content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def diff_smf(mstar_arr, volume, h1_bool, colour_flag=False): """ Calculates differential stellar mass function in units of h=1.0 Parameters ---------- mstar_arr: numpy array Array of stellar masses volume: float Volume of survey or simulation h1_bool: boolean True if units of masses are h=1, False if units of masses are not h=1 colour_flag (optional): boolean 'R' if galaxy masses correspond to red galaxies & 'B' if galaxy masses correspond to blue galaxies. Defaults to False. Returns --------- maxis: array Array of x-axis mass values phi: array Array of y-axis values err_tot: array Array of error values per bin bins: array Array of bin edge values counts: array Array of number of things in each bin """ if not h1_bool: # changing from h=0.7 to h=1 assuming h^-2 dependence logmstar_arr = np.log10((10**mstar_arr) / 2.041) else: logmstar_arr = np.log10(mstar_arr) if survey == 'eco' or survey == 'resolvea': bin_min = np.round(np.log10((10**8.9) / 2.041), 1) if survey == 'eco' and colour_flag == 'R': bin_max = np.round(np.log10((10**11.5) / 2.041), 1) bin_num = 6 elif survey == 'eco' and colour_flag == 'B': bin_max = np.round(np.log10((10**11) / 2.041), 1) bin_num = 6 elif survey == 'resolvea': # different to avoid nan in inverse corr mat bin_max = np.round(np.log10((10**11.5) / 2.041), 1) bin_num = 7 else: # For eco total bin_max = np.round(np.log10((10**11.5) / 2.041), 1) bin_num = 7 bins = np.linspace(bin_min, bin_max, bin_num) elif survey == 'resolveb': bin_min = np.round(np.log10((10**8.7) / 2.041), 1) bin_max = np.round(np.log10((10**11.8) / 2.041), 1) bins = np.linspace(bin_min, bin_max, 7) # Unnormalized histogram and bin edges counts, edg = np.histogram(logmstar_arr, bins=bins) # paper used 17 bins dm = edg[1] - edg[0] # Bin width maxis = 0.5 * (edg[1:] + edg[:-1]) # Mass axis i.e. bin centers # Normalized to volume and bin width err_poiss = np.sqrt(counts) / (volume * dm) err_tot = err_poiss phi = counts / (volume * dm) # not a log quantity phi = np.log10(phi) return maxis, phi, err_tot, bins, counts
9152a86023c78e47ae0813c489c897800140f174
3,644,300
def get_parameter(dbutils, parameter_name: str, default_value='') -> str: """Creates a text widget and gets parameter value. If ran from ADF, the value is taken from there.""" dbutils.widgets.text(parameter_name, default_value) return dbutils.widgets.get(parameter_name)
cf8359e6acea68ea26e24cc656847e5560019bd1
3,644,301
def single_init(cfg: GenomeConfig): """Random initialized floating GRU value, calculated via a normal distribution.""" return clip(gauss(cfg.gru_init_mean, cfg.gru_init_stdev), a_min=cfg.gru_min_value, a_max=cfg.gru_max_value)
a72e534259a0d3e0fa3f3081b049bc8c5c316686
3,644,302
def get_recent_articles(request): """ 获取最近更新内容 """ user = get_login_user(request) recommend = request.POST.get('recommend', 'recommend') if recommend == 'unrecommend': articles = Article.objects.raw(get_other_articles_sql) elif recommend == 'recommend': articles = Article.objects.raw(get_recommend_articles_sql) else: logger.warning(f'未知的类型:{recommend}') user_sub_feeds = [] if user: user_sub_feeds = get_user_sub_feeds(user.oauth_id) context = dict() context['articles'] = articles context['user'] = user context['user_sub_feeds'] = user_sub_feeds return render(request, 'explore/recent_articles.html', context=context)
9ea03f931d67c669f99a87a27ec88bb78a7cd7e2
3,644,303
import copy def add_close_export_to_cell(cell): """ Adds an HTML comment to close question export for PDF filtering to the top of ``cell``. ``cell`` should be a Markdown cell. This adds ``<!-- END QUESTION-->`` as the first line of the cell. Args: cell (``nbformat.NotebookNode``): the cell to add the close export to Returns: ``nbformat.NotebookNode``: the cell with the close export comment at the top """ cell = copy.deepcopy(cell) source = get_source(cell) source = ["<!-- END QUESTION -->\n", "\n"] + source cell['source'] = "\n".join(source) return cell
4fa7d83a8c262979b2d3ef95ddc7c0c50c7e68f7
3,644,304
def get_ram_list_linux(): """Get RAM list using dmidecode.""" cmd = ['sudo', 'dmidecode', '--type', 'memory'] dimm_list = [] manufacturer = 'Unknown' size = 0 # Get DMI data proc = run_program(cmd) dmi_data = proc.stdout.splitlines() # Parse data for line in dmi_data: line = line.strip() if line == 'Memory Device': # Reset vars manufacturer = 'Unknown' size = 0 elif line.startswith('Size:'): size = line.replace('Size: ', '') try: size = string_to_bytes(size, assume_binary=True) except ValueError: # Assuming empty module size = 0 elif line.startswith('Manufacturer:'): manufacturer = line.replace('Manufacturer: ', '') dimm_list.append([size, manufacturer]) # Save details return dimm_list
3511ea9f5e09ae467c7d9cb7c42f83741a431eda
3,644,305
def get_capability_list(capability=esdl.Producer): """Returns a list of all subtypes of the specified capability. Used to get a list of e.g. all producers in ESDL The list is automatically generated based on the ESDL meta model""" subtype_list = list() for eclassifier in esdl.eClass.eClassifiers: if isinstance(eclassifier, EClass): if capability.eClass in eclassifier.eAllSuperTypes() and not eclassifier.abstract: subtype_list.append(eclassifier.name) subtype_list.sort() return subtype_list
700dec944e8a1185c5763a6b32c08fe553f35459
3,644,306
import errno def _get_exec_binary(binary, kw): """ On win32, the subprocess module can only reliably resolve the target binary if it's actually a binary; as for a Node.js script it seems to only work iff shell=True was specified, presenting a security risk. Resolve the target manually through which will account for that. The kw argument is the keyword arguments that will be passed into whatever respective subprocess.Popen family of methods. The PATH environment variable will be used if available. """ binary = which(binary, path=kw.get('env', {}).get('PATH')) if binary is None: raise_os_error(errno.ENOENT) return binary
654d8f01419712ac774e0f7c5d4b02b9219d3153
3,644,307
import site def init_SSE_square(Lx, Ly): """Initialize a starting configuration on a 2D square lattice.""" n_sites = Lx*Ly # initialize spins randomly with numbers +1 or -1, but the average magnetization is 0 spins = 2*np.mod(np.random.permutation(n_sites), 2) - 1 op_string = -1 * np.ones(10, np.intp) # initialize with identities bonds = [] for x0 in range(Lx): for y0 in range(Ly): s0 = site(x0, y0, Lx, Ly) s1 = site(np.mod(x0+1, Lx), y0, Lx, Ly) # bond to the right bonds.append([s0, s1]) s2 = site(x0, np.mod(y0+1, Ly), Lx, Ly) # bond to the top bonds.append([s0, s2]) bonds = np.array(bonds, dtype=np.intp) return spins, op_string, bonds
0c0681b3a28680ed4acf6e2d7ed5719031df948b
3,644,308
import signal def filter_signal(eeg_df, iqrs, dic_filt_opts): """ Filter signal """ all_labels = list(eeg_df.columns) # check the order of labels label_grouped = False if all_labels[0].split('.')[-1] == all_labels[1].split('.')[-1]: label_grouped = True data_labels = all_pow_nodes meta_labels = [lab for lab in all_labels if lab not in data_labels] eeg_pow_filt = [] for phase in eeg_df.phase.unique(): print('\t',phase) sub = eeg_df.loc[ (eeg_df.phase == phase), :].copy() sub = sub.reset_index(drop=True) meta = sub[meta_labels].values # [N, ] data = sub[data_labels].values # always [N,70] if dic_filt_opts['per_phases']: th_up_all = iqrs[(dic_filt_opts['datafiltset'], phase)] # OLDER ORDER else: th_up_all = iqrs[(dic_filt_opts['datafiltset'], dic_filt_opts['setphase'])] # OLDER ORDER if label_grouped: th_up_all = iqr_by_group(th_up_all) # group iqrs print('\tFiltering --> nodes are grouped') m_thresh = np.repeat([np.array(th_up_all)], data.shape[0], axis=0) mask = data > m_thresh data[mask] = m_thresh[mask] / 2. # median filter applying for rr in range(data.shape[1]): # by colums (70 cols = 14 channesl * 5 waves) data[:, rr] = signal.medfilt(data[:, rr], kernel_size=3) df = pd.DataFrame(np.concatenate((data, meta), axis=1), columns=data_labels + meta_labels) eeg_pow_filt.append(df) del df eeg_pow_filt = pd.concat(eeg_pow_filt, axis=0, ignore_index=True) return eeg_pow_filt
f9dd9108d3c17a59eaae9fe509a88a6c3be55db2
3,644,309
from typing import List def get_sym_inequiv_components( components: List[Component], spg_analyzer: SpacegroupAnalyzer ) -> List[Component]: """Gets and counts the symmetrically inequivalent components. Component data has to have been generated with ``inc_site_ids=True``. Args: components: A list of structure components, generated using :obj:`pymatgen.analysis.dimensionality.get_structure_components`, with ``inc_site_ids=True``. spg_analyzer: A `pymatgen.symmetry.analyzer.SpacegroupAnalyzer` analyzer object for the structure containing the components. Returns: A list of the symmetrically inequivalent components. Any duplicate components will only be returned once. The component objects are in the same format is given by :obj:`pymatgen.analysis.dimensionality.get_structure_components` but the additional property: - ``"count"`` (:obj:`int`): The number of times this component appears in the structure. """ components = deepcopy(components) sym_inequiv_components = {} equivalent_atoms = spg_analyzer.get_symmetry_dataset()["equivalent_atoms"] for component in components: sym_indices = frozenset(equivalent_atoms[x] for x in component["site_ids"]) # if two components are composed of atoms that are symmetrically # equivalent they are the same. if sym_indices in sym_inequiv_components: sym_inequiv_components[sym_indices]["count"] += 1 continue component["count"] = 1 sym_inequiv_components[sym_indices] = component return list(sym_inequiv_components.values())
5ce83345712ac336a6af2b02421bfef9a62bbf0f
3,644,310
def aic(llf, nobs, df_modelwc): """ Akaike information criterion Parameters ---------- llf : {float, array_like} value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- aic : float information criterion References ---------- https://en.wikipedia.org/wiki/Akaike_information_criterion """ return -2.0 * llf + 2.0 * df_modelwc
3940c1c86325630248fdf4a50c2aa19b4f4df623
3,644,311
def summarize_logs(df, wells, cat, props, sr=0.5): """ Function to calculate petrophysical summaries based on well and categorical data. All logs averaged with simple arithmetic means (maybe supply log permeability to have a better averaged estimation) Parameters: logs (pd.DataFrame): dataframe containing well logs data, use appropiate filters in advance to provide net logs wells (string): column with well names in the logs dataframe cat (string): column with filtering discrete property in the logs dataframe props (list:string): list of properties (logs) to be summarized sr (float): log sampling rate in project units for net thickness calculations Returns: summ (pd.DataFrame): dataframe with summarized data """ col_list = [] col_list.append(wells) col_list.append(cat) [col_list.append(i) for i in props] df1 = df[col_list].dropna(axis=0, how='any') col_list.append('NetH') summ = pd.DataFrame(columns=col_list) idx = 0 for well in df1[wells].unique(): for cat_ in df1[cat].unique(): summ.loc[idx, [wells, cat]] = [well, cat_] summ.loc[idx, props] = df1[(df1[wells]==well)&(df1[cat]==cat_)][props].mean() summ.loc[idx, 'NetH'] = df1[(df1[wells]==well)&(df1[cat]==cat_)][props[0]].count() * sr idx += 1 for col in summ.columns: if col not in [wells, cat]: summ[col] = pd.to_numeric(summ[col], errors='ignore') return summ
3a48fa7d1efc83a8216f01505a645d37b173ecbb
3,644,312
import math def run_trap_harvesting(prev_values = [], selected_harvest= 0, radius= default_radius, height= default_height, slope= default_slope, delta= default_delta, constant_population= True): """Runs the model for one harvesting cycle. Where a harvesting cycle is period of time ending in the next low tide in which the trap is closed with fish inside. Args: prev_values is an array of arrays with: [0]: The total number of harvested fish at hour indexed [1]: The total number of fish in the trap at hour at hour indexed [2]: the total number of fish outside the trap at hour indexed [3]: list of the size of all harvests The values in this array are the history of the model. if the model is being run from the start, pass in []. selected_harvest: how many fish will be harvested this cycle. This is to be user selected radius: the radius of the semi-circular trap created height: the height of the trap slope: slope of the beach delta: how far down the y axis the "center" of the semi-circle is from the origin constant_population: if true the population will reset to max_fish after every harvest, else it will decrease by the number of harvested fish Returns: An 2d array containing: [0]: The total number of harvested fish at hour indexed [1]: The total number of fish in the trap at hour at hour indexed [2]: the total number of fish outside the trap at hour indexed [3]: list of the size of all harvests [4]: a boolean showing if the model is completed This returned array is shows one more cycle of harvesting than the inputed one. Throws: ValueError if harvesting is not a positive integer <= the number of the fish in the trap """ movement_rate = 0.025 max_fish = 1000 perimeter_ratio = (np.pi * radius) / (np.pi * 25) tide_values = get_tide_values() perimeter = get_perimeter(radius, height, delta, slope) height_adjustment =1 / min(1, height / 4) #TODO #if allowing users to input arbitrary values check that all the user inputs are within reasonable bounds or throw an error if they are not if(len(prev_values) == 0): #if the model is just starting current_free_fish = max_fish current_caught_fish = 0 total_harvested = [0] in_trap = [0] out_trap = [max_fish] catches = [] else: #update the model with the harvest the user selected total_harvested = prev_values[0] in_trap = prev_values[1] out_trap = prev_values[2] catches = prev_values[3] current_free_fish = out_trap[-1] current_caught_fish = in_trap[-1] try: selected_harvest = int(selected_harvest) except ValueError: raise ValueError("selected_harvest must be a positive integer not larger than the number of fish in the trap") if(selected_harvest > current_caught_fish or selected_harvest < 0): raise ValueError("selected_harvest must be a positive integer not larger than the number of fish in the trap") catches.append(selected_harvest) level = tide_values[len(in_trap) - 1] coverage = get_ratio_of_perimeter_covered(level, perimeter, radius) free_to_caught = current_free_fish * coverage * movement_rate * perimeter_ratio caught_to_free = current_caught_fish * coverage * movement_rate * perimeter_ratio * height_adjustment current_caught_fish = current_caught_fish - caught_to_free + free_to_caught current_free_fish = current_free_fish + caught_to_free - free_to_caught if(constant_population): current_free_fish = max_fish else: current_free_fish = current_free_fish + (current_caught_fish - selected_harvest) total_harvested.append(total_harvested[-1] + selected_harvest) #empty the traps and record the step after the selected harvest current_caught_fish = 0 in_trap.append(current_caught_fish) out_trap.append(current_free_fish) #drop tide values already ran tide_values = tide_values[len(in_trap) - 1 : len(tide_values)] for level in tide_values: coverage = get_ratio_of_perimeter_covered(level, perimeter, radius) if(math.floor(current_caught_fish) != 0 and coverage == 0): return [total_harvested, in_trap, out_trap, catches, False] free_to_caught = current_free_fish * coverage * movement_rate * perimeter_ratio caught_to_free = current_caught_fish * coverage * movement_rate * perimeter_ratio current_caught_fish = current_caught_fish - caught_to_free + free_to_caught current_free_fish = current_free_fish + caught_to_free - free_to_caught total_harvested.append(total_harvested[-1]) in_trap.append(current_caught_fish) out_trap.append(current_free_fish) return [total_harvested, in_trap, out_trap, catches, True]
ed153837e4e3d538fa483ca2bba6eb68f98319a2
3,644,313
def get_tfpn_mean(targets, predictions): """ 给定标签和预测,返回对应所有类的 Tp, FN, FP, TN 的平均值 :param targets: :param predictions: :return: """ cm = confusion_matrix(targets, predictions) total = np.array(cm).sum() TP = cm.diagonal().sum() FN = total - TP FP = FN TN = total * len(cm) - TP - FN - FP return TP, FN, FP, TN
06c3b184c1b35a22eb3594e934c3aef8e278ebaa
3,644,314
def cal_deltaE00_from_LCh(LCh_1, Lab_2): """ Calculate the color difference :math:`\Delta E_{00}` between two given colorspace arrays. :param LCh_1: array-like :param Lab_2: array-like :return: numeric or ndarray """ Lab_1 = LCh2Lab(LCh_1) return deltaE00(Lab_1, Lab_2)
b774be88ad2ca7032f0471963b2720b0e6ecf5f7
3,644,315
def get_var_type_glue(vtype): """Get glue module from variable's type. Parameters ---------- vtype: data type Returns ------- Glue Module if glue exists, otherwise None. """ global DTYPE_TO_GLUE, PKG_NAME_TO_GLUE_ARGS glue_mod = DTYPE_TO_GLUE.get(vtype, None) if glue_mod is not None: return glue_mod pkg_name = vtype.__module__.split('.')[0] if pkg_name not in PKG_NAME_TO_GLUE_ARGS: return None # try to register glue_mod _register_glue_real(*PKG_NAME_TO_GLUE_ARGS[pkg_name]) return DTYPE_TO_GLUE.get(vtype, None)
d7ba7798286142b70e0dbd8e938f2e3a4ae0423e
3,644,316
def contract_TRG(state, svd_option_1st=None, svd_option_rem=None): """ Contract the PEPS using Tensor Renormalization Group. Parameters ---------- svd_option_1st: tensorbackends.interface.Option, optional Parameters for the first SVD in TRG. Will default to tensorbackends.interface.ReducedSVD() if not given. svd_option_rem: tensorbackends.interface.Option, optional Parameters for the remaining SVD truncations. Will perform SVD if given. Returns ------- output: state.backend.tensor or scalar The contraction result. References ---------- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.120601 https://journals.aps.org/prb/abstract/10.1103/PhysRevB.78.205116 """ # base case if state.shape <= (2, 2): return contract_BMPS(state, svd_option_rem) # SVD each tensor into two tn = np.empty(state.shape + (2,), dtype=object) for (i, j), tsr in np.ndenumerate(state.grid): str_uv = 'abi,icdpq' if (i+j) % 2 == 0 else 'aidpq,bci' tn[i,j,0], _, tn[i,j,1] = state.backend.einsumsvd( 'abcdpq->' + str_uv, tsr, option=svd_option_1st or ReducedSVD(), absorb_s='even' ) tn[i,j,(i+j)%2] = tn[i,j,(i+j)%2].reshape(*(tn[i,j,(i+j)%2].shape + (1, 1))) return _contract_TRG(state, tn, svd_option_rem)
0e6876c778e6a2df552a6de8b3253d7a860e1987
3,644,317
def riccati_3(nmax,x): """Riccati bessel function of the 3rd kind returns (r3, r3'), n=0,1,...,nmax""" x = np.asarray(x) result = np.zeros((2,nmax) + x.shape, dtype=complex) for n in range(nmax): yn = special.spherical_yn(n+1,x) ynp = special.spherical_yn(n+1,x, derivative=True) result[0,n] = x*yn result[1,n] = yn + x*ynp return result
32d344e8ac4e1f01bbe5605dd4c9a6563497ac71
3,644,318
def conv_batch_relu_forward(x, w, b, gamma, beta, conv_param, bn_param): """ Convenience layer that performs a convolution, a batch, and a ReLU. Inputs: - x: Input to the convolutional layer - w, b, conv_param: Weights and parameters for the convolutional layer - gamma, beta, bn_param : batch norm parameters Returns a tuple of: - out: Output from the pooling layer - cache: Object to give to the backward pass """ convOut, conv_cache = layers.conv_forward(x, w, b, conv_param) normOut, norm_cache = layers.spatial_batchnorm_forward(convOut, gamma, beta, bn_param) out, relu_cache = layers.relu_forward(normOut) cache = (conv_cache, norm_cache, relu_cache) return out, cache
8c306a2337307ec68aa5a536b4aef0dc4f34cf39
3,644,319
def hex_layout(npos, width, rotate=None): """Compute positions in a hexagon layout. Place the given number of positions in a hexagonal layout projected on the sphere and centered at z axis. The width specifies the angular extent from vertex to vertex along the "X" axis. For example:: Y ^ O O O | O O O O | O O + O O +--> X O O O O O O O Each position is numbered 0..npos-1. The first position is at the center, and then the positions are numbered moving outward in rings. Args: npos (int): The number of positions packed onto wafer. width (float): The angle (in degrees) subtended by the width along the X axis. rotate (array, optional): Optional array of rotation angles in degrees to apply to each position. Returns: (array): Array of quaternions for the positions. """ zaxis = np.array([0, 0, 1], dtype=np.float64) nullquat = np.array([0, 0, 0, 1], dtype=np.float64) sixty = np.pi/3.0 thirty = np.pi/6.0 rtthree = np.sqrt(3.0) rtthreebytwo = 0.5 * rtthree angdiameter = width * np.pi / 180.0 # find the angular packing size of one detector nrings = hex_nring(npos) posdiam = angdiameter / (2 * nrings - 2) result = np.zeros((npos, 4), dtype=np.float64) for pos in range(npos): if pos == 0: # center position has no offset posrot = nullquat else: # Not at the center, find ring for this position test = pos - 1 ring = 1 while (test - 6 * ring) >= 0: test -= 6 * ring ring += 1 sectors = int(test / ring) sectorsteps = np.mod(test, ring) # Convert angular steps around the ring into the angle and distance # in polar coordinates. Each "sector" of 60 degrees is essentially # an equilateral triangle, and each step is equally spaced along # the edge opposite the vertex: # # O # O O (step 2) # O O (step 1) # X O O O (step 0) # # For a given ring, "R" (center is R=0), there are R steps along # the sector edge. The line from the origin to the opposite edge # that bisects this triangle has length R*sqrt(3)/2. For each # equally-spaced step, we use the right triangle formed with this # bisection line to compute the angle and radius within this # sector. # The distance from the origin to the midpoint of the opposite # side. midline = rtthreebytwo * float(ring) # the distance along the opposite edge from the midpoint (positive # or negative) edgedist = float(sectorsteps) - 0.5 * float(ring) # the angle relative to the midpoint line (positive or negative) relang = np.arctan2(edgedist, midline) # total angle is based on number of sectors we have and the angle # within the final sector. posang = sectors * sixty + thirty + relang posdist = rtthreebytwo * posdiam * float(ring) / np.cos(relang) posx = np.sin(posdist) * np.cos(posang) posy = np.sin(posdist) * np.sin(posang) posz = np.cos(posdist) posdir = np.array([posx, posy, posz], dtype=np.float64) norm = np.sqrt(np.dot(posdir, posdir)) posdir /= norm posrot = qa.from_vectors(zaxis, posdir) if rotate is None: result[pos] = posrot else: prerot = qa.rotation(zaxis, rotate[pos] * np.pi / 180.0) result[pos] = qa.mult(posrot, prerot) return result
85141e08c8a75a54953ba78c520b87d377aad3fb
3,644,320
def dup_zz_hensel_step(m, f, g, h, s, t, K): """ One step in Hensel lifting in `Z[x]`. Given positive integer `m` and `Z[x]` polynomials `f`, `g`, `h`, `s` and `t` such that:: f == g*h (mod m) s*g + t*h == 1 (mod m) lc(f) is not a zero divisor (mod m) lc(h) == 1 deg(f) == deg(g) + deg(h) deg(s) < deg(h) deg(t) < deg(g) returns polynomials `G`, `H`, `S` and `T`, such that:: f == G*H (mod m**2) S*G + T**H == 1 (mod m**2) References ========== 1. [Gathen99]_ """ M = m**2 e = dup_sub_mul(f, g, h, K) e = dup_trunc(e, M, K) q, r = dup_div(dup_mul(s, e, K), h, K) q = dup_trunc(q, M, K) r = dup_trunc(r, M, K) u = dup_add(dup_mul(t, e, K), dup_mul(q, g, K), K) G = dup_trunc(dup_add(g, u, K), M, K) H = dup_trunc(dup_add(h, r, K), M, K) u = dup_add(dup_mul(s, G, K), dup_mul(t, H, K), K) b = dup_trunc(dup_sub(u, [K.one], K), M, K) c, d = dup_div(dup_mul(s, b, K), H, K) c = dup_trunc(c, M, K) d = dup_trunc(d, M, K) u = dup_add(dup_mul(t, b, K), dup_mul(c, G, K), K) S = dup_trunc(dup_sub(s, d, K), M, K) T = dup_trunc(dup_sub(t, u, K), M, K) return G, H, S, T
4ce2c7e9aaf52a9ef3e7ce68d164c82959b22ebb
3,644,321
def generate_sobol_index_sample_sets(samplesA, samplesB, index): """ Given two sample sets A and B generate the sets :math:`A_B^{I}` from The rows of A_B^I are all from A except for the rows with non zero entries in the index I. When A and B are QMC samples it is best to change as few rows as possible See Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index """ nvars = samplesA.shape[0] I = np.arange(nvars) mask = np.asarray(index, dtype=bool) samples = np.vstack([samplesA[~mask], samplesB[mask]]) J = np.hstack([I[~mask], I[mask]]) samples = samples[np.argsort(J), :] return samples
15b02e1995bc922b33d6e0e32bdde1559f0a762e
3,644,322
import logging def setup_logfile_logger(log_path, log_level=None, log_format=None, date_format=None): """ Set up logging to a file. """ # Create the handler handler = WatchedFileHandler(log_path, mode='a', encoding='utf-8', delay=0) if log_level: # Grab and set the level level = LOG_LEVELS.get(log_level.lower(), logging.ERROR) handler.setLevel(level) # Set the default console formatter config if not log_format: log_format = '%(asctime)s [%(name)s][%(levelname)s] %(message)s' if not date_format: date_format = '%Y-%m-%d %H:%M:%S' formatter = logging.Formatter(log_format, datefmt=date_format) handler.setFormatter(formatter) root_logger.addHandler(handler) return handler
cfc22a2e334aad5d4aa573014af8a8bac4a7e6b1
3,644,323
import warnings def fix_encoding_and_explain(text): """ Deprecated copy of `ftfy.fix_encoding_and_explain()`. """ warnings.warn( "`fix_encoding_and_explain()` has moved to the main module of ftfy.", DeprecationWarning, ) return ftfy.fix_encoding_and_explain(text)
3a76fefcbc68b6cf68f3262b90ff277424bf1eba
3,644,324
def parse_16bit_color(color16): """解析16位的颜色 :param color16: 16位的颜色值 """ r = int(gamma5[int((color16 >> 11) & 0x1F)]) g = int(gamma6[int((color16 >> 5) & 0x3F)]) b = int(gamma5[int(color16 & 0x1F)]) return (r, g, b)
c66448c9e886db1e696afa706577d02b3411cd92
3,644,325
def orders(): """ List all orders """ orders = Order.query.filter_by(user_id=current_user.id).all() return render_template('customer/orders.html', orders=orders, title="Orders")
921552a41ef673cb9c8f6c414ba4a12b3643617a
3,644,326
def packpeeklist1(n1, n2, n3, n4, n5): """ Packs and returns 5 item list """ listp = [n1, n2, n3, n4, n5] return listp
4b781ff3e8eb4a1bd51f8e834fab5462371a85c5
3,644,327
from typing import List def valid_commands(commands: List[str]) -> List[str]: """ Get list of valid commands from list of commands. :param (list) commands: User-supplied commands. :return: """ return [command for command in commands if command in available_commands()]
25054d8acb8bee16855adba25e846bc128fb9f23
3,644,328
def duck_list(request): """ lists all ducks """ ducks = Duck.objects.all() return render(request, 'duck/list.html', {'duck_list': ducks})
206e586c2709d4c5526e26ff50cabdfe440125bc
3,644,329
def get_debian_version(file_path): """ Get the version of a debian file :param file_path: the path of the debian file :return: the version of the debian file """ cmd_args = ["dpkg-deb", "-f", file_path, "Version"] debian_version = run_command(cmd_args) return debian_version
61c8779d4b235a1d74bf819299f95077e5ff001a
3,644,330
from typing import Optional def hash_type( draw, hash_type_strategy: Optional[SearchStrategy[HashType]] = None ) -> HashType: """Composite strategy for fetching a :class:`~modist.package.hasher.HashType`.""" return draw(HashType_strategy if not hash_type_strategy else hash_type_strategy)
79152dda823dcd227545ed2bb117229344fc341a
3,644,331
def get_initializer(initializer_name): """Get the corresponding initializer function based on the initializer string. API of an initializer: init_fn, hparams = get_initializer(init) new_params, final_l = init_fn(loss, init_params, hps, num_outputs, input_shape) Args: initializer_name: (str) e.g. default. Returns: initializer Raises: ValueError if model is unrecognized. """ try: return _ALL_INITIALIZERS[initializer_name][0] except KeyError: raise ValueError('Unrecognized initializer: {}'.format(initializer_name))
778941a5e7937600cca2a48371d2540cab6476ab
3,644,332
import logging from unittest.mock import call def sh(cmd, grid=False, infile=None, outfile=None, errfile=None, background=False): """ simple wrapper for system calls """ if grid: return 0 # A fake retcode else: if infile: cmd += " < {0} ".format(infile) if outfile and outfile != "stdout": cmd += " > {0} ".format(outfile) if errfile: cmd += " 2> {0} ".format(errfile) if background: cmd += " & " logging.debug(cmd) return call(cmd, shell=True)
0520e05c30d127bcc3c8e4057c4d839432c51334
3,644,333
from .model_store import get_model_file import os def get_voca(base_persons, vertices, model_name=None, pretrained=False, root=os.path.join("~", ".tensorflow", "models"), **kwargs): """ Create VOCA model with specific parameters. Parameters: ---------- base_persons : int Number of base persons (subjects). vertices : int Number of 3D geometry vertices. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ net = VOCA( base_persons=base_persons, vertices=vertices, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") in_channels = kwargs["in_channels"] if ("in_channels" in kwargs) else 3 input_shape = (1,) + (in_channels,) + net.in_size if net.data_format == "channels_first" else\ (1,) + net.in_size + (in_channels,) net.build(input_shape=input_shape) net.load_weights( filepath=get_model_file( model_name=model_name, local_model_store_dir_path=root)) return net
9c7fa8c52bd634f5a1b6511607976515d55202fd
3,644,334
def _l2_project_reference(z_p, p, z_q): """Projects distribution (z_p, p) onto support z_q under L2-metric over CDFs. The supports z_p and z_q are specified as tensors of distinct atoms (given in ascending order). Let Kq be len(z_q) and Kp be len(z_p). This projection works for any support z_q, in particular Kq need not be equal to Kp. Args: z_p: Tensor holding support of distribution p, shape `[batch_size, Kp]`. p: Tensor holding probability values p(z_p[i]), shape `[batch_size, Kp]`. z_q: Tensor holding support to project onto, shape `[Kq]`. Returns: Projection of (z_p, p) onto support z_q under Cramer distance. """ # Broadcasting of tensors is used extensively in the code below. To avoid # accidental broadcasting along unintended dimensions, tensors are defensively # reshaped to have equal number of dimensions (3) throughout and intended # shapes are indicated alongside tensor definitions. To reduce verbosity, # extra dimensions of size 1 are inserted by indexing with `None` instead of # `tf.expand_dims()` (e.g., `x[:, None, :]` reshapes a tensor of shape # `[k, l]' to one of shape `[k, 1, l]`). # Extract vmin and vmax and construct helper tensors from z_q vmin, vmax = z_q[0], z_q[-1] d_pos = tf.concat([z_q, vmin[None]], 0)[1:] # 1 x Kq x 1 d_neg = tf.concat([vmax[None], z_q], 0)[:-1] # 1 x Kq x 1 # Clip z_p to be in new support range (vmin, vmax). z_p = tf.clip_by_value(z_p, vmin, vmax)[:, None, :] # B x 1 x Kp # Get the distance between atom values in support. d_pos = (d_pos - z_q)[None, :, None] # z_q[i+1] - z_q[i]. 1 x B x 1 d_neg = (z_q - d_neg)[None, :, None] # z_q[i] - z_q[i-1]. 1 x B x 1 z_q = z_q[None, :, None] # 1 x Kq x 1 # Ensure that we do not divide by zero, in case of atoms of identical value. d_neg = tf.where(d_neg > 0, 1./d_neg, tf.zeros_like(d_neg)) # 1 x Kq x 1 d_pos = tf.where(d_pos > 0, 1./d_pos, tf.zeros_like(d_pos)) # 1 x Kq x 1 delta_qp = z_p - z_q # clip(z_p)[j] - z_q[i]. B x Kq x Kp d_sign = tf.cast(delta_qp >= 0., dtype=p.dtype) # B x Kq x Kp # Matrix of entries sgn(a_ij) * |a_ij|, with a_ij = clip(z_p)[j] - z_q[i]. # Shape B x Kq x Kp. delta_hat = (d_sign * delta_qp * d_pos) - ((1. - d_sign) * delta_qp * d_neg) p = p[:, None, :] # B x 1 x Kp. return tf.reduce_sum(tf.clip_by_value(1. - delta_hat, 0., 1.) * p, 2)
e6c43d1d05237410ff94d3a3b76bc705f2064d46
3,644,335
def _make_blocksizes(bricksize, surveysize, nlods, dtype, factor=(1,1,1), verbose=None): """ CURRENTLY NOT USED. Calculate the minimum blocksize to read at each lod level. Clip to the survey size. Also compute the memory needed to hold one buffer for each lod. Note that the genlod algorithm currently assumes that the block size is the same for all levels except for the clipping. And it currently handles clipping itself and might not like us to do so. Currently this function is not very useful. """ blocksizes = np.zeros((nlods, 3), dtype=np.int64) ss = np.array(surveysize, dtype=np.int64) bs = np.array([2*factor[0]*bricksize[0], 2*factor[1]*bricksize[1], ss[2]], dtype=np.int64) iterations = 0 for lod in range(nlods): bs = np.minimum(bs, ss) blocksizes[lod] = bs iterations += np.product((ss+bs-1) // bs) ss = (ss + 1) // 2 bytesused = np.sum(np.product(blocksizes, axis=1)) * int(np.dtype(dtype).itemsize) returntype = namedtuple("BlockSizeInfo", "blocksizes bytesused iterations") result = returntype(blocksizes, bytesused, iterations) print(result) return result
defc1f11d8f3684ccce4a7df7db6c011848187af
3,644,336
from ._backend import _check_backend from ._kit2fiff_gui import Kit2FiffFrame def kit2fiff(): """Convert KIT files to the fiff format. The recommended way to use the GUI is through bash with:: $ mne kit2fiff """ _check_mayavi_version() _check_backend() gui = Kit2FiffFrame() gui.configure_traits() return gui
b57b74d036378b1265e991b8c49d55bce41807c0
3,644,337
import tqdm def sweep_dec_given_x(full_model, z_dec_model, sample1, sample2, sample_layer_name, sweep_z_samples=False, nb_samples=10, nargout=1, tqdm=tqdm): """ sweep the latent space given two samples in the original space specificaly, get z_mu = enc(x) for both samples, and sweep between those z_mus "sweep_z_samples" does a sweep between two samples, rather than between two z_mus. Example: sample_layer_name='img-img-dense-vae_ae_dense_sample' """ # get a model that also outputs the samples z full_output = [*full_model.outputs, full_model.get_layer(sample_layer_name).get_output_at(1)] full_model_plus = keras.models.Model(full_model.inputs, full_output) # get full predictions for these samples pred1 = full_model_plus.predict(sample1[0]) pred2 = full_model_plus.predict(sample2[0]) img1 = sample1[0] img2 = sample2[0] # sweep range x_range = np.linspace(0, 1, nb_samples) # prepare outputs outs = [None] * nb_samples for xi, x in enumerate(tqdm(x_range)): if sweep_z_samples: z = x * pred1[3] + (1-x) * pred2[3] else: z = x * pred1[1] + (1-x) * pred2[1] if isinstance(sample1[0], (list, tuple)): # assuming prior or something like that outs[xi] = z_dec_model.predict([z, *sample1[0][1:]]) else: outs[xi] = z_dec_model.predict(z) if nargout == 1: return outs else: return (outs, [pred1, pred2])
9a5bccfa85f0bdda5953b8a72c66238e0ff5d548
3,644,338
def process(observation, current_game_state): """ Args: observation: An observation, which agents get as an input from kaggle environment. current_game_state: An object provided by kaggle to simplify game info extraction. Returns: processed_observations: A prepared observation to save to the buffer. """ global units_actions_dict player = current_game_state.players[observation.player] opponent = current_game_state.players[(observation.player + 1) % 2] width, height = current_game_state.map.width, current_game_state.map.height shift = int((MAX_MAP_SIDE - width) / 2) # to make all feature maps 32x32 turn = current_game_state.turn player_units_coords = {} player_city_tiles_coords = {} player_research_points = player.research_points player_city_tiles_count = player.city_tile_count player_cities_count = len(player.cities) player_units_count = len(player.units) player_workers_count = 0 player_carts_count = 0 for unit in player.units: if unit.is_worker(): player_workers_count += 1 elif unit.is_cart(): player_carts_count += 1 else: raise ValueError opponent_research_points = opponent.research_points opponent_city_tiles_count = opponent.city_tile_count opponent_cities_count = len(opponent.cities) opponent_units_count = len(opponent.units) opponent_workers_count = 0 opponent_carts_count = 0 for unit in opponent.units: if unit.is_worker(): opponent_workers_count += 1 elif unit.is_cart(): opponent_carts_count += 1 else: raise ValueError current_cycle, to_next_day, to_next_night, is_night = get_timing(turn) # map data, define resources and roads, 0 or 1 for bool, 0 to around 1 for float; # layers: # 0 - a resource # 1 - is wood # 2 - wood amount # 3 - is coal # 4 - coal amount # 5 - is uranium # 6 - uranium amount # 7 - fuel equivalent # 8 - if a resource is available for the player, 1 when ready # 9 - a road lvl # 10 - 19 for coordinates # number_of_resources_layers = 20 # A1 = np.zeros((number_of_resources_layers, MAX_MAP_SIDE, MAX_MAP_SIDE), dtype=np.half) # for yy in range(height): # for xx in range(width): # cell = current_game_state.map.get_cell(xx, yy) # x, y = yy + shift, xx + shift # if cell.has_resource(): # A1[0, x, y] = 1 # a resource at the point # resource = cell.resource # if resource.type == "wood": # A1[1, x, y] = 1 # wood_amount = resource.amount # A1[2, x, y] = wood_amount / WOOD_BOUND # fuel = wood_amount * WOOD_FUEL_VALUE # A1[8, x, y] = 1 # wood is always available # elif resource.type == "coal": # A1[3, x, y] = 1 # coal_amount = resource.amount # A1[4, x, y] = coal_amount / COAL_BOUND # fuel = coal_amount * COAL_FUEL_VALUE # A1[8, x, y] = min(player_research_points / COAL_RESEARCH_POINTS, 1) # elif resource.type == "uranium": # A1[5, x, y] = 1 # uran_amount = resource.amount # A1[6, x, y] = uran_amount / URAN_BOUND # fuel = uran_amount * URAN_FUEL_VALUE # A1[8, x, y] = min(player_research_points / URAN_RESEARCH_POINTS, 1) # else: # raise ValueError # A1[7, x, y] = fuel / FUEL_BOUND # A1[9, x, y] = cell.road / MAX_ROAD # A1[10:15, x, y] = to_binary(np.asarray((x,), dtype=np.uint8), m=5) # A1[15:20, x, y] = to_binary(np.asarray((y,), dtype=np.uint8), m=5) # map data, define resources and roads, 0 or 1 for bool, 0 to around 1 for float; # layers: # 0 - a resource # 1 - is available # 2 - amount # 3 - fuel equivalent # 4 - a road lvl # 5 - 14 for coordinates # 15 - next available resource number_of_resources_layers = 16 A1 = np.zeros((number_of_resources_layers, MAX_MAP_SIDE, MAX_MAP_SIDE), dtype=np.half) for yy in range(height): for xx in range(width): cell = current_game_state.map.get_cell(xx, yy) x, y = yy + shift, xx + shift if cell.has_resource(): A1[0, x, y] = 1 # a resource at the point resource = cell.resource fuel = 0 if resource.type == "wood": A1[1, x, y] = 1 wood_amount = resource.amount A1[2, x, y] = wood_amount / WOOD_BOUND fuel = wood_amount * WOOD_FUEL_VALUE elif resource.type == "coal": if player_research_points >= COAL_RESEARCH_POINTS: A1[1, x, y] = 1 coal_amount = resource.amount A1[2, x, y] = coal_amount / COAL_BOUND fuel = coal_amount * COAL_FUEL_VALUE else: A1[15, x, y] = 1 elif resource.type == "uranium": if player_research_points >= URAN_RESEARCH_POINTS: A1[1, x, y] = 1 uran_amount = resource.amount A1[2, x, y] = uran_amount / URAN_BOUND fuel = uran_amount * URAN_FUEL_VALUE elif player_research_points >= URAN_RESEARCH_POINTS - 50: A1[15, x, y] = 1 else: raise ValueError A1[3, x, y] = fuel / FUEL_BOUND A1[4, x, y] = cell.road / MAX_ROAD A1[5:10, x, y] = to_binary(np.asarray((x,), dtype=np.uint8), m=5) A1[10:15, x, y] = to_binary(np.asarray((y,), dtype=np.uint8), m=5) # define city tiles, 0 or 1 for bool, 0 to around 1 for float; # layers: number_of_main_layers = 39 A2 = np.zeros((number_of_main_layers, MAX_MAP_SIDE, MAX_MAP_SIDE), dtype=np.half) # 0 - a unit # 1 - is player # 2 - is opponent # 3 - at the city tile # 4 - first place in the city tile is occupied by the unit - fill later (in get_separate_outputs) # 5 - second place is occupied by the unit, and the first was occupied before - fill later # 6 - third place is occupied - fill later # 7 - forth place is occupied - fill later # 8 - the place number is more than 4th - fill later # 9 - is worker - X0 # 10 - is cart - X1 # 11 - can act - X2 # 12 - can build - X3 # 13 - cargo wood - X4 # 14 - cargo coal - X5 # 15 - cargo uranium - X6 # 16 - cargo space left - X7 # 17 - fuel equivalent - X8 # 18 - is city tile # 19 - is player # 20 - is opponent # 21 - can act # 22 - amount of city tiles in the city, which the city tile belongs to # 23 - current city upkeep # 24 - fuel amount # 25 - ratio if city can survive, 1 and more means it can # 26 - amount of all friendly city tiles # 27 - amount of cities # 28 - units build limit reached (workers + carts == city tiles) # 29 - number of workers # 30 - number of carts # 31 - number of friendly units # 32 - research progress for coal # 33 - research progress for uranium # 34 - progress (from 0 to 1) until next day # 35 - progress until next night # 36 - progress until finish # 37 - is night # 38 - current cycle # start with city tiles to know their positions to fill units cells for k, city in list(player.cities.items()) + list(opponent.cities.items()): if city.team == player.team: city_tiles_count = player_city_tiles_count cities_count = player_cities_count units_count = player_units_count workers_count = player_workers_count carts_count = player_carts_count research_points = player_research_points elif city.team == opponent.team: city_tiles_count = opponent_city_tiles_count cities_count = opponent_cities_count units_count = opponent_units_count workers_count = opponent_workers_count carts_count = opponent_carts_count research_points = opponent_research_points else: raise ValueError current_light_upkeep = city.get_light_upkeep() current_fuel = city.fuel current_city_tiles_count = 0 for _ in city.citytiles: current_city_tiles_count += 1 for city_tile in city.citytiles: # city tile group y, x = city_tile.pos.x + shift, city_tile.pos.y + shift A2[18, x, y] = 1 if city_tile.team == player.team: A2[19, x, y] = 1 elif city_tile.team == opponent.team: A2[20, x, y] = 1 else: raise ValueError if city_tile.can_act(): A2[21, x, y] = 1 if city_tile.team == player.team: player_city_tiles_coords[f"ct_{x}_{y}"] = (x, y) # to save only the operable units A2[22, x, y] = current_city_tiles_count / CITY_TILES_IN_CITY_BOUND A2[23, x, y] = UPKEEP_BOUND_PER_TILE / current_light_upkeep A2[24, x, y] = current_fuel / FUEL_BOUND A2[25, x, y] = min(1, current_fuel / (min(10, to_next_day) * current_light_upkeep)) # ratio to survive # common group A2[26, x, y] = city_tiles_count / CITY_TILES_BOUND A2[27, x, y] = cities_count / CITIES_BOUND if units_count == city_tiles_count: A2[28, x, y] = 1 A2[29, x, y] = workers_count / WORKERS_BOUND A2[30, x, y] = carts_count / CARTS_BOUND A2[31, x, y] = units_count / UNITS_BOUND A2[32, x, y] = min(research_points / COAL_RESEARCH_POINTS, 1) A2[33, x, y] = min(research_points / URAN_RESEARCH_POINTS, 1) A2[34, x, y] = 1 - to_next_day / CYCLE_LENGTH A2[35, x, y] = 1 - to_next_night / CYCLE_LENGTH A2[36, x, y] = turn / MAX_DAYS A2[37, x, y] = is_night A2[38, x, y] = current_cycle / TOTAL_CYCLES for unit in player.units + opponent.units: # unit group if unit.team == player.team: city_tiles_count = player_city_tiles_count cities_count = player_cities_count units_count = player_units_count workers_count = player_workers_count carts_count = player_carts_count research_points = player_research_points elif unit.team == opponent.team: city_tiles_count = opponent_city_tiles_count cities_count = opponent_cities_count units_count = opponent_units_count workers_count = opponent_workers_count carts_count = opponent_carts_count research_points = opponent_research_points else: raise ValueError y, x = unit.pos.x + shift, unit.pos.y + shift A2[0, x, y] = 1 if unit.team == player.team: A2[1, x, y] = 1 elif unit.team == opponent.team: A2[2, x, y] = 1 else: raise ValueError is_unit_at_home = 1 if A2[18, x, y] == 1 else 0 A2[3, x, y] = is_unit_at_home X = np.zeros(9, dtype=np.half) if unit.is_worker(): X[0] = 1 elif unit.is_cart(): X[1] = 1 else: raise ValueError if unit.can_act(): X[2] = 1 if unit.can_build(current_game_state.map): X[3] = 1 X[4] = unit.cargo.wood / WORKERS_CARGO X[5] = unit.cargo.coal / WORKERS_CARGO X[6] = unit.cargo.uranium / WORKERS_CARGO X[7] = unit.get_cargo_space_left() / WORKERS_CARGO X[8] = (unit.cargo.wood * WOOD_FUEL_VALUE + unit.cargo.coal * COAL_FUEL_VALUE + unit.cargo.uranium * URAN_FUEL_VALUE) / FUEL_BOUND # there are many unit can share the same position at home # so save unique unit parameters in X array and store it in dictionary if unit is at home # if unit is not at home so it has a unique position, put it inside A2 array if is_unit_at_home: if unit.can_act() and unit.team == player.team: player_units_coords[unit.id] = ((x, y), (X, unit.is_worker())) else: if unit.can_act() and unit.team == player.team: player_units_coords[unit.id] = ((x, y), (None, unit.is_worker())) A2[9:18, x, y] = X # common group A2[26, x, y] = city_tiles_count / CITY_TILES_BOUND A2[27, x, y] = cities_count / CITIES_BOUND if units_count == city_tiles_count: A2[28, x, y] = 1 A2[29, x, y] = workers_count / WORKERS_BOUND A2[30, x, y] = carts_count / CARTS_BOUND A2[31, x, y] = units_count / UNITS_BOUND A2[32, x, y] = min(research_points / COAL_RESEARCH_POINTS, 1) A2[33, x, y] = min(research_points / URAN_RESEARCH_POINTS, 1) A2[34, x, y] = 1 - to_next_day / CYCLE_LENGTH A2[35, x, y] = 1 - to_next_night / CYCLE_LENGTH A2[36, x, y] = turn / MAX_DAYS A2[37, x, y] = is_night A2[38, x, y] = current_cycle / TOTAL_CYCLES A = np.concatenate((A2, A1), axis=0) # define headers # layers: # 0 - an operable one # 1 - is worker # 2 - is cart # 3 - is city tile # 4 - prev pos for units # 5 - prev prev pos for units number_of_header_layers = 6 units_headers = {} if player_units_coords: for k, ((x, y), (X, is_worker)) in player_units_coords.items(): head = np.zeros((number_of_header_layers, MAX_MAP_SIDE, MAX_MAP_SIDE), dtype=np.half) worker = np.array([1, 1, 0, 0], dtype=np.half) cart = np.array([1, 0, 1, 0], dtype=np.half) head[:4, x, y] = worker if is_worker else cart if k in units_actions_dict.keys(): units_actions_dict[k].append((x, y)) unit_prev_pos = units_actions_dict[k][-2] if len(units_actions_dict[k]) > 2: unit_prev_prev_pos = units_actions_dict[k][-3] else: unit_prev_prev_pos = units_actions_dict[k][-2] else: units_actions_dict[k] = [] units_actions_dict[k].append((x, y)) unit_prev_pos = (x, y) unit_prev_prev_pos = (x, y) head[4, unit_prev_pos[0], unit_prev_pos[1]] = 1 head[5, unit_prev_prev_pos[0], unit_prev_prev_pos[1]] = 1 head = np.moveaxis(head, 0, -1) units_headers[k] = (head, (x, y), X, is_worker) city_tiles_headers = {} if player_city_tiles_coords: for k, (x, y) in player_city_tiles_coords.items(): head = np.zeros((number_of_header_layers, MAX_MAP_SIDE, MAX_MAP_SIDE), dtype=np.half) head[:4, x, y] = np.array([1, 0, 0, 1], dtype=np.half) head = np.moveaxis(head, 0, -1) city_tiles_headers[k] = head B = np.moveaxis(A, 0, -1) outputs = {"stem": B, "units_headers": units_headers, "city_tiles_headers": city_tiles_headers} return outputs
3a54ad62fa341ca57528c5ee32b45d749982f286
3,644,339
def source_files(goto, wkdir, srcdir=None): """Source files appearing in symbol table. Source file path names in symbol table are absolute or relative to wkdir. If srcdir is given, return only files under srcdir. """ wkdir = srcloct.abspath(wkdir) srcs = [dfn['file'] for dfn in parse_symbol_table(symbol_table(goto), wkdir)] srcs = [src for src in srcs if src and not srcloct.is_builtin(src)] if srcdir: srcdir = srcloct.abspath(srcdir) srcs = [src for src in srcs if src.startswith(srcdir)] return sorted(set(srcs))
bacb86942b5f82ecc902699b81de5d92868ddd57
3,644,340
def textBlurBackground(img, text, font, fontScale, textPos, textThickness=1, textColor=(0, 255, 0), kneral=(33, 33), pad_x=3, pad_y=3): """ Draw text with background blured, control the blur value, with kernal(odd, odd) @param img:(mat) which you want to draw text @param text: (string) text you want draw @param font: fonts face, like FONT_HERSHEY_COMPLEX, FONT_HERSHEY_PLAIN etc. @param fontScale: (double) the size of text, how big it should be. @param textPos: tuple(x,y) position where you want to draw text @param textThickness:(int) fonts weight, how bold it should be. @param textColor: tuple(BGR), values -->0 to 255 each @param kneral: tuple(3,3) int as odd number: higher the value, more blurry background would be @param pad_x: int(pixels) padding of in x direction @param pad_y: int(pixels) padding of in y direction @return: img mat, with text drawn, with background blured call the function: img =textBlurBackground(img, 'Blured Background Text', cv2.FONT_HERSHEY_COMPLEX, 0.9, (20, 60),2, (0,255, 0), (49,49), 13, 13 ) """ (t_w, t_h), _ = cv.getTextSize(text, font, fontScale, textThickness) # getting the text size x, y = textPos blur_roi = img[y - pad_y - t_h: y + pad_y, x - pad_x:x + t_w + pad_x] # croping Text Background img[y - pad_y - t_h: y + pad_y, x - pad_x:x + t_w + pad_x] = cv.blur(blur_roi, kneral) # merging the blured background to img cv.putText(img, text, textPos, font, fontScale, textColor, textThickness) # cv.imshow('blur roi', blur_roi) # cv.imshow('blured', img) return img
dd4c49a7cf15af4273e1b3689fa6caabe8242ea0
3,644,341
from re import T def local_response_normalization_2d_v2(in_vw, alpha, k, beta, n): """ cross-channel local response normalization for 2D feature maps - input is bc01 output[i] = value of the i-th channel = input[i] / (k + alpha * sum(input[j]^2 for j) ** beta) - where j is over neighboring channels (from i - n // 2 to i + n // 2) This code is adapted from pylearn2. https://github.com/lisa-lab/pylearn2/blob/master/LICENSE.txt """ assert n % 2 == 1, "n must be odd" in_var = in_vw.variable b, ch, r, c = in_vw.symbolic_shape() half_n = n // 2 input_sqr = T.sqr(in_var) extra_channels = T.zeros((b, ch + 2 * half_n, r, c)) input_sqr = T.set_subtensor(extra_channels[:, half_n:half_n + ch, :, :], input_sqr) scale = k + alpha * treeano.utils.smart_sum([input_sqr[:, i:i + ch, :, :] for i in range(n)]) scale = scale ** beta return in_var / scale
23f810dbd4f36d1817c57ceeabbacad1cf8e0239
3,644,342
import os def mhc_datasets(table='mhc_data', path='./iedb/', remove_c=False, remove_u=False, remove_modes=False): """ Parameters: 'table' is the table that the data is retrieved - must be 'mhc_data', 'mhc_test1', 'mhc_test2', or 'mhc_train' 'path' is where the database is stored remove every sequence with a 'c' remove every sequence with a 'u' remove the unusual modes of the dataset if the table name is 'mhc_data' then will return the entire remaining dataset, otherwise, returns (in order): the amino acid sequences, the -log10 of binding affinities, and the alleles """ if table != 'mhc_data' and table != 'mhc_train' and table != 'mhc_test1' and table != 'mhc_test2': raise Exception('table name ' + table + ' does not exist') selection = '*' if table != 'mhc_data': selection = 'sequence, meas, mhc' conn = sql.connect(os.path.join(path, 'mhc.db')) c = conn.cursor() c.execute(_create_query(selection, table, remove_c, remove_u, remove_modes)) dataset = np.array(c.fetchall()) conn.close() if table == 'mhc_data': return dataset if table == 'mhc_train': # Temporary solution to remove benchmark overlaps from train set: off_limits = np.loadtxt(os.path.join(path, 'benchmark_ic50_sequences.csv'), delimiter=',', dtype=str) idx = ~np.array([(seq in off_limits) for seq in dataset[:, 0]]).astype(bool) dataset = dataset[idx, :] return dataset.T[0], -np.log10(dataset.T[1].astype(float)), dataset.T[2]
8f05454a9362f8115834a2caee40e28a48877741
3,644,343
def add_new_user(): """ This function adds a new user :return: Response Code """ newuser = {} if request.method == "POST": try: newuser['username'] = str(request.data.get('username').strip()) newuser['first_name'] = str(request.data.get('first_name').strip()) newuser['last_name'] = str(request.data.get('last_name').strip()) newuser['email'] = str(request.data.get('email').strip()) newuser['password'] = str(request.data.get('password').strip()) newuser['verification_code'] = str(request.data.get( 'verification_code').strip()) except Exception as e: print(e) abort(500) user = User(**newuser) user.save() return make_response(jsonify(status=201, msg="User {} successfully added".format(user.username) + "to database"), 201)
32abdd61ff4ad574a0e097553d3332f6f67d57dd
3,644,344
def has_wildcard(url) -> bool: """ Check if the url contains a wildcard in last subdomain. :param url: The url to check :type url: str :return: True if the url contains a wildcard in the last subdomain, False otherwise :rtype: bool """ subdomain = extract(url).subdomain return subdomain.split(".")[0] == "*"
5dbf1a0220ad6c4af3bfe344a3aaa97473918995
3,644,345
def tmle_calculator(y, ystar1, ystar0, ystara, h1w, h0w, haw, splits, measure='ate', lower_bound=None, upper_bound=None): """Function to calculate TMLE estimates for SingleCrossfitTMLE, and DoubleCrossfitTMLE """ if measure in ["ate", "risk_difference"]: # Unbounding if continuous outcome (ate) if measure == "ate": # Unbounding continuous outcomes y = tmle_unit_unbound(y, mini=lower_bound, maxi=upper_bound) ystar1 = tmle_unit_unbound(ystar1, mini=lower_bound, maxi=upper_bound) ystar0 = tmle_unit_unbound(ystar0, mini=lower_bound, maxi=upper_bound) ystara = tmle_unit_unbound(ystara, mini=lower_bound, maxi=upper_bound) # Point Estimate estimate = np.mean(ystar1 - ystar0) # Variance estimate variance = [] for s in set(splits): ys = y[splits == s] ystar1s = ystar1[splits == s] ystar0s = ystar0[splits == s] ystaras = ystara[splits == s] haws = haw[splits == s] ic = haws * (ys - ystaras) + (ystar1s - ystar0s) - estimate variance.append(np.var(ic, ddof=1)) return estimate, (np.mean(variance) / y.shape[0]) elif measure == 'risk_ratio': # Point Estimate estimate = np.mean(ystar1) / np.mean(ystar0) variance = [] for s in set(splits): ys = y[splits == s] ystar1s = ystar1[splits == s] ystar0s = ystar0[splits == s] ystaras = ystara[splits == s] h1ws = h1w[splits == s] h0ws = h0w[splits == s] ic = (1/np.mean(ystar1s) * (h1ws * (ys - ystaras)) + ystar1s - np.mean(ystar1s) - (1/np.mean(ystar0s) * (-1 * h0ws * (ys - ystaras)) + ystar0s - np.mean(ystar0s))) variance.append(np.var(ic, ddof=1)) return estimate, (np.mean(variance) / y.shape[0]) elif measure == 'odds_ratio': # Point Estimate estimate = (np.mean(ystar1) / (1-np.mean(ystar1))) / (np.mean(ystar0) / (1-np.mean(ystar0))) variance = [] for s in set(splits): ys = y[splits == s] ystar1s = ystar1[splits == s] ystar0s = ystar0[splits == s] ystaras = ystara[splits == s] h1ws = h1w[splits == s] h0ws = h0w[splits == s] ic = ((1-np.mean(ystar1s))/np.mean(ystar1s)*(h1ws*(ys - ystaras) + ystar1s) - (1-np.mean(ystar0s))/np.mean(ystar0s)*(-1*h0ws*(ys - ystaras) + ystar0s)) variance.append(np.var(ic, ddof=1)) return estimate, (np.mean(variance) / y.shape[0]) else: raise ValueError("Invalid measure requested within function: tmle_calculator. Input measure is " + str(measure) + " but only 'ate', 'risk_difference', 'risk_ratio', and " "'odds_ratio' are accepted.")
36f6b131044bd3b53044a4bfe0954eff1325bb59
3,644,346
def gen_gap(Pn, T, Q): """Runs the generalization gap test. This test simply checks the difference between the likelihood assigned to the training set versus that assigned to a held out test set. Inputs: Pn: (n X d) np array containing the held out test sample of dimension d T: (l X d) np array containing the training sample of dimension d Q: trained model of type scipy.neighbors.KernelDensity Outputs: log_lik_gap: scalar representing the difference of the log likelihoods of Pn and T """ return Q.score(T) - Q.score(Pn)
d57d16c06d05cea86e6f6ea89484574f20500170
3,644,347
def get_shapes(node, intermediate=False, exclusive=False): """Get the shapes of given node. Args: node (str): Node to query its shapes intermediate (bool): Get intermediate shapes when True. exclusive (bool): Only return the intermediate shapes if True. Please note that the intermediate flag must be True as well. Returns: list: The shapes found below given node. """ # if given node is a list, assume first element if isinstance(node, list): node = node[0] LOG.info("Given node is a list. Using first element.") # return as list if given node is already a shape if cmds.objectType(node, isAType="shape"): return [node] # query shapes shapes = cmds.listRelatives( node, shapes=True, type="deformableShape", path=True ) shapes = shapes or [] # separate shapes orig orig = [] for each in list(shapes): # duplicated `shapes` object to remove safely if cmds.ls(each, intermediateObjects=True): orig.append(each) shapes.remove(each) if not intermediate: return shapes if exclusive: return orig return shapes + orig
9e6d1c3e9030d1ce2804953cc7316d53840d3195
3,644,348
def solve_mip_mlp_elided(verif_instance): """Compute optimal attack loss for MLPs, via exactly solving MIP.""" assert MIP_SOLVERS, 'No MIP solvers installed with cvxpy.' assert verif_instance.type == utils.VerifInstanceTypes.MLP_ELIDED params, bounds, obj, obj_const = ( verif_instance.params, verif_instance.bounds, verif_instance.obj, verif_instance.const) layer_sizes = utils.mlp_layer_sizes(params) on_state = [] post_activations = [cp.Variable((1, layer_sizes[0]))] pre_activations = [] constraints = [] for (i, param) in enumerate(params): W, b = param b = jnp.reshape(b, (1, b.size)) on_state.append(cp.Variable((1, b.size), boolean=True)) pre_activations.append(cp.Variable((1, b.size))) post_activations.append(cp.Variable((1, b.size))) # Linear relaxation of ReLU constraints constraints += [pre_activations[-1] == post_activations[-2]@W + b] constraints += [post_activations[-1] >= pre_activations[-1]] constraints += [post_activations[-1] >= 0] # If ReLU is off, post activation is non-positive. Otherwise <= ub constraints += [post_activations[-1] <= cp.multiply(on_state[-1], bounds[i+1].ub)] # If ReLU is off, pre-activation is non-positive. Otherwise <= ub_pre constraints += [pre_activations[-1] <= cp.multiply(on_state[-1], bounds[i+1].ub_pre)] # If ReLU is on, post-activation == pre-activation # Define <= here, >= constraint added above. constraints += [post_activations[-1]-pre_activations[-1] <= cp.multiply(1-on_state[-1], bounds[i+1].ub-bounds[i+1].lb_pre)] # Optionally, include IBP bounds to speed up MIP solving # Post activations are within bounds # i=0 case encodes input constraint for (i, post) in enumerate(post_activations): constraints += [post <= bounds[i].ub] constraints += [post >= bounds[i].lb] # # Pre activations are within bounds for (i, pre) in enumerate(pre_activations): constraints += [pre <= bounds[i+1].ub_pre] constraints += [pre >= bounds[i+1].lb_pre] # Set objective over final post-activations obj_cp = cp.sum(cp.multiply(obj, post_activations[-1])) # Define and solve problem problem = cp.Problem(cp.Maximize(obj_cp), constraints) # NB: Originally, we used cp.ECOS_BB here, but cvxpy 1.1 drops support, # so we just use the first available MIP solver (which is dependent on user # installation). problem.solve(solver=MIP_SOLVERS[0]) # Report results info = { 'problem': problem, 'post': post_activations, 'pre': pre_activations, } return obj_cp.value + obj_const, info
89ef1f133598feaf73d265411b5ed6597736ddf5
3,644,349
def compute_kullback_leibler_check_statistic(n=100, prngstate=None): """Compute the lowest of the survival function and the CDF of the exact KL divergence KL(N(mu1,s1)||N(mu2,s2)) w.r.t. the sample distribution of the KL divergence drawn by computing log(P(x|N(mu1,s1)))-log(P(x|N(mu2,s2))) over a sample x~N(mu1,s1). If we are computing the KL divergence accurately, the exact value should fall squarely in the sample, and the tail probabilities should be relatively large. """ if prngstate is None: raise TypeError('Must explicitly specify numpy.random.RandomState') mu1 = mu2 = 0 s1 = 1 s2 = 2 exact = gaussian_kl_divergence(mu1, s1, mu2, s2) sample = prngstate.normal(mu1, s1, n) lpdf1 = gaussian_log_pdf(mu1, s1) lpdf2 = gaussian_log_pdf(mu2, s2) estimate, std = kl.kullback_leibler(sample, lpdf1, lpdf2) # This computes the minimum of the left and right tail probabilities of the # exact KL divergence vs a gaussian fit to the sample estimate. There is a # distinct negative skew to the samples used to compute `estimate`, so this # statistic is not uniform. Nonetheless, we do not expect it to get too # small. return erfc(abs(exact - estimate) / std) / 2
8c7036e89a3bfd347b613efac76c1b8dffde2cfa
3,644,350
def build_signature(inputs, outputs): """Build the signature for use when exporting the graph. Args: inputs: a dictionary from tensor name to tensor outputs: a dictionary from tensor name to tensor Returns: The signature, a SignatureDef proto, specifies the input/output tensors to bind when running prediction. """ signature_inputs = { key: saved_model_utils.build_tensor_info(tensor) for key, tensor in inputs.items() } signature_outputs = { key: saved_model_utils.build_tensor_info(tensor) for key, tensor in outputs.items() } signature_def = signature_def_utils.build_signature_def( signature_inputs, signature_outputs, signature_constants.PREDICT_METHOD_NAME) return signature_def
ac760f7efcb27cf985aa9048015ba3be77230bc4
3,644,351
def fuse_depthwise_conv2d(input_graph_def): """Modifies the provided graph by fusing a set of ops into a single _FusedDepthwiseConv2d op. DepthwiseConv2dNative + BiasAdd + Activation => _FusedDepthwiseConv2dNative Args: input_graph_def: A GraphDef containing a model. Returns: Modified graph with FusedDepthwiseConv2dNative ops generated, and modified weights. Raises: ValueError: If the graph is badly formed with duplicate node names. """ # Two passes approach, first find pattern of # DepthwiseConv2dNative + BiasAdd + Activation # Then find pattern of # DepthwiseConv2dNative + BiasAdd graph_def = _fuse_depthwise_conv2d_with_match_function( input_graph_def, _find_contraction_with_bias_and_activation) graph_def = _fuse_depthwise_conv2d_with_match_function( graph_def, _find_contraction_with_bias) graph_def = _fuse_depthwise_conv2d_with_match_function( graph_def, _find_contraction_with_activation) return graph_def
bbfdfbc02debfcad5e1c965c09c9039c3f15faac
3,644,352
def pandas_to_example_str(obj, *, local_data_model=None) -> str: """ Convert data frame to a Python source code string. :param obj: data frame to convert. :param local_data_model: data model to use. :return: Python source code representation of obj. """ if local_data_model is None: local_data_model = data_algebra.default_data_model pd_module_name = local_data_model.presentation_model_name if not local_data_model.is_appropriate_data_instance(obj): raise TypeError("Expect obj to be local_data_model.pd.DataFrame") obj = obj.reset_index(drop=True, inplace=False) nrow = obj.shape[0] pandas_string = pd_module_name + ".DataFrame({" for k in obj.columns: col = obj[k] nulls = local_data_model.bad_column_positions(col) cells = ["None" if nulls[i] else col[i].__repr__() for i in range(nrow)] pandas_string = ( pandas_string + "\n " + k.__repr__() + ": [" + ", ".join(cells) + "]," ) pandas_string = pandas_string + "\n })" return pandas_string
a0c1bd23797413b739c496e621c43a4f43293c17
3,644,353
from typing import Counter def get_results_object_model(target_node, paths_dict, name_to_description, q1_doid_to_disease, probs=False): """ Returns pathway results as an object model :param target_node: target_node DOID:1234 :param paths_dict: a dictionary (keys OMIM id's) with values (path_name,path_type) :param name_to_description: a dictionary to translate between source_node and genetic condition name :param q1_doid_to_disease: a dictionary to translate between target_node and disease name :param probs: optional probability of the OMIM being the right one :return: ``dict`` """ ret_obj = dict() source_node_list = paths_dict.keys() if len(source_node_list) > 0: if target_node in q1_doid_to_disease: doid_name = q1_doid_to_disease[target_node] else: doid_name = target_node ret_obj['target_disease'] = doid_name ret_source_nodes_dict = dict() ret_obj['source_genetic_conditions'] = ret_source_nodes_dict source_node_names = [] for source_node in source_node_list: if source_node in name_to_description: source_node_names.append(name_to_description[source_node]) else: source_node_names.append(source_node) for source_node in source_node_list: source_node_dict = {} path_names, path_types = paths_dict[source_node] if len(path_names) == 1: path_list = [] path_list.append({'type': 'node', 'name': source_node, 'desc': name_to_description.get(source_node, '')}) path_names = path_names[0] path_types = path_types[0] for index in range(1, len(path_names) - 1): if index % 2 == 1: path_list.append({'type': 'rel', 'name': path_types[index]}) else: path_list.append({'type': 'node', 'name': path_names[index], 'desc': get_node_property(path_names[index], 'name')}) path_list.append({'type': 'node', 'name': target_node, 'desc': q1_doid_to_disease.get(target_node, '')}) if probs: if source_node in probs: source_node_dict['conf'] = probs[source_node] source_node_dict['path'] = path_list else: # print(to_print) if probs: if source_node in probs: source_node_dict['conf'] = probs[source_node] relationships_and_counts_dict = Counter(map(tuple, path_types)) relationships = list(relationships_and_counts_dict.keys()) counts = [] for rel in relationships: counts.append(relationships_and_counts_dict[rel]) relationships_and_counts = [] for i in range(len(counts)): relationships_and_counts.append((relationships[i], counts[i])) relationships_and_counts_sorted = sorted(relationships_and_counts, key=lambda tup: tup[1]) count_list = [] for index in range(len(relationships_and_counts_sorted)): relationship = relationships_and_counts_sorted[index][0] count = relationships_and_counts_sorted[index][1] count_list.append({'count': count, 'reltype': str(relationship)}) source_node_dict['counts'] = count_list ret_source_nodes_dict[source_node] = source_node_dict return ret_obj
5ac0ba140a80edf12005112330191d910673e34a
3,644,354
def MaxLonSep( maxarc, baselat ): """Calculates the maximum separation in longitude that a point can have from a reference point at latitude baselat and still be within a given great circle arc length, maxarc, of the reference point. All quantities in radians.""" if abs(baselat) + maxarc <= 0.5 * pi: #result = asin( abs( sin(maxarc) ) / cos( baselat ) ) #result = acos(sqrt(cos(baselat)**2 - sin(maxarc)**2)/cos(baselat)) c = cos( baselat ) s = abs( sin( maxarc ) ) y = s x = sqrt( ( c + s ) * ( c - s ) ) result = atan2( y, x ) else: result = pi return result
cffd6639441f548682e47c9af22c194a18d0f9fe
3,644,355
def auto_read(filename): """Automatically determine the format of filename and open accordingly""" #XXX: this won't work correctly on pipes #would be better to use file magic f = open(filename, 'r') firstchar = f.read(1) f.close() if firstchar == '#': return gnucap_read(filename) else: return spice_read(filename)
0485626e6305aa43ece6b6cf36a924f7526af26c
3,644,356
import time def WaitForOperation(client, messages, operation_name, operation_description=None, project=None, timeout=180): """Wait for an operation to complete. Polls the operation requested approximately every second, showing a progress indicator. Returns when the operation has completed. Args: client: The API client to use. messages: The API message to use. operation_name: The name of the operation to wait on, as returned by operations.list. operation_description: A short description of the operation to wait on, such as 'create' or 'delete'. Will be displayed to the user. project: The name of the project that this operation belongs to. timeout: Number of seconds to wait for. Defaults to 3 minutes. Returns: The operation when it is done. Raises: HttpException: A http error response was received while executing api request. Will be raised if the operation cannot be found. OperationError: The operation finished with error(s). Error: The operation the timeout without completing. """ tick_increment = 1 # every second(s) ticks = 0 message = ('Waiting for {0}[{1}]'.format( operation_description + ' ' if operation_description else '', operation_name)) request = messages.DeploymentmanagerOperationsGetRequest( project=project, operation=operation_name) with progress_tracker.ProgressTracker(message, autotick=False) as ticker: while ticks < timeout: operation = client.operations.Get(request) # Operation status is one of PENDING, RUNNING, DONE if operation.status == 'DONE': if operation.error: raise exceptions.OperationError( 'Error in Operation [{0}]: {1}'.format( operation_name, dm_util.RenderMessageAsYaml(operation.error))) else: # Operation succeeded return operation ticks += tick_increment ticker.Tick() time.sleep(tick_increment) # Timeout exceeded raise exceptions.Error( 'Wait for Operation [{0}] exceeded timeout [{1}].'.format( operation_name, str(timeout)))
e63b3951dd98762d28050ebff753f78e88cd0231
3,644,357
def get_unstaged_files(gitobj): """ ref: http://gitpython.readthedocs.io/en/stable/tutorial.html#obtaining-diff-information """ diff = [] diff.extend(gitobj.index.diff(gitobj.head.commit)) diff.extend(gitobj.index.diff(None)) return {"changed": diff, "untracked": gitobj.untracked_files}
623a2706bb0d2c428df0f44fe10a473e7d740938
3,644,358
from typing import Optional from typing import Union from typing import Tuple def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """ 2D convolution operation. Refer to :class:`~.Conv2d` for more information. :param inp: feature map of the convolution operation. :param weight: convolution kernel. :param bias: bias added to the result of convolution (if given). :param stride: stride of the 2D convolution operation. Default: 1 :param padding: size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: dilation of the 2D convolution operation. Default: 1 :param groups: number of groups into which the input and output channels are divided, so as to perform a ``grouped convolution``. When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be `(groups, out_channel // groups, in_channels // groups, height, width)`. :type conv_mode: string or :class:`Convolution.Mode` :param conv_mode: supports "CROSS_CORRELATION". Default: "CROSS_CORRELATION" :type compute_mode: string or :class:`Convolution.ComputeMode` :param compute_mode: when set to "DEFAULT", no special requirements will be placed on the precision of intermediate results. When set to "FLOAT32", "Float32" would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. :return: output tensor. """ assert conv_mode == "CROSS_CORRELATION" or conv_mode.name == "CROSS_CORRELATION" assert compute_mode == "DEFAULT" or compute_mode.name == "DEFAULT" stride_h, stride_w = expand_hw(stride) pad_h, pad_w = expand_hw(padding) dilate_h, dilate_w = expand_hw(dilation) Sparse = builtin.Convolution.Sparse sparse_type = "DENSE" if groups == 1 else "GROUP" op = builtin.Convolution( stride_h=stride_h, stride_w=stride_w, pad_h=pad_h, pad_w=pad_w, dilate_h=dilate_h, dilate_w=dilate_w, strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) inp, weight = utils.convert_inputs(inp, weight) (output,) = apply(op, inp, weight) if bias is not None: output += bias return output
fff9e2430c21757e3a5a4e1146ead63ad2fb5918
3,644,359
import encodings def find_tex_directives(texfile, ignore_root_loops=False): """Build a dictionary of %!TEX directives. The main ones we are concerned with are: root Specifies a root file to run tex on for this subsidiary TS-program Tells us which latex program to run TS-options Options to pass to TS-program encoding The text encoding of the tex file Arguments: texfile The initial tex file which should be searched for tex directives. If this file contains a “root” directive, then the file specified in this directive will be searched next. ignore_root_loops Specifies if this function exits with an error status if the tex root directives contain a loop. Returns: ``{str: str}`` Examples: >>> chdir('Tests/TeX') >>> directives = find_tex_directives('input/packages_input1.tex') >>> print(directives['root']) # doctest:+ELLIPSIS /.../Tests/TeX/packages.tex >>> print(directives['TS-program']) xelatex >>> find_tex_directives('makeindex.tex') {} >>> chdir('../..') """ if not texfile: return {} root_chain = [texfile] directive_regex = compile(r'%\s*!T[E|e]X\s+([\w-]+)\s*=\s*(.+)') directives = {} while True: for encoding in encodings: try: lines = [line for (line_number, line) in enumerate(open(texfile, encoding=encoding)) if line_number < 20] break except UnicodeDecodeError: continue new_directives = {directive.group(1): directive.group(2).rstrip() for directive in [directive_regex.match(line) for line in lines] if directive} directives.update(new_directives) if 'root' in new_directives: root = directives['root'] new_tex_file = (root if root.startswith('/') else realpath(join(dirname(texfile), root))) directives['root'] = new_tex_file else: break if new_tex_file in root_chain: if ignore_root_loops: break print('''<div id="commandOutput"><div id="preText"> <p class="error">There is a loop in your %!TEX root directives.</p> </div></div>''') exit(EXIT_LOOP_IN_TEX_ROOT) else: texfile = new_tex_file root_chain.append(texfile) return directives
df639f11f1609ee5c8a6bca0add8c154a42c481a
3,644,360
def projects(): """ Handles the GET & POST request to '/projects'. GET: requests to render page POST: request to edit project with sent data :return: render projects page / Json containing authorisation error / manage(data) function call """ if request.method == "GET": return render_template('projects.html') else: if not current_user.is_authenticated or (current_user.role != "admin" and current_user.role != "employee"): return jsonify( {'success': False, "message": "You are not authorized to edit the selected projects"}), 400, { 'ContentType': 'application/json'} data = request.json for project in data["projects"]: if current_user.role != "admin" and not employee_authorized_for_project(current_user.name, project): return jsonify( {'success': False, "message": "You are not authorized to edit the selected projects"}), 400, { 'ContentType': 'application/json'} return manage(data)
7a8a1d9c4d50623ad557d9dcaf419c5a3e83f521
3,644,361
def evolve_fqe_givens_sector(wfn: Wavefunction, u: np.ndarray, sector='alpha') -> Wavefunction: """Evolve a wavefunction by u generated from a 1-body Hamiltonian. Args: wfn: FQE Wavefunction on n-orbitals u: (n x n) unitary matrix. sector: Optional either 'alpha' or 'beta' indicating which sector to rotate Returns: New evolved wfn object. """ if sector == 'alpha': sigma = 0 elif sector == 'beta': sigma = 1 else: raise ValueError("Bad section variable. Either (alpha) or (beta)") if not np.isclose(u.shape[0], wfn.norb()): raise ValueError( "unitary is not specified for the correct number of orbitals") rotations, diagonal = givens_decomposition_square(u.copy()) # Iterate through each layer and time evolve by the appropriate # fermion operators for layer in rotations: for givens in layer: i, j, theta, phi = givens if not np.isclose(phi, 0): op = of.FermionOperator( ((2 * j + sigma, 1), (2 * j + sigma, 0)), coefficient=-phi) wfn = wfn.time_evolve(1.0, op) if not np.isclose(theta, 0): op = of.FermionOperator(((2 * i + sigma, 1), (2 * j + sigma, 0)), coefficient=-1j * theta) + \ of.FermionOperator(((2 * j + sigma, 1), (2 * i + sigma, 0)), coefficient=1j * theta) wfn = wfn.time_evolve(1.0, op) # evolve the last diagonal phases for idx, final_phase in enumerate(diagonal): if not np.isclose(final_phase, 1.0): op = of.FermionOperator( ((2 * idx + sigma, 1), (2 * idx + sigma, 0)), -np.angle(final_phase)) wfn = wfn.time_evolve(1.0, op) return wfn
7f8334d64a1965424c5a1faf166bbf8741c0e1ae
3,644,362
import os def save_tiles(tiles, prefix='', directory=os.getcwd(), format='png'): """ Write image files to disk. Create specified folder(s) if they don't exist. Return list of :class:`Tile` instance. Args: tiles (list): List, tuple or set of :class:`Tile` objects to save. prefix (str): Filename prefix of saved tiles. Kwargs: directory (str): Directory to save tiles. Created if non-existant. Returns: Tuple of :class:`Tile` instances. """ # Causes problems in CLI script. # if not os.path.exists(directory): # os.makedirs(directory) for tile in tiles: tile.save(filename=tile.generate_filename(prefix=prefix, directory=directory, format=format), format=format) return tuple(tiles)
2848eee201d16ca15eed06019199d95a59393a37
3,644,363
from typing import Iterable def epoch_folding_search(times, frequencies, nbin=128, segment_size=5000, expocorr=False, gti=None, weights=1, fdots=0): """Performs epoch folding at trial frequencies in photon data. If no exposure correction is needed and numba is installed, it uses a fast algorithm to perform the folding. Otherwise, it runs a *much* slower algorithm, which however yields a more precise result. The search can be done in segments and the results averaged. Use segment_size to control this Parameters ---------- times : array-like the event arrival times frequencies : array-like the trial values for the frequencies Other Parameters ---------------- nbin : int the number of bins of the folded profiles segment_size : float the length of the segments to be averaged in the periodogram fdots : array-like trial values of the first frequency derivative (optional) expocorr : bool correct for the exposure (Use it if the period is comparable to the length of the good time intervals). If True, GTIs have to be specified via the ``gti`` keyword gti : [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] Good time intervals weights : array-like weight for each time. This might be, for example, the number of counts if the times array contains the time bins of a light curve Returns ------- (fgrid, stats) or (fgrid, fdgrid, stats), as follows: fgrid : array-like frequency grid of the epoch folding periodogram fdgrid : array-like frequency derivative grid. Only returned if fdots is an array. stats : array-like the epoch folding statistics corresponding to each frequency bin. """ if expocorr or not HAS_NUMBA or isinstance(weights, Iterable): if expocorr and gti is None: raise ValueError('To calculate exposure correction, you need to' ' specify the GTIs') def stat_fun(t, f, fd=0, **kwargs): return profile_stat(fold_events(t, f, fd, **kwargs)[1]) return \ _folding_search(stat_fun, times, frequencies, segment_size=segment_size, use_times=True, expocorr=expocorr, weights=weights, gti=gti, nbin=nbin, fdots=fdots) return _folding_search(lambda x: profile_stat(_profile_fast(x, nbin=nbin)), times, frequencies, segment_size=segment_size, fdots=fdots)
7eaa1d038a883babcf55f239acf519f5c059b0b2
3,644,364
import re def apply_matcher(words, offsets, dictionary, max_ngrams=5, longest_match_only=True, case_sensitive = False, split_on=None): """ TODO: cleanup! """ # covert to source char offsets text = get_text(words, offsets) matches = [] for i in range(0, len(words)): match = None start = offsets[i] for j in range(i + 1, min(i + max_ngrams + 1, len(words) + 1)): end = offsets[j - 1] + len(words[j - 1]) # term types: normalize whitespace & tokenized + whitespace for term in [ re.sub(r'''\s{2,}''', ' ', text[start:end]).strip(), ' '.join([w for w in words[i:j] if w.strip()]) ]: if match_term(term, dictionary, case_sensitive): match = end break if match: term = re.sub(r'''\s{2,}''', ' ', text[start:match]).strip() matches.append(([start, match], term)) if longest_match_only: # sort on length then end char matches = sorted(matches, key=lambda x: x[0][-1], reverse=1) f_matches = [] curr = None for m in matches: if curr is None: curr = m continue (i, j), _ = m if (i >= curr[0][0] and i <= curr[0][1]) and (j >= curr[0][0] and j <= curr[0][1]): pass else: f_matches.append(curr) curr = m if curr: f_matches.append(curr) return f_matches return matches
c52c0dd7b881d29952ebd09988362156707ad4bc
3,644,365
import os def create_and_put_metrics_and_widgets() -> dict: """For each repository, aggregates all text and metric data and creates widgets for each :returns: a dictionary mapping the dashboard name to the list of the text and metric widgets for each repository to put in the dashboard :rtype: dict """ widgets = {} for repo_name in os.environ['repo_names'].split(','): owner = os.environ['owner'] if '/' in repo_name: [owner, repo_name] = repo_name.split('/') sorted_widgets = github_docker.aggregate_metrics(owner, repo_name) # Create a Cloudwatch metric/text widget out of each sorted widget for widget_title, widget in sorted_widgets.items(): if widget['type'] == 'metric': title = repo_name if widget_title != os.environ['default_metric_widget_name']: title += ' ' + widget_title formatted_widget = cw_interactions.create_metric_widget(repo_name, widget['data'], title) elif widget['type'] == 'text': title = repo_name if widget_title == os.environ['default_text_widget_name']: title += ' Properties' else: title += ' ' + widget_title formatted_widget = cw_interactions.create_text_widget(widget['data'], title=title) else: print("Invalid widget type specified for widget:", widget_title) continue dashboard_name = os.environ['dashboard_name_prefix'] if widget['dashboard_level'] != 'main': dashboard_name += '-' + repo_name # Add widgets to dashboard widgets_for_specified_dashboard = widgets.get(dashboard_name, []) widgets_for_specified_dashboard.append(formatted_widget) widgets[dashboard_name] = widgets_for_specified_dashboard # Add activity widget main_widgets = widgets.get(os.environ['dashboard_name_prefix'], []) main_widgets.append(cw_interactions.create_activity_widget(repo_name)) widgets[os.environ['dashboard_name_prefix']] = main_widgets return widgets
a779f86e9bca3090336a18a8716acab9b5372dfb
3,644,366
def boxbin(x,y,xedge,yedge,c=None,figsize=(5,5),cmap='viridis',mincnt=10,vmin=None,vmax=None,edgecolor=None,powernorm=False, ax=None,normed=False,method='mean',quantile=None,alpha=1.0,cbar=True,unconditional=False,master_count=np.array([])): """ This function will grid data for you and provide the counts if no variable c is given, or the median if a variable c is given. In the future I will add functionallity to do the median, and possibly quantiles. x: 1-D array y: 1-D array xedge: 1-D array for xbins yedge: 1-D array for ybins c: 1-D array, same len as x and y returns axis handle cbar handle C matrix (counts or median values in bin) """ midpoints = np.empty(xedge.shape[0]-1) for i in np.arange(1,xedge.shape[0]): midpoints[i-1] = xedge[i-1] + (np.abs(xedge[i] - xedge[i-1]))/2. #note on digitize. bin 0 is outside to the left of the bins, bin -1 is outside to the right ind1 = np.digitize(x,bins = xedge) #inds of x in each bin ind2 = np.digitize(y,bins = yedge) #inds of y in each bin #drop points outside range outsideleft = np.where(ind1 != 0) ind1 = ind1[outsideleft] ind2 = ind2[outsideleft] if c is None: pass else: c = c[outsideleft] outsideright = np.where(ind1 != len(xedge)) ind1 = ind1[outsideright] ind2 = ind2[outsideright] if c is None: pass else: c = c[outsideright] outsideleft = np.where(ind2 != 0) ind1 = ind1[outsideleft] ind2 = ind2[outsideleft] if c is None: pass else: c = c[outsideleft] outsideright = np.where(ind2 != len(yedge)) ind1 = ind1[outsideright] ind2 = ind2[outsideright] if c is None: pass else: c = c[outsideright] if c is None: c = np.zeros(len(ind1)) df = pd.DataFrame({'x':ind1-1,'y':ind2-1,'c':c}) df2 = df.groupby(["x","y"]).count() df = df2.where(df2.values >= mincnt).dropna() C = np.ones([xedge.shape[0]-1,yedge.shape[0]-1])*-9999 for i,ii in enumerate(df.index.values): C[ii[0],ii[1]] = df.c.values[i] C = np.ma.masked_where(C == -9999,C) if normed: n_samples = np.ma.sum(C) C = C/n_samples C = C*100 print('n_samples= {}'.format(n_samples)) if ax is None: fig = plt.figure(figsize=(5,5)) ax = plt.gca() else: pass if powernorm: pm = ax.pcolormesh(xedge,yedge,C.transpose(),cmap=cmap,edgecolor=edgecolor,norm=colors.PowerNorm(gamma=0.5),vmin=vmin,vmax=vmax,alpha=alpha) if cbar: cbar = plt.colorbar(pm,ax=ax) else: cbar = pm else: pm = ax.pcolormesh(xedge,yedge,C.transpose(),cmap=cmap,vmin=vmin,vmax=vmax,edgecolor=edgecolor,alpha=alpha) if cbar: cbar = plt.colorbar(pm,ax=ax) else: cbar = pm return ax,cbar,C elif unconditional: df = pd.DataFrame({'x':ind1-1,'y':ind2-1,'c':c}) if method=='mean': df2 = df.groupby(["x","y"])['c'].sum() df3 = df.groupby(["x","y"]).count() df2 = df2.to_frame() df2.insert(1,'Count',df3.values) df = df2.where(df2.Count >= mincnt).dropna() C = np.ones([xedge.shape[0]-1,yedge.shape[0]-1]) for i,ii in enumerate(df.index.values): C[ii[0],ii[1]] = df.c.values[i] C = C/master_count.values if ax is None: fig = plt.figure(figsize=(5,5)) ax = plt.gca() else: pass if powernorm: pm = ax.pcolor(xedge,yedge,C.transpose(),cmap=cmap,vmin=vmin,vmax=vmax,norm=colors.PowerNorm(gamma=0.5),alpha=alpha) if cbar: cbar = plt.colorbar(pm,ax=ax) else: pm = ax.pcolor(xedge,yedge,C.transpose(),cmap=cmap,vmin=vmin,vmax=vmax,alpha=alpha) if cbar: cbar = plt.colorbar(pm,ax=ax) else: df = pd.DataFrame({'x':ind1-1,'y':ind2-1,'c':c}) if method=='mean': df2 = df.groupby(["x","y"])['c'].mean() elif method=='std': df2 = df.groupby(["x","y"])['c'].std() elif method=='median': df2 = df.groupby(["x","y"])['c'].median() elif method=='qunatile': if quantile is None: print('No quantile given, defaulting to median') quantile = 0.5 else: pass df2 = df.groupby(["x","y"])['c'].apply(percentile(quantile*100)) df3 = df.groupby(["x","y"]).count() df2 = df2.to_frame() df2.insert(1,'Count',df3.values) df = df2.where(df2.Count >= mincnt).dropna() C = np.ones([xedge.shape[0]-1,yedge.shape[0]-1])*-9999 for i,ii in enumerate(df.index.values): C[ii[0],ii[1]] = df.c.values[i] C = np.ma.masked_where(C == -9999,C) if ax is None: fig = plt.figure(figsize=(5,5)) ax = plt.gca() else: pass if powernorm: pm = ax.pcolor(xedge,yedge,C.transpose(),cmap=cmap,vmin=vmin,vmax=vmax,norm=colors.PowerNorm(gamma=0.5),alpha=alpha) if cbar: cbar = plt.colorbar(pm,ax=ax) else: cbar = pm else: pm = ax.pcolor(xedge,yedge,C.transpose(),cmap=cmap,vmin=vmin,vmax=vmax,alpha=alpha) if cbar: cbar = plt.colorbar(pm,ax=ax) else: cbar = pm return ax,cbar,C
b80a9fdf25d16ecd5e73addae325d1a2348ef900
3,644,367
def _get_elastic_document( tasks: list[dict], symprec: float, fitting_method: str, ) -> ElasticDocument: """ Turn a list of deformation tasks into an elastic document. Parameters ---------- tasks : list of dict A list of deformation tasks. symprec : float Symmetry precision for deriving symmetry equivalent deformations. If ``symprec=None``, then no symmetry operations will be applied. fitting_method : str The method used to fit the elastic tensor. See pymatgen for more details on the methods themselves. The options are: - "finite_difference" (note this is required if fitting a 3rd order tensor) - "independent" - "pseudoinverse" Returns ------- ElasticDocument An elastic document. """ structure = get(tasks[0], "output.transformations.history.0.input_structure") stresses = [] deformations = [] uuids = [] job_dirs = [] for doc in tasks: deformation = get(doc, "output.transformations.history.0.deformation") stress = get(doc, "output.output.stress") deformations.append(Deformation(deformation)) stresses.append(Stress(stress)) uuids.append(doc["uuid"]) job_dirs.append(doc["output"]["dir_name"]) return ElasticDocument.from_stresses( structure, stresses, deformations, uuids, job_dirs, fitting_method=fitting_method, symprec=symprec, )
f01ea537fbd73c6a2da529a4da15e358033ed2a9
3,644,368
from typing import Union from pathlib import Path from typing import Counter def first(filename: Union[str, Path]) -> int: """ Sort the input, prepend with 0 and append with 3 + the max. Return: (# of successive differences == 1) * (# of successive differences == 3) """ with open(filename, "rt") as infile: jolts = sorted(int(line.strip()) for line in infile) jolts = [0] + jolts + [jolts[-1] + 3] diffs = Counter(right - left for left, right in zip(jolts[:-1], jolts[1:])) return diffs[3] * diffs[1]
18ffe3e97d7256ea61fcf6e436d36bb360d0a285
3,644,369
def charge_is_valid(charge_profile, capacity=6, max_charge_rate=2.5, time_unit=0.5): """ Function determining if a charge profile is valid (and fully charges the battery) """ if np.all(np.isclose(capacity/time_unit, charge_profile.groupby(charge_profile.index.date).sum())) is False: return False elif np.all(charge_profile.groupby(charge_profile.index.date).max() <= max_charge_rate) is False: return False else: return True
489717fc834b9492ab3add1ddfaa5c55e2f4d8e9
3,644,370
def create_slice_obj(start, end, step): """Create slice object""" return slice(start, end, step)
88a5c5a9e0d3b714b4316d8744fcdd1a34f347a7
3,644,371
def binary_cross_entropy_error(y, t): """バイナリー交差エントロピー誤差""" #y.shape (N,C,H,W) delta = 1e-7 return -np.mean(t*np.log(y + delta) + (1-t)*np.log(1-y + delta))
a0090d4d5e6695ab0c4d988b8f0efbdfcd44984c
3,644,372
def get_abc(): """ :return: list all the abcs as a list """ # ok return list(abcs.find({}, {'_id': False}))
aa2c39bdc8ec1f31f43ea02701b5022f612b286b
3,644,373
from typing import Optional from typing import List def matching_system_code(concept: CodeableConcept, system: str) -> Optional[str]: """ Returns a code from a specified *system* contained within a given *concept*. If no code is found for the given *system*, returns None. Raises an :class:`AssertionError` if more than one encoding for a *system* is found within the given FHIR *concept*. """ system_codes: List[CodeableConcept] = [] if not concept: return None system_codes += list(filter(lambda c: matching_system(c, system), concept.coding)) assert len(system_codes) <= 1, "Multiple encodings found in FHIR concept " + \ f"«{concept.concept_type}» for system «{system}»." if not system_codes: return None return system_codes[0].code
cd9005ebcfd9ab15e5d27f7f30b8b4ea4b4db7b0
3,644,374
def get_pybullet(env_name): """ Returns pybullet dataset and envrironment. The dataset is provided through d4rl-pybullet. See more details including available dataset from its GitHub page. .. code-block:: python from d3rlpy.datasets import get_pybullet dataset, env = get_pybullet('hopper-bullet-mixed-v0') References: * https://github.com/takuseno/d4rl-pybullet Args: env_name (str): environment id of d4rl-pybullet dataset. Returns: tuple: tuple of :class:`d3rlpy.dataset.MDPDataset` and gym environment. """ try: env = gym.make(env_name) dataset = MDPDataset(**env.get_dataset()) return dataset, env except ImportError: raise ImportError( 'd4rl-pybullet is not installed.\n' \ 'pip install git+https://github.com/takuseno/d4rl-pybullet')
79d3e408698ea7454398490a98fd7d653625cbd4
3,644,375
from typing import Iterable from typing import Any def reverse(d: Iterable) -> Any: """Reverses the provided iterable, but also RETURNS it""" d.reverse() return d
5eff6b170afe6424f113ec4b15f985ee8d306e83
3,644,376
def scalar(typename): """ Returns scalar type from ROS message data type, like "uint8" from "uint8[100]". Returns type unchanged if already a scalar. """ return typename[:typename.index("[")] if "[" in typename else typename
729fb68bced11e190b3d32d03bbadd921f191bee
3,644,377
def subject(mock_messenger: AsyncMock) -> initiator.FirmwareUpdateInitiator: """The test subject.""" return initiator.FirmwareUpdateInitiator(mock_messenger)
cfab4395d5ffc3de6a33d3eeb2d7ce373f719b06
3,644,378
def onetangent(ri, rf, ta_transb, k=0, use_alts=True, center='earth'): """Orbit transfer with one tangential burn and one nontangential burn. Must be circular or coaxially elliptic. Currently only for circular orbits. :param ri: altitude (or radius) of initial circular orbit (km) :param rf: altitude (or radius) of initial circular orbit (km) :param ta_transb: true anomaly of transfer orbit at point b (rad) :param k: number of revolutions through perigee :param use_alts: Boolean for switching between ri,rf=altitude (True) and ri,rf=radius to center :param center: planetary center of focus; default=earth :return vtransa: transfer velocity required at point a (km/s) :return vtransb: transfer velocity required at point b (km/s) :return fpa_transb: flight path angle for the nontangential transfer (rad) :return TOF: time of flight (s) in work """ # update constants and parameters mu = get_mu(center=center) if use_alts and center.lower() == 'earth': ri, rf = [r+r_earth for r in [ri, rf]] # check location of tangent burn Rinv = ri/rf if Rinv > 1: # tangent burn is at apogee e_trans = (Rinv-1)/(np.cos(ta_transb)+Rinv) a_trans = ri/(1+e_trans) E0 = np.pi else: # tangent burn is at perigee e_trans = (Rinv-1)/(np.cos(ta_transb)-Rinv) a_trans = ri/(1-e_trans) E0 = 0. # compute initial, final, and transfer velocities at a, b vi = sqrt(mu/ri) vf = sqrt(mu/rf) vtransa = sqrt(2*mu/ri - mu/a_trans) vtransb = sqrt(2*mu/rf - mu/a_trans) # flight path angle of nontangential transfer fpa_transb = np.arctan(e_trans*np.sin(ta_transb) / (1+e_trans*np.cos(ta_transb))) # get delta-v's at each point and its total dva = vtransa - vi dvb = sqrt( vtransb**2 + vf**2 - 2*vtransb*vf*np.cos(fpa_transb) ) dv_otb = np.abs(dva) + np.abs(dvb) # computing eccentric anomaly E = np.arccos((e_trans+np.cos(ta_transb))/(1+e_trans*np.cos(ta_transb))) # computing time of flight TOF = sqrt(a_trans**3/mu) * \ (2*k*np.pi+(E-e_trans*np.sin(E))-(E0 - e_trans*np.sin(E0))) return vtransa, vtransb, fpa_transb, TOF
12eae51bc3833df94b063597e2444df851a7960c
3,644,379
def display_matplot(images, title = None, gray=None): """[Standard display fuction used throughout testing to see the output of thhe various transforms. Displays multilpe plots at once for comparison, always in a square format.] Arguments: images {[Array]} -- [the array that contains all of the images you wish to display] Keyword Arguments: title {[String]} -- [A title to display on the plot to keep track of which image is bing shown.] (default: {None}) gray {[Opencv const]} -- [The colour space you wish to display the image in.] (default: {None}) Returns: [matplotlib plot] -- [The created plot] """ n = np.ceil(np.sqrt(len(images))) index = 1 plt.set_cmap('gray') plt.title(title) for image in images: plt.subplot(n, n, index) plt.imshow(image) plt.xticks([]), plt.yticks([]) index += 1 plt.waitforbuttonpress(0) plt.close() return plt
635b6c977d1d71a9d7479e064978c3695115d757
3,644,380
def get_version(): """ It returns the pmml version . Returns ------- version : String Returns the version of the pmml. """ version = '4.4' return version
162f6e0ffb4c4741fafe2aa16d6fceed16bae99a
3,644,381
import torch def customsoftmax(inp, multihotmask): """ Custom Softmax """ soft = F.softmax(inp, dim=1) # This takes the mask * softmax ( sums it up hence summing up the classes in border # then takes of summed up version vs no summed version return torch.log( torch.max(soft, (multihotmask * (soft * multihotmask).sum(1, keepdim=True))) )
a0db0926aa9ed804bfab54cfaaf7c4a031809aae
3,644,382
import scipy def mandoline( D_src: np.ndarray, D_tgt: np.ndarray, edge_list: np.ndarray, sigma: float=None, ): """ Mandoline solver. Args: D_src: (n_src x d) matrix of (example, slices) for the source distribution. D_tgt: (n_tgt x d) matrix of (example, slices) for the source distribution. edge_list: list of edge correlations between slices that should be modeled. sigma: optional parameter that activates RBF kernel-based KLIEP with scale `sigma`. Returns: SimpleNamespace that contains opt: result of scipy.optimize Phi_D_src: source potential matrix used in Mandoline Phi_D_tgt: target potential matrix used in Mandoline n_src: number of source samples n_tgt: number of target samples edge_list: the `edge_list` parameter passed as input """ # Copy and binarize the input matrices to -1/1 D_src, D_tgt = np.copy(D_src), np.copy(D_tgt) if np.min(D_src) == 0: D_src[D_src == 0] = -1 D_tgt[D_tgt == 0] = -1 # Edge list encoding dependencies between gs if edge_list is not None: edge_list = np.array(edge_list) # Create the potential matrices Phi_D_tgt, Phi_D_src = Phi(D_tgt, edge_list), Phi(D_src, edge_list) # Number of examples n_src, n_tgt = Phi_D_src.shape[0], Phi_D_tgt.shape[0] def f(x): obj = Phi_D_tgt.dot(x).sum() - n_tgt * scipy.special.logsumexp(Phi_D_src.dot(x)) return -obj # Set the kernel kernel = partial(skmetrics.rbf_kernel, gamma=sigma) def llkliep_f(x): obj = kernel( Phi_D_tgt, x[:, np.newaxis] ).sum() - n_tgt * scipy.special.logsumexp(kernel(Phi_D_src, x[:, np.newaxis])) return -obj # Solve if not sigma: opt = scipy.optimize.minimize( f, np.random.randn(Phi_D_tgt.shape[1]), method="BFGS" ) else: opt = scipy.optimize.minimize( llkliep_f, np.random.randn(Phi_D_tgt.shape[1]), method="BFGS" ) return SimpleNamespace( opt=opt, Phi_D_src=Phi_D_src, Phi_D_tgt=Phi_D_tgt, n_src=n_src, n_tgt=n_tgt, edge_list=edge_list, )
5b7817e1ff252724f61572ac6f103ec963c257dd
3,644,383
def service_transformer_info_get(service): # noqa: E501 """Retrieve transformer info Provides information about the transformer. # noqa: E501 :param service: Inxight_Drugs service :rtype: TransformerInfo """ return transformer[service].info
a12d4d19efe7bf8a3c185213790366339aad8c9f
3,644,384
def create_app(config=None, app_name=None): """Create a Flask app.""" if app_name is None: app_name = DefaultConfig.PROJECT app = Flask(app_name, instance_path=INSTANCE_FOLDER_PATH, instance_relative_config=True) configure_app(app, config) configure_hook(app) configure_blueprints(app) configure_extensions(app) configure_logging(app) configure_template_filters(app) configure_error_handlers(app) configure_cli(app) return app
95f5191fc64f5656156fc69bd9565b0a754e014c
3,644,385
def read_translocations_tumors(gene_A, gene_B,\ tumor_barcodes,\ data_location=default_location): """ For a given set of tumor barcode and a gene, finds with a lookup the mutation for this particular gene on the TCGA dataset. INPUT: - gene_A (str): first gene of translocation - gene_B (str): second gene of translocation - tumor_barcodes (list): list of tumor barcodes - data_location (str, optional): where data is located OUTPUT: - indicator list with 1 on tumor barcodes with a translocation """ translocated_genes = [gene_A, gene_B] # Read data and filter df = pd.read_csv(data_location, sep='\t') df = df[np.isin(df.Gene_A, translocated_genes)] df = df[np.isin(df.Gene_B, translocated_genes)] # Common barcode length barcode_length = np.unique([len(e) for e in df['sampleId'].values]) if barcode_length.shape[0] > 1: raise ValueError('File does not the same barcoding length') barcode_length = barcode_length[0] print(barcode_length) # Map translocated tumors translocated_barcodes = df['sampleId'].values.astype(str) translocated_barcodes = [e.replace('.', '-') for e in translocated_barcodes] print(translocated_barcodes) translocated_tumors = np.where(np.isin([e[5:5+barcode_length] for e in tumor_barcodes], translocated_barcodes)) print(translocated_barcodes) is_translocated = np.zeros(len(tumor_barcodes)) is_translocated[translocated_tumors] = 1 return is_translocated
7ae16c2898272676ab1ab2bccde4ca3958fbb4a0
3,644,386
import numbers def simplify_if_constant(symbol, keep_domains=False): """ Utility function to simplify an expression tree if it evalutes to a constant scalar, vector or matrix """ if keep_domains is True: domain = symbol.domain auxiliary_domains = symbol.auxiliary_domains else: domain = None auxiliary_domains = None if symbol.is_constant(): result = symbol.evaluate_ignoring_errors() if result is not None: if ( isinstance(result, numbers.Number) or (isinstance(result, np.ndarray) and result.ndim == 0) or isinstance(result, np.bool_) ): return pybamm.Scalar(result) elif isinstance(result, np.ndarray) or issparse(result): if result.ndim == 1 or result.shape[1] == 1: return pybamm.Vector( result, domain=domain, auxiliary_domains=auxiliary_domains ) else: # Turn matrix of zeros into sparse matrix if isinstance(result, np.ndarray) and np.all(result == 0): result = csr_matrix(result) return pybamm.Matrix( result, domain=domain, auxiliary_domains=auxiliary_domains ) return symbol
c696ec4a7c81251448c97afe92c32f275284f71e
3,644,387
def is_visible(window): """ Check whether the window is visible or not. """ return lib.is_visible(window)
23f146625dcaa3f473ddec1684b9f222496bae48
3,644,388
from typing import Optional import copy def fix_mol( mol: Chem.rdchem.Mol, n_iter: int = 1, remove_singleton: bool = False, largest_only: bool = False, inplace: bool = False, ) -> Optional[Chem.rdchem.Mol]: """Fix error in molecule using a greedy approach. Args: mol: input molecule to fix n_iter: Number of valence fix iteration to apply remove_singleton: Whether `adjust_singleton` should be applied largest_only: Whether only the largest fragment should be kept inplace: Whether to return a copy of the mol or perform in place operation Returns: Fixed molecule. """ if not inplace: mol = copy.copy(mol) m = sanitize_mol(mol) or mol # fail back to mol when the fixer fail if m is not None: m = remove_dummies(m) for _ in range(n_iter): m = fix_valence(m) if remove_singleton: m = adjust_singleton(m) if largest_only: # m = max(Chem.rdmolops.GetMolFrags(m, asMols=True, sanitizeFrags=False), key=lambda m: m.GetNumAtoms()) m = rdMolStandardize.FragmentParent(m, skipStandardize=True) return m
6d745d9ec308e577b73243850e6f46c93c5ff24f
3,644,389
from typing import Iterable from typing import List def permutation_circuit(swaps: Iterable[List[Swap[_V]]]) -> PermutationCircuit: """Produce a circuit description of a list of swaps. With a given permutation and permuter you can compute the swaps using the permuter function then feed it into this circuit function to obtain a circuit description. Args: swaps: An iterable of swaps to perform. Returns: A MappingCircuit with the circuit and a mapping of node to qubit in the circuit. """ # Construct a circuit with each unique node id becoming a quantum register of size 1. dag = DAGCircuit() swap_list = list(swaps) # Set of unique nodes used in the swaps. nodes = { swap_node for swap_step in swap_list for swap_nodes in swap_step for swap_node in swap_nodes } node_qargs = {node: QuantumRegister(1) for node in nodes} for qubit in node_qargs.values(): dag.add_qreg(qubit) inputmap = {node: q[0] for node, q in node_qargs.items()} # Apply swaps to the circuit. for swap_step in swap_list: for swap0, swap1 in swap_step: dag.apply_operation_back(SwapGate(), [inputmap[swap0], inputmap[swap1]]) return PermutationCircuit(dag, inputmap)
c45d5fea5974c3bfb7e695ddc366d4948203e1d1
3,644,390
def Add(a, b): """ Adds two numbers, throws on overflow. """ c = a + b Require(c >= a) return c
cf6c04ed1f5f2f6782e6b91aea739c7e54c1dfe6
3,644,391
from typing import Dict from typing import Type def remap_shared_output_descriptions(output_descriptions: Dict[str, str], outputs: Dict[str, Type]) -> Dict[str, str]: """ Deals with mixed styles of return value descriptions used in docstrings. If the docstring contains a single entry of return value description, that output description is shared by each output variable. :param output_descriptions: Dict of output variable names mapping to output description :param outputs: Interface outputs :return: Dict of output variable names mapping to shared output description """ # no need to remap if len(output_descriptions) != 1: return output_descriptions _, shared_description = next(iter(output_descriptions.items())) return {k: shared_description for k, _ in outputs.items()}
06d589016a747230f88aa3507bd751fd30095222
3,644,392
def dist_matrix(): """Fix dist_matrix for the next two tests.""" dist_matrix = np.array([[0, 4, 5, 6], [4, 0, 7, 8], [5, 7, 0, 9], [6, 8, 9, 0]]) return dist_matrix
5bc3e5da5a6c76fd91858a697e2db183c74eb03f
3,644,393
def fitarg_rename(fitarg, ren): """Rename variable names in ``fitarg`` with rename function. :: #simple renaming fitarg_rename({'x':1, 'limit_x':1, 'fix_x':1, 'error_x':1}, lambda pname: 'y' if pname=='x' else pname) #{'y':1, 'limit_y':1, 'fix_y':1, 'error_y':1}, #prefixing figarg_rename({'x':1, 'limit_x':1, 'fix_x':1, 'error_x':1}, lambda pname: 'prefix_'+pname) #{'prefix_x':1, 'limit_prefix_x':1, 'fix_prefix_x':1, 'error_prefix_x':1} """ tmp = ren if isinstance(ren, str): ren = lambda x: tmp + '_' + x ret = {} prefix = ['limit_', 'fix_', 'error_', ] for k, v in fitarg.items(): vn = k pf = '' for p in prefix: if k.startswith(p): vn = k[len(p):] pf = p newvn = pf + ren(vn) ret[newvn] = v return ret
151233d0f18eaea564afbc6d600d576407504b35
3,644,394
def flatten(tensor): """Flattens a given tensor such that the channel axis is first. The shapes are transformed as follows: (N, C, D, H, W) -> (C, N * D * H * W) """ C = tensor.size(1) # new axis order axis_order = (1, 0) + tuple(range(2, tensor.dim())) # Transpose: (N, C, D, H, W) -> (C, N, D, H, W) transposed = tensor.permute(axis_order) # Flatten: (C, N, D, H, W) -> (C, N * D * H * W) return transposed.contiguous().view(C, -1)
e7586da0abfdea639b3bb760fe31fca1cc849d1d
3,644,395
import soundfile import os def file_to_jsobj(src, chart_type=DFLT_CHART_TYPE, enable_playback=DFLT_ENABLE_PLAYBACK, height=DFLT_HEIGHT, params=DFLT_PARAMS, title=None, subtitle='', **kwargs ): """Renders a time visualization of a WAV file from its file. :param src: The filepath str (or posix path) or file-like object (e.g. open file, or BytesIO object) :param chart_type: The chart type to render, either 'peaks' (default) or 'spectrogram' :param enable_playback: Whether to enable playback on double click (default True) :param height: The height of the chart in pixels (default 50) :param params: Extra rendering parameters, currently unused :param title: The title to display, defaults to the filename :param subtitle: An optional subtitle to display under the title :param kwargs: extra kwargs to be passed on to Javascript object constructor """ wfsr = soundfile.read(src, dtype='int16') if title is None and isinstance(src, str): title = os.path.basename(src) return wfsr_to_jsobj(wfsr, chart_type=chart_type, enable_playback=enable_playback, height=height, params=params, title=title, subtitle=subtitle, **kwargs )
26e4c1461614c5c7b0010920dba646fd1d381345
3,644,396
def node_to_edge(edges, directed=True): """ From list of edges, record per node, incoming and outgoing edges """ outgoing = defaultdict(set) incoming = defaultdict(set) if directed else outgoing nodes = set() for i, edge in enumerate(edges): a, b, = edge[:2] outgoing[a].add(i) incoming[b].add(i) nodes.add(a) nodes.add(b) nodes = sorted(nodes) if directed: return outgoing, incoming, nodes return outgoing, nodes
7e3f7bf93bbf19355b3329762a3531504bbc53a4
3,644,397
from typing import Counter def grouping_cumulative(df, col_index, col_column): """ compute histogram statistic over selected column and in addition group this histograms :param DataFrame df: rich table :param str col_index: column which will be used s index in resulting table :param str col_column: column used for computing a histogram :return DF: >>> np.random.seed(0) >>> df = pd.DataFrame() >>> df['result'] = np.random.randint(0, 2, 50) >>> df['user'] = np.array(list('abc'))[np.random.randint(0, 3, 50)] >>> grouping_cumulative(df, 'user', 'result').astype(int) # doctest: +NORMALIZE_WHITESPACE 0 1 user a 10 12 b 4 9 c 6 9 """ df_counts = pd.DataFrame() for idx, dfg in df[[col_index, col_column]].groupby(col_index): counts = dict(Counter(dfg[col_column])) counts[col_index] = idx df_counts = df_counts.append(counts, ignore_index=True) df_counts.set_index(col_index, inplace=True) return df_counts
f99b1c2cc4e7bc4e3a3af02414ba82bd057607e9
3,644,398
def _get_matching_stream(smap, itag): """ Return the url and signature for a stream matching itag in smap. """ for x in smap: if x['itag'] == itag and x.get("s"): return x['url'], x['s'] raise IOError("Sorry this video is not currently supported by pafy")
dc83fd3207d5ab4e1c85eb719f5f7d023131565e
3,644,399