content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from pathlib import Path import scipy from datetime import datetime def fit_sir(times, T_real, gamma, population, store, pathtoloc, tfmt='%Y-%m-%d', method_solver='DOP853', verbose=True, \ b_scale=1): """ Fit the dynamics of the SIR starting from real data contained in `pathtocssegi`. The initial condition is taken from the real data. The method assumes that in the `store` at the indicated `path`, there are entries in the format %Y-%m-%d that described the infectivity matrices for the times `times[:-1]`. `populations` is the vector with the population per community. OUTPUT: * Xs * ts * scales For the output the dumping interval is one day. """ # initializations nt = len(times) t = times[0] B = read_df(t, tfmt, store, pathtoloc).to_numpy() N = B.shape[0] Y_real = np.einsum('ta,a->t', T_real, population) / np.sum(population) X = np.zeros((2, N), dtype=np.float_) I = T_real[0] S = 1 - I X = sir_SI_to_X(S, I) y = get_sir_omega_X(X, population) ts = [t] Xs = [X.reshape(2,N)] Ys = [y] b_scales = [] blo = 0. # print("nt = ", nt) for i in range(1, nt): if verbose: print(f'Integrating day {t}') mykey = Path(pathtoloc) / t.strftime(tfmt) mykey = str(mykey) if mykey in store.keys(): B = read_df(t, tfmt, store, pathtoloc).to_numpy() elif verbose: print("Infectivity matrix not updated!") tnew = times[i] dt = int((tnew - t).days) ypred = Y_real[i] # root finding method func_root = lambda b: get_sir_omega_X(compute_sir_X(X, dt, b*B, gamma, method_solver), \ population) - ypred # initial bracketing bhi = b_scale fscale = 3. for k in range(1,10): f = func_root(bhi) if f > 0: break else: bhi *= fscale if f < 0: raise ValueError("Problem in bracketing!") # find the root sol = scipy.optimize.root_scalar(func_root, bracket=(blo, bhi), method='brentq', \ options={'maxiter': 100}) if not (sol.converged): raise ValueError("root finding failed!") b_scale = sol.root # compute next state with optimal scale t_eval = np.arange(dt+1) Xnews = compute_sir_X(X, dt, b_scale*B, gamma, method_solver, t_eval=t_eval) Xnew = Xnews[-1] y = get_sir_omega_X(Xnew,population) print(f"b = {b_scale}, y = {y}, ypred = {ypred}, y-ypred = {y-ypred}") # dump # data.append(Xnew.reshape(2,N)) Xs += [Xnew.reshape(2,N) for Xnew in Xnews] ts += [t + datetime.timedelta(days=int(dt)) for dt in t_eval[1:]] Ys.append(y) b_scales.append(b_scale) # update t = tnew X = Xnew b_scales.append(None) # B has ndays-1 entries print("Fitting complete") # prepare export of results S = np.array([X[0] for X in Xs]) I = np.array([X[1] for X in Xs]) clusters = np.arange(N, dtype=np.uint) df_S = pd.DataFrame(data=S, index=ts, columns=clusters) df_I = pd.DataFrame(data=I, index=ts, columns=clusters) df_fit = pd.DataFrame(data=np.array([b_scales, Ys]).T, index=times, columns=["scale", "frac_infected_tot"]) return df_S, df_I, df_fit
7a7da41fc178c805cc334e5a0060a2f9cc5f29d3
3,641,600
from typing import Dict from typing import OrderedDict def panelist_debuts_by_year(database_connection: mysql.connector.connect ) -> Dict: """Returns an OrderedDict of show years with a list of panelists' debut information""" show_years = retrieve_show_years(database_connection) panelists = retrieve_panelists_first_shows(database_connection) years_debut = OrderedDict() for year in show_years: years_debut[year] = [] for panelist in panelists: panelist_info = panelists[panelist] years_debut[panelist_info["year"]].append(panelist_info) return years_debut
40ba0cd67991b7c83b33e77522065b8bb75232c1
3,641,601
def _stirring_conditions_html(stirring: reaction_pb2.StirringConditions) -> str: """Generates an HTML-ready description of stirring conditions. Args: stirring: StirringConditions message. Returns: String description of the stirring conditions. """ if stirring.type == stirring.NONE: return "" txt = "" if stirring.type != stirring.UNSPECIFIED: txt += { stirring.CUSTOM: stirring.details, stirring.STIR_BAR: "stir bar", stirring.OVERHEAD_MIXER: "overhead mixer", stirring.AGITATION: "agitation", }[stirring.type] if stirring.rate.rpm: txt += f" ({stirring.rate.rpm} rpm)" return txt
0f03c67602163da3b732dfdcb0d367c6a0806c0d
3,641,602
def load_action_plugins(): """ Return a list of all registered action plugins """ logger.debug("Loading action plugins") plugins = get_plugins(action, ActionPlugin) if len(plugins) > 0: logger.info("Discovered {n} action plugins:".format(n=len(plugins))) for ap in plugins: logger.debug(" - {ap}".format(ap=ap.PLUGIN_NAME)) return plugins
55588021e933392136cb0d7f9dff7224716cce34
3,641,603
import io import os def read_file_in_root_directory(*names, **kwargs): """Read a file.""" return io.open( os.path.join(os.path.dirname(__file__), *names), encoding=kwargs.get('encoding', 'utf-8') ).read().strip()
0fdf6d445a0cd152e66988d59d29a04e5f0a1651
3,641,604
def set_effective_property_value_for_node( nodeId: dom.NodeId, propertyName: str, value: str ) -> dict: """Find a rule with the given active property for the given node and set the new value for this property Parameters ---------- nodeId: dom.NodeId The element id for which to set property. propertyName: str value: str """ return { "method": "CSS.setEffectivePropertyValueForNode", "params": {"nodeId": int(nodeId), "propertyName": propertyName, "value": value}, }
36cf035bd878ac4c4936cebbacc115273807b892
3,641,605
def classroom_page(request,unique_id): """ Classroom Setting Page. """ classroom = get_object_or_404(Classroom,unique_id=unique_id) pending_members = classroom.pending_members.all() admins = classroom.special_permissions.all() members = admins | classroom.members.all() is_admin = classroom.special_permissions.filter(username = request.user.username).exists() #classroom_update if request.method=="POST": form = CreateclassForm(request.POST,request.FILES,instance=classroom) if form.is_valid(): form.save() return redirect(reverse('subjects',kwargs={'unique_id':classroom.unique_id})) else: form = CreateclassForm(instance=classroom) params={ 'members':members.distinct(), 'admins':admins, 'pending_members':pending_members, 'classroom':classroom, 'is_admin':is_admin, 'form':form, } return render(request,'classroom_settings.html',params)
fc37979a44da63fb0dc174799523f3a77fefb1e4
3,641,606
def concat_hists(hist_array: np.array): """Concatenate multiple histograms in an array by adding them up with error prop.""" hist_final = hist_array[0] for hist in hist_array[1:]: hist_final.addhist(hist) return hist_final
e659ceb97f38620f561920ddab6339ecb901ee55
3,641,607
def renorm_flux_lightcurve(flux, fluxerr, mu): """ Normalise flux light curves with distance modulus.""" d = 10 ** (mu/5 + 1) dsquared = d**2 norm = 1e18 # print('d**2', dsquared/norm) fluxout = flux * dsquared / norm fluxerrout = fluxerr * dsquared / norm return fluxout, fluxerrout
97f2606d54b106d2051983dfc29d942112e7a1e3
3,641,608
import argparse from pathlib import Path import sys from io import StringIO def retrieve(args: argparse.Namespace, file_handler: DataFilesHandler, homepath: Path) -> str: """Find an expression by name.""" name = NAME_MULTIPLEXOR.join(args.REGULAR_EXPRESSION_NAME) try: return file_handler.get_pattern(name) except KeyError: pass if args.local or (not file_handler.config.should_lookup and not args.online): print(f"{name} not found locally, lookups disabled.", file=sys.stderr) sys.exit(1) external_patterns = ( PoolManager().request("GET", file_handler.config.lookup_location).data.decode("utf-8") ) try: pattern = DataFilesHandler(StringIO(), StringIO(external_patterns)).get_pattern(name) except KeyError: print( f"{name} not found at {file_handler.config.lookup_location} or locally.", file=sys.stderr, ) sys.exit(1) if args.save or (file_handler.config.should_save and not args.no_save): file_handler.set_pattern(name, pattern) file_handler.flush(str(homepath), patterns=True) return pattern
acb2fd8c624eff05fd1181974afa46585dec275e
3,641,609
def find_focus(stack): """ Parameters ---------- stack: (nd-array) Image stack of dimension (Z, ...) to find focus Returns ------- focus_idx: (int) Index corresponding to the focal plane of the stack """ def brenner_gradient(im): assert len(im.shape) == 2, 'Input image must be 2D' return np.mean((im[:-2, :] - im[2:, :]) ** 2) focus_scores = [] for img in stack: focus_score = brenner_gradient(img) focus_scores.append(focus_score) focus_idx_min = np.where(focus_scores == np.min(focus_scores))[0][0] focus_idx_max = np.where(focus_scores == np.max(focus_scores))[0][0] return focus_idx_max, focus_idx_min
234cecb9c43f9427cd8c5d1e9b2ae24c14239835
3,641,610
def get_amr_line(input_f): """Read the amr file. AMRs are separated by a blank line.""" cur_amr=[] has_content=False for line in input_f: if line[0]=="(" and len(cur_amr)!=0: cur_amr=[] if line.strip()=="": if not has_content: continue else: break elif line.strip().startswith("#"): # omit the comment in the AMR file continue else: has_content=True cur_amr.append(delete_pattern(line.strip(), '~e\.[0-9]+(,[0-9]+)*')) #cur_amr.append(line.strip()) return "".join(cur_amr)
5b0c980a8c68143d8fdeb413185ee445b11cd30b
3,641,611
def getHwAddrForIp(ip): """ Returns the MAC address for the first interface that matches the given IP Returns None if not found """ for i in netifaces.interfaces(): addrs = netifaces.ifaddresses(i) try: if_mac = addrs[netifaces.AF_LINK][0]['addr'] if_ip = addrs[netifaces.AF_INET][0]['addr'] except IndexError, KeyError: # Ignore ifaces that dont have MAC or IP if_mac = if_ip = None if if_ip == ip: return if_mac return None
efbeb494ed0a3fb135e87a66a170a94f4ca78231
3,641,612
def rbf_multiquadric(r, epsilon=1.0, beta=2.5): """ multiquadric """ return np.sqrt((epsilon*r)**2 + 1.0)
068ab09a609a47e631d91f90634fe4a5810e0fd1
3,641,613
def is_valid_sudoku(board): """ Checks if an input sudoku board is valid Algorithm: For all non-empty squares on board, if value at that square is a number, check if the that value exists in that square's row, column, and minor square. If it is, return False. """ cols = [set() for _ in range(9)] squares = [[set() for _ in range(3)] for x in range(3)] for row in range(9): rows = set() for col in range(9): if board[row][col] == ".": continue # Check row if board[row][col] in rows: return False else: rows.add(board[row][col]) # Check col if board[row][col] in cols[col]: return False else: cols[col].add(board[row][col]) # Check square if board[row][col] in squares[row // 3][col // 3]: return False else: squares[row // 3][col // 3].add(board[row][col]) return True
001a02a47acbaa192215d985f3d743c42a9fb42b
3,641,614
def lab_to_nwb_dict(lab_key): """ Generate a dictionary containing all relevant lab and institution info :param lab_key: Key specifying one entry in element_lab.lab.Lab :return: dictionary with NWB parameters """ lab_info = (lab.Lab & lab_key).fetch1() return dict( institution=lab_info.get("institution"), lab=lab_info.get("lab_name"), )
dcde08b3421d56003d23ca19747430c6d95bf431
3,641,615
from typing import Set from re import A def length(self: Set[A]) -> int: """ Returns the length (number of elements) of the set. `size` is an alias for length. Returns: The length of the set """ return len(self)
cab214f7b06fc8ae604286cd40d6d558d05b7175
3,641,616
import time def timestamp(tdigits=8): """Return a unique timestamp string for the session. useful for ensuring unique function identifiers, etc. """ return str(time.clock()).replace(".", "").replace("-", "")[: tdigits + 1]
b209795f67735ada82238e5fa47f5132efa61384
3,641,617
from typing import List from typing import Optional def hierarchical_mutation(original_individual: Individual, strength: float, **kwargs) -> List[Optional[Individual]]: # TODO: Double Check """Choose a node in the graph_manager, choose a parameter inside the node, mutate it. Each parameter has probability: `1/len(nodes) * 1/len(parameters in that node)`. Args: original_individual (Individual): source individual to mutate strength (float): mutation strength Returns: A list with the new mutated individual or None if it is not valid """ check_muation_parameters(original_individual, strength) new_individual = clone_individual(original_individual) new_individual.parents = {original_individual} new_individual.operator = hierarchical_mutation # Do while not (rnd.random() < strength) while True: # Use "while loop" to try choosing a node that doesn't contain only the Information parameter or the mutation # had no effect while True: # Choose a node that contains the parameter to mutate chosen_node = random_generator.choice(new_individual.nodes()) # Create a list of parameters contained into the macro candidate_parameters = list() for parameter_name, parameter in new_individual.nodes[chosen_node]['parameters'].items(): if not isinstance(parameter, Information): candidate_parameters.append(parameter) # If I tried to mutate a macro that contains only an Information parameter -> pick another node to mutate # else -> mutate a random parameter if candidate_parameters: # Choose only one parameter to mutate in the list of all parameters of the chosen macro chosen_parameter = random_generator.choice(candidate_parameters) assert strength chosen_parameter.mutate(strength) break # Stop condition if strength == 1.0 or not (random_generator.random() < strength): break new_individual.finalize() if not new_individual.valid: return [None] else: # print_individual(original_individual, 'ORIGINAL', True) # print_individual(individual, 'MUTATED', True) return [new_individual]
a726478230b1cd37a0065f08c42b3dd125db9357
3,641,618
def is_wrapped_exposed_object(obj): """ Return True if ``obj`` is a Lua (lupa) wrapper for a BaseExposedObject instance """ if not hasattr(obj, 'is_object') or not callable(obj.is_object): return False return bool(obj.is_object())
117a43f9dcc886dc88a77c2ace016b89e43b3c4c
3,641,619
def no_transform(image): """Pass through the original image without transformation. Returns a tuple with None to maintain compatability with processes that evaluate the transform. """ return (image, None)
25b45a5c77d3c2864ebc7a046e0f47b2fafb067b
3,641,620
def build_menu(buttons, n_cols, header_buttons=None, footer_buttons=None): """Builds a menu with the given style using the provided buttons :return: list of buttons """ menu = [buttons[i:i + n_cols] for i in range(0, len(buttons), n_cols)] if header_buttons: menu.insert(0, [header_buttons]) if footer_buttons: menu.append([footer_buttons]) return menu
f068ef9222b7e16cf19d901961f0315b2d6aebe3
3,641,621
def dbbox2result(dbboxes, labels, num_classes): """ Convert detection results to a list of numpy arrays. :param dbboxes: (Tensor): shape (n, 9) :param labels: (Tensor): shape (n, ) :param num_classes: (int), class number, including background class :return: list (ndarray): dbbox results of each class """ # TODO: merge it with bbox2result if dbboxes.shape[0] == 0: return [ np.zeros((1, 9), dtype=np.float32) for i in range(num_classes - 1) ] else: dbboxes = dbboxes.cpu().numpy() labels = labels.cpu().numpy() return [dbboxes[labels == i, :] for i in range(num_classes - 1)] # result = [dbboxes[labels == i, :] for i in range(num_classes - 1)] # for i, each_class in enumerate(result): # if each_class.shape[0] == 0: # result[i] = np.zeros((1, 9)) # return result
945ba8c82837d51446eb8d3123497facafb0d503
3,641,622
def SSderivative(ds): """ Given a time-step ds, and an single input time history u, this SS model returns the output y=[u,du/ds], where du/dt is computed with second order accuracy. """ A = np.array([[0]]) Bm1 = np.array([0.5 / ds]) B0 = np.array([[-2 / ds]]) B1 = np.array([[1.5 / ds]]) C = np.array([[0], [1]]) D = np.array([[1], [0]]) # change state Aout, Bout, Cout, Dout = SSconv(A, B0, B1, C, D, Bm1) return Aout, Bout, Cout, Dout
c255937fd1f727932d5b09fc70c586e7bdb10bf1
3,641,623
def clean_post(value): """Remove unwanted elements in post content""" doc = lxml.html.fragment_fromstring(value) doc.tag = 'div' # replaces <li> doc.attrib.clear() # remove comment owner info for e in doc.xpath('//div[@class="weblog_keywords"]'): e.drop_tree() return lxml.html.tostring(doc)
c7670d5632760b577aa7ac9dae24de15bf164c67
3,641,624
def get_houdini_version(as_string=True): """ Returns version of the executed Houdini :param as_string: bool, Whether to return the stiring version or not :return: variant, int or str """ if as_string: return hou.applicationVersionString() else: return hou.applicationVersion()
efcc18a89552f8dd1c4807be2042b51db2c2fb61
3,641,625
import socket def check_port_open(port: int) -> bool: """ Проверка на свободный порт port Является частью логики port_validation """ try: sock = socket.socket() sock.bind(("", port)) sock.close() print(f"Порт {port} свободен") return True except OSError: print(f"Порт {port} занят") return False
76ba3ddd03bf1672b8b4ce5fd048561c3a9e78e8
3,641,626
from datetime import datetime def convert_date_to_tick_tick_format(datetime_obj, tz: str): """ Parses ISO 8601 Format to Tick Tick Date Format It first converts the datetime object to UTC time based off the passed time zone, and then returns a string with the TickTick required date format. !!! info Required Format ISO 8601 Format Example: 2020-12-23T01:56:07+00:00 TickTick Required Format: 2020-12-23T01:56:07+0000 -> Where the last colon is removed for timezone Arguments: datetime_obj (datetime): Datetime object to be parsed. tz: Time zone string. Returns: str: The TickTick accepted date string. ??? info "Import Help" ```python from ticktick.helpers.time_methods import convert_iso_to_tick_tick_format ``` ??? example ```python date = datetime(2022, 12, 31, 14, 30, 45) converted_date = convert_iso_to_tick_tick_format(date, 'US/Pacific') ``` ??? success "Result" The proper format for a date string to be used with TickTick dates. ```python '2022-12-31T22:30:45+0000' ``` """ date = convert_local_time_to_utc(datetime_obj, tz) date = date.replace(tzinfo=datetime.timezone.utc).isoformat() date = date[::-1].replace(":", "", 1)[::-1] return date
9f8efc2136b75310649d31328d4359d2030aff97
3,641,627
def measurement(resp, p): """model measurement effects in the filters by translating the response at each location and stimulus (first 3 axes of resp) toward the filterwise mean (4th axis) according to proportion p. p=1 means that all filters reduce to their respective means; p=0 does nothing; p<0 is possible but probably not something you want.""" resp = tf.convert_to_tensor(resp) # average the filter dim meanresp = tf.reduce_mean(resp, axis=3, keepdims=False) # make resp the origin of meanresp and scale by p transresp = (meanresp[:, :, :, None] - resp) * p return resp + transresp
99d24b3b790c0aa1d2873ca5521144a1e326b661
3,641,628
def irpf(salario,base=12.5,prorrateo=0): """Entra el salario y la base, opcionalmente un parametro para prorratear Si no se da el valor de la bas3e por defecto es 12.5""" if type(salario)==float and type(base)==float: if prorrateo==True: return (salario*(1+2/12))*(base/100) elif prorrateo==False: return salario*(base/100) else: return None
b549e78f2cbd3227cc99d4ce7277a90058696895
3,641,629
def get2p3dSlaterCondonUop(Fdd=(9, 0, 8, 0, 6), Fpp=(20, 0, 8), Fpd=(10, 0, 8), Gpd=(0, 3, 0, 2)): """ Return a 2p-3d U operator containing a sum of different Slater-Condon proccesses. Parameters ---------- Fdd : tuple Fpp : tuple Fpd : tuple Gpd : tuple """ # Calculate F_dd^{0,2,4} FddOp = getUop(l1=2,l2=2,l3=2,l4=2,R=Fdd) # Calculate F_pp^{0,2} FppOp = getUop(l1=1,l2=1,l3=1,l4=1,R=Fpp) # Calculate F_pd^{0,2} FpdOp1 = getUop(l1=1,l2=2,l3=2,l4=1,R=Fpd) FpdOp2 = getUop(l1=2,l2=1,l3=1,l4=2,R=Fpd) FpdOp = addOps([FpdOp1,FpdOp2]) # Calculate G_pd^{1,3} GpdOp1 = getUop(l1=1,l2=2,l3=1,l4=2,R=Gpd) GpdOp2 = getUop(l1=2,l2=1,l3=2,l4=1,R=Gpd) GpdOp = addOps([GpdOp1,GpdOp2]) # Add operators uOp = addOps([FddOp,FppOp,FpdOp,GpdOp]) return uOp
6ae077b1913bf40f93adcdbbbbc882baa9d56eea
3,641,630
from typing import AnyStr import pickle def read_meta_fs(filename: AnyStr): """ Read meta data from disk. """ settings.Path(filename).mkdir(parents=True, exist_ok=True) filepath = settings.pj(filename, "meta.pkl") with open(filepath, "rb") as fh: return pickle.load(fh)
8fdf4c74d34c623cd1ac7d15f32f891685f1d863
3,641,631
def compile(model, ptr, vtr, num_y_per_branch=1): """Create a list with ground truth, loss functions and loss weights. """ yholder_tr = [] losses = [] loss_weights = [] num_blocks = int(len(model.output) / (num_y_per_branch + 1)) printcn(OKBLUE, 'Compiling model with %d outputs per branch and %d branches.' % (num_y_per_branch, num_blocks)) for i in range(num_blocks): for j in range(num_y_per_branch): yholder_tr.append(ptr) losses.append(elasticnet_loss_on_valid_joints) loss_weights.append(1.) yholder_tr.append(vtr) losses.append('binary_crossentropy') loss_weights.append(0.01) printcn(OKBLUE, 'loss_weights: ' + str(loss_weights)) model.compile(loss=losses, optimizer=RMSprop(), loss_weights=loss_weights) return yholder_tr
24af75f3b5bc6ba06d88f81023c2c7011f1d6922
3,641,632
import html def strip_clean(input_text): """Strip out undesired tags. This removes tags like <script>, but leaves characters like & unescaped. The goal is to store the raw text in the database with the XSS nastiness. By doing this, the content in the database is raw and Django can continue to assume that it's unsafe by default. """ return html.unescape(bleach.clean(input_text, strip=True))
83e2bd3cb5c2645dd4ea611fd0e0577d118b8326
3,641,633
def setup(mu=MU, sigma=SIGMA, beta=BETA, tau=TAU, draw_probability=DRAW_PROBABILITY, backend=None, env=None): """Setups the global environment. :param env: the specific :class:`TrueSkill` object to be the global environment. It is optional. >>> Rating() trueskill.Rating(mu=25.000, sigma=8.333) >>> setup(mu=50) #doctest: +ELLIPSIS trueskill.TrueSkill(mu=50.000, ...) >>> Rating() trueskill.Rating(mu=50.000, sigma=8.333) """ if env is None: env = TrueSkill(mu, sigma, beta, tau, draw_probability, backend) global_env.__trueskill__ = env return env
ce797c9994e477bc618f8f52cc63babcc61b78fd
3,641,634
def _bytepad(x, length): """Zero pad byte string as defined in NIST SP 800-185""" to_pad = _left_encode(length) + x # Note: this implementation works with byte aligned strings, # hence no additional bit padding is needed at this point. npad = (length - len(to_pad) % length) % length return to_pad + b'\x00' * npad
b02304fbb0e4bc42a80bc3fdc246c4fc9d55c816
3,641,635
import argparse def str2bool(val): """enable default constant true arguments""" # https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse if isinstance(val, bool): return val elif val.lower() == 'true': return True elif val.lower() == 'false': return False else: raise argparse.ArgumentTypeError('Boolean value expected')
ca229cd53674c6e9a8f37c60909826bf50c6accb
3,641,636
def get_scalefactor(metadata): """Add scaling factors to the metadata dictionary :param metadata: dictionary with CZI or OME-TIFF metadata :type metadata: dict :return: dictionary with additional keys for scling factors :rtype: dict """ # set default scale factore to 1 scalefactors = {'xy': 1.0, 'zx': 1.0 } try: # get the factor between XY scaling scalefactors['xy'] = metadata['XScale'] / metadata['YScale'] # get the scalefactor between XZ scaling scalefactors['zx'] = metadata['ZScale'] / metadata['YScale'] except KeyError as e: print('Key not found: ', e) return scalefactors
0619d5fa8f24008ddf4364a965268755c07d09c3
3,641,637
def alignmentEntropy(align, statistic='absolute', removeGaps=False, k=1, logFunc=np.log): """Calculates the entropy in bits of each site (or kmer) in a sequence alignment. Also can compute: - "uniqueness" which I define to be the fraction of unique sequences - "uniquenum" which is the number of unique sequences Parameters ---------- align : pd.Series() or list Alignment of sequences. statistic : str Statistic to be computed: absolute, uniqueness Uniqueness is the fraction of unique sequences. Uniquenum is the number of unique AA at each position. removeGaps : bool Remove from the alignment at each position, kmers that start with a gap character. Also use "non-gapped kmers" (ie skipping gaps) k : int Length of the kmer to consider at each start position in the alignment. (default 1 specifies site-wise entropy) logFunc : function Default is natural log, returning nats. Can also use log2 for bits. Return ------ out : float Output statistic.""" if removeGaps: grabKmerFlag = 1 else: grabKmerFlag = 0 align = padAlignment(align) L = len(align[align.index[0]]) nKmers = L - k + 1 entropy = np.zeros(nKmers, dtype=float) for aai in np.arange(nKmers): kmers = [grabKmer(seq, aai, k)[grabKmerFlag] for seq in align] """kmers that start with a gap or that are at the end and are of insufficent length, will be None""" kmers = [mer for mer in kmers if not mer is None] oh = objhist(kmers) if statistic == 'absolute': entropy[aai] = oh.entropy() elif statistic == 'uniqueness': entropy[aai] = oh.uniqueness() elif statistic == 'uniquenum': entropy[aai] = len(list(oh.keys())) return entropy
ea06ae01cd1aa69cfc7dd19c72caafc5478fda38
3,641,638
def NodeToString(xml_node): """Returns an XML string. Args: xml_node: xml.dom.Node object Returns: String containing XML """ return xml_node.toxml()
043072bbb40f33947febedf967679e3e39931834
3,641,639
def difference(data, interval): """ difference dataset parameters: data: dataset to be differenced interval: the interval between the two elements to be differenced. return: dataset: with the length = len(data) - interval """ return [data[i] - data[i - interval] for i in range(interval, len(data))]
611f4ad36935000ae7dc16f76aef7cbb494b36ac
3,641,640
def merge_dictionaries(dict1, dict2): """ Merges two dictionaries handling embedded lists and dictionaries. In a case of simple type, values from dict1 are preserved. Args: dict1, dict2 dictionaries to merge Return merged dictionaries """ for k2, v2 in dict2.items(): if k2 not in dict1: dict1[k2] = v2 else: if isinstance(v2, list): dict1[k2] = merge_lists(dict1[k2], v2) elif isinstance(v2, dict): dict1[k2] = merge_dictionaries(dict1[k2], v2) else: # if the type is int or strings we do nothing # its already in dict1 pass return dict1
8d46ce04496be2b5ba0e66788aed1a4e5ec1c85c
3,641,641
def build(model_def, model_name, optimizer, loss_name, custom_objects=None): """build keras model instance in FastEstimator Args: model_def (function): function definition of tf.keras model or path of model file(h5) model_name (str, list, tuple): model name(s) optimizer (str, optimizer, list, tuple): optimizer(s) loss_name (str, list, tuple): loss name(s) custom_objects (dict): dictionary that maps custom Returns: model: model(s) compiled by FastEstimator """ with fe.distribute_strategy.scope() if fe.distribute_strategy else NonContext(): if isinstance(model_def, str): model = tf.keras.models.load_model(model_def, custom_objects=custom_objects) else: model = model_def() model = to_list(model) model_name = to_list(model_name) optimizer = to_list(optimizer) loss_name = to_list(loss_name) assert len(model) == len(model_name) == len(optimizer) == len(loss_name) for idx, (m, m_n, o, l_n) in enumerate(zip(model, model_name, optimizer, loss_name)): model[idx] = _fe_compile(m, m_n, o, l_n) if len(model) == 1: model = model[0] return model
28cf56036b00790cf3e6350cc2741d93dd047e3a
3,641,642
import wave def check_audio_file(audio_file): """ Check if the audio file contents and format match the needs of the speech service. Currently we only support 16 KHz, 16 bit, MONO, PCM audio format. All others will be rejected. :param audio_file: file to check :return: audio duration, if file matches the format expected, otherwise None """ # Verify that all wave files are in the right format try: with wave.open(audio_file) as my_wave: frame_rate = my_wave.getframerate() if frame_rate >= 8000 and my_wave.getnchannels() in [1, 2] \ and my_wave.getsampwidth() == 2 and my_wave.getcomptype() == 'NONE': audio_duration = my_wave.getnframes() / frame_rate return audio_duration else: raise InvalidAudioFormatError( "File {0} is not in the right format, it must be: Mono/Stereo, 16bit, PCM, 8KHz or above. " "Found: ChannelCount={1}, SampleWidth={2}, CompType={3}, FrameRate={4}. Ignoring input!".format( audio_file, my_wave.getnchannels(), my_wave.getsampwidth(), my_wave.getcomptype(), frame_rate ) ) except Exception as e: raise InvalidAudioFormatError("Invalid wave file {0}, reason: {1} :{2}".format(audio_file, type(e).__name__, e))
a6807cddefa7440b2f1cb11b2b3b309579f372e0
3,641,643
def uniform(name): """ Calls the findUniform function from util.py to return the uniform bounds for the given molecule. Input: name of molecule Output: array of length [2] with the upper and lower bounds for the uniform prior """ prior = findUniform(name, 'd_h') return prior
e01b8c5056d199a8e0048e148170d5fc4c5c28a1
3,641,644
def merge_two_dicts(x, y): """Merges two dicts, returning a new copy.""" z = x.copy() z.update(y) return z
9126ada395d9d7f3da5a45b7d46c5b440b5cf23d
3,641,645
def num_utterances(dataset: ds.DatasetSplit): """Returns the total number of utterances in the dataset.""" return sum([len(interaction) for interaction in dataset.examples])
0927b96666f2f409c9fb0ec3c63576632810b6dc
3,641,646
def __virtual__(): """ Only return if requests and boto are installed. """ if HAS_LIBS: return __virtualname__ else: return False
633ec9294e7585a6d5fc8a1dba2b436a20a4ab7a
3,641,647
def register(): """Register user""" # User reached route via POST (as by submitting a form via POST) if request.method == "POST": username = request.form.get("username") email = request.form.get("email") password = request.form.get("password") # Logs user into database rows = db.execute("SELECT * FROM users WHERE username = ?",username) email_check = db.execute("SELECT * FROM users WHERE email = ?",email) # Check if Username is taken or not if len(rows) != 0: flash("Username Already Taken!", "danger") return redirect("/register") # Check if Email is taken or not if len(email_check) != 0: flash("Email Already Taken!", "danger") return redirect("/register") # Create a hashed password based on sha256 hashing function and store it into database hashed_password = generate_password_hash(password, method='pbkdf2:sha256', salt_length=8) db.execute("INSERT INTO users(email, username, hash) VALUES(?, ?, ?)", email, username, hashed_password) # Reddirect user back to login page after registering flash("Register Successfully!", "success") return redirect("/login") # User reached route via GET (as by clicking a link or via redirect) else: return render_template("register.html")
1c37ad0eac8f6a2230106cfd9e3754d6053956ff
3,641,648
def _csd_multitaper(X, sfreq, n_times, window_fun, eigvals, freq_mask, n_fft, adaptive): """Compute cross spectral density (CSD) using multitaper module. Computes the CSD for a single epoch of data. Parameters ---------- X : ndarray, shape (n_channels, n_times) The time series data consisting of n_channels time-series of length n_times. sfreq : float The sampling frequency of the data in Hertz. n_times : int Number of time samples window_fun : ndarray Window function(s) of length n_times. This corresponds to first output of `dpss_windows`. eigvals : ndarray | float Eigenvalues associated with window functions. freq_mask : ndarray Which frequencies to use. n_fft : int Length of the FFT. adaptive : bool Use adaptive weights to combine the tapered spectra into PSD. """ x_mt, _ = _mt_spectra(X, window_fun, sfreq, n_fft) if adaptive: # Compute adaptive weights _, weights = _psd_from_mt_adaptive(x_mt, eigvals, freq_mask, return_weights=True) # Tiling weights so that we can easily use _csd_from_mt() weights = weights[:, np.newaxis, :, :] weights = np.tile(weights, [1, x_mt.shape[0], 1, 1]) else: # Do not use adaptive weights weights = np.sqrt(eigvals)[np.newaxis, np.newaxis, :, np.newaxis] x_mt = x_mt[:, :, freq_mask] # Calculating CSD # Tiling x_mt so that we can easily use _csd_from_mt() x_mt = x_mt[:, np.newaxis, :, :] x_mt = np.tile(x_mt, [1, x_mt.shape[0], 1, 1]) y_mt = np.transpose(x_mt, axes=[1, 0, 2, 3]) weights_y = np.transpose(weights, axes=[1, 0, 2, 3]) csds = _csd_from_mt(x_mt, y_mt, weights, weights_y) # FIXME: don't compute full matrix in the first place csds = np.array([_sym_mat_to_vector(csds[:, :, i]) for i in range(csds.shape[-1])]).T # Scaling by sampling frequency for compatibility with Matlab csds /= sfreq return csds
e936cb89ed18df8da25737be6fdfb31822c8db6f
3,641,649
def _build_tmp_access_args(method, ip, ttl, port, direction, comment): """ Builds the cmd args for temporary access/deny opts. """ opt = _get_opt(method) args = "{0} {1} {2}".format(opt, ip, ttl) if port: args += " -p {0}".format(port) if direction: args += " -d {0}".format(direction) if comment: args += " #{0}".format(comment) return args
17a00e10af84519edb1a5dd8d89be614cb548ea1
3,641,650
def add_two_values(value1, value2): """ Adds two integers Arguments: value1: first integer value e.g. 10 value2: second integer value e.g. 2 """ return value1 + value2
10f71fcbde9d859f094724c94568eee55a7b989a
3,641,651
import pandas def combine_nearby_breakends(events, distance=5000): """ 1d clustering, prioritizing assembled breakpoint coords """ breakends = [] positions = get_positions(events) for (chrom, orientation), cur_events in positions.groupby(["chrom", "orientation"]): cur_events = cur_events.sort_values("pos") groups = ((cur_events["pos"]-cur_events["pos"].shift()) > distance).cumsum() for i, cur_group in cur_events.groupby(groups): if cur_group["assembled"].any(): cur_combined = cur_group.loc[cur_group["assembled"]].copy() cur_combined["assembled"] = True else: cur_orientations = cur_group["orientation"].unique() cur_combined = pandas.DataFrame({"orientation":cur_orientations}) cur_combined["chrom"] = chrom cur_combined["pos"] = int(cur_group["pos"].mean()) cur_combined["assembled"] = False breakends.append(cur_combined) return pandas.concat(breakends, ignore_index=True)
dad6867e7dfa406f8785b131fb2c93694fe60f0d
3,641,652
def get_mongo_database(connection, database_name): """ Access the database Args: connection (MongoClient): Mongo connection to the database database_name (str): database to be accessed Returns: Database: the Database object """ try: return connection.get_database(database_name) except: return None
9299cbe0b697dec2e548fb5e26e2013214007575
3,641,653
from typing import Dict from typing import Callable def make_mappings() -> Dict[str, Callable[[], None]]: """サンプル名と実行する関数のマッピングを生成します""" # noinspection PyDictCreation m = {} extlib.regist_modules(m) return m
598decb0b3197b1c64c982354de1fea9fdb3ce3d
3,641,654
def S(state): """Stringify state """ if state == State.IDLE: return "IDLE" if state == State.TAKING_OFF: return "TAKING_OFF" if state == State.HOVERING: return "HOVERING" if state == State.WAITING_ON_ASSIGNMENT: return "WAITING_ON_ASSIGNMENT" if state == State.FLYING: return "FLYING" if state == State.IN_FORMATION: return "IN_FORMATION" if state == State.GRIDLOCK: return "GRIDLOCK" if state == State.COMPLETE: return "\033[32;1mCOMPLETE\033[0m" if state == State.TERMINATE: return "\033[31;1mTERMINATE\033[0m"
58c6005dcf8549225c233cc1af486fca9578111d
3,641,655
import os import logging def eval_classif_cross_val_roc(clf_name, classif, features, labels, cross_val, path_out=None, nb_steps=100): """ compute mean ROC curve on cross-validation schema http://scikit-learn.org/0.15/auto_examples/plot_roc_crossval.html :param str clf_name: name of selected classifier :param obj classif: sklearn classifier :param ndarray features: features in dimension nb_samples x nb_features :param list(int) labels: annotation for samples :param object cross_val: :param str path_out: path for exporting statistic :param int nb_steps: number of thresholds :return: >>> np.random.seed(0) >>> labels = np.array([0] * 150 + [1] * 100 + [3] * 50) >>> data = np.tile(labels, (6, 1)).T.astype(float) >>> data += np.random.random(data.shape) >>> data.shape (300, 6) >>> from sklearn.model_selection import StratifiedKFold >>> cv = StratifiedKFold(n_splits=5, random_state=0) >>> classif = create_classifiers()[DEFAULT_CLASSIF_NAME] >>> fp_tp, auc = eval_classif_cross_val_roc(DEFAULT_CLASSIF_NAME, classif, ... data, labels, cv, nb_steps=10) >>> fp_tp FP TP 0 0.000000 0.0 1 0.111111 1.0 2 0.222222 1.0 3 0.333333 1.0 4 0.444444 1.0 5 0.555556 1.0 6 0.666667 1.0 7 0.777778 1.0 8 0.888889 1.0 9 1.000000 1.0 >>> auc 0.94444444444444442 >>> labels[-50:] -= 1 >>> data[-50:, :] -= 1 >>> path_out = 'temp_eval-cv-roc' >>> os.mkdir(path_out) >>> fp_tp, auc = eval_classif_cross_val_roc(DEFAULT_CLASSIF_NAME, classif, ... data, labels, cv, nb_steps=5, path_out=path_out) >>> fp_tp FP TP 0 0.00 0.0 1 0.25 1.0 2 0.50 1.0 3 0.75 1.0 4 1.00 1.0 >>> auc 0.875 >>> import shutil >>> shutil.rmtree(path_out, ignore_errors=True) """ mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, nb_steps) labels_bin = np.zeros((len(labels), np.max(labels) + 1)) unique_labels = np.unique(labels) assert all(unique_labels >= 0), \ 'some labels are negative: %r' % unique_labels for lb in unique_labels: labels_bin[:, lb] = (labels == lb) # since version change the CV is not iterable by default if not hasattr(cross_val, '__iter__'): cross_val = cross_val.split(features, labels) count = 0. for train, test in cross_val: classif_cv = clone(classif) classif_cv.fit(np.copy(features[train], order='C'), np.copy(labels[train], order='C')) proba = classif_cv.predict_proba(np.copy(features[test], order='C')) # Compute ROC curve and area the curve for i, lb in enumerate(unique_labels): fpr, tpr, _ = metrics.roc_curve(labels_bin[test, lb], proba[:, i]) fpr = [0.] + fpr.tolist() + [1.] tpr = [0.] + tpr.tolist() + [1.] mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 count += 1 # roc_auc = metrics.auc(fpr, tpr) mean_tpr /= count mean_tpr[-1] = 1.0 # mean_auc = metrics.auc(mean_fpr, mean_tpr) df_roc = pd.DataFrame(np.array([mean_fpr, mean_tpr]).T, columns=['FP', 'TP']) auc = metrics.auc(mean_fpr, mean_tpr) if path_out is not None: assert os.path.exists(path_out), 'missing: "%s"' % path_out name_csv = NAME_CSV_CLASSIF_CV_ROC.format(clf_name, 'mean') df_roc.to_csv(os.path.join(path_out, name_csv)) name_txt = NAME_TXT_CLASSIF_CV_AUC.format(clf_name, 'mean') with open(os.path.join(path_out, name_txt), 'w') as fp: fp.write(str(auc)) logging.debug('cross_val ROC: \n %r', df_roc) return df_roc, auc
b7196e024082015601f71cb9faaeb0c84444e419
3,641,656
def trace_get_watched_net(trace, i): """ trace_get_watched_net(Int_trace trace, unsigned int i) -> Int_net Parameters ---------- trace: Int_trace i: unsigned int """ return _api.trace_get_watched_net(trace, i)
f7140cbfcc27d511b3212ba7adf97f0b6c91582b
3,641,657
from typing import Optional from typing import OrderedDict def dist_batch_tasks_for_all_layer_mdl_vs_adapted_mdl( mdl: nn.Module, spt_x: Tensor, spt_y: Tensor, qry_x: Tensor, qry_y: Tensor, layer_names: list[str], inner_opt: DifferentiableOptimizer, fo: bool, nb_inner_train_steps: int, criterion: nn.Module, metric_comparison_type: str = 'pwcca', iters: int = 1, effective_neuron_type: str = 'filter', downsample_method: Optional[str] = None, downsample_size: Optional[int] = None, subsample_effective_num_data_method: Optional[str] = None, subsample_effective_num_data_param: Optional[int] = None, metric_as_sim_or_dist: str = 'dist', force_cpu: bool = False, training: bool = True, copy_initial_weights: bool = False, track_higher_grads: bool = False ) -> list[OrderedDict[LayerIdentifier, float]]: """ :param mdl: :param spt_x: not as a tuple due to having to move them to gpu potentially. :param spt_y: :param qry_x: :param qry_y: :param layer_names: :param inner_opt: :param fo: :param nb_inner_train_steps: :param criterion: :param metric_comparison_type: :param iters: :param effective_neuron_type: :param downsample_method: :param downsample_size: :param subsample_effective_num_data_method: :param subsample_effective_num_data_param: :param metric_as_sim_or_dist: :param force_cpu: :param training: :param copy_initial_weights: :param track_higher_grads: :return: """ # - [B, M, C, H, W] -> [B, L] L: int = len(layer_names) B: int = spt_x.size(0) dists_per_batch_per_layer: list[OrderedDict[LayerIdentifier, float]] = [] for t in range(B): spt_x_t, spt_y_t, qry_x_t, qry_y_t = spt_x[t], spt_y[t], qry_x[t], qry_y[t] # adapted_mdl: FuncModel = get_maml_adapted_model_with_higher_one_task(mdl, inner_opt, spt_x_t, spt_y_t, training, copy_initial_weights, track_higher_grads, fo, nb_inner_train_steps, criterion) # - [M, C, H, W], [L] -> [L] X: Tensor = qry_x_t dists_per_layer: OrderedDict[LayerIdentifier, float] = dist_data_set_per_layer(mdl1=mdl, mdl2=adapted_mdl, X1=X, X2=X, layer_names1=layer_names, layer_names2=layer_names, metric_comparison_type=metric_comparison_type, iters=iters, effective_neuron_type=effective_neuron_type, downsample_method=downsample_method, downsample_size=downsample_size, subsample_effective_num_data_method=subsample_effective_num_data_method, subsample_effective_num_data_param=subsample_effective_num_data_param, metric_as_sim_or_dist=metric_as_sim_or_dist, force_cpu=force_cpu ) assert len(dists_per_layer) == L # - appending to [B, L] dists_per_batch_per_layer.append(dists_per_layer) # # del adapted_mdl # gc.collect() assert len(dists_per_batch_per_layer) == B # Invariant due to asserts: [B, L] list # - [B, L] distances ready! return dists_per_batch_per_layer
72830d75e195b8363936d78a8c249b9f6bbd7125
3,641,658
from typing import Callable from typing import List import numbers def adjust_payload(tree: FilterableIntervalTree, a_node: FilterableIntervalTreeNode, adjustment_interval: Interval, adjustments: dict, filter_vector_generator: Callable[[dict], int]=None)\ -> List[FilterableIntervalTreeNode]: """ Adjusts the payload of a node int its tree :param tree: tee to be adjusted :param a_node: node to adjust :param adjustment_interval: the interval for which we would like to see the adjustments made :param adjustments: the changes that we want to see made to the node's payload (only works for dictionaries) :param filter_vector_generator: a function that returns a filter vector for each payload :return: None """ if filter_vector_generator is None: filter_vector_generator = lambda x: a_node.filter_vector old_interval = a_node.key remaining_intervals = old_interval.remove(adjustment_interval) new_payload = a_node.payload.copy() relevant_keys = adjustments.keys() for key in relevant_keys: old_property_value = new_payload.get(key) if isinstance(old_property_value, numbers.Number): new_payload[key] += adjustments[key] else: new_payload[key] = adjustments[key] filter_vector = filter_vector_generator(new_payload) remaining_nodes = \ [FilterableIntervalTreeNode(_, a_node.payload.copy(), a_node.filter_vector) for _ in remaining_intervals] new_node = FilterableIntervalTreeNode(adjustment_interval, new_payload, filter_vector) result_list = [new_node] + remaining_nodes result_list = sorted(result_list, key=lambda node: node.key) added_nodes = set() first_item = result_list[0] last_item = result_list[-1] first_payload = first_item.payload last_payload = last_item.payload pre_node = get_predecessor_for_node(tree, a_node, qualifier=lambda x: x == first_payload) post_node = get_successor_for_node(tree, a_node, qualifier=lambda x: x == last_payload) delete_node(tree, a_node) if pre_node and Interval.touches(pre_node.key, first_item.key) and pre_node.payload == first_item.payload: consolidate_nodes(pre_node, first_item, tree) added_nodes.add(first_item) if post_node and Interval.touches(post_node.key, last_item.key) and post_node.payload == last_item.payload: consolidate_nodes(last_item, post_node, tree) added_nodes.add(last_item) for node in result_list: if node not in added_nodes: add_node(tree, node) return new_node
fa93deede3e7fee950834e5e02bc79bb98e68f03
3,641,659
from typing import Tuple import os def _read_cropped() -> Tuple[np.ndarray, np.ndarray]: """Reads the cropped data and labels. """ print('\nReading cropped images.') path_cropped = os.path.join(DATA_FOLDER, FOLDER_CROPPED) result = _recursive_read_cropped(path_cropped) print('Done reading cropped images.') return result
798a60b13c49903672c65c9fd631141061a0873f
3,641,660
def get_max(data, **kwargs): """ Assuming the dataset is loaded as type `np.array`, and has shape (num_samples, num_features). :param data: Provided dataset, assume each row is a data sample and \ each column is one feature. :type `np.ndarray` :param kwargs: Dictionary of differential privacy arguments \ for computing the maximum value of each feature across all samples, \ e.g., epsilon and delta, etc. :type kwargs: `dict` :return: A vector of shape (1, num_features) stores the maximum value \ of each feature across all samples. :rtype: `np.array` of `float` """ try: max_vec = np.max(data, axis=0) except Exception as ex: raise FLException('Error occurred when calculating ' 'the maximum value. ' + str(ex)) return max_vec
03697d2a2bc6afe3c1d576bd9f8766c97e86626d
3,641,661
def find_u_from_v(matrix, v, singular_value): """ Finds the u column vector of the U matrix in the SVD UΣV^T. Parameters ---------- matrix : numpy.ndarray Matrix for which the SVD is calculated v : numpy.ndarray A column vector of V matrix, it is the eigenvector of the Gramian of `matrix`. singular_value : float A singular value of `matrix` corresponding to the `v` vector. Returns ------- numpy.ndarray u column vector of the U matrix in the SVD. """ return matrix @ v / singular_value
ef2871c86bf7ddc4c42446a54230068282ad85df
3,641,662
import torch def transform(dataset, perm_idx, model, view): """ for view1 utterance, simply encode using view1 encoder for view 2 utterances: - encode each utterance, using view 1 encoder, to get utterance embeddings - take average of utterance embeddings to form view 2 embedding """ model.eval() latent_zs, golds = [], [] n_batch = (len(perm_idx) + BATCH_SIZE - 1) // BATCH_SIZE for i in range(n_batch): indices = perm_idx[i*BATCH_SIZE:(i+1)*BATCH_SIZE] v1_batch, v2_batch = list(zip(*[dataset[idx][0] for idx in indices])) golds += [dataset[idx][1] for idx in indices] if view == 'v1': latent_z = model(v1_batch, encoder='v1') elif view == 'v2': latent_z_l = [model(conv, encoder='v1').mean(dim=0) for conv in v2_batch] latent_z = torch.stack(latent_z_l) latent_zs.append(latent_z.cpu().data.numpy()) latent_zs = np.concatenate(latent_zs) return latent_zs, golds
484adb7d53f80366b591ef45551b245dce00acca
3,641,663
from typing import List def double(items: List[str]) -> List[str]: """ Returns a new list that is the input list, repeated twice. """ return items + items
9e4b6b9e84a80a9f5cbd512ca820274bb8cad924
3,641,664
def system_from_problem(problem: Problem) -> System: """Extracts the "system" part of a problem. Args: problem: Problem description Returns: A :class:`System` object containing a copy of the relevant parts of the problem. """ return System( id=problem.id, name=problem.name, apps=tuple(w.app for w in problem.workloads), instance_classes=problem.instance_classes, performances=problem.performances, )
42c0db09d00043ba61ae164bb58a0ecb48599027
3,641,665
def get_service_endpoints(ksc, service_type, region_name): """Get endpoints for a given service type from the Keystone catalog. :param ksc: An instance of a Keystone client. :type ksc: :class: `keystoneclient.v3.client.Client` :param str service_type: An endpoint service type to use. :param str region_name: A name of the region to retrieve endpoints for. :raises :class: `keystone_exceptions.EndpointNotFound` """ try: catalog = { endpoint_type: ksc.service_catalog.url_for( service_type=service_type, endpoint_type=endpoint_type, region_name=region_name) for endpoint_type in ['publicURL', 'internalURL', 'adminURL']} except keystone_exceptions.EndpointNotFound: # EndpointNotFound is raised for the case where a service does not # exist as well as for the case where the service exists but not # endpoints. log.error('could not retrieve any {} endpoints'.format(service_type)) raise return catalog
c962ad44e4d73a102f9c09803f94c68cee2aeb51
3,641,666
def get_task_for_node(node_id): """ Get a new task or previously assigned task for node """ # get ACTIVE task that was previously assigned to this node query = Task.query.filter_by(node_id=node_id).filter_by(status=TaskStatus.ACTIVE) task = query.first() if task: return task node = Node.query.filter_by(id=node_id).one() return _assign_task(node)
5a01869f40f5c0840dfdc2ed1e3417c694f51aca
3,641,667
from xpedite.profiler.profileInfo import loadProfileInfo import os def loadProfileInfo(profileInfoPath, remote=None): """ Load profile information from a profileInfo.py file, set a default application information file, and set the profile information's host if the application is running remotely @param remote: Remote environment information if a remote host is passed to the pytest parser @type remote: C{xpedite.transport.remote.Remote} """ profileInfo = loadProfileInfo(os.path.join(dataDir, profileInfoPath)) profileInfo.appInfo = os.path.join(dataDir, 'xpedite-appinfo.txt') if remote: profileInfo.appHost = remote.host return profileInfo
95f25683174e157fa8031276d96f9bbef41706df
3,641,668
import subprocess def open_process(verbose, args, outputs): """ Run the given arguments as a subprocess. Time out after TIMEOUT seconds and report failures or stdout. """ report_output(outputs["stdout"], verbose, "Writing", args) proc = None if outputs["stderr"] is not None: try: proc = Popen(args, stdout=subprocess.PIPE, shell=True, stdin=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) except OSError as e: report_err(outputs["stderr"], "Failed executing: ", e) if proc is None: # Never even started report_err(outputs["stderr"], "Process failed to start") return proc
47b32c34d422d7809ee3d885632467f4c7aacb89
3,641,669
def cik_list(): """Get CIK list and use it as a fixture.""" return UsStockList()
ec845471860dcf4ce9dcf0e82e2effda21bcbf0b
3,641,670
def get_eval_config(hidden_dim, max_input_length=None, num_input_timesteps=None, model_temporal_relations=True, node_position_dim=1, num_input_propagation_steps=None, token_vocab_size=None, node_text_pad_token_id=None, num_transformer_attention_heads=None, num_edge_types=None, num_time_edge_types=None, use_relational_bias=False, max_output_length=None, type_vocab_size=None, output_vocab_size=None, num_output_propagation_steps=None, use_pointer_candidate_masking=False, jax2tf_compatible=None, dropout_rate: float = 0.1): """Returns a model config for evaluating, which disables drop-out.""" return create_model_config( is_training=False, hidden_dim=hidden_dim, max_input_length=max_input_length, num_input_timesteps=num_input_timesteps, model_temporal_relations=model_temporal_relations, node_position_dim=node_position_dim, num_input_propagation_steps=num_input_propagation_steps, token_vocab_size=token_vocab_size, node_text_pad_token_id=node_text_pad_token_id, dropout_rate=dropout_rate, num_transformer_attention_heads=num_transformer_attention_heads, num_edge_types=num_edge_types, num_time_edge_types=num_time_edge_types, use_relational_bias=use_relational_bias, max_output_length=max_output_length, type_vocab_size=type_vocab_size, output_vocab_size=output_vocab_size, num_output_propagation_steps=num_output_propagation_steps, use_pointer_candidate_masking=use_pointer_candidate_masking, jax2tf_compatible=jax2tf_compatible)
90ff743a372a2db3eb52927bf8c6d996a11137cb
3,641,671
def classNew(u_id): """ Allow an ADMIN to create a new class (ADMIN ONLY) Returns: none """ myDb, myCursor = dbConnect() data = request.get_json() createNewClass(myCursor, myDb, data) dbDisconnect(myCursor, myDb) return dumps({})
29532ea5c979b725b46c1dd775c1f093006b1a43
3,641,672
import types import functools def copy_func(f): """Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard).""" g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__, argdefs=f.__defaults__, closure=f.__closure__) g = functools.update_wrapper(g, f) g.__kwdefaults__ = f.__kwdefaults__ return g
d661876d8568c5f33ae07682c874edd8d71dd7c9
3,641,673
from typing import List def augment(img_list: list, hflip: bool = True, rot: bool = True) -> List[np.ndarray]: """ Augments the image inorder to add robustness to the model @param img_list: The List of images @param hflip: If True, add horizontal flip @param rot: If True, add 90 degrees rotation @return: A list of the augmented images """ # horizontal flip OR rotate hflip = hflip and np.random.random() < 0.5 vflip = rot and np.random.random() < 0.5 rot90 = rot and np.random.random() < 0.5 return [perform_augment(hflip, vflip, rot90, img) for img in img_list]
3d953ba2c9ce869ec612644d9a5370690c930e22
3,641,674
def _neurovault_collections(parts, query): """Mocks the Neurovault API behind the `/api/collections/` path. parts: the parts of the URL path after "collections" ie [], ["<somecollectionid>"], or ["<somecollectionid>", "images"] query: the parsed query string, e.g. {"offset": "15", "limit": "5"} returns a dictionary of API results See the neurovault API docs for details: https://neurovault.org/api-docs """ if parts: return _neurovault_one_collection(parts) collections, _ = _get_neurovault_data() offset, limit = int(query.get("offset", 0)), int(query.get("limit", 2)) batch = collections.iloc[ offset: offset + limit].to_dict(orient="records") return {"count": len(collections), "results": batch}
5ee1e6b9b59fb12e76c38c20cde65c18c3fd201a
3,641,675
def display_states(): """ Display the states""" storage_states = storage.all(State) return render_template('7-states_list.html', states=storage_states)
b9dc5c739546fee0abce077df1bba38587062f1a
3,641,676
def recompress_folder(folders, path, extension): """Recompress folder""" dest = runez.SYS_INFO.platform_id.composed_basename("cpython", path.name, extension=extension) dest = folders.dist / dest runez.compress(path, dest, logger=print) return dest
5cadc1a0b32509630cd3fa5af9fd758899e4bf94
3,641,677
import pathlib def guessMimetype(filename): """Return the mime-type for `filename`.""" path = pathlib.Path(filename) if not isinstance(filename, pathlib.Path) else filename with path.open("rb") as signature: # Since filetype only reads 262 of file many mp3s starting with null bytes will not find # a header, so ignoring null bytes and using the bytes interface... buf = b"" while not buf: data = signature.read(_NUM_SIGNATURE_BYTES) if not data: break data = data.lstrip(b"\x00") if data: data_len = len(data) if data_len >= _NUM_SIGNATURE_BYTES: buf = data[:_NUM_SIGNATURE_BYTES] else: buf = data + signature.read(_NUM_SIGNATURE_BYTES - data_len) # Special casing .id3/.tag because extended filetype with add_type() prepends, meaning # all mp3 would be labeled mimetype id3, while appending would mean each .id3 would be # mime mpeg. if path.suffix in ID3_MIME_TYPE_EXTENSIONS: if Id3Tag().match(buf) or Id3TagExt().match(buf): return Id3TagExt.MIME return filetype.guess_mime(buf)
84f6b2f80b341f330e3f6b9e65b4863d055f8796
3,641,678
import json import sys def collectMessages(): """ A generic stimulus invocation """ global rmlEngine try: stimuli = [] rawRequest = request.POST.dict for rawKey in rawRequest.keys(): keyVal = rawKey jsonPayload = json.loads(keyVal) try: actionID = jsonPayload["actionID"] except KeyError: errorMsg = "Missing required JSON parameter 'actionID'" raise Exceptions.MissingActionError(errorMsg) try: ownerID = jsonPayload["ownerID"] except KeyError: errorMsg = "Missing required JSON parameter 'ownerID'" raise Exceptions.InvalidControllerError() try: subjectID = jsonPayload["subjectID"] except KeyError: subjectID = ownerID try: objectID = jsonPayload["objectID"] except KeyError: objectID = ownerID try: objectID = jsonPayload["objectID"] except KeyError: objectID = ownerID try: insertionModeText = jsonPayload["insertionMode"] if insertionModeText == 'head_clear': insertionMode = ationInsertionTypes.HEAD_CLEAR elif insertionModeText == 'head': insertionMode = ationInsertionTypes.HEAD elif insertionModeText == 'append': insertionMode = ationInsertionTypes.APPEND else: errorMsg = "Invalid insertionMode parameter. Valid values are 'head', 'head_clear' and 'append'" %insertionModeText raise Exceptions.InsertionModeError() except KeyError: insertionMode = ationInsertionTypes.HEAD_CLEAR try: rtparams = jsonPayload["actionParams"] except KeyError: rtparams = {} actionInvocation = Engine.ActionRequest(actionID, insertionMode, rtparams, subjectID, objectID, ownerID) rmlEngine.aQ.put(actionInvocation) response.body = json.dumps({"status": stimuli}) response.status = 200 return response except Exceptions.InvalidControllerError: fullerror = sys.exc_info() errorID = str(fullerror[0]) errorMsg = str(fullerror[1]) response.body = "Failed to post action. %s, %s" %(errorID, errorMsg) response.status = 400 return response except Exceptions.MissingActionError: fullerror = sys.exc_info() errorID = str(fullerror[0]) errorMsg = str(fullerror[1]) response.body = "Failed to post action. %s, %s" %(errorID, errorMsg) response.status = 400 return response except Exception as unusedE: #When this exception happens, the actionID variable won't be in scope, # But we can expect that actionID is available, or a MissingActionError would have been thrown. rawRequest = request.POST.dict for rawKey in rawRequest.keys(): keyVal = rawKey jsonPayload = json.loads(keyVal) actionID = jsonPayload["actionID"] fullerror = sys.exc_info() errorID = str(fullerror[0]) errorMsg = str(fullerror[1]) response.body = "Failed to post action %s. %s, %s" %(actionID, errorID, errorMsg) response.status = 500 return response
55c3cb0444f4cfe4a1bfa4631f3e2351f63e9394
3,641,679
def filter_ptr_checks(props): """This function will filter out extra pointer checks. Our support to primitives and overflow pointer checks is unstable and can result in lots of spurious failures. By default, we filter them out. """ def not_extra_check(prop): return extract_property_class(prop) not in ["pointer_arithmetic", "pointer_primitives"] return list(filter(not_extra_check, props))
e5964637c3f1a27521f5305673c9e5af3189e15d
3,641,680
import time def makeKeylistObj(keylist_fname, includePrivate=False): """Return a new unsigned keylist object for the keys described in 'mirror_fname'. """ keys = [] def Key(obj): keys.append(obj) preload = {'Key': Key} r = readConfigFile(keylist_fname, (), (), preload) klist = [] for k in keys: k = thandy.keys.RSAKey.fromJSon(k) if includePrivate and not k.isPrivateKey(): raise thandy.FormatException("Private key information not found.") klist.append({'key': k.format(private=includePrivate), 'roles' : k.getRoles() }) result = { '_type' : "Keylist", 'ts' : formatTime(time.time()), 'keys' : klist } KEYLIST_SCHEMA.checkMatch(result) return result
13e79fbb9ac8ad207cc2533532c6be6bb0372beb
3,641,681
def getwpinfo(id,wps): """Help function to create description of WP inputs.""" try: wpmin = max([w for w in wps if 'loose' in w.lower()],key=lambda x: len(x)) # get loose WP with most 'V's wpmax = max([w for w in wps if 'tight' in w.lower()],key=lambda x: len(x)) # get tight WP with most 'V's info = f"{id} working point: {wpmin}-{wpmax}" except: info = f"{id} working point: {', '.join(wps)}" return info
0dcf6c205a1988227e23a77e169a9114f1fdf2cc
3,641,682
def build_word_dg(target_word, model, depth, model_vocab=None, boost_counter=None, topn=5): """ Accept a target_word and builds a directed graph based on the results returned by model.similar_by_word. Weights are initialized to 1. Starts from the target_word and gets similarity results for it's children and so forth, up to the specified depth. Args ---- target_word (string): Root node. model (gensim.models): Gensim word embedding model. depth (int): Depth to restrict the search to. topn (int): Number of words to check against in the embedding model, default=5. """ _DG = init_digraph() seen_set = set() do_hs_boosting = ( boost_counter and model_vocab and target_word in model_vocab) if do_hs_boosting: weight_boost = log10(float(model.vocab[target_word].count)) * boost_counter[ target_word] if target_word in boost_counter else 0 _DG.add_weighted_edges_from([(target_word, word[0], weight_boost + word[1]) for word in model.similar_by_word(target_word, topn=topn)]) else: _DG.add_weighted_edges_from([(target_word, word[0], word[1]) for word in model.similar_by_word(target_word, topn=topn)]) seen_set.add(target_word) for _idx in range(1, depth): current_nodes = _DG.nodes() for node in current_nodes: if node not in seen_set: _DG.add_weighted_edges_from( [(node, word[0], word[1]) for word in model.similar_by_word(node, topn=topn)]) seen_set.add(node) return _DG
ffd32cef2b44fd9e9cd554cd618091dfe8e5377f
3,641,683
import sys def train(network, num_epochs, train_fn, train_batches, test_fn=None, validation_batches=None, threads=None, early_stop=np.inf, early_stop_acc=False, save_epoch_params=False, callbacks=None, acc_func=onehot_acc, train_acc=False): """ Train a neural network by updating its parameters. Parameters ---------- network : lasagne neural network handle Network to be trained. num_epochs: int Maximum number of epochs to train train_fn : theano function Function that computes the loss and updates the network parameters. Takes parameters from the batch iterators train_batches : batch iterator Iterator that yields mini batches from the training set. Must be able to re-iterate multiple times. test_fn : theano function Function that computes loss and predictions of the network. Takes parameters from the batch iterators. validation_batches : batch iterator Iterator that yields mini batches from the validation set. Must be able to re-iterate multiple times. threads : int Number of threads to use to prepare mini batches. If None, use a single thread. early_stop : int Number of iterations without loss improvement on validation set that stops training. early_stop_acc : boolean Use validation accuracy instead of loss for early stopping. save_epoch_params : str or False Save neural network parameters after each epoch. If False, do not save. If you want to save the parameters, provide a filename with an int formatter so the epoch number can be inserted. callbacks : list of callables List of callables to call after each training epoch. Can be used to k update learn rates or plot data. Functions have to accept the following parameters: current epoch number, lists of per-epoch train losses, train accuracies, validation losses, validation accuracies. The last three lists may be empty, depending on other parameters. acc_func : callable Function to use to compute accuracies. train_acc : boolean Also compute accuracy for training set. In this case, the training loss will be also re-computed after an epoch, which leads to lower train losses than when not using this parameter. Returns ------- tuple of four lists Train losses, trian accuracies, validation losses, validation accuracies for each epoch """ if (test_fn is not None) != (validation_batches is not None): raise ValueError('If test function is given, validation set is ' 'necessary (and vice-versa)!') best_val = np.inf if not early_stop_acc else 0.0 epochs_since_best_val_loss = 0 if callbacks is None: callbacks = [] if callbacks is None: callbacks = [] best_params = get_params(network) train_losses = [] val_losses = [] val_accs = [] train_accs = [] if threads is not None: def threaded(it): return dmgr.iterators.threaded(it, threads) else: def threaded(it): return it for epoch in range(num_epochs): timer = Timer() timer.start('epoch') timer.start('train') try: train_losses.append( avg_batch_loss(threaded(train_batches), train_fn, timer)) except RuntimeError as e: print(Colors.red('Error during training:'), file=sys.stderr) print(Colors.red(str(e)), file=sys.stderr) return best_params timer.stop('train') if save_epoch_params: save_params(network, save_epoch_params.format(epoch)) if validation_batches: val_loss, val_acc = avg_batch_loss_acc( threaded(validation_batches), test_fn, acc_func) val_losses.append(val_loss) val_accs.append(val_acc) if train_acc: train_loss, tr_acc = avg_batch_loss_acc( threaded(train_batches), test_fn, acc_func) train_losses[-1] = train_loss train_accs.append(tr_acc) print('Ep. {}/{} {:.1f}s (tr: {:.1f}s th: {:.1f}s)'.format( epoch + 1, num_epochs, timer['epoch'], timer['train'], timer['theano']), end='') print(' tl: {:.6f}'.format(train_losses[-1]), end='') if train_acc: print(' tacc: {:.6f}'.format(tr_acc), end='') if validation_batches: # early stopping cmp_val = val_losses[-1] if not early_stop_acc else -val_accs[-1] if cmp_val < best_val: epochs_since_best_val_loss = 0 best_val = cmp_val best_params = get_params(network) # green output c = Colors.green else: epochs_since_best_val_loss += 1 # neutral output c = lambda x: x print(c(' vl: {:.6f}'.format(val_losses[-1])), end='') print(c(' vacc: {:.6f}'.format(val_accs[-1])), end='') if epochs_since_best_val_loss >= early_stop: print(Colors.yellow('\nEARLY STOPPING!')) break else: best_params = get_params(network) print('') for cb in callbacks: cb(epoch, train_losses, val_losses, train_accs, val_accs) # set the best parameters found set_params(network, best_params) return train_losses, val_losses, train_accs, val_accs
8b5860883b04b9856b8794813aae3493a0389588
3,641,684
def sample_normal_gamma(mu, lmbd, alpha, beta): """ https://en.wikipedia.org/wiki/Normal-gamma_distribution """ tau = np.random.gamma(alpha, beta) mu = np.random.normal(mu, 1.0 / np.sqrt(lmbd * tau)) return mu, tau
0f11ce95cfb772aeb023b61300bdb03d827cab37
3,641,685
from typing import Iterable from typing import Callable from typing import Type from typing import Optional from typing import List from typing import Set async def _common_discover_entities( current_entity_platform: EntityPlatform, config_entry: ConfigEntry, source_objects: Iterable[TObject], object_code_getter: Callable[[TObject], TIdentifier], entity_cls: Type[TSensor], final_config: Optional[ConfigType] = None, existing_entities: Optional[List[TSensor]] = None, sensor_type_name: Optional[str] = None, entity_code_getter: Callable[[TSensor], TIdentifier] = None, log_prefix: Optional[str] = None, ) -> DiscoveryReturnType: """ Common entity discovery helper. :param current_entity_platform: Entity platform used :param config_entry: Configuration entry :param final_config: Final configuration data :param source_objects: Objects to use when creating entities :param object_code_getter: Getter for identifier for objects :param entity_cls: Entity class (subclass of `MESEntity`) :param existing_entities: (optional) Existing entities list (default: retrieved at runtime) :param sensor_type_name: (optional) Sensor type name for log prefixing (default: derrived from configuration key) :param entity_code_getter: (optional) Getter for identifier for entities (default: `code` property of provided entity class) :param log_prefix: (optional) Log prefix to prepend to internal loggin (default: empty string) :return: Tuple[new entities list, async tasks] """ hass = current_entity_platform.hass config_key = entity_cls.config_key if final_config is None: final_config = hass.data.get(DATA_FINAL_CONFIG, {}).get(config_entry.entry_id) if final_config is None: raise ValueError('Final configuration not available for entry "%s"' % (config_entry.entry_id,)) if sensor_type_name is None: sensor_type_name = config_key if sensor_type_name.endswith('s'): sensor_type_name = sensor_type_name[:-1] if log_prefix is None: log_prefix = _make_log_prefix( config_entry, current_entity_platform, 'discvr', sensor_type_name ) if entity_code_getter is None: entity_code_getter = entity_cls.code if current_entity_platform is None: current_entity_platform = entity_platform.current_platform.get() if existing_entities is None: existing_entities = hass.data\ .get(DATA_ENTITIES, {})\ .get(config_entry.entry_id, {})\ .get(config_key, []) entities = [] tasks = [] added_entities: Set[TSensor] = set(existing_entities or []) entity_filter = final_config[CONF_ENTITIES][config_key] name_formats = final_config[CONF_NAME_FORMAT][config_key] scan_intervals = final_config[CONF_SCAN_INTERVAL][config_key] for iter_object in source_objects: identifier = object_code_getter(iter_object) if not identifier: _LOGGER.warning('No identifier on: %s: %s', iter_object, iter_object.data) continue log_sensor_type_name = sensor_type_name.ljust(7), log_identifier = '*' + identifier[-5:] granular_log_prefix = _make_log_prefix( config_entry, current_entity_platform, 'discvr', log_sensor_type_name, log_identifier ) if not entity_filter[identifier]: _LOGGER.info(granular_log_prefix + 'Skipping setup/update due to filter') continue obj_entity = None for entity in added_entities: if entity_code_getter(entity) == identifier: obj_entity = entity break entity_log_prefix = _make_log_prefix( config_entry, current_entity_platform, 'entity', log_sensor_type_name, log_identifier ) if obj_entity is None: _LOGGER.debug(granular_log_prefix + 'Setting up entity') entities.append( entity_cls.async_discover_create( iter_object, name_formats[identifier], scan_intervals[identifier], entity_log_prefix ) ) else: added_entities.remove(obj_entity) if obj_entity.enabled: _LOGGER.debug(granular_log_prefix + 'Updating entity') update_task = obj_entity.async_discover_update( iter_object, name_formats[identifier], scan_intervals[identifier], entity_log_prefix ) if update_task is not None: tasks.append(update_task) if entities: register_update_services(entity_cls, current_entity_platform, log_prefix) if added_entities: _LOGGER.info(log_prefix + f'Removing {len(added_entities)} {sensor_type_name} entities') tasks.extend(get_remove_tasks(hass, added_entities)) return entities, tasks
6ead5fa56712bf4186969f47a40c70cfea51b5da
3,641,686
def _dice(terms): """ Returns the elements of iterable *terms* in tuples of every possible length and range, without changing the order. This is useful when parsing a list of undelimited terms, which may span multiple tokens. For example: >>> _dice(["a", "b", "c"]) [('a', 'b', 'c'), ('a', 'b'), ('b', 'c'), ('a',), ('b',), ('c',)] """ # remove all of the terms that look like delimiters terms = filter(lambda x: _is_delimiter(x) == False, terms) y = [] for n in range(len(terms), 0, -1): for m in range(0, len(terms)-(n-1)): y.append(tuple(terms[m:m+n])) return y
bb8f567d82405864c0bf81b2ee9f3cb89b875d11
3,641,687
from datetime import datetime def parse_date(val, format): """ Attempts to parse the given string date according to the provided format, raising InvalidDateError in case of problems. @param str val (e.g. 2014-08-12) @param str format (e.g. %Y-%m-%d) @return datetime.date """ try: return datetime.strptime(val, format).date() except ValueError: raise InvalidDateError("unable to parse %s" % val)
4686bf46d12310ee7ac4aa1986df55b598909a06
3,641,688
def get_capture_dimensions(capture): """Get the dimensions of a capture""" width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) return width, height
9a13253c1ca5c44b7a1ef4440989b1af9abcb776
3,641,689
import os def run_system_optimization(des_vars, subsystems, scalers, loop_number): """Method to run the top-level system optimization based on the disciplinary surrogate models. :param des_vars: definition of design variables :type des_vars: dict :param subsystems: definition of the disciplinary surrogate models :type subsystems: dict :param scalers: scalers of all the system values :type scalers: dict :param loop_number: number of the BLISS iteration :type loop_number: int :return: tuple with Problem object and driver status :rtype: tuple """ # Set up problem and model prob = Problem() prob.model = model = SsbjBLISS2000( des_vars=des_vars, subsystems=subsystems, scalers=scalers, loop_number=loop_number, ) # Set driver prob.driver = pyOptSparseDriver() prob.driver.options["optimizer"] = "SLSQP" prob.driver.opt_settings["MAXIT"] = 50 prob.driver.opt_settings["ACC"] = 1e-6 # Add design variables for des_var, details in des_vars.items(): prob.model.add_design_var( des_var, lower=details["lower"], upper=details["upper"] ) # Add objective model.add_objective("performance.R", scaler=-1.0) # Add constraints model.add_constraint("consistency_constraints.gc_D", equals=0.0) model.add_constraint("consistency_constraints.gc_WE", equals=0.0) model.add_constraint("consistency_constraints.gc_WT", equals=0.0) model.add_constraint("consistency_constraints.gc_L", equals=0.0) model.add_constraint("consistency_constraints.gc_Theta", equals=0.0) model.add_constraint("consistency_constraints.gc_ESF", equals=0.0) model.add_constraint("consistency_constraints.gc_WT_L", equals=0.0) model.add_constraint("constraints.con_dpdx", upper=0.0) # Add recorder recorder = SqliteRecorder( os.path.join( cr_files_folder, "ssbj_cr_{}_system_loop{:02d}.sql".format(cr_files_keyword, loop_number), ) ) prob.driver.add_recorder(recorder) prob.driver.recording_options["includes"] = [] prob.driver.recording_options["record_objectives"] = True prob.driver.recording_options["record_constraints"] = True prob.driver.recording_options["record_desvars"] = True # prob.driver.recording_options['record_metadata'] = True # Set up prob.setup(mode="rev") # View model n2( prob, outfile=os.path.join(cr_files_folder, "bliss2000_sys_ssbj.html"), show_browser=False, ) # Run problem (either once (run_model) or full optimization (run_driver)) prob.run_driver() # Report result in the log print("- - - - - - - - - - - - - - - - - - - - - - - - - -") print("\nOutcome of system optimization (BLISS loop: {})".format(loop_number)) print("\n\nDesign variables") print("z_sh_low= ", des_vars["z_sh"]["lower"]) print("z_sh_val= ", prob["z_sh"]) print("z_sh_upp= ", des_vars["z_sh"]["upper"]) print("") print("z_c_low= ", des_vars["z_c"]["lower"]) print("z_c_val= ", prob["z_c"]) print("z_c_upp= ", des_vars["z_c"]["upper"]) print("") print("z_w_low= ", des_vars["z_w"]["lower"]) print("z_w_val= ", prob["z_w"]) print("z_w_upp= ", des_vars["z_w"]["upper"]) print("") print("\nObjectives") print("R_opt=", prob["performance.R"] * scalers["R"]) print("\nConstraints") print("gc_D=", prob["consistency_constraints.gc_D"]) print("gc_WE=", prob["consistency_constraints.gc_WE"]) print("gc_WT=", prob["consistency_constraints.gc_WT"]) print("gc_L=", prob["consistency_constraints.gc_L"]) print("gc_Theta=", prob["consistency_constraints.gc_Theta"]) print("gc_ESF=", prob["consistency_constraints.gc_ESF"]) print("gc_WT_L=", prob["consistency_constraints.gc_WT_L"]) print("c_dpdx=", prob["constraints.con_dpdx"]) print("- - - - - - - - - - - - - - - - - - - - - - - - - -") return prob, prob.driver.fail
faa46f94f6c866c5f1ec20827ce78ef7e13dfe95
3,641,690
def analyze_lines(msarc, trcdict, slit, pixcen, order=2, function='legendre', maskval=-999999.9): """ .. todo:: This needs a docstring! """ # Analyze each spectral line aduse = trcdict["aduse"] arcdet = trcdict["arcdet"] xtfits = trcdict["xtfit"] ytfits = trcdict["ytfit"] wmasks = trcdict["wmask"] badlines = trcdict["badlines"] xtilt = np.ones((msarc.shape[1], arcdet.size)) * maskval ytilt = np.ones((msarc.shape[1], arcdet.size)) * maskval mtilt = np.ones((msarc.shape[1], arcdet.size)) * maskval wtilt = np.ones((msarc.shape[1], arcdet.size)) * maskval # For displaying later xmodel = [] ymodel = [] for j in range(arcdet.size): if not aduse[j]: continue xtfit = xtfits[j] ytfit = ytfits[j] wmask = wmasks[j] xint = int(xtfit[0]) sz = (xtfit.size-1)//2 # Trim if we are off the detector lastx = min(xint + 2 * sz + 1, msarc.shape[1]) if (lastx-xint) < xtfit.size: # Cut down dx = (lastx-xint)-xtfit.size xtfit = xtfit[:dx] ytfit = ytfit[:dx] wmask = wmask[np.where(wmask < (xtfit.size+dx))] # Perform a scanning polynomial fit to the tilts wmfit = np.where(ytfit != maskval) if wmfit[0].size > order + 1: cmfit = utils.func_fit(xtfit[wmfit], ytfit[wmfit], function, order, minx=0.0, maxx=msarc.shape[1] - 1.0) model = utils.func_val(cmfit, xtfit, function, minx=0.0, maxx=msarc.shape[1] - 1.0) else: aduse[j] = False badlines += 1 continue # Can this actually happen?? if maskval in model: # Model contains masked values aduse[j] = False badlines += 1 continue # Perform a robust polynomial fit to the traces wmsk, mcoeff = utils.robust_polyfit(xtfit[wmask], ytfit[wmask], order, function=function, sigma=2.0, minx=0.0, maxx=msarc.shape[1] - 1.0) # Save model model = utils.func_val(mcoeff, xtfit, function, minx=0.0, maxx=msarc.shape[1] - 1.0) xmodel.append(xtfit) ymodel.append(model) # Save xtilt[xint:lastx, j] = xtfit / (msarc.shape[1] - 1.0) # These should be un-normalized for now pcen = pixcen[arcdet[j], slit] ytilt[xint:lastx, j] = model[pcen-int(xtfit[wmask[0]])] mtilt[xint:lastx, j] = model # Save trcdict['xmodel'] = xmodel trcdict['ymodel'] = ymodel trcdict["aduse"] = aduse # Return all_tilts = (xtilt, ytilt, mtilt, wtilt) return badlines, all_tilts
6e14c21545736d37ed6b231e5fc0e62293317b38
3,641,691
def ad_modify_user_pwd_by_mail(user_mail_addr, old_password, new_password): """ 通过mail修改某个用户的密码 :param user_mail_addr: :return: """ conn = __ad_connect() user_dn = ad_get_user_dn_by_mail(user_mail_addr) result = conn.extend.microsoft.modify_password(user="%s" % user_dn, new_password="%s" % new_password, old_password="%s" % old_password) conn.unbind() return result
7cc5c654517ad3f175e06500310f0bbfec516ad1
3,641,692
def markup_record(record_text, record_nr, modifiers, targets, output_dict): """ Takes current Patient record, applies context algorithm, and appends result to output_dict """ # Is used to collect multiple sentence markups. So records can be complete context = pyConText.ConTextDocument() # Split record into sentences making use of TextBlob blob = TextBlob(record_text.lower()) # print(blob) count = 0 markup_result = [] # Add markup per sentence for sentence in blob.sentences: m = markup_sentence(sentence.raw, modifiers=modifiers, targets=targets) markup_result.append(m) count = count + 1 print("\nFor record number:", record_nr) print("Number of sentences that have been marked up:", count) # print("\nMarkup result:") # print(markup_result) # Add sentence markup to contextDocument for sentence_markup in markup_result: context.addMarkup(sentence_markup) # Append context object and xml to output dictionary, # with as key the record number context_xml = context.getXML() output_dict.update({record_nr: {"object": context, "xml": context_xml}}) return(output_dict)
2eee4560a411bcd7ef364b6ed9b37cc2870cd3b5
3,641,693
import inspect def get_file_name(file_name): """ Returns a Testsuite name """ testsuite_stack = next(iter(list(filter(lambda x: file_name in x.filename.lower(), inspect.stack()))), None) if testsuite_stack: if '/' in testsuite_stack.filename: split_character = '/' else: split_character = '\\' return testsuite_stack.filename.split(split_character)[-1].split(".")[0] else: return ""
97172600d785339501f5e58e8aca6581a0a690e0
3,641,694
import torch def track_edge_matrix_by_spt(batch_track_bbox, batch_track_frames, history_window_size=50): """ :param batch_track_bbox: B, M, T, 4 (x, y, w, h) :return: """ B, M, T, _ = batch_track_bbox.size() batch_track_xy = batch_track_bbox[:, :, :, :2] batch_track_wh = batch_track_bbox[:, :, :, 2:] batch_track_t = batch_track_frames[:, :, :, None] batch_track_diff_t = 1 - torch.abs(batch_track_t[:, :, :, None, :].expand(-1, -1, -1, T, -1) - batch_track_t[:, :, None, :, :].expand(-1, -1, T, -1, -1)) / history_window_size batch_track_diff_xy = 1 - torch.abs(batch_track_xy[:, :, :, None, :].expand(-1, -1, -1, T, -1) - batch_track_xy[:, :, None, :, :].expand(-1, -1, T, -1, -1)) batch_track_diff_wh = 1 - torch.abs(batch_track_wh[:, :, :, None, :].expand(-1, -1, -1, T, -1) - (batch_track_wh[:, :, None, :, :].expand(-1, -1, T, -1, -1))) # B, M, T, T, 5 track_edge_matrix = torch.cat([batch_track_diff_t, batch_track_diff_xy, batch_track_diff_wh], dim=-1) return track_edge_matrix
5303f401d925c26a1c18546ba371a2119a41ec3d
3,641,695
def _file(space, fname, flags=0, w_ctx=None): """ file - Reads entire file into an array 'FILE_USE_INCLUDE_PATH': 1, 'FILE_IGNORE_NEW_LINES': 2, 'FILE_SKIP_EMPTY_LINES': 4, 'FILE_NO_DEFAULT_CONTEXT': 16, """ if not is_in_basedir(space, 'file', fname): space.ec.warn("file(%s): failed to open stream: %s " % (fname, 'Operation not permitted')) return space.w_False if flags > 23 or flags < 0: space.ec.warn("file(): '%d' flag is not supported" % flags) return space.w_False if fname == "": space.ec.warn("file(): Filename cannot be empty") return space.w_False ignore_new_lines = flags & 2 != 0 skip_empty_lines = flags & 4 != 0 try: _fname = rpath.normpath(fname) arr_list = [] fstream = open(_fname) line = fstream.readline() while line != '': if ignore_new_lines: line = line.rstrip('\n') if skip_empty_lines and line == "": line = fstream.readline() continue arr_list.append(space.newstr(line)) line = fstream.readline() return space.new_array_from_list(arr_list) except OSError: space.ec.warn("file(%s): failed to open stream: " "No such file or directory" % fname) return space.w_False except IOError: space.ec.warn("file(%s): failed to open stream: " "No such file or directory" % fname) return space.w_False
d8a04244c90f3f730c297a8dbaa1372acd61993b
3,641,696
def prepare_features(tx_nan, degree, mean_nan=None, mean=None, std=None): """Clean and prepare for learning. Mean imputing, missing value indicator, standardize.""" # Get column means, if necessary if mean_nan is None: mean_nan = np.nanmean(tx_nan,axis=0) # Replace NaNs tx_val = np.where(np.isnan(tx_nan), mean_nan, tx_nan) # Polynomial features tx = build_poly(tx_val, degree) const_col = tx.shape[1]-1 # Add NaN indicator columns nan_cols = np.flatnonzero(np.any(np.isnan(tx_nan), axis=0)) ind_cols = np.empty((tx_nan.shape[0], nan_cols.shape[0])) ind_cols = np.where(np.isnan(tx_nan[:,nan_cols]), 1, 0) tx = np.c_[tx, ind_cols] # Standardize tx, mean, std = standardize_numpy(tx, mean, std) tx[:,const_col] = 1.0 return tx, mean, std, mean_nan, nan_cols
2f9fd73cd04b40a85556573a62a083a0ffaa725c
3,641,697
def _write_matt2(model, name, mids, nmaterials, op2, op2_ascii, endian): """writes the MATT2""" #Record - MATT2(803,8,102) #Word Name Type Description #1 MID I Material identification number #2 TID(15) I TABLEMi entry identification numbers #17 UNDEF None key = (803, 8, 102) nfields = 17 spack = Struct(endian + b'17i') nbytes = write_header(name, nfields, nmaterials, key, op2, op2_ascii) for mid in sorted(mids): mat = model.MATT2[mid] data = [ mat.mid, mat.g11_table, mat.g12_table, mat.g13_table, mat.g22_table, mat.g23_table, mat.g33_table, mat.rho_table, mat.a1_table, mat.a2_table, mat.a3_table, 0, mat.ge_table, mat.st_table, mat.sc_table, mat.ss_table, 0, ] assert None not in data, data #print('MATT2', data, len(data)) assert len(data) == nfields, len(data) op2_ascii.write(' mid=%s data=%s\n' % (mid, data[1:])) op2.write(spack.pack(*data)) return nbytes
607b94a6c1e3daf4b482acbb1df1ce967f1bce3b
3,641,698
def all_subclasses(cls): """Returns all known (imported) subclasses of a class.""" return cls.__subclasses__() + [g for s in cls.__subclasses__() for g in all_subclasses(s)]
8b9a2ecd654b997b5001820d6b85e442af9cee3b
3,641,699