blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
87eff0b3c9ddab212912be87826ddc770f8a2187
ac176f429c420a8d6290c57df14346d207cff3de
/leetcodepython/app/leetcode/380.py
9ce7dfb0338e06c907aba080ed7763a4ec93c16d
[]
no_license
xu20160924/leetcode
72c6fc02428e568148af4503c63c6f2553982a1c
43e12a3db5b4087913ec338e652ae7fd59859c23
refs/heads/master
2023-08-04T14:41:06.964273
2022-11-20T13:39:28
2022-11-20T13:39:28
252,931,114
0
0
null
2023-07-23T10:52:04
2020-04-04T06:57:49
Java
UTF-8
Python
false
false
680
py
from random import choice class RandomizedSet(): def __init__(self): self.dict = {} self.list = [] def insert(self, val: int) -> bool: if val in self.dict: return False self.dict[val] = len(self.list) self.list.append(val) return True def remove(self, val: int) -> bool: if val in self.dict: last_element, idx = self.list[-1], self.dict[val] self.list[idx], self.dict[last_element] = last_element, idx self.list.pop() del self.dict[val] return True return False def getRandom(self) -> int: return choice(self.list)
[ "xu20151211@gmail.com" ]
xu20151211@gmail.com
ec8be8b241f2596c74299a4b06fd66ad143d458a
d7016f69993570a1c55974582cda899ff70907ec
/sdk/applicationinsights/azure-mgmt-applicationinsights/azure/mgmt/applicationinsights/v2020_03_01_preview/aio/operations/_component_linked_storage_accounts_operations.py
5c5b89b09688f8fc50620bd2e8f592eb267b4831
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
kurtzeborn/azure-sdk-for-python
51ca636ad26ca51bc0c9e6865332781787e6f882
b23e71b289c71f179b9cf9b8c75b1922833a542a
refs/heads/main
2023-03-21T14:19:50.299852
2023-02-15T13:30:47
2023-02-15T13:30:47
157,927,277
0
0
MIT
2022-07-19T08:05:23
2018-11-16T22:15:30
Python
UTF-8
Python
false
false
25,551
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import sys from typing import Any, Callable, Dict, IO, Optional, TypeVar, Union, overload from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._component_linked_storage_accounts_operations import ( build_create_and_update_request, build_delete_request, build_get_request, build_update_request, ) if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ComponentLinkedStorageAccountsOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.applicationinsights.v2020_03_01_preview.aio.ApplicationInsightsManagementClient`'s :attr:`component_linked_storage_accounts` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace_async async def get( self, resource_group_name: str, resource_name: str, storage_type: Union[str, _models.StorageType], **kwargs: Any ) -> _models.ComponentLinkedStorageAccounts: """Returns the current linked storage settings for an Application Insights component. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param resource_name: The name of the Application Insights component resource. Required. :type resource_name: str :param storage_type: The type of the Application Insights component data source for the linked storage account. "ServiceProfiler" Required. :type storage_type: str or ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.StorageType :keyword callable cls: A custom type or function that will be passed the direct response :return: ComponentLinkedStorageAccounts or the result of cls(response) :rtype: ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.ComponentLinkedStorageAccounts :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2020-03-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2020-03-01-preview") ) cls: ClsType[_models.ComponentLinkedStorageAccounts] = kwargs.pop("cls", None) request = build_get_request( resource_group_name=resource_group_name, resource_name=resource_name, storage_type=storage_type, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponseLinkedStorage, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("ComponentLinkedStorageAccounts", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/microsoft.insights/components/{resourceName}/linkedStorageAccounts/{storageType}" } @overload async def create_and_update( self, resource_group_name: str, resource_name: str, storage_type: Union[str, _models.StorageType], linked_storage_accounts_properties: _models.ComponentLinkedStorageAccounts, *, content_type: str = "application/json", **kwargs: Any ) -> _models.ComponentLinkedStorageAccounts: """Replace current linked storage account for an Application Insights component. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param resource_name: The name of the Application Insights component resource. Required. :type resource_name: str :param storage_type: The type of the Application Insights component data source for the linked storage account. "ServiceProfiler" Required. :type storage_type: str or ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.StorageType :param linked_storage_accounts_properties: Properties that need to be specified to update linked storage accounts for an Application Insights component. Required. :type linked_storage_accounts_properties: ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.ComponentLinkedStorageAccounts :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ComponentLinkedStorageAccounts or the result of cls(response) :rtype: ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.ComponentLinkedStorageAccounts :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def create_and_update( self, resource_group_name: str, resource_name: str, storage_type: Union[str, _models.StorageType], linked_storage_accounts_properties: IO, *, content_type: str = "application/json", **kwargs: Any ) -> _models.ComponentLinkedStorageAccounts: """Replace current linked storage account for an Application Insights component. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param resource_name: The name of the Application Insights component resource. Required. :type resource_name: str :param storage_type: The type of the Application Insights component data source for the linked storage account. "ServiceProfiler" Required. :type storage_type: str or ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.StorageType :param linked_storage_accounts_properties: Properties that need to be specified to update linked storage accounts for an Application Insights component. Required. :type linked_storage_accounts_properties: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ComponentLinkedStorageAccounts or the result of cls(response) :rtype: ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.ComponentLinkedStorageAccounts :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def create_and_update( self, resource_group_name: str, resource_name: str, storage_type: Union[str, _models.StorageType], linked_storage_accounts_properties: Union[_models.ComponentLinkedStorageAccounts, IO], **kwargs: Any ) -> _models.ComponentLinkedStorageAccounts: """Replace current linked storage account for an Application Insights component. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param resource_name: The name of the Application Insights component resource. Required. :type resource_name: str :param storage_type: The type of the Application Insights component data source for the linked storage account. "ServiceProfiler" Required. :type storage_type: str or ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.StorageType :param linked_storage_accounts_properties: Properties that need to be specified to update linked storage accounts for an Application Insights component. Is either a ComponentLinkedStorageAccounts type or a IO type. Required. :type linked_storage_accounts_properties: ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.ComponentLinkedStorageAccounts or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ComponentLinkedStorageAccounts or the result of cls(response) :rtype: ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.ComponentLinkedStorageAccounts :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2020-03-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2020-03-01-preview") ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ComponentLinkedStorageAccounts] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(linked_storage_accounts_properties, (IO, bytes)): _content = linked_storage_accounts_properties else: _json = self._serialize.body(linked_storage_accounts_properties, "ComponentLinkedStorageAccounts") request = build_create_and_update_request( resource_group_name=resource_group_name, resource_name=resource_name, storage_type=storage_type, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self.create_and_update.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponseLinkedStorage, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("ComponentLinkedStorageAccounts", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_and_update.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/microsoft.insights/components/{resourceName}/linkedStorageAccounts/{storageType}" } @overload async def update( self, resource_group_name: str, resource_name: str, storage_type: Union[str, _models.StorageType], linked_storage_accounts_properties: _models.ComponentLinkedStorageAccountsPatch, *, content_type: str = "application/json", **kwargs: Any ) -> _models.ComponentLinkedStorageAccounts: """Update linked storage accounts for an Application Insights component. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param resource_name: The name of the Application Insights component resource. Required. :type resource_name: str :param storage_type: The type of the Application Insights component data source for the linked storage account. "ServiceProfiler" Required. :type storage_type: str or ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.StorageType :param linked_storage_accounts_properties: Properties that need to be specified to update a linked storage accounts for an Application Insights component. Required. :type linked_storage_accounts_properties: ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.ComponentLinkedStorageAccountsPatch :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ComponentLinkedStorageAccounts or the result of cls(response) :rtype: ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.ComponentLinkedStorageAccounts :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def update( self, resource_group_name: str, resource_name: str, storage_type: Union[str, _models.StorageType], linked_storage_accounts_properties: IO, *, content_type: str = "application/json", **kwargs: Any ) -> _models.ComponentLinkedStorageAccounts: """Update linked storage accounts for an Application Insights component. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param resource_name: The name of the Application Insights component resource. Required. :type resource_name: str :param storage_type: The type of the Application Insights component data source for the linked storage account. "ServiceProfiler" Required. :type storage_type: str or ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.StorageType :param linked_storage_accounts_properties: Properties that need to be specified to update a linked storage accounts for an Application Insights component. Required. :type linked_storage_accounts_properties: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ComponentLinkedStorageAccounts or the result of cls(response) :rtype: ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.ComponentLinkedStorageAccounts :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def update( self, resource_group_name: str, resource_name: str, storage_type: Union[str, _models.StorageType], linked_storage_accounts_properties: Union[_models.ComponentLinkedStorageAccountsPatch, IO], **kwargs: Any ) -> _models.ComponentLinkedStorageAccounts: """Update linked storage accounts for an Application Insights component. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param resource_name: The name of the Application Insights component resource. Required. :type resource_name: str :param storage_type: The type of the Application Insights component data source for the linked storage account. "ServiceProfiler" Required. :type storage_type: str or ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.StorageType :param linked_storage_accounts_properties: Properties that need to be specified to update a linked storage accounts for an Application Insights component. Is either a ComponentLinkedStorageAccountsPatch type or a IO type. Required. :type linked_storage_accounts_properties: ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.ComponentLinkedStorageAccountsPatch or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ComponentLinkedStorageAccounts or the result of cls(response) :rtype: ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.ComponentLinkedStorageAccounts :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2020-03-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2020-03-01-preview") ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ComponentLinkedStorageAccounts] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(linked_storage_accounts_properties, (IO, bytes)): _content = linked_storage_accounts_properties else: _json = self._serialize.body(linked_storage_accounts_properties, "ComponentLinkedStorageAccountsPatch") request = build_update_request( resource_group_name=resource_group_name, resource_name=resource_name, storage_type=storage_type, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self.update.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponseLinkedStorage, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("ComponentLinkedStorageAccounts", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/microsoft.insights/components/{resourceName}/linkedStorageAccounts/{storageType}" } @distributed_trace_async async def delete( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, resource_name: str, storage_type: Union[str, _models.StorageType], **kwargs: Any ) -> None: """Delete linked storage accounts for an Application Insights component. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param resource_name: The name of the Application Insights component resource. Required. :type resource_name: str :param storage_type: The type of the Application Insights component data source for the linked storage account. "ServiceProfiler" Required. :type storage_type: str or ~azure.mgmt.applicationinsights.v2020_03_01_preview.models.StorageType :keyword callable cls: A custom type or function that will be passed the direct response :return: None or the result of cls(response) :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2020-03-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2020-03-01-preview") ) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( resource_group_name=resource_group_name, resource_name=resource_name, storage_type=storage_type, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.delete.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponseLinkedStorage, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/microsoft.insights/components/{resourceName}/linkedStorageAccounts/{storageType}" }
[ "noreply@github.com" ]
kurtzeborn.noreply@github.com
9182eaa7f5f7285efe41b14655d30b60846c8320
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_zephyrs.py
38f03736b025c8e20af7c2b4b3508ac068fbd3ab
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
238
py
from xai.brain.wordbase.nouns._zephyr import _ZEPHYR #calss header class _ZEPHYRS(_ZEPHYR, ): def __init__(self,): _ZEPHYR.__init__(self) self.name = "ZEPHYRS" self.specie = 'nouns' self.basic = "zephyr" self.jsondata = {}
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
f33788314ab1fcd7ad7f64d8e44b77efbc9e97d2
198f73858c2e6064d86a0f05fbd3299e795b880c
/home/migrations/0006_userdetail_image.py
df7273956d579d51d9a921d58eafb733c6b73e6e
[ "Apache-2.0" ]
permissive
sandipsandal/Just-A-Thought
756e3a6c01158759bd5d01924b4f3449d64b3506
97f97404b303deb2ea7bcc86d89b2b21b3715fba
refs/heads/master
2022-12-23T11:05:32.701479
2020-09-26T12:14:03
2020-09-26T12:14:03
298,791,140
0
0
null
null
null
null
UTF-8
Python
false
false
429
py
# Generated by Django 3.0.9 on 2020-08-18 18:30 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('home', '0005_userdetail_mobile'), ] operations = [ migrations.AddField( model_name='userdetail', name='image', field=models.ImageField(default='default.jpg', null=True, upload_to='profile_pics'), ), ]
[ "sandipsandal@gmail.com" ]
sandipsandal@gmail.com
b4af09295fdcf9510b2c4ae49e5f248e19407252
987390ca6481ec5aa2b9e0e0e849203b6c22ce62
/zkeco-core/python-support/base/variable_for_trans.py
a73ef2f2f8cde16dc67c065fb9324ec3030e7872
[]
no_license
alungboy/johan-doc
81b2363e7f2ad189d0623007eea66233a2e18f1c
7ced14577405caf6127df03007619fe9cfda3847
refs/heads/master
2020-04-03T18:01:08.531971
2013-08-13T04:26:42
2013-08-13T04:26:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,369
py
# -*- coding: utf-8 -*- from django.utils.translation import ugettext_lazy as _ #变量的翻译放在此数组中好让makemessage_ext能够检测到 #list_variable_for_trans=[ #_("get_emp_name"), #_("name"), #_("groups"), #_("accfirstopen_set"), #_(u"首卡常开"), #_("get_name_by_PIN"), #_(u"姓名"), #_("accmorecardset_set"), #_(u"多卡开门"), #_("interlock_details"), #_(u"互锁设置信息"), #_("antiback_details"), #_(u"反潜设置信息"), #_("emp_group"), #_(u"人员"), #_("morecard_emp_count"), #_(u"人员数"), #_("foemp_count"), #_(u"可开门人数"), #_("emp_count"), #_(u"人员数"), #_("level_count"), #_(u"从属权限组数"), #_("show_status"), #_(u"状态"), #_("show_enabled"), #_(u"启用"), #_(u"get_template"), #_(u"指纹数"), #_(u"get_ExceptionID"), #_(u"例外情况"), #_(u"get_process_status"), #_(u"设备执行命令进度"), #_(u"get_attarea"), #_(u"所属区域"), #_(u"deptadmin_set"), #_(u"授权部门"), #_(u"areaadmin_set"), #_(u"授权区域"), #_(u"morecardgroup"), #_(u"多卡开门组合"), #_(u"get_user_template"), #_(u"指纹数"), # #_(u"personnel"), #_(u"人事"), #_(u"iclock"), #_(u"设备"), #_(u"iaccess"), #_(u"门禁"), #_(u"att"), #_(u"考勤"), #_(u"base"), #_(u"系统设置"), #_(u"Can add 角色"), #_(u"增加角色"), #_(u"Can change 角色"), #_(u"修改角色"), #_(u"Can add 用户"), #_(u"增加用户"), #_(u"Can change 用户"), #_(u"修改用户"), #_(u"Required. 30 characters or fewer. Letters, numbers and @/./+/-/_ characters") #_(u"浏览调休"), #_(u"浏览公告类别"), #_(u"浏览联动设置"), #_(u"浏览临时排班"), #_(u"浏览假类"), #_(u"浏览员工排班"), #_(u"浏览考勤时段"), #_(u"浏览班次"), #_(u"浏览班次明细"), #_(u"浏览统计结果详情"), #_(u"浏览统计项目表"), #_(u"浏览考勤参数"), #_(u"浏览考勤明细表"), #_(u"浏览数据库管理"), #_(u"浏览通信命令详情"), #_(u"浏览考勤计算与报表"), #_(u"浏览考勤设备管理"), #_(u"浏览数据库管理"), #_(u"浏览区域用户管理"), #_(u"浏览人员"), #_(u"浏览设备监控"), #_(u"浏览监控全部"), #_(u"浏览报警事件"), #_(u"浏览全部门禁事件"), #_(u"浏览门禁异常事件"), #_(u"浏览人员门禁权限"), #_(u"浏览考勤节假日"), #_(u"浏览补签卡"), #_(u"浏览请假"), #_(u"浏览轮班表"), #_(u"浏览角色"), #_(u"浏览权限"), #_(u"浏览用户"), #_(u"浏览日志记录"), #_(u"浏览个性设置"), #_(u"浏览系统参数"), #_(u"浏览基础代码表"), #_(u"浏览互锁设置"), #_(u"浏览反潜设置"), #_(u"浏览多卡开门人员组"), #_(u"浏览多卡开门组"), #_(u"浏览多卡开门设置"), #_(u"浏览实时监控记录"), #_(u"浏览门禁时间段"), #_(u"浏览门禁节假日"), #_(u"浏览门"), #_(u"浏览门禁权限组"), #_(u"浏览门禁设备扩展参数"), #_(u"浏览韦根卡格式"), #_(u"浏览首卡常开设置"), #_(u"浏览人员指纹"), #_(u"浏览原始记录表"), #_(u"浏览设备"), #_(u"浏览服务器下发命令"), #_(u"浏览操作设备日志"), #_(u"浏览设备通讯日志"), #_(u"浏览人事报表"), #_(u"浏览人员发卡"), #_(u"浏览人员离职"), #_(u"浏览人员调动"), #_(u"浏览区域设置"), #_(u"浏览卡类型"), #_(u"浏览卡类型"), #_(u"浏览考勤报表"), #_(u"浏览部门"), #_(u"浏览公告发布"), #_(u"浏览系统提醒设置"), #_(u"浏览用户消息确认"), #_(u"查看设备操作日志"), #_(u"清除临时排班记录"), #_(u"新增临时排班"), #_(u"清除排班记录"), #_(u"新增请假"), #_(u"员工卡片清单"), #_(u"数据初始化"), #_(u"批量发卡"), #_(u"挂失卡"), #_(u"解挂卡"), #_(u"关闭门禁"), #_(u"关闭考勤"), #_(u"离职恢复"), #_(u"为区域添加用户"), #_(u"编辑多卡开门"), #_(u"清除数据"), #_(u"重新上传日志"), #_(u"设置自动关机"), #_(u"重新启动设备"), #_(u"更新设备信息"), #_(u"清除图片"), #_(u"恢复使用"), #_(u"病假"), #_(u"事假"), #_(u"产假"), #_(u"探亲假"), #_(u"年假"), #_(u"应到/实到"), #_(u"迟到"), #_(u"早退"), #_(u"请假"), #_(u"旷工"), #_(u"加班"), #_(u"未签到"), #_(u"未签退"), #_(u"浏览"), #]
[ "xiongjianhong@a5b1b082-b159-ab12-9a9e-d79e7dfc8adf" ]
xiongjianhong@a5b1b082-b159-ab12-9a9e-d79e7dfc8adf
81b17f81b23475bf220d8fcfc6892e06a49c3461
0d87906ca32b68965c3aa5b4cb829383276b13c8
/veriloggen/dataflow/dataflow.py
e2fd12adb393621889cb4725977bbbee6158d103
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
tanbour/veriloggen
301beea3d9419c2d63d1d1159a2ec52ed316ef20
858fbc872be78964cfc7e5a23e1491b2c3d5cf52
refs/heads/master
2020-03-18T20:38:24.653119
2018-05-19T04:49:01
2018-05-19T04:49:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,524
py
from __future__ import absolute_import from __future__ import print_function import os import sys import copy import collections import functools import veriloggen.core.vtypes as vtypes from veriloggen.core.module import Module from veriloggen.seq.seq import Seq from . import visitor from . import dtypes from . import mul from . import scheduler from . import allocator from . import graph # ID counter for 'Dataflow' _dataflow_counter = 0 def reset(): global _dataflow_counter _dataflow_counter = 0 dtypes._object_counter = 0 mul.reset() def DataflowManager(module, clock, reset, aswire=True, no_hook=False): return Dataflow(module=module, clock=clock, reset=reset, aswire=aswire, no_hook=no_hook) class Dataflow(object): def __init__(self, *nodes, **opts): # ID for manager reuse and merge global _dataflow_counter self.object_id = _dataflow_counter _dataflow_counter += 1 self.nodes = set(nodes) self.max_stage = 0 self.last_input = None self.last_output = None self.module = opts['module'] if 'module' in opts else None self.clock = opts['clock'] if 'clock' in opts else None self.reset = opts['reset'] if 'reset' in opts else None self.aswire = opts['aswire'] if 'aswire' in opts else True self.seq = None if (self.module is not None and self.clock is not None and self.reset is not None): no_hook = opts['no_hook'] if 'no_hook' in opts else False if not no_hook: self.module.add_hook(self.implement) seq_name = (opts['seq_name'] if 'seq_name' in opts else '_dataflow_seq_%d' % self.object_id) self.seq = Seq(self.module, seq_name, self.clock, self.reset) #------------------------------------------------------------------------- def add(self, *nodes): self.nodes.update(set(nodes)) #------------------------------------------------------------------------- def to_module(self, name, clock='CLK', reset='RST', aswire=False, seq_name=None): """ generate a Module definion """ m = Module(name) clk = m.Input(clock) rst = m.Input(reset) m = self.implement(m, clk, rst, aswire=aswire, seq_name=seq_name) return m #------------------------------------------------------------------------- def implement(self, m=None, clock=None, reset=None, aswire=None, seq_name=None): """ implemente actual registers and operations in Verilog """ if m is None: m = self.module if clock is None: clock = self.clock if reset is None: reset = self.reset if self.seq is None or self.seq.done: if seq_name is None: seq_name = '_dataflow_seq_%d' % self.object_id seq = Seq(m, seq_name, clock, reset) else: seq = self.seq if aswire is None: aswire = self.aswire # for mult and div m._clock = clock m._reset = reset dataflow_nodes = self.nodes input_visitor = visitor.InputVisitor() input_vars = set() for node in sorted(dataflow_nodes, key=lambda x: x.object_id): input_vars.update(input_visitor.visit(node)) output_visitor = visitor.OutputVisitor() output_vars = set() for node in sorted(dataflow_nodes, key=lambda x: x.object_id): output_vars.update(output_visitor.visit(node)) # add input ports for input_var in sorted(input_vars, key=lambda x: x.object_id): input_var._implement_input(m, seq, aswire) # schedule sched = scheduler.ASAPScheduler() sched.schedule(output_vars) # balance output stage depth max_stage = 0 for output_var in sorted(output_vars, key=lambda x: x.object_id): max_stage = dtypes._max(max_stage, output_var.end_stage) self.max_stage = max_stage output_vars = sched.balance_output(output_vars, max_stage) # get all vars all_visitor = visitor.AllVisitor() all_vars = set() for output_var in sorted(output_vars, key=lambda x: x.object_id): all_vars.update(all_visitor.visit(output_var)) # allocate (implement signals) alloc = allocator.Allocator() alloc.allocate(m, seq, all_vars) # set default module information for var in sorted(all_vars, key=lambda x: x.object_id): var._set_module(m) var._set_df(self) if var.seq is not None: seq.update(var.seq) var._set_seq(seq) # add output ports for output_var in sorted(output_vars, key=lambda x: x.object_id): output_var._implement_output(m, seq, aswire) # save schedule result self.last_input = input_vars self.last_output = output_vars return m #------------------------------------------------------------------------- def draw_graph(self, filename='out.png', prog='dot', rankdir='LR', approx=False): if self.last_output is None: self.to_module() graph.draw_graph(self.last_output, filename=filename, prog=prog, rankdir=rankdir, approx=approx) def enable_draw_graph(self, filename='out.png', prog='dot', rankdir='LR', approx=False): self.module.add_hook(self.draw_graph, kwargs={'filename': filename, 'prog': prog, 'rankdir': rankdir, 'approx': approx}) #------------------------------------------------------------------------- def get_input(self): if self.last_input is None: return collections.OrderedDict() ret = collections.OrderedDict() for input_var in sorted(self.last_input, key=lambda x: x.object_id): key = str(input_var.input_data) value = input_var ret[key] = value return ret def get_output(self): if self.last_output is None: return collections.OrderedDict() ret = collections.OrderedDict() for output_var in sorted(self.last_output, key=lambda x: x.object_id): key = str(output_var.output_data) value = output_var ret[key] = value return ret #------------------------------------------------------------------------- def pipeline_depth(self): return self.max_stage #------------------------------------------------------------------------- def __getattr__(self, attr): try: return object.__getattr__(self, attr) except AttributeError as e: if attr.startswith('__') or attr not in dir(dtypes): raise e func = getattr(dtypes, attr) @functools.wraps(func) def wrapper(*args, **kwargs): v = func(*args, **kwargs) if isinstance(v, (tuple, list)): for item in v: self._set_info(item) else: self._set_info(v) return v return wrapper def _set_info(self, v): if isinstance(v, dtypes._Numeric): v._set_module(self.module) v._set_df(self) v._set_seq(self.seq)
[ "shta.ky1018@gmail.com" ]
shta.ky1018@gmail.com
38217eb5a0ddd6cc4e151e059afd154bbdce7ed8
2946cc54680c68eb32d4c1c514f5771979a1b25b
/zadachapop.py
f05ca14a666d95f64f6754761e823951d3f0c11b
[ "MIT" ]
permissive
Aijana-github/Aijana_new_github
f00bcb18fb959b017cc6e8c96c4427fdf2e3dc2d
d7eb06b7c5374d2a59484fe9e78f60eb2645ab7e
refs/heads/main
2023-01-12T06:16:31.175892
2020-11-09T03:31:06
2020-11-09T03:31:06
306,527,823
0
0
null
null
null
null
UTF-8
Python
false
false
529
py
list1 = [1,2,3,4,5,6] def change_list(mode,number): if mode == 'add': list1.append(number) elif mode == 'pop' and number in list1: list1.pop(number) elif mode == 'remove' and number in list1: list1.remove(number) elif mode == 'pop': if number >= len(list1): print('Вы ввели сликом большое число') else: print('Вы ввели неверный мод!') change_list('add',7) change_list('pop',5) change_list('remove',7) print(list1)
[ "ayzhana.abdrahmanova@mail.ru" ]
ayzhana.abdrahmanova@mail.ru
5eb8452bc0e7c1854864fd2798cebc3c12178e0d
959617c05cd561b14b647bf6a55f5ab2bfda3d9a
/pid/test-pid.py
019cb0db00470e570f33f8aea031a1647022b252
[]
no_license
HeBeiLiangJianFei/selenium-geetest--
c5fd7555b10da98e7e67a41e76ff419cb81a224b
76b9904d1133c98f5ee5caefca1233b4e55d8753
refs/heads/master
2020-04-27T04:09:22.723949
2020-03-14T03:40:29
2020-03-14T03:40:29
174,045,367
0
0
null
null
null
null
UTF-8
Python
false
false
3,494
py
import time class PID: def __init__(self, P=0.2, I=0.0, D=0.0): self.Kp = P self.Ki = I self.Kd = D self.sample_time = 0.00 self.current_time = time.time() self.last_time = self.current_time self.clear() def clear(self): self.SetPoint = 0.0 self.PTerm = 0.0 self.ITerm = 0.0 self.DTerm = 0.0 self.last_error = 0.0 self.int_error = 0.0 self.windup_guard = 20.0 self.output = 0.0 def update(self, feedback_value): error = self.SetPoint - feedback_value self.current_time = time.time() delta_time = self.current_time - self.last_time delta_error = error - self.last_error if (delta_time >= self.sample_time): self.PTerm = self.Kp * error#比例 self.ITerm += error * delta_time#积分 if (self.ITerm < -self.windup_guard): self.ITerm = -self.windup_guard elif (self.ITerm > self.windup_guard): self.ITerm = self.windup_guard self.DTerm = 0.0 if delta_time > 0: self.DTerm = delta_error / delta_time self.last_time = self.current_time self.last_error = error self.output = self.PTerm + (self.Ki * self.ITerm) + (self.Kd * self.DTerm) def setKp(self, proportional_gain): self.Kp = proportional_gain def setKi(self, integral_gain): self.Ki = integral_gain def setKd(self, derivative_gain): self.Kd = derivative_gain def setWindup(self, windup): self.windup_guard = windup def setSampleTime(self, sample_time): self.sample_time = sample_time import time import matplotlib matplotlib.use("TkAgg") import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import spline #这个程序的实质就是在前九秒保持零输出,在后面的操作中在传递函数为某某的系统中输出1 def test_pid(P = 0.2, I = 0.0, D= 0.0, L=100): """Self-test PID class .. note:: ... for i in range(1, END): pid.update(feedback) output = pid.output if pid.SetPoint > 0: feedback += (output - (1/i)) if i>9: pid.SetPoint = 1 time.sleep(0.02) --- """ pid = PID(P, I, D) pid.SetPoint=0.0 pid.setSampleTime(0.01) END = L feedback = 0 feedback_list = [] time_list = [] setpoint_list = [] for i in range(1, END): pid.update(feedback) output = pid.output if pid.SetPoint > 0: feedback +=output# (output - (1/i))控制系统的函数 if i>9: pid.SetPoint = 1 time.sleep(0.01) feedback_list.append(feedback) setpoint_list.append(pid.SetPoint) time_list.append(i) time_sm = np.array(time_list) time_smooth = np.linspace(time_sm.min(), time_sm.max(), 300) feedback_smooth = spline(time_list, feedback_list, time_smooth) plt.figure(0) plt.plot(time_smooth, feedback_smooth) plt.plot(time_list, setpoint_list) plt.xlim((0, L)) plt.ylim((min(feedback_list)-0.5, max(feedback_list)+0.5)) plt.xlabel('time (s)') plt.ylabel('PID (PV)') plt.title('TEST PID') plt.ylim((1-0.5, 1+0.5)) plt.grid(True) plt.show() # if __name__ == "__main__": # test_pid(1.2, 1, 0.001, L=80) # test_pid(0.8, L=50)
[ "m13833170342@163.com" ]
m13833170342@163.com
40468fcbfed1e9ee8f9ffa01d3ec8979ac0b5493
575ab9f0027d82a26041f37a443cda16cf010379
/DeepLearning/BILSTM-CRF/Model.py
c784d28dd143dd8d704b221371c5da68a36290c4
[]
no_license
huning2009/MachineLearning
ca665d63c6924d6229bcdea09d0e9fe715d2d1c8
016b98eae7e31aab4e2ca5a14e86150f31e97bba
refs/heads/master
2022-04-08T06:01:05.370260
2020-03-12T04:24:16
2020-03-12T04:24:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,612
py
#-*- coding:utf-8 _*- """ @version: @author: CharlesXu @license: Q_S_Y_Q @file: Model.py @time: 2018/4/3 17:50 @desc: BiLSTM + CRF 模型层 """ import numpy as np import os, time, sys import tensorflow as tf from tensorflow.contrib.rnn import LSTMCell from tensorflow.contrib.crf import crf_log_likelihood from tensorflow.contrib.crf import viterbi_decode from DataPro import pad_sequences, batch_yield from Utils import get_logger from Eval import conlleval class BiLSTM_CRF(object): def __init__(self, args, embeddings, tag2label, vocab, paths, config): self.batch_size = args.batch_size self.epoch_num = args.epoch self.hidden_dim = args.hidden_dim self.embeddings = embeddings self.CRF = args.CRF self.update_embedding = args.update_embedding self.dropout_keep_prob = args.dropout self.optimizer = args.optimizer self.lr = args.lr self.clip_grad = args.clip self.tag2label = tag2label self.num_tags = len(tag2label) self.vocab = vocab self.shuffle = args.shuffle self.model_path = paths['model_path'] self.summary_path = paths['summary_path'] self.logger = get_logger(paths['log_path']) self.result_path = paths['result_path'] self.config = config def build_graph(self): self.add_placeholders() self.lookup_layer_op() self.biLSTM_layer_op() self.softmax_pred_op() self.loss_op() self.trainstep_op() self.init_op() # 各层网络实现 def add_placeholders(self): self.word_ids = tf.placeholder(tf.int32, shape=[None, None], name="word_ids") self.labels = tf.placeholder(tf.int32, shape=[None, None], name="labels") self.sequence_lengths = tf.placeholder(tf.int32, shape=[None], name="sequence_lengths") # drop_out的作用:随机丢弃一些参数 self.dropout_pl = tf.placeholder(dtype=tf.float32, shape=[], name="dropout") # lr 的作用 self.lr_pl = tf.placeholder(dtype=tf.float32, shape=[], name="lr") # 仔细理解 def lookup_layer_op(self): with tf.variable_scope("words"): # embedding 的作用 _word_embeddings = tf.Variable(self.embeddings, dtype=tf.float32, trainable=self.update_embedding, name="_word_embeddings") # embedding_lookup 根据id寻找embedding中对应的元素 word_embeddings = tf.nn.embedding_lookup(params=_word_embeddings, ids=self.word_ids, name="word_embeddings") self.word_embeddings = tf.nn.dropout(word_embeddings, self.dropout_pl) def biLSTM_layer_op(self): with tf.variable_scope("bi-lstm"): cell_fw = LSTMCell(self.hidden_dim) cell_bw = LSTMCell(self.hidden_dim) (output_fw_seq, output_bw_seq), _ = tf.nn.bidirectional_dynamic_rnn( cell_fw = cell_fw, cell_bw = cell_bw, inputs = self.word_embeddings, sequence_length = self.sequence_lengths, dtype = tf.float32 ) output = tf.concat([output_fw_seq, output_bw_seq], axis=-1) output = tf.nn.dropout(output, self.dropout_pl) with tf.variable_scope("proj"): W = tf.get_variable(name='W', shape=[2 * self.hidden_dim, self.num_tags], initializer=tf.contrib.layers.xavier_initializer(), dtype=tf.float32) b = tf.get_variable(name='b', shape=[self.num_tags], initializer=tf.zeros_initializer(), # 对比tf.ones_initializer() dtype=tf.float32) s = tf.shape(output) output = tf.reshape(output, [-1, 2*self.hidden_dim]) pred = tf.matmul(output, W) + b self.logits = tf.reshape(pred, [-1, s[1], self.num_tags]) def loss_op(self): ''' crf_log_likelihood : 如果你要预测的是一个序列,可以用这个做损失函数 :return: ''' if self.CRF: log_likelihood, self.transition_params = crf_log_likelihood( inputs=self.logits, # unary potentials,也就是每个标签的预测概率值,这个值根据实际情况选择计算方法,CNN,RNN...都可以 tag_indices=self.labels, #这个就是真实的标签序列了 sequence_lengths=self.sequence_lengths, # 序列的长度 # transition_params,转移概率,可以没有,没有的话这个函数也会算出来 ) self.loss = -tf.reduce_mean(log_likelihood) else: losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.labels) # 交叉熵函数 # 张量变换函数,返回一个表示每个单元的前N个位置的mask张量 # tf.sequence_mask([1, 3, 2], 5) # [[True, False, False, False, False], # [True, True, True, False, False], # [True, True, False, False, False]] # tf.sequence_mask([[1, 3], [2, 0]]) # [[[True, False, False], # [True, True, True]], # [[True, True, False], # [False, False, False]]] mask = tf.sequence_mask(self.sequence_lengths) #tf.boolean_mask(a,b) 将使a (m维)矩阵仅保留与b中“True”元素同下标的部分,并将结果展开到m-1维。 losses = tf.boolean_mask(losses, mask) self.loss = tf.reduce_mean(losses) # 对标量数据汇总和记录 tf.summary.scalar("loss", self.loss) def softmax_pred_op(self): if not self.CRF: self.labels_softmax_ = tf.argmax(self.logits, axis=-1) self.labels_softmax_ = tf.cast(self.labels_softmax_, tf.int32) def trainstep_op(self): with tf.variable_scope("train_step"): self.global_step = tf.Variable(0, name="global_step", trainable=False) if self.optimizer == 'Adam': optim = tf.train.AdamOptimizer(learning_rate=self.lr_pl) elif self.optimizer == 'Adadelta': optim = tf.train.AdadeltaOptimizer(learning_rate=self.lr_pl) elif self.optimizer == 'Adagrad': optim = tf.train.AdagradOptimizer(learning_rate=self.lr_pl) elif self.optimizer == 'RMSProp': optim = tf.train.RMSPropOptimizer(learning_rate=self.lr_pl) elif self.optimizer == 'Momentum': optim = tf.train.MomentumOptimizer(learning_rate=self.lr_pl, momentum=0.9) elif self.optimizer == 'SGD': optim = tf.train.GradientDescentOptimizer(learning_rate=self.lr_pl) else: optim = tf.train.GradientDescentOptimizer(learning_rate=self.lr_pl) grands_and_vars = optim.compute_gradients(self.loss) grands_and_vars_clip = [[tf.clip_by_value(g, -self.clip_grad, self.clip_grad), v] for g, v in grands_and_vars] self.train_op = optim.apply_gradients(grands_and_vars_clip, global_step=self.global_step) def init_op(self): self.init_op = tf.global_variables_initializer() def add_summary(self, sess): ''' :param sess: :return: ''' self.merged = tf.summary.merge_all() self.file_writer = tf.summary.FileWriter(self.summary_path, sess.graph) def train(self, train, dev): ''' :param train: :param dev: :return: ''' saver = tf.train.Saver(tf.global_variables()) with tf.Session(config=self.config) as sess: sess.run(self.init_op()) self.add_summary(sess) for epoch in range(self.epoch_num): self.run_one_epoch(sess, train, dev, self.tag2label, epoch, saver) def test(self, test): saver = tf.train.Saver() with tf.Session(config=self.config) as sess: self.logger.info('=========== testing ===========') saver.restore(sess, self.model_path) label_list, seq_len_list = self.dev_one_epoch(sess, test) self.evaluate(label_list, seq_len_list, test) def demo_one(self, sess, sent): """ :param sess: :param sent: :return: """ label_list = [] for seqs, labels in batch_yield(sent, self.batch_size, self.vocab, self.tag2label, shuffle=False): label_list_, _ = self.predict_one_batch(sess, seqs) label_list.extend(label_list_) label2tag = {} for tag, label in self.tag2label.items(): label2tag[label] = tag if label != 0 else label tag = [label2tag[label] for label in label_list[0]] return tag def run_one_epoch(self, sess, train, dev, tag2label, epoch, saver): ''' :param sess: :param train: :param dev: :param tag2label: :param epoch: :param saver: :return: ''' num_batches = (len(train) + self.batch_size - 1) // self.batch_size start_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) batches = batch_yield(train, self.batch_size, self.vocab, self.tag2label, shuffle=self.shuffle) for step, (seqs, labels) in enumerate(batches): sys.stdout.write(' processing: {} batch / {} batches.'.format(step + 1, num_batches) + '\r') step_num = epoch * num_batches + step + 1 feed_dict, _ = self.get_feed_dict(seqs, labels, self.lr, self.dropout_keep_prob) _, loss_train, summary, step_num = sess.run([self.train_op, self.loss, self.merged, self.global_step], feed_dict=feed_dict) if step + 1 == 1 or (step + 1) % 300 == 0 or step + 1 == num_batches: self.logger.info( '{} epoch {}, step {}, loss: {:.4}, global_step: {}'.format(start_time, epoch + 1, step + 1, loss_train, step_num)) self.file_writer.add_summary(summary, step_num) if step + 1 == num_batches: saver.save(sess, self.model_path, global_step=step_num) self.logger.info('===========validation / test===========') label_list_dev, seq_len_list_dev = self.dev_one_epoch(sess, dev) self.evaluate(label_list_dev, seq_len_list_dev, dev, epoch) def dev_one_epoch(self, sess, dev): ''' :param sess: :param dev: :return: ''' label_list, seq_len_list = [], [] for seqs, labels in batch_yield(dev, self.batch_size, self.vocab, self.tag2label, shuffle=False): label_list_, seq_len_list_ = self.predict_one_batch(sess, seqs) label_list.extend(label_list_) seq_len_list.extend(seq_len_list_) return label_list, seq_len_list def predict_one_batch(self, sess, seqs): ''' :param sess: :param seqs: :return: ''' feed_dict, seq_len_list = self.get_feed_dict(seqs, dropout=1.0) if self.CRF: logits, transition_params = sess.run([self.logits, self.transition_params], feed_dict=feed_dict) label_list = [] for logit, seq_len in zip(logits, seq_len_list): viterbi_seq, _ = viterbi_decode(logit[:seq_len], transition_params) label_list.append(viterbi_seq) return label_list, seq_len_list def get_feed_dict(self, seqs, labels=None, lr=None, dropout=None): ''' :param seqs: :param labels: :param lr: :param dropout_keep_prob: :return: ''' word_ids, seq_len_list = pad_sequences(seqs, pad_mark=0) feed_dict = {self.word_ids:word_ids, self.sequence_lengths:seq_len_list} if labels is not None: labels_, _ = pad_sequences(labels, pad_mark=0) feed_dict[self.labels] = labels_ if lr is not None: feed_dict[self.lr_pl] = lr if dropout is not None: feed_dict[self.dropout_pl] = dropout return feed_dict, seq_len_list def evaluate(self, label_list, seq_len_list, data, epoch=None): ''' 模型评估 :param label_list: :param seq_len_list: :param data: :param epoch: :return: ''' label2tag = {} for tag, label in self.tag2label.items(): label2tag[label] = tag if label != 0 else label model_predict = [] for label_, (sent, tag) in zip(label_list, data): tag_ = [label2tag[label__] for label__ in label_] sent_res = [] if len(label_) != len(sent): print(sent) print(len(label_)) print(tag) for i in range(len(sent)): sent_res.append([sent[i], tag[i], tag_[i]]) model_predict.append(sent_res) epoch_num = str(epoch + 1) if epoch != None else 'test' label_path = os.path.join(self.result_path, 'label_' + epoch_num) metric_path = os.path.join(self.result_path, 'result_metric_' + epoch_num) for _ in conlleval(model_predict, label_path, metric_path): self.logger.info(_)
[ "charlesxu86@163.com" ]
charlesxu86@163.com
b10c2f615a276a88bad43d9a2a4de0fd2cff1552
2386f273ee2be3a1b0fe7957f372dfc5eb98f53c
/w13/class_to_serialize.py
e86048952cb5ee1e2b6425ef37977bb5f0274ac2
[]
no_license
MekanYaldyrov/python_course
7f84fd92d51903bd6bd4725b764247ad0f2be631
6150da69316a4229eae6c112ea1cbc3f592b275b
refs/heads/master
2023-02-10T12:19:49.690417
2021-01-09T12:32:09
2021-01-09T12:32:09
324,836,564
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
class MyClass: def __init__(self, name, surname, is_hired): self.name = name self.surname = surname self.is_hired = is_hired def obj_to_json(my_class_instance): return json.dumps(my_class_instance.__dict__) def json_to_obj(my_class_instance): obj_dict = json.loads(my_class_instance) obj = MyClass(**obj_dict) return obj
[ "Mekan.yaldyrov@phystech.edu" ]
Mekan.yaldyrov@phystech.edu
005fddaf792fc04b309616c6034b81aacf2e8156
1bf997c06373f7a25a961fb0eccd27347f17da04
/Test/Copy_playlist2folder.py
8e8b3a1ced5d987dd41fd30a846b018dadb0774f
[]
no_license
sbuvanesh/P_MusicManagement
3f7a4d175fd9646a91da701f28d58312fe2c7a32
919f88f8845609a798bf2bea1e76d1951b26a97a
refs/heads/master
2021-01-10T04:02:58.371378
2015-12-21T20:05:22
2015-12-21T20:05:22
48,390,614
0
0
null
null
null
null
UTF-8
Python
false
false
900
py
import shutil, os, sys if __name__ == '__main__': if len(sys.argv) == 3: plylist_path = sys.argv[1] dst_path = sys.argv[2] os.chdir(dst_path) plylist_dst_dir = plylist_path.split('/')[-1].replace('.m3u','') if not os.path.exists(plylist_dst_dir): os.mkdir(plylist_dst_dir) try: plylist = open(plylist_path,'r') for line in plylist.readlines(): if line[0:4]!='#EXT': song=line.replace('\n','') try: shutil.copy(song,plylist_dst_dir) except IOError as e: print('Cannot copy file: '+song) continue print('Completed') except Exception as e: print(e) else: print('Script usage: <script> <playlist_path> <destination_path>')
[ "sbuvanesh@gmail.com" ]
sbuvanesh@gmail.com
b4ccb518eb8bf230a4b567858d689fcbd4e4e99e
3491f64abc9260775cb6f7118135af823a98d0cd
/server/apps/user/models.py
e3ebfcd7ab6690cf7b21775091dc2344365d3f25
[]
no_license
Moonsteel22/shop_backend
f658eeba7a77cf677c1dec0b0974cac892e28de3
05cfec89bbe8e4c424f85f4b0545d5557fa41f5a
refs/heads/master
2023-07-21T23:05:03.549149
2021-08-27T11:20:21
2021-08-27T11:20:21
397,538,229
0
0
null
null
null
null
UTF-8
Python
false
false
375
py
from django.db import models from django.contrib.auth.models import User as IUser class User(IUser): phone = models.CharField(max_length=11, blank=True) age = models.PositiveIntegerField(default=0) img_url = models.CharField(max_length=100, blank=True) role = models.CharField(max_length=2, default='U', blank=True) class Meta: managed = True
[ "aibulat.ryic@gmail.com" ]
aibulat.ryic@gmail.com
6ddc57efa21919842854084e39f17c690a578d3b
1822440a663916fc4b38ba09edb91f7b0d313c6f
/tests/test_css.py
f66ca0bfaf0a349695078930bf1125cb6ca1d9d2
[ "BSD-2-Clause" ]
permissive
herbstluftwm/herbstluftwm
09fb4318ed1a00bf96335a93cb7d3ebba58b3f2d
d6be49251ccaf0fed6edc30ee80017d40b5eeccf
refs/heads/master
2023-08-11T00:40:40.568941
2023-06-06T09:51:17
2023-06-06T09:51:17
24,884,178
1,167
131
NOASSERTION
2023-08-30T13:00:19
2014-10-07T09:27:20
C++
UTF-8
Python
false
false
14,792
py
import textwrap import re def test_basic_css_normalize(hlwm): input2normalize = { "// comment\n foo .p, bar.c,* +c { border-width: 4px 2px; }": """\ foo .p , bar.c , * + c { border-width: 4px 2px; } """, "x { /*com\nment*/ border-width: 1px 1px 1px 1px}": """\ x { border-width: 1px 1px 1px 1px; } """, "a.b { border-width: 2px } c.d e{border-width: 5px}": """\ a.b { border-width: 2px; } c.d e { border-width: 5px; } """, "* { }": """\ * { } """, ".cl { border-width: 1px; border-width: 1px; border-width: 1px}": """\ .cl { border-width: 1px; border-width: 1px; border-width: 1px; } """, ".cl { border-color: #9fbc00; background-color: #1234ab; }": """\ .cl { border-color: #9fbc00; background-color: #1234ab; } """, "foo.class1 .class2 {border-left-width:4px; border-right-width : 2px ; } //": """\ foo.class1 .class2 { border-left-width: 4px; border-right-width: 2px; } """, "// foo": "", "// foo\n": "", "/* end */": "", } for source, normalized in input2normalize.items(): output = hlwm.call(['debug_css', '--print-css', '--stylesheet=' + source]).stdout assert output == textwrap.dedent(normalized) # check that pretty printing is idempotent: assert hlwm.call(['debug_css', '--print-css', '--stylesheet=' + output]).stdout == output def test_basic_css_parse_error(hlwm): input2error = { '{ border-width: 2px; }': "need at least one selector", ', { border-width: 2px; }': "selector must not be empty", 'p { border-width: 2px;': "Expected }", 'p } border-width: 2px;': "Expected { but got \"}", '/* unmatched': r'Expected \*/ but got EOF', '/* unmatched\n': r'Expected \*/ but got EOF', '/*\n': r'Expected \*/ but got EOF', '* // { }': "but got EOF", '* { // }': "Expected } but got EOF", } for source, error in input2error.items(): assert hlwm.call_xfail(['debug_css', '--print-css', '--stylesheet=' + source]) \ .expect_stderr(error) def test_basic_dummy_tree(hlwm): """testing the interface used for testing....""" input2normalize = { '()': '()', '(win (c focused (e f)))': '(win\n (c focused\n (e f)))', '(win (c (e f)focused))': '(win\n (c focused\n (e f)))', '((c d (e f)))': '(\n (c d\n (e f)))', '((() (e f)))': '(\n (\n ()\n (e f)))', } for source, normalized in input2normalize.items(): output = hlwm.call(['debug_css', '--print-tree', '--tree=' + source]).stdout assert output == normalized + '\n' # check that pretty printing is idempotent: assert hlwm.call(['debug_css', '--print-tree', '--tree=' + output]).stdout == output input2error = { '(': r'Expected \) but got EOF', '( (a ())))': r'Expected EOF but got.*\)', '() ()': r'Expected EOF but got.*\(', } for source, error in input2error.items(): hlwm.call_xfail(['debug_css', '--print-tree', '--tree=' + source]) \ .expect_stderr(error) def test_css_property_parsing(hlwm): input2error = { '* { something-wrong: 2px; }': 'No such property "something-wrong"', '* { border-width: 1sdfpx; }': "unparsable suffix", '* { border-width: 1; }': "must be of the format", '* { border-width: 1px 2px 3px 4px 5px; }': '"border-width" does not accept 5', '* { border-style: invalidstyle; }': 'Expected \"solid\"', } for source, error in input2error.items(): assert hlwm.call_xfail(['debug_css', '--print-css', '--stylesheet=' + source]) \ .expect_stderr(error) def test_css_basic_selectors(hlwm): tree = '(client-decoration (focus (tab urgent)) (normal))' selector2match = { '.client-decoration': [''], 'client-decoration': [], # the . is missing '#client-decoration': [], # wrong access '.client-decoration>.focus': ['0'], '.client-decoration > .focus': ['0'], '.client-decoration > .focus': ['0'], '.client-decoration >.focus': ['0'], '.client-decoration * > .focus': [], '.client-decoration > .focus + *': ['1'], ':first-child': ['0', '0 0'], ':last-child': ['1', '0 0'], '.focus :last-child': ['0 0'], '.focus:last-child': [], '.focus:first-child': ['0'], '* + .normal': ['1'], '*': ['', '0', '0 0', '1'], '* *': ['0', '0 0', '1'], } for selector, expected in selector2match.items(): cmd = [ 'debug_css', '--tree=' + tree, '--query-tree-indices=' + selector ] output = hlwm.call(cmd).stdout.splitlines() assert sorted(output) == ['match: ' + x for x in sorted(expected)] def test_css_custom_name(hlwm): tree = """ (client-decoration (something with index0) (another with custom)) """ selector2match = { '.something': ['0'], '.with': ['0', '1'], '.custom': ['1'], } for selector, expected in selector2match.items(): cmd = [ 'debug_css', '--tree=' + tree, '--query-tree-indices=' + selector ] output = hlwm.call(cmd).stdout.splitlines() assert sorted(output) == ['match: ' + x for x in sorted(expected)] def test_css_sibling_cominbators(hlwm): tree = """ (client-decoration (something with index0) (tabbar tab index1 (tab) (tab focus) (tab urgent)) (tab anything)) """ selector2match = { '.tab + .tab': ['1 1', '1 2', '2'], '* + .tab + .tab': ['1 2', '2'], '.tab + .tab + .tab': ['1 2'], '.tab .tab + .tab': ['1 1', '1 2'], '* + .tab': ['1 1', '1 2', '2', '1'], '.client-decoration * + .tab': ['1 1', '1 2', '2', '1'], '.client-decoration > * + .tab': ['1', '2'], } for selector, expected in selector2match.items(): cmd = [ 'debug_css', '--tree=' + tree, '--query-tree-indices=' + selector, ] output = hlwm.call(cmd).stdout.splitlines() assert sorted(output) == ['match: ' + x for x in sorted(expected)] def test_css_property_applier(hlwm): decl2computed = { 'border: 2px solid #9fbc00': '\n'.join([ f'border-{side}-{prop}: {value};' for side in ['top', 'left', 'right', 'bottom'] # 'solid' isn't shown because it's the default style for prop, value in [('width', '2px'), ('color', '#9fbc00')]]), 'border-top: 5px solid #ffddee': """\ border-top-width: 5px; border-top-color: #ffddee; """, 'border-left: 5px solid #ffddee': """\ border-left-width: 5px; border-left-color: #ffddee; """, 'border-right: 5px solid #ffddee': """\ border-right-width: 5px; border-right-color: #ffddee; """, 'border-bottom: 5px solid #ffddee': """\ border-bottom-width: 5px; border-bottom-color: #ffddee; """, 'border-width: 4px 2px': """\ border-top-width: 4px; border-bottom-width: 4px; border-left-width: 2px; border-right-width: 2px; """, 'border-width: 2px 3px 4px 5px': """\ border-top-width: 2px; border-right-width: 3px; border-bottom-width: 4px; border-left-width: 5px; """, 'display: flex': '', # flex is the default 'font: initial': '', 'font: sans; font: initial': '', # initial is the default 'font: fixed': """\ font: fixed; """, } simple_props = [ 'min-height: 5px', 'min-width: 6px', 'display: none', 'color: #125323', 'text-align: center', 'background-color: #fb4ace', ] for prop in simple_props: decl2computed[prop] = prop for css_decl, computed_style in decl2computed.items(): css_decl = css_decl.rstrip(' \n;') + ';' css = f""" .testclass {{ {css_decl} }} """ tree = '((a) (testclass) (b))' cmd = [ 'debug_css', '--tree=' + tree, '--compute-style=1', '--stylesheet=' + css ] def normalize(buf): return sorted([line.strip().rstrip(';') for line in buf.splitlines()]) expected = normalize(textwrap.dedent(computed_style)) output = normalize(hlwm.call(cmd).stdout) assert expected == output def test_css_computed_style(hlwm): tree = """ (client-decoration (some-buttons in the future maybe) (tabbar tab index1 (tab focus) (tab) (tab urgent) (tab)) (some more buttons at the end)) """ css = """ .tab + .tab { border-left-width: 1px; } .tab.focus { border-color: #9fbc00; } /* this definition is later, but less specific */ .tab { border-width: 2px 4px 6px 8px; } /* and so this is overwritten entirely */ * { border-width: 77px; } .some-buttons.future { margin-left: 5px; } .some-buttons { margin-left: 3px; margin-right: 2px; } .the.future { border-width: 0px; } """ index2style = { '1 0': # the active tab """\ border-top-color: #9fbc00; border-right-color: #9fbc00; border-bottom-color: #9fbc00; border-left-color: #9fbc00; border-top-width: 2px; border-right-width: 4px; border-bottom-width: 6px; border-left-width: 8px; """, '1 1': # the tab next to it has a thinner left border """\ border-top-width: 2px; border-right-width: 4px; border-bottom-width: 6px; border-left-width: 1px; """, '0': # the some-buttons... """\ margin-left: 5px; margin-right: 2px; """ } for tree_index, computed_style in index2style.items(): cmd = [ 'debug_css', '--tree=' + tree, '--compute-style=' + tree_index, '--stylesheet=' + css ] expected = sorted(textwrap.dedent(computed_style).strip().splitlines()) output = sorted(hlwm.call(cmd).stdout.splitlines()) assert expected == output def test_debug_css_errors(hlwm): """test that the debug_css command itself does correct error handling""" hlwm.call_xfail('debug_css --compute-style=lkj') \ .expect_stderr("stoi") hlwm.call_xfail('debug_css --compute-style=8') \ .expect_stderr("--compute-style requires a tree") hlwm.call_xfail('debug_css --tree="()" --compute-style=8') \ .expect_stderr("invalid tree index") hlwm.call_xfail('debug_css --tree="()" --compute-style="0 8"') \ .expect_stderr("invalid tree index") def test_css_names_tree_check(hlwm): names = [f'class{idx}' for idx in range(0, 900)] tree = '((foo) (' + ' '.join(names) + ') (class4 class8))' matches_all_classes = ''.join(['.' + name for name in names]) matches_some_class = ', '.join(['.' + name for name in names]) css = f""" // for elements that match all the classes {matches_all_classes} {{ border-top-width: 4px; }} // for elements that match one of the classes {matches_some_class} {{ border-left-width: 7px; }} """ def computed_style_of_tree_index(tree_index): cmd = ['debug_css', f'--tree={tree}', f'--compute-style={tree_index}', f'--stylesheet={css}'] return sorted(hlwm.call(cmd).stdout.splitlines()) assert computed_style_of_tree_index('0') == [] assert computed_style_of_tree_index('1') == [ 'border-left-width: 7px;', 'border-top-width: 4px;'] assert computed_style_of_tree_index('2') == [ 'border-left-width: 7px;'] def test_theme_name_invalid_path(hlwm): hlwm.call_xfail('attr theme.name this_does_not_exist') \ .expect_stderr('this_does_not_exist.*No such file') def test_toplevel_css_classes_toplevel_client(hlwm): hlwm.open_persistent_pipe() winid, proc = hlwm.create_client() class State: def __init__(self): self.tab_count = 0 self.client_count = 1 self.other_client = None self.focused = True self.floating = False self.fullscreen = False state = State() def step0(): hlwm.call(['set_layout', 'vertical']) pass def step1(): hlwm.call(['set_layout', 'max']) state.tab_count = 1 def step2(): winid, _ = hlwm.create_client() state.other_client = winid state.client_count += 1 state.tab_count = 2 def step3(): hlwm.create_client() state.client_count += 1 state.tab_count = 2 def step4(): hlwm.call(['jumpto', state.other_client]) state.focused = False def step5(): hlwm.attr.tags.focus.floating = True state.tab_count = 0 # no tabs in floating mode state.floating = True for current_step in [step0, step1, step2, step3, step4, step5]: current_step() sep = '($|\\.|\\n)' regexes = { r'\.regular' + sep: not state.fullscreen, r'\.fullscreen' + sep: False, r'\.no-tabs' + sep: state.tab_count == 0, r'\.one-tab' + sep: state.tab_count == 1, r'\.multiple-tabs' + sep: state.tab_count >= 2, r'\.floating' + sep: state.floating, r'\.tiling' + sep: not state.floating, r'\.focus' + sep: state.focused, } output = hlwm.call(['debug_css', f'--pretty-client-tree={winid}']).stdout.splitlines()[0] for r, expected in regexes.items(): assert bool(re.search(r, output)) is expected, \ f'Checking that regex "{r}" is {expected}' def test_debug_css_basic_flags_dont_crash(hlwm): hlwm.call_xfail(['debug_css', '--print-tree']) \ .expect_stderr('requires a tree') assert hlwm.call(['debug_css', '--print-css']).stdout == ''
[ "noreply@github.com" ]
herbstluftwm.noreply@github.com
cd8e107457bcea7b89eaafa34671542afd9c7553
926b3c52070f6e309567c8598248fd5c57095be9
/src/mmgeneration/tests/test_models/test_pix2pix.py
f2cb3ee96a56efa0c95c1e827fc3730127774bb0
[ "Apache-2.0" ]
permissive
fengbingchun/PyTorch_Test
410f7cd2303707b0141d433fb9d144a961e1f4c8
df5c2169f0b699bcd6e74adb4cb0e57f7dcd9348
refs/heads/master
2023-05-23T16:42:29.711338
2023-03-25T11:31:43
2023-03-25T11:31:43
167,339,907
15
4
null
2023-03-25T11:31:45
2019-01-24T09:24:59
C++
UTF-8
Python
false
false
10,226
py
# Copyright (c) OpenMMLab. All rights reserved. import copy import torch from mmcv.runner import obj_from_dict from mmgen.models import GANLoss, L1Loss, build_model from mmgen.models.architectures.pix2pix import (PatchDiscriminator, UnetGenerator) def test_pix2pix(): # model settings model_cfg = dict( type='Pix2Pix', generator=dict( type='UnetGenerator', in_channels=3, out_channels=3, num_down=8, base_channels=64, norm_cfg=dict(type='BN'), use_dropout=True, init_cfg=dict(type='normal', gain=0.02)), discriminator=dict( type='PatchDiscriminator', in_channels=6, base_channels=64, num_conv=3, norm_cfg=dict(type='BN'), init_cfg=dict(type='normal', gain=0.02)), gan_loss=dict( type='GANLoss', gan_type='vanilla', real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0), default_domain='photo', reachable_domains=['photo'], related_domains=['photo', 'mask'], gen_auxiliary_loss=dict( type='L1Loss', loss_weight=100.0, data_info=dict(pred='fake_photo', target='real_photo'), reduction='mean')) train_cfg = None test_cfg = None # build synthesizer synthesizer = build_model( model_cfg, train_cfg=train_cfg, test_cfg=test_cfg) # test attributes assert synthesizer.__class__.__name__ == 'Pix2Pix' assert isinstance(synthesizer.generators['photo'], UnetGenerator) assert isinstance(synthesizer.discriminators['photo'], PatchDiscriminator) assert isinstance(synthesizer.gan_loss, GANLoss) assert isinstance(synthesizer.gen_auxiliary_losses[0], L1Loss) assert synthesizer.test_cfg is None # prepare data img_mask = torch.rand(1, 3, 256, 256) img_photo = torch.rand(1, 3, 256, 256) data_batch = {'img_mask': img_mask, 'img_photo': img_photo} # prepare optimizer optim_cfg = dict(type='Adam', lr=2e-4, betas=(0.5, 0.999)) optimizer = { 'generators': obj_from_dict( optim_cfg, torch.optim, dict(params=getattr(synthesizer, 'generators').parameters())), 'discriminators': obj_from_dict( optim_cfg, torch.optim, dict(params=getattr(synthesizer, 'discriminators').parameters())) } # test forward_test domain = 'photo' with torch.no_grad(): outputs = synthesizer(img_mask, target_domain=domain, test_mode=True) assert torch.equal(outputs['source'], data_batch['img_mask']) assert torch.is_tensor(outputs['target']) assert outputs['target'].size() == (1, 3, 256, 256) # test forward_train outputs = synthesizer(img_mask, target_domain=domain, test_mode=False) assert torch.equal(outputs['source'], data_batch['img_mask']) assert torch.is_tensor(outputs['target']) assert outputs['target'].size() == (1, 3, 256, 256) # test train_step outputs = synthesizer.train_step(data_batch, optimizer) assert isinstance(outputs, dict) assert isinstance(outputs['log_vars'], dict) assert isinstance(outputs['results'], dict) for v in ['loss_gan_d_fake', 'loss_gan_d_real', 'loss_gan_g', 'loss_l1']: assert isinstance(outputs['log_vars'][v], float) assert outputs['num_samples'] == 1 assert torch.equal(outputs['results']['real_mask'], data_batch['img_mask']) assert torch.equal(outputs['results']['real_photo'], data_batch['img_photo']) assert torch.is_tensor(outputs['results']['fake_photo']) assert outputs['results']['fake_photo'].size() == (1, 3, 256, 256) # test cuda if torch.cuda.is_available(): synthesizer = synthesizer.cuda() optimizer = { 'generators': obj_from_dict( optim_cfg, torch.optim, dict(params=getattr(synthesizer, 'generators').parameters())), 'discriminators': obj_from_dict( optim_cfg, torch.optim, dict( params=getattr(synthesizer, 'discriminators').parameters())) } data_batch_cuda = copy.deepcopy(data_batch) data_batch_cuda['img_mask'] = img_mask.cuda() data_batch_cuda['img_photo'] = img_photo.cuda() # forward_test with torch.no_grad(): outputs = synthesizer( data_batch_cuda['img_mask'], target_domain=domain, test_mode=True) assert torch.equal(outputs['source'], data_batch_cuda['img_mask'].cpu()) assert torch.is_tensor(outputs['target']) assert outputs['target'].size() == (1, 3, 256, 256) # test forward_train outputs = synthesizer( data_batch_cuda['img_mask'], target_domain=domain, test_mode=False) assert torch.equal(outputs['source'], data_batch_cuda['img_mask']) assert torch.is_tensor(outputs['target']) assert outputs['target'].size() == (1, 3, 256, 256) # train_step outputs = synthesizer.train_step(data_batch_cuda, optimizer) assert isinstance(outputs, dict) assert isinstance(outputs['log_vars'], dict) assert isinstance(outputs['results'], dict) for v in [ 'loss_gan_d_fake', 'loss_gan_d_real', 'loss_gan_g', 'loss_l1' ]: assert isinstance(outputs['log_vars'][v], float) assert outputs['num_samples'] == 1 assert torch.equal(outputs['results']['real_mask'], data_batch_cuda['img_mask'].cpu()) assert torch.equal(outputs['results']['real_photo'], data_batch_cuda['img_photo'].cpu()) assert torch.is_tensor(outputs['results']['fake_photo']) assert outputs['results']['fake_photo'].size() == (1, 3, 256, 256) # test disc_steps and disc_init_steps data_batch['img_mask'] = img_mask.cpu() data_batch['img_photo'] = img_photo.cpu() train_cfg = dict(disc_steps=2, disc_init_steps=2) synthesizer = build_model( model_cfg, train_cfg=train_cfg, test_cfg=test_cfg) optimizer = { 'generators': obj_from_dict( optim_cfg, torch.optim, dict(params=getattr(synthesizer, 'generators').parameters())), 'discriminators': obj_from_dict( optim_cfg, torch.optim, dict(params=getattr(synthesizer, 'discriminators').parameters())) } # iter 0, 1 for i in range(2): outputs = synthesizer.train_step(data_batch, optimizer) assert isinstance(outputs, dict) assert isinstance(outputs['log_vars'], dict) assert isinstance(outputs['results'], dict) assert outputs['log_vars'].get('loss_gan_g') is None assert outputs['log_vars'].get('loss_l1') is None for v in ['loss_gan_d_fake', 'loss_gan_d_real']: assert isinstance(outputs['log_vars'][v], float) assert outputs['num_samples'] == 1 assert torch.equal(outputs['results']['real_mask'], data_batch['img_mask']) assert torch.equal(outputs['results']['real_photo'], data_batch['img_photo']) assert torch.is_tensor(outputs['results']['fake_photo']) assert outputs['results']['fake_photo'].size() == (1, 3, 256, 256) assert synthesizer.iteration == i + 1 # iter 2, 3, 4, 5 for i in range(2, 6): assert synthesizer.iteration == i outputs = synthesizer.train_step(data_batch, optimizer) assert isinstance(outputs, dict) assert isinstance(outputs['log_vars'], dict) assert isinstance(outputs['results'], dict) log_check_list = [ 'loss_gan_d_fake', 'loss_gan_d_real', 'loss_gan_g', 'loss_l1' ] if i % 2 == 1: assert outputs['log_vars'].get('loss_gan_g') is None assert outputs['log_vars'].get('loss_pixel') is None log_check_list.remove('loss_gan_g') log_check_list.remove('loss_l1') for v in log_check_list: assert isinstance(outputs['log_vars'][v], float) assert outputs['num_samples'] == 1 assert torch.equal(outputs['results']['real_mask'], data_batch['img_mask']) assert torch.equal(outputs['results']['real_photo'], data_batch['img_photo']) assert torch.is_tensor(outputs['results']['fake_photo']) assert outputs['results']['fake_photo'].size() == (1, 3, 256, 256) assert synthesizer.iteration == i + 1 # test without pixel loss model_cfg_ = copy.deepcopy(model_cfg) model_cfg_.pop('gen_auxiliary_loss') synthesizer = build_model(model_cfg_, train_cfg=None, test_cfg=None) optimizer = { 'generators': obj_from_dict( optim_cfg, torch.optim, dict(params=getattr(synthesizer, 'generators').parameters())), 'discriminators': obj_from_dict( optim_cfg, torch.optim, dict(params=getattr(synthesizer, 'discriminators').parameters())) } data_batch['img_mask'] = img_mask.cpu() data_batch['img_photo'] = img_photo.cpu() outputs = synthesizer.train_step(data_batch, optimizer) assert isinstance(outputs, dict) assert isinstance(outputs['log_vars'], dict) assert isinstance(outputs['results'], dict) assert outputs['log_vars'].get('loss_pixel') is None for v in ['loss_gan_d_fake', 'loss_gan_d_real', 'loss_gan_g']: assert isinstance(outputs['log_vars'][v], float) assert outputs['num_samples'] == 1 assert torch.equal(outputs['results']['real_mask'], data_batch['img_mask']) assert torch.equal(outputs['results']['real_photo'], data_batch['img_photo']) assert torch.is_tensor(outputs['results']['fake_photo']) assert outputs['results']['fake_photo'].size() == (1, 3, 256, 256)
[ "fengbingchun@163.com" ]
fengbingchun@163.com
83d393d04b40ab618e4180b6f90abaaa3f0c30ea
feb46219641392c35670881bb5a26f2bffc2e837
/prac8.py
0d1a87ad9b17743663ada26e72ebd2861334c872
[]
no_license
17mca1050/Advanced-Embedded-Programming-Lab-CAT-857-
d2e1d90de3438b3fbb6d8eafe4f23f42b9455610
c485d7ac95abf35c7f9ff2d5277bd4a62c4b4bf5
refs/heads/master
2021-05-18T20:01:46.762358
2020-03-30T20:11:09
2020-03-30T20:11:09
251,393,394
0
0
null
null
null
null
UTF-8
Python
false
false
609
py
import urllib import cv2,time import numpy as np first_frame = None url= ’http://192.168.2.52:8080/shot.jpg’ imgResp = urllib.urlopen(url) imgNp = np.array(bytearray(imgResp.read()),dtype=np.uint8) img = cv2.imdecode(imgNp,-1) cv2.namedWindow(‘image’,cv2.WINDOW_NORMAL) cv2.resizeWindow(‘image’,600,600) i=0 while True: imgResp=urllib.urlopen(url) imgNp=np.array(bytearray(imgResp.read()),dtype=n.uint8) img=cv2.imdecode(imgNp,-1) cv2.imshow(‘image’,img) cv2.imwrite(‘test.jpg’’,img) key=cv2.waitKey(1) if key==ord(‘q’): break cv2.destroyAllWindows
[ "noreply@github.com" ]
17mca1050.noreply@github.com
1196f945f853b96059f7283b9cbc5f49a719f37c
fdd8a9ffefea5f6a1e5e4548803ab3fbf83318a4
/OCRopyServices/RecognitionService/RecognitionService/urls.py
d71c94fb26bc33c9def3eefb94ef8529c22db92e
[ "Apache-2.0" ]
permissive
acislab/HuMaIN_Microservices
cecc63d517ee107da7b27cb4596cb4b2d8d655c8
1bd4ac8885799f54959daa6304a0148c5f1d4a9f
refs/heads/master
2021-07-10T07:20:40.276888
2020-06-07T11:15:52
2020-06-07T11:15:52
97,147,994
1
2
null
2017-07-20T00:52:04
2017-07-13T17:17:48
Python
UTF-8
Python
false
false
1,045
py
"""RecognitionService URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin from django.conf import settings from django.conf.urls.static import static from api import views urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^recognitionapi(/)?', include('api.urls')), url(r'^admin/', admin.site.urls), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "jingchaoluan@gmail.com" ]
jingchaoluan@gmail.com
dde0cf9be9d0e57920c808810c2a7c4010f1fea1
d2a9e616dc94e3d9959fd7fa9e0abbbcbc23221d
/preprocessing/papework2.py
469e5a912a5b19079b41f59bea08a504701b2967
[]
no_license
pelekhs/Visitor_distribution_prediction
17189e401eb83e7260047ef2a7b1527929d2ad0e
ec06bfcd975fa4c92cd7c496ca63280f0a6be098
refs/heads/master
2020-04-07T17:32:26.930556
2018-12-09T20:36:49
2018-12-09T20:36:49
158,573,449
1
0
null
null
null
null
UTF-8
Python
false
false
13,628
py
# -*- coding: utf-8 -*- """ Created on Sat Oct 27 22:40:23 2018 @author: spele """ import numpy as np import pandas as pd #============================================================================== # ########### choose parameters that affect the primary dataset ####### #============================================================================== #number of clusters and time period interval and filtering hours clusters = 6 t11, t12, t21, t22 = '00:00:00','00:45:00','23:15:00','00:00:00' #choose between 'all '2017' '2018' years = '2017' from datetime import datetime t1 = datetime.strptime(t11, '%H:%M:%S') t2 = datetime.strptime(t12, '%H:%M:%S') minutes = t2.minute-t1.minute #create datasets from defs_after import clustersPeriods cluster = clustersPeriods(clusters=clusters, timestep=minutes) data, pois_to_clusters = cluster.assign_users_in_regions(df2 = "artists_list.csv", export_csv = False, plot = False, years = years, random_state = 42, clustering = 'kmeans') #new dataset in dataframe_teliko.csv #============================================================================== # ############# Parameters below affect creation of final1 ############# #============================================================================== #False if you only want his presence artist_metrics = True # 'No':metric during live, 'start':metric only at start, 'end':metric only before the bands live only_start='No' from final1_tune import final1_create_and_tune final1, cltopred, clwithlive = final1_create_and_tune(data=data, pois_to_clusters=pois_to_clusters, t11=t11, t12=t12, t21=t21, t22=t22, artist_metrics=artist_metrics, cluster=cluster,minutes=minutes, only_start=only_start,years=years) #if (cltopred not in clwithlive): # cltopred = str(input('NO live in most significant cluster. Enter cluster to predict:\n')).upper() #print("I predict: ", cltopred) # ============================================================================= # CREATE WEATHER COLUMNS # ============================================================================= from weather import weather #weather column dataframe df = weather(final1) #============================================================================== # ###################### Dataset to be processed ####################### #============================================================================== #final2 will be the version of final1 to pe processed clusters= ['A','B','C','D','E','F'] final2 = pd.DataFrame() final2[clusters]=final1[clusters] for cl in clwithlive: final2[cl+"pop"]=final1[cl+"pop"] final2['Total users'] = final1['Total users'] final2['Temperature'] = df['Temperature'] final2['Conditions'] = df['Conditions'] if years=='all': final2['Year'] = final1['Year'] final2['Time index'] = final1['Time index'] ###optional if you want time series dates final2['Time series']=final1['Time series dates'] #============================================================================== # #FROM timestep MINUTES TO multiplier*timestep MINUTES #============================================================================== #final multi is the dataset that is made from final2 averaged to multiplied timesteps from theregulator import theregulator multiplier=6 final_multi = theregulator(final2, minutes, multiplier,clwithlive) #order columns columns=np.concatenate([clusters,[clwithlive[0]+'pop',clwithlive[1]+'pop','Total users', 'Temperature', 'Conditions', 'Time index', 'Time series']]) final_multi = final_multi[columns] final_multi=final_multi.append(final_multi.iloc[-1][:]).reset_index(drop=True) #choose line below based on year #final_multi.iloc[-1,-1] = '2018-07-23 00:00:00' final_multi.iloc[-1,-1] = '2017-07-24 00:00:00' #final2=final2[columns[:-1]] #final_multi.to_csv('final_multi_5to30mins.csv') ## ============================================================================= ## X, y WRITE TO CSV (input output for ML algorithms) ## ============================================================================= #x = final_multi.iloc[:-1,:].reset_index(drop=True) #y = final_multi[clusters].iloc[1:,:].reset_index(drop=True) # #x.to_csv('x_'+years+'.csv', index=False) #y.to_csv('y_'+years+'.csv', index=False) #============================================================================== # TYPICALLY SCRIPT ENDS HERE DON'T GO FURTHER #========================================================================== #============================================================================== # FROM VALUES IN CLUSTERS TO DISTRIBUTIONS #============================================================================== ##distribution normalization #for column in clusters: # final2[column] = final2[column]/final2['Total users'] #final2 = final2.fillna(0) #============================================================================== # ######################## Feature Scaling ############################## #============================================================================== #from sklearn.preprocessing import MinMaxScaler #mini=0 #maxi=1 ##total users feature scaling #sc_tot = MinMaxScaler(feature_range=(mini, maxi)) #final2["Total users"] = sc_tot.fit_transform(final2["Total users"].values.reshape(-1,1)) # ##time index as a sine shifted so that it contains only positive values #final2['Periodic time index'] = final2["Time index"].apply(lambda x: (np.sin((2*np.pi*x/(max(final2["Time index"])))))) # ##time index feature scaling #sc_index = MinMaxScaler(feature_range=(mini, maxi)) #final2["Time index"] = sc_index.fit_transform(final2["Time index"].values.reshape(-1,1)) ##year encoding #if years=='all': # from sklearn.preprocessing import LabelEncoder # le = LabelEncoder() # final2['Year']=le.fit_transform(final2['Year']) #final2 = (final2.drop(labels='Year',inplace=True,axis=1)).reset_index(drop=True) ##popularity feature scaling #from artists_period import create_artist #artists = create_artist(timestep=minutes, df=pois_to_clusters, only_start=only_start) #sc_pop = MinMaxScaler(feature_range=(mini, maxi)) #sc_pop.fit(pd.concat([artists.iloc[:,0], artists.iloc[:,1]]).values.reshape(-1, 1)) #for cltopred in clwithlive: # final2[cltopred+"pop"] = sc_pop.transform(final2[cltopred+"pop"].values.reshape(-1,1)) # ##temperature feature scaling #sc_temp = MinMaxScaler(feature_range=(mini, maxi)) #final2["Temperature"] = sc_tot.fit_transform(final2["Temperature"].values.reshape(-1,1)) # ##time index feature scaling #sc_index = MinMaxScaler(feature_range=(mini, maxi)) #final2["Conditions"] = sc_index.fit_transform(final2["Conditions"].values.reshape(-1,1)) #============================================================================== # time series plot #============================================================================== """#live and popularities plot in time import matplotlib.pyplot as plt import matplotlib.dates as md index=[x for x in final_multi['Time series']] index2 = [x for x in final_multi['Time series']] tuTS = pd.Series(final_multi['Total users'].values,index=index) condTS = pd.Series(final_multi['Conditions'].values, index=index2) tempTS = pd.Series(final_multi['Temperature'].values, index=index2) liveTS = pd.Series(final_multi['B'].values,index=index) popTS = pd.Series(final_multi['Bpop'].values,index=index) exitTS = pd.Series(final_multi['A'].values,index=index) shopTS = pd.Series(final_multi['E'].values,index=index) #normalize maxpeople=max(liveTS) tuTS = tuTS/(maxpeople) liveTS = liveTS/(maxpeople) exitTS = exitTS/(maxpeople) shopTS = shopTS/(maxpeople) pt = [(datetime.strptime(tuTS.index[x], '%Y-%m-%d %H:%M:%S')) for x in range(len(tuTS))] pt2 = [(datetime.strptime(tuTS.index[x], '%Y-%m-%d %H:%M:%S')) for x in range(len(condTS))] from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler #condsc = StandardScaler() #condTS = condsc.fit_transform(condTS.values.reshape(-1,1)) #tempsc = StandardScaler() #tempTS = tempsc.fit_transform(tempTS.values.reshape(-1,1)) #weatherTS = tempTS+condTS #weathersc = MinMaxScaler() #weatherTS = tempsc.fit_transform(weatherTS.values.reshape(-1,1)) #weatherTS = pd.Series(np.repeat(weatherTS,multiplier), index=index) condsc = MinMaxScaler() condTS = condsc.fit_transform(condTS.values.reshape(-1,1)) fig, ax1 = plt.subplots() ax1.set_xlabel('Time',fontsize=22) ax1.set_ylabel('Normalized Values',fontsize=22) #ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis ax2 = ax1 #ax1.plot(pt, tuTS, color = 'black', label ='Total Users', linewidth='2.5', dashes=[15,5,5,15,5,5]) ax1.plot(pt, liveTS, label = 'Main stage',linewidth='2.5',color = 'blue', dashes=[6,3,6,6,3,6]) ax1.plot(pt, exitTS, label = 'Entrance/Exit',linewidth='2.5',color = 'red', linestyle='-') #ax1.plot(pt, shopTS, label = 'Shopping',linewidth='2.5',color = 'green', dashes=[4,2,4,4,2,4]) ax1.set_ylim(bottom=0, top=max(liveTS)+0.05*max(liveTS)) #ax2.set_ylim(bottom=0, top=max(condTS)+0.1*max(condTS)) #ax2.set_ylabel('', color='black',fontsize=22) #ax2.plot(pt, condTS, color='cyan',label = 'Conditions', linestyle = '--', linewidth='1.5') ax2.plot(pt, popTS, color='black',label = 'Popularity', linestyle = '-.', linewidth='2.3') #ax2.set_ylabel('Normalized Weather Conditions',fontsize=22) ## Set time format and the interval of ticks (every 15 minutes) xformatter = md.DateFormatter('%m-%d %H:%M') xlocator = md.MinuteLocator(interval = 180) minorxlocator = md.MinuteLocator(interval = int(minutes*multiplier)) ## Set xtick labels to appear every 15 minutes ax1.xaxis.set_major_locator(xlocator) ax1.xaxis.set_minor_locator(minorxlocator) for x in ax1.xaxis.get_major_ticks(): x.label.set_fontsize(20) for y in ax1.yaxis.get_major_ticks(): y.label.set_fontsize(20) ## Format xtick labels as HH:MM plt.gcf().axes[0].xaxis.set_major_formatter(xformatter) # Customize the major grid ax1.grid(which='major', linestyle=':', linewidth='0.6',color='gray') # Customize the minor grid ax1.grid(which='minor', linestyle='-', linewidth='0.15', color='gray') plt.setp(ax2.get_yticklabels(),fontsize=20) fig.autofmt_xdate() ax1.legend(loc=0,fontsize=22, prop={'size': 22}) plt.show()""" ##%%# #total_users_friday = sum(final1['Total users'][final1['Day index']==0]) #print(total_users_friday) #total_users_saturday = sum(final1['Total users'][final1['Day index']==1]) #print(total_users_saturday) #total_users_sunday = sum(final1['Total users'][final1['Day index']==2]) #print(total_users_sunday) ## ============================================================================= ## x, y WRITE TO CSV ## ============================================================================= #x = final_multi.iloc[:-1,:].reset_index(drop=True) #y = final_multi[clusters].iloc[1:,:].reset_index(drop=True) # #x.to_csv('x_'+years+'.csv', index=False) #y.to_csv('y_'+years+'.csv', index=False) # # ##============================================================================== ## IMPORT WRITTEN CSV ##============================================================================== #x_2018 = pd.read_csv('x_2018.csv') #y_2018 = pd.read_csv('y_2018.csv') # #x_2017 = pd.read_csv('x_2017.csv') #y_2017 = pd.read_csv('y_2017.csv') # ##============================================================================== ## PREDICTIONS ##============================================================================== #for cluster in clusters: # X_train = x_2017 # y_train = y_2017[cluster] # ##============================================================================== ## ############# Model Creation, Evaluation and Plots ################# ##============================================================================== ##regression model parameters to define ##SVR #svr_kernel_vector= ['rbf','linear']#poly rbf linear sigmoid precomputed ##random forest numbers of estimators to use for regression #estimators = [10] ##polynomial regression maximum degree #poly_deg = [1] # #from models_evaluation_and_plots import model_evaluation_and_plots #modeler = model_evaluation_and_plots(X_train_sc_flat,X_test_sc_flat,y_train_sc, ytrue, y_train, y_test, # sc_cl) ##SVR #svr=[] #for svr_kernel in svr_kernel_vector: # svr.append(modeler.SVR(svr_kernel)) ##Random Forest #rf=[] #for estimator in estimators: # rf.append(modeler.RF(estimator,max_depth=2, min_samples_split=4)) ##polynomial #po=[] #for deg in poly_deg: # po.append(modeler.poly(deg)) ##MLP #mlp=[modeler.MLP()] ##svr, rf, po, mlp are formated as below: ##[yhat, ytrain_hat, ytest_hat, Sete, Setr,Se, R2te, R2tr, R2, mapete, mapetr, mape] # # ##anastasis ##anasdataset #Xa, Xb, y, ya, yb, ya_sc, yb_sc =\ #sets2(1,final1['Time index'],output_cols,output_cols_sc,dataset,3) #X_sc = np.concatenate([Xa, Xb]) #y_sc = np.concatenate([ya_sc, yb_sc]) # ##shift (not a model just a shift) #shift=[modeler.shift(1,output_cols,final1['Time index'],testing_day,years=years)] ##shift is formatted as below ##yhat, ytrain_hat, ytest_hat, Sete, Setr,Se, R2te, R2tr, R2, mapete, mapetr, mape #yhatshift=shift[0][0] #ytrueshift=shift[0][1]
[ "pelekhs@gmail.com" ]
pelekhs@gmail.com
5bed0bed476abe47cfc78c6540b1e1b8e780f8b9
968b6ec227e6f46db3b571db64603c08eb9b4050
/Attention-Classification/NRAS-germline-lr5em2_lm1em4_batch100_q1_e50.py
15916f3307ab4026d7a42d990e8736ae136e6469
[ "Apache-2.0" ]
permissive
doerlbh/SequenceAttentionClassifier
0d053073652dc67ff3d7d2012fb4487598521368
ffdc620f796a5808cf9dbf7920364391de40b94e
refs/heads/master
2020-03-17T21:55:53.491907
2018-07-10T10:08:28
2018-07-10T10:08:28
133,981,326
1
0
null
null
null
null
UTF-8
Python
false
false
18,788
py
# coding: utf-8 # ### Notebook to configure model # In[1]: import time import math import copy import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import seaborn as sns sns.set_context(context="talk") import torch import torch.nn as nn import tensorflow as tf import torch.nn.functional as F from torchvision import datasets import torchvision.transforms as transforms from torch.autograd import Variable from torch.utils import data # In[2]: isRetrain = False # Hyperparameter QUERY_SIZE = 1 EMBEDDING_SIZE = 50 # HIDDEN_SIZE = 512 # ATTENTION_SIZE = 64 parameter_name = 'lr5em2_lm1em4_batch100_q1_e50' LEARNING_RATE = 5*1e-2 BATCH_SIZE = 100 LAMBDA = 1e-4 num_epochs = 100 VOCAB_SIZE = 5 NUM_CLASSES = 2 # Data-specific READ_LENGTH = 100 # # KRAS # GENOME_START = 25204789 # GENOME_END = 25250936 # # NOTCH1 # GENOME_START = 136494433 # GENOME_END = 136545786 # NRAS file_name = 'NRAS-germline' GENOME_START = 114704464 GENOME_END = 114716894 GENOME_LENGTH = GENOME_END - GENOME_START + 1 CONTEXT_SIZE = GENOME_LENGTH ref_names = ["class", "ref", "sequence"] VOCAB = ['N','A','T','C','G'] # In[3]: def load_ref_data(file_name, sample_ratio= 1, n_class=2, names=ref_names): csv_file = pd.read_csv(file_name, names=ref_names) shuffle_csv = csv_file.sample(frac=sample_ratio).reset_index() # x = pd.Series(shuffle_csv["sequence"]) x = list(shuffle_csv["sequence"]) # ref = pd.Series(shuffle_csv["ref"]) ref = list(shuffle_csv["ref"]) y = pd.Series(shuffle_csv["class"]) y = to_one_hot(y, n_class) print(y.shape) # print(type(x)) # print(type(y)) # print(type(ref)) return x, ref, y # In[4]: def create_synthetic_data(file_name, cancer_genes, benign_genes, num_patients=10, num_reads_per_patients=3, read_length=READ_LENGTH, genome_length=GENOME_LENGTH, vocab=VOCAB, isSomatic=True, print_seq=False): seq_list = np.random.choice(vocab, [num_patients, genome_length], replace=True) backup_seq_list = seq_list for loc, mutation in cancer_genes.items(): seq_list[np.random.choice(num_patients, int(num_patients*mutation[1]), replace=False), loc] = mutation[0] genomes = [] for r in range(seq_list.shape[0]): seq = ''.join(seq_list[r,:]) if print_seq: print(seq) genomes.append(seq) locs = np.random.choice(genome_length-read_length, num_patients*num_reads_per_patients) file = open('./tumor-genome-'+file_name+'.txt','w') count = 0 reads = [] for genome in genomes: for t in range(num_reads_per_patients): index = count*num_reads_per_patients+t reads.append(genome[locs[index]:locs[index]+read_length]) file.write("%s\n" % genome) count = count + 1 file.close() file = open('./tumor-syn-'+file_name+'.csv','w') for r in range(num_patients*num_reads_per_patients): file.write("1, %d, %s\n" % (locs[r], reads[r])) file.close() tumor_locs = locs tumor_reads = reads if isSomatic: seq_list = backup_seq_list else: seq_list = np.random.choice(vocab, [num_patients, genome_length], replace=True) for loc, mutation in benign_genes.items(): seq_list[np.random.choice(num_patients, int(num_patients*mutation[1]), replace=False), loc] = mutation[0] genomes = [] for r in range(seq_list.shape[0]): seq = ''.join(seq_list[r,:]) if print_seq: print(seq) genomes.append(seq) locs = np.random.choice(genome_length-read_length, num_patients*num_reads_per_patients) file = open('./normal-genome-'+file_name+'.txt','w') count = 0 reads = [] for genome in genomes: for t in range(num_reads_per_patients): index = count*num_reads_per_patients+t reads.append(genome[locs[index]:locs[index]+read_length]) file.write("%s\n" % genome) count = count + 1 file.close() file = open('./normal-syn-'+file_name+'.csv','w') for r in range(num_patients*num_reads_per_patients): file.write("0, %d, %s\n" % (locs[r], reads[r])) file.close() normal_locs = locs normal_reads = reads file = open('./syn-'+file_name+'.csv','w') for r in range(num_patients*num_reads_per_patients): file.write("1,%d,%s\n" % (tumor_locs[r], tumor_reads[r])) file.write("0,%d,%s\n" % (normal_locs[r], normal_reads[r])) file.close() return './syn-'+file_name+'.csv' # In[5]: def to_one_hot(y, n_class): return np.eye(n_class)[y.astype(int)] # In[6]: def split_ref_dataset(x_test, y_test, ref_test, dev_ratio): test_size = len(x_test) print(test_size) dev_size = (int)(test_size * dev_ratio) print(dev_size) x_dev = x_test[:dev_size] x_test = x_test[dev_size:] y_dev = y_test[:dev_size] y_test = y_test[dev_size:] ref_dev = ref_test[:dev_size] ref_test = ref_test[dev_size:] return x_test, x_dev, y_test, y_dev, ref_test, ref_dev, dev_size, test_size - dev_size # In[7]: class TensorizedReadDataset(torch.utils.data.DataLoader): 'Characterizes a Tensorized dataset for genome reads in PyTorch' def __init__(self, reads, ref_locs, labels, read_length=100, genome_start=0, genome_end=0): # super(TensorizedReadDataset, self).__init__() # self.read_length = read_length self.labels = labels self.reads = reads self.ref_locs = ref_locs self.genome_start = genome_start self.genome_end = genome_end def __len__(self): return len(self.reads) def __getitem__(self, index): vals = list(self.reads[index]) read_length = len(vals) locs = list(np.arange(self.ref_locs[index]-self.genome_start,self.ref_locs[index]+read_length-self.genome_start)) # print(len(vals)) # print(len(locs)) vals2idx = {'N': 0, 'A': 1, 'C': 2, 'T': 3, 'G': 4} # read = torch.LongTensor(np.array([vals2idx[val]+loc*len(vals2idx) for val, loc in zip(vals, locs)], dtype=int), requires_grad=False) read = torch.autograd.Variable(torch.LongTensor(np.array([vals2idx[val]+loc*len(vals2idx) for val, loc in zip(vals, locs)], dtype=int)), requires_grad=False) X = read Y = self.labels[index,:] # torch.LongTensor(self.labels[index,:]) return X, Y # In[8]: class SequenceAttentionClassifier(nn.Module): def __init__(self, genome_length, vocab_size=5, query_size=10, embedding_size=128, num_classes=2): super(SequenceAttentionClassifier, self).__init__() self.genome_length = genome_length self.vocab_size = vocab_size self.query_size = query_size self.embedding_size = embedding_size self.num_classes = num_classes self.K = nn.Embedding(vocab_size*genome_length, embedding_size) self.V = nn.Embedding(vocab_size*genome_length, query_size) self.W = nn.Linear(query_size, num_classes) self.Q = nn.Linear(embedding_size, query_size) def forward(self, read): # 'read' here should be mapped to a flattened form where X_ij = 1 maps to i*vocab_size + j K_lookup = self.K(read) # Get the relevant keys V_lookup = self.V(read) # Get the relevant values # Get the attention weights logits = self.Q(K_lookup) / math.sqrt(self.embedding_size) probs = F.softmax(logits, dim = 0) # Calculate the covariates for the logistic regression # X = torch.matmul(probs.transpose(1,2), V_lookup) # X = probs * V_lookup X = (probs * V_lookup).sum(dim=1) # Right now we can just ignore the fact that we're doing a linear-transform. # In the future we'll add nonlinearities # Return the logits for the classifier return self.W(X), K_lookup, V_lookup # In[9]: def GetTensorBatch(reads, ref_locs, labels, batch_size=100, genome_start=0, genome_end=0): batches = {} set_size = len(ref_locs) for batch in range(set_size // batch_size): x_batch = [] y_batch = [] for index in range(batch_size): vals = list(reads[index]) read_length = len(vals) locs = list(np.arange(ref_locs[index]-genome_start,ref_locs[index]+read_length-genome_start)) vals2idx = {'N': 0, 'A': 1, 'C': 2, 'T': 3, 'G': 4} read = torch.autograd.Variable(torch.LongTensor(np.array([vals2idx[val]+loc*len(vals2idx) for val, loc in zip(vals, locs)], dtype=int)), requires_grad=False) X = read Y = labels[index,:] x_batch.append(X) y_batch.append(Y) batches[batch] = [x_batch, y_batch] return batches # In[14]: # load data x_train, refs_train, y_train = load_ref_data("../data/ref-germline-NRAS-train39000.csv", sample_ratio=1) x_hardtest, refs_hardtest, y_hardtest = load_ref_data("../data/ref-germline-NRAS-test1000.csv", sample_ratio=1) # split dataset to train and validation x_train, x_test, y_train, y_test, refs_train, refs_test, test_size, train_size = split_ref_dataset(x_train, y_train, refs_train, 0.2) # split dataset to test and dev x_softtest, x_val, y_softtest, y_val, refs_softtest, refs_val, val_size, softtest_size = split_ref_dataset(x_test, y_test, refs_test, 0.5) print("Training size: ", train_size) print("Soft Test size: ", softtest_size) print("Hard Test size: ", len(y_hardtest)) print("Validation size: ", val_size) # In[15]: # Generators # train_dataset = TensorizedReadDataset(reads=x_train, # ref_locs=refs_train, # labels=y_train, # read_length=READ_LENGTH, # genome_start=GENOME_START, # genome_end=GENOME_END) # hardval_dataset = TensorizedReadDataset(reads=x_test, # ref_locs=refs_test, # labels=y_test, # read_length=READ_LENGTH, # genome_start=GENOME_START, # genome_end=GENOME_END) # softval_dataset = TensorizedReadDataset(reads=x_softval, # ref_locs=refs_softval, # labels=y_softval, # read_length=READ_LENGTH, # genome_start=GENOME_START, # genome_end=GENOME_END) # # Input pipeline # train_loader = torch.utils.data.DataLoader(dataset=train_dataset, # batch_size=BATCH_SIZE, # shuffle=True) # hardtest_loader = torch.utils.data.DataLoader(dataset=hardval_dataset, # batch_size=BATCH_SIZE, # shuffle=True) # softval_loader = torch.utils.data.DataLoader(dataset=softval_dataset, # batch_size=BATCH_SIZE, # shuffle=True) train_loader = GetTensorBatch(reads=x_train, ref_locs=refs_train, labels=y_train, batch_size=BATCH_SIZE, genome_start=GENOME_START, genome_end=GENOME_END) val_loader = GetTensorBatch(reads=x_val, ref_locs=refs_val, labels=y_val, batch_size=BATCH_SIZE, genome_start=GENOME_START, genome_end=GENOME_END) hardtest_loader = GetTensorBatch(reads=x_hardtest, ref_locs=refs_hardtest, labels=y_hardtest, batch_size=BATCH_SIZE, genome_start=GENOME_START, genome_end=GENOME_END) softtest_loader = GetTensorBatch(reads=x_softtest, ref_locs=refs_softtest, labels=y_softtest, batch_size=BATCH_SIZE, genome_start=GENOME_START, genome_end=GENOME_END) # In[16]: # isRetrain = True # In[17]: model = SequenceAttentionClassifier(genome_length=GENOME_LENGTH, vocab_size=VOCAB_SIZE, query_size=QUERY_SIZE, embedding_size=EMBEDDING_SIZE, num_classes=NUM_CLASSES) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE) if isRetrain: model.load_state_dict(torch.load('./'+file_name+'_model.pth')) # In[18]: f1 = open('cv_acc_each_epoch_'+parameter_name+'.txt', 'a+') f2 = open('cv_loss_each_batch_'+parameter_name+'.txt', 'a+') f3 = open('cv_loss_val_each_batch_'+parameter_name+'.txt', 'a+') f4 = open('cv_acc_each_batch_'+parameter_name+'.txt', 'a+') lam = LAMBDA # Training process for epoch in range(num_epochs): # b = 0 # count batch for b, [x_batch, y_batch] in train_loader.items(): full_loss = 0 full_data_loss = 0 optimizer.zero_grad() for c in range(BATCH_SIZE): x_input = x_batch[c].view(1, x_batch[c].shape[0]) y_input = torch.Tensor(y_batch[c]).type(torch.float64).view(1, y_batch[c].shape[0]) outputs, K, V = model(x_input) data_loss = criterion(outputs, torch.max(y_input, 1)[1]) reg_loss = (torch.norm(K,2,1).mean() + torch.norm(V,2,1).mean())*lam loss = data_loss + reg_loss full_loss = full_loss + loss full_data_loss = full_data_loss + data_loss loss.backward() optimizer.step() f2.write(repr(data_loss)+"\n") # full_loss = full_loss / 2 # full_loss.backward() # optimizer.step() # if (b + 1) % 1 == 0: print("Epoch {}, Batch {}, loss :{}".format(epoch + 1, b + 1, full_loss)) # b = b + 1 # loss_each_batch.append(full_loss) # f2.write(repr(full_data_loss)+"\n") full_loss = 0 full_data_loss = 0 correct = 0 total = 0 for b, [x_batch, y_batch] in val_loader.items(): full_vloss = 0 for c in range(BATCH_SIZE): x_input = x_batch[c].view(1, x_batch[c].shape[0]) y_input = torch.Tensor(y_batch[c]).type(torch.float64).view(1, y_batch[c].shape[0]) outputs, K, V = model(x_input) _, predicted = torch.max(outputs.data, 1) data_vloss = criterion(outputs, torch.max(y_input, 1)[1]) full_vloss = full_vloss + data_vloss total += len(y_input) correct += (predicted == torch.max(y_input.type(torch.LongTensor), 1)[1]).sum() f3.write(repr(data_vloss)+"\n") # f3.write(repr(full_vloss)+"\n") acc = int(correct) / total print('Validation Accuracy: {}%'.format(100 * acc)) # acc_each_epoch.append(acc) f4.write(repr(acc)+"\n") correct = 0 total = 0 for b, [x_batch, y_batch] in val_loader.items(): for c in range(BATCH_SIZE): x_input = x_batch[c].view(1, x_batch[c].shape[0]) y_input = torch.Tensor(y_batch[c]).type(torch.float64).view(1, y_batch[c].shape[0]) outputs, K, V = model(x_input) _, predicted = torch.max(outputs.data, 1) total += len(y_input) correct += (predicted == torch.max(y_input.type(torch.LongTensor), 1)[1]).sum() acc = int(correct) / total print('Validation Accuracy: {}%'.format(100 * acc)) # acc_each_epoch.append(acc) f1.write(repr(acc)+"\n") f1.close() f2.close() f3.close() f4.close() # In[202]: torch.save(model, './full_' + file_name + '_' + parameter_name + '_model.pt') torch.save(model.state_dict(), './'+file_name + '_' + parameter_name + '_model.pth') # In[ ]: # plt.rcParams['figure.figsize'] = [30, 5] # plt.plot(np.arange(len(loss_each_batch))+1, loss_each_batch) # plt.xlim(1, len(loss_each_batch)) # plt.title('loss vs. batchs') # plt.show() # plt.plot(np.arange(len(acc_each_batch))+1, acc_each_batch) # plt.xlim(1, len(acc_each_batch)) # plt.title('accuracy vs. batchs') # plt.show() # plt.plot(np.arange(len(acc_each_epoch))+1, acc_each_epoch) # plt.xlim(1, len(acc_each_epoch)) # plt.title('accuracy vs. epochs') # plt.show() # In[10]: # model = torch.load('./full_'+file_name+'_model.pt') # model.load_state_dict(torch.load('./'+file_name+'_model.pth')) # In[16]: correct = 0 total = 0 for b, [x_batch, y_batch] in softtest_loader.items(): for c in range(BATCH_SIZE): x_input = x_batch[c].view(1, x_batch[c].shape[0]) y_input = torch.Tensor(y_batch[c]).type(torch.float64).view(1, y_batch[c].shape[0]) outputs, K, V = model(x_input) _, predicted = torch.max(outputs.data, 1) total += len(y_input) correct += (predicted == torch.max(y_input.type(torch.LongTensor), 1)[1]).sum() acc = int(correct) / total print('Soft Test Accuracy: {}%'.format(100 * acc)) correct = 0 total = 0 for b, [x_batch, y_batch] in hardtest_loader.items(): for c in range(BATCH_SIZE): x_input = x_batch[c].view(1, x_batch[c].shape[0]) y_input = torch.Tensor(y_batch[c]).type(torch.float64).view(1, y_batch[c].shape[0]) outputs, K, V = model(x_input) _, predicted = torch.max(outputs.data, 1) total += len(y_input) correct += (predicted == torch.max(y_input.type(torch.LongTensor), 1)[1]).sum() acc = int(correct) / total print('Hard Test Accuracy: {}%'.format(100 * acc))
[ "doerlbh@gmail.com" ]
doerlbh@gmail.com
aac72eb922f89bbf7d21006066e3bab236cf6a54
2f458dc9cce0310e2ca1734d30e778e0d8613be7
/exercises/tests/test_calculator.py
36404b6270cca786080646248821e3b3a11290c4
[ "MIT" ]
permissive
yehonadav/python_course
d632e206bfa5e36c34d434c2f423482fda6df59b
ff1754e84d0b4ca20078ceae2468cc59f99588cb
refs/heads/master
2023-02-12T11:59:51.003790
2022-05-16T12:43:42
2022-05-16T12:43:42
151,849,907
6
12
MIT
2023-02-10T23:31:59
2018-10-06T14:50:31
Python
UTF-8
Python
false
false
850
py
import random from exercises.level_1.oop.calculator import Calculator def test_calculator(): # create test data calculators = [] for i in range(20): calculators.append( Calculator( random.randint(-1000, 1000), random.randint(-1000, 1000) ) ) answer = None for calculator in calculators: # assert answer sharing assert answer == calculator.answer calculator.add() answer = calculator.answer # assert addition assert answer == calculator.a + calculator.b for calculator in calculators: # assert answer sharing assert answer == calculator.answer calculator.sub() answer = calculator.answer # assert addition assert answer == calculator.a - calculator.b
[ "qaviton@gmail.com" ]
qaviton@gmail.com
cbe119761c108234698ea1c9e8bebb873ede3f1d
5cebb43511d7fec27b155dd07426cb07d5a50f0f
/setup.py
7d85b5b01016a41921f2834b4e6211eccd9fb2ce
[ "MIT" ]
permissive
dokalanyi/envelopes
ea5b05d3fdd0da78d555786f9a219d5be7a40af6
d28e8486ce632cde1300aaaadd44f52e2d2e8d7a
refs/heads/master
2020-12-24T13:36:20.027283
2013-08-07T05:42:11
2013-08-07T05:42:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,357
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2013 Tomasz Wójcik <tomek@bthlabs.pl> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # import codecs from setuptools import setup version = '0.1.1' desc_file = codecs.open('README.rst', 'r', 'utf-8') long_description = desc_file.read() desc_file.close() setup( name="Envelopes", version=version, packages=['envelopes'], test_suite='nose.collector', zip_safe=False, platforms='any', tests_require=[ 'nose', ], author=u'Tomasz Wójcik'.encode('utf-8'), author_email='tomek@bthlabs.pl', maintainer=u'Tomasz Wójcik'.encode('utf-8'), maintainer_email='tomek@bthlabs.pl', url='http://tomekwojcik.github.io/envelopes/', download_url='http://github.com/tomekwojcik/envelopes/tarball/v%s' % version, description='Mailing for human beings', long_description=long_description, license='https://github.com/tomekwojcik/envelopes/blob/master/LICENSE', classifiers=[ "Development Status :: 3 - Alpha", "Environment :: Other Environment", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Topic :: Software Development :: Libraries :: Python Modules" ] )
[ "labs@tomekwojcik.pl" ]
labs@tomekwojcik.pl
4999ee3668a549429c68491850e36b3ff94cda99
caf3596fb540144c31b407b01ddf8b5da6484025
/myenv/bin/easy_install-3.7
6cf43ffe26200ebfad0b2e9c6bd15b9957b095e0
[]
no_license
VitaDorosheva/my-first-blog
b2f2050542a705fa925e9da950c7d5ad145c579e
8ae40572795dae434ddc5bbd831c81eec34d4fc7
refs/heads/master
2020-04-28T01:26:39.024715
2019-03-17T18:17:40
2019-03-17T18:17:40
174,857,052
0
0
null
null
null
null
UTF-8
Python
false
false
277
7
#!/Users/golosgermesa/Documents/djangogirls/myenv/bin/python3 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "vitadorosheva@gmail.com" ]
vitadorosheva@gmail.com
45d9684da8ad09960bcf264b7513b9bdaaac7ac9
adb045761913ebe494faf5538bae42da3d6c07d7
/coding_test/pass_42583_다리를지나는트럭/solution_LTH.py
de71e1753f728b48b5293fbbfb1c17462152b084
[]
no_license
inergoul/boostcamp_peer_session
c83b49558444b53d6d6cba12ff32d9e44aaa4050
5431b37ef46ad11e0dd6adc4fb7010c44bf0c27e
refs/heads/main
2023-07-27T21:36:24.871227
2023-07-19T06:38:24
2023-07-19T06:38:24
331,229,124
1
3
null
2021-03-15T15:12:04
2021-01-20T07:38:49
Python
UTF-8
Python
false
false
967
py
from queue import deque def solution(bridge_length, weight, truck_weights): ans = 1 truck_weights = deque(truck_weights) bridge = deque([[truck_weights.popleft(), bridge_length]]) bridge_weight = bridge[-1][0] while truck_weights: truck = 0 if bridge and truck_weights[0] + bridge_weight > weight: truck = bridge.popleft() bridge_weight -= truck[0] ans += truck[1] for arr in bridge: arr[1] -= truck[1] if truck_weights and truck_weights[0] + bridge_weight <= weight: if not truck: for arr in bridge: arr[1] -= 1 if bridge and bridge[0][1] == 0: w = bridge.popleft()[0] bridge_weight -= w ans += 1 bridge.append([truck_weights.popleft(), bridge_length]) bridge_weight += bridge[-1][0] return ans + bridge[-1][1]
[ "blush0722@gmail.com" ]
blush0722@gmail.com
c43ec3680a769c7273d6d89abff3ba63d47e3568
b3ec20cfa849916facbdfdb3ee4a484d2e66965c
/scrummers/basicApp/migrations/0001_initial.py
ade81ae8b52a632ee22619c1be87d6d484517dc9
[]
no_license
Wtoloza/task_manager_Django
8c37f3908fc4a81789f2eb4082afc1b871cbfaeb
edb18559cb504c48a929777e6749cdedeb17f3df
refs/heads/master
2023-07-08T22:08:17.335621
2021-08-13T14:22:14
2021-08-13T14:22:14
395,679,942
0
0
null
null
null
null
UTF-8
Python
false
false
1,171
py
# Generated by Django 3.2.6 on 2021-08-12 02:23 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Project', fields=[ ('id_project', models.SmallIntegerField(primary_key=True, serialize=False)), ('name_project', models.CharField(max_length=50)), ], ), migrations.CreateModel( name='Task', fields=[ ('id_task', models.PositiveSmallIntegerField(primary_key=True, serialize=False)), ('tile_task', models.CharField(max_length=50)), ('description_task', models.CharField(max_length=200)), ('imporant_task', models.CharField(choices=[('0', 'Low'), ('1', 'Medium'), ('2', 'Urgent')], default='0', max_length=1)), ('status_task', models.BooleanField(default=False)), ('project_task', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='basicApp.project')), ], ), ]
[ "wtorrestoloza@hotmail.com" ]
wtorrestoloza@hotmail.com
103f17c3a8bfd4d1a3467b125e2d66d05d3630f9
e9b89062fa0f96f8bf0182cdb1a3096d53951cd6
/code/Problem4-test.py
a59e276c15abc2d41780f71ec443f0b957d46a2d
[]
no_license
Yaoyaoi/DigitClassification
4784d545f654e61f2eac0e2b0454bc7c712ba35d
492df6d3f24f29d04dbcc97322c2a164f22c7279
refs/heads/master
2020-12-01T07:38:11.384077
2020-03-16T16:22:32
2020-03-16T16:22:32
230,583,634
0
0
null
null
null
null
UTF-8
Python
false
false
1,506
py
import numpy as np import matplotlib.pyplot as plt import DataPreprocess as dp from keras.models import Sequential, load_model from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten from keras.optimizers import Adadelta from sklearn.model_selection import StratifiedKFold from keras.utils import to_categorical from keras.utils import plot_model # filename of data fileName = "zip.test.txt" # creat the model def initNet(numCategory,learningRate): model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(16,16,1))) model.add(Conv2D(64, (3,3), activation='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(32, activation='relu')) model.add(Dropout(0.25)) model.add(Dense(numCategory, activation='softmax')) # plot the picture of the model plot_model(model, to_file = 'P4model.png', show_shapes=True) model.compile(loss='categorical_crossentropy', optimizer= Adadelta(learning_rate=learningRate), metrics=['accuracy']) return model if __name__ == "__main__": # data preprocessing data = dp.LoadData(fileName) X = np.array(data)[:,1:] Xtest = X.reshape((np.size(X,0),16,16,1)) Y = np.array(data)[:,0] Ytest = to_categorical(Y,10) # create model model = initNet(10,1) # load model model.set_weights(load_model("P4.h5").get_weights()) # evaluate loss, acc = model.evaluate(Xtest,Ytest) print(acc)
[ "haruka0314@outlook.com" ]
haruka0314@outlook.com
0a346d61b350f9ef52edcccccd4c1ef81f8ef2ba
61a6d4800be8af49b1fccbbcaddd3def6c4e2364
/venv/Scripts/easy_install-script.py
b99679e9a48c00c6597a3a2dcf635dd78a49e9d6
[]
no_license
BIGFISHK/blog
ca99e61de0b539d186e3ee6570af8adcd610d99a
36e7498f3e1b3eb9147badaf66766e5066c7f2b2
refs/heads/master
2020-07-12T14:25:06.671170
2019-08-30T09:39:09
2019-08-30T09:39:09
204,830,752
0
0
null
null
null
null
UTF-8
Python
false
false
419
py
#!D:\blog\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==28.8.0','console_scripts','easy_install' __requires__ = 'setuptools==28.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==28.8.0', 'console_scripts', 'easy_install')() )
[ "417965527@qq.com" ]
417965527@qq.com
69f4b590af41bf3821c185b0605fad6d82f36b90
55c157879bcdbd5cabaabc6f336f0e742f39a914
/caesar.py
00df9144609d2f8fbd9f451e238c955ae8c6431b
[]
no_license
akr635/web-caesar
2eaf41b8193e1ecffab6ee5136a371361535bb4f
a205116a61a2bd10fdd7efad0a65f76baf8efc2a
refs/heads/master
2021-01-11T16:27:19.898637
2017-01-26T04:45:34
2017-01-26T04:45:34
80,086,588
0
0
null
null
null
null
UTF-8
Python
false
false
990
py
def alphabet_position(letter): alphabet_lower = 'abcdefghijklmnopqrstuvwxyz' alphabet_upper = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' if letter in alphabet_lower: alphabet_position = alphabet_lower.index(letter) elif letter in alphabet_upper: alphabet_position = alphabet_upper.index(letter) return alphabet_position def rotate_character(char, rot): alphabet_lower = 'abcdefghijklmnopqrstuvwxyz' alphabet_upper = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' if char in alphabet_lower: rotate_position = (alphabet_position(char) + rot) % 26 rotate_character = alphabet_lower[rotate_position] elif char in alphabet_upper: rotate_position = (alphabet_position(char) + rot) % 26 rotate_character = alphabet_upper[rotate_position] else: rotate_character = char return rotate_character def encrypt(text, rot): encrypted = '' for char in text: encrypted += rotate_character(char, rot) return encrypted
[ "akr635@gmail.com" ]
akr635@gmail.com
7bf743e5d0a9e7f925762099222812d8ced5e43d
6db2ca19052182259ae8d81b6f0f719843f86c40
/dqn_v03_simple.py
d8e0b5eaf5cf41e426eacf91a331fbdbc0eee146
[]
no_license
walkingholic/EVNS_RL
54a8c0a4ff433c265cce376f073f640cb446aa97
1583bcd47d8e75ecc3ad16f2e17cac6fcc487da6
refs/heads/master
2022-12-07T05:43:10.479190
2020-09-06T08:12:56
2020-09-06T08:12:56
274,387,455
0
0
null
null
null
null
UTF-8
Python
false
false
21,997
py
import sys import gym import pylab import random import numpy as np from collections import deque from keras.layers import Dense from keras.optimizers import Adam from keras.models import Sequential from keras.layers import Dense, Activation, Flatten, Conv2D, MaxPooling2D from keras import optimizers import matplotlib.pyplot as plt import routing as rt import copy import test_algorithm as ta import datetime import os from Graph import Graph_simple from Graph import Graph_simple_100 from Graph import Graph_jeju EPISODES = 5000 def one_hot(x): return np.identity(100)[x:x + 1] def createFolder(directory): try: if not os.path.isdir(directory): os.makedirs(directory) except OSError: print('error') class CS: def __init__(self, node_id, long, lat, alpha): self.id = node_id self.price = list() self.waittime = list() self.chargingpower = 60 # kw self.alpha = alpha self.x = long self.y = lat for i in range(288): p = np.random.normal(alpha, 0.15 * alpha) while p < 0: p = np.random.normal(alpha, 0.15 * alpha) self.price.append(p) for i in range(288): waittime = np.random.normal(-1200 * (self.price[i] - 0.07), 20) while waittime < 0: waittime = 0 self.waittime.append(waittime/60) class EV: def __init__(self, id, t_start, soc, source, destination): self.id = id self.t_start = t_start self.charging_effi = 0.9 self.SOC = soc self.init_SOC = soc self.req_SOC = 0.8 self.before_charging_SOC=soc self.source = source self.destination = destination self.maxBCAPA= 60 # kw self.curr_location = source self.next_location = source self.ECRate = 0.2 # kwh/km self.traveltime = 0 # hour self.charged = 0 self.cs = None self.csid = None self.energyconsumption = 0.0 self.chargingtime = 0.0 self.chargingcost = 0.0 self.waitingtime = 0.0 self.csstayingtime = 0.0 self.drivingdistance = 0.0 self.drivingtime = 0.0 self.charingenergy = 0.0 self.fdist=0 self.rdist=0 self.path=[] self.predic_totaltraveltime = 0.0 self.totalcost=0.0 self.to_cs_dist = 0 self.to_cs_driving_time = 0 self.to_cs_charging_time = 0 self.to_cs_waiting_time = 0 self.to_cs_soc = 0 # 카트폴 예제에서의 DQN 에이전트 class DQNAgent: def __init__(self, state_size, action_size): self.render = False self.load_model = False # 상태와 행동의 크기 정의 self.state_size = state_size self.action_size = action_size # DQN 하이퍼파라미터 self.discount_factor = 0.99 self.learning_rate = 0.01 self.epsilon = 1.0 self.epsilon_decay = 0.9995 self.epsilon_min = 0.01 self.batch_size = 64 self.train_start = 1000 # 리플레이 메모리, 최대 크기 2000 self.memory = deque(maxlen=4000) # 모델과 타깃 모델 생성 self.model = self.build_model() self.target_model = self.build_model() # 타깃 모델 초기화 self.update_target_model(0) if self.load_model: self.model.load_weights("dqn_model.h5") # 상태가 입력, 큐함수가 출력인 인공신경망 생성 def build_model(self): model = Sequential() model.add(Dense(128, input_dim=self.state_size, activation='relu', kernel_initializer='he_uniform')) model.add(Dense(64, activation='relu', kernel_initializer='he_uniform')) model.add(Dense(32, activation='relu', kernel_initializer='he_uniform')) model.add(Dense(self.action_size, activation='softmax', kernel_initializer='he_uniform')) model.summary() model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) return model # 타깃 모델을 모델의 가중치로 업데이트 def update_target_model(self, e): if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay self.target_model.set_weights(self.model.get_weights()) # 입실론 탐욕 정책으로 행동 선택 def get_action(self, state): if np.random.rand() <= self.epsilon: action = random.choice(range(self.action_size)) else: state = np.reshape(state, [1, self.state_size]) q_value = self.model.predict(state) action = np.argmax(q_value[0]) return action # 샘플 <s, a, r, s'>을 리플레이 메모리에 저장 def append_sample(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) # 리플레이 메모리에서 무작위로 추출한 배치로 모델 학습 def train_model(self): # 메모리에서 배치 크기만큼 무작위로 샘플 추출 mini_batch = random.sample(self.memory, self.batch_size) states = np.zeros((self.batch_size, self.state_size)) next_states = np.zeros((self.batch_size, self.state_size)) actions, rewards, dones = [], [], [] for i in range(self.batch_size): states[i] = mini_batch[i][0] actions.append(mini_batch[i][1]) rewards.append(mini_batch[i][2]) next_states[i] = mini_batch[i][3] dones.append(mini_batch[i][4]) # 현재 상태에 대한 모델의 큐함수 # 다음 상태에 대한 타깃 모델의 큐함수 target = self.model.predict(states) target_val = self.target_model.predict(next_states) # 벨만 최적 방정식을 이용한 업데이트 타깃 for i in range(self.batch_size): if dones[i]: target[i][actions[i]] = rewards[i] else: target[i][actions[i]] = rewards[i] + self.discount_factor * ( np.amax(target_val[i])) self.model.fit(states, target, batch_size=self.batch_size, epochs=1, verbose=0) class Env: def __init__(self, state_size, action_size): # np.random.seed(10) # self.graph = Graph_simple() self.graph = Graph_simple_100() # self.graph = Graph_jeju('data/20191001_5Min_modified.csv') self.source = 0 self.destination = 99 self.graph.source_node_set = list(self.graph.source_node_set) self.graph.destination_node_set = list(self.graph.destination_node_set) self.path = [] self.path_info = [] self.sim_time=0 self.CS_list = [] self.pev = None self.target = -1 self.state_size = state_size self.action_size = action_size for l in self.graph.cs_info: alpha = np.random.uniform(0.03, 0.07) cs = CS(l, self.graph.cs_info[l]['long'], self.graph.cs_info[l]['lat'], alpha) self.CS_list.append(cs) def reset(self): t_start = np.random.uniform(0, 1200) soc = np.random.uniform(0.3, 0.5) while soc <= 0.0 or soc > 1.0: soc = np.random.uniform(0.3, 0.5) self.graph.source_node_set = list(self.graph.source_node_set) self.graph.destination_node_set = list(self.graph.destination_node_set) source = self.graph.source_node_set[np.random.random_integers(0, len(self.graph.source_node_set) - 1)] while source in self.graph.cs_info.keys(): source = self.graph.source_node_set[np.random.random_integers(0, len(self.graph.source_node_set) - 1)] destination = self.graph.source_node_set[np.random.random_integers(0, len(self.graph.source_node_set) - 1)] while destination in self.graph.cs_info.keys(): destination = self.graph.source_node_set[np.random.random_integers(0, len(self.graph.source_node_set) - 1)] self.path_info = [] self.pev = EV(e, t_start, soc, source, destination) self.sim_time = self.pev.t_start self.path_info = rt.sim_main_first_time_check(self.pev, self.CS_list, self.graph, self.action_size) # print('\npev soc', self.pev.SOC) state = [self.pev.source, self.pev.SOC] for path in self.path_info: cs, pev_SOC, front_path, total_d_time, waiting_time, charging_time = path state += [total_d_time, waiting_time, charging_time] state = np.reshape(state, [1, self.state_size]) return state, source, destination def test_reset(self, pev, CS_list): self.path_info = [] self.CS_list = CS_list self.pev = pev self.sim_time = self.pev.t_start self.path_info = rt.sim_main_first_time_check(self.pev, self.CS_list, self.graph, self.action_size) state = [self.pev.source, self.pev.curr_SOC] for path in self.path_info: cs, pev_SOC, front_path, total_d_time, waiting_time, charging_time = path state += [total_d_time, waiting_time, charging_time] state = np.reshape(state, [1, self.state_size]) return state, self.pev.source, self.pev.destination def step(self, action, done): cs, pev_SOC, front_path, total_d_time, waiting_time, charging_time = self.path_info[action] # print(self.sim_time, self.pev.curr_location, cs.id, pev_SOC) self.target = cs self.pev.path.append(self.pev.curr_location) if pev_SOC <= 0.0: print('** error soc', pev_SOC) done = 1 reward = -5 return np.zeros((1,self.state_size)), -1, reward, done if len(front_path)>1: next_node = front_path[1] self.sim_time, time = rt.update_ev(self.pev, self.graph, self.pev.curr_location, next_node, self.sim_time) if self.sim_time == 0 and time == 0: print('** time idx error') done = 1 reward = -5 return np.zeros((1, self.state_size)), -1, reward, done done = 0 reward = -time self.pev.curr_location = next_node self.path_info = rt.sim_main_first_time_check(self.pev, self.CS_list, self.graph, self.action_size) next_state = [self.pev.curr_location, self.pev.curr_SOC] for path in self.path_info: cs, pev_SOC, front_path, total_d_time, waiting_time, charging_time = path next_state += [total_d_time, waiting_time, charging_time] next_state = np.reshape(next_state, [1, self.state_size]) return next_state, next_node, reward, done elif self.pev.curr_location == cs.id: self.pev.before_charging_SOC = self.pev.curr_SOC self.pev.cscharingenergy = self.pev.maxBCAPA * self.pev.req_SOC - self.pev.curr_SOC * self.pev.maxBCAPA self.pev.cschargingcost = self.pev.cscharingenergy * cs.price[int(self.sim_time / 5)] self.pev.curr_SOC = self.pev.req_SOC self.pev.cschargingtime = charging_time self.pev.cschargingwaitingtime = waiting_time self.pev.charged = 1 self.pev.cs = cs self.pev.csid = cs.id self.sim_time += charging_time * 60 self.sim_time += waiting_time * 60 # print(waiting_time, waiting_time * 60) self.pev.csdrivingtime = self.pev.totaldrivingtime self.pev.csdistance = self.pev.totaldrivingdistance self.pev.cschargingwaitingtime = self.pev.cschargingwaitingtime self.pev.cschargingtime = self.pev.cschargingtime self.pev.cssoc = self.pev.curr_SOC done = 1 reward = -1 * (waiting_time + charging_time) print(done, '충전소야') return np.zeros((1,self.state_size)), -1, reward, done else: print("???") input() def gen_test_envir_simple(num_evs): np.random.seed(10) graph = Graph_simple_100() EV_list = [] for e in range(num_evs): t_start = np.random.uniform(0, 1200) soc = np.random.uniform(0.3, 0.5) while soc <= 0.0 or soc > 1.0 : soc = np.random.uniform(0.3, 0.5) graph.source_node_set = list(graph.source_node_set) graph.destination_node_set = list(graph.destination_node_set) source = graph.source_node_set[np.random.random_integers(0, len(graph.source_node_set) - 1)] while source in graph.cs_info.keys(): source = graph.source_node_set[np.random.random_integers(0, len(graph.source_node_set) - 1)] destination = graph.source_node_set[np.random.random_integers(0, len(graph.source_node_set) - 1)] while destination in graph.cs_info.keys(): destination = graph.source_node_set[np.random.random_integers(0, len(graph.source_node_set) - 1)] # source = 4080021700 # destination = 4070008103 ev = EV(e, t_start, soc, source, destination) EV_list.append(ev) CS_list = [] for l in graph.cs_info: # print('gen cs') # alpha = np.random.uniform(0.03, 0.07) alpha = np.random.uniform(0.03, 0.07) cs = CS(l, graph.cs_info[l]['long'], graph.cs_info[l]['lat'], alpha) CS_list.append(cs) return EV_list, CS_list, graph def gen_test_envir_jeju(traffic_data_path, num_evs): graph = Graph_jeju(traffic_data_path) EV_list = [] for e in range(num_evs): t_start = np.random.uniform(0, 1200) soc = np.random.uniform(0.3, 0.5) while soc <= 0.0 or soc > 1.0 : soc = np.random.uniform(0.3, 0.5) graph.source_node_set = list(graph.source_node_set) graph.destination_node_set = list(graph.destination_node_set) source = graph.source_node_set[np.random.random_integers(0, len(graph.source_node_set) - 1)] destination = graph.source_node_set[np.random.random_integers(0, len(graph.source_node_set) - 1)] while destination in graph.cs_info.keys(): destination = graph.source_node_set[np.random.random_integers(0, len(graph.source_node_set) - 1)] # source = 4080021700 # destination = 4070008103 ev = EV(e, t_start, soc, source, destination) EV_list.append(ev) CS_list = [] for l in graph.cs_info: # print('gen cs') # alpha = np.random.uniform(0.03, 0.07) alpha = np.random.uniform(0.03, 0.07) cs = CS(l, graph.cs_info[l]['long'], graph.cs_info[l]['lat'], alpha) CS_list.append(cs) return EV_list, CS_list, graph if __name__ == "__main__": now = datetime.datetime.now() resultdir = '{0:02}-{1:02} {2:02}-{3:02} {4:02}'.format(now.month, now.day, now.hour, now.minute, now.second) basepath = os.getcwd() dirpath = os.path.join(basepath, resultdir) createFolder(dirpath) action_size = 4 state_size = action_size*3+2 env = Env(state_size, action_size) agent = DQNAgent(state_size, action_size) scores, episodes, steps= [], [], [] for e in range(EPISODES): done = False score = 0 path=[] taget_cs = [] state, source, destination = env.reset() current_node = source step = 0 print("\nEpi:", e, agent.epsilon) print(source,'->', destination) print('sim time:', env.sim_time) path.append(source) while not done: action = agent.get_action(state) next_state, next_node, reward, done = env.step(action, done) step += 1 # if step>30: # done = 1 agent.append_sample(state, action, reward, next_state, done) if len(agent.memory) >= agent.train_start: agent.train_model() score += reward state = next_state path.append(next_node) taget_cs.append(env.target.id) if done: # 각 에피소드마다 타깃 모델을 모델의 가중치로 업데이트 # if e % 1 == 0: agent.update_target_model(e) print('update model') # print(path) print('Score:', score) print('Step:', step) print('sim time:', env.sim_time) print('Distance:', env.pev.totaldrivingdistance) print('Driving time:', env.pev.totaldrivingtime) print(env.pev.charged, env.pev.curr_location, env.pev.init_SOC, env.pev.curr_SOC) print(path) print(taget_cs) scores.append(score) episodes.append(e) steps.append(step) # for i, s in enumerate(scores): # plt.plot(i, s, '.') # plt.show() # for i, s in enumerate(steps): # plt.plot(i, s, '.') # plt.show() agent.model.save_weights("{}/dqn_model.h5".format(resultdir)) plt.plot(episodes, scores, 'b') plt.show() plt.plot(episodes, steps, 'r') plt.show() plt.title('Training Scores') plt.xlabel('Epoch') plt.ylabel('score') plt.plot(episodes, scores, 'b') fig = plt.gcf() fig.savefig('{}/train score.png'.format(resultdir), facecolor='#eeeeee', dpi=300) plt.clf() plt.title('Training Steps') plt.xlabel('Epoch') plt.ylabel('step') plt.plot(episodes, steps, 'r') fig = plt.gcf() fig.savefig('{}/train step.png'.format(resultdir), facecolor='#eeeeee', dpi=300) plt.clf() ############################### performance evaluation ############# scores, episodes, steps = [], [], [] npev=100 EV_list, CS_list, graph = gen_test_envir_simple(npev) agent.epsilon = 0 EV_list_DQN = copy.deepcopy(EV_list) CS_list_DQN = copy.deepcopy(CS_list) for e, pev in enumerate(EV_list_DQN): done = False score = 0 path=[] taget_cs = [] state, source, destination = env.test_reset(pev, CS_list_DQN) current_node = source step = 0 print("\nEpi:", e, agent.epsilon) print(source,'->', destination) print('sim time:', env.sim_time) path.append(source) while not done: action = agent.get_action(state) next_state, next_node, reward, done = env.step(action, done) score += reward state = next_state path.append(next_node) taget_cs.append(env.target.id) step += 1 if done: print('Score:', score) print('Step:', step) print('sim time:', env.sim_time) print('Distance:', env.pev.totaldrivingdistance) print('Driving time:', env.pev.totaldrivingtime) print(env.pev.charged, env.pev.curr_location, env.pev.init_SOC, env.pev.curr_SOC) print(path) print(taget_cs) scores.append(score) episodes.append(e) steps.append(step) EV_list_TA = copy.deepcopy(EV_list) CS_list_TA = copy.deepcopy(CS_list) ta.one_time_check_timeweight(EV_list_TA, CS_list_TA, graph, 313) EV_list_TEA = copy.deepcopy(EV_list) CS_list_TEA = copy.deepcopy(CS_list) ta.every_time_check_timeweight(EV_list_TEA, CS_list_TEA, graph, 313) ta.sim_result_text(resultdir, EV_list_DQN=EV_list_DQN, EV_list_TA=EV_list_TA, EV_list_TEA=EV_list_TEA) ta.sim_result_general_presentation(graph, resultdir, npev, EV_list_DQN=EV_list_DQN, EV_list_TA=EV_list_TA, EV_list_TEA=EV_list_TEA) # plt.title('to cs Dist') # plt.xlabel('EV ID') # plt.ylabel('km') # cnt = 0 # r1_list = [] # for ev in EV_list_DQN: # r1_list.append(ev.to_cs_dist) # plt.plot(r1_list, label='DQN') # r1_list = [] # for ev in EV_list_TA: # r1_list.append(ev.to_cs_dist) # plt.plot(r1_list, label='Astar') # plt.legend() # plt.show() # # plt.title('Driving time') # plt.xlabel('EV ID') # plt.ylabel('time') # cnt = 0 # r1_list = [] # for ev in EV_list_DQN: # r1_list.append(ev.to_cs_driving_time) # plt.plot(r1_list, label='DQN') # r1_list = [] # for ev in EV_list_TA: # r1_list.append(ev.to_cs_driving_time) # plt.plot(r1_list, label='Astar') # plt.legend() # plt.show() # # plt.title('Charging time') # plt.xlabel('EV ID') # plt.ylabel('time') # cnt = 0 # r1_list = [] # for ev in EV_list_DQN: # r1_list.append(ev.to_cs_charging_time) # plt.plot(r1_list, label='DQN') # r1_list = [] # for ev in EV_list_TA: # r1_list.append(ev.to_cs_charging_time) # plt.plot(r1_list, label='Astar') # plt.legend() # plt.show() # # plt.title('Wating time') # plt.xlabel('EV ID') # plt.ylabel('time') # cnt = 0 # r1_list = [] # for ev in EV_list_DQN: # r1_list.append(ev.to_cs_waiting_time) # plt.plot(r1_list, label='DQN') # r1_list = [] # for ev in EV_list_TA: # r1_list.append(ev.to_cs_waiting_time) # plt.plot(r1_list, label='Astar') # plt.legend() # plt.show() # # plt.title('Total time') # plt.xlabel('EV ID') # plt.ylabel('time') # cnt = 0 # r1_list = [] # for ev in EV_list_DQN: # r1_list.append(ev.to_cs_waiting_time + ev.to_cs_charging_time + ev.to_cs_driving_time) # plt.plot(r1_list, label='DQN') # r1_list = [] # for ev in EV_list_TA: # r1_list.append(ev.to_cs_waiting_time + ev.to_cs_charging_time + ev.to_cs_driving_time) # plt.plot(r1_list, label='Astar') # plt.legend() # plt.show()
[ "40564892+walkingholic@users.noreply.github.com" ]
40564892+walkingholic@users.noreply.github.com
71494e7f27e6411ad51089b1e1615b9a55f49730
7b2fdceaafa6dd13f3f02a24b3eeda5f7574ac16
/untitled0.py
820d9843e7d010c29d56243cfad79dbad6d3e75b
[]
no_license
zkmastereng/fandangoscrape
372fd3328c71a594f2b8fb6f4c09de53a914ddef
4bdd9f50830e1de9f99da84fc539e82da80c9547
refs/heads/main
2023-05-02T09:51:18.635033
2021-05-26T15:31:14
2021-05-26T15:31:14
371,083,970
0
0
null
null
null
null
UTF-8
Python
false
false
1,642
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 5 23:20:03 2021 @author: ozkan """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns fandango = pd.read_csv("fandango_scrape.csv") x = fandango['VOTES'] y = fandango['RATING'] #plt.scatter(y,x) #plt.ylabel('VOTES') #plt.xlabel('RATING') corre = fandango.corr() fandango['YEAR'] = fandango['FILM'].apply(lambda title: title.split('(')[-1]) fandango['YEAR'] = fandango['YEAR'].apply(lambda x: x.replace(')','')) count_per_year = fandango['YEAR'].value_counts() #plt.hist(fandango['YEAR']) #plt.xlabel('YEAR') #plt.ylabel('count') #plt.show() highest_10_ratings = fandango.sort_values('VOTES',ascending=False)[:10] zero_votes_sum = fandango.value_counts([fandango['VOTES']==0]) fan_reviewed = fandango.drop(fandango[fandango.VOTES==0].index) #plt.figure(figsize=(10,4),dpi=150) #sns.kdeplot(data=fan_reviewed,x='RATING',clip=[0,5],fill=True,label='True Rating') #sns.kdeplot(data=fan_reviewed,x='STARS',clip=[0,5],fill=True,label='Stars Displayed') #plt.legend(loc=(1.05,0.5)) fan_reviewed['STARS_DIFF'] = (fan_reviewed['STARS']-fan_reviewed['RATING']).round(2) #sns.countplot(data=fan_reviewed,x='STARS_DIFF',palette='magma') one_star_different = fan_reviewed[fan_reviewed['STARS_DIFF']==1] all_sites = pd.read_csv('all_sites_scores.csv') all_sites.info() all_sites.describe() #sns.scatterplot(data=all_sites,x='RottenTomatoes',y='RottenTomatoes_User') #plt.xlim(0,100) #plt.ylim(0,100) all_sites['DIFF'] = all_sites['RottenTomatoes']-all_sites['RottenTomatoes_User'] mean_diff = all_sites['DIFF'].mad()
[ "noreply@github.com" ]
zkmastereng.noreply@github.com
1db38bdb0515f41cd87409073f4c12651308a9fd
776f103a404c904af0a3b53285404815acd20497
/script/ab.py
4f895619c92f59fb62ab77de48645bc1a14c8e20
[]
no_license
johndpope/spy611scripts
cb8b94ba6b0ddbcd73f4e51261007814618c9d45
3cfb0a61f17713b2540ec3f7c6762d18a943bc7a
refs/heads/master
2020-12-24T08:11:34.780700
2014-10-10T16:10:07
2014-10-10T16:10:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,952
py
#!/usr/bin/env python # ~/spy611/script/ab.py # This script is called by: # ~/spy611/script/pred_gbm.bash # I use this script to create variables from CSV files. # Then I feed the variables to: # sklearn.ensemble.AdaBoostClassifier import sklearn.ensemble import numpy x_is = numpy.loadtxt('/tmp/x_is.csv', delimiter=',') x_oos = numpy.loadtxt('/tmp/x_oos.csv', delimiter=',') y_is_n1dg = numpy.loadtxt('/tmp/y_is_n1dg.csv', delimiter=',') y_is_n2dg = numpy.loadtxt('/tmp/y_is_n2dg.csv', delimiter=',') y_is_n1wg = numpy.loadtxt('/tmp/y_is_n1wg.csv', delimiter=',') y_oos_n1dg = numpy.loadtxt('/tmp/y_oos_n1dg.csv', delimiter=',') y_oos_n2dg = numpy.loadtxt('/tmp/y_oos_n2dg.csv', delimiter=',') y_oos_n1wg = numpy.loadtxt('/tmp/y_oos_n1wg.csv', delimiter=',') clf_n1dg = sklearn.ensemble.AdaBoostClassifier(n_estimators=100).fit(x_is,y_is_n1dg) clf_n2dg = sklearn.ensemble.AdaBoostClassifier(n_estimators=100).fit(x_is,y_is_n2dg) clf_n1wg = sklearn.ensemble.AdaBoostClassifier(n_estimators=100).fit(x_is,y_is_n1wg) print('AdaBoost gives me access to a measurement called score.') print('Here are scores for out of sample data.') print('Higher scores are better. A score of 1 is perfect:') print('clf_n1dg.score(x_oos,y_oos_n1dg)) is:') print(clf_n1dg.score(x_oos,y_oos_n1dg)) print('clf_n2dg.score(x_oos,y_oos_n2dg)) is:') print(clf_n2dg.score(x_oos,y_oos_n2dg)) print('clf_n1wg.score(x_oos,y_oos_n1wg)) is:') print(clf_n1wg.score(x_oos,y_oos_n1wg)) # Copy the predictions into tables: # ab_predictions_n1dg # ab_predictions_n2dg # ab_predictions_n1wg # SQL creation syntax # CREATE TABLE ab_predictions_n1dg (pnum INTEGER, prob_willbetrue INTEGER); import psycopg2 import sys import pprint conn_string = "host='localhost' dbname='madlib' user='madlib' password='madlib'" # print the connection string we will use to connect print "Connecting to database\n ->%s" % (conn_string) # get a connection, if a connect cannot be made an exception will be raised here conn = psycopg2.connect(conn_string) # conn.cursor will return a cursor object, you can use this cursor to perform queries cursor = conn.cursor() print "Connected!\n" cursor.execute("TRUNCATE TABLE ab_predictions_n1dg") cursor.execute("TRUNCATE TABLE ab_predictions_n2dg") cursor.execute("TRUNCATE TABLE ab_predictions_n1wg") rnum = 0 for prediction in clf_n1dg.predict(x_oos) : rnum = rnum + 1 cursor.execute("INSERT INTO ab_predictions_n1dg (pnum,prob_willbetrue) values(%s,%s)",(rnum,prediction)) conn.commit() rnum = 0 for prediction in clf_n2dg.predict(x_oos) : rnum = rnum + 1 cursor.execute("INSERT INTO ab_predictions_n2dg (pnum,prob_willbetrue) values(%s,%s)",(rnum,prediction)) conn.commit() rnum = 0 for prediction in clf_n1wg.predict(x_oos) : rnum = rnum + 1 cursor.execute("INSERT INTO ab_predictions_n1wg (pnum,prob_willbetrue) values(%s,%s)",(rnum,prediction)) conn.commit() # select * from ab_predictions_n1dg;
[ "dan.bikle@gmail.com" ]
dan.bikle@gmail.com
318d00346ef383eef61967f31cc6f769f3b9f81d
8adead984d1e2fd4f36ae4088a0363597fbca8a3
/Strings/ReverseStringII.py
4a3617e788cc4374cde3f6720fd50e5c511985f6
[]
no_license
ravisjoshi/python_snippets
2590650c673763d46c16c9f9b8908997530070d6
f37ed822b5863a5a11b09550dd32a73d68e7070b
refs/heads/master
2022-11-05T03:48:10.842858
2020-06-14T09:19:46
2020-06-14T09:19:46
256,961,137
1
0
null
null
null
null
UTF-8
Python
false
false
1,000
py
""" Given a string and an integer k, you need to reverse the first k characters for every 2k characters counting from the start of the string. If there are less than k characters left, reverse all of them. If there are less than 2k but greater than or equal to k characters, then reverse the first k characters and left the other as original. Input: s = "abcdefg", k = 2 / Output: "bacdfeg" Restrictions: The string consists of lower English letters only. Length of the given string and k will in the range [1, 10000] """ class Solution: def reverseStr(self, _String, k): inputString = list(_String) for index in range(0, len(inputString), 2 * k): inputString[index:index + k] = inputString[index:index + k][::-1] return ''.join(inputString) if __name__ == '__main__': s = Solution() inputString = "abcdefg" k = 2 print(s.reverseStr(inputString, k)) inputString = "abcdef" k = 3 print(s.reverseStr(inputString, k))
[ "ravishankar.joshi@centurylink.com" ]
ravishankar.joshi@centurylink.com
d77b93a55d82d3c5f1748d40a09163e24c848444
6ef78d888bf0940645e47237cd9e5214d254aa80
/socket_learning/socketserver_server.py
63f3111452092805403896aeb89127350a3f3444
[]
no_license
EnochMeng/exercise_library
ae477d246eee2c252dcd516c006fc68b588c750b
e041619787c9045947366166deb7c4d001b0020c
refs/heads/master
2021-09-07T17:04:39.630195
2018-02-26T14:59:22
2018-02-26T14:59:22
115,167,496
0
0
null
null
null
null
UTF-8
Python
false
false
730
py
# 实现并发,也就是多个client端可以和我聊天 import socketserver class MyServer(socketserver.BaseRequestHandler): def handle(self): print('server端启动') while True: conn = self.request print(self.client_address) while True: client_data = conn.recv(1024) print(str(client_data, 'utf8')) if str(client_data, 'utf8') == 'exit': break conn.sendall(client_data) # 返回client端发来的数据,主要观察并发 conn.close() if __name__ == '__main__': server = socketserver.ThreadingTCPServer(('127.0.0.1', 8080), MyServer) server.serve_forever()
[ "lingchuanmeng@foxmail" ]
lingchuanmeng@foxmail
b71e35d7636b285e2fa0f57e27afaa6f59a0d693
9fb7a7fc8509b414f9e6b1dd0e1549911042134f
/tests/apps/standard/__init__.py
02e3e6e6649451a91bdefbcce4e3bf04407aff3f
[ "MIT" ]
permissive
jperla/weby
5134657463876d009de1310efdce7d9c6b40509f
eb019cfdc00f14f22c0b65b757045c621f1cac28
refs/heads/master
2020-05-17T10:00:59.078844
2010-11-15T16:17:25
2010-11-15T16:17:25
388,681
1
1
null
null
null
null
UTF-8
Python
false
false
525
py
#!/usr/bin/env python import time import weby app = weby.defaults.App() # Controllers @app.subapp('/') @weby.urlable_page() def index(req, page): page(u'Hello, world!') static_path = u'tests/apps/standard/static/' static = app.subapp('static')(weby.apps.standard.static(static_path)) # Middleware from weby.middleware import EvalException wrapped_app = weby.wsgify(app, EvalException) # Server from weby.http import server if __name__ == '__main__': server.serve(wrapped_app, host='127.0.0.1', port=8080)
[ "donotrealemailme @ OR @@@ jperla.com" ]
donotrealemailme @ OR @@@ jperla.com
7ca4ccedd72570a8260c517fcd924e85739c71fc
c3d2a483b6b1e05cf66b916055d7438df4d5dccf
/Book_case_study/lanuage.py
ecea9154ead51419b228b12c7c0fd406098fc14e
[]
no_license
vuminhdiep/EdX-Python-for-Research
5b627d83b507771c5460b56f98c7ae3a0c12d897
ad56bf2e2c9f757e0a9f2e90f9ab4ad4e4e910d9
refs/heads/master
2023-01-05T06:34:46.584271
2020-10-21T08:40:27
2020-10-21T08:40:27
292,648,892
1
0
null
null
null
null
UTF-8
Python
false
false
1,768
py
text = "This is my test text. We will use this text to test the function." def count_word(text): text = text.lower() skips = [",", ".", ":", ";", "'", '"'] for ch in skips: text = text.replace(ch, "") word_counts = {} for word in text.split(" "): if word in word_counts: word_counts[word] += 1 else: word_counts[word] = 1 return word_counts count_word(text) from collections import Counter text = "This is my test text. We will use this text to test the function." def count_word_fast(text): text = text.lower() skips = [",", ".", ":", ";", "'", '"'] for ch in skips: text = text.replace(ch, "") word_counts = Counter(text.split(" ")) return word_counts count_word_fast(text) def read_book(title_path): with open(title_path, "r", encoding="utf8") as current_file: text = current_file.read() text = text.replace("\n", "").replace("\r", "") return text def word_stats(word_counts): num_unique = len(word_counts) counts = word_counts.values() return (num_unique, counts) #Read multiple files from different directories; # import os # book_dir = "./Book_case_study" # for language in os.listdir(book_dir): # for author in os.listdir(book_dir + "/" + language): # for title in os.listdir(book_dir + "/" + language + "/" + author): # inputfile = book_dir + "/" + language + "/" + author + "/" + title # print(inputfile) # text = read_book(inputfile) # (num_unique, counts) = word_stats(count_word(text)) import pandas as pd table = pd.DataFrame(columns = ("name", "age")) table.loc[1] = "James", 22 table.loc[2] = "Jess", 32 print(table)
[ "51457124+vuminhdiep@users.noreply.github.com" ]
51457124+vuminhdiep@users.noreply.github.com
336c2ef3c5d4ccb00dd38840fad47831e67bb075
b1f1a3bbfefb29a6b5f730814aafb253400019d7
/chi_analysis/MG_Pythia8_cfg.py
15b1820cf9548e011a4ecd2758bbcd1b7963f712
[]
no_license
ahinzmann/cmsusercode
9ef4a98110ddbebd09f2f98f1db509f555863364
8085bc036696981d28287e9e6524b963c1fee7b9
refs/heads/master
2023-07-07T06:11:34.001241
2023-06-27T07:12:56
2023-06-27T07:12:56
10,263,991
0
1
null
2018-03-28T07:47:13
2013-05-24T10:09:48
Python
UTF-8
Python
false
false
7,815
py
# Auto generated configuration file # using: # Revision: 1.19 # Source: /local/reps/CMSSW/CMSSW/Configuration/Applications/python/ConfigBuilder.py,v # with command line options: Configuration/GenProduction/python/B2G-RunIIFall17wmLHEGS-00474-fragment.py --fileout file:B2G-RunIIFall17wmLHEGS-00474.root --mc --eventcontent RAWSIM,LHE --datatier GEN-SIM,LHE --conditions 93X_mc2017_realistic_v3 --beamspot Realistic25ns13TeVEarly2017Collision --step LHE,GEN --geometry DB:Extended --era Run2_2017 --python_filename B2G-RunIIFall17wmLHEGS-00474_1_cfg.py --no_exec --customise Configuration/DataProcessing/Utils.addMonitoring --customise_commands process.RandomNumberGeneratorService.externalLHEProducer.initialSeed=int(1561379105%100) -n 10000 import FWCore.ParameterSet.Config as cms from Configuration.StandardSequences.Eras import eras OutName='OUTPUTNAME' gridpack_path='GRIDPACKPATH' n_Events=NEVENTS random_seed=RANDOMSEED process = cms.Process('GEN',eras.Run2_2016) # import of standard configurations process.load('Configuration.StandardSequences.Services_cff') process.load('SimGeneral.HepPDTESSource.pythiapdt_cfi') process.load('FWCore.MessageService.MessageLogger_cfi') process.load('Configuration.EventContent.EventContent_cff') process.load('SimGeneral.MixingModule.mixNoPU_cfi') process.load('Configuration.StandardSequences.GeometryRecoDB_cff') process.load('Configuration.StandardSequences.MagneticField_cff') process.load('Configuration.StandardSequences.Generator_cff') process.load('IOMC.EventVertexGenerators.VtxSmearedRealistic25ns13TeV2016Collision_cfi') process.load('GeneratorInterface.Core.genFilterSummary_cff') process.load('Configuration.StandardSequences.EndOfProcess_cff') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(n_Events) ) # Input source process.source = cms.Source("EmptySource") process.options = cms.untracked.PSet( ) # Production Info process.configurationMetadata = cms.untracked.PSet( annotation = cms.untracked.string('Configuration/GenProduction/python/B2G-RunIIFall17wmLHEGS-00474-fragment.py nevts:%i'%n_Events), name = cms.untracked.string('Applications'), version = cms.untracked.string('$Revision: 1.19 $') ) # Output definition process.out = cms.OutputModule("PoolOutputModule", compressionAlgorithm = cms.untracked.string('LZMA'), compressionLevel = cms.untracked.int32(9), eventAutoFlushCompressedSize = cms.untracked.int32(20971520), fileName = cms.untracked.string('file:%s_GEN.root'%OutName), outputCommands = process.AODSIMEventContent.outputCommands, splitLevel = cms.untracked.int32(0) ) # Additional output definition # Other statements from Configuration.AlCa.GlobalTag import GlobalTag process.GlobalTag = GlobalTag(process.GlobalTag, '94X_mcRun2_asymptotic_v3', '') process.generator = cms.EDFilter("Pythia8HadronizerFilter", PythiaParameters = cms.PSet( parameterSets = cms.vstring('pythia8CommonSettings', 'pythia8CP5Settings'), pythia8CP5Settings = cms.vstring('Tune:pp 14', 'Tune:ee 7', 'MultipartonInteractions:ecmPow=0.03344', 'PDF:pSet=20', 'MultipartonInteractions:bProfile=2', 'MultipartonInteractions:pT0Ref=1.41', 'MultipartonInteractions:coreRadius=0.7634', 'MultipartonInteractions:coreFraction=0.63', 'ColourReconnection:range=5.176', 'SigmaTotal:zeroAXB=off', 'SpaceShower:alphaSorder=2', 'SpaceShower:alphaSvalue=0.118', 'SigmaProcess:alphaSvalue=0.118', 'SigmaProcess:alphaSorder=2', 'MultipartonInteractions:alphaSvalue=0.118', 'MultipartonInteractions:alphaSorder=2', 'TimeShower:alphaSorder=2', 'TimeShower:alphaSvalue=0.118'), processParameters = cms.vstring( 'JetMatching:outTree_flag = 1' ), pythia8CommonSettings = cms.vstring('Tune:preferLHAPDF = 2', 'Main:timesAllowErrors = %i'%n_Events, 'Check:epTolErr = 0.01', 'Beams:setProductionScalesFromLHEF = off', 'SLHA:keepSM = on', 'SLHA:minMassSM = 1000.', 'ParticleDecays:limitTau0 = on', 'ParticleDecays:tau0Max = 10', 'ParticleDecays:allowPhotonRadiation = on') ), comEnergy = cms.double(13000.0), filterEfficiency = cms.untracked.double(1.0), maxEventsToPrint = cms.untracked.int32(1), pythiaHepMCVerbosity = cms.untracked.bool(False), pythiaPylistVerbosity = cms.untracked.int32(1) ) process.out.outputCommands.extend( [ 'keep GenEventInfoProduct_*_*_*', 'keep *_ak4GenJets_*_*', 'keep *_ak4CaloJets_*_*', 'keep *_ak4JetID_*_*', 'keep *_ak4JetExtender_*_*', #------- Trigger collections ------ 'keep edmTriggerResults_TriggerResults_*_*', 'keep *_hltTriggerSummaryAOD_*_*', 'keep L1GlobalTriggerObjectMapRecord_*_*_*', 'keep L1GlobalTriggerReadoutRecord_*_*_*', #------- Various collections ------ 'keep *_EventAuxilary_*_*', 'keep *_offlinePrimaryVertices_*_*', 'keep *_offlinePrimaryVerticesWithBS_*_*', ]) process.externalLHEProducer = cms.EDProducer("ExternalLHEProducer", args = cms.vstring(gridpack_path), nEvents = cms.untracked.uint32(n_Events), numberOfParameters = cms.uint32(1), outputFile = cms.string('cmsgrid_final.lhe'), scriptName = cms.FileInPath('GeneratorInterface/LHEInterface/data/run_generic_tarball_cvmfs.sh') ) # Path and EndPath definitions process.load("RecoJets.Configuration.GenJetParticles_cff") process.load("RecoJets.Configuration.RecoGenJets_cff") process.ak4GenJets.jetPtMin=200 #process.genParticles.src="generator" process.ProductionFilterSequence = cms.Sequence(process.externalLHEProducer*process.generator) # Path and EndPath definitions process.generation_step = cms.Path(process.pgen) process.genfiltersummary_step = cms.EndPath(process.genFilterSummary) process.endjob_step = cms.EndPath(process.endOfProcess) process.RAWSIMoutput_step = cms.EndPath(process.out) # Schedule definition process.schedule = cms.Schedule(process.generation_step,process.genfiltersummary_step,process.endjob_step,process.RAWSIMoutput_step) from PhysicsTools.PatAlgos.tools.helpers import associatePatAlgosToolsTask associatePatAlgosToolsTask(process) # filter all path with the production filter sequence for path in process.paths: getattr(process,path).insert(0, process.ProductionFilterSequence) #process.p = cms.Path(process.externalLHEProducer*process.generator*process.genParticles*process.genJetParticles*process.ak4GenJets) #process.endpath = cms.EndPath(process.out) #process.schedule = cms.Schedule(process.p,process.endpath) process.out.outputCommands=cms.untracked.vstring('keep *','drop edmHepMCProduct_generator_*_*','drop *_genParticles*_*_*','drop *_genParticlesForJets*_*_*') # customisation of the process. # Automatic addition of the customisation function from Configuration.DataProcessing.Utils from Configuration.DataProcessing.Utils import addMonitoring #call to customisation function addMonitoring imported from Configuration.DataProcessing.Utils process = addMonitoring(process) # End of customisation functions # Customisation from command line process.RandomNumberGeneratorService.externalLHEProducer.initialSeed=int(random_seed) process.RandomNumberGeneratorService.generator.initialSeed=int(random_seed) # Add early deletion of temporary data products to reduce peak memory need from Configuration.StandardSequences.earlyDeleteSettings_cff import customiseEarlyDelete process = customiseEarlyDelete(process) # End adding early deletion
[ "hinzmann@cern.ch" ]
hinzmann@cern.ch
bafa2524937ca9751f5a72349f2c3e4e32c92369
c0c4a82243978cbf52fc6a4c01edc060f4611153
/SampleProjects/POMProjectDemo/Locators/locators.py
744230beacf69c6d090677fca97925f78e6f9aba
[]
no_license
Lalesh-code/Lalesh_Python
8536c9f8ac35f10d7d2f87d98b925ff651c22abb
aad5ab0bec5144708234c3f73460777bd1274a9a
refs/heads/master
2022-12-09T14:04:54.605522
2020-08-15T14:07:59
2020-08-15T14:07:59
287,758,370
0
0
null
null
null
null
UTF-8
Python
false
false
251
py
class Locators(): # Login page objects username_textbox_id = "txtUsername" password_textbox_id = "txtPassword" login_button_id = "btnLogin" # Home page objects welcome_link_id = "welcome" logout_link_linkText = "Logout"
[ "lalesh.garud@gmail.com" ]
lalesh.garud@gmail.com
49b3855070fbfa231c6b4ef2412572433fe8d649
735a315ea82893f2acd5ac141f1a9b8be89f5cb9
/pylib/v6.1.84/mdsplus_wsgi.py
f50ed1d37ecf60acd8495f2d17c36a4e1ff2fe9c
[]
no_license
drsmith48/pppl-mdsplus-python
5ce6f7ccef4a23ea4b8296aa06f51f3a646dd36f
0fb5100e6718c8c10f04c3aac120558f521f9a59
refs/heads/master
2021-07-08T02:29:59.069616
2017-10-04T20:17:32
2017-10-04T20:17:32
105,808,853
0
0
null
null
null
null
UTF-8
Python
false
false
7,942
py
"""Use as a mod_wsgi handler in apache. This module provide access to MDSplus events and data and is designed for use with AJAX web based applications using the XMLHttpRequest object. A sample apache configuration to enable the use of this module would look something like: WSGIScriptAlias /mdsplusWsgi /usr/local/cgi/mdsplus.wsgi Where mdsplus.wsgi contains something like: from MDSplus.mdsplus_wsgi import application The application class in this module will add the directory where the mdsplus.wsgi file resides to the python path and then try to import a module named mdsplus_wsgi_config. If you provide a file called mdsplus_wsgi_config.py in the same directory as the mdsplus.wsgi then you can perform some environment initialization such as defining tree paths, UDP_EVENT settings etc. As sample mdsplus_wsgi_config.py file might contain: import os os.environ['MDS_PATH']='/usr/local/mdsplus/tdi' os.environ['mytree_path']='/mytree-directory-path' os.environ['mytree2_path']='/mytree2-directory-path' os.environ['UDP_EVENTS']='YES' Once the mdsplus.wsgi is configured the web server will serve requests with the following format: http://mywebserver-host/mdsplusWsgi/request-type/[param0[/param1[.../paramn]]?query-options Currently the following request-types are supported: event - Wait for an MDSplus event and produce either a xml document or hand the event info over to a python handler to format a custom response. URL: http://mywebserver-host/mdsplusWsgi/event/event-name[?timeout=seconds[&handler=handler-module]] If no handler is specified then the default handler will be used. The default handler does the following: If the event occurs before the timeout (default timeout is 60 seconds): returns a page of xml which looks like: <event><name>event-name</name><time>time-of-event</time></event> or <event><name>event-name</name><time>time-of-event</time><data> <data_bytes>[byte1,byte2,byte3,....,byte4]</data_bytes> <data_text>text_bytes</data_text></data> </event> If the event times out then returns an empty page with status of NO_RESPONSE(204) If there is an error during processing the event it returns a page of xml which looks like: <exception>text-of-exception</exception> If a handler is specified, a module of the name of handler specified will be imported and the function called "handler" in that module will be called with two arguments, the req and the MDSplus event instance in that order. The handler can use the req object to write the response and the event object to get the event data. The event-instance.exception will = None if no problem occurred during the event processing or the exception string if an error occurred. The handler should return a valid HTTP status if it handles the event otherwise it can return None to resume the default processing. The following is a handler used on the C-Mod experiment for monitoring the shot cycle state machine. Information about the state and shot number is encoded in an event called CMOD_COUNTDOWN_EVENT. import time import numpy import sys,os states=["starting", "standby", "cooldown", "test", "recool", "init", "check", "pulse", "abort"] lastData=None lastTime=time.time() def handler(e): if e.exception is None: response_headers=list() response_headers.append(('Content-type','text/xml')) status='200 OK' data=e.getRaw() shot=int(data[range(4,8)].view(numpy.uint32).item()) toState=states[int(data[1])] fromState=states[int(data[0])] output='<?xml version="1.0" encoding="ISO-8859-1" ?>\n' output += '<cmodState>\n <shot>%d</shot>\n <toState>%s</toState>\n <fromState>%s</fromState>\n</cmodState>" % (shot,toState,fromState)) return (reponse_headers,status,output) 1darray - Evaluate an expression and return a 1-D array of numeric values URL: http://mywebserver-host/mdsplusWsgi/1darray/[tree-name/shot-number]?expr=expression This request type will result in binary data returned. Request headers returned returned include one or more of DTYPE (i.e. "Float32Array"), LENGTH, TREE, SHOT, ERROR. In javascript you would read the data using code similar to: var a = eval('new '+req.getResponseHeader('DTYPE')+'(req.response)'); NOTE: Typed arrays in javascript may not be supported in all browsers yet. If there is an error then there will be a request header returned called "ERROR" and its value is the error message. 1dsignal - Evaluate an expression and resturn a 1-D array of x values followed by a 1-D array of y values. URL: http://mywebserver-host/mdsplusWsgi/1dsignal/[tree-name/shot-number]?expr=expression Similar to the array mode but request headers returned include XDTYPE,XLENGTH,YDTYPE,YLENGTH. The contents returned consist of the x axis followed by the y axis. In javascript you would read the data using something like: var xlength=req.getResponseHeader('XLENGTH') var x = eval('new '+req.getResponseHeader('XDTYPE')+'(req.response,xlength)'); var y = eval('new '+req.getResponseHeader('YDTYPE')+'(req.response,xlength*x.BYTES_PER_ELEMENT)'); NOTE: Typed arrays in javascript may not be supported in all browsers yet. treepath - Return tree_path environment variable URL: http://mywebserver-host/mdsplusWsgi/treename getnid - Return node identifier URL: http://mywebserver-host/mdsplusWsgi/treename/shot-number?node=node-name-spec example: http://mywebserver-host/mdsplusWsgi/cmod/-1?node=\ip """ from MDSplus import * import time import os import sys from cgi import parse_qs class application: def __init__(self, environ, start_response): sys.path.insert(0,os.path.dirname(environ['SCRIPT_FILENAME'])) try: import mdsplus_wsgi_config except: pass self.environ = environ self.start = start_response self.tree=None self.shot=None self.args=parse_qs(self.environ['QUERY_STRING'],keep_blank_values=1) self.path_parts=self.environ['PATH_INFO'].split('/')[1:] doername='do'+self.path_parts[0].capitalize() try: exec ('from wsgi import '+doername,globals()) self.doer=eval(doername) except Exception: self.doer=None def __iter__(self): try: if self.doer is None: status = '500 BAD_REQUEST' response_headers=[('Content-type','text/text')] self.start('500 BAD_REQUEST',[('Content-type','text/text')]) output="Unsupported request type: "+self.path_parts[0] else: status, response_headers,output = self.doer(self) self.start(status,response_headers) yield output except Exception: import traceback self.start('500 BAD REQUEST',[('Content-Type','text/xml')]) yield '<?xml version="1.0" encoding="ISO-8859-1" ?>'+"\n<exception>%s</exception>" % (str(traceback.format_exc()),) def openTree(self,tree,shot): Tree.usePrivateCtx() try: shot=int(shot) except Exception: raise Exception("Invalid shot specified, must be an integer value: %s<br /><br />Error: %s" % (shot,sys.exc_info())) try: t=Tree(tree,shot) self.tree=t.tree self.shot=str(t.shot) self.treeObj=t except Exception: raise Exception("Error opening tree named %s for shot %d<br /><br />Error: %s" % (tree,shot,sys.exc_info()))
[ "drsmith8@wisc.edu" ]
drsmith8@wisc.edu
373f7bc18a434af3069c03740c24b3c36f2ce09e
25051ecfc40a3431ff76444a45d8ca6d52258bae
/TutoScrapy/scrap/scrap.py
531832c6b40ffade44effdacb210d8185994fed7
[]
no_license
Gbane26/TutoScrapping
9b5ecf9ee2c94596ada770fadfba890dc4dc5a09
3233c0831187573967aa4499307e6181cd9b8f98
refs/heads/master
2020-09-06T02:55:58.339955
2019-11-07T17:51:31
2019-11-07T17:51:31
220,296,485
0
0
null
null
null
null
UTF-8
Python
false
false
1,573
py
import requests from bs4 import BeautifulSoup from requests import get url = 'http://www.abidjanguide.com/' response = get(url) # print(response.status_code) if response.status_code == 200: # --- Récuperation HTML --- # htmlsoup = BeautifulSoup(response.text, 'html.parser') # --- Récuperation TITRE --- # div_title = htmlsoup.find('div', attrs={'class': 'navbar-header'}) h1title = div_title.find('h1') #print(h1title.text) # print(htmlsoup) # --- Récuperation PRESENTATION --- # div_presentation = htmlsoup.find_all('div', attrs={'class': 'col-md-2'}) div_row = htmlsoup.find_all('div', attrs={'class': 'row'}) print(div_row) compt = 1 # --- Boucle au niveau de div_presentation --- # # for item in div_presentation: # if compt < 4: # # --- Récuperation --- # # ba = item.find('a') # img = ba.find('img') # h3 = ba.find('h3') # # --- Affectation --- # # image = img['src'] # url = ba['href'] # titre = h3.text # --- Affichage --- # #print(item.text) # print(compt, "\n" + "titre: " + titre + "\n"+ "url: " + url + "\n"+ "image: " + image) # print(titre) # print(url) # print(image) compt += 1 # print(div_presentation) $ # print(div_presentation) else: print("Erreur", response.status_code)
[ "medhijrgbanes@gmail.com" ]
medhijrgbanes@gmail.com
1e9dd632c45917dbc866f1bc0751c7c6277a5886
b13d315ed99664f187639dda76dbc64184461ce9
/cookbook/数据结构与算法.py
8bf43f49f00f646f2b9c6eaf9b2ee972420c04d6
[]
no_license
a233894432/learn_python
ed92251b4baa23425121b1882634f088c94fcec8
92b1ae3e81d935741e54768f0e3b370b3a04a23d
refs/heads/master
2021-01-18T21:21:38.565846
2016-06-10T17:51:34
2016-06-10T17:51:34
55,217,553
0
1
null
null
null
null
UTF-8
Python
false
false
482
py
#!/usr/bin/env python # coding=utf-8 records = [ ('foo', 1, 2), ('bar', 'hello'), ('foo', 3, 4), ] def do_foo(x, y): print('foo', x, y) def do_bar(s): print('bar', s) for tag, *args in records: if tag == 'foo': do_foo(*args) elif tag == 'bar': do_bar(*args) #字符串的分隔 line = 'nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false' uname, *fields, homedir, sh = line.split(':') print(uname) print(homedir) print(sh)
[ "a233894432@gmail.com" ]
a233894432@gmail.com
962ce135e71ace306eedd5a4b9db4ffdbce4b519
9c17c2809e06cf934cb9fb378a4f505c63a3e599
/distribution/transform.py
e3d3465262a9f36a247cf8dd38185fe72b34bb40
[]
no_license
AmjadiM/metadata_manager
6fd91161e364072880fdf9119fc4dd001dc5e472
3eccf3c47c7a0bea08f2cb2d3dfb000de18c4721
refs/heads/master
2021-03-18T07:10:40.866608
2020-03-13T12:45:41
2020-03-13T12:45:41
246,821,202
0
0
null
null
null
null
UTF-8
Python
false
false
2,723
py
import pandas as pd import os """ Can create several files based off the master metadata for distribution Pi Data Descriptors -- Pivotted version of master metadata for SQL Server Subscriptions -- All tags with metric and server for PI data collector subscription file Statuses -- All the tags and start date for PI data collector status file """ # TODO :: Create data cleaner # TODO :: Create single insert to mssql for each new row in metadata # TODO :: Create unit tests for the run methods class metadata_manager: def __init__(self, input_file, output_file): self.input_file = input_file self.output_file = output_file print(os.getcwd()) def extract_data(self): # Load metadata excel xl_file = pd.read_excel(self.input_file, sheet_name="PI_METADATA") return xl_file def write_data(self, df, filetype): # Option to write as CSV or excel if filetype.lower() == "excel": df.to_excel(self.output_file + ".xlsx", engine="openpyxl", index=False, sheet_name=os.path.basename(self.output_file)) elif filetype.lower() == "csv": df.to_csv(self.output_file + ".csv", index=False, header=False) else: raise ValueError def create_pi_data_descriptors(self): xl_file = self.extract_data() # pivot_df = self.pivot_data(xl_file) pivot_df = pd.melt(xl_file, ['tag']) \ .rename(columns={"variable": "descriptor_name", "value": "descriptor_value"}) \ .sort_values(['tag']) self.write_data(pivot_df, "excel") def create_pi_data_groupings(self): pass def create_subscriptions(self): # Create subscription tags for PI Data Collector xl_file = self.extract_data() xl_file['server'] = "PISERVER_MP" sub_df = xl_file[['tag', 'metric', 'server']] sub_df = sub_df[['tag', 'server', 'metric']] self.write_data(sub_df, "csv") return sub_df def create_statuses(self): # Create status file for PI Data Collector xl_file = self.extract_data() xl_file['last_updated'] = "19700101000000000" status_df = xl_file[['tag', 'last_updated']] self.write_data(status_df, "csv") return status_df def load_to_mssql(self): # Load the metadata to SQL server either using truncate and load or append pass def check_data(self): # Check for duplicates pass def clean_data(self): # Strip whitespace from ends pass if __name__ == "__main__": metadata_manager(input_file="data/sql_metadata.xlsx", output_file="data/subscriptions").create_subscriptions()
[ "mikeamjadi1@gmail.com" ]
mikeamjadi1@gmail.com
92d2472e3c46d30136c9a4f3f7e444fa32d539e7
edf2ea979cc2a2ad9ebea18b6bb57d743b5d8a44
/app/wordlists/sv.py
89caadabea355713f9aa7add729cb52faca9ff9f
[ "MIT" ]
permissive
cfarvidson/gender-decoder
ce04398a217e1c5f089a11c8fb6d4f66111730a5
a8f5477c55a802fa20a549401b1bb234f0f4f22f
refs/heads/master
2020-05-03T03:55:12.007859
2019-04-10T10:39:16
2019-04-10T10:39:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,248
py
source = "" language_name = "Swedish" language_code = "sv" # These words are written as the stem to make it easier to match all variants. # In other words, the suffix is intentionally left out. # The following is from # https://github.com/Muamaidbengt/gender-decoder/blob/edd2eae6402df58c7981b3af6c04fbfd38aebe86/app/wordlists.py feminine_coded_words = [ # from http://uu.diva-portal.org/smash/get/diva2:896718/FULLTEXT01.pdf with some minor modifications "anknyt", # a, ning "artig", "anspråkslös", "ansvar", "barn", "beroende", "empati", "engage", # mang, rad "femini", "förstå", "glad", "gnäll", # a, ig "känsl", # osam, ig, ofylld "medlidande", "omtänksam", "lojal", "mild", "omhänderta", "snäll", "social", "släktskap", "smickra", "stöd", "stött", # ande, epelare "sympati", "samarbet", "tjat", "trevlig", "tillgiven" "tyst", "tillsammans", "tillit", "lita", "undergiven", "varm", "ärlig", "öm" # Additions "entusias", "inkluder", "inklusi", "inkänna", "interperson", "kvinn", "stödj", "stött", "subjektiv", "vänlig", "ödmjuk", ] masculine_coded_words = [ # from http://uu.diva-portal.org/smash/get/diva2:896718/FULLTEXT01.pdf with some minor modifications "aktiv", "aggress", "ambiti", # on, ös "analy", # tisk, s "atlet", "autonom", "beslut", "bestäm", # ma, d "domin", # era, ant "envis", "fientlig", "frispråkig", "girig", "hierarki", "hänsynslös", "individ", "intellekt", "intelligen", # s, t "impulsiv", "kraft", # ig, full "kompetent", "ledare", "logik", "logisk", "maskulin", "modig", "objektiv", "självsäker", "självständig", "självförtroende", "åsikt", # Additions "drive", # n, r "driva", "förkämpe", "försvar", "grym", "hungrig", "intellekt", "intelligen", "kämp", # e, a "leda", "manlig", "självgå", "tjurig", "tjurskall", # e, ig "utman", # ar, ande, ing "vass", "äventyr", ]
[ "carl-fredrik@arvidson.io" ]
carl-fredrik@arvidson.io
0d3bdfd5cc84358b4ce03552466c4e30a6c2e0f5
efd28e8dd82afe274ed5acb71cb6902077f03f8c
/hst.py
956430e1094e911d55e675a1eb6c1d628cf41c65
[]
no_license
Borlaff/astrobox
18e123b9a57fc4cff51df9bb3df35568d8057826
de134f15086a5131391ca7fbe34680c22fb11153
refs/heads/master
2022-08-24T07:11:19.676557
2022-07-21T23:34:43
2022-07-21T23:34:43
248,322,856
0
0
null
null
null
null
UTF-8
Python
false
false
28,408
py
import sys import os import glob sys.path.append("/home/borlaff/GRID/") import utils from tqdm import tqdm import tars from astropy.io import fits from astropy.wcs import WCS import drizzlepac import bottleneck as bn #import ellipse import numpy as np import ds9tomask as dm from bootmedian import bootmedian as bm from drizzlepac import ablot from stsci.tools import teal from skimage import data from skimage.restoration import inpaint from astropy.modeling import models, fitting import subprocess from scipy.ndimage import gaussian_filter xfin = 3000 yfin = 3000 ra_fin = 150.1126499 dec_fin = 2.3561308 def reset_mdrizsky(fits_list): for i in fits_list: print(i) reset_MDRIZSKY(i) def create_deltaflat_files(): F606W_dflat = fits.open("/home/borlaff/DF4/DELTAFLAT/final_acs-wfc_f606w_avg.fits") F814W_dflat = fits.open("/home/borlaff/DF4/DELTAFLAT/final_acs-wfc_f814w_avg.fits") F606W_dflat_sci1 = F606W_dflat[0].data[0:2048,:] F606W_dflat_sci2 = F606W_dflat[0].data[2048:,:] F814W_dflat_sci1 = F814W_dflat[0].data[0:2048,:] F814W_dflat_sci2 = F814W_dflat[0].data[2048:,:] F606W_dflat_sci1[np.where(F606W_dflat_sci1 < 0.3)] = 1 F606W_dflat_sci1[np.where(F606W_dflat_sci1 > 1.7)] = 1 F606W_dflat[0].data = gaussian_filter(F606W_dflat_sci1, sigma=3) F606W_dflat.verify("silentfix") os.system("rm /home/borlaff/DF4/DELTAFLAT/dflat_f606w_sci1.fits") F606W_dflat.writeto("/home/borlaff/DF4/DELTAFLAT/dflat_f606w_sci1.fits") F606W_dflat_sci2[np.where(F606W_dflat_sci2 < 0.3)] = 1 F606W_dflat_sci2[np.where(F606W_dflat_sci2 < 1.7)] = 1 F606W_dflat[0].data = gaussian_filter(F606W_dflat_sci2, sigma=3) F606W_dflat.verify("silentfix") os.system("rm /home/borlaff/DF4/DELTAFLAT/dflat_f606w_sci2.fits") F606W_dflat.writeto("/home/borlaff/DF4/DELTAFLAT/dflat_f606w_sci2.fits") F814W_dflat_sci1[np.where(F814W_dflat_sci1 < 0.3)] = 1 F814W_dflat_sci1[np.where(F814W_dflat_sci1 < 1.7)] = 1 F814W_dflat[0].data = gaussian_filter(F814W_dflat_sci1, sigma=3) F814W_dflat.verify("silentfix") os.system("rm /home/borlaff/DF4/DELTAFLAT/dflat_f814w_sci1.fits") F814W_dflat.writeto("/home/borlaff/DF4/DELTAFLAT/dflat_f814w_sci1.fits") F814W_dflat_sci2[np.where(F814W_dflat_sci2 < 0.3)] = 1 F814W_dflat_sci2[np.where(F814W_dflat_sci2 < 1.7)] = 1 F814W_dflat[0].data = gaussian_filter(F814W_dflat_sci2, sigma=3) F814W_dflat.verify("silentfix") os.system("rm /home/borlaff/DF4/DELTAFLAT/dflat_f814w_sci2.fits") F814W_dflat.writeto("/home/borlaff/DF4/DELTAFLAT/dflat_f814w_sci2.fits") print("Delta flats created!") def launch_multidrizzle(subfix): HUDF_list = glob.glob(subfix) drizzlepac.astrodrizzle.AstroDrizzle(input=subfix, skysub=0, num_cores=1, clean=1, in_memory=0, preserve=0, combine_type='imedian', final_scale=0.06, final_kernel="lanczos3", driz_cr=1, updatewcs=0, final_pixfrac=1, final_outnx=xfin,final_outny=yfin, final_ra=ra_fin,final_rot=0, final_dec=dec_fin) def run_astnoisechisel(fits_name, ext, tilesize=80): os.system("astnoisechisel -h" + str(ext) + " --tilesize="+str(tilesize)+","+str(tilesize)+" --interpnumngb=4 --keepinputdir --smoothwidth=15 " + fits_name) return(fits_name.replace(".fits", "_labeled.fits")) def reset_bad_pixels(fits_name, ext): limit_down = -5000 fits_file = fits.open(fits_name, mode = "update") fits_file[ext].data[(fits_file[ext].data < limit_down)] = 0 fits_file.flush() fits_file.close() def reset_MDRIZSKY(fits_name): fits_file = fits.open(fits_name, mode = "update") fits_file[1].header["MDRIZSKY"] = 0 fits_file[4].header["MDRIZSKY"] = 0 fits_file.flush() fits_file.close() def remove_sky(fits_name, tilesize): # Make copy of flc os.system("cp " + fits_name + " " + fits_name.replace("_flc.fits", "_fld.fits")) output_name = fits_name.replace("_flc.fits","_sky.fits") fits_name = fits_name.replace("_flc.fits", "_fld.fits") reset_bad_pixels(fits_name,1) reset_bad_pixels(fits_name,4) # First extension labeled_name_1 = run_astnoisechisel(fits_name, 1, tilesize) labeled_fits = fits.open(labeled_name_1) fits_file = fits.open(fits_name) sky_gradient = labeled_fits[4].data print(labeled_fits[4].header) fits_file[1].data = fits_file[1].data - sky_gradient # Second extension labeled_name_2 = run_astnoisechisel(fits_name, 4) labeled_fits = fits.open(labeled_name_2) sky_gradient = labeled_fits[4].data print(labeled_fits[4].header) fits_file[4].data = fits_file[4].data - sky_gradient os.system("rm " + output_name) fits_file.verify("silentfix") fits_file.writeto(output_name) def remove_gradient(input_flc, ext, detected_name): input_fits = fits.open(input_flc) detected_fits = fits.open(detected_name) input_fits[ext].data = detected_fits[1].data os.system("rm " + input_flc) input_fits.verify("silentfix") input_fits.writeto(input_flc) input_fits.close() detected_fits.close() def mask_image(fits_list, ext=1, flat=True, dq_mask=True): # Check if astnoisechisel is installed: try: subprocess.call(["astnoisechisel"]) except OSError as e: # handle file not found error. print("ERROR: Astnoisechisel not found!") os.kill(os.getpid(), signal.SIGUSR1) out_list = [] if isinstance(fits_list, str): fits_list = [fits_list] if isinstance(fits_list, list): for i in range(len(fits_list)): fits_name = fits_list[i] fits_image_flatted = fits.open(fits_name) fits_image_flatted_name = fits_name.replace(".fits", "_flatted.fits") if flat: # flat_name = fits_image_flatted[0].header['PFLTFILE'] flat_name = choose_master_flat(fits_name) flat_image = fits.open(flat_name) border = 5 if (flat_image[ext].data.shape == (1024, 1024)) & (fits_image_flatted[ext].data.shape == (1014, 1014)): flat_image_array = flat_image[ext].data[0+border:1024-border, 0 + border:1024-border] else: flat_image_array = flat_image[ext].data fits_image_flatted[ext].data = np.divide(fits_image_flatted[ext].data, flat_image_array) hdul = fits.PrimaryHDU(fits_image_flatted[ext].data) hdul.verify("silentfix") os.system("rm "+fits_image_flatted_name) hdul.writeto(fits_image_flatted_name) print(fits_name) if fits_name[-6:] == "i.fits": out_name = fits_name.replace("i.fits", "m_ext" + str(ext) + ".fits") else: out_name = fits_name.replace(".fits", "_masked_ext" + str(ext) + ".fits") # Astnoisechisel cmd = "astnoisechisel -h0 --keepinputdir --tilesize=50,50 --interpnumngb=1 --smoothwidth=3 " + fits_image_flatted_name print(cmd) os.system(cmd) labeled_name = fits_image_flatted_name.replace(".fits", "_detected.fits") try: labeled_image = fits.open(labeled_name) fits_image = fits.open(fits_name) masked = fits_image[ext].data masked[(labeled_image[2].data !=0)] = np.nan if dq_mask: masked[fits_image_flatted[3].data > 0] = np.nan hdu1 = fits.PrimaryHDU(masked) hdu1.verify("silentfix") os.system("rm "+out_name) hdu1.writeto(out_name) new_hdul = fits.open(out_name, "update") new_hdul[0].header = fits_image[ext].header new_hdul.verify("silentfix") new_hdul[0].header['SKYLVL'] = np.nanmedian(labeled_image[3].data) new_hdul[0].header['SKYSTD'] = np.nanmedian(labeled_image[4].data) new_hdul.flush() out_list.append(out_name) except IOError: print("Cannot run astnoisechisel! Probably too noisy image") return(["Error"]) return(out_list) def mask_and_crude_skycor_sci(input_sci, master_mask): mask_1 = mask_image(fits_list=[input_sci],ext=0, flat=False, dq_mask=False) print(mask_1) mask_1_fits = fits.open(mask_1[0], mode="update") mask_1_DF = fits.open(master_mask) mask_1_fits[0].data[mask_1_DF[0].data == 1] = np.nan mask_1_fits.flush() crude_skycor(input_sci, 0, mask_1[0], nsimul=1, noisechisel_grad=True, bootmedian=False) def mask_and_crude_skycor(input_flc, mask_1_name, mask_2_name, nsimul=100): mask_1 = mask_image(fits_list=[input_flc],ext=1, flat=False) print(mask_1) mask_1_fits = fits.open(mask_1[0], mode="update") mask_1_DF = fits.open(mask_1_name) mask_1_fits[0].data[mask_1_DF[0].data == 1] = np.nan mask_1_fits.flush() crude_skycor(input_flc, 1, mask_1[0], nsimul=nsimul, noisechisel_grad=False, bootmedian=False) mask_4 = mask_image(fits_list=[input_flc],ext=4, flat=False) mask_4_fits = fits.open(mask_4[0], mode="update") mask_4_DF = fits.open(mask_2_name) mask_4_fits[0].data[mask_4_DF[0].data == 1] = np.nan mask_4_fits.flush() crude_skycor(input_flc, 4, mask_4[0], nsimul=nsimul, noisechisel_grad=False, bootmedian=False) def copy_dq(input_flc, input_crcor): flc_fits = fits.open(input_flc, mode="update") crcor_fits = fits.open(input_crcor, mode="update") flc_fits[1].data = crcor_fits[1].data flc_fits[4].data = crcor_fits[4].data flc_fits[1].header = crcor_fits[1].header flc_fits[4].header = crcor_fits[4].header flc_fits.flush() def crude_skycor(fitslist, ext, mask=None, nsimul=100, noisechisel_grad=False, bootmedian=True): if isinstance(fitslist, str): fitslist = [fitslist] if isinstance(fitslist, list): for fits_name in fitslist: print(fits_name) fits_image = fits.open(fits_name) if mask is not None: print("Input mask accepted: " + mask) mask_fits = fits.open(mask) shape_mask = mask_fits[0].data.shape shape_fits = fits_image[ext].data.shape mask_array = mask_fits[0].data if (shape_mask == (1014, 1014)) & (shape_fits == (1024, 1024)): mask_array = np.zeros(shape_fits) border = 5 mask_array[0+border:1024-border, 0+border:1024-border] = mask_fits[0].data if bootmedian: skylvl = bm.bootmedian(sample_input=fits_image[ext].data[~np.isnan(mask_array)], nsimul=nsimul, errors=1) if not bootmedian: median_sky = bn.nanmedian(fits_image[ext].data[~np.isnan(mask_array)]) #sigma_sky = bn.nanstd(fits_image[ext].data[~np.isnan(mask_array)]) sigma_sky = 0 skylvl = {"median": median_sky, "s1_up": median_sky+sigma_sky, "s1_down": median_sky-sigma_sky, "std1_down": sigma_sky, "std1_up": sigma_sky} else: if bootmedian: skylvl = bm.bootmedian(sample_input=fits_image[ext].data, nsimul=nsimul, errors=1) if not bootmedian: median_sky = bn.nanmedian(fits_image[ext].data) #sigma_sky = bn.nanstd(fits_image[ext].data) sigma_sky = 0 skylvl = {"median": median_sky, "s1_up": median_sky+sigma_sky, "s1_down": median_sky-sigma_sky, "std1_down": sigma_sky, "std1_up": sigma_sky} print(skylvl) print(np.abs(skylvl["median"] - skylvl["s1_up"])/2.) print("Skylvl: " + str(skylvl["median"]) + " +/- " + str(np.abs(skylvl["s1_up"] - skylvl["s1_down"])/2.)) fits_image[ext].data = fits_image[ext].data - skylvl["median"] fits_image[0].header['SKYSTD'] = skylvl["std1_down"] fits_image[0].header['SKYLVL'] = skylvl["median"] fits_image[ext].header['SKYSTD'] = skylvl["std1_down"] fits_image[ext].header['SKYLVL'] = skylvl["median"] os.system("rm " + fits_name) fits_image.verify("silentfix") fits_image.writeto(fits_name) fits_image.close() def final_skycor(input_flc, ext, nsimul=25): mask_1 = mask_image(fits_list=[input_flc],ext=ext, flat=False, dq_mask = False) detected_name = input_flc.replace("_flc.fits", "_flc_flatted_detected.fits") remove_gradient(input_flc, ext, detected_name) crude_skycor(input_flc, ext, mask_1[0], nsimul, False) def delta_flat_cor(input_flc, input_flat1, input_flat2): fits_file = fits.open(input_flc) dflat_file_sci1 = fits.open(input_flat1) dflat_file_sci2 = fits.open(input_flat2) dflat_file_sci1[0].data[np.isnan(dflat_file_sci1[0].data)]=1 dflat_file_sci2[0].data[np.isnan(dflat_file_sci2[0].data)]=1 dflat_file_sci1[0].data[np.where(dflat_file_sci1[0].data == 0)]=1 dflat_file_sci2[0].data[np.where(dflat_file_sci2[0].data == 0)]=1 fits_file[1].header["idcscale"] = 0.05 fits_file[4].header["idcscale"] = 0.05 fits_file[1].data = np.divide(fits_file[1].data,dflat_file_sci1[0].data) fits_file[4].data = np.divide(fits_file[4].data,dflat_file_sci2[0].data) fits_file.verify("silentfix") #outname = input_flc.replace("_flc.fits", "_flc.fits") outname=input_flc os.system("rm " + outname) fits_file.writeto(outname) def get_parameters_list(fits_list, index, ext=0): PARAM = [] for j in range(len(index)): PARAM.append([]) for raw_name in fits_list: print(raw_name) raw_fits = fits.open(raw_name) for j in range(len(index)): try: PARAM[j].append(raw_fits[ext].header[index[j]]) except KeyError: print("KeyError: Header keyword not found") PARAM[j].append("NONE") return(list(PARAM)) def separate_visits(fitslist): PARAMS = get_parameters_list(fitslist, ["ASN_ID"]) unique_visits = np.array(list(set(PARAMS[0]))) flocks = [] fits_array = np.array(fitslist) for i in unique_visits: print(i) flock = fits_array[np.array(PARAMS[0]) == i] print(flock) flocks.append(list(flock)) return(flocks) def ensure_idcscale(input_flc): fits_file = fits.open(input_flc) fits_file[1].header["idcscale"] = 0.05 fits_file[4].header["idcscale"] = 0.05 fits_file.verify("silentfix") #outname = input_flc.replace("_flc.fits", "_flc_dflat.fits") outname=input_flc os.system("rm " + outname) fits_file.writeto(outname) def astrometry_list(fitslist, refcat, rmax): #OLD SETUP, USING ASTRODRIZZLE's METHOD TO REMOVE CR for fitsimages in fitslist: rootname = os.path.basename(fitsimages).split("_")[0] os.system("rm " + rootname + "_crclean.fits") print(rootname) #chunks_final = separate_for_astrometry(fitslist, rmax) chunks_final = separate_visits(fitslist) for subset in chunks_final: if len(subset) > 20: step1, step2 = split_list(subset) drizzlepac.astrodrizzle.AstroDrizzle(input=step1, skysub=0, static=0, in_memory=1, preserve=0, clean=0, driz_sep_pixfrac=1., num_cores=1, driz_sep_wcs=1, driz_cr_corr=1, resetbits=128, driz_cr_snr='4.0 3.0', driz_cr_scale='1.5 0.7', driz_combine=0, updatewcs=0, combine_type="imedian") drizzlepac.astrodrizzle.AstroDrizzle(input=step2, skysub=0, static=0, in_memory=1, preserve=0, clean=0, driz_sep_pixfrac=1., num_cores=1, driz_sep_wcs=1, driz_cr_corr=1, resetbits=128, driz_cr_snr='4.0 3.0', driz_cr_scale='1.5 0.7', driz_combine=0, updatewcs=0, combine_type="imedian") else: drizzlepac.astrodrizzle.AstroDrizzle(input=subset, skysub=0, static=0, in_memory=1, preserve=0, clean=0, driz_sep_pixfrac=1., num_cores=1, driz_sep_wcs=1, driz_cr_corr=1, resetbits=128, driz_cr_snr='4.0 3.0', driz_cr_scale='1.5 0.7', driz_combine=0, updatewcs=0, combine_type="imedian") cr_corrected_subset = [] for i in subset: rootname = os.path.basename(i).split("_")[0] extname = os.path.basename(i).split("_")[1].split(".fits")[0] if extname == "flc": cr_name = rootname + "_crclean.fits" else: cr_name = rootname + "_" + extname + "_crclean.fits" print(cr_name) cr_corrected_subset.append(cr_name) ensure_dtype(cr_name) # Generamos los catalogos manualmente con SEXTRACTOR catalog_1_name = rootname + "_" + extname + "_crclean_sci1.cat" catalog_2_name = rootname + "_" + extname + "_crclean_sci2.cat" catfile_name = rootname + "_catfile.txt" os.system("sex " + cr_name + "[1] -c " + "/media/borlaff/CARGO/PHD/SEX_files/confi_tweakreg.sex " + "-CHECKIMAGE_NAME image_segmentation.fits " + "-CATALOG_NAME " + catalog_1_name) os.system("sex " + cr_name + "[4] -c " + "/media/borlaff/CARGO/PHD/SEX_files/confi_tweakreg.sex " + "-CHECKIMAGE_NAME image_segmentation.fits " + "-CATALOG_NAME " + catalog_2_name) os.system("echo " + cr_name + " " + catalog_1_name + " " + catalog_2_name + " > " + catfile_name) drizzlepac.tweakreg.TweakReg(files=cr_name, updatewcs=False, updatehdr=True, verbose=True, searchrad=5, searchunits="arcseconds", refcat=refcat, refxcol=4, refycol=5, catfile=catfile_name, xcol=2, ycol=3, interactive=0, use2dhist=True, see2dplot=True, fitgeometry="general") def generate_manual_masks(): for i in glob.glob("/home/borlaff/DF4/F*W/*sci1.reg"): dm.ds9tomask(fname=i, nx=4096, ny=2048, outname=i.replace(".reg","_mask.fits")) for i in glob.glob("/home/borlaff/DF4/F*W/*sci2.reg"): dm.ds9tomask(fname=i, nx=4096, ny=2048, outname=i.replace(".reg","_mask.fits")) def generate_full_masks(fits_list): for input_flc in fits_list: mask_1 = mask_image(fits_list=[input_flc],ext=1, flat=False) print(mask_1) mask_1_fits = fits.open(mask_1[0]) mask_1_DF = fits.open(input_flc.replace("_flc.fits","_") + "sci1_mask.fits") mask_1_fits[0].data[mask_1_DF[0].data == 1] = np.nan mask_1_fits.verify("silentfix") os.system("rm " + mask_1[0]) mask_1_fits.writeto(mask_1[0]) mask_1_fits.close() #crude_skycor(input_flc, 1, mask_1[0], nsimul=1, noisechisel_grad=False, bootmedian=False) mask_4 = mask_image(fits_list=[input_flc],ext=4, flat=False) mask_4_fits = fits.open(mask_4[0]) mask_4_DF = fits.open(input_flc.replace("_flc.fits","_") + "sci2_mask.fits") mask_4_fits[0].data[mask_4_DF[0].data == 1] = np.nan mask_4_fits.verify("silentfix") os.system("rm " + mask_4[0]) mask_4_fits.writeto(mask_4[0]) mask_4_fits.close() def remove_iref_list(filename_list, calibration_path): for filename in filename_list: remove_iref(filename, calibration_path) def remove_iref(filename,calibration_path): raw_fits = fits.open(filename,ignore_missing_end=True) if(raw_fits[0].header['INSTRUME'] == 'WFC3'): if (raw_fits[0].header['BPIXTAB'][0:4]=="iref"): raw_fits[0].header['BPIXTAB'] = calibration_path + str.split(raw_fits[0].header['BPIXTAB'],"$")[-1] raw_fits[0].header['CCDTAB'] = calibration_path + str.split(raw_fits[0].header['CCDTAB'],"$")[-1] raw_fits[0].header['OSCNTAB'] = calibration_path + str.split(raw_fits[0].header['OSCNTAB'],"$")[-1] raw_fits[0].header['CRREJTAB'] = calibration_path + str.split(raw_fits[0].header['CRREJTAB'],"$")[-1] raw_fits[0].header['DARKFILE'] = calibration_path + str.split(raw_fits[0].header['DARKFILE'],"$")[-1] raw_fits[0].header['NLINFILE'] = calibration_path + str.split(raw_fits[0].header['NLINFILE'],"$")[-1] raw_fits[0].header['PFLTFILE'] = calibration_path + str.split(raw_fits[0].header['PFLTFILE'],"$")[-1] raw_fits[0].header['IMPHTTAB'] = calibration_path + str.split(raw_fits[0].header['IMPHTTAB'],"$")[-1] raw_fits[0].header['IDCTAB'] = calibration_path + str.split(raw_fits[0].header['IDCTAB'],"$")[-1] raw_fits[0].header['MDRIZTAB'] = calibration_path + str.split(raw_fits[0].header['MDRIZTAB'],"$")[-1] else: raw_fits[0].header['BPIXTAB'] = calibration_path + str.split(raw_fits[0].header['BPIXTAB'],"/")[-1] raw_fits[0].header['CCDTAB'] = calibration_path + str.split(raw_fits[0].header['CCDTAB'],"/")[-1] raw_fits[0].header['OSCNTAB'] = calibration_path + str.split(raw_fits[0].header['OSCNTAB'],"/")[-1] raw_fits[0].header['CRREJTAB'] = calibration_path + str.split(raw_fits[0].header['CRREJTAB'],"/")[-1] raw_fits[0].header['DARKFILE'] = calibration_path + str.split(raw_fits[0].header['DARKFILE'],"/")[-1] raw_fits[0].header['NLINFILE'] = calibration_path + str.split(raw_fits[0].header['NLINFILE'],"/")[-1] raw_fits[0].header['PFLTFILE'] = calibration_path + str.split(raw_fits[0].header['PFLTFILE'],"/")[-1] raw_fits[0].header['IMPHTTAB'] = calibration_path + str.split(raw_fits[0].header['IMPHTTAB'],"/")[-1] raw_fits[0].header['IDCTAB'] = calibration_path + str.split(raw_fits[0].header['IDCTAB'],"/")[-1] raw_fits[0].header['MDRIZTAB'] = calibration_path + str.split(raw_fits[0].header['MDRIZTAB'],"/")[-1] os.remove(filename) raw_fits.verify('silentfix') raw_fits.writeto(filename) raw_fits.close() if(raw_fits[0].header['INSTRUME'] == 'ACS'): for i in range(len(raw_fits)): for j in range(len(raw_fits[i].header)): if(isinstance(raw_fits[i].header[j], str)): raw_fits[i].header[j] = raw_fits[i].header[j].replace("jref$",calibration_path) os.remove(filename) raw_fits.verify('silentfix') raw_fits.writeto(filename) raw_fits.close() def mask_and_crude_skycor_DF4(fits_list): # F606W reset_MDRIZSKY to 0 for i in glob.glob("/home/borlaff/DF4/F606W/*flc.fits"): print(i) mask_and_crude_skycor(i, i.replace("_flc.fits", "_sci1_mask.fits"), i.replace("_flc.fits", "_sci2_mask.fits")) def ensure_dtype(fits_name): original_image = fits.open(fits_name) try: original_image[0].data = original_image[0].data.astype('>f4') except: print("No ext=0") try: original_image[1].data = original_image[1].data.astype('>f4') except: print("No ext=1") try: original_image[2].data = original_image[2].data.astype('>f4') except: print("No ext=2") try: original_image[3].data = original_image[3].data.astype('>i2') except: print("No ext=3") try: original_image[4].data = original_image[4].data.astype('>i2') except: print("No ext=4") try: original_image[5].data = original_image[5].data.astype('>f4') except: print("No ext=5") original_image.verify('silentfix') os.system("rm " + fits_name) original_image.writeto(fits_name) original_image.close() def generate_stripe_model(masked_array): image_shape = masked_array.shape med_axis_0 = bn.nanmean(masked_array.astype("float32"), axis=0) med_axis_1 = bn.nanmean(masked_array.astype("float32"), axis=1) print(len(med_axis_0)) stripe_model_axis_0 = np.zeros(image_shape) stripe_model_axis_1 = np.zeros(image_shape) for j in tqdm(range(image_shape[1])): stripe_model_axis_0[:,j] = med_axis_0[j] for i in tqdm(range(image_shape[0])): stripe_model_axis_1[i,:] = med_axis_1[i] stripe_model = (stripe_model_axis_0 + stripe_model_axis_1)/2. return(stripe_model) def correct_amplifiers(masked_array): masked_array[:,0:2048] = masked_array[:,0:2048] - bn.nanmedian(masked_array[:,0:2048]) masked_array[:,2048:] = masked_array[:,2048:] - bn.nanmedian(masked_array[:,2048:]) return(masked_array) def destripe_acs(flc_name, mask1_name, mask2_name): flc_fits = fits.open(flc_name) mask1_fits = fits.open(mask1_name) mask2_fits = fits.open(mask2_name) image_shape = flc_fits[1].data.shape flc_fits[1].data = correct_amplifiers(flc_fits[1].data.astype("float32")) flc_fits[4].data = correct_amplifiers(flc_fits[4].data.astype("float32")) masked_1_data = np.copy(flc_fits[1].data) masked_2_data = np.copy(flc_fits[4].data) masked_1_data[np.isnan(mask1_fits[0].data)] = np.nan masked_2_data[np.isnan(mask2_fits[0].data)] = np.nan stripe_model_1 = generate_stripe_model(masked_1_data) stripe_model_2 = generate_stripe_model(masked_2_data) stripe_model_1[np.isnan(stripe_model_1)] = 0.0 stripe_model_2[np.isnan(stripe_model_2)] = 0.0 flc_fits[1].data = flc_fits[1].data.astype("float32") - stripe_model_1 flc_fits[4].data = flc_fits[4].data.astype("float32") - stripe_model_2 os.system("rm " + flc_name) flc_fits.verify("silentfix") flc_fits.writeto(flc_name) mask1_fits[0].data = stripe_model_1 mask2_fits[0].data = stripe_model_2 os.system("rm stripe_model_1.fits stripe_model_2.fits") mask1_fits.verify("silentfix") mask2_fits.verify("silentfix") mask1_fits.writeto("stripe_model_1.fits") mask2_fits.writeto("stripe_model_2.fits") return(flc_name)
[ "asborlaff@gmail.com" ]
asborlaff@gmail.com
73057923b1a85ddf0796baa5ca565b85f2369ebe
c271b95f99fd1632502803346b066ad762ef7c79
/api/views.py
8797ff396c6c17ed4365d9184b18ac6124706a12
[]
no_license
mr8bit/untitled
48d35cc18e226a5e06fec65566c7a12f4a8b9c71
9a51e33a7216e327b75c8d8cb85066e43c9a55ea
refs/heads/master
2020-06-15T02:42:48.471326
2016-12-13T00:05:06
2016-12-13T00:05:06
75,336,816
0
0
null
null
null
null
UTF-8
Python
false
false
21,067
py
from django.shortcuts import HttpResponse import urllib.request as ur import xmltodict import json def homepage(request): file = ur.urlopen('http://www.skiplan.com/php/getXmlInter.php?country=russia&region=alpes&resort=ROSA%20KHUTOR') data = file.read() file.close() data = xmltodict.parse(data) lifts = [] list = data["RESORT"]["STATES"]["AREA"] for x in list: if 'LIFTS' == x['@nom_en']: for i in x['LIFT']: if i['@name_en'] == 'OLIMPIA': if len(i['@state']) > 1: lifts.append([1, str(i['@state']).lower()]) else: lifts.append([1, str(i['@state']).upper()]) elif i['@name_en'] == 'ZAPOVEDNYY LES': if len(i['@state']) > 1: lifts.append([2, str(i['@state']).lower()]) else: lifts.append([2, str(i['@state']).upper()]) elif i['@name_en'] == 'KAVKAZSKIY EXPRESS above 1600': if len(i['@state']) > 1: lifts.append([3, str(i['@state']).lower()]) else: lifts.append([3, str(i['@state']).upper()]) elif i['@name_en'] == 'KAVKAZSKIY EXPRESS below 1600': if len(i['@state']) > 1: lifts.append([4, str(i['@state']).lower()]) else: lifts.append([4, str(i['@state']).upper()]) elif i['@name_en'] == 'VOLCHYA SKALA': if len(i['@state']) > 1: lifts.append([5, str(i['@state']).lower()]) else: lifts.append([5, str(i['@state']).upper()]) elif i['@name_en'] == 'BESEDA': if len(i['@state']) > 1: lifts.append([6, str(i['@state']).lower()]) else: lifts.append([6, str(i['@state']).upper()]) elif i['@name_en'] == 'KVARTET': if len(i['@state']) > 1: lifts.append([7, str(i['@state']).lower()]) else: lifts.append([7, str(i['@state']).upper()]) elif i['@name_en'] == 'SKAZKA': if len(i['@state']) > 1: lifts.append([8, str(i['@state']).lower()]) else: lifts.append([8, str(i['@state']).upper()]) elif i['@name_en'] == 'KABAN': if len(i['@state']) > 1: lifts.append([9, str(i['@state']).lower()]) else: lifts.append([9, str(i['@state']).upper()]) elif i['@name_en'] == 'EXTREME': if len(i['@state']) > 1: lifts.append([10, str(i['@state']).lower()]) else: lifts.append([10, str(i['@state']).upper()]) elif i['@name_en'] == 'STRELA': if len(i['@state']) > 1: lifts.append([11, str(i['@state']).lower()]) else: lifts.append([11, str(i['@state']).upper()]) elif i['@name_en'] == 'CHALET': if len(i['@state']) > 1: lifts.append([12, str(i['@state']).lower()]) else: lifts.append([12, str(i['@state']).upper()]) elif i['@name_en'] == 'KROKUS': if len(i['@state']) > 1: lifts.append([13, str(i['@state']).lower()]) else: lifts.append([13, str(i['@state']).upper()]) elif i['@name_en'] == 'EDELWEISS': if len(i['@state']) > 1: lifts.append([14, str(i['@state']).lower()]) else: lifts.append([14, str(i['@state']).upper()]) elif i['@name_en'] == 'JUVENTA': lifts.append([15, i['@state']]) if len(i['@state']) > 1: lifts.append([15, str(i['@state']).lower()]) else: lifts.append([15, str(i['@state']).upper()]) elif i['@name_en'] == 'DRIADA': if len(i['@state']) > 1: lifts.append([16, str(i['@state']).lower()]) else: lifts.append([16, str(i['@state']).upper()]) elif i['@name_en'] == 'TUNDRA': if len(i['@state']) > 1: lifts.append([17, str(i['@state']).lower()]) else: lifts.append([17, str(i['@state']).upper()]) elif i['@name_en'] == 'Rope tow Tubing': if len(i['@state']) > 1: lifts.append([19, str(i['@state']).lower()]) else: lifts.append([19, str(i['@state']).upper()]) elif i['@name_en'] == 'Rope tow Snowpark': if len(i['@state']) > 1: lifts.append([20, str(i['@state']).lower()]) else: lifts.append([20, str(i['@state']).upper()]) elif i['@name_en'] == 'Rope tow Rosa 1600': if len(i['@state']) > 1: lifts.append([21, str(i['@state']).lower()]) else: lifts.append([21, str(i['@state']).upper()]) elif i['@name_en'] == 'Magic carpet Junior Training Slope': if len(i['@state']) > 1: lifts.append([22, str(i['@state']).lower()]) else: lifts.append([22, str(i['@state']).upper()]) if 'SLOPES' == x['@nom_en']: for i in x['TRAIL']: if i['@name_en'] == 'Mini-Park': if len(i['@state']) > 1: lifts.append([23, str(i['@state']).lower()]) else: lifts.append([23, str(i['@state']).upper()]) elif i['@name_en'] == 'THE STASH PARK': if len(i['@state']) > 1: lifts.append([24, str(i['@state']).lower()]) else: lifts.append([24, str(i['@state']).upper()]) elif i['@name_en'] == 'Snow-park': if len(i['@state']) > 1: lifts.append([25, str(i['@state']).lower()]) else: lifts.append([25, str(i['@state']).upper()]) elif i['@name_en'] == 'Arbor': if len(i['@state']) > 1: lifts.append([26, str(i['@state']).lower()]) else: lifts.append([26, str(i['@state']).upper()]) elif i['@name_en'] == 'Chalet': if len(i['@state']) > 1: lifts.append([27, str(i['@state']).lower()]) else: lifts.append([27, str(i['@state']).upper()]) elif i['@name_en'] == 'Juventa': if len(i['@state']) > 1: lifts.append([28, str(i['@state']).lower()]) else: lifts.append([28, str(i['@state']).upper()]) elif i['@name_en'] == 'Borey': if len(i['@state']) > 1: lifts.append([29, str(i['@state']).lower()]) else: lifts.append([29, str(i['@state']).upper()]) elif i['@name_en'] == 'Ehkho': if len(i['@state']) > 1: lifts.append([30, str(i['@state']).lower()]) else: lifts.append([30, str(i['@state']).upper()]) elif i['@name_en'] == 'AIBGA': if len(i['@state']) > 1: lifts.append([31, str(i['@state']).lower()]) else: lifts.append([31, str(i['@state']).upper()]) elif i['@name_en'] == 'B 52 above 1600': if len(i['@state']) > 1: lifts.append([32, str(i['@state']).lower()]) else: lifts.append([32, str(i['@state']).upper()]) elif i['@name_en'] == 'B 52 below 1600': if len(i['@state']) > 1: lifts.append([33, str(i['@state']).lower()]) else: lifts.append([33, str(i['@state']).upper()]) elif i['@name_en'] == 'VANCOUVER 10': if len(i['@state']) > 1: lifts.append([34, str(i['@state']).lower()]) else: lifts.append([34, str(i['@state']).upper()]) elif i['@name_en'] == 'VERONIKA': if len(i['@state']) > 1: lifts.append([35, str(i['@state']).lower()]) else: lifts.append([35, str(i['@state']).upper()]) elif i['@name_en'] == 'VIRAZH above 1800': if len(i['@state']) > 1: lifts.append([36, str(i['@state']).lower()]) else: lifts.append([36, str(i['@state']).upper()]) elif i['@name_en'] == 'VIRAZH below 1800': if len(i['@state']) > 1: lifts.append([37, str(i['@state']).lower()]) else: lifts.append([37, str(i['@state']).upper()]) elif i['@name_en'] == 'Vstrecha': if len(i['@state']) > 1: lifts.append([38, str(i['@state']).lower()]) else: lifts.append([38, str(i['@state']).upper()]) elif i['@name_en'] == 'GORIZONT above 1600': if len(i['@state']) > 1: lifts.append([39, str(i['@state']).lower()]) else: lifts.append([39, str(i['@state']).upper()]) elif i['@name_en'] == 'GORIZONT below 1600': if len(i['@state']) > 1: lifts.append([40, str(i['@state']).lower()]) else: lifts.append([40, str(i['@state']).upper()]) elif i['@name_en'] == 'ZHENSKIY OLYMPIC above 1600': if len(i['@state']) > 1: lifts.append([41, str(i['@state']).lower()]) else: lifts.append([41, str(i['@state']).upper()]) elif i['@name_en'] == 'ZHENSKIY OLYMPIC B below 1600': if len(i['@state']) > 1: lifts.append([42, str(i['@state']).lower()]) else: lifts.append([42, str(i['@state']).upper()]) elif i['@name_en'] == 'ZMEIKA above 1665': if len(i['@state']) > 1: lifts.append([43, str(i['@state']).lower()]) else: lifts.append([43, str(i['@state']).upper()]) elif i['@name_en'] == 'ZMEIKA below 1665': if len(i['@state']) > 1: lifts.append([44, str(i['@state']).lower()]) else: lifts.append([44, str(i['@state']).upper()]) elif i['@name_en'] == 'KASKAD above 1600': if len(i['@state']) > 1: lifts.append([45, str(i['@state']).lower()]) else: lifts.append([45, str(i['@state']).upper()]) elif i['@name_en'] == 'KASKAD below 1600': if len(i['@state']) > 1: lifts.append([46, str(i['@state']).lower()]) else: lifts.append([46, str(i['@state']).upper()]) elif i['@name_en'] == 'KVARTET': if len(i['@state']) > 1: lifts.append([47, str(i['@state']).lower()]) else: lifts.append([47, str(i['@state']).upper()]) elif i['@name_en'] == 'CRAZY KHUTOR above 1400': if len(i['@state']) > 1: lifts.append([48, str(i['@state']).lower()]) else: lifts.append([48, str(i['@state']).upper()]) elif i['@name_en'] == 'CRAZY KHUTOR below 1400': if len(i['@state']) > 1: lifts.append([49, str(i['@state']).lower()]) else: lifts.append([49, str(i['@state']).upper()]) elif i['@name_en'] == 'LABIRINT above 1400': if len(i['@state']) > 1: lifts.append([50, str(i['@state']).lower()]) else: lifts.append([50, str(i['@state']).upper()]) elif i['@name_en'] == 'LABIRINT below 1400': if len(i['@state']) > 1: lifts.append([51, str(i['@state']).lower()]) else: lifts.append([51, str(i['@state']).upper()]) elif i['@name_en'] == 'MUZHSKOY OLYMPIC above 1600': if len(i['@state']) > 1: lifts.append([52, str(i['@state']).lower()]) else: lifts.append([52, str(i['@state']).upper()]) elif i['@name_en'] == 'MUZHSKOY OLYMPIC below 1600': if len(i['@state']) > 1: lifts.append([53, str(i['@state']).lower()]) else: lifts.append([53, str(i['@state']).upper()]) elif i['@name_en'] == 'NAGANO 98': if len(i['@state']) > 1: lifts.append([54, str(i['@state']).lower()]) else: lifts.append([54, str(i['@state']).upper()]) elif i['@name_en'] == 'OBER KHUTOR above 1600': if len(i['@state']) > 1: lifts.append([55, str(i['@state']).lower()]) else: lifts.append([55, str(i['@state']).upper()]) elif i['@name_en'] == 'OBER KHUTOR below 1600': if len(i['@state']) > 1: lifts.append([56, str(i['@state']).lower()]) else: lifts.append([56, str(i['@state']).upper()]) elif i['@name_en'] == 'OZERNAYA': if len(i['@state']) > 1: lifts.append([57, str(i['@state']).lower()]) else: lifts.append([57, str(i['@state']).upper()]) elif i['@name_en'] == 'OREL': if len(i['@state']) > 1: lifts.append([58, str(i['@state']).lower()]) else: lifts.append([58, str(i['@state']).upper()]) elif i['@name_en'] == 'Perehod': if len(i['@state']) > 1: lifts.append([59, str(i['@state']).lower()]) else: lifts.append([59, str(i['@state']).upper()]) elif i['@name_en'] == 'PLATO': if len(i['@state']) > 1: lifts.append([60, str(i['@state']).lower()]) else: lifts.append([60, str(i['@state']).upper()]) elif i['@name_en'] == 'PRIMULA': if len(i['@state']) > 1: lifts.append([61, str(i['@state']).lower()]) else: lifts.append([61, str(i['@state']).upper()]) elif i['@name_en'] == 'ROSA STAR': if len(i['@state']) > 1: lifts.append([62, str(i['@state']).lower()]) else: lifts.append([62, str(i['@state']).upper()]) elif i['@name_en'] == 'ROSA BLADE': if len(i['@state']) > 1: lifts.append([63, str(i['@state']).lower()]) else: lifts.append([63, str(i['@state']).upper()]) elif i['@name_en'] == 'TRITON above 2000': if len(i['@state']) > 1: lifts.append([64, str(i['@state']).lower()]) else: lifts.append([64, str(i['@state']).upper()]) elif i['@name_en'] == 'TRITON middle 1600': if len(i['@state']) > 1: lifts.append([65, str(i['@state']).lower()]) else: lifts.append([65, str(i['@state']).upper()]) elif i['@name_en'] == 'TRITON below 1600': if len(i['@state']) > 1: lifts.append([66, str(i['@state']).lower()]) else: lifts.append([66, str(i['@state']).upper()]) elif i['@name_en'] == 'FIALKA': if len(i['@state']) > 1: lifts.append([67, str(i['@state']).lower()]) else: lifts.append([67, str(i['@state']).upper()]) elif i['@name_en'] == 'CHAMONIX 24': if len(i['@state']) > 1: lifts.append([68, str(i['@state']).lower()]) else: lifts.append([68, str(i['@state']).upper()]) elif i['@name_en'] == 'YUREV KHUTOR': if len(i['@state']) > 1: lifts.append([69, str(i['@state']).lower()]) else: lifts.append([69, str(i['@state']).upper()]) elif i['@name_en'] == 'OREADA': if len(i['@state']) > 1: lifts.append([70, str(i['@state']).lower()]) else: lifts.append([70, str(i['@state']).upper()]) elif i['@name_en'] == 'STOROZHKA': if len(i['@state']) > 1: lifts.append([71, str(i['@state']).lower()]) else: lifts.append([71, str(i['@state']).upper()]) elif i['@name_en'] == 'YAVOR (2320 – 2221)': if len(i['@state']) > 1: lifts.append([72, str(i['@state']).lower()]) else: lifts.append([72, str(i['@state']).upper()]) elif i['@name_en'] == 'YAVOR (2221 – 2118)': if len(i['@state']) > 1: lifts.append([73, str(i['@state']).lower()]) else: lifts.append([73, str(i['@state']).upper()]) elif i['@name_en'] == 'YAVOR (2118 – 1472)': if len(i['@state']) > 1: lifts.append([74, str(i['@state']).lower()]) else: lifts.append([74, str(i['@state']).upper()]) elif i['@name_en'] == 'NAYADA': if len(i['@state']) > 1: lifts.append([75, str(i['@state']).lower()]) else: lifts.append([75, str(i['@state']).upper()]) elif i['@name_en'] == 'PRIMAVERA': if len(i['@state']) > 1: lifts.append([76, str(i['@state']).lower()]) else: lifts.append([76, str(i['@state']).upper()]) elif i['@name_en'] == 'BARVINOK': if len(i['@state']) > 1: lifts.append([77, str(i['@state']).lower()]) else: lifts.append([77, str(i['@state']).upper()]) elif i['@name_en'] == 'GORITSVET': if len(i['@state']) > 1: lifts.append([78, str(i['@state']).lower()]) else: lifts.append([78, str(i['@state']).upper()]) data = {"data": lifts} return HttpResponse(json.dumps(data), content_type='application/json')
[ "info@mrbyte.ru" ]
info@mrbyte.ru
49d3d3532f3536cfb86059dd33e6dbd876b50189
a2d36e471988e0fae32e9a9d559204ebb065ab7f
/huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/revoke_request_body_users.py
8d1885f130e0e18a1abc502f27eae2fc38912a04
[ "Apache-2.0" ]
permissive
zhouxy666/huaweicloud-sdk-python-v3
4d878a90b8e003875fc803a61414788e5e4c2c34
cc6f10a53205be4cb111d3ecfef8135ea804fa15
refs/heads/master
2023-09-02T07:41:12.605394
2021-11-12T03:20:11
2021-11-12T03:20:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,926
py
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class RevokeRequestBodyUsers: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'name': 'str' } attribute_map = { 'name': 'name' } def __init__(self, name=None): """RevokeRequestBodyUsers - a model defined in huaweicloud sdk""" self._name = None self.discriminator = None self.name = name @property def name(self): """Gets the name of this RevokeRequestBodyUsers. 数据库用户名称。 :return: The name of this RevokeRequestBodyUsers. :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this RevokeRequestBodyUsers. 数据库用户名称。 :param name: The name of this RevokeRequestBodyUsers. :type: str """ self._name = name def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RevokeRequestBodyUsers): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "hwcloudsdk@huawei.com" ]
hwcloudsdk@huawei.com
b0c92f6fc55e605dea9564d9b8101e44e6a55755
fbb0d695adadd9b5a8dfe08d613be9b2d52f9bb8
/third/views.py
8035d11b071c9c86f972ad7a30050cd2353bcd7f
[]
no_license
junteken/DjangoExam
23df19d65bcca3a378bbd8653b27ab18783d91c6
b8df34d4b72b20c022763ff6273de4011f700935
refs/heads/master
2023-05-01T04:25:22.434470
2019-06-17T11:30:54
2019-06-17T11:30:54
192,332,603
0
0
null
2023-04-21T20:32:44
2019-06-17T11:21:11
Python
UTF-8
Python
false
false
3,341
py
from django.shortcuts import render, get_object_or_404, redirect from django.http import HttpResponseRedirect from third.models import Restaurant, Review from django.core.paginator import Paginator from third.forms import RestaurantForm, ReviewForm, UpdateRestaurantForm from django.db.models import Count, Avg # Create your views here. def list(request): restaurants= Restaurant.objects.all().annotate(reviews_count=Count('review'))\ .annotate(average_point=Avg('review__point')) paginator= Paginator(restaurants, 5) page= request.GET.get('page') items= paginator.get_page(page) context={ 'restaurants':items, } return render(request, 'third/list.html', context) def create(request): if request.method == 'POST': form= RestaurantForm(request.POST) if form.is_valid(): new_item= form.save() return HttpResponseRedirect('/third/list') form= RestaurantForm() return render(request, 'third/create.html', {'form':form}) def update(request): if request.method == 'POST' and 'id' in request.POST: # item= Restaurant.objects.get(pk=request.POST.get('id')) item= get_object_or_404(Restaurant, pk=request.POST.get('id')) password= request.POST.get('password', '') form= UpdateRestaurantForm(request.POST, instance=item) if form.is_valid() and password==item.password: item= form.save() elif request.method== 'GET': item= Restaurant.objects.get(pk=request.GET.get('id')) form= RestaurantForm(instance=item) return render(request, 'third/update.html', {'form':form}) return HttpResponseRedirect('/third/list/') def detail(request, id): if id is not None: item= get_object_or_404(Restaurant, pk= id) reviews= Review.objects.filter(restaurant=item).all() return render(request, 'third/detail.html', {'item':item, 'reviews':reviews}) return HttpResponseRedirect('/third/list/') def delete(request, id): item= get_object_or_404(Restaurant, pk=id) if request.method =='POST' and 'password' in request.POST: if item.password == request.POST.get('password') or item.password is None: item.delete() return redirect('list') return redirect('restaurant-detail', id=id) return render(request, 'third/delete.html', {'item':item}) def review_create(request, restaurant_id): if request.method == 'POST': form= ReviewForm(request.POST) if form.is_valid(): new_item= form.save() return redirect('restaurant-detail', id=restaurant_id) item= get_object_or_404(Restaurant, pk=restaurant_id) form= ReviewForm(initial={'restaurant':item}) return render(request, 'third/review_create.html', {'form':form, 'item':item}) def review_delete(request, restaurant_id, review_id): item= get_object_or_404(Review, pk=review_id) item.delete() return redirect('restaurant-detail', id=restaurant_id) def review_list(request): reviews= Review.objects.all().select_related().order_by('-created_at') paginator= Paginator(reviews, 10) page= request.GET.get('page') items= paginator.get_page(page) context={ 'reviews': items } return render(request, 'third/review_list.html', context)
[ "junteken@gmail.com" ]
junteken@gmail.com
30029fc338d9dc0eb9631f1210a22673d58db581
6351afb0fbfea3a1fde468e17e2fee7d3e2e6631
/msurrogate/meta_daemon.py
a1a4c17e7647126745fb1318a45a956232d7d9ae
[ "Apache-2.0" ]
permissive
mccullerlp/msurrogate
b74889ffacd3a28ce5cf15b9662a528bf3eedd3c
26e0269ed2a2c370f45810522ac9cb47da033519
refs/heads/master
2021-05-11T14:22:27.838732
2018-02-15T17:10:08
2018-02-15T17:10:08
117,701,262
0
0
null
null
null
null
UTF-8
Python
false
false
3,868
py
""" """ from __future__ import division, print_function, unicode_literals import Pyro4 import threading import contextlib from . import meta_proxy class MetaDaemon(object): def __init__( self, daemon = None, workers_N = 1, ): if daemon is None: daemon = Pyro4.Daemon() self.daemon = daemon self._worker_sem_value = None self.workers_N_set(workers_N) self.MTsafe = threading.Lock() #for caching GC self._metas_done = dict() #name -> object #to be wrapped and started in daemon self._objects = {} self._name_uri_reg = dict() #URI -> metaproxy(object) registry for json self._uri_registry = {} self._name_registry = {} return def workers_N_set(self, workers_N): #capture the remaining uses of the semaphore #if self._worker_sem_value is not None: # for idx in range(self._worker_sem_value - 1): # self.worker_sem.acquire() if workers_N is not None: self.worker_sem = threading.Semaphore(workers_N) else: #only used via the "with" interface, so this is OK @contextlib.contextmanager def fake_lock(): yield fake_lock.acquire = lambda : None fake_lock.release = lambda : None self.worker_sem = fake_lock def register( self, obj = None, name = None, remove = False, ): if not remove: assert(obj is not None) if name is None: name = obj.__name__ meta_object = meta_proxy.MetaProxy(self, obj, register = name) uri = str(meta_object.uri) self._objects[name] = obj self._uri_registry[uri] = meta_object self._name_registry[name] = meta_object self._name_uri_reg[name] = uri else: if name is None: assert(obj is not None) name = obj.__name__ meta_obj = self._name_registry[name] obj_reg = self._objects[name] if obj is not None: assert(obj is obj_reg) del self._objects[name] del self._name_registry[name] del self._uri_registry[meta_obj.uri] del self._name_uri_reg[name] self.daemon.unregister(name) def uri2obj(self, uri): uri = str(uri) name, loc = uri.split('@') if not name.startswith('PYRO:'): raise RuntimeError("Proxy unwrapping can't recognize proxy") name = name[5:] obj = self.daemon.objectsById[name] return obj def workspace_dict(self): d = dict() for k, v in self._name_uri_reg.items(): d[k] = str(v) return d def workspace_reset(self): #TODO temp = dict(self.daemon.objectsById) for k, v in temp.items(): if k not in self._objects: self.daemon.unregister(k) return def workspace_gc(self): for k, v in self._metas_done.items(): self.daemon.unregister(k) self._metas_done = dict() self.workspace_counts() for k, v in self._metas_done.items(): self.daemon.unregister(k) self._metas_done = dict() return len(self.daemon.objectsById) def workspace_counts(self): #temp is for threadsafety temp = dict(self.daemon.objectsById) for k, v in temp.items(): if isinstance(v, meta_proxy.MetaProxy): if not v.protect and v.done: self._metas_done[k] = v return len(self._metas_done), len(self.temp) def workspace_close(self): self.daemon.shutdown()
[ "Lee.McCuller@gmail.com" ]
Lee.McCuller@gmail.com
6c9c677ebbd1cb3ccbee6d6edb1da9963f31841d
c59e65267ca6b2cea83cc00a136cd4e1a18da0a1
/Blender/Blender GIS/Blender Code Snippets.py
aca69b39da706d188ba8c8bba1e2a892ef3b6ede
[ "MIT" ]
permissive
victorcalixto/FOSS-BIM-Experiments
c46bb4cd6a0f1e2d240f98f86296735bcd6748cb
9a4a126b7ba4bff43dec21fa1560b4d22ae34558
refs/heads/main
2023-08-14T20:20:01.833767
2021-10-01T09:02:13
2021-10-01T09:02:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
507
py
bpy.data.scenes["Scene"] bpy.context.object["MyOwnProperty"] = 42 if "SomeProp" in bpy.context.object: print("Property found") # Use the get function like a Python dictionary # which can have a fallback value. value = bpy.data.scenes["Scene"].get("test_prop", "fallback value") # dictionaries can be assigned as long as they only use basic types. collection = bpy.data.collections.new("MyTestCollection") collection["MySettings"] = {"foo": 10, "bar": "spam", "baz": {}} del collection["MySettings"]
[ "30430941+DutchSailor@users.noreply.github.com" ]
30430941+DutchSailor@users.noreply.github.com
3a09b09497bf9bff50a058a3f5afde88be96033f
ea588ceaeec885fb31606a6fe909191624f0b00f
/job/urls.py
28cbc303a2e0fc22df29a493f7b9c13b8d3094c9
[]
no_license
Ahmedsalah000/jobboard
f2073843653f654a2aa0da67fb204977bf1a0f37
14a85565f2338a5b3ea6d11bf3f8198113ad3643
refs/heads/main
2023-06-21T02:33:43.336066
2021-07-19T01:42:35
2021-07-19T01:42:35
387,303,244
0
0
null
null
null
null
UTF-8
Python
false
false
183
py
from django.urls import include, path from . import views urlpatterns = [ path('',views.job_list , name='job_list'), path('<int:id>',views.job_detail , name='job_detail'), ]
[ "abushendy345@gmail.com" ]
abushendy345@gmail.com
68d36d5c10149f55b9bccfef5ef95ed46f71d621
9cb902a7653645d77679a737a5061e340c579bc5
/hw/hw04/test_break_me.py
029841d05c6f6361d6c7862bd3ca07fbe469227f
[]
no_license
isaacchen/sea-c42-python
7ff03bc621a5ba5bcb23a25d6352b26f097960bb
b7104df3805cb7d1abe95394534c949e986fb025
refs/heads/master
2021-01-15T10:25:27.635435
2015-09-26T05:50:31
2015-09-26T05:50:31
37,506,343
0
0
null
2015-09-26T05:44:04
2015-06-16T03:42:49
Python
UTF-8
Python
false
false
567
py
#!/usr/bin/env python """ code that tests the break_me.py functions """ # import pytest # used for the exception testing import break_me def test_name_error(): try: break_me.exhibit_name_error() assert(False) except NameError: assert(True) def test_attribute_error(): try: break_me.exhibit_attribute_error() assert(False) except AttributeError: assert(True) def test_type_error(): try: break_me.exhibit_type_error() assert(False) except TypeError: assert(True)
[ "paul@codefellows.com" ]
paul@codefellows.com
c32db1ff05ef63b6466aaa6ae10cbbf03bdd8bf9
9d0195aa83cc594a8c61f334b90375961e62d4fe
/JTTest/SL7/CMSSW_10_2_15/src/dataRunA/nano2507.py
85792e6675dc10640391dadac3be6185e9eba923
[]
no_license
rsk146/CMS
4e49592fc64f6438051544c5de18598db36ed985
5f8dab8c59ae556598b9747b52b88205fffc4dbe
refs/heads/master
2022-12-01T03:57:12.126113
2020-08-04T03:29:27
2020-08-04T03:29:27
284,863,383
0
0
null
null
null
null
UTF-8
Python
false
false
4,293
py
# Auto generated configuration file # using: # Revision: 1.19 # Source: /local/reps/CMSSW/CMSSW/Configuration/Applications/python/ConfigBuilder.py,v # with command line options: nanoAOD_jetToolbox_cff -s NANO --data --eventcontent NANOAOD --datatier NANOAOD --no_exec --conditions 102X_dataRun2_Sep2018Rereco_v1 --era Run2_2018,run2_nanoAOD_102Xv1 --customise_commands=process.add_(cms.Service('InitRootHandlers', EnableIMT = cms.untracked.bool(False))) --customise JMEAnalysis/JetToolbox/nanoAOD_jetToolbox_cff.nanoJTB_customizeMC --filein /users/h2/rsk146/JTTest/SL7/CMSSW_10_6_12/src/ttbarCutTest/dataReprocessing/0004A5E9-9F18-6B42-B31D-4206406CE423.root --fileout file:jetToolbox_nano_datatest.root import FWCore.ParameterSet.Config as cms from Configuration.StandardSequences.Eras import eras process = cms.Process('NANO',eras.Run2_2018,eras.run2_nanoAOD_102Xv1) # import of standard configurations process.load('Configuration.StandardSequences.Services_cff') process.load('SimGeneral.HepPDTESSource.pythiapdt_cfi') process.load('FWCore.MessageService.MessageLogger_cfi') process.load('Configuration.EventContent.EventContent_cff') process.load('Configuration.StandardSequences.GeometryRecoDB_cff') process.load('Configuration.StandardSequences.MagneticField_AutoFromDBCurrent_cff') process.load('PhysicsTools.NanoAOD.nano_cff') process.load('Configuration.StandardSequences.EndOfProcess_cff') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) # Input source process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring('file:root://cms-xrd-global.cern.ch//store/data/Run2018A/EGamma/MINIAOD/17Sep2018-v2/110000/816E7CF9-B54A-EE4A-ADD4-23543EF466D5.root'), secondaryFileNames = cms.untracked.vstring() ) process.options = cms.untracked.PSet( ) # Production Info process.configurationMetadata = cms.untracked.PSet( annotation = cms.untracked.string('nanoAOD_jetToolbox_cff nevts:1'), name = cms.untracked.string('Applications'), version = cms.untracked.string('$Revision: 1.19 $') ) # Output definition process.NANOAODoutput = cms.OutputModule("NanoAODOutputModule", compressionAlgorithm = cms.untracked.string('LZMA'), compressionLevel = cms.untracked.int32(9), dataset = cms.untracked.PSet( dataTier = cms.untracked.string('NANOAOD'), filterName = cms.untracked.string('') ), fileName = cms.untracked.string('file:jetToolbox_nano_datatest2507.root'), outputCommands = process.NANOAODEventContent.outputCommands ) # Additional output definition # Other statements from Configuration.AlCa.GlobalTag import GlobalTag process.GlobalTag = GlobalTag(process.GlobalTag, '102X_dataRun2_Sep2018Rereco_v1', '') # Path and EndPath definitions process.nanoAOD_step = cms.Path(process.nanoSequence) process.endjob_step = cms.EndPath(process.endOfProcess) process.NANOAODoutput_step = cms.EndPath(process.NANOAODoutput) # Schedule definition process.schedule = cms.Schedule(process.nanoAOD_step,process.endjob_step,process.NANOAODoutput_step) from PhysicsTools.PatAlgos.tools.helpers import associatePatAlgosToolsTask associatePatAlgosToolsTask(process) # customisation of the process. # Automatic addition of the customisation function from PhysicsTools.NanoAOD.nano_cff from PhysicsTools.NanoAOD.nano_cff import nanoAOD_customizeData #call to customisation function nanoAOD_customizeData imported from PhysicsTools.NanoAOD.nano_cff process = nanoAOD_customizeData(process) # Automatic addition of the customisation function from JMEAnalysis.JetToolbox.nanoAOD_jetToolbox_cff from JMEAnalysis.JetToolbox.nanoAOD_jetToolbox_cff import nanoJTB_customizeMC #call to customisation function nanoJTB_customizeMC imported from JMEAnalysis.JetToolbox.nanoAOD_jetToolbox_cff process = nanoJTB_customizeMC(process) # End of customisation functions # Customisation from command line process.add_(cms.Service('InitRootHandlers', EnableIMT = cms.untracked.bool(False))) # Add early deletion of temporary data products to reduce peak memory need from Configuration.StandardSequences.earlyDeleteSettings_cff import customiseEarlyDelete process = customiseEarlyDelete(process) # End adding early deletion
[ "rsk146@scarletmail.rutgers.edu" ]
rsk146@scarletmail.rutgers.edu
c69c539cfceaec8d7c04a4d416c97db74126a136
9360288aff5e271c9dd2a560839bfee8148eef90
/python-code/problem-1.py
a6cbb74ecb57ad20f759beb18b36712e6bdcb26e
[]
no_license
LOOIENTING07/computing-folder
b147c094cc529e464c08adcd28bd9dcdb9d13c42
959b1fbd8260b44a5aa2966c805c3bd27b6e19eb
refs/heads/master
2022-12-16T11:53:47.114203
2020-09-21T11:12:29
2020-09-21T11:12:29
289,183,562
0
1
null
2020-09-21T11:12:30
2020-08-21T05:15:56
Python
UTF-8
Python
false
false
364
py
#this microbit code should display a happy face if you press button a but a sad face if you press b #BUt there is an error! Can you solve it? from microbit import* while True: if button_a.is_pressed(): display.show(Image.HAPPY) sleep (3000) display.clear() if button-b.is_pressed(): display.show(Image.SAD) sleep (3000) display.clear()
[ "noreply@github.com" ]
LOOIENTING07.noreply@github.com
7b75b5605b47cd15dd639548cf76b7b54efd9277
d850b6400ea29e2419a5e15b0fafd3a505bc9486
/app/core/migrations/0003_ingredient.py
24d1062b985f73c1e84c2534547aeb8758011844
[ "MIT" ]
permissive
Aditya0721/recipe-app-api
ec62c07f0d662cde63243cbc23b091480cd3b131
0d5cd850779019f16d9ad8dffa357ae1427160d0
refs/heads/master
2021-05-21T17:28:54.834496
2020-06-08T17:53:47
2020-06-08T17:53:47
252,735,033
0
0
null
null
null
null
UTF-8
Python
false
false
685
py
# Generated by Django 3.0.5 on 2020-04-24 08:23 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0002_tag'), ] operations = [ migrations.CreateModel( name='Ingredient', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "adityaprasad246278@gmail.com" ]
adityaprasad246278@gmail.com
0291c71dfc2c07b3ec3777a4e5668bd1d7c5bde8
cd6163a79f85e59f68fc8f26030273c0d4df67df
/tests/test_connection.py
c5d6440d6530f35f17c360216155345dbcedac19
[]
no_license
aktechthoughts/ci_test
cd9602bf1ba567fd851eea48028678a1d840ba79
7082768904a3cbc9576697cbb8cc947d726a81e3
refs/heads/master
2022-06-29T16:08:40.765144
2020-05-15T12:25:24
2020-05-15T12:25:24
258,782,583
0
0
null
2020-05-14T18:14:55
2020-04-25T13:28:56
Python
UTF-8
Python
false
false
698
py
# -*- coding: utf-8 -*- """Test connecting to database""" import pytest @pytest.mark.skip(reason="Disabling Docker as no real tests yet") def test__create_table__dummy__no_error(exaplus): assert exaplus("tests/sql_samples/sandbox_ddl.sql") == 0 @pytest.mark.skip(reason="Disabling Docker as no real tests yet") def test__insert__to_dummy__no_error(exaplus): assert exaplus("tests/sql_samples/sandbox_etl.sql") == 0 @pytest.mark.skip(reason="Disabling Docker as no real tests yet") def test__select__from_dummy__no_error(query): result = query("SELECT * FROM SANDBOX.DUMMY_TABLE WHERE TEST_DECIMAL = 31337") assert result["TEST_STRING"][0] == "It works"
[ "abhsihek_ku@yahoo.com" ]
abhsihek_ku@yahoo.com
f8f0c90c737f09566f8ed311dba55538a78a9e90
ad4edce627609127687c12fa12a0fa4a6a416abf
/Inreeding code/Run/MainData Code/MSHomo 5 Loci.py
5fb25f6fdf5aac8114f81e0f5d0c83b0f8613d20
[]
no_license
GabeDO/Detecting-non-random-mating-or-selection-in-natural-populations-using-multi-locus-gene-families
ca9332d10f7496e470ed53da246eec57c1678610
6525cfd6b187c25775a87a7cc8c4b9ed09a2a945
refs/heads/main
2023-04-10T04:25:04.844806
2021-04-22T05:05:51
2021-04-22T05:05:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
65,612
py
# -*- coding: utf-8 -*- """ Created on Tue Aug 20 11:19:26 2019 @author: z5035086 """ from FisSimFunctions import * from simuPOP import * import simuPOP as sim from simuPOP.utils import export import subprocess import csv import numpy as np import lib import matplotlib.pyplot as plt import pandas from simuPOP.sampling import drawRandomSample def Eveneness(resultt): import math IndiEveness = [] IndiShan = [] IndiMxEnt = [] for r in resultt: Prop = [] total = sum(r) for l in r: p = l/total if p == 0: yeet = 0 else: Shp = -p*(math.log(p)) Prop.append(Shp) Shan = sum(Prop) MxEnt = math.log(len(Prop)) if MxEnt == 0: IndiEveness.append(0) else: IndiEveness.append(Shan/MxEnt) IndiShan.append(Shan) IndiMxEnt.append(MxEnt) AvgIndiEveness = sum(IndiEveness)/len(IndiEveness) AvgIndiShan = sum(IndiShan)/len(IndiShan) AvgIndiMxEnt = sum(IndiMxEnt)/len(IndiMxEnt) t = resultt TotalAlleles = [sum(i) for i in zip(*t)] TotalShanProps = [] for h in TotalAlleles: Total = sum(TotalAlleles) p = h/Total if p == 0: yeet = 0 else: TSP = -p*(math.log(p)) TotalShanProps.append(TSP) TMxEnt = math.log(len(TotalShanProps)) TShan = sum(TotalShanProps) if TMxEnt == 0: TotalEveness = 0 else: TotalEveness = TShan/TMxEnt return [AvgIndiEveness, TotalEveness,TShan, TMxEnt, AvgIndiShan, AvgIndiMxEnt] def MaxEnt(resultt): import csv import numpy import math def func(a): if a[0] == a[-1]: return 2 else: return 1 #EXPECTED HET PER LOCI a = numpy.genfromtxt(file, delimiter=',', skip_header=True)[:, 1:] IndiMaxEnt = [] for i in range(NumLoci): res = numpy.unique(a[i,1:],return_counts=True) IndiMaxEnt.append(math.log(len(res[1]))) #[:, 1+(i*2):3+(i*2)] avgIndiMaxEnt = sum(IndiMaxEnt) / len(IndiMaxEnt) TotalVars = numpy.unique(a[:,1:],return_counts=True) TotalMaxEnt = math.log(len(TotalVars[1])) return [avgIndiMaxEnt,TotalMaxEnt] # write header #with open("ShanOutputTrial.csv", "a", newline='') as fp: # wr = csv.writer(fp, dialect='excel') # wr.writerow(['Mating','Allele Distro','Population Size','NoOfAlleles','RealNoLoci','esitmateNoLoci','Fis','AverageShanPerIndi-1Hi','TotalShanOfPop-1Hs','Average1HiOver1Hs','MaxAlleleValue']) #lstOfAlleleDis = [[0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1],[0.3,0.16,0.09,0.09,0.06,0.06,0.06,0.06,0.06,0.06],[0.46,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06]] lstOfAlleleDis = [[0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1], [0.5,0.1,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05]] for PopSize in [40,400]: for A in lstOfAlleleDis: for g in [10,30,50]: for i in range(100): #[0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1] #[0.9, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01] #[0.46,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06] #[0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01] #[[0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05]] allele_freq = A NoOfAlleles = len(allele_freq) NoOfLoci = 5 pop = Population(size=PopSize, loci=[NoOfLoci],infoFields=['fitness']) pop.evolve( #setting up the initial perameters, even sex ratio and allele frequencies initOps = [ InitSex(), InitGenotype(freq=allele_freq, loci = 0), InitGenotype(freq=allele_freq, loci = 1), InitGenotype(freq=allele_freq, loci = 2), InitGenotype(freq=allele_freq, loci = 3), InitGenotype(freq=allele_freq, loci = 4), ], #preOps=[ #sim.MlSelector([ #sim.MapSelector(loci=0, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}), #sim.MapSelector(loci=1, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}), #sim.MapSelector(loci=2, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}), #sim.MapSelector(loci=3, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}), #sim.MapSelector(loci=4, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}), #sim.MapSelector(loci=5, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}), #sim.MapSelector(loci=6, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}), #sim.MapSelector(loci=7, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}), #sim.MapSelector(loci=8, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}), #sim.MapSelector(loci=9, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}), #sim.MapSelector(loci=10, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}), #], mode = sim.MULTIPLICATIVE, reps=0), #sim.MapSelector(loci=0, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}, reps = 2), #sim.MapSelector(loci=1, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}, reps = 2), #sim.MapSelector(loci=2, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}, reps = 2), #sim.MapSelector(loci=3, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}, reps = 2), #sim.MapSelector(loci=4, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}, reps = 2), #sim.MapSelector(loci=5, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}, reps = 2), #sim.MapSelector(loci=6, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}, reps = 2), #sim.MapSelector(loci=7, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}, reps = 2), #sim.MapSelector(loci=8, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}, reps = 2), #sim.MapSelector(loci=9, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}, reps = 2), #sim.MapSelector(loci=10, fitness={ (0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0, (10,0):1, (10,1):1, (10,2):1, (10,3):1, (10,4):1, (10,5):1, (10,6):1, (10,7):1, (10,8):1, (10,9):1, (10,10):0, (11,0):1, (11,1):1, (11,2):1, (11,3):1, (11,4):1, (11,5):1, (11,6):1, (11,7):1, (11,8):1, (11,9):1, (11,10):1, (11,11):0, (12,0):1, (12,1):1, (12,2):1, (12,3):1, (12,4):1, (12,5):1, (12,6):1, (12,7):1, (12,8):1, (12,9):1, (12,10):1, (12,11):1, (12,12):0, (13,0):1, (13,1):1, (13,2):1, (13,3):1, (13,4):1, (13,5):1, (13,6):1, (13,7):1, (13,8):1, (13,9):1, (13,10):1, (13,11):1, (13,12):1, (13,13):0, (14,0):1, (14,1):1, (14,2):1, (14,3):1, (14,4):1, (14,5):1, (14,6):1, (14,7):1, (14,8):1, (14,9):1, (14,10):1, (14,11):1, (14,12):1, (14,13):1, (14,14):0, (15,0):1, (15,1):1, (15,2):1, (15,3):1, (15,4):1, (15,5):1, (15,6):1, (15,7):1, (15,8):1, (15,9):1, (15,10):1, (15,11):1, (15,12):1, (15,13):1, (15,14):1, (15,15):0, (16,0):1, (16,1):1, (16,2):1, (16,3):1, (16,4):1, (16,5):1, (16,6):1, (16,7):1, (16,8):1, (16,9):1, (16,10):1, (16,11):1, (16,12):1, (16,13):1, (16,14):1, (16,15):1, (16,16):0, (17,0):1, (17,1):1, (17,2):1, (17,3):1, (17,4):1, (17,5):1, (17,6):1, (17,7):1, (17,8):1, (17,9):1, (17,10):1, (17,11):1, (17,12):1, (17,13):1, (17,14):1, (17,15):1, (17,16):1, (17,17):0, (18,0):1, (18,1):1, (18,2):1, (18,3):1, (18,4):1, (18,5):1, (18,6):1, (18,7):1, (18,8):1, (18,9):1, (18,10):1, (18,11):1, (18,12):1, (18,13):1, (18,14):1, (18,15):1, (18,16):1, (18,17):1, (18,18):0, (19,0):1, (19,1):1, (19,2):1, (19,3):1, (19,4):1, (19,5):1, (19,6):1, (19,7):1, (19,8):1, (19,9):1, (19,10):1, (19,11):1, (19,12):1, (19,13):1, (19,14):1, (19,15):1, (19,16):1, (19,17):1, (19,18):1, (19,19):0}, reps = 2) #], matingScheme=sim.RandomMating(sexMode=(GLOBAL_SEQUENCE_OF_SEX, MALE, FEMALE),ops=[ sim.MendelianGenoTransmitter(), sim.MapSelector(loci=0, fitness={ (0,0):0.6, (1,0):0.5, (1,1):0.6, (2,0):0.5, (2,1):0.5, (2,2):0.6, (3,0):0.5, (3,1):0.5, (3,2):0.5, (3,3):0.6, (4,0):0.5, (4,1):0.5, (4,2):0.5, (4,3):0.5, (4,4):0.6, (5,0):0.5, (5,1):0.5, (5,2):0.5, (5,3):0.5, (5,4):0.5, (5,5):0.6, (6,0):0.5, (6,1):0.5, (6,2):0.5, (6,3):0.5, (6,4):0.5, (6,5):0.5, (6,6):0.6, (7,0):0.5, (7,1):0.5, (7,2):0.5, (7,3):0.5, (7,4):0.5, (7,5):0.5, (7,6):0.5, (7,7):0.6, (8,0):0.5, (8,1):0.5, (8,2):0.5, (8,3):0.5, (8,4):0.5, (8,5):0.5, (8,6):0.5, (8,7):0.5, (8,8):0.6, (9,0):0.5, (9,1):0.5, (9,2):0.5, (9,3):0.5, (9,4):0.5, (9,5):0.5, (9,6):0.5, (9,7):0.5, (9,8):0.5, (9,9):0.6}), sim.MapSelector(loci=1, fitness={ (0,0):0.6, (1,0):0.5, (1,1):0.6, (2,0):0.5, (2,1):0.5, (2,2):0.6, (3,0):0.5, (3,1):0.5, (3,2):0.5, (3,3):0.6, (4,0):0.5, (4,1):0.5, (4,2):0.5, (4,3):0.5, (4,4):0.6, (5,0):0.5, (5,1):0.5, (5,2):0.5, (5,3):0.5, (5,4):0.5, (5,5):0.6, (6,0):0.5, (6,1):0.5, (6,2):0.5, (6,3):0.5, (6,4):0.5, (6,5):0.5, (6,6):0.6, (7,0):0.5, (7,1):0.5, (7,2):0.5, (7,3):0.5, (7,4):0.5, (7,5):0.5, (7,6):0.5, (7,7):0.6, (8,0):0.5, (8,1):0.5, (8,2):0.5, (8,3):0.5, (8,4):0.5, (8,5):0.5, (8,6):0.5, (8,7):0.5, (8,8):0.6, (9,0):0.5, (9,1):0.5, (9,2):0.5, (9,3):0.5, (9,4):0.5, (9,5):0.5, (9,6):0.5, (9,7):0.5, (9,8):0.5, (9,9):0.6}), sim.MapSelector(loci=2, fitness={ (0,0):0.6, (1,0):0.5, (1,1):0.6, (2,0):0.5, (2,1):0.5, (2,2):0.6, (3,0):0.5, (3,1):0.5, (3,2):0.5, (3,3):0.6, (4,0):0.5, (4,1):0.5, (4,2):0.5, (4,3):0.5, (4,4):0.6, (5,0):0.5, (5,1):0.5, (5,2):0.5, (5,3):0.5, (5,4):0.5, (5,5):0.6, (6,0):0.5, (6,1):0.5, (6,2):0.5, (6,3):0.5, (6,4):0.5, (6,5):0.5, (6,6):0.6, (7,0):0.5, (7,1):0.5, (7,2):0.5, (7,3):0.5, (7,4):0.5, (7,5):0.5, (7,6):0.5, (7,7):0.6, (8,0):0.5, (8,1):0.5, (8,2):0.5, (8,3):0.5, (8,4):0.5, (8,5):0.5, (8,6):0.5, (8,7):0.5, (8,8):0.6, (9,0):0.5, (9,1):0.5, (9,2):0.5, (9,3):0.5, (9,4):0.5, (9,5):0.5, (9,6):0.5, (9,7):0.5, (9,8):0.5, (9,9):0.6}), sim.MapSelector(loci=3, fitness={ (0,0):0.6, (1,0):0.5, (1,1):0.6, (2,0):0.5, (2,1):0.5, (2,2):0.6, (3,0):0.5, (3,1):0.5, (3,2):0.5, (3,3):0.6, (4,0):0.5, (4,1):0.5, (4,2):0.5, (4,3):0.5, (4,4):0.6, (5,0):0.5, (5,1):0.5, (5,2):0.5, (5,3):0.5, (5,4):0.5, (5,5):0.6, (6,0):0.5, (6,1):0.5, (6,2):0.5, (6,3):0.5, (6,4):0.5, (6,5):0.5, (6,6):0.6, (7,0):0.5, (7,1):0.5, (7,2):0.5, (7,3):0.5, (7,4):0.5, (7,5):0.5, (7,6):0.5, (7,7):0.6, (8,0):0.5, (8,1):0.5, (8,2):0.5, (8,3):0.5, (8,4):0.5, (8,5):0.5, (8,6):0.5, (8,7):0.5, (8,8):0.6, (9,0):0.5, (9,1):0.5, (9,2):0.5, (9,3):0.5, (9,4):0.5, (9,5):0.5, (9,6):0.5, (9,7):0.5, (9,8):0.5, (9,9):0.6}), sim.MapSelector(loci=4, fitness={ (0,0):0.6, (1,0):0.5, (1,1):0.6, (2,0):0.5, (2,1):0.5, (2,2):0.6, (3,0):0.5, (3,1):0.5, (3,2):0.5, (3,3):0.6, (4,0):0.5, (4,1):0.5, (4,2):0.5, (4,3):0.5, (4,4):0.6, (5,0):0.5, (5,1):0.5, (5,2):0.5, (5,3):0.5, (5,4):0.5, (5,5):0.6, (6,0):0.5, (6,1):0.5, (6,2):0.5, (6,3):0.5, (6,4):0.5, (6,5):0.5, (6,6):0.6, (7,0):0.5, (7,1):0.5, (7,2):0.5, (7,3):0.5, (7,4):0.5, (7,5):0.5, (7,6):0.5, (7,7):0.6, (8,0):0.5, (8,1):0.5, (8,2):0.5, (8,3):0.5, (8,4):0.5, (8,5):0.5, (8,6):0.5, (8,7):0.5, (8,8):0.6, (9,0):0.5, (9,1):0.5, (9,2):0.5, (9,3):0.5, (9,4):0.5, (9,5):0.5, (9,6):0.5, (9,7):0.5, (9,8):0.5, (9,9):0.6}), ]), #ops=[ # sim.MendelianGenoTransmitter(), # sim.MapSelector(loci=0, fitness={(0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0}), # sim.MapSelector(loci=1, fitness={(0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0}), # sim.MapSelector(loci=2, fitness={(0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0}), # sim.MapSelector(loci=3, fitness={(0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0}), # sim.MapSelector(loci=4, fitness={(0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0}), # sim.MapSelector(loci=5, fitness={(0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0}), # sim.MapSelector(loci=6, fitness={(0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0}), # sim.MapSelector(loci=7, fitness={(0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0}), # sim.MapSelector(loci=8, fitness={(0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0}), # sim.MapSelector(loci=9, fitness={(0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0}), # sim.MapSelector(loci=10, fitness={(0,0):0, (1,0):1, (1,1):0, (2,0):1, (2,1):1, (2,2):0, (3,0):1, (3,1):1, (3,2):1, (3,3):0, (4,0):1, (4,1):1, (4,2):1, (4,3):1, (4,4):0, (5,0):1, (5,1):1, (5,2):1, (5,3):1, (5,4):1, (5,5):0, (6,0):1, (6,1):1, (6,2):1, (6,3):1, (6,4):1, (6,5):1, (6,6):0, (7,0):1, (7,1):1, (7,2):1, (7,3):1, (7,4):1, (7,5):1, (7,6):1, (7,7):0, (8,0):1, (8,1):1, (8,2):1, (8,3):1, (8,4):1, (8,5):1, (8,6):1, (8,7):1, (8,8):0, (9,0):1, (9,1):1, (9,2):1, (9,3):1, (9,4):1, (9,5):1, (9,6):1, (9,7):1, (9,8):1, (9,9):0}) # ]), gen=g+1 ) #bill wants 50 pop 5loc 10 alllele #1 even 1 uneven 1 inbred 1 random gucci gang result = AbundData(pop, PopSize, NoOfAlleles) stat(pop, alleleFreq=ALL_AVAIL, subPops= ALL_AVAIL) #result2 = AbundData(pop, PopSize, NoOfAlleles) #print("one",result) #result1 = PresAbsData(result2) #print("two",result) export(pop, format='CSV', output='genepopfile.csv') y = measureFIS('genepopfile.csv', NoOfLoci) #maxent = MaxEnt('genepopfile.csv', NoOfLoci) FullList = ['MSHomo 5 Loci' ,g, A,PopSize, NoOfAlleles, NoOfLoci,GabesLocEstimateMEAN(result),GabesLocEstimateMEDIAN(result),GabesLocEstimate(result), y, AverageShan(result)[0], AverageShan(result)[1], AverageShan(result)[2], AverageShan(result)[3], AverageShan(result)[4],CountFixedLoci(pop,10,5),AverageRich(result)[0],AverageRich(result)[1],AverageRich(result)[2],AverageHet(result)[0],AverageHet(result)[1],AverageHet(result)[2],BillsMath(PresAbsData(result))] #x = BillsMath(result1) #for i in range(len(x)): # FullList.append(x[i]) #Subpop = drawRandomSample(pop, sizes = 10) #Subresult = AbundData(Subpop, 10, NoOfAlleles) #Subresult2 = AbundData(Subpop, 10, NoOfAlleles) #Subresult1 = PresAbsData(Subresult2) #export(Subpop, format='CSV', output='genepopfile.csv') #y = measureFIS('genepopfile.csv', NoOfLoci) #SubList = [y, AverageShan(Subresult)[0], AverageShan(Subresult)[1], AverageShan(Subresult)[2], AverageShan(Subresult)[3]] #x = BillsMath(Subresult1) #for i in range(len(x)): # SubList.append(x[i]) with open("DATAsequence1.csv", "a", newline='') as fp: wr = csv.writer(fp, dialect='excel') #wr.writerow(FullList+SubList) wr.writerow(FullList) FullList = [] print(g)
[ "noreply@github.com" ]
GabeDO.noreply@github.com
15b1d79b4a5413c75a757829dfff8bdaa3899f82
3602b9578aff41164321195552d1558e17b372f7
/Tema3/Tema3Py/Tem3.py
2fd233799805ad8c4cccf706f1c059aa0548394a
[]
no_license
alexluca97/NumericalCalculation
fa860da351bc8c7f7b0c81eb299c2c8f7d13cd7d
0000dd48c73db8b66e1808210e8cc5e34f5885c2
refs/heads/master
2020-05-29T17:49:18.650024
2019-05-29T16:27:38
2019-05-29T16:27:38
189,284,033
0
0
null
null
null
null
UTF-8
Python
false
false
7,942
py
#! /usr/bin/env python import logging EPS = 10 ** -10 LOG_LEVEL = logging.DEBUG SIMPLE = False S = "" if SIMPLE: S = "s" FILE_A = "{}a.txt".format(S) FILE_B = "{}b.txt".format(S) FILE_APB = "{}aplusb.txt".format(S) FILE_AOB = "{}aorib.txt".format(S) def is_zero(nr): if abs(nr) < EPS: return True return False def reader(path): with open(path) as stream: for line in stream: idx = line.find("#") if idx != -1: line = line[:idx] line = line.strip() if line: yield line class Matrix(object): def __init__(self, dim): self.dim = dim self.diagonal = [] self.values = [] self.zindex = {} self._raw = {} self.length = None def put(self, val, lin, col): if is_zero(val): return value = self._raw.setdefault(lin, {}).setdefault(col, 0) + val self._raw[lin][col] = value def finish(self, check_lengths=False): zeros = 0 for lin in sorted(self._raw): addzero = True cols = self._raw[lin] cols_len = len(cols) if check_lengths and cols_len > 10: logging.warn("%d elemente pe linie", cols_len) for col, val in cols.items(): if lin == col: # Fill diagonal. miss = lin - len(self.diagonal) self.diagonal.extend([0] * miss) self.diagonal.append(val) else: # Fill the values vector. miss = max(lin - zeros, 0) zeros = lin + 1 self.values.extend([ (-idx, 0) for idx in range(lin - miss, lin) ]) if addzero: addzero = False self.values.append((-lin, 0)) self.zindex[lin] = len(self.values) self.values.append((col, val)) self.diagonal.extend([0] * (self.dim - len(self.diagonal))) self.length = len(self.values) self._raw.clear() def has_line(self, lin): return lin in self.zindex def get_line(self, lin, sparse=False): values = [] val = self.diagonal[lin] if val: values.append((lin, val)) idx = self.zindex.get(lin) if idx is not None: while idx < self.length: col, val = self.values[idx] idx += 1 if not val: break # s-a terminat linia curenta values.append((col, val)) if sparse: return dict(values) line = [0] * self.dim for col, val in values: line[col] = val return line def __repr__(self): return "<Matrix {}>".format(self.dim) def __str__(self): return "<Matrix {} {}>".format(len(self.diagonal), len(self.values)) def __getitem__(self, pos): lin, col = pos if lin == col: return self.diagonal[lin] idx = self.zindex.get(lin) if idx is None: return 0 # nu avem elemente pe aceasta linie while idx < self.length: _col, val = self.values[idx] idx += 1 if not val: break # s-a terminat linia curenta if col == _col: return val return 0 # nu am gasit coloana cautata def vec_sum(a, b): alen, blen = len(a), len(b) diff = abs(alen - blen) if diff: ext = [0] * diff if alen < blen: a.extend(ext) else: b.extend(ext) r = [] for idx, elem in enumerate(a): r.append(elem + b[idx]) return r def mat_sum(a, b): assert a.dim == b.dim r = Matrix(a.dim) for lin in range(r.dim): aline = a.get_line(lin) bline = b.get_line(lin) rline = map(sum, zip(aline, bline)) for col, val in enumerate(rline): r.put(val, lin, col) r.finish() return r def mat_mul(a, b): """Multiply A with B^t.""" assert a.dim == b.dim r = Matrix(a.dim) # Cache-uim liniile transpuse (coloanele) matricii B. blines = {} for blin in range(r.dim): bline = b.get_line(blin, sparse=True) blines[blin] = bline # Incepem inmultirea folosind doar linii chele. for alin in range(r.dim): aline = a.get_line(alin, sparse=True) for blin in range(r.dim): bline = blines[blin] rline = [] for col, val in aline.items(): _val = bline.get(col) if _val: rline.append(val * _val) value = sum(rline) r.put(value, alin, blin) r.finish() return r def mat_vec_mul(a, b): assert a.dim == len(b) r = [0] * a.dim # Incepem inmultirea folosind doar linii chele. for alin in range(a.dim): aline = a.get_line(alin, sparse=True) bline = b rline = [] for col, val in aline.items(): _val = bline[col] if _val: rline.append(val * _val) value = sum(rline) r[alin] = value return r def mat_equal(a, b): assert a.dim == b.dim for lin in range(a.dim): aline = a.get_line(lin) bline = b.get_line(lin) if aline != bline: return False return True def read_vecmat(path, name="unknown", trans=False, check_lengths=False): # Citim vectorul. info = reader(path) dim = int(next(info)) vec = [] mat = Matrix(dim) for _ in range(dim): vec.append(float(next(info))) logging.debug("%s vector length: %d", name, len(vec)) # Citim matricea si o post-procesam. count = 0 for row in info: count += 1 chunks = map(str.strip, row.split(",")) val, (lin, col) = float(chunks[0]), map(int, chunks[1:]) if trans: # salvam transpus lin, col = col, lin mat.put(val, lin, col) logging.debug("%s matrix entries: %d", name, count) mat.finish(check_lengths=check_lengths) logging.debug("%s matrix: %r %s", name, mat, mat) return vec, mat def main(): logging.basicConfig(level=LOG_LEVEL) # Citim datele de intrare. avec, amat = read_vecmat(FILE_A, name="A", check_lengths=True) bvec, bmat = read_vecmat(FILE_B, name="B", check_lengths=True) _, tbmat = read_vecmat(FILE_B, name="TB", trans=True) # B transpus # Si cele de iesire. pvec, pmat = read_vecmat(FILE_APB, name="P") ovec, omat = read_vecmat(FILE_AOB, name="O") # Verificari pentru depanare. assert amat[0, 0] == 141.5 assert amat[26, 26] == 134.5 assert amat[1625, 750] == 48 assert amat[1625, 749] == 0 assert bmat[0, 0] == 302.5 assert bmat[26, 26] == 119.5 assert bmat[1625, 750] == 0 assert bmat[1625, 749] == 0 # # Adunam efectiv vectorii. # rvec = vec_sum(avec, bvec) # logging.info("R vector length: %d", len(rvec)) # logging.info("R vector[0]: %f", rvec[0]) # logging.info("R vector[-1]: %f", rvec[-1]) # # Si facem verificarea. # assert pvec == rvec # Adunam matricile. rmat = mat_sum(amat, bmat) logging.info("R plus matrix: %r %s", rmat, rmat) # Si le verificam continutul. assert mat_equal(pmat, rmat) # Inmultim matricile. rmat = mat_mul(amat, tbmat) logging.info("R ori matrix: %r %s", rmat, rmat) # Si le verificam continutul. assert mat_equal(omat, rmat) # Inmultirea matricii cu un vector. xvec = list(map(float, range(amat.dim, 0, -1))) rvec = mat_vec_mul(amat, xvec) logging.info("R ori vector[0]: %f", rvec[0]) assert avec == rvec if __name__ == "__main__": main()
[ "alexluca97@yahoo.com" ]
alexluca97@yahoo.com
552e6864ed906978a3323265f588d54aaf4335a7
7958988b3f968a185bd35a068a45b0dfbe4a6784
/lessons/ranges.py
3356e75019a1f5c998279dd58d8f2e9c973529a8
[]
no_license
dami-akinbi/python3-netninja
1a4385fb64d11b98c41fdaaa1ecbe1b460e44e1a
3cd50f1ee2a6a9e596304ed1cbb86a2d160f0be2
refs/heads/master
2023-05-29T01:37:50.438058
2021-06-11T16:19:33
2021-06-11T16:19:33
371,915,301
0
0
null
null
null
null
UTF-8
Python
false
false
470
py
# for n in range(5): # print(n) # for t in range(3, 10): # print(t) # for m in range(0, 20, 2): # if m == 0: # m += 1 # continue # print(m) # if m == 16: # break # burgers = ['beef', 'chicken', 'veg', 'supreme', 'double'] # for n in range(len(burgers)): # print(f"{n} - {burgers[n]}") burgers = ['beef', 'chicken', 'veg', 'supreme', 'double'] for n in range(len(burgers) - 1, -1, -1): print(f"{n} - {burgers[n]}")
[ "akinbidamilola074@gmail.com" ]
akinbidamilola074@gmail.com
a47c90bf0042b881314f2aa28967269df9b8346e
9623652ee727ef9f9d8ebef86d40c8239d0c7fbe
/tf_neural_pixel.py
3efb81be57d8527700297868adfcb6ec43b6c3db
[]
no_license
R-Freitas/Master-Thesis
a48798b16fdc88311def443430fb2269124d48da
7744b22a1469c6984b82c9e90429c958621a1d2b
refs/heads/master
2020-03-24T00:25:02.527458
2019-01-06T18:10:29
2019-01-06T18:10:29
141,737,647
0
0
null
null
null
null
UTF-8
Python
false
false
10,902
py
# TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras from keras.utils import to_categorical from keras.utils import np_utils #Optimizar libraries from hyperopt import Trials, STATUS_OK, tpe from hyperas import optim from hyperas.distributions import choice, uniform # Helper libraries import numpy as np import matplotlib.pyplot as plt import pickle import os import scipy.io as sio import progressbar import copy import time from sklearn import preprocessing from sklearn import model_selection #--------------------------GLLOBAL VARIABLES------------------------------ FRAME_SIZE = 140 #------------------------------------------------------------------------- def set_class(x): if x == 'G1': return 0 elif ('S' in x and 'G1' in x): return 1 elif x == 'S': return 3 elif ('S' in x and 'G2' in x): return 2 elif x == 'G2': return 4 else: return 5 def generate_save_data(): count_files=0 count_cells = 0 dir = os.getcwd() dirs=[] dirs.append(dir) for dir in dirs: print("DIR: ",dir) cells=[] i=0 #Used to transverse the cells list when printing the images for roots, dirs, files in os.walk(dir): for file in files: if file.endswith('.mat'): path = os.path.realpath(os.path.join(roots,file)) print("PATH: ",path) data = (sio.loadmat(path,struct_as_record=True))['storage'] for case in data: count_cells += 1 if (set_class(case['CellCycle'][0][0]) < 3): cells.append(Cell_Info(np.matrix(case['Mask'][0]),case['CellCycle'][0][0])) count_files += 1 """ #Routine used to print all cells from a mat file as an image fig=plt.figure(frameon=False) final_mask=np.zeros_like(cells[0].Matrix) for index in range(i,len(cells)): final_mask += cells[index].Matrix i += 1 plt.imshow(final_mask, cmap='Blues',interpolation='nearest') plt.show() """ print(count_files, "file(s) found") print(count_cells, "cell(s) found,", len(cells), "cell(s) used") """ #Routine used to determine the maximum cell size and thus choose an #appropriate input size (in this case 140x140) pix_size=[] for cell in cells: pix_size.append([(cell.y_max-cell.y_min),(cell.x_max-cell.x_min)]) pix_size=np.array(pix_size) print(np.amax(pix_size,axis=0)) """ """ #Routine used to check if all information is correct print('=================================================') for i in range(10): print("Y:",cells[i].y_min,cells[i].y_max)#Y min and max print("X:",cells[i].x_min,cells[i].x_max)#X min and max print(cells[i].Intensity) print(cells[i].Area) print(cells[i].CellCycle) print(cells[i].Class) print('=================================================') """ #With all the cells cells in a list, and an input size chosen it is #time to create the input for the neural network itself treated_cells=[] for cell in cells: S_mask=np.zeros((FRAME_SIZE,FRAME_SIZE)) y_diff = cell.y_max - cell.y_min x_diff = cell.x_max - cell.x_min if (y_diff > FRAME_SIZE or x_diff > FRAME_SIZE): print("Impossible to fit cell, please increase frame size") else: y_offset = int((FRAME_SIZE-y_diff)/2) x_offset = int((FRAME_SIZE-x_diff)/2) S_mask[y_offset:y_diff+y_offset+1,x_offset:x_diff+x_offset+1] = cell.Matrix[cell.y_min : cell.y_max+1, cell.x_min:cell.x_max+1] treated_cells.append(Cell_Info(S_mask.astype(float),cell.CellCycle)) del cells #data = np.array([(cell.Matrix) for cell in treated_cells]) #labels = to_categorical(np.array([(int(cell.Class)) for cell in treated_cells]),num_classes=3) data_G1=np.array([(cell.Matrix) for cell in treated_cells if cell.Class==0]) data_S=np.array([(cell.Matrix) for cell in treated_cells if cell.Class==1]) data_G2=np.array([(cell.Matrix) for cell in treated_cells if cell.Class==2]) labels_G1=np.empty(len(data_G1)) labels_G1.fill(0) labels_G1 = to_categorical(labels_G1,num_classes=3) labels_S=np.empty(len(data_S)) labels_S.fill(1) labels_S = to_categorical(labels_S,num_classes=3) labels_G2=np.empty(len(data_G2)) labels_G2.fill(2) labels_G2 = to_categorical(labels_G2,num_classes=3) labels=np.vstack((labels_G1,labels_S,labels_G2)) data = np.vstack((data_G1,data_S,data_G2)) data=data/255.0 del treated_cells print("Data points used: ", len(data)) train_data, test_data, train_labels, test_labels = model_selection.train_test_split(data, labels, shuffle=True, test_size=0.10) test_data, validate_data, test_labels, validate_labels = model_selection.train_test_split(test_data, test_labels, shuffle=True, test_size=0.50) with open("/Users/Rafa/Google Drive/Faculdade/Tese/Projecto/Treated_Data/pickled_cells_pixel.pkl", "bw") as fh: data = (train_data, test_data, train_labels, test_labels, validate_data, validate_labels) pickle.dump(data, fh) def load_data(): with open("/Users/Rafa/Google Drive/Faculdade/Tese/Projecto/Treated_Data/pickled_cells_pixel.pkl", "br") as fh: data = pickle.load(fh) x_train = data[0] x_test = data[1] y_train = data[2] y_test = data[3] x_validation = data[4] y_validation = data[5] return x_train, y_train, x_test, y_test def load_validation(): with open("/Users/Rafa/Google Drive/Faculdade/Tese/Projecto/Treated_Data/pickled_cells_pixel.pkl", "br") as fh: data = pickle.load(fh) x_train = data[0] x_test = data[1] y_train = data[2] y_test = data[3] x_validation = data[4] y_validation = data[5] return x_validation, y_validation def optimize_model(x_train, y_train, x_test, y_test): """ Model providing function: Create Keras model with double curly brackets dropped-in as needed. Return value has to be a valid python dictionary with two customary keys: - loss: Specify a numeric evaluation metric to be minimized - status: Just use STATUS_OK and see hyperopt documentation if not feasible The last one is optional, though recommended, namely: - model: specify the model just created so that we can later use it again. """ callbacks = [keras.callbacks.EarlyStopping(monitor='val_acc', patience=0)] model = keras.Sequential() model.add(keras.layers.Flatten(input_shape=(140, 140))) for i in (range(20)): model.add(keras.layers.Dense(1000, activation=tf.nn.relu,use_bias=True)) model.add(keras.layers.Dropout({{uniform(0,0.5)}})) model.add(keras.layers.Dense(3,activation=tf.nn.softmax)) model.compile(optimizer=keras.optimizers.Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=100, batch_size=50, shuffle=True, validation_data=(x_test, y_test), verbose=1) x_validation, y_validation=load_validation() score, acc = model.evaluate(x_validation, y_validation) score, acc = model.evaluate(x_test, y_test, verbose=0) print('Test accuracy:', acc) return {'loss': -acc, 'status': STATUS_OK, 'model': model} def create_model(x_train, y_train, x_test, y_test): model = keras.Sequential() model.add(keras.layers.Flatten(input_shape=(140, 140))) for i in (range(20)): model.add(keras.layers.Dense(1000, activation=tf.nn.relu,use_bias=True)) model.add(keras.layers.Dropout(0.1)) model.add(keras.layers.Dense(3,activation=tf.nn.softmax)) callbacks = [keras.callbacks.EarlyStopping(monitor='val_loss', patience=2,mode='auto')] model.compile(optimizer=keras.optimizers.Adam(lr=0.00001), loss='categorical_crossentropy', metrics=['accuracy']) history=model.fit(x_train, y_train, epochs=100, shuffle=True, batch_size=50, validation_data=(x_test, y_test)) acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(1, len(acc) + 1) # "bo" is for "blue dot" plt.plot(epochs, acc, 'bo', label='Training accuracy') # b is for "solid blue line" plt.plot(epochs, loss, 'b', label='Training loss') # "ro" is for "blue dot" plt.plot(epochs, val_acc, 'ro', label='Validation accuracy') # r is for "solid blue line" plt.plot(epochs, val_loss, 'r', label='Validation loss') plt.title('Training and validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() x_validation, y_validation=load_validation() score, acc = model.evaluate(x_validation, y_validation) print('Test accuracy:', acc) return {'loss': -acc, 'status': STATUS_OK, 'model': model} class Cell_Info: def __init__(self,Matrix,CellCycle): self.Matrix = Matrix self.Index = np.asarray(np.where(Matrix>0)).T self.y_min = min(self.Index[:,0]) self.y_max = max(self.Index[:,0]) self.x_min = min(self.Index[:,1]) self.x_max = max(self.Index[:,1]) self.Area = np.count_nonzero(self.Matrix) self.Intensity = self.Matrix.sum() self.CellCycle = str(CellCycle) self.Class = set_class(str(CellCycle)) new_data=0 if (new_data==1) : generate_save_data() else: optimizing=0 if optimizing: best_run, best_model = optim.minimize(model=optimize_model, data=load_data, algo=tpe.suggest, max_evals=3, trials=Trials()) X_train, Y_train, X_test, Y_test = load_data() print("Evalutati on of best performing model:") print(best_model.evaluate(X_test,Y_test)) print("Best performing model chosen hyper-parameters:") print(best_run) else: X_train, Y_train, X_test, Y_test = load_data() result, status, best_model = create_model(X_train, Y_train, X_test, Y_test)
[ "rafaeljcfreitas@gmail.com" ]
rafaeljcfreitas@gmail.com
c5f68b68f733b910d6129fe7a7f9324e3c9c89e4
3d40c0e62a0e7ada9e3e396f7aa581f39184165a
/go/main_board.py
eed5f5a9cfe0010aa238ddb2e19f6983f220d3b8
[]
no_license
kyorohiro/my_dlgo_memo
87590162631ff46c6a95eec728746a4a946de0bf
2ae3bc3f0e653a04d12f89bdb0404f65a5c12b6c
refs/heads/master
2020-05-30T15:58:04.931505
2019-06-24T16:50:00
2019-06-24T16:50:00
189,834,985
0
0
null
null
null
null
UTF-8
Python
false
false
693
py
import sys from go import Board,BoardState def main(): index:int = 0 board:Board = Board(9,9) while True: sys.stdout.flush() sys.stdout.write(str(board)) sys.stdout.write("Input A1 - I9 or ! \r\n") input:str = sys.stdin.readline() if(0 <= input.find("!")): break else: extracted = Board.extractRowCol(input) row:int = extracted[0] col:int = extracted[1] if (0<= row and row <=9) and (0<= col and col <=9): board.setState(row, col, BoardState.BLACK if index%2==0 else BoardState.WHITE) index+=1 pass if __name__ == "__main__": main()
[ "kyorohiro@gmail.com" ]
kyorohiro@gmail.com
626563e7f5d26e2470a314f5d15ba914c78964fe
0b501e422ffbe2a525ae275ecf0387134f9bbc83
/ScopeResolution/newscanner/cases/oldAllDiv.py
5143eb6df97cc94982f52986f1049c9929d813e5
[]
no_license
saroj31/Python-Interpreter-CPSC8270
2c5136991d86f376c7d00caca8de64c202b3d0ff
a4e00e28edb77abc4ad27b38561480c85a915019
refs/heads/master
2021-01-20T04:12:00.077907
2017-04-28T02:25:09
2017-04-28T02:25:09
89,657,396
0
0
null
null
null
null
UTF-8
Python
false
false
124
py
print 4/5 print 5/3 print 5/1 print 4/2/1 print 8270000/10/(5*2)/((5*2**2)/2) print 5//2 print 5//-2 print -5//2 print 5/0
[ "Saroj Dash" ]
Saroj Dash
64dc80169d6224e49fc44b7b7d3d15d14a21807a
faabe34af6297530617395bcc6811350765da847
/platforms/hacking-coding-interview/PermutationWithDups.py
1ea371457e280492c1595742d4664f228873d15c
[]
no_license
pqnguyen/CompetitiveProgramming
44a542aea299bd553dd022a9e737e087285b8b6d
27330e7ff79c4ac883d7e1fcdf2f0d30939c3f78
refs/heads/master
2021-07-21T12:15:47.366599
2021-06-27T14:58:48
2021-06-27T14:58:48
132,837,831
0
0
null
null
null
null
UTF-8
Python
false
false
1,027
py
# Cracking the coding interview - 8.8 # Permutations with Duplicates: Write a method to compute all permutations of a string # whose characters are not necessarily unique. The list of permutations should not have duplicates. from collections import defaultdict class Solution: def permutation(self, a): freq = self.count_freq(a) results = [] self.permutation_util(a, freq, results, []) print(results) return results def permutation_util(self, a, freq, results, current): if len(current) == len(a): results.append(current[:]) return for key in freq.keys(): if freq[key]: freq[key] -= 1 current.append(key) self.permutation_util(a, freq, results, current) current.pop() freq[key] += 1 def count_freq(self, a): freq = defaultdict(int) for e in a: freq[e] += 1 return freq a = [1, 1, 2, 3] Solution().permutation(a)
[ "pqnguyen1996@gmail.com" ]
pqnguyen1996@gmail.com
62be7ad5f06bad7d48b0c923c2b1e2a141b124ee
3753f0f09329263ea785c5394b37b98fba0d233f
/aviate/aviate/migrations/0004_auto_20211030_1248.py
44697f7e5b53aea12a3e22f633f14f1ea12d2c0b
[]
no_license
vinayvivek90/portal
2d50c4ce8ce0091fc65198398e5aa8a8acc07f1e
72d9821a8eee1b12fd0a4d35bcba7b17ebf5a522
refs/heads/master
2023-09-02T11:09:04.550913
2021-10-31T13:06:12
2021-10-31T13:06:12
423,147,561
0
0
null
null
null
null
UTF-8
Python
false
false
602
py
# Generated by Django 3.2.8 on 2021-10-30 12:48 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('aviate', '0003_resume_uploaded'), ] operations = [ migrations.AlterField( model_name='resume', name='resume', field=models.FileField(upload_to=''), ), migrations.AlterField( model_name='resume', name='uploaded', field=models.DateTimeField(default=datetime.datetime(2021, 10, 30, 12, 48, 19, 396159)), ), ]
[ "vinayvivek90@gmail.com" ]
vinayvivek90@gmail.com
122f76fb0e7c8802bf3c1cfb70e7d2a2535d4cf4
1919fc2555dbcb6b865fdef0cc44c56c6c47e2f0
/chapter_14/demo_14_8.py
19772561a53ce16fcb9aabe0271f8e2aca646494
[]
no_license
ender8848/the_fluent_python
10f8dd98fcf206b04ea6d34f47ad5e35f896a3ac
058d59f6a11da34e23deb228e24a160d907f7643
refs/heads/master
2022-12-19T07:51:51.908127
2019-01-17T09:53:33
2019-01-17T09:53:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,263
py
''' 示例 14-8 演示了一个简单的生成器表达式,并且与列表推导做了对比。 示例 14-8 先在列表推导中使用 gen_AB 生成器函数,然后在生成器表达式中使用 ''' def gen_AB(): print('start') yield 'A' print('continue') yield 'B' print('end.') # 列表推导迫切地迭代 gen_AB() 函数生成的生成器对象产出的元素:'A' 和 'B'。注意,下面的输出是 start、continue 和 end. res1 = [x*3 for x in gen_AB()] ''' start continue end. ''' # 这个 for 循环迭代列表推导生成的 res1 列表 for i in res1: print('-->', i) ''' --> AAA --> BBB ''' # 把生成器表达式返回的值赋值给 res2。只需调用 gen_AB() 函数,虽然调用时会返回一个生成器,但是这里并不使用 res2 = (x*3 for x in gen_AB()) # res2 是一个生成器对象 print(res2) '''<generator object <genexpr> at 0x1099c9ba0>''' # 只有 for 循环迭代 res2 时,gen_AB 函数的定义体才会真正执行。 # for 循环每次迭代时会隐式调用 next(res2),前进到 gen_AB 函数中的下一个 yield 语句。 # 注意,gen_AB 函数的输出与 for 循环中 print 函数的输出夹杂在一起 for i in res2: print('-->', i) ''' start --> AAA continue --> BBB end. '''
[ "js_huang@foxmail.com" ]
js_huang@foxmail.com
48ac43a0fb9fe230d18ef52b9367dafd12e8337d
656a7b63fe6dd6fafb619c63a6a0d9e33f308f90
/stress/ana/multicore-results
010a60faaf191ff04ee34c3b18a0499e067cbb15
[]
no_license
JeffersonLab/clara-tests
0f6a553b113f4258cc47e65ef2840a886c2270d7
dfce424a6443d7622b40b6facc0a60e408090ed2
refs/heads/master
2021-05-01T05:01:42.533511
2021-04-20T18:44:31
2021-04-20T18:44:31
52,465,301
0
0
null
2021-04-20T18:44:32
2016-02-24T18:37:20
Python
UTF-8
Python
false
false
4,963
#!/usr/bin/env python3 import argparse import re import os import yaml from string import Template from collections import OrderedDict import nbformat as nbf import pandas as pd LOG_REGEX = re.compile(r'^\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}(?:\.\d{3})?:\s+') START_REGEX = re.compile( r'Using (?P<cores>\d+) cores on (?P<host>.+)' ' to process (?P<events>\d+) events of (?P<file>.+) \[\d+/\d+\]' ) BENCHMARK_REGEX = re.compile( r'(?P<label>\w+)\s+(?P<events>\d+) events\s+' 'total time =\s+(?P<total_time>\d+\.\d+) s\s+' 'average event time =\s+(?P<avg_time>\d+\.\d+) ms' ) ORCH_AVG_TIME_REGEX = re.compile( r'Average processing time =\s+(?P<avg_time>\d+\.\d+) ms' ) meta_data = {} results_list = [] results_frame = pd.DataFrame() def nonblank_lines(f): for line in f.readlines(): line = LOG_REGEX.sub('', line.strip()) if line: yield line def parse_global_block(line): global meta_data def parse_meta(key, regex, line): match = re.match(regex, line) if match: meta_data[key] = match.group(1) if 'version' not in meta_data: parse_meta('version', r'CLARA version += (\S+)', line) return False if 'date' not in meta_data: parse_meta('date', r'Start time += (\d{4}-\d{2}-\d{2})', line) return False if 'host' not in meta_data: parse_meta('host', r'Host += (.+)', line) return False if 'input_file' not in meta_data: parse_meta('input_file', r'Input file += (.+)', line) return False if 'output_file' not in meta_data: parse_meta('output_file', r'Output file += (.+)', line) return False return True def parse_time(log_file): with open(log_file) as f: global_block = True benchmark_trial = False benchmark_block = False for line in nonblank_lines(f): if global_block: if parse_global_block(line): global_block = False continue if not benchmark_trial: match = START_REGEX.match(line) if match: data = OrderedDict() data['Cores'] = int(match.group('cores')) meta_data.setdefault('events', match.group('events')) benchmark_trial = True if benchmark_trial and not benchmark_block: if line.startswith('Benchmark results:'): benchmark_block = True continue if benchmark_block: match = BENCHMARK_REGEX.match(line) if match: label = match.group('label') data[label] = float(match.group('avg_time')) continue match = ORCH_AVG_TIME_REGEX.match(line) if match: data['Orchestrator'] = float(match.group('avg_time')) results_list.append(data) benchmark_trial = False benchmark_block = False global results_frame results_frame = pd.DataFrame(results_list) results_frame = results_frame.groupby('Cores').mean().round(decimals=2) def write_results(print_csv=True, nb_file=None): csv_data = results_frame.to_csv(float_format='%.2f') csv_data = csv_data.strip() if print_csv: print(csv_data) def calc_xlim(): return results_frame.reset_index()['Cores'].max() + 2 def calc_time_lim(): t_max = results_frame['TOTAL'].max() return int((t_max + 70) / 100 + 1) * 100 if nb_file: nb = nbf.v4.new_notebook() data = dict(meta_data) data.update({ 'services': results_frame.columns[1:-3].tolist(), 'csv_data': csv_data, 'xlim': calc_xlim(), 'time_lim': calc_time_lim(), }) new_cell = { 'code': nbf.v4.new_code_cell, 'markdown': nbf.v4.new_markdown_cell, } dir_path = os.path.dirname(os.path.realpath(__file__)) template_path = os.path.join(dir_path, 'multicore-nb.yml') with open(template_path) as f: template = yaml.load(f) for cell in template['notebook']['cells']: content = Template(cell['content']).substitute(data).strip() nb_cell = new_cell[cell['type']](content) nb.setdefault('cells', []).append(nb_cell) with open(nb_file, 'w') as f: nbf.write(nb, f) if __name__ == '__main__': argparser = argparse.ArgumentParser() argparser.add_argument('--nb-file', dest='nb_file', action='store', help='create a Jupyter notebook') argparser.add_argument('log_file', help='the multicore-test output') args = argparser.parse_args() parse_time(args.log_file) write_results(print_csv=True, nb_file=args.nb_file)
[ "smancill@jlab.org" ]
smancill@jlab.org
a13e8c056a95d21c6806c33e2d16bddf24c74469
5dec1edff745c6f4dab7cede9919490267407537
/ScanProjectStructure.py
a3e18c3cfa075cf74b9e85c80c2661263ee98409
[]
no_license
lian2377/ProjectScanner
bbc051459cfb2358454e1464f6d14a18cb9b4b64
d56ae56cb6820cd3bc199e1f1da2e6c6217caade
refs/heads/master
2020-05-20T22:54:40.725380
2019-07-19T03:31:39
2019-07-19T03:31:39
84,539,544
0
0
null
null
null
null
UTF-8
Python
false
false
3,932
py
import os, json def scan(projectPath, fileOutput = False, suffixList = None): rootDir = str(projectPath).replace("\\", os.sep) rootDir = rootDir.replace("/", os.sep) projectName = rootDir.rstrip(os.sep).split(os.sep)[-1] getSuffix = lambda s:s.split('.')[-1] fileList = [] for (dirpath, dirnames, filenames) in os.walk(rootDir): for f in filenames: if suffixList is not None and getSuffix(f) not in suffixList: continue relativePath = os.path.relpath(dirpath, rootDir) relativeFileName = os.path.join(relativePath, f) if relativeFileName[0] == '.': relativeFileName = os.sep.join(relativeFileName.split(os.sep)[1:]) fileList.append(relativeFileName) treeRoot = {"name": projectName, "children": []} for fileName in fileList: target = treeRoot targetPath = [] newNodeList = fileName.split(os.sep) firstNode = newNodeList[0] checkList = [] for node in treeRoot["children"]: checkList.append(node) findFirstPos = False while not findFirstPos: tmpList = [] for node in checkList: if node["name"] == firstNode: findFirstPos = True target = node targetPath.append(target["name"]) if "children" in node: lastExistNode = node for newNodeName in newNodeList[1:]: findNextPos = False nextNode = node for node2 in lastExistNode["children"]: if node2["name"] == newNodeName: findNextPos = True nextNode = node2 break if findNextPos: lastExistNode = nextNode target = lastExistNode if "children" not in nextNode: break targetPath.append(target["name"]) else: break break elif "children" in node: for node2 in node["children"]: tmpList.append(node2) if not findFirstPos: if len(tmpList) == 0: target = treeRoot findFirstPos = True checkList = tmpList if target != treeRoot: for node in targetPath: newNodeList.pop(0) i = 0 for newNodeName in newNodeList: if i == len(newNodeList)-1: if "children" not in target: target["children"] = [] target["children"].append({"name": newNodeName}) else: target["children"].append({"name": newNodeName, "children": []}) target = target["children"][-1] i += 1 unsortList = [] treeRoot["children"] = sorted(treeRoot["children"], key=lambda x: x["name"]) unsortList.append(treeRoot["children"]) while True: if len(unsortList) == 0: break for item in unsortList[0]: if "children" in item: item["children"] = sorted(item["children"], key=lambda x: x["name"]) unsortList.append(item["children"]) unsortList.pop(0) if fileOutput: jsnFileName = projectName if suffixList is None: jsnFileName += ".all" jsnFile = open(jsnFileName + ".tree.json", "w", encoding="utf8") jsnFile.write(json.dumps(treeRoot, indent=4, separators=(',', ': '))) jsnFile.close() return treeRoot
[ "lian@connectivityAir.local" ]
lian@connectivityAir.local
24fd069808459e33826bb6f7ceb0790ce3642a9f
5c36683928e9fda553a5ec350cc44a29784fd805
/handlers/userpage.py
fc4d59c31755481dc51d710ede1854669602240d
[]
no_license
ashishchopra605/MultiUserBlog
b97b557e4e35684801c64503abcedd1a9e94ca04
0a4bb967af54fd6d093bb11caa5b2a5334dae919
refs/heads/master
2021-01-20T09:24:20.295093
2017-05-04T10:47:32
2017-05-04T10:47:32
90,248,708
0
0
null
null
null
null
UTF-8
Python
false
false
475
py
from google.appengine.ext import db from handlers.bloghandle import BlogHandler from models.post import Post from main import * class UserPage(BlogHandler): """Handler for UserPage""" def get(self): if user_logged_in(self): username = self.user.name posts = Post.all().filter('user_posted =', self.user.key()) self.render('userpage.html', username=username, posts=posts) else: self.redirect('/login')
[ "ashishchopra605@gmail.com" ]
ashishchopra605@gmail.com
bbc94c9279545956f2054f3a5de28bc4378b39dc
a7b66311c2ce113789933ec3162f1128b2862f13
/app/waterQual/SeasonLinear/tsScatter.py
683ed3fddec8cef8a717c5b39597641c3449338d
[ "MIT" ]
permissive
ChanJeunlam/geolearn
214b2c42359ea1164b39117fad2d7470adeb6d35
791caa54eb70920823ea7d46714dc8a3e7fa7445
refs/heads/master
2023-07-16T04:13:15.526364
2021-08-16T05:24:18
2021-08-16T05:24:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,827
py
import importlib import numpy as np import os import pandas as pd import json from hydroDL.master import basins from hydroDL import kPath, utils from hydroDL.app import waterQuality from hydroDL.data import usgs, gageII import matplotlib.pyplot as plt from hydroDL.post import axplot, figplot dirSel = os.path.join(kPath.dirData, 'USGS', 'inventory', 'siteSel') with open(os.path.join(dirSel, 'dictRB_Y30N5.json')) as f: dictSite = json.load(f) siteNoLst = dictSite['comb'] codeLst = sorted(usgs.newC) # load Linear and Seasonal model dictL = dict() dirL = os.path.join(kPath.dirWQ, 'modelStat', 'WRTDS-DL', 'All', 'output') dictS = dict() dirS = os.path.join(kPath.dirWQ, 'modelStat', 'WRTDS-DS', 'All', 'output') dictQ = dict() dirQ = os.path.join(kPath.dirWQ, 'modelStat', 'WRTDS-DQ', 'All', 'output') dictP = dict() dirP = os.path.join(kPath.dirWQ, 'modelStat', 'WRTDS-DQ', 'All', 'output') for dirTemp, dictTemp in zip([dirL, dirS, dirQ,dirP], [dictL, dictS, dictQ,dictP]): for k, siteNo in enumerate(siteNoLst): print('\t WRTDS site {}/{}'.format(k, len(siteNoLst)), end='\r') saveFile = os.path.join(dirTemp, siteNo) df = pd.read_csv(saveFile, index_col=None).set_index('date') dictTemp[siteNo] = df dictObs = dict() for k, siteNo in enumerate(siteNoLst): print('\t USGS site {}/{}'.format(k, len(siteNoLst)), end='\r') df = waterQuality.readSiteTS( siteNo, varLst=['00060']+codeLst, freq='D', rmFlag=True) dictObs[siteNo] = df # calculate rsq rMat = np.full([len(siteNoLst), len(codeLst), 2], np.nan) for ic, code in enumerate(codeLst): for siteNo in dictSite[code]: indS = siteNoLst.index(siteNo) v1 = dictL[siteNo][code].values v2 = dictS[siteNo][code].values v0 = dictObs[siteNo][code].values (vv0, vv1, vv2), indV = utils.rmNan([v0, v1, v2]) rmse1, corr1 = utils.stat.calErr(vv1, vv0) rmse2, corr2 = utils.stat.calErr(vv2, vv0) rMat[indS, ic, 0] = corr1**2 rMat[indS, ic, 1] = corr2**2 qMat = np.full([len(siteNoLst)], np.nan) for siteNo in siteNoLst: indS = siteNoLst.index(siteNo) v1 = dictQ[siteNo]['00060'].values v0 = dictObs[siteNo]['00060'].values (vv0, vv1), indV = utils.rmNan([v0, v1]) rmse, corr = utils.stat.calErr(vv1, vv0) qMat[indS] = corr**2 codeLst2 = ['00915', '00925', '00935', '00930', '00940', '00945', '00955', '70303'] [nfy, nfx] = [3, 3] # codeLst2 = ['00010', '00300', '00405', '00600', '00605', # '00618', '00660', '00665', '00681', '00915', # '00925', '00930', '00935', '00940', '00945', # '00950', '00955', '70303', '71846', '80154'] # nfy, nfx = [4, 5] # load dilution factor bMat = np.full([len(siteNoLst), len(codeLst)], np.nan) for k, code in enumerate(codeLst): dirC = os.path.join(kPath.dirWQ, 'modelStat', 'WRTDS-DL', 'All', 'params') fileParC = os.path.join(dirC, code) parC = pd.read_csv(fileParC, dtype={'siteNo': str}).set_index('siteNo') bMat[:, k] = parC['pQ'] bMat2 = np.full([len(siteNoLst), len(codeLst)], np.nan) bMat2[bMat > 0] = np.log(bMat[bMat > 0]+1) bMat2[bMat <= 0] = -np.log(-bMat[bMat <= 0]+1) importlib.reload(figplot) indC = [codeLst.index(code) for code in codeLst2] labelLst = ['{} {}'.format(code, usgs.codePdf.loc[code]['shortName']) for code in codeLst2] xMat = rMat[:, indC, 1] yMat = rMat[:, indC, 0] cMat = bMat2[:, indC] nXY = [nfx, nfy] figM, axM = figplot.scatter121Batch( xMat, yMat, cMat, labelLst, nXY, optCb=1, ticks=[0, 0.5, 1], s=20, cmap='jet') figM.show() ############### ic1 = codeLst.index('00915') ic2 = codeLst.index('00955') fig, axes = plt.subplots(1, 2) # axplot.plot121(axes[0], rMat[:, ic1, 0], rMat[:, ic2, 0], vR=[0, 1]) # axplot.plot121(axes[1], rMat[:, ic1, 1], rMat[:, ic2, 1], vR=[0, 1]) axplot.scatter121(axes[0], rMat[:, ic1, 0], rMat[:, ic2, 0], qMat, vR=[0, .5]) axplot.scatter121(axes[1], rMat[:, ic1, 1], rMat[:, ic2, 1], qMat, vR=[0, .5]) fig.show() temp = ['00915', '00955'] ic1 = codeLst.index(temp[0]) ic2 = codeLst.index(temp[1]) nameLst = [usgs.codePdf.loc[code]['shortName'] for code in temp] fig, axes = plt.subplots(1, 2) sc1 = axplot.scatter121(axes[0], rMat[:, ic1, 1], rMat[:, ic1, 0], qMat, vR=[0, 0.5]) axes[0].set_xlabel('Seasonality of {}'.format(nameLst[0])) axes[0].set_ylabel('Linearity of {}'.format(nameLst[0])) sc2 = axplot.scatter121(axes[1], rMat[:, ic2, 1], rMat[:, ic2, 0], qMat, vR=[0, 0.5]) axes[1].set_xlabel('Seasonality of {}'.format(nameLst[1])) axes[1].set_ylabel('Linearity of {}'.format(nameLst[1])) fig.show() temp = ['00915', '00955'] ic1 = codeLst.index(temp[0]) ic2 = codeLst.index(temp[1]) nameLst = [usgs.codePdf.loc[code]['shortName'] for code in temp] fig, axes = plt.subplots(1, 2) axplot.scatter121(axes[0], rMat[:, ic1, 0], rMat[:, ic2, 0], qMat, vR=[0, .6]) axes[0].set_xlabel('Linearity of {}'.format(nameLst[0])) axes[0].set_ylabel('Linearity of {}'.format(nameLst[1])) axplot.scatter121(axes[1], rMat[:, ic1, 1], rMat[:, ic2, 1], qMat, vR=[0, .6]) axes[1].set_xlabel('Seasonality of {}'.format(nameLst[0])) axes[1].set_ylabel('Seasonality of {}'.format(nameLst[1])) fig.show() temp = ['00915', '00955'] ic1 = codeLst.index(temp[0]) ic2 = codeLst.index(temp[1]) nameLst = [usgs.codePdf.loc[code]['shortName'] for code in temp] fig, axes = plt.subplots(1, 2) axplot.scatter121(axes[0], qMat, rMat[:, ic1, 1], rMat[:, ic1, 0], vR=[0, 1]) axes[0].set_xlabel('Seasonality of Q') axes[0].set_ylabel('Seasonality of {}'.format(nameLst[0])) axplot.scatter121(axes[1], qMat, rMat[:, ic2, 1], rMat[:, ic2, 0], vR=[0, 1]) axes[1].set_xlabel('Seasonality of Q') axes[1].set_ylabel('Seasonality of {}'.format(nameLst[1])) fig.show() # rock type - Na Cl fileGlim = os.path.join(kPath.dirData, 'USGS', 'GLiM', 'tab_1KM') tabGlim = pd.read_csv(fileGlim, dtype={'siteNo': str}).set_index('siteNo') matV = np.argmax(tabGlim.values, axis=1) matV = tabGlim.values[:, 4] for k in range(15): matV = tabGlim.values[:, k] temp = ['00930', '00940'] ic1 = codeLst.index(temp[0]) ic2 = codeLst.index(temp[1]) nameLst = [usgs.codePdf.loc[code]['shortName'] for code in temp] fig, axes = plt.subplots(1, 2) cb = axplot.scatter121(axes[0], rMat[:, ic1, 0], rMat[:, ic2, 0], matV, cmap='jet') axes[0].set_xlabel('Linearity of {}'.format(nameLst[0])) axes[0].set_ylabel('Linearity of {}'.format(nameLst[1])) fig.colorbar(cb, ax=axes[0]) cb = axplot.scatter121(axes[1], rMat[:, ic1, 1], rMat[:, ic2, 1], matV, cmap='jet') axes[1].set_xlabel('Seasonality of {}'.format(nameLst[0])) axes[1].set_ylabel('Seasonality of {}'.format(nameLst[1])) fig.colorbar(cb, ax=axes[1]) fig.show()
[ "geofkwai@gmail.com" ]
geofkwai@gmail.com
6a588576b11b5c51eb1bb8da29744a365b2a9826
4a2f6044ffaf19db55680db5fbfb2c9539f3d4f2
/testcase.py
21189fa2b9fbf42c86ebd245977930f8ed4a93ef
[]
no_license
ekkazit/mpos-backend
1c3571b26a8952ea9df69b9261175f3f36c2a9be
3ee5936a893e83d1c4e1a9a61571b250f60160a5
refs/heads/master
2021-01-21T11:39:58.936682
2016-05-21T16:08:23
2016-05-21T16:08:23
51,684,875
0
1
null
null
null
null
UTF-8
Python
false
false
106
py
import unittest from app.tests.echo_test import EchoTest if __name__ == '__main__': unittest.main()
[ "ekkazitstudio@gmail.com" ]
ekkazitstudio@gmail.com
33cdaf6983bad3e7639a4d4a3487dae598804c4a
846556273884898ec3ccd2c13b39ddd9a75fef7f
/chapter 5/water_viscosity.py
f200ca85aebe47af48ec0e8dce3acdc47d1d3d6b
[]
no_license
gitviviane/python-scipro-solutions
647b2ac1391cc1a97e90ce2fec1e18925308288f
7874cd292d6b58315bd170889dc22aeac14396f8
refs/heads/master
2021-12-11T02:25:49.109640
2016-10-18T16:11:13
2016-10-18T16:11:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
426
py
""" Exercise 5.28: Plot the viscosity of water Author: Weiyun Lu """ from scitools.std import plot, linspace A = 2.414e-5 B = 247.8 C = 140.0 mu = lambda T : A * 10**(B / (T-C)) #viscosity in terms of Kelvin mu_celcius = lambda T : mu (T+273) #calculate mu in terms of celcius x = linspace(0,100,100) y = mu_celcius(x) plot(x, y, '-b', xlabel='Temperature (C)', ylabel='Viscosity (Pa s)', \ title='Viscocity of Water')
[ "wlu058@uottawa.ca" ]
wlu058@uottawa.ca
75046425c036c9ca0e33b1a02a47d9d0cdfc6e81
2b350eaebe8b0951f07266513c1b1ccfbda1f210
/manage.py
2e0df0b2140aa89f111445c2baf465fce8dfe010
[]
no_license
Toribar/99Design-empty-slots
55f20184b9a1525e422886669d7cd037ee876852
e82ad1e909136bb0481959f21b955ed9b6d76d00
refs/heads/master
2021-01-10T15:20:55.822845
2016-02-21T18:01:44
2016-02-21T18:01:44
50,187,281
0
0
null
null
null
null
UTF-8
Python
false
false
256
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "slot_99design.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ "bata.henry@gmail.com" ]
bata.henry@gmail.com
25f68bca0b499c7902005badf6565960943f22dd
45a1380cbfe5dee5efd014cd2ac756ab92b8fec2
/2020/2020-01-11-01/process.py
606535ca8e67951280fed2598471bed233ea0644
[]
no_license
airball-aero/airball-data
86ae1f20aa1c4d1d7212e3e7895e73831e5f78f4
506f230c853dc4fac37bc99218de70e3f1da995f
refs/heads/master
2022-05-05T18:09:30.797720
2022-03-18T04:08:31
2022-03-18T04:08:31
183,973,504
1
1
null
null
null
null
UTF-8
Python
false
false
847
py
#!/usr/bin/python import matplotlib.pyplot as plt probe_static = [ [ 79, 79, 91, 93, 93, 92, 91, 92, 90, 88, 86, 87, 87, 88, 87, 96, 94, 95, 94, 92, 94, 94, 93, 95, 95, 60, 87, 60, 62, 68, 71, 54 ], [ 70, 69, 80, 80, 81, 79, 78, 82, 77, 76, 75, 75, 76, 76, 75, 83, 82, 82, 82, 81, 81, 82, 81, 82, 82, 70, 75, 57, 59, 64, 67, 52 ], ] alternate_static = [ [ 74, 70, 90, 66, 60, 92, 95 ], [ 68, 66, 80, 62, 57, 80, 83 ], ] plt.scatter( alternate_static[0], alternate_static[1], label="Alternate static", color="blue", marker="o") plt.scatter( probe_static[0], probe_static[1], label="Probe static", color="red", marker="v") plt.plot( [50, 100], [50, 100], color="black") plt.xlabel('N291DR ASI reading (kias)') plt.ylabel('Airball ASI reading (kias)') plt.legend() plt.show()
[ "ihab.awad@gmail.com" ]
ihab.awad@gmail.com
0720ffb79ae2eb51c690163c33dc21d6bbfc43f3
4110496fb8b6cf7fbdabf9682f07255b6dab53f3
/Graph/2097. [Like] Valid Arrangement of Pairs.py
02c59bc7c88164c40ac98bb703409f518c62d36e
[]
no_license
louisfghbvc/Leetcode
4cbfd0c8ad5513f60242759d04a067f198351805
1772036510638ae85b2d5a1a9e0a8c25725f03bd
refs/heads/master
2023-08-22T19:20:30.466651
2023-08-13T14:34:58
2023-08-13T14:34:58
227,853,839
4
0
null
2020-11-20T14:02:18
2019-12-13T14:09:25
C++
UTF-8
Python
false
false
959
py
# euler path, remember postorder # O(N) class Solution: def validArrangement(self, pairs: List[List[int]]) -> List[List[int]]: # convert to the graph problem # euler path in_degree, out_degree = defaultdict(int), defaultdict(int) graph = defaultdict(list) start = 0 for u, v in pairs: start = u in_degree[v] += 1 out_degree[u] += 1 graph[u].append(v) for u, v in pairs: if in_degree[u]+1 == out_degree[u]: start = u break if in_degree[v]+1 == out_degree[v]: start = v break self.res = [] def dfs(u): while graph[u]: v = graph[u].pop() dfs(v) self.res += [u, v], dfs(start) return self.res[::-1]
[ "noreply@github.com" ]
louisfghbvc.noreply@github.com
b4f74d52a64594575516c6396835481f28c21646
052aa4c87718988c2dd0c41163ba936a980a53ea
/Python Web Service/NodoSelect.py
202dd0c24da4a60423c4ddf035d40a32bb43e4f9
[]
no_license
brayanaroche/Proyecto1S22017_201503918
614b7e163bedacfaf60a39257cba027b450c89e4
7c7c141df0e4b321611718507964df5c1bcff7f5
refs/heads/master
2021-07-06T16:03:06.513623
2017-10-01T18:05:23
2017-10-01T18:05:23
105,462,180
0
0
null
null
null
null
UTF-8
Python
false
false
269
py
class NodoSelect(object): def __init__(self,dato): self.dato=dato self.enlace=None def getDato(self): return self.dato def getEnlace(self): return self.enlace def setEnlace(self,nodo): self.enlace=nodo def setDato(self,objeto): self.dato=objeto
[ "30421259+brayanaroche@users.noreply.github.com" ]
30421259+brayanaroche@users.noreply.github.com
9536416822bc6da015eefdc65b629452f3eeea88
8b1e49ce342e2cfe76cd7f3a23e5aeb2796603b1
/tagify_project/music/migrations/0004_auto_20210314_1418.py
d889e1f2d3f7cc24a312416f7717059b646cec7a
[ "MIT" ]
permissive
Krayonn/tagify
bd06f50d681a31ce666d90d6f8bf748da0dbd483
5ee7efce3cacfa23a344e4c02070a365f50136a8
refs/heads/main
2023-03-30T05:19:23.350344
2021-04-03T17:00:18
2021-04-03T17:00:18
338,643,170
0
0
null
null
null
null
UTF-8
Python
false
false
437
py
# Generated by Django 3.1.6 on 2021-03-14 14:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('music', '0003_auto_20210314_1412'), ] operations = [ migrations.AlterField( model_name='track', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), ]
[ "kris-beckers@hotmail.com" ]
kris-beckers@hotmail.com
0c84952b18e2e7d938b7e66b0179fd476e36746d
f7d6c5413e3330801efae4fe9d505f41d3ed705b
/prom_inter.py
b9814afe3296bb8687f56df5b9db2d7d72bffd89
[]
no_license
gzp9595/jiuge
6c2e480eb530491370b4045a6603e2c28df80e19
a69bad45adad328348fbf101278d04b0d4e69768
refs/heads/master
2021-06-26T06:33:16.775337
2019-05-15T07:35:40
2019-05-15T07:35:40
140,416,018
3
1
null
null
null
null
UTF-8
Python
false
false
2,461
py
# coding: utf-8 import time import redis import random import redis from setting import HOST_PROXY, PORT_PROXY from untils import generate_logger class RedisClient(): """ By now, only (a) random IP proxy(s) from the proxy-pool is/are provided. """ def __init__(self, DB_NAME_PROXY, host=HOST_PROXY, port=PORT_PROXY, ): pool = redis.ConnectionPool(host=host, port=port, db=0) # [redis连接对象是线程安全的](http://www.cnblogs.com/clover-siyecao/p/5600078.html) # [redis是单线程的](https://stackoverflow.com/questions/17099222/are-redis-operations-on-data-structures-thread-safe) self._db = redis.Redis(connection_pool=pool) self.logger = generate_logger("JJ_RedisClient") self.DB_NAME_PROXY = DB_NAME_PROXY def get(self): proms = [] if(self._db.llen(self.DB_NAME_PROXY) == 0): time.sleep(random.random()*10) return proms try: prom = self._db.lpop(self.DB_NAME_PROXY) # 从队列头读取出来 # print("Using IP proxy:", proxy) # req.text: "119.75.213.61:80" proms.append(prom) except ValueError as ve: self.logger.error("ValueError:queue_len is too short(<1).\n{0}".format(ve)) except Exception as e: self.logger.error("Unexpected Error.\n{0}".format(e)) finally: # self.logger.info("Using proxies:{0}".format(proxies)) return proms def put(self, prom): """ add proxy to right top # zset self._db.zadd("proxy_zset", proxy, self._INITIAL_SCORE) """ self._db.rpush(self.DB_NAME_PROXY, prom) # list @property def queue_len(self): """ get length from queue. """ return self._db.llen(self.DB_NAME_PROXY) def showall(self): """ show all elements in the list. """ #print(self._db.lrange(DB_NAME, 0, -1)) self.logger.info(repr(self._db.lrange(self.DB_NAME_PROXY, 0, -1))) def del_all_proxies(self): """ delete all the proxies in DB_NAME """ self._db.delete(self.DB_NAME_PROXY) def flush(self): """ flush db """ # self._db.flushall() # DO NOT DO THIS. pass if __name__ == "__main__": # """ client = RedisClient() client.del_all_proxies() client.get_new() client.get()
[ "gzp9595@gmail.com" ]
gzp9595@gmail.com
2e7eaca7efd7f749a67af43742d14ffb7b36e35b
e02e993a394b58b011e8bc7b2924461c36aa4424
/urls.py
cd10561278ec3e91b4efe97a8cf57b70322fd9de
[]
no_license
marcboivin/biereapp
f1946fd7fdd99b41d3db182604e3df53244604cc
6950b5c16012541714cbfef9a21854ca665436c9
refs/heads/master
2021-01-22T03:39:21.122488
2011-04-11T01:42:32
2011-04-11T01:42:32
1,285,056
0
0
null
null
null
null
UTF-8
Python
false
false
3,163
py
from django.conf.urls.defaults import patterns, include, url from django.contrib.auth.views import login, logout # Uncomment the next two lines to enable the admin: from django.contrib import admin from biereapp import settings from biereapp.views import Dashboard, CreerFacture, AddUserTransation, NewProduit, NewClient, FactureDetails, AddPrixProduit, FactureFermer, FactureInFermer, ProduitInventaire, CommandeFournisseur, Commande, AJAX_AddInventaire, AJAX_DeleteTransaction, super_facture from biereapp.models import Facture, Produit, Client admin.autodiscover() #Values for generic views liste_client = { 'template_name': 'clients/liste.html', 'queryset' : Client.objects.all() } single_client = { 'queryset': Client.objects.all(), 'template_name': 'clients/client.html', 'template_object_name': 'client', } liste_factures = { 'template_name': 'facture/liste.html', 'queryset' : Facture.objects.order_by('-Date') } single_facture = { 'queryset': Facture.objects.all(), 'template_name': 'facture/facture.html', 'template_object_name': 'facture', } liste_produit = { 'template_name': 'produits/liste.html', 'queryset' : Produit.objects.order_by('Brasseur', 'Nom') } single_produit = { 'queryset': Produit.objects.all(), 'template_name': 'produits/produit.html', 'template_object_name': 'produit', } # Url patterns for generic views urlpatterns = patterns('django.views.generic', (r'^clients/liste/', 'list_detail.object_list', liste_client), (r'^clients/(?P<object_id>\d+)/$', 'list_detail.object_detail', single_client), (r'^factures/liste/', 'list_detail.object_list', liste_factures), (r'^factures/(?P<object_id>\d+)/$', 'list_detail.object_detail', single_facture), (r'^produits/liste/', 'list_detail.object_list', liste_produit), (r'^produits/(?P<object_id>\d+)/$', 'list_detail.object_detail', single_produit), ) urlpatterns += patterns('', # Enable the admin: url(r'^admin/', include(admin.site.urls)), (r'^accounts/login/$', login), (r'^accounts/logout/$', logout), (r'^media/(?P<path>.*)$', 'django.views.static.serve', {'document_root': settings.MEDIA_ROOT }), (r'^factures/creer/$', CreerFacture), (r'^factures/produit/ajout/$', AddUserTransation), (r'^produits/creer/$', NewProduit), (r'^clients/creer/$', NewClient), (r'^factures/(?P<facture_id>\d+)/details/$', FactureDetails), (r'^factures/(?P<facture_id>\d+)/fermer/$', FactureFermer), (r'^factures/(?P<facture_id>\d+)/ouvrir/$', FactureInFermer), (r'^factures/super/$', super_facture), (r'^produits/(?P<object_id>\d+)/add/$', AddPrixProduit), (r'^produits/inventaire/$', ProduitInventaire), (r'^commandes/creer/$', CommandeFournisseur), (r'^commandes/$', Commande), (r'^ajax/inventaire/ajust/$', AJAX_AddInventaire), (r'^ajax/transactions/delete/$', AJAX_DeleteTransaction), (r'^$', Dashboard), # Uncomment the admin/doc line below and add 'django.contrib.admindocs' # to INSTALLED_APPS to enable admin documentation: # (r'^admin/doc/', include('django.contrib.admindocs.urls')), )
[ "boivin@ma14.com" ]
boivin@ma14.com
4052b944a61800bfb2afc1bf57c093dcebfaf293
898cd981dbf81fc4b2f98c5508a25672f2bdea88
/examples/redis_client2.py
6a85602fb107530bc3330828c440165311af03a8
[ "BSD-3-Clause" ]
permissive
GottWall/GottWall
1bd219d6e010c304c018038f95e9d6108ef26099
3b940fa27245a4160d5fe1af3ea15b8c8ac70a4b
refs/heads/master
2020-04-06T03:42:14.965092
2015-10-10T07:27:43
2015-10-10T07:27:43
7,048,966
9
3
null
2014-02-09T19:41:41
2012-12-07T06:46:08
JavaScript
UTF-8
Python
false
false
2,901
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json import datetime import redis from random import randint, choice from stati_redis import RedisClient, Client stats_client = RedisClient(private_key="my_private_key", public_key="my_public_key", project="SampleProject", host="10.8.9.8", db=2) import time from contextlib import contextmanager def pretty_time(td): """Convert timedelta to pretty :param td: timedelta (t2 - t1) :return: delta string in seconds or minutes """ if td < 300: return "{0} sec".format(td) else: return "{0} min".format((td / 60.0)) @contextmanager def measure_time(title, logger=None, **debug_params): t1 = time.time() print('Started "{0}" at {1}'. format(title, time.ctime(t1))) yield t2 = time.time() print('Finished "{0}" at {1} for the time {2}'.\ format(title, time.ctime(t2), pretty_time(t2-t1))) with measure_time("Test stats"): for x in xrange(100000): stats_client.incr(choice([u"APIv1", "APIv2", "APIv3"]), timestamp=datetime.datetime(choice([2012, 2013]), randint(1, 12), randint(1, 27)) + datetime.timedelta(days=randint(1, 4)), value=randint(1, 10), filters={choice(["status"]): choice(["200", "403", "500", "404", "401", "201"]), "users": choice(["anonymouse", "registered"])} ) print(x) with measure_time("Test stats"): for x in xrange(1000000): stats_client.incr(u"Actions", timestamp=datetime.datetime(choice([2012, 2013]), randint(1, 12), randint(1, 27)) + datetime.timedelta(days=randint(1, 4)), value=randint(1, 5), filters={"views": choice(["products", "special page"]), "voting": choice(["up", "down"])} ) print(x) with measure_time("Test stats"): for x in xrange(1000000): stats_client.incr(choice([u"Reviews", u"Feedbacks", "Registrations"]), timestamp=datetime.datetime(choice([2012, 2013]), randint(1, 12), randint(1, 27)) + datetime.timedelta(days=randint(1, 4)), value=randint(1, 5), filters={}) print(x) with measure_time("Test stats"): for x in xrange(1000000): stats_client.incr(choice([u"Orders"]), timestamp=datetime.datetime(choice([2012, 2013]), randint(1, 12), randint(1, 27)) + datetime.timedelta(days=randint(1, 4)), value=randint(1, 5), filters={"status": choice(["Completed", "New", "Canceled"])}) print(x) print("finish")
[ "Alexandr.S.rus@gmail.com" ]
Alexandr.S.rus@gmail.com
b56ef68c6e84a51c466f5bc99c378a07abe33752
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2388/60833/269257.py
47ff280dcb3d860e67df2482635288684a05b087
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
471
py
lines=[] while True: try: lines.append(input()) except: break n=int(lines.pop(0)) for i in range(0,n): count=int(lines.pop(0)) list_number = list(lines.pop(0).split(" ")) list_number = list(map(int, list_number)) list_number1 = list(lines.pop(0).split(" ")) list_number1 = list(map(int, list_number1)) list_number.sort() list_number1.sort() if(list_number==list_number1): print(1) else: print(0)
[ "1069583789@qq.com" ]
1069583789@qq.com
49fe93f3ed4e6615f5e012037f5c1604ab8e0e4e
7666f107a24c7749afc26e91bd3abb5bff158fc2
/upper/env/bin/pip3.6
7a906fe9e7cc903e37b55e10a809b480ca110ba0
[]
no_license
zigbeemuema/zb.001
15cd351a5f1e57e258c0b47b6a07caaed0591c5f
a9fa531be4424acd0f951b3d7e6786c755b6c3cd
refs/heads/master
2020-04-26T08:33:58.715136
2019-03-02T06:52:40
2019-03-02T08:39:56
173,426,635
0
0
null
null
null
null
UTF-8
Python
false
false
247
6
#!/home/onesmas/Desktop/exam/upper/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from pip._internal import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "muemaonesmas@gmail.com" ]
muemaonesmas@gmail.com
d457426f49ba33515642d88d8e0bba702f8f2b64
4ca52144cf9b2741c33f9df71514cefcd78ad3c3
/surro/world.py
088b82503ecfcff0b94c6ed58a18b2646e813e2b
[ "MIT" ]
permissive
MatthewScholefield/surro
89f8dc8a8a10d80af7bc39483e3eeef1e4fa2de1
db666a8c5c2fd456b1816562014572ceaabd2b5f
refs/heads/master
2021-09-05T01:03:36.250898
2018-01-23T03:41:16
2018-01-23T07:36:30
118,553,845
0
0
null
null
null
null
UTF-8
Python
false
false
3,380
py
from random import randint import pygame from openal.audio import SoundSource from openal.loaders import load_wav_file from pygame.font import Font from pygame.surface import Surface from surro.enemy import Enemy from surro.orb import Orb from surro.player import Player from surro.util import get_sfx, new_pt, vec_dist, ContinuousSoundSource class World: FPS = 60 SCALE = 0.05 SIZE = 150 * SCALE def __init__(self, sink, songs=None, has_evil=True): self.sink = sink self.has_evil = has_evil self.points = self.points_t = 0 self.game_time = 0. self.alive = True self.player = Player(self) self.enemy = Enemy(self) if has_evil else None self.orb = Orb(self, songs) self.sources = [self.player.damage_source, self.orb.source] if self.enemy: self.sources.append(self.enemy.source) self.sink.play(self.sources) def destroy(self): for i in self.sources: if isinstance(i, ContinuousSoundSource): i.timer.cancel() self.sink.stop(self.sources) def play_sfx(self, name, offset=(0., 0., 0.), volume=1.): source = SoundSource() source.queue(load_wav_file(get_sfx(name))) source.gain = volume source.position = tuple(new_pt(*self.sink.listener.position) + new_pt(*offset)) self.sink.play(source) def random_point(self, ratio=1.): width = int(ratio * self.SIZE) return new_pt(randint(0, 2 * width) - width, 0, randint(0, 2 * width) - width) def score_points(self, points): self.play_sfx('point.wav') self.orb.new_pos() self.points_t += points def game_over(self): self.alive = False def update(self): self.player.update() if self.enemy: self.enemy.update() self.orb.update() self.sink.update() self.points += 0.1 * (self.points_t - self.points) self.game_time += 1. / self.FPS def calculate_bg_color(self): if not self.alive: return new_pt(0.7, 0.0, 0.0) def light_ratio(dist, damper=0.2): return 1. / max(1., dist / damper) enemy = light_ratio(vec_dist(self.player.pos, self.enemy.pos)) if self.enemy else 0. target = light_ratio(vec_dist(self.player.pos, self.orb.pos)) wall = light_ratio(self.SIZE - max(abs(self.player.pos))) color = new_pt() for ratio, item_color in [ (target, (1., 1., 1.)), (enemy, (1., 0., 0.)), (wall, (.2, .4, .9)) ]: color += (1. - max(color)) * ratio * new_pt(*item_color) return color def render(self, font: Font, screen: Surface): def render_text(text, pos, color=(255, 255, 255)): surface = font.render(str(text), True, color) pos = (new_pt(pos[0] * screen.get_width(), pos[1] * screen.get_height()) - new_pt(*surface.get_size()) / 2) screen.blit(surface, tuple(pos)) screen.fill(tuple(255. * self.calculate_bg_color())) render_text(int(self.points + 0.5), (0.5, 0.5)) render_text(round(self.player.health, 1), (0.1, 0.1), (255, 200, 200)) if not self.alive: render_text('Game Over', (0.5, 0.2)) pygame.display.flip()
[ "matthew3311999@gmail.com" ]
matthew3311999@gmail.com
8960ea2154f0cd4e5df7a80f8c99e7e466124119
c903ffcca23646072fca2e459bbe2f30951e2431
/genColors.py
1606f20c40989f56509398b3eab576bef8f09f3a
[]
no_license
mvwicky/2048
1c1154b23c94003ba24bf82ef9c45cd6ac536ff1
f30e64028da4210a0805bb4d64692e871642207a
refs/heads/master
2016-09-06T09:40:45.051507
2014-05-20T20:27:59
2014-05-20T20:27:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
344
py
import sfml as sf import random import math def main(): colors=[] for i in range(16): colors.append(sf.Color(random.randint(0,255),random.randint(0,255),random.randint(0,255),255)) values=[] for i in range(1,13): values.append(2**i) colorValues=dict(zip(values,colors)) print colorValues return 0 if __name__=='__main__': main()
[ "mvanwickle@gmail.com" ]
mvanwickle@gmail.com
53f8e686a7d03be0476327f6ce9ddd4c7dd04ae7
9c608f2bde82747a1cd4b46275024f69540025fc
/app/db/database.py
1ad74ae51d946b52f7e492a29179e4020d88a78e
[]
no_license
omarcsejust/learn-fastapi
7476f770276f81d5eb8fbcd4db47fdb8b8156010
ad03b0dc7b188c94efa88d14d0b083c249c52641
refs/heads/master
2023-06-06T11:25:40.752058
2021-06-29T05:37:56
2021-06-29T05:37:56
309,629,075
0
0
null
null
null
null
UTF-8
Python
false
false
463
py
from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker SQLALCHEMY_DATABASE_URL = "sqlite:///./sql_app.db" # SQLALCHEMY_DATABASE_URL = "postgresql://user:password@postgresserver/db" engine = create_engine( SQLALCHEMY_DATABASE_URL, connect_args={"check_same_thread": False} ) SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine) Base = declarative_base()
[ "omarhasan951@gmail.com" ]
omarhasan951@gmail.com
479f9c663e83bb8b0000402893f68df99ef957b4
7c99f5334dbaa45e86b2a814a4d640c40b1dc7dd
/COW/resources/python/apiCallFactory.py
8ce7c0348cfba82f88bf029ca4ac3672e2f2bd83
[]
no_license
aurelien-defossez/cod-open-world
9e7e88fbc0358ad8bf552de6205f704b3d6745ad
0b6ba9d1f7c4c760767d450d1169402189a6e003
refs/heads/master
2021-01-19T05:26:15.636726
2012-05-02T16:55:23
2012-05-02T16:55:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,636
py
from java.lang import Boolean from java.lang import Integer from java.lang import Double from java.lang import String from jarray import zeros from jarray import array from com import Variant class ApiCallFactory(object): connector = None parameters = None ctParameters = 0 def __init__(self, connector): self.connector = connector def initParameters(self, nb): self.parameters = zeros(nb, Variant) self.ctParameters = 0 def addBool(self, x): self.parameters[self.ctParameters] = Variant(Boolean(x)) self.ctParameters += 1 def addInt(self, x): self.parameters[self.ctParameters] = Variant(Integer(x)) self.ctParameters += 1 def addDouble(self, x): self.parameters[self.ctParameters] = Variant(Double(x)) self.ctParameters += 1 def addString(self, x): self.parameters[self.ctParameters] = Variant(String(x)) self.ctParameters += 1 def addBoolArray(self, values): self.parameters[self.ctParameters] = Variant(array(values, Boolean)) def addIntArray(self, values): self.parameters[self.ctParameters] = Variant(array(values, Integer)) def addDoubleArray(self, values): self.parameters[self.ctParameters] = Variant(array(values, Double)) def addStringArray(self, values): self.parameters[self.ctParameters] = Variant(array(values, String)) class GameApiCallFactory(ApiCallFactory): def call(self, function): return self.connector.callGameFunction(function, self.parameters) class ViewApiCallFactory(ApiCallFactory): def call(self, function): return self.connector.callViewFunction(function, self.parameters)
[ "didjor@gmail.com" ]
didjor@gmail.com
8c428814e9695b5f59575fcbb73aaef938a02ad8
23e709e600655e1497da21d5bf2fbe1ec6534798
/csequences.py
75f7f74ba62e6e6114ddc8bc20e5e6fc66e007bf
[]
no_license
SDAMcIntyre/Aurora-sequence-randomiser
509e94d9c181eba9a00ab274fd0b15a09b34ecc4
f4770f5ea854727d1d30dc36695e032f816e6514
refs/heads/master
2022-12-27T09:30:43.997123
2019-09-20T15:23:23
2019-09-20T15:23:23
301,985,690
0
1
null
null
null
null
UTF-8
Python
false
false
643
py
import os, shutil src = './SequenceFiles/' src_files = os.listdir(src) textToReplace = '.dpf\tTimed\t5.000\t' #5 seconds newText = '.dpf\tTimed\t10.000\t' #10 seconds for file_name in src_files: full_file_name = os.path.join(src, file_name) new_file_name = os.path.join(src, 'C_'+file_name) if os.path.isfile(full_file_name): shutil.copy(full_file_name, new_file_name) with open(new_file_name) as new_file: file_contents = new_file.read() file_contents = file_contents.replace(textToReplace, newText) with open(new_file_name, 'w') as new_file: new_file.write(file_contents)
[ "sarah.mcintyre@liu.se" ]
sarah.mcintyre@liu.se
2f0a67035a1c1f075e3f42c7dc5b9a089449fda1
ac7c02f29a837fdd67d2bdc77bba182080e98ed8
/codekata/countline.py
8de1a79a4ee40942ba94f47f40d9047ca87bfd01
[]
no_license
YaminiNarayanan-359/guvi
7630c309a86365e4367fda1ddab4e966e7d1ac5b
a52b6353100b4e9b83a003e6a327fbfb174daac4
refs/heads/master
2020-06-03T00:08:00.389609
2019-07-16T06:59:53
2019-07-16T06:59:53
191,355,064
0
0
null
null
null
null
UTF-8
Python
false
false
70
py
st=input().split() c=1 for i in st: if(i=='.'): c+=1 print(c+1)
[ "noreply@github.com" ]
YaminiNarayanan-359.noreply@github.com
86923e5515d4034637037ce44e2bb1e57b57d428
c212e6cb93fb2a97be21602bb55865d8da4c743c
/test.py
c8ab17d3d5deac0af34a8384cb47d7e290c178bc
[ "MIT" ]
permissive
cycoe/PhotoCropper
90194c7589c81c642f1e1e81f3830614bc455045
803197461890a419655411c7bba68a50c811236a
refs/heads/master
2020-06-20T13:43:56.410453
2019-07-16T07:15:10
2019-07-16T07:15:10
197,140,511
0
0
null
null
null
null
UTF-8
Python
false
false
595
py
import sys from PyQt5.QtWidgets import QMainWindow, QApplication, QLabel from PyQt5.QtGui import QPainter, QPen, QColor, QPixmap from PyQt5.QtCore import QRectF from modules.PhotoCropWidget import PhotoCropWidget def main(): application = QApplication(sys.argv) window = QMainWindow() cropWidget = PhotoCropWidget() cropWidget.setAutoFillBackground(True) cropWidget.setScaledContents(True) cropWidget.setPixmap(QPixmap('openSUSE.jpg')) window.setCentralWidget(cropWidget) window.show() sys.exit(application.exec_()) if __name__ == "__main__": main()
[ "cycoe@cycoe.cc" ]
cycoe@cycoe.cc
a1e0784fc7f9fc956515af6e1e29a56ca0cc9802
828010b5d41e11bf973570ba6e70ed5d50ff11d1
/ros/src/tl_detector/light_classification/tl_classifier.py
4c4696bb586d716340e334d5d1f0825ae879f29a
[ "MIT" ]
permissive
cipher982/CarND-Capstone
12840bd18da46bf076fa70e051a71c55573a0ee2
57c607be6f38377d4e2de280c55b41cc7bceb475
refs/heads/master
2022-12-04T20:38:13.467072
2021-03-29T21:00:37
2021-03-29T21:00:37
126,865,571
0
0
MIT
2022-11-22T07:37:45
2018-03-26T17:34:33
CMake
UTF-8
Python
false
false
1,724
py
from styx_msgs.msg import TrafficLight import tensorflow as tf import os import numpy as np import rospy import time from functools import partial import cv2 from random import randint from keras.models import load_model DIR_PATH = os.path.dirname(os.path.realpath(__file__)) class TLClassifier(object): def __init__(self): # load the graph self.model = load_model(DIR_PATH + '/sim-classifier-8.h5') self.model._make_predict_function() self.graph = tf.get_default_graph() # current light default is unknown self.light_state = TrafficLight.UNKNOWN def get_classification(self, image): """Determines the color of the traffic light in the image Args: image (cv::Mat): image containing the traffic light Returns: int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ # prediction key classification_tl_key = {0: TrafficLight.RED, 1: TrafficLight.YELLOW, 2: TrafficLight.GREEN, 4: TrafficLight.UNKNOWN} resized = cv2.resize(image, (80,60))/255. test_img = np.array([resized]) #rospy.logwarn("resized cam image, saving. . .") timeNow = time.time() #cv2.imwrite('home/student/Pictures/IMG_{0}.png'.format(timeNow),resized) # run the prediction with self.graph.as_default(): model_predict = self.model.predict(test_img) if model_predict[0][np.argmax(model_predict[0])] > 0.5: self.light_state = classification_tl_key[np.argmax(model_predict[0])] return self.light_state
[ "David010@gmail.com" ]
David010@gmail.com
417d6ce3366d6e4a391222a6e79120a32879863e
99d8895888ab093b06a3ba03594f2a74cb97758f
/Scripts/Python_HSE/WEEK5/homework/solution29.py
a9baf1df6c718721b2a1a9084fa949635e42fb16
[]
no_license
AlekseyAbakumov/PythonLearn
4c35efeb0996f4a3221f228b57e30d595bb62637
fdd2cc9bdaa0fac3d582ddd5f2fbf9018218bda5
refs/heads/master
2023-03-23T20:12:42.603817
2021-03-16T18:22:48
2021-03-16T18:22:48
265,309,409
1
1
null
null
null
null
UTF-8
Python
false
false
147
py
inputList = list(map(int, input().split())) x = int(input()) position = 1 for i in inputList: if i >= x: position += 1 print(position)
[ "a-starostin@mail.ru" ]
a-starostin@mail.ru
7856cc265933b86e74d14b023214f67266ca0dd8
1539f86f91ce0ee6150fba7363976d32cd37ece2
/codes_auto/1515.find-the-minimum-number-of-fibonacci-numbers-whose-sum-is-k.py
eb705e5d422dd5c4f6100ee291d790b102a1d947
[]
no_license
zhpbo/LeetCode_By_Python
fdee0a8b7ea7ed1f61a99f0041e1c748e50f138c
0017b9db891d36789116f7299d32510a373e68da
refs/heads/master
2023-07-09T15:38:45.003002
2020-08-18T07:04:51
2020-08-18T07:04:51
281,598,190
0
0
null
2021-08-18T04:58:39
2020-07-22T06:47:05
null
UTF-8
Python
false
false
496
py
# # @lc app=leetcode.cn id=1515 lang=python3 # # [1515] find-the-minimum-number-of-fibonacci-numbers-whose-sum-is-k # class Solution: def findMinFibonacciNumbers(self, k: int) -> int: fib = [1, 1] while fib[-1] <= k: fib.append(fib[-1] + fib[-2]) ans = 0 while k > 0 and fib[-1] > 1: if k >= fib[-1]: ans += 1 k -= fib[-1] else: fib.pop() return ans + k # @lc code=end
[ "liuyang0001@outlook.com" ]
liuyang0001@outlook.com
85312b3bf85afc36470393b4f7cb7f0d7506f189
e29faa10be00e8c839bf909922ace176b05826bb
/misc/05_implementing_different_layers.py
0307366f059cefe23d3e1f8960ef4b0fd039b903
[]
no_license
weiyinfu/learnTensorflow
666e46259da435c19c06f3abbaa8a00ae37431ce
98cb7a978dd682ec8f651f9da57e2f23d47c21a4
refs/heads/master
2022-01-01T08:10:40.215554
2021-12-26T06:24:40
2021-12-26T06:24:40
145,659,381
0
0
null
null
null
null
UTF-8
Python
false
false
10,821
py
# Implementing Different Layers #--------------------------------------- # # We will illustrate how to use different types # of layers in TensorFlow # # The layers of interest are: # (1) Convolutional Layer # (2) Activation Layer # (3) Max-Pool Layer # (4) Fully Connected Layer # # We will generate two different data sets for this # script, a 1-D data set (row of data) and # a 2-D data set (similar to picture) import tensorflow as tf import matplotlib.pyplot as plt import csv import os import random import numpy as np import random from tensorflow.python.framework import ops ops.reset_default_graph() #---------------------------------------------------| #-------------------1D-data-------------------------| #---------------------------------------------------| # Create graph session ops.reset_default_graph() sess = tf.Session() # parameters for the run data_size = 25 conv_size = 5 maxpool_size = 5 stride_size = 1 # ensure reproducibility seed=13 np.random.seed(seed) tf.set_random_seed(seed) # Generate 1D data data_1d = np.random.normal(size=data_size) # Placeholder x_input_1d = tf.placeholder(dtype=tf.float32, shape=[data_size]) #--------Convolution-------- def conv_layer_1d(input_1d, my_filter,stride): # TensorFlow's 'conv2d()' function only works with 4D arrays: # [batch#, width, height, channels], we have 1 batch, and # width = 1, but height = the length of the input, and 1 channel. # So next we create the 4D array by inserting dimension 1's. input_2d = tf.expand_dims(input_1d, 0) input_3d = tf.expand_dims(input_2d, 0) input_4d = tf.expand_dims(input_3d, 3) # Perform convolution with stride = 1, if we wanted to increase the stride, # to say '2', then strides=[1,1,2,1] convolution_output = tf.nn.conv2d(input_4d, filter=my_filter, strides=[1,1,stride,1], padding="VALID") # Get rid of extra dimensions conv_output_1d = tf.squeeze(convolution_output) return(conv_output_1d) # Create filter for convolution. my_filter = tf.Variable(tf.random_normal(shape=[1,conv_size,1,1])) # Create convolution layer my_convolution_output = conv_layer_1d(x_input_1d, my_filter,stride=stride_size) #--------Activation-------- def activation(input_1d): return(tf.nn.relu(input_1d)) # Create activation layer my_activation_output = activation(my_convolution_output) #--------Max Pool-------- def max_pool(input_1d, width,stride): # Just like 'conv2d()' above, max_pool() works with 4D arrays. # [batch_size=1, width=1, height=num_input, channels=1] input_2d = tf.expand_dims(input_1d, 0) input_3d = tf.expand_dims(input_2d, 0) input_4d = tf.expand_dims(input_3d, 3) # Perform the max pooling with strides = [1,1,1,1] # If we wanted to increase the stride on our data dimension, say by # a factor of '2', we put strides = [1, 1, 2, 1] # We will also need to specify the width of the max-window ('width') pool_output = tf.nn.max_pool(input_4d, ksize=[1, 1, width, 1], strides=[1, 1, stride, 1], padding='VALID') # Get rid of extra dimensions pool_output_1d = tf.squeeze(pool_output) return(pool_output_1d) my_maxpool_output = max_pool(my_activation_output, width=maxpool_size,stride=stride_size) #--------Fully Connected-------- def fully_connected(input_layer, num_outputs): # First we find the needed shape of the multiplication weight matrix: # The dimension will be (length of input) by (num_outputs) weight_shape = tf.squeeze(tf.stack([tf.shape(input_layer),[num_outputs]])) # Initialize such weight weight = tf.random_normal(weight_shape, stddev=0.1) # Initialize the bias bias = tf.random_normal(shape=[num_outputs]) # Make the 1D input array into a 2D array for matrix multiplication input_layer_2d = tf.expand_dims(input_layer, 0) # Perform the matrix multiplication and add the bias full_output = tf.add(tf.matmul(input_layer_2d, weight), bias) # Get rid of extra dimensions full_output_1d = tf.squeeze(full_output) return(full_output_1d) my_full_output = fully_connected(my_maxpool_output, 5) # Run graph # Initialize Variables init = tf.global_variables_initializer() sess.run(init) feed_dict = {x_input_1d: data_1d} print('>>>> 1D Data <<<<') # Convolution Output print('Input = array of length %d' % (x_input_1d.shape.as_list()[0])) print('Convolution w/ filter, length = %d, stride size = %d, results in an array of length %d:' % (conv_size,stride_size,my_convolution_output.shape.as_list()[0])) print(sess.run(my_convolution_output, feed_dict=feed_dict)) # Activation Output print('\nInput = above array of length %d' % (my_convolution_output.shape.as_list()[0])) print('ReLU element wise returns an array of length %d:' % (my_activation_output.shape.as_list()[0])) print(sess.run(my_activation_output, feed_dict=feed_dict)) # Max Pool Output print('\nInput = above array of length %d' % (my_activation_output.shape.as_list()[0])) print('MaxPool, window length = %d, stride size = %d, results in the array of length %d' % (maxpool_size,stride_size,my_maxpool_output.shape.as_list()[0])) print(sess.run(my_maxpool_output, feed_dict=feed_dict)) # Fully Connected Output print('\nInput = above array of length %d' % (my_maxpool_output.shape.as_list()[0])) print('Fully connected layer on all 4 rows with %d outputs:' % (my_full_output.shape.as_list()[0])) print(sess.run(my_full_output, feed_dict=feed_dict)) #---------------------------------------------------| #-------------------2D-data-------------------------| #---------------------------------------------------| # Reset Graph ops.reset_default_graph() sess = tf.Session() # parameters for the run row_size = 10 col_size = 10 conv_size = 2 conv_stride_size = 2 maxpool_size = 2 maxpool_stride_size = 1 # ensure reproducibility seed=13 np.random.seed(seed) tf.set_random_seed(seed) #Generate 2D data data_size = [row_size,col_size] data_2d = np.random.normal(size=data_size) #--------Placeholder-------- x_input_2d = tf.placeholder(dtype=tf.float32, shape=data_size) # Convolution def conv_layer_2d(input_2d, my_filter,stride_size): # TensorFlow's 'conv2d()' function only works with 4D arrays: # [batch#, width, height, channels], we have 1 batch, and # 1 channel, but we do have width AND height this time. # So next we create the 4D array by inserting dimension 1's. input_3d = tf.expand_dims(input_2d, 0) input_4d = tf.expand_dims(input_3d, 3) # Note the stride difference below! convolution_output = tf.nn.conv2d(input_4d, filter=my_filter, strides=[1,stride_size,stride_size,1], padding="VALID") # Get rid of unnecessary dimensions conv_output_2d = tf.squeeze(convolution_output) return(conv_output_2d) # Create Convolutional Filter my_filter = tf.Variable(tf.random_normal(shape=[conv_size,conv_size,1,1])) # Create Convolutional Layer my_convolution_output = conv_layer_2d(x_input_2d, my_filter,stride_size=conv_stride_size) #--------Activation-------- def activation(input_1d): return(tf.nn.relu(input_1d)) # Create Activation Layer my_activation_output = activation(my_convolution_output) #--------Max Pool-------- def max_pool(input_2d, width, height,stride): # Just like 'conv2d()' above, max_pool() works with 4D arrays. # [batch_size=1, width=given, height=given, channels=1] input_3d = tf.expand_dims(input_2d, 0) input_4d = tf.expand_dims(input_3d, 3) # Perform the max pooling with strides = [1,1,1,1] # If we wanted to increase the stride on our data dimension, say by # a factor of '2', we put strides = [1, 2, 2, 1] pool_output = tf.nn.max_pool(input_4d, ksize=[1, height, width, 1], strides=[1, stride, stride, 1], padding='VALID') # Get rid of unnecessary dimensions pool_output_2d = tf.squeeze(pool_output) return(pool_output_2d) # Create Max-Pool Layer my_maxpool_output = max_pool(my_activation_output, width=maxpool_size, height=maxpool_size,stride=maxpool_stride_size) #--------Fully Connected-------- def fully_connected(input_layer, num_outputs): # In order to connect our whole W byH 2d array, we first flatten it out to # a W times H 1D array. flat_input = tf.reshape(input_layer, [-1]) # We then find out how long it is, and create an array for the shape of # the multiplication weight = (WxH) by (num_outputs) weight_shape = tf.squeeze(tf.stack([tf.shape(flat_input),[num_outputs]])) # Initialize the weight weight = tf.random_normal(weight_shape, stddev=0.1) # Initialize the bias bias = tf.random_normal(shape=[num_outputs]) # Now make the flat 1D array into a 2D array for multiplication input_2d = tf.expand_dims(flat_input, 0) # Multiply and add the bias full_output = tf.add(tf.matmul(input_2d, weight), bias) # Get rid of extra dimension full_output_2d = tf.squeeze(full_output) return(full_output_2d) # Create Fully Connected Layer my_full_output = fully_connected(my_maxpool_output, 5) # Run graph # Initialize Variables init = tf.global_variables_initializer() sess.run(init) feed_dict = {x_input_2d: data_2d} print('\n>>>> 2D Data <<<<') # Convolution Output print('Input = %s array' % (x_input_2d.shape.as_list())) print('%s Convolution, stride size = [%d, %d] , results in the %s array' % (my_filter.get_shape().as_list()[:2],conv_stride_size,conv_stride_size,my_convolution_output.shape.as_list())) print(sess.run(my_convolution_output, feed_dict=feed_dict)) # Activation Output print('\nInput = the above %s array' % (my_convolution_output.shape.as_list())) print('ReLU element wise returns the %s array' % (my_activation_output.shape.as_list())) print(sess.run(my_activation_output, feed_dict=feed_dict)) # Max Pool Output print('\nInput = the above %s array' % (my_activation_output.shape.as_list())) print('MaxPool, stride size = [%d, %d], results in %s array' % (maxpool_stride_size,maxpool_stride_size,my_maxpool_output.shape.as_list())) print(sess.run(my_maxpool_output, feed_dict=feed_dict)) # Fully Connected Output print('\nInput = the above %s array' % (my_maxpool_output.shape.as_list())) print('Fully connected layer on all %d rows results in %s outputs:' % (my_maxpool_output.shape.as_list()[0],my_full_output.shape.as_list()[0])) print(sess.run(my_full_output, feed_dict=feed_dict))
[ "weiyinfu.weiyinfu@bytedance.com" ]
weiyinfu.weiyinfu@bytedance.com
3ff8152a850d6ffbc613fa30ea6cf48730ec12db
cc528121b8e56e6cac317f6b918ec52691f03d67
/app.py
f8761da1a61678f27b3cc47001ce33ccdde05c53
[]
no_license
AhmosGUC/fyyur
313b3533964efa2efcb3d12ed6f2a516add3348a
d33ecf47cd020e9d0c4e2edb139b3d5795fda465
refs/heads/master
2023-02-15T22:40:35.700046
2021-01-14T12:24:11
2021-01-14T12:24:11
326,627,514
0
0
null
null
null
null
UTF-8
Python
false
false
26,646
py
#----------------------------------------------------------------------------# # Imports #----------------------------------------------------------------------------# import sys import json import dateutil.parser import babel from flask import Flask, render_template, request, Response, flash, redirect, url_for from flask_moment import Moment from flask_sqlalchemy import SQLAlchemy import logging from logging import Formatter, FileHandler from flask_wtf import Form from forms import * from flask_migrate import Migrate #----------------------------------------------------------------------------# # App Config. #----------------------------------------------------------------------------# app = Flask(__name__) moment = Moment(app) app.config.from_object('config') db = SQLAlchemy(app) migrate = Migrate(app, db) # TODODONE: connect to a local postgresql database #----------------------------------------------------------------------------# # Models. #----------------------------------------------------------------------------# # shows_table = db.Table('shows', # db.Column('venue_id', db.Integer, db.ForeignKey( # 'venues.id'), primary_key=True), # db.Column('artist_id', db.Integer, db.ForeignKey( # 'artists.id'), primary_key=True), # db.Column('start_time', db.DateTime) # ) class Show(db.Model): __tablename__ = 'shows' id = db.Column(db.Integer, primary_key=True, autoincrement=True) venue_id = db.Column(db.Integer, db.ForeignKey( 'venues.id', ondelete="CASCADE"), nullable=False) artist_id = db.Column(db.Integer, db.ForeignKey( 'artists.id', ondelete="CASCADE"), nullable=False) start_time = db.Column(db.DateTime, nullable=False) artist = db.relationship("Artist", back_populates="venues") venue = db.relationship("Venue", back_populates="artists") def __repr__(self): return f'<Show {self.id},{self.venue_id}, {self.artist_id},{self.start_time}>' class Venue(db.Model): __tablename__ = 'venues' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String, nullable=False) city = db.Column(db.String(120), nullable=False) state = db.Column(db.String(120), nullable=False) address = db.Column(db.String(120), nullable=False) phone = db.Column(db.String(120), nullable=False) genres = db.Column(db.String(120)) image_link = db.Column(db.String(500)) facebook_link = db.Column(db.String(120)) website_link = db.Column(db.String(120)) seeking_talent = db.Column(db.Boolean, nullable=False) seeking_description = db.Column(db.String(120)) artists = db.relationship( "Show", back_populates="venue", cascade="all, delete") def __repr__(self): return f'<Venue {self.id}, {self.name},{self.state}>' # TODODONE: implement any missing fields, as a database migration using Flask-Migrate class Artist(db.Model): __tablename__ = 'artists' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String, nullable=False) city = db.Column(db.String(120), nullable=False) state = db.Column(db.String(120), nullable=False) phone = db.Column(db.String(120), nullable=False) genres = db.Column(db.String(120)) image_link = db.Column(db.String(500)) facebook_link = db.Column(db.String(120)) website_link = db.Column(db.String(120)) seeking_venue = db.Column(db.Boolean, nullable=False) seeking_description = db.Column(db.String(120)) available_days = db.Column(db.Integer, nullable=False) venues = db.relationship( "Show", back_populates="artist", cascade="all, delete") # TODODONE: implement any missing fields, as a database migration using Flask-Migrate def __repr__(self): return f'<Artist {self.id}, {self.name},{self.state}>' # TODODONE Implement Show and Artist models, and complete all model relationships and properties, as a database migration. #----------------------------------------------------------------------------# # Filters. #----------------------------------------------------------------------------# def format_datetime(value, format='medium'): value = str(value) date = dateutil.parser.parse(value) if format == 'full': format = "EEEE MMMM, d, y 'at' h:mma" elif format == 'medium': format = "EE MM, dd, y h:mma" return babel.dates.format_datetime(date, format) app.jinja_env.filters['datetime'] = format_datetime #----------------------------------------------------------------------------# # misc func. #----------------------------------------------------------------------------# def days_to_num(lst): days = 0 S = 1 << 6 Su = 1 << 5 M = 1 << 4 T = 1 << 3 W = 1 << 2 Th = 1 << 1 F = 1 for d in lst: if d == "Saturday": days = days | S elif d == "Sunday": days = days | Su elif d == "Monday": days = days | M elif d == "Tuesday": days = days | T elif d == "Wednesday": days = days | W elif d == "Thursday": days = days | Th elif d == "Friday": days = days | F return days def num_to_days(x): # 0b 0 0 0 0 0 0 0 0 # S S M T W T F # b = bin(x) b = x S = 1 << 6 Su = 1 << 5 M = 1 << 4 T = 1 << 3 W = 1 << 2 Th = 1 << 1 F = 1 days = [] if b & S > 0: days.append("Saturday") if b & Su > 0: days.append("Sunday") if b & M > 0: days.append("Monday") if b & T > 0: days.append("Tuesday") if b & W > 0: days.append("Wednesday") if b & Th > 0: days.append("Thursday") if b & F > 0: days.append("Friday") return days # now = datetime.datetime.now() # print(now.strftime("%A")) # print(num_to_days(int('001100100', 2))) #----------------------------------------------------------------------------# # Controllers. #----------------------------------------------------------------------------# @app.route('/') def index(): topNewVns = db.session.query(Venue.id, Venue.name).order_by( Venue.id.desc()).limit(10).all() topNewArts = db.session.query(Artist.id, Artist.name).order_by( Artist.id.desc()).limit(10).all() artists = [] venues = [] for v in topNewVns: venues.append({"id": v.id, "name": v.name}) for a in topNewArts: artists.append({"id": a.id, "name": a.name}) return render_template('pages/home.html', artists=artists, venues=venues) # Venues # ---------------------------------------------------------------- @app.route('/venues') def venues(): # TODODONE: replace with real venues data. # num_shows should be aggregated based on number of upcoming shows per venue. # data = [{ # "city": "San Francisco", # "state": "CA", # "venues": [{ # "id": 1, # "name": "The Musical Hop", # "num_upcoming_shows": 0, # }, { # "id": 3, # "name": "Park Square Live Music & Coffee", # "num_upcoming_shows": 1, # }] # }, { # "city": "New York", # "state": "NY", # "venues": [{ # "id": 2, # "name": "The Dueling Pianos Bar", # "num_upcoming_shows": 0, # }] # }] stateNcity = db.session.query(Venue.state, Venue.city).distinct().all() data = [] for pair in stateNcity: elm = {"state": pair[0], "city": pair[1], "venues": []} data.append(elm) allVenues = Venue.query.all() for elm in data: for v in allVenues: if elm["state"] == v.state and elm["city"] == v.city: num_show = Show.query.filter(Show.venue_id == v.id).filter( Show.start_time > datetime.now()).count() print(num_show) details = {"id": v.id, "name": v.name, "num_upcoming_shows": num_show} elm["venues"].append(details) return render_template('pages/venues.html', areas=data) @app.route('/venues/search', methods=['POST']) def search_venues(): # TODODONE: implement search on artists with partial string search. Ensure it is case-insensitive. # seach for Hop should return "The Musical Hop". # search for "Music" should return "The Musical Hop" and "Park Square Live Music & Coffee" search_term = request.form.get('search_term', '') search_term = '%'+search_term+'%' res = Venue.query.filter(Venue.name.ilike(search_term)).all() data = [] for r in res: tmp = {"id": r.id, "name": r.name} data.append(tmp) response = { "count": len(res), "data": data } return render_template('pages/search_venues.html', results=response, search_term=request.form.get('search_term', '')) @app.route('/venues/<int:venue_id>') def show_venue(venue_id): # shows the venue page with the given venue_id # TODODONE: replace with real venue data from the venues table, using venue_id v = Venue.query.get(venue_id) joinQry = db.session.query(Show, Artist).filter(Show.venue_id == v.id).join( Artist, Show.artist_id == Artist.id).all() past_shows = [] upcoming_shows = [] for a in joinQry: tmpArtist = { "artist_id": a[1].id, "artist_name": a[1].name, "artist_image_link": a[1].image_link, "start_time": a[0].start_time } if tmpArtist["start_time"] < datetime.now(): past_shows.append(tmpArtist) else: upcoming_shows.append(tmpArtist) data = { "id": v.id, "name": v.name, "genres": v.genres.split(','), "address": v.address, "city": v.city, "state": v.state, "phone": v.phone, "website": v.website_link, "facebook_link": v.facebook_link, "seeking_talent": v.seeking_talent, "seeking_description": v.seeking_description, "image_link": v.image_link, "past_shows": past_shows, "upcoming_shows": upcoming_shows, "past_shows_count": len(past_shows), "upcoming_shows_count": len(upcoming_shows), } return render_template('pages/show_venue.html', venue=data) # Create Venue # ---------------------------------------------------------------- @app.route('/venues/create', methods=['GET']) def create_venue_form(): form = VenueForm() return render_template('forms/new_venue.html', form=form) @app.route('/venues/create', methods=['POST']) def create_venue_submission(): # TODODONE: insert form data as a new Venue record in the db, instead # TODODONE: modify data to be the data object returned from db insertion error = False try: f = request.form vf = VenueForm(f) if vf.validate_on_submit(): newVenue = Venue() newVenue.name = f.get('name') newVenue.state = f.get('state') newVenue.city = f.get('city') newVenue.address = f.get('address') newVenue.phone = f.get('phone') newVenue.genres = ','.join(request.form.getlist("genres")) newVenue.seeking_talent = True if f.get( 'seeking_talent', 'y') == 'y' else False newVenue.seeking_description = f.get('seeking_description', '') newVenue.facebook_link = f.get('facebook_link', None) newVenue.website_link = f.get('website_link', None) newVenue.image_link = f.get('image_link', None) db.session.add(newVenue) db.session.commit() else: for e in vf: print(e.errors) return render_template('forms/new_venue.html', form=vf) except: db.session.rollback() finally: db.session.close() if error: # TODODONE: on unsuccessful db insert, flash an error instead. flash('An error occurred. Venue ' + request.form['name'] + ' could not be listed.') else: # on successful db insert, flash success flash('Venue ' + request.form['name'] + ' was successfully listed!') # e.g., flash('An error occurred. Venue ' + data.name + ' could not be listed.') # see: http://flask.pocoo.org/docs/1.0/patterns/flashing/ return render_template('pages/home.html') @app.route('/venues/<venue_id>', methods=['DELETE']) def delete_venue(venue_id): # TODODONE: Complete this endpoint for taking a venue_id, and using # SQLAlchemy ORM to delete a record. Handle cases where the session commit could fail. try: Venue.query.filter_by(id=venue_id).delete() db.session.commit() except: db.session.rollback() print(sys.exc_info()) finally: db.session.close() # BONUS CHALLENGE: Implement a button to delete a Venue on a Venue Page, have it so that # clicking that button delete it from the db then redirect the user to the homepage return redirect(url_for('index')) # Artists # ---------------------------------------------------------------- @app.route('/artists') def artists(): # TODODONE: replace with real data returned from querying the database allArtist = db.session.query(Artist.id, Artist.name).all() data = allArtist # data = [{ # "id": 4, # "name": "Guns N Petals", # }, { # "id": 5, # "name": "Matt Quevedo", # }, { # "id": 6, # "name": "The Wild Sax Band", # }] return render_template('pages/artists.html', artists=data) @app.route('/artists/search', methods=['POST']) def search_artists(): # TODODONE: implement search on artists with partial string search. Ensure it is case-insensitive. # seach for "A" should return "Guns N Petals", "Matt Quevado", and "The Wild Sax Band". # search for "band" should return "The Wild Sax Band". search_term = request.form.get('search_term', '') search_term = '%'+search_term+'%' res = Artist.query.filter(Artist.name.ilike(search_term)).all() data = [] for r in res: tmp = {"id": r.id, "name": r.name} data.append(tmp) response = { "count": len(res), "data": data } response = { "count": len(res), "data": data } return render_template('pages/search_artists.html', results=response, search_term=request.form.get('search_term', '')) @app.route('/artists/<int:artist_id>') def show_artist(artist_id): # shows the venue page with the given venue_id # TODODONE: replace with real venue data from the venues table, using venue_id a = Artist.query.get(artist_id) joinQry = db.session.query(Show, Venue).filter(Show.artist_id == a.id).join( Venue, Show.venue_id == Venue.id).all() past_shows = [] upcoming_shows = [] for v in joinQry: tmpVenue = { "venue_id": v[1].id, "venue_name": v[1].name, "venue_image_link": v[1].image_link, "start_time": v[0].start_time } if tmpVenue["start_time"] < datetime.now(): past_shows.append(tmpVenue) else: upcoming_shows.append(tmpVenue) data = { "id": a.id, "name": a.name, "genres": a.genres.split(','), "available_days": num_to_days(a.available_days), "city": a.city, "state": a.state, "phone": a.phone, "website": a.website_link, "facebook_link": a.facebook_link, "seeking_venue": a.seeking_venue, "seeking_description": a.seeking_description, "image_link": a.image_link, "past_shows": past_shows, "upcoming_shows": upcoming_shows, "past_shows_count": len(past_shows), "upcoming_shows_count": len(upcoming_shows), } return render_template('pages/show_artist.html', artist=data) # Update # ---------------------------------------------------------------- @app.route('/artists/<int:artist_id>/edit', methods=['GET']) def edit_artist(artist_id): a = Artist.query.get(artist_id) artist = { "id": a.id, "name": a.name, "genres": a.genres.split(','), "available_days": num_to_days(a.available_days), "city": a.city, "state": a.state, "phone": a.phone, "website_link": a.website_link, "facebook_link": a.facebook_link, "seeking_venue": a.seeking_venue, "seeking_description": a.seeking_description, "image_link": a.image_link } form = ArtistForm(data=artist) # TODODONE: populate form with fields from artist with ID <artist_id> return render_template('forms/edit_artist.html', form=form, artist=artist) @app.route('/artists/<int:artist_id>/edit', methods=['POST']) def edit_artist_submission(artist_id): # TODODONE: take values from the form submitted, and update existing # artist record with ID <artist_id> using the new attributes try: f = request.form a = Artist.query.get(artist_id) af = ArtistForm(f) if af.validate_on_submit(): a.name = f.get('name') a.city = f.get('city') a.state = f.get('state') a.phone = f.get('phone') a.genres = ','.join(request.form.getlist("genres")) a.available_days = days_to_num( request.form.getlist("available_days")) a.seeking_venue = True if f.get( 'seeking_venue', 'n') == 'y' else False a.seeking_description = f.get('seeking_description', "") a.facebook_link = f.get('facebook_link', None) a.website_link = f.get('website_link', None) a.image_link = f.get('image_link', None) db.session.commit() else: return render_template('forms/edit_artist.html', form=af, artist=a) except: db.session.rollback() finally: db.session.close() return redirect(url_for('show_artist', artist_id=artist_id)) @app.route('/venues/<int:venue_id>/edit', methods=['GET']) def edit_venue(venue_id): v = Venue.query.get(venue_id) venue = { "id": v.id, "name": v.name, "genres": v.genres.split(','), "city": v.city, "state": v.state, "address": v.address, "phone": v.phone, "website_link": v.website_link, "facebook_link": v.facebook_link, "seeking_talent": v.seeking_talent, "seeking_description": v.seeking_description, "image_link": v.image_link } form = VenueForm(data=venue) # TODODONE: populate form with values from venue with ID <venue_id> return render_template('forms/edit_venue.html', form=form, venue=venue) @app.route('/venues/<int:venue_id>/edit', methods=['POST']) def edit_venue_submission(venue_id): # TODODONE: take values from the form submitted, and update existing # venue record with ID <venue_id> using the new attributes try: f = request.form vf = VenueForm(f) v = Venue.query.get(venue_id) if vf.validate_on_submit(): v.name = f.get('name') v.city = f.get('city') v.state = f.get('state') v.phone = f.get('phone') v.address = f.get('address') v.genres = ','.join(request.form.getlist("genres")) v.seeking_talent = True if f.get( 'seeking_talent', 'n') == 'y' else False v.seeking_description = f.get('seeking_description', "") v.facebook_link = f.get('facebook_link', None) v.website_link = f.get('website_link', None) v.image_link = f.get('image_link', None) db.session.commit() else: return render_template('forms/edit_venue.html', form=vf, venue=v) except: print(sys.exc_info()) db.session.rollback() finally: db.session.close() return redirect(url_for('show_venue', venue_id=venue_id)) # Create Artist # ---------------------------------------------------------------- @app.route('/artists/create', methods=['GET']) def create_artist_form(): form = ArtistForm() return render_template('forms/new_artist.html', form=form) @app.route('/artists/create', methods=['POST']) def create_artist_submission(): # called upon submitting the new artist listing form # TODODONE: insert form data as a new Venue record in the db, instead # TODODONE: modify data to be the data object returned from db insertion error = False try: f = request.form af = ArtistForm(f) if af.validate_on_submit(): newArtist = Artist() newArtist.name = f.get('name') newArtist.city = f.get('city') newArtist.state = f.get('state') newArtist.phone = f.get('phone') newArtist.genres = ','.join(request.form.getlist("genres")) newArtist.available_days = days_to_num( request.form.getlist("available_days")) newArtist.seeking_venue = True if f.get( 'seeking_venue', 'n') == 'y' else False newArtist.seeking_description = f.get('seeking_description', "") newArtist.facebook_link = f.get('facebook_link', None) newArtist.website_link = f.get('website_link', None) newArtist.image_link = f.get('image_link', None) db.session.add(newArtist) db.session.commit() else: return render_template('forms/new_artist.html', form=af) except: db.session.rollback() error = True finally: db.session.close() if error: flash('An error occurred. Artist ' + request.form['name'] + ' could not be listed.') else: # on successful db insert, flash success flash('Artist ' + request.form['name'] + ' was successfully listed!') # TODODONE: on unsuccessful db insert, flash an error instead. # e.g., flash('An error occurred. Artist ' + data.name + ' could not be listed.') return render_template('pages/home.html') # Shows # ---------------------------------------------------------------- @app.route('/shows') def shows(): # displays list of shows at /shows # TODODONE: replace with real venues data. # num_shows should be aggregated based on number of upcoming shows per venue. joinQry = db.session.query(Show, Venue, Artist).join( Venue, Show.venue_id == Venue.id).join( Artist, Show.artist_id == Artist.id).order_by(Show.start_time).all() past_shows = [] next_shows = [] for s in joinQry: tmpShow = { "venue_id": s[1].id, "venue_name": s[1].name, "artist_id": s[2].id, "artist_name": s[2].name, "artist_image_link": s[2].image_link, "start_time": s[0].start_time } if(tmpShow["start_time"] > datetime.now()): next_shows.append(tmpShow) else: past_shows.append(tmpShow) return render_template('pages/shows.html', past_shows=past_shows, next_shows=next_shows) @app.route('/shows/create') def create_shows(): # renders form. do not touch. form = ShowForm() return render_template('forms/new_show.html', form=form, error=[]) @app.route('/shows/create', methods=['POST']) def create_show_submission(): # called to create new shows in the db, upon submitting new show listing form # TODODONE: insert form data as a new Show record in the db, instead error = False errors = [] try: f = request.form sf = ShowForm(f) if sf.validate_on_submit(): artist_id = f.get("artist_id") venue_id = f.get("venue_id") a = Artist.query.get(artist_id) v = Venue.query.get(venue_id) start_time = f.get('start_time') x = datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S') if a is None: errors.append('No artist with this id') if v is None: errors.append('No venue with this id') if a: day = x.strftime("%A") days = num_to_days(a.available_days) if not day in days: errors.append('Artist is not available this day') if len(errors) == 0: newShow = Show(start_time=start_time) newShow.artist = a newShow.venue = v db.session.add(newShow) db.session.commit() # on successful db insert, flash success flash('Show was successfully listed!') else: error = True else: error = True for e in sf: for err in e.errors: errors.append(err) if error: print(errors) return render_template('forms/new_show.html', form=sf, all_errors=errors) except: error = True print(sys.exc_info()) db.session.rollback() finally: db.session.close() if error: flash('Internal Server Error try again later!') # TODODONE: on unsuccessful db insert, flash an error instead. # e.g., flash('An error occurred. Show could not be listed.') # see: http://flask.pocoo.org/docs/1.0/patterns/flashing/ return render_template('pages/home.html') @app.errorhandler(404) def not_found_error(error): return render_template('errors/404.html'), 404 @app.errorhandler(500) def server_error(error): return render_template('errors/500.html'), 500 if not app.debug: file_handler = FileHandler('error.log') file_handler.setFormatter( Formatter( '%(asctime)s %(levelname)s: %(message)s [in %(pathname)s:%(lineno)d]') ) app.logger.setLevel(logging.INFO) file_handler.setLevel(logging.INFO) app.logger.addHandler(file_handler) app.logger.info('errors') #----------------------------------------------------------------------------# # Launch. #----------------------------------------------------------------------------# # Default port: if __name__ == '__main__': app.run() # Or specify port manually: ''' if __name__ == '__main__': port = int(os.environ.get('PORT', 5000)) app.run(host='0.0.0.0', port=port) '''
[ "hesham.ahmos.y@gmail.com" ]
hesham.ahmos.y@gmail.com
4cc8dcf83aa34c2bb350263fc43c9198dcd14932
b4df53f3156423fb5f5f371d674f2d03c8d39cd8
/HW03/distortion-removal.py
4c8536053eb388845df75772520ce24f0da38ab9
[]
no_license
lifangda01/ECE661-ComputerVision
c3d7dd2845c00e47ca4237941fbda02733903136
ce7a2bd677c8b79646adcdfc3d5292c78d8a9393
refs/heads/master
2020-09-24T03:36:03.027085
2017-01-23T22:04:28
2017-01-23T22:04:28
67,304,969
7
1
null
null
null
null
UTF-8
Python
false
false
8,788
py
#!/usr/bin/python import numpy as np import cv2 import matplotlib.pyplot as plt from matplotlib.image import AxesImage RESIZE_RATIO = 1.0 BACKGROUND_COLOR = (0, 0, 0) # line(1,2) is parallel to line(3,4) IMAGE_HC_A = [(190,120), (69,540), (236,108), (120,546)] IMAGE_HC_A_1 = [(287,229), (280,250), (332,220), (326,255)] FLATIRON_PAIRS = [(157,98), (136,165), (157,98), (185,117), (190,120), (69,540), (190,120), (236,108), (332,220), (287,229), (332,220), (326,255), (391,414), (302,416), (391,414), (408,312), (354,364), (322,320), (354,364), (302,416)] def resize_image_by_ratio(image, ratio): ''' Resize an image by a given ratio, used for faster debug. ''' return cv2.resize(image, (int(image.shape[1]*ratio),int(image.shape[0]*ratio))) def get_bounding_box_after_transformation(image, H): ''' Given an image and the transformation matrix to be applied, calculate the bounding box of the image after transformation. @image: image to transform @H: transformation matrix to be applied @return: (num_row, num_col, off_row, off_col) ''' (h, w, c) = image.shape corners_1 = [(0,0), (0,w), (h,0), (h,w)] corners_2_row = [] corners_2_col = [] for corner in corners_1: (r,c) = corner p_1 = np.array([[r,c,1]]) (r_2, c_2, z_2) = H * p_1.T corners_2_row.append( int(r_2 / z_2) ) corners_2_col.append( int(c_2 / z_2) ) return (max(corners_2_row)-min(corners_2_row)+1, max(corners_2_col)-min(corners_2_col)+1, min(corners_2_row), min(corners_2_col)) def get_line(p1, p2): p1 = np.array([p1[0], p1[1], 1.]) p2 = np.array([p2[0], p2[1], 1.]) return np.cross(p1, p2) def get_lines(points): lines = [] for i in range(len(points)/2): lines.append( get_line(points[2*i], points[2*i+1]) ) return lines def get_pixel_by_nearest_neighbor(image, row_f, col_f): ''' Get the pixel value based on float row and column numbers. @image: image to be find pixels in @row_f, col_f: float row and column numbers @return: pixel value from image ''' row = int(round(row_f)) col = int(round(col_f)) return image[row][col] def get_projective_transformation_matrix(line1, line2, line3, line4): ''' Given two pairs of lines that are supposed to be parallel in world plane, find the homography matrix. If successful, return a 3x3 numpy matrix that can be used to remove projective distortion. @line1..4: line 1,2 and line 3,4 should be parallel in world plane, each line is a tuple of its HC representation @return: 3x3 numpy matrix H ''' # Calculate the two vanishing points first vp1 = np.cross(line1, line2) vp2 = np.cross(line3, line4) # Calculate the vanishing line vl = np.cross(vp1, vp2) vl = vl / vl[2] H = np.matrix(np.identity(3)) H[2] = vl return H def get_affine_transformation_matrix(lines): ''' Given two pairs of lines that are supposed to be orthogonal in world plane, find the homography matrix. If successful, return a 3x3 numpy matrix that can be used to remove affine distortion. @line1..4: line 1,2 and line 3,4 should be orthogonal in world plane, each line is a tuple of its HC representation @return: 3x3 numpy matrix H ''' # Get S first # Ms = c --> s = inv(M)c M = np.matrix( np.zeros((2,2)) ) c = np.matrix( np.zeros((2,1)) ) line1 = lines[0] line2 = lines[1] line3 = lines[2] line4 = lines[3] M[0] = [line1[0]*line2[0], line1[0]*line2[0] + line1[1]*line2[0]] M[1] = [line3[0]*line4[0], line3[0]*line4[0] + line3[1]*line4[0]] c[0] = -line1[1]*line2[1] c[1] = -line3[1]*line4[1] try: s = M.I * c except np.linalg.LinAlgError: print "ERROR: M is singular!" return None s = np.asarray(s).reshape(-1) S = np.array([[s[0], s[1]], [s[1], 1. ]]) # Perform singular value decomposition # s, U = np.linalg.eig(S) # D = np.sqrt(np.abs(np.diag(s))) U, s, V = np.linalg.svd(S) D = np.sqrt(np.diag(s)) H = np.matrix( np.zeros((3,3)) ) # np.dot is equivalent to matrix multiplication for 2D arrays H[:2, :2] = np.dot(np.dot(U, D), U.T) H[:2, :2] = H[:2, :2] / H[1,1] H[2,2] = 1. return H def get_projective_and_affine_transformation_matrix(lines): ''' Given five pairs of lines that are supposed to be orthogonal in world plane, find the homography matrix that eliminates both projective and affine distortion. @lines: list of 10 lines forming five orthogonal pairs @return: 3x3 numpy matrix H ''' # We need at least five pairs of lines if len(lines) < 10: print "ERROR: not enough orthogonal line pairs!" return None # Mc = d --> c = inv(M)d M = np.matrix( np.zeros((5,5)) ) d = np.matrix( np.zeros((5,1)) ) # print lines for i in range( 5 ): l = lines[2*i] m = lines[2*i+1] M[i] = [l[0]*m[0], (l[0]*m[1]+l[1]*m[0])/2., l[1]*m[1], (l[0]*m[2]+l[2]*m[0])/2., (l[1]*m[2]+l[2]*m[1])/2.] d[i] = [-l[2]*m[2]] try: c = M.I * d except np.linalg.LinAlgError: print "ERROR: M is singular!" return None c = np.asarray(c).reshape(-1) C_p = np.matrix([[c[0] , c[1]/2., c[3]/2.], [c[1]/2., c[2] , c[4]/2.], [c[3]/2., c[4]/2., 1.]]) # Similar to the previous step print C_p S = C_p[:2, :2] # S = S / S[1,1] U, s, V = np.linalg.svd(S) D = np.sqrt(np.diag(s)) # np.dot is equivalent to matrix multiplication for 2D arrays A = np.dot(np.dot(U, D), U.T) v = np.dot(A.I, C_p[:2,2]) H = np.matrix( np.zeros((3,3)) ) H[:2,:2] = A # H[:2, :2] = H[:2, :2] / H[1,1] H[2,:2] = v.T H[2,2] = 1. return H def get_affine_transformation_matrix_from_points(points): return get_affine_transformation_matrix([ get_line(points[0], points[1]), get_line(points[0], points[2]), get_line(points[3], points[4]), get_line(points[3], points[5]) ]) def get_projective_transformation_matrix_from_points(points): return get_projective_transformation_matrix( get_lines(points) ) def get_projective_and_affine_transformation_matrix_from_points(points): return get_projective_and_affine_transformation_matrix( get_lines[points] ) def apply_transformation_on_image(image, H): ''' Given a transformation matrix, apply it to the input image to obtain a transformed image. @image: np.ndarray of input image @H: the tranformation matrix to be applied @return: np.ndarray of the transformed image ''' # First determine the size of the transformed image (num_row, num_col, off_row, off_col) = get_bounding_box_after_transformation(image, H) print "New image size:", (num_row, num_col) try: trans_img = np.ndarray( (num_row, num_col, image.shape[2]) ) except IndexError: trans_img = np.ndarray( (num_row, num_col, 1) ) H_inv = H.I for r in range(trans_img.shape[0]): for c in range(trans_img.shape[1]): p_2 = np.array([[r+off_row,c+off_col,1]]) (r_1, c_1, z_1) = H_inv * p_2.T r_1 = r_1 / z_1 c_1 = c_1 / z_1 if 0 <= r_1 < image.shape[0]-1 and 0 <= c_1 < image.shape[1]-1: trans_img[r][c] = get_pixel_by_nearest_neighbor(image, r_1, c_1) else: trans_img[r][c] = BACKGROUND_COLOR return trans_img def apply_transformation_on_points(points, H): ''' Apply the given transformation matrix on all points from input. @coords: list of input points, each is represented by (row,col) @return: list of points after transformation, each is represented by (row,col) ''' l = [] for point in points: p = np.array([point[0], point[1], 1.]) p = np.asarray(np.dot(H, p)).reshape(-1) p = p / p[-1] l.append( (p[0], p[1]) ) return l def task1(): ''' Use two-step method to remove affine distortion ''' image_img_a = cv2.imread('images/flatiron_1.jpg') image_img_a = resize_image_by_ratio(image_img_a, RESIZE_RATIO) image_hc_a = [( int(x*RESIZE_RATIO), int(y*RESIZE_RATIO) ) for (x,y) in IMAGE_HC_A] image_hc_a_1 = [( int(x*RESIZE_RATIO), int(y*RESIZE_RATIO) ) for (x,y) in IMAGE_HC_A_1] H_ap = get_projective_transformation_matrix_from_points(image_hc_a) trans_img = apply_transformation_on_image(image_img_a, H_ap) cv2.imwrite('images/task1_flatiron_per.jpg', trans_img) image_hc_a = apply_transformation_on_points(image_hc_a, H_ap) image_hc_a_1 = apply_transformation_on_points(image_hc_a_1, H_ap) H_aa = get_affine_transformation_matrix_from_points(image_hc_a[:3] + image_hc_a_1[:3]) trans_img = apply_transformation_on_image(trans_img, H_aa.I) cv2.imwrite('images/task1_flatiron_affine.jpg', trans_img) def task2(): ''' Use one-step method to remove affine distortion ''' image = cv2.imread('images/flatiron_1.jpg') image = resize_image_by_ratio(image, RESIZE_RATIO) flatiron_pairs = [( int(x*RESIZE_RATIO), int(y*RESIZE_RATIO) ) for (x,y) in FLATIRON_PAIRS] H_pa = get_projective_and_affine_transformation_matrix_from_points(flatiron_pairs) trans_img = apply_transformation_on_image(image, H_pa) cv2.imwrite('images/task2_flatiron.jpg', trans_img) def main(): task1() task2() if __name__ == '__main__': main()
[ "lifangda02@gmail.com" ]
lifangda02@gmail.com
9187ea2881390a09c88fcc726707525e4c45254f
9f7848ee3bd64e5b831e893d52f69912e540d6e4
/Snippet Search/bargrapg.py
001f7a0a87dcdd5d639d623406cacc52c8337559
[ "MIT" ]
permissive
Ufatima/Twitter-Event-detection
e7f9f93d566b7fc2b161cf1ffd39f293fc0eb104
86c3ec5f6db9cedaaf1945938deca465ab818c57
refs/heads/master
2021-03-24T09:47:01.532986
2019-12-26T22:01:59
2019-12-26T22:01:59
119,052,578
0
0
null
null
null
null
UTF-8
Python
false
false
431
py
import matplotlib.pyplot as plt normalization_score_list = [0.66,0.33,0.66,0.66,0.33] no_snippets_list = [10,6,6,5,3] wup_similarity = [0.8571428571428571, 0.5238095238095238, 0.8571428571428571,0.8571428571428571,0.7321428571428571] plt.scatter(no_snippets_list,normalization_score_list) plt.title('Relationship Between Temperature and Iced Coffee Sales') plt.xlabel('snippets number') plt.ylabel('normalization score') plt.show()
[ "hoory1020@gmail.com" ]
hoory1020@gmail.com
9dee51aa3f19139230bc9821668cd83ef899a51c
cc4d19b685d77f9cdfb2a34492dd5ef84f0ab49e
/videosharing/wsgi.py
9bd71e9654384f98e7d09a7b5182f907b94a8634
[]
no_license
Zoli1212/videosharing
1eb424525b97286650e771f1b5e13b515d716fb2
7e1b2504f0faeab953ac4a48379af464dba35f57
refs/heads/master
2023-01-03T01:17:47.226223
2020-10-30T17:10:40
2020-10-30T17:10:40
308,698,489
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
""" WSGI config for videosharing project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'videosharing.settings') application = get_wsgi_application()
[ "43321960+Zoli1212@users.noreply.github.com" ]
43321960+Zoli1212@users.noreply.github.com
7498fe6a8b6b6c43e6405131fea035d35a6742fa
f90a65159a2dcd6bb39479a9f38f45690f801f82
/TheoInf/Exercises/Sheet06/Task1/main.py
5f939cfafc992c1a00f3eba237fef9daabacc226
[]
no_license
BUCKFAE/Semester06
a0471fd4edec2f8e21ff3fcbb5572a53c6b7915f
ef9098d2f534d14815cadd854971d91b3a196833
refs/heads/master
2023-06-24T05:06:49.400571
2021-07-20T08:47:16
2021-07-20T08:47:16
359,149,507
0
0
null
null
null
null
UTF-8
Python
false
false
1,024
py
def is_prime(x): return False if x < 2 else all([x % i != 0 for i in range(2, x - 1)]) def check(n): for p in range(2, n): # Skipping if p is not a prime if not is_prime(p): continue for q in range(2, n): # Skipping if q is not a prime if not is_prime(q): continue i = 1 j = 1 # Increasing i and j until the result gets to big while (p ** i) * (q **j) <= n: # Checking if we found a valid solution if (p ** i) * (q ** j) == n: return (p, q, i, j) i += 1 # Ensuring we test every valid combination of i and j if j == i: j += 1 i = 1 return None # Valdiating results for i in range(50): res = check(i) sol = (res[0] ** res[2]) * (res[1] ** res[3]) if not res is None else "" print(f"{i}: {res}: {sol}")
[ "informatik.scubert@gmail.com" ]
informatik.scubert@gmail.com
70133f9d2aa4f9ddaf403ec7b297c7a03651b038
af02f85c4c18c864d8b5f7bcfce61da871d134bd
/python/dataRetriever/ckan1.py
6401f6615d8d44102173702a18906184a94cdfb5
[]
no_license
akpatankar/info1
24341b968435b3e4f601a4c2d67b994499d16ee7
65d1072c115a27b7e226d7ab3a0128a38d6400e8
refs/heads/master
2021-03-24T10:20:57.268410
2014-09-10T04:50:00
2014-09-10T04:50:00
22,318,441
0
0
null
null
null
null
UTF-8
Python
false
false
1,003
py
#!/usr/bin/env python import urllib2 import urllib import json import pprint import re import StringIO # Use the json module to dump a dictionary to a string for posting. data_string = urllib.quote(json.dumps({'id': 'data-explorer'})) # Make the HTTP request. response = urllib2.urlopen('http://catalog.data.gov/api/3/action/package_list', data_string) assert response.code == 200 # Use the json module to load CKAN's response into a dictionary. response_dict = json.loads(response.read()) # Check the contents of the response. assert response_dict['success'] is True #pprint.pprint(response_dict) result = response_dict['result'] pprint.pprint(result) #url1 = result[0]["url"] #url2 = response_dict["url"] response = urllib2.urlopen('http://catalog.data.gov/api/3/action/package_list?rows=25', data_string) assert response.code == 200 response_dict2 = json.loads(response.read()) print response_dict2['result']['results'][24]['resources'] #print re.search("http", result).group()
[ "a_k_patankar@yahoo.com" ]
a_k_patankar@yahoo.com
ad15cca3830c540ce40efe51b48e661a584727a3
d183806b214af3bf83cd97dd6b5a1768197fdc29
/Conversely_Frontend/Server.py
fcedf32ccc7a0beb259db23a9d54bcafe7e833ee
[ "MIT" ]
permissive
sam-aldis/Conversely
ea09f1a8bb2d7f5c58dc706e1544a52a864fdc62
1fc30d6b768cc03f727229a52e0879fac3af1e3a
refs/heads/master
2021-01-21T20:39:28.631318
2020-03-09T04:17:49
2020-03-09T04:17:49
92,267,805
0
1
null
2017-05-24T23:47:33
2017-05-24T08:17:55
Python
UTF-8
Python
false
false
4,257
py
#!/usr/bin/python import tornado.web import tornado.ioloop import os import ukjp.config import ukjp.fbactions import ukjp.database import thread import json import hashlib class UkJPRequestHandler(tornado.web.RequestHandler): def set_default_headers(self): self.add_header("Server","UKJP-Server") class ApiHandler(UkJPRequestHandler): actions = { "300" : "SET", "200" : "GET", "100" : "INIT" } def handleApi(self): try: postType = self.get_argument("type") atype = self.actions[postType] #TYPE IS SET if atype == "SET": action = self.get_argument("action") #SET ACCESS TOKEN if action == "accessToken": details = json.JSONDecoder().decode(self.get_argument("details")) accessToken = self.get_argument("accessToken") self.set_secure_cookie("UKJP_FB_COOKIE",accessToken) db = ukjp.database.Database(accessToken=accessToken) userId = db.getUserId() session_id = hashlib.md5(userId).hexdigest() self.set_secure_cookie("UKJP_SESSION",session_id) details['session'] = session_id try: db.addUser(details) self.write("200") except ukjp.database.DBException as e: self.write(e.message) #SET PAGEID if action == "pageid": pageid = self.get_argument("pageid") accessToken = self.get_secure_cookie("UKJP_FB_COOKIE") db = ukjp.database.Database(accessToken=accessToken) try: db.selectPage(pageid) self.write("200") except ukjp.database.DBException as e: self.write(e.message) #TYPE IS GET if atype == "GET": action = self.get_argument("action") #GET USER PAGE DETAILS if action == "userPage": accessToken = self.get_secure_cookie("UKJP_FB_COOKIE") session_id = self.get_secure_cookie("UKJP_SESSION") print(accessToken) db = ukjp.database.Database(accessToken=accessToken) pageDetails = db.getPageDetails(session_id) self.set_header("Content-Type","application/json") self.write(pageDetails) except Exception as e: print(e) self.finish() def get(self): self.handleApi() def post(self): self.handleApi() class IndexHandler(UkJPRequestHandler): def get(self): try: cookie = self.get_secure_cookie("UKJP_FB_COOKIE") if cookie != None: print(cookie) self.redirect("/app") else: self.render("./pages/index.html") except: self.render("./pages/index.html") class ApplicationHandler(UkJPRequestHandler): def get(self): try: cookie = self.get_secure_cookie("UKJP_FB_COOKIE") if cookie == None: self.redirect("/") else: self.render("./pages/app.html") except: self.redirect("/") class App(tornado.web.Application): def set_default_headers(self): self.h def __init__(self): handlers = [ tornado.web.url(r"/",IndexHandler), tornado.web.url(r"/app",ApplicationHandler), tornado.web.url(r"/api",ApiHandler), ] settings = { "static_path" : os.path.join(os.path.dirname(__file__),"static"), "cookie_secret" : "Ve41Cp4#1sf^fjqpDasg%$sdff", "debug" : True, "autoreload" : True, "compress_response" : True } tornado.web.Application.__init__(self, handlers, **settings) facebook_updater = thread.start_new_thread(ukjp.fbactions.updater_process,()) server = App() server.listen(8989) tornado.ioloop.IOLoop.current().start()
[ "samaldis@gmail.com" ]
samaldis@gmail.com
e865f68f746423d35e830ef8d6adef3f3cf61878
256dbe8e710f7750dc3185f1b4f67a2d36a020fa
/bsp/stm32f411-nucleo/drivers/SConscript
31cff2824baa868bb5d2c1cbb480a34ab660c539
[ "LicenseRef-scancode-generic-cla", "Apache-2.0" ]
permissive
sundm75/rt-thread
8a0a7cd3d107c090d226cfefb0c62aba273cec15
82b62e3b08e28968125e6825ea29256215069a5c
refs/heads/master
2021-05-12T08:41:45.631706
2019-01-04T02:44:09
2019-01-04T02:44:09
117,292,652
1
1
Apache-2.0
2019-01-04T02:44:10
2018-01-12T22:10:04
C
UTF-8
Python
false
false
259
Import('RTT_ROOT') Import('rtconfig') from building import * cwd = os.path.join(str(Dir('#')), 'drivers') # add the general drivers. src = Glob('*.c') CPPPATH = [cwd] group = DefineGroup('Drivers', src, depend = [''], CPPPATH = CPPPATH) Return('group')
[ "pengfei.fu@gmail.com" ]
pengfei.fu@gmail.com
7219e6780a35336396bd45cdb0c93cc918ba27e5
ea371e791764593d9dfffd0eafcbce0cb3b76135
/scripts/build-rosinstall.py
68ed3d4b578a796b2a3a0019db51c086514a14ab
[]
no_license
ipa-hsd/robust
a1862df5fba84346e895c8cc00ef01ace124752c
c6ed28a29b4da4957b8aa9b21e458511717511ed
refs/heads/master
2021-11-04T02:58:19.595036
2019-02-27T08:34:56
2019-02-27T08:34:56
130,993,317
0
0
null
2018-04-25T11:02:16
2018-04-25T11:02:16
null
UTF-8
Python
false
false
4,550
py
import sys import os import argparse import logging import subprocess import shutil import docker import yaml import requests logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) DIR_HERE = os.path.dirname(__file__) DOCKER_IMAGE_TIME_MACHINE = 'robust-rosin/rosinstall_generator_time_machine:03' BIN_TIME_MACHINE = 'rosinstall_generator_tm.sh' DESCRIPTION = "build-rosinstall" def find_bug_descriptions(d): buff = [] for root, _, files in os.walk(d): for fn in files: if fn.endswith('.bug'): fn = os.path.join(root, fn) buff.append(fn) return buff def gh_issue_to_datetime(url_issue): # type: (str) -> str prefix = "https://github.com/" owner, repo, _, number = url_issue[len(prefix):].split('/') url_api = 'https://api.github.com/repos/{}/{}/issues/{}' url_api = url_api.format(owner, repo, number) r = requests.get(url_api) created_at = r.json()['created_at'] return created_at def build_file(fn_bug_desc, overwrite=False): logger.info("building rosinstall file for file: %s", fn_bug_desc) bug_id = os.path.basename(fn_bug_desc)[:-4] dir_bug = os.path.dirname(fn_bug_desc) fn_rosinstall = os.path.join(dir_bug, 'deps.rosinstall') # check for existence of Docker image for time machine client_docker = docker.from_env() try: client_docker.images.get(DOCKER_IMAGE_TIME_MACHINE) except docker.errors.ImageNotFound: logger.warning("Docker image for time machine not found: %s", DOCKER_IMAGE_TIME_MACHINE) sys.exit(1) if not shutil.which(BIN_TIME_MACHINE): logger.warning("could not find time machine binary in PATH: %s", BIN_TIME_MACHINE) sys.exit(1) if os.path.isfile(fn_rosinstall): if overwrite: logger.warning("overwriting file: %s", fn_rosinstall) else: logger.info("skipping existing file: %s", fn_rosinstall) return with open(fn_bug_desc, 'r') as f: d = yaml.load(f) ros_pkgs = d['time-machine']['ros_pkgs'] missing_deps = d['time-machine'].get('missing-dependencies', []) if 'issue' in d['time-machine']: url_issue = d['time-machine']['issue'] try: dt = gh_issue_to_datetime(url_issue) except Exception: m = "failed to convert GitHub issue to ISO 8601 timestamp: {}" m = m.format(url_issue) raise Exception(m) elif 'datetime' in d['time-machine']: dt = d['time-machine']['datetime'].isoformat() if dt[-1] != 'Z': dt += 'Z' else: raise Exception("expected 'issue' or 'datetime' in 'time-machine'") cmd = [BIN_TIME_MACHINE, dt, d['time-machine']['ros_distro']] cmd += ros_pkgs + missing_deps cmd += ['--deps', '--deps-only', '--tar'] logger.debug("executing command: %s", ' '.join(cmd)) try: res = subprocess.run(cmd, check=True, stdout=subprocess.PIPE) contents = res.stdout.decode('utf-8') except subprocess.CalledProcessError as err: logger.warning("time machine failed (return code: %d) for bug [%s]", err.returncode, fn_bug_desc) return # updated repository names contents = contents.replace('geometry_experimental', 'geometry2') # write to rosinstall file with open(fn_rosinstall, 'w') as f: f.write(contents) def build_dir(d, overwrite=False): logger.info("building rosinstall files for directory: %s", d) files = find_bug_descriptions(d) for fn in files: try: build_file(fn, overwrite=overwrite) except Exception: logger.exception("failed to create rosinstall file for bug: %s", fn) def main(): log_to_stdout = logging.StreamHandler() log_to_stdout.setLevel(logging.DEBUG) logger.addHandler(log_to_stdout) parser = argparse.ArgumentParser(description=DESCRIPTION) parser.add_argument('file_or_dir', type=str) parser.add_argument('--overwrite', action='store_true') args = parser.parse_args() fn_or_dir = args.file_or_dir if os.path.isdir(fn_or_dir): build_dir(fn_or_dir, overwrite=args.overwrite) elif os.path.isfile(fn_or_dir): build_file(fn_or_dir, overwrite=args.overwrite) else: logger.error("ERROR: expected a filename or directory.") sys.exit(1) if __name__ == '__main__': main()
[ "noreply@github.com" ]
ipa-hsd.noreply@github.com
6a7f856c53af86a496f98a4a42d08881a273fcd3
41777201b100f24cea0427c8ed9cd5fb2e976b49
/Section 1/tornado-test.py
e0e31988a76214fe9ba548ce40b0310e57bc1060
[ "MIT" ]
permissive
PacktPublishing/Reactive-Programming-in-Python
a611adfd231c4448f3c4c4873949a67c28753700
bfdee56ae38b092f010ac42af31796bc0416747d
refs/heads/master
2022-11-05T05:40:35.623146
2022-10-28T13:50:39
2022-10-28T13:50:39
128,192,589
40
11
null
null
null
null
UTF-8
Python
false
false
356
py
import tornado.ioloop import tornado.web class MainHandler(tornado.web.RequestHandler): def get(self): self.write('Hello, world\n Awesome') def make_app(): return tornado.web.Application([ (r'/', MainHandler) ]) if __name__ == '__main__': app = make_app() app.listen(8888) tornado.ioloop.IOLoop.current().start()
[ "susant@packtpub.com" ]
susant@packtpub.com
78f3d3a4eca1d9fa8d0ef24b5ae0b2d9ac9d4177
d0bf0f5d3d1d44c8a26a25fdac14af35084d3307
/rl_rpsr/policy.py
a8fca1364eccd1a9219760ddab284fdd352985dc
[ "MIT" ]
permissive
abaisero/rl-rpsr
73f842f01b4246d11b2e961b31f99709762a87ed
ac3d1162f6629133b7f3f88a0d49e4f9fd6f2e69
refs/heads/main
2023-05-13T01:00:24.674446
2021-06-07T19:18:16
2021-06-07T19:18:16
373,312,207
1
0
null
null
null
null
UTF-8
Python
false
false
1,137
py
from __future__ import annotations import abc class Policy(metaclass=abc.ABCMeta): @abc.abstractmethod def reset(self) -> int: raise NotImplementedError @abc.abstractmethod def step(self, action: int, observation: int) -> int: raise NotImplementedError class RandomPolicy(Policy): def __init__(self, model): super().__init__() self.model = model def _action(self) -> int: return self.model.action_space.sample() def reset(self) -> int: return self._action() def step(self, action: int, observation: int) -> int: return self._action() class ModelPolicy(Policy): def __init__(self, model, vf): super().__init__() self.model = model self.vf = vf self.state = None def _action(self) -> int: return self.vf.policy(self.state) def reset(self) -> int: self.state = self.model.start.copy() return self._action() def step(self, action: int, observation: int) -> int: self.state = self.model.dynamics(self.state, action, observation) return self._action()
[ "andrea.baisero@gmail.com" ]
andrea.baisero@gmail.com
501e858309d7ff8772dc34f3500c3dc28a84a09a
af3ec207381de315f4cb6dddba727d16d42d6c57
/dialogue-engine/test/programytest/parser/template/graph_tests/test_log.py
986504fd189497acc1a83296c9272ee75bacd2ad
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
mcf-yuichi/cotoba-agent-oss
02a5554fe81ce21517f33229101013b6487f5404
ce60833915f484c4cbdc54b4b8222d64be4b6c0d
refs/heads/master
2023-01-12T20:07:34.364188
2020-11-11T00:55:16
2020-11-11T00:55:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,931
py
""" Copyright (c) 2020 COTOBA DESIGN, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import xml.etree.ElementTree as ET from programy.parser.template.nodes.base import TemplateNode from programy.parser.template.nodes.log import TemplateLogNode from programytest.parser.template.graph_tests.graph_test_client import TemplateGraphTestClient class TemplateGraphLogTests(TemplateGraphTestClient): def test_log_node_from_xml_default_values(self): template = ET.fromstring(""" <template> <log>Text</log> </template> """) root = self._graph.parse_template_expression(template) self.assertIsNotNone(root) self.assertIsInstance(root, TemplateNode) self.assertIsNotNone(root.children) self.assertEqual(len(root.children), 1) node = root.children[0] self.assertIsNotNone(node) self.assertIsInstance(node, TemplateLogNode)
[ "cliff@cotobadesign.com" ]
cliff@cotobadesign.com