux: return apflux if 'EXPSTART' in imhdr and 'EXPEND' in imhdr: mjdobs = (imhdr['EXPEND'] + imhdr['EXPSTART'])/2. else: mjdobs = 0.0 if verbose and printstyle == 'snana': # Convert to SNANA fluxcal units and Construct a SNANA-style OBS # line, e.g. # OBS: 56456.500 H wol 0.000 8.630 25.160 -9.000 fluxcal = apflux * 10 ** (0.4 * (27.5 - zpt)) fluxcalerr = apfluxerr * 10 ** (0.4 * (27.5 - zpt)) print('VARLIST: MJD FLT FIELD FLUXCAL FLUXCALERR MAG ' 'MAGERR ZPT') elif verbose: if printstyle.lower() in ['long', 'verbose']: print('# TARGET RA DEC MJD FILTER ' ' APER FLUX FLUXERR MAG MAGERR MAGSYS ' ' ZP SKY SKYERR IMAGE') else: print('# MJD FILTER APER FLUX FLUXERR MAG ' 'MAGERR MAGSYS ZP SKY SKYERR') if printstyle is not None: printstyle = printstyle.lower() ra, dec = 0, 0 if (printstyle is not None and printstyle.lower() in ['snana', 'long', 'verbose']): if not target and 'FILENAME' in imhdr.keys(): target = imhdr['FILENAME'].split('_')[0] elif not target: target = 'target' ra, dec = xy2radec(imhdr, xc, yc, ext=ext) maglinelist = [] for iap in range(len(aparcsec)): if printstyle == 'snana': magline = 'OBS: %8.2f %6s %s %8.3f %8.3f '\ '%8.3f %8.3f %.3f' % ( float(mjdobs), FilterAlpha[filtername], target, fluxcal[iap], fluxcalerr[iap], mag[iap], magerr[iap], zpt) elif printstyle in ['long', 'verbose']: magline = '%-15s %10.5f %10.5f %.3f %6s %4.2f %9.4f %8.4f '\ ' %9.4f %8.4f %5s %7.4f %7.4f %6.4f %s' % ( target, ra, dec, float(mjdobs), filtername, aparcsec[iap], apflux[iap], apfluxerr[iap], mag[iap], magerr[iap], system, zpt, sky, skyerr, imfilename) else: magline = '%.3f %6s %4.2f %9.4f %8.4f %9.4f %8.4f %5s ' \ '%7.4f %7.4f %6.4f' % ( float(mjdobs), filtername, aparcsec[iap], apflux[iap], apfluxerr[iap], mag[iap], magerr[iap], system, zpt, sky, skyerr) maglinelist.append(magline) return maglinelist
d204355c8b5b860c4cb4ef3304ca949969404bd8
3,648,125
import os import zipfile def zip_dir(source_dir, archive_file, fnmatch_list=None): """Creates an archive of the given directory and stores it in the given archive_file which may be a filename as well. By default, this function will look for a .cfignore file and exclude any matching entries from the archive. """ if fnmatch_list is None: fnmatch_list = [] cwd = os.getcwd() try: with zipfile.ZipFile( archive_file, mode='w', compression=zipfile.ZIP_DEFLATED) as zipf: if os.path.isdir(source_dir): os.chdir(source_dir) files = list_files(source_dir, fnmatch_list) for f in files: name = f['fn'].replace(source_dir, '') compress = zipfile.ZIP_STORED if f['fn'].endswith( '/') else zipfile.ZIP_DEFLATED zipf.write(f['fn'], arcname=name, compress_type=compress) else: zipf.write( source_dir, arcname=os.path.basename(source_dir), compress_type=zipfile.ZIP_DEFLATED) finally: os.chdir(cwd) return archive_file
ea605c1c05eb06dab7c119b5072e181bd9d3b4e6
3,648,126
def tls_params(mqtt_config): """Return the TLS configuration parameters from a :class:`.MQTTConfig` object. Args: mqtt_config (:class:`.MQTTConfig`): The MQTT connection settings. Returns: dict: A dict {'ca_certs': ca_certs, 'certfile': certfile, 'keyfile': keyfile} with the TLS configuration parameters, or None if no TLS connection is used. .. versionadded:: 0.6.0 """ # Set up a dict containing TLS configuration parameters for the MQTT # client. if mqtt_config.tls.hostname: return {'ca_certs': mqtt_config.tls.ca_file, 'certfile': mqtt_config.tls.client_cert, 'keyfile': mqtt_config.tls.client_key} # Or don't use TLS. else: return None
4b5d214a50fea60f5cb325fc7a0c93dfa9cb3c02
3,648,127
def is_admin(): """Check if current user is an admin.""" try: return flask.g.admin except AttributeError: return False
0922a93afacc4002068b60f1ab8a6594f0ddb44a
3,648,128
def statistic(): """ RESTful CRUD Controller """ return crud_controller()
02ed03d6d7d159046c12cbea98cc69c7bb0ae024
3,648,129
import argparse def parse_args(): """ Parses command line arguments. :return: argparse parser with parsed command line args """ parser = argparse.ArgumentParser(description='Godot AI Bridge (GAB) - DEMO Environment Action Client') parser.add_argument('--id', type=int, required=False, default=DEFAULT_AGENT, help=f'the id of the agent to which this action will be sent (default: {DEFAULT_AGENT})') parser.add_argument('--host', type=str, required=False, default=DEFAULT_HOST, help=f'the IP address of host running the GAB action listener (default: {DEFAULT_HOST})') parser.add_argument('--port', type=int, required=False, default=DEFAULT_PORT, help=f'the port number of the GAB action listener (default: {DEFAULT_PORT})') parser.add_argument('--verbose', required=False, action="store_true", help='increases verbosity (displays requests & replies)') return parser.parse_args()
ff3e118179cb1a8d6f5d5d0067c7b11241522632
3,648,130
def segment_range_to_fragment_range(segment_start, segment_end, segment_size, fragment_size): """ Takes a byterange spanning some segments and converts that into a byterange spanning the corresponding fragments within their fragment archives. Handles prefix, suffix, and fully-specified byte ranges. :param segment_start: first byte of the first segment :param segment_end: last byte of the last segment :param segment_size: size of an EC segment, in bytes :param fragment_size: size of an EC fragment, in bytes :returns: a 2-tuple (frag_start, frag_end) where * frag_start is the first byte of the first fragment, or None if this is a suffix byte range * frag_end is the last byte of the last fragment, or None if this is a prefix byte range """ # Note: segment_start and (segment_end + 1) are # multiples of segment_size, so we don't have to worry # about integer math giving us rounding troubles. # # There's a whole bunch of +1 and -1 in here; that's because HTTP wants # byteranges to be inclusive of the start and end, so e.g. bytes 200-300 # is a range containing 101 bytes. Python has half-inclusive ranges, of # course, so we have to convert back and forth. We try to keep things in # HTTP-style byteranges for consistency. # the index of the first byte of the first fragment fragment_start = (( segment_start // segment_size * fragment_size) if segment_start is not None else None) # the index of the last byte of the last fragment fragment_end = ( # range unbounded on the right None if segment_end is None else # range unbounded on the left; no -1 since we're # asking for the last N bytes, not to have a # particular byte be the last one ((segment_end + 1) // segment_size * fragment_size) if segment_start is None else # range bounded on both sides; the -1 is because the # rest of the expression computes the length of the # fragment, and a range of N bytes starts at index M # and ends at M + N - 1. ((segment_end + 1) // segment_size * fragment_size) - 1) return (fragment_start, fragment_end)
e20c9bb55d9d3e90beb20bed7a170d1066611ba9
3,648,131
import collections def update_dict(d, u): """ Recursively update dict d with values from dict u. Args: d: Dict to be updated u: Dict with values to use for update Returns: Updated dict """ for k, v in u.items(): if isinstance(v, collections.Mapping): default = v.copy() default.clear() r = update_dict(d._get(k, default), v) d[k] = r else: d[k] = v return d
e0228d3d0946f20b4bad8bfbc94a725f62bddfc5
3,648,132
def get_dataset(args, tokenizer, evaluate=False): """Convert the text file into the GPT-2 TextDataset format. Args: tokenizer: The GPT-2 tokenizer object. evaluate: Whether to evalute on the dataset. """ file_path = args.eval_data_file if evaluate else args.train_data_file if args.line_by_line: return LineByLineTextDataset( tokenizer=tokenizer, file_path=file_path, block_size=args.block_size ) else: return TextDataset( tokenizer=tokenizer, file_path=file_path, block_size=args.block_size, overwrite_cache=args.overwrite_cache, )
493bd0a5ca548b08052717d7e343e4f8b8911cb1
3,648,133
def test_function_decorators(): """Function Decorators.""" # Function decorators are simply wrappers to existing functions. Putting the ideas mentioned # above together, we can build a decorator. In this example let's consider a function that # wraps the string output of another function by p tags. # This is the function that we want to decorate. def greeting(name): return "Hello, {0}!".format(name) # This function decorates another functions output with <p> tag. def decorate_with_p(func): def function_wrapper(name): return "<p>{0}</p>".format(func(name)) return function_wrapper # Now, let's call our decorator and pass the function we want decorate to it. my_get_text = decorate_with_p(greeting) # Here we go, we've just decorated the function output without changing the function itself. assert my_get_text('John') == '<p>Hello, John!</p>' # With decorator. assert greeting('John') == 'Hello, John!' # Without decorator. # Now, Python makes creating and using decorators a bit cleaner and nicer for the programmer # through some syntactic sugar There is a neat shortcut for that, which is to mention the # name of the decorating function before the function to be decorated. The name of the # decorator should be prepended with an @ symbol. @decorate_with_p def greeting_with_p(name): return "Hello, {0}!".format(name) assert greeting_with_p('John') == '<p>Hello, John!</p>' # Now let's consider we wanted to decorate our greeting function by one more functions to wrap a # div the string output. # This will be our second decorator. def decorate_with_div(func): def function_wrapper(text): return "<div>{0}</div>".format(func(text)) return function_wrapper # With the basic approach, decorating get_text would be along the lines of # greeting_with_div_p = decorate_with_div(decorate_with_p(greeting_with_p)) # With Python's decorator syntax, same thing can be achieved with much more expressive power. @decorate_with_div @decorate_with_p def greeting_with_div_p(name): return "Hello, {0}!".format(name) assert greeting_with_div_p('John') == '<div><p>Hello, John!</p></div>' # One important thing to notice here is that the order of setting our decorators matters. # If the order was different in the example above, the output would have been different. # Passing arguments to decorators. # Looking back at the example before, you can notice how redundant the decorators in the # example are. 2 decorators(decorate_with_div, decorate_with_p) each with the same # functionality but wrapping the string with different tags. We can definitely do much better # than that. Why not have a more general implementation for one that takes the tag to wrap # with as a string? Yes please! def tags(tag_name): def tags_decorator(func): def func_wrapper(name): return "<{0}>{1}</{0}>".format(tag_name, func(name)) return func_wrapper return tags_decorator @tags('div') @tags('p') def greeting_with_tags(name): return "Hello, {0}!".format(name) assert greeting_with_tags('John') == '<div><p>Hello, John!</p></div>'
03b3ba299ceb7a75b0de1674fabe892243abd8b3
3,648,134
def make_loci_field( loci ): """ make string representation of contig loci """ codes = [L.code for L in loci] return c_delim2.join( codes )
a643f70f02c3b79214d76f82bb4379ea0c0e1e84
3,648,135
import tqdm def compute_wilderness_impact1(ground_truth_all, prediction_all, video_list, known_classes, tiou_thresholds=np.linspace(0.5, 0.95, 10)): """ Compute wilderness impact for each video (WI=Po/Pc < 1) """ wi = np.zeros((len(tiou_thresholds), len(known_classes))) # # Initialize true positive and false positive vectors. tp_u2u = np.zeros((len(tiou_thresholds), len(prediction_all))) tp_k2k = np.zeros((len(tiou_thresholds), len(known_classes), len(prediction_all))) # TPc in WACV paper fp_u2k = np.zeros((len(tiou_thresholds), len(known_classes), len(prediction_all))) # FPo in WACV paper fp_k2k = np.zeros((len(tiou_thresholds), len(known_classes), len(prediction_all))) # FPc in WACV paper fp_k2u = np.zeros((len(tiou_thresholds), len(prediction_all))) fp_bg2u = np.zeros((len(tiou_thresholds), len(prediction_all))) fp_bg2k = np.zeros((len(tiou_thresholds), len(known_classes), len(prediction_all))) ground_truth_by_vid = ground_truth_all.groupby('video-id') prediction_by_vid = prediction_all.groupby('video-id') def _get_predictions_with_vid(prediction_by_vid, video_name): """Get all predicitons of the given video. Return empty DataFrame if there is no predcitions with the given video. """ try: return prediction_by_vid.get_group(video_name).reset_index(drop=True) except: return pd.DataFrame() # compute the TP, FPo and FPc for each predicted segment. vidx_offset = 0 all_scores, all_max_tious = [], [] for video_name in tqdm(video_list, total=len(video_list), desc='Compute WI'): ground_truth = ground_truth_by_vid.get_group(video_name).reset_index() prediction = _get_predictions_with_vid(prediction_by_vid, video_name) if prediction.empty: vidx_offset += len(prediction) all_scores.extend([0] * len(prediction)) # only for confidence score all_max_tious.extend([0] * len(prediction)) continue # no predictions for this video all_scores.extend(prediction['score'].values.tolist()) lock_gt = np.zeros((len(tiou_thresholds),len(ground_truth))) for idx, this_pred in prediction.iterrows(): tiou_arr = segment_iou(this_pred[['t-start', 't-end']].values, ground_truth[['t-start', 't-end']].values) # attach each prediction with the gt that has maximum tIoU max_iou = tiou_arr.max() max_jdx = tiou_arr.argmax() all_max_tious.append(max_iou) label_pred = this_pred['label'] label_gt = int(ground_truth.loc[max_jdx]['label']) for tidx, tiou_thr in enumerate(tiou_thresholds): if max_iou > tiou_thr: if label_pred == label_gt and lock_gt[tidx, max_jdx] == 0: if label_gt == 0: tp_u2u[tidx, vidx_offset + idx] = 1 # true positive (u2u), not used by WI by default else: tp_k2k[tidx, label_pred-1, vidx_offset + idx] = 1 # true positive (k2k) lock_gt[tidx, max_jdx] = 1 # lock this ground truth else: if label_gt == 0: # false positive (u2k) fp_u2k[tidx, label_pred-1, vidx_offset + idx] = 1 else: # false positive (k2k, k2u) if label_pred == 0: fp_k2u[tidx, vidx_offset + idx] = 1 else: fp_k2k[tidx, label_pred-1, vidx_offset + idx] = 1 else: # GT is defined to be background (known), must be FP if label_pred == 0: fp_bg2u[tidx, vidx_offset + idx] = 1 else: fp_bg2k[tidx, label_pred-1, vidx_offset + idx] = 1 # move the offset vidx_offset += len(prediction) stats = {'tp_k2k': tp_k2k, 'tp_u2u': tp_u2u, 'fp_k2k': fp_k2k, 'fp_k2u': fp_k2u, 'fp_u2k': fp_u2k, 'fp_bg2k': fp_bg2k, 'fp_bg2u': fp_bg2u, 'scores': all_scores, 'max_tious': all_max_tious} # Here we assume the background detections (small tIoU) are from the background class, which is a known class fp_k2u += fp_bg2u fp_k2k += fp_bg2k tp_k2k_sum = np.sum(tp_k2k, axis=-1).astype(np.float) fp_u2k_sum = np.sum(fp_u2k, axis=-1).astype(np.float) fp_k2k_sum = np.sum(fp_k2k, axis=-1).astype(np.float) wi = fp_u2k_sum / (tp_k2k_sum + fp_k2k_sum + 1e-6) return wi, stats
5f921d93993df1431c7b703df591f710cb2b5628
3,648,136
import os def write_data_header(ping, status): """ write output log file header :param status: p1125 information :return: success <True/False> """ try: with open(os.path.join(CSV_FILE_PATH, filename), "w+") as f: f.write("# This file is auto-generated by p1125_example_mahrs_csv.py\n".format(filename)) f.write("# {}\n".format(filename)) f.write("# p1125_ping = {}\n".format(ping)) f.write("# p1125_status = {}\n".format(status)) f.write("# p1125_settings = {{'VOUT': {}, 'TIME_CAPTURE_WINDOW_S': {}, 'TIME_TOTAL_RUN_S': {}, " "'CONNECT_PROBE': {}, 'DOWN_SAMPLE_FACTOR': {}}}\n".format(VOUT, TIME_CAPTURE_WINDOW_S, TIME_TOTAL_RUN_S, CONNECT_PROBE, DOWN_SAMPLE_FACTOR)) f.write("# time, uA, Max uA\n") except Exception as e: logger.error(e) return False return True
c36a664da20eed120c7682b6c8555ad3e9278455
3,648,137
def require_client(func): """ Decorator for class methods that require a client either through keyword argument, or through the object's client attribute. Returns: A wrapped version of the function. The object client attrobute will be passed in as the client keyword if None is provided. Raises: AssertionError : Raised when the method is called without a client keyword set and no client attribute. """ @wraps(func) async def wrapper(self, *args, **kwargs): client = kwargs.get("client", None) or getattr(self, "client", None) if client is None: msg = ( "{0} object does not have a client -- {0}.{1} will do " "nothing. To set a client, initialize the object with " "{0}(..., client=your_client). Alternatively, you can " "use the client keyword argument in the method." ).format( self.__class__.__name__, func.__name__, ) raise AssertionError(msg) else: kwargs["client"] = client return await func(self, *args, **kwargs) return wrapper
28cfd4821405a132cde4db8b95c68987db76b99d
3,648,138
def extract_subwindows_image(image, scoremap, mask, input_window_size, output_window_size, mode, mean_radius, flatten=True, dataset_augmentation=False, random_state=42, sw_extr_stride=None, sw_extr_ratio=None, sw_extr_score_thres=None, sw_extr_npi=None): """ Extract subwindows from the multi-spectral provided image. Parameters ---------- image: array-like of shape (width, height, n_features) The multi-spectral image. scoremap: array-like of shape (width, height) The corresponding scoremap. mask: array-like of shape (width, height) The corresponding mask. input_window_size: tuple of two int The size (width, height) of input subwindows. output_window_size: tuple of two int The size (width, height) of output subwindows. mode: {'random', 'scoremap_constrained', 'sliding'} The mode of extraction for input suwbindows. mean_radius: int The mean radius of objects dataset_augmentation: bool, optional (default=False) If dataset augmentation must be performed. random_state: int, optional (default=42) An optional seed to make random number generator predictable. Returns ------- X: array-like of shape (n_subwindows, input_width * input_height * n_features) The input subwindows. y: array-like of shape (n_subwindows, output_width * output_height) The output subwindows. """ input_window_size_half = half_size(input_window_size) output_window_size_half = half_size(output_window_size) if dataset_augmentation: np.random.seed(random_state) methods = [np.fliplr, np.flipud, np.rot90, partial(np.rot90, k=2), partial(np.rot90, k=3)] else: methods = [] if mode == 'random': if sw_extr_npi is None: raise ValueError('number_per_image parameter required/invalid') window_centers = _extract_random(mask, sw_extr_npi) elif mode == 'scoremap_constrained': if sw_extr_ratio is None: raise ValueError('bg_ratio parameter required/invalid') if sw_extr_score_thres is None: raise ValueError('score_threshold required/invalid') window_centers = _extract_scoremap_constrained(mask, scoremap, sw_extr_ratio, sw_extr_score_thres) else: raise ValueError('unknown mode') X, y = list(), list() for window_center in window_centers: top, right, bottom, left = subwindow_box(input_window_size, input_window_size_half, window_center) input_window = image[slice(top, bottom), slice(left, right), :] top, right, bottom, left = subwindow_box(output_window_size, output_window_size_half, window_center) output_window = scoremap[slice(top, bottom), slice(left, right)] if flatten: X.append(input_window.ravel()) y.append(output_window.ravel()) else: X.append(input_window) y.append(output_window) # TODO if dataset_augmentation: for method in methods: X.append(method(input_window).ravel()) if output_window.ndim > 1: y.append(method(output_window).ravel()) else: y.append(output_window.ravel()) del window_centers return np.array(X), np.array(y)
477d66513d93a7682325ab0e28711f968b34171a
3,648,139
import base64 def format_template(string, tokens=None, encode=None): """Create an encoding from given string template.""" if tokens is None: tokens = {} format_values = {"config": config, "tokens": tokens} result = string.format(**format_values) if encode == "base64": result = base64.b64encode(result.encode("utf-8")).decode("utf-8") else: assert encode is None, f"Unknown encoding {encode}" return result
91dafa48c0a9f17bbd663bcc14cfb800f6f57877
3,648,140
import os import sys def exists_case_sensitive(path: str) -> bool: """Returns if the given path exists and also matches the case on Windows. When finding files that can be imported, it is important for the cases to match because while file os.path.exists("module.py") and os.path.exists("MODULE.py") both return True on Windows, Python can only import using the case of the real file. """ result = os.path.exists(path) if ( sys.platform.startswith("win") or sys.platform == "darwin" ) and result: # pragma: no cover directory, basename = os.path.split(path) result = basename in os.listdir(directory) return result
a879f950bcfb6739db3bfe620a75591de92a7a35
3,648,141
import six def make_datastore_api(client): """Create an instance of the GAPIC Datastore API. :type client: :class:`~google.cloud.datastore.client.Client` :param client: The client that holds configuration details. :rtype: :class:`.datastore.v1.datastore_client.DatastoreClient` :returns: A datastore API instance with the proper credentials. """ parse_result = six.moves.urllib_parse.urlparse( client._base_url) host = parse_result.netloc if parse_result.scheme == 'https': channel = make_secure_channel( client._credentials, DEFAULT_USER_AGENT, host) else: channel = insecure_channel(host) return GAPICDatastoreAPI( channel=channel, lib_name='gccl', lib_version=__version__)
63ab5acf85bcd2df9d266d285887c624a7554c64
3,648,142
def _mul_certain(left, right): """Multiplies two values, where one is certain and the other is uncertain, and returns the result.""" if _is_number(left): return Uncertain( value=right.value * left, delta=right.delta, ) return Uncertain( value=left.value * right, delta=left.delta, )
ae6159d1f59daea13794aa0ee0fb8baadf647471
3,648,143
def felica_RequestSystemCode(): # -> (int, List[int]): """ Sends FeliCa Request System Code command :returns: (status, systemCodeList) status 1: Success, < 0: error systemCodeList System Code list (Array length should longer than 16) """ cmd = bytearray([FELICA_CMD_REQUEST_SYSTEM_CODE]) + _felicaIDm[:8] status, response = felica_SendCommand(cmd) responseLength = len(response) if (status != 1): DMSG("Request System Code command failed\n") return -1, [] numSystemCode = response[9] # length check if (responseLength < 10 + 2 * numSystemCode): DMSG("Request System Code command failed (wrong response length)\n") return -2, [] systemCodeList = [] for i in range(numSystemCode): systemCodeList.append((response[10 + i * 2] << 8) + response[10 + i * 2 + 1]) return 1, systemCodeList
ff380077daef948a6a3ad274a9accccea22fcba1
3,648,144
from typing import Optional from typing import Callable import types def get_regularizer( regularizer_type: str, l_reg_factor_weight: float ) -> Optional[Callable[[tf.Tensor], Optional[tf.Tensor]]]: """Gets a regularizer of a given type and scale. Args: regularizer_type: One of types.RegularizationType l_reg_factor_weight: Scale for regularization. Returns: A function with weights parameter that applies regularization. """ if regularizer_type == types.RegularizationType.NONE: return None elif regularizer_type == types.RegularizationType.L1: return slim.l1_regularizer(scale=l_reg_factor_weight) elif regularizer_type == types.RegularizationType.L2: return slim.l2_regularizer(scale=l_reg_factor_weight) else: raise ValueError(f"Unknown regularization type {regularizer_type}")
c9f7f8dd227a7446c9b15aebf1e2f1065a3d810d
3,648,145
def metadata(): """Returns shared metadata instance with naming convention.""" naming_convention = { 'ix': 'ix_%(column_0_label)s', 'uq': 'uq_%(table_name)s_%(column_0_name)s', 'ck': 'ck_%(table_name)s_%(constraint_name)s', 'fk': 'fk_%(table_name)s_%(column_0_name)s_%(referred_table_name)s', 'pk': 'pk_%(table_name)s'} return MetaData(naming_convention=naming_convention)
25363d243a2474dfbd43d57ff794899bfe30a44d
3,648,146
import time def date_rss(dte=None): """Dtate au format RSS """ ctime = time if dte is None else time.mktime(dte.timetuple()) return ctime.strftime('%a, %d %b %Y %H:%M:%S %z')
6c343b675be5b89051fe9d76a9fb6437e89611bb
3,648,147
def warp_containing_points(img, pts, H, border=4, shape_only=False): """ display = img.copy() for pt in pts.reshape((-1,2)).astype(int): cv2.circle(display, tuple(pt), 4, (255, 0, 0), -1, cv2.LINE_AA) debug_show('warp', display) """ pts2 = cv2.perspectiveTransform(pts, H) x0, y0, w, h = cv2.boundingRect(pts2) print("got bounding rect", x0, y0, w, h) T = translation(-x0 + border, -y0 + border) TH = np.dot(T, H) if shape_only: return (h + 2 * border, w + 2 * border), TH else: dst = cv2.warpPerspective( img, TH, (w + 2 * border, h + 2 * border), borderMode=cv2.BORDER_REPLICATE ) return dst, TH
b60fdd8a9f548252a40515298ca0f35dd3d497e6
3,648,148
def generate_parallelogrammatic_board(width=5, height=5): """ Creates a board with a shape of a parallelogram. Width and height specify the size (in fields) of the board. """ return [[1] * height for _ in range(width)]
1c9bd6e6e26f6693b434d44e6dbe4085ba9236b8
3,648,149
def function_is_even(latex_dict: dict) -> str: """ colloquially, sympy.cos(x)==sympy.cos(-x) sympy.cos(x) - sympy.cos(-x) == 0 >>> latex_dict = {} >>> latex_dict['input'] = [{'LHS': parse_latex(''), 'RHS': parse_latex('')}] >>> latex_dict['feed'] = [parse_latex('')] >>> latex_dict['output'] = [{'LHS': parse_latex(''), 'RHS': parse_latex('')}] >>> function_is_even(latex_dict) 'step is valid' """ logger.info("[trace]") return "no check performed"
0169440f0ebe373efdc18b79a1b8f48220fada13
3,648,150
def summarize_curriculum( curriculum: AbstractCurriculum, ) -> str: """ Generate a detailed string summarizing the contents of the curriculum. :return: A string that would print as a formatted outline of this curriculum's contents. """ def maybe_plural(num: int, label: str): return f"{num} {label}" + ("" if num == 1 else "s") block_summaries = [] for i_block, block in enumerate(curriculum.learn_blocks_and_eval_blocks()): task_summaries = [] for i_task, task_block in enumerate(block.task_blocks()): variant_summaries = [] for i_variant, task_variant in enumerate(task_block.task_variants()): variant_summary = ( f"\n\t\t\tTask variant {i_variant+1}, " f"{task_variant.task_label} - {task_variant.variant_label}: " + ( f"{maybe_plural(task_variant.num_episodes, 'episode')}." if task_variant.num_episodes is not None else f"{maybe_plural(task_variant.num_steps, 'step')}." ) ) variant_summaries.append(variant_summary) task_summary = ( f"\n\t\tTask {i_task+1}, {task_block.task_label}: " f"{maybe_plural(len(variant_summaries), 'variant')}" ) task_summaries.append(task_summary + "".join(variant_summaries)) block_summary = ( f"\n\n\tBlock {i_block+1}, " f"{'learning' if block.is_learning_allowed else 'evaluation'}: " f"{maybe_plural(len(task_summaries), 'task')}" ) block_summaries.append(block_summary + "".join(task_summaries)) curriculum_summary = ( f"This curriculum has {maybe_plural(len(block_summaries), 'block')}" + "".join(block_summaries) ) return curriculum_summary
010f3fb38473d0a572616204c381bde04f83fb0e
3,648,151
def get_solarsample(): """ NAME: get_solarsample PURPOSE: get the RC sample at solar abundances INPUT: None so far OUTPUT: sample HISTORY: 2015-03-18 - Started - Bovy (IAS) """ # Get the full sample first data= get_rcsample() # Now cut it lowfeh= _solar_lowfeh(0.) highfeh= _solar_highfeh(0.) indx= (data[_FEHTAG] > lowfeh)*(data[_FEHTAG] <= highfeh)\ *(data[_AFETAG] > _solar_lowafe(data[_FEHTAG]))\ *(data[_AFETAG] <= _solar_highafe(data[_FEHTAG])) return data[indx]
e511dbfdf013528f1bba3c7d794d776a2791e918
3,648,152
from typing import List def perform_context_selection( estimation_tasks: List[EstimationTask], ) -> List[EstimationTask]: """Changes the circuits in estimation tasks to involve context selection. Args: estimation_tasks: list of estimation tasks """ output_estimation_tasks = [] for estimation_task in estimation_tasks: ( context_selection_circuit, frame_operator, ) = get_context_selection_circuit_for_group(estimation_task.operator) frame_circuit = estimation_task.circuit + context_selection_circuit new_estimation_task = EstimationTask( frame_operator, frame_circuit, estimation_task.number_of_shots ) output_estimation_tasks.append(new_estimation_task) return output_estimation_tasks
814a5dd72a6c4b76c52af606c3136a6fd1cb46d9
3,648,153
import torch def where(condition, x, y): """Wrapper of `torch.where`. Parameters ---------- condition : DTensor of bool Where True, yield x, otherwise yield y. x : DTensor The first tensor. y : DTensor The second tensor. """ return torch.where(condition, x, y)
0ec419e19ab24500f1be6c511eb472d1d929fe2c
3,648,154
def ukhls_wave_prefix(columns, year): """ Determine wave prefix for ukhls wave data. Parameters ---------- columns : list A list of column names to add wave prefixes to. year : int Which wave year is being processed. Returns ------- columns : list Column names with wave prefixes added. """ #wave_letter = alphabet[year - 2008] wave_letter = get_wave_letter(year) exclude = ["pidp"] for i, item in enumerate(columns): if item not in exclude: columns[i] = wave_letter + "_" + item # Looks stupid but needed to update the list. return columns
726cc3a153ad9c43ebd99b96c405ab4bbd8ff56c
3,648,155
from typing import Iterable from typing import Optional from typing import List from typing import cast def sort_converters(converters: Iterable[Optional[GenericConverter]]) -> List[GenericConverter]: """ Sort a list of converters according to their priority. """ converters = cast(Iterable[GenericConverter], filter(bool, converters)) return sorted(converters, key=lambda c: c.priority, reverse=True)
8112bfe4da1154c0b0e5aa421cf3c6d90148cbed
3,648,156
import os def _make_path_relative(origin, dest): """ Return the relative path between origin and dest. If it's not possible return dest. If they are identical return ``os.curdir`` Adapted from `path.py <http://www.jorendorff.com/articles/python/path/>`_ by Jason Orendorff. """ origin = os.path.abspath(origin).replace('\\', '/') dest = os.path.abspath(dest).replace('\\', '/') # orig_list = splitall(os.path.normcase(origin)) # Don't normcase dest! We want to preserve the case. dest_list = splitall(dest) # if orig_list[0] != os.path.normcase(dest_list[0]): # Can't get here from there. return dest # # Find the location where the two paths start to differ. i = 0 for start_seg, dest_seg in zip(orig_list, dest_list): if start_seg != os.path.normcase(dest_seg): break i += 1 # # Now i is the point where the two paths diverge. # Need a certain number of "os.pardir"s to work up # from the origin to the point of divergence. segments = [os.pardir] * (len(orig_list) - i) # Need to add the diverging part of dest_list. segments += dest_list[i:] if len(segments) == 0: # If they happen to be identical, use os.curdir. return os.curdir else: # return os.path.join(*segments).replace('\\', '/') return os.path.join(*segments)
977588d2cf64c42f5e620d78ebceb60d1ef220fe
3,648,157
def print_mf_weight_statistics(): """ Prints debug info about size of weights. """ def callback(i_epoch, model, loss_train, loss_val, subset=None, trainer=None, last_batch=None): models, labels = [], [] try: models.append(model.outer_transform) labels.append("outer transform weights:") except: pass try: models.append(model.inner_transform) labels.append("inner transform weights:") except: pass try: models.append(model.transform) labels.append("transform weights:") except: pass try: models.append(model.encoder) labels.append("encoder weights:") except: pass try: models.append(model.decoder) labels.append("decoder weights:") except: pass subset_str = " " if subset is None or trainer is None else " {:>2d} / {:>2d}:".format(subset, trainer) for model_, label_ in zip(models, labels): weights = np.hstack([param.detach().cpu().numpy().flatten() for param in model_.parameters()]) logger.debug( "{} {:26.26s} mean {:>8.5f}, std {:>8.5f}, range {:>8.5f} ... {:>8.5f}".format( subset_str, label_, np.mean(weights), np.std(weights), np.min(weights), np.max(weights) ) ) return callback
dd5d14bddb7acff6547bb87a6804bf2c719a4a34
3,648,158
def createPolygon(fire): """ create a Polygon object from list of points """ points = [] for coordinate in fire["geometry"]["coordinates"][0]: points.append(tuple(coordinate)) polygon = Polygon(points) return polygon
ce985b494d0d56f9b44a684ab187fb290d0c5d4f
3,648,159
def change_anim_nodes(node_object="", in_tangent='linear', out_tangent='linear'): """ Changes the setting on all anim nodes. :param node_object: :param in_tangent: :param out_tangent: :return: <bool> True for success. <bool> False for failure. """ anim_nodes = object_utils.get_connected_anim(node_object) cmds.keyTangent(anim_nodes, itt=in_tangent, ott=out_tangent) return True
649f740669c2f292bfc180895a2ce5d295b2ef68
3,648,160
def is_x_degenerated(x, codon, table): """Determine if codon is x-fold degenerated. @param codon the codon @param table code table id @param true if x <= the degeneration of the codon """ return (x <= len(altcodons(codon, table)))
b6a6bd8afc21a8e9b94dc7aa086255b6dfa44e85
3,648,161
import torch def get_long_tensor(tokens_list, batch_size, pad_id=constant.PAD_ID): """ Convert (list of )+ tokens to a padded LongTensor. """ sizes = [] x = tokens_list while isinstance(x[0], list): sizes.append(max(len(y) for y in x)) x = [z for y in x for z in y] tokens = torch.LongTensor(batch_size, *sizes).fill_(pad_id) for i, s in enumerate(tokens_list): tokens[i, :len(s)] = torch.LongTensor(s) return tokens
d088277fcd8f599d142ff7bdb1b8e018c5b6c1cb
3,648,162
def business(): """ show business posts """ business = Post.query.filter_by(category="Business").all() return render_template('business.html', post=business)
2fd3a46391681a25cdb3291f0a92e110dc0d4eb3
3,648,163
def tile_image(x_gen, tiles=()): """Tiled image representations. Args: x_gen: 4D array of images (n x w x h x 3) tiles (int pair, optional): number of rows and columns Returns: Array of tiled images (1 x W x H x 3) """ n_images = x_gen.shape[0] if not tiles: for i in range(int(np.sqrt(n_images)), 0, -1): if n_images % i == 0: break n_rows = i n_cols = n_images // i else: n_rows, n_cols = tiles full = [np.hstack(x_gen[c * n_rows:(c + 1) * n_rows]) for c in range(n_cols)] return np.expand_dims(np.vstack(full), 0)
d95a9cd12f6ba4239724b84efd701575678f217f
3,648,164
def note_updated_data(note, role): """Return the data for updated date :param note: the note that holds the data :type note: :class:`jukeboxcore.djadapter.models.Note` :param role: item data role :type role: QtCore.Qt.ItemDataRole :returns: data for the updated date :rtype: depending on role :raises: None """ if role == QtCore.Qt.DisplayRole or role == QtCore.Qt.EditRole: dt = note.date_updated return dt_to_qdatetime(dt)
987e78ae0c5a7a4570b619520d8b20f592adae07
3,648,165
def _xyz_atom_coords(atom_group): """Use this method if you need to identify if CB is present in atom_group and if not return CA""" tmp_dict = {} for atom in atom_group.atoms(): if atom.name.strip() in {"CA", "CB"}: tmp_dict[atom.name.strip()] = atom.xyz if 'CB' in tmp_dict: return tmp_dict['CB'] elif 'CA' in tmp_dict: return tmp_dict['CA'] else: return float('inf'), float('inf'), float('inf')
fd7ef43b1935f8722b692ad28a7e8b309033b720
3,648,166
import pathlib def InitBareRepository(path): """Returns the Repo object""" assert isinstance(path, str) pathlib.Path(path).parent.mkdir(parents=True,exist_ok=True) return git.Repo.init(path,bare=True)
84b321c7b27ee8ab7101339671361f45ec474e91
3,648,167
def get_http_exception(code): """Return an exception class based on its code""" try: return http_exceptions[int(code)] except: return None
f7b5077331b4425d5ee49a8c61849bb6ba822049
3,648,168
def _zoom(restricted_func_and_grad, wolfe_one, wolfe_two, a_lo, phi_lo, dphi_lo, a_hi, phi_hi, dphi_hi, g_0, pass_through): """ Implementation of zoom. Algorithm 3.6 from Wright and Nocedal, 'Numerical Optimization', 1999, pg. 59-61. Tries cubic, quadratic, and bisection methods of zooming. """ state = _ZoomState( done=False, failed=False, j=0, a_lo=a_lo, phi_lo=phi_lo, dphi_lo=dphi_lo, a_hi=a_hi, phi_hi=phi_hi, dphi_hi=dphi_hi, a_rec=(a_lo + a_hi) / 2., phi_rec=(phi_lo + phi_hi) / 2., a_star=1., phi_star=phi_lo, dphi_star=dphi_lo, g_star=g_0, nfev=0, ngev=0, ) delta1 = 0.2 delta2 = 0.1 def body(state): # Body of zoom algorithm. We use boolean arithmetic to avoid using jax.cond # so that it works on GPU/TPU. dalpha = (state.a_hi - state.a_lo) a = jnp.minimum(state.a_hi, state.a_lo) b = jnp.maximum(state.a_hi, state.a_lo) cchk = delta1 * dalpha qchk = delta2 * dalpha # This will cause the line search to stop, and since the Wolfe conditions # are not satisfied the minimization should stop too. threshold = jnp.where((jnp.finfo(dalpha).bits < 64), 1e-5, 1e-10) state = state._replace(failed=state.failed | (dalpha <= threshold)) # Cubmin is sometimes nan, though in this case the bounds check will fail. a_j_cubic = _cubicmin(state.a_lo, state.phi_lo, state.dphi_lo, state.a_hi, state.phi_hi, state.a_rec, state.phi_rec) use_cubic = (state.j > 0) & (a_j_cubic > a + cchk) & (a_j_cubic < b - cchk) a_j_quad = _quadmin(state.a_lo, state.phi_lo, state.dphi_lo, state.a_hi, state.phi_hi) use_quad = (~use_cubic) & (a_j_quad > a + qchk) & (a_j_quad < b - qchk) a_j_bisection = (state.a_lo + state.a_hi) / 2. use_bisection = (~use_cubic) & (~use_quad) a_j = jnp.where(use_cubic, a_j_cubic, state.a_rec) a_j = jnp.where(use_quad, a_j_quad, a_j) a_j = jnp.where(use_bisection, a_j_bisection, a_j) # TODO(jakevdp): should we use some sort of fixed-point approach here instead? phi_j, dphi_j, g_j = restricted_func_and_grad(a_j) phi_j = phi_j.astype(state.phi_lo.dtype) dphi_j = dphi_j.astype(state.dphi_lo.dtype) g_j = g_j.astype(state.g_star.dtype) state = state._replace(nfev=state.nfev + 1, ngev=state.ngev + 1) hi_to_j = wolfe_one(a_j, phi_j) | (phi_j >= state.phi_lo) star_to_j = wolfe_two(dphi_j) & (~hi_to_j) hi_to_lo = (dphi_j * (state.a_hi - state.a_lo) >= 0.) & (~hi_to_j) & (~star_to_j) lo_to_j = (~hi_to_j) & (~star_to_j) state = state._replace( **_binary_replace( hi_to_j, state._asdict(), dict( a_hi=a_j, phi_hi=phi_j, dphi_hi=dphi_j, a_rec=state.a_hi, phi_rec=state.phi_hi, ), ), ) # for termination state = state._replace( done=star_to_j | state.done, **_binary_replace( star_to_j, state._asdict(), dict( a_star=a_j, phi_star=phi_j, dphi_star=dphi_j, g_star=g_j, ) ), ) state = state._replace( **_binary_replace( hi_to_lo, state._asdict(), dict( a_hi=state.a_lo, phi_hi=state.phi_lo, dphi_hi=state.dphi_lo, a_rec=state.a_hi, phi_rec=state.phi_hi, ), ), ) state = state._replace( **_binary_replace( lo_to_j, state._asdict(), dict( a_lo=a_j, phi_lo=phi_j, dphi_lo=dphi_j, a_rec=state.a_lo, phi_rec=state.phi_lo, ), ), ) state = state._replace(j=state.j + 1) # Choose higher cutoff for maxiter than Scipy as Jax takes longer to find # the same value - possibly floating point issues? state = state._replace(failed= state.failed | state.j >= 30) return state state = lax.while_loop(lambda state: (~state.done) & (~pass_through) & (~state.failed), body, state) return state
ec4d1381e831c19f342d69136d5ce936fc20042e
3,648,169
from typing import Union def _gradients_input(model: Union[tf.keras.models.Model, 'keras.models.Model'], x: tf.Tensor, target: Union[None, tf.Tensor]) -> tf.Tensor: """ Calculates the gradients of the target class output (or the output if the output dimension is equal to 1) with respect to each input feature. Parameters ---------- model Tensorflow or keras model. x Input data point. target Target for which the gradients are calculated if the output dimension is higher than 1. Returns ------- Gradients for each input feature. """ with tf.GradientTape() as tape: tape.watch(x) preds = _run_forward(model, x, target) grads = tape.gradient(preds, x) return grads
816c1f932533de4cdfd96525c44a2c11bae60254
3,648,170
from Totoro.dbclasses import Set as Set def fixBadSets(sets): """Splits bad sets into a series of valid, incomplete sets.""" toRemove = [] toAdd = [] for ss in sets: if ss.getStatus(silent=True)[0] != 'Bad': continue toRemove.append(ss) if len(ss.totoroExposures) == 1: raise exceptions.TotoroError( 'found bad set with one exposure. This is probably a bug.') elif len(ss.totoroExposures) == 2: # If the bad set has two exposures, splits it. toAdd += [Set.fromExposures(exp) for exp in ss.totoroExposures] else: # Tests all possible combinations of two exposures to check if one # of them is a valid set. validSets = [] for ii, jj in [[0, 1], [0, 2], [1, 2]]: testSet = Set.fromExposures([ss.totoroExposures[ii], ss.totoroExposures[jj]]) if testSet.getStatus(silent=True)[0] != 'Bad': validSets.append(testSet) if len(validSets) == 0: # If no valid combinations, each exposures goes to a set. toAdd += [Set.fromExposures(exp) for exp in ss.totoroExposures] else: # Otherwise, selects the combination that produces an # incomplete set with maximum SN2. signalToNoise = [np.nansum(xx.getSN2Array()) for xx in validSets] maxSet = validSets[np.argmax(signalToNoise)] toAdd.append(maxSet) missingExposure = [ exp for exp in ss.totoroExposures if exp not in maxSet.totoroExposures ] toAdd.append(Set.fromExposures(missingExposure)) for ss in toRemove: sets.remove(ss) for ss in toAdd: sets.append(ss) return sets
fcb0716c0d798999f9572344bdce042bedaec28c
3,648,171
from typing import OrderedDict def get_databases(): """Return an ordered dict of (dbname: database). The order is according to search preference, the first DB to contain a document should be assumed to be the authoritative one.""" sql_dbs = [ _SQLDb( XFormInstanceSQL._meta.db_table, lambda id_: XFormInstanceSQL.get_obj_by_id(id_), "XFormInstance", lambda doc: XFormInstanceSQLRawDocSerializer(doc).data, ), _SQLDb( CommCareCaseSQL._meta.db_table, lambda id_: CommCareCaseSQL.get_obj_by_id(id_), "CommCareCase", lambda doc: CommCareCaseSQLRawDocSerializer(doc).data, ), _SQLDb( SQLLocation._meta.db_table, lambda id_: SQLLocation.objects.get(location_id=id_), 'Location', lambda doc: doc.to_json() ), ] all_dbs = OrderedDict() for db in sql_dbs: all_dbs[db.dbname] = db couchdbs_by_name = couch_config.all_dbs_by_db_name for dbname in sorted(couchdbs_by_name): all_dbs[dbname] = _CouchDb(couchdbs_by_name[dbname]) return all_dbs
01180d4cafbcf0b1d48e7c7554069a7ee5bf1a65
3,648,172
from AppKit import \ def get_app_data_path(app_name): """Returns the OS-specific path to Application Data for the given App. Creates the path if it doesn't already exist. NOTE: Darwin: https://developer.apple.com/reference/foundation/1414224-nssearchpathfordirectoriesindoma?language=objc """ assert type(app_name) == str if sys.platform.startswith('darwin'): NSSearchPathForDirectoriesInDomains, \ NSApplicationSupportDirectory, \ NSUserDomainMask # pip install pyobjc app_data_path = os.path.join( NSSearchPathForDirectoriesInDomains( NSApplicationSupportDirectory, NSUserDomainMask, True)[0], app_name) elif sys.platform.startswith('win32'): app_data_path = os.path.join(os.environ['APPDATA'], app_name) elif sys.platform.startswith('linux') \ or sys.platform.startswith('freebsd'): # freebsd is untested app_data_path = os.path.expanduser(os.path.join("~", "." + app_name)) else: raise NotImplementedError("The platform, {}, is not supported." .format(sys.platform)) if not os.path.exists(app_data_path): os.mkdir(app_data_path) return app_data_path
d95215bec859e6d9858a9c342cb26808814f9713
3,648,173
def list_examples(): """List all examples""" examples = ExampleModel.query() form = ExampleForm() if form.validate_on_submit(): example = ExampleModel( example_name=form.example_name.data, example_description=form.example_description.data, added_by=users.get_current_user() ) try: example.put() example_id = example.key.id() flash(u'Example %s successfully saved.' % example_id, 'success') return redirect(url_for('list_examples')) except CapabilityDisabledError: flash(u'App Engine Datastore is currently in read-only mode.', 'info') return redirect(url_for('list_examples')) return render_template('list_examples.html', examples=examples, form=form)
740e7005e1cadae22ba77095b43dadd6b4219012
3,648,174
import re def parse_direct_mention(message_text): """ Finds a direct mention (a mention that is at the beginning) in message text and returns the user ID which was mentioned. If there is no direct mention, returns None """ matches = re.search(_MENTION_REGEX, message_text) # the first group contains the username, the second group contains the remaining message return (matches.group(1), matches.group(2).strip()) if matches else (None, None)
b442dc276cde0e28b56fbf855999feaeb199bff2
3,648,175
import types def prepare_deep(schema: types.Schema, schemas: types.Schemas): """ Resolve $ref and merge allOf including for object properties and items. Assume the schema is a valid JSONSchema. Args: schema: The schema to prepare. schemas: The schemas from which to resolve any $ref. Returns: The prepared schema. """ schema = prepare(schema=schema, schemas=schemas) # Resolve $ref in any properties properties = schema.get(types.OpenApiProperties.PROPERTIES, None) if properties is not None: for name, prop_schema in properties.items(): properties[name] = prepare_deep(schema=prop_schema, schemas=schemas) # Resolve $ref of any items items_schema = peek.items(schema=schema, schemas={}) if items_schema is not None: schema[types.OpenApiProperties.ITEMS] = prepare_deep( schema=items_schema, schemas=schemas ) return schema
e77f7f0e59a6400c2e7df78b0ec2a14bcc0b3ea6
3,648,176
def _resize_and_center_fundus(image, diameter): """ Helper function for scale normalizing image. """ copy = image.copy() # Find largest contour in image. contours = _find_contours(image) # Return unless we have gotten some result contours. if contours is None: return None center, radius = contours # Calculate the min and max-boundaries for cropping the image. x_min = max(0, int(center[0] - radius)) y_min = max(0, int(center[1] - radius)) z = int(radius*2) x_max = x_min + z y_max = y_min + z # Crop the image. copy = copy[y_min:y_max, x_min:x_max] # Scale the image. fx = fy = (diameter / 2) / radius copy = cv2.resize(copy, (0, 0), fx=fx, fy=fy) # Add padding to image. shape = copy.shape # Get the border shape size. top = bottom = int((diameter - shape[0])/2) left = right = int((diameter - shape[1])/2) # Add 1 pixel if necessary. if shape[0] + top + bottom == diameter - 1: top += 1 if shape[1] + left + right == diameter - 1: left += 1 # Define border of the image. border = [top, bottom, left, right] # Add border. copy = cv2.copyMakeBorder(copy, *border, borderType=cv2.BORDER_CONSTANT, value=[0, 0, 0]) # Return the image. return copy
f301740cec8ca423334ffd127005b90f54105ce5
3,648,177
def _pad_X_delta(X, delta, indices, padded_group_size): """Currently Unused.""" X_group = onp.take(X, indices, axis=0) X_group = onp.pad(X_group, [(0, padded_group_size - X_group.shape[0]), (0, 0)]) delta_group = onp.take(delta, indices, axis=0) delta_group = onp.pad(delta_group, ( 0, padded_group_size - delta_group.shape[0], )) return X_group, delta_group
d286b922efb6482382af8cd804c5e51b15d93088
3,648,178
def union(x, y=None): """Get sorted list of elements combined for two iterables.""" x, y = de_list_pair(x, y) return sorted(list(set(x) | set(y)))
c24deb82e60569196e7a2d691db192c0ffcf91dd
3,648,179
from typing import get_origin from typing import Tuple def is_tuple(typ) -> bool: """ Test if the type is `typing.Tuple`. """ try: return issubclass(get_origin(typ), tuple) except TypeError: return typ in (Tuple, tuple)
c8c75f4b1523971b20bbe8c716ced53199150b95
3,648,180
import functools import unittest def _skip_if(cond, reason): """Skip test if cond(self) is True""" def decorator(impl): @functools.wraps(impl) def wrapper(self, *args, **kwargs): if cond(self): raise unittest.SkipTest(reason) else: impl(self, *args, **kwargs) return wrapper return decorator
4141cc1f99c84633bdf2e92941d9abf2010c11f6
3,648,181
from typing import Dict import shutil def _smash_all(job_context: Dict) -> Dict: """Perform smashing on all species/experiments in the dataset. """ start_smash = log_state("start smash", job_context["job"].id) # We have already failed - return now so we can send our fail email. if job_context['job'].success is False: return job_context try: job_context['unsmashable_files'] = [] job_context['num_samples'] = 0 # Smash all of the sample sets logger.debug("About to smash!", dataset_count=len(job_context['dataset'].data), job_id=job_context['job'].id) # Once again, `key` is either a species name or an experiment accession for key, input_files in job_context.pop('input_files').items(): job_context = _smash_key(job_context, key, input_files) smashing_utils.write_non_data_files(job_context) # Finally, compress all files into a zip final_zip_base = "/home/user/data_store/smashed/" + str(job_context["dataset"].pk) shutil.make_archive(final_zip_base, 'zip', job_context["output_dir"]) job_context["output_file"] = final_zip_base + ".zip" except Exception as e: logger.exception("Could not smash dataset.", dataset_id=job_context['dataset'].id, processor_job_id=job_context['job_id'], num_input_files=job_context['num_input_files']) job_context['dataset'].success = False job_context['job'].failure_reason = "Failure reason: " + str(e) job_context['dataset'].failure_reason = "Failure reason: " + str(e) job_context['dataset'].save() # Delay failing this pipeline until the failure notify has been sent job_context['job'].success = False job_context['failure_reason'] = str(e) return job_context job_context['dataset'].success = True job_context['dataset'].save() logger.debug("Created smash output!", archive_location=job_context["output_file"]) log_state("end smash", job_context["job"].id, start_smash); return job_context
b1ada544140c10c73e59430631e3bda67a160587
3,648,182
def permute_columns(df, column_to_order: str, ind_permute: bool = False, columns_to_permute: list = []): """ Author: Allison Wu Description: This function permutes the columns specified in columns_to_permute :param df: :param column_to_order: :param ind_permute: :param columns_to_permute: :return: permuted_df """ window = Window.partitionBy().orderBy(col(column_to_order)) window_rand = Window.partitionBy().orderBy(rand()) df = df. \ withColumn('id', func.row_number().over(window)). \ withColumn('rand_id', func.row_number().over(window_rand)) rand_df = df. \ select(['rand_id'] + columns_to_permute).\ withColumnRenamed('rand_id', 'id') for c in columns_to_permute: rand_df = rand_df.\ withColumnRenamed(c, f'rand_{c}') permuted_df = df.join(rand_df, ['id'], how = 'inner').cache() return permuted_df
89da810d93586d66963d9a3ee3c7d6c0960596c9
3,648,183
def reset_dismissed(institute_id, case_name): """Reset all dismissed variants for a case""" institute_obj, case_obj = institute_and_case(store, institute_id, case_name) controllers.reset_all_dimissed(store, institute_obj, case_obj) return redirect(request.referrer)
c16dcc7e23be620212ee6756051db6e089014678
3,648,184
import os def create_xst_script(config): """ given the configuration file create a script that will build the verilog files declared within the configuration file Args: config (dictionary): configuraiton dictionary Return: (string) script file name Raises: Nothing """ xst_abs_dir = create_xst_dir(config) flags = get_xst_flags(config) #print "Flags: %s" % str(flags) xst_dir = os.path.join(config["build_dir"], XST_DIR) temp_dir = create_temp_dir(config) project_dir = os.path.join(xst_dir, PROJECT_FILENAME) top_module = config["top_module"] output_file = os.path.join(xst_dir, top_module) xst_script_fn = os.path.join(xst_abs_dir, XST_SCRIPT_FILENAME) fp = open(xst_script_fn, "w") fp.write("set -tmpdir \"%s\"%s" % (temp_dir, os.linesep)) fp.write("set -xsthdpdir \"%s\"%s" % (xst_dir, os.linesep)) #fp.write("set -xsthdpini \"%s\"%s" % (xst_dir, os.linesep)) fp.write("run%s" % os.linesep) fp.write("-ifn %s%s" % (project_dir, os.linesep)) fp.write("-ofn %s%s" % (output_file, os.linesep)) fp.write("-ofmt NGC%s" % (os.linesep)) fp.write("-p %s%s" % (config["device"], os.linesep)) fp.write("-top %s%s" % (top_module, os.linesep)) coregen_files = coregen_utils.get_target_files(config) if len(coregen_files) > 0: fp.write("-sd %s%s" % (coregen_utils.get_coregen_dir(config, absolute = True), os.linesep)) #print "flags[lso] = %s" % str(flags["-lso"]["value"]) if ("-lso" not in flags.keys()) or (len(flags["-lso"]["value"]) == 0): #print "creating custom lso file" flags["-lso"]["value"] = create_lso_file(config) for flag in flags: if len(flags[flag]["value"]) == 0: continue #print "flag: %s: %s" % (flag, flags[flag]["value"]) fp.write("%s %s%s" % (flag, flags[flag]["value"], os.linesep)) fp.close() return xst_script_fn
f9308dc4ace542d63ef2075a73502a5b1dd2fe97
3,648,185
def texts_from_array(x_train, y_train, x_test=None, y_test=None, class_names = [], max_features=MAX_FEATURES, maxlen=MAXLEN, val_pct=0.1, ngram_range=1, preprocess_mode='standard', verbose=1): """ Loads and preprocesses text data from arrays. Args: x_train(list): list of training texts y_train(list): list of integers representing classes x_val(list): list of training texts y_val(list): list of integers representing classes class_names (list): list of strings representing class labels shape should be (num_examples,1) or (num_examples,) max_features(int): max num of words to consider in vocabulary maxlen(int): each document can be of most <maxlen> words. 0 is used as padding ID. ngram_range(int): size of multi-word phrases to consider e.g., 2 will consider both 1-word phrases and 2-word phrases limited by max_features val_pct(float): Proportion of training to use for validation. Has no effect if x_val and y_val is supplied. preprocess_mode (str): Either 'standard' (normal tokenization) or 'bert' tokenization and preprocessing for use with BERT text classification model. verbose (boolean): verbosity """ if not class_names: classes = list(set(y_train)) classes.sort() class_names = ["%s" % (c) for c in classes] if x_test is None or y_test is None: x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, test_size=val_pct) y_train = to_categorical(y_train) y_test = to_categorical(y_test) # return preprocessed the texts preproc_type = tpp.TEXT_PREPROCESSORS.get(preprocess_mode, None) if None: raise ValueError('unsupported preprocess_mode') preproc = preproc_type(maxlen, max_features, classes = class_names, ngram_range=ngram_range) trn = preproc.preprocess_train(x_train, y_train, verbose=verbose) val = preproc.preprocess_test(x_test, y_test, verbose=verbose) return (trn, val, preproc)
ecb120070ac76d21da34fd5f0d27799fe5ba093b
3,648,186
def display2(depts, level=0): """ [[a, 1], [b, 2], [c, 3], [d, 3], [a, 1]] :param depts: :return: """ lists = [] for d in depts: lists.append([d, level]) children = Department.objects.filter(parent_id=d.id) if children: lists.extend(display2(children, level + 1)) return lists
6187c91dd5653ab3f7a7e68d6b811ffda2afb035
3,648,187
def _get_target_id_to_skill_opportunity_dict(suggestions): """Returns a dict of target_id to skill opportunity summary dict. Args: suggestions: list(BaseSuggestion). A list of suggestions to retrieve opportunity dicts. Returns: dict. Dict mapping target_id to corresponding skill opportunity dict. """ target_ids = set(s.target_id for s in suggestions) opportunity_id_to_opportunity_dict = { opp_id: (opp.to_dict() if opp is not None else None) for opp_id, opp in opportunity_services.get_skill_opportunities_by_ids( list(target_ids)).items() } opportunity_id_to_skill = { skill.id: skill for skill in skill_fetchers.get_multi_skills([ opp['id'] for opp in opportunity_id_to_opportunity_dict.values() if opp is not None]) } for opp_id, skill in opportunity_id_to_skill.items(): if skill is not None: opportunity_id_to_opportunity_dict[opp_id]['skill_rubrics'] = [ rubric.to_dict() for rubric in skill.rubrics] return opportunity_id_to_opportunity_dict
faf708abb5876a56b06282b99c4cc7221c33c5bd
3,648,188
def default_loc_scale_fn( is_singular=False, loc_initializer=tf.random_normal_initializer(stddev=0.1), untransformed_scale_initializer=tf.random_normal_initializer( mean=-3., stddev=0.1), loc_regularizer=None, untransformed_scale_regularizer=None, loc_constraint=None, untransformed_scale_constraint=None): """Makes closure which creates `loc`, `scale` params from `tf.get_variable`. This function produces a closure which produces `loc`, `scale` using `tf.get_variable`. The closure accepts the following arguments: dtype: Type of parameter's event. shape: Python `list`-like representing the parameter's event shape. name: Python `str` name prepended to any created (or existing) `tf.Variable`s. trainable: Python `bool` indicating all created `tf.Variable`s should be added to the graph collection `GraphKeys.TRAINABLE_VARIABLES`. add_variable_fn: `tf.get_variable`-like `callable` used to create (or access existing) `tf.Variable`s. Args: is_singular: Python `bool` indicating if `scale is None`. Default: `False`. loc_initializer: Initializer function for the `loc` parameters. The default is `tf.random_normal_initializer(mean=0., stddev=0.1)`. untransformed_scale_initializer: Initializer function for the `scale` parameters. Default value: `tf.random_normal_initializer(mean=-3., stddev=0.1)`. This implies the softplus transformed result has mean approximately `0.05` and std. deviation approximately `0.005`. loc_regularizer: Regularizer function for the `loc` parameters. The default (`None`) is to use the `tf.get_variable` default. untransformed_scale_regularizer: Regularizer function for the `scale` parameters. The default (`None`) is to use the `tf.get_variable` default. loc_constraint: An optional projection function to be applied to the loc after being updated by an `Optimizer`. The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. The default (`None`) is to use the `tf.get_variable` default. untransformed_scale_constraint: An optional projection function to be applied to the `scale` parameters after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. The default (`None`) is to use the `tf.get_variable` default. Returns: default_loc_scale_fn: Python `callable` which instantiates `loc`, `scale` parameters from args: `dtype, shape, name, trainable, add_variable_fn`. """ def _fn(dtype, shape, name, trainable, add_variable_fn): """Creates `loc`, `scale` parameters.""" loc = add_variable_fn( name=name + '_loc', shape=shape, initializer=loc_initializer, regularizer=loc_regularizer, constraint=loc_constraint, dtype=dtype, trainable=trainable) if is_singular: return loc, None untransformed_scale = add_variable_fn( name=name + '_untransformed_scale', shape=shape, initializer=untransformed_scale_initializer, regularizer=untransformed_scale_regularizer, constraint=untransformed_scale_constraint, dtype=dtype, trainable=trainable) scale = (np.finfo(dtype.as_numpy_dtype).eps + tf.nn.softplus(untransformed_scale)) return loc, scale return _fn
54eeec1b5739a71473abfa5a5ffb7aa5aa572505
3,648,189
from skimage.morphology import disk from cv2 import dilate def db_eval_boundary(args): """ Compute mean,recall and decay from per-frame evaluation. Calculates precision/recall for boundaries between foreground_mask and gt_mask using morphological operators to speed it up. Arguments: foreground_mask (ndarray): binary segmentation image. gt_mask (ndarray): binary annotated image. Returns: F (float): boundaries F-measure P (float): boundaries precision R (float): boundaries recall """ foreground_mask, gt_mask, ignore_mask, bound_th, class_id, pred_is_boundary = args assert np.atleast_3d(foreground_mask).shape[2] == 1 bound_pix = bound_th if bound_th >= 1 else \ np.ceil(bound_th*np.linalg.norm(foreground_mask.shape)) # print(bound_pix) # print(gt.shape) # print(np.unique(gt)) foreground_mask[ignore_mask] = 0 gt_mask[ignore_mask] = 0 # Get the pixel boundaries of both masks if pred_is_boundary: fg_boundary = foreground_mask else: fg_boundary = seg2bmap(foreground_mask) gt_boundary = seg2bmap(gt_mask) def binary_dilation(x, d): return dilate( x.astype(np.uint8), d).astype(np.bool) fg_dil = binary_dilation(fg_boundary, disk(bound_pix)) gt_dil = binary_dilation(gt_boundary, disk(bound_pix)) # Get the intersection gt_match = gt_boundary * fg_dil fg_match = fg_boundary * gt_dil # Area of the intersection n_fg = np.sum(fg_boundary) n_gt = np.sum(gt_boundary) # % Compute precision and recall if n_fg == 0 and n_gt > 0: precision = 1 recall = 0 elif n_fg > 0 and n_gt == 0: precision = 0 recall = 1 elif n_fg == 0 and n_gt == 0: precision = 1 recall = 1 else: precision = np.sum(fg_match) / float(n_fg) recall = np.sum(gt_match) / float(n_gt) # Compute F measure if precision + recall == 0: F = 0 else: F = 2 * precision * recall / (precision + recall) return F, precision
0aa23d0d8b45681e50f3b99c72dfcb5851dd92a6
3,648,190
def angle_trunc(a): """ helper function to map all angles onto [-pi, pi] """ while a < 0.0: a += pi * 2 return ((a + pi) % (pi * 2)) - pi
36e5d97affab5f3a1155b837df9985fe26795d76
3,648,191
from typing import Optional def get_tag_or_default( alignment: pysam.AlignedSegment, tag_key: str, default: Optional[str] = None ) -> Optional[str]: """Extracts the value associated to `tag_key` from `alignment`, and returns a default value if the tag is not present.""" try: return alignment.get_tag(tag_key) except KeyError: return default
bf3b1495224d7409c410f96daa20af8f70a27efa
3,648,192
def vtln_warp_mel_freq(vtln_low_cutoff, vtln_high_cutoff, low_freq, high_freq, vtln_warp_factor, mel_freq): """ Inputs: vtln_low_cutoff (float): lower frequency cutoffs for VTLN vtln_high_cutoff (float): upper frequency cutoffs for VTLN low_freq (float): lower frequency cutoffs in mel computation high_freq (float): upper frequency cutoffs in mel computation vtln_warp_factor (float): Vtln warp factor mel_freq (Tensor): given frequency in Mel Outputs: Tensor: mel_freq after vtln warp """ return mel_scale(vtln_warp_freq(vtln_low_cutoff, vtln_high_cutoff, low_freq, high_freq, vtln_warp_factor, inverse_mel_scale(mel_freq)))
e6432c0298e559dc958011bdf5d52c3e92544213
3,648,193
def _squared_loss_and_spatial_grad_derivative(X, y, w, mask, grad_weight): """ Computes the derivative of _squared_loss_and_spatial_grad. Parameters ---------- X : ndarray, shape (n_samples, n_features) Design matrix. y : ndarray, shape (n_samples,) Target / response vector. w : ndarray shape (n_features,) Unmasked, ravelized weights map. grad_weight: float l1_ratio * alpha Returns ------- ndarray, shape (n_features,) Derivative of _squared_loss_and_spatial_grad function. """ data_section = np.dot(X, w) - y image_buffer = np.zeros(mask.shape) image_buffer[mask] = w return (np.dot(X.T, data_section) - grad_weight * _div(_gradient(image_buffer))[mask])
05ce984609f5d31fda33d7fb0263ecc056c2f0ed
3,648,194
import ctypes def destructor(cfunc): """ Make a C function a destructor. Destructors accept pointers to void pointers as argument. They are also wrapped as a staticmethod for usage in classes. :param cfunc: The C function as imported by ctypes. :return: The configured destructor. """ cfunc.argtypes = [ctypes.POINTER(ctypes.c_void_p)] cfunc.restype = None return staticmethod(cfunc)
05abd181649a2178d4dce704ef93f61eb5418092
3,648,195
def invalid_auth_header(jwt): """Produce invalid JWT tokens for use in tests.""" return {'Authorization': 'Bearer ' + jwt.create_jwt(claims=TestJwtClaims.invalid, header=JWT_HEADER)}
91f82b4a9be3740e115da4182325c71fa84440b7
3,648,196
def update_file_info_in_job(job, file_infos): """ Update the 'setup.package.fileInformations' data in the JSON to append new file information. """ for file_info in file_infos: try: job['setup']['package']['fileInformations'].append(file_info) except (KeyError, TypeError, AttributeError): # If we get here, 'setup.package.fileInformations' does not exist yet. print('Job file input is missing required setup.package.fileInformations data.') exit(1) return job
9902173548d72fcd35c8f80bb44b59aac27d9401
3,648,197
def _FirstStatementsInScriptElements(contents): """Returns a list of first statements found in each <script> element.""" soup = parse_html.BeautifulSoup(contents) script_elements = soup.find_all('script', src=None) return [_FirstStatement(e.get_text()) for e in script_elements]
7b2a3bddfa63a6ab4765906862037adf786c253a
3,648,198
def load_image(input_file_path): """ Load the 'input_file_path' and return a 2D numpy array of the image it contains. """ image_array = np.array(pil_img.open(input_file_path).convert('L')) return image_array
b5783b9bcca55be355a91c6e9e2d2fcd09d1989b
3,648,199