content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def parse_variable_char(packed): """ Map a 6-bit packed char to ASCII """ packed_char = packed if packed_char == 0: return "" if 1 <= packed_char <= 10: return chr(ord('0') - 1 + packed_char) elif 11 <= packed_char <= 36: return chr(ord('A') - 11 + packed_char) elif 37 <= packed_char <= 62: return chr(ord('a') - 37 + packed_char) else: return "_"
e4ff95bca48ae97a22c20dda4fd82e082c32be27
3,639,800
def get_feature_vector(feature_id, cohort_id_array): """ Fetches the data from BigQuery tables for a given feature identifier and one or more stored cohorts. Returns the intersection of the samples defined by the feature identifier and the stored cohort. Each returned data point is represented as a dict containing patient, sample and aliquot barcodes, and the value as defined by the feature identifier. Args: feature_id: Feature identifier cohort_id_array: Array of cohort identifiers (integers) Returns: Data as an array of dicts. """ provider = FeatureProviderFactory.from_feature_id(feature_id) cohort_settings = settings.GET_BQ_COHORT_SETTINGS() result = provider.get_data(cohort_id_array, cohort_settings.dataset_id, cohort_settings.table_id) items = [] for data_point in result: data_item = {key: data_point[key] for key in ['case_id', 'sample_id', 'aliquot_id']} value = provider.process_data_point(data_point) # TODO refactor missing value logic if value is None: value = 'NA' data_item['value'] = value items.append(data_item) return provider.get_value_type(), items
9aee52ef43f964d8d524390fbd5bdc49e91dcdf2
3,639,801
def analyse(tx): """ Analyses a given set of features. Marks the features with zero variance as the features to be deleted from the data set. Replaces each instance of a null(-999) valued feature point with the mean of the non null valued feature points. Also handles the outliers by clipping the very large and very small features. Args: tx: the numpy array representing the given set of features Returns: columns_to_remove: indices of the features with zero variance, which will be removed from the numpy array """ num_cols = tx.shape[1] print('\nNumber of columns in the data matrix: ', num_cols) columns_to_remove = [] print('Analysis for data:\n') for col in range(num_cols): current_col = tx[:, col] if len(np.unique(current_col)) == 1: print('The column with index ', col, ' is all the same, it will be deleted.') columns_to_remove.append(col) else: current_col[current_col == -999] = np.median(current_col[current_col != -999]) # Handling the outliers std_current_col = np.std(current_col) mean_current_col = np.mean(current_col) lower_bound = mean_current_col - 2 * std_current_col upper_bound = mean_current_col + 2 * std_current_col current_col[current_col < lower_bound] = lower_bound current_col[current_col > upper_bound] = upper_bound print('null values in the ', col, ' indexed column are replaced with the mean and outliers are handled.') return columns_to_remove
2bfd46b2cb70da9822a4a86f588e187ab941ea88
3,639,802
import regex def validate_word_syntax(word): """ This function is designed to validate that the syntax for a string variable is acceptable. A validate format is English words that only contain alpha characters and hyphens. :param word: string to validate :return: boolean true or false """ if len(word) == 0: return False else: temp = regex.match(r'^[a-zA-Z-\s]*$', word.strip()) if temp: return True else: return False
47b732ffc0c2c91c5a092d7367b49bb8946697be
3,639,803
def next_page(context): """ Get the next page for signup or login. The query string takes priority over the template variable and the default is an empty string. """ if "next" in context.request.GET: return context.request.GET["next"] if "next" in context.request.POST: return context.request.POST["next"] if "next" in context: return context["next"] return ""
6abc1c8ef260366e53f335a27ee42f0356c91b63
3,639,804
import numpy def make_train_test_sets(input_matrix, label_matrix, train_per_class): """Return ((training_inputs, training_labels), (testing_inputs, testing_labels)). Args: input_matrix: attributes matrix. Each row is sample, each column is attribute. label_matrix: labels matrix. Each row is sample, each column is label. train_per_class: Number of samples for each class in training set. """ training_inputs = [] training_labels = [] testing_inputs = [] testing_labels = [] label_counts = {} # Add each row to training or testing set depending on count of labels for input_, label in zip(input_matrix, label_matrix): key = tuple(label) try: count = label_counts[key] except KeyError: # First time seeing label, count is 0 count = 0 if count < train_per_class: # Still need more training samples for this label training_inputs.append(input_) training_labels.append(label) else: # We have enough training samples for this label, # add to testing set instead testing_inputs.append(input_) testing_labels.append(label) label_counts[key] = count + 1 if testing_inputs == []: raise ValueError('train_per_class too high, no testing set') return ((numpy.array(training_inputs), numpy.array(training_labels)), (numpy.array(testing_inputs), numpy.array(testing_labels)))
bd71f48ed9405a89dfa42b3cb6cfe45b064a6b4d
3,639,805
def add_coords_table(document: Document, cif: CifContainer, table_num: int): """ Adds the table with the atom coordinates. :param document: The current word document. :param cif: the cif object from CifContainer. :return: None """ atoms = list(cif.atoms()) table_num += 1 headline = "Table {}. Atomic coordinates and ".format(table_num) h = document.add_heading(headline, 2) h.add_run('U').font.italic = True h.add_run('eq').font.subscript = True h.add_run('{}[{}'.format(protected_space, angstrom)) h.add_run('2').font.superscript = True h.add_run('] for {}'.format(cif.block.name)) coords_table = document.add_table(rows=len(atoms) + 1, cols=5, style='Table Grid') # Atom x y z U(eq) head_row = coords_table.rows[0] head_row.cells[0].paragraphs[0].add_run('Atom').bold = True px = head_row.cells[1].paragraphs[0] ar = px.add_run('x') ar.bold = True ar.italic = True py = head_row.cells[2].paragraphs[0] ar = py.add_run('y') ar.bold = True ar.italic = True pz = head_row.cells[3].paragraphs[0] ar = pz.add_run('z') ar.bold = True ar.italic = True pu = head_row.cells[4].paragraphs[0] ar = pu.add_run('U') ar.bold = True ar.italic = True ar2 = pu.add_run('eq') ar2.bold = True ar2.font.subscript = True # having a list of column cells before is *much* faster! col0_cells = coords_table.columns[0].cells col1_cells = coords_table.columns[1].cells col2_cells = coords_table.columns[2].cells col3_cells = coords_table.columns[3].cells col4_cells = coords_table.columns[4].cells rowidx = 1 for at in atoms: c0, c1, c2, c3, c4 = col0_cells[rowidx], col1_cells[rowidx], col2_cells[rowidx], \ col3_cells[rowidx], col4_cells[rowidx] rowidx += 1 c0.text = at[0] # label c1.text = (str(at[2])) # x c2.text = (str(at[3])) # y c3.text = (str(at[4])) # z c4.text = (str(at[7])) # ueq p = document.add_paragraph() p.style = document.styles['tabunterschr'] p.add_run('U').font.italic = True p.add_run('eq').font.subscript = True p.add_run(' is defined as 1/3 of the trace of the orthogonalized ') p.add_run('U').font.italic = True ij = p.add_run('ij') ij.font.subscript = True ij.font.italic = True p.add_run(' tensor.') set_column_width(coords_table.columns[0], Cm(2.3)) set_column_width(coords_table.columns[1], Cm(2.8)) set_column_width(coords_table.columns[2], Cm(2.8)) set_column_width(coords_table.columns[3], Cm(2.8)) set_column_width(coords_table.columns[4], Cm(2.8)) document.add_paragraph() return table_num
6b351138624bd530739d199898fbc4f0cfb56bb1
3,639,806
import numpy def bz(xp, yp, zp, spheres): """ Calculates the z component of the magnetic induction produced by spheres. .. note:: Input units are SI. Output is in nT Parameters: * xp, yp, zp : arrays The x, y, and z coordinates where the anomaly will be calculated * spheres : list of :class:`fatiando.mesher.Sphere` The spheres. Spheres must have the physical property ``'magnetization'``. Spheres without ``'magnetization'`` will be ignored. The ``'magnetization'`` must be a vector. Returns: * bz: array The z component of the magnetic induction Example: >>> from fatiando import mesher, gridder, utils >>> # Create a model formed by two spheres >>> # The magnetization of each sphere is a vector >>> model = [ ... mesher.Sphere(1000, 1000, 600, 500, ... {'magnetization':utils.ang2vec(13, -10, 28)}), ... mesher.Sphere(-1000, -1000, 600, 500, ... {'magnetization':utils.ang2vec(10, 70, -5)})] >>> # Create a regular grid at 100m height >>> shape = (4, 4) >>> area = (-3000, 3000, -3000, 3000) >>> xp, yp, zp = gridder.regular(area, shape, z=-100) >>> # Calculate the bz component >>> for b in bz(xp, yp, zp, model): ... print '%15.8e' % b -1.13152279e+01 -3.24362266e+01 -1.63235805e+01 -4.48136597e+00 -1.27492012e+01 2.89101261e+03 -1.30263918e+01 -9.64182996e+00 -6.45566985e+00 3.32987598e+01 -7.08905624e+02 -5.55139945e+01 -1.35745203e+00 2.91949888e+00 -2.78345635e+01 -1.69425703e+01 """ if xp.shape != yp.shape != zp.shape: raise ValueError("Input arrays xp, yp, and zp must have same shape!") size = len(xp) res = numpy.zeros(size, dtype=numpy.float) for sphere in spheres: if sphere is None or ('magnetization' not in sphere.props): continue # Get the magnetization vector components mx, my, mz = sphere.props['magnetization'] _sphere.bz(xp, yp, zp, sphere.x, sphere.y, sphere.z, sphere.radius, mx, my, mz, res) res *= CM * T2NT return res
16d85978e50de16ab6af91c6ee83392b7fa43e3e
3,639,807
def update_stocks(): """ method to update the data (used by the spark service) :return: """ global stocks body = request.get_json(silent=True) ''' { "data" : [ { "symbol" : "string", "ask_price" : "string", "last_sale_time" : "string", "timestamp" : 0 } ], "companies" : { "symbol_x" : "string" } } ''' data = body['data'] companies = body['companies'] for stock_data in data: symbol = stock_data['symbol'] # if stock does not exist if symbol not in stocks: obj = { 'companyName': companies[symbol], 'stockPrices': [ { 'value': stock_data['ask_price'], 'timestamp': stock_data['timestamp'] } ] } stocks[symbol] = obj else: # add to existing stock stocks[symbol]['stockPrices'].append({'value': stock_data['ask_price'], 'timestamp': stock_data['timestamp']}) return "{}", 200
f1db3a9a1ba7cd20aad2e8ddc0bea66997ef11dd
3,639,808
from typing import Iterable from re import T from typing import Sequence import itertools def chunks_from_iterable(iterable: Iterable[T], size: int) -> Iterable[Sequence[T]]: """Generate adjacent chunks of data""" it = iter(iterable) return iter(lambda: tuple(itertools.islice(it, size)), ())
76bf5a8742f082da860caec477c72338fcc4510e
3,639,809
import os def load_ct_phantom(phantom_dir): """ load the CT data from a directory Parameters ---------- phantom_dir : str The directory contianing the CT data to load Returns ------- ndarray the CT data array list the spacing property for this CT """ # dicom parameters dcm = dicom.read_file(phantom_dir + "image_0") row_pixel = dcm.Rows col_pixel = dcm.Columns row_pixel_spacing = np.round(dcm.PixelSpacing[0], 2) col_pixel_spacing = np.round(dcm.PixelSpacing[1], 2) slice_thickness = np.round(dcm.SliceThickness, 2) num_slices = len(os.listdir(phantom_dir)) phantom = np.zeros((num_slices, row_pixel, col_pixel)) for i in range(num_slices): dcm = dicom.read_file(phantom_dir + "image_" + str(i)) dcm.image = dcm.pixel_array * dcm.RescaleSlope + dcm.RescaleIntercept phantom[i, :, :] = dcm.image.copy() # Volume Parameters: volume_size = [slice_thickness, row_pixel_spacing, col_pixel_spacing] return phantom, volume_size
6344889d0b363062754191282d1c96c29f2bea2d
3,639,810
from typing import Dict def summary_overall(queryset: QuerySet) -> Dict[str, Decimal]: """Summarizes how much money was spent""" amount_sum = sum([value[0] for value in queryset.values_list('amount')]) return {'overall': amount_sum}
6d2d276ca891f99ac171001c99ff0d90b530a5b1
3,639,811
import torch def _get_trained_ann(train_exo: "ndarray", train_meth: "ndarray") -> "QdaisANN2010": """Return trained ANN.""" train_data = BiogasData(train_exo, train_meth) ann = QdaisANN2010(train_data.train_exo.shape[1]) try: ann.load_state_dict(torch.load("./assets/ann.pt")) except IOError: optimizer = optim.Adam(ann.parameters()) scheduler = ReduceLROnPlateau(optimizer) criterion = nn.MSELoss() train_loader = DataLoader(train_data, batch_size=64, shuffle=True) for _ in range(1024): # number of epochs running_loss = 0 for _, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() loss = criterion(ann(inputs), labels) loss.backward() optimizer.step() running_loss += loss.item() scheduler.step(running_loss) print(f"Running loss: {running_loss / len(train_data)}", end="\r", flush=True) torch.save(ann.state_dict(), "./assets/ann.pt") return ann
08bd38450e217c00643ab7fefe1c1860fc5d1ebf
3,639,812
def pi_float(): """native float""" lasts, t, s, n, na, d, da = 0, 3.0, 3, 1, 0, 0, 24 while s != lasts: lasts = s n, na = n+na, na+8 d, da = d+da, da+32 t = (t * n) / d s += t return s
8a6a6a5942ddd61ecdf65b782bb2fc0f0519ddb5
3,639,813
def iso3_to_country(iso3): """ Take user input and convert it to the short version of the country name """ if iso3 == 'Global': return 'Global' country = coco.convert(names=iso3, to='name_short') return country
2c2904ba8befe802d531b371f046ff4a3ba4db22
3,639,814
def test_bivariate(N, n_neighbors, rng, noise): """Test with bivariate normal variables""" mu = np.zeros(2) cov = np.array([[1., 0.8], [0.8, 1.0]]) xy_gauss = rng.multivariate_normal(mu, cov, size=N) x, y = xy_gauss[:, 0], xy_gauss[:, 1] z = rng.normal(size=N) cmi_analytic = -0.5 * np.log(det(cov)) cmi = compute_cmi(x, y, z, n_neighbors, noise) mi = compute_mi(x, y, n_neighbors, noise) return [cmi, mi, cmi_analytic]
827b968c6333402066d1fa4282ce90c2cdb175f5
3,639,815
import math def osm_tile_number_to_latlon(xtile, ytile, zoom): """ Returns the latitude and longitude of the north west corner of a tile, based on the tile numbers and the zoom level""" n = 2.0 ** zoom lon_deg = xtile / n * 360.0 - 180.0 lat_rad = math.atan(math.sinh(math.pi * (1 - 2 * ytile / n))) lat_deg = math.degrees(lat_rad) return (lat_deg, lon_deg)
8afbbb218835311bebcfe6a0d611e0e62bfcffc3
3,639,816
def prodtab_111(): """ produces angular distance from [1,1,1] plane with other planes up to (321) type """ listangles_111 = [anglebetween([1, 1, 1], elemref) for elemref in LISTNEIGHBORS_111] return np.array(listangles_111)
cb49c087e5b5090bca788f9c33862c37c42c2f1c
3,639,817
def cuda_cos(a): """ Trigonometric cosine of GPUArray elements. Parameters: a (gpu): GPUArray with elements to be operated on. Returns: gpu: cos(GPUArray) Examples: >>> a = cuda_cos(cuda_give([0, pi / 4])) array([ 1., 0.70710678]) >>> type(a) <class 'pycuda.gpuarray.GPUArray'> """ return pycuda.cumath.cos(a)
e411bde08f133c8f9109ff5815f44a3ff5262282
3,639,818
from typing import Counter def top_diffs(spect: list, num_acids: int) -> list: """Finds at least num_acids top differences in [57, 200] Accepts ties :param spect: a cyclic spectrum to find differences in :type spect: list (of ints) :type keep: int :returns: the trimmed leaderboard :rtype: list (of lists (of ints)) """ # must be sorted & start with 0 spect.sort() if spect[0] != 0: spect.insert(0, 0) diffs = [spect[i] - spect[j] for i in range(1, len(spect)) for j in range(i - 1, -1, -1)] acids = [] last_count = 0 for mass, count in Counter(diffs).most_common(): # leave if over min AND not tying min if len(acids) >= num_acids and count < last_count: break # restricted weight for amino acid masses if 57 <= mass <= 200: acids.append(mass) last_count = count return acids
1ca2b08f6ecbf69b1ab2189b1cbbff9b4e1c2e8d
3,639,819
import typing def form_sized_range(range_: Range, substs) -> typing.Tuple[ SizedRange, typing.Optional[Symbol] ]: """Form a sized range from the original raw range. The when a symbol exists in the ranges, it will be returned as the second result, or the second result will be none. """ if not range_.bounded: raise ValueError( 'Invalid range for optimization', range_, 'expecting explicit bound' ) lower, upper = [ i.xreplace(substs) for i in [range_.lower, range_.upper] ] size_expr = upper - lower size, symb = form_size(size_expr) return SizedRange(range_.label, size), symb
ac0d4299198f0e5611acb8167107f56f2b49bb0f
3,639,820
def create_html_app(): # pragma: no cover """Returns WSGI app that serves HTML pages.""" app = webapp2.WSGIApplication( handlers.get_frontend_routes(), debug=utils.is_local_dev_server()) gae_ts_mon.initialize(app, cron_module='backend') return app
c1d9320b9f795466f28a511180f9949ec9c6ecbd
3,639,821
def line_integrals(vs, uloc, vloc, kind="same"): """ calculate line integrals along all islands Arguments: kind: "same" calculates only line integral contributions of an island with itself, while "full" calculates all possible pairings between all islands. """ if kind == "same": s1 = s2 = (slice(None), slice(None), slice(None)) elif kind == "full": s1 = (slice(None), slice(None), np.newaxis, slice(None)) s2 = (slice(None), slice(None), slice(None), np.newaxis) else: raise ValueError("kind must be 'same' or 'full'") east = vloc[1:-2, 1:-2, :] * vs.dyu[np.newaxis, 1:-2, np.newaxis] \ + uloc[1:-2, 2:-1, :] \ * vs.dxu[1:-2, np.newaxis, np.newaxis] \ * vs.cost[np.newaxis, 2:-1, np.newaxis] west = -vloc[2:-1, 1:-2, :] * vs.dyu[np.newaxis, 1:-2, np.newaxis] \ - uloc[1:-2, 1:-2, :] \ * vs.dxu[1:-2, np.newaxis, np.newaxis] \ * vs.cost[np.newaxis, 1:-2, np.newaxis] north = vloc[1:-2, 1:-2, :] * vs.dyu[np.newaxis, 1:-2, np.newaxis] \ - uloc[1:-2, 1:-2, :] \ * vs.dxu[1:-2, np.newaxis, np.newaxis] \ * vs.cost[np.newaxis, 1:-2, np.newaxis] south = -vloc[2:-1, 1:-2, :] * vs.dyu[np.newaxis, 1:-2, np.newaxis] \ + uloc[1:-2, 2:-1, :] \ * vs.dxu[1:-2, np.newaxis, np.newaxis] \ * vs.cost[np.newaxis, 2:-1, np.newaxis] east = np.sum(east[s1] * (vs.line_dir_east_mask[1:-2, 1:-2] & vs.boundary_mask[1:-2, 1:-2])[s2], axis=(0, 1)) west = np.sum(west[s1] * (vs.line_dir_west_mask[1:-2, 1:-2] & vs.boundary_mask[1:-2, 1:-2])[s2], axis=(0, 1)) north = np.sum(north[s1] * (vs.line_dir_north_mask[1:-2, 1:-2] & vs.boundary_mask[1:-2, 1:-2])[s2], axis=(0, 1)) south = np.sum(south[s1] * (vs.line_dir_south_mask[1:-2, 1:-2] & vs.boundary_mask[1:-2, 1:-2])[s2], axis=(0, 1)) return east + west + north + south
8808c3afd4374465bd64aa0db658d8843a74a4da
3,639,822
def crop_black_borders(image, threshold=0): """Crops any edges below or equal to threshold Crops blank image to 1x1. Returns cropped image. """ if len(image.shape) == 3: flatImage = np.max(image, 2) else: flatImage = image assert len(flatImage.shape) == 2 rows = np.where(np.max(flatImage, 0) > threshold)[0] if rows.size: cols = np.where(np.max(flatImage, 1) > threshold)[0] image = image[cols[0]: cols[-1] + 1, rows[0]: rows[-1] + 1] else: image = image[:1, :1] return image
77ec884f4f173844f5d5124a29bb94eb641e25ec
3,639,823
def change_password(): """Allows user to change password""" # Forget any user_id session.clear() # User reached route via POST (as by submitting a form via POST) if request.method == "POST": # If password and confirmation don't match, accuse error if request.form.get("new_password") != request.form.get("new_confirmation"): flash("The New Password and the Confirmation don't match. Try again.") return render_template("change.html") else: # Query database for username rows = db.execute( "SELECT * FROM users WHERE username = ?", request.form.get("username") ) # Ensure username exists and password is correct if len(rows) != 1 or not check_password_hash( rows[0]["hash"], request.form.get("old_password") ): flash("Invalid username and/or password.") return render_template("change.html") else: # Hashes new password before storying it into the database pass_hash = generate_password_hash( request.form.get("new_password"), method="pbkdf2:sha256", salt_length=8, ) # Store usersname and password into database db.execute( "UPDATE users SET hash = ? WHERE username = ?", pass_hash, request.form.get("username"), ) # Display a flash message that the password was changed flash("Password changed!") return render_template("change.html") # Request method = GET else: return render_template("change.html")
afff43726d3e30a1ea09af20df1099b00c14b843
3,639,824
def add_placeholders(components): """Add placeholders for missing DATA/INSTANCE components""" headers = [s[:2] for s in components] for prefix in ("CD", "CR"): if prefix not in headers: components.append(prefix + ("C" * 11)) return components
303f1590042acc60aa753e5e317417de01fafafc
3,639,825
from ..items import HieroClipItem def clipsToHieroClipItems(clips): """ @itemUsage hiero.items.HieroClipItem """ clipItems = [] if clips: for c in clips: i = HieroClipItem(c) clipItems.append(i) return clipItems
bf4c6aaff649796cc1a24eb7ba3102fb01178ab3
3,639,826
import hashlib def md5(s, raw_output=False): """Calculates the md5 hash of a given string""" res = hashlib.md5(s.encode()) if raw_output: return res.digest() return res.hexdigest()
238c2a6c6b06a046de86e514698c7ef5622f770b
3,639,827
def new_Q(T, ms, Ps, G): """TODO DOC STRING""" print("==> Tuning Q") SIGMA = np.zeros_like(Ps[0], dtype=np.complex128) PHI = np.zeros_like(Ps[0], dtype=np.complex128) C = np.zeros_like(Ps[0], dtype=np.complex128) shape = (Ps[0].shape[0], 1) for k in range(1, T + 1): m1 = gains_vector(ms[k]).reshape(shape) m2 = gains_vector(ms[k - 1]).reshape(shape) SIGMA += Ps[k] + m1 @ m1.conj().T PHI += Ps[k - 1] + m2 @ m2.conj().T C += Ps[k] @ G[k - 1].conj().T + m1 @ m2.conj().T SIGMA *= 1/T PHI *= 1/T C *= 1/T # Diagonal real-values Q_diag = np.diag(SIGMA - C - C.conj().T + PHI).real # Return new Q return np.diag(Q_diag).real
a21b96e4be7f1c9f6ba892e54ef75b03e4eb9e42
3,639,828
def _get_pk_message_increase(cache_dict: dict, project_list: list) -> str: """根据项目列表构建增量模式下PK播报的信息. ### Args: ``cache_dict``: 增量计算的基础.\n ``project_list``: PK的项目列表.\n ### Result: ``message``: PK进展的播报信息.\n """ amount_dict = _get_pk_amount(project_list) increase_dict = dict() for idol in amount_dict.keys(): increase_dict[idol] = amount_dict[idol] - cache_dict[idol] increase_dict[idol] = round(increase_dict[idol], 2) return _build_increase_pk_message(amount_dict, increase_dict)
9343626fe8208e5e08c39abda9c6b26252ac6b2b
3,639,829
def flatten(dic, keep_iter=False, position=None): """ Returns a flattened dictionary from a dictionary of nested dictionaries and lists. `keep_iter` will treat iterables as valid values, while also flattening them. """ child = {} if not dic: return {} for k, v in get_iter(dic): if isstr(k): k = k.replace('.', '_') if position: item_position = '%s.%s' % (position, k) else: item_position = '%s' % k if is_iter(v): child.update(flatten(dic[k], keep_iter, item_position)) if keep_iter: child[item_position] = v else: child[item_position] = v return child
4597a0330468e955cadda37f89f73bed7db1ecb5
3,639,830
import json def game_get_state(): """The ``/game/state`` endpoint requires authentication and expects no other arguments. It can be reached at ``/game/state?secret=<API_SECRET>``. It is used to retrieve the current state of the game. The JSON response looks like:: { "state_id": int, "game_id": int, "services": [List of {"service_id": int, "service_name": string, "port": int}], "scripts": [List of {"script_id": int, "upload_id": int, "type": ("exploit", "benign", "getflag", "setflag"), "script_name": string, "service_id": int}] "run_scripts": [{"team_id": int (team_id to run scripts against), "run_list": [Ordered list of int script_ids]}], "state_expire": int (approximate remaining seconds in this tick), } :return: a JSON dictionary providing information on the current state. """ cursor = mysql.cursor() # Get basic information about the game, like tick info and services to_return = {} current_tick, tick_start, seconds_to_next_tick, _ = get_current_tick(cursor) to_return["state_id"] = current_tick to_return["state_expire"] = seconds_to_next_tick cursor.execute("SELECT id FROM game LIMIT 1") game_cursor = cursor.fetchone() if game_cursor is None: to_return["num"] = "621" to_return["msg"] = "No game is currently running..." return json.dumps(to_return) to_return["game_id"] = game_cursor["id"] cursor.execute("""SELECT services.id AS service_id, services.name as service_name, services.port as port, current_state as state FROM services""") to_return["services"] = cursor.fetchall() # Determine which scripts exists and which should be run cursor.execute("""SELECT id AS script_id, upload_id, filename AS script_name, type, service_id, current_state as state FROM scripts""") to_return["scripts"] = cursor.fetchall() cursor.execute("""SELECT team_id, json_list_of_scripts_to_run AS json_list FROM team_scripts_run_status WHERE team_scripts_run_status.tick_id = %s""", (current_tick,)) run_scripts = [] for team_scripts_to_run in cursor.fetchall(): team_id = team_scripts_to_run["team_id"] run_list = json.loads(team_scripts_to_run["json_list"]) run_scripts.append({"team_id": team_id, "run_list": run_list}) to_return["run_scripts"] = run_scripts return json.dumps(to_return)
b5b3bda433764413fb6116b5b8f13d6e9dfef866
3,639,831
def new(key, mode, iv=None): """Return a `Cipher` object that can perform ARIA encryption and decryption. ARIA is a block cipher designed in 2003 by a large group of South Korean researchers. In 2004, the Korean Agency for Technology and Standards selected it as a standard cryptographic technique. Parameters: key (bytes): The key to encrypt decrypt. mode (int): The mode of operation of the cipher. iv (bytes or None): The initialization vector (IV). The IV is required for every mode but ECB and CTR where it is ignored. If not set, the IV is initialized to all 0, which should not be used for encryption. """ mode = _cipher.Mode(mode) if mode in { _cipher.Mode.ECB, _cipher.Mode.CBC, # _cipher.Mode.CFB128, _cipher.Mode.CTR, _cipher.Mode.GCM, }: if len(key) * 8 not in {128, 192, 256}: raise TLSError( msg="key size must 16, 24, or 32 bytes, got %i" % len(key) ) else: raise TLSError(msg="unsupported mode %r" % mode) name = ("ARIA-%i-%s" % (len(key) * 8, mode.name)).encode("ascii") return _cipher.Cipher(name, key, mode, iv)
8906d9f5efe36349fc520c8022bf52d888bd37ea
3,639,832
import logging def keggapi_info(database, verbose=True, force_download=False, return_format = None, return_url = False): """KEGG REST API interface for INFO command Displays information on a given database for further info read https://www.kegg.jp/kegg/rest/keggapi.html Parameters ---------- database : str database of which you want to obtain infos on verbose : bool if set to False displays only the first 4 lines of text (default is True) force_download : bool forces overwriting on previous cached files (default is False) retutn_format : str optional, specify a return format to return, str | dict (default is None) Returns ------- info_str : str optional, plain text response of API INFO command info_dict : dict optional, parsed response of API INFO as a dictionary """ valid_return_formats = (None, "str", "dict") if return_format not in valid_return_formats: raise ValueError("invalid {} format for keggapi_info return".format(return_format)) org = get_organism_codes() if database not in db_categories + org: raise KEGGKeyError( database, msg="source database {} is not a valid database".format(database) ) url = "http://rest.kegg.jp/info/{}".format(database) if return_url == True: return url filename = database + "_info" infos = download_textfile(url, filename, verbose=False, force_download = force_download) if verbose == True: logging.info("Infos on %s from KEGG:\n",database) if return_format == None: if verbose == False: print("\n".join(infos.splitlines()[1:4])) else: print(infos) elif return_format == "str": return infos elif return_format == "dict": processed_dict = process_request_text(infos, mode = "columns") return processed_dict
366e4910d54e725e2f8dc8399e7793604a767449
3,639,833
def round_to_thirty(str_time): """STR_TIME is a time in the format HHMM. This function rounds down to the nearest half hour.""" minutes = int(str_time[2:]) if minutes//30 == 1: rounded = "30" else: rounded = "00" return str_time[0:2] + rounded
37e8473dbb6e91fc47a03491c421967db231d4d0
3,639,834
import os import shutil def mkdir(path, reset=False): """Checks if directory exists and if not, create one. Parameters ---------- reset: erase the content of the directory if exists Returns ------- the path """ if reset and os.path.exists(path): shutil.rmtree(path) try: os.makedirs(path) except FileExistsError: pass return path
64a868231cd3bd7199eef2ad19b2b7296e0c32fe
3,639,835
def remove_uoms(words): """ Remove uoms in the form of e.g. 1000m 1543m3 Parameters ---------- words: list of words to process Returns ------- A list of words where possible uom have been removed """ returnWords=[] for word in words: word=word.replace('.', '', 1) word=word.replace(',', '', 1) if word[0:len(word)-1].isnumeric()==False and word[0:len(word)-1].isdecimal()==False: #we do not have a match on e.g. 1543m if word[0:len(word)-2].isnumeric()==False and word[0:len(word)-2].isdecimal()==False: #we do not have a match on e.g. 1543m3 #add it returnWords.append(word) return returnWords
cdb2caf274a58b61c57ebe4fba167ec6275ddf6f
3,639,836
import logging import sys def parse_region(reg: str) -> tuple: """ Return a pair of slices (slice1, slice2) corresponding to the region give as input in numpy slice string format If the region can't be parsed sys.exit() is called """ try: slices = str_to_slices(reg) except ValueError as ve: logging.error("ValueError: %s", ve) logging.error("Bad region spec: %s", reg) sys.exit(1) if len(slices) != 2: logging.error("Bad region spec: %s", reg) sys.exit(1) return slices
4d2ab5e546c69f6e5a9ee9560052ae395d189e95
3,639,837
from unittest.mock import patch async def create_wall_connector_entry( hass: HomeAssistant, side_effect=None ) -> MockConfigEntry: """Create a wall connector entry in hass.""" entry = MockConfigEntry( domain=DOMAIN, data={CONF_HOST: "1.2.3.4"}, options={CONF_SCAN_INTERVAL: 30}, ) entry.add_to_hass(hass) # We need to return vitals with a contactor_closed attribute # Since that is used to determine the update scan interval fake_vitals = tesla_wall_connector.wall_connector.Vitals( { "contactor_closed": "false", } ) with patch( "tesla_wall_connector.WallConnector.async_get_version", return_value=get_default_version_data(), side_effect=side_effect, ), patch( "tesla_wall_connector.WallConnector.async_get_vitals", return_value=fake_vitals, side_effect=side_effect, ), patch( "tesla_wall_connector.WallConnector.async_get_lifetime", return_value=None, side_effect=side_effect, ): await hass.config_entries.async_setup(entry.entry_id) await hass.async_block_till_done() return entry
5aa8fdc08b13d7fe26df50312f736e9ec1d4bfdd
3,639,838
def _normalize(data): """ Normalizes the data (z-score) :param data: Data to be normalized :return: Nomralized data """ mean = np.mean(data, axis=0) sd = np.std(data, axis=0) # If Std Dev is 0 if not sd: sd = 1e-7 return (data - mean) / sd
1fe31f73d9e7fae03997f6caa1a28ebe929e49bd
3,639,839
from typing import Dict from typing import Any import logging def merge_target_airport_configs( weather_flight_features: pd.DataFrame, configs: pd.DataFrame, parameters: Dict[str, Any], )-> pd.DataFrame: """ This function merges actual airport configuration values to the main data frame. Multiple future configuration values are added as defined by the prediction_lookahead and prediction_delta (prediction_lookahead/prediction_delta columns). The current configuration is also added to the input data """ configs= configs.rename(columns={'start_time': 'timestamp'}) configs = configs[['timestamp', 'airport_configuration_name']] configs = configs.assign(timestamp_config=configs['timestamp']) configs = configs.sort_values('timestamp_config', ascending=True) # Sample configuration data start_datetime = configs['timestamp_config'].min().ceil("H") end_datetime = configs['timestamp_config'].max().floor("H") time_df = sampling_times(parameters['prediction_delta'], start_datetime, end_datetime) configs_sampled = pd.merge_asof(time_df, configs, on="timestamp", direction="backward") # TODO: for CLT 93.6% of the data is kept after removing stale configs. For other airports the current logic # could lead to removing too many rows. Need to keep an eye on the logged value below to see if additional logic # is needed # Remove stale configs data is_stale = (configs_sampled['timestamp'] - configs_sampled['timestamp_config']) \ / np.timedelta64(1,'h') > parameters['stale_airport_config_th'] # Log rows with stale configs log = logging.getLogger(__name__) log.info('Kept {:.1f}% of rows when removing stale airport configuration'.format( 100 * (1-(sum(is_stale) / configs_sampled.shape[0])) )) configs_sampled.loc[is_stale, 'airport_configuration_name'] = None configs_sampled.drop(columns=['timestamp_config'], inplace=True) # Restructure data, add future values configs_wide = future_values_reshape(configs_sampled, parameters['prediction_lookahead'], parameters['prediction_delta'], 'timestamp') # Add current configuration configs_wide = pd.merge(configs_wide, configs_sampled, on='timestamp') # Remove NAs, only removing NAs in current config and first future config fields_remove_na = ['airport_configuration_name', 'airport_configuration_name' + '_' + str(parameters['prediction_delta'])] is_na = configs_wide[fields_remove_na].isna().any(axis=1) configs_wide = configs_wide[is_na == False] # All future airport configuration columns are stored in a single columns configs_wide = lookahead_cols_to_single_col(configs_wide, 'airport_configuration_name_') configs_wide = configs_wide.rename(columns={'airport_configuration_name': 'airport_configuration_name_current'}) # Merge target configuration data data = pd.merge(weather_flight_features, configs_wide, on='timestamp', how='inner') return data
29fbf3a0dc166a5b97bd86fbe4ffd2f7d03efad1
3,639,840
def chunks(chunkable, n): """ Yield successive n-sized chunks from l. """ chunk_list = [] for i in xrange(0, len(chunkable), n): chunk_list.append( chunkable[i:i+n]) return chunk_list
d59c6afd85705aa1954d7cc0631e98f2e9e5cdcf
3,639,841
def pass_generate(): """ Стартовая процедура генератора паролей. """ func = generate_pass_block param = {'min_len': 4, 'max_len': 6} return f'{func(**param)}-{func(**param)}-{func(**param)}'
e0bb5378c308e0c60568bb2b3701ee90d5bf6a8e
3,639,842
from . import analyzer as anl def lineSpectrum(pos, image, data, width, scale=1, spacing=3, mode="dual"): """ Draw sepectrum bars. :param pos: (x, y) - position of spectrum bars on image :param image: PIL.Image - image to draw :param data: 1D array - sound data :param width: int - widht of spectrum on image :param scale: number - scaling of bars length :param spacing: int - spacing between bars :param mode: dual | bottom | up - direction of bars """ count = int(width // spacing) spectrum_data = anl.fft(data, count) return line(pos, image, spectrum_data, scale, spacing, mode)
5ee27565bc83ef275d4882b44b11a3b7cd1407b3
3,639,843
def _unique_arXiv(record, extra_data): """Check if the arXiv ID is unique (does not already exist in Scoap3)""" arxiv_id = get_first_arxiv(record) # search through ES to find if it exists already if arxiv_id: result = current_search_client.search( 'scoap3-records-record', q='arxiv_eprints.value="{}"'.format(arxiv_id) )['hits'] if result['total'] == 0: return True, ('ArXiv ID not found. Unique ID.', ), None else: # return all the control numbers in order to check the error record_control_numbers = ', '.join( hit['_source']['control_number'] for hit in result['hits'] ) return False, ('ArXiv ID already exists. Please check {}'.format( record_control_numbers)), None return True, ('No arXiv id: Out of the scope of this check', ), None
6b19a10400da024c5ad87090c87f6099a4018dab
3,639,844
def profile(username): """ Профиль пользователя. Возможность изменить логин, пароль. В перспективе сохранить свои любимые ссылки. """ if username != current_user.nickname: return redirect(url_for('index')) types = Types.manager.get_by('', dictionary=True) return render_template('auth/profile.html', types=types)
84bb1304ef5862efdd54ad2402e09d31a8c151a2
3,639,845
def had_cell_edge(strmfunc, cell="north", edge="north", frac_thresh=0.1, cos_factor=False, lat_str=LAT_STR, lev_str=LEV_STR): """Latitude of poleward edge of either the NH or SH Hadley cell.""" hc_strengths = had_cells_strength(strmfunc, lat_str=lat_str, lev_str=lev_str) if cell == "north": label = "had_cell_nh" elif cell == "south": label = "had_cell_sh" else: raise ValueError("`cell` must be either 'north' or 'south'; " f"got {cell}.") # Restrict to streamfunction at level of the specified cell's maximum. cell_max = hc_strengths.sel(cell=label) lat_max = cell_max[lat_str] lev_max = cell_max[lev_str] sf_at_max = strmfunc.sel(**{lev_str: float(lev_max), "method": "nearest"}) # Restrict to the latitudes north or south of the max, as specified. lat = strmfunc[lat_str] if edge == "north": which_zero = 0 lat_compar = lat >= lat_max elif edge == "south": which_zero = -1 lat_compar = lat <= lat_max else: raise ValueError("`edge` must be either 'north' or 'south'; " f"got {cell}.") sf_one_side = sf_at_max.where(lat_compar, drop=True) # Restrict to the latitudes from the max to the nearest point with # opposite-signed value. # Apply cubic interpolation in latitude to a refined mesh. Otherwise, the # cell edge can (unphysically) vary non-monotonically with `frac_thresh`. lats_interp = np.arange(sf_one_side[lat_str].min(), sf_one_side[lat_str].max() - 0.01, 0.05) sf_one_side_interp = sf_one_side.interp(**{lat_str: lats_interp}, method="cubic") # Explicitly make the last value equal to the original, as otherwise the # interp step can overwrite it with nan for some reason. sf_one_side_interp = xr.concat([sf_one_side_interp, sf_one_side[-1]], dim=lat_str) # Find where the streamfunction crosses the specified fractional threshold, # using the Singh 2019 cosine weighting if specified. if cos_factor: sf_norm = ((sf_one_side_interp / cosdeg(sf_one_side_interp[lat_str])) / (cell_max / cosdeg(lat_max))) else: sf_norm = sf_one_side_interp / cell_max sf_thresh_diff = sf_norm - frac_thresh sf_edge_bounds = zero_cross_bounds(sf_thresh_diff, lat_str, which_zero) # Interpolate between the bounding points to the crossing. return interpolate(sf_edge_bounds, sf_edge_bounds[lat_str], 0, lat_str)[lat_str]
b666333bb9b0a54d569df96324dbb55747b33a4c
3,639,846
def make_score_fn(data): """Returns a groupwise score fn to build `EstimatorSpec`.""" context_feature_columns, example_feature_columns = data.create_feature_columns() def _score_fn(context_features, group_features, mode, unused_params, unused_config): """Defines the network to score a group of documents.""" with tf.name_scope("input_layer"): group_input = [ tf.layers.flatten(group_features[name]) for name in sorted(example_feature_columns) ] print(group_input[0].shape) print(group_input[0].dtype) context_input = [ tf.layers.flatten(context_features[name]) for name in sorted(context_feature_columns) ] print(context_input[0].shape) print(context_input[0].dtype) final_input = context_input + group_input input_layer = tf.concat(final_input, 1) tf.summary.scalar("input_sparsity", tf.nn.zero_fraction(input_layer)) tf.summary.scalar("input_max", tf.reduce_max(input_layer)) tf.summary.scalar("input_min", tf.reduce_min(input_layer)) is_training = (mode == tf.estimator.ModeKeys.TRAIN) cur_layer = tf.layers.batch_normalization(input_layer, training=is_training) for i, layer_width in enumerate(int(d) for d in FLAGS.hidden_layer_dims): cur_layer = tf.layers.dense(cur_layer, units=layer_width) cur_layer = tf.layers.batch_normalization(cur_layer, training=is_training) cur_layer = tf.nn.relu(cur_layer) tf.summary.scalar("fully_connected_{}_sparsity".format(i), tf.nn.zero_fraction(cur_layer)) cur_layer = tf.layers.dropout( cur_layer, rate=FLAGS.dropout_rate, training=is_training) logits = tf.layers.dense(cur_layer, units=FLAGS.group_size) return logits return _score_fn
5f95843413ddeb146c080a30b563b74e863cdb07
3,639,847
def unicode2str(obj): """ Recursively convert an object and members to str objects instead of unicode objects, if possible. This only exists because of the incoming world of unicode_literals. :param object obj: object to recurse :return: object with converted values :rtype: object """ if isinstance(obj, dict): return {unicode2str(k): unicode2str(v) for k, v in obj.items()} elif isinstance(obj, list): return [unicode2str(i) for i in obj] elif isinstance(obj, unicode_type()): return obj.encode("utf-8") else: return obj
62ef4653fd22b58b463dfce62ff83238f47fb9b5
3,639,848
def test_elim_cast_same_dtype(tag): """ test_elim_cast_same_dtype """ fns = FnDict() cast = P.Cast() @fns def fp32_cast_fp32(x, y): return cast(x, y) @fns def after(x, y): return x return fns[tag]
6aa97e39d8bdf4261e212355be85106ee109659f
3,639,849
def getRepository(): """ Determine the SVN repostiory for the cwd """ p = Ptyopen2('svn info') output, status = p.readlinesAndWait() for line in output: if len(line) > 3 and line[0:3] == 'URL': return line[5:].rstrip() raise Exception('Could not determine SVN repository')
754d2b6a343a4b0283be4ba2846aba80b4d1a95f
3,639,850
import re def replaceInternalLinks(text): """ Replaces internal links of the form: [[title |...|label]]trail with title concatenated with trail, when present, e.g. 's' for plural. See https://www.mediawiki.org/wiki/Help:Links#Internal_links """ # call this after removal of external links, so we need not worry about # triple closing ]]]. tailRE = re.compile('\w+') cur = 0 res = '' for s, e in findBalanced(text): m = tailRE.match(text, e) if m: trail = m.group(0) end = m.end() else: trail = '' end = e inner = text[s + 2:e - 2] # find first | pipe = inner.find('|') if pipe < 0: title = inner label = title else: title = inner[:pipe].rstrip() # find last | curp = pipe + 1 for s1, e1 in findBalanced(inner): last = inner.rfind('|', curp, s1) if last >= 0: pipe = last # advance curp = e1 label = inner[pipe + 1:].strip() res += text[cur:s] + makeInternalLink(title, label) + trail cur = end return res + text[cur:]
23795baffdaf46883fe08a12861313ed6bc0ee54
3,639,851
from typing import List from typing import Any from typing import Optional def make_table(rows: List[List[Any]], labels: Optional[List[Any]] = None, centered: bool = False) -> str: """ :param rows: 2D list containing objects that have a single-line representation (via `str`). All rows must be of the same length. :param labels: List containing the column labels. If present, the length must equal to that of each row. :param centered: If the items should be aligned to the center, else they are left aligned. :return: A table representing the rows passed in. """ max_column_length = [] #list for the maximum length of a column if not labels is None: #add label length to the maximum length for i in labels: max_column_length.append(len(str(i))) else: #add 0 as label length for i in range(len(rows[0])): max_column_length.append(0) for j in range(len(rows[0])): #add the length of a row item if it is longer than the label length or another leangth of a row for i in rows: if len(str(i[j])) > max_column_length[j]: max_column_length[j] = len(str(i[j])) #top and bot line creation #top line top_line = "┌─" for j in max_column_length: for i in range(j): top_line += "─" top_line += "─┬─" top_line = top_line[:-2] + "┐\n" #bot line bot_line = "└─" for j in max_column_length: for i in range(j): bot_line += "─" bot_line += "─┴─" bot_line = bot_line[:-2] + "┘\n" #table header table_header = "" if not labels is None: table_header += "│ " for i in labels: if not centered: table_header += i + "".join(' ' for l in range(max_column_length[labels.index(i)] - len(str(i)))) + " │ " elif centered: table_header += "".join(' ' for l in range(int(floor((max_column_length[labels.index(i)] - len(str(i)))/2)))) + str(i) + "".join(' ' for l in range(int(ceil((max_column_length[labels.index(i)] - len(str(i)))/2)))) + " │ " table_header = table_header[:-1] + "\n" table_header += "├─" for j in max_column_length: for i in range(j): table_header += "─" table_header += "─┼─" table_header = table_header[:-2] + "┤\n" #table body table_body = "" for j in rows: for i in range(len(j)): if not centered: table_body += "│ " + str(j[i]) + "".join(' ' for l in range(max_column_length[i] - len(str(j[i])) + 1)) elif centered: table_body += "│ " + "".join(' ' for l in range(int(floor((max_column_length[i] - len(str(j[i])))/2)))) + str(j[i]) + "".join(' ' for l in range(int(ceil((max_column_length[i] - len(str(j[i])))/2)) + 1)) table_body += "│\n" return top_line + table_header + table_body + bot_line
ecdc9972dfbb05795556a5ba36b6cf4cd55399f8
3,639,852
def format_value(v): """ Formats a value to be included in a string. @param v a string @return a string """ return ("'{0}'".format(v.replace("'", "\\'")) if isinstance(v, str) else "{0}".format(v))
8b8d5452ecf938b4e9e9956577f1a3f1102e49bc
3,639,853
def worst_solvents(delta_d, delta_p, delta_h, filter_params): """Search solvents on the basis of RED (sorted descending) with given Hansen parameters, and with a formatted string indicating filter parameters. See the function parse_filter_params for details of filter parameters string.""" results_list = [] filter_dict = parse_filter_params(filter_params) try: delta_d = float(delta_d) delta_p = float(delta_p) delta_h = float(delta_h) except ValueError: return jsonify(results_list) #Since we need most of the info and the solvents table is not big, we'll just read it #straight to a DataFrame solvent_df = pd.read_sql('solvents',db.engine) for code_key, min_max in filter_dict.items(): solvent_df = solvent_df[(solvent_df[cols_from_codes[code_key]] >= min_max[0]) & \ (solvent_df[cols_from_codes[code_key]] <= min_max[1])] if len(solvent_df) == 0: return jsonify(results_list) solvent_df['RED2'] = 4 * (solvent_df['delta_d'] - delta_d) * (solvent_df['delta_d'] - delta_d) + \ (solvent_df['delta_p'] - delta_p) * (solvent_df['delta_p'] - delta_p) + \ (solvent_df['delta_h'] - delta_h) * (solvent_df['delta_h'] - delta_h) solvent_df['RED'] = solvent_df['RED2'].apply(np.sqrt) solvent_df = solvent_df.sort_values(by='RED', ascending=False) # Limit output to top 5 results_list = solvent_df.head().fillna('').to_dict(orient='records') return jsonify(results_list)
91543a738ef86e77336cedf6edd6175794c4bdcb
3,639,854
import textwrap def log(msg, *args, dialog=False, error=False, **kwargs): """ Generate a message to the console and optionally as either a message or error dialog. The message will be formatted and dedented before being displayed, and will be prefixed with its origin. """ msg = textwrap.dedent(msg.format(*args, **kwargs)).strip() if error: print("remote_build:") return sublime.error_message(msg) for line in msg.splitlines(): print("remote_build: {msg}".format(msg=line)) if dialog: sublime.message_dialog(msg)
b204d4205a4fd90b3f0ca7104e3b6dd336b25b46
3,639,855
def build_frustum_lineset(K, l, t, r, b): """Build a open3d.geometry.LineSet to represent a frustum Args: pts_A (np.array or torch.tensor): Point set in form (Nx3) pts_B (np.array or torch.tensor): Point set in form (Nx3) idxs (list of int): marks correspondence between A[i] and B[idxs[i]] Returns: line_set (open3d.geometry.LineSet) """ corners = np.asarray([(l, t), (r - 1, t), (r - 1, b - 1), (l, b - 1)], dtype=np.float32) rays = unproject(K, corners) rays /= np.linalg.norm(rays, axis=1)[:, None] line_idx = [[i * 2 + 0, i * 2 + 1] for i in range(4)] line_pts = [] for ray in rays: line_pts.extend([[0, 0, 0], (ray * 100).tolist()]) line_set = o3d.geometry.LineSet() line_set.points = o3d.utility.Vector3dVector(line_pts) colors = np.zeros((8, 3), dtype=np.uint8) colors[:, 1] = 255 line_set.colors = o3d.utility.Vector3dVector(colors) line_set.lines = o3d.utility.Vector2iVector(line_idx) return line_set
73236b73692b61a7d7c78005f626d0d6b0f2c84e
3,639,856
import os def _config_file_exists(): """ Checks if the configuration file exists. :return: Returns True if the configuration file exists and False otherwise. :rtype: bool """ if os.path.isfile(DEFAULT_CONFIG_FILE): return True return False
5cbccfd2eb2e87278820e55c23d859cf4644017e
3,639,857
def postagsget(sent): """ sent: Sentence as string """ string = "" ls = pos_tag(list(sent.split())) for i in ls: string += i[1] + " " return string
077e7261e0a0e296381bcb09578557576fe4c86c
3,639,858
def try_convert_to_list_of_numbers(transform_params): """ Args: transform_params: a dict mapping transform parameter names to values This function tries to convert each parameter value to a list of numbers. If that fails, then it tries to convert the value to a number. For example, if transform_params = {'scale':'0.16 1', size='256'}, this will become {'scale':[0.16, 1], 'size': 256}. """ for k, v in transform_params.items(): try: v = [string_to_num(x) for x in v.split(" ")] if len(v) == 1: v = v[0] except AttributeError: v = string_to_num(v) transform_params[k] = v return transform_params
14e33630daab0081d39fd533a606a7b561f5b161
3,639,859
def from_tensorflow(graph): """ Load tensorflow graph which is a python tensorflow graph object into nnvm graph. The companion parameters will be handled automatically. Parameters ---------- graph : GraphDef object Tensorflow GraphDef Returns ------- sym : nnvm.Symbol Compatible nnvm symbol params : dict of str to tvm.ndarray Dict of converted parameters stored in tvm.ndarray format """ g = GraphProto() sym, params = g.from_tensorflow(graph) return sym, params
9547430c05559eb094dbaf3b1528ec071b1c9b50
3,639,860
def isequal(q1, q2, tol=100, unitq=False): """ Test if quaternions are equal :param q1: quaternion :type q1: array_like(4) :param q2: quaternion :type q2: array_like(4) :param unitq: quaternions are unit quaternions :type unitq: bool :param tol: tolerance in units of eps :type tol: float :return: whether quaternions are equal :rtype: bool Tests if two quaternions are equal. For unit-quaternions ``unitq=True`` the double mapping is taken into account, that is ``q`` and ``-q`` represent the same orientation and ``isequal(q, -q, unitq=True)`` will return ``True``. .. runblock:: pycon >>> from spatialmath.base import isequal >>> q1 = [1, 2, 3, 4] >>> q2 = [-1, -2, -3, -4] >>> isequal(q1, q2) >>> isequal(q1, q2, unitq=True) """ q1 = base.getvector(q1, 4) q2 = base.getvector(q2, 4) if unitq: return (np.sum(np.abs(q1 - q2)) < tol * _eps) or (np.sum(np.abs(q1 + q2)) < tol * _eps) else: return np.sum(np.abs(q1 - q2)) < tol * _eps
6c903bbb547c9015e949e916d0bccda124bad04c
3,639,861
def MMOE(dnn_feature_columns, num_tasks, task_types, task_names, num_experts=4, expert_dnn_units=[32,32], gate_dnn_units=[16,16], tower_dnn_units_lists=[[16,8],[16,8]], l2_reg_embedding=1e-5, l2_reg_dnn=0, seed=1024, dnn_dropout=0, dnn_activation='relu', dnn_use_bn=False): """Instantiates the Multi-gate Mixture-of-Experts multi-task learning architecture. :param dnn_feature_columns: An iterable containing all the features used by deep part of the model. :param num_tasks: integer, number of tasks, equal to number of outputs, must be greater than 1. :param task_types: list of str, indicating the loss of each tasks, ``"binary"`` for binary logloss, ``"regression"`` for regression loss. e.g. ['binary', 'regression'] :param task_names: list of str, indicating the predict target of each tasks :param num_experts: integer, number of experts. :param expert_dnn_units: list, list of positive integer, its length must be greater than 1, the layer number and units in each layer of expert DNN :param gate_dnn_units: list, list of positive integer, its length must be greater than 1, the layer number and units in each layer of gate DNN :param tower_dnn_units_lists: list, list of positive integer list, its length must be euqal to num_tasks, the layer number and units in each layer of task-specific DNN :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param l2_reg_dnn: float. L2 regularizer strength applied to DNN :param seed: integer ,to use as random seed. :param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate. :param dnn_activation: Activation function to use in DNN :param dnn_use_bn: bool. Whether use BatchNormalization before activation or not in DNN :return: a Keras model instance """ if num_tasks <= 1: raise ValueError("num_tasks must be greater than 1") if len(task_types) != num_tasks: raise ValueError("num_tasks must be equal to the length of task_types") for task_type in task_types: if task_type not in ['binary', 'regression']: raise ValueError("task must be binary or regression, {} is illegal".format(task_type)) if num_tasks != len(tower_dnn_units_lists): raise ValueError("the length of tower_dnn_units_lists must be euqal to num_tasks") features = build_input_features(dnn_feature_columns) inputs_list = list(features.values()) sparse_embedding_list, dense_value_list = input_from_feature_columns(features, dnn_feature_columns, l2_reg_embedding, seed) dnn_input = combined_dnn_input(sparse_embedding_list, dense_value_list) #build expert layer expert_outs = [] for i in range(num_experts): expert_network = DNN(expert_dnn_units, dnn_activation, l2_reg_dnn, dnn_dropout, dnn_use_bn, seed=seed, name='expert_'+str(i))(dnn_input) expert_outs.append(expert_network) expert_concat = tf.keras.layers.concatenate(expert_outs, axis=1, name='expert_concat') expert_concat = tf.keras.layers.Reshape([num_experts, expert_dnn_units[-1]], name='expert_reshape')(expert_concat) #(num_experts, output dim of expert_network) mmoe_outs = [] for i in range(num_tasks): #one mmoe layer: nums_tasks = num_gates #build gate layers gate_network = DNN(gate_dnn_units, dnn_activation, l2_reg_dnn, dnn_dropout, dnn_use_bn, seed=seed, name='gate_'+task_names[i])(dnn_input) gate_out = tf.keras.layers.Dense(num_experts, use_bias=False, activation='softmax', name='gate_softmax_'+task_names[i])(gate_network) gate_out = tf.tile(tf.expand_dims(gate_out, axis=-1), [1, 1, expert_dnn_units[-1]]) #let the shape of gate_out be (num_experts, output dim of expert_network) #gate multiply the expert gate_mul_expert = tf.keras.layers.Multiply(name='gate_mul_expert_'+task_names[i])([expert_concat, gate_out]) gate_mul_expert = tf.math.reduce_sum(gate_mul_expert, axis=1) #sum pooling in the expert ndim mmoe_outs.append(gate_mul_expert) task_outs = [] for task_type, task_name, tower_dnn, mmoe_out in zip(task_types, task_names, tower_dnn_units_lists, mmoe_outs): #build tower layer tower_output = DNN(tower_dnn, dnn_activation, l2_reg_dnn, dnn_dropout, dnn_use_bn, seed=seed, name='tower_'+task_name)(mmoe_out) logit = tf.keras.layers.Dense(1, use_bias=False, activation=None)(tower_output) output = PredictionLayer(task_type, name=task_name)(logit) task_outs.append(output) model = tf.keras.models.Model(inputs=inputs_list, outputs=task_outs) return model
6be8b400fb58c74d4dc397132327f9ffb819a637
3,639,862
import numpy def greater(self, other): """ Equivalent to the > operator. """ return _PropOpB(self, other, numpy.greater, numpy.uint8)
04d0a6ed3d0023afc3bcea167c67940af9387dc1
3,639,863
def load_translation_data(dataset, src_lang='en', tgt_lang='vi'): """Load translation dataset Parameters ---------- dataset : str src_lang : str, default 'en' tgt_lang : str, default 'vi' Returns ------- """ common_prefix = 'IWSLT2015_{}_{}_{}_{}'.format(src_lang, tgt_lang, args.src_max_len, args.tgt_max_len) if dataset == 'IWSLT2015': data_train = IWSLT2015('train', src_lang=src_lang, tgt_lang=tgt_lang) data_val = IWSLT2015('val', src_lang=src_lang, tgt_lang=tgt_lang) data_test = IWSLT2015('test', src_lang=src_lang, tgt_lang=tgt_lang) else: raise NotImplementedError src_vocab, tgt_vocab = data_train.src_vocab, data_train.tgt_vocab data_train_processed = load_cached_dataset(common_prefix + '_train') if not data_train_processed: data_train_processed = process_dataset(data_train, src_vocab, tgt_vocab, args.src_max_len, args.tgt_max_len) cache_dataset(data_train_processed, common_prefix + '_train') data_val_processed = load_cached_dataset(common_prefix + '_val') if not data_val_processed: data_val_processed = process_dataset(data_val, src_vocab, tgt_vocab) cache_dataset(data_val_processed, common_prefix + '_val') data_test_processed = load_cached_dataset(common_prefix + '_test') if not data_test_processed: data_test_processed = process_dataset(data_test, src_vocab, tgt_vocab) cache_dataset(data_test_processed, common_prefix + '_test') fetch_tgt_sentence = lambda src, tgt: tgt.split() val_tgt_sentences = list(data_val.transform(fetch_tgt_sentence)) test_tgt_sentences = list(data_test.transform(fetch_tgt_sentence)) return data_train_processed, data_val_processed, data_test_processed, \ val_tgt_sentences, test_tgt_sentences, src_vocab, tgt_vocab
f571f8bda3b46dfba7f15f15ac7e46addac6273e
3,639,864
import copy def objective_function(decision_variables, root_model, mode="by_age", country=Region.UNITED_KINGDOM, config=0, calibrated_params={}): """ :param decision_variables: dictionary containing - mixing multipliers by age as a list if mode == "by_age" OR - location multipliers as a list if mode == "by_location" :param root_model: integrated model supposed to model the past epidemic :param mode: either "by_age" or "by_location" :param country: the country name :param config: the id of the configuration being considered :param calibrated_params: a dictionary containing a set of calibrated parameters """ running_model = RegionApp(country) build_model = running_model.build_model params = copy.deepcopy(running_model.params) # reformat decision vars if locations if mode == "by_location": new_decision_variables = { "other_locations": decision_variables[0], "school": decision_variables[1], "work": decision_variables[2] } decision_variables = new_decision_variables # Define scenario-1-specific params sc_1_params_update = build_params_for_phases_2_and_3(decision_variables, config, mode) # Rebuild the default parameters params["default"].update(opti_params["default"]) params["default"] = update_params(params['default'], calibrated_params) params['scenario_start_time'] = PHASE_2_START_TIME - 1 # Create scenario 1 sc_1_params = update_params(params['default'], sc_1_params_update) params["scenarios"][1] = sc_1_params scenario_1 = Scenario(build_model, idx=1, params=params) # Run scenario 1 scenario_1.run(base_model=root_model) models = [root_model, scenario_1.model] #____________________________ Perform diagnostics ______________________ # How many deaths and years of life lost during Phase 2 and 3 start_phase2_index = models[1].derived_outputs["times"].index(PHASE_2_START_TIME) end_phase2_index = models[1].derived_outputs["times"].index(phase_2_end[config]) total_nb_deaths = sum(models[1].derived_outputs["infection_deathsXall"][start_phase2_index:]) years_of_life_lost = sum(models[1].derived_outputs["years_of_life_lost"][start_phase2_index:]) # What proportion immune at end of Phase 2 recovered_indices = [ i for i in range(len(models[1].compartment_names)) if "recovered" in models[1].compartment_names[i] ] nb_reco = sum([models[1].outputs[end_phase2_index, i] for i in recovered_indices]) total_pop = sum([models[1].outputs[end_phase2_index, i] for i in range(len(models[1].compartment_names))]) prop_immune = nb_reco / total_pop # Has herd immunity been reached? herd_immunity = has_immunity_been_reached(models[1], end_phase2_index) return herd_immunity, total_nb_deaths, years_of_life_lost, prop_immune, models
81d2aeacdabeb20e2910e3cf42ece12e112e055b
3,639,865
def kick(code, input): """ kick <user> [reason] - Kicks a user from the current channel, with a reason if supplied. """ text = input.group(2).split() if len(text) == 1: target = input.group(2) reason = False else: target = text[0] reason = ' '.join(text[1::]) if not reason: reason = kick_reason() if target != code.nick: return code.write(['KICK', input.sender, target], reason) else: return code.say('...')
59e8bc095076d9605aaa6b03363894c78d06b730
3,639,866
def check_invalid(string,*invalids,defaults=True): """Checks if input string matches an invalid value""" # Checks string against inputted invalid values for v in invalids: if string == v: return True # Checks string against default invalid values, if defaults=True if defaults == True: default_invalids = ['INC','inc','incomplete','NaN','nan','N/A','n/a','missing'] for v in default_invalids: if string == v: return True # For valid strings return False
6e9e20beebe8e0b0baed680219fd93453d7f4ce3
3,639,867
def sse_content(response, handler, **sse_kwargs): """ Callback to collect the Server-Sent Events content of a response. Callbacks passed will receive event data. :param response: The response from the SSE request. :param handler: The handler for the SSE protocol. """ # An SSE response must be 200/OK and have content-type 'text/event-stream' raise_for_not_ok_status(response) raise_for_header(response, 'Content-Type', 'text/event-stream') finished, _ = _sse_content_with_protocol(response, handler, **sse_kwargs) return finished
45e6a1fe058a78e28aeda9e9837a09dce6facd1a
3,639,868
def test_module(client: Client) -> str: """Tests API connectivity and authentication' Returning 'ok' indicates that the integration works like it is supposed to. Connection to the service is successful. Raises exceptions if something goes wrong. :type client: ``Client`` :param client: client to use :return: 'ok' if test passed, anything else will fail the test. :rtype: ``str`` """ client.check_auth() return "ok"
c672b29017d415bc3793d6561ed5cd40716c0745
3,639,869
def get_more_spec_pos(tokens): """Return frequencies for more specific POS""" # adverbs and preps, particles adverbs = [t for t in tokens if t.full_pos == 'ADV'] apprart = [t for t in tokens if t.full_pos == 'APPRART'] postpos = [t for t in tokens if t.full_pos == 'APPO'] circum_pos = [t for t in tokens if t.full_pos == 'APZR'] compare_conj = [t for t in tokens if t.full_pos == 'KOKOM'] # foreign words, interjections fremds = [t for t in tokens if t.full_pos == 'FM'] interj = [t for t in tokens if t.full_pos == 'ITJ'] # proper names and adjectives prop_name = [t for t in tokens if t.full_pos == 'NE'] adja = [t for t in tokens if t.full_pos.startswith('ADJA')] adjd = [t for t in tokens if t.full_pos.startswith('ADJA')] # pronouns dem_pro_s = [t for t in tokens if t.full_pos == 'PDS'] dem_pro_a = [t for t in tokens if t.full_pos == 'PDAT'] ind_pro_s = [t for t in tokens if t.full_pos == 'PIS'] ind_pro_a = [t for t in tokens if t.full_pos in ['PIAT','PIDAT']] pers_pron = [t for t in tokens if t.full_pos == 'PPER'] poss_s = [t for t in tokens if t.full_pos == 'PPOSS'] poss_a = [t for t in tokens if t.full_pos == 'PPOSAT'] refl_pron = [t for t in tokens if t.full_pos == 'PRF'] inter_pron = [t for t in tokens if t.full_pos == ['PWS','PWAT','PWAV']] all_prons = dem_pro_s+dem_pro_a+ind_pro_s+ind_pro_a+poss_s+poss_a+refl_pron+inter_pron # compartives, punctuation comp = [t for t in tokens if t.full_pos == 'TRUNC'] sent_int_interpunct = [t for t in tokens if t.full_pos == '$('] # pronom adverbs and others pro_adv = [t for t in tokens if t.full_pos == 'PROAV' and t.function == 'pp'] part_kvz = [t for t in tokens if t.full_pos == 'PTKVZ' and t.function == 'avz'] inf_with_zu = [t for t in tokens if t.full_pos == 'PTKVZ' and t.function == 'VVIZU'] for t in poss_s+poss_a: t.pos_color.append('Poss pronouns') for t in refl_pron: t.pos_color.append('Refl pronouns') return (len(adverbs), len(apprart), len(postpos), len(circum_pos), len(fremds), len(interj), \ len(prop_name), len(adja), len(adjd), len(dem_pro_s), len(dem_pro_a), len(dem_pro_s)+len(dem_pro_a), len(ind_pro_s), len(ind_pro_a), \ len(ind_pro_s)+len(ind_pro_a), len(pers_pron), len(poss_s), len(poss_a), len(poss_s)+len(poss_a), len(refl_pron), \ len(inter_pron), len(comp), len(sent_int_interpunct), len(pro_adv), len(part_kvz), len(compare_conj), \ len(inf_with_zu), len(all_prons))
5ea2ae19d61c84ca8750999aa14a14dd426fe6f7
3,639,870
def reconcile_suggest_property(prefix: str = ""): """Given a search prefix, return all the type/schema properties which match the given text. This is used to auto-complete property selection for detail filters in OpenRefine.""" matches = [] for prop in model.properties: if not prop.schema.is_a(settings.BASE_SCHEMA): continue if prop.hidden or prop.type == prop.type == registry.entity: continue if match_prefix(prefix, prop.name, prop.label): matches.append(get_freebase_property(prop)) return { "code": "/api/status/ok", "status": "200 OK", "prefix": prefix, "result": matches, }
655796e8b00f8b36cae9b373e27f11077ccb49d4
3,639,871
def make_boxes(df_data, category, size_factor, x, y, height, width, pad=[1,1], main_cat=None): """Generates the coordinates for the boxes of the category""" totals = df_data[size_factor].groupby(df_data[category]).sum() box_list = totals.sort_values(ascending=False).to_frame() box_list.columns = ['value'] if main_cat: box_list['cat'] = main_cat box_list['norm'] = sq.normalize_sizes(box_list.value, width, height) box_list['rect'] = sq.squarify(box_list.norm, x, y, width, height) box_list['rect'] = box_list.apply(lambda row: pad_rect(row['rect'], pad), axis=1) return box_list
a4bc28cf13a330863054fa3b5e514c50ba2c9e98
3,639,872
import types import joblib def hash_codeobj(code): """Return hashed version of a code object""" bytecode = code.co_code consts = code.co_consts consts = [hash_codeobj(c) if isinstance(c, types.CodeType) else c for c in consts] return joblib.hash((bytecode, consts))
43d0094ccb5345ca4f8b30b5fb03d167b8e21aa5
3,639,873
def us_census(): """Data Source for the US census. Arguments: None Returns: pandas.DataFrame """ df = us_census_connector() return us_census_formatter(df)
8aba9df470ab17a59437897a2e13a80be2b6e9d9
3,639,874
from pathlib import Path def get_notebook_path(same_config_path, same_config_file_contents) -> str: """Returns absolute value of the pipeline path relative to current file execution""" return str(Path.joinpath(Path(same_config_path).parent, same_config_file_contents["notebook"]["path"]))
4b9f8952bdb7c2308fdfa290ec108d432b6b6a0b
3,639,875
import re import glob def get_path_from_dependency( recipe_dependency_value: str, recipe_base_folder_path: str ) -> str: """ Searches the base folder for a file, that corresponse to the dependency passed. :param recipe_dependency_value: Value of the "From:" section from a recipe file, used by singularity to find the base image. :param recipe_base_folder_path: Full path of the base folder, containing all recipes. :returns: Full path to the parent recipe or an empty string '' if it is not a local dependency. """ if not is_own_dependency(recipe_dependency_value): return '' _dependency_value_regex = re.compile( r'^(?:.*?\/)?' # Match possible host address and ignore it r'(?P<collection>.+?)\/' # Match collection r'(?P<container>.+?)' # Match container/image name r'(?::(?P<version>.*?))?$' # Match possible version Tag ) _filename_components = re.search(_dependency_value_regex, recipe_dependency_value) _glob_dict = {'basepath': recipe_base_folder_path} _glob_dict.update(_filename_components.groupdict()) _glob_string = '' # lastest tag translates to a filename without if 'version' in _glob_dict: if _glob_dict['version'] == 'latest': _glob_dict.pop('version') if "version" in _glob_dict: if _glob_dict != 'latest': _glob_string = ( '{basepath}/**/{collection}/{container}.{version}.recipe'.format( **_glob_dict) ) else: _glob_string = ( '{basepath}/**/{collection}/{container}.recipe'.format( **_glob_dict) ) # Find corresponding Files _glob_results = glob.glob( _glob_string, recursive=True ) if len(_glob_results) > 1: raise RuntimeError( ( "The naming schema of recipe {} clashes with. " "They cannot both exist in one sregistry." ).format(', '.join(_glob_results)) ) if not _glob_results: raise RuntimeError( "Unresolved dependency on {}".format( recipe_dependency_value ) ) return _glob_results[0]
79de99c407998193e4ab6b3d760f894d3a5039ab
3,639,876
def about_us(): """ The about us page. """ return render_template( "basic/about_us.html", )
64d94e998855e7c99506ced7b48da36c5cbfa57a
3,639,877
import torch def sfb1d_atrous(lo, hi, g0, g1, mode='periodization', dim=-1, dilation=1, pad1=None, pad=None): """ 1D synthesis filter bank of an image tensor with no upsampling. Used for the stationary wavelet transform. """ C = lo.shape[1] d = dim % 4 # If g0, g1 are not tensors, make them. If they are, then assume that they # are in the right order if not isinstance(g0, torch.Tensor): g0 = torch.tensor(np.copy(np.array(g0).ravel()), dtype=torch.float, device=lo.device) if not isinstance(g1, torch.Tensor): g1 = torch.tensor(np.copy(np.array(g1).ravel()), dtype=torch.float, device=lo.device) L = g0.numel() shape = [1,1,1,1] shape[d] = L # If g aren't in the right shape, make them so if g0.shape != tuple(shape): g0 = g0.reshape(*shape) if g1.shape != tuple(shape): g1 = g1.reshape(*shape) g0 = torch.cat([g0]*C,dim=0) g1 = torch.cat([g1]*C,dim=0) # Calculate the padding size. # With dilation, zeros are inserted between the filter taps but not after. # that means a filter that is [a b c d] becomes [a 0 b 0 c 0 d]. centre = L / 2 fsz = (L-1)*dilation + 1 newcentre = fsz / 2 before = newcentre - dilation*centre # When conv_transpose2d is done, a filter with k taps expands an input with # N samples to be N + k - 1 samples. The 'padding' is really the opposite of # that, and is how many samples on the edges you want to cut out. # In addition to this, we want the input to be extended before convolving. # This means the final output size without the padding option will be # N + k - 1 + k - 1 # The final thing to worry about is making sure that the output is centred. short_offset = dilation - 1 centre_offset = fsz % 2 a = fsz//2 b = fsz//2 + (fsz + 1) % 2 # a = 0 # b = 0 pad = (0, 0, a, b) if d == 2 else (a, b, 0, 0) lo = mypad(lo, pad=pad, mode=mode) hi = mypad(hi, pad=pad, mode=mode) unpad = (fsz - 1, 0) if d == 2 else (0, fsz - 1) unpad = (0, 0) y = F.conv_transpose2d(lo, g0, padding=unpad, groups=C, dilation=dilation) + \ F.conv_transpose2d(hi, g1, padding=unpad, groups=C, dilation=dilation) # pad = (L-1, 0) if d == 2 else (0, L-1) # y = F.conv_transpose2d(lo, g0, padding=pad, groups=C, dilation=dilation) + \ # F.conv_transpose2d(hi, g1, padding=pad, groups=C, dilation=dilation) # # # Calculate the pad size # L2 = (L * dilation)//2 # # pad = (0, 0, L2, L2+dilation) if d == 2 else (L2, L2+dilation, 0, 0) # a = dilation*2 # b = dilation*(L-2) # if pad1 is None: # pad1 = (0, 0, a, b) if d == 2 else (a, b, 0, 0) # print(pad1) # lo = mypad(lo, pad=pad1, mode=mode) # hi = mypad(hi, pad=pad1, mode=mode) # if pad is None: # p = (a + b + (L - 1)*dilation)//2 # pad = (p, 0) if d == 2 else (0, p) # print(pad) return y/(2*dilation)
c977115b311dbe67f0d72d2990fb3d9a9a206506
3,639,878
import torch def preprocess(image, size): """ pre-process images with Opencv format""" image = np.array(image) H, W, _ = image.shape image = nd.zoom(image.astype('float32'), (size / H, size / W, 1.0), order=1) image = image - mean_pixel image = image.transpose([2, 0, 1]) image = np.expand_dims(image, axis=0) return torch.from_numpy(image)
c2a928bbebf55587ff83347b572c7d73079cdbae
3,639,879
def delete_notebook(notebook_id: str) -> tuple[dict, int]: """Delete an existing notebook. The user can call this operation only for their own notebooks. This operation requires the following header with a fresh access token: "Authorization: Bearer fresh_access_token" Request parameters: - notebook_id (string): Notebook ID. Response status codes: - 200 (Success) - 401 (Unauthorized) - 403 (Forbidden) - 422 (Unprocessable Entity) Response data (JSON string): - message (string): Message. - message_type (string): Message type. :param notebook_id: Notebook ID. :return: Tuple containing the response data and the response status code. """ # Validate the ID. A "marshmallow.ValidationError" exception is raised if # the ID is invalid, which produces a 400 response. notebook_id = id_schema.load({"id": notebook_id})["id"] # JWT payload data req_user_id = get_jwt()["user_id"] # Get notebook db = get_db() notebook = db.notebooks.get_by_id(notebook_id) # Check that the notebook exists and the permissions if notebook is None or notebook["user_id"] != req_user_id: d = get_response_data(USER_UNAUTHORIZED, ERROR_UNAUTHORIZED_USER) return d, 403 # Delete notebook db.notebooks.delete(notebook_id) # Delete all notebook's notes for n in db.notes.get_by_filter(notebook_id): db.notes.delete(n["id"]) return get_response_data(DELETED, OK), 200
cf7a5074d9814024bc6ed8fa56a8157a0cc4290d
3,639,880
import time def log_time(logger): """ Decorator to log the execution time of a function """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): start = time.time() result = func(*args, **kwargs) end = time.time() _log_time(logger, func.__name__, start, end) return result return wrapper return decorator
a809eb70488338991636912b4eba33bf4aa93acc
3,639,881
import warnings def compute_avg_merge_candidate(catavg, v, intersection_idx): """ Given intersecting deltas in catavg and v, compute average delta one could merge into running average. If one cat is an outlier, picking that really distorts the vector we merge into running average vector. So, effectively merge using all as the ref cat in common by merging in average of all possible refcats. When there is no noise in y, the average merge candidate is the same as any single candidate. So, with no noise, we get exact answer; averaging here doesn't cost us anything. It only helps to spread noise across categories. """ merge_candidates = [] for i in intersection_idx: merge_candidates.append(v - v[i] + catavg[i]) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) # We get "Mean of empty slice" when all entries are Nan but we want that. v = np.nanmean(merge_candidates, axis=0) return v
25c50ad0ad98e7a6951bd67cae8dc8fe6c78dbbb
3,639,882
def plot_annotations(img, bbox, labels, scores, confidence_threshold, save_fig_path='predicted_img.jpeg', show=False, save_fig=True): """ This function plots bounding boxes over image with text labels and saves the image to a particualr location. """ # Default colors and mappings colors_map={'1':'#5E81AC','2':'#A3BE8C','3':'#B48EAD'} labels_map={'1':'Vehicle','2':'Person','3':'Cyclist'} # Create figure and axes fig, ax = plt.subplots(figsize = (200,200)) # Display the image ax.imshow(img) i=0 scores_ind = [idx for idx,x in enumerate(scores) if x>confidence_threshold] # Filter for scores greater than certain threshold for idx, entry in enumerate(bbox): if idx in scores_ind: h = entry[2]-entry[0] w = entry[3]-entry[1] # Create a Rectangle patch rect = patches.Rectangle((entry[0],entry[1]), h, w, linewidth=60, edgecolor=colors_map[str(labels[idx])], facecolor='none') # Add classification category plt.text(entry[0], entry[1], s=labels_map[str(labels[idx])], color='white', verticalalignment='top', bbox={'color': colors_map[str(labels[idx])], 'pad': 0}, font={'size':500}) # Add the patch to the Axes ax.add_patch(rect) i+=1 if show==True: plt.show() plt.savefig(save_fig_path, bbox_inches = 'tight', pad_inches = 0, dpi=5) return save_fig_path
f32afb61b9f43fe44b9e78896a51d67e52638eab
3,639,883
def get_registry_image_tag(app_name: str, image_tag: str, registry: dict) -> str: """Returns the image name for a given organization, app and tag""" return f"{registry['organization']}/{app_name}:{image_tag}"
16c71f99ff3a3c2514c24cb417b93f3b88f7cf42
3,639,884
import os import shutil def save_wind_generated_waves_to_subdirectory(args): """ Copy the wave height and wave period to the outputs/ directory. Inputs: args['wave_height'][sector]: uri to "sector"'s wave height data args['wave_period'][sector]: uri to "sector"'s wave period data args['prefix']: prefix to be appended to the new filename Outputs: data_uri: dictionary containing the uri where the data is saved """ intermediate_directory = \ os.path.join(args['intermediate_directory'], args['subdirectory']) wave_height_list = args['wave_heights'] wave_period_list = args['wave_periods'] data_uri = {} for wave_height_uri in wave_height_list: shutil.copy(wave_height_uri, intermediate_directory) for wave_period_uri in wave_period_list: shutil.copy(wave_period_uri, intermediate_directory) return data_uri
5b203f5237ebd9ac3fbddcecc5b9c609677eb5ae
3,639,885
def process_file(filename): """ Handle a single .fits file, returning the count of checksum and compliance errors. """ try: checksum_errors = verify_checksums(filename) if OPTIONS.compliance: compliance_errors = verify_compliance(filename) else: compliance_errors = 0 if OPTIONS.write_file and checksum_errors == 0 or OPTIONS.force: update(filename) return checksum_errors + compliance_errors except Exception as e: log.error('EXCEPTION {!r} .. {}'.format(filename, e)) return 1
36f1723c67ab32a25cd7cba50b9989f00ea3e452
3,639,886
def numeric_summary(tensor): """Get a text summary of a numeric tensor. This summary is only available for numeric (int*, float*, complex*) and Boolean tensors. Args: tensor: (`numpy.ndarray`) the tensor value object to be summarized. Returns: The summary text as a `RichTextLines` object. If the type of `tensor` is not numeric or Boolean, a single-line `RichTextLines` object containing a warning message will reflect that. """ def _counts_summary(counts, skip_zeros=True, total_count=None): """Format values as a two-row table.""" if skip_zeros: counts = [(count_key, count_val) for count_key, count_val in counts if count_val] max_common_len = 0 for count_key, count_val in counts: count_val_str = str(count_val) common_len = max(len(count_key) + 1, len(count_val_str) + 1) max_common_len = max(common_len, max_common_len) key_line = debugger_cli_common.RichLine("|") val_line = debugger_cli_common.RichLine("|") for count_key, count_val in counts: count_val_str = str(count_val) key_line += _pad_string_to_length(count_key, max_common_len) val_line += _pad_string_to_length(count_val_str, max_common_len) key_line += " |" val_line += " |" if total_count is not None: total_key_str = "total" total_val_str = str(total_count) max_common_len = max(len(total_key_str) + 1, len(total_val_str)) total_key_str = _pad_string_to_length(total_key_str, max_common_len) total_val_str = _pad_string_to_length(total_val_str, max_common_len) key_line += total_key_str + " |" val_line += total_val_str + " |" return debugger_cli_common.rich_text_lines_from_rich_line_list( [key_line, val_line]) if not isinstance(tensor, np.ndarray) or not np.size(tensor): return debugger_cli_common.RichTextLines([ "No numeric summary available due to empty tensor."]) elif (np.issubdtype(tensor.dtype, np.float) or np.issubdtype(tensor.dtype, np.complex) or np.issubdtype(tensor.dtype, np.integer)): counts = [ ("nan", np.sum(np.isnan(tensor))), ("-inf", np.sum(np.isneginf(tensor))), ("-", np.sum(np.logical_and( tensor < 0.0, np.logical_not(np.isneginf(tensor))))), ("0", np.sum(tensor == 0.0)), ("+", np.sum(np.logical_and( tensor > 0.0, np.logical_not(np.isposinf(tensor))))), ("+inf", np.sum(np.isposinf(tensor)))] output = _counts_summary(counts, total_count=np.size(tensor)) valid_array = tensor[ np.logical_not(np.logical_or(np.isinf(tensor), np.isnan(tensor)))] if np.size(valid_array): stats = [ ("min", np.min(valid_array)), ("max", np.max(valid_array)), ("mean", np.mean(valid_array)), ("std", np.std(valid_array))] output.extend(_counts_summary(stats, skip_zeros=False)) return output elif tensor.dtype == np.bool: counts = [ ("False", np.sum(tensor == 0)), ("True", np.sum(tensor > 0)),] return _counts_summary(counts, total_count=np.size(tensor)) else: return debugger_cli_common.RichTextLines([ "No numeric summary available due to tensor dtype: %s." % tensor.dtype])
8499bb79f1869474752cd59fbfdb9a5bc0a23c6a
3,639,887
def solveq(K, f, bcPrescr, bcVal=None): """ Solve static FE-equations considering boundary conditions. Parameters: K global stiffness matrix, dim(K)= nd x nd f global load vector, dim(f)= nd x 1 bcPrescr 1-dim integer array containing prescribed dofs. bcVal 1-dim float array containing prescribed values. If not given all prescribed dofs are assumed 0. Returns: a solution including boundary values Q reaction force vector dim(a)=dim(Q)= nd x 1, nd : number of dof's """ nDofs = K.shape[0] nPdofs = bcPrescr.shape[0] if bcVal is None: bcVal = np.zeros([nPdofs], 'd') bc = np.ones(nDofs, 'bool') bcDofs = np.arange(nDofs) bc[np.ix_(bcPrescr-1)] = False bcDofs = bcDofs[bc] fsys = f[bcDofs]-K[np.ix_((bcDofs), (bcPrescr-1))] * \ np.asmatrix(bcVal).reshape(nPdofs, 1) asys = np.linalg.solve(K[np.ix_((bcDofs), (bcDofs))], fsys) a = np.zeros([nDofs, 1]) a[np.ix_(bcPrescr-1)] = np.asmatrix(bcVal).reshape(nPdofs, 1) a[np.ix_(bcDofs)] = asys Q = K*np.asmatrix(a)-f return (np.asmatrix(a), Q)
45aedf376f6eb2bdc6ba2a4889628f2584d13db1
3,639,888
def get_output_names(hf): """ get_output_names(hf) Returns a list of the output variables names in the HDF5 file. Args: hf: An open HDF5 filehandle or a string containing the HDF5 filename to use. Returns: A sorted list of the output variable names in the HDF5 file. """ return sorted(map(str, hf['/output/data'].keys()))
6607197166c9a63d834398b188e996a811b081ce
3,639,889
from typing import Union from typing import Sequence from typing import Optional from typing import List from typing import Tuple from pathlib import Path from typing import Mapping from typing import Any def gene_trends( adata: AnnData, model: _input_model_type, genes: Union[str, Sequence[str]], lineages: Optional[Union[str, Sequence[str]]] = None, backward: bool = False, data_key: str = "X", time_key: str = "latent_time", time_range: Optional[Union[_time_range_type, List[_time_range_type]]] = None, transpose: bool = False, callback: _callback_type = None, conf_int: Union[bool, float] = True, same_plot: bool = False, hide_cells: bool = False, perc: Optional[Union[Tuple[float, float], Sequence[Tuple[float, float]]]] = None, lineage_cmap: Optional[matplotlib.colors.ListedColormap] = None, abs_prob_cmap: matplotlib.colors.ListedColormap = cm.viridis, cell_color: Optional[str] = None, cell_alpha: float = 0.6, lineage_alpha: float = 0.2, size: float = 15, lw: float = 2, cbar: bool = True, margins: float = 0.015, sharex: Optional[Union[str, bool]] = None, sharey: Optional[Union[str, bool]] = None, gene_as_title: Optional[bool] = None, legend_loc: Optional[str] = "best", obs_legend_loc: Optional[str] = "best", ncols: int = 2, suptitle: Optional[str] = None, return_models: bool = False, n_jobs: Optional[int] = 1, backend: Backend_t = _DEFAULT_BACKEND, show_progress_bar: bool = True, figsize: Optional[Tuple[float, float]] = None, dpi: Optional[int] = None, save: Optional[Union[str, Path]] = None, plot_kwargs: Mapping[str, Any] = MappingProxyType({}), **kwargs: Any, ) -> Optional[_return_model_type]: """ Plot gene expression trends along lineages. Each lineage is defined via it's lineage weights which we compute using :func:`cellrank.tl.lineages`. This function accepts any model based off :class:`cellrank.ul.models.BaseModel` to fit gene expression, where we take the lineage weights into account in the loss function. Parameters ---------- %(adata)s %(model)s %(genes)s lineages Names of the lineages to plot. If `None`, plot all lineages. %(backward)s data_key Key in :attr:`anndata.AnnData.layers` or `'X'` for :attr:`anndata.AnnData.X` where the data is stored. time_key Key in :attr:`anndata.AnnData.obs` where the pseudotime is stored. %(time_range)s This can also be specified on per-lineage basis. %(gene_symbols)s transpose If ``same_plot = True``, group the trends by ``lineages`` instead of ``genes``. This forces ``hide_cells = True``. If ``same_plot = False``, show ``lineages`` in rows and ``genes`` in columns. %(model_callback)s conf_int Whether to compute and show confidence interval. If the ``model`` is :class:`cellrank.ul.models.GAMR`, it can also specify the confidence level, the default is `0.95`. same_plot Whether to plot all lineages for each gene in the same plot. hide_cells If `True`, hide all cells. perc Percentile for colors. Valid values are in interval `[0, 100]`. This can improve visualization. Can be specified individually for each lineage. lineage_cmap Categorical colormap to use when coloring in the lineages. If `None` and ``same_plot``, use the corresponding colors in :attr:`anndata.AnnData.uns`, otherwise use `'black'`. abs_prob_cmap Continuous colormap to use when visualizing the absorption probabilities for each lineage. Only used when ``same_plot = False``. cell_color Key in :attr:`anndata.AnnData.obs` or :attr:`anndata.AnnData.var_names` used for coloring the cells. cell_alpha Alpha channel for cells. lineage_alpha Alpha channel for lineage confidence intervals. size Size of the points. lw Line width of the smoothed values. cbar Whether to show colorbar. Always shown when percentiles for lineages differ. Only used when ``same_plot = False``. margins Margins around the plot. sharex Whether to share x-axis. Valid options are `'row'`, `'col'` or `'none'`. sharey Whether to share y-axis. Valid options are `'row'`, `'col'` or `'none'`. gene_as_title Whether to show gene names as titles instead on y-axis. legend_loc Location of the legend displaying lineages. Only used when `same_plot = True`. obs_legend_loc Location of the legend when ``cell_color`` corresponds to a categorical variable. ncols Number of columns of the plot when plotting multiple genes. Only used when ``same_plot = True``. suptitle Suptitle of the figure. %(return_models)s %(parallel)s %(plotting)s plot_kwargs Keyword arguments for :meth:`cellrank.ul.models.BaseModel.plot`. kwargs Keyword arguments for :meth:`cellrank.ul.models.BaseModel.prepare`. Returns ------- %(plots_or_returns_models)s """ if isinstance(genes, str): genes = [genes] genes = _unique_order_preserving(genes) _check_collection( adata, genes, "obs" if data_key == "obs" else "var_names", use_raw=kwargs.get("use_raw", False), ) lineage_key = Key.obsm.abs_probs(backward) if lineage_key not in adata.obsm: raise KeyError(f"Lineages key `{lineage_key!r}` not found in `adata.obsm`.") if lineages is None: lineages = adata.obsm[lineage_key].names elif isinstance(lineages, str): lineages = [lineages] elif all(ln is None for ln in lineages): # no lineage, all the weights are 1 lineages = [None] cbar = False logg.debug("All lineages are `None`, setting the weights to `1`") lineages = _unique_order_preserving(lineages) if isinstance(time_range, (tuple, float, int, type(None))): time_range = [time_range] * len(lineages) elif len(time_range) != len(lineages): raise ValueError( f"Expected time ranges to be of length `{len(lineages)}`, found `{len(time_range)}`." ) kwargs["time_key"] = time_key kwargs["data_key"] = data_key kwargs["backward"] = backward kwargs["conf_int"] = conf_int # prepare doesnt take or need this models = _create_models(model, genes, lineages) all_models, models, genes, lineages = _fit_bulk( models, _create_callbacks(adata, callback, genes, lineages, **kwargs), genes, lineages, time_range, return_models=True, filter_all_failed=False, parallel_kwargs={ "show_progress_bar": show_progress_bar, "n_jobs": _get_n_cores(n_jobs, len(genes)), "backend": _get_backend(models, backend), }, **kwargs, ) lineages = sorted(lineages) tmp = adata.obsm[lineage_key][lineages].colors if lineage_cmap is None and not transpose: lineage_cmap = tmp plot_kwargs = dict(plot_kwargs) plot_kwargs["obs_legend_loc"] = obs_legend_loc if transpose: all_models = pd.DataFrame(all_models).T.to_dict() models = pd.DataFrame(models).T.to_dict() genes, lineages = lineages, genes hide_cells = same_plot or hide_cells else: # information overload otherwise plot_kwargs["lineage_probability"] = False plot_kwargs["lineage_probability_conf_int"] = False tmp = pd.DataFrame(models).T.astype(bool) start_rows = np.argmax(tmp.values, axis=0) end_rows = tmp.shape[0] - np.argmax(tmp[::-1].values, axis=0) - 1 if same_plot: gene_as_title = True if gene_as_title is None else gene_as_title sharex = "all" if sharex is None else sharex if sharey is None: sharey = "row" if plot_kwargs.get("lineage_probability", False) else "none" ncols = len(genes) if ncols >= len(genes) else ncols nrows = int(np.ceil(len(genes) / ncols)) else: gene_as_title = False if gene_as_title is None else gene_as_title sharex = "col" if sharex is None else sharex if sharey is None: sharey = ( "row" if not hide_cells or plot_kwargs.get("lineage_probability", False) else "none" ) nrows = len(genes) ncols = len(lineages) plot_kwargs = dict(plot_kwargs) if plot_kwargs.get("xlabel", None) is None: plot_kwargs["xlabel"] = time_key fig, axes = plt.subplots( nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey, figsize=(6 * ncols, 4 * nrows) if figsize is None else figsize, tight_layout=True, dpi=dpi, ) axes = np.reshape(axes, (nrows, ncols)) cnt = 0 plot_kwargs["obs_legend_loc"] = None if same_plot else obs_legend_loc logg.info("Plotting trends") for row in range(len(axes)): for col in range(len(axes[row])): if cnt >= len(genes): break gene = genes[cnt] if ( same_plot and plot_kwargs.get("lineage_probability", False) and transpose ): lpc = adata.obsm[lineage_key][gene].colors[0] else: lpc = None if same_plot: plot_kwargs["obs_legend_loc"] = ( obs_legend_loc if row == 0 and col == len(axes[0]) - 1 else None ) _trends_helper( models, gene=gene, lineage_names=lineages, transpose=transpose, same_plot=same_plot, hide_cells=hide_cells, perc=perc, lineage_cmap=lineage_cmap, abs_prob_cmap=abs_prob_cmap, lineage_probability_color=lpc, cell_color=cell_color, alpha=cell_alpha, lineage_alpha=lineage_alpha, size=size, lw=lw, cbar=cbar, margins=margins, sharey=sharey, gene_as_title=gene_as_title, legend_loc=legend_loc, figsize=figsize, fig=fig, axes=axes[row, col] if same_plot else axes[cnt], show_ylabel=col == 0, show_lineage=same_plot or (cnt == start_rows), show_xticks_and_label=((row + 1) * ncols + col >= len(genes)) if same_plot else (cnt == end_rows), **plot_kwargs, ) # plot legend on the 1st plot cnt += 1 if not same_plot: plot_kwargs["obs_legend_loc"] = None if same_plot and (col != ncols): for ax in np.ravel(axes)[cnt:]: ax.remove() fig.suptitle(suptitle, y=1.05) if save is not None: save_fig(fig, save) if return_models: return all_models
cda039d6e97d5853b48aaf144cdf4763adac05a8
3,639,890
def create_hostclass_snapshot_dict(snapshots): """ Create a dictionary of hostclass name to a list of snapshots for that hostclass :param list[Snapshot] snapshots: :return dict[str, list[Snapshot]]: """ snapshot_hostclass_dict = {} for snap in snapshots: # build a dict of hostclass+environment to a list of snapshots # use this dict for the --keep-num option to know how many snapshots are there for each hostclass if snap.tags and snap.tags.get('hostclass') and snap.tags.get('env'): key_name = snap.tags.get('hostclass') + '_' + snap.tags.get('env') hostclass_snapshots = snapshot_hostclass_dict.setdefault(key_name, []) hostclass_snapshots.append(snap) return snapshot_hostclass_dict
dd568eaeb76fee96a876b5a57d963cd2fc8f870e
3,639,891
from datetime import datetime def refund_order(id): """ List all departments """ check_admin() order = Order.query.filter_by(id=id).first() payment_id = order.payment_id try: payment = Payment.find(payment_id) except ResourceNotFound: flash("Payment Not Found", "danger") return redirect(redirect_url()) except ServerError: flash("There was a problem with PayPal. Please try again later.", "warning") return redirect(redirect_url()) sale_id = payment.transactions[0].related_resources[0].sale.id # refund full ammount sale_amount = { 'amount': { 'currency': payment.transactions[0].related_resources[0].sale.amount.currency, 'total': payment.transactions[0].related_resources[0].sale.amount.total } } sale = Sale.find(sale_id) refund = sale.refund(sale_amount) # refund full ammount if refund.success(): flash("Refund [%s] Success" % (refund.id), 'info') status = OrderStatus.query.filter_by(name='Refunded').first() order.status_id = status.id order.cancelled = True order.updated_at = datetime.now() order_items = OrderItem.query.filter_by(order_id=order.id).all() product_items = [] try: for item in order_items: product = item.product product.quantity += item.quantity db.session.merge(item) db.session.merge(order) db.session.flush() activity = Activity(verb='update', object=order) db.session.add(activity) db.session.commit() except: flash('Items counld not be returned to inventory', "warning") # XXX: this can fail at any point below. Not good, as refund is registed else: flash(refund.error['message'], 'warning') print(refund.error) return redirect(redirect_url())
d0de52c4f69cb933c4344e4f4534934709a9f7cb
3,639,892
def get_dprime_from_regions(*regions): """Get the full normalized linkage disequilibrium (D') matrix for n regions. This is a wrapper which determines the correct normalized linkage function to call based on the number of regions. Only two-dimensional normalized linkage matrices are currently supported. Where only one region is given, normalized linkage is calculated for that region against itself. :param list regions: List of :ref:`regions <regions>`. :returns: :ref:`proximity matrix <proximity_matrices>` giving the normalized linkage \ disequilibrium of all possible combinations of windows within the different regions. """ regions = prepare_regions(regions) if len(regions) == 2: dprime_func = dprime_2d else: raise NotImplementedError( 'There is currently no implementation of normalized linkage ' 'disequilibrium for more than 2 dimensions') return dprime_func(*regions)
2676c4be712989bf7e1419bf19a83ddf84c0ffec
3,639,893
def get_nav_class_state(url, request, partial=False): """ Helper function that just returns the 'active'/'inactive' link class based on the passed url. """ if partial: _url = url_for( controller=request.environ['pylons.routes_dict']['controller'], action=None, id=None ) else: _url = url_for( controller=request.environ['pylons.routes_dict']['controller'], action=request.environ['pylons.routes_dict']['action'], id=None ) if url == request.path_info: return 'active' elif url.startswith(_url) and partial: return 'active' elif url == _url: return 'active' else: return 'inactive'
1ec83fc46fa04868449d8ebaf611cee9ff88fcd5
3,639,894
import htcondor import os import unittest def needs_htcondor(test_item): """ Use a decorator before test classes or methods to only run them if the HTCondor Python bindings are installed. """ test_item = _mark_test('htcondor', test_item) try: htcondor.Collector(os.getenv('TOIL_HTCONDOR_COLLECTOR')).query(constraint='False') except ImportError: return unittest.skip("Install the HTCondor Python bindings to include this test.")(test_item) except IOError: return unittest.skip("HTCondor must be running to include this test.")(test_item) except RuntimeError: return unittest.skip("HTCondor must be installed and configured to include this test.")(test_item) else: return test_item
de778dfde4362cdc9db402dc3c3fac50a6a59a9c
3,639,895
from typing import Tuple import torch from typing import List def tile_image( image: Image.Image, tile_size: Tuple[int, int], overlap: int ) -> Tuple[torch.Tensor, List[Tuple[int, int]]]: """Take in an image and tile it into smaller tiles for inference. Args: image: The input image to tile. tile_size: The (width, height) of the tiles. overlap: The overlap between adjacent tiles (height, width). Returns: A tensor of the tiles and a list of the (x, y) offset for the tiles. The offets are needed to keep track of which tiles have targets. Examples:: >>> tiles, coords = tile_image(Image.new("RGB", (1000, 1000)), (512, 512), 50) >>> tiles.shape[0] 9 >>> len(coords) 9 >>> tiles.shape[-2:] torch.Size([512, 512]) """ tiles, coords = [], [] width, height = image.size x_step = width if width == tile_size[0] else tile_size[0] - overlap y_step = height if height == tile_size[1] else tile_size[1] - overlap for x in range(0, width - overlap, x_step): # Shift back to extract tiles on the image if x + tile_size[0] >= width and x != 0: x = width - tile_size[0] for y in range(0, height - overlap, y_step): if y + tile_size[1] >= height and y != 0: y = height - tile_size[1] tile = normalize( np.array(image.crop((x, y, x + tile_size[0], y + tile_size[1]))) ) tiles.append(torch.Tensor(tile)) coords.append((x, y)) # Transpose the images from BHWC -> BCHW tiles = torch.stack(tiles).permute(0, 3, 1, 2) return tiles, coords
c5c9e09a5a95cdd63f8f2082e4c5a87e339f18ef
3,639,896
from datetime import datetime def parse(data): """ Parses the input of the Santander text file. The format of the bank statement is as follows: "From: <date> to <date>" "Account: <number>" "Date: <date>" "Description: <description>" "Amount: <amount>" "Balance: <amount>" <second_transaction_entry> <nth_transaction_entry> :param data: A list containing each line of the bank statement. :return: A pandas DataFrame. """ dates = [] descs = [] amounts = [] balances = [] # Skip unnecessary headers data = data[4:] # Remove empty lines data = [d.strip() for d in data] data = list(filter(None, data)) # Creates sublist for each transaction data = [data[d:d+4] for d in range(0, len(data), 4)] # Parsing data into a 2D list for entry in data: # Removing field descriptors for e in entry: if e.startswith("Date"): e = e.replace("Date: ", "").strip() dates.append(datetime.datetime.strptime(e, "%d/%m/%Y")) if e.startswith("Description"): descs.append(e.replace("Description: ", "").strip()) if e.startswith("Amount"): e = e.replace("Amount: ", "").replace(" GBP", "").strip() amounts.append(float(e)) if e.startswith("Balance"): e = e.replace("Balance: ", "").replace(" GBP", "").strip() balances.append(float(e)) # Stores data in a Pandas data container data = list(zip(dates, balances, amounts, descs)) cols = ["DATES", "BALANCE", "AMOUNT", "DESCRIPTION"] parsed = pd.DataFrame(data, columns=cols, index=dates) return parsed
267e1769553cebcd28f1c3190107712bebafb53a
3,639,897
def solve_duffing(tmax, dt_per_period, t_trans, x0, v0, gamma, delta, omega): """Solve the Duffing equation for parameters gamma, delta, omega. Find the numerical solution to the Duffing equation using a suitable time grid: tmax is the maximum time (s) to integrate to; t_trans is the initial time period of transient behaviour until the solution settles down (if it does) to some kind of periodic motion (these data points are dropped) and dt_per_period is the number of time samples (of duration dt) to include per period of the driving motion (frequency omega). Returns the time grid, t (after t_trans), position, x, and velocity, xdot, dt, and step, the number of array points per period of the driving motion. """ # Time point spacings and the time grid period = 2*np.pi/omega dt = 2*np.pi/omega / dt_per_period step = int(period / dt) t = np.arange(0, tmax, dt) # Initial conditions: x, xdot X0 = [x0, v0] X = odeint(deriv, X0, t, args=(gamma, delta, omega)) idx = int(t_trans / dt) return t[idx:], X[idx:], dt, step
b1c246d3eb680852de60c7b9f0c55034d617e71a
3,639,898
def create_prog_assignment_registry(): """Create the registry for course properties.""" reg = FieldRegistry( 'Prog Assignment Entity', description='Prog Assignment', extra_schema_dict_values={ 'className': 'inputEx-Group new-form-layout'}) # Course level settings. course_opts = reg.add_sub_registry('prog_assignment', 'Assignment Config') course_opts.add_property(SchemaField( 'key', 'ID', 'string', editable=False, extra_schema_dict_values={'className': 'inputEx-Field keyHolder'}, description='Unique Id of the Assignment')) course_opts.add_property(SchemaField( 'pa_id', 'PA_ID', 'string', editable=False, extra_schema_dict_values={'className': 'inputEx-Field keyHolder'}, description='Unique id of the test cases in this assignment.')) course_opts.add_property(SchemaField('parent_unit', 'Parent Unit', 'string', select_data=[])) course_opts.add_property( SchemaField('type', 'Type', 'string', editable=False)) course_opts.add_property( SchemaField('title', 'Title', 'string', optional=False)) course_opts.add_property( SchemaField('weight', 'Weight', 'number', optional=False)) course_opts.add_property(SchemaField( content_key('question'), 'Problem Statement', 'html', optional=False, description=('Problem Statement and description of program, visible' ' to student.'), extra_schema_dict_values={ 'supportCustomTags': tags.CAN_USE_DYNAMIC_TAGS.value, 'className': 'inputEx-Field content'})) course_opts.add_property(SchemaField( 'html_check_answers', 'Allow "Compile & Run"', 'boolean', optional=True, extra_schema_dict_values={ 'className': 'inputEx-Field assessment-editor-check-answers'})) course_opts.add_property(SchemaField( content_key('evaluator'), 'Program Evaluator', 'string', optional=True, select_data=[ (eid, eid) for eid in evaluator.ProgramEvaluatorRegistory.list_ids()])) course_opts.add_property(SchemaField( content_key('ignore_presentation_errors'), 'Ignore Presentation Errors', 'boolean', optional=True, extra_schema_dict_values={ 'className': 'inputEx-Field assessment-editor-check-answers'})) course_opts.add_property( SchemaField(workflow_key(courses.SUBMISSION_DUE_DATE_KEY), 'Submission Due Date', 'string', optional=True, description=str(messages.DUE_DATE_FORMAT_DESCRIPTION))) course_opts.add_property(SchemaField( content_key('show_sample_solution'), 'Show sample solution after deadline', 'boolean', optional=True, extra_schema_dict_values={ 'className': 'inputEx-Field assessment-editor-check-answers'})) test_case_opts = FieldRegistry('', '') test_case_opts.add_property(SchemaField( 'input', 'Input', 'text', optional=True, extra_schema_dict_values={})) test_case_opts.add_property(SchemaField( 'output', 'Output', 'text', optional=True, extra_schema_dict_values={'className': 'inputEx-Field content'})) test_case_opts.add_property(SchemaField( 'weight', 'Weight', 'number', optional=False, extra_schema_dict_values={'className': 'inputEx-Field content','value':1})) public_test_cases = FieldArray( content_key('public_testcase'), '', item_type=test_case_opts, extra_schema_dict_values={ 'sortable': False, 'listAddLabel': 'Add Public Test Case', 'listRemoveLabel': 'Delete'}) public_tests_reg = course_opts.add_sub_registry( 'public_testcase', title='Public Test Cases') public_tests_reg.add_property(public_test_cases) private_test_cases = FieldArray( content_key('private_testcase'), '', item_type=test_case_opts, extra_schema_dict_values={ 'sortable': False, 'listAddLabel': 'Add Private Test Case', 'listRemoveLabel': 'Delete'}) private_tests_reg = course_opts.add_sub_registry( 'private_testcase', title='Private Test Cases') private_tests_reg.add_property(private_test_cases) lang_reg = course_opts.add_sub_registry( 'allowed_languages', title='Allowed Programming Languages') language_opts = FieldRegistry('', '') language_opts.add_property( SchemaField( 'language', 'Programming Language', 'string', select_data=base.ProgAssignment.PROG_LANG_FILE_MAP.items())) language_opts.add_property(SchemaField( 'prefixed_code', 'Prefixed Fixed Code', 'text', optional=True, description=('The uneditable code for the assignment. ' 'This will be prepended at the start of user code'), extra_schema_dict_values={'className': 'inputEx-Field content'})) language_opts.add_property(SchemaField( 'code_template', 'Template Code', 'text', optional=True, description=('The default code that is populated on opening ' + 'an assignment.'), extra_schema_dict_values={'className': 'inputEx-Field content'})) language_opts.add_property(SchemaField( 'uneditable_code', 'Suffixed Fixed Code', 'text', optional=True, description=('The uneditable code for the assignment. ' 'This will be appended at the end of user code'), extra_schema_dict_values={'className': 'inputEx-Field content'})) language_opts.add_property(SchemaField( 'suffixed_invisible_code', 'Invisible Code', 'text', optional=True, description=('This code will not be visible to the student and will be' ' appended at the very end.'), extra_schema_dict_values={'className': 'inputEx-Field content'})) language_opts.add_property(SchemaField( 'sample_solution', 'Sample Solution', 'text', optional=True, extra_schema_dict_values={'className': 'inputEx-Field'})) language_opts.add_property(SchemaField( 'filename', 'Sample Solution Filename', 'string', optional=True, extra_schema_dict_values={'className': 'inputEx-Field'})) allowed_languages = FieldArray( content_key('allowed_languages'), '', item_type=language_opts, extra_schema_dict_values={ 'sortable': False, 'listAddLabel': 'Add Language', 'listRemoveLabel': 'Delete', 'minItems': 1}) lang_reg.add_property(allowed_languages) course_opts.add_property( SchemaField('is_draft', 'Status', 'boolean', select_data=[(True, DRAFT_TEXT), (False, PUBLISHED_TEXT)], extra_schema_dict_values={ 'className': 'split-from-main-group'})) return reg
c2f17e812d30abe851ba9cfd18602ca458acec56
3,639,899