id
stringlengths 11
11
| created
timestamp[s]date 2026-01-01 00:00:00
2026-01-01 00:00:00
| topic
stringclasses 14
values | task_type
stringclasses 10
values | difficulty
stringclasses 3
values | instruction
stringlengths 189
248
| input
stringclasses 1
value | output
stringclasses 9
values | reasoning_steps
listlengths 0
5
| metadata
dict | hash
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|
train_10500
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"governance",
"tooling",
"ci_integration",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1f343dc38bb86575c70c1dceb7410ff77650e520
|
|
train_10501
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
eval
|
advanced
|
Task: eval
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Go",
"developer_needs": [
"ci_integration",
"governance",
"cost_latency_tradeoffs",
"reproducibility"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c00a44c6c6f9394de518ad304bb7592de356f743
|
|
train_10502
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
compare
|
intermediate
|
Task: compare
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"governance",
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"documentation"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
47924e2c503da0b3e683903f94d08ba80ffe97f3
|
|
train_10503
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
explain
|
advanced
|
Task: explain
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"cost_latency_tradeoffs",
"ci_integration",
"reproducibility"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5764d26b06a04e627c200a338edfbe25edad3374
|
|
train_10504
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tests_are_truth",
"repo_scale_reasoning",
"tooling",
"documentation"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
03fb1d03d3c0baec99e4cddfdd47f2505cd38686
|
|
train_10505
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"security_gates",
"tooling",
"governance",
"evaluation_metrics"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7467f2b9083df814e317193d54aab2ea3f28949e
|
|
train_10506
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"governance",
"auditability",
"cost_latency_tradeoffs",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6744f99415ffbc33be867e82619536ec3e62bc51
|
|
train_10507
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
code
|
intermediate
|
Task: code
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"security_gates",
"reproducibility",
"evaluation_metrics",
"documentation"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d06f278028d348ff285dc74aa09f3011558dc192
|
|
train_10508
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
code
|
advanced
|
Task: code
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"governance",
"security_gates",
"cost_latency_tradeoffs",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
724939db5db965610acc40faa44ca68a894eadb2
|
|
train_10509
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
code
|
expert
|
Task: code
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"auditability",
"tests_are_truth",
"tooling",
"cost_latency_tradeoffs"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
76c675fd66efe4594cdb779b3b07a65e3aca5ee7
|
|
train_10510
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
review
|
expert
|
Task: review
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "C#",
"developer_needs": [
"cost_latency_tradeoffs",
"documentation",
"auditability",
"security_gates"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4c577a139306fb9d3205b1cf46d637d687d4c72d
|
|
train_10511
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
explain
|
expert
|
Task: explain
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"cost_latency_tradeoffs",
"auditability",
"reproducibility",
"security_gates"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6abd130d1960c88e594053dadce91a4ea4c09e9c
|
|
train_10512
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"repo_scale_reasoning",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
731ed6c76645625e11aeed0cfb8fbc0e52026d5f
|
|
train_10513
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
explain
|
advanced
|
Task: explain
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"evaluation_metrics",
"tooling",
"cost_latency_tradeoffs",
"documentation"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cc76bfd73d0798278e1b76b4f593706f6fc64103
|
|
train_10514
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Go",
"developer_needs": [
"repo_scale_reasoning",
"governance",
"ci_integration",
"reproducibility"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0eabf520cea127a29430e5f4e385f2c8d6b4f193
|
|
train_10515
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
review
|
intermediate
|
Task: review
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"tooling",
"auditability",
"cost_latency_tradeoffs",
"security_gates"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
adbcef64f2380b65e518fca5eedbf876d3c9e44a
|
|
train_10516
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
compare
|
intermediate
|
Task: compare
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tests_are_truth",
"evaluation_metrics",
"documentation",
"reproducibility"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
30e4a821a1e28ecac122d37d0b16f390b2b6499f
|
|
train_10517
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
design
|
intermediate
|
Task: design
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"auditability",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
38a60c28f6ed065bd6d909480636b7be8b3615b4
|
|
train_10518
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tooling",
"reproducibility",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3fc9d4b57d54b3db6d4b862398cd7644176fafe1
|
|
train_10519
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
compare
|
intermediate
|
Task: compare
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"documentation",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
981cf04e5e76c538f039a3a2ced8503d3db90d09
|
|
train_10520
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"ci_integration",
"evaluation_metrics",
"security_gates"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4b7c5265a4a4940e11c11c6331408e51af433da4
|
|
train_10521
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"governance",
"documentation",
"evaluation_metrics",
"security_gates"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
242c383b61fff20486d56d685db56d8aea6dc1a8
|
|
train_10522
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
explain
|
expert
|
Task: explain
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Go
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"repo_scale_reasoning",
"evaluation_metrics",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
51024c9a9cc844fbdb0c622781db61da51e14fa5
|
|
train_10523
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
eval
|
intermediate
|
Task: eval
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"documentation",
"governance",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f410e55ff5320c50a37d4b6bed6ab3b5d1d70ab6
|
|
train_10524
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
review
|
intermediate
|
Task: review
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"security_gates",
"governance",
"repo_scale_reasoning"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fe9523f8281f043fe9c56172ab706ef3850ed93a
|
|
train_10525
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
code
|
expert
|
Task: code
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"security_gates",
"repo_scale_reasoning",
"documentation",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1bd8e1903f1c4c9536ce980a3039513cf305bfe2
|
|
train_10526
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
code
|
intermediate
|
Task: code
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"evaluation_metrics",
"tests_are_truth",
"repo_scale_reasoning",
"security_gates"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
08075d1769c9b7f650509805a744455b38092779
|
|
train_10527
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"tooling",
"governance",
"auditability"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6ce9f87a599d6e5b34f1ad92df8fa76c35d12338
|
|
train_10528
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
eval
|
expert
|
Task: eval
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"repo_scale_reasoning",
"documentation",
"evaluation_metrics",
"security_gates"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d9832d3d9b20f3876b6262b512230a2150f46a3d
|
|
train_10529
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
eval
|
expert
|
Task: eval
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Python",
"developer_needs": [
"repo_scale_reasoning",
"tooling",
"tests_are_truth",
"documentation"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8d521b7d562aed5dc80dd21ecc03fae0b6a88572
|
|
train_10530
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
code
|
intermediate
|
Task: code
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"tests_are_truth",
"tooling",
"documentation"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
50703b4d8de8d87e3f42b87aecb92b2c763faea7
|
|
train_10531
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
review
|
intermediate
|
Task: review
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"repo_scale_reasoning",
"auditability",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3f21e10ec2ff11d09ed4524072bd02c6c99c0e2e
|
|
train_10532
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
explain
|
advanced
|
Task: explain
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"reproducibility",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0cbe18d3aa1c92ea9c81f40320850126c1d26b4c
|
|
train_10533
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
compare
|
expert
|
Task: compare
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"security_gates",
"repo_scale_reasoning",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
36ea4983131631935caefe262fed0257b900f207
|
|
train_10534
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
explain
|
advanced
|
Task: explain
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"ci_integration",
"reproducibility",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e09f9fc44c103463794cee723a1eb39424fae2f7
|
|
train_10535
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
review
|
expert
|
Task: review
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Go
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Go",
"developer_needs": [
"repo_scale_reasoning",
"evaluation_metrics",
"security_gates",
"documentation"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3f2988581604572abbb63e9c23cfc597e96dde88
|
|
train_10536
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"documentation",
"security_gates",
"ci_integration",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
28bf92026ad43679236ea301f97c41dd27a9cd0c
|
|
train_10537
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
explain
|
expert
|
Task: explain
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"governance",
"reproducibility",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2c97e69915e68ea604aa41bdb856c4b6f1070e78
|
|
train_10538
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"evaluation_metrics",
"auditability",
"security_gates",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b8409caf286bd3717b5b597b86949272225a92fa
|
|
train_10539
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "C#",
"developer_needs": [
"governance",
"auditability",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d46d09d96663053e2972a2d97b91ac160c1e189c
|
|
train_10540
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
compare
|
intermediate
|
Task: compare
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"evaluation_metrics",
"tooling",
"reproducibility",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a447e31eafdceae7c2703de170665e37b25b0328
|
|
train_10541
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
compare
|
expert
|
Task: compare
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"auditability",
"tests_are_truth",
"security_gates",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
102217c9f7315a6d77157d529eda1f51bf82272e
|
|
train_10542
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"tooling",
"security_gates",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
baca87c0da1b3e86015a915c9b23ce5aa518d45f
|
|
train_10543
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
explain
|
advanced
|
Task: explain
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"evaluation_metrics",
"repo_scale_reasoning",
"governance",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a4026dba17233aa97a04fcd14431689e88345c4b
|
|
train_10544
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
design
|
advanced
|
Task: design
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"tests_are_truth",
"governance",
"ci_integration",
"security_gates"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d77e84928022aec35ffc61ec4d6079e38c838f2f
|
|
train_10545
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
compare
|
expert
|
Task: compare
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"tests_are_truth",
"governance",
"security_gates",
"auditability"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
28f17f9bcacba5eb8dc2cff27e675224dbdd8c0e
|
|
train_10546
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"auditability",
"documentation",
"governance"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a25917c9a43b9a2767428c0600a14bd3c57f2777
|
|
train_10547
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Go",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"repo_scale_reasoning",
"documentation"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
19ba6400121632d90c792214e9deacc81d1b35ea
|
|
train_10548
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
code
|
advanced
|
Task: code
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"repo_scale_reasoning",
"evaluation_metrics",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e95a2eeb833a19efd78a3174abeffe15c8a41595
|
|
train_10549
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tooling",
"reproducibility",
"cost_latency_tradeoffs",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
79fd8daab2dd4d02dc682cedad5e6e1e68a389ad
|
|
train_10550
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
design
|
intermediate
|
Task: design
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tooling",
"repo_scale_reasoning",
"auditability",
"security_gates"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c79a42a97fae5292787d9ee678caf5eb2910dd59
|
|
train_10551
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
review
|
advanced
|
Task: review
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tooling",
"tests_are_truth",
"auditability",
"cost_latency_tradeoffs"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d2fcad05413a410076bae7e518b15feb9f86e759
|
|
train_10552
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
explain
|
advanced
|
Task: explain
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"documentation",
"tooling",
"cost_latency_tradeoffs",
"security_gates"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5a6c8fd77cfc8c12cc66bec73ceea5c2165e7637
|
|
train_10553
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"cost_latency_tradeoffs",
"ci_integration",
"tooling"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
939a0d78adab12a0142a58801291239fdbe664c7
|
|
train_10554
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"repo_scale_reasoning",
"tests_are_truth",
"ci_integration"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
74413f3882be929ebcecd3879a17dfe3828ee20a
|
|
train_10555
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
design
|
expert
|
Task: design
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"governance",
"repo_scale_reasoning",
"tests_are_truth"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b37e311984abe34954b5188f8bb6e54fd8b7a054
|
|
train_10556
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "C#",
"developer_needs": [
"repo_scale_reasoning",
"security_gates",
"auditability",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
81b1d78442360d804d7c0a7fd5acc6ba2be13bc1
|
|
train_10557
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
review
|
expert
|
Task: review
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"auditability",
"tests_are_truth"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8045e5dbc54084a77c6b22a83f4a898153183931
|
|
train_10558
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
code
|
intermediate
|
Task: code
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"tooling",
"repo_scale_reasoning",
"reproducibility",
"security_gates"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1e19a5d8072eb938c561cbc4c7b08d912d657456
|
|
train_10559
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
review
|
advanced
|
Task: review
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"ci_integration",
"documentation",
"tests_are_truth",
"tooling"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1904b71906484f8e69973c39baa98716b486fb3b
|
|
train_10560
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
eval
|
advanced
|
Task: eval
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tooling",
"security_gates",
"governance",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bdde795cb3e429e038fe7c246f5e3ab6c5d59b8c
|
|
train_10561
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"auditability",
"reproducibility",
"ci_integration",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4b85c3158e2d958d987ad535c04f9898cf102dbb
|
|
train_10562
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"tooling",
"documentation",
"ci_integration",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
adb00a00bdee7ffa40d2292a99312d3de1a08904
|
|
train_10563
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
explain
|
expert
|
Task: explain
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"reproducibility",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d06f3495ee7302eab995396270149d3f2b7d6bcd
|
|
train_10564
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
explain
|
intermediate
|
Task: explain
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"auditability",
"repo_scale_reasoning",
"documentation",
"tooling"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
61d94a95a73d35a84ce1feb23c5a56939b3b6449
|
|
train_10565
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tooling",
"ci_integration",
"cost_latency_tradeoffs",
"auditability"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a7fc4e3507842ea946fc8f763cc31aaee0fa5c88
|
|
train_10566
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
eval
|
advanced
|
Task: eval
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"auditability",
"tooling",
"ci_integration",
"governance"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7f82b4a683ebbf15b09cf8d20104c4b7d55c9646
|
|
train_10567
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"reproducibility",
"ci_integration",
"documentation",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b5ca2ae3bf831d6c0f509a30dc8e7cc5a39326c0
|
|
train_10568
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"ci_integration",
"repo_scale_reasoning",
"tooling",
"governance"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
505dee7f744eb32ad37744bc942201c0fed1bc06
|
|
train_10569
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
compare
|
advanced
|
Task: compare
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tests_are_truth",
"governance",
"cost_latency_tradeoffs",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a4a808cf900b9e5e679a1733ed7e6f876cff4887
|
|
train_10570
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
compare
|
expert
|
Task: compare
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"cost_latency_tradeoffs",
"documentation",
"reproducibility",
"auditability"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c8d2c3aa8ff0253f1ffa119b38dc8913694344fa
|
|
train_10571
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
review
|
intermediate
|
Task: review
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"tests_are_truth",
"governance"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1992fd9829eb2d9fcf7c6e3ae9c35cd7499bf512
|
|
train_10572
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
code
|
advanced
|
Task: code
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"tests_are_truth",
"evaluation_metrics",
"governance",
"cost_latency_tradeoffs"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a924fb2dc1e5603a44f8e3000b2401cd4fb76f94
|
|
train_10573
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
code
|
advanced
|
Task: code
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"security_gates",
"governance",
"auditability"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1eb89efa4c56171a7ce61b9043bef3ec0d9ed0b5
|
|
train_10574
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
explain
|
advanced
|
Task: explain
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"documentation",
"reproducibility",
"tests_are_truth"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
64697bf40bd97dab151d6ece41c16e1932128c8d
|
|
train_10575
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"tooling",
"documentation",
"auditability"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ebac764c897e9149c1c64708bafc574039ca9437
|
|
train_10576
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"auditability",
"tooling",
"ci_integration"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4edea9dc10d77999ae4e69f6a7d2eb2c5279c538
|
|
train_10577
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
design
|
expert
|
Task: design
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"tests_are_truth",
"security_gates",
"auditability",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f84bb2904b8600cfcb7baea07cc0b4139940f7e9
|
|
train_10578
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
design
|
advanced
|
Task: design
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"auditability",
"documentation",
"evaluation_metrics",
"repo_scale_reasoning"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c92d3838214a72b5f71d67d44447ef73e484b8ba
|
|
train_10579
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"security_gates",
"auditability",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
092a10e3e539972ba80843a80c36ccdc4021669e
|
|
train_10580
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"tooling",
"tests_are_truth",
"cost_latency_tradeoffs",
"reproducibility"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
349ced3791f5d34bfd762d74e650006c21a4a2cd
|
|
train_10581
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
design
|
advanced
|
Task: design
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"tests_are_truth",
"auditability",
"security_gates"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0ec4fb6ffbd5fc303f8996bff3ec87093ea66a4f
|
|
train_10582
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
explain
|
advanced
|
Task: explain
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tests_are_truth",
"repo_scale_reasoning",
"documentation",
"reproducibility"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e78da24cf59f0b9b76b5ab928eeb71fba77e9934
|
|
train_10583
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"cost_latency_tradeoffs",
"tests_are_truth",
"documentation",
"auditability"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b4c20ea8e8b48dfac8f9ab2bf711041b85df8199
|
|
train_10584
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
explain
|
intermediate
|
Task: explain
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"auditability",
"tests_are_truth",
"ci_integration"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
504b0197421486158495a1155790d5601e8eff34
|
|
train_10585
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
compare
|
intermediate
|
Task: compare
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"auditability",
"governance",
"cost_latency_tradeoffs",
"tooling"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9357ab97ec96cee1e0801bf50cf85d26d2f9a210
|
|
train_10586
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
design
|
intermediate
|
Task: design
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"security_gates",
"repo_scale_reasoning",
"tooling",
"documentation"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f00e57c5d7d39b00f879b53bce40a1483698d35a
|
|
train_10587
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
design
|
expert
|
Task: design
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"documentation",
"repo_scale_reasoning",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
53a7c08b38add636842fde7313bdeefcf426076e
|
|
train_10588
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tooling",
"reproducibility",
"cost_latency_tradeoffs",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7415773381e5eeb1e3d353f4dbf4f5041dc31454
|
|
train_10589
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "C#",
"developer_needs": [
"auditability",
"reproducibility",
"tooling",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
df0646b3eee38852a887bcf11dabbde677e5b5a1
|
|
train_10590
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
compare
|
advanced
|
Task: compare
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"ci_integration",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
df28adc39b7d1c62300e3366b326cf7bfce09f3a
|
|
train_10591
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "C#",
"developer_needs": [
"reproducibility",
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"documentation"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
635d74d740cb990fb59074577953e28fa289b7c3
|
|
train_10592
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"documentation",
"security_gates",
"ci_integration",
"cost_latency_tradeoffs"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7639325a30eb01fb385c2554c37305821a2be074
|
|
train_10593
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
compare
|
advanced
|
Task: compare
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"tests_are_truth",
"reproducibility",
"governance"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
17ed046787f4bab513416fe94b1ea416f3708a06
|
|
train_10594
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "C#",
"developer_needs": [
"cost_latency_tradeoffs",
"ci_integration",
"tooling",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a2ef17d7397112042d5faa6e246fc1565b7c2d6a
|
|
train_10595
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"security_gates",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ba4cefcb226ccf18799b7f33ae87d9ec52509acd
|
|
train_10596
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
explain
|
advanced
|
Task: explain
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"tests_are_truth",
"governance",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1b6eb74ba605a482125a046f7486788cef4cb2e3
|
|
train_10597
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
eval
|
expert
|
Task: eval
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tests_are_truth",
"security_gates",
"auditability",
"governance"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4a0588798b74ff90321d16955174cee9e1b238da
|
|
train_10598
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
explain
|
intermediate
|
Task: explain
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"documentation",
"evaluation_metrics",
"ci_integration",
"reproducibility"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
866fc36e0be8eec7a5c790738edffc7302906d0e
|
|
train_10599
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"repo_scale_reasoning",
"evaluation_metrics",
"cost_latency_tradeoffs",
"governance"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
dc2199d999992d608f9f083b4a999122b72ff481
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.