content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import os def Landsat_Reflect(Bands,input_folder,Name_Landsat_Image,output_folder,shape_lsc,ClipLandsat,Lmax,Lmin,ESUN_L5,ESUN_L7,ESUN_L8,cos_zn,dr,Landsat_nr, proyDEM_fileName): """ This function calculates and returns the reflectance and spectral radiation from the landsat image. """ Spec_Rad = np.zeros((shape_lsc[1], shape_lsc[0], 7)) Reflect = np.zeros((shape_lsc[1], shape_lsc[0], 7)) for band in Bands[:-(len(Bands)-6)]: # Open original Landsat image for the band number src_FileName = os.path.join(input_folder, '%s_B%1d.TIF' % (Name_Landsat_Image, band)) ls_data=Open_landsat(src_FileName, proyDEM_fileName) ls_data = ls_data*ClipLandsat # stats = band_data.GetStatistics(0, 1) index = np.where(Bands[:-(len(Bands)-6)] == band)[0][0] if Landsat_nr == 8: # Spectral radiance for each band: L_lambda = Landsat_L_lambda(Lmin, Lmax, ls_data, index, Landsat_nr) # Reflectivity for each band: rho_lambda = Landsat_rho_lambda(L_lambda, ESUN_L8, index, cos_zn, dr) elif Landsat_nr == 7: # Spectral radiance for each band: L_lambda=Landsat_L_lambda(Lmin, Lmax, ls_data, index, Landsat_nr) # Reflectivity for each band: rho_lambda = Landsat_rho_lambda(L_lambda, ESUN_L7, index, cos_zn, dr) elif Landsat_nr == 5: # Spectral radiance for each band: L_lambda=Landsat_L_lambda(Lmin, Lmax, ls_data, index, Landsat_nr) # Reflectivity for each band: rho_lambda =Landsat_rho_lambda(L_lambda, ESUN_L5, index, cos_zn, dr) else: print('Landsat image not supported, use Landsat 5, 7 or 8') Spec_Rad[:, :, index] = L_lambda Reflect[:, :, index] = rho_lambda Reflect = Reflect.clip(0.0, 1.0) return(Reflect,Spec_Rad)
4c6e49e22ac2b4b12dece71c3c3e73afdc72d0ca
3,639,300
def second(lst): """Same as first(nxt(lst)). """ return first(nxt(lst))
aa49e089a06a4b3e7d781966d8b4f98b7fe15841
3,639,301
def gaussian_noise(height, width): """ Create a background with Gaussian noise (to mimic paper) """ # We create an all white image image = np.ones((height, width)) * 255 # We add gaussian noise cv2.randn(image, 235, 10) return Image.fromarray(image).convert("RGBA")
6243fde57b3e7415edc2024eebbe10f059b93a55
3,639,302
def draw_box(image, box, color): """Draw 3-pixel width bounding boxes on the given image array. color: list of 3 int values for RGB. """ y1, x1, y2, x2 = box image[y1:y1 + 1, x1:x2] = color image[y2:y2 + 1, x1:(x2+1)] = color image[y1:y2, x1:x1 + 1] = color image[y1:y2, x2:x2 + 1] = color return image
4d1e713c6cb6a3297b4f7d8ab9682205947770da
3,639,303
def get_statuses_one_page(weibo_client, max_id=None): """获取一页发布的微博 """ if max_id: statuses = weibo_client.statuses.user_timeline.get(max_id=max_id) else: statuses = weibo_client.statuses.user_timeline.get() return statuses
4a214489aa5696c9683c9cfa96d79ee169135eb5
3,639,304
def do_nothing(ax): """Do not add any watermark.""" return ax
6fbe32dc45ca1a945e1c45bf0319770c4d683397
3,639,305
def exec_lm_pipe(taskstr): """ Input: taskstr contains LM calls separated by ; Used for execute config callback parameters (IRQs and BootHook) """ try: # Handle config default empty value (do nothing) if taskstr.startswith('n/a'): return True # Execute individual commands - msgobj->"/dev/null" for cmd in (cmd.strip().split() for cmd in taskstr.split(';')): if not exec_lm_core_schedule(cmd): console_write("|-[LM-PIPE] task error: {}".format(cmd)) except Exception as e: console_write("[IRQ-PIPE] error: {}\n{}".format(taskstr, e)) errlog_add('exec_lm_pipe error: {}'.format(e)) return False return True
8854b5de0f408caf9292aecbcfa261744166e744
3,639,306
def term_size(): """Print out a sequence of ANSI escape code which will report back the size of the window. """ # ESC 7 - Save cursor position # ESC 8 - Restore cursor position # ESC [r - Enable scrolling for entire display # ESC [row;colH - Move to cursor position # ESC [6n - Device Status Report - send ESC [row;colR repl= None if 'repl_source' in dir(pyb): repl = pyb.repl_source() if repl is None: repl = pyb.USB_VCP() repl.send(b'\x1b7\x1b[r\x1b[999;999H\x1b[6n') pos = b'' while True: char = repl.recv(1) if char == b'R': break if char != b'\x1b' and char != b'[': pos += char repl.send(b'\x1b8') (height, width) = [int(i, 10) for i in pos.split(b';')] return height, width
bc0b09163b48f821315f52c52b0a58b6b5fb977a
3,639,307
def get_dashboard(request, project_id): """ Load Project Dashboard to display Latest Cost Estimate and List of Changes """ project = get_object_or_404(Project, id=project_id) # required to determine permission of user, # if not a project user then project owner try: project_user = ProjectUser.objects.get( project=project, project_user=request.user) except ProjectUser.DoesNotExist: project_user = None form = ChangeForm() attachmentsForm = ChangeAttachmentsForm() changes = Change.objects.filter(project_id=project_id) # Calculations to display on dashboard original_estimate = project.original_estimate accepted_changes = Change.objects.filter( project_id=project_id, change_status="A").aggregate( Sum('change_cost'))['change_cost__sum'] if accepted_changes is None: accepted_changes = 0 pending_changes = Change.objects.filter( project_id=project_id, change_status="P").aggregate( Sum('change_cost'))['change_cost__sum'] if pending_changes is None: pending_changes = 0 wip_changes = Change.objects.filter( project_id=project_id, change_status="WiP").aggregate( Sum('change_cost'))['change_cost__sum'] if wip_changes is None: wip_changes = 0 rejected_changes = Change.objects.filter( project_id=project_id, change_status="R").aggregate( Sum('change_cost'))['change_cost__sum'] if rejected_changes is None: rejected_changes = 0 subtotal = original_estimate + accepted_changes total = subtotal + pending_changes + wip_changes context = { 'project': project, 'project_user': project_user, 'form': form, 'attachmentsForm': attachmentsForm, 'changes': changes, 'original_estimate': original_estimate, 'accepted_changes': accepted_changes, 'pending_changes': pending_changes, 'wip_changes': wip_changes, 'rejected_changes': rejected_changes, 'subtotal': subtotal, 'total': total, } return render(request, 'dashboard/project.html', context)
36257741b2ef220d35e4593bd080a82b4cc743a0
3,639,308
def _scan_real_end_loop(bytecode, setuploop_inst): """Find the end of loop. Return the instruction offset. """ start = setuploop_inst.next end = start + setuploop_inst.arg offset = start depth = 0 while offset < end: inst = bytecode[offset] depth += inst.block_effect if depth < 0: return inst.next offset = inst.next
9cff8ab77563a871b86cdbb14236603ec58e04b6
3,639,309
def six_node_range_5_to_0_bst(): """Six nodes covering range five to zero.""" b = BST([5, 4, 3, 2, 1, 0]) return b
1afe6c613b03def6dc9d8aed41624e40180e5ae5
3,639,310
def IndividualsInAlphabeticOrder(filename): """Checks if the names are in alphabetic order""" with open(filename, 'r') as f: lines = f.readlines() individual_header = '# Individuals:\n' if individual_header in lines: individual_authors = lines[lines.index(individual_header) + 1:] sorted_authors = sorted(individual_authors, key=str.casefold) if sorted_authors == individual_authors: print("Individual authors are sorted alphabetically.") return True else: print("Individual authors are not sorted alphabetically." " The expected order is:") print(''.join(sorted_authors)) return False else: print("Cannot find line '# Individuals:' in file.") return False
4753bbf41498373695f921555c8f01183dbb58dc
3,639,311
import mxnet from mxnet.gluon.data.vision import transforms from PIL import Image def preprocess_img_imagenet(img_path): """Preprocessing required for ImageNet classification. Reference: https://github.com/onnx/models/tree/master/vision/classification/vgg """ img = Image.open(img_path) img = mxnet.ndarray.array(img) transform_fn = transforms.Compose( [ transforms.Resize(224), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) img = transform_fn(img) img = img.expand_dims(axis=0) # Batchify. return img.asnumpy()
f181e3376f26ee14c6314a8a730e796eefb09e2e
3,639,312
def create_lambertian(color): """ create a lambertion material """ material = bpy.data.materials.new(name="Lambertian") material.use_nodes = True nodes = material.node_tree.nodes # remove principled material.node_tree.nodes.remove( material.node_tree.nodes.get('Principled BSDF')) # get material output material_output = material.node_tree.nodes.get('Material Output') # Add a diffuse shader and set its location: diffuse_node = nodes.new('ShaderNodeBsdfDiffuse') diffuse_node.inputs['Color'].default_value = color # link diffuse shader to material material.node_tree.links.new( material_output.inputs[0], diffuse_node.outputs[0]) return material
e291817853ec26d6767d8fd496ee5ced15ff87f2
3,639,313
def submission_view(request, locker_id, submission_id): """Displays an individual submission""" submission = get_object_or_404(Submission, pk=submission_id) newer = submission.newer() newest = Submission.objects.newest(submission.locker) if not newest: newest = submission oldest = Submission.objects.oldest(submission.locker) if not oldest: oldest = submission older = submission.older() discussion_enabled = submission.locker.discussion_enabled() is_owner = submission.locker.owner == request.user users_discussion = submission.locker.discussion_users_have_access() users_workflow = submission.locker.workflow_users_can_edit() workflow_enabled = submission.locker.workflow_enabled() # generate a message to the user if the submission is deleted if submission.deleted: messages.warning(request, u'<strong>Heads up!</strong> This submission has ' u'been deleted and <strong>will be permanently ' u'removed</strong> from the locker ' u'<strong>{}</strong>.' u''.format(naturaltime(submission.purge_date))) return render(request, 'datalocker/submission_view.html', { 'data': submission.data_dict(with_types=True), 'discussion_enabled': discussion_enabled, 'discussion_users_have_access': users_discussion or is_owner, 'newer': newer, 'newer_disabled': True if submission.id == newer.id else False, 'newest': newest, 'newest_disabled': True if submission.id == newest.id else False, 'older': older, 'older_disabled': True if submission.id == older.id else False, 'oldest': oldest, 'oldest_disabled': True if submission.id == oldest.id else False, 'sidebar_enabled': workflow_enabled or discussion_enabled, 'submission': submission, 'workflow_enabled': workflow_enabled, 'workflow_states': submission.locker.workflow_states(), 'workflow_state': submission.workflow_state, 'workflow_users_can_edit': users_workflow or is_owner, })
f473c7ad2c59dfd27a96fa4478f6b9652e740296
3,639,314
from pathlib import Path def add_filename_suffix(file_path: str, suffix: str) -> str: """ Append a suffix at the filename (before the extension). Args: path: pathlib.Path The actual path object we would like to add a suffix suffix: The suffix to add Returns: path with suffix appended at the end of the filename and before extension """ path = Path(file_path) return str(path.parent.joinpath(path.stem + suffix).with_suffix(path.suffix))
546bb95f694ee5d5cb26873428fcac8453df6a54
3,639,315
def list_dropdownTS(dic_df): """ input a dictionary containing what variables to use, and how to clean the variables It outputs a list with the possible pair solutions. This function will populate a dropdown menu in the eventHandler function """ l_choice = [] for key_cat, value_cat in dic_df['var_continuous'].items(): l_choice.append(value_cat['name']) l_choice = ['-'] + l_choice return l_choice
fcd0474fa6941438cb39c63aa7605f1b776fd538
3,639,316
import itertools import random def get_voice_combinations(**kwargs): """ Gets k possible combinations of voices from a list of voice indexes. If k is None, it will return all possible combinations. The combinations are of a minimum size min_n_voices_to_remove and a max size max_n_voices_to_remove. When choosing a k number a combinations from all possible combinations, the probability of choosing a combination of a number of voices above another can be passed with the prob list, where for a range of voices to remove from 1 to 3, [1, 1, 1] indicates equal probability, [1,1,2] indicates that combinations with 3 voices have double probability of getting chosen, etc. @param kwargs: see below @return voice_idx_comb: combinations of voice indexes """ # list of voices to remove voice_idx = kwargs.get("voice_idx", [0, 1, 2, 3, 4]) min_n_voices_to_remove = kwargs.get( "min_n_voices_to_remove", 1) # min size of the combination max_n_voices_to_remove = kwargs.get( "max_n_voices_to_remove", 3) # max size of the combination # prob of each n_voices_to_remove set in ascending order prob = kwargs.get("prob", [1, 1, 1]) k = kwargs.get("k", 5) # max number of combinations to return if len(voice_idx) < max_n_voices_to_remove: max_n_voices_to_remove = len(voice_idx) range_items = range(min_n_voices_to_remove, max_n_voices_to_remove + 1) assert (len(prob) == len( range_items)), "The prob list must be the same length as the range(min_n_voices_to_remove, max_n_voices_to_remove)" voice_idx_comb = [] weights = [] for i, n_voices_to_remove in enumerate(range_items): _voice_idx_comb = list(itertools.combinations( voice_idx, n_voices_to_remove)) voice_idx_comb.extend(_voice_idx_comb) _weights = list(np.repeat(prob[i], len(_voice_idx_comb))) weights.extend(_weights) if k is not None: # if there is no k, return all possible combinations voice_idx_comb = random.choices(voice_idx_comb, weights=weights, k=k) return list(voice_idx_comb)
d3addbfe5023b5ee6e25f190c53b469593bb9ff4
3,639,317
def data(request): """This is a the main entry point to the Data tab.""" context = cache.get("data_tab_context") if context is None: context = data_context(request) cache.set("data_tab_context", context, 29) return render(request, "rundb/data/data.html", context)
2763617afc7d865acaf3f0dcbf9190bd084ad5ae
3,639,318
def setup_root(name: str) -> DLogger: """Create the root logger.""" logger = get_logger(name) msg_format = "%(message)s" level_style = { "critical": {"color": "magenta", "bright": True, "bold": True}, "debug": {"color": "green", "bright": True, "bold": True}, "error": {"color": "red", "bright": True, "bold": True}, "info": {"color": 4, "bright": True, "bold": True}, "notice": {"color": "magenta", "bright": True, "bold": True}, "spam": {"color": "green", "faint": True}, "success": {"color": "green", "bright": True, "bold": True}, "verbose": {"color": "blue", "bright": True, "bold": True}, "warning": {"color": "yellow", "bright": True, "bold": True}, } coloredlogs.install(fmt=msg_format, level_styles=level_style, level="INFO") return logger
9cad79c254fcb8f075d549c457d7e09dacc9bb33
3,639,319
import typing import pathlib import pickle def from_pickle( filepath: typing.Union[str, pathlib.Path, typing.IO[bytes]] ) -> typing.Union[Categorization, HierarchicalCategorization]: """De-serialize Categorization or HierarchicalCategorization from a file written by to_pickle. Note that this uses the pickle module, which executes arbitrary code in the provided file. Only load from pickle files that you trust.""" try: spec = pickle.load(filepath) except TypeError: with open(filepath, "rb") as fd: spec = pickle.load(fd) return from_spec(spec)
e268f8c1467965bbba47c65ebba5f021171fc6ce
3,639,320
def recostruct(encoded, weights, bias): """ Reconstructor : Encoded -> Original Not Functional """ weights.reverse() for i,item in enumerate(weights): encoded = encoded @ item.eval() + bias[i].eval() return encoded
e17aeb6a819a6eec745c5dd811460049fa4a92cd
3,639,321
import math def get_file_dataset_from_trixel_id(CatName,index,NfilesinHDF,Verbose=True):#get_file_var_from_htmid in Eran's library """Description: given a catalog basename and the index of a trixel and the number of trixels in an HDF5 file, create the trixel dataset name Input :- CatName - index - NfilesinHDF: number of datasets in an HDF5 files (default is 100) Output :- Filename: name of the HDF5 file where the trixel_dataset is stored - Datasetname: name of the trixel_dataset example: By : Maayane Soumagnac (original Matlab function by Eran Ofek) August 2018""" if Verbose==True: print('index is',index) num_file=math.floor(index/NfilesinHDF)*NfilesinHDF #equivalent to index//Nfiles*Nfiles Filename='%s_htm_%06d.hdf5' % (CatName, num_file) DatasetName='htm_%06d' % index return Filename,DatasetName
b9d0482780ae2a191175f1549513f46c047bb1cf
3,639,322
def calc_element_column(NH, fmineral, atom, mineral, d2g=0.009): """ Calculate the column density of an element for a particular NH value, assuming a dust-to-gas ratio (d2g) and the fraction of dust in that particular mineral species (fmineral) """ dust_mass = NH * mp * d2g * fmineral # g cm^{-2} print('Dust mass = %.3e g cm^-2' % (dust_mass)) return calc_mass_conversion(atom, mineral) * dust_mass
d1e24602e6d329132d59f300543f306502867fc1
3,639,323
def output_dot(sieve, column_labels=None, max_edges=None, filename='structure.dot'): """ A network representation of the structure in Graphviz format. Units in the produced file are in bits. Weight is the mutual information and tc is the total correlation. """ print """Compile by installing graphviz and running a command like: sfdp %s -Tpdf -Earrowhead=none -Nfontsize=12 \\ -GK=2 -Gmaxiter=1000 -Goverlap=False -Gpack=True \\ -Gpackmode=clust -Gsep=0.02 -Gratio=0.7 -Gsplines=True -o structure.pdf""" % filename if column_labels is None: column_labels = map(unicode, range(sieve.n_variables)) else: column_labels = map(unicode, column_labels) f = open(filename, 'w') f.write('strict digraph {\n'.encode('utf-8')) for i, column_label in enumerate(column_labels): line = '%s [label="%s", shape=none]\n' % ('X_' + column_label, column_label) f.write(line.encode('utf-8')) for j, layer in enumerate(sieve.layers): this_tc = 0.6 * sieve.tcs[j] / np.max(sieve.tcs) line = 'Y_%d [shape=circle,margin="0,0",style=filled,fillcolor=black,' \ 'fontcolor=white,height=%0.3f,label=Y%d,tc=%0.3f]\n' % (j, this_tc, j+1, sieve.tcs[j] / np.log(2)) f.write(line.encode('utf-8')) mis = sieve.mis print 'mis', mis if max_edges is None or max_edges > mis.size: w_threshold = 0. else: w_threshold = -np.sort(-np.ravel(mis))[max_edges] for j, layer in enumerate(sieve.layers): for i in range(sieve.n_variables): w = mis[j, i] / np.log(2) if w > w_threshold: line = '%s -> %s [penwidth=%0.3f, weight=%0.3f];\n' % ('X_'+str(i), 'Y_'+str(j), 2 * w, w) f.write(line.encode('utf-8')) for j2 in range(0, j): w = mis[j, sieve.n_variables + j2] / np.log(2) if w > w_threshold: line = '%s -> %s [penwidth=%0.3f, weight=%0.3f];\n' % ('Y_'+str(j2), 'Y_'+str(j), 2 * w, w) f.write(line.encode('utf-8')) f.write('}'.encode('utf-8')) f.close() return True
aa63e5ffb0bd1544f29391821db9ac49e690e3fe
3,639,324
def projectSimplex_vec(v): """ project vector v onto the probability simplex Parameter --------- v: shape(nVars,) input vector Returns ------- w: shape(nVars,) projection of v onto the probability simplex """ nVars = v.shape[0] mu = np.sort(v,kind='quicksort')[::-1] sm_hist = np.cumsum(mu) flag = (mu - 1./np.arange(1,nVars+1)*(sm_hist-1) > 0) lastTrue = len(flag) - 1 - flag[::-1].argmax() sm_row = sm_hist[lastTrue] theta = 1./(lastTrue+1) * (sm_row - 1) w = np.maximum(v-theta, 0.) return w
ace378ed84c61e05e04fdad23e3d97127e63df3a
3,639,325
from typing import Collection from typing import List from typing import Sized def render_list(something: Collection, threshold: int, tab: str) -> List[str]: """ Разложить список или что то подобное """ i = 1 sub_storage = [] order = '{:0' + str(len(str(len(something)))) + 'd}' for element in something: if isinstance(element, Sized) and len(element) > threshold: add = [] render(element, threshold, add, tab + '\t') sub_storage.extend(add) else: sub_storage.append(f'{tab}{order.format(i)}| {element!r}') i += 1 return sub_storage
a7eb47df956fc4404bae6e29e75b280cd2b70cba
3,639,326
from typing import Optional from typing import List from typing import Tuple def combine_result( intent_metrics: IntentMetrics, entity_metrics: EntityMetrics, response_selection_metrics: ResponseSelectionMetrics, interpreter: Interpreter, data: TrainingData, intent_results: Optional[List[IntentEvaluationResult]] = None, entity_results: Optional[List[EntityEvaluationResult]] = None, response_selection_results: Optional[ List[ResponseSelectionEvaluationResult] ] = None, ) -> Tuple[IntentMetrics, EntityMetrics, ResponseSelectionMetrics]: """Collects intent, response selection and entity metrics for cross validation folds. If `intent_results`, `response_selection_results` or `entity_results` is provided as a list, prediction results are also collected. Args: intent_metrics: intent metrics entity_metrics: entity metrics response_selection_metrics: response selection metrics interpreter: the interpreter data: training data intent_results: intent evaluation results entity_results: entity evaluation results response_selection_results: reponse selection evaluation results Returns: intent, entity, and response selection metrics """ ( intent_current_metrics, entity_current_metrics, response_selection_current_metrics, current_intent_results, current_entity_results, current_response_selection_results, ) = compute_metrics(interpreter, data) if intent_results is not None: intent_results += current_intent_results if entity_results is not None: entity_results += current_entity_results if response_selection_results is not None: response_selection_results += current_response_selection_results for k, v in intent_current_metrics.items(): intent_metrics[k] = v + intent_metrics[k] for k, v in response_selection_current_metrics.items(): response_selection_metrics[k] = v + response_selection_metrics[k] for extractor, extractor_metric in entity_current_metrics.items(): entity_metrics[extractor] = { k: v + entity_metrics[extractor][k] for k, v in extractor_metric.items() } return intent_metrics, entity_metrics, response_selection_metrics
86942bbb30fe86fcd8e3453e7ac661b97832ec1a
3,639,327
import jobtracker def get_fns_for_jobid(jobid): """Given a job ID number, return a list of that job's data files. Input: jobid: The ID number from the job-tracker DB to get files for. Output: fns: A list of data files associated with the job ID. """ query = "SELECT filename " \ "FROM files, job_files " \ "WHERE job_files.file_id=files.id " \ "AND job_files.job_id=%d" % jobid rows = jobtracker.query(query) fns = [str(row['filename']) for row in rows] return fns
ab867ec7b86981bfd06caf219b77fbb9410277ad
3,639,328
def linear_schedule(initial_value: float): """ Linear learning rate schedule. :param initial_value: Initial learning rate. :return: schedule that computes current learning rate depending on remaining progress """ def func(progress_remaining: float) -> float: """ Progress will decrease from 1 (beginning) to 0. :param progress_remaining: :return: current learning rate """ return progress_remaining * initial_value return func
afb0c9f050081f7e84728051535a899d9ece43f3
3,639,329
def download(os_list, software_list, dst): """ 按软件列表下载其他部分 """ if os_list is None: os_list = [] arch = get_arch(os_list) LOG.info('software arch is {0}'.format(arch)) results = {'ok': [], 'failed': []} no_mindspore_list = [software for software in software_list if "MindSpore" not in software] for software in no_mindspore_list: res = download_software(software, dst, arch) if res: results['ok'].append(software) continue results['failed'].append(software) return results
9def81d5c1f127cab08add62a16df35c2a9dbc80
3,639,330
import hashlib def get_hash_bin(shard, salt=b"", size=0, offset=0): """Get the hash of the shard. Args: shard: A file like object representing the shard. salt: Optional salt to add as a prefix before hashing. Returns: Hex digetst of ripemd160(sha256(salt + shard)). """ shard.seek(0) digest = partialhash.compute(shard, offset=offset, length=size, seed=salt, hash_algorithm=hashlib.sha256) shard.seek(0) return ripemd160(digest).digest()
94c399d41b56598e4ecac3f0c2d917a226e9e9db
3,639,331
def boltzmann_statistic( properties: ArrayLike1D, energies: ArrayLike1D, temperature: float = 298.15, statistic: str = "avg", ) -> float: """Compute Boltzmann statistic. Args: properties: Conformer properties energies: Conformer energies (a.u.) temperature: Temperature (K) statistic: Statistic to compute: 'avg', 'var' or 'std' Returns: result: Boltzmann statistic """ properties = np.array(properties) # Get conformer weights weights = boltzmann_weights(energies, temperature) # Compute Boltzmann weighted statistic result: float if statistic == "avg": result = np.average(properties, weights=weights) elif statistic == "var": avg = np.average(properties, weights=weights) result = np.sum(weights * (properties - avg) ** 2) elif statistic == "std": avg = np.average(properties, weights=weights) var = np.sum(weights * (properties - avg) ** 2) result = np.sqrt(var) return result
5c5ea2d9ff43e9e068856d73f1e6bdc1f53c42b0
3,639,332
def _check_n_pca_components(ica, _n_pca_comp, verbose=None): """Aux function""" if isinstance(_n_pca_comp, float): _n_pca_comp = ((ica.pca_explained_variance_ / ica.pca_explained_variance_.sum()).cumsum() <= _n_pca_comp).sum() logger.info('Selected %i PCA components by explained ' 'variance' % _n_pca_comp) elif _n_pca_comp is None or _n_pca_comp < ica.n_components_: _n_pca_comp = ica.n_components_ return _n_pca_comp
1295de84f6054cac3072e2ba861c291cf71fdb72
3,639,333
def parse(text): """ This is what amounts to a simple lisp parser for turning the server's returned messages into an intermediate format that's easier to deal with than the raw (often poorly formatted) text. This parses generally, taking any lisp-like string and turning it into a list of nested lists, where each nesting indicates a parenthesized expression. holding multiple top-level parenthesized expressions. Ex: "(baz 0 (foo 1.5))" becomes ['baz', 0, ['foo', 1.5]]. """ # make sure all of our parenthesis match if text.count(b"(") != text.count(b")"): raise ValueError("Message text has unmatching parenthesis!") # result acts as a stack that holds the strings grouped by nested parens. # result will only ever contain one item, the first level of indenting # encountered. this is because the server (hopefully!) only ever sends one # message at a time. # TODO: make sure that the server only ever sends one message at a time! result = [] # the current level of indentation, used to append chars to correct level indent = 0 # the non-indenting characters we find. these are kept in a buffer until # we indent or dedent, and then are added to the current indent level all # at once, for efficiency. s = [] # whether we're currently in the middle of parsing a string in_string = False # the last character seen, None to begin with prev_c = None for c in text.decode(): # prevent parsing parens when inside a string (also ignores escaped # '"'s as well). doesn't add the quotes so we don't have to recognize # that value as a string via a regex. if c == '"' and prev_c != "\\": in_string = not in_string # we only indent/dedent if not in the middle of parsing a string elif c == "(" and not in_string: # recurse into current level of nesting cur = result for i in range(indent): cur = cur[-1] # add our buffered string onto the previous level, then clear it # for the next. if len(s) > 0: val = ''.join(s) # try to convert our string into a value and append it to our # list. failing that, simply append it as an attribute name. if pattern_int.match(val): cur.append(int(val)) elif pattern_float.match(val): cur.append(float(val)) else: cur.append(val) s = [] # append a new level of nesting to our list cur.append([]) # increase the indent level so we can get back to this level later indent += 1 elif c == ")" and not in_string: # append remaining string buffer before dedenting if len(s) > 0: cur = result for i in range(indent): cur = cur[-1] val = ''.join(s) # try to convert our string into a value and append it to our # list. failing that, simply append it as an attribute name. if pattern_int.match(val): cur.append(int(val)) elif pattern_float.match(val): cur.append(float(val)) else: cur.append(val) s = [] # we finished with one level, so dedent back to the previous one indent -= 1 # append non-space characters to the buffer list. spaces are delimiters # for expressions, hence are special. elif c != " ": # append the current string character to the buffer list. s.append(c) # we separate expressions by spaces elif c == " " and len(s) > 0: cur = result for i in range(indent): cur = cur[-1] val = ''.join(s) # try to convert our string into a value and append it to our # list. failing that, simply append it as an attribute name. if pattern_int.match(val): cur.append(int(val)) elif pattern_float.match(val): cur.append(float(val)) else: cur.append(val) s = [] # save the previous character. used to determine if c is escaped prev_c = c # this returns the first and only message found. result is a list simply # because it makes adding new levels of indentation simpler as it avoids # the 'if result is None' corner case that would come up when trying to # append the first '('. return result[0]
a608d50a7425c6bd6420433aff673cddd8aa612f
3,639,334
def model_fn(): """ Renvoie un modèle Inception3 avec la couche supérieure supprimée et les poids pré-entraînés sur imagenet diffusés. """ model = InceptionV3( include_top=False, # Couche softmax de classification supprimée weights='imagenet', # Poids pré-entraînés sur Imagenet # input_shape=(100,100,3), # Image de taille 100x100 en couleur (channel=3) pooling='max' # Utilisation du max de pooling ) model.set_weights(bc_model_weights.value) return model
3ee68e9874025d94cc1d73cf4857fecf6241e415
3,639,335
def find_correspondance_date(index, csv_file): """ The method returns the dates reported in the csv_file for the i-subject :param index: index corresponding to the subject analysed :param csv_file: csv file where all the information are listed :return date """ return csv_file.EXAMDATE[index]
915b9a493247f04fc1f62e614bc26b6c342783c8
3,639,336
def get_config(object_config_id): """ Returns current and previous config :param object_config_id: :type object_config_id: int :return: Current and previous config in dictionary format :rtype: dict """ fields = ('config', 'attr', 'date', 'description') try: object_config = ObjectConfig.objects.get(id=object_config_id) except ObjectConfig.DoesNotExist: return None config = {} for name in ['current', 'previous']: _id = getattr(object_config, name) if _id: config[name] = get_object(ConfigLog, _id, fields, ['date']) else: config[name] = None return config
5eb31025494dbcf17890f3ed9e7165232db9e087
3,639,337
import unicodedata def normalize_to_ascii(char): """Strip a character from its accent and encode it to ASCII""" return unicodedata.normalize("NFKD", char).encode("ascii", "ignore").lower()
592e59ae10bb8f9a04dffc55bcc2a1a3cefb5e7e
3,639,338
def verify_certificate_chain(certificate, intermediates, trusted_certs, logger): """ :param certificate: cryptography.x509.Certificate :param intermediates: list of cryptography.x509.Certificate :param trusted_certs: list of cryptography.x509.Certificate Verify that the certificate is valid, according to the list of intermediates and trusted_certs. Uses legacy crypto.X509 functions as no current equivalent in https://cryptography.io/en/latest/ See: https://gist.github.com/uilianries/0459f59287bd63e49b1b8ef03b30d421#file-cert-check-py :return: bool """ try: #Create a certificate store and add your trusted certs store = crypto.X509Store() for tc in trusted_certs: store.add_cert(crypto.X509.from_cryptography(tc)) # Create a certificate context using the store, to check any intermediate certificates for i in intermediates: logger.info('| verifying intermediate certificates') i_X509 = crypto.X509.from_cryptography(i) store_ctx = crypto.X509StoreContext(store, i_X509) store_ctx.verify_certificate() # no exception, so Intermediate verified - add the intermediate to the store store.add_cert(i_X509) # Validate certificate against (trusted + intermediate) logger.info('| intermediates passed, verifying user certificate') store_ctx = crypto.X509StoreContext(store, crypto.X509.from_cryptography(certificate)) # Verify the certificate, returns None if it can validate the certificate store_ctx.verify_certificate() logger.info('| user certificate passed') return True except crypto.X509StoreContextError as e: logger.warning(e) return False
5d96fa38f22a74ae270af3ab35fc90274ed487e0
3,639,339
import json def update_strip_chart_data(_n_intervals, acq_state, chart_data_json_str, samples_to_display_val, active_channels): """ A callback function to update the chart data stored in the chartData HTML div element. The chartData element is used to store the existing data values, which allows sharing of data between callback functions. Global variables cannot be used to share data between callbacks (see https://dash.plot.ly/sharing-data-between-callbacks). Args: _n_intervals (int): Number of timer intervals - triggers the callback. acq_state (str): The application state of "idle", "configured", "running" or "error" - triggers the callback. chart_data_json_str (str): A string representation of a JSON object containing the current chart data. samples_to_display_val (float): The number of samples to be displayed. active_channels ([int]): A list of integers corresponding to the user selected active channel checkboxes. Returns: str: A string representation of a JSON object containing the updated chart data. """ updated_chart_data = chart_data_json_str samples_to_display = int(samples_to_display_val) num_channels = len(active_channels) if acq_state == 'running': hat = globals()['_HAT'] if hat is not None: chart_data = json.loads(chart_data_json_str) # By specifying -1 for the samples_per_channel parameter, the # timeout is ignored and all available data is read. read_result = hat.a_in_scan_read(ALL_AVAILABLE, RETURN_IMMEDIATELY) if ('hardware_overrun' not in chart_data.keys() or not chart_data['hardware_overrun']): chart_data['hardware_overrun'] = read_result.hardware_overrun if ('buffer_overrun' not in chart_data.keys() or not chart_data['buffer_overrun']): chart_data['buffer_overrun'] = read_result.buffer_overrun # Add the samples read to the chart_data object. sample_count = add_samples_to_data(samples_to_display, num_channels, chart_data, read_result) # Update the total sample count. chart_data['sample_count'] = sample_count updated_chart_data = json.dumps(chart_data) elif acq_state == 'configured': # Clear the data in the strip chart when Configure is clicked. updated_chart_data = init_chart_data(num_channels, samples_to_display) return updated_chart_data
67902561bc4d0cec2a1ac2f8d385a2accf4c03e9
3,639,340
import uuid def genuuid(): """Generate a random UUID4 string.""" return str(uuid.uuid4())
c664a9bd45f0c00dedf196bb09a09c6cfaf0d54b
3,639,341
def watsons_f(DI1, DI2): """ calculates Watson's F statistic (equation 11.16 in Essentials text book). Parameters _________ DI1 : nested array of [Dec,Inc] pairs DI2 : nested array of [Dec,Inc] pairs Returns _______ F : Watson's F Fcrit : critical value from F table """ # first calculate R for the combined data set, then R1 and R2 for each individually. # create a new array from two smaller ones DI = np.concatenate((DI1, DI2), axis=0) fpars = fisher_mean(DI) # re-use our functionfrom problem 1b fpars1 = fisher_mean(DI1) fpars2 = fisher_mean(DI2) N = fpars['n'] R = fpars['r'] R1 = fpars1['r'] R2 = fpars2['r'] F = (N-2.)*((R1+R2-R)/(N-R1-R2)) Fcrit = fcalc(2, 2*(N-2)) return F, Fcrit
db1f6be50657f4721aac4f800b7896afcbd71db7
3,639,342
def encode(integer_symbol, bit_count): """ Returns an updated version of the given symbol list with the given symbol encoded into binary. - `symbol_list` - the list onto which to encode the value. - `integer_symbol` - the integer value to be encoded. - `bit_count` - the number of bits from the end of the symbol list to decode. """ assert type(integer_symbol) == int and integer_symbol >= 0, "The given symbol must be an integer greater than or equal to zero." # Convert the symbol into a bit string. bit_string = bin(integer_symbol) # Strip off any '0b' prefix. if bit_string.startswith('0b'): bit_string = bit_string[2:] # end if # Convert the string into a list of integers. bits = [int(bit) for bit in list(bit_string)] # Check that the number of bits is not bigger than the given bit count. bits_length = len(bits) assert bit_count >= bits_length, \ "The given %d bits to encode with is not enough to encode %d bits." % \ (bit_count, bits_length) # Calculate how many bits we need to pad the bit string with, if any, and pad with zeros. pad_list = [0 for i in xrange(0, bit_count - bits_length)] # Return the newly created bit list, with the zero padding first. symbol_list = pad_list + bits return symbol_list
fe8fb04245c053bb4387b0ac594a778df5bce22c
3,639,343
def superkick(update, context): """Superkick a member from all rooms by replying to one of their messages with the /superkick command.""" bot = context.bot user_id = update.message.from_user.id boot_id = update.message.reply_to_message.from_user.id username = update.message.reply_to_message.from_user.name admin = _admin(user_id) if not admin: return _for_admin_only_message(bot, user_id, username) in_crab_wap = _in_group(context, user_id, config["GROUPS"]["crab_wiv_a_plan"]) in_tutorial = _in_group(context, user_id, config["GROUPS"]["tutorial"]) in_video_stars = _in_group(context, user_id, config["GROUPS"]["video_stars"]) if in_crab_wap: bot.kick_chat_member(chat_id=config["GROUPS"]["crab_wiv_a_plan"], user_id=boot_id) bot.restrict_chat_member(chat_id=config["GROUPS"]["crab_wiv_a_plan"], user_id=boot_id, can_send_messages=True, can_send_media_messages=True, can_add_web_page_previews=True, can_send_other_messages=True) if in_tutorial: bot.kick_chat_member(chat_id=config["GROUPS"]["tutorial"], user_id=boot_id) bot.restrict_chat_member(chat_id=config["GROUPS"]["tutorial"], user_id=boot_id, can_send_messages=True, can_send_media_messages=True, can_add_web_page_previews=True, can_send_other_messages=True) if in_video_stars: bot.kick_chat_member(chat_id=config["GROUPS"]["video_stars"], user_id=boot_id) bot.restrict_chat_member(chat_id=config["GROUPS"]["video_stars"], user_id=boot_id, can_send_messages=True, can_send_media_messages=True, can_add_web_page_previews=True, can_send_other_messages=True) remove_member(boot_id) the_message = '{} has been *SUPER KICKED* from Crab Wiv A Plan, Tutorial Group, and VideoStars.' \ .format(escape_markdown(username)) bot.send_message(chat_id=config["GROUPS"]["boot_channel"], text=the_message, parse_mode='MARKDOWN') bot.delete_message(chat_id=update.message.chat_id, message_id=update.message.message_id)
2a6550bb533a51cc8ebb79ca7f5cdbd214af4a5a
3,639,344
import typing from datetime import datetime def encrypt_session( signer: typing.Type[Fernet], session_id: str, current_time: typing.Optional[typing.Union[int, datetime]] = None, ) -> str: """An utility for generating a token from the passed session id. :param signer: an instance of a fernet object :param session_id: a user session id :param current_time: a datetime object or timestamp indicating the time of the session id encryption. By default, it is now """ if current_time is None: current_time = pendulum.now() if isinstance(current_time, datetime): current_time = current_time.timestamp() return signer.encrypt_at_time(session_id.encode("utf-8"), int(current_time)).decode( "utf-8" )
9d924dcbc0abdf8facb31e256c5c67ccca3850be
3,639,345
def construct_chargelst(nsingle): """ Makes list of lists containing Lin indices of the states for given charge. Parameters ---------- nsingle : int Number of single particle states. Returns ------- chargelst : list of lists chargelst[charge] gives a list of state indices for given charge, chargelst[charge][ind] gives state index. """ nmany = np.power(2, nsingle) chargelst = [[] for _ in range(nsingle+1)] # Iterate over many-body states for j1 in range(nmany): state = integer_to_binarylist(j1, nsingle) chargelst[sum(state)].append(j1) return chargelst
e94044566d0acc7106d34d142ed3579226706a65
3,639,346
import json def parse(json_string): """Constructs the Protocol from the JSON text.""" try: json_data = json.loads(json_string) except: raise ProtocolParseException('Error parsing JSON: %s' % json_string) # construct the Avro Protocol object return make_avpr_object(json_data)
f95854e8c0b8e49ec71e03ee8487f88f4687ebf0
3,639,347
import os def create_script_dict(allpacks, path, file, skip_lines): """Create script dict or skips file if resources cannot be made""" allpacks["name"] = "FILL" allpacks["title"] = "FILL" allpacks["description"] = "FILL" allpacks["citation"] = "FILL" allpacks["licenses"] = [{"name": "FILL"}] allpacks["keywords"] = [] allpacks["homepage"] = "FILL" allpacks["version"] = "1.0.0" try: resources = create_resources(os.path.join(path, file), skip_lines) except: print("Skipped file: " + file) return allpacks.setdefault("resources", []).append(resources) allpacks["retriever"] = "True" allpacks["retriever_minimum_version"] = "2.1.0" return allpacks
8bc229a3343676cf8b70c524119994e1ca49e054
3,639,348
def get_architecture(model_config: dict, feature_config: FeatureConfig, file_io): """ Return the architecture operation based on the model_config YAML specified """ architecture_key = model_config.get("architecture_key") if architecture_key == ArchitectureKey.DNN: return DNN(model_config, feature_config, file_io).get_architecture_op() elif architecture_key == ArchitectureKey.LINEAR: # Validate the model config num_dense_layers = len([l for l in model_config["layers"] if l["type"] == "dense"]) if num_dense_layers == 0: raise ValueError("No dense layers were specified in the ModelConfig") elif num_dense_layers > 1: raise ValueError("Linear model used with more than 1 dense layer") else: return DNN(model_config, feature_config, file_io).get_architecture_op() elif architecture_key == ArchitectureKey.RNN: raise NotImplementedError else: raise NotImplementedError
a7c58770a07c225ae79a03699639e19498d3a0c6
3,639,349
def get_properties_dict(serialized_file: str, sparql_file: str, repository: str, endpoint: str, endpoint_type: str, limit: int = 1000) -> ResourceDictionary: """ Return a ResourceDictionary with the list of properties in the ontology :param serialized_file: The file where the properties ResourceDictionary is serialized :param sparql_file: The file containing the SPARQL query :param repository: The repository containing the ontology :param endpoint: The SPARQL endpoint :param endpoint_type: GRAPHDB or VIRTUOSO (to change the way the endpoint is called) :param limit: The sparql query limit :return: A ResourceDictionary with the list of properties in the ontology """ global_properties_dict = deserialize(serialized_file) if global_properties_dict: return global_properties_dict global_properties_dict = ResourceDictionary() global_properties_dict.add(RDF.type) properties_sparql_query = open(sparql_file).read() properties_sparql_query_template = Template(properties_sparql_query + " limit $limit offset $offset ") for rdf_property in get_sparql_results(properties_sparql_query_template, ["property"], endpoint, repository, endpoint_type, limit): global_properties_dict.add(rdf_property[0]) serialize(global_properties_dict, serialized_file) return global_properties_dict
3a31bd8b23cb7a940c6386225dd39a302f3d3f3a
3,639,350
def get_duplicate_sample_ids(taxonomy_ids): """Get duplicate sample IDs from the taxonomy table. It happens that some sample IDs are associated with more than taxon. Which means that the same sample is two different species. This is a data entry error and should be removed. Conversely, having more than one sample for a taxon is fine; it's just oversampling and will be handled later. """ taxonomy_ids['times'] = 0 errors = taxonomy_ids.groupby('sample_id').agg( {'times': 'count', 'sci_name': ', '.join}) errors = errors.loc[errors.times > 1, :].drop(['times'], axis='columns') sci_names = errors.sci_name.str.split(r'\s*[;,]\s*', expand=True) id_cols = {i: f'sci_name_{i + 1}' for i in sci_names.columns} sci_names = sci_names.rename(columns=id_cols) errors = pd.concat([errors, sci_names], axis='columns').drop( ['sci_name'], axis=1) return errors
c01315d6d51ec8e62a0f510944d724a18949aeb8
3,639,351
def get_settings_text(poll): """Compile the options text for this poll.""" text = [] locale = poll.user.locale text.append(i18n.t('settings.poll_type', locale=locale, poll_type=translate_poll_type(poll.poll_type, locale))) text.append(i18n.t('settings.language', locale=locale, language=poll.locale)) if poll.anonymous: text.append(i18n.t('settings.anonymous', locale=locale)) else: text.append(i18n.t('settings.not_anonymous', locale=locale)) if poll.due_date: text.append(i18n.t('settings.due_date', locale=locale, date=poll.get_formatted_due_date())) else: text.append(i18n.t('settings.no_due_date', locale=locale)) if poll.results_visible: text.append(i18n.t('settings.results_visible', locale=locale)) else: text.append(i18n.t('settings.results_not_visible', locale=locale)) text.append('') if poll.allow_new_options: text.append(i18n.t('settings.user_options', locale=locale)) else: text.append(i18n.t('settings.no_user_options', locale=locale)) if poll.results_visible: if poll.show_percentage: text.append(i18n.t('settings.percentage', locale=locale)) else: text.append(i18n.t('settings.no_percentage', locale=locale)) if poll.has_date_option(): if poll.european_date_format: text.append(i18n.t('settings.euro_date_format', locale=locale)) else: text.append(i18n.t('settings.us_date_format', locale=locale)) text.append('') # Sorting of user names if poll.poll_type == PollType.doodle.name: sorting_name = i18n.t(f'sorting.doodle_sorting', locale=locale) text.append(i18n.t('settings.user_sorting', locale=locale, name=sorting_name)) elif not poll.anonymous: sorting_name = i18n.t(f'sorting.{poll.user_sorting}', locale=locale) text.append(i18n.t('settings.user_sorting', locale=locale, name=sorting_name)) sorting_name = i18n.t(f'sorting.{poll.option_sorting}', locale=locale) text.append(i18n.t('settings.option_sorting', locale=locale, name=sorting_name)) return '\n'.join(text)
24ef467070324dac6a8c698b791a1fe577a5d928
3,639,352
import ffmpeg from datetime import datetime import time import os import math def acd(strymobj= None, window_size=30, plot_iteration = False, every_iteration = 200, plot_timespace = True, save_timespace = False, wave_threshold = 50.0, animation = False, title = 'Average Centroid Distance', **kwargs): """ Average Centroid Distance Algorithm for calculating stop-and-go wavestrength from `acd` implements average centroid distance algorithm to find out the stop-and-go distance traveled based on the given threshold. Parameters ------------- strymobj: `strymread` A valid stymread object window_size: `int` Window size over which to form the cluster of data points on speed-acceleration phasespace plot_iteration: `bool` If `True` plots the intermediate phase-space plots of speed-acceleration phasespace for the `window_size` and distribution of centroid distances every_iteration: `int` If `plot_iteration` is true, then plot the intermediate figures every `every_iteration` iteration plot_timespace: `bool` If `True` plots and save timespace diagram of wavestrength for the given drive. save_timespace: `bool` If `True` save the timespace diagram to the disk wave_threshold: `double` The value of threshold of wavestrength above which classify the driving mode as stop-and-go. It defaults to the value of 50. animation: `bool` If `True` produces animation of phasespace evolving with the time title: `str` Desire plot title for phasespace animation image_path: `str` Path on the disk where to store phasespace animation Returns ---------- `pandas.DataFrame` Returns Pandas Data frame consisting of WaveStrength column as a timeseries `double` Returns stop-and-go distance measured based on the `wave_threshold` in meters """ # Check strymread object was able to successfully read the if strymobj is not None: if not strymobj.success: print("Invalid/Errored strymread object supplied. Check if supplied datafile to strymread is valid.") return None file_name = strymobj.csvfile file_name = file_name.split('/')[-1][0:-4] ## Get the speed speed = strymobj.speed() if speed.shape[0] == 0: print("No speed data found\n") return None elif speed.shape[0] < 10: print("Speed data too low. Skipping ...\n") return None ### Convert speed to m/s speed['Message'] = speed['Message']*0.277778 position = strymread.integrate(speed) # Get the position ## Get the longitudinal acceleration accelx = strymobj.accelx() if accelx.shape[0] == 0: print("No Acceleration data found\n") return None elif accelx.shape[0] < 10: print("Acceleration data too low. Skipping ...\n") return None else: file_name = '' speed = kwargs.get("speed", None) if speed is None: print("No speed data provided. Skipping ...\n") return None accelx = kwargs.get("accelx", None) if accelx is None: print("No longitudinal data provided. Skipping ...\n") return None speed_unit = kwargs.get("speed_unit", "km/h") if speed_unit.lower() not in ["km/h", "m/s"]: print("Unrecognized speed unit '{}'. Provide speed unit in km/h or m/s\n".format(speed_unit)) return None if speed_unit.lower() == "km/h": ### Convert speed to m/s speed['Message'] = speed['Message']*0.277778 elif speed_unit.lower() == "m/s": print("INFO: Speed unit is m/s") position = kwargs.get("position", None) if position is None: position = strymread.integrate(speed) # strymread.plt_ts(speed, title="Original Speed (m/s)") # strymread.plt_ts(position, title="Original Position (m)") # strymread.plt_ts(accelx, title="Original Accel (m/s^2)") # Synchronize speed and acceleration for common time points with a rate of 20 Hz rate = kwargs.get("rate", 20) speed_resampled, accel_resampled = strymread.ts_sync(speed, accelx, rate=rate, method = "nearest") position_resampled, _ = strymread.ts_sync(position, accelx, rate=rate, method = "nearest") # strymread.plt_ts(speed_resampled, title="Resampled Speed (m/s)") # strymread.plt_ts(position_resampled, title="Resampled position (m)") # strymread.plt_ts(accel_resampled, title="Resampled Accel (m/s^2)") assert ((speed_resampled.shape[0] == accel_resampled.shape[0]) and (position_resampled.shape[0]==accel_resampled.shape[0])), "Synchronization Error" df = speed_resampled.copy(deep=True) df["Speed"] = speed_resampled["Message"] df["Accelx"] = accel_resampled["Message"] df["Position"] = position_resampled["Message"] df.drop(columns=["Message"], inplace=True) if df.shape[0] < 3: print("Extremely low sample points in synced-resampled data to obtain any meaningful measure. Skipping ...") return None DeltaT = np.mean(df['Time'].diff()) #print(1./DeltaT) n_Sample_WS = int((1/DeltaT)*window_size) # Number of samples for window_size print("Number of samples for {} seconds: {}".format(window_size, n_Sample_WS)) df.index = np.arange(0, df.shape[0]) #print(n_Sample_WS) df['wavestrength'] = 0 df['EllipseFit_semimajor_axis_len'] = 0 df['EllipseFit_semiminor_axis_len'] = 0 df['Goodness_of_Ellipse_Fit'] = 0 count = 0 # Save images in /tmp folder dy default dt_object = datetime.datetime.fromtimestamp(time.time()) dt = dt_object.strftime('%Y-%m-%d-%H-%M-%S-%f') image_path = kwargs.get("image_path", "/tmp") image_path = image_path + '/WaveStrength_' + dt if animation: if not os.path.exists(image_path): try: os.mkdir(image_path) except OSError: print("[ERROR] Failed to create the image folder {0}.".format(image_path)) figure_count = 1 for r, row in df.iterrows(): if r <=n_Sample_WS: continue df_tempWS = df[r-n_Sample_WS-1:r-1] velocity_tempWS = pd.DataFrame() velocity_tempWS['Time'] = df_tempWS['Time'] velocity_tempWS['Message'] = df_tempWS['Speed'] accel_tempWS = pd.DataFrame() accel_tempWS['Time'] = df_tempWS['Time'] accel_tempWS['Message'] = df_tempWS['Accelx'] ps = phasespace(dfx=velocity_tempWS, dfy=accel_tempWS, resample_type="first", verbose=False) if np.all(velocity_tempWS['Message'] == 0) or np.all(accel_tempWS['Message'] == 0): z1 = 0 z2 = 0 r1 = 0 r2 = 0 phi = 0 residual = 0 else: z1, z2, r1, r2, phi, residual = ellipse_fit(x = velocity_tempWS['Message'].to_numpy(), y = accel_tempWS['Message'].to_numpy()) count = count + 1 if plot_iteration or animation: if count % every_iteration == 0: count = 0 print("--------------------------------------------------------------") print('Time Range: {} to {}'.format(accel_tempWS['Time'].iloc[0], accel_tempWS['Time'].iloc[-1])) #fig, ax = strymread.create_fig() fig, ax = _acdplots() strymread.plt_ts(speed_resampled, ax = ax[0], show = False, title = "Speed") strymread.plt_ts(accel_resampled, ax = ax[1], show = False, title="Acceleration") # Create a Rectangle patch that represents window of the iteration rect = patches.Rectangle((velocity_tempWS['Time'].iloc[0], np.min(speed_resampled['Message'])),\ np.abs(velocity_tempWS['Time'].iloc[-1] - velocity_tempWS['Time'].iloc[0]),\ np.max(speed_resampled['Message']) - np.min(speed_resampled['Message']),\ linewidth=4,edgecolor='g',facecolor='none') ax[0].add_patch(rect) rect = patches.Rectangle((accel_tempWS['Time'].iloc[0], np.min(accel_resampled['Message'])),\ np.abs(accel_tempWS['Time'].iloc[-1] - accel_tempWS['Time'].iloc[0]),\ np.max(accel_resampled['Message']) - np.min(accel_resampled['Message']),\ linewidth=4,edgecolor='g',facecolor='none') ax[1].add_patch(rect) ax1 = ps.phaseplot(title='Phase-space plot',\ xlabel='Speed', ylabel='Acceleration', plot_each = True, ax = [ax[2], ax[3], ax[4]], show = False, fig = fig) subtext = 'Time Window: ['+\ str(accel_tempWS['Time'].iloc[0]) + ', ' + str(accel_tempWS['Time'].iloc[-1])+']\n' + file_name +'\n' ax[2].xaxis.label.set_size(35) ax[3].xaxis.label.set_size(35) ax[4].xaxis.label.set_size(35) ax[2].yaxis.label.set_size(35) ax[3].yaxis.label.set_size(35) ax[4].yaxis.label.set_size(35) ax[2].title.set_fontsize(40) ax[3].title.set_fontsize(40) ax[4].title.set_fontsize(40) ax[4].set_xlim(np.min(speed_resampled['Message'])-2.0, np.max(speed_resampled['Message'])+ 2.0) ax[4].set_ylim(np.min(accel_resampled['Message'])-2.0, np.max(accel_resampled['Message'])+ 2.0) ax[4].set_aspect('equal', adjustable='box') c1= patches.Ellipse((z1, z2), r1*2,r2*2, angle = math.degrees(phi), color='g', fill=False, linewidth = 5) ax[4].add_artist(c1) ax2 = ps.centroidplot( xlabel='Centroid Distance', ylabel='Counts', ax = ax[5], show = False) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() my_suptitle = fig.suptitle(title + '\n' + subtext, y = 1.06) if animation: figure_file_name = image_path + '/' + "wave_strength_{:06d}.png".format(figure_count) fig.savefig(figure_file_name, dpi = 100,bbox_inches='tight',bbox_extra_artists=[my_suptitle]) figure_count = figure_count + 1 if plot_iteration: plt.show() else: fig.clear() plt.close(fig) print("Average Centroid Distane of cluster is {}".format(ps.acd)) #df.iloc[df_tempWS.index[-1], df.columns.get_loc('wavestrength') ] = ps.acd df['wavestrength'].iloc[df_tempWS.index[-1]] = ps.acd #df.iloc[df_tempWS.index[-1], df.columns.get_loc('EllipseFit_semimajor_axis_len') ] = r1 #df.iloc[df_tempWS.index[-1], df.columns.get_loc('EllipseFit_semiminor_axis_len') ] = r2 #df.iloc[df_tempWS.index[-1], df.columns.get_loc('Goodness_of_Ellipse_Fit') ] = residual df['EllipseFit_semimajor_axis_len'].iloc[df_tempWS.index[-1]] = r1 df['EllipseFit_semiminor_axis_len'].iloc[df_tempWS.index[-1]] = r2 df['Goodness_of_Ellipse_Fit'].iloc[df_tempWS.index[-1]] = residual if animation: figdirs = os.listdir(image_path) figdirs.sort() video_name = 'wave_strength' + dt + '.mp4' ( ffmpeg .input(image_path + '/*.png', pattern_type='glob', framerate=5) .output(video_name) .run() ) # Filter out data for which strong wave was detected high_wave = df[df['wavestrength'] > wave_threshold] # high_wave now is discontinuous in Time column, use this information to create separate # continuous chunks and over which we calculate the total distance high_wave_chunk = strymread.create_chunks(high_wave, continuous_threshold=0.1, \ column_of_interest = 'Time', plot = False) # stop_ang_go_distance = 0.0 # for c in high_wave_chunk: # d = c['Position'][-1] - c['Position'][0] # stop_ang_go_distance = stop_ang_go_distance + d stop_ang_go_distance = 0.0 for c in high_wave_chunk: pos_temp = strymread.integrate(c, msg_axis="Speed") stop_ang_go_distance = stop_ang_go_distance + pos_temp['Message'][-1] if plot_timespace or save_timespace: fig, ax = strymread.create_fig(nrows = 4, ncols=1) im = ax[0].scatter(df['Time'], df['Position'], c=np.log(df['wavestrength']+1), cmap=strymread.sunset, s=3) im2 = ax[1].scatter(df['Time'], df['Position'], c=df['Speed'], cmap=strymread.sunset, s=3) im3 = ax[2].scatter(df['Time'], df['Speed'], c=df['Time'], cmap=strymread.sunset, s=3) im4 = ax[3].scatter(df['Time'], df['wavestrength'], c=df['Time'], cmap=strymread.sunset, s=3) cbr= strymread.set_colorbar(fig = fig, ax = ax[0], im = im, label = "log(wavestrength+1)") ax[0].set_xlabel('Time') ax[0].set_ylabel('Position') ax[0].set_title('Time-Space Diagram with log(wavestrength+1) as color map') cbr= strymread.set_colorbar(fig = fig, ax = ax[1], im = im2, label = "speed") ax[1].set_xlabel('Time') ax[1].set_ylabel('Position') ax[1].set_title('Time-Space Diagram with speed as color map') cbr= strymread.set_colorbar(fig = fig, ax = ax[2], im = im3, label = "Time") ax[2].set_xlabel('Time') ax[2].set_ylabel('Speed') ax[2].set_title('Time-Speed Diagram with Time as color map') cbr= strymread.set_colorbar(fig = fig, ax = ax[3], im = im4, label = "Time") ax[3].set_xlabel('Time') ax[3].set_ylabel('wavestrength') ax[3].set_title('Time-WaveStrength Diagram with Time as color map') dt_object = datetime.datetime.fromtimestamp(time.time()) dt = dt_object.strftime('%Y-%m-%d-%H-%M-%S-%f') if save_timespace: file_to_save = "ACD_"+ file_name + "_time_space_diagram_" + dt fig.savefig(file_to_save + ".png", dpi = 100) fig.savefig(file_to_save + ".pdf", dpi = 100) if plot_timespace: plt.show() else: plt.close(fig) return df, stop_ang_go_distance
ffd239f28b3abc801e4a0755e97133e409a058cc
3,639,353
import functools def pass_none(func): """ Wrap func so it's not called if its first param is None >>> print_text = pass_none(print) >>> print_text('text') text >>> print_text(None) """ @functools.wraps(func) def wrapper(param, *args, **kwargs): if param is not None: return func(param, *args, **kwargs) return wrapper
2264ca5978485d8fc13377d17eb84ee522a040b9
3,639,354
def create_values_key(key): """Creates secondary key representing sparse values associated with key.""" return '_'.join([key, VALUES_SUFFIX])
e8a70bc4ef84a7a62a9d8b8d915b9ddbc0990429
3,639,355
def make_mask(variable, **flags): """ Return a mask array, based on provided flags For example: make_mask(pqa, cloud_acca=False, cloud_fmask=False, land_obs=True) OR make_mask(pqa, **GOOD_PIXEL_FLAGS) where GOOD_PIXEL_FLAGS is a dict of flag_name to True/False :param variable: :type variable: xarray.Dataset or xarray.DataArray :param flags: list of boolean flags :return: """ flags_def = get_flags_def(variable) mask, mask_value = create_mask_value(flags_def, **flags) return variable & mask == mask_value
fcdd7247359b5127d14a906298e20a05fd63b108
3,639,356
def _normalize_block_comments(content: str) -> str: """Add // to the beginning of all lines inside a /* */ block""" comment_partitions = _partition_block_comments(content) normalized_partitions = [] for partition in comment_partitions: if isinstance(partition, Comment): comment = partition normalized_comment_lines = [] comment_lines = comment.splitlines(keepends=True) normalized_comment_lines.append(comment_lines[0]) for line in comment_lines[1:]: if line.lstrip().startswith("//"): normalized_line = line else: normalized_line = f"// {line}" normalized_comment_lines.append(normalized_line) normalized_comment = f'/*{"".join(normalized_comment_lines)}*/' normalized_partitions.append(normalized_comment) else: normalized_partitions.append(partition) normalized_content = "".join(normalized_partitions) return normalized_content
76c2c1d0b80cf40f647033aa8745058f1546076e
3,639,357
from datetime import datetime def check_holidays(date_start, modified_end_date, holidays): """ Here app check if holidays in dates of vacation or not. If Yes - add days to vacation, if Not - end date unchangeable """ # first end date for check loop because end date move +1 for every weekend date_1 = datetime.strptime(date_start, '%d.%m.%Y') # start date # second end date (after add holidays) date_2 = datetime.strptime(modified_end_date, '%d.%m.%Y') # third end date for finish date after adding holidays in vacations date_3 = datetime.strptime(modified_end_date, '%d.%m.%Y') # counter for days in vacation x = 0 # loop for check dates in created holidays list for i in holidays: if date_1 <= datetime.strptime(i, '%d.%m.%Y') <= date_2: print(i) x += 1 date_2 = date_2 + timedelta(days=1) print(x) # adding counter to first end date date_end = date_3 + timedelta(days=x) date_end = datetime.strftime(date_end, '%d.%m.%Y') return date_end
c2b8145f9963cd2679e238c2c378535eea2e08db
3,639,358
import os import warnings import logging def getHouseholdProfiles( n_persons, weather_data, weatherID, seeds=[0], ignore_weather=True, mean_load=True, cores=mp.cpu_count() - 1, ): """ Gets or creates the relevant occupancy profiles for a building simulation or optimization. Parameters ---------- n_persons: integer, required Number of persons living in a single appartment. weather_data: pd.DataFrame(), required A time indexed pandas dataframe containing weather data with the GHI as a column. weatherID: str, required Giving an ID to the weather data to identify the resulting profile. seeds: list, optional (default: [0]) List of integer seeds to create a number of profiles which have similar input parameters, but a varying output. Default, no seed is chosen. ignore_weather: bool, optional (default: False) Since atm only the GHI is required for the electricity load profile, the weather plays a minor role and can be ignored by the identificaiton of profiles. mean_load: bool, optional (default: True) Decides if the created load profiles on 1-minute basis shall be downsampled by taking the mean of 60 minutes or the first value in every 60 minutes. cores: int, optiona(default: mp.cpu_count() - 1) Number of cores used for profile generation. """ # get the potential profile names filenames = {} for seed in seeds: profile_ID = "Profile" + "_occ" + str(int(n_persons)) + "_seed" + str(seed) if not ignore_weather: profile_ID = profile_ID + "_wea" + str(weatherID) if mean_load: profile_ID = profile_ID + "_mean" filenames[seed] = os.path.join( PATH, "results", "occupantprofiles", profile_ID + ".csv" ) # check how many profiles do not exist# not_existing_profiles = {} for seed in seeds: if not os.path.isfile(filenames[seed]): not_existing_profiles[seed] = filenames[seed] # info about runtime if cores < 1: warnings.warn('Recognized cores are less than one. The code will behave as the number is one.') cores = 1 _runtime = np.floor(float(len(not_existing_profiles))/cores) _log_str = str(len(not_existing_profiles)) + " household profiles need to get calculated. \n" _log_str += "With " + str(cores) + " threads, the estimated runtime is " + str(_runtime) + " minutes." logging.info(_log_str) # run in parallel all profiles if len(not_existing_profiles) > 1: new_profiles = simHouseholdsParallel( int(n_persons), weather_data.index[0].year, len(not_existing_profiles), singleProfiles=True, weather_data=weather_data, get_hot_water=True, resample_mean=mean_load, cores=cores, ) # if single profile just create one profile and avoid multiprocessing elif len(not_existing_profiles) > 0: one_profile = simSingleHousehold( int(n_persons), weather_data.index[0].year, weather_data=weather_data, get_hot_water=True, resample_mean=mean_load, ) new_profiles = [one_profile] # write results to csv files for i, seed in enumerate(not_existing_profiles): new_profiles[i].to_csv(not_existing_profiles[seed]) # load all profiles profiles = [] for seed in seeds: profile = pd.read_csv(filenames[seed], index_col=0) # TODO get a proper indexing in tsorb based on the weather data profile.index = weather_data.index profiles.append(profile) return profiles
b5284b03633699337075634d3484860d9c062e40
3,639,359
from typing import Optional from pathlib import Path import platform def get_local_ffmpeg() -> Optional[Path]: """ Get local ffmpeg binary path. ### Returns - Path to ffmpeg binary or None if not found. """ ffmpeg_path = Path( get_spotdl_path(), "ffmpeg" + ".exe" if platform.system() == "Windows" else "" ) if ffmpeg_path.is_file(): return ffmpeg_path return None
2495a1153da32f3ffb21075172cd0fb82b7809ea
3,639,360
def remaining_time(trace, event): """Calculate remaining time by event in trace :param trace: :param event: :return: """ # FIXME using no timezone info for calculation event_time = event['time:timestamp'].strftime("%Y-%m-%dT%H:%M:%S") last_time = trace[-1]['time:timestamp'].strftime("%Y-%m-%dT%H:%M:%S") try: delta = dt.strptime(last_time, TIME_FORMAT) - dt.strptime(event_time, TIME_FORMAT) except ValueError: # Log has no timestamps return 0 return delta.total_seconds()
87e961ca4091e8cc572c845968476a264aad5f27
3,639,361
def _water_vapor_pressure_difference(temp, wet_bulb_temp, vap_press, psych_const): """ Evaluate the psychrometric formula e_l - (e_w - gamma * (T_a - T_w)). Parameters ---------- temp : numeric Air temperature (K). wet_bulb_temp : numeric Wet-bulb temperature (K). vap_press : numeric Vapor pressure (Pa). psych_const : numeric Psychrometric constant (Pa K-1). Returns ------- wat_vap_press_diff : numeric Water vapor pressure difference (Pa). """ sat_vap_press_wet_bulb = saturation_vapor_pressure(wet_bulb_temp) return vap_press - (sat_vap_press_wet_bulb - psych_const * (temp - wet_bulb_temp))
cee814a44ae1736dc35f08984cdb15fe94576716
3,639,362
def _service_description_required(func): """ Decorator for checking whether the service description is available on a device's service. """ @wraps(func) def wrapper(service, *args, **kwargs): if service.description is None: raise exceptions.NotRetrievedError('No service description retrieved for this service.') elif service.description == exceptions.NotAvailableError: return return func(service, *args, **kwargs) return wrapper
27b962616026ad3987d2c214138d903971e2461c
3,639,363
def vector(*args): """ A single vector in any coordinate basis, as a numpy array. """ return N.array(args)
41da98ad36bff55fc4b71ce6b4e604262b2ecd1a
3,639,364
def arcmin_to_deg(arcmin: float) -> float: """ Convert arcmin to degree """ return arcmin / 60
9ef01181a319c0c48542ac57602bd7c17a7c1ced
3,639,365
def soft_embedding_lookup(embedding, soft_ids): """Transforms soft ids (e.g., probability distribution over ids) into embeddings, by mixing the embedding vectors with the soft weights. Args: embedding: A Tensor of shape `[num_classes] + embedding-dim` containing the embedding vectors. Embedding can have dimensionality > 1, i.e., :attr:`embedding` can be of shape `[num_classes, emb_dim_1, emb_dim_2, ...]` soft_ids: A Tensor of weights (probabilities) used to mix the embedding vectors. Returns: A Tensor of shape `shape(soft_ids)[:-1] + shape(embedding)[1:]`. For example, if `shape(soft_ids) = [batch_size, max_time, vocab_size]` and `shape(embedding) = [vocab_size, emb_dim]`, then the return tensor has shape `[batch_size, max_time, emb_dim]`. Example:: decoder_outputs, ... = decoder(...) soft_seq_emb = soft_embedding_lookup( embedding, tf.nn.softmax(decoder_outputs.logits)) """ return tf.tensordot(tf.to_float(soft_ids), embedding, [-1, 0])
4b831b8f23a226aac74c0bb3919e3c27bb57dc60
3,639,366
def param_11(i): """Returns parametrized Exp11Gate.""" return Exp11Gate(half_turns=i)
5458c8a4e992bd38dbb114e9ae4c4bac8a86fc75
3,639,367
def resolve_link(db: Redis[bytes], address: hash_t) -> hash_t: """Resolve any link recursively.""" key = join(ARTEFACTS, address, "links_to") link = db.get(key) if link is None: return address else: out = hash_t(link.decode()) return resolve_link(db, out)
b8087b2d015fc4b8515c35e437e609a935ccfcb2
3,639,368
def image_ppg(ppg_np): """ Input: ppg: numpy array Return: ax: 画布信息 im:图像信息 """ ppg_deps = ppg.DependenciesPPG() ppg_M = Matrix(ppg_np) monophone_ppgs = ppg.reduce_ppg_dim(ppg_M, ppg_deps.monophone_trans) monophone_ppgs = monophone_ppgs.numpy().T fig, ax = plt.subplots(figsize=(10, 6)) im = ax.imshow(monophone_ppgs, aspect="auto", origin="lower", interpolation='none') return ax, im
714ccc3e294a5f02983a9aa384c2d6aa313ee4e5
3,639,369
def is_hex_value(val): """ Helper function that returns True if the provided value is an integer in hexadecimal format. """ try: int(val, 16) except ValueError: return False return True
6ba5ac1cfa9b8a4f8397cc52a41694cca33a4b8d
3,639,370
from typing import Optional def create_cluster(*, cluster_name: str) -> Optional[Operation]: """Create a dataproc cluster """ cluster_client = dataproc.ClusterControllerClient(client_options={"api_endpoint": dataproc_api_endpoint}) cluster = { "project_id": project_id, "cluster_name": cluster_name, "config": { "config_bucket": config_bucket, "temp_bucket": temp_bucket, "master_config": {"num_instances": 1, "machine_type_uri": "n1-standard-2"}, "worker_config": {"num_instances": 2, "machine_type_uri": "n1-standard-2"}, }, } logger.info("cluster: %s is creating now", cluster_name) operation = cluster_client.create_cluster(request={"project_id": project_id, "region": region, "cluster": cluster}) logger.info("cluster: %s is created successfully", cluster_name) return operation
1657190a7605f28f3c4dd2f2dc6c32230fb44087
3,639,371
import math def gc_cache(seq: str) -> Cache: """Return the GC ratio of each range, between i and j, in the sequence Args: seq: The sequence whose tm we're querying Returns: Cache: A cache for GC ratio lookup """ n = len(seq) arr_gc = [] for _ in seq: arr_gc.append([math.inf] * len(seq)) # fill in the diagonal for i in range(n): if i == n - 1: # hackish arr_gc[i][i] = arr_gc[i - 1][i - 1] continue arr_gc[i][i] = 1.0 if seq[i] in "GC" else 0.0 if i == n - 2 and not arr_gc[i][i]: # don't ignore last pair arr_gc[i][i] = 1.0 if seq[i + 1] in "GC" else 0.0 # fill in the upper right of the array for i in range(n): for j in range(i + 1, n): arr_gc[i][j] = arr_gc[i][j - 1] + arr_gc[j][j] # convert to ratios for i in range(n): for j in range(i, n): arr_gc[i][j] = round(arr_gc[i][j] / (j - i + 1), 1) return arr_gc
7118cc96d0cd431b720b099b399c64ee419df5aa
3,639,372
def ParseVariableName(variable_name, args): """Parse a variable name or URL, and return a resource. Args: variable_name: The variable name. args: CLI arguments, possibly containing a config name. Returns: The parsed resource. """ return _ParseMultipartName(variable_name, args, 'runtimeconfig.projects.configs.variables', 'variablesId')
1073739195ca1bb0ac427e89e66525a7e7ada40b
3,639,373
def index(request): """Home page""" return render(request, 'read_only_site/index.html')
623c0cdc3229d1873e50ebc3065ca1ba55da50e7
3,639,374
def parse_calculation_strings_OLD(args): """form the strings into arrays """ calculations = [] for calculation in args.calculations: calculation = calculation.split("/") foreground = np.fromstring( ",".join(calculation[0].replace("x", "0")), sep=",") background = np.fromstring( ",".join(calculation[1].replace("x", "0")), sep=",") calculations.append((foreground, background)) args.calculations = calculations return None
04c979cc09bd25d659dad0a96ca89b88b43267cb
3,639,375
import tempfile import os import shutil def fixture_hdf5_scalar(request): """fixture_hdf5_scalar""" import h5py # pylint: disable=import-outside-toplevel tmp_path = tempfile.mkdtemp() filename = os.path.join(tmp_path, "test.h5") with h5py.File(filename, 'w') as f: f.create_dataset('int8', data=np.int8(123)) f.create_dataset('int16', data=np.int16(123)) f.create_dataset('int32', data=np.int32(123)) f.create_dataset('int64', data=np.int64(123)) f.create_dataset('float32', data=np.float32(1.23)) f.create_dataset('float64', data=np.float64(1.23)) f.create_dataset('complex64', data=np.complex64(12+3j)) f.create_dataset('complex128', data=np.complex128(12+3j)) f.create_dataset('string', data=np.dtype('<S5').type("D123D")) args = filename def func(args): """func""" i8 = tfio.IOTensor.from_hdf5(args)('/int8') i16 = tfio.IOTensor.from_hdf5(args)('/int16') i32 = tfio.IOTensor.from_hdf5(args)('/int32') i64 = tfio.IOTensor.from_hdf5(args)('/int64') f32 = tfio.IOTensor.from_hdf5(args)('/float32') f64 = tfio.IOTensor.from_hdf5(args)('/float64') c64 = tfio.IOTensor.from_hdf5(args)('/complex64') c128 = tfio.IOTensor.from_hdf5(args)('/complex128') ss = tfio.IOTensor.from_hdf5(args)('/string') return [i8, i16, i32, i64, f32, f64, c64, c128, ss] expected = [ np.int8(123), np.int16(123), np.int32(123), np.int64(123), np.float32(1.23), np.float64(1.23), np.complex64(12+3j), np.complex128(12+3j), np.dtype('<S5').type("D123D"), ] def fin(): shutil.rmtree(tmp_path) request.addfinalizer(fin) return args, func, expected
6919238dbc879f2bc08c8c397895f890a5c428a0
3,639,376
def find_border(edge_list) : """ find_border(edge_list) Find the borders of a hexagonal graph Input ----- edge_list : array List of edges of the graph Returns ------- border_set : set Set of vertices of the border """ G = nx.Graph([(edge_list[i,0], edge_list[i,1]) for i in range(len(edge_list))]) occurence_list = np.unique(np.reshape(edge_list, 2*len(edge_list)), return_counts=True) # list of vertex of degree 2 sec_edge_list = occurence_list[0][np.argwhere(occurence_list[:][1] == 2)] # list of vertex of degree 3 three_edge_list = occurence_list[0][np.argwhere(occurence_list[:][1] == 3)] sec = np.reshape(sec_edge_list, newshape=(len(sec_edge_list))) border_set = set(sec) inner_set = set() for elem in three_edge_list : for neigh in G[elem[0]].keys() : if len(G[neigh]) == 2 : border_set.add(elem[0]) return border_set
718a2b56438caf60d3ca4e3cd7419452c8fbbb63
3,639,377
from typing import Set from datetime import datetime def get_all_files(credentials: Credentials, email: str) -> Set['DriveResult']: """Get all files shared with the specified email in the current half-year (January-June or July-December of the current year)""" # Create drive service with provided credentials service = build('drive', 'v3', credentials=credentials, cache_discovery=False) all_user_files = [] next_page_token = None date = datetime.date.today() while True: # Request the next page of files metadata, next_page_token = request_files(service, next_page_token, email, date) all_user_files = all_user_files + metadata print('\r{} files processed'.format(len(all_user_files)), end='') # If we have reached the end of the list of documents, next_page_token will be None if next_page_token is None: break return {DriveResult(student_email=file['owners'][0]['emailAddress'], file_name=file['name'], create_time=file['createdTime'], url=file['webViewLink']) for file in all_user_files}
eb7e491cac08bada675f0d39414ae3d907686741
3,639,378
def _split_kwargs(model, kwargs, lookups=False, with_fields=False): """ Split kwargs into fields which are safe to pass to create, and m2m tag fields, creating SingleTagFields as required. If lookups is True, TagFields with tagulous-specific lookups will also be matched, and the returned tag_fields will be a dict of tuples in the format ``(val, lookup)`` The only tagulous-specific lookup is __exact For internal use only - likely to change significantly in future versions Returns a tuple of safe_fields, singletag_fields, tag_fields If with_fields is True, a fourth argument will be returned - a dict to look up Field objects from their names """ safe_fields = {} singletag_fields = {} tag_fields = {} field_lookup = {} for field_name, val in kwargs.items(): # Check for lookup if lookups and "__" in field_name: orig_field_name = field_name field_name, lookup = field_name.split("__", 1) # Only one known lookup if lookup == "exact": try: field = model._meta.get_field(field_name) except FieldDoesNotExist: # Unknown - pass it on untouched pass else: if isinstance(field, TagField): # Store for later tag_fields[field_name] = (val, lookup) field_lookup[field_name] = field continue # Irrelevant lookup - no need to take special actions safe_fields[orig_field_name] = val continue # No lookup # Try to look up the field try: field = model._meta.get_field(field_name) except FieldDoesNotExist: # Assume it's something clever and pass it through untouched # If it's invalid, an error will be raised later anyway safe_fields[field_name] = val # Next field continue field_lookup[field_name] = field # Take special measures depending on field type if isinstance(field, SingleTagField): singletag_fields[field_name] = val elif isinstance(field, TagField): # Store for later if lookups: tag_fields[field_name] = (val, None) else: tag_fields[field_name] = val else: safe_fields[field_name] = val if with_fields: return safe_fields, singletag_fields, tag_fields, field_lookup return safe_fields, singletag_fields, tag_fields
f73cb84bab0889b51962ed3504b6de265831d18f
3,639,379
def sliceResultToBytes(sr): """Copies a FLSliceResult to a Python bytes object. Does not free the FLSliceResult.""" if sr.buf == None: return None lib.FLSliceResult_Release(sr) b = bytes( ffi.buffer(sr.buf, sr.size) ) return b
0e2207a99749b4cd3df4b71ca7338de4c0ad6a06
3,639,380
def cycle_dual(G, cycles, avg_fun=None): """ Returns dual graph of cycle intersections, where each edge is defined as one cycle intersection of the original graph and each node is a cycle in the original graph. The general idea of this algorithm is: * Find all cycles which share edges by an efficient dictionary operation * Those edges which border on exactly two cycles are connected The result is a possibly disconnected version of the dual graph which can be further processed. The naive algorithm is O(n_cycles^2) whereas this improved algorithm is better than O(n_cycles) in the average case. """ if avg_fun == None: avg_fun = lambda c, w: average(c, weights=w) dual = nx.Graph() neighbor_cycles = find_neighbor_cycles(G, cycles) # Construct dual graph for ns in neighbor_cycles: # Add cycles for c, n in ((cycles[n], n) for n in ns): dual.add_node(n, x=c.com[0], y=c.com[1], cycle=c, \ external=False, cycle_area=c.area()) # Connect pairs if len(ns) == 2: a, b = ns c_a = cycles[a] c_b = cycles[b] sect = c_a.intersection(c_b) wts = [G[u][v]['weight'] for u, v in sect] conds = [G[u][v]['conductivity'] for u, v in sect] wt = sum(wts) #cond = average(conds, weights=wts) #cond = min(conds) cond = avg_fun(conds, wts) dual.add_edge(a, b, weight=wt, conductivity=cond, intersection=sect) return dual
a923a4cea0f1d158e6936a68e513bd2285ea6b15
3,639,381
from sys import path import os import shutil def main(): """Entry point""" if check_for_unstaged_changes(TARGET_FILE): print("ERROR: You seem to have unstaged changes to %s that would be overwritten." % (TARGET_FILE)) print("Please clean, commit, or stash them before running this script.") return 1 if not path.exists(path.dirname(TARGET_FILE)): os.makedirs(path.dirname(TARGET_FILE)) shutil.copyfile(ORIGIN_FILE, TARGET_FILE) print("Bootstrapping optdata is complete.") for tool in TOOL_LIST: for arch in ARCH_LIST: optdata_dir = get_optdata_dir(tool, arch) print(" * Copy %s %s files into: %s" % (arch, tool, optdata_dir)) print("NOTE: Make sure to add 'skiprestoreoptdata' as a switch on the build command line!") return 0
0c628c917e596d3e1283dd729eac13d9a23a2d42
3,639,382
def get_timebucketedlog_reader(log, event_store): """ :rtype: TimebucketedlogReader """ return TimebucketedlogReader(log=log, event_store=event_store)
676e38a446f60dd8f2c90b38df572b2f5fc9c21e
3,639,383
def get_database_name(url): """Return a database name in a URL. Example:: >>> get_database_name('http://foobar.com:5984/testdb') 'testdb' :param str url: The URL to parse. :rtype: str """ name = compat.urlparse(url).path.strip("/").split("/")[-1] # Avoid re-encoding the name if "%" not in name: name = encode_uri_component(name) return name
2916e5a5999aae68b018858701dfb5e695857f7f
3,639,384
def get_tags(): """ 在这里希望根据用户来获取,和用户有关的tag 所以我们需要做的是,获取用户所有的post,然后找到所有的tag :return: """ result_tags = [] # 找到某个用户的所有的文章,把所有文章的Tag都放在一块 def append_tag(user_posts): tmp = [] for post in user_posts: for tag in post.tags.all(): tmp.append(tag.tag_name) return tmp # 如果当前用户存在,就是用当前用户 if g.get('current_user', None): user_posts_ = g.current_user.posts.all() result_tags.extend(append_tag(user_posts_)) # 如果不存在,就是用默认用户 else: user = User.query.get(1) result_tags.extend(append_tag(user.posts.all())) result_tags = list(set(result_tags)) return jsonify(result_tags)
821ca1bb222e4fe15ea336282fed0eb172d460f9
3,639,385
import os def get_selinux_modules(): """ Read all custom SELinux policy modules from the system Returns 3-tuple (modules, retain_rpms, install_rpms) where "modules" is a list of "SELinuxModule" objects, "retain_rpms" is a list of RPMs that should be retained during the upgrade and "install_rpms" is a list of RPMs that should be installed during the upgrade """ modules = list_selinux_modules() semodule_list = [] # list of rpms containing policy modules to be installed on RHEL 8 retain_rpms = [] install_rpms = [] # modules need to be extracted into cil files # cd to /tmp/selinux and save working directory so that we can return there # clear working directory rmtree(WORKING_DIRECTORY, ignore_errors=True) try: wd = os.getcwd() os.mkdir(WORKING_DIRECTORY) os.chdir(WORKING_DIRECTORY) except OSError: api.current_logger().warning("Failed to access working directory! Aborting.") return ([], [], []) for (name, priority) in modules: if priority == "200": # Module on priority 200 was installed by an RPM # Request $name-selinux to be installed on RHEL8 retain_rpms.append(name + "-selinux") continue if priority == "100": # module from selinux-policy-* package - skipping continue # extract custom module and save it to SELinuxModule object module_file = name + ".cil" try: run(['semodule', '-c', '-X', priority, '-E', name]) # check if the module contains invalid types and remove them if so removed = check_module(module_file) # get content of the module try: with open(module_file, 'r') as cil_file: module_content = cil_file.read() except OSError as e: api.current_logger().warning("Error reading %s.cil : %s", name, str(e)) continue semodule_list.append(SELinuxModule( name=name, priority=int(priority), content=module_content, removed=removed ) ) except CalledProcessError: api.current_logger().warning("Module %s could not be extracted!", name) continue # rename the cil module file so that it does not clash # with the same module on different priority try: os.rename(module_file, "{}_{}".format(name, priority)) except OSError: api.current_logger().warning("Failed to rename module file %s to include priority.", name) # this is necessary for check if container-selinux needs to be installed try: run(['semanage', 'export', '-f', 'semanage']) except CalledProcessError: pass # Check if modules contain any type, attribute, or boolean contained in container-selinux and install it if so # This is necessary since container policy module is part of selinux-policy-targeted in RHEL 7 (but not in RHEL 8) try: run(['grep', '-w', '-r', '-E', "|".join(CONTAINER_TYPES)], split=False) # Request "container-selinux" to be installed since container types where used in local customizations # and container-selinux policy was removed from selinux-policy-* packages install_rpms.append("container-selinux") except CalledProcessError: # expected, ignore exception pass try: os.chdir(wd) except OSError: pass rmtree(WORKING_DIRECTORY, ignore_errors=True) return (semodule_list, list(set(retain_rpms)), list(set(install_rpms)))
20c548c3f2227551a51ce774014d63754251e1e6
3,639,386
def a_star_search(graph, start, goal): """Runs an A* search on the specified graph to find a path from the ''start'' node to the ''goal'' node. Returns a list of nodes specifying a minimal path between the two nodes. If no path exists (disconnected components), returns an empty list. """ all_nodes = graph.get_all_node_ids() if start not in all_nodes: raise NonexistentNodeError(start) if goal not in all_nodes: raise NonexistentNodeError(goal) came_from, cost_so_far, goal_reached = _a_star_search_internal(graph, start, goal) if goal_reached: path = reconstruct_path(came_from, start, goal) path.reverse() return path else: return []
f2eabef1e30f12460359ea45cbc089f8fb28e5f9
3,639,387
import click def output_format_option(default: OutputFormat = OutputFormat.TREE): """ A ``click.option`` for specifying a format to use when outputting data. Args: default (:class:`~ape.cli.choices.OutputFormat`): Defaults to ``TREE`` format. """ return click.option( "--format", "output_format", type=output_format_choice(), default=default.value, callback=lambda ctx, param, value: OutputFormat(value.upper()), )
9f73a8b8d270975d16ec9d3b2962f4fd61491aab
3,639,388
def compute_errors(u_e, u): """Compute various measures of the error u - u_e, where u is a finite element Function and u_e is an Expression. Adapted from https://fenicsproject.org/pub/tutorial/html/._ftut1020.html """ print('u_e',u_e.ufl_element().degree()) # Get function space V = u.function_space() # Explicit computation of L2 norm error = (u - u_e)**2*dl.dx E1 = np.sqrt(abs(dl.assemble(error))) # Explicit interpolation of u_e onto the same space as u u_e_ = dl.interpolate(u_e, V) error = (u - u_e_)**2*dl.dx E2 = np.sqrt(abs(dl.assemble(error))) # Explicit interpolation of u_e to higher-order elements. # u will also be interpolated to the space Ve before integration Ve = dl.FunctionSpace(V.mesh(), 'P', 5) u_e_ = dl.interpolate(u_e, Ve) error = (u - u_e)**2*dl.dx E3 = np.sqrt(abs(dl.assemble(error))) # Infinity norm based on nodal values u_e_ = dl.interpolate(u_e, V) E4 = abs(u_e_.vector().get_local() - u.vector().get_local()).max() # L2 norm E5 = dl.errornorm(u_e, u, norm_type='L2', degree_rise=3) # H1 seminorm E6 = dl.errornorm(u_e, u, norm_type='H10', degree_rise=3) # Collect error measures in a dictionary with self-explanatory keys errors = {'u - u_e': E1, 'u - interpolate(u_e, V)': E2, 'interpolate(u, Ve) - interpolate(u_e, Ve)': E3, 'infinity norm (of dofs)': E4, 'L2 norm': E5, 'H10 seminorm': E6} return errors
c9fbd459ab1c3cd65fb4d290e1399dd4937ed5a2
3,639,389
def list_to_str(input_list, delimiter=","): """ Concatenates list elements, joining them by the separator specified by the parameter "delimiter". Parameters ---------- input_list : list List with elements to be joined. delimiter : String, optional, default ','. The separator used between elements. Returns ------- String Returns a string, resulting from concatenation of list's elements, separeted by the delimiter. """ return delimiter.join( [x if isinstance(x, str) else repr(x) for x in input_list] )
4decfbd5a9d637f27473ec4a917998137af5ffe0
3,639,390
def strategy_supports_no_merge_call(): """Returns if the current `Strategy` can operate in pure replica context.""" if not distribution_strategy_context.has_strategy(): return True strategy = distribution_strategy_context.get_strategy() return not strategy.extended._use_merge_call() # pylint: disable=protected-access
dc2b609a52d7e25b372e0cd1a04a0637d76b8ec1
3,639,391
def is_group(obj): """Returns true if the object is a h5py-like group.""" kind = get_h5py_kind(obj) return kind in ["file", "group"]
37c86b6d4f052eab29106b9d51c17cdd36b1dc98
3,639,392
from bs4 import BeautifulSoup def analyze_page(page_url): """ Analyzes the content at page_url and returns a list of the highes weighted words.json/phrases and their weights """ html = fetch_html(page_url) if not html: return soup = BeautifulSoup(html, "html.parser") word_counts = {} url_words = words_in_url(page_url) stop_words = get_stop_words('english') words_to_add = ['like', '...'] stop_words = stop_words + words_to_add ignore_tags = ["script", "img", "meta", "style"] # html tags to ignore weights = {'title': 15, 'div': .5, 'a': .3, 'span': .5, "link": .2, 'url': 22, \ 'two' : 3, 'three': 3, 'four': 5, 'five': 5} # adjust weights here lemma = WordNetLemmatizer() for tag in soup.find_all(): if tag.name not in ignore_tags: words = tag.find(text=True, recursive=False) # with bs4, recursive = False means we will not be double counting tags if words: words = words.split() words = [w for w in words if w not in stop_words] # remove common stop words.json words = [w for w in words if len(w) > 1] # ignore single character words.json for index, word in enumerate(words): word_lower = lemma.lemmatize(word.lower()) # lemmatize/stem words.json multiplier = 1 if tag.name in weights: # assign weight based on HTML tag multiplier = weights[tag.name] if word_lower in word_counts: word_counts[word_lower] = word_counts[word_lower] + (1 * multiplier) else: word_counts[word_lower] = 1 * multiplier if index < (len(words) - 1): # two word phrase two_word = word_lower + ' ' + lemma.lemmatize((words[index + 1]).lower()).strip() two_word = two_word.strip() if two_word != word_lower: if two_word in word_counts: word_counts[two_word] = word_counts[two_word] + (weights['two'] * multiplier) else: word_counts[two_word] = 1 * multiplier if index < (len(words) - 2): # three word phrase two_word = word_lower + ' ' + lemma.lemmatize((words[index + 1]).lower()).strip() \ + ' ' + lemma.lemmatize((words[index + 2]).lower()).strip() two_word = two_word.strip() if two_word != word_lower: if two_word in word_counts: word_counts[two_word] = word_counts[two_word] + (weights['three'] * multiplier) else: word_counts[two_word] = 1 * multiplier if index < (len(words) - 3): # four word phrase two_word = word_lower + ' ' + lemma.lemmatize((words[index + 1]).lower()).strip() \ + ' ' + lemma.lemmatize((words[index + 2]).lower()).strip() \ + ' ' + lemma.lemmatize((words[index + 3]).lower()).strip() two_word = two_word.strip() if two_word != word_lower: if two_word in word_counts: word_counts[two_word] = word_counts[two_word] + (weights['four'] * multiplier) else: word_counts[two_word] = 1 * multiplier if index < (len(words) - 4): # five word phrase two_word = word_lower + ' ' + lemma.lemmatize((words[index + 1]).lower()).strip() \ + ' ' + lemma.lemmatize((words[index + 2]).lower()).strip() \ + ' ' + lemma.lemmatize((words[index + 3]).lower()).strip() \ + ' ' + lemma.lemmatize((words[index + 4]).lower()).strip() two_word = two_word.strip() if two_word != word_lower: if two_word in word_counts: word_counts[two_word] = word_counts[two_word] + (weights['five'] * multiplier) else: word_counts[two_word] = 1 * multiplier for word in url_words: # add weight for words.json in the url string if word in word_counts: word_counts[word] = word_counts[word] + weights['url'] def determine(x, top_25): """ Helper function for removing phrases that are substrings of other phrases """ if len(x[0].split()) > 1: # print(x[0]) for i in top_25: if x[0] in i[0] and x[0] != i[0]: return False return True top_25 = list(reversed(sorted(word_counts.items(), key=lambda x: x[1])[-25:])) # grab highest 25 weighted items final_list = [x for x in top_25 if determine(x, top_25)] # remove phrases that are substrings of other phrases return final_list
55928add263defa51a171a2dfb20bffe6491430c
3,639,393
from typing import Iterable from typing import List def load_config_from_paths(config_paths: Iterable[str], strict: bool = False) -> List[dict]: """ Load configuration from paths containing \*.yml and \*.json files. As noted in README.config, .json will take precedence over .yml files. :param config_paths: Path to \*.yml and \*.json config files. :param strict: Set to true to error if the file is not found. :return: A list of configs in increasing order of precedence. """ # Put the .json configs after the .yml configs to make sure .json takes # precedence over .yml. sorted_paths = sorted(config_paths, key=lambda x: x.endswith(".json")) return list(map(lambda path: load_config_from_file(path, strict), sorted_paths))
8e32c46e7e620ae02dffcc652b32bb0098a0a2b3
3,639,394
from typing import List def sort_flats(flats_unsorted: List[arimage.ARImage]): """ Sort flat images into a dictionary with "filter" as the key """ if bool(flats_unsorted) == False: return None flats = { } logger.info("Sorting flat images by filter") for flat in flats_unsorted: fl = flat.filter if fl not in flats: # Found a flat with a new filter # Create a new array in the dictionary logger.info("Found a flat with filter=" + fl) flats[fl] = [] flats[fl].append(flat) return flats
d0e3fe2c7e1a8f34cf7ed8f6985d3dd7bc82f3f1
3,639,395
import concurrent import logging def run_in_parallel(function, list_of_kwargs_to_function, num_workers): """Run a function on a list of kwargs in parallel with ThreadPoolExecutor. Adapted from code by mlbileschi. Args: function: a function. list_of_kwargs_to_function: list of dictionary from string to argument value. These will be passed into `function` as kwargs. num_workers: int. Returns: list of return values from function. """ if num_workers < 1: raise ValueError( 'Number of workers must be greater than 0. Was {}'.format(num_workers)) with concurrent.futures.ThreadPoolExecutor(num_workers) as executor: futures = [] logging.info( 'Adding %d jobs to process pool to run in %d parallel ' 'threads.', len(list_of_kwargs_to_function), num_workers) for kwargs in list_of_kwargs_to_function: f = executor.submit(function, **kwargs) futures.append(f) for f in concurrent.futures.as_completed(futures): if f.exception(): # Propagate exception to main thread. raise f.exception() return [f.result() for f in futures]
24b99f68ba1221c4f064a65540e6c165c9474e43
3,639,396
import os import requests def upload(host, key, path): """ Upload one file at a time """ url= urljoin(host, 'api/files?key=' + key) os.chdir(path[0]) f = open(path[1], 'rb') r = requests.post(url, files={"File" : f}) r.raise_for_status() return r.json()['id']
78e8cac5239d631f5dea8dae0bb0a52e43e1b307
3,639,397
def show_project(project_id): """return a single project formatted according to Swagger spec""" try: project = annif.project.get_project( project_id, min_access=Access.hidden) except ValueError: return project_not_found_error(project_id) return project.dump()
3f7108ec7cb27270f91517bef194f3514c3eb4e5
3,639,398
def pollard_rho(n: int, e: int, seed: int = 2) -> int: """ Algoritmo de Pollard-Rho para realizar a quebra de chave na criptografia RSA. n - n da chave pública e - e da chave pública seed - valor base para executar o ciclo de testes """ a, b = seed, seed p = 1 while (p == 1): a = ( pow(a,2) + 1 ) % n b = ( pow(b,2) + 1 ) b = ( pow(b,2) + 1 ) % n p = gcd( abs(a-b)%n, n) if p == n: return pollard_rho(n, e, seed+1) #brutal_force(n, e,) # else: q = n // p phi = (p - 1) * (q - 1) d = find_inverse(e, phi) return d
4870627a5fca863d4110f3cadfdc1e7b618c2a48
3,639,399