id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
14 values
task_type
stringclasses
10 values
difficulty
stringclasses
3 values
instruction
stringlengths
189
248
input
stringclasses
1 value
output
stringclasses
9 values
reasoning_steps
listlengths
0
5
metadata
dict
hash
stringlengths
40
40
train_10700
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
eval
advanced
Task: eval Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "evaluation_metrics", "security_gates", "auditability" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
309e738d632b52c97b7016396b4f6288aaeea831
train_10701
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
intermediate
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "ci_integration", "evaluation_metrics", "governance", "auditability" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
81a3ed96ab0a0b8d45514e9f9646460f5c8c5695
train_10702
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
agent_loop
expert
Task: agent_loop Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "tooling", "security_gates", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
68a7d4df2ea630bf4d67eeb86f04890751da95b6
train_10703
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
patch_diff
advanced
Task: patch_diff Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "repo_scale_reasoning", "reproducibility", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d679c205be01274bc44238e04e8fc9a327c53c6b
train_10704
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
patch_diff
intermediate
Task: patch_diff Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "tests_are_truth", "cost_latency_tradeoffs", "security_gates", "reproducibility" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e611e69379c07a5c5a05d0b2c4bedc4de6b6fc6b
train_10705
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
code
advanced
Task: code Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "documentation", "auditability", "evaluation_metrics" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2016148a7bb1a6574eddf1f0b1cfcc26bb3e3442
train_10706
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
expert
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "tooling", "ci_integration", "tests_are_truth", "reproducibility" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4a0588798b74ff90321d16955174cee9e1b238da
train_10707
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
design
advanced
Task: design Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "reproducibility", "documentation", "tooling" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a90c68956a153c7b15089ef1e5bd03735e19ba13
train_10708
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
patch_diff
advanced
Task: patch_diff Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "evaluation_metrics", "governance", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
227d194bc8be4e6935ec48e074ce92a90ad212bd
train_10709
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
compare
advanced
Task: compare Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "security_gates", "tests_are_truth", "documentation", "ci_integration" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
60a9610921d20f783e48d8433cad2e9441625062
train_10710
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
design
intermediate
Task: design Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "auditability", "evaluation_metrics", "ci_integration" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1955b5e5a515980e453051eb8daa3c9d0c79b8d9
train_10711
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
advanced
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "governance", "evaluation_metrics", "security_gates", "tests_are_truth" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b21a449820932383d5d9a9a69cb0bb3f1c7c722f
train_10712
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
code
advanced
Task: code Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "governance", "auditability" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8e687fe1b9666bd648373bd377e49d75ed01a9f4
train_10713
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
design
expert
Task: design Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "security_gates", "tests_are_truth", "tooling", "reproducibility" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9c9c0be4af001d199df74f825aa290f022bdf280
train_10714
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
intermediate
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "tooling", "repo_scale_reasoning", "tests_are_truth", "security_gates" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b4ae3f986859324ee985953126efc351f7b76aa6
train_10715
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
intermediate
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "auditability", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f1ab6f3b1b2e75831e36892e0622a3848e5b04b1
train_10716
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
design
intermediate
Task: design Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "evaluation_metrics", "cost_latency_tradeoffs", "governance" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b8b2a1fd9eca68baec40ec31ee4b176573e66c74
train_10717
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
failure_analysis
intermediate
Task: failure_analysis Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "security_gates", "governance", "reproducibility" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8bda9a0919de3a90887adccd9eef80fd02997eac
train_10718
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
patch_diff
expert
Task: patch_diff Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "auditability", "security_gates", "reproducibility", "ci_integration" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
12d3f4e8cd0bfc180c0639507949cff82174a89b
train_10719
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
intermediate
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "tooling", "tests_are_truth", "reproducibility" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2be7a5d0c12134f1d88a2e6355895cae45972ffb
train_10720
2026-01-01T00:00:00
Secure code generation and policy gates
review
expert
Task: review Topic: Secure code generation and policy gates Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "ci_integration", "tests_are_truth", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4d4f078496234fc9fc4b58a491b705c623e66e9c
train_10721
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
review
intermediate
Task: review Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "security_gates", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5fd8dbf78345694a5f715f65a460540746b0e93f
train_10722
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
data_pipeline
expert
Task: data_pipeline Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "evaluation_metrics", "governance", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c4ef79b5b420626c37f8a020915993a9d3af648c
train_10723
2026-01-01T00:00:00
Self-improving agents and feedback loops
patch_diff
expert
Task: patch_diff Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "auditability", "repo_scale_reasoning", "documentation", "tooling" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
dee8dd69b18ef45a1020b5de1902051aabd5be5c
train_10724
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
compare
expert
Task: compare Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "repo_scale_reasoning", "reproducibility", "tooling" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
11b4ef8944e905960f6a7d1c99b0ea9c110f6cfa
train_10725
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
failure_analysis
advanced
Task: failure_analysis Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "governance", "documentation", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
25e0ded74f141cd6cc2d8295766d261ba25aeae7
train_10726
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
design
advanced
Task: design Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "governance", "tests_are_truth", "tooling", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b224263209abeb4e5d96ea95c0efd6599e3ea800
train_10727
2026-01-01T00:00:00
Secure code generation and policy gates
code
expert
Task: code Topic: Secure code generation and policy gates Difficulty: expert Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7025017663fb6709f8d4f898d80822d6da8dbfec
train_10728
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
expert
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "reproducibility", "repo_scale_reasoning", "governance" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4d44df679a7b1883d9714361b9d9b16afdc101ea
train_10729
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
expert
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "ci_integration", "reproducibility", "cost_latency_tradeoffs", "security_gates" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e2161c43bcf36eef238811cb92523725e89566e8
train_10730
2026-01-01T00:00:00
Latency, cost, and reliability optimization
compare
expert
Task: compare Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "JavaScript", "developer_needs": [ "evaluation_metrics", "tooling", "documentation", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4cb41868de41a4990a125354269d89cd3032edce
train_10731
2026-01-01T00:00:00
Self-improving agents and feedback loops
agent_loop
expert
Task: agent_loop Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "documentation", "security_gates", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ed9e5c4a332683b398a449b6ae543989dac54635
train_10732
2026-01-01T00:00:00
Latency, cost, and reliability optimization
agent_loop
advanced
Task: agent_loop Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "ci_integration", "governance", "evaluation_metrics", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
db190b7a948bc71442d4d17d77c95a9f3d1ded66
train_10733
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
intermediate
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "governance", "evaluation_metrics", "auditability" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0e28c085e1ba2ffcb2f04d52d8ef57c65dde5deb
train_10734
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
data_pipeline
intermediate
Task: data_pipeline Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "evaluation_metrics", "tests_are_truth", "auditability" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0d73c1eb3b18590a3266f0bc55eff6a5e3d74798
train_10735
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
intermediate
Task: explain Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "security_gates", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a62ef85c5d859b0083d1b12dceaa09a916960d3f
train_10736
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
data_pipeline
expert
Task: data_pipeline Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "reproducibility", "tooling" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0eda9aeba17ed36f200fb60eac673b3619c236c7
train_10737
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
failure_analysis
expert
Task: failure_analysis Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Bash", "developer_needs": [ "evaluation_metrics", "repo_scale_reasoning", "documentation", "governance" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9bb4215438a3dedc1fcbdcd8bd5f535af98c568a
train_10738
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
patch_diff
intermediate
Task: patch_diff Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "documentation", "repo_scale_reasoning", "governance", "ci_integration" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4cb6ad1b86237674a7c56d0fc3079649a0438ca9
train_10739
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
patch_diff
expert
Task: patch_diff Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "auditability", "reproducibility", "ci_integration", "documentation" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f2090575cf2ad8d253d84fa72a79bf34d3fae6f6
train_10740
2026-01-01T00:00:00
Extended context and repo-scale understanding
compare
expert
Task: compare Topic: Extended context and repo-scale understanding Difficulty: expert Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3e2713b3cd5586f1778481fa9044da6da980fd80
train_10741
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
intermediate
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "governance", "documentation", "evaluation_metrics", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
88ec570038f1f7e84d56e0cdab7b3dd3ef6e8642
train_10742
2026-01-01T00:00:00
Latency, cost, and reliability optimization
explain
intermediate
Task: explain Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "auditability", "tests_are_truth", "tooling" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
27d9dc790ea345b388bb1c40896fbda64be00d6e
train_10743
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
eval
intermediate
Task: eval Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "ci_integration", "governance", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e2436c48dfbde4d84ee2f1048ed52f2d9279016b
train_10744
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
design
expert
Task: design Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "documentation", "tooling", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ec793e74b7a77238d196132885fd66098eb84bc1
train_10745
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
intermediate
Task: code Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "governance", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6f37e2d82c6b6e85eb1576074e919bd5f9d919e5
train_10746
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
explain
advanced
Task: explain Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
757ecdba8f9cc36ccb557148705ce97d1c114d88
train_10747
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
eval
expert
Task: eval Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "ci_integration", "cost_latency_tradeoffs", "evaluation_metrics" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c5ff53afe4a9a2f23985eb6f51620b6233f2a8c9
train_10748
2026-01-01T00:00:00
Secure code generation and policy gates
review
expert
Task: review Topic: Secure code generation and policy gates Difficulty: expert Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "governance", "tooling" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ada531731f19b77cc5d157539c3ac4375b86e9dd
train_10749
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
advanced
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "governance", "security_gates", "auditability" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7cb47f40e814d024258c1b01cd7c7b194360875e
train_10750
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
review
intermediate
Task: review Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "ci_integration", "security_gates", "documentation" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
18158c582d7b3efe55a591749d5021302b07b03e
train_10751
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
patch_diff
expert
Task: patch_diff Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "tooling", "evaluation_metrics", "ci_integration", "tests_are_truth" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
343394c7533375e2a57a6a4c8c1df5be42a675a7
train_10752
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
agent_loop
advanced
Task: agent_loop Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "SQL", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "tests_are_truth", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9965357af191ff91c29ec8fcfc509c711f726825
train_10753
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
design
expert
Task: design Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "governance", "auditability", "evaluation_metrics", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e95c2e374acad9a205f7df4152218f9d113944d4
train_10754
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
agent_loop
intermediate
Task: agent_loop Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "SQL", "developer_needs": [ "tests_are_truth", "reproducibility", "security_gates", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a68fcdf4860db6c1fbe730bbdb6ccb2e6d568473
train_10755
2026-01-01T00:00:00
Extended context and repo-scale understanding
eval
advanced
Task: eval Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "tooling", "documentation", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a397bbd66c73b683f25e10c49e6af49741074ceb
train_10756
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
intermediate
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "tooling", "governance", "tests_are_truth", "security_gates" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8626ce880d08bf62e024e0df2336b9e8a2e9e0a1
train_10757
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
failure_analysis
intermediate
Task: failure_analysis Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "evaluation_metrics", "reproducibility", "tooling", "ci_integration" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8b7e2f2d2e7330408a9021e5f70702fc76cbb240
train_10758
2026-01-01T00:00:00
Secure code generation and policy gates
review
advanced
Task: review Topic: Secure code generation and policy gates Difficulty: advanced Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "C#", "developer_needs": [ "governance", "documentation", "tooling", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
99b1e450d6a38cf00afa7f4d9d9cb1cd472b2544
train_10759
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
intermediate
Task: explain Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "reproducibility", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c3f6252f5e8d99d10a7d7813c581f6f20e8cb168
train_10760
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
patch_diff
advanced
Task: patch_diff Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "reproducibility", "cost_latency_tradeoffs", "documentation" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
45497913664d77503e321794f003a260b6524a76
train_10761
2026-01-01T00:00:00
Latency, cost, and reliability optimization
compare
advanced
Task: compare Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "ci_integration", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4cb2c3c10e020f3c42b270a6f4f4f67f2736b1b8
train_10762
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
advanced
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Bash", "developer_needs": [ "tooling", "documentation", "cost_latency_tradeoffs", "governance" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
57b6d6f559fd5a41ad9cc2f3e67d5a1102e235be
train_10763
2026-01-01T00:00:00
Latency, cost, and reliability optimization
patch_diff
advanced
Task: patch_diff Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Python", "developer_needs": [ "security_gates", "tests_are_truth", "cost_latency_tradeoffs", "tooling" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a88b2eebd6a430561aec82c19a00b5f38d03156c
train_10764
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
intermediate
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "documentation", "tooling" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3fa02caebb88c87865a440c622a68fd3829e9368
train_10765
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
compare
expert
Task: compare Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "documentation", "tooling", "auditability" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
80026ba07acf720ba9937237aac6c4615d368d58
train_10766
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
compare
intermediate
Task: compare Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "security_gates", "reproducibility", "governance" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d41dc99ac7c38cc6b154de4e0a144b8c3f3cce5f
train_10767
2026-01-01T00:00:00
Self-improving agents and feedback loops
data_pipeline
intermediate
Task: data_pipeline Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "auditability", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
99347eb5719ed3678b5ba6ad5eb0fc72a788229b
train_10768
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
patch_diff
expert
Task: patch_diff Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "tooling", "repo_scale_reasoning", "auditability", "ci_integration" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c42382b73172afa0fbb347d66f0cb1526eafdcbf
train_10769
2026-01-01T00:00:00
Secure code generation and policy gates
code
expert
Task: code Topic: Secure code generation and policy gates Difficulty: expert Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "auditability", "reproducibility", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
08bc85423b668bf3916e54633ef973cf7c742c57
train_10770
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
patch_diff
expert
Task: patch_diff Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "security_gates", "documentation", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cd3c9f816c41b5e83358a893e7331a6aee2652e7
train_10771
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
data_pipeline
intermediate
Task: data_pipeline Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "governance", "repo_scale_reasoning", "tests_are_truth" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
608a86ec1a1af253b742e828e1a36b4b200eedef
train_10772
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
failure_analysis
advanced
Task: failure_analysis Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "ci_integration", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
70afb55cd8c5d6f984f1e84907c151918c391adb
train_10773
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
design
intermediate
Task: design Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "security_gates", "governance", "ci_integration", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e8f3a2cacfd25c41668b0ab295d9e0fb56ec38ad
train_10774
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
review
advanced
Task: review Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Go", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "documentation", "tooling" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3b631f1e79c51c1b23cf15b678c2224bc25da9f3
train_10775
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
expert
Task: code Topic: Extended context and repo-scale understanding Difficulty: expert Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "documentation", "reproducibility", "repo_scale_reasoning", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d131bb3522c1ff551a7bf3ec74d60337b8092183
train_10776
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
intermediate
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "governance", "ci_integration", "auditability", "reproducibility" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8f9c095c419df31593a30943e677218b49119823
train_10777
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
failure_analysis
intermediate
Task: failure_analysis Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Python", "developer_needs": [ "repo_scale_reasoning", "tooling", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
20e036ed5e1a2175d497ea0f4617f972b2420beb
train_10778
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
failure_analysis
intermediate
Task: failure_analysis Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "repo_scale_reasoning", "tests_are_truth", "evaluation_metrics" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
30bb08fb27b78317aff8cc6960f7ef901ae87b9e
train_10779
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
intermediate
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "governance", "tests_are_truth", "tooling" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
479d3cbe61db2c1b42f6efbe2507c74849476e23
train_10780
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
advanced
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "auditability", "reproducibility", "ci_integration" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a8e1d67931c566495710b9c875d3b738f1034424
train_10781
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
compare
intermediate
Task: compare Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "cost_latency_tradeoffs", "evaluation_metrics", "documentation" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
67ed7a1500898b5c1ef3385527fc9f5e39150c95
train_10782
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
eval
expert
Task: eval Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "governance", "tooling" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fc41c78c3eb5eaefbc017f07b73ce9573fff05a7
train_10783
2026-01-01T00:00:00
Secure code generation and policy gates
data_pipeline
advanced
Task: data_pipeline Topic: Secure code generation and policy gates Difficulty: advanced Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "SQL", "developer_needs": [ "ci_integration", "tooling", "documentation", "auditability" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c4a1e0c127928022ee0731cab3b03a3e9637872e
train_10784
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
data_pipeline
advanced
Task: data_pipeline Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "security_gates", "ci_integration", "governance" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9e7ac289ee1cfb5830ae554724a17235da2ca5a2
train_10785
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
advanced
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "auditability", "governance" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
aa4593d51bd89e7502ee192335859267199f239c
train_10786
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
review
intermediate
Task: review Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "reproducibility", "security_gates", "evaluation_metrics", "tests_are_truth" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
336fc3d93048412e45dd9f5ca5715f986534eb4c
train_10787
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
intermediate
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "C#", "developer_needs": [ "auditability", "governance", "tests_are_truth", "reproducibility" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7ab162663d2b7af924c71f82d15d66bc10c7e743
train_10788
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
failure_analysis
intermediate
Task: failure_analysis Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "documentation", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
86f8b1fb7c3428738ae7d5b11bb46490a34bf0ef
train_10789
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
data_pipeline
expert
Task: data_pipeline Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Python", "developer_needs": [ "auditability", "security_gates", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c87470c433349090ce329f09f243740102158f09
train_10790
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
eval
advanced
Task: eval Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "C#", "developer_needs": [ "auditability", "documentation", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
91c6e929dc489ec905407caa2590d619e8dc3676
train_10791
2026-01-01T00:00:00
Extended context and repo-scale understanding
design
advanced
Task: design Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "tooling", "governance", "auditability" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7c3b543b060ee641ee1a56dfba874bbd8fae471e
train_10792
2026-01-01T00:00:00
Self-improving agents and feedback loops
explain
intermediate
Task: explain Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "evaluation_metrics", "auditability", "governance" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b9a79d0791568ca46f8c2899bd0b8c1f6f798902
train_10793
2026-01-01T00:00:00
Latency, cost, and reliability optimization
agent_loop
expert
Task: agent_loop Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "tooling", "auditability", "ci_integration", "documentation" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2b30cd29a83d697669e6019dfd4bf79ab5871731
train_10794
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
patch_diff
advanced
Task: patch_diff Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "tests_are_truth", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7bbdd9dd2d43f45d646cdd431b2d24af8eddbf8f
train_10795
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
intermediate
Task: review Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Python", "developer_needs": [ "documentation", "ci_integration", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8f185c85af35d945ee9d8d2d81e8563d8075d744
train_10796
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
code
intermediate
Task: code Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "ci_integration", "reproducibility" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
aefb18ea39c545fb41611a1b64c5a279d16c1200
train_10797
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
patch_diff
advanced
Task: patch_diff Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "reproducibility", "evaluation_metrics", "repo_scale_reasoning" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
004d08eac9cd12545e1a18ab629e5ccde8b3f081
train_10798
2026-01-01T00:00:00
Latency, cost, and reliability optimization
eval
expert
Task: eval Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "governance", "documentation", "auditability" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b99a434a4084d394e5fec760d332f411eb98d5a4
train_10799
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
data_pipeline
intermediate
Task: data_pipeline Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "security_gates", "auditability", "evaluation_metrics" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
eb72f90205f02eaf925177f3ac36e5d0a63f4c1c