content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import requests import json def get_table_count(url, table_id): """ Count the number of rowns in a ActivityTable :param url: :param table_id: The ActivityTable ID to update count from and return :return: count : count of rows from ActivityTable """ token = ActivitySites.objects.get(site_id=1) if token.activity_tables_token: headers = {'content-type': 'application/json', 'Authorization': 'Token ' + token.activity_tables_token} else: headers = {'content-type': 'application/json'} print("Token Not Found") response = requests.get(url, headers=headers, verify=True) data = json.loads(response.content) count = None try: count = data['data_count'] ActivityTable.objects.filter(table_id=table_id)\ .update(unique_count=count) except KeyError: pass return count
d7243c202317f0302fb2515f09aa096f0c275619
3,639,100
def get_audio_mfcc_features(txt_files, wav_files, n_input, n_context, word_num_map, txt_labels=None): """ 提取音频数据的MFCC特征 :param txt_files: :param wav_files: :param n_input: :param n_context: :param word_num_map: :param txt_labels: :return: """ audio_features = [] audio_features_len = [] text_vector = [] text_vector_len = [] if txt_files != None: txt_labels = txt_files for txt_obj, wav_file in zip(txt_labels, wav_files): # 载入音频数据并转化为特征值 audio_data = audiofile_to_input_vector(wav_file, n_input, n_context) audio_data = audio_data.astype('float32') audio_features.append(audio_data) audio_features_len.append(np.int32(len(audio_data))) # 载入音频对应的文本 target = [] if txt_files != None: # txt_obj是文件 target = trans_text_ch_to_vector(txt_obj, word_num_map) else: target = trans_text_ch_to_vector(None, word_num_map, txt_obj) # txt_obj是labels # target = text_to_char_array(target) text_vector.append(target) text_vector_len.append(len(target)) audio_features = np.asarray(audio_features) audio_features_len = np.asarray(audio_features_len) text_vector = np.asarray(text_vector) text_vector_len = np.asarray(text_vector_len) return audio_features, audio_features_len, text_vector, text_vector_len
bed03fb10944d00e27af400776a8efc894770e46
3,639,101
def getOffsetsFromPixelFractions(col, row): """ Determine just the fractional part (the intra-pixel part) of the col,row position. For example, if (col, row) = (123.4, 987.6), then (colFrac, rowFrac) = (.4, .6). Function then returns the offset necessary for addressing the interleaved PRF array. to ensure you get the location appropriate for your sub-pixel values. Inputs ------ col (float) Column position row (float) Row position. Returns ------ (colFrac, rowFrac) (int, int) offset necessary for addressing the interleaved PRF array. """ gridSize = 9 colFrac = np.remainder(float(col), 1) rowFrac = np.remainder(float(row), 1) colOffset = gridSize - np.round(gridSize * colFrac) - 1 rowOffset = gridSize - np.round(gridSize * rowFrac) - 1 return int(colOffset), int(rowOffset)
4f5945f4e3e6e2dd71056b615dc3571f6ece42c6
3,639,102
def all_index(request): """ Inventory Index View """ # build changelist item_changelist = HTSChangeList(request, Item, list_filter=[], search_fields=[], list_per_page=200, model_admin=ItemAdmin(Item, None) ) context_dict = { 'item_changelist': item_changelist, 'page_name': 'Inventory Index' } context_dict.update(INVENTORY_CONTEXT_DEFAULTS) return render(request, 'inventory/inventory_all_index.html', context_dict)
7fdd0b5f278b55767a7918e2977315312e823e93
3,639,103
def calcSeason(ra, time): """Calculate the 'season' in the survey for a series of ra/dec/time values of an observation. Based only on the RA of the point on the sky, it calculates the 'season' based on when this point would be overhead. To convert to an integer season label, take np.floor of the returned float season values. Note that seasons should be calculated for a fixed point on the sky, not for each pointing that overlaps a point on the sky. For example, bad things might happen if you compute the season for observations that overlap RA=0, but were centered on RA=359. Parameters ---------- ra : float The RA (in degrees) of the point on the sky time : np.ndarray The times of the observations, in MJD Returns ------- np.ndarray The season values """ # A reference RA and equinox to anchor ra/season calculation - RA = 0 is overhead at this (local) time. # This time was chosen as it is close to the expected start of the survey. # Generally speaking, this is the equinox (RA=0 is overhead at midnight) Equinox = 60208.00106863426 # convert ra into 'days' dayRA = ra / 360 * 365.25 firstSeasonBegan = Equinox + dayRA - 0.5 * 365.25 seasons = (time - firstSeasonBegan) / 365.25 # Set first season to 0 seasons = seasons - np.floor(np.min(seasons)) return seasons # The value for the equinox above was calculated as follows: #from astropy.time import Time #from astropy.coordinates import EarthLocation #loc = EarthLocation.of_site('Cerro Pachon') #t = Time('2023-09-21T00:01:32.33', format='isot', scale='utc', location=loc) #print(t.sidereal_time('apparent') - loc.lon, t.utc.mjd)
1309a302fac9d01d7b5567d5722bf8f04dc9b88e
3,639,104
def set_node_event_info(info: NodeEventInfo) -> Item: """Encaches an item. :param info: Node event information. :returns: Item to be cached. """ if info.event_type in ( EventType.MONIT_CONSENSUS_FINALITY_SIGNATURE, EventType.MONIT_BLOCK_FINALIZED, EventType.MONIT_BLOCK_ADDED, ): names = [ info.block_hash, ] elif info.event_type == EventType.MONIT_DEPLOY_PROCESSED: names = [ info.block_hash, info.deploy_hash, ] else: names=[] return Item( item_key=ItemKey( paths=[ info.network, COL_EVENT, info.event_type.name[6:], ], names=names, ), data=info, expiration=EXPIRATION_COL_EVENT )
9ee50e73b1c50172ada1b6040b675cbda5aede44
3,639,105
def check_hashtarget(bible_hash, target): """ tests if the biblepay hash is valid for the hashtarget, means that is it lower. True = is lower and all is fine """ rs = False try: rs = int(bible_hash, 16) < int(target, 16) except: pass return rs
a0041d8834b2a0af0a08c2562ffed599925ed5a8
3,639,106
def assert_and_infer_cfg_fl(cfg_fl, args, make_immutable=True, train_mode=True): """ Calls /semantic-segmentation/config.assert_and_infer_cfg and adds additional assertions """ if args.manual_client_setup: cfg_fl.CLIENT.MANUAL = args.manual_client_setup if cfg_fl.CLIENT.MANUAL: print('-------------------------') print('> Clients manual settings') print('-------------------------') for i in cfg_fl.CLIENT.POPULATION: print(i) if args.replicate: cfg_fl.REPLICATE = args.replicate if args.seed: cfg_fl.SEED = args.seed cfg_fl.TORCH_SEED = args.seed if args.task: cfg_fl.TASK = args.task if args.dataset: cfg_fl.DATASET.DATASET_NAME = args.dataset if args.clients_per_dist: cfg_fl.FEDERATION.CLIENTS_PER_DIST = args.clients_per_dist if cfg_fl.FEDERATION.CLIENTS_PER_DIST is not None and cfg_fl.FEDERATION.NUM_CLIENTS is None: cfg_fl.FEDERATION.NUM_CLIENTS = cfg_fl.FEDERATION.CLIENTS_PER_DIST * cfg_fl.FEDERATION.NUM_DISTRIBUTIONS if args.num_clients: cfg_fl.FEDERATION.NUM_CLIENTS = args.num_clients if args.print_logx: cfg_fl.LOGX_STDOUT = True if args.num_distributions: cfg_fl.FEDERATION.NUM_DISTRIBUTIONS = args.num_distributions assertion_num_clients = "Either 'clients_per_dist' or 'num_clients' needs to be specified" assert cfg_fl.FEDERATION.CLIENTS_PER_DIST or cfg_fl.FEDERATION.NUM_CLIENTS, assertion_num_clients # if args.dist_type: # cfg.FEDERATION.DIST_TYPE = args.dist_type if args.clustering_method: cfg.FEDERATION.CLUSTERING_METHOD = args.clustering_method if args.federation_method: assert args.federation_method in ['fomo', 'embeddings', 'local', 'fedavg'] cfg_fl.FEDERATION.METHOD = args.federation_method if args.federation_method == 'fedavg': cfg_fl.FEDERATION.FED_AVERAGING = True if args.random_distributions: cfg_fl.FEDERATION.RANDOM_DISTS = args.random_distributions # True if args.federated_averaging: cfg_fl.FEDERATION.FED_AVERAGING = True cfg_fl.FEDERATION.METHOD = 'fedavg' if args.local_train_val_size: cfg_fl.FEDERATION.LOCAL_TRAIN_VAL_SIZE = args.local_train_val_size if args.federation_epoch: cfg_fl.FEDERATION.EPOCH = args.federation_epoch if args.num_update_clients: cfg_fl.CLIENT_WEIGHT.NUM_UPDATE_CLIENTS = args.num_update_clients if args.model_weight_delta: cfg_fl.CLIENT_WEIGHT.WEIGHT_DELTA = args.model_weight_delta if args.explicit_weight_delta: cfg_fl.CLIENT_WEIGHT.WEIGHT_DELTA = args.explicit_weight_delta cfg_fl.CLIENT_WEIGHT.LEAVE_ONE_OUT = False if args.client_weight_epsilon: cfg_fl.CLIENT_WEIGHT.EPSILON = args.client_weight_epsilon if args.client_weight_epsilon_decay: cfg_fl.CLIENT_WEIGHT.EPSILON_DECAY = args.client_weight_epsilon_decay if args.client_weight_method: cfg_fl.CLIENT_WEIGHT.METHOD = args.client_weight_method if args.update_positive_delta_only: cfg_fl.MODEL_WEIGHT.UPDATE_POSITIVE_ONLY = args.update_positive_delta_only if args.leave_one_out: cfg_fl.CLIENT_WEIGHT.LEAVE_ONE_OUT = args.leave_one_out if args.baseline_model: cfg_fl.CLIENT_WEIGHT.BASELINE = args.baseline_model if args.train_split: cfg_fl.CLIENT.TRAIN_SPLIT = args.train_split cfg_fl.CLIENT.VAL_SPLIT = 1 - args.train_split if args.dataset == 'cifar100': args.num_classes = 100 elif args.dataset == 'cifar10': args.num_classes = 10 elif args.dataset == 'mnist': args.num_classes = 10 return cfg_fl
b779e0a5f06d06b9ebc542f3cd7c190efb70bca5
3,639,107
def replace_service(name, metadata, spec, source, template, old_service, saltenv, namespace="default", **kwargs): """ Replaces an existing service with a new one defined by name and namespace, having the specificed metadata and spec. """ body = __create_object_body( kind="Service", obj_class=kubernetes.client.V1Service, spec_creator=__dict_to_service_spec, name=name, namespace=namespace, metadata=metadata, spec=spec, source=source, template=template, saltenv=saltenv, ) # Some attributes have to be preserved # otherwise exceptions will be thrown body.spec.cluster_ip = old_service["spec"]["cluster_ip"] body.metadata.resource_version = old_service["metadata"][ "resource_version"] cfg = _setup_conn(**kwargs) try: api_instance = kubernetes.client.CoreV1Api() api_response = api_instance.replace_namespaced_service( name, namespace, body) return api_response.to_dict() except (ApiException, HTTPError) as exc: if isinstance(exc, ApiException) and exc.status == 404: return None else: log.exception("Exception when calling " "CoreV1Api->replace_namespaced_service") raise CommandExecutionError(exc) finally: _cleanup(**cfg)
e363ed9d9233ff6455963edba5bfa8109f6c7260
3,639,108
from typing import Optional from typing import Dict from typing import Any from typing import List from datetime import datetime import logging def timesketch_add_manual_event( data: Text, timestamp: Optional[int] = 0, date_string: Optional[Text] = '', timestamp_desc: Optional[Text] = '', attributes: Optional[Dict[str, Any]] = None, tags: Optional[List[str]] = None) -> Dict[str, str]: """Add a manually generated event to the sketch. Args: data (str): The message string for for the event to be generated. timestamp (int): Optional timestamp in either seconds since Epoch or microseconds since Epoch. date_string (str): An optional date time as a human readable string. If neither date_string nor timestamp is provided then the current timestamp will be used as the time of the event. timestamp_desc (str): Optional timestamp description field. attributes (dict): Optional dict which contains extra attributes to add to the manual event. tags (list): Optional list of tags to add to the manual event. Returns: Dictionary with query results. """ connect() state_obj = state.state() sketch = state_obj.get_from_cache('timesketch_sketch') if not sketch: print('Not able to connect to a sketch.') return {} # Default timestamp. date_obj = datetime.datetime.now(datetime.timezone.utc) date = date_obj.isoformat() if timestamp: try: date_obj = datetime.datetime.fromtimestamp( timestamp, datetime.timezone.utc) except ValueError: date_obj = datetime.datetime.fromtimestamp( timestamp / 1e6, datetime.timezone.utc) date = date_obj.isoformat() elif date_string: elements = time_elements.TimeElements() if 'T' in date_string: try: elements.CopyFromStringISO8601(date_string) except ValueError: logging.error( 'Unable to convert date string, is it really in ISO 8601 format?') return {} try: elements.CopyFromString(date_string) except ValueError: try: elements.CopyFromStringRFC1123(date_string) except ValueError: logging.error( 'Unable to convert date string, needs to be in ISO 8601, 1123 or ' 'in the format YYYY-MM-DD hh:mm:ss.######[+-]##:##') return {} date = elements.CopyToDateTimeStringISO8601() if not timestamp_desc: timestamp_desc = 'Event Logged' if not isinstance(tags, (tuple, list)): tags = [] if not isinstance(attributes, dict): attributes = {} if not date: logging.error('Unable to convert date string, please check it.') return {} return sketch.add_event( data, date, timestamp_desc, attributes=attributes, tags=tags)
c84f04bbd3a9344c5797e6d79be141b05f6edae0
3,639,109
def filter_vcf_by_sex(vcf_file, data): """Post-filter a single sample VCF, handling sex chromosomes. Handles sex chromosomes and mitochondrial. Does not try to resolve called hets into potential homozygotes when converting diploid to haploid. Skips filtering on pooled samples, we still need to implement. """ if len(vcfutils.get_samples(vcf_file)) > 1: return vcf_file _, sexes = _configured_ploidy_sex([data]) sex = sexes.pop() out_file = "%s-ploidyfix%s" % utils.splitext_plus(vcf_file) if not utils.file_exists(out_file): orig_out_file = out_file out_file = orig_out_file.replace(".vcf.gz", ".vcf") with file_transaction(out_file) as tx_out_file: with open(tx_out_file, "w") as out_handle: with utils.open_gzipsafe(vcf_file) as in_handle: for line in in_handle: if line.startswith("#"): out_handle.write(line) else: line = _fix_line_ploidy(line, sex) if line: out_handle.write(line) if orig_out_file.endswith(".gz"): out_file = vcfutils.bgzip_and_index(out_file, data["config"]) return out_file
6eb6528ce4deb86b8c8ecd8746143cb0f6c82fde
3,639,110
def gen_spacer(spacer_char="-", nl=2): """ Returns a spacer string with 60 of designated character, "-" is default It will generate two lines of 60 characters """ spacer = "" for i in range(nl): spacer += spacer_char * 60 spacer += "\n" return spacer
7434f191dafdf500c2fc3e67373afc664e543ce0
3,639,111
def repo_config_factory(repo_type, repo_id, repo_label, **kwargs): """ Constructs a repository configuration in form of a TTL structure utilizing the TTL templates from ./repo_types_template. """ # Check if the repo_type is a known template if repo_type not in REPO_TYPES: raise RepositoryTypeUnknown # Get the path to the template template_path = TEMPLATE_FOLDER / '{}{}'.format(repo_type, '.ttl') # Open the template file and read it with open(template_path) as template_file: template = template_file.read() # get the default values for the template params = DEFAULTS # Overwrite them with the given kwargs params.update(kwargs) # Fill the params in the template ttl = template.format(repo_id=repo_id.replace('-', '_'), repo_label=repo_label, **params) # return the final TTL return ttl
3840d698691f226d56d25233c3fc00db23abd5d9
3,639,112
def oil_isothermal_density(rho: NDArrayOrFloat, p: NDArrayOrFloat) -> NDArrayOrFloat: """Calculates the oil density for a given pressure at 15.6 degC B&W 1992 Equation 18 Args: rho: The oil reference density (g/cc) at 15.6 degC can be compensated for disovled gases by running `oil_rho_sat` first. p: Pressure (MPa) Returns: The oil density (g/cc) at pressure p """ return ( rho + (0.00277 * p - 1.71e-7 * np.power(p, 3)) * np.power(rho - 1.15, 2) + 3.49e-4 * p )
f8184f4820b5a19525b47f357b92ea7059e2bd74
3,639,113
def get_waveform_dataset(path): """Loads the waveform dataset from a given path. Args: path: The path to the .npz file containing the waveform data set. Returns: An array of waveform chunks loaded from the given path. """ dataset = np.load(path)['arr_0'] return dataset
3d8e13cddd7abdb3bc459b68761e4a6385208c77
3,639,114
import logging def logger(filename: str, name: str) -> logging.Logger: """configure task logger """ logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) fh = logging.FileHandler(filename) formatter = logging.Formatter( '%(asctime)s %(name)s %(levelname)s: %(message)s') fh.setLevel(logging.DEBUG) fh.setFormatter(formatter) logger.addHandler(fh) return logger
60200abbd7a97204bf143694058ba87ff1ea7a2a
3,639,115
def verify_signature(pubkey_path, message, signature): """ Use Crypto.Signature.PKCS1_v1_5 to verify the signature on a message. Returns True for valid signature. """ log.debug("salt.crypt.verify_signature: Loading public key") pubkey = get_rsa_pub_key(pubkey_path) log.debug("salt.crypt.verify_signature: Verifying signature") if HAS_M2: md = EVP.MessageDigest("sha1") md.update(salt.utils.stringutils.to_bytes(message)) digest = md.final() return pubkey.verify(digest, signature) else: verifier = PKCS1_v1_5.new(pubkey) return verifier.verify( SHA.new(salt.utils.stringutils.to_bytes(message)), signature )
c0f6d9b36fd00eb7a17c656546bd685ccee97609
3,639,116
def untranslate_module_name(module): """Rename module names mention in JSON to names that we can import This reverses the translation applied by translate_module_name() to a module name available to the current version of Python. """ if PY3: # remap `__builtin__` and `exceptions` to the `builtins` module if module == '__builtin__': module = 'builtins' elif module == 'exceptions': module = 'builtins' return module
fae87c9fb852ff1b6b82e4ebccf9c058fb4a313f
3,639,117
def RGBRamp(size=256, upperValue=.6666666666666667): """Generate an RGB color ramp, values range from 0.0 to 1.0""" assert size > 0 hsv = HSVRamp(size, upperValue) rgb = Numeric.zeros( (hsv.shape[0], 3), viewerConst.FPRECISION ) for i in xrange(hsv.shape[0]): rgb[i] = ToRGB(hsv[i]) return rgb
10be72b654ac9e36610bc4c08fd05edbba45de8a
3,639,118
def find_poly_ras_intersect(shape, raster_dir, extension='.tif'): """ Finds all the tiles falling within raster object the get shape geometry should be seperated from the intesect check, currently causes a exit code 139 on unix box :param polygon: :param extension: :param raster_dir: """ print 'starting shape: {}'.format(shape) # get vector geometry if not os.path.isfile(shape): raise NotImplementedError('Shapefile not found') polygon = ogr.Open(shape) layer = polygon.GetLayer() feature = layer.GetFeature(0) vector_geo = feature.GetGeometryRef() # print 'vector geometry: {}'.format(vector_geo) tiles = [os.path.join(raster_dir, x) for x in os.listdir(os.path.join(raster_dir)) if x.endswith(extension)] raster_list = [] for tile in tiles: print tile, srt.tif_proj4_spatial_reference(tile) if srt.check_same_reference_system(shape, tile): raster_geo = get_polygon_from_raster(tile) if raster_geo.Intersect(vector_geo): print 'tile: {} intersects {}'.format(os.path.basename(tile), os.path.basename(shape)) raster_list.append(tile) return raster_list
8f7ae23a2c442ff5b61bde46d8b42ac4c2c8eade
3,639,119
from typing import Iterable import requests def Session( retries: int = 10, backoff_factor: float = 0.3, allowed_methods: Iterable[str] = ('HEAD', 'TRACE', 'GET', 'POST', 'PUT', 'OPTIONS', 'DELETE'), status_forcelist: Iterable[int] = (408, 429, 500, 502, 503, 504), ) -> requests.Session: """Return a Session object with full retry capabilities. Args: retries (int): number of retries backoff_factor (float): speed factor for retries (in seconds) allowed_methods (iterable): http methods to retry on status_forcelist (iterable): http status codes to retry on Returns: :py:class:`requests.Session`: session object """ session = requests.Session() retry = Retry( total=retries, connect=retries, read=retries, redirect=retries, # status=retries, allowed_methods=allowed_methods, status_forcelist=status_forcelist, backoff_factor=backoff_factor, ) adapter = HTTPAdapter(max_retries=retry) session.mount('http://', adapter) session.mount('https://', adapter) return session
ca7d5f4d3f34e24c67eae47c01a6bd63796b03be
3,639,120
def tp53(): """Create a TP53 gene fixture.""" params = { 'label': 'tumor protein p53', 'concept_id': 'hgnc:11998', 'symbol': 'TP53', 'location_annotations': [], 'strand': None, 'locations': [ { '_id': 'ga4gh:VCL._Cl_XG2bfBUVG6uwi-jHtCHavOAyfPXN', 'chr': '17', 'interval': { 'end': 'p13.1', 'start': 'p13.1', 'type': 'CytobandInterval' }, 'species_id': 'taxonomy:9606', 'type': 'ChromosomeLocation' } ], 'previous_symbols': [], 'aliases': [ 'p53', 'LFS1' ], 'symbol_status': 'approved', 'associated_with': [ 'vega:OTTHUMG00000162125', 'refseq:NM_000546', 'cosmic:TP53', 'omim:191170', 'ucsc:uc060aur.1', 'uniprot:P04637', 'orphanet:120204', 'ccds:CCDS73968', 'ccds:CCDS73971', 'ccds:CCDS73970', 'ccds:CCDS73969', 'ccds:CCDS73967', 'ccds:CCDS73966', 'ccds:CCDS73965', 'ccds:CCDS73964', 'ccds:CCDS73963', 'ccds:CCDS11118', 'ccds:CCDS45605', 'ccds:CCDS45606', 'ena.embl:AF307851', 'pubmed:6396087', 'pubmed:3456488', 'pubmed:2047879' ], 'xrefs': [ 'ensembl:ENSG00000141510', 'ncbigene:7157' ] } return Gene(**params)
d1c41af9dce6b5eee3aa475c207a669529001b7d
3,639,121
def factorOrder(factors, varOrder): """Return an order of factors for sampling given a variable order for sampling""" pri = [0 for x in varOrder] for i,x in enumerate(varOrder): # first, find position of each var in sampling order pri[x]=i factorOrder = [ Factor() for x in varOrder ] # fill order with blanks initially for f in factors: f_pri = max([pri[x] for x in f.vars]) # get last-sampled variable for this factor if factorOrder[f_pri].nvar == 0: factorOrder[f_pri] = f # if first factor for this variable, save it else: # o.w. take one with the lowest conditional entropy: if ent[f_pri] < 0: # (compute previous' if necessary) ent[f_pri] = factorOrder[f_pri].entropy() - factorOrder[f_pri].sum([f_pri]).entropy() ent_new = f.entropy() - f.sum([f_pri]).entropy() # (and this factor's) if ent_new < ent[f_pri]: # (keep whichever is lower) factorOrder[f_pri] = f ent[f_pri] = ent_new return factorOrder
98ec337ab126d77b854be28f937eef392b9c8144
3,639,122
def boundary_nodes(graph, nodes): # TODO: move to utils #TODO: use networkx boundary nodes directly: does the same thing """ returns nodes at boundary of G based on edge_boundary from networkx """ graph = unwrap_graph(graph) nodes = list(nodes) nbunch = list(unwrap_nodes(nodes)) # find boundary b_edges = nx.edge_boundary(graph, nbunch) # boundary edges internal_nodes = [s for (s, t) in b_edges] assert(all(n in nbunch for n in internal_nodes)) # check internal return wrap_nodes(graph, internal_nodes)
e498b74ce3d36c3fc7f4ef0913fa470e2cfa12bc
3,639,123
def home(request): """ rendering ui by template for homepage this view never cache for delivering correct translation inside template """ template = loader.get_template('weather/home.html') return HttpResponse(template.render({}, request))
b2fdf6facd633441da9d11a53a781e9e418b42de
3,639,124
def plot_histogram(df, path, col_x, ax=None, size=None, save=True, suffix=None, show=False, **kwargs): """Geneate a histogram plot. Args: df (:class:`pandas.DataFrame`): Data frame to plot. path (str): Path to data frame to use if ``df`` is None, also used as the basis for output path. col_x (str): Name of column with values to plot. ax (:class:`matplotlib.axes.Axes`): Matplotlib axes; defaults to None to generate a new figure with axes. size (Sequence[float]): Sequence of ``width, height`` to size the figure; defaults to None. save (bool): True to save the plot; defaults to True. suffix: String to append to output path before extension; defaults to None to ignore. show: True to display the image; otherwise, the figure will only be saved to file, if :attr:``config.savefig`` is set. Defaults to True. kwargs (Any): Extra arguments to :meth:`decorate_plot`. Returns: :class:`matplotlib.axes.Axes`: Matplotlib axes. """ # load data frame from CSV unless already given and set up figure if df is None: df = pd.read_csv(path) if ax is None: fig, gs = plot_support.setup_fig(1, 1, size) ax = plt.subplot(gs[0, 0]) # generate histogram n, bins, patches = ax.hist(df[col_x]) decorate_plot(ax, **kwargs) # save and display plot if indicated if save: out_path = libmag.make_out_path(path, suffix=suffix) plot_support.save_fig(out_path, config.savefig) if show: plt.show() return ax
ec97358a9b7f8c3d20dd7a15d77b588fc2bffbe0
3,639,125
def __check_interface_state(duthost, interface, state='up'): """ Check interface status Args: duthost: DUT host object interface: Interface of DUT state: state of DUT's interface Returns: Bool value which confirm port state """ ports_down = duthost.interface_facts(up_ports=[interface])['ansible_facts']['ansible_interface_link_down_ports'] if 'down' in state: return interface in ports_down return interface not in ports_down
bc17d489064e9a81ec77dad5ab3682c9a96fa88d
3,639,126
def find_dateTime_in_html(text): """ find dateTime in html """ r = findall('<time dateTime="(.*?)">', text) if r: return r return []
0ba36b69a52f421e303da4c10b70362d6d724c96
3,639,127
import torch def get_number_of_voxels_per_class(labels: torch.Tensor) -> torch.Tensor: """ Computes the number of voxels for each class in a one-hot label map. :param labels: one-hot label map in shape Batches x Classes x Z x Y x X or Classes x Z x Y x X :return: A tensor of shape [Batches x Classes] containing the number of non-zero voxels along Z, Y, X """ if not len(labels.shape) in [5, 4]: raise Exception("labels must have either 4 (Classes x Z x Y x X) " "or 5 dimensions (Batches x Classes x Z x Y x X), found:{}" .format(len(labels.shape))) if len(labels.shape) == 4: labels = labels[None, ...] return torch.count_nonzero(labels, dim=(2, 3, 4))
568a91639a42cf3cd3debe365c5a963512d95dfc
3,639,128
def get_columns_width(user_width): """define width of the report columns""" default_width = [30, 7, 60] if not user_width: return default_width try: return [7 if user_width[i] < 7 else user_width[i] for i in range(3)] except (TypeError, IndexError): _LOGGER.error( "Invalid configuration for table column widths, default values" " used %s", default_width, ) return default_width
96901c79ac7ba2cf6d5dc56fe26d63e81a2437d4
3,639,129
def tx_failure(): """ Failed ```tx```. """ message = request.args.get('m') protocol = request.args.get('p') address = request.args.get('a') command = request.args.get('c') repeats = request.args.get('r') bits = request.args.get('b') response = make_response( render_template( "tx.html", success=False, message=message, protocol=protocol, address=address, command=command, repeats=repeats, bits=bits ) ) response.headers.set('Irbox-Success', 'false') return response
f5938cf59207125030502113ce3b541301279b98
3,639,130
import pydoc def read_docstring(object_): """ Returns object docstring without the FILE information. """ fmt = "```\n{}\n```\n" docs = pydoc.plain(pydoc.render_doc(object_)).split("FILE")[0].rstrip() return fmt.format(docs)
5c21f6eadf400ac9316e3f44d98464536b9b7536
3,639,131
def _bernoulli_spiral(theta, theta_offset=0., *args, **kwargs): """Return Equiangular (Bernoulli's) spiral Args: theta: array-like, angles from polar coordinates to be converted theta_offset: float, angle offset in radians (2*pi = 0) Kwargs: exp_scale: growth rate of the exponential """ exp_scale = kwargs.pop('exp_scale', 0.1) x, y = np.exp(exp_scale * theta) * np.cos(theta + theta_offset), np.exp( exp_scale * theta) * np.sin(theta + theta_offset) x_norm = np.max(np.abs(x)) y_norm = np.max(np.abs(y)) x, y = x / x_norm, y / y_norm return x, y
3e889bc61ab8e93daefc2feeaad40ae86c167627
3,639,132
import httpx import copy def _redacted_to_curl(request: httpx.Request) -> str: """Pass through to curlify2.to_curl that redacts the authorization in the headers """ if (auth_header := request.headers.get('authorization')) is None: return curlify2.to_curl(request) req_copy = copy.copy(request) req_copy.headers = copy.deepcopy(request.headers) if "Bearer" in auth_header: req_copy.headers['authorization'] = "Bearer [REDACTED]" else: req_copy.headers['authorization'] = "[REDACTED]" return curlify2.to_curl(req_copy)
e3a713c3fcf6c875af4cae6ab4c5e696eb0bd432
3,639,133
def get_norm(norm): """ Args: norm (str or callable): Returns: nn.Module or None: the normalization layer """ support_norm_type = ['BN', 'SyncBN', 'FrozenBN', 'GN', 'nnSyncBN'] assert norm in support_norm_type, 'Unknown norm type {}, support norm types are {}'.format( norm, support_norm_type) if isinstance(norm, str): if len(norm) == 0: return None norm = { "BN": nn.BatchNorm2d, "SyncBN": NaiveSyncBatchNorm, "FrozenBN": FrozenBatchNorm2d, "GN": groupNorm, "nnSyncBN": nn.SyncBatchNorm, # keep for debugging }[norm] return norm
299525099ecb38b171a8bcddd2661f943a1514ec
3,639,134
def parse_scales_line(line): """ Args: - line: Returns: - scales_dict """ def advance_past_token(str, token): return str[str.find(token) + len(token):] scales_dict = {} line = advance_past_token(line, 'Scales:') pair_str = line.split(',') for pair_str in pair_str: dname, scale = pair_str.split(':') scales_dict[dname.strip()] = float(scale) return scales_dict
b16e1f431b878aa6418beaed3f141fe928a229e1
3,639,135
import collections def parse_remove_configuration(configuration): """ Turns the configuration line of splitting into a name and a set of params. """ if configuration is None: return "None", None print('conf', configuration) conf_dict = collections.OrderedDict(configuration) name = 'remove' for key in conf_dict.keys(): if key != 'weights' and key != 'boost': name += '_' name += key return name, conf_dict
40bf749c2e142cef534f945179b987fd3c7ba6d8
3,639,136
def _calc_cost_grad_first(data_input, w, label, features): """Calculate the partial cost and gradient.""" train_data = read_stage_file(data_input, features + [label]) size_train = train_data.shape[0] labels = train_data[label].values train_data = train_data[features].values if size_train > 0: dim = train_data.shape[1] if dim != len(w): w = np.zeros(dim, dtype=float) # initial prediction = (labels * np.dot(train_data, w)) # hinge loss (select negative values) idx = np.nonzero((prediction - 1) < 0) loss = np.sum(1 - prediction[idx]) # -y * x for all values lesser than 1 grad = - np.dot(labels[idx], train_data[idx]) return [loss, grad, size_train], [labels, train_data] else: return [0, 0, size_train], [labels, train_data]
d7b62ac39f824f7598cc83a078bc0f5e4e49c4ea
3,639,137
def subtract_dbm(dbm1: float, dbm2: float): """Adds two decibel values""" watt1 = dbm_to_watt(dbm1) watt2 = dbm_to_watt(dbm2) return watt_to_dbm(watt1 - watt2)
ea7c6f9372182a6a39d72265428e86b26b4da765
3,639,138
import os import subprocess def _validateConfigFile(configFilePath): """ Test a configuration file path to be sure it is usable in the plugin Uses a binary included in the project to test a given configuration file, and will raise an exception if something is not valid. The idea if to fail fast at startup for any configuration file issue. :param configFilePath: absolute path to a yaml file :raises ValueError if configFilePath is missing or is not a valid yaml file """ if not os.path.isfile(configFilePath): raise ValueError('missing configuration file') return subprocess.call( [constants.LAYER_ALCHEMY_CONFIGTESTER_BIN, '--config', configFilePath, '--quiet'] )
bc79a36701a8b97f619245e06a2e190936e3ce64
3,639,139
def focused_evaluate(board): """ Given a board, return a numeric rating of how good that board is for the current player. A return value >= 1000 means that the current player has won; a return value <= -1000 means that the current player has lost """ score = board.longest_chain(board.get_current_player_id()) * 10 # Prefer having your pieces in the center of the board. for row in range(6): for col in range(7): if board.get_cell(row, col) == board.get_current_player_id(): score -= abs(3-col) elif board.get_cell(row, col) == board.get_other_player_id(): score += abs(3-col) if board.is_game_over(): if int(board.is_win()) == int(board.get_current_player_id()): score = +1000; score -= board.num_tokens_on_board() elif int(board.is_win()) == int(board.get_other_player_id()): score = -1000 return score
b2cbb91cdb048ef41a13532e400173daa05af4b8
3,639,140
def tanh(x, name=None): """ sparse tanh activation, requiring x to be a sparse coo or sparse csr tensor. .. math:: out = tanh(x) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle from paddle.fluid.framework import _test_eager_guard with _test_eager_guard(): dense_x = paddle.to_tensor([-2, 0, 1], dtype='float32') sparse_x = dense_x.to_sparse_coo(1) out = paddle.sparse.tanh(sparse_x) """ assert in_dynamic_mode(), "Currently, Sparse API only support dynamic mode" if x.is_sparse_coo(): return _C_ops.final_state_sparse_coo_tanh(x) elif x.is_sparse_csr(): return _C_ops.final_state_sparse_csr_tanh(x) else: raise ValueError( "Currently, sparse.tanh only support the input of SparseCooTensor or SparseCsrTensor" )
24bf0889c2e1ba642442e0d8f6b11eeeaf94bf6c
3,639,141
import os import errno import subprocess import sys import json from datetime import datetime def record(args, filename): """Record a snapshot in a json file, as specified by arguments in args. Return 0 on success, 1 on failure.""" LOGGER.debug('In subcommand record.') os.chdir(args.project) projectpath = os.getcwd() # parse addons.make into a list of addons addons_list = [] try: with open('addons.make', 'r') as addons_make: for line in addons_make.readlines(): addons_list.append(line.rstrip()) except IOError as exc: if exc.errno == errno.ENOENT: LOGGER.debug('No addons.make file found.') else: # pragma: no cover raise if len(addons_list) is 0: LOGGER.info('No addons found.') # search config.make for OF location with open('config.make', 'r') as config_make: of_path = '' for line in config_make.readlines(): if 'OF_ROOT =' in line: of_path = line.split('=', 1)[-1].strip() break if len(of_path) == 0: LOGGER.error('Did not find OF location in config.make in ' + os.getcwd()) return 1 LOGGER.info('Processing OF at ' + of_path) os.chdir(of_path) core_dict = {'path': of_path} if validate_git_repo() != 0: LOGGER.error('OF git repo could not be validated successfully.') return 1 LOGGER.debug('Recording commit SHA') out = subprocess.check_output(['git', 'rev-parse', 'HEAD'], universal_newlines=True) core_dict['sha'] = out.strip() LOGGER.debug('OF commit SHA: ' + core_dict['sha']) LOGGER.info('Processing addons') addons_path = os.path.join(os.getcwd(), 'addons') os.chdir(addons_path) # get list of official addons official_addons = [] with open('.gitignore', 'r') as gitignore_file: for line in gitignore_file: if line.startswith('!ofx'): official_addons.append(line[1:].strip()) # prune official addons (which are in the OF repo already) # not very efficient (better with sets), # but irrelevant for the small lists we expect addons_list = [{'name': x} for x in addons_list if x not in official_addons] for addon in addons_list: LOGGER.info('Processing addon ' + addon['name']) try: os.chdir(os.path.join(addons_path, addon['name'])) except Exception as exc: if exc.errno == errno.ENOENT: LOGGER.error(addon['name'] + ' does not exist at ' + addons_path + '.') sys.exit('Aborting') else: # pragma: no cover raise ret = validate_git_repo(strict=False) if ret == 0: out_string = subprocess.check_output(['git', 'rev-parse', 'HEAD'], universal_newlines=True) addon['sha'] = out_string.strip() elif ret == 2: addon['sha'] = 'non-git' else: LOGGER.error(addon['name'] + ' git repo could not be validated successfully.') return 1 LOGGER.info('Storing metadata') os.chdir(projectpath) # Open/initialise metadata file try: with open(filename, 'r') as metafile: json_object = json.load(metafile) LOGGER.info('loaded data from ' + filename) LOGGER.debug(json_object) except IOError as exc: if exc.errno == errno.ENOENT: LOGGER.info(filename + ' does not exist yet. Creating..') open(filename, 'w').close() # create new skeleton json_object json_object = json.loads('{ "snapshots": [] }') else: # pragma: no cover raise # Store/update metadata # check if snapshot entry already exists for entry in json_object['snapshots']: if entry['name'] == args.name: if (args.update is False) and (args.name is not 'latest'): LOGGER.error(args.name + ': entry with the same name already exists. ' + 'Use -u option to overwrite.') return 1 json_object['snapshots'].remove(entry) # write updated entry temp = {'name': args.name, 'date': datetime.now().isoformat(), 'description': args.description, 'core': core_dict, 'addons': addons_list} json_object['snapshots'].append(temp) LOGGER.info('Writing updated data to ' + filename) with open(filename, 'w') as metafile: json.dump(json_object, metafile, indent=1, sort_keys=True) return 0
07393a4d7947914ed694b47badbf0aafc7348dc6
3,639,142
def collector(monkeypatch): """ Unit test: base case """ col = SunPowerPVSupervisorCollector(use_device_data_timestamp=False) attrs = [ 'connect', 'disconnect', 'info_metrics', ] mocked = MagicMock() mocked.connect.return_value = [] mocked.disconnect.return_value = [] mocked.info_metrics.return_value = [] for attr in attrs: monkeypatch.setattr(col, attr, getattr(mocked, attr)) return col
f9e99071b2dde231b4a3fc7c89e00846d26efb12
3,639,143
def GetParents_old(con, cur, term): """ Get all the parents of the term in the ontology tree input: con,cur term : str The term for which to look for parents output: err : str Error message or empty string if ok parents : list of str the parents of term """ # termid = dbidval.GetIdFromDescription(con, cur, 'OntologyTable', term) err, termids = get_term_ids(con, cur, term) if err: debug(3, err) return err, [] # if termid < 0: if len(termids) == 0: err, termid = GetSynonymTermId(con, cur, term) if err: debug(3, 'ontology term not found for %s' % term) return 'ontolgy term %s not found' % term, [] debug(2, 'converted synonym to termid') termids = [termid] # plist = [termid] plist = termids parents = [term] parents_id_set = set() while len(plist) > 0: cid = plist.pop(0) origid = cid if cid in parents_id_set: continue err, cparentids = GetTreeParentsById(con, cur, cid) if err: continue plist.extend(cparentids) for cid in cparentids: err, cparent = dbidval.GetDescriptionFromId(con, cur, 'OntologyTable', cid) if err: continue parents.append(cparent) parents_id_set.add(origid) debug(2, 'found %d parents' % len(parents)) return '', parents
7e3cfcd821d746fc10e68a9ca94ef6f19a3ba7e3
3,639,144
def uploadResourceFileUsingSession(url, session, resourceName, fileName, fullPath, scannerId): """ upload a file for the resource - e.g. a custom lineage csv file works with either csv for zip files (.csv|.zip) returns rc=200 (valid) & other rc's from the post """ print( "uploading file for resource " + url + " resource=" + resourceName ) apiURL = url + "/access/1/catalog/resources/" + resourceName + "/files" print("\turl=" + apiURL) # header = {"accept": "*/*", } params = {"scannerid": scannerId, "filename": fileName, "optionid": "File"} print("\t" + str(params)) # files = {'file': fullPath} mimeType = "text/csv" readMode = "rt" if fileName.endswith(".zip"): mimeType = "application/zip" readMode = "rb" if fileName.endswith(".dsx"): mimeType = "text/plain" file = {"file": (fileName, open(fullPath, readMode), mimeType)} # file = {"file": (fileName, open(fullPath, readMode), )} print(f"\t{file}") # print(f"session header:{session.headers}") uploadResp = session.post( apiURL, data=params, files=file, ) print("\tresponse=" + str(uploadResp.status_code)) if uploadResp.status_code == 200: # valid - return the json return uploadResp.status_code else: # not valid print("\tupload file failed") print("\t" + str(uploadResp)) print("\t" + str(uploadResp.text)) return uploadResp.status_code
8a4a8c21563f1467db284f2e98dd1b48dbb65a3c
3,639,145
from typing import Literal def read_inc_stmt(line: str) -> tuple[Literal["inc"], str] | None: """Attempt to read INCLUDE statement""" inc_match = FRegex.INCLUDE.match(line) if inc_match is None: return None inc_path: str = inc_match.group(1) return "inc", inc_path
64ac4b53363a4aa5b9e2c4cf91b27f169ad0465c
3,639,146
import platform import os def _clear_screen(): """ http://stackoverflow.com/questions/18937058/python-clear-screen-in-shell """ if platform.system() == "Windows": tmp = os.system('cls') #for window else: tmp = os.system('clear') #for Linux return True
2958ef538e95d717d60c577c631ddd91240c48f9
3,639,147
def sent2vec(s, model): """ Transform a sentence to a vector. Pre: No parameters may be None. Args: s: The sentence to transform. model: A word2vec model. Returns: A vector, representing the given sentence. """ words = word_tokenize(s.lower()) # Stopwords and numbers must be removed, as well as words that are not # part of the model M = [model[w] for w in words if w not in stop_words and w.isalpha() and w in model] M = np.array(M) if len(M) > 0: v = M.sum(axis=0) return v / np.sqrt((v ** 2).sum()) else: # When the sentence is empty after removing unvalid tokens, the vector # is equal to the null-vector return model.get_vector('null')
1e61639cc27e3a430257ff3ac4b2a002a42cf177
3,639,148
def subnet_group_present( name, subnet_ids=None, subnet_names=None, description=None, tags=None, region=None, key=None, keyid=None, profile=None, ): """ Ensure ElastiCache subnet group exists. .. versionadded:: 2015.8.0 name The name for the ElastiCache subnet group. This value is stored as a lowercase string. subnet_ids A list of VPC subnet IDs for the cache subnet group. Exclusive with subnet_names. subnet_names A list of VPC subnet names for the cache subnet group. Exclusive with subnet_ids. description Subnet group description. tags A list of tags. region Region to connect to. key Secret key to be used. keyid Access key to be used. profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and keyid. """ ret = {"name": name, "result": True, "comment": "", "changes": {}} exists = __salt__["boto_elasticache.subnet_group_exists"]( name=name, tags=tags, region=region, key=key, keyid=keyid, profile=profile ) if not exists: if __opts__["test"]: ret["comment"] = "Subnet group {} is set to be created.".format(name) ret["result"] = None return ret created = __salt__["boto_elasticache.create_subnet_group"]( name=name, subnet_ids=subnet_ids, subnet_names=subnet_names, description=description, tags=tags, region=region, key=key, keyid=keyid, profile=profile, ) if not created: ret["result"] = False ret["comment"] = "Failed to create {} subnet group.".format(name) return ret ret["changes"]["old"] = None ret["changes"]["new"] = name ret["comment"] = "Subnet group {} created.".format(name) return ret ret["comment"] = "Subnet group present." return ret
d7d441dcfacd92f33b4172e33299df398cfa3ba2
3,639,149
def GetTensorFlowVersion(vm): """Returns the version of tensorflow installed on the vm. Args: vm: the target vm on which to check the tensorflow version Returns: installed python tensorflow version as a string """ stdout, _ = vm.RemoteCommand( ('echo -e "import tensorflow\nprint(tensorflow.__version__)" | {0} python' .format(GetEnvironmentVars(vm))) ) return stdout.strip()
4380ec75f2b5713ab0ead31189cdd7b3f81c6b9b
3,639,150
def process_step_collect_parse(project, step, process_result, format_args=None): """ Function will parse the file from an output :type step: structures.project_step.ProjectStep :type project: structures.project.Project :type process_result: proc.step.step_shell.ProcessStepResult """ logger.debug(f'parsing output artifacts') if not process_result.output: logger.warning(f'Empty output received, make sure the field ouutput is set to \n' f'output: log+stdout \n' f'in order to capture output of the shell step') return [] index = 0 output = process_result.output start = step.collect.parse.start stop = step.collect.parse.start ls, le = len(start), len(stop) length = len(output) reports = list() while True: # no more reports found s = output.find(start, index, length) if s == -1: break # broken report e = output.find(stop, s + 1, length) if e == -1: logger.debug(f'could not find end of the report file while parsing the output') break index = e + le + 1 # try to parse the data or skip it reports.append(output[s + ls:e].strip()) return reports
3f20af272635592bf682f38f29d48e227f631a24
3,639,151
import json from typing import OrderedDict def datetime_column_evrs(): """hand-crafted EVRS for datetime columns""" with open( file_relative_path(__file__, "../fixtures/datetime_column_evrs.json") ) as infile: return expectationSuiteValidationResultSchema.load( json.load(infile, object_pairs_hook=OrderedDict) )
c229f08250c51a805a15db653e3e70513a6f6e9a
3,639,152
from typing import List from typing import Dict def chat_header_args(panel_vars: List[PanelVariable], parsed_args: Dict) -> List: """Creates a list of tuples containing the passed in arguments from the chat command. Args: panel_vars (list(nautobot_plugin_chatops_grafana.models.PanelVariable)): A list of PanelVariable objects. parsed_args (dict): Dictionary of parsed arguments from argparse. Returns: args (List): List of tuples containing the arguments passed into the chat command. Examples: >>> print(chat_header_args([PanelVariable(name="test")], {"test": "testing", "timespan": "P12M"})) [("test", "testing"), ("timespan", "timespan=P12M")] """ args = [] # Check the parsed args to see if they match a panel variable. If so, and the # value isn't the default value, then append it on as a passed in arg. for panel_var in panel_vars: arg = parsed_args.get(panel_var.name) if arg and arg != panel_var.response: args.append((panel_var.name, arg)) continue # If we didn't find the parsed arg in the panel variable, look in the default variables. # Do the same here, if it does not match the default value, append it on as a passed in arg. for def_param, def_value in handler.default_params.items(): arg = parsed_args.get(def_param) if arg and def_value != arg and def_param not in [a[0] for a in args]: args.append((def_param, f"{def_param}={arg}")) return args
645a550d098d71dda9bf21d18b3e98bb5b8f9aa0
3,639,153
def pd_df_timeseries(): """Create a pandas dataframe for testing, with timeseries in one column""" return pd.DataFrame( { "time": pd.date_range(start="1/1/2018", periods=100), "A": np.random.randint(0, 100, size=100), } )
9b6b217e2a4bc80b5f54cecf56c55d5fb229d288
3,639,154
from typing import Union def n_tokens(doc: Union[Doc, Span]): """Return number of words in the document.""" return len(doc._._filtered_tokens)
4b1f1cbb9cb6baf5cb70d6bd38a88d3e0e54610a
3,639,155
def getJobs(numJobs=1): """ Return a list of dictionary data as provided to the plugin `submit` method """ job = {'allowOpportunistic': False, 'bulkid': None, 'cache_dir': TEST_DIR + '/JobCollection_1_0/job_1', 'estimatedDiskUsage': 5000000, 'estimatedJobTime': 28800, 'estimatedMemoryUsage': 6000.0, 'gridid': None, 'id': 1L, 'inputDataset': '/HLTPhysics/Run2017B-PromptReco-v1/AOD', 'inputDatasetLocations': ['T2_CH_CERN_HLT', 'T2_CH_CERN'], 'jobid': 1L, 'location': 'T2_CH_CERN', 'name': '934a7f0d-2934-4939-b366-0a9efe0df15e-0', 'numberOfCores': 8, 'packageDir': TEST_DIR + '/batch_1-0', 'plugin': 'SimpleCondorPlugin', 'possibleSites': [u'T2_CH_CERN', u'T1_US_FNAL'], 'potentialSites': frozenset([u'T1_US_FNAL', u'T2_CH_CERN']), 'proxyPath': None, 'request_name': 'amaltaro_test_submission_180620_105409_2045', 'retry_count': 0L, 'sandbox': TEST_DIR + '/Blah-Sandbox.tar.bz2', 'scramArch': ['slc6_amd64_gcc630'], 'siteName': u'T2_CH_CERN', 'site_cms_name': 'T2_CH_CERN', 'status': None, 'status_time': None, 'swVersion': ['CMSSW_9_4_0'], 'taskPriority': 0L, 'task_id': 383L, 'task_name': '/amaltaro_test_submission_180620_105409_2045/Blah_Task', 'task_type': 'Processing', 'userdn': '/DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=amaltaro/CN=718748/CN=Alan Malta Rodrigues', 'usergroup': 'unknown', 'userrole': 'unknown', 'wf_priority': 420000L} jobs = [] for i in range(0, numJobs): job.update({'id': long(i), 'jobid': long(i), 'name': makeUUID()}) jobs.append(deepcopy(job)) return jobs
56543a5a6ef66ec7fdf9f3ef26594eafa3f7bb41
3,639,156
def create_test_user(): """Creates a new user with random username for testing If two randomly assigned usernames overlap, it will fail """ UserModel = get_user_model() username = '%s_%s' % ('test', uuid4().get_hex()[:10],) user = UserModel.objects.create(username=username) return user
d20ecbdb07db886a526402c09d7d14d768329c2b
3,639,157
def make_logical_or_tests(options): """Make a set of tests to do logical_or.""" return _make_logical_tests(tf.logical_or)(options, expected_tf_failures=1)
b4c7f5c0d89139938881f7301930651c9a3e7d0a
3,639,158
def guess(key, values): """ Returns guess values for the parameters of this function class based on the input. Used for fitting using this class. :param key: :param values: :return: """ return [min(values)-max(values), (max(key)-min(key))/3, min(values)]
908868b150340b02ba61fcc6ccf5937ba31bfe30
3,639,159
from datetime import datetime import time def add_metadata_values_to_record(record_message, schema_message): """Populate metadata _sdc columns from incoming record message The location of the required attributes are fixed in the stream """ extended_record = record_message['record'] extended_record['_sdc_batched_at'] = datetime.now().isoformat() extended_record['_sdc_deleted_at'] = record_message.get('record', {}).get('_sdc_deleted_at') extended_record['_sdc_extracted_at'] = record_message.get('time_extracted') extended_record['_sdc_primary_key'] = schema_message.get('key_properties') extended_record['_sdc_received_at'] = datetime.now().isoformat() extended_record['_sdc_sequence'] = int(round(time.time() * 1000)) extended_record['_sdc_table_version'] = record_message.get('version') return extended_record
e85e2620b816907204443af1c014ca4d927cb20c
3,639,160
from datetime import datetime def manipulate_reservation_action(request: HttpRequest, default_foreward_url: str): """ This function is used to alter the reservation beeing build inside a cookie. This function automatically crafts the required response. """ js_string: str = "" r: GroupReservation = None u: Profile = get_current_user(request) forward_url: str = default_foreward_url if request.GET.get("redirect"): forward_url = request.GET["redirect"] if "srid" in request.GET: if not request.GET.get("rid"): return HttpResponseRedirect("/admin?error=missing%20primary%20reservation%20id") srid: int = int(request.GET["srid"]) sr: SubReservation = None if srid == 0: sr = SubReservation() else: sr = SubReservation.objects.get(id=srid) if request.POST.get("notes"): sr.notes = escape(request.POST["notes"]) else: sr.notes = " " sr.primary_reservation = GroupReservation.objects.get(id=int(request.GET["rid"])) sr.save() print(request.POST) print(sr.notes) return HttpResponseRedirect("/admin/reservations/edit?rid=" + str(int(request.GET["rid"])) + "&srid=" + str(sr.id)) if "rid" in request.GET: # update reservation r = GroupReservation.objects.get(id=int(request.GET["rid"])) elif u.number_of_allowed_reservations > GroupReservation.objects.all().filter(createdByUser=u).count(): r = GroupReservation() r.createdByUser = u r.ready = False r.open = True r.pickupDate = datetime.datetime.now() else: return HttpResponseRedirect("/admin?error=Too%20Many%20reservations") if request.POST.get("notes"): r.notes = escape(request.POST["notes"]) if request.POST.get("contact"): r.responsiblePerson = escape(str(request.POST["contact"])) if (r.createdByUser == u or o.rights > 1) and not r.submitted: r.save() else: return HttpResponseRedirect("/admin?error=noyb") response: HttpResponseRedirect = HttpResponseRedirect(forward_url + "?rid=" + str(r.id)) return response
f93b8e2ed68daebdf04aa15898e52f41a5df1e49
3,639,161
def _dense_to_sparse(data): """Convert a numpy array to a tf.SparseTensor.""" indices = np.where(data) return tf.SparseTensor( np.stack(indices, axis=-1), data[indices], dense_shape=data.shape)
b1fe24dd82eff2aa31e40f6b86e75f655e7141c7
3,639,162
def getflookup(facetid): """ find out if a facet with this id has been saved to the facet_files table """ found = FacetLookup.objects.all().values_list('graphdb', flat=True).get(id=facetid) if found: return True else: return False
a1c6b0ec7e8ab96eef16574e64ac1948f0fa8419
3,639,163
def numeric_to_string(year): """ Convert numeric year to string """ if year < 0 : yearstring = "{}BC".format(year*-1) elif year >= 0: yearstring = "{}AD".format(year) else: raise return yearstring
3469e2dd5e05c49b4861782da2dd88bac781c61d
3,639,164
def _get_num_ve_sve_and_max_num_cells(cell_fracs): """ Calculate the num_ve, num_sve and max_num_cells Parameters ---------- cell_fracs : structured array, optional A sorted, one dimensional array, each entry containing the following fields: :idx: int The volume element index. :cell: int The geometry cell number. :vol_frac: float The volume fraction of the cell withing the mesh ve. :rel_error: float The relative error associated with the volume fraction. Returns ------- num_ve : int Number of the total voxels num_sve : int Number of the total subvoxels, eqaul to or greater than num_ve max_num_cells : int Max number of cells (subvoxels) in a voxel """ num_sve = len(cell_fracs) num_ve = len(set(cell_fracs["idx"])) max_num_cells = -1 for i in range(num_sve): max_num_cells = max(max_num_cells, len(cell_fracs[cell_fracs["idx"] == i])) return num_ve, num_sve, max_num_cells
c0d154898bbfeafd66d89a2741dda8c2aa885a9a
3,639,165
from datetime import datetime def is_void(at): """Returns True if the given object is an ``adatetime`` with all of its attributes equal to None. """ if isinstance(at, datetime): return False return all((getattr(at, attr) is None) for attr in adatetime.units)
49744c361177060b508d5537a1ace16da6aef37d
3,639,166
def _get_metric_fn(params): """Get the metrix fn used by model compile.""" batch_size = params["batch_size"] def metric_fn(y_true, y_pred): """Returns the in_top_k metric.""" softmax_logits = y_pred logits = tf.slice(softmax_logits, [0, 1], [batch_size, 1]) # The dup mask should be obtained from input data, but we did not yet find # a good way of getting it with keras, so we set it to zeros to neglect the # repetition correction dup_mask = tf.zeros([batch_size, 1]) cross_entropy, metric_fn, in_top_k, ndcg, metric_weights = ( neumf_model.compute_eval_loss_and_metrics_helper( logits, softmax_logits, dup_mask, params["num_neg"], params["match_mlperf"], params["use_xla_for_gpu"])) in_top_k = tf.cond( tf.keras.backend.learning_phase(), lambda: tf.zeros(shape=in_top_k.shape, dtype=in_top_k.dtype), lambda: in_top_k) return in_top_k return metric_fn
2793975542241f36850aaaaef4256aa59ea4873f
3,639,167
def check(): """Check if all required modules are present. Returns 0 on success, non-zero on error. """ flag = 0 for package in import_list: try: exec( "import " + package ) except Exception: log.error( "Missing module: %s", package ) flag = True if flag: return 1 return 0
027ae4346a642740ca4b1ef4ebec5a831688f850
3,639,168
def flip_nums(text): """ flips numbers on string to the end (so 2019_est --> est_2019)""" if not text: return '' i = 0 s = text + '_' while text[i].isnumeric(): s += text[i] i += 1 if text[i] == '_': i += 1 return s[i:]
e0534e25e95b72e1d6516111413e32a6dae207ef
3,639,169
def nnls(A, b, k=None, maxiter=None): """ Compute the least-squares solution to the equation ``A @ x = b`` subject to the nonnegativity constraints ``x[:k] >= 0``. Parameters ---------- A : array_like, shape (m, n) Matrix `A` as shown above. b : array_like, shape (m,) Right-hand side vector `b` as shown above. k : int, optional Number of nonnegativity constraints. The first `k` components of the solution vector are nonnegative (the default is ``A.shape[1]``). maxiter : int, optional Maximum number of inner iterations (the default is ``3 * A.shape[1]``). Returns ------- x : numpy.ndarray, shape (n,) Solution vector ``x`` as shown above. See Also -------- bvtcg : Bounded variable truncated conjugate gradient cpqp : Convex piecewise quadratic programming lctcg : Linear constrained truncated conjugate gradient Notes ----- The method is adapted from the NNLS algorithm [1]_. References ---------- .. [1] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Classics Appl. Math. Philadelphia, PA, US: SIAM, 1974. """ A = np.atleast_2d(A) if A.dtype.kind in np.typecodes['AllInteger']: A = np.asarray(A, dtype=float) A = np.asfortranarray(A) b = np.atleast_1d(b) if b.dtype.kind in np.typecodes['AllInteger']: b = np.asarray(b, dtype=float) n = A.shape[1] if k is None: k = n if k < 0 or k > n: raise ValueError('Number of nonnegative constraints is invalid') if maxiter is None: maxiter = 3 * n # Check the sizes of the inputs. assert_(A.ndim == 2) assert_(b.ndim == 1) assert_(A.shape[0] == b.size) x = _nnls(A, b, k, maxiter) # noqa return np.array(x, dtype=float)
4d6c7e7d53e570222b752c4bf2013100c15b7297
3,639,170
import os def read_inputs(filename, height, padding, num_quant_levels, p_norm, predict_semantics): """Reads inputs for scan completion. Reads input_sdf, target_df/sem (if any), previous predicted df/sem (if any). Args: filename: TFRecord containing input_sdf. height: height in voxels to be processed by model. padding: amount of padding (in voxels) around test scene (height is cropped by padding for processing). num_quant_levels: amount of quantization (if applicable). p_norm: which p-norm is used (0, 1, 2; 0 for none). predict_semantics: whether semantics is predicted. Returns: input scan: input_scan as np array. ground truth targets: target_scan/target_semantics as np arrays (if any). previous resolution predictions: prediction_scan_low_resolution / prediction_semantics_low_resolution as np arrays (if any). """ for record in tf.python_io.tf_record_iterator(filename): example = tf.train.Example() example.ParseFromString(record) feature_map = example.features # Input scan as sdf. input_scan = read_input_float_feature(feature_map, 'input_sdf', shape=None) (scene_dim_z, scene_dim_y, scene_dim_x) = input_scan.shape # Target scan as df. if 'target_df' in feature_map.feature: target_scan = read_input_float_feature( feature_map, 'target_df', [scene_dim_z, scene_dim_y, scene_dim_x]) if 'target_sem' in feature_map.feature: target_semantics = read_input_bytes_feature( feature_map, 'target_sem', [scene_dim_z, scene_dim_y, scene_dim_x]) # Adjust dimensions for model (clamp height, make even for voxel groups). height_y = min(height, scene_dim_y - padding) scene_dim_x = (scene_dim_x // 2) * 2 scene_dim_y = (height_y // 2) * 2 scene_dim_z = (scene_dim_z // 2) * 2 input_scan = input_scan[:scene_dim_z, padding:padding + scene_dim_y, : scene_dim_x] input_scan = util.preprocess_sdf(input_scan, constants.TRUNCATION) if target_scan is not None: target_scan = target_scan[:scene_dim_z, padding:padding + scene_dim_y, : scene_dim_x] target_scan = util.preprocess_df(target_scan, constants.TRUNCATION) if target_semantics is not None: target_semantics = target_semantics[:scene_dim_z, padding: padding + scene_dim_y, :scene_dim_x] target_semantics = util.preprocess_target_sem(target_semantics) # Default values for previous resolution inputs. prediction_scan_low_resolution = np.zeros( [scene_dim_z // 2, scene_dim_y // 2, scene_dim_x // 2, 2]) prediction_semantics_low_resolution = np.zeros( [scene_dim_z // 2, scene_dim_y // 2, scene_dim_x // 2], dtype=np.uint8) if target_semantics is None: target_semantics = np.zeros([scene_dim_z, scene_dim_y, scene_dim_x]) # Load previous level prediction. if not FLAGS.is_base_level: previous_file = os.path.join( FLAGS.output_dir_prev, 'level' + str(FLAGS.hierarchy_level - 1) + '_' + os.path.splitext(os.path.basename(filename))[0] + 'pred.tfrecord') tf.logging.info('Reading previous predictions frome file: %s', previous_file) assert os.path.isfile(previous_file) for record in tf.python_io.tf_record_iterator(previous_file): prev_example = tf.train.Example() prev_example.ParseFromString(record) prev_feature_map = prev_example.features prediction_scan_low_resolution = read_input_float_feature( prev_feature_map, 'prediction_df', None) (prev_scene_dim_z, prev_scene_dim_y, prev_scene_dim_x) = prediction_scan_low_resolution.shape offset_z = (prev_scene_dim_z - scene_dim_z // 2) // 2 offset_x = (prev_scene_dim_x - scene_dim_x // 2) // 2 prediction_scan_low_resolution = prediction_scan_low_resolution[ offset_z:offset_z + scene_dim_z // 2, :scene_dim_y // 2, offset_x: offset_x + scene_dim_x // 2] prediction_scan_low_resolution = util.preprocess_target_sdf( prediction_scan_low_resolution, num_quant_levels, constants.TRUNCATION, p_norm == 0) if predict_semantics: prediction_semantics_low_resolution = read_input_bytes_feature( prev_feature_map, 'prediction_sem', [prev_scene_dim_z, prev_scene_dim_y, prev_scene_dim_x]) prediction_semantics_low_resolution = prediction_semantics_low_resolution[ offset_z:offset_z + scene_dim_z // 2, :scene_dim_y // 2, offset_x: offset_x + scene_dim_x // 2] return (input_scan, target_scan, target_semantics, prediction_scan_low_resolution, prediction_semantics_low_resolution)
fac5ec6ae02bf930d881a75d483f4001aabbf9d4
3,639,171
def f_elas_linear_tsswlc(x, t3, t2, e_b, gam, e_par, e_perp, eta): """Compute spring forces and torques on each bead of dsswlc.""" N, _ = x.shape f = np.zeros(x.shape) t = np.zeros(x.shape) for i in range(0, N - 1): dx = x[i+1] - x[i] dx_par = dx @ t3[i] dx_perp = dx - dx_par*t3[i] cos_u1_u2 = t3[i+1]@t3[i] Gi = t3[i+1] - cos_u1_u2*t3[i] - eta*dx_perp Fi = -eta*e_b*Gi + e_par*(dx_par - gam)*t3[i] + e_perp*dx_perp f[i] += Fi f[i + 1] -= Fi Gi = (t3[i+1] - t3[i]) - eta*dx_perp t[i] += e_b*Gi - eta*e_b*dx_par*Gi + eta*e_b*(1 - cos_u1_u2)*dx \ - e_par*(dx_par - gam)*dx + e_perp*dx_par*dx_perp t[i+1] -= e_b*Gi # TODO: implement extra torque due to orientation differences return f, t
b5a217521667e95b4ba7bafa74f2d1371e01dc34
3,639,172
def extent2(texture): """ Returns the extent of the image data (0.0-1.0, 0.0-1.0) inside its texture owner. Textures have a size power of 2 (512, 1024, ...), but the actual image can be smaller. For example: a 400x250 image will be loaded in a 512x256 texture. Its extent is (0.78, 0.98), the remainder of the texture is transparent. """ return (texture.tex_coords[3], texture.tex_coords[7])
16c6d220ad48201fd133ed11c97452bf0831c0d8
3,639,173
def calculate_handlen(hand): """ Returns the length (number of letters) in the current hand. hand: dictionary (string-> int) returns: integer """ # Store the total length of the hand hand_len = 0 # For every letter in the hand for key in hand.keys(): # Add the number of times that letter appears in the hand # to the variable storing hand length hand_len += hand[key] # Return the number of letters in the current hand return hand_len
297f8af5943bf87bb7999a1212d54430857de12b
3,639,174
def add_fieldmap(fieldmap: BIDSFile, layout: BIDSLayout) -> dict: """ Locates fieldmap-related json file and adds them in an appropriate dictionary with keys that describe their directionality Parameters ---------- fieldmap : BIDSFile Fieldmap's NIfTI layout : BIDSLayout BIDSLayout instance for the queried bids directory. Returns ------- dict Dictionary of fieldmap's NIfTI and json with appropriate keys. """ entities = fieldmap.get_entities() entities.pop("fmap") direction = entities.get("direction") entities["extension"] = "json" json = layout.get(**entities) fieldmap_dict = {f"fmap_{direction}": fieldmap.path} if json: fieldmap_dict[f"fmap_{direction}_json"] = json[0].path return fieldmap_dict
227fa27d9ecb2f260700debc6b2837d60018bd61
3,639,175
def fit_plane_lstsq(XYZ): """ Fits a plane to a point cloud. Where z=a.x+b.y+c; Rearranging: a.x+b.y-z+c=0 @type XYZ: list @param XYZ: list of points @rtype: np.array @return: normalized normal vector of the plane in the form C{(a,b,-1)} """ [rows, cols] = XYZ.shape G = np.ones((rows, 3)) G[:, 0] = XYZ[:, 0] # X G[:, 1] = XYZ[:, 1] # Y Z = XYZ[:, 2] (a, b, c), resid, rank, s = np.linalg.lstsq(G, Z) normal = (a, b, -1) nn = np.linalg.norm(normal) normal = normal / nn return normal
c734cb17462e72c40bb65464c42d298c21e4a922
3,639,176
def clean_name(name: str) -> str: """Clean a string by capitalizing and removing extra spaces. Args: name: the name to be cleaned Returns: str: the cleaned name """ name = " ".join(name.strip().split()) return str(titlecase.titlecase(name))
e19354767d38164004c984c76827b2882ef4c4fd
3,639,177
from typing import Callable from re import T from typing import List def pull_list(buf: Buffer, capacity: int, func: Callable[[], T]) -> List[T]: """ Pull a list of items. """ items = [] with pull_block(buf, capacity) as length: end = buf.tell() + length while buf.tell() < end: items.append(func()) return items
ab9833fdab157e05df00d65dee96080c98140bb2
3,639,178
def ResNet( stack_fn, preact, use_bias, model_name='resnet', include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation='softmax', bottomright_maxpool_test=False, use_group_norm=False, **kwargs): """Instantiates the ResNet, ResNetV2, and ResNeXt architecture. Reference: - [Deep Residual Learning for Image Recognition]( https://arxiv.org/abs/1512.03385) (CVPR 2015) Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. Arguments: stack_fn: a function that returns output tensor for the stacked residual blocks. preact: whether to use pre-activation or not (True for ResNetV2, False for ResNet and ResNeXt). use_bias: whether to use biases for convolutional layers or not (True for ResNet and ResNetV2, False for ResNeXt). model_name: string, model name. include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `channels_first` data format). It should have exactly 3 inputs channels. pooling: optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. **kwargs: For backwards compatibility only. Returns: A `keras.Model` instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. ValueError: if `classifier_activation` is not `softmax` or `None` when using a pretrained top layer. """ global layers if 'layers' in kwargs: layers = kwargs.pop('layers') else: layers = VersionAwareLayers() if kwargs: raise ValueError('Unknown argument(s): %s' % (kwargs,)) if not (weights in {'imagenet', None} or file_io.file_exists_v2(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as `"imagenet"` with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=224, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1 x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)), name='conv1_pad')(img_input) x = layers.Conv2D( 64, 7, strides=2, use_bias=use_bias and not use_group_norm, name='conv1_conv')(x) if use_group_norm: def norm_layer(name): return tfa.layers.GroupNormalization(epsilon=batchnorm_epsilon, name=name) else: def norm_layer(name): return layers.BatchNormalization( axis=bn_axis, epsilon=batchnorm_epsilon, momentum=batchnorm_momentum, name=name) if not preact: x = norm_layer(name='conv1_gn' if use_group_norm else 'conv1_bn')(x) x = layers.Activation('relu', name='conv1_relu')(x) padding_layer = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name='pool1_pad') if bottomright_maxpool_test: padding_test = layers.ZeroPadding2D(padding=((0, 2), (0, 2)), name='pool1_pad') padding_layer = TrainTestSwitchLayer(padding_layer, padding_test) x = padding_layer(x) x = layers.MaxPooling2D(3, strides=2, name='pool1_pool')(x) x = stack_fn(x) if preact: x = norm_layer(name='post_gn' if use_group_norm else 'post_bn')(x) x = layers.Activation('relu', name='post_relu')(x) if include_top: x = layers.GlobalAveragePooling2D(name='avg_pool')(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Dense(classes, activation=classifier_activation, name='predictions')(x) else: if pooling == 'avg': x = layers.GlobalAveragePooling2D(name='avg_pool')(x) elif pooling == 'max': x = layers.GlobalMaxPooling2D(name='max_pool')(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. if use_group_norm: model_name = model_name + '_groupnorm' model = training.Model(inputs, x, name=model_name) # Load weights. if (weights == 'imagenet') and (model_name in WEIGHTS_HASHES): if include_top: file_name = model_name + f'_weights_tf_dim_ordering_tf_kernels.h5' file_hash = WEIGHTS_HASHES[model_name][0] else: file_name = model_name + f'_weights_tf_dim_ordering_tf_kernels_notop.h5' file_hash = WEIGHTS_HASHES[model_name][1] weights_path = data_utils.get_file( file_name, BASE_WEIGHTS_PATH + file_name, cache_subdir='models', file_hash=file_hash) model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model
810b04481eb6ad5d8b3723b87581b3f2136cc80f
3,639,179
import yaml def read_yaml(yaml_path): """ Read yaml file from the path :param yaml_path: :return: """ stream = open(yaml_path, "r") docs = yaml.load_all(stream) result = dict() for doc in docs: for k, v in doc.items(): result[k] = v return result
a3f32d6f5c6cb5c8e94ad9b68a0540aa001f83b2
3,639,180
def _server_allow_run_on_save() -> bool: """Allows users to automatically rerun when app is updated. Default: true """ return True
3a895abd8201ce97c8f2f928b841eb86bf6327d1
3,639,181
def _strip_schema(url): """Returns the url without the s3:// part""" result = urlparse(url) return result.netloc + result.path
9e7dc96c23d799f202603109cd08b2fe049951a5
3,639,182
def simple_word_tokenize(text, _split=GROUPING_SPACE_REGEX.split): """ Split text into tokens. Don't split by a hyphen. Preserve punctuation, but not whitespaces. """ return [t for t in _split(text) if t and not t.isspace()]
5b9e66d2a369340028b4ece2eee083511d0e9746
3,639,183
def merge_strategy(media_identifier, target_site, sdc_data, strategy): """ Check if the file already holds Structured Data, if so resolve what to do. @param media_identifier: Mid of the file @param target_site: pywikibot.Site object to which file should be uploaded @param sdc_data: internally formatted Structured Data in json format @param strategy: Strategy used for merging uploaded data with pre-existing data. Allowed values are None, "New", "Blind", "Add" and "Nuke". @return: dict of pids and caption languages removed from sdc_data due to conflicts. @raises: ValueError, SdcException """ prior_data = _get_existing_structured_data(media_identifier, target_site) if not prior_data: # even unknown strategies should pass if there is no prior data return if not strategy: raise SdcException( 'warning', 'pre-existing sdc-data', ('Found pre-existing SDC data, no new data will be added. ' 'Found data: {}'.format(prior_data)) ) strategy = strategy.lower() if strategy in ('new', 'add'): pre_pids = prior_data['statements'].keys() pre_langs = prior_data['labels'].keys() new_langs = sdc_data.get('caption', dict()).keys() if strategy == 'add': pid_clash = set(pre_pids).intersection(sdc_data.keys()) lang_clash = set(pre_langs).intersection(new_langs) for pid in pid_clash: sdc_data.pop(pid, None) for lang in lang_clash: sdc_data['caption'].pop(lang, None) if (not any(is_prop_key(key) for key in sdc_data.keys()) and not sdc_data.get('caption')): # warn if not data left to upload raise SdcException( 'warning', 'all conflicting pre-existing sdc-data', ('Found pre-existing SDC data, no new non-conflicting ' 'data could be added. Found data: {}'.format( prior_data)) ) elif pid_clash or lang_clash: return {'pids': pid_clash, 'langs': lang_clash} elif (not set(pre_pids).isdisjoint(sdc_data.keys()) or not set(pre_langs).isdisjoint(new_langs)): raise SdcException( 'warning', 'conflicting pre-existing sdc-data', ('Found pre-existing SDC data, no new data will be added. ' 'Found data: {}'.format(prior_data)) ) elif strategy not in STRATEGIES: raise ValueError( 'The `strategy` parameter must be None, "{0}" or "{1}" ' 'but "{2}" was provided'.format( '", "'.join([s.capitalize() for s in STRATEGIES[:-1]]), STRATEGIES[-1].capitalize(), strategy.capitalize())) # pass if strategy is "Blind" or "Nuke"
0e59cc312e00cc7d492bfe725b0a9a297734a5e0
3,639,184
def convert_translations_to_dict(js_translations): """Convert a GNUTranslations object into a dict for jsonifying. Args: js_translations: GNUTranslations object to be converted. Returns: A dictionary representing the GNUTranslations object. """ plural, n_plural = _get_plural_forms(js_translations) translations_dict = {'plural': plural, 'catalog': {}, 'fallback': None} if js_translations._fallback is not None: translations_dict['fallback'] = convert_translations_to_dict( js_translations._fallback ) for key, value in js_translations._catalog.items(): if key == '': continue if isinstance(key, basestring): translations_dict['catalog'][key] = value elif isinstance(key, tuple): if key[0] not in translations_dict['catalog']: translations_dict['catalog'][key[0]] = [''] * n_plural translations_dict['catalog'][key[0]][int(key[1])] = value return translations_dict
8db0fc022002504a943f46b429ca71b6e0e90b06
3,639,185
import asyncio def reduce(coro, iterable, initializer=None, limit=1, right=False, loop=None): """ Apply function of two arguments cumulatively to the items of sequence, from left to right, so as to reduce the sequence to a single value. Reduction will be executed sequentially without concurrency, so passed values would be in order. This function is the asynchronous coroutine equivalent to Python standard `functools.reduce()` function. This function is a coroutine. This function can be composed in a pipeline chain with ``|`` operator. Arguments: coro (coroutine function): reducer coroutine binary function. iterable (iterable|asynchronousiterable): an iterable collection yielding coroutines functions. initializer (mixed): initial accumulator value used in the first reduction call. limit (int): max iteration concurrency limit. Use ``0`` for no limit. right (bool): reduce iterable from right to left. loop (asyncio.BaseEventLoop): optional event loop to use. Raises: TypeError: if input arguments are not valid. Returns: mixed: accumulated final reduced value. Usage:: async def reducer(acc, num): return acc + num await paco.reduce(reducer, [1, 2, 3, 4, 5], initializer=0) # => 15 """ assert_corofunction(coro=coro) assert_iter(iterable=iterable) # Reduced accumulator value acc = initializer # If interable is empty, just return the initializer value if len(iterable) == 0: return initializer # Create concurrent executor pool = ConcurrentExecutor(limit=limit, loop=loop) # Reducer partial function for deferred coroutine execution def reducer(element): @asyncio.coroutine def wrapper(): nonlocal acc acc = yield from coro(acc, element) return wrapper # Support right reduction if right: iterable.reverse() # Iterate and attach coroutine for defer scheduling for element in iterable: pool.add(reducer(element)) # Wait until all coroutines finish yield from pool.run(ignore_empty=True) # Returns final reduced value return acc
64b55a082df11fa9d6b7971ecd1508c1e4c9f1c9
3,639,186
def sigm_temp(base_sim_param, assumptions, t_base_type): """Calculate base temperature depending on sigmoid diff and location Parameters ---------- base_sim_param : dict Base simulation assumptions assumptions : dict Dictionary with assumptions Return ------ t_base_cy : float Base temperature of current year Note ---- Depending on the base temperature in the base and end year a sigmoid diffusion from the base temperature from the base year to the end year is calculated This allows to model changes e.g. in thermal confort """ # Base temperature of end year minus base temp of base year t_base_diff = assumptions[t_base_type]['end_yr'] - assumptions[t_base_type]['base_yr'] # Sigmoid diffusion t_base_frac = diffusion_technologies.sigmoid_diffusion( base_sim_param['base_yr'], base_sim_param['curr_yr'], base_sim_param['end_yr'], assumptions['smart_meter_diff_params']['sig_midpoint'], assumptions['smart_meter_diff_params']['sig_steeppness'] ) # Temp diff until current year t_diff_cy = t_base_diff * t_base_frac # Add temp change to base year temp t_base_cy = t_diff_cy + assumptions[t_base_type]['base_yr'] return t_base_cy
276af880050698a9f15dcd142aac952809807fdb
3,639,187
import select import socket def is_socket_closed(sock): """Check if socket ``sock`` is closed.""" if not sock: return True try: if not poll: # pragma nocover if not select: return False try: return bool(select([sock], [], [], 0.0)[0]) except socket.error: return True # This version is better on platforms that support it. p = poll() p.register(sock, POLLIN) for (fno, ev) in p.poll(0.0): if fno == sock.fileno(): # Either data is buffered (bad), or the connection is dropped. return True except Exception: return True
e89ddec6e7603b5636f6a6d87831d12f0a76e9d9
3,639,188
def _fit_ovo_binary(estimator, X, y, i, j): """Fit a single binary estimator (one-vs-one).""" cond = np.logical_or(y == i, y == j) y = y[cond] y_binary = np.empty(y.shape, np.int) y_binary[y == i] = 0 y_binary[y == j] = 1 ind = np.arange(X.shape[0]) return _fit_binary(estimator, X[ind[cond]], y_binary, classes=[i, j])
59325562549656d35b615a3274112357b0c4854c
3,639,189
def get_implicit_permissions_for_user(user: str, domain=None): """ GetImplicitPermissionsForUser gets implicit permissions for a user or role. Compared to GetPermissionsForUser(), this function retrieves permissions for inherited roles. For example: p, admin, data1, read p, alice, data2, read g, alice, admin GetPermissionsForUser("alice") can only get: [["alice", "data2", "read"]]. But GetImplicitPermissionsForUser("alice") will get: [["admin", "data1", "read"], ["alice", "data2", "read"]]. """ return enforcer.get_implicit_permissions_for_user(user, domain=None)
08477a3ac772597f66f36b7b04fc7d8a29f2522b
3,639,190
def Law_f(text): """ :param text: The "text" of this Law """ return '\\begin{block}{Law}\n' + text + '\n\\end{block}\n'
594b279c5971a9d379666179c4d0633fc02a8bd9
3,639,191
import operator from typing import OrderedDict def ordered_dict_intersection(first_dict, second_dict, compat=operator.eq): """Return the intersection of two dictionaries as a new OrderedDict. Items are retained if their keys are found in both dictionaries and the values are compatible. Parameters ---------- first_dict, second_dict : dict-like Mappings to merge. compat : function, optional Binary operator to determine if two values are compatible. By default, checks for equality. Returns ------- intersection : OrderedDict Intersection of the contents. """ new_dict = OrderedDict(first_dict) remove_incompatible_items(new_dict, second_dict, compat) return new_dict
cfef1a1d5c3cc9fc5b792a68bae0fe8279b752da
3,639,192
import scipy def get_cl2cf_matrices(theta_bin_edges, lmin, lmax): """ Returns the set of matrices to go from one entire power spectrum to one binned correlation function. Args: theta_bin_edges (1D numpy array): Angular bin edges in radians. lmin (int): Minimum l. lmax (int): Maximum l. Returns: (2D numpy array, \ 2D numpy array, \ 2D numpy array): Tuple of matrices to each go from one entire power spectrum to one binned \ correlation function for different spins: (0-0, 2-2, 0-2). The spin-2-2 matrix is only for \ xi+, not xi-. """ # Calculate Legendre functions and their derivatives up to lmax # pl and dpl indexed as [theta_idx, l] cos_thetas = np.cos(theta_bin_edges) pl_dpl = np.array([scipy.special.lpn(lmax + 1, cos_theta) for cos_theta in cos_thetas]) pl = pl_dpl[:, 0, :] dpl = pl_dpl[:, 1, :] # Calculate various offset combinations of Pl and dPl, and some other useful things assert lmin >= 2 plplus1 = pl[:, (lmin + 1):] # first is l=lmin+1, last is lmax+1 plminus1 = pl[:, (lmin - 1):lmax] # first is l=lmin-1, last is lmax-1 xpl = cos_thetas[:, np.newaxis] * pl[:, lmin:(lmax + 1)] xdpl = cos_thetas[:, np.newaxis] * dpl[:, lmin:(lmax + 1)] dplminus1 = dpl[:, (lmin - 1):lmax] xdplminus1 = cos_thetas[:, np.newaxis] * dplminus1 ell = np.arange(lmin, lmax + 1) two_ell_plus1 = 2 * ell + 1 cos_theta_diff = np.diff(cos_thetas) # Calculate bin-averaged Pl, Pl^2 and Gl+/- following Fang et al. eqs 5.6-5.8 # (Also Friedrich et al. DES Y3 covariance paper, which uses a different sign convention but this cancels out.) # All of these vectorised equations have been validated against much slower loop implementations # Pl pl_bin_top_prediff = plplus1 - plminus1 pl_bin_top = np.diff(pl_bin_top_prediff, axis=0) pl_bin_bottom = np.outer(cos_theta_diff, two_ell_plus1) pl_bin = pl_bin_top / pl_bin_bottom # Pl^2 plminus1_coeff = ell + 2 / two_ell_plus1 plminus1_term = plminus1_coeff[np.newaxis, :] * plminus1 xpl_coeff = 2 - ell xpl_term = xpl_coeff[np.newaxis, :] * xpl plplus1_coeff = 2 / two_ell_plus1 plplus1_term = plplus1_coeff[np.newaxis, :] * plplus1 pl2_bin_top_prediff = plminus1_term + xpl_term - plplus1_term pl2_bin_top = np.diff(pl2_bin_top_prediff, axis=0) pl2_bin_bottom = cos_theta_diff[:, np.newaxis] pl2_bin = pl2_bin_top / pl2_bin_bottom # Gl2+ + Gl2- plminus1_coeff = - ell * (ell - 1) / 2 * (ell + 2 / two_ell_plus1) - (ell + 2) plminus1_term = plminus1_coeff[np.newaxis, :] * plminus1 xpl_coeff = - ell * (ell - 1) * (2 - ell) / 2 xpl_term = xpl_coeff[np.newaxis, :] * xpl plplus1_coeff = ell * (ell - 1) / two_ell_plus1 plplus1_term = plplus1_coeff[np.newaxis, :] * plplus1 dpl_coeff = 4 - ell dpl_term = dpl_coeff * dpl[:, lmin:(lmax + 1)] xdplminus1_coeff = ell + 2 xdplminus1_term = xdplminus1_coeff[np.newaxis, :] * xdplminus1 xdpl_coeff = 2 * (ell - 1) xdpl_term = xdpl_coeff[np.newaxis, :] * xdpl pl_coeff = - 2 * (ell - 1) pl_term = pl_coeff[np.newaxis, :] * pl[:, lmin:(lmax + 1)] dplminus1_coeff = - 2 * (ell + 2) dplminus1_term = dplminus1_coeff[np.newaxis, :] * dplminus1 gplus_bin_top_prediff = (plminus1_term + xpl_term + plplus1_term + dpl_term + xdplminus1_term + xdpl_term + pl_term + dplminus1_term) gplus_bin_top = np.diff(gplus_bin_top_prediff, axis=0) gplus_bin_bottom = cos_theta_diff[:, np.newaxis] gplus_bin = gplus_bin_top / gplus_bin_bottom # Apply relevant prefactors to obtain bin-averaged Wigner d symbols ell_ellplus1 = (ell * (ell + 1))[np.newaxis, :] d00_bin = pl_bin d22plus_bin = 2 / ell_ellplus1 ** 2 * gplus_bin d02_bin = 1 / ell_ellplus1 * pl2_bin # Apply final Wigner prefactor to obtain Cl->CF matrices prefac = (two_ell_plus1 / (4 * np.pi))[np.newaxis, :] cl2cf_00 = prefac * d00_bin cl2cf_22plus = prefac * d22plus_bin cl2cf_02 = prefac * d02_bin return cl2cf_00, cl2cf_22plus, cl2cf_02
0231218c8501409e3660ed6c446b0c163229ab8a
3,639,193
from operator import concat def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): """ Frame a time series as a supervised learning dataset. Arguments: data: Sequence of observations as a list or NumPy array. n_in: Number of lag observations as input (X). n_out: Number of observations as output (y). dropnan: Boolean whether or not to drop rows with NaN values. Returns: Pandas DataFrame of series framed for supervised learning. """ n_vars = 1 if type(data) is list else data.shape[1] df = DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg = concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg.reset_index(drop=True)
1756380140dd74045880cc4501623c8b48ce5773
3,639,194
import torch def valid_from_done(done): """Returns a float mask which is zero for all time-steps after a `done=True` is signaled. This function operates on the leading dimension of `done`, assumed to correspond to time [T,...], other dimensions are preserved.""" done = done.type(torch.float) valid = torch.ones_like(done) valid[1:] = 1 - torch.clamp(torch.cumsum(done[:-1], dim=0), max=1) return valid
0ca2bd0f9e23605091b2f8d1bc15e67e1632b82b
3,639,195
import logging def get_transfer_options(transfer_kind='upload', transfer_method=None): """Returns hostnames that the current host can upload or download to. transfer_kind: 'upload' or 'download' transfer_method: is specified and not None, return only hosts with which we can work using this method (e.g. scp) """ try: transfer_options = get_config(get_hostname())[ '%s_options' % transfer_kind] except LookupError: logging.info("Host %s has no known transfer options.", get_hostname()) return [] if transfer_method is not None: transfer_options = [to for to in transfer_options if get_config(to['host'])['method'] == 'method'] return transfer_options
f5aea7498bf98d3be3fe9e97eda4e6eaa9181cea
3,639,196
def calc_utility_np(game, iter): """Calc utility of current position Parameters ---------- game : camel up game Camel up game class iter : int Iterations to run the monte carlo simulations Returns ------- np.array Numpy structured array with expected utilities """ coins = coins_to_numpy(game) if str(game.camel_dict) + str(game.tiles_dict) in CACHE.keys(): turn_prob_first, turn_prob_second, turn_prob_other, exp_tile_points = CACHE[ str(game.camel_dict) + str(game.tiles_dict) ][0] game_prob_first, game_prob_last = CACHE[ str(game.camel_dict) + str(game.tiles_dict) ][1] else: turn_prob_first, turn_prob_second, turn_prob_other, exp_tile_points = turn_prob_numpy( game, iter ) game_prob_first, game_prob_last = game_prob_numpy(game, iter) game_prob_first["prob"] = np.where( game_prob_first["prob"] < 0.30, 0, game_prob_first["prob"] ) game_prob_last["prob"] = np.where( game_prob_last["prob"] < 0.30, 0, game_prob_last["prob"] ) CACHE[str(game.camel_dict) + str(game.tiles_dict)] = [ (turn_prob_first, turn_prob_second, turn_prob_other, exp_tile_points), (game_prob_first, game_prob_last), ] winner_bets, loser_bets = winner_loser_bets_to_numpy(game) bet_tiles = bet_tiles_to_numpy(game) util.rename_np(turn_prob_first, ["counts", "prob"], "first") util.rename_np(turn_prob_second, ["counts", "prob"], "second") util.rename_np(turn_prob_other, ["counts", "prob"], "other") bets = util.numpy_left_join(bet_tiles, turn_prob_first, "camel") bets = util.numpy_left_join(bets, turn_prob_second, "camel") bets = util.numpy_left_join(bets, turn_prob_other, "camel") multiply_array = ( (bets["value"] * bets["prob_first"]) + (bets["bets"] * bets["prob_second"]) - (bets["bets"] * bets["prob_other"]) ) bets = util.add_col_np(bets, "exp_value", multiply_array) bets_groupby = util.numpy_group_by_sum(bets, "player", "exp_value") final = util.numpy_left_join(coins, exp_tile_points, "player") final = util.numpy_left_join(final, bets_groupby, "player") game_first = util.numpy_left_join(winner_bets, game_prob_first, "camel") game_last = util.numpy_left_join(loser_bets, game_prob_last, "camel") game_winner_other = deepcopy(game_first) game_winner_other["prob"] = 1 - game_first["prob"] game_loser_other = deepcopy(game_last) game_loser_other["prob"] = 1 - game_last["prob"] game_first = util.add_col_np( game_first, "points", config.BET_SCALING[0 : game_first.shape[0]] ) game_last = util.add_col_np( game_last, "points", config.BET_SCALING[0 : game_last.shape[0]] ) game_winner_other = util.add_col_np( game_winner_other, "points", [1] * game_winner_other.shape[0] ) game_loser_other = util.add_col_np( game_loser_other, "points", [1] * game_loser_other.shape[0] ) final = util.numpy_left_join( final, calc_exp_value_np(game_first, "exp_value_first"), "player" ) final = util.numpy_left_join( final, calc_exp_value_np(game_last, "exp_value_last"), "player" ) final = util.numpy_left_join( final, calc_exp_value_np(game_winner_other, "exp_value_winner_other"), "player" ) final = util.numpy_left_join( final, calc_exp_value_np(game_loser_other, "exp_value_loser_other"), "player" ) multiply_array = ( final["coins"] + final["exp_points"] + final["exp_value"] + final["exp_value_first"] + final["exp_value_last"] - final["exp_value_winner_other"] - final["exp_value_loser_other"] ) final = util.add_col_np(final, "utility", multiply_array) return final
c69740652ea18d753c9a2a894f1ba36ab1eecff8
3,639,197
def add_masses(line, mass_light, mass_heavy): """ Add m/z information in the output lines """ new_line = "{} {} {}\n".format(round_masses(mass_light), round_masses(mass_heavy), line) return new_line
d8e92acf43d17e9a00de1e985e6cecadec0fa4b4
3,639,198
def load_r_ind_sent_bars(): """ Loads the random index-barcodes of the actual networks """ bars = [] for text in texts: bars.append(np.load('Textbooks/{}/r_ind_sent_bars.npy'.format(text))) return bars
331b217976bc5a03a4e3a20331f06ba33a7aaad1
3,639,199