content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import requests from bs4 import BeautifulSoup import dateutil def fetch_events_art_history(base_url='https://www.sas.upenn.edu'): """ Fetch events from Art History Department """ page = requests.get(urljoin(base_url, '/arthistory/events')) page_soup = BeautifulSoup(page.content, 'html.parser') range_pages = max([int(n_page.text) for n_page in page_soup.find('div', attrs={'class': 'pagination pagination-centered'}).find_all('li') if n_page.text.isdigit()]) events = [] for n_page in range(1, range_pages): page = requests.get( (urljoin(base_url, '/arthistory/events?&page={}')).format(n_page)) page_soup = BeautifulSoup(page.content, 'html.parser') all_events = page_soup.find( 'div', attrs={'class': 'item-list'}).find_all('li') for event in all_events: event_url = urljoin(base_url, event.find('a')['href']) title = event.find('h3').text if event.find( 'h3') is not None else '' # event_type = event.find('strong').text if event.find('strong') is not None else '' date = event.find('span', attrs={'class': 'date-display-single'}) if date is not None: date, event_time = date.attrs.get('content').split('T') if '-' in event_time: starttime, endtime = event_time.split('-') try: starttime, endtime = dateutil.parser.parse(starttime).strftime( "%I:%M %p"), dateutil.parser.parse(endtime).strftime("%I:%M %p") except: pass else: starttime, endtime = event_time, '' else: date, starttime, endtime = '', '', '' location = event.find('div', attrs={'class': 'location'}) location = location.text.strip() if location is not None else '' event_soup = BeautifulSoup(requests.get( event_url).content, 'html.parser') description = event_soup.find('div', attrs={'class': 'field-body'}) description = description.text.strip() if description is not None else '' events.append({ 'title': title, 'speaker': '', 'date': date, 'location': location, 'description': description, 'starttime': starttime, 'endtime': endtime, 'url': event_url, 'owner': 'Art History' }) return events
2c17219cbbdd94251db43f52459c196dada014fc
3,644,500
def calc_Q(nu=0.0,delta=0.0,lam=1.0,ret_k=False): """ Calculate psic Q in the cartesian lab frame. nu and delta are in degrees, lam is in angstroms if ret_k == True return tuple -> (Q,ki,kr) """ (ki,kr) = calc_kvecs(nu=nu,delta=delta,lam=lam) Q = kr - ki if ret_k == True: return (Q,ki,kr) else: return Q
9c5a9e885b1f78bab7a1de2bbf6a3de2d5723e18
3,644,501
def build_data(args): """ build test data """ task_name = args.task_name.lower() processor = reader.MatchProcessor(data_dir=args.data_dir, task_name=task_name, vocab_path=args.vocab_path, max_seq_len=args.max_seq_len, do_lower_case=args.do_lower_case) test_data_generator = processor.data_generator( batch_size=args.batch_size, phase='test', epoch=1, shuffle=False, device=args.gpu) num_test_examples = processor.get_num_examples(phase='test') test_data = [test_data_generator, num_test_examples] return processor, test_data
ca52d035d34a83e1de0b3cad261f03ce53fd2f0c
3,644,502
def format_date(d): """Date format used in the report.""" if type(d) == str: d = dateutil_parse(d) return d.isoformat()
de999992e16fe52f42f4b79bbb0a78668d3fa109
3,644,503
import torch def pytorch_argmax(op): """Implementation of argmax for pytorch.""" def _impl(x, dim): dim = tuple(sorted(dim)) n = () for _s in range(len(x.shape)): if _s not in dim: n = n + (_s,) n = n + dim x = x.permute(n) ns = x.shape[0 : -len(dim)] + (-1,) r = torch.argmax(x.reshape(ns), -1, keepdim=False) rl = list(r.shape) for _sd in dim: rl.insert(_sd, 1) rf = tuple(rl) return (torch.reshape(r, rf),) return _impl, op.inputs[1:]
cc466b41c0dd4bb9730dcdf50816b9d0cf66cfaa
3,644,504
import os def get_wine_quality(num_rows=None): """ Wine Quality dataset from UCI repository ( https://archive.ics.uci.edu/ml/datasets/Wine+Quality Using the white wine data set, not the red. - Dimensions: 4898 rows, 12 columns. - Task: Regression :param num_rows: :return: X,y """ filename = 'winequality-white.csv' if not os.path.isfile(filename): urlretrieve(get_wine_quality_url, filename) wine = pd.read_csv(filename, header=0, nrows=num_rows, delimiter=";") X = wine.iloc[:, :-1].values y = wine.iloc[:, -1].values return X, y
2302b8502486261037ed8be92e8c6988dd46e8ea
3,644,505
def parse_eos(eos): """Function to interpret input as an EOS""" if hasattr(eos, 'asq_of_rho_p'): return eos # already is EOS class if eos == 'H' or eos == 'h': return SimpleHydrogen() try: return Ideal(float(eos)) # try parsing as a gamma value except ValueError: raise ValueError('Cannot parse EOS "{0:}".'.format(eos))
2303a9028b89647fae4b9a4fca0363826310b730
3,644,506
def get_2D_hse_kpoints(struct_for_path, ibzkpth): """ Args: struct_for_path: Structure from which linemode k-points will be generated. ibzkpth: Returns: the Kpoints file object in the form of a string ready for execution by MPInterfaces calibrate objects """ # Read IBZKPT from prep step ibz_lines = open(ibzkpth).readlines() n_ibz_kpts = int(ibz_lines[1].split()[0]) # Read linemode KPOINTs from the dict (makes sure it is Kpoints # file with only 20 per atom for the optimized settings # Kpoints.from_dict(kpoint_dict).write_file('linemode_KPOINTS') kpath = HighSymmKpath(struct_for_path) Kpoints.automatic_linemode(20, kpath).write_file('KPOINTS_linemode') remove_z_kpoints_linemode() linemode_lines = open('KPOINTS_linemode').readlines() # put them together abs_path = [] for i in range(4, len(linemode_lines), 3): start_kpt = linemode_lines[i].split() end_kpt = linemode_lines[i+1].split() increments = [ (float(end_kpt[0]) - float(start_kpt[0])) / 20, (float(end_kpt[1]) - float(start_kpt[1])) / 20, (float(end_kpt[2]) - float(start_kpt[2])) / 20 ] abs_path.append(start_kpt[:3] + ['0', start_kpt[4]]) for n in range(1, 20): abs_path.append( [str(float(start_kpt[0]) + increments[0] * n), str(float(start_kpt[1]) + increments[1] * n), str(float(start_kpt[2]) + increments[2] * n), '0'] ) abs_path.append(end_kpt[:3] + ['0', end_kpt[4]]) n_linemode_kpts = len(abs_path) # write out the kpoints file and return the object Kpoints_hse_file = '\n'.join( ['Automatically generated mesh', '{}'.format(n_ibz_kpts + n_linemode_kpts), 'Reciprocal Lattice', '{}'.format(str(''.join([line for line in ibz_lines[3:]])))]) + \ '{}'.format(str('\n'.join( [' '.join(point) for point in abs_path]))) ## can be used for test print out # with open('KPOINTS_HSE', 'w') as kpts: # kpts.write('Automatically generated mesh\n') # kpts.write('{}\n'.format(n_ibz_kpts + n_linemode_kpts)) # kpts.write('Reciprocal Lattice\n') # for line in ibz_lines[3:]: # kpts.write(line) # for point in abs_path: # kpts.write('{}\n'.format(' '.join(point))) return Kpoints_hse_file
e4ad65df4f4fc41c0af48e84dfd9b9bbddea9e20
3,644,507
import logging import os import pickle import traceback def read_cache(logger: logging.Logger, cache_file: str) -> CachedData: """Read file with Py pickle in it.""" if not cache_file: return CachedData() if not os.path.exists(cache_file): logger.warning("Cache file '%s' doesn't exist.", cache_file) return CachedData() with open(cache_file, 'rb') as fhandle: try: cache = pickle.load(fhandle) except EOFError: # Note: occurred with empty file. cache = CachedData() logger.debug( 'Cache file is probably empty: %s', traceback.format_exc() ) logger.debug(cache) return cache
83f309e760f3d63a73fcb9a3f378f535605d7c94
3,644,508
def neutralize(word, g, word_to_vec_map): """ Removes the bias of "word" by projecting it on the space orthogonal to the bias axis. This function ensures that gender neutral words are zero in the gender subspace. Arguments: word -- string indicating the word to debias g -- numpy-array of shape (50,), corresponding to the bias axis (such as gender) word_to_vec_map -- dictionary mapping words to their corresponding vectors. Returns: e_debiased -- neutralized word vector representation of the input "word" """ # Select word vector representation of "word". Use word_to_vec_map. (≈ 1 line) e = word_to_vec_map[word] # Compute e_biascomponent using the formula give above. (≈ 1 line) e_biascomponent = (np.dot(e,g) / np.square(np.linalg.norm(g))) * g # Neutralize e by substracting e_biascomponent from it # e_debiased should be equal to its orthogonal projection. (≈ 1 line) e_debiased = e - e_biascomponent return e_debiased
a732050ef214fe29c6e234cea2f0a7d63b784829
3,644,509
def loadRowCluster(ndPage,algo): """ load cluster algo = aglo """ xpCluster = f".//Cluster[@algo='{algo}']" lClusters= ndPage.xpath(xpCluster) return lClusters
dcb75214e58d6656f58bee78b904562c05fd36d8
3,644,510
def _elementwise(f): """ Enables elementwise operations The wrapper implements two different modes of argument evaluation for given p_1,..., p_k that represent the predicted distributions and and x_1,...,x_m that represent the values to evaluate them on. "elementwise" (default): Repeat the sequence of p_i until there are m, i.e., p_1,...,p_k,p_1,p_2,...,p_k,p_1,...,p_m' where m' is the remainder of dividing m by k. "batch": x_1, ..., x_m is evaluated on every distribution p_i resulting in a matrix m columns and k rows. Parameters ---------- f: The function to decorate Returns ------- Decorated function """ def wrapper(self, x, *args, **kwargs): if len(np.array(x).shape) > 1: x = x.flatten() # cache index index_ = self.index self.index = slice(None) # disable elementwise mode if x is scalar elementwise = (self.mode == 'elementwise' and len(np.array(x).shape) != 0) if elementwise: evaluations = len(x) else: evaluations = len(self.X) # compose result result = [] number_of_points = len(self.X) for index in range(evaluations): # set evaluation index and point if elementwise: self.index = index % number_of_points at = x[index] else: self.index = index at = x # evaluate the function at this point result.append(f(self, at, *args, **kwargs)) # rollback index self.index = index_ if len(result) > 1: return np.array(result) else: return result[0] return _forward_meta(wrapper, f)
7cb9a17c648384e07bde3b57415244efd7e34e8a
3,644,511
def is_valid_task_id(task_id): """ Return False if task ID is not valid. """ parts = task_id.split('-') if len(parts) == 5 and [len(i) for i in parts[1:]] == [8, 4, 4, 4]: tp = RE_TASK_PREFIX.split(parts[0]) return (len(tp) == 5 and all(i.isdigit() for i in tp[::2]) and tp[1] in TT and tp[3] in TG) return False
d39e26ae52d96f9c6ed0bf5fea2ac317d5b9e8af
3,644,512
def figure_14_9(): """Return the unweighted, undirected graph from Figure 14.9 of DSAP. This is the same graph as in Figure 14.10. """ E = ( ('A', 'B'), ('A', 'E'), ('A', 'F'), ('B', 'C'), ('B', 'F'), ('C', 'D'), ('C', 'G'), ('D', 'G'), ('D', 'H'), ('E', 'F'), ('E', 'I'), ('F' 'I'), ('G', 'J'), ('G', 'K'), ('G', 'L'), ('H', 'L'), ('I', 'J'), ('I', 'M'), ('I', 'N'), ('J', 'K'), ('K', 'N'), ('K', 'O'), ('L', 'P'), ('M', 'N'), ) return graph_from_edgelist(E, False)
d81a11aa46bd62942c880dfa8f0a724801979449
3,644,513
def audit_umbrelladns(networks_fwrules): """Accepts a list of firewall rules for a client Checks for rules to allow DNS lookups to Umbrella and deny all other DNS lookups. Returns a list of clients and a boolean of whether Umbrella DNS is configured properly""" umbrelladns_audit = [] host1 = '208.67.222.222/32' host2 = '208.67.220.220/32' for customer in networks_fwrules: customer_result = { 'organizationId': customer['organizationId'], 'organizationName': customer['organizationName'] } for network in customer['networks']: umbrella_allow, dns_deny = 'False', 'False' if 'l3FirewallRules' in network: for rule in network['l3FirewallRules']: destcidr = rule['destCidr'].split(",") if rule['policy'] == 'allow' \ and rule['protocol'] == 'tcp' \ and rule['destPort'] == '53' \ and (host1 in destcidr and host2 in destcidr): umbrella_allow = 'True' if rule['policy'] == 'allow' \ and rule['protocol'] == 'udp' \ and rule['destPort'] == '53' \ and (host1 in destcidr and host2 in destcidr): umbrella_allow = 'True' if rule['policy'] == 'deny' \ and rule['protocol'] == 'tcp' \ and rule['destPort'] == '53' \ and rule['destCidr'] == 'Any': dns_deny = 'True' if rule['policy'] == 'deny' \ and rule['protocol'] == 'udp' \ and rule['destPort'] == '53' \ and rule['destCidr'] == 'Any': dns_deny = 'True' if umbrella_allow is 'True' and dns_deny is 'True': customer_result['umbrellaDns'] = 'True' else: customer_result['umbrellaDns'] = 'False' umbrelladns_audit.append(customer_result) return umbrelladns_audit
26c01011dee998ba398db03603c61c00845055ea
3,644,514
from typing import Tuple import itertools def parse_element_container(elem: ET.Element) -> Tuple[Types.FlexElement, ...]: """Parse XML element container into FlexElement subclass instances. """ tag = elem.tag if tag == "FxPositions": # <FxPositions> contains an <FxLots> wrapper per currency. # Element structure here is: # <FxPositions><FxLots><FxLot /></FxLots></FxPositions> # Flatten the nesting to create FxPositions as a tuple of FxLots fxlots = (parse_element_container(child) for child in elem) return tuple(itertools.chain.from_iterable(fxlots)) instances = tuple(parse_data_element(child) for child in elem) return instances
477776ff49e47fb0ca45767c5a74ff6941d0abb0
3,644,515
def _is_smooth_across_dateline(mid_lat, transform, rtransform, eps): """ test whether the CRS is smooth over the dateline idea borrowed from IsAntimeridianProjToWGS84 with minor mods... """ left_of_dt_x, left_of_dt_y, _ = rtransform.TransformPoint(180-eps, mid_lat) right_of_dt_x, right_of_dt_y, _ = rtransform.TransformPoint(-180+eps, mid_lat) if _dist(right_of_dt_x-left_of_dt_x, right_of_dt_y-left_of_dt_y) > 1: return False left_of_dt_lon, left_of_dt_lat, _ = transform.TransformPoint(left_of_dt_x, left_of_dt_y) right_of_dt_lon, right_of_dt_lat, _ = transform.TransformPoint(right_of_dt_x, right_of_dt_y) if (_dist(left_of_dt_lon - 180 + eps, left_of_dt_lat - mid_lat) > 2 * eps or _dist(right_of_dt_lon + 180 - eps, right_of_dt_lat - mid_lat) > 2 * eps): return False return True
c1058bb24f254ce7158ec69872cfec1081a3027c
3,644,516
def reverse_args(func: Func) -> fn: """ Creates a function that invokes func with the positional arguments order reversed. Examples: >>> concat = sk.reverse_args(lambda x, y, z: x + y + z) >>> concat("a", "b", "c") 'cba' """ func = to_callable(func) return fn(lambda *args, **kwargs: func(*args[::-1], **kwargs))
e1e734f767fb187f9563f51d1f106ebfc17ebbfb
3,644,517
def ar(x, y, z): """Offset arange by z/2.""" return z / 2 + np.arange(x, y, z, dtype='float')
0aca14778dd4ba814d9303146d3226f6645f2366
3,644,518
def dot(inputs, axes, normalize=False, **kwargs): """Functional interface to the `Dot` layer. Args: inputs: A list of input tensors (at least 2). axes: Integer or tuple of integers, axis or axes along which to take the dot product. normalize: Whether to L2-normalize samples along the dot product axis before taking the dot product. If set to True, then the output of the dot product is the cosine proximity between the two samples. **kwargs: Standard layer keyword arguments. Returns: A tensor, the dot product of the samples from the inputs. """ return Dot(axes=axes, normalize=normalize, **kwargs)(inputs)
2e5d83aad376e82b7938ebfec8cef3074bec3c58
3,644,519
def delete_queue(name, region, opts=None, user=None): """ Deletes a queue in the region. name Name of the SQS queue to deletes region Name of the region to delete the queue from opts : None Any additional options to add to the command line user : None Run hg as a user other than what the minion runs as CLI Example: .. code-block:: bash salt '*' aws_sqs.delete_queue <sqs queue> <region> """ queues = list_queues(region, opts, user) url_map = _parse_queue_list(queues) log.debug("map %s", url_map) if name in url_map: delete = {"queue-url": url_map[name]} rtn = _run_aws("delete-queue", region=region, opts=opts, user=user, **delete) success = True err = "" out = "{} deleted".format(name) else: out = "" err = "Delete failed" success = False ret = { "retcode": 0 if success else 1, "stdout": out, "stderr": err, } return ret
b17f54eefab61e682697fe09d26f6a55658b4171
3,644,520
import inspect def get_all_methods(klass): """Get all method members (regular, static, class method). """ if not inspect.isclass(klass): raise ValueError pairs = list() for attr, value in inspect.getmembers( klass, lambda x: inspect.isroutine(x)): if not (attr.startswith("__") or attr.endswith("__")): pairs.append((attr, value)) return pairs
ada4f47c750455ddd1300f26eb3e296b046acefe
3,644,521
import pathlib def _suffix_directory(key: pathlib.Path): """Converts '/folder/.../folder/folder/folder' into 'folder/folder'""" key = pathlib.Path(key) shapenet_folder = key.parent.parent key = key.relative_to(shapenet_folder) return key
147539065c3d21ee351b23f2d563c662fe55f04a
3,644,522
def setDesktop( studyID ): """This method sets and returns TRUST_PLOT2D desktop""" global moduleDesktop, desktop if studyID not in moduleDesktop: moduleDesktop[studyID] = DynamicDesktop( sgPyQt ) moduleDesktop[studyID].initialize() desktop = moduleDesktop[studyID] return desktop
fd7ad5b57a832e4d6d4adbf2b5fbf973cc1b9e3e
3,644,523
def load(file_path: str): """Used for loading dataset files that have been downloaded. Args: file_path: Path to file to be loaded. Returns: x: Data used to train models. y: Dataset labels. Example: >>> data,labels = load("model/mnist.npz") >>> # Print first dataset example and first label >>> print(data[0]) >>> print(label[0]) [0 200 ... 15 0] 5 """ with np.load(file_path) as data: return data['x'], \ data['y']
47e045d343509322cf9f845f454a99bf6f34cde7
3,644,524
def xrefchar(*args): """ xrefchar(xrtype) -> char Get character describing the xref type. @param xrtype: combination of Cross-Reference type flags and a cref_t of dref_t value (C++: char) """ return _ida_xref.xrefchar(*args)
a6991e0a56710359804d21b79b86ed3ead852769
3,644,525
def problem_5_14_8(scalars, vectors): """ >>> u = list2vec([1,1,0,0]) >>> v = list2vec([0,1,1,0]) >>> w = list2vec([0,0,1,1]) >>> x = list2vec([1,0,0,1]) >>> problem_5_14_8([1, -1, 1], [u, v, w]) == x True >>> problem_5_14_8([-1, 1, 1], [u, v, x]) == w True >>> problem_5_14_8([1, 1, -1], [u, w, x]) == v True >>> problem_5_14_8([1, -1, 1], [v, w, x]) == u True """ return lin_comb_sum(scalars, vectors)
e8456cbf7a0e47519003c3b3a414560c1d1ee5ac
3,644,526
def atomic(fn, self, *args, **kwargs): """ Atomic method. """ return self._atom(fn, args, kwargs)
96fdd8451bb534deefb2ffbe101526838d75fa6e
3,644,527
def text_to_string(filename, useEncoding): """Read a text file and return a string.""" with open(filename, encoding=useEncoding, errors='ignore') as infile: return infile.read()
f879bb747699496204820b74944fd563658a7117
3,644,528
def forward_propagation(x, paras, bn_paras, decay=0.9): """ forward propagation function Paras ------------------------------------ x: input dataset, of shape (input size, number of examples) W: weight matrix of shape (size of current layer, size of previous layer) b: bias vector of shape (size of current layer,1) gamma: scale vector of shape (size of current layer ,1) beta: offset vector of shape (size of current layer ,1) decay: the parameter of exponential weight average moving_mean: decay * moving_mean + (1 - decay) * current_mean moving_var: decay * moving_var + (1 - decay) * moving_var Returns ------------------------------------ y: the output of the last Layer(y_predict) caches: list, every element is a tuple:(W,b,z,A_pre) """ L = len(paras) // 4 # number of layer caches = [] # calculate from 1 to L-1 layer for l in range(1, L): W = paras["W" + str(l)] b = paras["b" + str(l)] gamma = paras["gamma" + str(l)] beta = paras["beta" + str(l)] # linear forward -> relu forward ->linear forward.... z = linear(x, W, b) mean, var, sqrt_var, normalized, out = batch_norm(z, gamma, beta) caches.append((x, W, b, gamma, sqrt_var, normalized, out)) x = relu(out) bn_paras["moving_mean" + str(l)] = decay * bn_paras["moving_mean" + str(l)] + (1 - decay) * mean bn_paras["moving_var" + str(l)] = decay * bn_paras["moving_var" + str(l)] + (1 - decay) * var # calculate Lth layer W = paras["W" + str(L)] b = paras["b" + str(L)] z = linear(x, W, b) caches.append((x, W, b, None, None, None, None)) y = sigmoid(z) return y, caches, bn_paras
eb2955f9bff056ad1639d2b63a39a6ff40293400
3,644,529
def sentence_indexes_for_fragment(fragment: Fragment, sentences: list) -> list: """Get the start and end indexes in the whole article for the sentences encompassing a fragment.""" start_sentence_index = sentence_index_for_fragment_index(fragment.start, sentences) end_sentence_index = sentence_index_for_fragment_index(fragment.end, sentences) return list(range(start_sentence_index, end_sentence_index +1))
08ec8df9c9e7e06f20dd6554a9da3a0ca89e4f53
3,644,530
import struct def _watchos_extension_impl(ctx): """Implementation of watchos_extension.""" top_level_attrs = [ "app_icons", "strings", "resources", ] # Xcode 11 requires this flag to be passed to the linker, but it is not accepted by earlier # versions. # TODO(min(Xcode) >= 11): Make this unconditional when the minimum supported Xcode is Xcode 11. xcode_config = ctx.attr._xcode_config[apple_common.XcodeVersionConfig] if xcode_support.is_xcode_at_least_version(xcode_config, "11"): extra_linkopts = ["-e", "_WKExtensionMain"] # This is required when building with watchOS SDK 6.0 or higher but with a minimum # deployment version lower than 6.0. See # https://developer.apple.com/documentation/xcode_release_notes/xcode_11_release_notes. minimum_os = apple_common.dotted_version(ctx.attr.minimum_os_version) if minimum_os < apple_common.dotted_version("6.0"): extra_linkopts.append( # The linker will search for this library relative to sysroot, which will already # be the watchOS SDK directory. # # This is a force-load (unlike Xcode, which uses a standard `-l`) because we can't # easily control where it appears in the link order relative to WatchKit.framework # (where this symbol also lives, in watchOS 6+), so we need to guarantee that the # linker doesn't skip the static library's implementation of `WKExtensionMain` if # it already resolved the symbol from the framework. "-Wl,-force_load,/usr/lib/libWKExtensionMainLegacy.a", ) else: extra_linkopts = [] link_result = linking_support.register_linking_action( ctx, extra_linkopts = extra_linkopts, stamp = ctx.attr.stamp, ) binary_artifact = link_result.binary_provider.binary debug_outputs_provider = link_result.debug_outputs_provider actions = ctx.actions apple_toolchain_info = ctx.attr._toolchain[AppleSupportToolchainInfo] bin_root_path = ctx.bin_dir.path bundle_id = ctx.attr.bundle_id bundle_name, bundle_extension = bundling_support.bundle_full_name_from_rule_ctx(ctx) executable_name = bundling_support.executable_name(ctx) entitlements = entitlements_support.entitlements( entitlements_attr = getattr(ctx.attr, "entitlements", None), entitlements_file = getattr(ctx.file, "entitlements", None), ) features = features_support.compute_enabled_features( requested_features = ctx.features, unsupported_features = ctx.disabled_features, ) label = ctx.label platform_prerequisites = platform_support.platform_prerequisites_from_rule_ctx(ctx) predeclared_outputs = ctx.outputs rule_descriptor = rule_support.rule_descriptor(ctx) archive = outputs.archive( actions = actions, bundle_extension = bundle_extension, bundle_name = bundle_name, platform_prerequisites = platform_prerequisites, predeclared_outputs = predeclared_outputs, ) bundle_verification_targets = [struct(target = ext) for ext in ctx.attr.extensions] processor_partials = [ partials.apple_bundle_info_partial( actions = actions, bundle_extension = bundle_extension, bundle_name = bundle_name, executable_name = executable_name, bundle_id = bundle_id, entitlements = entitlements, label_name = label.name, platform_prerequisites = platform_prerequisites, predeclared_outputs = predeclared_outputs, product_type = rule_descriptor.product_type, ), partials.binary_partial( actions = actions, binary_artifact = binary_artifact, executable_name = executable_name, label_name = ctx.label.name, ), partials.bitcode_symbols_partial( actions = actions, binary_artifact = binary_artifact, debug_outputs_provider = debug_outputs_provider, dependency_targets = ctx.attr.extensions, label_name = label.name, platform_prerequisites = platform_prerequisites, ), partials.clang_rt_dylibs_partial( actions = actions, apple_toolchain_info = apple_toolchain_info, binary_artifact = binary_artifact, features = features, label_name = label.name, platform_prerequisites = platform_prerequisites, ), partials.debug_symbols_partial( actions = actions, bin_root_path = bin_root_path, bundle_extension = bundle_extension, bundle_name = bundle_name, debug_dependencies = ctx.attr.extensions, debug_outputs_provider = debug_outputs_provider, dsym_info_plist_template = apple_toolchain_info.dsym_info_plist_template, executable_name = executable_name, platform_prerequisites = platform_prerequisites, rule_label = label, ), partials.embedded_bundles_partial( bundle_embedded_bundles = True, platform_prerequisites = platform_prerequisites, embeddable_targets = ctx.attr.extensions, plugins = [archive], ), # Following guidance of the watchOS 2 migration guide's recommendations for placement of a # framework, scoping dynamic frameworks only to the watch extension bundles: # https://developer.apple.com/library/archive/documentation/General/Conceptual/AppleWatch2TransitionGuide/ConfiguretheXcodeProject.html partials.framework_import_partial( actions = actions, apple_toolchain_info = apple_toolchain_info, label_name = label.name, platform_prerequisites = platform_prerequisites, provisioning_profile = getattr(ctx.file, "provisioning_profile", None), rule_descriptor = rule_descriptor, targets = ctx.attr.deps, ), partials.resources_partial( actions = actions, apple_toolchain_info = apple_toolchain_info, bundle_extension = bundle_extension, bundle_verification_targets = bundle_verification_targets, bundle_id = bundle_id, bundle_name = bundle_name, environment_plist = ctx.file._environment_plist, executable_name = executable_name, launch_storyboard = None, platform_prerequisites = platform_prerequisites, plist_attrs = ["infoplists"], rule_attrs = ctx.attr, rule_descriptor = rule_descriptor, rule_label = label, top_level_attrs = top_level_attrs, ), partials.swift_dylibs_partial( actions = actions, apple_toolchain_info = apple_toolchain_info, binary_artifact = binary_artifact, label_name = label.name, dependency_targets = ctx.attr.extensions, platform_prerequisites = platform_prerequisites, ), ] if platform_prerequisites.platform.is_device: processor_partials.append( partials.provisioning_profile_partial( actions = actions, profile_artifact = ctx.file.provisioning_profile, rule_label = label, ), ) processor_result = processor.process( actions = actions, apple_toolchain_info = apple_toolchain_info, bundle_extension = bundle_extension, bundle_name = bundle_name, codesignopts = codesigning_support.codesignopts_from_rule_ctx(ctx), entitlements = entitlements, executable_name = executable_name, ipa_post_processor = ctx.executable.ipa_post_processor, partials = processor_partials, platform_prerequisites = platform_prerequisites, predeclared_outputs = predeclared_outputs, process_and_sign_template = apple_toolchain_info.process_and_sign_template, provisioning_profile = getattr(ctx.file, "provisioning_profile", None), rule_descriptor = rule_descriptor, rule_label = label, ) return [ DefaultInfo( files = processor_result.output_files, ), OutputGroupInfo( **outputs.merge_output_groups( link_result.output_groups, processor_result.output_groups, ) ), WatchosExtensionBundleInfo(), ] + processor_result.providers
0e79df610e751e6322888ee68a15a7ff4ceda970
3,644,531
def train_and_eval(trial: optuna.Trial, ex_dir: str, seed: [int, None]): """ Objective function for the Optuna `Study` to maximize. .. note:: Optuna expects only the `trial` argument, thus we use `functools.partial` to sneak in custom arguments. :param trial: Optuna Trial object for hyper-parameter optimization :param ex_dir: experiment's directory, i.e. the parent directory for all trials in this study :param seed: seed value for the random number generators, pass `None` for no seeding :return: objective function value """ # Synchronize seeds between Optuna trials pyrado.set_seed(seed) # Environment env_hparams = dict(dt=1/250., max_steps=1500) env = QQubeSim(**env_hparams) env = ActNormWrapper(env) # Policy policy_hparam = dict( feats=FeatureStack([identity_feat, sign_feat, abs_feat, squared_feat, bell_feat, MultFeat([4, 5])]) ) policy = LinearPolicy(spec=env.spec, **policy_hparam) # Algorithm algo_hparam = dict( num_sampler_envs=1, # parallelize via optuna n_jobs max_iter=150, pop_size=trial.suggest_categorical('pop_size', [100, 150, 200, 250]), num_rollouts=trial.suggest_categorical('num_rollouts', [4, 6, 8, 10, 12]), num_is_samples=trial.suggest_categorical('num_is_samples', [50, 100, 150, 200]), expl_std_init=trial.suggest_uniform('expl_std_init', 0.2, 1.5), expl_std_min=0.02, symm_sampling=trial.suggest_categorical('symm_sampling', [True, False]), ) csv_logger = create_csv_step_logger(osp.join(ex_dir, f'trial_{trial.number}')) algo = PoWER(osp.join(ex_dir, f'trial_{trial.number}'), env, policy, **algo_hparam, logger=csv_logger) # Train without saving the results algo.train(snapshot_mode='latest', seed=seed) # Evaluate min_rollouts = 1000 sampler = ParallelSampler(env, policy, num_envs=1, min_rollouts=min_rollouts) # parallelize via optuna n_jobs ros = sampler.sample() mean_ret = sum([r.undiscounted_return() for r in ros])/min_rollouts return mean_ret
128b94452d3a398efe5b754e4e3dacf25bd5e165
3,644,532
def alert_query(alert, authz): """Construct a search query to find new matching entities and documents for a particular alert. Update handling is done via a timestamp of the latest known result.""" # Many users have bookmarked complex queries, otherwise we'd use a # precise match query. query = { 'simple_query_string': { 'query': alert.query, 'fields': ['text'], 'default_operator': 'AND', 'minimum_should_match': '90%' } } filter_since = { 'range': { 'created_at': {'gt': alert.notified_at} } } return { 'size': MAX_PAGE, 'query': { 'bool': { 'should': [query], 'filter': [filter_since, authz_query(authz)], 'minimum_should_match': 1 } } }
c7181e174613ea61fe67d6165f1022a10ab5862e
3,644,533
def iscomment(s): """ Define what we call a comment in MontePython chain files """ return s.startswith('#')
ab3a9d240e423c562c9e83cdd9599fddf144b7c3
3,644,534
import sys def hxlvalidate_main(args, stdin=STDIN, stdout=sys.stdout, stderr=sys.stderr): """ Run hxlvalidate with command-line arguments. @param args A list of arguments, excluding the script name @param stdin Standard input for the script @param stdout Standard output for the script @param stderr Standard error for the script """ parser = make_args('Validate a HXL dataset.') parser.add_argument( '-s', '--schema', help='Schema file for validating the HXL dataset (if omitted, use the default core schema).', metavar='schema', default=None ) parser.add_argument( '-a', '--all', help='Include all rows in the output, including those without errors', action='store_const', const=True, default=False ) parser.add_argument( '-e', '--error-level', help='Minimum error level to show (defaults to "info") ', choices=['info', 'warning', 'error'], metavar='info|warning|error', default='info' ) args = parser.parse_args(args) do_common_args(args) with make_input(args, stdin) as input, make_output(args, stdout) as output: class Counter: infos = 0 warnings = 0 errors = 0 def callback(e): """Show a validation error message.""" if e.rule.severity == 'info': if args.error_level != 'info': return Counter.infos += 1 elif e.rule.severity == 'warning': if args.error_level == 'error': return Counter.warnings += 1 else: Counter.errors += 1 message = '[{}] '.format(e.rule.severity) if e.row: if e.rule: message += "{},{}: ".format(e.row.row_number + 1, e.rule.tag_pattern) else: message += "{}: ".format(e.row.row_number + 1) elif e.rule: message += "<dataset>,{}: ".format(e.rule.tag_pattern) else: message += "<dataset>: " if e.value: message += '"{}" '.format(e.value) if e.message: message += e.message message += "\n" output.write(message) output.write("Validating {} with schema {} ...\n".format(args.infile or "<standard input>", args.schema or "<default>")) source = hxl.io.data(input) if args.schema: with make_input(args, None, args.schema) as schema_input: schema = hxl.schema(schema_input, callback=callback) else: schema = hxl.schema(callback=callback) schema.validate(source) if args.error_level == 'info': output.write("{:,} error(s), {:,} warnings, {:,} suggestions\n".format(Counter.errors, Counter.warnings, Counter.infos)) elif args.error_level == 'warning': output.write("{:,} error(s), {:,} warnings\n".format(Counter.errors, Counter.warnings)) else: output.write("{:,} error(s)\n".format(Counter.errors)) if Counter.errors > 0: output.write("Validation failed.\n") return EXIT_ERROR else: output.write("Validation succeeded.\n") return EXIT_OK
613b7157f23e9c6234ae3428d18e0f22789131ea
3,644,535
def fix_bayes_factor(bayes_factor): """ If one of the bayes factors is 'inf' we get a string instead of a tuple back. This is hacky but fixes that. """ # Maximum cut off for Bayes factor value max_bf = 1e12 if type(bayes_factor) == str: bayes_factor = bayes_factor.split(",") bayes_factor = [min(float(x), max_bf) for x in bayes_factor] bayes_factor = tuple(bayes_factor) bayes_factor = bayes_factor[0] return bayes_factor
7e7912ea9b0c90f0945f486aa397a2df2d13d5cc
3,644,536
def fiebelkorn_binning(x_trial, t_trial): """ Given accuracy and time-points, find the time-smoothed average accuracy Parameters ---------- x_trial : np.ndarray Accuracy (Hit: 1, Miss: 0) of each trial t_trial : np.ndarray The time-stamp of each trial Returns ------- x_bin : np.ndarray The average accuracy within each time bin t_bin : np.ndarray The centers of each time bin """ details = behav_details['fiebelkorn'] # Time-stamps of the center of each bin t_bin = np.arange(details['t_start'], details['t_end'] + 1e-10, details['bin_step']) # Accuracy within each bin x_bin = [] for i_bin in range(len(t_bin)): bin_center = t_bin[i_bin] bin_start = bin_center - (details['bin_width'] / 2) bin_end = bin_center + (details['bin_width'] / 2) bin_sel = (bin_start <= t_trial) & (t_trial <= bin_end) x_bin_avg = np.mean(x_trial[bin_sel]) x_bin.append(x_bin_avg) x_bin = np.array(x_bin) return x_bin, t_bin
29651c03dba351475c881d77a08da618ba89aa6a
3,644,537
def get_fastest_while_jump(condition:str, jump_tag:str, verdicts: list) -> list: """Verdicts like ["while", "a", "<", "10"] """ result = [] jumpables = ("===", ) + tuple(INVERT_TABLE.keys()) if len(verdicts) == 2: result.append(F"jump-if {jump_tag} {verdicts[1]} != false") elif verdicts[2] in jumpables: result.append(F"jump-if {jump_tag} " + (" ".join(verdicts[1:]) ) ) else: result.append(create_temporary_xlet(condition, verdicts[1:])) result.append(F"jump-if {jump_tag} {condition} != false") return result
16f4b8ba1e180dbad22e93f6bf08ab52eecb0086
3,644,538
import sys import os from sys import path def ChangeUserPath(args): """Function to change or create the user repository path. This is where all the user's data is stored.""" global user_datapath if user_datapath: sys.stdout.write("Current user_datapath is: %s\n" % user_datapath) elif savedpath: sys.stdout.write("Saved user_datapath: %s was not found\n" % savedpath) p = input("Please provide a path to place a user repository (s to skip):\n") if p.lower() == "s": return False newpath = os.path.abspath(os.path.join(p, "ABangleData/")) # Handle some potential errors - this may not be completely robust. if not os.path.exists(newpath): try: os.mkdir(newpath) except OSError as exe: if str(exe).startswith("[Errno 13]"): sys.stderr.write("No write privelages for %s.\n" % os.path.abspath(p)) else: sys.stderr.write( "Path %s does not exist. Please provide an existing path to create a repository\n" % os.path.abspath(p) ) return False elif not (os.access(newpath, os.R_OK) and os.access(newpath, os.W_OK)): sys.stderr.write("No read/write privelages for %s.\n" % newpath) return False if not os.path.exists(os.path.join(newpath, "user_fvs")): try: os.mkdir(os.path.join(newpath, "user_fvs")) except OSError as exe: if str(exe).startswith("[Errno 13]"): sys.stderr.write("No write privelages for %s.\n" % os.path.abspath(p)) return False elif not (os.access(newpath, os.R_OK) and os.access(newpath, os.W_OK)): sys.stderr.write("No read/write privelages for %s.\n" % newpath) return False user_datapath = newpath ufname = open(os.path.join(path, "config/userdatapath.txt"), "w") ufname.write(user_datapath) ufname.close() # Create the data store files. CreateStore() return True
1d206e6c1c3bda4b6508a2f5b2f0a60cc81cc2cd
3,644,539
import os def absolute_path_without_git(directory): """ return the absolute path of local git repo """ return os.path.abspath(directory + "/..")
1547bdebd8e6375f6725dbf36ae99a93eec5053b
3,644,540
import os def find_template(fname): """Find absolute path to template. """ for dirname in tuple(settings.TEMPLATE_DIRS) + get_app_template_dirs('templates'): tmpl_path = os.path.join(dirname, fname) # print "TRYING:", tmpl_path if os.path.exists(tmpl_path): return tmpl_path raise IOError(fname + " not found.")
ae77d4a72cd8eaf34a9a84d05631ccbb96466ad0
3,644,541
import torch def create_hcp_sets(skeleton, side, directory, batch_size, handedness=0): """ Creates datasets from HCP data IN: skeleton: boolean, True if input is skeleton, False otherwise, side: str, 'right' or 'left' handedness: int, 0 if mixed ind, 1 if right handed, 2 if left handed directory: str, folder in which save the results batch_size: int, size of training batches weights: list, list of weights to apply to skeleton values OUT: root_dir: created directory where results will be stored dataset_train_loader, dataset_val_loader, dataset_test_loader: loaders that will be used for training and testing """ print(torch.cuda.current_device()) date_exp = date.today().strftime("%d%m%y") if skeleton == True: skel = 'skeleton' loss_type = 'CrossEnt' root_dir = directory + side + '_hemi_' + skel + '_' + date_exp + '_' +loss_type + '_' + str(handedness) + '_2classes/' else: skel = 'norm_spm' loss_type = 'L2' root_dir = directory + side + '_hemi_' + skel + '_' + date_exp + '_' +loss_type + '_' + str(handedness) +'/' #print("Parameters : skeleton: {}, side: {}, weights: {}, loss_type: {}".format(skeleton, side, weights, loss_type)) print(root_dir) save_results.create_folder(root_dir) if skeleton: data_dir = '/neurospin/dico/lguillon/skeleton/sts_crop/' #data_dir = '/home_local/lg261972/data/' if handedness == 0: input_data = 'sts_crop_skeleton_' + side tmp = pd.read_pickle(data_dir + input_data +'.pkl') filenames = list(tmp.columns) tmp = torch.from_numpy(np.array([tmp.loc[0].values[k] for k in range(len(tmp))])) else: if handedness == 1: input_data = side + '_hemi_rightH_sts_crop_skeleton' else: input_data = side + '_hemi_leftH_sts_crop_skeleton' print(input_data) tmp = pd.read_pickle(data_dir + input_data +'.pkl') filenames = tmp.Subject.values print(len(filenames)) tmp = torch.from_numpy(np.array([tmp.loc[k].values[0] for k in range(len(tmp))])) else: data_dir = '/neurospin/dico/lguillon/hcp_cs_crop/sts_crop/'+ side + '_hemi/' data_dir = '/home_local/lg261972/data/' if handedness == 0: input_data = 'sts_crop_' + side tmp = pd.read_pickle(data_dir + input_data +'.pkl') filenames = list(tmp.columns) tmp = torch.from_numpy(np.array([tmp.loc[0].values[k] for k in range(len(tmp))])) else: if handedness == 1: input_data = side + '_hemi_rightH_sts_crop' else: input_data = side + '_hemi_leftH_sts_crop' print(input_data) tmp = pd.read_pickle(data_dir + input_data +'.pkl') filenames = tmp.Subject.values print(len(filenames)) tmp = torch.from_numpy(np.array([tmp.loc[k].values[0] for k in range(len(tmp))])) tmp = tmp.to('cuda') hcp_dataset = TensorDataset(filenames=filenames, data_tensor=tmp, skeleton=skeleton, vae=False) # Split training set into train, val and test partition = [0.7, 0.2, 0.1] print([round(i*(len(hcp_dataset))) for i in partition]) train_set, val_set, test_set = torch.utils.data.random_split(hcp_dataset, [round(i*(len(hcp_dataset))) for i in partition]) #train_set = AugDatasetTransformer(train_set) #val_set = AugDatasetTransformer(val_set) #test_set = AugDatasetTransformer(test_set) dataset_train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0) dataset_val_loader = torch.utils.data.DataLoader(val_set, shuffle=True, num_workers=0) dataset_test_loader = torch.utils.data.DataLoader(test_set, shuffle=True, num_workers=0) print("Dataset generated \n Size of training dataset :", len(dataset_train_loader)) return root_dir, dataset_train_loader, dataset_val_loader, dataset_test_loader
32615f19b70b8d78240adc1c2f60c5191f4c93fb
3,644,542
def rtrim(n): """Returns a transform that removes the rightmost n points """ def t(xarr, yarr, *args): return (xarr[:-n], yarr[:-n]) + args t.__name__ = b'rtrim({})'.format(n) return t
583e4e2b9eef8281002760ccb1d336b9fdff36af
3,644,543
def analyze_avg_prof_quality_by_department(dict_cursor, departmentID, campus): """ >>> analyze_avg_prof_quality_by_department(dict_cursor, 'CSC', 'St. George') CSC enthusiasm 3.95 course_atmosphere 3.90 ... (This is not complete) """ return __analyze_data_by_DB_GETMETHOD_WITH_TWO_ARGS(DEPARTMENT_QUALITY_BY_DID, dict_cursor, departmentID, campus)
c44b74181e223c4a543575dd42f1db73b57e48b9
3,644,544
from os import linesep def audit(environ): """Check a wmt-exe environment. Parameters ---------- environ : dict Environment variables. Returns ------- str Warnings/errors. """ messages = [] for command in ['TAIL', 'CURL', 'BASH']: messages.append(check_is_executable(environ[command])) for path_var in ['PYTHONPATH', 'LD_LIBRARY_PATH', 'PATH', 'CLASSPATH']: for item in environ[path_var].split(pathsep): messages.append(check_is_dir(item)) for path_var in ['SIDL_DLL_PATH']: for item in environ[path_var].split(';'): messages.append(check_is_dir(item)) for module in ['csdms', 'csdms.model']: messages.append(check_is_module(module, env=environ)) for component in find_components(env=environ): module = '.'.join(['csdms.model', component]) messages.append(check_is_module(module, env=environ)) for component in find_components(env=environ): module = '.'.join(['csdms.model', component]) messages.append(check_is_component(module, component, env=environ)) return linesep.join(messages)
e65afb413501d5aceaf715af5bf409e5e9aa50c5
3,644,545
import re import json def parse_to_json(data_str): """ Convert string to a valid json object """ json_obj_list = [] obj = data_str.split('%') for record in obj: attributes = re.split(',', record) data = json.dumps(attributes) data = re.sub(r':', '":"', data) data = re.sub(r'\[', '{', data) data = re.sub(r']', '}', data) json_obj_list.append(data) return json_obj_list
288911694548fd603a3a261ac9c51c5c971599e0
3,644,546
def calculate_elbo(model, X, recon_X): """ Compute the ELBO of the model with reconstruction error and KL divergence.. """ rec_loss = - np.sum(X * np.log(1e-8 + recon_X) + (1 - X) * np.log(1e-8 + 1 - recon_X), 1) mu, logvar = model.transform(X) kl = -0.5 * np.sum(1 + logvar - mu ** 2 - np.exp(logvar), 1) elbo = np.mean(rec_loss + kl) return elbo
aa3f2123bcc8ed0ee62b0b28a4fb3aeb0c1c886c
3,644,547
def dice_loss(pred, target): """ Dice Loss based on Dice Similarity Coefficient (DSC) @param pred: torch.tensor, model prediction @param target: torch.tensor, ground truth label """ return 1 - dice_coeff(pred, target)
9f940c09c4dac7477c6f77f2ecf632b95107f04f
3,644,548
import struct def parse(transaction): """ Parses Bitcoin Transaction into it's component parts""" byteStringLength = 2 # Version version = struct.unpack('<L', transaction[0:4*byteStringLength].decode("hex"))[0] offset = 4*byteStringLength # print "Version is: " + str(version) # Inputs varLength, inputCount = translationUtil.unformatVarInt(transaction[offset:offset+9*byteStringLength].decode("hex")) # print "Input Count is: " + str(inputCount) offset += varLength*byteStringLength inputs = [] for i in range(0, inputCount): # Hash of input (previous output) transaction inHash = (transaction[offset:offset+64].decode("hex"))[::-1].encode("hex") offset += 64 # Index of reference within input (previous output) transaction inIndex = struct.unpack('<L', transaction[offset:offset+4*byteStringLength].decode("hex"))[0] offset += 4*byteStringLength # Script signature length varLength, scriptLen = translationUtil.unformatVarInt(transaction[offset:offset+9*byteStringLength].decode("hex")) offset += varLength*byteStringLength # Script script = transaction[offset:offset+scriptLen*byteStringLength].decode("hex") offset += scriptLen*byteStringLength # Sequence sequence = struct.unpack('<L', transaction[offset:offset+4*byteStringLength].decode("hex"))[0] offset += 4*byteStringLength # Append # print "Input {0} is: {1}, {2}, {3}, {4}".format(i, inHash, inIndex, script, sequence) inputs.append([inHash, inIndex, script, sequence]) # Outputs varLength, outputCount = translationUtil.unformatVarInt(transaction[offset:offset+9*byteStringLength].decode("hex")) # print "Output Count is: {0}".format(outputCount) offset += varLength*byteStringLength outputs = [] for i in range(0, outputCount): # Index of reference within input (previous output) transaction value = struct.unpack('<Q', transaction[offset:offset+8*byteStringLength].decode("hex"))[0] offset += 8*byteStringLength # Script signature length varLength, scriptLen = translationUtil.unformatVarInt(transaction[offset:offset+9*byteStringLength].decode("hex")) offset += varLength*2 # Script script = transaction[offset:offset+scriptLen*byteStringLength].decode("hex") offset += scriptLen*byteStringLength # Append # print "Output {0} is: {1}, {2}".format(i, value, script) outputs.append([value, script]) # Block Lock Time blockLockTime = struct.unpack('<L', transaction[offset:offset+4*byteStringLength].decode("hex"))[0] # print "Block Lock Time is: " + str(blockLockTime) return (version, inputs, outputs, blockLockTime)
fcf9eede33b3dda8026a00a8a3a57ab2cd84ef22
3,644,549
import os import re def get_version(): """Get project version """ version_file_path = os.path.join( os.path.dirname(__file__), 'spowtd', 'VERSION.txt') with open(version_file_path) as version_file: version_string = version_file.read().strip() version_string_re = re.compile('[0-9.]+') match = version_string_re.match(version_string) if match is None: raise ValueError( 'version string "{}" does not match regexp "{}"' .format(version_string, version_string_re.pattern)) return match.group(0)
4a11ae4efd6269b29acdef0835461ede33cf6e5c
3,644,550
def get_related_items_by_type(parser, token): """Gets list of relations from object identified by a content type. Syntax:: {% get_related_items_by_type [content_type_app_label.content_type_model] for [object] as [varname] [direction] %} """ tokens = token.contents.split() if len(tokens) not in (6, 7): raise template.TemplateSyntaxError( "%r tag requires 6 arguments" % tokens[0] ) if tokens[2] != 'for': raise template.TemplateSyntaxError( "Third argument in %r tag must be 'for'" % tokens[0] ) if tokens[4] != 'as': raise template.TemplateSyntaxError( "Fifth argument in %r tag must be 'as'" % tokens[0] ) direction = 'forward' if len(tokens) == 7: direction = tokens[6] return GetRelatedItemsByTypeNode( name=tokens[1], obj=tokens[3], as_var=tokens[5], direction=direction )
a774830f92b6e2abc1df9d172c6b696b87dc83d0
3,644,551
def stitch_valleys(valley_list): """Returns a stitched list of valleys to extract seq from.""" valley_collection = utils.LocusCollection(valley_list, 1) stitched_valley_collection = valley_collection.stitch_collection() loci = [] regions = [] for valley in stitched_valley_collection.get_loci(): if [valley.chr, valley.start, valley.end] not in regions: loci.append(valley) regions.append([valley.chr, valley.start, valley.end]) return loci
d5b4e35d66c9c5ff05a027569454d2ec1b612e45
3,644,552
def no_gcab_namespace(name, *args): """ Mock gi.require_version() to raise an ValueError to simulate that GCab bindings are not available. We mock importing the whole 'gi', so that this test can be run even when the 'gi' package is not available. """ if name.startswith("gi"): m = mock.Mock() m.require_version.side_effect = ValueError return m return orig_import(name, *args)
7952d944aa1fb512874874870a2d9bfaa31c5834
3,644,553
import os import shutil def _start_beamtime( PI_last, saf_num, experimenters=[], wavelength=None, test=False ): """function for start a beamtime""" # check status first active_beamtime = glbl.get('_active_beamtime') if active_beamtime is False: raise xpdAcqError("It appears that end_beamtime may have been " "run.\nIf you wish to start a new beamtime, " "please open a new terminal and proceed " "with the standard starting sequence.") # check directory home_dir = glbl_dict['home'] if not os.path.exists(home_dir): raise RuntimeError( "WARNING: fundamental directory {} does not " "exist.\nPlease contact beamline staff immediately".format( home_dir ) ) f_list = os.listdir(home_dir) if len(f_list) != 0: raise FileExistsError( "There are more than one files/directories:\n" "{}\n" "under {}.\n" "have you run '_end_beamtime()' yet?".format(f_list, home_dir) ) elif len(f_list) == 0: _make_clean_env() print("INFO: initiated requried directories for experiment") bt = Beamtime(PI_last, saf_num, experimenters, wavelength=wavelength) os.chdir(home_dir) print( "INFO: to link newly created beamtime object to xrun, " "please do\n" ">>> xrun.beamtime = bt" ) # copy default Ni24.D to xpdUser/user_analysis src = os.path.join(DATA_DIR, "Ni24.D") dst = os.path.join(glbl_dict["usrAnalysis_dir"], "Ni24.D") shutil.copy(src, dst) _load_beamline_config( glbl["blconfig_path"], test=test ) # pre-populated scan plan for expo in EXPO_LIST: ScanPlan(bt, ct, expo) # inject beamtime state glbl['_active_beamtime'] = True return bt
c1daff80fa43e21bca90fba6ac3d6c66f6f62b6e
3,644,554
import logging def logger(module_name: str): """Инициализация и конфигурирования логгера""" logging.basicConfig( level=logging.INFO, format='[%(levelname)s][%(asctime)s] %(name)s: %(message)s' ) return logging.getLogger(module_name)
0a436b50d16c752404d31e3f34b38239391236d5
3,644,555
from typing import List def cast(op_name: str, expr: Expr, in_xlayers: List[XLayer]) -> XLayer: """ Conversion of Relay 'clip' layer Relay ----- Type: tvm.relay.op.clip Ref: https://docs.tvm.ai/langref/relay_op.html Parameters: - a (relay.Expr) The input tensor. - a_min (float) The clip minimum. - a_max (float) The clip maximum. """ a_min = float(expr.attrs.a_min) a_max = float(expr.attrs.a_max) logger.debug("clip: {}".format(op_name)) X = px.ops.clip(op_name, in_xlayers[0], a_min, a_max, relay_id=[hash(expr)]) logger.debug("-- outshape: {}".format(list(X.shapes))) return X
e6a7699f64054e3196a512929e1cfbc390ba214e
3,644,556
def __generation_dec(n: int, m: int, x_min: np.array, x_max: np.array) -> np.matrix: """ :param n: num rows in returned matrix :param m: num cols in returned matrix :param x_min: float array, min possible nums in cols of returned matrix :param x_max: float array, max possible nums in cols of returned matrix :return: n times m float matrix with nums in col number i in [x_min[i], x_max[i]) """ assert n > 0, "n should be positive" assert m > 0, "m should be positive" assert x_min.shape == (m, ), "x_min should be of shape (m, )" assert x_max.shape == (m, ), "x_max should be of shape (m, )" return np.random.uniform(low=x_min, high=x_max, size=(n, m))
d76970858faacc8757c0bfa5b8840f4b5ab200d0
3,644,557
def apply_tariff(kwh, hour): """Calculates cost of electricity for given hour.""" if 0 <= hour < 7: rate = 12 elif 7 <= hour < 17: rate = 20 elif 17 <= hour < 24: rate = 28 else: raise ValueError(f'Invalid hour: {hour}') return rate * kwh
fb2c5b458c13456a39612720b6e80e0cd707391e
3,644,558
def _compound_smiles(compound: reaction_pb2.Compound) -> str: """Returns the compound SMILES, if defined.""" for identifier in compound.identifiers: if identifier.type == identifier.SMILES: return identifier.value return ""
44c9f8169442b9a116a4d77ea6be74ec4cc27a31
3,644,559
import subprocess def convert_pdf_to_txt(pdf, startpage=None): """Convert a pdf file to text and return the text. This method requires pdftotext to be installed. Parameters ---------- pdf : str path to pdf file startpage : int, optional the first page we try to convert Returns ------- str the converted text """ if startpage is not None: startpageargs = ['-f', str(startpage)] else: startpageargs = [] stdout = subprocess.Popen(["pdftotext", "-q"] + startpageargs + [pdf, "-"], stdout=subprocess.PIPE).communicate()[0] # python2 and 3 if not isinstance(stdout, str): stdout = stdout.decode() return stdout
469fe2439e4ca44e396df07d5e8edb2db5e90e87
3,644,560
def cross_correlizer(sample_rate, max_itd, max_frequency): """ Convenience function for creating a CrossCorrelizer with appropriate parameters. sample_rate : the sample rate of the wav files to expect. max_itd : the maximum interaural time difference to test. max_frequency : the highest frequency to test. """ shift_max = int(np.ceil(max_itd * sample_rate)) shift_steps = int(float(sample_rate) / max_frequency / 2.) return CrossCorrelizer(sample_rate, shift_max, shift_steps)
747c42c3db2ad1f7642e575a35e3ce6d3c84b4b2
3,644,561
import altair as alt def plot_precision_recall_at_k( predicate_df, idx_flip, max_k=100, give_random=True, give_ensemble=True ): """ Plots precision/recall at `k` values for flipped label experiments. Returns an interactive altair visualisation. Make sure it is installed beforehand. Arguments: predicate_df: the dataframe with predicates from `ensemble.get_predicates` idx_flip: array that indicates if labels are wrong max_k: the maximum value for `k` to consider give_random: plot the "at k" statistics for the randomly selected lower bound give_ensemble: plot the "at k" statistics from the reason ensemble """ alt.data_transformers.disable_max_rows() # We combine the results in dataframes plot_df = calculate_precision_recall_at_k( predicate_df=predicate_df, idx_flip=idx_flip, max_k=max_k, give_random=give_random, give_ensemble=give_ensemble, ) # So that we may plot it. return ( alt.Chart(plot_df) .mark_line() .encode(x="k", y="value", color="variable", strokeDash="setting") .interactive() )
e2edc16d8648f9dd913df41dfc39e0b48140cfe7
3,644,562
from typing import List from typing import Union def has_permissions( permissions: int, required: List[Union[int, BasePermission]] ) -> bool: """Returns `True` if `permissions` has all required permissions""" if permissions & Administrator().value: return True all_perms = 0 for perm in required: if isinstance(perm, int): all_perms |= perm else: all_perms |= perm.value return permissions & all_perms == all_perms
db32fe9d1a53cd5b14b71522d08901172bbad8f7
3,644,563
def mat_to_xyz(mat: NDArrayFloat) -> NDArrayFloat: """Convert a 3D rotation matrix to a sequence of _extrinsic_ rotations. In other words, 3D rotation matrix and returns a sequence of Tait-Bryan angles representing the transformation. Reference: https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix Reference: https://en.wikipedia.org/wiki/Euler_angles#Tait%E2%80%93Bryan_angles_2 Args: mat: (...,3,3) Rotation matrix. Returns: (...,3) Tait-Bryan angles (in radians) formulated for a sequence of extrinsic rotations. """ xyz_rad: NDArrayFloat = Rotation.from_matrix(mat).as_euler("xyz", degrees=False) return xyz_rad
1f27e503b28f9a932bc4aa703de8a210968f64f6
3,644,564
import hashlib def get_user_gravatar(user_id): """ Gets link to user's gravatar from serializer. Usage:: {% get_user_gravatar user_id %} Examples:: {% get_user_gravatar 1 %} {% get_user_gravatar user.id %} """ try: user = User.objects.get(pk=user_id) except User.DoesNotExist: return static('img/anonymous.png') if not user.email: return static('img/anonymous.png') url_base = 'https://www.gravatar.com/avatar/{}?d=mp' user_hash = hashlib.md5(user.email.lower().encode('utf-8')).hexdigest() return url_base.format(user_hash)
b8cd883c3ca76a3dc45253457715ac011c04785d
3,644,565
def natural_key(s): """Converts string ``s`` into a tuple that will sort "naturally" (i.e., ``name5`` will come before ``name10`` and ``1`` will come before ``A``). This function is designed to be used as the ``key`` argument to sorting functions. :param s: the str/unicode string to convert. :rtype: tuple """ # Use _nkre to split the input string into a sequence of # digit runs and non-digit runs. Then use _nkconv() to convert # the digit runs into ints and the non-digit runs to lowercase. return tuple(_nkconv(m) for m in _nkre.findall(s))
7eda87824ac9ad952c911d8b1946cc0af43fa4aa
3,644,566
def read_ValidationSets_Sources(): """Read and return ValidationSets_Sources.csv file""" df = pd.read_csv(data_dir + 'ValidationSets_Sources.csv',header=0, dtype={"Year":"str"}) return df
ea653e91ab37abd91297783caf8ea1fa6bd14545
3,644,567
from sys import int_info def igcd_lehmer(a, b): """Computes greatest common divisor of two integers. Euclid's algorithm for the computation of the greatest common divisor gcd(a, b) of two (positive) integers a and b is based on the division identity a = q*b + r, where the quotient q and the remainder r are integers and 0 <= r < b. Then each common divisor of a and b divides r, and it follows that gcd(a, b) == gcd(b, r). The algorithm works by constructing the sequence r0, r1, r2, ..., where r0 = a, r1 = b, and each rn is the remainder from the division of the two preceding elements. In Python, q = a // b and r = a % b are obtained by the floor division and the remainder operations, respectively. These are the most expensive arithmetic operations, especially for large a and b. Lehmer's algorithm is based on the observation that the quotients qn = r(n-1) // rn are in general small integers even when a and b are very large. Hence the quotients can be usually determined from a relatively small number of most significant bits. The efficiency of the algorithm is further enhanced by not computing each long remainder in Euclid's sequence. The remainders are linear combinations of a and b with integer coefficients derived from the quotients. The coefficients can be computed as far as the quotients can be determined from the chosen most significant parts of a and b. Only then a new pair of consecutive remainders is computed and the algorithm starts anew with this pair. References ========== .. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm """ a, b = abs(as_int(a)), abs(as_int(b)) if a < b: a, b = b, a # The algorithm works by using one or two digit division # whenever possible. The outer loop will replace the # pair (a, b) with a pair of shorter consecutive elements # of the Euclidean gcd sequence until a and b # fit into two Python (long) int digits. nbits = 2*int_info.bits_per_digit while a.bit_length() > nbits and b != 0: # Quotients are mostly small integers that can # be determined from most significant bits. n = a.bit_length() - nbits x, y = int(a >> n), int(b >> n) # most significant bits # Elements of the Euclidean gcd sequence are linear # combinations of a and b with integer coefficients. # Compute the coefficients of consecutive pairs # a' = A*a + B*b, b' = C*a + D*b # using small integer arithmetic as far as possible. A, B, C, D = 1, 0, 0, 1 # initial values while True: # The coefficients alternate in sign while looping. # The inner loop combines two steps to keep track # of the signs. # At this point we have # A > 0, B <= 0, C <= 0, D > 0, # x' = x + B <= x < x" = x + A, # y' = y + C <= y < y" = y + D, # and # x'*N <= a' < x"*N, y'*N <= b' < y"*N, # where N = 2**n. # Now, if y' > 0, and x"//y' and x'//y" agree, # then their common value is equal to q = a'//b'. # In addition, # x'%y" = x' - q*y" < x" - q*y' = x"%y', # and # (x'%y")*N < a'%b' < (x"%y')*N. # On the other hand, we also have x//y == q, # and therefore # x'%y" = x + B - q*(y + D) = x%y + B', # x"%y' = x + A - q*(y + C) = x%y + A', # where # B' = B - q*D < 0, A' = A - q*C > 0. if y + C <= 0: break q = (x + A) // (y + C) # Now x'//y" <= q, and equality holds if # x' - q*y" = (x - q*y) + (B - q*D) >= 0. # This is a minor optimization to avoid division. x_qy, B_qD = x - q*y, B - q*D if x_qy + B_qD < 0: break # Next step in the Euclidean sequence. x, y = y, x_qy A, B, C, D = C, D, A - q*C, B_qD # At this point the signs of the coefficients # change and their roles are interchanged. # A <= 0, B > 0, C > 0, D < 0, # x' = x + A <= x < x" = x + B, # y' = y + D < y < y" = y + C. if y + D <= 0: break q = (x + B) // (y + D) x_qy, A_qC = x - q*y, A - q*C if x_qy + A_qC < 0: break x, y = y, x_qy A, B, C, D = C, D, A_qC, B - q*D # Now the conditions on top of the loop # are again satisfied. # A > 0, B < 0, C < 0, D > 0. if B == 0: # This can only happen when y == 0 in the beginning # and the inner loop does nothing. # Long division is forced. a, b = b, a % b continue # Compute new long arguments using the coefficients. a, b = A*a + B*b, C*a + D*b # Small divisors. Finish with the standard algorithm. while b: a, b = b, a % b return a
609db770670f718121fb045f3786aad5f0ff8e5f
3,644,568
def regular_polygon_area_equivalent_radius(n, radius=1.0): """ Compute equivalent radius to obtain same surface as circle. \theta = \frac{2 \pi}{n} r_{eqs} = \sqrt{\frac{\theta r^2}{\sin{\theta}}} :param radius: circle radius :param n: number of regular polygon segments :return: equivalent regular polynom surface """ theta = 2 * np.pi / n r = np.sqrt((theta * radius ** 2) / np.sin(theta)) return r
4aacc8c2ab57516bef15167e5a22485c9f55bc2d
3,644,569
def get_dashboard_list(project_id=None, page=1, page_size=25, token_info=None, user=None): """Get a list of dashboards :param project_id: Filter dashboards by project ID :type project_id: str :param user_id: Filter dashboards by user ID :type user_id: str :param limit: Limit the dashboards :type limit: int :param offset: Offset the dashboards :type offset: int :rtype: DashboardList """ query = Dashboard.query project = None if "project_id" in connexion.request.args: project = Project.query.get(connexion.request.args["project_id"]) if project: if not project_has_user(project, user): return "Forbidden", 403 query = query.filter(Dashboard.project_id == project_id) offset = (page * page_size) - page_size total_items = query.count() total_pages = (total_items // page_size) + (1 if total_items % page_size > 0 else 0) dashboards = query.offset(offset).limit(page_size).all() return { "dashboards": [dashboard.to_dict() for dashboard in dashboards], "pagination": { "page": page, "pageSize": page_size, "totalItems": total_items, "totalPages": total_pages, }, }
9a15c87b081dcdb87e1a5c4778b0114309365a2b
3,644,570
import torch def _ssim(X, Y, filter, K=(0.01, 0.03)): """ Calculate ssim index for X and Y""" K1, K2 = K # batch, channel, [depth,] height, width = X.shape C1 = K1 ** 2 C2 = K2 ** 2 filter = filter.to(X.device, dtype=X.dtype) mu_x = gaussian_filter(X, filter) mu_y = gaussian_filter(Y, filter) mu_x_sq = mu_x.pow(2) mu_y_sq = mu_y.pow(2) mu_x_mu_y = mu_x * mu_y sigma_x_sq = (gaussian_filter(X * X, filter) - mu_x_sq) sigma_y_sq = (gaussian_filter(Y * Y, filter) - mu_y_sq) sigma_xy = (gaussian_filter(X * Y, filter) - mu_x_mu_y) cs_map = (2 * sigma_xy + C2) / (sigma_x_sq + sigma_y_sq + C2) # set alpha=beta=gamma=1 ssim_map = ((2 * mu_x_mu_y + C1) / (mu_x_sq + mu_y_sq + C1)) ssim_map *= cs_map ssim_per_channel = torch.flatten(ssim_map, 2).mean(-1) cs = torch.flatten(cs_map, 2).mean(-1) return ssim_per_channel, cs
49deca478e06c35f06436f16ad34fb8154ba0cfd
3,644,571
def get_all_messages(notification_queue, **kwargs): """ Get all messages on the specified notification queue Variables: complete_queue => Queue to get the message from Arguments: None Data Block: None Result example: [] # List of messages """ resp_list = [] u = NamedQueue("nq-%s" % notification_queue, host=config.core.redis.persistent.host, port=config.core.redis.persistent.port, db=config.core.redis.persistent.db) while True: msg = u.pop(blocking=False) if msg is None: break resp_list.append(msg) return make_api_response(resp_list)
c0a61d50cc3e6373bc007f8978278d49f66544e9
3,644,572
def ssa_reconstruct(pc, v, k): """ from Vimal Series reconstruction for given SSA decomposition using vector of components :param pc: matrix with the principal components from SSA :param v: matrix of the singular vectors from SSA :param k: vector with the indices of the components to be reconstructed :return: the reconstructed time series """ if np.isscalar(k): k = [k] if pc.ndim != 2: raise ValueError('pc must be a 2-dimensional matrix') if v.ndim != 2: raise ValueError('v must be a 2-dimensional matrix') t, dim = pc.shape n_points = t + (dim - 1) if any(filter(lambda x: dim < x or x < 0, k)): raise ValueError('k must be vector of indexes from range 0..%d' % dim) pc_comp = np.asarray(np.matrix(pc[:, k]) * np.matrix(v[:, k]).T) xr = np.zeros(n_points) times = np.zeros(n_points) # reconstruction loop for i in range(dim): xr[i: t + i] = xr[i: t + i] + pc_comp[:, i] times[i: t + i] = times[i: t + i] + 1 xr = (xr / times) * np.sqrt(t) return xr
1ac054f2d31ab6f883a369e682a33235305df604
3,644,573
import os import sys def loadImtoolrc(imtoolrc=None): """ Locates, then reads in IMTOOLRC configuration file from system or user-specified location, and returns the dictionary for reference. """ # Find the IMTOOLRC file. Except as noted below, this order # matches what ximtool and ds9 use. _home = os.getenv("HOME") # Look for path to directory where this module is installed # This will be last-resort location for IMTOOLRC that was # distributed with this module. _module_path = os.path.split(__file__)[0] #### # list of file names to look for; ok to have None to skip an entry _name_list = [] # There are two environment variables that might set the location # of imtoolrc: # getenv('imtoolrc') _name_list.append(os.getenv(_default_imtoolrc_env[0])) # getenv('IMTOOLRC') _name_list.append(os.getenv(_default_imtoolrc_env[1])) # ~/.imtoolrc if 'HOME' in os.environ : _name_list.append( os.path.join(os.environ['HOME'], ".imtoolrc") ) _name_list.append(sys.prefix+os.sep+_default_local_imtoolrc) # /usr/local/lib/imtoolrc _name_list.append(_default_system_imtoolrc) # $iraf/dev/imtoolrc - this is not in ds9 or NOAO's ximtool, # but it is in the AURA Unified Release ximtool. This is the # one place on your system where you can be certain that # imtoolrc is really there. Eventually, we will make a patch # to add this to ds9 and to IRAF. if 'iraf' in os.environ : _name_list.append( os.path.join( os.environ['iraf'], 'dev', 'imtoolrc') ) # special to numdisplay: use imtoolrc that is in the package directory. # Basically, this is our way of having a built-in default table. _name_list.append(_module_path+os.sep+'imtoolrc') #### # Search all possible IMTOOLRC names in list # and open the first one found... for name in _name_list: try: if name: _fdin = open(name) break except OSError as error: pass #Parse the file, line by line and populate the dictionary _lines = _fdin.readlines() _fdin.close() # Build a dictionary for the entire IMTOOL table # It will be indexed by configno. fbdict = {} for line in _lines: # Strip out any blanks/tabs, Python 3 compat line = line.strip() # Ignore empty lines if len(line) > 1: _lsp = line.split() # Also, ignore comment lines starting with '#' if _lsp[0] != '#': configno = int(_lsp[0]) _dict = {'nframes':int(_lsp[1]),'width':int(_lsp[2]),'height':int(_lsp[3]),'name':_lsp[5]} fbdict[configno] = _dict return fbdict
68aa55443baaa5c0eb57d80af3f7a989cba1c2d9
3,644,574
def get_theo_joints_pm(W, b, beta): """calculate the theoretical state distribution for a Boltzmann machine """ N = len(b) joints = [] states = get_states(N) for s in states: joints.append(np.exp(-1. * get_energy(W, b, (2. * s - 1.), beta))) joints /= np.sum(joints) return joints
c84c518fac47d139f951d4973907dceec1d9c825
3,644,575
from typing import BinaryIO def tail(the_file: BinaryIO, lines_2find: int = 20) -> list[bytes]: """ From http://stackoverflow.com/questions/136168/get-last-n-lines-of-a-file-with-python-similar-to-tail """ lines_found: int = 0 total_bytes_scanned: int = 0 the_file.seek(0, 2) bytes_in_file: int = the_file.tell() while lines_2find + 1 > lines_found and bytes_in_file > total_bytes_scanned: byte_block: int = min(1024, bytes_in_file - total_bytes_scanned) the_file.seek(-(byte_block + total_bytes_scanned), 2) total_bytes_scanned += byte_block lines_found += the_file.read(1024).count(b"\n") the_file.seek(-total_bytes_scanned, 2) line_list: list[bytes] = list(the_file.readlines()) return line_list[-lines_2find:] # We read at least 21 line breaks from the bottom, block by block for speed # 21 to ensure we don't get a half line
094917839d4b26e284244715452982eaf6e8c08a
3,644,576
def add_device_tag_command(client, args): """ Command to add tag to an existing admin devices entry """ site, concentrator, map = get_site_params() transmitter_id = args.get('transmitter_id') tag = args.get('tag') result = client.add_device_tag(site=site, concentrator=concentrator, map=map, transmitter_id=transmitter_id, tag=tag) if 'status' not in result: return_error('Failed to add device tag') return result['status'], {}, result
9aeaff1110515215bb7f2d3aa1a6ab5123cd31b2
3,644,577
def CommaSeparatedFloats(sFloatsCSV): """Read comma-separated floats from string. [sFloatsCSV]: string, contains comma-separated floats. <retval>: list, floats parsed from string. """ return [float(sFloat) for sFloat in sFloatsCSV.replace(" ","").split(",")]
1aa12ca7297aa3bd809f6d2ffaf155233a826b49
3,644,578
def merge_channels(image_list): """ Merge channels of multiple scalar ANTsImage types into one multi-channel ANTsImage ANTsR function: `mergeChannels` Arguments --------- image_list : list/tuple of ANTsImage types scalar images to merge Returns ------- ANTsImage Example ------- >>> import ants >>> image = ants.image_read(ants.get_ants_data('r16'), 'float') >>> image2 = ants.image_read(ants.get_ants_data('r16'), 'float') >>> image3 = ants.merge_channels([image,image2]) >>> image3.components == 2 """ inpixeltype = image_list[0].pixeltype dimension = image_list[0].dimension components = len(image_list) for image in image_list: if not isinstance(image, iio.ANTsImage): raise ValueError('list may only contain ANTsImage objects') if image.pixeltype != inpixeltype: raise ValueError('all images must have the same pixeltype') libfn = utils.get_lib_fn('mergeChannels%s' % image_list[0]._libsuffix) image_ptr = libfn([image.pointer for image in image_list]) return iio.ANTsImage(pixeltype=inpixeltype, dimension=dimension, components=components, pointer=image_ptr)
33b5588d6ad4d128ed6206652919408e32520c80
3,644,579
def get_var(name: str, options: dict) -> str: """ Returns the value from the given dict with key 'INPUT_$key', or if this does not exist, key 'key'. """ return options.get('INPUT_{}'.format(name)) or options.get(name)
9df0e3ec92af83b5719b88ca34f323bdfc7d1d84
3,644,580
import os def get_filenames(is_training, data_dir, num_files=1014): """Return filenames for dataset.""" if is_training: return [ os.path.join(data_dir, "train-%05d-of-01014" % i) for i in range(num_files) ] else: return [ os.path.join(data_dir, "validation-%05d-of-00128" % i) for i in range(128) ]
4381513fce78d7d491866db4f67a57496530d67c
3,644,581
def create_txt_response(name, txt_records): """ Returns an RRSet containing the 'txt_records' as the result of a DNS query for 'name'. This takes advantage of the fact that an Answer object mostly behaves like an RRset. """ return dns.rrset.from_text_list(name, 60, "IN", "TXT", txt_records)
1f649719576b810a40ed7042b9b254653fe1364a
3,644,582
import ast def bit_xor(*arguments): """ Bitwise XOR function. """ return ast.BitXor(*arguments)
07af3232a18796b4122e3ac6a4279ec00032c31d
3,644,583
def get_chromiumdir(platform, release): """ Args: platform (str): a sys.platform str Returns: str: path to Chromium User Data Directory http://www.chromium.org/user-experience/user-data-directory """ if platform == 'darwin': chromedir = os.path.expanduser( '~/Library/Application Support/Chromium') elif platform.startswith('linux'): chromedir = os.path.expanduser( '~/.config/chromium') elif platform == 'win32': if release == 'XP': chromedir = os.path.expanduser( '~\Local Settings\Application Data\Chromium\User Data') else: chromedir = os.path.expanduser( '~\AppData\Local\Chromium\User Data') else: raise NotImplementedError("Unknown platform: %r" % platform) return [chromedir]
4ed1a9d70dfd3430911d26ac47322e9612bfdb06
3,644,584
def make_ts_scorer( score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs, ): """Make a scorer from a performance metric or loss function. This factory function wraps scoring functions for use in `~sklearn.model_selection.GridSearchCV` and `~sklearn.model_selection.cross_validate`. It takes a score function, such as ``accuracy_score``, ``mean_squared_error``, ``adjusted_rand_index`` or ``average_precision`` and returns a callable that scores an estimator's output. Read more in the :ref:`User Guide <scoring>`. Parameters ---------- score_func : callable, Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. greater_is_better : boolean Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func. needs_proba : boolean Not yet implemented, kept only to be compatible with the scikit-learn API needs_threshold : boolean Not yet implemented, kept only to be compatible with the scikit-learn API **kwargs : additional arguments Additional parameters to be passed to score_func. Returns ------- callable scorer object that returns a scalar score """ sign = 1 if greater_is_better else -1 if needs_proba and needs_threshold: raise ValueError("Set either needs_proba or needs_threshold to True," " but not both.") if needs_proba: raise NotImplementedError("Usage/evaluation of prediction probabilities are not yet implemented.") elif needs_threshold: raise NotImplementedError("Evaluation of decision function output is not yet implemented.") else: cls = _TSPredictScorer return cls(score_func, sign, kwargs)
9003f82b52a1e915111bd46002fda8f61f6c9b9e
3,644,585
def pfas(x): """Parse a JSON array of PFA expressions as a PFA abstract syntax trees. :type x: open JSON file, JSON string, or Pythonized JSON :param x: PFA expressions in a JSON array :rtype: list of titus.pfaast.Expression :return: parsed expressions as a list of abstract syntax trees """ return jsonToAst.exprs(x)
e3544a89f16c908752a55ea58bfc3360abbe4121
3,644,586
def overlap(x, y, a, b): """Finds the overlap of (x, y) and (a, b). Assumes an overlap exists, i.e. y >= a and b >= x. """ c = clamp(x, a, b) d = clamp(y, a, b) return c, d
c26b2f32ba9c12f72108c756ca4c1b4993fe8d55
3,644,587
def topological_sort(g): """ Returns a list of vertices in directed acyclic graph g in topological order. """ ready = [] topo = [] in_count = {} for v in g.vertices(): in_count[v] = g.degree(v, outgoing=False) if in_count[v] == 0: # v has no constraints, i.e no incoming edges ready.append(v) while len(ready) > 0: u = ready.pop() topo.append(u) for e in g.incident_edges(u): v = e.opposite(u) in_count[v] -= 1 # v now no longer has u as a constraint if in_count[v] == 0: ready.append(v) return topo
5ac6261bf1b6fa92280abdc3fc95679ad9294e80
3,644,588
def probability_of_failure_in_any_period(p, n): """ Returns the probability that a failure (of probability p in one period) happens once or more in n periods. The probability of failure in one period is p, so the probability of not failing is (1 - p). So the probability of not failing over n periods is (1 - p) ** n, and the probability of one or more failures in n periods is: 1 - (1 - p) ** n Doing the math without losing precision is tricky. After the binomial expansion, you get (for even n): a = 1 - (1 - choose(n, 1) * p + choose(n, 2) p**2 - p**3 + p**4 ... + choose(n, n) p**n) For odd n, the last term is negative. To avoid precision loss, we don't want to to (1 - p) if p is really tiny, so we'll cancel out the 1 and get: you get: a = choose(n, 1) * p - choose(n, 2) * p**2 ... """ if p < 0.01: # For tiny numbers, (1 - p) can lose precision. # First, compute the result for the integer part n_int = int(n) result = 0.0 sign = 1 for i in range(1, n_int + 1): p_exp_i = p ** i if p_exp_i != 0: result += sign * choose(n_int, i) * (p ** i) sign = -sign # Adjust the result to include the fractional part # What we want is: 1.0 - (1.0 - result) * ((1.0 - p) ** (n - n_int)) # Which gives this when refactored: result = 1.0 - ((1.0 - p) ** (n - n_int)) + result * ((1.0 - p) ** (n - n_int)) return result else: # For high probabilities of loss, the powers of p don't # get small faster than the coefficients get big, and weird # things happen return 1.0 - (1.0 - p) ** n
92439161b6b1e3288fc665c72c145282c6c09bb2
3,644,589
def stage_1(transformed_token_list): """Checks tokens against ngram to unigram dictionary""" dict_data = pd.read_excel(v.stage_1_input_path, sheet_name=v.input_file_sheet_name) selected_correct_token_data = pd.DataFrame(dict_data, columns=v.stage_1_input_file_columns) transformed_state_1 = [] for sentence in transformed_token_list: for row in selected_correct_token_data.itertuples(): b = list(literal_eval(row.ngram)) ngram = '' for word in b: ngram += (' ' + word) split_bigram = ngram.strip().split(' ') split_sentence = sentence.strip().split(' ') if ngram.strip() in sentence and split_bigram[0] in split_sentence and split_bigram[1] in split_sentence: sentence = sentence.replace(ngram.strip(), row.unigram) transformed_state_1.append(sentence) print_to_file(v.stage_1_output_path, transformed_state_1, v.input_file_columns) return transformed_state_1
6dea5bb1e1e04d183ade142f50c36aea00933ff1
3,644,590
def _perform_sanity_checks(config, extra_metadata): """ Method to perform sanity checks on current classification run. :param config: dirbs config instance :param extra_metadata: job extra metadata dict obj :return: bool (true/false) """ curr_conditions = [c.as_dict() for c in config.conditions] curr_operators = [op.as_dict() for op in config.region_config.operators] curr_amnesty = config.amnesty_config.as_dict() if curr_conditions == extra_metadata['conditions'] and \ curr_operators == extra_metadata['operators'] and \ curr_amnesty == extra_metadata['amnesty']: return True return False
fa5fa39bae91393c4f91ab6aa3b595f8a0db2e4f
3,644,591
def get_key_from_id(id : str) -> str: """ Gets the key from an id. :param id: :return: """ assert id in KEYMAP, "ID not found" return KEYMAP[id]
7fbf00bbd905382888b993bbee5564c42edf4e73
3,644,592
import string def CreateFromDict(registration_dict): """Returns the content of the header file.""" template = string.Template("""\ // Copyright 2017 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This file is autogenerated by // base/android/jni_generator/jni_registration_generator.py // Please do not change its content. #ifndef HEADER_GUARD #define HEADER_GUARD #include <jni.h> #include "base/android/jni_generator/jni_generator_helper.h" #include "base/android/jni_int_wrapper.h" // Step 1: Forward declaration. ${FORWARD_DECLARATIONS} // Step 2: Main dex and non-main dex registration functions. bool RegisterMainDexNatives(JNIEnv* env) { ${REGISTER_MAIN_DEX_NATIVES} return true; } bool RegisterNonMainDexNatives(JNIEnv* env) { ${REGISTER_NON_MAIN_DEX_NATIVES} return true; } #endif // HEADER_GUARD """) if len(registration_dict['FORWARD_DECLARATIONS']) == 0: return '' return jni_generator.WrapOutput(template.substitute(registration_dict))
08d49b8cbb1275104b4498b98aed00747163e874
3,644,593
from datetime import datetime def controller_add_raw_commands_not_privileged(): """ This view allows a client to send a raw command to a CISCO device in not privileged EXEC mode :return: <dict> result of the operation. check documentation for details """ # TODO: convert print screens to app.logger.debug("message") print("OUTPUT - Entering function: controller_add_raw_commands_not_privileged") # START COUNTING TIME FOR LOGGING PURPOSES start_time = datetime.now() # GETTING CLIENT INFO, FOR LOGGING client_info = get_http_request_info(request) # OUTPUT MESSAGES IN DEBUG MODE- ( WE CAN CREATE A DEBUG MODE FOR LOGGING ) message = "OUTPUT - WEBSERVICE URI: \t'{}'".format(client_info["REQUEST_URI"]) print(message) message = ("OUTPUT - REQUEST_INFORMATION " + str(client_info)) # ----- --- Below line is just to remember us that we could create a debug mode log with messages like these one. # logger_engine.debug(message) print("OUTPUT - starting time: {}".format(start_time)) print(message) print("OUTPUT - Let´s request data from client - CHECK IF DATA IS VALID") data = request_data(client_info) print("OUTPUT - data: ", data) if isinstance(data[0], dict): if data[0]["STATUS"] == "Failure": print("OUTPUT - WE HAVE FOUND AN ERROR......") end_time = datetime.now() total_time = end_time - start_time if data[0]["ERROR"] == "1": print("OUTPUT - ERROR 1. LETS RAISE INVALID_USAGE function amd inform client ") print("OUTPUT - data", data) # CREATE ERROR OBJECT logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, current_app.logger, user_data_for_logging= None) # CALL METHOD FOR ERROR 1 ( CHECK ERROR-CATALOG.txt for details ) logger_obj.error_1_json_data(data[0]) # CREATE A JSON LOG logger_obj.create_json_log() raise InvalidUsage("Bad request!", status_code=400, payload=logger_obj.error_dict) if data[0]["ERROR"] == "2": print("OUTPUT - ERROR 2. LETS RAISE INVALID_USAGE function amd inform client ") print("OUTPUT - data", data) # CREATE ERROR OBJECT logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, current_app.logger, user_data_for_logging=data[1]) # CALL METHOD FOR ERROR 2 ( CHECK ERROR-CATALOG.txt for details logger_obj.error_2_fundamental_data_required(data[0]) # CREATE A JSON LOG logger_obj.create_json_log() raise InvalidUsage("Bad request!", status_code=400, payload=logger_obj.error_dict) if data[0]["ERROR"] == "3": print("OUTPUT - ERROR 3. LETS RAISE INVALID_USAGE function amd inform client ") print("OUTPUT - data", data) # CREATE ERROR OBJECT #EXAMPLE HOW DATA SHOULD BE :OUTPUT - \ # data ({'STATUS': 'Failure', 'ERROR': '3', 'TYPE': 'WEBSERVICE DATA FAILURE', 'MESSAGE': # 'Please, send an ip key in your dictionary'}, {'ips': '192.168.7.1'}) ------ ------- is a tuple logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, current_app.logger, user_data_for_logging=data[1]) # CALL METHOD FOR ERROR 3 ( CHECK ERROR-CATALOG.txt for details logger_obj.error_webservice_data_failure(data[0]) # CREATE A JSON LOG logger_obj.create_json_log() raise InvalidUsage("Bad request!", status_code=400, payload=logger_obj.error_dict) print("=" * 79) print("OUTPUT - data is OK! ") print("OUTPUT - data[0]", data[0]) print("OUTPUT - data[1]", data[1]) print("=" * 79) # CHECK IF IS PORT # MAKE A COPY OF CLIENT DATA for logging purposes user_data_for_logging = dict((k, v) for k, v in data[2].items()) print("OUTPUT - user_data_for_logging:", user_data_for_logging) # LETS REMOVE THE KEYS, VLAN_ID AND VLAN_NAME AND STORE THEIR VALUES ON NEW VARIABLES. Construct a dictionary with # vlan_id an vlan_name send later. there are a case where client doesn 't send to US vlan_name and we # have to process theses kind of behavior command_to_send = data[1].pop("command_to_send") print("OUTPUT - command_list_to_send: {}".format(command_to_send)) # CHECK IF CLIENT WANTS A SPECIFIC PORT FOR CONNECTION to device. SET TO NONE if not if isinstance(data[1], dict): if 'port' in data[1].keys(): port = data[1].pop("port") else: port = None if data[0]["CONNECTIONS"] == "both": # ------- first try a telnet connection --------------- connection = ConnectToDevice(data[1], connection_type="TELNET", port=port) # LETS START CONFIGURING result = connection.configure_add_raw_commands_not_privileged(command_to_send=command_to_send) # result = connection.get_show_run() print("OUTPUT - result of telnet connection: ", result) print("OUTPUT - type(result): ", type(result)) print("OUTPUT - result is a list with one dictionary unstructured data") result_telnet = result end_time = datetime.now() total_time = end_time - start_time # - ------- At these point we should check if telnet was successful --------------------- if isinstance(result_telnet, dict): if result_telnet["STATUS"] == "Failure": del connection print("OUTPUT - Perform a ssh connection because telnet failed ") # -- ------ Perform a ssh connection because telnet failed ---------- connection_new = ConnectToDevice(data[1], connection_type="SSH", port=port) # LETS START CONFIGURING result = connection_new .configure_add_raw_commands_not_privileged(command_to_send=command_to_send) print("OUTPUT - result of ssh connection: ", result) print("OUTPUT - type(result): ", type(result)) print("OUTPUT - result is a list with one dictionary unstructured data") result_ssh = result if isinstance(result, dict): # ---- Check if ssh connection was successful. if not, inform client of both fails and log if result["STATUS"] == "Failure": # Expecting here to appear error 4 -------- HANDLE ERROR # first handle error 4 if result["ERROR"] == "4": # CREATE ERROR OBJECT logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, current_app.logger, user_data_for_logging=user_data_for_logging) # CALL METHOD FOR BOTH CONNECTION ERROR logger_obj.error_both_connection_fails("Failed connection to device", result_ssh, result_telnet) # CREATE A JSON LOG logger_obj.create_json_log() print("OUTPUT - result: {}".format(result)) raise InvalidUsage("Bad request!", status_code=513, payload=logger_obj.error_dict) # Error 8 FOR NOW THESE ERROR DOESN EXIST YET - LATER WE MAY NEED IT # if result["ERROR"] == "8": # CREATE ERROR OBJECT # logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, logger_engine, # user_data_for_logging=user_data_for_logging) # CALL METHOD FOR ERROR # logger_obj.error_operation_error(result) # CREATE A JSON LOG # logger_obj.create_json_log() # raise InvalidUsage("Bad request!", status_code=513, payload=logger_obj.error_dict) # ----- ----- connection to device Successful. ------ Build log and return info to client ---- # Connection to device:Successful. OPERATION SUCCESSFUL ------ Build log and return interface config to client ---- # --------- CREATE success LOG ------- logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, current_app.logger, user_data_for_logging=user_data_for_logging) success_dict = {"STATUS": "Success", "MESSAGE": "Check results. Whenever possible, we will try to output Structured and Unstructured " "data " "captured from de Network Device CLI. We have to be careful on what commands we are " "trying to send, because we are not in privileged mode, and sometimes we are not " "authorized to run them on the device and the output will be something like: e.g.( " " ^\n% Invalid input detected at '^' marker.\n )", "STRUCTURED_RESULT": result[0], "UNSTRUCTURED_RESULT": result[1] } final_dict = {"NETWORK AUTOMATE RESPONSE": success_dict} # CALL METHOD FOR success messages logger_obj.sucess_add_raw_commands(success_dict) # CREATE A JSON LOG logger_obj.create_json_log() # GIVE RESPONSE TO VIEW, for client return final_dict # What differ a ssh or telnet connection is only the device driver used by netmiko, so the first thing we should do, # is to know which connection the client want us to perform. # ------ we will pass these choice to the class "ConnectToDevice". --------------- if data[0]["CONNECTIONS"] == "telnet": connection = ConnectToDevice(data=data[1], connection_type="TELNET", port=port) if data[0]["CONNECTIONS"] == "ssh": connection = ConnectToDevice(data=data[1], connection_type="SSH", port=port) # LETS START CONFIGURING result = connection.configure_add_raw_commands_not_privileged(command_to_send=command_to_send) print("OUTPUT - configure_add_raw_commands ended ....") print("="*79) print("OUTPUT - result: ", result) print("OUTPUT - type(result): ", type(result)) # "OUTPUT - result[0] is a list with one dictionary with structured data and a dictionary with unstructured data") # TIME FOR LOGGING PURPOSES end_time = datetime.now() total_time = end_time - start_time # ---- At these point, if the connection object return an error ( like connection error or other ) we should # report these and inform client if isinstance(result, dict): if result["STATUS"] == "Failure": # if status is failure , we are EXPECTING HERE ERROR 4, 3 or 6 # first Error 4 if result["ERROR"] == "4": # CREATE ERROR OBJECT logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, current_app.logger, user_data_for_logging=user_data_for_logging) # CALL METHOD FOR ERROR logger_obj. error_netmiko(result) # CREATE A JSON LOG logger_obj.create_json_log() raise InvalidUsage("Bad request!", status_code=512, payload=logger_obj.error_dict) # Connection to device: Successful. OPERATION SUCCESSFUL ------ Build log and return info to client ---- # --------- CREATE success LOG ------- logger_obj = NetworkAutomateLogs(start_time, end_time, total_time, client_info, current_app.logger, user_data_for_logging=user_data_for_logging) success_dict = {"STATUS": "Success", "MESSAGE": "Check results. Whenever possible, we will try to output Structured and Unstructured data" " captured from de Network Device CLI. We have to be careful on what commands we are " "trying to send, because we are not in privileged mode, and sometimes we are not " "authorized to run them on the device and the output will be something like: e.g.( " " ^\n% Invalid input detected at '^' marker.\n )", "STRUCTURED_RESULT": result[0], "UNSTRUCTURED_RESULT": result[1] } final_dict = {"NETWORK AUTOMATE RESPONSE": success_dict} # CALL METHOD FOR success messages logger_obj.sucess_add_raw_commands(success_dict) # CREATE A JSON LOG logger_obj.create_json_log() # GIVE RESPONSE TO Client return final_dict
86ba530e77646d506f1b9961908b30c5d00d4ecf
3,644,594
def static_message_fixture(tmpdir_factory, prefix, message, suffix): """A fixture which provides a static message.""" filename = tmpdir_factory.mktemp('data').join('static_message.txt').strpath file_contents = "{0}{1}{2}".format(prefix, message, suffix) with open(filename, 'w') as f: f.write(file_contents) return filename
a9a11508eb10760452cad557e792df30b068e8bc
3,644,595
def entropy_image(filename,bins=30): """ extracts the renyi entropy of image stored under filename. """ img = cv2.imread(filename,0)/255.0 # gray images p,_ = np.histogram( img, range=[0.0,1.0],bins=bins ) return -np.log(np.dot(p,p)/(np.sum(p)**2.0))
b9686647601cb8850a6b03a1c52f4ad0a4218553
3,644,596
def satisfies_constraint(kel: dict, constraint: dict) -> bool: """Determine whether knowledge graph element satisfies constraint. If the constrained attribute is missing, returns False. """ try: attribute = next( attribute for attribute in kel.get("attributes", None) or [] if attribute["attribute_type_id"] == constraint["id"] ) except StopIteration: return False return constraint.get("not", False) != operator_map[constraint["operator"]]( attribute["value"], constraint["value"], )
39ae764e03c77dcb0145b9091d21df092894850d
3,644,597
def static_unroll(core, input_sequence, initial_state, time_major=True): """Performs a static unroll of an RNN. An *unroll* corresponds to calling the core on each element of the input sequence in a loop, carrying the state through:: state = initial_state for t in range(len(input_sequence)): outputs, state = core(input_sequence[t], state) A *static* unroll replaces a loop with its body repeated multiple times when executed inside :func:`jax.jit`:: state = initial_state outputs0, state = core(input_sequence[0], state) outputs1, state = core(input_sequence[1], state) outputs2, state = core(input_sequence[2], state) ... See :func:`dynamic_unroll` for a loop-preserving unroll function. Args: core: An :class:`RNNCore` to unroll. input_sequence: An arbitrarily nested structure of tensors of shape ``[T, ...]`` if time-major=True, or ``[B, T, ...]`` if time_major=False, where ``T`` is the number of time steps. initial_state: An initial state of the given core. time_major: If True, inputs are expected time-major, otherwise they are expected batch-major. Returns: A tuple with two elements: * **output_sequence** - An arbitrarily nested structure of tensors of shape ``[T, ...]`` if time-major, otherwise ``[B, T, ...]``. * **final_state** - Core state at time step ``T``. """ output_sequence = [] time_axis = 0 if time_major else 1 num_steps = jax.tree_leaves(input_sequence)[0].shape[time_axis] state = initial_state for t in range(num_steps): if time_major: inputs = jax.tree_map(lambda x, _t=t: x[_t], input_sequence) else: inputs = jax.tree_map(lambda x, _t=t: x[:, _t], input_sequence) outputs, state = core(inputs, state) output_sequence.append(outputs) # Stack outputs along the time axis. output_sequence = jax.tree_multimap( lambda *args: jnp.stack(args, axis=time_axis), *output_sequence) return output_sequence, state
f61c9de5b90a0757617f9db588ab54e69918bc4b
3,644,598
from typing import List from typing import Tuple def getElementByClass(className: str, fileName: str) -> List[Tuple[int, str]]: """Returns first matching tag from an HTML/XML document""" nonN: List[str] = [] with open(fileName, "r+") as f: html: List[str] = f.readlines() for line in html: nonN.append(line.replace("\n", "")) pattern: str = f'class="{className}"' patternAlt: str = f"class='{className}'" matches: List[Tuple[int, str]] = [] for line in nonN: if pattern in line or patternAlt in line: lineNo = nonN.index(line) + 1 matches.append((int(lineNo), line)) break return matches
969e4070e16dec2e10e26e97cbaaab9d95e7b904
3,644,599