id
stringlengths 11
11
| created
timestamp[s]date 2026-01-01 00:00:00
2026-01-01 00:00:00
| topic
stringclasses 14
values | task_type
stringclasses 10
values | difficulty
stringclasses 3
values | instruction
stringlengths 189
248
| input
stringclasses 1
value | output
stringclasses 9
values | reasoning_steps
listlengths 0
5
| metadata
dict | hash
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|
train_08800
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"repo_scale_reasoning",
"tests_are_truth",
"evaluation_metrics",
"tooling"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
af80e041f7f3e52d03a0963bb5f9cd106ddb3ae7
|
|
train_08801
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
code
|
intermediate
|
Task: code
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"governance",
"auditability",
"tests_are_truth",
"ci_integration"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8be5c1359144136dd30c366c53b30abfffe0a337
|
|
train_08802
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
explain
|
expert
|
Task: explain
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"security_gates",
"auditability",
"cost_latency_tradeoffs",
"tests_are_truth"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
314ed10ff5485d1b4a7945291aa669e4608bc3f4
|
|
train_08803
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"auditability",
"ci_integration",
"reproducibility",
"security_gates"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1415d596d5c74eb88b319035fa571a6312f20b13
|
|
train_08804
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"reproducibility",
"repo_scale_reasoning",
"security_gates"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3556719c9655b93b9cacf04ae19fa82b4ae9cda4
|
|
train_08805
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"auditability",
"tooling",
"documentation",
"governance"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
230073e1ba3353e8b2a8eeec3a0a26be6bb8bba3
|
|
train_08806
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
design
|
advanced
|
Task: design
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"reproducibility",
"cost_latency_tradeoffs",
"tooling",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1d34db206b4a9c4c2b26e1609c635cba33e178a0
|
|
train_08807
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
compare
|
intermediate
|
Task: compare
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"reproducibility",
"auditability",
"security_gates"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a490765279bb9f6a4f9d63e5d28b021052cad560
|
|
train_08808
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
design
|
expert
|
Task: design
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"ci_integration",
"tooling",
"auditability"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2059964c637caf2d68cb6c1051efcfe3cd2a4078
|
|
train_08809
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
review
|
intermediate
|
Task: review
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Java",
"developer_needs": [
"reproducibility",
"auditability",
"governance",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c92dac616e663a45d891970641ca850743411798
|
|
train_08810
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
review
|
advanced
|
Task: review
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"cost_latency_tradeoffs",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9cdeacb641dfec773c826282143d5cf2266fc75e
|
|
train_08811
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
explain
|
advanced
|
Task: explain
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"governance",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
58059582143b6c3d085c6bb7bd8d1e015737f384
|
|
train_08812
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
explain
|
advanced
|
Task: explain
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"auditability",
"tests_are_truth",
"ci_integration"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b360361ef83ab5ddefdbefa10b8e83892d0f42a5
|
|
train_08813
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"repo_scale_reasoning",
"documentation",
"ci_integration",
"auditability"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0c0e96de117514013a45e883e5afcc4a549277fa
|
|
train_08814
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"evaluation_metrics",
"security_gates",
"auditability",
"reproducibility"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7105e3cdf06d307d66da4a099449dae367ca0478
|
|
train_08815
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
design
|
advanced
|
Task: design
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"evaluation_metrics",
"auditability",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
33b0416fcb421ffdb2b4b78f0d9036925b6bf88f
|
|
train_08816
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"cost_latency_tradeoffs",
"auditability",
"documentation",
"reproducibility"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7206e8255ed0eef9d5fb437b3b4dc055660f97d0
|
|
train_08817
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
eval
|
expert
|
Task: eval
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"governance",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
66bc4bb7d9e7c60ed7661baa7298afb4a27fc24d
|
|
train_08818
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"governance",
"repo_scale_reasoning",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9e7ac289ee1cfb5830ae554724a17235da2ca5a2
|
|
train_08819
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
eval
|
expert
|
Task: eval
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"ci_integration",
"tooling",
"security_gates"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7de73867c10f7b737026ef2f2ca3964a4b5d18aa
|
|
train_08820
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
eval
|
intermediate
|
Task: eval
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"reproducibility",
"tooling",
"auditability",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
57f1393897cc9c9ff44a3149cbf30ee2d39b853f
|
|
train_08821
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
compare
|
advanced
|
Task: compare
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"tests_are_truth",
"security_gates",
"governance"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bf7f2e0f2ab28fa41c72a12945b85c193cefbdf0
|
|
train_08822
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
design
|
advanced
|
Task: design
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"governance",
"tests_are_truth",
"cost_latency_tradeoffs",
"auditability"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
67a1bfa8f6b1f8c511155f23b22c8d425e981e85
|
|
train_08823
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Python",
"developer_needs": [
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"auditability",
"ci_integration"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a4cab57c0444e2ea77cbe3de6d534003040dfa46
|
|
train_08824
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
explain
|
intermediate
|
Task: explain
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"evaluation_metrics",
"tooling",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c0593b036da998ceb3cdf6f38229f3550b6522db
|
|
train_08825
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
eval
|
intermediate
|
Task: eval
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"documentation",
"tooling",
"ci_integration",
"auditability"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
780456c6eb0b18f50df8e5e0aaaecc2601550dd4
|
|
train_08826
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
design
|
advanced
|
Task: design
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"repo_scale_reasoning",
"governance",
"auditability",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4af52c3fd93010ec005dd5f95910efa89981cbe1
|
|
train_08827
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
design
|
intermediate
|
Task: design
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"security_gates",
"auditability",
"tooling",
"governance"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e14af08fc4ddf48398753d9ad17c34007f720d8b
|
|
train_08828
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
explain
|
intermediate
|
Task: explain
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tests_are_truth",
"tooling",
"documentation",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bed5c88869957449ec7948b589f5e6c21a5a8161
|
|
train_08829
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
eval
|
intermediate
|
Task: eval
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"ci_integration",
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f7c920d4b9076f3cdc69283a456cde4b4daf51eb
|
|
train_08830
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
explain
|
expert
|
Task: explain
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"tooling",
"security_gates",
"cost_latency_tradeoffs",
"tests_are_truth"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5ce1d916a23344afe42a119efdebe396c2229b23
|
|
train_08831
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"tests_are_truth",
"auditability",
"documentation",
"governance"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3b3ff8c849ee3f222963b1eb7af99b4215398922
|
|
train_08832
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Go",
"developer_needs": [
"tests_are_truth",
"cost_latency_tradeoffs",
"governance",
"tooling"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c925e18cacb8d6ce95c9647b278ed065c60401fa
|
|
train_08833
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
review
|
expert
|
Task: review
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"ci_integration",
"tests_are_truth",
"auditability"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f1df77f5a391707045d647b3b3350ae06abb20b1
|
|
train_08834
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
review
|
advanced
|
Task: review
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"tests_are_truth",
"ci_integration",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f7542f51d3ce8145be64b5a8836c12cb4b4d8d2a
|
|
train_08835
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
design
|
expert
|
Task: design
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"repo_scale_reasoning",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
03fb2111c0beefdf3aac5b3dd5e769c4280118cd
|
|
train_08836
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"tests_are_truth",
"evaluation_metrics",
"auditability",
"security_gates"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
102b5b7a247c6185580f3764257368202ab17ad4
|
|
train_08837
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
compare
|
advanced
|
Task: compare
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"repo_scale_reasoning",
"documentation",
"reproducibility",
"security_gates"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d9176ef0116c3630adfcfc1c60d3a73c42e52eaa
|
|
train_08838
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"documentation",
"auditability",
"security_gates",
"tooling"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
85f992950c131dd1392134f717c80ba904d7e0d2
|
|
train_08839
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"cost_latency_tradeoffs",
"tooling",
"security_gates"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e5fd72752b20feb7d0f3cf3a1b937963cc3a0637
|
|
train_08840
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Go",
"developer_needs": [
"governance",
"ci_integration",
"reproducibility",
"tooling"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a5acb3ed40a7131e9897c5b65ffc6937bdaa8e23
|
|
train_08841
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"governance",
"ci_integration",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
70838dd6d7d8b6a246b8207cfb1cf98ecc352318
|
|
train_08842
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
explain
|
advanced
|
Task: explain
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"governance",
"tooling",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d3309106fa438ea271db0bd0c2c11ab521a98b40
|
|
train_08843
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"evaluation_metrics",
"security_gates",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b8112abec3e76860411f093ddabed2c4f5bf74bf
|
|
train_08844
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
review
|
intermediate
|
Task: review
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"evaluation_metrics",
"documentation",
"tooling",
"auditability"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f7058c438585d7d81184d3a2d5fb96a4024b061f
|
|
train_08845
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"ci_integration",
"tooling",
"security_gates",
"evaluation_metrics"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c5255804885dad72b9dbc230b510fbfbee2393f7
|
|
train_08846
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"tooling",
"ci_integration",
"governance",
"tests_are_truth"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f413e73d7821a0d3e2557a3e4d8b029e21a7224e
|
|
train_08847
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
compare
|
expert
|
Task: compare
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"security_gates",
"auditability",
"governance",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4d2a96fb5118001fb31dcb020212e265922cef80
|
|
train_08848
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"security_gates",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
54d061d3a51e8216f9de90628926f8151e26a594
|
|
train_08849
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
explain
|
expert
|
Task: explain
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"repo_scale_reasoning",
"tests_are_truth",
"governance",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
26d89b049c843d1cd0504067a60c2345706ee631
|
|
train_08850
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"auditability",
"repo_scale_reasoning",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
004f5c33b969a1d02562396593ad69aa986b6bab
|
|
train_08851
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
design
|
intermediate
|
Task: design
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"ci_integration",
"reproducibility",
"security_gates",
"cost_latency_tradeoffs"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
65dc360fa88df3074e19d918a0802b9db40fbc6a
|
|
train_08852
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
review
|
advanced
|
Task: review
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"auditability",
"reproducibility",
"governance"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0708930087b4e77ae2439ad3cc469b4a227b8e09
|
|
train_08853
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
eval
|
advanced
|
Task: eval
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"tests_are_truth",
"documentation",
"evaluation_metrics"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ec95b9307b7375c49f572d5491246d006303fffd
|
|
train_08854
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
code
|
intermediate
|
Task: code
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tests_are_truth",
"cost_latency_tradeoffs",
"security_gates",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cdc173b23a1b83f706773cfe3a9dfe82d9684ec5
|
|
train_08855
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "C#",
"developer_needs": [
"repo_scale_reasoning",
"tooling",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
55891841faeae5dae74f76510ab278d64317aeea
|
|
train_08856
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
compare
|
expert
|
Task: compare
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"evaluation_metrics",
"tooling",
"security_gates",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
db324795d01aeef14cbef4454059195cce40c38e
|
|
train_08857
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"tests_are_truth",
"documentation",
"auditability",
"reproducibility"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9365f13e7de68b932a101a20a700934bd4b1b5b9
|
|
train_08858
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
design
|
intermediate
|
Task: design
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"governance",
"repo_scale_reasoning",
"tests_are_truth",
"tooling"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
554a165ebd8fd2e44f095a041e8e77beea5df4ae
|
|
train_08859
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
design
|
advanced
|
Task: design
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"evaluation_metrics",
"tooling",
"documentation"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
49a8b50428f0d6145c82e122e39d73d75adafd01
|
|
train_08860
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"auditability",
"cost_latency_tradeoffs",
"reproducibility",
"repo_scale_reasoning"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
609433d1b8c1736de7484ef370bb51557c66f754
|
|
train_08861
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
review
|
intermediate
|
Task: review
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"ci_integration",
"governance",
"auditability",
"cost_latency_tradeoffs"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4694e675c2f1849f9b5365bfdec829a6fb0157b2
|
|
train_08862
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"cost_latency_tradeoffs",
"auditability",
"reproducibility",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
98903f42fbda2bbb060901d1476e0bc52d9414aa
|
|
train_08863
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Go",
"developer_needs": [
"ci_integration",
"tests_are_truth",
"evaluation_metrics",
"cost_latency_tradeoffs"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
33da635469587a13743e3caa4412257381ab8b87
|
|
train_08864
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"evaluation_metrics",
"auditability",
"governance",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
db190b7a948bc71442d4d17d77c95a9f3d1ded66
|
|
train_08865
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"documentation",
"governance",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3b3d396a1f79e41bf3620bf515f19db51dcb7d9f
|
|
train_08866
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
code
|
expert
|
Task: code
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"tooling",
"repo_scale_reasoning",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e9812d9bfedf8a8d7d429c750197d5c47aa5e53c
|
|
train_08867
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
compare
|
expert
|
Task: compare
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Python",
"developer_needs": [
"repo_scale_reasoning",
"governance",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
39f85ead6ff16bb3772f87d3c3d66c2a3f7b5fe9
|
|
train_08868
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"security_gates",
"auditability",
"governance"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b7db73e10c6ae2686d9888f0f2ce7e078d3b5485
|
|
train_08869
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
review
|
intermediate
|
Task: review
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"tests_are_truth",
"ci_integration",
"tooling",
"documentation"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b2fff2356287a1d9dae7f8e8df91bdfe60d37322
|
|
train_08870
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
compare
|
expert
|
Task: compare
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"evaluation_metrics",
"reproducibility",
"governance",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
61066ebeeaf48860a9b36159f1a8329be22e0d21
|
|
train_08871
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
compare
|
intermediate
|
Task: compare
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"documentation",
"repo_scale_reasoning",
"security_gates",
"evaluation_metrics"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b24a4b8639ea91c2d995f624c2704f8a0fb80402
|
|
train_08872
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"tests_are_truth",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8c4aa5be41d96c8593f8955eac3093402def6a8b
|
|
train_08873
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
eval
|
expert
|
Task: eval
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Java",
"developer_needs": [
"documentation",
"tooling",
"security_gates",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a40a49cc03bb4aeba7185f6c9d791035aef1b164
|
|
train_08874
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
eval
|
advanced
|
Task: eval
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"governance",
"documentation",
"repo_scale_reasoning",
"reproducibility"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a8a23a4050ee782d8a3539acfcf807d94fb7820e
|
|
train_08875
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"repo_scale_reasoning",
"tests_are_truth",
"auditability"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
374f3e6ed93cdadd4f806c6d5d4d8874596dfa9f
|
|
train_08876
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"auditability",
"tooling",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7a19b8ce6188900e876a5b4120b88c95558fe27e
|
|
train_08877
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"repo_scale_reasoning",
"tooling",
"cost_latency_tradeoffs"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
034af03e5a6cdca891039ef8d9547b173d931cab
|
|
train_08878
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
eval
|
advanced
|
Task: eval
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"tooling",
"reproducibility",
"tests_are_truth"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cdc3032216d4a5ba022260ecd5075a3621586ec7
|
|
train_08879
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"ci_integration",
"repo_scale_reasoning",
"documentation",
"governance"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2be96933116794d2617ac1ba8b9d58768fc47d65
|
|
train_08880
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"security_gates",
"evaluation_metrics",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8444e6e6e9d916333b9ceb22fdcbbe8d8cb90e94
|
|
train_08881
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
design
|
expert
|
Task: design
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"repo_scale_reasoning",
"governance",
"ci_integration",
"cost_latency_tradeoffs"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0bd5cc366d0a5f066b9ed95dd90b6fe75b1f4f4c
|
|
train_08882
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"repo_scale_reasoning",
"tests_are_truth",
"cost_latency_tradeoffs",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c3be35998aa1177c74ed0ca3ba3834c2c18a45e4
|
|
train_08883
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"documentation",
"cost_latency_tradeoffs",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e64f74928db65a124cf00640ea9ee30b46f1df3b
|
|
train_08884
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"cost_latency_tradeoffs",
"tests_are_truth",
"documentation",
"auditability"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a31f737836b634c2dc8f11e605c18922fea954fc
|
|
train_08885
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"documentation",
"ci_integration",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
881709ce6edf1ec4bc57821e77801654b0e44853
|
|
train_08886
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"auditability",
"cost_latency_tradeoffs",
"governance",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
568f52ccb5e4f4a08e3223f3e56c2fad0de22520
|
|
train_08887
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
compare
|
intermediate
|
Task: compare
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"reproducibility",
"documentation"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
862510931fd7dc629654679fdcc7ee26bbde4a5f
|
|
train_08888
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"reproducibility",
"documentation",
"evaluation_metrics",
"governance"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3177de63b9e645fbc64b4b80b53666f3ed86e51a
|
|
train_08889
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
compare
|
advanced
|
Task: compare
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tests_are_truth",
"security_gates",
"reproducibility",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c8abf18769a90a1ee11138e46f6d20f8291ce245
|
|
train_08890
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
compare
|
advanced
|
Task: compare
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"reproducibility",
"security_gates",
"cost_latency_tradeoffs",
"tooling"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4cf57616840bea41181ed955f5b000ba94770239
|
|
train_08891
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
code
|
expert
|
Task: code
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"governance",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b60acde04ac653389b01402d11cc5ea8f6531c7b
|
|
train_08892
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"evaluation_metrics",
"tooling",
"repo_scale_reasoning",
"documentation"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ca20c6d9accf22bbba98cd90d84313e4f486bb28
|
|
train_08893
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
eval
|
intermediate
|
Task: eval
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"tests_are_truth",
"evaluation_metrics",
"ci_integration",
"auditability"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
750f1b84c950bc7efe53b6b990e92dc6201b42e6
|
|
train_08894
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "C#",
"developer_needs": [
"security_gates",
"ci_integration",
"auditability",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d216768a4981f25c42cba2dacb5b6c25026245c8
|
|
train_08895
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"auditability",
"repo_scale_reasoning",
"security_gates",
"tests_are_truth"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e3ee8ebea7e5d42f8669630dd35804c0b77014c9
|
|
train_08896
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"repo_scale_reasoning",
"ci_integration",
"security_gates",
"governance"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2be8cff0ecb2e6ff20385a8c3302d7f864503503
|
|
train_08897
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
agent_loop
|
expert
|
Task: agent_loop
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"repo_scale_reasoning",
"documentation",
"auditability",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f9fa2bf8c871332b712fa8c5902146adb0014338
|
|
train_08898
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Java",
"developer_needs": [
"ci_integration",
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"documentation"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
19c8ae1aa49b78b86f265f1d590f7be508a83c4a
|
|
train_08899
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
design
|
intermediate
|
Task: design
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"ci_integration",
"tests_are_truth",
"governance",
"auditability"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a26939e23665523e248babb765c6002c589795fc
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.