content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def SetDocTimestampFrequency(doc:NexDoc, freq:float): """Sets the document timestamp frequency""" return NexRun("SetDocTimestampFrequency", locals())
dceb766792b6ca34d5f5759b0079acc5b70da5a9
3,640,800
def rsqrt(x:np.ndarray): """Computes reciprocal of square root of x element-wise. Args: x: input tensor Returns: output tensor Examples: >>> x = np.array([2., 0., -2.]) >>> rsqrt(x) <tf.Tensor: shape=(3,), dtype=float32, numpy=array([0.707, inf, nan], dtype=float32)> """ return 1/np.sqrt(x)
f219ae71b5136bc1b34a2bb06ec76dcdb7ee20bb
3,640,801
def is_card(obj): """Return true if the object is a card.""" return obj in CARDS_SET
21f155feadde94d652e120224a2712f2470a9926
3,640,802
def plot_lines( y: tuple, x: np.ndarray = None, points: bool = True, x_axis_label: str = 'Index', y_axis_label: str = 'Value', plot_width: int = 1000, plot_height: int = 500, color: tuple = None, legend: tuple = None, title: str = 'Graph lines', show_graph: bool = True ) -> figure: """ Plot lines from y tuple. Number of lines equal len(y) with plot params """ if x is None: x = np.arange(len(y[0])) if legend is None: legend = [f'Line {i}' for i in range(len(y))] if color is None: color = COLORS fig = figure(title=title, x_axis_label=x_axis_label, y_axis_label=y_axis_label, plot_width=plot_width, plot_height=plot_height) for i in range(len(y)): fig.line( y=y[i], x=x, color=color[i], legend=legend[i] ) if points is not None: fig.circle( y=y[i], x=x, fill_color=color[i] ) if show_graph: show(fig) return fig
b938151b90005bc23bb9ed2f795dbf4620b26251
3,640,803
import re def obtain_csrf(session): """ Obtain the CSRF token from the login page. """ resp = session.get(FLOW_LOGIN_GET_URL) contents = str(resp.content) match = re.search(r'csrfToken" value="([a-z0-9\-]+)"', contents) return match.group(1)
a091ca33b6b0a43608261e46c54c7ae164a9d3af
3,640,804
def get_distance_curve( kernel, lambda_values, N, M=None, ): """ Given number of elements per class, full kernel (with first N rows corr. to mixture and the last M rows corr. to component, and set of lambda values compute $\hat d(\lambda)$ for those values of lambda""" d_lambda = [] if M == None: M = kernel.shape[0] - N prev_soln = None for lambda_value in lambda_values: u_lambda = lambda_value / N * np.concatenate((np.ones((N, 1)), np.zeros((M, 1)))) + (1 - lambda_value) / M \ * np.concatenate((np.zeros((N, 1)), np.ones((M, 1)))) (solution, distance_sqd) = \ find_nearest_valid_distribution(u_lambda, kernel, initial=prev_soln) prev_soln = solution d_lambda.append(sqrt(distance_sqd)) d_lambda = np.array(d_lambda) return d_lambda
e085ea6b2122b052625df1c7b60115552112ffab
3,640,805
def _process_labels(labels, label_smoothing): """Pre-process a binary label tensor, maybe applying smoothing. Parameters ---------- labels : tensor-like Tensor of 0's and 1's. label_smoothing : float or None Float in [0, 1]. When 0, no smoothing occurs. When positive, the binary ground truth labels `y_true` are squeezed toward 0.5, with larger values of `label_smoothing` leading to label values closer to 0.5. Returns ------- torch.Tensor The processed labels. """ assert label_smoothing is not None labels = (1 - label_smoothing) * labels + label_smoothing * 0.5 return labels
5a71ded8ac9d3ef4b389542814a170f35ef18fdd
3,640,806
def guess_digit(image, avgs): """Return the digit whose average darkness in the training data is closest to the darkness of ``image``. Note that ``avgs`` is assumed to be a defaultdict whose keys are 0...9, and whose values are the corresponding average darknesses across the training data.""" darkness = sum(image) distances = {k: abs(v-darkness) for k, v in avgs.iteritems()} return min(distances, key=distances.get)
055a0d31f85ce6f5786d6bd6dfaed75bdb3ff5d6
3,640,807
import time def multiple_writes(self, Y_splits, Z_splits, X_splits, out_dir, mem, filename_prefix="bigbrain", extension="nii", nThreads=1, benchmark=False): """ Split the input image into several splits, all share with the same shape For now only support .nii extension :param Y_splits: How many splits in Y-axis :param Z_splits: How many splits in Z-axis :param X_splits: How many splits in X-axis :param out_dir: Output Splits dir :param mem: memory load each round :param filename_prefix: each split's prefix filename :param extension: extension of each split :param nThreads: number of threads to trigger in each writing process :param benchmark: If set to true the function will return a dictionary containing benchmark information. :return: """ def threaded_multiple(): '''# Using multi-threading to send data to hdfs in parallel, # which will parallelize writing process. # nThreads: number of threads that are working on writing # data at the same time. print("start {} threads to write data...".format(nThreads)) # separate all the splits' metadata to several pieces, # each piece contains #nThreads splits' metadata. caches = _split_arr(one_round_split_metadata.items(), nThreads) st1 = time() for thread_round in caches: tds = [] # one split's metadata triggers one thread for i in thread_round: ix = i[1] data = data_in_range[ix[0]: ix[1], ix[2]: ix[3], ix[4]: ix[5]] td = threading.Thread(target=write_array_to_file, args=(data, i[0], 0, benchmark)) td.start() tds.append(td) del data for t in tds: t.join()''' pass def compute_sizes(Y_splits, Z_splits, X_splits): ''' A function. ''' # calculate remainder based on the original image file Y_size, Z_size, X_size = self.header.get_data_shape() bytes_per_voxel = self.header['bitpix'] / 8 if (X_size % X_splits != 0 or Z_size % Z_splits != 0 or Y_size % Y_splits != 0): raise Exception("There is remainder after splitting, \ please reset the y,z,x splits") x_size = X_size / X_splits z_size = Z_size / Z_splits y_size = Y_size / Y_splits return ((x_size, z_size, y_size), (X_size, Z_size, Y_size), bytes_per_voxel) def file_manipulation_multiple(sizes, Sizes, filename_prefix): ''' A function. ''' x_size, z_size, y_size = sizes X_size, Z_size, Y_size = Sizes # get all split_names and write them to the legend file split_names = generate_splits_name(y_size, z_size, x_size, Y_size, Z_size, X_size, out_dir, filename_prefix, extension) generate_legend_file(split_names, "legend.txt", out_dir) # generate all the headers for each split # in order to reduce overhead when reading headers of splits # from hdfs, create a header cache in the local environment print("create split meta data dictionary...") split_meta_cache = generate_headers_of_splits(split_names, y_size, z_size, x_size, self.header .get_data_dtype()) print("Get split indexes...") split_indexes = get_indexes_of_all_splits(split_names, split_meta_cache, Y_size, Z_size) return split_indexes, split_names, split_meta_cache def get_metadata_multiple(split_indexes, split_names, split_meta_cache, from_x_index): ''' A function. ''' # create split metadata for all splits(position, write_range, etc.) one_round_split_metadata = {} for split_name in split_names: if check_in_range(next_read_index, split_indexes[split_name]): split = split_meta_cache[split_name] (X_index_min, X_index_max, x_index_min, x_index_max) = \ extract_slices_range(split, next_read_index, Y_size, Z_size) y_index_min = int(split.split_pos[-3]) z_index_min = int(split.split_pos[-2]) y_index_max = y_index_min + split.split_y z_index_max = z_index_min + split.split_z one_round_split_metadata[split_name] = \ (y_index_min, y_index_max, z_index_min, z_index_max, X_index_min - from_x_index, X_index_max - from_x_index + 1) return one_round_split_metadata def loop_multiple(next_read_index, bytes_per_voxel, Sizes, split_indexes, split_names, split_meta_cache, split_read_time, split_write_time, split_seek_time, split_seek_number, benchmark): ''' A function. ''' split_read_time = 0 split_nb_seeks = 0 X_size, Z_size, Y_size = Sizes original_img_voxels = X_size * Y_size * Z_size next_read_offsets = (next_read_index[0] * bytes_per_voxel, next_read_index[1] * bytes_per_voxel + 1) print("From {} to {}".format(next_read_offsets[0], next_read_offsets[1])) from_x_index = index_to_voxel(next_read_index[0], Y_size, Z_size)[2] to_x_index = index_to_voxel(next_read_index[1] + 1, Y_size, Z_size)[2] # read print("Start reading data to memory...") if benchmark: t = time() data_in_range = \ self.proxy.dataobj[..., int(from_x_index): int(to_x_index)] if benchmark: read_time = time() -t print('read time ', read_time) split_read_time += read_time split_nb_seeks += 1 one_round_split_metadata = get_metadata_multiple(split_indexes, split_names, split_meta_cache, from_x_index) caches = _split_arr(one_round_split_metadata.items(), nThreads) threaded_multiple() for round in caches: for i in round: ix = i[1] ix = list(map(lambda x: int(x), ix)) data = data_in_range[ix[0]:ix[1], ix[2]:ix[3], ix[4]:ix[5]] if benchmark: seek_time, write_time, seek_number = \ write_array_to_file(data, i[0], 0, benchmark) split_write_time += write_time split_seek_time += seek_time split_nb_seeks += seek_number print("writing data takes ", write_time) else: write_array_to_file(data, i[0], 0, benchmark) next_read_index = (next_read_index[1] + 1, next_read_index[1] + voxels) # last write, write no more than image size if next_read_index[1] >= original_img_voxels: next_read_index = (next_read_index[0], original_img_voxels - 1) del caches del one_round_split_metadata del data_in_range if benchmark: return (next_read_index, split_read_time, split_write_time, split_seek_time, split_seek_number) else: return next_read_index # begin algorithm split_read_time = 0 split_seek_time = 0 split_write_time = 0 split_seek_number = 0 # preparation sizes, Sizes, bytes_per_voxel = compute_sizes(Y_splits, Z_splits, X_splits) X_size, Z_size, Y_size = Sizes original_img_voxels = X_size * Y_size * Z_size (split_indexes, split_names, split_meta_cache) = \ file_manipulation_multiple(sizes, Sizes, filename_prefix) # drop the remainder which is less than one slice # if mem is less than one slice, then set mem to one slice mem = mem - mem % (Y_size * Z_size * bytes_per_voxel) \ if mem >= Y_size * Z_size * bytes_per_voxel \ else Y_size * Z_size * bytes_per_voxel voxels = mem // bytes_per_voxel # get how many voxels per round next_read_index = (0, voxels - 1) while True: if benchmark: (next_read_index, split_read_time, split_write_time, split_seek_time, split_seek_number) = (loop_multiple(next_read_index, bytes_per_voxel, Sizes, split_indexes, split_names, split_meta_cache, split_read_time, split_write_time, split_seek_time, split_seek_number, benchmark)) else: next_read_index = loop_multiple(next_read_index, bytes_per_voxel, Sizes, split_indexes, split_names, split_meta_cache, split_read_time, split_write_time, split_seek_time, split_seek_number, benchmark) # if write range is larger than img size, we are done if next_read_index[0] >= original_img_voxels: break if benchmark: return {'split_read_time': split_read_time, 'split_write_time': split_write_time, 'split_seek_time': split_seek_time, 'split_nb_seeks': split_seek_number} else: return
b2a7048628c54bf8976f9b3182fe4cecc18468e7
3,640,808
def new_parameter_value(data, parameter_key: str): """Return the new parameter value and if necessary, remove any obsolete multiple choice values.""" new_value = dict(bottle.request.json)[parameter_key] source_parameter = data.datamodel["sources"][data.source["type"]]["parameters"][parameter_key] if source_parameter["type"] == "multiple_choice": new_value = [value for value in new_value if value in source_parameter["values"]] return new_value
41160804aba582ce0c588762bb1a96ea53e258df
3,640,809
from typing import Sequence from typing import Optional def rotate_to_base_frame( pybullet_client: bullet_client.BulletClient, urdf_id: int, vector: Sequence[float], init_orientation_inv_quat: Optional[Sequence[float]] = (0, 0, 0, 1) ) -> np.ndarray: """Rotates the input vector to the base coordinate systems. Note: This is different from world frame to base frame transformation, as we do not apply any translation here. Args: pybullet_client: The bullet client. urdf_id: The unique id returned after loading URDF. vector: Input vector in the world frame. init_orientation_inv_quat: Returns: A rotated vector in the base frame. """ _, base_orientation_quat = ( pybullet_client.getBasePositionAndOrientation(urdf_id)) _, base_orientation_quat_from_init = pybullet_client.multiplyTransforms( positionA=(0, 0, 0), orientationA=init_orientation_inv_quat, positionB=(0, 0, 0), orientationB=base_orientation_quat) _, inverse_base_orientation = pybullet_client.invertTransform( [0, 0, 0], base_orientation_quat_from_init) # PyBullet transforms requires simple list/tuple or it may crash. if isinstance(vector, np.ndarray): vector_list = vector.tolist() else: vector_list = vector local_vector, _ = pybullet_client.multiplyTransforms( positionA=(0, 0, 0), orientationA=inverse_base_orientation, positionB=vector_list, orientationB=(0, 0, 0, 1), ) return np.array(local_vector)
5651e0183cd61555f90fe6af1e5c5dc2bec6e8b5
3,640,810
def show_page_map(label): """Renders the base page map code.""" return render('page_map.html', { 'map_label': label.replace('_', ' '), })
623d47c4de57c1810c07475a70e501d55ee5e9ae
3,640,811
def create_clf_unicycle_position_controller(linear_velocity_gain=0.8, angular_velocity_gain=3): """Creates a unicycle model pose controller. Drives the unicycle model to a given position and orientation. (($u: \mathbf{R}^{3 \times N} \times \mathbf{R}^{2 \times N} \to \mathbf{R}^{2 \times N}$) linear_velocity_gain - the gain impacting the produced unicycle linear velocity angular_velocity_gain - the gain impacting the produced unicycle angular velocity -> function """ #Check user input types assert isinstance(linear_velocity_gain, (int, float)), "In the function create_clf_unicycle_position_controller, the linear velocity gain (linear_velocity_gain) must be an integer or float. Recieved type %r." % type(linear_velocity_gain).__name__ assert isinstance(angular_velocity_gain, (int, float)), "In the function create_clf_unicycle_position_controller, the angular velocity gain (angular_velocity_gain) must be an integer or float. Recieved type %r." % type(angular_velocity_gain).__name__ #Check user input ranges/sizes assert linear_velocity_gain >= 0, "In the function create_clf_unicycle_position_controller, the linear velocity gain (linear_velocity_gain) must be greater than or equal to zero. Recieved %r." % linear_velocity_gain assert angular_velocity_gain >= 0, "In the function create_clf_unicycle_position_controller, the angular velocity gain (angular_velocity_gain) must be greater than or equal to zero. Recieved %r." % angular_velocity_gain def position_uni_clf_controller(states, positions): """ A position controller for unicycle models. This utilized a control lyapunov function (CLF) to drive a unicycle system to a desired position. This function operates on unicycle states and desired positions to return a unicycle velocity command vector. states: 3xN numpy array (of unicycle states, [x;y;theta]) poses: 3xN numpy array (of desired positons, [x_goal;y_goal]) -> 2xN numpy array (of unicycle control inputs) """ #Check user input types assert isinstance(states, np.ndarray), "In the function created by the create_clf_unicycle_position_controller function, the single-integrator robot states (xi) must be a numpy array. Recieved type %r." % type(states).__name__ assert isinstance(positions, np.ndarray), "In the function created by the create_clf_unicycle_position_controller function, the robot goal points (positions) must be a numpy array. Recieved type %r." % type(positions).__name__ #Check user input ranges/sizes assert states.shape[0] == 3, "In the function created by the create_clf_unicycle_position_controller function, the dimension of the unicycle robot states (states) must be 3 ([x;y;theta]). Recieved dimension %r." % states.shape[0] assert positions.shape[0] == 2, "In the function created by the create_clf_unicycle_position_controller function, the dimension of the robot goal positions (positions) must be 2 ([x_goal;y_goal]). Recieved dimension %r." % positions.shape[0] assert states.shape[1] == positions.shape[1], "In the function created by the create_clf_unicycle_position_controller function, the number of unicycle robot states (states) must be equal to the number of robot goal positions (positions). Recieved a current robot pose input array (states) of size %r states %r and desired position array (positions) of size %r states %r." % (states.shape[0], states.shape[1], positions.shape[0], positions.shape[1]) _,N = np.shape(states) dxu = np.zeros((2, N)) pos_error = positions - states[:2][:] rot_error = np.arctan2(pos_error[1][:],pos_error[0][:]) dist = np.linalg.norm(pos_error, axis=0) dxu[0][:]=linear_velocity_gain*dist*np.cos(rot_error-states[2][:]) dxu[1][:]=angular_velocity_gain*dist*np.sin(rot_error-states[2][:]) return dxu return position_uni_clf_controller
4d75c85079ca5350473c058019ae6f4763fdd97b
3,640,812
import sys import subprocess def cluster_pipeline(gff3_file, strand, verbose): """ here clusters of sequences from the same locus are prepared """ cat = CAT % gff3_file btsort1 = BEDTOOLS_SORT if strand: btmerge1 = BEDTOOLS_MERGE_ST sys.stdout.write("###CLUSTERING IN\033[32m STRANDED MODE\033[0m###\n") else: btmerge1 = BEDTOOLS_MERGE sys.stdout.write("###CLUSTERING IN\033[32m NON-STRANDED MODE\033[0m ###\n") btsort2 = BEDTOOLS_SORT # Sort the GFF3 file cat_call = subprocess.Popen(cat, stdout=subprocess.PIPE, shell=True) if verbose: sys.stderr.write('Executing: %s\n\n' % cat) btsort1_call = subprocess.Popen(btsort1, stdin=cat_call.stdout, stdout=subprocess.PIPE, shell=True) # Merge the BED entries, count number of reads on each merged entry if verbose: sys.stderr.write('Executing: %s\n\n' % btsort1) btmerge1_call = subprocess.Popen(btmerge1, stdin=btsort1_call.stdout, stdout=subprocess.PIPE, shell=True) # NSort it again and returns if verbose: sys.stderr.write('Executing: %s\n\n' % btmerge1) btsort2_call = subprocess.Popen(btsort2, stdin=btmerge1_call.stdout, stdout=subprocess.PIPE, shell=True) if verbose: sys.stderr.write('Executing: %s\n\n' % btsort2) outputBT = btsort2_call.communicate()[0] final_output = outputBT.splitlines() return final_output
60f642e90e73b8cf53c0261e5fd2aa5f79637e1a
3,640,813
from typing import Tuple def stft_reassign_from_sig(sig_wf: np.ndarray, frequency_sample_rate_hz: float, band_order_Nth: float) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """ Librosa STFT is complex FFT grid, not power Reassigned frequencies are not the same as the standard mesh frequencies :param sig_wf: array with input signal :param frequency_sample_rate_hz: sample rate of frequency in Hz :param band_order_Nth: Nth order of constant Q bands :return: six numpy ndarrays with STFT, STFT_bits, time_stft_s, frequency_stft_hz, time_stft_rsg_s, frequency_stft_rsg_hz """ sig_duration_s = len(sig_wf)/frequency_sample_rate_hz _, min_frequency_hz = scales.from_duration(band_order_Nth, sig_duration_s) order_Nth, cycles_M, quality_Q, \ frequency_center, frequency_start, frequency_end = \ scales.frequency_bands_g2f1(scale_order_input=band_order_Nth, frequency_low_input=min_frequency_hz, frequency_sample_rate_input=frequency_sample_rate_hz) # Choose the spectral resolution as the key parameter frequency_resolution_min_hz = np.min(frequency_end - frequency_start) frequency_resolution_max_hz = np.max(frequency_end - frequency_start) frequency_resolution_hz_geo = np.sqrt(frequency_resolution_min_hz*frequency_resolution_max_hz) stft_time_duration_s = 1/frequency_resolution_hz_geo stft_points_per_seg = int(frequency_sample_rate_hz*stft_time_duration_s) # From CQT stft_points_hop, _, _, _, _ = \ scales.cqt_frequency_bands_g2f1(band_order_Nth, min_frequency_hz, frequency_sample_rate_hz, is_power_2=False) print('Reassigned STFT Duration, NFFT, HOP:', len(sig_wf), stft_points_per_seg, stft_points_hop) STFT_Scaling = 2*np.sqrt(np.pi)/stft_points_per_seg # Reassigned frequencies require a 'best fit' solution. frequency_stft_rsg_hz, time_stft_rsg_s, STFT_mag = \ librosa.reassigned_spectrogram(sig_wf, sr=frequency_sample_rate_hz, n_fft=stft_points_per_seg, hop_length=stft_points_hop, win_length=None, window='hann', center=False, pad_mode='reflect') # Must be scaled to match scipy psd STFT_mag *= STFT_Scaling STFT_bits = utils.log2epsilon(STFT_mag) # Standard mesh times and frequencies for plotting - nice to have both time_stft_s = librosa.times_like(STFT_mag, sr=frequency_sample_rate_hz, hop_length=stft_points_hop) frequency_stft_hz = librosa.core.fft_frequencies(sr=frequency_sample_rate_hz, n_fft=stft_points_per_seg) # Reassigned frequencies are not the same as the standard mesh frequencies return STFT_mag, STFT_bits, time_stft_s, frequency_stft_hz, time_stft_rsg_s, frequency_stft_rsg_hz
90aa2b019ace90500c38feb5e643a8ca3c02360a
3,640,814
from typing import List def download(*urls, zip: str=None, unzip: bool=False, **kwargs) -> List[File]: """ Download multiple zippyshare urls Parameters ----------- *urls Zippyshare urls. zip: :class:`str` Zip all downloaded files once finished. Zip filename will be taken from ``zip`` parameter, default to ``None``. NOTE: You can't mix ``zip`` and ``unzip`` options together with value ``True``, it will raise error. unzip: :class:`bool` Unzip all downloaded files once finished (if given file is zip format extract it, otherwise ignore it), default to ``False``. NOTE: You can't mix ``zip`` and ``unzip`` options together with value ``True``, it will raise error. **kwargs These parameters will be passed to :meth:`File.download()`, except for parameter ``filename``. Returns ------- List[:class:`File`] a list of Zippyshare files """ if unzip and zip: raise ValueError("unzip and zip paramaters cannot be set together") downloaded_files = {} files = [] for url in urls: info = get_info(url) file = File(info) files.append(file) if kwargs.get('filename') is not None: kwargs.pop('filename') file_path = file.download(**kwargs) downloaded_files[file] = file_path if unzip: extract_archived_file(str(file_path)) if zip: log.info(build_pretty_list_log(downloaded_files, 'Zipping all downloaded files to "%s"' % zip)) archive_zip(downloaded_files, zip) log.info(build_pretty_list_log(downloaded_files, 'Successfully zip all downloaded files to "%s"' % zip)) return files
a1197d264fa3305fb545a60e5963be2fc326aa5d
3,640,815
def pop_arg(args_list, expected_size_after=0, msg="Missing argument"): """helper function to get and check command line arguments""" try: value = args_list.pop(0) except IndexError: raise BadCommandUsage(msg) if expected_size_after is not None and len(args_list) > expected_size_after: raise BadCommandUsage('too many arguments') return value
90b1f1ae596a9257d15cc189e87223b166252c9a
3,640,816
def d4s(data): """ Beam parameter calculation according to the ISO standard D4sigma integrals input: 2D array of intensity values (pixels) output: xx, yy: x and y centres dx, dy: 4 sigma widths for x and y angle: inferred rotation angle, radians """ gg = data dimy, dimx = np.shape(data) X, Y = np.mgrid[0:dimx,0:dimy] X = X.T Y = Y.T P = np.sum(data) xx = np.sum(data * X) / P yy = np.sum(data * Y) / P xx2 = np.sum(data * (X - xx)**2)/P yy2 = np.sum(data * (Y - yy)**2)/P xy = np.sum(data * (X - xx) * (Y - yy)) / P gamm = np.sign(xx2 - yy2) angle = 0.5 * np.arctan(2*xy / (xx2 - yy2)) try: dx = 2 * np.sqrt(2) * (xx2 + yy2 + gamm * ( (xx2 - yy2)**2 + 4*xy**2)**0.5)**(0.5) dy = 2 * np.sqrt(2) * (xx2 + yy2 - gamm * ( (xx2 - yy2)**2 + 4*xy**2)**0.5)**(0.5) except: # In case of error, just make the size very large print "Fitting error" dx, dy = data.shape return xx, yy, dx, dy, angle
f10c0792a2e200c980ccd6ffb286bdfabc90bb32
3,640,817
from astropy.utils import iers import warnings import six def checkWarnings(func, func_args=[], func_kwargs={}, category=UserWarning, nwarnings=1, message=None, known_warning=None): """Function to check expected warnings.""" if (not isinstance(category, list) or len(category) == 1) and nwarnings > 1: if isinstance(category, list): category = category * nwarnings else: category = [category] * nwarnings if (not isinstance(message, list) or len(message) == 1) and nwarnings > 1: if isinstance(message, list): message = message * nwarnings else: message = [message] * nwarnings if known_warning == 'miriad': # The default warnings for known telescopes when reading miriad files category = [UserWarning] message = ['Altitude is not present in Miriad file, using known ' 'location values for PAPER.'] nwarnings = 1 elif known_warning == 'paper_uvfits': # The default warnings for known telescopes when reading uvfits files category = [UserWarning] * 2 message = ['Required Antenna frame keyword', 'telescope_location is not set'] nwarnings = 2 elif known_warning == 'fhd': category = [UserWarning] message = ['Telescope location derived from obs'] nwarnings = 1 category = uvutils._get_iterable(category) message = uvutils._get_iterable(message) clearWarnings() with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") # All warnings triggered warnings.filterwarnings("ignore", message="numpy.dtype size changed") warnings.filterwarnings("ignore", message="numpy.ufunc size changed") # filter iers warnings if iers.conf.auto_max_age is set to None, as we do in testing if the iers url is down if iers.conf.auto_max_age is None: warnings.filterwarnings("ignore", message="failed to download") warnings.filterwarnings("ignore", message="time is out of IERS range") if isinstance(message, six.string_types): test_message = [message.startswith("LST values stored in ")] else: test_message = [] for m in message: if m is None: test_message.append(False) else: test_message.append(m.startswith("LST values stored in ")) if not any(test_message): warnings.filterwarnings("ignore", message="LST values stored in ") retval = func(*func_args, **func_kwargs) # Run function # Verify if len(w) != nwarnings: print('wrong number of warnings. Expected number was {nexp}, ' 'actual number was {nact}.'.format(nexp=nwarnings, nact=len(w))) for idx, wi in enumerate(w): print('warning {i} is: {w}'.format(i=idx, w=wi)) assert(False) else: for i, w_i in enumerate(w): if w_i.category is not category[i]: print('expected category ' + str(i) + ' was: ', category[i]) print('category ' + str(i) + ' was: ', str(w_i.category)) assert(False) if message[i] is not None: if message[i] not in str(w_i.message): print('expected message ' + str(i) + ' was: ', message[i]) print('message ' + str(i) + ' was: ', str(w_i.message)) assert(False) return retval
58a40594f48b1f47350e9b6a1ca1d956dfd63d04
3,640,818
from omas.omas_utils import list_structures from omas.omas_utils import load_structure def extract_times(imas_version=omas_rcparams['default_imas_version']): """ return list of strings with .time across all structures :param imas_version: imas version :return: list with times """ times = [] for structure in list_structures(imas_version=imas_version): tmp = load_structure(structure, imas_version)[0] for item in tmp: if not item.endswith('.time') or 'data_type' not in tmp[item] or tmp[item]['data_type'] == 'STRUCTURE': continue times.append(item) return sorted(times)
2b13361dc713d90a946554383b556a8ced24ac55
3,640,819
import json def load_appdata(): """load application data from json file """ try: _in = open(FNAME) except FileNotFoundError: return with _in: appdata = json.load(_in) return appdata
afb3a69a5abf72cd14a8ae0c8c99ccc3350899a1
3,640,820
def compute_couplings(models_a, models_b): """ Given logistic models for two multiple sequence alignments, calculate all intermolecular coupling strengths between residues. The coupling strength between positions i and j is calculated as the 2-norm of the concatenation of the coefficient submatrices that describe the relationships between the two positions. ---------------------------------------------------------------------------- Reference: Ovchinnikov, Sergey, Hetunandan Kamisetty, and David Baker. "Robust and accurate prediction of residue–residue interactions across protein interfaces using evolutionary information." Elife 3 (2014): e02030 ---------------------------------------------------------------------------- Arguments --------- models_a: list of SGDClassifier objects, one for each analyzed column in MSA A models_b: list of SGDClassifier objects, one for each analyzed column in MSA B Returns ------- couplings: dict, contains intermolecular coupling strengths in the format {"Ai:Bj":float,...} contact_mtx: array, 2D matrix of dimensions (models_a, models_b); contains the value of the coupling strength for each pair of positions """ # Dictionary to store couplings between residues couplings = {} # To keep track of the submatrix we need to take from the matrix of # coefficients from protein B # Iterate over models / columns of MSA A # Variable to keep track of the submatrix we need to take from the matrix # of coefficients of models of B offset_a = 0 contact_mtx = np.zeros((len(models_a), len(models_b))) for i, model_a in enumerate(models_a): # Variable to keep track of the submatrix we need to take from the # matrix of coefficients from protein A end_point_a = 0 for j, model_b in enumerate(models_b): # Select the relevant submatrices of coefficients, this is, # the columns in A that indicate coupling to B and vice versa # Taking the 2-norm of a vector and a matrix is equivalent. In case # of mismatching dimensions, flatten the matrices into vectors and # concatenate them sel_coefs_a, end_point_a = select_coefs(model_a.coef_, end_point_a) sel_coefs_a = sel_coefs_a.flatten() sel_coefs_b, _ = select_coefs(model_b.coef_, offset_a) sel_coefs_b = sel_coefs_b.flatten() coef_vector = np.concatenate((sel_coefs_a, sel_coefs_b)) # Calculate coupling strength (as the 2-norm of the vector of # coefficients) and store the value in the output coupling = np.linalg.norm(coef_vector) coupling_name = ''.join(['A', str(i), ':', 'B', str(j)]) couplings[coupling_name] = coupling contact_mtx[i][j] = coupling offset_a += 20 return couplings, contact_mtx
761c1987a7e230f70e123ce8d1746881b1b26cae
3,640,821
def update_checkout_line(request, checkout, variant_id): """Update the line quantities.""" if not request.is_ajax(): return redirect("checkout:index") checkout_line = get_object_or_404(checkout.lines, variant_id=variant_id) discounts = request.discounts status = None form = ReplaceCheckoutLineForm( request.POST, checkout=checkout, variant=checkout_line.variant, discounts=discounts, ) manager = request.extensions if form.is_valid(): form.save() checkout.refresh_from_db() # Refresh obj from db and confirm that checkout still has this line checkout_line = checkout.lines.filter(variant_id=variant_id).first() line_total = zero_taxed_money(currency=settings.DEFAULT_CURRENCY) if checkout_line: line_total = manager.calculate_checkout_line_total(checkout_line, discounts) subtotal = get_display_price(line_total) response = { "variantId": variant_id, "subtotal": format_money(subtotal), "total": 0, "checkout": {"numItems": checkout.quantity, "numLines": len(checkout)}, } checkout_total = manager.calculate_checkout_subtotal(checkout, discounts) checkout_total = get_display_price(checkout_total) response["total"] = format_money(checkout_total) local_checkout_total = to_local_currency(checkout_total, request.currency) if local_checkout_total is not None: response["localTotal"] = format_money(local_checkout_total) status = 200 elif request.POST is not None: response = {"error": form.errors} status = 400 return JsonResponse(response, status=status)
9394699c50bc3724ac253f288e23cc77eac05a3a
3,640,822
from typing import Optional def merge_df( df: Optional[pd.DataFrame], new_df: Optional[pd.DataFrame], how="left" ): """ join two dataframes. Assumes the dataframes are indexed on datetime Args: df: optional dataframe new_df: optional dataframe Returns: The merged dataframe """ if df is None: result_df = new_df elif new_df is None: result_df = df else: try: result_df = pd.merge_ordered( df.reset_index(), new_df.reset_index().drop_duplicates() ) result_df.set_index("datetime", inplace=True) result_df.sort_index(inplace=True) if len(result_df.index.unique()) != len(result_df.index): LOG.error("Merging did not result in unique indexes. Killing" " to avoid missing data") raise ValueError("Issue merging") except Exception as e: LOG.error("failed joining dataframes.") raise e return result_df
783111942086a23fbb13b1e96f2d098c7db0f963
3,640,823
import os import yaml def load_settings(settings_path: str = CHAOSTOOLKIT_CONFIG_PATH) -> Settings: """ Load chaostoolkit settings as a mapping of key/values or return `None` when the file could not be found. """ if not os.path.exists(settings_path): logger.debug( "The Chaos Toolkit settings file could not be found at " "'{c}'.".format(c=settings_path) ) return with open(settings_path) as f: try: settings = yaml.safe_load(f.read()) loaded_settings.set(settings) return settings except yaml.YAMLError as ye: logger.error("Failed parsing YAML settings: {}".format(str(ye)))
43a7f8e83827df26a840a13a53d6c87e6bddf5ff
3,640,824
def _is_leaf(tree: DecisionTreeClassifier, node_id: int) -> bool: """ Determines if a tree node is a leaf. :param tree: an `sklearn` decision tree classifier object :param node_id: an integer identifying a node in the above tree :return: a boolean `True` if the node is a leaf, `False` otherwise """ return tree.tree_.children_left[node_id] == tree.tree_.children_right[node_id]
bdc5affe82c1c7505668e0f7c70dbb548170b6e1
3,640,825
async def commission_reset(bot, context): """Resets a given user's post cooldown manually.""" advertisement_data = await _get_advertisement_data(bot, context.guild) deleted_persistence = data.get( bot, __name__, 'recently_deleted', guild_id=context.guild.id, default={}) user_id = context.arguments[0].id if user_id in advertisement_data: del advertisement_data[user_id] if str(user_id) in deleted_persistence: del deleted_persistence[str(user_id)] return Response( "Reset that user's advertisement cooldown. Their last advertisement post " "will need to be removed manually if necessary.")
06666421569b92fdf8a943351058e3f53c7d0777
3,640,826
def test_sample_problems_auto_1d_maximization(max_iter, max_response, error_lim, model_type, capsys): """ solve a sample problem in two different conditions. test that auto method works for a particular single-covariate (univariate) function """ # define data x_input = [(0.5, 0, 1)] # covariates come as a list of tuples (one per covariate: (<initial_guess>, <min>, <max>)) # define response function def f(x): return -(6 * x["covar0"].iloc[0] - 2) ** 2 * np.sin(12 * x["covar0"].iloc[0] - 4) # initialize class instance cc = TuneSession(covars=x_input, model=model_type) # run the auto-method cc.auto(response_samp_func=f, max_iter=max_iter) # assert assert cc.model["covars_sampled_iter"] == max_iter # assert that max value found THEORETICAL_MAX_COVAR = 0.75725 assert abs(cc.covars_best_response_value[-1].item() - THEORETICAL_MAX_COVAR) < error_lim # run current_best method cc.current_best() captured = capsys.readouterr() assert abs(cc.best["covars"].values[0][0] - THEORETICAL_MAX_COVAR) < error_lim assert abs(cc.best["response"].values[0][0] - max_response) < error_lim assert cc.best["iteration_when_recorded"] == max_iter
3db394c4b1cccb276d3efe80ff7561830fc82b7a
3,640,827
import logging def partition_round(elms, percent, exact=-1, total=100, *args, **kwargs): """ Partitions dataset in a predictable way. :param elms: Total Number of elements :type elms: Integer :param percent: Percentage of problem space to be processed on one device :param type: Integer :param exact: Flag that states whether percentage of problem space is greater than 50 or not (0 for percent < 50, 1 for percent >= 50) :param type: Integer :param total: Percentage of total problem space (Default value: 100) :type total: Integer :return: Number of elements of partitioned dataset :rtype: Integer """ if elms < 100: factor = 10 x = elms / 10 else: factor = 1 x = elms / 100 if exact == -1: exact = 0 if percent > 50 else 1 if elms % 2 == 0: if percent == 50: logging.debug( "PARTITION: get_slice_values -> multiple_round -> partition_round (if percent=50) returns: %d", elms / 2) return elms / 2 elif exact == 0: b = x * (total - percent) / factor return partition_round(elms, total) - b if total != 100 else elms - b elif exact == 1: logging.debug("PARTITION: get_slice_values -> multiple_round -> partition_round (if exact=1) returns: %d", x * percent / factor) return x * percent / factor else: if percent > 50: return partition_round(elms - 1, percent, exact, total) else: return partition_round(elms - 1, percent, exact, total) + 1
c3d83a9da0d25d9e9a1f688620fc9a925535cb6a
3,640,828
def heatmap_numeric_w_dependent_variable(df, dependent_variable): """ Takes df, a dependant variable as str Returns a heatmap of all independent variables' correlations with dependent variable """ plt.figure(figsize=(10, 5.5)) figure = sns.heatmap( df.corr()[[dependent_variable]].sort_values(by=dependent_variable), annot=True, cmap="coolwarm", vmin=-1, vmax=1, ) return figure
46919deb37ee1f641983761a81ffeb830dac8217
3,640,829
from typing import Set from typing import Tuple import timeit def _handle_rpm( rpm: Rpm, universe: str, repo_url: str, rpm_table: RpmTable, all_snapshot_universes: Set[str], cfg: DownloadConfig, ) -> Tuple[Rpm, MaybeStorageID, float]: """Fetches the specified RPM from the repo DB and downloads it if needed. Returns a 3-tuple of the hydrated RPM, storage ID or exception if one was caught, and bytes downloaded, if a download occurred (used for reporting). """ # Read-after-write consitency is not needed here as this is the first read # in the execution model. It's possible another concurrent snapshot is # running that could race with this read, but that's not critical as this # section should be idempotent, and at worst we'll duplicate some work by # re-downloading the RPM. with cfg.new_db_ctx(readonly=True, force_master=False) as ro_repo_db: # If we get no `storage_id` back, there are 3 possibilities: # - `rpm.nevra()` was never seen before. # - `rpm.nevra()` was seen before, but it was hashed with # different algorithm(s), so we MUST download and # compute the canonical checksum to know if its contents # are the same. # - `rpm.nevra()` was seen before, **AND** one of the # prior checksums used `rpm.checksum.algorithms`, but # produced a different hash value. In other words, this # is a `MutableRpmError`, because the same NEVRA must # have had two different contents. We COULD explicitly # detect this error here, and avoid the download. # However, this severe error should be infrequent, and we # actually get valuable information from the download -- # this lets us know whether the file is wrong or the # repodata is wrong. with timeit( partial(log_sample, LogOp.RPM_QUERY, rpm=rpm, universe=universe) ): ( storage_id, canonical_chk, ) = ro_repo_db.get_rpm_storage_id_and_checksum(rpm_table, rpm) # If the RPM is already stored with a matching checksum, just update its # `.canonical_checksum`. Note that `rpm` was parsed from repodata, and thus # it's guaranteed to not yet have a `canonical_checksum`. if storage_id: rpm = rpm._replace(canonical_checksum=canonical_chk) # This is a very common case and thus noisy log, so we write to debug log.debug(f"Already stored under {storage_id}: {rpm}") return rpm, storage_id, 0 # We have to download the RPM. try: with timeit( partial(log_sample, LogOp.RPM_DOWNLOAD, rpm=rpm, universe=universe) ): rpm, storage_id = _download_rpm(rpm, repo_url, rpm_table, cfg) return rpm, storage_id, rpm.size # RPM checksum validation errors, HTTP errors, etc except ReportableError as ex: # This "fake" storage_id is stored in `storage_id_to_rpm`, so the # error is propagated to sqlite db through the snapshot. It isn't # written to repo_db however as that happens in the *_impl function return rpm, ex, 0
107d3e9b0d139663d33a415be8eccfb6541e1b4a
3,640,830
def numpy2seq(Z, val=-1): """Appends the minimal required amount of zeroes at the end of each array in the jagged array `M`, such that `M` looses its jagedness.""" seq = [] for z in t2n(Z).astype(int): i = np.where(z==val)[0] if i.size == 0: seq += [z.tolist()] else: seq += [z[:min(i)].tolist()] return seq
b46f6379a3eba0c5754c1a824dc28a43a10dc742
3,640,831
def winner(board): """Detirmine the game's winner.""" WAYS_TO_WIN = ((0, 1, 2), (3, 4, 5), (6, 7, 8), (0, 3, 6), (1, 4, 7), (2, 5, 8), (0, 4, 8), (2, 4, 6)) for row in WAYS_TO_WIN: if board[row[0]] == board[row[1]] == board[row[2]] != EMPTY: winner = board[row[0]] return winner if EMPTY not in board: return TIE return None
6adb31e668c1d7e2723df7d65ab34246748c3249
3,640,832
def compute_inv_propensity(train_file, A, B): """ Compute Inverse propensity values Values for A/B: Wikpedia-500K: 0.5/0.4 Amazon-670K, Amazon-3M: 0.6/2.6 Others: 0.55/1.5 """ train_labels = data_utils.read_sparse_file(train_file) inv_propen = xc_metrics.compute_inv_propesity(train_labels, A, B) return inv_propen
df8f45cf48f056cee6f3f9026f546dcea0f9ee75
3,640,833
def tanh(x): """ Returns the cos of x. Args: x (TensorOp): A tensor. Returns: TensorOp: The tanh of x. """ return TanhOp(x)
bef86675a70714f3e33a6828353e1f71958c3057
3,640,834
def importBodyCSVDataset(testSplit: float, local_import: bool): """Import body dataset as numpy arrays from GitHub if available, or local dataset otherwise. Args: testSplit (float, optional): Percentage of the dataset reserved for testing. Defaults to 0.15. Must be between 0.0 and 1.0. """ assert 0.0 <= testSplit <= 1.0 datasetPath = DATASETS_PATH / "BodyPose_Dataset.csv" datasetURL = "https://raw.githubusercontent.com/ArthurFDLR/pose-classification-kit/master/pose_classification_kit/datasets/BodyPose_Dataset.csv" if local_import: dataset_df = pd.read_csv(datasetPath) else: dataset_df = pd.read_csv(datasetURL) bodyLabels_df = dataset_df.groupby("label") labels = list(dataset_df.label.unique()) # Find the minimum number of samples accross categories to uniformly distributed sample sets total_size_cat = bodyLabels_df.size().min() test_size_cat = int(total_size_cat * testSplit) train_size_cat = total_size_cat - test_size_cat x_train = [] x_test = [] y_train = [] y_test = [] # Iterate over each labeled group for label, group in bodyLabels_df: # remove irrelevant columns group_array = group.drop(["label", "accuracy"], axis=1).to_numpy() np.random.shuffle(group_array) group_array_2D = [np.array((x[::2], x[1::2])).T for x in group_array] x_train.append(group_array_2D[:train_size_cat]) y_train.append([label] * train_size_cat) x_test.append(group_array_2D[train_size_cat : train_size_cat + test_size_cat]) y_test.append([label] * test_size_cat) # Concatenate sample sets as numpy arrays x_train = np.concatenate(x_train, axis=0) x_test = np.concatenate(x_test, axis=0) y_train = np.concatenate(y_train, axis=0) y_test = np.concatenate(y_test, axis=0) return x_train, x_test, y_train, y_test, labels
411d8c1aa3e1d741e2b169f1a4c3065af8f5e82c
3,640,835
def mvstdtprob(a, b, R, df, ieps=1e-5, quadkwds=None, mvstkwds=None): """ Probability of rectangular area of standard t distribution assumes mean is zero and R is correlation matrix Notes ----- This function does not calculate the estimate of the combined error between the underlying multivariate normal probability calculations and the integration. """ kwds = dict(args=(a, b, R, df), epsabs=1e-4, epsrel=1e-2, limit=150) if not quadkwds is None: kwds.update(quadkwds) lower, upper = chi.ppf([ieps, 1 - ieps], df) res, err = integrate.quad(funbgh2, lower, upper, **kwds) prob = res * bghfactor(df) return prob
2b15e3ce209d01e4790391242cbd87914a79fa5d
3,640,836
from typing import Union from typing import Iterable from typing import Dict from typing import Callable import random import os import warnings import functools def build_dataloaders( cfg: CfgNode, batch_size: Union[int, Iterable[int]], ) -> Dict[str, Callable]: """ Get iterators of built-in datasets. Args: cfg: CfgNode instance that requests built-in datasets. batch_size (int or sequence): The number of examples in one mini-batch. If batch_size is a sequence like (b1, b2, b3), batch sizes of train/valid/test splits will be matched to b1/b2/b3, respectively. Returns: A dictionary with keys 'dataloader', 'trn_loader', 'val_loader', and 'tst_loader'. Example: >>> dataloaders = build_dataloaders(cfg, batch_size=[128, 200, 200]) >>> for epoch_idx in enumerate(range(10), start=1): >>> rng, data_rng = jax.random.split(rng) >>> >>> trn_loader = dataloaders['dataloader'](rng=data_rng) >>> trn_loader = jax_utils.prefetch_to_device(trn_loader, size=2) >>> for batch_idx, batch in enumerate(trn_loader, start=1): >>> (...) >>> >>> val_loader = dataloaders['val_loader'](rng=None) >>> val_loader = jax_utils.prefetch_to_device(val_loader, size=2) >>> for batch_idx, batch in enumerate(val_loader, start=1): >>> (...) """ name = cfg.DATASETS.NAME if name in ['MNIST', 'KMNIST', 'FashionMNIST',]: indices = list(range(60000)) if cfg.DATASETS.MNIST.SHUFFLE_INDICES: random.Random(cfg.DATASETS.SEED).shuffle(indices) trn_indices = indices[cfg.DATASETS.MNIST.TRAIN_INDICES[0] : cfg.DATASETS.MNIST.TRAIN_INDICES[1]] val_indices = indices[cfg.DATASETS.MNIST.VALID_INDICES[0] : cfg.DATASETS.MNIST.VALID_INDICES[1]] elif name in ['CIFAR10', 'CIFAR100',]: indices = list(range(50000)) if cfg.DATASETS.CIFAR.SHUFFLE_INDICES: random.Random(cfg.DATASETS.SEED).shuffle(indices) trn_indices = indices[cfg.DATASETS.CIFAR.TRAIN_INDICES[0] : cfg.DATASETS.CIFAR.TRAIN_INDICES[1]] val_indices = indices[cfg.DATASETS.CIFAR.VALID_INDICES[0] : cfg.DATASETS.CIFAR.VALID_INDICES[1]] elif name in ['TinyImageNet200',]: indices = list(range(100000)) if cfg.DATASETS.TINY.SHUFFLE_INDICES: random.Random(cfg.DATASETS.SEED).shuffle(indices) trn_indices = indices[cfg.DATASETS.TINY.TRAIN_INDICES[0] : cfg.DATASETS.TINY.TRAIN_INDICES[1]] val_indices = indices[cfg.DATASETS.TINY.VALID_INDICES[0] : cfg.DATASETS.TINY.VALID_INDICES[1]] elif name in ['ImageNet1k_x32', 'ImageNet1k_x64',]: indices = list(range(1281167)) if cfg.DATASETS.DOWNSAMPLED_IMAGENET.SHUFFLE_INDICES: random.Random(cfg.DATASETS.SEED).shuffle(indices) trn_indices = indices[cfg.DATASETS.DOWNSAMPLED_IMAGENET.TRAIN_INDICES[0] : cfg.DATASETS.DOWNSAMPLED_IMAGENET.TRAIN_INDICES[1]] val_indices = indices[cfg.DATASETS.DOWNSAMPLED_IMAGENET.VALID_INDICES[0] : cfg.DATASETS.DOWNSAMPLED_IMAGENET.VALID_INDICES[1]] trn_images = np.load(os.path.join(cfg.DATASETS.ROOT, f'{name}/train_images.npy')) trn_labels = np.load(os.path.join(cfg.DATASETS.ROOT, f'{name}/train_labels.npy')) tst_images = np.load(os.path.join(cfg.DATASETS.ROOT, f'{name}/test_images.npy')) tst_labels = np.load(os.path.join(cfg.DATASETS.ROOT, f'{name}/test_labels.npy')) # validation split if val_indices: val_images, val_labels = trn_images[val_indices], trn_labels[val_indices] trn_images, trn_labels = trn_images[trn_indices], trn_labels[trn_indices] else: val_images, val_labels = tst_images, tst_labels trn_images, trn_labels = trn_images[trn_indices], trn_labels[trn_indices] # specify mini-batch settings if isinstance(batch_size, int): batch_size = (batch_size, batch_size, batch_size,) trn_batch_size, val_batch_size, tst_batch_size = batch_size if len(val_images) % val_batch_size != 0: warnings.warn(f'val_batch_size={val_batch_size} cannot utilize all {len(val_images)} examples.') if len(tst_images) % tst_batch_size != 0: warnings.warn(f'tst_batch_size={tst_batch_size} cannot utilize all {len(tst_images)} examples.') trn_steps_per_epoch = len(trn_images) // trn_batch_size val_steps_per_epoch = len(val_images) // val_batch_size tst_steps_per_epoch = len(tst_images) // tst_batch_size # build dataloaders dataloaders = { 'dataloader': functools.partial( _build_dataloader, images = trn_images, labels = trn_labels, batch_size = trn_batch_size, steps_per_epoch = trn_steps_per_epoch, shuffle = True, transform = jax.jit(jax.vmap(DATA_AUGMENTATION[cfg.DATASETS.DATA_AUGMENTATION][name])), ), 'trn_loader': functools.partial( _build_dataloader, images = trn_images, labels = trn_labels, batch_size = trn_batch_size, steps_per_epoch = trn_steps_per_epoch, shuffle = False, transform = jax.jit(jax.vmap(ToTensorTransform())), ), 'val_loader': functools.partial( _build_dataloader, images = val_images, labels = val_labels, batch_size = val_batch_size, steps_per_epoch = val_steps_per_epoch, shuffle = False, transform = jax.jit(jax.vmap(ToTensorTransform())), ), 'tst_loader': functools.partial( _build_dataloader, images = tst_images, labels = tst_labels, batch_size = tst_batch_size, steps_per_epoch = tst_steps_per_epoch, shuffle = False, transform = jax.jit(jax.vmap(ToTensorTransform())), ), 'trn_steps_per_epoch': trn_steps_per_epoch, 'val_steps_per_epoch': val_steps_per_epoch, 'tst_steps_per_epoch': tst_steps_per_epoch, } return dataloaders
b878f0553c2491e9cc208ba500b02bc2d0f2226c
3,640,837
import functools def get_activity( iterator, *, perspective, garbage_class, dtype=np.bool, non_sil_alignment_fn=None, debug=False, use_ArrayIntervall=False, ): """ perspective: Example: 'global_worn' -- global perspective for worn ('P') 'worn' -- return perspective for each speaker ('P01', ...) 'array' -- return perspective for each array ('U01', ...) garbage_class: True, False, None True: garbage_class is always one False: garbage_class is always zero None: the number of classes is 4 and not 5 non_sil_alignment_fn: None or a function with the signature: value = non_sil_alignment_fn(ex, perspective_mic_array) where ex is one example in iterator perspective_mic_array is in ['U01', ..., 'P01', ..., 'P'] value is a 1d array indicating if at a sample the source is active or not use_ArrayIntervall: ArrayIntervall is a special datatype to reduce memory usage returns: dict[session_id][mic_perspective][speaker_id] = array(dtype=bool) session_id e.g.: 'S02', ... mic_perspective e.g.: 'P', 'P05', 'U01', ... speaker_id e.g.: 'P05', ... >>> from pb_chime5.database.chime5 import Chime5 >>> import textwrap >>> db = Chime5() >>> def display_activity(activity): ... print(tuple(activity.keys())) ... print(' '*2, tuple(activity['S02'].keys())) ... print(' '*4, tuple(activity['S02']['P'].keys())) ... print(' '*6, activity['S02']['P']['P05']) ... print(' '*6, activity['S02']['P']['Noise']) >>> def display_activity(activity, indent=0): ... indent_print = lambda x: print(textwrap.indent(str(x), ' '*indent)) ... if isinstance(activity, dict): ... for i, (k, v) in enumerate(activity.items()): ... if i == 0 or k in ['Noise']: ... indent_print(f'{k}:') ... display_activity(v, indent=indent+2) ... else: ... indent_print(f'{k}: ...') ... else: ... indent_print(activity) >>> activity = get_activity(db.get_datasets('S02'), perspective='global_worn', garbage_class=True) >>> display_activity(activity) S02: P: P05: [False False False ... False False False] P06: ... P07: ... P08: ... Noise: [ True True True ... True True True] >>> activity = get_activity(db.get_datasets('S02'), perspective='worn', garbage_class=False) >>> display_activity(activity) S02: P05: P05: [False False False ... False False False] P06: ... P07: ... P08: ... Noise: [False False False ... False False False] P06: ... P07: ... P08: ... >>> activity = get_activity(db.get_datasets('S02'), perspective='array', garbage_class=None) >>> display_activity(activity) S02: U01: P05: [False False False ... False False False] P06: ... P07: ... P08: ... U02: ... U03: ... U04: ... U05: ... U06: ... """ dict_it_S = iterator.groupby(lambda ex: ex['session_id']) # Dispatcher is a dict with better KeyErrors all_acitivity = Dispatcher() for session_id, it_S in dict_it_S.items(): if perspective == 'worn': perspective_tmp = mapping.session_to_speakers[session_id] elif perspective == 'global_worn': perspective_tmp = ['P'] # Always from target speaker elif perspective == 'array': # The mapping considers missing arrays perspective_tmp = mapping.session_to_arrays[session_id] else: perspective_tmp = perspective if not isinstance(perspective_tmp, (tuple, list)): perspective_tmp = [perspective_tmp, ] speaker_ids = mapping.session_to_speakers[session_id] if use_ArrayIntervall: assert dtype == np.bool, dtype zeros = ArrayIntervall def ones(shape): arr = zeros(shape=shape) arr[:] = 1 return arr else: zeros = functools.partial(np.zeros, dtype=dtype) ones = functools.partial(np.ones, dtype=dtype) all_acitivity[session_id] = Dispatcher({ p: Dispatcher({ s: zeros(shape=[mapping.session_array_to_num_samples[f'{session_id}_{p}']]) # s: ArrayIntervall(shape=[num_samples]) for s in speaker_ids }) for p in perspective_tmp }) if garbage_class is True: for p in perspective_tmp: num_samples = mapping.session_array_to_num_samples[ f'{session_id}_{p}'] all_acitivity[session_id][p]['Noise'] = ones( shape=[num_samples], ) elif garbage_class is False: for p in perspective_tmp: num_samples = mapping.session_array_to_num_samples[ f'{session_id}_{p}'] all_acitivity[session_id][p]['Noise'] = zeros( shape=[num_samples] ) elif garbage_class is None: pass elif isinstance(garbage_class, int) and garbage_class > 0: for noise_idx in range(garbage_class): for p in perspective_tmp: num_samples = mapping.session_array_to_num_samples[ f'{session_id}_{p}' ] all_acitivity[session_id][p][f'Noise{noise_idx}'] = ones( shape=[num_samples] ) else: raise ValueError(garbage_class) missing_count = 0 for ex in it_S: for pers in perspective_tmp: if ex['transcription'] == '[redacted]': continue target_speaker = ex['speaker_id'] # example_id = ex['example_id'] if pers == 'P': perspective_mic_array = target_speaker else: perspective_mic_array = pers if perspective_mic_array.startswith('P'): start = ex['start']['worn'][perspective_mic_array] end = ex['end']['worn'][perspective_mic_array] else: if not perspective_mic_array in ex['audio_path']['observation']: continue start = ex['start']['observation'][perspective_mic_array] end = ex['end']['observation'][perspective_mic_array] if non_sil_alignment_fn is None: value = 1 else: value = non_sil_alignment_fn(ex, perspective_mic_array) if value is 1: missing_count += 1 if debug: all_acitivity[session_id][pers][target_speaker][start:end] += value else: all_acitivity[session_id][pers][target_speaker][start:end] = value if missing_count > len(it_S) // 2: raise RuntimeError( f'Something went wrong.\n' f'Expected {len(it_S) * len(perspective_tmp)} times a ' f'finetuned annotation for session {session_id}, but ' f'{missing_count} times they are missing.\n' f'Expect that at least {len(it_S) // 2} finetuned annotations ' f'are available, when non_sil_alignment_fn is given.\n' f'Otherwise assume something went wrong.' ) del it_S return all_acitivity
4bb771f80beba242f59b54879563c4462d5ca0c6
3,640,838
import re def dropNested(text, openDelim, closeDelim): """ A matching function for nested expressions, e.g. namespaces and tables. """ openRE = re.compile(openDelim, re.IGNORECASE) closeRE = re.compile(closeDelim, re.IGNORECASE) # partition text in separate blocks { } { } spans = [] # pairs (s, e) for each partition nest = 0 # nesting level start = openRE.search(text, 0) if not start: return text end = closeRE.search(text, start.end()) next = start while end: next = openRE.search(text, next.end()) if not next: # termination while nest: # close all pending nest -= 1 end0 = closeRE.search(text, end.end()) if end0: end = end0 else: break spans.append((start.start(), end.end())) break while end.end() < next.start(): # { } { if nest: nest -= 1 # try closing more last = end.end() end = closeRE.search(text, end.end()) if not end: # unbalanced if spans: span = (spans[0][0], last) else: span = (start.start(), last) spans = [span] break else: spans.append((start.start(), end.end())) # advance start, find next close start = next end = closeRE.search(text, next.end()) break # { } if next != start: # { { } nest += 1 # collect text outside partitions return dropSpans(spans, text)
dd77b86533dd43bcecf2ef944a61b59c4150aaae
3,640,839
import os def is_rotational(block_device: str) -> bool: """ Checks if given block device is "rotational" (spinning rust) or solid state block device. :param block_device: Path to block device to check :return: True if block device is a rotational block device, false otherwise """ base_name = os.path.basename(block_device) rotational_file = f'/sys/block/{base_name}/queue/rotational' if not os.path.exists(rotational_file): # Maybe given path is not the base block device # -> Get disk for given block devices and try again disk = base_disk_for_block_device(block_device) if disk != block_device: return is_rotational(disk) raise Exception('Could not find file {}!'.format(rotational_file)) with open(rotational_file, 'r') as f_obj: content = f_obj.read(1) if content == '1': return True if content == '0': return False raise Exception('Unknown value in {}!'.format(rotational_file))
caf6203160e637ab39152d84d2fff06e79fc3083
3,640,840
import sys import traceback def format_exc(limit=None): """Like print_exc() but return a string. Backport for Python 2.3.""" try: etype, value, tb = sys.exc_info() return ''.join(traceback.format_exception(etype, value, tb, limit)) finally: etype = value = tb = None
29bdbfbff4a1ce2d399a95c3a4685467a4022eaf
3,640,841
import random def make_dpl_from_construct(construct,showlabels=None): """ This function creats a dictionary suitable for input into dnaplotlib for plotting constructs. Inputs: construct: a DNA_construct object showlabels: list of part types to show labels for. For example, [AttachmentSite,Terminator]""" #TODO make showlabels more general if(showlabels is None): showlabels = [] outdesign = [] if(HAVE_MATPLOTLIB): cmap = cm.Set1(range(len(construct.parts_list)*2)) pind = 0 for part in construct.parts_list: pcolor = part.color pcolor2 = part.color2 if(HAVE_MATPLOTLIB): if(type(pcolor)==int): c1 = cmap[pcolor][:-1] else: c1 = cmap[pind][:-1] if(type(pcolor2)==int): c2 = cmap[pcolor2][:-1] else: c2 = cmap[random.choice(list(range(len(construct.parts_list))))][:-1] showlabel = False if(type(part) in showlabels): showlabel = True outdesign+=make_dpl_from_part(part,direction = part.direction=="forward",\ color=c1,color2 =c2 ,showlabel=showlabel) pind+=1 return outdesign
2391ccb2e5ee73e083c116d369fbffeac964081d
3,640,842
import yaml import os def load_config(path: str, env=None): """ Load a YAML config file and replace variables from the environment Args: path (str): The resource path in the form of `dir/file` or `package:dir/file` Returns: The configuration tree with variable references replaced, or `False` if the file is not found """ try: with load_resource(path) as resource: cfg = yaml.load(resource, Loader=yaml.FullLoader) except FileNotFoundError: return False cfg = expand_tree_variables(cfg, env or os.environ) return cfg
ffe9944194bfe3e5be1ce4dbf0c9f1073c2d26f4
3,640,843
def update_service( *, db_session: Session = Depends(get_db), service_id: PrimaryKey, service_in: ServiceUpdate ): """Update an existing service.""" service = get(db_session=db_session, service_id=service_id) if not service: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail=[{"msg": "A service with this id does not exist."}], ) try: service = update(db_session=db_session, service=service, service_in=service_in) except IntegrityError: raise ValidationError( [ErrorWrapper(ExistsError(msg="A service with this name already exists."), loc="name")], model=ServiceUpdate, ) return service
0471c4bd496004a9c1cc5af4d806bd8109f62ca7
3,640,844
def import_flow_by_ref(flow_strref): """Return flow class by flow string reference.""" app_label, flow_path = flow_strref.split('/') return import_string('{}.{}'.format(get_app_package(app_label), flow_path))
c2f9fe0b9ccc409b3bd64b6691ee34ca8d430ed6
3,640,845
def _escape_value(value): """Escape a value.""" value = value.replace(b"\\", b"\\\\") value = value.replace(b"\n", b"\\n") value = value.replace(b"\t", b"\\t") value = value.replace(b'"', b'\\"') return value
b58a3236c0686c7fb6a33859986123dc2b8089cc
3,640,846
from typing import Iterable def find(*objects: Iterable[object]): """Sometimes you know the inputs and outputs for a procedure, but you don't remember the name. methodfinder.find tries to find the name. >>> import methodfinder >>> import itertools >>> methodfinder.find([1,2,3]) == 6 sum([1, 2, 3]) >>> methodfinder.find('1 + 1') == 2 eval('1 + 1') >>> methodfinder.find(0.0) == 1.0 math.cos(0.0) math.cosh(0.0) math.erfc(0.0) math.exp(0.0) >>> methodfinder.find(0) == 1 0.denominator math.factorial(0) >>> import numpy as np >>> methodfinder.find(np, 3) == np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) numpy.eye(3) numpy.identity(3) """ # Just call the wrapper function so that the == sign can be used to specify # the desired result return _Foo(objects)
fcfc3c4d0e6d72b6d9f1d7b7bfd46146d8bbf027
3,640,847
def join_returns(cfg, arg_names, function_ast=None): """Joins multiple returns in a CFG into a single block Given a CFG with multiple return statements, this function will replace the returns by gotos to a common join block. """ join_args = [ir.Argument(function_ast, info=n, name=n) for n in arg_names] join = ir.Block(function_ast, join_args, info="MERGE RETURNS") returns = list(of_type[ir.Return](cfg.graph.nodes)) if returns: cfg += CfgSimple.statement(join) # Replace returns with gotos to joining block for ret in returns: assert len(ret.returns) == len(arg_names), (ret.returns, arg_names) goto = ir.Goto(ret.ast_node, join, ret.returns) cfg = cfg.replace(ret, goto) cfg = cfg + (goto, join) return cfg, join_args
0a89c2c6df39e0693597358f01704619cbd1d0bd
3,640,848
def get_all(): """ Returns list of all tweets from this server. """ return jsonify([t.to_dict() for t in tweet.get_all()])
a8803f46ca4c32ea3a0f607a7a37d23a5d97c316
3,640,849
from carbonplan_trace.v1.glas_preprocess import select_valid_area # avoid circular import def proportion_sig_beg_to_start_of_ground(ds): """ The total energy from signal beginning to the start of the ground peak, normalized by total energy of the waveform. Ground peak assumed to be the last peak. """ ds = get_dist_metric_value(ds, metric='start_of_ground_peak_dist') # the processed wf is from sig beg to sig end, select sig beg to ground peak sig_beg_to_ground = select_valid_area( bins=ds.rec_wf_sample_dist, wf=ds.processed_wf, signal_begin_dist=ds.sig_begin_dist, signal_end_dist=ds.start_of_ground_peak_dist, ) # make sure dimensions matches up dims = ds.processed_wf.dims sig_beg_to_ground = sig_beg_to_ground.transpose(dims[0], dims[1]) # total energy of the smoothed waveform total = ds.processed_wf.sum(dim="rec_bin") return sig_beg_to_ground.sum(dim="rec_bin") / total
73fbbd90c8511433bcdae225daea5b7cba9e8297
3,640,850
import requests def post_file(url, file_path, username, password): """Post an image file to the classifier.""" kwargs = {} if username: kwargs['auth'] = requests.auth.HTTPBasicAuth(username, password) file = {'file': open(file_path, 'rb')} response = requests.post( url, files=file, **kwargs ) if response.status_code == HTTP_OK: return response return None
b615e5a766e6ca5d0427bfcdbd475e1b6cd5b9bb
3,640,851
def bias_init_with_prob(prior_prob): """ initialize conv/fc bias value according to giving probablity""" bias_init = float(-np.log((1 - prior_prob) / prior_prob)) return bias_init
533f777df5e8346ab2eadf5f366a275bab099aec
3,640,852
def parse_number(s, start_position): """ If an integer or float begins at the specified position in the given string, then return a tuple C{(val, end_position)} containing the value of the number and the position where it ends. Otherwise, raise a L{ParseError}. """ m = _PARSE_NUMBER_VALUE.match(s, start_position) if not m or not (m.group(1) or m.group(2)): raise ParseError('number', start_position) if m.group(2): return float(m.group()), m.end() else: return int(m.group()), m.end()
854e9290b5853e525ea1ba3f658f59cea37b117c
3,640,853
def training_data_provider(train_s, train_t): """ Concatenates two lists containing adata files # Parameters train_s: `~anndata.AnnData` Annotated data matrix. train_t: `~anndata.AnnData` Annotated data matrix. # Returns Concatenated Annotated data matrix. # Example ```python import scgen import anndata train_data = anndata.read("./data/train_kang.h5ad") test_data = anndata.read("./data/test.h5ad") whole_data = training_data_provider(train_data, test_data) ``` """ train_s_X = [] train_s_diet = [] train_s_groups = [] for i in train_s: train_s_X.append(i.X.A) train_s_diet.append(i.obs["condition"].tolist()) train_s_groups.append(i.obs["cell_type"].tolist()) train_s_X = np.concatenate(train_s_X) temp = [] for i in train_s_diet: temp = temp + i train_s_diet = temp temp = [] for i in train_s_groups: temp = temp + i train_s_groups = temp train_t_X = [] train_t_diet = [] train_t_groups = [] for i in train_t: train_t_X.append(i.X.A) train_t_diet.append(i.obs["condition"].tolist()) train_t_groups.append(i.obs["cell_type"].tolist()) temp = [] for i in train_t_diet: temp = temp + i train_t_diet = temp temp = [] for i in train_t_groups: temp = temp + i train_t_groups = temp train_t_X = np.concatenate(train_t_X) train_real = np.concatenate([train_s_X, train_t_X]) # concat all train_real = anndata.AnnData(train_real) train_real.obs["condition"] = train_s_diet + train_t_diet train_real.obs["cell_type"] = train_s_groups + train_t_groups return train_real
35016ecb6f57e2814dacc6e36408882025311bb9
3,640,854
import warnings def _build_trees(base_estimator, estimator_params, params, X, y, sample_weight, tree_state, n_trees, verbose=0, class_weight=None, bootstrap=False): """ Fit a single tree in parallel """ tree = _make_estimator( _get_value(base_estimator), estimator_params, params=params, random_state=tree_state ) if bootstrap: n_samples = X.shape[0] if sample_weight is None: curr_sample_weight = np.ones((n_samples,), dtype=np.float64) else: curr_sample_weight = sample_weight.copy() indices = _generate_sample_indices(tree_state, n_samples) sample_counts = np.bincount(indices, minlength=n_samples) curr_sample_weight *= sample_counts if class_weight == 'subsample': with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) curr_sample_weight *= compute_sample_weight('auto', y, indices) elif class_weight == 'balanced_subsample': curr_sample_weight *= compute_sample_weight('balanced', y, indices) tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) else: tree.fit(X, y, sample_weight=sample_weight, check_input=False) return tree
43259d71a5d666e371c90e15c1ca61241fbee8e0
3,640,855
def select_privilege(): """Provide a select Privilege model for testing.""" priv = Privilege( database_object=DatabaseObject(name="one_table", type=DatabaseObjectType.TABLE), action=Action.SELECT, ) return priv
721f8edd0b6777a082682e377a80c73f8dc2bb00
3,640,856
def plot_gaia_sources_on_survey( tpf, target_gaiaid, gaia_sources=None, fov_rad=None, depth=0.0, kmax=1.0, sap_mask="pipeline", survey="DSS2 Red", verbose=True, ax=None, outline_color="C6", # pink figsize=None, pix_scale=TESS_pix_scale, **mask_kwargs, ): """Plot (superpose) Gaia sources on archival image Parameters ---------- target_coord : astropy.coordinates target coordinate gaia_sources : pd.DataFrame gaia sources table fov_rad : astropy.unit FOV radius survey : str image survey; see from astroquery.skyview import SkyView; SkyView.list_surveys() verbose : bool print texts ax : axis subplot axis outline_color : str aperture outline color (default=C6) kwargs : dict keyword arguments for aper_radius, percentile Returns ------- ax : axis subplot axis TODO: correct for proper motion difference between survey image and gaia DR2 positions """ assert target_gaiaid is not None ny, nx = tpf.flux.shape[1:] if fov_rad is None: diag = np.sqrt(nx ** 2 + ny ** 2) fov_rad = (0.4 * diag * pix_scale).to(u.arcmin) target_coord = SkyCoord(ra=tpf.ra * u.deg, dec=tpf.dec * u.deg) if gaia_sources is None: print( "Querying Gaia sometimes hangs. Provide `gaia_sources` if you can." ) gaia_sources = Catalogs.query_region( target_coord, radius=fov_rad, catalog="Gaia", version=2 ).to_pandas() assert len(gaia_sources) > 1, "gaia_sources contains single entry" # make aperture mask mask = parse_aperture_mask(tpf, sap_mask=sap_mask, **mask_kwargs) maskhdr = tpf.hdu[2].header # make aperture mask outline contour = np.zeros((ny, nx)) contour[np.where(mask)] = 1 contour = np.lib.pad(contour, 1, PadWithZeros) highres = zoom(contour, 100, order=0, mode="nearest") extent = np.array([-1, nx, -1, ny]) if verbose: print( f"Querying {survey} ({fov_rad:.2f} x {fov_rad:.2f}) archival image" ) # -----------create figure---------------# if ax is None: # get img hdu for subplot projection try: hdu = SkyView.get_images( position=target_coord.icrs.to_string(), coordinates="icrs", survey=survey, radius=fov_rad, grid=False, )[0][0] except Exception: errmsg = "survey image not available" raise FileNotFoundError(errmsg) fig = pl.figure(figsize=figsize) # define scaling in projection ax = fig.add_subplot(111, projection=WCS(hdu.header)) # plot survey img if str(target_coord.distance) == "nan": target_coord = SkyCoord(ra=target_coord.ra, dec=target_coord.dec) nax, hdu = plot_finder_image( target_coord, ax=ax, fov_radius=fov_rad, survey=survey, reticle=False ) imgwcs = WCS(hdu.header) mx, my = hdu.data.shape # plot mask _ = ax.contour( highres, levels=[0.5], extent=extent, origin="lower", linewidths=[3], colors=outline_color, transform=ax.get_transform(WCS(maskhdr)), ) idx = gaia_sources["source_id"].astype(int).isin([target_gaiaid]) target_gmag = gaia_sources.loc[idx, "phot_g_mean_mag"].values[0] for index, row in gaia_sources.iterrows(): marker, s = "o", 100 r, d, mag, id = row[["ra", "dec", "phot_g_mean_mag", "source_id"]] pix = imgwcs.all_world2pix(np.c_[r, d], 1)[0] if int(id) != int(target_gaiaid): gamma = 1 + 10 ** (0.4 * (mag - target_gmag)) if depth > kmax / gamma: # too deep to have originated from secondary star edgecolor = "C1" alpha = 1 # 0.5 else: # possible NEBs edgecolor = "C3" alpha = 1 else: s = 200 edgecolor = "C2" marker = "s" alpha = 1 nax.scatter( pix[0], pix[1], marker=marker, s=s, edgecolor=edgecolor, alpha=alpha, facecolor="none", ) # orient such that north is up; left is east ax.invert_yaxis() if hasattr(ax, "coords"): ax.coords[0].set_major_formatter("dd:mm") ax.coords[1].set_major_formatter("dd:mm") # set img limits pl.setp( nax, xlim=(0, mx), ylim=(0, my), title="{0} ({1:.2f}' x {1:.2f}')".format(survey, fov_rad.value), ) return ax
e90d77cfd1f59dda5db8d6a4651acac0aeacc81e
3,640,857
def getLinkToSong(res): """ getLinkToSong(res): link to all songs :param: res: information about the playlist -> getResponse(pl_id) :returns: list of links to each song """ return res['items'][0]['track']['external_urls']['spotify']
e59fe598ed900a90dcf5376d265eedfc51d8e0a7
3,640,858
def entropy_sampling(classifier, X, n_instances=1): """Entropy sampling query strategy, uses entropy of all probabilities as score. This strategy selects the samples with the highest entropy in their prediction probabilities. Args: classifier: The classifier for which the labels are to be queried. X: The pool of samples to query from. n_instances: Number of samples to be queried. Returns: The indices of the instances from X chosen to be labelled; the instances from X chosen to be labelled. """ classwise_uncertainty = _get_probability_classes(classifier, X) entropies = np.transpose(entropy(np.transpose(classwise_uncertainty))) index = np.flip(np.argsort(entropies))[:n_instances] return index, entropies[index]
ffc465a3e8a517e692927f051dea0162d3191cf9
3,640,859
def browser(browserWsgiAppS): """Fixture for testing with zope.testbrowser.""" assert icemac.addressbook.testing.CURRENT_CONNECTION is not None, \ "The `browser` fixture needs a database fixture like `address_book`." return icemac.ab.calexport.testing.Browser(wsgi_app=browserWsgiAppS)
a256b814a08833eec88eb6289b6c5a57f17e7d84
3,640,860
def parse_playing_now_message(playback): """parse_playing_now_message :param playback: object :returns str """ track = playback.get("item", {}).get("name", False) artist = playback.get("item", {}).get("artists", []) artist = map(lambda a: a.get("name", ""), artist) artist = ", ".join(list(artist)) message = "Playing '%s' from '%s' now!" % (track, artist) if not track: message = "Could not get current track!" return message
88d7c35257c2aaee44d1bdc1ec06640603c6a286
3,640,861
from datetime import datetime import json def test_in_execution(test_plan_uuid): """ Executor->Curator Test in execution: executor responses with the Test ID that can be used in a future test cancellation { "test-id": <test_id> }(?) :param test_plan_uuid: :return: """ # app.logger.debug(f'Callback received {request.path}, contains {request.get_data()}, ' # f'Content-type: {request.headers["Content-type"]}') _LOG.debug(f'Callback received {request.path}, contains {request.get_data()}, ' f'Content-type: {request.headers["Content-type"]}') try: executor_payload = request.get_json() context['test_preparations'][test_plan_uuid]['updated_at'] = datetime.utcnow().replace(microsecond=0) test_index = next( (index for (index, d) in enumerate(context['test_preparations'][test_plan_uuid]['augmented_descriptors']) if d['test_uuid'] == executor_payload['test_uuid']), None) (context['test_preparations'][test_plan_uuid]['augmented_descriptors'] [test_index]['test_status']) = executor_payload['status'] if 'status' in executor_payload.keys() \ else 'RUNNING' return make_response('{}', OK, {'Content-Type': 'application/json'}) except Exception as e: return make_response(json.dumps({'exception': e.args}), INTERNAL_ERROR, {'Content-Type': 'application/json'})
147fd56af41c232fa874332e704c9e043f368d5c
3,640,862
import requests def load_remote_image(image_url): """Loads a remotely stored image into memory as an OpenCV/Numpy array Args: image_url (str): the URL of the image Returns: numpy ndarray: the image in OpenCV format (a [rows, cols, 3] BGR numpy array) """ response = requests.get(image_url, stream=True) img = Image.open(BytesIO(response.content)) image = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR) return image
a760e76df679cc15788332df02e5470ec5b60ec2
3,640,863
def evlt(inp : str) -> int: """ Evaluates the passed string and returns the value if successful, otherwise raises an error """ operand = [] # stack for operands operator = [] # stack for operators + parentheses i = 0 # loop variable, cannot do range because have to increment dynamically if inp.count('(') != inp.count(')'): raise TooManyBracketsException() while i < len(inp): # while not EOF if inp[i].isdigit(): # if character is a digit num = "" while i < len(inp) and inp[i].isdigit(): # Logic to fetch an entire number, num += inp[i] i += 1 if int(num) >= 2**31 - 1: raise OverflowError() operand.append(int(num)) # push operand to stack elif inp[i] == '(': # if opening brace, push to stack operator.append(inp[i]) i += 1 elif inp[i] in operators: try: # if operator, pop all operators having a higher precedence while len(operator) and precedence(operator[-1]) >= precedence(inp[i]): b = operand.pop() a = operand.pop() op = operator.pop() operand.append(evlexp(a, b, op)) # evaluate them with the last 2 values in operand stack and append to itself operator.append(inp[i]) # append operator to operator stack) i += 1 except: raise TooManyOperatorsException elif inp[i] == ')': # if closing brace, evaluate all operators in between while len(inp) != 0 and operator[-1] != '(': # while not EOF and the last(recent) item is not opening bracket b = operand.pop() a = operand.pop() op = operator.pop() operand.append(evlexp(a, b, op)) # pop the operator in order and evaluate and push to operand stack operator.pop() # pop ( i += 1 else: i += 1 continue while len(operator) != 0: # while operator is not empty op = operator.pop() b = operand.pop() a = operand.pop() operand.append(evlexp(a, b, op)) # pop and evaluate operators till its empty and append to operand # if there are no more elements in top of stack, and only one (possibly the answer) if len(operand) == 1: return operand[-1] # if there's more than one element and no more operators, something wrong! else: raise TooManyOperandsException()
2c0ea8781e969f44fa0575c967366d69a19010eb
3,640,864
import os import argparse def is_dir(dirname): """Checks if a path is an actual directory""" if not os.path.isdir(dirname): msg = "{0} is not a directory".format(dirname) raise argparse.ArgumentTypeError(msg) else: return dirname
fc5f03f18ae6f37520dbff6c3143699ac234f6b6
3,640,865
def _create_preactivation_hook(activations): """ when we add this hook to a model's layer, it is called whenever it is about to make the forward pass """ def _linear_preactivation_hook(module, inputs): activations.append(inputs[0].cpu()) return _linear_preactivation_hook
7f4cc10f7e051ed8e30556ee054a65c4878f6c0f
3,640,866
import importlib def import_by_path(path): """ Given a dotted/colon path, like project.module:ClassName.callable, returns the object at the end of the path. """ module_path, object_path = path.split(":", 1) target = importlib.import_module(module_path) for bit in object_path.split("."): target = getattr(target, bit) return target
939b3426f36b3a188f7a48e21551807d42cfa254
3,640,867
def ordered_links(d, k0, k1): """ find ordered links starting from the link (k0, k1) Parameters ========== d : dict for the graph k0, k1: adjacents nodes of the graphs Examples ======== >>> from active_nodes import ordered_links >>> d = {0:[1,4], 1:[0,2], 2:[1,3], 3:[2,4], 4:[0,3]} >>> ordered_links(d, 0, 1) [(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)] """ assert k0 in d assert k1 in d[k0] dx = defaultdict(list) links = [] _append_link(dx, links, k0, k1) r = _add_links1(links, d, dx) while 1: active = [k for k in dx if 0 < len(dx[k]) < len(d[k])] if not active: break a1 = _short_path_active_nodes_all(d, dx, active) if a1 is None: break a2 = _add_paths(d, dx, links, a1) return links
472e9e7d459e8a574de8edd5272c96b648b50207
3,640,868
def _exceeded_threshold(number_of_retries: int, maximum_retries: int) -> bool: """Return True if the number of retries has been exceeded. Args: number_of_retries: The number of retry attempts made already. maximum_retries: The maximum number of retry attempts to make. Returns: True if the maximum number of retry attempts have already been made. """ if maximum_retries is None: # Retry forever. return False return number_of_retries >= maximum_retries
c434e1e752856f9160d40e25ac20dde0583e50a6
3,640,869
import json def _get_and_check_response(method, host, url, body=None, headers=None, files=None, data=None, timeout=30): """Wait for the HTTPS response and throw an exception if the return status is not OK. Return either a dict based on the HTTP response in JSON, or if the response is not in JSON format, return a tuple containing the data in the body and the content type. """ url = 'https://' + host + url # print(url) if files: res = https_session.post(url, files=files, data=data, timeout=timeout) elif method == 'POST': res = https_session.post(url, body, headers, timeout=timeout) else: res = https_session.get(url, timeout=timeout) res.raise_for_status() content_type = res.headers.get(CONTENT_TYPE, None) content = res.text if content_type and content_type.startswith(CONTENT_TYPE_JSON): # Quickfix to remove second key in bad API response key = '"FaxContainerFile":' if content.count(key) == 2: content = content[:content.rfind(key)].rstrip(',') + "}" return json.loads(content) else: return (content, content_type)
559d85ee8f7d21445e5cfa0acc464b3e9ad98fe3
3,640,870
def moveb_m_human(agents, self_state, self_name, c, goal): """ This method implements the following block-stacking algorithm: If there's a block that can be moved to its final position, then do so and call move_blocks recursively. Otherwise, if there's a block that needs to be moved and can be moved to the table, then do so and call move_blocks recursively. Otherwise, no blocks need to be moved. """ if self_name in self_state.isReachableBy[c] and c in goal.isOnStack and goal.isOnStack[c] and not self_state.isOnStack[c]: return [("human_pick", c), ("human_stack",)] return []
f99fd14b2091a1e8d0426dcef57ce33b96fc1352
3,640,871
import os def create_initialized_headless_egl_display(): """Creates an initialized EGL display directly on a device.""" devices = EGL.eglQueryDevicesEXT() if os.environ.get("EGL_DEVICE_ID", None) is not None: devices = [devices[int(os.environ["EGL_DEVICE_ID"])]] for device in devices: display = EGL.eglGetPlatformDisplayEXT( EGL.EGL_PLATFORM_DEVICE_EXT, device, None) if display != EGL.EGL_NO_DISPLAY and EGL.eglGetError() == EGL.EGL_SUCCESS: # `eglInitialize` may or may not raise an exception on failure depending # on how PyOpenGL is configured. We therefore catch a `GLError` and also # manually check the output of `eglGetError()` here. try: initialized = EGL.eglInitialize(display, None, None) except error.GLError: pass else: if initialized == EGL.EGL_TRUE and EGL.eglGetError() == EGL.EGL_SUCCESS: return display return EGL.EGL_NO_DISPLAY
5a0351936a6a4771869aed046da3f60ce1edd1bb
3,640,872
import tkinter def BooleanVar(default, callback=None): """ Return a new (initialized) `tkinter.BooleanVar`. @param default the variable initial value @param callback function to invoke whenever the variable changes its value @return the created variable """ return _var(tkinter.BooleanVar, default, callback)
451a43da5e9eb506fe8b928fa7f4e986c8da6b69
3,640,873
import re def parse_header(source): """Copied from textgrid.parse_header""" header = source.readline() # header junk m = re.match('File type = "([\w ]+)"', header) if m is None or not m.groups()[0].startswith('ooTextFile'): raise ValueError('The file could not be parsed as a Praat text file as ' 'it is lacking a proper header.') short = 'short' in m.groups()[0] file_type = parse_line(source.readline(), short, '') # header junk t = source.readline() # header junk return file_type, short
ff47296868f93cbe55d15b29a2245ceb14ed5460
3,640,874
from datetime import datetime def create_amsterdam(*args): """ Creates a new droplet with sensible defaults Usage: [name] Arguments: name: (optional) name to give the droplet; if missing, current timestamp """ name = datetime.datetime.utcnow().strftime("%Y-%m-%dT%H-%M-%S.%f") try: name = args[0] except: pass return create_small_droplet(name, 'ams2', 'ubuntu-17-04-x64')
ed01c67db180894bbcf2cdfee4cd2f45633cc637
3,640,875
def convert_inp(float_inp): """ Convert inp from decimal value (0.000, 0.333, 0.667, etc) to (0.0, 0.1, 0.2) for cleaner display. :param float float_inp: inning pitching float value :return: """ # Split inp into integer and decimal parts i_inp, d_inp = divmod(float_inp, 1) d_inp = d_inp*10 # Look at first digit of decimal part # NOTE: repr(3)[0] = 2 and repr(6) = 5, not sure why? if int(repr(d_inp)[0]) == 0: disp_inp = i_inp + 0.0 elif int(repr(d_inp)[0]) == 3 or int(repr(d_inp)[0]) == 2: disp_inp = i_inp + 0.1 elif int(repr(d_inp)[0]) == 6 or int(repr(d_inp)[0]) == 7 or int(repr(d_inp)[0]) == 5: disp_inp = i_inp + 0.2 else: print "{0} innings is not a standard amount!".format(float_inp) return None return disp_inp
ce0e196ca570b02787842db3ec2efb6ac529685c
3,640,876
from matplotlib import pyplot as plt from typing import Dict from typing import Any from typing import Optional from typing import Set from typing import Tuple import warnings def plot(pulse: PulseTemplate, parameters: Dict[str, Parameter]=None, sample_rate: Real=10, axes: Any=None, show: bool=True, plot_channels: Optional[Set[ChannelID]]=None, plot_measurements: Optional[Set[str]]=None, stepped: bool=True, maximum_points: int=10**6, time_slice: Tuple[Real, Real]=None, **kwargs) -> Any: # pragma: no cover """Plots a pulse using matplotlib. The given pulse template will first be turned into a pulse program (represented by a Loop object) with the provided parameters. The render() function is then invoked to obtain voltage samples over the entire duration of the pulse which are then plotted in a matplotlib figure. Args: pulse: The pulse to be plotted. parameters: An optional mapping of parameter names to Parameter objects. sample_rate: The rate with which the waveforms are sampled for the plot in samples per time unit. (default = 10) axes: matplotlib Axes object the pulse will be drawn into if provided show: If true, the figure will be shown plot_channels: If specified only channels from this set will be plotted. If omitted all channels will be. stepped: If true pyplot.step is used for plotting plot_measurements: If specified measurements in this set will be plotted. If omitted no measurements will be. maximum_points: If the sampled waveform is bigger, it is not plotted time_slice: The time slice to be plotted. If None, the entire pulse will be shown. kwargs: Forwarded to pyplot. Overwrites other settings. Returns: matplotlib.pyplot.Figure instance in which the pulse is rendered Raises: PlottingNotPossibleException if the sequencing is interrupted before it finishes, e.g., because a parameter value could not be evaluated all Exceptions possibly raised during sequencing """ channels = pulse.defined_channels if parameters is None: parameters = dict() program = pulse.create_program(parameters=parameters, channel_mapping={ch: ch for ch in channels}, measurement_mapping={w: w for w in pulse.measurement_names}) if program is not None: times, voltages, measurements = render(program, sample_rate, render_measurements=bool(plot_measurements), time_slice=time_slice) else: times, voltages, measurements = np.array([]), dict(), [] duration = 0 if times.size == 0: warnings.warn("Pulse to be plotted is empty!") elif times.size > maximum_points: # todo [2018-05-30]: since it results in an empty return value this should arguably be an exception, not just a warning warnings.warn("Sampled pulse of size {wf_len} is lager than {max_points}".format(wf_len=times.size, max_points=maximum_points)) return None else: duration = times[-1] if time_slice is None: time_slice = (0, duration) legend_handles = [] if axes is None: # plot to figure figure = plt.figure() axes = figure.add_subplot(111) if plot_channels is not None: voltages = {ch: voltage for ch, voltage in voltages.items() if ch in plot_channels} for ch_name, voltage in voltages.items(): label = 'channel {}'.format(ch_name) if stepped: line, = axes.step(times, voltage, **{**dict(where='post', label=label), **kwargs}) else: line, = axes.plot(times, voltage, **{**dict(label=label), **kwargs}) legend_handles.append(line) if plot_measurements: measurement_dict = dict() for name, begin, length in measurements: if name in plot_measurements: measurement_dict.setdefault(name, []).append((begin, begin+length)) color_map = plt.cm.get_cmap('plasma') meas_colors = {name: color_map(i/len(measurement_dict)) for i, name in enumerate(measurement_dict.keys())} for name, begin_end_list in measurement_dict.items(): for begin, end in begin_end_list: poly = axes.axvspan(begin, end, alpha=0.2, label=name, edgecolor='black', facecolor=meas_colors[name]) legend_handles.append(poly) axes.legend(handles=legend_handles) max_voltage = max((max(channel, default=0) for channel in voltages.values()), default=0) min_voltage = min((min(channel, default=0) for channel in voltages.values()), default=0) # add some margins in the presentation axes.set_xlim(-0.5+time_slice[0], time_slice[1] + 0.5) voltage_difference = max_voltage-min_voltage if voltage_difference>0: axes.set_ylim(min_voltage - 0.1*voltage_difference, max_voltage + 0.1*voltage_difference) axes.set_xlabel('Time (ns)') axes.set_ylabel('Voltage (a.u.)') if pulse.identifier: axes.set_title(pulse.identifier) if show: axes.get_figure().show() return axes.get_figure()
e417989116496e82aa6885f01e4ec864eb3cbd55
3,640,877
def is_ipv4(line): """检查是否是IPv4""" if line.find("ipv4") < 6: return False return True
bd602f5a9ac74d2bd115fe85c90490556932e068
3,640,878
def format_ica_lat(ff_lat): """ conversão de uma latitude em graus para o formato GGMM.mmmH @param ff_lat: latitude em graus @return string no formato GGMM.mmmH """ # logger # M_LOG.info(">> format_ica_lat") # converte os graus para D/M/S lf_deg, lf_min, lf_seg = deg2dms(ff_lat) # converte para GGMM.mmm lf_deg = (abs(lf_deg) * 100) + lf_min + (lf_seg / 60.) # return latitude # return "{}{:4.3f}".format('S' if ff_lat <= 0 else 'N', lf_deg) return "{:4.3f}{}".format(lf_deg, 'S' if ff_lat <= 0 else 'N')
d1e6f111e70ec7bd532e3d14afe3c90dc99cb8f8
3,640,879
def loadData (x_file="ass1_data/linearX.csv", y_file="ass1_data/linearY.csv"): """ Loads the X, Y matrices. Splits into training, validation and test sets """ X = np.genfromtxt(x_file) Y = np.genfromtxt(y_file) Z = [X, Y] Z = np.c_[X.reshape(len(X), -1), Y.reshape(len(Y), -1)] np.random.shuffle(Z) # Partition the data into three sets size = len(Z) training_size = int(0.8 * size) validation_size = int(0.1 * size) test_size = int(0.1 * size) training_Z = Z[0:training_size] validation_Z = Z[training_size:training_size+validation_size] test_Z = Z[training_size+validation_size:] return (Z[:,0], Z[:,1])
18fb7269f2b853b089494e6021d765d76a148711
3,640,880
async def retrieve_users(): """ Retrieve all users in collection """ users = [] async for user in user_collection.find(): users.append(user_parser(user)) return users
914969f7beb75a9409e370b9e2453c681c37ff42
3,640,881
import hashlib def get_file_hash(path): """파일 해쉬 구하기.""" hash = None md5 = hashlib.md5() with open(path, 'rb') as f: data = f.read() md5.update(data) hash = md5.hexdigest() info("get_file_hash from {}: {}".format(path, hash)) return hash
a024b0002c019ec9bae4fca40e68919c6236b2fa
3,640,882
from nipy.labs.spatial_models.discrete_domain import \ def apply_repro_analysis(dataset, thresholds=[3.0], method = 'crfx'): """ perform the reproducibility analysis according to the """ grid_domain_from_binary_array n_subj, dimx, dimy = dataset.shape func = np.reshape(dataset,(n_subj, dimx * dimy)).T var = np.ones((dimx * dimy, n_subj)) domain = grid_domain_from_binary_array(np.ones((dimx, dimy, 1))) ngroups = 5 sigma = 2.0 csize = 10 niter = 5 verbose = 0 swap = False kap, clt, pkd = [], [], [] for threshold in thresholds: kappa, cls, pks = [], [], [] kwargs = {'threshold':threshold, 'csize':csize} for i in range(niter): k = voxel_reproducibility(func, var, domain, ngroups, method, swap, verbose, **kwargs) kappa.append(k) cld = cluster_reproducibility(func, var, domain, ngroups, sigma, method, swap, verbose, **kwargs) cls.append(cld) pk = peak_reproducibility(func, var, domain, ngroups, sigma, method, swap, verbose, **kwargs) pks.append(pk) kap.append(np.array(kappa)) clt.append(np.array(cls)) pkd.append(np.array(pks)) kap = np.array(kap) clt = np.array(clt) pkd = np.array(pkd) return kap, clt, pkd
cffb667b80b0a049856dc7c11db6d81fd9521f49
3,640,883
def api_root(request): """ Logging root """ rtn = dict( message="Hello, {}. You're at the logs api index.".format(request.user.username), ) return Response(rtn)
b002724baefccdd0cd0dcc324fa23d9902186351
3,640,884
def load_data(filename: str): """ Load house prices dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ df = pd.read_csv(filename) df.dropna(inplace=True) df.drop(['long', 'date', 'lat', 'id'], axis=1, inplace=True) df = df.drop(df.index[df.bedrooms <= 0]) df = df.drop(df.index[df.sqft_living <= 0]) df = df.drop(df.index[df.floors <= 0]) df = df.drop(df.index[df.bathrooms < 0]) df = df.drop(df.index[df.price < 0]) # df = pd.get_dummies(df, columns=['zipcode']) df['yr_built_or_renovated'] = df[['yr_built', 'yr_renovated']].max(axis=1) df.drop(['yr_built', 'yr_renovated'], axis=1, inplace=True) price = df.pop('price') return df, price
412b197274ae4ca06e4cc7f9cd4b7d7b7c5934a0
3,640,885
def parse_esim_inst(line): """Parse a single line of an e-sim trace. Keep the original line for debugging purposes. >>> i0 = parse_esim_inst('0x000000 b.l 0x0000000000000058 - pc <- 0x58 - nbit <- 0x0') >>> ex0 = {'pc': 0, 'AN': False, 'instruction': 'b.l', 'line': '0x000000 b.l 0x0000000000000058 - pc <- 0x58 - nbit <- 0x0'} >>> i0 == ex0 True >>> i1 = parse_esim_inst('0x0000b0 --- _epiphany_star strd r2,[r0],+0x1 - memaddr <- 0x2f8, memory <- 0x0, memaddr <- 0x2fc, memory <- 0x0, registers <- 0x300') >>> ex1 = {'instruction': 'strd', 'line': '0x0000b0 --- _epiphany_star strd r2,[r0],+0x1 - memaddr <- 0x2f8, memory <- 0x0, memaddr <- 0x2fc, memory <- 0x0, registers <- 0x300', 'mem': [(760, 0), (764, 0)], 'pc': 176, 'reg': [768]} >>> i1 == ex1 True """ inst = dict() tokens = line.split() if not tokens: return inst inst['line'] = line inst['pc'] = int(tokens[0], 16) inst['instruction'] = tokens[3] if tokens[1] == '---' else tokens[1] for index, tok in enumerate(tokens[1:]): if tok == 'registers' or tok == 'core-registers': # Writing to a register. value = int(tokens[1:][index + 2].split(',')[0], 16) if 'reg' in inst: inst['reg'].append(value) else: inst['reg'] = [value] elif tok == 'memaddr': # Writing to memory. addr = tokens[1:][index + 2].split(',')[0] addr = int(addr, 16) value = tokens[1:][index + 5].split(',')[0] value = int(value, 16) if 'mem' in inst: inst['mem'].append((addr, value)) else: inst['mem'] = [(addr, value)] else: # Next tok might be a flag. if tok in _e_flags.keys(): state = tokens[1:][index + 2].split(',')[0] inst[_e_flags[tok]] = state == '0x1' # Otherwise ignore and continue. return inst
c9bc221d8658219edc3759584ece76a56954ccd4
3,640,886
def getcollength(a): """ Get the length of a matrix view object """ t=getType(a) f={'mview_f':vsip_mgetcollength_f, 'mview_d':vsip_mgetcollength_d, 'mview_i':vsip_mgetcollength_i, 'mview_si':vsip_mgetcollength_si, 'mview_uc':vsip_mgetcollength_uc, 'cmview_f':vsip_cmgetcollength_f, 'cmview_d':vsip_cmgetcollength_d, 'mview_bl':vsip_mgetcollength_bl } assert t[0] and t[1] in f,'Type <:%s:> not a supported type for for getcollength'%t[1] return f[t[1]](a)
fe4b4c69f1631c0e571cd1590aa8eeb8fa5bc7bb
3,640,887
from unittest.mock import patch def test_coinbase_query_balances(function_scope_coinbase): """Test that coinbase balance query works fine for the happy path""" coinbase = function_scope_coinbase def mock_coinbase_accounts(url, timeout): # pylint: disable=unused-argument response = MockResponse( 200, """ { "pagination": { "ending_before": null, "starting_after": null, "limit": 25, "order": "desc", "previous_uri": null, "next_uri": null }, "data": [ { "id": "58542935-67b5-56e1-a3f9-42686e07fa40", "name": "My Vault", "primary": false, "type": "vault", "currency": "BTC", "balance": { "amount": "4.00000000", "currency": "BTC" }, "created_at": "2015-01-31T20:49:02Z", "updated_at": "2015-01-31T20:49:02Z", "resource": "account", "resource_path": "/v2/accounts/58542935-67b5-56e1-a3f9-42686e07fa40", "ready": true }, { "id": "2bbf394c-193b-5b2a-9155-3b4732659ede", "name": "My Wallet", "primary": true, "type": "wallet", "currency": "ETH", "balance": { "amount": "39.59000000", "currency": "ETH" }, "created_at": "2015-01-31T20:49:02Z", "updated_at": "2015-01-31T20:49:02Z", "resource": "account", "resource_path": "/v2/accounts/2bbf394c-193b-5b2a-9155-3b4732659ede" }, { "id": "68542935-67b5-56e1-a3f9-42686e07fa40", "name": "Another Wallet", "primary": false, "type": "vault", "currency": "BTC", "balance": { "amount": "1.230000000", "currency": "BTC" }, "created_at": "2015-01-31T20:49:02Z", "updated_at": "2015-01-31T20:49:02Z", "resource": "account", "resource_path": "/v2/accounts/68542935-67b5-56e1-a3f9-42686e07fa40", "ready": true } ] } """, ) return response with patch.object(coinbase.session, 'get', side_effect=mock_coinbase_accounts): balances, msg = coinbase.query_balances() assert msg == '' assert len(balances) == 2 assert balances[A_BTC].amount == FVal('5.23') assert balances[A_BTC].usd_value == FVal('7.8450000000') assert balances[A_ETH].amount == FVal('39.59') assert balances[A_ETH].usd_value == FVal('59.385000000') warnings = coinbase.msg_aggregator.consume_warnings() errors = coinbase.msg_aggregator.consume_errors() assert len(warnings) == 0 assert len(errors) == 0
d25d8d31ae5a7c22559c322edeed53404fc179ab
3,640,888
def process_phase_boundary(fname): """ Processes the phase boundary file, computed mean and standard deviations """ singlets = [] chem_pot = [] temperatures = [] with h5.File(fname, 'r') as hfile: for name in hfile.keys(): grp = hfile[name] singlets.append(np.array(grp["singlets"])) chem_pot.append(np.array(grp["chem_pot"])) temperatures.append(np.array(grp["temperatures"])) max_temp = 0.0 min_temp = 10000000.0 for temp_array in temperatures: if np.max(temp_array) > max_temp: max_temp = np.max(temp_array) if np.min(temp_array) < min_temp: min_temp = np.min(temp_array) temp_linspace = np.linspace(min_temp, max_temp, 200) result = {} result["chem_pot"] = [] result["std_chem_pot"] = [] result["singlets"] = [] result["std_singlets"] = [] result["num_visits"] = [] result["temperature"] = temp_linspace for sing_dset in singlets: if np.any(sing_dset.shape != singlets[0].shape): msg = "Invalid file! Looks like it contains phase boundary\n" msg += " data for different systems" raise ValueError(msg) num_chem_pots = chem_pot[0].shape[1] for i in range(num_chem_pots): mu_averager = DatasetAverager(temp_linspace) for temps, mu in zip(temperatures, chem_pot): mu_averager.add_dataset(temps, mu[:,i]) mu_res = mu_averager.get() result["chem_pot"].append(mu_res["y_values"]) result["std_chem_pot"].append(mu_res["std_y"]) result["num_visits"].append(mu_res["num_visits"]) num_singlets = singlets[0].shape[1] for i in range(num_chem_pots): for temp, singl in zip(temperatures, singlets): singlet_averager = DatasetAverager(temp_linspace) singlet = [] std_singlet = [] for j in range(num_singlets): singlet_averager.add_dataset(temps, singl[:,j,i]) singl_res = singlet_averager.get() singlet.append(singl_res["y_values"]) std_singlet.append(singl_res["std_y"]) result["singlets"].append(singlet) result["std_singlets"].append(std_singlet) return result
4e7f01e3265566f03fa4e7e21f13cb48a1777c9c
3,640,889
from sys import argv from argparse import ArgumentParser import os from re import DEBUG def main(): """Entry point for the check_model script. Returns ------- :class:`int` An integer suitable for passing to :func:`sys.exit`. """ desc = """Check actual files against the data model for validity. """ parser = ArgumentParser(description=desc, prog=os.path.basename(argv[0])) parser.add_argument('-d', '--datamodel-dir', dest='desidatamodel', metavar='DIR', help='Override the value of DESIDATAMODEL.') parser.add_argument('-F', '--compare-files', dest='files', action='store_true', help='Compare an individual data model to an individual file.') parser.add_argument('-W', '--warning-is-error', dest='error', action='store_true', help='Data model warnings raise exceptions.') parser.add_argument('-v', '--verbose', dest='verbose', action='store_true', help='Set log level to DEBUG.') parser.add_argument('section', metavar='DIR or FILE', help='Section of the data model or individual model file.') parser.add_argument('directory', metavar='DIR or FILE', help='Check files in this top-level directory, or one individual file.') options = parser.parse_args() if options.verbose: log.setLevel(DEBUG) if 'DESIDATAMODEL' in os.environ: data_model_root = os.environ['DESIDATAMODEL'] else: if options.desidatamodel is not None: data_model_root = options.desidatamodel else: log.critical(("DESIDATAMODEL is not defined. " + "Cannot find data model files!")) return 1 log.debug("DESIDATAMODEL=%s", data_model_root) if options.files: filename = os.path.join(data_model_root, 'doc', options.section) section = os.path.join(data_model_root, 'doc', options.section.split('/')[0]) log.info("Loading individual data model: %s.", filename) files = [DataModel(filename, section)] log.info("Skipping regular expression processing.") # files[0].get_regexp(options.directory, error=options.error) log.info("Setting prototype file for %s to %s.", filename, options.directory) files[0].prototype = options.directory else: section = os.path.join(data_model_root, 'doc', options.section) log.info("Loading data model file in %s.", section) files = scan_model(section) log.info("Searching for data files in %s.", options.directory) files_to_regexp(options.directory, files, error=options.error) log.info("Identifying prototype files in %s.", options.directory) collect_files(options.directory, files) validate_prototypes(files, error=options.error) return 0
c82f3acef0cbca485611cb20b9b1121ea497306b
3,640,890
def blackman_window(shape, normalization=1): """ Create a 3d Blackman window based on shape. :param shape: tuple, shape of the 3d window :param normalization: value of the integral of the backman window :return: the 3d Blackman window """ nbz, nby, nbx = shape array_z = np.blackman(nbz) array_y = np.blackman(nby) array_x = np.blackman(nbx) blackman2 = np.ones((nbz, nby)) blackman3 = np.ones((nbz, nby, nbx)) for idz in range(nbz): blackman2[idz, :] = array_z[idz] * array_y for idy in range(nby): blackman3[idz, idy] = blackman2[idz, idy] * array_x blackman3 = blackman3 / blackman3.sum() * normalization return blackman3
45ae8132aad01319e1728f0a4355dda4d5d7d145
3,640,891
def asset_movements_from_dictlist(given_data, start_ts, end_ts): """ Gets a list of dict asset movements, most probably read from the json files and a time period. Returns it as a list of the AssetMovement tuples that are inside the time period """ returned_movements = list() for movement in given_data: if movement['timestamp'] < start_ts: continue if movement['timestamp'] > end_ts: break returned_movements.append(AssetMovement( exchange=movement['exchange'], category=movement['category'], timestamp=movement['timestamp'], asset=movement['asset'], amount=FVal(movement['amount']), fee=FVal(movement['fee']), )) return returned_movements
b21355ad65c2603559ea00650d4ea6dd2a7d94f0
3,640,892
def update_work(work_id): """ Route permettant de modifier les données d'une collection :param work_id: ID de l'oeuvre récupérée depuis la page oeuvre :return: redirection ou template update-work.html :rtype: template """ if request.method == "GET": updateWork = Work.query.get(work_id) return render_template("pages/update-work.html", updateWork=updateWork) else: status, data = Work.update_work( work_id=work_id, title=request.form.get("title", None), author=request.form.get("author", None), date=request.form.get("date", None), medium=request.form.get("medium", None), dimensions=request.form.get("dimensions", None), image=request.form.get("image", None) ) if status is True: flash("Modification réussie !", "success") return redirect("/collections") else: flash("Les erreurs suivantes ont été rencontrées : " + ", ".join(data), "danger") updateWork = Work.query.get(work_id) return render_template("pages/update-work.html", nom="CollectArt", updateWork=updateWork)
aed65c45d53fa9d7b551df6909fdece488f2ab65
3,640,893
def login_view(request): """Login user view""" if request.method == 'POST': email = request.POST.get('email') password = request.POST.get('password') user = authenticate(request, username=email, password=password) if user is not None: login(request, user) return redirect('/') else: messages.info(request, 'Username Or Password is incorrect.') context = {} return render(request, 'pages/login.html', context)
702a3aa5a90cd5a5386a4fa3b74ab4b36d3748bb
3,640,894
import torch import random import os def set_seed(seed: int) -> RandomState: """ Method to set seed across runs to ensure reproducibility. It fixes seed for single-gpu machines. Args: seed (int): Seed to fix reproducibility. It should different for each run Returns: RandomState: fixed random state to initialize dataset iterators """ torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # set to false for reproducibility, True to boost performance torch.manual_seed(seed) np.random.seed(seed) torch.cuda.manual_seed(seed) random.seed(seed) random_state = random.getstate() os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" return random_state
af0117e54dd03751d1173f32ae495f1003cadb35
3,640,895
def mse(im1, im2): """Compute the Mean Squared Error. Compute the Mean Squared Error between the two images, i.e. sum of the squared difference. Args: im1 (ndarray): First array. im2 (ndarray): Second array. Returns: float: Mean Squared Error. """ im1 = np.asarray(im1) im2 = np.asarray(im2) if im1.shape != im2.shape: raise ValueError("Shape mismatch: im1 and im2 must have the same shape.") err = np.sum((im1.astype("float") - im2.astype("float")) ** 2) err /= float(im1.shape[0] * im1.shape[1]) return err
3d14472d3eb211855b53174990c3201bbae49086
3,640,896
import torch def bert_text_preparation(text, tokenizer): """Preparing the input for BERT Takes a string argument and performs pre-processing like adding special tokens, tokenization, tokens to ids, and tokens to segment ids. All tokens are mapped to seg- ment id = 1. Args: text (str): Text to be converted tokenizer (obj): Tokenizer object to convert text into BERT-re- adable tokens and ids Returns: list: List of BERT-readable tokens obj: Torch tensor with token ids obj: Torch tensor segment ids """ marked_text = "[CLS] " + text + " [SEP]" tokenized_text = tokenizer.tokenize(marked_text) indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text) segments_ids = [1]*len(indexed_tokens) # Convert inputs to PyTorch tensors tokens_tensor = torch.tensor([indexed_tokens]) segments_tensors = torch.tensor([segments_ids]) return tokenized_text, tokens_tensor, segments_tensors
f9b3de4062fd0cc554e51bd02c750daea0a8250c
3,640,897
def possibly_equal(first, second): """Equality comparison that propagates uncertainty. It represents uncertainty using its own function object.""" if first is possibly_equal or second is possibly_equal: return possibly_equal #Propagate the possibilities return first == second
12662df45d6ee0c6e1aadb6a5c4c0ced9352af35
3,640,898
def get_logs(): """ Endpoint used by Slack /logs command """ req = request.values logger.info(f'Log request received: {req}') if not can_view_logs(req['user_id']): logger.info(f"{req['user_name']} attempted to view logs and was denied") return make_response("You are not authorized to do that.", 200) url = get_temporary_url(req['user_id'], req['text']) logger.info(f"Created log URL for {req['user_name']} : {url.url}") return make_response(f'{request.host_url}logs/{url.url}', 200)
9708515dbd70c6e817f21c474fa1e96a26a1e9b4
3,640,899