blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
9e19db1fcad86f999dc98e1740528e846c3db383
75fb9959d2e0ca078e282e95edff47c6ea5fd603
/util/eval.py
bb60c133a5356d0ef3511652798c9fd3540e2c9d
[ "MIT" ]
permissive
kmader/tangent_conv
7232d3ac9e2ac091e50a22b143ee559047bd8b5b
1cada36e9fe28e3d844fc2c974cff9565835d04e
refs/heads/master
2020-03-21T03:18:14.428221
2018-06-18T09:47:37
2018-06-18T09:47:37
138,046,849
1
0
null
2018-06-20T14:49:53
2018-06-20T14:49:52
null
UTF-8
Python
false
false
2,891
py
import numpy as np import tensorflow as tf import sys import os import random from path_config import * from cloud import * from dataset_params import * class param: def __init__(self, config): self.experiment_dir = os.path.join(get_tc_path(), config['co_experiment_dir']) self.output_dir = os.path.join(self.experiment_dir, config['co_output_dir']) self.test_file = os.path.join(get_tc_path(), config['co_test_file']) self.dataset_dir = os.path.join(get_tc_path(), config['pre_dataset_dir']) self.label_file = config["eval_label_file"] self.output_file = config["eval_output_file"] dataset_type = config['pre_dataset_param'] if dataset_type == "stanford": self.d_par = stanford_params() elif dataset_type == "scannet": self.d_par = scannet_params() elif dataset_type == "semantic3d": self.d_par = semantic3d_params() def build_conf_matrix(gt_list, pr_list): cnt = 0 global conf_mat, classes for gt_l in gt_list: if gt_l > 0: pr_l = pr_list[cnt] conf_mat[gt_l-1, pr_l-1] += 1 cnt += 1 def get_iou(): out = [] avg = 0.0 global conf_mat, classes for cl in classes: nom = conf_mat[cl-1, cl-1] denom = sum(conf_mat[cl-1, :]) + sum(conf_mat[:, cl-1]) - conf_mat[cl-1, cl-1] if denom > 0: out.append(nom / denom) else: out.append(0.0) avg += out[cl-1] print(out) print("mIoU: " + str(avg / len(classes))) return out def get_o_acc(): s_corr = 0.0 global conf_mat, classes for i in range(0, len(classes)): s_corr += conf_mat[i, i] oa = s_corr / np.sum(conf_mat) print("oA: " + str(oa)) return oa def get_acc(): out = [] avg = 0.0 global conf_mat, classes for cl in classes: nom = conf_mat[cl-1, cl-1] denom = sum(conf_mat[cl-1, :]) if denom > 0: out.append(nom / denom) else: out.append(0.0) avg += out[cl-1] print(out) print("mA: " + str(avg / len(classes))) return out def run_eval(config): p = param(config) global conf_mat, classes conf_mat = np.zeros((p.d_par.num_classes, p.d_par.num_classes)) classes = list(range(1, p.d_par.num_classes)) # exclude class 'stairs' from evaluation for S3DIS if isinstance(p.d_par, stanford_params): classes = classes[:-1] with open(p.test_file) as f: scans = f.readlines() scans = [s.rstrip() for s in scans] counter = 0 avg_iou = [] cnt_iou = [] avg_acc = [] cnt_acc = [] for i in range(0, len(classes)): avg_iou.append(0.0) cnt_iou.append(0) avg_acc.append(0.0) cnt_acc.append(0) cnt = 0 for scan_name in scans: print(scan_name) full_scan_path = os.path.join(p.dataset_dir, scan_name) ref_labels = read_txt_labels(os.path.join(full_scan_path, p.label_file)) pr_scan_path = os.path.join(p.output_dir, scan_name, p.output_file) pr_labels = read_txt_labels(pr_scan_path) counter += 1 build_conf_matrix(ref_labels, pr_labels) cnt += 1 get_iou() get_acc() get_o_acc() return 0
[ "m.tatarchenko@yahoo.com" ]
m.tatarchenko@yahoo.com
42799e013b0f0ec0efd95d90f6b63df67014862b
75fa4866ab30b9f556d30ca5b3895874b0ad5084
/visualize.py
05aa06265acbbb76dc30f53dd1bdb349ed8bea1e
[]
no_license
maozhiqiang/tacotron2-1
ab03850c9598bb0fba9bed44419469b94d550a83
3adf39a3e9b3df6e01e28c4f5f2166c6e6d59e7d
refs/heads/master
2020-04-06T07:09:14.296113
2018-03-02T00:59:32
2018-03-02T00:59:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
875
py
import matplotlib.pyplot as plt import io import numpy as np from PIL import Image def show_spectrogram(spec, text=None, return_array=False): plt.figure(figsize=(14, 6)) plt.imshow(spec) plt.title(text, fontsize='10') plt.colorbar(shrink=0.5, orientation='horizontal') plt.ylabel('mels') plt.xlabel('frames') if return_array: plt.tight_layout() buff = io.BytesIO() plt.savefig(buff, format='png') buff.seek(0) return np.array(Image.open(buff)) def show_attention(attention, return_array=False): plt.figure(figsize=(14, 6)) plt.imshow(attention) plt.ylabel('text sequence') plt.xlabel('spectrogram frame') if return_array: plt.tight_layout() buff = io.BytesIO() plt.savefig(buff, format='png') buff.seek(0) return np.array(Image.open(buff))
[ "jacobsonaustinj@gmail.com" ]
jacobsonaustinj@gmail.com
e7d1c23b744493431d3d557a7c723432651f0fb3
f58a1dcae97115b566409704dcf1a46a5f86df47
/Bellevue University/Courses/DSC640/Week11and12/Python-master/Sorting Algorithms/merge_sort.py
f512f17c999cf7258922f6e19a58d34e5ac44f97
[ "MIT" ]
permissive
safarie1103/Safarie1103
318519ace23c33fcf6d36337392156e5381abd49
a86172bfc47eff0af65285b641af0ad26e13fd12
refs/heads/master
2023-06-13T01:43:35.761325
2023-06-07T16:01:16
2023-06-07T16:01:16
205,732,823
0
1
null
2022-11-28T15:55:13
2019-09-01T21:11:38
null
UTF-8
Python
false
false
648
py
#--------------------------------------- # Merge Sort #--------------------------------------- import sys def merge_sort(A): merge_sort2(A, 0, len(A)-1) def merge_sort2(A, first, last): if first < last: middle = (first + last)//2 merge_sort2(A, first, middle) merge_sort2(A, middle+1, last) merge(A, first, middle, last) def merge(A, first, middle, last): L = A[first:middle+1] R = A[middle+1:last+1] L.append(sys.maxsize) R.append(sys.maxsize) i = j = 0 for k in range (first, last+1): if L[i] <= R[j]: A[k] = L[i] i += 1 else: A[k] = R[j] j += 1 A = [5,9,1,2,4,8,6,3,7] print(A) merge_sort(A) print(A)
[ "54446804+safarie1103@users.noreply.github.com" ]
54446804+safarie1103@users.noreply.github.com
c378cf4373aa8e0cab042bfc688fec3fb09c4997
4427fc578551546d26fd8b01610d67467073e24d
/server.py
adcefe8ed33955c27acbf3a87a71be1cd7d3ff6a
[]
no_license
dimagamera/RAT
d07589273e4ff56efbaff88b9787028e07523191
dd55616b32e7e538725b5e76e13fea9b2469da80
refs/heads/master
2023-06-08T06:41:32.424058
2021-06-27T17:08:48
2021-06-27T17:08:48
359,813,612
0
0
null
null
null
null
UTF-8
Python
false
false
2,738
py
import socket, sys import os s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) host = '0.0.0.0' port = 81 s.bind((host, port)) s.listen(1) while True: conn, addr = s.accept() a = input('/cmd - Сommand line\n/mkdir - Make directory\n/reboot - Restart System\n/sysinfo - system information\n/dir - (Files, Download)\n/screen - ScreenShot\n/cks - cookies & MediaHistory(Google Chrome)\n> ') conn.send(a.encode()) if a == '/cmd': cmd = input('#> ') conn.send(cmd.encode()) cmd_process = conn.recv(5000) cmd_process = str(cmd_process, "cp866") print(cmd_process) elif a == '/mkdir': dir = input('Name directory > ') conn.send(dir.encode()) elif a == "/dir": cmd = input('1. Файли 2. Скачати > ') if cmd == '1': conn.send(cmd.encode()) direct = input('1. Наявня папка 2. Перейти >') if direct == '1': conn.send(direct.encode()) f = open('file.txt', 'wb') while True: try: data = conn.recv(1024) if data == 'EOF'.encode(): break f.write(data) f.close() except: break f = open('file.txt', 'r') print(f.read()) f.close() os.remove('file.txt') elif direct == '2': conn.send(direct.encode()) f = open('pwd.txt', 'wb') while True: try: data = conn.recv(1024) if data == 'EOF'.encode(): break f.write(data) print(data) f.close() os.remove('pwd.txt') except: break dir = input('Directory > ') conn.send(dir.encode()) f = open('file.txt', 'wb') while True: try: data = conn.recv(1024) if data == 'EOF'.encode(): break f.write(data) f.close() except: break f = open('file.txt', 'r') print(f.read()) f.close() os.remove('file.txt') elif a == '/sysinfo': sysinfo = conn.recv(5000) sysinfo = str(sysinfo, 'cp866') print(sysinfo)
[ "noreply@github.com" ]
dimagamera.noreply@github.com
d55fa72397ebc28f58f7760e1b3888e299a03a7e
2abb4dd2c1f4a0a833a24c5fb98b2b627f29c881
/studypython/users/admin.py
32fddfc8e6d1a96ae7d6712f7ff452d63127b80a
[ "MIT" ]
permissive
studyjss/studypython
9192800f3b639c296b095d40a20ec7520c818fed
15e78cd62e90103fa23b18fd9ebc7527bfa1bd77
refs/heads/master
2021-11-19T08:58:58.528005
2018-08-07T06:49:00
2018-08-07T06:49:00
143,522,072
0
0
MIT
2021-09-08T00:07:54
2018-08-04T11:10:53
Python
UTF-8
Python
false
false
544
py
from django.contrib import admin from django.contrib.auth import admin as auth_admin from django.contrib.auth import get_user_model from studypython.users.forms import UserChangeForm, UserCreationForm User = get_user_model() @admin.register(User) class UserAdmin(auth_admin.UserAdmin): form = UserChangeForm add_form = UserCreationForm fieldsets = (("User", {"fields": ("name", "followers", "following",)}),) + auth_admin.UserAdmin.fieldsets list_display = ["username", "name", "is_superuser"] search_fields = ["name"]
[ "jss@JMac.local" ]
jss@JMac.local
8c777fd5c8ceb69d6a6c012f89122bbb7cb31272
94f5bae62a2ed5bf5bd69995d9604c191b6333a0
/Projects/TestApp/src/newDB.py
6ec6b46e27a581ec54df6a7d940a33244349f284
[]
no_license
sethc23/BD_Scripts
5eef664af935fb38ad28581faaedb51075338553
989d62b77ca70d239ae3cf99149c5215f6e6119e
refs/heads/master
2020-04-12T17:36:17.600971
2017-02-22T09:46:27
2017-02-22T09:46:27
30,630,547
2
0
null
null
null
null
UTF-8
Python
false
false
915
py
from google.appengine.ext import db class CLposts(db.Model): site = db.ReferenceProperty(Sites) category = db.ReferenceProperty(Categories) class Locations(db.Model): location = db.StringProperty() category = db.ReferenceProperty(Categories) class Categories(db.Model): postDate = db.IntegerProperty() title = db.StringProperty() link = db.StringProperty() postId = db.IntegerProperty() created = db.DateTimeProperty(auto_now_add=True) location = "boston" category = "wanted" postDate = 22809 title = "Double Jogger wanted -" link = "testing" postId = 1054309606 wanted = Categories(name=category, postDate=postDate, title=title, link=link, postId=postId) wanted.put() boston = Locations(location=location, category=wanted.key()) boston.put() posts = CLposts(location=boston.key(), category=wanted.key()) posts.put()
[ "ub2@SERVER2.local" ]
ub2@SERVER2.local
2db87b6470a083d191a9ed252fc04e10a13fa0b1
336bca6cebe635fb79a0097fe2b3d1883ae31665
/testReg.py
1611d0b809f40dadb2bfdf7bb962c494c6c8b40c
[]
no_license
umamuma/PythonTest
4694dc55593586c85c4be7c8a7f283186456c18c
d0fc65878111684612e09a4fc82ed42cc140db69
refs/heads/master
2020-03-26T10:08:40.294844
2018-09-21T01:01:15
2018-09-21T01:01:15
144,783,049
0
0
null
null
null
null
UTF-8
Python
false
false
3,398
py
from __future__ import absolute_import, division, print_function import tensorflow as tf from tensorflow import keras import numpy as np print(tf.__version__) boston_housing = keras.datasets.boston_housing (train_data, train_labels), (test_data, test_labels) = boston_housing.load_data() # Shuffle the training set order = np.argsort(np.random.random(train_labels.shape)) train_data = train_data[order] train_labels = train_labels[order] print("Training set: {}".format(train_data.shape)) # 404 examples, 13 features print("Testing set: {}".format(test_data.shape)) # 102 examples, 13 features print(train_data[0]) # Display sample features, notice the different scales import pandas as pd column_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT'] df = pd.DataFrame(train_data, columns=column_names) df.head() print(train_labels[0:10]) # Display first 10 entries # Test data is *not* used when calculating the mean and std mean = train_data.mean(axis=0) std = train_data.std(axis=0) train_data = (train_data - mean) / std test_data = (test_data - mean) / std print(train_data[0]) # First training sample, normalized def build_model(): model = keras.Sequential([ keras.layers.Dense(64, activation=tf.nn.relu, input_shape=(train_data.shape[1],)), keras.layers.Dense(64, activation=tf.nn.relu), keras.layers.Dense(1) ]) optimizer = tf.train.RMSPropOptimizer(0.001) model.compile(loss='mse', optimizer=optimizer, metrics=['mae']) return model model = build_model() model.summary() # Display training progress by printing a single dot for each completed epoch class PrintDot(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs): if epoch % 100 == 0: print('') print('.', end='') EPOCHS = 500 # Store training stats history = model.fit(train_data, train_labels, epochs=EPOCHS, validation_split=0.2, verbose=0, callbacks=[PrintDot()]) import matplotlib.pyplot as plt def plot_history(history): plt.figure() plt.xlabel('Epoch') plt.ylabel('Mean Abs Error [1000$]') plt.plot(history.epoch, np.array(history.history['mean_absolute_error']), label='Train Loss') plt.plot(history.epoch, np.array(history.history['val_mean_absolute_error']), label = 'Val loss') plt.legend() plt.ylim([0, 5]) plot_history(history) model = build_model() # The patience parameter is the amount of epochs to check for improvement early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=20) history = model.fit(train_data, train_labels, epochs=EPOCHS, validation_split=0.2, verbose=0, callbacks=[early_stop, PrintDot()]) plot_history(history) [loss, mae] = model.evaluate(test_data, test_labels, verbose=0) print("Testing set Mean Abs Error: ${:7.2f}".format(mae * 1000)) test_predictions = model.predict(test_data).flatten() plt.figure() plt.scatter(test_labels, test_predictions) plt.xlabel('True Values [1000$]') plt.ylabel('Predictions [1000$]') plt.axis('equal') plt.xlim(plt.xlim()) plt.ylim(plt.ylim()) _ = plt.plot([-100, 100], [-100, 100]) error = test_predictions - test_labels plt.figure() plt.hist(error, bins = 50) plt.xlabel("Prediction Error [1000$]") _ = plt.ylabel("Count")
[ "TC24227@esl.corp.elbit.co.il" ]
TC24227@esl.corp.elbit.co.il
1d108ec732fe66d7d450832a742f8215468e597e
3baca7237d5096cb3610a4668d79cae42c5d2477
/videos_id/video_info.py
fec5064c3c5f344369530534ad0586833ee99529
[]
no_license
ittus/python-video-ids
fc1cad8100246ec2bed1ca88156d320ef15e6416
318b91a8b11f1dac7906505f94d93bc0974a9079
refs/heads/master
2021-07-25T11:51:41.121755
2021-06-17T09:34:19
2021-06-17T09:34:19
73,607,543
2
3
null
2021-07-18T05:50:12
2016-11-13T09:57:06
Python
UTF-8
Python
false
false
762
py
from videos_id.provider.dailymotion import Dailymotion from videos_id.provider.vimeo import Vimeo from videos_id.provider.youtube import Youtube class VideoInfo(object): def __init__(self): dailymotion = Dailymotion() youtube = Youtube() vimeo = Vimeo() self.platform_list = [dailymotion, youtube, vimeo] self.platform = None self.video_id = None def check_video_id(self, url): for platform in self.platform_list: video_id = platform.check_url(url) if video_id: self.video_id = video_id self.platform = platform.platform return video_id self.video_id = None self.platform = None return self.video_id
[ "vuminhthang.cm@gmail.com" ]
vuminhthang.cm@gmail.com
ae3738da2e11597c896ff29b5496d4050f3adf7c
6f904270a11bd6589a393c1e3713ff37348db0e5
/pset7/survey/application.py
2fc24fbcc2a769ad1e483481bacdbbec7671e0d7
[]
no_license
akigler/cs50_projects
186008d33b45360bc098f4e07c6a338ed13e9bf2
be5d193bdf7e52e1fcd8b82115406a2994f57f24
refs/heads/master
2020-07-08T02:48:10.226342
2019-08-21T08:49:21
2019-08-21T08:49:21
203,543,925
0
0
null
null
null
null
UTF-8
Python
false
false
1,344
py
import cs50 import csv from flask import Flask, jsonify, redirect, render_template, request # Configure application app = Flask(__name__) # Reload templates when they are changed app.config["TEMPLATES_AUTO_RELOAD"] = True @app.after_request def after_request(response): """Disable caching""" response.headers["Cache-Control"] = "no-cache, no-store, must-revalidate" response.headers["Expires"] = 0 response.headers["Pragma"] = "no-cache" return response @app.route("/", methods=["GET"]) def get_index(): return redirect("/form") @app.route("/form", methods=["GET"]) def get_form(): return render_template("form.html") @app.route("/form", methods=["POST"]) def post_form(): if not request.form.get("name") or not request.form.get("house_dropdown") or not request.form.get("position"): return render_template("error.html", message="TODO") file = open("survey.csv", "a") writer = csv.writer(file) writer.writerow((request.form.get("name"), request.form.get("house_dropdown"), request.form.get("position"))) file.close() return redirect("/sheet") @app.route("/sheet", methods=["GET"]) def get_sheet(): with open("survey.csv", "r") as file: reader = csv.reader(file) students = list(reader) return render_template("registered.html", students=students)
[ "jpbubar@gmail.com" ]
jpbubar@gmail.com
4b33ddef5a15b9438476aff953c6a63ebf3d1a31
258920163b6ba24759cd21b8846f574f529274f7
/v3/measured_retrieval.py
ae49b5b5ab96cd5d980af5bb1e74f79e5f124edc
[]
no_license
xiaochungong/attosecond_streaking_phase_retrieval
16186da18a463d578966acb385d1b3cf14713132
8a26a2393faef114ded3651b9bd4769ae648a267
refs/heads/master
2022-10-27T01:04:15.470201
2019-06-10T19:30:02
2019-06-10T19:30:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,433
py
import tensorflow as tf import tf_functions import numpy as np import scipy.constants as sc import tables import shutil import matplotlib.pyplot as plt import os import csv from network3 import initialize_xuv_ir_trace_graphs, setup_neural_net, separate_xuv_ir_vec import xuv_spectrum.spectrum import ir_spectrum.ir_spectrum def find_central_frequency_from_trace(trace, delay, energy, plotting=False): # make sure delay is even assert len(delay) % 2 == 0 # find central frequency N = len(delay) print('N: ', N) dt = delay[-1] - delay[-2] df = 1 / (dt * N) freq_even = df * np.arange(-N / 2, N / 2) # plot the streaking trace and ft trace_f = np.fft.fftshift(np.fft.fft(np.fft.fftshift(trace, axes=1), axis=1), axes=1) # summation along vertical axis integrate = np.sum(np.abs(trace_f), axis=0) # find the maximum values f0 = find_f0(x=freq_even, y=integrate) if plotting: _, ax = plt.subplots(3, 1) ax[0].pcolormesh(delay, energy, trace, cmap='jet') ax[1].pcolormesh(freq_even, energy, np.abs(trace_f), cmap='jet') ax[2].plot(freq_even, integrate) return f0 def find_f0(x, y): x = np.array(x) y = np.array(y) maxvals = [] for _ in range(3): max_index = np.argmax(y) maxvals.append(x[max_index]) x = np.delete(x, max_index) y = np.delete(y, max_index) maxvals = np.delete(maxvals, np.argmin(np.abs(maxvals))) return maxvals[np.argmax(maxvals)] def create_plot_axes(): fig = plt.figure() fig.subplots_adjust(hspace=0.3, left=0.1, right=0.9, top=0.9, bottom=0.1) gs = fig.add_gridspec(3, 3) axes_dict = {} axes_dict["input_trace"] = fig.add_subplot(gs[0,:]) axes_dict["predicted_xuv_t"] = fig.add_subplot(gs[1, 2]) axes_dict["predicted_xuv"] = fig.add_subplot(gs[1,1]) axes_dict["predicted_xuv_phase"] = axes_dict["predicted_xuv"].twinx() axes_dict["predicted_ir"] = fig.add_subplot(gs[1,0]) axes_dict["predicted_ir_phase"] = axes_dict["predicted_ir"].twinx() axes_dict["generated_trace"] = fig.add_subplot(gs[2,:]) return axes_dict def plot_generated_trace(axes, generated_trace, xuv_coefs, ir_params, input_trace, tf_generator_graphs, sess, streak_params): xuv_tmat = xuv_spectrum.spectrum.tmat * sc.physical_constants['atomic unit of time'][0]*1e18 # attosecond xuv_fmat = xuv_spectrum.spectrum.fmat_cropped / sc.physical_constants['atomic unit of time'][0] # Hz ir_fmat = ir_spectrum.ir_spectrum.fmat_cropped / sc.physical_constants['atomic unit of time'][0] # Hz tau_values = (streak_params["tau_values"] * sc.physical_constants['atomic unit of time'][0])*1e15 # femtosecond k_values = streak_params["k_values"] # a.u. xuv_Ef = sess.run(tf_generator_graphs["xuv_E_prop"]["f_cropped"], feed_dict={tf_generator_graphs["xuv_coefs_in"]: xuv_coefs.reshape(1, -1)}) xuv_Et = sess.run(tf_generator_graphs["xuv_E_prop"]["t"], feed_dict={tf_generator_graphs["xuv_coefs_in"]: xuv_coefs.reshape(1, -1)}) ir_Ef = sess.run(tf_generator_graphs["ir_E_prop"]["f_cropped"],feed_dict={tf_generator_graphs["ir_values_in"]: ir_params.reshape(1, -1)}) axes["input_trace"].pcolormesh(tau_values,k_values,input_trace, cmap="jet") axes["input_trace"].set_ylabel("atomic units Energy") axes["input_trace"].set_xlabel("fs") axes["input_trace"].set_title("input streaking trace") axes["generated_trace"].pcolormesh(tau_values,k_values,generated_trace, cmap="jet") axes["generated_trace"].set_xlabel("fs") axes["generated_trace"].set_ylabel("atomic units Energy") axes["generated_trace"].set_title("generated streaking trace") trace_actual_reshape = generated_trace.reshape(-1) trace_reconstructed_reshaped = input_trace.reshape(-1) trace_rmse = np.sqrt((1 / len(trace_actual_reshape)) * np.sum( (trace_reconstructed_reshaped - trace_actual_reshape) ** 2)) axes["generated_trace"].text(0.1, 0.1, "rmse: {}".format(trace_rmse), transform=axes["generated_trace"].transAxes, backgroundcolor="white") axes["predicted_xuv_phase"].plot(xuv_fmat, np.unwrap(np.angle(xuv_Ef[0])), color='green') axes["predicted_xuv"].plot(xuv_fmat, np.abs(xuv_Ef[0])**2, label="Intensity", color="black") axes["predicted_xuv"].set_xlabel("Hz") axes["predicted_xuv"].legend() axes["predicted_xuv_t"].plot(xuv_tmat, np.real(xuv_Et[0]), color="blue", label="xuv E(t)") axes["predicted_xuv_t"].set_xlabel("attoseconds") axes["predicted_xuv_t"].legend() axes["predicted_ir"].plot(ir_fmat, np.real(ir_Ef[0]), color="blue") axes["predicted_ir"].plot(ir_fmat, np.imag(ir_Ef[0]), color="red") axes["predicted_ir"].set_xlabel("Hz") def get_measured_trace(): filepath = './measured_trace/sample2/MSheet1_1.csv' with open(filepath) as csvfile: reader = csv.reader(csvfile) matrix = np.array(list(reader)) Energy = matrix[1:, 0].astype('float') # eV Delay = matrix[0, 1:].astype('float') # fs Values = matrix[1:, 1:].astype('float') #print(Delay) # print('len(Energy): ', len(Energy)) # print('Energy: ', Energy) # construct frequency axis with even number for fourier transform values_even = Values[:, :-1] Delay_even = Delay[:-1] Delay_even = Delay_even * 1e-15 # convert to seconds Dtau = Delay_even[-1] - Delay_even[-2] # print('Delay: ', Delay) # print('Delay_even: ', Delay_even) # print('np.shape(values_even): ', np.shape(values_even)) # print('len(values_even.reshape(-1))', len(values_even.reshape(-1))) # print('Dtau: ', Dtau) # print('Delay max', Delay_even[-1]) # print('N: ', len(Delay_even)) # print('Energy: ', len(Energy)) f0 = find_central_frequency_from_trace(trace=values_even, delay=Delay_even, energy=Energy) # print(f0) # in seconds lam0 = sc.c / f0 # print('f0 a.u.: ', f0 * sc.physical_constants['atomic unit of time'][0]) # convert f0 to atomic unit # print('lam0: ', lam0) # normalize values #exit(0) return Delay_even, Energy, values_even if __name__ == "__main__": tf_generator_graphs, streak_params, xuv_phase_coefs = initialize_xuv_ir_trace_graphs() nn_nodes = setup_neural_net(streak_params, xuv_phase_coefs) axes = create_plot_axes() _, _, trace = get_measured_trace() modelname = 'run3' with tf.Session() as sess: saver = tf.train.Saver() saver.restore(sess, './models/{}.ckpt'.format(modelname)) predicted_fields = sess.run(nn_nodes["y_pred"], feed_dict={nn_nodes["x"]: trace.reshape(1, -1)}) xuv_coefs, ir_params = separate_xuv_ir_vec(predicted_fields[0]) generated_trace = sess.run(tf_generator_graphs["image"], feed_dict={tf_generator_graphs["xuv_coefs_in"]: xuv_coefs.reshape(1, -1), tf_generator_graphs["ir_values_in"]: ir_params.reshape(1, -1)}) print(np.shape(generated_trace)) plot_generated_trace(axes=axes, generated_trace=generated_trace, xuv_coefs=xuv_coefs, ir_params=ir_params, input_trace=trace, tf_generator_graphs=tf_generator_graphs, sess=sess, streak_params=streak_params) plt.show()
[ "jonathonwhite5@gmail.com" ]
jonathonwhite5@gmail.com
ebef311a1f74e61ac986ae1afbf6ba1b2e34de9d
eb3049039d7e5c9a9ccf2ee82a3371aa71768068
/messenger/chats/models.py
b5570151d6022b6b7403d3fcab2bb6b099b4d12e
[]
no_license
ilpol/Django-and-PostgreSQL
1a98c3de068b575ee3f38e461fec6afb2a0b6c27
907519f5ceff18cc9a471ca1691ff65e832d29ea
refs/heads/main
2023-05-07T17:53:34.083617
2021-05-31T19:03:38
2021-05-31T19:03:38
372,237,690
0
0
null
null
null
null
UTF-8
Python
false
false
285
py
import datetime from django.db import models from django.utils import timezone class Chat(models.Model): chat_name = models.CharField(max_length=200, default='') users = models.CharField(max_length=200, default='') messages = models.CharField(max_length=200, default='')
[ "IKPolozov@beeline.ru" ]
IKPolozov@beeline.ru
ba5a0296deead2222078bce64a2de0a655661aef
0c305e2eff6582980c517d487fdfdea8ccfa2b80
/src/gta/gameInputs/__init__.py
30386d537a24667cd040c66356704e2fed5427d9
[]
no_license
tsbertalan/gtaracer
5d4aeab9738adbb893eb5231aa19c3f1dda54791
12697fad980679f00d5dc86edd8cfa36b89f6408
refs/heads/master
2023-08-26T03:20:51.071951
2021-07-24T19:49:39
2021-07-24T19:49:39
108,666,881
0
0
null
null
null
null
UTF-8
Python
false
false
602
py
# from gta.gameInputs.gamepad import JoystickEmulator # class ControlInputs(object): # def __init__(self): # self.gamepadEmulator = JoystickEmulator() # self.oldAxes = [0] * 6 # def applyControlState(self, controlVector): # axes = controlVector[:6] # keys = 'lx', 'ly', 'lt', 'rx', 'ry', 'rt' # for old, new, key in zip(self.oldAxes, axes, keys): # if old != new: # self.gamepadEmulator.axes[key].setValue(new) # self.gamepadEmulator.update() # self.oldAxes = axes # lx, ly, lt, rx, ry, rt = axes
[ "tom@tombertalan.com" ]
tom@tombertalan.com
cdfc0f3dfbf35d333d77f8ba70d727f58fc3026d
338062cc2bb422f1364fd18ad5e721f6f713907a
/22. Функции. Возвращение значений из функций/Классная работа/Число словами.py
152a4277e11ca65c960203fbb12d6f156ba6f9c5
[]
no_license
rady1337/FirstYandexLyceumCourse
f3421d5eac7e7fbea4f5e266ebeb6479b89941cf
0d27e452eda046ddd487d6471eeb7d9eb475bd39
refs/heads/master
2022-06-17T03:07:51.017888
2020-05-12T22:17:34
2020-05-12T22:17:34
263,459,364
0
1
null
null
null
null
UTF-8
Python
false
false
935
py
def number_to_words(n): f = {1: 'один', 2: 'два', 3: 'три', 4: 'четыре', 5: 'пять', 6: 'шесть', 7: 'семь', 8: 'восемь', 9: 'девять'} o = {10: 'десять', 20: 'двадцать', 30: 'тридцать', 40: 'сорок', 50: 'пятьдесят', 60: 'шестьдесят', 70: 'семьдесят', 80: 'восемьдесят', 90: 'девяносто'} s = {11: 'одиннадцать', 12: 'двенадцать', 13: 'тринадцать', 14: 'четырнадцать', 15: 'пятнадцать', 16: 'шестнадцать', 17: 'семнадцать', 18: 'восемнадцать', 19: 'девятнадцать'} n1 = n % 10 n2 = n - n1 if n < 10: return f.get(n) elif 10 < n < 20: return s.get(n) elif n >= 10 and n in o: return o.get(n) else: return o.get(n2) + ' ' + f.get(n1)
[ "noreply@github.com" ]
rady1337.noreply@github.com
dc348cc551ade3d9067dc289fb237a4bbc259df2
209d49d62974e95d27a59a2ee3cfc48ae8f1007a
/format_time.py
ed4ea5a0271e20a26d55441bd446f6a4f8733fb5
[]
no_license
87302380/BA
bc10be7b689feec83b37a9e82e21a1ea5d6754be
c51c256350948dda6923510e1fd669ecf69f4e4d
refs/heads/master
2020-07-14T18:56:08.052174
2019-10-23T21:18:59
2019-10-23T21:18:59
205,378,488
0
0
null
null
null
null
UTF-8
Python
false
false
428
py
import time def print_time(start): end = time.time() overall_time = end - start day = overall_time // (24 * 3600) overall_time = overall_time % (24 * 3600) hour = overall_time // 3600 overall_time %= 3600 minutes = overall_time // 60 overall_time %= 60 seconds = overall_time print("calcutaion time -> %d:%d:%d:%d" % (day, hour, minutes, seconds))
[ "87302380@qq.com" ]
87302380@qq.com
fe93f12bb90a727d7242f36b744d28bce12e590c
cd78d84441e69c1fc40b6a6e9e235e7cf6882454
/python/35.search_insert_position.py
8d406dcdc7d9261226127b5e41452b8e2112cda3
[]
no_license
buy/leetcode
53a12d4e0298284a5a2034c88353d0dc195aa66c
da0e834e3f2e3016396fffc96ef943ab9ec58ea4
refs/heads/master
2021-01-13T01:48:01.176632
2015-06-14T06:17:17
2015-06-14T06:17:17
31,863,627
1
1
null
null
null
null
UTF-8
Python
false
false
912
py
# Given a sorted array and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order. # You may assume no duplicates in the array. # Here are few examples. # [1,3,5,6], 5 → 2 # [1,3,5,6], 2 → 1 # [1,3,5,6], 7 → 4 # [1,3,5,6], 0 → 0 class Solution: # @param {integer[]} nums # @param {integer} target # @return {integer} # 7:14 def searchInsert(self, nums, target): if not nums or target is None: return -1 low, high = 0, len(nums) - 1 while low <= high: mid = (low + high) / 2 if nums[mid] == target: return mid elif nums[mid] < target: low = mid + 1 else: high = mid - 1 if nums[mid] > target: return mid else: return mid + 1
[ "cliu@groupon.com" ]
cliu@groupon.com
72f095e6d0df027da303f85e14998df4d3ce0645
5324708cd5cacc5c54cd010e504cbe3c8832d0d2
/asn1PERser/test/per/decoder/test_per_decode_sequence_of.py
454a489b6d6b8b5180ae31a1de274a578633965a
[ "MIT" ]
permissive
erupikus/asn1PERser
0965143f12b3b924359452e8b21b9ed459815fd7
53ebac8b9a85b29846a64b80938dcd177a66d935
refs/heads/master
2023-08-09T07:23:52.265908
2023-07-14T12:50:22
2023-07-14T12:50:22
186,060,040
6
1
MIT
2023-07-14T12:50:23
2019-05-10T22:03:25
Python
UTF-8
Python
false
false
8,475
py
import pytest from asn1PERser.codec.per.decoder import decode as per_decoder from asn1PERser.test.per.encoder.test_per_encode_sequence_of import SCHEMA_constrained_seq_of_no_extension, \ SCHEMA_constrained_seq_of_extension_present, SCHEMA_no_constrains_sequence_of, DATA_seq_of @pytest.mark.parametrize("schema, encoded, value", [ (SCHEMA_no_constrains_sequence_of(), '00', DATA_seq_of(SCHEMA_no_constrains_sequence_of(), i0_is=False, i1_is=False, i2_is=False, i3_is=False, i4_is=False)), (SCHEMA_no_constrains_sequence_of(), '0103008707', DATA_seq_of(SCHEMA_no_constrains_sequence_of(), i0_is=True, i1_is=False, i2_is=False, i3_is=False, i4_is=False)), (SCHEMA_no_constrains_sequence_of(), '020300870702FCB3', DATA_seq_of(SCHEMA_no_constrains_sequence_of(), i0_is=True, i1_is=True, i2_is=False, i3_is=False, i4_is=False)), (SCHEMA_no_constrains_sequence_of(), '030300870702FCB30117', DATA_seq_of(SCHEMA_no_constrains_sequence_of(), i0_is=True, i1_is=True, i2_is=True, i3_is=False, i4_is=False)), (SCHEMA_no_constrains_sequence_of(), '040300870702FCB3011703030D40', DATA_seq_of(SCHEMA_no_constrains_sequence_of(), i0_is=True, i1_is=True, i2_is=True, i3_is=True, i4_is=False)), (SCHEMA_no_constrains_sequence_of(), '050300870702FCB3011703030D400105', DATA_seq_of(SCHEMA_no_constrains_sequence_of(), i0_is=True, i1_is=True, i2_is=True, i3_is=True, i4_is=True)), ]) def test_no_constrains_sequence_of_integer_can_be_decoded(schema, encoded, value): assert per_decoder(per_stream=bytearray.fromhex(encoded), asn1Spec=schema) == value @pytest.mark.parametrize("schema, encoded, value", [ (SCHEMA_constrained_seq_of_no_extension(lb=0, ub=2), '4003008707', DATA_seq_of(SCHEMA_constrained_seq_of_no_extension(lb=0, ub=2), i0_is=True, i1_is=False, i2_is=False, i3_is=False, i4_is=False)), (SCHEMA_constrained_seq_of_no_extension(lb=0, ub=2), '800300870702FCB3', DATA_seq_of(SCHEMA_constrained_seq_of_no_extension(lb=0, ub=2), i0_is=True, i1_is=True, i2_is=False, i3_is=False, i4_is=False)), (SCHEMA_constrained_seq_of_no_extension(lb=2, ub=5), '000300870702FCB3', DATA_seq_of(SCHEMA_constrained_seq_of_no_extension(lb=2, ub=5), i0_is=True, i1_is=True, i2_is=False, i3_is=False, i4_is=False)), (SCHEMA_constrained_seq_of_no_extension(lb=2, ub=5), '400300870702FCB30117', DATA_seq_of(SCHEMA_constrained_seq_of_no_extension(lb=2, ub=5), i0_is=True, i1_is=True, i2_is=True, i3_is=False, i4_is=False)), (SCHEMA_constrained_seq_of_no_extension(lb=2, ub=5), '800300870702FCB3011703030D40', DATA_seq_of(SCHEMA_constrained_seq_of_no_extension(lb=2, ub=5), i0_is=True, i1_is=True, i2_is=True, i3_is=True, i4_is=False)), (SCHEMA_constrained_seq_of_no_extension(lb=2, ub=5), 'C00300870702FCB3011703030D400105', DATA_seq_of(SCHEMA_constrained_seq_of_no_extension(lb=2, ub=5), i0_is=True, i1_is=True, i2_is=True, i3_is=True, i4_is=True)), ]) def test_constrained_sequence_of_no_extension_can_be_decoded(schema, encoded, value): assert per_decoder(per_stream=bytearray.fromhex(encoded), asn1Spec=schema) == value @pytest.mark.parametrize("schema, encoded, value", [ (SCHEMA_constrained_seq_of_no_extension(lb=1, ub=1), '03008707', DATA_seq_of(SCHEMA_constrained_seq_of_no_extension(lb=1, ub=1), i0_is=True, i1_is=False, i2_is=False, i3_is=False, i4_is=False)), (SCHEMA_constrained_seq_of_no_extension(lb=2, ub=2), '0300870702FCB3', DATA_seq_of(SCHEMA_constrained_seq_of_no_extension(lb=2, ub=2), i0_is=True, i1_is=True, i2_is=False, i3_is=False, i4_is=False)), (SCHEMA_constrained_seq_of_no_extension(lb=3, ub=3), '0300870702FCB30117', DATA_seq_of(SCHEMA_constrained_seq_of_no_extension(lb=3, ub=3), i0_is=True, i1_is=True, i2_is=True, i3_is=False, i4_is=False)), (SCHEMA_constrained_seq_of_no_extension(lb=4, ub=4), '0300870702FCB3011703030D40', DATA_seq_of(SCHEMA_constrained_seq_of_no_extension(lb=4, ub=4), i0_is=True, i1_is=True, i2_is=True, i3_is=True, i4_is=False)), (SCHEMA_constrained_seq_of_no_extension(lb=5, ub=5), '0300870702FCB3011703030D400105', DATA_seq_of(SCHEMA_constrained_seq_of_no_extension(lb=5, ub=5), i0_is=True, i1_is=True, i2_is=True, i3_is=True, i4_is=True)), ]) def test_constrained_sequence_of_of_fixed_length_no_extension_can_be_decoded(schema, encoded, value): assert per_decoder(per_stream=bytearray.fromhex(encoded), asn1Spec=schema) == value @pytest.mark.parametrize("schema, encoded, value", [ (SCHEMA_constrained_seq_of_extension_present(lb=0, ub=2), '2003008707', DATA_seq_of(SCHEMA_constrained_seq_of_extension_present(lb=0, ub=2), i0_is=True, i1_is=False, i2_is=False, i3_is=False, i4_is=False)), (SCHEMA_constrained_seq_of_extension_present(lb=0, ub=2), '400300870702FCB3', DATA_seq_of(SCHEMA_constrained_seq_of_extension_present(lb=0, ub=2), i0_is=True, i1_is=True, i2_is=False, i3_is=False, i4_is=False)), (SCHEMA_constrained_seq_of_extension_present(lb=2, ub=5), '000300870702FCB3', DATA_seq_of(SCHEMA_constrained_seq_of_extension_present(lb=2, ub=5), i0_is=True, i1_is=True, i2_is=False, i3_is=False, i4_is=False)), (SCHEMA_constrained_seq_of_extension_present(lb=2, ub=5), '200300870702FCB30117', DATA_seq_of(SCHEMA_constrained_seq_of_extension_present(lb=2, ub=5), i0_is=True, i1_is=True, i2_is=True, i3_is=False, i4_is=False)), (SCHEMA_constrained_seq_of_extension_present(lb=2, ub=5), '400300870702FCB3011703030D40', DATA_seq_of(SCHEMA_constrained_seq_of_extension_present(lb=2, ub=5), i0_is=True, i1_is=True, i2_is=True, i3_is=True, i4_is=False)), (SCHEMA_constrained_seq_of_extension_present(lb=2, ub=5), '600300870702FCB3011703030D400105', DATA_seq_of(SCHEMA_constrained_seq_of_extension_present(lb=2, ub=5), i0_is=True, i1_is=True, i2_is=True, i3_is=True, i4_is=True)), ]) def test_constrained_sequence_of_with_extension_and_num_of_elems_is_within_extension_root_can_be_decoded(schema, encoded, value): assert per_decoder(per_stream=bytearray.fromhex(encoded), asn1Spec=schema) == value @pytest.mark.parametrize("schema, encoded, value", [ (SCHEMA_constrained_seq_of_extension_present(lb=0, ub=0), '800103008707', DATA_seq_of(SCHEMA_constrained_seq_of_extension_present(lb=0, ub=0), i0_is=True, i1_is=False, i2_is=False, i3_is=False, i4_is=False)), (SCHEMA_constrained_seq_of_extension_present(lb=0, ub=0), '80020300870702FCB3', DATA_seq_of(SCHEMA_constrained_seq_of_extension_present(lb=0, ub=0), i0_is=True, i1_is=True, i2_is=False, i3_is=False, i4_is=False)), (SCHEMA_constrained_seq_of_extension_present(lb=0, ub=0), '80030300870702FCB30117', DATA_seq_of(SCHEMA_constrained_seq_of_extension_present(lb=0, ub=0), i0_is=True, i1_is=True, i2_is=True, i3_is=False, i4_is=False)), (SCHEMA_constrained_seq_of_extension_present(lb=1, ub=1), '80020300870702FCB3', DATA_seq_of(SCHEMA_constrained_seq_of_extension_present(lb=1, ub=1), i0_is=True, i1_is=True, i2_is=False, i3_is=False, i4_is=False)), (SCHEMA_constrained_seq_of_extension_present(lb=1, ub=1), '80050300870702FCB3011703030D400105', DATA_seq_of(SCHEMA_constrained_seq_of_extension_present(lb=1, ub=1), i0_is=True, i1_is=True, i2_is=True, i3_is=True, i4_is=True)), (SCHEMA_constrained_seq_of_extension_present(lb=1, ub=3), '80040300870702FCB3011703030D40', DATA_seq_of(SCHEMA_constrained_seq_of_extension_present(lb=1, ub=3), i0_is=True, i1_is=True, i2_is=True, i3_is=True, i4_is=False)), (SCHEMA_constrained_seq_of_extension_present(lb=1, ub=3), '80050300870702FCB3011703030D400105', DATA_seq_of(SCHEMA_constrained_seq_of_extension_present(lb=1, ub=3), i0_is=True, i1_is=True, i2_is=True, i3_is=True, i4_is=True)), (SCHEMA_constrained_seq_of_extension_present(lb=3, ub=4), '80050300870702FCB3011703030D400105', DATA_seq_of(SCHEMA_constrained_seq_of_extension_present(lb=3, ub=4), i0_is=True, i1_is=True, i2_is=True, i3_is=True, i4_is=True)), (SCHEMA_constrained_seq_of_extension_present(lb=3, ub=4), '800103008707', DATA_seq_of(SCHEMA_constrained_seq_of_extension_present(lb=3, ub=4), i0_is=True, i1_is=False, i2_is=False, i3_is=False, i4_is=False)), ]) def test_constrained_sequence_of_with_extension_and_num_of_elems_is_not_within_extension_root_can_be_decoded(schema, encoded, value): assert per_decoder(per_stream=bytearray.fromhex(encoded), asn1Spec=schema) == value
[ "erupikus@gmail.com" ]
erupikus@gmail.com
be783fa8102eeb4d144b2d45dba042eaed4942e4
c493abe42e5942dd6a0f64a4a57c2ac7e57f3903
/shop/migrations/0001_initial.py
908735a3093cf19bb68630df3783dbb44a18bec0
[]
no_license
riturajkush/Turbokart-Ecommerce-site
e4b7bd30430d38f0dc4d959224685b60f14ff76f
852eba399f0ed15ac62e546538c06cc739f807cf
refs/heads/main
2023-06-27T13:03:27.847751
2021-07-29T09:56:30
2021-07-29T09:56:30
390,667,012
1
0
null
null
null
null
UTF-8
Python
false
false
627
py
# Generated by Django 3.1.1 on 2020-12-29 10:48 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('product_name', models.CharField(max_length=50)), ('desc', models.CharField(max_length=300)), ('pub_date', models.DateField()), ], ), ]
[ "kushwaha.rituraj62@gmail.com" ]
kushwaha.rituraj62@gmail.com
2722ba01c870201beefb8bf2569d744c0740c6b6
7804b5c5bc44f437899ccb8e789477719666a472
/resources/prepare_netbox.py
26d39d9d5f446c0f349cc60acc5c9e8a560e0203
[ "MIT" ]
permissive
jawhnycooke/nxos-netbox-sync
dc45bd0709ada392f4d9731068baa79ce1f6f464
7475fa4dc3718b7005c7af856264c4e7fb1af18e
refs/heads/master
2021-02-28T17:07:28.171852
2020-03-07T18:35:28
2020-03-07T18:35:28
245,715,874
1
0
MIT
2020-03-07T22:36:36
2020-03-07T22:36:35
null
UTF-8
Python
false
false
6,785
py
import pynetbox import yaml import os data_file = "netbox_initial.yaml" with open(data_file) as f: data = yaml.safe_load(f.read()) nb_url = os.getenv("NETBOX_URL") nb_token = os.getenv("NETBOX_TOKEN") nb = pynetbox.api(url=nb_url, token=nb_token) interface_modes = nb.dcim.choices()["interface:mode"] interface_mode = { "Access": 100, "Tagged": 200, "Tagged All": 300, } # sites: for site in data["sites"]: print(f"Creating or Updating Site {site['name']}") nb_data = nb.dcim.sites.get(slug=site["slug"]) if not nb_data: nb_data = nb.dcim.sites.create(name=site["name"], slug=site["slug"]) # manufacturers for manufacturer in data["manufacturers"]: print(f"Creating or Updating Manufacture {manufacturer['name']}") nb_data = nb.dcim.manufacturers.get(slug=manufacturer["slug"]) if not nb_data: nb_data = nb.dcim.manufacturers.create(name=manufacturer["name"], slug=manufacturer["slug"]) # device_types for device_type in data["device_types"]: print(f"Creating or Updating device_type {device_type['model']}") nb_data = nb.dcim.device_types.get(slug=device_type["slug"]) if not nb_data: nb_data = nb.dcim.device_types.create( model=device_type["model"], slug=device_type["slug"], manufacturer=nb.dcim.manufacturers.get(slug=device_type["manufacturer_slug"]).id, height=device_type["height"] ) # device_roles for device_role in data["device_roles"]: print(f"Creating or Updating device_role {device_role['name']}") nb_data = nb.dcim.device_roles.get(slug=device_role["slug"]) if not nb_data: nb_data = nb.dcim.device_roles.create( name=device_role["name"], slug=device_role["slug"], color=device_role["color"] ) # platforms for platform in data["platforms"]: print(f"Creating or Updating platform {platform['name']}") nb_data = nb.dcim.platforms.get(slug=platform["slug"]) if not nb_data: nb_data = nb.dcim.platforms.create( name=platform["name"], slug=platform["slug"], manufacturer=nb.dcim.manufacturers.get(slug=platform["manufacturer_slug"]).id, ) # vrfs for vrf in data["vrfs"]: print(f"Creating or Updating vrf {vrf['name']}") nb_data = nb.ipam.vrfs.get(rd=vrf["rd"]) if not nb_data: nb_data = nb.ipam.vrfs.create(name=vrf["name"], rd=vrf["rd"]) # vlan-groups for group in data["vlan_groups"]: print(f"Creating or updating vlan-group {group['name']}") nb_group = nb.ipam.vlan_groups.get(slug=group["slug"]) if not nb_group: nb_group = nb.ipam.vlan_groups.create( name = group["name"], slug = group["slug"], site=nb.dcim.sites.get(slug=group["site_slug"]).id, ) # vlans for vlan in group["vlans"]: print(f"Creating or updating vlan {vlan['name']}") nb_vlan = nb.ipam.vlans.get( group_id=nb_group.id, vid=vlan["vid"], ) if not nb_vlan: nb_vlan = nb.ipam.vlans.create( group=nb_group.id, site=nb_group.site.id, name=vlan["name"], vid=vlan["vid"], description=vlan["description"], ) if "prefix" in vlan.keys(): print(f"Configuring prefix {vlan['prefix']}") nb_prefix = nb.ipam.prefixes.get( vrf_id = nb.ipam.vrfs.get(rd=vlan["vrf"]).id, site_id=nb_group.site.id, vlan_vid=nb_vlan.vid, ) if not nb_prefix: # print(" Creating new prefix") nb_prefix = nb.ipam.prefixes.create( prefix=vlan["prefix"], vrf=nb.ipam.vrfs.get(rd=vlan["vrf"]).id, description=vlan["description"], site=nb_group.site.id, vlan=nb_vlan.id ) # devices for device in data["devices"]: print(f"Creating or Updating device {device['name']}") nb_device = nb.dcim.devices.get(name=device["name"]) if not nb_device: nb_device = nb.dcim.devices.create( name=device["name"], manufacturer=nb.dcim.manufacturers.get(slug=device["manufacturer_slug"]).id, site=nb.dcim.sites.get(slug=device["site_slug"]).id, device_role=nb.dcim.device_roles.get(slug=device["device_role_slug"]).id, device_type=nb.dcim.device_types.get(slug=device["device_types_slug"]).id, ) for interface in device["interfaces"]: print(f" Creating or updating interface {interface['name']}") nb_interface = nb.dcim.interfaces.get( device_id=nb_device.id, name=interface["name"] ) if not nb_interface: nb_interface = nb.dcim.interfaces.create( device=nb_device.id, name=interface["name"], ) if "description" in interface.keys(): nb_interface.description = interface["description"] if "mgmt_only" in interface.keys(): nb_interface.mgmt_only = interface["mgmt_only"] if "enabled" in interface.keys(): nb_interface.enabled = interface["enabled"] if "mode" in interface.keys(): nb_interface.mode = interface_mode[interface["mode"]] if "untagged_vlan" in interface.keys(): nb_interface.untagged_vlan = nb.ipam.vlans.get( name=interface["untagged_vlan"] ).id if "tagged_vlans" in interface.keys(): vl = [ nb.ipam.vlans.get(name=vlan_name).id for vlan_name in interface["tagged_vlans"] ] # print("VLAN LIST") # print(vl) nb_interface.tagged_vlans = vl if "ip_addresses" in interface.keys(): for ip in interface["ip_addresses"]: print(f" Adding IP {ip['address']}") nb_ipadd = nb.ipam.ip_addresses.get( address = ip["address"], vrf_id = nb.ipam.vrfs.get(rd=ip["vrf"]).id, ) if not nb_ipadd: nb_ipadd = nb.ipam.ip_addresses.create( address = ip["address"], vrf = nb.ipam.vrfs.get(rd=ip["vrf"]).id, ) nb_ipadd.interface = nb_interface.id nb_ipadd.save() if "primary" in ip.keys(): nb_device.primary_ip4 = nb_ipadd.id nb_device.save() nb_interface.save()
[ "hank.preston@gmail.com" ]
hank.preston@gmail.com
aeb851e7c40a6aac80481d0f78a38b4819faf2a5
a9758f67b329e0f8e3da80499e3f9bd85b12ea84
/tensor2tensor/utils/trainer_utils.py
e90e2dd103fe5f8571d40327965c8cfbc2784f83
[ "Apache-2.0" ]
permissive
krenshaw2018/tensor2tensor
c9ed02c4c98ccc002a5d484777be6bf2adc230cf
8e2389021643774f81a3af643e55a856896aef5c
refs/heads/master
2020-03-24T05:12:57.945479
2018-06-15T10:59:14
2018-06-15T10:59:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,885
py
# coding=utf-8 # Copyright 2017 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for trainer binary.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys # Dependency imports from tensor2tensor import models # pylint: disable=unused-import from tensor2tensor.data_generators import all_problems # pylint: disable=unused-import from tensor2tensor.utils import data_reader from tensor2tensor.utils import decoding from tensor2tensor.utils import devices from tensor2tensor.utils import input_fn_builder from tensor2tensor.utils import model_builder from tensor2tensor.utils import registry import tensorflow as tf from tensorflow.contrib.learn.python.learn import learn_runner from tensorflow.python import debug flags = tf.flags FLAGS = flags.FLAGS flags.DEFINE_bool("registry_help", False, "If True, logs the contents of the registry and exits.") flags.DEFINE_bool("tfdbg", False, "If True, use the TF debugger CLI on train/eval.") flags.DEFINE_bool("export_saved_model", False, "Whether to export a SavedModel for serving.") flags.DEFINE_bool("dbgprofile", False, "If True, record the timeline for chrome://tracing/.") flags.DEFINE_string("model", "", "Which model to use.") flags.DEFINE_string("hparams_set", "", "Which parameters to use.") flags.DEFINE_string("hparams_range", "", "Parameters range.") flags.DEFINE_string( "hparams", "", """A comma-separated list of `name=value` hyperparameter values. This flag is used to override hyperparameter settings either when manually selecting hyperparameters or when using Vizier. If a hyperparameter setting is specified by this flag then it must be a valid hyperparameter name for the model.""") flags.DEFINE_string("problems", "", "Dash separated list of problems to " "solve.") flags.DEFINE_string("data_dir", None, "Directory with training data.") flags.DEFINE_integer("train_steps", 250000, "The number of steps to run training for.") flags.DEFINE_bool("eval_run_autoregressive", False, "Run eval autoregressively where we condition on previous" "generated output instead of the actual target.") flags.DEFINE_bool("eval_use_test_set", False, "Whether to use the '-test' data for EVAL (and PREDICT).") flags.DEFINE_integer("keep_checkpoint_max", 20, "How many recent checkpoints to keep.") flags.DEFINE_bool("experimental_optimize_placement", False, "Optimize ops placement with experimental session options.") flags.DEFINE_integer("keep_checkpoint_every_n_hours", 10000, "Number of hours between each checkpoint to be saved. " "The default value 10,000 hours effectively disables it.") flags.DEFINE_integer("save_checkpoints_secs", 0, "Save checkpoints every this many seconds. " "Default=0 means let tensorflow.contrib.learn.python.learn" " decide, which is currently set to 600 = 10 minutes.") flags.DEFINE_bool("log_device_placement", False, "Whether to log device placement.") # Distributed training flags flags.DEFINE_integer("local_eval_frequency", 2000, "Run evaluation every this steps during local training.") flags.DEFINE_bool("locally_shard_to_cpu", False, "Use CPU as a sharding device running locally. This allows " "to test sharded model construction on a machine with 1 GPU.") flags.DEFINE_bool("daisy_chain_variables", True, "copy variables around in a daisy chain") flags.DEFINE_bool("sync", False, "Sync compute on PS.") flags.DEFINE_string("worker_job", "/job:localhost", "name of worker job") flags.DEFINE_integer("worker_gpu", 1, "How many GPUs to use.") flags.DEFINE_integer("worker_replicas", 1, "How many workers to use.") flags.DEFINE_integer("worker_id", 0, "Which worker task are we.") flags.DEFINE_float("worker_gpu_memory_fraction", 0.95, "Fraction of GPU memory to allocate.") flags.DEFINE_integer("ps_gpu", 0, "How many GPUs to use per ps.") flags.DEFINE_string("gpu_order", "", "Optional order for daisy-chaining gpus." " e.g. \"1 3 2 4\"") flags.DEFINE_string("ps_job", "/job:ps", "name of ps job") flags.DEFINE_integer("ps_replicas", 0, "How many ps replicas.") # Decoding flags flags.DEFINE_string( "decode_hparams", "", "Comma-separated list of name=value pairs to control decode behavior. " "See decoding.decode_hparams for defaults.") def make_experiment_fn(data_dir, model_name, train_steps, eval_steps): """Returns experiment_fn for learn_runner. Wraps create_experiment.""" def experiment_fn(run_config, hparams): return create_experiment( data_dir, model_name=model_name, train_steps=train_steps, eval_steps=eval_steps, hparams=hparams, run_config=run_config) return experiment_fn def create_experiment(data_dir, model_name, train_steps, eval_steps, hparams, run_config): """Create Experiment.""" estimator, input_fns = create_experiment_components( data_dir=data_dir, model_name=model_name, hparams=hparams, run_config=run_config) train_monitors = [] eval_hooks = [] if FLAGS.tfdbg: hook = debug.LocalCLIDebugHook() train_monitors.append(hook) eval_hooks.append(hook) if FLAGS.dbgprofile: # Recorded traces can be visualized with chrome://tracing/ # The memory/tensor lifetime is also profiled train_monitors.append( tf.contrib.hooks.ProfilerHook( save_steps=10, output_dir=run_config.model_dir, show_dataflow=True, show_memory=True,)) optional_kwargs = {} if FLAGS.export_saved_model: assert len(hparams.problem_instances) == 1 problem = hparams.problem_instances[0] optional_kwargs["export_strategies"] = [ make_export_strategy(problem, hparams) ] return tf.contrib.learn.Experiment( estimator=estimator, train_input_fn=input_fns[tf.estimator.ModeKeys.TRAIN], eval_input_fn=input_fns[tf.estimator.ModeKeys.EVAL], train_steps=train_steps, eval_steps=eval_steps, min_eval_frequency=FLAGS.local_eval_frequency, train_monitors=train_monitors, eval_hooks=eval_hooks, eval_delay_secs=0, **optional_kwargs) def make_export_strategy(problem, hparams): return tf.contrib.learn.make_export_strategy( lambda: data_reader.serving_input_fn(problem, hparams), as_text=True) def create_experiment_components(data_dir, model_name, hparams, run_config): """Constructs and returns Estimator and train/eval input functions.""" tf.logging.info("Creating experiment, storing model files in %s", run_config.model_dir) add_problem_hparams(hparams, FLAGS.problems) # hparams batch_size is used as minibatch size instead of tokens in batch batch_size = (hparams.use_fixed_batch_size and hparams.batch_size) or None num_datashards = devices.data_parallelism().n train_input_fn = input_fn_builder.build_input_fn( mode=tf.estimator.ModeKeys.TRAIN, hparams=hparams, data_dir=data_dir, num_datashards=num_datashards, worker_replicas=FLAGS.worker_replicas, worker_id=FLAGS.worker_id, batch_size=batch_size) eval_input_fn = input_fn_builder.build_input_fn( mode=tf.estimator.ModeKeys.EVAL, hparams=hparams, data_dir=data_dir, num_datashards=num_datashards, worker_replicas=FLAGS.worker_replicas, worker_id=FLAGS.worker_id, dataset_split="test" if FLAGS.eval_use_test_set else None) model_fn = model_builder.build_model_fn( model_name, problem_names=FLAGS.problems.split("-"), train_steps=FLAGS.train_steps, worker_id=FLAGS.worker_id, worker_replicas=FLAGS.worker_replicas, eval_run_autoregressive=FLAGS.eval_run_autoregressive, decode_hparams=decoding.decode_hparams(FLAGS.decode_hparams)) estimator = tf.estimator.Estimator( model_fn=model_fn, model_dir=run_config.model_dir, params=hparams, config=run_config) return estimator, { tf.estimator.ModeKeys.TRAIN: train_input_fn, tf.estimator.ModeKeys.EVAL: eval_input_fn } def log_registry(): if FLAGS.registry_help: tf.logging.info(registry.help_string()) sys.exit(0) def add_problem_hparams(hparams, problems): """Add problem hparams for the problems.""" hparams.problems = [] hparams.problem_instances = [] for problem_name in problems.split("-"): try: problem = registry.problem(problem_name) except LookupError: all_problem_names = sorted(registry.list_problems()) error_lines = ["%s not in the set of supported problems:" % problem_name ] + all_problem_names error_msg = "\n * ".join(error_lines) raise LookupError(error_msg) p_hparams = problem.get_hparams(hparams) hparams.problem_instances.append(problem) hparams.problems.append(p_hparams) def save_metadata(output_dir, hparams): """Saves FLAGS and hparams to output_dir.""" # Save FLAGS in txt file if hasattr(FLAGS, "flags_into_string"): flags_str = FLAGS.flags_into_string() t2t_flags_str = "\n".join([ "--%s=%s" % (f.name, f.value) for f in FLAGS.flags_by_module_dict()[ "tensor2tensor.utils.trainer_utils"] ]) else: flags_dict = FLAGS.__dict__["__flags"] flags_str = "\n".join( ["--%s=%s" % (name, str(f)) for (name, f) in flags_dict.items()]) t2t_flags_str = None flags_txt = os.path.join(output_dir, "flags.txt") with tf.gfile.Open(flags_txt, "w") as f: f.write(flags_str) if t2t_flags_str: t2t_flags_txt = os.path.join(output_dir, "flags_t2t.txt") with tf.gfile.Open(t2t_flags_txt, "w") as f: f.write(t2t_flags_str) # Save hparams as hparams.json hparams_fname = os.path.join(output_dir, "hparams.json") with tf.gfile.Open(hparams_fname, "w") as f: f.write(hparams.to_json()) def create_hparams(params_id, data_dir, passed_hparams=None): """Returns hyperparameters, including any flag value overrides. If the hparams FLAG is set, then it will use any values specified in hparams to override any individually-set hyperparameter. This logic allows tuners to override hyperparameter settings to find optimal values. Args: params_id: which set of parameters to choose (must be in _PARAMS above). data_dir: the directory containing the training data. passed_hparams: command-line overrides for some hparams. Returns: The hyperparameters as a tf.contrib.training.HParams object. """ hparams = registry.hparams(params_id)() hparams.add_hparam("data_dir", data_dir) # Command line flags override any of the preceding hyperparameter values. if passed_hparams: hparams = hparams.parse(passed_hparams) return hparams def create_run_config(output_dir): """Create a RunConfig object.""" run_config = tf.contrib.learn.RunConfig( model_dir=output_dir, master=FLAGS.master, gpu_memory_fraction=FLAGS.worker_gpu_memory_fraction, session_config=session_config(), keep_checkpoint_max=FLAGS.keep_checkpoint_max, keep_checkpoint_every_n_hours=FLAGS.keep_checkpoint_every_n_hours, save_checkpoints_secs=FLAGS.save_checkpoints_secs) return run_config def run(data_dir, model, output_dir, train_steps, eval_steps, schedule): """Runs an Estimator locally or distributed. Args: data_dir: The directory the data can be found in. model: The name of the model to use. output_dir: The directory to store outputs in. train_steps: The number of steps to run training for. eval_steps: The number of steps to run evaluation for. schedule: (str) The schedule to run. The value here must be the name of one of Experiment's methods. """ exp_fn = make_experiment_fn( data_dir=data_dir, model_name=model, train_steps=train_steps, eval_steps=eval_steps) # Create hparams and run_config run_config = create_run_config(output_dir) hparams = create_hparams( FLAGS.hparams_set, data_dir, passed_hparams=FLAGS.hparams) if is_chief(): save_metadata(output_dir, hparams) learn_runner.run( experiment_fn=exp_fn, schedule=schedule, run_config=run_config, hparams=hparams) def validate_flags(): """Validate command line flags.""" if not FLAGS.model: raise ValueError("Must specify a model with --model.") if not FLAGS.problems: raise ValueError("Must specify a set of problems with --problems.") if not (FLAGS.hparams_set or FLAGS.hparams_range): raise ValueError("Must specify either --hparams_set or --hparams_range.") if not FLAGS.schedule: raise ValueError("Must specify --schedule.") if not FLAGS.output_dir: FLAGS.output_dir = "/tmp/tensor2tensor" tf.logging.warning("It is strongly recommended to specify --output_dir. " "Using default output_dir=%s.", FLAGS.output_dir) if not FLAGS.data_dir: raise ValueError("Must specify --data_dir.") def is_chief(): schedules = ["train", "train_and_evaluate"] return FLAGS.worker_id == 0 and FLAGS.schedule in schedules def session_config(): """The TensorFlow Session config to use.""" graph_options = tf.GraphOptions(optimizer_options=tf.OptimizerOptions( opt_level=tf.OptimizerOptions.L1, do_function_inlining=False)) if FLAGS.experimental_optimize_placement: rewrite_options = tf.RewriterConfig(optimize_tensor_layout=True) rewrite_options.optimizers.append("pruning") rewrite_options.optimizers.append("constfold") rewrite_options.optimizers.append("layout") graph_options = tf.GraphOptions( rewrite_options=rewrite_options, infer_shapes=True) gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=FLAGS.worker_gpu_memory_fraction) config = tf.ConfigProto( allow_soft_placement=True, graph_options=graph_options, gpu_options=gpu_options, log_device_placement=FLAGS.log_device_placement) return config
[ "rsepassi@google.com" ]
rsepassi@google.com
1eb49e531bba0a61323ca155c49e850f6ba1501b
17aca286d586dd7f4b7563255781a9d5d5ea1c68
/setup.py
8a27af08618f3e479afaa67dcd2dca54aaf4f7f0
[ "Apache-2.0" ]
permissive
wolcomm/napalm-exaros
894f4a05b7e862195d7d54b5f5d7ff6e43885021
dc89ac9844761739d805fdfea8eeb478cdaa0438
refs/heads/master
2021-01-19T17:49:00.434687
2017-08-28T12:52:24
2017-08-28T12:52:24
101,086,341
0
0
null
null
null
null
UTF-8
Python
false
false
973
py
"""setup.py file.""" import uuid from pip.req import parse_requirements from setuptools import find_packages, setup __author__ = 'Ben Maddison <benm@workonline.co.za>' install_reqs = parse_requirements('requirements.txt', session=uuid.uuid1()) reqs = [str(ir.req) for ir in install_reqs] description = "Network Automation and Programmability Abstraction Layer with \ Multivendor support" setup( name="napalm-exaros", version="0.1.0", packages=find_packages(), author="Ben Maddison", author_email="benm@workonline.co.za", description=description, classifiers=[ 'Topic :: Utilities', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Operating System :: POSIX :: Linux', 'Operating System :: MacOS', ], url="https://github.com/wolcomm/napalm-exaros", include_package_data=True, install_requires=reqs, )
[ "benm@workonline.co.za" ]
benm@workonline.co.za
4808b9b25341398fa95d898a73ff184df234b880
64072351a4f854652975718a18bf403cc3aae6cb
/flash.py
fa13791f4f1ba9ae3b3d8ec708a67f5a4b7ed2cc
[]
no_license
SHOTA-Nishimu/Nishimu-Streamlit
d818e44efb982363e6ca774ff830f3733914fc91
8f8c3ec2a31d28a224c47d5c161fd3c452b6ef3a
refs/heads/master
2023-03-16T21:01:06.486108
2021-03-09T01:53:33
2021-03-09T01:53:33
345,011,672
0
0
null
null
null
null
UTF-8
Python
false
false
1,342
py
import re import random import streamlit as st import numpy as np source = 'C:/Users/chisa/desktop/verb01.txt' with open(source, encoding='utf-8') as f: d = f.read() sentence = re.findall('[一-𥻘あ-ん()=~[\]、。「」々・……]+',d) #print(d) source02 ='C:/Users/chisa/desktop/verb01answer.txt' with open(source02, encoding='utf-8') as f2: d2 = f2.read() answer = re.findall('[一-𥻘あ-ん()=~[\]、。「」々・……]+',d2) #print(d2) word_dict = dict(zip(sentence, answer)) #print(word_dict) st.title('古文単語練習') """ ### 次の( )の単語の意味を答えなさい。 """ question_num=1 for q in range(question_num): random_index=np.random.randint(low=0, high=len(sentence),size=question_num ) question_word = sentence[random_index[q]] correct_answer = word_dict[question_word] c_answer = answer[random_index[q]] st.header(question_word) answer_copy= answer.copy() answer_copy.remove(correct_answer) wrong_answers = random.sample(answer_copy, 3) answer_options = [correct_answer]+ wrong_answers random.shuffle(answer_options) st.subheader(answer_options) expander = st.beta_expander('答えを表示する') expander.header(c_answer) button =st.button('次の問題を表示する')
[ "nisimuras@kyoto-ryoyo.ed.jp" ]
nisimuras@kyoto-ryoyo.ed.jp
f441f140ccab41b7f21ad161ecdefb815bd40c96
31c9d69a2d0abe436c0ff31c059d2ffb0ebb318a
/pyiaga2002/bin/iaga2mscan.py
fbafed8ee0507d0b851e82248f9076392ee5e8b3
[]
no_license
CharlesBlais/pyiaga2002
d29a934348be0be42da39a0293112fac7e886e10
39dfc86c9af51f878bf84b0ecefed1f6bd79b77b
refs/heads/master
2023-03-31T09:28:11.100948
2021-04-09T18:37:07
2021-04-09T18:37:07
356,368,364
0
0
null
null
null
null
UTF-8
Python
false
false
1,791
py
""" .. codeauthor:: Charles Blais """ import os import argparse import logging import pyiaga2002.iaga2002 as iaga2002 import pyiaga2002.mscan as mscan def main(): """ Convert IAGA2002 file to miniSeed for MSCAN ringserver. .. see:: iaga2mseed.py This extends the conversation by updating only difference of files found in a MSEEDSCAN directory for the ringserver. The content of the directory per observatory is read, merged, and only the differences are added. We will use simplified file structure for this (some BUD structure) <dir>/<NET>/<STA>/NET.STA.LOC.CHAN.YEAR.DAY.TIMESTAMP Example: <dir>/C2/OTT/C2.OTT.R0.UFX.2021.065.1617968213 where timestamp is the submit time :author: Charles Blais """ parser = argparse.ArgumentParser( description='Read IAGA2002 file as miniSeed') parser.add_argument( 'filename', help='IAGA2002 file to convert') parser.add_argument( '--directory', default=os.getcwd(), help=f'Output file (default: {os.getcwd()})') parser.add_argument( '--network', default='XX', help='Network code (default: XX)') parser.add_argument( '-v', '--verbose', action='store_true', help='Verbosity') args = parser.parse_args() # Set logging level logging.basicConfig( format='%(asctime)s.%(msecs)03d %(levelname)s \ %(module)s %(funcName)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO if args.verbose else logging.WARNING) stream = iaga2002.read(args.filename) # Add network code to all traces and update for trace in stream: trace.stats.network = args.network mscan.update(args.directory, trace)
[ "charles.blais@canada.ca" ]
charles.blais@canada.ca
24f58281e612f2ee14253e77c4ec908e4bfa1fd3
ff2b590018847ab1b4b46fc4eb49c9cb295e68e6
/python/basic_data_types/hr_list_comprehensions.py
066b605fe9fd784ee691fc84d390cb3491fc1eb7
[]
no_license
iamacarrot92/hackerrank_challenges
2fc1ad321791e1cd34952014a6c115725e31ca67
65a00e0a7fa775a323debdf02a0bd9d5a2686a81
refs/heads/main
2023-03-06T07:32:20.892879
2021-02-08T20:21:04
2021-02-08T20:21:04
336,607,308
0
0
null
null
null
null
UTF-8
Python
false
false
517
py
def method_one(x, y, z, n): rand_grid = [] for i in range(x + 1): for j in range(y + 1): for k in range(z + 1): if (i + j + k) != n: rand_grid.append([i,j,k]) return rand_grid def method_two(x, y, z, n): return [[i, j, k] for i in range(x + 1) for j in range(y + 1) for k in range(z + 1) if sum([i, j, k]) != n] x = int(input()) y = int(input()) z = int(input()) n = int(input()) print(method_one(x, y, z, n)) print(method_two(x, y, z, n))
[ "limbu_101@outlook.com" ]
limbu_101@outlook.com
f2c6e47f8fa5fc9e9b6812e1ce70fca376db9a3f
897554d1ffe398f701df82cdf390bf185f97bf20
/django-stubs/contrib/gis/sitemaps/__init__.pyi
adf328291f3fbe04961f9532a8505eccce8cb58d
[ "MIT" ]
permissive
maximmasiutin/django-stubs
c0a7bac533b03c81704755c5e4a8eff9a178010d
55366fbf087522f860aa242c200f87b36c6c24a7
refs/heads/master
2023-04-15T09:47:51.980794
2021-04-20T12:18:22
2021-04-20T16:07:45
359,802,871
1
0
MIT
2021-04-20T12:12:03
2021-04-20T12:12:03
null
UTF-8
Python
false
false
95
pyi
from django.contrib.gis.sitemaps.kml import KMLSitemap as KMLSitemap, KMZSitemap as KMZSitemap
[ "noreply@github.com" ]
maximmasiutin.noreply@github.com
3c0544ff3ef7a7c59dbec704c2ef95a890e79a48
b60baecf17c616b823b10c9b2102d3a0084dd897
/gante_project_euler/solutions/problem_007.py
a95e86c799b73ca6aa017523bd08ca554e2fec32
[ "MIT" ]
permissive
gante/project_euler
19e03ca76372c816506baf577d363cb74f11afc9
9b5e780259e28d4f4d66cb4c954623f81aeaa5af
refs/heads/master
2022-12-09T22:26:10.407925
2020-08-29T16:13:54
2020-08-29T16:13:54
277,366,880
2
0
MIT
2020-08-09T21:03:46
2020-07-05T19:10:54
Python
UTF-8
Python
false
false
848
py
""" Solution for Project Euler's problem #7 """ import os import time from datetime import timedelta from gante_project_euler.math.prime import get_all_primes def get_solution(): """ Solves the problem and returns the answer. """ return get_all_primes(n_primes=10001)[-1] if __name__ == "__main__": os.environ["CUDA_VISIBLE_DEVICES"] = "0" start = time.time() solution = get_solution() end = time.time() print("Solution: {}".format(solution)) print("Elapsed time (w/compile time): {} (HH:MM:SS.us)".format(timedelta(seconds=end-start))) # The the code is compiled the first time it runs. This second run uses the cached compilation. start = time.time() _ = get_solution() end = time.time() print("Elapsed time (wo/compile time): {} (HH:MM:SS.us)".format(timedelta(seconds=end-start)))
[ "joaofranciscocardosogante@gmail.com" ]
joaofranciscocardosogante@gmail.com
b8c8e8697cb00b856a2bce08f7028a0be9c31e4a
5e3db2bd0227ec1a761ee0f3c7100fb2aca8e5fb
/LeetCodeSolutions/stampingseq.py
608c2abb0a5d02a35e83f4dbaa46a9e961524c55
[]
no_license
Raunak173/hacktoberfest
e09eaff87c6e2eb12935c03f404c17e20146f9a8
1d21f9a314bfb05674fa793a2a80eedceeca6eda
refs/heads/main
2023-08-16T04:05:09.908878
2021-10-14T09:58:14
2021-10-14T09:58:14
417,076,974
1
0
null
null
null
null
UTF-8
Python
false
false
1,744
py
class Solution(object): def movesToStamp(self, stamp, target): M, N = len(stamp), len(target) queue = collections.deque() done = [False] * N ans = [] A = [] for i in xrange(N - M + 1): # For each window [i, i+M), # A[i] will contain info on what needs to change # before we can reverse stamp at i. made, todo = set(), set() for j, c in enumerate(stamp): a = target[i+j] if a == c: made.add(i+j) else: todo.add(i+j) A.append((made, todo)) # If we can reverse stamp at i immediately, # enqueue letters from this window. if not todo: ans.append(i) for j in xrange(i, i + len(stamp)): if not done[j]: queue.append(j) done[j] = True # For each enqueued letter, while queue: i = queue.popleft() # For each window that is potentially affected, # j: start of window for j in xrange(max(0, i-M+1), min(N-M, i)+1): if i in A[j][1]: # This window is affected A[j][1].discard(i) # Remove it from todo list of this window if not A[j][1]: # Todo list of this window is empty ans.append(j) for m in A[j][0]: # For each letter to potentially enqueue, if not done[m]: queue.append(m) done[m] = True return ans[::-1] if all(done) else []
[ "noreply@github.com" ]
Raunak173.noreply@github.com
7670946754ffd4334370da7ccd28a8ed5e95e2dd
2b1a4cc1b97042399445baf2507a8485c04b1d70
/main.py
a9c5936090546db617a13c901eefdcf7c8169d65
[]
no_license
yuvalpress/automated-servers-installation
ac9c59d9749246c9ce37d9423588486b71cc4eec
1573d776976b892846ec7c3d72bbf9099d103593
refs/heads/master
2023-06-19T18:10:26.154417
2021-07-18T13:30:38
2021-07-18T13:30:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,175
py
import sys import subprocess import asyncio from Scripts.iDrac_Scripts import pre_iDrac as pre from Scripts.iDrac_Scripts import iDrac_IP_Address as set_ip from Scripts.iDrac_Scripts import iDrac_Rest_Of_Settings as idrac_settings from Scripts.iDrac_Scripts import iDrac_Raids as set_raid from Scripts.iDrac_Scripts import iDrac_Configuration as idrac_stracture from Scripts.iDrac_Scripts import post_kafka_worker as post_storage def config(iDracs, ex): print("Creating iDrac objects") idracs_list = [] for server in iDracs: # Create iDrac object iDrac = idrac_stracture.iDracConf(server["name"], server["tmp_ip"], server["ip_address"], server["subnet"], server["gateway"], server["timezone"], server["vconsole"], server["boot_mode"], server["vdisks"], server["pdisks"], server["IP_Check"], server["Raid1_Check"], server["Raid2_Check"]) idracs_list.append(iDrac) print("Done!\n") print("Starting pre stage for all servers..") try: pre.do_pre(ex) print("Done!\n") except Exception as err: print("Failed with the following error: %s\n" % err) print("Starting IP Addresses changing stage..") try: set_ip.ip(idracs_list) print("Done!\n") except Exception as err: print("Failed with the following error: %s\n" % err) print("Starting general settings stage..") try: idrac_settings.settings(idracs_list) print("Done!\n") except Exception as err: print("Failed with the following error: %s\n" % err) print("Starting Raids creation stage..") try: set_raid.do_raids(idracs_list) print("Done!\n") except Exception as err: print("Failed with the following error: %s\n" % err) print("Creating ISO Costumed images..") try: path = sys.argv[1] print(path) sub = subprocess.Popen( ["C:\\Users\\admin\\Desktop\\Automated Configuration\\Scripts\\ISO_Scripts\\call_bash_environment.cmd", path], stdout=subprocess.PIPE, stderr=subprocess.PIPE) print(str(sub.stdout.read()), "\n") print("error: ", sub.stderr.read()) print("Done!\n") except Exception as err: print("Failed with the following error: %s\n" % err) print("Mounting ISO Costumed images..") try: for server in idracs_list: sub = subprocess.Popen(["powershell", "& \"C:\\Users\\admin\\Desktop\\Automated " "Configuration\\Scripts\\ISO_Scripts\\Bash Scripts\\mountISO.ps1\" {}.iso {}".format( server.name, server.ip)], stdout=subprocess.PIPE, stderr=subprocess.PIPE) if "ERROR: Unable to perform requested operation." in str(sub.stdout.read()).strip("b'").replace("\\r\\n", "").replace( "\\r", ""): print(idrac_stracture.colors.FAIL + "You'll have to mount the ISO yourself because the RACADM " "remoteimage module doesn't work on " "iDrac {}".format(server.ip) + idrac_stracture.colors.ENDC) print("Done!\n") except Exception as err: print("Failed with the following error: %s\n" % err) print(idrac_stracture.colors.OKPURPLE + "Don't close the script window! Making sure Operating Systems were installed successfully and initiating " "post " "installation configuration process." + idrac_stracture.colors.ENDC) try: asyncio.run(post_storage.post(ex)) except Exception as err: print("Failed with the following error: ", err) if __name__ == "__main__": print("Analysing Excel file..") iDracs = idrac_stracture.readExcel(sys.argv[1]).read() print("Done!") config(iDracs, sys.argv[1])
[ "yuvalpress@gmail.com" ]
yuvalpress@gmail.com
e834abee33916c4a68a8db91f983360ca7551559
298a9313f2fac52cfd2529fad036c91c683bc93d
/projects/admin.py
a535a79739d179874406099d5c927f10a4f752cd
[]
no_license
callump5/portfolio_site
d91b32a143810574ba00452ed4da2d4862616f6a
f0d5e2a07df8e9660ef138fb06becc23302c081f
refs/heads/master
2020-03-18T07:28:48.217171
2018-08-09T19:25:41
2018-08-09T19:25:41
134,455,187
0
0
null
null
null
null
UTF-8
Python
false
false
211
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from models import * # Register your models here. admin.site.register(Project) admin.site.register(ProjectGoal)
[ "clpullinger@gmail.com" ]
clpullinger@gmail.com
256a0f567c4cf82d318538df5cd13c894da34a4a
7de0c43668ab98aba5cfee1db88a435dc667e03f
/Exercícios/menor_nome.py
8e5b5eb048207b2e12d495c123be02250e40e912
[]
no_license
lldenisll/learn_python
b9704b86e1de548268da73beb776d33222beb06f
b0d0e36ea54bfc09bfd3310999f7e19f8bb44405
refs/heads/master
2022-09-21T04:39:59.709520
2020-06-05T22:29:32
2020-06-05T22:29:32
269,099,149
2
0
null
null
null
null
UTF-8
Python
false
false
912
py
# def sum_letters(string): #letters=0 #for i in string: # if i.isalpha(): # letters += 1 # else: # pass #return letters NAO PRECISEI USAR def menor_nome(nomes): x=min(listafinal(nomes), key=len) y = ''.join((x)) return(y.capitalize()) def ignora(list): newlist=([]) for i in list: newlist.append(i.split()) return newlist def listafinal(list): listafinal=[] lista=ignora(list) i=0 while i < len(lista): x= ''.join(lista[i]) listafinal.append(x) i=i+1 return listafinal menor_nome(['maria', 'josé', 'PAULO', 'Catarina']) # deve devolver 'José' menor_nome(['maria', ' josé ', ' PAULO', 'Catarina ']) # deve devolver 'José' menor_nome(['Bárbara', 'JOSÉ ', 'Bill']) # deve devolver José menor_nome(['LU ', ' josé ', 'PAULO', 'Catarina']) menor_nome(['zé', ' lu', 'fê'])
[ "namorado@TFGcos-MacBook-Pro.local" ]
namorado@TFGcos-MacBook-Pro.local
4dea393a8b6eaccd3884e191a1b91d88697dd170
98f80f5479def187ef2c349ed5e67fa2165b7290
/Tugas4/server_thread_chat.py
cf0ddfb1898bdc9625870bb98129e2f74990f0d8
[]
no_license
farizardin/fp-network-programming
2f61e02994e1c44692837bdc30821c5f3eaf9c5e
053876a711be1d5cce55ccd80ca51af209548045
refs/heads/master
2020-05-20T10:41:17.492612
2019-05-23T12:22:37
2019-05-23T12:22:37
185,530,916
0
0
null
null
null
null
UTF-8
Python
false
false
1,343
py
from socket import * import socket import threading import thread import time import sys import json from chat import Chat chatserver = Chat() class ProcessTheClient(threading.Thread): def __init__(self,connection,address): self.connection = connection self.address = address threading.Thread.__init__(self) def run(self): while True: data = self.connection.recv(1024) if data: self.connection.sendall("{}\r\n\r\n" . format(json.dumps(chatserver.proses(data,self.connection)))) else: break self.connection.close() class Server(threading.Thread): def __init__(self): self.the_clients = [] self.my_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) threading.Thread.__init__(self) def run(self): self.my_socket.bind(('0.0.0.0',8887)) self.my_socket.listen(1) while True: self.connection, self.client_address = self.my_socket.accept() print >> sys.stderr, 'connection from', self.client_address clt = ProcessTheClient(self.connection, self.client_address) clt.start() self.the_clients.append(clt) def main(): svr = Server() svr.start() if __name__=="__main__": main()
[ "fariz.ardin@gmail.com" ]
fariz.ardin@gmail.com
3d32562b9c9b3bd68304cc5d69ec67750c07c849
737f4d8ff08f4d88a1d26e50e8a6e147da98da1c
/dynamic_scraping/dynamic_test.py
7f340b1316aae73585ed2f684fce2a3eeda63dfc
[ "MIT" ]
permissive
joaoDragado/web_scraping
7016ebd3ad2a2c225fbe16596ea4c28c2178f513
2cbc48b81785b5f2b3c5f34b53b2e56b9df25216
refs/heads/master
2021-01-20T19:05:20.241353
2019-04-09T17:46:46
2019-04-09T17:46:46
60,857,079
1
0
null
null
null
null
UTF-8
Python
false
false
1,244
py
from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC # instantiate a chrome options object so you can set the size and headless preference chrome_options = Options() chrome_options.add_argument('--headless') chrome_options.add_argument('--window-size=1920x1080') chrome_options.add_argument("--disable-notifications") # directory of chrome driver chrome_driver = '/archive/Studies/webdrivers/chromedriver' # initialize/launch chrome driver = webdriver.Chrome(chrome_options=chrome_options, executable_path=chrome_driver) # go to Reddit and click the I'm Feeling Lucky button driver.get('https://www.reddit.com/') # launch the user dropdown menu (top right) driver.find_element_by_id('USER_DROPDOWN_ID').click() #WebDriverWait(driver, 5).until(EC.element_to_be_clickable((By.ID, 'USER_DROPDOWN_ID'))).click() # select night mode driver.find_element_by_class_name('egZVll').click() #WebDriverWait(driver, 5).until(EC.element_to_be_clickable((By.CLASS_NAME, 'egZVll'))).click() # capture the screen driver.get_screenshot_as_file('capture.png')
[ "dubmecoco@yahoo.com" ]
dubmecoco@yahoo.com
d53e0cec89d4c41edbc1c5d2e5701117141afbaa
890c8b8e90e516a5a3880eca9b2d217662fe7d84
/armulator/armv6/opcodes/thumb_instruction_set/thumb_instruction_set_encoding_32_bit/thumb_coprocessor_advanced_simd_and_floating_point_instructions/mrc_t2.py
24351564450f9932155c2a5dc2732bd0fd535b06
[ "MIT" ]
permissive
doronz88/armulator
b864135996f876c7857b79a314d4aa06cc19c549
0294feac2785c8947e5943ac0c34f941ee4b5fff
refs/heads/master
2022-11-05T08:14:42.405335
2020-06-18T23:53:17
2020-06-18T23:53:17
273,363,061
2
0
null
2020-06-18T23:51:03
2020-06-18T23:51:02
null
UTF-8
Python
false
false
738
py
from armulator.armv6.opcodes.abstract_opcodes.mrc import Mrc from armulator.armv6.opcodes.opcode import Opcode from armulator.armv6.arm_exceptions import UndefinedInstructionException class MrcT2(Mrc, Opcode): def __init__(self, instruction, cp, t): Opcode.__init__(self, instruction) Mrc.__init__(self, cp, t) def is_pc_changing_opcode(self): return False @staticmethod def from_bitarray(instr, processor): coproc = instr[20:24] rt = instr[16:20] if coproc[0:3] == "0b101": raise UndefinedInstructionException() elif rt.uint == 13: print "unpredictable" else: return MrcT2(instr, **{"cp": coproc.uint, "t": rt.uint})
[ "matan1008@gmail.com" ]
matan1008@gmail.com
075bbee43f1e72c7c79b99c707655a5804d0ba32
4296cb5b97a69382d1fe6b73753a2ffcd1d154c5
/abc/C/198.py
db0b3658e5eefde55e745e4ef8b00d3c2d351bc3
[]
no_license
tokuD/atcoder
a199a5fe92be54d0b66ceaf6158116984f52cd01
a95a0380af129109fcf48eb1d4994bbb52925320
refs/heads/master
2023-08-28T10:28:55.763895
2021-11-13T15:49:38
2021-11-13T15:49:38
371,675,666
0
0
null
null
null
null
UTF-8
Python
false
false
166
py
import math R,X,Y = map(int, input().split()) dis = math.sqrt(X**2+Y**2) ans = int(dis//R) if dis % R != 0: ans += 1 if ans == 1: ans += 1 print(ans)
[ "megumu112851@gmail.com" ]
megumu112851@gmail.com
2c7627e66788f1ff44c324f5799fc2d2f4f987d2
de0e09b1642472458dcd392484eeda5f490841ca
/HelloScrapy/spiders/zhilian.py
f2a8d9976d4e6bb1531689711fcbd57fa25aa328
[]
no_license
lesliebeijing/spider
e18d20821af732800e7cf7fdc117cd5b950c9e20
38dfd3edc26540f8ba17cfbaf2db3516f97c792b
refs/heads/master
2021-01-21T09:33:32.599900
2017-07-05T07:15:23
2017-07-05T07:15:23
91,656,955
0
0
null
null
null
null
UTF-8
Python
false
false
2,667
py
import scrapy from ..items import CompanyItem class ZhilianSpider(scrapy.Spider): name = "zhilian" search_keys = ['android', 'ios', 'java', '.net', 'c', 'c++', 'php', 'unity', 'unreal', 'linux', 'python', '测试', '嵌入式', '前端', '大数据', '运维', '机器学习'] def start_requests(self): for key in self.search_keys: url = 'http://sou.zhaopin.com/jobs/searchresult.ashx?jl=青岛&kw=%s&p=1&isadv=0' % key yield scrapy.Request(url=url, callback=self.parse) def parse(self, response): companies = response.css('table.newlist') for company in companies: name = company.css('td.gsmc a::text').extract_first() region = company.css('td.gzdd::text').extract_first() detail_url = company.css('td.gsmc a::attr(href)').extract_first() if detail_url and 'special.zhaopin.com' not in detail_url: yield scrapy.Request(detail_url, callback=self.parse_detail, meta={'name': name, 'region': region}) next_page = response.xpath('//li[@class="pagesDown-pos"]/a/@href').extract_first() if next_page: yield scrapy.Request(next_page, callback=self.parse) def parse_detail(self, response): name = response.meta.get('name') region = response.meta.get('region') table_desc = response.css('table.comTinyDes') items = table_desc.css('tr td span') nature = '' size = '' address = '' web_site = '' if len(items) == 8: nature = items[1].css('::text').extract_first() # 性质 size = items[3].css('::text').extract_first() # 公司规模 address = items[7].css('::text').extract_first() # 地址 elif len(items) == 10: nature = items[1].css('::text').extract_first() # 性质 size = items[3].css('::text').extract_first() # 公司规模 web_site = items[5].css('a::attr(href)').extract_first() # 网站 address = items[9].css('::text').extract_first() # 地址 if web_site and web_site == 'http://null': web_site = '' introduction = '' intros = response.xpath('//div[@class="company-content"]//*').extract() # 简介 for intro in intros: introduction += intro.strip() company_item = CompanyItem({ 'name': name, 'region': region, 'nature': nature, 'size': size, 'web_site': web_site, 'address': address, 'introduction': introduction }) yield company_item
[ "fanglin@chinayouthgroup.com" ]
fanglin@chinayouthgroup.com
42a8404053a7918bbbb30fb58779e7abde8170b9
0388a394341ec6fa13d3899aa9705ae8a631b5db
/code/NPI/pytorch/noisy_WikiData_CSQA/model_vanilla.py
e6e3e80425c4d9908b9bf841532e6991b675f14b
[]
no_license
CIPITR/SSRP
06f08c17b5a1cd8139cf55b27638a557c073ce18
8a4b46a6e068e5bff78c1f051380f36496a5cce8
refs/heads/master
2022-12-13T05:55:54.564735
2019-05-27T04:58:07
2019-05-27T04:58:07
188,771,043
10
4
null
2022-11-22T02:56:56
2019-05-27T04:31:23
Python
UTF-8
Python
false
false
102,229
py
from collections import defaultdict import numpy as np import torch import torch.nn as nn import math class NPI(nn.Module): def __init__(self, params, none_argtype_index, num_argtypes, num_programs, max_arguments, rel_index, type_index, rel_embedding, type_embedding, vocab_embed, program_to_argtype_table, program_to_targettype_table): super(NPI, self).__init__() self.seed = 1 np.random.seed(self.seed) torch.manual_seed(self.seed) self.params = params self.num_timesteps = params['num_timesteps'] self.max_num_phase_1_steps = self.num_timesteps / 2 self.state_dim = params['state_dim'] self.batch_size = params['batch_size'] self.prog_embed_dim = params['prog_embed_dim'] self.argtype_embed_dim = params['argtype_embed_dim'] self.var_embed_dim = params['var_embed_dim'] self.npi_core_dim = params['npi_core_dim'] self.env_dim = params['env_dim'] self.hidden_dim = params['hidden_dim'] self.empty_argtype_id = none_argtype_index self.sample_with = params["sample_with"] self.num_argtypes = num_argtypes self.num_progs = num_programs self.max_arguments = max_arguments self.max_num_var = params['max_num_var'] self.prog_key_dim = params['prog_key_dim'] self.var_key_dim = params['var_key_dim'] if params['use_key_as_onehot']: self.use_key_as_onehot = True self.var_key_dim = self.num_argtypes + self.max_num_var self.prog_key_dim = self.num_progs else: self.use_key_as_onehot = False self.max_len = params['max_len'] self.wikidata_embed_dim = params['wikidata_embed_dim'] self.text_embed_dim = params['text_embed_dim'] self.cell_dim = params['cell_dim'] self.eps = 1e-20 self.learning_rate = params['learning_rate'] self.beam_size = params['beam_size'] self.num_programs_to_sample = params['num_programs_to_sample'] self.num_variables_to_sample = params['num_variables_to_sample'] self.num_actions = self.num_variables_to_sample * self.num_programs_to_sample self.temperature = 0.1 self.terminate_threshold = 0.7 self.phase_change_threshold = 0.2 self.bias_to_gold_type_threshold = 0.3 self.rel_embedding = None self.query_rel_atten = None # program_table contains two parameters "Program_Embedding" and "Program_Keys". # Program_Keys is of dimension num_programs x prog_key_dim. # Program_Embedding is of dimension num_programs x prog_embed_dim self.program_embedding = None self.program_keys = None # program_to_argtype_table contains a list of list of integers of dimension num_programs x max_arguments self.program_to_argtype_table = None # self.argument_type_table contains a parameter "ArgumentType_Embedding". # No "Argument_Keys" is needed because argument types are determined by the program itself by looking up the self. # program_to_argtype_table. ArgumentType_Embedding is of dimension num_argtypes x argtype_embed_dim self.argumenttype_embedding = None # self.variable_table contains a parameter "Variable_Embedding" and "Variable_Keys". # Variable tables are 2-way table i.e. for every argument type, there is a list (of maximum upto) N variables of that type. # So Variable_Keys is of dimension number_of_argtypes x batch_size x max_num_var x var_key_dim (var_key_dim being used to Id the variable) # and "Variable_Embedding" being of dimension num_argtypes x batch_size x max_num_var x var_embed_dim self.variable_embedding = None self.variable_keys = None # self.variable_mask is of dimension num_argtypes x batch_size x max_num_var self.variable_mask = None # self.variable_atten_table contains the attention over all variables # declared till now. is of dimension num_argtypes x max_num_var self.variable_atten_table = None self.kb_attention = None assert self.beam_size <= self.num_programs_to_sample * self.num_variables_to_sample self.keep_prob = params['dropout_keep_prob'] self.global_program_indices_matrix = None self.dont_look_back_attention = params['dont_look_back_attention'] self.concat_query_npistate = params['concat_query_npistate'] self.query_attention = params['query_attention'] self.forced_normalize_ir = bool(1-params['normalize_length']) self.dtype_float = torch.float self.dtype_int64 = torch.long if torch.cuda.is_available(): self.device = torch.device("cuda") torch.set_default_tensor_type('torch.cuda.FloatTensor') else: self.device = torch.device("cpu") print 100*"$" print self.device print 100*"$" #if self.device=="cuda": #torch.int32 = torch.cuda.int32 #torch.float32 = torch.cuda.float32 #torch.int64 = torch.cuda.int64 #print 'changed dtypes to cuda' def create_cell_scopes(): self.dropout = nn.Dropout(1-self.keep_prob) self.elu = nn.ELU() self.batch_normalizer = nn.BatchNorm1d(self.npi_core_dim+self.var_embed_dim) self.npi_scope = "npi_scope" self.npi_rnn = nn.GRU(input_size=self.npi_core_dim+self.var_embed_dim, \ hidden_size=self.npi_core_dim, batch_first=False) self.env_scope = "env_scope" self.env_rnn = nn.GRU(input_size=self.var_embed_dim, hidden_size=self.env_dim, batch_first=False) self.sentence_scope = "sentence_scope" self.sentence_rnn = nn.GRU(input_size=self.wikidata_embed_dim+self.text_embed_dim, \ hidden_size=self.cell_dim, batch_first=True) self.reset_scope = 'reset_scope' self.reset_layer = nn.Linear(self.npi_core_dim, self.npi_core_dim) self.state_encoding_scope_1 = 'state_encoding_scope_layer1' self.state_encoding_layer1 = nn.Linear(self.npi_core_dim+self.var_embed_dim, self.hidden_dim) self.state_encoding_scope_2 = 'state_encoding_scope_layer2' self.state_encoding_layer2 = nn.Linear(self.hidden_dim, self.hidden_dim) self.state_encoding_scope_3 = 'state_encoding_scope_layer3' self.state_encoding_layer3 = nn.Linear(self.hidden_dim, self.state_dim) self.phase_change_scope = 'phase_change_scope' self.phase_change_layer = nn.Linear(self.npi_core_dim, 1) self.prog_key_scope1 = 'prog_net_fcc1' if self.concat_query_npistate: self.prog_key_layer1 = nn.Linear(self.npi_core_dim+self.var_embed_dim+self.cell_dim, self.prog_key_dim) else: self.prog_key_layer1 = nn.Linear(self.npi_core_dim+self.var_embed_dim, self.prog_key_dim) self.prog_key_scope2 = 'prog_net_fcc2' self.prog_key_layer2 = nn.Linear(self.prog_key_dim, self.prog_key_dim) self.inp_var_key_scope = 'inp_var_key_scope' self.inp_var_key_layer = nn.Linear(self.max_num_var, self.var_key_dim) self.get_target_var_key_and_embedding_arg_scope = 'get_target_var_key_and_embedding_arg_scope' self.target_var_key_and_embedding_arg_layer = nn.ModuleList([nn.Linear(2*self.argtype_embed_dim, self.argtype_embed_dim) \ for i in xrange(self.max_arguments)]) self.get_target_var_key_and_embedding_var_scope = 'get_target_var_key_and_embedding_var_scope' self.target_var_key_and_embedding_var_layer = nn.ModuleList([nn.Linear(2*self.var_embed_dim, self.var_embed_dim) \ for i in xrange(self.max_arguments)]) self.get_target_var_key_and_embedding_targetembed_scope = 'get_target_var_key_and_embedding_targetembed_scope' self.target_var_key_and_embedding_targetembed_layer = nn.Linear(self.var_embed_dim+self.argtype_embed_dim+\ self.prog_embed_dim, self.var_embed_dim) self.get_target_var_key_and_embedding_targetkey_scope = 'get_target_var_key_and_embedding_targetkey_scope' self.target_var_key_and_embedding_targetkey_layer = nn.Linear(self.var_embed_dim+self.argtype_embed_dim+\ self.prog_embed_dim, self.var_key_dim) self.update_attention_scope = 'update_attention_scope' self.update_attention_layer = nn.ModuleList([nn.Linear(self.max_num_var+self.npi_core_dim,self.max_num_var) \ for i in xrange(self.num_argtypes)]) self.batch_ids = torch.arange(0,self.batch_size,dtype = self.dtype_int64, device=self.device) # tensor is of dimension batch_size x 1 i.e. [0, 1, 2, ... batch_size] rel_embedding_mat = torch.tensor(rel_embedding, device=self.device, dtype=self.dtype_float) self.rel_embedding = nn.Embedding(rel_embedding.shape[0], rel_embedding.shape[1], _weight=rel_embedding_mat) type_embedding_mat = torch.tensor(type_embedding, device=self.device) self.type_embedding = nn.Embedding(type_embedding.shape[0], type_embedding.shape[1], _weight=type_embedding_mat) max_val = 6. / np.sqrt(self.cell_dim + self.wikidata_embed_dim) self.query_rel_atten = nn.Parameter(torch.tensor(np.random.normal(-max_val, max_val, [self.cell_dim, self.wikidata_embed_dim]), \ requires_grad=True, device=self.device)) word_embeddings_mat = torch.tensor(vocab_embed, device=self.device, dtype=self.dtype_float) self.word_embeddings = nn.Embedding(vocab_embed.shape[0], vocab_embed.shape[1], _weight=word_embeddings_mat) self.enc_scope_text = "encoder_text" max_val = 6. / np.sqrt(self.num_progs + self.prog_embed_dim) program_embedding_mat = torch.tensor(np.random.normal(-max_val, max_val, [self.num_progs, self.prog_embed_dim]), \ device=self.device, dtype=self.dtype_float) self.program_embedding = nn.Embedding(self.num_progs, self.prog_embed_dim, _weight=program_embedding_mat) max_val = 6. / np.sqrt(1 + self.hidden_dim) self.query_attention_h_mat = nn.Parameter(torch.tensor(np.random.normal(-max_val, max_val, [1, self.hidden_dim]), \ requires_grad=True, device=self.device, dtype=self.dtype_float)) max_val = 6. / np.sqrt(self.wikidata_embed_dim + self.var_embed_dim) self.preprocessed_var_emb_mat = nn.Parameter(torch.tensor(np.random.normal(-max_val, max_val, \ [self.wikidata_embed_dim, self.var_embed_dim]), \ requires_grad=True, device=self.device, \ dtype=self.dtype_float)) max_val = 6. / np.sqrt(self.num_progs + self.prog_key_dim) self.init_state = nn.Parameter(torch.zeros([1, self.cell_dim],requires_grad=True,device=self.device, dtype=self.dtype_float)) self.program_keys = nn.Parameter(torch.tensor(np.random.normal(-max_val, max_val, [self.num_progs, self.prog_key_dim]), \ requires_grad=True, device=self.device, dtype=self.dtype_float)) self.program_to_argtype_table = torch.tensor(program_to_argtype_table, device=self.device, \ dtype=self.dtype_int64) self.program_to_targettype_table = torch.tensor(program_to_targettype_table, device=self.device, dtype=self.dtype_int64) max_val = 6. /np.sqrt(self.num_argtypes + self.argtype_embed_dim) argtype_embedding_mat = torch.tensor(np.random.normal(-max_val, max_val, \ [self.num_argtypes, self.argtype_embed_dim]), \ device=self.device, dtype=self.dtype_float) self.argtype_embedding = nn.Embedding(self.num_argtypes, self.argtype_embed_dim, _weight=argtype_embedding_mat) self.program_to_num_arguments = torch.max(input=self.one_hot(self.program_to_argtype_table,depth=self.num_argtypes),dim=1)[0] #program_to_num_arguments is of dimension num_progs x num_argtypes # accomodating for the beam_size create_cell_scopes() def get_parameters(self): return (self.program_keys, self.program_embedding, self.word_embeddings, \ self.argtype_embedding, self.query_attention_h_mat) def create_placeholder(self): self.encoder_text_inputs_w2v = None self.encoder_text_inputs_kb_emb = None self.preprocessed_var_mask_table = [[None]*self.max_num_var]*self.num_argtypes self.preprocessed_var_emb_table = [[None]*self.max_num_var]*self.num_argtypes self.kb_attention = None self.progs_phase_1 = None self.progs_phase_2 = None self.gold_target_type = None self.randomness_threshold_beam_search = None self.DoPruning = None self.last_step_feasible_program = None self.bias_prog_sampling_with_target = None self.bias_prog_sampling_with_last_variable = None self.required_argtypes = None self.relaxed_reward_multipler = None self.IfPosIntermediateReward = None self.mask_IntermediateReward = None self.IntermediateReward = None def manual_gather_nd(self, params,indices): param_shape = list(params.shape) #print param_shape number_of_axes = indices.shape[-1] f_indices = self.map_index_to_flattened(indices,param_shape[0:number_of_axes]) f_params = params.contiguous().view([-1]+param_shape[number_of_axes:]) #this reshaping cannot be avoided return torch.index_select(f_params,0,f_indices) def get_final_feasible_progs_for_last_timestep(self, feasible_progs, beam_properties, beam_id, feasible_progs_for_last_timestep, t): if t == self.num_timesteps-1: feasible_progs_for_last_timestep = feasible_progs_for_last_timestep.type(feasible_progs[beam_id].dtype) #feasible_progs[beam_id] = tf.add(feasible_progs[beam_id], tf.zeros_like(feasible_progs[beam_id])) temp = torch.where((self.gold_target_type==beam_properties['target_type'][beam_id]), \ torch.ones_like(self.gold_target_type, device=self.device), \ torch.zeros_like(self.gold_target_type, device=self.device)) current_equal_to_gold_target_type = torch.unsqueeze(temp, dim=1).repeat([1, self.num_progs]).type(feasible_progs[beam_id].dtype) #current_equal_to_gold_target_type is of size batch_size x num_progs t1 = self.one_hot(torch.zeros([self.batch_size], device=self.device), depth=self.num_progs) t2 = self.one_hot((self.num_progs-1)*torch.ones([self.batch_size], device=self.device), depth=self.num_progs) temp = (t1 + t2).type(feasible_progs[beam_id].dtype) #temp is of size batch_size x num_progs feasible_progs_for_last_timestep = current_equal_to_gold_target_type*temp + (1-temp)*feasible_progs_for_last_timestep temp2 = (1-self.last_step_feasible_program)*feasible_progs[beam_id] + \ self.last_step_feasible_program*torch.mul(feasible_progs[beam_id], feasible_progs_for_last_timestep) temp3 = torch.unsqueeze(torch.sum((1-temp)*temp2, dim=1),dim=1).repeat([1,self.num_progs]) #temp3 is of dimension batch_size x num_progs feasible_progs[beam_id] = torch.where((temp3==0), feasible_progs[beam_id], temp2) return feasible_progs[beam_id] def forward(self, feed_dict): #with tf.device(tf.test.gpu_device_name()): with torch.no_grad(): self.variable_embedding = [] self.variable_keys = [] self.variable_atten_table = [] self.variable_mask = [] max_val = 6. / np.sqrt(self.max_num_var) for beam_id in xrange(self.beam_size): self.variable_embedding.append(torch.zeros([self.num_argtypes, self.batch_size, \ self.max_num_var, self.var_embed_dim], \ device=self.device)) self.variable_keys.append(torch.zeros([self.num_argtypes, self.batch_size, \ self.max_num_var, self.var_key_dim], \ device=self.device)) temp = torch.zeros([self.num_argtypes, self.batch_size, self.max_num_var], device=self.device) self.variable_atten_table.append(list(torch.unbind(temp, dim=0))) self.variable_mask.append(torch.zeros([self.num_argtypes, self.batch_size, self.max_num_var], \ device=self.device)) self.encoder_text_inputs_w2v = torch.tensor(feed_dict['encoder_text_inputs_w2v'], \ device=self.device, dtype=self.dtype_int64) self.preprocessed_var_mask_table = [[torch.tensor(feed_dict['preprocessed_var_mask_table'][i][j], \ device=self.device, dtype=self.dtype_float) \ for j in range(self.max_num_var)] for i in range(self.num_argtypes)] self.preprocessed_var_emb_table = [[torch.tensor(feed_dict['preprocessed_var_emb_table'][i][j], \ device=self.device, dtype=self.dtype_float) \ for j in range(self.max_num_var)] for i in range(self.num_argtypes)] self.encoder_text_inputs_kb_emb = torch.tensor(feed_dict['encoder_text_inputs_kb_emb'], \ device=self.device, dtype=self.dtype_float) self.kb_attention = torch.tensor(feed_dict['kb_attention'], device=self.device, dtype=self.dtype_float) self.progs_phase_1 = torch.tensor(feed_dict['progs_phase_1'], device=self.device, dtype=self.dtype_int64) self.progs_phase_2 = torch.tensor(feed_dict['progs_phase_2'], device=self.device, dtype=self.dtype_int64) self.gold_target_type = torch.tensor(feed_dict['gold_target_type'], device=self.device, dtype=self.dtype_int64) self.randomness_threshold_beam_search = torch.tensor(feed_dict['randomness_threshold_beam_search'], \ device=self.device, dtype=self.dtype_float) self.DoPruning = torch.tensor(feed_dict['DoPruning'], device=self.device, dtype=self.dtype_float) self.last_step_feasible_program = torch.tensor(feed_dict['last_step_feasible_program'], \ device=self.device, dtype=self.dtype_float) self.bias_prog_sampling_with_last_variable = torch.tensor(feed_dict['bias_prog_sampling_with_last_variable'], \ device=self.device, dtype=self.dtype_float) self.bias_prog_sampling_with_target = torch.tensor(feed_dict['bias_prog_sampling_with_target'], \ device=self.device, dtype=self.dtype_float) self.required_argtypes = torch.tensor(feed_dict['required_argtypes'], device=self.device, dtype=self.dtype_int64) self.relaxed_reward_multipler = torch.tensor(feed_dict['relaxed_reward_multipler'], device=self.device, \ dtype=self.dtype_float) sentence_state, attention_states = self.sentence_encoder() beam_properties = defaultdict(list) beam_properties['Model_Reward_Flag'] = [torch.zeros([self.batch_size], device=self.device) \ for beam_id in xrange(self.beam_size)] for beam_id in xrange(self.beam_size): beam_properties['Model_Reward_Flag'][beam_id] = self.add_preprocessed_output_to_variable_table(beam_id) init_h_states, init_e_state, init_target_var_embedding = self.reset_state(sentence_state) unswitched_beam_properties = defaultdict(list) beam_properties['h_states'] = [init_h_states for beam_id in xrange(self.beam_size)] beam_properties['h'] = [None for beam_id in xrange(self.beam_size)] beam_properties['e_state'] = [init_e_state for beam_id in xrange(self.beam_size)] beam_properties['target_var_embedding'] = [init_target_var_embedding for beam_id in xrange(self.beam_size)] beam_properties['prog_sampled_indices'] = [None for beam_id in xrange(self.beam_size)] beam_properties['input_var_sampled_indices'] = [None for beam_id in xrange(self.beam_size)] unswitched_beam_properties['total_beam_score'] = [torch.zeros([self.batch_size], device=self.device)] + \ [-30*torch.ones([self.batch_size], device=self.device) \ for beam_id in xrange(self.beam_size-1)] #beam_properties['total_beam_score'] = [tf.zeros([self.batch_size]) for beam_id in xrange(self.beam_size)] beam_properties['terminate'] = [torch.zeros([self.batch_size,1], device=self.device) \ for beam_id in xrange(self.beam_size)] beam_properties['length'] = [torch.zeros([self.batch_size,1], device=self.device) \ for beam_id in xrange(self.beam_size)] beam_properties['target_type'] = [torch.zeros([self.batch_size], device=self.device, dtype=self.dtype_int64) \ for beam_id in xrange(self.beam_size)] beam_properties['phase_elasticity'] = [torch.ones([self.batch_size,1], device=self.device) for beam_id in xrange(self.beam_size)] beam_properties['program_argument_table_index'] = [torch.ones([self.batch_size, self.num_progs, int(math.pow(self.max_num_var,self.max_arguments))], device=self.device) for beam_id in xrange(self.beam_size)] beam_properties['query_attentions_till_now'] = [torch.zeros([self.batch_size,self.max_len], device=self.device) for beam_id in xrange(self.beam_size)] self.debug_beam_terminate = defaultdict(list) beam_properties['none_count'] = [torch.zeros([self.batch_size,1], device=self.device) for beam_id in xrange(self.beam_size)] # beam_properties['check_penalization'] = [torch.zeros([self.batch_size,1], device=self.device) for beam_id in xrange(self.beam_size)] to_return_per_step_prob = -1*torch.ones([self.batch_size,self.beam_size,self.num_timesteps], device=self.device) #[-1*tf.ones([self.batch_size, self.beam_size]) for time_step in xrange(self.num_timesteps)] to_return_sequence_logprob = torch.zeros([self.batch_size, self.beam_size], device=self.device) # this should finally contain a tensor of batch_size x beam_size to_return_action_sequence = dict.fromkeys(['program_type','argument_type','target_type',\ 'target_table_index','argument_table_index']) for key in ['program_type','argument_type','target_type','target_table_index','argument_table_index']: to_return_action_sequence[key] = [[] for beam_id in xrange(self.beam_size)] self.entropy = torch.tensor(0, device=self.device, dtype=self.dtype_float) feasible_progs_for_last_timestep = self.get_feasible_progs_for_last_timestep() for t in xrange(self.num_timesteps): entropy = torch.tensor(0, device=self.device, dtype=self.dtype_float) # ============================================================================= current_beam_score = [score+0 for score in unswitched_beam_properties['total_beam_score']] if t > 0: beam_properties['phase_elasticity'] = [self.phase_change_net(h.view([self.batch_size, -1]),t, old_p_el) \ for h,old_p_el in zip(beam_properties['h'], beam_properties['phase_elasticity'])] feasible_progs = self.get_feasible_progs(t, beam_properties['phase_elasticity']) to_penalize_beams = [torch.zeros([self.batch_size,self.num_actions], device=self.device) for beam_id in xrange(self.beam_size)] for beam_id in xrange(self.beam_size): beam_properties['e_state'][beam_id] = self.env_encoding(beam_properties['e_state'][beam_id], \ beam_properties['target_var_embedding'][beam_id])[1] [beam_properties['h'][beam_id], beam_properties['h_states'][beam_id]] = self.npi_core(beam_properties['h_states'][beam_id], \ beam_properties['e_state'][beam_id], \ beam_properties['target_var_embedding'][beam_id]) feasible_progs[beam_id] = self.get_final_feasible_progs_for_last_timestep(feasible_progs, \ beam_properties, beam_id, feasible_progs_for_last_timestep, t) [prog_sampled_probs, prog_sampled_indices, \ prog_sampled_embeddings, kb_attention_for_sampled_progs, \ beam_properties['query_attentions_till_now'][beam_id]] = self.prog_net(beam_properties['h'][beam_id], sentence_state, attention_states, beam_properties['query_attentions_till_now'][beam_id], \ feasible_progs[beam_id], \ self.num_programs_to_sample, \ beam_properties['terminate'][beam_id], \ beam_properties['target_type'][beam_id]) # prog_sampled_probs batch_size x num_programs_to_sample # prog_sampled_indices batch_size x num_programs_to_sample # prog_sampled_embeddings is a tensor of shape batch_size x num_programs_to_sample x prog_embedding_dim # kb_attention_for_sampled_progs is a num_programs_to_sample length list a flat tensor of size max_var * max_var * max_var beam_properties['prog_sampled_indices'][beam_id] = prog_sampled_indices complete_action_probs = [] # for every sampled program will contain the probability of action obtained by sampling every possible var per_program_input_var_sampled_indices = [] #for every sampled program will contain the possible variable samples for _prog_sample_, _prog_embedding_, \ _kb_attention_for_sampled_progs_ , \ _program_prob_ in zip(list(torch.unbind(prog_sampled_indices, dim = 1)),\ list(torch.unbind(prog_sampled_embeddings, dim = 1)),\ list(torch.unbind(kb_attention_for_sampled_progs, dim = 0)),\ list(torch.unbind(prog_sampled_probs, dim = 1))): arg_types = self.argument_type_net(_prog_sample_)[0] past_program_variables = self.manual_gather_nd(beam_properties['program_argument_table_index'][beam_id], \ torch.cat([torch.unsqueeze(self.batch_ids, dim=1), torch.unsqueeze(_prog_sample_, dim=1)], dim=1)) #past_program_variables is of dimension batch_size x (max_arguments * max_num_var) input_var_sampled_probs, input_var_sampled_indices = self.input_var_net(beam_properties['h'][beam_id],\ arg_types, _prog_sample_, _prog_embedding_,\ _kb_attention_for_sampled_progs_, \ beam_id, self.num_variables_to_sample, \ beam_properties['terminate'][beam_id], \ past_program_variables)[0:-1] # input_var_sampled_indices has shape batch_size x num_variables_to_sample # input_var_sampled_probs has shape batch_size x num_variables_to_sample per_program_input_var_sampled_indices.append(input_var_sampled_indices) complete_action_probs.append(torch.mul(input_var_sampled_probs, _program_prob_.view([-1,1]))) beam_properties['input_var_sampled_indices'][beam_id] = torch.stack(per_program_input_var_sampled_indices, dim=1) # beam_properties['input_var_sampled_indices'] is beam_sized list containing tensors of # shape batch_size x num_programs_to_sample x num_variables_to_sample complete_action_probs = torch.stack(complete_action_probs, dim=1) #complete_action_probs is a tensor of shape batch_size x num_progs_to_sample x num_vars_to_sample complete_action_probs = complete_action_probs.view([self.batch_size,-1]) #complete_action_probs is a tensor of shape batch_size x num_actions. # each program and joint_variables selectiont becomes an action complete_action_probs = torch.clamp(complete_action_probs,self.eps,0.9) log_complete_action_probs = torch.log(complete_action_probs) entropy = entropy+ (-1*torch.sum(complete_action_probs*log_complete_action_probs)) if self.params['normalize_length'] is 1: if t is 0: current_beam_score[beam_id] = log_complete_action_probs + torch.unsqueeze(current_beam_score[beam_id],dim=1) else: score_if_terminated = log_complete_action_probs + torch.unsqueeze(current_beam_score[beam_id],dim=1) power = 0.4 n1 = torch.pow(beam_properties['length'][beam_id], power)/torch.pow(beam_properties['length'][beam_id]+1.0, power) n2 = 1.0/torch.pow(beam_properties['length'][beam_id]+1.0, power) score_if_not_terminated = n2*log_complete_action_probs + n1*torch.unsqueeze(current_beam_score[beam_id],dim=1) old_cbs = torch.unsqueeze(current_beam_score[beam_id],dim=1)*torch.ones_like(log_complete_action_probs, device=self.device) current_beam_score[beam_id] = beam_properties['terminate'][beam_id]*score_if_terminated + \ (1-beam_properties['terminate'][beam_id])*score_if_not_terminated current_beam_score[beam_id] = torch.where(current_beam_score[beam_id]>old_cbs, old_cbs,current_beam_score[beam_id]) else: current_beam_score[beam_id] = log_complete_action_probs + torch.unsqueeze(current_beam_score[beam_id],dim=1) if self.params['none_decay'] is 1: power_decay = 0.2 penalize_factor = torch.mul(beam_properties['none_count'][beam_id].type(self.dtype_float),\ -1*torch.log(torch.tensor(math.pow(t+1,power_decay), device=self.device)* torch.ones_like(beam_properties['none_count'][beam_id], device=self.device, dtype=self.dtype_float))) current_beam_score[beam_id] = current_beam_score[beam_id]+penalize_factor beam_target_type = beam_properties['target_type'][beam_id].view([self.batch_size, 1]) beam_gold_type = self.gold_target_type.view([self.batch_size, 1]) beam_if_terminated = beam_properties['terminate'][beam_id] if self.params['prune_beam_type_mismatch'] is 1: # print self.DoPruning, "$___DoPruning___$" toadd = self.DoPruning*self.check_if_gold_target(beam_target_type, beam_gold_type, beam_if_terminated, t) # toadd = self.check_if_gold_target(beam_target_type, beam_gold_type, beam_if_terminated, t) to_penalize_beams[beam_id] = toadd+to_penalize_beams[beam_id] # print 100*"#" # print to_penalize_beams[0] # print 100*"#" # beam_properties['check_penalization'][beam_id] = to_penalize_beams[beam_id] if t > 0: penalize_none_start = torch.where(beam_target_type==0,\ torch.ones_like(beam_target_type, device=self.device),torch.zeros_like(beam_target_type, device=self.device)).type(self.dtype_float) to_penalize_beams[beam_id] = penalize_none_start + to_penalize_beams[beam_id] to_penalize_beams[beam_id] = torch.clamp(to_penalize_beams[beam_id],0,1) current_beam_score[beam_id] = torch.clamp(current_beam_score[beam_id],2*math.log(self.eps),0) self.entropy = self.entropy+entropy current_score = torch.stack(current_beam_score,dim = 1) #current_score is a tensor of shape batch_size x beam_size x num_actions to_penalize_score = torch.stack(to_penalize_beams,dim = 1) # flag_penalize = torch.min(to_penalize_score,dim=1,keepdim=True)[0] flag_penalize = torch.prod(to_penalize_score,dim=1,keepdim=True) to_penalize_score = to_penalize_score * (1-flag_penalize) to_penalize_score = math.log(self.eps)*to_penalize_score current_score = current_score+to_penalize_score current_score = torch.clamp(current_score,2*math.log(self.eps),0) self.debug_beam_terminate['current_score'].append(current_score) current_score = current_score.view([self.batch_size,-1]) top_scores, indices_top_scores = torch.topk(current_score, k = self.beam_size) # top_scores has shape batch_size x beam_size # indices_top_scores has shape batch_size x beam_size to_return_sequence_logprob = top_scores+0 #to_return_sequence_logprob has shape batch_size x beam_size old_score = torch.stack(unswitched_beam_properties['total_beam_score']) #need to transform this old_score w.r.t changes in beam_id #old_score has shape beam_size x batch_size #updating the score list unswitched_beam_properties['total_beam_score'] = list(torch.unbind(top_scores,dim = 1)) new_beam_ids, action_ids = self.map_index_to_unflattened(indices_top_scores, [self.beam_size, self.num_actions]) #new_beam_ids has shape batch_size x beam_size # action_ids has shape batch_size x beam_size action_ids = torch.transpose(action_ids, 1,0) # action_ids has shape beam_size x batch_size # updating the memory w.r.t beams new_beam_ids = torch.transpose(new_beam_ids,1,0) #new_beam_ids has shape beam_size x batch_size self.debug_beam_terminate['new_beam_ids'].append(new_beam_ids) #updating old_score w.r.t change in beam_ids old_score = self.beam_switch(old_score, new_beam_ids) # ============================================================================= # updating the to_return_per_step_prob w.r.t beam_id changes if t > 0: old_prop_val = to_return_per_step_prob+0 old_prop_val = torch.transpose(old_prop_val, 1,0) to_return_per_step_prob = self.beam_switch(old_prop_val, new_beam_ids) to_return_per_step_prob = torch.transpose(to_return_per_step_prob, 1,0) # ______________________________________________________________________________ ################################################################################ # ============================================================================= # For Printing Per Step Prob delta_score = to_return_sequence_logprob-torch.transpose(old_score, 1,0) current_probs = torch.exp(delta_score) multiplier = self.one_hot(t*torch.ones([self.batch_size, self.beam_size], device=self.device), depth = self.num_timesteps, dtype=self.dtype_float) additand = torch.mul(multiplier, current_probs.view([self.batch_size, self.beam_size,1]).repeat(1,1,self.num_timesteps)) additand2 = torch.mul(to_return_per_step_prob,1-multiplier) to_return_per_step_prob = additand2+additand # ______________________________________________________________________________ ################################################################################ self.debug_beam_terminate['to_return_per_step_prob'].append(to_return_per_step_prob) self.debug_beam_terminate['to_return_sequence_logprob'].append(torch.exp(to_return_sequence_logprob)) # ============================================================================= # updating the beam_properties w.r.t beam_id changes for prop in beam_properties.keys(): old_prop_val = torch.stack(beam_properties[prop],dim=0) # each beam_prop will be of shape beam_size x batch_size x Tensor_shape new_prop_val = self.beam_switch(old_prop_val, new_beam_ids) beam_properties[prop] = list(torch.unbind(new_prop_val, dim = 0)) # ______________________________________________________________________________ ############################################################################### # ============================================================================= # updating the variable properties corresponding to beams w.r.t beam_id changes # variable_properties are :- #variable_embedding - beam_size x [num_argtypes, batch_size, max_num_var, var_embed_dim] #variable_keys - beam_size x [num_argtypes, batch_size, max_num_var, var_key_dim] #variable_mask - beam_size x [num_argtypes, batch_size, max_num_var] #variable_atten_table - beam_size x num_argtypes x [batch_size, max_num_var] # keeping in mind beam_size #1)variable_embedding old_prop_val = torch.stack(self.variable_embedding, dim=0) old_prop_val = old_prop_val.permute([0,2,1,3,4]) # now old_prop_val has shape beam_size x batch_size x (tensor_shape = num_argtypes x max_num_var x var_embed_dim) new_prop_val = self.beam_switch(old_prop_val, new_beam_ids) self.variable_embedding = list(torch.unbind(new_prop_val.permute([0,2,1,3,4]), dim = 0)) # variable_embedding beam_size x [num_argtypes, batch_size, max_num_var, var_embed_dim] #2)variable_keys old_prop_val = torch.stack(self.variable_keys, dim=0) # old_prop_val [beam_size, num_argtypes, batch_size, max_num_var, var_key_dim] old_prop_val = old_prop_val.permute([0,2,1,3,4]) new_prop_val = self.beam_switch(old_prop_val, new_beam_ids) self.variable_keys = list(torch.unbind(new_prop_val.permute([0,2,1,3,4]), dim = 0)) # variable_keys beam_size x [num_argtypes, batch_size, max_num_var, var_key_dim] #3)variable_mask old_prop_val = torch.stack(self.variable_mask, dim=0) # old_prop_val [beam_size, num_argtypes, batch_size, max_num_var] old_prop_val = old_prop_val.permute([0,2,1,3]) new_prop_val = self.beam_switch(old_prop_val, new_beam_ids) self.variable_mask = list(torch.unbind(new_prop_val.permute([0,2,1,3]), dim = 0)) # variable_mask beam_size x [num_argtypes, batch_size, max_num_var] #4)variable attention table #variable_atten_table - beam_size x num_argtypes x [batch_size, max_num_var] old_prop_val = [] for beam_id in xrange(self.beam_size): old_prop_val.append(torch.stack(self.variable_atten_table[beam_id], dim=1)) old_prop_val = torch.stack(old_prop_val, dim = 0) # old_prop_val [beam_size, batch_size, num_argtypes, max_num_var] new_prop_val = self.beam_switch(old_prop_val, new_beam_ids) temp = list(torch.unbind(new_prop_val.permute([0,2,1,3]), dim = 0)) self.variable_atten_table = [list(torch.unbind(_temp_, dim = 0)) for (beam_id, _temp_) in \ zip(xrange(self.beam_size), temp)] # variable_atten_table beam_size x num_argtypes x [batch_size, max_num_var] # done updating beam_memory # done updating variable_memeory # ______________________________________________________________________________ ############################################################################### # ============================================================================= # have to update to_return_action_* w.r.t to change in beam_id if t > 0: for key in ['program_type','argument_type','target_type','target_table_index','argument_table_index']: # to_return_action_sequence beam_size x seq_length x [tensor_shape] old_prop_val = [] for beam_id in xrange(self.beam_size): temp = torch.stack(to_return_action_sequence[key][beam_id], dim=1) # temp [seq_length x tensor_shape] old_prop_val.append(temp) old_prop_val = torch.stack(old_prop_val, dim = 0) # beam_size x batch_size x seq_length x tensor_shape new_prop_val = self.beam_switch(old_prop_val, new_beam_ids) temp = torch.unbind(new_prop_val, dim = 0) to_return_action_sequence[key] = [list(torch.unbind(_temp_, dim = 1)) for (beam_id, _temp_) in \ zip(xrange(self.beam_size), temp)] #print key, ':: to_return_action_sequence[',key,']', to_return_action_sequence[key] # done updating to_return_action_* w.r.t to change in beam_id # _____________________________________________________________________________ ############################################################################### # ============================================================================= #getting the pointer to program sample and pointer to variable sample from action_id [pointer_to_prog_sample, \ pointer_to_variable_sample] = self.map_index_to_unflattened(action_ids,[self.num_programs_to_sample,\ self.num_variables_to_sample]) # pointer_to_prog_sample has shape beam_size x batch_size # pointer_to_variable_sample has shape beam_size x batch_size # getting the actual program samples # pointer_to_prog_sample beam_size x batch_size multiplicand_2 = torch.stack(beam_properties['prog_sampled_indices'], dim = 0) #multiplicand_2 beam_size x batch_size x num_programs_to_sample multiplicand_1 = self.one_hot(pointer_to_prog_sample, depth=self.num_programs_to_sample, dtype=multiplicand_2.dtype) #multiplicand_1 beam_size x batch_size x num_programs_to_sample true_program_sample = torch.sum(torch.mul(multiplicand_1, multiplicand_2), dim = 2) #true_program_sample is a tensor of shape beam_size x batch_size # _____________________________________________________________________________ ############################################################################### # ============================================================================= # checking if any beam has terminated for prog_samples, beam_id in zip(list(torch.unbind(true_program_sample, dim = 0)), xrange(self.beam_size)): beam_properties['terminate'][beam_id] = self.terminate_net(prog_samples, beam_properties['terminate'][beam_id]) #update the length beam_properties['length'][beam_id] = beam_properties['length'][beam_id] + (1.0-beam_properties['terminate'][beam_id]) beam_properties['none_count'][beam_id] = self.none_finder_net(prog_samples) # _____________________________________________________________________________ ############################################################################### # ============================================================================= # getting the actual variable samples # beam_properties['input_var_sampled_indices'] is a list of length beam_size with # tensor of shape [batch_size x num_programs_to_sample x num_variables_to_sample] multiplicand_1 = torch.stack(beam_properties['input_var_sampled_indices'], dim = 0) multiplicand_2 = torch.unsqueeze(self.one_hot(pointer_to_prog_sample, depth = self.num_programs_to_sample, dtype=multiplicand_1.dtype), dim = 3) flattened_input_var_sample = torch.sum(torch.mul(multiplicand_1, multiplicand_2),dim = 2) # flattened_input_var_sample has shape [beam_size x batch_size x num_variables_to_sample] multiplicand_1 = flattened_input_var_sample multiplicand_2 = self.one_hot(pointer_to_variable_sample, depth = self.num_variables_to_sample, dtype=multiplicand_1.dtype) flattened_input_var_sample = torch.sum(torch.mul(multiplicand_1, multiplicand_2), dim = 2) # flattened_input_var_sample has shape [beam_size x batch_size] actual_var_samples_list = self.map_index_to_unflattened(flattened_input_var_sample, \ [self.max_num_var for _ in xrange(self.max_arguments)]) # is a max_arguments sized list containing tensors of shape [beam_size x batch_size] # this contains the actual variable samples #print 'actual_var_samples_list ', actual_var_samples_list actual_var_samples_list = list(torch.unbind(torch.stack(actual_var_samples_list,dim = 2).type(self.dtype_int64), dim = 0)) # actual_var_samples_list is a list of beam_size length containing tensors of shape [batch_size x max_arguments] # _____________________________________________________________________________ ############################################################################### # ============================================================================= # Code For Preventing step repitition in generated trajectories # need to do a scatter update on 'program_argument_table_index' and set used steps to 0 index_0 = torch.range(0,self.beam_size*self.batch_size-1,device = self.device, dtype=self.dtype_int64) # index_0 has shape [(beam_size*batch_size)] index_1 = true_program_sample.view([-1]) # index_1 has shape [(beam_size*batch_size)] index_2 = flattened_input_var_sample.view([-1]) # index_2 has shape [(beam_size*batch_size)] new_value = torch.ones_like(index_1, device=self.device) b1 = (index_1==torch.zeros_like(index_1, device=self.device)).type(self.dtype_float) b2 = (index_1==self.num_progs-1*torch.ones_like(index_1,device=self.device)).type(self.dtype_float) new_value = torch.where(torch.max(b1,b2)>0, new_value, 0*new_value) old_property_value = torch.stack(beam_properties['program_argument_table_index'], dim = 0) # old_property_value has shape beam_size x batch_size x num_progs x (max_arguments*max_num_var) old_property_value = old_property_value.view([-1, self.num_progs, int(math.pow(self.max_num_var,self.max_arguments))]) index_for_scatter = torch.stack([index_0, index_1, index_2], dim = 1) old_property_value = self.immutable_scatter_nd_constant_update(old_property_value, index_for_scatter, new_value) old_property_value = old_property_value.view([self.beam_size, self.batch_size, self.num_progs,\ int(math.pow(self.max_num_var,self.max_arguments))]) beam_properties['program_argument_table_index'] = torch.unbind(old_property_value) true_program_sample = true_program_sample.type(self.dtype_int64) # _____________________________________________________________________________ ############################################################################### # ============================================================================= # returning the program samples and similar stuff for beam_id, true_prog_samples, true_var_samples in zip(xrange(self.beam_size),\ list(torch.unbind(true_program_sample)), actual_var_samples_list): to_return_action_sequence['program_type'][beam_id].append(true_prog_samples) arg_types, argtype_embedding = self.argument_type_net(true_prog_samples) to_return_action_sequence['argument_type'][beam_id].append(torch.transpose(arg_types, 1,0)) to_return_action_sequence['argument_table_index'][beam_id].append(true_var_samples) #with tf.device('/cpu:0'): target_types = torch.index_select(self.program_to_targettype_table, 0, true_prog_samples) to_return_action_sequence['target_type'][beam_id].append(target_types) # ============================================================================= # need to track current target program type so that we can terminate if gold type occurs condition = torch.max((target_types==torch.zeros_like(target_types, device=self.device)).type(self.dtype_float), (target_types==(self.num_progs-1*torch.ones_like(target_types,device=self.device))).type(self.dtype_float)) beam_properties['target_type'][beam_id] = torch.where(condition>0., beam_properties['target_type'][beam_id].type(self.dtype_int64), target_types) # _____________________________________________________________________________ prog_sampled_embeddings = self.program_embedding(true_prog_samples) argtypes = list(torch.unbind(arg_types, dim=0)) var_embed = [self.manual_gather_nd(self.variable_embedding[beam_id], torch.stack([argtypes[i], self.batch_ids], dim=1)) \ for i in xrange(self.max_arguments)] #var_embed is a max_arguments sized list of batch_size x max_num_var x var_embed_dim var_sample = list(torch.unbind(true_var_samples, dim = 1)) # var_sample is a max_arguments sized list of tensors of shape batch_size var_sample_index = [torch.stack([self.batch_ids, var_sample[i]], dim=1) for i in range(self.max_arguments)] input_var_embedding = [self.manual_gather_nd(var_embed[i], var_sample_index[i]) for i in xrange(self.max_arguments)] num_variables_till_now, R_Flag = self.get_num_variables_till_now(beam_id, target_types) [target_var_key, \ beam_properties['target_var_embedding'][beam_id]] = self.target_var_net(input_var_embedding, \ argtype_embedding, \ prog_sampled_embeddings, num_variables_till_now, \ target_types) self.add_to_variable_table(target_types, target_var_key,\ beam_properties['target_var_embedding'][beam_id], \ num_variables_till_now, beam_id = beam_id) # ============================================================================= # whenever any variable table overflows we need to give negative reward for that beam_properties['Model_Reward_Flag'][beam_id] = beam_properties['Model_Reward_Flag'][beam_id]+R_Flag # _____________________________________________________________________________ to_return_action_sequence['target_table_index'][beam_id].append(num_variables_till_now) # _____________________________________________________________________________ ############################################################################### # reshaping stuff so that it can be handled by main function for beam_id in xrange(self.beam_size): for i in xrange(self.num_timesteps): to_return_action_sequence['argument_table_index'][beam_id][i] = list(torch.unbind(\ to_return_action_sequence['argument_table_index'][beam_id][i],dim = 0)) # ============================================================================= #setting the Model Reward FLAG to_return_action_sequence['Model_Reward_Flag'] = beam_properties['Model_Reward_Flag'] # _____________________________________________________________________________ ############################################################################### # to_return_action_sequence['argument_table_index'] is a list of length beam_size containing a list of # length num_timesteps containing a list of max argument length with tensors of shape batch size self.ProgramProb = torch.exp(to_return_sequence_logprob) self.logProgramProb = to_return_sequence_logprob self.per_step_prob = to_return_per_step_prob self.entropy = self.entropy/self.num_timesteps # print 100*'%' # print beam_properties['target_type'] # print beam_properties['terminate'] # print self.gold_target_type # print beam_properties['check_penalization'] # print 100*'%' return to_return_action_sequence, torch.exp(to_return_sequence_logprob), \ to_return_sequence_logprob, self.debug_beam_terminate, to_return_per_step_prob, self.entropy/self.num_timesteps def get_feasible_progs(self, timestep, phase_elasticity): num_variables = [torch.transpose(torch.sum(self.variable_mask[i], dim=2, dtype=self.dtype_int64), 1,0) for i in range(len(self.variable_mask))] #num_variables is a beam_size sized list of dimension batch_size x num_argtypes num_variables_remaining = [self.required_argtypes - num_variables[i] for i in range(len(self.variable_mask))] num_variables_remaining = [torch.where(num_variables_remaining[i]>0, num_variables_remaining[i], torch.zeros_like(num_variables_remaining[i], device=self.device)) for i in range(len(self.variable_mask))] num_variables_remaining = [torch.unsqueeze(num_variables_remaining[i], 1).repeat([1, self.num_progs, 1]) for i in range(len(self.variable_mask))] program_to_targettype_onehot = self.one_hot(self.program_to_targettype_table, depth=self.num_argtypes) #program_to_targettype_onehot is of dimension num_progs x num_argtypes # print num_variables_remaining[0].dtype,program_to_targettype_onehot.dtype reqd_programs = [torch.max(torch.mul(num_variables_remaining[i], program_to_targettype_onehot), dim=2)[0].type(self.dtype_float) for i in range(len(self.variable_mask))] #reqd_programs is a beam_size sized list of dimension batch_size x num_progs #self.program_to_num_arguments is of dimension num_progs x num_argtypes num_variable_types = [torch.max(self.variable_mask[i], dim=2)[0].type(self.dtype_int64) for i in range(len(self.variable_mask))] #num_variable_types is a beam_size sized list of dimension num_argtypes x batch_size num_variable_types = [torch.unsqueeze(num_variable_types[i],dim=0).repeat([self.num_progs,1,1]).permute([2,0,1]) for i in \ range(len(self.variable_mask))] #num_variable_types is a beam_size sized list of dimension batch_size x num_progs x num_argtypes feasible_progs = [torch.where(num_variable_types[i]>=self.program_to_num_arguments, \ torch.ones_like(num_variable_types[i], device=self.device), torch.zeros_like(num_variable_types[i], device=self.device)) \ for i in range(len(self.variable_mask))] #feasible_progs is of dimension batch_size x num_progs x num_argtypes feasible_progs = [torch.prod(feasible_progs[i], dim=2).type(self.dtype_float) for i in range(len(self.variable_mask))] #feasible_progs is of dimension batch_size x num_progs program_to_kb_attention = torch.max(self.kb_attention, dim=2)[0] feasible_progs = [torch.mul(program_to_kb_attention, feasible_progs[i]) for i in range(len(self.variable_mask))] def separate_phases(arg): feasible_prog = arg[0] phase_elasticity = arg[1] if timestep < self.max_num_phase_1_steps: temp = phase_elasticity.repeat([1,self.num_progs]) multiplicand1 = self.progs_phase_1.type(self.dtype_float) else: temp = (1-phase_elasticity).repeat([1,self.num_progs]) multiplicand1 = self.progs_phase_2.type(self.dtype_float) multiplicand2 = 1 - multiplicand1 multiplicand = torch.mul(temp, multiplicand1) + torch.mul(1-temp, multiplicand2) feasible_prog = torch.mul(feasible_prog, multiplicand) return feasible_prog feasible_progs = map(separate_phases, zip(feasible_progs,phase_elasticity)) # ============================================================================= # Hard Rules temp = self.one_hot(torch.zeros([self.batch_size], device=self.device), depth=self.num_progs, dtype=self.dtype_float) feasible_progs = [temp + (1-temp)*feasible_progs[i] for i in range(len(self.variable_mask))] if timestep == 0: def make_none_impossible(prog_mask): temp = self.one_hot(torch.zeros([self.batch_size], device=self.device), depth = self.num_progs, dtype=self.dtype_float) new_mask = -1*temp + (1-temp) prog_mask = torch.mul(new_mask, prog_mask) return prog_mask feasible_progs = map(make_none_impossible,feasible_progs) # _____________________________________________________________________________ #print 'feasible progs ', [feasible_progs[i] for i in range(len(self.variable_mask))] #print 'feasible_progs[i]+reqd_programs[i] ', [feasible_progs[i]+reqd_programs[i] for i in range(len(self.variable_mask))] feasible_progs_new = [torch.where(feasible_progs[i]>0, feasible_progs[i]+reqd_programs[i], feasible_progs[i]) for i in range(len(self.variable_mask))] feasible_progs = [torch.mul(self.bias_prog_sampling_with_target, feasible_progs_new[i]) + torch.mul((1.0-self.bias_prog_sampling_with_target), feasible_progs[i]) for i in range(len(self.variable_mask))] return feasible_progs def add_preprocessed_output_to_variable_table(self, beam_id): R_Flag = torch.zeros([self.batch_size], device=self.device) for i in xrange(self.num_argtypes): if i==self.empty_argtype_id: continue for j in xrange(self.max_num_var): ones = i*torch.ones([1, self.batch_size], dtype=self.dtype_int64, device=self.device) empties = self.empty_argtype_id*torch.ones([self.max_arguments-1, self.batch_size], dtype=self.dtype_int64, device=self.device) argtype = torch.cat([ones, empties], dim=0) #argtype is of dimension max_arguments x batch_size argtype_embed = self.argtype_embedding(argtype) input_var_embedding = torch.unsqueeze(torch.matmul(self.preprocessed_var_emb_table[i][j], self.preprocessed_var_emb_mat), dim=0) #input_var_embedding is of dimension 1 x batch_size x var_embed_dim zeros_embedding = torch.zeros([self.max_arguments-1, self.batch_size, self.var_embed_dim], device=self.device) input_var_embedding = torch.cat([input_var_embedding, zeros_embedding], dim=0) #input_var_embedding is of dimension max_arguments x batch_size x var_embed_dim target_types = i*torch.ones([self.batch_size], device=self.device, dtype=self.dtype_int64) num_variables_till_now, cur_r_flag = self.get_num_variables_till_now(beam_id, target_types) [target_var_key, \ target_var_embedding] = self.target_var_net_for_preprocessed_output(input_var_embedding, argtype_embed, num_variables_till_now, target_types) #target_types is of dimension batch_size self.add_to_variable_table(target_types, target_var_key, target_var_embedding, num_variables_till_now, beam_id = beam_id) R_Flag = R_Flag + cur_r_flag # once variable props from preprocessing are copied to main variable table # update main variable mask. Initialize main variable mask with the masks in preprocessed variable mask table self.variable_mask[beam_id] = torch.stack([torch.stack(temp, dim = 1) for temp in \ self.preprocessed_var_mask_table], dim = 0) self.variable_atten_table[beam_id] = list(torch.unbind(self.variable_mask[beam_id]+0)) return R_Flag def sentence_encoder(self): sentence_outputs = None rnn_inputs_w2v = self.word_embeddings(self.encoder_text_inputs_w2v) rnn_inputs_kb_emb = self.encoder_text_inputs_kb_emb rnn_inputs = torch.cat([rnn_inputs_w2v, rnn_inputs_kb_emb], dim = 2) init_state = torch.unsqueeze(self.init_state.repeat([self.batch_size, 1]), dim=0) print rnn_inputs.shape, init_state.shape sentence_outputs, states = self.sentence_rnn(rnn_inputs, init_state) attention_states = torch.transpose(sentence_outputs.view([self.batch_size,self.max_len,-1]), 1,0) #attention_states is of dimension max_len x batch_size x cell_dim return states, attention_states def get_feasible_progs_for_last_timestep(self): gold_type = self.gold_target_type #gold_type is of dimension batch_size gold_type = torch.unsqueeze(gold_type, dim=1).repeat([1, self.num_progs]) #gold_type is of dimension batch_size x num_progs feasible_progs_for_last_timestep = torch.where((gold_type==self.program_to_targettype_table), torch.ones_like(gold_type, device=self.device), torch.zeros_like(gold_type, device=self.device)) #feasible_progs_for_last_timestep is of dimension batch_size x num_progs return feasible_progs_for_last_timestep def attention_on_relations(self, attention_states): attention_states = torch.matmul(torch.matmul(attention_states, self.query_rel_atten), torch.transpose(self.rel_embedding,1,0)) attention_states = torch.sum(attention_states, dim=0) attention_states = nn.functional.softmax(attention_states) #attention_states is of dimension batch_size x num_rel return attention_states def attention_on_types(self, attention_states): attention_states = torch.matmul(torch.matmul(attention_states, self.query_type_atten), torch.transpose(self.type_embedding,1,0)) attention_states = torch.sum(attention_states, dim=0) attention_states = nn.functional.softmax(attention_states) return attention_states def reset_state(self, sentence_state): zero_state = torch.zeros([self.batch_size, self.npi_core_dim],device=self.device) h_states = zero_state e_state = self.dropout(self.elu(self.reset_layer(sentence_state))) target_var_embedding = torch.zeros([self.batch_size, self.var_embed_dim],device=self.device) h_states = torch.unsqueeze(h_states, dim=0) return h_states, e_state, target_var_embedding def npi_core(self, h_state, e_state, target_var_embedding): s_in = torch.unsqueeze(self.state_encoding(e_state, target_var_embedding), dim=0) #s_in is of dimension 1 x batch_size x state_dim target_var_embedding = torch.unsqueeze(target_var_embedding, dim=0) c = torch.cat([s_in, target_var_embedding], dim=2) #c is of dimension 1 x batch_size x (state_dim + var_embed_dim) #c = torch.transpose(c, 1,0) h_state, c = self.npi_rnn(c, h_state) #h_state is of dimension batch_size x npi_core_dim return c, h_state def env_encoding(self, e_state, target_var_embedding): c = torch.unsqueeze(target_var_embedding,dim=0) #c is of dimension 1 x batch_size x var_embed_dim #c = torch.transpose(c, 1,0) c, e_state = self.env_rnn(c, e_state) return c, e_state def state_encoding(self, e_state, target_var_embedding): merge = torch.cat([e_state.view([self.batch_size, -1]), target_var_embedding], dim=1) #merge is of dimension batch_size x (self.npi_core_dim+var_embed_dim) elu = self.dropout(self.elu(self.state_encoding_layer1(merge))) #elu is of dimension batch_size x hidden_dim elu = self.dropout(self.elu(self.state_encoding_layer2(elu))) #elu is of dimension batch_size x hidden_dim out = self.dropout(self.elu(self.state_encoding_layer3(elu))) #out is of dimension batch_size x state_dim return out def terminate_net(self, progs_taken, old_terminate): temp1 = torch.ones_like(progs_taken, device=self.device, dtype=self.dtype_int64) temp2 = torch.zeros_like(progs_taken, device=self.device, dtype=self.dtype_int64) # 0 is the None action terminate = torch.where((progs_taken==self.num_progs-1), temp1, temp2) terminate = terminate.view([self.batch_size, 1]).type(old_terminate.dtype) terminate = torch.where(terminate>=old_terminate, terminate, old_terminate) return terminate # this will return tensor of shape batch_size x 1 def none_finder_net(self, progs_taken): temp1 = torch.ones_like(progs_taken, device=self.device) temp2 = torch.zeros_like(progs_taken, device=self.device) # 0 is the None action out = torch.where((progs_taken==0), temp1, temp2) out = out.view([self.batch_size, 1]) return out # this will return tensor of shape batch_size x 1 def check_if_gold_target(self, beam_target_type, beam_gold_type, if_terminated, t): mask_same_type = torch.where((beam_target_type==beam_gold_type), torch.zeros_like(beam_target_type, device=self.device), \ torch.ones_like(beam_target_type, device=self.device)).type(self.dtype_float) if t < self.num_timesteps-1: return torch.mul(mask_same_type,if_terminated) else: return mask_same_type def phase_change_net(self, h, timestep, old_p_el): if timestep < self.max_num_phase_1_steps: p_el = self.dropout(self.phase_change_layer(h)) p_el = nn.functional.sigmoid(p_el) p_el = torch.where(p_el>old_p_el, old_p_el, p_el) temp = torch.ones_like(p_el, device=self.device) p_el = torch.where(p_el>self.phase_change_threshold, temp, p_el) return p_el else: temp = torch.zeros_like(old_p_el, device=self.device) return temp def prog_net(self, h, sentence_state, attention_states, query_attentions_till_now, feasible_progs, num_samples, terminate, last_target_type): #print 'feasible progs', feasible_progs #feasible_progs is of shape batch_size x num_progs # variable_mask beam_size x [num_argtypes, batch_size, max_num_var] #self.program_to_argtype_table is of dimension num_progs x max_arguments #last_target_type is of dimension batch_size last_target_type = last_target_type.view([-1,1,1]).repeat(1,self.num_progs, self.max_arguments) programs_consuming_last_targettype = torch.max(torch.where((self.program_to_argtype_table==last_target_type),\ torch.ones_like(last_target_type, dtype=self.dtype_int64, device=self.device), torch.zeros_like(last_target_type, device=self.device)), dim=2)[0].type(self.dtype_float) feasible_progs_new = torch.where(feasible_progs>0, feasible_progs+ programs_consuming_last_targettype, feasible_progs) feasible_progs = torch.mul(self.bias_prog_sampling_with_last_variable, feasible_progs_new) + torch.mul((1.0-self.bias_prog_sampling_with_target), feasible_progs) #programs_consuming_last_targettype is of dimension batch_size x num_progs #feasible_progs is of dimension batch_size x num_progs if self.concat_query_npistate: concat_hq = torch.cat([h, sentence_state], dim=1) else: concat_hq = h concat_hq = concat_hq.view([self.batch_size, -1]) if self.query_attention: query_attention = torch.mul(attention_states, torch.mul(h, self.query_attention_h_mat)) #temp is of dimension max_len x batch_size x cell_dim query_attention = nn.functional.softmax(torch.sum(query_attention, dim=2), dim=0) #query_attention is of dimension max_len x batch_size if self.dont_look_back_attention: query_attentions_till_now = torch.transpose(query_attentions_till_now, 1,0) query_attention = nn.functional.softmax(torch.mul(1.-query_attentions_till_now, query_attention), dim=0) query_attentions_till_now = nn.functional.softmax(query_attentions_till_now+query_attention, dim=0) query_attentions_till_now = torch.transpose(query_attentions_till_now, 1,0) query_attention = torch.unsqueeze(query_attention, dim=2) query_attention = torch.sum(torch.mul(query_attention, attention_states), dim=0) concat_hq = torch.cat([concat_hq, query_attention], dim=1) hidden = self.dropout(self.prog_key_layer1(concat_hq)) key = self.dropout(self.prog_key_layer2(hidden)) key = key.view([-1, 1, self.prog_key_dim]) prog_sim = torch.mul(key, self.program_keys) prog_dist = torch.sum(prog_sim, 2) prog_dist = nn.functional.softmax(prog_dist, dim=1) if self.params['terminate_prog'] is True: temp = self.one_hot((self.num_progs-1)*torch.ones([self.batch_size], device=self.device), depth=self.num_progs, dtype=self.dtype_float) feasible_progs = terminate*temp + (1-terminate)*feasible_progs prog_dist = torch.mul(prog_dist, feasible_progs) #prog_dist is of dimension batch_size x num_progs prog_sampled_probs, prog_sampled_indices = self.bernoulli_program_sampling(prog_dist, num_samples) prog_sampled_probs = torch.div(prog_sampled_probs,torch.sum(torch.clamp(prog_dist,0,1), dim=1, keepdim=True)) # prog_sampled_probs is a tensor of shape batch_size x num_samples # prog_sampled_indices is a tensor of shape batch_size x num_samples prog_sampled_embeddings = self.program_embedding(prog_sampled_indices) # prog_sampled_embeddings is a tensor of shape batch_size x num_samples x prog_embed_dim list_program_sample_index = list(torch.unbind(prog_sampled_indices,dim=1)) # list_program_sample_index is a num_samples length list composed of batch_size sized tensors kb_attention_for_sampled_progs = [] for prog_sample_index in list_program_sample_index: prog_sample_index = torch.stack([self.batch_ids, prog_sample_index], dim=1) kb_attention_for_sampled_progs.append(self.manual_gather_nd(self.kb_attention, prog_sample_index)) # kb_attention_for_sampled_progs is a num_samples length list composed of batch_size x max_var x max_var x max_var sized tensors return prog_sampled_probs, prog_sampled_indices, prog_sampled_embeddings, \ torch.stack(kb_attention_for_sampled_progs, dim = 0), query_attentions_till_now def argument_type_net(self, prog_sample): #with tf.device('/cpu:0'): arg_types = torch.index_select(self.program_to_argtype_table, 0, prog_sample) # argtypes is of dimension batch_size x max_arguments # argtypes is a list of argument types for that sampled program # in order to handle different length argtypes in a batch, # consider that for every program there is max upto N arguments only (with padding whenever necessary) argtype_embedding = self.argtype_embedding(arg_types) #argtype_embeddign is of dimension batch_size x max_arguments x argtype_embed_dim arg_types = torch.transpose(arg_types, 1,0) argtype_embedding = torch.transpose(argtype_embedding, 1,0) #argtype_embeddign is of dimension max_arguments x batch_size x argtype_embed_dim return arg_types, argtype_embedding def input_var_net(self, h, arg_types, prog_sample, prog_embedding, kb_attention, beam_id, num_samples, terminate, past_program_variables): #prog_sample is of batch_size target_types = torch.index_select(self.program_to_targettype_table, 0, prog_sample) # targettypes is of dimension batch_size argtypes = list(torch.unbind(arg_types, dim=0)) # argtypes is a max_arguments sized list of dimension batch_size each local_var_atten = torch.stack(self.variable_atten_table[beam_id], dim=0) #with tf.device('/cpu:0'): var_atten = [self.manual_gather_nd(local_var_atten,torch.stack([argtypes[i], self.batch_ids], dim=1)) \ for i in xrange(self.max_arguments)] # var_atten is a max_arguments sized list of batch_size x max_num_var #with tf.device('/cpu:0'): var_mask = [self.manual_gather_nd(self.variable_mask[beam_id],torch.stack([argtypes[i], self.batch_ids], dim=1)) \ for i in xrange(self.max_arguments)] # var_mask is a max_arguments sized list of batch_size x max_num_var var_atten = [self.update_attention(var_atten[i], h, i) for i in range(self.max_arguments)] var_atten = [self.mask_attention(var_atten[i], var_mask[i]) for i in xrange(self.max_arguments)] # var_atten is a max_arguments sized list of batch_size x max_num_var #with tf.device('/cpu:0'): var_keys = [self.manual_gather_nd(self.variable_keys[beam_id], torch.stack([argtypes[i], self.batch_ids], dim=1)) \ for i in xrange(self.max_arguments)] # var_keys is a max_arguments sized list of batch_size x max_num_var x var_key_dim # var_atten is a max_arguments sized list of batch_size x max_num_var key = [self.dropout(self.elu(self.inp_var_key_layer(var_atten[i]))) for i in xrange(self.max_arguments)] key = [key[i].view([-1, 1, self.var_key_dim]) for i in xrange(self.max_arguments)] var_sim = [torch.mul(key[i], var_keys[i]) for i in xrange(self.max_arguments)] # var_sim is of dimension batch_size x max_num_var x var_key_dim var_dist = [torch.sum(var_sim[i], 2) for i in xrange(self.max_arguments)] var_dist = [nn.functional.softmax(var_dist[i], dim=1) for i in xrange(self.max_arguments)] var_dist = [torch.mul(var_dist[i],var_mask[i]) for i in xrange(self.max_arguments)] # var_dist is a max_arguments sized list of dimension batch_size x max_num_var # we have to get the joint distribution over the different arguments. var_dist = torch.stack(var_dist,dim=1) #var_mask is of dimension batch_size x max_arguments x max_num_var split_var_dist = list(torch.unbind(var_dist, dim=0)) # split_var_dist is a batch_size sized list of dimension max_arguments x max_num_var joint_var_dist = [] for _var_dist_ in split_var_dist: list_vectors_dist = list(torch.unbind(_var_dist_,dim=0)) joint_var_dist.append(self.recursive_joint_prob_generator(list_vectors_dist)) joint_var_dist = torch.stack(joint_var_dist,dim=0) flattened_joint_var_dist = joint_var_dist.view([self.batch_size,-1]) flattened_joint_var_dist = torch.mul(flattened_joint_var_dist, kb_attention) flattened_joint_var_dist = torch.mul(flattened_joint_var_dist, past_program_variables) # ============================================================================= # ensuring all 0 variable probability vector is handled appropriately marker = torch.mean(flattened_joint_var_dist,dim = 1, keepdim=True) marker = torch.where((marker==0), 0*torch.ones_like(marker, device=self.device), torch.ones_like(marker, device=self.device)) flattened_joint_var_dist = self.mask_attention(flattened_joint_var_dist, torch.ones_like(flattened_joint_var_dist, device=self.device)) flattened_joint_var_dist = torch.mul(flattened_joint_var_dist, marker) # ______________________________________________________________________________ var_sampled_probs, var_sampled_indices = torch.topk(flattened_joint_var_dist, k = num_samples) # var_sampled_probs is a tensor of shape batch_size x num_samples # var_sampled_indices is a tensor of shape batch_size x num_samples return var_sampled_probs, var_sampled_indices, target_types def get_num_variables_till_now(self, beam_id, targettypes): t = torch.stack([targettypes.type(self.dtype_int64), self.batch_ids], dim=1) var_mask = self.manual_gather_nd(self.variable_mask[beam_id], t) # var_mask is of dimension batch_size x max_num_var num_variables_till_now = torch.sum(var_mask, dim=1).type(self.dtype_int64) # num_variables_till_now = num_variables_till_now.type(self.dtype_int64) # num_variables_till_now is of dimension batch_size # ================================================================================================================= # for None arg_type we should always ensure there is only one element in table to have consistent probabilities # 0 is none type num_variables_till_now = torch.where(targettypes==0, torch.zeros_like(num_variables_till_now, device=self.device), num_variables_till_now) # ================================================================================================================= # ============================================================================= # Return a negative reward if table overpopulates temp = (self.max_num_var-1) * torch.ones_like(num_variables_till_now, device=self.device) R_Flag = torch.zeros_like(num_variables_till_now, device=self.device, dtype=self.dtype_float) R_Flag = torch.where(num_variables_till_now > temp, 1+R_Flag, R_Flag) # Overpopulation - Rewrite last entry in table num_variables_till_now = torch.where(num_variables_till_now > temp, temp, num_variables_till_now) return num_variables_till_now, R_Flag def target_var_net(self, input_var_embedding, argtype_embedding, prog_embedding, num_variables_till_now, target_type): var_embedding = torch.stack(input_var_embedding, dim=0) #var_embedding is of dimension max_arguments x batch_size x var_embed_dim argument_type_embedding = argtype_embedding #argument_type_embedding is of dimension max_arguments x batch_size x argtype_embed_dim target_var_key, target_var_embedding = self.get_target_var_key_and_embedding(var_embedding, \ prog_embedding, \ argument_type_embedding, \ num_variables_till_now, target_type) #prog_embedding is of dimension batch_size x prog_embed_dim #target_var_embedding is of dimension batch_size x var_embed_dim #target_var_key is of dimension batch_size x var_key_dim return target_var_key, target_var_embedding def target_var_net_for_preprocessed_output(self, input_var_embedding, argtype_embedding, num_variables_till_now, target_type): [target_var_key, \ target_var_embedding] = self.get_target_var_key_and_embedding(input_var_embedding, None, argtype_embedding, num_variables_till_now, target_type) return target_var_key, target_var_embedding def add_to_variable_table(self, targettypes, target_var_key, target_var_embedding, num_variables_till_now, beam_id = None): # ============================================================================= indices_to_update = torch.stack([targettypes, self.batch_ids, num_variables_till_now], dim=1) # indices_to_update is of dimension batch_size x 3 # variable_mask is of dimension num_argtypes x batch_size x max_num_var mask_value_to_update = torch.ones([self.batch_size], device=self.device) self.variable_mask[beam_id] = self.immutable_scatter_nd_constant_update(self.variable_mask[beam_id], \ indices_to_update, mask_value_to_update) # variable_mask is of dimension num_argtypes x batch_size x max_num_var self.variable_keys[beam_id] = self.immutable_scatter_nd_1d_update(self.variable_keys[beam_id], \ indices_to_update, target_var_key) # self.variable_keys is of dimension num_argtypes x batch_size x max_num_var x var_key_dim self.variable_embedding[beam_id] = self.immutable_scatter_nd_1d_update(self.variable_embedding[beam_id], \ indices_to_update, target_var_embedding) # self.variable_embedding is of dimension num_argtypes x batch_size x max_num_var x var_embed_dim #### VARIABLE_ATTENTION TABLE ALSO NEEDED TO BE UPDATED (SO THAT THE NEWLY ADDED ROW DOES NOT GET 0 ATTENTION) local_var_atten = torch.stack(self.variable_atten_table[beam_id], dim=0) # local_var_atten has shape = [self.num_argtypes, self.batch_size, self.max_num_var] local_var_atten = self.immutable_scatter_nd_constant_update(local_var_atten, indices_to_update, mask_value_to_update) self.variable_atten_table[beam_id] = list(torch.unbind(torch.nn.functional.normalize(local_var_atten,p=1, dim = 2), dim = 0)) def get_target_var_key_and_embedding(self, var_embedding, prog_embedding, argtype_embedding, num_variables_till_now, target_type): #var_embedding is of dimension max_arguments x batch_size x var_embed_dim #prog_embedding is of dimension batch_size x prog_embed_dim #argtype_embedding is of dimension max_arguments x batch_size x argtype_embed_dim #target_var_embedding is batch_size x var_embed_dim #var_embedding and prog_embedding may be None if prog_embedding is None: prog_embedding = torch.zeros([self.batch_size, self.prog_embed_dim], device=self.device) list_argtype_embedding = list(torch.unbind(argtype_embedding, dim = 0)) input_1 = list_argtype_embedding[0] input_2 = list_argtype_embedding[1] for current_argtype_id in range(len(list_argtype_embedding)): input_1 = self.dropout(self.elu(self.target_var_key_and_embedding_arg_layer[current_argtype_id](torch.cat([input_1,input_2],dim=1)))) # temp = torch.cat([input_1,input_2],dim=1) # input_1 = self.target_var_key_and_embedding_arg_layer[current_argtype_id](temp) if current_argtype_id + 2 > len(list_argtype_embedding)-1: break input_2 = list_argtype_embedding[current_argtype_id+2] l2_input_1 = input_1 list_var_embedding = list(torch.unbind(var_embedding, dim = 0)) input_1 = list_var_embedding[0] input_2 = list_var_embedding[1] for current_var_id in range(len(list_var_embedding)): input_1 = self.dropout(self.elu(self.target_var_key_and_embedding_var_layer[current_var_id](torch.cat([input_1, input_2],dim=1)))) if current_var_id + 2 > len(list_var_embedding)-1: break input_2 = list_var_embedding[current_var_id+2] l2_input_2 = input_1 l2_input_3 = prog_embedding l2_input = torch.cat([l2_input_1,l2_input_2,l2_input_3],dim=1) target_var_embedding = self.dropout(self.elu(self.target_var_key_and_embedding_targetembed_layer(l2_input))) if self.use_key_as_onehot: target_type_onehot = self.one_hot(target_type, depth=self.num_argtypes) num_variables_till_now_onehot = self.one_hot(num_variables_till_now, depth=self.max_num_var) #target_type_onehot is batch_size x num_argtypes #num_variables_till_now_onehot is batch_size x max_num_var target_var_key = torch.cat([target_type_onehot, num_variables_till_now_onehot], dim=1) else: target_var_key = self.dropout(self.elu(self.target_var_key_and_embedding_targetkey_layer(l2_input))) return target_var_key, target_var_embedding def update_attention(self, static_atten, h, i): #static_atten is of dimension batch_size x num_var #h is of dimension batch_size x cell_dim inputs = torch.cat([static_atten,h.view([self.batch_size,-1])], dim = 1) new_static_atten = nn.functional.softmax(self.elu(self.update_attention_layer[i](inputs)), dim=-1) return new_static_atten def mask_attention(self, static_atten, mask): #static_atten is of dimension batch_size x num_var #mask is of dimension batch_size x num_var masked_atten = torch.mul(static_atten, mask) num = len(masked_atten.shape) l1norm = torch.sum(masked_atten, dim=1) stacked_norm = torch.mul(torch.ones_like(masked_atten, device=self.device),torch.unsqueeze(l1norm,num-1)) masked_atten = torch.where(stacked_norm==0, torch.ones_like(masked_atten, device=self.device), masked_atten) new_l1_norm = torch.sum(masked_atten, dim=1) masked_atten = masked_atten/new_l1_norm.view([-1,1]) return masked_atten def train(self, feed_dict2): with torch.no_grad(): self.Reward = torch.tensor(feed_dict2['reward'], dtype=self.dtype_float, device=self.device) #self.ProgramProb = feed_dict['ProgramProb'] #self.logProgramProb = feed_dict['logProgramProb'] #self.per_step_prob = feed_dict['per_step_prob'] #self.entropy = feed_dict['entropy'] self.IfPosIntermediateReward = torch.tensor(feed_dict2['IfPosIntermediateReward'], dtype=self.dtype_float, device=self.device) self.mask_IntermediateReward = torch.tensor(feed_dict2['mask_IntermediateReward'], dtype=self.dtype_float, device=self.device) self.IntermediateReward = torch.tensor(feed_dict2['IntermediateReward'], dtype=self.dtype_float, device=self.device) self.Relaxed_reward = torch.tensor(feed_dict2['Relaxed_reward'], dtype=self.dtype_float, device=self.device) overall_step_count = feed_dict2['overall_step_count'] def reinforce(): #mask_cnf = torch.where(self.Reward>0,torch.ones_like(self.Reward),torch.zeros_like(self.Reward)) current_baseline = torch.sum(torch.mul(self.Reward,self.ProgramProb),dim=1,keepdim=True).detach() #self.Relaxed_reward = tf.placeholder(tf.float32, [self.batch_size, self.beam_size]) current_baseline_relaxed = torch.div(torch.sum(torch.mul(self.Relaxed_reward, self.ProgramProb), dim=1, keepdim=True), torch.sum(self.ProgramProb,dim=1,keepdim=True)).detach() # from intermediate rewards #self.IfPosIntermediateReward = tf.placeholder(tf.float32, [self.batch_size, self.beam_size]) self.rate_intermediate_reward = self.params['lr_intermideate_reward'] #self.mask_IntermediateReward = tf.placeholder(tf.float32, [self.batch_size, self.beam_size, self.num_timesteps]) #self.IntermediateReward = tf.placeholder(tf.float32, [self.batch_size, self.beam_size]) int_reward = torch.mul(self.IntermediateReward,self.IfPosIntermediateReward) prob_intermediate = torch.mul(self.mask_IntermediateReward, self.per_step_prob) prob_intermediate = torch.where(self.mask_IntermediateReward==0,torch.ones_like(self.mask_IntermediateReward, device=self.device),prob_intermediate) prob_intermediate = torch.prod(prob_intermediate, dim = 2) if self.forced_normalize_ir: len_IntermediateReward = torch.sum(self.mask_IntermediateReward, dim=2) fraclen_IntermediateReward = (1.0/float(self.num_timesteps))*len_IntermediateReward prob_intermediate = torch.mul(fraclen_IntermediateReward, prob_intermediate) log_prob_intermediate = torch.log(prob_intermediate) unbackpropable_intermediate_prob = prob_intermediate.detach()#requires_grad_(False) baseline_ir = torch.sum(torch.mul(unbackpropable_intermediate_prob,int_reward), dim = 1, keepdim=True) #combining stuff new_baseline = current_baseline + baseline_ir new_baseline = torch.div(new_baseline,torch.sum(self.ProgramProb,dim=1,keepdim=True)+torch.sum(unbackpropable_intermediate_prob,dim=1,keepdim=True)) #self.OldBaseline = tf.placeholder(tf.float32,[self.batch_size,1]) final_baseline = new_baseline.detach() #final_baseline = (final_baseline + 0.5*self.OldBaseline)/1.5 #coming back to reinforce_main scaling_term_1 = torch.mul(self.ProgramProb,self.Reward-final_baseline).detach() loss_reinforce = torch.mul(self.logProgramProb, scaling_term_1) # if overall_step_count<=15: #loss_reinforce = torch.mul(loss_reinforce,mask_cnf) loss_reinforce = torch.where(torch.isnan(loss_reinforce), torch.zeros_like(loss_reinforce, device=self.device), loss_reinforce) loss_reinforce = torch.sum(torch.mean(loss_reinforce, dim = 0)) #coming back to intermediate reward part scaling_term_2 = torch.mul(self.IfPosIntermediateReward,torch.mul((int_reward - final_baseline) ,unbackpropable_intermediate_prob)).detach() loss_ir = torch.mul(scaling_term_2, log_prob_intermediate) loss_ir = torch.where(torch.isnan(loss_ir), torch.zeros_like(loss_ir, device=self.device), loss_ir) loss_ir = torch.sum(torch.mean(loss_ir,dim=0)) relaxed_scaling_term_1 = torch.mul(self.ProgramProb, self.Relaxed_reward-current_baseline_relaxed).detach() loss_relaxed_reinforce = torch.mul(self.logProgramProb, relaxed_scaling_term_1) loss_relaxed_reinforce = torch.where(torch.isnan(loss_relaxed_reinforce), torch.zeros_like(loss_relaxed_reinforce, device=self.device),\ loss_relaxed_reinforce) loss_relaxed_reinforce = torch.sum(torch.mean(loss_relaxed_reinforce,dim=0)) self.entropy = torch.where(torch.isnan(self.entropy), torch.zeros_like(self.entropy, device=self.device), self.entropy) self.entropy = self.entropy/self.batch_size loss = loss_reinforce + self.params['Rate_Entropy']*self.entropy + self.rate_intermediate_reward*loss_ir +\ torch.mul(self.relaxed_reward_multipler, loss_relaxed_reinforce) self.loss = loss return loss #val_grad_fn = tfe.value_and_gradients_function(reinforce)#tfe.implicit_gradients(self.reinforce) #value, grads_and_vars = val_grad_fn() #print grads_and_vars #self.optimizer.apply_gradients(grads_and_vars)#feed_dict2)) #return value return reinforce() def recursive_joint_prob_generator(self,list_dists): if len(list_dists) == 2: dist_1 = list_dists[0].view([-1,1]) dist_2 = list_dists[1].view([-1,1]) out = torch.matmul(dist_1,torch.transpose(dist_2,1,0)) return out else: current_dist = list_dists[-1] #has shape batch_size x max_num_var new_list_dists = list_dists[0:-1] probs_list = list(torch.unbind(current_dist, dim = 0)) penultimate_output = self.recursive_joint_prob_generator(new_list_dists) #has shape batch_size x max_num_var x max_num_var .... out = [] for prob in probs_list: #prob is tensor of shape batch_size out.append(torch.mul(penultimate_output,prob)) return torch.stack(out,dim = len(list_dists)-1) def map_index_to_unflattened(self,number,shape): out = [] for divisor in shape[::-1]: remainder = torch.remainder(number,divisor).type(self.dtype_int64)#number // divisor number = torch.div(number.type(self.dtype_float),float(divisor)).floor_()#number % divisor out.append(remainder) #print 'remainder ', remainder return out[::-1] def map_index_to_flattened(self,number, dimensions): number = number.type(self.dtype_int64) one = torch.tensor(1,dtype=self.dtype_int64,device=self.device) dimensions = list(torch.unbind(torch.tensor(dimensions, dtype=self.dtype_int64, device=self.device), dim = 0)) dimensions.append(one) out = [] for i in range(0,len(dimensions)-1): out.append(torch.prod(torch.stack(dimensions[i+1:] , dim = 0) ,dim = 0)) out = torch.stack(out) out = torch.mul(number,out) out = torch.sum(out, len(number.shape)-1) return out def immutable_scatter_nd_constant_update(self, inp1, inp2, inp3): shape = inp1.shape # inp1 = tf.to_float(inp1) inp1 = inp1.contiguous().view([-1]) #this reshaping cannot be avoided inp2 = self.map_index_to_flattened(inp2, shape) z1 = self.one_hot(inp2, list(inp1.shape)[0], dtype=inp3.dtype) z2 = inp3.view([-1,1]) z3 = torch.mul(z1,z2) update_input = torch.sum(z3+torch.zeros_like(inp1, device=self.device, dtype=inp3.dtype),dim = 0) m1 = torch.sum(z1, dim = 0).type(inp1.dtype) m1 = 1-m1 new_inp1 = torch.mul(inp1,m1) out = new_inp1 + update_input.type(new_inp1.dtype) return out.view(shape) def immutable_scatter_nd_1d_update(self, inp1, inp2, inp3): shape = inp1.shape dim = shape[-1] index_shape = shape[0:-1] # inp1 = tf.to_float(inp1) inp1 = inp1.contiguous().view([dim, -1]) #this reshaping cannot be avoided inp2 = self.map_index_to_flattened(inp2, index_shape) z1 = self.one_hot(inp2, inp1.shape[1], dtype=inp3.dtype) z1 = torch.unsqueeze(torch.transpose(z1,1,0),dim = 2) z2 = inp3.view([-1,dim]) z3 = torch.mul(z2,z1) update_input = torch.sum(z3,dim = 1) m1 = torch.sum(z1, dim = 1) m1 = 1-m1 inp1 = inp1.view([-1, dim]) new_inp1 = torch.mul(inp1,m1) out = new_inp1+update_input return out.view(shape) def beam_switch(self, old_prop_val, new_beam_ids): # the matrix should be input in the shape beam_size x batch_size x Tensor_shape old_shape = old_prop_val.shape old_prop_val = old_prop_val.contiguous().view([self.beam_size, self.batch_size, -1]) #this reshaping cannot be avoided new_prop_val = [] expanded_beam_ids = self.one_hot(new_beam_ids, depth = self.beam_size, dtype=old_prop_val.dtype) #expanded_beam_ids has shape beam_size x batch_size x beam_size expanded_beam_ids = torch.transpose(expanded_beam_ids,2,1) for multiplier in list(torch.unbind(expanded_beam_ids,dim=0)): multiplier = torch.unsqueeze(multiplier,dim=-1) new_prop_val.append(torch.sum(torch.mul(multiplier,old_prop_val), dim = 0)) new_prop_val = torch.stack(new_prop_val,dim = 0) new_prop_val = new_prop_val.view(old_shape) return new_prop_val def bernoulli_program_sampling(self,distribution, k): out1_vals, out1_ind = torch.topk(distribution, k) if self.params["explore"][0] is -1: return out1_vals, out1_ind p = torch.randn([])>self.randomness_threshold_beam_search p = p.type(self.dtype_float) # temp = torch.stack([torch.randperm(self.num_progs) for _ in xrange(self.batch_size)],dim=0) out2_ind = torch.randint_like(out1_ind,0,self.num_progs, device=self.device)#temp[:,0:k] multiplicand_1 = self.one_hot(out2_ind, depth=self.num_progs) multiplicand_1 = multiplicand_1.permute([1,0,2]) out2_vals = torch.sum(torch.mul(multiplicand_1.type(distribution.dtype), distribution), dim=2) out2_vals = out2_vals.permute([1,0]) out_ind = p*out1_ind.type(p.dtype)+(1-p)*out2_ind.type(p.dtype) out_vals = p*out1_vals+(1-p)*out2_vals return out_vals, out_ind.type(self.dtype_int64) def one_hot(self,batch,depth,dtype=None): n_dims = depth y_tensor = batch y_tensor = y_tensor.contiguous().view(-1, 1) y_one_hot = torch.zeros(y_tensor.size()[0], n_dims, dtype = self.dtype_int64, device=self.device).scatter_(1, y_tensor.type(self.dtype_int64), 1) y_one_hot = y_one_hot.view(*(list(batch.shape)+[-1])) if dtype is None: return y_one_hot return y_one_hot.type(dtype)
[ "ansarighulamahmed@gmail.com" ]
ansarighulamahmed@gmail.com
7f2f1467802cb3bede6075fc24762ea10ad53e32
aabcf2cd893dd8d938cb538956662d28cabd5074
/sql_staff.py
dceca10b6406739007246d23c9d20e9be816b14f
[]
no_license
vincenshen01/oldboy-day03
31afea1af7eb709aa3a2a87d2749eef8e40f3583
78b913de7320b9d0761c0d6132c7002fd3869eda
refs/heads/master
2021-06-13T22:30:14.361568
2017-02-08T15:40:16
2017-02-08T15:40:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,833
py
import re,sys,os from prettytable import PrettyTable class SQL_Staff(object): def __init__(self, *args): self.staff_list = [] self.staff_list2 = [] self.staff_count = 0 self.staff_id = 0 self.syntax = self.syntax_check(args[0]) # 语法检查 def select(self): staffs_info = self.__data_read(self.syntax[3]) # 获取staff数据列表 field_names = self.syntax[1].split(",") for staff in staffs_info: self.staff_list = [] staff_dict = self.data_process(staff) # 获取staff数据字典 if self.where_check(self.syntax,staff_dict): # Where条件判断 for field in field_names: self.staff_list.append(staff_dict.get(field)) self.staff_list2.append(self.staff_list) self.staff_count += 1 self.pt_staff_data(field_names,self.staff_list2) # 打印查询到的staff信息 print("总共查找到%d条记录!" %self.staff_count) def update(self): staffs_info = self.__data_read(self.syntax[1]) # 获取staff数据列表 for staff in staffs_info: staff_dict = self.data_process(staff) # 获取staff数据字典 if self.where_check(self.syntax,staff_dict): # Where条件判断 update_set = self.syntax[3].split("=") if "\"" in update_set[1]: staff_dict[update_set[0]] = update_set[1][1:-1] else: staff_dict[update_set[0]] = update_set[1] self.staff_count += 1 self.staff_list.append(self.staff_info_str(staff_dict)) # 将字典转换为字符串 self.__data_write(self.syntax[1],self.staff_list) # 数据写回文件 print("操作成功,总共更新%d条记录!" %self.staff_count) def delete(self): staff_info = self.__data_read(self.syntax[2]) #获取staff数据列表 for staff in staff_info: self.staff_id += 1 staff_dict = self.data_process(staff) # 获取staff数据字典 if self.where_check(self.syntax,staff_dict): # 判断语法结构 self.staff_count += 1 self.staff_id -= 1 continue else: staff_dict['staff_id'] = str(self.staff_id) # 更新staff_id self.staff_list.append(self.staff_info_str(staff_dict)) # 将字典转换为字符串 self.__data_write(self.syntax[2],self.staff_list) # 数据写回文件 print("操作成功,总共删除%d条记录!" %self.staff_count) def insert(self): staff_info = self.__data_read(self.syntax[2]) # 获取staff数据列表 staff_values = re.split(r',',self.syntax[4]) for i in range(len(staff_values)): # 去掉引号 if "\"" in staff_values[i]: staff_values[i] = staff_values[i].strip("\"") for staff in staff_info: staff_dict = self.data_process(staff) # 获取staff数据字典 if staff_values[2] in staff: print("Staff Phone已存在,不允许重复值!") return else: self.staff_list.append(self.staff_info_str(staff_dict)) # 将字典转换为字符串 self.staff_list.append(",".join([str(len(staff_info)+1),staff_values[0],staff_values[1],staff_values[2],staff_values[3],staff_values[4]])) # 将新增staff数据放到列表最后 self.__data_write(self.syntax[2],self.staff_list) # 数据写回文件 print("成功插入1条记录!") def __data_read(self,file_name): # 读取文件内容,返回列表 staff_info = [] with open(file_name,"r",encoding="utf-8") as f: for line in f.readlines(): staff_info.append(line.strip()) return staff_info def __data_write(self,file_name,staff_info): # 将列表转换为字符串,并写入文件 staff_str = "" with open(file_name,"w",encoding="utf-8") as f: for line in staff_info: staff_str += str(line) + "\n" f.write(staff_str) def data_process(self,data): # 将staff数据转换为字典 student_info = data.split(',') staff_dict = {'staff_id': student_info[0], 'name': student_info[1], 'age': student_info[2], 'phone': student_info[3], 'dept': student_info[4], 'enroll_date': student_info[5]} return staff_dict def pt_staff_data(self,fields_names,staff_data): # 格式化打印 pt_info = PrettyTable() pt_info.field_names = fields_names for staff in staff_data: pt_info.add_row(staff) print(pt_info) def syntax_check(self,syntax): # 检查语法结构,并做相应的转换 if (syntax[2].lower() == "from" or syntax[2].lower() == "set")\ and syntax[4].lower() == "where" and len(syntax) == 8: if "\"" in syntax[7]: syntax[7] = syntax[7][1:-1] if syntax[1] == "*": syntax[1] = "staff_id,name,age,phone,dept,enroll_date" return syntax elif syntax[1].lower() == "from" and syntax[3].lower() == "where" and len(syntax) == 7: if "\"" in syntax[6]: syntax[6] = syntax[6][1:-1] return syntax elif syntax[1].lower() == "into" and syntax[3].lower() == "values": syntax[4] = syntax[4][1:-1] return syntax else: sys.exit("语句错误,请重试!") def where_check(self,syntax,staff_dict): # 判断where条件是否成立 try: if len(syntax) == 8 and ((syntax[6] == "like" and ((syntax[7]) in staff_dict[syntax[5]])) or \ (syntax[6] == "=" and syntax[7] == staff_dict[syntax[5]]) or \ ((syntax[6] not in ["=", "like"]) and eval(staff_dict[syntax[5]] + syntax[6] + syntax[7]))): return True if len(syntax) == 7 and ((syntax[5] == "like" and ((syntax[6]) in staff_dict[syntax[4]])) or \ (syntax[5] == "=" and syntax[6] == staff_dict[syntax[4]]) or \ ((syntax[5] not in ["=","like"]) and eval(staff_dict[syntax[4]]+syntax[5]+syntax[6]))): return True except Exception as e: sys.exit("字段名错误,请重新输入!!!") def staff_info_str(self,staff_dict): # 将字典转换为字符串 staff_info= [staff_dict['staff_id'], staff_dict['name'], staff_dict['age'],staff_dict['phone'], staff_dict['dept'],staff_dict['enroll_date']] return ",".join(staff_info) if os.path.isfile("staff_table") == False: staff_lists = [ "1,李啸宇,22,13564081679,运维,2017-01-01", "2,高君,29,13911523752,IT,2014-08-02", "3,徐鹏,25,13811436953,运维,2015-01-01", "4,王耀华,77,13461044075,实习生,1937-01-21", "5,李家旺,69,17191195862,实习生,2017-01-21", "6,李西昌,27,17733786749,运维,2017-01-21", "7,李梦林,26,15910631989,QA,2016-10-11", "8,朱世阳,24,17744498194,运维,2017-01-07", "9,范洪涛,22,18611044558,运维,2017-01-01", "10,沈洪斌,29,18518740102,运维,2016-10-12", "11,李向阳,24,13622004447,运维,2017-01-01", "12,曲喆,42,18911324106,DBA,2017-01-20", "13,郭奇锋,26,18211144618,自动化测试,2017-01-15", "14,邱峰,30,18910627886,运维,2000-01-01", "15,贺磊,30,18500644534,开发,1998-07-01" ] staff_str = "" with open("staff_table", "w", encoding="utf-8") as f: for line in staff_lists: staff_str += str(line) + "\n" f.write(staff_str) if __name__ == '__main__': sql_doc = ''' 支持的SQL语法示例如下: * 查询: select staff_id,name,age from staff_table where age > 22 select * from staff_table where enroll_date like "2017" select * from staff_table where name = "沈洪斌" * 修改: update staff_table set dept="IT" where name = "沈洪斌" * 新增: insert into staff_table values ("Alex",33,13812345678,"讲师",2010-01-01) * 删除: delete from staff_table where staff_id = 4 ''' print(sql_doc) while True: sql_input = input("Please input SQL or Quit to exit >>>").strip() if len(sql_input) == 0: continue elif sql_input == "exit()": sys.exit("Bye!") try: sql_list = re.split(r'\s+',sql_input) sql_func = SQL_Staff(sql_list) getattr(sql_func,sql_list[0].lower())() except AttributeError as e: print("语句错误,请重新输入!!")
[ "vincen_shen01@163.com" ]
vincen_shen01@163.com
92b1d60775c5a946e457588e4223c33d69c9f03f
c744fb3edb70399674bcbbeaeec36324795eb968
/tests/env_test.py
c5f52fd43e87c8acd06e2f539e0217278791a5bf
[]
no_license
koulanurag/gym_x
821bccd76954d56198f040600955c04d2df8305b
e10214b71ade1e4d1696ef7ba083aad2be035073
refs/heads/master
2020-03-24T02:12:00.040812
2019-06-13T06:36:10
2019-06-13T06:36:10
142,366,133
4
0
null
null
null
null
UTF-8
Python
false
false
1,118
py
import gym, gym_x import os import random import argparse if __name__ == '__main__': parser = argparse.ArgumentParser(description='test env') parser.add_argument('--env', default='GoldRushRead-v0', help="Name of the environment") args = parser.parse_args() env = gym.make(args.env) env.seed(0) done = False for ep in range(100): done = False obs = env.reset() action = env.env.get_desired_action() total_reward = 0 all_observations = [obs] all_actions = [action] while not done: obs, reward, done, info = env.step(action) action = env.env.get_desired_action() total_reward += reward if not done: all_observations.append(obs) all_actions.append(action) print('Episode: {} Total Reward: {} Obs: {}, Action: {}'.format(ep, total_reward, ''.join([str(_[0]) for _ in all_observations]), all_actions))
[ "koulanurag@gmail.com" ]
koulanurag@gmail.com
855736cd1ff23002cda173ae8226d00a61d94c28
98f1ba8d6e4e8bacda4b8d0a6e08c05a7e426ee9
/padertorch/contrib/je/modules/norm.py
d37aa091803040d95ca0ac0b308d73ca8a63d6b6
[ "MIT" ]
permissive
FrederikRautenberg/padertorch
f73aa70ae4d79cc216c78d480fe6e1f2f1642a05
f33d38d944df1db955ad16af1fa7e6d9f3c47441
refs/heads/master
2022-12-19T10:07:16.658898
2020-06-10T18:01:17
2020-06-10T18:01:17
271,998,030
0
0
null
2020-06-13T11:45:07
2020-06-13T11:45:07
null
UTF-8
Python
false
false
12,085
py
import torch from padertorch.base import Module from torch import nn from torch.autograd import Function from padertorch.contrib.je.modules.global_pooling import compute_mask class Norm(Module): """ >>> norm = Norm(data_format='bct', shape=(None, 10, None), statistics_axis='bt', momentum=0.5, interpolation_factor=1.) >>> x, seq_len = 2*torch.ones((3,10,4)), [1, 2, 3] >>> norm.running_mean tensor([[[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.]]]) >>> norm.running_power tensor([[[1.], [1.], [1.], [1.], [1.], [1.], [1.], [1.], [1.], [1.]]]) >>> x = norm(x, seq_len) >>> norm.running_mean tensor([[[1.], [1.], [1.], [1.], [1.], [1.], [1.], [1.], [1.], [1.]]]) >>> norm.running_power tensor([[[2.5000], [2.5000], [2.5000], [2.5000], [2.5000], [2.5000], [2.5000], [2.5000], [2.5000], [2.5000]]]) """ def __init__( self, data_format='bcft', shape=None, *, statistics_axis='bft', independent_axis='c', batch_axis='b', sequence_axis='t', shift=True, scale=True, eps: float = 1e-3, momentum=0.95, interpolation_factor=0., ): super().__init__() self.data_format = data_format.lower() self.batch_axis = None if batch_axis is None \ else data_format.index(batch_axis.lower()) self.sequence_axis = None if sequence_axis is None \ else data_format.index(sequence_axis.lower()) self.statistics_axis = tuple( [data_format.index(ax.lower()) for ax in statistics_axis] ) self.shift = shift self.scale = scale self.eps = eps self.track_running_stats = batch_axis in statistics_axis if self.track_running_stats: reduced_shape = [*shape] for ax in self.statistics_axis: reduced_shape[ax] = 1 assert not any([d is None for d in reduced_shape]) self.register_buffer( 'num_tracked_values', torch.zeros(reduced_shape) ) if shift: self.register_buffer('running_mean', torch.zeros(reduced_shape)) else: self.register_parameter('running_mean', None) if scale: self.register_buffer('running_power', torch.ones(reduced_shape)) else: self.register_parameter('running_power', None) else: self.register_parameter('num_tracked_values', None) self.register_parameter('running_mean', None) self.register_parameter('running_power', None) self.momentum = momentum assert 0. <= interpolation_factor <= 1., interpolation_factor self.interpolation_factor = interpolation_factor if independent_axis is not None: reduced_shape = len(data_format) * [1] for ax in independent_axis: ax = data_format.index(ax.lower()) assert shape[ax] is not None, shape[ax] reduced_shape[ax] = shape[ax] if scale: self.gamma = nn.Parameter( torch.ones(reduced_shape), requires_grad=True ) else: self.gamma = None if self.shift: self.beta = nn.Parameter( torch.zeros(reduced_shape), requires_grad=True ) else: self.beta = None else: self.gamma = None self.beta = None @property def runnning_var(self): n = torch.max(self.num_tracked_values, 2. * torch.ones_like(self.num_tracked_values)) running_var = self.running_power if self.shift: running_var = n / (n-1) * (running_var - self.running_mean ** 2) running_var = running_var + self.eps assert (running_var >= 0).all(), running_var.min() return running_var def reset_running_stats(self): if self.track_running_stats: self.num_tracked_values.zero_() if self.shift: self.running_mean.zero_() if self.scale: self.running_power.fill_(1) def reset_parameters(self): self.reset_running_stats() if self.gamma is not None: nn.init.ones_(self.gamma.scale) if self.beta is not None: nn.init.zeros_(self.beta.shift) def forward(self, x, seq_len=None): if self.training or not self.track_running_stats: y, mean, power, n_values = normalize( x, gamma=self.gamma, beta=self.beta, statistics_axis=self.statistics_axis, batch_axis=self.batch_axis, sequence_axis=self.sequence_axis, seq_len=seq_len, shift=self.shift, scale=self.scale, eps=self.eps ) if self.track_running_stats: self.num_tracked_values += n_values.data if self.momentum is None: momentum = 1 - n_values / self.num_tracked_values.data else: momentum = self.momentum if self.shift: self.running_mean *= momentum self.running_mean += (1 - momentum) * mean.data power = power.data + mean.data ** 2 if self.scale: self.running_power *= momentum self.running_power += (1 - momentum) * power.data if self.interpolation_factor > 0.: # perform straight through backpropagation # https://arxiv.org/pdf/1611.01144.pdf y_ = x if self.shift: y_ = y_ - self.running_mean if self.scale: y_ = y_ / torch.sqrt(self.runnning_var) y = y + self.interpolation_factor * (y_ - y).detach() y = y * compute_mask(x, seq_len, self.batch_axis, self.sequence_axis) else: y = x if self.shift: y = y - self.running_mean.data if self.scale: y = y / torch.sqrt(self.runnning_var) if self.gamma is not None: y = y * self.gamma if self.beta is not None: y = y + self.beta y = y * compute_mask(x, seq_len, self.batch_axis, self.sequence_axis) return y def inverse(self, x): if not self.track_running_stats: raise NotImplementedError if self.beta is not None: x = x - self.beta if self.gamma is not None: x = x / self.gamma if self.scale: x = torch.sqrt(self.running_var) * x if self.shift: x = x + self.running_mean return x class Normalize(Function): @staticmethod def forward(ctx, x, gamma, beta, statistics_axis, batch_axis, sequence_axis, seq_len, shift, scale, eps): ctx.statistics_axis = statistics_axis ctx.batch_axis = batch_axis ctx.sequence_axis = sequence_axis ctx.seq_len = seq_len ctx.shift = shift ctx.scale = scale ctx.eps = eps # compute mask if seq_len is not None: mask = compute_mask(x, seq_len, batch_axis, sequence_axis) else: mask = torch.ones_like(x) # compute statistics n_values = mask.sum(dim=statistics_axis, keepdim=True) x = x * mask mean = x.sum(dim=statistics_axis, keepdim=True) / torch.max(n_values, torch.ones_like(n_values)) power = (x ** 2).sum(dim=statistics_axis, keepdim=True) / torch.max(n_values, torch.ones_like(n_values)) y = x if shift: y = y - mean power = power - mean**2 if scale: y = y / torch.sqrt(power + eps) ctx.save_for_backward(x, gamma, beta, mean, power) if gamma is not None: assert gamma.dim() == x.dim(), gamma.shape y = y * gamma if beta is not None: assert beta.dim() == x.dim(), beta.shape y = y + beta return y*mask, mean, power, n_values @staticmethod def backward(ctx, grad_y, grad_mean, grad_power, _): if (grad_mean != 0).any() or (grad_power != 0).any(): raise NotImplementedError x, gamma, beta, mean, power = ctx.saved_tensors # compute mask if ctx.seq_len is not None: mask = compute_mask(x, ctx.seq_len, ctx.batch_axis, ctx.sequence_axis) else: mask = torch.ones_like(x) n_values = mask.sum(dim=ctx.statistics_axis, keepdim=True) grad_y = grad_y * mask x_hat = x scale = torch.sqrt(power + ctx.eps) if ctx.scale: x_hat = x_hat - mean if ctx.scale: x_hat = x_hat / scale if beta is None: grad_beta = None else: reduce_axis = [i for i in range(beta.dim()) if beta.shape[i] == 1] grad_beta = grad_y.sum(reduce_axis, keepdim=True) if gamma is None: grad_gamma = None grad_x_hat = grad_y else: reduce_axis = [i for i in range(gamma.dim()) if gamma.shape[i] == 1] grad_gamma = (grad_y * x_hat).sum(reduce_axis, keepdim=True) grad_x_hat = grad_y * gamma if ctx.shift: x = (x - mean) * mask grad_mean_ = -grad_x_hat.sum(ctx.statistics_axis, keepdim=True) if ctx.scale: grad_power_ = (grad_x_hat * x).sum(ctx.statistics_axis, keepdim=True) * (-1 / 2) * (power + ctx.eps) ** (-3 / 2) if ctx.shift: grad_mean_ = ( grad_mean_ / scale - 2 * grad_power_ * x.sum(ctx.statistics_axis, keepdim=True) / n_values ) grad_x = grad_x_hat if ctx.scale: grad_x = grad_x / scale + grad_power_ * 2 * x / n_values if ctx.shift: grad_x = grad_x + grad_mean_ / n_values return grad_x * mask, grad_gamma, grad_beta, None, None, None, None, None, None, None def normalize(x, gamma, beta, statistics_axis, batch_axis, sequence_axis, seq_len, shift, scale, eps): """ >>> x, seq_len = 2*torch.ones((3,10,4)), [1, 2, 3] >>> x, m, p, n = normalize(x, None, None, [0, 2], 0, 2, seq_len, True, True, 1e-3) >>> m tensor([[[2.], [2.], [2.], [2.], [2.], [2.], [2.], [2.], [2.], [2.]]]) >>> p tensor([[[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.]]]) >>> n tensor([[[6.], [6.], [6.], [6.], [6.], [6.], [6.], [6.], [6.], [6.]]]) """ return Normalize.apply(x, gamma, beta, statistics_axis, batch_axis, sequence_axis, seq_len, shift, scale, eps) class PrintGrad(Function): @staticmethod def forward(ctx, input, i=0): ctx.i = i return input @staticmethod def backward(ctx, grad_output): print(ctx.i, grad_output.max().item()) assert not torch.isnan(grad_output).any() return grad_output, None
[ "ebbers@nt.upb.de" ]
ebbers@nt.upb.de
18a6809874be3f707774fe846eb234dd96ce85cf
a5d947fc7f253c8a27bfd022da652da56a9b31e2
/sem1/alglabs/lab2.py
a9d027b031f6bf38286d4b8890d5afddf371f492
[]
no_license
Aneryd/labs
8474597ac3d6c78877855cc5968538a36ec43109
d1685fd57e2187b0a76dc8008fbc7fa3c1b9e58b
refs/heads/master
2021-06-27T20:43:21.690976
2021-01-29T08:04:51
2021-01-29T08:04:51
213,151,395
0
1
null
null
null
null
UTF-8
Python
false
false
612
py
from random import randint def insertion_sort(nums): n = 0 for i in range(1, len(nums)): item_to_insert = nums[i] j = i - 1 n += 1 while j >= 0 and nums[j] > item_to_insert: nums[j + 1] = nums[j] j -= 1 nums[j + 1] = item_to_insert lists = [2, 0, 11, 4, 23, 1, 3, 41, 23, 5, 24, 54, 76, 14, 99] print(lists) n = 0 insertion_sort(lists) print(lists) for i in range(len(lists)): n += 1 if n == 5: lists.insert(5, 0) elif n == 10: lists.insert(11, 0) elif n == 15: lists.insert(17, 0) print(lists)
[ "andrey.zhalo@mail.ru" ]
andrey.zhalo@mail.ru
2c69d24430d77f75815399f9f178d6f0ae2fd184
d49d212da98803dc304603fa64bd9e92dc62f10a
/code/contextual_embeddings/ner2disrpt.py
0d781d50bde2b561c8a973806fd58d823f81b47d
[]
no_license
mortezaezzabady/discut
5fbf085a89cec88007f1c588f2b566d404fc2ef6
7123c4b1034de2dfff0a389d13e7fefaaf6356c5
refs/heads/main
2023-07-22T08:24:56.927207
2021-08-24T15:17:52
2021-08-24T15:17:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
761
py
""" maps conll 2003 format (4 fields) to Disrpt expected conll formats (10 fields) """ import sys maptags = {"_":"O", "BeginSeg=Yes": "B-S", "Seg=B-Conn":"B-Conn", "Seg=I-Conn":"I-Conn", "SpaceAfter=No":"O", "Typo=Yes":"O", } inv_map_tags = {maptags[k]:k for k in maptags} inv_map_tags["O"]="_" with open(sys.argv[1]) as f: output = [] idx = 1 for line in f: if line.strip()=="": output.append("") idx = 1 else: token, pos, chk, label = line.strip().split() newline = [str(idx),token]+["_"]*7+[inv_map_tags[label]] idx = idx + 1 output.append("\t".join(newline)) print("\n".join(output))
[ "morteza758@gmail.com" ]
morteza758@gmail.com
3e670dafd6105727af35b2c1edecdf612c7eaaad
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/gphnuvoHDANN2Fmca_24.py
cc723449996b7ca6f4347f660b50e68d96b1e7fc
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
820
py
""" Write a function that sorts **only the odd numbers** in a list in **ascending order** , keeping the even numbers in their current place. For example, if our input list is: `[5, 2, 6, 6, 1, 4, 9, 3]`: [_, 2, 6, 6, _, 4, _, _] # Keep evens in place. # Sort odds: [5, 1, 9, 3] => [1, 3, 5, 9] [1, 2, 6, 6, 3, 4, 5, 9] # Final list. ### Examples odd_sort([7, 5, 2, 3, 1]) ➞ [1, 3, 2, 5, 7] odd_sort([3, 7, 0, 9, 3, 2, 4, 8]) ➞ [3, 3, 0, 7, 9, 2, 4, 8] odd_sort([2, 2, 8, 4]) ➞ [2, 2, 8, 4] odd_sort([7, 9, 7]) ➞ [7, 7, 9] ### Notes Lists may contain duplicate numbers. """ def odd_sort(lst): odds = [i for i in lst if i%2==1] odds.sort() for i in range (len(lst)): if lst[i]%2==1: lst[i] = odds[0] odds.pop(0) return lst
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
e3df5f60e8f13566f68b8032c04d3e39dc02df98
9e098cf8931ec3db0c6a3294cee5fddfb347f260
/mob/wsgi.py
013fd00cec267bb425b90b5c62929d3806c1d49b
[]
no_license
rcmiskin10/django-react-boilerplate
38f92b8cc079a9c8c11f042bc6abbbe533a3b1d5
49d25b611433cc1213d2794ef71ec339116ab136
refs/heads/master
2022-12-13T18:38:54.540780
2018-10-17T15:40:11
2018-10-17T15:40:11
153,481,193
0
0
null
2022-12-08T02:58:15
2018-10-17T15:33:52
JavaScript
UTF-8
Python
false
false
388
py
""" WSGI config for mobsteer project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "mob.settings") application = get_wsgi_application()
[ "rcmiskin@Rickys-MBP.home" ]
rcmiskin@Rickys-MBP.home
8a627ab100b1a10efe62ec889516607f57985524
fcde32709c62b8ee86da459bb7c8eee52c848118
/爬虫1905/day07/08_jdspider.py
49d7a558ca271312364fa910876ca9c11b9c08e5
[]
no_license
klaus2015/py_base
6b92d362c3d7dc0e09205a037f4d580381dac94d
ec32c731c1c2f6a0dab87f1d167397e4fa86b8de
refs/heads/master
2022-07-28T15:49:30.383648
2020-05-11T15:31:43
2020-05-11T15:31:43
261,777,278
0
0
null
null
null
null
UTF-8
Python
false
false
1,307
py
from selenium import webdriver import time class JdSpider(object): def __init__(self): self.url = 'https://www.jd.com/' # 创建浏览器对象 self.browser = webdriver.Chrome() # 跳转到商品详情页 - 爬虫书 def get_html(self): # 找节点,send_keys() click() so = '//*[@id="key"]' button = '//*[@id="search"]/div/div[2]/button' self.browser.get(self.url) self.browser.find_element_by_xpath(so).send_keys('爬虫书') self.browser.find_element_by_xpath(button).click() # 必须的: 给页面留出加载时间 time.sleep(3) # 匹配每个商品信息的li节点对象列表, li.text def parse_html(self): li_list = self.browser.find_elements_by_xpath('//*[@id="J_goodsList"]/ul/li') for li in li_list: L = li.text.split('\n') if L[0].startswith('¥'): price = L[0] market = L[3] elif L[0] == '单件': price = L[3] market = L[6] elif '减' in L[0]: price = L[1] market = L[4] print(price,market) if __name__ == '__main__': spider = JdSpider() spider.get_html() spider.parse_html()
[ "598467866@qq.com" ]
598467866@qq.com
9d6863989f14208d6b0e7431896c90f5d1d86abe
ad13583673551857615498b9605d9dcab63bb2c3
/output/instances/nistData/atomic/gYear/Schema+Instance/NISTXML-SV-IV-atomic-gYear-minExclusive-1-3.py
13a8da359fe53d202c09bb9644b516f0c620a4c6
[ "MIT" ]
permissive
tefra/xsdata-w3c-tests
397180205a735b06170aa188f1f39451d2089815
081d0908382a0e0b29c8ee9caca6f1c0e36dd6db
refs/heads/main
2023-08-03T04:25:37.841917
2023-07-29T17:10:13
2023-07-30T12:11:13
239,622,251
2
0
MIT
2023-07-25T14:19:04
2020-02-10T21:59:47
Python
UTF-8
Python
false
false
326
py
from output.models.nist_data.atomic.g_year.schema_instance.nistschema_sv_iv_atomic_g_year_min_exclusive_1_xsd.nistschema_sv_iv_atomic_g_year_min_exclusive_1 import NistschemaSvIvAtomicGYearMinExclusive1 from xsdata.models.datatype import XmlPeriod obj = NistschemaSvIvAtomicGYearMinExclusive1( value=XmlPeriod("2019") )
[ "tsoulloftas@gmail.com" ]
tsoulloftas@gmail.com
7fa26d1ff2d3ce60a16bd25c9dc267f1607adfef
9823ee2b1905515c229fe071f9d1faabfd2d08df
/models.py
a03fac26b745ea74c81a405e03a36f52f92fecee
[]
no_license
Basma1412L/Blood_Donation_System
775011e6943e42bb6095442a3109baeb344f9d96
d7bb2dcf0f41a41609ed549c128113f523a82365
refs/heads/main
2023-02-22T08:30:55.889663
2021-01-24T15:59:32
2021-01-24T15:59:32
331,435,541
0
0
null
null
null
null
UTF-8
Python
false
false
5,958
py
import os from sqlalchemy import Column, String, Integer, create_engine from flask_sqlalchemy import SQLAlchemy import json from flask_migrate import Migrate DB_HOST = os.getenv('DB_HOST', '127.0.0.1:5432') DB_USER = os.getenv('DB_USER', '') DB_PASSWORD = os.getenv('DB_PASSWORD', '') DB_NAME = os.getenv('DB_NAME', 'blood_donation_system') database_path = 'postgres://atyqejusvixadd:' '9aeeb8c28abcc0c4f5be39e6f93fea50f3e962' 'f44b73ecfa6450260acb63289e@ec2-54-85-13-135.compute-1' '.amazonaws.com:5432/dclm7h9kc6hijf' db = SQLAlchemy() ''' setup_db(app) binds a flask application and a SQLAlchemy service ''' def setup_db(app, database_path=database_path): app.config["SQLALCHEMY_DATABASE_URI"] = database_path app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False db.app = app db.init_app(app) migrate = Migrate(app, db) # db.create_all() ''' Donor ''' class Donor(db.Model): id = Column(Integer, primary_key=True) name = Column(String) age = Column(Integer) gender = Column(String) address = Column(String) phone = Column(String) email = Column(String) blood_type = Column(String) donation = db.relationship( 'Donation', backref=db.backref( 'donor', cascade='all, delete')) def __init__(self, name, age, gender, address, phone, email, blood_type): self.name = name self.age = age self.gender = gender self.address = address self.phone = phone self.email = email self.blood_type = blood_type def insert(self): db.session.add(self) db.session.commit() def update(self): db.session.commit() def delete(self): db.session.delete(self) db.session.commit() def format(self): return { 'id': self.id, 'name': self.name, 'age': self.age, 'gender': self.gender, 'address': self.address, 'phone': self.phone, 'email': self.email, 'blood_type': self.blood_type } ''' Donation ''' class Donation(db.Model): id = Column(Integer, primary_key=True) blood_type = db.Column(db.String) time = db.Column(db.DateTime()) donor_id = db.Column(db.Integer, db.ForeignKey('donor.id')) donationCenter_id = db.Column( db.Integer, db.ForeignKey('donation_center.id')) def __init__(self, donor_id, blood_type, time, donationCenter_id): self.donor_id = donor_id self.blood_type = blood_type self.time = time self.donationCenter_id = donationCenter_id def insert(self): db.session.add(self) db.session.commit() def update(self): db.session.commit() def delete(self): db.session.delete(self) db.session.commit() def format(self): return { 'id': self.id, 'donor_id': self.donor_id, 'blood_type': self.blood_type, 'donationCenter_id': self.donationCenter_id, 'time': self.time } ''' Donation Center ''' class DonationCenter(db.Model): id = Column(Integer, primary_key=True) name = db.Column(db.String) address = db.Column(db.String) donations = db.relationship( 'Donation', backref=db.backref( 'donation_center', cascade='all, delete')) appointments = db.relationship( 'Appointment', backref=db.backref( 'donation_center', cascade='all, delete')) def __init__(self, name, address): self.name = name, self.address = address def insert(self): db.session.add(self) db.session.commit() def update(self): db.session.commit() def delete(self): db.session.delete(self) db.session.commit() def format(self): return { 'id': self.id, 'name': self.name, 'address': self.address } ''' Appointment ''' class Appointment(db.Model): id = Column(Integer, primary_key=True) donations_center = db.Column( db.Integer, db.ForeignKey('donation_center.id')) time = db.Column(db.DateTime()) donors_limit = db.Column(db.Integer) availibility = db.Column(db.Boolean, default=True) def __init__(self, donations_center, time, donors_limit, availibility): self.donations_center = donations_center self.time = time self.donors_limit = donors_limit self.availibility = availibility def insert(self): db.session.add(self) db.session.commit() def update(self): db.session.commit() def delete(self): db.session.delete(self) db.session.commit() def format(self): return { 'id': self.id, 'donations_center': self.donations_center, 'time': self.time } class AppointmentsDonors(db.Model): id = db.Column(db.Integer, primary_key=True) donor_id = db.Column(db.Integer, db.ForeignKey('donor.id')) appointment_id = db.Column(db.Integer, db.ForeignKey('appointment.id')) donor = db.relationship( Donor, backref=db.backref( 'appointments_donors', cascade='all, delete')) appointment = db.relationship( Appointment, backref=db.backref( 'appointments_donors', cascade='all, delete')) def __init__(self, donor_id, appointment_id): self.donor_id = donor_id self.appointment_id = appointment_id def insert(self): db.session.add(self) db.session.commit() def update(self): db.session.commit() def delete(self): db.session.delete(self) db.session.commit() def format(self): return { 'id': self.id, 'appointment_id': self.appointment_id, 'donor_id': self.donor_id }
[ "basmammahdy@gmail.com" ]
basmammahdy@gmail.com
ca6c7e77fc32b7483caab1e3fe8a5f47790e471a
4702d2b5aac63b8179b47d946837965664824406
/mmdet/models/losses/pfocal_loss.py
3ffb3ad6c1ec1d84c6d6bb374c331d930946e6c2
[ "Apache-2.0" ]
permissive
ruiningTang/mmdetection
551bf276ee581667703cbe89c2872dc8e7f43bb8
100b0b5e0edddc45af0812b9f1474493c61671ef
refs/heads/master
2021-12-02T05:58:03.301831
2021-11-20T10:58:35
2021-11-20T10:58:35
387,680,731
0
0
Apache-2.0
2021-07-20T05:20:10
2021-07-20T05:20:09
null
UTF-8
Python
false
false
6,835
py
import torch import torch.nn as nn import torch.nn.functional as F from mmcv.ops import sigmoid_focal_loss as _sigmoid_focal_loss from ..builder import LOSSES from .utils import weight_reduce_loss # This method is only for debugging def py_sigmoid_focal_loss(pred, target, weight=None, gamma=2.0, alpha=0.25, reduction='mean', avg_factor=None): """PyTorch version of `Focal Loss <https://arxiv.org/abs/1708.02002>`_. Args: pred (torch.Tensor): The prediction with shape (N, C), C is the number of classes target (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. gamma (float, optional): The gamma for calculating the modulating factor. Defaults to 2.0. alpha (float, optional): A balanced form for Focal Loss. Defaults to 0.25. reduction (str, optional): The method used to reduce the loss into a scalar. Defaults to 'mean'. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. """ pred_sigmoid = pred.sigmoid() target = target.type_as(pred) pt = (1 - pred_sigmoid) * target + pred_sigmoid * (1 - target) focal_weight = (alpha * target + (1 - alpha) * (1 - target)) * pt.pow(gamma) loss = F.binary_cross_entropy_with_logits( pred, target, reduction='none') * focal_weight loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss def sigmoid_focal_loss(pred, target, weight=None, gamma=2.0, alpha=0.25, reduction='mean', avg_factor=None): r"""A warpper of cuda version `Focal Loss <https://arxiv.org/abs/1708.02002>`_. Args: pred (torch.Tensor): The prediction with shape (N, C), C is the number of classes. target (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. gamma (float, optional): The gamma for calculating the modulating factor. Defaults to 2.0. alpha (float, optional): A balanced form for Focal Loss. Defaults to 0.25. reduction (str, optional): The method used to reduce the loss into a scalar. Defaults to 'mean'. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. """ # Function.apply does not accept keyword arguments, so the decorator # "weighted_loss" is not applicable loss = _sigmoid_focal_loss(pred.contiguous(), target, gamma, alpha, None, 'none') if weight is not None: if weight.shape != loss.shape: if weight.size(0) == loss.size(0): # For most cases, weight is of shape (num_priors, ), # which means it does not have the second axis num_class weight = weight.view(-1, 1) else: # Sometimes, weight per anchor per class is also needed. e.g. # in FSAF. But it may be flattened of shape # (num_priors x num_class, ), while loss is still of shape # (num_priors, num_class). assert weight.numel() == loss.numel() weight = weight.view(loss.size(0), -1) assert weight.ndim == loss.ndim loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss @LOSSES.register_module() class ProgressiveFocalLoss(nn.Module): def __init__(self, use_sigmoid=True, gamma=2.0, delta=0.5, w=0.5, reduction='mean', loss_weight=1.0): """`Focal Loss <https://arxiv.org/abs/1708.02002>`_ Args: use_sigmoid (bool, optional): Whether to the prediction is used for sigmoid or softmax. Defaults to True. gamma (float, optional): The gamma for calculating the modulating factor. Defaults to 2.0. alpha (float, optional): A balanced form for Focal Loss. Defaults to 0.25. reduction (str, optional): The method used to reduce the loss into a scalar. Defaults to 'mean'. Options are "none", "mean" and "sum". loss_weight (float, optional): Weight of loss. Defaults to 1.0. """ super(ProgressiveFocalLoss, self).__init__() assert use_sigmoid is True, 'Only sigmoid focal loss supported now.' self.use_sigmoid = use_sigmoid self.delta = delta self.w = w self.gamma = gamma self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, lvl_gamma=None): """Forward function. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Options are "none", "mean" and "sum". Returns: torch.Tensor: The calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) gamma = lvl_gamma.clamp_(min=self.gamma-self.delta, max=self.gamma+self.delta) alpha = self.w / gamma if self.use_sigmoid: loss_cls = self.loss_weight * sigmoid_focal_loss( pred, target, weight, gamma=gamma.cpu().numpy().tolist(), alpha=alpha.cpu().numpy().tolist(), reduction=reduction, avg_factor=avg_factor) else: raise NotImplementedError return loss_cls
[ "tangruining@zju.edu.cn" ]
tangruining@zju.edu.cn
b91107ea3d3c0cf28d14602b6175a807977c061b
b39d9ef9175077ac6f03b66d97b073d85b6bc4d0
/Celvapan_WC500022670.py
3ae311ad14e8fd68fa2f9441794de9d776f12aab
[]
no_license
urudaro/data-ue
2d840fdce8ba7e759b5551cb3ee277d046464fe0
176c57533b66754ee05a96a7429c3e610188e4aa
refs/heads/master
2021-01-22T12:02:16.931087
2013-07-16T14:05:41
2013-07-16T14:05:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,329
py
{'_data': [['Uncommon', [['Psychiatric', u'(>1/1 000, < 1/100), s\xe4llsynta (>1/10 000, < 1/1 000), mycket s\xe4llsynta (< 1/10 000)'], ['Psychiatric', u'(\u22651/1 000, < 1/100), s\xe4llsynta (\u22651/10 000, < 1/1 000), mycket s\xe4llsynta (< 1/10 000) \uf0b7Kliniska pr\xf6vningar med en version av Celvapan inneh\xe5llande en H5N1-vaccinstam Kliniska pr\xf6vningar utf\xf6rdes med en version av Celvapan inneh\xe5llande en H5N1-vaccinstam (se avsnitt 5.1) hos cirka 3 700 personer (i \xe5ldrarna 18 till 60 \xe5r och \xf6ver), och i grupper med s\xe4rskild risk p\xe5 cirka 300 personer var best\xe5ende av personer med nedsatt immunf\xf6rsvar och patienter med kroniska sjukdomstillst\xe5nd. De flesta av reaktionerna var lindriga till sin art, kortvariga och kvalitativt likartade dem som framkallas av influensavacciner. Det f\xf6rekom f\xe4rre reaktioner efter den andra dosen j\xe4mf\xf6rt med den f\xf6rsta dosen. S\xe4kerhetsprofilen f\xf6r friska personer > 60 \xe5rs \xe5lder, personer med nedsatt immunf\xf6rsvar och patienter med kroniska sjukdomstillst\xe5nd liknar s\xe4kerhetsprofilen f\xf6r friska f\xf6rs\xf6kspersoner. \uf0b7Uppf\xf6ljning efter marknadsintroduktion']]], ['Unknown', [['Psychiatric', u'CENTRALA OCH PERIFERA Huvudv\xe4rk Mycket vanliga NERVSYSTEMET Yrsel Vanliga \xd6GON \xd6gonirritation Vanliga ANDNINGSV\xc4GAR, BR\xd6STKORG Faryngolaryngeal sm\xe4rta Vanliga OCH MEDIASTINUM MAGTARMKANALEN Buksm\xe4rta Vanliga HUD OCH SUBKUTAN V\xc4VNAD Hyperhidros Vanliga Utslag Vanliga N\xe4sselutslag Vanliga MUSKULOSKELETALA SYSTEMET Artralgi Vanliga OCH BINDV\xc4V Myalgi Vanliga ALLM\xc4NNA SYMTOM OCH/ELLER Utmattning Mycket vanliga SYMTOM VID Pyrexi Vanliga ADMINISTRERINGSST\xc4LLET Frossa Vanliga Sjukdomsk\xe4nsla Vanliga Reaktioner p\xe5 injektionsst\xe4llet Vanliga \uf0b7Sm\xe4rta p\xe5 injektionsst\xe4llet Vanliga \uf0b7F\xf6rh\xe5rdnad p\xe5 injektionsst\xe4llet Vanliga \uf0b7Erytem p\xe5 injektionsst\xe4llet Vanliga \uf0b7Svullnad av injektionsst\xe4llet Vanliga F\xf6rs\xe4mrad r\xf6relsef\xf6rm\xe5ga p\xe5 \uf0b7 Vanliga injektionsst\xe4llet Biverkningsfrekvens \xe4r baserad p\xe5 f\xf6ljande skala: Mycket vanliga (\u22651/10); vanliga (\u22651/100, < 1/10),'], ['Psychiatric', u'Rastl\xf6shet -Vanliga CENTRALA OCH PERIFERA Huvudv\xe4rk Vanliga Vanliga Vanliga NERVSYSTEMET Gr\xe5t --Vanliga S\xf6mnighet --Vanliga \xd6RON OCH BALANSORGAN Yrsel Vanliga ANDNINGSV\xc4GAR, Hosta - -Vanliga BR\xd6STKORG OCH MEDIASTINUM MAGTARMKANALEN Buksm\xe4rta Vanliga -Vanliga Illam\xe5ende Vanliga -Vanliga Uppkastning Vanliga Vanliga Vanliga Diarr\xe9 -Vanliga Vanliga HUD OCH SUBKUTAN Hyperhidros --Vanliga V\xc4VNAD Utslag --Vanliga MUSKULOSKELETALA Myalgi Vanliga SYSTEMET OCH BINDV\xc4V Sm\xe4rta i extremiteter Vanliga ALLM\xc4NNA SYMTOM Utmattning -Vanliga OCH/ELLER SYMTOM VID Pyrexi -Vanliga Mycket vanliga ADMINISTRERINGSST\xc4LLET Frossa Vanliga Vanliga Vanliga Retlighet --Vanliga Sjukdomsk\xe4nsla --Vanliga Reaktioner p\xe5 injektionsst\xe4llet \uf0b7Sm\xe4rta p\xe5 Mycket Vanliga Vanliga injektionsst\xe4llet vanliga \uf0b7F\xf6rh\xe5rdnad p\xe5 Vanliga Vanliga Vanliga injektionsst\xe4llet \uf0b7Erytem p\xe5 Vanliga Vanliga Vanliga injektionsst\xe4llet \uf0b7Svullnad av Vanliga Vanliga Vanliga injektionsst\xe4llet Biverkningsfrekvens \xe4r baserad p\xe5 f\xf6ljande skala: Mycket vanliga (\u22651/10); vanliga (\u22651/100, < 1/10),'], ['Immune system', u'Anafylaktisk reaktion*, \xf6verk\xe4nslighet*'], ['Nervous system', u'Feberkramp Hypestesi'], ['Skin', u'Angio\xf6dem *S\xe5dana reaktioner har manifesterats som andn\xf6d, hypotoni, takykardi, takypn\xe9, cyanos, pyrexi, vallningar, angio\xf6dem och urtikaria'], ['Musculoskeletal', u'Sm\xe4rta i extremitet (i de flesta fall rapporterade som sm\xe4rta i den injicerade armen)'], ['General', u'Influensaliknande sjukdom Trivalenta s\xe4songsbundna influensavacciner I uppf\xf6ljning efter marknadsintroduktion med \xe4ggderiverade trivalenta s\xe4songsbundna influensavacciner har f\xf6ljande allvarliga biverkningar rapporterats']]]], '_pages': [4, 8], u'_rank': 9, u'_type': u'LSFU'}
[ "urudaro@gmail.com" ]
urudaro@gmail.com
5af92f6c9ff966280122d746dd74c3c2644561f3
96633439f9b6d22878a78cf8307077bd559fc0cb
/A Byte of Python/pickling.py
2c2838b39a658a056628c22cb5d6c33964eb8c33
[]
no_license
peter-chen-meihua/python
67299eb0a7e11f1773ebaa6d3ceeb06587688b7b
bbaf9dc29e19c24c246bd3640f26460e3b3d964f
refs/heads/master
2021-01-17T10:23:45.969384
2016-06-21T08:01:50
2016-06-21T08:01:50
58,113,271
0
0
null
null
null
null
UTF-8
Python
false
false
475
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Filename: pickling.py import pickle as p # import pickle as p shoplistfile = 'shoplist.data' # the name of the file where we will store the obect shoplist = ['apple','mango','carrot'] # Write to the file f = open(shoplistfile,'wb') p.dump(shoplist,f) # dump the object to a file f. close() del shoplist # remove the shoplist # Read back from the storage f = open(shoplistfile,'r') storedlist = p.load(f) print(storedlist)
[ "peter.chen@meihua.info" ]
peter.chen@meihua.info
418fd1fa2ace0a47bf8e9fcdb74cb133ba3d3bf6
0a7092fd1ad3e106169ec173d4c4db5e1e8a5114
/Recogniser.py
2c45f5320cdf7eef3faae5a3c748c40c12d98738
[]
no_license
aryan2511/Face-Recognition-Attendance-System-
7bff48ae8858e3d34166ae3e4dc6e36ca300b79b
997fa148e4e584c5e30c6ab78222cc7a1667544d
refs/heads/main
2023-07-29T08:55:18.214715
2021-09-16T05:08:00
2021-09-16T05:08:00
381,926,080
0
0
null
null
null
null
UTF-8
Python
false
false
2,452
py
import cv2 import numpy as np; import xlwrite #import firebase.firebase_ini as fire; import time import sys from playsound import playsound start = time.time() period = 8 face_cas = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') cap = cv2.VideoCapture(0); recognizer = cv2.face.LBPHFaceRecognizer_create(); recognizer.read('G:\Projects\MiniProj_\Trainer.yml') flag = 0; id = 0; filename = 'filename'; dict = {'item1': 1} font = cv2.FONT_HERSHEY_SIMPLEX while True: ret, img = cap.read(); gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY); faces = face_cas.detectMultiScale(gray, 1.3, 7); for (x, y, w, h) in faces: roi_gray = gray[y:y + h, x:x + w] cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2); id, conf = recognizer.predict(roi_gray) if (conf < 50): if (id == 1): id = 'Aryan Bose' if ((str(id)) not in dict): filename = xlwrite.output('attendance', 'class1', 1, id, 'yes'); dict[str(id)] = str(id); elif (id == 2): id = 'Abhiraj Daddi' if ((str(id)) not in dict): filename = xlwrite.output('attendance', 'class1', 2, id, 'yes'); dict[str(id)] = str(id); elif (id == 3): id = 'Kaushal' if ((str(id)) not in dict): filename = xlwrite.output('attendance', 'class1', 3, id, 'yes'); dict[str(id)] = str(id); elif (id == 4): id = 'Sonali Bose' if ((str(id)) not in dict): filename = xlwrite.output('attendance', 'class1', 4, id, 'yes'); dict[str(id)] = str(id); else: id = 'Unknown, can not recognize' flag = flag + 1 break cv2.putText(img, str(id) + " " + str(conf), (x, y - 10), font, 0.55, (120, 255, 120), 1) # cv2.cv.PutText(cv2.cv.fromarray(img),str(id),(x,y+h),font,(0,0,255)); cv2.imshow('frame', img); # cv2.imshow('gray',gray); if flag == 10: playsound('transactionSound.mp3') print("Transaction Blocked") break; if time.time() > start + period: break; if cv2.waitKey(100) & 0xFF == ord('q'): break; cap.release(); cv2.destroyAllWindows();
[ "noreply@github.com" ]
aryan2511.noreply@github.com
4dada9e265e846a20d45a26020f70ca767cf8fce
29d7126b822aa7ba8159d620177af71830c999de
/web3sr/settings.py
34fb9a539b7263d3db26e2a8a864d2cc63106871
[]
no_license
roubin/web3sr
ecc797d4e7b42706c9b14282e81a8853ab0200f5
04a6cd58968e056fa2bbca19edebb794e4cc711e
refs/heads/master
2021-09-09T05:03:31.954046
2019-11-20T14:44:19
2019-11-20T14:44:19
162,558,783
0
0
null
2021-09-08T00:39:50
2018-12-20T09:44:38
Python
UTF-8
Python
false
false
3,717
py
""" Django settings for web3sr project. Generated by 'django-admin startproject' using Django 2.0.7. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os import dj_database_url # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.environ['SECRET_KEY'] # 3j*whbe7_=abwo*^ug+8_yu-&j7yye2)$1=&45ih@)%@l9wnty # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = ["127.0.0.1", "web3sr.herokuapp.com"] # Application definition INSTALLED_APPS = [ 'publi.apps.PubliConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'web3sr.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'web3sr.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' # where to collect STATICFILES_DIRS = (os.path.join(PROJECT_ROOT, 'static'), ) # where to look for STATIC_ROOT = os.path.join(PROJECT_ROOT, 'staticfiles') # database for heroku db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env) # STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage'
[ "emmanuel.roubin@univ-grenoble-alpes.fr" ]
emmanuel.roubin@univ-grenoble-alpes.fr
c792b0da09bba8ff714d4777ea33653fc69e8687
98679345dc531f76f39b59ee1979ca719cae97a0
/webapp/apps/posts/urls.py
9a304b7eccc8e4da89204ff9297cddb44239ab4e
[]
no_license
jpennell/jamespennell.com
215122764629c31c98510c54f2491f790f880d0e
a247600cd989bf5319b421a8ad72baeb5d9f6746
refs/heads/master
2016-09-05T21:28:42.589509
2012-09-19T01:42:35
2012-09-19T01:42:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
269
py
#Django from django.conf.urls import patterns, url urlpatterns = patterns('webapp.apps.posts.views', url(r'^$', 'list', name='blog'), url(r'^(?P<page_id>\d+)/$', 'list', name="post-list"), url(r'^posts/(?P<post_id>\d+)/$', 'detail', name="post-detail"), )
[ "pennell.james@gmail.com" ]
pennell.james@gmail.com
23778bba08ea8b9dc909bcc66d74340cc091cceb
32cc5fe0dd9376f9f7211f6defe3100cfdc10b3c
/List/processing.py
8990bdf1b3d73ddd015e53b8f9d5d65ee8405eeb
[]
no_license
RegCookies/Offer-Sward
601bb16d107027599de1376db76435875d6525e7
82cff33aee421a2e4288e8d21ea3a54a8834a8ec
refs/heads/master
2020-03-31T00:35:20.246454
2018-12-10T13:59:29
2018-12-10T13:59:29
151,746,368
0
0
null
null
null
null
UTF-8
Python
false
false
884
py
def process(t,n): if t == None or n <= 0: return None m = len(t) proTime = [0]* m i = 0 while i < n: minTime = proTime[0] + t[0] minIndex = 0 j = 1 while j < m: if minTime > proTime[j] + t[j]: minTime = proTime[j] + t[j] minIndex = j j +=1 proTime[minIndex] += t[minIndex] return proTime if __name__ == "__main__": t = [7,10] n = 6 protime = process(t,n) if protime == None: print("ERROR") else: totalTime = protime[0] i = 0 while i <len(protime): print("第" + str(i+1) + "台服务器有" + str(protime[i]/t[i]) + "总执行时间"+ str(protime[i])) if protime[i] > totalTime: totalTime = protime[i] i+=1 print(str(totalTime)) ç
[ "noreply@github.com" ]
RegCookies.noreply@github.com
f4b12586bf9abd4c4663188c7cbc292cee8136ef
575240d2b0fd35949b22e1ce5760d2a3138198d3
/model/gen_discr.py
23c6c8bfebfed38c57d27381b4cf634d42486a2c
[]
no_license
rosasha/GAN_PROJECT_Pix2Pix
9805afa143ec61353fca83cd1a7357803940e7b9
1c9413042866c8a5eff69e871e0359095f0edbcc
refs/heads/main
2023-06-09T15:41:19.599604
2021-06-28T19:49:06
2021-06-28T19:49:06
380,448,210
0
0
null
null
null
null
UTF-8
Python
false
false
4,722
py
#!/usr/bin/env python # coding: utf-8 # In[1]: import torch import torch.nn as nn # In[2]: class CBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=4, stride=2, padding=1, act=True, batch_norm=True): super(CBlock, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) self.activation = act self.lrelu = nn.LeakyReLU(0.2) self.batch_norm = batch_norm self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): if self.activation: out = self.conv(self.lrelu(x)) else: out = self.conv(x) if self.batch_norm: return self.bn(out) else: return out # In[3]: class DBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=4, stride=2, padding=1, batch_norm=True, dropout=False): super(DBlock, self).__init__() self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding) self.bn = nn.BatchNorm2d(out_channels) self.drop = nn.Dropout(0.5) self.relu = nn.ReLU(True) self.batch_norm = batch_norm self.dropout = dropout def forward(self, x): if self.batch_norm: out = self.bn(self.deconv(self.relu(x))) else: out = self.deconv(self.relu(x)) if self.dropout: return self.drop(out) else: return out # In[17]: class Generator(torch.nn.Module): def __init__(self, in_channels=3, features=64,): super(Generator, self).__init__() # Encoder self.conv1 = CBlock(in_channels, features, batch_norm=False) self.conv2 = CBlock(features, features * 2) self.conv3 = CBlock(features * 2, features * 4) self.conv4 = CBlock(features * 4, features * 8) self.conv5 = CBlock(features * 8, features * 8) self.conv6 = CBlock(features * 8, features * 8) self.conv7 = CBlock(features * 8, features * 8) self.bottleneck = CBlock(features * 8, features * 8, batch_norm=False) # Decoder self.deconv1 = DBlock(features * 8, features * 8, dropout=True) self.deconv2 = DBlock(features * 8 * 2, features * 8, dropout=True) self.deconv3 = DBlock(features * 8 * 2, features * 8, dropout=True) self.deconv4 = DBlock(features * 8 * 2, features * 8) self.deconv5 = DBlock(features * 8 * 2, features * 4) self.deconv6 = DBlock(features * 4 * 2, features * 2) self.deconv7 = DBlock(features * 2 * 2, features) self.final_up = DBlock(features * 2, in_channels, batch_norm=False) def forward(self, x): # Encoder d1 = self.conv1(x) d2 = self.conv2(d1) d3 = self.conv3(d2) d4 = self.conv4(d3) d5 = self.conv5(d4) d6 = self.conv6(d5) d7 = self.conv7(d6) bottleneck = self.bottleneck(d7) # Decoder up1 = self.deconv1(bottleneck) up2 = self.deconv2(torch.cat([up1, d7], 1)) up3 = self.deconv3(torch.cat([up2, d6], 1)) up4 = self.deconv4(torch.cat([up3, d5], 1)) up5 = self.deconv5(torch.cat([up4, d4], 1)) up6 = self.deconv6(torch.cat([up5, d3], 1)) up7 = self.deconv7(torch.cat([up6, d2], 1)) out = self.final_up(torch.cat([up7, d1], 1)) out = nn.Tanh()(out) return out # In[24]: class Discriminator(nn.Module): def __init__(self, in_channels=3, out_channels=1, features=64): super(Discriminator, self).__init__() self.conv1 = CBlock(in_channels*2, features, act=False, batch_norm=False) self.conv2 = CBlock(features, features * 2) self.conv3 = CBlock(features * 2, features * 4) self.conv4 = CBlock(features * 4, features * 8, stride=1) self.conv5 = CBlock(features * 8, out_channels, stride=1, batch_norm=False) def forward(self, x, label): x = torch.cat([x, label], 1) x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = self.conv5(x) out = nn.Sigmoid()(x) return out # In[30]: def test1(): x = torch.randn((1, 3, 256, 256)) model1 = Generator(in_channels=3, features=64) preds1 = model1(x) print(model1) print(preds1.shape) def test2(): x = torch.randn((1, 3, 256, 256)) y = torch.randn((1, 3, 256, 256)) model2 = Discriminator(in_channels=3, out_channels=1, features=64) preds2 = model2(x, y) print(model2) print(preds2.shape) if __name__ == "__main__": test1() test2()
[ "noreply@github.com" ]
rosasha.noreply@github.com
4997c9339d9d0df9bba877982b2292b8987a2abf
c36bbf6dec27f09a68533757de1e89b8a23d03c0
/users/admin.py
40d785b716024ef290349df40d26afe26b06d303
[]
no_license
burkero2/DjangoRestFrameScriptReview
6f4371c42b0dc131f388f649dbdb86c403c1afbe
2a6419a57946cb1bbf6418cd14387845c855982e
refs/heads/master
2023-04-23T13:39:52.563510
2021-05-05T10:21:10
2021-05-05T10:21:10
363,164,303
0
0
null
null
null
null
UTF-8
Python
false
false
119
py
from django.contrib import admin from users.models import User admin.site.register(User) # Register your models here.
[ "ronanburke@codeinstitute.net" ]
ronanburke@codeinstitute.net
030646f3a5593f31e327c3222a129c8c220aa697
85db48abe193d15a7462c836ca04701f5350685e
/users/forms.py
ba31ab4b69690e5a62502e630f27e6f3bfd63047
[ "MIT" ]
permissive
Sakkadas/Notes
bdc91f78e3c5b9b742e8d1c8458a4b860e76c0bd
e438f58957ca1737ca714b5619abf76535236f66
refs/heads/main
2023-08-10T18:26:29.489054
2021-09-29T23:51:28
2021-09-29T23:51:28
404,781,785
3
0
MIT
2021-09-29T23:51:29
2021-09-09T15:49:24
Python
UTF-8
Python
false
false
591
py
from django import forms from django.contrib.auth.models import User from django.contrib.auth.forms import UserCreationForm from .models import Profile class ProfileUpdateForm(forms.ModelForm): class Meta: model = Profile fields = ['image'] class UserRegisterForm(UserCreationForm): email = forms.EmailField() class Meta: model = User fields = ['username', 'email', 'password1', 'password2'] class UserUpdateForm(forms.ModelForm): email = forms.EmailField() class Meta: model = User fields = ['username', 'email']
[ "eildos95@gmail.com" ]
eildos95@gmail.com
db48bfd37481546197299de553669f6a9bf2992f
b87e9eb579b74e686fa849aee1ac03f8c121b9d2
/backend/src/pages/api/views.py
869d6bae3e375820f4f6027713a24b0284dc1b45
[]
no_license
ashishsth7586/portfolio_ashish
1b5e5fdf718d70c33e987d856e1ab2b9bdf8873a
d631a915025d04fe02917110329b03b70e0537fd
refs/heads/master
2020-07-18T01:37:06.240431
2019-09-03T18:30:04
2019-09-03T18:30:04
206,145,237
2
0
null
null
null
null
UTF-8
Python
false
false
1,322
py
from rest_framework import generics from ..models import Landing, About, SocialMedia, Quote, Testimonial, Service from .serializers import LandingSerializer, AboutSerializer, SocialMediaSerializer, QuotesSerializer, ServicesSerializer, TestimonialsSerializer from rest_framework.permissions import IsAuthenticated class LandingList(generics.ListAPIView): permission_classes = (IsAuthenticated,) queryset = Landing.objects.all() serializer_class = LandingSerializer class AboutList(generics.ListAPIView): permission_classes = (IsAuthenticated,) queryset = About.objects.all() serializer_class = AboutSerializer class SocialMediaList(generics.ListAPIView): permission_classes = (IsAuthenticated,) queryset = SocialMedia.objects.all() serializer_class = SocialMediaSerializer class QuotesList(generics.ListAPIView): permission_classes = (IsAuthenticated,) queryset = Quote.objects.all() serializer_class = QuotesSerializer class ServicesList(generics.ListAPIView): permission_classes = (IsAuthenticated,) queryset = Service.objects.all() serializer_class = ServicesSerializer class TestimonialsList(generics.ListAPIView): permission_classes = (IsAuthenticated,) queryset = Testimonial.objects.all() serializer_class = TestimonialsSerializer
[ "ashishsth7586@gmail.com" ]
ashishsth7586@gmail.com
80b80379f799a97a89a989a13151110accb63027
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-gsn-edf/gsn-edf_ut=2.5_rd=0.5_rw=0.06_rn=4_u=0.075-0.35_p=harmonic-2/sched=RUN_trial=97/sched.py
8310502bd1912f44a7c659b2051b2246b0d18ba3
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
211
py
-X FMLP -Q 0 -L 5 124 400 -X FMLP -Q 0 -L 5 96 400 -X FMLP -Q 1 -L 4 85 250 -X FMLP -Q 1 -L 4 68 300 -X FMLP -Q 2 -L 4 68 400 -X FMLP -Q 3 -L 2 46 175 43 250 33 250 29 150 22 100 21 175 14 125
[ "ricardo.btxr@gmail.com" ]
ricardo.btxr@gmail.com
36bc561271b70d587b0f4fc8d18aa3b2886100ff
42dc3691d2d7c7ac45228ee59b205e861d5c6c2d
/2-4-Partition.py
db743f0a19197cd2ae2bbf9a7a014ece028ba084
[]
no_license
jihua0125/CrackingCode
cc5f3b3198091f60609f0047f63069e8269149d2
55bf87609504c544004d4a434b35cb53ddb0b1dc
refs/heads/master
2020-12-02T19:33:59.096847
2017-07-10T02:33:59
2017-07-10T02:33:59
96,360,624
0
0
null
null
null
null
UTF-8
Python
false
false
680
py
from linked_list import LinkedList import numpy as np def partition(ll,value): current=ll.tail=ll.head while current: next_node=current.next if current.data<value: current.next=ll.head ll.head=current else: ll.tail.next=current ll.tail=current current=next_node if ll.tail.next !=None: ll.tail.next = None def main(): linked_list=LinkedList() random_list=np.random.permutation([1,2,3,4,5,6,7,8,9,10]) for i in random_list: linked_list.append(i) print linked_list partition(linked_list,7) print linked_list if __name__=='__main__': main()
[ "410763264@qq.com" ]
410763264@qq.com
56013a18d49abb0d2dd5186db5775fc905270132
df1afc930ffba283c163d08a3692d14c02fd4766
/final test/tests/CreateTestFiles.py
0dab059af8f7e60fac7c2469774997c7f8c30ec5
[]
no_license
asafweinberg/swProject
f2b95f4b6073727a90c0fddbb2e93a675a629d1f
f0651426bb9556be45494a43dc1afa3bcc1c561a
refs/heads/main
2023-07-19T12:09:29.223577
2021-09-11T11:48:29
2021-09-11T11:48:29
395,636,009
0
0
null
null
null
null
UTF-8
Python
false
false
1,207
py
import pandas as pd import numpy as np from sklearn.datasets import make_blobs import matplotlib.pyplot as plt import os '''Creates the files for all goals except jacobi''' filesToCreate = pd.read_csv(os.path.join(".", "tests", "FilesToCreate.csv")) i = 0 for row in filesToCreate.itertuples(): if (i == 10): continue n_centers = row.n_clusters samples = row.n_samples features = row.features file_name = f"test{i}.csv" X, y = make_blobs(n_samples=samples, centers=n_centers, n_features=features, random_state=31, shuffle=True, cluster_std=0.3) resultPath = os.path.join(".", "tests", "test_data", "spk_tests", file_name) np.savetxt(resultPath, X, delimiter=",", fmt="%.4f") #plt.plot(X[:, 0], X[:, 1], 'o', label = 'data') #plt.show() i += 1 '''Creates the files for jacobi''' np.random.seed(0) dim = 2 for i in range(12): if (i == 11): continue mat = np.random.rand(dim, dim) mat = np.tril(mat) + np.tril(mat, -1).T resultPath = os.path.join(".", "tests", "test_data", 'jacobi_tests',f"test{i}.csv") np.savetxt(resultPath, mat, delimiter=",", fmt="%.4f") dim += 1
[ "73112049+Carinz@users.noreply.github.com" ]
73112049+Carinz@users.noreply.github.com
10c611ca3601f9e0af871f32c73bc6fd9ea86f67
eb38334d649bfc037b7680e873179d5f7bdeaa9a
/Clase2/main.py
cca294bba234f2f478627f3e35b3688afe2a3992
[]
no_license
VirtualEvan/Practicas_ALS
2e96339eec34fbacc6a7a308a08b512b45fdf143
fbc613b766e99815216cffa5c1ebc3348a06aeaf
refs/heads/master
2021-01-18T13:14:36.195231
2017-05-10T15:51:08
2017-05-10T15:51:08
80,743,083
0
0
null
null
null
null
UTF-8
Python
false
false
1,848
py
l = [1, 2, 3] # Imprime una lista print(l) # Imprime un array completo for x in l: print(x, end=' ') print() for i, x in enumerate(l): print(str.format("{0}: {1}", i, x), end=', ') #Número de elementos print("\nNúmero de elementos: ", len(l)) #Slices #Del segundo en adelante print("\nDel segundo en adelante: ", l[1:]) #Por rangos print("\nDel segundo en adelante: ", l[0:2]) #Hasta el segundo print("\nDel segundo en adelante: ", l[:2]) # Último elemento print("\nÚltimo elemento: ", l[-1]) # "Comprension" de listas # nueva_lista = [ <expr> for <id> in <expr que devuelve una lista> ] print("\n", list([float(x) for x in l])) # <cond>? <val1>:<val2> # | En Python # V # <val1> if <cond> else <val2> print([x for x in l if x % 2 == 0]) # Fibonacci que chachi def fibonacci(x): toret = [0, 1] if x == 1: print([0, 1]) for _ in range(x-2): toret.append(toret[-2] + toret[-1]) print("Fibonnaci", toret) fibonacci(4) # Primos def primos(x): """ Returns a list with the first x prime numbers. :param x: A given natural numbers :return: True if prime, False otherwise """ def esprimo(n): """ Determines whether a natural number is a prime number :param n: Agiven natural number :return: True if prime, False otherwise """ toret = False if x == 2: toret = True elif x % 2 == 0: toret = False else: for i in range(3, x, 2): if x % i == 0: break else: toret = True # Se ejecuta cuando no se rompe el bucle return toret toret = [] for i in range(0, x): if esprimo(i): toret.append(i) return toret print("Primos: ", primos(10))
[ "virtualevan@gmail.com" ]
virtualevan@gmail.com
744dfd4eea05bb5f89cb394fc9b7a7d0ad5e9d41
1b532f79e859705052ec77404fff3d4da5de0029
/5.py
3fbc31bf3dac5fc18bb76d7bb61004d1c569bd21
[]
no_license
salmanchik1/Project_Euler
270808f6e5785669d970b63cfd111bf7250bfe82
1e8a322dbded17366c1b2d841a2645332c9114d6
refs/heads/master
2021-07-08T03:23:13.123859
2020-11-05T20:49:07
2020-11-05T20:49:07
203,200,636
0
0
null
null
null
null
UTF-8
Python
false
false
377
py
# This algorithm written in Python 3.7 number = 1 maxim = 20 divs = list() for i in range(2, maxim+1): temp = i for d in divs: if temp % d == 0: temp = int(temp / d) if temp > 1: divs.append(temp) for i in divs: number *= i print("The smallest number divisible by all the numbers " "from 1 to {} is {}".format(maxim, number))
[ "salmanov.ramis@gmail.com" ]
salmanov.ramis@gmail.com
a54fc74712c2351e533d5d191a62f6d9f51adafe
043758666a3e92fb301249d0d09047827ec4aeaf
/yellowscrapper/yellowscrapper-backup.py
74b76d163cabe7b3d759b74f61a6662209e90d2d
[]
no_license
oasisers99/auyellow
981aba4a7b9c2d3a545d8194c6c0c546aeef43f8
e8444d789236230b3c63ff1157d63bd461830c7a
refs/heads/master
2020-04-03T01:01:43.584647
2017-07-19T01:50:53
2017-07-19T01:50:53
95,749,868
0
0
null
null
null
null
UTF-8
Python
false
false
1,078
py
import scrapy #scrapy crawl yellow -o medical.json -t jsonlines class YellowSpider(scrapy.Spider): name = "yellow" category = "medical" start_urls = [ 'https://www.yellowpages.com.au/search/listings?clue='+category+'&locationClue=australia', ] def parse(self, response): # Target the main list that does not have ads. global category for yellow in response.xpath("//div[@class='cell in-area-cell middle-cell']//a[@class='listing-name']"): yield { 'category': category, 'business_name': yellow.css("::text").extract_first(), #'author': quote.css('small.author::text').extract_first(), #'tags': quote.css('div.tags a.tag::text').extract(), } # Target the 'next' page link. next_page = response.xpath("//a[@class='pagination navigation'][last()]/@href").extract_first() if next_page is not None: next_page = response.urljoin(next_page) yield scrapy.Request(next_page, callback=self.parse)
[ "minseok@proviso.com.au" ]
minseok@proviso.com.au
437cfbfa7c38cf89e1a99c34ac5bd06994a25269
c78f8b10dee1be23ec69b1140066a3b555cd19fa
/climatevis/ClimateApp/tempCodeRunnerFile.py
0c63b1cb874ae082af86c4027f90f21a9148e7a7
[]
no_license
ishancoderr/ClimateApp
b49ef10363147005de433af9121be958e82f6c8d
9b5a0e1877cf0ce99fe59976e2454bfa443c6dd0
refs/heads/main
2023-03-14T13:38:25.458507
2021-03-17T13:37:45
2021-03-17T13:37:45
348,718,810
0
0
null
null
null
null
UTF-8
Python
false
false
224
py
from django.urls import path urlpatterns = [ path(' ',views.IndexView,name="home"), path('dashboard/', views.dashboardView,name="dashboard"), path('login/',), path('register/',), path('logout/',),
[ "noreply@github.com" ]
ishancoderr.noreply@github.com
d8f26552c908700a66965cea7e9d501644e592e1
6a54f6ed872a990669c1f75eaeae51e99ef2268c
/prefix-1.py
c5a359f626c175767f12e49f03cbca5f859b1bd9
[]
no_license
SamK1102/CA116
f3d872f5c09b51cfcf9eca88803f8b11a42b470c
a0edf8ead224979187d41b94326abaabe5aa4a45
refs/heads/master
2020-04-06T14:57:41.595781
2018-12-04T15:48:37
2018-12-04T15:48:37
157,560,670
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
#!/usr/bin/env python if __name__ == "__main__": a = ["mountain", "montagne", "mont", "mo", "montages", "zebra", "monthly"] s = "mont" i = 0 while i < len(a): if (a[i][:len(s)] == s): print a[i] i = i + 1
[ "noreply@github.com" ]
SamK1102.noreply@github.com
7682d6c07e4a6d11881df7f096b87f6cb3449778
0890a25baf9508092e6f3f90008eb47aefb1fd0d
/quickmansprite.pyde
7215c542f65c2060004f1cb89023be340c453930
[]
no_license
kiwi-fruitiwi/quickmansprite
3dd0731cedb9cd6ee2e19261270fbefd1ec79977
23736f0c26b27fbfd71ef27a07bf8f9323b6974b
refs/heads/main
2023-07-26T00:32:21.564367
2021-09-02T22:43:05
2021-09-02T22:43:05
389,968,587
0
0
null
null
null
null
UTF-8
Python
false
false
4,006
pyde
# Coding Challenge #111: animated sprite # 2021.07.27 # We're planning to animate Quick Man from Mega Man 2 # see https://www.youtube.com/watch?v=8s_00b0stJU for mm2 gameplay # # v0.01 animate quick man boss intro sequence with custom spritesheet # v0.02 cut and animate walking sequence # explore: how do we reverse an image? # v0.03 draw walking quickman and use WASD to initiate walking animation # v0.04 cut and animate jumping sequence » W to jump # v0.05 cut and animate block # v0.06 shoot + boomerangs # # # # BUG: image uses a top left rectangle coordinate but we want center from Sprite import Sprite def setup(): global sprites, mirror colorMode(HSB, 360, 100, 100, 100) spritesheet = loadImage("quickman-run-shoot-boomerangs.png") size(700, 300) # frameRate(10) delay(100) # with no delay we never get to see the 1st frame ichi = spritesheet.get(0, 32, 32, 32) ni = spritesheet.get(32, 32, 32, 32) san = spritesheet.get(64, 32, 32, 32) imgs = [ni, ichi, ni, san] sprites = [] mirror = False # for i in range(9): # sprites.append(Sprite(imgs, 10, 10 + i * 32, random(0.15, 0.25), move=True)) # sprites.append(sprite_quickman_intro()) for i in range(100): particle = Sprite(imgs, random(width), random(height), random(0.15, 0.25), move=True) sprites.append(particle) def draw(): global sprites, mirror background(209, 95, 33) for sprite in sprites: sprite.update() sprite.edges() sprite.animate() sprite.show() # for sprite in sprites: # if mirror: # sprite.show_mirror() # else: # sprite.show() # sprite.animate() def keyPressed(): global mirror if key == 'm': mirror = not mirror # returns a quick man intro sprite sequence def sprite_quickman_intro(): spritesheet = loadImage("quickman-intro.png") SPRITE_DIMENSIONS = 32 s = 3 * SPRITE_DIMENSIONS # desired sprite size scale factor # put each frame in an imgs list starting with [] imgs = [] for i in range(8): img = spritesheet.get(i*SPRITE_DIMENSIONS, 0, 32, 32) img.resize(s, s) imgs.append(img) # for i in range(9): # sprites.append(Sprite(imgs, 10, 10 + i * 32, random(0.15, 0.25))) # quick man intro sequence intro = Sprite(imgs, width/2 - s/2, height/2 - s/2, 0.15, move=False) return intro # this code displays quick man's 8-frame intro animation def spriteless_quickman_intro(): spritesheet = loadImage("quickman-intro.png") # allows us to select the position of the sprite in the sprite sheet # as a function of the framecount x = frameCount % 8 * 32 # All robot master sprites in mega man 2 are 32x32. # # The original spritesheet had too little space between each quickman, # I edited the file and fixed this. # # The boss intro sprites start at 0,0 and are 32x32 across 8 sprites SPRITE_DIMENSIONS = 32 img = spritesheet.get(x, 0, 32, 32) s = SPRITE_DIMENSIONS * 3 # s is the side length of a square sprite img.resize(s, s) # let's make it easier to see and debug # center the sprite on the canvas using its side length, s image(img, width/2 - s/2, height/2 - s/2) # our original code without using our Sprite object def objectless_sprite(): spritesheet = loadImage("quickman-run-shoot-boomerangs.png") ichi = spritesheet.get(0, 32, 32, 32) ni = spritesheet.get(32, 32, 32, 32) san = spritesheet.get(64, 32, 32, 32) imgs = [ni, ichi, ni, san] SPRITE_DIMENSIONS = 32 s = SPRITE_DIMENSIONS * 3 # s is the side length of a square sprite for img in imgs: img.resize(s, s) # let's make it easier to see and debug image(imgs[frameCount % len(imgs)], width/2-s/2, height/2 - s/2)
[ "zane.tian@gmail.com" ]
zane.tian@gmail.com
6b34f7ac5fa39f607628f1f9a9cb7721a347f201
c1e93f2110db91b22609762aa1c9cfcf608c0975
/music/migrations/0006_auto_20200523_1934.py
389d3011f271ef1dd7e441c917ad3957049e11bf
[]
no_license
eliyajoseph7/music_app
6f49979726b65cc9b664602acd263d2b787128b0
802780e6186f7cd3ba27a4b1c21f09f701c7cb1e
refs/heads/master
2022-07-04T22:54:22.775210
2020-05-24T19:44:38
2020-05-24T19:44:38
264,457,951
0
0
null
null
null
null
UTF-8
Python
false
false
551
py
# Generated by Django 3.0.2 on 2020-05-23 16:34 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('music', '0005_auto_20200523_1831'), ] operations = [ migrations.AlterModelOptions( name='wordsofwisdom', options={'ordering': ['date']}, ), migrations.AlterField( model_name='wordsofwisdom', name='image', field=models.ImageField(default='scoan.png', upload_to='wisdom_images'), ), ]
[ "exaveryeliya20@gmail.com" ]
exaveryeliya20@gmail.com
ef0c8cfa4b93452b1906d594b5415c9bac502824
6b1f5f6597d51125e0cfae59300ea75153e3e498
/Test/myChart.py
c4e31c161b3a62d8714684977ca82fce2a50cbc3
[]
no_license
zhangzongbo/spider
3eba26e212703cdd1ddbf760c1ffa623f03f08ad
8dfd98b1e2e2f5a4401c4f682dda2016939f2d0c
refs/heads/master
2020-03-25T14:12:25.996603
2019-08-13T07:52:19
2019-08-13T07:52:19
143,855,627
0
0
null
null
null
null
UTF-8
Python
false
false
637
py
from pyecharts import Bar bar = Bar("我的第一个图表", "这里是副标题") bar.use_theme('dark') bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90]) bar.add("topK", ["张悬", "晚安", "荣幸", "何其", "珍惜", "爱心", "真的", "时候", "拥抱", "知道", "关于", "没有", "首歌", "自己", "喜欢", "侥幸", "拥有", "人生", "失去", "我爱你"], [0, 302, 357, 362, 401, 484, 626, 816, 865, 964, 1056, 1129, 1185, 1503, 2118, 2618, 2655, 2706, 2758, 2983]) bar.render()
[ "zhangzongbo1994@gmail.com" ]
zhangzongbo1994@gmail.com
d9ab06c72d99dfe38d4dd22f885bc5a20e145dc0
e21a22e5c7c92b28460b75106a965c81327ae6e4
/polls/views.py
410746ed5adda2ee205827bee8e07605173a0ee8
[ "MIT" ]
permissive
vakhov/django-vote-example
356e031483b292eadaefd6087d89ebc52fe8c7a5
0e27e07d9cdfd2bcc06635bf2a79e7ef5d225f4f
refs/heads/master
2020-07-30T14:20:17.670548
2017-11-05T15:37:36
2017-11-05T15:37:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,480
py
from django.shortcuts import get_object_or_404, render from django.http import HttpResponseRedirect, HttpResponse from django.core.urlresolvers import reverse from django.views import generic from django.utils import timezone from .models import Question, Choice class IndexView(generic.ListView): template_name = 'polls/index.html' context_object_name = 'latest_question_list' def get_queryset(self): """Return the last five published questions.""" return Question.objects.order_by('-pub_date')[:5] class DetailView(generic.DetailView): model = Question template_name = 'polls/detail.html' class ResultsView(generic.DetailView): model = Question template_name = 'polls/results.html' def vote(request, question_id): p = get_object_or_404(Question, pk=question_id) try: selected_choice = p.choice_set.get(pk=request.POST['choice']) except (KeyError, Choice.DoesNotExist): # Redisplay the question voting form. return render(request, 'polls/detail.html', { 'question': p, 'error_message': "You didn't select a choice.", }) else: selected_choice.votes += 1 selected_choice.save() # Always return an HttpResponseRedirect after successfully dealing # with POST data. This prevents data from being posted twice if a # user hits the Back button. return HttpResponseRedirect(reverse('polls:results', args=(p.id,)))
[ "yxwzaxns@gmail.com" ]
yxwzaxns@gmail.com
3f135cd5cd8056baca9a2970e258d3bbce6ca2e5
a271140b2895c637512850394cd701ff6e519eba
/Ejemplo8.py
44945e80efb38d64be168e8a7713e7f5673c5330
[]
no_license
AntonioCatalanSanchez/EjerciciosPython
200ec456d3fc31e710602d509d124ceff0df345c
a849b5575ee385c23daf16e2b0ee1380ef7a4ff1
refs/heads/master
2020-05-04T22:04:10.870937
2019-04-04T12:59:37
2019-04-04T12:59:37
179,498,331
0
0
null
null
null
null
UTF-8
Python
false
false
165
py
x=2 numero=int(input("introduce un numero: ")) while(numero != 1): if(numero % x==0): print (str(x)) numero=numero/x else: x = x + 1
[ "antonio.catalansanchez@telefonica.com" ]
antonio.catalansanchez@telefonica.com
769fc6529e818632e8697f4316f134bee5fd1efc
797ba1fee05e90bea95964f12c5e9ca3bb889dca
/feed/migrations/0010_feed_image.py
80a738b16f7051b87554822e38e23927f449054d
[]
no_license
sanjanaasinha/insta-me
3b12383164e07a28444c0e36d65ad52869bedb94
6ede9c8c3a67cf9b22cc0fcd92d5a3d42aa2b46e
refs/heads/master
2021-09-08T00:51:28.452384
2018-03-04T18:39:44
2018-03-04T18:39:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
541
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2018-02-24 16:52 from __future__ import unicode_literals from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('feed', '0009_remove_feed_image'), ] operations = [ migrations.AddField( model_name='feed', name='image', field=models.FileField(default=django.utils.timezone.now, upload_to=''), preserve_default=False, ), ]
[ "sanjana.ss.sinha@gmail.com" ]
sanjana.ss.sinha@gmail.com
694bbf8a0bc9a70bcc2d0decb623a43285ed0a43
1c3fb3c990bd07259c1701c709a28ec45cd0c748
/services/core-api/app/api/now_applications/resources/now_application_import_resource.py
d81a820815a7f11229bf5e30b97e659e6572e3c3
[ "Apache-2.0" ]
permissive
usingtechnology/mds
f973106232f73f773bb4bb57737094dd32b1bd3c
c9c542f729df21511ee46e184ea752bad0b7d10c
refs/heads/master
2022-04-13T07:56:59.060216
2020-03-21T22:43:05
2020-03-21T22:43:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,693
py
import uuid from datetime import datetime from decimal import Decimal from flask import request, current_app from flask_restplus import Resource from werkzeug.exceptions import BadRequest, InternalServerError, NotFound from app.extensions import api from app.api.utils.access_decorators import requires_role_view_all, requires_role_edit_permit, requires_any_of, VIEW_ALL from app.api.utils.resources_mixins import UserMixin from app.api.utils.custom_reqparser import CustomReqparser from app.api.mines.mine.models.mine import Mine from app.api.now_applications.models.now_application_identity import NOWApplicationIdentity from app.api.now_applications.models.now_application import NOWApplication from app.api.now_applications.models.activity_summary.exploration_access import ExplorationAccess from app.api.now_applications.models.activity_summary.exploration_surface_drilling import ExplorationSurfaceDrilling from app.api.now_applications.models.unit_type import UnitType from app.api.now_applications.models.activity_detail.exploration_surface_drilling_detail import ExplorationSurfaceDrillingDetail from app.api.now_applications.transmogrify_now import transmogrify_now class NOWApplicationImportResource(Resource, UserMixin): parser = CustomReqparser() parser.add_argument('mine_guid', type=str, help='guid of the mine.', required=True) parser.add_argument( 'longitude', type=lambda x: Decimal(x) if x else None, help='Longitude point for the Notice of Work.', location='json') parser.add_argument( 'latitude', type=lambda x: Decimal(x) if x else None, help='Latitude point for the Notice of Work.', location='json') @requires_role_edit_permit @api.expect(parser) def post(self, application_guid): data = self.parser.parse_args() mine_guid = data.get('mine_guid') latitude = data.get('latitude') longitude = data.get('longitude') mine = Mine.find_by_mine_guid(mine_guid) if not mine: raise NotFound('Mine not found') now_application_identity = NOWApplicationIdentity.query.filter_by( now_application_guid=application_guid).first() if not now_application_identity: raise NotFound('No identity record for this application guid.') application = transmogrify_now(now_application_identity) application.mine_guid = mine_guid application.latitude = latitude application.longitude = longitude application.now_application_guid = application_guid application.save() return {'now_application_guid': str(application.now_application_guid)}
[ "bcgov-csnr-cd@gov.bc.ca" ]
bcgov-csnr-cd@gov.bc.ca
8a3ffbbf040fed8d8a8b53a2550dfa256919edbb
d24cf7a2691f52ef2caf4578f8ee1feee3bab9e3
/computeQuantizationError.py
a0f714b0b29d4c970c5c40f6613bfef6210cafc4
[]
no_license
SrinidhiPalwayi/ps3
e2a651c5da3c80ae86817053c605f8af6f0cafeb
fb03663cb0d82eedb6dc2a21c22a80d20614de68
refs/heads/master
2020-04-02T16:21:55.821199
2018-10-25T04:17:41
2018-10-25T04:17:41
154,609,228
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
import matplotlib.pyplot as plt import numpy as np from sklearn import cluster from scipy import misc import scipy.misc from skimage import color def computeQuantizationError(origImage, quantizedImg): start = plt.imread(origImage) start = np.array(start, dtype='float') end = quantizedImg diff = np.subtract(start,end) diff = diff.flatten() square = np.power(diff,2) return np.sum(square)
[ "srinidhipalwayi@lawn-143-215-114-218.lawn.gatech.edu" ]
srinidhipalwayi@lawn-143-215-114-218.lawn.gatech.edu
77f975580a4eff9e2a4663283f48895dc34d8117
9374a0514cf193189f57f6ee96b4c4c7d226c689
/config.py
6e6df87c59768c72662dd74b2511825eccd2a749
[]
no_license
h4ck3rm1k3/replication-mirror
cbb08d8e29e3cd190816896939c0df2b7b21c93e
aaa69a8843e86744194bf7584d15bd76a7b71947
refs/heads/master
2021-01-15T10:37:14.184293
2012-09-03T21:41:22
2012-09-03T21:41:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
170
py
REPLICATE_BASE = 'http://planet.openstreetmap.org/redaction-period/minute-replicate/' REPLICATE_DISK = '/home/pnorman/osm/replication-mirror/redaction-minute-replication'
[ "penorman@mac.com" ]
penorman@mac.com
1465d969eefc5d32ecc6801620377401355e9a4c
0f4d72e1d30d2986e5fdfc98723b260166132e03
/tests/gpflow/likelihoods/test_heteroskedastic.py
8ad798ec3e236f03b623943501ba8864c035b2b8
[ "Apache-2.0" ]
permissive
vishalbelsare/GPflow
4991c238b7f8021c155940f3dfe99fb6bf0186ca
b716d22c7428f1bbe6bf4b361fdd0c7cb342a000
refs/heads/develop
2023-08-17T12:04:09.178253
2023-08-09T07:05:49
2023-08-09T07:05:49
392,794,283
0
0
Apache-2.0
2023-08-09T11:34:26
2021-08-04T18:42:41
Python
UTF-8
Python
false
false
1,688
py
# Copyright 2020 The GPflow Contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import tensorflow as tf from gpflow.base import AnyNDArray from gpflow.likelihoods import HeteroskedasticTFPConditional tf.random.set_seed(99012) class Data: rng = np.random.RandomState(123) N = 5 X = np.linspace(0, 1, num=N)[:, None] Y = rng.randn(N, 1) f_mean = rng.randn(N, 2) f_var: AnyNDArray = rng.randn(N, 2) ** 2 def test_analytic_mean_and_var() -> None: """ Test that quadrature computation used in HeteroskedasticTFPConditional of the predictive mean and variance is close to the analytical version, which can be computed for the special case of N(y | mean=f1, scale=exp(f2)), where f1, f2 ~ GP. """ analytic_mean = Data.f_mean[:, [0]] analytic_variance = np.exp(Data.f_mean[:, [1]] + Data.f_var[:, [1]]) ** 2 + Data.f_var[:, [0]] likelihood = HeteroskedasticTFPConditional() y_mean, y_var = likelihood.predict_mean_and_var(Data.X, Data.f_mean, Data.f_var) np.testing.assert_allclose(y_mean, analytic_mean) np.testing.assert_allclose(y_var, analytic_variance, rtol=1.5e-6)
[ "noreply@github.com" ]
vishalbelsare.noreply@github.com
7e74111ed54dae397d94ad4472237e042aa8c481
3b8d74a60e923da959e8d36a74b34c10e11c3733
/backend/index.py
672c53b56cac6f04c0d11a740ed7d4166ff931c0
[]
no_license
zain-mustafa/sentiment-analysis
ca7d86f27fc73d16d5339918b01074b939968896
42d0de01d305d3e61770d198d003616c6df2807e
refs/heads/master
2020-05-19T10:59:54.738766
2019-05-05T05:11:35
2019-05-05T05:11:35
184,979,562
0
0
null
null
null
null
UTF-8
Python
false
false
39,516
py
import json import re from flask import Flask, jsonify import tweepy from twython import Twython, TwythonError from tweepy import OAuthHandler from textblob import TextBlob import re import requests, json import pymongo from pymongo import MongoClient app = Flask(__name__) consumer_key = 'iSaIm4vG1kI2wGkaiuWYD5vN9' consumer_secret = '5zBcyyMS20926lWyXNnJq2vjnQNiHMNNHElD7Ymnbc5n5zACJ3' access_token = '1050518240974258179-9Gpi9dZA77Ivs1hhFy8JThC6iCqY6l' access_token_secret = 'jy6jeQsdyp9Q2ySlPtrgyckadzYfddmxitvl9cB7uhnAy' auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) twitter = Twython(consumer_key, consumer_secret, access_token, access_token_secret) client = MongoClient('localhost', 27017) client = MongoClient('mongodb://localhost:27017') db = client.saugs @app.route('/twitter/<query>') def get_tweets(query): count = 100 users_with_geodata = { "data": [] } all_users = [] total_tweets = 0 geo_tweets = 0 countries = get_countries_list() fetched_tweets = api.search(q = query, count = count) for tweet in fetched_tweets: tweet_text = tweet.text sentiment_analysis = get_tweet_sentiment(tweet_text) if tweet.user.id: total_tweets += 1 user_id = tweet.user.id if user_id not in all_users: all_users.append(user_id) user_data = { "user_id" : tweet.user.id, "result" : { "name" : tweet.user.name, "id": tweet.user.id, "screen_name": tweet.user.screen_name, "tweets" : 1, "location": tweet.user.location, } } if tweet.coordinates: user_data["result"]["primary_geo"] = 'US' # str(tweet.coordinates[tweet.coordinates.keys()[1]][1]) + ", " + str(tweet.coordinates[tweet.coordinates.keys()[1]][0]) user_data["result"]["geo_type"] = "Tweet coordinates" elif tweet.place: user_data["result"]["primary_geo"] = tweet.place.full_name + ", " + tweet.place.country user_data["result"]["geo_type"] = "Tweet place" else: user_data["result"]["primary_geo"] = tweet.user.location user_data["result"]["geo_type"] = "User location" if user_data["result"]["primary_geo"]: user_data["result"]["analysis_result"] = sentiment_analysis user_data["result"]["country"] = get_country(user_data["result"]["primary_geo"]) print(user_data["result"]["country"]) if user_data["result"]["country"] is not None: if user_data["result"]["country"] in countries: countries[user_data["result"]["country"]]["total_tweets"] = countries[user_data["result"]["country"]]["total_tweets"] + 1 if sentiment_analysis.sentiment.polarity > 0: countries[user_data["result"]["country"]]["positive"] = countries[user_data["result"]["country"]]["positive"] + 1 elif sentiment_analysis.sentiment.polarity < 0: countries[user_data["result"]["country"]]["negative"] = countries[user_data["result"]["country"]]["negative"] + 1 else: countries[user_data["result"]["country"]]["neutral"] = countries[user_data["result"]["country"]]["neutral"] + 1 total_polarity = countries[user_data["result"]["country"]]["total_polarity"] total_polarity = total_polarity + sentiment_analysis.sentiment.polarity mean = total_polarity / countries[user_data["result"]["country"]]["total_tweets"] countries[user_data["result"]["country"]]["total_polarity"] = total_polarity countries[user_data["result"]["country"]]["total"] = mean * 100 users_with_geodata['data'].append(user_data) geo_tweets += 1 elif user_id in all_users: for user in users_with_geodata["data"]: if user_id == user["user_id"]: user["result"]["tweets"] += 1 for user in users_with_geodata["data"]: geo_tweets = geo_tweets + user["result"]["tweets"] print("The file included " + str(len(all_users)) + " unique users who tweeted with or without geo data") print("The file included " + str(len(users_with_geodata['data'])) + " unique users who tweeted with geo data, including 'location'") print("The users with geo data tweeted " + str(geo_tweets) + " out of the total " + str(total_tweets) + " of tweets.") return jsonify(countries), {'Access-Control-Allow-Origin': '*'} def get_tweet_sentiment(tweet): # create TextBlob object of passed tweet text analysis = TextBlob(clean_tweet(tweet)) return analysis # set sentiment if analysis.sentiment.polarity > 0: return 'positive' elif analysis.sentiment.polarity == 0: return 'neutral' else: return 'negative' def clean_tweet(tweet): return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", " ", tweet).split()) def get_country(location): countries_collection = db.countries splitted_data = location.split(',') country = '' if len(splitted_data) > 0: city = splitted_data[0] splitted_cities = city.split(' ') for city in splitted_cities: for x in countries_collection.find({ "name" : {"$regex": city, '$options': 'i'} } ): country = x["country"] break if country == "": for city in splitted_cities: for x in countries_collection.find({ "subcountry" : {"$regex": city, '$options': 'i'} } ): country = x["country"] break else: for x in countries_collection.find({ "name" : {"$regex": location, '$options': 'i'} } ): country = x["country"] return country def get_countries_list(): countries = { "Afghanistan": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Albania": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Algeria": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Angola": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Anguilla": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Antigua and Barbuda": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Argentina": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Armenia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Aruba": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Australia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Austria": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Azerbaijan": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Bahamas, The": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Bahrain": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Bangladesh": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Barbados": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Belarus": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Belgium": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Belize": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Benin": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Bermuda": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Bhutan": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Bolivia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Bosnia and Herz.": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Botswana": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Brazil": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "British Virgin Islands": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Brunei": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Bulgaria": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Burkina Faso": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Burundi": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Cambodia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Cameroon": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Canada": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Cape Verde": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Cayman Islands": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Central African Rep.": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Chad": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Chile": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "China": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Colombia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Comoros": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Dem. Rep. Congo": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Congo": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Cook Islands": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Costa Rica": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Ivory Coast": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Croatia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Cuba": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Curacao": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Cyprus": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Czech Rep.": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Denmark": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Djibouti": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Dominica": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Dominican Rep.": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Ecuador": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Egypt": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "El Salvador": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Equatorial Guinea": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Eritrea": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Estonia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Ethiopia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "European Union": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Falkland Islands": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Faroe Islands": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Fiji": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Finland": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "France": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "French Polynesia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Gabon": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Gambia, The": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Georgia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Germany": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Ghana": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Gibraltar": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Greece": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Greenland": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Grenada": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Guatemala": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Guernsey": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Guinea": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Guinea-Bissau": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Guyana": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Haiti": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Honduras": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Hong Kong": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Hungary": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Iceland": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "India": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Indonesia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Iran": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Iraq": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Ireland": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Isle of Man": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Israel": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Italy": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Jamaica": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Japan": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Jersey": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Jordan": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Kazakhstan": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Kenya": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Kiribati": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Dem. Rep. Korea": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Korea": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Kosovo": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Kuwait": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Kyrgyzstan": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Lao PDR": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Latvia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Lebanon": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Lesotho": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Liberia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Libya": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Liechtenstein": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Lithuania": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Luxembourg": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Macau": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Macedonia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Madagascar": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Malawi": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Malaysia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Maldives": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Mali": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Malta": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Marshall Islands": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Mauritania": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Mauritius": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Mexico": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Micronesia, Federated States of": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Moldova": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Monaco": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Mongolia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Montenegro": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Montserrat": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Morocco": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Mozambique": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Myanmar": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Namibia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Nepal": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Netherlands": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "New Caledonia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "New Zealand": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Nicaragua": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Niger": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Nigeria": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Niue": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Norway": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Oman": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Pakistan": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Palau": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Panama": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Papua New Guinea": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Paraguay": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Peru": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Philippines": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Poland": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Portugal": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Puerto Rico": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Qatar": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Romania": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Russia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Rwanda": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Saint Kitts and Nevis": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Saint Lucia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Saint Martin": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Saint Vincent and the Grenadines": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Samoa": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "San Marino": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Sao Tome and Principe": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Saudi Arabia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Senegal": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Serbia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Seychelles": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Sierra Leone": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Singapore": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Sint Maarten": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Slovakia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Slovenia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Solomon Islands": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Somalia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Somaliland": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "South Africa": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Spain": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Sri Lanka": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Sudan": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "S. Sudan": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Suriname": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Swaziland": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Sweden": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Switzerland": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Syria": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Taiwan": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Tajikistan": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Tanzania": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Thailand": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Timor-Leste": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Togo": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Tonga": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Trinidad and Tobago": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Tunisia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Turkey": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Turkmenistan": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Turks and Caicos Islands": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Tuvalu": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Uganda": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Ukraine": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "United Arab Emirates": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "United Kingdom": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "United States": { "positive": 10, "neutral": 10, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Uruguay": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Uzbekistan": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Vanuatu": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Venezuela": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Vietnam": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "U.S. Virgin Islands": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "West Bank and Gaza": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Western Sahara": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Yemen": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Zambia": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 }, "Zimbabwe": { "positive": 0, "neutral": 0, "negative": 0, "total": 200, "total_tweets": 0, "total_polarity": 0 } } return countries @app.route('/trends') def get_trends(): trends = api.trends_place(id = 1) return jsonify({'trends' : trends}), {'Access-Control-Allow-Origin': '*'} if __name__ == '__main__': app.run()
[ "zainmustafa@Zains-MacBook-Pro.local" ]
zainmustafa@Zains-MacBook-Pro.local
634a7e6ba53de55dedd32d88b1d65db04278345f
da18a193b24638bb11429d5038b5b5028b46373f
/service/service.py
2d5b0bd3a2032fc75cd51624155f44b073a1e6da
[]
no_license
ankurmishra1394/Image-Management-API
2b4587173c029fce0dc9e05d91f4b662934e3c2e
df8a166e4397aa6226a9a97cb2fed74303dd07f8
refs/heads/master
2021-08-09T15:23:07.714662
2017-11-12T07:53:21
2017-11-12T07:53:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,992
py
''' class-name LocalUploader LocalUploader class is being used for storing the uploaded files on to the server This class contains some methods for uploading, viewing, updating and deleting file from/on server. ''' class LocalUploader(object): ## # To Upload Multiple Files onto the Server # @param request object # @return list[Uploads-model-object] ## def upload(self, request): import os from models import Uploads from utility import get_file_details, generate_uuid from validator import on_upload_request from PIL import Image if not os.path.isdir(os.environ['UPLOAD_FOLDER']): os.mkdir(os.environ['UPLOAD_FOLDER']) on_upload_request(request) files = request.FILES.getlist('files[]') upload_response = [] for file in files: file_detail = get_file_details(file, request) pil_image = Image.open(file, 'r') pil_image.save(os.path.join(os.environ['UPLOAD_FOLDER'], file_detail['local_name']), pil_image.format, quality=70) upload = Uploads(**file_detail).save() if upload: upload_response.append(upload) return upload_response ## # To View a file using the SelfLink, which is provided when user uploads a file # @param request object # @return file ## def accessFile(self, request, filename): import os from validator import on_upload_access_request from utility import load_file, get_mime_from_path if not os.path.isdir(os.environ['UPLOAD_FOLDER']): os.mkdir(os.environ['UPLOAD_FOLDER']) on_upload_access_request(filename) filepath = os.path.join(os.environ['UPLOAD_FOLDER'], filename) return load_file(filepath), get_mime_from_path(filepath) ## # To update a file with another using upload-id # A file can only be updated by the owner of the file. # @param request object, upload-id # @return Uploads-model-object ## def update(self, request, upload_id): from validator import on_upload_update_request from models import Uploads from utility import get_file_details from PIL import Image import os on_upload_update_request(request, upload_id) file = request.FILES['files[]'] file_detail = get_file_details(file, request, upload_id) pil_image = Image.open(file, 'r') pil_image.save(os.path.join(os.environ['UPLOAD_FOLDER'], file_detail['local_name']), pil_image.format, quality=70) return Uploads.manager.filterUpload({'id':upload_id})[0] ## # To delete a file with using upload-id # A file can only be deleted by the owner of the file. # @param request object, upload-id # @return bool ## def delete(self, request, upload_id): from models import Uploads from utility import delete_file, auth upload = Uploads.manager.filterUpload({'id':upload_id, 'user_id':auth(request).id}) if len(upload): delete_file(upload[0].path) return upload[0].delete() else: from upload_service.middleware.exception.NotFoundException import NotFoundException raise NotFoundException(params={'upload-id'}, payload=(['hint','Please provide a valid upload id'],))
[ "ankurmishra0113@gmail.com" ]
ankurmishra0113@gmail.com
e364df9ca876ec4a9c08bd80bc41c32c299fef9e
0212052f3e8be319130986845f41e140598a21ac
/Gallery/main/models.py
1bde24eaf65121f9f70869ac71560d07a6a964cd
[]
no_license
keerthi-aluvala/Gallery
59bcfc89b588937224bdb86cb25c96f38f82761c
1eecccca9b3fdcd8448756ce2c20b438c814ede9
refs/heads/master
2023-07-28T16:23:59.976639
2021-09-15T10:09:33
2021-09-15T10:09:33
406,399,578
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
from django.db import models from django.db.models import Model from django.urls import reverse class post(models.Model): ImgName = models.CharField(max_length=100) ImgURL = models.URLField(max_length = 200) ImgDetails = models.TextField() def __str__(self): return self.ImgName def get_absolute_url(self): return reverse('post-detail',kwargs={'pk': self.pk})
[ "keerthialuvala7@gmail.com" ]
keerthialuvala7@gmail.com
acdda252484cb17888b94d4969ee876e1f3b628e
48025a7707c346e1d101d2cc6254b3d7fbcdbbc2
/users/views.py
70636e5fda39403e7a71fda2090c26ed78afc794
[]
no_license
pratikgupta222/wallet_management
144a00062406c4906c3b1519a4015924ba7d021d
eaa14cb289ba8e2b1c9e3630ab6f1aab7d7acf04
refs/heads/master
2020-04-25T05:11:48.520580
2019-03-06T23:19:09
2019-03-06T23:19:09
172,534,547
1
0
null
2019-03-06T23:19:10
2019-02-25T15:43:04
Python
UTF-8
Python
false
false
4,288
py
from django.db import transaction from rest_framework import status, views from rest_framework.authentication import BasicAuthentication from rest_framework.permissions import IsAuthenticated, AllowAny from rest_framework.response import Response from users.models import User from users.helpers import * from users.permissions import CsrfExemptSessionAuthentication from wallet.helpers import create_wallet_for_user # Create your views here. class UserLogin(views.APIView): """ User Authentication to be done here and the response with the user token to be provided. """ authentication_classes = ( CsrfExemptSessionAuthentication, BasicAuthentication) permission_classes = (AllowAny,) def post(self, request): data = request.data print("This is the data : ", data) email = data.get("email").strip() password = data.get("password").strip() login_response = User.objects.do_login( request=request, email=email, password=password) if login_response.status_code == status.HTTP_200_OK: user = login_response.data.get('user') token = login_response.data.get('token') response = { 'status': True, 'message': { 'name': user.name, 'email': user.email, 'mAuthToken': token, } } return Response(status=status.HTTP_200_OK, data=response, content_type='text/html; charset=utf-8') response = { 'text': login_response.data } return Response(status=login_response.status_code, data=response, content_type='text/html; charset=utf-8') class UserSignup(views.APIView): """ Registration of the new user for accessing the wallet """ permission_classes = (AllowAny,) authentication_classes = ( CsrfExemptSessionAuthentication, BasicAuthentication) def post(self, request): """ Creating the new user along with the wallet :param request: A dict of the format { "email": "xyz@gmail.com", "password": "1234", "phone": "7867898798", "name": "xyz" } :return: Below is the response if provided with valid request { 'name': 'Name of the user', 'email': 'email of the user', 'mAuthToken': 'authorization token', } """ data = request.data response = { 'status': False, 'message': { 'text': '', } } try: data = validate_user_data(data, response) except ValidationError as e: return Response(status=status.HTTP_400_BAD_REQUEST, data=e.args[0]) with transaction.atomic(): try: user = User.objects.create_user(**data) except Exception as e: transaction.set_rollback(True) response['message'] = e.args[0] return Response(status=status.HTTP_400_BAD_REQUEST, data=response) login_response = User.objects.do_login(request=request, user=user) if login_response.status_code != status.HTTP_200_OK: transaction.set_rollback(True) return Response(status=login_response.status_code, data=login_response.data) token = login_response.data.get('token') new_wallet = create_wallet_for_user(user) if not new_wallet.get('ret_status') == status.HTTP_201_CREATED: transaction.set_rollback(True) print("Transaction rollback is done before this") return Response(status=new_wallet['ret_status'], data=new_wallet) response['status'] = True response['message'] = { 'name': user.name, 'email': user.email, 'mAuthToken': token, } return Response(status=status.HTTP_200_OK, data=response, content_type='text/html; charset=utf-8')
[ "pratikgupta222@gmail.com" ]
pratikgupta222@gmail.com
a0e23f6a3c0c9cdb18ef53bd34c776108cfea1db
a877e4c20c302127a1370b67bc16c30af9bcbb5c
/PTT_KCM_API/tests.py
7e940839c6f9473976b84ee0ef84d5f858c52200
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
UDICatNCHU/PTT_KCM_API
a727256c0561b139b041a0369218bcb1d0f9523e
557f4669adb80b13a61061ad9bf5d1926a476c27
refs/heads/master
2021-01-12T16:17:11.814661
2017-01-01T07:48:36
2017-01-01T07:48:36
71,979,578
0
1
null
null
null
null
UTF-8
Python
false
false
529
py
from django.test import TestCase from django.test import Client from django.core.urlresolvers import reverse from djangoApiDec.djangoApiDec import getJsonFromApi import subprocess # Create your tests here. class ApiTestCase(TestCase): def init(self): self.client = Client() def test_api_works(self): subprocess.call(['rm', '-rf', 'json']) response = self.client.get(reverse('PTT_KCM_API:locations')+"?issue=黑特") """Animals that can speak are correctly identified""" self.assertEqual(response.status_code, 200)
[ "davidtnfsh@gmail.com" ]
davidtnfsh@gmail.com
72b2a0612ddf0ffc92368d6b3dc82a8b544faf7e
f32d210cde79a724d819b0e193914144ed5e99aa
/bin/easy_install
f90cc5ca7ec77f077fd653836694e0918fd27887
[]
no_license
ojas97/Face_reco
7020709450fd683ccf34462357396e29e707cfaf
ad6638dd05b0d629a15dea8892bec942e74e4dea
refs/heads/master
2020-03-10T14:42:15.527509
2018-04-14T13:09:20
2018-04-14T13:09:20
129,432,896
0
1
null
2018-04-14T11:13:46
2018-04-13T17:18:43
Python
UTF-8
Python
false
false
271
#!/home/ojas/PycharmProjects/Term_Project/bin/python2.7 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "ojasagarwal97@gmail.com" ]
ojasagarwal97@gmail.com
c1a988ceb9d4927e78e0e02a15b68ff07d1ccab1
8032cf4330288a9d947bd0f48d13c450346ed9c9
/color_mongo.py
b32d30c29204f8ef1c25a3b34c07211e93bd935b
[ "Apache-2.0" ]
permissive
ColorPlatform/spectrum-mvp
eefd16160e9e0ef38f4c9e96644201a29035a348
48a5fa3664a4778d60fcf8f88992e14c988548be
refs/heads/master
2022-12-14T19:42:47.208421
2018-12-18T10:02:45
2018-12-18T10:02:45
162,266,191
1
0
NOASSERTION
2022-12-08T01:20:21
2018-12-18T09:49:28
Python
UTF-8
Python
false
false
4,380
py
import pymongo import json from bson.py3compat import (_unicode) class ColorMongo: """This class looks like MongoDB API, but allows only operations supported in chaincode """ def __init__(self, blockchain_url, database_host, database_name='WALLETSDB', collection_name='wallets'): self.__client = pymongo.MongoClient(host='mongodb://' + database_host) self.__database = self.__client[database_name] self.__collection = self.__database[_unicode(collection_name)] self.__updates = [] self.__inserts = [] self.__prestate = [] self.__session = None self.__blockchain = Blockchain(blockchain_url) def insert_one(self, document): # appends documents to list of inserts self.__inserts.append(document) pass def update_one(self, filter, update): # appends update command to list of updates # TODO Stop when called outside transaction # Filtering only supported by "key" # Updating is only supported by $set "value" # Supported format: updateOne({“key”: “Vasya”}, {“$set”: {“value”: 900}}) # TODO Check parameters, fail in case of unsupported syntax self.__updates.append({"method": "update_one", "filter": filter, "update": update}) return self.__collection.update_one(filter, update, session=self.__session) def find_one(self, filter): # appends # TODO Stop when called outside transaction # TODO Check parameters, fail in case of unsupported syntax # Supported format: findOne({“key”: “Petya”}) result = self.__collection.find_one(filter, session=self.__session) self.__prestate.append(result) return result def start_transaction(self): # TODO Stop when called inside transaction self.__updates = [] self.__prestate = [] self.__session = self.__client.start_session(causal_consistency=False) self.__session.start_transaction() return self def _convert_data(self): """Convert data from mongo-related format to chaincode supported format""" # commands = [{"key": c["filter"]["key"], "value": c["update"]["$set"]["value"]} for c in self.__updates] update_commands = [["wallet", "base_collection", c["filter"]["key"], "value", c["update"]["$set"]["value"]] for c in self.__updates] insert_commands = [["wallet", "base_collection", d["key"], key, d[key]] for d in self.__inserts for key in d] # insert_commands = [item for sublist in complex_insert_commands for item in sublist] commands = insert_commands + update_commands # print(commands) # TODO Filter out Object ids from prestate prestate = [["wallet", "base_collection", d["key"], key, d[key]] for d in self.__prestate for key in d if key != "_id"] return {"prestate": prestate, "commands": commands} def commit_transaction(self): result = self.__blockchain.check_transaction(self._convert_data()) if not result: result = 0 # We don't want changes will be persisted now in local Mongo, polling is responsible for this. self.__session.abort_transaction() return result def abort_transaction(self): self.__session.abort_transaction() self.__session.end_session() return class Blockchain: def __init__(self, url): self.__url = url def check_transaction(self, data): # TODO Implement when API specification arrives (some data transformation could be needed) # HTTP POST /updates {"updates": self.__updates, "prestate": self.__prestate} # Now just random wait import time import random from hfc.fabric import Client import json cli = Client(net_profile="test/fixtures/network-k8s.json") org1_admin = cli.get_user(org_name='org1.example.com', name='Admin') try: print(data) response = cli.chaincode_invoke( requestor=org1_admin, channel_name='businesschannel', peer_names=['peer0.org1.example.com'], args=[json.dumps(data)], cc_name='example_cc_2', cc_version='v1.0' ) except Exception as e: return -1
[ "a.tapekhin@gmail.com" ]
a.tapekhin@gmail.com
1c37c034aa9ddf26b763e81f1d2a97817418c05d
6db191f44416ab051a2afeb674b8b667ace63490
/shellob.py
233fdaab05a0d812c88413765bd39e8e9937fee6
[]
no_license
maldy/shellob
82a665c0576429b59ee6756d86c350ddb232ca1f
d139b558257ff7fc24b4b1d06ae11365ff1345a8
refs/heads/master
2020-04-06T06:55:21.288521
2011-10-22T11:45:53
2011-10-22T11:45:53
2,375,173
0
1
null
null
null
null
UTF-8
Python
false
false
3,919
py
#!/usr/bin/env python """ shellob.py ! ! \._\____/_./ _._/ \_._ .-\____/-. / oOOo \ < > A slightly simple webcrawler. """ __version__ = "0.5" __authors__ = "maldy (lordmaldy at gmail dot com), Vishaka (vishakadatta at\ gmail dot com)" import re import socket import datetime import errno # stuff you'll have to install - all available with python setuptools from mechanize import Browser, HTTPError, URLError, BrowserStateError import pymongo mongo_host = '10.109.27.150' mongo_port = 27017 espn_regex = re.compile(r'/football/') fixture_regex = re.compile(r'/fixtures/') PORT = 10000 URL_TIMEOUT = 60 #Time-out to wait for page to load class Crawler(): def __init__(self): self.br = Browser() self.br.set_handle_redirect(True) self.queue_server = {"host": "localhost", "port": PORT} self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: self.sock.connect((self.queue_server['host'], self.queue_server['port'])) except socket.error, (value, message): print "Could not connect to queue server at " + self.queue_server['host'] +\ ":" + str(self.queue_server['port']) print message return def recv_delim(self, buf_len, delim): data = "" while True: recv_data = self.sock.recv(buf_len) data += recv_data if delim in data: return data[:-1] def send_msg(self, msg, delim): msg_len = len(msg) bytes_sent = 0 while bytes_sent < msg_len: sent = self.sock.send( msg + delim ) bytes_sent += sent msg = msg[sent+1:] return bytes_sent def crawl(self): while True: # grab the next url off the queue server buf_left = 10000 url_msg = self.recv_delim( 4096, '\0') depth_end = url_msg.find('\1') url = url_msg[depth_end+1:] depth = int(url_msg[0:depth_end]) print str(datetime.datetime.utcnow()) + " URL received from queue server ->" + url +\ " Depth : " + str(depth) # fetch url contents (filter stuff here) try : response = self.br.open(url,timeout=URL_TIMEOUT) if response: print "Crawl successful" crawler_ack = 's' connection = pymongo.Connection(mongo_host, mongo_port) db = connection.final_espn_corpus html = response.read() post = {"url": url, "crawl_time": datetime.datetime.utcnow(), "content": html} posts = db.pages posts.update({"url": url},post, True) else: print "Crawl failed - Timeout" crawler_ack = 'f' except HTTPError, e: print "Crawl failed - HTTP error" if e.code >= 400 and e.code<= 417: crawler_ack = 'd' else: crawler_ack = 'f' except URLError: print "Crawl failed - Could not open page" crawler_ack = 'f' links_found = [] if crawler_ack is 's': try: links_found = list( self.br.links() ) except BrowserStateError: print "Crawl failed - Mechanize error" crawler_ack = 'd' except socket.timeout: print "Crawl failed - links() timed out" crawler_ack = 'f' crawler_msg = crawler_ack + "*" depth += 1 #All links in this page are at lower depth. for link in links_found: if espn_regex.search(link.absolute_url) and not \ fixture_regex.search(link.absolute_url): if link.absolute_url[-1] is not '/': link.absolute_url += '/' url_msg = str(depth) + '\1' + link.absolute_url + '*' crawler_msg += url_msg bytes_sent = self.send_msg( crawler_msg, '\0' ) self.sock.close() def main(): # thread and unleash shellob onto the unsuspecting site. Amok! c = Crawler() c.crawl() if __name__ == "__main__": main() ############################## # Code Snippet dump - ignore # ############################## """ response = self.br.open(url) for link in self.br.links(): print link response.seek(0) html = response.read() root = lxml.html.fromstring(html) for link in root.iterlinks(): print link """
[ "lordmaldy@gmail.com" ]
lordmaldy@gmail.com
9769b68ced1dc51abf28a9414ee09acacdfb932d
7223690a5bf83b3fd5141fb906cf91c58ed9063c
/Practice/dollar.py
406dd91288977a12f456b24032fa0917f4f5ac46
[]
no_license
BowwowKeye/wasteyard
74326059ec784b9d0ba9fbb3031e794d409dcd3e
4f4309dd4a46228950ddda0d333564ef27f8fa6b
refs/heads/master
2021-04-06T10:19:11.033944
2018-06-06T12:22:30
2018-06-06T12:22:30
124,637,011
0
0
null
2018-03-11T03:58:47
2018-03-10T08:31:47
Python
UTF-8
Python
false
false
280
py
total=raw_input('input your money') total=float(total) if total<1: total*=100 (quarter,total)=divmod(total,25) (dime,total)=divmod(total,10) (nickel,total)=divmod(total,5) (cent,total)=divmod(total,1) print 'quarter:%d,dime:%d,nickel:%d,cent:%d' % (quarter,dime,nickel,cent)
[ "quant.wkai@gmail.com" ]
quant.wkai@gmail.com
000520180d72bddfb7d6589c47de3fce6083e0a2
bf593db51f9a3ef9a4cd8235466e4dd138ee61f2
/IT 310 - Data Structures and Algorithms/6.5.py
11f04298206910ee925b9d81c8a8bd8032aad2a7
[]
no_license
TylerBade/Classwork
101e35d006cdf5d52079270c0f745a87a3142774
43ecc9b46d2d7fe604eac33ca064e9bc1c23302c
refs/heads/master
2020-03-22T04:55:15.210658
2018-10-22T06:53:05
2018-10-22T06:53:05
137,776,911
0
0
null
null
null
null
UTF-8
Python
false
false
791
py
class Stack: def __init__( self ): self._items = list(); def isEmpty( self ): return len( self ) == 0; def __len__ (self): return len(self._items); def peek(self): if self.isEmpty(): return "No values to peek at."; else: return self._items[-1]; def pop (self): if self.isEmpty(): return "No values to pop."; else: return self._items.pop() def push(self, item): self._items.append(item); def __str__(self): return repr(self._items); newStack = Stack() newStack.push(4) newStack.push(5) newStack.push(6) newStack.push(10) print(newStack) revStack = Stack() while not newStack.isEmpty(): revStack.push(newStack.pop()); print(revStack)
[ "Tjbade@gmail.com" ]
Tjbade@gmail.com
e9fdf3118d27b5e5d62637f7854d1467fe0198df
eec259ed9551157fc7d39759be9da014e6b56cd0
/python/cuspatial/cuspatial/core/spatial/distance.py
fa53bacee3fac90172a1d21e6206b47b279b871d
[ "Apache-2.0" ]
permissive
rapidsai/cuspatial
b4699ffe73ac217ec40244e231d33675470d3e30
a87d21f0cf70116576bf7dbdd42db2bcfd50e7d4
refs/heads/branch-23.10
2023-08-31T10:49:25.144482
2023-08-30T22:02:04
2023-08-30T22:02:04
199,666,905
509
136
Apache-2.0
2023-09-08T21:07:05
2019-07-30T14:23:22
Jupyter Notebook
UTF-8
Python
false
false
22,088
py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. import cudf from cudf import DataFrame, Series from cudf.core.column import as_column from cuspatial._lib.distance import ( directed_hausdorff_distance as cpp_directed_hausdorff_distance, haversine_distance as cpp_haversine_distance, pairwise_linestring_distance as cpp_pairwise_linestring_distance, pairwise_linestring_polygon_distance as c_pairwise_line_poly_dist, pairwise_point_distance as cpp_pairwise_point_distance, pairwise_point_linestring_distance as c_pairwise_point_linestring_distance, pairwise_point_polygon_distance as c_pairwise_point_polygon_distance, pairwise_polygon_distance as c_pairwise_polygon_distance, ) from cuspatial._lib.types import CollectionType from cuspatial.core.geoseries import GeoSeries from cuspatial.utils.column_utils import ( contains_only_linestrings, contains_only_multipoints, contains_only_points, contains_only_polygons, ) def directed_hausdorff_distance(multipoints: GeoSeries): """Compute the directed Hausdorff distances between all pairs of spaces. Parameters ---------- multipoints: GeoSeries A column of multipoint, where each multipoint indicates an input space to compute its hausdorff distance to the rest of input spaces. Returns ------- result : cudf.DataFrame result[i, j] indicates the hausdorff distance between multipoints[i] and multipoint[j]. Examples -------- The directed Hausdorff distance from one space to another is the greatest of all the distances between any point in the first space to the closest point in the second. `Wikipedia <https://en.wikipedia.org/wiki/Hausdorff_distance>`_ Consider a pair of lines on a grid:: : x -----xyy--- : : x\\ :sub:`0` = (0, 0), x\\ :sub:`1` = (0, 1) y\\ :sub:`0` = (1, 0), y\\ :sub:`1` = (2, 0) x\\ :sub:`0` is the closest point in ``x`` to ``y``. The distance from x\\ :sub:`0` to the farthest point in ``y`` is 2. y\\ :sub:`0` is the closest point in ``y`` to ``x``. The distance from y\\ :sub:`0` to the farthest point in ``x`` is 1.414. Compute the directed hausdorff distances between a set of spaces >>> pts = cuspatial.GeoSeries([ ... MultiPoint([(0, 0), (1, 0)]), ... MultiPoint([(0, 1), (0, 2)]) ... ]) >>> cuspatial.directed_hausdorff_distance(pts) 0 1 0 0.0 1.414214 1 2.0 0.000000 """ num_spaces = len(multipoints) if num_spaces == 0: return DataFrame() if not contains_only_multipoints(multipoints): raise ValueError("Input must be a series of multipoints.") result = cpp_directed_hausdorff_distance( multipoints.multipoints.x._column, multipoints.multipoints.y._column, as_column(multipoints.multipoints.geometry_offset[:-1]), ) return DataFrame._from_columns(result, range(num_spaces)) def haversine_distance(p1: GeoSeries, p2: GeoSeries): """Compute the haversine distances in kilometers between an arbitrary list of lon/lat pairs Parameters ---------- p1: GeoSeries Series of points as floats p2: GeoSeries Series of points as floats Returns ------- result : cudf.Series The distance between pairs of points between `p1` and `p2` >>> import cudf >>> import cuspatial >>> a = {"latitude":[0.0,0.0,1.0,1.0], ... "longitude": [0.0,1.0,0.0,1.0]} >>> df = cudf.DataFrame(data=a) >>> # Create cuSpatial GeoSeries from cuDF Dataframe >>> gs = cuspatial.GeoSeries.from_points_xy( ... df[['longitude', 'latitude']].interleave_columns() ... ) >>> # Create Comparator cuSpatial GeoSeries from a comparator point >>> df['compare_lat'] = 2.0 # this will broadcast the value to all rows >>> df['compare_lng'] = 2.0 >>> cmp_gs = cuspatial.GeoSeries.from_points_xy( ... df[['compare_lat', 'compare_lng']].interleave_columns() ... ) >>> # Calculate Haversine Distance of cuDF dataframe to comparator point >>> df['compare_dist'] = cuspatial.haversine_distance(gs, cmp_gs) >>> df.head() latitude longitude compare_lat compare_lng compare_dist 0 0.0 0.0 2.0 2.0 314.474805 1 0.0 1.0 2.0 2.0 248.629315 2 1.0 0.0 2.0 2.0 248.568719 3 1.0 1.0 2.0 2.0 157.225432 """ if any([not contains_only_points(p1), not contains_only_points(p2)]): raise ValueError("Input muist be two series of points.") if len(p1) != len(p2): raise ValueError("Mismatch length of inputs.") p1_lon = p1.points.x._column p1_lat = p1.points.y._column p2_lon = p2.points.x._column p2_lat = p2.points.y._column return cudf.Series._from_data( {"None": cpp_haversine_distance(p1_lon, p1_lat, p2_lon, p2_lat)} ) def pairwise_point_distance(points1: GeoSeries, points2: GeoSeries): """Compute distance between (multi)points-(multi)points pairs Currently `points1` and `points2` must contain either only points or multipoints. Mixing points and multipoints in the same series is unsupported. Parameters ---------- points1 : GeoSeries A GeoSeries of (multi)points points2 : GeoSeries A GeoSeries of (multi)points Returns ------- distance : cudf.Series the distance between each pair of (multi)points Examples -------- >>> from shapely.geometry import Point, MultiPoint >>> p1 = cuspatial.GeoSeries([ ... MultiPoint([(0.0, 0.0), (1.0, 0.0)]), ... MultiPoint([(0.0, 1.0), (1.0, 0.0)]) ... ]) >>> p2 = cuspatial.GeoSeries([ ... Point(2.0, 2.0), Point(0.0, 0.5) ... ]) >>> cuspatial.pairwise_point_distance(p1, p2) 0 2.236068 1 0.500000 dtype: float64 """ if not len(points1) == len(points2): raise ValueError("`points1` and `points2` must have the same length") if len(points1) == 0: return cudf.Series(dtype="float64") if not contains_only_points(points1): raise ValueError("`points1` array must contain only points") if not contains_only_points(points2): raise ValueError("`points2` array must contain only points") if (len(points1.points.xy) > 0 and len(points1.multipoints.xy) > 0) or ( len(points2.points.xy) > 0 and len(points2.multipoints.xy) > 0 ): raise NotImplementedError( "Mixing point and multipoint geometries is not supported" ) ( lhs_column, lhs_point_collection_type, ) = _extract_point_column_and_collection_type(points1) ( rhs_column, rhs_point_collection_type, ) = _extract_point_column_and_collection_type(points2) return Series._from_data( { None: cpp_pairwise_point_distance( lhs_point_collection_type, rhs_point_collection_type, lhs_column, rhs_column, ) } ) def pairwise_linestring_distance( multilinestrings1: GeoSeries, multilinestrings2: GeoSeries ): """Compute distance between (multi)linestring-(multi)linestring pairs The shortest distance between two linestrings is defined as the shortest distance between all pairs of segments of the two linestrings. If any of the segments intersect, the distance is 0. Parameters ---------- multilinestrings1 : GeoSeries A GeoSeries of (multi)linestrings multilinestrings2 : GeoSeries A GeoSeries of (multi)linestrings Returns ------- distance : cudf.Series the distance between each pair of linestrings Examples -------- >>> from shapely.geometry import LineString, MultiLineString >>> ls1 = cuspatial.GeoSeries([ ... LineString([(0, 0), (1, 1)]), ... LineString([(1, 0), (2, 1)]) ... ]) >>> ls2 = cuspatial.GeoSeries([ ... MultiLineString([ ... LineString([(-1, 0), (-2, -1)]), ... LineString([(-2, -1), (-3, -2)]) ... ]), ... MultiLineString([ ... LineString([(0, -1), (0, -2), (0, -3)]), ... LineString([(0, -3), (-1, -3), (-2, -3)]) ... ]) ... ]) >>> cuspatial.pairwise_linestring_distance(ls1, ls2) 0 1.000000 1 1.414214 dtype: float64 """ if not len(multilinestrings1) == len(multilinestrings2): raise ValueError( "`multilinestrings1` and `multilinestrings2` must have the same " "length" ) if len(multilinestrings1) == 0: return cudf.Series(dtype="float64") if not contains_only_linestrings( multilinestrings1 ) or not contains_only_linestrings(multilinestrings2): raise ValueError( "`multilinestrings1` and `multilinestrings2` must contain only " "linestrings" ) if len(multilinestrings1) == 0: return cudf.Series(dtype="float64") return Series._from_data( { None: cpp_pairwise_linestring_distance( multilinestrings1.lines.column(), multilinestrings2.lines.column(), ) } ) def pairwise_point_linestring_distance( points: GeoSeries, linestrings: GeoSeries ): """Compute distance between (multi)points-(multi)linestrings pairs The distance between a (multi)point and a (multi)linestring is defined as the shortest distance between every point in the multipoint and every line segment in the multilinestring. This algorithm computes distance pairwise. The ith row in the result is the distance between the ith (multi)point in `points` and the ith (multi)linestring in `linestrings`. Parameters ---------- points : GeoSeries The (multi)points to compute the distance from. linestrings : GeoSeries The (multi)linestrings to compute the distance from. Returns ------- distance : cudf.Series Notes ----- The input `GeoSeries` must contain a single type geometry. For example, `points` series cannot contain both points and polygons. Currently, it is unsupported that `points` contains both points and multipoints. Examples -------- **Compute distances between point array to linestring arrays** >>> from shapely.geometry import ( ... Point, MultiPoint, LineString, MultiLineString ... ) >>> import geopandas as gpd, cuspatial >>> pts = cuspatial.from_geopandas(gpd.GeoSeries([ ... Point(0.0, 0.0), Point(1.0, 1.0), Point(2.0, 2.0) ... ])) >>> mlines = cuspatial.from_geopandas(gpd.GeoSeries( ... [ ... LineString([Point(-1.0, 0.0), ... Point(-0.5, -0.5), ... Point(-1.0, -0.5), ... Point(-0.5, -1.0)]), ... LineString([Point(8.0, 10.0), ... Point(11.21, 9.48), ... Point(7.1, 12.5)]), ... LineString([Point(1.0, 0.0), Point(0.0, 1.0)]), ... ])) >>> cuspatial.pairwise_point_linestring_distance(pts, mlines) 0 0.707107 1 11.401754 2 2.121320 dtype: float64 **Compute distances between multipoint to multilinestring arrays** >>> # 3 pairs of multi points containing 3 points each >>> ptsdata = [ ... [[9, 7], [0, 6], [7, 2]], ... [[5, 8], [5, 7], [6, 0]], ... [[8, 8], [6, 7], [4, 1]], ... ] >>> # 3 pairs of multi linestrings containing 2 linestrings each >>> linesdata = [ ... [ ... [[86, 47], [31, 17], [84, 16], [14, 63]], ... [[14, 36], [90, 73], [72, 66], [0, 5]], ... ], ... [ ... [[36, 90], [29, 31], [91, 70], [25, 78]], ... [[61, 64], [89, 20], [94, 46], [37, 44]], ... ], ... [ ... [[60, 76], [29, 60], [53, 87], [8, 18]], ... [[0, 16], [79, 14], [3, 6], [98, 89]], ... ], ... ] >>> pts = cuspatial.from_geopandas( ... gpd.GeoSeries(map(MultiPoint, ptsdata)) ... ) >>> lines = cuspatial.from_geopandas( ... gpd.GeoSeries(map(MultiLineString, linesdata)) ... ) >>> cuspatial.pairwise_point_linestring_distance(pts, lines) 0 0.762984 1 33.241540 2 0.680451 dtype: float64 """ if not contains_only_points(points): raise ValueError("`points` array must contain only points") if not contains_only_linestrings(linestrings): raise ValueError("`linestrings` array must contain only linestrings") if len(points.points.xy) > 0 and len(points.multipoints.xy) > 0: raise NotImplementedError( "Mixing point and multipoint geometries is not supported" ) ( point_column, point_collection_type, ) = _extract_point_column_and_collection_type(points) return Series._from_data( { None: c_pairwise_point_linestring_distance( point_collection_type, point_column, linestrings.lines.column(), ) } ) def pairwise_point_polygon_distance(points: GeoSeries, polygons: GeoSeries): """Compute distance between (multi)points-(multi)polygons pairs The distance between a (multi)point and a (multi)polygon is defined as the shortest distance between every point in the multipoint and every edge of the (multi)polygon. If the multipoint and multipolygon intersects, the distance is 0. This algorithm computes distance pairwise. The ith row in the result is the distance between the ith (multi)point in `points` and the ith (multi)polygon in `polygons`. Parameters ---------- points : GeoSeries The (multi)points to compute the distance from. polygons : GeoSeries The (multi)polygons to compute the distance from. Returns ------- distance : cudf.Series Notes ----- The input `GeoSeries` must contain a single type geometry. For example, `points` series cannot contain both points and polygons. Currently, it is unsupported that `points` contains both points and multipoints. Examples -------- Compute distance between a point and a polygon: >>> from shapely.geometry import Point >>> points = cuspatial.GeoSeries([Point(0, 0)]) >>> polygons = cuspatial.GeoSeries([Point(1, 1).buffer(0.5)]) >>> cuspatial.pairwise_point_polygon_distance(points, polygons) 0 0.914214 dtype: float64 Compute distance between a multipoint and a multipolygon >>> from shapely.geometry import MultiPoint >>> mpoints = cuspatial.GeoSeries([MultiPoint([Point(0, 0), Point(1, 1)])]) >>> mpolys = cuspatial.GeoSeries([ ... MultiPoint([Point(2, 2), Point(1, 2)]).buffer(0.5)]) >>> cuspatial.pairwise_point_polygon_distance(mpoints, mpolys) 0 0.5 dtype: float64 """ if len(points) != len(polygons): raise ValueError("Unmatched input geoseries length.") if len(points) == 0: return cudf.Series(dtype=points.points.xy.dtype) if not contains_only_points(points): raise ValueError("`points` array must contain only points") if not contains_only_polygons(polygons): raise ValueError("`polygons` array must contain only polygons") if len(points.points.xy) > 0 and len(points.multipoints.xy) > 0: raise NotImplementedError( "Mixing point and multipoint geometries is not supported" ) ( points_column, point_collection_type, ) = _extract_point_column_and_collection_type(points) polygon_column = polygons.polygons.column() return Series._from_data( { None: c_pairwise_point_polygon_distance( point_collection_type, points_column, polygon_column ) } ) def pairwise_linestring_polygon_distance( linestrings: GeoSeries, polygons: GeoSeries ): """Compute distance between (multi)linestrings-(multi)polygons pairs. The distance between a (multi)linestrings and a (multi)polygon is defined as the shortest distance between every segment in the multilinestring and every edge of the (multi)polygon. If the multilinestring and multipolygon intersect, the distance is 0. This algorithm computes distance pairwise. The ith row in the result is the distance between the ith (multi)linestring in `linestrings` and the ith (multi)polygon in `polygons`. Parameters ---------- linestrings : GeoSeries The (multi)linestrings to compute the distance from. polygons : GeoSeries The (multi)polygons to compute the distance from. Returns ------- distance : cudf.Series Notes ----- The input `GeoSeries` must contain a single type geometry. For example, `linestrings` series cannot contain both linestrings and polygons. Examples -------- Compute distance between a linestring and a polygon: >>> from shapely.geometry import LineString, Polygon >>> lines = cuspatial.GeoSeries([ ... LineString([(0, 0), (1, 1)])]) >>> polys = cuspatial.GeoSeries([ ... Polygon([(-1, -1), (-1, 0), (-2, 0), (-1, -1)]) ... ]) >>> cuspatial.pairwise_linestring_polygon_distance(lines, polys) 0 1.0 dtype: float64 Compute distance between a multipoint and a multipolygon >>> from shapely.geometry import MultiLineString, MultiPolygon >>> lines = cuspatial.GeoSeries([ ... MultiLineString([ ... LineString([(0, 0), (1, 1)]), ... LineString([(1, 1), (2, 2)])]) ... ]) >>> polys = cuspatial.GeoSeries([ ... MultiPolygon([ ... Polygon([(-1, -1), (-1, 0), (-2, 0), (-1, -1)]), ... Polygon([(-2, 0), (-3, 0), (-3, -1), (-2, 0)])]) ... ]) >>> cuspatial.pairwise_linestring_polygon_distance(lines, polys) 0 1.0 dtype: float64 """ if len(linestrings) != len(polygons): raise ValueError("Unmatched input geoseries length.") if len(linestrings) == 0: return cudf.Series(dtype=linestrings.lines.xy.dtype) if not contains_only_linestrings(linestrings): raise ValueError("`linestrings` array must contain only linestrings") if not contains_only_polygons(polygons): raise ValueError("`polygon` array must contain only polygons") linestrings_column = linestrings.lines.column() polygon_column = polygons.polygons.column() return Series._from_data( {None: c_pairwise_line_poly_dist(linestrings_column, polygon_column)} ) def pairwise_polygon_distance(polygons1: GeoSeries, polygons2: GeoSeries): """Compute distance between (multi)polygon-(multi)polygon pairs. The distance between two (multi)polygons is defined as the shortest distance between any edge of the first (multi)polygon and any edge of the second (multi)polygon. If two (multi)polygons intersect, the distance is 0. This algorithm computes distance pairwise. The ith row in the result is the distance between the ith (multi)polygon in `polygons1` and the ith (multi)polygon in `polygons2`. Parameters ---------- polygons1 : GeoSeries The (multi)polygons to compute the distance from. polygons2 : GeoSeries The (multi)polygons to compute the distance from. Returns ------- distance : cudf.Series Notes ----- `polygons1` and `polygons2` must contain only polygons. Examples -------- Compute distance between polygons: >>> from shapely.geometry import Polygon, MultiPolygon >>> s0 = cuspatial.GeoSeries([ ... Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)])]) >>> s1 = cuspatial.GeoSeries([ ... Polygon([(2, 2), (3, 2), (3, 3), (2, 2)])]) >>> cuspatial.pairwise_polygon_distance(s0, s1) 0 1.414214 dtype: float64 Compute distance between multipolygons: >>> s0 = cuspatial.GeoSeries([ ... MultiPolygon([ ... Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]), ... Polygon([(2, 0), (3, 0), (3, 1), (2, 0)])])]) >>> s1 = cuspatial.GeoSeries([ ... MultiPolygon([ ... Polygon([(-1, 0), (-2, 0), (-2, -1), (-1, -1), (-1, 0)]), ... Polygon([(0, -1), (1, -1), (1, -2), (0, -2), (0, -1)])])]) >>> cuspatial.pairwise_polygon_distance(s0, s1) 0 1.0 dtype: float64 """ if len(polygons1) != len(polygons2): raise ValueError("Unmatched input geoseries length.") if len(polygons1) == 0: return cudf.Series(dtype=polygons1.lines.xy.dtype) if not contains_only_polygons(polygons1): raise ValueError("`polygons1` array must contain only polygons") if not contains_only_polygons(polygons2): raise ValueError("`polygons2` array must contain only polygons") polygon1_column = polygons1.polygons.column() polygon2_column = polygons2.polygons.column() return Series._from_data( {None: c_pairwise_polygon_distance(polygon1_column, polygon2_column)} ) def _extract_point_column_and_collection_type(s: GeoSeries): """Given a GeoSeries that contains only points or multipoints, return the point or multipoint column and the collection type of the GeoSeries. """ point_collection_type = ( CollectionType.SINGLE if len(s.points.xy > 0) else CollectionType.MULTI ) if point_collection_type == CollectionType.SINGLE: return s.points.column(), point_collection_type else: return s.multipoints.column(), point_collection_type
[ "noreply@github.com" ]
rapidsai.noreply@github.com
07e7df0816c1957b767384afad42bcae44dc81fd
1b966dfe5516ac1cc080ff9305104b0b31463f00
/word-count/word_count.py
ddb6e542a8ddff1c3263eef9c7623f8ad95d3b5e
[]
no_license
Nephasis/exercismPython
877f9b0906b6882c99a747f98124bcea3c4cbeeb
4ca9481ceb555c7b7427d255500720a938d47f25
refs/heads/master
2021-07-06T09:55:16.483723
2017-10-02T16:52:35
2017-10-02T16:52:35
105,559,939
0
0
null
null
null
null
UTF-8
Python
false
false
423
py
import re def words_split(sentence): words = re.sub("[^a-zA-Z0-9]", " ", sentence.lower()).split() return words def word_count(sentence): words_dict = {} words = re.sub("[^a-zA-Z0-9]", " ", sentence.lower()).split() print words for i in words: z = 1 print i if words[z] == i: z += 1 else: pass words_dict[i] = z print words_dict
[ "martyna.zaa@gmail.com" ]
martyna.zaa@gmail.com
c610d3b2b1ed632057809c123585fd8cbb40363f
cdcb58cddf422079e27550d4db344cb634b2806e
/record_facesepimg.py
537d43c5025c048e8d51f4ac09bb17b336dbefb3
[]
no_license
JeeveshJoshi/Home-Security-Solution-Using-Facial-Recognition
a26a468b131c11efcffae97d1fb8a87702d46e76
e2028d4fa5f783d4c6f590ce643ed65fffe40502
refs/heads/master
2022-08-06T23:59:10.928273
2020-05-28T17:51:50
2020-05-28T17:51:50
267,657,536
0
0
null
null
null
null
UTF-8
Python
false
false
936
py
import cv2 import numpy as np import sqlite3 import os conn = sqlite3.connect('database.db') if not os.path.exists('./dataset'): os.makedirs('./dataset') c = conn.cursor() face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') cap = cv2.VideoCapture('t2.mp4') uname = input("Enter your name: ") c.execute('INSERT INTO users (name) VALUES (?)', (uname,)) uid = c.lastrowid sampleNum = 0 while True: ret, img = cap.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: sampleNum = sampleNum+1 cv2.imwrite("dataset/User."+str(uid)+"."+str(sampleNum)+".jpg",gray[y:y+h,x:x+w]) cv2.rectangle(img, (x,y), (x+w, y+h), (255,0,0), 2) cv2.waitKey(100) cv2.imshow('img',img) cv2.waitKey(1); if sampleNum > 150: break cap.release() conn.commit() conn.close() cv2.destroyAllWindows()
[ "noreply@github.com" ]
JeeveshJoshi.noreply@github.com
205b5a1ec4dae46d7dc21465fb1acc9354c8e8a4
244ecfc2017a48c70b74556be8c188e7a4815848
/res/scripts/client/gui/prb_control/functional/__init__.py
3c9b3da695003de294a48c0ffe4eae03d5b61bb6
[]
no_license
webiumsk/WOT-0.9.12
c1e1259411ba1e6c7b02cd6408b731419d3174e5
5be5fd9186f335e7bae88c9761c378ff5fbf5351
refs/heads/master
2021-01-10T01:38:36.523788
2015-11-18T11:33:37
2015-11-18T11:33:37
46,414,438
1
0
null
null
null
null
WINDOWS-1250
Python
false
false
820
py
# 2015.11.18 11:52:50 Střední Evropa (běžný čas) # Embedded file name: scripts/client/gui/prb_control/functional/__init__.py from constants import IS_DEVELOPMENT def initDevFunctional(): if IS_DEVELOPMENT: try: from gui.development.dev_prebattle import init except ImportError: def init(): pass init() def finiDevFunctional(): if IS_DEVELOPMENT: try: from gui.development.dev_prebattle import fini except ImportError: def fini(): pass fini() # okay decompyling c:\Users\PC\wotsources\files\originals\res\scripts\client\gui\prb_control\functional\__init__.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2015.11.18 11:52:50 Střední Evropa (běžný čas)
[ "info@webium.sk" ]
info@webium.sk
784f981f27b845d2b714770887c997029b4fbecb
f6763d51437acf9b44eba1fe571f13a06439167f
/ses3d/make_stations.py
394d334d11f2d82c700a9fea8a301f9ffbc41098
[]
no_license
xian-ran/seis_tools
335566f71eb975dab43c9b6c17b0a865be02581a
3a7b3f6b35e6d137924e8e95c6fac56681f772dc
refs/heads/master
2020-11-24T19:26:10.994293
2019-04-01T18:28:18
2019-04-01T18:28:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,820
py
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap #======================================================= # Create grid of receivers for SES3d #======================================================= depth = 0.0 rec_names = [] rec_coors = [] #main station grid d_lon = 0.5 d_lat = 0.5 lon_0 = -15.0 lon_e = 15.0 colat_0 = 75 colat_e = 105 lon = np.arange(lon_0,lon_e+(1*d_lon),d_lon) colat = np.arange(colat_0,colat_e+(1*d_lat),d_lat) #sparse station grid d_lon2 = 3.0 d_lat2 = 3.0 lon2_0 = -30.0 lon2_e = 30.0 colat2_0 = 60.0 colat2_e = 120.0 lon2 = np.arange(lon2_0,lon2_e+(1*d_lon2),d_lon2) colat2 = np.arange(colat2_0,colat2_e+(1*d_lat2),d_lat2) total_receivers = len(lon)*len(colat) + len(lon2)*len(colat2) m = Basemap(projection='ortho',lon_0=0.0,lat_0=0.0) m.drawcoastlines() parallels = np.arange(-90,90,15) m.drawparallels(parallels) meridians = np.arange(-90,90,15) m.drawmeridians(meridians) count = 1 for l in lon: for c in colat: rec_name = '{}''{:_>9}'.format('REC',str(count)) rec_coor = '{} {} {}'.format(c, l, depth) rec_names.append(rec_name) rec_coors.append(rec_coor) count += 1 x1,y1 = m(l,90.0-c) m.scatter(x1,y1) for l in lon2: for c in colat2: if c < 75.0 or c > 105.0 or l < -15.0 or l > 15.0: rec_name = '{}''{:_>9}'.format('REC',str(count)) rec_coor = '{} {} {}'.format(c, l, depth) rec_names.append(rec_name) rec_coors.append(rec_coor) count += 1 x1,y1 = m(l,90.0-c) m.scatter(x1,y1) #write the station file f = open('recfile_1','w') f.write(str(len(rec_names))+'\n') for i in range(0,len(rec_names)): f.write(rec_names[i]+'\n') f.write(rec_coors[i]+'\n') plt.show()
[ "romaguir@porphyroblast.earth.lsa.umich.edu" ]
romaguir@porphyroblast.earth.lsa.umich.edu
be412d528058f753a7b389f8cbfce506b85546f3
ae792370eceb39e303e6751ed596bc91b5571d47
/src/get_feature/configs/guided_anchoring/ga_htc.py
08d50332122224939af0155e01831545cb4a0727
[ "Apache-2.0" ]
permissive
13282803166/-
587d2e0c10a1f2b3f22d181cc3386aa4f0e001f7
e0fdef286d5342ebaec2fe308f4c6f8994d559d1
refs/heads/main
2023-01-12T04:31:40.662915
2020-11-16T11:02:08
2020-11-16T11:02:08
313,269,308
0
0
null
null
null
null
UTF-8
Python
false
false
8,553
py
# model settings model = dict( type='HybridTaskCascade', pretrained='open-mmlab://resnext101_32x4d', interleaved=True, num_stages=3, backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=-1, style='pytorch', gen_attention=dict(spatial_range=-1, num_heads=8, attention_type='1111', kv_stride=2), stage_with_gen_attention=[[], [], [0, 1, 2, 3, 4, 5], [0, 1, 2]], dcn=dict(modulated=False, groups=32, deformable_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='GARPNHead', in_channels=256, feat_channels=256, octave_base_scale=8, scales_per_octave=3, octave_ratios=[0.04, 0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0], anchor_strides=[4, 8, 16, 32, 64], anchor_base_sizes=None, anchoring_means=[.0, .0, .0, .0], anchoring_stds=[0.07, 0.07, 0.14, 0.14], target_means=(.0, .0, .0, .0), target_stds=[0.07, 0.07, 0.11, 0.11], loc_filter_thr=0.01, loss_loc=dict(type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0), loss_cls=dict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=16, target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2], reg_class_agnostic=True, loss_cls=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=16, target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1], reg_class_agnostic=True, loss_cls=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=16, target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.67, 0.67], reg_class_agnostic=True, loss_cls=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ]) # model training and testing settings train_cfg = dict( rpn=dict( ga_assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), ga_sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, center_ratio=0.2, ignore_ratio=0.5, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_num=300, nms_thr=0.7, min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='OHEMSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='OHEMSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1), sampler=dict( type='OHEMSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False) ], stage_loss_weights=[1, 0.5, 0.25]) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=300, nms_thr=0.7, min_bbox_size=0), rcnn=dict(score_thr=0.05, nms=dict(type='nms', iou_thr=0.3), max_per_img=300), keep_all_stages=False) # dataset settings dataset_type = 'VOCDataset' data_root = '../../data/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1024, 424), (2048, 848)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), #dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1536, 636), #0.5183 flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=1, workers_per_gpu=1, train=dict( type=dataset_type, ann_file=data_root + 'ImageSets/Main/trainval.txt', img_prefix=data_root, pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'ImageSets/Main/val.txt', img_prefix=data_root, pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'ImageSets/Main/val.txt', img_prefix=data_root, pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.0025, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[13, 16]) checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 17 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/get_feature' load_from = None resume_from = None workflow = [('train', 1)]
[ "75088620@qq.com" ]
75088620@qq.com
070247a137b4ed8efb5298e3b5558eb09767c14e
e37a4775935435eda9f176c44005912253a720d8
/datadriven/python/uq/analysis/asgc/ASGCKnowledge.py
2d5cee2138bd18097ee69c0b5a83f398141e11a7
[]
no_license
JihoYang/SGpp
b1d90d2d9e8f8be0092e1a9fa0f37a5f49213c29
7e547110584891beed194d496e23194dd90ccd20
refs/heads/master
2020-04-25T10:27:58.081281
2018-09-29T19:33:13
2018-09-29T19:33:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,745
py
import numpy as np from pysgpp.extensions.datadriven.uq.analysis import KnowledgeTypes from pysgpp.extensions.datadriven.uq.operations.sparse_grid import copyGrid from pysgpp import DataVector, Grid import pysgpp.extensions.datadriven.uq.jsonLib as ju import pysgpp.extensions.datadriven.utils.json as json from pysgpp.extensions.datadriven.uq.analysis.asgc.ASGCKnowledgeFormatter import ASGCKnowledgeFormatter class ASGCKnowledge(object): """ The ASGC knowledge class """ def __init__(self): """ Constructor """ # {iteration: {qoi: <Grid>}} self.__grids = {} # {iteration: {qoi: {dtype: {t: <DataVector>}}}} self.__alphas = {} self.__iteration = 0 @classmethod def initWithStandardValues(cls, grid, alpha): ans = ASGCKnowledge() ans.update(grid, alpha, "_", 0, KnowledgeTypes.SIMPLE, 0) return ans def getAvailableQoI(self): """ get available quantities of interest @return: list of strings identifying the quantities of interest """ if len(self.__alphas) == 0: raise Exception('No knowledge available') iteration = self.__alphas.iterkeys().next() return self.__alphas[iteration].keys() def getAvailableTimeSteps(self): """ get available time steps @return: sorted list of floats """ if len(self.__alphas) == 0: raise Exception('No knowledge available') iteration = self.__alphas.iterkeys().next() qoi = self.__alphas[iteration].iterkeys().next() dtype = self.__alphas[iteration][qoi].iterkeys().next() ts = self.__alphas[self.__iteration][qoi][dtype].keys() return sorted(ts) def getAvailableKnowledgeTypes(self): """ @return list of available KnowledgeTypes """ if len(self.__alphas) == 0: raise Exception('No knowledge available') iteration = self.__alphas.iterkeys().next() qoi = self.__alphas[iteration].iterkeys().next() return self.__alphas[iteration][qoi].keys() def getAvailableIterations(self): """ get available iterations @return: sorted list of integes """ return self.__grids.keys() def getIteration(self): """ get current iteration number """ return self.__iteration def setIteration(self, iteration): """ set current iteration number """ self.__iteration = iteration def hasAlpha(self, iteration, qoi, t, dtype): """ Check if there is a coefficient vector for the given configuration. @param iteration: int iteration number @param qoi: string quantity of interest @param t: float time step @param dtype: KnowledgeType """ return iteration in self.__alphas and \ qoi in self.__alphas[iteration] and \ dtype in self.__alphas[iteration][qoi] and \ t in self.__alphas[iteration][qoi][dtype] def hasGrid(self, iteration, qoi): """ Check if there is a grid available for the given configuration @param iteration: int iteration number @param qoi: string quantity of interest """ return iteration in self.__grids and \ qoi in self.__grids[iteration] def getGrid(self, qoi='_', iteration=None): """ Get the grid for the given configuration @param qoi: string quantity of interest @param iteration: int, iteration number """ if iteration is None: iteration = self.__iteration if self.hasGrid(iteration, qoi): return self.__grids[iteration][qoi] else: raise AttributeError('no grid for (i=%i, qoi=%s)' % (iteration, qoi)) def getAlpha(self, qoi='_', t=0, dtype=KnowledgeTypes.SIMPLE, iteration=None): """ Get the coefficient vector for the given configuration @param qoi: string quantity of interest @param t: float time step @param dtype: KnowledgeType @param iteration: int, iteration number """ if iteration is None: iteration = self.__iteration if self.hasAlpha(iteration, qoi, t, dtype): return self.__alphas[iteration][qoi][dtype][t] else: raise AttributeError('no knowledge for (i=%i, t=%g, qoi=%s, dtype=%i)' % (iteration, t, qoi, dtype)) def getAlphasByQoI(self, qoi='_', dtype=KnowledgeTypes.SIMPLE, iteration=None): """ Get all coefficient vectors for the given quantity of interest @param qoi: string quantity of interest @param iteration: int, iteration number """ if iteration is None: iteration = self.__iteration if qoi in self.__alphas[iteration] and \ dtype in self.__alphas[iteration][qoi]: return self.__alphas[iteration][qoi][dtype] else: raise AttributeError('no knowledge for (i=%i, qoi=%s, dtype=%i)' % (iteration, qoi, KnowledgeTypes.toString(dtype))) def getSparseGridFunction(self, qoi='_', t=0, dtype=KnowledgeTypes.SIMPLE, iteration=None): """ Get the sparse grid function (grid, alpha) for the given setting @param qoi: string quantity of interest @param t: float time step @param dtype: KnowledgeType @param iteration: int, iteration number """ if iteration is None: iteration = self.__iteration # check if there is the desired grid if self.hasGrid(iteration, qoi): grid = self.getGrid(qoi, iteration=iteration) else: raise AttributeError('the grid for (i=%i, qoi=%s) does not exist' % (iteration, qoi)) # check if there is the desired surplus vector if self.hasAlpha(iteration, qoi, t, dtype): alpha = self.getAlpha(qoi, t, dtype, iteration=iteration) else: raise AttributeError('the surplus vector for (i=%i, qoi=%s, t=%g, dtype=%i) does not exist' % (iteration, qoi, t, dtype)) return grid, alpha def getAlphas(self): return self.__alphas def setAlphas(self, alphas): self.__alphas = alphas def getGrids(self): return self.__grids def setGrids(self, grids): self.__grids = grids def update(self, grid, alpha, qoi, t, dtype, iteration): """ Update the knowledge @param grid: Grid @param alpha: numpy array surplus vector @param qoi: string quantity of interest @param t: float time step @param dtype: KnowledgeType @param iteration: int iteration number """ # build dictionary if iteration not in self.__alphas: self.__alphas[iteration] = {} self.__grids[iteration] = {} if qoi not in self.__alphas[iteration]: self.__alphas[iteration][qoi] = {} self.__grids[iteration][qoi] = {} if dtype not in self.__alphas[iteration][qoi]: self.__alphas[iteration][qoi][dtype] = {} if t not in self.__alphas[iteration][qoi][dtype]: self.__alphas[iteration][qoi][dtype][t] = {} # store knowledge self.__iteration = iteration self.__grids[iteration][qoi] = grid.clone() self.__alphas[iteration][qoi][dtype][t] = np.array(alpha) def clearAlphas(self): self.__alphas = {} # ---------------------------------------------------------------- # ASGCKnowledge File Formatter # ---------------------------------------------------------------- def setMemento(self, memento): """ Restores the state which is saved in the given memento @param memento: the memento object """ self.fromJson(memento) def createMemento(self): """ Creates a new memento to hold the current state """ jsonString = self.toJson() jsonObject = json.JsonReader().read(jsonString) return jsonObject def writeToFile(self, filename): """ Write knowledge object to file """ m = self.createMemento() ASGCKnowledgeFormatter().serializeToFile(m, filename) @classmethod def fromJson(cls, jsonObject): """ Restores the ASGC object from the json object with its attributes. @param jsonObject: json object @return: the restored ASGC object """ knowledge = ASGCKnowledge() # restore iteration key = '_ASGCKnowledge__iteration' if key in jsonObject: knowledge.setIteration(int(jsonObject[key])) # restore surpluses: {iteration: {qoi: {dtype: {t: <Grid>}}}} key = '_ASGCKnowledge__grids' if key in jsonObject: grids = {} for iteration, v1 in jsonObject[key].items(): d1 = {} for qoi, gridString in v1.items(): # undo the hack that made it json compatible gridString = gridString.replace('__', '\n')\ .encode('utf8') # deserialize ... grid = Grid.unserialize(gridString) # ... and store it d1[qoi] = grid grids[int(iteration)] = d1 knowledge.setGrids(grids) # restore surpluses: {iteration: {qoi: {dtype: {t: <list float>}}}} key = '_ASGCKnowledge__alphas' if key in jsonObject: alphas = {} for iteration, v1 in jsonObject[key].items(): d1 = {} for qoi, v2 in v1.items(): d2 = {} for dtype, v3 in v2.items(): d3 = {} for t, alpha in v3.items(): d3[float(t)] = DataVector(alpha).array() d2[int(dtype)] = d3 d1[qoi] = d2 alphas[int(iteration)] = d1 knowledge.setAlphas(alphas) return knowledge def toJson(self): """ @return: a string that represents the object """ serializationString = '"module" : "' + \ self.__module__ + '",\n' attrName = "_ASGCKnowledge__alphas" attrValue = self.__getattribute__(attrName) serializationString += ju.parseAttribute(attrValue, attrName) attrName = "_ASGCKnowledge__grids" attrValue = self.__getattribute__(attrName) serializationString += ju.parseAttribute(attrValue, attrName) attrName = "_ASGCKnowledge__iteration" attrValue = self.__getattribute__(attrName) serializationString += ju.parseAttribute(attrValue, attrName) s = serializationString.rstrip(",\n") # print "j-------------------------------------------" # print "{" + s + "}" # print "j-------------------------------------------" return "{" + s + "}" def __str__(self): return "%i, alphas=%i, grids=%i" % (self.__iteration, len(self.__alphas), len(self.__grids))
[ "dirk.pflueger@ipvs.uni-stuttgart.de" ]
dirk.pflueger@ipvs.uni-stuttgart.de
4e63a72eaba3f13bff579913c6fdfd0aca1897d5
dc2a3ce315feec4757bc41215faff57ffdf546a0
/Classification/classification.py
724029a5f06b46a72a69f9da079f1008d42d44da
[]
no_license
heheli1998/Keras
d35247474eedc3266679c6f144f7d7713445bfc0
fe0f98c17b394ceed8839dd45da568cc97b5a0fd
refs/heads/master
2020-09-16T08:02:58.190007
2019-11-24T09:06:37
2019-11-24T09:06:37
223,706,332
0
0
null
null
null
null
UTF-8
Python
false
false
1,882
py
from sklearn import datasets import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasClassifier from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from keras.layers import Dropout from keras.optimizers import SGD from keras.constraints import maxnorm from keras.callbacks import LearningRateScheduler from math import pow,floor #导入数据 dataset = datasets.load_iris() x = dataset.data Y = dataset.target seed = 7 np.random.seed(seed) #构建模型函数 def create_model(init='glorot_uniform'): #构建模型 model = Sequential() # model.add(Dropout(rate=0.2,input_shape=(4,))) model.add(Dense(units=4,activation='relu',input_dim=4,kernel_initializer=init)) #kernel_constraint=maxnorm(3))) # model.add(Dropout(rate=0.2)) model.add(Dense(units=6, activation='relu', kernel_initializer=init))#kernel_constraint=maxnorm(3))) # model.add(Dropout(rate=0.2)) model.add(Dense(units=3, activation='softmax',kernel_initializer=init)) learningRate = 0.1 momentum = 0.9 decay_rate = 0.0 sgd = SGD(lr=learningRate, momentum=momentum, decay=decay_rate, nesterov=False) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) return model #编译模型 def step_decay(epoch): init_lrate = 0.1 drop = 0.5 epoch_drop = 10 lrate = init_lrate * pow(drop,floor(1+epoch) / epoch_drop) return lrate lrate = LearningRateScheduler(step_decay) epochs = 200 model = KerasClassifier(build_fn=create_model,epochs=epochs,batch_size=5,verbose=1,callbacks=[lrate]) # kfold = KFold(n_splits=10,shuffle=True,random_state=seed) #交叉验证 # results = cross_val_score(model,x,Y,cv=kfold) # print('Accuracy:%.2f%% (%.2f)' % (results.mean()*100, results.std())) model.fit(x,Y)
[ "heheli1998@163.com" ]
heheli1998@163.com
dd361d96adb18cce06be249bb17bbb8bac0e4f9e
564bb8953ad74f25bb81831c6280e98a5e8ca75a
/tweet/migrations/0002_auto_20200322_0845.py
53775cbd5cd1f4f0350bf2d80691b0b8d20de3d6
[]
no_license
MohamedHany2002/my-twitter
600c083c10c006074dd1aa55d112291c731f8bc4
5f7048c3fd00a894b7c5de580954747e6421b77d
refs/heads/master
2022-07-03T09:12:34.741192
2020-05-12T15:29:41
2020-05-12T15:29:41
263,376,530
0
0
null
null
null
null
UTF-8
Python
false
false
890
py
# Generated by Django 2.2.7 on 2020-03-22 06:45 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('tweet', '0001_initial'), ] operations = [ migrations.AddField( model_name='tweet', name='created', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='tweet', name='user', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, related_name='tweets', to=settings.AUTH_USER_MODEL), preserve_default=False, ), ]
[ "goldenhany94@gmail.com" ]
goldenhany94@gmail.com
22b9d9e66e5210c42c0ef9b33d420d68606ed622
4d78a5835fb413a565957a432464a27fed7d80e8
/midca/modules/interpret/InformedDiscrepancyDetector.py
2b39b0e4191c9fc57935819c81ca73afd37f6cf7
[ "MIT" ]
permissive
COLAB2/midca
0daac59415eaf418aebb4578deba19cd82d24760
abd41ab91d8a4e9582860a55b5b10657d0a560e0
refs/heads/master
2023-06-23T05:34:13.837128
2022-05-03T18:13:11
2022-05-03T18:13:11
106,867,470
18
6
MIT
2021-06-10T12:39:46
2017-10-13T19:53:01
Python
UTF-8
Python
false
false
1,367
py
import copy from midca.modules.interpret._adist import ADistance, ChangeFinder, WindowPair, Interval from midca.domains.nbeacons import nbeacons_util import sys class InformedDiscrepancyDetector: ''' Performs Discrepancy Detection using Informed Expectations TODO: This is a stub for now, not implemented yet ''' def __init__(self): pass def init(self, world, mem): self.world = world self.mem = mem def get_current_plan(self): ''' Returns the current plan the agent is using ''' pass def generate_inf_exp(self, plan, prev_action): ''' Returns a set of atoms to check against the state given the previous action the agent executed and the current plan See Dannenhauer & Munoz-Avila IJCAI-2015 / Dannenhauer, Munoz-Avila, Cox IJCAI-2016 for more information on informed expectations TODO: finish ''' # sanity check, make sure prev_action is in the plan if prev_action not in plan: raise Exception("Cannot generate informed expectations: prev_action "+str(prev_action)+" was not given plan") exp = [] # expectations accumulator pass def run(self, cycle, verbose=2): prev_action = self.mem.get(self.mem.ACTIONS)[-1] curr_goals = self.mem.get(self.mem.CURRENT_GOALS) plan = self.mem.get(self.mem.GOAL_GRAPH).get_best_plan(curr_goals) inf_exp = self.generate_inf_exp(prev_action) for e in inf_exp: pass
[ "sampath.gogineni@gmail.com" ]
sampath.gogineni@gmail.com
2375332da2211a3bce2093cfd124276215bd804d
e5af6abb44dec19a607a11981af7b3d12f9d59c7
/day11/ch2.py
986d6e08d0d155f1497bee38f9ecdd1591cab049
[]
no_license
jakubmatyszewski/adventofcode2020
ec1cbcfe0f35d3218bf9c8853ac85983cf995dfd
aafce6cb1d7c97b5eb2c3964298069eca44747a2
refs/heads/master
2023-02-16T17:02:50.231903
2021-01-02T23:41:19
2021-01-02T23:44:46
319,111,724
0
0
null
null
null
null
UTF-8
Python
false
false
1,439
py
def rotation(arr): new_arr = [] xd = len(arr) # x dimension yd = len(arr[0]) # y dimension for row in range(xd): tmp_row = '' for col in range(yd): adj = [] for x in (-1, 0, 1): for y in (-1, 0, 1): i = 1 if x == y == 0: continue while 0 <= row + i * x < xd and 0 <= col + i * y < yd: if (place := arr[row + i * x][col + i * y]) != '.': adj.append(place) break i += 1 if arr[row][col] == 'L' and '#' not in adj: tmp_row += '#' elif arr[row][col] == '#' and adj.count('#') >= 5: tmp_row += 'L' else: tmp_row += arr[row][col] new_arr.append(tmp_row) return new_arr def challenge(arr): while True: output = rotation(arr) if output == arr: return ''.join(arr).count('#') arr = output def from_txt(filepath='input.txt'): try: array = open(filepath, 'r').read().splitlines() except FileNotFoundError: filepath = input("Enter full path to input file.\n") array = open(filepath, 'r').read().splitlines() return array if __name__ == "__main__": input_array = from_txt() print(challenge(input_array))
[ "jakubmatyszewski1@gmail.com" ]
jakubmatyszewski1@gmail.com
ffd75793ca5d720d2024a3556765bc80e7c4c7e1
c2dae49452480b7611e7dcfe90cc1e97af667e45
/accounts/serializers.py
7638fc69df2064f2f74dbd3d0c717498910e62fb
[]
no_license
jcperezbanuchi/barbershop_app
ad8792dc3854c554b80e8b8e8ac2c139ac925cbd
5288335bfc0562f2f8d2f7923b51a510c1966fa7
refs/heads/main
2023-05-31T21:54:23.483059
2021-07-13T20:06:48
2021-07-13T20:06:48
383,232,905
0
0
null
null
null
null
UTF-8
Python
false
false
1,029
py
from rest_framework import serializers from django.contrib.auth.models import User from django.contrib.auth import authenticate # user serializer class UserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ('id', 'username', 'email') # register serializer class RegisterSerializer(serializers.ModelSerializer): class Meta: model = User fields = ('id', 'username', 'email', 'password') extra_kwargs = {'password': {'write_only': True}} def create(self, validated_data): user = User.objects.create_user(validated_data['username'], validated_data['email'], validated_data['password']) return user # login serializer class LoginSerializer(serializers.Serializer): username =serializers.CharField() password= serializers.CharField() def validate(self, data): user = authenticate(**data) if user and user.is_active: return user raise serializers.ValidationError('Incorrect Credentials')
[ "juanco@Juans-Air" ]
juanco@Juans-Air
7c37e6aef8973598ad64ad4f06841a103149c17a
9ae3a94afb8a7affcfb9eba8ed041099d2b5c13b
/estimators/linear_model.py
19ee30c868bd68f7be26f8ddc87a7e82cf15e003
[]
no_license
Leo-Bright/TensorFlow2.0
83bd07ce0cbbb2381f3bff54451c097754016b28
72b33332d0a57d9855f67499979925162122000d
refs/heads/master
2020-06-18T11:40:07.733003
2019-08-11T15:27:02
2019-08-11T15:27:02
196,292,248
0
0
null
null
null
null
UTF-8
Python
false
false
3,019
py
from __future__ import absolute_import, division, print_function, unicode_literals import os import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt from IPython.display import clear_output from six.moves import urllib import tensorflow.compat.v2.feature_column as fc import tensorflow as tf from sklearn.metrics import roc_curve # Load dataset. dftrain = pd.read_csv('datasets/titanic/train.csv') dfeval = pd.read_csv('datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') # print(dftrain.head()) dftrain.age.hist(bins=20) dftrain.sex.value_counts().plot(kind='barh') CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: vocabulary = dftrain[feature_name].unique() feature_columns.append(tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) def make_input_fn(data_df, label_df, num_epochs=10, shuffle=True, batch_size=32): def input_function(): ds = tf.data.Dataset.from_tensor_slices((dict(data_df), label_df)) if shuffle: ds = ds.shuffle(1000) ds = ds.batch(batch_size).repeat(num_epochs) return ds return input_function train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, num_epochs=1, shuffle=False) ds = make_input_fn(dftrain, y_train, batch_size=10)() for feature_batch, label_batch in ds.take(1): print('Some feature keys:', list(feature_batch.keys())) print() print('A batch of class:', feature_batch['class'].numpy()) print() print('A batch of Labels:', label_batch.numpy()) age_column = feature_columns[7] tf.keras.layers.DenseFeatures([age_column])(feature_batch).numpy() gender_column = feature_columns[0] tf.keras.layers.DenseFeatures([tf.feature_column.indicator_column(gender_column)])(feature_batch).numpy() linear_est = tf.estimator.LinearClassifier(feature_columns=feature_columns) linear_est.train(train_input_fn) result = linear_est.evaluate(eval_input_fn) clear_output() print(result) age_x_gender = tf.feature_column.crossed_column(['age', 'sex'], hash_bucket_size=100) derived_feature_columns = [age_x_gender] linear_est = tf.estimator.LinearClassifier(feature_columns=feature_columns+derived_feature_columns) linear_est.train(train_input_fn) result = linear_est.evaluate(eval_input_fn) clear_output() print(result) pred_dicts = list(linear_est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities') fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,) plt.show()
[ "564312023@qq.com" ]
564312023@qq.com
e10f76bdb851ff9faa30ab7ffb5dfac9ac70f5e4
56482e0b2ce6517fff41d0f78e0c0ed000d977a1
/fmcapi/api_objects/object_services/variablesets.py
6d55f6aeb55cabfd00004ef6be0d725acdb058fb
[ "BSD-3-Clause" ]
permissive
banzigaga/fmcapi
ab4d7aaaf4be4f2b0686d07b6272f8b9531577da
fd924de96e200ca8e0d5088b27a5abaf6f915bc6
refs/heads/master
2020-12-11T14:45:07.896571
2019-12-12T20:02:07
2019-12-12T20:02:07
233,876,405
1
0
BSD-3-Clause
2020-01-14T15:46:26
2020-01-14T15:46:26
null
UTF-8
Python
false
false
1,588
py
"""Variable Sets Class.""" from fmcapi.api_objects.apiclasstemplate import APIClassTemplate import logging import warnings class VariableSets(APIClassTemplate): """The VariableSets Object in the FMC.""" VALID_JSON_DATA = ["id", "name", "type", "description"] VALID_FOR_KWARGS = VALID_JSON_DATA + [] URL_SUFFIX = "/object/variablesets" def __init__(self, fmc, **kwargs): """ Initialize VariableSets object. :param fmc: (object) FMC object :param kwargs: Any other values passed during instantiation. :return: None """ super().__init__(fmc, **kwargs) logging.debug("In __init__() for VariableSets class.") self.parse_kwargs(**kwargs) def post(self): """POST method for API for VariableSets not supported.""" logging.info("POST method for API for VariableSets not supported.") pass def put(self): """PUT method for API for VariableSets not supported.""" logging.info("PUT method for API for VariableSets not supported.") pass def delete(self): """DELETE method for API for VariableSets not supported.""" logging.info("DELETE method for API for VariableSets not supported.") pass class VariableSet(VariableSets): """ Dispose of this Class after 20210101. Use VariableSets() instead. """ def __init__(self, fmc, **kwargs): warnings.resetwarnings() warnings.warn("Deprecated: VariableSet() should be called via VariableSets().") super().__init__(fmc, **kwargs)
[ "dmickels@cisco.com" ]
dmickels@cisco.com
d2c11e7a18fdf03551a270f0adb16eb6a7b4a84c
3b660ddf98c162535558d5d8b90656cddf67554a
/acl_project/settings.py
a4bfa3d6482911272e27d8c9b3bc72583334cc82
[]
no_license
kylenicola/acl_project
a22acf068ebbdf075ade01332c85226209a8e41a
5690cb5402094e6459d1721590ba84a0b74433cb
refs/heads/master
2020-05-17T15:15:48.870040
2014-07-09T02:42:40
2014-07-09T02:42:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,014
py
""" Django settings for acl_project project. For more information on this file, see https://docs.djangoproject.com/en/1.6/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.6/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.6/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '8*_o2))08o_vt3af5=ncw&^60i(11h&9bhcs_!ec=#g+*-lg+=' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'acl_app', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'acl_project.urls' WSGI_APPLICATION = 'acl_project.wsgi.application' # Database # https://docs.djangoproject.com/en/1.6/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.6/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/Chicago' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.6/howto/static-files/ STATIC_URL = '/static/'
[ "kyle.a.nicola@utexas.edu" ]
kyle.a.nicola@utexas.edu
0cb53c5f1f5e228f46b876f1f6b566519a1b9b0e
cdeeeb769e70b8fc87eabd15fd2d18e5438d3215
/project/epi/urls.py
000eebe45973e759af0ac1b43a9766a1e9660eb7
[ "MIT" ]
permissive
nlewycky/hawc
b897be18499fcd018c0c5e8ba866db3e9f360bc9
8310ab549ea6bcc2d890314258ebef8f04970be3
refs/heads/master
2020-05-18T09:02:03.045370
2019-04-11T10:43:12
2019-04-11T10:43:12
184,313,167
0
0
null
2019-04-30T18:37:14
2019-04-30T18:37:13
null
UTF-8
Python
false
false
5,054
py
from django.conf.urls import url, include from rest_framework.routers import DefaultRouter from . import api, views router = DefaultRouter() router.register(r'study-population', api.StudyPopulation, base_name="study-population") router.register(r'exposure', api.Exposure, base_name="exposure") router.register(r'outcome', api.Outcome, base_name="outcome") router.register(r'result', api.Result, base_name="result") router.register(r'comparison-set', api.ComparisonSet, base_name="set") router.register(r'group', api.Group, base_name="group") router.register(r'outcome-cleanup', api.OutcomeCleanup, base_name="outcome-cleanup") urlpatterns = [ url(r'^api/', include(router.urls, namespace='api')), # Criteria url(r'^assessment/(?P<pk>\d+)/study-criteria/create/$', views.StudyCriteriaCreate.as_view(), name='studycriteria_create'), # Adjustment factors url(r'^assessment/(?P<pk>\d+)/adjustment-factor/create/$', views.AdjustmentFactorCreate.as_view(), name='adjustmentfactor_create'), # Study population url(r'^study/(?P<pk>\d+)/study-population/create/$', views.StudyPopulationCreate.as_view(), name='sp_create'), url(r'^study/(?P<pk>\d+)/study-population/copy-as-new-selector/$', views.StudyPopulationCopyAsNewSelector.as_view(), name='sp_copy_selector'), url(r'^study-population/(?P<pk>\d+)/$', views.StudyPopulationDetail.as_view(), name='sp_detail'), url(r'^study-population/(?P<pk>\d+)/update/$', views.StudyPopulationUpdate.as_view(), name='sp_update'), url(r'^study-population/(?P<pk>\d+)/delete/$', views.StudyPopulationDelete.as_view(), name='sp_delete'), # Exposure url(r'^study/(?P<pk>\d+)/exposure/create/$', views.ExposureCreate.as_view(), name='exp_create'), url(r'^study/(?P<pk>\d+)/exposure/copy-as-new-selector/$', views.ExposureCopyAsNewSelector.as_view(), name='exp_copy_selector'), url(r'^exposure/(?P<pk>\d+)/$', views.ExposureDetail.as_view(), name='exp_detail'), url(r'^exposure/(?P<pk>\d+)/update/$', views.ExposureUpdate.as_view(), name='exp_update'), url(r'^exposure/(?P<pk>\d+)/delete/$', views.ExposureDelete.as_view(), name='exp_delete'), # Outcome url(r'^assessment/(?P<pk>\d+)/export/$', views.OutcomeExport.as_view(), name='outcome_export'), url(r'^assessment/(?P<pk>\d+)/outcomes/$', views.OutcomeList.as_view(), name='outcome_list'), url(r'^study-population/(?P<pk>\d+)/outcome/create/$', views.OutcomeCreate.as_view(), name='outcome_create'), url(r'^study-population/(?P<pk>\d+)/outcome/copy-as-new-selector/$', views.OutcomeCopyAsNewSelector.as_view(), name='outcome_copy_selector'), url(r'^outcome/(?P<pk>\d+)/$', views.OutcomeDetail.as_view(), name='outcome_detail'), url(r'^outcome/(?P<pk>\d+)/update/$', views.OutcomeUpdate.as_view(), name='outcome_update'), url(r'^outcome/(?P<pk>\d+)/delete/$', views.OutcomeDelete.as_view(), name='outcome_delete'), # Results url(r'^outcome/(?P<pk>\d+)/result/create/$', views.ResultCreate.as_view(), name='result_create'), url(r'^outcome/(?P<pk>\d+)/result/copy-as-new-selector/$', views.ResultCopyAsNewSelector.as_view(), name='result_copy_selector'), url(r'^result/(?P<pk>\d+)/$', views.ResultDetail.as_view(), name='result_detail'), url(r'^result/(?P<pk>\d+)/update/$', views.ResultUpdate.as_view(), name='result_update'), url(r'^result/(?P<pk>\d+)/delete/$', views.ResultDelete.as_view(), name='result_delete'), # Comparison set url(r'^study-population/(?P<pk>\d+)/comparison-set/create/$', views.ComparisonSetCreate.as_view(), name='cs_create'), url(r'^study-population/(?P<pk>\d+)/comparison-set/copy-as-new-selector/$', views.ComparisonSetStudyPopCopySelector.as_view(), name='cs_copy_selector'), url(r'^outcome/(?P<pk>\d+)/comparison-set/create/$', views.ComparisonSetOutcomeCreate.as_view(), name='cs_outcome_create'), url(r'^outcome/(?P<pk>\d+)/comparison-set/copy-as-new-selector/$', views.ComparisonSetOutcomeCopySelector.as_view(), name='cs_outcome_copy_selector'), url(r'^comparison-set/(?P<pk>\d+)/$', views.ComparisonSetDetail.as_view(), name='cs_detail'), url(r'^comparison-set/(?P<pk>\d+)/update/$', views.ComparisonSetUpdate.as_view(), name='cs_update'), url(r'^comparison-set/(?P<pk>\d+)/delete/$', views.ComparisonSetDelete.as_view(), name='cs_delete'), # Groups (in comparison set) url(r'^group/(?P<pk>\d+)/$', views.GroupDetail.as_view(), name='g_detail'), url(r'^group/(?P<pk>\d+)/update/$', views.GroupUpdate.as_view(), name='g_update'), ]
[ "shapiromatron@gmail.com" ]
shapiromatron@gmail.com