blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
a827c73237bc593d7776fbc61aafe15c97776895
28b0f19a30aae14925d24a55d0dbe91da8fb4f44
/Main.py
efe5bf0ce7dbbb33e7b2fe35c6ebaa44b1eae7f5
[]
no_license
rowan-maclachlan/IPDSDGA
c5b342ba86c25018e968c67a85d3a1cff6b1f745
c91d02e52c8aa1217e3ae4cd54001a6c213d439d
refs/heads/master
2021-06-16T15:43:54.423167
2017-01-08T05:28:15
2017-01-08T05:28:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,782
py
import Cell import Position as ps GENERATIONS = 2 SIMULATION_STEPS = 8 def get_largest(cells): return cells[len(cells)-1], cells[len(cells)-2] if __name__ == "__main__": # Print and recombinate tests cellID = 0 cell_a = Cell.Cell(cellID, ps.Position(0, cellID)) cellID += 1 cell_b = Cell.Cell(cellID, ps.Position(0, cellID)) cellID += 1 cell_c = Cell.Cell(cellID, ps.Position(0, cellID)) cellID += 1 cell_d = Cell.Cell(cellID, ps.Position(0, cellID)) cellID += 1 cell_e = Cell.Cell(cellID, ps.Position(0, cellID), cell_a, cell_b) cellID += 1 cell_f = Cell.Cell(cellID, ps.Position(0, cellID), cell_c, cell_d) cellID += 1 # Interaction Tests allCells = [cell_a, cell_b, cell_c, cell_d, cell_e, cell_f] avg_def = 0 initial_move_percent = 0 totalScore = 0 for cell in allCells: avg_def += cell.get_gene().get_defect_fraction() if 'd' == cell.get_gene().get_choice_at(1): initial_move_percent += 1 totalScore += cell._score if not 0 == len(allCells): print("\nAverage %defect: " + str(avg_def / len(allCells))) print("Initial move %defect: " + str(float(initial_move_percent) / float(len(allCells)))) print("Average score: " + str(float(totalScore) / float(len(allCells)))) for i in range(GENERATIONS): for cell in allCells: cell.reset_score() for x in range(SIMULATION_STEPS): for cell in allCells: cell.clear_interactions() for cell in allCells: cell.interact(allCells) for cell in allCells: if cell.is_dead(): allCells.remove(cell) allCells.sort(key=lambda c: c._score) allCells.remove(allCells[0]) best_cell_a, best_cell_b = get_largest(allCells) allCells.append(Cell.Cell(cellID, cellID, best_cell_a, best_cell_b)) cellID += 1 avg_def = 0 initial_move_percent = 0 totalScore = 0 for cell in allCells: avg_def += cell.get_gene().get_defect_fraction() if 'd' == cell.get_gene().get_choice_at(1): initial_move_percent += 1 totalScore += cell._score if not 0 == len(allCells): print("\nAverage %defect: " + str(avg_def/len(allCells))) print("Initial move %defect: " + str(float(initial_move_percent)/float(len(allCells)))) print("Average score: " + str(float(totalScore)/float(len(allCells)))) allCells.sort(key=lambda c: c._score) cell_1, cell_2 = get_largest(allCells) print("\nBest Cells: \n") print("a:" + str(cell_1)) print("b: " + str(cell_2)) allCells.sort(key=lambda c: c._score) for cell in allCells: print(str(cell))
[ "rdm695@mail.usask.ca" ]
rdm695@mail.usask.ca
e93926a3af6d7c201d8c06ab19c7dc14984d1529
e43bf421edc060d5b3767adf2826cfd71472442c
/Python_function_challenges.py
bc0e74ef49efabe4cd609a2e14b07fd3ec0c29aa
[]
no_license
NatrezC/Unit-4_deliverables
dc8e4e2e253354d3bbf66710263dfe656db01a18
b3050b940077d956f0c08f758f67f030364ded6c
refs/heads/main
2023-03-01T00:37:07.011022
2021-01-17T06:20:19
2021-01-17T06:20:19
330,251,559
0
0
null
null
null
null
UTF-8
Python
false
false
1,434
py
#1 Write a function named sum_to() that takes a number parameter n and returns the sum of the numbers from 1 to n. For example: def sum_to(n): sum = 0 for i in range(1 + n): sum +=i print(sum) sum_to(6) sum_to(10) #2 Write a function named largest() that takes a list parameter and returns the largest element in that list. You can assume the list contents are all positive numbers. For example: num_list_1 = [10, 4, 2, 231, 91, 54] # largest = max(num_list_1) # print(largest) num_list_2 = [1,2,3,4,0] # largest_two = max(num_list_2) # print(largest_two) def largest(num_list_1): largest_num = 0 for num in num_list_1: if num >largest_num: largest_num = num print(largest_num) largest(num_list_1) def largest_two(num_list_2): largest_num = 0 for num in num_list_2: if num > largest_num: largest_num = num print(largest_num) largest_two(num_list_2) #3 Write a function named occurances() that takes two string parameters and counts the number of occurrances of the second string inside the first string. #Write a function named product() that takes an arbitrary number of parameters, multiplies them all together, and returns the product. (HINT: Review your notes on *args). numbers = [1,2,3,4,5] def product(numbers): product = 1 for number in numbers: product *= number print(product) product(numbers)
[ "cnatrez@gmail.com" ]
cnatrez@gmail.com
fbf23f0b0fd82074e65b27b87e5b411567df6d1c
0446602db0d7d65f19c2488b4379e8477890057c
/prac_02/string_formatting_examples.py
8fe96be07def54052843b92cb1ad09dbe0a47992
[]
no_license
zacgilby/cp1404practicals
9b57966e62bded312230a29b3c070e78af43537f
6d0455c8ef89a60ae7e1c0e869b46e0da26084b9
refs/heads/master
2020-03-26T23:04:05.241861
2018-09-11T05:40:48
2018-09-11T05:40:48
145,507,338
0
0
null
null
null
null
UTF-8
Python
false
false
1,209
py
""" CP1404/CP5632 - Practical Various examples of using Python string formatting with the str.format() method Want to read more about it? https://docs.python.org/3/library/string.html#formatstrings """ name = "Gibson L-5 CES" year = 1922 cost = 16035.40 numbers = [0, 50, 100] for i in range(len(numbers)): print("{:>3}".format(numbers[i])) # The ‘old’ manual way to format text with string concatenation: # print("My guitar: " + name + ", first made in " + str(year)) # A better way - using str.format(): # print("My guitar: {}, first made in {}".format(name, year)) # print("My guitar: {0}, first made in {1}".format(name, year)) # print("My {0} was first made in {1} (that's right, {1}!)".format(name, year)) # Formatting currency (grouping with comma, 2 decimal places): # print("My {} would cost ${:,.2f}".format(name, cost)) # Aligning columns: # numbers = [1, 19, 123, 456, -25] # for i in range(len(numbers)): # print("Number {0} is {1:>5}".format(i + 1, numbers[i])) # Another (nicer) version of the above loop using the enumerate function # for i, number in enumerate(numbers): # print("Number {0} is {1:>5}".format(i + 1, number))
[ "zachary.gilby@my.jcu.edu.au" ]
zachary.gilby@my.jcu.edu.au
02704e22f9b22b1a65a44d8ae9eb70844c824f17
5a75799f34488b263c9d1587578ada907e40f5bc
/mytest/socket/single/single_s_socket.py
ae6ee0d744f9e5b0e70bd4f864165f3e73109f11
[]
no_license
zenwuyuan/mytest
b4e3f4a67c83e339f163b87dcff8737836daca78
838d2791bb75d8bd8b6057bf74c34b14d84bb418
refs/heads/master
2021-08-16T13:07:53.361691
2020-04-03T08:49:35
2020-04-03T08:49:35
146,848,622
0
0
null
null
null
null
UTF-8
Python
false
false
592
py
#!/usr/bin/env python3 from socket import * from time import ctime HOST = '127.0.0.1' PORT = 8080 BUFSIZ = 1024 ADDR = (HOST,PORT) tcpSerSock = socket(AF_INET,SOCK_STREAM) tcpSerSock.bind(ADDR) tcpSerSock.listen(2) while True: print('Waiting for connection...') tcpCliSock,addr = tcpSerSock.accept() print('...connect from :',addr) while True: data = tcpCliSock.recv(BUFSIZ).decode() print('server_data :',data) if not data: break tcpCliSock.send(('[%s] %s' %(ctime(),data)).encode()) tcpCliSock.close() tcpSerSock.close()
[ "jf871030@gmail.com" ]
jf871030@gmail.com
9d8dcc8421ab1d253140e90d08e521e68fefc2b6
bf75656248b0b0def53807648fb35b658e48412b
/examples/Dynamic/TRMM/rise/plot.py
65882fe41aba5651e197a1bc23866e5e9cbfb12d
[]
no_license
ilhamv/MC-old
5942d771c33583f0f8f0f64ff2108b3a0adfd7a3
1ef3e89ef147f65dcc7fc0321657fc80b8194ed1
refs/heads/master
2021-09-14T18:45:21.713131
2018-05-17T13:24:02
2018-05-17T13:24:02
117,119,085
1
0
null
null
null
null
UTF-8
Python
false
false
3,374
py
import h5py import matplotlib.pyplot as plt import numpy as np from matplotlib import animation f_mc = h5py.File('output.h5', 'r'); f = h5py.File('output_TRMM.h5', 'r'); #=============================================================================== # alpha eigenvalues #=============================================================================== alpha = np.array(f['alpha']).transpose()[0] alpha_adj = np.array(f['alpha_adj']).transpose()[0] N = len(alpha) J = 6; G = N - J; idx = alpha.argsort() idx_adj = alpha_adj.argsort() alpha = alpha[idx] alpha_adj = alpha_adj[idx_adj] plt.plot(alpha.real,alpha.imag,'o'); plt.plot(alpha_adj.real,alpha_adj.imag,'x'); plt.xlabel("Re"); plt.ylabel("Im"); plt.grid(); plt.show(); #=============================================================================== # eigenvectors #=============================================================================== phi_mode = np.array(f['phi_mode']) phi_mode_adj = np.array(f['phi_mode_adj']) phi_mode = phi_mode[:,idx] phi_mode_adj = phi_mode_adj[:,idx_adj] # Inverse speed v_inv = np.array(f_mc['inverse_speed']) # Energy bin and lethargy step energy_grid = np.array(f_mc['TRM_simple/energy']) energy = energy_grid du = np.log(energy[-1] / energy[-2]) energy = np.array(energy)*1E-6; energy = (energy[1:] + energy[:-1])/2; #=============================================================================== # Verification with TDMC #=============================================================================== # Initial condition phi_initial = np.zeros(N) psi_initial = np.array(f_mc['psi_initial']) C_initial = np.array(f_mc['C_initial']) for g in range(G): phi_initial[g] = psi_initial[g] for j in range(J): phi_initial[G+j] = C_initial[j] # Expansion coefficients A = np.zeros(N,dtype=complex) for i in range(N): num = complex(0,0) gamma = complex(0,0) for g in range(G): num = num + phi_mode_adj[g][i] * phi_initial[g] * v_inv[g] gamma = gamma + phi_mode_adj[g][i] * v_inv[g] * phi_mode[g][i] for g in range(G,G+J): num = num + phi_mode_adj[g][i] * phi_initial[g] gamma = gamma + phi_mode_adj[g][i] * phi_mode[g][i] A[i] = num / gamma #=============================================================================== # animation #=============================================================================== energy = np.array(f_mc['TRM_simple/energy']) energy = np.array(energy)*1E-6; energy = (energy[1:] + energy[:-1])/2; time = np.logspace(-9,3,500) fig = plt.figure() ax = plt.axes(xlim=(1E-9, 20), ylim=(1E-4, 1E5)) ax.set_xscale('log') ax.set_yscale('log') line, = ax.plot([], [], '-', lw=2) time_text = ax.text(0.02, 0.95, '', transform=ax.transAxes) plt.xlabel("Energy, MeV"); plt.ylabel("Scalar flux"); def init(): line.set_data([], []) time_text.set_text('') return time_text, line def animate(i): phi = np.zeros(N,dtype=complex) for g in range(N): for n in range(N): phi[g] = phi[g] + A[n] * phi_mode[g][n] * np.e**(alpha[n] * time[i]) phi = phi# / du line.set_data(energy, phi[:G]) time_text.set_text('time = %.9f s' %time[i]) return time_text, line inter = 5000 / len(time) anim = animation.FuncAnimation(fig, animate, init_func=init, frames=len(time), interval=inter, blit=True) plt.show()
[ "ilhamv@umich.edu" ]
ilhamv@umich.edu
8b23311b26580c0b5fa81c0651c11cf941b65e96
53be839ec30082e9e49e7593ddc5f508466ea413
/tests/functional_test/dumb_test.py
dca12a75b28ef388229fdf6291b7143570d73409
[]
no_license
timmartin19/ripozo-html
c0f62fad333f1a25b351eb6f9e4e817f8ebd0542
1455723ac1074c8b8081542df46c1797d0169fc4
refs/heads/master
2021-01-10T02:36:56.984431
2016-01-19T06:09:42
2016-01-19T06:09:42
48,511,770
0
0
null
null
null
null
UTF-8
Python
false
false
995
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import webbrowser import unittest2 from ripozo import ResourceBase, restmixins, apimethod from ripozo_html import HTMLAdapter class DumbTests(unittest2.TestCase): file_name = 'temp.html' def tearDown(self): # os.remove(self.file_name) pass def test_simple(self): class MyResource(restmixins.ResourceBase): pks = 'id', @apimethod(methods=['GET']) def something(cls, request): return cls(properties=dict(id=1, value='It Worked')) res = MyResource(properties=dict(id=1, value='It Worked!')) adapter = HTMLAdapter(res, base_url='http://localhost:5000/') with open(self.file_name, 'w') as html_page: html_page.write(adapter.formatted_body) resp = webbrowser.open(self.file_name) assert False
[ "tim.martin@vertical-knowledge.com" ]
tim.martin@vertical-knowledge.com
95ae895102b27133c7b5f434b0a386a15765b914
2214f236157cf8fcee24f5d28d81e73eeb43bd9d
/movement.py
bf84887ff05dd96160810b9e5ab97bbdee5f9bfa
[ "MIT" ]
permissive
deadrobots/StackOverBot-17
fc867ec13ef111e243ea8993f7624d0975f61d27
370bb06131d810338614c4143ccb73c32ba88ff3
refs/heads/master
2021-06-15T00:16:27.856311
2017-04-01T02:17:28
2017-04-01T02:17:28
83,097,210
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
from wallaby import * def driveTimed(left, right, time): """ create_drive_direct(left, right) :rtype: object """ create_drive_direct(-right, -left) msleep(time) create_drive_direct(0, 0) def driveTimedStraight(power, time): """ create_drive_straight(power) :rtype: object """ create_drive_straight(power) msleep(time) create_drive_straight(0)
[ "botball@deadrobots.com" ]
botball@deadrobots.com
7363da0178ffb226331388981d853a728cf55149
ad75e11f50facf025417979caeb37957b009b38e
/pmgsimproapi/api.py
76afce57d2bf8fee1d4c8e266a412f9d497b40df
[]
no_license
pckmsolutions/pmgsimproapi
d429e70904ce0824237cb2e7587f4e57a407136a
8d43aff5237a422a0f83ef825d12ab56641cdc50
refs/heads/main
2023-06-09T16:17:51.319354
2021-06-19T16:21:06
2021-06-19T16:21:06
258,010,542
0
0
null
null
null
null
UTF-8
Python
false
false
12,871
py
from collections import namedtuple from datetime import timezone from logging import getLogger from functools import wraps from pmgaiorest import ApiBase from typing import Optional, Dict from logging import getLogger logger = getLogger(__name__) Page = namedtuple('Page', 'items page_number number_of_pages total_count') DEFAULT_PAGE_SIZE = 50 logger = getLogger(__name__) def params_add_columns(*columns, params:Optional[Dict]=None): if not params: params = {} params['columns'] = ','.join(columns) return params class SimProApi(ApiBase): def __init__(self, aiohttp_session, base_url, header_args, handle_reconnect=None): super().__init__(aiohttp_session, base_url, header_args=header_args, handle_reconnect=handle_reconnect) # Setup async def get_setup_project_custom_fields(self,*, name: Optional[str] = None, show_for_leads: Optional[bool] = None, show_for_quotes: Optional[bool] = None, show_for_jobs: Optional[bool] = None, show_for_recurring: Optional[bool] = None, ): params={} if name is not None: params['Name'] = name def add_show_for(subtype, show): if show is not None: params[f'ShowFor.{subtype}'] = 'true' if show else 'false' add_show_for('Leads', show_for_leads) add_show_for('Quotes', show_for_quotes) add_show_for('Jobs', show_for_jobs) add_show_for('Recurring', show_for_recurring) return await self.get(f'setup/customFields/projects/', params=params) async def create_setup_project_custom_fields(self, *, name: str, type: Optional[str] = "Text", show_for_leads: Optional[bool] = False, show_for_quotes: Optional[bool] = False, show_for_jobs: Optional[bool] = False, show_for_recurring: Optional[bool] = False, is_mandatory: Optional[bool] = False, ): return await self.post(f'setup/customFields/projects/', json={ "Name": name, "Type": type, "IsMandatory": is_mandatory, "ShowFor": { "Leads": show_for_leads, "Quotes": show_for_quotes, "Jobs": show_for_jobs, "Recurring": show_for_recurring } }) # Invoices async def get_invoice_pages(self, *, page_size=None, params=None, modified_since=None): async for page in self._get_pages( self.get_invoice_page, page_size=page_size, params=params, modified_since=modified_since): yield page async def get_invoice_page(self, *, page_number=1, page_size=None, params=None, modified_since=None): return await self._get_page('customerInvoices/', page_number, page_size, params, modified_since) # sites async def get_site(self, site_id): return await self.get(f'sites/{site_id}') # Prebuilds async def get_prebuild_group_pages(self, *, page_size=None, params=None, modified_since=None): async for page in self._get_pages( self.get_prebuild_group_page, page_size=page_size, params=params, modified_since=modified_since): yield page async def get_prebuild_group_page(self, *, page_number=1, page_size=None, params=None, modified_since=None): return await self._get_page('prebuildGroups/', page_number, page_size, params, modified_since) async def get_prebuild_group(self, *, name: Optional[str] = None, parent_id: Optional[int] = None): assert name is not None params={'Name': name} if parent_id is not None: params['ParentGroup.ID'] = parent_id prebuild_page = await self.get_prebuild_group_page(params=params) if prebuild_page.total_count > 1: logger.error('Got multiple prebuild groups') return None if prebuild_page.total_count < 1: logger.error('Prebuild group not found') return None return prebuild_page.items[0] async def create_prebuild_group(self, *, name, parent_id): return await self.post('prebuildGroups/', json={ 'Name': name, 'ParentGroup': parent_id, }) async def get_prebuild_std_price_pages(self, *, page_size=None, params=None, modified_since=None, group_id: Optional[int] = None): if params is None: params = {} if group_id is not None: params['Group.ID'] = group_id async for page in self._get_pages( self.get_prebuild_std_price_page, page_size=page_size, params=params, modified_since=modified_since): yield page async def get_prebuild_std_price_page(self, *, page_number=1, page_size=None, params=None, modified_since=None): return await self._get_page('prebuilds/standardPrice/', page_number, page_size, params, modified_since) async def get_prebuild_std_price(self, *, prebuild_id: Optional[int] = None, part_no: Optional[str] = None, group_id: Optional[int] = None, params: Optional[Dict] = None): if prebuild_id is not None: return await self.get(f'prebuilds/standardPrice/{prebuild_id}', params=params) assert part_no is not None if params is None: params = {} params['PartNo'] = part_no if group_id is not None: params['Group.ID'] = group_id return await self.get('prebuilds/standardPrice/', params=params) async def create_prebuild_std_price(self, *, group_id, part_no, name, description): return await self.post('prebuilds/standardPrice/', json={ 'Group': group_id, 'PartNo': part_no, 'Name': name, 'Description': description, }) async def update_prebuild_std_price(self, prebuild_id:int, *, group_id: Optional[int] = None, part_no: Optional[str] = None, name: Optional[str] = None, description: Optional[str] = None, total_ex: Optional[float] = None): json = {} def add_setter(name, val): if val is not None: json[name] = val add_setter('Group', group_id) add_setter('PartNo', part_no) add_setter('Name', name) add_setter('Description', description) add_setter('TotalEx', total_ex) return await self.patch(f'prebuilds/standardPrice/{prebuild_id}', json=json) async def get_prebuild_catalogs(self, prebuild_id:int): return await self.get(f'prebuilds/{prebuild_id}/catalogs/') async def create_prebuild_catalog(self, prebuild_id:int, *, catalog_id, quantity): return await self.post(f'prebuilds/{prebuild_id}/catalogs/', json={ 'Catalog': catalog_id, 'Quantity': quantity, }) async def del_prebuild_catalog(self, prebuild_id:int, catalog_id:int): return await self.delete(f'prebuilds/{prebuild_id}/catalogs/{catalog_id}') async def get_prebuild_attachments(self, prebuild_id:int): return await self.get(f'prebuilds/{prebuild_id}/attachments/files/') async def del_prebuild_attachment(self, prebuild_id:int, attachment_id:int): return await self.delete(f'prebuilds/{prebuild_id}/attachments/files/{attachment_id}') async def add_prebuild_attachment(self, prebuild_id:int, *, name, content, default): return await self.post(f'prebuilds/{prebuild_id}/attachments/files/', json={ 'Filename': name, 'Base64Data': content, 'Default': default }) # Catalog async def get_catalog_pages(self, *, page_size=None, params=None, modified_since=None): async for page in self._get_pages( self.get_catalog_page, page_size=page_size, params=params, modified_since=modified_since): yield page async def get_catalog_page(self, *, page_number=1, page_size=None, params=None, modified_since=None): return await self._get_page('catalogs/', page_number, page_size, params, modified_since) async def get_catalog(self, *, part_no:str, params=None): params = params or {} params['PartNo'] = part_no catalogs = await self.get(f'catalogs/', params=params) if len(catalogs) > 1: logger.error('Got multiple catalogs for part no %s', part_no) return None if len(catalogs) < 1: logger.error('Catalog part no %s not found', part_no) return None return catalogs[0] async def update_catalog(self, *, catalog_id: int, estimated_time: Optional[int] = None): json = {} def add_setter(name, val): if val is not None: json[name] = val add_setter('EstimatedTime', estimated_time) if not json: logger.error('Required at least 1 field to update catalog' + '(catalog_id: %d)', catalog_id) return None return await self.patch(f'catalogs/{catalog_id}', json=json) # Quotes async def get_quote_pages(self, *, page_size=None, params=None, modified_since=None): async for page in self._get_pages( self.get_quote_page, page_size=page_size, params=params, modified_since=modified_since): yield page async def get_quote_page(self, *, page_number=1, page_size=None, params=None, modified_since=None): return await self._get_page('quotes/', page_number, page_size, params, modified_since) async def get_quote_timeline(self, quote_id: int, *, part_no:str): return await self.get('quotes/{quote_id}/timelines/') # Leads async def get_lead_pages(self, *, page_size=None, params=None, modified_since=None): async for page in self._get_pages( self.get_lead_page, page_size=page_size, params=params, modified_since=modified_since): yield page async def get_lead_page(self, *, page_number=1, page_size=None, params=None, modified_since=None): return await self._get_page('leads/', page_number, page_size, params, modified_since) async def get_lead(self, lead_id: int): return await self.get(f'leads/{lead_id}') async def get_lead_custom_fields(self, lead_id): return await self.get(f'leads/{lead_id}/customFields/') async def get_lead_custom_field(self, lead_id, custom_field_id): return await self.get(f'leads/{lead_id}/customFields/{custom_field_id}') async def update_lead_custom_field(self, lead_id: int, custom_field_id: int, value: str): return await self.patch( f'leads/{lead_id}/customFields/{custom_field_id}', json={ "Value": value } ) # Untilities async def _get_pages(self, page_callable, *, page_size=None, params=None, modified_since=None): page_number = 1 while True: page = await page_callable( page_number=page_number, page_size=page_size, params=params, modified_since=modified_since) yield page page_number += 1 if page_number >= page.number_of_pages: break async def _get_page(self, path, page_number, page_size, params, modified_since): params = params or {} params['page'] = page_number or 1 params['pageSize'] = page_size or DEFAULT_PAGE_SIZE in_headers = {} if modified_since is not None: mod_time = modified_since.astimezone(tz=timezone.utc).strftime('%a, %d %b %Y %H:%M:%S GMT') in_headers = {'If-Modified-Since': mod_time} json, headers = await self.get_with_headers(path, params=params, headers=in_headers) return Page(items=json, page_number=page_number, number_of_pages=int(headers['Result-Pages']), total_count=int(headers['Result-Total']))
[ "possemeeg@gmail.com" ]
possemeeg@gmail.com
28a47d6d8040b10d7b3ffebe51e2276eb44c4cec
9e7239bd96c4ca1b691d487817cd3e341feb5b54
/NTWebsite/migrations/0056_auto_20190107_0922.py
894535e8891ce1012b8ca1ca7eaf05e5f0cd75d4
[]
no_license
mw8888/NagetiveWebsite-Django
50e7e3fe05fae4361f26cf0474e0edabb52e0e5c
8689dbfc7a5e6447965d9e3189332dd237c91a13
refs/heads/master
2020-05-02T17:32:04.098752
2019-01-08T11:54:10
2019-01-08T11:54:10
178,101,720
2
0
null
2019-03-28T01:22:35
2019-03-28T01:22:34
null
UTF-8
Python
false
false
449
py
# Generated by Django 2.0.6 on 2019-01-07 01:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('NTWebsite', '0055_auto_20190106_1539'), ] operations = [ migrations.AlterField( model_name='configparams', name='CP_ReadsThreshold', field=models.CharField(default=10, max_length=20, verbose_name='阅读量阈值'), ), ]
[ "616604060@qq.com" ]
616604060@qq.com
6b3badfcb176a00aae87424890ce4d05493ca53e
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2194/60749/255882.py
53f47cca7bd3d09ab0df4305df9ac8394bd7b7f2
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
433
py
n=int(input()) res=[[] for _ in range(n)] for t in range(n): res[t]=list(map(int,input().split(" "))) def ifprime(num): if num==1: return False for t in range(2,num): if num%t==0: return False return True for h in res: temp=[] str1="" for t in range(h[0],h[1]+1): if ifprime(t): temp.append(t) for m in temp: str1=str1+str(m)+" " print(str1)
[ "1069583789@qq.com" ]
1069583789@qq.com
cb348de2589f2f6f5936eee2a08fe78369f68e15
e6bc1f55371786dad70313eb468a3ccf6000edaf
/Datasets/the-minion-game/Correct/061.py
3dd4ff6cd83b958383f9bb0e76bf1c2a98c94fa3
[]
no_license
prateksha/Source-Code-Similarity-Measurement
9da92e3b22c372ed6ea54d8b6ab2c5921e8c41c0
fb371b837917794d260a219a1ca09c46a5b15962
refs/heads/master
2023-01-04T07:49:25.138827
2020-10-25T14:43:57
2020-10-25T14:43:57
285,744,963
3
0
null
null
null
null
UTF-8
Python
false
false
363
py
string = input() Stuart = 0 Kevin = 0 strlen = 1 vowels = ("a","e","i","o","u") for i in range(len(string)): if string[i].lower() in vowels: Kevin += (len(string)-i) else: Stuart += (len(string)-i) if Stuart > Kevin: print ("Stuart "+str(Stuart)) elif Stuart < Kevin: print ("Kevin "+str(Kevin)) else: print ("Draw")
[ "pratekshau@gmail.com" ]
pratekshau@gmail.com
ee4e7d3975d86a7ba8a5bc918e35d6d57a44484e
5945ccbb9302da14c770f01977eb353456841f32
/pydicom_attempt.py
a97f6570a93b61bc10af001e348bd2eadb9e8597
[]
no_license
QTIM-Lab/Processing_DICOMS_in_couch
8604d20c9347135ef6c3e68cabf09eb153c361de
f0217a993e3c18e0e520aea02600613b91f8cee5
refs/heads/main
2023-07-13T05:07:31.343803
2021-08-18T03:19:14
2021-08-18T03:19:14
397,455,003
0
0
null
null
null
null
UTF-8
Python
false
false
17,036
py
import pydicom, sys, pdb, os, string, re # pip install dicom or pydicom from pydicom.data import get_testdata_file from pydicom import dcmread import pandas as pd, numpy as np import multiprocessing, time fpath = get_testdata_file("CT_small.dcm") # pd.set_option('display.min_rows', 5) # How many to show pd.set_option('display.max_rows', 50) # How many to show pd.set_option('display.width', 200) # How far across the screen pd.set_option('display.max_colwidth', 10) # Column width in px pd.set_option('expand_frame_repr', True) # allows for the representation of dataframes to stretch across pages, wrapped over the full column vs row-wise dicoms = [ "/home_dir/JK/mnt/SeriesNormalizationMCRP/40162299/E17330600/1.2.840.113619.2.312.4120.14254601.14065.1610713757.133/MR.1.2.840.113619.2.312.4120.14254601.13415.1610713779.100.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/1175480/E16862548/1.2.392.200036.9123.100.12.12.22252.90201013131016088690251964/MR.1.2.392.200036.9123.100.12.12.22252.90201013135255097415729871.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/1175480/E16862548/1.2.392.200036.9123.100.12.12.22252.90201013131628089958241481/MR.1.2.392.200036.9123.100.12.12.22252.90201013133037092854731045.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/00203141/E17497993/1.3.12.2.1107.5.2.41.69565.30000020110319572670700004474/SRe.1.3.12.2.1107.5.2.41.69565.30000020110319572670700004503.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/00447321/E17522096/1.3.12.2.1107.5.2.41.69565.30000020110319572670700001434/SRe.1.3.12.2.1107.5.2.41.69565.30000020110319572670700001459.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/00908460/E17347683/1.3.12.2.1107.5.2.41.69565.30000020110319572670700000636/SRe.1.3.12.2.1107.5.2.41.69565.30000020110319572670700000659.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/1175480/E16862548/1.2.392.200036.9123.100.12.12.22252.90201013131015088688889787/MR.1.2.392.200036.9123.100.12.12.22252.90201013131106088861492683.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/1528184/E16452256/1.2.392.200036.9123.100.12.12.22252.90210209154628414348308243/MR.1.2.392.200036.9123.100.12.12.22252.90210209163244423813452088.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/3332344/E17134087/1.3.12.2.1107.5.2.43.167009.2020100416341770716921488.0.0.0/MR.1.3.12.2.1107.5.2.43.167009.2020100416341816286921505.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/3332344/E17134087/1.3.12.2.1107.5.2.43.167009.2020100416305292834519928.0.0.0/MR.1.3.12.2.1107.5.2.43.167009.202010041633269156320549.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/20097507/E16942169/1.3.12.2.1107.5.2.36.40168.2021012110282074519524686.0.0.0/MR.1.3.12.2.1107.5.2.36.40168.2021012110282347055524867.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/26303339/E17137309/1.3.12.2.1107.5.2.36.40291.2020101315063630311024751.0.0.0/MR.1.3.12.2.1107.5.2.36.40291.2020101315063625119124750.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/26303339/E17137309/1.3.12.2.1107.5.2.36.40291.2020101315051384634324649.0.0.0/MR.1.3.12.2.1107.5.2.36.40291.20201013150540722824741.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/41324419/E17179902/1.3.12.2.1107.5.2.36.40291.2020100807114214639557319.0.0.0/MR.1.3.12.2.1107.5.2.36.40291.2020100807151383698759658.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/41324419/E17179902/1.3.12.2.1107.5.2.36.40291.2020100807114214639657320.0.0.0/MR.1.3.12.2.1107.5.2.36.40291.2020100807151393979959696.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/23992498/E16898511/1.2.840.113619.2.80.0.5682.1601563957.1.13.2/MR.1.2.840.113619.2.80.0.5682.1601563957.19.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/01617612/E16987773/1.3.12.2.1107.5.2.19.45306.2021011111101851354849202.0.0.0/MR.1.3.12.2.1107.5.2.19.45306.202101111113388812554466.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/20097507/E16942169/1.3.12.2.1107.5.2.36.40168.2021012110282074519524686.0.0.0/MR.1.3.12.2.1107.5.2.36.40168.2021012110282347055524867.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/2751554/E17361897/1.2.840.113619.2.5.19231919171116054435021605443502805000/MR.1.2.840.113619.2.311.100196653089223718141359203512546696271.dcm", # "/home_dir/JK/mnt/SeriesNormalizationMCRP/01220044/E17038400/1.3.12.2.1107.5.2.41.169571.202010041023578162338990.0.0.0/MR.1.3.12.2.1107.5.2.41.169571.2020100410241583705439340.dcm", ] # files = pd.read_csv("private_tags_0_11.csv") # files = pd.read_csv("csvs/june/edited_with_mishkas_script/private_tags_1000000_1250000.csv") # dicoms from csv: # files = pd.read_csv("csvs/apr/all_dicoms_100000.csv") files = pd.read_csv("csvs/apr/all_dicoms.csv") # pdb.set_trace() # files = files[files["fileNamePath"].str.slice(0,5) == '../JK'] # files[files['fileNamePath'].str.len() < 100].to_csv("deleteme.csv", header=True, index=None) # dicoms = [i.replace("../","/home_dir/") for i in files['fileNamePath']] dicoms = [i.replace("../","/home_dir/") for i in files[~pd.isna(files['fileNamePath'])]['fileNamePath']] # # print("done reading") # pdb.set_trace() # files.loc[files['fileNamePath'] == "../JK/mnt/SeriesNormalizationMCRP/4115931/E17154036/1.2.276.0.45.1.7.3.83916715583278.20100909260300023.25318/PSg.1.2.276.0.45.1.7.4.83916715583278.20100909260300024.25318.dcm"] tag_key_original = { 'EchoTime':'00180081', 'InversionTime':'00180091', 'EchoTrainLength':'00180082', 'RepetitionTime':'00180080', 'TriggerTime':'00181060', 'SequenceVariant':'00180021', 'ScanOptions':'00180022', 'ScanningSequence':'00180020', 'MRAcquisitionType':'00180023', 'ImageType':'00180008', 'PixelSpacing':'00280030', 'SliceThickness':'00180050', 'PhotometricInterpretation':'00280004', 'ContrastBolusAgent':'00180010', 'Modality':'00180060', 'SeriesDescription':'0008103E' } tag_key = { 'StudyInstanceUID':'0020000D', 'SeriesInstanceUID':'0020000E', 'SOPInstanceUID':'00080018', 'PatientID':'00100020', #MRN 'AccessionNumber':'00080050', 'SequenceName':'00180024', 'ImageComments':'00204000', 'ProtocolName':'00181030', 'ImagesInAcquisition':'00201002', 'EchoTime':'00180081', 'InversionTime':'00180082', 'EchoTrainLength':'00180091', 'RepetitionTime':'00180080', 'TriggerTime':'00181060', 'SequenceVariant':'00180021', 'ScanOptions':'00180022', 'ScanningSequence':'00180020', 'MRAcquisitionType':'00180023', 'ImageType':'00180008', 'ImageOrientationPatient':'00200037', 'FlipAngle': '00181314', 'DiffusionBValue': '00189087', 'SiemensBValue': '0019100C', 'GEBValue': '0051100B', 'SlopInt6-9': '00431039', 'PulseSeqName': '0019109C', 'InternalPulseSeqName': '0019109E', 'FunctionalProcessingName': '00511002', 'GEFunctoolsParams': '00511006', 'CSA Series Header Info':'00291020', 'Acq recon record checksum':'00211019', 'PixelSpacing':'00280030', 'SliceThickness':'00180050', 'PhotometricInterpretation':'00280004', 'ContrastBolusAgent':'00180010', 'Modality':'00180060', 'SeriesDescription':'0008103E' } # pdb.set_trace() # Concat DFs: def stich_dfs_together(location="csvs/apr/merge_these_csvs"): files = os.listdir(location) # files = ['private_tags_0_200000.csv','private_tags_200000_400000.csv','private_tags_400000_600000.csv','private_tags_600000_800000.csv','private_tags_800000_1000000.csv','private_tags_1000000_1200000.csv','private_tags_1400000_1501855.csv'] total_rows = 0 csv_name = os.path.join(location, "combined.csv") with open(csv_name, "w") as file: file.write("fileNamePath|00511006|00291020|0019109E\n") for file in files: print(file,"\n") # pdb.set_trace() file = pd.read_csv(os.path.join(location,file), sep="|") total_rows += file.shape[0] file.to_csv(csv_name, mode='a', sep="|", header=None, index=None) print(total_rows) def test_combined_read(location="csvs/june/edited_with_mishkas_script"): file = pd.read_csv(os.path.join(location,"combined.csv"), sep="|") print(file.shape) def pre_format_find_and_replace(s, tag): # print(tag) printable = set(string.printable) # pdb.set_trace() try: if s == '': S = "None" # pdb.set_trace() elif type(s) is pydicom.valuerep.IS: S = s.__str__() else: # pdb.set_trace() for i in s: if i not in printable: s = s.replace(i," ") if s.find("\r") != -1: s = s.replace("\r"," ") if s.find("\n") != -1: s = s.replace("\n"," ") if s.find("|") != -1: s = s.replace("|"," ") S = s if tag == "00511006": S = GE_sequence_ID(s) # pdb.set_trace() elif tag == "00291020": S = siemens_sequence_ID(s) # pdb.set_trace() elif tag == "0019109E": S = GE_sequence_ID(s) # Essentially take this as is for now # pdb.set_trace() else: raise Exception("tag not recognized") except TypeError: pdb.set_trace() return S def GE_sequence_ID(s): # pdb.set_trace() S = s return S def siemens_sequence_ID(s): # pdb.set_trace() """ Mishka's parser and filter for private GE\Seimens dicom tags """ # siemens_tag = open(file) # file like object or str # siemens_text = siemens_tag.read() if s.find("\n") != -1: s = s.replace("\n"," ") siemens_text = s if siemens_text.find('tSequenceFileName') != -1: # start_idx = siemens_text.find('tSequenceFileName') # start_plus = siemens_text[start_idx:start_idx+100000].find('SiemensSeq') siemens_idx = siemens_text.find("SiemensSeq") if siemens_idx != -1: # Finding all occurrences of substring inilist = [m.start() for m in re.finditer(r"SiemensSeq%\\", siemens_text)] longest = '' for start in inilist: if len(siemens_text[start:start+30]) > len(longest): # pdb.set_trace() longest = siemens_text[start:start+30] # print("{}".format(siemens_text[start-15:start+30])) # debug # seqname = np.char.split(np.char.split(siemens_text[siemens_idx:siemens_idx+100], '""').tolist()[0],'\\').tolist()[1] seqname = np.char.split(np.char.split(longest, '""').tolist()[0],'\\').tolist()[1] # pdb.set_trace() elif siemens_text.find("CustomerSeq") != -1: siemens_idx = siemens_text.find("CustomerSeq") # Finding all occurrences of substring inilist = [m.start() for m in re.finditer(r"CustomerSeq%\\", siemens_text)] longest = '' for start in inilist: if len(siemens_text[start:start+30]) > len(longest): longest = siemens_text[start:start+30] seqname = np.char.split(np.char.split(longest, '""').tolist()[0],'\\').tolist()[1] # pdb.set_trace() else: raise Exception("Couldn\'t find tSequenceFileName or CustomerSeq") else: # pdb.set_trace() seqname = siemens_text s = seqname return s # dicoms_with_private_tags def find_private_tags(range=(0,100000)): n = 0 # loop count with open("private_tags_{}_{}.csv".format(range[0],range[1]), "w") as file: file.write("fileNamePath|00511006|00291020|0019109E\n") for dicom_path in dicoms[range[0]:range[1]]: # print("Loading dicom: ", dicom_path.split('/')[-1], "and checking for many tags:") n += 1 ds = dcmread(dicom_path) private_tags = [tag_key['GEFunctoolsParams'],tag_key['CSA Series Header Info'], tag_key['InternalPulseSeqName']] # temp_df = pd.DataFrame({'fileNamePath':[None], # private_tags[0]:[None], # private_tags[1]:[None]}) # if ds.get(int("0x"+private_tags[2],16)) != None: # pdb.set_trace() if ds.get(int("0x"+private_tags[0],16)) != None or ds.get(int("0x"+private_tags[1],16)) != None or ds.get(int("0x"+private_tags[2],16)) != None: # ptag = private_tags[0] if ds.get(int("0x"+private_tags[1],16)) == None else private_tags[1] # temp_df['fileNamePath'] = dicom_path # temp_df[ptag] = ds.get(int("0x"+ptag,16)).value # dwpt = pd.concat((dwpt,temp_df), axis=0) # Mishka func...to parse tags... # siemens_sequence_ID() tag1 = "None" if ds.get(int("0x"+private_tags[0],16)) == None else ds.get(int("0x"+private_tags[0],16)).value tag2 = "None" if ds.get(int("0x"+private_tags[1],16)) == None else ds.get(int("0x"+private_tags[1],16)).value tag3 = "None" if ds.get(int("0x"+private_tags[2],16)) == None else ds.get(int("0x"+private_tags[2],16)).value tag1 = pre_format_find_and_replace(tag1, private_tags[0]) tag2 = pre_format_find_and_replace(tag2, private_tags[1]) tag3 = pre_format_find_and_replace(tag3, private_tags[2]) # pdb.set_trace() # experimental frame = {'fileNamePath':pd.Series(dicom_path),'00511006':pd.Series(tag1),'00291020':pd.Series(tag2),'0019109E':pd.Series(tag3)} file = pd.DataFrame(frame) file[['fileNamePath','00511006','00291020','0019109E']].to_csv("csvs/apr/merge_these_csvs/private_tags_{}_{}.csv".format(range[0],range[1]), mode="a", header=False, sep="|", index=None) # pdb.set_trace() # experimental # original # with open("private_tags_{}_{}.csv".format(range[0],range[1]), "a") as file: # file.write("{}|{}|{}\n".format(dicom_path,tag1,tag2)) # original if n % 1000 == 0: print("batch:{}-{}, {}% complete".format(range[0], range[1], float(n)/(range[1]-range[0])*100)) # if n == 3000: # pdb.set_trace() # Keys # for key in tag_key.keys(): # try: # t = pydicom.datadict.tag_for_keyword(key) # print("{}: {}".format(key, ds[t])) # except: # print("{}: Not found".format(key)) def multiprocessing_find_private_tags(): global dicoms starttime = time.time() processes = [] process_count=40 # dicoms = dicoms[0:14783] chunks = len(dicoms)/process_count remainder = len(dicoms) % process_count for i in range(0,process_count): start_images = i * chunks end_images = (i+1) * chunks # pdb.set_trace() print("{} - {}".format(start_images,end_images)) p = multiprocessing.Process(target=find_private_tags, args=((start_images,end_images),)) processes.append(p) p.start() if remainder != 0: start_images = process_count * chunks end_images = process_count * chunks + remainder print("{} - {}".format(start_images,end_images)) p = multiprocessing.Process(target=find_private_tags, args=((start_images,end_images),)) processes.append(p) p.start() for process in processes: process.join() # means wait for this to complete print('Time taken = {} seconds'.format(time.time() - starttime)) if __name__ == "__main__": os.chmod("pydicom_attempt.py",0x777) if sys.argv[1] == "combine": stich_dfs_together() test_combined_read() elif sys.argv[1] == "multiprocess": multiprocessing_find_private_tags() else: range_low=sys.argv[1] range_high=sys.argv[2] print("{}, {}".format(range_low,range_high)) find_private_tags(range=(int(range_low),int(range_high))) # sudo docker run --rm -it --name=ben_wks_python2_worker_1 -v /home/ben.bearce/:/home_dir -v /home/jayashree.kalpathy:/home_dir/JK ben_wks_python2 bash # sudo docker run --rm -it --name=ben_wks_python2_worker_2 -v /home/ben.bearce/:/home_dir -v /home/jayashree.kalpathy:/home_dir/JK ben_wks_python2 bash # sudo docker run --rm -it --name=ben_wks_python2_worker_3 -v /home/ben.bearce/:/home_dir -v /home/jayashree.kalpathy:/home_dir/JK ben_wks_python2 bash # sudo docker run --rm -it --name=ben_wks_python2_worker_4 -v /home/ben.bearce/:/home_dir -v /home/jayashree.kalpathy:/home_dir/JK ben_wks_python2 bash # sudo docker run --rm -it --name=ben_wks_python2_worker_5 -v /home/ben.bearce/:/home_dir -v /home/jayashree.kalpathy:/home_dir/JK ben_wks_python2 bash # 750000 - 1253140, # sudo docker run --rm -it --name=ben_wks_python2_worker_6 -v /home/ben.bearce/:/home_dir -v /home/jayashree.kalpathy:/home_dir/JK ben_wks_python2 bash"
[ "bbearce@gmail.com" ]
bbearce@gmail.com
f8a2aa48568e27abc071b474a7337ae271771cc4
cdb21ded35ad572807cdf6384d43d97971263f9f
/fouriergraph.py
c981ffe3e08d1a1bd279cb7ef44693352a34e392
[]
no_license
cdceballor/marconi
0eb1444bca2841b9c35fa99907985842dadd6175
50360248e042098fe109e588b683a11dcab926db
refs/heads/master
2022-09-22T02:05:52.224580
2020-06-05T01:18:33
2020-06-05T01:18:33
250,641,614
0
1
null
null
null
null
UTF-8
Python
false
false
3,272
py
import scipy.io.wavfile as wavfile import numpy as np import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = [16,12] plt.rcParams.update({'font.size' : 18}) def main(): s_rate, signal =wavfile.read('songs/bad_songs/not_good_song.wav') sample_badRate, badSample = wavfile.read('songs/bad_songs/not_good_song.wav') sample_rate, samples = wavfile.read('songs/hakuna_matata.wav') dt = 0.001 t = np.arange(0,1,dt) f_clean = samples[5000000:5001000] f = badSample[5000000:5001000] n = len(t) fhat = np.fft.fft(f,n) psd = fhat * np.conj(fhat) / n print(psd) freq = (1/(dt*n)) * np.arange(n) l = np.arange(1,np.floor(n/2),dtype = 'int') print(freq) fig,axs = plt.subplots(2,1) #Mismo calculos de arriba pero para la cancion limpia, esto para mostrar como es la solucion con respecto a la original Lhat = np.fft.fft(f_clean,n) lsd = Lhat * np.conj(Lhat) / n #Crear varias inversas con filtros en lugares distintos para ver distintos posibles resultados #---------Filtro 1------------------------ indices1 = psd >100000000 psdclean1 = psd * indices1 fhat1 = indices1 * fhat ffilt1 = np.fft.ifft(fhat1) #---------Filtro 2------------------------ indices2 = psd >150000000 psdclean2 = psd * indices2 fhat2 = indices2 * fhat ffilt2 = np.fft.ifft(fhat2) #---------Filtro 3------------------------ indices3 = psd >200000000 psdclean3 = psd * indices3 fhat3 = indices3 * fhat ffilt3 = np.fft.ifft(fhat3) plt.sca(axs[0]) plt.plot(freq[l],psd[l],color = 'c', LineWidth = 2, label = "Noisy") plt.plot(freq[l],lsd[l],color = 'k', LineWidth = 2, label = "Clean") plt.axhline(y=1000000000,color = 'y', LineWidth = 2, label = 'Filtered1') plt.axhline(y=1500000000,color = 'b', LineWidth = 2, label = 'Filtered2') plt.axhline(y=2000000000,color = 'r', LineWidth = 2, label = 'Filtered3') plt.xlim(freq[l[0]],freq[l[-1]]) plt.ylabel("Espectro de poder") plt.xlabel("Frecuencia") plt.legend() plt.sca(axs[1]) plt.plot(t,f_clean,color = 'k', LineWidth = 1.5,label = 'Clean') plt.plot(t,ffilt1,color = 'y', LineWidth = 2, label = 'Filtered1') plt.plot(t,ffilt2,color = 'b', LineWidth = 2, label = 'Filtered2') plt.plot(t,ffilt3,color = 'r', LineWidth = 2, label = 'Filtered3') plt.ylabel("Amplitud") plt.xlabel("Tiempo") plt.legend() fig,axs = plt.subplots(2,1) plt.sca(axs[0]) plt.plot(t,f_clean,color = 'g', LineWidth = 2, label = 'clean') plt.plot(t,f,color = 'r', LineWidth = 1.5, label = 'noisy') plt.xlim(t[0],t[-1]) plt.ylabel("Amplitud") plt.xlabel("Tiempo") plt.legend() plt.sca(axs[1]) plt.plot(t,Lhat,color = 'c', LineWidth = 2, label = 'Clean') plt.plot(t,fhat,color = 'k', LineWidth = 2, label = 'Noisy') plt.xlim(t[0],t[-1]) plt.ylabel("Amplitud") plt.xlabel("Frecuencia") plt.legend() # plt.sca(axs[1]) # plt.plot(freq[l],psd[l],color = 'c', LineWidth = 1.5, label = 'noisy') # plt.plot(freq[l],psdclean1[l],color = 'k', LineWidth = 2, label = 'Filtered') # plt.xlim(freq[0],freq[-1]) # plt.legend() plt.show() if __name__ == "__main__": main()
[ "noreply@github.com" ]
cdceballor.noreply@github.com
37b8fd87664fa7347b4b9809d6ac322d6b822bff
cb91cd103c0042094472f690aabff26637b30f98
/cpu_stat.py
3224a2b05f02cea723fb565be2aa0edff1659073
[ "MIT" ]
permissive
sebastian-code/system_overview
0d10f55992331c58b7bc59efbb4380f1cbcdfef5
0340e163cfff89f8532a06f28ee1cbbc9f96049d
refs/heads/master
2020-05-03T22:51:45.242235
2015-07-29T11:41:37
2015-07-29T11:41:37
39,890,180
1
0
null
null
null
null
UTF-8
Python
false
false
4,834
py
#!/usr/bin/env python # # Copyright (c) 2010-2013 Corey Goldberg (http://goldb.org) # # This file is part of linux-metrics # # License :: OSI Approved :: MIT License: # http://www.opensource.org/licenses/mit-license # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # """ cpu_stat - Python Module for CPU Stats on Linux requires: - Python 2.6+ - Linux 2.6+ """ import time def cpu_times(): """Return a sequence of cpu times. each number in the sequence is the amount of time, measured in units of USER_HZ (1/100ths of a second on most architectures), that the system spent in each cpu mode: (user, nice, system, idle, iowait, irq, softirq, [steal], [guest]). on SMP systems, these are aggregates of all processors/cores. """ with open('/proc/stat') as f: line = f.readline() cpu_times = [int(x) for x in line.split()[1:]] return cpu_times def cpu_percents(sample_duration=1): """Return a dictionary of usage percentages and cpu modes. elapsed cpu time samples taken at 'sample_time (seconds)' apart. cpu modes: 'user', 'nice', 'system', 'idle', 'iowait', 'irq', 'softirq' on SMP systems, these are aggregates of all processors/cores. """ deltas = __cpu_time_deltas(sample_duration) total = sum(deltas) percents = [100 - (100 * (float(total - x) / total)) for x in deltas] return { 'user': percents[0], 'nice': percents[1], 'system': percents[2], 'idle': percents[3], 'iowait': percents[4], 'irq': percents[5], 'softirq': percents[6], } def procs_running(): """Return number of processes in runnable state.""" return __proc_stat('procs_running') def procs_blocked(): """Return number of processes blocked waiting for I/O to complete.""" return __proc_stat('procs_blocked') def file_desc(): """Return tuple with the number of allocated file descriptors, allocated free file descriptors, and max allowed open file descriptors. The number of file descriptors in use can be calculated as follows: fd = file_desc() in_use = fd[0] - fd[1] """ with open('/proc/sys/fs/file-nr') as f: line = f.readline() fd = [int(x) for x in line.split()] return fd def load_avg(): """Return a sequence of system load averages (1min, 5min, 15min).""" with open('/proc/loadavg') as f: line = f.readline() load_avgs = [float(x) for x in line.split()[:3]] return load_avgs def cpu_info(): """Return the logical cpu info. On SMP systems, the values are representing a single processor. The key processor_count has the number of processors. """ with open('/proc/cpuinfo') as f: cpuinfo = {'processor_count': 0} for line in f: if ':' in line: fields = line.replace('\t', '').strip().split(': ') # count processores and filter out core specific items if fields[0] == 'processor': cpuinfo['processor_count'] += 1 elif fields[0] != 'core id': try: cpuinfo[fields[0]] = fields[1] except IndexError: pass return cpuinfo def __cpu_time_deltas(sample_duration): """Return a sequence of cpu time deltas for a sample period. elapsed cpu time samples taken at 'sample_time (seconds)' apart. each value in the sequence is the amount of time, measured in units of USER_HZ (1/100ths of a second on most architectures), that the system spent in each cpu mode: (user, nice, system, idle, iowait, irq, softirq, [steal], [guest]). on SMP systems, these are aggregates of all processors/cores. """ with open('/proc/stat') as f1: with open('/proc/stat') as f2: line1 = f1.readline() time.sleep(sample_duration) line2 = f2.readline() deltas = [int(b) - int(a) for a, b in zip(line1.split()[1:], line2.split()[1:])] return deltas def __proc_stat(stat): with open('/proc/stat') as f: for line in f: if line.startswith(stat): return int(line.split()[1])
[ "sebaslander@gmail.com" ]
sebaslander@gmail.com
6b6e175ca8bf64af929209040b404c04032022a6
88f8b9b43702217aa2c93e97a862ddee0b71f9a1
/keyboardhackerapp/views/sync.py
6736cc17542787ebdf5397a0682511fb1620cab8
[]
no_license
nathantheinventor/keyboard-hacker
c630221bc288b7247fe6e21620ee5e9da58ea911
f4c61d1b2d7d3db25862cc95865764aa3f1abe47
refs/heads/master
2020-07-25T23:32:39.110317
2019-09-16T00:20:32
2019-09-16T00:20:32
208,457,059
0
0
null
null
null
null
UTF-8
Python
false
false
215
py
from django.shortcuts import render from django.http import HttpRequest, HttpResponse, HttpResponseRedirect from time import time def sync(req: HttpRequest) -> HttpResponse: return HttpResponse(time() * 1000.0)
[ "nathantheinventor@gmail.com" ]
nathantheinventor@gmail.com
fdef9e1142b7a2ebd63155a29a40524d52f3573b
e2addeff623464e25364a3b07910b6c77f014dd5
/news_feed/migrations/0001_initial.py
40e1c5c81bdca73964c7c50d34ae72a71df89485
[ "MIT" ]
permissive
Soigres/es-pl7
1282eb4e4abbc5303c19e6c8d4a52aa2fadaa652
739d0c766a2ab70f2bc87d597041921d9845cac9
refs/heads/master
2020-03-29T13:00:49.997822
2018-09-22T01:58:35
2018-09-22T01:58:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
975
py
# Generated by Django 2.1.1 on 2018-09-13 14:46 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.CharField(max_length=500)), ('pubdate', models.DateTimeField(auto_now_add=True)), ('person', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['-pubdate'], 'permissions': (('can_change_status', 'Can see and change articles'),), }, ), ]
[ "pedro.alex.ribeiro@hotmail.com" ]
pedro.alex.ribeiro@hotmail.com
f6185cf19a64bb63530d452c58615df8a2baaff6
ccd7ca1c542c7fc0c60cd1e2c5723f5c505ce418
/CEPACClusterLib.py
75d4ec98b815fc2cc5fe169a6f5cc167ebf208c0
[]
no_license
fervion/Cluster-Tool
3860b8a5afe77e5e5dbcf2612e058231b036b2a7
2da4b3e8024b4cc6a0e7b4aab5b1b658155b6792
refs/heads/master
2020-03-28T00:24:13.343880
2018-09-04T20:04:41
2018-09-04T20:04:41
147,408,085
0
0
null
null
null
null
UTF-8
Python
false
false
25,307
py
# -*- coding: utf-8 -*- """ Created on Tue Sep 29 10:10:08 2015 CEPAC Cluster tool library STD list: * objectify things * GUI * make zipped download work * fix jobname and folder name thing * kill jobs @author: Taige Hou (thou1@partners.org) @author: Kai Hoeffner (khoeffner@mgh.harvard.edu) """ from __future__ import print_function import os import sys import glob import paramiko import md5 import re import zipfile import threading import time from stat import S_ISDIR import getpass #A list of clusters CLUSTER_NAMES = ("MGH", "Orchestra", "Custom") #Maximum number of concurrent connections MAX_CONNECTIONS = 8 #Mapping of cluster names to hostname, runfolder path and model folder path #For run_folder use only relative path from home directory (this is required as lsf and cepac are picky about paths) #For model_folder can use either absolute path or relative path from home directory #do not use ~ in path to represent home directory as the ftp client cannot find the directory CLUSTER_INFO = {"MGH":{'host':'erisone.partners.org', 'run_folder':'runs', 'model_folder':'/data/cepac/modelVersions', 'default_queues':("medium", "long", "vlong", "big")}, "Orchestra":{'host':'orchestra.med.harvard.edu', 'run_folder':'runs', 'model_folder':'/groups/freedberg/modelVersions', 'default_queues':("freedberg_2h", "freedberg_12h", "freedberg_1d", "freedberg_7d", "freedberg_unlim", "short", "long")}, "Custom":{'host':'', 'run_folder':'runs', 'model_folder':'', 'default_queues':()}, } #--------------------------------------------- class UploadThread(threading.Thread): """Thread used to upload runs and submit jobs""" def __init__(self, cluster, dir_local, dir_remote, lsfinfo, update_func, glob_pattern="*.in" ): threading.Thread.__init__(self) self.cluster = cluster self.args = [self, dir_local, dir_remote, lsfinfo, update_func, glob_pattern] self.abort = False def stop(self): self.abort = True def run(self): while self.cluster.num_connections >= MAX_CONNECTIONS: time.sleep(.2) self.cluster.num_connections+=1 jobfiles = self.cluster.sftp_upload(*self.args) if not self.abort: self.cluster.pybsub(jobfiles) self.cluster.num_connections-=1 #--------------------------------------------- class DownloadThread(threading.Thread): """Thread used to download runs""" def __init__(self, cluster, run_folder, dir_remote, dir_local, update_func): threading.Thread.__init__(self) self.cluster = cluster self.args = [self, dir_remote, dir_local, update_func] self.abort = False self.run_folder = run_folder #Total number of files to download self.total_files = 0 #current progress of download self.curr_files = 0 def stop(self): self.abort = True def run(self): while self.cluster.num_connections >= MAX_CONNECTIONS: time.sleep(.2) #counts total number of files in folder recursively stdin, stdout, stderr = self.cluster.ssh.exec_command("find {} -type f | wc -l" .format(clean_path(self.cluster.run_path+"/"+self.run_folder))) #wait for command to finish stdout.channel.recv_exit_status() self.total_files = int(stdout.read().strip()) if self.total_files == 0: self.total_files = 1 self.cluster.num_connections+=1 #self.cluster.sftp_get_compressed(*self.args) self.cluster.sftp_get_recursive(*self.args) self.cluster.num_connections-=1 #--------------------------------------------- class JobInfoThread(threading.Thread): """Thread used to get detailed job info""" def __init__(self, cluster, jobid, post_func): threading.Thread.__init__(self) self.cluster = cluster self.jobid = jobid #function which tells thread how to post results self.post_func = post_func def run(self): while self.cluster.num_connections >= MAX_CONNECTIONS: time.sleep(.2) self.cluster.num_connections+=1 job_info = self.cluster.get_job_info(self.jobid) self.post_func(jobid = self.jobid, data = job_info) self.cluster.num_connections-=1 #--------------------------------------------- class CEPACClusterApp: """Basic class for the desktop interface with the CEPAC cluster""" def __init__(self,): self.port = 22 #SSH Client self.ssh = paramiko.SSHClient() #Dictionary of available model versions with model type as keys self.model_versions = None #List of available run queues self.queues = None #number of currently open connections self.num_connections = 0 #thread for uploading self.upload_thread = None #threads for downloads self.download_threads = [] def bind_output(self, output=print): """ output is a function used to write messages from the app. Defaults to the print function for the console version. Any calls to print should use the self.output function instead """ self.output = output #print initiation message self.output("="*40, False) self.output("Initiating Cepac Cluster App", False) def connect(self, hostname='erisone.partners.org', username=None, password=None, run_path=None, model_path=None, clustername=None): """ Starts connection to host. Should be called once per client. """ #Close any previous connections self.close_connection() #Need to convert to string for paramiko because input could be unicode self.hostname = str(hostname) self.username = str(username) self.password = str(password) self.run_path = str(run_path) self.model_path = str(model_path) self.clustername = str(clustername) self.output("\nConnecting to {} as user: {}...".format(self.hostname, self.username), False) self.ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) try: self.ssh.connect(self.hostname,port=22,username=self.username,password=self.password) except paramiko.AuthenticationException: #Login failed self.output("\tLogin Failed", False) else: #Get model and queue information self.output("\tLogin Succesful", False) self.update_cluster_information() def create_upload_thread(self, *args, **kwargs): self.upload_thread = UploadThread(self, *args, **kwargs) self.upload_thread.start() def create_download_thread(self, *args, **kwargs): thread = DownloadThread(self, *args, **kwargs) thread.start() def sftp_get_recursive(self, thread, dir_remote, dir_local, progress_func, sftp = None): """Recursively Downloads folder including subfolders""" if not sftp: #Create sftp object. Should only do this once per download. with paramiko.Transport((self.hostname, self.port)) as t: t.connect(username=self.username, password=self.password) t.use_compression() #recomended window size from https://github.com/paramiko/paramiko/issues/175 t.window_size = 134217727 sftp = t.open_session() sftp = paramiko.SFTPClient.from_transport(t) progress_func(0, thread.run_folder) self.output("\nDownloading from folder {} to folder {}...".format(dir_remote, dir_local)) self.sftp_get_recursive(thread, dir_remote, dir_local, progress_func, sftp) self.output("\tDownload Complete") else: item_list = sftp.listdir(dir_remote) dir_local = str(dir_local) dir_local = os.path.join(dir_local, os.path.basename(dir_remote)) if not os.path.isdir(dir_local): os.makedirs(dir_local) for item in item_list: item = str(item) if isdir(dir_remote + "/" + item, sftp): self.sftp_get_recursive(thread, dir_remote + "/" + item, dir_local, progress_func, sftp) else: sftp.get(dir_remote + "/" + item, os.path.join(dir_local,item)) thread.curr_files+=1 progress_func(thread.curr_files/float(thread.total_files)*100, thread.run_folder) # def sftp_get_compressed(self, dir_remote, dir_local, sftp = None): # """Download everything as one file""" # compfile = "compfile.tar.gz" # self.output("\nCompressing {}".format(dir_remote)) # stdin, stdout, stderr = self.ssh.exec_command("tar -zcf ~/{} ~/{} ".format(compfile, dir_remote)) # # # if not stdout.readlines(): # #Create sftp object # with paramiko.Transport((self.hostname, self.port)) as t: # t.connect(username=self.username, password=self.password) # t.use_compression() # #recomended window size from https://github.com/paramiko/paramiko/issues/175 # t.window_size = 134217727 # sftp = t.open_session() # sftp = paramiko.SFTPClient.from_transport(t) # # This should be stored somewhere locally for faster access! # dir_temp_local='C:\Temp' # # sftp.get("~/{}".format(compfile), dir_temp_local+"\CEPACclusterdownload.zip") # self.output("\nDownload complete!") # # stdin, stdout, stderr = ssh.exec_command("rm {}".format(compfile)) # self.output("\nExtracting files") # with zipfile.ZipFile(dir_temp_local+"CEPACclusterdownload.zip", "r") as z: # z.extractall(dir_local) # else: # self.output(stdout.readlines()) def sftp_upload(self, thread, dir_local, dir_remote, lsfinfo, progress_func, glob_pattern = "*.in"): """Uploads local directory to remote server and generates a job file per subfolder and returns the list of job files.""" files_copied = 0 jobfiles = [] #Create sftp object with paramiko.Transport((self.hostname, self.port)) as t: t.connect(username=self.username, password=self.password) t.use_compression() #recomended window size from https://github.com/paramiko/paramiko/issues/175 t.window_size = 134217727 sftp = t.open_session() sftp = paramiko.SFTPClient.from_transport(t) self.output("\nSubmitting runs from folder {} ...".format(dir_local)) #list of tuples (local_file, remote file) that will be uploaded files_to_upload = [] for dirpath, dirnames, filenames in os.walk(dir_local): matching_files = [f for f in glob.glob(dirpath + os.sep + glob_pattern) if not os.path.isdir(f)] if not matching_files: continue # Fix foldername remote_base = dir_remote + '/' + os.path.basename(dir_local) if not os.path.relpath(dirpath, dir_local)=='.': curr_dir_remote = remote_base + '/' + os.path.relpath(dirpath,dir_local).replace("\\","/") else: curr_dir_remote = remote_base # Create folder and subfolders stdin, stdout, stderr = self.ssh.exec_command("mkdir -p '{}'".format(curr_dir_remote)) #wait for command to finish stdout.channel.recv_exit_status() self.output("\tCreating {}".format(curr_dir_remote)) # Write and collect job files if thread.abort: return None self.write_jobfile(curr_dir_remote, lsfinfo, sftp) jobfiles.append(curr_dir_remote + '/job.info') # Upload files for fpath in matching_files: is_up_to_date = False fname = os.path.basename(fpath) local_file = fpath remote_file = curr_dir_remote + '/' + fname # if remote file exists try: sftp.stat(remote_file) except IOError: pass else: local_file_data = open(local_file, "rb").read() remote_file_data = sftp.open(remote_file).read() md1 = md5.new(local_file_data).digest() md2 = md5.new(remote_file_data).digest() if md1 == md2: is_up_to_date = True if not is_up_to_date: files_to_upload.append((local_file, remote_file)) progress_func(0) #upload files for local_file, remote_file in files_to_upload: if thread.abort: return None self.output('\tCopying {} to {}'.format(local_file, remote_file)) sftp.put(local_file, remote_file) files_copied += 1 #update progress bar progress_func(files_copied/float(len(files_to_upload))*100) self.output('\tFinished Upload') return jobfiles def write_jobfile(self, curr_dir_remote, lsfinfo, sftp): """ Write job files for the current folder. lsfinfo is a dictionary which contains queue - the queue to submit to email - email address to send upon job completion (optional) modeltype - should be either treatm, debug, or transm modelversion - name of the model version to run """ self.output('\tWriting Job file: {}'.format(curr_dir_remote + '/job.info')) with sftp.open(curr_dir_remote + '/job.info', 'wb') as f: jobcommand = "#!/bin/bash\n" +\ "#BSUB -J \"" + lsfinfo['jobname'] + "\"\n" +\ "#BSUB -q " + lsfinfo['queue'] + "\n" if 'email' in lsfinfo: jobcommand += "#BSUB -u " + lsfinfo['email'] + "\n" + \ "#BSUB -N\n" if lsfinfo['modeltype'] != "smoking": jobcommand += self.model_path + "/" + lsfinfo['modeltype'] + "/" + lsfinfo['modelversion'] + " ~/" + clean_path(curr_dir_remote) else: jobcommand += "/data/cepac/python/bin/python3.6 " + self.model_path + "/" + lsfinfo['modeltype'] + "/"+ \ lsfinfo['modelversion'] + "/sim.py" + " ~/" + clean_path(curr_dir_remote) f.write(jobcommand) def pybsub(self, jobfiles): """Submit jobs for job list to LSF""" for job in jobfiles: stdin, stdout, stderr = self.ssh.exec_command("bash -lc bsub < '{}'".format(job)) stdout.read() err = stderr.read() if err.strip(): self.output('Error: {}'.format(err)) self.output('\tSubmitted :{}'.format(job)) def get_run_folders(self): """ Gets the names of all the folders in the run_folder on the cluster and returs as a list """ self.output("\nRetrieving run folders ...", False) #use ls -1 {}| awk '{$1=$2=""; print 0}' to get long form data but not very useful stdin, stdout, stderr = self.ssh.exec_command("ls -1 {}".format(self.run_path)) run_folders = stdout.readlines() self.output("\tFound {} run folders".format(len(run_folders)), False) return run_folders def delete_run_folders(self, folderlist): """Deletes the list of folders from the cluster""" self.output("\nDeleting Run Folders ...", False) for folder in folderlist: self.output("\tDeleting {}".format(folder), False) stdin, stdout, stderr = self.ssh.exec_command("rm -rf {}".format(self.run_path+"/"+clean_path(folder))) self.output("\tFinished Deleting", False) def get_job_list(self): """ Gets some basic information about currently running jobs Returns jobid, status and queue For detailed job info use get_job_info """ self.output("\nGetting job listing ...", False) #Get job listing and format the result stdin, stdout, stderr = self.ssh.exec_command("bash -lc bjobs | awk '{if (NR!=1) print $1,$3,$4}'") #Each entry in Job data will be a list [jobid, status, queue] job_data = [line.split() for line in stdout.readlines()] return job_data def get_job_info(self, jobid): """ Returns detailed job information by running bjobs -l Returns a tuple of (jobname, modelname, runfolder) """ stdin, stdout, stderr = self.ssh.exec_command("bash -lc 'bjobs -l {}'".format(jobid)) #read here to add delay and avoid being blocked by server #wait for command to finish stdout.channel.recv_exit_status() #read job info and get rid of extra spaces job_data = re.sub("\n\s*","",stdout.read()) #get jobname, modelname, runfolder from job info re_pattern ="Job Name <(.*?)>.*" +\ "Command <.*?{}/.*?/(.*?)".format(self.model_path) +\ "~/{}/(.*?)>".format(self.run_path) match = re.search(re_pattern, job_data) if match: job_name, model_version, run_folder = match.groups() run_folder = reverse_clean_path(run_folder) model_version = model_version.strip() return (job_name, model_version, run_folder) else: return None def kill_jobs(self, joblist): """Kills jobs with jobids given in joblist""" self.output("\nKilling Jobs...", False) for jobid in joblist: stdin, stdout, stderr = self.ssh.exec_command("bash -lc 'bkill {}'".format(jobid)) stdout.channel.recv_exit_status() self.output("\t {} jobs killed".format(len(joblist)), False) def update_cluster_information(self): """ Updates the names of all model versions along with model type(debug, treatm, transm) Updates the lists of available queues Should be called when logging in """ self.output("\tRetrieving model and queue information...", False) stdin, stdout, stderr = self.ssh.exec_command("ls -1 {}".format(self.model_path)) model_types = [m_type.strip() for m_type in stdout.readlines()] model_versions = {} for m_type in model_types: #For each model type get the associated model versions stdin, stdout, stderr = self.ssh.exec_command("ls -1 {}".format(self.model_path+"/"+m_type)) model_versions[m_type] = [m_version.strip() for m_version in stdout.readlines()] self.model_versions = model_versions stdin, stdout, stderr = self.ssh.exec_command("ls -1 {}".format(self.model_path)) model_types = [m_type.strip() for m_type in stdout.readlines()] model_versions = {} #Gets a list of queues by calling bqueues and filtering the output if CLUSTER_INFO[self.clustername]['default_queues']: self.queues = CLUSTER_INFO[self.clustername]['default_queues'] else: stdin, stdout, stderr = self.ssh.exec_command("bash -lc bqueues -w | awk '{if (NR!=1) print $1}'") self.queues = [q.strip() for q in stdout.readlines()] self.output("\tDone", False) def close_connection(self): self.ssh.close() def __del__(self): #closes SSH connection upon exit self.close_connection() #--------------------------------------------- # Helper function def isdir(path, sftp): try: return S_ISDIR(sftp.stat(path).st_mode) except IOError: #Path does not exist, so by definition not a directory return False #--------------------------------------------- # Helper function def clean_path(path): """Cleans a filepath for use on cluster by adding escape characters""" esc_chars = ['&',';','(',')','$','`','\'',' '] for c in esc_chars: path = path.replace(c, "\\"+c) return path #--------------------------------------------- # Helper function def reverse_clean_path(path): """Removes escape characters from path""" return path.replace("\\","") #--------------------------------------------- #--------------------------------------------- #---------------------------------------------------------------------- if __name__ == "__main__": hostname = 'erisone.partners.org' username = 'kh398' password = getpass.getpass("Password: ") port = 22 glob_pattern='*.*' # can be used to only copy a specific type of file, e.g. '.in' lsfinfo = { 'email' : "khoeffner@mgh.harvard.edu", 'modelversion' : "cepac45c", 'jobname' : "R6", 'queue' : "medium" } dir_local = 'Z:\CEPAC - International\Projects\Hoeffner\Ongoing Projects\DTG-1stART-RLS\Analysis\DEV0\Run1_3\R6' dir_remote = "runs/" + lsfinfo['jobname'] if sys.argv[1].lower() == 'upload': with paramiko.Transport((hostname, port)) as t: t.connect(username=username, password=password) sftp = t.open_session() sftp = paramiko.SFTPClient.from_transport(t) jobfiles = sftp_upload(dir_local, dir_remote, glob_pattern, lsfinfo, sftp) if len(sys.argv) > 2 and sys.argv[2].lower() == 'submit': with paramiko.SSHClient() as ssh: ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh.connect(hostname, username=username, password=password) pybsub(jobfiles, ssh) if sys.argv[1].lower() == 'status': # Get job status with paramiko.SSHClient() as ssh: ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh.connect(hostname, username=username, password=password) stdin, stdout, stderr = ssh.exec_command("bjobs") if stdout.readlines(): for line in stdout.readlines(): print(line.split()) else: print(stderr.readlines()) if sys.argv[1].lower() == 'download': # Download everything - Use this after the runs are done with paramiko.Transport((hostname, port)) as t: t.connect(username=username, password=password) t.use_compression() sftp = t.open_session() sftp = paramiko.SFTPClient.from_transport(t) sftp_get_recursive(dir_remote, dir_local, sftp) print("Download complete!") # Download everything in a zip file - Still needs to be fixed because the path is wrong # with paramiko.SSHClient() as ssh: # ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) # ssh.connect(hostname, username=username, password=password) # stdin, stdout, stderr = ssh.exec_command("zip -9 -y -r -q ~/runs/R500.zip "+dir_remote) # # if not stdout.readlines(): # with paramiko.Transport((hostname, port)) as t: # t.connect(username=username, password=password) # t.use_compression() # sftp = t.open_session() # sftp = paramiko.SFTPClient.from_transport(t) # # This should be stored somewhere locally for faster access! # dir_local='C:\MyTemp' # sftp.get("runs/R500.zip", dir_local+"\R500.zip") # print("Download complete!") # # stdin, stdout, stderr = ssh.exec_command("rm runs/R500.zip") # # print("Extracting files") # with zipfile.ZipFile(dir_local+"\R500.zip", "r") as z: # z.extractall(dir_local)
[ "noreply@github.com" ]
fervion.noreply@github.com
79fb2c539e4809067334c47c08ee9e341dbf6de2
16e01a94dc0d8f729be7684c9f0f249836fce359
/build/lib/netabio/__init__.py
38e23c1563bc75675aa55cce4affccf08b928708
[]
no_license
Nurtal/NETABIO
959be136aee32229b01de78f3787eca6609a7f9c
dfd1d5d5f593c433b34634972d9f61197fb0a7e2
refs/heads/master
2021-01-20T21:16:37.423112
2021-01-13T09:21:50
2021-01-13T09:21:50
101,761,229
0
0
null
null
null
null
UTF-8
Python
false
false
595
py
""" """ import os __version__ = "0.0.1" _ROOT = os.path.abspath(os.path.dirname(__file__)) def get_script_path(path): return os.path.join(_ROOT, 'scripts', path) def get_data_path(path): return os.path.join(_ROOT, 'data', path) ## Get path for R script CORRELATIONMATRIX_SCRIPT = get_script_path('fs_correlation_matrix_analysis.R') ATTRIBUTEIMPORTANCE_SCRIPT = get_script_path('fs_attribute_importance_evaluation.R') RFE_SCRIPT = get_script_path('fs_RFE_analysis.R') BORUTA_SCRIPT = get_script_path('fs_Boruta_analysis.R') ## Get path for exemple data TEST_DATA = get_data_path('test.txt')
[ "nathan.foulquier.pro@gmail.com" ]
nathan.foulquier.pro@gmail.com
df74748eca1ff878707ff9e11abd7a90123f6957
510724320e1e4032f976fdc5c6e1cc20c632475d
/practica2-8.py
ed85c91d731badfd4f7a9ad181b1a953f9adfec1
[]
no_license
beloplv/entrega_python
ca129b832c403b9b1484c0193ebeeed44dc89396
05dc7a84721627cdd86f1670698dad1dd6fc9e38
refs/heads/master
2021-05-25T16:31:22.073058
2020-04-07T16:10:35
2020-04-07T16:10:35
253,826,011
0
0
null
null
null
null
UTF-8
Python
false
false
834
py
lista = [] letras_primas = [] palabra = input('ingrese una palabra: ').lower() #limpiar caracteres especiales palabra = palabra.replace(' ', ' ')#sacamos los espacios letras_sin_repetir = set(palabra) for l in letras_sin_repetir: lista.append([l,palabra.count(l)]) print(lista) def es_primo (num): if num <= 1: return False else: for i in range(2,num): if num % i == 0 and 1 != num: return False return True aux=0 for i in lista: ok= es_primo(lista[aux][1]) if ok: letras_primas.append(lista[aux][0]) print ('la letra ',lista[aux][0],' aparecio ', lista[aux][1], 'veces') aux+=1 for y in letras_primas: dato =' - '.join(letras_primas) print ('las letras ',dato,' aparareciones un numero primo de veces')
[ "belo.lp@hotmail.com" ]
belo.lp@hotmail.com
cf17aa81d5fd56cbaddfd67b56f8347f0dcc4ba9
9df2fb0bc59ab44f026b0a2f5ef50c72b2fb2ceb
/sdk/sql/azure-mgmt-sql/azure/mgmt/sql/aio/operations/_managed_database_tables_operations.py
80cd58d73f50f63f89756880a71ad6973b217cc9
[ "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-generic-cla" ]
permissive
openapi-env-test/azure-sdk-for-python
b334a2b65eeabcf9b7673879a621abb9be43b0f6
f61090e96094cfd4f43650be1a53425736bd8985
refs/heads/main
2023-08-30T14:22:14.300080
2023-06-08T02:53:04
2023-06-08T02:53:04
222,384,897
1
0
MIT
2023-09-08T08:38:48
2019-11-18T07:09:24
Python
UTF-8
Python
false
false
10,127
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import sys from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._managed_database_tables_operations import build_get_request, build_list_by_schema_request if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ManagedDatabaseTablesOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.sql.aio.SqlManagementClient`'s :attr:`managed_database_tables` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list_by_schema( self, resource_group_name: str, managed_instance_name: str, database_name: str, schema_name: str, filter: Optional[str] = None, **kwargs: Any ) -> AsyncIterable["_models.DatabaseTable"]: """List managed database tables. :param resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. Required. :type resource_group_name: str :param managed_instance_name: The name of the managed instance. Required. :type managed_instance_name: str :param database_name: The name of the database. Required. :type database_name: str :param schema_name: The name of the schema. Required. :type schema_name: str :param filter: An OData filter expression that filters elements in the collection. Default value is None. :type filter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either DatabaseTable or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.sql.models.DatabaseTable] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2020-11-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2020-11-01-preview") ) cls: ClsType[_models.DatabaseTableListResult] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_by_schema_request( resource_group_name=resource_group_name, managed_instance_name=managed_instance_name, database_name=database_name, schema_name=schema_name, subscription_id=self._config.subscription_id, filter=filter, api_version=api_version, template_url=self.list_by_schema.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = HttpRequest("GET", next_link) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("DatabaseTableListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list_by_schema.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Sql/managedInstances/{managedInstanceName}/databases/{databaseName}/schemas/{schemaName}/tables" } @distributed_trace_async async def get( self, resource_group_name: str, managed_instance_name: str, database_name: str, schema_name: str, table_name: str, **kwargs: Any ) -> _models.DatabaseTable: """Get managed database table. :param resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. Required. :type resource_group_name: str :param managed_instance_name: The name of the managed instance. Required. :type managed_instance_name: str :param database_name: The name of the database. Required. :type database_name: str :param schema_name: The name of the schema. Required. :type schema_name: str :param table_name: The name of the table. Required. :type table_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: DatabaseTable or the result of cls(response) :rtype: ~azure.mgmt.sql.models.DatabaseTable :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2020-11-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2020-11-01-preview") ) cls: ClsType[_models.DatabaseTable] = kwargs.pop("cls", None) request = build_get_request( resource_group_name=resource_group_name, managed_instance_name=managed_instance_name, database_name=database_name, schema_name=schema_name, table_name=table_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize("DatabaseTable", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Sql/managedInstances/{managedInstanceName}/databases/{databaseName}/schemas/{schemaName}/tables/{tableName}" }
[ "noreply@github.com" ]
openapi-env-test.noreply@github.com
428eee51e5773f507ac8d5e499d588f20cd89741
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02239/s467624321.py
e99fe13b3bd0e7848a7182a747adec5f254305d8
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
430
py
n = int(input()) G = [] G.append([]) for i in range(n): v = list(map(int, input().split())) G.append(v[2:]) q = [] q.append(1) checked = [False] * (n + 1) checked[1] = True d = [-1] * (n + 1) d[1] = 0 while q: current = q.pop(0) for v in G[current]: if not checked[v]: q.append(v) d[v] = d[current] + 1 checked[v] = True for i in range(1, n + 1): print(i, d[i])
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
34c7f9943b99e7e6a7c9523b927c981eb06cb18f
6b3a706484d1ea07b595846f965f172f9be2dd3b
/flaskr/auth.py
0c8770ce46adb492ecd603402801caafb5e5cb04
[]
no_license
tflucker/python-blog
1b97c79a72cc79e51bb7447a10a687d1f35be817
39de62c4ef6f7ac693b1cf7933a7da6299942b5f
refs/heads/main
2023-05-27T11:57:36.553086
2021-06-17T01:55:32
2021-06-17T01:55:32
377,334,873
0
0
null
null
null
null
UTF-8
Python
false
false
2,408
py
import functools from flask import ( Blueprint, flash, g, redirect, render_template, request, session, url_for ) from werkzeug.security import check_password_hash, generate_password_hash from flaskr.db import get_db bp = Blueprint('auth', __name__, url_prefix='/auth') @bp.route('/register', methods=('GET', 'POST')) def register(): if request.method == 'POST': username = request.form['username'] password = request.form['password'] db = get_db() error = None if not username: error = 'Username is required' elif not password: error = 'Password is required' elif db.execute('SELECT id FROM user WHERE username = ?', (username,)).fetchone() is not None: error = f"User {username} is already registered." if error is None: db.execute('INSERT INTO user (username, password) VALUES (?, ?)', (username, generate_password_hash(password))) db.commit() return redirect(url_for('auth.login')) flash(error) return render_template('auth/register.html') @bp.route('/login', methods=('GET', 'POST')) def login(): if request.method == 'POST': username = request.form['username'] password = request.form['password'] db = get_db() error = None user = db.execute('SELECT * FROM user WHERE username = ?', (username,)).fetchone() if user is None: error = 'Incorrect username.' elif not check_password_hash(user['password'], password): error = 'Incorrect password' if error is None: session.clear() session['user_id'] = user['id'] return redirect(url_for('index')) flash(error) return render_template('auth/login.html') @bp.before_app_request def load_logged_in_user(): user_id = session.get('user_id') if user_id is None: g.user = None else: g.user = get_db().execute('SELECT * FROM user WHERE id = ?', (user_id,)).fetchone() @bp.route('/logout') def logout(): session.clear() return redirect(url_for('index')) def login_required(view): @functools.wraps(view) def wrapped_view(**kwargs): if g.user is None: return redirect(url_for('auth.login')) return view(**kwargs) return wrapped_view
[ "tflucker@gwmail.gwu.edu" ]
tflucker@gwmail.gwu.edu
e5f226f2a01768eceeb8b8f7eeb9c4302a6a0c45
7aab309dee577d4df80f69b47dc4ec48d2ed451a
/python_tasks_advanced/cels.py
035d80e282735e05854446a90eea799be114e058
[]
no_license
omitiev/python_lessons
64f657e32d4414e75c6510ec111240018ed6b7d5
97561e56814c514756e207c2b323ca8e1366994e
refs/heads/master
2021-10-09T06:32:30.154748
2018-12-22T12:02:28
2018-12-22T12:02:28
97,019,527
0
0
null
null
null
null
UTF-8
Python
false
false
1,285
py
''' реализовать дескриптор Celsius для преобразования градусов фаренгейта в градусы цельсия class Temperature: celsius = Celsius() def __init__(self, initial): self.fahrenheit = initial Для перевода температуры из шкалы Фаренгейта в шкалу Цельсия нужно от исходного числа отнять 32 и умножить результат на 5/9. ((f-32) / 1.8) Для перевода температуры из шкалы Цельсия в шкалу Фаренгейта нужно умножить исходное число на 9/5 и прибавить 32. (c * 1.8 + 32) 100 = 37.78 ''' class Celsius: def __get__(self, instance, owner): return (float(instance.fahrenheit) - 32) / 1.8 def __set__(self, instance, value): instance.fahrenheit = float(value) * 1.8 + 32 return instance.fahrenheit class Temperature: celsius = Celsius() def __init__(self, initial): self.fahrenheit = initial def transform_to_celsius(self, obj): self.celsius = obj temp = Temperature(100) print(temp.fahrenheit) print(temp.celsius) temp.celsius = 37.78 print(temp.fahrenheit)
[ "oleksii.mitiev@gmail.com" ]
oleksii.mitiev@gmail.com
d599a32015509383a8cc397300fcaa9ee27645c3
0f7e3f0a74192bdf48810325469b8acd7e9b5541
/rent.py
aaad8113fd337f4762099caf28c0afcfdf7d1232
[]
no_license
TelmanH/RentVehicleSystem
d97279cba970df5cee27ff7aecf4edc8476c6a46
01750a8d7c690699525efa5780b0c450a6f47d5e
refs/heads/master
2023-03-29T14:25:47.916959
2021-04-04T22:50:00
2021-04-04T22:50:00
322,725,162
0
0
null
null
null
null
UTF-8
Python
false
false
5,763
py
import datetime # parent class class VehicleRent: def __init__(self, stock): self.stock = stock self.now = 0 def displayStock(self): """ display stock """ print("{} vehicle available to rent".format(self.stock)) return self.stock def rentHourly(self, n): """ rent hourly """ if n <= 0: print("Number should be positive") return None elif n > self.stock: print("Sorry, {} vehicle available to rent".format(self.stock)) return None else: self.now = datetime.datetime.now() print("Rented a {} vehicle for hourly at {} hours".format(n, self.now.hour)) self.stock -= n return self.now def rentDaily(self, n): """ rent daily """ if n <= 0: print("Number should be positive") return None elif n > self.stock: print("Sorry, {} vehicle available to rent".format(self.stock)) return None else: self.now = datetime.datetime.now() print("Rented a {} vehicle for daily at {} hours".format(n, self.now.hour)) self.stock -= n return self.now def returnVehicle(self, request, brand): """ return a bill """ car_h_price = 10 car_d_price = car_h_price * 8 / 10 * 24 bike_h_price = 5 bike_d_price = bike_h_price * 7 / 10 * 24 rentalTime, rentalBasis, numOfVehicle = request bill = 0 if brand == "car": if rentalTime and rentalBasis and numOfVehicle: self.stock += numOfVehicle now = datetime.datetime.now() rentalPeriod = now - rentalTime if rentalBasis == 1: # hourly bill = rentalPeriod.seconds / 3600 * car_h_price * numOfVehicle elif rentalBasis == 2: # daily bill = rentalPeriod.seconds / (3600 * 24) * car_d_price * numOfVehicle if (2 <= numOfVehicle): print("You have extra 20% discount") bill = bill * 0.8 print("Thank you for returning your car") print("Price: $ {}".format(bill)) return bill elif brand == "bike": if rentalTime and rentalBasis and numOfVehicle: self.stock += numOfVehicle now = datetime.datetime.now() rentalPeriod = now - rentalTime if rentalBasis == 1: # hourly bill = rentalPeriod.seconds / 3600 * bike_h_price * numOfVehicle elif rentalBasis == 2: # daily bill = rentalPeriod.seconds / (3600 * 24) * bike_d_price * numOfVehicle if (4 <= numOfVehicle): print("You have extra 20% discount") bill = bill * 0.8 print("Thank you for returning your bike") print("Price: $ {}".format(bill)) return bill else: print("You do not rent a vehicle") return None # child class 1 class CarRent(VehicleRent): global discount_rate discount_rate = 15 def __init__(self, stock): super().__init__(stock) def discount(self, b): """ discount """ bill = b - (b * discount_rate) / 100 return bill # child class 2 class BikeRent(VehicleRent): def __init__(self, stock): super().__init__(stock) # customer class Customer: def __init__(self): self.bikes = 0 self.rentalBasis_b = 0 self.rentalTime_b = 0 self.cars = 0 self.rentalBasis_c = 0 self.rentalTime_c = 0 def requestVehicle(self, brand): """ take a request bike or car from customer """ if brand == "bike": bikes = input("How many bikes would you like to rent?") try: bikes = int(bikes) except ValueError: print("Number should be Number") return -1 if bikes < 1: print("Number of Bikes should be greater than zero") return -1 else: self.bikes = bikes return self.bikes elif brand == "car": cars = input("How many cars would you like to rent?") try: cars = int(cars) except ValueError: print("Number should be Number") return -1 if cars < 1: print("Number of cars should be greater than zero") return -1 else: self.cars = cars return self.cars else: print("Request vehicle error") def returnVehicle(self, brand): """ return bikes or cars """ if brand == "bike": if self.rentalTime_b and self.rentalBasis_b and self.bikes: return self.rentalTime_b, self.rentalBasis_b, self.bikes else: return 0, 0, 0 elif brand == "car": if self.rentalTime_c and self.rentalBasis_c and self.cars: return self.rentalTime_c, self.rentalBasis_c, self.cars else: return 0, 0, 0 else: print("Return vehicle Error")
[ "noreply@github.com" ]
TelmanH.noreply@github.com
2dc7e2e97203b4b33219cb69dc4ddbb3662c6f49
c6a96dedabf27b581a7378123a7124d7d054991c
/tester.py
ea2b573df178b7443f853bf8115d6b66dfeaf08b
[]
no_license
redeye93/ViterbiAlgorithm
b445d154d8e0aba812a3445bba2b4fc1dff4af4e
f5ca7c927d06685bb4cb3fe9a091b61085a64cdb
refs/heads/master
2021-04-03T09:12:52.920140
2018-03-10T21:46:37
2018-03-10T21:46:37
124,626,968
3
0
null
null
null
null
UTF-8
Python
false
false
1,070
py
import sys import os from collections import Counter def count_c(x, y): if len(x)<len(y): (x, y) = (y, x) a = Counter(x) b = Counter(y) return sum(min(b[key], value) for (key, value) in a.items()) if len(sys.argv) == 3: file1 = sys.argv[1] file2 = sys.argv[2] if not os.path.exists(file1) or not os.path.exists(file2): print('One of the files is missing') exit(1) correct = 0 incorrect = 0 with open(file1, encoding='utf8') as text1: with open(file2, encoding='utf8') as text2: for (x, y) in zip(text1, text2): x = x.strip() y = y.strip() x = x.split() y = y.split() matching = count_c(x, y) correct += matching incorrect += len(x) - matching print(correct) print(incorrect) print(correct + incorrect) print(1.0 * correct / (correct + incorrect)) text1.close() text2.close() else: print('Insufficient number of arguments') exit(1)
[ "utkarshgera77@gmail.com" ]
utkarshgera77@gmail.com
f05336e22c0ecd4e51379312cb55a58e69b04c87
02952ddf96e7960a3faef74485f4ffc12bcf2973
/tests/test_projects/test_parallelSDC/test_preconditioner.py
721bb0679d9f43391103863777497ff76214f947
[ "BSD-2-Clause" ]
permissive
danielru/pySDC
5decca37e1ecea643fe21dac0f978e3fdaa24ac6
558b2b4db3aeb97e6a87e41cd4958a8a948af37a
refs/heads/master
2020-12-25T10:58:57.215298
2017-03-21T06:45:59
2017-03-21T06:45:59
31,062,846
0
0
null
2015-02-20T11:52:33
2015-02-20T11:52:33
null
UTF-8
Python
false
false
131
py
from projects.parallelSDC.preconditioner_playground import main, plot_iterations def test_main(): main() plot_iterations()
[ "r.speck@fz-juelich.de" ]
r.speck@fz-juelich.de
1e13f89a1a8a0b4e88abe02f70cdd50a0a87215a
b9fe15c72998488a9dfe73469cf7eb30659dcfd4
/snake_eyes/buffered_distribution.py
18a15f102ffa6609fceca4df86e9464e9eba20c1
[ "MIT" ]
permissive
bentheiii/snake_eyes
d8ea4e76aad5f060b64c55eed3d129a6d3ede01e
a5f53c203c6bb536592d9b3dcc270f924cd9ef6a
refs/heads/master
2020-09-08T00:06:24.856647
2020-01-22T08:44:55
2020-01-22T08:44:55
220,951,860
0
0
null
null
null
null
UTF-8
Python
false
false
10,676
py
from __future__ import annotations from itertools import chain from numbers import Number from typing import Generic, TypeVar, Iterable, Type, Any, Tuple, Dict, Optional, Mapping, Union from dyndis import Self import numpy as np from snake_eyes.support_space import DiscreteFiniteSupportSpace try: from scipy import stats except ImportError: stats = None from snake_eyes.bufferer import Bufferer, ChoiceBufferer from snake_eyes.distribution import Distribution, add, mul, div, ConstDistribution, ReciprocalDistribution, \ SumDistribution, ProductDistribution, _maybe_parenthesise from snake_eyes.util import prod T = TypeVar('T') class BufferedDistribution( Distribution[T], Generic[T]): """ A generic distribution that takes a bufferer and adapts it into a distribution """ def __init__(self, bufferer: Bufferer): self.bufferer = bufferer def get(self) -> T: return next(self.bufferer) def reciprocal(self): return ReciprocalBufferedDistribution(self) @add.implementor() def add(self, other: Self): return SumBufferedDistribution((self, other)) @add.implementor() def add(self, other: Number): return SumConstBufferedDistribution(self, other) @add.implementor() def add(self, other: ConstDistribution): return self + other.value @mul.implementor() def mul(self, other: Self): return ProductBufferedDistribution((self, other)) @mul.implementor() def mul(self, other: Number): return ProductConstBufferedDistribution(self, other) @mul.implementor() def mul(self, other: ConstDistribution): return self * other.value def get_n(self, n): return self.bufferer.get_n(n) class ReciprocalBufferedDistribution(BufferedDistribution[T], ReciprocalDistribution, Generic[T]): def __init__(self, inner: BufferedDistribution[T]): BufferedDistribution.__init__(self, inner.bufferer.reciprocal()) ReciprocalDistribution.__init__(self, inner) class SumBufferedDistribution(BufferedDistribution[T], SumDistribution, Generic[T]): def __init__(self, parts: Iterable[BufferedDistribution[T]]): SumDistribution.__init__(self, parts) BufferedDistribution.__init__(self, sum(p.bufferer for p in self.parts)) @add.implementor(symmetric=True) def add(self, other: BufferedDistribution): p = self.parts + (other,) return type(self)(p) class SumConstBufferedDistribution(BufferedDistribution[T], Generic[T]): """ A distribution that is the sum of a buffered distribution and a constant value """ def __init__(self, inner: BufferedDistribution[T], const: T): self.inner = inner self.const = const super().__init__(inner.bufferer + const) def mean(self): m = self.inner.mean() if m is None: return None return m + self.const def variance(self): return self.inner.variance() def cumulative_density(self, k): return self.inner.cumulative_density(k - self.const) def probability(self, k): return self.inner.probability(k - self.const) def support_space(self): iss = self.inner.support_space() return iss and (iss + self.const) @add.implementor(symmetric=True) def add(self, other: BufferedDistribution): return (self.inner + other) + self.const @add.implementor(symmetric=True) def add(self, other: Any): if isinstance(other, Distribution): return NotImplemented return self.inner + (self.const + other) @add.implementor() def add(self, other): return (self.inner + other.inner) + (self.const + other.const) @add.implementor(symmetric=True) def add(self, other: SumBufferedDistribution): return (other + self.inner) + self.const @mul.implementor(symmetric=True) def mul(self, other: Any): return self.inner * other + self.const * other @div.implementor() def truediv(self, other: Any): return self.inner / other + self.const / other def __eq__(self, other): return type(self) is type(other) and (self.inner, self.const) == (other.inner, other.const) def __str__(self): return f'{_maybe_parenthesise(self.inner)} + {self.const}' def __hash__(self): return hash((type(self), self.inner, self.const)) class ProductBufferedDistribution( BufferedDistribution[T], ProductDistribution, Generic[T]): def __init__(self, parts: Iterable[BufferedDistribution[T]]): ProductDistribution.__init__(self, parts) BufferedDistribution.__init__(self, prod(p.bufferer for p in self.parts)) @mul.implementor(symmetric=True) def mul(self, other: BufferedDistribution): p = self.parts + (other,) return type(self)(p) class ProductConstBufferedDistribution( BufferedDistribution[T], Generic[T]): """ A distribution that is the product of a buffered distribution and a constant value """ def __init__(self, inner: BufferedDistribution[T], const: T): self.inner = inner self.const = const super().__init__(inner.bufferer * const) def mean(self): m = self.inner.mean() if m is None: return None return m * self.const def variance(self): m = self.inner.variance() if m is None: return None return m * self.const ** 2 def support_space(self): iss = self.inner.support_space() return iss and (iss * self.const) def cumulative_density(self, k): return self.inner.cumulative_density(k / self.const) def probability(self, k): return self.inner.probability(k / self.const) @mul.implementor(symmetric=True) def mul(self, other: BufferedDistribution): return (self.inner * other) * self.const @mul.implementor(symmetric=True) def mul(self, other: Any): if isinstance(other, Distribution): return NotImplemented return self.inner * (self.const * other) @mul.implementor() def mul(self, other): return (self.inner * other.inner) * (self.const * other.const) @mul.implementor(symmetric=True) def mul(self, other: ProductBufferedDistribution): return (other * self.inner) * self.const def __eq__(self, other): return type(self) is type(other) and (self.inner, self.const) == (other.inner, other.const) def __str__(self): return f'{_maybe_parenthesise(self.inner)} * {self.const}' def __hash__(self): return hash((type(self), self.inner, self.const)) class BuffererMakerDistribution( BufferedDistribution[T], Generic[T]): """ A specialized bufferer distribution that makes use of already created and cached bufferers using the bufferer's make method. """ def __init__(self, bufferer_cls: Type[Bufferer], args, kwargs=None): super().__init__(bufferer_cls.make(args, kwargs)) self.args: Tuple[Tuple, Optional[Dict[str, Any]]] = (args, kwargs) def __repr__(self): args_str = self.args_str() args = () kwargs = None if isinstance(args_str, Mapping): kwargs = args_str elif len(args_str) != 2 or not isinstance(args_str[1], Mapping) or not isinstance(args_str[0], Iterable): args = args_str else: args, kwargs = args_str args_str = (repr(a) for a in args) if kwargs: args_str = chain(args_str, (f'{k}={v!r}' for (k, v) in kwargs.items())) return type(self).__name__ + "(" + ", ".join(args_str) + ")" def args_str(self) -> Union[Tuple[Iterable, Optional[Mapping[str, Any]]], Iterable, Mapping[str, Any]]: return self.args def __eq__(self, other): return type(self) is type(other) and self.args == other.args def __hash__(self): return hash(repr(self)) class ChoiceDistribution(BuffererMakerDistribution): """ A discrete distribution that chooses from a numpy array as np.random.choice """ def __init__(self, choices, p=None): choices = tuple(choices) if p is not None: p = tuple(p) super().__init__(ChoiceBufferer, (choices,), {'p': p}) self.choices = choices self.p = p def mean(self): if self.p is not None: return sum( i * p for (i, p) in zip(self.choices, self.p) ) return sum( i for i in self.choices ) / len(self.choices) def variance(self): if self.p is not None: return sum( i * p for (i, p) in zip(self.choices, self.p) ) - self.mean() return sum( i for i in self.choices ) / len(self.choices) - self.mean() def support_space(self): return DiscreteFiniteSupportSpace(self.choices) def cumulative_density(self, k): if self.p is not None: return np.sum(self.p[self.choices <= k]) return np.sum(self.choices <= k) / len(self.choices) def probability(self, k): if self.p is not None: return np.sum(self.p[self.choices == k]) return np.sum(self.choices == k) / len(self.choices) @add.implementor(symmetric=True) def add(self, other: Number): choices = [c + other for c in self.choices] return type(self)(choices, p=self.p) @mul.implementor(symmetric=True) def mul(self, other: Number): choices = [c * other for c in self.choices] return type(self)(choices, p=self.p) def reciprocal(self): choices = [1 / c for c in self.choices] return type(self)(choices, p=self.p) def truncate(self, min=None, max=None): if self.p is not None: choices = [] probs = [] prob_sum = 0 for c, p in zip(self.choices, self.p): if (min is None or min <= c) and (max is None or max >= c): choices.append(c) probs.append(p) prob_sum += p if not prob_sum: raise ValueError("can't truncate all options") probs = [p / prob_sum for p in probs] return type(self)(choices, p=probs) else: choices = [] for c in self.choices: if (min is None or min <= c) and (max is None or max >= c): choices.append(c) if not choices: raise ValueError("can't truncate all options") return type(self)(choices)
[ "sample@notreal.fake" ]
sample@notreal.fake
6e91dd8602f65435370b4eed75287e0436e66dba
4d1f9c7253d7351227d5d9be45d650d88c2ee75b
/dsgd.py
590c52f89d8091828e921f27e0577acd1fefc6cb
[]
no_license
shaw-stat/MF-under-attack-model
0a9a1f64840b050ee3e750b5e065a66ed3a5b844
dea44b4d65711125f3468635cca96775a4f6bb4f
refs/heads/master
2023-02-28T10:23:40.548452
2021-02-03T04:34:49
2021-02-03T04:34:49
335,347,478
0
0
null
null
null
null
UTF-8
Python
false
false
10,149
py
# -*- coding: utf-8 -*- """ Created on Wed Aug 12 20:50:10 2020 @author: shaw """ import sys import math from time import time import random import csv import numpy from pyspark import SparkContext from scipy import sparse from sklearn.preprocessing import normalize,scale import numpy as np import pandas as pd from functions import * #%matplotlib inline rho0 = 0.2 C = 10 # Number of factors nbr_iter = 50# number of iterations block_number = 4 # number of blocks to take from the matrix sc= SparkContext.getOrCreate() #mytest = np.loadtxt("D:\\新建文件夹2019\\SG_MCMC\\R3_test.txt", dtype=int) mytest = np.loadtxt("D:\\新建文件夹2019\\SG_MCMC\\ua.test", dtype=int) mytrain =np.loadtxt("D:\\新建文件夹2019\\SG_MCMC\\ua.base", dtype=int) test_mean = mytest[:,2].mean() train_mean = mytrain[:,2].mean() mean_rate = (test_mean+train_mean)/2 # eta0 = 0.1 eta0=0.9 def SGD(R, Q, P, mask, Ni, Nj, blockRange): """ This function is an implementation of the SGD algorithm described above. Input : R, Q, P, mask, Ni, Nj, blockRange Output : Q, P, n, blockRange """ global rho0,eta0 #eta = 0.01#first step size R_new = R.nonzero() n = R_new[0].size #eta=eta0 rho=rho0 for i in range(n): # if i% 10000 == 0: # eta=eta0/(2**(i/10000)) # rho=rho0/(2**(i/10000)) # if i<n: # tau = i/n # eta = eta0*(1-tau)+tau*0.01*eta0 # else: # eta = 0.01*eta0 eta = eta0/(i+1) j = random.randint(0, n-1) # Pick randomly an element j row, col = R_new[0][j], R_new[1][j] # retrieve the row and column of the random j # take a small blocks from R, mask, Q and P Ri = R[row,col] maski = mask[row,col] Qi = Q[row,:] Pi = P[:,col] # compute the gradient of Qi and Pi _, grad_Q = objective_Q(Pi, Qi, Ri, maski, rho) _, grad_P = objective_P(Pi, Qi, Ri, maski, rho) #eta = eta0 * (1 + i) ** (- 0.5) #eta=eta*0.96 #eta=eta0 # update the blocks of P and Q Q[row,:] = Qi - eta * grad_Q P[:,col] = Pi - eta * grad_P #print(np.linalg.norm(Q[row,:])) return (Q, P, n, blockRange) def SGD2(R,mask, test,mask2): """ This function is an implementation of the SGD algorithm described above. Input : R, Q, P, mask, Ni, Nj, blockRange Output : Q, P, n, blockRange """ # Q = numpy.random.random_sample((R.shape[0], C)) # P = numpy.random.random_sample((C, R.shape[1])) #Q =np.loadtxt('Q3_sgd_new3.csv',delimiter=',') #P =np.loadtxt('P3_sgd_new3.csv',delimiter=',') Q = np.ones([R.shape[0],C])*0.3 P = np.ones([C,R.shape[1]])*0.3 global eta0,rho0 #eta = 0.01#first step size R_new = R.nonzero() n = R_new[0].size Rmse = [] T=[] t0=time() eta=eta0 rho=rho0 for i in range(10000): if i<50000: tau = i/50000 eta = eta0*(1-tau)+tau*0.01*eta0 else: eta = 0.01*eta0 #eta=eta0 # if i% 20000 == 0: # eta=eta0/(2**(i/20000)) # #rho=rho0/(2**(i/20000)) # #eta=eta0*(0.96**(i/10000)) # print("... iteration %s, eta %f,rho%f"%(i,eta,rho)) j = random.randint(0, n-1) # Pick randomly an element j row, col = R_new[0][j], R_new[1][j] # retrieve the row and column of the random j # take a small blocks from R, mask, Q and P Ri = R[row,col] maski= mask[row,col] Qi = Q[row,:] Pi = P[:,col] # compute the gradient of Qi and Pi _, grad_Q = objective_Q(Pi, Qi, Ri, maski, rho) _, grad_P = objective_P(Pi, Qi, Ri, maski, rho) #eta = eta0 * (1 + i) ** (- 0.5) #eta=eta*0.96 #eta=eta0 #if ((t>0)and(Rmse<)) # update the blocks of P and Q Q[row,:] = Qi - eta * grad_Q P[:,col] = Pi - eta * grad_P #print(np.linalg.norm(Q[row,:])) nuser = test.shape[0] nitem = test.shape[1] pre = np.dot(Q[:nuser,:], P[:,:nitem]) #pre[np.where((pre>0)&(pre<1))] = 1 #pre[np.where(pre>5)] = 5 temp = mask2*(test-pre) rows, cols = np.nonzero(temp) Rmse.append(np.sqrt(np.power(temp[rows,cols],2).mean())) T.append(time()-t0) return (Q, P, Rmse,T) def Parallelized_SGD(R, mask,test,mask2): """ This function performs the Parallelized SGD algorithm Input : R, mask Output : Q, P """ T=[] t0=time() global nbr_iter, block_number, C,eta0,rho0 # Q = np.ones([R.shape[0],C])*0.5 # P = np.ones([C,R.shape[1]])*0.5 Q = numpy.random.random_sample((R.shape[0], C)) P = numpy.random.random_sample((C, R.shape[1])) #Q =np.loadtxt('Q3_sgd5.csv',delimiter=',') #P =np.loadtxt('P3_sgd5.csv',delimiter=',') block_i = (int(R.shape[0]/block_number), int(R.shape[1]/block_number)) rowRangeList = [[k*block_i[0],(k+1)*block_i[0]] for k in range(block_number)] colRangeList = [[k*block_i[1],(k+1)*block_i[1]] for k in range(block_number)] rowRangeList[-1][1] += R.shape[0]%block_number colRangeList[-1][1] += R.shape[1]%block_number Rmse = [] for iter_ in range(nbr_iter): if iter_ % 10 == 0: print("... iteration %s"%(iter_)) for epoch in range(block_number): grid = [] for block in range(block_number): rowRange = [int(rowRangeList[block][0]), int(rowRangeList[block][1])] colRange = [int(colRangeList[block][0]), int(colRangeList[block][1])] # The subsamples in each matrix and vector Rn = R[rowRange[0]:rowRange[1], colRange[0]:colRange[1]] maskn = mask[rowRange[0]:rowRange[1], colRange[0]:colRange[1]] Qn = Q[rowRange[0]:rowRange[1],:] Pn = P[:,colRange[0]:colRange[1]] Ni = {} for i in range(rowRange[0],rowRange[1]): Ni[int(i-int(rowRange[0]))] = R[i,:].nonzero()[0].size Nj = {} for i in range(colRange[0],colRange[1]): Nj[i-colRange[0]] = R[:,i].nonzero()[0].size if (Rn.nonzero()[0].size != 0): grid.append([Rn, Qn, Pn, maskn, Ni, Nj, (rowRange, colRange)]) rdd = sc.parallelize(grid, block_number).\ map(lambda x: SGD(x[0],x[1],x[2],x[3],x[4],x[5],x[6])).collect() for elem in rdd: rowRange,colRange = elem[3] Q[rowRange[0]:rowRange[1],:] = elem[0] P[:,colRange[0]:colRange[1]] = elem[1] colRangeList.insert(0,colRangeList.pop()) nuser = test.shape[0] nitem = test.shape[1] pre = np.dot(Q[:nuser,:], P[:,:nitem]) #pre[np.where((pre>0)&(pre<1))] = 1 #pre[np.where(pre>5)] = 5 temp = mask2*(test-pre) rows, cols = np.nonzero(temp) Rmse.append(np.sqrt(np.power(temp[rows,cols],2).mean())) T.append(time()-t0) return Q,P,Rmse,T def outputMatrix(A, path): """ This function outputs a matrix to a csv file """ f = open(path, 'w', 100) rows= A.shape[0] cols = A.shape[1] for row in range(rows): for col in range(cols): if col == cols-1: f.write(str(A[row,col])) else: f.write(str(A[row,col]) + ",") f.write("\n") f.flush() f.close() def load_data(filename="u.data",scale = True,small_data=False): """ This function returns : R : the matrix user-item containing the ratings mask : matrix is equal to 1 if a score existes and 0 otherwise """ global mean_rate data = np.loadtxt(filename, dtype=int)[:,:3] #data = data_norm(data0) if filename=="D:\\新建文件夹2019\\SG_MCMC\\ua.base": R = sparse.csr_matrix((data[:, 2], (data[:, 0]-1, data[:, 1]-1)),dtype=float) else: R = sparse.csr_matrix((data[:, 2], (data[:, 0]-1, data[:, 1]-1)),dtype=float) mask = sparse.csr_matrix((np.ones(data[:, 2].shape),(data[:, 0]-1, data[:, 1]-1)), dtype=bool ) # #normalization # R= (R - np.mean(R, axis=0)) # R= (R - np.mean(R, axis=1)) / np.std(R, axis=1) # take a small part of the whole data for testing if scale==True: if filename=="D:\\新建文件夹2019\\SG_MCMC\\ua.base": R = np.loadtxt('R_a_base_scale.txt',delimiter=',') mask = sparse.csr_matrix((np.ones(R.nonzero()[0].shape[0]),(R.nonzero()[0], R.nonzero()[1])), dtype=bool ) elif filename=="D:\\新建文件夹2019\\SG_MCMC\\ua.test": R = np.loadtxt('R_a_test_scale.txt',delimiter=',') mask = sparse.csr_matrix((np.ones(R.nonzero()[0].shape[0]),(R.nonzero()[0], R.nonzero()[1])), dtype=bool ) else: print('not scaling') if small_data == True: R = (R[0:100, 0:100].copy()) mask = (mask[0:100, 0:100].copy()) # R = R.toarray() # mask = mask.toarray() return R, mask def data_norm(data,mode): f_data = pd.DataFrame(data) if mode==1: data[:,2] = data[:,2]-np.mean(data[:2]) return data def scale_sparse_vector(x): if x[x!=0].shape[0]>0: x[x!=0]=scale(x[x!=0],with_mean=True,with_std=True) def scale_matrix(R): RR = R.copy() d_R = pd.DataFrame(RR) d_R.apply(scale_sparse_vector,axis=1) return np.array(d_R)
[ "1653519@tongji.edu.cn" ]
1653519@tongji.edu.cn
41f32d17361896607a0dbb0526f28df14fc0dd44
f3304ceb4407e818d30407937fec1fac2c212307
/run2.py
142d9ad7bf2bbdd68be68cfc36e6f7405590a2be
[]
no_license
kkirsanov/avito-parser
d6dc621a93ec54ca988ffd134a48b7cb83260e5c
d00f54f706da4734f0a12882ffc59a882fad850a
refs/heads/master
2020-03-24T21:04:37.376646
2018-07-31T12:43:08
2018-07-31T12:43:08
143,012,481
0
0
null
null
null
null
UTF-8
Python
false
false
493
py
#!/usr/bin/python # Run unix date command 3 times import leveldb import json cnt = 0 f = open("z.csv", "r") f2 = open("z3.csv", "w") ph = set() for l in f: d = l.split('\t') try: if d[-5][0] == '8': d[-5] = "7"+d[-5][1:] p = d[-5] if p not in ph: st = "\t".join(d) # print st f2.write(st) ph.add(d[-5]) else: pass except: pass f2.close() print len(ph)
[ "kkirsanov@gmail.com" ]
kkirsanov@gmail.com
65bbdc9338d1742bfe07263040119d0da97205ce
d3af72e4c623dffeda95e662d495a95c8f2e317a
/scripts/gene_checker/annotations/utils/utils.py
ebd9775887739a4562e0953e798ff45a0f24a331
[]
no_license
bioinf/bi2014-mycoplasma-genitalium
0e2fbf095a461339064ea38f1be4586897f7c2ac
bd8eb82bb8d883faeb0492d74deb7a396577b782
refs/heads/master
2016-09-05T11:34:00.325602
2014-12-06T12:37:12
2014-12-06T12:37:12
24,504,082
0
1
null
null
null
null
UTF-8
Python
false
false
1,960
py
__author__ = 'nikita_kartashov' NUCLEOTIDE_COMPLIMENTS = {'A': 'T', 'C': 'G', 'T': 'A', 'G': 'C'} CODON_LENGTH = 3 START_CODON = 'AUG' STOP_CODONS = ['UAA', 'UAG'] PURINES = ['A', 'G'] SHINE_DALGARNO = 'AGGAGG' def split_into_ns(data, n): return zip(*(iter(data),) * n) def fst(x): return x[0] def snd(x): return x[1] def nucleotide_compliment(nucleotide): return NUCLEOTIDE_COMPLIMENTS[nucleotide] def compliment(dna): return ''.join(map(nucleotide_compliment, dna)) def dna_to_mrna(dna): def mapper(nucleotide): return 'U' if nucleotide == 'T' else nucleotide return ''.join(mapper(nucleotide_compliment(nucleotide)) for nucleotide in dna) def rna_to_dna(rna): def mapper(nucleotide): return 'T' if nucleotide == 'U' else nucleotide return ''.join(map(mapper, rna)) def reverse_compliment(dna): return compliment(reversed(dna)) def ORF(code): mrna = dna_to_mrna(code) try: start_index = mrna.index(START_CODON) def stop_index(codon, starting): try: data = map(lambda x: ''.join(x), split_into_ns(mrna[starting:], CODON_LENGTH)) return starting + data.index(codon) * 3 except ValueError: return len(mrna) + 1 return start_index, min(stop_index(codon, start_index) for codon in STOP_CODONS) except ValueError: return False DEFAULT_WINDOW = 6 DEFAULT_DISTANCE = 10 DEFAULT_STEPS = [step - 5 for step in range(0, 10)] DEFAULT_RICHNESS = 0.7 def purine_richness(area): if not area: return 0 return sum((1 if nucleotide in PURINES else 0 for nucleotide in area)) * 1.0 / len(area) def is_purine_rich(area, richness=DEFAULT_RICHNESS): if not area: return False area_richness = purine_richness(area) print(area_richness) return area_richness >= richness def has_Shine_Dalgarno(code, start, spacer = 6): return True
[ "snailandmail@gmail.com" ]
snailandmail@gmail.com
da8bd8f4a014138a3d91dc7d39ac778710cd0c9a
e2faae27d29a82c02ccbea3170b6b86d033c2318
/bmi_calculator.py
4c1ac31d396ece5a12ef26858e8ad4ea94142c46
[]
no_license
chrynx/python
526087f8a76969e5909146021fe8b2b684f51b9d
b4ce4960f7d7d7d2ccdf223adc0cc781a6074c8b
refs/heads/master
2023-01-11T00:16:43.341877
2017-12-16T14:28:46
2017-12-16T14:28:46
110,001,062
0
0
null
null
null
null
UTF-8
Python
false
false
894
py
user = raw_input('Hello, What is your name? -> ') print 'Welcome, ' + user weight = float(raw_input('Can you please tell me your weight in kilograms? -> ')) height = float(raw_input('And your height in meters? -> ')) def bmi_calculator(w, h): bmi = w / (h ** 2) print 'Hello, Your BMI is -> ' + str(bmi) if bmi < 18.5: print 'Based on our charts, you are considered underweight, please contact your doctor for a weight gain plan' if bmi >= 18.5 and bmi < 25: print 'Based on our charts, you are considered healthy, keep up the good work' if bmi >= 25 and bmi < 30: print 'Based on our charts, you are considered overweight, please contact your doctor for a weight loss plan' if bmi >= 30: print 'Based on our charts, you are considered obese, please contact your doctor for an immediate weight loss plan' print 'Thank you for using this program ' bmi_calculator(weight, height)
[ "ralphmadriaga@gmail.com" ]
ralphmadriaga@gmail.com
f980dc402cb2aeb058ee68f17487aaa041dc20ba
a02a0e814dbb52753def1b62b76c772506578e75
/face_tag_video.py
1b47bbcd0547ed325a102ba6edb1a5e93a9d19f5
[]
no_license
rashmibhaty/Face_Tag_Generator
0b7ccb85f1bc665a16729432c85867544d3ada6e
527729a68128b2539fcff7d0229fb9e4e6547ad4
refs/heads/master
2022-11-22T20:32:04.969325
2020-07-28T07:07:31
2020-07-28T07:07:31
267,585,527
0
0
null
null
null
null
UTF-8
Python
false
false
2,592
py
# -*- coding: utf-8 -*- """ Created on Wed May 27 18:11:42 2020 @author: rashmibh """ import cv2 from keras.models import load_model import numpy as np import os #Video to use for face tagging Video_File_Name='VID_20200518_191839.mp4' MODEL_FILE='model.facedetect_family' INDICES_FILE='class_indices_saved_family.npy' list_indices=[] if os.path.isfile(INDICES_FILE): class_indices = np.load(INDICES_FILE,allow_pickle=True).item() [list_indices.extend([[k,v]]) for k,v in class_indices.items()] np.set_printoptions(precision=3) np.set_printoptions(suppress=True) #Load the saved model model = load_model(MODEL_FILE) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) #Setup face detection part cascPath = 'haarcascade_frontalface_default.xml' faceCascade = cv2.CascadeClassifier(cascPath) video_capture = cv2.VideoCapture(Video_File_Name) while True: # Capture frame-by-frame ret, frame = video_capture.read() #print(frame) (h, w,d)= frame.shape #Detection not working well on large images r = 600.0 / w dim = (600, int(h * r)) resized = cv2.resize(frame, dim) gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (11, 11), 0) faces = faceCascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=7, minSize=(50, 50), flags=cv2.CASCADE_SCALE_IMAGE ) # Draw a rectangle around the faces for (x, y, w, h) in faces: cv2.rectangle(resized, (x, y), (x+w, y+h), (0, 255, 0), 2) roi = resized[y:(y+h), (x):(x+w)] roi = cv2.resize(roi,(64,64)) roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY) #Get the prection value for the current face pred = model.predict(roi[np.newaxis, :, :, np.newaxis]/255) print(pred) for item in list_indices: if item[1] == np.argmax(pred): name=item[0] break cv2.putText(resized, name, (x, y-5), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2) cv2.putText(resized, str(pred.max()), (x, y+h+5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) # Display the resulting frame cv2.imshow(Video_File_Name, resized) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything is done, release the capture video_capture.release() cv2.destroyAllWindows()
[ "noreply@github.com" ]
rashmibhaty.noreply@github.com
792b27211442dbcce6022c3d2d48273e4a5ec3ed
6ab073e94e4b3241c65614c7a8eecb2afa3d3dc9
/app/core/migrations/0003_ingredient.py
b8c63d2f176c3e87e3b4ce17236650da531d001a
[ "MIT" ]
permissive
shaquibquraish/recipie-app-api
c05f90e4c9e0b428c80c1d9d7b96e5159b7199a2
e90e63ba053ffea6ff801d476ca4e4c77c5ff946
refs/heads/master
2020-12-15T08:25:50.796182
2020-01-28T14:55:47
2020-01-28T14:55:47
235,045,320
0
0
null
null
null
null
UTF-8
Python
false
false
685
py
# Generated by Django 3.0.2 on 2020-01-22 19:28 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0002_tag'), ] operations = [ migrations.CreateModel( name='Ingredient', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "shaquibquraishi@gmail.com" ]
shaquibquraishi@gmail.com
f99d52f317bd6aca8f1627b1732eab6e46b1c580
f62ff90d7850af458d8f12386fc9ee9134dbe7c1
/Plots/Showplots/Model_4/Slopes.py
4a50fda1d37fcada8edb14639b508ef35b6ea07e
[]
no_license
AlexSchmid22191/EIS_R_Sim
51b431f078cb455fc38637c192436c0523449565
851b061e60811e1e58a5b2fd4e393e529c3f86ac
refs/heads/master
2023-06-27T17:40:59.177270
2021-07-22T11:50:27
2021-07-22T11:50:27
380,768,174
0
0
null
null
null
null
UTF-8
Python
false
false
1,421
py
from matplotlib.pyplot import subplots, show from matplotlib.style import use from numpy import load from Equations import e, k, T use('../Show.mplstyle') data = load('../../../Currents_Resistances_Model_4/Slope_Data_Model_4.npy') fig, axes = subplots(nrows=2, ncols=2, figsize=(12, 8)) for ax in axes.flatten(): ax.set_xscale('log') ax.set_xlabel('Oxygen partial pressure (bar)') ax.set_ylabel('Overpotential (V)') colmesh_p = axes[0, 0].pcolormesh(data['pressure'], data['overpotential'], data['p_slope'], vmin=0, vmax=1) cbar_p = fig.colorbar(colmesh_p, ax=axes[0, 0], label=r'$\frac{d\ln j}{d\ln p}$') cbar_p.ax.minorticks_off() colmesh_n = axes[0, 1].pcolormesh(data['pressure'], data['overpotential'], data['n_slope']*k*T/e, vmin=0, vmax=4) cbar_n = fig.colorbar(colmesh_n, ax=axes[0, 1], label=r'$\frac{d\ln j}{d\eta} (\frac{e}{kT})$') cbar_n.ax.minorticks_off() colmesh_rp = axes[1, 0].pcolormesh(data['pressure'], data['overpotential'], data['rp_slope'], vmin=-1.25, vmax=0.5) cbar_rp = fig.colorbar(colmesh_rp, ax=axes[1, 0], label=r'$\frac{d\ln R}{d\ln p}$') cbar_rp.ax.minorticks_off() colmesh_rn = axes[1, 1].pcolormesh(data['pressure'], data['overpotential'], data['rn_slope']*k*T/e, vmin=-4, vmax=4) cbar_rn = fig.colorbar(colmesh_rn, ax=axes[1, 1], label=r'$\frac{d\ln R}{d\eta} (\frac{e}{kT})$') cbar_rn.ax.minorticks_off() fig.tight_layout() fig.savefig('Plots/Slopes.png') show()
[ "Alex.Schmid91@gmail.com" ]
Alex.Schmid91@gmail.com
873cd6116a82e9e22ce7abe0b328cb92468b58be
ca970e84e2138e3fb57a95706a7ecfed4879bc44
/Advanced_python/Object_internals_and_custom_attributes/vector_2.py
22e1a671523ae3123202dca29da7a1ad7837f76c
[]
no_license
thxa/test_python
b67854ddfa2d89c315917e0739a419d085ff7845
d8c1e0204d54e2c9e0799a5b41c81399f1487e45
refs/heads/master
2020-06-26T19:07:28.570894
2020-03-10T20:34:55
2020-03-10T20:34:55
199,723,985
0
0
null
null
null
null
UTF-8
Python
false
false
2,517
py
class Vector: def __init__(self, **coords): private_coords = {'_' + k: v for k, v in coords.items()} self.__dict__.update(private_coords) # def __getattr__(self, name): # return "name = %s" %name # def __getattr__(self, name): # private_name = '_' + name # return getattr(self, private_name) # https://docs.python.org/3/reference/datamodel.html#object.__getattr__ def __getattr__(self, name): private_name = '_' + name try: return self.__dict__[private_name] except KeyError: raise AttributeError("{!r} object has no attribute {!r}".format( self.__class__, name)) # https://docs.python.org/3/reference/datamodel.html#object.__setattr__ def __setattr__(self, name, value): raise AttributeError("Can't set attribute {!r}".format(name)) # https://docs.python.org/3/reference/datamodel.html#object.__delattr__ def __delattr__(self, name): raise AttributeError("Can't delete attribute {!r}".format(name)) def __repr__(self): return "{}({})".format( self.__class__.__name__, ', '.join("{k}={v}".format( k=k[1:], v=self.__dict__[k]) for k in sorted(self.__dict__.keys()))) class ColoredVector(Vector): COLOR_INDEXES = ("red", "green", "blue") def __init__(self, red, green, blue, **coords): super().__init__(**coords) self.__dict__["color"] = [red, green, blue] def __getattr__(self, name): try: channel = ColoredVector.COLOR_INDEXES.index(name) except ValueError: return super().__getattr__(name) else: return self.__dict__["color"][channel] def __setattr__(self, name, value): try: channel = ColoredVector.COLOR_INDEXES.index(name) except ValueError: super().__setattr__(name, value) else: self.__dict__["color"][channel] = value # def __delattr__(self, name): def __repr__(self): keys = set(self.__dict__.keys()) keys.discard("color") coords = ', '.join( "{k}={v}".format( k=k[1:], v=self.__dict__[k]) for k in sorted(keys)) return "{cls}({red}, {green}, {blue}, {coords})".format( cls=self.__class__.__name__, red=self.red, green=self.green, blue=self.blue, coords=coords) def main(): v = Vector(p=4, q=2) print(v) print(v.__dict__) print(v.p) # v.p = 2 print(v._p) # print(v.x) # del v.p # del v._p # v._p = 1 # v.__dict__['+p'] cv = ColoredVector(red=23, green=44, blue=238, p=9, q=14) print(cv) print(cv.red) print(cv.green) print(cv.blue) print(cv.p) print(cv.q) print(dir(cv)) print(cv.__dict__) if __name__ == '__main__': main()
[ "33045743+thxa@users.noreply.github.com" ]
33045743+thxa@users.noreply.github.com
d22257ae400edba16284923f650c9396517b0122
f40cd3359ec78bd2723cfdb80de8fe3c77003681
/image_processing/process_images.py
d931281237ac58982417392c480c0358845f8b85
[]
no_license
LanaSina/prednet_gol
be1c72173bae171c527483baf36d773bbc9f3033
1fdc853e1241a1e4dad782a8d9c48279042cb60f
refs/heads/master
2020-04-27T17:16:05.842755
2019-09-02T07:22:08
2019-09-02T07:22:08
174,510,932
0
3
null
2019-09-02T07:22:09
2019-03-08T09:47:19
Jupyter Notebook
UTF-8
Python
false
false
2,857
py
# Create image datasets. import argparse import importlib import numpy as np import os import requests import urllib.request import sys from bs4 import BeautifulSoup import hickle as hkl from imageio import imread from scipy.misc import imresize usage = 'Usage: python {} DATA_DIR [N_IMAGES] [ORDER] [--help]'.format(__file__) parser = argparse.ArgumentParser(description='This script is to generate .hkl files for train, test and val images', usage=usage) parser.add_argument('data_dir', action='store', nargs=None, type=str, help='path to directory containing the image _folder_.') parser.add_argument('n_images', action='store', nargs='?', default=-1, type=int, help='optional: total number of images to use.') parser.add_argument('order', action='store', nargs='?', default=0, type=int, help='optional: 0 for regular order, 1 for inverse ordering of frames.') args = parser.parse_args() DATA_DIR = args.data_dir desired_im_sz = (128, 160) #train, val, test split_ratio = np.array([0.8,0.1,0.1]) splits = ["train", "val", "test"] # Processes images and saves them in train, val, test splits. # Order : 0 for normal, 1 for reverse def process_data(n_images=-1, order=0): im_dir = DATA_DIR + "/images/" image_list = sorted(os.listdir(im_dir)) if order == 1: image_list.reverse() if n_images==-1: n_images = len(image_list) s = 0 im_list = [] source_list = [] print(n_images, " images") limits = split_ratio*n_images print(limits) i = 0 for image_name in image_list: while limits[s] == 0 : s = s + 1 if(s>len(limits)) : break im_list += [im_dir + image_name] # print(image_name) source_list += [im_dir] i = i + 1 if i==limits[s]: split = splits[s] s = s + 1 # save print( 'Creating ' + split + ' data: ' + str(len(im_list)) + ' images') X = np.zeros((len(im_list),) + desired_im_sz + (3,), np.uint8) for i, im_file in enumerate(im_list): im = imread(im_file) X[i] = process_im(im, desired_im_sz) hkl.dump(X, os.path.join(DATA_DIR, 'X_' + split + '.hkl')) hkl.dump(source_list, os.path.join(DATA_DIR, 'sources_' + split + '.hkl')) # create empty lists im_list = [] source_list = [] # resize and crop image def process_im(im, desired_sz): target_ds = float(desired_sz[0])/im.shape[0] im = imresize(im, (desired_sz[0], int(np.round(target_ds * im.shape[1])))) d = int((im.shape[1] - desired_sz[1]) / 2) im = im[:, d:d+desired_sz[1]] return im if __name__ == '__main__': process_data(args.n_images, args.order)
[ "lana.sinapayen@gmail.com" ]
lana.sinapayen@gmail.com
f26aa2b147563cfbc91ff87d0a1e57cc576b9ead
60606b2665de5fdc4a099c7b4489ef9df5f742d8
/appBank/src/main.py
30882feda9535a39a133b4a5776d30ce26f2b832
[]
no_license
frdanwrhdyt/appllikasi-perbankan-dg-python
3e95589d3eeb00e900ae3e26cb59beb83f279be8
100bf1d8023283729bce4055f442e48f985d8999
refs/heads/master
2022-07-23T03:23:17.980300
2020-05-21T17:57:30
2020-05-21T17:57:30
265,915,996
0
0
null
null
null
null
UTF-8
Python
false
false
5,276
py
import json import os from collections import Counter def clearScreen(): input() os.system('cls') class Login: def __init__(self,username,password): self.__username = username self.__password = password def getName(self): return self.__username def getLogin(self): with open ('data.json') as json_file: data=json.load(json_file) for i in data['user'] : if self.__username in i['username'] and self.__password in i['password']: return True def getConfirm(self): with open ('data.json') as json_file: data=json.load(json_file) for i in data['user'] : if self.__username in i['username'] and self.__password in i['password']: if (i['status'] == False): return False else: return True def getDebit(self): with open ('data.json') as json_file: data=json.load(json_file) for i in data['user'] : if self.__username in i['username'] and self.__password in i['password']: return i['debit'] class Sighup: def __init__(self,username,password,email): self.__username = username self.__password = password self.__email = email if not os.path.isfile('data.json'): data={} data['user']=[] data['user'].append({ 'username' : self.__username, 'password' : self.__password, 'email' : self.__email, 'debit' : 0, 'status' : False, }) with open ('data.json','w') as json_file : json.dump(data,json_file) else: data={ 'username' : self.__username, 'password' : self.__password, 'email' : self.__email, 'debit' : 0, 'status' : False, } with open ('data.json') as json_file : jsonData=json.load(json_file) temp=jsonData['user'] temp.append(data) with open ('data.json','w') as json_file: json.dump(jsonData,json_file) class admin: def __init__(self): j=0 with open ('data.json') as json_file: data=json.load(json_file) for i in data['user'] : if (i['status']==True): j+=1 self.__user={ i['username'] } print(str(j)+'. '+ i['username']) def eraserUser(self,nomor): a=Counter(self.__user) if nomor in a: with open ('data.json') as json_file: data=json.load(json_file) for i in data['user'] : if (i['status']==True): print(i['username']) else: return "Nasabah tidak ada" def dashboardUser(user): print('Selamat datang ' + user.getName()) print("---"*8) print('1. Lihat saldo\n2. Tambah Saldo\n3. Ganti Password\n4. Keluar') print('---'*8) pilihan=input('Masukkan pilihan : ') if(pilihan == '1'): print('Saldo anda : Rp' + str(user.getDebit())) def dashboardAdmin(): print('Selamat datang di dashboard admin') print('---'*8) print('1. Lihat nasabah\n2. Lihat pendaftar\n3. Keluar') print('---'*8) pilihan1=input('Masukkan pilihan : ') if (pilihan1=='1'): Admin=admin() print('\n1. Hapus nasabah\n2. Kembali') pilihan2=input('Masukkan pilihan : ') if (pilihan2=='1'): pilihan3=int(input('Masukkan nomer nasabah')) pilihan3-=1 Admin.eraserUser(pilihan3) elif (pilihan2=='2'): clearScreen() dashboardAdmin() def loginDashboard(): clearScreen() print('Tekan 9 untuk batal') username = input("Username : ") if (username=='9'): return True password = input("Password : ") if (password=='9'): return True user = Login(username,password) if user.getLogin(): if user.getConfirm(): clearScreen() dashboardUser(user) else: print('Username belum dikonfirmasi oleh admin') elif (username == 'admin' and password == 'admin'): clearScreen() dashboardAdmin() else: print('Username atau password salah') def daftarDashboard(): clearScreen() print('Tekan 9 untuk batal') username = input("Username : ") if (username=='9'): return True password = input("Password : ") if (password=='9'): return True email = input("Email : ") if (email=='9'): return True user = Sighup(username,password,email) while (True): print('Selamat datang di applikasi perbankan') print("---"*8) print("1. Login\n2. Daftar") print("---"*8) pilihan=input("Masukkan Pilihan : ") if (pilihan=='1'): loginDashboard() elif (pilihan=='2'): daftarDashboard() else: print("Pilihan tidak ada") clearScreen()
[ "farid780anwar@gmail.com" ]
farid780anwar@gmail.com
8b5e76af94f8db48d834469d1bd897444bf4d7bf
a6172e91bad7c17e699a1253360b82f9cb6188aa
/envs.py
7d1757888faf1cfc1c9bb9a299972a4989aa9ce7
[]
no_license
wangyouzhuo/pytorch-a3c-attention
7f2af43869eb9cd20f35d882eeca3828dd718928
142da0a377e861bc7226a4a86bdc53b359629941
refs/heads/master
2020-04-28T05:19:06.695210
2019-02-16T14:51:32
2019-02-16T14:51:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,765
py
import cv2 import gym import numpy as np from gym.spaces.box import Box # Taken from https://github.com/openai/universe-starter-agent def create_atari_env(env_id): env = gym.make(env_id) env = AtariRescale84x84(env) env = NormalizedEnv(env) return env def _process_frame84(frame): frame = frame[34:34 + 160, :160] # Resize by half, then down to 84x84 (essentially mipmapping). If # we resize directly we lose pixels that, when mapped to 84x84, # aren't close enough to the pixel boundary. frame = cv2.resize(frame, (84, 84)) # frame = frame.mean(2, keepdims=True) frame = frame.astype(np.float32) frame *= (1.0 / 255.0) frame = np.moveaxis(frame, -1, 0) return frame class AtariRescale84x84(gym.ObservationWrapper): def __init__(self, env=None): super(AtariRescale84x84, self).__init__(env) self.observation_space = Box(0.0, 1.0, [3, 84, 84]) def _observation(self, observation): return _process_frame84(observation) class NormalizedEnv(gym.ObservationWrapper): def __init__(self, env=None): super(NormalizedEnv, self).__init__(env) self.state_mean = 0 self.state_std = 0 self.alpha = 0.9999 self.num_steps = 0 def _observation(self, observation): self.num_steps += 1 self.state_mean = self.state_mean * self.alpha + \ observation.mean() * (1 - self.alpha) self.state_std = self.state_std * self.alpha + \ observation.std() * (1 - self.alpha) unbiased_mean = self.state_mean / (1 - pow(self.alpha, self.num_steps)) unbiased_std = self.state_std / (1 - pow(self.alpha, self.num_steps)) return (observation - unbiased_mean) / (unbiased_std + 1e-8)
[ "gamrianshani@gmail.com" ]
gamrianshani@gmail.com
a7cc97b5e49ca2c7859a2cb2f70472934c5ad299
e00186e71a1f52b394315a0cbc27162254cfffb9
/durga/tut/sample/contact/urls.py
cbd927b2b80e5d9ff7cf2904f6a45474adb1c169
[]
no_license
anilkumar0470/git_practice
cf132eb7970c40d0d032520d43e6d4a1aca90742
588e7f654f158e974f9893e5018d3367a0d88eeb
refs/heads/master
2023-04-27T04:50:14.688534
2023-04-22T05:54:21
2023-04-22T05:54:21
100,364,712
0
1
null
2021-12-08T19:44:58
2017-08-15T10:02:33
Python
UTF-8
Python
false
false
137
py
from . import views from django.urls import path, include urlpatterns = [ path('contactme/', views.contactus, name='contact-me'), ]
[ "anilkumar.0466@gmail.com" ]
anilkumar.0466@gmail.com
ca4ca0b26337918f518b836b293d681197779508
9c7bc80c99cfa42bb5fca431e3fcca6bb712bba7
/tests/unit/modules/test_xfs.py
4b423d69d124c028313cb910588169ab2bb05064
[ "MIT", "Apache-2.0", "BSD-2-Clause" ]
permissive
darix/salt
678856d84cb53e3390998306ec09de64220a8fc7
fae3dfc4f417988f431514f89e398a86fe5541a4
refs/heads/openSUSE-2019.2.0
2023-01-21T05:38:58.088830
2020-02-12T09:05:45
2020-02-19T13:37:56
241,922,575
0
1
NOASSERTION
2022-06-01T18:26:13
2020-02-20T15:42:58
null
UTF-8
Python
false
false
1,407
py
# -*- coding: utf-8 -*- # Import Python libs from __future__ import absolute_import, print_function, unicode_literals import textwrap # Import Salt Testing Libs from tests.support.mixins import LoaderModuleMockMixin from tests.support.unit import skipIf, TestCase from tests.support.mock import ( NO_MOCK, NO_MOCK_REASON, MagicMock, patch) # Import Salt Libs import salt.modules.xfs as xfs @skipIf(NO_MOCK, NO_MOCK_REASON) @patch('salt.modules.xfs._get_mounts', MagicMock(return_value={})) class XFSTestCase(TestCase, LoaderModuleMockMixin): ''' Test cases for salt.modules.xfs ''' def setup_loader_modules(self): return {xfs: {}} def test__blkid_output(self): ''' Test xfs._blkid_output when there is data ''' blkid_export = textwrap.dedent(''' DEVNAME=/dev/sda1 UUID=XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX TYPE=xfs PARTUUID=YYYYYYYY-YY DEVNAME=/dev/sdb1 PARTUUID=ZZZZZZZZ-ZZZZ-ZZZZ-ZZZZ-ZZZZZZZZZZZZ ''') # We expect to find only data from /dev/sda1, nothig from # /dev/sdb1 self.assertEqual(xfs._blkid_output(blkid_export), { '/dev/sda1': { 'label': None, 'partuuid': 'YYYYYYYY-YY', 'uuid': 'XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX' } })
[ "dincamihai@users.noreply.github.com" ]
dincamihai@users.noreply.github.com
57b74c58c636552617a86ca776cdc6f914fe0984
0c5b84db768690c304e26552a765b277601f6393
/jim/config.py
d7344285fceac051dfbda5219282afc026ad7b88
[]
no_license
Implexx/Messenger
09d43d4b3412734e23e1bad8ee74866ae9ee510f
75bf09331cc28eb88ee13ff1725ab87351d40d4d
refs/heads/master
2020-03-26T01:34:32.952377
2018-08-13T09:43:58
2018-08-13T09:43:58
144,373,003
0
0
null
null
null
null
UTF-8
Python
false
false
1,170
py
"""Константы (ключи, действия, значения, коды ответов) и настройки""" ENCODING = 'utf-8' USERNAME_MAX_LENGTH = 25 MESSAGE_MAX_LENGTH = 500 # Ключи протокола (действия) ACTION = 'action' TIME = 'time' USER = 'user' ERROR = 'error' ACCOUNT_NAME = 'account_name' RESPONSE = 'response' AUTH = 'authenticate' USER_ID = 'user_id' ALERT = 'alert' QUANTITY = 'quantity' REQUIRED_MESSAGE_KEYS = (ACTION, TIME) REQUIRED_RESPONSE_KEYS = (RESPONSE,) # Значения протокола PRESENCE = 'presence' MSG = 'msg' QUIT = 'quit' TO = 'to' FROM = 'from' MESSAGE = 'message' GET_CONTACTS = 'get_contacts' ADD_CONTACT = 'add_contact' DEL_CONTACT = 'del_contact' CONTACT_LIST = 'contact_list' ACTIONS = (PRESENCE, MSG, GET_CONTACTS, DEL_CONTACT, ADD_CONTACT, CONTACT_LIST) # Коды ответов сервера BASIC_NOTICE = 100 OK = 200 ACCEPTED = 202 WRONG_REQUEST = 400 # неправильный запрос или джейсон обьект SERVER_ERROR = 500 # ошибка на стороне сервера RESPONSE_CODES = (BASIC_NOTICE, OK, ACCEPTED, WRONG_REQUEST, SERVER_ERROR)
[ "hurtmind@mail.ru" ]
hurtmind@mail.ru
fcbba6b6aeedfe4d2b974334b93de13ca8113414
93634959a1873580b7b9f449f02b338bac9b4dab
/php-fpm/php-fpm.py
5f6d0a8e6407bc22cc2a632ebcadf68a94548442
[]
no_license
saranshjain1/Datadog-Plugins
5b12638c1f3f8b77b91b633c49465748d369ba80
0d8f8645c07dfd103976024cdd16052ad5473269
refs/heads/master
2021-01-22T11:47:43.550438
2014-04-16T19:14:34
2014-04-16T19:14:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,579
py
#!/usr/bin/python2.6 import sys import os import subprocess from checks import AgentCheck class details(AgentCheck): GAUGES = { 'start time':'php-fpm.start time', 'start since':'php-fpm.start since', 'accepted conn': 'php-fpm.connections', 'listen queue': 'php-fpm.listen queue', 'max listen queue': 'php-fpm.max listen queue', 'active processes': 'php-fpm.active processes', 'total processes': 'php-fpm.total processes', 'max active processes': 'php-fpm.max active processes', 'max children reached': 'php-fpm.max children reached', } def check(self,instance): default_timeout = self.init_config.get('default_timeout', 5) os.environ["SCRIPT_NAME"] = "/status" os.environ["SCRIPT_FILENAME"] = "/status" os.environ["REQUEST_METHOD"] = "GET" req = subprocess.Popen(["cgi-fcgi", "-bind", "-connect", "127.0.0.1:9000"], stdout=subprocess.PIPE).communicate()[0] metric_count = 0 line = req for queue in line.split('\n'): values = queue.split(': ') if len(values) == 2: metric, value = values try: value = float(value) except ValueError: continue if metric in self.GAUGES: metric_count +=1 check_fpm = self.GAUGES[metric] self.gauge(check_fpm, value, tags=['check_php-fpm']) if __name__ == '__main__': check, instances = details.from_yaml('/etc/dd-agent/conf.d/php-fpm.yaml') for instance in instances: print "\nRunning the check" check.check(instances) print 'Metrics: %s' % (check.get_metrics())
[ "saransh@saransh.(none)" ]
saransh@saransh.(none)
52b12b817990f295f9c1dc821dfbaaae87f185e5
46548aac69803470361503b005d64bb2ec8cb24c
/EulerProjects/project10.py
8c934240bbe2732541a74f4f99680c2e0e43f764
[]
no_license
hoangnhancs/CS112.L11.KHTN
e425141203f2c09e7e45c0125b2241eb5c51598e
d1ac96ce5953d1a0b621b802a2bbe1c468ea07c1
refs/heads/master
2023-02-21T07:35:22.859211
2021-01-25T02:23:31
2021-01-25T02:23:31
294,288,315
4
7
null
null
null
null
UTF-8
Python
false
false
301
py
def check (n, arr_prime): for i in arr_prime: if n%i==0: return False return True arr_prime = [2] sum =2 for i in range(3, 2000001): if check(i, arr_prime)==True: arr_prime.append(i) sum+=i print(sum) #print(arr_prime) # #print(check(3,arr_prime)) # print(check(9, arr_prime))
[ "thaihoangnhantk17lqd@gmail.com" ]
thaihoangnhantk17lqd@gmail.com
2fc719b1fdba27a69f938d9dbb23e5487b3a8aaf
6c89cc53812a3d819c5f701b10a7b57343e4d47e
/config.py
77e679ee2a28a00973a53b6ed25c3777a73d947b
[]
no_license
mmg1/DefaultLogExpress-DLE-
72f4f85c705a0f4028651701d84b01aa07d7a148
6ed93e366be7744b7b7e8f47293e3763aca1691e
refs/heads/master
2021-09-27T16:01:59.581145
2018-11-09T10:53:29
2018-11-09T10:53:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
197
py
# coding: utf-8 WARNING = "\033[31m[!] \033[0m" FORBI = "\033[31m[x] \033[0m" PLUS = "\033[32m[+] \033[0m" INFO = "\033[34m[?] \033[0m" LESS = "\033[33m[-] \033[0m" LINE = "\033[34m=\033[0m" * 20
[ "noreply@github.com" ]
mmg1.noreply@github.com
714e831e1d51a913ff27d8ffbcf275abb01e4997
cbfb679bd068a1153ed855f0db1a8b9e0d4bfd98
/leet/facebook/strings_arrays/498_diagonal_traverse.py
49810dc7b8f714f7e2fc3ac3da9c6b1fedb5b7de
[]
no_license
arsamigullin/problem_solving_python
47715858a394ba9298e04c11f2fe7f5ec0ee443a
59f70dc4466e15df591ba285317e4a1fe808ed60
refs/heads/master
2023-03-04T01:13:51.280001
2023-02-27T18:20:56
2023-02-27T18:20:56
212,953,851
0
0
null
null
null
null
UTF-8
Python
false
false
1,987
py
from typing import List # diagonal length class Solution: def findDiagonalOrder(self, matrix: List[List[int]]) -> List[int]: if not matrix: return [] n = len(matrix) m = len(matrix[0]) i, j, di, dj = 0, 0, 0, 1 direction = 0 res = [0] * (m * n) l = 0 while l < m * n: # this is diagonal length cnt = min(j + 1, n - i) x, y = i, j rng = range(cnt) if direction == 1 else range(cnt)[::-1] for k in rng: res[l + k] = matrix[x][y] x += 1 y -= 1 matrix[i][j] = None # this is how we go over the top and right border if matrix[(i + di) % n][(j + dj) % m] is None: di, dj = dj, di i += di j += dj direction ^= 1 l += cnt return res # this is solution with reverse class Solution: def findDiagonalOrder(self, matrix: List[List[int]]) -> List[int]: if not matrix: return [] n = len(matrix) m = len(matrix[0]) length = n + m - 1 i = 0 j = 0 direction = 0 di, dj = 0, 1 res = [] l = 0 while l < length: x, y = i, j arr = [] while 0<=x<n and 0<=y<m: arr.append(matrix[x][y]) x+=1 y-=1 if direction == 0: arr = arr[::-1] res.extend(arr) matrix[i][j] = None if matrix[(i + di) % n][(j + dj) % m] == None: di, dj = dj, di i += di j += dj direction ^= 1 l+=1 return res if __name__ == '__main__': s = Solution() s.findDiagonalOrder([[2,5],[8,4],[0,-1]]) s.findDiagonalOrder([[3],[2]]) s.findDiagonalOrder([[2,3]]) s.findDiagonalOrder([[1,2,3],[4,5,6],[7,8,9]])
[ "ar.smglln@gmail.com" ]
ar.smglln@gmail.com
665b1be081ab338d26b6231b4e8c856ff8a1b2dd
0faf534ebb6db6f32279e5bee25b968bd425ce3a
/tests/extension/thread_/axi_slave_lite/thread_axi_slave_lite.py
1bda522df6d89d386a8ef2f35d2313d7523cd9d5
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
PyHDI/veriloggen
e8647cb2d40737d84e31d6b89c5799bab9cbd583
f2b1b9567150af097eed1b5e79ba2b412854ef43
refs/heads/develop
2023-08-09T10:02:35.626403
2023-08-09T00:50:14
2023-08-09T00:50:14
37,813,184
282
60
Apache-2.0
2023-07-20T03:03:29
2015-06-21T15:05:30
Python
UTF-8
Python
false
false
3,495
py
from __future__ import absolute_import from __future__ import print_function import sys import os # the next line can be removed after installation sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname( os.path.dirname(os.path.dirname(os.path.abspath(__file__))))))) from veriloggen import * import veriloggen.thread as vthread import veriloggen.types.axi as axi def mkLed(): m = Module('blinkled') clk = m.Input('CLK') rst = m.Input('RST') datawidth = 32 saxi = vthread.AXISLiteRegister(m, 'saxi', clk, rst, datawidth, length=4) def blink(): while True: saxi.wait_flag(0, value=1, resetvalue=0) saxi.write(1, 1) # set busy size = saxi.read(2) sum = 0 for i in range(size): sum += i saxi.write(3, sum) saxi.write(1, 0) # unset busy vthread.finish() th = vthread.Thread(m, 'th_blink', clk, rst, blink) fsm = th.start() return m def mkTest(memimg_name=None): m = Module('test') # target instance led = mkLed() # copy paras and ports params = m.copy_params(led) ports = m.copy_sim_ports(led) clk = ports['CLK'] rst = ports['RST'] # memory = axi.AxiMemoryModel(m, 'memory', clk, rst, memimg_name=memimg_name) # memory.connect(ports, 'myaxi') # AXI-Slave controller _saxi = vthread.AXIMLiteVerify(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') k = 100 expected_sum = 0 for i in range(k): expected_sum += i def ctrl(): for i in range(100): pass # size awaddr = 8 _saxi.write_delayed(awaddr, k, 10) # start awaddr = 0 _saxi.write_delayed(awaddr, 1, 10) for _ in range(10): pass # busy check araddr = 4 v = _saxi.read_delayed(araddr, 10) while v != 0: v = _saxi.read_delayed(araddr, 10) # result araddr = 12 v = _saxi.read_delayed(araddr, 10) print('result = %d, expected = %d' % (v, expected_sum)) if v == expected_sum: print('# verify: PASSED') else: print('# verify: FAILED') vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(led, 'uut', params=m.connect_params(led), ports=m.connect_ports(led)) # vcd_name = os.path.splitext(os.path.basename(__file__))[0] + '.vcd' # simulation.setup_waveform(m, uut, dumpfile=vcd_name) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, rst, m.make_reset(), period=100) init.add( Delay(1000000), Systask('finish'), ) return m def run(filename='tmp.v', simtype='iverilog', outputfile=None): if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile test = mkTest(memimg_name=memimg_name) if filename is not None: test.to_verilog(filename) sim = simulation.Simulator(test, sim=simtype) rslt = sim.run(outputfile=outputfile) return rslt if __name__ == '__main__': rslt = run(filename='tmp.v') print(rslt)
[ "shta.ky1018@gmail.com" ]
shta.ky1018@gmail.com
e3326e19b9640eea1e9bbfd8cdc74c97f007cbc8
6c137e70bb6b1b618fbbceddaeb74416d387520f
/spyre/testing/onthefly.py
7516351719b40b94613f133f92eb3c6cd36a4dbb
[ "BSD-2-Clause" ]
permissive
zhong-lab/code
fe497c75662f8c3b7ab3c01e7e351bff6d5e8d15
b810362e06b44387f0768353c602ec5d29b551a2
refs/heads/master
2023-01-28T09:46:01.448833
2022-06-12T22:53:47
2022-06-12T22:53:47
184,670,765
2
7
BSD-2-Clause
2022-12-08T21:46:15
2019-05-02T23:37:39
Python
UTF-8
Python
false
false
321
py
# Device List devices = { # 'fungen':[ # 'lantz.drivers.keysight.Keysight_33622A.Keysight_33622A', # ['USB0::0x0957::0x5707::MY53801461::INSTR'], # {} # ] } # Experiment List spyrelets = { 'rabi':[ 'spyre.spyrelets.onthefly.OnTheFlySpyrelet', {}, {} ], }
[ "none" ]
none
46778ad365c9d953b71ac7459414e523c97ebb4b
f7485ca051de935b81a249d89cbf6f463e75ba15
/apps/user/migrations/0001_initial.py
7e4830c3bad4db83b80c6cced4d4fd7acee4bfc6
[]
no_license
HJK17/alloygame
cf47446bc1581476bddbbb6a85f31aec358a3a3a
41cc0a5dba0c62b39efeebe1da42d672678e703c
refs/heads/main
2023-08-20T23:09:09.262069
2021-10-06T07:18:19
2021-10-06T07:18:19
403,262,002
0
0
null
null
null
null
UTF-8
Python
false
false
4,639
py
# Generated by Django 3.2.1 on 2021-07-28 07:47 from django.conf import settings import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=150, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='删除基类')), ('image', models.ImageField(upload_to='image', verbose_name='头像')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': '用户', 'verbose_name_plural': '用户', 'db_table': 'ag_user', }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), migrations.CreateModel( name='Address', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='删除基类')), ('receiver', models.CharField(max_length=20, verbose_name='收件人')), ('addr', models.CharField(max_length=256, verbose_name='收件地址')), ('zip_code', models.CharField(max_length=6, null=True, verbose_name='邮政编码')), ('phone', models.CharField(max_length=11, verbose_name='联系电话')), ('is_default', models.BooleanField(default=False, verbose_name='是否默认')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='所属账户')), ], options={ 'verbose_name': '地址', 'verbose_name_plural': '地址', 'db_table': 'ag_address', }, ), ]
[ "1334535487@qq.com" ]
1334535487@qq.com
037f5e2109dad9ac971742c44a53bf6923ae4d93
61c4c220a70a18d179ed77a6b02914045945a85d
/knock100/knock38.py
ce216d3bfbfca2c9b356f33a56ec73b45b608ce3
[]
no_license
hoka-sp/NLP100
5839adedc1b8d522d93859cdad07319fc8967679
b206c4eb2a43e268fc68fd7b54bf12132389141c
refs/heads/master
2023-07-13T15:19:44.076759
2021-08-09T15:06:47
2021-08-09T15:06:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
713
py
import sys import knock30 from collections import defaultdict import matplotlib.pyplot as plt def extract_words(block): return [b['base'] + '_' + b['pos'] + '_' + b['pos1'] for b in block] def main(): args = sys.argv args.append('ch04/neko.txt.mecab') phrase_list = [knock30.parse_mecab(phrase) for phrase in knock30.make_phrase_list(args[1])] words = [extract_words(brock) for brock in phrase_list] print(words) d = defaultdict(int) for word in words: for tag in word: d[tag] += 1 ans = d.values() plt.figure(figsize=(8, 8)) plt.hist(ans, bins=100) plt.savefig('ch04/graph38.png') if __name__ == '__main__': main()
[ "64342567+hoka-sp@users.noreply.github.com" ]
64342567+hoka-sp@users.noreply.github.com
8d067df9baee38f186b6ab7885a23f86661b7c9f
eb712c6945b4eb188da204c6c27b725c99c98c8d
/Simple Right Angle Pattern.py
092b556c2f2b0934d6961559cba0cbab627b2da2
[]
no_license
learncodesdaily/PP-Pattern
5d38ea495598e315878577303392547ee2367ec0
38820c60ff0f0f93cc6e7f9a003b79c3470ee53f
refs/heads/master
2022-06-11T08:44:59.456938
2020-05-10T16:51:21
2020-05-10T16:51:21
262,827,875
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
def alphabetPattern(n): for i in range(1,n+1): for j in range(65, 65 + i): a = chr(j) print(a, end=" ") print("\r") n = int(input("Enter Pattern Size : ")) alphabetPattern(n)
[ "noreply@github.com" ]
learncodesdaily.noreply@github.com
711cc710fa9d0f60acbbd8cb2631d8c17a09353d
d113ee244b1e140724a983d0ef50c05ea8570de3
/lectures/week-eight/lights.py
bc6bedc09296a655f99984bf4fd9cd5543f0d7a7
[]
no_license
HumnResources/CS50
06136552a65f48adbe7874952d5f0320eea61efe
050111878bc2725218a013d1f1c38e88be052875
refs/heads/master
2023-06-04T08:52:48.702331
2021-06-24T18:08:57
2021-06-24T18:08:57
374,654,683
0
0
null
null
null
null
UTF-8
Python
false
false
313
py
import os import requests USERNAME = os.getenv("USERNAME") IP = os.getenv("IP") URL = f"http://{IP}/api/{USERNAME}/lights/1/state" # put adds information to server, using a dict with key 'on' value 'false' requests.put(URL, json={"on": False}) while True: requests.put(URL, json={"bri": 254, "on": True}
[ "ziskachase@gmail.com" ]
ziskachase@gmail.com
c9d4301742de47bbc0430217c6f470d4ba6ba0ad
a8ec52196f76071abe0ed1bae05f87c6abb67be8
/chainer/utils/conv_nd.py
97efa4af62bc8716fe3075162f0f52259c1b1cf8
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
fgnt/chainer
92496c551b83fdc5322689113a9f6a647b038bed
ad2a51c08981c75f285a4395f283be8bb9b5d301
refs/heads/master
2021-01-18T11:54:28.620452
2016-08-22T07:54:45
2016-08-22T07:54:45
66,252,118
0
1
null
2016-08-22T08:05:47
2016-08-22T08:05:45
null
UTF-8
Python
false
false
4,475
py
import itertools import numpy import six from chainer import cuda from chainer.utils.conv import get_conv_outsize from chainer.utils import conv_nd_kernel def as_tuple(x, n): if hasattr(x, '__getitem__'): assert len(x) == n return tuple(x) return (x,) * n def im2col_nd_cpu(img, ksize, stride, pad, pval=0, cover_all=False): n, c = img.shape[0:2] # (n, c, d_1, d_2, ..., d_N) dims = img.shape[2:] ndim = len(dims) assert ndim == len(ksize) == len(stride) == len(pad) outs = tuple(get_conv_outsize(d, k, s, p, cover_all) for (d, k, s, p) in zip(dims, ksize, stride, pad)) # Pad around image. pad_width = ((0, 0), (0, 0)) + tuple( (p, p + s - 1) for (s, p) in zip(stride, pad)) img = numpy.pad(img, pad_width, mode='constant', constant_values=(pval,)) # Make patch array with which we will compute correlation with filter. # shape: (n, c, k_1, k_2, ..., k_N, out_1, out_2, ..., out_N) shape = (n, c) + ksize + outs col = numpy.ndarray(shape, dtype=img.dtype) # Fill the patch array. colon = slice(None) for kxs in itertools.product(*[six.moves.range(k) for k in ksize]): # col[:, :, kx_1, kx_2, ..., kx_N, :, :, ..., :] col_index = (colon, colon) + kxs + (colon,) * ndim # img[:, :, kx_1:kx_lim_1:s_1, ..., kx_N:kx_lim_N:s_N] kx_lims = tuple(kx + s * out for (kx, s, out) in zip(kxs, stride, outs)) img_index = (colon, colon) + tuple( slice(kx, kx_lim, s) for (kx, kx_lim, s) in zip(kxs, kx_lims, stride)) col[col_index] = img[img_index] return col def im2col_nd_gpu(img, ksize, stride, pad, cover_all=False): n, c = img.shape[0:2] # (n, c, d_1, d_2, ..., d_N) dims = img.shape[2:] ndim = len(dims) assert ndim == len(ksize) == len(stride) == len(pad) outs = tuple(get_conv_outsize(d, k, s, p, cover_all) for (d, k, s, p) in zip(dims, ksize, stride, pad)) # col_shape: (n, c, k_1, k_2, ..., k_N, out_1, out_2, ..., out_N) shape = (n, c) + ksize + outs col = cuda.cupy.empty(shape, dtype=img.dtype) in_params, out_params, operation, name = \ conv_nd_kernel.Im2colNDKernel.generate(ndim) cuda.elementwise(in_params, out_params, operation, name)( img.reduced_view(), *(dims + outs + ksize + stride + pad + (col,))) return col def col2im_nd_cpu(col, stride, pad, dims): # Assured consistency of dimensions of parameters by caller. n, c = col.shape[:2] # (n, c, kx_1, ..., kx_N, out_1, ..., out_N) mid = (len(col.shape) - 2) // 2 + 2 ksize = col.shape[2:mid] outs = col.shape[mid:] colon = slice(None) assert len(outs) == len(ksize) == len(stride) == len(pad) == len(dims) # Image with padded size. img_shape = (n, c) + tuple(d + 2 * p + s - 1 for (d, p, s) in zip(dims, pad, stride)) img = numpy.zeros(img_shape, dtype=col.dtype) for kxs in itertools.product(*[six.moves.range(k) for k in ksize]): # (:, :, kx_1:kx_lim_1:s_1, ..., kx_N:kx_lim_N:s_N) kx_lims = tuple(kx + s * out for (kx, s, out) in zip(kxs, stride, outs)) img_index = (colon, colon) + tuple( slice(kx, kx_lim, s) for (kx, kx_lim, s) in zip(kxs, kx_lims, stride)) # (:, :, kx_1, kx_2, ..., kx_N, :, :, ..., :) col_index = (colon, colon) + kxs + (colon,) * len(outs) img[img_index] += col[col_index] # (:, :, p_1:d_1 + p_1, p_2:d_2 + p_2, ..., p_N:d_N + p_N] img_index = (colon, colon) + tuple( slice(p, d + p) for (p, d) in zip(pad, dims)) return img[img_index] def col2im_nd_gpu(col, stride, pad, dims): # Assured consistency of dimensions of parameters by caller. n, c = col.shape[:2] # (n, c, k_1, ..., k_N, out_1, ..., out_N) mid = (len(col.shape) - 2) // 2 + 2 ksize = col.shape[2:mid] outs = col.shape[mid:] ndim = len(dims) assert len(outs) == len(ksize) == len(stride) == len(pad) == ndim img_shape = (n, c) + dims # (n, c, d_1, d_2, ..., d_N) img = cuda.cupy.empty(img_shape, dtype=col.dtype) in_params, out_params, operation, name = \ conv_nd_kernel.Col2imNDKernel.generate(ndim) cuda.elementwise(in_params, out_params, operation, name)( col.reduced_view(), *(dims + outs + ksize + stride + pad + (img,))) return img
[ "kamonama@gmail.com" ]
kamonama@gmail.com
f4ff7b6a3d6fc1fc1ae39399a49474d8d349ada7
05f6f98f0b2efeb9578b19015a80121ae1906800
/backup/cam.py
0756abd07f7c5289c15316637fbb0ccf6cb839f9
[]
no_license
anumanu/Augmented-wear
494831180eff55560b97bd8eca12137427207521
035e1c6cc5c25d1a9b320aa26ff4081aa6225fcd
refs/heads/master
2020-06-01T23:31:25.870969
2019-06-09T05:02:27
2019-06-09T05:02:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,564
py
# python cam.py --filter HSV --webcam import cv2 import argparse import numpy as np import pyautogui (screen_width,screen_height) = pyautogui.size() def callback(value): pass def main(): range_filter = 'HSV' camera = cv2.VideoCapture(0) while True: ret, image = camera.read() image = cv2.flip(image, 1) (height, width) = image.shape[:2] frame_to_thresh = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) v1_min, v2_min, v3_min, v1_max, v2_max, v3_max = [0, 84, 136, 38, 255, 255] thresh = cv2.inRange(frame_to_thresh, (v1_min, v2_min, v3_min), (v1_max, v2_max, v3_max)) kernel = np.ones((5,5),np.uint8) mask = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) # find contours in the mask and initialize the current # (x, y) center of the ball cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[-2] center = None # only proceed if at least one contour was found if len(cnts) > 0: # find the largest contour in the mask, then use # it to compute the minimum enclosing circle and # centroid c = max(cnts, key=cv2.contourArea) ((x, y), radius) = cv2.minEnclosingCircle(c) M = cv2.moments(c) center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])) # only proceed if the radius meets a minimum size if radius > 10: # draw the circle and centroid on the frame, # then update the list of tracked points cv2.circle(image, (int(x), int(y)), int(radius),(0, 255, 255), 2) #pyautogui.moveTo(int(x)*(screen_width/width), int(y)*(screen_height/height)) pyautogui.dragTo(int(x)*(screen_width/width), int(y)*(screen_height/height),.3, button='left') cv2.circle(image, center, 3, (0, 0, 255), -1) cv2.putText(image,"centroid", (center[0]+10,center[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.4,(0, 0, 255),1) cv2.putText(image,"("+str(center[0])+","+str(center[1])+")", (center[0]+10,center[1]+15), cv2.FONT_HERSHEY_SIMPLEX, 0.4,(0, 0, 255),1) # show the frame to our screen cv2.imshow("Original", image) #cv2.imshow("Thresh", thresh) #cv2.imshow("Mask", mask) if cv2.waitKey(1) & 0xFF is ord('q'): break if __name__ == '__main__': main()
[ "athuldevin@gmail.com" ]
athuldevin@gmail.com
143282840eae55d35e061325759c7e9a140a4f57
f56e4bb2d3a91b068292d698388ac5e82a40f078
/inkshop/apps/products/migrations/0011_remove_productday_name.py
0c27b59784126d3c5812ca071d7fec5a926e7134
[]
no_license
inkandfeet/inkshop
979064eb902c86dc95a6399e79ac753efbe547d1
691187b3eb4435782f8054e6404f1203e7d0c383
refs/heads/master
2022-12-13T01:26:02.361970
2021-11-18T23:01:50
2021-11-18T23:01:50
175,481,726
1
1
null
2022-12-08T04:59:16
2019-03-13T18:59:17
Python
UTF-8
Python
false
false
329
py
# Generated by Django 2.2 on 2020-08-17 00:49 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('products', '0010_productday_product'), ] operations = [ migrations.RemoveField( model_name='productday', name='name', ), ]
[ "steven@inkandfeet.com" ]
steven@inkandfeet.com
2dde96911891398f787d917e459942675023cc4d
6bf6fc3f8634d386dac5b4cc9df9f78beb8d22e2
/simple_server/simple_server.py
25f499f03c87f649d22a4f782c550ebb4ecf2358
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
loxodromic/pwap8
03ff2aa9a9e8752c64ac34e0002129c0a842aa31
fda3266c64f1d1c925fc54bacaf2f26e06aa84a6
refs/heads/master
2020-12-19T07:08:59.647615
2020-01-23T23:25:59
2020-01-23T23:25:59
235,658,878
1
0
null
null
null
null
UTF-8
Python
false
false
498
py
import http.server import socketserver #from https://docs.python.org/3/library/http.server.html PORT = 8000 handler = http.server.SimpleHTTPRequestHandler handler.extensions_map = { '.manifest': 'text/cache-manifest', '.html': 'text/html', '.png': 'image/png', '.jpg': 'image/jpg', '.css': 'text/css', '.js': 'application/x-javascript', '': 'application/octet-stream', } with socketserver.TCPServer(("", PORT), handler) as httpd: print("serving at port", PORT) httpd.serve_forever()
[ "matt@example.com" ]
matt@example.com
504ad01ebe00c01f4db6cf21d97386a7a4e93d43
2f1d93a17565a2fa6c07799ddefba1bc64776660
/dual_transf.py
570ae28e9746504ce0ff8d8e371ee142decc3ae5
[]
no_license
ishine/TSTNN
b6f40680a57f1208b805f340554613cccb370ac5
3a1dac4968bdb45d959985c535ab359f3f3cc4ce
refs/heads/master
2023-02-28T01:32:24.849369
2021-02-06T04:44:20
2021-02-06T04:44:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,541
py
import torch.nn as nn import torch import numpy as np from single_trans import TransformerEncoderLayer import os #os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1' class Dual_Transformer(nn.Module): """ Deep duaL-path RNN. args: rnn_type: string, select from 'RNN', 'LSTM' and 'GRU'. input_size: int, dimension of the input feature. The input should have shape (batch, seq_len, input_size). hidden_size: int, dimension of the hidden state. output_size: int, dimension of the output size. dropout: float, dropout ratio. Default is 0. num_layers: int, number of stacked RNN layers. Default is 1. bidirectional: bool, whether the RNN layers are bidirectional. Default is False. """ def __init__(self, input_size, output_size, dropout=0, num_layers=1): super(Dual_Transformer, self).__init__() self.input_size = input_size self.output_size = output_size self.input = nn.Sequential( nn.Conv2d(input_size, input_size // 2, kernel_size=1), nn.PReLU() ) # dual-path RNN self.row_trans = nn.ModuleList([]) self.col_trans = nn.ModuleList([]) self.row_norm = nn.ModuleList([]) self.col_norm = nn.ModuleList([]) for i in range(num_layers): self.row_trans.append(TransformerEncoderLayer(d_model=input_size//2, nhead=4, dropout=dropout, bidirectional=True)) self.col_trans.append(TransformerEncoderLayer(d_model=input_size//2, nhead=4, dropout=dropout, bidirectional=True)) self.row_norm.append(nn.GroupNorm(1, input_size//2, eps=1e-8)) self.col_norm.append(nn.GroupNorm(1, input_size//2, eps=1e-8)) # output layer self.output = nn.Sequential(nn.PReLU(), nn.Conv2d(input_size//2, output_size, 1) ) def forward(self, input): # input --- [b, c, num_frames, frame_size] --- [b, c, dim2, dim1] b, c, dim2, dim1 = input.shape output = self.input(input) for i in range(len(self.row_trans)): row_input = output.permute(3, 0, 2, 1).contiguous().view(dim1, b*dim2, -1) # [dim1, b*dim2, c] row_output = self.row_trans[i](row_input) # [dim1, b*dim2, c] row_output = row_output.view(dim1, b, dim2, -1).permute(1, 3, 2, 0).contiguous() # [b, c, dim2, dim1] row_output = self.row_norm[i](row_output) # [b, c, dim2, dim1] output = output + row_output # [b, c, dim2, dim1] col_input = output.permute(2, 0, 3, 1).contiguous().view(dim2, b*dim1, -1) # [dim2, b*dim1, c] col_output = self.col_trans[i](col_input) # [dim2, b*dim1, c] col_output = col_output.view(dim2, b, dim1, -1).permute(1, 3, 0, 2).contiguous() # [b, c, dim2, dim1] col_output = self.col_norm[i](col_output) # [b, c, dim2, dim1] output = output + col_output # [b, c, dim2, dim1] del row_input, row_output, col_input, col_output output = self.output(output) # [b, c, dim2, dim1] return output ''' trans = Dual_Transformer(64, 64, num_layers=4) trans = torch.nn.DataParallel(trans) trans = trans.cuda() src = torch.rand(2, 64, 250, 8) out = trans(src) print(out.shape) def numParams(net): num = 0 for param in net.parameters(): if param.requires_grad: num += int(np.prod(param.size())) return num print(numParams(trans)) '''
[ "51517793+key2miao@users.noreply.github.com" ]
51517793+key2miao@users.noreply.github.com
af63f50c7e181b66f8bc77cdc57720f68b212bcd
ddf896fb5487228d1f8d56f19d9e69425554b2aa
/main/exceptions.py
ba5cd92ed3fb073931941911a06c505e800eaf33
[]
no_license
quinn-lee/novalinks
caf057b60d721cecb92b526bde1647e5db7e658c
8bb45cdaff6bde61fe00e41924109fb48c36cbd5
refs/heads/main
2023-08-25T15:30:49.049926
2021-10-28T12:06:27
2021-10-28T12:06:27
352,111,500
0
0
null
null
null
null
UTF-8
Python
false
false
296
py
# coding:utf-8 # 自定义异常类 class ValidationException(Exception): def __init__(self, code, msg): super().__init__(self) # 初始化父类 self.code = code self.msg = msg def __str__(self): return "{} {}".format(self.code, self.msg)
[ "lifuyuan33@gmail.com" ]
lifuyuan33@gmail.com
c11a20375fcb8269589c69d7a42577b6ff5b69a1
4a36ce842a0cdbad127f8e4df245b49754154128
/simple_mod_installer/conf/migrator.py
908d18202634eef055817e0dfc25aa94b1477eb0
[]
no_license
tfinlay/simple-mod-installer
4bdedb1bcfc1d000be1d0d1da778de58e372107c
7d8de09e7a1cd3a7b5102bc6d6d62f677889da7f
refs/heads/master
2020-03-30T21:51:48.617068
2018-10-04T23:06:55
2018-10-04T23:06:55
151,644,820
0
0
null
null
null
null
UTF-8
Python
false
false
972
py
""" These functions migrate from the key version up to the config version specified by the function's return value. Each function takes one parameter: an absolute path to the config file """ import json from simple_mod_installer.util import join_path import logging logger = logging.getLogger(__name__) def update_1_0_to_1_1(config_file_path): # type: (str) -> str print("upgrading from version 1.0 to 1.1...") logging.debug("upgrading from version 1.0 to 1.1...") with open(config_file_path, 'r') as f: config = json.load(f) # add new values (set to default) config["database_path"] = join_path(config["application_root"], "moddata.sqlite") config["webserver_port"] = 4000 # remove unneeded values # update modified values config["version"] = "1.1" # write out again with open(config_file_path, 'w') as f: json.dump(config, f) return "1.1" CONFIG_UPDATERS = { "1.0": update_1_0_to_1_1, }
[ "12890179+tfinlay@users.noreply.github.com" ]
12890179+tfinlay@users.noreply.github.com
b20b4c24dcadb4f67bba5b69fdbe6e2fb914ae22
46e007e62359e7ed3ce118decb63e1b6f8692a83
/music/forms.py
a2dbf3ecb6a33fdb6c811dc67e873e8ab393a8aa
[]
no_license
Kiran-sz/Gana
5762513329f785a9f907476a5bcf4c0895c8b020
b8dad4b05cbd5af414ce1d58cfe6653f0e1954f8
refs/heads/master
2020-04-27T15:55:49.869757
2019-03-17T15:40:38
2019-03-17T15:40:38
174,397,787
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
from django import forms from django.contrib.auth.models import User from .models import Album, Song class AlbumForm(forms.ModelForm): class Meta: model = Album fields = ['artist', 'album_title', 'genre', 'album_logo']
[ "kiranzond9@gmail.com" ]
kiranzond9@gmail.com
a6ac7091cdb000d88943dc783eb219899f67e8eb
45b91235051a6bfff0fa2acb6311abf41176ef90
/hangman.py
abc99282ae4ca22de155bfdac34cc6b84164a795
[]
no_license
dereyurtali/Hangman
a359ec8e0a66fcdc5d3154653a85ad43ee2b78e2
dce0c0c9bd23214cfc4bafbddf3db27ea7bdc2cf
refs/heads/master
2023-04-02T07:44:20.027370
2021-04-09T08:56:42
2021-04-09T08:56:42
354,659,133
1
0
null
null
null
null
UTF-8
Python
false
false
5,526
py
# Problem Set 2, hangman.py # Name: # Collaborators: # Time spent: # Hangman Game # ----------------------------------- # Helper code # You don't need to understand this helper code, # but you will have to know how to use the functions # (so be sure to read the docstrings!) import random import string WORDLIST_FILENAME = "words.txt" def load_words(): """ Returns a list of valid words. Words are strings of lowercase letters. Depending on the size of the word list, this function may take a while to finish. """ print("Loading word list from file...") # inFile: file inFile = open(WORDLIST_FILENAME, 'r') # line: string line = inFile.readline() # wordlist: list of strings wordlist = line.split() print(" ", len(wordlist), "words loaded.") return wordlist def choose_word(wordlist): """ wordlist (list): list of words (strings) Returns a word from wordlist at random """ return random.choice(wordlist) # end of helper code # ----------------------------------- # Load the list of words into the variable wordlist # so that it can be accessed from anywhere in the program wordlist = load_words() def is_word_guessed(secret_word, letters_guessed): counter = 0 is_guessed = False for letter in secret_word: for letter_guessed in letters_guessed: if letter == letter_guessed: counter+=1 if counter == len(secret_word): is_guessed = True return is_guessed def get_guessed_word(secret_word, letters_guessed): letter_bool = False return_word = "" for letter in secret_word: for letter_guessed in letters_guessed: if not letter_bool: if letter == letter_guessed: letter_bool = True else: letter_bool = False if letter_bool: return_word = return_word + letter else: return_word = return_word + "_" return return_word def get_available_letters(letters_guessed): available_letters = [] check = False for alphabet_letter in string.ascii_lowercase: for guessed_letter in letters_guessed: if alphabet_letter == guessed_letter: check = True if not check: available_letters.append(alphabet_letter) return available_letters def hangman(secret_word): secret_word = "apple" guesses_remaining = 6 # The game starts. print("Welcome the game Hangman!") print("--Made by Ali Dereyurt--") print("------------------------") print("The secret word has " + str(len(secret_word)) + " letters.") print("You have " + str(guesses_remaining) + " guesses. Good luck!") input_letter = input("Please guess a letter: ") print(string.ascii_lowercase) def match_with_gaps(my_word, other_word): ''' my_word: string with _ characters, current guess of secret word other_word: string, regular English word returns: boolean, True if all the actual letters of my_word match the corresponding letters of other_word, or the letter is the special symbol _ , and my_word and other_word are of the same length; False otherwise: ''' # FILL IN YOUR CODE HERE AND DELETE "pass" pass def show_possible_matches(my_word): ''' my_word: string with _ characters, current guess of secret word returns: nothing, but should print out every word in wordlist that matches my_word Keep in mind that in hangman when a letter is guessed, all the positions at which that letter occurs in the secret word are revealed. Therefore, the hidden letter(_ ) cannot be one of the letters in the word that has already been revealed. ''' # FILL IN YOUR CODE HERE AND DELETE "pass" pass def hangman_with_hints(secret_word): ''' secret_word: string, the secret word to guess. Starts up an interactive game of Hangman. * At the start of the game, let the user know how many letters the secret_word contains and how many guesses s/he starts with. * The user should start with 6 guesses * Before each round, you should display to the user how many guesses s/he has left and the letters that the user has not yet guessed. * Ask the user to supply one guess per round. Make sure to check that the user guesses a letter * The user should receive feedback immediately after each guess about whether their guess appears in the computer's word. * After each guess, you should display to the user the partially guessed word so far. * If the guess is the symbol *, print out all words in wordlist that matches the current guessed word. Follows the other limitations detailed in the problem write-up. ''' # FILL IN YOUR CODE HERE AND DELETE "pass" pass # When you've completed your hangman_with_hint function, comment the two similar # lines above that were used to run the hangman function, and then uncomment # these two lines and run this file to test! # Hint: You might want to pick your own secret_word while you're testing. if __name__ == "__main__": pass # To test step 2, comment out the pass line above and # uncomment the following two lines. # secret_word = choose_word(wordlist) # hangman(secret_word) ############### # To test part 3 re-comment out the above lines and # uncomment the following two lines. #secret_word = choose_word(wordlist) #hangman_with_hints(secret_word)
[ "ali.dereyurt@stu.fsm.edu.tr" ]
ali.dereyurt@stu.fsm.edu.tr
d67a175df19a408da2c199f5b0086646347b62b7
3319aeddfb292f8ab2602840bf0c1e0c2e5927be
/python/fill_mem.py
7fffd16b155e85c92196cf16753d72a0476bebc9
[]
no_license
slaash/scripts
4cc3eeab37f55d822b59210b8957295596256936
482fb710c9e9bcac050384fb5f651baf3c717dac
refs/heads/master
2023-07-09T12:04:44.696222
2023-07-08T12:23:54
2023-07-08T12:23:54
983,247
4
2
null
null
null
null
UTF-8
Python
false
false
664
py
#!/usr/bin/python import sys,os,random,math def gen_list(m): l=list() for n in range(0,m-1): try: l.append(random.randint(0,m)) except MemoryError,err: print('Out of memory? ',err) # if (n%int(math.sqrt(m))==0): # sys.stdout.write('.') # sys.stdout.flush() return l random.seed() d=dict() max=10 if (len(sys.argv[1:])>=1): max=int(sys.argv[1]) l=[0]*max for i in range(0,max-1): try: d[i]=gen_list(max) except MemoryError,err: print('Out of memory? ',err) if (i%int(math.sqrt(max))==0): sys.stdout.write('+') sys.stdout.flush() print("\nDone: %i x %i" % (i+1,max)) os.system('free -m') print('Press key...') raw_input()
[ "rmoisa@yahoo.com" ]
rmoisa@yahoo.com
8764406ec291bb88670cfa66bd83c286d9b5f3e3
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02583/s498399445.py
de6b4c39cce18ecbe13a7eedbe9a880f7066f64d
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
n = int(input()) l = sorted(map(int,input().split())) ans = 0 for a in range(n): for b in range(a+1,n): for c in range(b+1,n): if l[a] != l[b] != l[c] and l[a]+l[b] > l[c]: ans += 1 print(ans)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
ff8346ce731f72d914f8d0a33d4da1b5cba310f1
289646aef1eb3e73fa657d62b77d8664b721a2a2
/controllers/controllers.py
d5ad470aa76fbdf9f9e0b6b177f0c14c8a75ce85
[]
no_license
xmarts/axolot_tracking_beta
8a198fe8612b618a7effb29031418675433ca354
494780a50da3c470275d2d02a9f286870800aa97
refs/heads/master
2023-03-19T11:54:57.861380
2021-03-11T13:56:49
2021-03-11T13:56:49
344,592,171
0
0
null
null
null
null
UTF-8
Python
false
false
747
py
# -*- coding: utf-8 -*- # from odoo import http # class MyModule4(http.Controller): # @http.route('/my_module4/my_module4/', auth='public') # def index(self, **kw): # return "Hello, world" # @http.route('/my_module4/my_module4/objects/', auth='public') # def list(self, **kw): # return http.request.render('my_module4.listing', { # 'root': '/my_module4/my_module4', # 'objects': http.request.env['my_module4.my_module4'].search([]), # }) # @http.route('/my_module4/my_module4/objects/<model("my_module4.my_module4"):obj>/', auth='public') # def object(self, obj, **kw): # return http.request.render('my_module4.object', { # 'object': obj # })
[ "jesusalvarezxmarts@gmail.com" ]
jesusalvarezxmarts@gmail.com
d968d99703c58fc9574ae881f38e3721e6f99fb4
741cd58673a025f7ecede5b1f53fc8435501c690
/Products_app/admin.py
1ccfca2afe910e6a2b9d9640ab386d4099a0d35f
[]
no_license
icepablo/store
63f71145de0c30c74147f57978378eca025bd9a5
838f3493109056ea35f2066a2e412e887f3f09da
refs/heads/master
2020-03-24T00:33:46.738030
2018-09-25T12:34:12
2018-09-25T12:34:12
142,296,646
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
from django.contrib import admin # Register your models here. from .models import Product,Category admin.site.register(Product) admin.site.register(Category)
[ "nontherlight@gmail.com" ]
nontherlight@gmail.com
65b07e72f6b95b846c09908e68d9a63ad7c350f0
0157dc1de36498038514fc41f7a49ed0edb7abb6
/game.py
ff0303ae66d829357b3694d28936835a9c4cf5c9
[]
no_license
sistemd/game-in-python
d790b25b5fbb2125af932745e113082064f238da
ec2a3619976c0af7b90f77fcb4dd924d6b71f659
refs/heads/master
2023-04-13T04:05:31.187950
2018-05-05T19:37:23
2018-05-05T19:37:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,772
py
from typing import Callable, Optional, List, Iterable import enum import abc import sdl import utils GRAVITY = 1000 # Redundant type aliases? Checkbox = sdl.Rectangle Checkboxes = Iterable[Checkbox] MainLoopCallback = Callable[[utils.Seconds], None] def main_loop(cb: MainLoopCallback, fps: int) -> None: end = start = utils.current_time() while not sdl.quit_requested(): t = utils.current_time() delta = utils.Seconds(t - start) if delta < 1/fps: continue cb(delta) start = end end = t class Sprite(abc.ABC): @abc.abstractmethod def render(self, renderer: sdl.Renderer, position: complex, flip: Optional[sdl.Flip]=None) -> None: pass @property @abc.abstractmethod def dimensions(self) -> sdl.Dimensions: pass def update(self) -> None: pass class Animation(Sprite): def __init__(self, sprite_sheet: sdl.Texture, frames: List[sdl.Rectangle], frame_delay: utils.Seconds) -> None: self.sprite_sheet = sprite_sheet self.frames = frames self.frame_delay = frame_delay self.start_time = utils.current_time() self.current_frame_num = 0 def render(self, renderer: sdl.Renderer, position: complex, flip: Optional[sdl.Flip]=None) -> None: renderer.render_texture( self.sprite_sheet, src=self.current_frame, dst=sdl.Rectangle(position, self.current_frame.dimensions), flip=flip) @property def current_frame(self) -> sdl.Rectangle: return self.frames[self.current_frame_num] @property def dimensions(self) -> sdl.Dimensions: return self.current_frame.dimensions def update(self) -> None: self.update_current_frame_num() def update_current_frame_num(self) -> None: t = self.time_since_start() self.current_frame_num = (int(t / self.frame_delay) % len(self.frames)) def done(self) -> bool: return self.time_since_start() > self.frame_delay * len(self.frames) def time_since_start(self) -> utils.Seconds: return utils.Seconds(utils.current_time() - self.start_time) class Image(Sprite): def __init__(self, sprite_sheet: sdl.Texture, frame: sdl.Rectangle) -> None: self.sprite_sheet = sprite_sheet self.frame = frame def render(self, renderer: sdl.Renderer, position: complex, flip: Optional[sdl.Flip]=None) -> None: renderer.render_texture(self.sprite_sheet, src=self.frame, dst=sdl.Rectangle(position, self.frame.dimensions), flip=flip) @property def dimensions(self) -> sdl.Dimensions: return self.frame.dimensions # TODO We shouldn't need this in the future def even_frames(first_frame: sdl.Rectangle, frame_count: int) -> List[sdl.Rectangle]: return [ sdl.Rectangle(first_frame.width * i, first_frame.dimensions) for i in range(0, frame_count) ] @enum.unique class Direction(enum.Enum): LEFT = enum.auto() RIGHT = enum.auto() def to_flip(self) -> sdl.Flip: if self == Direction.LEFT: return sdl.Flip.HORIZONTAL return sdl.Flip.NONE class Entity: def __init__(self, position: complex, sprite: Sprite) -> None: self.position = position self.sprite = sprite @property def checkbox(self) -> Checkbox: return sdl.Rectangle(self.position, self.sprite.dimensions) def update_sprite(self) -> None: self.sprite.update() class MovingEntity(Entity): def __init__(self, position: complex, direction: Direction, velocity: complex, sprite: Sprite) -> None: super().__init__(position, sprite) self.direction = direction self.velocity = velocity def update_physics(self, solid_boxes: Checkboxes, delta: utils.Seconds) -> None: self.apply_gravity(delta) displacement = self.velocity * delta imag_position_delta = displacement.imag real_position_delta = displacement.real # Smarter way to do this without the slight glitching for box in solid_boxes: if self.checkbox.vertically_overlaps(box): if self.checkbox.is_above(box): d = box.upper_left.imag - self.checkbox.lower_left.imag if d < displacement.imag: imag_position_delta = d else: d = self.checkbox.upper_left.imag - box.lower_left.imag if d < -displacement.imag: imag_position_delta = -d elif self.checkbox.horizontally_overlaps(box): if self.checkbox.is_left_from(box): d = box.upper_right.real - self.checkbox.upper_left.real if d < displacement.real: real_position_delta = d else: d = self.checkbox.upper_left.real - box.upper_right.real if d < -displacement.real: real_position_delta = -d self.position += real_position_delta + imag_position_delta * 1j def apply_gravity(self, delta: utils.Seconds) -> None: self.velocity += GRAVITY * delta * delta * 1j
[ "enntheprogrammer@gmail.com" ]
enntheprogrammer@gmail.com
4a017370d471f61cc3780adf58a4ac8e2bb1676e
71536013ef36dfca22f43f822d5c8f5c42d763da
/functions/messaging.py
53cb46a208e2491a8b979526cdbf42d9c73c743e
[]
no_license
jerryneal/TradeChart
9b179c541778fd3417c80f9e9d89aaf1c068ca42
51dbc269bd4697751ad1ad68c3e700b89439e159
refs/heads/master
2021-01-12T11:27:29.305368
2016-12-03T15:47:05
2016-12-03T15:47:05
72,930,614
0
0
null
2016-11-22T16:12:38
2016-11-05T14:17:50
Python
UTF-8
Python
false
false
1,362
py
from twilio.rest import TwilioRestClient from configParser import * import smtplib import logging class SendMessage(): def __init__(self): self.cf = ParseConfig() self.message = None def sendSMSMessage(self,message): try: server = smtplib.SMTP(self.cf.gmSetup,self.cf.gmPort) server.starttls() server.login(self.cf.chapUserName,self.cf.chapPassword) server.sendmail('API Test',self.cf.smsNumber, message) logging.debug('Message has been sent to Phone') except Exception as e: print e logging.debug('Message Not sent') def sendTwilioMessage(self,message): #Run client client = TwilioRestClient(self.cf.account_sid,self.cf.token) # try: # message = client.sms.messages.create(to="+18023772744",from_="+15005550006", # body='Were having a baby') # # message = client.sms.messages.create() # except Exception as e: # print e # print message, message.sid def sendEmailMessage(self,message): pass # # if __name__ == '__main__': # logging.basicConfig(format='%(asctime)s.%(msecs).03d - %(levelname)s - %(module)s.%(funcName)s: %(message)s \n</br>',datefmt='%d%b%Y %H:%M:%S',level=cf.loglevel)
[ "mckenzo12@live.com" ]
mckenzo12@live.com
0ce2eb38c6ab9d4f84d257ae0707be923f6db556
8ec6beee190c8abbc4ac69d79c3569cc0c04241b
/weather/migrations/0002_auto_20201122_1744.py
43bb60e9143cc00e21e6c82ab355bd214818fb62
[]
no_license
mkyd-kill/Django-weatherapp
ea2141b19876c67e2f5c10763aded306ae06b1f9
360c24ba7ac8a0254b2be79a1f3cdaa2cb69e4b7
refs/heads/master
2023-07-13T13:07:45.063314
2021-08-21T14:00:36
2021-08-21T14:00:36
398,015,652
0
0
null
null
null
null
UTF-8
Python
false
false
369
py
# Generated by Django 3.1 on 2020-11-22 14:44 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('weather', '0001_initial'), ] operations = [ migrations.AlterField( model_name='city', name='name', field=models.CharField(max_length=50), ), ]
[ "romeomureithi@gmail.com" ]
romeomureithi@gmail.com
bcd9ab42112147aa28a990704a1b3f4bd5082c92
f68cd225b050d11616ad9542dda60288f6eeccff
/testscripts/RDKB/component/PAM/TS_COSAPAM_UpnpDevGetMediaServerState.py
fe649ec40dc301d5f710ed0a0a615db7bb1f45f1
[ "Apache-2.0" ]
permissive
cablelabs/tools-tdkb
18fb98fadcd169fa9000db8865285fbf6ff8dc9d
1fd5af0f6b23ce6614a4cfcbbaec4dde430fad69
refs/heads/master
2020-03-28T03:06:50.595160
2018-09-04T11:11:00
2018-09-05T00:24:38
147,621,410
0
0
null
null
null
null
UTF-8
Python
false
false
6,289
py
########################################################################## # If not stated otherwise in this file or this component's Licenses.txt # file the following copyright and licenses apply: # # Copyright 2016 RDK Management # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ########################################################################## ''' <?xml version='1.0' encoding='utf-8'?> <xml> <id></id> <!-- Do not edit id. This will be auto filled while exporting. If you are adding a new script keep the id empty --> <version>6</version> <!-- Do not edit version. This will be auto incremented while updating. If you are adding a new script you can keep the vresion as 1 --> <name>TS_COSAPAM_UpnpDevGetMediaServerState</name> <!-- If you are adding a new script you can specify the script name. Script Name should be unique same as this file name with out .py extension --> <primitive_test_id> </primitive_test_id> <!-- Do not change primitive_test_id if you are editing an existing script. --> <primitive_test_name>pam_GetParameterValues</primitive_test_name> <!-- --> <primitive_test_version>1</primitive_test_version> <!-- --> <status>FREE</status> <!-- --> <synopsis>This test case returns the status of Upnp dev Media Server</synopsis> <!-- --> <groups_id /> <!-- --> <execution_time>1</execution_time> <!-- --> <long_duration>false</long_duration> <!-- execution_time is the time out time for test execution --> <remarks></remarks> <!-- Reason for skipping the tests if marked to skip --> <skip>false</skip> <!-- --> <box_types> <box_type>RPI</box_type> <box_type>Broadband</box_type> <!-- --> <box_type>Emulator</box_type> <!-- --> </box_types> <rdk_versions> <rdk_version>RDKB</rdk_version> <!-- --> </rdk_versions> <test_cases> <test_case_id>TC_COSAPAM_19</test_case_id> <test_objective>To Validate PAM API CosaDmlUpnpDevGetMediaServerState</test_objective> <test_type>Positive</test_type> <test_setup>Emulator,Broadband</test_setup> <pre_requisite>1.Ccsp Components should be in a running state else invoke cosa_start.sh manually that includes all the ccsp components. 2.TDK Agent should be in running state or invoke it through StartTdk.sh script</pre_requisite> <api_or_interface_used>CosaDmlUpnpDevGetMediaServerState</api_or_interface_used> <input_parameters>Input: None</input_parameters> <automation_approch>1.Function which needs to be tested will be configured in Test Manager GUI. 2.Python Script will be generated by Test Manager with arguments provided in configure page. 3.Test manager will load the COSAPAM library via Test agent 4.From python script, invoke COSAPAM_UpnpGetState() stub function to get UPNP dev MediaServer status 5.COSAPAM stub function will call the ssp_CosaDmlUpnpGetState function in TDK component which in turn will call cosa api CosaDmlUpnpGetMediaServerState() of the PAM Agent in RDKB stack. 6.Responses from Cosa API, TDK Component and COSAPAM stub function will be logged in Agent Console log. 7.COSAPAM stub will validate the actual result with the expected result and send the result status to Test Manager. 8.Test Manager will publish the result in GUI as PASS/FAILURE based on the response from COSAPAM stub.</automation_approch> <except_output>CheckPoint 1: Values associated with the parameter specified should be logged in the Agent console/Component log and Should get UPNP dev MediaServer status successfully CheckPoint 2: Stub function result should be success and should see corresponding log in the agent console log</except_output> <priority>High</priority> <test_stub_interface>COSAPAM_UpnpGetState</test_stub_interface> <test_script>TS_COSAPAM_UpnpDevGetMediaServerState</test_script> <skipped>No</skipped> <release_version></release_version> <remarks></remarks> </test_cases> <script_tags /> </xml> ''' #import statement import tdklib; #Test component to be tested obj = tdklib.TDKScriptingLibrary("pam","RDKB"); #IP and Port of box, No need to change, #This will be replaced with correspoing Box Ip and port while executing script ip = <ipaddress> port = <port> obj.configureTestCase(ip,port,'TS_COSAPAM_UpnpDevGetMediaServerState'); #Get the result of connection with test component and STB loadmodulestatus =obj.getLoadModuleResult(); print "[LIB LOAD STATUS] : %s" %loadmodulestatus ; if "SUCCESS" in loadmodulestatus.upper(): #Set the result status of execution obj.setLoadModuleStatus("SUCCESS"); tdkTestObj = obj.createTestStep('COSAPAM_UpnpGetState'); tdkTestObj.addParameter("MethodName","UpnpMediaServer"); expectedresult="SUCCESS"; #Execute the test case in STB tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult: #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 1: Get the state of upnpdev MediaServer"; print "EXPECTED RESULT 1: Should get the state of upnpdev MediaServer"; print "ACTUAL RESULT 1: %s" %details; #Get the result of execution print "[TEST EXECUTION RESULT] : %s" %actualresult; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 1: Get the state of upnpdev MediaServer"; print "EXPECTED RESULT 1: Failure in getting the state of upnpdev MediaServer"; print "ACTUAL RESULT 1: %s" %details; print "[TEST EXECUTION RESULT] : %s" %actualresult; obj.unloadModule("pam"); else: print "Failed to load pam module"; obj.setLoadModuleStatus("FAILURE"); print "Module loading failed";
[ "jim.lawton@accenture.com" ]
jim.lawton@accenture.com
8711eb0a24716d9305861bccc9eba32a5c7f40b0
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_145/697.py
3aa7d3d6b3e6a7823876b141a8df00a7a9a03a0d
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
380
py
import math import fractions T = int(input()) for t in range(1, T+1): p,q = map(int, input().split('/')) g = fractions.gcd(p,q) p //= g q //= g plog = math.floor(math.log(p, 2)) qlog = math.log(q, 2) qflog = math.floor(qlog) if (qlog != qflog): ans = "impossible" else: ans = qflog-plog print("Case #{}: {}".format(t, ans))
[ "miliar1732@gmail.com" ]
miliar1732@gmail.com
2a869f0259fa62bd12e0441e047e3f7cd970d99c
d4976b3cbec9d017672e98eb762418eb98c03a6f
/training/train_cnn_timeseries.py
b079b2b0426934dfe9da7bd6c1a10ebd7f378c66
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
haydenshively/Tezos-Prediction
e6319b5b250aa1fcb7f329406e1da6e621e77782
0718fb45b0f9e12e388110394d251a7d9794d3c0
refs/heads/master
2022-11-19T17:39:55.270123
2020-07-01T21:05:33
2020-07-01T21:05:33
258,636,839
2
1
null
null
null
null
UTF-8
Python
false
false
3,238
py
import os from scipy import stats import numpy as np from tensorflow.keras.utils import Sequence from transforms import GAF from models import CNNTimeSeries class MyData(Sequence): def __init__(self, dir, batch_size, n_samples_in, n_samples_out=1, distrib_size=1): history_chunks = [] files = os.listdir(dir) files.sort() for file in files: filename = os.fsdecode(file) if filename.endswith('.npy'): history_chunks.append(np.load(os.path.join(dir, filename))) # Combine all chunks into one big history self.history = np.vstack(history_chunks) # Reshape so that different currencies aren't in separate channels shape = self.history.shape self.history = self.history.reshape((shape[0], shape[1] * shape[2])) # Save other info to instance self.extremes = [self.history[:, 8].min(), self.history[:, 8].max()] self.batch_size = batch_size self.n_samples_in = n_samples_in self.n_samples_out = n_samples_out self.distrib_size = distrib_size assert (self.n_samples_out == 1 or self.distrib_size == 1) def __len__(self): return (self.history.shape[0] - self.n_samples_in - self.n_samples_out) // self.batch_size - 2 def __getitem__(self, idx): batch_start = idx * self.batch_size X = np.zeros((self.batch_size, self.n_samples_in, self.n_samples_in, 1)) Y = np.zeros((self.batch_size, self.n_samples_out if self.n_samples_out > 1 else self.distrib_size)) for offset in range(self.batch_size): series_x_0 = batch_start + offset series_x_n = batch_start + offset + self.n_samples_in out_n = self.n_samples_out series = self.history[series_x_0:(series_x_n + out_n), 8] gaf_series = GAF(series[:-out_n], extremes=[series.min(), series.max()]) gaf_out = GAF(series) X[offset] = np.expand_dims(gaf_series.encoded, -1) if self.n_samples_out > 1: Y[offset] = gaf_out.series[-out_n:] else: norm = stats.norm(loc=gaf_out.series[-1], scale=.4) Y[offset] = norm.pdf(np.linspace(-1.0, 1.0, self.distrib_size)) return X, Y def main(data_dir): BATCH_SIZE = 16 N_SAMPLES_IN = 40 # divide by 10 to get # hours the sequence covers N_SAMPLES_OUT = 5 PROB_DISTRIB = 1 generator = MyData( data_dir, BATCH_SIZE, N_SAMPLES_IN, N_SAMPLES_OUT, PROB_DISTRIB ) cnn = CNNTimeSeries( (N_SAMPLES_IN, N_SAMPLES_IN, 1), N_SAMPLES_OUT if N_SAMPLES_OUT > 1 else PROB_DISTRIB, BATCH_SIZE ) cnn.build() cnn.compile() cnn.model.fit(generator, epochs=6, shuffle=True, verbose=1, steps_per_epoch=len(generator)) cnn.model.save('models/cnn_timeseries_%d_%d_%d_%d.h5' % ( BATCH_SIZE, N_SAMPLES_IN, N_SAMPLES_OUT, PROB_DISTRIB )) if __name__ == '__main__': main('../dataset/train')
[ "haydenshively@gmail.com" ]
haydenshively@gmail.com
58362d785398190d27cf4b31b0dc8c4f2fb5fb8e
27ba1f72b60a5d2ea4050c292546537c99d3b7d2
/setup.py
8e0658b4e2880ddcce9a33629a88a915a4e7b02e
[]
no_license
michieljmmaas/CoronaSorter
4b751e47128a8c96f3975f71c2edd2c2fb5cca2e
18cb7f59851a1c47a96192a357ed3f28098370ee
refs/heads/master
2021-05-20T02:13:06.535071
2020-04-20T21:25:02
2020-04-20T21:25:02
252,142,814
0
0
null
null
null
null
UTF-8
Python
false
false
224
py
from setuptools import setup setup(name='CoronaSorter', version='1.1', packages=[''], url='', license='', author='MichielMaas', author_email='michieljmmaas@gmail.com', description='Plot van de CSV data geleverd door RIVM')
[ "michieljmmaas@gmail.com" ]
michieljmmaas@gmail.com
88890341a60f319b1124a3764a29d3a184e1b5ad
7fee13fbe3d9a36ccd928d821966846853fc5d75
/proj1/tests/string.unicode-unnamed-character.py
135b53667085a742c25e59bd414cb5e2fd36e1c1
[]
no_license
sphippen/uofu-compilers-tests
8151cba16613a85d68c7a84917036530765ffc32
a5869072f1cf468f652f855aeb511c9fa2d67ae3
refs/heads/master
2021-01-23T20:22:45.542518
2015-05-01T06:28:02
2015-05-01T06:28:02
30,105,673
2
3
null
2015-03-30T19:20:22
2015-01-31T07:20:03
Python
UTF-8
Python
false
false
16
py
"\N{<control>}"
[ "joshkunz@me.com" ]
joshkunz@me.com
ec8df99aa40209f1f2b0cb8c8fabf01bc1520036
284566560a7e128573e81e4782d5a97ddcd5320f
/src/main/resources/parser/rubocop.py
97301a9eb7bdfe4537c064e951ab9d0a6780ba9d
[]
no_license
xebialabs-community/xltv-rubocop-plugin
41ccc30ef82c8d62765bdd1fac3b5f12df6c57a0
efb36c48492a7746e2a923971d8d61bd16071809
refs/heads/master
2021-01-12T08:46:00.811852
2019-05-10T17:12:20
2019-05-10T17:12:20
76,682,534
0
1
null
2016-12-16T20:35:58
2016-12-16T20:11:55
Python
UTF-8
Python
false
false
2,898
py
# # THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS # FOR A PARTICULAR PURPOSE. THIS CODE AND INFORMATION ARE NOT SUPPORTED BY XEBIALABS. # import json from parser.xunit import throw_if_some_failed, parse_last_modified, parse_junit_test_results, open_file def rubocop_validate_files(files): filtered = [] for file in files: if str(file).endswith("json"): filtered.append(file) throw_if_some_failed(files, filtered) def rubocop_iterate_test_cases(file): """ Iterate all test cases found in `file`. :param file: :return: a list/iterator of tuples (test case node, test hierarchy path) """ with open_file(file) as data_file: features = json.load(data_file) for rubytest in features["files"]: yield (rubytest, (rubytest['path'], rubytest['path'], '0')) def rubocop_duration(splitResult): return 0 def rubocop_result(scenario): offenses = scenario["offenses"] for offense in offenses: severity = offense["severity"] if severity in ("refactor","convention","warning"): continue elif severity in ("error", "fatal"): return "FAILED" else: return "OTHER" return "PASSED" def rubocop_failure_reason(scenario): offenses = scenario["offenses"] for offense in offenses: severity = offense["severity"] if severity not in ("refactor","convention","warning"): error_message = offense["message"] unicode_error_message = unicode(error_message, "utf-8") return unicode_error_message.encode("ascii", "xmlcharrefreplace") return None def rubocop_custom_properties(scenario, file): return { "path": scenario["path"] } def rubocop_last_modified(file): return file.lastModified() rubocop_validate_files(files) last_modified = parse_last_modified(files, extract_last_modified=rubocop_last_modified) print 'LAST MOD', last_modified, test_run_historian.isKnownKey(str(last_modified)) if not test_run_historian.isKnownKey(str(last_modified)): events = parse_junit_test_results(files, last_modified, iterate_test_cases=rubocop_iterate_test_cases, extract_duration=rubocop_duration, extract_result=rubocop_result, extract_failure_reason=rubocop_failure_reason, extract_custom_properties=rubocop_custom_properties) print 'built run with events', events else: events = [] # Result holder should contain a list of test runs. A test run is a list of events result_holder.result = [events] if events else []
[ "joris.dewinne@gmail.com" ]
joris.dewinne@gmail.com
88e7578e5af18f773fac5562716a88e5c7a6dbdb
0d4ec25fb2819de88a801452f176500ccc269724
/min_queue.py
509cca9eabd345107e70355d3cb50c52554d3d73
[]
no_license
zopepy/leetcode
7f4213764a6a079f58402892bd0ede0514e06fcf
3bfee704adb1d94efc8e531b732cf06c4f8aef0f
refs/heads/master
2022-01-09T16:13:09.399620
2019-05-29T20:00:11
2019-05-29T20:00:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,297
py
""" enqueue add ele to queue remove al elements from list > cur ele add ele dequeue remove lee from queue remove ele from list if equal to removed element """ from collections import deque class MaxQueue(): def __init__(self): self.queue = deque([]) self.max_queue = [] def enquque(self, x): self.queue.append(x) while self.max_queue: if self.max_queue[-1] < x: self.max_queue.pop() else: self.max_queue.append(x) break if not self.max_queue: self.max_queue.append(x) def dequeue(self): ele = self.queue.popleft() if ele == self.max_queue[0]: self.max_queue = self.max_queue[1:] def get_max(self): return self.max_queue[0] class Solution: def maxSlidingWindow(self, nums, k): """ :type nums: List[int] :type k: int :rtype: List[int] """ response = [] if not nums: return response l = len(nums) mx = MaxQueue() for i in range(0, k): mx.enquque(nums[i]) response.append(mx.get_max()) for i in range(k, l): mx.dequeue() mx.enquque(nums[i]) response.append(mx.get_max()) return response s = Solution() # nms = [1,3,-1,-3,5,3,6,7] nms = [8,7,6,5,4,3,2] print(s.maxSlidingWindow(nms, 1))
[ "rohithiitj@gmail.com" ]
rohithiitj@gmail.com
b325113484a7068d0bd9fb42c74bfdd16fdfa3fc
a1cbca323d0436af13bf7d273479a1981791d677
/大数据/pyspark/zml_salary_predict/salary_predict_feature/resume_education_feature.py
4edef9c1319960847f96d0f11cb9b6578d4c65f8
[]
no_license
reganzm/ai
a23bce1d448e4d14b3877774e946be291d17c3e1
4572975e14bf4e4160f18db9c17717eab2051ea1
refs/heads/master
2020-03-26T05:23:32.507691
2018-12-10T06:25:02
2018-12-10T06:25:02
144,554,535
0
0
null
null
null
null
UTF-8
Python
false
false
3,074
py
# -*- coding: utf-8 -*- # 教育经历数据中的学校、学历、专业编码 from pyspark.sql import SparkSession from pyspark.sql.types import IntegerType if __name__ == '__main__': spark = SparkSession.builder.master("yarn").appName("resume_educations_data_prepare").config("spark.ui.port", "44040") \ .config('spark.default.parallelism', '40') \ .config('spark.executor.memory', '6G') \ .config('spark.driver.memory', '6G') \ .config('spark.executor.cores', '10') \ .config('spark.dynamicAllocation.minExecutors', '50') \ .config('spark.dynamicAllocation.initialExecutors', '50') \ .config('spark.task.cpus', '2') \ .config('spark.default.defaultMinPartitions', '1000') \ .config('spark.executor.memoryOverhead', '4G') \ .getOrCreate() sc = spark.sparkContext sc.setLogLevel('WARN') major_df_t = spark.read.csv('/data/datasets/salary_predict/major.csv', header=True).toPandas().to_dict() major_df_map = dict(zip(major_df_t['name'].values(), major_df_t['id'].values())) school_df_t = spark.read.csv('/data/datasets/salary_predict/university.csv', header=True).select('sid', 'name').toPandas().to_dict() school_df_map = dict(zip(school_df_t['name'].values(), school_df_t['sid'].values())) degree_df_t = spark.read.csv('/data/datasets/salary_predict/degree.csv', header=True).toPandas().to_dict() degree_df_map = dict(zip(degree_df_t['name'].values(), degree_df_t['id'].values())) def func_school(name): if school_df_map.get(name): return int(school_df_map.get(name)) else: return int(school_df_map.get('unknown')) def func_major(name): if major_df_map.get(name): return int(major_df_map.get(name)) else: return int(major_df_map.get('unknown')) def func_degree(name): if degree_df_map.get(name): return int(degree_df_map.get(name)) else: return int(degree_df_map.get('unknown')) def register_udf(spark): udf = spark.udf udf.register('func_degree', func_degree, returnType=IntegerType()) udf.register('func_school', func_school, returnType=IntegerType()) udf.register('func_major', func_major, returnType=IntegerType()) def work(spark): df = spark.read.json( '/user/bigdata/BI/resume_flatten_v1_20180813/resume_educations.json').createOrReplaceTempView('A') s_sql = """ select *,func_degree(degree) as degree_code,func_school(school) as school_code, func_major(major) as major_code from A """ spark.sql(s_sql).repartition(100).write.mode('overwrite').parquet( '/user/bigdata/BI/resume_flatten_v1_20180813/resume_educations_with_codes.parquet') register_udf(spark) work(spark) spark.stop()
[ "zhangmin@shandudata.com" ]
zhangmin@shandudata.com
43c4a5bc0ee159d5d78f69a2595b75a757ec59c3
97f2d3e77c562feafc5612b2628bf917ddf9627e
/home/urls.py
1dba72dc2a0b77562d794244861336a429c317bf
[]
no_license
isottellina/p11-purbeurre-fix
b2109f85052d6596191905f8db5ca4d9c25f8b4f
c6d62f209888316ffc9485af436b5f70fb490e8d
refs/heads/master
2023-08-17T02:38:42.112947
2020-06-17T18:44:20
2020-06-17T18:44:20
262,383,107
0
1
null
2021-09-22T18:59:42
2020-05-08T17:13:12
Python
UTF-8
Python
false
false
362
py
# urls.py --- # # Filename: urls.py # Author: Louise <louise> # Created: Sun Apr 26 21:16:25 2020 (+0200) # Last-Updated: Mon Apr 27 00:15:10 2020 (+0200) # By: Louise <louise> # from django.urls import path from . import views app_name = 'home' urlpatterns = [ path('', views.index, name='index'), path('legal', views.legal, name='legal') ]
[ "louise@zanier.org" ]
louise@zanier.org
4440815abc0a8366b2c885d6b9a1639c097b19ce
c0e0f7fb132dbb9225639044e0daa354789a4101
/model/CustInfo.py
88febc56bbef470a0ae6e21a531973421c72ea4e
[]
no_license
tomdziwood/PreciousClients
aff7bde3039795e24cd6ee4c044bf5711ba32ddd
582b2a161614a73fc701b1b02ade3b089bf38603
refs/heads/master
2023-04-29T00:03:47.376082
2021-05-24T21:24:32
2021-05-24T21:24:32
369,925,076
0
0
null
null
null
null
UTF-8
Python
false
false
910
py
class CustInfo: def __init__(self, id, firstname, lastname, street_address, district, voivodship, postcode, est_income, own_or_rent, date): self.id = id self.firstname = firstname self.lastname = lastname self.street_address = street_address self.district = district self.voivodship = voivodship self.postcode = postcode self.est_income = est_income self.own_or_rent = own_or_rent self.date = date def __str__(self): str_list = [str(self.id), self.firstname, self.lastname, self.street_address, self.district, self.voivodship, str(self.postcode), str(self.est_income), self.own_or_rent, self.date] return '|'.join(str_list)
[ "tomdziwood@gmail.com" ]
tomdziwood@gmail.com
fd4085640fc9754859cef2e874972d817cf51803
06f7ffdae684ac3cc258c45c3daabce98243f64f
/vsts/vsts/service_hooks/v4_1/models/publisher.py
065981f8d9f43c06f237b5a4594cdddc056d4ec9
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
kenkuo/azure-devops-python-api
7dbfb35f1c9637c9db10207824dd535c4d6861e8
9ac38a97a06ee9e0ee56530de170154f6ed39c98
refs/heads/master
2020-04-03T17:47:29.526104
2018-10-25T17:46:09
2018-10-25T17:46:09
155,459,045
0
0
MIT
2018-10-30T21:32:43
2018-10-30T21:32:42
null
UTF-8
Python
false
false
2,589
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest.serialization import Model class Publisher(Model): """Publisher. :param _links: Reference Links :type _links: :class:`ReferenceLinks <service-hooks.v4_1.models.ReferenceLinks>` :param description: Gets this publisher's localized description. :type description: str :param id: Gets this publisher's identifier. :type id: str :param input_descriptors: Publisher-specific inputs :type input_descriptors: list of :class:`InputDescriptor <service-hooks.v4_1.models.InputDescriptor>` :param name: Gets this publisher's localized name. :type name: str :param service_instance_type: The service instance type of the first party publisher. :type service_instance_type: str :param supported_events: Gets this publisher's supported event types. :type supported_events: list of :class:`EventTypeDescriptor <service-hooks.v4_1.models.EventTypeDescriptor>` :param url: The url for this resource :type url: str """ _attribute_map = { '_links': {'key': '_links', 'type': 'ReferenceLinks'}, 'description': {'key': 'description', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'input_descriptors': {'key': 'inputDescriptors', 'type': '[InputDescriptor]'}, 'name': {'key': 'name', 'type': 'str'}, 'service_instance_type': {'key': 'serviceInstanceType', 'type': 'str'}, 'supported_events': {'key': 'supportedEvents', 'type': '[EventTypeDescriptor]'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, _links=None, description=None, id=None, input_descriptors=None, name=None, service_instance_type=None, supported_events=None, url=None): super(Publisher, self).__init__() self._links = _links self.description = description self.id = id self.input_descriptors = input_descriptors self.name = name self.service_instance_type = service_instance_type self.supported_events = supported_events self.url = url
[ "tedchamb@microsoft.com" ]
tedchamb@microsoft.com
664c3548f179f3d8b289a9433cca256bd21dbeb3
9a7f5f07c550e02f13c79d88d0a2c39a34e4b891
/rules/discovery/rule_artifactory.py
75c1e67e7fbe0fdcfa1602c7b965d77cf60ad1be
[]
no_license
Saloniimathur/vuln-scanner-flask
90901a5167761e0fccf10b6dcf92ad5aeab44333
07ab9b715233275f86e3d3328a0feaa0ed6c404a
refs/heads/master
2023-04-12T09:03:53.189102
2021-05-10T07:56:14
2021-05-10T07:56:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,876
py
from core.redis import rds from core.triage import Triage from core.parser import ScanParser class Rule: def __init__(self): self.rule = 'DSC_SSB9' self.rule_severity = 2 self.rule_description = 'This rule checks for the exposure of Artifactory Panels' self.rule_confirm = 'Identified an Artifactory Panel' self.rule_details = '' self.rule_mitigation = '''Identify whether the application in question is supposed to be exposed to the network.''' self.rule_match_string = { '/artifactory/webapp':{ 'app':'JFROG_ARTIFACTORY', 'match':['artifactory.ui', 'artifactory_views'], 'title':'Artifactory' }, '/artifactory/libs-release':{ 'app':'JFROG_LIB_RELEASE', 'match':['Index of libs-release/'], 'title':'Artifactory Directory Exposure' }, } self.intensity = 1 def check_rule(self, ip, port, values, conf): t = Triage() p = ScanParser(port, values) domain = p.get_domain() module = p.get_module() if 'http' in module: for uri, values in self.rule_match_string.items(): app_title = values['title'] resp = t.http_request(ip, port, uri=uri) if resp is not None: for match in values['match']: if match in resp.text: self.rule_details = 'Exposed {} at {}'.format(app_title, resp.url) rds.store_vuln({ 'ip':ip, 'port':port, 'domain':domain, 'rule_id':self.rule, 'rule_sev':self.rule_severity, 'rule_desc':self.rule_description, 'rule_confirm':self.rule_confirm, 'rule_details':self.rule_details, 'rule_mitigation':self.rule_mitigation }) break return
[ "krisna.pranav@gmail.com" ]
krisna.pranav@gmail.com
b56ed93be4561121e0fb330608d921547dad4529
9aa776778cf6734c98c63eb390b3766be7e91e49
/Assignment 7/train_eval.py
bfac93bca86862ded408fc902b00743dcd4a60f2
[]
no_license
rushi-the-neural-arch/EVA6-Computer-Vision
867749543dd166461f1552d9c0308bce59d9c1f0
8fa41fdb17f11d666189a52e2a9939d9ad7a3c20
refs/heads/main
2023-07-09T03:09:42.468784
2021-08-07T13:55:31
2021-08-07T13:55:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,652
py
import torch.nn as nn import torch from utils import calculate_accuracy def train(model, iterator, optimizer, scheduler, criterion, l1_factor, device): epoch_loss = 0 epoch_acc = 0 model.train() for (x, y) in iterator: x = x.to(device) y = y.to(device) optimizer.zero_grad() y_pred = model(x) #print(y_pred.shape, y.shape) loss = criterion(y_pred, y) if l1_factor > 0: L1_loss = nn.L1Loss(size_average=None, reduce=None, reduction='mean') reg_loss = 0 for param in model.parameters(): zero_vector = torch.rand_like(param) * 0 reg_loss += L1_loss(param,zero_vector) loss += l1_factor * reg_loss acc = calculate_accuracy(y_pred, y) loss.backward() optimizer.step() scheduler.step() epoch_loss += loss.item() epoch_acc += acc.item() return epoch_loss / len(iterator), epoch_acc / len(iterator) def evaluate(model, iterator, criterion, device): epoch_loss = 0 epoch_acc = 0 model.eval() with torch.no_grad(): for (x, y) in iterator: x = x.to(device) y = y.to(device) y_pred = model(x) loss = criterion(y_pred, y) acc = calculate_accuracy(y_pred, y) epoch_loss += loss.item() epoch_acc += acc.item() return epoch_loss / len(iterator), epoch_acc / len(iterator)
[ "noreply@github.com" ]
rushi-the-neural-arch.noreply@github.com
a4260a14f3673d699a88bb6b289abad6bd38beb7
cbfddfdf5c7fa8354162efe50b41f84e55aff118
/venv/lib/python3.7/site-packages/nltk/treeprettyprinter.py
9d92c098bfa27d9d8ba042cb447f85f039ae656c
[ "Apache-2.0", "MIT" ]
permissive
tclerico/SAAC
8d2245221dd135aea67c5e079ac7eaf542b25e2f
2f52007ae8043096662e76da828a84e87f71091e
refs/heads/master
2022-12-09T21:56:33.430404
2019-02-20T14:23:51
2019-02-20T14:23:51
153,152,229
3
0
MIT
2022-09-16T17:52:47
2018-10-15T17:13:29
Python
UTF-8
Python
false
false
24,342
py
# -*- coding: utf-8 -*- # Natural Language Toolkit: ASCII visualization of NLTK trees # # Copyright (C) 2001-2018 NLTK Project # Author: Andreas van Cranenburgh <A.W.vanCranenburgh@uva.nl> # Peter Ljunglöf <peter.ljunglof@gu.se> # URL: <http://nltk.org/> # For license information, see LICENSE.TXT """ Pretty-printing of discontinuous trees. Adapted from the disco-dop project, by Andreas van Cranenburgh. https://github.com/andreasvc/disco-dop Interesting reference (not used for this code): T. Eschbach et al., Orth. Hypergraph Drawing, Journal of Graph Algorithms and Applications, 10(2) 141--157 (2006)149. http://jgaa.info/accepted/2006/EschbachGuentherBecker2006.10.2.pdf """ from __future__ import division, print_function, unicode_literals from nltk.util import slice_bounds, OrderedDict from nltk.compat import python_2_unicode_compatible, unicode_repr from nltk.internals import raise_unorderable_types from nltk.tree import Tree import re import sys import codecs from cgi import escape from collections import defaultdict from operator import itemgetter from itertools import chain, islice ANSICOLOR = { 'black': 30, 'red': 31, 'green': 32, 'yellow': 33, 'blue': 34, 'magenta': 35, 'cyan': 36, 'white': 37, } @python_2_unicode_compatible class TreePrettyPrinter(object): """ Pretty-print a tree in text format, either as ASCII or Unicode. The tree can be a normal tree, or discontinuous. ``TreePrettyPrinter(tree, sentence=None, highlight=())`` creates an object from which different visualizations can be created. :param tree: a Tree object. :param sentence: a list of words (strings). If `sentence` is given, `tree` must contain integers as leaves, which are taken as indices in `sentence`. Using this you can display a discontinuous tree. :param highlight: Optionally, a sequence of Tree objects in `tree` which should be highlighted. Has the effect of only applying colors to nodes in this sequence (nodes should be given as Tree objects, terminals as indices). >>> from nltk.tree import Tree >>> tree = Tree.fromstring('(S (NP Mary) (VP walks))') >>> print(TreePrettyPrinter(tree).text()) ... # doctest: +NORMALIZE_WHITESPACE S ____|____ NP VP | | Mary walks """ def __init__(self, tree, sentence=None, highlight=()): if sentence is None: leaves = tree.leaves() if (leaves and not any(len(a) == 0 for a in tree.subtrees()) and all(isinstance(a, int) for a in leaves)): sentence = [str(a) for a in leaves] else: # this deals with empty nodes (frontier non-terminals) # and multiple/mixed terminals under non-terminals. tree = tree.copy(True) sentence = [] for a in tree.subtrees(): if len(a) == 0: a.append(len(sentence)) sentence.append(None) elif any(not isinstance(b, Tree) for b in a): for n, b in enumerate(a): if not isinstance(b, Tree): a[n] = len(sentence) sentence.append('%s' % b) self.nodes, self.coords, self.edges, self.highlight = self.nodecoords( tree, sentence, highlight) def __str__(self): return self.text() def __repr__(self): return '<TreePrettyPrinter with %d nodes>' % len(self.nodes) @staticmethod def nodecoords(tree, sentence, highlight): """ Produce coordinates of nodes on a grid. Objective: - Produce coordinates for a non-overlapping placement of nodes and horizontal lines. - Order edges so that crossing edges cross a minimal number of previous horizontal lines (never vertical lines). Approach: - bottom up level order traversal (start at terminals) - at each level, identify nodes which cannot be on the same row - identify nodes which cannot be in the same column - place nodes into a grid at (row, column) - order child-parent edges with crossing edges last Coordinates are (row, column); the origin (0, 0) is at the top left; the root node is on row 0. Coordinates do not consider the size of a node (which depends on font, &c), so the width of a column of the grid should be automatically determined by the element with the greatest width in that column. Alternatively, the integer coordinates could be converted to coordinates in which the distances between adjacent nodes are non-uniform. Produces tuple (nodes, coords, edges, highlighted) where: - nodes[id]: Tree object for the node with this integer id - coords[id]: (n, m) coordinate where to draw node with id in the grid - edges[id]: parent id of node with this id (ordered dictionary) - highlighted: set of ids that should be highlighted """ def findcell(m, matrix, startoflevel, children): """ Find vacant row, column index for node ``m``. Iterate over current rows for this level (try lowest first) and look for cell between first and last child of this node, add new row to level if no free row available. """ candidates = [a for _, a in children[m]] minidx, maxidx = min(candidates), max(candidates) leaves = tree[m].leaves() center = scale * sum(leaves) // len(leaves) # center of gravity if minidx < maxidx and not minidx < center < maxidx: center = sum(candidates) // len(candidates) if max(candidates) - min(candidates) > 2 * scale: center -= center % scale # round to unscaled coordinate if minidx < maxidx and not minidx < center < maxidx: center += scale if ids[m] == 0: startoflevel = len(matrix) for rowidx in range(startoflevel, len(matrix) + 1): if rowidx == len(matrix): # need to add a new row matrix.append([vertline if a not in (corner, None) else None for a in matrix[-1]]) row = matrix[rowidx] i = j = center if len(children[m]) == 1: # place unaries directly above child return rowidx, next(iter(children[m]))[1] elif all(a is None or a == vertline for a in row[min(candidates):max(candidates) + 1]): # find free column for n in range(scale): i = j = center + n while j > minidx or i < maxidx: if i < maxidx and (matrix[rowidx][i] is None or i in candidates): return rowidx, i elif j > minidx and (matrix[rowidx][j] is None or j in candidates): return rowidx, j i += scale j -= scale raise ValueError('could not find a free cell for:\n%s\n%s' 'min=%d; max=%d' % (tree[m], minidx, maxidx, dumpmatrix())) def dumpmatrix(): """Dump matrix contents for debugging purposes.""" return '\n'.join( '%2d: %s' % (n, ' '.join(('%2r' % i)[:2] for i in row)) for n, row in enumerate(matrix)) leaves = tree.leaves() if not all(isinstance(n, int) for n in leaves): raise ValueError('All leaves must be integer indices.') if len(leaves) != len(set(leaves)): raise ValueError('Indices must occur at most once.') if not all(0 <= n < len(sentence) for n in leaves): raise ValueError('All leaves must be in the interval 0..n ' 'with n=len(sentence)\ntokens: %d indices: ' '%r\nsentence: %s' % (len(sentence), tree.leaves(), sentence)) vertline, corner = -1, -2 # constants tree = tree.copy(True) for a in tree.subtrees(): a.sort(key=lambda n: min(n.leaves()) if isinstance(n, Tree) else n) scale = 2 crossed = set() # internal nodes and lexical nodes (no frontiers) positions = tree.treepositions() maxdepth = max(map(len, positions)) + 1 childcols = defaultdict(set) matrix = [[None] * (len(sentence) * scale)] nodes = {} ids = dict((a, n) for n, a in enumerate(positions)) highlighted_nodes = set(n for a, n in ids.items() if not highlight or tree[a] in highlight) levels = dict((n, []) for n in range(maxdepth - 1)) terminals = [] for a in positions: node = tree[a] if isinstance(node, Tree): levels[maxdepth - node.height()].append(a) else: terminals.append(a) for n in levels: levels[n].sort(key=lambda n: max(tree[n].leaves()) - min(tree[n].leaves())) terminals.sort() positions = set(positions) for m in terminals: i = int(tree[m]) * scale assert matrix[0][i] is None, (matrix[0][i], m, i) matrix[0][i] = ids[m] nodes[ids[m]] = sentence[tree[m]] if nodes[ids[m]] is None: nodes[ids[m]] = '...' highlighted_nodes.discard(ids[m]) positions.remove(m) childcols[m[:-1]].add((0, i)) # add other nodes centered on their children, # if the center is already taken, back off # to the left and right alternately, until an empty cell is found. for n in sorted(levels, reverse=True): nodesatdepth = levels[n] startoflevel = len(matrix) matrix.append([vertline if a not in (corner, None) else None for a in matrix[-1]]) for m in nodesatdepth: # [::-1]: if n < maxdepth - 1 and childcols[m]: _, pivot = min(childcols[m], key=itemgetter(1)) if (set(a[:-1] for row in matrix[:-1] for a in row[:pivot] if isinstance(a, tuple)) & set(a[:-1] for row in matrix[:-1] for a in row[pivot:] if isinstance(a, tuple))): crossed.add(m) rowidx, i = findcell(m, matrix, startoflevel, childcols) positions.remove(m) # block positions where children of this node branch out for _, x in childcols[m]: matrix[rowidx][x] = corner # assert m == () or matrix[rowidx][i] in (None, corner), ( # matrix[rowidx][i], m, str(tree), ' '.join(sentence)) # node itself matrix[rowidx][i] = ids[m] nodes[ids[m]] = tree[m] # add column to the set of children for its parent if m != (): childcols[m[:-1]].add((rowidx, i)) assert len(positions) == 0 # remove unused columns, right to left for m in range(scale * len(sentence) - 1, -1, -1): if not any(isinstance(row[m], (Tree, int)) for row in matrix): for row in matrix: del row[m] # remove unused rows, reverse matrix = [row for row in reversed(matrix) if not all(a is None or a == vertline for a in row)] # collect coordinates of nodes coords = {} for n, _ in enumerate(matrix): for m, i in enumerate(matrix[n]): if isinstance(i, int) and i >= 0: coords[i] = n, m # move crossed edges last positions = sorted([a for level in levels.values() for a in level], key=lambda a: a[:-1] in crossed) # collect edges from node to node edges = OrderedDict() for i in reversed(positions): for j, _ in enumerate(tree[i]): edges[ids[i + (j, )]] = ids[i] return nodes, coords, edges, highlighted_nodes def text(self, nodedist=1, unicodelines=False, html=False, ansi=False, nodecolor='blue', leafcolor='red', funccolor='green', abbreviate=None, maxwidth=16): """ :return: ASCII art for a discontinuous tree. :param unicodelines: whether to use Unicode line drawing characters instead of plain (7-bit) ASCII. :param html: whether to wrap output in html code (default plain text). :param ansi: whether to produce colors with ANSI escape sequences (only effective when html==False). :param leafcolor, nodecolor: specify colors of leaves and phrasal nodes; effective when either html or ansi is True. :param abbreviate: if True, abbreviate labels longer than 5 characters. If integer, abbreviate labels longer than `abbr` characters. :param maxwidth: maximum number of characters before a label starts to wrap; pass None to disable. """ if abbreviate == True: abbreviate = 5 if unicodelines: horzline = '\u2500' leftcorner = '\u250c' rightcorner = '\u2510' vertline = ' \u2502 ' tee = horzline + '\u252C' + horzline bottom = horzline + '\u2534' + horzline cross = horzline + '\u253c' + horzline ellipsis = '\u2026' else: horzline = '_' leftcorner = rightcorner = ' ' vertline = ' | ' tee = 3 * horzline cross = bottom = '_|_' ellipsis = '.' def crosscell(cur, x=vertline): """Overwrite center of this cell with a vertical branch.""" splitl = len(cur) - len(cur) // 2 - len(x) // 2 - 1 lst = list(cur) lst[splitl:splitl + len(x)] = list(x) return ''.join(lst) result = [] matrix = defaultdict(dict) maxnodewith = defaultdict(lambda: 3) maxnodeheight = defaultdict(lambda: 1) maxcol = 0 minchildcol = {} maxchildcol = {} childcols = defaultdict(set) labels = {} wrapre = re.compile('(.{%d,%d}\\b\\W*|.{%d})' % ( maxwidth - 4, maxwidth, maxwidth)) # collect labels and coordinates for a in self.nodes: row, column = self.coords[a] matrix[row][column] = a maxcol = max(maxcol, column) label = (self.nodes[a].label() if isinstance(self.nodes[a], Tree) else self.nodes[a]) if abbreviate and len(label) > abbreviate: label = label[:abbreviate] + ellipsis if maxwidth and len(label) > maxwidth: label = wrapre.sub(r'\1\n', label).strip() label = label.split('\n') maxnodeheight[row] = max(maxnodeheight[row], len(label)) maxnodewith[column] = max(maxnodewith[column], max(map(len, label))) labels[a] = label if a not in self.edges: continue # e.g., root parent = self.edges[a] childcols[parent].add((row, column)) minchildcol[parent] = min(minchildcol.get(parent, column), column) maxchildcol[parent] = max(maxchildcol.get(parent, column), column) # bottom up level order traversal for row in sorted(matrix, reverse=True): noderows = [[''.center(maxnodewith[col]) for col in range(maxcol + 1)] for _ in range(maxnodeheight[row])] branchrow = [''.center(maxnodewith[col]) for col in range(maxcol + 1)] for col in matrix[row]: n = matrix[row][col] node = self.nodes[n] text = labels[n] if isinstance(node, Tree): # draw horizontal branch towards children for this node if n in minchildcol and minchildcol[n] < maxchildcol[n]: i, j = minchildcol[n], maxchildcol[n] a, b = (maxnodewith[i] + 1) // 2 - 1, maxnodewith[j] // 2 branchrow[i] = ((' ' * a) + leftcorner).ljust( maxnodewith[i], horzline) branchrow[j] = (rightcorner + (' ' * b)).rjust( maxnodewith[j], horzline) for i in range(minchildcol[n] + 1, maxchildcol[n]): if i == col and any( a == i for _, a in childcols[n]): line = cross elif i == col: line = bottom elif any(a == i for _, a in childcols[n]): line = tee else: line = horzline branchrow[i] = line.center(maxnodewith[i], horzline) else: # if n and n in minchildcol: branchrow[col] = crosscell(branchrow[col]) text = [a.center(maxnodewith[col]) for a in text] color = nodecolor if isinstance(node, Tree) else leafcolor if isinstance(node, Tree) and node.label().startswith('-'): color = funccolor if html: text = [escape(a) for a in text] if n in self.highlight: text = ['<font color=%s>%s</font>' % ( color, a) for a in text] elif ansi and n in self.highlight: text = ['\x1b[%d;1m%s\x1b[0m' % ( ANSICOLOR[color], a) for a in text] for x in range(maxnodeheight[row]): # draw vertical lines in partially filled multiline node # labels, but only if it's not a frontier node. noderows[x][col] = (text[x] if x < len(text) else (vertline if childcols[n] else ' ').center( maxnodewith[col], ' ')) # for each column, if there is a node below us which has a parent # above us, draw a vertical branch in that column. if row != max(matrix): for n, (childrow, col) in self.coords.items(): if (n > 0 and self.coords[self.edges[n]][0] < row < childrow): branchrow[col] = crosscell(branchrow[col]) if col not in matrix[row]: for noderow in noderows: noderow[col] = crosscell(noderow[col]) branchrow = [a + ((a[-1] if a[-1] != ' ' else b[0]) * nodedist) for a, b in zip(branchrow, branchrow[1:] + [' '])] result.append(''.join(branchrow)) result.extend((' ' * nodedist).join(noderow) for noderow in reversed(noderows)) return '\n'.join(reversed(result)) + '\n' def svg(self, nodecolor='blue', leafcolor='red', funccolor='green'): """ :return: SVG representation of a tree. """ fontsize = 12 hscale = 40 vscale = 25 hstart = vstart = 20 width = max(col for _, col in self.coords.values()) height = max(row for row, _ in self.coords.values()) result = ['<svg version="1.1" xmlns="http://www.w3.org/2000/svg" ' 'width="%dem" height="%dem" viewBox="%d %d %d %d">' % ( width * 3, height * 2.5, -hstart, -vstart, width * hscale + 3 * hstart, height * vscale + 3 * vstart) ] children = defaultdict(set) for n in self.nodes: if n: children[self.edges[n]].add(n) # horizontal branches from nodes to children for node in self.nodes: if not children[node]: continue y, x = self.coords[node] x *= hscale y *= vscale x += hstart y += vstart + fontsize // 2 childx = [self.coords[c][1] for c in children[node]] xmin = hstart + hscale * min(childx) xmax = hstart + hscale * max(childx) result.append( '\t<polyline style="stroke:black; stroke-width:1; fill:none;" ' 'points="%g,%g %g,%g" />' % (xmin, y, xmax, y)) result.append( '\t<polyline style="stroke:black; stroke-width:1; fill:none;" ' 'points="%g,%g %g,%g" />' % (x, y, x, y - fontsize // 3)) # vertical branches from children to parents for child, parent in self.edges.items(): y, _ = self.coords[parent] y *= vscale y += vstart + fontsize // 2 childy, childx = self.coords[child] childx *= hscale childy *= vscale childx += hstart childy += vstart - fontsize result += [ '\t<polyline style="stroke:white; stroke-width:10; fill:none;"' ' points="%g,%g %g,%g" />' % (childx, childy, childx, y + 5), '\t<polyline style="stroke:black; stroke-width:1; fill:none;"' ' points="%g,%g %g,%g" />' % (childx, childy, childx, y), ] # write nodes with coordinates for n, (row, column) in self.coords.items(): node = self.nodes[n] x = column * hscale + hstart y = row * vscale + vstart if n in self.highlight: color = nodecolor if isinstance(node, Tree) else leafcolor if isinstance(node, Tree) and node.label().startswith('-'): color = funccolor else: color = 'black' result += ['\t<text style="text-anchor: middle; fill: %s; ' 'font-size: %dpx;" x="%g" y="%g">%s</text>' % ( color, fontsize, x, y, escape(node.label() if isinstance(node, Tree) else node))] result += ['</svg>'] return '\n'.join(result) def test(): """Do some tree drawing tests.""" def print_tree(n, tree, sentence=None, ansi=True, **xargs): print() print('{0}: "{1}"'.format(n, ' '.join(sentence or tree.leaves()))) print(tree) print() drawtree = TreePrettyPrinter(tree, sentence) try: print(drawtree.text(unicodelines=ansi, ansi=ansi, **xargs)) except (UnicodeDecodeError, UnicodeEncodeError): print(drawtree.text(unicodelines=False, ansi=False, **xargs)) from nltk.corpus import treebank for n in [0, 1440, 1591, 2771, 2170]: tree = treebank.parsed_sents()[n] print_tree(n, tree, nodedist=2, maxwidth=8) print() print('ASCII version:') print(TreePrettyPrinter(tree).text(nodedist=2)) tree = Tree.fromstring( '(top (punct 8) (smain (noun 0) (verb 1) (inf (verb 5) (inf (verb 6) ' '(conj (inf (pp (prep 2) (np (det 3) (noun 4))) (verb 7)) (inf (verb 9)) ' '(vg 10) (inf (verb 11)))))) (punct 12))', read_leaf=int) sentence = ('Ze had met haar moeder kunnen gaan winkelen ,' ' zwemmen of terrassen .'.split()) print_tree('Discontinuous tree', tree, sentence, nodedist=2) __all__ = ['TreePrettyPrinter'] if __name__ == '__main__': test()
[ "timclerico@gmail.com" ]
timclerico@gmail.com
8cf8a773e5453f17c5d821de53ab612575e70022
80bce7b7cfffb29dc4464d5556476de621311945
/Hackerrank/maxToys.py
fa24460afbc0b105587abeccd8e80fac8a3609a8
[]
no_license
dstadz/leetCode
7f00d8c00282519a1aaa5be5e8d26740d9bfe1a7
9fc41e52a17f9ab6343a30cc363a1325f0acd336
refs/heads/master
2021-03-20T01:28:58.432027
2020-12-03T17:58:13
2020-12-03T17:58:13
247,162,557
0
0
null
null
null
null
UTF-8
Python
false
false
782
py
#!/bin/python3 import math import os import random import re import sys # Complete the maximumToys function below. def maximumToys(prices, k): options = [] # filter out useless things for p in prices: if p < k: options.append(p) if sum(options) <= k: return len(options) tot = 0 cnt = 0 options.sort() print(options) while tot < k: tot += options[cnt] cnt += 1 print(cnt, tot) return cnt - 1 if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') nk = input().split() n = int(nk[0]) k = int(nk[1]) prices = list(map(int, input().rstrip().split())) result = maximumToys(prices, k) fptr.write(str(result) + '\n') fptr.close()
[ "danstad2012@gmail.com" ]
danstad2012@gmail.com
d7aeba3928b28d5b42b67856008adb2434e7790d
86cfd03e0fe96246bc2ed3e6d196b1700fadb991
/simple_1d.py
99de3c50ce2896d93b374822361294d584c04bd1
[]
no_license
ttagu99/speech_recognition
6911e87bb9d5d92a9451e2c213c87ce43f79a276
ef7626b5b3f0969367eb418caf153aa889df5e79
refs/heads/master
2020-04-25T03:48:30.636118
2019-02-25T11:03:23
2019-02-25T11:03:23
172,489,729
0
0
null
null
null
null
UTF-8
Python
false
false
18,509
py
#-*- coding: utf-8 -*- import os import re from glob import glob import pandas as pd import numpy as np import matplotlib.pyplot as plt import os os.environ["CUDA_VISIBLE_DEVICES"]="2" POSSIBLE_LABELS = 'yes no up down left right on off stop go silence unknown'.split() id2name = {i: name for i, name in enumerate(POSSIBLE_LABELS)} name2id = {name: i for i, name in id2name.items()} root_dir = 'I:/imgfolder/voice/' import random import tensorflow as tf from tensorflow.python.keras.models import Model from tensorflow.python.keras.layers import Input, Conv1D, AvgPool1D, MaxPooling1D, Activation, BatchNormalization, GlobalAveragePooling1D, GlobalMaxPool1D, concatenate, Dense, Dropout from tensorflow.python.keras.optimizers import RMSprop, SGD from tensorflow.python.keras.utils import to_categorical from tensorflow.python.keras import layers from tensorflow.python.keras._impl.keras import backend as K from keras.utils.training_utils import multi_gpu_model from keras.utils.generic_utils import get_custom_objects from keras.models import Sequential def identity_block_1d(input_tensor, kernel_size, filters, stage, block): """The identity block is the block that has no conv layer at shortcut. # Arguments input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names # Returns Output tensor for the block. """ filters1, filters2, filters3 = filters conv_name_base = 'res_1d' + str(stage) + block + '_branch' bn_name_base = 'bn_1d' + str(stage) + block + '_branch' x = Conv1D(filters1, (1), name=conv_name_base + '2a')(input_tensor) x = BatchNormalization( name=bn_name_base + '2a')(x) x = Activation('relu')(x) x = Conv1D(filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x) x = BatchNormalization(name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Conv1D(filters3, (1), name=conv_name_base + '2c')(x) x = BatchNormalization(name=bn_name_base + '2c')(x) x = layers.add([x, input_tensor]) x = Activation('relu')(x) return x def conv_block_1d(input_tensor, kernel_size, filters, stage, block, strides=(2)): """A block that has a conv layer at shortcut. # Arguments input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names # Returns Output tensor for the block. Note that from stage 3, the first conv layer at main path is with strides=(2,2) And the shortcut should have strides=(2,2) as well """ filters1, filters2, filters3 = filters conv_name_base = 'res_1d' + str(stage) + block + '_branch' bn_name_base = 'bn_1d' + str(stage) + block + '_branch' x = Conv1D(filters1, (1), strides=strides, name=conv_name_base + '2a')(input_tensor) x = BatchNormalization(name=bn_name_base + '2a')(x) x = Activation('relu')(x) x = Conv1D(filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x) x = BatchNormalization(name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Conv1D(filters3, (1), name=conv_name_base + '2c')(x) x = BatchNormalization(name=bn_name_base + '2c')(x) shortcut = Conv1D(filters3, (1), strides=strides, name=conv_name_base + '1')(input_tensor) shortcut = BatchNormalization(name=bn_name_base + '1')(shortcut) x = layers.add([x, shortcut]) x = Activation('relu')(x) return x def load_data(data_dir): """ Return 2 lists of tuples: [(class_id, user_id, path), ...] for train [(class_id, user_id, path), ...] for validation """ # Just a simple regexp for paths with three groups: # prefix, label, user_id pattern = re.compile("(.+\/)?(\w+)\/([^_]+)_.+wav") all_files = glob(os.path.join(data_dir, 'train/audio/*/*wav')) for idx, file in enumerate(all_files): all_files[idx] = file.replace('\\','/') with open(os.path.join(data_dir, 'train/validation_list.txt'), 'r') as fin: validation_files = fin.readlines() valset = set() for entry in validation_files: r = re.match(pattern, entry) if r: valset.add(r.group(3)) possible = set(POSSIBLE_LABELS) train, val = [], [] for entry in all_files: r = re.match(pattern, entry) if r: label, uid = r.group(2), r.group(3) if label == '_background_noise_': label = 'silence' if label not in possible: label = 'unknown' label_id = name2id[label] sample = (label, label_id, uid, entry) if uid in valset: val.append(sample) else: train.append(sample) print('There are {} train and {} val samples'.format(len(train), len(val))) columns_list = ['label', 'label_id', 'user_id', 'wav_file'] train_df = pd.DataFrame(train, columns = columns_list) valid_df = pd.DataFrame(val, columns = columns_list) return train_df, valid_df train_df, valid_df = load_data(root_dir) silence_files = train_df[train_df.label == 'silence'] # balancing imbalance data train_df = train_df[train_df.label != 'silence'] train_unknown = train_df[train_df.label == 'unknown'] val_unknown = valid_df[valid_df.label == 'unknown'] used_train_df = train_df[train_df.label != 'unknown'] used_valid_df = valid_df[valid_df.label != 'unknown'] train_list = [] train_list.append(train_unknown) for idx in range(18): train_list.append(used_train_df) for idx in range(6000): train_list.append(silence_files) train_df = pd.concat(train_list, ignore_index=True) val_list = [] val_list.append(val_unknown) for idx in range(16): val_list.append(used_valid_df) for idx in range(700): val_list.append(silence_files) valid_df = pd.concat(val_list, ignore_index=True) train_pivot = train_df.pivot_table(index='label',aggfunc='count') print('Train Data Check') print(train_pivot) valid_pivot = valid_df.pivot_table(index='label',aggfunc='count') print('valid Data Check') print(valid_pivot) from scipy.io import wavfile def normalize_wav(wav): wav_mean = np.mean(wav) wav = wav - wav_mean wav_max = max(abs(wav)) if wav_max == 0 : # zero divide error wav_max = 0.01 wav = wav.astype(np.float32)/wav_max return wav def read_wav_file(fname): _, wav = wavfile.read(fname) wav = normalize_wav(wav) #wav = wav.astype(np.float32) / np.iinfo(np.int16).max return wav def pre_emphasis(wav): pre_emphasis = np.random.uniform(0.95,0.97) ret_wav = np.append(wav[0], wav[1:] - pre_emphasis * wav[:-1]) wav_max = max(abs(ret_wav)) ret_wav = ret_wav/wav_max return ret_wav def swish(x): return (K.sigmoid(x) * x) get_custom_objects().update({'swish': Activation(swish)}) silence_data = np.concatenate([read_wav_file(x) for x in silence_files.wav_file.values]) from scipy.signal import stft def center_align_resize(wav, length): if len(wav) > length: #center crop i = int((len(wav) - length)/2) wav = wav[i:(i+length)] elif len(wav) < length: #silence add side rem_len = length - len(wav) i = int((len(silence_data) - rem_len)/2) silence_part = silence_data[i:(i+length)] j = int(rem_len/2) silence_part_left = silence_part[0:j] silence_part_right = silence_part[j:rem_len] wav = np.concatenate([silence_part_left, wav, silence_part_right]) return wav def process_wav_file(fname, phase, dim='1D', optlabel = None): wav = read_wav_file(fname) # time streching if phase == 'TRAIN': time_strech_flag = np.random.randint(2) if time_strech_flag == 1: ts_ratio = np.random.uniform(0.8,1.2) wav = np.interp(np.arange(0, len(wav), ts_ratio), np.arange(0, len(wav)), wav) L = 19200 # 1 sec CL = 16000 # crop if phase == 'TRAIN' : if len(wav) > L: i = np.random.randint(0, len(wav) - L) wav = wav[i:(i+L)] elif len(wav) < L: rem_len = L - len(wav) i = np.random.randint(0, len(silence_data) - rem_len) silence_part = silence_data[i:(i+L)] j = np.random.randint(0, rem_len) silence_part_left = silence_part[0:j] silence_part_right = silence_part[j:rem_len] wav = np.concatenate([silence_part_left, wav, silence_part_right]) else: center_align_resize(wav,L) # crop if phase == 'TRAIN': i = np.random.randint(0,L-CL) wav = wav[i:(i+CL)] else: i = int((L-CL)/2) wav = wav[i:(i+CL)] # nosise add if phase == 'TRAIN': noise_add_flag = np.random.randint(2) if noise_add_flag == 1: noise_ratio = np.random.uniform(0.0,0.5) i = np.random.randint(0, len(silence_data) - CL) silence_part = silence_data[i:(i+CL)] org_max = max(wav) silence_max = max(silence_part) silence_part = silence_part * (org_max/silence_max) wav = wav*(1.0-noise_ratio) + silence_part * noise_ratio if phase == 'TRAIN': white_noise_add_flag = np.random.randint(2) if white_noise_add_flag == 1: wn_ratio = np.random.uniform(0.0,0.1) wn = np.random.randn(len(wav)) wav = wav + wn_ratio*wn #if phase == 'TRAIN': # pre_emphasis_flag = np.random.randint(2) # if pre_emphasis_flag == 1: # wav = pre_emphasis(wav) # crop if phase == 'TRAIN' and optlabel != None and optlabel != 'silence': add_audio_flag = np.random.randint(2) if add_audio_flag == 1: type = np.random.randint(3) if type == 0 : # equal label if optlabel == 'unknown': # unkown + unknown add_wav_file = train_unknown.sample().wav_file.values[0] add_wav = read_wav_file(add_wav_file) add_wav = center_align_resize(add_wav,CL) wav = wav + add_wav else: add_wav_file = used_train_df[used_train_df.label == optlabel].sample().wav_file.values[0] # used + equal used add_wav = read_wav_file(add_wav_file) add_wav = center_align_resize(add_wav,CL) wav = wav + add_wav if type ==1 : # used but un equal label -> unkown or ratio depend? pass if type ==2: # add unkown label -> equal label used + unkown ratio add_wav_file = train_unknown.sample().wav_file.values[0] add_wav = read_wav_file(add_wav_file) add_wav = center_align_resize(add_wav,CL) mix_ratio = np.random.uniform(0.1,0.4) wav = wav *(1-mix_ratio) + add_wav * mix_ratio wav = normalize_wav(wav) #return np.stack([phase, amp], axis = 2) if dim=='1D': ret_wav = np.reshape(wav,(CL,1)) return ret_wav elif dim == '2D': specgram = stft(wav, CL, nperseg = 400, noverlap = 240, nfft = 512, padded = False, boundary = None) phase = np.angle(specgram[2]) / np.pi amp = np.log1p(np.abs(specgram[2])) return np.stack([phase, amp], axis = 2) else : # combi ret_wav = np.reshape(wav,(CL,1)) specgram = stft(wav, CL, nperseg = 400, noverlap = 240, nfft = 512, padded = False, boundary = None) phase = np.angle(specgram[2]) / np.pi amp = np.log1p(np.abs(specgram[2])) return np.stack([phase, amp], axis = 2), ret_wav def train_generator(train_batch_size): while True: this_train = train_df.groupby('label_id').apply(lambda x: x.sample(n = 2000)) shuffled_ids = random.sample(range(this_train.shape[0]), this_train.shape[0]) for start in range(0, len(shuffled_ids), train_batch_size): x_batch = [] y_batch = [] end = min(start + train_batch_size, len(shuffled_ids)) i_train_batch = shuffled_ids[start:end] for i in i_train_batch: x_batch.append(process_wav_file(this_train.wav_file.values[i],phase='TRAIN', optlabel =this_train.label.values[i])) y_batch.append(this_train.label_id.values[i]) x_batch = np.array(x_batch) y_batch = to_categorical(y_batch, num_classes = len(POSSIBLE_LABELS)) yield x_batch, y_batch def valid_generator(val_batch_size): while True: ids = list(range(valid_df.shape[0])) for start in range(0, len(ids), val_batch_size): x_batch = [] y_batch = [] end = min(start + val_batch_size, len(ids)) i_val_batch = ids[start:end] for i in i_val_batch: x_batch.append(process_wav_file(valid_df.wav_file.values[i],phase='TRAIN')) y_batch.append(valid_df.label_id.values[i]) x_batch = np.array(x_batch) y_batch = to_categorical(y_batch, num_classes = len(POSSIBLE_LABELS)) yield x_batch, y_batch if K.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 x_in_1d = Input(shape = (16000,1)) x_1d = BatchNormalization(name = 'batchnormal_1d_in')(x_in_1d) for i in range(9): name = 'step'+str(i) x_1d = Conv1D(8*(2 ** i), (3),padding = 'same', name = 'conv'+name+'_1')(x_1d) x_1d = BatchNormalization(name = 'batch'+name+'_1')(x_1d) x_1d = Activation('relu')(x_1d) x_1d = Conv1D(8*(2 ** i), (3),padding = 'same', name = 'conv'+name+'_2')(x_1d) x_1d = BatchNormalization(name = 'batch'+name+'_2')(x_1d) x_1d = Activation('relu')(x_1d) x_1d = MaxPooling1D((2), padding='same')(x_1d) x_1d = Conv1D(1024, (1),name='last1024')(x_1d) x_1d_branch_1 = GlobalAveragePooling1D()(x_1d) x_1d_branch_2 = GlobalMaxPool1D()(x_1d) x_1d = concatenate([x_1d_branch_1, x_1d_branch_2]) x_1d = Dense(1024, activation = 'relu', name= 'dense1024')(x_1d) x_1d = Dropout(0.2)(x_1d) x_1d = Dense(len(POSSIBLE_LABELS), activation = 'softmax',name='cls_1d')(x_1d) fine_tune_weight = '1dcnn_last1024_noiseadd_ts_mul_balance_inputnormal_submean_abs_whitenadd_sgd_name.hdf5' #weight_name = '1dcnn_last1024_noiseadd_ts_7res_allcon_balance_inputnormal_submean_abs_whitenadd_dropall_sgd.hdf5' weight_name = 'simple_1d_mixset.hdf5' # the results from the gradient updates on the CPU #with tf.device("/cpu:0"): model = Model(inputs = x_in_1d, outputs = x_1d) # FINE TUNE #model.load_weights(root_dir + 'weights/'+ fine_tune_weight, by_name=True) #model = multi_gpu_model(model, gpus=2) #opt = SGD(lr = 0.01, momentum = 0.9, decay = 0.000001) #opt = RMSprop(lr = 0.00001) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() from keras_tqdm import TQDMCallback from tensorflow.python.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau, TensorBoard batch_size = 128 callbacks = [EarlyStopping(monitor='val_loss', patience=7, verbose=1, min_delta=0.00001, mode='min'), ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=4, verbose=1, epsilon=0.0001, mode='min'), ModelCheckpoint(monitor='val_loss', filepath=root_dir + 'weights/' + weight_name, save_best_only=True, save_weights_only=True, mode='min') , TQDMCallback(), TensorBoard(log_dir=root_dir+ weight_name.split('.')[0], histogram_freq=0, write_graph=True, write_images=True) ] history = model.fit_generator(generator=train_generator(batch_size), steps_per_epoch=int((train_df.shape[0]/batch_size)/18),#344, epochs=50, verbose=2, callbacks=callbacks, validation_data=valid_generator(batch_size), validation_steps=int(np.ceil(valid_df.shape[0]/batch_size))) model.load_weights(root_dir + 'weights/'+ weight_name) test_paths = glob(os.path.join(root_dir , 'test/audio/*wav')) def get_test_set_1d(path, tta=1): if tta ==1: x_batch = [] x_batch.append(process_wav_file(path,phase='TEST',dim='1D')) x_batch = np.array(x_batch) return x_batch def get_test_set_2d(path, tta=1): if tta ==1: x_batch = [] x_batch.append(process_wav_file(path,phase='TEST',dim='2D')) x_batch = np.array(x_batch) return x_batch def get_test_set_combi(path, tta=1): if tta ==1: x_batch = [] x_batch_1d = [] x2d, x1d = process_wav_file(path,phase='TEST',dim='combi') x_batch.append(x2d) x_batch_1d.append(x1d) x_batch = np.array(x_batch) x_batch_1d = np.array(x_batch_1d) return [x_batch, x_batch_1d] subfile = open(root_dir + weight_name +'_sub'+ '.csv', 'w') probfile = open(root_dir + weight_name +'_prob'+ '.csv', 'w') subfile.write('fname,label\n') probfile.write('fname,yes,no,up,down,left,right,on,off,stop,go,silence,unknown\n') for idx, path in enumerate(test_paths): fname = path.split('\\')[-1] probs = model.predict(get_test_set_1d(path),batch_size=1) label = id2name[np.argmax(probs)] subfile.write('{},{}\n'.format(fname,label)) probfile.write(fname+',') print (str(idx) +'/' + str(len(test_paths))) for p, prob in enumerate(probs[0]): probfile.write(str(prob)) if p == 11: probfile.write('\n') else: probfile.write(',')
[ "ttagu99@gmail.com" ]
ttagu99@gmail.com
db6fd0c315542a0507e1cf52c55d26f0f0669f12
7f01d72976f42c0165bf4cc6dee935a31a04cdb6
/src/config/settings/staging.py
dad01fd5ec1547d9f86181147e83dc8aca4edbe8
[]
no_license
aasilbek/vin-decode
3263e98e6ed8966375377050842f7f4a00acaab0
266ebcd0d4baeb2b13176d4c47f7c227babd93be
refs/heads/main
2023-07-26T03:41:47.182336
2021-09-06T06:30:40
2021-09-06T06:30:40
403,267,819
0
0
null
2021-09-05T20:39:39
2021-09-05T09:34:45
Python
UTF-8
Python
false
false
65
py
from .base import * # noqa ALLOWED_HOSTS = ["*"] DEBUG = False
[ "asilbek@novalab.uz" ]
asilbek@novalab.uz
9dfdd3b92ece26371c870d84de248f5f7116abc9
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02695/s405471285.py
c0ad507ae3a6ab6de07f9a4d9c26cf42ebb312ac
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
449
py
def resolve(): N, M, Q = list(map(int, input().split())) Q = [list(map(int, input().split())) for _ in range(Q)] import itertools maxpoint = 0 for seq in itertools.combinations_with_replacement(range(1, M+1), N): point = 0 for a, b, c, d in Q: if seq[b-1] - seq[a-1] == c: point += d maxpoint = max(maxpoint, point) print(maxpoint) if '__main__' == __name__: resolve()
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
62489cf6bd1db233798d3235efa6a361b6c9fcfc
a02f2373e00f2d02ae3c3103467f8b0f950296e9
/MapReduce/mapper.py
1c5edab7b706d307e869bc4e4ebe986e083a9313
[]
no_license
hayltonbernardes22/Data_analysis_study
3621dc6f92c7ebcd447f5f0392d81aa5e92fbb72
aec88f4f580dcf620736b643a93ab0d9ce32ad39
refs/heads/master
2023-08-27T19:08:50.073282
2021-11-05T20:07:53
2021-11-05T20:07:53
299,105,977
5
2
null
null
null
null
UTF-8
Python
false
false
530
py
"""mapper.py""" import sys # input comes from STDIN (standard input) for line in sys.stdin: # remove leading and trailing whitespace line = line.strip() # split the line into words words = line.split() # increase counters for word in words: # write the results to STDOUT (standard output); # what we output here will be the input for the # Reduce step, i.e. the input for reducer.py # # tab-delimited; the trivial word count is 1 print '%s\t%s' % (word, 1)
[ "noreply@github.com" ]
hayltonbernardes22.noreply@github.com
633e7c045409b3b10cab965303d655ecbd4338e7
f47cd722e457c5ace3ae11717c6535b06e91a2b8
/Chaper02/U02_Ex09_ConvertFtoC.py
fffaab6b5306c5d5d545ddd35a75c837aee589d2
[]
no_license
sebastians22/COOP2018
659cd1113cd5e2062866c1833768811dbd413c3b
c8ce2a0c24b8065e2ac4a07148b8dadca7d5d173
refs/heads/master
2020-03-28T06:36:50.829082
2019-03-01T05:27:16
2019-03-01T05:27:16
147,847,342
1
0
null
null
null
null
UTF-8
Python
false
false
1,060
py
# U02_Ex09_ConvertFtoC.py # # Author: Sebastian Schaefer # Course: Coding for OOP # Section: A2 # Date: 04 Sep 2018 # IDE: PyCharm # # Assignment Info # Exercise: 08 # Source: Python Programming # Chapter: 02 # # Program Description # # This program converts F to C # # # # Algorithm (pseudocode) # Print program introduction # Get C from user and assign to fahrenheitption # Calculate formula # Print F # def main(): print("Click on the bottom box, and input a fahrenheit degrees. After you input a number press enter, and the celsius degress will appear") # Print program introduction print("This program converts temperature from fahrenheit to celsius") # Get °C from user and assign to fahrenheit fahrenheit = eval(input("Enter °F to convert: ")) celsius = (fahrenheit - 32) * 5/9 # Calculate °F using 9/5 * °C + 32 and assign to fahrenheit main() # Print °F print(fahrenheit, "°F is equivalent to ", celsius, "°C") print("re run the program do use it again") main()
[ "sebastian.s22@student.parishepiscopal.org" ]
sebastian.s22@student.parishepiscopal.org
2c8d42fdfbbb3bb1764d33bc816b9153cb402755
a2d38faaadf89873271fc43c9f44e4e4299a9844
/BE/app/audio_prediction_app.py
cc07f09baffa0a02a7ab996823031a72dbba8892
[]
no_license
fsoft-ailab/aicovidvn-web
6bc85c378ed984edfb928a33ad23aa4e229cec13
f626eb168ef61cf1bfdf986b5c16937015b555ef
refs/heads/main
2023-06-25T09:35:48.155538
2021-07-31T10:07:02
2021-07-31T10:07:02
387,201,530
1
1
null
null
null
null
UTF-8
Python
false
false
12,622
py
import json import time import base64 from flask import Blueprint, request, jsonify from common import url_constant, param_constant, constant from werkzeug.exceptions import BadRequest, InternalServerError from utils import log_service, utils, postgres_util, s3_util from services.audio_collection_services import AudioCollectionServices from services.audio_prediction_services import AudioPredCNNService from services.audio_checking_services import AudioCheckServices from instance import environment from multiprocessing import Queue mod = Blueprint('audio_prediction_app', __name__) # Store flag q = Queue() @mod.route(url_constant.CHECK_EMAIL, methods=['POST', 'GET']) def check_email(): try: is_base64_email = False data = request.get_data() my_json = data.decode('utf8') json_data = json.loads(my_json) email = json_data["email"] if '@' not in email: is_base64_email = True if not is_base64_email: email = email.lower() db = postgres_util.PostgresDB() query = "SELECT * FROM collections WHERE email= %s" cursor = db.execute_query_with_data(query, data=(email,)) data = cursor.fetchone() if data is None: response = { 'email': email, 'status_check': 'not exist', 'health_status': 'None' } else: response = { 'email': email, 'status_check': 'exist', 'health_status': data[7], 'created_time': data[8].timestamp() * 1000, 'updated_time': data[9].timestamp() * 1000 } return jsonify(response) except: return jsonify({ 'check status': { 'status_code': 500, 'message': 'Server internal error' }}) @mod.route(url_constant.AUDIO_PREDICTION_VGG16_V1, methods=['POST']) def audio_prediction_vgg16_v1(): submit_token = request.args.get(param_constant.PARAM_SUBMIT_ID) submit_time = request.args.get(param_constant.PARAM_SUBMIT_TIME) cough_sound = request.files.get(param_constant.PARAM_COUGH_SOUND) mouth_sound = request.files.get(param_constant.PARAM_MOUTH_SOUND) nose_sound = request.files.get(param_constant.PARAM_NOSE_SOUND) email = request.form.get(param_constant.PARAM_EMAIL) info = request.form.get(param_constant.PARAM_INFO) if cough_sound is None and mouth_sound is None and nose_sound is None: raise BadRequest() # Collect data collect_ser = AudioCollectionServices() submit_id = collect_ser.collect(info, cough_sound, mouth_sound, nose_sound) base_dir = "{}/{}".format(constant.TMP_DIR, submit_id) base_token_dir = "{}/{}".format(constant.RESULT_DIR, submit_token) try: # Create directory if not exist utils.create_directory(base_dir) audio_service = AudioPredCNNService(max_period=10, submit_id=submit_id, submit_time=submit_time) s3_cough_dir = None s3_mouth_dir = None s3_nose_dir = None cough_predict_result = '' mouth_predict_result = '' nose_predict_result = '' if cough_sound is not None: cough_sound_dir = "{}/{}_original.wav".format(base_dir, "cough") cough_save_dir = f"{base_token_dir}/{constant.COUGH}_original.wav" cough_predict_result = audio_service.predict(cough_sound_dir, type="cough") s3_util.upload_file(cough_sound_dir, cough_save_dir) s3_cough_dir = s3_util.generate_url(cough_save_dir) if mouth_sound is not None: mouth_sound_dir = "{}/{}_original.wav".format(base_dir, "mouth") mouth_save_dir = f"{base_token_dir}/{constant.MOUTH}_original.wav" mouth_predict_result = audio_service.predict(mouth_sound_dir, type="mouth") s3_util.upload_file(mouth_sound_dir, mouth_save_dir) s3_mouth_dir = s3_util.generate_url(mouth_save_dir) if nose_sound is not None: nose_sound_dir = "{}/{}_original.wav".format(base_dir, "nose") nose_save_dir = f"{base_token_dir}/{constant.NOSE}_original.wav" nose_predict_result = audio_service.predict(nose_sound_dir, type="nose") s3_util.upload_file(nose_sound_dir, nose_save_dir) s3_nose_dir = s3_util.generate_url(nose_save_dir) result = json.dumps({'cough_result': cough_predict_result, 'mouth_result': mouth_predict_result, 'nose_result': nose_predict_result}) db = postgres_util.PostgresDB() query = "INSERT INTO results(id,cough,breathe_nose,breathe_mouth,results,email,info) VALUES (%s,%s,%s,%s,%s,%s,%s)" db.execute_query_with_data(query, data=( submit_token, s3_cough_dir, s3_nose_dir, s3_mouth_dir, str(result), email, info)) db.close_connection() utils.remove_folder(base_dir) return result except: utils.remove_folder(base_dir) return jsonify({ 'check status': { 'status_code': 500, 'message': 'Server internal error' }}) @mod.route(url_constant.AUDIO_VISUALIZATION_VGG16_V1, methods=['GET']) def audio_visualization_vgg16_v1(): try: # Handle multi request if q.qsize() > 10: return json.dumps({'server_busy': True}) q.put(constant.LOCK) submit_id = request.args.get(param_constant.PARAM_SUBMIT_ID) submit_time = request.args.get(param_constant.PARAM_SUBMIT_TIME) base_dir = "{}/{}".format(constant.TMP_DIR, submit_id) # Create directory if not exist utils.create_directory(base_dir) cough_sound_dir = "{}/{}_original.wav".format(base_dir, "cough") cough_save_dir = cough_sound_dir.replace(constant.TMP_DIR, constant.RESULT_DIR) mouth_sound_dir = "{}/{}_original.wav".format(base_dir, "mouth") mouth_save_dir = mouth_sound_dir.replace(constant.TMP_DIR, constant.RESULT_DIR) nose_sound_dir = "{}/{}_original.wav".format(base_dir, "nose") nose_save_dir = nose_sound_dir.replace(constant.TMP_DIR, constant.RESULT_DIR) if submit_id is None: raise BadRequest() is_cough_existed = s3_util.download_file(cough_save_dir, cough_sound_dir) is_mouth_existed = s3_util.download_file(mouth_save_dir, mouth_sound_dir) is_nose_existed = s3_util.download_file(nose_save_dir, nose_sound_dir) audio_service = AudioPredCNNService(max_period=10, submit_id=submit_id, submit_time=submit_time) feature_cough_url = None feature_nose_url = None feature_mouth_url = None if is_cough_existed: feature_cough_image_dir = audio_service.visualize(cough_sound_dir, dest="{}/{}.jpg".format(base_dir, "cough")) s3_util.upload_file(feature_cough_image_dir, feature_cough_image_dir, extra_args=constant.S3_IMAGE_EXTRA_PARAM) feature_cough_url = s3_util.generate_url(feature_cough_image_dir) if is_mouth_existed: feature_mouth_image_dir = audio_service.visualize(mouth_sound_dir, dest="{}/{}.jpg".format(base_dir, "mouth")) s3_util.upload_file(feature_mouth_image_dir, feature_mouth_image_dir, extra_args=constant.S3_IMAGE_EXTRA_PARAM) feature_mouth_url = s3_util.generate_url(feature_mouth_image_dir) if is_nose_existed: feature_nose_image_dir = audio_service.visualize(nose_sound_dir, dest="{}/{}.jpg".format(base_dir, "nose")) s3_util.upload_file(feature_nose_image_dir, feature_nose_image_dir, extra_args=constant.S3_IMAGE_EXTRA_PARAM) feature_nose_url = s3_util.generate_url(feature_nose_image_dir) db = postgres_util.PostgresDB() query = "UPDATE results SET cough_img= %s, breathe_nose_img= %s, breathe_mouth_img= %s WHERE id = %s" db.execute_query_with_data(query, data=(feature_cough_url, feature_nose_url, feature_mouth_url, submit_id)) db.close_connection() utils.remove_folder(base_dir) q.get() feature_cough_url_presined = s3_util.get_presigned_url_from_original_url(feature_cough_url) feature_mouth_url_presined = s3_util.get_presigned_url_from_original_url(feature_mouth_url) feature_nose_url_presined = s3_util.get_presigned_url_from_original_url(feature_nose_url) return json.dumps({'cough_feature_url': feature_cough_url_presined, 'mouth_feature_url': feature_mouth_url_presined, 'nose_feature_url': feature_nose_url_presined}) except Exception as e: utils.remove_folder(base_dir) q.get() return jsonify({ 'check status': { 'status_code': 500, 'message': 'Server internal error' }}) @mod.route(url_constant.AUDIO_GET_RESULT, methods=['GET']) def get_results(): submit_id = request.args.get(param_constant.PARAM_SUBMIT_ID) if submit_id is None: raise BadRequest() db = postgres_util.PostgresDB() query = "SELECT id, breathe_nose, breathe_mouth, cough, results, cough_img, breathe_nose_img, breathe_mouth_img " \ "FROM results " \ "WHERE id= %s" cursor = db.execute_query(query, (submit_id,)) data = cursor.fetchone() db.close_connection() if data is None: raise BadRequest() result = {} result["id"] = data[0] result["nose"] = s3_util.get_presigned_url_from_original_url(data[1]) result["mouth"] = s3_util.get_presigned_url_from_original_url(data[2]) result["cough"] = s3_util.get_presigned_url_from_original_url(data[3]) result["results"] = json.loads(data[4]) if data[5] is not None: result['cough_feature_url'] = s3_util.get_presigned_url_from_original_url(data[5]) if data[6] is not None: result['nose_feature_url'] = s3_util.get_presigned_url_from_original_url(data[6]) if data[7] is not None: result['mouth_feature_url'] = s3_util.get_presigned_url_from_original_url(data[7]) return json.dumps(result) @mod.route(url_constant.ADD_FEEDBACK, methods=['GET']) def get_feedback(): submit_id = request.args.get(param_constant.PARAM_SUSBMIT_ID) if submit_id is None: raise BadRequest() db = postgres_util.PostgresDB() query = "SELECT id, type FROM feedbacks WHERE id= %s" cursor = db.execute_query(query, data=(submit_id)) data = cursor.fetchone() db.close_connection() return "" @mod.route(url_constant.ADD_FEEDBACK, methods=['POST']) def add_feedback(): submit_id = request.form.get(param_constant.PARAM_SUBMIT_ID) type = request.form.get(param_constant.PARAM_TYPE) if submit_id is None or type is None: raise BadRequest() db = postgres_util.PostgresDB() query = "SELECT id, type FROM feedbacks WHERE id= %s" cursor = db.execute_query_with_data(query, data=(submit_id,)) data = cursor.fetchone() if data is None or data[0] is None: query = "INSERT INTO feedbacks(id, type) VALUES (%s,%s)" db.execute_query_with_data(query, data=(submit_id, type,)) else: query = "UPDATE feedbacks SET type= %s WHERE id = %s" db.execute_query_with_data(query, data=(type, submit_id,)) db.close_connection() return "" @mod.route(url_constant.CHECK_AUDIO, methods=['POST']) def check_audio(): audio = request.files.get(param_constant.PARAM_AUDIO) millis = int(round(time.time() * 1000)) base_dir = "{}/{}".format(constant.TMP_DIR, f'sound-checking-{millis}') if audio is None: raise BadRequest() try: # Create directory if not exist utils.create_directory(base_dir) sound_dir = "{}/{}_original.wav".format(base_dir, "audio") audio.save(sound_dir) check_services = AudioCheckServices(max_noise_period_weight=environment.NOISE_DURATION_WEIGHT_FILTER, max_period=environment.LENGTH_FILTER) result = check_services.check(sound_dir, fix_length=False) utils.remove_folder(base_dir) return result except Exception as e: utils.remove_folder(base_dir) raise InternalServerError(description=str(e)) @mod.route(url_constant.HEALTH_CHECK, methods=['GET']) def health_check(): log_service.info("health_check() Start") return "ok"
[ "noreply@github.com" ]
fsoft-ailab.noreply@github.com
becedd2878f6e3858bad94afb54decbd5501c9df
4360f645e23c0d4077769b2085a197751b509804
/Python/Card_Deck_Player_old.py
cd21aa9067cbcd0a34b20cf2a784f2f6e87194a0
[]
no_license
TeresaRem/CodingDojo
4d003916f0040d9b6bcb1c52759611536f2974e5
6be2f6ddb32a6c877cb6ce2a629b1a46708bb6a6
refs/heads/master
2021-06-12T00:05:18.062462
2017-02-06T23:56:58
2017-02-06T23:56:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,549
py
import random class Card(object): def __init__(self, suit, number): self.suit=suit self.number=number self.visib=False def flip(self): if self.visib==True: self.visib=False else: self.visib=True return self def displayCard(self): print self.suit, str(self.number) return "" class Deck(object): def __init__(self): self.cards = [] self.build() def build(self): suits = ['s','h','d','c'] types = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] for card_suit in suits: for card_value in types: self.cards.append(Card(card_suit, card_value)) # print card_suit, card_value return self def shuffle(self): random.shuffle(self.cards) return self def deal(self, player): player.hand.append(self.cards[-1]) print type(player.hand) for i in player.hand[i]: # print player.hand self.cards.pop() return self class Player(object): def __init__(self,name): self.name = name self.hand = [] def draw(self,deck): self.hand = deck.deal(self) return self def discard(self): self.hand.pop() print type(self.hand) return self Deck1 = Deck() Deck1.shuffle() #Deck.shuffle() ricky = Player('ricky') Deck1.deal(ricky).deal(ricky) # ricky.draw(Deck1)
[ "wapniarski@gmail.com" ]
wapniarski@gmail.com
46f00f42a71b5e55e83bda0564202507b68eb03d
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/response/AlipayBossFncGfaccenterConsolidationAcceptResponse.py
dc10dbd7e88c59b7deaaec1c29288feca42e302d
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
1,442
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayBossFncGfaccenterConsolidationAcceptResponse(AlipayResponse): def __init__(self): super(AlipayBossFncGfaccenterConsolidationAcceptResponse, self).__init__() self._consolidation_success = None self._need_retry = None self._result_msg = None @property def consolidation_success(self): return self._consolidation_success @consolidation_success.setter def consolidation_success(self, value): self._consolidation_success = value @property def need_retry(self): return self._need_retry @need_retry.setter def need_retry(self, value): self._need_retry = value @property def result_msg(self): return self._result_msg @result_msg.setter def result_msg(self, value): self._result_msg = value def parse_response_content(self, response_content): response = super(AlipayBossFncGfaccenterConsolidationAcceptResponse, self).parse_response_content(response_content) if 'consolidation_success' in response: self.consolidation_success = response['consolidation_success'] if 'need_retry' in response: self.need_retry = response['need_retry'] if 'result_msg' in response: self.result_msg = response['result_msg']
[ "jishupei.jsp@alibaba-inc.com" ]
jishupei.jsp@alibaba-inc.com
5d835d442c8cea1929273cb83ab37aed722fd719
a8b37bd399dd0bad27d3abd386ace85a6b70ef28
/airbyte-cdk/python/airbyte_cdk/sources/file_based/discovery_policy/default_discovery_policy.py
56bd19d01f16e48e289dd511f1b8cb00beda50fd
[ "LicenseRef-scancode-free-unknown", "MIT", "Elastic-2.0" ]
permissive
thomas-vl/airbyte
5da2ba9d189ba0b202feb952cadfb550c5050871
258a8eb683634a9f9b7821c9a92d1b70c5389a10
refs/heads/master
2023-09-01T17:49:23.761569
2023-08-25T13:13:11
2023-08-25T13:13:11
327,604,451
1
0
MIT
2021-01-07T12:24:20
2021-01-07T12:24:19
null
UTF-8
Python
false
false
701
py
# # Copyright (c) 2023 Airbyte, Inc., all rights reserved. # from airbyte_cdk.sources.file_based.discovery_policy.abstract_discovery_policy import AbstractDiscoveryPolicy DEFAULT_N_CONCURRENT_REQUESTS = 10 DEFAULT_MAX_N_FILES_FOR_STREAM_SCHEMA_INFERENCE = 10 class DefaultDiscoveryPolicy(AbstractDiscoveryPolicy): """ Default number of concurrent requests to send to the source on discover, and number of files to use for schema inference. """ @property def n_concurrent_requests(self) -> int: return DEFAULT_N_CONCURRENT_REQUESTS @property def max_n_files_for_schema_inference(self) -> int: return DEFAULT_MAX_N_FILES_FOR_STREAM_SCHEMA_INFERENCE
[ "noreply@github.com" ]
thomas-vl.noreply@github.com
b30e7d624446c7260f0f799485ef0ad8f553a8ee
e8c3e7964f4b448e94481704d29508e9d6bd1798
/CommonTools/test/buildWZworkspace_forZZ_1sigma_allErrOK_withEWKSyst_signalShapeFix_f5z_ifLessThen0SetTo0_2604Files_SMaTGCfit_QCDscaleFix.py
64f483f5c7da078f04405ce67dfa038144d252d5
[]
no_license
senka/ZZ_2l2nu_4l_CMS_combination
1401f81dc255ea0ae4a0a5c73b022670849a1152
197655fa2143ffe1665cd7a1c6e5af2a2f48e57a
refs/heads/master
2021-01-13T02:06:27.885996
2014-08-09T16:15:14
2014-08-09T16:15:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
31,308
py
import pyroot_logon import limits import os import sys from array import * from ROOT import * from optparse import OptionParser from ConfigParser import SafeConfigParser def isItCorrelated(name): print '\t ----> isItCorrelated: testing ',name if ('_eff_b' in name or '_les' in name or '_pu' in name or '_umet' in name or '_res_j' in name or '_scale_j' in name or '_ewk' in name or '_QCD_ACC_JVeto' in name ): print '-> true' return True else: print '-> false' return False parser = OptionParser(description="%prog : A RooStats Implementation of Anomalous Triple Gauge Coupling Analysis.", usage="buildWZworkspace --config=example_config.cfg") cfgparse = SafeConfigParser() parser.add_option("--config",dest="config",help="The name of the input configuration file.") (options,args) = parser.parse_args() miss_options = False if options.config is None: print 'Need to specify --config' miss_options=True if miss_options: exit(1) cfgparse.read(options.config) options.config = cfgparse # put the parsed config file into our options cfg = options.config #lType = sys.argv[1] #codename = "" #planeID = sys.argv[2] norm_sig_sm = -1 norm_sig_sm_up = -1 norm_sig_sm_down = -1 norm_bkg = -1 norm_obs = -1 fit_sections = cfg.sections() fit_sections.remove('Global') #don't need to iterate over the global configuration basepath = '%s/src/CombinedEWKAnalysis/CommonTools/data/WV_semileptonic'%os.environ['CMSSW_BASE'] for section in fit_sections: codename = section lType = codename print '\n\tlType=',lType f = TFile('%s/%s_boosted.root'%(basepath,codename)) Nbkg = cfg.get(codename,'Nbkg') print "Nbkg= ",Nbkg Nbkg_int=int(Nbkg) bkg_name = [] for i in range(1,Nbkg_int+1): bkg_name.append(cfg.get(codename,'bkg%i_name'%i)) background = [] for i in range(0,Nbkg_int): background.append(f.Get(bkg_name[i])) print 'backgrounds= ',background background_shapeSyst = [] for i in range(0,Nbkg_int): background_shapeSyst.append([]) for name in cfg.get(codename,'bkg%i_shape_syst'%(i+1)).split(','): background_shapeSyst[i].append(name) background_backshapeUp = [] background_backshapeDown = [] for j in range(0,Nbkg_int): background_backshapeUp.append([]) background_backshapeDown.append([]) for i in range(0,len(background_shapeSyst[j])): print ' bkg shape syst: ',background_shapeSyst[j] print ' getting bkgUp ','%sUp'%background_shapeSyst[j][i] background_backshapeUp[j].append(f.Get('%sUp'%background_shapeSyst[j][i])) background_backshapeDown[j].append(f.Get('%sDown'%background_shapeSyst[j][i])) data_obs = f.Get('data_obs') # diboson = f.Get('diboson') diboson = f.Get('zz2l2nu') doSignalShape_unc=False cfg_items=cfg.items(codename) for cfg_item in cfg_items: if 'signal_shape_syst' in cfg_item: doSignalShape_unc = True print 'doSignalShape_unc=',doSignalShape_unc if (doSignalShape_unc): diboson_up = {} diboson_down = {} norm_sig_sm_up = {} norm_sig_sm_down = {} signal_shapeSyst = [string(i) for i in cfg.get(codename,'signal_shape_syst').split(',')] for i in range(0,len(signal_shapeSyst)): print ' signal shape syst: ',signal_shapeSyst[i] diboson_up[i] = f.Get('%sUp'%signal_shapeSyst[i]) diboson_down[i] = f.Get('%sDown'%signal_shapeSyst[i]) norm_sig_sm_up[i] = diboson_up[i].Integral() norm_sig_sm_down[i] = diboson_down[i].Integral() norm_sig_sm = diboson.Integral() norm_bkg = [] for i in range(0,Nbkg_int): norm_bkg.append(background[i].Integral()) norm_obs = data_obs.Integral() print 'bkg integral: ',norm_bkg if (doSignalShape_unc): print 'signal shape unc: ',norm_sig_sm_down,' ',norm_sig_sm,' ',norm_sig_sm_up theWS = RooWorkspace('WV_%sboosted'%codename, 'WV_%sboosted'%codename) wpt = theWS.factory('W_pt_%s[%f,%f]' % (codename,data_obs.GetBinLowEdge(1), data_obs.GetBinLowEdge(data_obs.GetNbinsX())+data_obs.GetBinWidth(data_obs.GetNbinsX()))) binning=array('d',[]) for i in range(1, data_obs.GetNbinsX()+1): binning.append(data_obs.GetBinLowEdge(i)) binning.append(data_obs.GetBinLowEdge(data_obs.GetNbinsX()+1)) print "bining: " for i in range(0, len(binning)): print binning[i] bins=RooBinning(len(binning)-1, binning) wpt.setBinning(bins) lz = theWS.factory('lZ[0., -0.006, 0.006]') lz.setConstant(False) dkg = theWS.factory('dkg[0.,-0.006, 0.006]') dg1 = theWS.factory('dg1[0.,-0.006,0.006]') vars = RooArgList(wpt) varSet = RooArgSet(wpt) data = RooDataHist('data_obs', 'data_obs_WV_%s'%codename, vars, data_obs) bkgHist = {} for i in range(0,Nbkg_int): bkgHist[i] = RooDataHist('WV_semileptonic_bkg%i_%s'%(i+1,codename), 'WV_semileptonic_bkg%i_%s'%(i+1,codename), vars, background[i]) bkgHist_systUp = [] bkgHist_systDown = [] for j in range(0,Nbkg_int): bkgHist_systUp.append([]) bkgHist_systDown.append([]) for i in range(0,len(background_shapeSyst[j])): print j," ",i #change name here: print '\n\t\t==========> testing in function= ', isItCorrelated('testing') print '\t\t==========> wz3lnu_CMS_eff_b in function= ', isItCorrelated('wz3lnu_CMS_eff_b') print '\t\t==========> %s in function= '%background_shapeSyst[j][i], isItCorrelated(background_shapeSyst[j][i]) print '\n' if (isItCorrelated(background_shapeSyst[j][i])): print ' \n\t\t ==================================> <=========================== ' name_forCorr=background_shapeSyst[j][i] print ' name_forCorr= ',name_forCorr name_forCorr=name_forCorr.replace('zll_','') name_forCorr=name_forCorr.replace('wz3lnu_','') print ' -> name_forCorr= ',name_forCorr bkgHist_systUp[j].append(RooDataHist('WV_semileptonic_bkg%i_%s_%sUp'%(j+1,codename,name_forCorr), 'WV_semileptonic_bkg%i_%s_%sUp'%(j+1,codename,name_forCorr), vars, background_backshapeUp[j][i])) bkgHist_systDown[j].append(RooDataHist('WV_semileptonic_bkg%i_%s_%sDown'%(j+1,codename,name_forCorr), 'WV_semileptonic_bkg%i_%s_%sDown'%(j+1,codename,name_forCorr), vars, background_backshapeDown[j][i])) else: bkgHist_systUp[j].append(RooDataHist('WV_semileptonic_bkg%i_%s_%sUp'%(j+1,codename,background_shapeSyst[j][i]), 'WV_semileptonic_bkg%i_%s_%sUp'%(j+1,codename,background_shapeSyst[j][i]), vars, background_backshapeUp[j][i])) bkgHist_systDown[j].append(RooDataHist('WV_semileptonic_bkg%i_%s_%sDown'%(j+1,codename,background_shapeSyst[j][i]), 'WV_semileptonic_bkg%i_%s_%sDown'%(j+1,codename,background_shapeSyst[j][i]), vars, background_backshapeDown[j][i])) # bkgHist_systUp[j].append(RooDataHist('WV_semileptonic_bkg%i_%s_%sUp'%(j+1,codename,background_shapeSyst[j][i]), # 'WV_semileptonic_bkg%i_%s_%sUp'%(j+1,codename,background_shapeSyst[j][i]), # vars, # background_backshapeUp[j][i])) # bkgHist_systDown[j].append(RooDataHist('WV_semileptonic_bkg%i_%s_%sDown'%(j+1,codename,background_shapeSyst[j][i]), # 'WV_semileptonic_bkg%i_%s_%sDown'%(j+1,codename,background_shapeSyst[j][i]), # vars, # background_backshapeDown[j][i])) dibosonHist = RooDataHist('WV_semileptonic_SM_%s_rawshape'%codename, 'WV_semileptonic_SM_%s_rawshape'%codename, vars, diboson) if (doSignalShape_unc): dibosonHist_up = {} dibosonHist_down = {} for i in range(0,len(signal_shapeSyst)): print ' \n\t\t ==================================> SIGNAL %s <=========================== '%signal_shapeSyst[i],isItCorrelated(str(signal_shapeSyst[i])) print ' \n\t\t ==================================> SIGNAL zz2l2nu_CMS_scale_j <=========================== ',isItCorrelated('zz2l2nu_CMS_scale_j') #change name here # dibosonHist_up[i] = RooDataHist('WV_semileptonic_SM_%s_rawshape_%sUp'%(codename,signal_shapeSyst[i]), # 'WV_semileptonic_SM_%s_rawshape_%sUp'%(codename,signal_shapeSyst[i]), # vars, # diboson_up[i]) # dibosonHist_down[i] = RooDataHist('WV_semileptonic_SM_%s_rawshape_%sDown'%(codename,signal_shapeSyst[i]), # 'WV_semileptonic_SM_%s_rawshape_%sDown'%(codename,signal_shapeSyst[i]), # vars, # diboson_down[i]) if (isItCorrelated(str(signal_shapeSyst[i]))): print ' \n\t\t ==================================> <=========================== ' name_forCorr=str(signal_shapeSyst[i]) print ' name_forCorr= ',name_forCorr name_forCorr=name_forCorr.replace('zz2l2nu_','') print ' -> name_forCorr= ',name_forCorr dibosonHist_up[i] = RooDataHist('WV_semileptonic_SM_%s_rawshape_%sUp'%(codename,name_forCorr), 'WV_semileptonic_SM_%s_rawshape_%sUp'%(codename,name_forCorr), vars, diboson_up[i]) dibosonHist_down[i] = RooDataHist('WV_semileptonic_SM_%s_rawshape_%sDown'%(codename,name_forCorr), 'WV_semileptonic_SM_%s_rawshape_%sDown'%(codename,name_forCorr), vars, diboson_down[i]) else: dibosonHist_up[i] = RooDataHist('WV_semileptonic_SM_%s_rawshape_%sUp'%(codename,signal_shapeSyst[i]), 'WV_semileptonic_SM_%s_rawshape_%sUp'%(codename,signal_shapeSyst[i]), vars, diboson_up[i]) dibosonHist_down[i] = RooDataHist('WV_semileptonic_SM_%s_rawshape_%sDown'%(codename,signal_shapeSyst[i]), 'WV_semileptonic_SM_%s_rawshape_%sDown'%(codename,signal_shapeSyst[i]), vars, diboson_down[i]) dibosonPdf = RooHistFunc('WV_semileptonic_SM_%s_shape'%codename, 'WV_semileptonic_SM_%s_shape'%codename, varSet, dibosonHist) if (doSignalShape_unc): dibosonPdf_up = {} dibosonPdf_down = {} for i in range(0,len(signal_shapeSyst)): # change name here if (isItCorrelated(str(signal_shapeSyst[i]))): name_forCorr=str(signal_shapeSyst[i]) name_forCorr=name_forCorr.replace('zz2l2nu_','') dibosonPdf_up[i] = RooHistFunc('WV_semileptonic_SM_%s_shape_%sUp'%(codename,name_forCorr), 'WV_semileptonic_SM_%s_shape_%sUp'%(codename,name_forCorr), varSet, dibosonHist_up[i]) dibosonPdf_down[i] = RooHistFunc('WV_semileptonic_SM_%s_shape_%sDown'%(codename,name_forCorr), 'WV_semileptonic_SM_%s_shape_%sDown'%(codename,name_forCorr), varSet, dibosonHist_down[i]) else: dibosonPdf_up[i] = RooHistFunc('WV_semileptonic_SM_%s_shape_%sUp'%(codename,signal_shapeSyst[i]), 'WV_semileptonic_SM_%s_shape_%sUp'%(codename,signal_shapeSyst[i]), varSet, dibosonHist_up[i]) dibosonPdf_down[i] = RooHistFunc('WV_semileptonic_SM_%s_shape_%sDown'%(codename,signal_shapeSyst[i]), 'WV_semileptonic_SM_%s_shape_%sDown'%(codename,signal_shapeSyst[i]), varSet, dibosonHist_down[i]) # print '\n@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ reading RooATGCFunction\n' # aTGC = RooATGCFunction_wz('ATGC_shapescale_WWgammaZ_WV_atgc_semileptonic_%s'%codename, # 'ATGC_shapescale_%s'%codename, # wpt, # lz, # dkg, # dg1, # '%s/signal_WV_%s.root'%(basepath,codename)) print '\n@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ read RooATGCFunction\n' limtype = -1 planeID = 'dkglZ' print 'setting up for %s plane!'%planeID if ( planeID == 'dkglZ' ): limtype = 0 elif ( planeID == 'dg1lZ' ): limtype = 1 elif ( planeID == 'dkgdg1'): limtype = 2 else: raise RuntimeError('InvalidCouplingChoice', 'We can only use [dkg,lZ], [dg1,lZ], and [dkg,dg1]'\ ' as POIs right now!') print limtype print '\n@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ reading RooATGCSemi\n' if (doSignalShape_unc): kappaLow = {} kappaHigh = {} aTGCPdf_norm = {} theta = {} kappaLow_sum_d = 1. kappaHigh_sum_d = 1. for i in range(0,len(signal_shapeSyst)): kappaLow[i] = RooRealVar("kappaL_%s_%s"%(i+1,codename),"kappaL_%s_%s"%(i+1,codename),norm_sig_sm_down[i]/norm_sig_sm) kappaLow[i].setConstant(True) kappaHigh[i] = RooRealVar("kappaH_%s_%s"%(i+1,codename),"kappaH_%s_%s"%(i+1,codename),norm_sig_sm_up[i]/norm_sig_sm) kappaHigh[i].setConstant(True) kappaLow_sum_d = kappaLow_sum_d*norm_sig_sm_down[i]/norm_sig_sm kappaHigh_sum_d = kappaHigh_sum_d*norm_sig_sm_up[i]/norm_sig_sm # theWS.factory("%s[-7,7]"%signal_shapeSyst[i]) # theta[i] = theWS.var("%s"%signal_shapeSyst[i]) if (isItCorrelated(str(signal_shapeSyst[i]))): name_forCorr=str(signal_shapeSyst[i]) name_forCorr=name_forCorr.replace('zz2l2nu_','') theWS.factory("%s[-7,7]"%name_forCorr) theta[i] = theWS.var("%s"%name_forCorr) else: theWS.factory("%s[-7,7]"%signal_shapeSyst[i]) theta[i] = theWS.var("%s"%signal_shapeSyst[i]) aTGCPdf_norm[i] = AsymPow('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s_integral%s'%(codename,i+1), 'ATGCPdf_WV_%s_integral%s'%(codename,i+1), kappaLow[i], kappaHigh[i], theta[i]) if (len(signal_shapeSyst)==1): aTGCPdf_norm_sum = aTGCPdf_norm[0] else: for i in range(0,len(signal_shapeSyst)): if (i==0): prodset=RooArgList(aTGCPdf_norm[i]) else: prodset.add(RooArgList(aTGCPdf_norm[i])) aTGCPdf_norm_sum = RooProduct("aTGCPdf_norm_sum","aTGCPdf_norm_sum",prodset) kappaLow_sum = RooRealVar("kappaLow_sum","kappaLow_sum",kappaLow_sum_d) kappaHigh_sum = RooRealVar("kappaHigh_sum","kappaHigh_sum",kappaHigh_sum_d) aTGCPdf_norm_sum.SetNameTitle('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s_norm'%codename, 'ATGCPdf_WV_%s_norm'%codename) aTGCPdf = RooATGCSemiAnalyticPdf_wz('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s'%codename, 'ATGCPdf_WV_%s'%codename, wpt, dkg, lz, dg1, dibosonPdf, '%s/signal_WV_%s_f5z_ifLessThen0SetTo0_2604Files_SMaTGCfit.root'%(basepath,codename), limtype ) if (doSignalShape_unc): aTGCPdf_up = {} aTGCPdf_down = {} for i in range(0,len(signal_shapeSyst)): # change name here if (isItCorrelated(str(signal_shapeSyst[i]))): name_forCorr=str(signal_shapeSyst[i]) name_forCorr=name_forCorr.replace('zz2l2nu_','') aTGCPdf_up[i] = RooATGCSemiAnalyticPdf_wz('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s_%sUp'%(codename,name_forCorr), 'ATGCPdf_WV_%s'%codename, wpt, dkg, lz, dg1, dibosonPdf_up[i], '%s/signal_WV_%s_f5z_ifLessThen0SetTo0_2604Files_SMaTGCfit.root'%(basepath,codename), limtype ) aTGCPdf_down[i] = RooATGCSemiAnalyticPdf_wz('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s_%sDown'%(codename,name_forCorr), 'ATGCPdf_WV_%s'%codename, wpt, dkg, lz, dg1, dibosonPdf_down[i], '%s/signal_WV_%s_f5z_ifLessThen0SetTo0_2604Files_SMaTGCfit.root'%(basepath,codename), limtype ) else: aTGCPdf_up[i] = RooATGCSemiAnalyticPdf_wz('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s_%sUp'%(codename,signal_shapeSyst[i]), 'ATGCPdf_WV_%s'%codename, wpt, dkg, lz, dg1, dibosonPdf_up[i], '%s/signal_WV_%s_f5z_ifLessThen0SetTo0_2604Files_SMaTGCfit.root'%(basepath,codename), limtype ) aTGCPdf_down[i] = RooATGCSemiAnalyticPdf_wz('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s_%sDown'%(codename,signal_shapeSyst[i]), 'ATGCPdf_WV_%s'%codename, wpt, dkg, lz, dg1, dibosonPdf_down[i], '%s/signal_WV_%s_f5z_ifLessThen0SetTo0_2604Files_SMaTGCfit.root'%(basepath,codename), limtype ) print '\n@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ read RooATGCSemi\n' getattr(theWS, 'import')(data) for i in range(0,Nbkg_int): getattr(theWS, 'import')(bkgHist[i]) for j in range(0,Nbkg_int): for i in range(0,len(background_shapeSyst[j])): getattr(theWS, 'import')(bkgHist_systUp[j][i]) getattr(theWS, 'import')(bkgHist_systDown[j][i]) getattr(theWS, 'import')(aTGCPdf) if (doSignalShape_unc): for i in range(0,len(signal_shapeSyst)): getattr(theWS, 'import')(aTGCPdf_up[i]) getattr(theWS, 'import')(aTGCPdf_down[i]) # getattr(theWS, 'import')(aTGCPdf_norm[i]) getattr(theWS, 'import')(aTGCPdf_norm_sum) theWS.Print() fout = TFile('%s_boosted_ws.root'%(codename), 'recreate') theWS.Write() fout.Close() ### make the card for this channel and plane ID card = """ # Simple counting experiment, with one signal and a few background processes imax 1 number of channels jmax {Nbkg_int} number of backgrounds kmax * number of nuisance parameters (sources of systematical uncertainties) ------------""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs,Nbkg_int=Nbkg_int) for i in range(0,Nbkg_int): card += """ shapes WV_semileptonic_bkg{Nbkg_int}_{codename} {codename}boosted ./{codename}_boosted_ws.root WV_{codename}boosted:$PROCESS WV_{codename}boosted:$PROCESS_$SYSTEMATIC""".format(Nbkg_int=i+1,codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) card += """ shapes data_obs {codename}boosted ./{codename}_boosted_ws.root WV_{codename}boosted:$PROCESS """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs,Nbkg_int=Nbkg_int) if (doSignalShape_unc): card += """ shapes WWgammaZ_WV_atgc_semileptonic_{codename} {codename}boosted ./{codename}_boosted_ws.root WV_{codename}boosted:ATGCPdf_$PROCESS WV_{codename}boosted:ATGCPdf_$PROCESS_$SYSTEMATIC """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) else: card += """ shapes WWgammaZ_WV_atgc_semileptonic_{codename} {codename}boosted ./{codename}_boosted_ws.root WV_{codename}boosted:ATGCPdf_$PROCESS """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) card += """ ------------ bin {codename}boosted observation {norm_obs} ------------ bin {codename}boosted\t\t""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) for i in range(0,Nbkg_int): card += """\t\t\t{codename}boosted""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg[i],norm_obs=norm_obs) card += """ process\t\t\t WWgammaZ_WV_atgc_semileptonic_{codename} """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg[i],norm_obs=norm_obs) for i in range(0,Nbkg_int): card += """\tWV_semileptonic_bkg{Nbkg_int}_{codename}""".format(Nbkg_int=i+1,codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg[i],norm_obs=norm_obs) card += """ process 0 """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg[i],norm_obs=norm_obs) for i in range(0,Nbkg_int): card += """ \t\t\t\t{i}""".format(i=i+1,codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg[i],norm_obs=norm_obs) card += """ rate {norm_sig_sm}\t""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg[i],norm_obs=norm_obs) for i in range(0,Nbkg_int): card += """ \t\t\t{norm_bkg}""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg[i],norm_obs=norm_obs) card += """ ------------ lumi_8TeV \t lnN \t 1.026 """ for i in range(0,Nbkg_int): if (i==2): card += """\t\t\t\t1.026""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) else: card += """\t\t\t\t-""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) card += """ CMS_eff_{codename[0]} lnN 1.03 """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg[i],norm_obs=norm_obs) for i in range(0,Nbkg_int): if (i==2): card += """\t\t\t\t1.03""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) else: card += """\t\t\t\t-""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) card += """ CMS_hzz2l2v_sys_topwwwjetsdata_8TeV_{codename[0]} lnN - """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) for i in range(0,Nbkg_int): if (i==1): card += """\t\t\t\t1.2""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) else: card += """\t\t\t\t-""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) for j in range(0,Nbkg_int): for i in range(0,len(background_shapeSyst[j])): #change name here: # if (isItCorrelated(background_shapeSyst[j][i])): # name_forCorr=background_shapeSyst[j][i] # name_forCorr=name_forCorr.replace('zll_','') # name_forCorr=name_forCorr.replace('wz3lnu_','') # card += """ #{background_shapeSyst} shape """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs,i=i,background_shapeSyst=name_forCorr) if not(isItCorrelated(background_shapeSyst[j][i])): card += """ {background_shapeSyst} shape1 """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs,i=i,background_shapeSyst=background_shapeSyst[j][i]) # card += """ #{background_shapeSyst} shape """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs,i=i,background_shapeSyst=background_shapeSyst[j][i]) for k in range(0,j+1): card += """-\t\t\t\t""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs,i=i,background_shapeSyst=background_shapeSyst[j][i]) card += """1.0 """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs,i=i,background_shapeSyst=background_shapeSyst[j][i]) for k in range(1,Nbkg_int-j): card += """\t\t\t\t-""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs,i=i,background_shapeSyst=background_shapeSyst[j][i]) # card += """ #QCDJeT_aTG lnN 1.12 """ # for i in range(0,Nbkg_int): # card += """\t\t\t\t-""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs,i=i) # card += """ #QCDscale_VV lnN - """ # for i in range(0,Nbkg_int): # if (i==2): card += """\t\t\t\t1.054""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) # else: card += """\t\t\t\t-""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) card += """ Zlldata_syst lnN - """ for i in range(0,Nbkg_int): if (i==0): card += """\t\t\t\t1.4""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) else: card += """\t\t\t\t-""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) card += """ pdf_VV lnN 1.058 """ for i in range(0,Nbkg_int): if (i==2): card += """\t\t\t\t1.042""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) else: card += """\t\t\t\t-""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) if (doSignalShape_unc): for i in range(0,len(signal_shapeSyst)): #change name here: if (isItCorrelated(str(signal_shapeSyst[i]))): name_forCorr=str(signal_shapeSyst[i]) name_forCorr=name_forCorr.replace('zz2l2nu_','') card += """ {signal_shapeSyst} shape1 1.0 """.format(signal_shapeSyst=name_forCorr) for j in range(0,Nbkg_int): isItCorr=False for k in range(0,len(background_shapeSyst[j])): if (name_forCorr in background_shapeSyst[j][k]): isItCorr=True if (isItCorr): card += """\t\t\t\t1.0""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) else: card += """\t\t\t\t-""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) else: card += """ {signal_shapeSyst} shape1 1.0 """.format(signal_shapeSyst=signal_shapeSyst[i]) for i in range(0,Nbkg_int): card += """\t\t\t\t-""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) print card cardfile = open('wv_semil_%sboosted.txt'%(codename),'w') cardfile.write(card) cardfile.close
[ "senka.duric@cern.ch" ]
senka.duric@cern.ch
8a2ae10b22c4b3a967896e84b577bda9040e3527
eb781c723da986b8230f869bc42a60a0f28eb257
/number_of_ways_treverse_grid.py
1af3ed67d61aca507cef4a0ddc63597b0d205252
[]
no_license
sandy836/Interviewpro
9dc49a4a6903559067fd6c63867d99562f607774
f50efab83d6ff84bef132e841cd642a8511c013d
refs/heads/master
2022-09-29T23:02:08.201229
2020-06-07T13:48:41
2020-06-07T13:48:41
254,679,704
1
0
null
null
null
null
UTF-8
Python
false
false
293
py
def num_ways(n, m): dp = [[0]*n for _ in range(m)] for i in range(n): dp[0][i] = 1 for j in range(m): dp[j][0] = 1 for i in range(1, m): for j in range(1, n): dp[i][j] = dp[i][j-1]+dp[i-1][j] return dp[-1][-1] print(num_ways(3,7))
[ "sandeepshrivastava518@gmail.com" ]
sandeepshrivastava518@gmail.com
bf9b56c08bf4cf1b9e5b81624139200b57d166bc
9c7f47b2f31ea4ae55e33c706efe524eb62ff177
/HT_1/HT_1_13.py
102b0b529a7af654ee6b096b686edbd4e13fa6a1
[]
no_license
Kantarian/GITHUB
05b6d5425b345667a4188ced23da76ed337b910a
fa047cbb2beb9bf372b22596bea8aaef80423872
refs/heads/main
2023-02-14T16:57:50.229446
2021-01-13T15:43:48
2021-01-13T15:43:48
311,783,371
0
0
null
null
null
null
UTF-8
Python
false
false
328
py
#13. Write a script to get the maximum and minimum value in a dictionary. my_dict = {'x':500, 'y':5874, 'z': 560} key_max = max(my_dict.keys(), key=(lambda k: my_dict[k])) key_min = min(my_dict.keys(), key=(lambda k: my_dict[k])) print('Maximum Value: ',my_dict[key_max]) print('Minimum Value: ',my_dict[key_min])
[ "noreply@github.com" ]
Kantarian.noreply@github.com
59e922e5a23e26a9a7e7f22c7006d5d0cdecf0da
99912297cd307c87aab1c4f3a3959858fd054340
/ssc/cuboid_fitting.py
779887b71876627cfaf1ca5831b4a445b93c8ed1
[ "MIT" ]
permissive
zhigangjiang/SingleShotCuboids
2d07a3aa4138f8714a0b1bb0c8b94957c42257f2
ff2c06fb8cba8fae3be2e1293546b6e558c8f757
refs/heads/master
2023-03-07T19:16:58.609393
2021-02-20T15:39:07
2021-02-20T15:39:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,935
py
import torch import numpy as np import functools import kornia class CuboidFitting(torch.nn.Module): def __init__(self, mode: str='joint', # one of ['joint', 'floor', 'ceil', 'avg'] floor_distance: float=-1.6, ): super(CuboidFitting, self).__init__() self.homography_func = functools.partial( self._homography_floor_svd, floor_z=floor_distance)\ if mode == 'floor' else ( functools.partial( self._homography_ceil_svd, ceil_z=-floor_distance ) if mode == 'ceil' else (functools.partial( self._homography_avg_svd, floor_z=floor_distance, ceil_z=-floor_distance ) if mode == 'avg' else functools.partial( self._homography_joint_svd, floor_z=floor_distance, ceil_z=-floor_distance ) ) ) cuboid_axes = torch.Tensor([[ [-1, 1], [-1, -1], [1, -1], [1, 1], ]]).float() self.register_buffer("cuboid_axes", cuboid_axes) def _get_scale_all(self, coords: torch.Tensor, eps: float=1e-12) -> torch.Tensor: a_x1 = torch.linalg.norm(coords[:, 0, :] - coords[:, 1, :], ord=2, dim=1) a_y1 = torch.linalg.norm(coords[:, 1, :] - coords[:, 2, :], ord=2, dim=1) a_x2 = torch.linalg.norm(coords[:, 2, :] - coords[:, 3, :], ord=2, dim=1) a_y2 = torch.linalg.norm(coords[:, 3, :] - coords[:, 0, :], ord=2, dim=1) a_x = 0.5 * (a_x1 + a_x2) a_y = 0.5 * (a_y1 + a_y2) return torch.stack([a_y, a_x], dim=1) def _svd(self, points1: torch.Tensor, points2: torch.Tensor ) -> torch.Tensor: ''' Computes a similarity transform (sR, t) that takes a set of 3D points S1 (3 x N) closest to a set of 3D points S2, where R is an 3x3 rotation matrix, t 3x1 translation, s scale. i.e. solves the orthogonal Procrutes problem. ''' b, _, c = points1.shape # 1. Remove mean. points1 = torch.transpose(points1, -2, -1) points2 = torch.transpose(points2, -2, -1) centroid1 = points1.mean(dim=-1, keepdims=True) centroid2 = points1.mean(dim=-1, keepdims=True) centered1 = points1 - centroid1 centered2 = points2 - centroid2 # 2. Compute variance of X1 used for scale. variance = torch.sum(centered1 ** 2, dim=[1, 2]) # 3. The outer product of X1 and X2. K = centered1 @ torch.transpose(centered2, -2, -1) # 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are singular vectors of K. U, s, V = torch.svd(K) # Construct Z that fixes the orientation of R to get det(R)=1. Z = torch.eye(c).to(U).unsqueeze(0).repeat(b, 1, 1) Z[:,-1, -1] *= torch.sign(torch.det(U @ torch.transpose(V, -2, -1))) # Construct R. rotation = V @ (Z @ torch.transpose(U, -2, -1)) # 5. Recover scale. scale = torch.cat([torch.trace(x).unsqueeze(0) for x in (rotation @ K)]) / variance # 6. Recover translation. scale = scale.unsqueeze(-1).unsqueeze(-1) translation = centroid2 - (scale * (rotation @ centroid1)) return rotation, translation, scale def _transform_points(self, points: torch.Tensor, rotation: torch.Tensor, translation: torch.Tensor, scale: torch.Tensor, ) -> torch.Tensor: xformed = scale * (rotation @ torch.transpose(points, -2, -1)) + translation return torch.transpose(xformed, -2, -1) def _homography_floor_svd(self, top_corners: torch.Tensor, # in [-1, 1] bottom_corners: torch.Tensor, # in [-1, 1] floor_z: float=-1.6, ): b, N, _ = top_corners.size() u = bottom_corners[:, :, 0] * np.pi v = bottom_corners[:, :, 1] * (-0.5 * np.pi) c = floor_z / torch.tan(v) x = c * torch.sin(u) y = -c * torch.cos(u) floor_xy = torch.stack([x, y], dim=-1) scale = self._get_scale_all(floor_xy) scale = scale / 2.0 centroid = floor_xy.mean(dim=1) c = torch.linalg.norm(floor_xy, ord=2, dim=-1) v = top_corners[:, :, 1] * (-0.5 * np.pi) ceil_z = (c * torch.tan(v)).mean(dim=1, keepdim=True) ceil_z = ceil_z.unsqueeze(1).expand(b, 4, 1).contiguous() floor_xy = floor_xy - centroid.unsqueeze(1) inds = torch.sort(torch.atan2(floor_xy[..., 0], floor_xy[..., 1] + 1e-12))[1] axes = self.cuboid_axes[:, inds.squeeze(), :] homography = kornia.get_perspective_transform(floor_xy, axes) homogeneous = torch.cat([floor_xy, torch.ones_like(floor_xy[..., -1:])], dim=2) xformed = (homography @ homogeneous.transpose(1, 2)).transpose(1, 2) xformed = xformed[:, :, :2] / xformed[:, :, 2].unsqueeze(-1) rect_floor_xy = xformed * scale.unsqueeze(1) + centroid.unsqueeze(1) original_xy = floor_xy + centroid.unsqueeze(1) R, t, s = self._svd(rect_floor_xy, original_xy[:, inds.squeeze(), :]) rect_floor_xy = self._transform_points(rect_floor_xy, R, t, s) bottom_points = torch.cat([rect_floor_xy, floor_z * torch.ones_like(c.unsqueeze(-1))], dim=-1) top_points = torch.cat([rect_floor_xy, ceil_z], dim=-1) return top_points, bottom_points def _homography_joint_svd(self, top_corners: torch.Tensor, # in [-1, 1] bottom_corners: torch.Tensor, # in [-1, 1] floor_z: float=-1.6, ceil_z: float=1.6, ): b, N, _ = top_corners.size() floor_u = bottom_corners[:, :, 0] * np.pi floor_v = bottom_corners[:, :, 1] * (-0.5 * np.pi) floor_c = floor_z / torch.tan(floor_v) floor_x = floor_c * torch.sin(floor_u) floor_y = -floor_c * torch.cos(floor_u) floor_xy = torch.stack([floor_x, floor_y], dim=-1) floor_scale = self._get_scale_all(floor_xy) floor_scale = floor_scale / 2.0 floor_ceil_c = torch.linalg.norm(floor_xy, ord=2, dim=-1) floor_ceil_v = top_corners[:, :, 1] * (-0.5 * np.pi) floor_ceil_z = (floor_ceil_c * torch.tan(floor_ceil_v)).mean(dim=1, keepdim=True) floor_ceil_z = floor_ceil_z.unsqueeze(1).expand(b, 4, 1).contiguous() ceil_u_t = top_corners[:, :, 0] * np.pi ceil_v_t = top_corners[:, :, 1] * (-0.5 * np.pi) ceil_c = ceil_z / torch.tan(ceil_v_t) ceil_x = ceil_c * torch.sin(ceil_u_t) ceil_y = -ceil_c * torch.cos(ceil_u_t) ceil_xy = torch.stack([ceil_x, ceil_y], dim=-1) ceil_floor_c = torch.linalg.norm(ceil_xy, ord=2, dim=-1) ceil_v_b = bottom_corners[:, :, 1] * (-0.5 * np.pi) ceil_floor_z = (ceil_floor_c * torch.tan(ceil_v_b)).mean(dim=1, keepdim=True) fix_ceil = -ceil_z / ceil_floor_z ceil_z_fix = ceil_z * fix_ceil ceil_z_fix = ceil_z_fix.unsqueeze(1).expand(b, 4, 1).contiguous() ceil_floor_fixed_c = ceil_z_fix.squeeze(-1) / torch.tan(ceil_v_t) ceil_x = ceil_floor_fixed_c * torch.sin(ceil_u_t) ceil_y = -ceil_floor_fixed_c * torch.cos(ceil_u_t) ceil_xy = torch.stack([ceil_x, ceil_y], dim=-1) ceil_scale = self._get_scale_all(ceil_xy) ceil_scale = ceil_scale / 2.0 joint_xy = 0.5 * (floor_xy + ceil_xy) joint_scale = 0.5 * (floor_scale + ceil_scale) joint_centroid = joint_xy.mean(dim=1) joint_xy = joint_xy - joint_centroid.unsqueeze(1) inds = torch.sort(torch.atan2(joint_xy[..., 0], joint_xy[..., 1] + 1e-12))[1] axes = self.cuboid_axes[:, inds.squeeze(), :] homography = kornia.get_perspective_transform(joint_xy, axes) homogeneous = torch.cat([joint_xy, torch.ones_like(joint_xy[..., -1:])], dim=2) xformed = (homography @ homogeneous.transpose(1, 2)).transpose(1, 2) xformed = xformed[:, :, :2] / xformed[:, :, 2].unsqueeze(-1) rect_joint_xy = xformed * joint_scale.unsqueeze(1) + joint_centroid.unsqueeze(1) original_xy = joint_xy + joint_centroid.unsqueeze(1) R, t, s = self._svd(rect_joint_xy, original_xy[:, inds.squeeze(), :]) rect_joint_xy = self._transform_points(rect_joint_xy, R, t, s) bottom_points = torch.cat([rect_joint_xy, floor_z * torch.ones_like(floor_c.unsqueeze(-1))], dim=-1) top_points = torch.cat([rect_joint_xy, ceil_z_fix], dim=-1) return top_points, bottom_points def _homography_ceil_svd(self, top_corners: torch.Tensor, # in [-1, 1] bottom_corners: torch.Tensor, # in [-1, 1] ceil_z: float=1.6, ): b, N, _ = top_corners.size() u_t = top_corners[:, :, 0] * np.pi v_t = top_corners[:, :, 1] * (-0.5 * np.pi) c = ceil_z / torch.tan(v_t) x = c * torch.sin(u_t) y = -c * torch.cos(u_t) ceil_xy = torch.stack([x, y], dim=-1) c = torch.linalg.norm(ceil_xy, ord=2, dim=-1) v_b = bottom_corners[:, :, 1] * (-0.5 * np.pi) floor_z = (c * torch.tan(v_b)).mean(dim=1, keepdim=True) fix_ceil = -ceil_z / floor_z floor_z = -ceil_z ceil_z_fix = ceil_z * fix_ceil ceil_z_fix = ceil_z_fix.unsqueeze(1).expand(b, 4, 1).contiguous() c = ceil_z_fix.squeeze(-1) / torch.tan(v_t) x = c * torch.sin(u_t) y = -c * torch.cos(u_t) ceil_xy = torch.stack([x, y], dim=-1) scale = self._get_scale_all(ceil_xy) scale = scale / 2.0 centroid = ceil_xy.mean(dim=1) ceil_xy = ceil_xy - centroid.unsqueeze(1) inds = torch.sort(torch.atan2(ceil_xy[..., 0], ceil_xy[..., 1] + 1e-12))[1] axes = self.cuboid_axes[:, inds.squeeze(), :] homography = kornia.get_perspective_transform(ceil_xy, axes) homogeneous = torch.cat([ceil_xy, torch.ones_like(ceil_xy[..., -1:])], dim=2) xformed = (homography @ homogeneous.transpose(1, 2)).transpose(1, 2) xformed = xformed[:, :, :2] / xformed[:, :, 2].unsqueeze(-1) rect_ceil_xy = xformed * scale.unsqueeze(1) + centroid.unsqueeze(1) original_xy = ceil_xy + centroid.unsqueeze(1) R, t, s = self._svd(rect_ceil_xy, original_xy[:, inds.squeeze(), :]) rect_ceil_xy = self._transform_points(rect_ceil_xy, R, t, s) bottom_points = torch.cat([rect_ceil_xy, floor_z * torch.ones_like(c.unsqueeze(-1))], dim=-1) top_points = torch.cat([rect_ceil_xy, ceil_z_fix], dim=-1) return top_points, bottom_points def _homography_avg_svd(self, top_corners: torch.Tensor, # in [-1, 1] bottom_corners: torch.Tensor, # in [-1, 1] floor_z: float=-1.6, ceil_z: float=1.6, ): top_ceil, bottom_ceil = self._homography_ceil_svd(top_corners, bottom_corners, ceil_z) top_floor, bottom_floor = self._homography_floor_svd(top_corners, bottom_corners, floor_z) return (top_ceil + top_floor) * 0.5, (bottom_ceil + bottom_floor) * 0.5 def _project_points(self, points3d: torch.Tensor, epsilon: float=1e-12, ): phi = torch.atan2(points3d[:, :, 0], -1.0 * points3d[:, :, 1] + epsilon) # [-pi, pi] xy_dist = torch.linalg.norm(points3d[:, :, :2], ord=2, dim=-1) theta = -1.0 * torch.atan2(points3d[:, :, 2], xy_dist + epsilon) # [-pi / 2.0, pi / 2.0] u = phi / np.pi v = theta / (0.5 * np.pi) return torch.stack([u, v], dim=-1) def forward(self, corners: torch.Tensor) -> torch.Tensor: top, bottom = torch.chunk(corners, 2, dim=1) b = top.shape[0] aligned = [] for i in range(b): t = top[i, ...].unsqueeze(0) b = bottom[i, ...].unsqueeze(0) try: t_xyz, b_xyz = self.homography_func(t, b) t_uv, b_uv = self._project_points(t_xyz), self._project_points(b_xyz) t_uv = t_uv[:, torch.argsort(t_uv[0, :, 0]), :] b_uv = b_uv[:, torch.argsort(b_uv[0, :, 0]), :] aligned_corners = torch.cat([t_uv, b_uv], dim=1).squeeze(0) aligned.append(aligned_corners) except RuntimeError as ex: aligned.append(corners[i, ...]) return torch.stack(aligned, dim=0) if __name__ == "__main__": from cuboid_test_utils import * from cuboid_tests import * import sys selected_test ='15' if len(sys.argv) < 2 else str(sys.argv[1]) selected_mode ='floor' if len(sys.argv) < 3 else str(sys.argv[2]) modes = ['floor', 'ceil', 'joint', 'avg'] for name, test in get_tests(): if selected_test not in name: continue for mode in modes: if selected_mode not in mode: continue alignment = CuboidFitting(mode=mode) top, bottom = test() if torch.cuda.is_available(): top = top.cuda() bottom = bottom.cuda() alignment = alignment.cuda() corners = torch.cat([top, bottom], dim=1) aligned = alignment.forward(corners) images = np.zeros([1, 256, 512, 3], dtype=np.uint8) top_pts2d, bottom_pts2d = torch.chunk(aligned, 2, dim=-2) draw_points(top_pts2d, images, [255, 0, 0]) draw_points(bottom_pts2d, images, [255, 0, 0]) top_pts2d, bottom_pts2d = torch.chunk(corners, 2, dim=-2) draw_points(top_pts2d, images, [0, 255, 0]) draw_points(bottom_pts2d, images, [0, 255, 0]) show_frozen(f"{mode} {name}", images[0]) # show_playback(f"{mode} {name}", images[0])
[ "nzioulis@iti.gr" ]
nzioulis@iti.gr
8ad9bb30b3e0dce0d9be4144394ea10060e7df85
e52afdf311d9b682fd2edfa2ac131bd83bbe63eb
/Week 2/4/Polynomial_LR.py
5446a78c823704506e21c48f5ec0f3701b8fd318
[]
no_license
YashwanthMN1/MLEdyoda
cc1185e4618e896764a0b01773a886e49ba9b8e7
36a9470729c57c7b6b742bac239e9352f8b2a133
refs/heads/main
2023-05-02T11:51:11.801693
2021-05-25T13:52:24
2021-05-25T13:52:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,232
py
# -*- coding: utf-8 -*- """ Created on Sun May 9 15:10:23 2021 @author: RISHBANS """ # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Company_Performance.csv') X = dataset.iloc[:, [0]].values y = dataset.iloc[:, 1].values # Fitting Linear Regression from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y) # Fitting Polynomial Regression from sklearn.preprocessing import PolynomialFeatures poly_reg = PolynomialFeatures(degree = 4) X_poly = poly_reg.fit_transform(X) #poly_reg.fit(X_poly, y) lin_reg_poly = LinearRegression() lin_reg_poly.fit(X_poly, y) y_pred = lin_reg_poly.predict(X_poly) # Visualising -> Linear Regression results plt.scatter(X, y, color = 'red') plt.plot(X, lin_reg.predict(X), color = 'blue') plt.title('Size of Company (Linear Regression)') plt.xlabel('No. of Year in Operation ') plt.ylabel('No. of Emp') plt.show() # Visualising -> Polynomial Regression results plt.scatter(X, y, color = 'red') plt.plot(X, y_pred, color = 'blue') plt.title('Size of Company (Polynomial Regression)') plt.xlabel('No. of Year in Operation') plt.ylabel('No. of Emp') plt.show()
[ "rishibansal02@gmail.com" ]
rishibansal02@gmail.com
5a816edcf9b5572793ef4934aa937c7b939a75a5
7102f5d667da9b68622e96c17d22ae5e48c68878
/Problems' Solution/DesignerDoorMat.py
d72174d6a27b563513dcb1fec7423ae715333edc
[]
no_license
shahnawaz-pabon/Python-with-HackerRank
0032ff5c44fe9015f637131ae4d15d1bdc1812be
53c68e82089f263f52b2c1431faccc979ccad5a3
refs/heads/master
2021-07-15T14:46:03.514436
2017-05-30T16:20:54
2017-05-30T16:20:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,082
py
N, M = map(int, input().split()) for i in range(1, N, 2): print((".|." * i).center(M, "-")) print("WELCOME".center(M, "-")) for i in range(N - 2, 0, -2): print((".|." * i).center(M, "-")) ''' N, M = map(int, input().split()) s = '.|.' wlcm = 'WELCOME' upper = int(N / 2) lower = upper koyta = 1 koyta_hypen = int(M / 2)-1 koyta_str = 1 for i in range(upper): for j in range(koyta_hypen): print('-', end='') for j in range(koyta_str): print(s, end='') for j in range(koyta_hypen): print('-', end='') koyta_str += 2 koyta_hypen = M - (koyta_str * 3) koyta_hypen = int(koyta_hypen / 2) print() print(wlcm.center(M, '-')) for i in range(lower): koyta_str -= 2 koyta_hypen = M - (koyta_str * 3) koyta_hypen = int(koyta_hypen / 2) for j in range(koyta_hypen): print('-', end='') for j in range(koyta_str): print(s, end='') for j in range(koyta_hypen): print('-', end='') print() '''
[ "noreply@github.com" ]
shahnawaz-pabon.noreply@github.com
ff2d8f2ab7ae00026e60b344129a01111c5b7aad
c7d5c327e673fb11fe60afc0defbbfc4cd50f45a
/Free/proyecto/python/5.py
18609a4b7fa2e3e1d702e8376ac3bf8a36c74cf8
[]
no_license
juandaar/IoT-Platform-php-2016
3ebc5ffe62195a59ec40ac6b25faaec550a1ffd9
6a1334d749c9351d47a1c915f908c5d6d3f5f333
refs/heads/master
2020-12-04T16:57:23.586731
2020-01-05T00:22:41
2020-01-05T00:22:41
231,845,085
0
1
null
null
null
null
UTF-8
Python
false
false
1,983
py
import argparse import numpy as np import json from sklearn import linear_model #holi parser = argparse.ArgumentParser('informacion') parser.add_argument('numero_inicial', metavar='N', type=int) parser.add_argument('valores') args = parser.parse_args() arreglo_json=args.valores numero_inicial=args.numero_inicial; datos=json.loads(arreglo_json) dato_analizada=[] fecha_analizada=[] dato_modelo=[] fecha_modelo=[] contador=0 control=[] control_analisis=[] cantidad=len(datos) contador_analisis=0; if(numero_inicial==0 ): separacion=int(cantidad*0.9) while (contador<cantidad): if (contador<separacion): dato_modelo.append(datos[contador]['valor']) fecha_modelo.append(datos[contador]['fecha']) control.append(contador+1) else: dato_analizada.append(datos[contador]['valor']) fecha_analizada.append(datos[contador]['fecha']) control_analisis.append(contador+1) contador_analisis=contador_analisis+1; contador=contador+1; else: separacion=numero_inicial; while (contador<cantidad): if (contador<separacion): dato_modelo.append(datos[contador]['valor']) fecha_modelo.append(datos[contador]['fecha']) control.append(contador+1) else: dato_analizada.append(datos[contador]['valor']) fecha_analizada.append(datos[contador]['fecha']) control_analisis.append(contador+1) contador_analisis=contador_analisis+1; contador=contador+1; dato_modelo = np.array(dato_modelo, np.float64) control = np.array([control], np.float64) control=np.reshape(control,(separacion,1)) control_analisis = np.array([control_analisis], np.float64) control_analisis=np.reshape(control_analisis,(cantidad-separacion,1)) fecha_analizada=np.array(control,np.dtype(str)) # crear regresión lineal regr = linear_model.LinearRegression() #entrenar el model regr.fit(control,dato_modelo) regresion=regr.predict(control_analisis) arreglo=np.array(regresion).tolist() php=json.dumps(arreglo) print(separacion) print (php) print (json.dumps(dato_analizada))
[ "juandaar@gmail.com" ]
juandaar@gmail.com
a90e66c06f0382b100105aa3e048d08ef5a258e6
5752f1ddb8df26568777cc207d75a247e485af6b
/CODES/spot_hot_n_cold_omni_avg_maps.py
cf0f3cb84f6f3efb7c8cab3a6dd10c4afe75741b
[ "MIT" ]
permissive
manu-script/recomb_landscape
240ba83195f336eb1841443a201b9871ddc29d42
cf01d7d0fc8a57a3ca2a105498a3acdaeb9ac6cc
refs/heads/master
2021-05-13T15:33:00.190293
2019-10-12T09:22:09
2019-10-12T09:22:09
116,767,671
1
0
null
null
null
null
UTF-8
Python
false
false
6,588
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 22 09:55:00 2017 @author: manu """ import os import numpy as np import pandas as pd import peakutils as pu import warnings from scipy.optimize import OptimizeWarning from joblib import Parallel, delayed from multiprocessing import cpu_count from scipy.interpolate import UnivariateSpline, interp1d warnings.simplefilter("error", OptimizeWarning) warnings.simplefilter("error", RuntimeWarning) POPS={"COS":["CEU","TSI","FIN","GBR","IBS","YRI","LWK","ASW","ACB","MKK","CHB","JPT","CHS","CDX","KHV","MXL","PUR","CLM","PEL","GIH"]} fmaps={} for pop in os.listdir("../OMNI_INTERPOLATED/"): print("Reading interpolated map:",pop) if pop not in fmaps.keys(): fmaps[pop]={} for chrom in os.listdir("../OMNI_INTERPOLATED/"+pop): gen_map=pd.read_table("../OMNI_INTERPOLATED/"+pop+"/"+chrom,header=0) fmaps[pop][chrom]=interp1d(gen_map["pos"],gen_map["map"]) #Generating interpolation functions def refine_hot(start,end,df): data=df.loc[(df.pos >= start) & (df.pos<=end),:].copy() #slicing dataframe for block values try: params=pu.gaussian_fit(np.array(data.pos),np.array(data.rate),center_only=False) #estimate gaussian parameters data["gauss"]=pu.gaussian(data.pos,*params) #fit a gaussian curve try: spline = UnivariateSpline(data.pos, data.gauss-(data.gauss.max()/2), s=0) #Full width half maximum r1, r2 = spline.roots() return (r1,r2) except: d=data.iloc[data.gauss>data.gauss.max()/2,:] #if FWHM fails, return datapoints > mean of gaussian curve if not d.empty: if not d.pos.iloc[0]==d.pos.iloc[-1]: return (d.pos.iloc[0],d.pos.iloc[-1]) except: d=data[data.rate>(data.rate.max()/2)] #if gaussian fitting fails, return datapoints > half of max rate if not d.empty: if not d.pos.iloc[0]==d.pos.iloc[-1]: return (d.pos.iloc[0],d.pos.iloc[-1]) def spotify(inp): fname,h_out,c_out=inp items=fname.split("/") chrom=items[-1] pop=items[-2] print("Computing Hot & Cold spots:",fname) df=pd.read_table(fname,header=0) #Reading map into dataframe fmap=interp1d(df.pos,df.map) df["dif"]=[0]+list(np.diff(df.rate)) #calculating consecutive differences in rate df["shif"]=list(np.diff(df.rate))+[0] h_ind=df[(df.dif<0)&(df.shif>0)].index+1 h_spots=[(h_ind[i],h_ind[i+1]) for i in range(len(h_ind)-1)] #computing hot blocks based on rise and fall of rates hotspots=[] for start,end in h_spots: hot=refine_hot(df.loc[start].pos,df.loc[end].pos,df) #refining the peak if hot: hotspots.append([int(hot[0]),int(hot[1])]) hspots=pd.DataFrame(hotspots,columns=["start","end"]).round(6) hspots["n_start"]=list(hspots.start[1:])+[0] hspots["cont"]=hspots.n_start-hspots.end #finding adjacent continuos peaks merged=[] tmp=pd.DataFrame(columns=["start","end","n_start","cont"]) flag=False for ind,row in hspots.iterrows(): if row.cont==0: tmp=tmp.append(row) flag=False elif row.cont!=0 and not tmp.empty and not flag: tmp=tmp.append(row) merged.append((tmp.start.iloc[0],tmp.end.iloc[-1])) #Merging the adjacent peaks flag=True tmp=pd.DataFrame(columns=["start","end","n_start","cont"]) ind=hspots[hspots.cont==0].index hspots=hspots[["start","end"]][~hspots.index.isin(set(list(ind)+list(ind+1)))].append(pd.DataFrame(merged,columns=["start","end"]),ignore_index=True).sort_values(by="start") hspots["avg_rate"]=(fmap(hspots["end"]) - fmap(hspots["start"])) / ((hspots["end"]-hspots["start"]) / 1e6) #Computing average recombination rate hspots["chr"]=chrom[:-4] hspots["flag"]=hspots.avg_rate>1 for p in POPS[pop]: f=fmaps[p][chrom] hspots[p+"_rate"]=(f(hspots["end"]) - f(hspots["start"])) / ((hspots["end"]-hspots["start"]) / 1e6) hspots.loc[(hspots["flag"]==False) & (hspots[p+"_rate"]>1),"flag"]=True #Interpolating and computing rate in each population hspots=hspots[hspots.flag==True] hspots.round(6).to_csv(h_out,sep="\t",columns=["chr","start","end"]+[i for i in hspots.columns if i.endswith("_rate")],index=False) #Writing hotspots hspots["n_start"]=list(hspots.start[1:])+[0] c_spots=hspots[["end","n_start"]][:-1] #Computing the locations of coldspots between hotspots coldspots=[] for start,end in zip(c_spots.end,c_spots.n_start): rate=(fmap(end)-fmap(start))/((end-start)/1e6) #Calculating the average recombination rate in coldspots coldspots.append([df.chr.iloc[0],int(start),int(end),rate]) cspots=pd.DataFrame(coldspots,columns=["chr","start","end","avg_rate"]) cspots["chr"]=chrom[:-4] cspots["flag"]=cspots.avg_rate<=1 for p in POPS[pop]: f=fmaps[p][chrom] cspots[p+"_rate"]=(f(cspots["end"]) - f(cspots["start"])) / ((cspots["end"]-cspots["start"]) / 1e6) #computing the recombination rate in each population cspots.loc[(cspots["flag"]==False) & (cspots[p+"_rate"]<=1),"flag"]=True cspots=cspots[cspots.flag==True] cspots.round(6).to_csv(c_out,sep="\t",columns=["chr","start","end"]+[i for i in cspots.columns if i.endswith("_rate")],index=False) #Writing coldspots if not os.path.exists("../HOTSPOTS"): os.makedirs("../HOTSPOTS") if not os.path.exists("../COLDSPOTS"): os.makedirs("../COLDSPOTS") for sup in POPS.keys(): if not os.path.exists("../HOTSPOTS/"+sup): os.makedirs("../HOTSPOTS/"+sup) for sup in POPS.keys(): if not os.path.exists("../COLDSPOTS/"+sup): os.makedirs("../COLDSPOTS/"+sup) inp=[("../OMNI_POP_AVG/"+pop+"/"+chrom,"../HOTSPOTS/"+pop+"/"+chrom,"../COLDSPOTS/"+pop+"/"+chrom) for pop in os.listdir("../OMNI_POP_AVG/") for chrom in os.listdir("../OMNI_POP_AVG/"+pop)] Parallel(n_jobs=cpu_count(), verbose=25)(delayed(spotify)(i)for i in inp)
[ "manuvaivasvata7@gmail.com" ]
manuvaivasvata7@gmail.com
fdb01d318303a533b9e7b88a3aa633b89b8ea312
629606ef6e0ce252f74729ac60f57ca8805c3c78
/hw_002_LargeData/hw_001_matplotlib/venv/lib/python3.7/site-packages/matplotlib/cbook/deprecation.py
3f8639e631b3b73b837fda3c724ad481f739df3d
[]
no_license
LeeXyan/lxgzhw006
cc31024874725f60b766c9d5d24c2dafc66b8de3
621a73544262df7e104806579242deeaa8dbe2c2
refs/heads/master
2021-10-10T17:41:52.381843
2019-01-15T00:25:08
2019-01-15T00:25:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,416
py
import functools import textwrap import warnings class MatplotlibDeprecationWarning(UserWarning): """ A class for issuing deprecation warnings for Matplotlib users. In light of the fact that Python builtin DeprecationWarnings are ignored by default as of Python 2.7 (see link below), this class was put in to allow for the signaling of deprecation, but via UserWarnings which are not ignored by default. https://docs.python.org/dev/whatsnew/2.7.html#the-future-for-python-2-x """ mplDeprecation = MatplotlibDeprecationWarning """mplDeprecation is deprecated. Use MatplotlibDeprecationWarning instead.""" def _generate_deprecation_message( since, message='', name='', alternative='', pending=False, obj_type='attribute', addendum='', *, removal=''): if removal == "": removal = {"2.2": "in 3.1", "3.0": "in 3.2"}.get( since, "two minor releases later") elif removal: if pending: raise ValueError( "A pending deprecation cannot have a scheduled removal") removal = "in {}".format(removal) if not message: message = ( "The %(name)s %(obj_type)s" + (" will be deprecated in a future version" if pending else (" was deprecated in Matplotlib %(since)s" + (" and will be removed %(removal)s" if removal else ""))) + "." + (" Use %(alternative)s instead." if alternative else "") + (" %(addendum)s" if addendum else "")) return message % dict( func=name, name=name, obj_type=obj_type, since=since, removal=removal, alternative=alternative, addendum=addendum) def warn_deprecated( since, message='', name='', alternative='', pending=False, obj_type='attribute', addendum='', *, removal=''): """ Used to display deprecation in a standard way. Parameters ---------- since : str The release at which this API became deprecated. message : str, optional Override the default deprecation message. The format specifier `%(name)s` may be used for the name of the function, and `%(alternative)s` may be used in the deprecation message to insert the name of an alternative to the deprecated function. `%(obj_type)s` may be used to insert a friendly name for the type of object being deprecated. name : str, optional The name of the deprecated object. alternative : str, optional An alternative API that the user may use in place of the deprecated API. The deprecation warning will tell the user about this alternative if provided. pending : bool, optional If True, uses a PendingDeprecationWarning instead of a DeprecationWarning. Cannot be used together with *removal*. removal : str, optional The expected removal version. With the default (an empty string), a removal version is automatically computed from *since*. Set to other Falsy values to not schedule a removal date. Cannot be used together with *pending*. obj_type : str, optional The object type being deprecated. addendum : str, optional Additional text appended directly to the final message. Examples -------- Basic example:: # To warn of the deprecation of "hw_001_matplotlib.name_of_module" warn_deprecated('1.4.0', name='hw_001_matplotlib.name_of_module', obj_type='module') """ message = '\n' + _generate_deprecation_message( since, message, name, alternative, pending, obj_type, addendum, removal=removal) category = (PendingDeprecationWarning if pending else MatplotlibDeprecationWarning) warnings.warn(message, category, stacklevel=2) def deprecated(since, message='', name='', alternative='', pending=False, obj_type=None, addendum='', *, removal=''): """ Decorator to mark a function or a class as deprecated. Parameters ---------- since : str The release at which this API became deprecated. This is required. message : str, optional Override the default deprecation message. The format specifier `%(name)s` may be used for the name of the object, and `%(alternative)s` may be used in the deprecation message to insert the name of an alternative to the deprecated object. name : str, optional The name of the deprecated object; if not provided the name is automatically determined from the passed in object, though this is useful in the case of renamed functions, where the new function is just assigned to the name of the deprecated function. For example:: def new_function(): ... oldFunction = new_function alternative : str, optional An alternative API that the user may use in place of the deprecated API. The deprecation warning will tell the user about this alternative if provided. pending : bool, optional If True, uses a PendingDeprecationWarning instead of a DeprecationWarning. Cannot be used together with *removal*. removal : str, optional The expected removal version. With the default (an empty string), a removal version is automatically computed from *since*. Set to other Falsy values to not schedule a removal date. Cannot be used together with *pending*. addendum : str, optional Additional text appended directly to the final message. Examples -------- Basic example:: @deprecated('1.4.0') def the_function_to_deprecate(): pass """ if obj_type is not None: warn_deprecated( "3.0", "Passing 'obj_type' to the 'deprecated' decorator has no " "effect, and is deprecated since Matplotlib %(since)s; support " "for it will be removed %(removal)s.") def deprecate(obj, message=message, name=name, alternative=alternative, pending=pending, addendum=addendum): if not name: name = obj.__name__ if isinstance(obj, type): obj_type = "class" old_doc = obj.__doc__ func = obj.__init__ def finalize(wrapper, new_doc): obj.__doc__ = new_doc obj.__init__ = wrapper return obj elif isinstance(obj, property): obj_type = "attribute" func = None name = name or obj.fget.__name__ old_doc = obj.__doc__ class _deprecated_property(property): def __get__(self, instance, owner): if instance is not None: from . import _warn_external _warn_external(message, category) return super().__get__(instance, owner) def __set__(self, instance, value): if instance is not None: from . import _warn_external _warn_external(message, category) return super().__set__(instance, value) def __delete__(self, instance): if instance is not None: from . import _warn_external _warn_external(message, category) return super().__delete__(instance) def finalize(_, new_doc): return _deprecated_property( fget=obj.fget, fset=obj.fset, fdel=obj.fdel, doc=new_doc) else: obj_type = "function" if isinstance(obj, classmethod): func = obj.__func__ old_doc = func.__doc__ def finalize(wrapper, new_doc): wrapper = functools.wraps(func)(wrapper) wrapper.__doc__ = new_doc return classmethod(wrapper) else: func = obj old_doc = func.__doc__ def finalize(wrapper, new_doc): wrapper = functools.wraps(func)(wrapper) wrapper.__doc__ = new_doc return wrapper message = _generate_deprecation_message( since, message, name, alternative, pending, obj_type, addendum, removal=removal) category = (PendingDeprecationWarning if pending else MatplotlibDeprecationWarning) def wrapper(*args, **kwargs): warnings.warn(message, category, stacklevel=2) return func(*args, **kwargs) old_doc = textwrap.dedent(old_doc or '').strip('\n') message = message.strip() new_doc = (('\n.. deprecated:: %(since)s' '\n %(message)s\n\n' % {'since': since, 'message': message}) + old_doc) if not old_doc: # This is to prevent a spurious 'unexected unindent' warning from # docutils when the original docstring was blank. new_doc += r'\ ' return finalize(wrapper, new_doc) return deprecate
[ "1156956636@qq.com" ]
1156956636@qq.com