id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
14 values
task_type
stringclasses
10 values
difficulty
stringclasses
3 values
instruction
stringlengths
189
248
input
stringclasses
1 value
output
stringclasses
9 values
reasoning_steps
listlengths
0
5
metadata
dict
hash
stringlengths
40
40
train_08700
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
expert
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "ci_integration", "tests_are_truth", "repo_scale_reasoning", "governance" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9efa1a9a772332e130f6d88ea946cfb361c36f36
train_08701
2026-01-01T00:00:00
Self-improving agents and feedback loops
patch_diff
intermediate
Task: patch_diff Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "C#", "developer_needs": [ "governance", "auditability", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ae95c77ece7c20695ef27c2b6b84695ae923313a
train_08702
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
advanced
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "evaluation_metrics", "auditability" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e154c1dc7609f1eda62ea43220a8a56650c7008a
train_08703
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
advanced
Task: explain Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "tooling", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9cc392c4f3b1fdec7b2fa01ea2a98b0e2ec3c6a8
train_08704
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
advanced
Task: design Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "ci_integration", "tooling", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ab3d20cf307e104a7684b55fab3e9c0d6f8c8475
train_08705
2026-01-01T00:00:00
Latency, cost, and reliability optimization
review
advanced
Task: review Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "governance", "tests_are_truth", "auditability" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
531ac2875c18ab596a191e67eda0add253a313cd
train_08706
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
agent_loop
advanced
Task: agent_loop Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "tooling", "evaluation_metrics", "ci_integration" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f8a47e82babe59f13035a119e38591fda61171dd
train_08707
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
patch_diff
expert
Task: patch_diff Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Bash", "developer_needs": [ "governance", "repo_scale_reasoning", "reproducibility", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
59aab707a30e2584476a6ef30823ca999ae4bb2b
train_08708
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
patch_diff
advanced
Task: patch_diff Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "tooling", "tests_are_truth" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d62bb4975e7e55e0fe554acfd2d5944a89c44099
train_08709
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
code
expert
Task: code Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "documentation", "tests_are_truth", "repo_scale_reasoning", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c68a9e5bfc00f2cfd4b383489d7ac3c12feaa4a2
train_08710
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
expert
Task: explain Topic: Extended context and repo-scale understanding Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "ci_integration", "security_gates", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
544bc27f1f5222ffb8509ecb7a2a6b6f4c906afa
train_08711
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
advanced
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "security_gates", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4f157b4345055db126aff29380cdb1b7eed1c0cd
train_08712
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
failure_analysis
intermediate
Task: failure_analysis Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "repo_scale_reasoning", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e3d83dbbb1321a3fa569addddee5371c4c821614
train_08713
2026-01-01T00:00:00
Latency, cost, and reliability optimization
explain
intermediate
Task: explain Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "cost_latency_tradeoffs", "security_gates", "governance" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7b025663d8e832fa6e7363f6d1ddd4f7f424e25d
train_08714
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
agent_loop
intermediate
Task: agent_loop Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Bash", "developer_needs": [ "auditability", "cost_latency_tradeoffs", "evaluation_metrics", "security_gates" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
abb3da8d765df5f6b947c70baef2d7bdae47f205
train_08715
2026-01-01T00:00:00
Latency, cost, and reliability optimization
code
intermediate
Task: code Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "documentation", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1356476f063ba9efb9971401c566e348b2a7ccd7
train_08716
2026-01-01T00:00:00
Secure code generation and policy gates
patch_diff
intermediate
Task: patch_diff Topic: Secure code generation and policy gates Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "governance", "security_gates", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
086fb378f84a67d5449906135e62835ae3089dbd
train_08717
2026-01-01T00:00:00
Secure code generation and policy gates
design
intermediate
Task: design Topic: Secure code generation and policy gates Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "tests_are_truth", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b9aca4dbbd26e307b1d0aff8ec3294505bb74354
train_08718
2026-01-01T00:00:00
Secure code generation and policy gates
data_pipeline
advanced
Task: data_pipeline Topic: Secure code generation and policy gates Difficulty: advanced Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "SQL", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "governance", "auditability" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
19593c1195bf41473cdcf60bca41e20869a6784b
train_08719
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
explain
intermediate
Task: explain Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "auditability", "governance", "tests_are_truth", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5161737a6bfa3296971efb8e0f085fbff2dfe53c
train_08720
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
explain
expert
Task: explain Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "governance", "tests_are_truth", "evaluation_metrics", "auditability" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
839ed65cdbc1c25dbcedf60101d9b1ed87f68857
train_08721
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
data_pipeline
advanced
Task: data_pipeline Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3a8ec48ab57de057932229107e14c4f4b864772c
train_08722
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
review
intermediate
Task: review Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "C#", "developer_needs": [ "security_gates", "governance", "evaluation_metrics", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7321675f12369406eca0b95ed4c6caac605ee6ba
train_08723
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
expert
Task: explain Topic: Extended context and repo-scale understanding Difficulty: expert Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "security_gates", "reproducibility", "evaluation_metrics", "auditability" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
65a03680d08dbfbe8e8ab25c368180ecb7c4a962
train_08724
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
patch_diff
advanced
Task: patch_diff Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "governance", "evaluation_metrics", "repo_scale_reasoning", "auditability" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e5c845ee2a1af5669fc7f19c01ded74786a311b9
train_08725
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
explain
intermediate
Task: explain Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "evaluation_metrics", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f6058e65753cda90057ece1e6c1322e0bedf94eb
train_08726
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
code
intermediate
Task: code Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "governance", "tooling" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f2d355d876419d0742b2f1413956d51194db6e45
train_08727
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
agent_loop
advanced
Task: agent_loop Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "SQL", "developer_needs": [ "governance", "tooling", "security_gates", "documentation" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3ef523b4b30c563165e0b9cec9f1564f71c9ef74
train_08728
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
intermediate
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "evaluation_metrics", "documentation", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0c689137c0dcd8b5540af1550fa00a46b5f4adf2
train_08729
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
data_pipeline
expert
Task: data_pipeline Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "auditability", "tests_are_truth", "documentation" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5f123ab618917bd1acd247493b07257afd64ee81
train_08730
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
patch_diff
intermediate
Task: patch_diff Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "documentation", "evaluation_metrics", "tests_are_truth" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2ee1e0b444da60df9208d10b361605b76cc573b9
train_08731
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
expert
Task: design Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "evaluation_metrics", "tests_are_truth", "ci_integration" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0eb8a06942b0211868595ddc62fff87bc210d941
train_08732
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
intermediate
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "tests_are_truth", "tooling", "evaluation_metrics", "governance" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d75807c6754b6609de38d0a0b011eb0bd914e1e7
train_08733
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
agent_loop
intermediate
Task: agent_loop Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "reproducibility", "evaluation_metrics", "tooling", "ci_integration" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
118c5013e7886f32c7f2f82977ca39d14239da49
train_08734
2026-01-01T00:00:00
Secure code generation and policy gates
code
expert
Task: code Topic: Secure code generation and policy gates Difficulty: expert Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "security_gates", "tests_are_truth" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3e230847e1356ed26fc97c6607de4fcf648703e9
train_08735
2026-01-01T00:00:00
Latency, cost, and reliability optimization
code
advanced
Task: code Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "repo_scale_reasoning", "auditability", "ci_integration" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2145a6aa934e3d3bc73e78ce546d21e60abdb317
train_08736
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
review
intermediate
Task: review Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "governance", "reproducibility", "documentation", "auditability" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
39aa123dcf35617001be9c6df31e78f804bcb67d
train_08737
2026-01-01T00:00:00
Secure code generation and policy gates
agent_loop
intermediate
Task: agent_loop Topic: Secure code generation and policy gates Difficulty: intermediate Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "ci_integration", "tooling", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
742bc4b3237368787e7c126d55ac9268aeacfa60
train_08738
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
eval
expert
Task: eval Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Python", "developer_needs": [ "security_gates", "reproducibility", "documentation", "auditability" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6776a724ec6a6758eb9d24ab1c003f511b8a2d66
train_08739
2026-01-01T00:00:00
Extended context and repo-scale understanding
patch_diff
intermediate
Task: patch_diff Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "documentation", "tests_are_truth", "tooling", "ci_integration" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8f52e68d77a996c568f64dacb3cc71df0e58f3fb
train_08740
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
agent_loop
advanced
Task: agent_loop Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "ci_integration", "tooling", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7091b5ab7717db22b189f9e6d0a7d01b831ae15a
train_08741
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
agent_loop
intermediate
Task: agent_loop Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "cost_latency_tradeoffs", "tooling", "documentation" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f994de33a8463326ad02ae4e9abd7ede84dc7fbc
train_08742
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
review
intermediate
Task: review Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "tests_are_truth", "reproducibility", "auditability" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
53d847bf7cb7b09b1d3a6596988f54eb84266e49
train_08743
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
expert
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "governance", "reproducibility", "documentation" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8bfbd1941e47de9a3cf87be24a7f3154c4bf02df
train_08744
2026-01-01T00:00:00
Latency, cost, and reliability optimization
data_pipeline
advanced
Task: data_pipeline Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "reproducibility", "ci_integration", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4866435fe9d945a093c55fabd1f144bad7715c66
train_08745
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
explain
advanced
Task: explain Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "documentation", "tests_are_truth", "governance" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9e3f8403554c3facd6bb536fbb4b9e210a200963
train_08746
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
expert
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "auditability", "reproducibility", "tooling", "ci_integration" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
df02baebe799ba92785a791e91f702dcc906f153
train_08747
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
compare
intermediate
Task: compare Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "auditability", "documentation", "security_gates", "governance" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6b464b89e9944f0f157397f195eda20614f07e62
train_08748
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
data_pipeline
intermediate
Task: data_pipeline Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "cost_latency_tradeoffs", "governance" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b540168179dc88a19e5ea72b5c9a789e325dff96
train_08749
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
code
advanced
Task: code Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "ci_integration", "documentation", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b23c16c2cf9e8fe970ebc57765c27cfa873f9315
train_08750
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
advanced
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "auditability", "governance", "reproducibility" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
07de88a0283d234fafc08c97d840996f2bb3e5ca
train_08751
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
agent_loop
intermediate
Task: agent_loop Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "auditability", "governance" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fc4f8b9e0d4f8a4e6ef9953098cb92a546b1a7a1
train_08752
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
intermediate
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "cost_latency_tradeoffs", "governance", "documentation" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8773555d872a340112d63103397d36f3eeca886e
train_08753
2026-01-01T00:00:00
Latency, cost, and reliability optimization
review
advanced
Task: review Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Go", "developer_needs": [ "evaluation_metrics", "reproducibility", "documentation", "auditability" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7d1888160012f08d137d146e62ea1fc89ff12abd
train_08754
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
intermediate
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "evaluation_metrics", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f3cdfcfc0a3cc8690acf1275e266182d4fd61d96
train_08755
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
advanced
Task: design Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "repo_scale_reasoning", "ci_integration", "reproducibility" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d006ac430b5e1d79f0f92222ea12ea077846f78e
train_08756
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
explain
advanced
Task: explain Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "tooling", "auditability", "governance" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
109c785f79f46191cfa100e78015c2e94671f0eb
train_08757
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
explain
expert
Task: explain Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "auditability", "ci_integration", "documentation", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
eec6f43c8bc3cfbeb00df1198068ebcc837ca1d1
train_08758
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
data_pipeline
intermediate
Task: data_pipeline Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "documentation", "governance", "security_gates" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3738671ead2fbfbdc65ab3ca601bb39977d512d6
train_08759
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
patch_diff
intermediate
Task: patch_diff Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "ci_integration", "tooling" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d4a3c88187e7ddd2dc9c6c7d2dd2bf901b1ed39b
train_08760
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
compare
advanced
Task: compare Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "evaluation_metrics", "ci_integration", "security_gates" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a3758388bf2aa41c107006c3837622bea24ba45a
train_08761
2026-01-01T00:00:00
Extended context and repo-scale understanding
failure_analysis
intermediate
Task: failure_analysis Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "tooling", "evaluation_metrics" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7edf9e9e29a18dd599f4d672d84150ac62a291a6
train_08762
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
intermediate
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "documentation", "evaluation_metrics", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
37394e6c6d65a69b04d3d3a93455037f60640dc5
train_08763
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
expert
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "auditability", "reproducibility", "security_gates", "ci_integration" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f926d59708b3944153b23db9b9e1fba5fdd80552
train_08764
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
agent_loop
advanced
Task: agent_loop Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "evaluation_metrics", "tooling", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cad2b27858649acda92b212a18920980c8b29c57
train_08765
2026-01-01T00:00:00
Self-improving agents and feedback loops
compare
expert
Task: compare Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "documentation", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
18c1892a74c9b36a973420ac574c83684105b5f5
train_08766
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
failure_analysis
intermediate
Task: failure_analysis Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "reproducibility", "auditability", "tests_are_truth", "documentation" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a7ff266eb60b027d67395bbab8b0e7632e6757ac
train_08767
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
expert
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "documentation", "security_gates", "ci_integration", "auditability" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6d605896deecedb73debde6038a998e80e023993
train_08768
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
failure_analysis
advanced
Task: failure_analysis Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "tests_are_truth", "tooling" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
983a7d1339c8a3cfe887539c97d98d8b146fa235
train_08769
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
code
intermediate
Task: code Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "ci_integration", "cost_latency_tradeoffs", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0cd4e8b3e35fce4fbe4980d6c698f1a887bafad9
train_08770
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
expert
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "SQL", "developer_needs": [ "ci_integration", "governance", "cost_latency_tradeoffs", "documentation" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
82767d20dc5ebae1b1745ba1bf74c1d8c9b88e75
train_08771
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
review
expert
Task: review Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "repo_scale_reasoning", "ci_integration", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4e3d21bb280821b8f865b506bb071f392fe1a227
train_08772
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
review
advanced
Task: review Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "C#", "developer_needs": [ "documentation", "auditability", "ci_integration", "tests_are_truth" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
379eb6b2ba9932c9c10a6da5097bdbb239dbb9d7
train_08773
2026-01-01T00:00:00
Secure code generation and policy gates
explain
advanced
Task: explain Topic: Secure code generation and policy gates Difficulty: advanced Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "security_gates", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a1d09aee2c4c43a08632cc47291363a67a06ab18
train_08774
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
review
advanced
Task: review Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "repo_scale_reasoning", "auditability", "governance" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
81a0a13370f4d067990eeb94ae3261899f1e16f8
train_08775
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
advanced
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "tooling", "repo_scale_reasoning", "security_gates", "reproducibility" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
dbe2c32ab0f07e3afdd44ffada0b27d48a866f0a
train_08776
2026-01-01T00:00:00
Self-improving agents and feedback loops
code
expert
Task: code Topic: Self-improving agents and feedback loops Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "governance", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
16ed11c2e575d4920e9ad4011dc04b2afe44817d
train_08777
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
compare
intermediate
Task: compare Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "governance", "security_gates" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e0d304406c175f82e972b97846df9265dde4bbb1
train_08778
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
patch_diff
expert
Task: patch_diff Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Java", "developer_needs": [ "documentation", "security_gates", "auditability", "reproducibility" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
58e36ef314bc7d3d57365693253ec3cb49349a1e
train_08779
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
advanced
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "reproducibility", "repo_scale_reasoning", "auditability" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8ce80f631e6fca3491162d4763c32001e3761d8a
train_08780
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
intermediate
Task: code Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "repo_scale_reasoning", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a6b618306205e6534d285fbd95b71942c39acf80
train_08781
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
failure_analysis
intermediate
Task: failure_analysis Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Bash", "developer_needs": [ "documentation", "cost_latency_tradeoffs", "evaluation_metrics", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7e0eadbbb6b91bb69fe663ca569190f1b6e8cd1d
train_08782
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
failure_analysis
intermediate
Task: failure_analysis Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "governance", "cost_latency_tradeoffs", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
73b7a5c735f06fb9a3e78ebf99463c6c9a99d22c
train_08783
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
patch_diff
expert
Task: patch_diff Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Java", "developer_needs": [ "documentation", "governance", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
528bb2d1a7ba2c25709825b19fd6d3a60ede2f2f
train_08784
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
patch_diff
advanced
Task: patch_diff Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "evaluation_metrics", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f394b9bfb36f5ec399857b242ab10bf5ae689c62
train_08785
2026-01-01T00:00:00
Latency, cost, and reliability optimization
code
intermediate
Task: code Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "tooling", "reproducibility", "evaluation_metrics", "ci_integration" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f23ecb5e6357c5f1ea81f216f617dea2c2084701
train_08786
2026-01-01T00:00:00
Extended context and repo-scale understanding
patch_diff
intermediate
Task: patch_diff Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "documentation", "cost_latency_tradeoffs", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d5291c4b98de3240c350177685feb2f044103797
train_08787
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
compare
advanced
Task: compare Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "auditability", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3c95b593fc1d6dcafcdb6740e8c9f95669cda67f
train_08788
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
code
expert
Task: code Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "evaluation_metrics", "security_gates", "tests_are_truth" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3eb0a585bdf23ada423d04e42c7155bdbb725592
train_08789
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
code
advanced
Task: code Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "governance", "security_gates", "auditability", "ci_integration" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2016148a7bb1a6574eddf1f0b1cfcc26bb3e3442
train_08790
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
expert
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "governance", "tests_are_truth", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
156fac7dae2f81d8278175baf392452462bfd9ab
train_08791
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
compare
intermediate
Task: compare Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "reproducibility", "security_gates" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
dbca21f4a692bcfe7ad8deae23b4166ed100ed68
train_08792
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
patch_diff
expert
Task: patch_diff Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "governance", "auditability", "evaluation_metrics" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9acac950b622f8ade24a8b56fe52ef55c3a153c6
train_08793
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
patch_diff
expert
Task: patch_diff Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
31119fc39547d5d1ffe9b50fecd13dad057b9352
train_08794
2026-01-01T00:00:00
Extended context and repo-scale understanding
eval
intermediate
Task: eval Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "security_gates", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f6f2ddb21203fb57a814a907dee642bfdb02891b
train_08795
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
patch_diff
expert
Task: patch_diff Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "auditability", "ci_integration", "repo_scale_reasoning", "governance" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bea23bd133244b16b8899bb89e01b7b02cc84366
train_08796
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
compare
advanced
Task: compare Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "tests_are_truth", "auditability", "tooling" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4d963016ee80bab3c7cd82eb1b5cab04c06b380d
train_08797
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
advanced
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "auditability", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5781997bf00a71a09a40e51836495025f185a9d6
train_08798
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
expert
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "security_gates", "documentation", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4e629f46f4ec2b4026b197b15333e68c6fbef4b1
train_08799
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
expert
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "evaluation_metrics", "auditability", "ci_integration" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
17fba26c3dbf5831ad085aeb1a71ea0555418fdf