content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def delete_meeting(request, club_name, meeting_id): """Meeting is deleted by the host""" meeting = Meeting.objects.get(id=meeting_id) MeetingAttendance.objects.filter(user=request.user, meeting=meeting).delete() meeting.delete() return redirect('meeting_list', club_name)
1a81e001c2cb6175ec4a7693f745f4090c06a8e3
3,646,800
def get_best_gain(mapping, candidate_mappings, weight_dict, instance_len, cur_match_num, lol1=None): """ Hill-climbing method to return the best gain swap/move can get Arguments: mapping: current node mapping candidate_mappings: the candidates mapping list weight_dict: the weight dictionary instance_len: the number of the nodes in AMR 2 cur_match_num: current triple match number Returns: the best gain we can get via swap/move operation """ largest_gain = 0 # True: using swap; False: using move use_swap = True # the node to be moved/swapped node1 = None # store the other node affected. In swap, this other node is the node swapping with node1. In move, this other # node is the node node1 will move to. node2 = None # unmatched nodes in AMR 2 unmatched = set(range(instance_len)) # exclude nodes in current mapping # get unmatched nodes for nid in mapping: if nid in unmatched: unmatched.remove(nid) for i, nid in enumerate(mapping): # current node i in AMR 1 maps to node nid in AMR 2 for nm in unmatched: if nm in candidate_mappings[i]: # remap i to another unmatched node (move) # (i, m) -> (i, nm) if veryVerbose: print("Remap node", i, "from ", nid, "to", nm, file=DEBUG_LOG) mv_gain = move_gain(mapping, i, nid, nm, weight_dict, cur_match_num) if veryVerbose: print("Move gain:", mv_gain, file=DEBUG_LOG) new_mapping = mapping[:] new_mapping[i] = nm new_match_num = compute_match(new_mapping, weight_dict) if new_match_num != cur_match_num + mv_gain: print(mapping, new_mapping, file=ERROR_LOG) print("Inconsistency in computing: move gain", cur_match_num, mv_gain, new_match_num, file=ERROR_LOG) if mv_gain > largest_gain: largest_gain = mv_gain node1 = i node2 = nm use_swap = False # compute swap gain if True: for i, m in enumerate(mapping): for j in range(i + 1, len(mapping)): m2 = mapping[j] if (m2 not in candidate_mappings[i]) and (m not in candidate_mappings[j]): continue # swap operation (i, m) (j, m2) -> (i, m2) (j, m) # j starts from i+1, to avoid duplicate swap if veryVerbose: print("Swap node", i, "and", j, file=DEBUG_LOG) print("Before swapping:", i, "-", m, ",", j, "-", m2, file=DEBUG_LOG) print(mapping, file=DEBUG_LOG) print("After swapping:", i, "-", m2, ",", j, "-", m, file=DEBUG_LOG) sw_gain = swap_gain(mapping, i, m, j, m2, weight_dict, cur_match_num) if veryVerbose: print("Swap gain:", sw_gain, file=DEBUG_LOG) new_mapping = mapping[:] new_mapping[i] = m2 new_mapping[j] = m print(new_mapping, file=DEBUG_LOG) new_match_num = compute_match(new_mapping, weight_dict) if new_match_num != cur_match_num + sw_gain: print(mapping, new_mapping, file=ERROR_LOG) print("Inconsistency in computing: swap gain", cur_match_num, sw_gain, new_match_num, file=ERROR_LOG) if sw_gain > largest_gain: largest_gain = sw_gain node1 = i node2 = j use_swap = True # generate a new mapping based on swap/move cur_mapping = mapping[:] if node1 is not None: if use_swap: if veryVerbose: print("Use swap gain", file=DEBUG_LOG) temp = cur_mapping[node1] cur_mapping[node1] = cur_mapping[node2] cur_mapping[node2] = temp else: if veryVerbose: print("Use move gain", file=DEBUG_LOG) cur_mapping[node1] = node2 else: if veryVerbose: print("no move/swap gain found", file=DEBUG_LOG) if veryVerbose: print("Original mapping", mapping, file=DEBUG_LOG) print("Current mapping", cur_mapping, file=DEBUG_LOG) return largest_gain, cur_mapping
7b6b7472090eca2296861afaef7fdcc1aafeff0e
3,646,801
def mock_environ(): """Mock for `os.environ.copy`""" return {"SOME_ENV_VAR": "42"}
d68d44d793847f46354a8cf2503b654a40eed92a
3,646,802
def get_bedtools_coverage_cmd(bam_filename, gff_filename, output_filename, require_paired=False): """ Get bedtools command for getting the number of reads from the BAM filename that are strictly contained within each interval of the GFF. """ args = {"bam_filename": bam_filename, "gff_filename": gff_filename} # Do not include strandedness flag since that doesn't handle # paired-end cases intersect_cmd = "bedtools intersect -abam %(bam_filename)s " \ "-b %(gff_filename)s -f 1 -ubam " %(args) coverage_cmd = "%s | bedtools coverage -abam - -b %s -counts > %s" \ %(intersect_cmd, gff_filename, output_filename) return coverage_cmd
e4d6da3e3e7fe611c3bc3023bea3a76a0003a1f2
3,646,803
from typing import List from typing import Tuple from typing import Dict def get_notes_mapping_dict(notes_list: List) -> Tuple[Dict, np.array]: """ Function get list of midi notes and returns mapping for each note :param notes_list: :return: """ assert len(notes_list) > 0, 'Empty notes list !!' full_list = sorted(set(notes_list)) notes2idx = {note_e: i for i, note_e in enumerate(full_list)} idx2note = np.array(full_list) return notes2idx, idx2note
8ea85f83f6d048587ed762272ae19e4176c7d4f3
3,646,804
def p_y_given_x(X, mean_x, variance_x): """ Calculates the probablity of class value being y, given label is x. PARAMETERS ========== X: list Input of unknown class values given by user. mean_x: ndarray(dtype=int,ndim=1,axis=1) Mean for given label. variance_x: ndarray(dtype=int,ndim=1,axis=1) Variance for given label. RETURNS ======= p: float Probability, according to gaussian distribution, for given mean and variance. """ p = 1 / (np.sqrt(2 * np.pi * variance_x)) * \ np.exp((-(X - mean_x)**2) / (2 * variance_x)) return p
64fc1e5e5c81affdad1cc02f5a62d5ba186a1129
3,646,805
def run_train(cfg, wandb): """Train function starts here Args: cfg (obj `DictConfig`): This is the config from hydra. """ data_directory = cfg.data.data_directory train_batch_size = cfg.data.train_batch_size max_seq_len = cfg.task.max_seq_len # Maximum length per sequence max_predictions_per_seq = cfg.task.max_predictions_per_seq # Maximum predictions (Mask) per sequence dtype = cfg.trainer.dtype is_training = cfg.model.is_training use_dropout = cfg.model.use_dropout loss_type = cfg.optimizer.loss_type use_constant_lr = cfg.optimizer.use_constant_lr num_layers = cfg.model.num_layers return_all_layer_outputs = False training_loss_names = None if loss_type and loss_type == 'joint': return_all_layer_outputs = True training_loss_names = {'loss_{}'.format(i + 1) for i in range(num_layers)} learning_rate = cfg.optimizer.learning_rate warmup_rate = cfg.optimizer.warmup_rate decay_function = cfg.optimizer.decay_function steps_per_epoch = cfg.trainer.steps_per_epoch epochs = cfg.trainer.epochs distribution_strategy = cfg.trainer.strategy num_gpus = cfg.trainer.num_gpus tpu_address = cfg.trainer.tpu_address model_checkpoint_dir = cfg.trainer.model_checkpoint_dir # Get dataset and tokenizer tokenizer_layer = get_tokenizer() # We split text by words (whitespace), inside MLM function. masked_lm_map_fn = mlm_fn(tokenizer_layer, max_seq_len, max_predictions_per_seq) train_dataset = get_dataset(data_directory, masked_lm_map_fn, train_batch_size) # validation_dataset = get_validation_data(all_questions, eval_batch_size, tokenizer_layer, max_seq_len) # Get Model model_fn = get_model(return_all_layer_outputs, is_training, use_dropout, tokenizer_layer.vocab_size.numpy()) # Get Optimizer # steps_per_epoch is number of examples seen during one epoch (with batch size) # total examples per epoch = steps_per_epoch * batch_size examples_per_epoch = steps_per_epoch # Assume steps_per_epoch = 100000, and epochs = 5, examples = 500000 optimizer_fn = get_optimizer( learning_rate, examples_per_epoch, epochs, warmup_rate, decay_function, use_constant_lr ) # Get loss loss_fn = get_loss(loss_type) # Get trainer trainer = get_trainer( distribution_strategy=distribution_strategy, num_gpus=num_gpus, tpu_address=tpu_address, dtype=dtype ) # Train history = trainer.run( model_fn=model_fn, optimizer_fn=optimizer_fn, train_dataset=train_dataset, train_loss_fn=loss_fn, epochs=epochs, steps_per_epoch=steps_per_epoch, model_checkpoint_dir=model_checkpoint_dir, batch_size=train_batch_size, training_loss_names=training_loss_names, repeat_dataset=True, wandb=wandb, ) return history
1b454fd28b9c308700fde67336a65e0e54be41ca
3,646,806
def wrf_ll_to_ij(lon, lat, map_proj, truelat1=-999.,truelat2=-999.,stand_lon=999., \ ref_lat=-999,ref_lon=-999,pole_lat=90,pole_lon=0,knowni=-999,\ knownj=-999,dx=-999, dy=-999, latinc=-999., loninc=-999): """ Converts lon/lat values to i/j index values. lon,lat - lat,lon values to convert map_proj -- map projection """ lon2 = _promote_scalar(lon) lat2 = _promote_scalar(lat) map_proj2 = _promote_scalar(map_proj) truelat12 = _promote_scalar(truelat1) truelat22 = _promote_scalar(truelat2) stand_lon2 = _promote_scalar(stand_lon) ref_lat2 = _promote_scalar(ref_lat) ref_lon2 = _promote_scalar(ref_lon) pole_lat2 = _promote_scalar(pole_lat) pole_lon2 = _promote_scalar(pole_lon) knowni2 = _promote_scalar(knowni) knownj2 = _promote_scalar(knownj) dx2 = _promote_scalar(dx) dy2 = _promote_scalar(dy) latinc2 = _promote_scalar(latinc) loninc2 = _promote_scalar(loninc) return fplib.wrf_ll_to_ij(lon2,lat2,map_proj2,truelat12,truelat22,stand_lon2, \ ref_lat2,ref_lon2,pole_lat2,pole_lon2,knowni2, knownj2,\ dx2, dy2, latinc2,loninc2)
9f1cbfa535584d0de1a7e1736fa08def0bb52f71
3,646,807
from typing import List def create_specimen_resource(specimen_identifier: List[dict], patient_reference: dict, specimen_type: str, received_datetime: str = None, collection_datetime: str = None, note: str = None) -> dict: """ Create specimen resource following the FHIR format (http://www.hl7.org/implement/standards/fhir/specimen.html) """ specimen_type_system = 'http://terminology.hl7.org/CodeSystem/v2-0487' specimen_resource = { "resourceType": "Specimen", "identifier": specimen_identifier, "subject": patient_reference, "type": create_codeable_concept(specimen_type_system, specimen_type) } if received_datetime: specimen_resource["receivedTime"] = received_datetime if collection_datetime: specimen_resource["collection"] = { "collectedDateTime": collection_datetime } if note: specimen_resource["note"] = [{"text": note}] return specimen_resource
05f8c314bae1c160e05b7d7c22343d3d195eb262
3,646,808
from typing import List from typing import Dict def get_attribute_slots( tracker: "Tracker", object_attributes: List[Text] ) -> List[Dict[Text, Text]]: """ Copied from rasa_sdk.knowledge_base.utils and overridden as we also need to return the entity role for range queries. If the user mentioned one or multiple attributes of the provided object_type in an utterance, we extract all attribute values from the tracker and put them in a list. The list is used later on to filter a list of objects. For example: The user says 'What Italian restaurants do you know?'. The NER should detect 'Italian' as 'cuisine'. We know that 'cuisine' is an attribute of the object type 'restaurant'. Thus, this method returns [{'name': 'cuisine', 'value': 'Italian'}] as list of attributes for the object type 'restaurant'. Args: tracker: the tracker object_attributes: list of potential attributes of object Returns: a list of attributes """ attributes = [] for attr in object_attributes: attr_val = tracker.get_slot(attr) if attr in tracker.slots else None if attr_val is not None: entities = tracker.latest_message.get("entities", []) role = [e['role'] for e in entities if e['entity'] == attr and e['value'] == attr_val and 'role' in e] role = role[0] if len(role) else None attributes.append({"name": attr, "value": attr_val, "role": role}) return attributes
59876d36adc362c074f6be267d0ccb65735256dd
3,646,809
def pearson_correlation(self, preferences): """ Returns the Pearson Correlation of two user_s, A and B by performing the PPMC calculation on the scatter plot of (a, b) ratings on the shared set of critiqued titles. """ # Store the length to save traversals of the len computation. # If they have no rankings in common, return 0. length = len(preferences) if length == 0: return 0 # Loop through the preferences of each user_ once and compute the # various summations that are required for our final calculation. sumA = sumB = sumSquareA = sumSquareB = sumProducts = 0 for a, b in preferences.values(): sumA += a sumB += b sumSquareA += pow(a, 2) sumSquareB += pow(b, 2) sumProducts += a*b # Calculate Pearson Score numerator = (sumProducts*length) - (sumA*sumB) denominator = sqrt(((sumSquareA*length) - pow(sumA, 2)) * ((sumSquareB*length) - pow(sumB, 2))) # Prevent division by zero. if denominator == 0: return 0 return abs(numerator / denominator)
290bad340c7745883d41f0a6cde809b4ae8c987f
3,646,810
def update_stakeholder(id: int, name: str = None, company: str = None, role: str = None, attitude: str = None, archived: bool = None) -> Stakeholder or None: """ Provide a POST API endpoint for updating a specific stakeholder. :param id: ID of the stakeholder. :param name: Name of the stakeholder. :param company: Company of the stakeholder. :param role: Role of the stakeholder. :param attitude: Attitude of the stakeholder. :return: """ try: stakeholder = Stakeholder.query.get(id) if not name: raise KeyError('Name must not be empty') stakeholder.name = name stakeholder.company = company if company is not None else stakeholder.company stakeholder.role = role if role is not None else stakeholder.role stakeholder.attitude = attitude if attitude is not None else stakeholder.attitude stakeholder.archived = archived if archived is not None else stakeholder.archived db.session.commit() return stakeholder except AttributeError: raise OperationalError(f"Could not load stakeholder with id {id}", {}, '') except TypeError: return None
fd13119e1435535c2ada786e207ab7c5acd9f2ab
3,646,811
def register(): """Sign up user.""" if current_user.is_authenticated: return redirect(url_for("homepage")) form = RegistrationForm() if form.validate_on_submit(): user = User( username=form.username.data, name=form.name.data, email=form.email.data, ) user.set_password(form.password.data) user.set_is_admin() db.session.add(user) db.session.commit() flash("Your account has been created, you are now able to log in.") return redirect(url_for("users.login")) return render_template("register.html", title="Register", form=form)
155365d20fd5838784d4380ae1bc02373ca11bf5
3,646,812
def txt_as_matrix(buff, border): """\ Returns the text QR code as list of [0,1] lists. :param io.StringIO buff: Buffer to read the matrix from. """ res = [] code = buff.getvalue().splitlines() len_without_border = len(code) - border for l in islice(code, border, len_without_border): res.append([int(clr) for clr in islice(l, border, len_without_border)]) return res
086e6c0b4f3831288e1ca2c37047b5c0fb6f00e0
3,646,813
def create_logismosb_node(name="LOGISMOSB"): """ This function... :param name: :return: """ node = Node(LOGISMOSB(), name=name) config = read_machine_learning_config() return set_inputs(node, config)
8a1fa419ae94df09802f38badb68b97660d35987
3,646,814
def calc_tract_accessibility(tracts, pois, G, weight='length', func=acc_cumulative_gaussian,k=5, random_seed=None, func_kws={}, pois_weight_column=None,iter_cap=1_000): """ Calculate accessibility by census tract using given accessibility function. Parameters ---------- tracts : GeoDataframe Area GeoDataFrame containing census tract information pois : GeoDataFrame Point GeoDataFrame containing points of interest G : NetworkX graph structure Network Graph. weight : string Graph´s weight attribute for shortest paths (such as length or travel time) func : function Access score function to use. Options are: acc_cumulative, acc_soft_threshold, and acc_cumulative_gaussian func_kws : dictionary arguments for the access score function k : int number of sampled points per tract pois_weight_column : string Column in the pois GeoDataFrame with location weights. random_seed : int random seed. iter_cap : int Parameter to limit memory usage. If the code raises memory error, lowering this parameter might help. Returns ------- Dictionary in the form {tract index: average accessibility score} """ assert 0<k and type(k)==int, '"k" must be a positive integer' # get places on the gdf X = np.array([n.coords[0][0] for n in pois['geometry']]) Y = np.array([n.coords[0][1] for n in pois['geometry']]) #set places to nodes nodes = ox.get_nearest_nodes(G,X,Y, method='balltree') attrs = {}.fromkeys(G.nodes,0) if pois_weight_column is None: pois_weight_column = 'temp' pois = pois.copy() pois[pois_weight_column] = 1 for node, val in zip(nodes,pois[pois_weight_column]): attrs[node] += val nx.set_node_attributes(G,attrs,pois_weight_column) # get igraph object for fast computations Gig = get_full_igraph(G) #create a dictionary for cross-references node_dict = {} for node in Gig.vs: node_dict[int(node['osmid'])] = node #get nodes to target (for faster shortest paths) n_targets = [n for n in G.nodes if G.nodes[n][pois_weight_column]>0] nig_targets = [node_dict[n] for n in n_targets] vals = [G.nodes[n][pois_weight_column] for n in n_targets] loop = tracts.iterrows() X,Y = [],[] for tract in tracts.iterrows(): tract = tract[1] poly = tract['geometry'] # get k points within the polygon X_,Y_ = random_points_in_polygon(k,poly,seed=random_seed) #match points to graph X+=X_ Y+=Y_ ###here X = np.array(X) Y = np.array(Y) trackt_ns = ox.get_nearest_nodes(G,X,Y,method='balltree') ig_nodes = [node_dict[n] for n in trackt_ns] #initiate total accessibility as zero #calc distances to nodes acc=[] if len(ig_nodes)>=iter_cap*k: loop = list(tracts.iterrows()) loop = [_[1] for _ in loop] sects = [ig_nodes[x:x+iter_cap*k] for x in range(0,int((len(ig_nodes)//(iter_cap*k)+1)*(iter_cap*k))+1,iter_cap*k)] loops = [loop[x:x+iter_cap] for x in range(0,int((len(loop)//(iter_cap)+1)*iter_cap)+1,iter_cap)] # print(len(loops),len(sects)) for section,l in zip(sects,loops): distances = Gig.shortest_paths_dijkstra(source=section, target=nig_targets, weights=weight) n=0 for tract in l: total_acc=0 for ds in distances[n:n+k]: new = np.array(vals)*func(np.array(ds), **func_kws) total_acc += new.sum() acc.append(total_acc/k) n+=k else: distances = Gig.shortest_paths_dijkstra(source=ig_nodes, target=nig_targets, weights=weight) n=0 for tract in loop: total_acc=0 for ds in distances[n:n+k]: new = np.array(vals)*func(np.array(ds), **func_kws) total_acc += new.sum() acc.append(total_acc/k) n+=k return {i:a for i,a in zip(tracts.index,acc)}
8c3abdf1da08d74926892bdf597d33066296ba38
3,646,815
def _exp_func(x, a, b, c): """Exponential function of a single variable, x. Parameters ---------- x : float or numpy.ndarray Input data. a : float First parameter. b : float Second parameter. c : float Third parameter. Returns ------- float or numpy.ndarray a * exp(b * x) + c """ return a * np.exp(b * x) + c
41b6299561162b41189efcfa14820eb8e12396eb
3,646,816
def seek_inactive(x, start, length, direction=-1, abstol=0): """ Seek inactive region to the left of start Example ------- >>> # _______ | >>> seek_inactive([3, 2, 1, 1, 1, 2, 3, 4, 2], start=7, length=3) (1, slice(2, 4)) When no sufficiently long sequence is found we return the end >>> # _ | >>> seek_inactive([3, 2, 1, 1, 1, 2, 3, 4, 2], start=7, length=5) (3, slice(0, 0)) """ end = -1 if direction == -1 else len(x) ind = start for i in range(start, end, direction): if abs(x[i] - x[ind]) > abstol: ind = i if abs(ind - i) >= length - 1: return x[ind], slice(ind, i, direction) if direction == 1: return x[-1], slice(-1, -1) else: return x[0], slice(0, 0)
a0029e0c145381b2acf57f77107d75d89c909b39
3,646,817
from typing import Counter def word_cross_product_phi(t1, t2): """Basis for cross-product features. This tends to produce pretty dense representations. Parameters ---------- t1, t2 : `nltk.tree.Tree` As given by `str2tree`. Returns ------- defaultdict Maps each (w1, w2) in the cross-product of `t1.leaves()` and `t2.leaves()` to its count. This is a multi-set cross-product (repetitions matter). """ return Counter([(w1, w2) for w1, w2 in product(t1.leaves(), t2.leaves())])
dd5ab36d48abce087afa99b98a05c97a0ee30a76
3,646,818
def cube_filter_highpass(array, mode='laplacian', verbose=True, **kwargs): """ Apply ``frame_filter_highpass`` to the frames of a 3d or 4d cube. Parameters ---------- array : numpy ndarray Input cube, 3d or 4d. mode : str, optional ``mode`` parameter to the ``frame_filter_highpass`` function. Defaults to a Laplacian high-pass filter. verbose : bool, optional If ``True`` timing and progress bar are shown. **kwargs : dict Passed through to the ``frame_filter_highpass`` function. Returns ------- filtered : numpy ndarray High-pass filtered cube. """ array_out = np.empty_like(array) if array.ndim == 3: for i in Progressbar(range(array.shape[0]), verbose=verbose): array_out[i] = frame_filter_highpass(array[i], mode=mode, **kwargs) elif array.ndim == 4: for i in Progressbar(range(array.shape[1]), verbose=verbose): for lam in range(array.shape[0]): array_out[lam][i] = frame_filter_highpass(array[lam][i], mode=mode, **kwargs) else: raise TypeError('Input array is not a 3d or 4d cube') return array_out
21c689249ad32919dbb410b2b2b9e221ce31f4df
3,646,819
import requests import json def translate_text(text: str, url: str, model_id) -> TranslatedObject: """Translates a text with the url of a translation server. The url is the url that comes up when you start the translation model""" assert type(text) == str, "Text has to be of type string" assert type(url) == str, "Url has to be of type string" model_ids = get_valid_model_ids() if model_id not in model_ids: raise ModelIDNotFoundException(model_id, model_ids) # text = re.sub(r"([?.!,:;¿])", r" \1 ", text) # text = re.sub(r'[" "]+', " ", text) text = mt_en.tokenize(text, return_str=True) url = f"{url}/translator/translate" headers = {"Content-Type": "application/json"} data = [{"src": text, "id": model_id}] response = requests.post(url, json=data, headers=headers) translation = response.text jsn = json.loads(translation) tokens = jsn[0][0]['tgt'] input_text = jsn[0][0]['src'] score = jsn[0][0]['pred_score'] # text = re.sub(r" ([?.!,:،؛؟¿])", r"\1", text) # text = mt_nl.detokenize(tokens) text = tokens return TranslatedObject(input_text, text, score)
54d7f1e93f6452edf140e845795bfc9bfd9bb092
3,646,820
def quantized_avg_pool_run(shape, dtype1, shape_list, dtype2, ksize, strides, padding, data_format, quant_algo, scale_mode, scale_sqrt, attrs): """run function""" if not isinstance(shape_list, (list, tuple, type(None))): raise RuntimeError("shape_list should be a list, tuple or None!") op_attrs = [ksize, strides, padding, data_format, quant_algo, scale_mode, scale_sqrt] if shape_list is None: mod = utils.op_build_test(quantized_avg_pool, [shape], [dtype1], op_attrs=[None] + op_attrs, kernel_name='quantized_avgpool', attrs=attrs) else: mod = utils.op_build_test(quantized_avg_pool, [shape, shape_list], [dtype1, dtype2], op_attrs=op_attrs, kernel_name='quantized_avgpool', attrs=attrs) expect, inputs, out_buf = gen_data(shape, dtype1, shape_list, dtype2, ksize, strides, padding, data_format, quant_algo, scale_mode, scale_sqrt) output = utils.mod_launch(mod, (*inputs, *out_buf), expect=expect) rtol, atol = get_rtol_atol("quantized_avgpool", dtype1) if expect.dtype in ("int8", "uint8"): cmp_res = compare_int(output, expect) else: cmp_res = compare_tensor(output, expect, rtol=rtol, atol=atol) return inputs, output, expect, cmp_res
d704d90a3124607c31e2470cdd1b2fafe967e05e
3,646,821
def dry(message, func, *args, **kw): """Wraps a function that performs a destructive operation, so that nothing will happen when a dry run is requested. Runs func with the given arguments and keyword arguments. If this is a dry run, print the message rather than running the function.""" if message is not None: info(message) if tasks.environment.dry_run: return return func(*args, **kw)
4dd73f2640b5f5a063db6b13ec970c309e753f78
3,646,822
def move_cups(current: int, cups: CircularLinkedList) -> int: # return the new current cup """ 1. The crab picks up the three cups that are immediately clockwise of the current cup. They are removed from the circle; cup spacing is adjusted as necessary to maintain the circle. 2. The crab selects a destination cup: the cup with a label equal to the current cup's label minus one. If this would select one of the cups that was just picked up, the crab will keep subtracting one until it finds a cup that wasn't just picked up. If at any point in this process the value goes below the lowest value on any cup's label, it wraps around to the highest value on any cup's label instead. 3. The crab places the cups it just picked up so that they are immediately clockwise of the destination cup. They keep the same order as when they were picked up. 4. The crab selects a new current cup: the cup which is immediately clockwise of the current cup. Note that the current cup is specified by its label. """ # Pick up some cups from the next available location... adjacent = cups.next(current) picked_up = cups.to_list(location=adjacent, length=3) # find the destination cup... target = current - 1 counter = 0 while (target in picked_up) or (target not in cups): target -= 1 counter += 1 if target < 0: target = max(cups) if counter > len(cups): raise AssertionError("Stuck!") # move the cups... cups.move(dst=target, src=adjacent, length=3) # return the new current cup... return cups.next(current)
5f66d5066c29c05bb264bedc6ac4f27ee30e4488
3,646,823
import select from operator import and_ def hire(name, address, salary, manager, is_active, Session=Session): """Add an employee to the bank.""" # get manager_id if manager: firstname, lastname = split_name(manager) with Session() as session: stmt = select(Employee).where(and_( Employee.firstname == firstname, Employee.lastname == lastname)) logger.debug(f"Executing statement: {stmt}") manager = session.execute(stmt).scalar_one() manager_id = manager.id if manager else None logger.info(f"New hire's manager_id is {manager_id}") try: with Session() as session: new_employee = Employee( name, address, salary, manager_id, is_active) logger.debug(f"Adding new employee {new_employee}") session.add(new_employee) session.commit() logger.info(f"New hire's id is {new_employee.id}") except exc.SQLAlchemyError as e: logger.error(f"Failed to create new employee {name}: {e}") return new_employee
919e5d2d555d686bdb5f707af2f388f2c8c934fa
3,646,824
def get_colormap(n=18, randomize=True): """ "Get expanded colormap""" n_colors = np.ceil(n / 6) + 1 cols = [] for col in COLORS: pal = sns.light_palette(col, n_colors=n_colors) for rgb in pal[1:]: cols.append(rgb) if randomize: shuffle(cols) # shuffle to break grouping return ListedColormap(cols)
f31ffd3e3667b947e1034617e0165516b942be5a
3,646,825
def partition2(n): """ Coin partitions. Let partition(n) represent the number of different ways in which n coins can be separated into piles. For example, five coins can be separated into piles in exactly seven different ways, so partition(5)=7. """ # dynamic programming table, table cell (i,j), parition size = i + 1, target n = i + 1, cell value = partition(n) dp = {} # using dict as dynamic programming table is really slow for i in range(n): dp[(0,i)] = 1 # One way to partition any n using piles of size 1 dp[(i,0)] = 1 # One way to partition n=1 for i in range(1,n): for j in range(1,n): value = dp[(i-1,j)] # Include ways to partition n using piles <i if i == j: value += 1 # One way to make n using piles of the same size elif j > i: value += dp[(i,j-i-1)] # Include ways to make j-i using piles of size <i dp[(i,j)] = value if i == j: print(i+1,value) if value % N == 0: print('result',i+1,value) return value return dp[(n-1,n-1)]
3537d9eadeb4ba9265c9d9bbe7016f41aecc009e
3,646,826
import torch def all_gather_batch(tensors): """ Performs all_gather operation on the provided tensors. """ # Queue the gathered tensors world_size = get_world_size() # There is no need for reduction in the single-proc case if world_size == 1: return tensors tensor_list = [] output_tensor = [] for tensor in tensors: tensor_all = [torch.ones_like(tensor) for _ in range(world_size)] dist.all_gather( tensor_all, tensor, async_op=False # performance opt ) tensor_list.append(tensor_all) for tensor_all in tensor_list: output_tensor.append(torch.cat(tensor_all, dim=0)) return output_tensor
640f737f9daf9a934cc97673dcec033caf784c62
3,646,827
def get_duration_and_elevation(table): """"Return an array of duration and elevation gain from an html table""" try: hiking_duration = str(table.contents[0].text.strip()) #av.note: want this to be numeric except: hiking_duration = "" try: elevation_gain_ft = str( table.contents[2] .text.strip() .replace("ft", "") .replace(",", "") .replace("with three different ascents", "") .replace("with multiple ascents", "") .replace("with two ascents", "") .replace("with two different ascents", "") .strip() ) #av.note: want this to be numeric except: elevation_gain_ft = "" return hiking_duration, elevation_gain_ft
d52ca3c6e5d75ff936e44b452b05790db931dc6e
3,646,828
def show_comparison(model, X_test, y_test, A_test, protected_features, prostprocess_preds): """ Returns Dashboard to show comparison of models based on the trade off of the disparity and accuracy """ FairlearnDashboard(sensitive_features=A_test, sensitive_feature_names=protected_features, y_true=Y_test, y_pred={"Unmitigated": model.predict(X_test) , "ThresholdOptimizer": postprocess_preds}) return dashboard
bc92c90c67f16c53c8c847556779d1ad923dc56c
3,646,829
def my_edge(bw, threshold): """ 2018.11.26 检测图像边缘 返回检测到的边缘二值图像 阈值用于消去检测到的噪声 时间复杂度: Args: bw: a grey-scale image with 8-bit depth threshold: a decimal between 0 and 1 Returns: bw_edge_binary: 二值化的边缘图像 Raises: """ m, n = bw.shape bw0 = bw.astype(np.int16) bw_edge_rows = np.zeros([m, n]) bw_edge_cols = np.zeros([m, n]) for i in range(m-1): bw_edge_rows[i, :] = abs(bw0[i+1, :] - bw0[i, :]) bw_edge_rows[m-1, :] = 0 for j in range(n-1): bw_edge_cols[:, j] = abs(bw0[:, j+1] - bw0[:, j]) bw_edge_cols[:, n-1] = 0 bw_edge = np.sqrt(bw_edge_cols*bw_edge_cols + bw_edge_rows*bw_edge_rows) index_threshold = bw_edge.max()*threshold bw_edge_binary = np.zeros([m, n]) for i in range(m): for j in range(n): if bw_edge[i, j] > index_threshold: bw_edge_binary[i, j] = 1 return bw_edge_binary
ea5ffd4869f0b5636ff73691761bac88316aad34
3,646,830
def csc_matvec(csc, x): """ Matrix vector multiplication using csc format """ if not sparse.isspmatrix_csc(csc): raise Exception("Matrix must be in csc format") nrow, ncol = csc.shape nnz = csc.data.shape[0] if x.size != ncol: print(x.size, ncol) raise ValueError("wrong dimension!") xx = np.require(x, requirements="C") if csc.dtype == np.float32: y = np.zeros((nrow), dtype=np.float32) libsparsetools.scsc_matvec(c_int(nrow), c_int(ncol), c_int(nnz), csc.indptr.ctypes.data_as(POINTER(c_int)), csc.indices.ctypes.data_as(POINTER(c_int)), csc.data.ctypes.data_as(POINTER(c_float)), xx.ctypes.data_as(POINTER(c_float)), y.ctypes.data_as(POINTER(c_float))) elif csc.dtype == np.float64: y = np.zeros((nrow), dtype=np.float64) libsparsetools.dcsc_matvec(c_int(nrow), c_int(ncol), c_int(nnz), csc.indptr.ctypes.data_as(POINTER(c_int)), csc.indices.ctypes.data_as(POINTER(c_int)), csc.data.ctypes.data_as(POINTER(c_double)), xx.ctypes.data_as(POINTER(c_double)), y.ctypes.data_as(POINTER(c_double))) else: raise ValueError("Not implemented") return y
fa04c4e208333327ce6e4073a27b43f17ffb7dea
3,646,831
import sys async def delete_all_groups_for_user( user_id: int, query: CreateActionLogQuery, db: Session = Depends(get_db) ) -> Response: """ When a user removes his/her profile, make the user leave all groups. This API is run asynchronously, and returns a `201 Created` instead of `200 OK`. **Potential error codes in response:** * `250`: if an unknown error occurred. """ def leave_all_groups(user_id_, query_, db_): environ.env.rest.group.delete_all_groups_for_user(user_id_, query_, db_) try: task = BackgroundTask(leave_all_groups, user_id_=user_id, query_=query, db_=db) return Response(background=task, status_code=HTTP_201_CREATED) except Exception as e: log_error_and_raise_unknown(sys.exc_info(), e)
1bc8fe0ecd2639affea0a90d37d018b11f233ca6
3,646,832
def encode_base58(s) -> bytes: """ Encodes/converts any bytes to Base58 to transmit public key """ count = 0 for c in s: if c == 0: count += 1 else: break num = int.from_bytes(s, 'big') prefix = '1' * count result = '' while num > 0: num, mod = divmod(num, 58) result = BASE58_ALPHABET[mod] + result return prefix + result
064867d9185a06f26c8f033ab04ac38621c48869
3,646,833
import os import time import sys def get_config(): """Get config from env vars. Return: dict: Keys are: policy_url, dane_id, policy_file_dir, crypto_path, policy_name, ssids. """ config = {} for x in ["policy_url", "policy_file_dir", "dane_id", "crypto_path", "policy_name", "app_uid", "roles", "trust_infile_path"]: config[x] = os.getenv(x.upper()) for k, v in config.items(): if v is None: print("Missing essential configuration: {}".format(k.upper())) if None in config.values(): time.sleep(30) sys.exit(1) return config
a2c69da96e2c8ac39230e6d1b277de8951a91abe
3,646,834
import os def unix_only(f): """Only execute on unix systems""" f.__test__ = os.name == "posix" return f
8f20070e75e0277341985c3d528311779aff47d1
3,646,835
def save_chapter( body, source_lang, target_lang, title, public=False, user=None): """Save chapter to database Parameters: body (string): input text source_lang (string): source language target_lang (string): target language title (string): title of the chapter public: visible to all users if true user (User object): user that created the chapter Returns: Chapter: Chapter object created from the given parameters boolean: True if text was analyzed, False if not """ # save chapter chapter = Chapter() chapter.body = body chapter.created_by = user chapter.title = title chapter.source_lang = source_lang chapter.target_lang = target_lang chapter.public = public chapter.save() fulltext = title + ' ' + body doc = spacy_analyze(fulltext, source_lang) if doc: word_properties = analyze_text(doc) word_list = translate_words( word_properties, source_lang, target_lang ) # save word properties related to chapter for w in word_list: properties = word_properties.get(w.lemma) wp = WordProperties() if properties: if properties['pos'] == w.pos: wp.frequency = properties['count'] token_list = properties.get('orig') if token_list: wp.token = ', '.join(token_list) wp.chapter = chapter wp.word = w wp.save() return (chapter, True) return (chapter, False)
9d85acb0a08d8e44bac86f7d3c5bec24b67a3cc1
3,646,836
def frequency(g, k, h): """ Computes the frequency for a given wave number and water depth (linear dispersion relationship) :param k: the wave number :param g: -- gravitational acceleration :param h: -- the water depth :returns omega: -- wave frequency """ return np.sqrt(g * k * np.tanh(k * h))
c81b6721ea874506937d245bd886f129f01b69e2
3,646,837
def primitive_name(method_name): """Given a method_name, returns the corresponding Phylanx primitive. This primarily used for mapping NumPy mapped_methods to Phylanx primitives, but there are also other functions in python that would map to primitives with different name in Phylanx, e.g., `print` is mapped to `cout`. """ primitive_name = mapped_methods.get(method_name) if primitive_name is None: primitive_name = method_name return primitive_name
d6b1cc670503a8e8bade585f0a875b7bde4f743a
3,646,838
import math def _split_pandas_data_with_ratios(data, ratios, seed=SEED, shuffle=False): """Helper function to split pandas DataFrame with given ratios Note: Implementation referenced from `this source <https://stackoverflow.com/questions/38250710/how-to-split-data-into-3-sets-train-validation-and-test>`_. Args: data (pd.DataFrame): Pandas data frame to be split. ratios (list of floats): list of ratios for split. The ratios have to sum to 1. seed (int): random seed. shuffle (bool): whether data will be shuffled when being split. Returns: list: List of pd.DataFrame split by the given specifications. """ if math.fsum(ratios) != 1.0: raise ValueError("The ratios have to sum to 1") split_index = np.cumsum(ratios).tolist()[:-1] if shuffle: data = data.sample(frac=1, random_state=seed) splits = np.split(data, [round(x * len(data)) for x in split_index]) # Add split index (this makes splitting by group more efficient). for i in range(len(ratios)): splits[i]["split_index"] = i return splits
19b2ddd97a803042d1ac27df47a56b5157fd4e96
3,646,839
import requests from datetime import datetime def get_stock_information(stock, country, as_json=False): """ This function retrieves fundamental financial information from the specified stock. The retrieved information from the stock can be valuable as it is additional information that can be used combined with OHLC values, so to determine financial insights from the company which holds the specified stock. Args: stock (:obj:`str`): symbol of the stock to retrieve its information from. country (:obj:`country`): name of the country from where the stock is from. as_json (:obj:`bool`, optional): optional argument to determine the format of the output data (:obj:`dict` or :obj:`json`). Returns: :obj:`pandas.DataFrame` or :obj:`dict`- stock_information: The resulting :obj:`pandas.DataFrame` contains the information fields retrieved from Investing.com from the specified stock ; it can also be returned as a :obj:`dict`, if argument `as_json=True`. If any of the information fields could not be retrieved, that field/s will be filled with None values. If the retrieval process succeeded, the resulting :obj:`dict` will look like:: stock_information = { "Stock Symbol": "AAPL", "Prev. Close": 267.25, "Todays Range": "263.45 - 268.25", "Revenue": 260170000000.00003, "Open": 267.27, "52 wk Range": "142 - 268.25", "EPS": 11.85, "Volume": 23693550.0, "Market Cap": 1173730000000.0, "Dividend (Yield)": "3.08 (1.15%)", "Average Vol. (3m)": 25609925.0, "P/E Ratio": 22.29, "Beta": 1.23, "1-Year Change": "47.92%", "Shares Outstanding": 4443236000.0, "Next Earnings Date": "04/02/2020" } Raises: ValueError: raised if any of the introduced arguments is not valid or errored. FileNotFoundError: raised if `stocks.csv` file was not found or errored. IOError: raised if `stocks.csv` file is empty or errored. RuntimeError: raised if scraping process failed while running. ConnectionError: raised if the connection to Investing.com errored (did not return HTTP 200) """ if not stock: raise ValueError("ERR#0013: stock parameter is mandatory and must be a valid stock symbol.") if not isinstance(stock, str): raise ValueError("ERR#0027: stock argument needs to be a str.") if country is None: raise ValueError("ERR#0039: country can not be None, it should be a str.") if country is not None and not isinstance(country, str): raise ValueError("ERR#0025: specified country value not valid.") if not isinstance(as_json, bool): raise ValueError("ERR#0002: as_json argument can just be True or False, bool type.") country = unidecode(country.strip().lower()) stock = unidecode(stock.strip().lower()) stocks = _get_stock_data_from_csv(country, stock) if stocks is None: raise IOError("ERR#0001: stocks object not found or unable to retrieve.") if country not in get_stock_countries(): raise RuntimeError("ERR#0034: country " + country.lower() + " not found, check if it is correct.") if stock not in stocks['symbol'].lower(): raise RuntimeError("ERR#0018: stock " + stock + " not found, check if it is correct.") tag = stocks['tag'] stock = stocks['symbol'] url = f"https://www.investing.com/equities/{tag}" head = { "User-Agent": random_user_agent(), "X-Requested-With": "XMLHttpRequest", "Accept": "text/html", "Accept-Encoding": "gzip, deflate", "Connection": "keep-alive", } req = requests.get(url, headers=head) if req.status_code != 200: raise ConnectionError("ERR#0015: error " + str(req.status_code) + ", try again later.") root_ = fromstring(req.text) path_ = root_.xpath("//dl[contains(@class, 'grid')]/div") result = {} result['Stock Symbol'] = stock if not path_: raise RuntimeError("ERR#0004: data retrieval error while scraping.") if path_: for elements_ in path_: title_ = elements_[0].text_content() value_ = elements_[1].text_content() if title_ == "Day's Range": title_ = 'Todays Range' if title_ in result.columns.tolist(): try: result[title_] = float(value_.replace(',', '')) continue except: pass try: text = value_.strip() result[title_] = datetime.strptime(text, "%b %d, %Y").strftime("%d/%m/%Y") continue except: pass try: value = value_.strip() if value.__contains__('B'): value = float(value.replace('B', '').replace(',', '')) * 1e9 elif value.__contains__('T'): value = float(value.replace('T', '').replace(',', '')) * 1e12 result[title_] = value continue except: pass return result else: raise RuntimeError("ERR#0004: data retrieval error while scraping.")
bfe70fd27c76d743f107056023a127283a76d8c4
3,646,840
from datetime import datetime def check_export_start_date(export_start_dates, export_end_dates, export_day_range): """ Update export_start_date according to the export_end_date so that it could be export_end_date - EXPORT_DAY_RANGE. Parameters: export_start_date: dict Read from params, values are strings of dates export_end_date: dict Calculated according to the data received. The type of values are datetime.datetime export_day_range: int Number of days to report Returns: dict: {str: datetime.datetime} The keys are "covid_ag" or "flu_ag" The values are dates until when we export data """ for test_type in TEST_TYPES: if export_start_dates[test_type] == "": export_start_dates[test_type] = datetime(2020, 5, 26) else: export_start_dates[test_type] = datetime.strptime( export_start_dates[test_type], '%Y-%m-%d') # Only export data from -45 days to -5 days export_start_dates[test_type] = compare_dates( export_end_dates[test_type] - timedelta(days=export_day_range), export_start_dates[test_type], "l") if test_type == "covid_ag": export_start_dates[test_type] = compare_dates( export_start_dates[test_type], datetime(2020, 5, 26), "l") return export_start_dates
ab2466db1107b980506d34de71c5b1849851fd10
3,646,841
import logging def set_verbosity(module_name: str, verbose: bool = False, very_verbose: bool = False) -> logging.Logger: """ Used to set the verbosity of the logger. :param module_name: Name of the module, e.g. ``__name__``. :type module_name: str :param verbose: Enables DEBUG level. :type verbose: bool :param very_verbose: Enables DEBUG level and the loggers from imported libraries. :type very_verbose: bool :return: A configured logger, which can be used throughout the code via ``logging.{LEVEL}()``. :rtype: logging.Logger """ if very_verbose: configure_console_logger(logging_level=logging.DEBUG, disable_external_lib_loggers=False) elif verbose: configure_console_logger(logging_level=logging.DEBUG) else: configure_console_logger(logging_level=logging.INFO) return logging.getLogger(module_name)
cc0d8f37e11968d5f5573bac7ef0529a90cfb6be
3,646,842
from typing import Any def walk_attrs(module: ModuleType, attr_name, converter=Converter()) -> str: """ Create stubs for given class, including all attributes. :param module: :param attr_name: :param converter: :return: """ buf = StringList(convert_indents=True) buf.indent_type = " " if not is_dunder(attr_name): obj = getattr(module, attr_name) # TODO: case where obj is not a class if not isinstance(obj, FunctionType): bases = [] for base in obj.__bases__: if base not in {System.Object, object}: if base.__name__ in converter.type_mapping: bases.append(converter.type_mapping[base.__name__]) else: bases.append(base.__name__) bases = list(filter(lambda x: x is Any, bases)) if bases: buf.append(f"class {attr_name}({', '.join(bases)}):\n") else: buf.append(f"class {attr_name}:\n") for child_attr_name in get_child_attrs(obj): try: child_obj = getattr(obj, child_attr_name) except TypeError as e: if str(e) in { "instance property must be accessed through a class instance", "property cannot be read", }: make_property(buf, child_attr_name) continue elif str(e) == "instance attribute must be accessed through a class instance": print(f"{e.__class__.__name__}: '{e}' occurred for {attr_name}.{child_attr_name}") continue else: raise e # TODO: if isinstance(child_obj, FunctionType): return_type, arguments = get_signature(child_obj, child_attr_name, converter) with buf.with_indent_size(buf.indent_size + 1): if arguments is not None and arguments: signature = [] for idx, argument in enumerate(arguments.split(", ")): signature.append(f"{'_' * (idx + 1)}: {converter.convert_type(argument)}") line = f"def {child_attr_name}(self, {', '.join(signature)}) -> {return_type}: ..." if len(line) > 88: buf.blankline(ensure_single=True) buf.append(f"def {child_attr_name}(") with buf.with_indent_size(buf.indent_size + 2): buf.append("self,") for line in signature: buf.append(f"{line},") buf.append(f") -> {return_type}: ...\n") else: buf.append(line) elif arguments is None: buf.append(f"def {child_attr_name}(self, *args, **kwargs) -> {return_type}: ...") elif not arguments: # i.e. takes no arguments buf.append(f"def {child_attr_name}(self) -> {return_type}: ...") buf.blankline(ensure_single=True) return str(buf) return ''
13c79acb6943a165a39f6735c67cdb8ceff26b9c
3,646,843
def reformat_adata( adata: AnnData, brain_region: str, num_seq_lanes: int, transgenes_list: str ): """ script that takes in user specified inputs in the data_reformat script transforms dataframe input to usable AnnData output with group cell count labels, df_obs it also makes genes in the index since multiple ensembl IDs can map onto the same gene """ for i in range(1, num_seq_lanes + 1): adata = obs_rename(adata, i, brain_region) obs_seq_lanes_keys = [ int(seq_lane[1]) for seq_lane in adata.obs.index.str.split("_") ] obs_seq_lanes_df = pd.DataFrame( obs_seq_lanes_keys, index=adata.obs.index, columns=["seq_lane_number"] ) print("Num seq_lanes parsed...") # create bit labels for each transgene and its possible combinations. gene_presence_df, _, cell_gene_flags, _ = gene_list_to_flag(adata, transgenes_list) adata.obs[[col.upper() for col in gene_presence_df.columns]] = gene_presence_df adata.obs["which_transgenes"] = cell_gene_flags adata.obs["transgene_present"] = ( adata.obs["which_transgenes"].notnull().astype("str") ) group_cell_count_labels = adata.obs["which_transgenes"].value_counts(dropna=False) adata.obs["seq_lane"] = obs_seq_lanes_df print("Group cell count labels generated") if adata.var.index.has_duplicates: print(f"Duplicate gene names in index (T/F): {adata.var.index.has_duplicates}") adata.var = uniquify(adata.var) else: print(f"Duplicate gene names in index (T/F): {adata.var.index.has_duplicates}") adata, __ = gene_mask( adata, stringify_list(transgenes_list), col_name="transgene_mask" ) adata, ribo_mask = gene_mask(adata, "^rp[sl][0-9]", col_name="ribo_mask") adata, mito_mask = gene_mask(adata, "^mt*-", col_name="mito_mask") adata.obs["percent_ribo"] = np.sum(adata[:, ribo_mask].X, axis=1) / np.sum( adata.X, axis=1 ) adata.obs["percent_mito"] = np.sum(adata[:, mito_mask].X, axis=1) / np.sum( adata.X, axis=1 ) adata.obs = adata.obs.drop( columns=adata.obs.columns[adata.obs.columns.str.contains("temp")] ) return (group_cell_count_labels, adata)
9f6e92b7dac8c8e84987676e7c2435a2e34f32e0
3,646,844
def chunks(list_, num_items): """break list_ into n-sized chunks...""" results = [] for i in range(0, len(list_), num_items): results.append(list_[i:i+num_items]) return results
83da5c19c357cc996fc7585533303986bea83689
3,646,845
def form_requires_input(form): """ Returns True if the form has at least one question that requires input """ for question in form.get_questions([]): if question["tag"] not in ("trigger", "label", "hidden"): return True return False
97072a9edc494afa731312aebd1f23dc15bf9f47
3,646,846
import logging import os import re def read_dino_waterlvl_csv(fname, to_mnap=True, read_series=True): """Read dino waterlevel data from a dinoloket csv file. Parameters ---------- fname : str to_mnap : boolean, optional if True a column with 'stand_m_tov_nap' is added to the dataframe read_series : boolean, optional if False only metadata is read, default is True """ logging.info(f"reading -> {os.path.split(fname)[-1]}") p_meta = re.compile( "Locatie,Externe aanduiding,X-coordinaat,Y-coordinaat, Startdatum, Einddatum" ) p_data = re.compile(r"Locatie,Peildatum,Stand \(cm t.o.v. NAP\),Bijzonderheid") with open(fname, "r") as f: line = f.readline() while line != "": line = f.readline() if p_meta.match(line): meta = _read_dino_waterlvl_metadata(f, line) if meta: meta["metadata_available"] = True else: meta["metadata_available"] = False meta["filename"] = fname elif p_data.match(line): if read_series: measurements = _read_dino_waterlvl_measurements(f, line) if to_mnap and measurements is not None: measurements["stand_m_tov_nap"] = ( measurements["stand_cm_tov_nap"] / 100.0 ) else: measurements = None return measurements, meta
4787bc0d7614f2c6d482ac33d991265cbecd2c6d
3,646,847
import zlib import json def on_same_fs(request): """ Accept a POST request to check access to a FS available by a client. :param request: `django.http.HttpRequest` object, containing mandatory parameters filename and checksum. """ filename = request.POST['filename'] checksum_in = request.POST['checksum'] checksum = 0 try: data = open(filename, 'rb').read(32) checksum = zlib.adler32(data, checksum) & 0xffffffff if checksum == int(checksum_in): return HttpResponse(content=json.dumps({'success': True}), content_type=JSON, status=200) except (IOError, ValueError): pass return HttpResponse(content=json.dumps({'success': False}), content_type=JSON, status=200)
2b19fe8d6a69db9cfeeea740cdcf70003e0c9ed1
3,646,848
from datetime import datetime def get_memo(expense_group: ExpenseGroup, payment_type: str=None) -> str: """ Get the memo from the description of the expense group. :param expense_group: The expense group to get the memo from. :param payment_type: The payment type to use in the memo. :return: The memo. """ expense_fund_source = 'Reimbursable expense' if expense_group.fund_source == 'PERSONAL' \ else 'Corporate Credit Card expense' unique_number = None if 'settlement_id' in expense_group.description and expense_group.description['settlement_id']: # Grouped by payment reimbursement = Reimbursement.objects.filter( settlement_id=expense_group.description['settlement_id'] ).values('payment_number').first() if reimbursement and reimbursement['payment_number']: unique_number = reimbursement['payment_number'] else: unique_number = expense_group.description['settlement_id'] elif 'claim_number' in expense_group.description and expense_group.description['claim_number']: # Grouped by expense report unique_number = expense_group.description['claim_number'] if payment_type: # Payments sync return 'Payment for {0} - {1}'.format(payment_type, unique_number) elif unique_number: memo = '{} - {}'.format(expense_fund_source, unique_number) expense_group_settings: ExpenseGroupSettings = ExpenseGroupSettings.objects.get( workspace_id=expense_group.workspace_id ) if expense_group.fund_source == 'CCC': if expense_group_settings.ccc_export_date_type != 'current_date': date = get_transaction_date(expense_group) date = (datetime.strptime(date, '%Y-%m-%dT%H:%M:%S')).strftime('%d/%m/%Y') memo = '{} - {}'.format(memo, date) else: if expense_group_settings.reimbursable_export_date_type != 'current_date': date = get_transaction_date(expense_group) date = (datetime.strptime(date, '%Y-%m-%dT%H:%M:%S')).strftime('%d/%m/%Y') memo = '{} - {}'.format(memo, date) return memo else: # Safety addition return 'Reimbursable expenses by {0}'.format(expense_group.description.get('employee_email')) \ if expense_group.fund_source == 'PERSONAL' \ else 'Credit card expenses by {0}'.format(expense_group.description.get('employee_email'))
2402d7f0ff89ed7b06300f58f8bfb54c06d67f3f
3,646,849
def get_prefix_for_google_proxy_groups(): """ Return a string prefix for Google proxy groups based on configuration. Returns: str: prefix for proxy groups """ prefix = config.get("GOOGLE_GROUP_PREFIX") if not prefix: raise NotSupported( "GOOGLE_GROUP_PREFIX must be set in the configuration. " "This namespaces the Google groups for security and safety." ) return prefix
c81d3ede2ba1ad6b8ce716633abbc8e8f91f9a2b
3,646,850
def client(tmpdir): """Test client for the API.""" tmpdir.chdir() views.app.catchall = False return webtest.TestApp(views.app)
516230e96dff76afccc8f8a3a9dc3942c6341797
3,646,851
def list_extract(items, arg): """Extract items from a list of containers Uses Django template lookup rules: tries list index / dict key lookup first, then tries to getattr. If the result is callable, calls with no arguments and uses the return value.. Usage: {{ list_of_lists|list_extract:1 }} (gets elt 1 from each item in list) {{ list_of_dicts|list_extract:'key' }} (gets value of 'key' from each dict in list) """ def _extract(item): try: return item[arg] except TypeError: pass attr = getattr(item, arg, None) return attr() if callable(attr) else attr return [_extract(item) for item in items]
23fb863a7032f37d029e8b8a86b883dbfb4d5e7b
3,646,852
from bs4 import BeautifulSoup def get_links(url): """Scan the text for http URLs and return a set of URLs found, without duplicates""" # look for any http URL in the page links = set() text = get_page(url) soup = BeautifulSoup(text, "lxml") for link in soup.find_all('a'): if 'href' in link.attrs: newurl = link.attrs['href'] # resolve relative URLs if newurl.startswith('/'): newurl = urljoin(url, newurl) # ignore any URL that doesn't now start with http if newurl.startswith('http'): links.add(newurl) return links
70746ba8d28244cf712655fd82a38d358a30779a
3,646,853
from typing import Tuple def get_merkle_root(*leaves: Tuple[str]) -> MerkleNode: """Builds a Merkle tree and returns the root given some leaf values.""" if len(leaves) % 2 == 1: leaves = leaves + (leaves[-1],) def find_root(nodes): newlevel = [ MerkleNode(sha256d(i1.val + i2.val), children=[i1, i2]) for [i1, i2] in _chunks(nodes, 2) ] return find_root(newlevel) if len(newlevel) > 1 else newlevel[0] return find_root([MerkleNode(sha256d(l)) for l in leaves])
d0fae08918b042f87ef955be436f1e3d84a66e8a
3,646,854
import torch import copyreg def BeginBlock(layer_to_call: torch.nn.Module, user_id: str = None, ipu_id: int = None) -> torch.nn.Module: """ Define a block by modifying an existing PyTorch module. You can use this with an existing PyTorch module instance, as follows: >>> poptorch.BeginBlock(myModel.a_layer) >>> poptorch.BeginBlock(MyNewLayer()) The wrapped module and all sub-modules will be part of this block until a sub-module is similar modified to be another block. In addition, if an IPU is specified, the module and its submodules will run on the specified IPU. You can combines multiple blocks into a stage. :param layer_to_call: PyTorch module to assign to the block. :param user_id: A user defined identifier for the block. Blocks with the same id are considered as being a single block. Block identifiers are also used to manually specify pipelines or phases. :param ipu_id: The id of the IPU to run on. Note that the ``ipu_id`` is an index in a multi-IPU device within PopTorch, and is separate and distinct from the device ids used by ``gc-info``. .. seealso:: :py:meth:`poptorch.Options.setExecutionStrategy` """ if not isinstance(layer_to_call, torch.nn.Module): # Previously, the function returned a new model so would work for any # callable. This was never documented but should still be permitted to # work. if callable(layer_to_call): return LegacyBeginBlockFn(layer_to_call, user_id, ipu_id) raise _impl.createPoptorchError( "module is not an instance of torch.nn.Module or " + "function.") class BlockModule(type(layer_to_call)): def __call__(self, *input, **kwargs): if Block._stages_manager is not None: if self._user_id is None: self.__dict__['_user_id'] = ( Block._stages_manager.nextAutoId()) Block._stages_manager.beginStage(self._user_id, self._ipu_id) return super().__call__(*input, **kwargs) if str(layer_to_call.__class__) == str(BlockModule): raise _impl.createPoptorchError( "module has already been assigned to a block.") BlockModule.__name__ = type(layer_to_call).__name__ layer_to_call.__class__ = BlockModule layer_to_call.__dict__['_user_id'] = user_id layer_to_call.__dict__['_ipu_id'] = ipu_id # Register custom function to copy / serialize wrappers copyreg.pickle(BlockModule, _pickle_reduce_block) # There is no need to return as it is passed by reference, but this is for # backward compatibility return layer_to_call
a43c0d198fcf1f100cbec5bc3d916aeb05fd36d0
3,646,855
import torch def unbatch_nested_tensor(nested_tensor): """Squeeze the first (batch) dimension of each entry in ``nested_tensor``.""" return map_structure(lambda x: torch.squeeze(x, dim=0), nested_tensor)
0691cb1bb851c609747cde9d45b24ca6310fa022
3,646,856
def row2dict(cursor, row): """ タプル型の行データを辞書型に変換 @param cursor: カーソルオブジェクト @param row: 行データ(tuple) @return: 行データ(dict) @see: http://docs.python.jp/3.3/library/sqlite3.html """ d = {} for idx, col in enumerate(cursor.description): d[col[0]] = row[idx] return d
60e0ebed21c35a65784fe94fe5781f61fbe0c97d
3,646,857
def merge(left, right): """this is used for merging two halves """ # print('inside Merge ') result = []; leftIndex = 0; rightIndex = 0; while leftIndex < len(left) and rightIndex < len(right): if left[leftIndex] < right[rightIndex]: result.append(left[leftIndex]) leftIndex += 1 else: result.append(right[rightIndex]) rightIndex += 1 # print('merge', left, right) # print('result', result) # print('left elements ->', left[leftIndex:] + right[rightIndex:]) # Checking if any element was left return result + left[leftIndex:] + right[rightIndex:]
5b0012e102d72a93cf3ce47f9600b7dcef758a3b
3,646,858
import re def parse_query(query): """Parse the given query, returning a tuple of strings list (include, exclude).""" exclude = re.compile(r'(?<=-")[^"]+?(?=")|(?<=-)\w+').findall(query) for w in sorted(exclude, key=lambda i: len(i), reverse=True): query = query.replace(w, '') query = " " + query return re.compile(r'(?<=[+ ]")[^"]+?(?=")|(?<=[+ ])\w+').findall(query), exclude
4fe6aac76935af6e5acaa3aedad40d6bc635d4ff
3,646,859
def _m_verify_mg(state, method_name, multigoal, depth, verbose=0): """ Pyhop 2 uses this method to check whether a multigoal-method has achieved the multigoal that it promised to achieve. """ goal_dict = _goals_not_achieved(state,multigoal) if goal_dict: raise Exception(f"depth {depth}: method {method_name} " + \ f"didn't achieve {multigoal}]") if verbose >= 3: print(f"depth {depth}: method {method_name} achieved {multigoal}") return []
262ae05ab34e37867d5fa83ff86ecbd01391dbe1
3,646,860
def eggs_attribute_decorator(eggs_style): """Applies the eggs style attribute to the function""" def decorator(f): f.eggs = eggs_style @wraps(f) def decorated_function(*args, **kwargs): return f(*args, **kwargs) return decorated_function return decorator
3fe6d6b65b29176cf9fb997697c1b70f01f041bf
3,646,861
def byte_size(num, suffix='B'): """ Return a formatted string indicating the size in bytes, with the proper unit, e.g. KB, MB, GB, TB, etc. :arg num: The number of byte :arg suffix: An arbitrary suffix, like `Bytes` :rtype: float """ for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']: if abs(num) < 1024.0: return "%3.1f%s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s%s" % (num, 'Y', suffix)
830d4ed401df90bc3a176c52124ed93c53c25c80
3,646,862
def cdsCoverage(genome_coverage, dict_cds, datatype, coverage): """Return Mean Coverage or Raw Counts for each CDS, or their promotor regions for tss and chip""" genome_coverage = [map(int, genome_coverage[0]), map(int, genome_coverage[1])] # CDS coverage is calculated from genome coverage on the entire gene if datatype != 'tss' and datatype != 'chip': for cds_id in dict_cds: # Strand plus plus = sum(genome_coverage[0][int(dict_cds[cds_id][2]-1):int(dict_cds[cds_id][3])]) if coverage == 'mean': dict_cds[cds_id][5][0] = float(plus) / len(genome_coverage[0][int(dict_cds[cds_id][2]-1):int(dict_cds[cds_id][3])]) elif coverage == 'counts': dict_cds[cds_id][5][0] = float(plus) # Strand minus minus = sum(genome_coverage[1][int(dict_cds[cds_id][2]-1):int(dict_cds[cds_id][3])]) if coverage == 'mean': dict_cds[cds_id][5][1] = float(minus) / len(genome_coverage[1][int(dict_cds[cds_id][2]-1):int(dict_cds[cds_id][3])]) elif coverage == 'counts': dict_cds[cds_id][5][1] = float(minus) return dict_cds # CDS coverage is calculated from genome coverage on the region [-250:ATG:+100] else: for cds_id in dict_cds: # Strand plus if int(dict_cds[cds_id][4]) == 1: start = int(dict_cds[cds_id][2]) - 250 # Test position out of the first base if start < 1: start = 1 stop = int(dict_cds[cds_id][2]) + 2 + 100 # Test position out of the last base if stop > len(genome_coverage[0]): stop = len(genome_coverage[0]) plus = sum(genome_coverage[0][start-1:stop]) if coverage == 'mean': dict_cds[cds_id][5][0] = float(plus) / len(genome_coverage[0][start-1:stop]) elif coverage == 'counts': dict_cds[cds_id][5][0] = float(plus) minus = sum(genome_coverage[1][start-1:stop]) if coverage == 'mean': dict_cds[cds_id][5][1] = float(minus) / len(genome_coverage[1][start-1:stop]) elif coverage == 'counts': dict_cds[cds_id][5][1] = float(minus) # Strand minus: strand is set at -1 else: start = int(dict_cds[cds_id][3]) + 250 # Test position out of the last base if start > len(genome_coverage[0]): start = len(genome_coverage[0]) stop = int(dict_cds[cds_id][3]) - 2 - 100 # Test position out of the first base if stop < 1: stop = 1 plus = sum(genome_coverage[0][stop-1:start]) if coverage == 'mean': dict_cds[cds_id][5][0] = float(plus) / len(genome_coverage[0][stop-1:start]) elif coverage == 'counts': dict_cds[cds_id][5][0] = float(plus) minus = sum(genome_coverage[1][stop-1:start]) if coverage == 'mean': dict_cds[cds_id][5][1] = float(minus) / len(genome_coverage[1][stop-1:start]) elif coverage == 'counts': dict_cds[cds_id][5][1] = float(minus) return dict_cds
637d76347dbe09c3826e496f7c8f5ec0a79f3dbd
3,646,863
def div88(): """ Returns the divider ZZZZZZZZZZZZ :return: divider88 """ return divider88
a2ae79f96ed7530fd2a1f266404ee3b21614a5a9
3,646,864
def laplace_noise(epsilon, shape, dtype, args): """ Similar to foolbox but batched version. :param epsilon: strength of the noise :param bounds: min max for images :param shape: the output shape :param dtype: the output type :return: the noise for images """ scale = epsilon / np.sqrt(3) * (args.max - args.min) noise = nprng.laplace(scale=scale, size=shape) noise = noise.astype(dtype) return noise
3016db9cebffe47c62f57e05d30442b9786636e8
3,646,865
import six import sys def import_by_path(dotted_path, error_prefix=''): """ Import a dotted module path and return the attribute/class designated by the last name in the path. Raise ImproperlyConfigured if something goes wrong. """ try: module_path, class_name = dotted_path.rsplit('.', 1) except ValueError: raise ImproperlyConfigured("%s%s doesn't look like a module path" % ( error_prefix, dotted_path)) try: module = import_module(module_path) except ImportError as e: msg = '%sError importing module %s: "%s"' % ( error_prefix, module_path, e) six.reraise(ImproperlyConfigured, ImproperlyConfigured(msg), sys.exc_info()[2]) try: attr = getattr(module, class_name) except AttributeError: raise ImproperlyConfigured('%sModule "%s" does not define a ' '"%s" attribute/class' % (error_prefix, module_path, class_name)) return attr
1bed15dd48a1929c5418862b71cdfda9a0e5dc7b
3,646,866
def grid_convergence(lat, lon, radians=False): """ Given the latitude and longitude of a position, calculate the grid convergence Args: lat: latitude (degrees or radians) lon: longitude (degrees or radians) radians: true if lat/lon in radians Returns: gamma, the grid convergence angle in radians or degrees """ lon0, lat0, _ = utm_origin_lla(lat, lon, radians=radians) if radians: return atan(tan(lon - lon0)*sin(lat)) else: return rad2deg(atan(tand(lon - lon0)*sind(lat)))
dc60c8325f66fdc2db9b72d2bdc099823f913d26
3,646,867
import uuid import json def _make_index_item(resource_type): """ """ id_prefix = "2c1|" uuid_ = uuid.uuid4().hex tpl = { "access_roles": [ "guillotina.Reader", "guillotina.Reviewer", "guillotina.Owner", "guillotina.Editor", "guillotina.ContainerAdmin", ], "access_users": ["root"], "depth": 2, "elastic_index": "{0}__{1}-{2}".format( ES_INDEX_NAME, resource_type.lower(), uuid_ ), "id": None, "uuid": id_prefix + uuid_, } with open(str(FHIR_EXAMPLE_RESOURCES / (resource_type + ".json")), "r") as fp: data = json.load(fp) tpl["id"] = data["id"] tpl[resource_type.lower() + "_resource"] = data return tpl
5c11bb14016e42ff36b12ca81fd83e81b71dea9d
3,646,868
import torch def mol_to_graph(mol): """ Converts Mol object to a graph compatible with Pytorch-Geometric Args: mol (Mol): RDKit Mol object Returns: node_feats (LongTensor): features for each node, one-hot encoded by element edge_feats (LongTensor): features for each node, one-hot encoded by element edges (LongTensor): edges in COO format node_pos (FloatTensor): x-y-z coordinates of each node """ node_pos = torch.FloatTensor(dt.get_coordinates_of_conformer(mol)) bonds = dt.get_bonds_matrix(mol) edge_tuples = np.argwhere(bonds) edges = torch.LongTensor(edge_tuples).t().contiguous() node_feats = torch.FloatTensor([one_of_k_encoding_unk(a.GetSymbol(), mol_atoms) for a in mol.GetAtoms()]) # edge_feats = torch.FloatTensor([one_of_k_encoding(bonds[i,j], [1.0, 2.0, 3.0, 1.5]) for i,j in edge_tuples]) edge_feats = torch.FloatTensor([bonds[i, j] for i, j in edge_tuples]).view(-1, 1) return node_feats, edges, edge_feats, node_pos
5a3e5169b7a84afae31254e71152fb6cb300bf64
3,646,869
from typing import List import random def _tournament(evaluated_population: List[Eval], tournament_size: int = 5, previous_winner: Chromosome = None) -> Chromosome: """Selects tournament_size number of chromosomes to 'compete' against each other. The chromosome with the highest fitness score 'wins' the tournament. Params: - evaluated_population (list<tuple<list<int>,float>>): The evaluated population - tournament_size (int): Specifies the size of the tournament. When equal to 1, the method is equivalent to random selection. The higher the tournament size, the higher the bias towards the fitter individuals. - previous_winner (list<int>): The winner of the previous tournament. If the same chromosome wins both tournaments, then the runner-up to the current tournament is chosen. Returns: - winner (list<int>): The chromosome with the highest score in the tournament """ tournament = random.sample(evaluated_population, tournament_size) tournament.sort(key=lambda evaluated_chromosome: evaluated_chromosome[1]) winner = tournament[0][0] # pylint: disable=E1136 if winner == previous_winner: winner = tournament[1][0] # pylint: disable=E1136 return winner
29db4c9c4a5332c3e70760f57312b845e29b7a36
3,646,870
def interpolate_drift_table(table, start=0, skip=0, smooth=10): """ Smooth and interpolate a table :param table: fxyz (nm) array :param start: in case of renumbering needed : first frame :param skip: how many frame were skipped :param smooth: gaussian smoothing sigma :return: interpolated table """ w = table.shape[1] if smooth > 0: table = smooth_drift_table(table, sigma=smooth) table = update_frame_number(table, start=start, skip=skip) time = table[:, 0] # print(time.shape) time_new = np.arange(1, max(time) + 1) new_table = np.zeros((len(time_new), w)) new_table[:, 0] = time_new for col in range(1, w): y = table[:, col] # print(y.shape) f = interpolate.interp1d(time, y, fill_value='extrapolate') ynew = f(time_new) new_table[:, col] = ynew logger.info(f'interpolating from {len(time)} to {len(ynew)} frames') return new_table
d2296e6eb1b55cf5416d2ab933ef430eb0ace964
3,646,871
def on_mrsim_config_change(): """Update the mrsim.config dict. Only includes density, volume, and #sidebands""" existing_data = ctx.states["local-mrsim-data.data"] fields = ["integration_density", "integration_volume", "number_of_sidebands"] # if existing_data is not None: print(existing_data["config"]) existing_data["trigger"] = {"simulate": True, "method_index": None} for item in fields: existing_data["config"][item] = ctx.states[f"{item}.value"] return prep_valid_data_for_simulation(existing_data)
cea2f60ca0de5e8b383a7363adfeea19473b1662
3,646,872
import base64 def decrypt(encrypted, passphrase): """takes encrypted message in base64 and key, returns decrypted string without spaces on the left IMPORTANT: key must be a multiple of 16. Finaly, the strip function is used to remove the spaces from the left of the message""" aes = AES.new(passphrase, AES.MODE_ECB) return aes.decrypt(base64.b64decode(encrypted)).lstrip().decode('utf-8')
90e10c3e6e07934bc2171fa09febd223db200d70
3,646,873
import tqdm def multi_ale_plot_1d( features, title=None, xlabel=None, ylabel=None, x_rotation=20, markers=("o", "v", "^", "<", ">", "x", "+"), colors=plt.rcParams["axes.prop_cycle"].by_key()["color"], zorders=None, xlabel_skip=2, format_xlabels=True, show_full=True, margin=0.03, rngs=None, **kwargs, ): """Plots ALE function of multiple specified features based on training set. Multiple first-order (1D) ALE plots will be computed and plotted on the same plot. Note that currently, only concave hull plotting of Monte-Carlo replicas is supported. Parameters ---------- features : iterable of column label Features for which to plot the 1D ALE plot. title : str or None Figure title. xlabel : str or None Figure x-label. ylabel : str or None Figure y-label. x_rotation : x-label rotation. markers : iterable of str Matplotlib markers used to differentiate the different features. colors : iterable Matplotlib colors used to differentiate the different features. zorders : iterable of int or None zorder used for each feature, with the hull (if applicable) having the same zorder as the ALE line plot. By default, the last feature will have the highest, and the first feature the lowest zorder. xlabel_skip : int Only plot an xlabel marker every `xlabel_skip` label. format_xlabels : bool If True, apply xlabel formatting according to the above options. show_full : bool If True, display the ALE plot generated using all the data, as opposed to simply the bootstrap uncertainties. margin : float Fraction by which to multiply the plotted coordinate range to yield the corresponding margin. This is applied separately for x and y. rngs : iterable of numpy Generator or None If given, the number of items given should match the number of features given. Other Parameters ---------------- **kwargs : See alepython.ale_plot. """ if "quantile_axis" in kwargs: raise NotImplementedError("'quantile_axis' is not implemented yet.") if zorders is None: zorders = list(range(2, 2 + len(features))) if rngs is not None: if len(rngs) != len(features): raise ValueError("Number of `rngs` should match number of `features`.") else: rng = kwargs.get("rng") rngs = [rng] * len(features) quantile_list = [] ale_list = [] mc_data_list = [] for feature, rng in zip( tqdm( features, desc="Calculating feature ALEs", disable=not kwargs.get("verbose", False), ), rngs, ): out = ale_plot( **{ **kwargs, # Override certain kwargs essential to this function. **dict( features=feature, rng=rng, quantile_axis=False, return_data=True, return_mc_data=True, fig=plt.figure(), # Create dummy figure. ax=None, ), } ) if len(out) == 3: temp_fig, _, (quantiles, ale) = out mc_data = None else: temp_fig, _, (quantiles, ale), mc_data = out # Close the unneeded temporary figure. plt.close(temp_fig) # Record the generated data for this feature. quantile_list.append(quantiles) ale_list.append(ale) mc_data_list.append(mc_data) # Construct quantiles from the individual quantiles, minimising the amount of interpolation. combined_quantiles = np.vstack([quantiles[None] for quantiles in quantile_list]) final_quantiles = np.mean(combined_quantiles, axis=0) mod_quantiles = np.arange(len(quantiles)) if kwargs.get("grid_kwargs") is None: grid_kwargs = {} if kwargs.get("hull_polygon_kwargs") is None: hull_polygon_kwargs = {} else: hull_polygon_kwargs = kwargs["hull_polygon_kwargs"] if "alpha" not in hull_polygon_kwargs: hull_polygon_kwargs["alpha"] = 0.2 fig = kwargs.get("fig") ax = kwargs.get("ax") if fig is None and ax is None: logger.debug("Getting current figure and axis.") fig, ax = plt.gcf(), plt.gca() elif fig is not None and ax is None: logger.debug("Creating axis from figure {}.", fig) ax = fig.add_subplot(111) x_lims = [np.inf, -np.inf] y_lims = [np.inf, -np.inf] def update_lims(v, lims): v_min = np.min(v) v_max = np.max(v) if v_min < lims[0]: lims[0] = v_min if v_max > lims[1]: lims[1] = v_max for feature, quantiles, ale, marker, color, zorder, mc_data in zip( features, quantile_list, ale_list, markers, colors, zorders, mc_data_list, ): if mc_data is not None: # Compute the hull and plot it as a Polygon. mod_mc_data = tuple( (np.interp(mc_quantiles, final_quantiles, mod_quantiles), mc_ale) for mc_quantiles, mc_ale in mc_data ) mc_hull_points = _compute_mc_hull_poly_points( mod_mc_data, np.linspace( np.min([mc_quantiles[0] for mc_quantiles, mc_ale in mod_mc_data]), np.max([mc_quantiles[-1] for mc_quantiles, mc_ale in mod_mc_data]), kwargs.get("monte_carlo_hull_points", 300) // 2, ), ) ax.add_patch( Polygon( mc_hull_points, **{ **hull_polygon_kwargs, **dict( facecolor=color, zorder=zorder, label=feature if not show_full else None, ), }, ) ) # Update plot limits. update_lims(mc_hull_points[:, 0], x_lims) update_lims(mc_hull_points[:, 1], y_lims) if show_full: # Interpolate each of the quantiles relative to the accumulated final quantiles. interp_quantiles = np.interp(quantiles, final_quantiles, mod_quantiles) ax.plot( interp_quantiles, ale, marker=marker, label=feature, c=color, zorder=zorder, ) # Update plot limits. update_lims(interp_quantiles, x_lims) update_lims(ale, y_lims) # Set plot limits. x_margin = margin * (x_lims[1] - x_lims[0]) ax.set_xlim(x_lims[0] - x_margin, x_lims[1] + x_margin) y_margin = margin * (y_lims[1] - y_lims[0]) ax.set_ylim(y_lims[0] - y_margin, y_lims[1] + y_margin) ax.legend(loc="best", ncol=2) if format_xlabels: ax.set_xticks(mod_quantiles[::xlabel_skip]) ax.set_xticklabels(_sci_format(final_quantiles[::xlabel_skip], scilim=0.6)) ax.xaxis.set_tick_params(rotation=x_rotation) else: ax.set_xticks(mod_quantiles) ax.set_xticklabels(final_quantiles[::xlabel_skip]) if title is None: mc_string = ( kwargs.get("monte_carlo_rep", 50) if kwargs.get("monte_carlo") else "False" ) _ax_title( ax, f"First-order ALE of features '{', '.join(map(str, features))}'", f"Bins : {len(quantile_list[0]) - 1} - Monte-Carlo : {mc_string}", ) else: fig.suptitle(title) ax.set_xlabel(xlabel, va="center_baseline") ax.set_ylabel(ylabel) if "linestyle" not in grid_kwargs: grid_kwargs["linestyle"] = "--" if "alpha" not in grid_kwargs: grid_kwargs["alpha"] = 0.4 if grid_kwargs: ax.grid(**grid_kwargs) return fig, ax, final_quantiles, quantile_list, ale_list, mc_data_list
761f27a799ff5ba848e152335e77b351c03213ff
3,646,874
import os def load_ckpt(ckpt): """ :param ckpt: ckpt 目录或者 pb 文件 """ config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.per_process_gpu_memory_fraction = 0.2 if os.path.isdir(ckpt): graph = tf.Graph() with graph.as_default(): sess = tf.Session(config=config) restore_ckpt(sess, os.path.abspath(ckpt)) elif os.path.isfile(ckpt) and ckpt.endswith('.pb'): graph = load_graph(ckpt) with graph.as_default(): sess = tf.Session(graph=graph, config=config) else: print("Load ckpt failed") exit(-1) return sess, graph
1b39d9d6b16a842c7f6f6b289c50f4818bd86c55
3,646,875
async def total_conversations(request: HistoryQuery = HistoryQuery(month=6), collection: str = Depends(Authentication.authenticate_and_get_collection)): """Fetches the counts of conversations of the bot for previous months.""" range_value, message = HistoryProcessor.total_conversation_range( collection, request.month ) return {"data": range_value, "message": message}
bc6a292b7ddc598d43c609272f6f45e87842bf21
3,646,876
import sys def restler_fuzzable_datetime(*args, **kwargs) : """ datetime primitive @param args: The argument with which the primitive is defined in the block of the request to which it belongs to. This is a date-time primitive and therefore the arguments will be added to the existing candidate values for date-time mutations. @type args: Tuple @param kwargs: Optional keyword arguments. @type kwargs: Dict @return: A tuple of the primitive's name and its default value or its tag both passed as arguments via the restler grammar. @rtype : Tuple """ field_name = args[0] quoted = False if QUOTED_ARG in kwargs: quoted = kwargs[QUOTED_ARG] examples=[] if EXAMPLES_ARG in kwargs: examples = kwargs[EXAMPLES_ARG] param_name = None if PARAM_NAME_ARG in kwargs: param_name = kwargs[PARAM_NAME_ARG] writer_variable = None if WRITER_VARIABLE_ARG in kwargs: writer_variable = kwargs[WRITER_VARIABLE_ARG] return sys._getframe().f_code.co_name, field_name, quoted, examples, param_name, writer_variable
a18a6bf53a2b910dc4e510efece7605a5e35db58
3,646,877
import pandas def intersect(table_dfs, col_key): """ intsc tables by column """ col_key_vals = list(unique_everseen(chain(*( table_df[col_key] for table_df in table_dfs)))) lookup_dcts = [lookup_dictionary(table_df, col_key) for table_df in table_dfs] intscd_rows = [] for val in col_key_vals: row = {} if val and all(val in lookup_dct for lookup_dct in lookup_dcts): for lookup_dct in lookup_dcts: row.update(lookup_dct[val]) intscd_rows.append(row) intscd_col_keys = list(unique_everseen(chain(*table_dfs))) intscd_df = pandas.DataFrame.from_dict(intscd_rows)[intscd_col_keys] return intscd_df
9ca1035d4cd614ae4080c8e9dc9174c7423c28dc
3,646,878
import socket import json def ask_peer(peer_addr, req_type, body_dict, return_json=True): """ Makes request to peer, sending request_msg :param peer_addr: (IP, port) of peer :param req_type: type of request for request header :param body_dict: dictionary of body :param return_json: determines if json or string response should be returned :return: string response of peer """ request_msg = create_request({"type": req_type}, body_dict) with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as client: client.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) client.settimeout(5) try: client.connect(peer_addr) client.sendall(request_msg.encode()) data = client.recv(1024).decode() except (socket.error, socket.timeout): return None if not data: return None return data if not return_json else json.loads(data)
44c8750ef4af487402a5cf5f789bf2a3d8d3fdb7
3,646,879
def describe_instances_header(): """generate output header""" return misc.format_line(( "Account", "Region", "VpcId", "ec2Id", "Type", "State", "ec2Name", "PrivateIPAddress", "PublicIPAddress", "KeyPair" ))
6939b8e47c15e098733e70fe17392c18cfff9636
3,646,880
def ordered_scaffold_split(dataset, lengths, chirality=True): """ Split a dataset into new datasets with non-overlapping scaffolds and sorted w.r.t. number of each scaffold. Parameters: dataset (Dataset): dataset to split lengths (list of int): expected length for each split. Note the results may be different in length due to rounding. """ frac_train, frac_valid, frac_test = 0.8, 0.1, 0.1 scaffold2id = defaultdict(list) for idx, smiles in enumerate(dataset.smiles_list): scaffold = MurckoScaffold.MurckoScaffoldSmiles(smiles=smiles, includeChirality=chirality) scaffold2id[scaffold].append(idx) scaffold2id = {key: sorted(value) for key, value in scaffold2id.items()} scaffold_sets = [ scaffold_set for (scaffold, scaffold_set) in sorted( scaffold2id.items(), key=lambda x: (len(x[1]), x[1][0]), reverse=True) ] train_cutoff = frac_train * len(dataset) valid_cutoff = (frac_train + frac_valid) * len(dataset) train_idx, valid_idx, test_idx = [], [], [] for scaffold_set in scaffold_sets: if len(train_idx) + len(scaffold_set) > train_cutoff: if len(train_idx) + len(valid_idx) + len(scaffold_set) > valid_cutoff: test_idx.extend(scaffold_set) else: valid_idx.extend(scaffold_set) else: train_idx.extend(scaffold_set) return torch_data.Subset(dataset, train_idx), torch_data.Subset(dataset, valid_idx), torch_data.Subset(dataset, test_idx)
8a3e0ab5c4cf23dcdcb075fc9363452e06c7d22f
3,646,881
import struct def read_plain_byte_array(file_obj, count): """Read `count` byte arrays using the plain encoding.""" return [file_obj.read(struct.unpack(b"<i", file_obj.read(4))[0]) for i in range(count)]
f300d205fda9b1b92ebd505f676b1f76122f994d
3,646,882
import imp def find_django_migrations_module(module_name): """ Tries to locate <module_name>.migrations_django (without actually importing it). Appends either ".migrations_django" or ".migrations" to module_name. For details why: https://docs.djangoproject.com/en/1.7/topics/migrations/#libraries-third-party-apps """ try: module_info = imp.find_module(module_name) module = imp.load_module(module_name, *module_info) imp.find_module('migrations_django', module.__path__) return module_name + '.migrations_django' except ImportError: return module_name + '.migrations'
fdae121b1341355bc1911d2b4ce9501eb80cf8f3
3,646,883
def big_number(int_in): """Converts a potentially big number into a lisible string. Example: - big_number(10000000) returns '10 000 000'. """ s = str(int_in) position = len(s) counter = 0 out = '' while position != 0: counter += 1 position -= 1 out = s[position] + out if counter % 3 == 0 and position != 0: out = " " + out return (out)
7db0dce8ffa1cbea736537efbf2fdd4d8a87c20d
3,646,884
def action_list_to_string(action_list): """Util function for turning an action list into pretty string""" action_list_string = "" for idx, action in enumerate(action_list): action_list_string += f"{action['name']} ({action['action']['class_name']})" if idx == len(action_list) - 1: continue action_list_string += " => " return action_list_string
5e291dd1dbf7b8d8149505a0efc157cbcc22af3b
3,646,885
def segment(img_fpath, bbox_, new_size=None): """ Runs grabcut """ printDBG('[segm] segment(img_fpath=%r, bbox=%r)>' % (img_fpath, bbox_)) num_iters = 5 bgd_model = np.zeros((1, 13 * 5), np.float64) fgd_model = np.zeros((1, 13 * 5), np.float64) mode = cv2.GC_INIT_WITH_MASK # Initialize # !!! CV2 READS (H,W) !!! # WH Unsafe img_resz, bbox_resz = resize_img_and_bbox(img_fpath, bbox_, new_size=new_size) # WH Unsafe (img_h, img_w) = img_resz.shape[:2] # Image Shape printDBG(' * img_resz.shape=%r' % ((img_h, img_w),)) # WH Safe tlbr = ut.xywh_to_tlbr(bbox_resz, (img_w, img_h)) # Rectangle ANNOTATION (x1, y1, x2, y2) = tlbr rect = tuple(bbox_resz) # Initialize: rect printDBG(' * rect=%r' % (rect,)) printDBG(' * tlbr=%r' % (tlbr,)) # WH Unsafe _mask = np.zeros((img_h, img_w), dtype=np.uint8) # Initialize: mask _mask[y1:y2, x1:x2] = cv2.GC_PR_FGD # Set ANNOTATION to cv2.GC_PR_FGD # Grab Cut tt = ut.Timer(' * cv2.grabCut()', verbose=DEBUG_SEGM) cv2.grabCut(img_resz, _mask, rect, bgd_model, fgd_model, num_iters, mode=mode) tt.toc() img_mask = np.where((_mask == cv2.GC_FGD) + (_mask == cv2.GC_PR_FGD), 255, 0).astype('uint8') # Crop chip = img_resz[y1:y2, x1:x2] chip_mask = img_mask[y1:y2, x1:x2] chip_mask = clean_mask(chip_mask) chip_mask = np.array(chip_mask, np.float) / 255.0 # Mask the value of HSV chip_hsv = cv2.cvtColor(chip, cv2.COLOR_RGB2HSV) chip_hsv = np.array(chip_hsv, dtype=np.float) / 255.0 chip_hsv[:, :, 2] *= chip_mask chip_hsv = np.array(np.round(chip_hsv * 255.0), dtype=np.uint8) seg_chip = cv2.cvtColor(chip_hsv, cv2.COLOR_HSV2RGB) return seg_chip, img_mask
86cecbe9f5aec2e93f8165c46fb9dfb07a536d45
3,646,886
def test_pandigital_9(*args): """ Test if args together contain the digits 1 through 9 uniquely """ digits = set() digit_count = 0 for a in args: while a > 0: digits.add(a % 10) digit_count += 1 a //= 10 return digit_count == 9 and len(digits) == 9 and 0 not in digits
ad5a738400f7b8a9bea001a13a76798633b9ac61
3,646,887
import os def WMT14( root, split, language_pair=("de", "en"), train_set="train.tok.clean.bpe.32000", valid_set="newstest2013.tok.bpe.32000", test_set="newstest2014.tok.bpe.32000", ): """WMT14 Dataset The available datasets include following: **Language pairs**: +-----+-----+-----+ | |'en' |'de' | +-----+-----+-----+ |'en' | | x | +-----+-----+-----+ |'de' | x | | +-----+-----+-----+ Args: root: Directory where the datasets are saved. Default: ".data" split: split or splits to be returned. Can be a string or tuple of strings. Default: (‘train’, ‘valid’, ‘test’) language_pair: tuple or list containing src and tgt language train_set: A string to identify train set. valid_set: A string to identify validation set. test_set: A string to identify test set. Examples: >>> from torchtext.datasets import WMT14 >>> train_iter, valid_iter, test_iter = WMT14() >>> src_sentence, tgt_sentence = next(train_iter) """ supported_language = ["en", "de"] supported_train_set = [s for s in NUM_LINES if "train" in s] supported_valid_set = [s for s in NUM_LINES if "test" in s] supported_test_set = [s for s in NUM_LINES if "test" in s] assert len(language_pair) == 2, "language_pair must contain only 2 elements: src and tgt language respectively" if language_pair[0] not in supported_language: raise ValueError( "Source language '{}' is not supported. Valid options are {}".format(language_pair[0], supported_language) ) if language_pair[1] not in supported_language: raise ValueError( "Target language '{}' is not supported. Valid options are {}".format(language_pair[1], supported_language) ) if train_set not in supported_train_set: raise ValueError( "'{}' is not a valid train set identifier. valid options are {}".format(train_set, supported_train_set) ) if valid_set not in supported_valid_set: raise ValueError( "'{}' is not a valid valid set identifier. valid options are {}".format(valid_set, supported_valid_set) ) if test_set not in supported_test_set: raise ValueError( "'{}' is not a valid valid set identifier. valid options are {}".format(test_set, supported_test_set) ) train_filenames = "{}.{}".format(train_set, language_pair[0]), "{}.{}".format(train_set, language_pair[1]) valid_filenames = "{}.{}".format(valid_set, language_pair[0]), "{}.{}".format(valid_set, language_pair[1]) test_filenames = "{}.{}".format(test_set, language_pair[0]), "{}.{}".format(test_set, language_pair[1]) if split == "train": src_file, tgt_file = train_filenames elif split == "valid": src_file, tgt_file = valid_filenames else: src_file, tgt_file = test_filenames dataset_tar = download_from_url(URL, root=root, hash_value=MD5, path=os.path.join(root, _PATH), hash_type="md5") extracted_files = extract_archive(dataset_tar) data_filenames = { split: _construct_filepaths(extracted_files, src_file, tgt_file), } for key in data_filenames: if len(data_filenames[key]) == 0 or data_filenames[key] is None: raise FileNotFoundError("Files are not found for data type {}".format(key)) assert data_filenames[split][0] is not None, "Internal Error: File not found for reading" assert data_filenames[split][1] is not None, "Internal Error: File not found for reading" src_data_iter = _read_text_iterator(data_filenames[split][0]) tgt_data_iter = _read_text_iterator(data_filenames[split][1]) def _iter(src_data_iter, tgt_data_iter): for item in zip(src_data_iter, tgt_data_iter): yield item return _RawTextIterableDataset( DATASET_NAME, NUM_LINES[os.path.splitext(src_file)[0]], _iter(src_data_iter, tgt_data_iter) )
6e6e2e020c0394571aaaca1e9d55004111881fb6
3,646,888
def volume_attached(context, volume_id, instance_id, mountpoint): """Ensure that a volume is set as attached.""" return IMPL.volume_attached(context, volume_id, instance_id, mountpoint)
3bfd057dee24bf9a4b51ef6503dd46bacc64210d
3,646,889
def findby1email(session, email): """<comment-ja> メールアドレスを指定して1件のユーザ情報を取得します @param session: Session @type session: sqlalchemy.orm.session.Session @param email: メールアドレス @type email: str @return: karesansui.db.model.user.User </comment-ja> <comment-en> TODO: English Comment </comment-en> """ return session.query(User).filter(User.email == email).first()
0410b7819e7f64b370719fd3c979a735f31db16c
3,646,890
def _startswith( self: str | ir.StringValue, start: str | ir.StringValue ) -> ir.BooleanValue: """Determine whether `self` starts with `end`. Parameters ---------- self String expression start prefix to check for Examples -------- >>> import ibis >>> text = ibis.literal('Ibis project') >>> text.startswith('Ibis') Returns ------- BooleanValue Boolean indicating whether `self` starts with `start` """ return ops.StartsWith(self, start).to_expr()
dabc7a1e07b38fc99c1f31bb285fc895c890301d
3,646,891
import os def read_XMLs(input_path): """Reads the building XMLs to list of `BuildingInfo` objects Parameters ---------- input_path : str Path where the XMLs are located Returns ------- info_list: list A list of `BuildingInfo` objects with information about each building """ info_list = [] for file in os.listdir(input_path): if file.endswith(".xml"): print(file) this_building = BuildingInfo() this_XML = open(os.path.join(input_path, file), 'r') tree = ET.parse(this_XML) root = tree.getroot() info = root.find('Allgemein') this_building.year_of_construction = int(info.find('Baujahr').text) usage_type = info.find('Gebaeudetyp').text if usage_type == 'Buerogebaeude': this_building.usage_type = 'office' elif usage_type == 'Wohngebaeude': this_building.usage_type = 'single_family_dwelling' elif usage_type == 'Institut Allgemein': this_building.usage_type = 'institute' elif usage_type == 'Institut 4': this_building.usage_type = 'institute4' elif usage_type == 'Institut 8': this_building.usage_type = 'institute8' this_building.building_number = info.find('Gebaeude').text this_building.floors = int(info.find('Geschosszahl').text) this_building.area = float(info.find('Nettoflaeche').text) this_building.weight = 'light' this_building.height_of_floors = float(info.find( 'Geschosshoehe').text) this_building.office_layout = 0 this_XML.close() info_list.append(this_building) return info_list
3d823acd7a87a640a4c343b0f3a9da03df09f420
3,646,892
def _get_all_scopes(blocks): """Get all block-local scopes from an IR. """ all_scopes = [] for label, block in blocks.items(): if not (block.scope in all_scopes): all_scopes.append(block.scope) return all_scopes
daa13a20629dd419d08c9c6026972f666c3f9291
3,646,893
from datetime import datetime def get_equinox_type(date): """Returns a string representing the type of equinox based on what month the equinox occurs on. It is assumed the date being passed has been confirmed to be a equinox. Keyword arguments: date -- a YYYY-MM-DD string. """ month = datetime.strptime(date, '%Y-%m-%d').month if month == 3: return 'march' elif month == 9: return 'september' else: return None
06b65a54a0ccf681d9f9b57193f5e9d83578f0eb
3,646,894
def mcs_worker(k, mols, n_atms): """Get per-molecule MCS distance vector.""" dists_k = [] n_incomp = 0 # Number of searches terminated before timeout for l in range(k + 1, len(mols)): # Set timeout to halt exhaustive search, which could take minutes result = FindMCS([mols[k], mols[l]], completeRingsOnly=True, ringMatchesRingOnly=True, timeout=10) dists_k.append(1. - result.numAtoms / ((n_atms[k] + n_atms[l]) / 2)) if result.canceled: n_incomp += 1 return np.array(dists_k), n_incomp
013958a41813181478b3133e107efed5d0370fa6
3,646,895
def get_tally_sort_key(code, status): """ Get a tally sort key The sort key can be used to sort candidates and other tabulation categories, for example the status and tally collections returned by rcv.Tabulation().tabulate(). The sort codes will sort candidates before other tabulation categories; elected candidates before defeated candidates; elected candidates by increasing round of election, then by decreasing votes; defeated candidates by decreasing round of election, then by decreasing votes; any remaining ties are broken by the sort order of candidate names and labels for other tabulation categories. Arguments ========= code A string representing a candidate name or label of another tabulation category. status A dictionary of tabulation result statuses, as given by the second item of the return value from rcv.Tabulation().tabulate(). Returns ======= A sort key in the form of a tuple of integers and/or strings. """ sort_key = tuple([9, code]) if code in status: nbr_round = status[code].nbr_round votes = status[code].votes if status[code].status == 'elected': sort_key = (1, 1, nbr_round, -votes, code) else: sort_key = (1, 2, -nbr_round, -votes, code) else: sort_key = (2, code) # print('code =', code, ' sort_key =', sort_key) return sort_key
bd7d643300997903b84b1827174dd1f5ac515156
3,646,896
def plot_corelevel_spectra(coreleveldict, natom_typesdict, exp_references=None, scale_to=-1, show_single=True, show_ref=True, energy_range=None, title='', fwhm_g=0.6, fwhm_l=0.1, energy_grid=0.2, peakfunction='voigt', linestyle_spec='-', marker_spec='o', color_spec='k', color_single='g', xlabel='Binding energy [eV]', ylabel='Intensity [arb] (natoms*nelectrons)', saveas=None, xspec=None, alpha_l=1.0, beta_l=1.0, **kwargs): """ Plotting function of corelevel in the form of a spectrum. Convention: Binding energies are positiv! Args: coreleveldict: dict of corelevels with a list of corelevel energy of atomstypes # (The given corelevel accounts for a weight (number of electrons for full occupied corelevel) in the plot.) natom_typesdict: dict with number of atom types for each entry Kwargs: exp_references: dict with experimental refereces, will be ploted as vertical lines show_single (bool): plot all single peaks. scale_to float: the maximum 'intensity' will be scaled to this value (useful for experimental comparisons) title (string): something for labeling fwhm (float): full width half maximum of peaks (gaus, lorentz or voigt_profile) energy_grid (float): energy resolution linetyp_spec : linetype for spectrum peakfunction (string): what the peakfunction should be {'voigt', 'pseudo-voigt', 'lorentz', 'gaus'} example: coreleveldict = {u'Be': {'1s1/2' : [-1.0220669053033051, -0.3185614920138805,-0.7924091040092139]}} n_atom_types_Be12Ti = {'Be' : [4,4,4]} """ #show_compound=True, , compound_info={} compound_info dict: dict that can be used to specify what component should be shown together compound_info = {'Be12Ti' : {'Be' : 4, 'Ti' : 1}, 'BeTi' : {'Be' : 1, 'Ti' : 1}} # TODO feature to make singles of different compounds a different color if energy_range is None: energy_range = (None, None) if exp_references is None: exp_references = {} [xdata_spec, ydata_spec, ydata_single_all, xdata_all, ydata_all, xdatalabel] = construct_corelevel_spectrum(coreleveldict, natom_typesdict, exp_references=exp_references, scale_to=scale_to, fwhm_g=fwhm_g, fwhm_l=fwhm_l, energy_range=energy_range, xspec=xspec, energy_grid=energy_grid, peakfunction=peakfunction, alpha_l=alpha_l, beta_l=beta_l) xmin = min(xdata_all) - 2 #0.5 xmax = max(xdata_all) + 2 #0.5 if energy_range[0]: xmin = energy_range[0] if energy_range[1]: xmax = energy_range[1] xdata = xdata_all ydata = ydata_all ymax2 = max(ydata_spec) + 1 ymin = -0.3 ymax = max(ydata) + 1 limits = {'x': (xmin, xmax), 'y': (ymin, ymax)} limits_spec = {'x': (xmin, xmax), 'y': (ymin, ymax2)} #title = title #'Spectrum of {}'.format(compound) """ # ToDo redesign to use multiple_scatterplot axis = multiple_scatterplots(ydata, xdata, xlabel, ylabel, title, plot_labels, linestyle='', marker='o', markersize=markersize_g, legend=legend_g, legend_option={}, saveas='mscatterplot', limits=limits, scale=[None, None], axis=None, xerr=None, yerr=None, colors=[], linewidth=[], xticks=[], title=title, xlabel=xlabel, ylabel=ylabel, **kwargs) """ #print len(xdata), len(ydata) if 'plot_label' not in kwargs: kwargs['plot_label'] = 'corelevel shifts' if 'linestyle' not in kwargs: kwargs['linestyle'] = '' if saveas is None: saveas = f'XPS_theo_{fwhm_g}_{title}' saveas1 = f'XPS_theo_2_{fwhm_g}_{title}' else: saveas1 = saveas[1] saveas = saveas[0] #################################### ##### PLOT 1, plot raw datapoints if not plot_params['show']: return [xdata_spec, ydata_spec, ydata_single_all, xdata_all, ydata_all, xdatalabel] states = [] if show_ref and exp_references: for elm, ref_list_dict in exp_references.items(): for state, ref_list in ref_list_dict.items(): states.extend(ref_list) ax = single_scatterplot(xdata_all, ydata_all, xlabel=xlabel, ylabel=ylabel, title=title, line_options={ 'color': 'k', 'linestyle': '-', 'linewidth': 2 }, lines={'vertical': { 'pos': states, 'ymin': 0, 'ymax': 0.1 }}, limits=limits, saveas=saveas, **kwargs) ''' TODO for j,y in enumerate(ydata_all): for i,x in enumerate(xdata): lenx = xmax-xmin length = 0.5/lenx offset = 0.5/lenx xminline = x/lenx + offset - length/2 xmaxline = x/lenx + offset + length/2 plt.axhline(y=y[i], xmin=xminline, xmax=xmaxline, linewidth=2, color='k') text = r'{}'.format(y[i]) plt.text(x-0.25, y[i]+0.3, text, fontdict=font) ''' ############################################################## ##### PLOT 2, plot spectra, voigts around datapoints ######### kwargs.pop('linestyle', None) kwargs.pop('marker', None) kwargs.pop('color', None) kwargs.pop('save', None) kwargs.pop('save_plots', None) ax2 = single_scatterplot(xdata_spec, ydata_spec, xlabel=xlabel, ylabel=ylabel, title=title, marker=marker_spec, linestyle=linestyle_spec, color=color_spec, line_options={ 'color': 'k', 'linestyle': '-', 'linewidth': 2 }, lines={'vertical': { 'pos': states, 'ymin': 0, 'ymax': 0.1 }}, show=False, save_plots=False, limits=limits_spec, **kwargs) if show_single: ax2 = multiple_scatterplots([xdata_spec] * len(ydata_single_all), ydata_single_all, xlabel=xlabel, ylabel=ylabel, title=title, show=False, save_plots=False, axis=ax2, linestyle='-', color=color_single, limits=limits_spec, **kwargs) '''TODO if show_compound and compound_info: for i,compound_data in enumerate(ydata_compound): plotlabel = compound_plot_label[i] plt.plot(xdata_spec, compound_data, '-', label=plotlabel, color = color, linewidth=linewidth_g1, markersize = markersize_g) ''' plot_params.save_plot(saveas1) # for plotting or file writting return [xdata_spec, ydata_spec, ydata_single_all, xdata_all, ydata_all, xdatalabel, ax, ax2]
cda96ea355043073f50e97d0840e2f7e323655e8
3,646,897
def get_lidar_point_cloud(sample_name, frame_calib, velo_dir, intensity=False): """Gets the lidar point cloud in cam0 frame. Args: sample_name: Sample name frame_calib: FrameCalib velo_dir: Velodyne directory Returns: (3, N) point_cloud in the form [[x,...][y,...][z,...]] """ xyzi = read_lidar(velo_dir, sample_name) # Calculate the point cloud points_in_lidar_frame = xyzi[:, 0:3] points = calib_utils.lidar_to_cam_frame(points_in_lidar_frame, frame_calib) if intensity: return points.T, xyzi[:, 3] return points.T
f1deb8896a2c11d82d6a312f0a8f353a73a1b40d
3,646,898
import posixpath import os def url2filename(url): """Return basename corresponding to url. >>> print(url2filename('http://example.com/path/to/file%C3%80?opt=1')) file?? >>> print(url2filename('http://example.com/slash%2fname')) # '/' in name Traceback (most recent call last): ... ValueError """ urlpath = urlsplit(url).path basename = posixpath.basename(unquote(urlpath)) if (os.path.basename(basename) != basename or unquote(posixpath.basename(urlpath)) != basename): raise ValueError # reject '%2f' or 'dir%5Cbasename.ext' on Windows return basename
a28b2de4c2dda7fd473d7b50d1bccd1aed47ff0f
3,646,899