content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def mahalanobis(data, produce=None): """ Calculate mahalanobis distance on a matrix of column vectors. Assumes that rows are observations and columns are features. Parameters ---------- data : numpy array or pandas dataframe The data to calculate distances on (columns are variables, rows are observations). produce : str, optional Variation of the output to produce, either `squared`, `leverage', or `sqrt` (None). The default is None. Returns ------- numpy array Array containing the distances. """ arr = np.array(data).reshape(data.shape[0], -1) cent = arr - arr.mean(axis=0) covmat = np.cov(cent, rowvar=False) invcov = None if arr.shape[1] == 1: invcov = 1/covmat else: try: invcov = np.linalg.inv(covmat) except np.linalg.LinAlgError: invcov = np.linalg.pinv(covmat) md2 = np.sum(cent.dot(invcov) * cent, axis=1) if produce == "squared": return md2 elif produce == "leverage": n = data.shape[0] return ((md2/(n - 1)) + (1/n)) else: return np.sqrt(md2)
b6dff6cfe12b4c44b6a97a6bd1f51a2250b7b63f
3,647,000
def text(el): """ Helper to get the text content of a BeautifulSoup item """ return el.get_text().strip()
7b34c77c79677a73cc66532fe6305635b1bdac43
3,647,001
def collect_DAC_pow(dig, IF_freq): """TODO: Desciption what I, the function, do""" return external_ATS9870_CS_VNA.collect_amp(dig, IF_freq)
42f649520b950357419c6c26d3d5426849855929
3,647,002
def get_sha512_manifest(zfile): """ Get MANIFEST.MF from a bar file. :param zfile: Open (!!!) ZipFile instance. :type zfile: zipfile.ZipFile """ names = zfile.namelist() manifest = None for name in names: if name.endswith("MANIFEST.MF"): manifest = name break if manifest is None: raise SystemExit return manifest
7ef150bb3e89f8723649ee983085a413ec8a31df
3,647,003
def plot_heatmap(filename, xdata, ydata, binx, biny, title = None, xlabel = None, ylabel = None, dpi = 150, figsize = (10,10), tfont = 17, lfont = 14): """ Present variables as a 2D heatmap to correlate magnitude and direction. """ def get_bin_id(mybins, vv): for ibin in range(len(mybins)-1): if vv >= mybins[ibin] and vv < mybins[ibin+1]: return ibin + 1 return 0 total = len(xdata) if total == 0: print('Not enough data to produce heatmap, exiting...') return nx, nxbins = np.histogram(xdata, bins = binx) ny, nybins = np.histogram(ydata, bins = biny) temp_x = np.zeros(total) temp_y = np.zeros(total) for ij in range(total): temp_x[ij] = get_bin_id(nxbins, xdata[ij]) temp_y[ij] = get_bin_id(nybins, ydata[ij]) table2d = np.zeros((len(nybins)-1,len(nxbins)-1)) for ij in range(len(temp_x)): table2d[int(temp_y[ij])-1, int(temp_x[ij])-1] += 1 x_labels = [] y_labels = [] for ij in range(len(nxbins)-1): x_labels.append('{:.2f}'.format(0.5*(nxbins[ij] + nxbins[ij+1]))) for ij in range(len(nybins)-1): y_labels.append('{:.1f}'.format(0.5*(nybins[ij] + nybins[ij+1]))) fig, ax = plt.subplots() fig.set_size_inches(figsize[0], figsize[1]) im = ax.imshow(table2d) # We want to show all ticks... ax.set_xticks(np.arange(len(x_labels))) ax.set_yticks(np.arange(len(y_labels))) # ... and label them with the respective list entries ax.set_xticklabels(x_labels) ax.set_yticklabels(y_labels) if title: ax.set_title(title, fontsize = tfont) if ylabel: ax.set_ylabel(ylabel, fontsize = lfont) if xlabel: ax.set_xlabel(xlabel, fontsize = lfont) ylims = ax.get_yticks() rr = ylims[1] - ylims[0] ax.set_ylim(ylims[0] - rr/2., ylims[-1] + rr/2.) cfont = max([8, lfont-2]) ax.tick_params(axis = 'both', which = 'major', labelsize = cfont) # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") for i in range(len(nxbins)-1): for j in range(len(nybins)-1): text = ax.text(i, j, int(100.0*table2d[j, i]/total), ha="center", va="center", color="w") fig.tight_layout() if isinstance(filename, list): for item in filename: fig.savefig(item, dpi = dpi) else: fig.savefig(filename, dpi = dpi) plt.close() return 0
3397bf2fc02932056411ef8addde264fa50b9ea5
3,647,004
def cmake_var_string(cmake_vars): """Converts a dictionary to an input suitable for expand_cmake_vars. Ideally we would jist stringify in the expand_cmake_vars() rule, but select() interacts badly with genrules. TODO(phawkins): replace the genrule() with native rule and delete this rule. Args: cmake_vars: a dictionary with string keys and values that are convertable to strings. """ return " ".join([_quote("{}={}".format(k, str(v))) for (k, v) in cmake_vars.items()])
3f0fb115c54f6ee1e0e923b67412e36ca56b2ea7
3,647,005
def scattering_transform1d(n_classes, sequence_length): """ Scattering transform """ log_eps = 1e-6 x_in = layers.Input(shape=(sequence_length)) x = Scattering1D(8, 12)(x_in) x = layers.Lambda(lambda x: x[..., 1:, :])(x) x = layers.Lambda(lambda x: tf.math.log(tf.abs(x) + log_eps))(x) x = layers.GlobalAveragePooling1D(data_format='channels_first')(x) x = layers.BatchNormalization(axis=1)(x) x_out = layers.Dense(n_classes, activation='softmax')(x) model = tf.keras.models.Model(x_in, x_out) return model
53547918c5a0efa5c0e3766c770903b146eff19e
3,647,006
import zlib def addFileContent(session, filepath, source_file_name, content_hash, encoding): """ Add the necessary file contents. If the file is already stored in the database then its ID returns. If content_hash in None then this function calculates the content hash. Or if is available at the caller and is provided then it will not be calculated again. This function must not be called between addCheckerRun() and finishCheckerRun() functions when SQLite database is used! addCheckerRun() function opens a transaction which is closed by finishCheckerRun() and since SQLite doesn't support parallel transactions, this API call will wait until the other transactions finish. In the meantime the run adding transaction times out. """ source_file_content = None if not content_hash: source_file_content = get_file_content(source_file_name, encoding) hasher = sha256() hasher.update(source_file_content) content_hash = hasher.hexdigest() file_content = session.query(FileContent).get(content_hash) if not file_content: if not source_file_content: source_file_content = get_file_content(source_file_name, encoding) try: compressed_content = zlib.compress(source_file_content, zlib.Z_BEST_COMPRESSION) fc = FileContent(content_hash, compressed_content) session.add(fc) session.commit() except sqlalchemy.exc.IntegrityError: # Other transaction moght have added the same content in # the meantime. session.rollback() file_record = session.query(File) \ .filter(File.content_hash == content_hash, File.filepath == filepath) \ .one_or_none() if not file_record: try: file_record = File(filepath, content_hash) session.add(file_record) session.commit() except sqlalchemy.exc.IntegrityError as ex: LOG.error(ex) # Other transaction might have added the same file in the # meantime. session.rollback() file_record = session.query(File) \ .filter(File.content_hash == content_hash, File.filepath == filepath) \ .one_or_none() return file_record.id
fdd77f23151ed9627c5d9bbfb157839810c9655a
3,647,007
def model_fn_builder(num_labels, learning_rate, num_train_steps, num_warmup_steps): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] label_ids = features["label_ids"] is_predicting = (mode == tf.estimator.ModeKeys.PREDICT) # TRAIN and EVAL if not is_predicting: (loss, predicted_labels, log_probs) = create_model( is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels) train_op = bert.optimization.create_optimizer( loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu=False) # Calculate evaluation metrics. def metric_fn(label_ids, predicted_labels): accuracy = tf.metrics.accuracy(label_ids, predicted_labels) f1_score = tf.contrib.metrics.f1_score( label_ids, predicted_labels) auc = tf.metrics.auc( label_ids, predicted_labels) recall = tf.metrics.recall( label_ids, predicted_labels) precision = tf.metrics.precision( label_ids, predicted_labels) true_pos = tf.metrics.true_positives( label_ids, predicted_labels) true_neg = tf.metrics.true_negatives( label_ids, predicted_labels) false_pos = tf.metrics.false_positives( label_ids, predicted_labels) false_neg = tf.metrics.false_negatives( label_ids, predicted_labels) return { "eval_accuracy": accuracy, "f1_score": f1_score, "auc": auc, "precision": precision, "recall": recall, "true_positives": true_pos, "true_negatives": true_neg, "false_positives": false_pos, "false_negatives": false_neg } eval_metrics = metric_fn(label_ids, predicted_labels) if mode == tf.estimator.ModeKeys.TRAIN: return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) else: return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metrics) else: (predicted_labels, log_probs) = create_model( is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels) predictions = { 'probabilities': log_probs, 'labels': predicted_labels } return tf.estimator.EstimatorSpec(mode, predictions=predictions) # Return the actual model function in the closure return model_fn
570f5297fbcc57eaae1d08e9ee816207db707ffd
3,647,008
def to_numeric_df(kdf): """ Takes a dataframe and turns it into a dataframe containing a single numerical vector of doubles. This dataframe has a single field called '_1'. TODO: index is not preserved currently :param df: :return: a pair of dataframe, list of strings (the name of the columns that were converted to numerical types) """ # TODO, it should be more robust. accepted_types = {np.dtype(dt) for dt in [np.int8, np.int16, np.int32, np.int64, np.float32, np.float64, np.bool_]} numeric_fields = [fname for fname in kdf._metadata.column_fields if kdf[fname].dtype in accepted_types] numeric_df = kdf._sdf.select(*numeric_fields) va = VectorAssembler(inputCols=numeric_fields, outputCol="_1") v = va.transform(numeric_df).select("_1") return v, numeric_fields
5eba4585ca55360bfff959b4f46580cc747e3f93
3,647,009
def FancyAnalyzer(expression=r"\s+", stoplist=STOP_WORDS, minsize=2, maxsize=None, gaps=True, splitwords=True, splitnums=True, mergewords=False, mergenums=False): """Composes a RegexTokenizer with an IntraWordFilter, LowercaseFilter, and StopFilter. >>> ana = FancyAnalyzer() >>> [token.text for token in ana(u"Should I call getInt or get_real?")] [u"should", u"call", u"getInt", u"get", u"int", u"get_real", u"get", u"real"] :param expression: The regular expression pattern to use to extract tokens. :param stoplist: A list of stop words. Set this to None to disable the stop word filter. :param minsize: Words smaller than this are removed from the stream. :param maxsize: Words longer that this are removed from the stream. :param gaps: If True, the tokenizer *splits* on the expression, rather than matching on the expression. """ ret = RegexTokenizer(expression=expression, gaps=gaps) iwf = IntraWordFilter(splitwords=splitwords, splitnums=splitnums, mergewords=mergewords, mergenums=mergenums) lcf = LowercaseFilter() swf = StopFilter(stoplist=stoplist, minsize=minsize) return ret | iwf | lcf | swf
50fddbbdc22770b3a9b732bb328bf48c0407aafe
3,647,010
def find_res_shift(x_min, x_max, y_min, y_max, z_min, z_max, target_id, my_sites, res_two_three_dict, my_mols, color_list, button_list): """Function to find the relavant residue shifts""" print "FINDING MAX SHIFTS" max_shift = [] # Get the delta value delta = 5.0 # Filter residues to the ones within 1.0 A of any molecule AND then sort by size tot_res = Residue.objects.filter(target_id=target_id) if x_max: criterion1 = Q(x_max__gte=x_max + delta) criterion2 = Q(x_max__gte=x_min + delta) near_res = tot_res.exclude(criterion1 & criterion2) criterion1 = Q(x_min__lte=x_max - delta) criterion2 = Q(x_min__lte=x_min - delta) near_res = near_res.exclude(criterion1 & criterion2) criterion1 = Q(y_max__gte=y_max + delta) criterion2 = Q(y_max__gte=y_min + delta) near_res = near_res.exclude(criterion1 & criterion2) # Now do y_min criterion1 = Q(y_min__lte=y_max - delta) criterion2 = Q(y_min__lte=y_min - delta) near_res = near_res.exclude(criterion1 & criterion2) # Now do Z # First Z_max criterion1 = Q(z_max__gte=z_max + delta) criterion2 = Q(z_max__gte=z_min + delta) near_res = near_res.exclude(criterion1 & criterion2) # Now Z min criterion1 = Q(z_min__lte=z_max - delta) criterion2 = Q(z_min__lte=z_min - delta) near_res = near_res.exclude(criterion1 & criterion2) near_res = set(near_res.filter().values_list("res_name", "res_num")) else: tot_near_res = [] tot_res_d = {} for my_site in my_sites: criterion1 = Q(x_max__gte=my_site.x_max + delta) criterion2 = Q(x_max__gte=my_site.x_min + delta) near_res = tot_res.exclude(criterion1 & criterion2) criterion1 = Q(x_min__lte=my_site.x_max - delta) criterion2 = Q(x_min__lte=my_site.x_min - delta) near_res = near_res.exclude(criterion1 & criterion2) criterion1 = Q(y_max__gte=my_site.y_max + delta) criterion2 = Q(y_max__gte=my_site.y_min + delta) near_res = near_res.exclude(criterion1 & criterion2) # Now do y_min criterion1 = Q(y_min__lte=my_site.y_max - delta) criterion2 = Q(y_min__lte=my_site.y_min - delta) near_res = near_res.exclude(criterion1 & criterion2) # Now do Z # First Z_max criterion1 = Q(z_max__gte=my_site.z_max + delta) criterion2 = Q(z_max__gte=my_site.z_min + delta) near_res = near_res.exclude(criterion1 & criterion2) # Now Z min criterion1 = Q(z_min__lte=my_site.z_max - delta) criterion2 = Q(z_min__lte=my_site.z_min - delta) near_res = near_res.exclude(criterion1 & criterion2) # Now we get the near res for this site near_res = set(near_res.filter().values_list("res_name", "res_num")) for res in near_res: if res in tot_res_d: tot_res_d[res].append(my_site.pk) else: tot_res_d[res] = [my_site.pk] tot_near_res.extend(list(near_res)) near_res = tot_near_res print "Getting clusters" my_res = ResShift.objects.filter(target_id=target_id, res_name__in=[x[0] for x in near_res], res_num__in=[x[1] for x in near_res]) # Only find those close to the BOX / main out_res_d = {} for i, val in enumerate(sorted(my_res.values_list("max_shift", "res_name", "pk", "res_num"),reverse=True)): my_mol = Molecule() # Define the site the residues are in res_hash = (val[1], val[3]) if res_hash in tot_res_d: my_mol.sites = " ".join(["SITE"+ str(x) for x in tot_res_d[res_hash]]) #my_mol.my_list = [(x[0]) for x in sorted(ResShift.objects.filter(target_id=target).values_list("max_shift"),reverse=True)[:5]] if val[1] in res_two_three_dict: this_res_name = res_two_three_dict[val[1]] else: this_res_name = "UNI" my_mol.res = "^" + this_res_name + str(val[3]) out_res_d[my_mol.res] = {} my_mol.my_name = val[1] + ": " + str(val[3]) my_mol.shift = val[0] my_mol.button = button_list[i % len(button_list)] my_mol.bg = color_list[i % len(color_list)] my_mol.res_cl = {} # Now get how the molecules rank on this residue move # instead we want to go trhrough molecules my_mol.my_list = [] # Now colour the clusters for item in my_mols: this_res = tot_res.filter(res_name=val[1], res_num=val[3], prot_id__molecule=item) if len(this_res) ==0: new_mol = Molecule() # Get the PK from here new_mol.pk = item.pk new_mol.shift = 0.0 new_mol.colour = "" out_res_d[my_mol.res][item.prot_id.code] = "" my_mol.my_list.append(new_mol) elif len(this_res) == 1: this_res = this_res[0] new_mol = Molecule() # Get the PK from here new_mol.pk = item.pk new_mol.shift = this_res.max_shift new_mol.clus_id = "RESCL" + str(this_res.clust_id) + "_" + val[1] + "_" + str(val[3]) my_mol.res_cl["RESCL" + str(this_res.clust_id) + "_" + val[1] + "_" + str(val[3])] = [color_list[this_res.clust_id % len(color_list)], button_list[this_res.clust_id % len(button_list)]] new_mol.colour = color_list[this_res.clust_id % len(color_list)] out_res_d[my_mol.res][this_res.prot_id.code] = button_list[this_res.clust_id % len(button_list)] my_mol.my_list.append(new_mol) else: print "ERROR MORE THAN ONE MOLS" # Now append this guy to the list max_shift.append(my_mol) return json.dumps(out_res_d), max_shift
d46a146071f5cd48ab1382d03ac4678cc2c301fd
3,647,011
def lookup(*getters): """Find data by provided parameters and group by type respectively""" getters = list(reversed(getters)) def wrap(struct): while getters: _type, getter = getters.pop() if _type == G_TYPE_KEY: struct = getter(struct) continue if _type == G_TYPE_ARR: n_getters = list(reversed(getters)) return [lookup(*n_getters)(elem) for elem in getter(struct)] return struct return wrap
937a44e8366016cb136f0b40a91448b97c52357d
3,647,012
def compute_one(t, lhs, rhs, **kwargs): """ Join two pandas data frames on arbitrary columns The approach taken here could probably be improved. To join on two columns we force each column to be the index of the dataframe, perform the join, and then reset the index back to the left side's original index. """ result = pd.merge(lhs, rhs, left_on=t.on_left, right_on=t.on_right, how=t.how) return result.reset_index()[t.columns]
c050fdeae2e354be3748984a32ad96b81593355b
3,647,013
def simulate(mat, det, e0=20.0, dose=defaultDose, withPoisson=True, nTraj=defaultNumTraj, sf=defaultCharFluor, bf=defaultBremFluor, xtraParams=defaultXtraParams): """simulate(mat,det,[e0=20.0],[withPoisson=True],[nTraj=defaultNumTraj],[dose=defaultDose],[sf=defaultCharFluor],[bf=defaultBremFluor],[xtraParams=defaultXtraParams]) Simulate a bulk spectrum for the material mat on the detector det at beam energy e0 (in keV). If \ sf then simulate characteristic secondary fluorescence. If bf then simulate bremsstrahlung secondary \ fluorescence. nTraj specifies the number of electron trajectories. dose is in nA*sec.""" mat = dtsa2.material(mat) if not isinstance(mat, epq.Material): print u"Please provide a material with a density - %s" % mat tmp = u"MC simulation of bulk %s at %0.1f keV%s%s" % (mat, e0, (" + CSF" if sf else ""), (" + BSF" if bf else "")) print tmp res = base(det, e0, withPoisson, nTraj, dose, sf, bf, tmp, buildBulk, { "Material" : mat }, xtraParams) res.getProperties().setCompositionProperty(epq.SpectrumProperties.StandardComposition, mat) return res
5ffdf63038fa2ba4305001f1b1ec5da0c13ebf3d
3,647,014
def link_match_family(link, family_name): """Checks whether the a link can be used in a given family. When this function is used with built-in family names, it tests whether the link name can be used with the given built-in family. If the family name is not known, we return True because the user is working with a custom ``Family`` object. Which links can work with which families are taken from statsmodels. """ if family_name in FAMILY_LINKS: return link in FAMILY_LINKS[family_name] # Custom family, we don't know what link functions can be used return True
7d95556b5ff6537bc994d7b017263ced13d4efc0
3,647,015
import tqdm def auc(test_set, user_factors, subreddit_factors, subreddits, users): """ Returns the auc score on a test data set """ num_users = len(test_set) total = 0 # treat the signal as 1 as per the implicit bpr paper for subreddit, user, signal in tqdm.tqdm_notebook(test_set): # outer summation # inner summation # TODO: try to parallelize u = users_index[user] i = subreddits_index[subreddit] x_ui = user_factors[u].dot(subreddit_factors[i]) js = [] for j in range(0, num_subreddits): if j != i and j not in E_u[u]: js.append(j) total += np.sum(np.heaviside(x_ui - user_factors[u].dot(subreddit_factors[js].T), 0)) / len(js) # for j in range(0, subreddits): # numel = 0 # total_user = 0 # if j != i and j not in E_u[u]: # numel += 1 # x_uj = user_factors[u].dot(subreddit_factors[j]) # total_user += heaviside(x_ui - x_uj) # total += (total_user * 1.0 / numel) return total / num_users
93179ede0fb84e7f491f147d1a356036d2908a2f
3,647,016
def convert_AST_to_expr(ast): """Creates expression from the AST.""" converter = ASTToInstrBlockConverter() instrs = converter.my_visit(ast) return instrs[0]
b4dca77c48cd0001a2f55c71a077a6b195a181ce
3,647,017
import time def add_data_from_api(service, repo, variable_type, keys): """Retrieves Github API data. Utilizes the function from github_api/github.py to do so. This function adds the retrieved variables directly to the data dictionary. Args: service (Service): Service object with API connection and metadata vars repo (Repo) : Repository variables bundled together variable_type (string): which type of variable should be retrieved. Supported are: contributors, languages, readmes keys (list): A list of the keys for the retrieved data Returns: boolean: Whether the request was successful or not. In case of unsuccessful request, skip repository """ # for nested data only, otherwise key can be directly used if variable_type in ("contributors", "languages"): data[variable_type] = [] retrieved_data = get_data_from_api(service, repo, variable_type, verbose=False) if retrieved_data is not None: if variable_type in ("contributors", "languages"): for entry in retrieved_data: data[variable_type].append(dict(zip(keys, entry[1:]))) elif variable_type == "readmes": data[keys[0]] = retrieved_data[1] else: return False time.sleep(2) return True
32361d85fb92efd03b79f74f8db2e02a8fcd9866
3,647,018
def part1(data): """ >>> part1(read_input()) 0 """ return data
1482c41b112a3e74775e71c4aabbd588de2b6553
3,647,019
import torch def get_rectanguloid_mask(y, fat=1): """Get a rectanguloid mask of the data""" M = y.nonzero().max(0)[0].tolist() m = y.nonzero().min(0)[0].tolist() M = [min(M[i] + fat, y.shape[i] - 1) for i in range(3)] m = [max(v - fat, 0) for v in m] mask = torch.zeros_like(y) mask[m[0] : M[0], m[1] : M[1], m[2] : M[2]] = 1 return mask
0ff3ab25f2ab109eb533c7e4fafd724718dbb986
3,647,020
import re def colorize_output(output): """Add HTML colors to the output.""" # Task status color_output = re.sub(r'(ok: [-\w\d\[\]]+)', r'<font color="green">\g<1></font>', output) color_output = re.sub(r'(changed: [-\w\d\[\]]+)', r'<font color="orange">\g<1></font>', color_output) if not re.search(r'failed: 0', color_output): color_output = re.sub(r'(failed: [-\w\d\[\]]+)', r'<font color="red">\g<1></font>', color_output) color_output = re.sub(r'(fatal: [-\w\d\[\]]+):', r'<font color="red">\g<1></font>', color_output) # Play recap color_output = re.sub(r'(ok=[\d]+)', r'<font color="green">\g<1></font>', color_output) color_output = re.sub(r'(changed=[\d]+)', r'<font color="orange">\g<1></font>', color_output) color_output = re.sub(r'(failed=[1-9][0-9]*)', r'<font color="red">\g<1></font>', color_output) return color_output
80759da16262d850b45278faede4b60b7aa4a7c6
3,647,021
import argparse def parse_args(): """Parse command-line arguments""" parser = argparse.ArgumentParser( description='Stop a subjective evaluation without ' + 'destroying resources') parser.add_argument('--aws_api_key', help='The public API key for AWS') parser.add_argument( '--aws_api_secret_key', help='The private API key for AWS') parser.add_argument('--heroku_api_key', help='The API key for Heroku') parser.add_argument( '--mysql_local_user', help='The username of the local MySQL database') parser.add_argument( '--mysql_local_password', help='The corresponding password of the local MySQL database') return parser.parse_args()
661a9bdec94b88c06f6d4080ef20cc31f81901ff
3,647,022
def parse_user_date(usr_date: str) -> date: """ Parses a user's date input, prompts the user to input useful date data if user's date was invalid Args: usr_date : str, user input of date info. Should be in <yyyy/mm/dd> format Returns: valid datetime.date() object """ expected_len = len("yyyy/mm/dd") if usr_date is None: return prompt_user_date() try: dt_list = usr_date[0:expected_len].split("/") # Ensure right number of fields if len(dt_list) >= 3: try: # Ensure year is long enough to be useful if len(dt_list[0]) == 4: year = int(dt_list[0]) else: raise BreakoutError() # set rest of info month = int(dt_list[1]) day = int(dt_list[2]) # deal with bad user characters except ValueError: raise BreakoutError() # create date if user isn't a dingus calendar_date = date(year, month, day) else: raise BreakoutError() except BreakoutError: # Make user give us a useful date if they are a dingus calendar_date = prompt_user_date() return calendar_date
10becdce6ef4fdc5606ce110b09e102c186dfc04
3,647,023
def up_sampling_block(x, n_filter, kernel_size, name, activation='relu', up_size=(2, 2)): """Xception block x => sepconv block -> sepconv block -> sepconv block-> add(Act(x)) => """ x = layers.UpSampling2D(size=up_size, name=name+'up')(x) if activation: x = layers.Activation('relu', name=name+'_act')(x) x = sepconv_bn_relu(x, n_filter, kernel_size, padding='same', activation=None, name=name+'_sepconv1') return x
001fdb6475da138bedfdb891af6e657e5ce6160c
3,647,024
def connected_components(graph): """ Connected components. @attention: Indentification of connected components is meaningful only for non-directed graphs. @type graph: graph @param graph: Graph. @rtype: dictionary @return: Pairing that associates each node to its connected component. """ visited = {} count = 1 # For 'each' node not found to belong to a connected component, find its connected component. for each in graph: if (each not in visited): _dfs(graph, visited, count, each) count = count + 1 return visited
80c5bfc679c1dc274db6a3bf8f8becfa1fc99d4f
3,647,025
import typing def format_keyvals( entries: typing.Iterable[typing.Tuple[str, typing.Union[None, str, urwid.Widget]]], key_format: str = "key", value_format: str = "text", indent: int = 0 ) -> typing.List[urwid.Columns]: """ Format a list of (key, value) tuples. Args: entries: The list to format. keys must be strings, values can also be None or urwid widgets. The latter makes it possible to use the result of format_keyvals() as a value. key_format: The display attribute for the key. value_format: The display attribute for the value. indent: Additional indent to apply. """ max_key_len = max((len(k) for k, v in entries if k is not None), default=0) max_key_len = min(max_key_len, KEY_MAX) if indent > 2: indent -= 2 # We use dividechars=2 below, which already adds two empty spaces ret = [] for k, v in entries: if v is None: v = urwid.Text("") elif not isinstance(v, urwid.Widget): v = urwid.Text([(value_format, v)]) ret.append( urwid.Columns( [ ("fixed", indent, urwid.Text("")), ( "fixed", max_key_len, urwid.Text([(key_format, k)]) ), v ], dividechars=2 ) ) return ret
eb1769a3d7b47b6b4f24f02dcffd3639592c8dc6
3,647,026
def get_item_workdays(scorecard): """ Gets the number of days in this period""" supplier = frappe.get_doc('Supplier', scorecard.supplier) total_item_days = frappe.db.sql(""" SELECT SUM(DATEDIFF( %(end_date)s, po_item.schedule_date) * (po_item.qty)) FROM `tabPurchase Order Item` po_item, `tabPurchase Order` po WHERE po.supplier = %(supplier)s AND po_item.received_qty < po_item.qty AND po_item.schedule_date BETWEEN %(start_date)s AND %(end_date)s AND po_item.parent = po.name""", {"supplier": supplier.name, "start_date": scorecard.start_date, "end_date": scorecard.end_date}, as_dict=0)[0][0] if not total_item_days: total_item_days = 0 return total_item_days
cec620114ae784e5c272d41b6e1028175b466691
3,647,027
def load_data(ticker='SNAP', barSizeSetting='3 mins', what='TRADES'): """ loads historical tick data """ if what == 'TRADES': folder = '/home/nate/Dropbox/data/ib_full_adj/data/' elif what == 'ADJUSTED_LAST': folder = '/home/nate/Dropbox/data/ib_split_adj_only/data/' bss = barSizeSetting.replace(' ', '_') trades = pd.read_hdf(folder + ticker + '_trades_' + bss + '.h5') # fill 0 volume with 1 trades.at[trades['volume'] == 0, 'volume'] = 1 bid = pd.read_hdf(folder + ticker + '_bid_' + bss + '.h5') ask = pd.read_hdf(folder + ticker + '_ask_' + bss + '.h5') opt_vol = pd.read_hdf(folder + ticker + '_opt_vol_' + bss + '.h5') # drop duplicates just in case...dupes throw off concat trades.drop_duplicates(inplace=True) bid.drop_duplicates(inplace=True) ask.drop_duplicates(inplace=True) opt_vol.drop_duplicates(inplace=True) # sometimes with dupes, index is no longer sorted trades.sort_index(inplace=True) bid.sort_index(inplace=True) ask.sort_index(inplace=True) opt_vol.sort_index(inplace=True) # TODO: find opt_vol and other files with problems # e.g. found BOX opt_vol file had some price data in it # look for outliers or matches within other DFs, then delete messed up DFs # rename columns so can join to one big dataframe bid.columns = ['bid_' + c for c in bid.columns] ask.columns = ['ask_' + c for c in ask.columns] opt_vol.columns = ['opt_vol_' + c for c in opt_vol.columns] # inner join should drop na's but just to be safe # opt_vol has missing values at the end of each day for some reason... # so cant do inner join or dropna full_df = pd.concat([trades, bid, ask, opt_vol], axis=1)#, join='inner').dropna() full_df.index = full_df.index.tz_localize('America/New_York') return full_df
8ad01227131322f7780e75e1e72f89b1da3fef0b
3,647,028
def time_human(x): """ Gets time as human readable """ # Round time x = round(x, 2) for number, unit in [(60, "s"), (60, "min"), (24, "h"), (365, "days")]: if abs(x) < number: return f"{x:.2f} {unit}" x /= number return f"{x:.2f} years"
3f7f51ac7454e429fc30da64eed075aaf1f10b5b
3,647,029
from typing import Dict def transaction_json_to_binary_codec_form( dictionary: Dict[str, XRPL_VALUE_TYPE] ) -> Dict[str, XRPL_VALUE_TYPE]: """ Returns a new dictionary in which the keys have been formatted as CamelCase and standardized to be serialized by the binary codec. Args: dictionary: The dictionary to be reformatted. Returns: A new dictionary object that has been reformatted. """ # This method should be made private when it is removed from `xrpl.transactions` return { _key_to_tx_json(key): _value_to_tx_json(value) for (key, value) in dictionary.items() }
94516b8418fc25d1966d6f5c969f9b4e411100ab
3,647,030
def conv3x3(in_planes, out_planes, stride=1, groups=1): """3x3 convolution with padding""" return nn.Conv1d(in_planes, out_planes, kernel_size=7, stride=stride, padding=3, bias=False, groups=groups)
90fa7549a2ba8722edab3712bac4d3af7fb5f2f2
3,647,031
def limit_sub_bbox(bbox, sub_bbox): """ >>> limit_sub_bbox((0, 1, 10, 11), (-1, -1, 9, 8)) (0, 1, 9, 8) >>> limit_sub_bbox((0, 0, 10, 10), (5, 2, 18, 18)) (5, 2, 10, 10) """ minx = max(bbox[0], sub_bbox[0]) miny = max(bbox[1], sub_bbox[1]) maxx = min(bbox[2], sub_bbox[2]) maxy = min(bbox[3], sub_bbox[3]) return minx, miny, maxx, maxy
fa5b7763b30442fba137814ac7b0336528c4540b
3,647,032
def _load_taxa_incorp_list(inFile, config): """Loading list of taxa that incorporate isotope. Parameters ---------- inFile : str File name of taxon list config : config object Returns ------- {library:[taxon1, ...]} """ taxa = {} with open(inFile, 'rb') as inFH: for line in inFH: line = line.rstrip().split('\t') # if 1 column, using config-defined libraries if len(line) == 1: line = [[x,line[0]] for x in config.keys()] else: line = [line] for x in line: try: taxa[x[0]].append(x[1]) except KeyError: taxa[x[0]] = [x[1]] return taxa
d614f2be0c5ad4fa61d1d70915428324d7af97b4
3,647,033
def get_subsections(config: Config) -> t.List[t.Tuple[str, t.Dict]]: """Collect parameter subsections from main configuration. If the `parameters` section contains subsections (e.g. '[parameters.1]', '[parameters.2]'), collect the subsection key-value pairs. Otherwise, return an empty dictionary (i.e. there are no subsections). This is useful for specifying multiple API keys for your configuration. For example: ``` [parameters.alice] api_key=KKKKK1 api_url=UUUUU1 [parameters.bob] api_key=KKKKK2 api_url=UUUUU2 [parameters.eve] api_key=KKKKK3 api_url=UUUUU3 ``` """ return [(name, params) for name, params in config['parameters'].items() if isinstance(params, dict)] or [('default', {})]
0cb022fb6ae192736186a519c6ffbcf9bcfdf541
3,647,034
def calc_psi(B, rev=False): """Calc Flux function (only valid in 2d) Parameters: B (VectorField): magnetic field, should only have two spatial dimensions so we can infer the symmetry dimension rev (bool): since this integration doesn't like going through undefined regions (like within 1 earth radius of the origin for openggcm), you can use this to start integrating from the opposite corner. Returns: ScalarField: 2-D scalar flux function Raises: ValueError: If B has <> 2 spatial dimensions """ # TODO: if this is painfully slow, i bet just putting this exact # code in a cython module would make it a bunch faster, the problem # being that the loops are in python instead of some broadcasting # numpy type thing B = B.slice_reduce(":") # try to guess if a dim of a 3D field is invariant reduced_axes = [] if B.nr_sdims > 2: slcs = [slice(None)] * B.nr_sdims for i, nxi in enumerate(B.sshape): if nxi <= 2: slcs[i] = 0 reduced_axes.append(B.crds.axes[i]) slcs.insert(B.nr_comp, slice(None)) B = B[slcs] # ok, so the above didn't work... just nip out the smallest dim? if B.nr_sdims == 3: slcs = [slice(None)] * B.nr_sdims i = np.argmin(B.sshape) slcs[i] = 0 reduced_axes.append(B.crds.axes[i]) logger.warning("Tried to get the flux function of a 3D field. " "I can't do that, so I'm\njust ignoring the {0} " "dimension".format(reduced_axes[-1])) slcs.insert(B.nr_comp, slice(None)) B = B[slcs] if B.nr_sdims != 2: raise ValueError("flux function only implemented for 2D fields") comps = "" for comp in "xyz": if comp in B.crds.axes: comps += comp # ex: comps = "yz", comp_inds = [1, 2] comp_inds = [dict(x=0, y=1, z=2)[comp] for comp in comps] # Note: what follows says y, z, but it has been generalized # to any two directions, so hy isn't necessarily hy, but it's # easier to see at a glance if it's correct using a specific # example ycc, zcc = B.get_crds(comps) comp_views = B.component_views() hy, hz = comp_views[comp_inds[0]], comp_views[comp_inds[1]] dy = ycc[1:] - ycc[:-1] dz = zcc[1:] - zcc[:-1] ny, nz = len(ycc), len(zcc) A = np.empty((ny, nz), dtype=B.dtype) if rev: A[-1, -1] = 0.0 for i in range(ny - 2, -1, -1): A[i, -1] = A[i + 1, -1] - dy[i] * 0.5 * (hz[i, -1] + hz[i + 1, -1]) for j in range(nz - 2, -1, -1): A[:, j] = A[:, j + 1] + dz[j] * 0.5 * (hy[:, j + 1] + hy[:, j]) else: A[0, 0] = 0.0 for i in range(1, ny): A[i, 0] = A[i - 1, 0] + dy[i - 1] * 0.5 * (hz[i, 0] + hz[i - 1, 0]) for j in range(1, nz): A[:, j] = A[:, j - 1] - dz[j - 1] * 0.5 * (hy[:, j - 1] + hy[:, j]) psi = field.wrap_field(A, B.crds, name="psi", center=B.center, pretty_name=r"$\psi$", parents=[B]) if reduced_axes: slc = "..., " + ", ".join("{0}=None".format(ax) for ax in reduced_axes) psi = psi[slc] return psi
80beea86346fadd7e96b82c1da6eba56bde597fd
3,647,035
def infer_printed_type(t): """Infer the types that should be printed. The algorithm is as follows: 1. Replace all constant types with None. 2. Apply type-inference on the resulting type. 3. For the first internal type variable that appears, find a constant whose type contains that variable, set that constant to print_type. 4. Repeat until no internal type variables appear. """ def clear_const_type(t): if t.is_const() and not hasattr(t, "print_type"): t.backupT = t.T t.T = None elif t.is_comb(): clear_const_type(t.fun) clear_const_type(t.arg) elif t.is_abs(): if not hasattr(t, "print_type"): t.backup_var_T = t.var_T t.var_T = None clear_const_type(t.body) def recover_const_type(t): if t.is_const(): t.T = t.backupT elif t.is_comb(): recover_const_type(t.fun) recover_const_type(t.arg) elif t.is_abs(): t.var_T = t.backup_var_T recover_const_type(t.body) for i in range(100): clear_const_type(t) type_infer(t, forbid_internal=False) def has_internalT(T): return any(is_internal_type(subT) for subT in T.get_tsubs()) to_replace, to_replaceT = None, None def find_to_replace(t): nonlocal to_replace, to_replaceT if (t.is_zero() or t.is_one() or \ (t.is_comb('of_nat', 1) and t.arg.is_binary() and t.arg.dest_binary() >= 2)) and \ has_internalT(t.get_type()): replT = t.get_type() if t.is_comb(): t = t.fun if to_replace is None or replT.size() < to_replaceT.size(): to_replace = t to_replaceT = replT elif t.is_const() and has_internalT(t.T): if to_replace is None or t.T.size() < to_replaceT.size(): to_replace = t to_replaceT = t.T elif t.is_abs(): if has_internalT(t.var_T): if to_replace is None or t.var_T.size() < to_replaceT.size(): to_replace = t to_replaceT = t.var_T find_to_replace(t.body) elif t.is_comb(): find_to_replace(t.fun) find_to_replace(t.arg) find_to_replace(t) recover_const_type(t) if to_replace is None: break to_replace.print_type = True assert i != 99, "infer_printed_type: infinite loop." return None
1ad880fc92db2e64ba6ea81f7481efa99b0bd044
3,647,036
def bias_variable(shape): """ 返回指定形状的偏置量 :param shape: :return: """ b = tf.Variable(tf.constant(0.0, shape=shape)) return b
ff2bb945414508d1dfc1db0b028cf1feeebeb6d8
3,647,037
def drag_eqn(times,g,r): """define scenario and integrate""" param = np.array([ g, r]) hinit = np.array([0.0,0.0]) # initial values (position and velocity, respectively) h = odeint(deriv, hinit, times, args = (param,)) return h[:,0], h[:,1]
d79150dd894244c11fa882d62da2f33b1173c144
3,647,038
def virtual_potential_temperature_monc(theta, thref, q_v, q_cl): """ Virtual potential temperature. Derived variable name: th_v_monc Approximate form as in MONC Parameters ---------- theta : numpy array or xarray DataArray Potential Temperature. (K) thref : numpy array or xarray DataArray Reference Potential Temperature (usually 1D). (K) q_v : numpy array or xarray DataArray specific humidity q_cl : numpy array or xarray DataArray specific cloud liquid water content. Returns ------- theta_v: numpy array or xarray DataArray Virtual potential temperature (K) """ th_v = theta + thref * (tc.c_virtual * q_v - q_cl) if type(th_v) is xr.core.dataarray.DataArray: th_v.name = 'th_v_monc' return th_v
d4c3da0a5f4f2826edce53f610f8ba384845ebb2
3,647,039
def promote_user(username): """Give admin privileges from a normal user.""" user = annotator.credentials.find_one({'username': username}) if user: if user['admin']: flash("User {0} is already an administrator".format(username), 'warning') else: annotator.credentials.update_one(user, {'$set': {'admin': True}}) flash("User {0} promoted to administrator successfully".format(username), 'info') else: flash("Cannot promote unknown user {0} to administrator".format(username), 'warning') return redirect(url_for('manage_users'))
6a938c341f152991741d35dfd1c693743c07f805
3,647,040
def slide_number_from_xml_file(filename): """ Integer slide number from filename Assumes /path/to/Slidefile/somekindofSlide36.something """ return int(filename[filename.rfind("Slide") + 5:filename.rfind(".")])
dcfbc322b30a39041ab15b8496f097a5a5329865
3,647,041
import io def massivescan(websites): """scan multiple websites / urls""" # scan each website one by one vulnerables = [] for website in websites: io.stdout("scanning {}".format(website)) if scanner.scan(website): io.stdout("SQL injection vulnerability found") vulnerables.append(website) if vulnerables: return vulnerables io.stdout("no vulnerable websites found") return False
b2be56bf07d00c8839813d66acd337c75b9823ef
3,647,042
import re def is_strong_pass(password): """ Verify the strength of 'password' Returns a dict indicating the wrong criteria A password is considered strong if: 8 characters length or more 1 digit or more 1 symbol or more 1 uppercase letter or more 1 lowercase letter or more """ # calculating the length length_error = len(password) < 8 # searching for digits digit_error = re.search(r"\d", password) is None # searching for uppercase uppercase_error = re.search(r"[A-Z]", password) is None # searching for lowercase lowercase_error = re.search(r"[a-z]", password) is None # searching for symbols symbol_error = re.search(r"[ !#$@%&'()*+,-./[\\\]^_`{|}~" + r'"]', password) is None # overall result password_ok = not (length_error or digit_error or uppercase_error or lowercase_error or symbol_error) return password_ok
bfd1832951ba3059d8c542fa0b9d708a2416a4d4
3,647,043
def plot_config(config, settings=None): """ plot_config: obj -> obj --------------------------------------------------------------- Sets the defaults for a custom experiment plot configuration object from configobj. The defaults are only set if the setting does not exist (thus, it is implied that the user needs a default). Required Parameters ------------------- * config: obj The configobj instance object to scan if defaults have been customized. Optional Parameters ------------------- * settings: None The global settings to use if it exists, otherwise use the defaults. Returns ------- * config: obj The configobj instance after defaults have been set if applicable. --------------------------------------------------------------- """ config = _global_config(config, settings) config['plot_style'] = 'whitegrid' if 'plot_style' not in config else config['plot_style'] config['plot_color'] = 'gray' if 'plot_color' not in config else config['plot_color'] config['plot_dpi'] = 300 if 'plot_dpi' not in config else config['plot_dpi'] config['plot_ext'] = '.png' if 'plot_ext' not in config else config['plot_ext'] return config
3b17e97c68bcec31856cb0dc4d7f3db4280a748f
3,647,044
import os def load_spectrogram(spectrogram_path): """Load a cante100 dataset spectrogram file. Args: spectrogram_path (str): path to audio file Returns: np.array: spectrogram """ if not os.path.exists(spectrogram_path): raise IOError("spectrogram_path {} does not exist".format(spectrogram_path)) parsed_spectrogram = np.genfromtxt(spectrogram_path, delimiter=' ') spectrogram = parsed_spectrogram.astype(np.float) return spectrogram
34c0db598558886ee48518a464dc90242b82d2f8
3,647,045
def evaluate_fN(model, NHI): """ Evaluate an f(N,X) model at a set of NHI values Parameters ---------- NHI : array log NHI values Returns ------- log_fN : array f(NHI,X) values """ # Evaluate without z dependence log_fNX = model.__call__(NHI) return log_fNX
e952a29fdf5864b26dc534140b2ccfb0b59fe24b
3,647,046
def generate_volume_data(img_data): """ Generate volume data from img_data. :param img_data: A NIfTI.get_data object, img_data[:][x][y][z] is the tensor matrix information of voxel (x,y,z)img_data: :return: vtkImageData object which stores volume render object. """ dims = [148, 190, 160] # size of input data. Temporarily only support test file. #TODO: Modify the code to handle more files. image = vtk.vtkImageData() image.SetDimensions(dims[0] - 2 , dims[1] - 2 , dims[2] - 2 ) image.SetSpacing(1, 1, 1) # set spacing image.SetOrigin(0, 0, 0) image.SetExtent(0, dims[0] - 1, 0, dims[1] - 1, 0, dims[2] - 1) image.AllocateScalars(vtk.VTK_UNSIGNED_SHORT, 1) for z in range(0, dims[2]-1): for y in range(0, dims[1]-1 ): for x in range(0, dims[0]-1 ): scalardata = img_data[0][x][y][z] # set confidence as each voxel's scalardata image.SetScalarComponentFromFloat(x, y, z, 0, scalardata) return image
b726d1484944a3f827cae836ca30cf8c7e81d493
3,647,047
def pipe(bill_texts_df): """ soup = bs(text, 'html.parser') raw_text = extractRawText(soup) clean_text = cleanRawText(raw_text) metadata = extract_metadata(soup) """ bill_texts_df['soup'] = \ bill_texts_df['html'].apply(lambda x: bs(x, 'html.parser')) bill_texts_df['content'] = \ bill_texts_df['soup'].apply(lambda x: extractRawText(x.body)) bill_texts_df['long_title'] = \ bill_texts_df['soup'].apply(lambda x: extractLongTitle(x.body)) bill_texts_df['table_info'] = \ bill_texts_df['soup'].apply(lambda x: extractTableContent(x.body)) return None
73a8a850fa15f8ad33f9f823f9b2b4d6f808826b
3,647,048
def _as_static(data, fs): """Get data into the Pyglet audio format.""" fs = int(fs) if data.ndim not in (1, 2): raise ValueError('Data must have one or two dimensions') n_ch = data.shape[0] if data.ndim == 2 else 1 audio_format = AudioFormat(channels=n_ch, sample_size=16, sample_rate=fs) data = data.T.ravel('C') data[data < -1] = -1 data[data > 1] = 1 data = (data * (2 ** 15)).astype('int16').tostring() return StaticMemorySourceFixed(data, audio_format)
b76d4c49107f8b9679e975bd2ce114314289d181
3,647,049
def preprocess_data(cubes, time_slice: dict = None): """Regrid the data to the first cube and optional time-slicing.""" # Increase TEST_REVISION anytime you make changes to this function. if time_slice: cubes = [extract_time(cube, **time_slice) for cube in cubes] first_cube = cubes[0] # regrid to first cube regrid_kwargs = { 'grid': first_cube, 'scheme': iris.analysis.Nearest(), } cubes = [cube.regrid(**regrid_kwargs) for cube in cubes] return cubes
82e851bda39a4ab7716c7b9cd6038743961d9faf
3,647,050
import base64 def password_to_str(password): """ 加密 :param password: :return: """ def add_to_16(password): while len(password) % 16 != 0: password += '\0' return str.encode(password) # 返回bytes key = 'saierwangluo' # 密钥 aes = AES.new(add_to_16(key), AES.MODE_ECB) # 初始化aes加密器 des3 = DES3.new(add_to_16(key), DES3.MODE_ECB) # 初始化3des加密器 # aes加密 encrypted_text = str( base64.encodebytes( aes.encrypt(add_to_16(password))), encoding='utf8' ).replace('\n', '') des_encrypted_text = str( base64.encodebytes(des3.encrypt(add_to_16(encrypted_text))), encoding='utf8' ).replace('\n', '') # 3des加密 # 返回加密后数据 return des_encrypted_text
60a6d361d6de3c41d2a27cd24312006920ad1013
3,647,051
from src.Emails.checker.mailru import checker import re import requests def email_checker_mailru(request: Request, email: str): """ This API check email from mail.ru<br> <pre> :return: JSON<br> </pre> Example:<br> <br> <code> https://server1.majhcc.xyz/api/email/checker/mailru?email=oman4omani@mail.ru """ # regex mail.ru if re.match(r'^[a-zA-Z0-9.!#$%&’*+/=?^_`{|}~-]@mail\.ru', email): try: result = checker(email) if result: return { 'status': 'success', 'available': True } elif not result: return { 'status': 'success', 'available': False } elif result == None: return { 'status': 'error please try again or contact us ==> instagram: @majhcc' } else: return { 'status': 'error please try again or contact us ==> instagram: @majhcc' } except Exception as e: data = { 'content': f'Check email from mail.ru api Error: ***{str(e)}***' } requests.post(WEBHOOKURL, data=data) return { 'status': 'error please try again or contact us ==> instagram: @majhcc'} else: return { 'status': 'error', 'result': 'Invalid email' }
2835439d3c7781efa0c244c881f42a404a8d3cad
3,647,052
from typing import Callable def guild_only() -> Callable: """A :func:`.check` that indicates this command must only be used in a guild context only. Basically, no private messages are allowed when using the command. This check raises a special exception, :exc:`.NoPrivateMessage` that is inherited from :exc:`.CheckFailure`. """ def predicate(ctx: InteractionContext) -> bool: if ctx.guild is None: raise NoPrivateMessage() return True return check(predicate)
40307b2a8672180b2a3532380f11b2701bcf0dd8
3,647,053
from typing import Union from typing import List from typing import Callable from typing import Any from typing import Sequence def make_lvis_metrics( save_folder=None, filename_prefix="model_output", iou_types: Union[str, List[str]] = "bbox", summarize_to_stdout: bool = True, evaluator_factory: Callable[ [Any, List[str]], DetectionEvaluator ] = LvisEvaluator, gt_api_def: Sequence[ SupportedDatasetApiDef ] = DEFAULT_SUPPROTED_DETECTION_DATASETS, ): """ Returns an instance of :class:`DetectionMetrics` initialized for the LVIS dataset. :param save_folder: path to the folder where to write model output files. Defaults to None, which means that the model output of test instances will not be stored. :param filename_prefix: prefix common to all model outputs files. Ignored if `save_folder` is None. Defaults to "model_output" :param iou_types: list of (or a single string) strings describing the iou types to use when computing metrics. Defaults to "bbox". Valid values are "bbox" and "segm". :param summarize_to_stdout: if True, a summary of evaluation metrics will be printed to stdout (as a table) using the Lvis API. Defaults to True. :param evaluator_factory: Defaults to :class:`LvisEvaluator` constructor. :param gt_api_def: Defaults to the list of supported datasets (LVIS is supported in Avalanche through class:`LvisDataset`). :return: A metric plugin that can compute metrics on the LVIS dataset. """ return DetectionMetrics( evaluator_factory=evaluator_factory, gt_api_def=gt_api_def, save_folder=save_folder, filename_prefix=filename_prefix, iou_types=iou_types, summarize_to_stdout=summarize_to_stdout, )
cbb3df8d8e9daa7976a7be7d6c0588e943aecd5e
3,647,054
def _calculate_cos_loop(graph, threebody_cutoff=4.0): """ Calculate the cosine theta of triplets using loops Args: graph: List Returns: a list of cosine theta values """ pair_vector = get_pair_vector_from_graph(graph) _, _, n_sites = tf.unique_with_counts(graph[Index.BOND_ATOM_INDICES][:, 0]) start_index = 0 cos = [] for n_site in n_sites: for i in range(n_site): for j in range(n_site): if i == j: continue vi = pair_vector[i + start_index].numpy() vj = pair_vector[j + start_index].numpy() di = np.linalg.norm(vi) dj = np.linalg.norm(vj) if (di <= threebody_cutoff) and (dj <= threebody_cutoff): cos.append(vi.dot(vj) / np.linalg.norm(vi) / np.linalg.norm(vj)) start_index += n_site return cos
3a3283a67c743b2bb7f7a9627e6847dcfc286276
3,647,055
def load_plugin(): """ Returns plugin available in this module """ return HostTestPluginCopyMethod_Firefox()
26df11d662b3d4f98a294df9c61841c1ab76e8fc
3,647,056
import logging def temp_url_page(rid): """ Temporary page where receipts are stored. The user, which visits it first, get the receipt. :param rid: (str) receipt id (user is assigned to receipt with this id) """ if not user_handler.assign_rid_user(rid, flask.session['username']): logging.warn('Trying to steal receipt! {ip} has visited page: {url}! Cancelling request!'. format(ip=flask.request.remote_addr, url=flask.request.url)) flask.abort(400) return return flask.redirect(flask.url_for('dashboard_page'))
e5ebfe4602e427b4d96cdf1c0298057a5b472052
3,647,057
def extract_dependencies(content): """ Extract the dependencies from the CMake code. The `find_package()` and `pkg_check_modules` calls must be on a single line and the first argument must be a literal string for this function to be able to extract the dependency name. :param str content: The CMake source code :returns: The dependencies name :rtype: list """ return \ extract_find_package_calls(content) | \ _extract_pkg_config_calls(content)
d9f114695cb3622f4a8dbc23db3a97ed53b164ad
3,647,058
def _block(x, out_channels, name, conv=conv2d, kernel=(3, 3), strides=(2, 2), dilations=(1, 1), update_collection=None, act=tf.nn.leaky_relu, pooling='avg', padding='SAME', batch_norm=False): """Builds the residual blocks used in the discriminator in GAN. Args: x: The 4D input vector. out_channels: Number of features in the output layer. name: The variable scope name for the block. conv: Convolution function. Options conv2d or snconv2d kernel: The height and width of the convolution kernel filter (Default value = (3, 3)) strides: Rate of convolution strides (Default value = (2, 2)) dilations: Rate of convolution dilation (Default value = (1, 1)) update_collection: The update collections used in the in the spectral_normed_weight. (Default value = None) downsample: If True, downsample the spatial size the input tensor . If False, the spatial size of the input tensor is unchanged. (Default value = True) act: The activation function used in the block. (Default value = tf.nn.relu) pooling: Strategy of pooling. Default: average pooling. Otherwise, no pooling, just using strides padding: Padding type (Default value = 'SAME') batch_norm: A flag that determines if batch norm should be used (Default value = False) Returns: A tensor representing the output of the operation. """ with tf.variable_scope(name): if batch_norm: bn0 = BatchNorm(name='bn_0') bn1 = BatchNorm(name='bn_1') input_channels = x.shape.as_list()[-1] x_0 = x x = conv(x, out_channels, kernel, dilations=dilations, name='conv1', padding=padding) if batch_norm: x = bn0(x) x = act(x, name="before_downsampling") x = down_sampling(x, conv, pooling, out_channels, kernel, strides, update_collection, 'conv2', padding) if batch_norm: x = bn1(x) if strides[0] > 1 or strides[1] > 1 or input_channels != out_channels: x_0 = down_sampling(x_0, conv, pooling, out_channels, kernel, strides, update_collection, 'conv3', padding) out = x_0 + x # No RELU: http://torch.ch/blog/2016/02/04/resnets.html return out
21851730e1326b85023d88661da13020c37aa723
3,647,059
def createLaplaceGaussianKernel(sigma, size): """构建高斯拉普拉斯卷积核 Args: sigma ([float]): 高斯函数的标准差 size ([tuple]): 高斯核的大小,奇数 Returns: [ndarray]: 高斯拉普拉斯卷积核 """ H, W = size r, c = np.mgrid[0:H:1, 0:W:1] r = r - (H - 1) / 2 c = c - (W - 1) / 2 sigma2 = pow(sigma, 2.0) norm2 = np.power(r, 2.0) + np.power(c, 2.0) LoGKernel = (norm2 / sigma2 - 2)*np.exp(-norm2 / (2 * sigma2)) return LoGKernel
aae788ba324a243691391a61b02e6a5f1b358c4e
3,647,060
import os def is_file_type(fpath, filename, ext_list): """Returns true if file is valid, not hidden, and has extension of given type""" file_parts = filename.split('.') # invalid file if not os.path.isfile(os.path.join(fpath, filename)): return False # hidden file elif filename.startswith('.'): return False # no extension elif len(file_parts) < 2: return False # check file type extension = file_parts[-1].lower() if extension in ext_list: return True else: return False
52213f023313e4edb5628fcebf47cb94bc2cfcbe
3,647,061
def xp_rirgen2(room, source_loc, mic_loc, c=340, fs=16000, t60=0.5, beta=None, nsamples=None, htw=None, hpfilt=True, method=1): """Generates room impulse responses corresponding to each source-microphone pair placed in a room. Args: room (numpy/cupy array) = room dimensions in meters, shape: (3, 1) source_loc (numpy/cupy array) = source locations in meters, shape: (3, nsrc) mic_loc (numpy/cupy array) = microphone locations in meters, shape: (3, nmic) kwargs: c (float) = speed of sound in meters/second (default: 340) fs (float) = sampling rate in Hz (default: 16000) t60 (float) = t60 or rt60 in seconds or None to use beta parameters (default: 0.5) beta (numpy/cupy array) = beta parameters of reflections for each side, shape (6,1) (default: None) nsamples (int) = number of output samples (default: auto from t60) htw (int) = half size in samples of the time window used for sinc function interpolation (default automatic) hpfilt (bool) = use post-generation highpass filter or not (default True) method (int) = 1 or 2, 2 is not tested thoroughly and is very slow, so use 1 always (default 1) Returns: room impulse responses in time-domain of shape (nsrc, nmic, nsamples) Notes: 1. If input arrays are cupy arrays (on GPU), the code runs with cupy, otherwise with numpy 2. if you do not want to install cupy or not interested in GPU processing, remove line "import cupy" and replace "xp=cupy.get..." with "xp=np" .. seealso:: :func:`pyrirgen.RirGenerator` .. seealso:: :url:https://github.com/ehabets/RIR-Generator/blob/master/rir_generator.cpp >>> ### DOCTEST ### >>> room = np.array([4,7,3]).reshape(3,1) >>> source_loc = np.random.uniform(0,1,(3,2)) * room >>> mic_loc = np.random.uniform(0,1,(3,4)) * room >>> t60=0.3 >>> rirs_np = xp_rirgen(room, source_loc, mic_loc, t60=t60) >>> #import matplotlib.pyplot as plt >>> #plt.plot(rirs_np[0,0,:] , label='rir for src1 and mic1') >>> croom = cupy.array(room) >>> csource_loc = cupy.array(source_loc) >>> cmic_loc = cupy.array(mic_loc) >>> rirs_cp = xp_rirgen(croom, csource_loc, cmic_loc, t60=t60) >>> cupy.testing.assert_allclose(rirs_np, cupy.asnumpy(rirs_cp), atol=1e-5, rtol=1e-5) >>> beta = np.random.uniform(0.1, 0.9, size=6) >>> rirs_np = xp_rirgen(room, source_loc, mic_loc, beta=beta, t60=None) >>> cbeta = cupy.array(beta) >>> rirs_cp = xp_rirgen(croom, csource_loc, cmic_loc, beta=cbeta, t60=None) >>> cupy.testing.assert_allclose(rirs_np, cupy.asnumpy(rirs_cp), atol=1e-5, rtol=1e-5) """ # xp = cupy.get_array_module(room, source_loc, mic_loc, beta) xp if beta is None and t60 is None: raise Exception('Either t60 or beta array must be provided') elif beta is None: V = xp.prod(room) S = 2 * (room[0] * room[2] + room[1] * room[2] + room[0] * room[1]) alpha = 24 * V * xp.log(10) / (c * S * t60) if alpha < 1: beta = xp.ones(6, ) * xp.sqrt(1 - alpha) else: raise Exception('t60 value {} too small for the room'.format(t60)) else: if xp.max(beta) >= 1.0 or xp.min(beta) <= 0.0: raise Exception('beta array values should be in the interval (0,1).') if t60 is not None: print('Overwriting provided t60 value using provided beta array') alpha = 1 - beta**2 V = xp.prod(room) Se = 2 * (room[1] * room[2] * (alpha[0] + alpha[1]) + room[0] * room[2] * (alpha[2] + alpha[3]) + room[0] * room[1] * (alpha[4] + alpha[5])) t60 = 24 * xp.log(10.0) * V / (c * Se); if htw is None: htw = np.minimum(32, int(xp.min(room) / 10 / c * fs)) tw_idx = xp.arange(0, 2 * htw).reshape(2 * htw, 1) try: assert(xp.all(room.T - mic_loc.T > 0) and xp.all(room.T - source_loc.T > 0)) assert(xp.all(mic_loc.T > 0) and xp.all(source_loc.T > 0)) except: raise Exception('Room dimensions and source and mic locations are not compatible.') cTs = c / fs # convert distances in meters to time-delays in samples room = room / cTs mic_loc = mic_loc / cTs src_loc = source_loc / cTs nmic = mic_loc.shape[-1] nsrc = source_loc.shape[-1] if nsamples is None: nsamples = int(fs * t60) def get_reflection_candidates(): nxrefl = int(nsamples / (room[0])) nyrefl = int(nsamples / (room[1])) nzrefl = int(nsamples / (room[2])) xro = xp.arange(-nxrefl, nxrefl + 1) yro = xp.arange(-nyrefl, nyrefl + 1) zro = xp.arange(-nzrefl, nzrefl + 1) xr = xro.reshape(2 * nxrefl + 1, 1, 1) yr = yro.reshape(1, 2 * nyrefl + 1, 1) zr = zro.reshape(1, 1, 2 * nzrefl + 1) RoughDelays = xp.sqrt((2 * xr * room[0]) ** 2 + (2 * yr * room[1]) ** 2 + (2 * zr * room[2]) ** 2) RoughGains = (beta[0] * beta[1]) ** xp.abs(xr) * (beta[2] * beta[3]) ** xp.abs(yr) * (beta[4] * beta[5]) ** xp.abs(zr) / ( RoughDelays + 0.5 / c * fs) # assume src-mic distance at least .5 metres maxgain = xp.max(RoughGains) vreflidx = xp.vstack(xp.nonzero(xp.logical_and(RoughDelays < nsamples, RoughGains > maxgain / 1.0e4))) nrefl = vreflidx.shape[-1] reflidx = xp.arange(nrefl).reshape(1, 1, nrefl, 1, 1, 1) xrefl = xro[vreflidx[..., reflidx][0]] yrefl = yro[vreflidx[..., reflidx][1]] zrefl = zro[vreflidx[..., reflidx][2]] return xrefl, yrefl, zrefl xrefl, yrefl, zrefl = get_reflection_candidates() def get_delays_and_gains(): xside = xp.arange(0, 2).reshape(1, 1, 1, 2, 1, 1) yside = xp.arange(0, 2).reshape(1, 1, 1, 1, 2, 1) zside = xp.arange(0, 2).reshape(1, 1, 1, 1, 1, 2) imic = xp.arange(nmic).reshape(1, nmic, 1, 1, 1, 1) isrc = xp.arange(nsrc).reshape(nsrc, 1, 1, 1, 1, 1) Delays = xp.sqrt((2 * xrefl * room[0] - mic_loc[0, imic] + (1 - 2 * xside) * src_loc[0, isrc]) ** 2 + (2 * yrefl * room[1] - mic_loc[1, imic] + (1 - 2 * yside) * src_loc[1, isrc]) ** 2 + (2 * zrefl * room[2] - mic_loc[2, imic] + (1 - 2 * zside) * src_loc[2, isrc]) ** 2) Refl_x = beta[0] ** (xp.abs(xrefl - xside)) * beta[1] ** (xp.abs(xrefl)) Refl_y = beta[2] ** (xp.abs(yrefl - yside)) * beta[3] ** (xp.abs(yrefl)) Refl_z = beta[4] ** (xp.abs(zrefl - zside)) * beta[5] ** (xp.abs(zrefl)) Gains = Refl_x * Refl_y * Refl_z / (4 * np.pi * Delays * cTs) # Gains[Delays > nsamples] = 0.0 return Delays, Gains Delays, Gains = get_delays_and_gains() rirs = xp.zeros((nsrc, nmic, nsamples), dtype=np.float32) for src in xp.arange(nsrc): for mic in xp.arange(nmic): dnow = Delays[src, mic, ...].flatten() gnow = Gains[src, mic, ...].flatten() if method == 1: gnow = gnow[dnow < nsamples - htw - 2] dnow = dnow[dnow < nsamples - htw - 2] dnow_floor = xp.floor(dnow) dnow_dist = dnow - dnow_floor dnow_floor = dnow_floor.reshape(1, dnow.shape[0]) dnow_dist = dnow_dist.reshape(1, dnow.shape[0]) gnow = gnow.reshape(1, dnow.shape[0]) dnow_ext = dnow_floor + tw_idx - htw + 1 garg = np.pi * (-dnow_dist + 1 + tw_idx - htw) gnow_ext = gnow * 0.5 * (1.0 - xp.cos(np.pi + garg / htw)) * xp.where(garg == 0.0, 1.0, xp.sin(garg) / garg) dnow = dnow_ext.flatten().astype(np.uint32) gnow = gnow_ext.flatten().astype(np.float32) rirnow = xp.zeros((nsamples,), dtype=np.float32) if xp == np: np.add.at(rirnow, dnow, gnow) else: xp.scatter_add(rirnow, dnow, gnow) rirs[src, mic, ...] = rirnow elif method == 2: ## this is too slow and may not be accurate as well gnow = gnow[dnow < nsamples] dnow = dnow[dnow < nsamples] frange = xp.arange(0, 0.5 + 0.5 / nsamples, 1.0 / nsamples) rirfft = xp.zeros(frange.shape, dtype=np.complex128) for i in range(len(frange)): rirfft[i] = xp.sum(gnow * xp.exp(-1j * 2 * np.pi * frange[i] * dnow)) rirs[src, mic, :] = xp.real(xp.fft.irfft(rirfft)).astype(dtype=np.float32) if hpfilt: rirs[:, :, 1:-1] += -0.5 * rirs[:, :, 2:] -0.5 * rirs[:, : , :-2] return rirs
2528cf725df14febb20c5634fbe9acbeadfd5a46
3,647,062
import warnings def mean_bias_removal(hindcast, alignment, cross_validate=True, **metric_kwargs): """Calc and remove bias from py:class:`~climpred.classes.HindcastEnsemble`. Args: hindcast (HindcastEnsemble): hindcast. alignment (str): which inits or verification times should be aligned? - maximize/None: maximize the degrees of freedom by slicing ``hind`` and ``verif`` to a common time frame at each lead. - same_inits: slice to a common init frame prior to computing metric. This philosophy follows the thought that each lead should be based on the same set of initializations. - same_verif: slice to a common/consistent verification time frame prior to computing metric. This philosophy follows the thought that each lead should be based on the same set of verification dates. cross_validate (bool): Use properly defined mean bias removal function. This excludes the given initialization from the bias calculation. With False, include the given initialization in the calculation, which is much faster but yields similar skill with a large N of initializations. Defaults to True. Returns: HindcastEnsemble: bias removed hindcast. """ if hindcast.get_initialized().lead.attrs["units"] != "years": warnings.warn( "HindcastEnsemble.remove_bias() is still experimental and is only tested " "for annual leads. Please consider contributing to " "https://github.com/pangeo-data/climpred/issues/605" ) def bias_func(a, b, **kwargs): return a - b bias_metric = Metric("bias", bias_func, True, False, 1) # calculate bias lead-time dependent bias = hindcast.verify( metric=bias_metric, comparison="e2o", dim=[], # not used by bias func, therefore best to add [] here alignment=alignment, **metric_kwargs, ).squeeze() # how to remove bias if cross_validate: # more correct mean_bias_func = _mean_bias_removal_cross_validate else: # faster mean_bias_func = _mean_bias_removal_quick bias_removed_hind = mean_bias_func(hindcast._datasets["initialized"], bias, "init") bias_removed_hind = bias_removed_hind.squeeze() # remove groupby label from coords for c in ["dayofyear", "skill", "week", "month"]: if c in bias_removed_hind.coords and c not in bias_removed_hind.dims: del bias_removed_hind.coords[c] # replace raw with bias reducted initialized dataset hindcast_bias_removed = hindcast.copy() hindcast_bias_removed._datasets["initialized"] = bias_removed_hind return hindcast_bias_removed
01155462155d9f718fa2a12053297903d47b6661
3,647,063
import requests def request_sudoku_valid(sudoku: str) -> bool: """valid request""" is_valid = False provider_request = requests.get(f"{base_url}/valid/{sudoku}") if provider_request.status_code == 200: request_data = provider_request.json() is_valid = request_data["result"] # TODO: else raise exception return is_valid
274a6f3e617273d1a1d81777788865337d4d36ae
3,647,064
def index(): """ vista principal """ return "<i>API RestFull PARCES Version 0.1</i>"
8b8b963f75395df665bcf0283528c9641b3ea20e
3,647,065
def tag(dicts, key, value): """Adds the key value to each dict in the sequence""" for d in dicts: d[key] = value return dicts
ffcfda13845fb8b522e50211184104a11da50398
3,647,066
def openpairshelf(filename, flag='c', protocol=None, writeback=False): """Returns a ProteinPairDB object, with similar functionality to shelve.open()""" return ProteinPairDB(filename, flag, protocol, writeback)
886a474aa67f729461995fe5427d5f68b9db9fe0
3,647,067
def createUser(emailid, password, contact_no, firstname, lastname, category, address, description, company_url, image_url, con=None, cur=None, db=None): """ Tries to create a new user with the given data. Returns: - dict: dict object containing all user data, if query was successfull - False: If query was unsuccessful """ sql = """Insert into users( emailid, password, firstname, lastname, contact_no, category, address, description, company_url, image_url ) values (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)""" db(sql, (emailid, password, firstname, lastname, contact_no, category, address, description, company_url, image_url)) con.commit() # close database connection user = getUserUsingEmail(emailid) return user or False
05dc71db991e126d43fd9ddd044f1cf65f3e97c1
3,647,068
import pathlib import subprocess import json import re def sensor_pull_storage(appname, accesskey, timestring, *,data_folder = None, ttn_version=3): """ Pull data from TTN via the TTN storage API. appname is the name of the TTN app accesskey is the full accesskey from ttn. For TTN V3, this is is the secret that is output when a key is created. For TTN V2, this is the string from the console, starting with 'ttn-acount-v2.' timestring indicates amount of data needed, e.g. '100h'. ttn_version should be 2 or 3; 3 is default. If data_folder is supplied, it is a string or a Path; it is taken as a directory, and the name "sensors_lastperiod.json" is appended to form an output file name, and the data is written to the resulting file, replacing any previous contents. Otherwise, the data is returned as a Python array (for V3) or a string (for V2). We've not really tested V2 extensively. """ args = [ "curl" ] if ttn_version == 2: args += [ "-X", "GET", "--header", "Accept: application/json", "--header", f"Authorization: key {accesskey}", f"https://{appname}.data.thethingsnetwork.org/api/v2/query?last={timestring}" ] elif ttn_version == 3: args += [ "-G", f"https://nam1.cloud.thethings.network/api/v3/as/applications/{appname}/packages/storage/uplink_message", "--header", f"Authorization: Bearer {accesskey}", "--header", "Accept: text/event-stream", "-d", f"last={timestring}", "-d", "field_mask=up.uplink_message.decoded_payload", ] else: raise FetchError(f"Illegal ttn_version (not 2 or 3)") # if the user supplied a data_folder, than tack on the args. # list1 += list2 syntax means "append each element of list2 to list 1" # pathlib.Path allows if data_folder != None: args += [ "-o", pathlib.Path(data_folder, "sensors_lastperiod.json") ] result = subprocess.run( args, shell=False, check=True, capture_output=True ) sresult = result.stdout if ttn_version == 3: return list(map(json.loads, re.sub(r'\n+', '\n', sresult.decode()).splitlines())) else: return sresult
704a039d23443d4ec45968596ec948237e9a2c29
3,647,069
async def discordView(cls:"PhaazebotWeb", WebRequest:ExtendedRequest) -> Response: """ Default url: /discord/view/{guild_id:\d+} """ PhaazeDiscord:"PhaazebotDiscord" = cls.BASE.Discord if not PhaazeDiscord: return await cls.Tree.errors.notAllowed(cls, WebRequest, msg="Discord module is not active") guild_id:str = WebRequest.match_info.get("guild_id", "") Guild:discord.Guild = discord.utils.get(PhaazeDiscord.guilds, id=int(guild_id)) if not Guild: return await cls.Tree.Discord.discordinvite.discordInvite(WebRequest, msg=f"Phaaze is not on this Server", guild_id=guild_id) ViewPage:HTMLFormatter = HTMLFormatter("Platforms/Web/Content/Html/Discord/view.html") ViewPage.replace( guild_id=Guild.id, guild_icon_url=Guild.icon_url, guild_name=Guild.name ) site:str = cls.HTMLRoot.replace( replace_empty=True, title="Phaaze | Discord - View", header=getNavbar(active="discord"), main=ViewPage ) return cls.response( body=site, status=200, content_type='text/html' )
76f222bdd5164c23c95803d47fc1af48d89192e2
3,647,070
def update_max_braking_decel(vehicle, mbd): """ Updates the max braking decel of the vehicle :param vehicle: vehicle :param mbd: new max braking decel :type vehicle: VehicleProfile :return: Updated vehicle """ return vehicle.update_max_braking_decel(mbd)
dea3bf14ca14363246539fd81cf853cd2c0ad980
3,647,071
from scipy.spatial.distance import pdist, squareform def get_outlier_removal_mask(xcoords, ycoords, nth_neighbor=10, quantile=.9): """ Parameters ---------- xcoords : ycoords : nth_neighbor : (Default value = 10) quantile : (Default value = .9) Returns ------- """ D = squareform(pdist(np.vstack((xcoords, ycoords)).T)) distances = D[np.argsort(D, axis=0)[nth_neighbor - 1, :], 0] return distances <= np.quantile(distances, quantile)
8d01088401405613696ced2dbbd9c03940417f10
3,647,072
def _kp(a, b): """Special case Kronecker tensor product of a[i] and b[i] at each time interval i for i = 0 .. N-1 It is specialized for the case where both a and b are shape N x m x 1 """ if a.shape != b.shape or a.shape[-1] != 1: raise(ValueError) N = a.shape[0] # take the outer product over the last two axes, then reshape: return np.einsum('ijk,ilk->ijkl', a, b).reshape(N, -1, 1)
b133557d88deac2d9357731d820de0522521d6f3
3,647,073
def strategy(history, alivePlayers, whoami, memory): """ history contains all previous rounds (key : id of player (shooter), value : id of player (target)) alivePlayers is a list of all player ids whoami is your own id (to not kill yourself by mistake) memory is None by default and transferred over (if you set it to 1, it will be 1 in the next round) memory is NOT shared between games (subject to changes) """ # Your code would be here but this strategy is dumb... """ You must return an id of a player (if not : you shoot in the air) Memory must be set to something but can be anything (None included ) """ return alivePlayers[0], None
f211a0961269808d9a7b0a08758273d4a03b9136
3,647,074
def parse_fn(serialized_example: bytes) -> FeaturesType: """Parses and converts Tensors for this module's Features. This casts the audio_raw_pcm16 feature to float32 and scales it into the range [-1.0, 1.0]. Args: serialized_example: A serialized tf.train.ExampleProto with the features dict keys declared in the :py:class:Features enum. Returns: Tensor-valued dict of features. The keys are those declared in the :py:class:Features enum. """ features = tf.io.parse_single_example( serialized_example, {f.value.name: f.value.spec for f in Features}) audio_key: str = Features.AUDIO.value.name features[audio_key] = tf.cast(tf.io.decode_raw(features[audio_key], tf.int16), tf.float32) / np.iinfo(np.int16).max return features
54e841987986027dc6d4d989fe6442ceecd022b8
3,647,075
import click def cli(ctx: click.Context) -> int: """ Method used to declare root CLI command through decorators. """ return 0
be5016c5c38f435b8a213a6ce39b5571aee809f1
3,647,076
def parse_clock(line): """Parse clock information""" search = parse(REGEX_CLOCK, line) if search: return int(search.group('clock')) else: return None
a4464c979d31bab463f949bec83da99e72af6ca6
3,647,077
import requests def block_latest(self, **kwargs): """ Return the latest block available to the backends, also known as the tip of the blockchain. https://docs.blockfrost.io/#tag/Cardano-Blocks/paths/~1blocks~1latest/get :param return_type: Optional. "object", "json" or "pandas". Default: "object". :type return_type: str :returns BlockResponse object. :rtype BlockResponse :raises ApiError: If API fails :raises Exception: If the API response is somehow malformed. """ return requests.get( url=f"{self.url}/blocks/latest", headers=self.default_headers )
a14fc3512138c1d15b32b09bd20ea03678964437
3,647,078
def get_courses(): """ Route to display all courses """ params = format_dict(request.args) if params: try: result = Course.query.filter_by(**params).order_by(Course.active.desc()) except InvalidRequestError: return { 'message': 'One or more parameter(s) does not exist' }, 400 else: result = Course.query.order_by(Course.active.desc()) return { "courses": [c.serialize for c in result] }
6dcdcb5df4d0010661ffe92f55522638ae51a2b8
3,647,079
def zero_adam_param_states(state: flax.optim.OptimizerState, selector: str): """Applies a gradient for a set of parameters. Args: state: a named tuple containing the state of the optimizer selector: a path string defining which parameters to freeze. Returns: A tuple containing the new parameters and the new optimizer state. """ step = state.step params = flax.core.unfreeze(state.param_states) flat_params = { "/".join(k): v for k, v in traverse_util.flatten_dict(params).items() } for k in flat_params: if k.startswith(selector): v = flat_params[k] # pylint: disable=protected-access flat_params[k] = flax.optim.adam._AdamParamState( jnp.zeros_like(v.grad_ema), jnp.zeros_like(v.grad_sq_ema) ) new_param_states = traverse_util.unflatten_dict( {tuple(k.split("/")): v for k, v in flat_params.items()} ) new_param_states = dict(flax.core.freeze(new_param_states)) new_state = flax.optim.OptimizerState(step, new_param_states) return new_state
8a7cb65028866e4a7f3a03b589fa1bf5798a25e0
3,647,080
import scipy def leftFitNormal(population): """ Obtain mode and standard deviation from the left side of a population. >>> pop = np.random.normal(loc=-20, scale=3, size=15000) >>> mode, sigma = leftFitNormal(pop) >>> -22 < mode < -18 True >>> round(sigma) 3 >>> pop[pop > -18] += 10 # perturb right side >>> mode, sigma = leftFitNormal(pop) >>> -22 < mode < -18 True >>> round(sigma) == 3 True >>> pop[pop < -22] -= 10 # perturb left side >>> mode, sigma = leftFitNormal(pop) >>> -22 < mode < -18 True >>> round(sigma) == 3 False """ # TODO: Can this function be omitted? # Quick alternative robust fit: # median = np.nanmedian(population) # MADstd = np.nanmedian(np.abs(population - median)) * 1.4826 # Could still modify this estimator to ignore samples > median. # Note, if the distribution is right-skewed or bimodal (e.g. if there is # some land amongst mostly open water) then other relative frequencies # will proportionally be depressed, favouring the fit of a broader # Gaussian (perhaps also shifted slightly rightward) to the left side # of the histogram (compared to if the distribution was normal). # Could address this by normalising the interval area. # # Currently the tests for perturbed distributions bypass this limitation # by _conditionally_ replacing existing samples, rather than by mixing # additional components into the population i.e. avoiding # pop[:5000] = np.linspace(-15, -5, 5000). std = np.nanstd(population) # naive initial estimate Y, X = hist_fixedwidth(population) # Take left side of distribution pos = Y.argmax() mode = X[pos] X = X[:pos+1] Y = Y[:pos+1] # fit gaussian to (left side of) distribution def gaussian(x, mean, sigma): return np.exp(-0.5 * ((x - mean)/sigma)**2) / (sigma * (2*np.pi)**0.5) (mean, std), cov = scipy.optimize.curve_fit(gaussian, X, Y, p0=[mode, std]) return mode, std
28fbd93efa893dbb31e81d9875db97370f163716
3,647,081
from bs4 import BeautifulSoup def get_stock_market_list(corp_cls: str, include_corp_name=True) -> dict: """ 상장 회사 dictionary 반환 Parameters ---------- corp_cls: str Y: stock market(코스피), K: kosdaq market(코스닥), N: konex Market(코넥스) include_corp_name: bool, optional if True, returning dictionary includes corp_name(default: True) Returns ------- dict of {stock_code: information} 상장 회사 정보 dictionary 반환( 회사 이름, 섹터, 물품) """ if corp_cls.upper() == 'E': raise ValueError('ETC market is not supported') corp_cls_to_market = { "Y": "stockMkt", "K": "kosdaqMkt", "N": "konexMkt", } url = 'http://kind.krx.co.kr/corpgeneral/corpList.do' referer = 'http://kind.krx.co.kr/corpgeneral/corpList.do?method=loadInitPage' market_type = corp_cls_to_market[corp_cls.upper()] payload = { 'method': 'download', 'pageIndex': 1, 'currentPageSize': 5000, 'orderMode': 3, 'orderStat': 'D', 'searchType': 13, 'marketType': market_type, 'fiscalYearEnd': 'all', 'location': 'all', } stock_market_list = dict() resp = request.post(url=url, payload=payload, referer=referer) html = BeautifulSoup(resp.text, 'html.parser') rows = html.find_all('tr') for row in rows: cols = row.find_all('td') if len(cols) > 0: corp_name = cols[0].text.strip() stock_code = cols[1].text.strip() sector = cols[2].text.strip() product = cols[3].text.strip() corp_info = {'sector': sector, 'product': product, 'corp_cls': corp_cls} if include_corp_name: corp_info['corp_name'] = corp_name stock_market_list[stock_code] = corp_info return stock_market_list
c8e0242e1ddfcc4f32514f131f3a9797694202c1
3,647,082
def evaluate_template(template: dict) -> dict: """ This function resolves the template by parsing the T2WML expressions and replacing them by the class trees of those expressions :param template: :return: """ response = dict() for key, value in template.items(): if key == 'qualifier': response[key] = [] for i in range(len(template[key])): temp_dict = dict() for k, v in template[key][i].items(): if isinstance(v, (ItemExpression, ValueExpression, BooleanEquation)): col, row, temp_dict[k] = v.evaluate_and_get_cell(bindings) temp_dict['cell'] = get_actual_cell_index((col, row)) else: temp_dict[k] = v if "property" in temp_dict and temp_dict["property"] == "P585": if "format" in temp_dict: try: datetime_string, precision = parse_datetime_string(temp_dict["value"], additional_formats=[temp_dict["format"]]) if "precision" not in temp_dict: temp_dict["precision"] = int(precision.value.__str__()) else: temp_dict["precision"] = translate_precision_to_integer(temp_dict["precision"]) temp_dict["value"] = datetime_string except Exception as e: raise e response[key].append(temp_dict) else: if isinstance(value, (ItemExpression, ValueExpression, BooleanEquation)): col, row, response[key] = value.evaluate_and_get_cell(bindings) if key == "item": response['cell'] = get_actual_cell_index((col, row)) else: response[key] = value return response
596516f9dfb81170212020cfb053339ddb49b716
3,647,083
def get_CommandeProduits(path, prefix='CP_',cleaned=False): """ Read CSV (CommandeProduits) into Dataframe. All relevant columns are kept and renamed with prefix. Args: path (str): file path to CommandeProduits.csv prefix (str): All relevant columns are renamed with prefix Returns: df (Dataframe): Resulting dataframe """ col = {'Id':prefix+'Id', 'Commande_Id':'Commande_Id', 'OffreProduit_Id':'OffreProduit_Id', 'QuantiteTotale':prefix+'QuantiteTotale', 'QuantiteUnite':prefix+'QuantiteUnite', 'QuantiteValeur':prefix+'QuantiteValeur', 'MontantTotal':prefix+'MontantTotal', 'Weight':prefix+'Weight'} dt = {'Id': 'int64', 'Commande_Id': 'int64', 'OffreProduit_Id':'int64', 'QuantiteTotale':'float64', 'QuantiteUnite':'object', 'QuantiteValeur':'float64', 'MontantTotal':'float64', 'Weight':'float64'} if not cleaned: df = pd.read_csv(path, sep='\t', encoding='utf-8', usecols=list(col.keys()), dtype=dt) df = df.rename(index=str, columns=col) else: df = pd.read_csv(path, sep='\t', encoding='utf-8',index_col=0) return df
18c5c7e375abcc57c2cfcbc4f2c58ecec5aecf59
3,647,084
def hist_equal(image, hist): """ Equalize an image based on a histogram. Parameters ---------- image : af.Array - A 2 D arrayfire array representing an image, or - A multi dimensional array representing batch of images. hist : af.Array - Containing the histogram of an image. Returns --------- output : af.Array - The equalized image. """ output = Array() safe_call(backend.get().af_hist_equal(c_pointer(output.arr), image.arr, hist.arr)) return output
70aeeb1822752c2f7fb5085d761bb9b309d29335
3,647,085
def get_close_icon(x1, y1, height, width): """percentage = 0.1 height = -1 while height < 15 and percentage < 1.0: height = int((y2 - y1) * percentage) percentage += 0.1 return (x2 - height), y1, x2, (y1 + height)""" return x1, y1, x1 + 15, y1 + 15
78b65cdeeb4f6b3a526fd5dd41b34f35545f1e9d
3,647,086
def train_model(network, data, labels, batch_size, epochs, validation_data=None, verbose=True, shuffle=False): """ Train """ model = network.fit( data, labels, batch_size=batch_size, epochs=epochs, validation_data=validation_data, shuffle=shuffle, verbose=verbose) return model
a2b093aef1b607cd34dd30e8c5f126e1efb3d409
3,647,087
def taoyuan_agrichannel_irrigation_transfer_loss_rate(): """ Real Name: TaoYuan AgriChannel Irrigation Transfer Loss Rate Original Eqn: 0 Units: m3/m3 Limits: (None, None) Type: constant Subs: None This is "no loss rate" version. """ return 0
9fd8a84ae79cbeaf8c8259da815f9322f27b253f
3,647,088
def lambda_handler(event, context): """ Find and replace following words and outputs the result. Oracle -> Oracle© Google -> Google© Microsoft -> Microsoft© Amazon -> Amazon© Deloitte -> Deloitte© Example input: “We really like the new security features of Google Cloud”. Expected output: “We really like the new security features of Google© Cloud”. """ # Return 400 if event is none or strToReplace is blank if not event or not event['strToReplace']: return { 'statusCode': 400, 'body': "Input string not provided." } # Input String replacementString = event['strToReplace'] # Dictionary of words with replacement words wordsToReplaceDict = {'Oracle': 'Oracle©', 'Google': 'Google©', 'Microsoft': 'Microsoft©', 'Amazon': 'Amazon©', 'Deloitte': 'Deloitte©'} # Iterate over all key-value pairs in dictionary for key, value in wordsToReplaceDict.items(): # Replace words in string replacementString = replacementString.replace(key, value) return { 'statusCode': 200, 'body': replacementString }
66dc2914dd04a2e265ed21542bd462b61344d040
3,647,089
def update_inv(X, X_inv, i, v): """Computes a rank 1 update of the the inverse of a symmetrical matrix. Given a symmerical matrix X and its inverse X^{-1}, this function computes the inverse of Y, which is a copy of X, with the i'th row&column replaced by given vector v. Parameters ---------- X : ndarray, shape (N, N) A symmetrical matrix. X_inv : nparray, shape (N, N) The inverse of X_inv. i : int The index of the row/column to replace. v : ndarray, shape (N,) The values to replace the row/column with. Returns ------- Y_inv : ndarray, shape (N, N) The inverse of Y. """ U = v[:, np.newaxis] - X[:, [i]] mask = np.zeros((len(U), 1)) mask[i] = 1 U = np.hstack((U, mask)) V = U[:, [1, 0]].T V[1, i] = 0 C = np.eye(2) X_inv_U = X_inv.dot(U) V_X_inv = V.dot(X_inv) Y_inv = X_inv - X_inv_U.dot(pinv(C + V_X_inv.dot(U))).dot(V_X_inv) return Y_inv
c811dbf699d8f93fa2fa5b3f68c5b23cf4131e9f
3,647,090
import csv def read_barcode_lineno_map(stream): """Build a map of barcodes to line number from a stream This builds a one based dictionary of barcode to line numbers. """ barcodes = {} reader = csv.reader(stream, delimiter="\t") for i, line in enumerate(reader): barcodes[line[0]] = i + 1 return barcodes
545a0d02dd76e774ba0de86431113ad9f36a098e
3,647,091
def match_in_candidate_innings(entry, innings, summary_innings, entities): """ :param entry: :param innings: innings to be searched in :param summary_innings: innings mentioned in the summary segment :param entities: total entities in the segment :return: """ entities_in_summary_inning = set() for summary_inning in summary_innings: intersection = get_matching_entities_in_inning(entry, summary_inning, entities) entities_in_summary_inning.update(intersection) entities_not_found = entities.difference(entities_in_summary_inning) matched_inning = -1 if len(entities_not_found) > 1: remaining_inings = set(innings).difference(set(summary_innings)) orderered_remaining_innings = [inning for inning in innings if inning in remaining_inings] matched_inning = get_inning_all_entities_set_intersection(entry, orderered_remaining_innings, entities_not_found) return matched_inning
3551212f79c6ecb298ec6b55aa7b68213b950394
3,647,092
from typing import Optional from typing import Union from typing import Callable from typing import Any def checkpoint( name: Optional[str] = None, on_error: bool = True, cond: Union[bool, Callable[..., bool]] = False, ) -> Callable[[Callable], Any]: """ Create a checkpointing decorator. Args: ckpt_name (Optional[str]): Name of the checkpoint when saved. on_error (bool): Whether to save checkpoint when an error occurs. cond (Union[bool, Callable[..., bool]]): Condition under which to save checkpoint. If a Callable, all parameters of the wrapped function should be passed and it has to return a boolean. Returns: A decorator function. """ def ckpt_worker(func: Callable): if name is None: ckpt_name = func.__name__ else: ckpt_name = name return CkptWrapper(func=func, ckpt_name=ckpt_name, on_error=on_error, cond=cond) return ckpt_worker
39bab1a33523c34b04a2ed7f2efd6467de63b27b
3,647,093
def return_int(bit_len, unsigned=False): """ This function return the decorator that change return value to valid value. The target function of decorator should return only one value e.g. func(*args, **kargs) -> value: """ if bit_len not in VALID_BIT_LENGTH_OF_INT: err = "Value of bit_len should be the one of {}, but your bit_len={}." raise ByteDatasValueError(err.format(VALID_BIT_LENGTH_OF_INT, bit_len)) # calculate max_value for changing raw value to valid value max_value = 2**bit_len def decorator(function): """decorator function""" @wraps(function) def wrapper(*args, **kwargs): """ change valid to positive if value < 0 check value than call function or return False directly """ value = function(*args, **kwargs) if value >= max_value or value < 0: err = ("Returned value of {} should be between 0 and {}, but your " "value = {}.") raise ByteDatasValueError(err.format(function.__name__, max_value, value)) if unsigned is False: # if value > max_value//2 , it means the top bit of value is # 1 , it is a negative value, so we should change it to negative value = value - max_value if value > max_value//2 else value return value return wrapper return decorator
66121d389a389c6152fd4491ed8a698336e042a2
3,647,094
def get_integral_curve(f, init_xy, x_end, delta): """ solve ode 'dy/dx=f(x,y)' with Euler method """ (x, y) = init_xy xs, ys = [x], [y] for i in np.arange(init_xy[0], x_end, delta): y += delta*f(x, y) x += delta xs.append(x) ys.append(y) return xs, ys
0526643acd37b8d7c2646d3a21d54e9d9f16ef58
3,647,095
def compute_atime_posteriors(sg, proposals, global_srate=1.0, use_ar=False, raw_data=False, event_idx=None): """ compute the bayesian cross-correlation (logodds of signal under an AR noise model) for all signals in the historical library, against all signals in the current SG. This is quite expensive so should in general be run only once, and the results cached. """ atime_lls = [] i = 0 for idx, (x, signals) in enumerate(proposals): if event_idx is not None and event_idx != idx: continue sta_lls = dict() for (sta, chan, band, phase), c in signals.items(): wns = sg.station_waves[sta] if len(wns) == 0: continue elif len(wns) > 1: raise Exception("haven't worked out correlation proposals with multiple wns from same station") wn = wns[0] if raw_data: sdata = wn.get_value().data.copy() sdata[np.isnan(sdata)] = 0.0 else: sdata = wn.unexplained_kalman() if use_ar: lls = ar_advantage(sdata, c, wn.nm) else: normed_sdata = sdata / wn.nm_env.c #np.std(sdata) lls = np.sqrt(iid_advantage(normed_sdata, c)) # sqrt for laplacian noise, essentially tt_array, tt_mean = build_ttr_model_array(sg, x, sta, wn.srate, phase=phase) origin_ll, origin_stime = atime_likelihood_to_origin_likelihood(lls, wn.st, wn.srate, tt_mean, tt_array, global_srate) signal_scale = wn.nm_env.c sta_lls[(wn.label, phase)] = origin_ll, origin_stime, signal_scale sg.logger.info("computed advantage for %s %s %s" % (x, wn.label, phase)) i += 1 atime_lls.append((x, sta_lls)) return atime_lls
1029f57fe500ef6f08eec56ab34539d3f9a80637
3,647,096
def search4vowels(pharse :str) -> set: """"Return any vowels found in a supplied word.""" vowels = set('aeiou') return vowels.intersection(set(pharse))
8a45c50828b6ba8d173572ac771eb8fe5ddc5a42
3,647,097
def rsort(s): """Sort sequence s in ascending order. >>> rsort([]) [] >>> rsort([1]) [1] >>> rsort([1, 1, 1]) [1, 1, 1] >>> rsort([1, 2, 3]) [1, 2, 3] >>> rsort([3, 2, 1]) [1, 2, 3] >>> rsort([1, 2, 1]) [1, 1, 2] >>> rsort([1,2,3, 2, 1]) [1, 1, 2, 2, 3] """ if len(s) <= 1: return s else: return [rmin(s)]+rsort(remove(rmin(s),s))
d9f67d713e55d50cd4468ad709f04c7bfea05c71
3,647,098
import os def xdg_data_home(): """Base directory where user specific data files should be stored.""" value = os.getenv('XDG_DATA_HOME') or '$HOME/.local/share/' return os.path.expandvars(value)
db4212def5e4760bbe1da762a74cf09a9ee40d78
3,647,099