content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def _find_popular_codon(aa): """ This function returns popular codon from a 4+ fold degenerative codon. :param aa: dictionary containing amino acid information. :return: """ codons = [c[:2] for c in aa["codons"]] counts = [] for i in range(len(codons)): pc = codons[i] count = 0 for j in range(len(codons)): if codons[j] == pc: count += 1 counts.append(count) # find index of the higest entry highest = 0 for i in range(len(counts)): if counts[i] > counts[highest]: highest = i return aa["codons"][highest]
a555a9d42ea4dfa0260d9d4d2040de3c6fca69a0
3,641,700
import pathlib def initialize_cluster_details(scale_version, cluster_name, username, password, scale_profile_path, scale_replica_config): """ Initialize cluster details. :args: scale_version (string), cluster_name (string), username (string), password (string), scale_profile_path (string), scale_replica_config (bool) """ cluster_details = {} cluster_details['scale_version'] = scale_version cluster_details['scale_cluster_clustername'] = cluster_name cluster_details['scale_service_gui_start'] = "True" cluster_details['scale_gui_admin_user'] = username cluster_details['scale_gui_admin_password'] = password cluster_details['scale_gui_admin_role'] = "Administrator" cluster_details['scale_sync_replication_config'] = scale_replica_config cluster_details['scale_cluster_profile_name'] = str( pathlib.PurePath(scale_profile_path).stem) cluster_details['scale_cluster_profile_dir_path'] = str( pathlib.PurePath(scale_profile_path).parent) return cluster_details
5508733e0bfbd20fb76ecaaf0df7f41675b0c5c8
3,641,701
def load(data_home=None): """Load RWC-Genre dataset Args: data_home (str): Local path where the dataset is stored. If `None`, looks for the data in the default directory, `~/mir_datasets` Returns: (dict): {`track_id`: track data} """ if data_home is None: data_home = utils.get_default_dataset_path(DATASET_DIR) rwc_popular_data = {} for key in track_ids(): rwc_popular_data[key] = Track(key, data_home=data_home) return rwc_popular_data
61d09f64ec7f36bc1dac6bfc6bea8e47fe82248b
3,641,702
import copy def collate_spectra_by_source(source_list, tolerance, unit=u.arcsec): """Given a list of spec1d files from PypeIt, group the spectra within the files by their source object. The grouping is done by comparing the position of each spectra (using either pixel or RA/DEC) using a given tolerance. Args: source_list (list of :obj:`SourceObject`): A list of source objects, one SpecObj per object, ready for collation. tolerance (float): Maximum distance that two spectra can be from each other to be considered to be from the same source. Measured in floating point pixels or as an angular distance (see ``unit`` argument). unit (:obj:`astropy.units.Unit`): Units of ``tolerance`` argument if match_type is 'ra/dec'. Defaults to arcseconds. Ignored if match_type is 'pixel'. Returns: (list of `obj`:SourceObject): The collated spectra as SourceObjects. """ collated_list = [] for source in source_list: # Search for a collated SourceObject that matches this one. # If one can't be found, treat this as a new collated SourceObject. found = False for collated_source in collated_list: if collated_source.match(source.spec_obj_list[0], source.spec1d_header_list[0], tolerance, unit): collated_source.combine(source) found = True if not found: collated_list.append(copy.deepcopy(source)) return collated_list
a82b470685ee53f3fe2de5e41a3f212e32a4d606
3,641,703
def tolist(obj): """ Convert given `obj` to list. If `obj` is not a list, return `[obj]`, else return `obj` itself. """ if not isinstance(obj, list): return [obj] return obj
f511f4ebb86977b2db8646e692abc9840c2ae2d1
3,641,704
def bip44_tree(config: dict, cls=hierarchy.Node) -> hierarchy.Node: """ Return the root node of a BIP44-compatible partially ordered hierarchy. https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki The `config` parameter is a dictionary of the following form: - the keys of the dictionary are crypto-coins; - the values of the dictionary specify the number of accounts to generate for each coin, and the number of public/private addresses to generate for each account. As an example: {'BTC': ( (1, 2), (4, 5), (0, 1) )} The previous dictionary represents a single coin, BTC. There are three accounts, that respectively have 1, 4, and 0 private addresses and 2, 5, and 1 public addresses. """ master_node = cls(0, tag='m') purpose_node = cls(44 + constants.CryptoConstants.BIP32_HARDENED_INDEX.value, tag="44'") master_node.edges.append(purpose_node) for coin, coin_config in config.items(): assert isinstance(coin, str) assert coin_config coin_node = cls(constants.CoinType[coin].value, coin) purpose_node.edges.append(coin_node) for i, (n_private_addresses, n_public_addresses) in enumerate(coin_config): assert n_private_addresses > 0 or n_public_addresses > 0 account_node = cls(i) coin_node.edges.append(account_node) public_node = cls(0, 'XPUB') account_node.edges.append(public_node) private_node = cls(1, 'XPRV') account_node.edges.append(private_node) previous_node = private_node for j in range(n_private_addresses): private_address_node = cls(j) previous_node.edges.append(private_address_node) previous_node = private_address_node previous_node = public_node for j in range(n_public_addresses): public_address_node = cls(j) previous_node.edges.append(public_address_node) previous_node = public_address_node return master_node
bd88895932b66963aa7f63f30ad49ac009ea41f1
3,641,705
def delete_useless_vrrp_subnets(client, to_delete, project_id): """ :param 'Client' client :param dict((prefix_length, type, master_region, slave_region), (state:quantity)) to_delete :rtype: list """ result = [] vrrp_subnets = client.vrrp.list(project_id=project_id) for key in to_delete: vrrp_to_delete = [vrrp for vrrp in vrrp_subnets if ( int(vrrp.cidr.split('/')[1]), "ipv4", vrrp.master_region, vrrp.slave_region) == key] vrrp_to_delete.sort(key=itemgetter("status"), reverse=True) for vrrp in vrrp_to_delete[:to_delete.get(key)]: client.vrrp.delete(vrrp.id) result.append(vrrp.id) return result
b16019b026c32d310f9f938a7ca1fada31d02d84
3,641,706
import torch import warnings def barycenter_wbc(P, K, logweights, Kb=None, c=None, debiased=False, maxiter=1000, tol=1e-4): """Compute the Wasserstein divergence barycenter between histograms. """ n_hists, width, _ = P.shape if Kb is None: b = torch.ones_like(P)[None, :] Kb = convol_huge_imgs(b, K) if c is None: c = torch.ones(1, width, width, device=P.device) q = c.clone() logweights.requires_grad = True err = 1 weights = torch.softmax(logweights, dim=1)[:, :, None, None] for ii in range(maxiter): with torch.no_grad(): qold = q.detach().clone() a = P[None, :] / Kb Ka = convol_huge_imgs(a, K.t()) q = c * torch.prod((Ka) ** weights, dim=1) if debiased: Kc = convol_imgs(c, K.t()) c = (c * q / Kc) ** 0.5 Q = q[:, None, :, :] b = Q / Ka Kb = convol_huge_imgs(b, K) if torch.isnan(q).any(): warnings.warn("Numerical Errors ! Stopped early in debiased = %s" % debiased) break with torch.no_grad(): err = abs(q - qold).max() if err < tol and ii > 5: break if ii == maxiter - 1: warnings.warn("*** Maxiter reached ! err = {} ***".format(err)) return q
453c40ed988d4fe86dc202f816c5eb3bb6cbd452
3,641,707
import logging def syllable_fingerprint(word): """ Use the pronuncation dict to map the potential syllable stress patterns of a word to a ternary string "fingerprint" 0 is a syllable that must be unstressed 1 is a syllable that must be stressed x is a syllable that may be stressed or unstressed e.g. python => 10 pronunciation => 0x010 """ stresses = get_syllable_stress(word) if not stresses: raise ValueError(f'Found no options for word {word}') if len(stresses) == 1: return stresses.pop() syllables = len(list(stresses)[0]) if not all(len(s) == syllables for s in stresses): logging.debug('Multiple syllables found') logging.debug('%s, %s', word, stresses) return stresses.pop() # lol just pick one. TODO fp = [] for i in range(syllables): if all(s[i] == '1' for s in stresses): fp.append('1') elif all(s[i] == '0' for s in stresses): fp.append('0') else: fp.append('x') return ''.join(fp)
7acce68ee686c5d5dbfc06eea00a95f7ae214ac9
3,641,708
def logistic_predict(weights, data): """ Compute the probabilities predicted by the logistic classifier. Note: N is the number of examples and M is the number of features per example. Inputs: weights: (M+1) x 1 vector of weights, where the last element corresponds to the bias (intercepts). data: N x M data matrix where each row corresponds to one data point. Outputs: y: :N x 1 vector of probabilities. This is the output of the classifier. """ z = np.dot(data, weights[:len(data[0])]) y = sigmoid(z) return y
52c2ff3ed4b854de645b2252b4949b4a7a68bda1
3,641,709
def score_matrix(motifs, k): """returns matrix score formed from motifs""" nucleotides = {'A': [0]*k, 'T': [0]*k, 'C': [0]*k, 'G': [0]*k} for motif in motifs: for index, nucleotide in enumerate(motif): nucleotides[nucleotide][index] = nucleotides[nucleotide][index] + 1 i = 0 matrix_score = 0 while i < k: output = [] column_score = 0 for key in nucleotides: output.append(nucleotides[key][i]) max_consumed = False max_item = max(output) for item in output: if item == max_item: if not max_consumed: max_consumed = True continue else: column_score = column_score + item else: column_score = column_score+item matrix_score = matrix_score + column_score i = i + 1 return matrix_score
ce9f7b770ce75d4e872da7b3c9b4fa3fbcd1e900
3,641,710
def log_loss(y_true, dist_pred, sample=True, return_std=False): """ Log loss Parameters ---------- y_true: np.array The true labels dist_pred: ProbabilisticEstimator.Distribution The predicted distribution sample: boolean, default=True If true, loss will be averaged across the sample return_std: boolean, default=False If true, the standard deviation of the loss sample will be returned Returns ------- np.array Loss (with standard deviation if ``return_std`` is True) """ pdf = dist_pred.pdf(y_true) loss = -np.log(pdf) if sample: return sample_loss(loss, return_std) return loss
0f3d19111593441011cfb1e532be50a19d423390
3,641,711
import scipy def matrix_pencil_method_old(data, p, noise_level=None, verbose=1, **kwargs): """ Older impleentation of the matrix pencil method with pencil p on given data to extract energy levels. Parameters ---------- data -- lists of Obs, where the nth entry is considered to be the correlation function at x0=n+offset. p -- matrix pencil parameter which corresponds to the number of energy levels to extract. higher values for p can help decreasing noise. noise_level -- If this argument is not None an additional prefiltering via singular value decomposition is performed in which all singular values below 10^(-noise_level) times the largest singular value are discarded. This increases the computation time. verbose -- if larger than zero details about the noise filtering are printed to stdout (default 1) """ n_data = len(data) if n_data <= p: raise Exception('The pencil p has to be smaller than the number of data samples.') matrix = scipy.linalg.hankel(data[:n_data - p], data[n_data - p - 1:]) @ np.identity(p + 1) if noise_level is not None: u, s, vh = svd(matrix) s_values = np.vectorize(lambda x: x.value)(s) if verbose > 0: print('Singular values: ', s_values) digit = np.argwhere(s_values / s_values[0] < 10.0**(-noise_level)) if digit.size == 0: digit = len(s_values) else: digit = int(digit[0]) if verbose > 0: print('Consider only', digit, 'out of', len(s), 'singular values') new_matrix = u[:, :digit] * s[:digit] @ vh[:digit, :] y1 = new_matrix[:, :-1] y2 = new_matrix[:, 1:] else: y1 = matrix[:, :-1] y2 = matrix[:, 1:] # Moore–Penrose pseudoinverse pinv_y1 = pinv(y1) # Note: Automatic differentiation of eig is implemented in the git of autograd # but not yet released to PyPi (1.3). The code is currently part of pyerrors e = eig((pinv_y1 @ y2), **kwargs) energy_levels = -np.log(np.abs(e)) return sorted(energy_levels, key=lambda x: abs(x.value))
4bcb435b3b16b153d0d1f1689f542df1fdc74ca8
3,641,712
def ext_sum(text, ratio=0.8): """ Generate extractive summary using BERT model INPUT: text - str. Input text ratio - float. Enter a ratio between 0.1 - 1.0 [default = 0.8] (ratio = summary length / original text length) OUTPUT: summary - str. Generated summary """ bert_model = Summarizer() summary = bert_model(text, ratio=ratio) return summary
99285d08425340f70984ce0645efdbaaa3e9072a
3,641,713
def khinalug_input_normal(field, text): """ Prepare a string from one of the query fields for subsequent processing: replace common shortcuts with valid Khinalug characters. """ if field not in ('wf', 'lex', 'lex2', 'trans_ru', 'trans_ru2'): return text text = text.replace('c1_', 'č̄') text = text.replace('c1\'', 'č̣') text = text.replace('7', 'ˁ') text = text.replace('g1', 'ǧ') text = text.replace('s1', 'š') text = text.replace('z1', 'ž') text = text.replace('c1', 'č') text = text.replace('j1', 'ǯ') text = text.replace('a1', 'ä') text = text.replace('u1', 'ü') text = text.replace('o1', 'ö') text = text.replace('i1', 'ı') text = text.replace('k_', 'k̄') text = text.replace('t_', 't̄') text = text.replace('q_', 'q̄') text = text.replace('c_', 'c̄') text = text.replace('c\'', 'c̣') text = text.replace('k\'', 'ḳ') text = text.replace('q\'', 'q̇') text = text.replace('x\'', 'x̣') text = text.replace('t\'', 'ṭ') text = text.replace('h\'', 'ḥ') return text
b9b9413ae461b6a03aa8c0db4396658dbe242c91
3,641,714
from typing import List from typing import Dict from typing import Any def _shift_all_classes(classes_list: List[ndarray], params_dict: Dict[str, Any]): """Shift the locale of all classes. Args: classes_list: List of classes as numpy arrays. params_dict: Dict including the shift values for all classes. Returns: List of shifted classes. """ classes_df = pd.DataFrame() shifted_classes = [] # shift all classes for generated_class, shift in zip(classes_list, params_dict["all_shifts"]): # shift class data and exclude the label from shifting label = generated_class[:, 0].reshape(-1, 1) shifted_class_data = generated_class[:, 1:] + shift classes_df["mean_" + str(shift)] = shifted_class_data.flatten() labeled_shifted_class = np.hstack((label, shifted_class_data)) assert labeled_shifted_class[:, 0].all() == label.all() shifted_classes.append(labeled_shifted_class) return shifted_classes, classes_df
2176e5f4da6aecc25386e978182887fb8568faaa
3,641,715
def fully_connected_layer(tensor, size=None, weight_init=None, bias_init=None, name=None): """Fully connected layer. Parameters ---------- tensor: tf.Tensor Input tensor. size: int Number of output nodes for this layer. weight_init: float Weight initializer. bias_init: float Bias initializer. name: str Name for this op. Defaults to 'fully_connected'. Returns ------- tf.Tensor: A new tensor representing the output of the fully connected layer. Raises ------ ValueError If input tensor is not 2D. """ if weight_init is None: num_features = tensor.get_shape()[-1].value weight_init = tf.truncated_normal([num_features, size], stddev=0.01) if bias_init is None: bias_init = tf.zeros([size]) with tf.name_scope(name, 'fully_connected', [tensor]): w = tf.Variable(weight_init, name='w', dtype=tf.float32) b = tf.Variable(bias_init, name='b', dtype=tf.float32) return tf.nn.xw_plus_b(tensor, w, b)
605cc52e8c5262aead6cb758488940e7661286b1
3,641,716
from pathlib import Path def fetch_osborne_magnetic(version): """ Magnetic airborne survey of the Osborne Mine and surroundings, Australia This is a section of a survey acquired in 1990 by the Queensland Government, Australia. The line data have approximately 80 m terrain clearance and 200 m line spacing. Total field anomalies are in nT. The flight height was calculated by summing the terrain clearance to interpolated values of SRTM (referenced to sea level). The section contains the total field magnetic anomalies associated with the Osborne Mine, Lightning Creek sill complex, and the Brumby prospect. There are ~990,000 measurements in total with 5 columns available: flight line number, longitude, latitude (geodetic), height (orthometric), and the total field magnetic anomaly. **Format:** CSV with xz (lzma) compression. **Load with:** :func:`pandas.read_csv` **Original source:** `Geophysical Acquisition & Processing Section 2019. MIM Data from Mt Isa Inlier, QLD (P1029), magnetic line data, AWAGS levelled. Geoscience Australia, Canberra <http://pid.geoscience.gov.au/dataset/ga/142419>`__ **Original license:** CC-BY **Versions:** * `1 <https://github.com/fatiando-data/osborne-magnetic/releases/tag/v1>`_ (doi:`10.5281/zenodo.5882209 <https://doi.org/10.5281/zenodo.5882209>`__) Parameters ---------- version : int The data version to fetch. See the available versions above. Returns ------- fname : :class:`pathlib.Path` Path to the downloaded file on disk. """ _check_versions(version, allowed={1}, name="Osborne mine magnetic") fname = "osborne-magnetic.csv.xz" return Path(_repository(fname, version).fetch(fname))
2a0575557a18ca4442f0cf21ee51ccd94d316ffa
3,641,717
from sympy.core.symbol import Symbol from sympy.printing.pycode import MpmathPrinter as Printer from sympy.printing.pycode import SciPyPrinter as Printer from sympy.printing.pycode import NumPyPrinter as Printer from sympy.printing.lambdarepr import NumExprPrinter as Printer from sympy.printing.tensorflow import TensorflowPrinter as Printer from sympy.printing.pycode import SymPyPrinter as Printer from sympy.printing.pycode import PythonCodePrinter as Printer def lambdify(args, expr, modules=None, printer=None, use_imps=True, dummify=False): """ Returns an anonymous function for fast calculation of numerical values. If not specified differently by the user, ``modules`` defaults to ``["scipy", "numpy"]`` if SciPy is installed, ``["numpy"]`` if only NumPy is installed, and ``["math", "mpmath", "sympy"]`` if neither is installed. That is, SymPy functions are replaced as far as possible by either ``scipy`` or ``numpy`` functions if available, and Python's standard library ``math``, or ``mpmath`` functions otherwise. To change this behavior, the "modules" argument can be used. It accepts: - the strings "math", "mpmath", "numpy", "numexpr", "scipy", "sympy", "tensorflow" - any modules (e.g. math) - dictionaries that map names of sympy functions to arbitrary functions - lists that contain a mix of the arguments above, with higher priority given to entries appearing first. .. warning:: Note that this function uses ``eval``, and thus shouldn't be used on unsanitized input. Arguments in the provided expression that are not valid Python identifiers are substitued with dummy symbols. This allows for applied functions (e.g. f(t)) to be supplied as arguments. Call the function with dummify=True to replace all arguments with dummy symbols (if `args` is not a string) - for example, to ensure that the arguments do not redefine any built-in names. For functions involving large array calculations, numexpr can provide a significant speedup over numpy. Please note that the available functions for numexpr are more limited than numpy but can be expanded with implemented_function and user defined subclasses of Function. If specified, numexpr may be the only option in modules. The official list of numexpr functions can be found at: https://github.com/pydata/numexpr#supported-functions In previous releases ``lambdify`` replaced ``Matrix`` with ``numpy.matrix`` by default. As of release 1.0 ``numpy.array`` is the default. To get the old default behavior you must pass in ``[{'ImmutableDenseMatrix': numpy.matrix}, 'numpy']`` to the ``modules`` kwarg. >>> from sympy import lambdify, Matrix >>> from sympy.abc import x, y >>> import numpy >>> array2mat = [{'ImmutableDenseMatrix': numpy.matrix}, 'numpy'] >>> f = lambdify((x, y), Matrix([x, y]), modules=array2mat) >>> f(1, 2) [[1] [2]] Usage ===== (1) Use one of the provided modules: >>> from sympy import sin, tan, gamma >>> from sympy.abc import x, y >>> f = lambdify(x, sin(x), "math") Attention: Functions that are not in the math module will throw a name error when the function definition is evaluated! So this would be better: >>> f = lambdify(x, sin(x)*gamma(x), ("math", "mpmath", "sympy")) (2) Use some other module: >>> import numpy >>> f = lambdify((x,y), tan(x*y), numpy) Attention: There are naming differences between numpy and sympy. So if you simply take the numpy module, e.g. sympy.atan will not be translated to numpy.arctan. Use the modified module instead by passing the string "numpy": >>> f = lambdify((x,y), tan(x*y), "numpy") >>> f(1, 2) -2.18503986326 >>> from numpy import array >>> f(array([1, 2, 3]), array([2, 3, 5])) [-2.18503986 -0.29100619 -0.8559934 ] In the above examples, the generated functions can accept scalar values or numpy arrays as arguments. However, in some cases the generated function relies on the input being a numpy array: >>> from sympy import Piecewise >>> from sympy.utilities.pytest import ignore_warnings >>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "numpy") >>> with ignore_warnings(RuntimeWarning): ... f(array([-1, 0, 1, 2])) [-1. 0. 1. 0.5] >>> f(0) Traceback (most recent call last): ... ZeroDivisionError: division by zero In such cases, the input should be wrapped in a numpy array: >>> with ignore_warnings(RuntimeWarning): ... float(f(array([0]))) 0.0 Or if numpy functionality is not required another module can be used: >>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "math") >>> f(0) 0 (3) Use a dictionary defining custom functions: >>> def my_cool_function(x): return 'sin(%s) is cool' % x >>> myfuncs = {"sin" : my_cool_function} >>> f = lambdify(x, sin(x), myfuncs); f(1) 'sin(1) is cool' Examples ======== >>> from sympy.utilities.lambdify import implemented_function >>> from sympy import sqrt, sin, Matrix >>> from sympy import Function >>> from sympy.abc import w, x, y, z >>> f = lambdify(x, x**2) >>> f(2) 4 >>> f = lambdify((x, y, z), [z, y, x]) >>> f(1,2,3) [3, 2, 1] >>> f = lambdify(x, sqrt(x)) >>> f(4) 2.0 >>> f = lambdify((x, y), sin(x*y)**2) >>> f(0, 5) 0.0 >>> row = lambdify((x, y), Matrix((x, x + y)).T, modules='sympy') >>> row(1, 2) Matrix([[1, 3]]) Tuple arguments are handled and the lambdified function should be called with the same type of arguments as were used to create the function.: >>> f = lambdify((x, (y, z)), x + y) >>> f(1, (2, 4)) 3 A more robust way of handling this is to always work with flattened arguments: >>> from sympy.utilities.iterables import flatten >>> args = w, (x, (y, z)) >>> vals = 1, (2, (3, 4)) >>> f = lambdify(flatten(args), w + x + y + z) >>> f(*flatten(vals)) 10 Functions present in `expr` can also carry their own numerical implementations, in a callable attached to the ``_imp_`` attribute. Usually you attach this using the ``implemented_function`` factory: >>> f = implemented_function(Function('f'), lambda x: x+1) >>> func = lambdify(x, f(x)) >>> func(4) 5 ``lambdify`` always prefers ``_imp_`` implementations to implementations in other namespaces, unless the ``use_imps`` input parameter is False. Usage with Tensorflow module: >>> import tensorflow as tf >>> f = Max(x, sin(x)) >>> func = lambdify(x, f, 'tensorflow') >>> result = func(tf.constant(1.0)) >>> result # a tf.Tensor representing the result of the calculation <tf.Tensor 'Maximum:0' shape=() dtype=float32> >>> sess = tf.Session() >>> sess.run(result) # compute result 1.0 >>> var = tf.Variable(1.0) >>> sess.run(tf.global_variables_initializer()) >>> sess.run(func(var)) # also works for tf.Variable and tf.Placeholder 1.0 >>> tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]]) # works with any shape tensor >>> sess.run(func(tensor)) array([[ 1., 2.], [ 3., 4.]], dtype=float32) """ # If the user hasn't specified any modules, use what is available. if modules is None: try: _import("scipy") except ImportError: try: _import("numpy") except ImportError: # Use either numpy (if available) or python.math where possible. # XXX: This leads to different behaviour on different systems and # might be the reason for irreproducible errors. modules = ["math", "mpmath", "sympy"] else: modules = ["numpy"] else: modules = ["scipy", "numpy"] # Get the needed namespaces. namespaces = [] # First find any function implementations if use_imps: namespaces.append(_imp_namespace(expr)) # Check for dict before iterating if isinstance(modules, (dict, str)) or not hasattr(modules, '__iter__'): namespaces.append(modules) else: # consistency check if _module_present('numexpr', modules) and len(modules) > 1: raise TypeError("numexpr must be the only item in 'modules'") namespaces += list(modules) # fill namespace with first having highest priority namespace = {} for m in namespaces[::-1]: buf = _get_namespace(m) namespace.update(buf) if hasattr(expr, "atoms"): #Try if you can extract symbols from the expression. #Move on if expr.atoms in not implemented. syms = expr.atoms(Symbol) for term in syms: namespace.update({str(term): term}) if printer is None: if _module_present('mpmath', namespaces): elif _module_present('scipy', namespaces): elif _module_present('numpy', namespaces): elif _module_present('numexpr', namespaces): elif _module_present('tensorflow', namespaces): elif _module_present('sympy', namespaces): else: user_functions = {} for m in namespaces[::-1]: if isinstance(m, dict): for k in m: user_functions[k] = k printer = Printer({'fully_qualified_modules': False, 'inline': True, 'allow_unknown_functions': True, 'user_functions': user_functions}) # Get the names of the args, for creating a docstring if not iterable(args): args = (args,) names = [] # Grab the callers frame, for getting the names by inspection (if needed) callers_local_vars = inspect.currentframe().f_back.f_locals.items() for n, var in enumerate(args): if hasattr(var, 'name'): names.append(var.name) else: # It's an iterable. Try to get name by inspection of calling frame. name_list = [var_name for var_name, var_val in callers_local_vars if var_val is var] if len(name_list) == 1: names.append(name_list[0]) else: # Cannot infer name with certainty. arg_# will have to do. names.append('arg_' + str(n)) imp_mod_lines = [] for mod, keys in (getattr(printer, 'module_imports', None) or {}).items(): for k in keys: if k not in namespace: imp_mod_lines.append("from %s import %s" % (mod, k)) for ln in imp_mod_lines: exec_(ln, {}, namespace) # Provide lambda expression with builtins, and compatible implementation of range namespace.update({'builtins':builtins, 'range':range}) # Create the function definition code and execute it funcname = '_lambdifygenerated' if _module_present('tensorflow', namespaces): funcprinter = _TensorflowEvaluatorPrinter(printer, dummify) else: funcprinter = _EvaluatorPrinter(printer, dummify) funcstr = funcprinter.doprint(funcname, args, expr) funclocals = {} global _lambdify_generated_counter filename = '<lambdifygenerated-%s>' % _lambdify_generated_counter _lambdify_generated_counter += 1 c = compile(funcstr, filename, 'exec') exec_(c, namespace, funclocals) # mtime has to be None or else linecache.checkcache will remove it linecache.cache[filename] = (len(funcstr), None, funcstr.splitlines(True), filename) func = funclocals[funcname] # Apply the docstring sig = "func({0})".format(", ".join(str(i) for i in names)) sig = textwrap.fill(sig, subsequent_indent=' '*8) expr_str = str(expr) if len(expr_str) > 78: expr_str = textwrap.wrap(expr_str, 75)[0] + '...' func.__doc__ = ( "Created with lambdify. Signature:\n\n" "{sig}\n\n" "Expression:\n\n" "{expr}\n\n" "Source code:\n\n" "{src}\n\n" "Imported modules:\n\n" "{imp_mods}" ).format(sig=sig, expr=expr_str, src=funcstr, imp_mods='\n'.join(imp_mod_lines)) return func
cf7b65c503d1a7873f0ddacfb3f6aa841340ee0e
3,641,718
def _matches(o, pattern): """Match a pattern of types in a sequence.""" if not len(o) == len(pattern): return False comps = zip(o,pattern) return all(isinstance(obj,kind) for obj,kind in comps)
e494016affa28e9018f337cb7184e96858701208
3,641,719
import csv from io import StringIO def excl_import_route(): """import exclustions from csv""" form = ExclImportForm() if form.validate_on_submit(): imported = [] try: for row in csv.DictReader(StringIO(form.data.data), EXPORT_FIELDNAMES, quoting=csv.QUOTE_MINIMAL): imported.append(Excl(family=ExclFamily(row['family']), value=row['value'], comment=row['comment'])) if imported: if form.replace.data: db.session.query(Excl).delete() for tmp in imported: db.session.add(tmp) db.session.commit() return redirect(url_for('scheduler.excl_list_route')) except (csv.Error, ValueError, SQLAlchemyError, psycopg2.Error) as e: db.session.rollback() current_app.logger.exception(e) flash('Import failed', 'error') return render_template('scheduler/excl/import.html', form=form)
780c5646b2a5771691c538cb71bfde390cd9b847
3,641,720
def receiver(signal, **kwargs): """ A decorator for connecting receivers to signals. Used by passing in the signal and keyword arguments to connect:: @receiver(signal_object, sender=sender) def signal_receiver(sender, **kwargs): ... """ def _decorator(func): signal.connect(func, **kwargs) return func return _decorator
dbbde0855b2a657adaff9fa688aa158053e46579
3,641,721
from typing import final def create_new_connected_component(dict_projections, dict_cc, dict_nodes_cc, g_list_, set_no_proj, initial_method, params, i, file_tags=None): """ If needed, create new connect component and update wanted dicts. :param dict_projections: Embedding dict :param dict_cc: Dict where keys are the number of the connected component and values are list of nodes that are in this cc. :param dict_nodes_cc: Dict where keys are nodes and values is the number representing the cc they are in. :param g_list_: List of graphs for each time stamp. :param set_no_proj: Set of nodes that are currently not in the embedding because they create together a new cc. :param initial_method: State-of-the-art method to embed them with. :param params: Dict of parameters corresponding to the initial method. :param i: Index of the time stamp :param file_tags: If GCN GEA is used, one needs to provide file of tags :return: Updated dict_cc, dict_nodes_cc, and embedding dictionary. """ new_cc = create_new_cc(list(set_no_proj), g_list_[i + 1], to_undirected=True) dict_cc, dict_nodes_cc = add_new_cc(new_cc, dict_nodes_cc, dict_cc) if new_cc.number_of_nodes() < params["dimension"] and initial_method == "HOPE": dim = params["dimension"] initial_method = "node2vec" params = {"dimension": dim, "walk_length": 80, "num_walks": 16, "workers": 2} _, dict_proj_new_cc, _ = final(new_cc, initial_method, params, file_tags=file_tags) z = {**dict_projections, **dict_proj_new_cc}.copy() return dict_cc, dict_nodes_cc, z
18b8c046e78f17b125bf85250953c9d7a656892a
3,641,722
def laguerre(x, k, c): """Generalized Laguerre polynomials. See `help(_gmw.morsewave)`. LAGUERRE is used in the computation of the generalized Morse wavelets and uses the expression given by Olhede and Walden (2002), "Generalized Morse Wavelets", Section III D. """ x = np.atleast_1d(np.asarray(x).squeeze()) assert x.ndim == 1 y = np.zeros(x.shape) for m in range(k + 1): # Log of gamma function much better ... trick from Maltab's ``beta'' fact = np.exp(gammaln_fn(k + c + 1) - gammaln_fn(c + m + 1) - gammaln_fn(k - m + 1)) y += (-1)**m * fact * x**m / gamma_fn(m + 1) return y
4eac2e1cbd9fd2097763b56129873aa6af4e8419
3,641,723
def EGshelfIIseas2km_ERAI(daily = False, gridpath = '/home/idies/workspace/OceanCirculation/exp_ERAI/grid_glued.nc', kppspath = '/home/idies/workspace/OceanCirculation/exp_ERAI/kpp_state_glued.nc', fldspath = '/home/idies/workspace/OceanCirculation/exp_ERAI/result_*/output_glued/*.*_glued.nc', dailypath = '/home/idies/workspace/OceanCirculation/exp_ERAI/result_*/output_glued/daily/*.*_glued.nc'): """ High-resolution (~2km) numerical simulation covering the east Greenland shelf (EGshelf), and the Iceland and Irminger Seas (IIseas). Surface forcing based on the global atmospheric reanalysis ERA-Interim (ERAI). Model setup: [AHPM17]_. Parameters ---------- daily: bool If True, include diagnostics stored with daily resolution (SI, oce). Return everything with daily time frequency (instead of 6H). gridpath: str grid path. Default is SciServer's path. kppspath: str kpp_state path. Default is SciServer's path. fldspath: str Fields path (use * for multiple files). Default is SciServer's path. dailypath: str Daily fields path (use * for multiple files). Default is SciServer's path. Returns ------- od: OceanDataset References ---------- .. [AHPM17] Almansi, M., T.W. Haine, R.S. Pickart, M.G. Magaldi, R. Gelderloos, and D. Mastropole, 2017: High-Frequency Variability in the Circulation and Hydrography of the Denmark Strait Overflow from a High-Resolution Numerical Model. J. Phys. Oceanogr., 47, 2999–3013, https://doi.org/10.1175/JPO-D-17-0129.1 """ # Check input if not isinstance(daily, bool): raise TypeError('`daily` must be a bool') if not isinstance(gridpath, str): raise TypeError('`gridpath` must be a str') if not isinstance(kppspath, str): raise TypeError('`kppspath` must be a str') if not isinstance(fldspath, str): raise TypeError('`fldspath` must be a str') if not isinstance(dailypath, str): raise TypeError('`dailypath` must be a str') # Message name = 'EGshelfIIseas2km_ERAI' description = 'High-resolution (~2km) numerical simulation covering the east Greenland shelf (EGshelf), and the Iceland and Irminger Seas (IIseas). Citation: Almansi et al., 2017 - JPO.' print('Opening [{}]:\n[{}].'.format(name, description)) # Open, concatenate, and merge gridset = _xr.open_dataset(gridpath, drop_variables = ['RC', 'RF', 'RU', 'RL'], chunks={}) kppset = _xr.open_dataset(kppspath, chunks={}) fldsset = _xr.open_mfdataset(fldspath, drop_variables = ['diag_levels','iter']) ds = _xr.merge([gridset, kppset, fldsset]) # Read daily files and resample if daily: # Open, and concatenate daily files dailyset = _xr.open_mfdataset(dailypath, drop_variables = ['diag_levels','iter']) # Resample and merge ds = _xr.merge([ds.isel(T=slice(0,None,4)), dailyset]) # Squeeze 1D Zs and create Z, Zp1, Zu, and Zl only ds = ds.rename({'Z': 'Ztmp'}) ds = ds.rename({'Ztmp': 'Z', 'Zmd000216': 'Z'}) ds = ds.squeeze('Zd000001') for dim in ['Z', 'Zp1', 'Zu', 'Zl']: ds[dim].attrs.update({'positive': 'up'}) # Rename time ds = ds.rename({'T': 'time'}) # Add attribute (snapshot vs average) for var in [var for var in ds.variables if ('time' in ds[var].coords and var!='time')]: ds[var].attrs.update({'original_output': 'snapshot'}) # Add missing names ds['U'].attrs['long_name'] = 'Zonal Component of Velocity' ds['V'].attrs['long_name'] = 'Meridional Component of Velocity' ds['W'].attrs['long_name'] = 'Vertical Component of Velocity' ds['phiHyd'].attrs['long_name'] = 'Hydrostatic Pressure Pot.(p/rho) Anomaly' ds['phiHydLow'].attrs['long_name'] = 'Depth integral of (rho -rhoconst) * g * dz / rhoconst' # Add missing units for varName in ['drC', 'drF', 'dxC', 'dyC', 'dxF', 'dyF', 'dxG', 'dyG', 'dxV', 'dyU', 'R_low']: ds[varName].attrs['units'] = 'm' for varName in ['rA', 'rAw', 'rAs', 'rAz']: ds[varName].attrs['units'] = 'm^2' for varName in ['fCori', 'fCoriG']: ds[varName].attrs['units'] = '1/s' for varName in ['Ro_surf']: ds[varName].attrs['units'] = 'kg/m^3' for varName in ['Depth']: ds[varName].attrs['units'] = 'm' for varName in ['HFacC', 'HFacW', 'HFacS']: ds[varName].attrs['units'] = '-' for varName in ['S']: ds[varName].attrs['units'] = 'psu' for varName in ['phiHyd', 'phiHydLow']: ds[varName].attrs['units'] = 'm^2/s^2' # Consistent chunkink chunks = {**ds.sizes, 'time': ds['Temp'].chunks[ds['Temp'].dims.index('time')]} ds = ds.chunk(chunks) # Initialize OceanDataset od = _OceanDataset(ds).import_MITgcm_rect_nc() od = od.set_name(name).set_description(description) od = od.set_parameters({'rSphere' : 6.371E3, # km None: cartesian 'eq_state' : 'jmd95', # jmd95, mdjwf 'rho0' : 1027, # kg/m^3 TODO: None: compute volume weighted average 'g' : 9.81, # m/s^2 'eps_nh' : 0, # 0 is hydrostatic 'omega' : 7.292123516990375E-05, # rad/s 'c_p' : 3.986E3, # specific heat [J/kg/K] 'tempFrz0' : 9.01E-02, # freezing temp. of sea water (intercept) 'dTempFrz_dS': -5.75E-02, # freezing temp. of sea water (slope) }) od = od.set_projection('Mercator', central_longitude=float(od.dataset['X'].mean().values), min_latitude=float(od.dataset['Y'].min().values), max_latitude=float(od.dataset['Y'].max().values), globe=None, latitude_true_scale=float(od.dataset['Y'].mean().values)) return od
89b70cebbdecdde6d38310b1d0aa6cfec495ae9b
3,641,724
from typing import Optional from typing import Dict import os import time import logging import pickle import json def generate_pkl_features_from_fasta( fasta_path: str, name: str, output_dir: str, data_pipeline: DataPipeline, timings: Optional[Dict[str, float]] = None): """Predicts structure using Uni-Fold for the given sequence.""" if timings is None: timings = {} # Check output dir. output_dir = os.path.join(output_dir, name) # TODO: temp change for the feature generation, remember to fix this if not os.path.exists(output_dir): os.makedirs(output_dir) else: if os.path.exists(os.path.join(output_dir, "timings.json")): print(f"skip {fasta_path}") return msa_output_dir = os.path.join(output_dir, 'msas') if not os.path.exists(msa_output_dir): os.makedirs(msa_output_dir) # Get features. pt = time.time() logging.info(f"processing file {fasta_path}...") features = data_pipeline.process( input_fasta_path=fasta_path, msa_output_dir=msa_output_dir) timings['data_pipeline'] = time.time() - pt # Write out features as a pickled dictionary. features_output_path = os.path.join(output_dir, 'features.pkl') with open(features_output_path, 'wb') as f: pickle.dump(features, f, protocol=4) logging.info(f"process file {fasta_path} done.") # Save timings. timings_output_path = os.path.join(output_dir, 'timings.json') with open(timings_output_path, 'w') as fp: json.dump(timings, fp, indent=4) return features
dfd166f8af954e4bac22cb893c102c0773ece27b
3,641,725
import math def find_all_combinations(participants, team_sizes): """ Finds all possible experience level combinations for specific team sizes with duplicated experience levels (e.g. (1, 1, 2)) Returns a list of tuples representing all the possible combinations """ num_teams = len(team_sizes) participant_levels = [LMS_LEVELS.get(participant.current_lms_module) or 1 for participant in participants] hackathon_level = sum(participant_levels) team_level = math.floor(hackathon_level / num_teams) missing = hackathon_level - (num_teams * team_level) team_sizes = list(set(team_sizes)) combos = [] for team_size in team_sizes: combos += find_group_combinations(participant_levels, team_size, team_level, missing) # to remove differently sorted combinations with the same elements sorted_combinations = [sorted(combo) for combo in combos] combos_without_dupes = list(set(set(tuple(i) for i in sorted_combinations))) return combos_without_dupes
d3f4de9911a1fc427fc2e01433634ccf815f9183
3,641,726
from typing import Callable from typing import Any def debug_callback(callback: Callable[..., Any], effect: DebugEffect, *args, **kwargs): """Calls a stageable Python callback. `debug_callback` enables you to pass in a Python function that can be called inside of a staged JAX program. A `debug_callback` follows existing JAX transformation *pure* operational semantics, which are therefore unaware of side-effects. This means the effect could be dropped, duplicated, or potentially reordered in the presence of higher-order primitives and transformations. We want this behavior because we'd like `debug_callback` to be "innocuous", i.e. we want these primitives to change the JAX computation as little as possible while revealing as much about them as possible, such as which parts of the computation are duplicated or dropped. Args: callback: A Python callable. effect: A `DebugEffect`. *args: The positional arguments to the callback. **kwargs: The positional arguments to the callback. Returns: The value of `callback(*args, **kwargs)`. """ if not isinstance(effect, DebugEffect): raise ValueError("Can only use `DebugEffect` effects in `debug_callback`") flat_args, in_tree = tree_util.tree_flatten((args, kwargs)) return debug_callback_p.bind(*flat_args, callback=callback, effect=effect, in_tree=in_tree)
8e95dc55fbf5fe26875e5905b565f6ee0d9b143b
3,641,727
def normalized_copy(data): """ Normalize timeseries data, using the maximum across all regions and timesteps. Parameters ---------- data : xarray Dataset Dataset with all non-time dependent variables removed Returns ------- ds : xarray Dataset Copy of `data`, with the absolute taken and normalized to 0-1 """ ds = data.copy(deep=True) # Work off a copy for var in ds.data_vars: # Each DataArray is indexed over a different subset of loc_techs, # so we find it in the list of dimensions loc_tech_dim = [i for i in ds[var].dims if 'loc_techs' in i][0] # For each technology, get the loc_techs which are relevant loc_tech_subsets = [ get_loc_techs(ds[loc_tech_dim].values, tech) for tech in set(i.split('::')[1] for i in ds[loc_tech_dim].values) ] # remove empty lists within the _techs list loc_tech_subsets = [i for i in loc_tech_subsets if i] # For each technology, divide all values by the maximum absolute value for loc_tech in loc_tech_subsets: ds[var].loc[{loc_tech_dim: loc_tech}] = abs( ds[var].loc[{loc_tech_dim: loc_tech}] / abs(ds[var].loc[{loc_tech_dim: loc_tech}]).max() ) return ds
cfcb94458deb6caa1125cfcf2904652900babc87
3,641,728
def _get_exception(ex: Exception) -> Exception: """Get exception cause/context from chained exceptions :param ex: chained exception :return: cause of chained exception if any """ if ex.__cause__: return ex.__cause__ elif ex.__context__: return ex.__context__ else: return ex
3f670dc237ebd865e31c7d0fd3719e2ea929de6d
3,641,729
from typing import Any from typing import Dict def recursive_normalizer(value: Any, **kwargs: Dict[str, Any]) -> Any: """ Prepare a structure for hashing by lowercasing all values and round all floats """ digits = kwargs.get("digits", 10) lowercase = kwargs.get("lowercase", True) if isinstance(value, (int, type(None))): pass elif isinstance(value, str): if lowercase: value = value.lower() elif isinstance(value, list): value = [recursive_normalizer(x, **kwargs) for x in value] elif isinstance(value, tuple): value = tuple(recursive_normalizer(x, **kwargs) for x in value) elif isinstance(value, dict): ret = {} for k, v in value.items(): if lowercase: k = k.lower() ret[k] = recursive_normalizer(v, **kwargs) value = ret elif isinstance(value, np.ndarray): if digits: # Round array value = np.around(value, digits) # Flip zeros value[np.abs(value) < 5 ** (-(digits + 1))] = 0 elif isinstance(value, float): if digits: value = round(value, digits) if value == -0.0: value = 0 if value == 0.0: value = 0 else: raise TypeError("Invalid type in KeywordSet ({type(value)}), only simple Python types are allowed.") return value
e274c3976405838054d7251fdca8520dc75c48fd
3,641,730
from typing import Set def rip_and_tear(context) -> Set: """Edge split geometry using specified angle or unique mesh settings. Also checks non-manifold geometry and hard edges. Returns set of colors that are used to color meshes.""" processed = set() angle_use_fixed = prefs.RenderFixedAngleUse # Angle fixed in radians angle_fixed = prefs.RenderFixedAngle precision = prefs.RenderPrecision # Colors are saved in format specified by render precision parameter # Totally white and totally black (and close to them) colors are prohibited colors = set() # Apply split_n_paint function to every object and unite resulting colors # colors.union(tuple(set(tuple([split_n_paint(context, colors, precision, obj, # angle_use_fixed, angle_fixed, processed) for obj in context.scene.objects # if obj.type == "MESH"])))) for obj in context.scene.objects: if obj.type == "MESH": if obj.data in processed or len(obj.data.polygons) == 0: processed.add(obj.data) else: colors.union( split_n_paint( context, colors, precision, obj, angle_use_fixed, angle_fixed, processed, ) ) return colors
6a67e9a90b4909c1aec8f7f784b2bc41750f5f79
3,641,731
def generate_primes(d): """Generate a set of all primes with d distinct digits.""" primes = set() for i in range(10**(d-1)+1, 10**d, 2): string = str(i) unique_string = "".join(set(string)) if len(string) == len(unique_string): # Check that all digits are unique if isprime(i): # Check that the number is prime primes.add(str(i)) return primes
4edf615165144f2ab6e5d12533adc4357d904506
3,641,732
def poinv(A, UPLO='L', workers=1, **kwargs): """ Compute the (multiplicative) inverse of symmetric/hermitian positive definite matrices, with broadcasting. Given a square symmetic/hermitian positive-definite matrix `a`, return the matrix `ainv` satisfying ``matrix_multiply(a, ainv) = matrix_multiply(ainv, a) = Identity matrix``. Parameters ---------- a : (..., M, M) array Symmetric/hermitian postive definite matrices to be inverted. UPLO : {'U', 'L'}, optional Specifies whether the calculation is done with the lower triangular part of the elements in `a` ('L', default) or the upper triangular part ('U'). workers : int, optional The number of parallel threads to use along gufunc loop dimension(s). If set to -1, the maximum number of threads (as returned by ``multiprocessing.cpu_count()``) are used. Returns ------- ainv : (..., M, M) array (Multiplicative) inverse of the `a` matrices. Notes ----- Numpy broadcasting rules apply. The inverse is computed using LAPACK routines _potrf, _potri For elements where the LAPACK routine fails, the result will be set to NaNs. Implemented for types single, double, csingle and cdouble. Numpy conversion rules apply. See Also -------- inv : compute the multiplicative inverse of general matrices. Examples -------- >>> a = np.array([[5, 3], [3, 5]]) >>> ainv = poinv(a) >>> np.allclose(matrix_multiply(a, ainv), np.eye(2)) True >>> np.allclose(matrix_multiply(ainv, a), np.eye(2)) True """ uplo_choices = ['U', 'L'] if UPLO not in uplo_choices: raise ValueError("Invalid UPLO argument '%s', valid values are: %s" % (UPLO, uplo_choices)) if 'L' == UPLO: gufunc = _impl.poinv_lo else: gufunc = _impl.poinv_up workers, orig_workers = _check_workers(workers) try: out = gufunc(A, **kwargs) finally: # restore original number of workers if workers != orig_workers: _impl.set_gufunc_threads(orig_workers) return out
ccba9b0fc518e0482c6ac647d56abe0e86d3409c
3,641,733
def gen_task3() -> np.ndarray: """Task 3: centre of cross or a plus sign.""" canv = blank_canvas() r, c = np.random.randint(GRID-2, size=2, dtype=np.int8) # Do we create a cross or a plus sign? syms = rand_syms(5) # a 3x3 sign has 2 symbols, outer and centre # syms = np.array([syms[0], syms[0], syms[1], syms[0], syms[0]]) if np.random.rand() < 0.5: # Let's do a plus rows, cols = [r, r+1, r+1, r+1, r+2], [c+1, c, c+1, c+2, c+1] else: # Let's do a cross rows, cols = [r, r, r+1, r+2, r+2], [c, c+2, c+1, c, c+2] canv[rows, cols] = syms return [3, syms[2]], canv
aba9e78cf4d042cacd8787a90275947ba603b37c
3,641,734
def init_susceptible_00(): """ Real Name: b'init Susceptible 00' Original Eqn: b'8e+06' Units: b'person' Limits: (None, None) Type: constant b'' """ return 8e+06
acc506bdea96b224f3627084bbee9e1a025bcff9
3,641,735
def spectrum_1D_scalar(data, dx, k_bin_num=100): """Calculates and returns the 2D spectrum for a 2D gaussian field of scalars, assuming isotropy of the turbulence Example: d=np.random.randn(101,101) dx=1 k_bins_weighted,spect3D=spectrum_2D_scalar(d, dx, k_bin_num=100) fig,ax=plt.subplots() ax.scatter(k_bins_weighted,spect3D) Arguments: data {(Mx,My) array of floats} -- 2D Gaussian field of scalars dx {float} -- grid spacing, assumed the same for all k_bin_num {int} -- number of bins in reciprocal space Returns: k_bins_weighted {array of floats} -- location of bin centres spect2D {array of floats} -- spectral power within bin """ #fourier transform data, shift to have zero freq at centre, find power f=np.fft.fftshift(np.fft.fftn(data)) fsqr=np.real(f*np.conj(f)) #calculate k vectors in each dimension Mx = data.shape[0] kx = np.fft.fftshift(np.fft.fftfreq(Mx, dx)) #calculate magnitude of k at each grid point K = np.sqrt(kx**2) #determine 1D spectrum of k, measured from origin #sort array in ascending k, and sort power by the same factor K_flat=K.flatten() fsqr_flat=fsqr.flatten() K_sort = K_flat[K_flat.argsort()] fsqr_sort = fsqr_flat[K_flat.argsort()] k_bin_width = K_sort.max()/k_bin_num k_bins = k_bin_width*np.arange(0,k_bin_num+1) k_bins_weighted = 0.5*(k_bins[:-1]+k_bins[1:]) spect1D=np.zeros_like(k_bins_weighted) for i in range(1,k_bin_num): upper=K_sort<i*k_bin_width # find only values below upper bound: BOOL lower=K_sort>=(i-1)*k_bin_width #find only values above upper bound: BOOL f_filtered=fsqr_sort[upper*lower] # use super numpy array filtering to select only those which match both! spect1D[i-1] = f_filtered.mean() #and take their mean. return k_bins_weighted, spect1D
88cdb3917d995fdf5d870ebfef3da90f8a4526fb
3,641,736
from operator import and_ def get_previous_cat(last_index: int) -> models.Cat: """Get previous cat. Args: last_index (int): View index of last seen cat. """ cat = models.Cat.query.filter(and_(models.Cat.disabled == False, models.Cat.index < last_index)).order_by( desc(models.Cat.index)).first() if cat is None: cat = get_last_cat() return cat
bd4b6511ab7b2f004b8539e46109ce128d7af4dd
3,641,737
def encode(file, res): """Encode an image. file is the path to the image, res is the resolution to use. Smaller res means smaller but lower quality output.""" out = buildHeader(res) pixels = getPixels(file, res) for i in range(0, len(pixels)): px = encodePixel(pixels[i]) out += px return out
07f9622bc222f91cb614165e432b4584374030a3
3,641,738
def process_image(img): """Resize, reduce and expand image. # Argument: img: original image. # Returns image: ndarray(64, 64, 3), processed image. """ image = cv2.resize(img, (416, 416), interpolation=cv2.INTER_CUBIC) image = np.array(image, dtype='float32') image /= 255. image = np.expand_dims(image, axis=0) return image
a139d0b82c82273de35d5e95b75cfd5f0e7635e3
3,641,739
def unnormalise_x_given_lims(x_in, lims): """ Scales the input x (assumed to be between [-1, 1] for each dim) to the lims of the problem """ # assert len(x_in) == len(lims) r = lims[:, 1] - lims[:, 0] x_orig = r * (x_in + 1) / 2 + lims[:, 0] return x_orig
1d4cd35f45ab8594e297eb64e152a481c01905cd
3,641,740
def scalar_projection(vector, onto): """ Compute the scalar projection of `vector` onto the vector `onto`. `onto` need not be normalized. """ if vector.ndim == 1: check(locals(), "vector", (3,)) check(locals(), "onto", (3,)) else: k = check(locals(), "vector", (-1, 3)) if onto.ndim == 1: check(locals(), "onto", (3,)) else: check(locals(), "onto", (k, 3)) return dot(vector, normalize(onto))
d5b27d46e6d498b22adb1b081b9c7143c636307b
3,641,741
def update_table(page_current, page_size, sort_by, filter, row_count_value): """ This is the collback function to update the datatable with the required filtered, sorted, extended values :param page_current: Current page number :param page_size: Page size :param sort_by: Column selected for sorting :param filter: Value entered in the filter :param row_count_value: Number of rows :param data: dataframe :return: processed data aand column values """ # If uploaded dataframe is not empty use that, otherwise # use the default dataframe if not df_up.empty: # df_temp = pd.read_json(data, orient='split') df_tab = df_up else: df_tab = df # Setting the page size as row count value if row_count_value is not None: page_size = row_count_value # Applying sort logic if len(sort_by): dff = df_tab.sort_values( sort_by[0]['column_id'], ascending=sort_by[0]['direction'] == 'asc', inplace=False ) else: # No sort is applied dff = df_tab # Filter logic if filter is not None: filtering_expressions = filter.split(' && ') for filter_part in filtering_expressions: col_name, operator, filter_value = split_filter_part(filter_part) if operator in ('eq', 'ne', 'lt', 'le', 'gt', 'ge'): # these operators match pandas series operator method names dff = dff.loc[getattr(dff[col_name], operator)(filter_value)] elif operator == 'contains': dff = dff.loc[dff[col_name].str.contains(filter_value)] elif operator == 'datestartswith': # this is a simplification of the front-end filtering logic, # only works with complete fields in standard format dff = dff.loc[dff[col_name].str.startswith(filter_value)] # if selected_cols is not None: # if len(selected_cols) != 0: # return dff[selected_cols].iloc[ # page_current * page_size:(page_current + 1) * page_size # ].to_dict('records') # else: # return dff.iloc[ # page_current * page_size:(page_current + 1) * page_size # ].to_dict('records') # else: # Rounding the float values to 2 decimal places dff = dff.round(2) return [dff.iloc[ page_current * page_size:(page_current + 1) * page_size ].to_dict('records'), [{"name": [i, j], "id": i} for i, j in zip(df_tab.columns, [str(x) for x in df_tab.dtypes.to_list()])]]
e2669f3b98546731974e5706b8af9f6d82b47550
3,641,742
import os def get_value(environment_variable, default_value=None): """Return an environment variable value.""" value_string = os.getenv(environment_variable) # value_string will be None if the variable is not defined. if value_string is None: return default_value # Exception for ANDROID_SERIAL. Sometimes serial can be just numbers, # so we don't want to it eval it. if environment_variable == 'ANDROID_SERIAL': return value_string # Evaluate the value of the environment variable with string fallback. return _eval_value(value_string)
db3bba6567b53cb103a38b56055cdbf554a59db3
3,641,743
def load_mooring_csv(csvfilename): """Loads data contained in an ONC mooring csv file :arg csvfilename: path to the csv file :type csvfilename: string :returns: data, lat, lon, depth - a pandas data frame object and the latitude, longitude and depth of the morning """ data_line, lat, lon, depth = find_metadata(csvfilename) # Look up headers headers = pd.read_csv(csvfilename, skiprows=data_line-2, nrows=1, header=None, skipinitialspace=True, dtype=str) headers = np.array(headers)[0] headers[0] = headers[0].replace('#', '') headers[0] = headers[0].replace('"', '') # Load data data = pd.read_csv(csvfilename, header=None, skiprows=data_line, names=headers, parse_dates=[0], low_memory=False) data = data.convert_objects(convert_numeric=True) data.rename(columns={'Time UTC (yyyy-mm-ddThh:mm:ss.fffZ)': 'time'}, inplace=True) return data, lat, lon, depth
a974e8607916e8fbc1b2beb7af8768d048aca8f0
3,641,744
def ez_execute(query, engine): """ Function takes a query string and an engine object and returns a dataframe on the condition that the sql query returned any rows. Arguments: query {str} -- a Sql query string engine {sqlalchemy.engine.base.Engine} -- a database engine object to run the query Returns: DataFrame -- A dataframe containing the results of executing the sql query with the specified engine """ data = pd.read_sql_query(query, engine) assert not data.empty, "Query returned no results" return data
c350d552f89dca550e766337fd7c071e138c43e6
3,641,745
def compute_lima_image(counts, background, kernel): """Compute Li & Ma significance and flux images for known background. Parameters ---------- counts : `~gammapy.maps.WcsNDMap` Counts image background : `~gammapy.maps.WcsNDMap` Background image kernel : `astropy.convolution.Kernel2D` Convolution kernel Returns ------- images : dict Dictionary containing result maps Keys are: significance, counts, background and excess See Also -------- gammapy.stats.significance """ # Kernel is modified later make a copy here kernel = deepcopy(kernel) kernel.normalize("peak") counts_conv = counts.convolve(kernel.array).data background_conv = background.convolve(kernel.array).data excess_conv = counts_conv - background_conv significance_conv = significance(counts_conv, background_conv, method="lima") return { "significance": counts.copy(data=significance_conv), "counts": counts.copy(data=counts_conv), "background": counts.copy(data=background_conv), "excess": counts.copy(data=excess_conv), }
8049f5a46ecf81459a64811aec917e72ec78a208
3,641,746
def get_list_from(matrix): """ Transforms capability matrix into list. """ only_valuable = [] counter = 1 for row_number in range(matrix.shape[0]): only_valuable += matrix[row_number, counter::].tolist() counter += 1 return only_valuable
bbfa52ff6a960d91d5aece948e9d416c3dcf0667
3,641,747
from typing import Tuple def get_user_bubble_text_for_justify_statement(statement: Statement, user: User, is_supportive: bool, _tn: Translator) -> Tuple[str, str]: """ Returns user text for a bubble when the user has to justify a statement and text for the add-position-container :param statement: The statement that shall be justified :param user: The user concerned :param is_supportive: Indicates whether the justification is too be supportive :param _tn: The default Translator :return: The bubble text to be shown as well as the text for the corresponding premise """ LOG.debug("%s is supportive? %s", statement, is_supportive) text = statement.get_text() if _tn.get_lang() == 'de': intro = _tn.get(_.itIsTrueThat if is_supportive else _.itIsFalseThat) add_premise_text = start_with_capital(intro) + ' ' + text else: add_premise_text = start_with_capital(text) + ' ' + _tn.get( _.holds if is_supportive else _.isNotAGoodIdea).strip() add_premise_text += ', ...' is_users_opinion = False if user: db_marked_statement = DBDiscussionSession.query(MarkedStatement).filter( MarkedStatement.statement_uid == statement.uid, MarkedStatement.author_uid == user.uid ).first() is_users_opinion = db_marked_statement is not None if is_users_opinion: intro = _tn.get(_.youHaveTheOpinionThat) outro = '' if is_supportive else ', ' + _tn.get(_.isNotAGoodIdea) text = intro.format(text) + outro return text, add_premise_text if is_supportive: intro = _tn.get(_.iAgreeWithX) if _tn.get_lang() == 'de' else '{}' else: intro = _tn.get(_.iDisagreeWith) text = intro.format(text) return text, add_premise_text
b303939794daada5b29d737270f474b380b5a192
3,641,748
def g1_constraint(x, constants, variables): """ Constraint that the initial value of tangent modulus > 0 at ep=0. :param np.ndarray x: Parameters of updated Voce-Chaboche model. :param dict constants: Defines the constants for the constraint. :param dict variables: Defines constraint values that depend on x. :return float: Value of the constraint in standard form. """ g2 = g_constraint(x, 0.) return g2
51d55a03b608cef2c3b5d87fe5cb56bf73326ae3
3,641,749
import sqlite3 def disconnect(connection_handler): """ Closes a current database connection :param connection_handler: the Connection object :return: 0 if success and -1 if an exception arises """ try: if connection_handler is not None: connection_handler.close() return 0 except sqlite3.Error as e: logger.error('Database disconnection error: {0}'.format(e)) return -1
aaba17e38ef48fe7e0be5ba825e114b6f5148433
3,641,750
def throw_out_nn_indices(ind, dist, Xind): """Throw out near neighbor indices that are used to embed the time series. This is an attempt to get around the problem of autocorrelation. Parameters ---------- ind : 2d array Indices to be filtered. dist : 2d array Distances to be filtered. Xind : int Indices to filter. Returns ------- filt_ind : 2d array Filtered indices. filt_dist : 2d array Filtered distances. """ ind_store = [] dist_store = [] #iterate through each row for i in range(len(Xind)): xrow = Xind[i] indrow = ind[i] distrow = dist[i] mask = np.ones(len(indrow),dtype=bool) for val in xrow: mask[indrow == val] = False ind_store.append( indrow[mask] ) dist_store.append(distrow[mask]) #keep up to the shortest mask. This is so that we can vstack them ind_len = min( [len(m) for m in ind_store] ) #make all lists the same size for concatenation ind_store = [m[:ind_len] for m in ind_store] dist_store = [m[:ind_len] for m in dist_store] ind_store = np.vstack(ind_store) dist_store = np.vstack(dist_store) return dist_store, ind_store
638fb43ac484ffa0e15e3c19a5b643aae5a749d9
3,641,751
import math def lead_angle(target_disp,target_speed,target_angle,bullet_speed): """ Given the displacement, speed and direction of a moving target, and the speed of a projectile, returns the angle at which to fire in order to intercept the target. If no such angle exists (for example if the projectile is slower than the target), then None is returned. """ """ One can imagine the gun, target and point of target collision at some time t forming a triangle --o-.-.-.--- St collision of which one side has length St*t where St is . /' ' ' ' . . . o the target speed, and another has length Sb*t . /z . . where Sb is the bullet speed. We can eliminate . . . t by scaling all sides of the triangle equally . A. . leaving one side St and another Sb. This . . . Sb triangle can be split into 2 right-angled . a__ . triangles which share line A. Angle z can then . / . be calculated and length A found . . (A = sin(z)/St), and from this angle a can be -----o----- found (a = arcsin(A/Sb) leading to the gun calculation of the firing angle. """ # Check for situations with no solution if target_speed > bullet_speed: return None if target_disp[0]==0 and target_disp[1]==0: return None # Find angle to target ang_to_targ = math.atan2(target_disp[1],target_disp[0]) # Calculate angle return math.asin(target_speed/bullet_speed*math.sin( ang_to_targ-target_angle-math.pi )) + ang_to_targ
fb5dfddf8b36d4e49df2d740b18f9aa97381d08f
3,641,752
def fix_attr_encoding(ds): """ This is a temporary hot-fix to handle the way metadata is encoded when we read data directly from bpch files. It removes the 'scale_factor' and 'units' attributes we encode with the data we ingest, converts the 'hydrocarbon' and 'chemical' attribute to a binary integer instead of a boolean, and removes the 'units' attribute from the "time" dimension since that too is implicitly encoded. In future versions of this library, when upstream issues in decoding data wrapped in dask arrays is fixed, this won't be necessary and will be removed. """ def _maybe_del_attr(da, attr): """ Possibly delete an attribute on a DataArray if it's present """ if attr in da.attrs: del da.attrs[attr] return da def _maybe_decode_attr(da, attr): # TODO: Fix this so that bools get written as attributes just fine """ Possibly coerce an attribute on a DataArray to an easier type to write to disk. """ # bool -> int if (attr in da.attrs) and (type(da.attrs[attr] == bool)): da.attrs[attr] = int(da.attrs[attr]) return da for v in ds.data_vars: da = ds[v] da = _maybe_del_attr(da, 'scale_factor') da = _maybe_del_attr(da, 'units') da = _maybe_decode_attr(da, 'hydrocarbon') da = _maybe_decode_attr(da, 'chemical') # Also delete attributes on time. if hasattr(ds, 'time'): times = ds.time times = _maybe_del_attr(times, 'units') return ds
a0d0c8bd8fcf8dfa999bec9a2022d29a1af22514
3,641,753
import time def acme_parser(characters): """Parse records from acme global Args: characters: characters to loop through the url Returns: 2 item tuple containing all the meds as a list and a count of all meds """ link = ( 'http://acmeglobal.com/acme/' 'wp-content/themes/acme/trade_check.php' '?initchar_trade={0!s}&divname_trade=human') meds = [] for character in characters: try: meds += parse_char(link, character) except: wait = rand(5, 15) print('Failed on character {!s}.'.format(character)) print('Trying again in {0:d}s.'.format(wait)) time.sleep(wait) try: meds += parse_char(link, character) except: print('Failed on character {!s} again.'.format(character)) print('Skipping character.') return (meds, len(meds))
8e9fe3b020e05243075351d7eedbdba7a54d5d81
3,641,754
from typing import Any import sys def toStr(s: Any) -> str: """ Convert a given type to a default string :param s: item to convert to a string :return: converted string """ return s.decode(sys.getdefaultencoding(), 'backslashreplace') if hasattr(s, 'decode') else str(s)
10adab737ab909760215810b94743a15e39b9035
3,641,755
def standard_atari_env_spec(env): """Parameters of environment specification.""" standard_wrappers = [[tf_atari_wrappers.RewardClippingWrapper, {}], [tf_atari_wrappers.StackWrapper, {"history": 4}]] env_lambda = None if isinstance(env, str): env_lambda = lambda: gym.make(env) if callable(env): env_lambda = env assert env_lambda is not None, "Unknown specification of environment" return tf.contrib.training.HParams( env_lambda=env_lambda, wrappers=standard_wrappers, simulated_env=False)
e9751e1b376cdee5ec0f9c27d8ab4bf2e303f35b
3,641,756
def load_bikeshare(path='data', extract=True): """ Downloads the 'bikeshare' dataset, saving it to the output path specified and returns the data. """ # name of the dataset name = 'bikeshare' data = _load_file_data(name, path, extract) return data
7cce01f22c37460800a44a85b18e6574d9d7f6fb
3,641,757
def file2bytes(filename: str) -> bytes: """ Takes a filename and returns a byte string with the content of the file. """ with open(filename, 'rb') as f: data = f.read() return data
f917a265c17895c917c3c340041586bef0c34dac
3,641,758
import json def load_session() -> dict: """ Returns available session dict """ try: return json.load(SESSION_PATH.open()) except FileNotFoundError: return {}
342c8e143c878cfc4821454cebfcc3ba47a2cd2a
3,641,759
def _preprocess_zero_mean_unit_range(inputs, dtype=tf.float32): """Map image values from [0, 255] to [-1, 1].""" preprocessed_inputs = (2.0 / 255.0) * tf.cast(inputs, tf.float32) - 1.0 return tf.cast(preprocessed_inputs, dtype=dtype)
08238566a04ed35346b8f4ff0874fff7be48bded
3,641,760
from typing import cast def fill_like(input, value, shape=None, dtype=None, name=None): """Create a uniformly filled tensor / array.""" input = as_tensor(input) dtype = dtype or input.dtype if has_tensor([input, value, shape], 'tf'): value = cast(value, dtype) return tf.fill(value, input.shape, name) else: dtype = dtype or input.dtype dtype = convert_dtype(dtype, 'np') if shape is None: return np.full_like(input, value, dtype=dtype) else: return np.full(shape, value, dtype=dtype)
1879ac8669396dfe3fe351dae97a96cd8d6a8e5e
3,641,761
from typing import Callable import operator def transform_item(key, f: Callable) -> Callable[[dict], dict]: """transform a value of `key` in a dict. i.e given a dict `d`, return a new dictionary `e` s.t e[key] = f(d[key]). >>> my_dict = {"name": "Danny", "age": 20} >>> transform_item("name", str.upper)(my_dict) {'name': 'DANNY', 'age': 20} """ return functional_generic.itemmap( functional_generic.when( functional_generic.compose_left(operator.head, operator.equals(key)), functional_generic.packstack(operator.identity, f), ), )
a202fe59b29b0a1b432df759b4600388e2d9f72e
3,641,762
def mock_dataset(mocker, mock_mart, mart_datasets_response): """Returns an example dataset, built using a cached response.""" mocker.patch.object(mock_mart, 'get', return_value=mart_datasets_response) return mock_mart.datasets['mmusculus_gene_ensembl']
bb9a8b828f0ac5bfa59b3faee0f9bcc22c7d954e
3,641,763
import torch def loss_function(recon_x, x, mu, logvar): """Loss function for varational autoencoder VAE""" BCE = F.binary_cross_entropy(recon_x, x, size_average=False) # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) return BCE + KLD
38c0d6ab7a8388e007324bdcfb8611f0a3072c35
3,641,764
import scipy def resize_img(img, size): """ Given a list of images in ndarray, resize them into target size. Args: img: Input image in ndarray size: Target image size Returns: Resized images in ndarray """ img = scipy.misc.imresize(img, (size, size)) if len(img.shape) == 2: img = img.reshape((size, size, 1)) return img
8a3ff8bfab0c864a6c0e4701be07b9296ad23f28
3,641,765
def cloudtopheight_IR(bt, cloudmask, latitude, month, method="modis"): """Cloud Top Height (CTH) from 11 micron channel. Brightness temperatures (bt) are converted to CTHs using the IR window approach: (bt_clear - bt_cloudy) / lapse_rate. See also: :func:`skimage.measure.block_reduce` Down-sample image by applying function to local blocks. :func:`lapserate_moist_adiabate` Constant value 6.5 [K/km] :func:`lapserate_modis` Estimate of the apparent lapse rate in [K/km] depending on month and latitude acc. to Baum et al., 2012. Parameters: bt (ndarray): brightness temperatures form 11 micron channel. cloudmask (ndarray): binary cloud mask. month (int): month of the year. latitude (ndarray): latitudes in [°], positive North, negative South. method (str): approach used to derive CTH: 'modis' see Baum et al., 2012, 'simple' uses the moist adiabatic lapse rate. Returns: ndarray: cloud top height. References: Baum, B.A., W.P. Menzel, R.A. Frey, D.C. Tobin, R.E. Holz, S.A. Ackerman, A.K. Heidinger, and P. Yang, 2012: MODIS Cloud-Top Property Refinements for Collection 6. J. Appl. Meteor. Climatol., 51, 1145–1163, https://doi.org/10.1175/JAMC-D-11-0203.1 """ # Lapse rate if method == "simple": lapserate = lapserate_moist_adiabate() elif method == "modis": lapserate = lapserate_modis(month, latitude) else: raise ValueError("Method is not supported.") resolution_ratio = np.shape(cloudmask)[0] // np.shape(bt)[0] cloudmask_inverted = cloudmask.copy() cloudmask_inverted[np.isnan(cloudmask_inverted)] = 1 cloudmask_inverted = np.asarray( np.invert(np.asarray(cloudmask_inverted, dtype=bool)), dtype=int ) cloudmask[np.isnan(cloudmask)] = 0 cloudmask = np.asarray(cloudmask, dtype=int) # Match resolutions of cloud mask and brightness temperature (bt) arrays. if resolution_ratio > 1: # On bt resolution, flag pixels as cloudy only if all subgrid pixels # are cloudy in the original cloud mask. mask_cloudy = block_reduce( cloudmask, (resolution_ratio, resolution_ratio), func=np.alltrue ) # Search for only clear pixels to derive a bt clearsky/ocean value. mask_clear = block_reduce( cloudmask_inverted, (resolution_ratio, resolution_ratio), func=np.alltrue ) elif resolution_ratio < 1: try: mask_cloudy = np.repeat( np.repeat(cloudmask, resolution_ratio, axis=0), resolution_ratio, axis=1 ) mask_clear = np.repeat( np.repeat(cloudmask_inverted, resolution_ratio, axis=0), resolution_ratio, axis=1, ) except ValueError: raise ValueError( "Problems matching the shapes of provided cloud mask and bt arrays." ) else: mask_cloudy = cloudmask.copy() mask_clear = cloudmask_inverted.copy() bt_cloudy = np.ones(np.shape(bt)) * np.nan bt_cloudy[mask_cloudy] = bt[mask_cloudy] bt_clear_avg = np.nanmean(bt[mask_clear]) return (bt_clear_avg - bt_cloudy) / lapserate
b68dfb37b27d3067c2956fc3653640393491e014
3,641,766
def info2lists(info, in_place=False): """ Return info with: 1) `packages` dict replaced by a 'packages' list with indexes removed 2) `releases` dict replaced by a 'releases' list with indexes removed info2list(info2dicts(info)) == info """ if 'packages' not in info and 'releases' not in info: return info if in_place: info_lists = info else: info_lists = info.copy() packages = info.get('packages') if packages: info_lists['packages'] = list(packages.values()) releases = info.get('releases') if releases: info_lists['releases'] = list(releases.values()) return info_lists
313fda757d386332e16a0a91bb4408fe3cb8c070
3,641,767
def calc_wave_number(g, h, omega, relax=0.5, eps=1e-15): """ Relaxed Picard iterations to find k when omega is known """ k0 = omega ** 2 / g for _ in range(100): k1 = omega ** 2 / g / tanh(k0 * h) if abs(k1 - k0) < eps: break k0 = k1 * relax + k0 * (1 - relax) else: ocellaris_error( 'calc_wave_number did not converge', 'Input g=%r h=%r omega=%r, tolerance=%e' % (g, h, omega, eps), ) return k1
7173fc9f38547864943046fed1e74d9b5cc832b5
3,641,768
def emit_live_notification_for_model(obj, user, history, *, type:str="change", channel:str="events", sessionid:str="not-existing"): """ Sends a model live notification to users. """ if obj._importing: return None content_type = get_typename_for_model_instance(obj) if content_type == "userstories.userstory": if history.type == HistoryType.create: title = _("User story created") url = resolve("userstory", obj.project.slug, obj.ref) elif history.type == HistoryType.change: title = _("User story changed") url = resolve("userstory", obj.project.slug, obj.ref) else: title = _("User story deleted") url = None body = _("US #{} - {}").format(obj.ref, obj.subject) elif content_type == "tasks.task": if history.type == HistoryType.create: title = _("Task created") url = resolve("task", obj.project.slug, obj.ref) elif history.type == HistoryType.change: title = _("Task changed") url = resolve("task", obj.project.slug, obj.ref) else: title = _("Task deleted") url = None body = _("Task #{} - {}").format(obj.ref, obj.subject) elif content_type == "issues.issue": if history.type == HistoryType.create: title = _("Issue created") url = resolve("issue", obj.project.slug, obj.ref) elif history.type == HistoryType.change: title = _("Issue changed") url = resolve("issue", obj.project.slug, obj.ref) else: title = _("Issue deleted") url = None body = _("Issue: #{} - {}").format(obj.ref, obj.subject) elif content_type == "wiki.wiki_page": if history.type == HistoryType.create: title = _("Wiki Page created") url = resolve("wiki", obj.project.slug, obj.slug) elif history.type == HistoryType.change: title = _("Wiki Page changed") url = resolve("wiki", obj.project.slug, obj.slug) else: title = _("Wiki Page deleted") url = None body = _("Wiki Page: {}").format(obj.slug) elif content_type == "milestones.milestone": if history.type == HistoryType.create: title = _("Sprint created") url = resolve("taskboard", obj.project.slug, obj.slug) elif history.type == HistoryType.change: title = _("Sprint changed") url = resolve("taskboard", obj.project.slug, obj.slug) else: title = _("Sprint deleted") url = None body = _("Sprint: {}").format(obj.name) else: return None return emit_event( { "title": title, "body": "Project: {}\n{}".format(obj.project.name, body), "url": url, "timeout": 10000, "id": history.id }, "live_notifications.{}".format(user.id), sessionid=sessionid )
94e7e91ec73537aad71ab3839fbd203552d4fec2
3,641,769
def is_chitoi(tiles): """ Returns True if the hand satisfies chitoitsu. """ unique_tiles = set(tiles) return (len(unique_tiles) == 7 and all([tiles.count(tile) == 2 for tile in unique_tiles]))
c04149174bb779cd07616d4f419fc86531ab95dd
3,641,770
import itertools def get_hpo_ancestors(hpo_db, hpo_id): """ Get HPO terms higher up in the hierarchy. """ h=hpo_db.hpo.find_one({'id':hpo_id}) #print(hpo_id,h) if 'replaced_by' in h: # not primary id, replace with primary id and try again h = hpo_db.hpo.find_one({'id':h['replaced_by'][0]}) hpo=[h] if 'is_a' not in h: return hpo for hpo_parent_id in h['is_a']: #p=hpo_db.hpo.find({'id':hpo_parent_id}): hpo+=list(itertools.chain(get_hpo_ancestors(hpo_db,hpo_parent_id))) #remove duplicates hpo={h['id'][0]:h for h in hpo}.values() return hpo
2ef2c968bc3001b97529ccd269884cefad7a899f
3,641,771
def mcBufAir(params: dict, states: dict) -> float: """ Growth respiration Parameters ---------- params : dict Parameters saved as model constants states : dict State variables of the model Returns ------- float Growth respiration of the plant [mg m-2 s-1] """ mcBufAir_ = (mcOrgAir_g(organ="fruit", params=params, states=states) + mcOrgAir_g(organ="leaf", params=params, states=states) + mcOrgAir_g(organ="stem", params=params, states=states)) return mcBufAir_
d31f201384fdab6c03856def1eed7d96fe28482a
3,641,772
import os import re def gene_calling (workflow, assembly_dir, assembly_extentsion, input_dir, extension, extension_paired, gene_call_type, prokka_dir, prodigal_dir, threads, gene_file, gene_PC_file, protein_file, protein_sort, gene_info, complete_gene, complete_protein): """ This set of tasks will run gene-calling workflow. Args: workflow (anadama2.workflow): An instance of the workflow class. assembly_dir: The direcory path of assembly results. sample_file: The sample list file. prokka_dir: The direcory path of prokka results. prodigal_dir: The direcory path of prodigal results. gene_file: The fasta file of gene nucleotide sequences. gene_PC_file: The fasta file of protein coding gene nucleotide sequences. protein_file: The fasta file of protein sequences. protein_sort: The sorted fasta file of protein sequences. gene_info: The summaized gene calling file. complete_gene: The fasta file of gene nucleotide sequences for complete ORFs. complete_protein: The fasta file of protein sequences for complete ORFs. Requires: prokka 1.14-dev: rapid prokaryotic genome annotation (recommend to close '-c' parameter in prodigal) prodigal v2.6: gene prediction usearch (tested with usearch v9.0.2132_i86linux64) assembled contig files Returns: string: name of gene files Example: from anadama2 import Workflow from MetaWIBELE.characterize import characterization # create an anadama2 workflow instance workflow=Workflow() # add gene calling tasks mygene, myprotein = preprocessing_tasks.gene_calling (workflow, assembly_dir, args.sample_file, prokka_dir, prodigal_dir, gene_file, gene_PC_file, protein_file, protein_sort, gene_info, complete_gene, complete_protein) # run the workflow workflow.go() """ config.logger.info("###### Start gene_calling module ######") time_equation = config.time # xxx hours defined in global config mem_equation = config.memory # xxx GB defined in global config # ================================================ # collect sequences # ================================================ if extension_paired: extension_paireds = extension_paired.split(",") sample_files = utilities.find_files(input_dir, extension_paireds[0], None) samples = utilities.sample_names(sample_files, extension_paireds[0], None) else: sample_files = utilities.find_files(input_dir, extension, None) samples = utilities.sample_names(sample_files, extension, None) sequence_files = [] for mysample in samples: myfile = os.path.join(assembly_dir, mysample, mysample + "%s" % assembly_extentsion) sequence_files.append(myfile) # foreach sample filtered_contigs = sequence_files # ================================================ # Gene calling # ================================================ fna_file = [] faa_file = [] gff_files = [] fna_file_tmp = [] faa_file_tmp = [] gff_files_tmp = [] ## Using Prodigal if gene_call_type == "prodigal" or gene_call_type == "both": os.system("mkdir -p " + prodigal_dir) for contig in filtered_contigs: contig_base = os.path.basename(contig).split(os.extsep)[0] annotation_dir = os.path.join(prodigal_dir, contig_base) os.system("mkdir -p " + annotation_dir) gff_file = os.path.join(annotation_dir, '%s.gff' % contig_base) cds_file = os.path.join(annotation_dir, '%s.fna' % contig_base) cds_aa = os.path.join(annotation_dir, '%s.faa' % contig_base) score = os.path.join(annotation_dir, '%s.gene_score.txt' % contig_base) stdout_log = os.path.join(annotation_dir, '%s.stdout.log' % contig_base) faa_file_tmp.append(cds_aa) workflow.add_task_gridable('prodigal -m -p meta -i [depends[0]] ' '-f gff -o [targets[0]] -d [targets[1]] -s [targets[3]] ' '-a [targets[2]] ' '>[args[0]] 2>&1', depends = [contig, TrackedExecutable("prodigal")], targets = [gff_file, cds_file, cds_aa, score], args = [stdout_log], cores = threads, mem = mem_equation, time = time_equation, name = contig_base + "__prodigal") for myfile in faa_file_tmp: myname = os.path.basename(myfile) myfile_new = os.path.join(prodigal_dir, myname) faa_file.append(myfile_new) workflow.add_task( "ln -fs [depends[0]] [targets[0]]", depends = [myfile], targets = [myfile_new], cores = 1, name = "ln__" + myname) myfna = re.sub(".faa", ".fna", myfile) myfna_new = re.sub(".faa", ".fna", myfile_new) if gene_call_type == "prodigal": fna_file.append(myfna_new) prokka_dir = prodigal_dir workflow.add_task( "ln -fs [depends[0]] [targets[0]]", depends = [myfna], targets = [myfna_new], cores = 1, name = "ln__" + myname) mygff = re.sub(".faa", ".gff", myfile) mygff_new = re.sub(".faa", ".gff", myfile_new) workflow.add_task( "ln -fs [depends[0]] [targets[0]]", depends = [mygff], targets = [mygff_new], cores = 1, name = "ln__" + myname) if gene_call_type == "prokka" or gene_call_type == "both": ## Calling genes with Prokka os.system("mkdir -p " + prokka_dir) for contig in filtered_contigs: contig_base = os.path.basename(contig).split(os.extsep)[0] sample = os.path.basename(contig_base) annotation_dir = os.path.join(prokka_dir, sample) os.system("mkdir -p " + annotation_dir) stdout_log = os.path.join(annotation_dir, '%s.prokka.bacteria.stdout.log' % contig_base) score = os.path.join(annotation_dir, '%s.gene_score.txt' % contig_base) gene_nuc = os.path.join(annotation_dir, '%s.ffn' % contig_base) gene_aa = os.path.join(annotation_dir, '%s.faa' % contig_base) gff_file = os.path.join(annotation_dir, '%s.gff' % contig_base) fna_file_tmp.append(gene_nuc) gff_files_tmp.append(gff_file) workflow.add_task_gridable('prokka --prefix [args[0]] --addgenes --addmrna --force --metagenome ' '--cpus [args[2]] ' '--outdir [args[1]] [depends[0]] ' '>[args[3]] 2>&1 ', depends = [contig, TrackedExecutable("prokka")], targets = [gene_nuc, gene_aa, gff_file], args = [sample, annotation_dir, threads, stdout_log], cores = threads, mem = mem_equation, time = time_equation, name = contig_base + "__prokka") for myfile in gff_files_tmp: myname = os.path.basename(myfile) myfile_new = os.path.join(prokka_dir, myname) gff_files.append(myfile_new) for myfile in fna_file_tmp: myname = os.path.basename(myfile) myfile_new = os.path.join(prokka_dir, myname) fna_file.append(myfile_new) workflow.add_task( "ln -fs [depends[0]] [targets[0]]", depends = [myfile], targets = [myfile_new], cores = 1, name = "ln__" + myname) myfaa = re.sub(".ffn", ".faa", myfile) myfaa_new = re.sub(".ffn", ".faa", myfile_new) if gene_call_type == "prokka": faa_file.append(myfaa_new) prodigal_dir = prokka_dir workflow.add_task( "ln -fs [depends[0]] [targets[0]]", depends = [myfaa], targets = [myfaa_new], cores = 1, name = "ln__" + myname) mygff = re.sub(".ffn", ".gff", myfile) mygff_new = re.sub(".ffn", ".gff", myfile_new) workflow.add_task( "ln -fs [depends[0]] [targets[0]]", depends = [mygff], targets = [mygff_new], cores = 1, name = "ln__" + myname) # ================================================ # Summarize sequences # ================================================ #mem_equation = "50000" ### combine gene sequences ### nuc_type = "ffn" if gene_call_type == "prodigal": nuc_type = "fna" mylog = re.sub(".fna", ".log", gene_file) workflow.add_task('metawibele_combine_gene_sequences -p [args[0]] -e [args[1]] -o [targets[0]] > [args[2]] 2>&1 ', depends = utilities.add_to_list(fna_file,TrackedExecutable("metawibele_combine_gene_sequences")), targets = [gene_file], args = [prokka_dir, nuc_type, mylog], cores = 1, name = "combine_gene_sequences") ### combine protein sequences ### ## collect sequences mylog = re.sub(".faa", ".log", protein_file) workflow.add_task('metawibele_format_protein_sequences -p [args[0]] -q [args[1]] -e faa -o [targets[0]] ' '-m [targets[1]] >[args[2]] 2>&1 ', depends = utilities.add_to_list(faa_file, TrackedExecutable("metawibele_format_protein_sequences")) + gff_files, targets = [protein_file, gene_info], args = [prokka_dir, prodigal_dir, mylog], cores = 1, name = "format_protein_sequences") ## sort by length and filter out short-length sequence mylog = re.sub(".faa", ".log", protein_sort) workflow.add_task('usearch -sortbylength [depends[0]] ' '-fastaout [targets[0]] -minseqlength 0 >[args[0]] 2>&1 ', depends = [protein_file, TrackedExecutable("usearch")], targets = [protein_sort], args = [mylog], cores = 1, name = "usearch__sorting") ## extract nucleotide sequence for protein coding genes mylog = re.sub(".fna", ".log", gene_PC_file) workflow.add_task( 'metawibele_extract_protein_coding_genes -g [depends[0]] -p [depends[1]] -o [targets[0]] > [args[0]] 2>&1 ', depends = [gene_file, protein_sort, TrackedExecutable("metawibele_extract_protein_coding_genes")], targets = [gene_PC_file], args = [mylog], cores = 1, name = "extract_protein_coding_genes") ## extract sequences mylog = re.sub(".fna", ".log", complete_gene) workflow.add_task( 'metawibele_extract_complete_ORF_seq -t complete -m [depends[0]] -i [depends[1]] -o [targets[0]] >[args[0]] 2>&1', depends = [gene_info, gene_PC_file, TrackedExecutable("metawibele_extract_complete_ORF_seq")], targets = [complete_gene], args = [mylog], cores = 1, name = 'extract_complete_ORF_seq') mylog = re.sub(".faa", ".log", complete_protein) workflow.add_task( 'metawibele_extract_complete_ORF_seq -t complete -m [depends[0]] -i [depends[1]] -o [targets[0]] >[args[0]] 2>&1', depends = [gene_info, protein_sort, TrackedExecutable("metawibele_extract_complete_ORF_seq")], targets = [complete_protein], args = [mylog], cores = 1, name = 'extract_complete_ORF_seq') return complete_gene, complete_protein
5bd17208605c8ad99cf7b72db28506e26fc170c4
3,641,773
def space_boundaries_re(regex): """Wrap regex with space or end of string.""" return rf"(?:^|\s)({regex})(?:\s|$)"
68861da6218165318b6a446c173b4906a93ef850
3,641,774
import requests import json import dateutil def get_jobs(): """ this function will query USAJOBS api and return all open FEC jobs. if api call failed, a status error message will be displayed in the jobs.html session in the career page. it also query code list to update hirepath info. a hard-coded code list is used for backup if query failed. """ # url = 'https://data.usajobs.gov/api/Search' # codes_url = 'https://data.usajobs.gov/api/codelist/hiringpaths' querystring = {} querystring["Organization"] = settings.USAJOBS_AGENCY_CODE querystring["WhoMayApply"] = settings.USAJOBS_WHOMAYAPPLY headers = { "authorization-key": settings.USAJOBS_API_KEY, "host": "data.usajobs.gov", "cache-control": "no-cache", } # query usajobs API for all open fec jobs response = requests.get(JOB_URL, headers=headers, params=querystring) if response.status_code != 200: return {"error": USAJOB_SEARCH_ERROR} responses = response.json() # query usajobs API for list of all hiring-path codes codes_response = requests.get(CODES_URL, headers=headers) if codes_response.status_code != 200: codes_responses = json.loads(CODE_LIST) else: codes_responses = codes_response.json() jobData = [] search_results = responses.get("SearchResult", {}) # iterate over returned job data if "SearchResultItems" in search_results: for result in search_results.get("SearchResultItems", None): matched_object_descriptor = result.get("MatchedObjectDescriptor", {}) if len(matched_object_descriptor.get("JobGrade", [])) > 0: job_grade = matched_object_descriptor.get("JobGrade", [])[0].get( "Code", "" ) else: job_grade = "" jobs_dict = { "position_title": matched_object_descriptor.get("PositionTitle", ""), "position_id": matched_object_descriptor.get("PositionID", ""), "position_uri": matched_object_descriptor.get("PositionURI", ""), "position_start_date": dateutil.parser.parse( matched_object_descriptor.get("PositionStartDate", "") ), "position_end_date": dateutil.parser.parse( matched_object_descriptor.get("PositionEndDate", "") ), "job_grade": job_grade, "low_grade": matched_object_descriptor.get("UserArea", {}) .get("Details", {}) .get("LowGrade", ""), "high_grade": matched_object_descriptor.get("UserArea", {}) .get("Details", {}) .get("HighGrade", ""), } # map hiring-path code(s) for each job to description(s) if len(codes_responses.get("CodeList", [])) > 0: hiring_path_codes = codes_responses.get("CodeList", [])[0].get( "ValidValue", [] ) else: hiring_path_codes = [] hiring_path = [ item for item in result.get("MatchedObjectDescriptor", {}) .get("UserArea", {}) .get("Details", {}) .get("HiringPath", []) ] hp = [] for path in hiring_path: hpa = [ item for item in hiring_path_codes if item["Code"] == path.upper() ] if hpa: hp.append(hpa[0].get("Value", "")) else: hp.append(path) hiring_path_list = ", ".join(str(n) for n in hp) open_to = {"open_to": hiring_path_list} jobs_dict.update(open_to) jobData.append(jobs_dict) return {"jobData": jobData}
46c69348b3f964fc1c4f35391aa5c7a8d049b47e
3,641,775
def artanh(x) -> ProcessBuilder: """ Inverse hyperbolic tangent :param x: A number. :return: The computed angle in radians. """ return _process('artanh', x=x)
d93ec8e7059df02ebf7a60506d2e9896bc146b32
3,641,776
from thunder.readers import normalize_scheme, get_parallel_reader import array def fromtext(path, ext='txt', dtype='float64', skip=0, shape=None, index=None, labels=None, npartitions=None, engine=None, credentials=None): """ Loads series data from text files. Assumes data are formatted as rows, where each record is a row of numbers separated by spaces e.g. 'v v v v v'. You can optionally specify a fixed number of initial items per row to skip / discard. Parameters ---------- path : string Directory to load from, can be a URI string with scheme (e.g. 'file://', 's3n://', or 'gs://'), or a single file, or a directory, or a directory with a single wildcard character. ext : str, optional, default = 'txt' File extension. dtype : dtype or dtype specifier, default 'float64' Numerical type to use for data after converting from text. skip : int, optional, default = 0 Number of items in each record to skip. shape : tuple or list, optional, default = None Shape of data if known, will be inferred otherwise. index : array, optional, default = None Index for records, if not provided will use (0, 1, ...) labels : array, optional, default = None Labels for records. If provided, should have length equal to number of rows. npartitions : int, default = None Number of partitions for parallelization (Spark only) engine : object, default = None Computational engine (e.g. a SparkContext for Spark) credentials : dict, default = None Credentials for remote storage (e.g. S3) in the form {access: ***, secret: ***} """ path = normalize_scheme(path, ext) if spark and isinstance(engine, spark): def parse(line, skip): vec = [float(x) for x in line.split(' ')] return array(vec[skip:], dtype=dtype) lines = engine.textFile(path, npartitions) data = lines.map(lambda x: parse(x, skip)) def switch(record): ary, idx = record return (idx,), ary rdd = data.zipWithIndex().map(switch) return fromrdd(rdd, dtype=str(dtype), shape=shape, index=index, ordered=True) else: reader = get_parallel_reader(path)(engine, credentials=credentials) data = reader.read(path, ext=ext) values = [] for kv in data: for line in str(kv[1].decode('utf-8')).split('\n')[:-1]: values.append(fromstring(line, sep=' ')) values = asarray(values) if skip > 0: values = values[:, skip:] if shape: values = values.reshape(shape) return fromarray(values, index=index, labels=labels)
9ab049954b23888c2d2a17786edde57dd90507c0
3,641,777
def flop_gemm(n, k): """# of + and * for matmat of nxn matrix with nxk matrix, with accumulation into the output.""" return 2*n**2*k
b217b725e2ac27a47bc717789458fd20b4aa56c1
3,641,778
def index() -> str: """Rest endpoint to test whether the server is correctly working Returns: str: The default message string """ return 'DeChainy server greets you :D'
ce0caeb9994924f8d6ea10462db2be48bbc126d0
3,641,779
import os def get_git_hash() -> str: """Get the PyKEEN git hash. :return: The git hash, equals 'UNHASHED' if encountered CalledProcessError, signifying that the code is not installed in development mode. """ with open(os.devnull, 'w') as devnull: try: ret = check_output( # noqa: S603,S607 ['git', 'rev-parse', 'HEAD'], cwd=os.path.dirname(__file__), stderr=devnull, ) except CalledProcessError: return 'UNHASHED' else: return ret.strip().decode('utf-8')[:8]
dc00c46c07e2b819718a04fde878ec3669a81e4f
3,641,780
from typing import AnyStr from typing import List import json def load_json_samples(path: AnyStr) -> List[str]: """ Loads samples from a json file :param path: Path to the target file :return: List of samples """ with open(path, "r", encoding="utf-8") as file: samples = json.load(file) if isinstance(samples, list): return samples else: raise RuntimeError(f"File's content must be list-like")
b735e7265a31f6bc6d19381bfe9d0cbe26dcf170
3,641,781
import sys def openPort(path = SERIALPATH): """open the serial port for the given path""" try: port = Serial(path, baudrate = 115200) except : print("No serial device on the given path :" + path) sys.exit() return(port)
67f6044a7cc1c726f7226dce8768e8f6cdca6cdb
3,641,782
import struct import lzma def decompress_lzma(data: bytes) -> bytes: """decompresses lzma-compressed data :param data: compressed data :type data: bytes :raises _lzma.LZMAError: Compressed data ended before the end-of-stream marker was reached :return: uncompressed data :rtype: bytes """ props, dict_size = struct.unpack("<BI", data[:5]) lc = props % 9 props = props // 9 pb = props // 5 lp = props % 5 dec = lzma.LZMADecompressor( format=lzma.FORMAT_RAW, filters=[ { "id": lzma.FILTER_LZMA1, "dict_size": dict_size, "lc": lc, "lp": lp, "pb": pb, } ], ) return dec.decompress(data[5:])
247c3d59d45f3f140d4f2c36a7500ff8a51e45b0
3,641,783
def validate(request): """ Validate actor name exists in database before searching. If more than one name fits the criteria, selects the first one and returns the id. Won't render. """ search_for = request.GET.get('search-for', default='') start_from = request.GET.get('start-from', default='') data = {} search_for_actor = get_actor(search_for) start_from_actor = get_actor(start_from) if not search_for_actor: data['errors'] = {'search-for': 'Not a valid name'} if not start_from_actor: data['errors'] = {'start-from': 'Not a valid name'} if 'errors' in data: data['status'] = 'false' return JsonResponse(data, status=404) else: data = { 'search-for': search_for_actor.id, 'start-from': start_from_actor.id, } return JsonResponse(data)
39b9183cd570cce0ddfd81febde0ec125f11c578
3,641,784
def merge(left, right, on=None, left_on=None, right_on=None): """Merge two DataFrames using explicit-comms. This is an explicit-comms version of Dask's Dataframe.merge() that only supports "inner" joins. Requires an activate client. Notice ------ As a side effect, this operation concatenate all partitions located on the same worker thus npartitions of the returned dataframe equals number of workers. Parameters ---------- left: dask.dataframe.DataFrame right: dask.dataframe.DataFrame on : str or list of str Column or index level names to join on. These must be found in both DataFrames. left_on : str or list of str Column to join on in the left DataFrame. right_on : str or list of str Column to join on in the right DataFrame. Returns ------- df: dask.dataframe.DataFrame Merged dataframe """ # Making sure that the "on" arguments are list of column names if on: on = [on] if isinstance(on, str) else list(on) if left_on: left_on = [left_on] if isinstance(left_on, str) else list(left_on) if right_on: right_on = [right_on] if isinstance(right_on, str) else list(right_on) if left_on is None: left_on = on if right_on is None: right_on = on if not (left_on and right_on): raise ValueError( "Some combination of the on, left_on, and right_on arguments must be set" ) return submit_dataframe_operation( comms.default_comms(), local_df_merge, df_list=(left, right), extra_args=(left_on, right_on), )
847070e27007c049d0c58059ec9f7c66681f21bc
3,641,785
def estimate_fs(t): """Estimates data sampling rate""" sampling_rates = [ 2000, 1250, 1000, 600, 500, 300, 250, 240, 200, 120, 75, 60, 50, 30, 25, ] fs_est = np.median(1 / np.diff(t)) fs = min(sampling_rates, key=lambda x: abs(x - fs_est)) return fs
82dbd115e3c7b656302d10339cdfe77b60ab0620
3,641,786
def get_case_number(caselist): """Get line number from file caselist.""" num = 0 with open(caselist, 'r') as casefile: for line in casefile: if line.strip().startswith('#') is False: num = num + 1 return num
b1366d8e4a0e2c08da5265502d2dd2d72bf95c19
3,641,787
from typing import Any def build_param_float_request(*, scenario: str, value: float, **kwargs: Any) -> HttpRequest: """Send a post request with header values "scenario": "positive", "value": 0.07 or "scenario": "negative", "value": -3.0. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this request builder into your code flow. :keyword scenario: Send a post request with header values "scenario": "positive" or "negative". :paramtype scenario: str :keyword value: Send a post request with header values 0.07 or -3.0. :paramtype value: float :return: Returns an :class:`~azure.core.rest.HttpRequest` that you will pass to the client's `send_request` method. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this response into your code flow. :rtype: ~azure.core.rest.HttpRequest """ accept = "application/json" # Construct URL url = "/header/param/prim/float" # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters["scenario"] = _SERIALIZER.header("scenario", scenario, "str") header_parameters["value"] = _SERIALIZER.header("value", value, "float") header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="POST", url=url, headers=header_parameters, **kwargs)
3e310a92ebe5760a00abc82c5c6465e160a5881d
3,641,788
from typing import List def async_entries_for_config_entry( registry: DeviceRegistry, config_entry_id: str ) -> List[DeviceEntry]: """Return entries that match a config entry.""" return [ device for device in registry.devices.values() if config_entry_id in device.config_entries ]
17af1610631e6b0f407883fa8386082a694f9cd2
3,641,789
from pathlib import Path import yaml def load_material(name: str) -> Material: """Load a material from the materials library Args: name (str): Name of material Raises: FileNotFoundError: If material is not found, raises an error Returns: Material: Loaded material """ try: with open( Path(__file__).parent.joinpath(f"resources/{name}.yaml"), "r") as f: matdict = yaml.full_load(f) try: matdict["properties"]["alpha"] = get_alpha(name) except FileNotFoundError: print(f"{name}.csv does not exist!") return create_material(**matdict["properties"]) except FileNotFoundError: print (f"{name} is not an available material!")
aa53eac4889d6c44e78d8f3f6e3b5c2099a7bb53
3,641,790
def reportBusniessModelSummaryView(request): """ รายงาน สรุปจำนวนผู้สมัครตามสถานะธุรกิจ ทุกขั้นตอน""" queryset = SmeCompetition.objects \ .values('enterpise__business_model', 'enterpise__business_model__name') \ .annotate(step_register=Count('enterpise__business_model')) \ .annotate(step_screen=Count('enterpise__business_model', filter=Q(state__in=[2,4,5, 6, 7, 8, 9, 10, 11]))) \ .annotate(step_interview=Count('enterpise__business_model', filter=Q(state__in=[4, 6, 7, 8, 9, 10, 11]))) \ .annotate(step_sitevisit=Count('enterpise__business_model', filter=Q(state__in=[6, 8, 9, 10]))) \ .order_by('enterpise__business_model__name') total_sme = SmeCompetition.objects.filter(state__in=[6, 8, 9, 10, 11]).count() total_register = SmeCompetition.objects.filter(active=True).count() total_screen = SmeCompetition.objects.filter(active=True, state__in=[2,4,5,6,7,8,9,10,11]).count() total_interview = SmeCompetition.objects.filter(active=True, state__in=[4, 6, 7, 8, 9, 10, 11]).count() total_summary = SmeCompetition.objects.filter(active=True, state__in=[6, 8, 9, 10, 11]).count() context = {'queryset': queryset, 'total_register':total_register, 'total_screen':total_screen \ ,'total_interview':total_interview, 'total_summary':total_summary} return render(request, 'app_sme12/report/businessmodel_summary.html', context)
a0bcb8e0b9d51fc1ed9070857ef9db2c4641ddd6
3,641,791
def _get_announce_url(rjcode: str) -> str: """Get DLsite announce URL corresponding to an RJ code.""" return _ANNOUNCE_URL.format(rjcode)
997b82270fcb115f8510d0ded1e1b6204e835e92
3,641,792
import torch def get_r_adv(x, decoder, it=1, xi=1e-1, eps=10.0): """ Virtual Adversarial Training https://arxiv.org/abs/1704.03976 """ x_detached = x.detach() with torch.no_grad(): pred = F.softmax(decoder(x_detached), dim=1) d = torch.rand(x.shape).sub(0.5).to(x.device) d = _l2_normalize(d) for _ in range(it): d.requires_grad_() pred_hat = decoder(x_detached + xi * d) logp_hat = F.log_softmax(pred_hat, dim=1) adv_distance = F.kl_div(logp_hat, pred, reduction='batchmean') # print ('a') # print (adv_distance) adv_distance.backward() # print('c') d = _l2_normalize(d.grad) # print ('b') decoder.zero_grad() r_adv = d * eps return r_adv
7613e59d88117a8ed263aad76139b1e4d808582c
3,641,793
import os def fetch_brats(datasetdir): """ Fetch/prepare the Brats dataset for pynet. Parameters ---------- datasetdir: str the dataset destination folder. Returns ------- item: namedtuple a named tuple containing 'input_path', 'output_path', and 'metadata_path'. """ logger.info("Loading brats dataset.") def _crop(arr): return arr[45: 195, 30: 220, 10: 145] def _norm(arr): logical_mask = (arr != 0) mean = arr[logical_mask].mean() std = arr[logical_mask].std() return ((arr - mean) / std).astype(np.single) traindir = os.path.join(datasetdir, "MICCAI_BraTS_2019_Data_Training") mapping_path = os.path.join(traindir, "name_mapping.csv") if not os.path.isfile(mapping_path): raise ValueError( "You must first download the Brats data in the '{0}' folder " "following the 'https://www.med.upenn.edu/sbia/brats2018/" "registration.html' instructions.".format(datasetdir)) desc_path = os.path.join(datasetdir, "pynet_brats.tsv") input_path = os.path.join(datasetdir, "pynet_brats_inputs.npy") output_path = os.path.join(datasetdir, "pynet_brats_outputs.npy") if not os.path.isfile(desc_path): df = pd.read_csv(mapping_path, sep=",") arr = df[["BraTS_2019_subject_ID", "Grade"]].values input_dataset = [] output_dataset = [] nb_subjects = len(arr) with progressbar.ProgressBar(max_value=nb_subjects, redirect_stdout=True) as bar: for cnt, (sid, grade) in enumerate(arr): logger.debug("Processing {0}...".format(sid)) datadir = os.path.join(traindir, grade, sid) data = [] for mod in MODALITIES: path = os.path.join( datadir, "{0}_{1}.nii.gz".format(sid, mod)) data.append(_norm(_crop(nib.load(path).get_data()))) data = np.asarray(data) input_dataset.append(data) path = os.path.join(datadir, "{0}_seg.nii.gz".format(sid)) _arr = nib.load(path).get_data() data = [] for value in (0, 1, 2, 4): data.append(_crop(_arr == value)) data = np.asarray(data) output_dataset.append(data) bar.update(cnt) input_dataset = np.asarray(input_dataset) np.save(input_path, input_dataset) output_dataset = np.asarray(output_dataset) np.save(output_path, output_dataset) dataset_desc = pd.DataFrame( arr, columns=["participant_id", "grade"]) dataset_desc.to_csv(desc_path, sep="\t") return Item(input_path=input_path, output_path=output_path, metadata_path=desc_path)
0adac8fa6c6c83c90c9f2809b8ebda52559e9600
3,641,794
def get_factors(shoppers, n_components=4, random_state=903, **kwargs): """ Find Factors to represent the shopper-level features in compressed space. These factors will be used to map simplified user input from application to the full feature space used in modeling. Args: shoppers (pd.DataFrame): full set of shoppers in feature data (train + test) n_components (int): number of factors to mine. Defaults to 4 and should stay that way (application UI based on these 4 analyzed factors) random_state (int): sets random state for factor analysis algorithm. Defaults to 4 (and should stay that way) kwargs: additional keyword arguments for sklearn.decomposition.FactorAnalysis Returns: pd.DataFrame: will have n_components rows and n_features columns. The values of this matrix can be used to map factors to full feature set (on std normal scale). """ # Remove columns which should not be considered in factor analysis x = shoppers for col in ['user_id', 'n_orders', 'label']: if col in x.columns: x = x.drop(columns=col) # Need to scale data as columns on incommensurate scales cols = x.columns x = preprocessing.scale(x) fa = FactorAnalysis(n_components, random_state=random_state, **kwargs) fa.fit(x) return pd.DataFrame(fa.components_, columns=cols)
966ca305b87b836d9caa5c857608bc6b16120e26
3,641,795
def cols_to_array(*cols, remove_na: bool = True) -> Column: """ Create a column of ArrayType() from user-supplied column list. Args: cols: columns to convert into array. remove_na (optional): Remove nulls from array. Defaults to True. Returns: Column of ArrayType() """ if remove_na: return F.filter(F.array(*cols), lambda x: x.isNotNull()) else: return F.array(*cols)
a33e9b907d95fc767c2f247e12c22bdac9ad7585
3,641,796
def _git_repo_status(repo): """Get current git repo status. :param repo: Path to directory containing a git repo :type repo: :class:`pathlib.Path()` :return: Repo status :rtype: dict """ repo_status = { 'path': repo } options = ['git', '-C', str(repo), 'status', '-s'] changes = _run_cmd(options).stdout.decode() repo_status['uncommited changes'] = True if len(changes) else False local, remote = _git_get_branches(repo) repo_status['local only branches'] = bool(set(remote) - set(local)) repo_status['ahead of origin'] = _git_get_ahead(repo) return repo_status
c35a20b7350dcf20bedcd9b201fd04a46c83449b
3,641,797
def _parseList(s): """Validation function. Parse a comma-separated list of strings.""" return [item.strip() for item in s.split(",")]
5bf9ac50a44a18cc4798ed616532130890803bac
3,641,798
def true_segments_1d(segments, mode=SegmentsMode.CENTERS, max_gap=0, min_length=0, name=None): """Labels contiguous True runs in segments. Args: segments: 1D boolean tensor. mode: The SegmentsMode. Returns the start of each segment (STARTS), or the rounded center of each segment (CENTERS). max_gap: Fill gaps of length at most `max_gap` between true segments. int. min_length: Minimum length of a returned segment. int. name: Optional name for the op. Returns: run_centers: int32 tensor. Depending on `mode`, either the start of each True run, or the (rounded) center of each True run. run_lengths: int32; the lengths of each True run. """ with tf.name_scope(name, "true_segments", [segments]): segments = tf.convert_to_tensor(segments, tf.bool) run_starts, run_lengths = _segments_1d(segments, mode=SegmentsMode.STARTS) # Take only the True runs. After whichever run is True first, the True runs # are every other run. first_run = tf.cond( # First value is False, or all values are False. Handles empty segments # correctly. tf.logical_or(tf.reduce_any(segments[0:1]), ~tf.reduce_any(segments)), lambda: tf.constant(0), lambda: tf.constant(1)) num_runs = tf.shape(run_starts)[0] run_nums = tf.range(num_runs) is_true_run = tf.equal(run_nums % 2, first_run % 2) # Find gaps between True runs that can be merged. is_gap = tf.logical_and( tf.not_equal(run_nums % 2, first_run % 2), tf.logical_and( tf.greater(run_nums, first_run), tf.less(run_nums, num_runs - 1))) fill_gap = tf.logical_and(is_gap, tf.less_equal(run_lengths, max_gap)) # Segment the consecutive runs of True or False values based on whether they # are True, or are a gap of False values that can be bridged. Then, flatten # the runs of runs. runs_to_merge = tf.logical_or(is_true_run, fill_gap) run_of_run_starts, _ = _segments_1d(runs_to_merge, mode=SegmentsMode.STARTS) # Get the start of every new run from the original run starts. merged_run_starts = tf.gather(run_starts, run_of_run_starts) # Make an array mapping the original runs to their run of runs. Increment # the number for every run of run start except for the first one, so that # the array has values from 0 to num_run_of_runs. merged_run_inds = tf.cumsum( tf.sparse_to_dense( sparse_indices=tf.cast(run_of_run_starts[1:, None], tf.int64), output_shape=tf.cast(num_runs[None], tf.int64), sparse_values=tf.ones_like(run_of_run_starts[1:]))) # Sum the lengths of the original runs that were merged. merged_run_lengths = tf.segment_sum(run_lengths, merged_run_inds) if mode is SegmentsMode.CENTERS: merged_starts_or_centers = ( merged_run_starts + tf.floordiv(merged_run_lengths - 1, 2)) else: merged_starts_or_centers = merged_run_starts # If there are no true values, increment first_run to 1, so we will skip # the single (false) run. first_run += tf.to_int32(tf.logical_not(tf.reduce_any(segments))) merged_starts_or_centers = merged_starts_or_centers[first_run::2] merged_run_lengths = merged_run_lengths[first_run::2] # Only take segments at least min_length long. is_long_enough = tf.greater_equal(merged_run_lengths, min_length) is_long_enough.set_shape([None]) merged_starts_or_centers = tf.boolean_mask(merged_starts_or_centers, is_long_enough) merged_run_lengths = tf.boolean_mask(merged_run_lengths, is_long_enough) return merged_starts_or_centers, merged_run_lengths
801541b7c3343fd59f79a3f3696c3cb17ab41c31
3,641,799