content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
|---|---|---|
def list_volumes(vg):
"""List logical volumes paths for given volume group.
:param vg: volume group name
:returns: Return a logical volume list for given volume group
: Data format example
: ['volume-aaa', 'volume-bbb', 'volume-ccc']
"""
out, err = utils.execute('lvs', '--noheadings', '-o', 'lv_name', vg,
run_as_root=True)
return [line.strip() for line in out.splitlines()]
|
4cd613c8c10aaec443dce31cef8b132e3b2c65da
| 3,640,900
|
def question_aligned_passage_embedding(question_lstm_outs, document_embeddings,
passage_aligned_embedding_dim):
"""create question aligned passage embedding.
Arguments:
- question_lstm_outs: The dimension of output of LSTM that process
question word embedding.
- document_embeddings: The document embeddings.
- passage_aligned_embedding_dim: The dimension of passage aligned
embedding.
"""
def outer_sentence_step(document_embeddings, question_lstm_outs,
passage_aligned_embedding_dim):
"""step function for PaddlePaddle's recurrent_group.
In this function, the original input document_embeddings are scattered
from nested sequence into sequence by recurrent_group in PaddlePaddle.
The step function iterates over each sentence in the document.
Arguments:
- document_embeddings: The word embeddings of the document.
- question_lstm_outs: The dimension of output of LSTM that
process question word embedding.
- passage_aligned_embedding_dim: The dimension of passage aligned
embedding.
"""
def inner_word_step(word_embedding, question_lstm_outs,
question_outs_proj, passage_aligned_embedding_dim):
"""
In this recurrent_group, sentence embedding has been scattered into
word embeddings. The step function iterates over each word in one
sentence in the document.
Arguments:
- word_embedding: The word embeddings of documents.
- question_lstm_outs: The dimension of output of LSTM that
process question word embedding.
- question_outs_proj: The projection of question_lstm_outs
into a new hidden space.
- passage_aligned_embedding_dim: The dimension of passage
aligned embedding.
"""
doc_word_expand = paddle.layer.expand(
input=word_embedding,
expand_as=question_lstm_outs,
expand_level=paddle.layer.ExpandLevel.FROM_NO_SEQUENCE)
weights = paddle.layer.fc(
input=[question_lstm_outs, doc_word_expand],
size=1,
bias_attr=False,
act=paddle.activation.SequenceSoftmax())
weighted_candidates = paddle.layer.scaling(
input=question_outs_proj, weight=weights)
return paddle.layer.pooling(
input=weighted_candidates, pooling_type=paddle.pooling.Sum())
question_outs_proj = paddle.layer.fc(
input=question_lstm_outs,
bias_attr=False,
size=passage_aligned_embedding_dim)
return paddle.layer.recurrent_group(
input=[
paddle.layer.SubsequenceInput(document_embeddings),
paddle.layer.StaticInput(question_lstm_outs),
paddle.layer.StaticInput(question_outs_proj),
passage_aligned_embedding_dim,
],
step=inner_word_step,
name="iter_over_word")
return paddle.layer.recurrent_group(
input=[
paddle.layer.SubsequenceInput(document_embeddings),
paddle.layer.StaticInput(question_lstm_outs),
passage_aligned_embedding_dim
],
step=outer_sentence_step,
name="iter_over_sen")
|
8dbcb298a24ec18da4904a8f48a7c63331b27c91
| 3,640,901
|
def lm_loss_fn(forward_fn, vocab_size, params, rng, data, is_training=True):
"""Compute the loss on data wrt params."""
logits = forward_fn(params, rng, data, is_training)
targets = hk.one_hot(data['target'], vocab_size)
assert logits.shape == targets.shape
mask = jnp.greater(data['obs'], 0)
loss = -jnp.sum(targets * jax.nn.log_softmax(logits), axis=-1)
loss = jnp.sum(loss * mask) / jnp.sum(mask)
return loss
|
44188d717759a82d80079b5e4f7309b3cf7b5cb0
| 3,640,902
|
import argparse
import os
import logging
def ParseArguments():
"""Parse command line arguments, validate them, and return them.
Returns:
A dict of:
{'args': argparse arguments, see below,
'cur_ip': the ip address of the target, as packed binary,
'cur_node_index': the current node index of the target,
'cur_node_name': the current node name of the target,
'new_ip': the new ip address of the target, as packed binary,
'new_node_index': the new node index of the target,
'new_node_name': the new node name of the target,
'update_type': the update type, a shortname of update_type_helper
}
Raises:
RuntimeError: if run from outside the Makani workspace without specifying
--tms570_bin.
ValueError: if the binary the user supplied doesn't match the target type.
ValueError: if user passes --dump_image without a .elf file.
ValueError: if update is a param type, but the file doesn't end in '.bin'.
ValueError: if the update type in the filename isn't recognized.
ValueError: if the update type is 'CalibParams' but we don't see --calib.
ValueError: if the update type is not 'CalibParams' but we see --calib.
ValueError: if the update type is 'SerialParams' but we don't see --serial.
ValueError: if the update type is not 'SerialParams' but we see --serial.
ValueError: if the update type is 'CarrierSerialParams' but we don't
see --serial.
ValueError: if the update type is not 'CarrierSerialParams' but we
see --serial.
"""
parser = argparse.ArgumentParser(
description='Burn an application or parameter set to a board.')
parser.add_argument(
'--target', help='board to burn, e.g. MOTOR_PBO or FC_A.', required=True)
parser.add_argument('file',
help='binary to burn, e.g motor_application.elf '
'or servo_config_params.bin')
parser.add_argument('--dump_image', action='store_true',
help='Output intermediate .bin file instead of'
' sending it to the device.')
parser.add_argument('--calib', action='store_true',
help='Add this flag to burn calibration parameters.')
parser.add_argument('--serial', action='store_true',
help='Add this flag to burn serial parameters.')
parser.add_argument('--carrier_serial', action='store_true',
help='Add this flag to burn carrier serial'
' parameters.')
parser.add_argument('--config', action='store_true',
help='Add this flag to burn config parameters.')
parser.add_argument('--bootloader', action='store_true',
help='Add this flag to burn a bootloader.')
parser.add_argument('--override_target',
help='Override target identity in bootloader image.')
parser.add_argument('--force_hardware',
help='Burn e.g. an Fc board, rather than an Aio board.\n'
'use with argument "new" or "old".')
parser.add_argument('--ignore_mismatch', action='store_true',
help='Ignore mismatch between binary and board app type, '
'ip address, etc.')
# TODO: Allow override of IP address.
args = parser.parse_args()
args.application = not (args.calib or args.serial or args.carrier_serial
or args.config or args.bootloader)
if (args.calib + args.serial + args.carrier_serial + args.config +
args.bootloader + args.application) != 1:
raise ValueError('Cannot specify more than one update type (calib, serial, '
'carrier_serial, config, or bootloader).')
if args.force_hardware and not ParseHardwareType(args.force_hardware):
raise ValueError('Unknown hardware type "%s"; please specify a valid '
'HardwareType.' % args.force_hardware)
target_info = GetTargetInfo(args.target)
file_info = GetInfoFromFileName(os.path.basename(args.file))
if args.dump_image and not args.file.endswith('.elf'):
raise ValueError('--dump_image requires an .elf file.')
if args.calib and file_info['update_type'] != 'CalibParams':
raise ValueError('That does not look like an calib param file to me.')
if file_info['update_type'] == 'CalibParams' and not args.calib:
raise ValueError('If you really want to burn calib params, pass --calib.')
if args.serial and file_info['update_type'] != 'SerialParams':
raise ValueError('That does not look like an serial param file to me.')
if file_info['update_type'] == 'SerialParams' and not args.serial:
raise ValueError('If you really want to burn serial params, pass --serial.')
if args.carrier_serial and file_info['update_type'] != 'CarrierSerialParams':
raise ValueError('That does not look like a carrier serial param'
' file to me.')
if (file_info['update_type'] == 'CarrierSerialParams'
and not args.carrier_serial):
raise ValueError('If you really want to burn carrier serial params,'
' pass --carrier_serial.')
if args.bootloader and file_info['update_type'] != 'Bootloader':
raise ValueError('That does not look like a bootloader file to me.')
if file_info['update_type'] == 'Bootloader' and not args.bootloader:
raise ValueError(
'If you really want to burn a bootloader, pass --bootloader.')
if args.override_target and file_info['update_type'] != 'Bootloader':
raise ValueError('--override_target only supported with --bootloader.')
if args.override_target:
new_target_info = GetTargetInfo(args.override_target)
else:
new_target_info = target_info
logging.info('Attempting to flash %s segment on target %s [%s, index %d].',
file_info['update_type'], target_info['node_name'],
target_info['ip_address'], target_info['node_index'])
logging.info('Flashing file %s.', args.file)
return {'args': args,
'cur_ip': target_info['ip_address'],
'cur_node_index': target_info['node_index'],
'cur_node_name': target_info['node_name'],
'new_ip': new_target_info['ip_address'],
'new_node_index': new_target_info['node_index'],
'new_node_name': new_target_info['node_name'],
'file': args.file,
'update_type': file_info['update_type'],
}
|
1fd47dafe3fcc30b6bf18174fe3da9f10e3e6c2b
| 3,640,903
|
def chroms_from_build(build):
""" Get list of chromosomes from a particular genome build
Args:
build str
Returns:
chrom_list list
"""
chroms = {'grch37': [str(i) for i in range(1, 23)],
'hg19': ['chr{}'.format(i) for i in range(1, 23)]
# chroms = {'grch37': [i for i in range(1, 23)] + ['X', 'Y'],
}
try:
return chroms[build]
except KeyError:
raise ValueError("Oops, I don't recognize the build {}".format(build))
|
c87431911c07c00aaa63357771258394cfff859e
| 3,640,904
|
def get_ready_count_string(room: str) -> str:
"""Returns a string representing how many players in a room are ready.
Args:
room (str): The room code of the players.
Returns:
str: A string representing how many players in a room are ready in the format '[ready]/[not ready]'.
"""
player_count = 0
ready_count = 0
players = get_players(room)
for player in players:
if player.is_alive:
player_count += 1
if player.ready:
ready_count += 1
return f'{ready_count}/{player_count}'
|
eb8ae2a308ccd58355de5a8a15629bfccd1fcc2c
| 3,640,905
|
from typing import List
def switches(topology: 'Topology') -> List['Node']:
"""
@param topology:
@return:
"""
return filter_nodes(topology, type=DeviceType.SWITCH)
|
e489740b29f8aff7368147274d020cb467422669
| 3,640,906
|
def geometric_progression(init, ratio):
"""
Generate a geometric progression start form 'init' and multiplying
'ratio'.
"""
return _iterate(lambda x: x * ratio, init)
|
6b2626bc9d4016518b1cc7e41b63d34924c1ee30
| 3,640,907
|
import urllib
def resolve(marathon_lb_url):
"""Return the individual URLs for all available Marathon-LB instances given
a single URL to a DNS-balanced Marathon-LB cluster.
Marathon-LB typically uses DNS for load balancing between instances and so
the address provided by the user may actually be multiple load-balanced
instances. This function uses DNS to lookup the hostnames (IPv4 A-records)
of each instance, returning them all to the caller for use as required.
"""
url = urllib.parse.urlparse(marathon_lb_url)
all_hosts = _get_alias_records(url.hostname)
resolved_urls = _reassemble_urls(url, all_hosts)
return resolved_urls
|
f192d66a8a12d772ad33b2b8030796af2393ec16
| 3,640,908
|
def _parse_bluetooth_info(data):
"""
"""
# Combine the bytes as a char string and then strip off extra bytes.
name = ''.join(chr(i) for i in data[:16]).partition('\0')[0]
return BluetoothInfo(name,
''.join(chr(i) for i in data[16:28]),
''.join(chr(i) for i in data[29:]))
|
ef46576102cfb5d1df0b40e84529a89e2ed6bfa8
| 3,640,909
|
async def get_reverse_objects_topranked_for_lst(entities):
"""
get pairs that point to the given entity as the primary property
primary properties are those with the highest rank per property
"""
# run the query
res = await runQuerySingleKey(cacheReverseObjectTop, entities, """
SELECT ?base ?prop ?parent
WHERE {
VALUES ?base { %s }
?parent ?prop ?base .
FILTER( ?prop NOT IN (""" + ex_cls + """) ) # exclude wikilinks and redirects
}
LIMIT """ + str(config.RESULTS_LIMIT) + """
""")
return res
|
d975ba3ac3a0983d3a08057c91cd96ca466708df
| 3,640,910
|
def LU_razcep(A):
""" Vrne razcep A kot ``[L\\U]`` """
# eliminacija
for p, pivot_vrsta in enumerate(A[:-1]):
for i, vrsta in enumerate(A[p + 1:]):
if pivot_vrsta[p]:
m = vrsta[p] / pivot_vrsta[p]
vrsta[p:] = vrsta[p:] - pivot_vrsta[p:] * m
vrsta[p] = m
return A
|
79d6a00b4e16254739b987228fd506cae133907b
| 3,640,911
|
def jni_request_identifiers_for_type(field_type, field_reference_name, field_name, object_name="request"):
"""
Generates jni code that defines C variable corresponding to field of java object
(dto or custom type). To be used in request message handlers.
:param field_type: type of the field to be initialized (as defined in vpe.api)
:param field_reference_name: name of the field reference in generated code
:param field_name: name of the field (camelcase)
:param object_name: name of the object to be initialized
"""
# field identifiers
jni_type = util.vpp_2_jni_type_mapping[field_type]
jni_signature = util.jni_2_signature_mapping[field_type]
jni_getter = util.jni_field_accessors[field_type]
# field identifier
return request_field_identifier_template.substitute(
jni_type=jni_type,
field_reference_name=field_reference_name,
field_name=field_name,
jni_signature=jni_signature,
jni_getter=jni_getter,
object_name=object_name)
|
4f23ba559124b938fa82a044ae1adc0f16f4a7ad
| 3,640,912
|
def _ValidateDuration(arg_internal_name, arg_value):
"""Validates an argument which should have a Duration value."""
try:
if isinstance(arg_value, basestring):
return TIMEOUT_PARSER(arg_value)
elif isinstance(arg_value, int):
return TIMEOUT_PARSER(str(arg_value))
except arg_parsers.ArgumentTypeError as e:
raise InvalidArgException(arg_internal_name, e.message)
raise InvalidArgException(arg_internal_name, arg_value)
|
b08b65831e04ece410be7f0a490cd6ebf7bcaa6f
| 3,640,913
|
def get_jaccard_dist1(y_true, y_pred, smooth=default_smooth):
"""Helper to get Jaccard distance (for loss functions).
Note: This mirrors what others in the ML community have been using even for
non-binary vectors."""
return 1 - get_jaccard_index1(y_true, y_pred, smooth)
|
c64ba7fd81c3697bc472d372afeb940e19d35e3c
| 3,640,914
|
from pathlib import Path
from typing import Dict
import json
import warnings
def deduplicate_obi_codes(fname: Path) -> None:
"""
Remove duplicate http://terminology.hl7.org/CodeSystem/v2-0203#OBI codes from an instance.
When using the Medizininformatik Initiative Profile LabObservation, SUSHI v2.1.1 inserts the identifier.type code
for http://terminology.hl7.org/CodeSystem/v2-0203#OBI twice, but it has a cardinality of 1, resulting in an error
by the FHIR validator. This workaround function actively removes the duplicates.
MII Profile: https://www.medizininformatik-initiative.de/fhir/core/modul-labor/StructureDefinition/ObservationLab
:param fname: Filename of instance to remove duplicates from
:return: None
"""
def num_obi_codes(json_data: Dict):
jp = parse(
"$.type.coding[?code = 'OBI' & system='http://terminology.hl7.org/CodeSystem/v2-0203']"
)
return len(jp.find(json_data))
def del_obi_codes(identifier: Dict):
codings = identifier["type"]["coding"]
for i, coding in enumerate(codings):
if (
coding["system"] == "http://terminology.hl7.org/CodeSystem/v2-0203"
and coding["code"] == "OBI"
):
del codings[i]
break
json_data = json.load(open(fname))
if "identifier" not in json_data:
return
for identifier in json_data["identifier"]:
if num_obi_codes(identifier) > 1:
warnings.warn(f"Found multiple OBI codes in {fname}, removing")
del_obi_codes(identifier)
json.dump(json_data, open(fname, "w"), indent=2)
|
336a143e30224b64c39358137bab26e4013c5049
| 3,640,915
|
def fold_conv_bns(onnx_file: str) -> onnx.ModelProto:
"""
When a batch norm op is the only child operator of a conv op, this function
will fold the batch norm into the conv and return the processed graph
:param onnx_file: file path to ONNX model to process
:return: A loaded ONNX model with BatchNormalization ops folded into Conv ops
where possible
"""
model = onnx.load(onnx_file)
conv_nodes = [n for n in model.graph.node if n.op_type == "Conv"]
graph_modified = False
for conv_node in conv_nodes:
conv_output = conv_node.output[0]
child_nodes = [n for n in model.graph.node if conv_output in n.input]
# Check if the only child of the conv output is a batch norm op
if len(child_nodes) == 1 and child_nodes[0].op_type == "BatchNormalization":
bn_node = child_nodes[0]
fold_performed = _fold_conv_bn(model, conv_node, bn_node)
graph_modified = fold_performed or graph_modified
return model if graph_modified else None
|
25c2748b0e964310cc9909b60e68a9740e3e0df1
| 3,640,916
|
def numdays(year, month):
"""
numdays returns the number of days in the given month of
the given year.
Args:
year
month
Returns:
ndays: number of days in month
"""
NDAYS = list([31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31])
assert(year >= 0)
assert(1 <= month and month <= 12)
ndays = NDAYS[month-1]
# Check for leap year for February
if ((month == 2) and leapyear(year)):
ndays += 1
return ndays
|
159a41f3706b087194e0ba5d107a1ceb88583c21
| 3,640,917
|
def normalise_diversity_year_df(y_div_df):
"""Normalises a dataframe with diversity information by year and parametre set"""
yearly_results_norm = []
# For each possible diversity metric it pivots over parametre sets
# and calculates the zscore for the series
for x in set(y_div_df["diversity_metric"]):
yearly_long = y_div_df.query(f"diversity_metric == '{x}'").pivot_table(
index=["year", "diversity_metric"], columns="parametre_set", values="score"
)
yearly_long_norm = yearly_long.apply(zscore)
yearly_results_norm.append(yearly_long_norm)
# Concatenate and melt so they can be visualised with altair
y_div_df_norm = (
pd.concat(yearly_results_norm)
.reset_index(drop=False)
.melt(
id_vars=["year", "diversity_metric"],
var_name="parametre_set",
value_name="score",
)
)
return y_div_df_norm
|
83e12072e65a707dd61b98383ce295fac8e9f2f7
| 3,640,918
|
def allowed_file(filename):
"""Does filename have the right extension?"""
return '.' in filename and filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS
|
f42ac5ef5470515258715b4552945206a440effb
| 3,640,919
|
from typing import Dict
from typing import Optional
from typing import Any
from typing import List
import tokenize
def render(
template: str,
context: Dict,
serializer: Optional[CallableType[[Any], str]] = None,
partials: Optional[Dict] = None,
missing_variable_handler: Optional[CallableType[[str, str], str]] = None,
missing_partial_handler: Optional[CallableType[[str, str], str]] = None,
cache_tokens: bool = False,
) -> str:
"""Render a mustache template"""
serializer = serializer or default_serializer
missing_variable_handler = missing_variable_handler or missing_variable_default
missing_partial_handler = missing_partial_handler or missing_partial_default
partials = partials or {}
output: str = ''
context_stack: List = [context]
env_stack: List = []
left_delimiter: str = '{{'
right_delimiter: str = '}}'
pointer: int = 0
tokens = []
if cache_tokens:
tokens = list(tokenize(template, 0, left_delimiter, right_delimiter))
while True:
if cache_tokens:
try:
(token, value, indentation), position_pointer = tokens[pointer]
pointer += 1
except IndexError:
break
else:
try:
(token, value, indentation), pointer = next(
tokenize(template, pointer, left_delimiter, right_delimiter)
)
position_pointer = pointer
except StopIteration:
break
current_context = context_stack[-1]
if token is Token.SET_DELIMITER:
new_delimiters = value.strip().split(' ')
left_delimiter = new_delimiters[0]
right_delimiter = new_delimiters[-1]
if token is Token.END:
current_env = env_stack[-1]
context_stack.pop()
env_name, env_pointer, [env_var, _] = current_env
if should_iterate(env_var):
current_env[2][1] += 1
try:
next_item = env_var[current_env[2][1]]
context_stack.append(next_item)
pointer = env_pointer
continue
except IndexError:
pass
if env_name != value:
raise MustacheSyntaxError.from_template_pointer(
f'Unexpected section end tag on line {{line_number}}. Expected "{env_name}" got "{value}"',
template,
position_pointer,
)
env_stack.pop()
if not current_context and len(context_stack) != 1:
if token in [Token.SECTION, Token.INVERTED]:
context_stack.append(False)
env_stack.append([value, pointer, [False, 0]])
continue
if token in [Token.NO_ESCAPE, Token.VARIABLE, Token.SECTION, Token.INVERTED]:
try:
variable = get_from_context(context_stack, value)
except MissingVariable:
variable = missing_variable_handler(
value, f'{left_delimiter} {value} {right_delimiter}'
)
else:
variable = None
if token is Token.LITERAL:
output += value
elif token is Token.NO_ESCAPE:
output += serializer(variable)
elif token is Token.VARIABLE:
output += escape(serializer(variable))
elif token in [Token.SECTION, Token.INVERTED]:
if token is Token.INVERTED:
variable = not variable
if should_iterate(variable):
try:
context_item = variable[0]
context_stack.append(context_item)
except IndexError:
context_stack.append(False)
else:
context_stack.append(variable)
env_stack.append([value, pointer, [variable, 0]])
elif token is Token.PARTIAL:
partial_template = partials.get(value) # potentially raise error here
if partial_template is None:
partial_template = missing_partial_handler(
value, f'{left_delimiter} {value} {right_delimiter}'
)
if partial_template != '':
remove_trailing_indentation = False
if partial_template.endswith('\n'):
remove_trailing_indentation = True
partial_template = indentation + f'\n{indentation}'.join(
partial_template.split('\n')
)
if remove_trailing_indentation:
partial_template = partial_template[: -len(indentation)]
partial_output = render(
partial_template, current_context, serializer=serializer, partials=partials
)
output += partial_output
return output
|
b660c0ac97915121d061fd5c7dde8cccea42f03f
| 3,640,920
|
def preprocess_observations(input_observation, prev_processed_observation, input_dimensions):
""" convert the 210x160x3 uint8 frame into a 6400 float vector """
processed_observation = input_observation[35:195] # crop
processed_observation = downsample(processed_observation)
processed_observation = remove_color(processed_observation)
processed_observation = remove_background(processed_observation)
processed_observation[processed_observation != 0] = 1 # everything else (paddles, ball) just set to 1
# Convert from 80 x 80 matrix to 6400 x 1 matrix
processed_observation = processed_observation.astype(np.float).ravel()
# subtract the previous frame from the current one so we are only processing on changes in the game
if prev_processed_observation is not None:
input_observation = processed_observation - prev_processed_observation
else:
input_observation = np.zeros(input_dimensions)
# store the previous frame so we can subtract from it next time
prev_processed_observations = processed_observation
return input_observation, prev_processed_observations
|
885fbb2a1f81200843bb15d37f3c13726c23ea90
| 3,640,921
|
def expand_configuration(configuration):
"""Fill up backups with defaults."""
for backup in configuration['backups']:
for field in _FIELDS:
if field not in backup or backup[field] is None:
if field not in configuration:
backup[field] = None
else:
backup[field] = configuration[field]
return configuration['backups']
|
218f5c5cb67d3fa0f52b453d3cd00cde40835025
| 3,640,922
|
def create_feature_extractor(input_shape: tuple, dropout:float=0.3, kernel_size:tuple=(3,3,3)) -> tf.keras.Sequential:
"""
Create feature extracting model
:param input_shape: shape of input Z, X, Y, channels
:return: feature extracting model
"""
model = Sequential()
model.add(Conv3D(filters=4, kernel_size=kernel_size, padding='same', activation='relu', strides=(2, 2, 2),
input_shape=input_shape))
model.add(Conv3D(filters=8, kernel_size=kernel_size, padding='same', activation='relu', strides=(2, 2, 2)))
model.add(Conv3D(filters=16, kernel_size=kernel_size, padding='same', activation='relu', strides=(2, 2, 2)))
model.add(Dropout(dropout))
return model
|
47f52bab452e6bf7c9875a3c9c85bed02b79fcdc
| 3,640,923
|
async def async_setup_entry(hass: HomeAssistant, config_entry: ConfigEntry) -> bool:
"""Set up the component."""
hass.data.setdefault(DOMAIN, {})
async_add_defaults(hass, config_entry)
router = KeeneticRouter(hass, config_entry)
await router.async_setup()
undo_listener = config_entry.add_update_listener(update_listener)
hass.data[DOMAIN][config_entry.entry_id] = {
ROUTER: router,
UNDO_UPDATE_LISTENER: undo_listener,
}
for platform in PLATFORMS:
hass.async_create_task(
hass.config_entries.async_forward_entry_setup(config_entry, platform)
)
return True
|
beac0da52a530aa63495003b78a87638b869779c
| 3,640,924
|
def log_set_level(client, level):
"""Set log level.
Args:
level: log level we want to set. (for example "DEBUG")
"""
params = {'level': level}
return client.call('log_set_level', params)
|
d9f0c7cda877497acbe832bbc6c767bf331d0dc5
| 3,640,925
|
import subprocess
def exec_local_command(cmd):
"""
Executes a command for the local bash shell and return stdout as a string.
Raise CalledProcessError in case of non-zero return code.
Args:
cmd: command as a string
Return:
STDOUT
"""
proc = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, error = proc.communicate()
retcode = proc.poll()
if retcode:
LOG.error("{0} returned status {1}: {2}".format(cmd, retcode, error))
raise subprocess.CalledProcessError()
else:
return output
|
be0912712f4f5987b848cb08422fc6601be62653
| 3,640,926
|
def OGH(p0, p1, v0, v1, t0, t1, t):
"""Optimized geometric Hermite curve."""
s = (t-t0)/(t1-t0)
a0 = (6*np.dot((p1-p0).T,v0)*np.dot(v1.T,v1) - 3*np.dot((p1-p0).T,v1)*np.dot(v0.T,v1)) / ((4*np.dot(v0.T,v0)*np.dot(v1.T,v1) - np.dot(v0.T,v1)*np.dot(v0.T,v1))*(t1-t0))
a1 = (3*np.dot((p1-p0).T,v0)*np.dot(v0.T,v1) - 6*np.dot((p1-p0).T,v1)*np.dot(v0.T,v0)) / ((np.dot(v0.T,v1)*np.dot(v0.T,v1) - 4*np.dot(v0.T,v0)*np.dot(v1.T,v1))*(t1-t0))
h0 = (2*s+1)*(s-1)*(s-1)
h1 = (-2*s+3)*s*s
h2 = (1-s)*(1-s)*s
h3 = (s-1)*s*s
plt.plot([p0[0],p1[0]], [p0[1],p1[1]], ':c')
plt.plot([p0[0], (p0+v0)[0]], [p0[1], (p0+v0)[1]], '-g')
plt.plot([p1[0], (p1+v1)[0]], [p1[1], (p1+v1)[1]], '-g')
return h0*p0 + h1*p1 + h2*v0*a0 + h3*v1*a1
|
8bf86bbb2105ec26586a3568bb1a6448b284fbec
| 3,640,927
|
def permutation_test(v1, v2, iter=1000):
"""
Conduct Permutation test
Parameters
----------
v1 : array
Vector 1.
v2 : array
Vector 2.
iter : int. Default is 1000.
The times for iteration.
Returns
-------
p : float
The permutation test result, p-value.
"""
if len(v1) != len(v2):
return "Invalid input"
# permutation test
diff = abs(np.average(v1) - np.average(v2))
v = np.hstack((v1, v2))
nv = v.shape[0]
ni = 0
for i in range(iter):
vshuffle = np.random.permutation(v)
vshuffle1 = vshuffle[:int(nv/2)]
vshuffle2 = vshuffle[int(nv/2):]
diff_i = np.average(vshuffle1) - np.average(vshuffle2)
if diff_i >= diff:
ni = ni + 1
# permunitation test p-value
p = np.float64(ni/iter)
return p
|
3b618069b610d0ee37e8bcb32f814e34efaeebab
| 3,640,928
|
def registered_paths():
"""Return paths added via registration
..note:: This returns a copy of the registered paths
and can therefore not be modified directly.
"""
return list(_registered_paths)
|
4bd8471fc2bff1e09a84b1ae8878c0db5f7afd65
| 3,640,929
|
import torch
def nms_dynamic(ctx, g, boxes: Tensor, scores: Tensor,
max_output_boxes_per_class: int, iou_threshold: float,
score_threshold: float):
"""Rewrite symbolic function for default backend.
Support max_output_boxes_per_class, iou_threshold, score_threshold of
constant Tensor, which is aligned with ONNX's nms op.
Args:
ctx (ContextCaller): The context with additional information.
g (Graph): The traced onnx graph.
boxes (Tensor): The bounding boxes of shape [N, num_boxes, 4].
scores (Tensor): The detection scores of shape
[N, num_boxes, num_classes].
max_output_boxes_per_class (int): Maximum number of output
boxes per class of nms.
iou_threshold (float): IOU threshold of nms.
score_threshold (float): score threshold of nms.
Returns:
NonMaxSuppression op for onnx.
"""
if not sym_help._is_value(max_output_boxes_per_class):
max_output_boxes_per_class = g.op(
'Constant',
value_t=torch.tensor(max_output_boxes_per_class, dtype=torch.long))
if not sym_help._is_value(iou_threshold):
iou_threshold = g.op(
'Constant',
value_t=torch.tensor([iou_threshold], dtype=torch.float))
if not sym_help._is_value(score_threshold):
score_threshold = g.op(
'Constant',
value_t=torch.tensor([score_threshold], dtype=torch.float))
return g.op('NonMaxSuppression', boxes, scores, max_output_boxes_per_class,
iou_threshold, score_threshold)
|
6b6eea9ce2f2fe84cabb85ddbb069732fa78cca9
| 3,640,930
|
from typing import Union
from datetime import datetime
import pytz
def api_timestamp_to_datetime(api_dt: Union[str, dict]):
"""Convertes the datetime string returned by the API to python datetime object"""
"""
Somehow this string is formatted with 7 digits for 'microsecond' resolution, so crop the last digit (and trailing Z)
The cropped string will be written into api_dt_str_mod
"""
api_dt_str_mod = None
if isinstance(api_dt, str):
api_dt_str_mod = api_dt[:-2]
elif isinstance(api_dt, dict):
api_dt_str_mod = api_dt["dateTime"][:-2]
else:
raise
dt = datetime.strptime(api_dt_str_mod, "%Y-%m-%dT%H:%M:%S.%f")
dt = pytz.utc.localize(dt)
return dt
|
26f4828a19d17c883a8658eb594853158d70fbcf
| 3,640,931
|
from typing import List
def calc_mutation(offsprings: List[List[List[int]]], mut_rate: float, genes_num: int) -> List[List[List[int]]]:
"""
Not necessary, however when provided and returns value other than None, the simulator is going to use
this one instead of the given ones by default, if you are not intending to use it leave it to `return None`
"""
return None
|
d665b7c2ff8ddfa2c4b905c3d6bab02028e30ec2
| 3,640,932
|
def compute_targets(ex_rois, gt_rois, weights=(1.0, 1.0, 1.0, 1.0)):
"""Compute bounding-box regression targets for an image."""
return box_utils.bbox_transform_inv(ex_rois, gt_rois, weights).astype(
np.float32, copy=False
)
|
de2a65b5c3c44bbd4bffcd0d99143982ed4c031c
| 3,640,933
|
def _args_filter(args):
"""
zenith db api only accept list of tuple arguments for bind execute, that is ungainly
so we should make all kind of arguments to list of tuple arguments
"""
if isinstance(args, (GeneratorType, )):
args = list(args)
if len(args) <= 0:
return []
if isinstance(args[0], (tuple, list,)):
return [tuple(v) for v in args]
else:
return [tuple(args), ]
|
af9a836c1389acc4e0faf0d08e47ef8a39e57345
| 3,640,934
|
def getAreaDF(spark):
"""
Returns a Spark DF containing the BLOCK geocodes and the Land and Water area columns
Parameters
==========
spark : SparkSession
Returns
=======
a Spark DF
Notes
=====
- Converts the AREALAND and AREAWATER columns from square meters to square miles
- Used primarily for calculating Population Density
"""
area_cols = ['AREALAND', 'AREAWATER']
area = getGRFC(spark, columns=area_cols)
for area_col in area_cols:
area = area.withColumn(area_col, sf.col(area_col).cast("long")).persist()
# calculation for converting square meters (current units for AREALAND from the GRFC) to square miles
# square miles = square meters / 2,589,988
# https://www.census.gov/quickfacts/fact/note/US/LND110210
area = area.withColumn(area_col, sf.col(area_col) / sf.lit(2589988)).persist()
area = area.withColumn("AREA_SQUARE_MILES", sf.expr(" + ".join(area_cols))).persist()
return area
|
181e84e98ca2cf83be0cf5dbf41a8dbc46b88ad4
| 3,640,935
|
import os
import subprocess
def run_command(command, filename=None, repeat=1, silent=False):
"""
Run `command` with `filename` positional argument in the directory of the
`filename`. If `filename` is not given, run only the command.
"""
if filename is not None:
fdir = os.path.dirname(os.path.abspath(filename))
fname = os.path.basename(filename)
cmd = command + ' ' + fname
else:
fdir = None
cmd = command
status = 0
for ii in range(repeat):
if silent:
with open(os.devnull, 'w') as devnull:
st = subprocess.call(cmd.split(), cwd=fdir,
stdout=devnull, stderr=devnull)
else:
st = subprocess.call(cmd.split(), cwd=fdir)
status = status or st
return status
|
0f24c79f9d557198645de75fe7160af41638ecb6
| 3,640,936
|
def how_many():
"""Check current number of issues waiting in SQS."""
if not is_request_valid(request):
abort(400)
lapdog_instance = Lapdog()
lapdog_instance.how_many()
return jsonify(
response_type="in_channel",
text="There are 4 issues waiting to be handled",
)
|
db132bed6c957ad1f922776165ccb999bfcedb32
| 3,640,937
|
import struct
def read_sbd(filepath):
"""Reads an .sbd file containing spectra in either profile or centroid mode
Returns:
list:List of spectra
"""
with open(filepath, 'rb') as in_file:
header = struct.unpack("<BQB", in_file.read(10))
meta_size = header[1] * 20 # sizeof(QLfHH)
meta = [meta_item for meta_item in
struct.iter_unpack("<QLfHH", in_file.read(meta_size))]
num_points = [meta_item[1] for meta_item in meta]
spectra = [read_spectrum(in_file, n) for n in num_points]
return (header, meta, spectra)
|
364499580d5531d7361b87d3f575bf006fc79791
| 3,640,938
|
def dct2(X, blksize):
"""Calculate DCT transform of a 2D array, X
In order for this work, we have to split X into blksize chunks"""
dctm = dct_mat(blksize)
#try:
#blks = [sp.vsplit(x, X.shape[1]/blksize) for x in sp.hsplit(X, X.shape[0]/blksize)]
#except:
# print "Some error occurred"
output = sp.zeros(X.shape)
if output.ndim==3:
for i in range(blksize,X.shape[0],blksize):
for j in range(blksize, X.shape[1], blksize):
for c in range(X.shape[2]):
b = X[i-blksize:i, j-blksize:j, c]
output[i-blksize:i, j-blksize:j, c] = sp.dot(sp.dot(dctm,b),dctm.T)
elif output.ndim==2:
for i in range(blksize,X.shape[0],blksize):
for j in range(blksize, X.shape[1], blksize):
b = X[i-blksize:i, j-blksize:j]
output[i-blksize:i, j-blksize:j] = sp.dot(sp.dot(dctm,b),dctm.T)
#blks = [sp.dot(sp.dot(dctm, b), dctm.T) for b in blks]
#return sp.concatenate([blk for blk in blks]).reshape(X.shape)
return output
|
79aa158f4fd05ac35bad2d16c14b3b8cbd8351af
| 3,640,939
|
def print_filtering(dataset, filter_vec, threshold, meta_name):
"""Function to select the filtering_names(names of those batches or cell types with less proportion of cells than threshold),
and print an informative table with: batches/cell types, absolute_n_cells, relative_n_cells, Exluded or not.
"""
cell_count = filter_vec.value_counts(ascending=False)
print("**", meta_name , "containing less than:", str(threshold), "of total cells are removed" +"\n" + "**", meta_name, "filtered based on our threshold")
#dataframe informing about the filtering about to be done
exclude_df = pd.DataFrame({meta_name: cell_count.index.to_list(), 'n_cells': cell_count.values,
'%_cells': cell_count.values/dataset.n_obs, 'Excluded_?': cell_count.values/dataset.n_obs < threshold})
print(exclude_df)
removal_names = exclude_df[meta_name][exclude_df["Excluded_?"] == True].tolist()
return removal_names
|
c637a9d219443de730156e546d52461b9bcdfc84
| 3,640,940
|
import os
def attempt_input_load(input_path):
"""Attempts to load the file at the provided path and return it as an array
of lines. If the file does not exist we will exit the program since nothing
useful can be done."""
if not os.path.isfile(input_path):
print("Input file does not exist: %s" % input_path)
exit()
print("Loading input from file: %s" % input_path)
with open(input_path, "r", encoding='utf-8') as f:
lines = f.readlines()
return lines
|
f75e95258c803175d1f13d82c6479987cfdecbf9
| 3,640,941
|
from typing import Dict
def get_chunk_tags(chunks: Dict, attrs: str):
"""
Get tags for
:param chunks:
:param attrs:
:return:
"""
tags = []
for chunk in chunks:
resource_type = chunk['resource_type']
original_url = chunk['url']
parse_result = urlparse(original_url)
path = parse_result.path
# If under STATIC_URL rewrite using static tag so that we respect static file storage
# options, eg. ManifestStaticFileStorage
if settings.STATIC_URL and path.startswith(settings.STATIC_URL):
try:
path = static(path[len(settings.STATIC_URL):])
except ValueError:
# Allow url's that aren't managed by static files - eg. this will happen
# for ManifestStaticFileStorage if file is not in the manifest
pass
url = ParseResult(**dict(parse_result._asdict(), path=path)).geturl()
if resource_type == 'js':
tags.append(f'<script type="text/javascript" src="{url}" {attrs}></script>')
if resource_type == 'css':
tags.append(f'<link type="text/css" href="{url}" rel="stylesheet" {attrs}/>')
return tags
|
e7076b345bcca4e7fe8ac96002aad7499cf0b0f3
| 3,640,942
|
def __discount_PF(i, n):
"""
Present worth factor
Factor: (P/F, i, N)
Formula: P = F(1+i)^N
:param i:
:param n:
:return:
Cash Flow:
F
|
|
--------------
|
P
"""
return (1 + i) ** (-n)
|
b6e7424647921b945a524a22d844925573b6490a
| 3,640,943
|
def pw2dense(pw, maxd):
"""Make a pairwise distance matrix dense
assuming -1 is used to encode D = 0"""
pw = np.asarray(pw.todense())
pw[pw == 0] = maxd + 1
# pw[np.diag_indices_from(pw)] = 0
pw[pw == -1] = 0
return pw
|
68bbf753d80032a0e697b161c8836283a030a54a
| 3,640,944
|
from typing import Awaitable
def run_simulation(sim: td.Simulation) -> Awaitable[td.Simulation]:
"""Returns a simulation with simulation results
Only submits simulation if results not found locally or remotely.
First tries to load simulation results from disk.
Then it tries to load them from the server storage.
Finally, only submits simulation if not found
.. code::
import gtidy3d as gm
component = gf.components.straight(length=3)
sim = gm.get_simulation(component=component)
sim = run_simulation(sim).result()
"""
td.logging_level("error")
sim_hash = get_sim_hash(sim)
sim_path = PATH.results / f"{sim_hash}.hdf5"
logger.info(f"running simulation {sim_hash}")
hash_to_id = {d["task_name"][:32]: d["task_id"] for d in web.get_last_projects()}
target = PATH.results / f"{sim_hash}.hdf5"
# Try from local storage
if sim_path.exists():
logger.info(f"{sim_path} found in local storage")
sim = _executor.submit(load_results, sim, target)
# Try from server storage
elif sim_hash in hash_to_id:
task_id = hash_to_id[sim_hash]
sim = _executor.submit(load_results, sim, target, task_id)
# Only submit if simulation not found
else:
task_id = _export_simulation(sim=sim, task_name=sim_hash)
sim = _executor.submit(load_results, sim, target, task_id)
return sim
|
23524bff78ac326bbf74e2389180d924849e57f4
| 3,640,945
|
def get_cursor_position(fd=1):
"""Gets the current cursor position as an (x, y) tuple."""
csbi = get_console_screen_buffer_info(fd=fd)
coord = csbi.dwCursorPosition
return (coord.X, coord.Y)
|
b99cf19081af7e0d68523d1efdfc80c89cfe64cc
| 3,640,946
|
from typing import Tuple
def _held_karp(dists: np.ndarray) -> Tuple[float, np.ndarray]:
"""
Held-Karp algorithm solves the Traveling Salesman Problem.
This algorithm uses dynamic programming with memoization.
Parameters
----------
dists
Distance matrix.
Returns
-------
The cost and the path.
"""
n = len(dists)
# Maps each subset of the nodes to the cost to reach that subset, as well
# as what node it passed before reaching this subset.
# Node subsets are represented as set bits.
C = {}
# Set transition cost from initial state
for k in range(1, n):
C[1 << k, k] = (dists[0][k], 0)
# Iterate subsets of increasing length and store intermediate results
# in classic dynamic programming manner
for subset_size in range(2, n):
for subset in combinations(range(1, n), subset_size):
# Set bits for all nodes in this subset
bits = 0
for bit in subset:
bits |= 1 << bit
# Find the lowest cost to get to this subset
for k in subset:
prev = bits & ~(1 << k)
res = []
for m in subset:
if m == 0 or m == k:
continue
res.append((C[prev, m][0] + dists[m][k], m))
C[bits, k] = min(res)
# We're interested in all bits but the least significant (the start state)
bits = (2 ** n - 1) - 1
# Calculate optimal cost
res = []
for k in range(1, n):
res.append((C[bits, k][0] + dists[k][0], k))
opt, parent = min(res)
# Backtrack to find full path
path = []
for _ in range(n - 1):
path.append(parent)
new_bits = bits & ~(1 << parent)
_, parent = C[bits, parent]
bits = new_bits
# Add implicit start state
path.append(0)
return opt, np.array(path)[::-1]
|
982d771c1fef5e4f6311fd1b36216c95db7f1343
| 3,640,947
|
import os
def dl_files(go_directory):
"""function to download latest ontologies and associations files from geneontology.org
specify the directory to download the files to"""
# change to go directory
os.chdir(go_directory)
# Get http://geneontology.org/ontology/go-basic.obo
obo_fname = download_go_basic_obo()
# print go file version:
with open(obo_fname) as fin:
for line in islice(fin, 1, 2):
print(line)
# download gene2go annotation file
fin_gene2go = download_ncbi_associations()
return obo_fname, fin_gene2go
|
898597925655c31dc3a6eb84c6d99b5bc3c3a5db
| 3,640,948
|
def NS(s,o):
"""
Nash Sutcliffe efficiency coefficient
Adapated to use in alarconpy by Albenis Pérez Alarcón
contact: apalarcon1991@gmail.com
Parameters
--------------------------
input:
s: simulated
o: observed
output:
ns: Nash Sutcliffe efficient coefficient
"""
s,o = filter_nan(s,o)
return 1 - sum((s-o)**2)/sum((o-np.mean(o))**2)
|
10c14022ae634a74f0a417454ddfa0fa52d89c8a
| 3,640,949
|
def UTArgs(v):
"""
tag UTArgs
"""
tag = SyntaxTag.TagUTArgs()
tag.AddV(v)
return tag
|
8d9ff601a5a2bf65e68e074dad1894342881950f
| 3,640,950
|
from src.praxxis.sqlite import sqlite_rulesengine
from src.praxxis.notebook.notebook import get_output_from_filename
def rules_check(rulesengine_db, filename, output_path, query_start, query_end):
"""check if any rules match"""
rulesets = sqlite_rulesengine.get_active_rulesets(rulesengine_db, query_start, query_end)
rulesmatch = []
hit = set()
predictions = []
for ruleset in rulesets:
filenames = sqlite_rulesengine.get_filenames_by_rule(ruleset[2])
for fmatch in filenames:
if fmatch[0] in filename:
rulesmatch.append(fmatch[1])
if rulesmatch != []:
#get output
output = get_output_from_filename(output_path)
outputs = sqlite_rulesengine.get_outputs_for_rules(ruleset[2], rulesmatch)
for omatch in outputs:
if omatch[0] in output:
hit.add(omatch[1])
predictions.extend(sqlite_rulesengine.get_predictions(ruleset[2], hit))
return predictions
|
a81d29a8a9d61ba6a577fbe9899967b81a25ff7f
| 3,640,951
|
def shortstr(s,max_len=144,replace={'\n':';'}):
""" Obtain a shorter string """
s = str(s)
for k,v in replace.items():
s = s.replace(k,v)
if max_len>0 and len(s) > max_len:
s = s[:max_len-4]+' ...'
return s
|
396794506583dcf39e74941a20f27ac63de325ec
| 3,640,952
|
def update_gms_stats_collection(
self,
application: bool = None,
dns: bool = None,
drc: bool = None,
drops: bool = None,
dscp: bool = None,
flow: bool = None,
interface: bool = None,
jitter: bool = None,
port: bool = None,
shaper: bool = None,
top_talkers: bool = None,
tunnel: bool = None,
) -> bool:
"""Enable/disable stats collection by orchestrator.
All parameters optional.
.. list-table::
:header-rows: 1
* - Swagger Section
- Method
- Endpoint
* - gmsStatsCollection
- POST
- /gms/statsCollection
:param application: Description missing in Swagger, defaults to None
:type application: bool, optional
:param dns: Description missing in Swagger, defaults to None
:type dns: bool, optional
:param drc: Description missing in Swagger, defaults to None
:type drc: bool, optional
:param drops: Description missing in Swagger, defaults to None
:type drops: bool, optional
:param dscp: Description missing in Swagger, defaults to None
:type dscp: bool, optional
:param flow: Description missing in Swagger, defaults to None
:type flow: bool, optional
:param interface: Description missing in Swagger, defaults to None
:type interface: bool, optional
:param jitter: Description missing in Swagger, defaults to None
:type jitter: bool, optional
:param port: Description missing in Swagger, defaults to None
:type port: bool, optional
:param shaper: Description missing in Swagger, defaults to None
:type shaper: bool, optional
:param top_talkers: Description missing in Swagger, defaults to None
:type top_talkers: bool, optional
:param tunnel: Description missing in Swagger, defaults to None
:type tunnel: bool, optional
:return: Returns True/False based on successful call.
:rtype: bool
"""
data = {}
if application is not None:
data["Application"] = application
if dns is not None:
data["Dns"] = dns
if drc is not None:
data["Drc"] = drc
if drops is not None:
data["Drops"] = drops
if dscp is not None:
data["Dscp"] = dscp
if flow is not None:
data["Flow"] = flow
if interface is not None:
data["Interface"] = interface
if jitter is not None:
data["Jitter"] = jitter
if port is not None:
data["Port"] = port
if shaper is not None:
data["Shaper"] = shaper
if top_talkers is not None:
data["TopTalkers"] = top_talkers
if tunnel is not None:
data["Tunnel"] = tunnel
return self._post(
"/gms/statsCollection",
data=data,
return_type="bool",
)
|
d6dce80a8543cae16eebf076eeaa3e1428831df5
| 3,640,953
|
def _get_nearby_factories(latitude, longitude, radius):
"""Return nearby factories based on position and search range."""
# ref: https://stackoverflow.com/questions/574691/mysql-great-circle-distance-haversine-formula
distance = 6371 * ACos(
Cos(Radians(latitude)) * Cos(Radians("lat")) * Cos(Radians("lng") - Radians(longitude))
+ Sin(Radians(latitude)) * Sin(Radians("lat"))
)
radius_km = radius
ids = Factory.objects.annotate(distance=distance).only("id").filter(distance__lt=radius_km).order_by("id")
if len(ids) > settings.MAX_FACTORY_PER_GET:
ids = _sample(ids, settings.MAX_FACTORY_PER_GET)
return (
Factory.objects.filter(id__in=[obj.id for obj in ids])
.prefetch_related(Prefetch('report_records', queryset=ReportRecord.objects.only("created_at").all()))
.prefetch_related(Prefetch('images', queryset=Image.objects.only("id").all()))
.prefetch_related(Prefetch('documents', queryset=Document.objects.only('created_at', 'display_status').all()))
.all()
)
|
b94c879d93a486b4ac0dd77bee6fb9d79395dc23
| 3,640,954
|
def add_register(request):
"""
处理注册提交的数据,保存到数据库
:param request:
:return:
"""
form = forms.RegisterForm(request.POST)
if form.is_valid():
data = form.cleaned_data
#清洗数据
data.pop("re_password")
data['password'] = hash_pwd.has_password(data.get('password'))
#添加必要数据
data['is_active'] = 1
#格式化储存
models.UserInfo.objects.create(
**data
)
return redirect('mysite:login')
else:
#把前端提交的包含错误信息的对象返回到前端页面
return render(request, 'login/register.html', {"form":form})
|
acaf3886773b599df2853a5e73ef504af27f1c53
| 3,640,955
|
import numpy
import pandas
def confidence_interval(data, alpha=0.1):
"""
Calculate the confidence interval for each column in a pandas dataframe.
@param data: A pandas dataframe with one or several columns.
@param alpha: The confidence level, by default the 90% confidence interval is calculated.
@return: A series where each entry contains the confidence-interval for the corresponding column.
"""
alpha = 0.1
t = lambda column: scipy_stats.t.isf(alpha/2.0, len(column)-1)
width = lambda column: t(column) * numpy.std(column.values, ddof=1)/sqrt(len(column))
formatted_interval = lambda column: "%.2f +/- %.4f" % (column.mean(), width(column))
return pandas.Series([formatted_interval(data[c]) for c in data.columns], index=data.columns)
|
f9c31549287723f7f75c265485b7cd9911f68168
| 3,640,956
|
def RunInTransactionOptions(options, function, *args, **kwargs):
"""Runs a function inside a datastore transaction.
Runs the user-provided function inside a full-featured, ACID datastore
transaction. Every Put, Get, and Delete call in the function is made within
the transaction. All entities involved in these calls must belong to the
same entity group. Queries are supported as long as they specify an
ancestor belonging to the same entity group.
The trailing arguments are passed to the function as positional arguments.
If the function returns a value, that value will be returned by
RunInTransaction. Otherwise, it will return None.
The function may raise any exception to roll back the transaction instead of
committing it. If this happens, the transaction will be rolled back and the
exception will be re-raised up to RunInTransaction's caller.
If you want to roll back intentionally, but don't have an appropriate
exception to raise, you can raise an instance of datastore_errors.Rollback.
It will cause a rollback, but will *not* be re-raised up to the caller.
The function may be run more than once, so it should be idempotent. It
should avoid side effects, and it shouldn't have *any* side effects that
aren't safe to occur multiple times. This includes modifying the arguments,
since they persist across invocations of the function. However, this doesn't
include Put, Get, and Delete calls, of course.
Example usage:
> def decrement(key, amount=1):
> counter = datastore.Get(key)
> counter['count'] -= amount
> if counter['count'] < 0: # don't let the counter go negative
> raise datastore_errors.Rollback()
> datastore.Put(counter)
>
> counter = datastore.Query('Counter', {'name': 'foo'})
> datastore.RunInTransaction(decrement, counter.key(), amount=5)
Transactions satisfy the traditional ACID properties. They are:
- Atomic. All of a transaction's operations are executed or none of them are.
- Consistent. The datastore's state is consistent before and after a
transaction, whether it committed or rolled back. Invariants such as
"every entity has a primary key" are preserved.
- Isolated. Transactions operate on a snapshot of the datastore. Other
datastore operations do not see intermediated effects of the transaction;
they only see its effects after it has committed.
- Durable. On commit, all writes are persisted to the datastore.
Nested transactions are not supported.
Args:
options: TransactionOptions specifying options (number of retries, etc) for
this transaction
function: a function to be run inside the transaction on all remaining
arguments
*args: positional arguments for function.
**kwargs: keyword arguments for function.
Returns:
the function's return value, if any
Raises:
TransactionFailedError, if the transaction could not be committed.
"""
return _RunInTransactionInternal(options,
datastore_rpc.TransactionMode.READ_WRITE,
function, *args, **kwargs)
|
9236024d034f193919e976a04eec9105ee899d48
| 3,640,957
|
def notify(message, key, target_object=None, url=None, filter_exclude={}):
"""
Notify subscribing users of a new event. Key can be any kind of string,
just make sure to reuse it where applicable! Object_id is some identifier
of an object, for instance if a user subscribes to a specific comment thread,
you could write:
notify("there was a response to your comment", "comment_response",
target_object=PostersObject,
url=reverse('comments:view', args=(PostersObject.id,)))
The below example notifies everyone subscribing to the "new_comments" key
with the message "New comment posted".
notify("New comment posted", "new_comments")
filter_exclude: a dictionary to exclude special elements of subscriptions
in the queryset, for instance filter_exclude={''}
"""
if _disable_notifications:
return 0
if target_object:
if not isinstance(target_object, Model):
raise TypeError(_("You supplied a target_object that's not an instance of a django Model."))
object_id = target_object.id
else:
object_id = None
objects = models.Notification.create_notifications(
key,
object_id=object_id,
message=message,
url=url,
filter_exclude=filter_exclude,
)
return len(objects)
|
9da7f8a498a3fad1f1acbb9e35e798083d6a25c5
| 3,640,958
|
from pathlib import Path
def get_project_root() -> Path:
"""Return the path of the project root folder.
Returns:
Path: Path to project root
"""
return Path(__file__).parent
|
0122844ae89a53b0cd28659be21fb932164719cd
| 3,640,959
|
def FTCS(Uo, diffX, diffY=None):
"""Return the numerical solution of dependent variable in the model eq.
This routine uses the explicit Forward Time/Central Space method
to obtain the solution of the 1D or 2D diffusion equation.
Call signature:
FTCS(Uo, diffX, diffY)
Parameters
----------
Uo: ndarray[float], =1d, 2d
The dependent variable at time level, n within the entire domain.
diffX : float
Diffusion number for x-component of the parabolic/diffusion
equation.
diffY : float, Default=None for 1-D applications
Diffusion number for y-component of the parabolic/diffusion
equation.
Returns
-------
U: ndarray[float], =1d, 2d
The dependent variable at time level, n+1 within the entire domain.
"""
shapeU = Uo.shape # Obtain Dimension
U = Uo.copy() # Initialize U
if len(shapeU) == 1:
U[1:-1] = (
Uo[1:-1] + diffX*(Uo[2:] - 2.0*Uo[1:-1] + Uo[0:-2])
)
elif len(shapeU) == 2:
U[1:-1, 1:-1] = (
Uo[1:-1, 1:-1]
+ diffX*(Uo[2:, 1:-1] - 2.0*Uo[1:-1, 1:-1] + Uo[0:-2, 1:-1])
+ diffY*(Uo[1:-1, 2:] - 2.0*Uo[1:-1, 1:-1] + Uo[1:-1, 0:-2])
)
return U
|
4b02749f3f50a2cff74abb75146159289d42b99e
| 3,640,960
|
def epicyclic_frequency(prof) -> Quantity:
"""Epicyclic frequency."""
Omega = prof['keplerian_frequency']
R = prof['radius']
return np.sqrt(2 * Omega / R * np.gradient(R ** 2 * Omega, R))
|
917fc1e094719f0dbb6a3ac7ca0396601060bf1c
| 3,640,961
|
import os
import re
def _filter_subset(systems, test_sets, langpair, origlang, subset=None):
"""Filter sentences with a given origlang (or subset) according to the raw SGM files."""
if origlang is None and subset is None:
return systems
if test_sets is None or langpair is None:
raise ValueError('Filtering for --origlang or --subset needs a test (-t) and a language pair (-l).')
indices_to_keep = []
for test_set in test_sets.split(','):
rawfile = os.path.join(SACREBLEU_DIR, test_set, 'raw', DATASETS[test_set][langpair][0])
if not rawfile.endswith('.sgm'):
raise Exception('--origlang and --subset supports only *.sgm files, not %s', rawfile)
if subset is not None:
if test_set not in SUBSETS:
raise Exception('No subset annotation available for test set ' + test_set)
doc_to_tags = SUBSETS[test_set]
number_sentences_included = 0
with smart_open(rawfile) as fin:
include_doc = False
for line in fin:
if line.startswith('<doc '):
if origlang is None:
include_doc = True
else:
doc_origlang = re.sub(r'.* origlang="([^"]+)".*\n', '\\1', line)
if origlang.startswith('non-'):
include_doc = doc_origlang != origlang[4:]
else:
include_doc = doc_origlang == origlang
if subset is not None:
doc_id = re.sub(r'.* docid="([^"]+)".*\n', '\\1', line)
if not re.search(subset, doc_to_tags.get(doc_id, '')):
include_doc = False
if line.startswith('<seg '):
indices_to_keep.append(include_doc)
number_sentences_included += 1 if include_doc else 0
return [[sentence for sentence,keep in zip(sys, indices_to_keep) if keep] for sys in systems]
|
0a15d2290d32b5556e18e2324b80e49300a0acca
| 3,640,962
|
def get_groups(
a_graph,
method='component_infomap', return_form='membership'):
"""
Return the grouping of the provided graph object using the specified
method. The grouping is returned as a list of sets each holding all
members of a group.
Parameters
==========
a_graph: :class:`igraph.Graph`
The graph to partition
method: str (default='component_infomap')
String specifying which method to use. If two methods
should be used one after the other they should be separated by `_`.
Default: 'component_infomap' which will first consider all
disconnected components as groups then apply infomap on all of
those groups to optionally further split.
return_form: str (default='membership')
Determines the format of how the social group structure should be
returned. Options are:
* ``'membership'``: A list returning for each `index` node the group it
belongs to.
* ``'memberlists'``: Dictionary with a list of members `value` for each
group `key`.
Returns
=======
dict
Depending on what was chosen for the `return_form` attribute, either the
membership dict, i.e.::
{
node_id: group_id,
...
}
or the memberlist dict, i.e.::
{
group_id: [node1_id, node2_id, ...],
...
}
(value) is returned.
"""
# methods = method.split('_')
# For now only 'component_infomap' is allowed as procedure
if method == 'component_infomap':
# first the connected components
a_graph.vs['component'] = a_graph.clusters(
).membership
components = set(a_graph.vs['component'])
# create for each component a graph and apply infomap to it
node_membership = {}
# print(
# 'INFO: Found {0} disconnected components'.format(len(components))
# )
if components:
# do the community detection on each component and create a
# compound group id: component_group
for component in components:
_comp_graph = a_graph.subgraph(
[
node['name']
for node in a_graph.vs
if node['component'] == component
]
)
_infompa_comp_graph = _comp_graph.community_infomap('weight')
_comp_graph.vs['_group'] = _infompa_comp_graph.membership
for node in _comp_graph.vs:
node_membership[node['name']] = '{0}_{1}'.format(
node['component'], node['_group']
)
del _infompa_comp_graph
else:
_infompa_comp_graph = a_graph.community_infomap('weight')
a_graph.vs['group'] = _infompa_comp_graph.membership
node_membership = {
node['name']: node['group']
for node in a_graph.vs
}
group_membership = {}
for node in node_membership:
try:
group_membership[node_membership[node]].append(node)
except KeyError:
group_membership[node_membership[node]] = [node]
if return_form == 'membership':
# nbr_nodes = len(a_graph.vs['name'])
# membership = [None]*nbr_nodes
# for g, members in group_membership.items():
# for member in members:
# membership[member] = g
# return membership
return node_membership
elif return_form == 'memberlists':
# return [_group for _group in group_membership.values()]
return group_membership
else:
return None
|
110dd9dc470d9426b388e0db1289ff0b23c4a963
| 3,640,963
|
def positional_rank_queues (service_platform,
api_key):
""" Get the queues that have positional ranks enabled.
References:
https://developer.riotgames.com/regional-endpoints.html
https://developer.riotgames.com/api-methods/#league-v4/GET_getQueuesWithPositionRanks
Arguments:
service_platform (str): The service platform that the request should be issued to.
api_key (str): The client's api key.
Returns:
dict: the details of the response to the issued http request.
"""
header_parameters = {
"X-Riot-Token": api_key
}
url = endpoints.v4["host"]["endpoint"].format(service_platform)
path = endpoints.v4["positional-rank-queues"]["endpoint"]
return _request_executor.get("".join([url, path]),
header_parameters=header_parameters)
|
f48f9a445aac9611d4892e1aab5e7699a4c3ec1f
| 3,640,964
|
def maplist(f, xs):
"""Implement `maplist` in pure Python."""
return list(map(f, xs))
|
894a58f9e2cd66fe9c327ea65433b8210051ed60
| 3,640,965
|
import string
import re
def pull_urls_excel_sheets(workbook):
"""
Pull URLs from cells in a given ExcelBook object.
"""
# Got an Excel workbook?
if (workbook is None):
return []
# Look through each cell.
all_cells = excel.pull_cells_workbook(workbook)
r = set()
for cell in all_cells:
# Skip empty cells.
value = None
try:
value = str(cell["value"]).strip()
except UnicodeEncodeError:
value = ''.join(filter(lambda x:x in string.printable, cell["value"])).strip()
if (len(value) == 0):
continue
# Add http:// for cells that look like they might be URLs
# missing the http part.
pat = r"[A-Za-z0-9_]{3,50}\.[A-Za-z]{2,10}/(?:[A-Za-z0-9_]{1,50}/)*[A-Za-z0-9_\.]{3,50}"
if (re.search(pat, value) is not None):
value = "http://" + value
# Look for URLs in the cell value.
for url in re.findall(read_ole_fields.URL_REGEX, value):
r.add(url.strip())
# Return any URLs found in cells.
return r
|
0359fb8e1fd552749e15cce631f756130c5199cf
| 3,640,966
|
import click
import requests
def do_request(base_url, api_path, key, session_id, extra_params=''):
"""
Voer een aanvraag uit op de KNVB API, bijvoorbeeld /teams; hiermee
vraag je alle team-data op
"""
hashStr = md5.new('{0}#{1}#{2}'.format(key,
api_path,
session_id)).hexdigest()
url = '{0}{1}?PHPSESSID={2}&hash={3}&{4}'.format(base_url,
api_path,
session_id,
hashStr,
extra_params)
headers = {
'HTTP_X_APIKEY': key,
'Content-Type': 'application/json'
}
click.echo('URL: {0}'.format(url))
r = requests.get(url, headers=headers)
json_data = r.json()
return json_data
|
44217caa2c2cdf7543597405836cf0bb1ac650cd
| 3,640,967
|
def write_code():
"""
Code that checks the existing path and snaviewpath
in the environmental viriables/PATH
"""
msg = """\n\n[Code]\n"""
msg += """function InstallVC90CRT(): Boolean;\n"""
msg += """begin\n"""
msg += """ Result := not DirExists('C:\WINDOWS\WinSxS\\x86_Microsoft.VC90."""
msg += """CRT_1fc8b3b9a1e18e3b_9.0.21022.8_x-ww_d08d0375');\n"""
msg += """end;\n\n"""
msg += """function NeedsAddPath(): boolean;\n"""
msg += """var\n"""
msg += """ oldpath: string;\n"""
msg += """ newpath: string;\n"""
msg += """ pathArr: TArrayOfString;\n"""
msg += """ i: Integer;\n"""
msg += """begin\n"""
msg += """ RegQueryStringValue(HKEY_CURRENT_USER,'Environment',"""
msg += """'PATH', oldpath)\n"""
msg += """ oldpath := oldpath + ';';\n"""
msg += """ newpath := '%SASVIEWPATH%';\n"""
msg += """ i := 0;\n"""
msg += """ while (Pos(';', oldpath) > 0) do begin\n"""
msg += """ SetArrayLength(pathArr, i+1);\n"""
msg += """ pathArr[i] := Copy(oldpath, 0, Pos(';', oldpath)-1);\n"""
msg += """ oldpath := Copy(oldpath, Pos(';', oldpath)+1,"""
msg += """ Length(oldpath));\n"""
msg += """ i := i + 1;\n"""
msg += """ // Check if current directory matches app dir\n"""
msg += """ if newpath = pathArr[i-1] \n"""
msg += """ then begin\n"""
msg += """ Result := False;\n"""
msg += """ exit;\n"""
msg += """ end;\n"""
msg += """ end;\n"""
msg += """ Result := True;\n"""
msg += """end;\n"""
msg += """\n"""
return msg
|
429eb64485a4fe240c1bebbfd2a2a89613b4fddd
| 3,640,968
|
import re
def get_filenames(filename):
"""
Return list of unique file references within a passed file.
"""
try:
with open(filename, 'r', encoding='utf8') as file:
words = re.split("[\n\\, \-!?;'//]", file.read())
#files = filter(str.endswith(('csv', 'zip')), words)
files = set(filter(lambda s: s.endswith(('.csv', '.zip', '.pdf', '.txt', '.tsv', '.cfg', '.ini')), words))
return list(files)
except Exception as e:
print(e)
return []
|
a1d8c396245cfc682ecc37edb3e673f87939b6fa
| 3,640,969
|
def format_filename_gen(prefix, seq_len, tgt_len, bi_data, suffix,
src_lang,tgt_lang,uncased=False,):
"""docs."""
if not uncased:
uncased_str = ""
else:
uncased_str = "uncased."
if bi_data:
bi_data_str = "bi"
else:
bi_data_str = "uni"
file_name = "{}-{}_{}.seqlen-{}.tgtlen-{}.{}{}.gen.{}".format(
src_lang[:2],tgt_lang[:2],
prefix, seq_len, tgt_len, uncased_str,
bi_data_str, suffix)
return file_name
|
4a54c1fbfe371d628c1d7019c131b8fa6755f900
| 3,640,970
|
def is_holiday(date) -> bool:
"""
Return True or False for whether a date is a holiday
"""
name = penn_holidays.get(date)
if not name:
return False
name = name.replace(' (Observed)', '')
return name in holiday_names
|
edb68fa552f0f772b29b5d8a414758e63c252045
| 3,640,971
|
import re
def tokenize_text(text):
"""
Tokenizes a string.
:param text: String
:return: Tokens
"""
token = []
running_word = ""
for c in text:
if re.match(alphanumeric, c):
running_word += c
else:
if running_word != "":
token.append(running_word)
if c not in filter_character:
token.append(c)
running_word = ""
if running_word != "":
token.append(running_word)
return token
|
b7f420d081d9cd658435ef623142a9d8ecf7b99b
| 3,640,972
|
def generate_dummy_probe(elec_shapes='circle'):
"""
Generate a 3 columns 32 channels electrode.
Mainly used for testing and examples.
"""
if elec_shapes == 'circle':
electrode_shape_params = {'radius': 6}
elif elec_shapes == 'square':
electrode_shape_params = {'width': 7}
elif elec_shapes == 'rect':
electrode_shape_params = {'width': 6, 'height': 4.5}
probe = generate_multi_columns_probe(num_columns=3,
num_elec_per_column=[10, 12, 10],
xpitch=25, ypitch=25, y_shift_per_column=[0, -12.5, 0],
electrode_shapes=elec_shapes, electrode_shape_params=electrode_shape_params)
return probe
|
ea0f900390cf808cd8df3a38df9c47b99b77167b
| 3,640,973
|
def try_decode(message):
"""Try to decode the message with each known message class; return
the first successful decode, or None."""
for c in MESSAGE_CLASSES:
try:
return c.decode(message)
except ValueError:
pass # The message was probably of a different type.
return None
|
1dbbe5a6426b67690834673cd049535b018c0097
| 3,640,974
|
def build_where_clause(args: dict) -> str:
"""
This function transforms the relevant entries of dict into the where part of a SQL query
Args:
args: The arguments dict
Returns:
A string represents the where part of a SQL query
"""
args_dict = {
'source_ip': 'source_ip.value',
'dest_ip': 'dest_ip.value',
'rule_matched': 'rule_matched',
'from_zone': 'from_zone',
'to_zone': 'to_zone',
'source_port': 'source_port',
'dest_port': 'dest_port',
'action': 'action.value',
'file_sha_256': 'file_sha_256',
'file_name': 'file_name',
'app': 'app',
'app_category': 'app_category',
'dest_device_port': 'dest_device_port',
'dest_edl': 'dest_edl',
'dest_dynamic_address_group': 'dest_dynamic_address_group',
'dest_location': 'dest_location',
'dest_user': 'dest_user',
'file_type': 'file_type',
'is_server_to_client': 'is_server_to_client',
'is_url_denied': 'is_url_denied',
'log_type': 'log_type',
'nat_dest': 'nat_dest',
'nat_dest_port': 'nat_dest_port',
'nat_source': 'nat_source',
'nat_source_port': 'nat_source_port',
'rule_matched_uuid': 'rule_matched_uuid',
'severity': 'severity',
'source_device_host': 'source_device_host',
'source_edl': 'source_edl',
'source_dynamic_address_group': 'source_dynamic_address_group',
'source_location': 'source_location',
'source_user': 'source_user',
'sub_type': 'sub_type.value',
'time_generated': 'time_generated',
'url_category': 'url_category',
'url_domain': 'url_domain'
}
if args.get('ip') and (args.get('source_ip') or args.get('dest_ip')):
raise DemistoException('Error: "ip" argument cannot appear with either "source_ip" nor "dest_ip"')
if args.get('port') and (args.get('source_port') or args.get('dest_port')):
raise DemistoException('Error: "port" argument cannot appear with either "source_port" nor "dest_port"')
non_string_keys = {'dest_port', 'source_port'}
if 'query' in args:
# if query arg is supplied than we just need to parse it and only it
return args['query'].strip()
where_clause = ''
if args.get('ip'):
ips = argToList(args.pop('ip'))
# Creating a query for ip argument using source ip and dest ip
where_clause += '(' + ' OR '.join(f'source_ip.value = "{ip}" OR dest_ip.value = "{ip}"' for ip in ips) + ')'
if any(args.get(key) for key in args_dict) or args.get('port') or args.get('url'):
where_clause += ' AND '
if args.get('port'):
ports = argToList(args.pop('port'))
# Creating a query for port argument using source port and dest port
where_clause += '(' + ' OR '.join(f'source_port = {port} OR dest_port = {port}' for port in ports) + ')'
if any(args.get(key) for key in args_dict):
where_clause += ' AND '
if args.get('url'):
urls = argToList(args.pop('url'))
# Creating a query for url argument using uri and referer
where_clause += '(' + ' OR '.join(f'uri LIKE "%{url}%" OR referer LIKE "%{url}%"' for url in urls) + ')'
if any(args.get(key) for key in args_dict):
where_clause += ' AND '
# We want to add only keys that are part of the query
string_query_fields = {key: value for key, value in args.items() if key in args_dict and key not in non_string_keys}
or_statements = []
for key, values in string_query_fields.items():
string_values_list: list = argToList(values)
field = args_dict[key]
or_statements.append(' OR '.join([f'{field} = "{value}"' for value in string_values_list]))
# ports are digested as ints and cannot be sent as strings
non_string_query_fields = {key: value for key, value in args.items() if key in non_string_keys}
for key, values in non_string_query_fields.items():
non_string_values_list: list = argToList(values)
field = args_dict[key]
or_statements.append(' OR '.join([f'{field} = {value}' for value in non_string_values_list]))
where_clause += ' AND '.join([f'({or_statement})' for or_statement in or_statements if or_statement])
return where_clause
|
3b85c92346be254646dd5208259cee317f6f9741
| 3,640,975
|
def matrix_scale(s):
"""Produce scaling transform matrix with uniform scale s in all 3 dimensions."""
M = matrix_ident()
M[0:3,0:3] = np.diag([ s, s, s ]).astype(np.float64)
return M
|
22949a406865c18fe8200e43ea046ca6f16bdd6f
| 3,640,976
|
from typing import List
def magnitude_datapoints(data: DataPoint) -> List:
"""
:param data:
:return:
"""
if data is None or len(data) == 0:
return []
input_data = np.array([i.sample for i in data])
data = norm(input_data, axis=1).tolist()
return data
|
b6c505f02042cfc34183a19cc0843b28e25dd6b2
| 3,640,977
|
import PyOpenColorIO as ocio
import logging
from typing import Mapping
def generate_config(data, config_name=None, validate=True, base_config=None):
"""
Generates the *OpenColorIO* config from given data.
Parameters
----------
data : ConfigData
*OpenColorIO* config data.
config_name : unicode, optional
*OpenColorIO* config file name, if given the config will be written to
disk.
validate : bool, optional
Whether to validate the config.
base_config : bool, optional
*OpenColorIO* base config inherited for initial data.
Returns
-------
Config
*OpenColorIO* config.
"""
if base_config is not None:
config = base_config
else:
config = ocio.Config()
config.setMajorVersion(data.profile_version)
if data.description is not None:
config.setDescription(data.description)
for search_path in data.search_path:
logging.debug(f'Adding "{search_path}".')
config.addSearchPath(search_path)
for role, colorspace in data.roles.items():
logging.debug(f'Adding "{colorspace}" colorspace as "{role}" role.')
config.setRole(role, colorspace)
for colorspace in data.colorspaces:
if isinstance(colorspace, Mapping):
colorspace = colorspace_factory(**colorspace)
logging.debug(f'Adding "{colorspace.getName()}" colorspace.')
config.addColorSpace(colorspace)
for named_transform in data.named_transforms:
if isinstance(named_transform, Mapping):
named_transform = named_transform_factory(**named_transform)
logging.debug(f'Adding "{named_transform.getName()}" named transform.')
config.addNamedTransform(named_transform)
for view_transform in data.view_transforms:
if isinstance(view_transform, Mapping):
view_transform = view_transform_factory(**view_transform)
logging.debug(f'Adding "{view_transform.getName()}" view transform.')
config.addViewTransform(view_transform)
for look in data.looks:
if isinstance(look, Mapping):
look = look_factory(**look)
logging.debug(f'Adding "{look.getName()}" look.')
config.addLook(look)
if data.profile_version >= 2:
logging.debug(f'Disabling "{data.inactive_colorspaces}" colorspaces.')
config.setInactiveColorSpaces(','.join(data.inactive_colorspaces))
for shared_view in data.shared_views:
display_colorspace = shared_view.get('display_colorspace',
'<USE_DISPLAY_NAME>')
looks = shared_view.get('looks')
view_transform = shared_view.get('view_transform')
rule = shared_view.get('rule')
description = shared_view.get('description')
view = shared_view['view']
logging.debug(
f'Adding "{view}" shared view using "{view_transform}" '
f'view transform, "{display_colorspace}" display colorspace, '
f'"{looks}" looks, "{rule}" rule and "{description}"'
f'description.')
config.addSharedView(view, view_transform, display_colorspace, looks,
rule, description)
for view in data.views:
display = view['display']
colorspace = view.get('colorspace')
looks = view.get('looks')
view_transform = view.get('view_transform')
display_colorspace = view.get('display_colorspace')
rule = view.get('rule')
description = view.get('description')
view = view['view']
if colorspace is not None:
logging.debug(f'Adding "{view}" view to "{display}" display '
f'using "{colorspace}" colorspace.')
config.addDisplayView(display, view, colorspace, looks)
elif view_transform is not None and display_colorspace is not None:
logging.debug(f'Adding "{view}" view to "{display}" display '
f'using "{view_transform}" view transform, '
f'"{display_colorspace}" display colorspace, '
f'"{rule}" rule and "{description}" description.')
config.addDisplayView(display, view, view_transform,
display_colorspace, looks, rule, description)
else:
logging.debug(f'Adding "{view}" view to "{display}" display.')
config.addDisplaySharedView(display, view)
if data.active_displays:
logging.debug(f'Activating "{data.active_displays}" displays.')
config.setActiveDisplays(','.join(data.active_displays))
if data.active_views:
logging.debug(f'Activating "{data.active_views}" views.')
config.setActiveViews(','.join(data.active_views))
if data.file_rules:
file_rules = ocio.FileRules()
rule_index = 0
for file_rule in reversed(data.file_rules):
name = file_rule['name']
colorspace = file_rule['colorspace']
regex = file_rule.get('regex')
pattern = file_rule.get('pattern')
extension = file_rule.get('extension')
if name == 'Default':
logging.debug(f'Setting "{name}" file rule with '
f'"{colorspace}" colorspace.')
file_rules.setDefaultRuleColorSpace(colorspace)
elif regex:
logging.debug(f'Adding "{name}" file rule with '
f'"{regex}" regex pattern for '
f'"{colorspace}" colorspace.')
file_rules.insertRule(rule_index, name, colorspace, regex)
rule_index += 1
else:
logging.debug(
f'Adding "{name}" file rule with '
f'"{pattern}" pattern and "{extension}" extension '
f'for "{colorspace}" colorspace.')
file_rules.insertRule(rule_index, name, colorspace, pattern,
extension)
rule_index += 1
config.setFileRules(file_rules)
if data.viewing_rules:
viewing_rules = ocio.ViewingRules()
for i, viewing_rule in enumerate(reversed(data.viewing_rules)):
logging.warning('Inserting a viewing rule is not supported yet!')
# viewing_rules.insertRule()
config.setViewingRules(viewing_rules)
if data.default_view_transform is not None:
config.setDefaultViewTransformName(data.default_view_transform)
if validate:
validate_config(config)
if config_name is not None:
with open(config_name, 'w') as file:
file.write(config.serialize())
return config
|
7385989fd0afedd9bc5e74de7e48b2c8f27f4b85
| 3,640,978
|
def svn_stringbuf_from_aprfile(*args):
"""svn_stringbuf_from_aprfile(svn_stringbuf_t result, apr_file_t file, apr_pool_t pool) -> svn_error_t"""
return apply(_core.svn_stringbuf_from_aprfile, args)
|
d9faccd861d5382593988c1e2585207e0b5fa89f
| 3,640,979
|
from pathlib import Path
def Arrow_Head_A (cls, elid = "SVG:Arrow_Head_A", design_size = 12, ref_x = None, stroke = "black", marker_height = 6, marker_width = 6, fill = "white", fill_opacity = 1, ** kw) :
"""Return a marker that is an arrow head with an A-Shape.
>>> mrk = Marker.Arrow_Head_A ()
>>> svg = Document (Root (view_box="0 0 1000 500"))
>>> svg.add (Defs (mrk))
>>> svg.add (Rect (x = 5, y = 5, width = 990, height = 490, fill = "none", stroke = "orange", stroke_width = 5))
>>> svg.add (Path (fill = "none", stroke = "red", stroke_width = 25, marker_end = "url(#SVG:Arrow_Head_A)", d = "M 100 200 L 500 200 900 400"))
>>> svg.add (Path (fill = "none", stroke = "blue", stroke_width =10, marker_start = "url(#SVG:Arrow_Head_A)", d = "M 100 100 L 500 100 900 50"))
>>> svg.write_to_xml_stream ()
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<!DOCTYPE svg PUBLIC
"-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.1" viewBox="0 0 1000 500" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
>
<defs>
<marker id="SVG:Arrow_Head_A" fill="none" markerHeight="6"
markerUnits="strokeWidth" markerWidth="6" orient="auto" refX="0"
refY="6" stroke="black" viewBox="0 0 12 12"
>
<path d="m 0,9.0 0,-6.0 6.0,3.0 -6.0,3.0 z" fill="white"
fill-opacity="1" stroke="none"
>
</path>
<path d="m 0,9.0 5.0,-3.0 -5.0,-3.0">
</path>
<path d="m 2.0,4.0 0,4.0">
</path>
</marker>
</defs>
<rect fill="none" height="490" stroke="orange" stroke-width="5"
width="990" x="5" y="5"
/>
<path d="M 100 200 L 500 200 900 400" fill="none"
marker-end="url(#SVG:Arrow_Head_A)" stroke="red" stroke-width="25"
>
</path>
<path d="M 100 100 L 500 100 900 50" fill="none"
marker-start="url(#SVG:Arrow_Head_A)" stroke="blue"
stroke-width="10"
>
</path>
</svg>
"""
# modifying design size will draw with different line-strength
# compared to the shape
size = design_size
size_2 = size // 2
scope = Scope ()
if ref_x is None :
ref_x = 0
result = cls \
( Path
( d = "m %s,%s 0,%s %s,%s %s,%s z" %
( 0
, size * 3 / 4.
, -(size / 2.)
, size / 2.
, size / 4.
, -(size / 2.)
, size / 4.
)
, fill = fill
, fill_opacity = fill_opacity
, stroke = "none"
)
, Path
( d = "m %s,%s %s,%s %s,%s" %
( 0
, size * 3 / 4.
, size * 5 / 12.
, -(size / 4.)
, -(size * 5 / 12.)
, -(size / 4.)
)
)
, Path
( d = "m %s,%s 0,%s" %
( size / 6.
, size / 3.
, size / 3.
)
)
, elid = elid
, fill = "none"
, marker_units = "strokeWidth"
, marker_height = marker_height
, marker_width = marker_width
, orient = "auto"
, ref_x = ref_x
, ref_y = size_2
, stroke = stroke
, view_box = (0, 0, size, size)
, ** kw
)
return result
|
661409c1ed37e33e9aea306b1c5b8d2a369bbaf2
| 3,640,980
|
def signup() -> Response | str | tuple[dict[str, str | int], int]:
"""Sign up"""
# Bypass if user is logged in
if current_user.is_authenticated:
return redirect(url_for("home"))
# Process user data
try:
# Return template if request.method is GET
assert request.method != "GET"
# Process form
username, password, remember = _get_auth_form()
assert username and password
# Check if user with given username already exists
if database.get_instance(models.User, username=username):
flash(
f"User with {username} username already exists.<br>"
f'Go to <a href="{url_for("auth.login")}">login page</a>.'
)
assert False
except AssertionError:
return render_template("signup.html")
# Add user to database and login
user = database.add_instance(
models.User,
lambda i: i.set_password(password),
username=username,
)
login_user(user, remember=remember)
# Return json response or redirect to home
if request.form.get("raw"):
response = {
"info": f"Successfully signed up as {username}.",
"status": 200,
}
return response, 200
return redirect(url_for("home"))
|
9496c11a9015b69c7cf2f89d19a45f93405f5dfe
| 3,640,981
|
import copy
def evaluate_all_configs(hparams, agent_model_dir):
"""Evaluate the agent with multiple eval configurations."""
def make_eval_hparams(hparams, policy_to_action, max_num_noops):
hparams = copy.copy(hparams)
hparams.add_hparam("num_agents", hparams.eval_num_agents)
hparams.add_hparam("policy_to_actions_lambda", {
"sample": lambda policy: policy.sample(),
"mode": lambda policy: policy.mode()
}[policy_to_action])
hparams.max_num_noops = max_num_noops
return hparams
metrics = {}
# Iterate over all combinations of picking actions by sampling/mode and
# whether to do initial no-ops.
for policy_to_action in ("mode", "sample"):
for max_num_noops in (hparams.eval_max_num_noops, 0):
eval_hparams = make_eval_hparams(hparams, policy_to_action, max_num_noops)
scores = evaluate_single_config(eval_hparams, agent_model_dir)
for (score, clipped) in zip(scores, (True, False)):
metric_name = "mean_reward/eval/{}_{}_max_noops_{}".format(
policy_to_action, max_num_noops,
"clipped" if clipped else "unclipped"
)
metrics[metric_name] = score
return metrics
|
107fb692adec1ce7dbb580c30e3e7b0402874054
| 3,640,982
|
from typing import Tuple
def shape(a: Matrix) -> Tuple[int, int]:
""" Returns the num of rows and columns of A """
num_rows = len(a)
num_cols = len(a[0]) if a else 0 # number of elements so columns in first element if it exists
return num_rows, num_cols
|
24ef9045e86b6027f76ddf57bf5eba44553798c5
| 3,640,983
|
def solve(A, b):
"""
:param A: Matrix R x C
:param b: Vector R
:return: Vector C 'x' solving Ax=b
>>> M = Mat(({'a', 'b', 'c', 'd'}, {'A', 'B', 'C', 'D'}), { \
('a', 'A'): one, ('a', 'B'): one, ('a', 'D'): one, \
('b', 'A'): one, ('b', 'D'): one, \
('c', 'A'): one, ('c', 'B'): one, ('c', 'C'): one, ('c', 'D'): one, \
('d', 'C'): one, ('d', 'D'): one \
})
>>> v = Vec(M.D[0], {'a': one, 'c': one})
>>> solve(M, v)
"""
M = transformation(A)
U = M*A
col_label_list = sorted(A.D[1])
U_rows_dict = mat2rowdict(U)
row_list = [U_rows_dict[i] for i in sorted(U_rows_dict)]
# return echelon_solve(row_list,col_label_list, M*b)
# print(row_list, col_label_list, repr(M * b))
return row_list, col_label_list, M * b
|
b25a762ee8f8229d1bc573c828a7151770d3240c
| 3,640,984
|
def token_groups(self):
"""The groups the Token owner is a member of."""
return self.created_by.groups
|
9db411660db1def09b8dc52db800ca4c09a38cce
| 3,640,985
|
import requests
def get_html_content_in_text(url):
"""
Grab all the content in webpage url and return it's content in text.
Arguments:
url -- a webpage url string.
Returns:
r.text -- the content of webpage in text.
"""
r = requests.get(url)
return r.text
|
fd8ddc992f34c186051ca8985ffb110c50004970
| 3,640,986
|
def subscribe():
"""Subscribe new message"""
webhook_url = request.form.get("webhook_url")
header_key = request.form.get("header_key")
header_value = request.form.get("header_value")
g.driver.subscribe_new_messages(NewMessageObserver(webhook_url, header_key, header_value))
return jsonify({"success": True})
|
97a47fb298bbc0bac3e333037210556525dd837f
| 3,640,987
|
def SegAlign(ea, alignment):
"""
Change alignment of the segment
@param ea: any address in the segment
@param alignment: new alignment of the segment (one of the sa... constants)
@return: success (boolean)
"""
return SetSegmentAttr(ea, SEGATTR_ALIGN, alignment)
|
c0c380e194fbed43b87be81108eecf864809c447
| 3,640,988
|
import requests
def create_bitlink(logger, headers='', long_url='google.com'):
"""
Функция создает короткие ссылки из длинных
:param logger: logger object
:param headers: Generic Access Token сформированнный на сайте
:param long_url: Ссылка которую надо укоротить
:return: созданная короткая ссылка
"""
url_template = 'https://api-ssl.bitly.com/v4/{}'
user, bit = ['user', 'bitlinks']
with requests.Session() as s:
bitl_user_info = s.get(url_template.format(user), headers=headers)
logger.info(f'Получаем группу по пользователю ответ: {bitl_user_info.json()}')
group_guid = bitl_user_info.json()['default_group_guid']
payload = {'group_guid': group_guid, 'title': 'shortlink', 'long_url': long_url}
response = s.post(url_template.format(bit), json=payload, headers=headers)
bitlink = response.json()['id']
return bitlink
|
be5c7882a8577c8d406412c790f3d5fbcbd11019
| 3,640,989
|
import numpy
def compute_neq(count_mat):
"""
Compute the Neq for each residue from an occurence matrix.
Parameters
----------
count_mat : numpy array
an occurence matrix returned by `count_matrix`.
Returns
-------
neq_array : numpy array
a 1D array containing the neq values
"""
# get the frequency matrix
freq = utils.compute_freq_matrix(count_mat)
# Compute neq
neq_array = numpy.apply_along_axis(_neq_per_residue, 1, freq)
return neq_array
|
e3d738eb1c8ed58a3c4d4a4efc5323930d03be1f
| 3,640,990
|
import optparse
def _GetOptionsParser():
"""Get the options parser."""
parser = optparse.OptionParser(__doc__)
parser.add_option('-i',
'--input',
dest='inputs',
action='append',
default=[],
help='One or more input files to calculate dependencies '
'for. The namespaces in this file will be combined with '
'those given with the -n flag to form the set of '
'namespaces to find dependencies for.')
parser.add_option('-n',
'--namespace',
dest='namespaces',
action='append',
default=[],
help='One or more namespaces to calculate dependencies '
'for. These namespaces will be combined with those given '
'with the -i flag to form the set of namespaces to find '
'dependencies for. A Closure namespace is a '
'dot-delimited path expression declared with a call to '
'goog.provide() (e.g. "goog.array" or "foo.bar").')
parser.add_option('--root',
dest='roots',
action='append',
default=[],
help='The paths that should be traversed to build the '
'dependencies.')
parser.add_option('-o',
'--output_mode',
dest='output_mode',
type='choice',
action='store',
choices=['list', 'script', 'compiled'],
default='list',
help='The type of output to generate from this script. '
'Options are "list" for a list of filenames, "script" '
'for a single script containing the contents of all the '
'files, or "compiled" to produce compiled output with '
'the Closure Compiler. Default is "list".')
parser.add_option('-c',
'--compiler_jar',
dest='compiler_jar',
action='store',
help='The location of the Closure compiler .jar file.')
parser.add_option('-f',
'--compiler_flags',
dest='compiler_flags',
default=[],
action='append',
help='Additional flags to pass to the Closure compiler. '
'To pass multiple flags, --compiler_flags has to be '
'specified multiple times.')
parser.add_option('--output_file',
dest='output_file',
action='store',
help=('If specified, write output to this path instead of '
'writing to standard output.'))
return parser
|
e1ec0530357ad3bebbac80c86b9d9b1010e6688c
| 3,640,991
|
def spikalize_img(experiment, image, label):
"""
Transform image to spikes. Spike with poisson distributed rate proportional to pixel brightness.
:param experiment:
:param image:
:param label:
:return:
"""
image_shape = np.append(np.array(experiment.timesteps), np.array(image.shape))
rand = tf.random.uniform(shape=image_shape)
spiked_img = tf.cast(image / 255 * experiment.max_rate > rand, tf.float32)
return spiked_img, label
|
7159334b40c3841977a0772ac25c71a934d268ac
| 3,640,992
|
def update_security_schemes(spec, security, login_headers, security_schemes,
unauthorized_schema):
"""Patch OpenAPI spec to include security schemas.
Args:
spec: OpenAPI spec dictionary
Returns:
Patched spec
"""
# login_headers = {'Set-Cookie':
# {'schema':
# {'type': 'string',
# 'example': 'session=abcde12345; Path=/; HttpOnly'}}}
# security_schemes = {'cookieAuth': {'description': 'Session Cookie',
# 'type': 'apiKey',
# 'in': 'cookie',
# 'name': 'session'}}
# unauthorized_schema = {'UnauthorizedError':
# {'description': "The auth cookie isn't present",
# 'properties':
# {'schema': {'type': 'string', 'example': 'Unauthorized'}}}}
spec["components"]["securitySchemes"] = security_schemes
spec["security"] = security
spec["paths"]["/login"]["post"]["responses"][200]["headers"] = login_headers.copy()
return spec
|
1ecb5cc3a121fc151794e4e24cd4aca4bc07ce46
| 3,640,993
|
def get_geckodriver_url(version):
"""
Generates the download URL for current platform , architecture and the given version.
Supports Linux, MacOS and Windows.
:param version: the version of geckodriver
:return: Download URL for geckodriver
"""
platform, architecture = get_platform_architecture()
return f'https://github.com/mozilla/geckodriver/releases/download/{version}' \
f'/geckodriver-{version}-{platform}{architecture}.tar.gz'
|
9d71728c551c67e86a61c3b870728bc70cad48ba
| 3,640,994
|
def get_graph_size(depth: int):
"""returns how many nodes are in fully-equipped with nodes graph of the given depth"""
size = 1
cur_size = 1
ln = len(expand_sizes)
for i in range(min(ln, depth)):
cur_size *= expand_sizes[i]
size += cur_size
if ln < depth:
size += cur_size * later_expand_size*(depth - ln)
return size
|
00f2a2ce714550785e99c0d193f47df05cc30b68
| 3,640,995
|
def inherits_from(obj, parent):
"""
Takes an object and tries to determine if it inherits at *any*
distance from parent.
Args:
obj (any): Object to analyze. This may be either an instance
or a class.
parent (any): Can be either instance, class or python path to class.
Returns:
inherits_from (bool): If `parent` is a parent to `obj` or not.
Notes:
What differs this function from e.g. `isinstance()` is that `obj`
may be both an instance and a class, and parent may be an
instance, a class, or the python path to a class (counting from
the evennia root directory).
"""
if callable(obj):
# this is a class
obj_paths = ["%s.%s" % (mod.__module__, mod.__name__) for mod in obj.mro()]
else:
obj_paths = ["%s.%s" % (mod.__module__, mod.__name__) for mod in obj.__class__.mro()]
if isinstance(parent, str):
# a given string path, for direct matching
parent_path = parent
elif callable(parent):
# this is a class
parent_path = "%s.%s" % (parent.__module__, parent.__name__)
else:
parent_path = "%s.%s" % (parent.__class__.__module__, parent.__class__.__name__)
return any(1 for obj_path in obj_paths if obj_path == parent_path)
|
9d7e0665b4e4fe2a3f7c136436a2502c8b72527c
| 3,640,996
|
from typing import Optional
def load_df_from_googlesheet(
url_string: str,
skiprows: Optional[int] = 0,
skipfooter: Optional[int] = 0,
) -> pd.DataFrame:
"""Load a Pandas DataFrame from a google sheet.
Given a file object, try to read the content as a CSV file and transform
into a data frame. The skiprows and skipfooter are number of lines to skip
from the top and bottom of the file (see read_csv in pandas).
It also tries to convert as many columns as possible to date/time format
(testing the conversion on every string column).
:param url_string: URL where the file is available
:param skiprows: Number of lines to skip at the top of the document
:param skipfooter: Number of lines to skip at the bottom of the document
:return: Resulting data frame, or an Exception.
"""
# Process the URL provided by google. If the URL is obtained using the
# GUI, it has as suffix /edit?[parameters]. This part needs to be
# replaced by the suffix /export?format=csv
# For example from:
# https://docs.google.com/spreadsheets/d/DOCID/edit?usp=sharing
# to
# https://docs.google.com/spreadsheets/d/DOCID/export?format=csv&gid=0
parse_res = urlparse(url_string)
if parse_res.path.endswith('/edit'):
qs_dict = parse_qs(parse_res.query)
qs_dict['format'] = 'csv'
new_fragment = parse_res.fragment
if 'gid=' in parse_res.fragment:
qs_dict['gid'] = parse_res.fragment.split('=')[1]
new_fragment = ''
url_string = urlunparse([
parse_res.scheme,
parse_res.netloc,
parse_res.path.replace('/edit', '/export'),
parse_res.params,
urlencode(qs_dict, doseq=True),
new_fragment,
])
# Process the link using pandas read_csv
return load_df_from_csvfile(url_string, skiprows, skipfooter)
|
adfcff1968eccfa44640b5e9a7e3143703284dfb
| 3,640,997
|
def decomp(bits, dummies=default_dummies, width=default_width):
"""Translate 0s and 1s to dummies[0] and dummies[1]."""
words = (dummies[i] for i in bits)
unwrapped = ' '.join(words)
return wrap_source(unwrapped, width=width)
|
a6540cc90412b9e72b62c57fe6828b45ad5df593
| 3,640,998
|
def get_word_node_attrs(word: Word) -> WordNodeAttrs:
"""Create the graph's node attribute for a `Word`.
Build an attribute dict with the word's features. Note that we're using the
term `Word` instead of `Token` to be closer to the implementation of these
data structures in stanza. From stanza's documentation, a `Token` might
hold more the a single word in the case of multi-word tokens. For more
information please refer to
'https://stanfordnlp.github.io/stanza/data_objects.html#token'.
Arguments:
word: Word
A stanza-annotated word.
Return: WordNodeAttrs
A dictionary containing the word's features to be used by networkx's
feature graph.
"""
# Changing the color for the sentence's head token
if word.head == 0:
color = GraphNodeColor.HEAD.value
else:
color = GraphNodeColor.TOKEN.value
return {
'fname': word.sent.doc.fname,
'start_idx': word.parent.start_char,
'end_idx': word.parent.end_char,
'text': word.text,
'upos': word.upos,
'lemma': word.lemma,
'label': word.text, # for PyVis
'color': color # for pyvis
}
|
143a00206cfa8d98419f2d0e21e1013ea6dd02ab
| 3,640,999
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.