content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def puzzles(): """ Pick one of the TOP95 puzzle strings """ return [l for l in TOP95.split("\n") if l]
def2fefe114fe2867f2d465dbe4b55ae74287e09
3,639,700
from datetime import datetime def test_declarative_sfc_obs_full(ccrs): """Test making a full surface observation plot.""" data = pd.read_csv(get_test_data('SFC_obs.csv', as_file_obj=False), infer_datetime_format=True, parse_dates=['valid']) obs = PlotObs() obs.data = data obs.time = datetime(1993, 3, 12, 13) obs.time_window = timedelta(minutes=15) obs.level = None obs.fields = ['tmpf', 'dwpf', 'emsl', 'cloud_cover', 'wxsym'] obs.locations = ['NW', 'SW', 'NE', 'C', 'W'] obs.colors = ['red', 'green', 'black', 'black', 'blue'] obs.formats = [None, None, lambda v: format(10 * v, '.0f')[-3:], 'sky_cover', 'current_weather'] obs.vector_field = ('uwind', 'vwind') obs.reduce_points = 1 # Panel for plot with Map features panel = MapPanel() panel.layout = (1, 1, 1) panel.area = (-124, -72, 20, 53) panel.area = 'il' panel.projection = ccrs.PlateCarree() panel.layers = ['coastline', 'borders', 'states'] panel.plots = [obs] # Bringing it all together pc = PanelContainer() pc.size = (10, 10) pc.panels = [panel] pc.draw() return pc.figure
780b4462ba01ddcd20a1e87ef8637ca174293af8
3,639,701
def standardize_ants_data(ants_data, subject_ID_col): """ Takes df from ANTs output and stadardizes column names for both left and right hemi """ ants_useful_cols = ['Structure Name'] ants_to_std_naming_dict = {} ants_to_std_naming_dict['Structure Name'] = subject_ID_col #'SubjID' for roi in ants_data.columns: prefix = None name_split = roi.split(' ') if name_split[0] == 'left': prefix = 'L' if name_split[0] == 'right': prefix = 'R' if prefix is not None: ants_useful_cols.append(roi) std_name = prefix + '_' + ''.join(name_split[1:]) ants_to_std_naming_dict[roi] = std_name ants_data_std = ants_data[ants_useful_cols].copy() ants_data_std = ants_data_std.rename(columns=ants_to_std_naming_dict) # Splitting SubjID column to ignore site name _, ants_data_std[subject_ID_col] = ants_data_std[subject_ID_col].str.rsplit('_', 1).str return ants_data_std
0f5216fd75244b0b9b60fdcdf05d63bfd02a2ed9
3,639,702
def make_gridpoints(bbox, resolution=1, return_coords=False): """It constructs a grid of points regularly spaced. Parameters ---------- bbox : str, GeoDataFrame or dict. Corresponds to the boundary box in which the grid will be formed. If a str is provided, it should be in '(S,W,N,E)' format. With a GeoDataFrame, we will use the coordinates of the extremities. Also one can provide a dict with 'south', 'north', 'east', 'west'. resolution : float, default is 1. Space between the arbitrary points of resulting grid. return_coords : bool If it is wanted to return the coordinate sequences. """ bbox_ = parse_bbox(bbox) b_s, b_w, b_n, b_e = map(float, bbox_[1:-1].split(',')) nlon = int(ceil((b_e-b_w) / (resolution/111.32))) nlat = int(ceil((b_n-b_s) / (resolution/110.57))) lonv, latv = meshgrid(linspace(b_w, b_e, nlon), linspace(b_s, b_n, nlat)) gridpoints = pd.DataFrame(vstack([lonv.ravel(), latv.ravel()]).T, columns=['lon', 'lat']) gridpoints['geometry'] = gridpoints.apply(lambda x: Point([x['lon'], x['lat']]), axis=1) gridpoints = gpd.GeoDataFrame(gridpoints, crs={'init': 'epsg:4326'}) if isinstance(bbox, gpd.GeoDataFrame): grid_ix = gpd.sjoin(gridpoints, bbox, op='intersects').index.unique() gridpoints = gridpoints.loc[grid_ix] if return_coords: return gridpoints, lonv, latv return gridpoints
8ccc5b257666cb8bd3a87662c6b021b4ed49ccb9
3,639,703
def removeElement_2(nums, val): """ Using one loop and two pointers Don't preserve order """ # Remove the elment from the list i = 0 j = len(nums) - 1 count = 0 while i < j: if nums[i] == val: while j > i and nums[j] == val: j -= 1 print('i:', i, 'j:', j) # swap elements temp = nums[i] nums[i] = nums[j] nums[j] = temp count += 1 print(nums) i += 1 if count == 0: j = j + 1 return j
e1a836514a09fc925a49b144880960b057dfff80
3,639,704
def decrypt_ballot_shares( request: DecryptBallotSharesRequest = Body(...), scheduler: Scheduler = Depends(get_scheduler), ) -> DecryptBallotSharesResponse: """ Decrypt this guardian's share of one or more ballots """ ballots = [ SubmittedBallot.from_json_object(ballot) for ballot in request.encrypted_ballots ] context = CiphertextElectionContext.from_json_object(request.context) election_key_pair = read_json_object( request.guardian.election_keys, ElectionKeyPair ) shares = [ compute_decryption_share_for_ballot( election_key_pair, ballot, context, scheduler ) for ballot in ballots ] response = DecryptBallotSharesResponse( shares=[write_json_object(share) for share in shares] ) return response
c10b9961c2f86e9d9cf26d75e276cd65b3dcfdc4
3,639,705
def returnHumidity(dd): """ Returns humidity data if it exists in the dictionary""" rh = [] if 'RH' in dd: rh = dd['RH'] elif 'RH1' in dd: rh = dd['RH1'] else: # Convert the dew point temperature to relative humidity Pmb = dd['airpres']/10 # hPa to mb rh = airsea.relHumFromTdew(dd['airtemp'],dd['airdewpoint'],Pmb) return rh
b51d5d23247780683d9d644f59e442b1c77210e8
3,639,706
def fixture_penn_chime_raw_df_no_beta(penn_chime_setup) -> DataFrame: """Runs penn_chime SIR model for no social policies """ p, simsir = penn_chime_setup n_days = simsir.raw_df.day.max() - simsir.raw_df.day.min() policies = [(simsir.beta, n_days)] raw = sim_sir( simsir.susceptible, simsir.infected, p.recovered, simsir.gamma, -simsir.i_day, policies, ) calculate_dispositions(raw, simsir.rates, market_share=p.market_share) calculate_admits(raw, simsir.rates) calculate_census(raw, simsir.days) raw_df = DataFrame(raw) return raw_df
8e1d654b4e171e8ab55023bfb55135d5067d7052
3,639,707
import json import hashlib def _verify_manifest_signature(manifest, text, digest): """ Verify the manifest digest and signature """ format_length = None format_tail = None if 'signatures' in manifest: for sig in manifest['signatures']: protected_json = _jose_decode_base64(sig['protected']) protected = json.loads(protected_json) curr_tail = _jose_decode_base64(protected['formatTail']) if format_tail is None: format_tail = curr_tail elif format_tail != curr_tail: msg = 'formatTail did not match between signature blocks' raise ValueError(msg) if format_length is None: format_length = protected['formatLength'] elif format_length != protected['formatLength']: msg = 'formatLen did not match between signature blocks' raise ValueError(msg) message = text[0:format_length] + format_tail if hashlib.sha256(message).hexdigest() != digest: msg = 'Failed to match manifest digest to downloaded content' raise ValueError(msg) return True
d3c5cebcb6f63723d7356be8def0824bb3cd2726
3,639,708
from typing import List from typing import Optional from typing import Dict import logging def create_hierarchy( src_assets: List[Asset], dst_assets: List[Asset], project_src: str, runtime: int, client: CogniteClient, subtree_ids: Optional[List[int]] = None, subtree_external_ids: Optional[List[str]] = None, subtree_max_depth: Optional[int] = None, ): """ Creates/updates the asset hierarchy in batches by depth, starting with the root assets and then moving on to the children of those roots, etc. Args: src_assets: A list of the assets that are in the source. dst_assets: A list of the assets that are in the destination. project_src: The name of the project the object is being replicated from. runtime: The timestamp to be used in the new replicated metadata. client: The client corresponding to the destination project. subtree_ids: The id of the subtree root to replicate, subtree_external_ids: The external id of the subtree root to replicate, subtree_max_depth: The maximum tree depth to replicate, """ depth = 0 parents = [None] # root nodes parent id is None if subtree_ids is not None or subtree_external_ids is not None: unlink_subtree_parents(src_assets, subtree_ids, subtree_external_ids) children = find_children(src_assets, parents) src_dst_ids: Dict[int, int] = {} src_id_dst_asset = replication.make_id_object_map(dst_assets) while children: logging.info(f"Starting depth {depth}, with {len(children)} assets.") create_assets, update_assets, unchanged_assets = replication.make_objects_batch( children, src_id_dst_asset, src_dst_ids, build_asset_create, build_asset_update, project_src, runtime, depth=depth, ) logging.info(f"Attempting to create {len(create_assets)} assets.") created_assets = replication.retry(client.assets.create, create_assets) logging.info(f"Attempting to update {len(update_assets)} assets.") updated_assets = replication.retry(client.assets.update, update_assets) src_dst_ids = replication.existing_mapping(*created_assets, *updated_assets, *unchanged_assets, ids=src_dst_ids) logging.debug(f"Dictionary of current asset mappings: {src_dst_ids}") num_assets = len(created_assets) + len(updated_assets) logging.info( f"Finished depth {depth}, updated {len(updated_assets)} and " f"posted {len(created_assets)} assets (total of {num_assets} assets)." ) depth += 1 if subtree_max_depth is not None and depth > subtree_max_depth: logging.info("Reached max depth") break children = find_children(src_assets, children) return src_dst_ids
54ec8460f6eaedee44c0cdeb423da2a757d018a7
3,639,709
def ETL_work(): """ ETL page""" return render_template("ETL_work.html")
08806ed7154f4820db961b54a5c852bd0c275532
3,639,710
def advanced_perm_check_function(*rules_sets, restrictions=None): """ Check channels and permissions, use -s -sudo or -a -admin to run it. Args: *rules_sets: list of rules, 1d or 2d, restrictions: Restrictions must be always met Returns: message object returned by calling given function with given params """ def decorator(coro): async def f(ctx, *args, **kwargs): valid = _check_advanced_perm(ctx, *args, **kwargs, rule_sets=[*rules_sets], restrictions=restrictions) if valid: output = await coro(ctx, *args, **kwargs) return output else: # logger.error(f"Permission check failed! Exceptions should be raised earlier!") raise CommandError("Permission check failed.") f.__name__ = coro.__name__ f.__doc__ = coro.__doc__ return f return decorator
acf6f5494fcc632fec3bb665778a6bed3e58f19d
3,639,711
def worker_id(): """Return a predefined worker ID. Returns: int: The static work id """ return 123
8c8e9c570a2355a15fd9a4d1d03d0159a33ffba0
3,639,712
def get_urls(spec): """Small convenience method to construct the URLs of the Jupyter server.""" host_url = f"http{'s' if spec['routing']['tls']['enabled'] else ''}://{spec['routing']['host']}" full_url = urljoin( host_url, spec["routing"]["path"].rstrip("/"), ) return host_url, full_url
059913ed12b021fce5964d54bf8b9b22132f914f
3,639,713
def resubs(resubpairs,target): """takes several regex find replace pairs [(find1, replace1), (find2,replace2), ... ] and applies them to a target on the order given""" return resubpair[0].sub(resubpair[1],target) for resubpair in resubpairs: target = resub(resubpair,target) return target
49b371211de991c323fdec313801aba0ded8ff93
3,639,714
import functools import time def time_profile(func): """Time Profiled for optimisation Notes: * Do not use this in production """ @functools.wraps(func) def profile(*args, **kwargs): start = time.time() result = func(*args, **kwargs) print(f"{func.__name__} : {time.time() - start}") return result return profile
a4dde1d66f5987b4be1e9179da1570c252540363
3,639,715
from typing import Type import uuid from datetime import datetime async def create_guid(data: GuidIn) -> Type[GuidOut]: """ Create a record w/o specifying a guid. Also cleans up expired records & caches the new record. """ guid = uuid.uuid4().hex validated = data.dict() try: await create_guid_record(guid, validated['name'], validated['expire']) except Exception as detail: raise HTTPException(status_code=400, detail=f'{detail}') # Build serialized response out = GuidOut( id=guid, expire=validated['expire'], name=validated['name'], ) # Cache stuff ttl = validated['expire'] - datetime.now(timezone.utc) await cache.set(guid, out, ttl=ttl.seconds) return out
0ff0f95acc6268e5ccd081156cc9355c8db520db
3,639,716
def exp_for(iterable, filename, display = False): """ Run an experiment for words in given iterable and save its results to PATH_RESULTS/filename. If display is set to True, also print output to screen. The output is formated as follows: [word]RESULT_SEP[size]RESULT_SEP[n+x]RESULT_SEP[diff with upperbound] """ fp = open(os.path.join(PATH_RESULTS, 'mdfa_'+filename), 'w') i = 0 for word, size in results_for(iterable): output = '%s%s%d%s%d+%d%s%d' % (word, RESULT_SEP, size, RESULT_SEP, len(word), size - len(word), RESULT_SEP, size - (len(word) + len(word) / 2)) fp.write(output+'\n') if display: print output i += 1 fp.close() return i
11933d4b4c77dcae354b307cb27ab27af3e49311
3,639,717
import argparse def arg_parse(): """ Parse arguments to the detect module """ parser = argparse.ArgumentParser(description='YOLO v3 Detection Module') parser.add_argument("--bs", dest="bs", help="Batch size", default=1) parser.add_argument("--confidence", dest="confidence", help="Object Confidence to filter predictions", default=0.5) parser.add_argument("--nms_thresh", dest="nms_thresh", help="NMS Threshhold", default=0.4) parser.add_argument("--cfg", dest = 'cfgfile', help= "Config file", default="cfg/yolov3.cfg", type=str) parser.add_argument("--weights", dest='weightsfile', help= "weightsfile", default="cfg/yolov3.weights", type=str) parser.add_argument("--reso", dest='reso', help= "Input resolution of the network. Increase to increase accuracy. Decrease to increase speed", default="416", type=str) parser.add_argument("--video", dest="videofile", help="Video file to run detection on", default="videos/drone2.mp4", type=str) return parser.parse_args()
24ec26a23278b59d09f12df3950faa9996828958
3,639,718
import re def remove_useless_lines(text): """Removes lines that don't contain a word nor a number. Args: text (string): markdown text that is going to be processed. Returns: string: text once it is processed. """ # Useless lines useless_line_regex = re.compile(r'^[^\w\n]*$', re.MULTILINE | re.UNICODE) processed_text = useless_line_regex.sub(r'', text) return processed_text
fd33cdb243b6887d11846736f922bb4e1332d549
3,639,719
def get_candidate(word): """get candidate word set @word -- the given word @return -- a set of candidate words """ candidates = set() candidates |= meanslike(word) candidates |= senselike(word) # remove '_' and '-' between words --> candidates is a LIST now candidates = [w.replace('_', ' ') for w in candidates] candidates = [w.replace('-', ' ') for w in candidates] # remove words which contains special characters (e.g. Ann's book) candidates = [w for w in candidates if ''.join(w.split()).isalpha()] # remove phrase has more than two words candidates = [w for w in candidates if len(w.split()) < 3] # turn all words into lowercase candidates = [w.lower() for w in candidates] # remove words contain word itself candidates = [w for w in candidates if not (word in w)] return candidates
8e2b7359f681cd96bb1ddad68cbfe77c1ae2e79b
3,639,720
def _build_proxy_response(response: RawResponse, error_handler: callable) -> dict: """Once the application completes the request, maps the results into the format required by AWS. """ try: if response.caught_exception is not None: raise response.caught_exception message = ''.join([str(message) for message in response.result]) except Exception as e: return error_handler(e) return {'statusCode': response.response_status.split(' ')[0], 'headers': response.outbound_headers, 'body': message}
c07e52da6c6e952c35bda18b9d5600d756280f9b
3,639,721
from typing import Dict from typing import Any def parse_and_execute(config: dict) -> Dict[str, Any]: """Validate, parse and transform the config. Execute backends based on the transformed config to perform I/O operations. If `prompt` and/or `default` contains a macro, it will be expanded. :param config: The original config :type config: dict :return: A dict containing values collected during I/O operations for the corresponding key :rtype: dict """ parsed_config = _parse(config) res: Dict[str, Any] = dict() for key, value in parsed_config.items(): backend = value.get("backend") params = value.get("params") # TODO: Maybe use Jinja2 template rendering instead of macro expansion? _expand_macro(key=key, params=params, param_key="prompt", inputs=res) _expand_macro(key=key, params=params, param_key="default", inputs=res) res[key] = _execute(backend_module_name=backend, **params) return res
dd350df8b282aa5fa459b89aedc000c326d4923d
3,639,722
def reduce_any(input_tensor, axis=None, keepdims=None, name=None, reduction_indices=None): """ Wrapper around the tf.reduce_any to handle argument keep_dims """ return reduce_function(tf.reduce_any, input_tensor, axis=axis, keepdims=keepdims, name=name, reduction_indices=reduction_indices)
bdf25f573caef2d9c0926c92d8ce4b4a3b682775
3,639,723
def get_customer_profile_ids(): """get customer profile IDs""" merchantAuth = apicontractsv1.merchantAuthenticationType() merchantAuth.name = constants.apiLoginId merchantAuth.transactionKey = constants.transactionKey CustomerProfileIdsRequest = apicontractsv1.getCustomerProfileIdsRequest() CustomerProfileIdsRequest.merchantAuthentication = merchantAuth CustomerProfileIdsRequest.refId = "Sample" controller = getCustomerProfileIdsController(CustomerProfileIdsRequest) controller.execute() # Work on the response response = controller.getresponse() # if (response.messages.resultCode == "Ok"): # print("Successfully retrieved customer ids:") # for identity in response.ids.numericString: # print(identity) # else: # print("response code: %s" % response.messages.resultCode) if response is not None: if response.messages.resultCode == apicontractsv1.messageTypeEnum.Ok: if hasattr(response, 'ids'): if hasattr(response.ids, 'numericString'): print('Successfully retrieved customer IDs.') if response.messages is not None: print('Message Code: %s' % response.messages.message[0]['code'].text) print('Message Text: %s' % response.messages.message[0]['text'].text) print('Total Number of IDs Returned in Results: %s' % len(response.ids.numericString)) print() # There's no paging options in this API request; the full list is returned every call. # If the result set is going to be large, for this sample we'll break it down into smaller # chunks so that we don't put 72,000 lines into a log file print('First 20 results:') for profileId in range(0,19): print(response.ids.numericString[profileId]) else: if response.messages is not None: print('Failed to get list.') print('Code: %s' % (response.messages.message[0]['code'].text)) print('Text: %s' % (response.messages.message[0]['text'].text)) else: if response.messages is not None: print('Failed to get list.') print('Code: %s' % (response.messages.message[0]['code'].text)) print('Text: %s' % (response.messages.message[0]['text'].text)) else: print('Error. No response received.') return response
ba6cb076870961b4ab226b2aeb3ab07b1b5eb848
3,639,724
from typing import List def compare_alignments_(prediction: List[dict], ground_truth: List[dict], types: List[str]) -> (float, float, float): """ Parameters ---------- prediction: List of dictionaries containing the predicted alignments ground_truth: List of dictionaries containing the ground truth alignments types: List of alignment types to consider for evaluation (e.g ['match', 'deletion', 'insertion'] Returns ------- precision, recall, f score """ pred_filtered = list(filter(lambda x: x['label'] in types, prediction)) gt_filtered = list(filter(lambda x: x['label'] in types, ground_truth)) filtered_correct = [pred for pred in pred_filtered if pred in gt_filtered] n_pred_filtered = len(pred_filtered) n_gt_filtered = len(gt_filtered) n_correct = len(filtered_correct) if n_pred_filtered > 0 or n_gt_filtered > 0: precision = n_correct / n_pred_filtered if n_pred_filtered > 0 else 0. recall = n_correct / n_gt_filtered if n_gt_filtered > 0 else 0 f_score = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0 else: # no prediction and no ground truth for a given type -> correct alignment precision, recall, f_score = 1., 1., 1. return precision, recall, f_score
57648544c152bff0acc52271d453b58a0d8e8cad
3,639,725
import inspect def shim_unpack( unpack_fn, # type: TShimmedFunc download_dir, # type str tempdir_manager_provider, # type: TShimmedFunc ireq=None, # type: Optional[Any] link=None, # type: Optional[Any] location=None, # type Optional[str], hashes=None, # type: Optional[Any] progress_bar="off", # type: str only_download=None, # type: Optional[bool] downloader_provider=None, # type: Optional[TShimmedFunc] session=None, # type: Optional[Any] verbosity=0, # type: Optional[int] ): # (...) -> None """ Accepts all parameters that have been valid to pass to :func:`pip._internal.download.unpack_url` and selects or drops parameters as needed before invoking the provided callable. :param unpack_fn: A callable or shim referring to the pip implementation :type unpack_fn: Callable :param str download_dir: The directory to download the file to :param TShimmedFunc tempdir_manager_provider: A callable or shim referring to `global_tempdir_manager` function from pip or a shimmed no-op context manager :param Optional[:class:`~pip._internal.req.req_install.InstallRequirement`] ireq: an Install Requirement instance, defaults to None :param Optional[:class:`~pip._internal.models.link.Link`] link: A Link instance, defaults to None. :param Optional[str] location: A location or source directory if the target is a VCS url, defaults to None. :param Optional[Any] hashes: A Hashes instance, defaults to None :param str progress_bar: Indicates progress par usage during download, defatuls to off. :param Optional[bool] only_download: Whether to skip install, defaults to None. :param Optional[ShimmedPathCollection] downloader_provider: A downloader class to instantiate, if applicable. :param Optional[`~requests.Session`] session: A PipSession instance, defaults to None. :param Optional[int] verbosity: 1 or 0 to indicate verbosity flag, defaults to 0. :return: The result of unpacking the url. :rtype: None """ unpack_fn = resolve_possible_shim(unpack_fn) downloader_provider = resolve_possible_shim(downloader_provider) tempdir_manager_provider = resolve_possible_shim(tempdir_manager_provider) required_args = inspect.getargs(unpack_fn.__code__).args # type: ignore unpack_kwargs = {"download_dir": download_dir} with tempdir_manager_provider(): if ireq: if not link and ireq.link: link = ireq.link if only_download is None: only_download = ireq.is_wheel if hashes is None: hashes = ireq.hashes(True) if location is None and getattr(ireq, "source_dir", None): location = ireq.source_dir unpack_kwargs.update({"link": link, "location": location}) if hashes is not None and "hashes" in required_args: unpack_kwargs["hashes"] = hashes if "progress_bar" in required_args: unpack_kwargs["progress_bar"] = progress_bar if only_download is not None and "only_download" in required_args: unpack_kwargs["only_download"] = only_download if session is not None and "session" in required_args: unpack_kwargs["session"] = session if ( "download" in required_args or "downloader" in required_args ) and downloader_provider is not None: arg_name = "download" if "download" in required_args else "downloader" assert session is not None assert progress_bar is not None unpack_kwargs[arg_name] = downloader_provider(session, progress_bar) if "verbosity" in required_args: unpack_kwargs["verbosity"] = verbosity return unpack_fn(**unpack_kwargs)
561d473584da5f96cbffadb543cee129c9c6e0ef
3,639,726
def xavier_uniform(x): """Wrapper for torch.nn.init.xavier_uniform method. Parameters ---------- x : torch.tensor Input tensor to be initialized. See torch.nn.init.py for more information Returns ------- torch.tensor Initialized tensor """ return init.xavier_uniform_(x)
f407fa3e35d1bd708e6cfe4b003a788bed4eb443
3,639,727
import pyzo.util.interpreters as interps ### EKR import os def _get_interpreters_win(): # pyzo_in_leo.py """ Monkey-patch pyzo/util/interpreters._get_interpreters_win. This patched code fixes an apparent pyzo bug. Unlike shutil.which, this function returns all plausible python executables. Copyright (C) 2013-2019 by Almar Klein. """ found = [] # Query from registry for v in interps.get_interpreters_in_reg(): ### EKR found.append(v.installPath() ) # Check common locations for rootname in ['C:/', '~/', 'C:/program files/', 'C:/program files (x86)/', 'C:/ProgramData/', '~/appdata/local/programs/python/', '~/appdata/local/continuum/', '~/appdata/local/anaconda/', ]: rootname = os.path.expanduser(rootname) if not os.path.isdir(rootname): continue for dname in os.listdir(rootname): if dname.lower().startswith(('python', 'pypy', 'miniconda', 'anaconda')): found.append(os.path.join(rootname, dname)) # Normalize all paths, and remove trailing backslashes ### found = [os.path.normcase(os.path.abspath(v)).strip('\\') for v in found] found = [ os.path.normcase(os.path.abspath(v)).strip('\\') for v in found if v is not None ### EKR: Add guard. ] # Append "python.exe" and check if that file exists found2 = [] for dname in found: for fname in ('python.exe', 'pypy.exe'): exename = os.path.join(dname, fname) if os.path.isfile(exename): found2.append(exename) break # Returnas set (remove duplicates) return set(found2)
35b64945c0531b34f5733b9587a9000e70a9e4e3
3,639,728
def create_test_data(site, start=None, end="now", interval=5, units='minutes' , val=50, db='test_db', data={}): """ data = {'R1':[0,0,0,..],'R2':[0,0,123,12,...]...} will not generate date but use fixed data set if val is not set random data will be generated if data is not existing """ _influx_db_name = db i = Influx(database=_influx_db_name) data_point_dates = generate_date_array(start=start, end=end, interval=interval, units=units) voltage_in = 220 voltage_out = 220 soc = val R1 = val R2 = val R3 = val R4 = val R5 = val count = 0 print "creating %s test data points"%len(data_point_dates) print "between %s and %s "%(data_point_dates[0],data_point_dates[len(data_point_dates)-1:]) # Simulate Grid outage for time_val in data_point_dates: if not val: try: soc = data.get('soc',[])[count] except: soc = get_random_int() try: R1 = data.get('R1',[])[count] except: R1 = voltage_in * get_random_binary() try: R2 = data.get('R2',[])[count] except: R2 = get_random_interval(100,500) try: R3 = data.get('R3',[])[count] except: R3 = get_random_interval(22,28) try: R4 = data.get('R4',[])[count] except: R4 = get_random_interval(100,500) try: R5 = data.get('R5',[])[count] except: R5 = get_random_interval(100,500) dp = Data_Point.objects.create( site=site, soc = soc , battery_voltage = R3, time=time_val, AC_Voltage_in = R1, AC_Voltage_out = voltage_out, AC_input = R4, AC_output = R5, AC_output_absolute = R2, AC_Load_in = R2, AC_Load_out = R4, pv_production = R5) # Also send ton influx dp_dict = model_to_dict(dp) dp_dict.pop('time') dp_dict.pop('inverter_state') dp_dict.pop('id') i.send_object_measurements(dp_dict,timestamp=time_val.isoformat(),tags={"site_name":site.site_name}) count = count + 1 # Count number of outages return len(data_point_dates)
56e5f65650a2fb1eb2a829d9443cd0a588402c3a
3,639,729
def Nmin(e, dz, s, a, a_err): """Estimates the minimum number of independent structures to detect a difference in dN/dz w/r to a field value given by dNdz|field = a +- a_err, at a statistical significance s, using a redshift path of dz per structure""" e = np.array(e).astype(float) dz = np.array(dz).astype(float) s = np.array(s).astype(float) a = np.array(a).astype(float) a_err = np.array(a_err).astype(float) # this is a analytical expression was derived by N.T. return (e / dz / a) * (s ** 2) / ((e - 1.) - s * a_err / a) ** 2
c603f90e35802b6b7401c14abda3bb350d0e6941
3,639,730
import string def remove_punctuation(list_of_string, item_to_keep=""): """ Remove punctuation from a list of strings. Parameters ---------- - list_of_string : a dataframe column or variable containing the text stored as a list of string sentences - item_to_keep : a string of punctuation signs you want to keep in text (e.g., '!?.,:;') """ # Update string of punctuation signs if len(item_to_keep) > 0: punctuation_list = "".join( c for c in string.punctuation if c not in item_to_keep ) else: punctuation_list = string.punctuation # Remove punctuation from each sentence transtable = str.maketrans("", "", punctuation_list) return [sent.translate(transtable) for sent in list_of_string]
cb9190bc160f8e725479b531afab383c6857ceac
3,639,731
import requests import pickle def save_sp500_tickers(force_download=False): """Get the S&P 500 tickers from Wikipedia Parameters ---------- force_download : bool if True, force redownload of data Returns ------- tickers : pandas.DataFrame The S&P500 tickers data """ resp = requests.get('https://en.wikipedia.org/wiki/List_of_S%26P_500_companies') soup = bs.BeautifulSoup(resp.text, "lxml") table = soup.find('table', {'class':'wikitable sortable'}) tickers = [] for row in table.findAll('tr')[1:]: ticker = row.findAll('td')[1].text # fix for . and - tickers mapping = str.maketrans(".","-") ticker = ticker.translate(mapping) tickers.append(ticker) # cache the results for local access with open("sp500tickers.pickle", "wb") as f: pickle.dump(tickers, f) #print(tickers) return tickers
94ddf34acbda542fe039f988887b904bb2ac9da4
3,639,732
def get_search_keywords(testcase): """Get search keywords for a testcase.""" crash_state_lines = testcase.crash_state.splitlines() # Use top 2 frames for searching. return crash_state_lines[:2]
15c1611aeff33f9d8bba843f076b31abfb4023ba
3,639,733
def make_protein_index(proteins): """Indexes proteins """ prot_index = {} skip = set(['sp', 'tr', 'gi', 'ref', '']) for i, p in enumerate(proteins): accs = p.accession.split('|') for acc in accs: if acc in skip: continue prot_index[acc] = i return prot_index
be54ca3a123fe13efbb8c694187dd34d944fd654
3,639,734
def jvp_solve_Hz(g, Hz, info_dict, eps_vec, source, iterative=False, method=DEFAULT_SOLVER): """ Gives jvp for solve_Hz with respect to eps_vec """ # construct the system matrix again and the RHS of the gradient expersion A = make_A_Hz(info_dict, eps_vec) ux = spdot(info_dict['Dxb'], Hz) uy = spdot(info_dict['Dyb'], Hz) diag = sp.spdiags(1 / eps_vec, [0], eps_vec.size, eps_vec.size) # the g gets multiplied in at the middle of the expression ux = ux * diag * g * diag uy = uy * diag * g * diag ux = spdot(info_dict['Dxf'], ux) uy = spdot(info_dict['Dyf'], uy) # add the x and y components and multiply by A_inv on the left u = (ux + uy) Hz_for = sparse_solve(A, u, iterative=iterative, method=method) return 1 / EPSILON_0 * Hz_for
0d861f9c6a899c70da7d095cb6ac436586e75bdd
3,639,735
from typing import Union def encode(X: Union[tf.Tensor, np.ndarray], encoder: keras.Model, **kwargs) -> tf.Tensor: """ Encodes the input tensor. Parameters ---------- X Input to be encoded. encoder Pretrained encoder network. Returns ------- Input encoding. """ return encoder(X, training=False)
a97abdc611643e4cd1ed944ff27ef7402e824acb
3,639,736
def _step2(input): """ _step2 - function to apply step2 rules Inputs: - input : str - m : int Measurement m of c.v.c. sequences Outputs: - input : str """ # ational -> ate if input.endswith('ational') and _compute_m(input[:-7]) > 0: return input[:-1 * len('ational')] + 'ate' # tional -> tion elif input.endswith('tional') and _compute_m(input[:-6]) > 0: return input[:-1*len('tional')] + 'tion' # enci -> ence elif input.endswith('enci') and _compute_m(input[:-4]) > 0: return input[:-1] + 'e' # anci -> ance elif input.endswith('anci') and _compute_m(input[:-4]) > 0: return input[:-1] + 'e' # izer -> ize elif input.endswith('izer') and _compute_m(input[:-4]) > 0: return input[:-1] # abli -> able elif input.endswith('abli') and _compute_m(input[:-4]) > 0: return input[:-1] + 'e' # alli -> al elif input.endswith('alli') and _compute_m(input[:-4]) > 0: return input[:-2] # entli -> ent elif input.endswith('entli'): return input[:-2] # eli -> e elif input.endswith('eli') and _compute_m(input[:-3]) > 0: return input[:-2] # ousli -> ous elif input.endswith('ousli') and _compute_m(input[:-5]) > 0: return input[:-2] + 's' # ization -> ize elif input.endswith('ization') and _compute_m(input[:-7]) > 0: return input[:-5] + 'e' # ation -> ate elif input.endswith('ation') and _compute_m(input[:-5]) > 0: return input[:-3] + 'e' # ator -> ate elif input.endswith('ator') and _compute_m(input[:-5]) > 0: return input[:-2] + 'e' # alism -> al elif input.endswith('alism') and _compute_m(input[:-5]) > 0: return input[:-3] # iveness -> ive elif input.endswith('iveness') and _compute_m(input[:-7]) > 0: return input[:-4] # fulness -> ful elif input.endswith('fulness') and _compute_m(input[:-7]) > 0: return input[:-4] # ousness -> ous elif input.endswith('ousness') and _compute_m(input[:-7]) > 0: return input[:-4] # aliti -> ali elif input.endswith('aliti') and _compute_m(input[:-5]) > 0: return input[:-3] # iviti -> ive elif input.endswith('iviti') and _compute_m(input[:-5]) > 0: return input[:-3] + 'e' # biliti -> ble elif input.endswith('biliti') and _compute_m(input[:-6]) > 0: return input[:-5] + 'le' return input
5181d55de4ef7c33778dfbe80707e4e621018d5c
3,639,737
from typing import cast def compute_annualized_volatility(srs: pd.Series) -> float: """ Annualize sample volatility. :param srs: series with datetimeindex with `freq` :return: annualized volatility (stdev) """ srs = hdataf.apply_nan_mode(srs, mode="fill_with_zero") ppy = hdataf.infer_sampling_points_per_year(srs) std = srs.std() annualized_volatility = np.sqrt(ppy) * std annualized_volatility = cast(float, annualized_volatility) return annualized_volatility
517d56e53885fdcb5eee3ed0fa3acae766d9c7e2
3,639,738
from datetime import datetime def json_sanitized(value, stringify=stringified, dt=str, none=False): """ Args: value: Value to sanitize stringify (callable | None): Function to use to stringify non-builtin types dt (callable | None): Function to use to stringify dates none (str | bool): States how to treat `None` keys/values - string: Replace `None` *keys* with given string (keep `None` *values* as-is) - False (default): Filter out `None` keys/values - True: No filtering, keep `None` keys/values as-is Returns: An object that should be json serializable """ if value is None or is_basetype(value): return value if hasattr(value, "to_dict"): value = value.to_dict() elif isinstance(value, set): value = sorted(value) if isinstance(value, dict): return dict( ( json_sanitized(none if k is None and isinstance(none, str) else k, stringify=stringify, dt=dt, none=none), json_sanitized(v, stringify=stringify, dt=dt, none=none), ) for k, v in value.items() if none or (k is not None and v is not None) ) if is_iterable(value): return [json_sanitized(v, stringify=stringify, dt=dt, none=none) for v in value] if isinstance(value, datetime.date): return value if dt is None else dt(value) if stringify is None: return value return stringify(value)
6f50e3bb5a07417b05cb95813d2cc5a89ad12a2b
3,639,739
def rescan_organization_task(task, org, allpr, dry_run, earliest, latest): """A bound Celery task to call rescan_organization.""" meta = {"org": org} task.update_state(state="STARTED", meta=meta) callback = PaginateCallback(task, meta) return rescan_organization(org, allpr, dry_run, earliest, latest, page_callback=callback)
2241bf6630bdd63c231f011708ac392c3d1a8234
3,639,740
def python(cc): """Format the character for a Python string.""" codepoint = ord(cc) if 0x20 <= codepoint <= 0x7f: return cc if codepoint > 0xFFFF: return "\\U%08x" % codepoint return "\\u%04x" % codepoint
b0c2042c653043c0831a35ffc13d73850e29af2f
3,639,741
import logging def stop_execution(execution_id): """ Stop the current workflow execution. swagger_from_file: docs/stop.yml """ name = execution_id # str | the custom object's name body = kubernetes.client.V1DeleteOptions() # V1DeleteOptions | grace_period_seconds = 56 # int | The duration in seconds before the object should be # deleted. Value must be non-negative integer. The value zero indicates delete immediately. # If this value is nil, the default grace period for the specified type will be used. # Defaults to a per object value if not specified. zero means delete immediately. (optional) orphan_dependents = True # bool | Deprecated: please use the PropagationPolicy, this field # will be deprecated in 1.7. Should the dependent objects be orphaned. If true/false, # the \"orphan\" finalizer will be added to/removed from the object's finalizers list. Either # this field or PropagationPolicy may be set, but not both. (optional) propagation_policy = 'propagation_policy_example' # str | Whether and how garbage collection # will be performed. Either this field or OrphanDependents may be set, but not both. The # default policy is decided by the existing finalizer set in the metadata.finalizers and the # resource-specific default policy. (optional) try: api_response = v1alpha1.delete_namespaced_workflow(namespace, name, body=body, grace_period_seconds=grace_period_seconds, orphan_dependents=orphan_dependents, propagation_policy=propagation_policy) logging.info(api_response) except ApiException as e: print("Exception when calling CustomObjectsApi->delete_namespaced_custom_object: %s\n" % e) return 'Successfully delete', 200
d7d4264a81f106de31c49d5825de114a20f79966
3,639,742
def reshape_signal_batch(signal): """Convert the signal into a standard batch shape for use with cochleagram.py functions. The first dimension is the batch dimension. Args: signal (array): The sound signal (waveform) in the time domain. Should be either a flattened array with shape (n_samples,), a row vector with shape (1, n_samples), a column vector with shape (n_samples, 1), or a 2D matrix of the form [batch, waveform]. Returns: array: **out_signal**: If the input `signal` has a valid shape, returns a 2D version of the signal with the first dimension as the batch dimension. Raises: ValueError: Raises an error of the input `signal` has invalid shape. """ if signal.ndim == 1: # signal is a flattened array out_signal = signal.reshape((1, -1)) elif signal.ndim == 2: # signal is a row or column vector if signal.shape[0] == 1: out_signal = signal elif signal.shape[1] == 1: out_signal = signal.reshape((1, -1)) else: # first dim is batch dim out_signal = signal else: raise ValueError('signal should be flat array, row or column vector, or a 2D matrix with dimensions [batch, waveform]; found %s' % signal.ndim) return out_signal
344ce1a9a695e99fa470a5d849afb40bc381c9df
3,639,743
import scipy import itertools def tryallmedoids(dmat, c, weights=None, potential_medoid_inds=None, fuzzy=True, fuzzyParams=('FCM', 2)): """Brute force optimization of k-medoids or fuzzy c-medoids clustering. To apply to points in euclidean space pass dmat using: dmat = sklearn.neighbors.DistanceMetric.get_metric('euclidean').pairwise(points_array) Parameters ---------- dmat : array-like of floats, shape (n_samples, n_samples) Pairwise distance matrix of observations to cluster. c : int Number of clusters to form as well as the number of medoids to generate. weights : array-like of floats, shape (n_samples) Relative weights for each observation in inertia computation. potential_medoid_inds : array of indices If specified, then medoids are constrained to be chosen from this array. fuzzy : boolean If True, use fuzzy inertia function, otherwis use crisp cluster definition. fuzzyParams : tuple of (method str/int, param) Method and parameter for computing fuzzy membership matrix. Returns ------- medoids : float ndarray with shape (c) Indices into dmat that indicate optimal medoids. membership or labels: float ndarray with shape (n_samples, c) or shape (n_samples,) Each row contains the membership of a point to each of the clusters OR with hard clusters, the medoid/cluster index of each point.""" if fuzzy: wdmat = precomputeWeightedDmat(dmat, weights, squared=False) else: wdmat = precomputeWeightedDmat(dmat, weights, squared=True) N = dmat.shape[0] if potential_medoid_inds is None: potential_medoid_inds = np.arange(N) combinations = scipy.misc.comb(len(potential_medoid_inds), c) if combinations > 1e7: print("Too many combinations to try: %1.1g > 10M" % combinations) bestInertia = None for medInds in itertools.combinations(list(range(len(potential_medoid_inds))), c): medoids = potential_medoid_inds[np.array(medInds)] if fuzzy: membership = computeMembership(dmat, medoids, method=fuzzyParams[0], param=fuzzyParams[1]) else: membership = np.zeros((N, c)) membership[np.arange(N), np.argmin(dmat[:, medoids], axis=1)] = 1. inertia = (wdmat[:, medoids] * membership).sum() if bestInertia is None or inertia < bestInertia: bestMedoids = medoids bestInertia = inertia bestMembership = membership if not fuzzy: membership = np.argmax(membership, axis=1) return medoids, membership
34ba39d57bdce6b52b3c5e8eef085ef928d02038
3,639,744
from typing import Union def human_timedelta(s: Union[int, float]) -> str: """Convert a timedelta from seconds into a string using a more sensible unit. Args: s: Amount of seconds Returns: A string representing `s` seconds in an easily understandable way """ if s >= MONTH_SECONDS: return f"{round(s / MONTH_SECONDS)} month(s)" if s >= DAY_SEC: return f"{round(s / DAY_SEC)} day(s)" if s >= HOUR_SEC: return f"{round(s / HOUR_SEC)} hour(s)" elif s >= _FIVE_MINUTE_SEC: return f"{round(s / MINUTE_SEC)} minute(s)" else: return f"{round(s)} second(s)"
84725ecf4e4d59d423505978b8255f96a6483cd0
3,639,745
from functools import reduce def rate_cell(cell, board, snake, bloom_level=4): """ rates a cell based on proximity to other snakes, food, the edge of the board, etc """ cells = [] # Get all the cells of "bloom_level" number of circles surrounding the given cell. for x in range(-bloom_level, bloom_level+1): for y in range(-bloom_level, bloom_level+1): division_factor = dist((cell[0]+x, cell[1]+y), cell) if division_factor == 0: division_factor = 1 cells.append(((cell[0]+x, cell[1]+y), division_factor)) # EMPTY = 0 # SNAKE = 1 # FOOD = 2 # SPOILED = 3 cell_weightings = [EMPTY_RATING, ENEMY_RATING, FOOD_RATING, SPOILED_RATING, BODY_RATING, OUT_SIDE_BOARD_RATING] cell_values = [] for m_cell in cells: weight_key = 5 # Outside the board if board.inside(m_cell[0]): weight_key = board.get_cell(m_cell[0]) if m_cell[0] in snake.coords: weight_key = 4 cell_values.append((weight_key, m_cell[1])) return reduce(lambda carry, m_cell: carry + cell_weightings[m_cell[0]]/m_cell[1], cell_values, 0)
ab78b4b822789b32e2a768dcb9d55f5398b34a13
3,639,746
def edges_are_same(a, b): """ Function to check if two tuple elements (src, tgt, val) correspond to the same directed edge (src, tgt). Args: tuple_elements : a = (src, val, val) and b = (src, val, val) Returns: True or False """ if a[0:2] == b[0:2]: return True else: return False
04c4d414402a57cafa0028d0ecd140bedd2539d7
3,639,747
def conv_mrf(A, B): """ :param A: conv kernel 1 x 120 x 180 x 1 (prior) :param B: input heatmaps: hps.batch_size x 60 x 90 x 1 (likelihood) :return: C is hps.batch_size x 60 x 90 x 1 """ B = tf.transpose(B, [1, 2, 3, 0]) B = tf.reverse(B, axis=[0, 1]) # [h, w, 1, b], we flip kernel to get convolution, and not cross-correlation # conv between 1 x 120 x 180 x 1 and 60 x 90 x 1 x ? => 1 x 61 x 91 x ? C = tf.nn.conv2d(A, B, strides=[1, 1, 1, 1], padding='VALID') # 1 x 61 x 91 x ? # C = C[:, :hm_height, :hm_width, :] # 1 x 60 x 90 x ? C = tf.image.resize_images(C, [hm_height, hm_width]) C = tf.transpose(C, [3, 1, 2, 0]) return C
5bca01b656b135f20325441ebcbcfac883627565
3,639,748
from typing import Dict from typing import Tuple def get_alert_by_id_command(client: Client, args: Dict) -> Tuple[str, Dict, Dict]: """Get alert by id and return outputs in Demisto's format Args: client: Client object with request args: Usually demisto.args() Returns: Outputs """ _id = args.get('id') headers = argToList(args.get('headers')) raw_response = client.get_alert_by_id(_id=_id) if raw_response: title = f'{INTEGRATION_NAME} - Alert {_id}:' context_entry = create_context_result(raw_response, ALERTS_TRANS) context = { f'{INTEGRATION_CONTEXT_NAME}.Alert(val.ID && val.ID === obj.ID)': context_entry } human_readable = tableToMarkdown(title, context_entry, headers=headers, removeNull=True) return human_readable, context, raw_response else: return f'{INTEGRATION_NAME} - Could not find any alerts.', {}, {}
74208c66627e2441ff62ad6b4207844241ab7cd6
3,639,749
def close_issues() -> list[res.Response]: """Batch close issues on GitHub.""" settings = _get_connection_settings(CONFIG_MANAGER.config) try: github_service = ghs.GithubService(settings) except ghs.GithubServiceError as gse: return [res.ResponseFailure(res.ResponseTypes.RESOURCE_ERROR, gse)] list_object = "issue" title_query = p.InquirerPrompter.query_by_title( CONFIG_MANAGER.config.github_selected_repos, list_object ) list_request = il.build_list_request( filters={ "obj__eq": list_object, "state__eq": "open", "title__contains": title_query, } ) return ghcli.GhCloseIssueUseCase(CONFIG_MANAGER, github_service).execute( list_request )
ac59a72b893ebc91090d3ba38a1cbf6cb8844be1
3,639,750
def _invert_lambda(node: tn.Node) -> tn.Node: """Invert a diagonal lambda matrix. """ tensor = node.get_tensor() assert _is_diagonal_matrix(tensor) diagonal = tensor.diagonal() return tn.Node(np.diag(1/diagonal))
b5c06728b1e88bedec7d19591f0aa4823e90f412
3,639,751
def map_field_name_to_label(form): """Takes a form and creates label to field name map. :param django.forms.Form form: Instance of ``django.forms.Form``. :return dict: """ return dict([(field_name, field.label) for (field_name, field) in form.base_fields.items()])
dfc2779f498fb479553602a72d9520d398746302
3,639,752
from typing import Callable from typing import List def solve_compound_rec( recurrence_func: Callable, parameter_list: List[float], std_of_compound_dist: float, max_mRNA_copy_number: int, recursion_length: int, index_compound_parameter: int = 3, compounding_distribution: str = "normal", decimal_precision: int = 100, ) -> List[float]: """Compound distribution. Calls solve_compound() to obtain recurrence coefficients h_i and computes probability distribution using invgenfunc() Arguments: recurrence_func: the recurrence relation function over which to compound parameter_list: list of parameters accepted by solFunc std_of_compound_dist: standard deviation of the compounding distribution max_mRNA_copy_number: maximal mRNA copy number. The distribution is evaluated for n=0:N-1 recursion_length: recursion length. The number of terms evaluated recursively index_compound_parameter: index of the parameter over which the solution is compunded compounding_distribution: string specifying the type of compounding distribution decimal_precision: integer specifying the precision used by the Decimal class Returns: probability distribution for mRNa copy numbers n=0:N-1. Raises: AssertionError: distribution given not supported """ assert compounding_distribution in ["normal", "lognormal", "gamma"] H = solve_compound( recurrence_func, parameter_list, std_of_compound_dist, recursion_length, index_compound_parameter, compounding_distribution, compound_over_recurrence_terms=True, decimal_precision=decimal_precision, ) return [ invgenfunc(H, n, precision=decimal_precision) for n in range(0, max_mRNA_copy_number) ]
22e9106872ed185cf635fe958707da4244eee60c
3,639,753
def create_brand(): """ Creates a new brand with the given info :return: Status of the request """ check = check_brand_parameters(request) if check is not None: return check name = request.json[NAME] brand = Brand.query.filter(Brand.name == name).first() if brand is not None: return BadRequestResponse('Existing brand').make() # retrieve the brand name from the request, create a new Brand object and save it brand = Brand(name=name) assign_parameters_to_brand(brand, request) brand.save() return DataResponse({RESULTS: brand.to_json()}).make()
5c745aa1050b574cc659cf17bc06d1bdeb424b13
3,639,754
import os def update(args): """Traverse third-party repos / submodules and emit version-strings""" failures = [] ver = "///< This file is autogenerated by 'scripts/xnvme_3p.py'\n" ver += "const char *xnvme_3p_ver[] = {\n" for project, err in traverse_projects(args): print("project: %s, success: %r" % (project["name"], not err)) if err: failures.append(project) continue guard = args.guards[project["name"]] if not guard: ver += '\t"%s",\n' % (project["ver"]) continue ver += "#ifdef %s\n" % guard ver += '\t"%s",\n' % (project["ver"]) ver += "#else\n" ver += '\t"%s;NOSYS",\n' % (project["name"]) ver += "#endif\n" ver += "\t0,\t///< For array-termination\n" ver += "};\n" if failures: print("Got failures -- not updating") return 1 with open(os.path.join(args.repos, "src", "xnvme_3p_ver.c"), "wt") as vfd: vfd.write(ver) return 0
bb66e6d49f8c255d68bac75c7ead8bb53b6753c7
3,639,755
def feature_contained(boundary: geo, **kwargs): """Analyse containment for all features within a single-layer vector file according to a Geometry and return multiple GeoJSON files.""" geom, prop = kwargs["geom"], kwargs["prop"] if isinstance(geom, geo.Polygon): prop["valid"] = boundary.contains(geom) return geom, prop
5fbad0dbb915dfa5e422bfeb356a63d4290df07d
3,639,756
import time def compute(n=26): """ Computes 2 to the power of n and returns elapsed time""" start = time.time() res = 0 for i in range(2**n): res += 1 end = time.time() dt = end - start print(f'Result {res} in {dt} seconds!') return dt
d816c587302830f0acd20a59905c8634fcf20b49
3,639,757
from re import S import mpmath def _real_to_rational(expr, tolerance=None, rational_conversion='base10'): """ Replace all reals in expr with rationals. Examples ======== >>> from sympy import Rational >>> from sympy.simplify.simplify import _real_to_rational >>> from sympy.abc import x >>> _real_to_rational(.76 + .1*x**.5) sqrt(x)/10 + 19/25 If rational_conversion='base10', this uses the base-10 string. If rational_conversion='exact', the exact, base-2 representation is used. >>> _real_to_rational(0.333333333333333, rational_conversion='exact') 6004799503160655/18014398509481984 >>> _real_to_rational(0.333333333333333) 1/3 """ expr = _sympify(expr) inf = Float('inf') p = expr reps = {} reduce_num = None if tolerance is not None and tolerance < 1: reduce_num = ceiling(1/tolerance) for fl in p.atoms(Float): key = fl if reduce_num is not None: r = Rational(fl).limit_denominator(reduce_num) elif (tolerance is not None and tolerance >= 1 and fl.is_Integer is False): r = Rational(tolerance*round(fl/tolerance) ).limit_denominator(int(tolerance)) else: if rational_conversion == 'exact': r = Rational(fl) reps[key] = r continue elif rational_conversion != 'base10': raise ValueError("rational_conversion must be 'base10' or 'exact'") r = nsimplify(fl, rational=False) # e.g. log(3).n() -> log(3) instead of a Rational if fl and not r: r = Rational(fl) elif not r.is_Rational: if fl == inf or fl == -inf: r = S.ComplexInfinity elif fl < 0: fl = -fl d = Pow(10, int((mpmath.log(fl)/mpmath.log(10)))) r = -Rational(str(fl/d))*d elif fl > 0: d = Pow(10, int((mpmath.log(fl)/mpmath.log(10)))) r = Rational(str(fl/d))*d else: r = Integer(0) reps[key] = r return p.subs(reps, simultaneous=True)
ce685079459e3bc6e19decc2f22c3bc8198411c0
3,639,758
import multiprocessing import itertools import functools def run(block, epsilon, ratio, prng, alpha=2, beta=1.2, gamma=1.0, theta=None, verbose=False): """Run HDPView 1st phase, divide blocks. 2nd phase, perturbation. Prepare parameters and execute HDPView Args: block (CountTable): block epsilon (float): privacy budget ratio (float): ubdget ratio of block division and perturbation, 0 to 1 value prng (np.random.RandomState): random state alpha (float), beta(float), gamma(float) verbose (bool) """ seed = prng.randint(0, 2949672950) block.set_random(seed) if verbose: print("seed: ", seed) n_dash = block.size() kappa = np.ceil(np.log2(n_dash)*beta) epsilon_r = epsilon * ratio epsilon_p = epsilon * (1 - ratio) if theta is None: theta = 1/epsilon_p epsilon_cut = (1 - gamma) * epsilon_r / kappa lamb = ((2 * alpha - 1)/(alpha - 1) + 1) * (2 / (gamma * epsilon_r)) delta = lamb*np.log(alpha) # prepare shared memories for parallelization manager = multiprocessing.Manager() block_queue = manager.Queue() block_queue.put(block) block_result_list = [] MAX_PROCESS = multiprocessing.cpu_count()-1 pool = multiprocessing.Pool(MAX_PROCESS) while True: async_results = [] while not block_queue.empty(): result = pool.apply_async( recursive_bisection, (block_queue.get(), block_queue, epsilon_cut, kappa, theta, lamb, delta, verbose) ) async_results.append(result) results = list(itertools.chain.from_iterable([ r.get() for r in async_results ])) block_result_list.extend(results) if block_queue.empty(): break block_result_list.sort(key=functools.cmp_to_key(range__gt__)) for block_result in block_result_list: mean, ae = calculate_mean_and_aggregation_error(block, block_result.domain_dict) block_result.mean = mean block_result.aggregation_error = ae pe = prng.laplace(0.0, 1.0 / epsilon_p) block_result.perturbation_error = pe return NoisedCountTable.from_count_table(block, block_result_list), block_result_list
51a7f9f8a739de76b3c8b188a2d0495f42be1cbe
3,639,759
def wait_for_view(class_name): """ Waits for a View matching the specified class. Default timeout is 20 seconds. :param class_name:the {@link View} class to wait for :return:{@code true} if the {@link View} is displayed and {@code false} if it is not displayed before the timeout """ return get_solo().wait_for_view(class_name)
8829f1af924540d92923c1ce44742f8d4d223ca8
3,639,760
def _create_table(): """helper for crc calculation""" table = [] for i in range(256): k = i for _ in range(8): if k & 1: k = (k >> 1) ^ 0xEDB88320 else: k >>= 1 table.append(k) return table
830317e62dcfb7bca63f1186b46a2882e0bb399f
3,639,761
def average_syllables(verses): """ Takes a list of verses Returns the mean number of syllables among input verses """ verse_count = len(verses) syll_counts = list(map(count_syllables, verses)) syll_count = sum(syll_counts) return syll_count / verse_count
4cb4d53431b5ccaa2c4ca08083242089feb61be5
3,639,762
def _create_subplots_if_needed(ntotal, ncols=None, default_ncols=1, fieldorder='C', avoid_single_column=False, sharex=False, sharey=False, subfigsize=(12,3), wspace=0.2, hspace=0.2, fig=None, ax=None ): """ Auxiliary function to create fig and ax If fig and ax are None: - Set nrows and ncols based on ntotal and specified ncols, accounting for fieldorder and avoid_single_column - Create fig and ax with nrows and ncols, taking into account sharex, sharey, subfigsize, wspace, hspace If fig and ax are not None: - Try to determine nrows and ncols from ax - Check whether size of ax corresponds to ntotal """ if ax is None: if not ncols is None: # Use ncols if specified and appropriate assert(ntotal%ncols==0), 'Error: Specified number of columns is not a true divisor of total number of subplots' nrows = int(ntotal/ncols) else: # Defaut number of columns ncols = default_ncols nrows = int(ntotal/ncols) if fieldorder=='F': # Swap number of rows and columns nrows, ncols = ncols, nrows if avoid_single_column and ncols==1: # Swap number of rows and columns nrows, ncols = ncols, nrows # Create fig and ax with nrows and ncols fig,ax = plt.subplots(nrows=nrows,ncols=ncols,sharex=sharex,sharey=sharey,figsize=(subfigsize[0]*ncols,subfigsize[1]*nrows)) # Adjust subplot spacing fig.subplots_adjust(wspace=wspace,hspace=hspace) else: # Make sure user-specified axes has appropriate size assert(np.asarray(ax).size==ntotal), 'Specified axes does not have the right size' # Determine nrows and ncols in specified axes if isinstance(ax,mpl.axes.Axes): nrows, ncols = (1,1) else: try: nrows,ncols = np.asarray(ax).shape except ValueError: # ax array has only one dimension # Determine whether ax is single row or single column based # on individual ax positions x0 and y0 x0s = [axi.get_position().x0 for axi in ax] y0s = [axi.get_position().y0 for axi in ax] if all(x0==x0s[0] for x0 in x0s): # All axis have same relative x0 position nrows = np.asarray(ax).size ncols = 1 elif all(y0==y0s[0] for y0 in y0s): # All axis have same relative y0 position nrows = 1 ncols = np.asarray(ax).size else: # More complex axes configuration, # currently not supported raise InputError('could not determine nrows and ncols in specified axes, complex axes configuration currently not supported') return fig, ax, nrows, ncols
d164cd0d73632fcbcb38face930e2aa5c7300728
3,639,763
def template_file_counter(session, templates, fetch_count=False): """Create template file counter.""" file_counts = {} default_count = None if fetch_count: file_counts = TemplatesDAO.query_file_counts(session=session, templates=templates) default_count = 0 def counter(template: Template) -> int: """Get matched files count for the template.""" return file_counts.get(template.id, default_count) return counter
9a931e11385cba0c7f2968740cc8059da341cd50
3,639,764
def _init_matrices_nw(aln1, aln2, gap_open_penalty, gap_extend_penalty): """initialize score matrix and traceback matrix for global alignment Parameters ---------- aln1 : list list of activities, which is the first sequence to be aligned aln2 : list list of activities, which is the second sequence to be aligned gap_open_penalty : int gap_extend_penalty : int Returns ------- score_matrix: matrix traceback_matrix: matrix """ shape = (len(aln2)+1, len(aln1)+1) score_matrix = np.zeros(shape) traceback_matrix = np.zeros(shape, dtype=np.int) traceback_matrix += _traceback_encoding['uninitialized'] traceback_matrix[0, 0] = _traceback_encoding['alignment-end'] # cache some values for quicker access vgap = _traceback_encoding['vertical-gap'] hgap = _traceback_encoding['horizontal-gap'] for i in range(1, shape[0]): score_matrix[i, 0] = +gap_open_penalty + ((i-1) * gap_extend_penalty) traceback_matrix[i, 0] = vgap for i in range(1, shape[1]): score_matrix[0, i] = +gap_open_penalty + ((i-1) * gap_extend_penalty) traceback_matrix[0, i] = hgap return score_matrix, traceback_matrix
46c4426a5570ed9dceb0409b5bd4ac2ccb8efb10
3,639,765
import re def parse_path_params(end_point_path): """Parse path parameters.""" numeric_item_types = ['Lnn', 'Zone', 'Port', 'Lin'] params = [] for partial_path in end_point_path.split('/'): if (not partial_path or partial_path[0] != '<' or partial_path[-1] != '>'): continue # remove all non alphanumeric characters param_name = re.sub('[^0-9a-zA-Z]+', '', partial_path.title()) if param_name in numeric_item_types: param_type = 'integer' else: param_type = 'string' params.append((param_name, param_type)) return params
895c3b3663c33a6883ba34d7bbfb20de1491910d
3,639,766
def read_pid_stat(pid="self"): """ Returns system process stat information. :param pid: The process ID. :returns: The system stat information. :rtype: dict """ with open("/proc/%s/stat" % (pid,), "rb") as f: stat = f.readline().split() return { "utime": int(stat[13]), "stime": int(stat[14]), "cutime": int(stat[15]), "cstime": int(stat[16]), }
5ec6b21b09372e71e6dcf8c60f418bcbc4beee64
3,639,767
def simple_split_with_list(x, y, train_fraction=0.8, seed=None): """Splits data stored in a list. The data x and y are list of arrays with shape [batch, ...]. These are split in two sets randomly using train_fraction over the number of element of the list. Then these sets are returned with the arrays concatenated along the first dimension """ n_subjects = len(x) n_train = int(n_subjects * train_fraction) print('Split: Total %d -- Training %d' % (n_subjects, n_train)) random_idx = np.random.RandomState(seed=seed).permutation(n_subjects) train_idx = random_idx[:n_train] test_idx = random_idx[n_train:] x_train = np.concatenate([x[i] for i in train_idx], axis=0) y_train = np.concatenate([y[i] for i in train_idx], axis=0) x_test = np.concatenate([x[i] for i in test_idx], axis=0) y_test = np.concatenate([y[i] for i in test_idx], axis=0) return x_train, y_train, x_test, y_test
c99ae6507b934b42577949ee3a9226e68e870da9
3,639,768
from typing import Tuple def save_correlation_heatmap_results( correlations: pd.DataFrame, intensity_label: str = "Intensity", show_suptitle: bool = True, close_plots: str = "all", exp_has_techrep: bool = False, **kwargs ) -> Tuple[plt.Figure, plt.Axes]: """ Saves the plot with prefix: {{name}} Parameters ---------- correlations DataFrame containing the correlations to be plotted intensity_label label of the dataframe show_suptitle should the figure title be shown close_plots which plots should be closed when creating the plot, if None no plots will be closed exp_has_techrep whether technical replicates were aggregated for the plot kwargs {kwargs} """ # TODO save csv if close_plots is not None: plt.close(close_plots) num_cols, a = correlations.shape assert num_cols == a, "Dataframe needs to be quadratic" mask = np.zeros_like(correlations).astype(bool) mask[np.triu_indices_from(mask)] = True wid_hei = 4 + 0.5 * num_cols fig, ax = plt.subplots(1, 1, figsize=(wid_hei, wid_hei)) if show_suptitle: fig.suptitle(f"Correlation Heatmap {intensity_label}" + (TECHREP_SUFFIX if exp_has_techrep else "")) mesh = ax.pcolormesh(np.ma.masked_where(mask, correlations.values), cmap="coolwarm") ax.figure.colorbar(mesh, ax=ax) ax.invert_yaxis() # set x and y ticks ax.set_xticks(np.linspace(start=0.5, stop=num_cols - 0.5, num=num_cols)) ax.set_xticklabels(correlations.index, rotation=90) ax.set_yticks(np.linspace(start=0.5, stop=num_cols - 0.5, num=num_cols)) ax.set_yticklabels(correlations.index) # annotate values for x, col in enumerate(correlations.columns): for y, idx in enumerate(correlations.index): if not mask[y, x]: ax.text(x + 0.5, y + 0.5, f"{correlations.loc[idx, col]:.4f}", ha="center", va="center") fig.tight_layout(rect=[0, 0.03, 1, 0.95]) return fig, ax
78f2bffcd9fc200ad152aa95177ba3a3bb6f3c3c
3,639,769
def get_star(star_path, verbose=False, recreate=False): """Return a varconlib.star.Star object based on its name. Parameters ---------- star_path : str A string representing the name of the directory where the HDF5 file containing a `star.Star`'s data can be found. Optional -------- verbose : bool, Default: False If *True*, write out additional information. recreate : bool, Default: False If *True*, first recreate the star from observations before returning it. This will only work on stars which already have an HDF5 file saved, and will not create new ones. Returns ------- `star.Star` A Star object from the directory. Note that this will only use already- existing stars, it will not create ones which do not already exist from their observations. """ assert star_path.exists(), FileNotFoundError('Star directory' f' {star_path}' ' not found.') # Flip boolean value, since to recreate (True) the star requires setting its # load_data argument to False. recreate = not recreate try: return Star(star_path.stem, star_path, load_data=recreate) except IndexError: vprint(f'Excluded {star_path.stem}.') pass except HDF5FileNotFoundError: vprint(f'No HDF5 file for {star_path.stem}.') pass except AttributeError: vprint(f'Affected star is {star_path.stem}.') raise except PickleFilesNotFoundError: vprint(f'No pickle files found for {star_path.stem}') pass
f6ccd804e5998e42a0fb4d1d4368e2d65244d855
3,639,770
import glob import os def get_terminal_map(): """Get a map of device-id -> path as a dict. Used by Process.terminal() """ ret = {} ls = glob.glob('/dev/tty*') + glob.glob('/dev/pts/*') for name in ls: assert name not in ret, name try: ret[os.stat(name).st_rdev] = name except FileNotFoundError: pass return ret
50a4f56e3e2db87a620ab97f485b776c6ac35b6c
3,639,771
import os def targets(inventory="/etc/ansible/hosts", **kwargs): """ Return the targets from the ansible inventory_file Default: /etc/salt/roster """ if not os.path.isfile(inventory): raise CommandExecutionError("Inventory file not found: {}".format(inventory)) extra_cmd = [] if "export" in kwargs: extra_cmd.append("--export") if "yaml" in kwargs: extra_cmd.append("--yaml") inv = salt.modules.cmdmod.run( "ansible-inventory -i {} --list {}".format(inventory, " ".join(extra_cmd)) ) if kwargs.get("yaml", False): return salt.utils.stringutils.to_str(inv) else: return salt.utils.json.loads(salt.utils.stringutils.to_str(inv))
630d525ef671dcc62c1cd7ae600bb95e3f8c97d5
3,639,772
from datetime import datetime def get_relative_days(days): """Calculates a relative date/time in the past without any time offsets. This is useful when a service wants to have a default value of, for example 7 days back. If an ISO duration format is used, such as P7D then the current time will be factored in which results in the earliest day being incomplete when computing an absolute time stamp. :param days: The number of days back to calculate from now. :type days: int :returns: An absolute time stamp that is the complete range of relative days back. :rtype: datetime.datetime """ base_date = (timezone.now() - datetime.timedelta(days=days)).date() return datetime.datetime.combine(base_date, datetime.time.min).replace(tzinfo=timezone.utc)
58e429708e7d1c3cbda88c09bfb978f32cb1892a
3,639,773
def find_pending_trade(df): """ Find the trade value according to its sign like negative number means Sell type or positive number means Buy """ p_df = pd.DataFrame() p_df['Type'] = df['Buy_Qty'] - df['Sell_Qty'] return p_df['Type'].map(lambda val: trade_type_conversion(val))
1e764929cb047b6d8314732902dcc273176c924b
3,639,774
def rtri(x, a, b): """Convolution of rect(ax) with tri(bx).""" assert a > 0 assert b > 0 return b*(step2(x + 1/(2*a) + 1/b) - 2*step2(x + 1/(2*a)) + step2(x + 1/(2*a) - 1/b) - step2(x - 1/(2*a) + 1/b) + 2*step2(x - 1/(2*a)) - step2(x - 1/(2*a) - 1/b))
74745bf680507a2d3627c31c14ccc24db4b2d2d1
3,639,775
def make_xgboost_predict_extractor( eval_shared_model: tfma.EvalSharedModel, eval_config: tfma.EvalConfig, ) -> extractor.Extractor: """Creates an extractor for performing predictions using a xgboost model. The extractor's PTransform loads and runs the serving pickle against every extract yielding a copy of the incoming extracts with an additional extract added for the predictions keyed by tfma.PREDICTIONS_KEY. The model inputs are searched for under tfma.FEATURES_KEY. Args: eval_shared_model: Shared model (single-model evaluation). Returns: Extractor for extracting predictions. """ eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) return extractor.Extractor( stage_name=_PREDICT_EXTRACTOR_STAGE_NAME, ptransform=_ExtractPredictions( # pylint: disable=no-value-for-parameter eval_shared_models={m.model_name: m for m in eval_shared_models}, eval_config=eval_config))
01c44814023e2c960ec695ee8a7282f2a9d0b21f
3,639,776
def training_dataset() -> Dataset: """Creating the dataframe.""" data = { "record1": [ {"@first_name": "Hans", "@last_name": "Peter"}, {"@first_name": "Heinrich", "@last_name": "Meier"}, {"@first_name": "Hans", "@last_name": "Peter"}, ], "record2": [ {"@first_name": "Hans", "@last_name": "Petre"}, {"@first_name": "Heinz", "@last_name": "Meier"}, {"@first_name": "Hansel", "@last_name": "Peter"}, ], "label": ["duplicate", "not_duplicate", "duplicate"], } return Dataset.from_dict(data)
1d3ecc780044036aa8f8425abf8dba556649af98
3,639,777
def getWCSForcamera(cameraname, crpix1, crpix2): """ Return SIP non-linear coordiante correction object intialized for a camera from a lookup table. If the camera is not in the lookup table, an identify transformation is returned. TODO: variable order, so far limit ouselves to second order TODO: Time-constraint lookup. :param cameraname: Name of camera, e.g., ak01 :param crpix1: CRPIX1 for camera, as that my have changed over time :param crpix2: CRPIX2 for camera, as that my have changed over time :return: """ m = 2 sip_a = np.zeros((m + 1, m + 1), np.double) sip_b = np.zeros((m + 1, m + 1), np.double) if cameraname in akwcslookup: sip_a[1][1] = akwcslookup[cameraname]['SIPA_1_1'] sip_a[2][0] = akwcslookup[cameraname]['SIPA_2_0'] sip_a[0][2] = akwcslookup[cameraname]['SIPA_0_2'] sip_b[1][1] = akwcslookup[cameraname]['SIPB_1_1'] sip_b[2][0] = akwcslookup[cameraname]['SIPB_2_0'] sip_b[0][2] = akwcslookup[cameraname]['SIPB_0_2'] sip = Sip(sip_a, sip_b, None, None, [crpix1, crpix2]) return sip
f2905e16eada7b3f4806b9a5db7fba065283de6c
3,639,778
def get_full_frac_val(r_recalc,fs,diff_frac=0,bypass_correction=0): """ Compute total offset in number of samples, and also fractional sample correction. Parameters ---------- r_recalc : float delay. fs : float sampling frequency. diff_frac : 0 [unused] 0 by default. bypass_correction : int | if 0: corrects the fractional sample correction to be between -0.5 and +0.5. | if 1: returns the fractional sample correction between 0 and 1. Returns ------- full_fractional_recalc : float total offset in number of samples, including fractional part. fractional_recalc : float fractional sample correction. Notes ----- Bypass correction used in get_frac_over for simplicity. """ fractional_recalc=((r_recalc)*fs) full_fractional_recalc=fractional_recalc fractional_recalc=np.mod(fractional_recalc,1) if bypass_correction==0: fractional_recalc_out=fractional_recalc-(fractional_recalc>0.5).astype(np.float64) else: fractional_recalc_out=fractional_recalc return([full_fractional_recalc,fractional_recalc_out])
23bf8326472844b16c87ac28e1065156bf20ce8b
3,639,779
import inspect def get_code(): """ returns the code for the min cost path function """ return inspect.getsource(calculate_path)
bad3e06b11b0897b9225ffc9ab6dc81972f4442b
3,639,780
import functools def box_net(images, level, num_anchors, num_filters, is_training, act_type, repeats=4, separable_conv=True, survival_prob=None, strategy=None, data_format='channels_last'): """Box regression network.""" if separable_conv: conv_op = functools.partial( tf.layers.separable_conv2d, depth_multiplier=1, data_format=data_format, pointwise_initializer=tf.initializers.variance_scaling(), depthwise_initializer=tf.initializers.variance_scaling()) else: conv_op = functools.partial( tf.layers.conv2d, data_format=data_format, kernel_initializer=tf.random_normal_initializer(stddev=0.01)) for i in range(repeats): orig_images = images images = conv_op( images, num_filters, kernel_size=3, activation=None, bias_initializer=tf.zeros_initializer(), padding='same', name='box-%d' % i) images = utils.batch_norm_act( images, is_training, act_type=act_type, init_zero=False, strategy=strategy, data_format=data_format, name='box-%d-bn-%d' % (i, level)) if i > 0 and survival_prob: images = utils.drop_connect(images, is_training, survival_prob) images = images + orig_images boxes = conv_op( images, 4 * num_anchors, kernel_size=3, bias_initializer=tf.zeros_initializer(), padding='same', name='box-predict') return boxes
8caab72f716c0f754efb82467556a5b016d2f72e
3,639,781
from typing import Set def get_distance_to_center( element: object, centers: "Set[object]", distance_function: "function" ) -> float: """ Returns the distance from the given point to its center :param element: a point to get the distance for :param centers: an iteratable of the center points :param distance_function: a function that will compare two datapoints :return: the distance from the element to its center """ return distance_function( element, get_nearest_center(centers, element, distance_function) )
bd4a400e5a98711d00c5c236ce02945bd2014719
3,639,782
def auto_delete_file_on_change(sender, instance, **kwargs): """ Deletes old file from filesystem when corresponding `Worksheet` object is updated with a new file. """ if not instance.pk: return False db_obj = Worksheet.objects.get(pk=instance.pk) exists = True try: old_file = db_obj.worksheet_file except Worksheet.DoesNotExist: exists = False if exists: new_file = instance.worksheet_file if old_file != new_file: db_obj.worksheet_file.delete(save=False) exists = True try: old_file = db_obj.solution_file except Worksheet.DoesNotExist: exists = False if exists: new_file = instance.solution_file if old_file != new_file: db_obj.solution_file.delete(save=False)
2ab584fffbe2224109c4d4ea0446c22650df493f
3,639,783
def clean_immigration_data(validPorts: dict, immigration_usa_df: psd.DataFrame, spark: pss.DataFrame) -> psd.DataFrame: """[This cleans immigration data in USA. It casts date of immigrant entry, city of destination, and port entry.] Args: validPorts (dict): [dictionery that includes valid entry ports in USA] immigration_usa_df (psd.DataFrame): [Spark dataframe that includes immigration data in USA] spark (pss.DataFrame): [Spark session that is used for executing queries] Returns: psd.DataFrame: [spark dataframe that includes clean data of immigration movement in usa] """ # cast cities that are valid valid_city_code = list(set(city_code.keys())) str_valid_city_code = str(valid_city_code).replace('[', '(').replace(']', ')') # cast ports that are valid valid_port_code = list(set(validPorts.keys())) str_valid_port_code = str(valid_port_code).replace('[', '(').replace(']', ')') # clean immigration data clean_immigration_usa_df = spark.sql(f''' select date(concat(cast(i94yr as int), "-", cast(i94mon as int), "-01")) as dt, cast(i94addr as varchar(2)), cast(i94port as varchar(3)) from immigration_usa_table where i94yr is not null and i94mon is not null and i94addr is not null and i94port is not null and i94addr in {str_valid_city_code} and i94port in {str_valid_port_code} ''') return clean_immigration_usa_df
8746f0f4e35745d653549c32c5a804422d22c588
3,639,784
from pathlib import Path def prepare(args: dict, overwriting: bool) -> Path: """Load config and key file,create output directories and setup log files. Args: args (dict): argparser dictionary Returns: Path: output directory path """ output_dir = make_dir(args, "results_tmp", "aggregation", overwriting) create_log_files(output_dir) return output_dir
dca02f4180e91423fa61e8da36e9ac095dbe3ca4
3,639,785
def dd_wave_function_array(x, u_array, Lx): """Returns numpy array of all second derivatives of waves in Fourier sum""" coeff = 2 * np.pi / Lx f_array = wave_function_array(x, u_array, Lx) return - coeff ** 2 * u_array ** 2 * f_array
d815afe12916643c46fcc7b8f108ce5aad840e3b
3,639,786
from typing import Iterable import os def plot_energy_fluxes(solver, fsrs, group_bounds=None, norm=True, loglog=True, get_figure=False): """Plot the scalar flux vs. energy for one or more FSRs. The Solver must have converged the FSR sources before calling this routine. The routine will generate a step plot of the flux across each energy group. An optional parameter for the energy group bounds may be input. The group bounds should be input in increasing order of energy. If group bounds are not specified, the routine will use equal width steps for each energy group. Parameters ---------- solver : openmoc.Solver An OpenMOC solver used to compute the flux fsrs : Iterable of Integral The FSRs for which to plot the flux group_bounds : Iterable of Real or None, optional The bounds of the energy groups norm : bool, optional Whether to normalize the fluxes to a unity flux sum (True by default) loglog : bool Whether to use a log scale on the x- and y-axes (True by default) get_figure : bool Whether to return the Matplotlib figure Returns ------- fig : list of matplotlib.Figure or None The Matplotlib figures are returned if get_figure is True Examples -------- A user may invoke this function from an OpenMOC Python file as follows: >>> openmoc.plotter.plot_energy_fluxes(solver, fsrs=[1,5,20], \ group_bounds=[0., 0.625, 2e7]) """ global solver_types cv.check_type('solver', solver, solver_types) cv.check_type('fsrs', fsrs, Iterable, Integral) cv.check_type('norm', norm, bool) cv.check_type('loglog', loglog, bool) cv.check_type('get_figure', get_figure, bool) geometry = solver.getGeometry() num_groups = geometry.getNumEnergyGroups() if group_bounds: cv.check_type('group_bounds', group_bounds, Iterable, Real) if not all(low < up for low, up in zip(group_bounds, group_bounds[1:])): py_printf('ERROR', 'Unable to plot the flux vs. energy since ' + 'the group bounds are not monotonically increasing') else: group_bounds = np.arange(num_groups+1, dtype=np.int) loglog = False py_printf('NORMAL', 'Plotting the scalar fluxes vs. energy...') global subdirectory, matplotlib_rcparams directory = openmoc.get_output_directory() + subdirectory # Ensure that normal settings are used even if called from ipython curr_rc = matplotlib.rcParams.copy() update_rc_param(curr_rc) # Make directory if it does not exist try: os.makedirs(directory) except OSError: pass # Compute difference in energy bounds for each group group_deltas = np.ediff1d(group_bounds) group_bounds = np.flipud(group_bounds) group_deltas = np.flipud(group_deltas) # Initialize an empty list of Matplotlib figures if requestd by the user figures = [] # Iterate over all source regions for fsr in fsrs: # Allocate memory for an array of this FSR's fluxes fluxes = np.zeros(num_groups, dtype=np.float) # Extract the flux in each energy group for group in range(num_groups): fluxes[group] = solver.getFlux(fsr, group+1) # Normalize fluxes to the total integrated flux if norm: fluxes /= np.sum(group_deltas * fluxes) # Initialize a separate plot for this FSR's fluxes fig = plt.figure() fig.patch.set_facecolor('none') # Draw horizontal/vertical lines on the plot for each energy group for group in range(num_groups): # Horizontal line if loglog: plt.loglog(group_bounds[group:group+2], [fluxes[group]]*2, linewidth=3, c='b', label='openmoc', linestyle='-') else: plt.plot(group_bounds[group:group+2], [fluxes[group]]*2, linewidth=3, c='b', label='openmoc', linestyle='-') # Vertical lines if group < num_groups - 1: if loglog: plt.loglog([group_bounds[group+1]]*2, fluxes[group:group+2], c='b', linestyle='--') else: plt.plot([group_bounds[group+1]]*2, fluxes[group:group+2], c='b', linestyle='--') plt.xlabel('Energy') plt.ylabel('Flux') plt.xlim((min(group_bounds), max(group_bounds))) plt.grid() plt.title('FSR {0} Flux ({1} groups)'.format(fsr, num_groups)) # Save the figure to a file or return to user if requested if geometry.isRootDomain(): if get_figure: figures.append(fig) else: filename = 'flux-fsr-{0}.png'.format(fsr) plt.savefig(directory+filename, bbox_inches='tight') plt.close(fig) # Restore settings if called from ipython update_rc_param(curr_rc) # Return the figures if requested by user if get_figure: return figures
e640a70b9f002f41755bc6dfbec45121f237f27f
3,639,787
def handle_health_check(): """Return response 200 for successful health check""" return Response(status=200)
3ff055a7dc5e1318dd0e283ace87399c54e361b2
3,639,788
def pow(x, n): """ pow(x, n) Power function. """ return x**n
09d62a68607bf0dab8b380a0c3ee58c6ed4497d6
3,639,789
def download_cad_model(): """Download cad dataset.""" return _download_and_read('42400-IDGH.stl')
1f7aad5ed9c8f62ffef16cb3f44207b83aced204
3,639,790
def dot_product(u, v): """Computes dot product of two vectors u and v, each represented as a tuple or list of coordinates. Assume the two vectors are the same length.""" output = 0 for i in range(len(u)): output += (u[i]*v[i]) return output
6362776bef32870d3b380aecbb2037483e049092
3,639,791
from datetime import datetime def precise_diff( d1, d2 ): # type: (typing.Union[datetime.datetime, datetime.date], typing.Union[datetime.datetime, datetime.date]) -> PreciseDiff """ Calculate a precise difference between two datetimes. :param d1: The first datetime :type d1: datetime.datetime or datetime.date :param d2: The second datetime :type d2: datetime.datetime or datetime.date :rtype: PreciseDiff """ sign = 1 if d1 == d2: return PreciseDiff(0, 0, 0, 0, 0, 0, 0, 0) tzinfo1 = d1.tzinfo if isinstance(d1, datetime.datetime) else None tzinfo2 = d2.tzinfo if isinstance(d2, datetime.datetime) else None if ( tzinfo1 is None and tzinfo2 is not None or tzinfo2 is None and tzinfo1 is not None ): raise ValueError( "Comparison between naive and aware datetimes is not supported" ) if d1 > d2: d1, d2 = d2, d1 sign = -1 d_diff = 0 hour_diff = 0 min_diff = 0 sec_diff = 0 mic_diff = 0 total_days = _day_number(d2.year, d2.month, d2.day) - _day_number( d1.year, d1.month, d1.day ) in_same_tz = False tz1 = None tz2 = None # Trying to figure out the timezone names # If we can't find them, we assume different timezones if tzinfo1 and tzinfo2: if hasattr(tzinfo1, "name"): # Pendulum timezone tz1 = tzinfo1.name elif hasattr(tzinfo1, "zone"): # pytz timezone tz1 = tzinfo1.zone if hasattr(tzinfo2, "name"): tz2 = tzinfo2.name elif hasattr(tzinfo2, "zone"): tz2 = tzinfo2.zone in_same_tz = tz1 == tz2 and tz1 is not None if isinstance(d2, datetime.datetime): if isinstance(d1, datetime.datetime): # If we are not in the same timezone # we need to adjust # # We also need to adjust if we do not # have variable-length units if not in_same_tz or total_days == 0: offset1 = d1.utcoffset() offset2 = d2.utcoffset() if offset1: d1 = d1 - offset1 if offset2: d2 = d2 - offset2 hour_diff = d2.hour - d1.hour min_diff = d2.minute - d1.minute sec_diff = d2.second - d1.second mic_diff = d2.microsecond - d1.microsecond else: hour_diff = d2.hour min_diff = d2.minute sec_diff = d2.second mic_diff = d2.microsecond if mic_diff < 0: mic_diff += 1000000 sec_diff -= 1 if sec_diff < 0: sec_diff += 60 min_diff -= 1 if min_diff < 0: min_diff += 60 hour_diff -= 1 if hour_diff < 0: hour_diff += 24 d_diff -= 1 y_diff = d2.year - d1.year m_diff = d2.month - d1.month d_diff += d2.day - d1.day if d_diff < 0: year = d2.year month = d2.month if month == 1: month = 12 year -= 1 else: month -= 1 leap = int(is_leap(year)) days_in_last_month = DAYS_PER_MONTHS[leap][month] days_in_month = DAYS_PER_MONTHS[int(is_leap(d2.year))][d2.month] if d_diff < days_in_month - days_in_last_month: # We don't have a full month, we calculate days if days_in_last_month < d1.day: d_diff += d1.day else: d_diff += days_in_last_month elif d_diff == days_in_month - days_in_last_month: # We have exactly a full month # We remove the days difference # and add one to the months difference d_diff = 0 m_diff += 1 else: # We have a full month d_diff += days_in_last_month m_diff -= 1 if m_diff < 0: m_diff += 12 y_diff -= 1 return PreciseDiff( sign * y_diff, sign * m_diff, sign * d_diff, sign * hour_diff, sign * min_diff, sign * sec_diff, sign * mic_diff, sign * total_days, )
21c2a2a275ce23e8282c0563218d4aacc1f0accd
3,639,792
import utool as ut # NOQA import importlib import utool as ut import utool as ut from xdoctest import docscrape_google from xdoctest import core as xdoc_core from xdoctest import static_analysis as static import types import sys import inspect def get_module_doctest_tup( testable_list=None, check_flags=True, module=None, allexamples=None, needs_enable=None, N=0, verbose=True, testslow=False, ): """ Parses module for testable doctesttups enabled_testtup_list (list): a list of testtup testtup (tuple): (name, num, src, want, flag) describes a valid doctest in the module name (str): test name num (str): test number of the module / function / class / method src (str): test source code want (str): expected test result flag (str): a valid commandline flag to enable this test frame_fpath (str): module fpath that will be tested all_testflags (list): the command line arguments that will enable different tests module (module): the actual module that will be tested exclude_inherited (bool): does not included tests defined in other modules Args: testable_list (list): a list of functions (default = None) check_flags (bool): (default = True) module (None): (default = None) allexamples (None): (default = None) needs_enable (None): (default = None) N (int): (default = 0) verbose (bool): verbosity flag(default = True) testslow (bool): (default = False) Returns: ModuleDoctestTup : (enabled_testtup_list, frame_fpath, all_testflags, module) CommandLine: python -m utool.util_tests --exec-get_module_doctest_tup Example: >>> from utool.util_tests import * # NOQA >>> import utool as ut >>> #testable_list = [ut.util_import.package_contents] >>> testable_list = None >>> check_flags = False >>> module = ut.util_cplat >>> allexamples = False >>> needs_enable = None >>> N = 0 >>> verbose = True >>> testslow = False >>> mod_doctest_tup = get_module_doctest_tup(testable_list, check_flags, >>> module, allexamples, >>> needs_enable, N, verbose, >>> testslow) >>> result = ('mod_doctest_tup = %s' % (ut.repr4(mod_doctest_tup, nl=4),)) >>> print(result) """ # +------------------------ if VERBOSE_TEST: print('[util_test.get_module_doctest tup][DEPTH 2] get_module_doctest tup()') if needs_enable is None: needs_enable = not ut.get_argflag('--enableall') # needs_enable = True TEST_ALL_EXAMPLES = allexamples or ut.get_argflag(('--allexamples', '--all-examples')) parse_testables = True if isinstance(testable_list, types.ModuleType): # hack module = testable_list testable_list = [] testable_name_list = [] elif testable_list is None: testable_list = [] testable_name_list = [] else: testable_name_list = [ut.get_funcname(func) for func in testable_list] parse_testables = False # L________________________ # +------------------------ # GET_MODULE_DOCTEST_TUP Step 1: # Inspect caller module for testable names if module is None: frame_fpath = '???' try: # This is a bit finky. Need to be exactly N frames under the main # module frame = ut.get_parent_frame(N=N) main_modname = '__main__' frame_name = frame.f_globals['__name__'] frame_fpath = frame.f_globals['__file__'] if frame_name == main_modname: module = sys.modules[main_modname] entry_modname = ut.get_modname_from_modpath(module.__file__) if entry_modname in ['kernprof', 'kernprof-script']: # kernprof clobbers the __main__ variable. # workaround by reimporting the module name modname = ut.get_modname_from_modpath(frame_fpath) module = importlib.import_module(modname) except Exception as ex: print(frame.f_globals) ut.printex(ex, keys=['frame', 'module']) raise allexamples = False else: frame_fpath = module.__file__ allexamples = True # L________________________ # +------------------------ # GET_MODULE_DOCTEST_TUP Step 2: # --- PARSE TESTABLE FUNCTIONS --- # Get testable functions if parse_testables: try: if verbose or VERBOSE_TEST and ut.NOT_QUIET: print('[ut.test] Iterating over module funcs') print('[ut.test] module =%r' % (module,)) _testableiter = ut.iter_module_doctestable(module, include_inherited=False) for key, val in _testableiter: if isinstance(val, staticmethod): docstr = inspect.getdoc(val.__func__) else: docstr = inspect.getdoc(val) docstr = ut.ensure_unicode(docstr) if docstr is not None and ( docstr.find('Example') >= 0 or docstr.find('Doctest') >= 0 ): testable_name_list.append(key) testable_list.append(val) if VERBOSE_TEST and ut.NOT_QUIET: print('[ut.test] Testable: %s' % (key,)) else: if VERBOSE_TEST and ut.NOT_QUIET: if docstr.find('Example') >= 0 or docstr.find('Doctest') >= 0: print('[ut.test] Ignoring (disabled) : %s' % key) else: print('[ut.test] Ignoring (no Example) : %s' % key) except Exception as ex: print('FAILED') print(docstr) ut.printex(ex, keys=['frame']) raise # OUTPUTS: testable_list # L________________________ # +------------------------ # GET_MODULE_DOCTEST_TUP Step 3: # --- FILTER TESTABLES_--- # Get testable function examples test_sentinals = [ 'ENABLE_DOCTEST', 'ENABLE_GRID_DOCTEST', ] if testslow or ut.get_argflag(('--testall', '--testslow', '--test-slow')): test_sentinals.append('SLOW_DOCTEST') if testslow or ut.get_argflag(('--testall', '--testunstable')): test_sentinals.append('UNSTABLE_DOCTEST') # FIND THE TEST NAMES REQUESTED # Grab sys.argv enabled tests cmdline_varargs = ut.get_cmdline_varargs() force_enable_testnames_ = cmdline_varargs[:] valid_prefix_list = ['--test-', '--exec-', '--dump-'] # if False: for arg in sys.argv: for prefix in valid_prefix_list: if arg.startswith(prefix): testname = arg[len(prefix) :] # testname = testname.split(':')[0].replace('-', '_') force_enable_testnames_.append(testname) # break # PartA: Fixup names # TODO: parse out requested test number here # instead of later in the code. See PartB force_enable_testnames = [] for testname in force_enable_testnames_: testname = testname.split(':')[0].replace('-', '_') testname.split(':')[0].replace('-', '_') force_enable_testnames.append(testname) def _get_testable_name(testable): if isinstance(testable, staticmethod): testable = testable.__func__ try: testable_name = testable.func_name except AttributeError as ex1: try: testable_name = testable.__name__ except AttributeError as ex2: ut.printex(ex1, ut.repr4(dir(testable))) ut.printex(ex2, ut.repr4(dir(testable))) raise return testable_name sorted_testable = sorted(list(set(testable_list)), key=_get_testable_name) # Append each testable example if VERBOSE_TEST: print('Vars:') print(' * needs_enable = %r' % (needs_enable,)) print(' * force_enable_testnames = %r' % (force_enable_testnames,)) print(' * len(sorted_testable) = %r' % (len(sorted_testable),)) print(' * cmdline_varargs = %r' % (cmdline_varargs,)) indenter = ut.Indenter('[FIND_AVAIL]') indenter.start() # PARSE OUT THE AVAILABLE TESTS FOR EACH REQUEST local_testtup_list = [] for testable in sorted_testable: short_testname = _get_testable_name(testable) full_testname = None # Namespaced classname (within module) if isinstance(testable, staticmethod): testable = testable.__func__ if hasattr(testable, '__ut_parent_class__'): # HACK for getting classname.funcname test_namespace = testable.__ut_parent_class__.__name__ full_testname = test_namespace + '.' + short_testname else: test_namespace = None full_testname = short_testname nametup = tuple(ut.unique([full_testname, short_testname])) # modpath = ut.get_modpath(module) examptup = get_doctest_examples(testable) examples, wants, linenums, func_lineno, docstr = examptup total_examples = len(examples) if total_examples > 0: for testno, srcwant_tup in enumerate(zip(examples, wants)): src, want = srcwant_tup src_ = ut.regex_replace('from __future__ import.*$', '', src) test_disabled = not any([src_.find(s) >= 0 for s in test_sentinals]) skip = ( needs_enable and test_disabled and ut.isdisjoint(nametup, force_enable_testnames) ) if not skip: if VERBOSE_TEST: print( ' * HACK adding testname=%r to local_testtup_list' % (full_testname,) ) local_testtup = ( nametup, testno, src_, want, test_namespace, short_testname, total_examples, ) local_testtup_list.append(local_testtup) else: if VERBOSE_TEST: # print('force_enable_testnames = %r' % (force_enable_testnames,)) # print('nametup = %r' % (nametup,)) # print('needs_enable = %r' % (needs_enable,)) # print('test_disabled = %r' % (test_disabled,)) print(' * skipping: %r / %r' % (short_testname, full_testname)) else: print( 'WARNING: no examples in %r for testname=%r' % (frame_fpath, full_testname) ) if verbose: print(testable) print(examples) print(wants) print(docstr) if VERBOSE_TEST: print(' --') if VERBOSE_TEST: indenter.stop() # L________________________ # +------------------------ # Get enabled (requested) examples if VERBOSE_TEST: print('\n-----\n') indenter = ut.Indenter('[IS_ENABLED]') indenter.start() print('Finished parsing available doctests.') print('Now we need to find which examples are enabled') print('len(local_testtup_list) = %r' % (len(local_testtup_list),)) print( 'local_testtup_list.T[0:2].T = %s' % ut.repr4(ut.take_column(local_testtup_list, [0, 1])) ) print('sys.argv = %r' % (sys.argv,)) all_testflags = [] enabled_testtup_list = [] distabled_testflags = [] subx = ut.get_argval( '--subx', type_=int, default=None, help_='Only tests the subxth example' ) def make_valid_testnames(name, num, total): return [ name + ':' + str(num), name, name + ':' + str(num - total), # allow negative indices # prefix + name.replace('_', '-') + ':' + str(num), # prefix + name.replace('_', '-') ] def make_valid_test_argflags(prefix, name, num, total): valid_testnames = make_valid_testnames(name, num, total) return [prefix + testname for testname in valid_testnames] def check_if_test_requested(nametup, num, total, valid_prefix_list): # cmdline_varargs if VERBOSE_TEST: print('Checking cmdline for %r %r' % (nametup, num)) valid_argflags = [] # FIXME: PartB # should parse out test number above instead of here # See PartA mode = None veryverb = 0 # First check positional args testflag = None for name in nametup: valid_testnames = make_valid_test_argflags('', name, num, total) if veryverb: print('Checking if positional* %r' % (valid_testnames[0:1],)) print('name = %r' % (name,)) if any([x in cmdline_varargs for x in valid_testnames]): # hack mode = 'exec' testflag = name flag1 = '--exec-' + name + ':' + str(num) if testflag is not None: if veryverb: print('FOUND POSARG') print(' * testflag = %r' % (testflag,)) print(' * num = %r' % (num,)) break # Then check keyword-ish args if mode is None: for prefix, name in reversed(list(ut.iprod(valid_prefix_list, nametup))): valid_argflags = make_valid_test_argflags(prefix, name, num, total) if veryverb: print('Checking for flags*: %r' % (valid_argflags[0],)) flag1 = valid_argflags[0] testflag = ut.get_argflag(valid_argflags) mode = prefix.replace('-', '') if testflag: if veryverb: print('FOUND VARARG') break else: # print('WARNING NO TEST IS ENABLED %r ' % (nametup,)) pass checktup = flag1, mode, name, testflag return checktup for local_testtup in local_testtup_list: (nametup, num, src, want, shortname, test_namespace, total) = local_testtup checktup = check_if_test_requested(nametup, num, total, valid_prefix_list) flag1, mode, name, testflag = checktup testenabled = TEST_ALL_EXAMPLES or not check_flags or testflag if subx is not None and subx != num: continue all_testflags.append(flag1) if testenabled: if VERBOSE_TEST: print('... enabling test') testtup = TestTuple( name, num, src, want, flag1, frame_fpath=frame_fpath, mode=mode, total=total, nametup=nametup, shortname=shortname, test_namespace=test_namespace, ) if VERBOSE_TEST: print('... ' + str(testtup)) enabled_testtup_list.append(testtup) else: if VERBOSE_TEST: print('... disabling test') distabled_testflags.append(flag1) # Attempt to run test without any context # This will only work if the function exist and is self contained if len(force_enable_testnames_) > 0 and len(enabled_testtup_list) == 0: if VERBOSE_TEST: print('Forced test did not have a doctest example') print('Maybe it can be run without any context') # assert len(force_enable_testnames) == 1 test_funcname_ = force_enable_testnames[0] if test_funcname_.find('.') != -1: test_classname, test_funcname = test_funcname_.split('.') class_ = getattr(module, test_classname, None) assert class_ is not None func_ = getattr(class_, test_funcname, None) else: test_funcname = test_funcname_ func_ = getattr(module, test_funcname, None) if VERBOSE_TEST: print('test_funcname = %r' % (test_funcname,)) print('func_ = %r' % (func_,)) if func_ is not None: testno = 0 modname = ut.get_modname_from_modpath(module.__file__) want = None try: if VERBOSE_TEST: print('attempting xdoctest hack') # hack to get classmethods to read their example using # the xdoctest port if func_.__doc__ is None: raise TypeError blocks = docscrape_google.split_google_docblocks(func_.__doc__) example_blocks = [] for type_, block in blocks: if type_.startswith('Example') or type_.startswith('Doctest'): example_blocks.append((type_, block)) if len(example_blocks) == 0: if VERBOSE_TEST: print('xdoctest found no blocks') raise KeyError callname = test_funcname_ hack_testtups = [] for num, (type_, block) in enumerate(example_blocks): # print('modname = %r' % (modname,)) # print('callname = %r' % (callname,)) # print('num = %r' % (num,)) modpath = static.modname_to_modpath(modname) example = xdoc_core.DocTest( modpath=modpath, callname=callname, docsrc=block, num=num ) src = example.format_src(colored=False, want=False, linenos=False) want = '\n'.join(list(example.wants())) testtup = TestTuple( test_funcname_, num, src, want=want, flag='--exec-' + test_funcname_, frame_fpath=frame_fpath, mode='exec', total=len(example_blocks), nametup=[test_funcname_], ) hack_testtups.append(testtup) if VERBOSE_TEST: print('hack_testtups = %r' % (hack_testtups,)) enabled_testtup_list.extend(hack_testtups) # src = '\n'.join([line[4:] for line in src.split('\n')]) except (ImportError, KeyError, TypeError): if VERBOSE_TEST: print('xdoctest hack failed') # varargs = ut.get_cmdline_varargs() varargs = force_enable_testnames[1:] # Create dummy doctest src = ut.codeblock( """ # DUMMY_DOCTEST from {modname} import * # NOQA args = {varargs} result = {test_funcname_}(*args) print(result) """ ).format( modname=modname, test_funcname_=test_funcname_, varargs=repr(varargs) ) testtup = TestTuple( test_funcname_, testno, src, want=want, flag='--exec-' + test_funcname_, frame_fpath=frame_fpath, mode='exec', total=1, nametup=[test_funcname_], ) enabled_testtup_list.append(testtup) else: print('function %r was not found in %r' % (test_funcname_, module)) if VERBOSE_TEST: indenter.stop() if ut.get_argflag('--list'): # HACK: Should probably just return a richer structure print('testable_name_list = %s' % (ut.repr4(testable_name_list),)) mod_doctest_tup = ModuleDoctestTup( enabled_testtup_list, frame_fpath, all_testflags, module ) # L________________________ return mod_doctest_tup
ac7f2fd69180ce7ca24651ae585a7bf55c624399
3,639,793
def subset_lists(L, min_size=0, max_size=None): """Strategy to generate a subset of a `list`. This should be built in to hypothesis (see hypothesis issue #1115), but was rejected. Parameters ---------- L : list List of elements we want to get a subset of. min_size : int Minimum size of the resulting subset list. max_size : int or None Maximum size of the resulting subset list. Returns ------- L : list List that is subset of `L` with all unique elements. """ _check_valid_size_interval(min_size, max_size, "subset list size") uniq_len = len(set(L)) order_check("input list size", 0, min_size, uniq_len) max_size = uniq_len if max_size is None else min(uniq_len, max_size) # Avoid deprecation warning HypothesisDeprecationWarning: sampled_from() elements_st = nothing() if uniq_len == 0 else sampled_from(L) S = lists(elements=elements_st, min_size=min_size, max_size=max_size, unique=True) return S
1ad343ed6459c12b6c454c71505e8cfa04e9e36e
3,639,794
def DCNPack(x, extra_feat, out_channels, kernel_size=(3, 3), strides=(1, 1), padding='same', dilations=(1, 1), use_bias=True, num_groups=1, num_deform_groups=1, trainable=True, dcn_version='v2', name='DCN'): """Deformable convolution encapsulation that acts as normal convolution layers.""" with tf.variable_scope(name): x = tf.cast(x, tf.float32) if dcn_version == 'v1': offset = Conv2D(extra_feat, num_deform_groups * 2 * kernel_size[0] * kernel_size[1], kernel_size=kernel_size, strides=strides, padding=padding, dilations=dilations, use_bias=use_bias, trainable=trainable, name='conv_offset') offset = tf.cast(offset, tf.float32) mask = None elif dcn_version == 'v2': conv_offset = Conv2D(extra_feat, num_deform_groups * 3 * kernel_size[0] * kernel_size[1], kernel_size=kernel_size, strides=strides, padding=padding, dilations=dilations, use_bias=use_bias, trainable=trainable, name='conv_offset') conv_offset = tf.cast(conv_offset, tf.float32) offset = conv_offset[:, :, :, :num_deform_groups * 2 * kernel_size[0] * kernel_size[1]] mask = conv_offset[:, :, :, num_deform_groups * 2 * kernel_size[0] * kernel_size[1]:] mask = tf.nn.sigmoid(mask) else: raise NotImplementedError out = DeformableConvLayer( in_channels=int(x.shape[-1]), out_channels=out_channels, kernel_size=kernel_size, strides=strides, padding=padding, dilations=dilations, use_bias=use_bias, num_groups=num_groups, num_deform_groups=num_deform_groups, trainable=trainable)(x, offset, mask) return out
091669ff8608c2783916d042bac2b2756ca25973
3,639,795
def endtiming(fn): """ Decorator used to end timing. Keeps track of the count for the first and second calls. """ NITER = 10000 def new(*args, **kw): ret = fn(*args, **kw) obj = args[0] if obj.firststoptime == 0: obj.firststoptime = time.time() elif obj.secondstoptime == 0: obj.secondstoptime = time.time() elif obj.count == NITER: now = time.time() total = now - obj.secondstarttime perrequest = total/NITER filename = "output/%s-%s" % (str(len(obj.groups[NODE_REPLICA])+1), str(len(obj.groups[NODE_ACCEPTOR]))) outputfile = open("./"+filename, "a") # numreplicas #numacceptors #perrequest #total outputfile.write("%s\t%s\t%s\t%s\n" % (str(len(obj.groups[NODE_REPLICA])+1), str(len(obj.groups[NODE_ACCEPTOR])), str(perrequest), str(total))) outputfile.close() obj.count += 1 sys.stdout.flush() profile_off() profilerdict = get_profile_stats() for key, value in sorted(profilerdict.iteritems(), key=lambda (k,v): (v[2],k)): print ("%s: %s" % (key, value)) time.sleep(10) sys.stdout.flush() os._exit(0) else: obj.count += 1 return ret return new
493fd06b0c28ef1c8c4f3c38c555cf5e52013d80
3,639,796
def CreateRailFrames(thisNurbsCurve, parameters, multiple=False): """ Computes relatively parallel rail sweep frames at specified parameters. Args: parameters (IEnumerable<double>): A collection of curve parameters. Returns: Plane[]: An array of planes if successful, or an empty array on failure. """ url = "rhino/geometry/nurbscurve/createrailframes-nurbscurve_doublearray" if multiple: url += "?multiple=true" args = [thisNurbsCurve, parameters] if multiple: args = list(zip(thisNurbsCurve, parameters)) response = Util.ComputeFetch(url, args) return response
bf62e197d6b7cb83453b43ce441eb062000ca069
3,639,797
def news(stock): """analyzes analyst recommendations using keywords and assigns values to them :param stock: stock that will be analyzed :return recommendations value""" stock = yf.Ticker(str(stock)) reco = str(stock.recommendations) # Stands for recomend reco = reco.split() reco.reverse() del reco[15 :-1] #### KEY WORDS ### buy = reco.count("Buy") #Means price is going up = Good sell = reco.count("Sell") #Means price is going down = Bad hold = reco.count("Hold") #Means price is going to increase = Good neutral = reco.count("Neutral") #Means price is not going to drastically change = Neutral overweight = reco.count("Overweight") #Means stock is better value for money than others = Good equalweight = reco.count("Equal-Weight") #Means stock is about the same value compared to others = Neutral underweight = reco.count("Underweight") #Means stock is worse value than what it is assesed to be = Bad perform = reco.count("Perform") #Means stock performance is on par with the industry average = Neutral outperform = reco.count("Outperform") #Means stock performance will be slightly better than industry = Good underperform = reco.count("Underperform") #Means stock performance will be slightly worse than industry = Bad if (buy + hold + neutral + equalweight + overweight + outperform) == 0: news = .95 / (sell + underweight + perform + underperform) elif (sell + underweight + perform + underperform) == 0: news = 1.05 * (buy + .5 * hold + .1 * neutral + .1 * equalweight + overweight + outperform) else: news = (buy + .5 * hold + .1 * neutral + .1 * equalweight + overweight + outperform)/(sell + underweight + perform + underperform) if news < 1: if news < .5: news = 1 - news return news
2385f5c212c8802e6572b6efe69c1c791a68c261
3,639,798
def get_pulse_coefficient(pulse_profile_dictionary, tt): """ This function generates an envelope that smoothly goes from 0 to 1, and back down to 0. It follows the nomenclature introduced to me by working with oscilloscopes. The pulse profile dictionary will contain a rise time, flat time, and fall time. The rise time is the time over which the pulse goes from 0 to 1 The flat time is the duration of the flat-top of the pulse The fall time is the time over which the pulse goes from 1 to 0. :param pulse_profile_dictionary: :param tt: :return: """ start_time = pulse_profile_dictionary["start_time"] end_time = ( start_time + pulse_profile_dictionary["rise_time"] + pulse_profile_dictionary["flat_time"] + pulse_profile_dictionary["fall_time"] ) this_pulse = 0 if (tt > start_time) and (tt < end_time): rise_time = pulse_profile_dictionary["rise_time"] flat_time = pulse_profile_dictionary["flat_time"] fall_time = pulse_profile_dictionary["fall_time"] end_rise = start_time + rise_time end_flat = start_time + rise_time + flat_time if tt <= end_rise: normalized_time = (tt - start_time) / rise_time this_pulse = _get_rise_fall_coeff_(normalized_time) elif (tt > end_rise) and (tt < end_flat): this_pulse = 1.0 elif tt >= end_flat: normalized_time = (tt - end_flat) / fall_time this_pulse = 1.0 - _get_rise_fall_coeff_(normalized_time) this_pulse *= pulse_profile_dictionary["a0"] return this_pulse
1db21359bbbcec44214752ecb5c08a6ee0592593
3,639,799