blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
4efa4f577a65b005da3b33e71203cf0431e9f05f
caa95ce8dbc1f48cfa0f605226688239359ded33
/examples/continuous/CMCEditted_SmartStart_DDPG_Baselines_experimenter.py
b32e2e6b82358dee0314a43a966d67433e0dbe61
[]
no_license
darren-huang/SmartStartContinuous
6ae9c9240a6a8686295689e553ff5e1cfe0c11c7
07b80e01a5a4590ee2fd88a344cd89be8688ca3d
refs/heads/master
2020-03-26T12:10:47.623766
2018-08-25T23:14:46
2018-08-25T23:14:46
144,879,450
2
0
null
2018-08-25T22:37:59
2018-08-15T16:53:22
Python
UTF-8
Python
false
false
13,083
py
import gym import random from environments.continuous_mountain_car_editted import Continuous_MountainCarEnv_Editted from smartstart.RLAgents.DDPG_Baselines_agent import DDPG_Baselines_agent from smartstart.smartexploration.smartexplorationcontinuous import SmartStartContinuous from smartstart.reinforcementLearningCore.rlTrain import rlTrain from smartstart.utilities.experimenter import run_experiment, create_experimeter_info_txt from smartstart.utilities.utilities import set_global_seeds, get_default_data_directory def task_run_ss_ddpg_baselines_mc(params): import tensorflow as tf print("\n\nprocess " + str(params['id']) + " has started" + "-"*200 + "\n") noGpu = params['noGpu'] render = False replay_buffer = None # random seed each time random.seed() RANDOM_SEED = random.randint(0, 2**32 - 1) # Overall Options episodes = params['episodes'] dir_name = params['dir_name'] #naming function get_extra_name = params['get_extra_name'] # configuring environment env = Continuous_MountainCarEnv_Editted.make_timed_env(params['power_scalar'], max_episode_steps=params['max_episode_steps'], max_episode_seconds=params['max_episode_seconds']) if noGpu: tfConfig = tf.ConfigProto(device_count={'GPU': 0}) else: tfConfig = None with tf.Graph().as_default() as graph: with tf.Session(config=tfConfig, graph=graph) as sess: # with tf.Session() as sess: # Reset the seed for random number generation set_global_seeds(RANDOM_SEED) env.seed(RANDOM_SEED) # Initialize agent, see class for available parameters base_agent = DDPG_Baselines_agent(env, sess, replay_buffer=replay_buffer, buffer_size=params['buffer_size'], batch_size = params['batch_size'], num_train_iterations = params['num_train_iterations'], num_steps_before_train = params['num_steps_before_train'], ou_epsilon = params['ou_epsilon'], ou_min_epsilon = params['ou_min_epsilon'], ou_epsilon_decay_factor = params['ou_epsilon_decay_factor'], ou_mu = params['ou_mu'], ou_sigma = params['ou_sigma'], ou_theta = params['ou_theta'], actor_lr = params['actor_lr'], actor_h1 = params['actor_h1'], actor_h2 = params['actor_h2'], critic_lr = params['critic_lr'], critic_h1 = params['critic_h1'], critic_h2 = params['critic_h2'], gamma = params['gamma'], tau = params['tau'], layer_norm = params['layer_norm'], normalize_observations = params['normalize_observations'], normalize_returns = params['normalize_returns'], critic_l2_reg = params['critic_l2_reg'], enable_popart = params['enable_popart'], clip_norm = params['clip_norm'], reward_scale = params['reward_scale'], lastLayerTanh = params['lastLayerTanh'], finalizeGraph=False ) smart_start_agent = SmartStartContinuous(base_agent, env, sess, buffer_size=params['buffer_size'], exploitation_param = params['exploitation_param'], exploration_param = params['exploration_param'], eta = params['eta'], eta_decay_factor = params['eta_decay_factor'], n_ss = params['n_ss'], print_ss_stuff=True, # sigma=params['sigma'], # smart_start_selection_modified_distance_function=params['smart_start_selection_modified_distance_function'], nnd_mb_final_steps = params['nnd_mb_final_steps'], nnd_mb_steps_per_waypoint = params['nnd_mb_steps_per_waypoint'], nnd_mb_mean_per_stepsize = params['nnd_mb_mean_per_stepsize'], nnd_mb_std_per_stepsize = params['nnd_mb_std_per_stepsize'], nnd_mb_stepsizes_in_waypoint_radii = params['nnd_mb_stepsizes_in_waypoint_radii'], nnd_mb_gamma = params['nnd_mb_gamma'], nnd_mb_horizontal_penalty_factor = params['nnd_mb_horizontal_penalty_factor'], nnd_mb_horizon = params['nnd_mb_horizon'], nnd_mb_num_control_samples = params['nnd_mb_num_control_samples'], nnd_mb_path_shortcutting= params['nnd_mb_path_shortcutting'], nnd_mb_steps_before_giving_up_on_waypoint=params['nnd_mb_steps_before_giving_up_on_waypoint'], nnd_mb_load_dir_name = params['nnd_mb_load_dir_name'], nnd_mb_load_existing_training_data = params['nnd_mb_load_existing_training_data'], nnd_mb_num_fc_layers = params['nnd_mb_num_fc_layers'], nnd_mb_depth_fc_layers = params['nnd_mb_depth_fc_layers'], nnd_mb_batchsize = params['nnd_mb_batchsize'], nnd_mb_lr = params['nnd_mb_lr'], nnd_mb_nEpoch = params['nnd_mb_nEpoch'], nnd_mb_fraction_use_new = params['nnd_mb_fraction_use_new'], nnd_mb_num_episodes_for_aggregation = params['nnd_mb_num_episodes_for_aggregation'], nnd_mb_make_aggregated_dataset_noisy = params['nnd_mb_make_aggregated_dataset_noisy'], nnd_mb_make_training_dataset_noisy = params['nnd_mb_make_training_dataset_noisy'], nnd_mb_noise_actions_during_MPC_rollouts = params['nnd_mb_noise_actions_during_MPC_rollouts'], nnd_mb_verbose = params['nnd_mb_verbose']) sess.graph.finalize() # Train the agent, summary contains training data summary = rlTrain(smart_start_agent, env, render=render, render_episode=False, print_steps=False, print_results=False, num_episodes=episodes, print_time=False, progress_bar=True, id=params['id'], num_ticks=params['num_ticks']) # type: Summary summary.add_params_to_param_dict(zz_RANDOM_SEED=RANDOM_SEED, zz_episodes=episodes, noGpu=noGpu) fp = summary.save(get_default_data_directory(dir_name), last_name_section=True, extra_name_append= get_extra_name(params)) print("\n\nprocess " + str(params['id']) + " has finished" + "!" * 200 + "\n") # train_writer = tf.summary.FileWriter(fp[:-35]) # train_writer.add_graph(sess.graph) # Define the task function for the experiment def task_print(params): # print(sorted(params.items(), key=lambda x: x[0])) print(params['get_extra_name'](params)) def get_extra_name(params): exploration_param_str = "_explorP-" + str(params['exploration_param']) eta_decay_str = "_etaDecay-" + str(params['eta_decay_factor']) wp_give_up_str = "_wpGiveUp-" + str(params['nnd_mb_steps_before_giving_up_on_waypoint']) return exploration_param_str + eta_decay_str + wp_give_up_str if __name__ == "__main__": experiment_task = task_run_ss_ddpg_baselines_mc #changeable parameter num_exp_per_param = 50 episodes = 1000 noGpu = True lastLayerTanh = True #naming / display num_ticks = 200 #ticks to display while the process is running decaying_noise = True #must be the case that these match the parameters dir_name = 'smart_start_continuous_summaries/ddpg_baselines/good_params_cont_mc_editted' paramsGrid = { 'task' : experiment_task, 'num_exp' : num_exp_per_param, 'num_ticks' : [num_ticks], 'episodes' : [episodes], 'decayingNoise' : [decaying_noise], 'dir_name' : [dir_name], 'noGpu' : [noGpu], 'power_scalar': [.4], # CONSTANT 'max_episode_steps': [1000], 'max_episode_seconds': [None], 'buffer_size': [100000], 'batch_size': [64], 'num_train_iterations': [1], 'num_steps_before_train': [1], 'ou_epsilon': [1.0], 'ou_min_epsilon': [0.01], 'ou_epsilon_decay_factor': [.99], 'ou_mu': [0.4], 'ou_sigma': [0.6], 'ou_theta': [.15], 'actor_lr': [0.001], # these are the optimal critic and actor sizes : ) 'actor_h1': [64], 'actor_h2': [32], 'critic_lr': [0.001], 'critic_h1': [64], 'critic_h2': [32], 'gamma': [0.99], 'tau': [0.001], 'layer_norm': [False], 'normalize_observations': [False], 'normalize_returns': [False], 'critic_l2_reg': [0], 'enable_popart': [False], 'clip_norm': [None], 'reward_scale': [1.], 'lastLayerTanh': [lastLayerTanh], 'exploitation_param': [1.], 'exploration_param': [2.], # CONSTANT 'eta': [0.5], 'eta_decay_factor': [.99, .995], # NOT CONSTANT 'n_ss': [2000], 'nnd_mb_final_steps': [10], 'nnd_mb_steps_per_waypoint': [1], 'nnd_mb_mean_per_stepsize': [1], 'nnd_mb_std_per_stepsize': [1], 'nnd_mb_stepsizes_in_waypoint_radii': [1], 'nnd_mb_gamma': [.75], 'nnd_mb_horizontal_penalty_factor': [.5], 'nnd_mb_horizon': [4], 'nnd_mb_num_control_samples': [5000], 'nnd_mb_path_shortcutting' : [True], 'nnd_mb_steps_before_giving_up_on_waypoint' : [5], # CONSTANT 'nnd_mb_load_dir_name': ["default"], 'nnd_mb_load_existing_training_data': [True], 'nnd_mb_num_fc_layers': [1], 'nnd_mb_depth_fc_layers': [32], 'nnd_mb_batchsize': [512], 'nnd_mb_lr': [0.001], 'nnd_mb_nEpoch': [30], 'nnd_mb_fraction_use_new': [0.9], 'nnd_mb_num_episodes_for_aggregation': [4], 'nnd_mb_make_aggregated_dataset_noisy': [True], 'nnd_mb_make_training_dataset_noisy': [True], 'nnd_mb_noise_actions_during_MPC_rollouts': [True], 'nnd_mb_verbose': [False], 'get_extra_name' : [get_extra_name] } noGpu_str = "_NoGPU" if noGpu else "" llTanh_str = "_LLTanh" if lastLayerTanh else "" decayingNoise_str = "_decayingNoise" if decaying_noise else "" if len(paramsGrid['nnd_mb_num_fc_layers']) == 1 and len(paramsGrid['nnd_mb_depth_fc_layers']) == 1: fc_layer_str = "_fcLayer-" + str(paramsGrid['nnd_mb_num_fc_layers'][0]) + "lyrs-" + str(paramsGrid['nnd_mb_depth_fc_layers'][0]) +"dpth" else: fc_layer_str = "" create_experimeter_info_txt(paramsGrid, get_default_data_directory(dir_name), name_append= "_MountainCarContEditted_" + str(episodes) + "ep" + noGpu_str + llTanh_str + decayingNoise_str + fc_layer_str) run_experiment(paramsGrid, n_processes=-1)
[ "darren.y.huang@berkeley.edu" ]
darren.y.huang@berkeley.edu
7fabf8240dcacb728f45fa30c16f1d86b565d56c
07cbae096598c6bd3c18626b0525960d6641bff5
/kafka/producer.py
eaa130093bc195a04848b2ce63185c8510d450c6
[]
no_license
wangshoujunnew/tensorflow_learn
337852be27350d45346d982f20ad48430c3836cf
cf4b627a39b2cf9a8d79cedf3825aa3cfef5d1e2
refs/heads/master
2020-04-08T16:09:01.818340
2018-12-24T02:22:18
2018-12-24T02:22:18
159,506,289
0
0
null
null
null
null
UTF-8
Python
false
false
384
py
#encoding=utf-8 from kafka import KafkaClient, KafkaProducer, KafkaConsumer # 给kafka集群发送数据,生产者 cluster_host = '172.31.11.221:9092,172.31.11.222:9092,172.31.11.223:9092' topic = 'test_topic' group_id = 'test-python-test_topic' producter = KafkaProducer(bootstrap_servers=cluster_host) producter.send(topic=topic, value='from shoujunw test ... ') producter.flush()
[ "noreply@github.com" ]
wangshoujunnew.noreply@github.com
12889c1e3f168a30b0fa49c05210b3d362812643
eaf976115834853cc1372ac5501978899381a24d
/rich/measure.py
35af5a0b0736c4330aeb0630415cd82ad8492b6e
[ "MIT" ]
permissive
JettChenT/rich
01812de0822ba9d1847198bf564d2a4a121a092a
bd98aafb68273847e01b32a38f11461e59f472e4
refs/heads/master
2022-12-07T18:49:24.610192
2020-08-24T11:31:14
2020-08-24T11:31:14
285,136,370
0
0
MIT
2020-08-24T11:31:15
2020-08-05T00:40:26
null
UTF-8
Python
false
false
3,884
py
from operator import itemgetter from typing import Iterable, NamedTuple, TYPE_CHECKING from . import errors from .protocol import is_renderable if TYPE_CHECKING: from .console import Console, RenderableType class Measurement(NamedTuple): """Stores the minimum and maximum widths (in characters) required to render an object.""" minimum: int """Minimum number of cells required to render.""" maximum: int """Maximum number of cells required to render.""" @property def span(self) -> int: """Get difference between maximum and minimum.""" return self.maximum - self.minimum def normalize(self) -> "Measurement": """Get measurement that ensures that minimum <= maximum and minimum >= 0 Returns: Measurement: A normalized measurement. """ minimum, maximum = self minimum = min(max(0, minimum), maximum) return Measurement(max(0, minimum), max(0, max(minimum, maximum))) def with_maximum(self, width: int) -> "Measurement": """Get a RenderableWith where the widths are <= width. Args: width (int): Maximum desired width. Returns: RenderableWidth: new RenderableWidth object. """ minimum, maximum = self return Measurement(min(minimum, width), min(maximum, width)) @classmethod def get( cls, console: "Console", renderable: "RenderableType", max_width: int = None ) -> "Measurement": """Get a measurement for a renderable. Args: console (~rich.console.Console): Console instance. renderable (RenderableType): An object that may be rendered with Rich. max_width (int, optional): The maximum width available, or None to use console.width. Defaults to None. Raises: errors.NotRenderableError: If the object is not renderable. Returns: Measurement: Measurement object containing range of character widths required to render the object. """ _max_width = console.width if max_width is None else max_width if isinstance(renderable, str): renderable = console.render_str(renderable) renderable = getattr(renderable, "__rich__", renderable) if is_renderable(renderable): get_console_width = getattr(renderable, "__rich_measure__", None) if get_console_width is not None: render_width = ( get_console_width(console, _max_width) .normalize() .with_maximum(_max_width) ) return render_width.normalize() else: return Measurement(1, _max_width) else: raise errors.NotRenderableError( f"Unable to get render width for {renderable!r}; " "a str, Segment, or object with __rich_console__ method is required" ) def measure_renderables( console: "Console", renderables: Iterable["RenderableType"], max_width: int ) -> "Measurement": """Get a measurement that would fit a number of renderables. Args: console (~rich.console.Console): Console instance. renderables (Iterable[RenderableType]): One or more renderable objects. max_width (int): The maximum width available. Returns: Measurement: Measurement object containing range of character widths required to contain all given renderables. """ get_measurement = Measurement.get measurements = [ get_measurement(console, renderable, max_width) for renderable in renderables ] measured_width = Measurement( max(measurements, key=itemgetter(0)).minimum, max(measurements, key=itemgetter(1)).maximum, ) return measured_width
[ "willmcgugan@gmail.com" ]
willmcgugan@gmail.com
a1cf71010db2976eef6025ea85ec14e2a6a9ce8b
b721a2744096c5cc44d22eb303e0fc288c8c3679
/account/urls.py
0dc7c8d992b8d387fc203ea80c1fbfd0d8617ae2
[]
no_license
Rasel120/Python-blog-project
91cacdb12834bbcfea2b9b3a64153952d94d5d04
20e1561d06eb9ab6144bb50101b061acf9680914
refs/heads/main
2023-06-05T08:22:25.509881
2021-06-17T09:21:04
2021-06-17T09:21:04
375,974,709
0
0
null
null
null
null
UTF-8
Python
false
false
352
py
from django.urls import path from .import views urlpatterns = [ path('', views.authlogin, name='login'), path('logout/', views.authlogout, name='logsout'), path('register/', views.authregister, name='registration'), path('forgot/', views.authforgot, name='forgotpass'), path('profile/', views.authprofile, name='userprofile'), ]
[ "raselhossain120@gmail.com" ]
raselhossain120@gmail.com
beeeb4805e5fc65df1730bbc7329a1679c1c8d3f
b78798473c39a4348a4bd4dfb94a00427f03e57a
/portfolio/urls.py
223830f008a714f02a7e7d75e30ecd4089c0299f
[]
no_license
Limenation/portfolio
bd466cca2fa313b08fe4965ae36e5caf417664e0
a42cd4a09b1d5b7650826afae11d590e5f5f87bd
refs/heads/master
2020-07-03T07:25:01.635322
2019-08-13T07:01:50
2019-08-13T07:01:50
201,836,870
0
0
null
null
null
null
UTF-8
Python
false
false
1,031
py
"""portfolio URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path from . import views from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('admin/', admin.site.urls), path('', views.home), # path('blog/', blog.views.blog_page), path('blog/', include('blog.urls')), ] + static(settings.MEDIA_URL,document_root=settings.MEDIA_ROOT)
[ "1448918377@qq.com" ]
1448918377@qq.com
03fa372373be0909afbda2455c14a4b31e28297a
a46d135ba8fd7bd40f0b7d7a96c72be446025719
/packages/python/plotly/plotly/validators/densitymapbox/_text.py
d6acb8ce9d54edebc2f8c5d7d89393b3ac169a33
[ "MIT" ]
permissive
hugovk/plotly.py
5e763fe96f225d964c4fcd1dea79dbefa50b4692
cfad7862594b35965c0e000813bd7805e8494a5b
refs/heads/master
2022-05-10T12:17:38.797994
2021-12-21T03:49:19
2021-12-21T03:49:19
234,146,634
0
0
MIT
2020-01-15T18:33:43
2020-01-15T18:33:41
null
UTF-8
Python
false
false
444
py
import _plotly_utils.basevalidators class TextValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="text", parent_name="densitymapbox", **kwargs): super(TextValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", True), edit_type=kwargs.pop("edit_type", "calc"), **kwargs )
[ "noreply@github.com" ]
hugovk.noreply@github.com
4163953d53f7282f91a3283b78bcd99bd93f92e4
d1df2f274304101ea8ebcf083f54433b70b8756d
/ch1/types.py
e85000f0736c8d84920e877578ca920372867bdd
[]
no_license
baykier/deep-leaning-from-scratch
76f737335f96b0a045320f9e52a0b46f2ac3a1f8
e315ee29c0a74e8f40c11f372fafb59debfce044
refs/heads/master
2020-05-19T16:29:36.872167
2019-05-10T08:18:41
2019-05-10T08:18:41
185,110,317
0
0
null
null
null
null
UTF-8
Python
false
false
368
py
# coding: utf-8 # int num = 10 print(type(num)) # float float_num = 10.3 print(type(float_num)) # str str_var = ' this is a str' str_var2 = "this is anothor str" print(type(str_var), type(str_var2)) # bool true_var = True print(type(true_var)) # list list_var = [1, 23, '444'] print(type(list_var)) # list loop for m in list_var: print(m,type(m))
[ "1035666345@qq.com" ]
1035666345@qq.com
4589e114dd1b638453c2633b3541962c9d1cc69b
b1977f6e68564dd02a41631d51653db90b174185
/Gupta.py
d6d0086ad074d1e537ee9f1584a5309379b35425
[]
no_license
eliwchen/ISZPVRPTW
c9593c9219f02af5d4463c28ada93bfe044ee473
33335d2750239f1297a8f8672e4aafcf5f2e568a
refs/heads/master
2021-07-15T03:31:14.919998
2021-06-17T13:23:20
2021-06-17T13:23:20
249,741,672
2
1
null
null
null
null
UTF-8
Python
false
false
1,401
py
# -*- coding:utf-8 -*- import numpy as np import time from tool import makespan_value class Gupta: def cals(self, data): s = np.zeros([2, data.shape[1]]) s[0] = data[0] for j in range(data.shape[1]): temp = [] c = 1 if data[-1, j] > data[1, j]: c = -1 for m in range(data.shape[0] - 1): temp.append(np.sum([data[m, j], data[m + 1, j]])) s[1, j] = c / np.min(temp) return s def sort(self, data, s): col = np.array(s[:, np.argsort(s[1])][0], dtype=int) - 1 data_gupta = data[:, col][0] return data_gupta def gupta(data,transfer_time, draw=0): """ :param data:3行,工序编号,机器1加工时间,机器2加工时间 :return: """ data = data[:, np.argsort(data[0])] new = Gupta() start_time = time.time() s = new.cals(data) data_gupta = new.sort(data, s) end_time = time.time() # print("Gupta// Time used: %s" % (end_time - start_time)) # print("Gupta// The minimum makespan: %s" % makespan_value(data[:, data_gupta - 1])) if draw: import matplotlib.pyplot as plt from tool import gatt gatt(data[:, data_gupta - 1]) plt.show() return data_gupta,makespan_value(data[:, data_gupta - 1],transfer_time)
[ "noreply@github.com" ]
eliwchen.noreply@github.com
1d094e0d228f9630176cdaa4cf7b1db608649010
60a831fb3c92a9d2a2b52ff7f5a0f665d4692a24
/IronPythonStubs/release/stubs.min/System/Diagnostics/__init___parts/CorrelationManager.py
e850a4823b372a076124dfa139e458c43873f4ed
[ "MIT" ]
permissive
shnlmn/Rhino-Grasshopper-Scripts
a9411098c5d1bbc55feb782def565d535b27b709
0e43c3c1d09fb12cdbd86a3c4e2ba49982e0f823
refs/heads/master
2020-04-10T18:59:43.518140
2020-04-08T02:49:07
2020-04-08T02:49:07
161,219,695
11
2
null
null
null
null
UTF-8
Python
false
false
1,080
py
class CorrelationManager(object): """ Correlates traces that are part of a logical transaction. """ def StartLogicalOperation(self,operationId=None): """ StartLogicalOperation(self: CorrelationManager) Starts a logical operation on a thread. StartLogicalOperation(self: CorrelationManager,operationId: object) Starts a logical operation with the specified identity on a thread. operationId: An object identifying the operation. """ pass def StopLogicalOperation(self): """ StopLogicalOperation(self: CorrelationManager) Stops the current logical operation. """ pass ActivityId=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets or sets the identity for a global activity. Get: ActivityId(self: CorrelationManager) -> Guid Set: ActivityId(self: CorrelationManager)=value """ LogicalOperationStack=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the logical operation stack from the call context. Get: LogicalOperationStack(self: CorrelationManager) -> Stack """
[ "magnetscoil@gmail.com" ]
magnetscoil@gmail.com
e5a727919954194e5eb42a5a0667882dba607a25
d01823353eb061355068bac9964bb9747495dee5
/liblearn/loss/lossbase_.py
8129ee80387cf6c0d59810be1ab64eb45d058764
[]
no_license
fulQuan/ift6266h15
57eb97e6054cb5bc1936382defdf11c5955cd19e
3e2780963f061484c938090419001149fff04182
refs/heads/master
2021-01-18T18:20:18.411096
2015-04-17T19:32:10
2015-04-17T19:32:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
119
py
# -*- coding: utf-8 -*- """ Created on Tue Feb 24 15:01:11 2015 @author: francis """ class lossbase(object): pass
[ "francisquintallauzon@gmail.com" ]
francisquintallauzon@gmail.com
a5ba66337b1d2cdf5e0bedf267c86604f72d7545
471477500808e6d7195b33852113e454bbad0e48
/Wiki/GoogleRedirect.py
23e8dadd04a265fdd532075e94639e7b435cb0c3
[ "MIT" ]
permissive
RogerNi/2019_AAU_Web-NLP_Utils-Ex
0bd35b1a5febf24b62b04819b05a10cb8e194dcb
0b727647e09b5cded97b0625b535fa7a35fe807c
refs/heads/master
2020-06-03T00:25:19.958238
2019-06-11T15:04:07
2019-06-11T15:04:07
191,360,193
0
0
null
null
null
null
UTF-8
Python
false
false
1,218
py
''' @Author: NI Roger @LastEditors: NI Roger @LastEditTime: 2019-06-11 12:42:30 @Description: Using Google searching result to redirect Wikipedia page ''' from requests_html import HTMLSession session = HTMLSession() def getWikiKeyWordFromGoogle(entry): '''Return Wiki Keyword from Google Searching result This function first gets the searching result from Google. Then it picks up the wiki links from the searching result and choose the most appropriate one. Arg: entry: Keyword to search Return: One keyword for Wikipedia that is expected to the most suitable one for the input keyword Note: Frequent HTML requests to Google may cause temporary ban of your IP address from furthur Google search. Also, the strategies to pick up appropriate Wikipedia keyword to choose the minimum-length keyword from all, which is not correct in some situations. ''' responde = session.get("https://www.google.com/search?q="+entry) links = responde.html.links wikiLinks = [x for x in links if "wikipedia.org" in x] wikiKeywords = [x.split("/")[-1] for x in wikiLinks] return min(wikiKeywords,key=len)
[ "noreply@github.com" ]
RogerNi.noreply@github.com
a4c25541c52d27a7bce05e9b2d6e2660b94be563
c1cadf7816acbe2c629dfdf5bfe8f35fa14bfd57
/engish/readanno/Utils/Utils.py
3b883c76d63bb3a1a20536146fea5532e30b561e
[]
no_license
luochengleo/timeperception
39c5eb0b0cedf16a02867e6a67e2befc4a118c71
6c27ceb51e219d9f18898918d4f3158c94836ff4
refs/heads/master
2021-01-21T04:46:45.315679
2016-07-21T14:34:04
2016-07-21T14:34:04
43,635,809
0
1
null
null
null
null
UTF-8
Python
false
false
1,491
py
__author__ = 'luocheng' def str2numseq(s,splitter): return [int(item) for item in s.strip().split(splitter)] def numseq2str(numseq,splitter): return [splitter.join([str(item) for item in numseq])] from django.db import transaction, models import re from readanno.models import * patterns = {key: re.compile('%s=(.*?)\\t' % key) for key in ['TIME', 'USER', 'JOBID','ACTION']} info_patterns = re.compile('INFO:\\t(.*?)$') click_info_patterns = {key: re.compile('%s=(.*?)\\t' % key) for key in ['type', 'result', 'page', 'rank']} click_info_patterns['src'] = re.compile('src=(.*?)$') def fromString(line): studentID = patterns['USER'].search(line).group(1) jobid = patterns['JOBID'].search(line).group(1) action = patterns['ACTION'].search(line).group(1) logObj = Log.objects.create(studentid=studentID, jobid=jobid, action=action, content=line) return logObj # @transaction.commit_manually def insertMessageToDB(message): try: for line in message.split('\n'): fout = open('data/all.log','a') fout.write(line+'\n') print line if line == '': continue log = fromString(line) log.save() except Exception as e: print e print 'insert exception' # transaction.rollback() else: print 'commit()' # transaction.commit()
[ "luochengleo@gmail.com" ]
luochengleo@gmail.com
9b46ba4719d7f278f861f5db639e3faead3a4cb5
de5be7e4d9e20bbfda3ce8697afc3433a3ccf55d
/python_tutorial/excercise_3/looping_in_list.py
55baa5d9ed37a214eb2ca2ffb7502363bf5236cd
[]
no_license
poojataksande9211/python_data
42a88e0a0395f383d4375000a3d01b894bd38e62
64c952d622abfa77f2fdfd737c210014fce153c5
refs/heads/main
2023-04-16T10:24:27.213764
2021-04-27T16:34:32
2021-04-27T16:34:32
360,673,774
0
0
null
null
null
null
UTF-8
Python
false
false
227
py
#looping in list fruits=["anar","banana","apple","kiwi","orange","papaya","pinaple"] # for i in fruits: # print(i) #.................................................. i=0 while i<len(fruits): print(fruits[i]) i=i+1
[ "amitganvir6@gmail.com" ]
amitganvir6@gmail.com
2814486884b96d9ebaf788e56bff7cd00778b883
0f38731054bb79200959725f8ee0ba74291c6e47
/profile_url_scraper.py
f0b8f104a545aa1066849429be52d659dac9a1c0
[]
no_license
Project-Based-Learning-IT/linkedin-scraper
f34e378466fa6f29ed8d363fcf714ecd09f78cde
67ded49501c9c0aa58cf79b9fd7d5a46d5f0190a
refs/heads/main
2023-07-18T18:17:09.105435
2021-09-15T17:26:24
2021-09-15T17:26:24
405,339,543
1
1
null
null
null
null
UTF-8
Python
false
false
1,056
py
from selenium import webdriver from parsel import Selector import csv urlArray = [] chromedriver = '/home/sid/Downloads/chromedriver_linux64/chromedriver' _DRIVER_CHROME = webdriver.Chrome(chromedriver) _DRIVER_CHROME.get('https://www.linkedin.com/uas/login') elementID = _DRIVER_CHROME.find_element_by_id('username') elementID.send_keys('maatsisipbl@gmail.com') elementID = _DRIVER_CHROME.find_element_by_id('password') elementID.send_keys('project@123') elementID.submit() for i in range(1, 100): _DRIVER_CHROME.get('https://www.linkedin.com/search/results/people/?origin=FACETED_SEARCH&page={}&schoolFilter=%5B%22246006%22%5D&sid=b33'.format(i)) selector = Selector(text=_DRIVER_CHROME.page_source) urls = selector.xpath('//a[@class="app-aware-link" and @aria-hidden="false"]/@href').extract() for i in range(0, len(urls)): urls[i] = urls[i].split('?')[0] urlArray.extend(urls) print(urlArray) with open('profile_urls.csv', 'w', encoding='UTF8', newline='') as f: writer = csv.writer(f) for url in urlArray: writer.writerow([url])
[ "realsiddheshko@gmail.com" ]
realsiddheshko@gmail.com
779eada9da3ae4912ac01d4f8d5d8b1879026927
9ef2a6ead84931997ae925140f010d0ec4f81f3b
/mysite/mysite/settings.py
08fb602c0eae4cb43f996fa67d460a3831a99bc7
[ "MIT" ]
permissive
dalonlobo/Django11Polls
fbfed91b601c5ce33a150ae4b5f6103273c737ca
89e93dcec61274a46bbec10a872234512b113158
refs/heads/master
2021-01-02T09:18:59.251668
2017-09-05T14:58:06
2017-09-05T14:58:06
99,192,235
0
0
null
null
null
null
UTF-8
Python
false
false
3,161
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 1.11.3. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = ')40k4cly018(!0ts86xrq4glhvc70a7sf5trl6e&!ch9n-*u-+' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'polls.apps.PollsConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
[ "dalonlobo@gmail.com" ]
dalonlobo@gmail.com
c88e25a8187fa6eeb3b35e16b4b5ad0563ff166a
b6f4e527154b82f4e3fa48f06ca53fc15bf08283
/Day06/function6.py
9ad8987713d947369211aa8882890d4323c7d7f1
[]
no_license
Light-City/Python-100-Days
74118e36c658db6c897f847e7e554311af036b9d
1fe049a1fe1e64082752d2d32cb75c1a4349cded
refs/heads/master
2020-03-18T12:44:53.191512
2018-05-24T09:49:22
2018-05-24T09:49:22
134,741,794
3
1
null
2018-05-24T16:29:02
2018-05-24T16:29:02
null
UTF-8
Python
false
false
346
py
""" 作用域问题 Version: 0.1 Author: 骆昊 Date: 2018-03-05 """ # 局部作用域 def foo1(): a = 5 foo1() # print(a) # NameError # 全局作用域 b = 10 def foo2(): print(b) foo2() def foo3(): b = 100 # 局部变量 print(b) foo3() print(b) def foo4(): global b b = 200 # 全局变量 print(b) foo4() print(b)
[ "jackfrued@126.com" ]
jackfrued@126.com
f2219cf699a60372c8109d14de0b1a2190cfe346
b7b8a8e1d41159a636a0e243056941bdf57856b5
/fianl exam/main.py
82352cb2a0b905f0b9013c1b6c8ac399cf277ef8
[]
no_license
fjucs/107-VideoProcessing
0afc97a958e12f38637d0f2cc7cc9a4f9586ca65
364904da89009ea0107e64a1611f67cfe4eddaa3
refs/heads/master
2020-09-06T00:01:55.233541
2019-11-07T14:13:46
2019-11-07T14:13:46
220,251,680
0
0
null
null
null
null
UTF-8
Python
false
false
2,149
py
import cv2 import numpy as np import pygame from color_manip import * from bar import * from utils import * cap = cv2.VideoCapture(0) pygame.init() pygame.display.set_caption(u"clown") screen = pygame.display.set_mode((800, 600)) clock = pygame.time.Clock() class Clown: def __init__(self, x, y, img): self.x = x self.y = y self.img = img self.wear = False def update(self, now, faces): if not now: return nx, ny = now x = self.x y = self.y if x <= nx and nx <= x+200 and y <= ny and ny <= y+200: self.wear = True if self.wear: for fx, fy, fw, fh in faces: self.x = fx + 65 self.y = fy - 100 def draw(self): screen.blit(self.img, (self.x, self.y)) # t = TrackBar('1', 'b') a = Clown(10, 10, pygame.transform.scale(pygame.image.load("1.png"), (200, 200))) b = Clown(300, 10, pygame.transform.scale(pygame.image.load("2.png"), (200, 200))) c = Clown(590, 10, pygame.transform.scale(pygame.image.load("3.png"), (200, 200))) hat = [a, b, c] GAME_PLAY = 1 GAME_WIN = 2 gm = GAME_PLAY running = True while running: for event in pygame.event.get(): # 離開遊戲. if event.type == pygame.QUIT: running = False # update ## opencv ret, frame = cap.read() frame = flip(frame, 1) ## color detect _, mask, _ = color_detect(frame, (0, 0, 255), 50) cent = get_color_pos(mask) cv2.imshow('1', mask) # cv2.imshow('2', inv) ## face detect faces = face_detect(frame) ## game logic for i in hat: i.update(cent, faces) # win wear_cnt = 0 for i in hat: if i.wear: wear_cnt += 1 if wear_cnt == 3: gm = GAME_WIN # draw back = cvimage_to_pygame(frame) back = pg_resize(back, 800, 600) screen.blit(back, (0,0)) for i in hat: i.draw() if gm == GAME_WIN: showFont(screen, "You Win", 300, 250, 'simhei', 50, (255, 0, 0)) pygame.display.update() clock.tick(60) cap.release() cv2.destroyAllWindows()
[ "a82611141@gmail.com" ]
a82611141@gmail.com
820ba9667ca39c6dfe6a225fce1cd4ebbbf82bbb
41935d3be8b0f8722133d5b21470feddcb9793b5
/PythonWS-S14/begin.py
17b0de8b09ddcc3e357ba4437a53f6d1187fcde5
[]
no_license
ga98442w/mypydevrepoongit
118c797f8193ca51e14a3f258ea70568f6480ef4
cf238295750ed27ff4f46f0c27e18951d48b6987
refs/heads/master
2021-01-04T22:32:35.366768
2015-02-06T21:10:55
2015-02-06T21:10:55
30,433,462
0
0
null
null
null
null
UTF-8
Python
false
false
247
py
__author__ = 'GilbertAlipui' # Prompt the user to enter a radius radius = eval(input("Enter a value for radius: ")) #Compute area area = radius * radius * 3.14159 #Display results print("The area for the circle of radius ", radius, "is ", area)
[ "98ab50f1@opayq.com" ]
98ab50f1@opayq.com
6b1f08084a9b1cbda2335c4a9356745284920465
7442a9088d41bbb900e767b7eb6d85ac6a300df0
/Controlador/app.py
550cdfd9e1a81f2e369ff26bb61138c0e6a5dde2
[]
no_license
AdrianGOT/InstantSecurity
aa3bc544b2b9680469cef188bec556e47dc37e26
00e4ddc56e66fe6d2cef525ecd2639cb81f4a87a
refs/heads/main
2023-01-22T10:03:51.731279
2020-12-02T15:49:42
2020-12-02T15:49:42
317,891,786
0
0
null
null
null
null
UTF-8
Python
false
false
6,488
py
from flask import Flask, render_template, redirect from flask import jsonify, request, url_for from flask import session import requests import random import json app = Flask(__name__) url_cliente = 'http://127.0.0.1:5001/clientes/' url_producto = 'http://127.0.0.1:5002/producto/' url_factura = 'http://127.0.0.1:5003/factura/' app.secret_key="lalocura123456789" # Función que buscar un solo producto def buscar_un_producto(name): response = requests.get(url_producto + name) return json.loads(response.text) # Función que buscar un solo cliente def buscar_un_cliente(id): response = requests.get(url_cliente + str(id)) return json.loads(response.text) # Función que busca todos los productos def buscar_productos(): response = requests.get(url_producto) return json.loads(response.text) # Función que busca todas las facturas def buscar_facturas(): response = requests.get(url_factura) return json.loads(response.text) # Función que agrega datos del cliente a la session def registroSesion(todo): session['nombre'] = todo['nombre'] session['cc'] = todo['CC'] print(session['cc']) @app.route('/') def index(): return redirect(url_for('all_products')) # Guardar cliente @app.route('/guardar', methods = ['POST']) def save_client(): data = { 'nombre' : request.form['nombre'], 'apellido' : request.form['apellido'], 'CC': request.form['CC'], 'celular':request.form['celular'], 'email' : request.form['email'], 'direccion':request.form['direccion'] } registroSesion(data) requests.post(url_cliente, json = data) return redirect(url_for('index')) # Actualizar la información del cliente @app.route('/actualizar', methods = ['POST']) def update(): data = { 'name' : request.form['nombre'], 'apellido' : request.form['apellido'], 'Celular':request.form['celular'], 'email' : request.form['email'] } requests.put(url_cliente + request.form['CC'], json = data) return redirect(url_for('index')) # Obtiene todos los prodcutos @app.route('/obtener_productos/', methods=['GET', 'POST']) def all_products(): todo = buscar_productos() comprobante = False n = 'Desconocido' cc = 'Desconocido' if "nombre" in session: comprobante = True n = session['nombre'] cc = session['cc'] return render_template('index.html', productos = todo['result'], title='InstantSecurity', c = comprobante, n = n) return render_template('index.html', productos = todo['result'], title='InstantSecurity', c = comprobante, n = n) # Registro e Inicio de sesión @app.route('/Inicio_de_sesión', methods=['GET','POST']) def inicioSesion(): if request.method == 'POST': todo = buscar_un_cliente(request.form['CC']) registroSesion(todo['result']) return redirect(url_for('all_products')) return render_template('inicioSesion.html', title='Iniciar sesión') @app.route('/Registrarse', methods=['GET','POST']) def registro(): return render_template('registrarse.html', title='Registro') # Creación de la factura @app.route('/factura/<productName>', methods=['GET','POST']) def facturacion(productName): if "nombre" in session: comprobante = True producto = buscar_un_producto(productName) cliente = buscar_un_cliente(str(session['cc'])) factura = { 'Nombre': cliente['result']['nombre'], 'Identificacion': cliente['result']['CC'], 'Direccion del cliente': cliente['result']['direccion'], 'Nombre del producto o servicio': producto['result']['name'], 'Precio': producto['result']['price'], 'Número de telefono': cliente['result']['celular'] } if request.method == 'POST': n = random.randint(0,100000000) data_check={ 'numero_factura':n, 'direccion': factura['Direccion del cliente'], 'precio': factura['Precio'], 'nombre_producto':factura['Nombre del producto o servicio'], 'nombre_cliente':factura['Nombre'], 'CC_cliente':factura['Identificacion'] } requests.post(url_factura, json=data_check) return render_template('resultado.html', num = n) return render_template('factura.html', Factura = factura, n=session['nombre'], title = 'Factura') # Perfil del usuario @app.route('/obtener_productos/perfil', methods=['GET','POST']) def perfil(): if "cc" in session: info = buscar_un_cliente(str(session['cc'])) f = buscar_facturas() return render_template('perfil.html', title=session['nombre'], n=session['nombre'], info = info['result'], facturas = f['result']) else: return redirect(url_for('index')) # Elimiar factura @app.route('/Elimar_factura/<numero>', methods = ['GET','POST']) def eliminar_factura(numero): requests.delete(url_factura + numero) return redirect(url_for('perfil')) # Editar Cuenta @app.route('/Editar_cuenta/<cc>', methods=['GET', 'POST']) def editar_cuenta(cc): if request.method == 'POST': new_data={ 'name':request.form['nombre'], 'apellido':request.form['apellido'], 'Celular':request.form['celular'], 'email':request.form['email'], 'direccion':request.form['direccion'] } requests.put(url_cliente + str(cc), json=new_data) return redirect(url_for('perfil')) todo = buscar_un_cliente(session['cc']) return render_template('editarPerfil.html', title="Editar Perfil", info=todo['result']) # Eliminar Cuenta @app.route('/eliminar_cuenta/<int:cc>', methods=['GET', 'POST']) def eliminar_cuenta(cc): if 'nombre' in session: requests.delete(url_cliente + str(cc)) return redirect(url_for('logout')) return redirect(url_for('index')) # Cerrar sesión @app.route('/Cerrar Session') def logout(): session.pop('nombre',None) session.pop('cc',None) return redirect(url_for('all_products'))
[ "noreply@github.com" ]
AdrianGOT.noreply@github.com
3dd66015f4809417e4adb64f640b1c8d56acb3e0
b5522ba428e1faa2e6661ac2a7051e76673e71b2
/P0/Task3.py
c11e00a8198d703d7c4401532277e195767b5bcc
[]
no_license
jeyansaran620/DSA_Udacity
6fdf535425e32dd5792ba7c1d90be899acebde23
cd59411b5de62c5764a7d82d2673524e30d783c9
refs/heads/master
2022-07-13T22:26:44.579387
2020-05-13T15:19:31
2020-05-13T15:19:31
263,665,703
0
0
null
null
null
null
UTF-8
Python
false
false
2,568
py
""" Read file into texts and calls. It's ok if you don't understand how to read files. """ import csv codes=set() total_calls=0 bang_calls=0 with open('calls.csv', 'r') as f: reader = csv.reader(f) calls = list(reader) for call in calls: call1=call[0].split(")") if call1[0][0]=='(': if call1[0].split("(")[1] =="080": total_calls+=1 call2=call[1].split(")") if call2[0][0]=='(': codes.add(call2[0].split("(")[1]) if call2[0].split("(")[1]=="080": bang_calls+=1 call22=call[1].split(" ") if call22[0][0]=='7' or call22[0][0]=='8' or call22[0][0]=='9': codes.add(call22[0][:4]) if call22[0][:3]=="140": if "140" not in codes: codes.add('140') print("The numbers called by people in Bangalore have codes:") for key in sorted(codes): print(key) print(str("%.2f" %(bang_calls*100/total_calls))+" percent of calls from fixed lines in Bangalore are calls to other fixed lines in Bangalore.") """ TASK 3: (080) is the area code for fixed line telephones in Bangalore. Fixed line numbers include parentheses, so Bangalore numbers have the form (080)xxxxxxx.) Part A: Find all of the area codes and mobile prefixes called by people in Bangalore. - Fixed lines start with an area code enclosed in brackets. The area codes vary in length but always begin with 0. - Mobile numbers have no parentheses, but have a space in the middle of the number to help readability. The prefix of a mobile number is its first four digits, and they always start with 7, 8 or 9. - Telemarketers' numbers have no parentheses or space, but they start with the area code 140. Print the answer as part of a message: "The numbers called by people in Bangalore have codes:" <list of codes> The list of codes should be print out one per line in lexicographic order with no duplicates. Part B: What percentage of calls from fixed lines in Bangalore are made to fixed lines also in Bangalore? In other words, of all the calls made from a number starting with "(080)", what percentage of these calls were made to a number also starting with "(080)"? Print the answer as a part of a message:: "<percentage> percent of calls from fixed lines in Bangalore are calls to other fixed lines in Bangalore." The percentage should have 2 decimal digits """
[ "noreply@github.com" ]
jeyansaran620.noreply@github.com
087879df2af5993db7367abe2d8b8e60ad037c0b
bb7d0ec68afabd53f81b9e6f8823bc65566778d9
/stdplugins/squ.py
5549e5c1211cd2ce35d92f22a86d5a72ef36a7da
[ "Apache-2.0" ]
permissive
IshwaranRudhara/PepeBot
b992cd7233ff5ef42c9ef124c1fa8c0c42147369
5c0bd4c19e076bee73cf62a4dc804681045754d3
refs/heads/master
2021-05-20T08:37:05.954697
2020-06-19T10:23:30
2020-06-19T10:23:30
252,200,694
2
3
Apache-2.0
2020-04-30T08:36:54
2020-04-01T14:36:26
Python
UTF-8
Python
false
false
3,367
py
# BY @STARKTM1 from telethon import events import asyncio @borg.on(events.NewMessage(pattern=r"\.squ", outgoing=True)) async def _(event): if event.fwd_from: return await event.edit("╔═══════════════════╗ \n \n╚═══════════════════╝") await asyncio.sleep(1) await event.edit("╔═══════════════════╗ \n \t░ \n╚═══════════════════╝") await asyncio.sleep(1) await event.edit("╔═══════════════════╗ \n ░ \t░ \n╚═══════════════════╝") await asyncio.sleep(1) await event.edit("╔═══════════════════╗ \n ░ ░ ░ \n╚═══════════════════╝") await asyncio.sleep(1) await event.edit("╔═══════════════════╗ \n ░ ░ ░ ░ \n╚═══════════════════╝") await asyncio.sleep(1) await event.edit("╔═══════════════════╗ \n ░ ░ ░ ░ ░ \n╚═══════════════════╝") await asyncio.sleep(1) await event.edit("╔═══════════════════╗ \n ░ ░ ░ ░ ░ ░ \n╚═══════════════════╝") await asyncio.sleep(1) await event.edit("╔═══════════════════╗ \n ░ ░ ░ ░ ░ ░ ░ \n╚═══════════════════╝") await asyncio.sleep(1) await event.edit("╔═══════════════════╗ \n ░ ░ ░ ░ ░ ░ ░ ░ \n╚═══════════════════╝") await asyncio.sleep(1) await event.edit("╔═══════════════════╗ \n ░ ░ ░ ░ ░ ░ ░ ░ ░ \n╚═══════════════════╝") await asyncio.sleep(1) await event.edit("╔═══════════════════╗ \n ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ \n╚═══════════════════╝") await asyncio.sleep(1) await event.edit("╔═══════════════════╗ \n ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ \n╚═══════════════════╝") await asyncio.sleep(1) await event.edit("╔═══════════════════╗ \n ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ \n╚═══════════════════╝") await asyncio.sleep(1) await event.edit("╔═══════════════════╗ \n ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ \n╚═══════════════════╝") await asyncio.sleep(1) await event.edit("╔═══════════════════╗ \n ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ \n╚═══════════════════╝") await asyncio.sleep(6)
[ "55076817+prono69@users.noreply.github.com" ]
55076817+prono69@users.noreply.github.com
9e18921acde56458b273c44ee0e1f1783c047e29
04eb04b945713d067d5f1bf5643e0e25ffbe876a
/target/dist/cs3280_project5-1.0.dev0/setup.py
984726c899b521091737fb4a8a6c500f9de1fce9
[]
no_license
twhaley1/cs3280_project5
a9748415d40d81b8def01048569c16bf23bc4022
b521cd0312ce24e6e3aaa67c2e1031a5a9c22c49
refs/heads/master
2020-09-15T13:20:04.863652
2019-11-23T00:10:36
2019-11-23T00:10:36
223,457,062
0
0
null
null
null
null
UTF-8
Python
false
false
1,415
py
#!/usr/bin/env python from setuptools import setup from setuptools.command.install import install as _install class install(_install): def pre_install_script(self): pass def post_install_script(self): pass def run(self): self.pre_install_script() _install.run(self) self.post_install_script() if __name__ == '__main__': setup( name = 'cs3280_project5', version = '1.0', description = 'Project for CS3280 : Scans ports', long_description = ' Takes an ip address and a port or a pair\n of ports and determines whether there the \n port is listening or not. ', author = 'Thomas Whaley', author_email = 'twhaley1@my.westga.edu', license = '', url = '', scripts = [], packages = [], namespace_packages = [], py_modules = [ 'portscan', 'simpleservers' ], classifiers = [ 'Development Status :: 3 - Alpha', 'Programming Language :: Python' ], entry_points = {}, data_files = [], package_data = {}, install_requires = [], dependency_links = [], zip_safe = True, cmdclass = {'install': install}, keywords = '', python_requires = '', obsoletes = [], )
[ "twhaley1@my.westga.edu" ]
twhaley1@my.westga.edu
946b2f7c4dda23e138459b3f7d75952d0601e0a9
085a41aa8cf80c3c64783b15459fb37f5d067aac
/cups.py
a59a14d4509cbdb9c57a99fcfa22ab01c47c892d
[]
no_license
CamilleSalvinien/OpenKattis
25155e352d689387fe63f2352181805e0d07309b
d8c4b0898022d664039fc8135141ffc40c5fe95b
refs/heads/main
2023-04-30T16:00:33.571115
2021-05-09T18:20:33
2021-05-09T18:20:33
327,402,396
0
0
null
null
null
null
UTF-8
Python
false
false
304
py
n = int(input()) cups = {} for i in range (n): a, b = input().split() if a.isnumeric(): number = int(int(a)/2) color = b else: number = int(b) color = a cups[color]=number for w in sorted(cups, key=cups.get, reverse=False): print(w)
[ "noreply@github.com" ]
CamilleSalvinien.noreply@github.com
25f57380ce9bc585649b6037352bcbc1e84ee69a
65f78f7d50b2cbce8be821db26cd3b49e7861f08
/backend/location/vector.py
f11fff67a074483f9c7e7adef13070eb1997d58a
[]
no_license
adamallaf/FriendLocation
c3f194de632d4695d5981e6cee3893856af47a09
4095e66fe62af13bba588f04d79627cd10f9efc0
refs/heads/master
2021-03-12T19:09:39.110438
2017-08-11T11:33:43
2017-08-11T11:33:43
91,455,444
1
0
null
2017-05-16T12:24:15
2017-05-16T12:24:15
null
UTF-8
Python
false
false
1,326
py
class Vector: # a vector consists of two points def __init__(self, point1, point2): self.p1 = point1 self.p2 = point2 # checks if two numbers have different signs @staticmethod def _diff_sign(a,b): return ((a > 0) and (b < 0) or ((a <0) and (b >0))) # equation in general form a*x + b*y +c = 0 of an infinite line that goes # through vector self # evaluates the generated equation with the longitude and latitude of point # returns a number def _to_eq(self, point): # Delta Y a = self.p2.latitude - self.p1.latitude # - Delta X b = self.p1.longitude - self.p2.longitude c = self.p2.longitude * self.p1.latitude - self.p1.longitude * self.p2.latitude return a * point.longitude + b * point.latitude + c # checks if self intersects with vector self def intersects(self, vec): # if the d1 and d2 have different signs, they are on different sides of the # vector self d1 = self._to_eq(vec.p1) d2 = self._to_eq(vec.p2) # we must check again, but otherwise d3 = vec._to_eq(self.p1) d4 = vec._to_eq(self.p2) # will return true if the vectors do intersect, false if they don't return (self._diff_sign(d1,d2) and self._diff_sign(d3,d4))
[ "adam.allaf@gigaset.com" ]
adam.allaf@gigaset.com
5fbae611d9c4fdb92550ad1b70f2539ba8a9cfda
9fbe2b3a0c992f4348c480b0c06a131cb42847f3
/深度学习与TensorFlow入门实战-源码和PPT/lesson13-前向传播(张量)-实战/forward.py
3e0b0d6a62c22bff758b2b6690162c11903ba91e
[]
no_license
SunYanCN/TensorFlow
60efc11c69a40986a56c5847ea9e1572f947157a
5b8800d6ff1aca4a0f05c251a0f81bb2b8755b57
refs/heads/master
2020-06-02T00:11:45.159401
2019-06-05T15:51:41
2019-06-05T15:51:41
190,974,442
2
2
null
2019-06-09T06:58:09
2019-06-09T06:58:09
null
UTF-8
Python
false
false
2,457
py
import os import tensorflow as tf from tensorflow.python.keras import datasets os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # x: [60k, 28, 28], # y: [60k] (x, y), _ = datasets.mnist.load_data() # x: [0~255] => [0~1.] x = tf.convert_to_tensor(x, dtype=tf.float32) / 255. y = tf.convert_to_tensor(y, dtype=tf.int32) print(x.shape, y.shape, x.dtype, y.dtype) print(tf.reduce_min(x), tf.reduce_max(x)) print(tf.reduce_min(y), tf.reduce_max(y)) train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128) train_iter = iter(train_db) sample = next(train_iter) print('batch:', sample[0].shape, sample[1].shape) # [b, 784] => [b, 256] => [b, 128] => [b, 10] # [dim_in, dim_out], [dim_out] w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1)) b1 = tf.Variable(tf.zeros([256])) w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1)) b2 = tf.Variable(tf.zeros([128])) w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1)) b3 = tf.Variable(tf.zeros([10])) lr = 1e-3 for epoch in range(10): # iterate db for 10 for step, (x, y) in enumerate(train_db): # for every batch # x:[128, 28, 28] # y: [128] # [b, 28, 28] => [b, 28*28] x = tf.reshape(x, [-1, 28 * 28]) with tf.GradientTape() as tape: # tf.Variable # x: [b, 28*28] # [b, 784]@[784, 256] + [256] => [b, 256] + [256] => [b, 256] + [b, 256] # h1 = x @ w1 + tf.broadcast_to(b1, [x.shape[0], 256]) h1 = x @ w1 + b1 h1 = tf.nn.relu(h1) # [b, 256] => [b, 128] h2 = h1 @ w2 + b2 h2 = tf.nn.relu(h2) # [b, 128] => [b, 10] out = h2 @ w3 + b3 # compute loss # out: [b, 10] # y: [b] => [b, 10] y_onehot = tf.one_hot(y, depth=10) # mse = mean(sum(y-out)^2) # [b, 10] loss = tf.square(y_onehot - out) # mean: scalar loss = tf.reduce_mean(loss) # compute gradients grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3]) # print(grads) # w1 = w1 - lr * w1_grad w1.assign_sub(lr * grads[0]) b1.assign_sub(lr * grads[1]) w2.assign_sub(lr * grads[2]) b2.assign_sub(lr * grads[3]) w3.assign_sub(lr * grads[4]) b3.assign_sub(lr * grads[5]) if step % 100 == 0: print(epoch, step, 'loss:', float(loss))
[ "li1191863273@hotmail.com" ]
li1191863273@hotmail.com
fdcbb54e8a2910def38de933332d9505ff1eb7d0
8e47f970e089e33f75e4cbaad087c68daf1bf955
/example2/9.ciclos.py
7434f59aa9d347b63daef4336b5396b1906472d5
[]
no_license
jjmirandaa86/learn_Python
a53800278954246b5490a2c9980ef3ce33b5009d
5ab6557373c3b367c5abdc80eb2b6ad62bb1bdd8
refs/heads/master
2023-04-07T20:32:00.139129
2021-04-03T12:23:27
2021-04-03T12:23:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
249
py
#While variable = 0 while variable < 10: variable += 1 print(variable) if variable == 5: print("llego al 5") continue if variable == 8: print("llego al 8 y terminara") break else: print("termino")
[ "jefferson_miranda@hotmail.es" ]
jefferson_miranda@hotmail.es
baaba701cc5aefbc2ff2786e1a8ca4520c39bbca
d83339f639c678f2ccc601d4b6a4b738cf7c55bc
/regex/regular_expression.py
aa4e79b41932c16e81fd2a8fe7e25179e6e8c1d3
[]
no_license
evgeniikotliarov/python_example
fd734ec3252cef4ae51a43f73d5432336c35391a
65cd59eebfc78ee4cd5a3eb64c99137502a582d0
refs/heads/master
2021-01-19T14:40:45.601630
2017-06-20T06:23:38
2017-06-20T06:23:38
88,182,904
1
0
null
null
null
null
UTF-8
Python
false
false
2,165
py
import re # # input_filename = "../regex/text.txt" # result_file = "../regex/results.txt" # # inputfile = open(input_filename, mode='r', encoding='UTF8') # resultfile = open(result_file, mode='w', encoding='UTF8') # mytext = inputfile.read() # inputfile.close() lookfor = {'\d':"[0-5]"} for k, v in lookfor.items(): print(re.sub(k, lambda x: lookfor[x.replace(v)], v)) # results = re.findall(lookfor, mytext) # for item in results: # # resultfile.write(item) # print(item) # resultfile.close() # print("Total: " + str(len(results))) PASSWORD_REGEX_STR = "^(?=.*[A-Za-z])(?=.*\\d)(?=.*[$@#$!%*?&=])[A-z\\d$@#$!%*?&=]{8,}$" PIN_REGEX_STR = "\d{4}" CODE_REGEX_STR = "\d+" PROFILE_ID_REGEX = "\d{9}" EXP_DATE_REGEX = "\d{4}" CVV_REGEX = "\d{3}" AMOUNT_REGEX = "\d{3}" PHONE_REGEX_STR = "^\+996(55|77|70)[0-9]\\d{6}$" EMAIL_REGEX_STR = '[^@]+@[^@]+\.[^@]+' REGEX = ".*" FIO_REGEX_STR = ".*" def get_regex_date_format(): return r'\w{3},\s\d{2}\s\w{3}\s\d{4}\s\d{2}:\d{2}:\d{2}\s[A-Z]{3}' def get_request_regex(): methods = r'\w+' host_symbols = r"[\w\.\-\d/:'0-9]" space = r'\s' query = r'(?:[?&][^\s&]+)*' protocol = r'HTTP/.*' request_regex = "(({methods}){space}+({host_symbols}+)({query}){space}+({protocol}))".format( methods=methods, space=space, host_symbols=host_symbols, query=query, protocol=protocol ) return request_regex.encode() def get_boundary_regex(): return b'boundary=(.+)' def get_content_disposition_regex(): r = br'Content-Disposition:\s?(.*)\r\n' return r def get_content_type_regex(): r = br'Content-Type:\s?(.*)\r\n' return r def get_multipart_body_regex(): r = br'Content-Disposition:\s?.*(?:[\r\n]{0,1}Content-Type:\s?.*[\r\n]{0,1})?.*[\r\n]*([\s\S]*)' return r def get_disposition_name_regex(): r = br'name="(.*?)"' return r def get_session_regex(): r = br'session=(.*)\s?' return r def get_template_tokenizer_regex(): CONTROL = "{%.*?%}" EXPRESSIONS = "{{.*?}}" r = "(?s)({control}|{expressions})".format(control=CONTROL, expressions=EXPRESSIONS) return r
[ "kotlyarov.ev@gmail.com" ]
kotlyarov.ev@gmail.com
e8d8ce3147bbcc2b2b76f268cde4eeba8e7dce9e
a6d9feb6c532471ec6968b19c6147c7c7143cdca
/Sentiment Analysis/NLTK_Intro.py
d1d58c9cc82175e4971fa221639f037ca24d7204
[]
no_license
brandontip/algoTradeUdemy
983bd976b5c8687c54469fc929ecf8da3c61f7f0
7dfc8283a0b64ca0cf469b9ecce685b8282d2179
refs/heads/master
2022-12-22T19:28:29.799099
2020-09-28T05:54:51
2020-09-28T05:54:51
277,447,531
1
0
null
null
null
null
UTF-8
Python
false
false
1,280
py
# -*- coding: utf-8 -*- """ Created on Fri Jul 17 16:41:34 2020 @author: Bran """ import nltk # run this to download necessary files #nltk.download() #nltk.download('punkt') from nltk.tokenize import word_tokenize #from nltk.stem import WordNetLemmatizer from nltk.stem import PorterStemmer text = "If you set your goals ridiculously high and it's a failure, you will fail above everyone else's success." # Tokenization # this parses the string into units (usually words) tokens = word_tokenize(text) print(tokens) # Lemmatization # attempts to convert words into root word # effectiveness can be reduced when using # lemmatization or stemming # we're not going to download wordnet for this #lemmatizer = WordNetLemmatizer() #tokens=[lemmatizer.lemmatize(word) for word in tokens] # Stemming # attempts to convert words into root word #tokens=word_tokenize(text.lower()) ps = PorterStemmer() tokens=[ps.stem(word) for word in tokens] print(tokens) # Stop words stopwords = nltk.corpus.stopwords.words('english') print(stopwords) tokens_new = [j for j in tokens if j not in stopwords] # this is the result of only tokenizing and removing sopt words #['If', 'set', 'goals', 'ridiculously', 'high', "'s", 'failure', ',', 'fail', 'everyone', 'else', "'s", 'success', '.']
[ "54258128+brandontip@users.noreply.github.com" ]
54258128+brandontip@users.noreply.github.com
d8f070143e2464ad9f56813856e939e75527d0b5
6fca61fe5c317cefdd95aa5fa507177d4a9c1160
/dictionarynumbers.py
740c3a9b2f8139152b8008159b01a38c271c88c3
[]
no_license
Shadyaobuya/100daysofCodepython
4ed5df1cf3fbfbc6b754665d5028f6719c548278
8f4beaad5a541feced11b905f05e8f354a6a5579
refs/heads/master
2023-04-15T08:13:42.425950
2021-04-27T05:02:04
2021-04-27T05:02:04
350,864,077
0
0
null
null
null
null
UTF-8
Python
false
false
327
py
numbers=input("Enter any number from 0-10 to see how it's read in Swahili: ") conversion={ "1":"Moja", "2":"Mbili", "3":"Tatu", "4":"Nne", "5":"Tano", "6":"Sita", "7":"Saba", "8":"Name", "9":"Tisa", "10":"Kumi", "0":"Sufuri" } for number in numbers: print(conversion.get(number))
[ "shadyaobuyagard@gmail.com" ]
shadyaobuyagard@gmail.com
1024d2e59aa23e5ba8c257b5bebb70e45f4ca0b6
16609d71ee627729af9d14ca73e606fcaed7d165
/invenio_previewer/api.py
5fa0b6e1640307175a1935491c382843cd1faf72
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
inveniosoftware/invenio-previewer
39214993c82c176b44b9ef712c5dfe9bfdb9e8b8
d8582637e34cccd44054be1f28aaeb236d7d9c80
refs/heads/master
2023-08-24T19:32:43.096635
2023-08-17T14:53:19
2023-08-17T15:33:54
40,646,712
5
60
MIT
2023-09-13T15:32:40
2015-08-13T08:09:01
JavaScript
UTF-8
Python
false
false
1,754
py
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2016-2019 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """File reader utility.""" from __future__ import absolute_import, print_function from os.path import basename, splitext from flask import url_for class PreviewFile(object): """Preview file default implementation.""" def __init__(self, pid, record, fileobj): """Initialize object. :param file: ObjectVersion instance from Invenio-Files-REST. """ self.file = fileobj self.pid = pid self.record = record @property def size(self): """Get file size.""" return self.file['size'] @property def filename(self): """Get filename.""" return basename(self.file.key) @property def bucket(self): """Get bucket.""" return self.file.bucket_id @property def uri(self): """Get file download link. .. note:: The URI generation assumes that you can download the file using the view ``invenio_records_ui.<pid_type>_files``. """ return url_for( '.{0}_files'.format(self.pid.pid_type), pid_value=self.pid.pid_value, filename=self.file.key) def is_local(self): """Check if file is local.""" return True def has_extensions(self, *exts): """Check if file has one of the extensions.""" file_ext = splitext(self.filename)[1].lower() return file_ext in exts def open(self): """Open the file.""" return self.file.file.storage().open()
[ "lars.holm.nielsen@cern.ch" ]
lars.holm.nielsen@cern.ch
37f06f5f1ab8d42558fc8283d5595e8c109a3a78
62a4afb5ccc6c391ebe36032a83ec6fb8b3b48ac
/greatest num.py
1fd8ee7b39c5c9e2f3c2713daee0445a07493672
[]
no_license
Pavila98/python
d42ef282a7b37aee1a592969ade12b8c4bdcc93d
06c8fe373cf4269849e5f93d76cdcf5fdd54c5fc
refs/heads/master
2020-03-10T00:42:15.302513
2018-05-01T04:39:41
2018-05-01T04:39:41
129,088,468
0
1
null
null
null
null
UTF-8
Python
false
false
241
py
num1=input("enter a number") num2=input("enter a number") num3=input("enter a number") if (num1>num2 and num1>num3): print("num1 is greater") elif(num2>num1 and num2>num3): print("num2 is greater") else: print("num3 is greater")
[ "noreply@github.com" ]
Pavila98.noreply@github.com
2c3c6083c292e6a8e74d423af6ccf461c5805058
1cd9fb9466b0225575575091545cd9188fec539c
/tensorflow_probability/python/distributions/probit_bernoulli_test.py
fc7cbe257d528bbae156d92d904c2f9c046a71e1
[ "Apache-2.0" ]
permissive
ibozkurt79/probability
16f4fa9b773486a5f21617be3a4163079ac3aa61
2522dec61de0584a9d51850ccc2b7a13857b562c
refs/heads/master
2020-08-31T12:45:34.262934
2019-10-30T23:43:15
2019-10-30T23:44:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,055
py
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for the ProbitBernoulli distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np from scipy import special as sp_special import tensorflow.compat.v1 as tf1 import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability.python.internal import special_math from tensorflow_probability.python.internal import tensorshape_util from tensorflow_probability.python.internal import test_util as tfp_test_util from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import tfd = tfp.distributions def make_bernoulli(batch_shape, dtype=tf.int32): p = np.random.uniform(size=list(batch_shape)) p = tf.constant(p, dtype=tf.float32) return tfd.ProbitBernoulli(probs=p, dtype=dtype) def entropy(p): q = 1. - p return -q * np.log(q) - p * np.log(p) @test_util.run_all_in_graph_and_eager_modes class ProbitBernoulliTest(tfp_test_util.TestCase): def testP(self): p = [0.2, 0.4] dist = tfd.ProbitBernoulli(probs=p) self.assertAllClose(p, self.evaluate(dist.probs)) def testProbits(self): probits = [-42., 42.] dist = tfd.ProbitBernoulli(probits=probits) self.assertAllClose(probits, self.evaluate(dist.probits)) self.assertAllClose( sp_special.ndtr(probits), self.evaluate(dist.probs_parameter())) p = [0.01, 0.99, 0.42] dist = tfd.ProbitBernoulli(probs=p) self.assertAllClose( sp_special.ndtri(p), self.evaluate(dist.probits_parameter())) def testInvalidP(self): invalid_ps = [1.01, 2.] for p in invalid_ps: with self.assertRaisesOpError('probs has components greater than 1'): dist = tfd.ProbitBernoulli(probs=p, validate_args=True) self.evaluate(dist.probs_parameter()) invalid_ps = [-0.01, -3.] for p in invalid_ps: with self.assertRaisesOpError('x >= 0 did not hold'): dist = tfd.ProbitBernoulli(probs=p, validate_args=True) self.evaluate(dist.probs_parameter()) valid_ps = [0.0, 0.5, 1.0] for p in valid_ps: dist = tfd.ProbitBernoulli(probs=p) self.assertEqual(p, self.evaluate(dist.probs)) # Should not fail def testShapes(self): for batch_shape in ([], [1], [2, 3, 4]): dist = make_bernoulli(batch_shape) self.assertAllEqual(batch_shape, tensorshape_util.as_list(dist.batch_shape)) self.assertAllEqual(batch_shape, self.evaluate(dist.batch_shape_tensor())) self.assertAllEqual([], tensorshape_util.as_list(dist.event_shape)) self.assertAllEqual([], self.evaluate(dist.event_shape_tensor())) def testDtype(self): dist = make_bernoulli([]) self.assertEqual(dist.dtype, tf.int32) self.assertEqual(dist.dtype, dist.sample(5).dtype) self.assertEqual(dist.dtype, dist.mode().dtype) self.assertEqual(dist.probs.dtype, dist.mean().dtype) self.assertEqual(dist.probs.dtype, dist.variance().dtype) self.assertEqual(dist.probs.dtype, dist.stddev().dtype) self.assertEqual(dist.probs.dtype, dist.entropy().dtype) self.assertEqual(dist.probs.dtype, dist.prob(0).dtype) self.assertEqual(dist.probs.dtype, dist.prob(0.5).dtype) self.assertEqual(dist.probs.dtype, dist.log_prob(0).dtype) self.assertEqual(dist.probs.dtype, dist.log_prob(0.5).dtype) dist64 = make_bernoulli([], tf.int64) self.assertEqual(dist64.dtype, tf.int64) self.assertEqual(dist64.dtype, dist64.sample(5).dtype) self.assertEqual(dist64.dtype, dist64.mode().dtype) def testFloatMode(self): dist = tfd.ProbitBernoulli(probs=.6, dtype=tf.float32) self.assertEqual(np.float32(1), self.evaluate(dist.mode())) def _testPmf(self, **kwargs): dist = tfd.ProbitBernoulli(**kwargs) # pylint: disable=bad-continuation xs = [ 0, [1], [1, 0], [[1, 0]], [[1, 0], [1, 1]], ] expected_pmfs = [ [[0.8, 0.6], [0.7, 0.4]], [[0.2, 0.4], [0.3, 0.6]], [[0.2, 0.6], [0.3, 0.4]], [[0.2, 0.6], [0.3, 0.4]], [[0.2, 0.6], [0.3, 0.6]], ] # pylint: enable=bad-continuation for x, expected_pmf in zip(xs, expected_pmfs): self.assertAllClose(self.evaluate(dist.prob(x)), expected_pmf) self.assertAllClose(self.evaluate(dist.log_prob(x)), np.log(expected_pmf)) def testPmfCorrectBroadcastDynamicShape(self): p = tf1.placeholder_with_default([0.2, 0.3, 0.4], shape=None) dist = tfd.ProbitBernoulli(probs=p) event1 = [1, 0, 1] event2 = [[1, 0, 1]] self.assertAllClose( [0.2, 0.7, 0.4], self.evaluate(dist.prob(event1))) self.assertAllClose( [[0.2, 0.7, 0.4]], self.evaluate(dist.prob(event2))) def testPmfInvalid(self): p = [0.1, 0.2, 0.7] dist = tfd.ProbitBernoulli(probs=p, validate_args=True) with self.assertRaisesOpError('must be non-negative.'): self.evaluate(dist.prob([1, 1, -1])) with self.assertRaisesOpError('Elements cannot exceed 1.'): self.evaluate(dist.prob([2, 0, 1])) def testPmfWithP(self): p = [[0.2, 0.4], [0.3, 0.6]] self._testPmf(probs=p) self._testPmf(probits=sp_special.ndtri(p)) def testPmfWithFloatArgReturnsXEntropy(self): p = [[0.2], [0.4], [0.3], [0.6]] samps = [0, 0.1, 0.8] self.assertAllClose( np.float32(samps) * np.log(np.float32(p)) + (1 - np.float32(samps)) * np.log(1 - np.float32(p)), self.evaluate( tfd.ProbitBernoulli(probs=p, validate_args=False).log_prob(samps))) def testBroadcasting(self): probs = lambda p: tf1.placeholder_with_default(p, shape=None) dist = lambda p: tfd.ProbitBernoulli(probs=probs(p)) self.assertAllClose(np.log(0.5), self.evaluate(dist(0.5).log_prob(1))) self.assertAllClose( np.log([0.5, 0.5, 0.5]), self.evaluate(dist(0.5).log_prob([1, 1, 1]))) self.assertAllClose(np.log([0.5, 0.5, 0.5]), self.evaluate(dist([0.5, 0.5, 0.5]).log_prob(1))) def testPmfShapes(self): probs = lambda p: tf1.placeholder_with_default(p, shape=None) dist = lambda p: tfd.ProbitBernoulli(probs=probs(p)) self.assertEqual( 2, len(self.evaluate(dist([[0.5], [0.5]]).log_prob(1)).shape)) dist = tfd.ProbitBernoulli(probs=0.5) self.assertEqual(2, len(self.evaluate(dist.log_prob([[1], [1]])).shape)) dist = tfd.ProbitBernoulli(probs=0.5) self.assertEqual((), dist.log_prob(1).shape) self.assertEqual((1), dist.log_prob([1]).shape) self.assertEqual((2, 1), dist.log_prob([[1], [1]]).shape) dist = tfd.ProbitBernoulli(probs=[[0.5], [0.5]]) self.assertEqual((2, 1), dist.log_prob(1).shape) def testBoundaryConditions(self): dist = tfd.ProbitBernoulli(probs=1.0) self.assertAllClose(np.nan, self.evaluate(dist.log_prob(0))) self.assertAllClose([np.nan], [self.evaluate(dist.log_prob(1))]) def testEntropyNoBatch(self): p = 0.2 dist = tfd.ProbitBernoulli(probs=p) self.assertAllClose(self.evaluate(dist.entropy()), entropy(p)) def testEntropyWithBatch(self): p = [[0.1, 0.7], [0.2, 0.6]] dist = tfd.ProbitBernoulli(probs=p, validate_args=False) self.assertAllClose( self.evaluate(dist.entropy()), [[entropy(0.1), entropy(0.7)], [entropy(0.2), entropy(0.6)]]) def testSampleN(self): p = [0.2, 0.6] dist = tfd.ProbitBernoulli(probs=p) n = 100000 samples = dist.sample(n) tensorshape_util.set_shape(samples, [n, 2]) self.assertEqual(samples.dtype, tf.int32) sample_values = self.evaluate(samples) self.assertTrue(np.all(sample_values >= 0)) self.assertTrue(np.all(sample_values <= 1)) # Note that the standard error for the sample mean is ~ sqrt(p * (1 - p) / # n). This means that the tolerance is very sensitive to the value of p # as well as n. self.assertAllClose(p, np.mean(sample_values, axis=0), atol=1e-2) self.assertEqual(set([0, 1]), set(sample_values.flatten())) # In this test we're just interested in verifying there isn't a crash # owing to mismatched types. b/30940152 dist = tfd.ProbitBernoulli(np.log([.2, .4])) x = dist.sample(1, seed=tfp_test_util.test_seed()) self.assertAllEqual((1, 2), tensorshape_util.as_list(x.shape)) def testNotReparameterized(self): p = tf.constant([0.2, 0.6]) _, grad_p = tfp.math.value_and_gradient( lambda x: tfd.ProbitBernoulli(probs=x).sample(100), p) self.assertIsNone(grad_p) def testSampleDeterministicScalarVsVector(self): p = [0.2, 0.6] dist = tfd.ProbitBernoulli(probs=p) n = 1000 def _maybe_seed(): if tf.executing_eagerly(): tf1.set_random_seed(42) return None return 42 self.assertAllEqual( self.evaluate(dist.sample(n, _maybe_seed())), self.evaluate(dist.sample([n], _maybe_seed()))) n = tf1.placeholder_with_default(np.int32(1000), shape=None) sample1 = dist.sample(n, _maybe_seed()) sample2 = dist.sample([n], _maybe_seed()) sample1, sample2 = self.evaluate([sample1, sample2]) self.assertAllEqual(sample1, sample2) def testMean(self): p = np.array([[0.2, 0.7], [0.5, 0.4]], dtype=np.float32) dist = tfd.ProbitBernoulli(probs=p) self.assertAllEqual(self.evaluate(dist.mean()), p) def testVarianceAndStd(self): var = lambda p: p * (1. - p) p = [[0.2, 0.7], [0.5, 0.4]] dist = tfd.ProbitBernoulli(probs=p) self.assertAllClose( self.evaluate(dist.variance()), np.array([[var(0.2), var(0.7)], [var(0.5), var(0.4)]], dtype=np.float32)) self.assertAllClose( self.evaluate(dist.stddev()), np.array([[np.sqrt(var(0.2)), np.sqrt(var(0.7))], [np.sqrt(var(0.5)), np.sqrt(var(0.4))]], dtype=np.float32)) def testProbitBernoulliProbitBernoulliKL(self): batch_size = 6 a_p = np.array([0.6] * batch_size, dtype=np.float32) b_p = np.array([0.4] * batch_size, dtype=np.float32) a = tfd.ProbitBernoulli(probs=a_p) b = tfd.ProbitBernoulli(probs=b_p) kl = tfd.kl_divergence(a, b) kl_val = self.evaluate(kl) kl_expected = (a_p * np.log(a_p / b_p) + (1. - a_p) * np.log( (1. - a_p) / (1. - b_p))) self.assertEqual(kl.shape, (batch_size,)) self.assertAllClose(kl_val, kl_expected) def testParamTensorFromProbits(self): x = tf.constant([-1., 0.5, 1.]) d = tfd.ProbitBernoulli(probits=x, validate_args=True) self.assertAllClose( *self.evaluate([special_math.ndtri(d.prob(1.)), d.probits_parameter()]), atol=0, rtol=1e-4) self.assertAllClose( *self.evaluate([d.prob(1.), d.probs_parameter()]), atol=0, rtol=1e-4) def testParamTensorFromProbs(self): x = tf.constant([0.1, 0.5, 0.4]) d = tfd.ProbitBernoulli(probs=x, validate_args=True) self.assertAllClose( *self.evaluate([special_math.ndtri(d.prob(1.)), d.probits_parameter()]), atol=0, rtol=1e-4) self.assertAllClose( *self.evaluate([d.prob(1.), d.probs_parameter()]), atol=0, rtol=1e-4) @test_util.run_all_in_graph_and_eager_modes class ProbitBernoulliFromVariableTest(tfp_test_util.TestCase): def testGradientProbits(self): x = tf.Variable([-1., 1]) self.evaluate(x.initializer) d = tfd.ProbitBernoulli(probits=x, validate_args=True) with tf.GradientTape() as tape: loss = -d.log_prob([0, 1]) g = tape.gradient(loss, d.trainable_variables) self.assertLen(g, 1) self.assertAllNotNone(g) def testGradientProbs(self): x = tf.Variable([0.1, 0.7]) self.evaluate(x.initializer) d = tfd.ProbitBernoulli(probs=x, validate_args=True) with tf.GradientTape() as tape: loss = -d.log_prob([0, 1]) g = tape.gradient(loss, d.trainable_variables) self.assertLen(g, 1) self.assertAllNotNone(g) def testAssertionsProbs(self): x = tf.Variable([0.1, 0.7, 0.0]) d = tfd.ProbitBernoulli(probs=x, validate_args=True) self.evaluate(x.initializer) self.evaluate(d.entropy()) with tf.control_dependencies([x.assign([0.1, -0.7, 0.0])]): with self.assertRaisesOpError('x >= 0 did not hold'): self.evaluate(d.entropy()) if __name__ == '__main__': tf.test.main()
[ "gardener@tensorflow.org" ]
gardener@tensorflow.org
9fcf128a1978a85ebd97a6e38aa48846a658c2f6
215fc7c88d816e93199167823a97530e777f9466
/core/migrations/0003_url_redirect_count.py
224d7d7bbe8f7e4d46ffd2c5ed3eabea2654ce65
[]
no_license
lliricheskiuu/orm_auth_urlShortener
957d39e395097626701e3b604931cffb53d0acf0
8cbe711af4c215e8cd9b34bd0a2fceaf07f81d28
refs/heads/master
2023-07-10T01:27:40.051582
2021-08-15T11:19:47
2021-08-15T11:19:47
394,743,094
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
# Generated by Django 3.2.3 on 2021-08-15 10:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0002_alter_url_key'), ] operations = [ migrations.AddField( model_name='url', name='redirect_count', field=models.IntegerField(default=0), preserve_default=False, ), ]
[ "kzarrr4@gmail.com" ]
kzarrr4@gmail.com
9705c634ccb676f51e5e6f5c9b8aa64820268883
abfdac5a34895cb747995e21542556a96fb55bd1
/tree.py
7c14531fda378468753c7155b4b2fb451fab5d81
[]
no_license
KatherineCG/Algorithm
74db0ba7eef0c1fb38eaea13722e126d1bd93ec7
697f5524d18eabe7566a81c6f35e3320469a55f2
refs/heads/master
2020-03-26T19:57:27.000672
2018-08-19T11:08:13
2018-08-19T11:08:13
145,295,654
0
0
null
null
null
null
UTF-8
Python
false
false
3,820
py
import Queue class TreeNode: def __init__(self, data): self.val = data self.left = None self.right = None class BinaryTree: def PreOrder(self, tree, res): if not tree: return [] res.append(tree.val) self.PreOrder(tree.left, res) self.PreOrder(tree.right, res) return res def InOrder(self, tree, res): if not tree: return [] self.InOrder(tree.left, res) res.append(tree.val) self.InOrder(tree.right, res) return res def PostOrder(self, tree, res): if not tree: return [] self.PostOrder(tree.left, res) self.PostOrder(tree.right, res) res.append(tree.val) return res def preorder(self, bintree): if not bintree: return [] res = [] tree = [] p = bintree while p or tree: while p: tree.append(p) res.append(p.val) p = p.left if tree: p = tree.pop() p = p.right return res def inorder(self, bintree): if not bintree: return [] res = [] tree = [] p = bintree while p or tree: while p: tree.append(p) p = p.left if tree: p = tree.pop() res.append(p.val) p = p.right return res def postorder(self, bintree): if not bintree: return [] tree = [] res = [] tree.append(bintree) while tree: p = tree.pop() res.insert(0, p.val) if p.left: tree.append(p.left) if p.right: tree.append(p.right) return res def traverse(self, tree): if not tree: return [] res = [] q = Queue.Queue() q.put(tree) while not q.empty(): level = [] length = q.qsize() for i in range(length): p = q.get() level.append(p.val) if p.left: q.put(p.left) if p.right: q.put(p.right) res.append(level) return res def CreateBinaryTree(self, data, n): if len(data) > 0: flag = False for i in range(n, len(data)): if data[i] != '#': flag = True break if flag: l = 2 * n + 1 r = 2 * n + 2 j = n + 1 if j < len(data): while data[j] == '#': if data[j:] == ['#' for x in range(j, len(data))]: break data.insert(l + 2 * (j - n), '#') data.insert(r + 2 * (j - n), '#') j += 1 if data[n] != '#': pRoot = TreeNode(data[n]) pRoot.left = self.CreateBinaryTree(data, l) pRoot.right = self.CreateBinaryTree(data, r) return pRoot else: return None else: return None else: return None test = BinaryTree() treeinput = [1,2,3,4,5,6,7] tree = test.CreateBinaryTree(treeinput, 0) print test.traverse(tree) print test.PreOrder(tree, []) print test.preorder(tree) print test.InOrder(tree, []) print test.inorder(tree) print test.PostOrder(tree, []) print test.postorder(tree)
[ "noreply@github.com" ]
KatherineCG.noreply@github.com
f22aa844e4a1abb8405742a55991017dd9c5e6e3
8f54f227e28d7c0c1a11af0c9d0ec09cf679dc3c
/김노은/[List] 1244.py
6b903c08cc5788a47ef5b9dbad60a45ff05807e5
[]
no_license
bellaria19/2020-Spring-Jookgorithm
0325e58f1cf6b46a0a1b441ce75d37424924b6f8
5044acfd78b86728769f94a03806ef94ceb1a920
refs/heads/master
2022-12-04T09:51:58.815174
2020-08-25T11:45:55
2020-08-25T11:45:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
930
py
import sys switch_num = int(input()) switch_status = [0] + list(map(int, sys.stdin.readline().split())) student_numum = int(input()) student_info = [list(map(int, sys.stdin.readline().split())) for i in range(student_numum)] for info in student_info: if info[0] == 1: for i in range(1, switch_num//info[1] + 1): switch_status[i * info[1]] = int(not switch_status[i * info[1]]) else: switch_status[info[1]] = int(not switch_status[info[1]]) move = 1 while (info[1]-move) > 0 and (info[1]+move) <= switch_num and switch_status[info[1] - move] == switch_status[info[1] + move]: switch_status[info[1] - move] = int(not switch_status[info[1] - move]) switch_status[info[1] + move] = int(not switch_status[info[1] + move]) move += 1 for i in range(1, len(switch_status)): print(switch_status[i], end= ' ') if i%20 == 0: print()
[ "noelleland@naver.com" ]
noelleland@naver.com
9ce91c8561fffd158ba88da040dd06fd990376b3
8c0640716b86f759478b0b83e3973707d763b887
/lib/scan.py
1b58a1762041653d4e2fc7f72783d6ec309a4f22
[]
no_license
Kevin-sa/SSRF_ex
6583f84788a93763189b8f91e55ac2064018fb39
7bae64aeba95dd4a5d1aec5ece7209a4c80af0bd
refs/heads/master
2020-03-15T16:53:33.926289
2018-07-04T16:12:43
2018-07-04T16:12:43
132,245,489
7
1
null
null
null
null
UTF-8
Python
false
false
5,551
py
#encoding : utf-8 from lib.common import get_requests import time,requests, hashlib, threading,queue from lib.config import logging, out_put #scan open ports #22 port ssh-sevice, 80 port http-server, 445 port smtp-server, 3306 port-server, 6379 port redis-server, 7001 port weblogic-console, 8080 port tomcat\jobss-server, 11211 port memcache-server #try use conn_time to judge ''' class Scan(object): def __init__(self,target,parameter): self.target = target self.parameter = parameter self.ports = [22,80,445,3306,6379,7001,8080,11211] #self.ports = [22,80] self.open_port = [] #self.time_out = self._time_limit() def _time_limit(self): url = "{url}?{query}=ftp://127.0.0.1:80".format(url=self.target,query=self.parameter) r = requests.get(url) time_out = float(r.elapsed.microseconds) print(time_out) return time_out def _port_open(self): time_out = 66522.0 for port in self.ports: payload = "{url}?{query}=dict://127.0.0.1:{port}".format(url=self.target, query=self.parameter, port=port) print(payload) request_time = requests.get(payload).elapsed.microseconds print("port:{} time:{}".format(port, request_time)) if request_time <= time_out: self.open_port.append(port) return list(set(self.open_port)) ''' #use hash of content to judge class Scan(object): def __init__(self, target, parameter,ip='',queue=''): self.target = target self.parameter = parameter self.ports = [22, 80, 445, 3306, 6379, 7001, 8080, 11211] self.hash = hashlib.md5() self.ip = ip self.queue = queue #when the port is not exist,use dict protocol to get the hash of content def hash_limit(self): payload = "{url}?{query}=dict://127.0.0.1:{port}".format(url=self.target, query=self.parameter, port=0) limit_conn = get_requests(payload).text if limit_conn: self.hash.update(limit_conn.encode('utf-8')) return self.hash.hexdigest() else: return False #judge the open port,default is host def _open_port(self,ip=''): hash_judge = [] open_port = [] if ip: pass else: ip = '127.0.0.1' logging.info("Starting detect open ports in ip:{}.....".format(ip)) for port in self.ports: hash_values = {} payload = "{url}?{query}=dict://{ip}:{port}".format(url=self.target, query=self.parameter, ip=ip, port=port) #print(payload) port_conn = get_requests(payload).text if port_conn: self.hash.update(port_conn.encode('utf-8')) hash_values['port'] = port hash_values['hash'] = self.hash.hexdigest() hash_judge.append(hash_values) else: pass #print(hash_judge) hash_limit_value = self.hash_limit() if hash_limit_value: for i in hash_judge: if hash_limit_value != i['hash']: open_port.append(i['port']) else: for j in hash_judge: open_port.append(j['port']) return list(set(open_port)) def host_port(self): while True: if self.queue.empty(): break try: ip = self.queue.get_nowait() ip_port = self._open_port(ip=ip) if ip_port: out_put(self.target,'host_port.log',ip_port) logging.info("the {} found open port is: {}".format(self.ip, ip_port)) except requests.exceptions.ReadTimeout: pass except requests.exceptions.ConnectTimeout: pass except Exception as e: break def run(target,parameter,ip_c=''): threads_count = 20 threads = [] Queue = queue.Queue() open_port = Scan(target, parameter)._open_port() out_put(target, 'host_port.log', open_port) logging.info("127.0.0.1 host found open port is: {}".format(open_port)) if ip_c: logging.info("Starting to detct the other ip ....") for d in range(105,106): ip = '{0}.{1}'.format(ip_c, d) Queue.put(ip) for i in range(threads_count): t = threading.Thread(target=Scan(target, parameter, queue=Queue).host_port()) t.start() t.join() ''' threads.append(Scan(target, parameter, queue=Queue).host_port()) for t in threads: t.start() for t in threads: t.join() ''' #use file to get file content def file_reader(target,parameter): content = [] get_file = [] paths = ['/etc/rsyslog.conf','/etc/syslog.conf','/etc/passwd','/etc/shadow','/etc/group','/etc/anacrontab','/etc/networks','/etc/hosts'] logging.info("Use the protocol to get the contents of the file.....") for path in paths: payload = "{url}?{query}=file://{path}".format(url=target, query=parameter, path=path) file_content = get_requests(payload) if file_content: content.append(file_content.text.strip()) get_file.append(path) else: pass if content: logging.info("Save file content: {}".format(get_file)) out_put(target,'file_content.log',list(set(content)))
[ "kevinsa@gmail.com" ]
kevinsa@gmail.com
80e43533a78587cad0cea97fc52d873dd7b725b2
d51b719092f3baee00771785fda848f6a4f31c53
/cyber/api/views/DebateViewSet.py
dc8bb2647a0ff2c13316223a7d0ac9d77b998a27
[]
no_license
Ang98/cyberdemo
0bca22924e969c18925edfe97926357b09f06ad8
81041d9e263a87ae7c3dfdb6a0a7418021b7e86a
refs/heads/master
2023-07-31T07:30:25.558851
2020-05-05T03:54:04
2020-05-05T03:54:04
237,125,073
0
0
null
2021-09-22T18:48:09
2020-01-30T02:33:20
Python
UTF-8
Python
false
false
572
py
from django.shortcuts import render # CYBER from rest_framework import viewsets from rest_framework.permissions import IsAuthenticated from ..serializer.DebateSerializer import * from ..models.Debate import * class DebateViewSet(viewsets.ModelViewSet): serializer_class = DebateSerializer permission_classes = (IsAuthenticated,) def get_queryset(self): queryset = Debate.objects.all() usuario = self.request.user if usuario.is_administrador: return queryset return ['Usuario no es administrador']
[ "angelcayatopa98@gmail.com" ]
angelcayatopa98@gmail.com
bb7b405aa848fd021f45afb15843edddd21c69dd
c4cc9a7406ebf2e46535cd29080f302cf2f6c01d
/scanner.py
ff0b2f00a377539720a6b863681ce00eddce60c7
[ "MIT" ]
permissive
OscarEReyes/Modding-Tool
64660aa0348072ae97b01bab3828b65cd9e72645
2edcb6d3423f22b8720d5cb135043d72af31c44f
refs/heads/master
2021-01-17T14:17:11.181533
2016-12-20T00:45:34
2016-12-20T00:45:34
51,173,694
0
1
null
null
null
null
UTF-8
Python
false
false
3,291
py
from softwareModClasses import Feature from Categories import Categories line_tags = [ 'Name', 'Description', 'Unlock', 'NameGenerator', 'Popularity', 'TimeScale', 'Retention', 'Iterative' ] def scan(tree, c_combo_box, f_combo_box): """ * Parameter: tree (etree root element) * Parameter: c_combo_box (Qt combobox object) * Parameter: f_combo_box (Qt combobox object) * Look for 'Categories tag in tree, store it, and * If it is not None execute look_for_categories method * * Look for 'Features' tag in tree and store it * Execute look_for_features method """ categories = tree.find('Categories') if categories is not None: search_categories(categories, c_combo_box) features = tree.find('Features') search_features(features, f_combo_box) def search_categories(categories, combobox): """ * Parameter: categories (etree element -Tag- 'Categories) * Parameter: combobox (Qt Combobox object) * Create Categories object -Note- Pass opt parameter Scan as True * Iterate over category (etree element tag 'Category) in categories * Get name of category (attrib 'Name') * Execute add_category method for each category (Category Object) """ categories_object = Categories.add(categories.getparent(), combobox, True) for category in categories: name = category.attrib["Name"] categories_object.add_category(name, True) def search_features(features, combobox): """ * Parameter: features (etree element -Tag- 'Features') * Iterate over feature elements (etree elements) in features * Look for tag 'Name' in feature and store its text in var name * Create Feature Object for each feature * Execute look_for_dependencies method for each Feature Object """ for feature in features: name = feature.find('Name').text f = Feature.add(features, name, combobox, True) search_dep(feature, f) search_soft_categ(feature, f) def search_dep(feature, f): """ * Parameter: feature (etree Element -Tag- 'Feature') * Parameter: f (Feature object) * Iterate over feature's elements (etree elements) * Look for tag 'Dependency' in feature and store its text in var * Get element attribute 'Software' and store it in a var * Add dependency object to f """ for element in feature: if element.tag == 'Dependency': dependency = element.text software = element.attrib["Software"] f.scan_special_tag('f', software, dependency) def search_soft_categ(feature, f): """ * Parameter: feature(etree Element -Tag- 'Feature') * Parameter: f (Feature object) * Iterate over feature's elements (etree elements) * Look for tag 'Dependency' in feature and store its text in var * Get element attribute 'Software' and store it in a var * Add dependency object to f """ for attribute in feature: if attribute.tag == 'SoftwareCategory': unlock = attribute.text category = attribute.attrib["Category"] f.scan_software_category('sc', category, unlock)
[ "noreply@github.com" ]
OscarEReyes.noreply@github.com
9c2ffe8c7c3cb51ce4ce7379e0b0eda58bc2928a
fae9e054b1232b72ccc2a36d9f13184ed54fe06a
/PayController/wechatAppletOrderPay.py
58835f8c4883f7dfb16fa3b37e849b758d51978a
[]
no_license
Ronald122013/API_test
66f719f0c75c93b69dfe5f3ae7951838e93fd120
898b5afdcda7fb211bb58e922e82a6c20bb43299
refs/heads/master
2022-11-25T06:23:47.185645
2020-07-30T05:38:41
2020-07-30T05:38:41
283,679,438
1
0
null
null
null
null
UTF-8
Python
false
false
1,946
py
#小程序调用支付 #!usr/bin/env python # -*- coding:utf-8 -*- import logging logging.basicConfig(level=logging.DEBUG,format=' %(asctime)s - %(levelname)s- %(message)s') # logging. disable(logging.CRITICAL) # 禁用日志 logging.debug('>>>>>>Start of program<<<<<<') import unittest import json import requests from assertpy import assert_that from commonApp import getDomain as c from commonApp import getStatusCode as s domain = c.Get_Domain().Domain('156') class wechatAppletOrderPay(unittest.TestCase): def setUp(self): #self.url = domain + '/toBRegister' #self.headers = {"Content-Type":"application/json;charset=UTF-8"} print(">>>>>>BEGIN toBRegister TEST<<<<<<") def test_wechatAppletOrderPay(self): self.url = domain + '/toBRegister' self.headers = {"Content-Type":"application/json;charset=UTF-8"} with open('./PayController/wechatAppletOrderPay.json','r',encoding='utf-8') as f: data = json.load(f) self.form = data #print(data) #调试用 #开始发数据 r = requests.post(self.url,json = self.form,headers = self.headers) print(r.text) #打印返回参数 print('接口响应时间:',r.elapsed.total_seconds()) #打印接口响应时间 null = None #兼容 dic = eval(r.text) #str转化为dict code = dic["code"] #提取status里面的code值 s.getStatusCode(code) #打印code值 try: assert_that(code).is_equal_to(200) #当前值判断接口返回状态 except AssertionError as e: raise AssertionError(e) if __name__ == '__main__': #unittest.main() runTest = wechatAppletOrderPay() runTest.test_wechatAppletOrderPay() logging.debug('>>>>>>End of program<<<<<<')
[ "18529533960@163.com" ]
18529533960@163.com
5902145d39bd706e85af337bfb580ade6d6c4b63
990c11e2caed3b3f797bcc40e1e5f2ebf1da6d99
/9_Iterator_mode/coroutine_prac.py
d4eb481d8f52fcf1ebb50971bc7e99a92b71d71d
[]
no_license
KindleHsieh/OOP_book_practice
72c1cc0c8558ac6f3bf149b39a15ee0a7c13dd1f
a3c6db3f403be6943469c3eed40d868009ff5f96
refs/heads/main
2023-09-04T00:36:31.644596
2021-11-01T23:17:12
2021-11-01T23:17:12
407,589,515
0
0
null
null
null
null
UTF-8
Python
false
false
1,864
py
# -*- coding: utf-8 -*- # author: Kindle Hsieh time: 2021/10/21 def tally(): score = 0 while True: increase = yield score score += increase # Create teams. white_sox = tally() blue_jay = tally() # initial game. next(white_sox) next(blue_jay) # Add score. white_sox.send(1) blue_jay.send(3) max_point_team = tally() next(max_point_team) for i in white_sox, blue_jay: if i.send(0) > max_point_team.send(0): max_point_team = i print(max_point_team.__name__, max_point_team.send(0)) ''' coroutine.(協程) 建立後,要利用next()做初始化,第一次推動他。 之後只能使用send(val)將參數傳進去。 協程無法單獨取得函式內的參數,也無法print結果(例如這邊的score)。 如果有顯示接收他的結果,就要使用send()才能讓yield回傳。 ''' ################## # log Analyze. # ################## import re # search all rows and pass the row related with regex. def match_regex(filename, regex): with open(filename) as file: lines = file.readlines() for line in reversed(lines): match = re.match(regex, line) if match: regex = yield match.groups()[0] # Interactive with first def and suggest the right regex. def get_serials(filename): ERROR_RE = 'XFS ERROR (\[sd[a-z]\])' matcher = match_regex(filename, ERROR_RE) device = next(matcher) while True: print('-'*36) bus = matcher.send( f'(sd \S+) {re.escape(device)}' ) print(f'bus: {bus}') serial = matcher.send( f'{bus} \(SERIAL=([^)]*)\)' ) print(f'serial: {serial}') yield serial device = matcher.send(ERROR_RE) for serial_number in get_serials('/Users/kindlemac/PycharmProjects/OOP_book_practice/9_Iterator_mode/EXAMPLE_LOG.log'): print(serial_number)
[ "mom1puppy@gmail.com" ]
mom1puppy@gmail.com
67f96bfcb80546fa39f2adb18c8ce52b22aee45a
7673aefcb43950a281085501dccc2a25e6fbda3a
/websocket_example.py
8cce9c67a4ab9686936214b27e0d085e2cc39758
[]
no_license
xikouxi/okex-hc
31a6d63a974bdac81b63f77946cf100a1b0dedeb
e435652ffa97ae607eaf60f1b5d74371d2d69872
refs/heads/master
2023-04-16T13:16:50.583924
2021-04-25T10:23:19
2021-04-25T10:23:19
361,396,425
0
0
null
null
null
null
UTF-8
Python
false
false
18,261
py
import asyncio import websockets import json import requests import dateutil.parser as dp import hmac import base64 import zlib import datetime def get_timestamp(): now = datetime.datetime.now() t = now.isoformat("T", "milliseconds") return t + "Z" def get_server_time(): url = "https://www.okex.win/api/general/v3/time" response = requests.get(url) if response.status_code == 200: return response.json()['iso'] else: return "" def server_timestamp(): server_time = get_server_time() parsed_t = dp.parse(server_time) timestamp = parsed_t.timestamp() return timestamp def login_params(timestamp, api_key, passphrase, secret_key): message = timestamp + 'GET' + '/users/self/verify' mac = hmac.new(bytes(secret_key, encoding='utf8'), bytes(message, encoding='utf-8'), digestmod='sha256') d = mac.digest() sign = base64.b64encode(d) login_param = {"op": "login", "args": [api_key, passphrase, timestamp, sign.decode("utf-8")]} login_str = json.dumps(login_param) return login_str def inflate(data): decompress = zlib.decompressobj( -zlib.MAX_WBITS # see above ) inflated = decompress.decompress(data) inflated += decompress.flush() return inflated def partial(res, timestamp): data_obj = res['data'][0] bids = data_obj['bids'] asks = data_obj['asks'] instrument_id = data_obj['instrument_id'] # print(timestamp + '全量数据bids为:' + str(bids)) # print('档数为:' + str(len(bids))) # print(timestamp + '全量数据asks为:' + str(asks)) # print('档数为:' + str(len(asks))) return bids, asks, instrument_id def update_bids(res, bids_p, timestamp): # 获取增量bids数据 bids_u = res['data'][0]['bids'] print(timestamp + '增量数据bids为:' + str(bids_u)) # print('档数为:' + str(len(bids_u))) # bids合并 for i in bids_u: bid_price = i[0] for j in bids_p: if bid_price == j[0]: if i[1] == '0': bids_p.remove(j) break else: del j[1] j.insert(1, i[1]) break else: if i[1] != "0": bids_p.append(i) else: bids_p.sort(key=lambda price: sort_num(price[0]), reverse=True) # print(timestamp + '合并后的bids为:' + str(bids_p) + ',档数为:' + str(len(bids_p))) return bids_p def update_asks(res, asks_p, timestamp): # 获取增量asks数据 asks_u = res['data'][0]['asks'] print(timestamp + '增量数据asks为:' + str(asks_u)) # print('档数为:' + str(len(asks_u))) # asks合并 for i in asks_u: ask_price = i[0] for j in asks_p: if ask_price == j[0]: if i[1] == '0': asks_p.remove(j) break else: del j[1] j.insert(1, i[1]) break else: if i[1] != "0": asks_p.append(i) else: asks_p.sort(key=lambda price: sort_num(price[0])) # print(timestamp + '合并后的asks为:' + str(asks_p) + ',档数为:' + str(len(asks_p))) return asks_p def sort_num(n): if n.isdigit(): return int(n) else: return float(n) def check(bids, asks): # 获取bid档str bids_l = [] bid_l = [] count_bid = 1 while count_bid <= 25: if count_bid > len(bids): break bids_l.append(bids[count_bid-1]) count_bid += 1 for j in bids_l: str_bid = ':'.join(j[0 : 2]) bid_l.append(str_bid) # 获取ask档str asks_l = [] ask_l = [] count_ask = 1 while count_ask <= 25: if count_ask > len(asks): break asks_l.append(asks[count_ask-1]) count_ask += 1 for k in asks_l: str_ask = ':'.join(k[0 : 2]) ask_l.append(str_ask) # 拼接str num = '' if len(bid_l) == len(ask_l): for m in range(len(bid_l)): num += bid_l[m] + ':' + ask_l[m] + ':' elif len(bid_l) > len(ask_l): # bid档比ask档多 for n in range(len(ask_l)): num += bid_l[n] + ':' + ask_l[n] + ':' for l in range(len(ask_l), len(bid_l)): num += bid_l[l] + ':' elif len(bid_l) < len(ask_l): # ask档比bid档多 for n in range(len(bid_l)): num += bid_l[n] + ':' + ask_l[n] + ':' for l in range(len(bid_l), len(ask_l)): num += ask_l[l] + ':' new_num = num[:-1] int_checksum = zlib.crc32(new_num.encode()) fina = change(int_checksum) return fina def change(num_old): num = pow(2, 31) - 1 if num_old > num: out = num_old - num * 2 - 2 else: out = num_old return out # subscribe channels un_need login async def subscribe_without_login(url, channels): l = [] while True: try: async with websockets.connect(url) as ws: sub_param = {"op": "subscribe", "args": channels} sub_str = json.dumps(sub_param) await ws.send(sub_str) while True: try: res_b = await asyncio.wait_for(ws.recv(), timeout=25) except (asyncio.TimeoutError, websockets.exceptions.ConnectionClosed) as e: try: await ws.send('ping') res_b = await ws.recv() timestamp = get_timestamp() res = inflate(res_b).decode('utf-8') print(timestamp + res) continue except Exception as e: timestamp = get_timestamp() print(timestamp + "正在重连……") print(e) break timestamp = get_timestamp() res = inflate(res_b).decode('utf-8') print(timestamp + res) res = eval(res) if 'event' in res: continue for i in res: if 'depth' in res[i] and 'depth5' not in res[i]: # 订阅频道是深度频道 if res['action'] == 'partial': for m in l: if res['data'][0]['instrument_id'] == m['instrument_id']: l.remove(m) # 获取首次全量深度数据 bids_p, asks_p, instrument_id = partial(res, timestamp) d = {} d['instrument_id'] = instrument_id d['bids_p'] = bids_p d['asks_p'] = asks_p l.append(d) # 校验checksum checksum = res['data'][0]['checksum'] # print(timestamp + '推送数据的checksum为:' + str(checksum)) check_num = check(bids_p, asks_p) # print(timestamp + '校验后的checksum为:' + str(check_num)) if check_num == checksum: print("校验结果为:True") else: print("校验结果为:False,正在重新订阅……") # 取消订阅 await unsubscribe_without_login(url, channels, timestamp) # 发送订阅 async with websockets.connect(url) as ws: sub_param = {"op": "subscribe", "args": channels} sub_str = json.dumps(sub_param) await ws.send(sub_str) timestamp = get_timestamp() print(timestamp + f"send: {sub_str}") elif res['action'] == 'update': for j in l: if res['data'][0]['instrument_id'] == j['instrument_id']: # 获取全量数据 bids_p = j['bids_p'] asks_p = j['asks_p'] # 获取合并后数据 bids_p = update_bids(res, bids_p, timestamp) asks_p = update_asks(res, asks_p, timestamp) # 校验checksum checksum = res['data'][0]['checksum'] # print(timestamp + '推送数据的checksum为:' + str(checksum)) check_num = check(bids_p, asks_p) # print(timestamp + '校验后的checksum为:' + str(check_num)) if check_num == checksum: print("校验结果为:True") else: print("校验结果为:False,正在重新订阅……") # 取消订阅 await unsubscribe_without_login(url, channels, timestamp) # 发送订阅 async with websockets.connect(url) as ws: sub_param = {"op": "subscribe", "args": channels} sub_str = json.dumps(sub_param) await ws.send(sub_str) timestamp = get_timestamp() print(timestamp + f"send: {sub_str}") except Exception as e: timestamp = get_timestamp() print(timestamp + "连接断开,正在重连……") print(e) continue # subscribe channels need login async def subscribe(url, api_key, passphrase, secret_key, channels): while True: try: async with websockets.connect(url) as ws: # login timestamp = str(server_timestamp()) login_str = login_params(timestamp, api_key, passphrase, secret_key) await ws.send(login_str) # time = get_timestamp() # print(time + f"send: {login_str}") res_b = await ws.recv() res = inflate(res_b).decode('utf-8') time = get_timestamp() print(time + res) # subscribe sub_param = {"op": "subscribe", "args": channels} sub_str = json.dumps(sub_param) await ws.send(sub_str) time = get_timestamp() print(time + f"send: {sub_str}") while True: try: res_b = await asyncio.wait_for(ws.recv(), timeout=25) except (asyncio.TimeoutError, websockets.exceptions.ConnectionClosed) as e: try: await ws.send('ping') res_b = await ws.recv() time = get_timestamp() res = inflate(res_b).decode('utf-8') print(time + res) continue except Exception as e: time = get_timestamp() print(time + "正在重连……") print(e) break time = get_timestamp() res = inflate(res_b).decode('utf-8') print(time + res) except Exception as e: time = get_timestamp() print(time + "连接断开,正在重连……") print(e) continue # unsubscribe channels async def unsubscribe(url, api_key, passphrase, secret_key, channels): async with websockets.connect(url) as ws: # login timestamp = str(server_timestamp()) login_str = login_params(str(timestamp), api_key, passphrase, secret_key) await ws.send(login_str) # time = get_timestamp() # print(time + f"send: {login_str}") res_1 = await ws.recv() res = inflate(res_1).decode('utf-8') time = get_timestamp() print(time + res) # unsubscribe sub_param = {"op": "unsubscribe", "args": channels} sub_str = json.dumps(sub_param) await ws.send(sub_str) time = get_timestamp() print(time + f"send: {sub_str}") res_1 = await ws.recv() res = inflate(res_1).decode('utf-8') time = get_timestamp() print(time + res) # unsubscribe channels async def unsubscribe_without_login(url, channels, timestamp): async with websockets.connect(url) as ws: # unsubscribe sub_param = {"op": "unsubscribe", "args": channels} sub_str = json.dumps(sub_param) await ws.send(sub_str) print(timestamp + f"send: {sub_str}") res_1 = await ws.recv() res = inflate(res_1).decode('utf-8') print(timestamp + f"recv: {res}") api_key = "" secret_key = "" passphrase = "" url = 'wss://real.okex.com:8443/ws/v3' # url = 'wss://real.okex.com:8443/ws/v3?brokerId=9999' # 现货 # 用户币币账户频道 channels = ["spot/account:USDT"] # 用户杠杆账户频道 # channels = ["spot/margin_account:BTC-USDT"] # 用户委托策略频道 # channels = ["spot/order_algo:BTC-USDT"] # 用户交易频道 # channels = ["spot/order:BTC-USDT"] # 公共-Ticker频道 # channels = ["spot/ticker:BTC-USDT"] # 公共-K线频道 # channels = ["spot/candle60s:BTC-USDT"] # 公共-交易频道 # channels = ["spot/trade:BTC-USDT"] # 公共-5档深度频道 # channels = ["spot/depth5:BTC-USDT"] # 公共-400档深度频道 # channels = ["spot/depth:BTC-USDT"] # 公共-400档增量数据频道 # channels = ["spot/depth_l2_tbt:BTC-USDT"] # 交割合约 # 用户持仓频道 # channels = ["futures/position:BTC-USD-200327"] # 用户账户频道 # channels = ["futures/account:BTC"] # 用户交易频道 # channels = ["futures/order:BTC-USD-200626"] # 用户委托策略频道 # channels = ["futures/order_algo:BTC-USD-200327"] # 公共-全量合约信息频道 # channels = ["futures/instruments"] # 公共-Ticker频道 # channels = ["futures/ticker:BTC-USD-200626"] # 公共-K线频道 # channels = ["futures/candle60s:BTC-USD-200626"] # 公共-交易频道 # channels = ["futures/trade:BTC-USD-200117"] # 公共-预估交割价频道 # channels = ["futures/estimated_price:BTC-USD-200228"] # 公共-限价频道 # channels = ["futures/price_range:BTC-USD-200327"] # 公共-5档深度频道 # channels = ["futures/depth5:BTC-USD-200327"] # 公共-400档深度频道 # channels = ["futures/depth:BTC-USD-200327"] # 公共-400档增量数据频道 # channels = ["futures/depth_l2_tbt:BTC-USD-200327"] # 公共-标记价格频道 # channels = ["futures/mark_price:BTC-USD-200327"] # 永续合约 # 用户持仓频道 # channels = ["swap/position:BTC-USD-SWAP"] # 用户账户频道 # channels = ["swap/account:BTC-USD-SWAP"] # 用户交易频道 # channels = ["swap/order:BTC-USD-SWAP"] # 用户委托策略频道 # channels = ["swap/order_algo:BTC-USD-SWAP"] # 公共-Ticker频道 # channels = ["swap/ticker:BTC-USD-SWAP"] # 公共-K线频道 # channels = ["swap/candle60s:BTC-USD-SWAP"] # 公共-交易频道 # channels = ["swap/trade:BTC-USD-SWAP"] # 公共-资金费率频道 # channels = ["swap/funding_rate:BTC-USD-SWAP"] # 公共-限价频道 # channels = ["swap/price_range:BTC-USD-SWAP"] # 公共-5档深度频道 # channels = ["swap/depth5:BTC-USD-SWAP"] # 公共-400档深度频道 # channels = ["swap/depth:BTC-USDT-SWAP"] # 公共-400档增量数据频道 # channels = ["swap/depth_l2_tbt:BTC-USD-SWAP"] # 公共-标记价格频道 # channels = ["swap/mark_price:BTC-USD-SWAP"] # 期权合约 # 用户持仓频道 # channels = ["option/position:BTC-USD"] # 用户账户频道 # channels = ["option/account:BTC-USD"] # 用户交易频道 # channels = ["option/order:BTC-USD"] # 公共-合约信息频道 # channels = ["option/instruments:BTC-USD"] # 公共-期权详细定价频道 # channels = ["option/summary:BTC-USD"] # 公共-K线频道 # channels = ["option/candle60s:BTC-USD-200327-11000-C"] # 公共-最新成交频道 # channels = ["option/trade:BTC-USD-200327-11000-C"] # 公共-Ticker频道 # channels = ["option/ticker:BTC-USD-200327-11000-C"] # 公共-5档深度频道 # channels = ["option/depth5:BTC-USD-200327-11000-C"] # 公共-400档深度频道 # channels = ["option/depth:BTC-USD-200327-11000-C"] # 公共-400档增量数据频道 # channels = ["option/depth_l2_tbt:BTC-USD-200327-11000-C"] # ws公共指数频道 # 指数行情 # channels = ["index/ticker:BTC-USD"] # 指数K线 # channels = ["index/candle60s:BTC-USD"] # WebSocket-获取系统升级状态 # channels = ["system/status"] loop = asyncio.get_event_loop() # 公共数据 不需要登录(行情,K线,交易数据,资金费率,限价范围,深度数据,标记价格等频道) loop.run_until_complete(subscribe_without_login(url, channels)) # 个人数据 需要登录(用户账户,用户交易,用户持仓等频道) # loop.run_until_complete(subscribe(url, api_key, passphrase, secret_key, channels)) loop.close()
[ "wanghaohao@hkincus.com" ]
wanghaohao@hkincus.com
be3437aa9fa367b840821d66be4aed2a3752a683
c77704211d7c0534d760e0245f3b27c1a6b34153
/Scripts/taxaID.py
98fb28cd500b21cb7a3b5bf2dc0488ae5b440ace
[ "Apache-2.0" ]
permissive
Junyu25/PCAS
400ca22828d64a50e8705c363b6aba41214c9842
436c6405563a1cd486ab06d3a13a29dc07235dd3
refs/heads/master
2020-12-23T11:29:04.601293
2020-09-25T11:03:08
2020-09-25T11:03:08
237,137,039
0
0
null
null
null
null
UTF-8
Python
false
false
627
py
# -*- coding: utf-8 -*- """ Created on Thu Sep 19 15:23:47 2019 #Extract the ID and taxa information from the original full align fasta file. #Usage: #python taxaID.py file.fasta #Input file: full align fasta file e.g. SILVA_132_LSURef_tax_silva_trunc.fasta #Output file: file.fasta.csv which contains the ID and taxa columns @author: Junyu """ import sys import pandas as pd from Bio import SeqIO file = sys.argv[1] print(file) f = pd.DataFrame() seqdict = {} for seq in SeqIO.parse(file, "fasta"): f = f.append({'ID':seq.id, "taxa":seq.description}, ignore_index=True) f.to_csv(file +".csv", encoding = "utf-8")
[ "chenjunyu2016@email.szu.edu.cn" ]
chenjunyu2016@email.szu.edu.cn
71479ef289bc7903e1075aa7f29f77eaf6cb43c8
0a691220c5e2c2a9b99d20b2ac62baa1a1f95ca3
/djangoimposter/users/migrations/0002_auto_20201207_2230.py
14cd67ebb2b2aee631a51bbacc92ec18d56df661
[]
no_license
beasyx0/djangoimposter
a1fc945e09148a8cf2ae41d3f96f4c4565a5b94d
b7e06dfe972306179d42b6595e64a461979d32b1
refs/heads/main
2023-02-27T10:49:48.087627
2021-02-08T18:54:27
2021-02-08T18:54:27
334,469,294
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
# Generated by Django 3.0.11 on 2020-12-08 03:30 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AlterField( model_name='user', name='name', field=models.CharField(blank=True, max_length=255, verbose_name='Full Name'), ), ]
[ "b_easyx@protonmail.com" ]
b_easyx@protonmail.com
68135f8b97c4ebc7b5ebc08b53c005435de072a0
ff68cb9fac6f942c571013cedd3cbc45bf79e081
/Mooc-Exercise/HannoTower.py
ba672729dd87018726edd3e4b5e0357f413bf80c
[]
no_license
MiniFullC/PythonCode
1459f7251326938c4c51f322980e375cb9aed4d5
e17d8fb399748adee0cc786d87142a6f33feaa74
refs/heads/master
2020-03-21T15:44:29.208565
2018-07-23T06:32:17
2018-07-23T06:32:17
138,729,885
4
0
null
null
null
null
UTF-8
Python
false
false
319
py
count = 0 def hanoi(n, src, dst, mid): global count if n == 1: print("{}:{}->{}".format(1, src,dst)) count += 1 else: hanoi(n-1, src, mid, dst) print("{}:{}->{}".format(n, src, dst)) count += 1 hanoi(n-1, mid, dst, src) hanoi(3, "A", "C", "B") print(count)
[ "1414273510@qq.com" ]
1414273510@qq.com
d7bef716820e0bde57cdc9f38137cd3b8605c116
93527a65b070e6ede1f482edd707ff86547ff67f
/URIonlinejudge/1036 - Bhaskara's Formula.py
84722cb22aae01097a1dcc991ba054a3414b0096
[ "MIT" ]
permissive
MahmudX/Algorithms
9f32d26aaf3a469bafc9bb192aeb6e30d99643d7
df498929b5d3fc0f0d558b3369c2aa9804c292f1
refs/heads/master
2021-03-13T23:58:52.275060
2020-03-28T22:02:19
2020-03-28T22:02:19
246,722,181
0
0
null
null
null
null
UTF-8
Python
false
false
328
py
import math as math inp = list(map(float, input().split())) A = inp[0] B = inp[1] C = inp[2] D = ((B**2) - 4 * A*C) if A == 0 or D <= 0: print("Impossivel calcular") else: D = math.sqrt(D) E = (2 * A) R1 = (-B + D) / E R2 = (-B - D) / E print("R1 = %.5f" % R1) print("R2 = %.5f" % R2)
[ "noreply@github.com" ]
MahmudX.noreply@github.com
ccfa1b8dd0406647d78867773c7b33c3b179aee3
bc178ffc6636d543002032e8e47590de85b4ddb4
/app/models.py
15f3a0e95b2d3152735c25d32f1e85b9629969ac
[]
no_license
Dave0921/logsBackend
df2593c28fecd48aa6359c7a145b44b507e7a1e4
2117da2ef61978ebca6a50363a5db5aa93237ed9
refs/heads/master
2022-04-19T02:13:52.042892
2020-04-14T05:23:51
2020-04-14T05:23:51
255,504,961
0
0
null
null
null
null
UTF-8
Python
false
false
1,060
py
from . import db ### Models class Action(db.Model): __tablename__ = 'action' id = db.Column(db.Integer, primary_key=True) logType = db.Column(db.String(20), nullable=False) userId = db.Column(db.Integer, db.ForeignKey("user.id"), nullable=False) user = db.relationship("User", backref=db.backref("user", uselist=False)) sessionId = db.Column(db.String(100), nullable=False) properties = db.Column(db.JSON, nullable=False) date = db.Column(db.DateTime, nullable=False) def __init__(self, logType: str, userId: int, sessionId: int, properties: str, date: str): self.logType = logType self.userId = userId self.sessionId = sessionId self.properties = properties self.date = date class User(db.Model): # TODO: Add password, email, names, and other user-related attributes __tablename__ = 'user' id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(100), nullable=False) def __init__(self, username: str): self.username = username
[ "sdave0921@gmail.com" ]
sdave0921@gmail.com
c4d54fb98b26af71e58379df29a737a65da6cdca
1834fe8dd2636d4fab7c162300399229d7c6e7db
/fsplit/tar.py
0c786d5e2ada823411b0d8c1799227e3d36f042d
[ "MIT" ]
permissive
leosartaj/fsplit
780acdfbaf9df657e504bfec5a9f10f2b9e59d54
c2a4c09153c10550f13f8bf0fc3db20c9d7afb0b
refs/heads/master
2022-10-21T07:09:38.436902
2022-08-25T11:02:13
2022-08-25T11:02:13
28,518,946
1
4
MIT
2022-10-15T20:29:21
2014-12-26T19:10:37
Python
UTF-8
Python
false
false
2,118
py
#!/usr/bin/env python2 ## # fsplit # https://github.com/leosartaj/fsplit.git # # Copyright (c) 2014 Sartaj Singh # Licensed under the MIT license. ## """ Tar related functionality """ import tarfile, os import oswrapper as osw import exce def isTar(fName): """ checks whether a file is a tarfile or not """ return tarfile.is_tarfile(fName) def createTar(fName, dest=None): """ Converts a file into tar """ basename, dirname = osw.basename(fName), osw.dirname(fName) if not osw.fileExists(basename, dirname): raise OSError('file \'%s\' does not exist' %(fName)) if not dest: dest = osw.getpath(dirname, '') dest = osw.getpath(dest, basename + '.tar.gz') with tarfile.open(dest, 'w:gz') as tar: tar.add(fName, arcname=basename) def createTarAll(dire=osw.pDir(), dest=None): """ Creates tar of all the files in a directory removes the files """ if not osw.dirExists(dire): raise OSError('directory \'%s\' does not exist' %(dire)) for file in os.listdir(dire): path = osw.getpath(dire, file) createTar(path, dest) os.remove(path) def extractTar(tarname, dest=None): """ Extracts a tarfile to the destination """ basename, dirname = osw.basename(tarname), osw.dirname(tarname) if not osw.fileExists(basename, dirname): raise OSError('file \'%s\' does not exist' %(tarname)) if not isTar(tarname): raise exce.NotTarError("Not a valid tarfile \'%s\'" %(tarname)) if not dest: dest = osw.getpath(dirname, '') with tarfile.open(tarname, 'r|gz') as tar: tar.extractall(dest) def extractTarAll(dire=osw.pDir(), dest=None): """ Extracts all tarfiles to the destination removes the tarfiles """ status = False if not osw.dirExists(dire): raise OSError('directory \'%s\' does not exist' %(dire)) for file in os.listdir(dire): path = osw.getpath(dire, file) if isTar(path): status = True extractTar(path, dest) os.remove(path) return status
[ "singhsartaj94@gmail.com" ]
singhsartaj94@gmail.com
a8f097242b7e1cefbd268bbfd9ecabca3d892e23
ccca5cf1e544cd30eaabe54d3a53b875538f873e
/rob_onboarding/stores/__init__.py
310ab6a6616036e2ec38e0b558514bca34673151
[]
no_license
rh-glob/rob_onboarding
4b4edcbd5acabf9984f5c958fabf1942c21013da
78a7a91f5686288227bf542d757e4a3d8aebcfae
refs/heads/master
2020-08-30T22:16:44.900882
2019-11-05T16:45:18
2019-11-05T16:45:18
218,504,825
0
0
null
null
null
null
UTF-8
Python
false
false
275
py
from rob_onboarding.stores.order_event_store import OrderEventStore # noqa from rob_onboarding.stores.order_store import OrderStore # noqa from rob_onboarding.stores.pizza_store import PizzaStore # noqa from rob_onboarding.stores.topping_store import ToppingStore # noqa
[ "rob.hand@globality.com" ]
rob.hand@globality.com
74d686d79d4895d92e74380c3d87714c7ee5db10
aa773f14572b99c1da25bd02d25308314d401aee
/coincap_ticker_specific.py
b8aa4a054f0be2916d009b2f5d9f8576585bbdde
[]
no_license
mrzacsmith/coinmarketcap
b99094a892c2450d50141a2f3f02a570a83d0cca
59dda6d9dda350c14de3c01e97c76edffa99aa94
refs/heads/master
2020-04-08T20:54:36.009459
2018-11-30T00:27:13
2018-11-30T00:27:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,381
py
import json import requests convert = 'USD' listings_url = 'https://api.coinmarketcap.com/v2/listings/' url_end = '?structure=array&convert=' + convert request = requests.get(listings_url) results = request.json() # print(json.dumps(results, sort_keys=True, indent=4)) data = results['data'] ticker_url_pairs = {} for currency in data: symbol = currency['symbol'] url = currency['id'] ticker_url_pairs[symbol] = url # print(ticker_url_pairs) while True: print choice = input("Enter the ticker symbol of a cryptocurrency: ") choice = choice.upper() print(choice) ticker_specific_url = 'https://api.coinmarketcap.com/v2/ticker/' + str(ticker_url_pairs[choice]) + '/' + url_end request = requests.get(ticker_specific_url) results = request.json() # print(json.dumps(results, sort_keys=True, indent=4)) currency = results['data'][0] rank = currency['rank'] name = currency['name'] symbol = currency['symbol'] circulating_supply = int(currency['circulating_supply']) total_supply = int(currency['total_supply']) quotes = currency['quotes'][convert] market_cap = int(quotes['market_cap']) hour_change = quotes['percent_change_1h'] day_change = quotes['percent_change_24h'] week_change = quotes['percent_change_7d'] price = quotes['price'] volume = quotes['volume_24h'] volume_string = '{:,}'.format(volume) market_cap_string = '{:,}'.format(market_cap) circulating_supply_string = '{:,}'.format(circulating_supply) total_supply_string = '{:,}'.format(total_supply) print print(str(rank) + ': ' + name + ' (' + symbol + ')' ) print('Market cap: \t\t$' + market_cap_string) print('Price: \t\t\t$' + str(price)) print('24h Volume: \t\t$' + volume_string) print('Hour change: \t\t' + str(hour_change) + '%') print('Day change: \t\t' + str(day_change) + '%') print('Week change: \t\t' + str(week_change) + '%') print('Total supply: \t\t' + total_supply_string) print('Circulating supply: \t' + circulating_supply_string) print('Percentage of coins in circulation: ' + str(float(circulating_supply / total_supply * 100))) print print('~~~~~~~~~~~~~~~~~~~~~~~~~~') choice = input('Run again? (y/n) ') if choice == 'n': break
[ "zrs3141592@gmail.com" ]
zrs3141592@gmail.com
e301f382000c5f9365d80c0fbe4735d1bb96b5ea
7ced16cc717dce6f7356499c4e160e56c735e111
/code/src/add_method.py
b7fcf2f45ae437036a5763499979e4d710e255dd
[]
no_license
Sofiaxue/Chinese_electronic_medical_record_NER
6d963098e7ca9e1fcff9862305eedd996fee090e
cdb8a389b15e59e937bd3dc9e086883ee751602a
refs/heads/master
2021-10-08T14:21:00.904835
2018-12-13T06:12:17
2018-12-13T06:12:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,288
py
# coding:utf-8 import sys import os import codecs import imp #datadir = "./data" def ReadFile(file): f = open(file,'r') lines = f.readlines() f.close() return [line.rstrip('\r\n') for line in lines] def ReadFileUTF8(file): f = codecs.open(file,'r', 'utf8') lines = f.readlines() f.close() return [line.rstrip() for line in lines] def SaveFeatures(features, file, linetag="\n"): imp.reload(sys) # sys.setdefaultencoding('utf8') f = open(file, "w") for [token,tag] in features: f.write(token + " " + tag) f.write(linetag) f.flush() f.close() def AddTrain(features, file, linetag="\n"): imp.reload(sys) #sys.setdefaultencoding('utf8') f = open(file, "a") for [token,tag2] in features: f.write(token + " " + tag2) f.write(linetag) f.flush() f.close() def AddTest(features, file, linetag="\n"): imp.reload(sys) #sys.setdefaultencoding('utf8') f = open(file, "w") for token in features: f.write(token) f.write(linetag) f.flush() f.close() """if __name__ == '__main__': lines = ReadFileUTF8(datadir+'/病史特点/病史特点-1.txtoriginal.txt'); for line in lines: print(line) """
[ "17633700633@163.com" ]
17633700633@163.com
f61a39d8625dcea53b66e2920dc1e1861875ce5f
309d17b81cea038713ba67bee72a41d2df4d6869
/Python/Python A.prasert/args.py
ec3d35542045871f9be09f04a40f8b53c06d08bc
[]
no_license
Bongkot-Kladklaen/Programming_tutorial_code
ac07e39da2bce396e670611884436b360536cdc5
cda7508c15c3e3d179c64b9aac163b6173ef3519
refs/heads/master
2023-06-20T13:14:17.077809
2021-07-18T04:41:04
2021-07-18T04:41:04
387,081,622
0
0
null
null
null
null
UTF-8
Python
false
false
313
py
# print(3,5,10) # print(3,10) # print(2, 'two',1) def avg(*args): total = 0 for i in args: total += i return total / len(args) def print_bullet(*items, bullet="\u2022"): for e in items: print("{} {}".format(bullet, e)) # print(avg(2,3,5,6)) print_bullet('lily','rose','jasmine')
[ "bongkot.klad@gmail.com" ]
bongkot.klad@gmail.com
35e94527390de65d607e55d930d377b659e81384
9cc41b6848e1bb7d3a62c3d4775f2b7512ef29c4
/DjangoPractical/chapter8/bookmark/models.py
227d51e407b304d58a495aff4c9c5c0f1bddf96a
[]
no_license
Hyeon-Goo/python-web-programming-practice-part
5b49ef2ebd1804243ab06ca27322997016823778
84c1d25cbc727a427266e44c7ea1487ab48b61a0
refs/heads/master
2023-04-26T01:16:10.839256
2021-05-14T05:06:58
2021-05-14T05:06:58
360,438,286
0
0
null
2021-05-10T12:23:42
2021-04-22T07:58:37
Python
UTF-8
Python
false
false
250
py
from django.db import models # Create your models here. class Bookmark(models.Model): title = models.CharField('TITLE', max_length=100, blank=True) url = models.URLField('URL', unique=True) def __str__(self): return self.title
[ "wizardhk@naver.com" ]
wizardhk@naver.com
0cff46c8ae1951bd02beb0ad049bd94fca416dce
d06eac41b0920d1c50cacd8e99513a4b233ebc68
/cap8/ex175_recursive_decimal_to_binary.py
fcd3cfa4e73e14a7b523be4d4efca0b01b90fe5a
[]
no_license
RobRoger97/test_tomorrowdevs
81cff72e4e7aafafa32a3de8b84868add3946d58
2691174740fe7c647396c536c472db608605b727
refs/heads/main
2023-01-13T23:44:40.964483
2020-11-15T20:05:34
2020-11-15T20:05:34
304,426,984
0
0
null
null
null
null
UTF-8
Python
false
false
629
py
#define a recursive function to convert a non-negative #integer entered by the user from decimal to binary. def decimal_to_binary(lis,n): if n==1: return 1 elif n==0: return 0 else: c=n%2 q=n//2 lis=str(c) return lis + str(decimal_to_binary(lis,q)) #define the main function def main(): #read a non-negative decimal number from the user line = int(input("Enter a non-negative decimal number: ")) if line<0: print("That's not a non-negative decimal number!") else: print(decimal_to_binary('',line)[::-1]) #call the main function main()
[ "RobertaRuggiero_97@hotmail.it" ]
RobertaRuggiero_97@hotmail.it
2732c7bbb0a9870594da2add13048f64309ad5c0
940d7b93fb27e8eead9b6e52bc5c7444666744dd
/python/src/Lib/test/test_transformer.py
909cda51837cad3bbf574a62593bb8211bb6c47d
[ "Apache-2.0", "GPL-1.0-or-later", "LicenseRef-scancode-other-copyleft", "Python-2.0", "LicenseRef-scancode-free-unknown", "LicenseRef-scancode-python-cwi" ]
permissive
pilotx45/sl4a
d446531d310cc17d93f24aab7271a0813e8f628d
150e3e46b5103a9b9a391034ef3fbc5bd5160d0f
refs/heads/master
2022-03-24T19:48:30.340479
2022-03-08T16:23:58
2022-03-08T16:23:58
277,016,574
1
0
Apache-2.0
2022-03-08T16:23:59
2020-07-04T01:25:36
null
UTF-8
Python
false
false
1,028
py
import unittest from test import test_support from compiler import transformer, ast from compiler import compile class Tests(unittest.TestCase): def testMultipleLHS(self): """ Test multiple targets on the left hand side. """ snippets = ['a, b = 1, 2', '(a, b) = 1, 2', '((a, b), c) = (1, 2), 3'] for s in snippets: a = transformer.parse(s) assert isinstance(a, ast.Module) child1 = a.getChildNodes()[0] assert isinstance(child1, ast.Stmt) child2 = child1.getChildNodes()[0] assert isinstance(child2, ast.Assign) # This actually tests the compiler, but it's a way to assure the ast # is correct c = compile(s, '<string>', 'single') vals = {} exec c in vals assert vals['a'] == 1 assert vals['b'] == 2 def test_main(): test_support.run_unittest(Tests) if __name__ == "__main__": test_main()
[ "damonkohler@gmail.com" ]
damonkohler@gmail.com
7180a6535820ae9ce9bfd769a1e6a1813a6dc687
6e22c9bc6dd2bb442345a1c6759249fc3211322b
/venv/lib/python3.8/site-packages/django/core/management/commands/inspectdb.py
4fdcf74a72de1b4733c36b48ec765e3a3d63afdd
[]
no_license
Sankalpa830/NHPE
b4ba283f602b15a2ae53afaeb06ed11354879f76
ac2615f218d35bd0d8a24b06abb37ef77d321a72
refs/heads/main
2023-07-14T20:58:14.639187
2021-09-01T08:03:27
2021-09-01T08:03:27
401,979,352
0
0
null
null
null
null
UTF-8
Python
false
false
13,985
py
import keyword import re from django.core.management.base import BaseCommand, CommandError from django.db import DEFAULT_DB_ALIAS, connections from django.db.models.constants import LOOKUP_SEP class Command(BaseCommand): help = "Introspects the database tables in the given database and outputs a Django model module." requires_system_checks = False stealth_options = ('table_name_filter',) db_module = 'django.db' def add_arguments(self, parser): parser.add_argument( 'table', nargs='*', type=str, help='Selects what tables or views should be introspected.', ) parser.add_argument( '--database', default=DEFAULT_DB_ALIAS, help='Nominates a database to introspect. Defaults to using the "default" database.', ) parser.add_argument( '--include-partitions', action='store_true', help='Also output models for partition tables.', ) parser.add_argument( '--include-views', action='store_true', help='Also output models for database views.', ) def handle(self, **options): try: for line in self.handle_inspection(options): self.stdout.write(line) except NotImplementedError: raise CommandError("Database inspection isn't supported for the currently selected database backend.") def handle_inspection(self, options): connection = connections[options['database']] # 'table_name_filter' is a stealth option table_name_filter = options.get('table_name_filter') def table2model(table_name): return re.sub(r'[^a-zA-Z0-9]', '', table_name.title()) with connection.cursor() as cursor: yield "# This is an auto-generated Django model module." yield "# You'll have to do the following manually to clean this up:" yield "# * Rearrange models' order" yield "# * Make sure each model has one field with primary_key=True" yield "# * Make sure each ForeignKey and OneToOneField has `on_delete` set to the desired behavior" yield ( "# * Remove `managed = False` lines if you wish to allow " "Django to create, modify, and delete the table" ) yield "# Feel free to rename the models, but don't rename db_table values or field names." yield 'from %s import models' % self.db_module known_models = [] table_info = connection.introspection.get_table_list(cursor) # Determine types of tables and/or views to be introspected. types = {'t'} if options['include_partitions']: types.add('p') if options['include_views']: types.add('v') for table_name in (options['table'] or sorted(info.name for info in table_info if info.type in types)): if table_name_filter is not None and callable(table_name_filter): if not table_name_filter(table_name): continue try: try: relations = connection.introspection.get_relations(cursor, table_name) except NotImplementedError: relations = {} try: constraints = connection.introspection.get_constraints(cursor, table_name) except NotImplementedError: constraints = {} primary_key_column = connection.introspection.get_primary_key_column(cursor, table_name) unique_columns = [ c['columns'][0] for c in constraints.values() if c['unique'] and len(c['columns']) == 1 ] table_description = connection.introspection.get_table_description(cursor, table_name) except Exception as e: yield "# Unable to inspect table '%s'" % table_name yield "# The error was: %s" % e continue yield '' yield '' yield 'class %s(models.Model):' % table2model(table_name) known_models.append(table2model(table_name)) used_column_names = [] # Holds column names used in the table so far column_to_field_name = {} # Maps column names to names of model fields for row in table_description: comment_notes = [] # Holds Field notes, to be displayed in a Python comment. extra_params = {} # Holds Field parameters such as 'db_column'. column_name = row.name is_relation = column_name in relations att_name, params, notes = self.normalize_col_name( column_name, used_column_names, is_relation) extra_params.update(params) comment_notes.extend(notes) used_column_names.append(att_name) column_to_field_name[column_name] = att_name # Add primary_key and unique, if necessary. if column_name == primary_key_column: extra_params['primary_key'] = True elif column_name in unique_columns: extra_params['unique'] = True if is_relation: if extra_params.pop('unique', False) or extra_params.get('primary_key'): rel_type = 'OneToOneField' else: rel_type = 'ForeignKey' rel_to = ( "self" if relations[column_name][1] == table_name else table2model(relations[column_name][1]) ) if rel_to in known_models: field_type = '%s(%s' % (rel_type, rel_to) else: field_type = "%s('%s'" % (rel_type, rel_to) else: # Calling `get_field_type` to get the field type string and any # additional parameters and notes. field_type, field_params, field_notes = self.get_field_type(connection, table_name, row) extra_params.update(field_params) comment_notes.extend(field_notes) field_type += '(' # Don't output 'id = meta.AutoField(primary_key=True)', because # that's assumed if it doesn't exist. if att_name == 'id' and extra_params == {'primary_key': True}: if field_type == 'AutoField(': continue elif field_type == 'IntegerField(' and not connection.features.can_introspect_autofield: comment_notes.append('AutoField?') # Add 'null' and 'blank', if the 'null_ok' flag was present in the # table description. if row.null_ok: # If it's NULL... extra_params['blank'] = True extra_params['null'] = True field_desc = '%s = %s%s' % ( att_name, # Custom fields will have a dotted path '' if '.' in field_type else 'models.', field_type, ) if field_type.startswith(('ForeignKey(', 'OneToOneField(')): field_desc += ', models.DO_NOTHING' if extra_params: if not field_desc.endswith('('): field_desc += ', ' field_desc += ', '.join('%s=%r' % (k, v) for k, v in extra_params.items()) field_desc += ')' if comment_notes: field_desc += ' # ' + ' '.join(comment_notes) yield ' %s' % field_desc is_view = any(info.name == table_name and info.type == 'v' for info in table_info) is_partition = any(info.name == table_name and info.type == 'p' for info in table_info) yield from self.get_meta(table_name, constraints, column_to_field_name, is_view, is_partition) def normalize_col_name(self, col_name, used_column_names, is_relation): """ Modify the column name to make it Python-compatible as a field name """ field_params = {} field_notes = [] new_name = col_name.lower() if new_name != col_name: field_notes.append('Field name made lowercase.') if is_relation: if new_name.endswith('_id'): new_name = new_name[:-3] else: field_params['db_column'] = col_name new_name, num_repl = re.subn(r'\W', '_', new_name) if num_repl > 0: field_notes.append('Field renamed to remove unsuitable characters.') if new_name.find(LOOKUP_SEP) >= 0: while new_name.find(LOOKUP_SEP) >= 0: new_name = new_name.replace(LOOKUP_SEP, '_') if col_name.lower().find(LOOKUP_SEP) >= 0: # Only add the comment if the double underscore was in the original name field_notes.append("Field renamed because it contained more than one '_' in a row.") if new_name.startswith('_'): new_name = 'field%s' % new_name field_notes.append("Field renamed because it started with '_'.") if new_name.endswith('_'): new_name = '%sfield' % new_name field_notes.append("Field renamed because it ended with '_'.") if keyword.iskeyword(new_name): new_name += '_field' field_notes.append('Field renamed because it was a Python reserved word.') if new_name[0].isdigit(): new_name = 'number_%s' % new_name field_notes.append("Field renamed because it wasn't a valid Python identifier.") if new_name in used_column_names: num = 0 while '%s_%d' % (new_name, num) in used_column_names: num += 1 new_name = '%s_%d' % (new_name, num) field_notes.append('Field renamed because of name conflict.') if col_name != new_name and field_notes: field_params['db_column'] = col_name return new_name, field_params, field_notes def get_field_type(self, connection, table_name, row): """ Given the database connection, the table name, and the cursor row description, this routine will return the given field type name, as well as any additional keyword parameters and notes for the field. """ field_params = {} field_notes = [] try: field_type = connection.introspection.get_field_type(row.type_code, row) except KeyError: field_type = 'TextField' field_notes.append('This field type is a guess.') # Add max_length for all CharFields. if field_type == 'CharField' and row.internal_size: field_params['max_length'] = int(row.internal_size) if field_type == 'DecimalField': if row.precision is None or row.scale is None: field_notes.append( 'max_digits and decimal_places have been guessed, as this ' 'database handles decimal fields as float') field_params['max_digits'] = row.precision if row.precision is not None else 10 field_params['decimal_places'] = row.scale if row.scale is not None else 5 else: field_params['max_digits'] = row.precision field_params['decimal_places'] = row.scale return field_type, field_params, field_notes def get_meta(self, table_name, constraints, column_to_field_name, is_view, is_partition): """ Return a sequence comprising the lines of code necessary to construct the inner Meta class for the model corresponding to the given database table name. """ unique_together = [] has_unsupported_constraint = False for params in constraints.values(): if params['unique']: columns = params['columns'] if None in columns: has_unsupported_constraint = True columns = [x for x in columns if x is not None] if len(columns) > 1: unique_together.append(str(tuple(column_to_field_name[c] for c in columns))) if is_view: managed_comment = " # Created from a view. Don't remove." elif is_partition: managed_comment = " # Created from a partition. Don't remove." else: managed_comment = '' meta = [''] if has_unsupported_constraint: meta.append(' # A unique constraint could not be introspected.') meta += [ ' class Meta:', ' managed = False%s' % managed_comment, ' db_table = %r' % table_name ] if unique_together: tup = '(' + ', '.join(unique_together) + ',)' meta += [" unique_together = %s" % tup] return meta
[ "88698739+Sankalpa830@users.noreply.github.com" ]
88698739+Sankalpa830@users.noreply.github.com
d8ebe9f96b8861612109f607cda8efcac6488540
6f9cb82b54a537e8d328c91527f14e9b1a77a0a2
/pg_xlsx_pg/xlsx2db.py
3daeed8aaf85eb4cb81e5b0e4a6fc97d7a4a5532
[]
no_license
godsfear/py
c22f93581a900436fe7ce08829af14822dd228a4
b0510a729342953181df2bc69f2da5d2cca959bf
refs/heads/master
2020-05-27T19:52:50.119385
2019-10-17T09:25:06
2019-10-17T09:25:06
188,767,580
0
0
null
null
null
null
UTF-8
Python
false
false
2,537
py
#!/python from openpyxl import load_workbook import sys import os import json import re import time import progressbar import glob from db_api import * if __name__ == '__main__': fname = 'xlsx2db.json' if len(sys.argv) > 1 and not ((sys.argv[1] == "") or (sys.argv[1] is None)): fname = sys.argv[1] if os.path.exists(fname): with open(fname,'r',encoding='utf-8') as f: try: cfg = json.load(f) except IOError: print ("Could not read file:",fname) sys.exit(1) else: print("File not exist:",fname) sys.exit(1) conn = connect(cfg["destination"]) if cfg["execute"] != "" and cfg["execute"] != None: if os.path.exists(cfg["execute"]): with open(cfg["execute"],'r',encoding='utf-8') as f: try: query(conn,f.read()) except IOError: print ("Could not read file:",cfg["execute"]) sys.exit(1) else: print("File not exist:",cfg["execute"]) sys.exit(1) k = 1 with progressbar.ProgressBar(max_value=len(cfg["files"])) as bar: for xfile in (cfg["files"]): for fn in glob.glob(xfile["name"]): wb = load_workbook(fn) j = 0 for row in (wb[xfile["query"]["page"]]): j += 1 if j < xfile["begin_row"]: continue val = re.split(',',xfile["query"]["values"]) typ = re.split(',',xfile["query"]["type"]) i = 0 values = "" for v in (val): z = str(row[int(v) - 1].value) if typ[i] == 'date': z = z.split(" ")[0] z.replace(",","\\,") z.replace('"','\\"') z.replace("'","\\'") if typ[i] == 'varchar' or typ[i] == 'date': z = "'" + z + "'" z = z + "::" + typ[i] if values == "": values = z else : values += "," + z i += 1 insert(conn,xfile["query"]["table"],xfile["query"]["fields"],values) bar.update(k) k += 1 if conn is not None: conn.close()
[ "44734149+godsfear@users.noreply.github.com" ]
44734149+godsfear@users.noreply.github.com
e5486b8d06884487a9f8627990bbdd51bc3ce273
86813bf514f3e0257f92207f40a68443f08ee44b
/1047 删除字符串中的所有相邻重复项/1047 删除字符串中的所有相邻重复项.py
bf028b0fd7a93d4a5ee6c4ef9b7c9d614fc710aa
[]
no_license
Aurora-yuan/Leetcode_Python3
4ce56679b48862c87addc8cd870cdd525c9d926c
720bb530850febc2aa67a56a7a0b3a85ab37f415
refs/heads/master
2021-07-12T13:23:19.399155
2020-10-21T03:14:36
2020-10-21T03:14:36
212,998,500
4
1
null
null
null
null
UTF-8
Python
false
false
2,116
py
#label: stack difficulty: easy """ 思路一: 直接循环,空间复杂度低,但时间复杂度高 """ class Solution(object): def removeDuplicates(self, S): """ :type S: str :rtype: str """ flag = 1 while 1: original_l = len(S) i = 0 while i < len(S) - 1: if i >= 0 and S[i] == S[i + 1]: S = S[:i] + S[i + 2:] i -= 2 i += 1 if original_l == len(S): return S “”“ 思路二: 我们可以用字符串自带的替换函数,由于字符串仅包含小写字母,因此只有 26 种不同的重复项。 将 aa 到 zz 的 26 种重复项放入集合中; 遍历这 26 种重复项,并用字符串的替换函数把重复项替换成空串。 注意,在进行过一次替换之后,可能会出现新的重复项。例如对于字符串 abbaca,如果替换了重复项 bb,字符串会变为 aaca,出现了新的重复项 aa。 因此,上面的过程需要背重复若干次,直到字符串在一整轮替换过程后保持不变(即长度不变)为止。 ”“” from string import ascii_lowercase class Solution: def removeDuplicates(self, S: str) -> str: # generate 26 possible duplicates duplicates = {2 * ch for ch in ascii_lowercase} prev_length = -1 while prev_length != len(S): prev_length = len(S) for d in duplicates: S = S.replace(d, '') return S “”“ 思路三: 栈。我们可以用栈来维护没有重复项的字母序列: 若当前的字母和栈顶的字母相同,则弹出栈顶的字母; 若当前的字母和栈顶的字母不同,则放入当前的字母。 ”“” class Solution: def removeDuplicates(self, S: str) -> str: output = [] for ch in S: if output and ch == output[-1]: output.pop() else: output.append(ch) return ''.join(output)
[ "noreply@github.com" ]
Aurora-yuan.noreply@github.com
cb2a744a2359e92619b1478436292d694371171c
7df76ba9ce259073358b8a6478bb641ea6e50509
/src/code/attacks/evasion.py
30f16677e2b8ab4cf8bc3bcdbf1d524ffe57ea44
[]
no_license
SONG-WONHO/attack_correlation2
ed261daef89fbe3c211a714948dadc6aeadaf682
142e229fa28880ca8391749dcc6ed2491fe0ce96
refs/heads/master
2023-07-06T00:41:54.786069
2021-08-12T10:43:49
2021-08-12T10:43:49
389,508,920
0
0
null
null
null
null
UTF-8
Python
false
false
30,237
py
import torch import numpy as np import warnings from tqdm import tqdm import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F warnings.filterwarnings("ignore") def clip_eta(eta, norm, eps): """ PyTorch implementation of the clip_eta in utils_tf. :param eta: Tensor :param norm: np.inf, 1, or 2 :param eps: float """ if norm not in [np.inf, 1, 2]: raise ValueError("norm must be np.inf, 1, or 2.") avoid_zero_div = torch.tensor(1e-12, dtype=eta.dtype, device=eta.device) reduc_ind = list(range(1, len(eta.size()))) if norm == np.inf: eta = torch.clamp(eta, -eps, eps) else: if norm == 1: raise NotImplementedError("L1 clip is not implemented.") norm = torch.max( avoid_zero_div, torch.sum(torch.abs(eta), dim=reduc_ind, keepdim=True) ) elif norm == 2: norm = torch.sqrt( torch.max( avoid_zero_div, torch.sum(eta ** 2, dim=reduc_ind, keepdim=True) ) ) factor = torch.min( torch.tensor(1.0, dtype=eta.dtype, device=eta.device), eps / norm ) eta *= factor return eta def optimize_linear(grad, eps, norm=np.inf): """ Solves for the optimal input to a linear function under a norm constraint. Optimal_perturbation = argmax_{eta, ||eta||_{norm} < eps} dot(eta, grad) :param grad: Tensor, shape (N, d_1, ...). Batch of gradients :param eps: float. Scalar specifying size of constraint region :param norm: np.inf, 1, or 2. Order of norm constraint. :returns: Tensor, shape (N, d_1, ...). Optimal perturbation """ red_ind = list(range(1, len(grad.size()))) avoid_zero_div = torch.tensor(1e-12, dtype=grad.dtype, device=grad.device) if norm == np.inf: # Take sign of gradient optimal_perturbation = torch.sign(grad) elif norm == 1: abs_grad = torch.abs(grad) sign = torch.sign(grad) red_ind = list(range(1, len(grad.size()))) abs_grad = torch.abs(grad) ori_shape = [1] * len(grad.size()) ori_shape[0] = grad.size(0) max_abs_grad, _ = torch.max(abs_grad.view(grad.size(0), -1), 1) max_mask = abs_grad.eq(max_abs_grad.view(ori_shape)).to(torch.float) num_ties = max_mask for red_scalar in red_ind: num_ties = torch.sum(num_ties, red_scalar, keepdim=True) optimal_perturbation = sign * max_mask / num_ties # TODO integrate below to a test file # check that the optimal perturbations have been correctly computed opt_pert_norm = optimal_perturbation.abs().sum(dim=red_ind) assert torch.all(opt_pert_norm == torch.ones_like(opt_pert_norm)) elif norm == 2: square = torch.max( avoid_zero_div, torch.sum(grad ** 2, red_ind, keepdim=True) ) optimal_perturbation = grad / torch.sqrt(square) # TODO integrate below to a test file # check that the optimal perturbations have been correctly computed opt_pert_norm = ( optimal_perturbation.pow(2).sum(dim=red_ind, keepdim=True).sqrt() ) one_mask = (square <= avoid_zero_div).to( torch.float) * opt_pert_norm + ( square > avoid_zero_div ).to(torch.float) assert torch.allclose(opt_pert_norm, one_mask, rtol=1e-05, atol=1e-08) else: raise NotImplementedError( "Only L-inf, L1 and L2 norms are " "currently implemented." ) # Scale perturbation to be the solution for the norm=eps rather than # norm=1 problem scaled_perturbation = eps * optimal_perturbation return scaled_perturbation def fast_gradient_method(model, x, eps=0.3, norm=np.inf, clip_min=None, clip_max=None, y=None, targeted=False, sanity_checks=False): """ PyTorch implementation of the Fast Gradient Method. :param model: a callable that takes an input tensor and returns the model logits. :param x: input tensor. :param eps: epsilon (input variation parameter) :param norm: Order of the norm (mimics NumPy). Possible values: np.inf, 1 or 2. :param clip_min: (optional) float. Minimum float value for adversarial example components. :param clip_max: (optional) float. Maximum float value for adversarial example components. :param y: (optional) Tensor with true labels. If targeted is true, then provide the target label. Otherwise, only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect. Default is None. :param targeted: (optional) bool. Is the attack targeted or untargeted? Untargeted, the default, will try to make the label incorrect. Targeted will instead try to move in the direction of being more like y. :param sanity_checks: bool, if True, include asserts (Turn them off to use less runtime / memory or for unit tests that intentionally pass strange input) :return: a tensor for the adversarial example """ asserts = [] # If a data range was specified, check that the input was in that range if clip_min is not None: assert_ge = torch.all( torch.ge(x, torch.tensor(clip_min, device=x.device, dtype=x.dtype))) asserts.append(assert_ge) if clip_max is not None: assert_le = torch.all( torch.le(x, torch.tensor(clip_max, device=x.device, dtype=x.dtype))) asserts.append(assert_le) x = x.clone().detach().to(torch.float).requires_grad_(True) if y is None: # Using model predictions as ground truth to avoid label leaking _, y = torch.max(model(x)[0], 1) # Compute loss loss_fn = torch.nn.CrossEntropyLoss() loss = loss_fn(model(x)[0], y) # If attack is targeted, minimize loss of target label rather than maximize loss of correct label if targeted: loss = -loss # Define gradient of loss wrt input loss.backward() optimal_perturbation = optimize_linear(x.grad, eps, norm) # Add perturbation to original example to obtain adversarial example adv_x = x + optimal_perturbation # If clipping is needed, reset all values outside of [clip_min, clip_max] if (clip_min is not None) or (clip_max is not None): if clip_min is None or clip_max is None: raise ValueError( "One of clip_min and clip_max is None but we don't currently support one-sided clipping") adv_x = torch.clamp(adv_x, clip_min, clip_max) if sanity_checks: assert np.all(asserts) return adv_x def basic_iterative_method( model, x, y=None, targeted=False, eps=0.15, eps_iter=0.01, n_iter=50, clip_max=None, clip_min=None): x = x.clone().detach().to(torch.float).requires_grad_(True) if y is None: # Using model predictions as ground truth to avoid label leaking _, y = torch.max(model(x)[0], 1) eta = torch.zeros(x.shape).to(x.device) for i in range(n_iter): out = model(x + eta)[0] loss = F.cross_entropy(out, y) if targeted: loss = -loss loss.backward() eta += eps_iter * torch.sign(x.grad.data) eta.clamp_(-eps, eps) x.grad.data.zero_() x_adv = x + eta if (clip_min is not None) or (clip_max is not None): if clip_min is None or clip_max is None: raise ValueError( "One of clip_min and clip_max is None but we don't currently support one-sided clipping") x_adv.clamp_(clip_min, clip_max) return x_adv.detach() INF = float("inf") def carlini_wagner_l2( model_fn, x, n_classes, y=None, targeted=False, lr=5e-3, confidence=0, clip_min=0, clip_max=1, initial_const=1e-2, binary_search_steps=5, max_iterations=1000, ): """ This attack was originally proposed by Carlini and Wagner. It is an iterative attack that finds adversarial examples on many defenses that are robust to other attacks. Paper link: https://arxiv.org/abs/1608.04644 At a high level, this attack is an iterative attack using Adam and a specially-chosen loss function to find adversarial examples with lower distortion than other attacks. This comes at the cost of speed, as this attack is often much slower than others. :param model_fn: a callable that takes an input tensor and returns the model logits. The logits should be a tensor of shape (n_examples, n_classes). :param x: input tensor of shape (n_examples, ...), where ... can be any arbitrary dimension that is compatible with model_fn. :param n_classes: the number of classes. :param y: (optional) Tensor with true labels. If targeted is true, then provide the target label. Otherwise, only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect (explained in this paper: https://arxiv.org/abs/1611.01236). If provide y, it should be a 1D tensor of shape (n_examples, ). Default is None. :param targeted: (optional) bool. Is the attack targeted or untargeted? Untargeted, the default, will try to make the label incorrect. Targeted will instead try to move in the direction of being more like y. :param lr: (optional) float. The learning rate for the attack algorithm. Default is 5e-3. :param confidence: (optional) float. Confidence of adversarial examples: higher produces examples with larger l2 distortion, but more strongly classified as adversarial. Default is 0. :param clip_min: (optional) float. Minimum float value for adversarial example components. Default is 0. :param clip_max: (optional) float. Maximum float value for adversarial example components. Default is 1. :param initial_const: The initial tradeoff-constant to use to tune the relative importance of size of the perturbation and confidence of classification. If binary_search_steps is large, the initial constant is not important. A smaller value of this constant gives lower distortion results. Default is 1e-2. :param binary_search_steps: (optional) int. The number of times we perform binary search to find the optimal tradeoff-constant between norm of the perturbation and confidence of the classification. Default is 5. :param max_iterations: (optional) int. The maximum number of iterations. Setting this to a larger value will produce lower distortion results. Using only a few iterations requires a larger learning rate, and will produce larger distortion results. Default is 1000. """ def compare(pred, label, is_logits=False): """ A helper function to compare prediction against a label. Returns true if the attack is considered successful. :param pred: can be either a 1D tensor of logits or a predicted class (int). :param label: int. A label to compare against. :param is_logits: (optional) bool. If True, treat pred as an array of logits. Default is False. """ # Convert logits to predicted class if necessary if is_logits: pred_copy = pred.clone().detach() pred_copy[label] += -confidence if targeted else confidence pred = torch.argmax(pred_copy) return pred == label if targeted else pred != label def arctanh(x): return 0.5 * torch.log((1 + x) / (1 - x)) if y is None: # Using model predictions as ground truth to avoid label leaking pred = model_fn(x)[0] y = torch.argmax(pred, 1) # Initialize some values needed for binary search on const lower_bound = [0.0] * len(x) upper_bound = [1e10] * len(x) const = x.new_ones(len(x), 1) * initial_const o_bestl2 = [INF] * len(x) o_bestscore = [-1.0] * len(x) x = torch.clamp(x, clip_min, clip_max) ox = x.clone().detach() # save the original x o_bestattack = x.clone().detach() # Map images into the tanh-space x = (x - clip_min) / (clip_max - clip_min) x = torch.clamp(x, 0, 1) x = x * 2 - 1 x = arctanh(x * 0.999999) # Prepare some variables modifier = torch.zeros_like(x, requires_grad=True).to(x.device) y_onehot = torch.nn.functional.one_hot(y, n_classes).to(torch.float) # Define loss functions and optimizer f_fn = lambda real, other, targeted: torch.max( ((other - real) if targeted else (real - other)) + confidence, torch.tensor(0.0).to(real.device), ) l2dist_fn = lambda x, y: torch.pow(x - y, 2).sum(list(range(len(x.size())))[1:]) optimizer = torch.optim.Adam([modifier], lr=lr) # Outer loop performing binary search on const for outer_step in range(binary_search_steps): # Initialize some values needed for the inner loop bestl2 = [INF] * len(x) bestscore = [-1.0] * len(x) # Inner loop performing attack iterations for i in tqdm(range(max_iterations), leave=False): # One attack step new_x = (torch.tanh(modifier + x) + 1) / 2 new_x = new_x * (clip_max - clip_min) + clip_min logits = model_fn(new_x)[0] real = torch.sum(y_onehot * logits, 1) other, _ = torch.max((1 - y_onehot) * logits - y_onehot * 1e4, 1) optimizer.zero_grad() f = f_fn(real, other, targeted) l2 = l2dist_fn(new_x, ox) loss = (const * f + l2).sum() loss.backward() optimizer.step() # Update best results for n, (l2_n, logits_n, new_x_n) in enumerate(zip(l2, logits, new_x)): y_n = y[n] succeeded = compare(logits_n, y_n, is_logits=True) if l2_n < o_bestl2[n] and succeeded: pred_n = torch.argmax(logits_n) o_bestl2[n] = l2_n o_bestscore[n] = pred_n o_bestattack[n] = new_x_n # l2_n < o_bestl2[n] implies l2_n < bestl2[n] so we modify inner loop variables too bestl2[n] = l2_n bestscore[n] = pred_n elif l2_n < bestl2[n] and succeeded: bestl2[n] = l2_n bestscore[n] = torch.argmax(logits_n) # Binary search step for n in range(len(x)): y_n = y[n] if compare(bestscore[n], y_n) and bestscore[n] != -1: # Success, divide const by two upper_bound[n] = min(upper_bound[n], const[n]) if upper_bound[n] < 1e9: const[n] = (lower_bound[n] + upper_bound[n]) / 2 else: # Failure, either multiply by 10 if no solution found yet # or do binary search with the known upper bound lower_bound[n] = max(lower_bound[n], const[n]) if upper_bound[n] < 1e9: const[n] = (lower_bound[n] + upper_bound[n]) / 2 else: const[n] *= 10 return o_bestattack.detach() def projected_gradient_descent( model_fn, x, eps, eps_iter, nb_iter, norm, clip_min=None, clip_max=None, y=None, targeted=False, rand_init=True, rand_minmax=None, sanity_checks=True, ): """ This class implements either the Basic Iterative Method (Kurakin et al. 2016) when rand_init is set to False. or the Madry et al. (2017) method if rand_init is set to True. Paper link (Kurakin et al. 2016): https://arxiv.org/pdf/1607.02533.pdf Paper link (Madry et al. 2017): https://arxiv.org/pdf/1706.06083.pdf :param model_fn: a callable that takes an input tensor and returns the model logits. :param x: input tensor. :param eps: epsilon (input variation parameter); see https://arxiv.org/abs/1412.6572. :param eps_iter: step size for each attack iteration :param nb_iter: Number of attack iterations. :param norm: Order of the norm (mimics NumPy). Possible values: np.inf, 1 or 2. :param clip_min: (optional) float. Minimum float value for adversarial example components. :param clip_max: (optional) float. Maximum float value for adversarial example components. :param y: (optional) Tensor with true labels. If targeted is true, then provide the target label. Otherwise, only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect (explained in this paper: https://arxiv.org/abs/1611.01236). Default is None. :param targeted: (optional) bool. Is the attack targeted or untargeted? Untargeted, the default, will try to make the label incorrect. Targeted will instead try to move in the direction of being more like y. :param rand_init: (optional) bool. Whether to start the attack from a randomly perturbed x. :param rand_minmax: (optional) bool. Support of the continuous uniform distribution from which the random perturbation on x was drawn. Effective only when rand_init is True. Default equals to eps. :param sanity_checks: bool, if True, include asserts (Turn them off to use less runtime / memory or for unit tests that intentionally pass strange input) :return: a tensor for the adversarial example """ if norm == 1: raise NotImplementedError( "It's not clear that FGM is a good inner loop" " step for PGD when norm=1, because norm=1 FGM " " changes only one pixel at a time. We need " " to rigorously test a strong norm=1 PGD " "before enabling this feature." ) if norm not in [np.inf, 2]: raise ValueError("Norm order must be either np.inf or 2.") if eps < 0: raise ValueError( "eps must be greater than or equal to 0, got {} instead".format(eps) ) if eps == 0: return x if eps_iter < 0: raise ValueError( "eps_iter must be greater than or equal to 0, got {} instead".format( eps_iter ) ) if eps_iter == 0: return x assert eps_iter <= eps, (eps_iter, eps) if clip_min is not None and clip_max is not None: if clip_min > clip_max: raise ValueError( "clip_min must be less than or equal to clip_max, got clip_min={} and clip_max={}".format( clip_min, clip_max ) ) asserts = [] # If a data range was specified, check that the input was in that range if clip_min is not None: assert_ge = torch.all( torch.ge(x, torch.tensor(clip_min, device=x.device, dtype=x.dtype)) ) asserts.append(assert_ge) if clip_max is not None: assert_le = torch.all( torch.le(x, torch.tensor(clip_max, device=x.device, dtype=x.dtype)) ) asserts.append(assert_le) # Initialize loop variables if rand_init: if rand_minmax is None: rand_minmax = eps eta = torch.zeros_like(x).uniform_(-rand_minmax, rand_minmax) else: eta = torch.zeros_like(x) # Clip eta eta = clip_eta(eta, norm, eps) adv_x = x + eta if clip_min is not None or clip_max is not None: adv_x = torch.clamp(adv_x, clip_min, clip_max) if y is None: # Using model predictions as ground truth to avoid label leaking _, y = torch.max(model_fn(x)[0], 1) i = 0 while i < nb_iter: adv_x = fast_gradient_method( model_fn, adv_x, eps_iter, norm, clip_min=clip_min, clip_max=clip_max, y=y, targeted=targeted, ) # Clipping perturbation eta to norm norm ball eta = adv_x - x eta = clip_eta(eta, norm, eps) adv_x = x + eta # Redo the clipping. # FGM already did it, but subtracting and re-adding eta can add some # small numerical error. if clip_min is not None or clip_max is not None: adv_x = torch.clamp(adv_x, clip_min, clip_max) i += 1 asserts.append(eps_iter <= eps) if norm == np.inf and clip_min is not None: # TODO necessary to cast clip_min and clip_max to x.dtype? asserts.append(eps + clip_min <= clip_max) if sanity_checks: assert np.all(asserts) return adv_x def spsa( model_fn, x, eps, nb_iter, norm=np.inf, clip_min=-np.inf, clip_max=np.inf, y=None, targeted=False, early_stop_loss_threshold=None, learning_rate=0.01, delta=0.01, spsa_samples=128, spsa_iters=1, is_debug=False, sanity_checks=True, ): """ This implements the SPSA adversary, as in https://arxiv.org/abs/1802.05666 (Uesato et al. 2018). SPSA is a gradient-free optimization method, which is useful when the model is non-differentiable, or more generally, the gradients do not point in useful directions. :param model_fn: A callable that takes an input tensor and returns the model logits. :param x: Input tensor. :param eps: The size of the maximum perturbation, measured in the L-infinity norm. :param nb_iter: The number of optimization steps. :param norm: Order of the norm (mimics NumPy). Possible values: np.inf, 1 or 2. :param clip_min: If specified, the minimum input value. :param clip_max: If specified, the maximum input value. :param y: (optional) Tensor with true labels. If targeted is true, then provide the target label. Otherwise, only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect (explained in this paper: https://arxiv.org/abs/1611.01236). Default is None. :param targeted: (optional) bool. Is the attack targeted or untargeted? Untargeted, the default, will try to make the label incorrect. Targeted will instead try to move in the direction of being more like y. :param early_stop_loss_threshold: A float or None. If specified, the attack will end as soon as the loss is below `early_stop_loss_threshold`. :param learning_rate: Learning rate of ADAM optimizer. :param delta: Perturbation size used for SPSA approximation. :param spsa_samples: Number of inputs to evaluate at a single time. The true batch size (the number of evaluated inputs for each update) is `spsa_samples * spsa_iters` :param spsa_iters: Number of model evaluations before performing an update, where each evaluation is on `spsa_samples` different inputs. :param is_debug: If True, print the adversarial loss after each update. :param sanity_checks: bool, if True, include asserts (Turn them off to use less runtime / memory or for unit tests that intentionally pass strange input) :return: a tensor for the adversarial example """ if y is not None and len(x) != len(y): raise ValueError( "number of inputs {} is different from number of labels {}".format( len(x), len(y) ) ) if y is None: y = torch.argmax(model_fn(x)[0], dim=1) # The rest of the function doesn't support batches of size greater than 1, # so if the batch is bigger we split it up. if len(x) != 1: adv_x = [] for x_single, y_single in tqdm(zip(x, y), leave=False, total=len(x)): adv_x_single = spsa( model_fn=model_fn, x=x_single.unsqueeze(0), eps=eps, nb_iter=nb_iter, norm=norm, clip_min=clip_min, clip_max=clip_max, y=y_single.unsqueeze(0), targeted=targeted, early_stop_loss_threshold=early_stop_loss_threshold, learning_rate=learning_rate, delta=delta, spsa_samples=spsa_samples, spsa_iters=spsa_iters, is_debug=is_debug, sanity_checks=sanity_checks, ) adv_x.append(adv_x_single) return torch.cat(adv_x) if eps < 0: raise ValueError( "eps must be greater than or equal to 0, got {} instead".format(eps) ) if eps == 0: return x if clip_min is not None and clip_max is not None: if clip_min > clip_max: raise ValueError( "clip_min must be less than or equal to clip_max, got clip_min={} and clip_max={}".format( clip_min, clip_max ) ) asserts = [] # If a data range was specified, check that the input was in that range asserts.append(torch.all(x >= clip_min)) asserts.append(torch.all(x <= clip_max)) if is_debug: print("Starting SPSA attack with eps = {}".format(eps)) perturbation = (torch.rand_like(x) * 2 - 1) * eps _project_perturbation(perturbation, norm, eps, x, clip_min, clip_max) optimizer = optim.Adam([perturbation], lr=learning_rate) for i in range(nb_iter): def loss_fn(pert): """ Margin logit loss, with correct sign for targeted vs untargeted loss. """ logits = model_fn(x + pert)[0] loss_multiplier = 1 if targeted else -1 return loss_multiplier * _margin_logit_loss(logits, y.expand(len(pert))) spsa_grad = _compute_spsa_gradient( loss_fn, x, delta=delta, samples=spsa_samples, iters=spsa_iters ) perturbation.grad = spsa_grad optimizer.step() _project_perturbation(perturbation, norm, eps, x, clip_min, clip_max) loss = loss_fn(perturbation).item() if is_debug: print("Iteration {}: loss = {}".format(i, loss)) if early_stop_loss_threshold is not None and loss < early_stop_loss_threshold: break adv_x = torch.clamp((x + perturbation).detach(), clip_min, clip_max) if norm == np.inf: asserts.append(torch.all(torch.abs(adv_x - x) <= eps + 1e-6)) else: asserts.append( torch.all( torch.abs( torch.renorm(adv_x - x, p=norm, dim=0, maxnorm=eps) - ( adv_x - x) ) < 1e-6 ) ) asserts.append(torch.all(adv_x >= clip_min)) asserts.append(torch.all(adv_x <= clip_max)) if sanity_checks: assert np.all(asserts) return adv_x def _project_perturbation( perturbation, norm, epsilon, input_image, clip_min=-np.inf, clip_max=np.inf ): """ Project `perturbation` onto L-infinity ball of radius `epsilon`. Also project into hypercube such that the resulting adversarial example is between clip_min and clip_max, if applicable. This is an in-place operation. """ clipped_perturbation = clip_eta(perturbation, norm, epsilon) new_image = torch.clamp(input_image + clipped_perturbation, clip_min, clip_max) perturbation.add_((new_image - input_image) - perturbation) def _compute_spsa_gradient(loss_fn, x, delta, samples, iters): """ Approximately compute the gradient of `loss_fn` at `x` using SPSA with the given parameters. The gradient is approximated by evaluating `iters` batches of `samples` size each. """ assert len(x) == 1 num_dims = len(x.size()) x_batch = x.expand(samples, *([-1] * (num_dims - 1))) grad_list = [] for i in range(iters): delta_x = delta * torch.sign(torch.rand_like(x_batch) - 0.5) delta_x = torch.cat([delta_x, -delta_x]) with torch.no_grad(): loss_vals = loss_fn(x + delta_x) while len(loss_vals.size()) < num_dims: loss_vals = loss_vals.unsqueeze(-1) avg_grad = ( torch.mean(loss_vals * torch.sign(delta_x), dim=0, keepdim=True) / delta ) grad_list.append(avg_grad) return torch.mean(torch.cat(grad_list), dim=0, keepdim=True) def _margin_logit_loss(logits, labels): """ Computes difference between logits for `labels` and next highest logits. The loss is high when `label` is unlikely (targeted by default). """ correct_logits = logits.gather(1, labels[:, None]).squeeze(1) logit_indices = torch.arange( logits.size()[1], dtype=labels.dtype, device=labels.device, )[None, :].expand(labels.size()[0], -1) incorrect_logits = torch.where( logit_indices == labels[:, None], torch.full_like(logits, float("-inf")), logits, ) max_incorrect_logits, _ = torch.max(incorrect_logits, 1) return max_incorrect_logits - correct_logits
[ "win778500@gmail.com" ]
win778500@gmail.com
a638cb48c3c3ae642ae77d0ee9745db81883ee2a
fcd4443abbf2638e1c13362f58b10a347a959af8
/trials/3pc.py
f706d3cdd9b982e766283c9ec548e5a23dfe8b93
[]
no_license
Shariar076/atomic-commit
952ec46f1b81b727015401b6b13455b151ca4fbc
55e2bb5361a28f346e6ecac21c47bc3647afd371
refs/heads/master
2023-08-19T23:03:03.087909
2021-10-06T11:28:34
2021-10-06T11:28:34
356,931,998
0
0
null
null
null
null
UTF-8
Python
false
false
879
py
from server import Server from client import Client import sys, getopt from threading import Thread from time import sleep def get_host_port(argv): host = None port = None try: opts, args = getopt.getopt(argv, "h:p:", ["host=", "port="]) except getopt.GetoptError: print('test.py -h <host> -p <port>') sys.exit(2) for opt, arg in opts: if opt in ("-h", "--host"): host = str(arg) elif opt in ("-p", "--port"): port = int(arg) print(f"host: {host}") print(f"port: {port}") return host, port if __name__ == "__main__": host, port = get_host_port(sys.argv[1:]) server = Server(host, port) server_thread = Thread(target=server.start_server) server_thread.start() client = Client() client.connect_server(host, port) sleep(1) print(server.clients)
[ "shariar.kabir@cellosco.pe" ]
shariar.kabir@cellosco.pe
833e7120f03a37b0a7cc7b01c1f37f7b23e29be5
299d0b949676470f542cd2d0ad7383a5ede00c30
/Networks/qnetwork.py
f7e7d45bac1a006de4ba52294592d55dfefec15a
[]
no_license
Morgan-Griffiths/Udacity_Navigation
0987787d7f44cd76609b16f085a5168a35082599
a871b48111b5416aa3d7246d7db696d39ce5fcf0
refs/heads/master
2023-08-24T03:55:19.114784
2022-01-24T20:47:28
2022-01-24T20:47:28
188,105,824
0
0
null
2023-07-22T06:27:25
2019-05-22T20:03:30
Jupyter Notebook
UTF-8
Python
false
false
612
py
import torch import torch.nn as nn import torch.nn.functional as F """ QNetwork for function aproximation. """ class QNetwork(nn.Module): def __init__(self,action_space,state_space,seed): super(QNetwork,self).__init__() self.action_space = action_space self.state_space = state_space self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_space,64) self.fc2 = nn.Linear(64,32) self.fc3 = nn.Linear(32,action_space) def forward(self,state): x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) return self.fc3(x)
[ "C5ipo7i@gmail.com" ]
C5ipo7i@gmail.com
b3bca2fa7b1096d2eb77d7ed7e62e9fa12f6c42b
426b91ccc883a56db3d87520956153392739674e
/CART.py
9d22f9c02927b8c4d64e1bdc702bfb1e5e450062
[]
no_license
HuixiangWen/region-
1be5497cd3899ef6bedbd6dba43f4ff3c694a556
ba7d56744b8116a2896dc99d2aac4d6f51e01598
refs/heads/master
2020-04-10T21:47:20.879134
2018-12-11T09:26:18
2018-12-11T09:26:18
161,306,555
0
0
null
null
null
null
UTF-8
Python
false
false
2,300
py
from sklearn.externals import joblib from sklearn.tree import DecisionTreeClassifier import pandas as pd from sklearn.metrics import make_scorer, accuracy_score from sklearn.model_selection import GridSearchCV, KFold, train_test_split import os path = "./newdata" list1 = os.listdir(path) print(list1) list1 = ["0.csv"] for i in list1: print(i) Project_data = pd.read_csv(path + "/" + i, encoding="gbk") # 读取预测数据 df1 = Project_data[['Rent_amount', 'floor', 'Total_floor', 'Area', 'towards', 'Number_bedroom', 'Number_hall', 'Number_wei', 'location', 'subway_route', 'subway_site', 'distance', 'region', 'price']] from sklearn.model_selection import train_test_split import seaborn as sns sns.set() m, n = df1.shape X = df1.iloc[:, 0: n - 1] Y = df1["price"] x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0) test = pd.concat([x_test, y_test], axis=1) # test.to_csv("./t.csv", sep=",", index=0) # from sklearn.preprocessing import StandardScaler # # ss = StandardScaler() # x_train = ss.fit_transform(x_train) # x_test = ss.transform(x_test) regressor = DecisionTreeClassifier(random_state=0) parameters = {'max_depth': range(10, 50)} scoring_fnc = make_scorer(accuracy_score) kfold = KFold(n_splits=10) grid = GridSearchCV(regressor, parameters, scoring_fnc, cv=kfold) grid = grid.fit(x_train, y_train.ravel()) reg = grid.best_estimator_ print('train score: %f' % grid.best_score_) print('best parameters:') for key in parameters.keys(): print('%s: %d' % (key, reg.get_params()[key])) print('test score: %f' % reg.score(x_test, y_test)) from sklearn.externals import joblib joblib.dump(grid, "./" + i[:-4] + ".m") # joblib.dump(grid, "asd1.m") # clf = DecisionTreeClassifier(criterion='entropy', max_depth=20, min_samples_leaf=2) # clf.fit(x_train, y_train) # # clf.fit(x_train, y_train.ravel()) # # print(clf.score(x_train, y_train)) # 精度 # y_hat = clf.predict(x_train) # show_accuracy(y_hat, y_train, '训练集') # print(clf.score(x_test, y_test)) # y_hat = clf.predict(x_test) # print(list(y_test)) # print(list(y_hat))
[ "jswenhuixiang@163.com" ]
jswenhuixiang@163.com
872b16bed9932977abd190f8dc1a4240c3c9334b
bd58aa45e6feb0916f18997535c29150a85a081d
/experinmenting/3sectors_temp/agg_results.py
47dcfdec55091d276531bcd92f6b20e57040c90a
[]
no_license
johnsonice/ABM_MacroEconomy
58f3edb2207a69b88beab741fdfad6c238c1f19b
8065dc4f2caa77f7a877cf684221386e198632bc
refs/heads/main
2023-08-21T21:04:18.934370
2021-11-03T05:31:44
2021-11-03T05:31:44
383,259,063
1
0
null
null
null
null
UTF-8
Python
false
false
5,320
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Sep 20 14:52:41 2021 @author: chengyu """ import pandas as pd import ast from utils import get_current_res_folder from config import simulation_parameters import os import matplotlib.pyplot as plt #%% def convert_dict_columns(df,colum_name): if isinstance(df[colum_name][0],str): df[colum_name] = df[colum_name].map(ast.literal_eval) # reset the index if the index is not unique integers from 0 to n-1 # df.reset_index(inplace=True) # uncomment if needed x = pd.json_normalize(df[colum_name]) df = df.join(x) df.drop(columns=[colum_name], inplace=True) return df def post_process_firm_log(f,out_f=None): df = pd.read_csv(f) # df.index = df.index.astype(int) # df.sort_index(inplace=True) df = convert_dict_columns(df,'out_iter_memory_current') df['n_labor_hired'] = df['labor_hired'].apply(len) df['n_product_sold'] = df['actual_production']-df['balance_sheet.consumption_good'] if out_f: df.to_csv(out_f) return df def post_process_hh_log(f,out_f=None): df = pd.read_csv(f) df['iter'] = df['round'].apply(get_round) # df.index = df.index.astype(int) # df.sort_index(inplace=True) df = convert_dict_columns(df,'out_balance_sheet') if out_f: df.to_csv(out_f) return df def post_process_bank_log(f,out_f=None): df = pd.read_csv(f) df = convert_dict_columns(df,'out_financial_account') if out_f: df.to_csv(out_f) return df def get_round(r): offset = len(str(simulation_parameters['sub_hiring_rounds']-1)) + len(str(simulation_parameters['sub_purchase_rounds']-1)) inp = str(r) if len(inp)==offset: return 0 else: return int(inp[:-offset]) def calculate_firm_aggregate(df,out_f = None): """ aggregate firm df for global statistics """ df['iter'] = df['round'].apply(get_round) ## get total revenue and cost for global averaging df['total_labor_cost'] = df['price_labor']*df['n_labor_hired'] df['total_revenue'] = df['price_consumption_good']*df['n_product_sold'] ## set up variables for aggregating sum_columns = ['planned_production','labor_needed', 'actual_production','new_credit_received', 'balance_sheet.money','balance_sheet.debt', 'total_labor_cost','total_revenue', 'n_labor_hired','n_product_sold'] agg_dict = {k:'sum' for k in sum_columns} agg_df = df.groupby('iter').agg(agg_dict) ## fix and sort index agg_df.index = agg_df.index.astype(int) agg_df.sort_index(inplace=True) ## calculate average prices agg_df['avg_consumption_price'] = agg_df['total_revenue'] / agg_df['n_product_sold'] agg_df['avg_labor_price'] = agg_df['total_labor_cost'] / agg_df['n_labor_hired'] if out_f: agg_df.to_csv(out_f) return agg_df def calculate_hh_aggregate(df,out_f = None): """ aggregate hh df for global statistics """ #df['iter'] = df['round'].apply(get_round) df['employed'] = df['employer'].notnull() sum_columns = ['accumulated_utility','money','employed'] agg_dict = {k:'sum' for k in sum_columns} agg_dict['index']='count' agg_df = df.groupby('iter').agg(agg_dict) agg_df.rename(columns={'index':"total_labor"},inplace=True) ## fix and sort index agg_df.index = agg_df.index.astype(int) agg_df.sort_index(inplace=True) ## calculate unemployment rate agg_df['unemployment_rate'] = 1- agg_df['employed']/agg_df['total_labor'] return agg_df #%% if __name__ == "__main__": ## get result folder res_folder = get_current_res_folder('./result') ## process firms f = os.path.join(res_folder,'panel_firm.csv') out_f = os.path.join(res_folder,'panel_firm_processed.csv') firm_df = post_process_firm_log(f,out_f) ## product global statistics agg_firm_df = calculate_firm_aggregate(firm_df) agg_firm_df[['avg_consumption_price','avg_labor_price', 'balance_sheet.money','balance_sheet.debt', 'n_labor_hired','labor_needed']].plot(title='Frims agg statistics',subplots=True) plt.savefig('result/firm_agg_1.png') agg_firm_df[['planned_production','actual_production','n_product_sold']].plot(title='Frims agg statistics 2',subplots=False) plt.savefig('result/firm_agg_2.png') ## process household f = os.path.join(res_folder,'panel_household.csv') out_f = os.path.join(res_folder,'panel_household_processed.csv') hh_df = post_process_hh_log(f,out_f) ## product global statistics agg_hh_df = calculate_hh_aggregate(hh_df) agg_hh_df[['money','accumulated_utility','unemployment_rate']].plot(title='Hourseholds agg statistics',subplots=True) plt.savefig('result/hh_agg_1.png') ## process bank f = os.path.join(res_folder,'panel_bank.csv') out_f = os.path.join(res_folder,'panel_bank_processed.csv') bank_df = post_process_bank_log(f,out_f) bank_df[['policy_rate','outstanding_loan','interest_payment','bad_loan']].plot(title='Bank agg statistics',subplots=True) plt.savefig('result/bank_agg_1.png')
[ "huangchengyu16@gmail.com" ]
huangchengyu16@gmail.com
b9de5a803a149b52dbecfe06e0ea5968797d4cb1
8d21ccde698901503f7f07f9b26f912c4c8d08d3
/ex01/wsgi.py
afea0f3f7341528697685f0a5b4ce8af0eaae6ba
[]
no_license
wonginx/django_ex01
c41b3b40da07a7a54feb62a9989aa4668562a5d9
13258575d3285e9568992a6651c3d98e95d853fb
refs/heads/master
2023-08-20T23:06:30.800227
2021-10-06T08:45:58
2021-10-06T08:45:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
""" WSGI config for ex01 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ex01.settings') application = get_wsgi_application()
[ "nngg375@naver.com" ]
nngg375@naver.com
1afda8ddb48c047d6ef756e490ec117335c07cc2
5e3ebc83bc3fe2f85c34563689b82b1fc8b93a04
/google/ads/googleads/v5/services/services/payments_account_service/client.py
846d30511be6ebd57110fc5b9a0bdc3ea6980507
[ "Apache-2.0" ]
permissive
pdsing/google-ads-python
0ce70227cd6bb13a25cd13de0ca05c2636279ecd
ee2c059498d5679a0d1d9011f3795324439fad7c
refs/heads/master
2023-05-04T18:39:57.412453
2021-05-21T16:38:17
2021-05-21T16:38:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,552
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict from distutils import util import os import re from typing import Dict, Optional, Sequence, Tuple, Type, Union from google.api_core import client_options as client_options_lib # type: ignore from google.api_core import exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials # type: ignore from google.auth.transport import mtls # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore from google.auth.exceptions import MutualTLSChannelError # type: ignore from google.oauth2 import service_account # type: ignore from google.ads.googleads.v5.services.types import payments_account_service from .transports.base import ( PaymentsAccountServiceTransport, DEFAULT_CLIENT_INFO, ) from .transports.grpc import PaymentsAccountServiceGrpcTransport class PaymentsAccountServiceClientMeta(type): """Metaclass for the PaymentsAccountService client. This provides class-level methods for building and retrieving support objects (e.g. transport) without polluting the client instance objects. """ _transport_registry = ( OrderedDict() ) # type: Dict[str, Type[PaymentsAccountServiceTransport]] _transport_registry["grpc"] = PaymentsAccountServiceGrpcTransport def get_transport_class( cls, label: str = None, ) -> Type[PaymentsAccountServiceTransport]: """Return an appropriate transport class. Args: label: The name of the desired transport. If none is provided, then the first transport in the registry is used. Returns: The transport class to use. """ # If a specific transport is requested, return that one. if label: return cls._transport_registry[label] # No transport is requested; return the default (that is, the first one # in the dictionary). return next(iter(cls._transport_registry.values())) class PaymentsAccountServiceClient(metaclass=PaymentsAccountServiceClientMeta): """Service to provide payments accounts that can be used to set up consolidated billing. """ @staticmethod def _get_default_mtls_endpoint(api_endpoint): """Convert api endpoint to mTLS endpoint. Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively. Args: api_endpoint (Optional[str]): the api endpoint to convert. Returns: str: converted mTLS api endpoint. """ if not api_endpoint: return api_endpoint mtls_endpoint_re = re.compile( r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?" ) m = mtls_endpoint_re.match(api_endpoint) name, mtls, sandbox, googledomain = m.groups() if mtls or not googledomain: return api_endpoint if sandbox: return api_endpoint.replace( "sandbox.googleapis.com", "mtls.sandbox.googleapis.com" ) return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com") DEFAULT_ENDPOINT = "googleads.googleapis.com" DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__( # type: ignore DEFAULT_ENDPOINT ) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: PaymentsAccountServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_info( info ) kwargs["credentials"] = credentials return cls(*args, **kwargs) @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: PaymentsAccountServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file( filename ) kwargs["credentials"] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @property def transport(self) -> PaymentsAccountServiceTransport: """Return the transport used by the client instance. Returns: PaymentsAccountServiceTransport: The transport used by the client instance. """ return self._transport @staticmethod def customer_path(customer: str,) -> str: """Return a fully-qualified customer string.""" return "customers/{customer}".format(customer=customer,) @staticmethod def parse_customer_path(path: str) -> Dict[str, str]: """Parse a customer path into its component segments.""" m = re.match(r"^customers/(?P<customer>.+?)$", path) return m.groupdict() if m else {} @staticmethod def payments_account_path(customer: str, payments_account: str,) -> str: """Return a fully-qualified payments_account string.""" return "customers/{customer}/paymentsAccounts/{payments_account}".format( customer=customer, payments_account=payments_account, ) @staticmethod def parse_payments_account_path(path: str) -> Dict[str, str]: """Parse a payments_account path into its component segments.""" m = re.match( r"^customers/(?P<customer>.+?)/paymentsAccounts/(?P<payments_account>.+?)$", path, ) return m.groupdict() if m else {} @staticmethod def common_billing_account_path(billing_account: str,) -> str: """Return a fully-qualified billing_account string.""" return "billingAccounts/{billing_account}".format( billing_account=billing_account, ) @staticmethod def parse_common_billing_account_path(path: str) -> Dict[str, str]: """Parse a billing_account path into its component segments.""" m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_folder_path(folder: str,) -> str: """Return a fully-qualified folder string.""" return "folders/{folder}".format(folder=folder,) @staticmethod def parse_common_folder_path(path: str) -> Dict[str, str]: """Parse a folder path into its component segments.""" m = re.match(r"^folders/(?P<folder>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_organization_path(organization: str,) -> str: """Return a fully-qualified organization string.""" return "organizations/{organization}".format(organization=organization,) @staticmethod def parse_common_organization_path(path: str) -> Dict[str, str]: """Parse a organization path into its component segments.""" m = re.match(r"^organizations/(?P<organization>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_project_path(project: str,) -> str: """Return a fully-qualified project string.""" return "projects/{project}".format(project=project,) @staticmethod def parse_common_project_path(path: str) -> Dict[str, str]: """Parse a project path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_location_path(project: str, location: str,) -> str: """Return a fully-qualified location string.""" return "projects/{project}/locations/{location}".format( project=project, location=location, ) @staticmethod def parse_common_location_path(path: str) -> Dict[str, str]: """Parse a location path into its component segments.""" m = re.match( r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path ) return m.groupdict() if m else {} def __init__( self, *, credentials: Optional[credentials.Credentials] = None, transport: Union[str, PaymentsAccountServiceTransport, None] = None, client_options: Optional[client_options_lib.ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the payments account service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, ~.PaymentsAccountServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (google.api_core.client_options.ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ if isinstance(client_options, dict): client_options = client_options_lib.from_dict(client_options) if client_options is None: client_options = client_options_lib.ClientOptions() # Create SSL credentials for mutual TLS if needed. use_client_cert = bool( util.strtobool( os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") ) ) ssl_credentials = None is_mtls = False if use_client_cert: if client_options.client_cert_source: import grpc # type: ignore cert, key = client_options.client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) is_mtls = True else: creds = SslCredentials() is_mtls = creds.is_mtls ssl_credentials = creds.ssl_credentials if is_mtls else None # Figure out which api endpoint to use. if client_options.api_endpoint is not None: api_endpoint = client_options.api_endpoint else: use_mtls_env = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto") if use_mtls_env == "never": api_endpoint = self.DEFAULT_ENDPOINT elif use_mtls_env == "always": api_endpoint = self.DEFAULT_MTLS_ENDPOINT elif use_mtls_env == "auto": api_endpoint = ( self.DEFAULT_MTLS_ENDPOINT if is_mtls else self.DEFAULT_ENDPOINT ) else: raise MutualTLSChannelError( "Unsupported GOOGLE_API_USE_MTLS_ENDPOINT value. Accepted values: never, auto, always" ) # Save or instantiate the transport. # Ordinarily, we provide the transport, but allowing a custom transport # instance provides an extensibility point for unusual situations. if isinstance(transport, PaymentsAccountServiceTransport): # transport is a PaymentsAccountServiceTransport instance. if credentials: raise ValueError( "When providing a transport instance, " "provide its credentials directly." ) self._transport = transport elif isinstance(transport, str): Transport = type(self).get_transport_class(transport) self._transport = Transport( credentials=credentials, host=self.DEFAULT_ENDPOINT ) else: self._transport = PaymentsAccountServiceGrpcTransport( credentials=credentials, host=api_endpoint, ssl_channel_credentials=ssl_credentials, client_info=client_info, ) def list_payments_accounts( self, request: payments_account_service.ListPaymentsAccountsRequest = None, *, customer_id: str = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> payments_account_service.ListPaymentsAccountsResponse: r"""Returns all payments accounts associated with all managers between the login customer ID and specified serving customer in the hierarchy, inclusive. Args: request (:class:`google.ads.googleads.v5.services.types.ListPaymentsAccountsRequest`): The request object. Request message for fetching all accessible payments accounts. customer_id (:class:`str`): Required. The ID of the customer to apply the PaymentsAccount list operation to. This corresponds to the ``customer_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.ads.googleads.v5.services.types.ListPaymentsAccountsResponse: Response message for [PaymentsAccountService.ListPaymentsAccounts][google.ads.googleads.v5.services.PaymentsAccountService.ListPaymentsAccounts]. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. if request is not None and any([customer_id]): raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a payments_account_service.ListPaymentsAccountsRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, payments_account_service.ListPaymentsAccountsRequest ): request = payments_account_service.ListPaymentsAccountsRequest( request ) # If we have keyword arguments corresponding to fields on the # request, apply these. if customer_id is not None: request.customer_id = customer_id # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.list_payments_accounts ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("customer_id", request.customer_id),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response __all__ = ("PaymentsAccountServiceClient",)
[ "noreply@github.com" ]
pdsing.noreply@github.com
71bfd6033266f0ff9ba160f37173c98c2ac26562
6a990a3d549ca3d1c607b60b13b10f14c0e15787
/game/douniu/mode/douniu_room.py
b2df67f7bd92383dec3420b6d88d711e47d3f06f
[]
no_license
qianyc1020/server
217a766f7df5a0acfb983d3fc48317a932fe092e
3c897e5d6ee453d0a2f3b371b5eda5af954b8d1a
refs/heads/master
2020-06-10T08:55:31.996449
2019-06-24T06:26:43
2019-06-24T06:26:43
193,626,075
1
0
null
2019-06-25T03:12:39
2019-06-25T03:12:37
null
UTF-8
Python
false
false
8,883
py
# coding=utf-8 import threading import random import core.globalvar as gl from game.douniu.command.game import roomover_cmd, gamestart_cmd, gameover_cmd, dealcard_cmd from game.douniu.mode.game_status import GameStatus from game.douniu.timeout import operation_timeout from mode.game.room import Room from protocol.base.base_pb2 import EXECUTE_ACTION, UPDATE_GAME_INFO, UPDATE_GAME_PLAYER_INFO, \ REENTER_GAME_INFO, ASK_ACTION, EXIT_GAME, APPLY_CHANGE_MATCH from protocol.base.game_base_pb2 import RecExecuteAction, RecUpdateGameInfo, RecUpdateGameUsers, RecReEnterGameInfo from protocol.base.server_to_game_pb2 import UserExit from protocol.game.bairen_pb2 import BaiRenRecAsk from protocol.game.douniu_pb2 import DouniuBankerConfirm, DouniuCreateRoom, DouniuCardAction class DouniuRoom(Room): def __init__(self, roomNo=0, count=0, gameRules=0, matchLevel=0, score=0, inScore=0, leaveScore=0, gameType=0, betType=1): super(DouniuRoom, self).__init__(roomNo, count, gameRules, matchLevel) self.score = score self.inScore = inScore self.leaveScore = leaveScore self.gameStatus = GameStatus.WAITING self.banker = 0 self.gameType = gameType self.betType = betType self.historyActions = [] def save(self, redis): if self.gameStatus != GameStatus.DESTORY: redis.setobj("room_" + str(self.roomNo), self) def clear(self): super(DouniuRoom, self).clear() self.gameStatus = GameStatus.WAITING self.historyActions = [] self.banker = 0 def bankerConfirm(self, messageHandle): bankerConfirm = DouniuBankerConfirm() bankerConfirm.bankerId = self.banker self.executeAction(0, 4, bankerConfirm, messageHandle) def executeAction(self, userId, actionType, data, messageHandle): recExecuteAction = RecExecuteAction() recExecuteAction.actionType = actionType recExecuteAction.playerId = userId if data is not None: recExecuteAction.data = data.SerializeToString() messageHandle.broadcast_seat_to_gateway(EXECUTE_ACTION, recExecuteAction, self) self.historyActions.append(recExecuteAction.SerializeToString()) def recUpdateGameInfo(self, messageHandle): recUpdateGameInfo = RecUpdateGameInfo() recUpdateGameInfo.allocId = 2 douniuCreateRoom = DouniuCreateRoom() douniuCreateRoom.baseScore = self.score douniuCreateRoom.inScore = self.inScore douniuCreateRoom.leaveScore = self.leaveScore douniuCreateRoom.type = self.gameType douniuCreateRoom.gameRules = self.gameRules douniuCreateRoom.betType = self.betType douniuCreateRoom.match = True recUpdateGameInfo.content = douniuCreateRoom.SerializeToString() messageHandle.send_to_gateway(UPDATE_GAME_INFO, recUpdateGameInfo) def recUpdateScore(self, messageHandle, userId): recUpdateGameUsers = RecUpdateGameUsers() for s in self.seats: userInfo = recUpdateGameUsers.users.add() userInfo.account = s.account userInfo.playerId = s.userId userInfo.headUrl = s.head userInfo.createTime = s.createDate userInfo.ip = s.ip userInfo.online = s.online userInfo.nick = s.nickname userInfo.ready = s.ready userInfo.score = s.score userInfo.sex = s.sex userInfo.totalCount = s.total_count userInfo.loc = s.seatNo userInfo.consumeVip = s.level if 0 == userId: messageHandle.broadcast_seat_to_gateway(UPDATE_GAME_PLAYER_INFO, recUpdateGameUsers, self) else: messageHandle.send_to_gateway(UPDATE_GAME_PLAYER_INFO, recUpdateGameUsers) def recReEnterGameInfo(self, messageHandle, userId): recReEnterGameInfo = RecReEnterGameInfo() recReEnterGameInfo.allocId = 2 seat = self.getSeatByUserId(userId) for a in self.historyActions: executeAction = recReEnterGameInfo.actionInfos.add() executeAction.ParseFromString(a) if 0 == executeAction.actionType: dealCardAction = DouniuCardAction() dealCardAction.ParseFromString(executeAction.data) if 4 == len(dealCardAction.cards): if 0 != len(seat.initialCards): dealCardAction = DouniuCardAction() dealCardAction.cards.extend(seat.initialCards) else: dealCardAction = DouniuCardAction() dealCardAction.cards.extend([0, 0, 0, 0]) else: if 0 != len(seat.initialCards): dealCardAction = DouniuCardAction() dealCardAction.cards.append(seat.initialCards[4]) else: dealCardAction = DouniuCardAction() dealCardAction.cards.append(0) executeAction.data = dealCardAction.SerializeToString() messageHandle.send_to_gateway(REENTER_GAME_INFO, recReEnterGameInfo, userId) if self.gameStatus == GameStatus.GRABING: self.executeAsk(messageHandle, userId, 1) if self.gameStatus == GameStatus.PLAYING: self.executeAsk(messageHandle, userId, 2) if self.gameStatus == GameStatus.OPENING: self.executeAsk(messageHandle, userId, 3) def executeAsk(self, messageHandle, userId, type): douniuRecAsk = BaiRenRecAsk() douniuRecAsk.type = type threading.Thread(target=operation_timeout.execute, args=(self.roomNo, messageHandle, self.gameStatus, self.gameCount), name='operation_timeout').start() # 线程对象. if 0 == userId: messageHandle.broadcast_seat_to_gateway(ASK_ACTION, douniuRecAsk, self) else: messageHandle.send_to_gateway(ASK_ACTION, douniuRecAsk, userId) def exit(self, userId, messageHandle): self.exitOrChangeMatch(userId, messageHandle, False) def changeMatch(self, userId, messageHandle): self.exitOrChangeMatch(userId, messageHandle, True) def exitOrChangeMatch(self, userId, messageHandle, changeMatch): seat = self.getSeatByUserId(userId) if seat is not None and (seat.guanzhan or self.gameStatus == GameStatus.WAITING): while seat is not None: self.seatNos.append(seat.seatNo) self.seats.remove(seat) seat = self.getSeatByUserId(userId) redis = gl.get_v("redis") redis.delobj(str(userId) + "_room") userExit = UserExit() userExit.playerId = userId userExit.roomNo = self.roomNo userExit.level = self.matchLevel from game.douniu.server.server import Server Server.send_to_coordinate(APPLY_CHANGE_MATCH if changeMatch else EXIT_GAME, userExit) self.recUpdateScore(messageHandle, 0) if 0 == len(self.seats): roomover_cmd.execute(self, messageHandle) elif self.gameStatus == GameStatus.WAITING: self.checkReady(messageHandle) def checkReady(self, messageHandle): allReady = True for seat in self.seats: if not seat.ready: allReady = False break if allReady and len(self.seats) > 1: gamestart_cmd.execute(self, messageHandle) def checkGrab(self, messageHandle): bankers = [] maxGrab = 0 for seat in self.seats: if -1 == seat.grab and not seat.guanzhan: return if seat.grab > maxGrab: bankers = [] bankers.append(seat.userId) maxGrab = seat.grab elif seat.grab == maxGrab: bankers.append(seat.userId) if len(bankers) > 0: self.banker = bankers[random.randint(0, len(bankers) - 1)] else: self.banker = self.seats[random.randint(0, len(self.seats) - 1)].userId self.bankerConfirm(messageHandle) self.gameStatus = GameStatus.PLAYING self.executeAsk(messageHandle, 0, 2) def checkPlay(self, messageHandle): if self.gameStatus != GameStatus.PLAYING: return for seat in self.seats: if -1 == seat.playScore and not seat.guanzhan and seat.userId != self.banker: return dealcard_cmd.execute(self, messageHandle) def checkOpen(self, messageHandle): for seat in self.seats: if not seat.openCard and not seat.guanzhan: return gameover_cmd.execute(self, messageHandle)
[ "pengyi9627@gmail.com" ]
pengyi9627@gmail.com
f225dd25a52b2e3e872805bebfc869deb6403608
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_200/3307.py
0b45963022441cf19c13a42c6bfcac2c7069bca0
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
327
py
T = int(input()) for case in range(T): N = input() R = "0" for digit in range(len(N),0,-1): for n in range(9,int(R[-1])-1,-1): R = R[0:len(N)-digit] + digit*str(n) if(int(R) <= int(N)): break; R = R.strip('0') print("Case #{}: {}".format(case+1, R))
[ "miliar1732@gmail.com" ]
miliar1732@gmail.com
205196db7584b5071414be641278ef9edd2597c2
2859496fcd4dd1e9c94f903ab31069c40eca469c
/guardians_of_children/migrations/0005_auto_20211003_0646.py
2394944fa0c0b524bad3c7116cc5904313144a73
[]
no_license
Seoha-Yoon/ai_guardians_backend
8910384f8fa24d06827da78a5d038415491acecc
79d7fea57801a3bb58f21842918b2e498c53c6ad
refs/heads/main
2023-08-19T11:42:33.108165
2021-10-04T12:21:30
2021-10-04T12:21:30
412,526,300
0
0
null
null
null
null
UTF-8
Python
false
false
376
py
# Generated by Django 2.2.5 on 2021-10-03 06:46 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('guardians_of_children', '0004_auto_20211003_0642'), ] operations = [ migrations.RenameField( model_name='videos', old_name='videos', new_name='video', ), ]
[ "seohayn127@gmail.com" ]
seohayn127@gmail.com
f4db245ed76e913ad2797cc535061d803a260f34
a2f22c92a047cb2840e9273b06aeaf26fbe06129
/user.globalmilestone.org/interface/standard/migrations/0007_remove_student_grade_level.py
733d4c956ac2a0836cc7a3b0e5ceb63cd6f4e304
[]
no_license
sashaberger31/BishopsHCS
4ab53bbe7dea781e1dd4efe0bf40ffa12ab0eadb
f5dee997b2a72f4513286fff0c45f6faf798f2f4
refs/heads/master
2023-01-07T22:22:15.560469
2020-09-03T06:08:40
2020-09-03T06:08:40
292,396,305
0
0
null
null
null
null
UTF-8
Python
false
false
333
py
# Generated by Django 3.1 on 2020-08-12 17:26 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('standard', '0006_auto_20200812_1723'), ] operations = [ migrations.RemoveField( model_name='student', name='grade_level', ), ]
[ "sasha@globalmilestone.org" ]
sasha@globalmilestone.org
cfba3bc559cc82b538914a447694d7373ad555d6
8acffb8c4ddca5bfef910e58d3faa0e4de83fce8
/ml-flask/Lib/site-packages/sklearn/preprocessing/tests/test_function_transformer.py
86f0f1155f93774d77023cae05380cc15dba50b1
[ "MIT" ]
permissive
YaminiHP/SimilitudeApp
8cbde52caec3c19d5fa73508fc005f38f79b8418
005c59894d8788c97be16ec420c0a43aaec99b80
refs/heads/master
2023-06-27T00:03:00.404080
2021-07-25T17:51:27
2021-07-25T17:51:27
389,390,951
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:8dd493e6459816a7ce3af5334d0d4d42b0b6cfbbf9a6650d4e6b945651ce74da size 5431
[ "yamprakash130@gmail.com" ]
yamprakash130@gmail.com
627080aae5a63a549c017d35ab18c5c6c6ae77a0
28328e0efe3c801ecc4e785d85d471089b366839
/examples/pub_sub_receive.py
426af39d332c87152e54fbaa5ecadc6ae0048f4c
[ "MIT" ]
permissive
leviethung2103/imagezmq_replicate
0010446d027ac08aa0399049f9f2f9022fe72780
7fc60788fc2b024ea86dedea63fd9962f5af4516
refs/heads/master
2022-11-22T06:09:19.498457
2020-07-25T23:20:56
2020-07-25T23:20:56
282,538,914
1
0
null
null
null
null
UTF-8
Python
false
false
2,792
py
"""pub_sub_receive.py -- receive OpenCV stream using PUB SUB.""" import sys import socket import traceback import cv2 from imutils.video import VideoStream import imagezmq import threading import numpy as np from time import sleep # Helper class implementing an IO deamon thread class VideoStreamSubscriber: def __init__(self, hostname, port): self.hostname = hostname self.port = port self._stop = False self._data_ready = threading.Event() self._thread = threading.Thread(target=self._run, args=()) self._thread.daemon = True self._thread.start() def receive(self, timeout=15.0): flag = self._data_ready.wait(timeout=timeout) if not flag: raise TimeoutError( "Timeout while reading from subscriber tcp://{}:{}".format(self.hostname, self.port)) self._data_ready.clear() return self._data def _run(self): receiver = imagezmq.ImageHub("tcp://{}:{}".format(self.hostname, self.port), REQ_REP=False) while not self._stop: self._data = receiver.recv_jpg() self._data_ready.set() receiver.close() def close(self): self._stop = True # Simulating heavy processing load def limit_to_2_fps(): sleep(0.5) if __name__ == "__main__": # Receive from broadcast # There are 2 hostname styles; comment out the one you don't need # hostname = "127.0.0.1" # Use to receive from localhost hostname = "hunglv1994.ddns.net" # Use to receive from localhost # hostname = "192.168.86.38" # Use to receive from other computer port = 5555 receiver = VideoStreamSubscriber(hostname, port) old_image = None try: while True: msg, frame = receiver.receive() image = cv2.imdecode(np.frombuffer(frame, dtype='uint8'), -1) if (old_image is not None) and (image.all() != old_image.all()): print ("new image is obtained") old_image = image.copy() # Due to the IO thread constantly fetching images, we can do any amount # of processing here and the next call to receive() will still give us # the most recent frame (more or less realtime behaviour) # Uncomment this statement to simulate processing load # limit_to_2_fps() # Comment this statement out to run full speeed cv2.imshow("Pub Sub Receive", image) cv2.waitKey(1) except (KeyboardInterrupt, SystemExit): print('Exit due to keyboard interrupt') except Exception as ex: print('Python error with no Exception handler:') print('Traceback error:', ex) traceback.print_exc() finally: receiver.close() sys.exit()
[ "hunglv@greenglobal.vn" ]
hunglv@greenglobal.vn
936a02e2e528ae1b24dfc6b747fe4f5e89fed379
6c57b1694817d1710335429c12c2d9774ff446e3
/2017-08-06/AS-DA-DB_case07/generated_files/LEMS_c302_C2_AS_DA_DB_nrn.py
95fa1c511d60824f5db04a48a7fc9228e17b2f13
[]
no_license
lungd/openworm-experiments
cd3875e8071c35eacb919c318344bac56d0fe379
065f481fbb445ef12b8ab2110f501686d26c213c
refs/heads/master
2021-01-01T04:41:38.397726
2017-09-12T13:55:40
2017-09-12T13:55:40
97,220,679
1
1
null
2017-09-01T17:10:28
2017-07-14T10:07:56
Python
UTF-8
Python
false
false
749,109
py
''' Neuron simulator export for: Components: Leak (Type: ionChannelPassive: conductance=1.0E-11 (SI conductance)) k_fast (Type: ionChannelHH: conductance=1.0E-11 (SI conductance)) k_slow (Type: ionChannelHH: conductance=1.0E-11 (SI conductance)) ca_boyle (Type: ionChannelHH: conductance=1.0E-11 (SI conductance)) ca_simple (Type: ionChannelHH: conductance=1.0E-11 (SI conductance)) k_muscle (Type: ionChannelHH: conductance=1.0E-11 (SI conductance)) ca_muscle (Type: ionChannelHH: conductance=1.0E-11 (SI conductance)) null (Type: notes) CaPool (Type: fixedFactorConcentrationModel: restingConc=0.0 (SI concentration) decayConstant=0.013811870945509265 (SI time) rho=2.38919E-4 (SI rho_factor)) neuron_to_neuron_elec_syn_2conns (Type: gapJunction: conductance=2.504E-11 (SI conductance)) neuron_to_neuron_elec_syn_7conns (Type: gapJunction: conductance=8.764000000000001E-11 (SI conductance)) neuron_to_neuron_elec_syn_6conns (Type: gapJunction: conductance=7.512000000000001E-11 (SI conductance)) neuron_to_neuron_elec_syn_4conns (Type: gapJunction: conductance=5.008E-11 (SI conductance)) neuron_to_neuron_elec_syn_10conns (Type: gapJunction: conductance=1.2520000000000002E-10 (SI conductance)) neuron_to_neuron_elec_syn_8conns (Type: gapJunction: conductance=1.0016E-10 (SI conductance)) neuron_to_neuron_elec_syn_1conns (Type: gapJunction: conductance=1.252E-11 (SI conductance)) neuron_to_neuron_elec_syn_3conns (Type: gapJunction: conductance=3.7560000000000004E-11 (SI conductance)) neuron_to_neuron_elec_syn_9conns (Type: gapJunction: conductance=1.1268E-10 (SI conductance)) neuron_to_neuron_elec_syn_5conns (Type: gapJunction: conductance=6.260000000000001E-11 (SI conductance)) neuron_to_neuron_elec_syn_13conns (Type: gapJunction: conductance=1.6276E-10 (SI conductance)) neuron_to_neuron_elec_syn_15conns (Type: gapJunction: conductance=1.8780000000000001E-10 (SI conductance)) muscle_to_muscle_elec_syn_15conns (Type: gapJunction: conductance=0.0 (SI conductance)) muscle_to_muscle_elec_syn_2conns (Type: gapJunction: conductance=0.0 (SI conductance)) silent (Type: silentSynapse) neuron_to_neuron_exc_syn_2conns (Type: gradedSynapse: conductance=1.2E-9 (SI conductance) delta=0.005 (SI voltage) k=500.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.01 (SI voltage)) neuron_to_neuron_exc_syn_6conns (Type: gradedSynapse: conductance=3.6000000000000004E-9 (SI conductance) delta=0.005 (SI voltage) k=500.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.01 (SI voltage)) neuron_to_neuron_exc_syn_10conns (Type: gradedSynapse: conductance=6.000000000000001E-9 (SI conductance) delta=0.005 (SI voltage) k=500.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.01 (SI voltage)) neuron_to_neuron_exc_syn_12conns (Type: gradedSynapse: conductance=7.200000000000001E-9 (SI conductance) delta=0.005 (SI voltage) k=500.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.01 (SI voltage)) neuron_to_neuron_exc_syn_14conns (Type: gradedSynapse: conductance=8.4E-9 (SI conductance) delta=0.005 (SI voltage) k=500.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.01 (SI voltage)) neuron_to_neuron_exc_syn_4conns (Type: gradedSynapse: conductance=2.4E-9 (SI conductance) delta=0.005 (SI voltage) k=500.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.01 (SI voltage)) neuron_to_neuron_exc_syn_5conns (Type: gradedSynapse: conductance=3.0000000000000004E-9 (SI conductance) delta=0.005 (SI voltage) k=500.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.01 (SI voltage)) neuron_to_neuron_exc_syn_3conns (Type: gradedSynapse: conductance=1.8000000000000002E-9 (SI conductance) delta=0.005 (SI voltage) k=500.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.01 (SI voltage)) neuron_to_neuron_exc_syn_9conns (Type: gradedSynapse: conductance=5.4E-9 (SI conductance) delta=0.005 (SI voltage) k=500.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.01 (SI voltage)) neuron_to_neuron_exc_syn_8conns (Type: gradedSynapse: conductance=4.8E-9 (SI conductance) delta=0.005 (SI voltage) k=500.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.01 (SI voltage)) neuron_to_neuron_exc_syn_20conns (Type: gradedSynapse: conductance=1.2000000000000002E-8 (SI conductance) delta=0.005 (SI voltage) k=500.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.01 (SI voltage)) neuron_to_neuron_exc_syn_1conns (Type: gradedSynapse: conductance=6.0E-10 (SI conductance) delta=0.005 (SI voltage) k=500.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.01 (SI voltage)) neuron_to_neuron_inh_syn_28conns (Type: gradedSynapse: conductance=2.8000000000000003E-8 (SI conductance) delta=0.005 (SI voltage) k=15.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.07 (SI voltage)) neuron_to_neuron_inh_syn_4conns (Type: gradedSynapse: conductance=4.0E-9 (SI conductance) delta=0.005 (SI voltage) k=15.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.07 (SI voltage)) neuron_to_neuron_inh_syn_3conns (Type: gradedSynapse: conductance=3.0000000000000004E-9 (SI conductance) delta=0.005 (SI voltage) k=15.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.07 (SI voltage)) neuron_to_neuron_inh_syn_2conns (Type: gradedSynapse: conductance=2.0E-9 (SI conductance) delta=0.005 (SI voltage) k=15.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.07 (SI voltage)) neuron_to_neuron_inh_syn_1conns (Type: gradedSynapse: conductance=1.0E-9 (SI conductance) delta=0.005 (SI voltage) k=15.0 (SI per_time) Vth=0.0 (SI voltage) erev=-0.07 (SI voltage)) neuron_to_muscle_exc_syn_9conns (Type: gradedSynapse: conductance=9.000000000000001E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) neuron_to_muscle_exc_syn_8conns (Type: gradedSynapse: conductance=8.000000000000001E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) neuron_to_muscle_exc_syn_3conns (Type: gradedSynapse: conductance=3.0E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) neuron_to_muscle_exc_syn_1conns (Type: gradedSynapse: conductance=1.0000000000000002E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) neuron_to_muscle_exc_syn_5conns (Type: gradedSynapse: conductance=5.0E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) neuron_to_muscle_exc_syn_4conns (Type: gradedSynapse: conductance=4.0000000000000007E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) neuron_to_muscle_exc_syn_2conns (Type: gradedSynapse: conductance=2.0000000000000003E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) neuron_to_muscle_exc_syn_6conns (Type: gradedSynapse: conductance=6.0E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) neuron_to_muscle_exc_syn_7conns (Type: gradedSynapse: conductance=7.0E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) neuron_to_muscle_exc_syn_17conns (Type: gradedSynapse: conductance=1.7000000000000001E-9 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) neuron_to_muscle_exc_syn_12conns (Type: gradedSynapse: conductance=1.2E-9 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) neuron_to_muscle_exc_syn_14conns (Type: gradedSynapse: conductance=1.4E-9 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) neuron_to_muscle_exc_syn_10conns (Type: gradedSynapse: conductance=1.0E-9 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) DB1_to_MDL06_exc_syn_3conns (Type: gradedSynapse: conductance=3.0E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) DB1_to_MDL08_exc_syn_3conns (Type: gradedSynapse: conductance=3.0E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) DB1_to_MDL09_exc_syn_6conns (Type: gradedSynapse: conductance=6.0E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) DB1_to_MDR08_exc_syn_6conns (Type: gradedSynapse: conductance=6.0E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) DB1_to_MDR09_exc_syn_2conns (Type: gradedSynapse: conductance=2.0000000000000003E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) DB2_to_MDL09_exc_syn_2conns (Type: gradedSynapse: conductance=2.0000000000000003E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) DB2_to_MDL10_exc_syn_4conns (Type: gradedSynapse: conductance=4.0000000000000007E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) DB2_to_MDL11_exc_syn_5conns (Type: gradedSynapse: conductance=5.0E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) DB2_to_MDL12_exc_syn_1conns (Type: gradedSynapse: conductance=1.0000000000000002E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) DB2_to_MDR09_exc_syn_1conns (Type: gradedSynapse: conductance=1.0000000000000002E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) DB2_to_MDR10_exc_syn_6conns (Type: gradedSynapse: conductance=6.0E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) DB2_to_MDR11_exc_syn_8conns (Type: gradedSynapse: conductance=8.000000000000001E-10 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) neuron_to_muscle_exc_syn_13conns (Type: gradedSynapse: conductance=1.3E-9 (SI conductance) delta=0.019 (SI voltage) k=1205.0 (SI per_time) Vth=0.027 (SI voltage) erev=0.037 (SI voltage)) GenericMuscleCell (Type: cell) GenericNeuronCell (Type: cell) offset_current (Type: pulseGenerator: delay=0.0 (SI time) duration=2.0 (SI time) amplitude=0.0 (SI current)) stim_AVBL_1 (Type: pulseGenerator: delay=0.05 (SI time) duration=1.9000000000000001 (SI time) amplitude=1.5E-11 (SI current)) stim_AVBR_1 (Type: pulseGenerator: delay=0.05 (SI time) duration=1.9000000000000001 (SI time) amplitude=1.5E-11 (SI current)) stim_AS1_1 (Type: pulseGenerator: delay=0.05 (SI time) duration=1.9000000000000001 (SI time) amplitude=2.5E-12 (SI current)) stim_AS2_1 (Type: pulseGenerator: delay=0.05 (SI time) duration=1.9000000000000001 (SI time) amplitude=2.5E-12 (SI current)) stim_AS3_1 (Type: pulseGenerator: delay=0.05 (SI time) duration=1.9000000000000001 (SI time) amplitude=2.5E-12 (SI current)) stim_AS4_1 (Type: pulseGenerator: delay=0.05 (SI time) duration=1.9000000000000001 (SI time) amplitude=2.5E-12 (SI current)) stim_AS5_1 (Type: pulseGenerator: delay=0.05 (SI time) duration=1.9000000000000001 (SI time) amplitude=2.5E-12 (SI current)) stim_AS6_1 (Type: pulseGenerator: delay=0.05 (SI time) duration=1.9000000000000001 (SI time) amplitude=2.5E-12 (SI current)) stim_AS7_1 (Type: pulseGenerator: delay=0.05 (SI time) duration=1.9000000000000001 (SI time) amplitude=2.5E-12 (SI current)) stim_AS8_1 (Type: pulseGenerator: delay=0.05 (SI time) duration=1.9000000000000001 (SI time) amplitude=2.5E-12 (SI current)) stim_AS9_1 (Type: pulseGenerator: delay=0.05 (SI time) duration=1.9000000000000001 (SI time) amplitude=2.5E-12 (SI current)) stim_AS10_1 (Type: pulseGenerator: delay=0.05 (SI time) duration=1.9000000000000001 (SI time) amplitude=2.5E-12 (SI current)) stim_AS11_1 (Type: pulseGenerator: delay=0.05 (SI time) duration=1.9000000000000001 (SI time) amplitude=2.5E-12 (SI current)) c302_C2_AS_DA_DB (Type: network) sim_c302_C2_AS_DA_DB (Type: Simulation: length=2.0 (SI time) step=5.0E-5 (SI time)) This NEURON file has been generated by org.neuroml.export (see https://github.com/NeuroML/org.neuroml.export) org.neuroml.export v1.5.2 org.neuroml.model v1.5.2 jLEMS v0.9.8.9 ''' import neuron import time import hashlib h = neuron.h h.load_file("stdlib.hoc") h.load_file("stdgui.hoc") h("objref p") h("p = new PythonObject()") class NeuronSimulation(): def __init__(self, tstop, dt, seed=123456789): print("\n Starting simulation in NEURON generated from NeuroML2 model...\n") self.seed = seed self.randoms = [] self.next_global_id = 0 # Used in Random123 classes for elements using random(), etc. self.next_spiking_input_id = 0 # Used in Random123 classes for elements using random(), etc. ''' Adding simulation Component(id=sim_c302_C2_AS_DA_DB type=Simulation) of network/component: c302_C2_AS_DA_DB (Type: network) ''' # ###################### Population: AS1 print("Population AS1 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_AS1 = [] h("{ n_AS1 = 1 }") h("objectvar a_AS1[n_AS1]") for i in range(int(h.n_AS1)): h("a_AS1[%i] = new GenericNeuronCell()"%i) h("access a_AS1[%i].soma"%i) self.next_global_id+=1 h("{ a_AS1[0].position(-0.275, -229.038000000000011, 4.738) }") h("proc initialiseV_AS1() { for i = 0, n_AS1-1 { a_AS1[i].set_initial_v() } }") h("objref fih_AS1") h('{fih_AS1 = new FInitializeHandler(0, "initialiseV_AS1()")}') h("proc initialiseIons_AS1() { for i = 0, n_AS1-1 { a_AS1[i].set_initial_ion_properties() } }") h("objref fih_ion_AS1") h('{fih_ion_AS1 = new FInitializeHandler(1, "initialiseIons_AS1()")}') # ###################### Population: AS10 print("Population AS10 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_AS10 = [] h("{ n_AS10 = 1 }") h("objectvar a_AS10[n_AS10]") for i in range(int(h.n_AS10)): h("a_AS10[%i] = new GenericNeuronCell()"%i) h("access a_AS10[%i].soma"%i) self.next_global_id+=1 h("{ a_AS10[0].position(-1.9, 278.25, -24.) }") h("proc initialiseV_AS10() { for i = 0, n_AS10-1 { a_AS10[i].set_initial_v() } }") h("objref fih_AS10") h('{fih_AS10 = new FInitializeHandler(0, "initialiseV_AS10()")}') h("proc initialiseIons_AS10() { for i = 0, n_AS10-1 { a_AS10[i].set_initial_ion_properties() } }") h("objref fih_ion_AS10") h('{fih_ion_AS10 = new FInitializeHandler(1, "initialiseIons_AS10()")}') # ###################### Population: AS11 print("Population AS11 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_AS11 = [] h("{ n_AS11 = 1 }") h("objectvar a_AS11[n_AS11]") for i in range(int(h.n_AS11)): h("a_AS11[%i] = new GenericNeuronCell()"%i) h("access a_AS11[%i].soma"%i) self.next_global_id+=1 h("{ a_AS11[0].position(-1.8750001, 315.699999999999989, -26.124998000000001) }") h("proc initialiseV_AS11() { for i = 0, n_AS11-1 { a_AS11[i].set_initial_v() } }") h("objref fih_AS11") h('{fih_AS11 = new FInitializeHandler(0, "initialiseV_AS11()")}') h("proc initialiseIons_AS11() { for i = 0, n_AS11-1 { a_AS11[i].set_initial_ion_properties() } }") h("objref fih_ion_AS11") h('{fih_ion_AS11 = new FInitializeHandler(1, "initialiseIons_AS11()")}') # ###################### Population: AS2 print("Population AS2 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_AS2 = [] h("{ n_AS2 = 1 }") h("objectvar a_AS2[n_AS2]") for i in range(int(h.n_AS2)): h("a_AS2[%i] = new GenericNeuronCell()"%i) h("access a_AS2[%i].soma"%i) self.next_global_id+=1 h("{ a_AS2[0].position(-1.8750001, -203.875, -12.725) }") h("proc initialiseV_AS2() { for i = 0, n_AS2-1 { a_AS2[i].set_initial_v() } }") h("objref fih_AS2") h('{fih_AS2 = new FInitializeHandler(0, "initialiseV_AS2()")}') h("proc initialiseIons_AS2() { for i = 0, n_AS2-1 { a_AS2[i].set_initial_ion_properties() } }") h("objref fih_ion_AS2") h('{fih_ion_AS2 = new FInitializeHandler(1, "initialiseIons_AS2()")}') # ###################### Population: AS3 print("Population AS3 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_AS3 = [] h("{ n_AS3 = 1 }") h("objectvar a_AS3[n_AS3]") for i in range(int(h.n_AS3)): h("a_AS3[%i] = new GenericNeuronCell()"%i) h("access a_AS3[%i].soma"%i) self.next_global_id+=1 h("{ a_AS3[0].position(-1.9, -151.400010000000009, -45.649997999999997) }") h("proc initialiseV_AS3() { for i = 0, n_AS3-1 { a_AS3[i].set_initial_v() } }") h("objref fih_AS3") h('{fih_AS3 = new FInitializeHandler(0, "initialiseV_AS3()")}') h("proc initialiseIons_AS3() { for i = 0, n_AS3-1 { a_AS3[i].set_initial_ion_properties() } }") h("objref fih_ion_AS3") h('{fih_ion_AS3 = new FInitializeHandler(1, "initialiseIons_AS3()")}') # ###################### Population: AS4 print("Population AS4 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_AS4 = [] h("{ n_AS4 = 1 }") h("objectvar a_AS4[n_AS4]") for i in range(int(h.n_AS4)): h("a_AS4[%i] = new GenericNeuronCell()"%i) h("access a_AS4[%i].soma"%i) self.next_global_id+=1 h("{ a_AS4[0].position(-1.8750001, -90.200005000000004, -65.375) }") h("proc initialiseV_AS4() { for i = 0, n_AS4-1 { a_AS4[i].set_initial_v() } }") h("objref fih_AS4") h('{fih_AS4 = new FInitializeHandler(0, "initialiseV_AS4()")}') h("proc initialiseIons_AS4() { for i = 0, n_AS4-1 { a_AS4[i].set_initial_ion_properties() } }") h("objref fih_ion_AS4") h('{fih_ion_AS4 = new FInitializeHandler(1, "initialiseIons_AS4()")}') # ###################### Population: AS5 print("Population AS5 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_AS5 = [] h("{ n_AS5 = 1 }") h("objectvar a_AS5[n_AS5]") for i in range(int(h.n_AS5)): h("a_AS5[%i] = new GenericNeuronCell()"%i) h("access a_AS5[%i].soma"%i) self.next_global_id+=1 h("{ a_AS5[0].position(-1.8750001, -3.7500002, -52.524999999999999) }") h("proc initialiseV_AS5() { for i = 0, n_AS5-1 { a_AS5[i].set_initial_v() } }") h("objref fih_AS5") h('{fih_AS5 = new FInitializeHandler(0, "initialiseV_AS5()")}') h("proc initialiseIons_AS5() { for i = 0, n_AS5-1 { a_AS5[i].set_initial_ion_properties() } }") h("objref fih_ion_AS5") h('{fih_ion_AS5 = new FInitializeHandler(1, "initialiseIons_AS5()")}') # ###################### Population: AS6 print("Population AS6 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_AS6 = [] h("{ n_AS6 = 1 }") h("objectvar a_AS6[n_AS6]") for i in range(int(h.n_AS6)): h("a_AS6[%i] = new GenericNeuronCell()"%i) h("access a_AS6[%i].soma"%i) self.next_global_id+=1 h("{ a_AS6[0].position(-1.9, 28.25, -34.25) }") h("proc initialiseV_AS6() { for i = 0, n_AS6-1 { a_AS6[i].set_initial_v() } }") h("objref fih_AS6") h('{fih_AS6 = new FInitializeHandler(0, "initialiseV_AS6()")}') h("proc initialiseIons_AS6() { for i = 0, n_AS6-1 { a_AS6[i].set_initial_ion_properties() } }") h("objref fih_ion_AS6") h('{fih_ion_AS6 = new FInitializeHandler(1, "initialiseIons_AS6()")}') # ###################### Population: AS7 print("Population AS7 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_AS7 = [] h("{ n_AS7 = 1 }") h("objectvar a_AS7[n_AS7]") for i in range(int(h.n_AS7)): h("a_AS7[%i] = new GenericNeuronCell()"%i) h("access a_AS7[%i].soma"%i) self.next_global_id+=1 h("{ a_AS7[0].position(-1.9, 119.900000000000006, 3.9500003) }") h("proc initialiseV_AS7() { for i = 0, n_AS7-1 { a_AS7[i].set_initial_v() } }") h("objref fih_AS7") h('{fih_AS7 = new FInitializeHandler(0, "initialiseV_AS7()")}') h("proc initialiseIons_AS7() { for i = 0, n_AS7-1 { a_AS7[i].set_initial_ion_properties() } }") h("objref fih_ion_AS7") h('{fih_ion_AS7 = new FInitializeHandler(1, "initialiseIons_AS7()")}') # ###################### Population: AS8 print("Population AS8 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_AS8 = [] h("{ n_AS8 = 1 }") h("objectvar a_AS8[n_AS8]") for i in range(int(h.n_AS8)): h("a_AS8[%i] = new GenericNeuronCell()"%i) h("access a_AS8[%i].soma"%i) self.next_global_id+=1 h("{ a_AS8[0].position(-1.9, 181.849999999999994, -1.7750001) }") h("proc initialiseV_AS8() { for i = 0, n_AS8-1 { a_AS8[i].set_initial_v() } }") h("objref fih_AS8") h('{fih_AS8 = new FInitializeHandler(0, "initialiseV_AS8()")}') h("proc initialiseIons_AS8() { for i = 0, n_AS8-1 { a_AS8[i].set_initial_ion_properties() } }") h("objref fih_ion_AS8") h('{fih_ion_AS8 = new FInitializeHandler(1, "initialiseIons_AS8()")}') # ###################### Population: AS9 print("Population AS9 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_AS9 = [] h("{ n_AS9 = 1 }") h("objectvar a_AS9[n_AS9]") for i in range(int(h.n_AS9)): h("a_AS9[%i] = new GenericNeuronCell()"%i) h("access a_AS9[%i].soma"%i) self.next_global_id+=1 h("{ a_AS9[0].position(-1.8750001, 228.924990000000008, -14.5) }") h("proc initialiseV_AS9() { for i = 0, n_AS9-1 { a_AS9[i].set_initial_v() } }") h("objref fih_AS9") h('{fih_AS9 = new FInitializeHandler(0, "initialiseV_AS9()")}') h("proc initialiseIons_AS9() { for i = 0, n_AS9-1 { a_AS9[i].set_initial_ion_properties() } }") h("objref fih_ion_AS9") h('{fih_ion_AS9 = new FInitializeHandler(1, "initialiseIons_AS9()")}') # ###################### Population: AVAL print("Population AVAL contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_AVAL = [] h("{ n_AVAL = 1 }") h("objectvar a_AVAL[n_AVAL]") for i in range(int(h.n_AVAL)): h("a_AVAL[%i] = new GenericNeuronCell()"%i) h("access a_AVAL[%i].soma"%i) self.next_global_id+=1 h("{ a_AVAL[0].position(-0.55, -271.5, 37.982999999999997) }") h("proc initialiseV_AVAL() { for i = 0, n_AVAL-1 { a_AVAL[i].set_initial_v() } }") h("objref fih_AVAL") h('{fih_AVAL = new FInitializeHandler(0, "initialiseV_AVAL()")}') h("proc initialiseIons_AVAL() { for i = 0, n_AVAL-1 { a_AVAL[i].set_initial_ion_properties() } }") h("objref fih_ion_AVAL") h('{fih_ion_AVAL = new FInitializeHandler(1, "initialiseIons_AVAL()")}') # ###################### Population: AVAR print("Population AVAR contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_AVAR = [] h("{ n_AVAR = 1 }") h("objectvar a_AVAR[n_AVAR]") for i in range(int(h.n_AVAR)): h("a_AVAR[%i] = new GenericNeuronCell()"%i) h("access a_AVAR[%i].soma"%i) self.next_global_id+=1 h("{ a_AVAR[0].position(-3.5, -271.5, 37.982999999999997) }") h("proc initialiseV_AVAR() { for i = 0, n_AVAR-1 { a_AVAR[i].set_initial_v() } }") h("objref fih_AVAR") h('{fih_AVAR = new FInitializeHandler(0, "initialiseV_AVAR()")}') h("proc initialiseIons_AVAR() { for i = 0, n_AVAR-1 { a_AVAR[i].set_initial_ion_properties() } }") h("objref fih_ion_AVAR") h('{fih_ion_AVAR = new FInitializeHandler(1, "initialiseIons_AVAR()")}') # ###################### Population: AVBL print("Population AVBL contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_AVBL = [] h("{ n_AVBL = 1 }") h("objectvar a_AVBL[n_AVBL]") for i in range(int(h.n_AVBL)): h("a_AVBL[%i] = new GenericNeuronCell()"%i) h("access a_AVBL[%i].soma"%i) self.next_global_id+=1 h("{ a_AVBL[0].position(0.225, -269.793999999999983, 37.863002999999999) }") h("proc initialiseV_AVBL() { for i = 0, n_AVBL-1 { a_AVBL[i].set_initial_v() } }") h("objref fih_AVBL") h('{fih_AVBL = new FInitializeHandler(0, "initialiseV_AVBL()")}') h("proc initialiseIons_AVBL() { for i = 0, n_AVBL-1 { a_AVBL[i].set_initial_ion_properties() } }") h("objref fih_ion_AVBL") h('{fih_ion_AVBL = new FInitializeHandler(1, "initialiseIons_AVBL()")}') # ###################### Population: AVBR print("Population AVBR contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_AVBR = [] h("{ n_AVBR = 1 }") h("objectvar a_AVBR[n_AVBR]") for i in range(int(h.n_AVBR)): h("a_AVBR[%i] = new GenericNeuronCell()"%i) h("access a_AVBR[%i].soma"%i) self.next_global_id+=1 h("{ a_AVBR[0].position(-4.581, -269.793999999999983, 37.863002999999999) }") h("proc initialiseV_AVBR() { for i = 0, n_AVBR-1 { a_AVBR[i].set_initial_v() } }") h("objref fih_AVBR") h('{fih_AVBR = new FInitializeHandler(0, "initialiseV_AVBR()")}') h("proc initialiseIons_AVBR() { for i = 0, n_AVBR-1 { a_AVBR[i].set_initial_ion_properties() } }") h("objref fih_ion_AVBR") h('{fih_ion_AVBR = new FInitializeHandler(1, "initialiseIons_AVBR()")}') # ###################### Population: DA1 print("Population DA1 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DA1 = [] h("{ n_DA1 = 1 }") h("objectvar a_DA1[n_DA1]") for i in range(int(h.n_DA1)): h("a_DA1[%i] = new GenericNeuronCell()"%i) h("access a_DA1[%i].soma"%i) self.next_global_id+=1 h("{ a_DA1[0].position(-0.75, -227.075009999999992, 3.425) }") h("proc initialiseV_DA1() { for i = 0, n_DA1-1 { a_DA1[i].set_initial_v() } }") h("objref fih_DA1") h('{fih_DA1 = new FInitializeHandler(0, "initialiseV_DA1()")}') h("proc initialiseIons_DA1() { for i = 0, n_DA1-1 { a_DA1[i].set_initial_ion_properties() } }") h("objref fih_ion_DA1") h('{fih_ion_DA1 = new FInitializeHandler(1, "initialiseIons_DA1()")}') # ###################### Population: DA2 print("Population DA2 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DA2 = [] h("{ n_DA2 = 1 }") h("objectvar a_DA2[n_DA2]") for i in range(int(h.n_DA2)): h("a_DA2[%i] = new GenericNeuronCell()"%i) h("access a_DA2[%i].soma"%i) self.next_global_id+=1 h("{ a_DA2[0].position(-1.9, -190.75, -21.675000000000001) }") h("proc initialiseV_DA2() { for i = 0, n_DA2-1 { a_DA2[i].set_initial_v() } }") h("objref fih_DA2") h('{fih_DA2 = new FInitializeHandler(0, "initialiseV_DA2()")}') h("proc initialiseIons_DA2() { for i = 0, n_DA2-1 { a_DA2[i].set_initial_ion_properties() } }") h("objref fih_ion_DA2") h('{fih_ion_DA2 = new FInitializeHandler(1, "initialiseIons_DA2()")}') # ###################### Population: DA3 print("Population DA3 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DA3 = [] h("{ n_DA3 = 1 }") h("objectvar a_DA3[n_DA3]") for i in range(int(h.n_DA3)): h("a_DA3[%i] = new GenericNeuronCell()"%i) h("access a_DA3[%i].soma"%i) self.next_global_id+=1 h("{ a_DA3[0].position(-1.65, -123.650000000000006, -58.350002000000003) }") h("proc initialiseV_DA3() { for i = 0, n_DA3-1 { a_DA3[i].set_initial_v() } }") h("objref fih_DA3") h('{fih_DA3 = new FInitializeHandler(0, "initialiseV_DA3()")}') h("proc initialiseIons_DA3() { for i = 0, n_DA3-1 { a_DA3[i].set_initial_ion_properties() } }") h("objref fih_ion_DA3") h('{fih_ion_DA3 = new FInitializeHandler(1, "initialiseIons_DA3()")}') # ###################### Population: DA4 print("Population DA4 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DA4 = [] h("{ n_DA4 = 1 }") h("objectvar a_DA4[n_DA4]") for i in range(int(h.n_DA4)): h("a_DA4[%i] = new GenericNeuronCell()"%i) h("access a_DA4[%i].soma"%i) self.next_global_id+=1 h("{ a_DA4[0].position(-1.7, -32.399999999999999, -61.75) }") h("proc initialiseV_DA4() { for i = 0, n_DA4-1 { a_DA4[i].set_initial_v() } }") h("objref fih_DA4") h('{fih_DA4 = new FInitializeHandler(0, "initialiseV_DA4()")}') h("proc initialiseIons_DA4() { for i = 0, n_DA4-1 { a_DA4[i].set_initial_ion_properties() } }") h("objref fih_ion_DA4") h('{fih_ion_DA4 = new FInitializeHandler(1, "initialiseIons_DA4()")}') # ###################### Population: DA5 print("Population DA5 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DA5 = [] h("{ n_DA5 = 1 }") h("objectvar a_DA5[n_DA5]") for i in range(int(h.n_DA5)): h("a_DA5[%i] = new GenericNeuronCell()"%i) h("access a_DA5[%i].soma"%i) self.next_global_id+=1 h("{ a_DA5[0].position(-1.65, 84.200000000000003, -3.15) }") h("proc initialiseV_DA5() { for i = 0, n_DA5-1 { a_DA5[i].set_initial_v() } }") h("objref fih_DA5") h('{fih_DA5 = new FInitializeHandler(0, "initialiseV_DA5()")}') h("proc initialiseIons_DA5() { for i = 0, n_DA5-1 { a_DA5[i].set_initial_ion_properties() } }") h("objref fih_ion_DA5") h('{fih_ion_DA5 = new FInitializeHandler(1, "initialiseIons_DA5()")}') # ###################### Population: DA6 print("Population DA6 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DA6 = [] h("{ n_DA6 = 1 }") h("objectvar a_DA6[n_DA6]") for i in range(int(h.n_DA6)): h("a_DA6[%i] = new GenericNeuronCell()"%i) h("access a_DA6[%i].soma"%i) self.next_global_id+=1 h("{ a_DA6[0].position(-1.65, 198.675000000000011, -6.3500004) }") h("proc initialiseV_DA6() { for i = 0, n_DA6-1 { a_DA6[i].set_initial_v() } }") h("objref fih_DA6") h('{fih_DA6 = new FInitializeHandler(0, "initialiseV_DA6()")}') h("proc initialiseIons_DA6() { for i = 0, n_DA6-1 { a_DA6[i].set_initial_ion_properties() } }") h("objref fih_ion_DA6") h('{fih_ion_DA6 = new FInitializeHandler(1, "initialiseIons_DA6()")}') # ###################### Population: DA7 print("Population DA7 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DA7 = [] h("{ n_DA7 = 1 }") h("objectvar a_DA7[n_DA7]") for i in range(int(h.n_DA7)): h("a_DA7[%i] = new GenericNeuronCell()"%i) h("access a_DA7[%i].soma"%i) self.next_global_id+=1 h("{ a_DA7[0].position(-1.65, 281.600000000000023, -24.949999999999999) }") h("proc initialiseV_DA7() { for i = 0, n_DA7-1 { a_DA7[i].set_initial_v() } }") h("objref fih_DA7") h('{fih_DA7 = new FInitializeHandler(0, "initialiseV_DA7()")}') h("proc initialiseIons_DA7() { for i = 0, n_DA7-1 { a_DA7[i].set_initial_ion_properties() } }") h("objref fih_ion_DA7") h('{fih_ion_DA7 = new FInitializeHandler(1, "initialiseIons_DA7()")}') # ###################### Population: DA8 print("Population DA8 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DA8 = [] h("{ n_DA8 = 1 }") h("objectvar a_DA8[n_DA8]") for i in range(int(h.n_DA8)): h("a_DA8[%i] = new GenericNeuronCell()"%i) h("access a_DA8[%i].soma"%i) self.next_global_id+=1 h("{ a_DA8[0].position(1.275, 376.800000000000011, -10.925000000000001) }") h("proc initialiseV_DA8() { for i = 0, n_DA8-1 { a_DA8[i].set_initial_v() } }") h("objref fih_DA8") h('{fih_DA8 = new FInitializeHandler(0, "initialiseV_DA8()")}') h("proc initialiseIons_DA8() { for i = 0, n_DA8-1 { a_DA8[i].set_initial_ion_properties() } }") h("objref fih_ion_DA8") h('{fih_ion_DA8 = new FInitializeHandler(1, "initialiseIons_DA8()")}') # ###################### Population: DA9 print("Population DA9 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DA9 = [] h("{ n_DA9 = 1 }") h("objectvar a_DA9[n_DA9]") for i in range(int(h.n_DA9)): h("a_DA9[%i] = new GenericNeuronCell()"%i) h("access a_DA9[%i].soma"%i) self.next_global_id+=1 h("{ a_DA9[0].position(-4.6, 376.800000000000011, -10.925000000000001) }") h("proc initialiseV_DA9() { for i = 0, n_DA9-1 { a_DA9[i].set_initial_v() } }") h("objref fih_DA9") h('{fih_DA9 = new FInitializeHandler(0, "initialiseV_DA9()")}') h("proc initialiseIons_DA9() { for i = 0, n_DA9-1 { a_DA9[i].set_initial_ion_properties() } }") h("objref fih_ion_DA9") h('{fih_ion_DA9 = new FInitializeHandler(1, "initialiseIons_DA9()")}') # ###################### Population: DB1 print("Population DB1 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DB1 = [] h("{ n_DB1 = 1 }") h("objectvar a_DB1[n_DB1]") for i in range(int(h.n_DB1)): h("a_DB1[%i] = new GenericNeuronCell()"%i) h("access a_DB1[%i].soma"%i) self.next_global_id+=1 h("{ a_DB1[0].position(-1.9, -230.349989999999991, 6.85) }") h("proc initialiseV_DB1() { for i = 0, n_DB1-1 { a_DB1[i].set_initial_v() } }") h("objref fih_DB1") h('{fih_DB1 = new FInitializeHandler(0, "initialiseV_DB1()")}') h("proc initialiseIons_DB1() { for i = 0, n_DB1-1 { a_DB1[i].set_initial_ion_properties() } }") h("objref fih_ion_DB1") h('{fih_ion_DB1 = new FInitializeHandler(1, "initialiseIons_DB1()")}') # ###################### Population: DB2 print("Population DB2 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DB2 = [] h("{ n_DB2 = 1 }") h("objectvar a_DB2[n_DB2]") for i in range(int(h.n_DB2)): h("a_DB2[%i] = new GenericNeuronCell()"%i) h("access a_DB2[%i].soma"%i) self.next_global_id+=1 h("{ a_DB2[0].position(-0.2, -244.5, 15.787000000000001) }") h("proc initialiseV_DB2() { for i = 0, n_DB2-1 { a_DB2[i].set_initial_v() } }") h("objref fih_DB2") h('{fih_DB2 = new FInitializeHandler(0, "initialiseV_DB2()")}') h("proc initialiseIons_DB2() { for i = 0, n_DB2-1 { a_DB2[i].set_initial_ion_properties() } }") h("objref fih_ion_DB2") h('{fih_ion_DB2 = new FInitializeHandler(1, "initialiseIons_DB2()")}') # ###################### Population: DB3 print("Population DB3 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DB3 = [] h("{ n_DB3 = 1 }") h("objectvar a_DB3[n_DB3]") for i in range(int(h.n_DB3)): h("a_DB3[%i] = new GenericNeuronCell()"%i) h("access a_DB3[%i].soma"%i) self.next_global_id+=1 h("{ a_DB3[0].position(-1.85, -195.275000000000006, -18.524999999999999) }") h("proc initialiseV_DB3() { for i = 0, n_DB3-1 { a_DB3[i].set_initial_v() } }") h("objref fih_DB3") h('{fih_DB3 = new FInitializeHandler(0, "initialiseV_DB3()")}') h("proc initialiseIons_DB3() { for i = 0, n_DB3-1 { a_DB3[i].set_initial_ion_properties() } }") h("objref fih_ion_DB3") h('{fih_ion_DB3 = new FInitializeHandler(1, "initialiseIons_DB3()")}') # ###################### Population: DB4 print("Population DB4 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DB4 = [] h("{ n_DB4 = 1 }") h("objectvar a_DB4[n_DB4]") for i in range(int(h.n_DB4)): h("a_DB4[%i] = new GenericNeuronCell()"%i) h("access a_DB4[%i].soma"%i) self.next_global_id+=1 h("{ a_DB4[0].position(-1.8750001, -96.275000000000006, -64.650000000000006) }") h("proc initialiseV_DB4() { for i = 0, n_DB4-1 { a_DB4[i].set_initial_v() } }") h("objref fih_DB4") h('{fih_DB4 = new FInitializeHandler(0, "initialiseV_DB4()")}') h("proc initialiseIons_DB4() { for i = 0, n_DB4-1 { a_DB4[i].set_initial_ion_properties() } }") h("objref fih_ion_DB4") h('{fih_ion_DB4 = new FInitializeHandler(1, "initialiseIons_DB4()")}') # ###################### Population: DB5 print("Population DB5 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DB5 = [] h("{ n_DB5 = 1 }") h("objectvar a_DB5[n_DB5]") for i in range(int(h.n_DB5)): h("a_DB5[%i] = new GenericNeuronCell()"%i) h("access a_DB5[%i].soma"%i) self.next_global_id+=1 h("{ a_DB5[0].position(-4.05, 35.25, -30.449999999999999) }") h("proc initialiseV_DB5() { for i = 0, n_DB5-1 { a_DB5[i].set_initial_v() } }") h("objref fih_DB5") h('{fih_DB5 = new FInitializeHandler(0, "initialiseV_DB5()")}') h("proc initialiseIons_DB5() { for i = 0, n_DB5-1 { a_DB5[i].set_initial_ion_properties() } }") h("objref fih_ion_DB5") h('{fih_ion_DB5 = new FInitializeHandler(1, "initialiseIons_DB5()")}') # ###################### Population: DB6 print("Population DB6 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DB6 = [] h("{ n_DB6 = 1 }") h("objectvar a_DB6[n_DB6]") for i in range(int(h.n_DB6)): h("a_DB6[%i] = new GenericNeuronCell()"%i) h("access a_DB6[%i].soma"%i) self.next_global_id+=1 h("{ a_DB6[0].position(-1.8249999, 178.099999999999994, -0.2) }") h("proc initialiseV_DB6() { for i = 0, n_DB6-1 { a_DB6[i].set_initial_v() } }") h("objref fih_DB6") h('{fih_DB6 = new FInitializeHandler(0, "initialiseV_DB6()")}') h("proc initialiseIons_DB6() { for i = 0, n_DB6-1 { a_DB6[i].set_initial_ion_properties() } }") h("objref fih_ion_DB6") h('{fih_ion_DB6 = new FInitializeHandler(1, "initialiseIons_DB6()")}') # ###################### Population: DB7 print("Population DB7 contains 1 instance(s) of component: GenericNeuronCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericNeuronCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericNeuronCell.hoc") a_DB7 = [] h("{ n_DB7 = 1 }") h("objectvar a_DB7[n_DB7]") for i in range(int(h.n_DB7)): h("a_DB7[%i] = new GenericNeuronCell()"%i) h("access a_DB7[%i].soma"%i) self.next_global_id+=1 h("{ a_DB7[0].position(-1.85, 267.75, -22.625) }") h("proc initialiseV_DB7() { for i = 0, n_DB7-1 { a_DB7[i].set_initial_v() } }") h("objref fih_DB7") h('{fih_DB7 = new FInitializeHandler(0, "initialiseV_DB7()")}') h("proc initialiseIons_DB7() { for i = 0, n_DB7-1 { a_DB7[i].set_initial_ion_properties() } }") h("objref fih_ion_DB7") h('{fih_ion_DB7 = new FInitializeHandler(1, "initialiseIons_DB7()")}') # ###################### Population: MDR01 print("Population MDR01 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR01 = [] h("{ n_MDR01 = 1 }") h("objectvar a_MDR01[n_MDR01]") for i in range(int(h.n_MDR01)): h("a_MDR01[%i] = new GenericMuscleCell()"%i) h("access a_MDR01[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR01[0].position(80., -270., 80.) }") h("proc initialiseV_MDR01() { for i = 0, n_MDR01-1 { a_MDR01[i].set_initial_v() } }") h("objref fih_MDR01") h('{fih_MDR01 = new FInitializeHandler(0, "initialiseV_MDR01()")}') h("proc initialiseIons_MDR01() { for i = 0, n_MDR01-1 { a_MDR01[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR01") h('{fih_ion_MDR01 = new FInitializeHandler(1, "initialiseIons_MDR01()")}') # ###################### Population: MDR02 print("Population MDR02 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR02 = [] h("{ n_MDR02 = 1 }") h("objectvar a_MDR02[n_MDR02]") for i in range(int(h.n_MDR02)): h("a_MDR02[%i] = new GenericMuscleCell()"%i) h("access a_MDR02[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR02[0].position(80., -240., 80.) }") h("proc initialiseV_MDR02() { for i = 0, n_MDR02-1 { a_MDR02[i].set_initial_v() } }") h("objref fih_MDR02") h('{fih_MDR02 = new FInitializeHandler(0, "initialiseV_MDR02()")}') h("proc initialiseIons_MDR02() { for i = 0, n_MDR02-1 { a_MDR02[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR02") h('{fih_ion_MDR02 = new FInitializeHandler(1, "initialiseIons_MDR02()")}') # ###################### Population: MDR03 print("Population MDR03 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR03 = [] h("{ n_MDR03 = 1 }") h("objectvar a_MDR03[n_MDR03]") for i in range(int(h.n_MDR03)): h("a_MDR03[%i] = new GenericMuscleCell()"%i) h("access a_MDR03[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR03[0].position(80., -210., 80.) }") h("proc initialiseV_MDR03() { for i = 0, n_MDR03-1 { a_MDR03[i].set_initial_v() } }") h("objref fih_MDR03") h('{fih_MDR03 = new FInitializeHandler(0, "initialiseV_MDR03()")}') h("proc initialiseIons_MDR03() { for i = 0, n_MDR03-1 { a_MDR03[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR03") h('{fih_ion_MDR03 = new FInitializeHandler(1, "initialiseIons_MDR03()")}') # ###################### Population: MDR04 print("Population MDR04 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR04 = [] h("{ n_MDR04 = 1 }") h("objectvar a_MDR04[n_MDR04]") for i in range(int(h.n_MDR04)): h("a_MDR04[%i] = new GenericMuscleCell()"%i) h("access a_MDR04[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR04[0].position(80., -180., 80.) }") h("proc initialiseV_MDR04() { for i = 0, n_MDR04-1 { a_MDR04[i].set_initial_v() } }") h("objref fih_MDR04") h('{fih_MDR04 = new FInitializeHandler(0, "initialiseV_MDR04()")}') h("proc initialiseIons_MDR04() { for i = 0, n_MDR04-1 { a_MDR04[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR04") h('{fih_ion_MDR04 = new FInitializeHandler(1, "initialiseIons_MDR04()")}') # ###################### Population: MDR05 print("Population MDR05 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR05 = [] h("{ n_MDR05 = 1 }") h("objectvar a_MDR05[n_MDR05]") for i in range(int(h.n_MDR05)): h("a_MDR05[%i] = new GenericMuscleCell()"%i) h("access a_MDR05[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR05[0].position(80., -150., 80.) }") h("proc initialiseV_MDR05() { for i = 0, n_MDR05-1 { a_MDR05[i].set_initial_v() } }") h("objref fih_MDR05") h('{fih_MDR05 = new FInitializeHandler(0, "initialiseV_MDR05()")}') h("proc initialiseIons_MDR05() { for i = 0, n_MDR05-1 { a_MDR05[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR05") h('{fih_ion_MDR05 = new FInitializeHandler(1, "initialiseIons_MDR05()")}') # ###################### Population: MDR06 print("Population MDR06 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR06 = [] h("{ n_MDR06 = 1 }") h("objectvar a_MDR06[n_MDR06]") for i in range(int(h.n_MDR06)): h("a_MDR06[%i] = new GenericMuscleCell()"%i) h("access a_MDR06[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR06[0].position(80., -120., 80.) }") h("proc initialiseV_MDR06() { for i = 0, n_MDR06-1 { a_MDR06[i].set_initial_v() } }") h("objref fih_MDR06") h('{fih_MDR06 = new FInitializeHandler(0, "initialiseV_MDR06()")}') h("proc initialiseIons_MDR06() { for i = 0, n_MDR06-1 { a_MDR06[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR06") h('{fih_ion_MDR06 = new FInitializeHandler(1, "initialiseIons_MDR06()")}') # ###################### Population: MDR07 print("Population MDR07 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR07 = [] h("{ n_MDR07 = 1 }") h("objectvar a_MDR07[n_MDR07]") for i in range(int(h.n_MDR07)): h("a_MDR07[%i] = new GenericMuscleCell()"%i) h("access a_MDR07[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR07[0].position(80., -90., 80.) }") h("proc initialiseV_MDR07() { for i = 0, n_MDR07-1 { a_MDR07[i].set_initial_v() } }") h("objref fih_MDR07") h('{fih_MDR07 = new FInitializeHandler(0, "initialiseV_MDR07()")}') h("proc initialiseIons_MDR07() { for i = 0, n_MDR07-1 { a_MDR07[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR07") h('{fih_ion_MDR07 = new FInitializeHandler(1, "initialiseIons_MDR07()")}') # ###################### Population: MDR08 print("Population MDR08 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR08 = [] h("{ n_MDR08 = 1 }") h("objectvar a_MDR08[n_MDR08]") for i in range(int(h.n_MDR08)): h("a_MDR08[%i] = new GenericMuscleCell()"%i) h("access a_MDR08[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR08[0].position(80., -60., 80.) }") h("proc initialiseV_MDR08() { for i = 0, n_MDR08-1 { a_MDR08[i].set_initial_v() } }") h("objref fih_MDR08") h('{fih_MDR08 = new FInitializeHandler(0, "initialiseV_MDR08()")}') h("proc initialiseIons_MDR08() { for i = 0, n_MDR08-1 { a_MDR08[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR08") h('{fih_ion_MDR08 = new FInitializeHandler(1, "initialiseIons_MDR08()")}') # ###################### Population: MDR09 print("Population MDR09 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR09 = [] h("{ n_MDR09 = 1 }") h("objectvar a_MDR09[n_MDR09]") for i in range(int(h.n_MDR09)): h("a_MDR09[%i] = new GenericMuscleCell()"%i) h("access a_MDR09[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR09[0].position(80., -30., 80.) }") h("proc initialiseV_MDR09() { for i = 0, n_MDR09-1 { a_MDR09[i].set_initial_v() } }") h("objref fih_MDR09") h('{fih_MDR09 = new FInitializeHandler(0, "initialiseV_MDR09()")}') h("proc initialiseIons_MDR09() { for i = 0, n_MDR09-1 { a_MDR09[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR09") h('{fih_ion_MDR09 = new FInitializeHandler(1, "initialiseIons_MDR09()")}') # ###################### Population: MDR10 print("Population MDR10 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR10 = [] h("{ n_MDR10 = 1 }") h("objectvar a_MDR10[n_MDR10]") for i in range(int(h.n_MDR10)): h("a_MDR10[%i] = new GenericMuscleCell()"%i) h("access a_MDR10[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR10[0].position(80., 0., 80.) }") h("proc initialiseV_MDR10() { for i = 0, n_MDR10-1 { a_MDR10[i].set_initial_v() } }") h("objref fih_MDR10") h('{fih_MDR10 = new FInitializeHandler(0, "initialiseV_MDR10()")}') h("proc initialiseIons_MDR10() { for i = 0, n_MDR10-1 { a_MDR10[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR10") h('{fih_ion_MDR10 = new FInitializeHandler(1, "initialiseIons_MDR10()")}') # ###################### Population: MDR11 print("Population MDR11 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR11 = [] h("{ n_MDR11 = 1 }") h("objectvar a_MDR11[n_MDR11]") for i in range(int(h.n_MDR11)): h("a_MDR11[%i] = new GenericMuscleCell()"%i) h("access a_MDR11[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR11[0].position(80., 30., 80.) }") h("proc initialiseV_MDR11() { for i = 0, n_MDR11-1 { a_MDR11[i].set_initial_v() } }") h("objref fih_MDR11") h('{fih_MDR11 = new FInitializeHandler(0, "initialiseV_MDR11()")}') h("proc initialiseIons_MDR11() { for i = 0, n_MDR11-1 { a_MDR11[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR11") h('{fih_ion_MDR11 = new FInitializeHandler(1, "initialiseIons_MDR11()")}') # ###################### Population: MDR12 print("Population MDR12 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR12 = [] h("{ n_MDR12 = 1 }") h("objectvar a_MDR12[n_MDR12]") for i in range(int(h.n_MDR12)): h("a_MDR12[%i] = new GenericMuscleCell()"%i) h("access a_MDR12[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR12[0].position(80., 60., 80.) }") h("proc initialiseV_MDR12() { for i = 0, n_MDR12-1 { a_MDR12[i].set_initial_v() } }") h("objref fih_MDR12") h('{fih_MDR12 = new FInitializeHandler(0, "initialiseV_MDR12()")}') h("proc initialiseIons_MDR12() { for i = 0, n_MDR12-1 { a_MDR12[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR12") h('{fih_ion_MDR12 = new FInitializeHandler(1, "initialiseIons_MDR12()")}') # ###################### Population: MDR13 print("Population MDR13 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR13 = [] h("{ n_MDR13 = 1 }") h("objectvar a_MDR13[n_MDR13]") for i in range(int(h.n_MDR13)): h("a_MDR13[%i] = new GenericMuscleCell()"%i) h("access a_MDR13[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR13[0].position(80., 90., 80.) }") h("proc initialiseV_MDR13() { for i = 0, n_MDR13-1 { a_MDR13[i].set_initial_v() } }") h("objref fih_MDR13") h('{fih_MDR13 = new FInitializeHandler(0, "initialiseV_MDR13()")}') h("proc initialiseIons_MDR13() { for i = 0, n_MDR13-1 { a_MDR13[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR13") h('{fih_ion_MDR13 = new FInitializeHandler(1, "initialiseIons_MDR13()")}') # ###################### Population: MDR14 print("Population MDR14 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR14 = [] h("{ n_MDR14 = 1 }") h("objectvar a_MDR14[n_MDR14]") for i in range(int(h.n_MDR14)): h("a_MDR14[%i] = new GenericMuscleCell()"%i) h("access a_MDR14[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR14[0].position(80., 120., 80.) }") h("proc initialiseV_MDR14() { for i = 0, n_MDR14-1 { a_MDR14[i].set_initial_v() } }") h("objref fih_MDR14") h('{fih_MDR14 = new FInitializeHandler(0, "initialiseV_MDR14()")}') h("proc initialiseIons_MDR14() { for i = 0, n_MDR14-1 { a_MDR14[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR14") h('{fih_ion_MDR14 = new FInitializeHandler(1, "initialiseIons_MDR14()")}') # ###################### Population: MDR15 print("Population MDR15 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR15 = [] h("{ n_MDR15 = 1 }") h("objectvar a_MDR15[n_MDR15]") for i in range(int(h.n_MDR15)): h("a_MDR15[%i] = new GenericMuscleCell()"%i) h("access a_MDR15[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR15[0].position(80., 150., 80.) }") h("proc initialiseV_MDR15() { for i = 0, n_MDR15-1 { a_MDR15[i].set_initial_v() } }") h("objref fih_MDR15") h('{fih_MDR15 = new FInitializeHandler(0, "initialiseV_MDR15()")}') h("proc initialiseIons_MDR15() { for i = 0, n_MDR15-1 { a_MDR15[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR15") h('{fih_ion_MDR15 = new FInitializeHandler(1, "initialiseIons_MDR15()")}') # ###################### Population: MDR16 print("Population MDR16 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR16 = [] h("{ n_MDR16 = 1 }") h("objectvar a_MDR16[n_MDR16]") for i in range(int(h.n_MDR16)): h("a_MDR16[%i] = new GenericMuscleCell()"%i) h("access a_MDR16[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR16[0].position(80., 180., 80.) }") h("proc initialiseV_MDR16() { for i = 0, n_MDR16-1 { a_MDR16[i].set_initial_v() } }") h("objref fih_MDR16") h('{fih_MDR16 = new FInitializeHandler(0, "initialiseV_MDR16()")}') h("proc initialiseIons_MDR16() { for i = 0, n_MDR16-1 { a_MDR16[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR16") h('{fih_ion_MDR16 = new FInitializeHandler(1, "initialiseIons_MDR16()")}') # ###################### Population: MDR17 print("Population MDR17 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR17 = [] h("{ n_MDR17 = 1 }") h("objectvar a_MDR17[n_MDR17]") for i in range(int(h.n_MDR17)): h("a_MDR17[%i] = new GenericMuscleCell()"%i) h("access a_MDR17[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR17[0].position(80., 210., 80.) }") h("proc initialiseV_MDR17() { for i = 0, n_MDR17-1 { a_MDR17[i].set_initial_v() } }") h("objref fih_MDR17") h('{fih_MDR17 = new FInitializeHandler(0, "initialiseV_MDR17()")}') h("proc initialiseIons_MDR17() { for i = 0, n_MDR17-1 { a_MDR17[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR17") h('{fih_ion_MDR17 = new FInitializeHandler(1, "initialiseIons_MDR17()")}') # ###################### Population: MDR18 print("Population MDR18 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR18 = [] h("{ n_MDR18 = 1 }") h("objectvar a_MDR18[n_MDR18]") for i in range(int(h.n_MDR18)): h("a_MDR18[%i] = new GenericMuscleCell()"%i) h("access a_MDR18[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR18[0].position(80., 240., 80.) }") h("proc initialiseV_MDR18() { for i = 0, n_MDR18-1 { a_MDR18[i].set_initial_v() } }") h("objref fih_MDR18") h('{fih_MDR18 = new FInitializeHandler(0, "initialiseV_MDR18()")}') h("proc initialiseIons_MDR18() { for i = 0, n_MDR18-1 { a_MDR18[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR18") h('{fih_ion_MDR18 = new FInitializeHandler(1, "initialiseIons_MDR18()")}') # ###################### Population: MDR19 print("Population MDR19 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR19 = [] h("{ n_MDR19 = 1 }") h("objectvar a_MDR19[n_MDR19]") for i in range(int(h.n_MDR19)): h("a_MDR19[%i] = new GenericMuscleCell()"%i) h("access a_MDR19[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR19[0].position(80., 270., 80.) }") h("proc initialiseV_MDR19() { for i = 0, n_MDR19-1 { a_MDR19[i].set_initial_v() } }") h("objref fih_MDR19") h('{fih_MDR19 = new FInitializeHandler(0, "initialiseV_MDR19()")}') h("proc initialiseIons_MDR19() { for i = 0, n_MDR19-1 { a_MDR19[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR19") h('{fih_ion_MDR19 = new FInitializeHandler(1, "initialiseIons_MDR19()")}') # ###################### Population: MDR20 print("Population MDR20 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR20 = [] h("{ n_MDR20 = 1 }") h("objectvar a_MDR20[n_MDR20]") for i in range(int(h.n_MDR20)): h("a_MDR20[%i] = new GenericMuscleCell()"%i) h("access a_MDR20[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR20[0].position(80., 300., 80.) }") h("proc initialiseV_MDR20() { for i = 0, n_MDR20-1 { a_MDR20[i].set_initial_v() } }") h("objref fih_MDR20") h('{fih_MDR20 = new FInitializeHandler(0, "initialiseV_MDR20()")}') h("proc initialiseIons_MDR20() { for i = 0, n_MDR20-1 { a_MDR20[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR20") h('{fih_ion_MDR20 = new FInitializeHandler(1, "initialiseIons_MDR20()")}') # ###################### Population: MDR21 print("Population MDR21 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR21 = [] h("{ n_MDR21 = 1 }") h("objectvar a_MDR21[n_MDR21]") for i in range(int(h.n_MDR21)): h("a_MDR21[%i] = new GenericMuscleCell()"%i) h("access a_MDR21[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR21[0].position(80., 330., 80.) }") h("proc initialiseV_MDR21() { for i = 0, n_MDR21-1 { a_MDR21[i].set_initial_v() } }") h("objref fih_MDR21") h('{fih_MDR21 = new FInitializeHandler(0, "initialiseV_MDR21()")}') h("proc initialiseIons_MDR21() { for i = 0, n_MDR21-1 { a_MDR21[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR21") h('{fih_ion_MDR21 = new FInitializeHandler(1, "initialiseIons_MDR21()")}') # ###################### Population: MDR22 print("Population MDR22 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR22 = [] h("{ n_MDR22 = 1 }") h("objectvar a_MDR22[n_MDR22]") for i in range(int(h.n_MDR22)): h("a_MDR22[%i] = new GenericMuscleCell()"%i) h("access a_MDR22[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR22[0].position(80., 360., 80.) }") h("proc initialiseV_MDR22() { for i = 0, n_MDR22-1 { a_MDR22[i].set_initial_v() } }") h("objref fih_MDR22") h('{fih_MDR22 = new FInitializeHandler(0, "initialiseV_MDR22()")}') h("proc initialiseIons_MDR22() { for i = 0, n_MDR22-1 { a_MDR22[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR22") h('{fih_ion_MDR22 = new FInitializeHandler(1, "initialiseIons_MDR22()")}') # ###################### Population: MDR23 print("Population MDR23 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR23 = [] h("{ n_MDR23 = 1 }") h("objectvar a_MDR23[n_MDR23]") for i in range(int(h.n_MDR23)): h("a_MDR23[%i] = new GenericMuscleCell()"%i) h("access a_MDR23[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR23[0].position(80., 390., 80.) }") h("proc initialiseV_MDR23() { for i = 0, n_MDR23-1 { a_MDR23[i].set_initial_v() } }") h("objref fih_MDR23") h('{fih_MDR23 = new FInitializeHandler(0, "initialiseV_MDR23()")}') h("proc initialiseIons_MDR23() { for i = 0, n_MDR23-1 { a_MDR23[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR23") h('{fih_ion_MDR23 = new FInitializeHandler(1, "initialiseIons_MDR23()")}') # ###################### Population: MDR24 print("Population MDR24 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDR24 = [] h("{ n_MDR24 = 1 }") h("objectvar a_MDR24[n_MDR24]") for i in range(int(h.n_MDR24)): h("a_MDR24[%i] = new GenericMuscleCell()"%i) h("access a_MDR24[%i].soma"%i) self.next_global_id+=1 h("{ a_MDR24[0].position(80., 420., 80.) }") h("proc initialiseV_MDR24() { for i = 0, n_MDR24-1 { a_MDR24[i].set_initial_v() } }") h("objref fih_MDR24") h('{fih_MDR24 = new FInitializeHandler(0, "initialiseV_MDR24()")}') h("proc initialiseIons_MDR24() { for i = 0, n_MDR24-1 { a_MDR24[i].set_initial_ion_properties() } }") h("objref fih_ion_MDR24") h('{fih_ion_MDR24 = new FInitializeHandler(1, "initialiseIons_MDR24()")}') # ###################### Population: MVR01 print("Population MVR01 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR01 = [] h("{ n_MVR01 = 1 }") h("objectvar a_MVR01[n_MVR01]") for i in range(int(h.n_MVR01)): h("a_MVR01[%i] = new GenericMuscleCell()"%i) h("access a_MVR01[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR01[0].position(-80., -270., 80.) }") h("proc initialiseV_MVR01() { for i = 0, n_MVR01-1 { a_MVR01[i].set_initial_v() } }") h("objref fih_MVR01") h('{fih_MVR01 = new FInitializeHandler(0, "initialiseV_MVR01()")}') h("proc initialiseIons_MVR01() { for i = 0, n_MVR01-1 { a_MVR01[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR01") h('{fih_ion_MVR01 = new FInitializeHandler(1, "initialiseIons_MVR01()")}') # ###################### Population: MVR02 print("Population MVR02 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR02 = [] h("{ n_MVR02 = 1 }") h("objectvar a_MVR02[n_MVR02]") for i in range(int(h.n_MVR02)): h("a_MVR02[%i] = new GenericMuscleCell()"%i) h("access a_MVR02[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR02[0].position(-80., -240., 80.) }") h("proc initialiseV_MVR02() { for i = 0, n_MVR02-1 { a_MVR02[i].set_initial_v() } }") h("objref fih_MVR02") h('{fih_MVR02 = new FInitializeHandler(0, "initialiseV_MVR02()")}') h("proc initialiseIons_MVR02() { for i = 0, n_MVR02-1 { a_MVR02[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR02") h('{fih_ion_MVR02 = new FInitializeHandler(1, "initialiseIons_MVR02()")}') # ###################### Population: MVR03 print("Population MVR03 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR03 = [] h("{ n_MVR03 = 1 }") h("objectvar a_MVR03[n_MVR03]") for i in range(int(h.n_MVR03)): h("a_MVR03[%i] = new GenericMuscleCell()"%i) h("access a_MVR03[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR03[0].position(-80., -210., 80.) }") h("proc initialiseV_MVR03() { for i = 0, n_MVR03-1 { a_MVR03[i].set_initial_v() } }") h("objref fih_MVR03") h('{fih_MVR03 = new FInitializeHandler(0, "initialiseV_MVR03()")}') h("proc initialiseIons_MVR03() { for i = 0, n_MVR03-1 { a_MVR03[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR03") h('{fih_ion_MVR03 = new FInitializeHandler(1, "initialiseIons_MVR03()")}') # ###################### Population: MVR04 print("Population MVR04 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR04 = [] h("{ n_MVR04 = 1 }") h("objectvar a_MVR04[n_MVR04]") for i in range(int(h.n_MVR04)): h("a_MVR04[%i] = new GenericMuscleCell()"%i) h("access a_MVR04[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR04[0].position(-80., -180., 80.) }") h("proc initialiseV_MVR04() { for i = 0, n_MVR04-1 { a_MVR04[i].set_initial_v() } }") h("objref fih_MVR04") h('{fih_MVR04 = new FInitializeHandler(0, "initialiseV_MVR04()")}') h("proc initialiseIons_MVR04() { for i = 0, n_MVR04-1 { a_MVR04[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR04") h('{fih_ion_MVR04 = new FInitializeHandler(1, "initialiseIons_MVR04()")}') # ###################### Population: MVR05 print("Population MVR05 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR05 = [] h("{ n_MVR05 = 1 }") h("objectvar a_MVR05[n_MVR05]") for i in range(int(h.n_MVR05)): h("a_MVR05[%i] = new GenericMuscleCell()"%i) h("access a_MVR05[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR05[0].position(-80., -150., 80.) }") h("proc initialiseV_MVR05() { for i = 0, n_MVR05-1 { a_MVR05[i].set_initial_v() } }") h("objref fih_MVR05") h('{fih_MVR05 = new FInitializeHandler(0, "initialiseV_MVR05()")}') h("proc initialiseIons_MVR05() { for i = 0, n_MVR05-1 { a_MVR05[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR05") h('{fih_ion_MVR05 = new FInitializeHandler(1, "initialiseIons_MVR05()")}') # ###################### Population: MVR06 print("Population MVR06 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR06 = [] h("{ n_MVR06 = 1 }") h("objectvar a_MVR06[n_MVR06]") for i in range(int(h.n_MVR06)): h("a_MVR06[%i] = new GenericMuscleCell()"%i) h("access a_MVR06[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR06[0].position(-80., -120., 80.) }") h("proc initialiseV_MVR06() { for i = 0, n_MVR06-1 { a_MVR06[i].set_initial_v() } }") h("objref fih_MVR06") h('{fih_MVR06 = new FInitializeHandler(0, "initialiseV_MVR06()")}') h("proc initialiseIons_MVR06() { for i = 0, n_MVR06-1 { a_MVR06[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR06") h('{fih_ion_MVR06 = new FInitializeHandler(1, "initialiseIons_MVR06()")}') # ###################### Population: MVR07 print("Population MVR07 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR07 = [] h("{ n_MVR07 = 1 }") h("objectvar a_MVR07[n_MVR07]") for i in range(int(h.n_MVR07)): h("a_MVR07[%i] = new GenericMuscleCell()"%i) h("access a_MVR07[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR07[0].position(-80., -90., 80.) }") h("proc initialiseV_MVR07() { for i = 0, n_MVR07-1 { a_MVR07[i].set_initial_v() } }") h("objref fih_MVR07") h('{fih_MVR07 = new FInitializeHandler(0, "initialiseV_MVR07()")}') h("proc initialiseIons_MVR07() { for i = 0, n_MVR07-1 { a_MVR07[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR07") h('{fih_ion_MVR07 = new FInitializeHandler(1, "initialiseIons_MVR07()")}') # ###################### Population: MVR08 print("Population MVR08 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR08 = [] h("{ n_MVR08 = 1 }") h("objectvar a_MVR08[n_MVR08]") for i in range(int(h.n_MVR08)): h("a_MVR08[%i] = new GenericMuscleCell()"%i) h("access a_MVR08[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR08[0].position(-80., -60., 80.) }") h("proc initialiseV_MVR08() { for i = 0, n_MVR08-1 { a_MVR08[i].set_initial_v() } }") h("objref fih_MVR08") h('{fih_MVR08 = new FInitializeHandler(0, "initialiseV_MVR08()")}') h("proc initialiseIons_MVR08() { for i = 0, n_MVR08-1 { a_MVR08[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR08") h('{fih_ion_MVR08 = new FInitializeHandler(1, "initialiseIons_MVR08()")}') # ###################### Population: MVR09 print("Population MVR09 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR09 = [] h("{ n_MVR09 = 1 }") h("objectvar a_MVR09[n_MVR09]") for i in range(int(h.n_MVR09)): h("a_MVR09[%i] = new GenericMuscleCell()"%i) h("access a_MVR09[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR09[0].position(-80., -30., 80.) }") h("proc initialiseV_MVR09() { for i = 0, n_MVR09-1 { a_MVR09[i].set_initial_v() } }") h("objref fih_MVR09") h('{fih_MVR09 = new FInitializeHandler(0, "initialiseV_MVR09()")}') h("proc initialiseIons_MVR09() { for i = 0, n_MVR09-1 { a_MVR09[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR09") h('{fih_ion_MVR09 = new FInitializeHandler(1, "initialiseIons_MVR09()")}') # ###################### Population: MVR10 print("Population MVR10 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR10 = [] h("{ n_MVR10 = 1 }") h("objectvar a_MVR10[n_MVR10]") for i in range(int(h.n_MVR10)): h("a_MVR10[%i] = new GenericMuscleCell()"%i) h("access a_MVR10[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR10[0].position(-80., 0., 80.) }") h("proc initialiseV_MVR10() { for i = 0, n_MVR10-1 { a_MVR10[i].set_initial_v() } }") h("objref fih_MVR10") h('{fih_MVR10 = new FInitializeHandler(0, "initialiseV_MVR10()")}') h("proc initialiseIons_MVR10() { for i = 0, n_MVR10-1 { a_MVR10[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR10") h('{fih_ion_MVR10 = new FInitializeHandler(1, "initialiseIons_MVR10()")}') # ###################### Population: MVR11 print("Population MVR11 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR11 = [] h("{ n_MVR11 = 1 }") h("objectvar a_MVR11[n_MVR11]") for i in range(int(h.n_MVR11)): h("a_MVR11[%i] = new GenericMuscleCell()"%i) h("access a_MVR11[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR11[0].position(-80., 30., 80.) }") h("proc initialiseV_MVR11() { for i = 0, n_MVR11-1 { a_MVR11[i].set_initial_v() } }") h("objref fih_MVR11") h('{fih_MVR11 = new FInitializeHandler(0, "initialiseV_MVR11()")}') h("proc initialiseIons_MVR11() { for i = 0, n_MVR11-1 { a_MVR11[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR11") h('{fih_ion_MVR11 = new FInitializeHandler(1, "initialiseIons_MVR11()")}') # ###################### Population: MVR12 print("Population MVR12 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR12 = [] h("{ n_MVR12 = 1 }") h("objectvar a_MVR12[n_MVR12]") for i in range(int(h.n_MVR12)): h("a_MVR12[%i] = new GenericMuscleCell()"%i) h("access a_MVR12[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR12[0].position(-80., 60., 80.) }") h("proc initialiseV_MVR12() { for i = 0, n_MVR12-1 { a_MVR12[i].set_initial_v() } }") h("objref fih_MVR12") h('{fih_MVR12 = new FInitializeHandler(0, "initialiseV_MVR12()")}') h("proc initialiseIons_MVR12() { for i = 0, n_MVR12-1 { a_MVR12[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR12") h('{fih_ion_MVR12 = new FInitializeHandler(1, "initialiseIons_MVR12()")}') # ###################### Population: MVR13 print("Population MVR13 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR13 = [] h("{ n_MVR13 = 1 }") h("objectvar a_MVR13[n_MVR13]") for i in range(int(h.n_MVR13)): h("a_MVR13[%i] = new GenericMuscleCell()"%i) h("access a_MVR13[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR13[0].position(-80., 90., 80.) }") h("proc initialiseV_MVR13() { for i = 0, n_MVR13-1 { a_MVR13[i].set_initial_v() } }") h("objref fih_MVR13") h('{fih_MVR13 = new FInitializeHandler(0, "initialiseV_MVR13()")}') h("proc initialiseIons_MVR13() { for i = 0, n_MVR13-1 { a_MVR13[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR13") h('{fih_ion_MVR13 = new FInitializeHandler(1, "initialiseIons_MVR13()")}') # ###################### Population: MVR14 print("Population MVR14 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR14 = [] h("{ n_MVR14 = 1 }") h("objectvar a_MVR14[n_MVR14]") for i in range(int(h.n_MVR14)): h("a_MVR14[%i] = new GenericMuscleCell()"%i) h("access a_MVR14[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR14[0].position(-80., 120., 80.) }") h("proc initialiseV_MVR14() { for i = 0, n_MVR14-1 { a_MVR14[i].set_initial_v() } }") h("objref fih_MVR14") h('{fih_MVR14 = new FInitializeHandler(0, "initialiseV_MVR14()")}') h("proc initialiseIons_MVR14() { for i = 0, n_MVR14-1 { a_MVR14[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR14") h('{fih_ion_MVR14 = new FInitializeHandler(1, "initialiseIons_MVR14()")}') # ###################### Population: MVR15 print("Population MVR15 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR15 = [] h("{ n_MVR15 = 1 }") h("objectvar a_MVR15[n_MVR15]") for i in range(int(h.n_MVR15)): h("a_MVR15[%i] = new GenericMuscleCell()"%i) h("access a_MVR15[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR15[0].position(-80., 150., 80.) }") h("proc initialiseV_MVR15() { for i = 0, n_MVR15-1 { a_MVR15[i].set_initial_v() } }") h("objref fih_MVR15") h('{fih_MVR15 = new FInitializeHandler(0, "initialiseV_MVR15()")}') h("proc initialiseIons_MVR15() { for i = 0, n_MVR15-1 { a_MVR15[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR15") h('{fih_ion_MVR15 = new FInitializeHandler(1, "initialiseIons_MVR15()")}') # ###################### Population: MVR16 print("Population MVR16 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR16 = [] h("{ n_MVR16 = 1 }") h("objectvar a_MVR16[n_MVR16]") for i in range(int(h.n_MVR16)): h("a_MVR16[%i] = new GenericMuscleCell()"%i) h("access a_MVR16[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR16[0].position(-80., 180., 80.) }") h("proc initialiseV_MVR16() { for i = 0, n_MVR16-1 { a_MVR16[i].set_initial_v() } }") h("objref fih_MVR16") h('{fih_MVR16 = new FInitializeHandler(0, "initialiseV_MVR16()")}') h("proc initialiseIons_MVR16() { for i = 0, n_MVR16-1 { a_MVR16[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR16") h('{fih_ion_MVR16 = new FInitializeHandler(1, "initialiseIons_MVR16()")}') # ###################### Population: MVR17 print("Population MVR17 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR17 = [] h("{ n_MVR17 = 1 }") h("objectvar a_MVR17[n_MVR17]") for i in range(int(h.n_MVR17)): h("a_MVR17[%i] = new GenericMuscleCell()"%i) h("access a_MVR17[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR17[0].position(-80., 210., 80.) }") h("proc initialiseV_MVR17() { for i = 0, n_MVR17-1 { a_MVR17[i].set_initial_v() } }") h("objref fih_MVR17") h('{fih_MVR17 = new FInitializeHandler(0, "initialiseV_MVR17()")}') h("proc initialiseIons_MVR17() { for i = 0, n_MVR17-1 { a_MVR17[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR17") h('{fih_ion_MVR17 = new FInitializeHandler(1, "initialiseIons_MVR17()")}') # ###################### Population: MVR18 print("Population MVR18 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR18 = [] h("{ n_MVR18 = 1 }") h("objectvar a_MVR18[n_MVR18]") for i in range(int(h.n_MVR18)): h("a_MVR18[%i] = new GenericMuscleCell()"%i) h("access a_MVR18[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR18[0].position(-80., 240., 80.) }") h("proc initialiseV_MVR18() { for i = 0, n_MVR18-1 { a_MVR18[i].set_initial_v() } }") h("objref fih_MVR18") h('{fih_MVR18 = new FInitializeHandler(0, "initialiseV_MVR18()")}') h("proc initialiseIons_MVR18() { for i = 0, n_MVR18-1 { a_MVR18[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR18") h('{fih_ion_MVR18 = new FInitializeHandler(1, "initialiseIons_MVR18()")}') # ###################### Population: MVR19 print("Population MVR19 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR19 = [] h("{ n_MVR19 = 1 }") h("objectvar a_MVR19[n_MVR19]") for i in range(int(h.n_MVR19)): h("a_MVR19[%i] = new GenericMuscleCell()"%i) h("access a_MVR19[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR19[0].position(-80., 270., 80.) }") h("proc initialiseV_MVR19() { for i = 0, n_MVR19-1 { a_MVR19[i].set_initial_v() } }") h("objref fih_MVR19") h('{fih_MVR19 = new FInitializeHandler(0, "initialiseV_MVR19()")}') h("proc initialiseIons_MVR19() { for i = 0, n_MVR19-1 { a_MVR19[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR19") h('{fih_ion_MVR19 = new FInitializeHandler(1, "initialiseIons_MVR19()")}') # ###################### Population: MVR20 print("Population MVR20 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR20 = [] h("{ n_MVR20 = 1 }") h("objectvar a_MVR20[n_MVR20]") for i in range(int(h.n_MVR20)): h("a_MVR20[%i] = new GenericMuscleCell()"%i) h("access a_MVR20[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR20[0].position(-80., 300., 80.) }") h("proc initialiseV_MVR20() { for i = 0, n_MVR20-1 { a_MVR20[i].set_initial_v() } }") h("objref fih_MVR20") h('{fih_MVR20 = new FInitializeHandler(0, "initialiseV_MVR20()")}') h("proc initialiseIons_MVR20() { for i = 0, n_MVR20-1 { a_MVR20[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR20") h('{fih_ion_MVR20 = new FInitializeHandler(1, "initialiseIons_MVR20()")}') # ###################### Population: MVR21 print("Population MVR21 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR21 = [] h("{ n_MVR21 = 1 }") h("objectvar a_MVR21[n_MVR21]") for i in range(int(h.n_MVR21)): h("a_MVR21[%i] = new GenericMuscleCell()"%i) h("access a_MVR21[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR21[0].position(-80., 330., 80.) }") h("proc initialiseV_MVR21() { for i = 0, n_MVR21-1 { a_MVR21[i].set_initial_v() } }") h("objref fih_MVR21") h('{fih_MVR21 = new FInitializeHandler(0, "initialiseV_MVR21()")}') h("proc initialiseIons_MVR21() { for i = 0, n_MVR21-1 { a_MVR21[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR21") h('{fih_ion_MVR21 = new FInitializeHandler(1, "initialiseIons_MVR21()")}') # ###################### Population: MVR22 print("Population MVR22 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR22 = [] h("{ n_MVR22 = 1 }") h("objectvar a_MVR22[n_MVR22]") for i in range(int(h.n_MVR22)): h("a_MVR22[%i] = new GenericMuscleCell()"%i) h("access a_MVR22[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR22[0].position(-80., 360., 80.) }") h("proc initialiseV_MVR22() { for i = 0, n_MVR22-1 { a_MVR22[i].set_initial_v() } }") h("objref fih_MVR22") h('{fih_MVR22 = new FInitializeHandler(0, "initialiseV_MVR22()")}') h("proc initialiseIons_MVR22() { for i = 0, n_MVR22-1 { a_MVR22[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR22") h('{fih_ion_MVR22 = new FInitializeHandler(1, "initialiseIons_MVR22()")}') # ###################### Population: MVR23 print("Population MVR23 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVR23 = [] h("{ n_MVR23 = 1 }") h("objectvar a_MVR23[n_MVR23]") for i in range(int(h.n_MVR23)): h("a_MVR23[%i] = new GenericMuscleCell()"%i) h("access a_MVR23[%i].soma"%i) self.next_global_id+=1 h("{ a_MVR23[0].position(-80., 390., 80.) }") h("proc initialiseV_MVR23() { for i = 0, n_MVR23-1 { a_MVR23[i].set_initial_v() } }") h("objref fih_MVR23") h('{fih_MVR23 = new FInitializeHandler(0, "initialiseV_MVR23()")}') h("proc initialiseIons_MVR23() { for i = 0, n_MVR23-1 { a_MVR23[i].set_initial_ion_properties() } }") h("objref fih_ion_MVR23") h('{fih_ion_MVR23 = new FInitializeHandler(1, "initialiseIons_MVR23()")}') # ###################### Population: MVL01 print("Population MVL01 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL01 = [] h("{ n_MVL01 = 1 }") h("objectvar a_MVL01[n_MVL01]") for i in range(int(h.n_MVL01)): h("a_MVL01[%i] = new GenericMuscleCell()"%i) h("access a_MVL01[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL01[0].position(-80., -270., -80.) }") h("proc initialiseV_MVL01() { for i = 0, n_MVL01-1 { a_MVL01[i].set_initial_v() } }") h("objref fih_MVL01") h('{fih_MVL01 = new FInitializeHandler(0, "initialiseV_MVL01()")}') h("proc initialiseIons_MVL01() { for i = 0, n_MVL01-1 { a_MVL01[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL01") h('{fih_ion_MVL01 = new FInitializeHandler(1, "initialiseIons_MVL01()")}') # ###################### Population: MVL02 print("Population MVL02 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL02 = [] h("{ n_MVL02 = 1 }") h("objectvar a_MVL02[n_MVL02]") for i in range(int(h.n_MVL02)): h("a_MVL02[%i] = new GenericMuscleCell()"%i) h("access a_MVL02[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL02[0].position(-80., -240., -80.) }") h("proc initialiseV_MVL02() { for i = 0, n_MVL02-1 { a_MVL02[i].set_initial_v() } }") h("objref fih_MVL02") h('{fih_MVL02 = new FInitializeHandler(0, "initialiseV_MVL02()")}') h("proc initialiseIons_MVL02() { for i = 0, n_MVL02-1 { a_MVL02[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL02") h('{fih_ion_MVL02 = new FInitializeHandler(1, "initialiseIons_MVL02()")}') # ###################### Population: MVL03 print("Population MVL03 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL03 = [] h("{ n_MVL03 = 1 }") h("objectvar a_MVL03[n_MVL03]") for i in range(int(h.n_MVL03)): h("a_MVL03[%i] = new GenericMuscleCell()"%i) h("access a_MVL03[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL03[0].position(-80., -210., -80.) }") h("proc initialiseV_MVL03() { for i = 0, n_MVL03-1 { a_MVL03[i].set_initial_v() } }") h("objref fih_MVL03") h('{fih_MVL03 = new FInitializeHandler(0, "initialiseV_MVL03()")}') h("proc initialiseIons_MVL03() { for i = 0, n_MVL03-1 { a_MVL03[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL03") h('{fih_ion_MVL03 = new FInitializeHandler(1, "initialiseIons_MVL03()")}') # ###################### Population: MVL04 print("Population MVL04 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL04 = [] h("{ n_MVL04 = 1 }") h("objectvar a_MVL04[n_MVL04]") for i in range(int(h.n_MVL04)): h("a_MVL04[%i] = new GenericMuscleCell()"%i) h("access a_MVL04[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL04[0].position(-80., -180., -80.) }") h("proc initialiseV_MVL04() { for i = 0, n_MVL04-1 { a_MVL04[i].set_initial_v() } }") h("objref fih_MVL04") h('{fih_MVL04 = new FInitializeHandler(0, "initialiseV_MVL04()")}') h("proc initialiseIons_MVL04() { for i = 0, n_MVL04-1 { a_MVL04[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL04") h('{fih_ion_MVL04 = new FInitializeHandler(1, "initialiseIons_MVL04()")}') # ###################### Population: MVL05 print("Population MVL05 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL05 = [] h("{ n_MVL05 = 1 }") h("objectvar a_MVL05[n_MVL05]") for i in range(int(h.n_MVL05)): h("a_MVL05[%i] = new GenericMuscleCell()"%i) h("access a_MVL05[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL05[0].position(-80., -150., -80.) }") h("proc initialiseV_MVL05() { for i = 0, n_MVL05-1 { a_MVL05[i].set_initial_v() } }") h("objref fih_MVL05") h('{fih_MVL05 = new FInitializeHandler(0, "initialiseV_MVL05()")}') h("proc initialiseIons_MVL05() { for i = 0, n_MVL05-1 { a_MVL05[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL05") h('{fih_ion_MVL05 = new FInitializeHandler(1, "initialiseIons_MVL05()")}') # ###################### Population: MVL06 print("Population MVL06 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL06 = [] h("{ n_MVL06 = 1 }") h("objectvar a_MVL06[n_MVL06]") for i in range(int(h.n_MVL06)): h("a_MVL06[%i] = new GenericMuscleCell()"%i) h("access a_MVL06[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL06[0].position(-80., -120., -80.) }") h("proc initialiseV_MVL06() { for i = 0, n_MVL06-1 { a_MVL06[i].set_initial_v() } }") h("objref fih_MVL06") h('{fih_MVL06 = new FInitializeHandler(0, "initialiseV_MVL06()")}') h("proc initialiseIons_MVL06() { for i = 0, n_MVL06-1 { a_MVL06[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL06") h('{fih_ion_MVL06 = new FInitializeHandler(1, "initialiseIons_MVL06()")}') # ###################### Population: MVL07 print("Population MVL07 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL07 = [] h("{ n_MVL07 = 1 }") h("objectvar a_MVL07[n_MVL07]") for i in range(int(h.n_MVL07)): h("a_MVL07[%i] = new GenericMuscleCell()"%i) h("access a_MVL07[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL07[0].position(-80., -90., -80.) }") h("proc initialiseV_MVL07() { for i = 0, n_MVL07-1 { a_MVL07[i].set_initial_v() } }") h("objref fih_MVL07") h('{fih_MVL07 = new FInitializeHandler(0, "initialiseV_MVL07()")}') h("proc initialiseIons_MVL07() { for i = 0, n_MVL07-1 { a_MVL07[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL07") h('{fih_ion_MVL07 = new FInitializeHandler(1, "initialiseIons_MVL07()")}') # ###################### Population: MVL08 print("Population MVL08 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL08 = [] h("{ n_MVL08 = 1 }") h("objectvar a_MVL08[n_MVL08]") for i in range(int(h.n_MVL08)): h("a_MVL08[%i] = new GenericMuscleCell()"%i) h("access a_MVL08[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL08[0].position(-80., -60., -80.) }") h("proc initialiseV_MVL08() { for i = 0, n_MVL08-1 { a_MVL08[i].set_initial_v() } }") h("objref fih_MVL08") h('{fih_MVL08 = new FInitializeHandler(0, "initialiseV_MVL08()")}') h("proc initialiseIons_MVL08() { for i = 0, n_MVL08-1 { a_MVL08[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL08") h('{fih_ion_MVL08 = new FInitializeHandler(1, "initialiseIons_MVL08()")}') # ###################### Population: MVL09 print("Population MVL09 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL09 = [] h("{ n_MVL09 = 1 }") h("objectvar a_MVL09[n_MVL09]") for i in range(int(h.n_MVL09)): h("a_MVL09[%i] = new GenericMuscleCell()"%i) h("access a_MVL09[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL09[0].position(-80., -30., -80.) }") h("proc initialiseV_MVL09() { for i = 0, n_MVL09-1 { a_MVL09[i].set_initial_v() } }") h("objref fih_MVL09") h('{fih_MVL09 = new FInitializeHandler(0, "initialiseV_MVL09()")}') h("proc initialiseIons_MVL09() { for i = 0, n_MVL09-1 { a_MVL09[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL09") h('{fih_ion_MVL09 = new FInitializeHandler(1, "initialiseIons_MVL09()")}') # ###################### Population: MVL10 print("Population MVL10 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL10 = [] h("{ n_MVL10 = 1 }") h("objectvar a_MVL10[n_MVL10]") for i in range(int(h.n_MVL10)): h("a_MVL10[%i] = new GenericMuscleCell()"%i) h("access a_MVL10[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL10[0].position(-80., 0., -80.) }") h("proc initialiseV_MVL10() { for i = 0, n_MVL10-1 { a_MVL10[i].set_initial_v() } }") h("objref fih_MVL10") h('{fih_MVL10 = new FInitializeHandler(0, "initialiseV_MVL10()")}') h("proc initialiseIons_MVL10() { for i = 0, n_MVL10-1 { a_MVL10[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL10") h('{fih_ion_MVL10 = new FInitializeHandler(1, "initialiseIons_MVL10()")}') # ###################### Population: MVL11 print("Population MVL11 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL11 = [] h("{ n_MVL11 = 1 }") h("objectvar a_MVL11[n_MVL11]") for i in range(int(h.n_MVL11)): h("a_MVL11[%i] = new GenericMuscleCell()"%i) h("access a_MVL11[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL11[0].position(-80., 30., -80.) }") h("proc initialiseV_MVL11() { for i = 0, n_MVL11-1 { a_MVL11[i].set_initial_v() } }") h("objref fih_MVL11") h('{fih_MVL11 = new FInitializeHandler(0, "initialiseV_MVL11()")}') h("proc initialiseIons_MVL11() { for i = 0, n_MVL11-1 { a_MVL11[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL11") h('{fih_ion_MVL11 = new FInitializeHandler(1, "initialiseIons_MVL11()")}') # ###################### Population: MVL12 print("Population MVL12 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL12 = [] h("{ n_MVL12 = 1 }") h("objectvar a_MVL12[n_MVL12]") for i in range(int(h.n_MVL12)): h("a_MVL12[%i] = new GenericMuscleCell()"%i) h("access a_MVL12[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL12[0].position(-80., 60., -80.) }") h("proc initialiseV_MVL12() { for i = 0, n_MVL12-1 { a_MVL12[i].set_initial_v() } }") h("objref fih_MVL12") h('{fih_MVL12 = new FInitializeHandler(0, "initialiseV_MVL12()")}') h("proc initialiseIons_MVL12() { for i = 0, n_MVL12-1 { a_MVL12[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL12") h('{fih_ion_MVL12 = new FInitializeHandler(1, "initialiseIons_MVL12()")}') # ###################### Population: MVL13 print("Population MVL13 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL13 = [] h("{ n_MVL13 = 1 }") h("objectvar a_MVL13[n_MVL13]") for i in range(int(h.n_MVL13)): h("a_MVL13[%i] = new GenericMuscleCell()"%i) h("access a_MVL13[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL13[0].position(-80., 90., -80.) }") h("proc initialiseV_MVL13() { for i = 0, n_MVL13-1 { a_MVL13[i].set_initial_v() } }") h("objref fih_MVL13") h('{fih_MVL13 = new FInitializeHandler(0, "initialiseV_MVL13()")}') h("proc initialiseIons_MVL13() { for i = 0, n_MVL13-1 { a_MVL13[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL13") h('{fih_ion_MVL13 = new FInitializeHandler(1, "initialiseIons_MVL13()")}') # ###################### Population: MVL14 print("Population MVL14 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL14 = [] h("{ n_MVL14 = 1 }") h("objectvar a_MVL14[n_MVL14]") for i in range(int(h.n_MVL14)): h("a_MVL14[%i] = new GenericMuscleCell()"%i) h("access a_MVL14[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL14[0].position(-80., 120., -80.) }") h("proc initialiseV_MVL14() { for i = 0, n_MVL14-1 { a_MVL14[i].set_initial_v() } }") h("objref fih_MVL14") h('{fih_MVL14 = new FInitializeHandler(0, "initialiseV_MVL14()")}') h("proc initialiseIons_MVL14() { for i = 0, n_MVL14-1 { a_MVL14[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL14") h('{fih_ion_MVL14 = new FInitializeHandler(1, "initialiseIons_MVL14()")}') # ###################### Population: MVL15 print("Population MVL15 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL15 = [] h("{ n_MVL15 = 1 }") h("objectvar a_MVL15[n_MVL15]") for i in range(int(h.n_MVL15)): h("a_MVL15[%i] = new GenericMuscleCell()"%i) h("access a_MVL15[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL15[0].position(-80., 150., -80.) }") h("proc initialiseV_MVL15() { for i = 0, n_MVL15-1 { a_MVL15[i].set_initial_v() } }") h("objref fih_MVL15") h('{fih_MVL15 = new FInitializeHandler(0, "initialiseV_MVL15()")}') h("proc initialiseIons_MVL15() { for i = 0, n_MVL15-1 { a_MVL15[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL15") h('{fih_ion_MVL15 = new FInitializeHandler(1, "initialiseIons_MVL15()")}') # ###################### Population: MVL16 print("Population MVL16 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL16 = [] h("{ n_MVL16 = 1 }") h("objectvar a_MVL16[n_MVL16]") for i in range(int(h.n_MVL16)): h("a_MVL16[%i] = new GenericMuscleCell()"%i) h("access a_MVL16[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL16[0].position(-80., 180., -80.) }") h("proc initialiseV_MVL16() { for i = 0, n_MVL16-1 { a_MVL16[i].set_initial_v() } }") h("objref fih_MVL16") h('{fih_MVL16 = new FInitializeHandler(0, "initialiseV_MVL16()")}') h("proc initialiseIons_MVL16() { for i = 0, n_MVL16-1 { a_MVL16[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL16") h('{fih_ion_MVL16 = new FInitializeHandler(1, "initialiseIons_MVL16()")}') # ###################### Population: MVL17 print("Population MVL17 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL17 = [] h("{ n_MVL17 = 1 }") h("objectvar a_MVL17[n_MVL17]") for i in range(int(h.n_MVL17)): h("a_MVL17[%i] = new GenericMuscleCell()"%i) h("access a_MVL17[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL17[0].position(-80., 210., -80.) }") h("proc initialiseV_MVL17() { for i = 0, n_MVL17-1 { a_MVL17[i].set_initial_v() } }") h("objref fih_MVL17") h('{fih_MVL17 = new FInitializeHandler(0, "initialiseV_MVL17()")}') h("proc initialiseIons_MVL17() { for i = 0, n_MVL17-1 { a_MVL17[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL17") h('{fih_ion_MVL17 = new FInitializeHandler(1, "initialiseIons_MVL17()")}') # ###################### Population: MVL18 print("Population MVL18 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL18 = [] h("{ n_MVL18 = 1 }") h("objectvar a_MVL18[n_MVL18]") for i in range(int(h.n_MVL18)): h("a_MVL18[%i] = new GenericMuscleCell()"%i) h("access a_MVL18[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL18[0].position(-80., 240., -80.) }") h("proc initialiseV_MVL18() { for i = 0, n_MVL18-1 { a_MVL18[i].set_initial_v() } }") h("objref fih_MVL18") h('{fih_MVL18 = new FInitializeHandler(0, "initialiseV_MVL18()")}') h("proc initialiseIons_MVL18() { for i = 0, n_MVL18-1 { a_MVL18[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL18") h('{fih_ion_MVL18 = new FInitializeHandler(1, "initialiseIons_MVL18()")}') # ###################### Population: MVL19 print("Population MVL19 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL19 = [] h("{ n_MVL19 = 1 }") h("objectvar a_MVL19[n_MVL19]") for i in range(int(h.n_MVL19)): h("a_MVL19[%i] = new GenericMuscleCell()"%i) h("access a_MVL19[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL19[0].position(-80., 270., -80.) }") h("proc initialiseV_MVL19() { for i = 0, n_MVL19-1 { a_MVL19[i].set_initial_v() } }") h("objref fih_MVL19") h('{fih_MVL19 = new FInitializeHandler(0, "initialiseV_MVL19()")}') h("proc initialiseIons_MVL19() { for i = 0, n_MVL19-1 { a_MVL19[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL19") h('{fih_ion_MVL19 = new FInitializeHandler(1, "initialiseIons_MVL19()")}') # ###################### Population: MVL20 print("Population MVL20 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL20 = [] h("{ n_MVL20 = 1 }") h("objectvar a_MVL20[n_MVL20]") for i in range(int(h.n_MVL20)): h("a_MVL20[%i] = new GenericMuscleCell()"%i) h("access a_MVL20[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL20[0].position(-80., 300., -80.) }") h("proc initialiseV_MVL20() { for i = 0, n_MVL20-1 { a_MVL20[i].set_initial_v() } }") h("objref fih_MVL20") h('{fih_MVL20 = new FInitializeHandler(0, "initialiseV_MVL20()")}') h("proc initialiseIons_MVL20() { for i = 0, n_MVL20-1 { a_MVL20[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL20") h('{fih_ion_MVL20 = new FInitializeHandler(1, "initialiseIons_MVL20()")}') # ###################### Population: MVL21 print("Population MVL21 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL21 = [] h("{ n_MVL21 = 1 }") h("objectvar a_MVL21[n_MVL21]") for i in range(int(h.n_MVL21)): h("a_MVL21[%i] = new GenericMuscleCell()"%i) h("access a_MVL21[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL21[0].position(-80., 330., -80.) }") h("proc initialiseV_MVL21() { for i = 0, n_MVL21-1 { a_MVL21[i].set_initial_v() } }") h("objref fih_MVL21") h('{fih_MVL21 = new FInitializeHandler(0, "initialiseV_MVL21()")}') h("proc initialiseIons_MVL21() { for i = 0, n_MVL21-1 { a_MVL21[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL21") h('{fih_ion_MVL21 = new FInitializeHandler(1, "initialiseIons_MVL21()")}') # ###################### Population: MVL22 print("Population MVL22 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL22 = [] h("{ n_MVL22 = 1 }") h("objectvar a_MVL22[n_MVL22]") for i in range(int(h.n_MVL22)): h("a_MVL22[%i] = new GenericMuscleCell()"%i) h("access a_MVL22[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL22[0].position(-80., 360., -80.) }") h("proc initialiseV_MVL22() { for i = 0, n_MVL22-1 { a_MVL22[i].set_initial_v() } }") h("objref fih_MVL22") h('{fih_MVL22 = new FInitializeHandler(0, "initialiseV_MVL22()")}') h("proc initialiseIons_MVL22() { for i = 0, n_MVL22-1 { a_MVL22[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL22") h('{fih_ion_MVL22 = new FInitializeHandler(1, "initialiseIons_MVL22()")}') # ###################### Population: MVL23 print("Population MVL23 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL23 = [] h("{ n_MVL23 = 1 }") h("objectvar a_MVL23[n_MVL23]") for i in range(int(h.n_MVL23)): h("a_MVL23[%i] = new GenericMuscleCell()"%i) h("access a_MVL23[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL23[0].position(-80., 390., -80.) }") h("proc initialiseV_MVL23() { for i = 0, n_MVL23-1 { a_MVL23[i].set_initial_v() } }") h("objref fih_MVL23") h('{fih_MVL23 = new FInitializeHandler(0, "initialiseV_MVL23()")}') h("proc initialiseIons_MVL23() { for i = 0, n_MVL23-1 { a_MVL23[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL23") h('{fih_ion_MVL23 = new FInitializeHandler(1, "initialiseIons_MVL23()")}') # ###################### Population: MVL24 print("Population MVL24 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MVL24 = [] h("{ n_MVL24 = 1 }") h("objectvar a_MVL24[n_MVL24]") for i in range(int(h.n_MVL24)): h("a_MVL24[%i] = new GenericMuscleCell()"%i) h("access a_MVL24[%i].soma"%i) self.next_global_id+=1 h("{ a_MVL24[0].position(-80., 420., -80.) }") h("proc initialiseV_MVL24() { for i = 0, n_MVL24-1 { a_MVL24[i].set_initial_v() } }") h("objref fih_MVL24") h('{fih_MVL24 = new FInitializeHandler(0, "initialiseV_MVL24()")}') h("proc initialiseIons_MVL24() { for i = 0, n_MVL24-1 { a_MVL24[i].set_initial_ion_properties() } }") h("objref fih_ion_MVL24") h('{fih_ion_MVL24 = new FInitializeHandler(1, "initialiseIons_MVL24()")}') # ###################### Population: MDL01 print("Population MDL01 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL01 = [] h("{ n_MDL01 = 1 }") h("objectvar a_MDL01[n_MDL01]") for i in range(int(h.n_MDL01)): h("a_MDL01[%i] = new GenericMuscleCell()"%i) h("access a_MDL01[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL01[0].position(80., -270., -80.) }") h("proc initialiseV_MDL01() { for i = 0, n_MDL01-1 { a_MDL01[i].set_initial_v() } }") h("objref fih_MDL01") h('{fih_MDL01 = new FInitializeHandler(0, "initialiseV_MDL01()")}') h("proc initialiseIons_MDL01() { for i = 0, n_MDL01-1 { a_MDL01[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL01") h('{fih_ion_MDL01 = new FInitializeHandler(1, "initialiseIons_MDL01()")}') # ###################### Population: MDL02 print("Population MDL02 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL02 = [] h("{ n_MDL02 = 1 }") h("objectvar a_MDL02[n_MDL02]") for i in range(int(h.n_MDL02)): h("a_MDL02[%i] = new GenericMuscleCell()"%i) h("access a_MDL02[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL02[0].position(80., -240., -80.) }") h("proc initialiseV_MDL02() { for i = 0, n_MDL02-1 { a_MDL02[i].set_initial_v() } }") h("objref fih_MDL02") h('{fih_MDL02 = new FInitializeHandler(0, "initialiseV_MDL02()")}') h("proc initialiseIons_MDL02() { for i = 0, n_MDL02-1 { a_MDL02[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL02") h('{fih_ion_MDL02 = new FInitializeHandler(1, "initialiseIons_MDL02()")}') # ###################### Population: MDL03 print("Population MDL03 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL03 = [] h("{ n_MDL03 = 1 }") h("objectvar a_MDL03[n_MDL03]") for i in range(int(h.n_MDL03)): h("a_MDL03[%i] = new GenericMuscleCell()"%i) h("access a_MDL03[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL03[0].position(80., -210., -80.) }") h("proc initialiseV_MDL03() { for i = 0, n_MDL03-1 { a_MDL03[i].set_initial_v() } }") h("objref fih_MDL03") h('{fih_MDL03 = new FInitializeHandler(0, "initialiseV_MDL03()")}') h("proc initialiseIons_MDL03() { for i = 0, n_MDL03-1 { a_MDL03[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL03") h('{fih_ion_MDL03 = new FInitializeHandler(1, "initialiseIons_MDL03()")}') # ###################### Population: MDL04 print("Population MDL04 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL04 = [] h("{ n_MDL04 = 1 }") h("objectvar a_MDL04[n_MDL04]") for i in range(int(h.n_MDL04)): h("a_MDL04[%i] = new GenericMuscleCell()"%i) h("access a_MDL04[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL04[0].position(80., -180., -80.) }") h("proc initialiseV_MDL04() { for i = 0, n_MDL04-1 { a_MDL04[i].set_initial_v() } }") h("objref fih_MDL04") h('{fih_MDL04 = new FInitializeHandler(0, "initialiseV_MDL04()")}') h("proc initialiseIons_MDL04() { for i = 0, n_MDL04-1 { a_MDL04[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL04") h('{fih_ion_MDL04 = new FInitializeHandler(1, "initialiseIons_MDL04()")}') # ###################### Population: MDL05 print("Population MDL05 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL05 = [] h("{ n_MDL05 = 1 }") h("objectvar a_MDL05[n_MDL05]") for i in range(int(h.n_MDL05)): h("a_MDL05[%i] = new GenericMuscleCell()"%i) h("access a_MDL05[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL05[0].position(80., -150., -80.) }") h("proc initialiseV_MDL05() { for i = 0, n_MDL05-1 { a_MDL05[i].set_initial_v() } }") h("objref fih_MDL05") h('{fih_MDL05 = new FInitializeHandler(0, "initialiseV_MDL05()")}') h("proc initialiseIons_MDL05() { for i = 0, n_MDL05-1 { a_MDL05[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL05") h('{fih_ion_MDL05 = new FInitializeHandler(1, "initialiseIons_MDL05()")}') # ###################### Population: MDL06 print("Population MDL06 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL06 = [] h("{ n_MDL06 = 1 }") h("objectvar a_MDL06[n_MDL06]") for i in range(int(h.n_MDL06)): h("a_MDL06[%i] = new GenericMuscleCell()"%i) h("access a_MDL06[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL06[0].position(80., -120., -80.) }") h("proc initialiseV_MDL06() { for i = 0, n_MDL06-1 { a_MDL06[i].set_initial_v() } }") h("objref fih_MDL06") h('{fih_MDL06 = new FInitializeHandler(0, "initialiseV_MDL06()")}') h("proc initialiseIons_MDL06() { for i = 0, n_MDL06-1 { a_MDL06[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL06") h('{fih_ion_MDL06 = new FInitializeHandler(1, "initialiseIons_MDL06()")}') # ###################### Population: MDL07 print("Population MDL07 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL07 = [] h("{ n_MDL07 = 1 }") h("objectvar a_MDL07[n_MDL07]") for i in range(int(h.n_MDL07)): h("a_MDL07[%i] = new GenericMuscleCell()"%i) h("access a_MDL07[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL07[0].position(80., -90., -80.) }") h("proc initialiseV_MDL07() { for i = 0, n_MDL07-1 { a_MDL07[i].set_initial_v() } }") h("objref fih_MDL07") h('{fih_MDL07 = new FInitializeHandler(0, "initialiseV_MDL07()")}') h("proc initialiseIons_MDL07() { for i = 0, n_MDL07-1 { a_MDL07[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL07") h('{fih_ion_MDL07 = new FInitializeHandler(1, "initialiseIons_MDL07()")}') # ###################### Population: MDL08 print("Population MDL08 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL08 = [] h("{ n_MDL08 = 1 }") h("objectvar a_MDL08[n_MDL08]") for i in range(int(h.n_MDL08)): h("a_MDL08[%i] = new GenericMuscleCell()"%i) h("access a_MDL08[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL08[0].position(80., -60., -80.) }") h("proc initialiseV_MDL08() { for i = 0, n_MDL08-1 { a_MDL08[i].set_initial_v() } }") h("objref fih_MDL08") h('{fih_MDL08 = new FInitializeHandler(0, "initialiseV_MDL08()")}') h("proc initialiseIons_MDL08() { for i = 0, n_MDL08-1 { a_MDL08[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL08") h('{fih_ion_MDL08 = new FInitializeHandler(1, "initialiseIons_MDL08()")}') # ###################### Population: MDL09 print("Population MDL09 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL09 = [] h("{ n_MDL09 = 1 }") h("objectvar a_MDL09[n_MDL09]") for i in range(int(h.n_MDL09)): h("a_MDL09[%i] = new GenericMuscleCell()"%i) h("access a_MDL09[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL09[0].position(80., -30., -80.) }") h("proc initialiseV_MDL09() { for i = 0, n_MDL09-1 { a_MDL09[i].set_initial_v() } }") h("objref fih_MDL09") h('{fih_MDL09 = new FInitializeHandler(0, "initialiseV_MDL09()")}') h("proc initialiseIons_MDL09() { for i = 0, n_MDL09-1 { a_MDL09[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL09") h('{fih_ion_MDL09 = new FInitializeHandler(1, "initialiseIons_MDL09()")}') # ###################### Population: MDL10 print("Population MDL10 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL10 = [] h("{ n_MDL10 = 1 }") h("objectvar a_MDL10[n_MDL10]") for i in range(int(h.n_MDL10)): h("a_MDL10[%i] = new GenericMuscleCell()"%i) h("access a_MDL10[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL10[0].position(80., 0., -80.) }") h("proc initialiseV_MDL10() { for i = 0, n_MDL10-1 { a_MDL10[i].set_initial_v() } }") h("objref fih_MDL10") h('{fih_MDL10 = new FInitializeHandler(0, "initialiseV_MDL10()")}') h("proc initialiseIons_MDL10() { for i = 0, n_MDL10-1 { a_MDL10[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL10") h('{fih_ion_MDL10 = new FInitializeHandler(1, "initialiseIons_MDL10()")}') # ###################### Population: MDL11 print("Population MDL11 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL11 = [] h("{ n_MDL11 = 1 }") h("objectvar a_MDL11[n_MDL11]") for i in range(int(h.n_MDL11)): h("a_MDL11[%i] = new GenericMuscleCell()"%i) h("access a_MDL11[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL11[0].position(80., 30., -80.) }") h("proc initialiseV_MDL11() { for i = 0, n_MDL11-1 { a_MDL11[i].set_initial_v() } }") h("objref fih_MDL11") h('{fih_MDL11 = new FInitializeHandler(0, "initialiseV_MDL11()")}') h("proc initialiseIons_MDL11() { for i = 0, n_MDL11-1 { a_MDL11[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL11") h('{fih_ion_MDL11 = new FInitializeHandler(1, "initialiseIons_MDL11()")}') # ###################### Population: MDL12 print("Population MDL12 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL12 = [] h("{ n_MDL12 = 1 }") h("objectvar a_MDL12[n_MDL12]") for i in range(int(h.n_MDL12)): h("a_MDL12[%i] = new GenericMuscleCell()"%i) h("access a_MDL12[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL12[0].position(80., 60., -80.) }") h("proc initialiseV_MDL12() { for i = 0, n_MDL12-1 { a_MDL12[i].set_initial_v() } }") h("objref fih_MDL12") h('{fih_MDL12 = new FInitializeHandler(0, "initialiseV_MDL12()")}') h("proc initialiseIons_MDL12() { for i = 0, n_MDL12-1 { a_MDL12[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL12") h('{fih_ion_MDL12 = new FInitializeHandler(1, "initialiseIons_MDL12()")}') # ###################### Population: MDL13 print("Population MDL13 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL13 = [] h("{ n_MDL13 = 1 }") h("objectvar a_MDL13[n_MDL13]") for i in range(int(h.n_MDL13)): h("a_MDL13[%i] = new GenericMuscleCell()"%i) h("access a_MDL13[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL13[0].position(80., 90., -80.) }") h("proc initialiseV_MDL13() { for i = 0, n_MDL13-1 { a_MDL13[i].set_initial_v() } }") h("objref fih_MDL13") h('{fih_MDL13 = new FInitializeHandler(0, "initialiseV_MDL13()")}') h("proc initialiseIons_MDL13() { for i = 0, n_MDL13-1 { a_MDL13[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL13") h('{fih_ion_MDL13 = new FInitializeHandler(1, "initialiseIons_MDL13()")}') # ###################### Population: MDL14 print("Population MDL14 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL14 = [] h("{ n_MDL14 = 1 }") h("objectvar a_MDL14[n_MDL14]") for i in range(int(h.n_MDL14)): h("a_MDL14[%i] = new GenericMuscleCell()"%i) h("access a_MDL14[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL14[0].position(80., 120., -80.) }") h("proc initialiseV_MDL14() { for i = 0, n_MDL14-1 { a_MDL14[i].set_initial_v() } }") h("objref fih_MDL14") h('{fih_MDL14 = new FInitializeHandler(0, "initialiseV_MDL14()")}') h("proc initialiseIons_MDL14() { for i = 0, n_MDL14-1 { a_MDL14[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL14") h('{fih_ion_MDL14 = new FInitializeHandler(1, "initialiseIons_MDL14()")}') # ###################### Population: MDL15 print("Population MDL15 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL15 = [] h("{ n_MDL15 = 1 }") h("objectvar a_MDL15[n_MDL15]") for i in range(int(h.n_MDL15)): h("a_MDL15[%i] = new GenericMuscleCell()"%i) h("access a_MDL15[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL15[0].position(80., 150., -80.) }") h("proc initialiseV_MDL15() { for i = 0, n_MDL15-1 { a_MDL15[i].set_initial_v() } }") h("objref fih_MDL15") h('{fih_MDL15 = new FInitializeHandler(0, "initialiseV_MDL15()")}') h("proc initialiseIons_MDL15() { for i = 0, n_MDL15-1 { a_MDL15[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL15") h('{fih_ion_MDL15 = new FInitializeHandler(1, "initialiseIons_MDL15()")}') # ###################### Population: MDL16 print("Population MDL16 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL16 = [] h("{ n_MDL16 = 1 }") h("objectvar a_MDL16[n_MDL16]") for i in range(int(h.n_MDL16)): h("a_MDL16[%i] = new GenericMuscleCell()"%i) h("access a_MDL16[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL16[0].position(80., 180., -80.) }") h("proc initialiseV_MDL16() { for i = 0, n_MDL16-1 { a_MDL16[i].set_initial_v() } }") h("objref fih_MDL16") h('{fih_MDL16 = new FInitializeHandler(0, "initialiseV_MDL16()")}') h("proc initialiseIons_MDL16() { for i = 0, n_MDL16-1 { a_MDL16[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL16") h('{fih_ion_MDL16 = new FInitializeHandler(1, "initialiseIons_MDL16()")}') # ###################### Population: MDL17 print("Population MDL17 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL17 = [] h("{ n_MDL17 = 1 }") h("objectvar a_MDL17[n_MDL17]") for i in range(int(h.n_MDL17)): h("a_MDL17[%i] = new GenericMuscleCell()"%i) h("access a_MDL17[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL17[0].position(80., 210., -80.) }") h("proc initialiseV_MDL17() { for i = 0, n_MDL17-1 { a_MDL17[i].set_initial_v() } }") h("objref fih_MDL17") h('{fih_MDL17 = new FInitializeHandler(0, "initialiseV_MDL17()")}') h("proc initialiseIons_MDL17() { for i = 0, n_MDL17-1 { a_MDL17[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL17") h('{fih_ion_MDL17 = new FInitializeHandler(1, "initialiseIons_MDL17()")}') # ###################### Population: MDL18 print("Population MDL18 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL18 = [] h("{ n_MDL18 = 1 }") h("objectvar a_MDL18[n_MDL18]") for i in range(int(h.n_MDL18)): h("a_MDL18[%i] = new GenericMuscleCell()"%i) h("access a_MDL18[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL18[0].position(80., 240., -80.) }") h("proc initialiseV_MDL18() { for i = 0, n_MDL18-1 { a_MDL18[i].set_initial_v() } }") h("objref fih_MDL18") h('{fih_MDL18 = new FInitializeHandler(0, "initialiseV_MDL18()")}') h("proc initialiseIons_MDL18() { for i = 0, n_MDL18-1 { a_MDL18[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL18") h('{fih_ion_MDL18 = new FInitializeHandler(1, "initialiseIons_MDL18()")}') # ###################### Population: MDL19 print("Population MDL19 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL19 = [] h("{ n_MDL19 = 1 }") h("objectvar a_MDL19[n_MDL19]") for i in range(int(h.n_MDL19)): h("a_MDL19[%i] = new GenericMuscleCell()"%i) h("access a_MDL19[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL19[0].position(80., 270., -80.) }") h("proc initialiseV_MDL19() { for i = 0, n_MDL19-1 { a_MDL19[i].set_initial_v() } }") h("objref fih_MDL19") h('{fih_MDL19 = new FInitializeHandler(0, "initialiseV_MDL19()")}') h("proc initialiseIons_MDL19() { for i = 0, n_MDL19-1 { a_MDL19[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL19") h('{fih_ion_MDL19 = new FInitializeHandler(1, "initialiseIons_MDL19()")}') # ###################### Population: MDL20 print("Population MDL20 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL20 = [] h("{ n_MDL20 = 1 }") h("objectvar a_MDL20[n_MDL20]") for i in range(int(h.n_MDL20)): h("a_MDL20[%i] = new GenericMuscleCell()"%i) h("access a_MDL20[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL20[0].position(80., 300., -80.) }") h("proc initialiseV_MDL20() { for i = 0, n_MDL20-1 { a_MDL20[i].set_initial_v() } }") h("objref fih_MDL20") h('{fih_MDL20 = new FInitializeHandler(0, "initialiseV_MDL20()")}') h("proc initialiseIons_MDL20() { for i = 0, n_MDL20-1 { a_MDL20[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL20") h('{fih_ion_MDL20 = new FInitializeHandler(1, "initialiseIons_MDL20()")}') # ###################### Population: MDL21 print("Population MDL21 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL21 = [] h("{ n_MDL21 = 1 }") h("objectvar a_MDL21[n_MDL21]") for i in range(int(h.n_MDL21)): h("a_MDL21[%i] = new GenericMuscleCell()"%i) h("access a_MDL21[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL21[0].position(80., 330., -80.) }") h("proc initialiseV_MDL21() { for i = 0, n_MDL21-1 { a_MDL21[i].set_initial_v() } }") h("objref fih_MDL21") h('{fih_MDL21 = new FInitializeHandler(0, "initialiseV_MDL21()")}') h("proc initialiseIons_MDL21() { for i = 0, n_MDL21-1 { a_MDL21[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL21") h('{fih_ion_MDL21 = new FInitializeHandler(1, "initialiseIons_MDL21()")}') # ###################### Population: MDL22 print("Population MDL22 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL22 = [] h("{ n_MDL22 = 1 }") h("objectvar a_MDL22[n_MDL22]") for i in range(int(h.n_MDL22)): h("a_MDL22[%i] = new GenericMuscleCell()"%i) h("access a_MDL22[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL22[0].position(80., 360., -80.) }") h("proc initialiseV_MDL22() { for i = 0, n_MDL22-1 { a_MDL22[i].set_initial_v() } }") h("objref fih_MDL22") h('{fih_MDL22 = new FInitializeHandler(0, "initialiseV_MDL22()")}') h("proc initialiseIons_MDL22() { for i = 0, n_MDL22-1 { a_MDL22[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL22") h('{fih_ion_MDL22 = new FInitializeHandler(1, "initialiseIons_MDL22()")}') # ###################### Population: MDL23 print("Population MDL23 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL23 = [] h("{ n_MDL23 = 1 }") h("objectvar a_MDL23[n_MDL23]") for i in range(int(h.n_MDL23)): h("a_MDL23[%i] = new GenericMuscleCell()"%i) h("access a_MDL23[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL23[0].position(80., 390., -80.) }") h("proc initialiseV_MDL23() { for i = 0, n_MDL23-1 { a_MDL23[i].set_initial_v() } }") h("objref fih_MDL23") h('{fih_MDL23 = new FInitializeHandler(0, "initialiseV_MDL23()")}') h("proc initialiseIons_MDL23() { for i = 0, n_MDL23-1 { a_MDL23[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL23") h('{fih_ion_MDL23 = new FInitializeHandler(1, "initialiseIons_MDL23()")}') # ###################### Population: MDL24 print("Population MDL24 contains 1 instance(s) of component: GenericMuscleCell of type: cell") print("Setting the default initial concentrations for ca (used in GenericMuscleCell) to 0.0 mM (internal), 2.0 mM (external)") h("cai0_ca_ion = 0.0") h("cao0_ca_ion = 2.0") h.load_file("GenericMuscleCell.hoc") a_MDL24 = [] h("{ n_MDL24 = 1 }") h("objectvar a_MDL24[n_MDL24]") for i in range(int(h.n_MDL24)): h("a_MDL24[%i] = new GenericMuscleCell()"%i) h("access a_MDL24[%i].soma"%i) self.next_global_id+=1 h("{ a_MDL24[0].position(80., 420., -80.) }") h("proc initialiseV_MDL24() { for i = 0, n_MDL24-1 { a_MDL24[i].set_initial_v() } }") h("objref fih_MDL24") h('{fih_MDL24 = new FInitializeHandler(0, "initialiseV_MDL24()")}') h("proc initialiseIons_MDL24() { for i = 0, n_MDL24-1 { a_MDL24[i].set_initial_ion_properties() } }") h("objref fih_ion_MDL24") h('{fih_ion_MDL24 = new FInitializeHandler(1, "initialiseIons_MDL24()")}') # ###################### Electrical Projection: NC_AVAL_DA1_Generic_GJ print("Adding electrical projection: NC_AVAL_DA1_Generic_GJ from AVAL to DA1, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA1_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[1]") h("objectvar syn_NC_AVAL_DA1_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA1[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA1_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("a_DA1[0].soma { syn_NC_AVAL_DA1_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("setpointer syn_NC_AVAL_DA1_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0].vpeer, a_DA1[0].soma.v(0.5)") h("setpointer syn_NC_AVAL_DA1_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0].vpeer, a_AVAL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAL_DA2_Generic_GJ print("Adding electrical projection: NC_AVAL_DA2_Generic_GJ from AVAL to DA2, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA2_Generic_GJ_neuron_to_neuron_elec_syn_7conns_A[1]") h("objectvar syn_NC_AVAL_DA2_Generic_GJ_neuron_to_neuron_elec_syn_7conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA2[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA2_Generic_GJ_neuron_to_neuron_elec_syn_7conns_A[0] = new neuron_to_neuron_elec_syn_7conns(0.5) }") h("a_DA2[0].soma { syn_NC_AVAL_DA2_Generic_GJ_neuron_to_neuron_elec_syn_7conns_B[0] = new neuron_to_neuron_elec_syn_7conns(0.5) }") h("setpointer syn_NC_AVAL_DA2_Generic_GJ_neuron_to_neuron_elec_syn_7conns_A[0].vpeer, a_DA2[0].soma.v(0.5)") h("setpointer syn_NC_AVAL_DA2_Generic_GJ_neuron_to_neuron_elec_syn_7conns_B[0].vpeer, a_AVAL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAL_DA3_Generic_GJ print("Adding electrical projection: NC_AVAL_DA3_Generic_GJ from AVAL to DA3, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA3_Generic_GJ_neuron_to_neuron_elec_syn_6conns_A[1]") h("objectvar syn_NC_AVAL_DA3_Generic_GJ_neuron_to_neuron_elec_syn_6conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA3_Generic_GJ_neuron_to_neuron_elec_syn_6conns_A[0] = new neuron_to_neuron_elec_syn_6conns(0.5) }") h("a_DA3[0].soma { syn_NC_AVAL_DA3_Generic_GJ_neuron_to_neuron_elec_syn_6conns_B[0] = new neuron_to_neuron_elec_syn_6conns(0.5) }") h("setpointer syn_NC_AVAL_DA3_Generic_GJ_neuron_to_neuron_elec_syn_6conns_A[0].vpeer, a_DA3[0].soma.v(0.5)") h("setpointer syn_NC_AVAL_DA3_Generic_GJ_neuron_to_neuron_elec_syn_6conns_B[0].vpeer, a_AVAL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAL_DA4_Generic_GJ print("Adding electrical projection: NC_AVAL_DA4_Generic_GJ from AVAL to DA4, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA4_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[1]") h("objectvar syn_NC_AVAL_DA4_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA4[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA4_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("a_DA4[0].soma { syn_NC_AVAL_DA4_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("setpointer syn_NC_AVAL_DA4_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0].vpeer, a_DA4[0].soma.v(0.5)") h("setpointer syn_NC_AVAL_DA4_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0].vpeer, a_AVAL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAL_DA5_Generic_GJ print("Adding electrical projection: NC_AVAL_DA5_Generic_GJ from AVAL to DA5, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA5_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[1]") h("objectvar syn_NC_AVAL_DA5_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA5[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA5_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("a_DA5[0].soma { syn_NC_AVAL_DA5_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("setpointer syn_NC_AVAL_DA5_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0].vpeer, a_DA5[0].soma.v(0.5)") h("setpointer syn_NC_AVAL_DA5_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0].vpeer, a_AVAL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAL_DA6_Generic_GJ print("Adding electrical projection: NC_AVAL_DA6_Generic_GJ from AVAL to DA6, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[1]") h("objectvar syn_NC_AVAL_DA6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("a_DA6[0].soma { syn_NC_AVAL_DA6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("setpointer syn_NC_AVAL_DA6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0].vpeer, a_DA6[0].soma.v(0.5)") h("setpointer syn_NC_AVAL_DA6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0].vpeer, a_AVAL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAL_DA7_Generic_GJ print("Adding electrical projection: NC_AVAL_DA7_Generic_GJ from AVAL to DA7, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA7_Generic_GJ_neuron_to_neuron_elec_syn_10conns_A[1]") h("objectvar syn_NC_AVAL_DA7_Generic_GJ_neuron_to_neuron_elec_syn_10conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA7_Generic_GJ_neuron_to_neuron_elec_syn_10conns_A[0] = new neuron_to_neuron_elec_syn_10conns(0.5) }") h("a_DA7[0].soma { syn_NC_AVAL_DA7_Generic_GJ_neuron_to_neuron_elec_syn_10conns_B[0] = new neuron_to_neuron_elec_syn_10conns(0.5) }") h("setpointer syn_NC_AVAL_DA7_Generic_GJ_neuron_to_neuron_elec_syn_10conns_A[0].vpeer, a_DA7[0].soma.v(0.5)") h("setpointer syn_NC_AVAL_DA7_Generic_GJ_neuron_to_neuron_elec_syn_10conns_B[0].vpeer, a_AVAL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAL_DA8_Generic_GJ print("Adding electrical projection: NC_AVAL_DA8_Generic_GJ from AVAL to DA8, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA8_Generic_GJ_neuron_to_neuron_elec_syn_8conns_A[1]") h("objectvar syn_NC_AVAL_DA8_Generic_GJ_neuron_to_neuron_elec_syn_8conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA8_Generic_GJ_neuron_to_neuron_elec_syn_8conns_A[0] = new neuron_to_neuron_elec_syn_8conns(0.5) }") h("a_DA8[0].soma { syn_NC_AVAL_DA8_Generic_GJ_neuron_to_neuron_elec_syn_8conns_B[0] = new neuron_to_neuron_elec_syn_8conns(0.5) }") h("setpointer syn_NC_AVAL_DA8_Generic_GJ_neuron_to_neuron_elec_syn_8conns_A[0].vpeer, a_DA8[0].soma.v(0.5)") h("setpointer syn_NC_AVAL_DA8_Generic_GJ_neuron_to_neuron_elec_syn_8conns_B[0].vpeer, a_AVAL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAL_DA9_Generic_GJ print("Adding electrical projection: NC_AVAL_DA9_Generic_GJ from AVAL to DA9, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA9_Generic_GJ_neuron_to_neuron_elec_syn_1conns_A[1]") h("objectvar syn_NC_AVAL_DA9_Generic_GJ_neuron_to_neuron_elec_syn_1conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA9_Generic_GJ_neuron_to_neuron_elec_syn_1conns_A[0] = new neuron_to_neuron_elec_syn_1conns(0.5) }") h("a_DA9[0].soma { syn_NC_AVAL_DA9_Generic_GJ_neuron_to_neuron_elec_syn_1conns_B[0] = new neuron_to_neuron_elec_syn_1conns(0.5) }") h("setpointer syn_NC_AVAL_DA9_Generic_GJ_neuron_to_neuron_elec_syn_1conns_A[0].vpeer, a_DA9[0].soma.v(0.5)") h("setpointer syn_NC_AVAL_DA9_Generic_GJ_neuron_to_neuron_elec_syn_1conns_B[0].vpeer, a_AVAL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAR_AVBL_Generic_GJ print("Adding electrical projection: NC_AVAR_AVBL_Generic_GJ from AVAR to AVBL, with 1 connection(s)") h("objectvar syn_NC_AVAR_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[1]") h("objectvar syn_NC_AVAR_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("a_AVBL[0].soma { syn_NC_AVAR_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("setpointer syn_NC_AVAR_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0].vpeer, a_AVBL[0].soma.v(0.5)") h("setpointer syn_NC_AVAR_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0].vpeer, a_AVAR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAR_DA1_Generic_GJ print("Adding electrical projection: NC_AVAR_DA1_Generic_GJ from AVAR to DA1, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA1_Generic_GJ_neuron_to_neuron_elec_syn_9conns_A[1]") h("objectvar syn_NC_AVAR_DA1_Generic_GJ_neuron_to_neuron_elec_syn_9conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA1[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA1_Generic_GJ_neuron_to_neuron_elec_syn_9conns_A[0] = new neuron_to_neuron_elec_syn_9conns(0.5) }") h("a_DA1[0].soma { syn_NC_AVAR_DA1_Generic_GJ_neuron_to_neuron_elec_syn_9conns_B[0] = new neuron_to_neuron_elec_syn_9conns(0.5) }") h("setpointer syn_NC_AVAR_DA1_Generic_GJ_neuron_to_neuron_elec_syn_9conns_A[0].vpeer, a_DA1[0].soma.v(0.5)") h("setpointer syn_NC_AVAR_DA1_Generic_GJ_neuron_to_neuron_elec_syn_9conns_B[0].vpeer, a_AVAR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAR_DA2_Generic_GJ print("Adding electrical projection: NC_AVAR_DA2_Generic_GJ from AVAR to DA2, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA2_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[1]") h("objectvar syn_NC_AVAR_DA2_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA2[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA2_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("a_DA2[0].soma { syn_NC_AVAR_DA2_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("setpointer syn_NC_AVAR_DA2_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0].vpeer, a_DA2[0].soma.v(0.5)") h("setpointer syn_NC_AVAR_DA2_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0].vpeer, a_AVAR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAR_DA3_Generic_GJ print("Adding electrical projection: NC_AVAR_DA3_Generic_GJ from AVAR to DA3, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA3_Generic_GJ_neuron_to_neuron_elec_syn_7conns_A[1]") h("objectvar syn_NC_AVAR_DA3_Generic_GJ_neuron_to_neuron_elec_syn_7conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA3_Generic_GJ_neuron_to_neuron_elec_syn_7conns_A[0] = new neuron_to_neuron_elec_syn_7conns(0.5) }") h("a_DA3[0].soma { syn_NC_AVAR_DA3_Generic_GJ_neuron_to_neuron_elec_syn_7conns_B[0] = new neuron_to_neuron_elec_syn_7conns(0.5) }") h("setpointer syn_NC_AVAR_DA3_Generic_GJ_neuron_to_neuron_elec_syn_7conns_A[0].vpeer, a_DA3[0].soma.v(0.5)") h("setpointer syn_NC_AVAR_DA3_Generic_GJ_neuron_to_neuron_elec_syn_7conns_B[0].vpeer, a_AVAR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAR_DA4_Generic_GJ print("Adding electrical projection: NC_AVAR_DA4_Generic_GJ from AVAR to DA4, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA4_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[1]") h("objectvar syn_NC_AVAR_DA4_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA4[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA4_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("a_DA4[0].soma { syn_NC_AVAR_DA4_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("setpointer syn_NC_AVAR_DA4_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0].vpeer, a_DA4[0].soma.v(0.5)") h("setpointer syn_NC_AVAR_DA4_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0].vpeer, a_AVAR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAR_DA5_Generic_GJ print("Adding electrical projection: NC_AVAR_DA5_Generic_GJ from AVAR to DA5, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA5_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[1]") h("objectvar syn_NC_AVAR_DA5_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA5[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA5_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[0] = new neuron_to_neuron_elec_syn_5conns(0.5) }") h("a_DA5[0].soma { syn_NC_AVAR_DA5_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[0] = new neuron_to_neuron_elec_syn_5conns(0.5) }") h("setpointer syn_NC_AVAR_DA5_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[0].vpeer, a_DA5[0].soma.v(0.5)") h("setpointer syn_NC_AVAR_DA5_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[0].vpeer, a_AVAR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAR_DA6_Generic_GJ print("Adding electrical projection: NC_AVAR_DA6_Generic_GJ from AVAR to DA6, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[1]") h("objectvar syn_NC_AVAR_DA6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("a_DA6[0].soma { syn_NC_AVAR_DA6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("setpointer syn_NC_AVAR_DA6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0].vpeer, a_DA6[0].soma.v(0.5)") h("setpointer syn_NC_AVAR_DA6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0].vpeer, a_AVAR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAR_DA8_Generic_GJ print("Adding electrical projection: NC_AVAR_DA8_Generic_GJ from AVAR to DA8, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA8_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[1]") h("objectvar syn_NC_AVAR_DA8_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA8_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[0] = new neuron_to_neuron_elec_syn_5conns(0.5) }") h("a_DA8[0].soma { syn_NC_AVAR_DA8_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[0] = new neuron_to_neuron_elec_syn_5conns(0.5) }") h("setpointer syn_NC_AVAR_DA8_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[0].vpeer, a_DA8[0].soma.v(0.5)") h("setpointer syn_NC_AVAR_DA8_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[0].vpeer, a_AVAR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVAR_DA9_Generic_GJ print("Adding electrical projection: NC_AVAR_DA9_Generic_GJ from AVAR to DA9, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA9_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[1]") h("objectvar syn_NC_AVAR_DA9_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA9_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("a_DA9[0].soma { syn_NC_AVAR_DA9_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("setpointer syn_NC_AVAR_DA9_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0].vpeer, a_DA9[0].soma.v(0.5)") h("setpointer syn_NC_AVAR_DA9_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0].vpeer, a_AVAR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVBL_AVAR_Generic_GJ print("Adding electrical projection: NC_AVBL_AVAR_Generic_GJ from AVBL to AVAR, with 1 connection(s)") h("objectvar syn_NC_AVBL_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[1]") h("objectvar syn_NC_AVBL_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma], weight: 1.0 h("a_AVBL[0].soma { syn_NC_AVBL_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("a_AVAR[0].soma { syn_NC_AVBL_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("setpointer syn_NC_AVBL_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0].vpeer, a_AVAR[0].soma.v(0.5)") h("setpointer syn_NC_AVBL_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0].vpeer, a_AVBL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVBL_DB2_Generic_GJ print("Adding electrical projection: NC_AVBL_DB2_Generic_GJ from AVBL to DB2, with 1 connection(s)") h("objectvar syn_NC_AVBL_DB2_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[1]") h("objectvar syn_NC_AVBL_DB2_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB2[0].soma], weight: 1.0 h("a_AVBL[0].soma { syn_NC_AVBL_DB2_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("a_DB2[0].soma { syn_NC_AVBL_DB2_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("setpointer syn_NC_AVBL_DB2_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0].vpeer, a_DB2[0].soma.v(0.5)") h("setpointer syn_NC_AVBL_DB2_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0].vpeer, a_AVBL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVBL_DB3_Generic_GJ print("Adding electrical projection: NC_AVBL_DB3_Generic_GJ from AVBL to DB3, with 1 connection(s)") h("objectvar syn_NC_AVBL_DB3_Generic_GJ_neuron_to_neuron_elec_syn_9conns_A[1]") h("objectvar syn_NC_AVBL_DB3_Generic_GJ_neuron_to_neuron_elec_syn_9conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB3[0].soma], weight: 1.0 h("a_AVBL[0].soma { syn_NC_AVBL_DB3_Generic_GJ_neuron_to_neuron_elec_syn_9conns_A[0] = new neuron_to_neuron_elec_syn_9conns(0.5) }") h("a_DB3[0].soma { syn_NC_AVBL_DB3_Generic_GJ_neuron_to_neuron_elec_syn_9conns_B[0] = new neuron_to_neuron_elec_syn_9conns(0.5) }") h("setpointer syn_NC_AVBL_DB3_Generic_GJ_neuron_to_neuron_elec_syn_9conns_A[0].vpeer, a_DB3[0].soma.v(0.5)") h("setpointer syn_NC_AVBL_DB3_Generic_GJ_neuron_to_neuron_elec_syn_9conns_B[0].vpeer, a_AVBL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVBL_DB4_Generic_GJ print("Adding electrical projection: NC_AVBL_DB4_Generic_GJ from AVBL to DB4, with 1 connection(s)") h("objectvar syn_NC_AVBL_DB4_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[1]") h("objectvar syn_NC_AVBL_DB4_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB4[0].soma], weight: 1.0 h("a_AVBL[0].soma { syn_NC_AVBL_DB4_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("a_DB4[0].soma { syn_NC_AVBL_DB4_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("setpointer syn_NC_AVBL_DB4_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0].vpeer, a_DB4[0].soma.v(0.5)") h("setpointer syn_NC_AVBL_DB4_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0].vpeer, a_AVBL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVBL_DB5_Generic_GJ print("Adding electrical projection: NC_AVBL_DB5_Generic_GJ from AVBL to DB5, with 1 connection(s)") h("objectvar syn_NC_AVBL_DB5_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[1]") h("objectvar syn_NC_AVBL_DB5_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma], weight: 1.0 h("a_AVBL[0].soma { syn_NC_AVBL_DB5_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("a_DB5[0].soma { syn_NC_AVBL_DB5_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("setpointer syn_NC_AVBL_DB5_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0].vpeer, a_DB5[0].soma.v(0.5)") h("setpointer syn_NC_AVBL_DB5_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0].vpeer, a_AVBL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVBL_DB6_Generic_GJ print("Adding electrical projection: NC_AVBL_DB6_Generic_GJ from AVBL to DB6, with 1 connection(s)") h("objectvar syn_NC_AVBL_DB6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[1]") h("objectvar syn_NC_AVBL_DB6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma], weight: 1.0 h("a_AVBL[0].soma { syn_NC_AVBL_DB6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("a_DB6[0].soma { syn_NC_AVBL_DB6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("setpointer syn_NC_AVBL_DB6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0].vpeer, a_DB6[0].soma.v(0.5)") h("setpointer syn_NC_AVBL_DB6_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0].vpeer, a_AVBL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVBL_DB7_Generic_GJ print("Adding electrical projection: NC_AVBL_DB7_Generic_GJ from AVBL to DB7, with 1 connection(s)") h("objectvar syn_NC_AVBL_DB7_Generic_GJ_neuron_to_neuron_elec_syn_13conns_A[1]") h("objectvar syn_NC_AVBL_DB7_Generic_GJ_neuron_to_neuron_elec_syn_13conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma], weight: 1.0 h("a_AVBL[0].soma { syn_NC_AVBL_DB7_Generic_GJ_neuron_to_neuron_elec_syn_13conns_A[0] = new neuron_to_neuron_elec_syn_13conns(0.5) }") h("a_DB7[0].soma { syn_NC_AVBL_DB7_Generic_GJ_neuron_to_neuron_elec_syn_13conns_B[0] = new neuron_to_neuron_elec_syn_13conns(0.5) }") h("setpointer syn_NC_AVBL_DB7_Generic_GJ_neuron_to_neuron_elec_syn_13conns_A[0].vpeer, a_DB7[0].soma.v(0.5)") h("setpointer syn_NC_AVBL_DB7_Generic_GJ_neuron_to_neuron_elec_syn_13conns_B[0].vpeer, a_AVBL[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVBR_DB1_Generic_GJ print("Adding electrical projection: NC_AVBR_DB1_Generic_GJ from AVBR to DB1, with 1 connection(s)") h("objectvar syn_NC_AVBR_DB1_Generic_GJ_neuron_to_neuron_elec_syn_15conns_A[1]") h("objectvar syn_NC_AVBR_DB1_Generic_GJ_neuron_to_neuron_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB1[0].soma], weight: 1.0 h("a_AVBR[0].soma { syn_NC_AVBR_DB1_Generic_GJ_neuron_to_neuron_elec_syn_15conns_A[0] = new neuron_to_neuron_elec_syn_15conns(0.5) }") h("a_DB1[0].soma { syn_NC_AVBR_DB1_Generic_GJ_neuron_to_neuron_elec_syn_15conns_B[0] = new neuron_to_neuron_elec_syn_15conns(0.5) }") h("setpointer syn_NC_AVBR_DB1_Generic_GJ_neuron_to_neuron_elec_syn_15conns_A[0].vpeer, a_DB1[0].soma.v(0.5)") h("setpointer syn_NC_AVBR_DB1_Generic_GJ_neuron_to_neuron_elec_syn_15conns_B[0].vpeer, a_AVBR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVBR_DB2_Generic_GJ print("Adding electrical projection: NC_AVBR_DB2_Generic_GJ from AVBR to DB2, with 1 connection(s)") h("objectvar syn_NC_AVBR_DB2_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[1]") h("objectvar syn_NC_AVBR_DB2_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB2[0].soma], weight: 1.0 h("a_AVBR[0].soma { syn_NC_AVBR_DB2_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("a_DB2[0].soma { syn_NC_AVBR_DB2_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("setpointer syn_NC_AVBR_DB2_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0].vpeer, a_DB2[0].soma.v(0.5)") h("setpointer syn_NC_AVBR_DB2_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0].vpeer, a_AVBR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVBR_DB3_Generic_GJ print("Adding electrical projection: NC_AVBR_DB3_Generic_GJ from AVBR to DB3, with 1 connection(s)") h("objectvar syn_NC_AVBR_DB3_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[1]") h("objectvar syn_NC_AVBR_DB3_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB3[0].soma], weight: 1.0 h("a_AVBR[0].soma { syn_NC_AVBR_DB3_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("a_DB3[0].soma { syn_NC_AVBR_DB3_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("setpointer syn_NC_AVBR_DB3_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0].vpeer, a_DB3[0].soma.v(0.5)") h("setpointer syn_NC_AVBR_DB3_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0].vpeer, a_AVBR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVBR_DB4_Generic_GJ print("Adding electrical projection: NC_AVBR_DB4_Generic_GJ from AVBR to DB4, with 1 connection(s)") h("objectvar syn_NC_AVBR_DB4_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[1]") h("objectvar syn_NC_AVBR_DB4_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB4[0].soma], weight: 1.0 h("a_AVBR[0].soma { syn_NC_AVBR_DB4_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[0] = new neuron_to_neuron_elec_syn_5conns(0.5) }") h("a_DB4[0].soma { syn_NC_AVBR_DB4_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[0] = new neuron_to_neuron_elec_syn_5conns(0.5) }") h("setpointer syn_NC_AVBR_DB4_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[0].vpeer, a_DB4[0].soma.v(0.5)") h("setpointer syn_NC_AVBR_DB4_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[0].vpeer, a_AVBR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVBR_DB5_Generic_GJ print("Adding electrical projection: NC_AVBR_DB5_Generic_GJ from AVBR to DB5, with 1 connection(s)") h("objectvar syn_NC_AVBR_DB5_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[1]") h("objectvar syn_NC_AVBR_DB5_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma], weight: 1.0 h("a_AVBR[0].soma { syn_NC_AVBR_DB5_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("a_DB5[0].soma { syn_NC_AVBR_DB5_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("setpointer syn_NC_AVBR_DB5_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0].vpeer, a_DB5[0].soma.v(0.5)") h("setpointer syn_NC_AVBR_DB5_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0].vpeer, a_AVBR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVBR_DB6_Generic_GJ print("Adding electrical projection: NC_AVBR_DB6_Generic_GJ from AVBR to DB6, with 1 connection(s)") h("objectvar syn_NC_AVBR_DB6_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[1]") h("objectvar syn_NC_AVBR_DB6_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma], weight: 1.0 h("a_AVBR[0].soma { syn_NC_AVBR_DB6_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("a_DB6[0].soma { syn_NC_AVBR_DB6_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("setpointer syn_NC_AVBR_DB6_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0].vpeer, a_DB6[0].soma.v(0.5)") h("setpointer syn_NC_AVBR_DB6_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0].vpeer, a_AVBR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_AVBR_DB7_Generic_GJ print("Adding electrical projection: NC_AVBR_DB7_Generic_GJ from AVBR to DB7, with 1 connection(s)") h("objectvar syn_NC_AVBR_DB7_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[1]") h("objectvar syn_NC_AVBR_DB7_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma], weight: 1.0 h("a_AVBR[0].soma { syn_NC_AVBR_DB7_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("a_DB7[0].soma { syn_NC_AVBR_DB7_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("setpointer syn_NC_AVBR_DB7_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0].vpeer, a_DB7[0].soma.v(0.5)") h("setpointer syn_NC_AVBR_DB7_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0].vpeer, a_AVBR[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA1_AVAL_Generic_GJ print("Adding electrical projection: NC_DA1_AVAL_Generic_GJ from DA1 to AVAL, with 1 connection(s)") h("objectvar syn_NC_DA1_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[1]") h("objectvar syn_NC_DA1_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma], weight: 1.0 h("a_DA1[0].soma { syn_NC_DA1_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("a_AVAL[0].soma { syn_NC_DA1_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("setpointer syn_NC_DA1_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0].vpeer, a_AVAL[0].soma.v(0.5)") h("setpointer syn_NC_DA1_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0].vpeer, a_DA1[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA1_AVAR_Generic_GJ print("Adding electrical projection: NC_DA1_AVAR_Generic_GJ from DA1 to AVAR, with 1 connection(s)") h("objectvar syn_NC_DA1_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_9conns_A[1]") h("objectvar syn_NC_DA1_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_9conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma], weight: 1.0 h("a_DA1[0].soma { syn_NC_DA1_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_9conns_A[0] = new neuron_to_neuron_elec_syn_9conns(0.5) }") h("a_AVAR[0].soma { syn_NC_DA1_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_9conns_B[0] = new neuron_to_neuron_elec_syn_9conns(0.5) }") h("setpointer syn_NC_DA1_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_9conns_A[0].vpeer, a_AVAR[0].soma.v(0.5)") h("setpointer syn_NC_DA1_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_9conns_B[0].vpeer, a_DA1[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA2_AVAL_Generic_GJ print("Adding electrical projection: NC_DA2_AVAL_Generic_GJ from DA2 to AVAL, with 1 connection(s)") h("objectvar syn_NC_DA2_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_7conns_A[1]") h("objectvar syn_NC_DA2_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_7conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma], weight: 1.0 h("a_DA2[0].soma { syn_NC_DA2_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_7conns_A[0] = new neuron_to_neuron_elec_syn_7conns(0.5) }") h("a_AVAL[0].soma { syn_NC_DA2_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_7conns_B[0] = new neuron_to_neuron_elec_syn_7conns(0.5) }") h("setpointer syn_NC_DA2_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_7conns_A[0].vpeer, a_AVAL[0].soma.v(0.5)") h("setpointer syn_NC_DA2_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_7conns_B[0].vpeer, a_DA2[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA2_AVAR_Generic_GJ print("Adding electrical projection: NC_DA2_AVAR_Generic_GJ from DA2 to AVAR, with 1 connection(s)") h("objectvar syn_NC_DA2_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[1]") h("objectvar syn_NC_DA2_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma], weight: 1.0 h("a_DA2[0].soma { syn_NC_DA2_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("a_AVAR[0].soma { syn_NC_DA2_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("setpointer syn_NC_DA2_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0].vpeer, a_AVAR[0].soma.v(0.5)") h("setpointer syn_NC_DA2_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0].vpeer, a_DA2[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA3_AVAL_Generic_GJ print("Adding electrical projection: NC_DA3_AVAL_Generic_GJ from DA3 to AVAL, with 1 connection(s)") h("objectvar syn_NC_DA3_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_6conns_A[1]") h("objectvar syn_NC_DA3_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_6conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma], weight: 1.0 h("a_DA3[0].soma { syn_NC_DA3_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_6conns_A[0] = new neuron_to_neuron_elec_syn_6conns(0.5) }") h("a_AVAL[0].soma { syn_NC_DA3_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_6conns_B[0] = new neuron_to_neuron_elec_syn_6conns(0.5) }") h("setpointer syn_NC_DA3_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_6conns_A[0].vpeer, a_AVAL[0].soma.v(0.5)") h("setpointer syn_NC_DA3_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_6conns_B[0].vpeer, a_DA3[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA3_AVAR_Generic_GJ print("Adding electrical projection: NC_DA3_AVAR_Generic_GJ from DA3 to AVAR, with 1 connection(s)") h("objectvar syn_NC_DA3_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_7conns_A[1]") h("objectvar syn_NC_DA3_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_7conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma], weight: 1.0 h("a_DA3[0].soma { syn_NC_DA3_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_7conns_A[0] = new neuron_to_neuron_elec_syn_7conns(0.5) }") h("a_AVAR[0].soma { syn_NC_DA3_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_7conns_B[0] = new neuron_to_neuron_elec_syn_7conns(0.5) }") h("setpointer syn_NC_DA3_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_7conns_A[0].vpeer, a_AVAR[0].soma.v(0.5)") h("setpointer syn_NC_DA3_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_7conns_B[0].vpeer, a_DA3[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA4_AVAL_Generic_GJ print("Adding electrical projection: NC_DA4_AVAL_Generic_GJ from DA4 to AVAL, with 1 connection(s)") h("objectvar syn_NC_DA4_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[1]") h("objectvar syn_NC_DA4_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma], weight: 1.0 h("a_DA4[0].soma { syn_NC_DA4_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("a_AVAL[0].soma { syn_NC_DA4_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("setpointer syn_NC_DA4_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0].vpeer, a_AVAL[0].soma.v(0.5)") h("setpointer syn_NC_DA4_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0].vpeer, a_DA4[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA4_AVAR_Generic_GJ print("Adding electrical projection: NC_DA4_AVAR_Generic_GJ from DA4 to AVAR, with 1 connection(s)") h("objectvar syn_NC_DA4_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[1]") h("objectvar syn_NC_DA4_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma], weight: 1.0 h("a_DA4[0].soma { syn_NC_DA4_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("a_AVAR[0].soma { syn_NC_DA4_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("setpointer syn_NC_DA4_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0].vpeer, a_AVAR[0].soma.v(0.5)") h("setpointer syn_NC_DA4_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0].vpeer, a_DA4[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA5_AVAL_Generic_GJ print("Adding electrical projection: NC_DA5_AVAL_Generic_GJ from DA5 to AVAL, with 1 connection(s)") h("objectvar syn_NC_DA5_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[1]") h("objectvar syn_NC_DA5_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma], weight: 1.0 h("a_DA5[0].soma { syn_NC_DA5_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("a_AVAL[0].soma { syn_NC_DA5_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("setpointer syn_NC_DA5_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0].vpeer, a_AVAL[0].soma.v(0.5)") h("setpointer syn_NC_DA5_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0].vpeer, a_DA5[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA5_AVAR_Generic_GJ print("Adding electrical projection: NC_DA5_AVAR_Generic_GJ from DA5 to AVAR, with 1 connection(s)") h("objectvar syn_NC_DA5_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[1]") h("objectvar syn_NC_DA5_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma], weight: 1.0 h("a_DA5[0].soma { syn_NC_DA5_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[0] = new neuron_to_neuron_elec_syn_5conns(0.5) }") h("a_AVAR[0].soma { syn_NC_DA5_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[0] = new neuron_to_neuron_elec_syn_5conns(0.5) }") h("setpointer syn_NC_DA5_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[0].vpeer, a_AVAR[0].soma.v(0.5)") h("setpointer syn_NC_DA5_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[0].vpeer, a_DA5[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA6_AVAL_Generic_GJ print("Adding electrical projection: NC_DA6_AVAL_Generic_GJ from DA6 to AVAL, with 1 connection(s)") h("objectvar syn_NC_DA6_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[1]") h("objectvar syn_NC_DA6_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("a_AVAL[0].soma { syn_NC_DA6_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("setpointer syn_NC_DA6_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0].vpeer, a_AVAL[0].soma.v(0.5)") h("setpointer syn_NC_DA6_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0].vpeer, a_DA6[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA6_AVAR_Generic_GJ print("Adding electrical projection: NC_DA6_AVAR_Generic_GJ from DA6 to AVAR, with 1 connection(s)") h("objectvar syn_NC_DA6_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[1]") h("objectvar syn_NC_DA6_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("a_AVAR[0].soma { syn_NC_DA6_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("setpointer syn_NC_DA6_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0].vpeer, a_AVAR[0].soma.v(0.5)") h("setpointer syn_NC_DA6_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0].vpeer, a_DA6[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA7_AVAL_Generic_GJ print("Adding electrical projection: NC_DA7_AVAL_Generic_GJ from DA7 to AVAL, with 1 connection(s)") h("objectvar syn_NC_DA7_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_10conns_A[1]") h("objectvar syn_NC_DA7_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_10conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma], weight: 1.0 h("a_DA7[0].soma { syn_NC_DA7_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_10conns_A[0] = new neuron_to_neuron_elec_syn_10conns(0.5) }") h("a_AVAL[0].soma { syn_NC_DA7_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_10conns_B[0] = new neuron_to_neuron_elec_syn_10conns(0.5) }") h("setpointer syn_NC_DA7_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_10conns_A[0].vpeer, a_AVAL[0].soma.v(0.5)") h("setpointer syn_NC_DA7_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_10conns_B[0].vpeer, a_DA7[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA8_AVAL_Generic_GJ print("Adding electrical projection: NC_DA8_AVAL_Generic_GJ from DA8 to AVAL, with 1 connection(s)") h("objectvar syn_NC_DA8_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_8conns_A[1]") h("objectvar syn_NC_DA8_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_8conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma], weight: 1.0 h("a_DA8[0].soma { syn_NC_DA8_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_8conns_A[0] = new neuron_to_neuron_elec_syn_8conns(0.5) }") h("a_AVAL[0].soma { syn_NC_DA8_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_8conns_B[0] = new neuron_to_neuron_elec_syn_8conns(0.5) }") h("setpointer syn_NC_DA8_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_8conns_A[0].vpeer, a_AVAL[0].soma.v(0.5)") h("setpointer syn_NC_DA8_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_8conns_B[0].vpeer, a_DA8[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA8_AVAR_Generic_GJ print("Adding electrical projection: NC_DA8_AVAR_Generic_GJ from DA8 to AVAR, with 1 connection(s)") h("objectvar syn_NC_DA8_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[1]") h("objectvar syn_NC_DA8_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma], weight: 1.0 h("a_DA8[0].soma { syn_NC_DA8_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[0] = new neuron_to_neuron_elec_syn_5conns(0.5) }") h("a_AVAR[0].soma { syn_NC_DA8_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[0] = new neuron_to_neuron_elec_syn_5conns(0.5) }") h("setpointer syn_NC_DA8_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[0].vpeer, a_AVAR[0].soma.v(0.5)") h("setpointer syn_NC_DA8_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[0].vpeer, a_DA8[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA9_AVAL_Generic_GJ print("Adding electrical projection: NC_DA9_AVAL_Generic_GJ from DA9 to AVAL, with 1 connection(s)") h("objectvar syn_NC_DA9_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_1conns_A[1]") h("objectvar syn_NC_DA9_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_1conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma], weight: 1.0 h("a_DA9[0].soma { syn_NC_DA9_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_1conns_A[0] = new neuron_to_neuron_elec_syn_1conns(0.5) }") h("a_AVAL[0].soma { syn_NC_DA9_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_1conns_B[0] = new neuron_to_neuron_elec_syn_1conns(0.5) }") h("setpointer syn_NC_DA9_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_1conns_A[0].vpeer, a_AVAL[0].soma.v(0.5)") h("setpointer syn_NC_DA9_AVAL_Generic_GJ_neuron_to_neuron_elec_syn_1conns_B[0].vpeer, a_DA9[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DA9_AVAR_Generic_GJ print("Adding electrical projection: NC_DA9_AVAR_Generic_GJ from DA9 to AVAR, with 1 connection(s)") h("objectvar syn_NC_DA9_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[1]") h("objectvar syn_NC_DA9_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma], weight: 1.0 h("a_DA9[0].soma { syn_NC_DA9_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("a_AVAR[0].soma { syn_NC_DA9_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("setpointer syn_NC_DA9_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0].vpeer, a_AVAR[0].soma.v(0.5)") h("setpointer syn_NC_DA9_AVAR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0].vpeer, a_DA9[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DB1_AVBR_Generic_GJ print("Adding electrical projection: NC_DB1_AVBR_Generic_GJ from DB1 to AVBR, with 1 connection(s)") h("objectvar syn_NC_DB1_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_15conns_A[1]") h("objectvar syn_NC_DB1_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma], weight: 1.0 h("a_DB1[0].soma { syn_NC_DB1_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_15conns_A[0] = new neuron_to_neuron_elec_syn_15conns(0.5) }") h("a_AVBR[0].soma { syn_NC_DB1_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_15conns_B[0] = new neuron_to_neuron_elec_syn_15conns(0.5) }") h("setpointer syn_NC_DB1_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_15conns_A[0].vpeer, a_AVBR[0].soma.v(0.5)") h("setpointer syn_NC_DB1_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_15conns_B[0].vpeer, a_DB1[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DB2_AVBL_Generic_GJ print("Adding electrical projection: NC_DB2_AVBL_Generic_GJ from DB2 to AVBL, with 1 connection(s)") h("objectvar syn_NC_DB2_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[1]") h("objectvar syn_NC_DB2_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma], weight: 1.0 h("a_DB2[0].soma { syn_NC_DB2_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("a_AVBL[0].soma { syn_NC_DB2_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("setpointer syn_NC_DB2_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0].vpeer, a_AVBL[0].soma.v(0.5)") h("setpointer syn_NC_DB2_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0].vpeer, a_DB2[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DB2_AVBR_Generic_GJ print("Adding electrical projection: NC_DB2_AVBR_Generic_GJ from DB2 to AVBR, with 1 connection(s)") h("objectvar syn_NC_DB2_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[1]") h("objectvar syn_NC_DB2_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma], weight: 1.0 h("a_DB2[0].soma { syn_NC_DB2_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("a_AVBR[0].soma { syn_NC_DB2_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("setpointer syn_NC_DB2_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0].vpeer, a_AVBR[0].soma.v(0.5)") h("setpointer syn_NC_DB2_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0].vpeer, a_DB2[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DB3_AVBL_Generic_GJ print("Adding electrical projection: NC_DB3_AVBL_Generic_GJ from DB3 to AVBL, with 1 connection(s)") h("objectvar syn_NC_DB3_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_9conns_A[1]") h("objectvar syn_NC_DB3_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_9conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma], weight: 1.0 h("a_DB3[0].soma { syn_NC_DB3_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_9conns_A[0] = new neuron_to_neuron_elec_syn_9conns(0.5) }") h("a_AVBL[0].soma { syn_NC_DB3_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_9conns_B[0] = new neuron_to_neuron_elec_syn_9conns(0.5) }") h("setpointer syn_NC_DB3_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_9conns_A[0].vpeer, a_AVBL[0].soma.v(0.5)") h("setpointer syn_NC_DB3_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_9conns_B[0].vpeer, a_DB3[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DB3_AVBR_Generic_GJ print("Adding electrical projection: NC_DB3_AVBR_Generic_GJ from DB3 to AVBR, with 1 connection(s)") h("objectvar syn_NC_DB3_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[1]") h("objectvar syn_NC_DB3_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma], weight: 1.0 h("a_DB3[0].soma { syn_NC_DB3_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("a_AVBR[0].soma { syn_NC_DB3_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0] = new neuron_to_neuron_elec_syn_2conns(0.5) }") h("setpointer syn_NC_DB3_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_2conns_A[0].vpeer, a_AVBR[0].soma.v(0.5)") h("setpointer syn_NC_DB3_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_2conns_B[0].vpeer, a_DB3[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DB4_AVBL_Generic_GJ print("Adding electrical projection: NC_DB4_AVBL_Generic_GJ from DB4 to AVBL, with 1 connection(s)") h("objectvar syn_NC_DB4_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[1]") h("objectvar syn_NC_DB4_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma], weight: 1.0 h("a_DB4[0].soma { syn_NC_DB4_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("a_AVBL[0].soma { syn_NC_DB4_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("setpointer syn_NC_DB4_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0].vpeer, a_AVBL[0].soma.v(0.5)") h("setpointer syn_NC_DB4_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0].vpeer, a_DB4[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DB4_AVBR_Generic_GJ print("Adding electrical projection: NC_DB4_AVBR_Generic_GJ from DB4 to AVBR, with 1 connection(s)") h("objectvar syn_NC_DB4_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[1]") h("objectvar syn_NC_DB4_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma], weight: 1.0 h("a_DB4[0].soma { syn_NC_DB4_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[0] = new neuron_to_neuron_elec_syn_5conns(0.5) }") h("a_AVBR[0].soma { syn_NC_DB4_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[0] = new neuron_to_neuron_elec_syn_5conns(0.5) }") h("setpointer syn_NC_DB4_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_A[0].vpeer, a_AVBR[0].soma.v(0.5)") h("setpointer syn_NC_DB4_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_5conns_B[0].vpeer, a_DB4[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DB5_AVBL_Generic_GJ print("Adding electrical projection: NC_DB5_AVBL_Generic_GJ from DB5 to AVBL, with 1 connection(s)") h("objectvar syn_NC_DB5_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[1]") h("objectvar syn_NC_DB5_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("a_AVBL[0].soma { syn_NC_DB5_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("setpointer syn_NC_DB5_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0].vpeer, a_AVBL[0].soma.v(0.5)") h("setpointer syn_NC_DB5_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0].vpeer, a_DB5[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DB5_AVBR_Generic_GJ print("Adding electrical projection: NC_DB5_AVBR_Generic_GJ from DB5 to AVBR, with 1 connection(s)") h("objectvar syn_NC_DB5_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[1]") h("objectvar syn_NC_DB5_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("a_AVBR[0].soma { syn_NC_DB5_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("setpointer syn_NC_DB5_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0].vpeer, a_AVBR[0].soma.v(0.5)") h("setpointer syn_NC_DB5_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0].vpeer, a_DB5[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DB6_AVBL_Generic_GJ print("Adding electrical projection: NC_DB6_AVBL_Generic_GJ from DB6 to AVBL, with 1 connection(s)") h("objectvar syn_NC_DB6_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[1]") h("objectvar syn_NC_DB6_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("a_AVBL[0].soma { syn_NC_DB6_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("setpointer syn_NC_DB6_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0].vpeer, a_AVBL[0].soma.v(0.5)") h("setpointer syn_NC_DB6_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0].vpeer, a_DB6[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DB6_AVBR_Generic_GJ print("Adding electrical projection: NC_DB6_AVBR_Generic_GJ from DB6 to AVBR, with 1 connection(s)") h("objectvar syn_NC_DB6_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[1]") h("objectvar syn_NC_DB6_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("a_AVBR[0].soma { syn_NC_DB6_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0] = new neuron_to_neuron_elec_syn_4conns(0.5) }") h("setpointer syn_NC_DB6_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_A[0].vpeer, a_AVBR[0].soma.v(0.5)") h("setpointer syn_NC_DB6_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_4conns_B[0].vpeer, a_DB6[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DB7_AVBL_Generic_GJ print("Adding electrical projection: NC_DB7_AVBL_Generic_GJ from DB7 to AVBL, with 1 connection(s)") h("objectvar syn_NC_DB7_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_13conns_A[1]") h("objectvar syn_NC_DB7_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_13conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_13conns_A[0] = new neuron_to_neuron_elec_syn_13conns(0.5) }") h("a_AVBL[0].soma { syn_NC_DB7_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_13conns_B[0] = new neuron_to_neuron_elec_syn_13conns(0.5) }") h("setpointer syn_NC_DB7_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_13conns_A[0].vpeer, a_AVBL[0].soma.v(0.5)") h("setpointer syn_NC_DB7_AVBL_Generic_GJ_neuron_to_neuron_elec_syn_13conns_B[0].vpeer, a_DB7[0].soma.v(0.5)") # ###################### Electrical Projection: NC_DB7_AVBR_Generic_GJ print("Adding electrical projection: NC_DB7_AVBR_Generic_GJ from DB7 to AVBR, with 1 connection(s)") h("objectvar syn_NC_DB7_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[1]") h("objectvar syn_NC_DB7_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("a_AVBR[0].soma { syn_NC_DB7_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0] = new neuron_to_neuron_elec_syn_3conns(0.5) }") h("setpointer syn_NC_DB7_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_A[0].vpeer, a_AVBR[0].soma.v(0.5)") h("setpointer syn_NC_DB7_AVBR_Generic_GJ_neuron_to_neuron_elec_syn_3conns_B[0].vpeer, a_DB7[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL01_MDL02_Generic_GJ print("Adding electrical projection: NC_MDL01_MDL02_Generic_GJ from MDL01 to MDL02, with 1 connection(s)") h("objectvar syn_NC_MDL01_MDL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL01_MDL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL01[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL02[0].soma], weight: 1.0 h("a_MDL01[0].soma { syn_NC_MDL01_MDL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL02[0].soma { syn_NC_MDL01_MDL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL01_MDL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL02[0].soma.v(0.5)") h("setpointer syn_NC_MDL01_MDL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL01[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL01_MDL03_Generic_GJ print("Adding electrical projection: NC_MDL01_MDL03_Generic_GJ from MDL01 to MDL03, with 1 connection(s)") h("objectvar syn_NC_MDL01_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL01_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL01[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL03[0].soma], weight: 1.0 h("a_MDL01[0].soma { syn_NC_MDL01_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL03[0].soma { syn_NC_MDL01_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL01_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL03[0].soma.v(0.5)") h("setpointer syn_NC_MDL01_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL01[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL02_MDL01_Generic_GJ print("Adding electrical projection: NC_MDL02_MDL01_Generic_GJ from MDL02 to MDL01, with 1 connection(s)") h("objectvar syn_NC_MDL02_MDL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL02_MDL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL02[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL01[0].soma], weight: 1.0 h("a_MDL02[0].soma { syn_NC_MDL02_MDL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL01[0].soma { syn_NC_MDL02_MDL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL02_MDL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL01[0].soma.v(0.5)") h("setpointer syn_NC_MDL02_MDL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL02[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL02_MDL03_Generic_GJ print("Adding electrical projection: NC_MDL02_MDL03_Generic_GJ from MDL02 to MDL03, with 1 connection(s)") h("objectvar syn_NC_MDL02_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL02_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL02[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL03[0].soma], weight: 1.0 h("a_MDL02[0].soma { syn_NC_MDL02_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL03[0].soma { syn_NC_MDL02_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL02_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL03[0].soma.v(0.5)") h("setpointer syn_NC_MDL02_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL02[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL03_MDL01_Generic_GJ print("Adding electrical projection: NC_MDL03_MDL01_Generic_GJ from MDL03 to MDL01, with 1 connection(s)") h("objectvar syn_NC_MDL03_MDL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL03_MDL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL03[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL01[0].soma], weight: 1.0 h("a_MDL03[0].soma { syn_NC_MDL03_MDL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL01[0].soma { syn_NC_MDL03_MDL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL03_MDL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL01[0].soma.v(0.5)") h("setpointer syn_NC_MDL03_MDL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL03[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL03_MDL02_Generic_GJ print("Adding electrical projection: NC_MDL03_MDL02_Generic_GJ from MDL03 to MDL02, with 1 connection(s)") h("objectvar syn_NC_MDL03_MDL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL03_MDL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL03[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL02[0].soma], weight: 1.0 h("a_MDL03[0].soma { syn_NC_MDL03_MDL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL02[0].soma { syn_NC_MDL03_MDL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL03_MDL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL02[0].soma.v(0.5)") h("setpointer syn_NC_MDL03_MDL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL03[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL03_MDL04_Generic_GJ print("Adding electrical projection: NC_MDL03_MDL04_Generic_GJ from MDL03 to MDL04, with 1 connection(s)") h("objectvar syn_NC_MDL03_MDL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL03_MDL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL03[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL04[0].soma], weight: 1.0 h("a_MDL03[0].soma { syn_NC_MDL03_MDL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL04[0].soma { syn_NC_MDL03_MDL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL03_MDL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL04[0].soma.v(0.5)") h("setpointer syn_NC_MDL03_MDL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL03[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL04_MDL03_Generic_GJ print("Adding electrical projection: NC_MDL04_MDL03_Generic_GJ from MDL04 to MDL03, with 1 connection(s)") h("objectvar syn_NC_MDL04_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL04_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL04[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL03[0].soma], weight: 1.0 h("a_MDL04[0].soma { syn_NC_MDL04_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL03[0].soma { syn_NC_MDL04_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL04_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL03[0].soma.v(0.5)") h("setpointer syn_NC_MDL04_MDL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL04[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL04_MDL05_Generic_GJ print("Adding electrical projection: NC_MDL04_MDL05_Generic_GJ from MDL04 to MDL05, with 1 connection(s)") h("objectvar syn_NC_MDL04_MDL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL04_MDL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL04[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL05[0].soma], weight: 1.0 h("a_MDL04[0].soma { syn_NC_MDL04_MDL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL05[0].soma { syn_NC_MDL04_MDL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL04_MDL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL05[0].soma.v(0.5)") h("setpointer syn_NC_MDL04_MDL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL04[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL05_MDL04_Generic_GJ print("Adding electrical projection: NC_MDL05_MDL04_Generic_GJ from MDL05 to MDL04, with 1 connection(s)") h("objectvar syn_NC_MDL05_MDL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL05_MDL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL05[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL04[0].soma], weight: 1.0 h("a_MDL05[0].soma { syn_NC_MDL05_MDL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL04[0].soma { syn_NC_MDL05_MDL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL05_MDL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL04[0].soma.v(0.5)") h("setpointer syn_NC_MDL05_MDL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL05[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL05_MDL06_Generic_GJ print("Adding electrical projection: NC_MDL05_MDL06_Generic_GJ from MDL05 to MDL06, with 1 connection(s)") h("objectvar syn_NC_MDL05_MDL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL05_MDL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL05[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL06[0].soma], weight: 1.0 h("a_MDL05[0].soma { syn_NC_MDL05_MDL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL06[0].soma { syn_NC_MDL05_MDL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL05_MDL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL06[0].soma.v(0.5)") h("setpointer syn_NC_MDL05_MDL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL05[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL06_MDL05_Generic_GJ print("Adding electrical projection: NC_MDL06_MDL05_Generic_GJ from MDL06 to MDL05, with 1 connection(s)") h("objectvar syn_NC_MDL06_MDL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL06_MDL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL06[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL05[0].soma], weight: 1.0 h("a_MDL06[0].soma { syn_NC_MDL06_MDL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL05[0].soma { syn_NC_MDL06_MDL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL06_MDL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL05[0].soma.v(0.5)") h("setpointer syn_NC_MDL06_MDL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL06[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL06_MDL07_Generic_GJ print("Adding electrical projection: NC_MDL06_MDL07_Generic_GJ from MDL06 to MDL07, with 1 connection(s)") h("objectvar syn_NC_MDL06_MDL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL06_MDL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL06[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL07[0].soma], weight: 1.0 h("a_MDL06[0].soma { syn_NC_MDL06_MDL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL07[0].soma { syn_NC_MDL06_MDL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL06_MDL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL07[0].soma.v(0.5)") h("setpointer syn_NC_MDL06_MDL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL06[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL07_MDL06_Generic_GJ print("Adding electrical projection: NC_MDL07_MDL06_Generic_GJ from MDL07 to MDL06, with 1 connection(s)") h("objectvar syn_NC_MDL07_MDL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL07_MDL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL07[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL06[0].soma], weight: 1.0 h("a_MDL07[0].soma { syn_NC_MDL07_MDL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL06[0].soma { syn_NC_MDL07_MDL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL07_MDL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL06[0].soma.v(0.5)") h("setpointer syn_NC_MDL07_MDL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL07[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL07_MDL08_Generic_GJ print("Adding electrical projection: NC_MDL07_MDL08_Generic_GJ from MDL07 to MDL08, with 1 connection(s)") h("objectvar syn_NC_MDL07_MDL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL07_MDL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL07[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL08[0].soma], weight: 1.0 h("a_MDL07[0].soma { syn_NC_MDL07_MDL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL08[0].soma { syn_NC_MDL07_MDL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL07_MDL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL08[0].soma.v(0.5)") h("setpointer syn_NC_MDL07_MDL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL07[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL08_MDL07_Generic_GJ print("Adding electrical projection: NC_MDL08_MDL07_Generic_GJ from MDL08 to MDL07, with 1 connection(s)") h("objectvar syn_NC_MDL08_MDL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL08_MDL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL08[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL07[0].soma], weight: 1.0 h("a_MDL08[0].soma { syn_NC_MDL08_MDL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL07[0].soma { syn_NC_MDL08_MDL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL08_MDL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL07[0].soma.v(0.5)") h("setpointer syn_NC_MDL08_MDL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL08[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL08_MDL09_Generic_GJ print("Adding electrical projection: NC_MDL08_MDL09_Generic_GJ from MDL08 to MDL09, with 1 connection(s)") h("objectvar syn_NC_MDL08_MDL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL08_MDL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL08[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL09[0].soma], weight: 1.0 h("a_MDL08[0].soma { syn_NC_MDL08_MDL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL09[0].soma { syn_NC_MDL08_MDL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL08_MDL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL09[0].soma.v(0.5)") h("setpointer syn_NC_MDL08_MDL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL08[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL09_MDL08_Generic_GJ print("Adding electrical projection: NC_MDL09_MDL08_Generic_GJ from MDL09 to MDL08, with 1 connection(s)") h("objectvar syn_NC_MDL09_MDL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL09_MDL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL09[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL08[0].soma], weight: 1.0 h("a_MDL09[0].soma { syn_NC_MDL09_MDL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL08[0].soma { syn_NC_MDL09_MDL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL09_MDL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL08[0].soma.v(0.5)") h("setpointer syn_NC_MDL09_MDL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL09[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL09_MDL10_Generic_GJ print("Adding electrical projection: NC_MDL09_MDL10_Generic_GJ from MDL09 to MDL10, with 1 connection(s)") h("objectvar syn_NC_MDL09_MDL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL09_MDL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL09[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL10[0].soma], weight: 1.0 h("a_MDL09[0].soma { syn_NC_MDL09_MDL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL10[0].soma { syn_NC_MDL09_MDL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL09_MDL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL10[0].soma.v(0.5)") h("setpointer syn_NC_MDL09_MDL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL09[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL10_MDL09_Generic_GJ print("Adding electrical projection: NC_MDL10_MDL09_Generic_GJ from MDL10 to MDL09, with 1 connection(s)") h("objectvar syn_NC_MDL10_MDL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL10_MDL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL10[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL09[0].soma], weight: 1.0 h("a_MDL10[0].soma { syn_NC_MDL10_MDL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL09[0].soma { syn_NC_MDL10_MDL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL10_MDL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL09[0].soma.v(0.5)") h("setpointer syn_NC_MDL10_MDL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL10[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL10_MDL11_Generic_GJ print("Adding electrical projection: NC_MDL10_MDL11_Generic_GJ from MDL10 to MDL11, with 1 connection(s)") h("objectvar syn_NC_MDL10_MDL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL10_MDL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL10[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL11[0].soma], weight: 1.0 h("a_MDL10[0].soma { syn_NC_MDL10_MDL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL11[0].soma { syn_NC_MDL10_MDL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL10_MDL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL11[0].soma.v(0.5)") h("setpointer syn_NC_MDL10_MDL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL10[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL11_MDL10_Generic_GJ print("Adding electrical projection: NC_MDL11_MDL10_Generic_GJ from MDL11 to MDL10, with 1 connection(s)") h("objectvar syn_NC_MDL11_MDL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL11_MDL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL11[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL10[0].soma], weight: 1.0 h("a_MDL11[0].soma { syn_NC_MDL11_MDL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL10[0].soma { syn_NC_MDL11_MDL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL11_MDL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL10[0].soma.v(0.5)") h("setpointer syn_NC_MDL11_MDL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL11[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL11_MDL12_Generic_GJ print("Adding electrical projection: NC_MDL11_MDL12_Generic_GJ from MDL11 to MDL12, with 1 connection(s)") h("objectvar syn_NC_MDL11_MDL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL11_MDL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL11[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL12[0].soma], weight: 1.0 h("a_MDL11[0].soma { syn_NC_MDL11_MDL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL12[0].soma { syn_NC_MDL11_MDL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL11_MDL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL12[0].soma.v(0.5)") h("setpointer syn_NC_MDL11_MDL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL11[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL12_MDL11_Generic_GJ print("Adding electrical projection: NC_MDL12_MDL11_Generic_GJ from MDL12 to MDL11, with 1 connection(s)") h("objectvar syn_NC_MDL12_MDL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL12_MDL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL12[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL11[0].soma], weight: 1.0 h("a_MDL12[0].soma { syn_NC_MDL12_MDL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL11[0].soma { syn_NC_MDL12_MDL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL12_MDL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL11[0].soma.v(0.5)") h("setpointer syn_NC_MDL12_MDL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL12[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL12_MDL13_Generic_GJ print("Adding electrical projection: NC_MDL12_MDL13_Generic_GJ from MDL12 to MDL13, with 1 connection(s)") h("objectvar syn_NC_MDL12_MDL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL12_MDL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL12[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL13[0].soma], weight: 1.0 h("a_MDL12[0].soma { syn_NC_MDL12_MDL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL13[0].soma { syn_NC_MDL12_MDL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL12_MDL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL13[0].soma.v(0.5)") h("setpointer syn_NC_MDL12_MDL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL12[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL13_MDL12_Generic_GJ print("Adding electrical projection: NC_MDL13_MDL12_Generic_GJ from MDL13 to MDL12, with 1 connection(s)") h("objectvar syn_NC_MDL13_MDL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL13_MDL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL13[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL12[0].soma], weight: 1.0 h("a_MDL13[0].soma { syn_NC_MDL13_MDL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL12[0].soma { syn_NC_MDL13_MDL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL13_MDL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL12[0].soma.v(0.5)") h("setpointer syn_NC_MDL13_MDL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL13[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL13_MDL14_Generic_GJ print("Adding electrical projection: NC_MDL13_MDL14_Generic_GJ from MDL13 to MDL14, with 1 connection(s)") h("objectvar syn_NC_MDL13_MDL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL13_MDL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL13[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL14[0].soma], weight: 1.0 h("a_MDL13[0].soma { syn_NC_MDL13_MDL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL14[0].soma { syn_NC_MDL13_MDL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL13_MDL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL14[0].soma.v(0.5)") h("setpointer syn_NC_MDL13_MDL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL13[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL14_MDL13_Generic_GJ print("Adding electrical projection: NC_MDL14_MDL13_Generic_GJ from MDL14 to MDL13, with 1 connection(s)") h("objectvar syn_NC_MDL14_MDL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL14_MDL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL14[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL13[0].soma], weight: 1.0 h("a_MDL14[0].soma { syn_NC_MDL14_MDL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL13[0].soma { syn_NC_MDL14_MDL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL14_MDL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL13[0].soma.v(0.5)") h("setpointer syn_NC_MDL14_MDL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL14[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL14_MDL15_Generic_GJ print("Adding electrical projection: NC_MDL14_MDL15_Generic_GJ from MDL14 to MDL15, with 1 connection(s)") h("objectvar syn_NC_MDL14_MDL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL14_MDL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL14[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL15[0].soma], weight: 1.0 h("a_MDL14[0].soma { syn_NC_MDL14_MDL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL15[0].soma { syn_NC_MDL14_MDL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL14_MDL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL15[0].soma.v(0.5)") h("setpointer syn_NC_MDL14_MDL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL14[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL15_MDL14_Generic_GJ print("Adding electrical projection: NC_MDL15_MDL14_Generic_GJ from MDL15 to MDL14, with 1 connection(s)") h("objectvar syn_NC_MDL15_MDL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL15_MDL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL15[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL14[0].soma], weight: 1.0 h("a_MDL15[0].soma { syn_NC_MDL15_MDL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL14[0].soma { syn_NC_MDL15_MDL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL15_MDL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL14[0].soma.v(0.5)") h("setpointer syn_NC_MDL15_MDL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL15[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL15_MDL16_Generic_GJ print("Adding electrical projection: NC_MDL15_MDL16_Generic_GJ from MDL15 to MDL16, with 1 connection(s)") h("objectvar syn_NC_MDL15_MDL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL15_MDL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL15[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL16[0].soma], weight: 1.0 h("a_MDL15[0].soma { syn_NC_MDL15_MDL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL16[0].soma { syn_NC_MDL15_MDL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL15_MDL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL16[0].soma.v(0.5)") h("setpointer syn_NC_MDL15_MDL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL15[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL16_MDL15_Generic_GJ print("Adding electrical projection: NC_MDL16_MDL15_Generic_GJ from MDL16 to MDL15, with 1 connection(s)") h("objectvar syn_NC_MDL16_MDL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL16_MDL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL16[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL15[0].soma], weight: 1.0 h("a_MDL16[0].soma { syn_NC_MDL16_MDL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL15[0].soma { syn_NC_MDL16_MDL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL16_MDL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL15[0].soma.v(0.5)") h("setpointer syn_NC_MDL16_MDL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL16[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL16_MDL17_Generic_GJ print("Adding electrical projection: NC_MDL16_MDL17_Generic_GJ from MDL16 to MDL17, with 1 connection(s)") h("objectvar syn_NC_MDL16_MDL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL16_MDL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL16[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL17[0].soma], weight: 1.0 h("a_MDL16[0].soma { syn_NC_MDL16_MDL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL17[0].soma { syn_NC_MDL16_MDL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL16_MDL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL17[0].soma.v(0.5)") h("setpointer syn_NC_MDL16_MDL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL16[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL17_MDL16_Generic_GJ print("Adding electrical projection: NC_MDL17_MDL16_Generic_GJ from MDL17 to MDL16, with 1 connection(s)") h("objectvar syn_NC_MDL17_MDL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL17_MDL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL17[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL16[0].soma], weight: 1.0 h("a_MDL17[0].soma { syn_NC_MDL17_MDL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL16[0].soma { syn_NC_MDL17_MDL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL17_MDL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL16[0].soma.v(0.5)") h("setpointer syn_NC_MDL17_MDL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL17[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL17_MDL18_Generic_GJ print("Adding electrical projection: NC_MDL17_MDL18_Generic_GJ from MDL17 to MDL18, with 1 connection(s)") h("objectvar syn_NC_MDL17_MDL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL17_MDL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL17[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL18[0].soma], weight: 1.0 h("a_MDL17[0].soma { syn_NC_MDL17_MDL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL18[0].soma { syn_NC_MDL17_MDL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL17_MDL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL18[0].soma.v(0.5)") h("setpointer syn_NC_MDL17_MDL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL17[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL18_MDL17_Generic_GJ print("Adding electrical projection: NC_MDL18_MDL17_Generic_GJ from MDL18 to MDL17, with 1 connection(s)") h("objectvar syn_NC_MDL18_MDL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL18_MDL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL18[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL17[0].soma], weight: 1.0 h("a_MDL18[0].soma { syn_NC_MDL18_MDL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL17[0].soma { syn_NC_MDL18_MDL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL18_MDL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL17[0].soma.v(0.5)") h("setpointer syn_NC_MDL18_MDL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL18[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL18_MDL19_Generic_GJ print("Adding electrical projection: NC_MDL18_MDL19_Generic_GJ from MDL18 to MDL19, with 1 connection(s)") h("objectvar syn_NC_MDL18_MDL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL18_MDL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL18[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL19[0].soma], weight: 1.0 h("a_MDL18[0].soma { syn_NC_MDL18_MDL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL19[0].soma { syn_NC_MDL18_MDL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL18_MDL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL19[0].soma.v(0.5)") h("setpointer syn_NC_MDL18_MDL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL18[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL19_MDL18_Generic_GJ print("Adding electrical projection: NC_MDL19_MDL18_Generic_GJ from MDL19 to MDL18, with 1 connection(s)") h("objectvar syn_NC_MDL19_MDL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL19_MDL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL19[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL18[0].soma], weight: 1.0 h("a_MDL19[0].soma { syn_NC_MDL19_MDL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL18[0].soma { syn_NC_MDL19_MDL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL19_MDL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL18[0].soma.v(0.5)") h("setpointer syn_NC_MDL19_MDL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL19[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL19_MDL20_Generic_GJ print("Adding electrical projection: NC_MDL19_MDL20_Generic_GJ from MDL19 to MDL20, with 1 connection(s)") h("objectvar syn_NC_MDL19_MDL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL19_MDL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL19[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL20[0].soma], weight: 1.0 h("a_MDL19[0].soma { syn_NC_MDL19_MDL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL20[0].soma { syn_NC_MDL19_MDL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL19_MDL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL20[0].soma.v(0.5)") h("setpointer syn_NC_MDL19_MDL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL19[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL20_MDL19_Generic_GJ print("Adding electrical projection: NC_MDL20_MDL19_Generic_GJ from MDL20 to MDL19, with 1 connection(s)") h("objectvar syn_NC_MDL20_MDL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL20_MDL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL20[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL19[0].soma], weight: 1.0 h("a_MDL20[0].soma { syn_NC_MDL20_MDL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL19[0].soma { syn_NC_MDL20_MDL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL20_MDL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL19[0].soma.v(0.5)") h("setpointer syn_NC_MDL20_MDL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL20[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL20_MDL21_Generic_GJ print("Adding electrical projection: NC_MDL20_MDL21_Generic_GJ from MDL20 to MDL21, with 1 connection(s)") h("objectvar syn_NC_MDL20_MDL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL20_MDL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL20[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL21[0].soma], weight: 1.0 h("a_MDL20[0].soma { syn_NC_MDL20_MDL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL21[0].soma { syn_NC_MDL20_MDL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL20_MDL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL21[0].soma.v(0.5)") h("setpointer syn_NC_MDL20_MDL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL20[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL21_MDL20_Generic_GJ print("Adding electrical projection: NC_MDL21_MDL20_Generic_GJ from MDL21 to MDL20, with 1 connection(s)") h("objectvar syn_NC_MDL21_MDL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL21_MDL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL21[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL20[0].soma], weight: 1.0 h("a_MDL21[0].soma { syn_NC_MDL21_MDL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL20[0].soma { syn_NC_MDL21_MDL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL21_MDL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL20[0].soma.v(0.5)") h("setpointer syn_NC_MDL21_MDL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL21[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL21_MDL22_Generic_GJ print("Adding electrical projection: NC_MDL21_MDL22_Generic_GJ from MDL21 to MDL22, with 1 connection(s)") h("objectvar syn_NC_MDL21_MDL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL21_MDL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL21[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL22[0].soma], weight: 1.0 h("a_MDL21[0].soma { syn_NC_MDL21_MDL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL22[0].soma { syn_NC_MDL21_MDL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL21_MDL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL22[0].soma.v(0.5)") h("setpointer syn_NC_MDL21_MDL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL21[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL22_MDL21_Generic_GJ print("Adding electrical projection: NC_MDL22_MDL21_Generic_GJ from MDL22 to MDL21, with 1 connection(s)") h("objectvar syn_NC_MDL22_MDL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL22_MDL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL22[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL21[0].soma], weight: 1.0 h("a_MDL22[0].soma { syn_NC_MDL22_MDL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL21[0].soma { syn_NC_MDL22_MDL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL22_MDL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL21[0].soma.v(0.5)") h("setpointer syn_NC_MDL22_MDL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL22[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL22_MDL23_Generic_GJ print("Adding electrical projection: NC_MDL22_MDL23_Generic_GJ from MDL22 to MDL23, with 1 connection(s)") h("objectvar syn_NC_MDL22_MDL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL22_MDL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL22[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL23[0].soma], weight: 1.0 h("a_MDL22[0].soma { syn_NC_MDL22_MDL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL23[0].soma { syn_NC_MDL22_MDL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL22_MDL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL23[0].soma.v(0.5)") h("setpointer syn_NC_MDL22_MDL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL22[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL23_MDL22_Generic_GJ print("Adding electrical projection: NC_MDL23_MDL22_Generic_GJ from MDL23 to MDL22, with 1 connection(s)") h("objectvar syn_NC_MDL23_MDL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL23_MDL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL23[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL22[0].soma], weight: 1.0 h("a_MDL23[0].soma { syn_NC_MDL23_MDL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL22[0].soma { syn_NC_MDL23_MDL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL23_MDL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL22[0].soma.v(0.5)") h("setpointer syn_NC_MDL23_MDL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL23[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL23_MDL24_Generic_GJ print("Adding electrical projection: NC_MDL23_MDL24_Generic_GJ from MDL23 to MDL24, with 1 connection(s)") h("objectvar syn_NC_MDL23_MDL24_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL23_MDL24_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL23[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL24[0].soma], weight: 1.0 h("a_MDL23[0].soma { syn_NC_MDL23_MDL24_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL24[0].soma { syn_NC_MDL23_MDL24_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL23_MDL24_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL24[0].soma.v(0.5)") h("setpointer syn_NC_MDL23_MDL24_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL23[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDL24_MDL23_Generic_GJ print("Adding electrical projection: NC_MDL24_MDL23_Generic_GJ from MDL24 to MDL23, with 1 connection(s)") h("objectvar syn_NC_MDL24_MDL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDL24_MDL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDL24[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL23[0].soma], weight: 1.0 h("a_MDL24[0].soma { syn_NC_MDL24_MDL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDL23[0].soma { syn_NC_MDL24_MDL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDL24_MDL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDL23[0].soma.v(0.5)") h("setpointer syn_NC_MDL24_MDL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDL24[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR01_MDR02_Generic_GJ print("Adding electrical projection: NC_MDR01_MDR02_Generic_GJ from MDR01 to MDR02, with 1 connection(s)") h("objectvar syn_NC_MDR01_MDR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR01_MDR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR01[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR02[0].soma], weight: 1.0 h("a_MDR01[0].soma { syn_NC_MDR01_MDR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR02[0].soma { syn_NC_MDR01_MDR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR01_MDR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR02[0].soma.v(0.5)") h("setpointer syn_NC_MDR01_MDR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR01[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR01_MDR03_Generic_GJ print("Adding electrical projection: NC_MDR01_MDR03_Generic_GJ from MDR01 to MDR03, with 1 connection(s)") h("objectvar syn_NC_MDR01_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR01_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR01[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR03[0].soma], weight: 1.0 h("a_MDR01[0].soma { syn_NC_MDR01_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR03[0].soma { syn_NC_MDR01_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR01_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR03[0].soma.v(0.5)") h("setpointer syn_NC_MDR01_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR01[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR02_MDR01_Generic_GJ print("Adding electrical projection: NC_MDR02_MDR01_Generic_GJ from MDR02 to MDR01, with 1 connection(s)") h("objectvar syn_NC_MDR02_MDR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR02_MDR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR02[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR01[0].soma], weight: 1.0 h("a_MDR02[0].soma { syn_NC_MDR02_MDR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR01[0].soma { syn_NC_MDR02_MDR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR02_MDR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR01[0].soma.v(0.5)") h("setpointer syn_NC_MDR02_MDR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR02[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR02_MDR03_Generic_GJ print("Adding electrical projection: NC_MDR02_MDR03_Generic_GJ from MDR02 to MDR03, with 1 connection(s)") h("objectvar syn_NC_MDR02_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR02_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR02[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR03[0].soma], weight: 1.0 h("a_MDR02[0].soma { syn_NC_MDR02_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR03[0].soma { syn_NC_MDR02_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR02_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR03[0].soma.v(0.5)") h("setpointer syn_NC_MDR02_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR02[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR03_MDR01_Generic_GJ print("Adding electrical projection: NC_MDR03_MDR01_Generic_GJ from MDR03 to MDR01, with 1 connection(s)") h("objectvar syn_NC_MDR03_MDR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR03_MDR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR03[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR01[0].soma], weight: 1.0 h("a_MDR03[0].soma { syn_NC_MDR03_MDR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR01[0].soma { syn_NC_MDR03_MDR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR03_MDR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR01[0].soma.v(0.5)") h("setpointer syn_NC_MDR03_MDR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR03[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR03_MDR02_Generic_GJ print("Adding electrical projection: NC_MDR03_MDR02_Generic_GJ from MDR03 to MDR02, with 1 connection(s)") h("objectvar syn_NC_MDR03_MDR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR03_MDR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR03[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR02[0].soma], weight: 1.0 h("a_MDR03[0].soma { syn_NC_MDR03_MDR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR02[0].soma { syn_NC_MDR03_MDR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR03_MDR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR02[0].soma.v(0.5)") h("setpointer syn_NC_MDR03_MDR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR03[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR03_MDR04_Generic_GJ print("Adding electrical projection: NC_MDR03_MDR04_Generic_GJ from MDR03 to MDR04, with 1 connection(s)") h("objectvar syn_NC_MDR03_MDR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR03_MDR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR03[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR04[0].soma], weight: 1.0 h("a_MDR03[0].soma { syn_NC_MDR03_MDR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR04[0].soma { syn_NC_MDR03_MDR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR03_MDR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR04[0].soma.v(0.5)") h("setpointer syn_NC_MDR03_MDR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR03[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR04_MDR03_Generic_GJ print("Adding electrical projection: NC_MDR04_MDR03_Generic_GJ from MDR04 to MDR03, with 1 connection(s)") h("objectvar syn_NC_MDR04_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR04_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR04[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR03[0].soma], weight: 1.0 h("a_MDR04[0].soma { syn_NC_MDR04_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR03[0].soma { syn_NC_MDR04_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR04_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR03[0].soma.v(0.5)") h("setpointer syn_NC_MDR04_MDR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR04[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR04_MDR05_Generic_GJ print("Adding electrical projection: NC_MDR04_MDR05_Generic_GJ from MDR04 to MDR05, with 1 connection(s)") h("objectvar syn_NC_MDR04_MDR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR04_MDR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR04[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR05[0].soma], weight: 1.0 h("a_MDR04[0].soma { syn_NC_MDR04_MDR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR05[0].soma { syn_NC_MDR04_MDR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR04_MDR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR05[0].soma.v(0.5)") h("setpointer syn_NC_MDR04_MDR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR04[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR05_MDR04_Generic_GJ print("Adding electrical projection: NC_MDR05_MDR04_Generic_GJ from MDR05 to MDR04, with 1 connection(s)") h("objectvar syn_NC_MDR05_MDR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR05_MDR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR05[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR04[0].soma], weight: 1.0 h("a_MDR05[0].soma { syn_NC_MDR05_MDR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR04[0].soma { syn_NC_MDR05_MDR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR05_MDR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR04[0].soma.v(0.5)") h("setpointer syn_NC_MDR05_MDR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR05[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR05_MDR06_Generic_GJ print("Adding electrical projection: NC_MDR05_MDR06_Generic_GJ from MDR05 to MDR06, with 1 connection(s)") h("objectvar syn_NC_MDR05_MDR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR05_MDR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR05[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR06[0].soma], weight: 1.0 h("a_MDR05[0].soma { syn_NC_MDR05_MDR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR06[0].soma { syn_NC_MDR05_MDR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR05_MDR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR06[0].soma.v(0.5)") h("setpointer syn_NC_MDR05_MDR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR05[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR06_MDR05_Generic_GJ print("Adding electrical projection: NC_MDR06_MDR05_Generic_GJ from MDR06 to MDR05, with 1 connection(s)") h("objectvar syn_NC_MDR06_MDR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR06_MDR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR06[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR05[0].soma], weight: 1.0 h("a_MDR06[0].soma { syn_NC_MDR06_MDR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR05[0].soma { syn_NC_MDR06_MDR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR06_MDR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR05[0].soma.v(0.5)") h("setpointer syn_NC_MDR06_MDR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR06[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR06_MDR07_Generic_GJ print("Adding electrical projection: NC_MDR06_MDR07_Generic_GJ from MDR06 to MDR07, with 1 connection(s)") h("objectvar syn_NC_MDR06_MDR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR06_MDR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR06[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR07[0].soma], weight: 1.0 h("a_MDR06[0].soma { syn_NC_MDR06_MDR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR07[0].soma { syn_NC_MDR06_MDR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR06_MDR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR07[0].soma.v(0.5)") h("setpointer syn_NC_MDR06_MDR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR06[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR07_MDR06_Generic_GJ print("Adding electrical projection: NC_MDR07_MDR06_Generic_GJ from MDR07 to MDR06, with 1 connection(s)") h("objectvar syn_NC_MDR07_MDR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR07_MDR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR07[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR06[0].soma], weight: 1.0 h("a_MDR07[0].soma { syn_NC_MDR07_MDR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR06[0].soma { syn_NC_MDR07_MDR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR07_MDR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR06[0].soma.v(0.5)") h("setpointer syn_NC_MDR07_MDR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR07[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR07_MDR08_Generic_GJ print("Adding electrical projection: NC_MDR07_MDR08_Generic_GJ from MDR07 to MDR08, with 1 connection(s)") h("objectvar syn_NC_MDR07_MDR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR07_MDR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR07[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR08[0].soma], weight: 1.0 h("a_MDR07[0].soma { syn_NC_MDR07_MDR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR08[0].soma { syn_NC_MDR07_MDR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR07_MDR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR08[0].soma.v(0.5)") h("setpointer syn_NC_MDR07_MDR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR07[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR08_MDR07_Generic_GJ print("Adding electrical projection: NC_MDR08_MDR07_Generic_GJ from MDR08 to MDR07, with 1 connection(s)") h("objectvar syn_NC_MDR08_MDR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR08_MDR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR08[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR07[0].soma], weight: 1.0 h("a_MDR08[0].soma { syn_NC_MDR08_MDR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR07[0].soma { syn_NC_MDR08_MDR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR08_MDR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR07[0].soma.v(0.5)") h("setpointer syn_NC_MDR08_MDR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR08[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR08_MDR09_Generic_GJ print("Adding electrical projection: NC_MDR08_MDR09_Generic_GJ from MDR08 to MDR09, with 1 connection(s)") h("objectvar syn_NC_MDR08_MDR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR08_MDR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR08[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR09[0].soma], weight: 1.0 h("a_MDR08[0].soma { syn_NC_MDR08_MDR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR09[0].soma { syn_NC_MDR08_MDR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR08_MDR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR09[0].soma.v(0.5)") h("setpointer syn_NC_MDR08_MDR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR08[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR09_MDR08_Generic_GJ print("Adding electrical projection: NC_MDR09_MDR08_Generic_GJ from MDR09 to MDR08, with 1 connection(s)") h("objectvar syn_NC_MDR09_MDR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR09_MDR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR09[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR08[0].soma], weight: 1.0 h("a_MDR09[0].soma { syn_NC_MDR09_MDR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR08[0].soma { syn_NC_MDR09_MDR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR09_MDR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR08[0].soma.v(0.5)") h("setpointer syn_NC_MDR09_MDR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR09[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR09_MDR10_Generic_GJ print("Adding electrical projection: NC_MDR09_MDR10_Generic_GJ from MDR09 to MDR10, with 1 connection(s)") h("objectvar syn_NC_MDR09_MDR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR09_MDR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR09[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR10[0].soma], weight: 1.0 h("a_MDR09[0].soma { syn_NC_MDR09_MDR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR10[0].soma { syn_NC_MDR09_MDR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR09_MDR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR10[0].soma.v(0.5)") h("setpointer syn_NC_MDR09_MDR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR09[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR10_MDR09_Generic_GJ print("Adding electrical projection: NC_MDR10_MDR09_Generic_GJ from MDR10 to MDR09, with 1 connection(s)") h("objectvar syn_NC_MDR10_MDR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR10_MDR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR10[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR09[0].soma], weight: 1.0 h("a_MDR10[0].soma { syn_NC_MDR10_MDR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR09[0].soma { syn_NC_MDR10_MDR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR10_MDR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR09[0].soma.v(0.5)") h("setpointer syn_NC_MDR10_MDR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR10[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR10_MDR11_Generic_GJ print("Adding electrical projection: NC_MDR10_MDR11_Generic_GJ from MDR10 to MDR11, with 1 connection(s)") h("objectvar syn_NC_MDR10_MDR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR10_MDR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR10[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR11[0].soma], weight: 1.0 h("a_MDR10[0].soma { syn_NC_MDR10_MDR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR11[0].soma { syn_NC_MDR10_MDR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR10_MDR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR11[0].soma.v(0.5)") h("setpointer syn_NC_MDR10_MDR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR10[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR11_MDR10_Generic_GJ print("Adding electrical projection: NC_MDR11_MDR10_Generic_GJ from MDR11 to MDR10, with 1 connection(s)") h("objectvar syn_NC_MDR11_MDR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR11_MDR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR11[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR10[0].soma], weight: 1.0 h("a_MDR11[0].soma { syn_NC_MDR11_MDR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR10[0].soma { syn_NC_MDR11_MDR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR11_MDR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR10[0].soma.v(0.5)") h("setpointer syn_NC_MDR11_MDR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR11[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR11_MDR12_Generic_GJ print("Adding electrical projection: NC_MDR11_MDR12_Generic_GJ from MDR11 to MDR12, with 1 connection(s)") h("objectvar syn_NC_MDR11_MDR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR11_MDR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR11[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR12[0].soma], weight: 1.0 h("a_MDR11[0].soma { syn_NC_MDR11_MDR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR12[0].soma { syn_NC_MDR11_MDR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR11_MDR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR12[0].soma.v(0.5)") h("setpointer syn_NC_MDR11_MDR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR11[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR12_MDR11_Generic_GJ print("Adding electrical projection: NC_MDR12_MDR11_Generic_GJ from MDR12 to MDR11, with 1 connection(s)") h("objectvar syn_NC_MDR12_MDR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR12_MDR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR12[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR11[0].soma], weight: 1.0 h("a_MDR12[0].soma { syn_NC_MDR12_MDR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR11[0].soma { syn_NC_MDR12_MDR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR12_MDR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR11[0].soma.v(0.5)") h("setpointer syn_NC_MDR12_MDR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR12[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR12_MDR13_Generic_GJ print("Adding electrical projection: NC_MDR12_MDR13_Generic_GJ from MDR12 to MDR13, with 1 connection(s)") h("objectvar syn_NC_MDR12_MDR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR12_MDR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR12[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR13[0].soma], weight: 1.0 h("a_MDR12[0].soma { syn_NC_MDR12_MDR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR13[0].soma { syn_NC_MDR12_MDR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR12_MDR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR13[0].soma.v(0.5)") h("setpointer syn_NC_MDR12_MDR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR12[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR13_MDR12_Generic_GJ print("Adding electrical projection: NC_MDR13_MDR12_Generic_GJ from MDR13 to MDR12, with 1 connection(s)") h("objectvar syn_NC_MDR13_MDR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR13_MDR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR13[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR12[0].soma], weight: 1.0 h("a_MDR13[0].soma { syn_NC_MDR13_MDR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR12[0].soma { syn_NC_MDR13_MDR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR13_MDR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR12[0].soma.v(0.5)") h("setpointer syn_NC_MDR13_MDR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR13[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR13_MDR14_Generic_GJ print("Adding electrical projection: NC_MDR13_MDR14_Generic_GJ from MDR13 to MDR14, with 1 connection(s)") h("objectvar syn_NC_MDR13_MDR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR13_MDR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR13[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR14[0].soma], weight: 1.0 h("a_MDR13[0].soma { syn_NC_MDR13_MDR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR14[0].soma { syn_NC_MDR13_MDR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR13_MDR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR14[0].soma.v(0.5)") h("setpointer syn_NC_MDR13_MDR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR13[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR14_MDR13_Generic_GJ print("Adding electrical projection: NC_MDR14_MDR13_Generic_GJ from MDR14 to MDR13, with 1 connection(s)") h("objectvar syn_NC_MDR14_MDR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR14_MDR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR14[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR13[0].soma], weight: 1.0 h("a_MDR14[0].soma { syn_NC_MDR14_MDR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR13[0].soma { syn_NC_MDR14_MDR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR14_MDR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR13[0].soma.v(0.5)") h("setpointer syn_NC_MDR14_MDR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR14[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR14_MDR15_Generic_GJ print("Adding electrical projection: NC_MDR14_MDR15_Generic_GJ from MDR14 to MDR15, with 1 connection(s)") h("objectvar syn_NC_MDR14_MDR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR14_MDR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR14[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR15[0].soma], weight: 1.0 h("a_MDR14[0].soma { syn_NC_MDR14_MDR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR15[0].soma { syn_NC_MDR14_MDR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR14_MDR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR15[0].soma.v(0.5)") h("setpointer syn_NC_MDR14_MDR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR14[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR15_MDR14_Generic_GJ print("Adding electrical projection: NC_MDR15_MDR14_Generic_GJ from MDR15 to MDR14, with 1 connection(s)") h("objectvar syn_NC_MDR15_MDR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR15_MDR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR15[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR14[0].soma], weight: 1.0 h("a_MDR15[0].soma { syn_NC_MDR15_MDR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR14[0].soma { syn_NC_MDR15_MDR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR15_MDR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR14[0].soma.v(0.5)") h("setpointer syn_NC_MDR15_MDR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR15[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR15_MDR16_Generic_GJ print("Adding electrical projection: NC_MDR15_MDR16_Generic_GJ from MDR15 to MDR16, with 1 connection(s)") h("objectvar syn_NC_MDR15_MDR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR15_MDR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR15[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR16[0].soma], weight: 1.0 h("a_MDR15[0].soma { syn_NC_MDR15_MDR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR16[0].soma { syn_NC_MDR15_MDR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR15_MDR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR16[0].soma.v(0.5)") h("setpointer syn_NC_MDR15_MDR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR15[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR16_MDR15_Generic_GJ print("Adding electrical projection: NC_MDR16_MDR15_Generic_GJ from MDR16 to MDR15, with 1 connection(s)") h("objectvar syn_NC_MDR16_MDR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR16_MDR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR16[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR15[0].soma], weight: 1.0 h("a_MDR16[0].soma { syn_NC_MDR16_MDR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR15[0].soma { syn_NC_MDR16_MDR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR16_MDR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR15[0].soma.v(0.5)") h("setpointer syn_NC_MDR16_MDR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR16[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR16_MDR17_Generic_GJ print("Adding electrical projection: NC_MDR16_MDR17_Generic_GJ from MDR16 to MDR17, with 1 connection(s)") h("objectvar syn_NC_MDR16_MDR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR16_MDR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR16[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR17[0].soma], weight: 1.0 h("a_MDR16[0].soma { syn_NC_MDR16_MDR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR17[0].soma { syn_NC_MDR16_MDR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR16_MDR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR17[0].soma.v(0.5)") h("setpointer syn_NC_MDR16_MDR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR16[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR17_MDR16_Generic_GJ print("Adding electrical projection: NC_MDR17_MDR16_Generic_GJ from MDR17 to MDR16, with 1 connection(s)") h("objectvar syn_NC_MDR17_MDR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR17_MDR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR17[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR16[0].soma], weight: 1.0 h("a_MDR17[0].soma { syn_NC_MDR17_MDR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR16[0].soma { syn_NC_MDR17_MDR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR17_MDR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR16[0].soma.v(0.5)") h("setpointer syn_NC_MDR17_MDR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR17[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR17_MDR18_Generic_GJ print("Adding electrical projection: NC_MDR17_MDR18_Generic_GJ from MDR17 to MDR18, with 1 connection(s)") h("objectvar syn_NC_MDR17_MDR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR17_MDR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR17[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR18[0].soma], weight: 1.0 h("a_MDR17[0].soma { syn_NC_MDR17_MDR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR18[0].soma { syn_NC_MDR17_MDR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR17_MDR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR18[0].soma.v(0.5)") h("setpointer syn_NC_MDR17_MDR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR17[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR18_MDR17_Generic_GJ print("Adding electrical projection: NC_MDR18_MDR17_Generic_GJ from MDR18 to MDR17, with 1 connection(s)") h("objectvar syn_NC_MDR18_MDR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR18_MDR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR18[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR17[0].soma], weight: 1.0 h("a_MDR18[0].soma { syn_NC_MDR18_MDR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR17[0].soma { syn_NC_MDR18_MDR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR18_MDR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR17[0].soma.v(0.5)") h("setpointer syn_NC_MDR18_MDR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR18[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR18_MDR19_Generic_GJ print("Adding electrical projection: NC_MDR18_MDR19_Generic_GJ from MDR18 to MDR19, with 1 connection(s)") h("objectvar syn_NC_MDR18_MDR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR18_MDR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR18[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR19[0].soma], weight: 1.0 h("a_MDR18[0].soma { syn_NC_MDR18_MDR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR19[0].soma { syn_NC_MDR18_MDR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR18_MDR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR19[0].soma.v(0.5)") h("setpointer syn_NC_MDR18_MDR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR18[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR19_MDR18_Generic_GJ print("Adding electrical projection: NC_MDR19_MDR18_Generic_GJ from MDR19 to MDR18, with 1 connection(s)") h("objectvar syn_NC_MDR19_MDR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR19_MDR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR19[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR18[0].soma], weight: 1.0 h("a_MDR19[0].soma { syn_NC_MDR19_MDR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR18[0].soma { syn_NC_MDR19_MDR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR19_MDR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR18[0].soma.v(0.5)") h("setpointer syn_NC_MDR19_MDR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR19[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR19_MDR20_Generic_GJ print("Adding electrical projection: NC_MDR19_MDR20_Generic_GJ from MDR19 to MDR20, with 1 connection(s)") h("objectvar syn_NC_MDR19_MDR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR19_MDR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR19[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR20[0].soma], weight: 1.0 h("a_MDR19[0].soma { syn_NC_MDR19_MDR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR20[0].soma { syn_NC_MDR19_MDR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR19_MDR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR20[0].soma.v(0.5)") h("setpointer syn_NC_MDR19_MDR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR19[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR20_MDR19_Generic_GJ print("Adding electrical projection: NC_MDR20_MDR19_Generic_GJ from MDR20 to MDR19, with 1 connection(s)") h("objectvar syn_NC_MDR20_MDR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR20_MDR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR20[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR19[0].soma], weight: 1.0 h("a_MDR20[0].soma { syn_NC_MDR20_MDR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR19[0].soma { syn_NC_MDR20_MDR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR20_MDR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR19[0].soma.v(0.5)") h("setpointer syn_NC_MDR20_MDR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR20[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR20_MDR21_Generic_GJ print("Adding electrical projection: NC_MDR20_MDR21_Generic_GJ from MDR20 to MDR21, with 1 connection(s)") h("objectvar syn_NC_MDR20_MDR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR20_MDR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR20[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR21[0].soma], weight: 1.0 h("a_MDR20[0].soma { syn_NC_MDR20_MDR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR21[0].soma { syn_NC_MDR20_MDR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR20_MDR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR21[0].soma.v(0.5)") h("setpointer syn_NC_MDR20_MDR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR20[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR21_MDR20_Generic_GJ print("Adding electrical projection: NC_MDR21_MDR20_Generic_GJ from MDR21 to MDR20, with 1 connection(s)") h("objectvar syn_NC_MDR21_MDR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR21_MDR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR21[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR20[0].soma], weight: 1.0 h("a_MDR21[0].soma { syn_NC_MDR21_MDR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR20[0].soma { syn_NC_MDR21_MDR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR21_MDR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR20[0].soma.v(0.5)") h("setpointer syn_NC_MDR21_MDR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR21[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR21_MDR22_Generic_GJ print("Adding electrical projection: NC_MDR21_MDR22_Generic_GJ from MDR21 to MDR22, with 1 connection(s)") h("objectvar syn_NC_MDR21_MDR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR21_MDR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR21[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR22[0].soma], weight: 1.0 h("a_MDR21[0].soma { syn_NC_MDR21_MDR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR22[0].soma { syn_NC_MDR21_MDR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR21_MDR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR22[0].soma.v(0.5)") h("setpointer syn_NC_MDR21_MDR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR21[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR22_MDR21_Generic_GJ print("Adding electrical projection: NC_MDR22_MDR21_Generic_GJ from MDR22 to MDR21, with 1 connection(s)") h("objectvar syn_NC_MDR22_MDR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR22_MDR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR22[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR21[0].soma], weight: 1.0 h("a_MDR22[0].soma { syn_NC_MDR22_MDR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR21[0].soma { syn_NC_MDR22_MDR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR22_MDR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR21[0].soma.v(0.5)") h("setpointer syn_NC_MDR22_MDR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR22[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR22_MDR23_Generic_GJ print("Adding electrical projection: NC_MDR22_MDR23_Generic_GJ from MDR22 to MDR23, with 1 connection(s)") h("objectvar syn_NC_MDR22_MDR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR22_MDR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR22[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR23[0].soma], weight: 1.0 h("a_MDR22[0].soma { syn_NC_MDR22_MDR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR23[0].soma { syn_NC_MDR22_MDR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR22_MDR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR23[0].soma.v(0.5)") h("setpointer syn_NC_MDR22_MDR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR22[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR23_MDR22_Generic_GJ print("Adding electrical projection: NC_MDR23_MDR22_Generic_GJ from MDR23 to MDR22, with 1 connection(s)") h("objectvar syn_NC_MDR23_MDR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR23_MDR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR23[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR22[0].soma], weight: 1.0 h("a_MDR23[0].soma { syn_NC_MDR23_MDR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR22[0].soma { syn_NC_MDR23_MDR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR23_MDR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR22[0].soma.v(0.5)") h("setpointer syn_NC_MDR23_MDR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR23[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR23_MDR24_Generic_GJ print("Adding electrical projection: NC_MDR23_MDR24_Generic_GJ from MDR23 to MDR24, with 1 connection(s)") h("objectvar syn_NC_MDR23_MDR24_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR23_MDR24_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR23[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR24[0].soma], weight: 1.0 h("a_MDR23[0].soma { syn_NC_MDR23_MDR24_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR24[0].soma { syn_NC_MDR23_MDR24_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR23_MDR24_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR24[0].soma.v(0.5)") h("setpointer syn_NC_MDR23_MDR24_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR23[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MDR24_MDR23_Generic_GJ print("Adding electrical projection: NC_MDR24_MDR23_Generic_GJ from MDR24 to MDR23, with 1 connection(s)") h("objectvar syn_NC_MDR24_MDR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MDR24_MDR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MDR24[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR23[0].soma], weight: 1.0 h("a_MDR24[0].soma { syn_NC_MDR24_MDR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MDR23[0].soma { syn_NC_MDR24_MDR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MDR24_MDR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MDR23[0].soma.v(0.5)") h("setpointer syn_NC_MDR24_MDR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MDR24[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL01_MVL02_Generic_GJ print("Adding electrical projection: NC_MVL01_MVL02_Generic_GJ from MVL01 to MVL02, with 1 connection(s)") h("objectvar syn_NC_MVL01_MVL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL01_MVL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL01[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL02[0].soma], weight: 1.0 h("a_MVL01[0].soma { syn_NC_MVL01_MVL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL02[0].soma { syn_NC_MVL01_MVL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL01_MVL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL02[0].soma.v(0.5)") h("setpointer syn_NC_MVL01_MVL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL01[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL01_MVL03_Generic_GJ print("Adding electrical projection: NC_MVL01_MVL03_Generic_GJ from MVL01 to MVL03, with 1 connection(s)") h("objectvar syn_NC_MVL01_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL01_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL01[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL03[0].soma], weight: 1.0 h("a_MVL01[0].soma { syn_NC_MVL01_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL03[0].soma { syn_NC_MVL01_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL01_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL03[0].soma.v(0.5)") h("setpointer syn_NC_MVL01_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL01[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL02_MVL01_Generic_GJ print("Adding electrical projection: NC_MVL02_MVL01_Generic_GJ from MVL02 to MVL01, with 1 connection(s)") h("objectvar syn_NC_MVL02_MVL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL02_MVL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL02[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL01[0].soma], weight: 1.0 h("a_MVL02[0].soma { syn_NC_MVL02_MVL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL01[0].soma { syn_NC_MVL02_MVL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL02_MVL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL01[0].soma.v(0.5)") h("setpointer syn_NC_MVL02_MVL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL02[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL02_MVL03_Generic_GJ print("Adding electrical projection: NC_MVL02_MVL03_Generic_GJ from MVL02 to MVL03, with 1 connection(s)") h("objectvar syn_NC_MVL02_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL02_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL02[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL03[0].soma], weight: 1.0 h("a_MVL02[0].soma { syn_NC_MVL02_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL03[0].soma { syn_NC_MVL02_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL02_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL03[0].soma.v(0.5)") h("setpointer syn_NC_MVL02_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL02[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL03_MVL01_Generic_GJ print("Adding electrical projection: NC_MVL03_MVL01_Generic_GJ from MVL03 to MVL01, with 1 connection(s)") h("objectvar syn_NC_MVL03_MVL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL03_MVL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL03[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL01[0].soma], weight: 1.0 h("a_MVL03[0].soma { syn_NC_MVL03_MVL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL01[0].soma { syn_NC_MVL03_MVL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL03_MVL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL01[0].soma.v(0.5)") h("setpointer syn_NC_MVL03_MVL01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL03[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL03_MVL02_Generic_GJ print("Adding electrical projection: NC_MVL03_MVL02_Generic_GJ from MVL03 to MVL02, with 1 connection(s)") h("objectvar syn_NC_MVL03_MVL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL03_MVL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL03[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL02[0].soma], weight: 1.0 h("a_MVL03[0].soma { syn_NC_MVL03_MVL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL02[0].soma { syn_NC_MVL03_MVL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL03_MVL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL02[0].soma.v(0.5)") h("setpointer syn_NC_MVL03_MVL02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL03[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL03_MVL04_Generic_GJ print("Adding electrical projection: NC_MVL03_MVL04_Generic_GJ from MVL03 to MVL04, with 1 connection(s)") h("objectvar syn_NC_MVL03_MVL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL03_MVL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL03[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL04[0].soma], weight: 1.0 h("a_MVL03[0].soma { syn_NC_MVL03_MVL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL04[0].soma { syn_NC_MVL03_MVL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL03_MVL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL04[0].soma.v(0.5)") h("setpointer syn_NC_MVL03_MVL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL03[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL04_MVL03_Generic_GJ print("Adding electrical projection: NC_MVL04_MVL03_Generic_GJ from MVL04 to MVL03, with 1 connection(s)") h("objectvar syn_NC_MVL04_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL04_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL04[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL03[0].soma], weight: 1.0 h("a_MVL04[0].soma { syn_NC_MVL04_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL03[0].soma { syn_NC_MVL04_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL04_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL03[0].soma.v(0.5)") h("setpointer syn_NC_MVL04_MVL03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL04[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL04_MVL05_Generic_GJ print("Adding electrical projection: NC_MVL04_MVL05_Generic_GJ from MVL04 to MVL05, with 1 connection(s)") h("objectvar syn_NC_MVL04_MVL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL04_MVL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL04[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL05[0].soma], weight: 1.0 h("a_MVL04[0].soma { syn_NC_MVL04_MVL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL05[0].soma { syn_NC_MVL04_MVL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL04_MVL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL05[0].soma.v(0.5)") h("setpointer syn_NC_MVL04_MVL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL04[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL05_MVL04_Generic_GJ print("Adding electrical projection: NC_MVL05_MVL04_Generic_GJ from MVL05 to MVL04, with 1 connection(s)") h("objectvar syn_NC_MVL05_MVL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL05_MVL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL05[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL04[0].soma], weight: 1.0 h("a_MVL05[0].soma { syn_NC_MVL05_MVL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL04[0].soma { syn_NC_MVL05_MVL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL05_MVL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL04[0].soma.v(0.5)") h("setpointer syn_NC_MVL05_MVL04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL05[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL05_MVL06_Generic_GJ print("Adding electrical projection: NC_MVL05_MVL06_Generic_GJ from MVL05 to MVL06, with 1 connection(s)") h("objectvar syn_NC_MVL05_MVL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL05_MVL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL05[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL06[0].soma], weight: 1.0 h("a_MVL05[0].soma { syn_NC_MVL05_MVL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL06[0].soma { syn_NC_MVL05_MVL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL05_MVL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL06[0].soma.v(0.5)") h("setpointer syn_NC_MVL05_MVL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL05[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL06_MVL05_Generic_GJ print("Adding electrical projection: NC_MVL06_MVL05_Generic_GJ from MVL06 to MVL05, with 1 connection(s)") h("objectvar syn_NC_MVL06_MVL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL06_MVL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL06[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL05[0].soma], weight: 1.0 h("a_MVL06[0].soma { syn_NC_MVL06_MVL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL05[0].soma { syn_NC_MVL06_MVL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL06_MVL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL05[0].soma.v(0.5)") h("setpointer syn_NC_MVL06_MVL05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL06[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL06_MVL07_Generic_GJ print("Adding electrical projection: NC_MVL06_MVL07_Generic_GJ from MVL06 to MVL07, with 1 connection(s)") h("objectvar syn_NC_MVL06_MVL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL06_MVL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL06[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL07[0].soma], weight: 1.0 h("a_MVL06[0].soma { syn_NC_MVL06_MVL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL07[0].soma { syn_NC_MVL06_MVL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL06_MVL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL07[0].soma.v(0.5)") h("setpointer syn_NC_MVL06_MVL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL06[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL07_MVL06_Generic_GJ print("Adding electrical projection: NC_MVL07_MVL06_Generic_GJ from MVL07 to MVL06, with 1 connection(s)") h("objectvar syn_NC_MVL07_MVL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL07_MVL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL07[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL06[0].soma], weight: 1.0 h("a_MVL07[0].soma { syn_NC_MVL07_MVL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL06[0].soma { syn_NC_MVL07_MVL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL07_MVL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL06[0].soma.v(0.5)") h("setpointer syn_NC_MVL07_MVL06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL07[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL07_MVL08_Generic_GJ print("Adding electrical projection: NC_MVL07_MVL08_Generic_GJ from MVL07 to MVL08, with 1 connection(s)") h("objectvar syn_NC_MVL07_MVL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL07_MVL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL07[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL08[0].soma], weight: 1.0 h("a_MVL07[0].soma { syn_NC_MVL07_MVL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL08[0].soma { syn_NC_MVL07_MVL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL07_MVL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL08[0].soma.v(0.5)") h("setpointer syn_NC_MVL07_MVL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL07[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL08_MVL07_Generic_GJ print("Adding electrical projection: NC_MVL08_MVL07_Generic_GJ from MVL08 to MVL07, with 1 connection(s)") h("objectvar syn_NC_MVL08_MVL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL08_MVL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL08[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL07[0].soma], weight: 1.0 h("a_MVL08[0].soma { syn_NC_MVL08_MVL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL07[0].soma { syn_NC_MVL08_MVL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL08_MVL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL07[0].soma.v(0.5)") h("setpointer syn_NC_MVL08_MVL07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL08[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL08_MVL09_Generic_GJ print("Adding electrical projection: NC_MVL08_MVL09_Generic_GJ from MVL08 to MVL09, with 1 connection(s)") h("objectvar syn_NC_MVL08_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL08_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL08[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL09[0].soma], weight: 1.0 h("a_MVL08[0].soma { syn_NC_MVL08_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL09[0].soma { syn_NC_MVL08_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL08_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL09[0].soma.v(0.5)") h("setpointer syn_NC_MVL08_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL08[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL09_MVL08_Generic_GJ print("Adding electrical projection: NC_MVL09_MVL08_Generic_GJ from MVL09 to MVL08, with 1 connection(s)") h("objectvar syn_NC_MVL09_MVL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL09_MVL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL09[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL08[0].soma], weight: 1.0 h("a_MVL09[0].soma { syn_NC_MVL09_MVL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL08[0].soma { syn_NC_MVL09_MVL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL09_MVL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL08[0].soma.v(0.5)") h("setpointer syn_NC_MVL09_MVL08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL09[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL09_MVL10_Generic_GJ print("Adding electrical projection: NC_MVL09_MVL10_Generic_GJ from MVL09 to MVL10, with 1 connection(s)") h("objectvar syn_NC_MVL09_MVL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL09_MVL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL09[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL10[0].soma], weight: 1.0 h("a_MVL09[0].soma { syn_NC_MVL09_MVL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL10[0].soma { syn_NC_MVL09_MVL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL09_MVL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL10[0].soma.v(0.5)") h("setpointer syn_NC_MVL09_MVL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL09[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL09_MVR08_Generic_GJ print("Adding electrical projection: NC_MVL09_MVR08_Generic_GJ from MVL09 to MVR08, with 1 connection(s)") h("objectvar syn_NC_MVL09_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_2conns_A[1]") h("objectvar syn_NC_MVL09_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_2conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL09[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR08[0].soma], weight: 1.0 h("a_MVL09[0].soma { syn_NC_MVL09_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_2conns_A[0] = new muscle_to_muscle_elec_syn_2conns(0.5) }") h("a_MVR08[0].soma { syn_NC_MVL09_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_2conns_B[0] = new muscle_to_muscle_elec_syn_2conns(0.5) }") h("setpointer syn_NC_MVL09_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_2conns_A[0].vpeer, a_MVR08[0].soma.v(0.5)") h("setpointer syn_NC_MVL09_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_2conns_B[0].vpeer, a_MVL09[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL10_MVL09_Generic_GJ print("Adding electrical projection: NC_MVL10_MVL09_Generic_GJ from MVL10 to MVL09, with 1 connection(s)") h("objectvar syn_NC_MVL10_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL10_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL10[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL09[0].soma], weight: 1.0 h("a_MVL10[0].soma { syn_NC_MVL10_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL09[0].soma { syn_NC_MVL10_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL10_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL09[0].soma.v(0.5)") h("setpointer syn_NC_MVL10_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL10[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL10_MVL11_Generic_GJ print("Adding electrical projection: NC_MVL10_MVL11_Generic_GJ from MVL10 to MVL11, with 1 connection(s)") h("objectvar syn_NC_MVL10_MVL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL10_MVL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL10[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL11[0].soma], weight: 1.0 h("a_MVL10[0].soma { syn_NC_MVL10_MVL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL11[0].soma { syn_NC_MVL10_MVL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL10_MVL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL11[0].soma.v(0.5)") h("setpointer syn_NC_MVL10_MVL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL10[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL11_MVL10_Generic_GJ print("Adding electrical projection: NC_MVL11_MVL10_Generic_GJ from MVL11 to MVL10, with 1 connection(s)") h("objectvar syn_NC_MVL11_MVL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL11_MVL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL11[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL10[0].soma], weight: 1.0 h("a_MVL11[0].soma { syn_NC_MVL11_MVL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL10[0].soma { syn_NC_MVL11_MVL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL11_MVL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL10[0].soma.v(0.5)") h("setpointer syn_NC_MVL11_MVL10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL11[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL11_MVL12_Generic_GJ print("Adding electrical projection: NC_MVL11_MVL12_Generic_GJ from MVL11 to MVL12, with 1 connection(s)") h("objectvar syn_NC_MVL11_MVL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL11_MVL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL11[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL12[0].soma], weight: 1.0 h("a_MVL11[0].soma { syn_NC_MVL11_MVL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL12[0].soma { syn_NC_MVL11_MVL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL11_MVL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL12[0].soma.v(0.5)") h("setpointer syn_NC_MVL11_MVL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL11[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL12_MVL11_Generic_GJ print("Adding electrical projection: NC_MVL12_MVL11_Generic_GJ from MVL12 to MVL11, with 1 connection(s)") h("objectvar syn_NC_MVL12_MVL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL12_MVL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL12[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL11[0].soma], weight: 1.0 h("a_MVL12[0].soma { syn_NC_MVL12_MVL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL11[0].soma { syn_NC_MVL12_MVL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL12_MVL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL11[0].soma.v(0.5)") h("setpointer syn_NC_MVL12_MVL11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL12[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL12_MVL13_Generic_GJ print("Adding electrical projection: NC_MVL12_MVL13_Generic_GJ from MVL12 to MVL13, with 1 connection(s)") h("objectvar syn_NC_MVL12_MVL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL12_MVL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL12[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL13[0].soma], weight: 1.0 h("a_MVL12[0].soma { syn_NC_MVL12_MVL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL13[0].soma { syn_NC_MVL12_MVL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL12_MVL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL13[0].soma.v(0.5)") h("setpointer syn_NC_MVL12_MVL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL12[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL13_MVL12_Generic_GJ print("Adding electrical projection: NC_MVL13_MVL12_Generic_GJ from MVL13 to MVL12, with 1 connection(s)") h("objectvar syn_NC_MVL13_MVL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL13_MVL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL13[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL12[0].soma], weight: 1.0 h("a_MVL13[0].soma { syn_NC_MVL13_MVL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL12[0].soma { syn_NC_MVL13_MVL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL13_MVL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL12[0].soma.v(0.5)") h("setpointer syn_NC_MVL13_MVL12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL13[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL13_MVL14_Generic_GJ print("Adding electrical projection: NC_MVL13_MVL14_Generic_GJ from MVL13 to MVL14, with 1 connection(s)") h("objectvar syn_NC_MVL13_MVL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL13_MVL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL13[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL14[0].soma], weight: 1.0 h("a_MVL13[0].soma { syn_NC_MVL13_MVL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL14[0].soma { syn_NC_MVL13_MVL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL13_MVL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL14[0].soma.v(0.5)") h("setpointer syn_NC_MVL13_MVL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL13[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL14_MVL13_Generic_GJ print("Adding electrical projection: NC_MVL14_MVL13_Generic_GJ from MVL14 to MVL13, with 1 connection(s)") h("objectvar syn_NC_MVL14_MVL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL14_MVL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL14[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL13[0].soma], weight: 1.0 h("a_MVL14[0].soma { syn_NC_MVL14_MVL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL13[0].soma { syn_NC_MVL14_MVL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL14_MVL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL13[0].soma.v(0.5)") h("setpointer syn_NC_MVL14_MVL13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL14[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL14_MVL15_Generic_GJ print("Adding electrical projection: NC_MVL14_MVL15_Generic_GJ from MVL14 to MVL15, with 1 connection(s)") h("objectvar syn_NC_MVL14_MVL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL14_MVL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL14[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL15[0].soma], weight: 1.0 h("a_MVL14[0].soma { syn_NC_MVL14_MVL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL15[0].soma { syn_NC_MVL14_MVL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL14_MVL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL15[0].soma.v(0.5)") h("setpointer syn_NC_MVL14_MVL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL14[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL15_MVL14_Generic_GJ print("Adding electrical projection: NC_MVL15_MVL14_Generic_GJ from MVL15 to MVL14, with 1 connection(s)") h("objectvar syn_NC_MVL15_MVL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL15_MVL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL15[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL14[0].soma], weight: 1.0 h("a_MVL15[0].soma { syn_NC_MVL15_MVL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL14[0].soma { syn_NC_MVL15_MVL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL15_MVL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL14[0].soma.v(0.5)") h("setpointer syn_NC_MVL15_MVL14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL15[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL15_MVL16_Generic_GJ print("Adding electrical projection: NC_MVL15_MVL16_Generic_GJ from MVL15 to MVL16, with 1 connection(s)") h("objectvar syn_NC_MVL15_MVL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL15_MVL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL15[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL16[0].soma], weight: 1.0 h("a_MVL15[0].soma { syn_NC_MVL15_MVL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL16[0].soma { syn_NC_MVL15_MVL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL15_MVL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL16[0].soma.v(0.5)") h("setpointer syn_NC_MVL15_MVL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL15[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL16_MVL15_Generic_GJ print("Adding electrical projection: NC_MVL16_MVL15_Generic_GJ from MVL16 to MVL15, with 1 connection(s)") h("objectvar syn_NC_MVL16_MVL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL16_MVL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL16[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL15[0].soma], weight: 1.0 h("a_MVL16[0].soma { syn_NC_MVL16_MVL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL15[0].soma { syn_NC_MVL16_MVL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL16_MVL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL15[0].soma.v(0.5)") h("setpointer syn_NC_MVL16_MVL15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL16[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL16_MVL17_Generic_GJ print("Adding electrical projection: NC_MVL16_MVL17_Generic_GJ from MVL16 to MVL17, with 1 connection(s)") h("objectvar syn_NC_MVL16_MVL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL16_MVL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL16[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL17[0].soma], weight: 1.0 h("a_MVL16[0].soma { syn_NC_MVL16_MVL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL17[0].soma { syn_NC_MVL16_MVL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL16_MVL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL17[0].soma.v(0.5)") h("setpointer syn_NC_MVL16_MVL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL16[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL17_MVL16_Generic_GJ print("Adding electrical projection: NC_MVL17_MVL16_Generic_GJ from MVL17 to MVL16, with 1 connection(s)") h("objectvar syn_NC_MVL17_MVL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL17_MVL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL17[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL16[0].soma], weight: 1.0 h("a_MVL17[0].soma { syn_NC_MVL17_MVL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL16[0].soma { syn_NC_MVL17_MVL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL17_MVL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL16[0].soma.v(0.5)") h("setpointer syn_NC_MVL17_MVL16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL17[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL17_MVL18_Generic_GJ print("Adding electrical projection: NC_MVL17_MVL18_Generic_GJ from MVL17 to MVL18, with 1 connection(s)") h("objectvar syn_NC_MVL17_MVL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL17_MVL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL17[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL18[0].soma], weight: 1.0 h("a_MVL17[0].soma { syn_NC_MVL17_MVL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL18[0].soma { syn_NC_MVL17_MVL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL17_MVL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL18[0].soma.v(0.5)") h("setpointer syn_NC_MVL17_MVL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL17[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL18_MVL17_Generic_GJ print("Adding electrical projection: NC_MVL18_MVL17_Generic_GJ from MVL18 to MVL17, with 1 connection(s)") h("objectvar syn_NC_MVL18_MVL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL18_MVL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL18[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL17[0].soma], weight: 1.0 h("a_MVL18[0].soma { syn_NC_MVL18_MVL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL17[0].soma { syn_NC_MVL18_MVL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL18_MVL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL17[0].soma.v(0.5)") h("setpointer syn_NC_MVL18_MVL17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL18[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL18_MVL19_Generic_GJ print("Adding electrical projection: NC_MVL18_MVL19_Generic_GJ from MVL18 to MVL19, with 1 connection(s)") h("objectvar syn_NC_MVL18_MVL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL18_MVL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL18[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL19[0].soma], weight: 1.0 h("a_MVL18[0].soma { syn_NC_MVL18_MVL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL19[0].soma { syn_NC_MVL18_MVL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL18_MVL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL19[0].soma.v(0.5)") h("setpointer syn_NC_MVL18_MVL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL18[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL19_MVL18_Generic_GJ print("Adding electrical projection: NC_MVL19_MVL18_Generic_GJ from MVL19 to MVL18, with 1 connection(s)") h("objectvar syn_NC_MVL19_MVL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL19_MVL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL19[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL18[0].soma], weight: 1.0 h("a_MVL19[0].soma { syn_NC_MVL19_MVL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL18[0].soma { syn_NC_MVL19_MVL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL19_MVL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL18[0].soma.v(0.5)") h("setpointer syn_NC_MVL19_MVL18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL19[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL19_MVL20_Generic_GJ print("Adding electrical projection: NC_MVL19_MVL20_Generic_GJ from MVL19 to MVL20, with 1 connection(s)") h("objectvar syn_NC_MVL19_MVL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL19_MVL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL19[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL20[0].soma], weight: 1.0 h("a_MVL19[0].soma { syn_NC_MVL19_MVL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL20[0].soma { syn_NC_MVL19_MVL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL19_MVL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL20[0].soma.v(0.5)") h("setpointer syn_NC_MVL19_MVL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL19[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL20_MVL19_Generic_GJ print("Adding electrical projection: NC_MVL20_MVL19_Generic_GJ from MVL20 to MVL19, with 1 connection(s)") h("objectvar syn_NC_MVL20_MVL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL20_MVL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL20[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL19[0].soma], weight: 1.0 h("a_MVL20[0].soma { syn_NC_MVL20_MVL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL19[0].soma { syn_NC_MVL20_MVL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL20_MVL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL19[0].soma.v(0.5)") h("setpointer syn_NC_MVL20_MVL19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL20[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL20_MVL21_Generic_GJ print("Adding electrical projection: NC_MVL20_MVL21_Generic_GJ from MVL20 to MVL21, with 1 connection(s)") h("objectvar syn_NC_MVL20_MVL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL20_MVL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL20[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL21[0].soma], weight: 1.0 h("a_MVL20[0].soma { syn_NC_MVL20_MVL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL21[0].soma { syn_NC_MVL20_MVL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL20_MVL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL21[0].soma.v(0.5)") h("setpointer syn_NC_MVL20_MVL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL20[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL21_MVL20_Generic_GJ print("Adding electrical projection: NC_MVL21_MVL20_Generic_GJ from MVL21 to MVL20, with 1 connection(s)") h("objectvar syn_NC_MVL21_MVL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL21_MVL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL21[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL20[0].soma], weight: 1.0 h("a_MVL21[0].soma { syn_NC_MVL21_MVL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL20[0].soma { syn_NC_MVL21_MVL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL21_MVL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL20[0].soma.v(0.5)") h("setpointer syn_NC_MVL21_MVL20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL21[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL21_MVL22_Generic_GJ print("Adding electrical projection: NC_MVL21_MVL22_Generic_GJ from MVL21 to MVL22, with 1 connection(s)") h("objectvar syn_NC_MVL21_MVL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL21_MVL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL21[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL22[0].soma], weight: 1.0 h("a_MVL21[0].soma { syn_NC_MVL21_MVL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL22[0].soma { syn_NC_MVL21_MVL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL21_MVL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL22[0].soma.v(0.5)") h("setpointer syn_NC_MVL21_MVL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL21[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL22_MVL21_Generic_GJ print("Adding electrical projection: NC_MVL22_MVL21_Generic_GJ from MVL22 to MVL21, with 1 connection(s)") h("objectvar syn_NC_MVL22_MVL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL22_MVL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL22[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL21[0].soma], weight: 1.0 h("a_MVL22[0].soma { syn_NC_MVL22_MVL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL21[0].soma { syn_NC_MVL22_MVL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL22_MVL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL21[0].soma.v(0.5)") h("setpointer syn_NC_MVL22_MVL21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL22[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL22_MVL23_Generic_GJ print("Adding electrical projection: NC_MVL22_MVL23_Generic_GJ from MVL22 to MVL23, with 1 connection(s)") h("objectvar syn_NC_MVL22_MVL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL22_MVL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL22[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL23[0].soma], weight: 1.0 h("a_MVL22[0].soma { syn_NC_MVL22_MVL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL23[0].soma { syn_NC_MVL22_MVL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL22_MVL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL23[0].soma.v(0.5)") h("setpointer syn_NC_MVL22_MVL23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL22[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVL23_MVL22_Generic_GJ print("Adding electrical projection: NC_MVL23_MVL22_Generic_GJ from MVL23 to MVL22, with 1 connection(s)") h("objectvar syn_NC_MVL23_MVL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVL23_MVL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVL23[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL22[0].soma], weight: 1.0 h("a_MVL23[0].soma { syn_NC_MVL23_MVL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVL22[0].soma { syn_NC_MVL23_MVL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVL23_MVL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVL22[0].soma.v(0.5)") h("setpointer syn_NC_MVL23_MVL22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVL23[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR01_MVR02_Generic_GJ print("Adding electrical projection: NC_MVR01_MVR02_Generic_GJ from MVR01 to MVR02, with 1 connection(s)") h("objectvar syn_NC_MVR01_MVR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR01_MVR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR01[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR02[0].soma], weight: 1.0 h("a_MVR01[0].soma { syn_NC_MVR01_MVR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR02[0].soma { syn_NC_MVR01_MVR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR01_MVR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR02[0].soma.v(0.5)") h("setpointer syn_NC_MVR01_MVR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR01[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR01_MVR03_Generic_GJ print("Adding electrical projection: NC_MVR01_MVR03_Generic_GJ from MVR01 to MVR03, with 1 connection(s)") h("objectvar syn_NC_MVR01_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR01_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR01[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR03[0].soma], weight: 1.0 h("a_MVR01[0].soma { syn_NC_MVR01_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR03[0].soma { syn_NC_MVR01_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR01_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR03[0].soma.v(0.5)") h("setpointer syn_NC_MVR01_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR01[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR02_MVR01_Generic_GJ print("Adding electrical projection: NC_MVR02_MVR01_Generic_GJ from MVR02 to MVR01, with 1 connection(s)") h("objectvar syn_NC_MVR02_MVR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR02_MVR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR02[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR01[0].soma], weight: 1.0 h("a_MVR02[0].soma { syn_NC_MVR02_MVR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR01[0].soma { syn_NC_MVR02_MVR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR02_MVR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR01[0].soma.v(0.5)") h("setpointer syn_NC_MVR02_MVR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR02[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR02_MVR03_Generic_GJ print("Adding electrical projection: NC_MVR02_MVR03_Generic_GJ from MVR02 to MVR03, with 1 connection(s)") h("objectvar syn_NC_MVR02_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR02_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR02[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR03[0].soma], weight: 1.0 h("a_MVR02[0].soma { syn_NC_MVR02_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR03[0].soma { syn_NC_MVR02_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR02_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR03[0].soma.v(0.5)") h("setpointer syn_NC_MVR02_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR02[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR03_MVR01_Generic_GJ print("Adding electrical projection: NC_MVR03_MVR01_Generic_GJ from MVR03 to MVR01, with 1 connection(s)") h("objectvar syn_NC_MVR03_MVR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR03_MVR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR03[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR01[0].soma], weight: 1.0 h("a_MVR03[0].soma { syn_NC_MVR03_MVR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR01[0].soma { syn_NC_MVR03_MVR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR03_MVR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR01[0].soma.v(0.5)") h("setpointer syn_NC_MVR03_MVR01_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR03[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR03_MVR02_Generic_GJ print("Adding electrical projection: NC_MVR03_MVR02_Generic_GJ from MVR03 to MVR02, with 1 connection(s)") h("objectvar syn_NC_MVR03_MVR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR03_MVR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR03[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR02[0].soma], weight: 1.0 h("a_MVR03[0].soma { syn_NC_MVR03_MVR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR02[0].soma { syn_NC_MVR03_MVR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR03_MVR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR02[0].soma.v(0.5)") h("setpointer syn_NC_MVR03_MVR02_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR03[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR03_MVR04_Generic_GJ print("Adding electrical projection: NC_MVR03_MVR04_Generic_GJ from MVR03 to MVR04, with 1 connection(s)") h("objectvar syn_NC_MVR03_MVR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR03_MVR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR03[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR04[0].soma], weight: 1.0 h("a_MVR03[0].soma { syn_NC_MVR03_MVR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR04[0].soma { syn_NC_MVR03_MVR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR03_MVR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR04[0].soma.v(0.5)") h("setpointer syn_NC_MVR03_MVR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR03[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR04_MVR03_Generic_GJ print("Adding electrical projection: NC_MVR04_MVR03_Generic_GJ from MVR04 to MVR03, with 1 connection(s)") h("objectvar syn_NC_MVR04_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR04_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR04[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR03[0].soma], weight: 1.0 h("a_MVR04[0].soma { syn_NC_MVR04_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR03[0].soma { syn_NC_MVR04_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR04_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR03[0].soma.v(0.5)") h("setpointer syn_NC_MVR04_MVR03_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR04[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR04_MVR05_Generic_GJ print("Adding electrical projection: NC_MVR04_MVR05_Generic_GJ from MVR04 to MVR05, with 1 connection(s)") h("objectvar syn_NC_MVR04_MVR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR04_MVR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR04[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR05[0].soma], weight: 1.0 h("a_MVR04[0].soma { syn_NC_MVR04_MVR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR05[0].soma { syn_NC_MVR04_MVR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR04_MVR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR05[0].soma.v(0.5)") h("setpointer syn_NC_MVR04_MVR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR04[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR05_MVR04_Generic_GJ print("Adding electrical projection: NC_MVR05_MVR04_Generic_GJ from MVR05 to MVR04, with 1 connection(s)") h("objectvar syn_NC_MVR05_MVR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR05_MVR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR05[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR04[0].soma], weight: 1.0 h("a_MVR05[0].soma { syn_NC_MVR05_MVR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR04[0].soma { syn_NC_MVR05_MVR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR05_MVR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR04[0].soma.v(0.5)") h("setpointer syn_NC_MVR05_MVR04_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR05[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR05_MVR06_Generic_GJ print("Adding electrical projection: NC_MVR05_MVR06_Generic_GJ from MVR05 to MVR06, with 1 connection(s)") h("objectvar syn_NC_MVR05_MVR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR05_MVR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR05[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR06[0].soma], weight: 1.0 h("a_MVR05[0].soma { syn_NC_MVR05_MVR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR06[0].soma { syn_NC_MVR05_MVR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR05_MVR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR06[0].soma.v(0.5)") h("setpointer syn_NC_MVR05_MVR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR05[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR06_MVR05_Generic_GJ print("Adding electrical projection: NC_MVR06_MVR05_Generic_GJ from MVR06 to MVR05, with 1 connection(s)") h("objectvar syn_NC_MVR06_MVR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR06_MVR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR06[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR05[0].soma], weight: 1.0 h("a_MVR06[0].soma { syn_NC_MVR06_MVR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR05[0].soma { syn_NC_MVR06_MVR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR06_MVR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR05[0].soma.v(0.5)") h("setpointer syn_NC_MVR06_MVR05_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR06[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR06_MVR07_Generic_GJ print("Adding electrical projection: NC_MVR06_MVR07_Generic_GJ from MVR06 to MVR07, with 1 connection(s)") h("objectvar syn_NC_MVR06_MVR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR06_MVR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR06[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR07[0].soma], weight: 1.0 h("a_MVR06[0].soma { syn_NC_MVR06_MVR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR07[0].soma { syn_NC_MVR06_MVR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR06_MVR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR07[0].soma.v(0.5)") h("setpointer syn_NC_MVR06_MVR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR06[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR07_MVR06_Generic_GJ print("Adding electrical projection: NC_MVR07_MVR06_Generic_GJ from MVR07 to MVR06, with 1 connection(s)") h("objectvar syn_NC_MVR07_MVR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR07_MVR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR07[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR06[0].soma], weight: 1.0 h("a_MVR07[0].soma { syn_NC_MVR07_MVR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR06[0].soma { syn_NC_MVR07_MVR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR07_MVR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR06[0].soma.v(0.5)") h("setpointer syn_NC_MVR07_MVR06_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR07[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR07_MVR08_Generic_GJ print("Adding electrical projection: NC_MVR07_MVR08_Generic_GJ from MVR07 to MVR08, with 1 connection(s)") h("objectvar syn_NC_MVR07_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR07_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR07[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR08[0].soma], weight: 1.0 h("a_MVR07[0].soma { syn_NC_MVR07_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR08[0].soma { syn_NC_MVR07_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR07_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR08[0].soma.v(0.5)") h("setpointer syn_NC_MVR07_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR07[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR08_MVL09_Generic_GJ print("Adding electrical projection: NC_MVR08_MVL09_Generic_GJ from MVR08 to MVL09, with 1 connection(s)") h("objectvar syn_NC_MVR08_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_2conns_A[1]") h("objectvar syn_NC_MVR08_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_2conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR08[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVL09[0].soma], weight: 1.0 h("a_MVR08[0].soma { syn_NC_MVR08_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_2conns_A[0] = new muscle_to_muscle_elec_syn_2conns(0.5) }") h("a_MVL09[0].soma { syn_NC_MVR08_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_2conns_B[0] = new muscle_to_muscle_elec_syn_2conns(0.5) }") h("setpointer syn_NC_MVR08_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_2conns_A[0].vpeer, a_MVL09[0].soma.v(0.5)") h("setpointer syn_NC_MVR08_MVL09_Generic_GJ_muscle_to_muscle_elec_syn_2conns_B[0].vpeer, a_MVR08[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR08_MVR07_Generic_GJ print("Adding electrical projection: NC_MVR08_MVR07_Generic_GJ from MVR08 to MVR07, with 1 connection(s)") h("objectvar syn_NC_MVR08_MVR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR08_MVR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR08[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR07[0].soma], weight: 1.0 h("a_MVR08[0].soma { syn_NC_MVR08_MVR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR07[0].soma { syn_NC_MVR08_MVR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR08_MVR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR07[0].soma.v(0.5)") h("setpointer syn_NC_MVR08_MVR07_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR08[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR08_MVR09_Generic_GJ print("Adding electrical projection: NC_MVR08_MVR09_Generic_GJ from MVR08 to MVR09, with 1 connection(s)") h("objectvar syn_NC_MVR08_MVR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR08_MVR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR08[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR09[0].soma], weight: 1.0 h("a_MVR08[0].soma { syn_NC_MVR08_MVR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR09[0].soma { syn_NC_MVR08_MVR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR08_MVR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR09[0].soma.v(0.5)") h("setpointer syn_NC_MVR08_MVR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR08[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR09_MVR08_Generic_GJ print("Adding electrical projection: NC_MVR09_MVR08_Generic_GJ from MVR09 to MVR08, with 1 connection(s)") h("objectvar syn_NC_MVR09_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR09_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR09[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR08[0].soma], weight: 1.0 h("a_MVR09[0].soma { syn_NC_MVR09_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR08[0].soma { syn_NC_MVR09_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR09_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR08[0].soma.v(0.5)") h("setpointer syn_NC_MVR09_MVR08_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR09[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR09_MVR10_Generic_GJ print("Adding electrical projection: NC_MVR09_MVR10_Generic_GJ from MVR09 to MVR10, with 1 connection(s)") h("objectvar syn_NC_MVR09_MVR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR09_MVR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR09[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR10[0].soma], weight: 1.0 h("a_MVR09[0].soma { syn_NC_MVR09_MVR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR10[0].soma { syn_NC_MVR09_MVR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR09_MVR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR10[0].soma.v(0.5)") h("setpointer syn_NC_MVR09_MVR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR09[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR10_MVR09_Generic_GJ print("Adding electrical projection: NC_MVR10_MVR09_Generic_GJ from MVR10 to MVR09, with 1 connection(s)") h("objectvar syn_NC_MVR10_MVR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR10_MVR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR10[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR09[0].soma], weight: 1.0 h("a_MVR10[0].soma { syn_NC_MVR10_MVR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR09[0].soma { syn_NC_MVR10_MVR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR10_MVR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR09[0].soma.v(0.5)") h("setpointer syn_NC_MVR10_MVR09_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR10[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR10_MVR11_Generic_GJ print("Adding electrical projection: NC_MVR10_MVR11_Generic_GJ from MVR10 to MVR11, with 1 connection(s)") h("objectvar syn_NC_MVR10_MVR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR10_MVR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR10[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR11[0].soma], weight: 1.0 h("a_MVR10[0].soma { syn_NC_MVR10_MVR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR11[0].soma { syn_NC_MVR10_MVR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR10_MVR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR11[0].soma.v(0.5)") h("setpointer syn_NC_MVR10_MVR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR10[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR11_MVR10_Generic_GJ print("Adding electrical projection: NC_MVR11_MVR10_Generic_GJ from MVR11 to MVR10, with 1 connection(s)") h("objectvar syn_NC_MVR11_MVR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR11_MVR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR11[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR10[0].soma], weight: 1.0 h("a_MVR11[0].soma { syn_NC_MVR11_MVR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR10[0].soma { syn_NC_MVR11_MVR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR11_MVR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR10[0].soma.v(0.5)") h("setpointer syn_NC_MVR11_MVR10_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR11[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR11_MVR12_Generic_GJ print("Adding electrical projection: NC_MVR11_MVR12_Generic_GJ from MVR11 to MVR12, with 1 connection(s)") h("objectvar syn_NC_MVR11_MVR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR11_MVR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR11[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR12[0].soma], weight: 1.0 h("a_MVR11[0].soma { syn_NC_MVR11_MVR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR12[0].soma { syn_NC_MVR11_MVR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR11_MVR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR12[0].soma.v(0.5)") h("setpointer syn_NC_MVR11_MVR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR11[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR12_MVR11_Generic_GJ print("Adding electrical projection: NC_MVR12_MVR11_Generic_GJ from MVR12 to MVR11, with 1 connection(s)") h("objectvar syn_NC_MVR12_MVR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR12_MVR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR12[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR11[0].soma], weight: 1.0 h("a_MVR12[0].soma { syn_NC_MVR12_MVR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR11[0].soma { syn_NC_MVR12_MVR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR12_MVR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR11[0].soma.v(0.5)") h("setpointer syn_NC_MVR12_MVR11_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR12[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR12_MVR13_Generic_GJ print("Adding electrical projection: NC_MVR12_MVR13_Generic_GJ from MVR12 to MVR13, with 1 connection(s)") h("objectvar syn_NC_MVR12_MVR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR12_MVR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR12[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR13[0].soma], weight: 1.0 h("a_MVR12[0].soma { syn_NC_MVR12_MVR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR13[0].soma { syn_NC_MVR12_MVR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR12_MVR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR13[0].soma.v(0.5)") h("setpointer syn_NC_MVR12_MVR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR12[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR13_MVR12_Generic_GJ print("Adding electrical projection: NC_MVR13_MVR12_Generic_GJ from MVR13 to MVR12, with 1 connection(s)") h("objectvar syn_NC_MVR13_MVR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR13_MVR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR13[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR12[0].soma], weight: 1.0 h("a_MVR13[0].soma { syn_NC_MVR13_MVR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR12[0].soma { syn_NC_MVR13_MVR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR13_MVR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR12[0].soma.v(0.5)") h("setpointer syn_NC_MVR13_MVR12_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR13[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR13_MVR14_Generic_GJ print("Adding electrical projection: NC_MVR13_MVR14_Generic_GJ from MVR13 to MVR14, with 1 connection(s)") h("objectvar syn_NC_MVR13_MVR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR13_MVR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR13[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR14[0].soma], weight: 1.0 h("a_MVR13[0].soma { syn_NC_MVR13_MVR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR14[0].soma { syn_NC_MVR13_MVR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR13_MVR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR14[0].soma.v(0.5)") h("setpointer syn_NC_MVR13_MVR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR13[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR14_MVR13_Generic_GJ print("Adding electrical projection: NC_MVR14_MVR13_Generic_GJ from MVR14 to MVR13, with 1 connection(s)") h("objectvar syn_NC_MVR14_MVR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR14_MVR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR14[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR13[0].soma], weight: 1.0 h("a_MVR14[0].soma { syn_NC_MVR14_MVR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR13[0].soma { syn_NC_MVR14_MVR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR14_MVR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR13[0].soma.v(0.5)") h("setpointer syn_NC_MVR14_MVR13_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR14[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR14_MVR15_Generic_GJ print("Adding electrical projection: NC_MVR14_MVR15_Generic_GJ from MVR14 to MVR15, with 1 connection(s)") h("objectvar syn_NC_MVR14_MVR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR14_MVR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR14[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR15[0].soma], weight: 1.0 h("a_MVR14[0].soma { syn_NC_MVR14_MVR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR15[0].soma { syn_NC_MVR14_MVR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR14_MVR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR15[0].soma.v(0.5)") h("setpointer syn_NC_MVR14_MVR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR14[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR15_MVR14_Generic_GJ print("Adding electrical projection: NC_MVR15_MVR14_Generic_GJ from MVR15 to MVR14, with 1 connection(s)") h("objectvar syn_NC_MVR15_MVR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR15_MVR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR15[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR14[0].soma], weight: 1.0 h("a_MVR15[0].soma { syn_NC_MVR15_MVR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR14[0].soma { syn_NC_MVR15_MVR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR15_MVR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR14[0].soma.v(0.5)") h("setpointer syn_NC_MVR15_MVR14_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR15[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR15_MVR16_Generic_GJ print("Adding electrical projection: NC_MVR15_MVR16_Generic_GJ from MVR15 to MVR16, with 1 connection(s)") h("objectvar syn_NC_MVR15_MVR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR15_MVR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR15[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR16[0].soma], weight: 1.0 h("a_MVR15[0].soma { syn_NC_MVR15_MVR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR16[0].soma { syn_NC_MVR15_MVR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR15_MVR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR16[0].soma.v(0.5)") h("setpointer syn_NC_MVR15_MVR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR15[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR16_MVR15_Generic_GJ print("Adding electrical projection: NC_MVR16_MVR15_Generic_GJ from MVR16 to MVR15, with 1 connection(s)") h("objectvar syn_NC_MVR16_MVR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR16_MVR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR16[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR15[0].soma], weight: 1.0 h("a_MVR16[0].soma { syn_NC_MVR16_MVR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR15[0].soma { syn_NC_MVR16_MVR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR16_MVR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR15[0].soma.v(0.5)") h("setpointer syn_NC_MVR16_MVR15_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR16[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR16_MVR17_Generic_GJ print("Adding electrical projection: NC_MVR16_MVR17_Generic_GJ from MVR16 to MVR17, with 1 connection(s)") h("objectvar syn_NC_MVR16_MVR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR16_MVR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR16[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR17[0].soma], weight: 1.0 h("a_MVR16[0].soma { syn_NC_MVR16_MVR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR17[0].soma { syn_NC_MVR16_MVR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR16_MVR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR17[0].soma.v(0.5)") h("setpointer syn_NC_MVR16_MVR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR16[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR17_MVR16_Generic_GJ print("Adding electrical projection: NC_MVR17_MVR16_Generic_GJ from MVR17 to MVR16, with 1 connection(s)") h("objectvar syn_NC_MVR17_MVR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR17_MVR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR17[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR16[0].soma], weight: 1.0 h("a_MVR17[0].soma { syn_NC_MVR17_MVR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR16[0].soma { syn_NC_MVR17_MVR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR17_MVR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR16[0].soma.v(0.5)") h("setpointer syn_NC_MVR17_MVR16_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR17[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR17_MVR18_Generic_GJ print("Adding electrical projection: NC_MVR17_MVR18_Generic_GJ from MVR17 to MVR18, with 1 connection(s)") h("objectvar syn_NC_MVR17_MVR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR17_MVR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR17[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR18[0].soma], weight: 1.0 h("a_MVR17[0].soma { syn_NC_MVR17_MVR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR18[0].soma { syn_NC_MVR17_MVR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR17_MVR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR18[0].soma.v(0.5)") h("setpointer syn_NC_MVR17_MVR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR17[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR18_MVR17_Generic_GJ print("Adding electrical projection: NC_MVR18_MVR17_Generic_GJ from MVR18 to MVR17, with 1 connection(s)") h("objectvar syn_NC_MVR18_MVR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR18_MVR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR18[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR17[0].soma], weight: 1.0 h("a_MVR18[0].soma { syn_NC_MVR18_MVR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR17[0].soma { syn_NC_MVR18_MVR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR18_MVR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR17[0].soma.v(0.5)") h("setpointer syn_NC_MVR18_MVR17_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR18[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR18_MVR19_Generic_GJ print("Adding electrical projection: NC_MVR18_MVR19_Generic_GJ from MVR18 to MVR19, with 1 connection(s)") h("objectvar syn_NC_MVR18_MVR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR18_MVR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR18[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR19[0].soma], weight: 1.0 h("a_MVR18[0].soma { syn_NC_MVR18_MVR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR19[0].soma { syn_NC_MVR18_MVR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR18_MVR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR19[0].soma.v(0.5)") h("setpointer syn_NC_MVR18_MVR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR18[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR19_MVR18_Generic_GJ print("Adding electrical projection: NC_MVR19_MVR18_Generic_GJ from MVR19 to MVR18, with 1 connection(s)") h("objectvar syn_NC_MVR19_MVR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR19_MVR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR19[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR18[0].soma], weight: 1.0 h("a_MVR19[0].soma { syn_NC_MVR19_MVR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR18[0].soma { syn_NC_MVR19_MVR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR19_MVR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR18[0].soma.v(0.5)") h("setpointer syn_NC_MVR19_MVR18_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR19[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR19_MVR20_Generic_GJ print("Adding electrical projection: NC_MVR19_MVR20_Generic_GJ from MVR19 to MVR20, with 1 connection(s)") h("objectvar syn_NC_MVR19_MVR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR19_MVR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR19[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR20[0].soma], weight: 1.0 h("a_MVR19[0].soma { syn_NC_MVR19_MVR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR20[0].soma { syn_NC_MVR19_MVR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR19_MVR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR20[0].soma.v(0.5)") h("setpointer syn_NC_MVR19_MVR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR19[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR20_MVR19_Generic_GJ print("Adding electrical projection: NC_MVR20_MVR19_Generic_GJ from MVR20 to MVR19, with 1 connection(s)") h("objectvar syn_NC_MVR20_MVR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR20_MVR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR20[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR19[0].soma], weight: 1.0 h("a_MVR20[0].soma { syn_NC_MVR20_MVR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR19[0].soma { syn_NC_MVR20_MVR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR20_MVR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR19[0].soma.v(0.5)") h("setpointer syn_NC_MVR20_MVR19_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR20[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR20_MVR21_Generic_GJ print("Adding electrical projection: NC_MVR20_MVR21_Generic_GJ from MVR20 to MVR21, with 1 connection(s)") h("objectvar syn_NC_MVR20_MVR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR20_MVR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR20[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR21[0].soma], weight: 1.0 h("a_MVR20[0].soma { syn_NC_MVR20_MVR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR21[0].soma { syn_NC_MVR20_MVR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR20_MVR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR21[0].soma.v(0.5)") h("setpointer syn_NC_MVR20_MVR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR20[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR21_MVR20_Generic_GJ print("Adding electrical projection: NC_MVR21_MVR20_Generic_GJ from MVR21 to MVR20, with 1 connection(s)") h("objectvar syn_NC_MVR21_MVR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR21_MVR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR21[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR20[0].soma], weight: 1.0 h("a_MVR21[0].soma { syn_NC_MVR21_MVR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR20[0].soma { syn_NC_MVR21_MVR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR21_MVR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR20[0].soma.v(0.5)") h("setpointer syn_NC_MVR21_MVR20_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR21[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR21_MVR22_Generic_GJ print("Adding electrical projection: NC_MVR21_MVR22_Generic_GJ from MVR21 to MVR22, with 1 connection(s)") h("objectvar syn_NC_MVR21_MVR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR21_MVR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR21[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR22[0].soma], weight: 1.0 h("a_MVR21[0].soma { syn_NC_MVR21_MVR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR22[0].soma { syn_NC_MVR21_MVR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR21_MVR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR22[0].soma.v(0.5)") h("setpointer syn_NC_MVR21_MVR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR21[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR22_MVR21_Generic_GJ print("Adding electrical projection: NC_MVR22_MVR21_Generic_GJ from MVR22 to MVR21, with 1 connection(s)") h("objectvar syn_NC_MVR22_MVR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR22_MVR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR22[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR21[0].soma], weight: 1.0 h("a_MVR22[0].soma { syn_NC_MVR22_MVR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR21[0].soma { syn_NC_MVR22_MVR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR22_MVR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR21[0].soma.v(0.5)") h("setpointer syn_NC_MVR22_MVR21_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR22[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR22_MVR23_Generic_GJ print("Adding electrical projection: NC_MVR22_MVR23_Generic_GJ from MVR22 to MVR23, with 1 connection(s)") h("objectvar syn_NC_MVR22_MVR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR22_MVR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR22[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR23[0].soma], weight: 1.0 h("a_MVR22[0].soma { syn_NC_MVR22_MVR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR23[0].soma { syn_NC_MVR22_MVR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR22_MVR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR23[0].soma.v(0.5)") h("setpointer syn_NC_MVR22_MVR23_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR22[0].soma.v(0.5)") # ###################### Electrical Projection: NC_MVR23_MVR22_Generic_GJ print("Adding electrical projection: NC_MVR23_MVR22_Generic_GJ from MVR23 to MVR22, with 1 connection(s)") h("objectvar syn_NC_MVR23_MVR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[1]") h("objectvar syn_NC_MVR23_MVR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[1]") # Elect Connection 0: cell 0, seg 0 (0.5) [0.5 on a_MVR23[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MVR22[0].soma], weight: 1.0 h("a_MVR23[0].soma { syn_NC_MVR23_MVR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("a_MVR22[0].soma { syn_NC_MVR23_MVR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0] = new muscle_to_muscle_elec_syn_15conns(0.5) }") h("setpointer syn_NC_MVR23_MVR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_A[0].vpeer, a_MVR22[0].soma.v(0.5)") h("setpointer syn_NC_MVR23_MVR22_Generic_GJ_muscle_to_muscle_elec_syn_15conns_B[0].vpeer, a_MVR23[0].soma.v(0.5)") # ###################### Continuous Projection: NC_AVAL_AVBL_Acetylcholine print("Adding continuous projection: NC_AVAL_AVBL_Acetylcholine from AVAL to AVBL, with 1 connection(s)") h("objectvar syn_NC_AVAL_AVBL_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAL_AVBL_Acetylcholine_neuron_to_neuron_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_AVBL_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AVBL[0].soma { syn_NC_AVAL_AVBL_Acetylcholine_neuron_to_neuron_exc_syn_2conns_post[0] = new neuron_to_neuron_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_AVAL_AVBL_Acetylcholine_silent_pre[0].vpeer, a_AVBL[0].soma.v(0.500000)") h("setpointer syn_NC_AVAL_AVBL_Acetylcholine_neuron_to_neuron_exc_syn_2conns_post[0].vpeer, a_AVAL[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAL_DA1_Acetylcholine print("Adding continuous projection: NC_AVAL_DA1_Acetylcholine from AVAL to DA1, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA1_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAL_DA1_Acetylcholine_neuron_to_neuron_exc_syn_6conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA1[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA1_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA1[0].soma { syn_NC_AVAL_DA1_Acetylcholine_neuron_to_neuron_exc_syn_6conns_post[0] = new neuron_to_neuron_exc_syn_6conns(0.500000) }") h("setpointer syn_NC_AVAL_DA1_Acetylcholine_silent_pre[0].vpeer, a_DA1[0].soma.v(0.500000)") h("setpointer syn_NC_AVAL_DA1_Acetylcholine_neuron_to_neuron_exc_syn_6conns_post[0].vpeer, a_AVAL[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAL_DA2_Acetylcholine print("Adding continuous projection: NC_AVAL_DA2_Acetylcholine from AVAL to DA2, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA2_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAL_DA2_Acetylcholine_neuron_to_neuron_exc_syn_10conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA2[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA2_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA2[0].soma { syn_NC_AVAL_DA2_Acetylcholine_neuron_to_neuron_exc_syn_10conns_post[0] = new neuron_to_neuron_exc_syn_10conns(0.500000) }") h("setpointer syn_NC_AVAL_DA2_Acetylcholine_silent_pre[0].vpeer, a_DA2[0].soma.v(0.500000)") h("setpointer syn_NC_AVAL_DA2_Acetylcholine_neuron_to_neuron_exc_syn_10conns_post[0].vpeer, a_AVAL[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAL_DA3_Acetylcholine print("Adding continuous projection: NC_AVAL_DA3_Acetylcholine from AVAL to DA3, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA3_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAL_DA3_Acetylcholine_neuron_to_neuron_exc_syn_12conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA3_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA3[0].soma { syn_NC_AVAL_DA3_Acetylcholine_neuron_to_neuron_exc_syn_12conns_post[0] = new neuron_to_neuron_exc_syn_12conns(0.500000) }") h("setpointer syn_NC_AVAL_DA3_Acetylcholine_silent_pre[0].vpeer, a_DA3[0].soma.v(0.500000)") h("setpointer syn_NC_AVAL_DA3_Acetylcholine_neuron_to_neuron_exc_syn_12conns_post[0].vpeer, a_AVAL[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAL_DA4_Acetylcholine print("Adding continuous projection: NC_AVAL_DA4_Acetylcholine from AVAL to DA4, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA4_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAL_DA4_Acetylcholine_neuron_to_neuron_exc_syn_12conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA4[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA4_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA4[0].soma { syn_NC_AVAL_DA4_Acetylcholine_neuron_to_neuron_exc_syn_12conns_post[0] = new neuron_to_neuron_exc_syn_12conns(0.500000) }") h("setpointer syn_NC_AVAL_DA4_Acetylcholine_silent_pre[0].vpeer, a_DA4[0].soma.v(0.500000)") h("setpointer syn_NC_AVAL_DA4_Acetylcholine_neuron_to_neuron_exc_syn_12conns_post[0].vpeer, a_AVAL[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAL_DA5_Acetylcholine print("Adding continuous projection: NC_AVAL_DA5_Acetylcholine from AVAL to DA5, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA5_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAL_DA5_Acetylcholine_neuron_to_neuron_exc_syn_14conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA5[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA5_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA5[0].soma { syn_NC_AVAL_DA5_Acetylcholine_neuron_to_neuron_exc_syn_14conns_post[0] = new neuron_to_neuron_exc_syn_14conns(0.500000) }") h("setpointer syn_NC_AVAL_DA5_Acetylcholine_silent_pre[0].vpeer, a_DA5[0].soma.v(0.500000)") h("setpointer syn_NC_AVAL_DA5_Acetylcholine_neuron_to_neuron_exc_syn_14conns_post[0].vpeer, a_AVAL[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAL_DA7_Acetylcholine print("Adding continuous projection: NC_AVAL_DA7_Acetylcholine from AVAL to DA7, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA7_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAL_DA7_Acetylcholine_neuron_to_neuron_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA7_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA7[0].soma { syn_NC_AVAL_DA7_Acetylcholine_neuron_to_neuron_exc_syn_4conns_post[0] = new neuron_to_neuron_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_AVAL_DA7_Acetylcholine_silent_pre[0].vpeer, a_DA7[0].soma.v(0.500000)") h("setpointer syn_NC_AVAL_DA7_Acetylcholine_neuron_to_neuron_exc_syn_4conns_post[0].vpeer, a_AVAL[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAL_DA8_Acetylcholine print("Adding continuous projection: NC_AVAL_DA8_Acetylcholine from AVAL to DA8, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA8_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAL_DA8_Acetylcholine_neuron_to_neuron_exc_syn_5conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA8_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA8[0].soma { syn_NC_AVAL_DA8_Acetylcholine_neuron_to_neuron_exc_syn_5conns_post[0] = new neuron_to_neuron_exc_syn_5conns(0.500000) }") h("setpointer syn_NC_AVAL_DA8_Acetylcholine_silent_pre[0].vpeer, a_DA8[0].soma.v(0.500000)") h("setpointer syn_NC_AVAL_DA8_Acetylcholine_neuron_to_neuron_exc_syn_5conns_post[0].vpeer, a_AVAL[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAL_DA9_Acetylcholine print("Adding continuous projection: NC_AVAL_DA9_Acetylcholine from AVAL to DA9, with 1 connection(s)") h("objectvar syn_NC_AVAL_DA9_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAL_DA9_Acetylcholine_neuron_to_neuron_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma], weight: 1.0 h("a_AVAL[0].soma { syn_NC_AVAL_DA9_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA9[0].soma { syn_NC_AVAL_DA9_Acetylcholine_neuron_to_neuron_exc_syn_3conns_post[0] = new neuron_to_neuron_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_AVAL_DA9_Acetylcholine_silent_pre[0].vpeer, a_DA9[0].soma.v(0.500000)") h("setpointer syn_NC_AVAL_DA9_Acetylcholine_neuron_to_neuron_exc_syn_3conns_post[0].vpeer, a_AVAL[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAR_AVBL_Acetylcholine print("Adding continuous projection: NC_AVAR_AVBL_Acetylcholine from AVAR to AVBL, with 1 connection(s)") h("objectvar syn_NC_AVAR_AVBL_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAR_AVBL_Acetylcholine_neuron_to_neuron_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_AVBL_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AVBL[0].soma { syn_NC_AVAR_AVBL_Acetylcholine_neuron_to_neuron_exc_syn_3conns_post[0] = new neuron_to_neuron_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_AVAR_AVBL_Acetylcholine_silent_pre[0].vpeer, a_AVBL[0].soma.v(0.500000)") h("setpointer syn_NC_AVAR_AVBL_Acetylcholine_neuron_to_neuron_exc_syn_3conns_post[0].vpeer, a_AVAR[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAR_AVBR_Acetylcholine print("Adding continuous projection: NC_AVAR_AVBR_Acetylcholine from AVAR to AVBR, with 1 connection(s)") h("objectvar syn_NC_AVAR_AVBR_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAR_AVBR_Acetylcholine_neuron_to_neuron_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_AVBR_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AVBR[0].soma { syn_NC_AVAR_AVBR_Acetylcholine_neuron_to_neuron_exc_syn_4conns_post[0] = new neuron_to_neuron_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_AVAR_AVBR_Acetylcholine_silent_pre[0].vpeer, a_AVBR[0].soma.v(0.500000)") h("setpointer syn_NC_AVAR_AVBR_Acetylcholine_neuron_to_neuron_exc_syn_4conns_post[0].vpeer, a_AVAR[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAR_DA1_Acetylcholine print("Adding continuous projection: NC_AVAR_DA1_Acetylcholine from AVAR to DA1, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA1_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAR_DA1_Acetylcholine_neuron_to_neuron_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA1[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA1_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA1[0].soma { syn_NC_AVAR_DA1_Acetylcholine_neuron_to_neuron_exc_syn_2conns_post[0] = new neuron_to_neuron_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_AVAR_DA1_Acetylcholine_silent_pre[0].vpeer, a_DA1[0].soma.v(0.500000)") h("setpointer syn_NC_AVAR_DA1_Acetylcholine_neuron_to_neuron_exc_syn_2conns_post[0].vpeer, a_AVAR[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAR_DA2_Acetylcholine print("Adding continuous projection: NC_AVAR_DA2_Acetylcholine from AVAR to DA2, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA2_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAR_DA2_Acetylcholine_neuron_to_neuron_exc_syn_9conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA2[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA2_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA2[0].soma { syn_NC_AVAR_DA2_Acetylcholine_neuron_to_neuron_exc_syn_9conns_post[0] = new neuron_to_neuron_exc_syn_9conns(0.500000) }") h("setpointer syn_NC_AVAR_DA2_Acetylcholine_silent_pre[0].vpeer, a_DA2[0].soma.v(0.500000)") h("setpointer syn_NC_AVAR_DA2_Acetylcholine_neuron_to_neuron_exc_syn_9conns_post[0].vpeer, a_AVAR[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAR_DA3_Acetylcholine print("Adding continuous projection: NC_AVAR_DA3_Acetylcholine from AVAR to DA3, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA3_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAR_DA3_Acetylcholine_neuron_to_neuron_exc_syn_8conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA3_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA3[0].soma { syn_NC_AVAR_DA3_Acetylcholine_neuron_to_neuron_exc_syn_8conns_post[0] = new neuron_to_neuron_exc_syn_8conns(0.500000) }") h("setpointer syn_NC_AVAR_DA3_Acetylcholine_silent_pre[0].vpeer, a_DA3[0].soma.v(0.500000)") h("setpointer syn_NC_AVAR_DA3_Acetylcholine_neuron_to_neuron_exc_syn_8conns_post[0].vpeer, a_AVAR[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAR_DA4_Acetylcholine print("Adding continuous projection: NC_AVAR_DA4_Acetylcholine from AVAR to DA4, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA4_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAR_DA4_Acetylcholine_neuron_to_neuron_exc_syn_9conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA4[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA4_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA4[0].soma { syn_NC_AVAR_DA4_Acetylcholine_neuron_to_neuron_exc_syn_9conns_post[0] = new neuron_to_neuron_exc_syn_9conns(0.500000) }") h("setpointer syn_NC_AVAR_DA4_Acetylcholine_silent_pre[0].vpeer, a_DA4[0].soma.v(0.500000)") h("setpointer syn_NC_AVAR_DA4_Acetylcholine_neuron_to_neuron_exc_syn_9conns_post[0].vpeer, a_AVAR[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAR_DA5_Acetylcholine print("Adding continuous projection: NC_AVAR_DA5_Acetylcholine from AVAR to DA5, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA5_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAR_DA5_Acetylcholine_neuron_to_neuron_exc_syn_9conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA5[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA5_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA5[0].soma { syn_NC_AVAR_DA5_Acetylcholine_neuron_to_neuron_exc_syn_9conns_post[0] = new neuron_to_neuron_exc_syn_9conns(0.500000) }") h("setpointer syn_NC_AVAR_DA5_Acetylcholine_silent_pre[0].vpeer, a_DA5[0].soma.v(0.500000)") h("setpointer syn_NC_AVAR_DA5_Acetylcholine_neuron_to_neuron_exc_syn_9conns_post[0].vpeer, a_AVAR[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAR_DA6_Acetylcholine print("Adding continuous projection: NC_AVAR_DA6_Acetylcholine from AVAR to DA6, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA6_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAR_DA6_Acetylcholine_neuron_to_neuron_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA6_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA6[0].soma { syn_NC_AVAR_DA6_Acetylcholine_neuron_to_neuron_exc_syn_4conns_post[0] = new neuron_to_neuron_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_AVAR_DA6_Acetylcholine_silent_pre[0].vpeer, a_DA6[0].soma.v(0.500000)") h("setpointer syn_NC_AVAR_DA6_Acetylcholine_neuron_to_neuron_exc_syn_4conns_post[0].vpeer, a_AVAR[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAR_DA7_Acetylcholine print("Adding continuous projection: NC_AVAR_DA7_Acetylcholine from AVAR to DA7, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA7_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAR_DA7_Acetylcholine_neuron_to_neuron_exc_syn_6conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA7_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA7[0].soma { syn_NC_AVAR_DA7_Acetylcholine_neuron_to_neuron_exc_syn_6conns_post[0] = new neuron_to_neuron_exc_syn_6conns(0.500000) }") h("setpointer syn_NC_AVAR_DA7_Acetylcholine_silent_pre[0].vpeer, a_DA7[0].soma.v(0.500000)") h("setpointer syn_NC_AVAR_DA7_Acetylcholine_neuron_to_neuron_exc_syn_6conns_post[0].vpeer, a_AVAR[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAR_DA8_Acetylcholine print("Adding continuous projection: NC_AVAR_DA8_Acetylcholine from AVAR to DA8, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA8_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAR_DA8_Acetylcholine_neuron_to_neuron_exc_syn_20conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA8_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA8[0].soma { syn_NC_AVAR_DA8_Acetylcholine_neuron_to_neuron_exc_syn_20conns_post[0] = new neuron_to_neuron_exc_syn_20conns(0.500000) }") h("setpointer syn_NC_AVAR_DA8_Acetylcholine_silent_pre[0].vpeer, a_DA8[0].soma.v(0.500000)") h("setpointer syn_NC_AVAR_DA8_Acetylcholine_neuron_to_neuron_exc_syn_20conns_post[0].vpeer, a_AVAR[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVAR_DA9_Acetylcholine print("Adding continuous projection: NC_AVAR_DA9_Acetylcholine from AVAR to DA9, with 1 connection(s)") h("objectvar syn_NC_AVAR_DA9_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVAR_DA9_Acetylcholine_neuron_to_neuron_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma], weight: 1.0 h("a_AVAR[0].soma { syn_NC_AVAR_DA9_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA9[0].soma { syn_NC_AVAR_DA9_Acetylcholine_neuron_to_neuron_exc_syn_3conns_post[0] = new neuron_to_neuron_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_AVAR_DA9_Acetylcholine_silent_pre[0].vpeer, a_DA9[0].soma.v(0.500000)") h("setpointer syn_NC_AVAR_DA9_Acetylcholine_neuron_to_neuron_exc_syn_3conns_post[0].vpeer, a_AVAR[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVBL_AVAL_Acetylcholine print("Adding continuous projection: NC_AVBL_AVAL_Acetylcholine from AVBL to AVAL, with 1 connection(s)") h("objectvar syn_NC_AVBL_AVAL_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVBL_AVAL_Acetylcholine_neuron_to_neuron_exc_syn_9conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma], weight: 1.0 h("a_AVBL[0].soma { syn_NC_AVBL_AVAL_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AVAL[0].soma { syn_NC_AVBL_AVAL_Acetylcholine_neuron_to_neuron_exc_syn_9conns_post[0] = new neuron_to_neuron_exc_syn_9conns(0.500000) }") h("setpointer syn_NC_AVBL_AVAL_Acetylcholine_silent_pre[0].vpeer, a_AVAL[0].soma.v(0.500000)") h("setpointer syn_NC_AVBL_AVAL_Acetylcholine_neuron_to_neuron_exc_syn_9conns_post[0].vpeer, a_AVBL[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVBL_AVAR_Acetylcholine print("Adding continuous projection: NC_AVBL_AVAR_Acetylcholine from AVBL to AVAR, with 1 connection(s)") h("objectvar syn_NC_AVBL_AVAR_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVBL_AVAR_Acetylcholine_neuron_to_neuron_exc_syn_14conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBL[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma], weight: 1.0 h("a_AVBL[0].soma { syn_NC_AVBL_AVAR_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AVAR[0].soma { syn_NC_AVBL_AVAR_Acetylcholine_neuron_to_neuron_exc_syn_14conns_post[0] = new neuron_to_neuron_exc_syn_14conns(0.500000) }") h("setpointer syn_NC_AVBL_AVAR_Acetylcholine_silent_pre[0].vpeer, a_AVAR[0].soma.v(0.500000)") h("setpointer syn_NC_AVBL_AVAR_Acetylcholine_neuron_to_neuron_exc_syn_14conns_post[0].vpeer, a_AVBL[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVBR_AVAL_Acetylcholine print("Adding continuous projection: NC_AVBR_AVAL_Acetylcholine from AVBR to AVAL, with 1 connection(s)") h("objectvar syn_NC_AVBR_AVAL_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVBR_AVAL_Acetylcholine_neuron_to_neuron_exc_syn_10conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAL[0].soma], weight: 1.0 h("a_AVBR[0].soma { syn_NC_AVBR_AVAL_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AVAL[0].soma { syn_NC_AVBR_AVAL_Acetylcholine_neuron_to_neuron_exc_syn_10conns_post[0] = new neuron_to_neuron_exc_syn_10conns(0.500000) }") h("setpointer syn_NC_AVBR_AVAL_Acetylcholine_silent_pre[0].vpeer, a_AVAL[0].soma.v(0.500000)") h("setpointer syn_NC_AVBR_AVAL_Acetylcholine_neuron_to_neuron_exc_syn_10conns_post[0].vpeer, a_AVBR[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVBR_AVAR_Acetylcholine print("Adding continuous projection: NC_AVBR_AVAR_Acetylcholine from AVBR to AVAR, with 1 connection(s)") h("objectvar syn_NC_AVBR_AVAR_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVBR_AVAR_Acetylcholine_neuron_to_neuron_exc_syn_14conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AVAR[0].soma], weight: 1.0 h("a_AVBR[0].soma { syn_NC_AVBR_AVAR_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AVAR[0].soma { syn_NC_AVBR_AVAR_Acetylcholine_neuron_to_neuron_exc_syn_14conns_post[0] = new neuron_to_neuron_exc_syn_14conns(0.500000) }") h("setpointer syn_NC_AVBR_AVAR_Acetylcholine_silent_pre[0].vpeer, a_AVAR[0].soma.v(0.500000)") h("setpointer syn_NC_AVBR_AVAR_Acetylcholine_neuron_to_neuron_exc_syn_14conns_post[0].vpeer, a_AVBR[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AVBR_DB4_Acetylcholine print("Adding continuous projection: NC_AVBR_DB4_Acetylcholine from AVBR to DB4, with 1 connection(s)") h("objectvar syn_NC_AVBR_DB4_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AVBR_DB4_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AVBR[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB4[0].soma], weight: 1.0 h("a_AVBR[0].soma { syn_NC_AVBR_DB4_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DB4[0].soma { syn_NC_AVBR_DB4_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0] = new neuron_to_neuron_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_AVBR_DB4_Acetylcholine_silent_pre[0].vpeer, a_DB4[0].soma.v(0.500000)") h("setpointer syn_NC_AVBR_DB4_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0].vpeer, a_AVBR[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA1_DB1_Acetylcholine print("Adding continuous projection: NC_DA1_DB1_Acetylcholine from DA1 to DB1, with 1 connection(s)") h("objectvar syn_NC_DA1_DB1_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA1_DB1_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB1[0].soma], weight: 1.0 h("a_DA1[0].soma { syn_NC_DA1_DB1_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DB1[0].soma { syn_NC_DA1_DB1_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0] = new neuron_to_neuron_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DA1_DB1_Acetylcholine_silent_pre[0].vpeer, a_DB1[0].soma.v(0.500000)") h("setpointer syn_NC_DA1_DB1_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0].vpeer, a_DA1[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA2_DB1_Acetylcholine print("Adding continuous projection: NC_DA2_DB1_Acetylcholine from DA2 to DB1, with 1 connection(s)") h("objectvar syn_NC_DA2_DB1_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA2_DB1_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB1[0].soma], weight: 1.0 h("a_DA2[0].soma { syn_NC_DA2_DB1_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DB1[0].soma { syn_NC_DA2_DB1_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0] = new neuron_to_neuron_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DA2_DB1_Acetylcholine_silent_pre[0].vpeer, a_DB1[0].soma.v(0.500000)") h("setpointer syn_NC_DA2_DB1_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0].vpeer, a_DA2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA3_DB3_Acetylcholine print("Adding continuous projection: NC_DA3_DB3_Acetylcholine from DA3 to DB3, with 1 connection(s)") h("objectvar syn_NC_DA3_DB3_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA3_DB3_Acetylcholine_neuron_to_neuron_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB3[0].soma], weight: 1.0 h("a_DA3[0].soma { syn_NC_DA3_DB3_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DB3[0].soma { syn_NC_DA3_DB3_Acetylcholine_neuron_to_neuron_exc_syn_2conns_post[0] = new neuron_to_neuron_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DA3_DB3_Acetylcholine_silent_pre[0].vpeer, a_DB3[0].soma.v(0.500000)") h("setpointer syn_NC_DA3_DB3_Acetylcholine_neuron_to_neuron_exc_syn_2conns_post[0].vpeer, a_DA3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA4_DB2_Acetylcholine print("Adding continuous projection: NC_DA4_DB2_Acetylcholine from DA4 to DB2, with 1 connection(s)") h("objectvar syn_NC_DA4_DB2_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA4_DB2_Acetylcholine_neuron_to_neuron_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB2[0].soma], weight: 1.0 h("a_DA4[0].soma { syn_NC_DA4_DB2_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DB2[0].soma { syn_NC_DA4_DB2_Acetylcholine_neuron_to_neuron_exc_syn_2conns_post[0] = new neuron_to_neuron_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DA4_DB2_Acetylcholine_silent_pre[0].vpeer, a_DB2[0].soma.v(0.500000)") h("setpointer syn_NC_DA4_DB2_Acetylcholine_neuron_to_neuron_exc_syn_2conns_post[0].vpeer, a_DA4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA5_DB4_Acetylcholine print("Adding continuous projection: NC_DA5_DB4_Acetylcholine from DA5 to DB4, with 1 connection(s)") h("objectvar syn_NC_DA5_DB4_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA5_DB4_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB4[0].soma], weight: 1.0 h("a_DA5[0].soma { syn_NC_DA5_DB4_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DB4[0].soma { syn_NC_DA5_DB4_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0] = new neuron_to_neuron_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DA5_DB4_Acetylcholine_silent_pre[0].vpeer, a_DB4[0].soma.v(0.500000)") h("setpointer syn_NC_DA5_DB4_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0].vpeer, a_DA5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA6_DB5_Acetylcholine print("Adding continuous projection: NC_DA6_DB5_Acetylcholine from DA6 to DB5, with 1 connection(s)") h("objectvar syn_NC_DA6_DB5_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA6_DB5_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_DB5_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DB5[0].soma { syn_NC_DA6_DB5_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0] = new neuron_to_neuron_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DA6_DB5_Acetylcholine_silent_pre[0].vpeer, a_DB5[0].soma.v(0.500000)") h("setpointer syn_NC_DA6_DB5_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0].vpeer, a_DA6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA7_DB6_Acetylcholine print("Adding continuous projection: NC_DA7_DB6_Acetylcholine from DA7 to DB6, with 1 connection(s)") h("objectvar syn_NC_DA7_DB6_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA7_DB6_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma], weight: 1.0 h("a_DA7[0].soma { syn_NC_DA7_DB6_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DB6[0].soma { syn_NC_DA7_DB6_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0] = new neuron_to_neuron_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DA7_DB6_Acetylcholine_silent_pre[0].vpeer, a_DB6[0].soma.v(0.500000)") h("setpointer syn_NC_DA7_DB6_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0].vpeer, a_DA7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA8_DB7_Acetylcholine print("Adding continuous projection: NC_DA8_DB7_Acetylcholine from DA8 to DB7, with 1 connection(s)") h("objectvar syn_NC_DA8_DB7_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA8_DB7_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma], weight: 1.0 h("a_DA8[0].soma { syn_NC_DA8_DB7_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DB7[0].soma { syn_NC_DA8_DB7_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0] = new neuron_to_neuron_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DA8_DB7_Acetylcholine_silent_pre[0].vpeer, a_DB7[0].soma.v(0.500000)") h("setpointer syn_NC_DA8_DB7_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0].vpeer, a_DA8[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA9_DB7_Acetylcholine print("Adding continuous projection: NC_DA9_DB7_Acetylcholine from DA9 to DB7, with 1 connection(s)") h("objectvar syn_NC_DA9_DB7_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA9_DB7_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma], weight: 1.0 h("a_DA9[0].soma { syn_NC_DA9_DB7_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DB7[0].soma { syn_NC_DA9_DB7_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0] = new neuron_to_neuron_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DA9_DB7_Acetylcholine_silent_pre[0].vpeer, a_DB7[0].soma.v(0.500000)") h("setpointer syn_NC_DA9_DB7_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0].vpeer, a_DA9[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB1_AS1_Acetylcholine print("Adding continuous projection: NC_DB1_AS1_Acetylcholine from DB1 to AS1, with 1 connection(s)") h("objectvar syn_NC_DB1_AS1_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB1_AS1_Acetylcholine_neuron_to_neuron_inh_syn_28conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AS1[0].soma], weight: 1.0 h("a_DB1[0].soma { syn_NC_DB1_AS1_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AS1[0].soma { syn_NC_DB1_AS1_Acetylcholine_neuron_to_neuron_inh_syn_28conns_post[0] = new neuron_to_neuron_inh_syn_28conns(0.500000) }") h("setpointer syn_NC_DB1_AS1_Acetylcholine_silent_pre[0].vpeer, a_AS1[0].soma.v(0.500000)") h("setpointer syn_NC_DB1_AS1_Acetylcholine_neuron_to_neuron_inh_syn_28conns_post[0].vpeer, a_DB1[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB1_AS2_Acetylcholine print("Adding continuous projection: NC_DB1_AS2_Acetylcholine from DB1 to AS2, with 1 connection(s)") h("objectvar syn_NC_DB1_AS2_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB1_AS2_Acetylcholine_neuron_to_neuron_inh_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AS2[0].soma], weight: 1.0 h("a_DB1[0].soma { syn_NC_DB1_AS2_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AS2[0].soma { syn_NC_DB1_AS2_Acetylcholine_neuron_to_neuron_inh_syn_4conns_post[0] = new neuron_to_neuron_inh_syn_4conns(0.500000) }") h("setpointer syn_NC_DB1_AS2_Acetylcholine_silent_pre[0].vpeer, a_AS2[0].soma.v(0.500000)") h("setpointer syn_NC_DB1_AS2_Acetylcholine_neuron_to_neuron_inh_syn_4conns_post[0].vpeer, a_DB1[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB2_AS3_Acetylcholine print("Adding continuous projection: NC_DB2_AS3_Acetylcholine from DB2 to AS3, with 1 connection(s)") h("objectvar syn_NC_DB2_AS3_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB2_AS3_Acetylcholine_neuron_to_neuron_inh_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AS3[0].soma], weight: 1.0 h("a_DB2[0].soma { syn_NC_DB2_AS3_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AS3[0].soma { syn_NC_DB2_AS3_Acetylcholine_neuron_to_neuron_inh_syn_3conns_post[0] = new neuron_to_neuron_inh_syn_3conns(0.500000) }") h("setpointer syn_NC_DB2_AS3_Acetylcholine_silent_pre[0].vpeer, a_AS3[0].soma.v(0.500000)") h("setpointer syn_NC_DB2_AS3_Acetylcholine_neuron_to_neuron_inh_syn_3conns_post[0].vpeer, a_DB2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB2_AS4_Acetylcholine print("Adding continuous projection: NC_DB2_AS4_Acetylcholine from DB2 to AS4, with 1 connection(s)") h("objectvar syn_NC_DB2_AS4_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB2_AS4_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AS4[0].soma], weight: 1.0 h("a_DB2[0].soma { syn_NC_DB2_AS4_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AS4[0].soma { syn_NC_DB2_AS4_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[0] = new neuron_to_neuron_inh_syn_2conns(0.500000) }") h("setpointer syn_NC_DB2_AS4_Acetylcholine_silent_pre[0].vpeer, a_AS4[0].soma.v(0.500000)") h("setpointer syn_NC_DB2_AS4_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[0].vpeer, a_DB2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB3_AS4_Acetylcholine print("Adding continuous projection: NC_DB3_AS4_Acetylcholine from DB3 to AS4, with 1 connection(s)") h("objectvar syn_NC_DB3_AS4_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB3_AS4_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AS4[0].soma], weight: 1.0 h("a_DB3[0].soma { syn_NC_DB3_AS4_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AS4[0].soma { syn_NC_DB3_AS4_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[0] = new neuron_to_neuron_inh_syn_2conns(0.500000) }") h("setpointer syn_NC_DB3_AS4_Acetylcholine_silent_pre[0].vpeer, a_AS4[0].soma.v(0.500000)") h("setpointer syn_NC_DB3_AS4_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[0].vpeer, a_DB3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB3_AS5_Acetylcholine print("Adding continuous projection: NC_DB3_AS5_Acetylcholine from DB3 to AS5, with 1 connection(s)") h("objectvar syn_NC_DB3_AS5_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB3_AS5_Acetylcholine_neuron_to_neuron_inh_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AS5[0].soma], weight: 1.0 h("a_DB3[0].soma { syn_NC_DB3_AS5_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AS5[0].soma { syn_NC_DB3_AS5_Acetylcholine_neuron_to_neuron_inh_syn_1conns_post[0] = new neuron_to_neuron_inh_syn_1conns(0.500000) }") h("setpointer syn_NC_DB3_AS5_Acetylcholine_silent_pre[0].vpeer, a_AS5[0].soma.v(0.500000)") h("setpointer syn_NC_DB3_AS5_Acetylcholine_neuron_to_neuron_inh_syn_1conns_post[0].vpeer, a_DB3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB4_AS6_Acetylcholine print("Adding continuous projection: NC_DB4_AS6_Acetylcholine from DB4 to AS6, with 1 connection(s)") h("objectvar syn_NC_DB4_AS6_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB4_AS6_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AS6[0].soma], weight: 1.0 h("a_DB4[0].soma { syn_NC_DB4_AS6_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AS6[0].soma { syn_NC_DB4_AS6_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[0] = new neuron_to_neuron_inh_syn_2conns(0.500000) }") h("setpointer syn_NC_DB4_AS6_Acetylcholine_silent_pre[0].vpeer, a_AS6[0].soma.v(0.500000)") h("setpointer syn_NC_DB4_AS6_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[0].vpeer, a_DB4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB5_AS7_Acetylcholine print("Adding continuous projection: NC_DB5_AS7_Acetylcholine from DB5 to AS7, with 1 connection(s)") h("objectvar syn_NC_DB5_AS7_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB5_AS7_Acetylcholine_neuron_to_neuron_inh_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AS7[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_AS7_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AS7[0].soma { syn_NC_DB5_AS7_Acetylcholine_neuron_to_neuron_inh_syn_3conns_post[0] = new neuron_to_neuron_inh_syn_3conns(0.500000) }") h("setpointer syn_NC_DB5_AS7_Acetylcholine_silent_pre[0].vpeer, a_AS7[0].soma.v(0.500000)") h("setpointer syn_NC_DB5_AS7_Acetylcholine_neuron_to_neuron_inh_syn_3conns_post[0].vpeer, a_DB5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB5_AS8_Acetylcholine print("Adding continuous projection: NC_DB5_AS8_Acetylcholine from DB5 to AS8, with 1 connection(s)") h("objectvar syn_NC_DB5_AS8_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB5_AS8_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AS8[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_AS8_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AS8[0].soma { syn_NC_DB5_AS8_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[0] = new neuron_to_neuron_inh_syn_2conns(0.500000) }") h("setpointer syn_NC_DB5_AS8_Acetylcholine_silent_pre[0].vpeer, a_AS8[0].soma.v(0.500000)") h("setpointer syn_NC_DB5_AS8_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[0].vpeer, a_DB5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB6_AS8_Acetylcholine print("Adding continuous projection: NC_DB6_AS8_Acetylcholine from DB6 to AS8, with 1 connection(s)") h("objectvar syn_NC_DB6_AS8_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB6_AS8_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AS8[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_AS8_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AS8[0].soma { syn_NC_DB6_AS8_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[0] = new neuron_to_neuron_inh_syn_2conns(0.500000) }") h("setpointer syn_NC_DB6_AS8_Acetylcholine_silent_pre[0].vpeer, a_AS8[0].soma.v(0.500000)") h("setpointer syn_NC_DB6_AS8_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[0].vpeer, a_DB6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB6_AS9_Acetylcholine print("Adding continuous projection: NC_DB6_AS9_Acetylcholine from DB6 to AS9, with 1 connection(s)") h("objectvar syn_NC_DB6_AS9_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB6_AS9_Acetylcholine_neuron_to_neuron_inh_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AS9[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_AS9_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AS9[0].soma { syn_NC_DB6_AS9_Acetylcholine_neuron_to_neuron_inh_syn_1conns_post[0] = new neuron_to_neuron_inh_syn_1conns(0.500000) }") h("setpointer syn_NC_DB6_AS9_Acetylcholine_silent_pre[0].vpeer, a_AS9[0].soma.v(0.500000)") h("setpointer syn_NC_DB6_AS9_Acetylcholine_neuron_to_neuron_inh_syn_1conns_post[0].vpeer, a_DB6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB7_AS10_Acetylcholine print("Adding continuous projection: NC_DB7_AS10_Acetylcholine from DB7 to AS10, with 1 connection(s)") h("objectvar syn_NC_DB7_AS10_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB7_AS10_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AS10[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_AS10_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AS10[0].soma { syn_NC_DB7_AS10_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[0] = new neuron_to_neuron_inh_syn_2conns(0.500000) }") h("setpointer syn_NC_DB7_AS10_Acetylcholine_silent_pre[0].vpeer, a_AS10[0].soma.v(0.500000)") h("setpointer syn_NC_DB7_AS10_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[0].vpeer, a_DB7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB7_AS11_Acetylcholine print("Adding continuous projection: NC_DB7_AS11_Acetylcholine from DB7 to AS11, with 1 connection(s)") h("objectvar syn_NC_DB7_AS11_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB7_AS11_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_AS11[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_AS11_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_AS11[0].soma { syn_NC_DB7_AS11_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[0] = new neuron_to_neuron_inh_syn_2conns(0.500000) }") h("setpointer syn_NC_DB7_AS11_Acetylcholine_silent_pre[0].vpeer, a_AS11[0].soma.v(0.500000)") h("setpointer syn_NC_DB7_AS11_Acetylcholine_neuron_to_neuron_inh_syn_2conns_post[0].vpeer, a_DB7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AS1_DA1_Acetylcholine print("Adding continuous projection: NC_AS1_DA1_Acetylcholine from AS1 to DA1, with 1 connection(s)") h("objectvar syn_NC_AS1_DA1_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AS1_DA1_Acetylcholine_neuron_to_neuron_exc_syn_8conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AS1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA1[0].soma], weight: 1.0 h("a_AS1[0].soma { syn_NC_AS1_DA1_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA1[0].soma { syn_NC_AS1_DA1_Acetylcholine_neuron_to_neuron_exc_syn_8conns_post[0] = new neuron_to_neuron_exc_syn_8conns(0.500000) }") h("setpointer syn_NC_AS1_DA1_Acetylcholine_silent_pre[0].vpeer, a_DA1[0].soma.v(0.500000)") h("setpointer syn_NC_AS1_DA1_Acetylcholine_neuron_to_neuron_exc_syn_8conns_post[0].vpeer, a_AS1[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AS3_DA3_Acetylcholine print("Adding continuous projection: NC_AS3_DA3_Acetylcholine from AS3 to DA3, with 1 connection(s)") h("objectvar syn_NC_AS3_DA3_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AS3_DA3_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AS3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma], weight: 1.0 h("a_AS3[0].soma { syn_NC_AS3_DA3_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA3[0].soma { syn_NC_AS3_DA3_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0] = new neuron_to_neuron_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_AS3_DA3_Acetylcholine_silent_pre[0].vpeer, a_DA3[0].soma.v(0.500000)") h("setpointer syn_NC_AS3_DA3_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0].vpeer, a_AS3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AS4_DA3_Acetylcholine print("Adding continuous projection: NC_AS4_DA3_Acetylcholine from AS4 to DA3, with 1 connection(s)") h("objectvar syn_NC_AS4_DA3_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AS4_DA3_Acetylcholine_neuron_to_neuron_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AS4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma], weight: 1.0 h("a_AS4[0].soma { syn_NC_AS4_DA3_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA3[0].soma { syn_NC_AS4_DA3_Acetylcholine_neuron_to_neuron_exc_syn_2conns_post[0] = new neuron_to_neuron_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_AS4_DA3_Acetylcholine_silent_pre[0].vpeer, a_DA3[0].soma.v(0.500000)") h("setpointer syn_NC_AS4_DA3_Acetylcholine_neuron_to_neuron_exc_syn_2conns_post[0].vpeer, a_AS4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_AS6_DA5_Acetylcholine print("Adding continuous projection: NC_AS6_DA5_Acetylcholine from AS6 to DA5, with 1 connection(s)") h("objectvar syn_NC_AS6_DA5_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_AS6_DA5_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_AS6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_DA5[0].soma], weight: 1.0 h("a_AS6[0].soma { syn_NC_AS6_DA5_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_DA5[0].soma { syn_NC_AS6_DA5_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0] = new neuron_to_neuron_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_AS6_DA5_Acetylcholine_silent_pre[0].vpeer, a_DA5[0].soma.v(0.500000)") h("setpointer syn_NC_AS6_DA5_Acetylcholine_neuron_to_neuron_exc_syn_1conns_post[0].vpeer, a_AS6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA1_MDL06_Acetylcholine print("Adding continuous projection: NC_DA1_MDL06_Acetylcholine from DA1 to MDL06, with 1 connection(s)") h("objectvar syn_NC_DA1_MDL06_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA1_MDL06_Acetylcholine_neuron_to_muscle_exc_syn_9conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL06[0].soma], weight: 1.0 h("a_DA1[0].soma { syn_NC_DA1_MDL06_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL06[0].soma { syn_NC_DA1_MDL06_Acetylcholine_neuron_to_muscle_exc_syn_9conns_post[0] = new neuron_to_muscle_exc_syn_9conns(0.500000) }") h("setpointer syn_NC_DA1_MDL06_Acetylcholine_silent_pre[0].vpeer, a_MDL06[0].soma.v(0.500000)") h("setpointer syn_NC_DA1_MDL06_Acetylcholine_neuron_to_muscle_exc_syn_9conns_post[0].vpeer, a_DA1[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA1_MDL07_Acetylcholine print("Adding continuous projection: NC_DA1_MDL07_Acetylcholine from DA1 to MDL07, with 1 connection(s)") h("objectvar syn_NC_DA1_MDL07_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA1_MDL07_Acetylcholine_neuron_to_muscle_exc_syn_8conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL07[0].soma], weight: 1.0 h("a_DA1[0].soma { syn_NC_DA1_MDL07_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL07[0].soma { syn_NC_DA1_MDL07_Acetylcholine_neuron_to_muscle_exc_syn_8conns_post[0] = new neuron_to_muscle_exc_syn_8conns(0.500000) }") h("setpointer syn_NC_DA1_MDL07_Acetylcholine_silent_pre[0].vpeer, a_MDL07[0].soma.v(0.500000)") h("setpointer syn_NC_DA1_MDL07_Acetylcholine_neuron_to_muscle_exc_syn_8conns_post[0].vpeer, a_DA1[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA1_MDL08_Acetylcholine print("Adding continuous projection: NC_DA1_MDL08_Acetylcholine from DA1 to MDL08, with 1 connection(s)") h("objectvar syn_NC_DA1_MDL08_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA1_MDL08_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL08[0].soma], weight: 1.0 h("a_DA1[0].soma { syn_NC_DA1_MDL08_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL08[0].soma { syn_NC_DA1_MDL08_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA1_MDL08_Acetylcholine_silent_pre[0].vpeer, a_MDL08[0].soma.v(0.500000)") h("setpointer syn_NC_DA1_MDL08_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA1[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA1_MDR06_Acetylcholine print("Adding continuous projection: NC_DA1_MDR06_Acetylcholine from DA1 to MDR06, with 1 connection(s)") h("objectvar syn_NC_DA1_MDR06_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA1_MDR06_Acetylcholine_neuron_to_muscle_exc_syn_8conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR06[0].soma], weight: 1.0 h("a_DA1[0].soma { syn_NC_DA1_MDR06_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR06[0].soma { syn_NC_DA1_MDR06_Acetylcholine_neuron_to_muscle_exc_syn_8conns_post[0] = new neuron_to_muscle_exc_syn_8conns(0.500000) }") h("setpointer syn_NC_DA1_MDR06_Acetylcholine_silent_pre[0].vpeer, a_MDR06[0].soma.v(0.500000)") h("setpointer syn_NC_DA1_MDR06_Acetylcholine_neuron_to_muscle_exc_syn_8conns_post[0].vpeer, a_DA1[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA1_MDR07_Acetylcholine print("Adding continuous projection: NC_DA1_MDR07_Acetylcholine from DA1 to MDR07, with 1 connection(s)") h("objectvar syn_NC_DA1_MDR07_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA1_MDR07_Acetylcholine_neuron_to_muscle_exc_syn_9conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR07[0].soma], weight: 1.0 h("a_DA1[0].soma { syn_NC_DA1_MDR07_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR07[0].soma { syn_NC_DA1_MDR07_Acetylcholine_neuron_to_muscle_exc_syn_9conns_post[0] = new neuron_to_muscle_exc_syn_9conns(0.500000) }") h("setpointer syn_NC_DA1_MDR07_Acetylcholine_silent_pre[0].vpeer, a_MDR07[0].soma.v(0.500000)") h("setpointer syn_NC_DA1_MDR07_Acetylcholine_neuron_to_muscle_exc_syn_9conns_post[0].vpeer, a_DA1[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA2_MDL07_Acetylcholine print("Adding continuous projection: NC_DA2_MDL07_Acetylcholine from DA2 to MDL07, with 1 connection(s)") h("objectvar syn_NC_DA2_MDL07_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA2_MDL07_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL07[0].soma], weight: 1.0 h("a_DA2[0].soma { syn_NC_DA2_MDL07_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL07[0].soma { syn_NC_DA2_MDL07_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0] = new neuron_to_muscle_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DA2_MDL07_Acetylcholine_silent_pre[0].vpeer, a_MDL07[0].soma.v(0.500000)") h("setpointer syn_NC_DA2_MDL07_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0].vpeer, a_DA2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA2_MDL08_Acetylcholine print("Adding continuous projection: NC_DA2_MDL08_Acetylcholine from DA2 to MDL08, with 1 connection(s)") h("objectvar syn_NC_DA2_MDL08_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA2_MDL08_Acetylcholine_neuron_to_muscle_exc_syn_5conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL08[0].soma], weight: 1.0 h("a_DA2[0].soma { syn_NC_DA2_MDL08_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL08[0].soma { syn_NC_DA2_MDL08_Acetylcholine_neuron_to_muscle_exc_syn_5conns_post[0] = new neuron_to_muscle_exc_syn_5conns(0.500000) }") h("setpointer syn_NC_DA2_MDL08_Acetylcholine_silent_pre[0].vpeer, a_MDL08[0].soma.v(0.500000)") h("setpointer syn_NC_DA2_MDL08_Acetylcholine_neuron_to_muscle_exc_syn_5conns_post[0].vpeer, a_DA2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA2_MDL09_Acetylcholine print("Adding continuous projection: NC_DA2_MDL09_Acetylcholine from DA2 to MDL09, with 1 connection(s)") h("objectvar syn_NC_DA2_MDL09_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA2_MDL09_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL09[0].soma], weight: 1.0 h("a_DA2[0].soma { syn_NC_DA2_MDL09_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL09[0].soma { syn_NC_DA2_MDL09_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DA2_MDL09_Acetylcholine_silent_pre[0].vpeer, a_MDL09[0].soma.v(0.500000)") h("setpointer syn_NC_DA2_MDL09_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DA2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA2_MDL10_Acetylcholine print("Adding continuous projection: NC_DA2_MDL10_Acetylcholine from DA2 to MDL10, with 1 connection(s)") h("objectvar syn_NC_DA2_MDL10_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA2_MDL10_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL10[0].soma], weight: 1.0 h("a_DA2[0].soma { syn_NC_DA2_MDL10_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL10[0].soma { syn_NC_DA2_MDL10_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DA2_MDL10_Acetylcholine_silent_pre[0].vpeer, a_MDL10[0].soma.v(0.500000)") h("setpointer syn_NC_DA2_MDL10_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DA2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA2_MDR07_Acetylcholine print("Adding continuous projection: NC_DA2_MDR07_Acetylcholine from DA2 to MDR07, with 1 connection(s)") h("objectvar syn_NC_DA2_MDR07_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA2_MDR07_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR07[0].soma], weight: 1.0 h("a_DA2[0].soma { syn_NC_DA2_MDR07_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR07[0].soma { syn_NC_DA2_MDR07_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA2_MDR07_Acetylcholine_silent_pre[0].vpeer, a_MDR07[0].soma.v(0.500000)") h("setpointer syn_NC_DA2_MDR07_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA2_MDR08_Acetylcholine print("Adding continuous projection: NC_DA2_MDR08_Acetylcholine from DA2 to MDR08, with 1 connection(s)") h("objectvar syn_NC_DA2_MDR08_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA2_MDR08_Acetylcholine_neuron_to_muscle_exc_syn_6conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR08[0].soma], weight: 1.0 h("a_DA2[0].soma { syn_NC_DA2_MDR08_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR08[0].soma { syn_NC_DA2_MDR08_Acetylcholine_neuron_to_muscle_exc_syn_6conns_post[0] = new neuron_to_muscle_exc_syn_6conns(0.500000) }") h("setpointer syn_NC_DA2_MDR08_Acetylcholine_silent_pre[0].vpeer, a_MDR08[0].soma.v(0.500000)") h("setpointer syn_NC_DA2_MDR08_Acetylcholine_neuron_to_muscle_exc_syn_6conns_post[0].vpeer, a_DA2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA2_MDR09_Acetylcholine print("Adding continuous projection: NC_DA2_MDR09_Acetylcholine from DA2 to MDR09, with 1 connection(s)") h("objectvar syn_NC_DA2_MDR09_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA2_MDR09_Acetylcholine_neuron_to_muscle_exc_syn_7conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR09[0].soma], weight: 1.0 h("a_DA2[0].soma { syn_NC_DA2_MDR09_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR09[0].soma { syn_NC_DA2_MDR09_Acetylcholine_neuron_to_muscle_exc_syn_7conns_post[0] = new neuron_to_muscle_exc_syn_7conns(0.500000) }") h("setpointer syn_NC_DA2_MDR09_Acetylcholine_silent_pre[0].vpeer, a_MDR09[0].soma.v(0.500000)") h("setpointer syn_NC_DA2_MDR09_Acetylcholine_neuron_to_muscle_exc_syn_7conns_post[0].vpeer, a_DA2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA3_MDL09_Acetylcholine print("Adding continuous projection: NC_DA3_MDL09_Acetylcholine from DA3 to MDL09, with 1 connection(s)") h("objectvar syn_NC_DA3_MDL09_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA3_MDL09_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL09[0].soma], weight: 1.0 h("a_DA3[0].soma { syn_NC_DA3_MDL09_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL09[0].soma { syn_NC_DA3_MDL09_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA3_MDL09_Acetylcholine_silent_pre[0].vpeer, a_MDL09[0].soma.v(0.500000)") h("setpointer syn_NC_DA3_MDL09_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA3_MDL10_Acetylcholine print("Adding continuous projection: NC_DA3_MDL10_Acetylcholine from DA3 to MDL10, with 1 connection(s)") h("objectvar syn_NC_DA3_MDL10_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA3_MDL10_Acetylcholine_neuron_to_muscle_exc_syn_17conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL10[0].soma], weight: 1.0 h("a_DA3[0].soma { syn_NC_DA3_MDL10_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL10[0].soma { syn_NC_DA3_MDL10_Acetylcholine_neuron_to_muscle_exc_syn_17conns_post[0] = new neuron_to_muscle_exc_syn_17conns(0.500000) }") h("setpointer syn_NC_DA3_MDL10_Acetylcholine_silent_pre[0].vpeer, a_MDL10[0].soma.v(0.500000)") h("setpointer syn_NC_DA3_MDL10_Acetylcholine_neuron_to_muscle_exc_syn_17conns_post[0].vpeer, a_DA3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA3_MDL11_Acetylcholine print("Adding continuous projection: NC_DA3_MDL11_Acetylcholine from DA3 to MDL11, with 1 connection(s)") h("objectvar syn_NC_DA3_MDL11_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA3_MDL11_Acetylcholine_neuron_to_muscle_exc_syn_12conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL11[0].soma], weight: 1.0 h("a_DA3[0].soma { syn_NC_DA3_MDL11_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL11[0].soma { syn_NC_DA3_MDL11_Acetylcholine_neuron_to_muscle_exc_syn_12conns_post[0] = new neuron_to_muscle_exc_syn_12conns(0.500000) }") h("setpointer syn_NC_DA3_MDL11_Acetylcholine_silent_pre[0].vpeer, a_MDL11[0].soma.v(0.500000)") h("setpointer syn_NC_DA3_MDL11_Acetylcholine_neuron_to_muscle_exc_syn_12conns_post[0].vpeer, a_DA3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA3_MDR09_Acetylcholine print("Adding continuous projection: NC_DA3_MDR09_Acetylcholine from DA3 to MDR09, with 1 connection(s)") h("objectvar syn_NC_DA3_MDR09_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA3_MDR09_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR09[0].soma], weight: 1.0 h("a_DA3[0].soma { syn_NC_DA3_MDR09_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR09[0].soma { syn_NC_DA3_MDR09_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA3_MDR09_Acetylcholine_silent_pre[0].vpeer, a_MDR09[0].soma.v(0.500000)") h("setpointer syn_NC_DA3_MDR09_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA3_MDR10_Acetylcholine print("Adding continuous projection: NC_DA3_MDR10_Acetylcholine from DA3 to MDR10, with 1 connection(s)") h("objectvar syn_NC_DA3_MDR10_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA3_MDR10_Acetylcholine_neuron_to_muscle_exc_syn_14conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR10[0].soma], weight: 1.0 h("a_DA3[0].soma { syn_NC_DA3_MDR10_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR10[0].soma { syn_NC_DA3_MDR10_Acetylcholine_neuron_to_muscle_exc_syn_14conns_post[0] = new neuron_to_muscle_exc_syn_14conns(0.500000) }") h("setpointer syn_NC_DA3_MDR10_Acetylcholine_silent_pre[0].vpeer, a_MDR10[0].soma.v(0.500000)") h("setpointer syn_NC_DA3_MDR10_Acetylcholine_neuron_to_muscle_exc_syn_14conns_post[0].vpeer, a_DA3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA3_MDR11_Acetylcholine print("Adding continuous projection: NC_DA3_MDR11_Acetylcholine from DA3 to MDR11, with 1 connection(s)") h("objectvar syn_NC_DA3_MDR11_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA3_MDR11_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR11[0].soma], weight: 1.0 h("a_DA3[0].soma { syn_NC_DA3_MDR11_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR11[0].soma { syn_NC_DA3_MDR11_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DA3_MDR11_Acetylcholine_silent_pre[0].vpeer, a_MDR11[0].soma.v(0.500000)") h("setpointer syn_NC_DA3_MDR11_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DA3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA3_MDR12_Acetylcholine print("Adding continuous projection: NC_DA3_MDR12_Acetylcholine from DA3 to MDR12, with 1 connection(s)") h("objectvar syn_NC_DA3_MDR12_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA3_MDR12_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR12[0].soma], weight: 1.0 h("a_DA3[0].soma { syn_NC_DA3_MDR12_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR12[0].soma { syn_NC_DA3_MDR12_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DA3_MDR12_Acetylcholine_silent_pre[0].vpeer, a_MDR12[0].soma.v(0.500000)") h("setpointer syn_NC_DA3_MDR12_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DA3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA4_MDL11_Acetylcholine print("Adding continuous projection: NC_DA4_MDL11_Acetylcholine from DA4 to MDL11, with 1 connection(s)") h("objectvar syn_NC_DA4_MDL11_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA4_MDL11_Acetylcholine_neuron_to_muscle_exc_syn_6conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL11[0].soma], weight: 1.0 h("a_DA4[0].soma { syn_NC_DA4_MDL11_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL11[0].soma { syn_NC_DA4_MDL11_Acetylcholine_neuron_to_muscle_exc_syn_6conns_post[0] = new neuron_to_muscle_exc_syn_6conns(0.500000) }") h("setpointer syn_NC_DA4_MDL11_Acetylcholine_silent_pre[0].vpeer, a_MDL11[0].soma.v(0.500000)") h("setpointer syn_NC_DA4_MDL11_Acetylcholine_neuron_to_muscle_exc_syn_6conns_post[0].vpeer, a_DA4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA4_MDL12_Acetylcholine print("Adding continuous projection: NC_DA4_MDL12_Acetylcholine from DA4 to MDL12, with 1 connection(s)") h("objectvar syn_NC_DA4_MDL12_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA4_MDL12_Acetylcholine_neuron_to_muscle_exc_syn_10conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL12[0].soma], weight: 1.0 h("a_DA4[0].soma { syn_NC_DA4_MDL12_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL12[0].soma { syn_NC_DA4_MDL12_Acetylcholine_neuron_to_muscle_exc_syn_10conns_post[0] = new neuron_to_muscle_exc_syn_10conns(0.500000) }") h("setpointer syn_NC_DA4_MDL12_Acetylcholine_silent_pre[0].vpeer, a_MDL12[0].soma.v(0.500000)") h("setpointer syn_NC_DA4_MDL12_Acetylcholine_neuron_to_muscle_exc_syn_10conns_post[0].vpeer, a_DA4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA4_MDL13_Acetylcholine print("Adding continuous projection: NC_DA4_MDL13_Acetylcholine from DA4 to MDL13, with 1 connection(s)") h("objectvar syn_NC_DA4_MDL13_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA4_MDL13_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL13[0].soma], weight: 1.0 h("a_DA4[0].soma { syn_NC_DA4_MDL13_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL13[0].soma { syn_NC_DA4_MDL13_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0] = new neuron_to_muscle_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DA4_MDL13_Acetylcholine_silent_pre[0].vpeer, a_MDL13[0].soma.v(0.500000)") h("setpointer syn_NC_DA4_MDL13_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0].vpeer, a_DA4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA4_MDR11_Acetylcholine print("Adding continuous projection: NC_DA4_MDR11_Acetylcholine from DA4 to MDR11, with 1 connection(s)") h("objectvar syn_NC_DA4_MDR11_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA4_MDR11_Acetylcholine_neuron_to_muscle_exc_syn_5conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR11[0].soma], weight: 1.0 h("a_DA4[0].soma { syn_NC_DA4_MDR11_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR11[0].soma { syn_NC_DA4_MDR11_Acetylcholine_neuron_to_muscle_exc_syn_5conns_post[0] = new neuron_to_muscle_exc_syn_5conns(0.500000) }") h("setpointer syn_NC_DA4_MDR11_Acetylcholine_silent_pre[0].vpeer, a_MDR11[0].soma.v(0.500000)") h("setpointer syn_NC_DA4_MDR11_Acetylcholine_neuron_to_muscle_exc_syn_5conns_post[0].vpeer, a_DA4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA4_MDR12_Acetylcholine print("Adding continuous projection: NC_DA4_MDR12_Acetylcholine from DA4 to MDR12, with 1 connection(s)") h("objectvar syn_NC_DA4_MDR12_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA4_MDR12_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR12[0].soma], weight: 1.0 h("a_DA4[0].soma { syn_NC_DA4_MDR12_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR12[0].soma { syn_NC_DA4_MDR12_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DA4_MDR12_Acetylcholine_silent_pre[0].vpeer, a_MDR12[0].soma.v(0.500000)") h("setpointer syn_NC_DA4_MDR12_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DA4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA4_MDR13_Acetylcholine print("Adding continuous projection: NC_DA4_MDR13_Acetylcholine from DA4 to MDR13, with 1 connection(s)") h("objectvar syn_NC_DA4_MDR13_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA4_MDR13_Acetylcholine_neuron_to_muscle_exc_syn_9conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR13[0].soma], weight: 1.0 h("a_DA4[0].soma { syn_NC_DA4_MDR13_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR13[0].soma { syn_NC_DA4_MDR13_Acetylcholine_neuron_to_muscle_exc_syn_9conns_post[0] = new neuron_to_muscle_exc_syn_9conns(0.500000) }") h("setpointer syn_NC_DA4_MDR13_Acetylcholine_silent_pre[0].vpeer, a_MDR13[0].soma.v(0.500000)") h("setpointer syn_NC_DA4_MDR13_Acetylcholine_neuron_to_muscle_exc_syn_9conns_post[0].vpeer, a_DA4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA5_MDL12_Acetylcholine print("Adding continuous projection: NC_DA5_MDL12_Acetylcholine from DA5 to MDL12, with 1 connection(s)") h("objectvar syn_NC_DA5_MDL12_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA5_MDL12_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL12[0].soma], weight: 1.0 h("a_DA5[0].soma { syn_NC_DA5_MDL12_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL12[0].soma { syn_NC_DA5_MDL12_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0] = new neuron_to_muscle_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DA5_MDL12_Acetylcholine_silent_pre[0].vpeer, a_MDL12[0].soma.v(0.500000)") h("setpointer syn_NC_DA5_MDL12_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0].vpeer, a_DA5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA5_MDL13_Acetylcholine print("Adding continuous projection: NC_DA5_MDL13_Acetylcholine from DA5 to MDL13, with 1 connection(s)") h("objectvar syn_NC_DA5_MDL13_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA5_MDL13_Acetylcholine_neuron_to_muscle_exc_syn_10conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL13[0].soma], weight: 1.0 h("a_DA5[0].soma { syn_NC_DA5_MDL13_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL13[0].soma { syn_NC_DA5_MDL13_Acetylcholine_neuron_to_muscle_exc_syn_10conns_post[0] = new neuron_to_muscle_exc_syn_10conns(0.500000) }") h("setpointer syn_NC_DA5_MDL13_Acetylcholine_silent_pre[0].vpeer, a_MDL13[0].soma.v(0.500000)") h("setpointer syn_NC_DA5_MDL13_Acetylcholine_neuron_to_muscle_exc_syn_10conns_post[0].vpeer, a_DA5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA5_MDL14_Acetylcholine print("Adding continuous projection: NC_DA5_MDL14_Acetylcholine from DA5 to MDL14, with 1 connection(s)") h("objectvar syn_NC_DA5_MDL14_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA5_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_7conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL14[0].soma], weight: 1.0 h("a_DA5[0].soma { syn_NC_DA5_MDL14_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL14[0].soma { syn_NC_DA5_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_7conns_post[0] = new neuron_to_muscle_exc_syn_7conns(0.500000) }") h("setpointer syn_NC_DA5_MDL14_Acetylcholine_silent_pre[0].vpeer, a_MDL14[0].soma.v(0.500000)") h("setpointer syn_NC_DA5_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_7conns_post[0].vpeer, a_DA5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA5_MDR12_Acetylcholine print("Adding continuous projection: NC_DA5_MDR12_Acetylcholine from DA5 to MDR12, with 1 connection(s)") h("objectvar syn_NC_DA5_MDR12_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA5_MDR12_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR12[0].soma], weight: 1.0 h("a_DA5[0].soma { syn_NC_DA5_MDR12_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR12[0].soma { syn_NC_DA5_MDR12_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DA5_MDR12_Acetylcholine_silent_pre[0].vpeer, a_MDR12[0].soma.v(0.500000)") h("setpointer syn_NC_DA5_MDR12_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DA5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA5_MDR13_Acetylcholine print("Adding continuous projection: NC_DA5_MDR13_Acetylcholine from DA5 to MDR13, with 1 connection(s)") h("objectvar syn_NC_DA5_MDR13_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA5_MDR13_Acetylcholine_neuron_to_muscle_exc_syn_7conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR13[0].soma], weight: 1.0 h("a_DA5[0].soma { syn_NC_DA5_MDR13_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR13[0].soma { syn_NC_DA5_MDR13_Acetylcholine_neuron_to_muscle_exc_syn_7conns_post[0] = new neuron_to_muscle_exc_syn_7conns(0.500000) }") h("setpointer syn_NC_DA5_MDR13_Acetylcholine_silent_pre[0].vpeer, a_MDR13[0].soma.v(0.500000)") h("setpointer syn_NC_DA5_MDR13_Acetylcholine_neuron_to_muscle_exc_syn_7conns_post[0].vpeer, a_DA5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA5_MDR14_Acetylcholine print("Adding continuous projection: NC_DA5_MDR14_Acetylcholine from DA5 to MDR14, with 1 connection(s)") h("objectvar syn_NC_DA5_MDR14_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA5_MDR14_Acetylcholine_neuron_to_muscle_exc_syn_8conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR14[0].soma], weight: 1.0 h("a_DA5[0].soma { syn_NC_DA5_MDR14_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR14[0].soma { syn_NC_DA5_MDR14_Acetylcholine_neuron_to_muscle_exc_syn_8conns_post[0] = new neuron_to_muscle_exc_syn_8conns(0.500000) }") h("setpointer syn_NC_DA5_MDR14_Acetylcholine_silent_pre[0].vpeer, a_MDR14[0].soma.v(0.500000)") h("setpointer syn_NC_DA5_MDR14_Acetylcholine_neuron_to_muscle_exc_syn_8conns_post[0].vpeer, a_DA5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA6_MDL11_Acetylcholine print("Adding continuous projection: NC_DA6_MDL11_Acetylcholine from DA6 to MDL11, with 1 connection(s)") h("objectvar syn_NC_DA6_MDL11_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA6_MDL11_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL11[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_MDL11_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL11[0].soma { syn_NC_DA6_MDL11_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0] = new neuron_to_muscle_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DA6_MDL11_Acetylcholine_silent_pre[0].vpeer, a_MDL11[0].soma.v(0.500000)") h("setpointer syn_NC_DA6_MDL11_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0].vpeer, a_DA6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA6_MDL12_Acetylcholine print("Adding continuous projection: NC_DA6_MDL12_Acetylcholine from DA6 to MDL12, with 1 connection(s)") h("objectvar syn_NC_DA6_MDL12_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA6_MDL12_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL12[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_MDL12_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL12[0].soma { syn_NC_DA6_MDL12_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0] = new neuron_to_muscle_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DA6_MDL12_Acetylcholine_silent_pre[0].vpeer, a_MDL12[0].soma.v(0.500000)") h("setpointer syn_NC_DA6_MDL12_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0].vpeer, a_DA6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA6_MDL13_Acetylcholine print("Adding continuous projection: NC_DA6_MDL13_Acetylcholine from DA6 to MDL13, with 1 connection(s)") h("objectvar syn_NC_DA6_MDL13_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA6_MDL13_Acetylcholine_neuron_to_muscle_exc_syn_5conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL13[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_MDL13_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL13[0].soma { syn_NC_DA6_MDL13_Acetylcholine_neuron_to_muscle_exc_syn_5conns_post[0] = new neuron_to_muscle_exc_syn_5conns(0.500000) }") h("setpointer syn_NC_DA6_MDL13_Acetylcholine_silent_pre[0].vpeer, a_MDL13[0].soma.v(0.500000)") h("setpointer syn_NC_DA6_MDL13_Acetylcholine_neuron_to_muscle_exc_syn_5conns_post[0].vpeer, a_DA6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA6_MDL14_Acetylcholine print("Adding continuous projection: NC_DA6_MDL14_Acetylcholine from DA6 to MDL14, with 1 connection(s)") h("objectvar syn_NC_DA6_MDL14_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA6_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL14[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_MDL14_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL14[0].soma { syn_NC_DA6_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DA6_MDL14_Acetylcholine_silent_pre[0].vpeer, a_MDL14[0].soma.v(0.500000)") h("setpointer syn_NC_DA6_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DA6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA6_MDL15_Acetylcholine print("Adding continuous projection: NC_DA6_MDL15_Acetylcholine from DA6 to MDL15, with 1 connection(s)") h("objectvar syn_NC_DA6_MDL15_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA6_MDL15_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL15[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_MDL15_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL15[0].soma { syn_NC_DA6_MDL15_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DA6_MDL15_Acetylcholine_silent_pre[0].vpeer, a_MDL15[0].soma.v(0.500000)") h("setpointer syn_NC_DA6_MDL15_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DA6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA6_MDL16_Acetylcholine print("Adding continuous projection: NC_DA6_MDL16_Acetylcholine from DA6 to MDL16, with 1 connection(s)") h("objectvar syn_NC_DA6_MDL16_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA6_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL16[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_MDL16_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL16[0].soma { syn_NC_DA6_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DA6_MDL16_Acetylcholine_silent_pre[0].vpeer, a_MDL16[0].soma.v(0.500000)") h("setpointer syn_NC_DA6_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DA6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA6_MDR10_Acetylcholine print("Adding continuous projection: NC_DA6_MDR10_Acetylcholine from DA6 to MDR10, with 1 connection(s)") h("objectvar syn_NC_DA6_MDR10_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA6_MDR10_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR10[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_MDR10_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR10[0].soma { syn_NC_DA6_MDR10_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0] = new neuron_to_muscle_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DA6_MDR10_Acetylcholine_silent_pre[0].vpeer, a_MDR10[0].soma.v(0.500000)") h("setpointer syn_NC_DA6_MDR10_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0].vpeer, a_DA6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA6_MDR11_Acetylcholine print("Adding continuous projection: NC_DA6_MDR11_Acetylcholine from DA6 to MDR11, with 1 connection(s)") h("objectvar syn_NC_DA6_MDR11_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA6_MDR11_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR11[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_MDR11_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR11[0].soma { syn_NC_DA6_MDR11_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0] = new neuron_to_muscle_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DA6_MDR11_Acetylcholine_silent_pre[0].vpeer, a_MDR11[0].soma.v(0.500000)") h("setpointer syn_NC_DA6_MDR11_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0].vpeer, a_DA6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA6_MDR12_Acetylcholine print("Adding continuous projection: NC_DA6_MDR12_Acetylcholine from DA6 to MDR12, with 1 connection(s)") h("objectvar syn_NC_DA6_MDR12_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA6_MDR12_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR12[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_MDR12_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR12[0].soma { syn_NC_DA6_MDR12_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0] = new neuron_to_muscle_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DA6_MDR12_Acetylcholine_silent_pre[0].vpeer, a_MDR12[0].soma.v(0.500000)") h("setpointer syn_NC_DA6_MDR12_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0].vpeer, a_DA6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA6_MDR13_Acetylcholine print("Adding continuous projection: NC_DA6_MDR13_Acetylcholine from DA6 to MDR13, with 1 connection(s)") h("objectvar syn_NC_DA6_MDR13_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA6_MDR13_Acetylcholine_neuron_to_muscle_exc_syn_5conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR13[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_MDR13_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR13[0].soma { syn_NC_DA6_MDR13_Acetylcholine_neuron_to_muscle_exc_syn_5conns_post[0] = new neuron_to_muscle_exc_syn_5conns(0.500000) }") h("setpointer syn_NC_DA6_MDR13_Acetylcholine_silent_pre[0].vpeer, a_MDR13[0].soma.v(0.500000)") h("setpointer syn_NC_DA6_MDR13_Acetylcholine_neuron_to_muscle_exc_syn_5conns_post[0].vpeer, a_DA6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA6_MDR14_Acetylcholine print("Adding continuous projection: NC_DA6_MDR14_Acetylcholine from DA6 to MDR14, with 1 connection(s)") h("objectvar syn_NC_DA6_MDR14_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA6_MDR14_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR14[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_MDR14_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR14[0].soma { syn_NC_DA6_MDR14_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DA6_MDR14_Acetylcholine_silent_pre[0].vpeer, a_MDR14[0].soma.v(0.500000)") h("setpointer syn_NC_DA6_MDR14_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DA6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA6_MDR15_Acetylcholine print("Adding continuous projection: NC_DA6_MDR15_Acetylcholine from DA6 to MDR15, with 1 connection(s)") h("objectvar syn_NC_DA6_MDR15_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA6_MDR15_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR15[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_MDR15_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR15[0].soma { syn_NC_DA6_MDR15_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DA6_MDR15_Acetylcholine_silent_pre[0].vpeer, a_MDR15[0].soma.v(0.500000)") h("setpointer syn_NC_DA6_MDR15_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DA6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA6_MDR16_Acetylcholine print("Adding continuous projection: NC_DA6_MDR16_Acetylcholine from DA6 to MDR16, with 1 connection(s)") h("objectvar syn_NC_DA6_MDR16_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA6_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR16[0].soma], weight: 1.0 h("a_DA6[0].soma { syn_NC_DA6_MDR16_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR16[0].soma { syn_NC_DA6_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DA6_MDR16_Acetylcholine_silent_pre[0].vpeer, a_MDR16[0].soma.v(0.500000)") h("setpointer syn_NC_DA6_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DA6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA7_MDL14_Acetylcholine print("Adding continuous projection: NC_DA7_MDL14_Acetylcholine from DA7 to MDL14, with 1 connection(s)") h("objectvar syn_NC_DA7_MDL14_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA7_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL14[0].soma], weight: 1.0 h("a_DA7[0].soma { syn_NC_DA7_MDL14_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL14[0].soma { syn_NC_DA7_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA7_MDL14_Acetylcholine_silent_pre[0].vpeer, a_MDL14[0].soma.v(0.500000)") h("setpointer syn_NC_DA7_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA7_MDL15_Acetylcholine print("Adding continuous projection: NC_DA7_MDL15_Acetylcholine from DA7 to MDL15, with 1 connection(s)") h("objectvar syn_NC_DA7_MDL15_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA7_MDL15_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL15[0].soma], weight: 1.0 h("a_DA7[0].soma { syn_NC_DA7_MDL15_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL15[0].soma { syn_NC_DA7_MDL15_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA7_MDL15_Acetylcholine_silent_pre[0].vpeer, a_MDL15[0].soma.v(0.500000)") h("setpointer syn_NC_DA7_MDL15_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA7_MDL16_Acetylcholine print("Adding continuous projection: NC_DA7_MDL16_Acetylcholine from DA7 to MDL16, with 1 connection(s)") h("objectvar syn_NC_DA7_MDL16_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA7_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL16[0].soma], weight: 1.0 h("a_DA7[0].soma { syn_NC_DA7_MDL16_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL16[0].soma { syn_NC_DA7_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA7_MDL16_Acetylcholine_silent_pre[0].vpeer, a_MDL16[0].soma.v(0.500000)") h("setpointer syn_NC_DA7_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA7_MDL17_Acetylcholine print("Adding continuous projection: NC_DA7_MDL17_Acetylcholine from DA7 to MDL17, with 1 connection(s)") h("objectvar syn_NC_DA7_MDL17_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA7_MDL17_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL17[0].soma], weight: 1.0 h("a_DA7[0].soma { syn_NC_DA7_MDL17_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL17[0].soma { syn_NC_DA7_MDL17_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA7_MDL17_Acetylcholine_silent_pre[0].vpeer, a_MDL17[0].soma.v(0.500000)") h("setpointer syn_NC_DA7_MDL17_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA7_MDL18_Acetylcholine print("Adding continuous projection: NC_DA7_MDL18_Acetylcholine from DA7 to MDL18, with 1 connection(s)") h("objectvar syn_NC_DA7_MDL18_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA7_MDL18_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL18[0].soma], weight: 1.0 h("a_DA7[0].soma { syn_NC_DA7_MDL18_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL18[0].soma { syn_NC_DA7_MDL18_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DA7_MDL18_Acetylcholine_silent_pre[0].vpeer, a_MDL18[0].soma.v(0.500000)") h("setpointer syn_NC_DA7_MDL18_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DA7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA7_MDL19_Acetylcholine print("Adding continuous projection: NC_DA7_MDL19_Acetylcholine from DA7 to MDL19, with 1 connection(s)") h("objectvar syn_NC_DA7_MDL19_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA7_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL19[0].soma], weight: 1.0 h("a_DA7[0].soma { syn_NC_DA7_MDL19_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL19[0].soma { syn_NC_DA7_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA7_MDL19_Acetylcholine_silent_pre[0].vpeer, a_MDL19[0].soma.v(0.500000)") h("setpointer syn_NC_DA7_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA7_MDR14_Acetylcholine print("Adding continuous projection: NC_DA7_MDR14_Acetylcholine from DA7 to MDR14, with 1 connection(s)") h("objectvar syn_NC_DA7_MDR14_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA7_MDR14_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR14[0].soma], weight: 1.0 h("a_DA7[0].soma { syn_NC_DA7_MDR14_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR14[0].soma { syn_NC_DA7_MDR14_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA7_MDR14_Acetylcholine_silent_pre[0].vpeer, a_MDR14[0].soma.v(0.500000)") h("setpointer syn_NC_DA7_MDR14_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA7_MDR15_Acetylcholine print("Adding continuous projection: NC_DA7_MDR15_Acetylcholine from DA7 to MDR15, with 1 connection(s)") h("objectvar syn_NC_DA7_MDR15_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA7_MDR15_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR15[0].soma], weight: 1.0 h("a_DA7[0].soma { syn_NC_DA7_MDR15_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR15[0].soma { syn_NC_DA7_MDR15_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA7_MDR15_Acetylcholine_silent_pre[0].vpeer, a_MDR15[0].soma.v(0.500000)") h("setpointer syn_NC_DA7_MDR15_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA7_MDR16_Acetylcholine print("Adding continuous projection: NC_DA7_MDR16_Acetylcholine from DA7 to MDR16, with 1 connection(s)") h("objectvar syn_NC_DA7_MDR16_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA7_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR16[0].soma], weight: 1.0 h("a_DA7[0].soma { syn_NC_DA7_MDR16_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR16[0].soma { syn_NC_DA7_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA7_MDR16_Acetylcholine_silent_pre[0].vpeer, a_MDR16[0].soma.v(0.500000)") h("setpointer syn_NC_DA7_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA7_MDR17_Acetylcholine print("Adding continuous projection: NC_DA7_MDR17_Acetylcholine from DA7 to MDR17, with 1 connection(s)") h("objectvar syn_NC_DA7_MDR17_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA7_MDR17_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR17[0].soma], weight: 1.0 h("a_DA7[0].soma { syn_NC_DA7_MDR17_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR17[0].soma { syn_NC_DA7_MDR17_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA7_MDR17_Acetylcholine_silent_pre[0].vpeer, a_MDR17[0].soma.v(0.500000)") h("setpointer syn_NC_DA7_MDR17_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA7_MDR18_Acetylcholine print("Adding continuous projection: NC_DA7_MDR18_Acetylcholine from DA7 to MDR18, with 1 connection(s)") h("objectvar syn_NC_DA7_MDR18_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA7_MDR18_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR18[0].soma], weight: 1.0 h("a_DA7[0].soma { syn_NC_DA7_MDR18_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR18[0].soma { syn_NC_DA7_MDR18_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DA7_MDR18_Acetylcholine_silent_pre[0].vpeer, a_MDR18[0].soma.v(0.500000)") h("setpointer syn_NC_DA7_MDR18_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DA7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA7_MDR19_Acetylcholine print("Adding continuous projection: NC_DA7_MDR19_Acetylcholine from DA7 to MDR19, with 1 connection(s)") h("objectvar syn_NC_DA7_MDR19_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA7_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR19[0].soma], weight: 1.0 h("a_DA7[0].soma { syn_NC_DA7_MDR19_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR19[0].soma { syn_NC_DA7_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA7_MDR19_Acetylcholine_silent_pre[0].vpeer, a_MDR19[0].soma.v(0.500000)") h("setpointer syn_NC_DA7_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA8_MDL16_Acetylcholine print("Adding continuous projection: NC_DA8_MDL16_Acetylcholine from DA8 to MDL16, with 1 connection(s)") h("objectvar syn_NC_DA8_MDL16_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA8_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL16[0].soma], weight: 1.0 h("a_DA8[0].soma { syn_NC_DA8_MDL16_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL16[0].soma { syn_NC_DA8_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA8_MDL16_Acetylcholine_silent_pre[0].vpeer, a_MDL16[0].soma.v(0.500000)") h("setpointer syn_NC_DA8_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA8[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA8_MDL17_Acetylcholine print("Adding continuous projection: NC_DA8_MDL17_Acetylcholine from DA8 to MDL17, with 1 connection(s)") h("objectvar syn_NC_DA8_MDL17_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA8_MDL17_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL17[0].soma], weight: 1.0 h("a_DA8[0].soma { syn_NC_DA8_MDL17_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL17[0].soma { syn_NC_DA8_MDL17_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA8_MDL17_Acetylcholine_silent_pre[0].vpeer, a_MDL17[0].soma.v(0.500000)") h("setpointer syn_NC_DA8_MDL17_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA8[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA8_MDL18_Acetylcholine print("Adding continuous projection: NC_DA8_MDL18_Acetylcholine from DA8 to MDL18, with 1 connection(s)") h("objectvar syn_NC_DA8_MDL18_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA8_MDL18_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL18[0].soma], weight: 1.0 h("a_DA8[0].soma { syn_NC_DA8_MDL18_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL18[0].soma { syn_NC_DA8_MDL18_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA8_MDL18_Acetylcholine_silent_pre[0].vpeer, a_MDL18[0].soma.v(0.500000)") h("setpointer syn_NC_DA8_MDL18_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA8[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA8_MDL19_Acetylcholine print("Adding continuous projection: NC_DA8_MDL19_Acetylcholine from DA8 to MDL19, with 1 connection(s)") h("objectvar syn_NC_DA8_MDL19_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA8_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL19[0].soma], weight: 1.0 h("a_DA8[0].soma { syn_NC_DA8_MDL19_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL19[0].soma { syn_NC_DA8_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA8_MDL19_Acetylcholine_silent_pre[0].vpeer, a_MDL19[0].soma.v(0.500000)") h("setpointer syn_NC_DA8_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA8[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA8_MDL20_Acetylcholine print("Adding continuous projection: NC_DA8_MDL20_Acetylcholine from DA8 to MDL20, with 1 connection(s)") h("objectvar syn_NC_DA8_MDL20_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA8_MDL20_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL20[0].soma], weight: 1.0 h("a_DA8[0].soma { syn_NC_DA8_MDL20_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL20[0].soma { syn_NC_DA8_MDL20_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DA8_MDL20_Acetylcholine_silent_pre[0].vpeer, a_MDL20[0].soma.v(0.500000)") h("setpointer syn_NC_DA8_MDL20_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DA8[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA8_MDL21_Acetylcholine print("Adding continuous projection: NC_DA8_MDL21_Acetylcholine from DA8 to MDL21, with 1 connection(s)") h("objectvar syn_NC_DA8_MDL21_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA8_MDL21_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL21[0].soma], weight: 1.0 h("a_DA8[0].soma { syn_NC_DA8_MDL21_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL21[0].soma { syn_NC_DA8_MDL21_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA8_MDL21_Acetylcholine_silent_pre[0].vpeer, a_MDL21[0].soma.v(0.500000)") h("setpointer syn_NC_DA8_MDL21_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA8[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA8_MDR16_Acetylcholine print("Adding continuous projection: NC_DA8_MDR16_Acetylcholine from DA8 to MDR16, with 1 connection(s)") h("objectvar syn_NC_DA8_MDR16_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA8_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR16[0].soma], weight: 1.0 h("a_DA8[0].soma { syn_NC_DA8_MDR16_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR16[0].soma { syn_NC_DA8_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA8_MDR16_Acetylcholine_silent_pre[0].vpeer, a_MDR16[0].soma.v(0.500000)") h("setpointer syn_NC_DA8_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA8[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA8_MDR17_Acetylcholine print("Adding continuous projection: NC_DA8_MDR17_Acetylcholine from DA8 to MDR17, with 1 connection(s)") h("objectvar syn_NC_DA8_MDR17_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA8_MDR17_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR17[0].soma], weight: 1.0 h("a_DA8[0].soma { syn_NC_DA8_MDR17_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR17[0].soma { syn_NC_DA8_MDR17_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA8_MDR17_Acetylcholine_silent_pre[0].vpeer, a_MDR17[0].soma.v(0.500000)") h("setpointer syn_NC_DA8_MDR17_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA8[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA8_MDR18_Acetylcholine print("Adding continuous projection: NC_DA8_MDR18_Acetylcholine from DA8 to MDR18, with 1 connection(s)") h("objectvar syn_NC_DA8_MDR18_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA8_MDR18_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR18[0].soma], weight: 1.0 h("a_DA8[0].soma { syn_NC_DA8_MDR18_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR18[0].soma { syn_NC_DA8_MDR18_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA8_MDR18_Acetylcholine_silent_pre[0].vpeer, a_MDR18[0].soma.v(0.500000)") h("setpointer syn_NC_DA8_MDR18_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA8[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA8_MDR19_Acetylcholine print("Adding continuous projection: NC_DA8_MDR19_Acetylcholine from DA8 to MDR19, with 1 connection(s)") h("objectvar syn_NC_DA8_MDR19_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA8_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR19[0].soma], weight: 1.0 h("a_DA8[0].soma { syn_NC_DA8_MDR19_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR19[0].soma { syn_NC_DA8_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA8_MDR19_Acetylcholine_silent_pre[0].vpeer, a_MDR19[0].soma.v(0.500000)") h("setpointer syn_NC_DA8_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA8[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA8_MDR20_Acetylcholine print("Adding continuous projection: NC_DA8_MDR20_Acetylcholine from DA8 to MDR20, with 1 connection(s)") h("objectvar syn_NC_DA8_MDR20_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA8_MDR20_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR20[0].soma], weight: 1.0 h("a_DA8[0].soma { syn_NC_DA8_MDR20_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR20[0].soma { syn_NC_DA8_MDR20_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DA8_MDR20_Acetylcholine_silent_pre[0].vpeer, a_MDR20[0].soma.v(0.500000)") h("setpointer syn_NC_DA8_MDR20_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DA8[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA8_MDR21_Acetylcholine print("Adding continuous projection: NC_DA8_MDR21_Acetylcholine from DA8 to MDR21, with 1 connection(s)") h("objectvar syn_NC_DA8_MDR21_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA8_MDR21_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA8[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR21[0].soma], weight: 1.0 h("a_DA8[0].soma { syn_NC_DA8_MDR21_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR21[0].soma { syn_NC_DA8_MDR21_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA8_MDR21_Acetylcholine_silent_pre[0].vpeer, a_MDR21[0].soma.v(0.500000)") h("setpointer syn_NC_DA8_MDR21_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA8[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA9_MDL19_Acetylcholine print("Adding continuous projection: NC_DA9_MDL19_Acetylcholine from DA9 to MDL19, with 1 connection(s)") h("objectvar syn_NC_DA9_MDL19_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA9_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL19[0].soma], weight: 1.0 h("a_DA9[0].soma { syn_NC_DA9_MDL19_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL19[0].soma { syn_NC_DA9_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA9_MDL19_Acetylcholine_silent_pre[0].vpeer, a_MDL19[0].soma.v(0.500000)") h("setpointer syn_NC_DA9_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA9[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA9_MDL20_Acetylcholine print("Adding continuous projection: NC_DA9_MDL20_Acetylcholine from DA9 to MDL20, with 1 connection(s)") h("objectvar syn_NC_DA9_MDL20_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA9_MDL20_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL20[0].soma], weight: 1.0 h("a_DA9[0].soma { syn_NC_DA9_MDL20_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL20[0].soma { syn_NC_DA9_MDL20_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA9_MDL20_Acetylcholine_silent_pre[0].vpeer, a_MDL20[0].soma.v(0.500000)") h("setpointer syn_NC_DA9_MDL20_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA9[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA9_MDL21_Acetylcholine print("Adding continuous projection: NC_DA9_MDL21_Acetylcholine from DA9 to MDL21, with 1 connection(s)") h("objectvar syn_NC_DA9_MDL21_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA9_MDL21_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL21[0].soma], weight: 1.0 h("a_DA9[0].soma { syn_NC_DA9_MDL21_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL21[0].soma { syn_NC_DA9_MDL21_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA9_MDL21_Acetylcholine_silent_pre[0].vpeer, a_MDL21[0].soma.v(0.500000)") h("setpointer syn_NC_DA9_MDL21_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA9[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA9_MDL22_Acetylcholine print("Adding continuous projection: NC_DA9_MDL22_Acetylcholine from DA9 to MDL22, with 1 connection(s)") h("objectvar syn_NC_DA9_MDL22_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA9_MDL22_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL22[0].soma], weight: 1.0 h("a_DA9[0].soma { syn_NC_DA9_MDL22_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL22[0].soma { syn_NC_DA9_MDL22_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA9_MDL22_Acetylcholine_silent_pre[0].vpeer, a_MDL22[0].soma.v(0.500000)") h("setpointer syn_NC_DA9_MDL22_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA9[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA9_MDL23_Acetylcholine print("Adding continuous projection: NC_DA9_MDL23_Acetylcholine from DA9 to MDL23, with 1 connection(s)") h("objectvar syn_NC_DA9_MDL23_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA9_MDL23_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL23[0].soma], weight: 1.0 h("a_DA9[0].soma { syn_NC_DA9_MDL23_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL23[0].soma { syn_NC_DA9_MDL23_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA9_MDL23_Acetylcholine_silent_pre[0].vpeer, a_MDL23[0].soma.v(0.500000)") h("setpointer syn_NC_DA9_MDL23_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA9[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA9_MDL24_Acetylcholine print("Adding continuous projection: NC_DA9_MDL24_Acetylcholine from DA9 to MDL24, with 1 connection(s)") h("objectvar syn_NC_DA9_MDL24_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA9_MDL24_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL24[0].soma], weight: 1.0 h("a_DA9[0].soma { syn_NC_DA9_MDL24_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL24[0].soma { syn_NC_DA9_MDL24_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DA9_MDL24_Acetylcholine_silent_pre[0].vpeer, a_MDL24[0].soma.v(0.500000)") h("setpointer syn_NC_DA9_MDL24_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DA9[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA9_MDR19_Acetylcholine print("Adding continuous projection: NC_DA9_MDR19_Acetylcholine from DA9 to MDR19, with 1 connection(s)") h("objectvar syn_NC_DA9_MDR19_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA9_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR19[0].soma], weight: 1.0 h("a_DA9[0].soma { syn_NC_DA9_MDR19_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR19[0].soma { syn_NC_DA9_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA9_MDR19_Acetylcholine_silent_pre[0].vpeer, a_MDR19[0].soma.v(0.500000)") h("setpointer syn_NC_DA9_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA9[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA9_MDR20_Acetylcholine print("Adding continuous projection: NC_DA9_MDR20_Acetylcholine from DA9 to MDR20, with 1 connection(s)") h("objectvar syn_NC_DA9_MDR20_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA9_MDR20_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR20[0].soma], weight: 1.0 h("a_DA9[0].soma { syn_NC_DA9_MDR20_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR20[0].soma { syn_NC_DA9_MDR20_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA9_MDR20_Acetylcholine_silent_pre[0].vpeer, a_MDR20[0].soma.v(0.500000)") h("setpointer syn_NC_DA9_MDR20_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA9[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA9_MDR21_Acetylcholine print("Adding continuous projection: NC_DA9_MDR21_Acetylcholine from DA9 to MDR21, with 1 connection(s)") h("objectvar syn_NC_DA9_MDR21_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA9_MDR21_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR21[0].soma], weight: 1.0 h("a_DA9[0].soma { syn_NC_DA9_MDR21_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR21[0].soma { syn_NC_DA9_MDR21_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA9_MDR21_Acetylcholine_silent_pre[0].vpeer, a_MDR21[0].soma.v(0.500000)") h("setpointer syn_NC_DA9_MDR21_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA9[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA9_MDR22_Acetylcholine print("Adding continuous projection: NC_DA9_MDR22_Acetylcholine from DA9 to MDR22, with 1 connection(s)") h("objectvar syn_NC_DA9_MDR22_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA9_MDR22_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR22[0].soma], weight: 1.0 h("a_DA9[0].soma { syn_NC_DA9_MDR22_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR22[0].soma { syn_NC_DA9_MDR22_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA9_MDR22_Acetylcholine_silent_pre[0].vpeer, a_MDR22[0].soma.v(0.500000)") h("setpointer syn_NC_DA9_MDR22_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA9[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA9_MDR23_Acetylcholine print("Adding continuous projection: NC_DA9_MDR23_Acetylcholine from DA9 to MDR23, with 1 connection(s)") h("objectvar syn_NC_DA9_MDR23_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA9_MDR23_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR23[0].soma], weight: 1.0 h("a_DA9[0].soma { syn_NC_DA9_MDR23_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR23[0].soma { syn_NC_DA9_MDR23_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DA9_MDR23_Acetylcholine_silent_pre[0].vpeer, a_MDR23[0].soma.v(0.500000)") h("setpointer syn_NC_DA9_MDR23_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DA9[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DA9_MDR24_Acetylcholine print("Adding continuous projection: NC_DA9_MDR24_Acetylcholine from DA9 to MDR24, with 1 connection(s)") h("objectvar syn_NC_DA9_MDR24_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DA9_MDR24_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DA9[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR24[0].soma], weight: 1.0 h("a_DA9[0].soma { syn_NC_DA9_MDR24_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR24[0].soma { syn_NC_DA9_MDR24_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DA9_MDR24_Acetylcholine_silent_pre[0].vpeer, a_MDR24[0].soma.v(0.500000)") h("setpointer syn_NC_DA9_MDR24_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DA9[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB1_MDL06_Acetylcholine print("Adding continuous projection: NC_DB1_MDL06_Acetylcholine from DB1 to MDL06, with 1 connection(s)") h("objectvar syn_NC_DB1_MDL06_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB1_MDL06_Acetylcholine_DB1_to_MDL06_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL06[0].soma], weight: 1.0 h("a_DB1[0].soma { syn_NC_DB1_MDL06_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL06[0].soma { syn_NC_DB1_MDL06_Acetylcholine_DB1_to_MDL06_exc_syn_3conns_post[0] = new DB1_to_MDL06_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DB1_MDL06_Acetylcholine_silent_pre[0].vpeer, a_MDL06[0].soma.v(0.500000)") h("setpointer syn_NC_DB1_MDL06_Acetylcholine_DB1_to_MDL06_exc_syn_3conns_post[0].vpeer, a_DB1[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB1_MDL08_Acetylcholine print("Adding continuous projection: NC_DB1_MDL08_Acetylcholine from DB1 to MDL08, with 1 connection(s)") h("objectvar syn_NC_DB1_MDL08_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB1_MDL08_Acetylcholine_DB1_to_MDL08_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL08[0].soma], weight: 1.0 h("a_DB1[0].soma { syn_NC_DB1_MDL08_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL08[0].soma { syn_NC_DB1_MDL08_Acetylcholine_DB1_to_MDL08_exc_syn_3conns_post[0] = new DB1_to_MDL08_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DB1_MDL08_Acetylcholine_silent_pre[0].vpeer, a_MDL08[0].soma.v(0.500000)") h("setpointer syn_NC_DB1_MDL08_Acetylcholine_DB1_to_MDL08_exc_syn_3conns_post[0].vpeer, a_DB1[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB1_MDL09_Acetylcholine print("Adding continuous projection: NC_DB1_MDL09_Acetylcholine from DB1 to MDL09, with 1 connection(s)") h("objectvar syn_NC_DB1_MDL09_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB1_MDL09_Acetylcholine_DB1_to_MDL09_exc_syn_6conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL09[0].soma], weight: 1.0 h("a_DB1[0].soma { syn_NC_DB1_MDL09_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL09[0].soma { syn_NC_DB1_MDL09_Acetylcholine_DB1_to_MDL09_exc_syn_6conns_post[0] = new DB1_to_MDL09_exc_syn_6conns(0.500000) }") h("setpointer syn_NC_DB1_MDL09_Acetylcholine_silent_pre[0].vpeer, a_MDL09[0].soma.v(0.500000)") h("setpointer syn_NC_DB1_MDL09_Acetylcholine_DB1_to_MDL09_exc_syn_6conns_post[0].vpeer, a_DB1[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB1_MDR08_Acetylcholine print("Adding continuous projection: NC_DB1_MDR08_Acetylcholine from DB1 to MDR08, with 1 connection(s)") h("objectvar syn_NC_DB1_MDR08_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB1_MDR08_Acetylcholine_DB1_to_MDR08_exc_syn_6conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR08[0].soma], weight: 1.0 h("a_DB1[0].soma { syn_NC_DB1_MDR08_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR08[0].soma { syn_NC_DB1_MDR08_Acetylcholine_DB1_to_MDR08_exc_syn_6conns_post[0] = new DB1_to_MDR08_exc_syn_6conns(0.500000) }") h("setpointer syn_NC_DB1_MDR08_Acetylcholine_silent_pre[0].vpeer, a_MDR08[0].soma.v(0.500000)") h("setpointer syn_NC_DB1_MDR08_Acetylcholine_DB1_to_MDR08_exc_syn_6conns_post[0].vpeer, a_DB1[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB1_MDR09_Acetylcholine print("Adding continuous projection: NC_DB1_MDR09_Acetylcholine from DB1 to MDR09, with 1 connection(s)") h("objectvar syn_NC_DB1_MDR09_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB1_MDR09_Acetylcholine_DB1_to_MDR09_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB1[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR09[0].soma], weight: 1.0 h("a_DB1[0].soma { syn_NC_DB1_MDR09_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR09[0].soma { syn_NC_DB1_MDR09_Acetylcholine_DB1_to_MDR09_exc_syn_2conns_post[0] = new DB1_to_MDR09_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB1_MDR09_Acetylcholine_silent_pre[0].vpeer, a_MDR09[0].soma.v(0.500000)") h("setpointer syn_NC_DB1_MDR09_Acetylcholine_DB1_to_MDR09_exc_syn_2conns_post[0].vpeer, a_DB1[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB2_MDL09_Acetylcholine print("Adding continuous projection: NC_DB2_MDL09_Acetylcholine from DB2 to MDL09, with 1 connection(s)") h("objectvar syn_NC_DB2_MDL09_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB2_MDL09_Acetylcholine_DB2_to_MDL09_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL09[0].soma], weight: 1.0 h("a_DB2[0].soma { syn_NC_DB2_MDL09_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL09[0].soma { syn_NC_DB2_MDL09_Acetylcholine_DB2_to_MDL09_exc_syn_2conns_post[0] = new DB2_to_MDL09_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB2_MDL09_Acetylcholine_silent_pre[0].vpeer, a_MDL09[0].soma.v(0.500000)") h("setpointer syn_NC_DB2_MDL09_Acetylcholine_DB2_to_MDL09_exc_syn_2conns_post[0].vpeer, a_DB2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB2_MDL10_Acetylcholine print("Adding continuous projection: NC_DB2_MDL10_Acetylcholine from DB2 to MDL10, with 1 connection(s)") h("objectvar syn_NC_DB2_MDL10_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB2_MDL10_Acetylcholine_DB2_to_MDL10_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL10[0].soma], weight: 1.0 h("a_DB2[0].soma { syn_NC_DB2_MDL10_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL10[0].soma { syn_NC_DB2_MDL10_Acetylcholine_DB2_to_MDL10_exc_syn_4conns_post[0] = new DB2_to_MDL10_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DB2_MDL10_Acetylcholine_silent_pre[0].vpeer, a_MDL10[0].soma.v(0.500000)") h("setpointer syn_NC_DB2_MDL10_Acetylcholine_DB2_to_MDL10_exc_syn_4conns_post[0].vpeer, a_DB2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB2_MDL11_Acetylcholine print("Adding continuous projection: NC_DB2_MDL11_Acetylcholine from DB2 to MDL11, with 1 connection(s)") h("objectvar syn_NC_DB2_MDL11_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB2_MDL11_Acetylcholine_DB2_to_MDL11_exc_syn_5conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL11[0].soma], weight: 1.0 h("a_DB2[0].soma { syn_NC_DB2_MDL11_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL11[0].soma { syn_NC_DB2_MDL11_Acetylcholine_DB2_to_MDL11_exc_syn_5conns_post[0] = new DB2_to_MDL11_exc_syn_5conns(0.500000) }") h("setpointer syn_NC_DB2_MDL11_Acetylcholine_silent_pre[0].vpeer, a_MDL11[0].soma.v(0.500000)") h("setpointer syn_NC_DB2_MDL11_Acetylcholine_DB2_to_MDL11_exc_syn_5conns_post[0].vpeer, a_DB2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB2_MDL12_Acetylcholine print("Adding continuous projection: NC_DB2_MDL12_Acetylcholine from DB2 to MDL12, with 1 connection(s)") h("objectvar syn_NC_DB2_MDL12_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB2_MDL12_Acetylcholine_DB2_to_MDL12_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL12[0].soma], weight: 1.0 h("a_DB2[0].soma { syn_NC_DB2_MDL12_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL12[0].soma { syn_NC_DB2_MDL12_Acetylcholine_DB2_to_MDL12_exc_syn_1conns_post[0] = new DB2_to_MDL12_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DB2_MDL12_Acetylcholine_silent_pre[0].vpeer, a_MDL12[0].soma.v(0.500000)") h("setpointer syn_NC_DB2_MDL12_Acetylcholine_DB2_to_MDL12_exc_syn_1conns_post[0].vpeer, a_DB2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB2_MDR09_Acetylcholine print("Adding continuous projection: NC_DB2_MDR09_Acetylcholine from DB2 to MDR09, with 1 connection(s)") h("objectvar syn_NC_DB2_MDR09_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB2_MDR09_Acetylcholine_DB2_to_MDR09_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR09[0].soma], weight: 1.0 h("a_DB2[0].soma { syn_NC_DB2_MDR09_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR09[0].soma { syn_NC_DB2_MDR09_Acetylcholine_DB2_to_MDR09_exc_syn_1conns_post[0] = new DB2_to_MDR09_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DB2_MDR09_Acetylcholine_silent_pre[0].vpeer, a_MDR09[0].soma.v(0.500000)") h("setpointer syn_NC_DB2_MDR09_Acetylcholine_DB2_to_MDR09_exc_syn_1conns_post[0].vpeer, a_DB2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB2_MDR10_Acetylcholine print("Adding continuous projection: NC_DB2_MDR10_Acetylcholine from DB2 to MDR10, with 1 connection(s)") h("objectvar syn_NC_DB2_MDR10_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB2_MDR10_Acetylcholine_DB2_to_MDR10_exc_syn_6conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR10[0].soma], weight: 1.0 h("a_DB2[0].soma { syn_NC_DB2_MDR10_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR10[0].soma { syn_NC_DB2_MDR10_Acetylcholine_DB2_to_MDR10_exc_syn_6conns_post[0] = new DB2_to_MDR10_exc_syn_6conns(0.500000) }") h("setpointer syn_NC_DB2_MDR10_Acetylcholine_silent_pre[0].vpeer, a_MDR10[0].soma.v(0.500000)") h("setpointer syn_NC_DB2_MDR10_Acetylcholine_DB2_to_MDR10_exc_syn_6conns_post[0].vpeer, a_DB2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB2_MDR11_Acetylcholine print("Adding continuous projection: NC_DB2_MDR11_Acetylcholine from DB2 to MDR11, with 1 connection(s)") h("objectvar syn_NC_DB2_MDR11_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB2_MDR11_Acetylcholine_DB2_to_MDR11_exc_syn_8conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB2[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR11[0].soma], weight: 1.0 h("a_DB2[0].soma { syn_NC_DB2_MDR11_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR11[0].soma { syn_NC_DB2_MDR11_Acetylcholine_DB2_to_MDR11_exc_syn_8conns_post[0] = new DB2_to_MDR11_exc_syn_8conns(0.500000) }") h("setpointer syn_NC_DB2_MDR11_Acetylcholine_silent_pre[0].vpeer, a_MDR11[0].soma.v(0.500000)") h("setpointer syn_NC_DB2_MDR11_Acetylcholine_DB2_to_MDR11_exc_syn_8conns_post[0].vpeer, a_DB2[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB3_MDL11_Acetylcholine print("Adding continuous projection: NC_DB3_MDL11_Acetylcholine from DB3 to MDL11, with 1 connection(s)") h("objectvar syn_NC_DB3_MDL11_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB3_MDL11_Acetylcholine_neuron_to_muscle_exc_syn_6conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL11[0].soma], weight: 1.0 h("a_DB3[0].soma { syn_NC_DB3_MDL11_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL11[0].soma { syn_NC_DB3_MDL11_Acetylcholine_neuron_to_muscle_exc_syn_6conns_post[0] = new neuron_to_muscle_exc_syn_6conns(0.500000) }") h("setpointer syn_NC_DB3_MDL11_Acetylcholine_silent_pre[0].vpeer, a_MDL11[0].soma.v(0.500000)") h("setpointer syn_NC_DB3_MDL11_Acetylcholine_neuron_to_muscle_exc_syn_6conns_post[0].vpeer, a_DB3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB3_MDL12_Acetylcholine print("Adding continuous projection: NC_DB3_MDL12_Acetylcholine from DB3 to MDL12, with 1 connection(s)") h("objectvar syn_NC_DB3_MDL12_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB3_MDL12_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL12[0].soma], weight: 1.0 h("a_DB3[0].soma { syn_NC_DB3_MDL12_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL12[0].soma { syn_NC_DB3_MDL12_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0] = new neuron_to_muscle_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DB3_MDL12_Acetylcholine_silent_pre[0].vpeer, a_MDL12[0].soma.v(0.500000)") h("setpointer syn_NC_DB3_MDL12_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0].vpeer, a_DB3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB3_MDL13_Acetylcholine print("Adding continuous projection: NC_DB3_MDL13_Acetylcholine from DB3 to MDL13, with 1 connection(s)") h("objectvar syn_NC_DB3_MDL13_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB3_MDL13_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL13[0].soma], weight: 1.0 h("a_DB3[0].soma { syn_NC_DB3_MDL13_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL13[0].soma { syn_NC_DB3_MDL13_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DB3_MDL13_Acetylcholine_silent_pre[0].vpeer, a_MDL13[0].soma.v(0.500000)") h("setpointer syn_NC_DB3_MDL13_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DB3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB3_MDL14_Acetylcholine print("Adding continuous projection: NC_DB3_MDL14_Acetylcholine from DB3 to MDL14, with 1 connection(s)") h("objectvar syn_NC_DB3_MDL14_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB3_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL14[0].soma], weight: 1.0 h("a_DB3[0].soma { syn_NC_DB3_MDL14_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL14[0].soma { syn_NC_DB3_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0] = new neuron_to_muscle_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DB3_MDL14_Acetylcholine_silent_pre[0].vpeer, a_MDL14[0].soma.v(0.500000)") h("setpointer syn_NC_DB3_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0].vpeer, a_DB3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB3_MDR11_Acetylcholine print("Adding continuous projection: NC_DB3_MDR11_Acetylcholine from DB3 to MDR11, with 1 connection(s)") h("objectvar syn_NC_DB3_MDR11_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB3_MDR11_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR11[0].soma], weight: 1.0 h("a_DB3[0].soma { syn_NC_DB3_MDR11_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR11[0].soma { syn_NC_DB3_MDR11_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB3_MDR11_Acetylcholine_silent_pre[0].vpeer, a_MDR11[0].soma.v(0.500000)") h("setpointer syn_NC_DB3_MDR11_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB3_MDR12_Acetylcholine print("Adding continuous projection: NC_DB3_MDR12_Acetylcholine from DB3 to MDR12, with 1 connection(s)") h("objectvar syn_NC_DB3_MDR12_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB3_MDR12_Acetylcholine_neuron_to_muscle_exc_syn_13conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR12[0].soma], weight: 1.0 h("a_DB3[0].soma { syn_NC_DB3_MDR12_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR12[0].soma { syn_NC_DB3_MDR12_Acetylcholine_neuron_to_muscle_exc_syn_13conns_post[0] = new neuron_to_muscle_exc_syn_13conns(0.500000) }") h("setpointer syn_NC_DB3_MDR12_Acetylcholine_silent_pre[0].vpeer, a_MDR12[0].soma.v(0.500000)") h("setpointer syn_NC_DB3_MDR12_Acetylcholine_neuron_to_muscle_exc_syn_13conns_post[0].vpeer, a_DB3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB3_MDR13_Acetylcholine print("Adding continuous projection: NC_DB3_MDR13_Acetylcholine from DB3 to MDR13, with 1 connection(s)") h("objectvar syn_NC_DB3_MDR13_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB3_MDR13_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB3[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR13[0].soma], weight: 1.0 h("a_DB3[0].soma { syn_NC_DB3_MDR13_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR13[0].soma { syn_NC_DB3_MDR13_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0] = new neuron_to_muscle_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DB3_MDR13_Acetylcholine_silent_pre[0].vpeer, a_MDR13[0].soma.v(0.500000)") h("setpointer syn_NC_DB3_MDR13_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0].vpeer, a_DB3[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB4_MDL13_Acetylcholine print("Adding continuous projection: NC_DB4_MDL13_Acetylcholine from DB4 to MDL13, with 1 connection(s)") h("objectvar syn_NC_DB4_MDL13_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB4_MDL13_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL13[0].soma], weight: 1.0 h("a_DB4[0].soma { syn_NC_DB4_MDL13_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL13[0].soma { syn_NC_DB4_MDL13_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0] = new neuron_to_muscle_exc_syn_4conns(0.500000) }") h("setpointer syn_NC_DB4_MDL13_Acetylcholine_silent_pre[0].vpeer, a_MDL13[0].soma.v(0.500000)") h("setpointer syn_NC_DB4_MDL13_Acetylcholine_neuron_to_muscle_exc_syn_4conns_post[0].vpeer, a_DB4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB4_MDL14_Acetylcholine print("Adding continuous projection: NC_DB4_MDL14_Acetylcholine from DB4 to MDL14, with 1 connection(s)") h("objectvar syn_NC_DB4_MDL14_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB4_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL14[0].soma], weight: 1.0 h("a_DB4[0].soma { syn_NC_DB4_MDL14_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL14[0].soma { syn_NC_DB4_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0] = new neuron_to_muscle_exc_syn_1conns(0.500000) }") h("setpointer syn_NC_DB4_MDL14_Acetylcholine_silent_pre[0].vpeer, a_MDL14[0].soma.v(0.500000)") h("setpointer syn_NC_DB4_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_1conns_post[0].vpeer, a_DB4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB4_MDL15_Acetylcholine print("Adding continuous projection: NC_DB4_MDL15_Acetylcholine from DB4 to MDL15, with 1 connection(s)") h("objectvar syn_NC_DB4_MDL15_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB4_MDL15_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL15[0].soma], weight: 1.0 h("a_DB4[0].soma { syn_NC_DB4_MDL15_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL15[0].soma { syn_NC_DB4_MDL15_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DB4_MDL15_Acetylcholine_silent_pre[0].vpeer, a_MDL15[0].soma.v(0.500000)") h("setpointer syn_NC_DB4_MDL15_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DB4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB4_MDL16_Acetylcholine print("Adding continuous projection: NC_DB4_MDL16_Acetylcholine from DB4 to MDL16, with 1 connection(s)") h("objectvar syn_NC_DB4_MDL16_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB4_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL16[0].soma], weight: 1.0 h("a_DB4[0].soma { syn_NC_DB4_MDL16_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL16[0].soma { syn_NC_DB4_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DB4_MDL16_Acetylcholine_silent_pre[0].vpeer, a_MDL16[0].soma.v(0.500000)") h("setpointer syn_NC_DB4_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DB4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB4_MDR13_Acetylcholine print("Adding continuous projection: NC_DB4_MDR13_Acetylcholine from DB4 to MDR13, with 1 connection(s)") h("objectvar syn_NC_DB4_MDR13_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB4_MDR13_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR13[0].soma], weight: 1.0 h("a_DB4[0].soma { syn_NC_DB4_MDR13_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR13[0].soma { syn_NC_DB4_MDR13_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DB4_MDR13_Acetylcholine_silent_pre[0].vpeer, a_MDR13[0].soma.v(0.500000)") h("setpointer syn_NC_DB4_MDR13_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DB4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB4_MDR14_Acetylcholine print("Adding continuous projection: NC_DB4_MDR14_Acetylcholine from DB4 to MDR14, with 1 connection(s)") h("objectvar syn_NC_DB4_MDR14_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB4_MDR14_Acetylcholine_neuron_to_muscle_exc_syn_5conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR14[0].soma], weight: 1.0 h("a_DB4[0].soma { syn_NC_DB4_MDR14_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR14[0].soma { syn_NC_DB4_MDR14_Acetylcholine_neuron_to_muscle_exc_syn_5conns_post[0] = new neuron_to_muscle_exc_syn_5conns(0.500000) }") h("setpointer syn_NC_DB4_MDR14_Acetylcholine_silent_pre[0].vpeer, a_MDR14[0].soma.v(0.500000)") h("setpointer syn_NC_DB4_MDR14_Acetylcholine_neuron_to_muscle_exc_syn_5conns_post[0].vpeer, a_DB4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB4_MDR15_Acetylcholine print("Adding continuous projection: NC_DB4_MDR15_Acetylcholine from DB4 to MDR15, with 1 connection(s)") h("objectvar syn_NC_DB4_MDR15_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB4_MDR15_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR15[0].soma], weight: 1.0 h("a_DB4[0].soma { syn_NC_DB4_MDR15_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR15[0].soma { syn_NC_DB4_MDR15_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DB4_MDR15_Acetylcholine_silent_pre[0].vpeer, a_MDR15[0].soma.v(0.500000)") h("setpointer syn_NC_DB4_MDR15_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DB4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB4_MDR16_Acetylcholine print("Adding continuous projection: NC_DB4_MDR16_Acetylcholine from DB4 to MDR16, with 1 connection(s)") h("objectvar syn_NC_DB4_MDR16_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB4_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB4[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR16[0].soma], weight: 1.0 h("a_DB4[0].soma { syn_NC_DB4_MDR16_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR16[0].soma { syn_NC_DB4_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0] = new neuron_to_muscle_exc_syn_3conns(0.500000) }") h("setpointer syn_NC_DB4_MDR16_Acetylcholine_silent_pre[0].vpeer, a_MDR16[0].soma.v(0.500000)") h("setpointer syn_NC_DB4_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_3conns_post[0].vpeer, a_DB4[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB5_MDL14_Acetylcholine print("Adding continuous projection: NC_DB5_MDL14_Acetylcholine from DB5 to MDL14, with 1 connection(s)") h("objectvar syn_NC_DB5_MDL14_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB5_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL14[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_MDL14_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL14[0].soma { syn_NC_DB5_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB5_MDL14_Acetylcholine_silent_pre[0].vpeer, a_MDL14[0].soma.v(0.500000)") h("setpointer syn_NC_DB5_MDL14_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB5_MDL15_Acetylcholine print("Adding continuous projection: NC_DB5_MDL15_Acetylcholine from DB5 to MDL15, with 1 connection(s)") h("objectvar syn_NC_DB5_MDL15_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB5_MDL15_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL15[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_MDL15_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL15[0].soma { syn_NC_DB5_MDL15_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB5_MDL15_Acetylcholine_silent_pre[0].vpeer, a_MDL15[0].soma.v(0.500000)") h("setpointer syn_NC_DB5_MDL15_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB5_MDL16_Acetylcholine print("Adding continuous projection: NC_DB5_MDL16_Acetylcholine from DB5 to MDL16, with 1 connection(s)") h("objectvar syn_NC_DB5_MDL16_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB5_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL16[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_MDL16_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL16[0].soma { syn_NC_DB5_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB5_MDL16_Acetylcholine_silent_pre[0].vpeer, a_MDL16[0].soma.v(0.500000)") h("setpointer syn_NC_DB5_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB5_MDL17_Acetylcholine print("Adding continuous projection: NC_DB5_MDL17_Acetylcholine from DB5 to MDL17, with 1 connection(s)") h("objectvar syn_NC_DB5_MDL17_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB5_MDL17_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL17[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_MDL17_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL17[0].soma { syn_NC_DB5_MDL17_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB5_MDL17_Acetylcholine_silent_pre[0].vpeer, a_MDL17[0].soma.v(0.500000)") h("setpointer syn_NC_DB5_MDL17_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB5_MDL18_Acetylcholine print("Adding continuous projection: NC_DB5_MDL18_Acetylcholine from DB5 to MDL18, with 1 connection(s)") h("objectvar syn_NC_DB5_MDL18_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB5_MDL18_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL18[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_MDL18_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL18[0].soma { syn_NC_DB5_MDL18_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB5_MDL18_Acetylcholine_silent_pre[0].vpeer, a_MDL18[0].soma.v(0.500000)") h("setpointer syn_NC_DB5_MDL18_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB5_MDL19_Acetylcholine print("Adding continuous projection: NC_DB5_MDL19_Acetylcholine from DB5 to MDL19, with 1 connection(s)") h("objectvar syn_NC_DB5_MDL19_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB5_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL19[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_MDL19_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL19[0].soma { syn_NC_DB5_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB5_MDL19_Acetylcholine_silent_pre[0].vpeer, a_MDL19[0].soma.v(0.500000)") h("setpointer syn_NC_DB5_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB5_MDR14_Acetylcholine print("Adding continuous projection: NC_DB5_MDR14_Acetylcholine from DB5 to MDR14, with 1 connection(s)") h("objectvar syn_NC_DB5_MDR14_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB5_MDR14_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR14[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_MDR14_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR14[0].soma { syn_NC_DB5_MDR14_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB5_MDR14_Acetylcholine_silent_pre[0].vpeer, a_MDR14[0].soma.v(0.500000)") h("setpointer syn_NC_DB5_MDR14_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB5_MDR15_Acetylcholine print("Adding continuous projection: NC_DB5_MDR15_Acetylcholine from DB5 to MDR15, with 1 connection(s)") h("objectvar syn_NC_DB5_MDR15_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB5_MDR15_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR15[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_MDR15_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR15[0].soma { syn_NC_DB5_MDR15_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB5_MDR15_Acetylcholine_silent_pre[0].vpeer, a_MDR15[0].soma.v(0.500000)") h("setpointer syn_NC_DB5_MDR15_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB5_MDR16_Acetylcholine print("Adding continuous projection: NC_DB5_MDR16_Acetylcholine from DB5 to MDR16, with 1 connection(s)") h("objectvar syn_NC_DB5_MDR16_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB5_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR16[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_MDR16_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR16[0].soma { syn_NC_DB5_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB5_MDR16_Acetylcholine_silent_pre[0].vpeer, a_MDR16[0].soma.v(0.500000)") h("setpointer syn_NC_DB5_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB5_MDR17_Acetylcholine print("Adding continuous projection: NC_DB5_MDR17_Acetylcholine from DB5 to MDR17, with 1 connection(s)") h("objectvar syn_NC_DB5_MDR17_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB5_MDR17_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR17[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_MDR17_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR17[0].soma { syn_NC_DB5_MDR17_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB5_MDR17_Acetylcholine_silent_pre[0].vpeer, a_MDR17[0].soma.v(0.500000)") h("setpointer syn_NC_DB5_MDR17_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB5_MDR18_Acetylcholine print("Adding continuous projection: NC_DB5_MDR18_Acetylcholine from DB5 to MDR18, with 1 connection(s)") h("objectvar syn_NC_DB5_MDR18_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB5_MDR18_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR18[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_MDR18_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR18[0].soma { syn_NC_DB5_MDR18_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB5_MDR18_Acetylcholine_silent_pre[0].vpeer, a_MDR18[0].soma.v(0.500000)") h("setpointer syn_NC_DB5_MDR18_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB5_MDR19_Acetylcholine print("Adding continuous projection: NC_DB5_MDR19_Acetylcholine from DB5 to MDR19, with 1 connection(s)") h("objectvar syn_NC_DB5_MDR19_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB5_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB5[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR19[0].soma], weight: 1.0 h("a_DB5[0].soma { syn_NC_DB5_MDR19_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR19[0].soma { syn_NC_DB5_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB5_MDR19_Acetylcholine_silent_pre[0].vpeer, a_MDR19[0].soma.v(0.500000)") h("setpointer syn_NC_DB5_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB5[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB6_MDL16_Acetylcholine print("Adding continuous projection: NC_DB6_MDL16_Acetylcholine from DB6 to MDL16, with 1 connection(s)") h("objectvar syn_NC_DB6_MDL16_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB6_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL16[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_MDL16_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL16[0].soma { syn_NC_DB6_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB6_MDL16_Acetylcholine_silent_pre[0].vpeer, a_MDL16[0].soma.v(0.500000)") h("setpointer syn_NC_DB6_MDL16_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB6_MDL17_Acetylcholine print("Adding continuous projection: NC_DB6_MDL17_Acetylcholine from DB6 to MDL17, with 1 connection(s)") h("objectvar syn_NC_DB6_MDL17_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB6_MDL17_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL17[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_MDL17_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL17[0].soma { syn_NC_DB6_MDL17_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB6_MDL17_Acetylcholine_silent_pre[0].vpeer, a_MDL17[0].soma.v(0.500000)") h("setpointer syn_NC_DB6_MDL17_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB6_MDL18_Acetylcholine print("Adding continuous projection: NC_DB6_MDL18_Acetylcholine from DB6 to MDL18, with 1 connection(s)") h("objectvar syn_NC_DB6_MDL18_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB6_MDL18_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL18[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_MDL18_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL18[0].soma { syn_NC_DB6_MDL18_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB6_MDL18_Acetylcholine_silent_pre[0].vpeer, a_MDL18[0].soma.v(0.500000)") h("setpointer syn_NC_DB6_MDL18_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB6_MDL19_Acetylcholine print("Adding continuous projection: NC_DB6_MDL19_Acetylcholine from DB6 to MDL19, with 1 connection(s)") h("objectvar syn_NC_DB6_MDL19_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB6_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL19[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_MDL19_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL19[0].soma { syn_NC_DB6_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB6_MDL19_Acetylcholine_silent_pre[0].vpeer, a_MDL19[0].soma.v(0.500000)") h("setpointer syn_NC_DB6_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB6_MDL20_Acetylcholine print("Adding continuous projection: NC_DB6_MDL20_Acetylcholine from DB6 to MDL20, with 1 connection(s)") h("objectvar syn_NC_DB6_MDL20_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB6_MDL20_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL20[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_MDL20_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL20[0].soma { syn_NC_DB6_MDL20_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB6_MDL20_Acetylcholine_silent_pre[0].vpeer, a_MDL20[0].soma.v(0.500000)") h("setpointer syn_NC_DB6_MDL20_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB6_MDL21_Acetylcholine print("Adding continuous projection: NC_DB6_MDL21_Acetylcholine from DB6 to MDL21, with 1 connection(s)") h("objectvar syn_NC_DB6_MDL21_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB6_MDL21_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL21[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_MDL21_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL21[0].soma { syn_NC_DB6_MDL21_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB6_MDL21_Acetylcholine_silent_pre[0].vpeer, a_MDL21[0].soma.v(0.500000)") h("setpointer syn_NC_DB6_MDL21_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB6_MDR16_Acetylcholine print("Adding continuous projection: NC_DB6_MDR16_Acetylcholine from DB6 to MDR16, with 1 connection(s)") h("objectvar syn_NC_DB6_MDR16_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB6_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR16[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_MDR16_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR16[0].soma { syn_NC_DB6_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB6_MDR16_Acetylcholine_silent_pre[0].vpeer, a_MDR16[0].soma.v(0.500000)") h("setpointer syn_NC_DB6_MDR16_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB6_MDR17_Acetylcholine print("Adding continuous projection: NC_DB6_MDR17_Acetylcholine from DB6 to MDR17, with 1 connection(s)") h("objectvar syn_NC_DB6_MDR17_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB6_MDR17_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR17[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_MDR17_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR17[0].soma { syn_NC_DB6_MDR17_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB6_MDR17_Acetylcholine_silent_pre[0].vpeer, a_MDR17[0].soma.v(0.500000)") h("setpointer syn_NC_DB6_MDR17_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB6_MDR18_Acetylcholine print("Adding continuous projection: NC_DB6_MDR18_Acetylcholine from DB6 to MDR18, with 1 connection(s)") h("objectvar syn_NC_DB6_MDR18_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB6_MDR18_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR18[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_MDR18_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR18[0].soma { syn_NC_DB6_MDR18_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB6_MDR18_Acetylcholine_silent_pre[0].vpeer, a_MDR18[0].soma.v(0.500000)") h("setpointer syn_NC_DB6_MDR18_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB6_MDR19_Acetylcholine print("Adding continuous projection: NC_DB6_MDR19_Acetylcholine from DB6 to MDR19, with 1 connection(s)") h("objectvar syn_NC_DB6_MDR19_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB6_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR19[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_MDR19_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR19[0].soma { syn_NC_DB6_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB6_MDR19_Acetylcholine_silent_pre[0].vpeer, a_MDR19[0].soma.v(0.500000)") h("setpointer syn_NC_DB6_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB6_MDR20_Acetylcholine print("Adding continuous projection: NC_DB6_MDR20_Acetylcholine from DB6 to MDR20, with 1 connection(s)") h("objectvar syn_NC_DB6_MDR20_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB6_MDR20_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR20[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_MDR20_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR20[0].soma { syn_NC_DB6_MDR20_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB6_MDR20_Acetylcholine_silent_pre[0].vpeer, a_MDR20[0].soma.v(0.500000)") h("setpointer syn_NC_DB6_MDR20_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB6_MDR21_Acetylcholine print("Adding continuous projection: NC_DB6_MDR21_Acetylcholine from DB6 to MDR21, with 1 connection(s)") h("objectvar syn_NC_DB6_MDR21_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB6_MDR21_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB6[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR21[0].soma], weight: 1.0 h("a_DB6[0].soma { syn_NC_DB6_MDR21_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR21[0].soma { syn_NC_DB6_MDR21_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB6_MDR21_Acetylcholine_silent_pre[0].vpeer, a_MDR21[0].soma.v(0.500000)") h("setpointer syn_NC_DB6_MDR21_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB6[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB7_MDL19_Acetylcholine print("Adding continuous projection: NC_DB7_MDL19_Acetylcholine from DB7 to MDL19, with 1 connection(s)") h("objectvar syn_NC_DB7_MDL19_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB7_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL19[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_MDL19_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL19[0].soma { syn_NC_DB7_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB7_MDL19_Acetylcholine_silent_pre[0].vpeer, a_MDL19[0].soma.v(0.500000)") h("setpointer syn_NC_DB7_MDL19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB7_MDL20_Acetylcholine print("Adding continuous projection: NC_DB7_MDL20_Acetylcholine from DB7 to MDL20, with 1 connection(s)") h("objectvar syn_NC_DB7_MDL20_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB7_MDL20_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL20[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_MDL20_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL20[0].soma { syn_NC_DB7_MDL20_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB7_MDL20_Acetylcholine_silent_pre[0].vpeer, a_MDL20[0].soma.v(0.500000)") h("setpointer syn_NC_DB7_MDL20_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB7_MDL21_Acetylcholine print("Adding continuous projection: NC_DB7_MDL21_Acetylcholine from DB7 to MDL21, with 1 connection(s)") h("objectvar syn_NC_DB7_MDL21_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB7_MDL21_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL21[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_MDL21_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL21[0].soma { syn_NC_DB7_MDL21_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB7_MDL21_Acetylcholine_silent_pre[0].vpeer, a_MDL21[0].soma.v(0.500000)") h("setpointer syn_NC_DB7_MDL21_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB7_MDL22_Acetylcholine print("Adding continuous projection: NC_DB7_MDL22_Acetylcholine from DB7 to MDL22, with 1 connection(s)") h("objectvar syn_NC_DB7_MDL22_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB7_MDL22_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL22[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_MDL22_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL22[0].soma { syn_NC_DB7_MDL22_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB7_MDL22_Acetylcholine_silent_pre[0].vpeer, a_MDL22[0].soma.v(0.500000)") h("setpointer syn_NC_DB7_MDL22_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB7_MDL23_Acetylcholine print("Adding continuous projection: NC_DB7_MDL23_Acetylcholine from DB7 to MDL23, with 1 connection(s)") h("objectvar syn_NC_DB7_MDL23_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB7_MDL23_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL23[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_MDL23_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL23[0].soma { syn_NC_DB7_MDL23_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB7_MDL23_Acetylcholine_silent_pre[0].vpeer, a_MDL23[0].soma.v(0.500000)") h("setpointer syn_NC_DB7_MDL23_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB7_MDL24_Acetylcholine print("Adding continuous projection: NC_DB7_MDL24_Acetylcholine from DB7 to MDL24, with 1 connection(s)") h("objectvar syn_NC_DB7_MDL24_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB7_MDL24_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDL24[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_MDL24_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDL24[0].soma { syn_NC_DB7_MDL24_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB7_MDL24_Acetylcholine_silent_pre[0].vpeer, a_MDL24[0].soma.v(0.500000)") h("setpointer syn_NC_DB7_MDL24_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB7_MDR19_Acetylcholine print("Adding continuous projection: NC_DB7_MDR19_Acetylcholine from DB7 to MDR19, with 1 connection(s)") h("objectvar syn_NC_DB7_MDR19_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB7_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR19[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_MDR19_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR19[0].soma { syn_NC_DB7_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB7_MDR19_Acetylcholine_silent_pre[0].vpeer, a_MDR19[0].soma.v(0.500000)") h("setpointer syn_NC_DB7_MDR19_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB7_MDR20_Acetylcholine print("Adding continuous projection: NC_DB7_MDR20_Acetylcholine from DB7 to MDR20, with 1 connection(s)") h("objectvar syn_NC_DB7_MDR20_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB7_MDR20_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR20[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_MDR20_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR20[0].soma { syn_NC_DB7_MDR20_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB7_MDR20_Acetylcholine_silent_pre[0].vpeer, a_MDR20[0].soma.v(0.500000)") h("setpointer syn_NC_DB7_MDR20_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB7_MDR21_Acetylcholine print("Adding continuous projection: NC_DB7_MDR21_Acetylcholine from DB7 to MDR21, with 1 connection(s)") h("objectvar syn_NC_DB7_MDR21_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB7_MDR21_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR21[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_MDR21_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR21[0].soma { syn_NC_DB7_MDR21_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB7_MDR21_Acetylcholine_silent_pre[0].vpeer, a_MDR21[0].soma.v(0.500000)") h("setpointer syn_NC_DB7_MDR21_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB7_MDR22_Acetylcholine print("Adding continuous projection: NC_DB7_MDR22_Acetylcholine from DB7 to MDR22, with 1 connection(s)") h("objectvar syn_NC_DB7_MDR22_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB7_MDR22_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR22[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_MDR22_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR22[0].soma { syn_NC_DB7_MDR22_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB7_MDR22_Acetylcholine_silent_pre[0].vpeer, a_MDR22[0].soma.v(0.500000)") h("setpointer syn_NC_DB7_MDR22_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB7_MDR23_Acetylcholine print("Adding continuous projection: NC_DB7_MDR23_Acetylcholine from DB7 to MDR23, with 1 connection(s)") h("objectvar syn_NC_DB7_MDR23_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB7_MDR23_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR23[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_MDR23_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR23[0].soma { syn_NC_DB7_MDR23_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB7_MDR23_Acetylcholine_silent_pre[0].vpeer, a_MDR23[0].soma.v(0.500000)") h("setpointer syn_NC_DB7_MDR23_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB7[0].soma.v(0.500000)") # ###################### Continuous Projection: NC_DB7_MDR24_Acetylcholine print("Adding continuous projection: NC_DB7_MDR24_Acetylcholine from DB7 to MDR24, with 1 connection(s)") h("objectvar syn_NC_DB7_MDR24_Acetylcholine_silent_pre[1]") h("objectvar syn_NC_DB7_MDR24_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[1]") # Continuous Connection 0: cell 0, seg 0 (0.5) [0.5 on a_DB7[0].soma] -> cell 0, seg 0 (0.5) [0.5 on a_MDR24[0].soma], weight: 1.0 h("a_DB7[0].soma { syn_NC_DB7_MDR24_Acetylcholine_silent_pre[0] = new silent(0.500000) }") h("a_MDR24[0].soma { syn_NC_DB7_MDR24_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0] = new neuron_to_muscle_exc_syn_2conns(0.500000) }") h("setpointer syn_NC_DB7_MDR24_Acetylcholine_silent_pre[0].vpeer, a_MDR24[0].soma.v(0.500000)") h("setpointer syn_NC_DB7_MDR24_Acetylcholine_neuron_to_muscle_exc_syn_2conns_post[0].vpeer, a_DB7[0].soma.v(0.500000)") # ###################### Input List: Input_AVBL_stim_AVBL_1 print("Adding input list: Input_AVBL_stim_AVBL_1 to AVBL, with 1 inputs of type stim_AVBL_1") # Adding single input: Component(id=0 type=input) h("objref Input_AVBL_stim_AVBL_1_0") h("a_AVBL[0].soma { Input_AVBL_stim_AVBL_1_0 = new stim_AVBL_1(0.5) } ") # ###################### Input List: Input_AVBR_stim_AVBR_1 print("Adding input list: Input_AVBR_stim_AVBR_1 to AVBR, with 1 inputs of type stim_AVBR_1") # Adding single input: Component(id=0 type=input) h("objref Input_AVBR_stim_AVBR_1_0") h("a_AVBR[0].soma { Input_AVBR_stim_AVBR_1_0 = new stim_AVBR_1(0.5) } ") # ###################### Input List: Input_AS1_stim_AS1_1 print("Adding input list: Input_AS1_stim_AS1_1 to AS1, with 1 inputs of type stim_AS1_1") # Adding single input: Component(id=0 type=input) h("objref Input_AS1_stim_AS1_1_0") h("a_AS1[0].soma { Input_AS1_stim_AS1_1_0 = new stim_AS1_1(0.5) } ") # ###################### Input List: Input_AS2_stim_AS2_1 print("Adding input list: Input_AS2_stim_AS2_1 to AS2, with 1 inputs of type stim_AS2_1") # Adding single input: Component(id=0 type=input) h("objref Input_AS2_stim_AS2_1_0") h("a_AS2[0].soma { Input_AS2_stim_AS2_1_0 = new stim_AS2_1(0.5) } ") # ###################### Input List: Input_AS3_stim_AS3_1 print("Adding input list: Input_AS3_stim_AS3_1 to AS3, with 1 inputs of type stim_AS3_1") # Adding single input: Component(id=0 type=input) h("objref Input_AS3_stim_AS3_1_0") h("a_AS3[0].soma { Input_AS3_stim_AS3_1_0 = new stim_AS3_1(0.5) } ") # ###################### Input List: Input_AS4_stim_AS4_1 print("Adding input list: Input_AS4_stim_AS4_1 to AS4, with 1 inputs of type stim_AS4_1") # Adding single input: Component(id=0 type=input) h("objref Input_AS4_stim_AS4_1_0") h("a_AS4[0].soma { Input_AS4_stim_AS4_1_0 = new stim_AS4_1(0.5) } ") # ###################### Input List: Input_AS5_stim_AS5_1 print("Adding input list: Input_AS5_stim_AS5_1 to AS5, with 1 inputs of type stim_AS5_1") # Adding single input: Component(id=0 type=input) h("objref Input_AS5_stim_AS5_1_0") h("a_AS5[0].soma { Input_AS5_stim_AS5_1_0 = new stim_AS5_1(0.5) } ") # ###################### Input List: Input_AS6_stim_AS6_1 print("Adding input list: Input_AS6_stim_AS6_1 to AS6, with 1 inputs of type stim_AS6_1") # Adding single input: Component(id=0 type=input) h("objref Input_AS6_stim_AS6_1_0") h("a_AS6[0].soma { Input_AS6_stim_AS6_1_0 = new stim_AS6_1(0.5) } ") # ###################### Input List: Input_AS7_stim_AS7_1 print("Adding input list: Input_AS7_stim_AS7_1 to AS7, with 1 inputs of type stim_AS7_1") # Adding single input: Component(id=0 type=input) h("objref Input_AS7_stim_AS7_1_0") h("a_AS7[0].soma { Input_AS7_stim_AS7_1_0 = new stim_AS7_1(0.5) } ") # ###################### Input List: Input_AS8_stim_AS8_1 print("Adding input list: Input_AS8_stim_AS8_1 to AS8, with 1 inputs of type stim_AS8_1") # Adding single input: Component(id=0 type=input) h("objref Input_AS8_stim_AS8_1_0") h("a_AS8[0].soma { Input_AS8_stim_AS8_1_0 = new stim_AS8_1(0.5) } ") # ###################### Input List: Input_AS9_stim_AS9_1 print("Adding input list: Input_AS9_stim_AS9_1 to AS9, with 1 inputs of type stim_AS9_1") # Adding single input: Component(id=0 type=input) h("objref Input_AS9_stim_AS9_1_0") h("a_AS9[0].soma { Input_AS9_stim_AS9_1_0 = new stim_AS9_1(0.5) } ") # ###################### Input List: Input_AS10_stim_AS10_1 print("Adding input list: Input_AS10_stim_AS10_1 to AS10, with 1 inputs of type stim_AS10_1") # Adding single input: Component(id=0 type=input) h("objref Input_AS10_stim_AS10_1_0") h("a_AS10[0].soma { Input_AS10_stim_AS10_1_0 = new stim_AS10_1(0.5) } ") # ###################### Input List: Input_AS11_stim_AS11_1 print("Adding input list: Input_AS11_stim_AS11_1 to AS11, with 1 inputs of type stim_AS11_1") # Adding single input: Component(id=0 type=input) h("objref Input_AS11_stim_AS11_1_0") h("a_AS11[0].soma { Input_AS11_stim_AS11_1_0 = new stim_AS11_1(0.5) } ") trec = h.Vector() trec.record(h._ref_t) h.tstop = tstop h.dt = dt h.steps_per_ms = 1/h.dt # ###################### File to save: c302_C2_AS_DA_DB.activity.dat (neurons_activity) # Column: AS1/0/GenericNeuronCell/caConc h(' objectvar v_AS1_v_neurons_activity ') h(' { v_AS1_v_neurons_activity = new Vector() } ') h(' { v_AS1_v_neurons_activity.record(&a_AS1[0].soma.cai(0.5)) } ') h.v_AS1_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS10/0/GenericNeuronCell/caConc h(' objectvar v_AS10_v_neurons_activity ') h(' { v_AS10_v_neurons_activity = new Vector() } ') h(' { v_AS10_v_neurons_activity.record(&a_AS10[0].soma.cai(0.5)) } ') h.v_AS10_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS11/0/GenericNeuronCell/caConc h(' objectvar v_AS11_v_neurons_activity ') h(' { v_AS11_v_neurons_activity = new Vector() } ') h(' { v_AS11_v_neurons_activity.record(&a_AS11[0].soma.cai(0.5)) } ') h.v_AS11_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS2/0/GenericNeuronCell/caConc h(' objectvar v_AS2_v_neurons_activity ') h(' { v_AS2_v_neurons_activity = new Vector() } ') h(' { v_AS2_v_neurons_activity.record(&a_AS2[0].soma.cai(0.5)) } ') h.v_AS2_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS3/0/GenericNeuronCell/caConc h(' objectvar v_AS3_v_neurons_activity ') h(' { v_AS3_v_neurons_activity = new Vector() } ') h(' { v_AS3_v_neurons_activity.record(&a_AS3[0].soma.cai(0.5)) } ') h.v_AS3_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS4/0/GenericNeuronCell/caConc h(' objectvar v_AS4_v_neurons_activity ') h(' { v_AS4_v_neurons_activity = new Vector() } ') h(' { v_AS4_v_neurons_activity.record(&a_AS4[0].soma.cai(0.5)) } ') h.v_AS4_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS5/0/GenericNeuronCell/caConc h(' objectvar v_AS5_v_neurons_activity ') h(' { v_AS5_v_neurons_activity = new Vector() } ') h(' { v_AS5_v_neurons_activity.record(&a_AS5[0].soma.cai(0.5)) } ') h.v_AS5_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS6/0/GenericNeuronCell/caConc h(' objectvar v_AS6_v_neurons_activity ') h(' { v_AS6_v_neurons_activity = new Vector() } ') h(' { v_AS6_v_neurons_activity.record(&a_AS6[0].soma.cai(0.5)) } ') h.v_AS6_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS7/0/GenericNeuronCell/caConc h(' objectvar v_AS7_v_neurons_activity ') h(' { v_AS7_v_neurons_activity = new Vector() } ') h(' { v_AS7_v_neurons_activity.record(&a_AS7[0].soma.cai(0.5)) } ') h.v_AS7_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS8/0/GenericNeuronCell/caConc h(' objectvar v_AS8_v_neurons_activity ') h(' { v_AS8_v_neurons_activity = new Vector() } ') h(' { v_AS8_v_neurons_activity.record(&a_AS8[0].soma.cai(0.5)) } ') h.v_AS8_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS9/0/GenericNeuronCell/caConc h(' objectvar v_AS9_v_neurons_activity ') h(' { v_AS9_v_neurons_activity = new Vector() } ') h(' { v_AS9_v_neurons_activity.record(&a_AS9[0].soma.cai(0.5)) } ') h.v_AS9_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: AVAL/0/GenericNeuronCell/caConc h(' objectvar v_AVAL_v_neurons_activity ') h(' { v_AVAL_v_neurons_activity = new Vector() } ') h(' { v_AVAL_v_neurons_activity.record(&a_AVAL[0].soma.cai(0.5)) } ') h.v_AVAL_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: AVAR/0/GenericNeuronCell/caConc h(' objectvar v_AVAR_v_neurons_activity ') h(' { v_AVAR_v_neurons_activity = new Vector() } ') h(' { v_AVAR_v_neurons_activity.record(&a_AVAR[0].soma.cai(0.5)) } ') h.v_AVAR_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: AVBL/0/GenericNeuronCell/caConc h(' objectvar v_AVBL_v_neurons_activity ') h(' { v_AVBL_v_neurons_activity = new Vector() } ') h(' { v_AVBL_v_neurons_activity.record(&a_AVBL[0].soma.cai(0.5)) } ') h.v_AVBL_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: AVBR/0/GenericNeuronCell/caConc h(' objectvar v_AVBR_v_neurons_activity ') h(' { v_AVBR_v_neurons_activity = new Vector() } ') h(' { v_AVBR_v_neurons_activity.record(&a_AVBR[0].soma.cai(0.5)) } ') h.v_AVBR_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA1/0/GenericNeuronCell/caConc h(' objectvar v_DA1_v_neurons_activity ') h(' { v_DA1_v_neurons_activity = new Vector() } ') h(' { v_DA1_v_neurons_activity.record(&a_DA1[0].soma.cai(0.5)) } ') h.v_DA1_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA2/0/GenericNeuronCell/caConc h(' objectvar v_DA2_v_neurons_activity ') h(' { v_DA2_v_neurons_activity = new Vector() } ') h(' { v_DA2_v_neurons_activity.record(&a_DA2[0].soma.cai(0.5)) } ') h.v_DA2_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA3/0/GenericNeuronCell/caConc h(' objectvar v_DA3_v_neurons_activity ') h(' { v_DA3_v_neurons_activity = new Vector() } ') h(' { v_DA3_v_neurons_activity.record(&a_DA3[0].soma.cai(0.5)) } ') h.v_DA3_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA4/0/GenericNeuronCell/caConc h(' objectvar v_DA4_v_neurons_activity ') h(' { v_DA4_v_neurons_activity = new Vector() } ') h(' { v_DA4_v_neurons_activity.record(&a_DA4[0].soma.cai(0.5)) } ') h.v_DA4_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA5/0/GenericNeuronCell/caConc h(' objectvar v_DA5_v_neurons_activity ') h(' { v_DA5_v_neurons_activity = new Vector() } ') h(' { v_DA5_v_neurons_activity.record(&a_DA5[0].soma.cai(0.5)) } ') h.v_DA5_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA6/0/GenericNeuronCell/caConc h(' objectvar v_DA6_v_neurons_activity ') h(' { v_DA6_v_neurons_activity = new Vector() } ') h(' { v_DA6_v_neurons_activity.record(&a_DA6[0].soma.cai(0.5)) } ') h.v_DA6_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA7/0/GenericNeuronCell/caConc h(' objectvar v_DA7_v_neurons_activity ') h(' { v_DA7_v_neurons_activity = new Vector() } ') h(' { v_DA7_v_neurons_activity.record(&a_DA7[0].soma.cai(0.5)) } ') h.v_DA7_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA8/0/GenericNeuronCell/caConc h(' objectvar v_DA8_v_neurons_activity ') h(' { v_DA8_v_neurons_activity = new Vector() } ') h(' { v_DA8_v_neurons_activity.record(&a_DA8[0].soma.cai(0.5)) } ') h.v_DA8_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA9/0/GenericNeuronCell/caConc h(' objectvar v_DA9_v_neurons_activity ') h(' { v_DA9_v_neurons_activity = new Vector() } ') h(' { v_DA9_v_neurons_activity.record(&a_DA9[0].soma.cai(0.5)) } ') h.v_DA9_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DB1/0/GenericNeuronCell/caConc h(' objectvar v_DB1_v_neurons_activity ') h(' { v_DB1_v_neurons_activity = new Vector() } ') h(' { v_DB1_v_neurons_activity.record(&a_DB1[0].soma.cai(0.5)) } ') h.v_DB1_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DB2/0/GenericNeuronCell/caConc h(' objectvar v_DB2_v_neurons_activity ') h(' { v_DB2_v_neurons_activity = new Vector() } ') h(' { v_DB2_v_neurons_activity.record(&a_DB2[0].soma.cai(0.5)) } ') h.v_DB2_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DB3/0/GenericNeuronCell/caConc h(' objectvar v_DB3_v_neurons_activity ') h(' { v_DB3_v_neurons_activity = new Vector() } ') h(' { v_DB3_v_neurons_activity.record(&a_DB3[0].soma.cai(0.5)) } ') h.v_DB3_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DB4/0/GenericNeuronCell/caConc h(' objectvar v_DB4_v_neurons_activity ') h(' { v_DB4_v_neurons_activity = new Vector() } ') h(' { v_DB4_v_neurons_activity.record(&a_DB4[0].soma.cai(0.5)) } ') h.v_DB4_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DB5/0/GenericNeuronCell/caConc h(' objectvar v_DB5_v_neurons_activity ') h(' { v_DB5_v_neurons_activity = new Vector() } ') h(' { v_DB5_v_neurons_activity.record(&a_DB5[0].soma.cai(0.5)) } ') h.v_DB5_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DB6/0/GenericNeuronCell/caConc h(' objectvar v_DB6_v_neurons_activity ') h(' { v_DB6_v_neurons_activity = new Vector() } ') h(' { v_DB6_v_neurons_activity.record(&a_DB6[0].soma.cai(0.5)) } ') h.v_DB6_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: DB7/0/GenericNeuronCell/caConc h(' objectvar v_DB7_v_neurons_activity ') h(' { v_DB7_v_neurons_activity = new Vector() } ') h(' { v_DB7_v_neurons_activity.record(&a_DB7[0].soma.cai(0.5)) } ') h.v_DB7_v_neurons_activity.resize((h.tstop * h.steps_per_ms) + 1) # ###################### File to save: c302_C2_AS_DA_DB.muscles.dat (muscles_v) # Column: MDR01/0/GenericMuscleCell/v h(' objectvar v_MDR01_v_muscles_v ') h(' { v_MDR01_v_muscles_v = new Vector() } ') h(' { v_MDR01_v_muscles_v.record(&a_MDR01[0].soma.v(0.5)) } ') h.v_MDR01_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR02/0/GenericMuscleCell/v h(' objectvar v_MDR02_v_muscles_v ') h(' { v_MDR02_v_muscles_v = new Vector() } ') h(' { v_MDR02_v_muscles_v.record(&a_MDR02[0].soma.v(0.5)) } ') h.v_MDR02_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR03/0/GenericMuscleCell/v h(' objectvar v_MDR03_v_muscles_v ') h(' { v_MDR03_v_muscles_v = new Vector() } ') h(' { v_MDR03_v_muscles_v.record(&a_MDR03[0].soma.v(0.5)) } ') h.v_MDR03_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR04/0/GenericMuscleCell/v h(' objectvar v_MDR04_v_muscles_v ') h(' { v_MDR04_v_muscles_v = new Vector() } ') h(' { v_MDR04_v_muscles_v.record(&a_MDR04[0].soma.v(0.5)) } ') h.v_MDR04_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR05/0/GenericMuscleCell/v h(' objectvar v_MDR05_v_muscles_v ') h(' { v_MDR05_v_muscles_v = new Vector() } ') h(' { v_MDR05_v_muscles_v.record(&a_MDR05[0].soma.v(0.5)) } ') h.v_MDR05_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR06/0/GenericMuscleCell/v h(' objectvar v_MDR06_v_muscles_v ') h(' { v_MDR06_v_muscles_v = new Vector() } ') h(' { v_MDR06_v_muscles_v.record(&a_MDR06[0].soma.v(0.5)) } ') h.v_MDR06_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR07/0/GenericMuscleCell/v h(' objectvar v_MDR07_v_muscles_v ') h(' { v_MDR07_v_muscles_v = new Vector() } ') h(' { v_MDR07_v_muscles_v.record(&a_MDR07[0].soma.v(0.5)) } ') h.v_MDR07_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR08/0/GenericMuscleCell/v h(' objectvar v_MDR08_v_muscles_v ') h(' { v_MDR08_v_muscles_v = new Vector() } ') h(' { v_MDR08_v_muscles_v.record(&a_MDR08[0].soma.v(0.5)) } ') h.v_MDR08_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR09/0/GenericMuscleCell/v h(' objectvar v_MDR09_v_muscles_v ') h(' { v_MDR09_v_muscles_v = new Vector() } ') h(' { v_MDR09_v_muscles_v.record(&a_MDR09[0].soma.v(0.5)) } ') h.v_MDR09_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR10/0/GenericMuscleCell/v h(' objectvar v_MDR10_v_muscles_v ') h(' { v_MDR10_v_muscles_v = new Vector() } ') h(' { v_MDR10_v_muscles_v.record(&a_MDR10[0].soma.v(0.5)) } ') h.v_MDR10_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR11/0/GenericMuscleCell/v h(' objectvar v_MDR11_v_muscles_v ') h(' { v_MDR11_v_muscles_v = new Vector() } ') h(' { v_MDR11_v_muscles_v.record(&a_MDR11[0].soma.v(0.5)) } ') h.v_MDR11_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR12/0/GenericMuscleCell/v h(' objectvar v_MDR12_v_muscles_v ') h(' { v_MDR12_v_muscles_v = new Vector() } ') h(' { v_MDR12_v_muscles_v.record(&a_MDR12[0].soma.v(0.5)) } ') h.v_MDR12_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR13/0/GenericMuscleCell/v h(' objectvar v_MDR13_v_muscles_v ') h(' { v_MDR13_v_muscles_v = new Vector() } ') h(' { v_MDR13_v_muscles_v.record(&a_MDR13[0].soma.v(0.5)) } ') h.v_MDR13_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR14/0/GenericMuscleCell/v h(' objectvar v_MDR14_v_muscles_v ') h(' { v_MDR14_v_muscles_v = new Vector() } ') h(' { v_MDR14_v_muscles_v.record(&a_MDR14[0].soma.v(0.5)) } ') h.v_MDR14_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR15/0/GenericMuscleCell/v h(' objectvar v_MDR15_v_muscles_v ') h(' { v_MDR15_v_muscles_v = new Vector() } ') h(' { v_MDR15_v_muscles_v.record(&a_MDR15[0].soma.v(0.5)) } ') h.v_MDR15_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR16/0/GenericMuscleCell/v h(' objectvar v_MDR16_v_muscles_v ') h(' { v_MDR16_v_muscles_v = new Vector() } ') h(' { v_MDR16_v_muscles_v.record(&a_MDR16[0].soma.v(0.5)) } ') h.v_MDR16_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR17/0/GenericMuscleCell/v h(' objectvar v_MDR17_v_muscles_v ') h(' { v_MDR17_v_muscles_v = new Vector() } ') h(' { v_MDR17_v_muscles_v.record(&a_MDR17[0].soma.v(0.5)) } ') h.v_MDR17_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR18/0/GenericMuscleCell/v h(' objectvar v_MDR18_v_muscles_v ') h(' { v_MDR18_v_muscles_v = new Vector() } ') h(' { v_MDR18_v_muscles_v.record(&a_MDR18[0].soma.v(0.5)) } ') h.v_MDR18_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR19/0/GenericMuscleCell/v h(' objectvar v_MDR19_v_muscles_v ') h(' { v_MDR19_v_muscles_v = new Vector() } ') h(' { v_MDR19_v_muscles_v.record(&a_MDR19[0].soma.v(0.5)) } ') h.v_MDR19_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR20/0/GenericMuscleCell/v h(' objectvar v_MDR20_v_muscles_v ') h(' { v_MDR20_v_muscles_v = new Vector() } ') h(' { v_MDR20_v_muscles_v.record(&a_MDR20[0].soma.v(0.5)) } ') h.v_MDR20_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR21/0/GenericMuscleCell/v h(' objectvar v_MDR21_v_muscles_v ') h(' { v_MDR21_v_muscles_v = new Vector() } ') h(' { v_MDR21_v_muscles_v.record(&a_MDR21[0].soma.v(0.5)) } ') h.v_MDR21_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR22/0/GenericMuscleCell/v h(' objectvar v_MDR22_v_muscles_v ') h(' { v_MDR22_v_muscles_v = new Vector() } ') h(' { v_MDR22_v_muscles_v.record(&a_MDR22[0].soma.v(0.5)) } ') h.v_MDR22_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR23/0/GenericMuscleCell/v h(' objectvar v_MDR23_v_muscles_v ') h(' { v_MDR23_v_muscles_v = new Vector() } ') h(' { v_MDR23_v_muscles_v.record(&a_MDR23[0].soma.v(0.5)) } ') h.v_MDR23_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR24/0/GenericMuscleCell/v h(' objectvar v_MDR24_v_muscles_v ') h(' { v_MDR24_v_muscles_v = new Vector() } ') h(' { v_MDR24_v_muscles_v.record(&a_MDR24[0].soma.v(0.5)) } ') h.v_MDR24_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR01/0/GenericMuscleCell/v h(' objectvar v_MVR01_v_muscles_v ') h(' { v_MVR01_v_muscles_v = new Vector() } ') h(' { v_MVR01_v_muscles_v.record(&a_MVR01[0].soma.v(0.5)) } ') h.v_MVR01_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR02/0/GenericMuscleCell/v h(' objectvar v_MVR02_v_muscles_v ') h(' { v_MVR02_v_muscles_v = new Vector() } ') h(' { v_MVR02_v_muscles_v.record(&a_MVR02[0].soma.v(0.5)) } ') h.v_MVR02_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR03/0/GenericMuscleCell/v h(' objectvar v_MVR03_v_muscles_v ') h(' { v_MVR03_v_muscles_v = new Vector() } ') h(' { v_MVR03_v_muscles_v.record(&a_MVR03[0].soma.v(0.5)) } ') h.v_MVR03_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR04/0/GenericMuscleCell/v h(' objectvar v_MVR04_v_muscles_v ') h(' { v_MVR04_v_muscles_v = new Vector() } ') h(' { v_MVR04_v_muscles_v.record(&a_MVR04[0].soma.v(0.5)) } ') h.v_MVR04_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR05/0/GenericMuscleCell/v h(' objectvar v_MVR05_v_muscles_v ') h(' { v_MVR05_v_muscles_v = new Vector() } ') h(' { v_MVR05_v_muscles_v.record(&a_MVR05[0].soma.v(0.5)) } ') h.v_MVR05_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR06/0/GenericMuscleCell/v h(' objectvar v_MVR06_v_muscles_v ') h(' { v_MVR06_v_muscles_v = new Vector() } ') h(' { v_MVR06_v_muscles_v.record(&a_MVR06[0].soma.v(0.5)) } ') h.v_MVR06_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR07/0/GenericMuscleCell/v h(' objectvar v_MVR07_v_muscles_v ') h(' { v_MVR07_v_muscles_v = new Vector() } ') h(' { v_MVR07_v_muscles_v.record(&a_MVR07[0].soma.v(0.5)) } ') h.v_MVR07_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR08/0/GenericMuscleCell/v h(' objectvar v_MVR08_v_muscles_v ') h(' { v_MVR08_v_muscles_v = new Vector() } ') h(' { v_MVR08_v_muscles_v.record(&a_MVR08[0].soma.v(0.5)) } ') h.v_MVR08_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR09/0/GenericMuscleCell/v h(' objectvar v_MVR09_v_muscles_v ') h(' { v_MVR09_v_muscles_v = new Vector() } ') h(' { v_MVR09_v_muscles_v.record(&a_MVR09[0].soma.v(0.5)) } ') h.v_MVR09_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR10/0/GenericMuscleCell/v h(' objectvar v_MVR10_v_muscles_v ') h(' { v_MVR10_v_muscles_v = new Vector() } ') h(' { v_MVR10_v_muscles_v.record(&a_MVR10[0].soma.v(0.5)) } ') h.v_MVR10_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR11/0/GenericMuscleCell/v h(' objectvar v_MVR11_v_muscles_v ') h(' { v_MVR11_v_muscles_v = new Vector() } ') h(' { v_MVR11_v_muscles_v.record(&a_MVR11[0].soma.v(0.5)) } ') h.v_MVR11_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR12/0/GenericMuscleCell/v h(' objectvar v_MVR12_v_muscles_v ') h(' { v_MVR12_v_muscles_v = new Vector() } ') h(' { v_MVR12_v_muscles_v.record(&a_MVR12[0].soma.v(0.5)) } ') h.v_MVR12_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR13/0/GenericMuscleCell/v h(' objectvar v_MVR13_v_muscles_v ') h(' { v_MVR13_v_muscles_v = new Vector() } ') h(' { v_MVR13_v_muscles_v.record(&a_MVR13[0].soma.v(0.5)) } ') h.v_MVR13_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR14/0/GenericMuscleCell/v h(' objectvar v_MVR14_v_muscles_v ') h(' { v_MVR14_v_muscles_v = new Vector() } ') h(' { v_MVR14_v_muscles_v.record(&a_MVR14[0].soma.v(0.5)) } ') h.v_MVR14_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR15/0/GenericMuscleCell/v h(' objectvar v_MVR15_v_muscles_v ') h(' { v_MVR15_v_muscles_v = new Vector() } ') h(' { v_MVR15_v_muscles_v.record(&a_MVR15[0].soma.v(0.5)) } ') h.v_MVR15_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR16/0/GenericMuscleCell/v h(' objectvar v_MVR16_v_muscles_v ') h(' { v_MVR16_v_muscles_v = new Vector() } ') h(' { v_MVR16_v_muscles_v.record(&a_MVR16[0].soma.v(0.5)) } ') h.v_MVR16_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR17/0/GenericMuscleCell/v h(' objectvar v_MVR17_v_muscles_v ') h(' { v_MVR17_v_muscles_v = new Vector() } ') h(' { v_MVR17_v_muscles_v.record(&a_MVR17[0].soma.v(0.5)) } ') h.v_MVR17_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR18/0/GenericMuscleCell/v h(' objectvar v_MVR18_v_muscles_v ') h(' { v_MVR18_v_muscles_v = new Vector() } ') h(' { v_MVR18_v_muscles_v.record(&a_MVR18[0].soma.v(0.5)) } ') h.v_MVR18_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR19/0/GenericMuscleCell/v h(' objectvar v_MVR19_v_muscles_v ') h(' { v_MVR19_v_muscles_v = new Vector() } ') h(' { v_MVR19_v_muscles_v.record(&a_MVR19[0].soma.v(0.5)) } ') h.v_MVR19_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR20/0/GenericMuscleCell/v h(' objectvar v_MVR20_v_muscles_v ') h(' { v_MVR20_v_muscles_v = new Vector() } ') h(' { v_MVR20_v_muscles_v.record(&a_MVR20[0].soma.v(0.5)) } ') h.v_MVR20_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR21/0/GenericMuscleCell/v h(' objectvar v_MVR21_v_muscles_v ') h(' { v_MVR21_v_muscles_v = new Vector() } ') h(' { v_MVR21_v_muscles_v.record(&a_MVR21[0].soma.v(0.5)) } ') h.v_MVR21_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR22/0/GenericMuscleCell/v h(' objectvar v_MVR22_v_muscles_v ') h(' { v_MVR22_v_muscles_v = new Vector() } ') h(' { v_MVR22_v_muscles_v.record(&a_MVR22[0].soma.v(0.5)) } ') h.v_MVR22_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR23/0/GenericMuscleCell/v h(' objectvar v_MVR23_v_muscles_v ') h(' { v_MVR23_v_muscles_v = new Vector() } ') h(' { v_MVR23_v_muscles_v.record(&a_MVR23[0].soma.v(0.5)) } ') h.v_MVR23_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL01/0/GenericMuscleCell/v h(' objectvar v_MVL01_v_muscles_v ') h(' { v_MVL01_v_muscles_v = new Vector() } ') h(' { v_MVL01_v_muscles_v.record(&a_MVL01[0].soma.v(0.5)) } ') h.v_MVL01_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL02/0/GenericMuscleCell/v h(' objectvar v_MVL02_v_muscles_v ') h(' { v_MVL02_v_muscles_v = new Vector() } ') h(' { v_MVL02_v_muscles_v.record(&a_MVL02[0].soma.v(0.5)) } ') h.v_MVL02_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL03/0/GenericMuscleCell/v h(' objectvar v_MVL03_v_muscles_v ') h(' { v_MVL03_v_muscles_v = new Vector() } ') h(' { v_MVL03_v_muscles_v.record(&a_MVL03[0].soma.v(0.5)) } ') h.v_MVL03_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL04/0/GenericMuscleCell/v h(' objectvar v_MVL04_v_muscles_v ') h(' { v_MVL04_v_muscles_v = new Vector() } ') h(' { v_MVL04_v_muscles_v.record(&a_MVL04[0].soma.v(0.5)) } ') h.v_MVL04_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL05/0/GenericMuscleCell/v h(' objectvar v_MVL05_v_muscles_v ') h(' { v_MVL05_v_muscles_v = new Vector() } ') h(' { v_MVL05_v_muscles_v.record(&a_MVL05[0].soma.v(0.5)) } ') h.v_MVL05_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL06/0/GenericMuscleCell/v h(' objectvar v_MVL06_v_muscles_v ') h(' { v_MVL06_v_muscles_v = new Vector() } ') h(' { v_MVL06_v_muscles_v.record(&a_MVL06[0].soma.v(0.5)) } ') h.v_MVL06_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL07/0/GenericMuscleCell/v h(' objectvar v_MVL07_v_muscles_v ') h(' { v_MVL07_v_muscles_v = new Vector() } ') h(' { v_MVL07_v_muscles_v.record(&a_MVL07[0].soma.v(0.5)) } ') h.v_MVL07_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL08/0/GenericMuscleCell/v h(' objectvar v_MVL08_v_muscles_v ') h(' { v_MVL08_v_muscles_v = new Vector() } ') h(' { v_MVL08_v_muscles_v.record(&a_MVL08[0].soma.v(0.5)) } ') h.v_MVL08_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL09/0/GenericMuscleCell/v h(' objectvar v_MVL09_v_muscles_v ') h(' { v_MVL09_v_muscles_v = new Vector() } ') h(' { v_MVL09_v_muscles_v.record(&a_MVL09[0].soma.v(0.5)) } ') h.v_MVL09_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL10/0/GenericMuscleCell/v h(' objectvar v_MVL10_v_muscles_v ') h(' { v_MVL10_v_muscles_v = new Vector() } ') h(' { v_MVL10_v_muscles_v.record(&a_MVL10[0].soma.v(0.5)) } ') h.v_MVL10_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL11/0/GenericMuscleCell/v h(' objectvar v_MVL11_v_muscles_v ') h(' { v_MVL11_v_muscles_v = new Vector() } ') h(' { v_MVL11_v_muscles_v.record(&a_MVL11[0].soma.v(0.5)) } ') h.v_MVL11_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL12/0/GenericMuscleCell/v h(' objectvar v_MVL12_v_muscles_v ') h(' { v_MVL12_v_muscles_v = new Vector() } ') h(' { v_MVL12_v_muscles_v.record(&a_MVL12[0].soma.v(0.5)) } ') h.v_MVL12_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL13/0/GenericMuscleCell/v h(' objectvar v_MVL13_v_muscles_v ') h(' { v_MVL13_v_muscles_v = new Vector() } ') h(' { v_MVL13_v_muscles_v.record(&a_MVL13[0].soma.v(0.5)) } ') h.v_MVL13_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL14/0/GenericMuscleCell/v h(' objectvar v_MVL14_v_muscles_v ') h(' { v_MVL14_v_muscles_v = new Vector() } ') h(' { v_MVL14_v_muscles_v.record(&a_MVL14[0].soma.v(0.5)) } ') h.v_MVL14_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL15/0/GenericMuscleCell/v h(' objectvar v_MVL15_v_muscles_v ') h(' { v_MVL15_v_muscles_v = new Vector() } ') h(' { v_MVL15_v_muscles_v.record(&a_MVL15[0].soma.v(0.5)) } ') h.v_MVL15_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL16/0/GenericMuscleCell/v h(' objectvar v_MVL16_v_muscles_v ') h(' { v_MVL16_v_muscles_v = new Vector() } ') h(' { v_MVL16_v_muscles_v.record(&a_MVL16[0].soma.v(0.5)) } ') h.v_MVL16_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL17/0/GenericMuscleCell/v h(' objectvar v_MVL17_v_muscles_v ') h(' { v_MVL17_v_muscles_v = new Vector() } ') h(' { v_MVL17_v_muscles_v.record(&a_MVL17[0].soma.v(0.5)) } ') h.v_MVL17_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL18/0/GenericMuscleCell/v h(' objectvar v_MVL18_v_muscles_v ') h(' { v_MVL18_v_muscles_v = new Vector() } ') h(' { v_MVL18_v_muscles_v.record(&a_MVL18[0].soma.v(0.5)) } ') h.v_MVL18_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL19/0/GenericMuscleCell/v h(' objectvar v_MVL19_v_muscles_v ') h(' { v_MVL19_v_muscles_v = new Vector() } ') h(' { v_MVL19_v_muscles_v.record(&a_MVL19[0].soma.v(0.5)) } ') h.v_MVL19_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL20/0/GenericMuscleCell/v h(' objectvar v_MVL20_v_muscles_v ') h(' { v_MVL20_v_muscles_v = new Vector() } ') h(' { v_MVL20_v_muscles_v.record(&a_MVL20[0].soma.v(0.5)) } ') h.v_MVL20_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL21/0/GenericMuscleCell/v h(' objectvar v_MVL21_v_muscles_v ') h(' { v_MVL21_v_muscles_v = new Vector() } ') h(' { v_MVL21_v_muscles_v.record(&a_MVL21[0].soma.v(0.5)) } ') h.v_MVL21_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL22/0/GenericMuscleCell/v h(' objectvar v_MVL22_v_muscles_v ') h(' { v_MVL22_v_muscles_v = new Vector() } ') h(' { v_MVL22_v_muscles_v.record(&a_MVL22[0].soma.v(0.5)) } ') h.v_MVL22_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL23/0/GenericMuscleCell/v h(' objectvar v_MVL23_v_muscles_v ') h(' { v_MVL23_v_muscles_v = new Vector() } ') h(' { v_MVL23_v_muscles_v.record(&a_MVL23[0].soma.v(0.5)) } ') h.v_MVL23_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL24/0/GenericMuscleCell/v h(' objectvar v_MVL24_v_muscles_v ') h(' { v_MVL24_v_muscles_v = new Vector() } ') h(' { v_MVL24_v_muscles_v.record(&a_MVL24[0].soma.v(0.5)) } ') h.v_MVL24_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL01/0/GenericMuscleCell/v h(' objectvar v_MDL01_v_muscles_v ') h(' { v_MDL01_v_muscles_v = new Vector() } ') h(' { v_MDL01_v_muscles_v.record(&a_MDL01[0].soma.v(0.5)) } ') h.v_MDL01_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL02/0/GenericMuscleCell/v h(' objectvar v_MDL02_v_muscles_v ') h(' { v_MDL02_v_muscles_v = new Vector() } ') h(' { v_MDL02_v_muscles_v.record(&a_MDL02[0].soma.v(0.5)) } ') h.v_MDL02_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL03/0/GenericMuscleCell/v h(' objectvar v_MDL03_v_muscles_v ') h(' { v_MDL03_v_muscles_v = new Vector() } ') h(' { v_MDL03_v_muscles_v.record(&a_MDL03[0].soma.v(0.5)) } ') h.v_MDL03_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL04/0/GenericMuscleCell/v h(' objectvar v_MDL04_v_muscles_v ') h(' { v_MDL04_v_muscles_v = new Vector() } ') h(' { v_MDL04_v_muscles_v.record(&a_MDL04[0].soma.v(0.5)) } ') h.v_MDL04_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL05/0/GenericMuscleCell/v h(' objectvar v_MDL05_v_muscles_v ') h(' { v_MDL05_v_muscles_v = new Vector() } ') h(' { v_MDL05_v_muscles_v.record(&a_MDL05[0].soma.v(0.5)) } ') h.v_MDL05_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL06/0/GenericMuscleCell/v h(' objectvar v_MDL06_v_muscles_v ') h(' { v_MDL06_v_muscles_v = new Vector() } ') h(' { v_MDL06_v_muscles_v.record(&a_MDL06[0].soma.v(0.5)) } ') h.v_MDL06_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL07/0/GenericMuscleCell/v h(' objectvar v_MDL07_v_muscles_v ') h(' { v_MDL07_v_muscles_v = new Vector() } ') h(' { v_MDL07_v_muscles_v.record(&a_MDL07[0].soma.v(0.5)) } ') h.v_MDL07_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL08/0/GenericMuscleCell/v h(' objectvar v_MDL08_v_muscles_v ') h(' { v_MDL08_v_muscles_v = new Vector() } ') h(' { v_MDL08_v_muscles_v.record(&a_MDL08[0].soma.v(0.5)) } ') h.v_MDL08_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL09/0/GenericMuscleCell/v h(' objectvar v_MDL09_v_muscles_v ') h(' { v_MDL09_v_muscles_v = new Vector() } ') h(' { v_MDL09_v_muscles_v.record(&a_MDL09[0].soma.v(0.5)) } ') h.v_MDL09_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL10/0/GenericMuscleCell/v h(' objectvar v_MDL10_v_muscles_v ') h(' { v_MDL10_v_muscles_v = new Vector() } ') h(' { v_MDL10_v_muscles_v.record(&a_MDL10[0].soma.v(0.5)) } ') h.v_MDL10_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL11/0/GenericMuscleCell/v h(' objectvar v_MDL11_v_muscles_v ') h(' { v_MDL11_v_muscles_v = new Vector() } ') h(' { v_MDL11_v_muscles_v.record(&a_MDL11[0].soma.v(0.5)) } ') h.v_MDL11_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL12/0/GenericMuscleCell/v h(' objectvar v_MDL12_v_muscles_v ') h(' { v_MDL12_v_muscles_v = new Vector() } ') h(' { v_MDL12_v_muscles_v.record(&a_MDL12[0].soma.v(0.5)) } ') h.v_MDL12_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL13/0/GenericMuscleCell/v h(' objectvar v_MDL13_v_muscles_v ') h(' { v_MDL13_v_muscles_v = new Vector() } ') h(' { v_MDL13_v_muscles_v.record(&a_MDL13[0].soma.v(0.5)) } ') h.v_MDL13_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL14/0/GenericMuscleCell/v h(' objectvar v_MDL14_v_muscles_v ') h(' { v_MDL14_v_muscles_v = new Vector() } ') h(' { v_MDL14_v_muscles_v.record(&a_MDL14[0].soma.v(0.5)) } ') h.v_MDL14_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL15/0/GenericMuscleCell/v h(' objectvar v_MDL15_v_muscles_v ') h(' { v_MDL15_v_muscles_v = new Vector() } ') h(' { v_MDL15_v_muscles_v.record(&a_MDL15[0].soma.v(0.5)) } ') h.v_MDL15_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL16/0/GenericMuscleCell/v h(' objectvar v_MDL16_v_muscles_v ') h(' { v_MDL16_v_muscles_v = new Vector() } ') h(' { v_MDL16_v_muscles_v.record(&a_MDL16[0].soma.v(0.5)) } ') h.v_MDL16_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL17/0/GenericMuscleCell/v h(' objectvar v_MDL17_v_muscles_v ') h(' { v_MDL17_v_muscles_v = new Vector() } ') h(' { v_MDL17_v_muscles_v.record(&a_MDL17[0].soma.v(0.5)) } ') h.v_MDL17_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL18/0/GenericMuscleCell/v h(' objectvar v_MDL18_v_muscles_v ') h(' { v_MDL18_v_muscles_v = new Vector() } ') h(' { v_MDL18_v_muscles_v.record(&a_MDL18[0].soma.v(0.5)) } ') h.v_MDL18_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL19/0/GenericMuscleCell/v h(' objectvar v_MDL19_v_muscles_v ') h(' { v_MDL19_v_muscles_v = new Vector() } ') h(' { v_MDL19_v_muscles_v.record(&a_MDL19[0].soma.v(0.5)) } ') h.v_MDL19_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL20/0/GenericMuscleCell/v h(' objectvar v_MDL20_v_muscles_v ') h(' { v_MDL20_v_muscles_v = new Vector() } ') h(' { v_MDL20_v_muscles_v.record(&a_MDL20[0].soma.v(0.5)) } ') h.v_MDL20_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL21/0/GenericMuscleCell/v h(' objectvar v_MDL21_v_muscles_v ') h(' { v_MDL21_v_muscles_v = new Vector() } ') h(' { v_MDL21_v_muscles_v.record(&a_MDL21[0].soma.v(0.5)) } ') h.v_MDL21_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL22/0/GenericMuscleCell/v h(' objectvar v_MDL22_v_muscles_v ') h(' { v_MDL22_v_muscles_v = new Vector() } ') h(' { v_MDL22_v_muscles_v.record(&a_MDL22[0].soma.v(0.5)) } ') h.v_MDL22_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL23/0/GenericMuscleCell/v h(' objectvar v_MDL23_v_muscles_v ') h(' { v_MDL23_v_muscles_v = new Vector() } ') h(' { v_MDL23_v_muscles_v.record(&a_MDL23[0].soma.v(0.5)) } ') h.v_MDL23_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL24/0/GenericMuscleCell/v h(' objectvar v_MDL24_v_muscles_v ') h(' { v_MDL24_v_muscles_v = new Vector() } ') h(' { v_MDL24_v_muscles_v.record(&a_MDL24[0].soma.v(0.5)) } ') h.v_MDL24_v_muscles_v.resize((h.tstop * h.steps_per_ms) + 1) # ###################### File to save: c302_C2_AS_DA_DB.muscles.activity.dat (muscles_activity) # Column: MDR01/0/GenericMuscleCell/caConc h(' objectvar v_MDR01_v_muscles_activity ') h(' { v_MDR01_v_muscles_activity = new Vector() } ') h(' { v_MDR01_v_muscles_activity.record(&a_MDR01[0].soma.cai(0.5)) } ') h.v_MDR01_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR02/0/GenericMuscleCell/caConc h(' objectvar v_MDR02_v_muscles_activity ') h(' { v_MDR02_v_muscles_activity = new Vector() } ') h(' { v_MDR02_v_muscles_activity.record(&a_MDR02[0].soma.cai(0.5)) } ') h.v_MDR02_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR03/0/GenericMuscleCell/caConc h(' objectvar v_MDR03_v_muscles_activity ') h(' { v_MDR03_v_muscles_activity = new Vector() } ') h(' { v_MDR03_v_muscles_activity.record(&a_MDR03[0].soma.cai(0.5)) } ') h.v_MDR03_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR04/0/GenericMuscleCell/caConc h(' objectvar v_MDR04_v_muscles_activity ') h(' { v_MDR04_v_muscles_activity = new Vector() } ') h(' { v_MDR04_v_muscles_activity.record(&a_MDR04[0].soma.cai(0.5)) } ') h.v_MDR04_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR05/0/GenericMuscleCell/caConc h(' objectvar v_MDR05_v_muscles_activity ') h(' { v_MDR05_v_muscles_activity = new Vector() } ') h(' { v_MDR05_v_muscles_activity.record(&a_MDR05[0].soma.cai(0.5)) } ') h.v_MDR05_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR06/0/GenericMuscleCell/caConc h(' objectvar v_MDR06_v_muscles_activity ') h(' { v_MDR06_v_muscles_activity = new Vector() } ') h(' { v_MDR06_v_muscles_activity.record(&a_MDR06[0].soma.cai(0.5)) } ') h.v_MDR06_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR07/0/GenericMuscleCell/caConc h(' objectvar v_MDR07_v_muscles_activity ') h(' { v_MDR07_v_muscles_activity = new Vector() } ') h(' { v_MDR07_v_muscles_activity.record(&a_MDR07[0].soma.cai(0.5)) } ') h.v_MDR07_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR08/0/GenericMuscleCell/caConc h(' objectvar v_MDR08_v_muscles_activity ') h(' { v_MDR08_v_muscles_activity = new Vector() } ') h(' { v_MDR08_v_muscles_activity.record(&a_MDR08[0].soma.cai(0.5)) } ') h.v_MDR08_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR09/0/GenericMuscleCell/caConc h(' objectvar v_MDR09_v_muscles_activity ') h(' { v_MDR09_v_muscles_activity = new Vector() } ') h(' { v_MDR09_v_muscles_activity.record(&a_MDR09[0].soma.cai(0.5)) } ') h.v_MDR09_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR10/0/GenericMuscleCell/caConc h(' objectvar v_MDR10_v_muscles_activity ') h(' { v_MDR10_v_muscles_activity = new Vector() } ') h(' { v_MDR10_v_muscles_activity.record(&a_MDR10[0].soma.cai(0.5)) } ') h.v_MDR10_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR11/0/GenericMuscleCell/caConc h(' objectvar v_MDR11_v_muscles_activity ') h(' { v_MDR11_v_muscles_activity = new Vector() } ') h(' { v_MDR11_v_muscles_activity.record(&a_MDR11[0].soma.cai(0.5)) } ') h.v_MDR11_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR12/0/GenericMuscleCell/caConc h(' objectvar v_MDR12_v_muscles_activity ') h(' { v_MDR12_v_muscles_activity = new Vector() } ') h(' { v_MDR12_v_muscles_activity.record(&a_MDR12[0].soma.cai(0.5)) } ') h.v_MDR12_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR13/0/GenericMuscleCell/caConc h(' objectvar v_MDR13_v_muscles_activity ') h(' { v_MDR13_v_muscles_activity = new Vector() } ') h(' { v_MDR13_v_muscles_activity.record(&a_MDR13[0].soma.cai(0.5)) } ') h.v_MDR13_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR14/0/GenericMuscleCell/caConc h(' objectvar v_MDR14_v_muscles_activity ') h(' { v_MDR14_v_muscles_activity = new Vector() } ') h(' { v_MDR14_v_muscles_activity.record(&a_MDR14[0].soma.cai(0.5)) } ') h.v_MDR14_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR15/0/GenericMuscleCell/caConc h(' objectvar v_MDR15_v_muscles_activity ') h(' { v_MDR15_v_muscles_activity = new Vector() } ') h(' { v_MDR15_v_muscles_activity.record(&a_MDR15[0].soma.cai(0.5)) } ') h.v_MDR15_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR16/0/GenericMuscleCell/caConc h(' objectvar v_MDR16_v_muscles_activity ') h(' { v_MDR16_v_muscles_activity = new Vector() } ') h(' { v_MDR16_v_muscles_activity.record(&a_MDR16[0].soma.cai(0.5)) } ') h.v_MDR16_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR17/0/GenericMuscleCell/caConc h(' objectvar v_MDR17_v_muscles_activity ') h(' { v_MDR17_v_muscles_activity = new Vector() } ') h(' { v_MDR17_v_muscles_activity.record(&a_MDR17[0].soma.cai(0.5)) } ') h.v_MDR17_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR18/0/GenericMuscleCell/caConc h(' objectvar v_MDR18_v_muscles_activity ') h(' { v_MDR18_v_muscles_activity = new Vector() } ') h(' { v_MDR18_v_muscles_activity.record(&a_MDR18[0].soma.cai(0.5)) } ') h.v_MDR18_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR19/0/GenericMuscleCell/caConc h(' objectvar v_MDR19_v_muscles_activity ') h(' { v_MDR19_v_muscles_activity = new Vector() } ') h(' { v_MDR19_v_muscles_activity.record(&a_MDR19[0].soma.cai(0.5)) } ') h.v_MDR19_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR20/0/GenericMuscleCell/caConc h(' objectvar v_MDR20_v_muscles_activity ') h(' { v_MDR20_v_muscles_activity = new Vector() } ') h(' { v_MDR20_v_muscles_activity.record(&a_MDR20[0].soma.cai(0.5)) } ') h.v_MDR20_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR21/0/GenericMuscleCell/caConc h(' objectvar v_MDR21_v_muscles_activity ') h(' { v_MDR21_v_muscles_activity = new Vector() } ') h(' { v_MDR21_v_muscles_activity.record(&a_MDR21[0].soma.cai(0.5)) } ') h.v_MDR21_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR22/0/GenericMuscleCell/caConc h(' objectvar v_MDR22_v_muscles_activity ') h(' { v_MDR22_v_muscles_activity = new Vector() } ') h(' { v_MDR22_v_muscles_activity.record(&a_MDR22[0].soma.cai(0.5)) } ') h.v_MDR22_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR23/0/GenericMuscleCell/caConc h(' objectvar v_MDR23_v_muscles_activity ') h(' { v_MDR23_v_muscles_activity = new Vector() } ') h(' { v_MDR23_v_muscles_activity.record(&a_MDR23[0].soma.cai(0.5)) } ') h.v_MDR23_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDR24/0/GenericMuscleCell/caConc h(' objectvar v_MDR24_v_muscles_activity ') h(' { v_MDR24_v_muscles_activity = new Vector() } ') h(' { v_MDR24_v_muscles_activity.record(&a_MDR24[0].soma.cai(0.5)) } ') h.v_MDR24_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR01/0/GenericMuscleCell/caConc h(' objectvar v_MVR01_v_muscles_activity ') h(' { v_MVR01_v_muscles_activity = new Vector() } ') h(' { v_MVR01_v_muscles_activity.record(&a_MVR01[0].soma.cai(0.5)) } ') h.v_MVR01_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR02/0/GenericMuscleCell/caConc h(' objectvar v_MVR02_v_muscles_activity ') h(' { v_MVR02_v_muscles_activity = new Vector() } ') h(' { v_MVR02_v_muscles_activity.record(&a_MVR02[0].soma.cai(0.5)) } ') h.v_MVR02_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR03/0/GenericMuscleCell/caConc h(' objectvar v_MVR03_v_muscles_activity ') h(' { v_MVR03_v_muscles_activity = new Vector() } ') h(' { v_MVR03_v_muscles_activity.record(&a_MVR03[0].soma.cai(0.5)) } ') h.v_MVR03_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR04/0/GenericMuscleCell/caConc h(' objectvar v_MVR04_v_muscles_activity ') h(' { v_MVR04_v_muscles_activity = new Vector() } ') h(' { v_MVR04_v_muscles_activity.record(&a_MVR04[0].soma.cai(0.5)) } ') h.v_MVR04_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR05/0/GenericMuscleCell/caConc h(' objectvar v_MVR05_v_muscles_activity ') h(' { v_MVR05_v_muscles_activity = new Vector() } ') h(' { v_MVR05_v_muscles_activity.record(&a_MVR05[0].soma.cai(0.5)) } ') h.v_MVR05_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR06/0/GenericMuscleCell/caConc h(' objectvar v_MVR06_v_muscles_activity ') h(' { v_MVR06_v_muscles_activity = new Vector() } ') h(' { v_MVR06_v_muscles_activity.record(&a_MVR06[0].soma.cai(0.5)) } ') h.v_MVR06_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR07/0/GenericMuscleCell/caConc h(' objectvar v_MVR07_v_muscles_activity ') h(' { v_MVR07_v_muscles_activity = new Vector() } ') h(' { v_MVR07_v_muscles_activity.record(&a_MVR07[0].soma.cai(0.5)) } ') h.v_MVR07_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR08/0/GenericMuscleCell/caConc h(' objectvar v_MVR08_v_muscles_activity ') h(' { v_MVR08_v_muscles_activity = new Vector() } ') h(' { v_MVR08_v_muscles_activity.record(&a_MVR08[0].soma.cai(0.5)) } ') h.v_MVR08_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR09/0/GenericMuscleCell/caConc h(' objectvar v_MVR09_v_muscles_activity ') h(' { v_MVR09_v_muscles_activity = new Vector() } ') h(' { v_MVR09_v_muscles_activity.record(&a_MVR09[0].soma.cai(0.5)) } ') h.v_MVR09_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR10/0/GenericMuscleCell/caConc h(' objectvar v_MVR10_v_muscles_activity ') h(' { v_MVR10_v_muscles_activity = new Vector() } ') h(' { v_MVR10_v_muscles_activity.record(&a_MVR10[0].soma.cai(0.5)) } ') h.v_MVR10_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR11/0/GenericMuscleCell/caConc h(' objectvar v_MVR11_v_muscles_activity ') h(' { v_MVR11_v_muscles_activity = new Vector() } ') h(' { v_MVR11_v_muscles_activity.record(&a_MVR11[0].soma.cai(0.5)) } ') h.v_MVR11_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR12/0/GenericMuscleCell/caConc h(' objectvar v_MVR12_v_muscles_activity ') h(' { v_MVR12_v_muscles_activity = new Vector() } ') h(' { v_MVR12_v_muscles_activity.record(&a_MVR12[0].soma.cai(0.5)) } ') h.v_MVR12_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR13/0/GenericMuscleCell/caConc h(' objectvar v_MVR13_v_muscles_activity ') h(' { v_MVR13_v_muscles_activity = new Vector() } ') h(' { v_MVR13_v_muscles_activity.record(&a_MVR13[0].soma.cai(0.5)) } ') h.v_MVR13_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR14/0/GenericMuscleCell/caConc h(' objectvar v_MVR14_v_muscles_activity ') h(' { v_MVR14_v_muscles_activity = new Vector() } ') h(' { v_MVR14_v_muscles_activity.record(&a_MVR14[0].soma.cai(0.5)) } ') h.v_MVR14_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR15/0/GenericMuscleCell/caConc h(' objectvar v_MVR15_v_muscles_activity ') h(' { v_MVR15_v_muscles_activity = new Vector() } ') h(' { v_MVR15_v_muscles_activity.record(&a_MVR15[0].soma.cai(0.5)) } ') h.v_MVR15_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR16/0/GenericMuscleCell/caConc h(' objectvar v_MVR16_v_muscles_activity ') h(' { v_MVR16_v_muscles_activity = new Vector() } ') h(' { v_MVR16_v_muscles_activity.record(&a_MVR16[0].soma.cai(0.5)) } ') h.v_MVR16_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR17/0/GenericMuscleCell/caConc h(' objectvar v_MVR17_v_muscles_activity ') h(' { v_MVR17_v_muscles_activity = new Vector() } ') h(' { v_MVR17_v_muscles_activity.record(&a_MVR17[0].soma.cai(0.5)) } ') h.v_MVR17_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR18/0/GenericMuscleCell/caConc h(' objectvar v_MVR18_v_muscles_activity ') h(' { v_MVR18_v_muscles_activity = new Vector() } ') h(' { v_MVR18_v_muscles_activity.record(&a_MVR18[0].soma.cai(0.5)) } ') h.v_MVR18_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR19/0/GenericMuscleCell/caConc h(' objectvar v_MVR19_v_muscles_activity ') h(' { v_MVR19_v_muscles_activity = new Vector() } ') h(' { v_MVR19_v_muscles_activity.record(&a_MVR19[0].soma.cai(0.5)) } ') h.v_MVR19_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR20/0/GenericMuscleCell/caConc h(' objectvar v_MVR20_v_muscles_activity ') h(' { v_MVR20_v_muscles_activity = new Vector() } ') h(' { v_MVR20_v_muscles_activity.record(&a_MVR20[0].soma.cai(0.5)) } ') h.v_MVR20_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR21/0/GenericMuscleCell/caConc h(' objectvar v_MVR21_v_muscles_activity ') h(' { v_MVR21_v_muscles_activity = new Vector() } ') h(' { v_MVR21_v_muscles_activity.record(&a_MVR21[0].soma.cai(0.5)) } ') h.v_MVR21_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR22/0/GenericMuscleCell/caConc h(' objectvar v_MVR22_v_muscles_activity ') h(' { v_MVR22_v_muscles_activity = new Vector() } ') h(' { v_MVR22_v_muscles_activity.record(&a_MVR22[0].soma.cai(0.5)) } ') h.v_MVR22_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVR23/0/GenericMuscleCell/caConc h(' objectvar v_MVR23_v_muscles_activity ') h(' { v_MVR23_v_muscles_activity = new Vector() } ') h(' { v_MVR23_v_muscles_activity.record(&a_MVR23[0].soma.cai(0.5)) } ') h.v_MVR23_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL01/0/GenericMuscleCell/caConc h(' objectvar v_MVL01_v_muscles_activity ') h(' { v_MVL01_v_muscles_activity = new Vector() } ') h(' { v_MVL01_v_muscles_activity.record(&a_MVL01[0].soma.cai(0.5)) } ') h.v_MVL01_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL02/0/GenericMuscleCell/caConc h(' objectvar v_MVL02_v_muscles_activity ') h(' { v_MVL02_v_muscles_activity = new Vector() } ') h(' { v_MVL02_v_muscles_activity.record(&a_MVL02[0].soma.cai(0.5)) } ') h.v_MVL02_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL03/0/GenericMuscleCell/caConc h(' objectvar v_MVL03_v_muscles_activity ') h(' { v_MVL03_v_muscles_activity = new Vector() } ') h(' { v_MVL03_v_muscles_activity.record(&a_MVL03[0].soma.cai(0.5)) } ') h.v_MVL03_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL04/0/GenericMuscleCell/caConc h(' objectvar v_MVL04_v_muscles_activity ') h(' { v_MVL04_v_muscles_activity = new Vector() } ') h(' { v_MVL04_v_muscles_activity.record(&a_MVL04[0].soma.cai(0.5)) } ') h.v_MVL04_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL05/0/GenericMuscleCell/caConc h(' objectvar v_MVL05_v_muscles_activity ') h(' { v_MVL05_v_muscles_activity = new Vector() } ') h(' { v_MVL05_v_muscles_activity.record(&a_MVL05[0].soma.cai(0.5)) } ') h.v_MVL05_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL06/0/GenericMuscleCell/caConc h(' objectvar v_MVL06_v_muscles_activity ') h(' { v_MVL06_v_muscles_activity = new Vector() } ') h(' { v_MVL06_v_muscles_activity.record(&a_MVL06[0].soma.cai(0.5)) } ') h.v_MVL06_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL07/0/GenericMuscleCell/caConc h(' objectvar v_MVL07_v_muscles_activity ') h(' { v_MVL07_v_muscles_activity = new Vector() } ') h(' { v_MVL07_v_muscles_activity.record(&a_MVL07[0].soma.cai(0.5)) } ') h.v_MVL07_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL08/0/GenericMuscleCell/caConc h(' objectvar v_MVL08_v_muscles_activity ') h(' { v_MVL08_v_muscles_activity = new Vector() } ') h(' { v_MVL08_v_muscles_activity.record(&a_MVL08[0].soma.cai(0.5)) } ') h.v_MVL08_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL09/0/GenericMuscleCell/caConc h(' objectvar v_MVL09_v_muscles_activity ') h(' { v_MVL09_v_muscles_activity = new Vector() } ') h(' { v_MVL09_v_muscles_activity.record(&a_MVL09[0].soma.cai(0.5)) } ') h.v_MVL09_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL10/0/GenericMuscleCell/caConc h(' objectvar v_MVL10_v_muscles_activity ') h(' { v_MVL10_v_muscles_activity = new Vector() } ') h(' { v_MVL10_v_muscles_activity.record(&a_MVL10[0].soma.cai(0.5)) } ') h.v_MVL10_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL11/0/GenericMuscleCell/caConc h(' objectvar v_MVL11_v_muscles_activity ') h(' { v_MVL11_v_muscles_activity = new Vector() } ') h(' { v_MVL11_v_muscles_activity.record(&a_MVL11[0].soma.cai(0.5)) } ') h.v_MVL11_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL12/0/GenericMuscleCell/caConc h(' objectvar v_MVL12_v_muscles_activity ') h(' { v_MVL12_v_muscles_activity = new Vector() } ') h(' { v_MVL12_v_muscles_activity.record(&a_MVL12[0].soma.cai(0.5)) } ') h.v_MVL12_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL13/0/GenericMuscleCell/caConc h(' objectvar v_MVL13_v_muscles_activity ') h(' { v_MVL13_v_muscles_activity = new Vector() } ') h(' { v_MVL13_v_muscles_activity.record(&a_MVL13[0].soma.cai(0.5)) } ') h.v_MVL13_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL14/0/GenericMuscleCell/caConc h(' objectvar v_MVL14_v_muscles_activity ') h(' { v_MVL14_v_muscles_activity = new Vector() } ') h(' { v_MVL14_v_muscles_activity.record(&a_MVL14[0].soma.cai(0.5)) } ') h.v_MVL14_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL15/0/GenericMuscleCell/caConc h(' objectvar v_MVL15_v_muscles_activity ') h(' { v_MVL15_v_muscles_activity = new Vector() } ') h(' { v_MVL15_v_muscles_activity.record(&a_MVL15[0].soma.cai(0.5)) } ') h.v_MVL15_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL16/0/GenericMuscleCell/caConc h(' objectvar v_MVL16_v_muscles_activity ') h(' { v_MVL16_v_muscles_activity = new Vector() } ') h(' { v_MVL16_v_muscles_activity.record(&a_MVL16[0].soma.cai(0.5)) } ') h.v_MVL16_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL17/0/GenericMuscleCell/caConc h(' objectvar v_MVL17_v_muscles_activity ') h(' { v_MVL17_v_muscles_activity = new Vector() } ') h(' { v_MVL17_v_muscles_activity.record(&a_MVL17[0].soma.cai(0.5)) } ') h.v_MVL17_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL18/0/GenericMuscleCell/caConc h(' objectvar v_MVL18_v_muscles_activity ') h(' { v_MVL18_v_muscles_activity = new Vector() } ') h(' { v_MVL18_v_muscles_activity.record(&a_MVL18[0].soma.cai(0.5)) } ') h.v_MVL18_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL19/0/GenericMuscleCell/caConc h(' objectvar v_MVL19_v_muscles_activity ') h(' { v_MVL19_v_muscles_activity = new Vector() } ') h(' { v_MVL19_v_muscles_activity.record(&a_MVL19[0].soma.cai(0.5)) } ') h.v_MVL19_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL20/0/GenericMuscleCell/caConc h(' objectvar v_MVL20_v_muscles_activity ') h(' { v_MVL20_v_muscles_activity = new Vector() } ') h(' { v_MVL20_v_muscles_activity.record(&a_MVL20[0].soma.cai(0.5)) } ') h.v_MVL20_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL21/0/GenericMuscleCell/caConc h(' objectvar v_MVL21_v_muscles_activity ') h(' { v_MVL21_v_muscles_activity = new Vector() } ') h(' { v_MVL21_v_muscles_activity.record(&a_MVL21[0].soma.cai(0.5)) } ') h.v_MVL21_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL22/0/GenericMuscleCell/caConc h(' objectvar v_MVL22_v_muscles_activity ') h(' { v_MVL22_v_muscles_activity = new Vector() } ') h(' { v_MVL22_v_muscles_activity.record(&a_MVL22[0].soma.cai(0.5)) } ') h.v_MVL22_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL23/0/GenericMuscleCell/caConc h(' objectvar v_MVL23_v_muscles_activity ') h(' { v_MVL23_v_muscles_activity = new Vector() } ') h(' { v_MVL23_v_muscles_activity.record(&a_MVL23[0].soma.cai(0.5)) } ') h.v_MVL23_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MVL24/0/GenericMuscleCell/caConc h(' objectvar v_MVL24_v_muscles_activity ') h(' { v_MVL24_v_muscles_activity = new Vector() } ') h(' { v_MVL24_v_muscles_activity.record(&a_MVL24[0].soma.cai(0.5)) } ') h.v_MVL24_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL01/0/GenericMuscleCell/caConc h(' objectvar v_MDL01_v_muscles_activity ') h(' { v_MDL01_v_muscles_activity = new Vector() } ') h(' { v_MDL01_v_muscles_activity.record(&a_MDL01[0].soma.cai(0.5)) } ') h.v_MDL01_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL02/0/GenericMuscleCell/caConc h(' objectvar v_MDL02_v_muscles_activity ') h(' { v_MDL02_v_muscles_activity = new Vector() } ') h(' { v_MDL02_v_muscles_activity.record(&a_MDL02[0].soma.cai(0.5)) } ') h.v_MDL02_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL03/0/GenericMuscleCell/caConc h(' objectvar v_MDL03_v_muscles_activity ') h(' { v_MDL03_v_muscles_activity = new Vector() } ') h(' { v_MDL03_v_muscles_activity.record(&a_MDL03[0].soma.cai(0.5)) } ') h.v_MDL03_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL04/0/GenericMuscleCell/caConc h(' objectvar v_MDL04_v_muscles_activity ') h(' { v_MDL04_v_muscles_activity = new Vector() } ') h(' { v_MDL04_v_muscles_activity.record(&a_MDL04[0].soma.cai(0.5)) } ') h.v_MDL04_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL05/0/GenericMuscleCell/caConc h(' objectvar v_MDL05_v_muscles_activity ') h(' { v_MDL05_v_muscles_activity = new Vector() } ') h(' { v_MDL05_v_muscles_activity.record(&a_MDL05[0].soma.cai(0.5)) } ') h.v_MDL05_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL06/0/GenericMuscleCell/caConc h(' objectvar v_MDL06_v_muscles_activity ') h(' { v_MDL06_v_muscles_activity = new Vector() } ') h(' { v_MDL06_v_muscles_activity.record(&a_MDL06[0].soma.cai(0.5)) } ') h.v_MDL06_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL07/0/GenericMuscleCell/caConc h(' objectvar v_MDL07_v_muscles_activity ') h(' { v_MDL07_v_muscles_activity = new Vector() } ') h(' { v_MDL07_v_muscles_activity.record(&a_MDL07[0].soma.cai(0.5)) } ') h.v_MDL07_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL08/0/GenericMuscleCell/caConc h(' objectvar v_MDL08_v_muscles_activity ') h(' { v_MDL08_v_muscles_activity = new Vector() } ') h(' { v_MDL08_v_muscles_activity.record(&a_MDL08[0].soma.cai(0.5)) } ') h.v_MDL08_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL09/0/GenericMuscleCell/caConc h(' objectvar v_MDL09_v_muscles_activity ') h(' { v_MDL09_v_muscles_activity = new Vector() } ') h(' { v_MDL09_v_muscles_activity.record(&a_MDL09[0].soma.cai(0.5)) } ') h.v_MDL09_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL10/0/GenericMuscleCell/caConc h(' objectvar v_MDL10_v_muscles_activity ') h(' { v_MDL10_v_muscles_activity = new Vector() } ') h(' { v_MDL10_v_muscles_activity.record(&a_MDL10[0].soma.cai(0.5)) } ') h.v_MDL10_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL11/0/GenericMuscleCell/caConc h(' objectvar v_MDL11_v_muscles_activity ') h(' { v_MDL11_v_muscles_activity = new Vector() } ') h(' { v_MDL11_v_muscles_activity.record(&a_MDL11[0].soma.cai(0.5)) } ') h.v_MDL11_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL12/0/GenericMuscleCell/caConc h(' objectvar v_MDL12_v_muscles_activity ') h(' { v_MDL12_v_muscles_activity = new Vector() } ') h(' { v_MDL12_v_muscles_activity.record(&a_MDL12[0].soma.cai(0.5)) } ') h.v_MDL12_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL13/0/GenericMuscleCell/caConc h(' objectvar v_MDL13_v_muscles_activity ') h(' { v_MDL13_v_muscles_activity = new Vector() } ') h(' { v_MDL13_v_muscles_activity.record(&a_MDL13[0].soma.cai(0.5)) } ') h.v_MDL13_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL14/0/GenericMuscleCell/caConc h(' objectvar v_MDL14_v_muscles_activity ') h(' { v_MDL14_v_muscles_activity = new Vector() } ') h(' { v_MDL14_v_muscles_activity.record(&a_MDL14[0].soma.cai(0.5)) } ') h.v_MDL14_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL15/0/GenericMuscleCell/caConc h(' objectvar v_MDL15_v_muscles_activity ') h(' { v_MDL15_v_muscles_activity = new Vector() } ') h(' { v_MDL15_v_muscles_activity.record(&a_MDL15[0].soma.cai(0.5)) } ') h.v_MDL15_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL16/0/GenericMuscleCell/caConc h(' objectvar v_MDL16_v_muscles_activity ') h(' { v_MDL16_v_muscles_activity = new Vector() } ') h(' { v_MDL16_v_muscles_activity.record(&a_MDL16[0].soma.cai(0.5)) } ') h.v_MDL16_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL17/0/GenericMuscleCell/caConc h(' objectvar v_MDL17_v_muscles_activity ') h(' { v_MDL17_v_muscles_activity = new Vector() } ') h(' { v_MDL17_v_muscles_activity.record(&a_MDL17[0].soma.cai(0.5)) } ') h.v_MDL17_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL18/0/GenericMuscleCell/caConc h(' objectvar v_MDL18_v_muscles_activity ') h(' { v_MDL18_v_muscles_activity = new Vector() } ') h(' { v_MDL18_v_muscles_activity.record(&a_MDL18[0].soma.cai(0.5)) } ') h.v_MDL18_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL19/0/GenericMuscleCell/caConc h(' objectvar v_MDL19_v_muscles_activity ') h(' { v_MDL19_v_muscles_activity = new Vector() } ') h(' { v_MDL19_v_muscles_activity.record(&a_MDL19[0].soma.cai(0.5)) } ') h.v_MDL19_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL20/0/GenericMuscleCell/caConc h(' objectvar v_MDL20_v_muscles_activity ') h(' { v_MDL20_v_muscles_activity = new Vector() } ') h(' { v_MDL20_v_muscles_activity.record(&a_MDL20[0].soma.cai(0.5)) } ') h.v_MDL20_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL21/0/GenericMuscleCell/caConc h(' objectvar v_MDL21_v_muscles_activity ') h(' { v_MDL21_v_muscles_activity = new Vector() } ') h(' { v_MDL21_v_muscles_activity.record(&a_MDL21[0].soma.cai(0.5)) } ') h.v_MDL21_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL22/0/GenericMuscleCell/caConc h(' objectvar v_MDL22_v_muscles_activity ') h(' { v_MDL22_v_muscles_activity = new Vector() } ') h(' { v_MDL22_v_muscles_activity.record(&a_MDL22[0].soma.cai(0.5)) } ') h.v_MDL22_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL23/0/GenericMuscleCell/caConc h(' objectvar v_MDL23_v_muscles_activity ') h(' { v_MDL23_v_muscles_activity = new Vector() } ') h(' { v_MDL23_v_muscles_activity.record(&a_MDL23[0].soma.cai(0.5)) } ') h.v_MDL23_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # Column: MDL24/0/GenericMuscleCell/caConc h(' objectvar v_MDL24_v_muscles_activity ') h(' { v_MDL24_v_muscles_activity = new Vector() } ') h(' { v_MDL24_v_muscles_activity.record(&a_MDL24[0].soma.cai(0.5)) } ') h.v_MDL24_v_muscles_activity.resize((h.tstop * h.steps_per_ms) + 1) # ###################### File to save: c302_C2_AS_DA_DB.dat (neurons_v) # Column: AS1/0/GenericNeuronCell/v h(' objectvar v_AS1_v_neurons_v ') h(' { v_AS1_v_neurons_v = new Vector() } ') h(' { v_AS1_v_neurons_v.record(&a_AS1[0].soma.v(0.5)) } ') h.v_AS1_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS10/0/GenericNeuronCell/v h(' objectvar v_AS10_v_neurons_v ') h(' { v_AS10_v_neurons_v = new Vector() } ') h(' { v_AS10_v_neurons_v.record(&a_AS10[0].soma.v(0.5)) } ') h.v_AS10_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS11/0/GenericNeuronCell/v h(' objectvar v_AS11_v_neurons_v ') h(' { v_AS11_v_neurons_v = new Vector() } ') h(' { v_AS11_v_neurons_v.record(&a_AS11[0].soma.v(0.5)) } ') h.v_AS11_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS2/0/GenericNeuronCell/v h(' objectvar v_AS2_v_neurons_v ') h(' { v_AS2_v_neurons_v = new Vector() } ') h(' { v_AS2_v_neurons_v.record(&a_AS2[0].soma.v(0.5)) } ') h.v_AS2_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS3/0/GenericNeuronCell/v h(' objectvar v_AS3_v_neurons_v ') h(' { v_AS3_v_neurons_v = new Vector() } ') h(' { v_AS3_v_neurons_v.record(&a_AS3[0].soma.v(0.5)) } ') h.v_AS3_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS4/0/GenericNeuronCell/v h(' objectvar v_AS4_v_neurons_v ') h(' { v_AS4_v_neurons_v = new Vector() } ') h(' { v_AS4_v_neurons_v.record(&a_AS4[0].soma.v(0.5)) } ') h.v_AS4_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS5/0/GenericNeuronCell/v h(' objectvar v_AS5_v_neurons_v ') h(' { v_AS5_v_neurons_v = new Vector() } ') h(' { v_AS5_v_neurons_v.record(&a_AS5[0].soma.v(0.5)) } ') h.v_AS5_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS6/0/GenericNeuronCell/v h(' objectvar v_AS6_v_neurons_v ') h(' { v_AS6_v_neurons_v = new Vector() } ') h(' { v_AS6_v_neurons_v.record(&a_AS6[0].soma.v(0.5)) } ') h.v_AS6_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS7/0/GenericNeuronCell/v h(' objectvar v_AS7_v_neurons_v ') h(' { v_AS7_v_neurons_v = new Vector() } ') h(' { v_AS7_v_neurons_v.record(&a_AS7[0].soma.v(0.5)) } ') h.v_AS7_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS8/0/GenericNeuronCell/v h(' objectvar v_AS8_v_neurons_v ') h(' { v_AS8_v_neurons_v = new Vector() } ') h(' { v_AS8_v_neurons_v.record(&a_AS8[0].soma.v(0.5)) } ') h.v_AS8_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: AS9/0/GenericNeuronCell/v h(' objectvar v_AS9_v_neurons_v ') h(' { v_AS9_v_neurons_v = new Vector() } ') h(' { v_AS9_v_neurons_v.record(&a_AS9[0].soma.v(0.5)) } ') h.v_AS9_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: AVAL/0/GenericNeuronCell/v h(' objectvar v_AVAL_v_neurons_v ') h(' { v_AVAL_v_neurons_v = new Vector() } ') h(' { v_AVAL_v_neurons_v.record(&a_AVAL[0].soma.v(0.5)) } ') h.v_AVAL_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: AVAR/0/GenericNeuronCell/v h(' objectvar v_AVAR_v_neurons_v ') h(' { v_AVAR_v_neurons_v = new Vector() } ') h(' { v_AVAR_v_neurons_v.record(&a_AVAR[0].soma.v(0.5)) } ') h.v_AVAR_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: AVBL/0/GenericNeuronCell/v h(' objectvar v_AVBL_v_neurons_v ') h(' { v_AVBL_v_neurons_v = new Vector() } ') h(' { v_AVBL_v_neurons_v.record(&a_AVBL[0].soma.v(0.5)) } ') h.v_AVBL_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: AVBR/0/GenericNeuronCell/v h(' objectvar v_AVBR_v_neurons_v ') h(' { v_AVBR_v_neurons_v = new Vector() } ') h(' { v_AVBR_v_neurons_v.record(&a_AVBR[0].soma.v(0.5)) } ') h.v_AVBR_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA1/0/GenericNeuronCell/v h(' objectvar v_DA1_v_neurons_v ') h(' { v_DA1_v_neurons_v = new Vector() } ') h(' { v_DA1_v_neurons_v.record(&a_DA1[0].soma.v(0.5)) } ') h.v_DA1_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA2/0/GenericNeuronCell/v h(' objectvar v_DA2_v_neurons_v ') h(' { v_DA2_v_neurons_v = new Vector() } ') h(' { v_DA2_v_neurons_v.record(&a_DA2[0].soma.v(0.5)) } ') h.v_DA2_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA3/0/GenericNeuronCell/v h(' objectvar v_DA3_v_neurons_v ') h(' { v_DA3_v_neurons_v = new Vector() } ') h(' { v_DA3_v_neurons_v.record(&a_DA3[0].soma.v(0.5)) } ') h.v_DA3_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA4/0/GenericNeuronCell/v h(' objectvar v_DA4_v_neurons_v ') h(' { v_DA4_v_neurons_v = new Vector() } ') h(' { v_DA4_v_neurons_v.record(&a_DA4[0].soma.v(0.5)) } ') h.v_DA4_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA5/0/GenericNeuronCell/v h(' objectvar v_DA5_v_neurons_v ') h(' { v_DA5_v_neurons_v = new Vector() } ') h(' { v_DA5_v_neurons_v.record(&a_DA5[0].soma.v(0.5)) } ') h.v_DA5_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA6/0/GenericNeuronCell/v h(' objectvar v_DA6_v_neurons_v ') h(' { v_DA6_v_neurons_v = new Vector() } ') h(' { v_DA6_v_neurons_v.record(&a_DA6[0].soma.v(0.5)) } ') h.v_DA6_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA7/0/GenericNeuronCell/v h(' objectvar v_DA7_v_neurons_v ') h(' { v_DA7_v_neurons_v = new Vector() } ') h(' { v_DA7_v_neurons_v.record(&a_DA7[0].soma.v(0.5)) } ') h.v_DA7_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA8/0/GenericNeuronCell/v h(' objectvar v_DA8_v_neurons_v ') h(' { v_DA8_v_neurons_v = new Vector() } ') h(' { v_DA8_v_neurons_v.record(&a_DA8[0].soma.v(0.5)) } ') h.v_DA8_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DA9/0/GenericNeuronCell/v h(' objectvar v_DA9_v_neurons_v ') h(' { v_DA9_v_neurons_v = new Vector() } ') h(' { v_DA9_v_neurons_v.record(&a_DA9[0].soma.v(0.5)) } ') h.v_DA9_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DB1/0/GenericNeuronCell/v h(' objectvar v_DB1_v_neurons_v ') h(' { v_DB1_v_neurons_v = new Vector() } ') h(' { v_DB1_v_neurons_v.record(&a_DB1[0].soma.v(0.5)) } ') h.v_DB1_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DB2/0/GenericNeuronCell/v h(' objectvar v_DB2_v_neurons_v ') h(' { v_DB2_v_neurons_v = new Vector() } ') h(' { v_DB2_v_neurons_v.record(&a_DB2[0].soma.v(0.5)) } ') h.v_DB2_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DB3/0/GenericNeuronCell/v h(' objectvar v_DB3_v_neurons_v ') h(' { v_DB3_v_neurons_v = new Vector() } ') h(' { v_DB3_v_neurons_v.record(&a_DB3[0].soma.v(0.5)) } ') h.v_DB3_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DB4/0/GenericNeuronCell/v h(' objectvar v_DB4_v_neurons_v ') h(' { v_DB4_v_neurons_v = new Vector() } ') h(' { v_DB4_v_neurons_v.record(&a_DB4[0].soma.v(0.5)) } ') h.v_DB4_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DB5/0/GenericNeuronCell/v h(' objectvar v_DB5_v_neurons_v ') h(' { v_DB5_v_neurons_v = new Vector() } ') h(' { v_DB5_v_neurons_v.record(&a_DB5[0].soma.v(0.5)) } ') h.v_DB5_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DB6/0/GenericNeuronCell/v h(' objectvar v_DB6_v_neurons_v ') h(' { v_DB6_v_neurons_v = new Vector() } ') h(' { v_DB6_v_neurons_v.record(&a_DB6[0].soma.v(0.5)) } ') h.v_DB6_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # Column: DB7/0/GenericNeuronCell/v h(' objectvar v_DB7_v_neurons_v ') h(' { v_DB7_v_neurons_v = new Vector() } ') h(' { v_DB7_v_neurons_v.record(&a_DB7[0].soma.v(0.5)) } ') h.v_DB7_v_neurons_v.resize((h.tstop * h.steps_per_ms) + 1) # ###################### File to save: time.dat (time) # Column: time h(' objectvar v_time ') h(' { v_time = new Vector() } ') h(' { v_time.record(&t) } ') h.v_time.resize((h.tstop * h.steps_per_ms) + 1) self.initialized = False self.sim_end = -1 # will be overwritten def run(self): self.initialized = True sim_start = time.time() print("Running a simulation of %sms (dt = %sms; seed=%s)" % (h.tstop, h.dt, self.seed)) h.run() self.sim_end = time.time() sim_time = self.sim_end - sim_start print("Finished NEURON simulation in %f seconds (%f mins)..."%(sim_time, sim_time/60.0)) self.save_results() def advance(self): if not self.initialized: h.finitialize() self.initialized = True h.fadvance() ############################################################################### # Hash function to use in generation of random value # This is copied from NetPyNE: https://github.com/Neurosim-lab/netpyne/blob/master/netpyne/simFuncs.py ############################################################################### def _id32 (self,obj): return int(hashlib.md5(obj).hexdigest()[0:8],16) # convert 8 first chars of md5 hash in base 16 to int ############################################################################### # Initialize the stim randomizer # This is copied from NetPyNE: https://github.com/Neurosim-lab/netpyne/blob/master/netpyne/simFuncs.py ############################################################################### def _init_stim_randomizer(self,rand, stimType, gid, seed): rand.Random123(self._id32(stimType), gid, seed) def save_results(self): print("Saving results at t=%s..."%h.t) if self.sim_end < 0: self.sim_end = time.time() # ###################### File to save: time.dat (time) py_v_time = [ t/1000 for t in h.v_time.to_python() ] # Convert to Python list for speed... f_time_f2 = open('time.dat', 'w') num_points = len(py_v_time) # Simulation may have been stopped before tstop... for i in range(num_points): f_time_f2.write('%f'% py_v_time[i]) # Save in SI units... f_time_f2.close() print("Saved data to: time.dat") # ###################### File to save: c302_C2_AS_DA_DB.activity.dat (neurons_activity) py_v_AS1_v_neurons_activity = [ float(x ) for x in h.v_AS1_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_AS10_v_neurons_activity = [ float(x ) for x in h.v_AS10_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_AS11_v_neurons_activity = [ float(x ) for x in h.v_AS11_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_AS2_v_neurons_activity = [ float(x ) for x in h.v_AS2_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_AS3_v_neurons_activity = [ float(x ) for x in h.v_AS3_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_AS4_v_neurons_activity = [ float(x ) for x in h.v_AS4_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_AS5_v_neurons_activity = [ float(x ) for x in h.v_AS5_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_AS6_v_neurons_activity = [ float(x ) for x in h.v_AS6_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_AS7_v_neurons_activity = [ float(x ) for x in h.v_AS7_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_AS8_v_neurons_activity = [ float(x ) for x in h.v_AS8_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_AS9_v_neurons_activity = [ float(x ) for x in h.v_AS9_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_AVAL_v_neurons_activity = [ float(x ) for x in h.v_AVAL_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_AVAR_v_neurons_activity = [ float(x ) for x in h.v_AVAR_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_AVBL_v_neurons_activity = [ float(x ) for x in h.v_AVBL_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_AVBR_v_neurons_activity = [ float(x ) for x in h.v_AVBR_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DA1_v_neurons_activity = [ float(x ) for x in h.v_DA1_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DA2_v_neurons_activity = [ float(x ) for x in h.v_DA2_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DA3_v_neurons_activity = [ float(x ) for x in h.v_DA3_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DA4_v_neurons_activity = [ float(x ) for x in h.v_DA4_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DA5_v_neurons_activity = [ float(x ) for x in h.v_DA5_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DA6_v_neurons_activity = [ float(x ) for x in h.v_DA6_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DA7_v_neurons_activity = [ float(x ) for x in h.v_DA7_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DA8_v_neurons_activity = [ float(x ) for x in h.v_DA8_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DA9_v_neurons_activity = [ float(x ) for x in h.v_DA9_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DB1_v_neurons_activity = [ float(x ) for x in h.v_DB1_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DB2_v_neurons_activity = [ float(x ) for x in h.v_DB2_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DB3_v_neurons_activity = [ float(x ) for x in h.v_DB3_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DB4_v_neurons_activity = [ float(x ) for x in h.v_DB4_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DB5_v_neurons_activity = [ float(x ) for x in h.v_DB5_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DB6_v_neurons_activity = [ float(x ) for x in h.v_DB6_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_DB7_v_neurons_activity = [ float(x ) for x in h.v_DB7_v_neurons_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration f_neurons_activity_f2 = open('c302_C2_AS_DA_DB.activity.dat', 'w') num_points = len(py_v_time) # Simulation may have been stopped before tstop... for i in range(num_points): f_neurons_activity_f2.write('%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t\n' % (py_v_time[i], py_v_AS1_v_neurons_activity[i], py_v_AS10_v_neurons_activity[i], py_v_AS11_v_neurons_activity[i], py_v_AS2_v_neurons_activity[i], py_v_AS3_v_neurons_activity[i], py_v_AS4_v_neurons_activity[i], py_v_AS5_v_neurons_activity[i], py_v_AS6_v_neurons_activity[i], py_v_AS7_v_neurons_activity[i], py_v_AS8_v_neurons_activity[i], py_v_AS9_v_neurons_activity[i], py_v_AVAL_v_neurons_activity[i], py_v_AVAR_v_neurons_activity[i], py_v_AVBL_v_neurons_activity[i], py_v_AVBR_v_neurons_activity[i], py_v_DA1_v_neurons_activity[i], py_v_DA2_v_neurons_activity[i], py_v_DA3_v_neurons_activity[i], py_v_DA4_v_neurons_activity[i], py_v_DA5_v_neurons_activity[i], py_v_DA6_v_neurons_activity[i], py_v_DA7_v_neurons_activity[i], py_v_DA8_v_neurons_activity[i], py_v_DA9_v_neurons_activity[i], py_v_DB1_v_neurons_activity[i], py_v_DB2_v_neurons_activity[i], py_v_DB3_v_neurons_activity[i], py_v_DB4_v_neurons_activity[i], py_v_DB5_v_neurons_activity[i], py_v_DB6_v_neurons_activity[i], py_v_DB7_v_neurons_activity[i], )) f_neurons_activity_f2.close() print("Saved data to: c302_C2_AS_DA_DB.activity.dat") # ###################### File to save: c302_C2_AS_DA_DB.muscles.dat (muscles_v) py_v_MDR01_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR01_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR02_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR02_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR03_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR03_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR04_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR04_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR05_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR05_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR06_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR06_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR07_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR07_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR08_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR08_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR09_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR09_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR10_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR10_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR11_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR11_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR12_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR12_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR13_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR13_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR14_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR14_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR15_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR15_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR16_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR16_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR17_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR17_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR18_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR18_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR19_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR19_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR20_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR20_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR21_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR21_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR22_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR22_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR23_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR23_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDR24_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDR24_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR01_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR01_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR02_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR02_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR03_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR03_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR04_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR04_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR05_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR05_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR06_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR06_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR07_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR07_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR08_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR08_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR09_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR09_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR10_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR10_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR11_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR11_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR12_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR12_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR13_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR13_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR14_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR14_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR15_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR15_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR16_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR16_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR17_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR17_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR18_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR18_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR19_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR19_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR20_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR20_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR21_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR21_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR22_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR22_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVR23_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVR23_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL01_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL01_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL02_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL02_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL03_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL03_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL04_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL04_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL05_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL05_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL06_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL06_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL07_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL07_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL08_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL08_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL09_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL09_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL10_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL10_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL11_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL11_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL12_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL12_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL13_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL13_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL14_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL14_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL15_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL15_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL16_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL16_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL17_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL17_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL18_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL18_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL19_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL19_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL20_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL20_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL21_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL21_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL22_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL22_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL23_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL23_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MVL24_v_muscles_v = [ float(x / 1000.0) for x in h.v_MVL24_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL01_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL01_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL02_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL02_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL03_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL03_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL04_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL04_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL05_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL05_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL06_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL06_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL07_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL07_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL08_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL08_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL09_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL09_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL10_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL10_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL11_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL11_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL12_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL12_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL13_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL13_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL14_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL14_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL15_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL15_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL16_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL16_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL17_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL17_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL18_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL18_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL19_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL19_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL20_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL20_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL21_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL21_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL22_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL22_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL23_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL23_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_MDL24_v_muscles_v = [ float(x / 1000.0) for x in h.v_MDL24_v_muscles_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage f_muscles_v_f2 = open('c302_C2_AS_DA_DB.muscles.dat', 'w') num_points = len(py_v_time) # Simulation may have been stopped before tstop... for i in range(num_points): f_muscles_v_f2.write('%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t\n' % (py_v_time[i], py_v_MDR01_v_muscles_v[i], py_v_MDR02_v_muscles_v[i], py_v_MDR03_v_muscles_v[i], py_v_MDR04_v_muscles_v[i], py_v_MDR05_v_muscles_v[i], py_v_MDR06_v_muscles_v[i], py_v_MDR07_v_muscles_v[i], py_v_MDR08_v_muscles_v[i], py_v_MDR09_v_muscles_v[i], py_v_MDR10_v_muscles_v[i], py_v_MDR11_v_muscles_v[i], py_v_MDR12_v_muscles_v[i], py_v_MDR13_v_muscles_v[i], py_v_MDR14_v_muscles_v[i], py_v_MDR15_v_muscles_v[i], py_v_MDR16_v_muscles_v[i], py_v_MDR17_v_muscles_v[i], py_v_MDR18_v_muscles_v[i], py_v_MDR19_v_muscles_v[i], py_v_MDR20_v_muscles_v[i], py_v_MDR21_v_muscles_v[i], py_v_MDR22_v_muscles_v[i], py_v_MDR23_v_muscles_v[i], py_v_MDR24_v_muscles_v[i], py_v_MVR01_v_muscles_v[i], py_v_MVR02_v_muscles_v[i], py_v_MVR03_v_muscles_v[i], py_v_MVR04_v_muscles_v[i], py_v_MVR05_v_muscles_v[i], py_v_MVR06_v_muscles_v[i], py_v_MVR07_v_muscles_v[i], py_v_MVR08_v_muscles_v[i], py_v_MVR09_v_muscles_v[i], py_v_MVR10_v_muscles_v[i], py_v_MVR11_v_muscles_v[i], py_v_MVR12_v_muscles_v[i], py_v_MVR13_v_muscles_v[i], py_v_MVR14_v_muscles_v[i], py_v_MVR15_v_muscles_v[i], py_v_MVR16_v_muscles_v[i], py_v_MVR17_v_muscles_v[i], py_v_MVR18_v_muscles_v[i], py_v_MVR19_v_muscles_v[i], py_v_MVR20_v_muscles_v[i], py_v_MVR21_v_muscles_v[i], py_v_MVR22_v_muscles_v[i], py_v_MVR23_v_muscles_v[i], py_v_MVL01_v_muscles_v[i], py_v_MVL02_v_muscles_v[i], py_v_MVL03_v_muscles_v[i], py_v_MVL04_v_muscles_v[i], py_v_MVL05_v_muscles_v[i], py_v_MVL06_v_muscles_v[i], py_v_MVL07_v_muscles_v[i], py_v_MVL08_v_muscles_v[i], py_v_MVL09_v_muscles_v[i], py_v_MVL10_v_muscles_v[i], py_v_MVL11_v_muscles_v[i], py_v_MVL12_v_muscles_v[i], py_v_MVL13_v_muscles_v[i], py_v_MVL14_v_muscles_v[i], py_v_MVL15_v_muscles_v[i], py_v_MVL16_v_muscles_v[i], py_v_MVL17_v_muscles_v[i], py_v_MVL18_v_muscles_v[i], py_v_MVL19_v_muscles_v[i], py_v_MVL20_v_muscles_v[i], py_v_MVL21_v_muscles_v[i], py_v_MVL22_v_muscles_v[i], py_v_MVL23_v_muscles_v[i], py_v_MVL24_v_muscles_v[i], py_v_MDL01_v_muscles_v[i], py_v_MDL02_v_muscles_v[i], py_v_MDL03_v_muscles_v[i], py_v_MDL04_v_muscles_v[i], py_v_MDL05_v_muscles_v[i], py_v_MDL06_v_muscles_v[i], py_v_MDL07_v_muscles_v[i], py_v_MDL08_v_muscles_v[i], py_v_MDL09_v_muscles_v[i], py_v_MDL10_v_muscles_v[i], py_v_MDL11_v_muscles_v[i], py_v_MDL12_v_muscles_v[i], py_v_MDL13_v_muscles_v[i], py_v_MDL14_v_muscles_v[i], py_v_MDL15_v_muscles_v[i], py_v_MDL16_v_muscles_v[i], py_v_MDL17_v_muscles_v[i], py_v_MDL18_v_muscles_v[i], py_v_MDL19_v_muscles_v[i], py_v_MDL20_v_muscles_v[i], py_v_MDL21_v_muscles_v[i], py_v_MDL22_v_muscles_v[i], py_v_MDL23_v_muscles_v[i], py_v_MDL24_v_muscles_v[i], )) f_muscles_v_f2.close() print("Saved data to: c302_C2_AS_DA_DB.muscles.dat") # ###################### File to save: c302_C2_AS_DA_DB.muscles.activity.dat (muscles_activity) py_v_MDR01_v_muscles_activity = [ float(x ) for x in h.v_MDR01_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR02_v_muscles_activity = [ float(x ) for x in h.v_MDR02_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR03_v_muscles_activity = [ float(x ) for x in h.v_MDR03_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR04_v_muscles_activity = [ float(x ) for x in h.v_MDR04_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR05_v_muscles_activity = [ float(x ) for x in h.v_MDR05_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR06_v_muscles_activity = [ float(x ) for x in h.v_MDR06_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR07_v_muscles_activity = [ float(x ) for x in h.v_MDR07_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR08_v_muscles_activity = [ float(x ) for x in h.v_MDR08_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR09_v_muscles_activity = [ float(x ) for x in h.v_MDR09_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR10_v_muscles_activity = [ float(x ) for x in h.v_MDR10_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR11_v_muscles_activity = [ float(x ) for x in h.v_MDR11_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR12_v_muscles_activity = [ float(x ) for x in h.v_MDR12_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR13_v_muscles_activity = [ float(x ) for x in h.v_MDR13_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR14_v_muscles_activity = [ float(x ) for x in h.v_MDR14_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR15_v_muscles_activity = [ float(x ) for x in h.v_MDR15_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR16_v_muscles_activity = [ float(x ) for x in h.v_MDR16_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR17_v_muscles_activity = [ float(x ) for x in h.v_MDR17_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR18_v_muscles_activity = [ float(x ) for x in h.v_MDR18_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR19_v_muscles_activity = [ float(x ) for x in h.v_MDR19_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR20_v_muscles_activity = [ float(x ) for x in h.v_MDR20_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR21_v_muscles_activity = [ float(x ) for x in h.v_MDR21_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR22_v_muscles_activity = [ float(x ) for x in h.v_MDR22_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR23_v_muscles_activity = [ float(x ) for x in h.v_MDR23_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDR24_v_muscles_activity = [ float(x ) for x in h.v_MDR24_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR01_v_muscles_activity = [ float(x ) for x in h.v_MVR01_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR02_v_muscles_activity = [ float(x ) for x in h.v_MVR02_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR03_v_muscles_activity = [ float(x ) for x in h.v_MVR03_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR04_v_muscles_activity = [ float(x ) for x in h.v_MVR04_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR05_v_muscles_activity = [ float(x ) for x in h.v_MVR05_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR06_v_muscles_activity = [ float(x ) for x in h.v_MVR06_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR07_v_muscles_activity = [ float(x ) for x in h.v_MVR07_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR08_v_muscles_activity = [ float(x ) for x in h.v_MVR08_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR09_v_muscles_activity = [ float(x ) for x in h.v_MVR09_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR10_v_muscles_activity = [ float(x ) for x in h.v_MVR10_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR11_v_muscles_activity = [ float(x ) for x in h.v_MVR11_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR12_v_muscles_activity = [ float(x ) for x in h.v_MVR12_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR13_v_muscles_activity = [ float(x ) for x in h.v_MVR13_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR14_v_muscles_activity = [ float(x ) for x in h.v_MVR14_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR15_v_muscles_activity = [ float(x ) for x in h.v_MVR15_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR16_v_muscles_activity = [ float(x ) for x in h.v_MVR16_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR17_v_muscles_activity = [ float(x ) for x in h.v_MVR17_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR18_v_muscles_activity = [ float(x ) for x in h.v_MVR18_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR19_v_muscles_activity = [ float(x ) for x in h.v_MVR19_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR20_v_muscles_activity = [ float(x ) for x in h.v_MVR20_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR21_v_muscles_activity = [ float(x ) for x in h.v_MVR21_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR22_v_muscles_activity = [ float(x ) for x in h.v_MVR22_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVR23_v_muscles_activity = [ float(x ) for x in h.v_MVR23_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL01_v_muscles_activity = [ float(x ) for x in h.v_MVL01_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL02_v_muscles_activity = [ float(x ) for x in h.v_MVL02_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL03_v_muscles_activity = [ float(x ) for x in h.v_MVL03_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL04_v_muscles_activity = [ float(x ) for x in h.v_MVL04_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL05_v_muscles_activity = [ float(x ) for x in h.v_MVL05_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL06_v_muscles_activity = [ float(x ) for x in h.v_MVL06_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL07_v_muscles_activity = [ float(x ) for x in h.v_MVL07_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL08_v_muscles_activity = [ float(x ) for x in h.v_MVL08_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL09_v_muscles_activity = [ float(x ) for x in h.v_MVL09_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL10_v_muscles_activity = [ float(x ) for x in h.v_MVL10_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL11_v_muscles_activity = [ float(x ) for x in h.v_MVL11_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL12_v_muscles_activity = [ float(x ) for x in h.v_MVL12_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL13_v_muscles_activity = [ float(x ) for x in h.v_MVL13_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL14_v_muscles_activity = [ float(x ) for x in h.v_MVL14_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL15_v_muscles_activity = [ float(x ) for x in h.v_MVL15_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL16_v_muscles_activity = [ float(x ) for x in h.v_MVL16_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL17_v_muscles_activity = [ float(x ) for x in h.v_MVL17_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL18_v_muscles_activity = [ float(x ) for x in h.v_MVL18_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL19_v_muscles_activity = [ float(x ) for x in h.v_MVL19_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL20_v_muscles_activity = [ float(x ) for x in h.v_MVL20_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL21_v_muscles_activity = [ float(x ) for x in h.v_MVL21_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL22_v_muscles_activity = [ float(x ) for x in h.v_MVL22_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL23_v_muscles_activity = [ float(x ) for x in h.v_MVL23_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MVL24_v_muscles_activity = [ float(x ) for x in h.v_MVL24_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL01_v_muscles_activity = [ float(x ) for x in h.v_MDL01_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL02_v_muscles_activity = [ float(x ) for x in h.v_MDL02_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL03_v_muscles_activity = [ float(x ) for x in h.v_MDL03_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL04_v_muscles_activity = [ float(x ) for x in h.v_MDL04_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL05_v_muscles_activity = [ float(x ) for x in h.v_MDL05_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL06_v_muscles_activity = [ float(x ) for x in h.v_MDL06_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL07_v_muscles_activity = [ float(x ) for x in h.v_MDL07_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL08_v_muscles_activity = [ float(x ) for x in h.v_MDL08_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL09_v_muscles_activity = [ float(x ) for x in h.v_MDL09_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL10_v_muscles_activity = [ float(x ) for x in h.v_MDL10_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL11_v_muscles_activity = [ float(x ) for x in h.v_MDL11_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL12_v_muscles_activity = [ float(x ) for x in h.v_MDL12_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL13_v_muscles_activity = [ float(x ) for x in h.v_MDL13_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL14_v_muscles_activity = [ float(x ) for x in h.v_MDL14_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL15_v_muscles_activity = [ float(x ) for x in h.v_MDL15_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL16_v_muscles_activity = [ float(x ) for x in h.v_MDL16_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL17_v_muscles_activity = [ float(x ) for x in h.v_MDL17_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL18_v_muscles_activity = [ float(x ) for x in h.v_MDL18_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL19_v_muscles_activity = [ float(x ) for x in h.v_MDL19_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL20_v_muscles_activity = [ float(x ) for x in h.v_MDL20_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL21_v_muscles_activity = [ float(x ) for x in h.v_MDL21_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL22_v_muscles_activity = [ float(x ) for x in h.v_MDL22_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL23_v_muscles_activity = [ float(x ) for x in h.v_MDL23_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration py_v_MDL24_v_muscles_activity = [ float(x ) for x in h.v_MDL24_v_muscles_activity.to_python() ] # Convert to Python list for speed, variable has dim: concentration f_muscles_activity_f2 = open('c302_C2_AS_DA_DB.muscles.activity.dat', 'w') num_points = len(py_v_time) # Simulation may have been stopped before tstop... for i in range(num_points): f_muscles_activity_f2.write('%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t\n' % (py_v_time[i], py_v_MDR01_v_muscles_activity[i], py_v_MDR02_v_muscles_activity[i], py_v_MDR03_v_muscles_activity[i], py_v_MDR04_v_muscles_activity[i], py_v_MDR05_v_muscles_activity[i], py_v_MDR06_v_muscles_activity[i], py_v_MDR07_v_muscles_activity[i], py_v_MDR08_v_muscles_activity[i], py_v_MDR09_v_muscles_activity[i], py_v_MDR10_v_muscles_activity[i], py_v_MDR11_v_muscles_activity[i], py_v_MDR12_v_muscles_activity[i], py_v_MDR13_v_muscles_activity[i], py_v_MDR14_v_muscles_activity[i], py_v_MDR15_v_muscles_activity[i], py_v_MDR16_v_muscles_activity[i], py_v_MDR17_v_muscles_activity[i], py_v_MDR18_v_muscles_activity[i], py_v_MDR19_v_muscles_activity[i], py_v_MDR20_v_muscles_activity[i], py_v_MDR21_v_muscles_activity[i], py_v_MDR22_v_muscles_activity[i], py_v_MDR23_v_muscles_activity[i], py_v_MDR24_v_muscles_activity[i], py_v_MVR01_v_muscles_activity[i], py_v_MVR02_v_muscles_activity[i], py_v_MVR03_v_muscles_activity[i], py_v_MVR04_v_muscles_activity[i], py_v_MVR05_v_muscles_activity[i], py_v_MVR06_v_muscles_activity[i], py_v_MVR07_v_muscles_activity[i], py_v_MVR08_v_muscles_activity[i], py_v_MVR09_v_muscles_activity[i], py_v_MVR10_v_muscles_activity[i], py_v_MVR11_v_muscles_activity[i], py_v_MVR12_v_muscles_activity[i], py_v_MVR13_v_muscles_activity[i], py_v_MVR14_v_muscles_activity[i], py_v_MVR15_v_muscles_activity[i], py_v_MVR16_v_muscles_activity[i], py_v_MVR17_v_muscles_activity[i], py_v_MVR18_v_muscles_activity[i], py_v_MVR19_v_muscles_activity[i], py_v_MVR20_v_muscles_activity[i], py_v_MVR21_v_muscles_activity[i], py_v_MVR22_v_muscles_activity[i], py_v_MVR23_v_muscles_activity[i], py_v_MVL01_v_muscles_activity[i], py_v_MVL02_v_muscles_activity[i], py_v_MVL03_v_muscles_activity[i], py_v_MVL04_v_muscles_activity[i], py_v_MVL05_v_muscles_activity[i], py_v_MVL06_v_muscles_activity[i], py_v_MVL07_v_muscles_activity[i], py_v_MVL08_v_muscles_activity[i], py_v_MVL09_v_muscles_activity[i], py_v_MVL10_v_muscles_activity[i], py_v_MVL11_v_muscles_activity[i], py_v_MVL12_v_muscles_activity[i], py_v_MVL13_v_muscles_activity[i], py_v_MVL14_v_muscles_activity[i], py_v_MVL15_v_muscles_activity[i], py_v_MVL16_v_muscles_activity[i], py_v_MVL17_v_muscles_activity[i], py_v_MVL18_v_muscles_activity[i], py_v_MVL19_v_muscles_activity[i], py_v_MVL20_v_muscles_activity[i], py_v_MVL21_v_muscles_activity[i], py_v_MVL22_v_muscles_activity[i], py_v_MVL23_v_muscles_activity[i], py_v_MVL24_v_muscles_activity[i], py_v_MDL01_v_muscles_activity[i], py_v_MDL02_v_muscles_activity[i], py_v_MDL03_v_muscles_activity[i], py_v_MDL04_v_muscles_activity[i], py_v_MDL05_v_muscles_activity[i], py_v_MDL06_v_muscles_activity[i], py_v_MDL07_v_muscles_activity[i], py_v_MDL08_v_muscles_activity[i], py_v_MDL09_v_muscles_activity[i], py_v_MDL10_v_muscles_activity[i], py_v_MDL11_v_muscles_activity[i], py_v_MDL12_v_muscles_activity[i], py_v_MDL13_v_muscles_activity[i], py_v_MDL14_v_muscles_activity[i], py_v_MDL15_v_muscles_activity[i], py_v_MDL16_v_muscles_activity[i], py_v_MDL17_v_muscles_activity[i], py_v_MDL18_v_muscles_activity[i], py_v_MDL19_v_muscles_activity[i], py_v_MDL20_v_muscles_activity[i], py_v_MDL21_v_muscles_activity[i], py_v_MDL22_v_muscles_activity[i], py_v_MDL23_v_muscles_activity[i], py_v_MDL24_v_muscles_activity[i], )) f_muscles_activity_f2.close() print("Saved data to: c302_C2_AS_DA_DB.muscles.activity.dat") # ###################### File to save: c302_C2_AS_DA_DB.dat (neurons_v) py_v_AS1_v_neurons_v = [ float(x / 1000.0) for x in h.v_AS1_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_AS10_v_neurons_v = [ float(x / 1000.0) for x in h.v_AS10_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_AS11_v_neurons_v = [ float(x / 1000.0) for x in h.v_AS11_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_AS2_v_neurons_v = [ float(x / 1000.0) for x in h.v_AS2_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_AS3_v_neurons_v = [ float(x / 1000.0) for x in h.v_AS3_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_AS4_v_neurons_v = [ float(x / 1000.0) for x in h.v_AS4_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_AS5_v_neurons_v = [ float(x / 1000.0) for x in h.v_AS5_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_AS6_v_neurons_v = [ float(x / 1000.0) for x in h.v_AS6_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_AS7_v_neurons_v = [ float(x / 1000.0) for x in h.v_AS7_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_AS8_v_neurons_v = [ float(x / 1000.0) for x in h.v_AS8_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_AS9_v_neurons_v = [ float(x / 1000.0) for x in h.v_AS9_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_AVAL_v_neurons_v = [ float(x / 1000.0) for x in h.v_AVAL_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_AVAR_v_neurons_v = [ float(x / 1000.0) for x in h.v_AVAR_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_AVBL_v_neurons_v = [ float(x / 1000.0) for x in h.v_AVBL_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_AVBR_v_neurons_v = [ float(x / 1000.0) for x in h.v_AVBR_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DA1_v_neurons_v = [ float(x / 1000.0) for x in h.v_DA1_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DA2_v_neurons_v = [ float(x / 1000.0) for x in h.v_DA2_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DA3_v_neurons_v = [ float(x / 1000.0) for x in h.v_DA3_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DA4_v_neurons_v = [ float(x / 1000.0) for x in h.v_DA4_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DA5_v_neurons_v = [ float(x / 1000.0) for x in h.v_DA5_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DA6_v_neurons_v = [ float(x / 1000.0) for x in h.v_DA6_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DA7_v_neurons_v = [ float(x / 1000.0) for x in h.v_DA7_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DA8_v_neurons_v = [ float(x / 1000.0) for x in h.v_DA8_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DA9_v_neurons_v = [ float(x / 1000.0) for x in h.v_DA9_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DB1_v_neurons_v = [ float(x / 1000.0) for x in h.v_DB1_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DB2_v_neurons_v = [ float(x / 1000.0) for x in h.v_DB2_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DB3_v_neurons_v = [ float(x / 1000.0) for x in h.v_DB3_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DB4_v_neurons_v = [ float(x / 1000.0) for x in h.v_DB4_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DB5_v_neurons_v = [ float(x / 1000.0) for x in h.v_DB5_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DB6_v_neurons_v = [ float(x / 1000.0) for x in h.v_DB6_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage py_v_DB7_v_neurons_v = [ float(x / 1000.0) for x in h.v_DB7_v_neurons_v.to_python() ] # Convert to Python list for speed, variable has dim: voltage f_neurons_v_f2 = open('c302_C2_AS_DA_DB.dat', 'w') num_points = len(py_v_time) # Simulation may have been stopped before tstop... for i in range(num_points): f_neurons_v_f2.write('%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t\n' % (py_v_time[i], py_v_AS1_v_neurons_v[i], py_v_AS10_v_neurons_v[i], py_v_AS11_v_neurons_v[i], py_v_AS2_v_neurons_v[i], py_v_AS3_v_neurons_v[i], py_v_AS4_v_neurons_v[i], py_v_AS5_v_neurons_v[i], py_v_AS6_v_neurons_v[i], py_v_AS7_v_neurons_v[i], py_v_AS8_v_neurons_v[i], py_v_AS9_v_neurons_v[i], py_v_AVAL_v_neurons_v[i], py_v_AVAR_v_neurons_v[i], py_v_AVBL_v_neurons_v[i], py_v_AVBR_v_neurons_v[i], py_v_DA1_v_neurons_v[i], py_v_DA2_v_neurons_v[i], py_v_DA3_v_neurons_v[i], py_v_DA4_v_neurons_v[i], py_v_DA5_v_neurons_v[i], py_v_DA6_v_neurons_v[i], py_v_DA7_v_neurons_v[i], py_v_DA8_v_neurons_v[i], py_v_DA9_v_neurons_v[i], py_v_DB1_v_neurons_v[i], py_v_DB2_v_neurons_v[i], py_v_DB3_v_neurons_v[i], py_v_DB4_v_neurons_v[i], py_v_DB5_v_neurons_v[i], py_v_DB6_v_neurons_v[i], py_v_DB7_v_neurons_v[i], )) f_neurons_v_f2.close() print("Saved data to: c302_C2_AS_DA_DB.dat") save_end = time.time() save_time = save_end - self.sim_end print("Finished saving results in %f seconds"%(save_time)) print("Done") quit() if __name__ == '__main__': ns = NeuronSimulation(tstop=2000, dt=0.05, seed=123456789) ns.run()
[ "lungdm@gmail.com" ]
lungdm@gmail.com
84ba2de82f514a80b6a661f51dd0f753082f6e2d
29bcaf4d6d5e96fd4a85da3b0b3e813f92a84b77
/examples/pytorch/pagerank.py
1b66242c9121e643699df8ae610951ddd7e67483
[ "Apache-2.0" ]
permissive
hetong007/dgl
844e48421fe899b1f36d40095cf54809b1724a26
11e910b6f88ec10c7549493dab9e2b218e988e97
refs/heads/master
2022-04-30T23:16:19.354461
2022-03-31T11:22:21
2022-03-31T11:22:21
228,311,655
1
0
Apache-2.0
2020-08-05T09:40:28
2019-12-16T05:45:10
Python
UTF-8
Python
false
false
598
py
import networkx as nx import torch import dgl import dgl.function as fn N = 100 g = nx.erdos_renyi_graph(N, 0.05) g = dgl.DGLGraph(g) DAMP = 0.85 K = 10 def compute_pagerank(g): g.ndata['pv'] = torch.ones(N) / N degrees = g.out_degrees(g.nodes()).type(torch.float32) for k in range(K): g.ndata['pv'] = g.ndata['pv'] / degrees g.update_all(message_func=fn.copy_src(src='pv', out='m'), reduce_func=fn.sum(msg='m', out='pv')) g.ndata['pv'] = (1 - DAMP) / N + DAMP * g.ndata['pv'] return g.ndata['pv'] pv = compute_pagerank(g) print(pv)
[ "noreply@github.com" ]
hetong007.noreply@github.com
e3db28496321a7da1e62e32c2629cb74391a33b1
8a1519c2604e81eb3a4e2dc5829863f246218ea7
/SmartHouseController/Smart House controller.py
7860f563c574b51cb39c99dfcf20290ee7360006
[]
no_license
ryanongra/SNCA_Projects
d032f3d6a90468a44e27a9ea4d347e4f0bde1971
a36460f3684151dca61e70cd275f311e73f63898
refs/heads/main
2023-07-11T19:38:56.949275
2021-08-12T11:28:35
2021-08-12T11:28:35
395,290,106
0
0
null
null
null
null
UTF-8
Python
false
false
695
py
from microbit import * import radio radio.on() while True: if accelerometer.current_gesture() == "up": radio.send("Come in") sleep(1) elif accelerometer.current_gesture() == "shake": radio.send("Access denied") sleep(1) elif accelerometer.current_gesture() == "face down": radio.send("Light on") sleep(1) elif accelerometer.current_gesture() == "face up": radio.send("Light off") sleep(1) else: radio.send("nothing") sleep(1) message = radio.receive() if message == "Someone's at the door": display.scroll(message) message = "" sleep(1)
[ "noreply@github.com" ]
ryanongra.noreply@github.com
53a4c73643999112ef04e0602c63db6523b5ae48
d1593aefbf9560af6cca9a82f59302a84c5052fa
/migrations/versions/898c591f6665_creates_the_foreign_key_to_the_user_.py
cef423bed8c392cbf14408650c7392e06eb0cb24
[]
no_license
jod35/car-parking
71ec9d91163658489d3277023c71c91237343c07
9448ae3660de1b4104ec34f19c4a2f25b022f7d6
refs/heads/master
2020-11-25T16:38:31.666940
2019-12-18T05:44:41
2019-12-18T05:44:41
228,759,269
0
0
null
null
null
null
UTF-8
Python
false
false
816
py
"""creates the foreign key to the user table Revision ID: 898c591f6665 Revises: ce5ec4406cd4 Create Date: 2019-12-17 00:23:15.563670 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '898c591f6665' down_revision = 'ce5ec4406cd4' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('service', sa.Column('user_id', sa.Integer(), nullable=True)) op.create_foreign_key(None, 'service', 'user', ['user_id'], ['id']) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, 'service', type_='foreignkey') op.drop_column('service', 'user_id') # ### end Alembic commands ###
[ "jodestrevin@gmail.com" ]
jodestrevin@gmail.com
a0ed4c078248390ebb22ef20c22100702dd2e33d
cd8e37979ad3d38b7a3726d2f7084cb30538a5dd
/setup.py
0bee80254fe71f8a601845b316ce06387873c25a
[ "MIT" ]
permissive
lejar/Bard-s-Tale-IV-Code-Wheel
e6ab14b0b682da0aa5f100382a2bcc5f72382eda
67c4e27736f5d48bf1059cf4dd3ee488bfdd5130
refs/heads/master
2020-03-29T11:45:29.026217
2018-09-22T11:48:19
2018-09-22T11:48:19
149,869,105
8
0
null
null
null
null
UTF-8
Python
false
false
2,348
py
import os import subprocess import shutil from pathlib import Path from setuptools import setup, find_packages, command from setuptools.command.build_py import build_py from distutils.command.build import build as _build from distutils.command.clean import clean as _clean from distutils.command.install import install as _install # Get all of the ui files in the project. UI_FILES = [] RC_FILES = [] for root, directories, files in os.walk('.'): for file in files: if os.path.splitext(file)[-1] == '.ui': UI_FILES.append(os.path.join(root, file)) elif os.path.splitext(file)[-1] == '.qrc': RC_FILES.append(os.path.join(root, file)) class UIBuild(_build): def run(self): # Convert all ui files into python files. for file in UI_FILES: basename = os.path.splitext(file)[0] subprocess.run(f'pyuic5 --from-imports -o {basename}.py {file}', shell=True) for file in RC_FILES: basename = os.path.splitext(file)[0] subprocess.run(f'pyrcc5 -o {basename}_rc.py {file}', shell=True) super(UIBuild, self).run() class UIClean(_clean): def run(self): # Clean up all converted UI files. for file in UI_FILES + RC_FILES: basename = os.path.splitext(file)[0] if os.path.exists(f'{basename}.py'): os.remove(f'{basename}.py') # Remove some autogenerated things that setuptools never cleans up. if os.path.exists('build'): shutil.rmtree('build') if os.path.exists('dist'): shutil.rmtree('dist') if os.path.exists('.DS_Store'): os.remove('.DS_Store') super(UIClean, self).run() class pyinstaller(_install): def run(self): code_wheel = Path('.') / 'code_wheel' / '__main__.py' resources = Path('.') / 'code_wheel' / 'resources' icon = resources / 'icon.ico' subprocess.run(f'pyinstaller -F -w -i {icon} {code_wheel}') shutil.move(Path('dist') / '__main__.exe', Path('dist') / 'Bard\'s Tale IV Code Wheel.exe') setup( author='Christopher Pezley', name="Bard's Tale 4 Code Wheel", version="1.0", packages=find_packages(), cmdclass={ 'build': UIBuild, 'clean': UIClean, 'install': pyinstaller, }, )
[ "github@pezley.net" ]
github@pezley.net
6579713cbee5298c4a87a717e50c2083d458a81b
1a5b990b87f86d23a636ce439d26a14d9664829b
/test_spider.py
930536f2d095edc88367616569534b59c283836f
[]
no_license
btlishang/test
8be5875839ace07dfd0b3c4d949ab4acf5b06879
b56cc2a9d2946df63cd54a55b8edc5773cf47087
refs/heads/master
2022-12-22T10:37:01.219807
2019-01-23T07:41:23
2019-01-23T07:41:23
159,899,607
0
0
null
2022-12-08T01:19:32
2018-12-01T02:06:20
Python
UTF-8
Python
false
false
5,605
py
#-*- coding:utf-8 _*- # # File Name: test_spider # Author : lishang # date: 2018/11/25 import requests,time,mysql,re from pyquery import PyQuery as pq from requests.exceptions import ConnectionError,ReadTimeout headers = { "Host": "www.csh.edu.cn", # "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36", "user-agent": "User-Agent:Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50", "referer": "http://www.csh.edu.cn/moetc/mdepartmentExtAction!toMdepartmentExtListWdOuter.action", "upgrade - insecure - requests": "1", "cookie":"test=vlan1821_web10; COLLPIC=r8yg; test=vlan1821_web10; JSESSIONID=OMpDkI0PwX0JhxDc9mm2zqH8Hx8_BnJvRjTUE9WhC2uuZFyknpII!1989823960" } basic_url = "http://www.csh.edu.cn" start_url = "http://www.csh.edu.cn/moetc/mdepartmentExtAction!toMdepartmentExtListWdOuter.action" # 获取代理IP def get_proxy(): proxy_pool_url = "http://47.93.231.162:5010/get/" try: response = requests.get(proxy_pool_url) if response.status_code == 200: return response.text else: get_proxy() except ConnectionError: return None def get_province(start_url): try: html = requests.get(start_url,headers=headers,proxies={"http": "http://{}".format(get_proxy())},timeout=10) print(html.status_code) if html.status_code == 200: doc = pq(html.text) items = doc('#serId > div > div:nth-child(3) > div.h_select_line_right > a').items() if items: for item in items: province_name = item.text() province_url = basic_url + item.attr('href') province_id = item.attr('href')[70:72] mysql.insert_content(province_id,province_name,province_url) print("******当前省份为:-",province_name,"-******") time.sleep(1) get_city(province_url,province_name) else: get_province(start_url) elif html.status_code == 400: print("===========抓取省份超时",html.status_code,",请等待===========") get_province(start_url) elif html.status_code == 503: print("===========抓取省份超时",html.status_code,",请等待===========") get_province(start_url) except (ConnectionError,ReadTimeout) as c: print('===========省份抓取超时,重新连接中===========') get_province(start_url) def get_city(url,province_name): try: html = requests.get(url, timeout=10) print(html.status_code) if html.status_code == 200: doc = pq(html.text) items = doc('#serId > div > div:nth-child(4) > div.h_select_line_right > a').items() for item in items: city_name = item.text() city_url = basic_url + item.attr('href') city_id = item.attr('href')[72:74] province_id = item.attr('href')[70: 72] mysql.insert_city(province_id,city_id,city_name,city_url,province_name) print("******当前城市为:-",city_name,"-******") time.sleep(1) get_country(city_url,city_name,province_name) elif html.status_code == 400: print("===========城市抓取超时,请等待===========") return get_city(url,province_name) except (ConnectionError, ReadTimeout) as c: print('===========抓取城市连接超时,重新连接中===========') return get_city(url,province_name) def get_country(url,city_name,province_name): try: html = requests.get(url,timeout=5) print(html.status_code) if html.status_code == 200: doc = pq(html.text) items = doc('#serId > div > div:nth-child(5) > div.h_select_line_right > a').items() for item in items: country_name = item.text() country_url = basic_url + item.attr('href') country_id = item.attr('href')[-8:-6] province_id = item.attr('href')[-12:-10] city_id = item.attr('href')[-10:-8] mysql.insert_country(province_id,city_id,country_id,country_name,country_url,city_name,province_name) print("******当前县/区:-",country_name,"-******") time.sleep(1) elif html.status_code == 400: print("==============县/区抓取超时,请等待==============") return get_country(url,city_name,province_name) except (ConnectionError, ReadTimeout) as c: print('===========抓取县/区连接超时,重新连接中===========') return get_country(url,city_name,province_name) if __name__ == '__main__': # 从头开始 # get_province(start_url) # # 补充单个省 info = mysql.select_province("山东省") city_url = info[3] province_name = info[2] print(city_url,province_name) get_city(city_url,province_name) # get_city() # # 补充单个市 # info = mysql.select_city("抚州市") # city_url = info[3] # city_name = info[2] # province_name = info[5] # print(city_url, city_name, province_name) # get_country(city_url,city_name,province_name) mysql.db.close()
[ "542880395@qq.com" ]
542880395@qq.com
7f6eb17b83d7f12b037cca2162485483f884b4d1
cbad8ab4208ed31a904028ba0f190ddb89b2b667
/chapter02/NumPy_and_SciPy.py
fffa49c7bd7e235f6f81d1171aa19fc1c245556b
[]
no_license
ZhaoHuiXin/Fluent-Python
a4a2de649505437f77b2024ac61c48d56cc1cc0b
691b3a90e73061ad4f07ce0dd775b08a8779c7ec
refs/heads/master
2020-03-17T08:40:06.614237
2018-06-12T01:13:41
2018-06-12T01:13:41
133,446,109
0
0
null
null
null
null
UTF-8
Python
false
false
373
py
# -*- coding=utf-8 -*- # # Copyright @ 2018 HuiXin Zhao """导入精度和性能都比较高的计时器(Python 3.3 及更新的版本中都有这个库)""" from time import perf_counter as pc import numpy t0 = pc() a = numpy.arange(12) print(a, type(a)) print(a.shape) a.shape = 3, 4 print(a) print(a[2]) print(a[2][1]) print(a[:, 1]) print(a.transpose()) print(pc()-t0)
[ "zhaohuixin@autoforce.net" ]
zhaohuixin@autoforce.net
fd69576b11ab5fcb0aa9abb70ebe2732844c00f8
51b907f1b20065b51b0a621bfb26b0d2f00e708f
/lib/python3.7/__future__.py
eac425093bd5116b3bcc5c3f7aafb8be151e4676
[]
no_license
Atuahene3/house-deal
f4c807023029e3a3fe1527e287cf4d75db9fb0ca
177a5931018131504ea337b27597b18c39407441
refs/heads/master
2022-10-12T05:27:45.696243
2019-09-04T15:17:00
2019-09-04T15:17:00
206,359,713
0
0
null
2022-09-30T18:42:22
2019-09-04T16:05:23
Python
UTF-8
Python
false
false
54
py
/Users/theoatadu/anaconda3/lib/python3.7/__future__.py
[ "theoatadu@Theophiluss-MacBook-Pro.local" ]
theoatadu@Theophiluss-MacBook-Pro.local
09190a89d9de114658ef9dc548c9bdce2cbb9738
8f62c24d6e3cd085af54ba0c63c4ce8e6d5752d3
/pythonpath/mytools_Mri/ui/dialogs.py
138039ee0154b7325fed171787d80fd0cc425c84
[ "Apache-2.0" ]
permissive
Nienzu/MRI
fc7f7b3879691ec97dac3d62c5afc3420af015cc
0298496aaa25f792de9b9f040597f4dd4d6800e6
refs/heads/master
2020-07-23T04:13:54.806967
2018-12-25T15:25:06
2018-12-25T15:25:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
26,480
py
# Copyright 2011 Tsutomu Uchino # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unohelper import traceback from com.sun.star.awt import XActionListener, XMouseListener, \ XItemListener, Rectangle from com.sun.star.view import XSelectionChangeListener class InputButtonListener(unohelper.Base, XActionListener): def __init__(self,cast,idltarget='',word=''): self.cast = cast self.idltarget = idltarget self.word = word def set_target(self, idltarget, word): self.idltarget = idltarget self.word = word def disposing(self,ev): pass def actionPerformed(self,actionEvent): cmd = str(actionEvent.ActionCommand) if cmd == 'idlref': self.cast.open_idl_reference(self.idltarget, self.word) class SelectListListener(unohelper.Base, XMouseListener): def __init__(self,cast): self.cast = cast def disposing(self,ev): pass def mouseReleased(self,ev): pass def mouseEntered(self,ev): pass def mouseExited(self,ev): pass def mousePressed(self,ev): if ev.ClickCount == 2: self.cast.endDialog(1) class DialogBase(object): DISPOSE = True POSSIZE = 0,0,0,0 HELP_URL = "" def __init__(self, ctx, cast, *args): self.ctx = ctx self.cast = cast self._dialog = self._create_dialog(*self.POSSIZE, help_url=self.HELP_URL) self._create() def execute(self): toolkit = self.ctx.getServiceManager().createInstanceWithContext( "com.sun.star.awt.Toolkit", self.ctx) self._dialog.createPeer(toolkit, None) #self._dialog.setVisible(True) self._prepare() n = self._dialog.execute() ret = self._done(n) if self.DISPOSE: self._destruct() self._dialog.dispose() return ret def _create(self): pass def _destruct(self): pass def _prepare(self): pass def _done(self, n): return n def _create_service(self, name): return self.ctx.getServiceManager().createInstanceWithContext(name, self.ctx) # create control functions def _create_dialog(self, x, y, width, height, help_url): smgr = self.ctx.getServiceManager() dialog = smgr.createInstanceWithContext( 'com.sun.star.awt.UnoControlDialog', self.ctx) dialog_model = smgr.createInstanceWithContext( 'com.sun.star.awt.UnoControlDialogModel', self.ctx) dialog_model.setPropertyValues( ('Height','HelpURL','PositionX','PositionY','Width',), (height, help_url, x, y, width,) ) dialog.setModel(dialog_model) #dialog.setVisible(False) #dialog.createPeer(toolkit, None) dialog.setVisible(False) self._dialog = dialog return dialog def set_title(self, title): self._dialog.setTitle(title) def add_control(self, _type, name, x, y, width, height, names=None, props=None): model = self._dialog.getModel().createInstance(_type) model.setPropertyValues( ("Height", "PositionX", "PositionY", "Width"), (height, x, y, width)) if names and props: model.setPropertyValues(names, props) self._dialog.getModel().insertByName(name, model) return model def add_edit(self, name, x, y, width, height, names=None, props=None): return self.add_control("com.sun.star.awt.UnoControlEditModel", name, x, y, width, height, names, props) def add_label(self, name, x, y, width, height, names=None, props=None): return self.add_control("com.sun.star.awt.UnoControlFixedTextModel", name, x, y, width, height, names, props) def add_button(self, name, x, y, width, height, names=None, props=None, command=None): model = self.add_control("com.sun.star.awt.UnoControlButtonModel", name, x, y, width, height, names, props) if command: self.get_control(name).setActionCommand(command) return model def add_check(self, name, x, y, width, height, names=None, props=None): return self.add_control("com.sun.star.awt.UnoControlCheckBoxModel", name, x, y, width, height, names, props) def add_list(self, name, x, y, width, height, names=None, props=None): return self.add_control("com.sun.star.awt.UnoControlListBoxModel", name, x, y, width, height, names, props) def add_line(self, name, x, y, width, height, names=None, props=None): return self.add_control("com.sun.star.awt.UnoControlFixedLineModel", name, x, y, width, height, names, props) def add_ok(self, name, x, y, width, height): return self.add_button(name, x, y, width, height, ("DefaultButton", "Label", "PushButtonType"), (True, "~OK", 1)) def add_cancel(self, name, x, y, width, height): return self.add_button(name, x, y, width, height, ("Label", "PushButtonType"), ("~Cancel", 2)) def add_tree(self, name, x, y, width, height, names=None, props=None): return self.add_control("com.sun.star.awt.tree.TreeControlModel", name, x, y, width, height, names, props) def get_control(self, name): return self._dialog.getControl(name) def get_control_model(self, name): return self._dialog.getModel().getByName(name) def set_dialog_height(self, height): self._dialog.getModel().Height = height # set/get value to/from a control def set_y(self, name, y): self.get_control_model(name).PositionY = y def set_label(self, name, label): self.get_control_model(name).Label = label def set_text(self, name, text): self.get_control_model(name).Text = text def get_text(self, name): return self.get_control_model(name).Text def set_text_selection(self, name, r): self.get_control(name).setSelection(r) def is_checked(self, name): return self.get_control_model(name).State == 1 ## list def add_items(self, name, index, items): _items = tuple(items) if isinstance(items, list) else items self.get_control(name).addItems(_items, index) def get_item_count(self, name): return self.get_control(name).getItemCount() def select_item_pos(self, name, index, state=True): self.get_control(name).selectItemPos(index, state) def get_selected_item(self, name): return self.get_control(name).getSelectedItem() def get_selected_item_pos(self, name): return self.get_control(name).getSelectedItemPos() # misc def set_visible(self, name, state=True): self.get_control(name).setVisible(state) def set_enable(self, name, state=True): self.get_control(name).setEnable(state) def set_focus(self, name): return self.get_control(name).setFocus() def create_tree_data_model(self): return self._create_service("com.sun.star.awt.tree.MutableTreeDataModel") class InfoDialog(DialogBase): DISPOSE = False POSSIZE = 30, 50, 176, 136 HELP_URL = "mytools.Mri:d_info" def _create(self): self.add_edit("edit", 2, 1, 172, 110, ('HelpURL','HideInactiveSelection','HScroll','MultiLine', 'VScroll',), ('mytools.Mri:d_info_edit',False,True,True, True,)) self.add_button("btn", 130, 117, 43, 16, ('DefaultButton', 'HelpURL','Label', 'PushButtonType'), (True, 'mytools.Mri:d_info_btn','~close', 2)) self.add_label("label", 5, 115, 123, 23, ("FontHeight",), (9,)) def _prepare(self): self.set_focus("btn") def execute(self, value, label=""): self.set_text("edit", value) self.set_label("label", label) return DialogBase.execute(self) class SelectDialog(DialogBase): POSSIZE = 30, 50, 150, 150 HELP_URL = 'mytools.Mri:d_select' def _create(self): self.add_list("list", 2, 2, 146, 130) self.add_cancel("cbtn", 82, 134, 36, 14) self.add_ok("obtn", 42, 134, 36, 14) self.get_control("list").addMouseListener(SelectListListener(self._dialog)) def _prepare(self): if self.get_item_count("list"): self.select_item_pos("list", 0, True) def execute(self, itemtuple, title="", index=False): if isinstance(itemtuple, tuple) or isinstance(itemtuple, list): self.add_items("list", 0, itemtuple) if self.get_item_count("list") <= 0: self.set_enable("obtn", False) self._index = index return DialogBase.execute(self) def _done(self, n): if n: if self._index: return self.get_selected_item_pos("list") else: return self.get_selected_item("list") else: return None class InputDialog(DialogBase): POSSIZE = 30, 50, 177, 65 HELP_URL = "mytools.Mri:d_input" def _create(self): self.add_line("line", 4, 1, 170, 12) self.add_cancel("cbtn", 142, 48, 29, 14) self.add_ok("obtn", 142, 32, 29, 14) self.add_edit("edit", 2, 15, 171, 13, ("MultiLine",), (False,)) self.add_label("label", 2, 30, 130, 8, ("FontHeight", "MultiLine"), (8, True)) self._selection = None def _prepare(self): self.set_focus("edit") if self._selection: from com.sun.star.awt import Selection self.set_text_selection("edit", Selection(0, self._selection)) def execute(self, label="", txt="", init="", select=True): self.set_label("line", label) self.set_label("label", txt) self.set_text("edit", init) if init and select: self._selection = len(init) return DialogBase.execute(self) def _done(self, n): return (self.get_text("edit") if n else ""), n class InputDialog2(InputDialog): POSSIZE = 30, 50, 177, 81 def _create(self): self.add_line("line", 4, 1, 170, 12) self.add_cancel("cbtn", 142, 48, 29, 14) self.add_ok("obtn", 142, 32, 29, 14) self.add_edit("edit", 2, 15, 171, 13, ("MultiLine",), (False,)) self.add_label("label", 2, 30, 135, 8, ("FontHeight", "MultiLine"), (8, True)) self.add_button("ibtn", 142, 64, 29, 14, ("Label", "PushButtonType"), ("~Ref.", 0), command="idlref") self._button_listener = InputButtonListener(self.cast) self.get_control("ibtn").addActionListener(self._button_listener) self._selection = None def execute(self, label="", txt="", init="", dclass="", word="", select=True): self.set_label("line", label) self.set_label("label", txt) self.set_text("edit", init) self._button_listener.set_target(dclass, word) if init and select: self._selection = len(init) return DialogBase.execute(self) class ElementalInputDialog(InputDialog): POSSIZE = 30, 50, 177, 67 FROM_HISTORY = {"INTERFACE", "STRUCT", "EXCEPTION", "SEQUENCE"} class Result: def __init__(self, type_name, value=None, value_type=None): self.type_name = type_name self.value = value self.value_type = value_type class ListenerBase(unohelper.Base): def __init__(self, act): self.act = act def disposing(self, ev): self.act = None class ButtonListener(ListenerBase, XActionListener): def actionPerformed(self, ev): try: self.act.button_pushed(ev) except Exception as e: print(e) traceback.print_exc() class TreeSelectionListener(ListenerBase, XSelectionChangeListener): def selectionChanged(self, ev): ev.Source.getContext().getControl("btnOk").setEnable( self.act.tree_selection_changed()) class ItemListener(ListenerBase, XItemListener): def itemStateChanged(self, ev): self.act.void_check_changed(ev.Selected == 1) def _create(self): self.add_line("line", 4, 1, 170, 12) self.add_ok("obtn", 142, 0, 29, 14) self.add_cancel("cbtn", 142, 0, 29, 14) self.add_button("ibtn", 142, 0, 29, 14, ("Label",), ("~Ref.",), "idlref") self.add_edit("label", 2, 0, 135, 48, ("FontHeight", "MultiLine"), (8, True)) self._button_listener = InputButtonListener(self.cast) self.get_control("ibtn").addActionListener(self._button_listener) def _prepare(self): self.set_focus("edit_0") def execute(self, elements, label="", txt="", doc=("", "")): self._results = [] self.set_dialog_height(67 + len(elements) * 27) self.set_label("line", label) self.set_text("label", txt) self._button_listener.set_target(*doc) # add and rearrange controls from com.sun.star.style.VerticalAlignment import BOTTOM as VA_BOTTOM listener = self.__class__.ButtonListener(self) y = 14 complex_types = self.FROM_HISTORY | {"ANY"} for i, element in enumerate(elements): is_complex = element[1] in complex_types self.add_label("label_%s" % i, 4, y, 170, 12, ("Label", "NoLabel", "VerticalAlign"), (element[0], True, VA_BOTTOM)) self.add_edit("edit_%s" % i, 2, y + 13, (130 if is_complex else 171), 13, ("MultiLine",), (False,)) if is_complex: if element[1] != "ANY": self.set_enable("edit_%s" % i, False) self.add_button("btn_%s" % i, 133, y + 13, 40, 13, ("Label",), ("...",), str(i)) self.get_control("btn_%s" % i).addActionListener(listener) self._results.append(self.Result(element[1])) y += 27 y += 3 self.set_y("obtn", y) self.set_y("cbtn", y + 15) self.set_y("ibtn", y + 30) self.set_y("label", y) self._history_selector = None return DialogBase.execute(self) def void_check_changed(self, state): self._history_selector.enable_ok_button( state or self._history_selector.is_tree_selection_valid()) def tree_selection_changed(self): return self._history_selector.is_tree_selection_valid() def button_pushed(self, ev): control = ev.Source n = int(ev.ActionCommand) type_name = self._results[n].type_name with_type = False if type_name == "ANY": with_type = True from mytools_Mri.ui.tools import create_popupmenu entries = ((1, 0, 0, "void", "VOID", None), (2, 1, 0, "boolean", "BOOLEAN", None), (3, 2, 0, "byte", "BYTE", None), (4, 3, 0, "short", "SHORT", None), (5, 4, 0, "unsigned short", "UNSIGNED_SHORT", None), (6, 5, 0, "long", "LONG", None), (7, 6, 0, "unsigned long", "UNSIGNED_LONG", None), (8, 7, 0, "hyper", "HYPER", None), (9, 8, 0, "unsigned hyper", "UNSIGNED_HYPER", None), (10, 9, 0, "float", "FLOAT", None), (11, 10, 0, "double", "DOUBLE", None), (12, 11, 0, "string", "STRING", None), (13, 12, 0, "type", "TYPE", None), (14, 13, 0, "enum", "ENUM", None), (None, 14, 0, "", "", None), (15, 15, 0, "struct", "STRUCT", None), (16, 16, 0, "exception", "EXCEPTION", None), (17, 17, 0, "sequence", "SEQUENCE", None), (18, 18, 0, "interface", "INTERFACE", None)) popup = create_popupmenu(self.ctx, entries) r = popup.execute(ev.Source.getPeer(), Rectangle(0, ev.Source.getPosSize().Height, 0, 0), 0) if r == 0: return value_type_name = popup.getCommand(r) control.setLabel(popup.getItemText(r)) if value_type_name in self.FROM_HISTORY: self.set_enable("edit_%s" % n, False) else: self.set_enable("edit_%s" % n, True) self._results[n].value_type = value_type_name return obj = None try: self._history_selector = HistorySelectorDialog(self.ctx, self.cast) obj = self._history_selector.execute( "History", self.TreeSelectionListener(self), allow_void=True, void_listener=self.ItemListener(self)) self._history_selector = None except Exception as e: print(e) traceback.print_exc() finally: if obj is None: return name = "edit_%s" % n if obj == "void": self.set_text(name, "void") self._results[n].value = None self._results[n].value_type = "VOID" elif obj: self.set_text(name, str(obj)) self._results[n].value = obj self._results[n].value_type = value_type_name if with_type else type_name def _done(self, n): if n: for i, result in enumerate(self._results): if result.type_name in self.FROM_HISTORY or result.value_type == "ANY": pass else: result.value = self.get_text("edit_%s" % i) return n, self._results class HistorySelectorDialog(DialogBase): POSSIZE = 30, 50, 180, 140 def _create(self): class Wrapper(unohelper.Base): def __init__(self, obj): self.obj = obj self.add_label("labelHistory", 5, 3, 96, 12, ("Label",), ("History",)) self.add_ok("btnOk", 134, 4, 43, 14) self.add_cancel("btnCancel", 134, 24, 43, 14) self.add_check("checkVoid", 134, 50, 43, 14, ("Label",), ("~void",)) data_model = self.create_tree_data_model() self.add_tree("treeHistory", 3, 18, 127, 117, ("DataModel", "SelectionType", "RootDisplayed"), (data_model, 1, True)) child = self.cast.main.history.get_children()[0] def create_node(parent, entry): for i in entry.children: node = data_model.createNode(i.name, False) parent.appendChild(node) node.DataValue = Wrapper(i) if i.get_child_count() > 0: create_node(node, i) root = data_model.createNode(child.name, False) root.DataValue = Wrapper(child) create_node(root, child) data_model.setRoot(root) def _prepare(self): root = self.get_control_model("treeHistory").DataModel.getRoot() if root.getChildCount() > 0: self.get_control("treeHistory").makeNodeVisible(root.getChildAt(0)) def execute(self, title="", listener=None, allow_void=False, void_listener=None): if listener: self.get_control("treeHistory").addSelectionChangeListener(listener) self.set_enable("btnOk", False) self.set_title(title) self.set_visible("checkVoid", allow_void) if void_listener: self.get_control("checkVoid").addItemListener(void_listener) return DialogBase.execute(self) def _done(self, n): if n: if self.is_checked("checkVoid"): return "void" else: selected = self.get_control("treeHistory").getSelection() if selected: return selected.DataValue.obj else: return None def enable_ok_button(self, state): self.set_enable("btnOk", state) def is_tree_selection_valid(self): tree = self.get_control("treeHistory") state = False selected = tree.getSelection() if selected: state = selected != tree.getModel().DataModel.getRoot() return state class Dialogs(object): """ Provides dialogs. """ def __init__(self,ctx,smgr,cast): self.ctx = ctx self.smgr = smgr self.cast = cast self.dlg_info = None def dialog_info(self, value, label=''): """ Shows value as a message with label. """ if not self.dlg_info: self.dlg_info = InfoDialog(self.ctx, self.cast) return self.dlg_info.execute(value, label) def dialog_select(self, itemtuple, title='', index=False): """ Let user select an entry from items. """ return SelectDialog(self.ctx, self.cast).execute(itemtuple, title, index) def dialog_input(self, label='', txt='', init=''): """ Input dialog. """ return InputDialog(self.ctx, self.cast).execute(label, txt, init) def dialog_input2(self,label='',txt='',init='',dclass='',word=''): """ Input dialog 2. """ return InputDialog2(self.ctx, self.cast).execute(label, txt, init, dclass, word) def dialog_elemental_input(self, elements, label='', txt='', doc=('', '')): return ElementalInputDialog(self.ctx, self.cast).execute(elements, label, txt, doc) def message(self, message, title="", type="messbox", buttons=1): """ Message box, see css.awt.XMessageBoxFactory. """ import mytools_Mri.tools desktop = self.smgr.createInstanceWithContext( "com.sun.star.frame.Desktop", self.ctx) frame = desktop.getActiveFrame() window = frame.getContainerWindow() if mytools_Mri.tools.check_method_parameter( self.ctx, "com.sun.star.awt.XMessageBoxFactory", "createMessageBox", 1, "com.sun.star.awt.Rectangle"): msgbox = window.getToolkit().createMessageBox( window, Rectangle(), type, buttons, title, message) else: import uno _type = uno.Enum("com.sun.star.awt.MessageBoxType", {"messbox": "MESSAGEBOX", "infobox": "INFOBOX", "warningbox": "WARNINGBOX", "errorbox": "ERRORBOX", "querybox": "QUERYBOX"}[type]) msgbox = window.getToolkit().createMessageBox( window, _type, buttons, title, message) n = msgbox.execute() msgbox.dispose() return n def history_selector(self, title="", listener=None): """ Select an entry from history. """ return HistorySelectorDialog(self.ctx, self.cast).execute(title, listener) def _create_file_dialog(self, title, default_name, display_dir, filters, default_filter, template): fp = self.smgr.createInstanceWithContext("com.sun.star.ui.dialogs.FilePicker", self.ctx) fp.initialize((template,)) fp.setTitle(title) fp.setDefaultName(default_name) if display_dir: fp.setDisplayDirectory(display_dir) for name, f in filters: fp.appendFilter(name, f) if default_filter: fp.setCurrentFilter(filters[default_filter]) return fp def dialog_open(self, title="", default_name="", display_dir="", filters=(('All Files (*.*)', '*.*'),), default_filter=0, multiple=False, template=0): fp = self._create_file_dialog(title, default_name, display_dir, filters, default_filter, template) fp.setMultiSelectionMode(multiple) ret = None if fp.execute() == 1: files = fp.getFiles() if multiple: dir_url = files[0] if not dir_url.endswith("/"): dir_url += "/" ret = [dir_url + name for name in files[1:]] else: ret = files[0] fp.dispose() return ret def dialog_save(self, title="", default_name="", display_dir="", filters=(('All Files (*.*)', '*.*'),), default_filter=0, template=1): fp = self._create_file_dialog(title, default_name, display_dir, filters, default_filter, template) ret = None if fp.execute() == 1: ret = fp.getFiles()[0] fp.dispose() return ret def directory_choose(self, title="", description="", directory=""): fp = self.smgr.createInstanceWithContext("com.sun.star.ui.dialogs.FolderPicker", self.ctx) fp.setTitle(title) fp.setDescription(description) if directory: fp.setDisplayDirectory(directory) ret = None if fp.execute() == 1: ret = fp.getDirectory() fp.dispose() return ret
[ "hanya.runo@gmail.com" ]
hanya.runo@gmail.com
b67006d27c7752ea7c5a81f9de01ca5b928ca312
53134f27ca66d042da306781f5dbc7db1d5ec6fe
/apps/users/admin.py
97a3c2fe893cbf3fd5b6afac55565fd460de3b12
[]
no_license
OrlandoGareca/django_rest_blog
9acf116d6bca942222b1e6ad1b6d5026210d59c9
27fa784023172bfbca6fbc5d80c3c4f4e710f73f
refs/heads/main
2023-02-28T11:12:35.013283
2021-02-03T13:17:38
2021-02-03T13:17:38
335,623,322
0
0
null
null
null
null
UTF-8
Python
false
false
179
py
from django.contrib import admin # Register your models here. # from django_rest_blog.apps.users.models import User from apps.users.models import User admin.site.register(User)
[ "orlando.dilmar.gareca.pena@gmail.com" ]
orlando.dilmar.gareca.pena@gmail.com
1b9422493fed54a03dc6c88cbbc755440cca619d
9aaee5f65c8dd9d18b1cc549740f4e6be295f091
/basic_analysis/read_gnom_pr.py
b53ae2787ced078b0fda87e2d0b345b5df14ec70
[]
no_license
ssongna/sastbx_module_sastbx
285074d6f07c9d440bd750889322746d14448328
aa5cc2f59a4179db761125fb01fe7aaeda7d5dd0
refs/heads/master
2021-08-17T09:01:18.796977
2017-11-21T01:25:50
2017-11-21T01:25:50
111,428,819
0
0
null
null
null
null
UTF-8
Python
false
false
754
py
from scitbx.array_family import flex import sys def read_pr_from_gnom(filename): r= flex.double() pr= flex.double() error= flex.double() file=open(filename, 'r') pr_start = False for line in file: keys = line.split('\n')[0].split() if(len(keys) == 3): if(not pr_start): if(keys[0] == 'R' and (keys[1] == 'P(R)') and (keys[2] == 'ERROR') ): pr_start=True else: r.append( float(keys[0]) ) pr.append( float(keys[1]) ) error.append( float(keys[2]) ) file.close() return r, pr, error def print_pr(r,pr): for ri,pri in zip(r,pr): print ri, pri def test(filename): r,pr,err = read_pr_from_gnom(filename) print_pr(r,pr) if __name__ == "__main__": test(sys.argv[1])
[ "15298375979@126.com" ]
15298375979@126.com
b50d050dac270613e73ee112cfc10ed92724aa6e
d7be5ab6abbb79daef279974c0b3bf5e3de5515f
/venv/Scripts/pip-script.py
a21825c3c907375802dfa79ea818aada622bf889
[]
no_license
Swingyboy/PlatformTests
f4ee77515c323dbc32307585db01649e9396481b
4128bef83e64841d8e98d0ffcddca2195405b843
refs/heads/master
2022-03-05T18:26:15.407792
2019-11-14T13:26:49
2019-11-14T13:26:49
183,031,822
0
0
null
null
null
null
UTF-8
Python
false
false
402
py
#!E:\work\auto_tests\PlatformTests\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==9.0.1','console_scripts','pip' __requires__ = 'pip==9.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==9.0.1', 'console_scripts', 'pip')() )
[ "kedonosec@gmail.com" ]
kedonosec@gmail.com
2052bc6a6757a5b1615d290435939055ffefea57
c956c89a021a7507cfd52b60f6ac5b5c3b8c886e
/tersa/productos/models.py
ddfdaf907ed0f8a38fc7c11d564bf32bd5b58018
[]
no_license
cgallego08/tersa2019
6478fcbd47807ddd1c7058ff6de53fd8634abb2a
c6c1c8e6626bb248bae3443a3a3429a3e813cc1c
refs/heads/master
2020-08-07T16:00:38.776145
2019-10-08T00:58:39
2019-10-08T00:58:39
213,516,898
0
0
null
null
null
null
UTF-8
Python
false
false
586
py
from django.db import models from categorias.models import Categoria, Bodega # Create your models here. class Producto(models.Model): nombre_producto = models.CharField(max_length=250) categoria = models.ForeignKey(Categoria, on_delete=models.CASCADE) Bodega = models.ForeignKey(Bodega, on_delete=models.CASCADE) codigo_producto = models.CharField(max_length=255, unique=True,) precio = models.FloatField() cantidad_stock = models.IntegerField(default=0) descripcion_producto = models.TextField() def __str__(self): return self.nombre_producto
[ "55272028+cgallego08@users.noreply.github.com" ]
55272028+cgallego08@users.noreply.github.com
8dcbac18b80912d2eb5772c8182408c63abd2c73
434cfbd78ba08861bb40aa8290442556243bdbcc
/youtube_dl_gui/SignalHandler.py
f5211639e087497b3f395aaa04dfc3a9aae00361
[ "Unlicense" ]
permissive
hotice/youtube-dl-gui
a18e80788eb769adb5cb2d8007e65d04f78eca5b
46a7983f0a729cf7ea2138c39f3163abe71c0509
refs/heads/master
2021-01-15T14:32:11.948468
2014-03-24T21:15:18
2014-03-24T21:15:18
18,078,947
1
0
null
null
null
null
UTF-8
Python
false
false
2,898
py
#! /usr/bin/env python class DownloadHandler(): def __init__(self, ListCtrl): self.ListCtrl = ListCtrl self.finished = False self.close = False self.handlers = [] def _has_closed(self): return self.close def _has_finished(self): return self.finished def handle(self, msg): ''' Handles msg base to Signals.txt ''' data = msg.data index = self.get_index(data) if index == -1: if data[0] == 'finish': self.finished = True elif data[0] == 'close': self.close = True else: ''' Manage handlers for its index ''' if index == len(self.handlers): ''' Create new IndexDownloadHandler and add it to handlers ''' self.handlers.append(IndexDownloadHandler(self.ListCtrl, index)) ''' Let IndexDownloadHandler handle message data for current index ''' self.handlers[index].handle(data) def get_index(self, data): return data.pop() class IndexDownloadHandler(): def __init__(self, ListCtrl, index): self.ListCtrl = ListCtrl self.index = index self.info = '' def handle(self, data): ''' Handle its data message for current index ''' if data[0] == 'finish': self.finish() elif data[0] == 'close': self.close() elif data[0] == 'error': self.error() elif data[0] == 'playlist': self.playlist(data) elif data[0] == '[youtube]': self.pre_proc() elif data[0] == '[download]': self.download(data) elif data[0] == '[ffmpeg]': self.post_proc() def finish(self): self.ListCtrl._write_data(self.index, 4, '') self.ListCtrl._write_data(self.index, 5, 'Finished') def close(self): self.ListCtrl._write_data(self.index, 3, '') self.ListCtrl._write_data(self.index, 4, '') self.ListCtrl._write_data(self.index, 5, 'Stopped') def error(self): self.ListCtrl._write_data(self.index, 3, '') self.ListCtrl._write_data(self.index, 4, '') self.ListCtrl._write_data(self.index, 5, 'Error') def pre_proc(self): self.ListCtrl._write_data(self.index, 5, 'Pre-Processing %s' % self.info) def post_proc(self): self.ListCtrl._write_data(self.index, 4, '') self.ListCtrl._write_data(self.index, 5, 'Converting to Audio %s' % self.info) def download(self, data): self.ListCtrl._write_data(self.index, 1, data[3]) self.ListCtrl._write_data(self.index, 2, data[1]) self.ListCtrl._write_data(self.index, 3, data[7]) self.ListCtrl._write_data(self.index, 4, data[5]) self.ListCtrl._write_data(self.index, 5, 'Downloading %s' % self.info) def playlist(self, data): self.ListCtrl._write_data(self.index, 1, '') self.ListCtrl._write_data(self.index, 2, '') self.ListCtrl._write_data(self.index, 3, '') self.ListCtrl._write_data(self.index, 4, '') self.info = '%s/%s' % (data[1], data[2])
[ "ytubedlg@gmail.com" ]
ytubedlg@gmail.com
573e3dd3b178f91dba7132715f6a34622c436e4e
972a694174dfbd25dbf27d8aa98d272625c2400f
/external/AnniesLasso/sandbox-scripts/plot_label_recovery.py
1313fcf1b91da476022e3379017fc0afce6ac37b
[ "MIT", "BSD-3-Clause" ]
permissive
sdss/apogee
d3344021ac66f91e4259dd1fcf160ee7657740ec
e134409dc14b20f69e68a0d4d34b2c1b5056a901
refs/heads/master
2021-08-06T18:44:13.668542
2021-06-11T13:00:51
2021-06-11T13:00:51
127,458,050
5
5
BSD-3-Clause
2018-09-20T22:18:47
2018-03-30T18:02:58
IDL
UTF-8
Python
false
false
4,970
py
""" Plot the label recovery for the validation set as a function of S/N. """ import numpy as np from matplotlib.ticker import MaxNLocator from six.moves import cPickle as pickle from collections import Counter, OrderedDict models = { "model1": "gridsearch-2.0-3.0-s2-heuristically-set.model.individual_visits" } label_names = OrderedDict([ ('TEFF', r'$T_{\rm eff}$ $(\rm{K})$'), ('LOGG', r'$\log{g}$ $(\rm{dex})$'), ('AL_H', r'$[\rm{Al}/\rm{H}]$ $(\rm{dex})$'), ('CA_H', r'$[\rm{Ca}/\rm{H}]$ $(\rm{dex})$'), ('C_H', r'$[\rm{C}/\rm{H}]$ $(\rm{dex})$'), ('FE_H', r'$[\rm{Fe}/\rm{H}]$ $(\rm{dex})$'), ('K_H', r'$[\rm{K}/\rm{H}]$ $(\rm{dex})$'), ('MG_H', r'$[\rm{Mg}/\rm{H}]$ $(\rm{dex})$'), ('MN_H', r'$[\rm{Mn}/\rm{H}]$ $(\rm{dex})$'), ('NA_H', r'$[\rm{Na}/\rm{H}]$ $(\rm{dex})$'), ('NI_H', r'$[\rm{Ni}/\rm{H}]$ $(\rm{dex})$'), ('N_H', r'$[\rm{N}/\rm{H}]$ $(\rm{dex})$'), ('O_H', r'$[\rm{O}/\rm{H}]$ $(\rm{dex})$'), ('SI_H', r'$[\rm{Si}/\rm{H}]$ $(\rm{dex})$'), ('S_H', r'$[\rm{S}/\rm{H}]$ $(\rm{dex})$'), ('TI_H', r'$[\rm{Ti}/\rm{H}]$ $(\rm{dex})$'), ('V_H', r'$[\rm{V}/\rm{H}]$ $(\rm{dex})$'), ]) # Load the APOGEE IDs from individual visits from a separate file because I am # an idiot. with open("apogee_ids_from_individual_visits.pkl", "rb") as fp: apogee_ids = pickle.load(fp) fig, axes = plt.subplots(6, 3, figsize=(8.5, 12.5)) axes = np.array(axes).flatten() N_repeats_min = 2 N_bins = 25 colors = "kr" wrt_cannon = True common_ylim = 0.5 minimum_apogee_snr = 50.0 # Mark the minimum S/N in any combined APOGEE spectra counts = Counter(apogee_ids) is_repeated_enough = np.array( [(counts[_] >= N_repeats_min) for _ in apogee_ids]) # Define the metric to show at each bin. # MAD metric = lambda differences: np.median(np.abs(differences)) # RMS #metric = lambda differences: np.sqrt(np.sum((differences**2))/differences.size) for i, (model_name, model_filename) in enumerate(models.items()): color = colors[i] fill_color = "#CCCCCC" # Load the data: # (snrs, high_snr_expected, high_snr_inferred, differences_expected, # differences_inferred, single_visit_inferred) with open(model_filename, "rb") as fp: contents = pickle.load(fp) # Let's unpack that. iv_snr, combined_aspcap, combined_cannon, \ differences_aspcap, differences_cannon, \ iv_cannon = contents # Which label residuals should we show? differences = differences_cannon if wrt_cannon else differences_aspcap _, bin_edges, __ = axes[0].hist(iv_snr[is_repeated_enough], histtype="step", lw=2, color=color, bins=N_bins) axes[0].hist(iv_snr[is_repeated_enough], bins=N_bins, facecolor=fill_color, edgecolor=fill_color, zorder=-1) axes[0].set_ylabel(r"$\rm{Count}$") #axes[0].text(0.95, 0.95, r"${0:.0f}$".format(is_repeated_enough.sum()), # color=color, transform=axes[0].transAxes, # horizontalalignment="right", verticalalignment="bottom") for j, label_name in enumerate(label_names.keys()): # Take the mean per bin. x = np.diff(bin_edges)[0]/2. + bin_edges[:-1] y = [] for k in range(len(bin_edges) - 1): mask = (bin_edges[k + 1] > iv_snr) * (iv_snr >= bin_edges[k]) \ * is_repeated_enough if not any(mask): y.append(np.nan) else: y.append(metric(differences_cannon[mask, j])) y = np.array(y) ax = axes[j + 1] ax.plot(x, y, drawstyle="steps-mid", c=color, lw=2) # fuck x2 = np.repeat(x, 2)[1:] xstep = np.repeat((x[1:] - x[:-1]), 2) xstep = np.concatenate(([xstep[0]], xstep, [xstep[-1]])) x2 = np.append(x2, x2.max() + xstep[-1]) x2 -= xstep /2. y2 = np.repeat(y, 2) ax.fill_between(x2, np.zeros_like(y2), y2, where=np.ones_like(y2), color=fill_color, zorder=-1) ax.set_ylabel(label_names[label_name]) # Set common y-axes for abundance labels? ylim = common_ylim if common_ylim is not None \ else np.max([ax.get_ylim()[1] for ax in axes[3:]]) # Some custom limits: # MAGIC axes[1].set_ylim(0, 100) axes[2].set_ylim(0, 0.2) axes[0].yaxis.set_major_locator(MaxNLocator(4)) axes[1].yaxis.set_major_locator(MaxNLocator(4)) axes[2].set_yticks([0, 0.1, 0.2]) for ax in axes[3:]: ax.set_ylim(0, ylim) ax.set_yticks([0, 0.2, 0.4]) for ax in axes: if minimum_apogee_snr is not None: ax.axvline(minimum_apogee_snr, c="#666666", linestyle="--", zorder=-1) ax.set_xlim(bin_edges[0], bin_edges[-1]) if not ax.is_last_row(): ax.set_xticklabels([]) else: ax.set_xlabel(r"$S/N$") ax.set(adjustable="box-forced", aspect=np.ptp(ax.get_xlim())/np.ptp(ax.get_ylim())) fig.tight_layout() fig.savefig("papers/validation-label-recovery.pdf", dpi=300) raise a
[ "holtz@nmsu.edu" ]
holtz@nmsu.edu
1e328158a74ff438282aeaa61b0fc8b109732a80
b61e64d8715eebaafcc2c5187568eca2ffe9eeb9
/bson/objectid.py
75b5a3f266db93f7059fc65e4fe17ea3c3d72817
[]
no_license
pawel344/nosql
ea2954dcbd56e4222dbfff2a2c60badfe0ac826b
8e0a155fca8395617a499a5307c94eb633ff383e
refs/heads/master
2021-01-22T09:04:02.981146
2012-05-16T23:02:34
2012-05-16T23:02:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,836
py
# Copyright 2009-2012 10gen, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools for working with MongoDB `ObjectIds <http://dochub.mongodb.org/core/objectids>`_. """ import binascii import calendar import datetime try: import hashlib _md5func = hashlib.md5 except ImportError: # for Python < 2.5 import md5 _md5func = md5.new import os import socket import struct import threading import time from bson.errors import InvalidId from bson.py3compat import (b, binary_type, text_type, bytes_from_hex, string_types) from bson.tz_util import utc EMPTY = b("") ZERO = b("\x00") def _machine_bytes(): """Get the machine portion of an ObjectId. """ machine_hash = _md5func() machine_hash.update(socket.gethostname().encode()) return machine_hash.digest()[0:3] class ObjectId(object): """A MongoDB ObjectId. """ _inc = 0 _inc_lock = threading.Lock() _machine_bytes = _machine_bytes() __slots__ = ('__id') def __init__(self, oid=None): """Initialize a new ObjectId. If `oid` is ``None``, create a new (unique) ObjectId. If `oid` is an instance of (:class:`basestring` (:class:`str` or :class:`bytes` in python 3), :class:`ObjectId`) validate it and use that. Otherwise, a :class:`TypeError` is raised. If `oid` is invalid, :class:`~bson.errors.InvalidId` is raised. :Parameters: - `oid` (optional): a valid ObjectId (12 byte binary or 24 character hex string) .. versionadded:: 1.2.1 The `oid` parameter can be a ``unicode`` instance (that contains only hexadecimal digits). .. mongodoc:: objectids """ if oid is None: self.__generate() else: self.__validate(oid) @classmethod def from_datetime(cls, generation_time): """Create a dummy ObjectId instance with a specific generation time. This method is useful for doing range queries on a field containing :class:`ObjectId` instances. .. warning:: It is not safe to insert a document containing an ObjectId generated using this method. This method deliberately eliminates the uniqueness guarantee that ObjectIds generally provide. ObjectIds generated with this method should be used exclusively in queries. `generation_time` will be converted to UTC. Naive datetime instances will be treated as though they already contain UTC. An example using this helper to get documents where ``"_id"`` was generated before January 1, 2010 would be: >>> gen_time = datetime.datetime(2010, 1, 1) >>> dummy_id = ObjectId.from_datetime(gen_time) >>> result = collection.find({"_id": {"$lt": dummy_id}}) :Parameters: - `generation_time`: :class:`~datetime.datetime` to be used as the generation time for the resulting ObjectId. .. versionchanged:: 1.8 Properly handle timezone aware values for `generation_time`. .. versionadded:: 1.6 """ if generation_time.utcoffset() is not None: generation_time = generation_time - generation_time.utcoffset() ts = calendar.timegm(generation_time.timetuple()) oid = struct.pack(">i", int(ts)) + ZERO * 8 return cls(oid) def __generate(self): """Generate a new value for this ObjectId. """ oid = EMPTY # 4 bytes current time oid += struct.pack(">i", int(time.time())) # 3 bytes machine oid += ObjectId._machine_bytes # 2 bytes pid oid += struct.pack(">H", os.getpid() % 0xFFFF) # 3 bytes inc ObjectId._inc_lock.acquire() oid += struct.pack(">i", ObjectId._inc)[1:4] ObjectId._inc = (ObjectId._inc + 1) % 0xFFFFFF ObjectId._inc_lock.release() self.__id = oid def __validate(self, oid): """Validate and use the given id for this ObjectId. Raises TypeError if id is not an instance of (:class:`basestring` (:class:`str` or :class:`bytes` in python 3), ObjectId) and InvalidId if it is not a valid ObjectId. :Parameters: - `oid`: a valid ObjectId """ if isinstance(oid, ObjectId): self.__id = oid.__id elif isinstance(oid, string_types): if len(oid) == 12: if isinstance(oid, binary_type): self.__id = oid else: raise InvalidId("%s is not a valid ObjectId" % oid) elif len(oid) == 24: try: self.__id = bytes_from_hex(oid) except (TypeError, ValueError): raise InvalidId("%s is not a valid ObjectId" % oid) else: raise InvalidId("%s is not a valid ObjectId" % oid) else: raise TypeError("id must be an instance of (%s, %s, ObjectId), " "not %s" % (binary_type.__name__, text_type.__name__, type(oid))) @property def binary(self): """12-byte binary representation of this ObjectId. """ return self.__id @property def generation_time(self): """A :class:`datetime.datetime` instance representing the time of generation for this :class:`ObjectId`. The :class:`datetime.datetime` is timezone aware, and represents the generation time in UTC. It is precise to the second. .. versionchanged:: 1.8 Now return an aware datetime instead of a naive one. .. versionadded:: 1.2 """ t = struct.unpack(">i", self.__id[0:4])[0] return datetime.datetime.fromtimestamp(t, utc) def __getstate__(self): """return value of object for pickling. needed explicitly because __slots__() defined. """ return self.__id def __setstate__(self, value): """explicit state set from pickling """ # Provide backwards compatability with OIDs # pickled with pymongo-1.9. if isinstance(value, dict): try: # ObjectIds pickled in python 2.x used `str` for __id. # In python 3.x this has to be converted to `bytes` # by encoding latin-1. self.__id = value['_ObjectId__id'].encode('latin-1') except UnicodeDecodeError: self.__id = value['_ObjectId__id'] else: try: # See the previous comment about python 2/3 pickle issues. self.__id = value.encode('latin-1') except (UnicodeDecodeError, AttributeError): self.__id = value def __str__(self): return binascii.hexlify(self.__id).decode() def __repr__(self): return "ObjectId('%s')" % (str(self),) def __eq__(self, other): if isinstance(other, ObjectId): return self.__id == other.__id return NotImplemented def __ne__(self,other): if isinstance(other, ObjectId): return self.__id != other.__id return NotImplemented def __lt__(self, other): if isinstance(other, ObjectId): return self.__id < other.__id return NotImplemented def __le__(self, other): if isinstance(other, ObjectId): return self.__id <= other.__id return NotImplemented def __gt__(self, other): if isinstance(other, ObjectId): return self.__id > other.__id return NotImplemented def __ge__(self, other): if isinstance(other, ObjectId): return self.__id >= other.__id return NotImplemented def __hash__(self): """Get a hash value for this :class:`ObjectId`. .. versionadded:: 1.1 """ return hash(self.__id)
[ "notroot@ubuntu.(none)" ]
notroot@ubuntu.(none)
e451a171b6bdbc9987bf3c451b834584db2663b4
6d3f739586564d4b3ecd8afe8270ce3c213362af
/unet_train.py
d8568fe3393472579395bc3e495dc598ecd3c076
[]
no_license
shantanu778/Image_Segmantation_Tensorflow_Unet_landcover_AI
672b35a137b0ffce1deb7e14725f52346dcf5be9
b5f744af21a2130a8d45a967a19dfbcc56bd7cc5
refs/heads/main
2023-04-20T17:56:16.635249
2021-05-20T09:16:32
2021-05-20T09:16:32
369,143,081
2
0
null
null
null
null
UTF-8
Python
false
false
5,308
py
import tensorflow as tf import os import numpy as np import glob from tqdm import tqdm import cv2 from matplotlib import pyplot as plt from preprocess import data_loading ## Plot Mask Histogram ## Number of Class 3 ''' img = cv2.imread('masks/M-33-20-D-d-3-3.tif',cv2.IMREAD_COLOR) img_arr = np.array(img) np.unique(img_arr) # alternative way to find histogram of an image plt.hist(img.ravel(),256,[0,256]) plt.show() cv2.imshow('masks', img) cv2.waitKey(0) #closing all open windows cv2.destroyAllWindows() ''' ##Configuration IMG_WIDTH = 256 IMG_HEIGHT = 256 CHANNELS = 3 BATCH_SIZE = 32 NUM_CLASSES=4 TRAIN_PATH = os.path.dirname(os.path.abspath('F:/Personal Projects/Compressed/landcover.ai/images')) with open('train.txt') as f: train_ids = f.readlines() with open('val.txt') as f: val_ids = f.readlines() with open('test.txt') as f: test_ids = f.readlines() dataset = data_loading(train_ids, val_ids) dataset = dataset STEPS_PER_EPOCH = len(train_ids)//BATCH_SIZE VALIDATION_STEPS = len(val_ids)//BATCH_SIZE #Defining U-NET inputs = tf.keras.layers.Input((IMG_WIDTH, IMG_HEIGHT, CHANNELS)) s = inputs conv1 = tf.keras.layers.Conv2D(16, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(s) conv1 = tf.keras.layers.Dropout(0.1)(conv1) conv1 = tf.keras.layers.Conv2D(16, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(conv1) pool1 = tf.keras.layers.MaxPooling2D(2,2)(conv1) conv2 = tf.keras.layers.Conv2D(32, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(pool1) conv2 = tf.keras.layers.Dropout(0.1)(conv2) conv2 = tf.keras.layers.Conv2D(32, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(conv2) pool2 = tf.keras.layers.MaxPooling2D(2,2)(conv2) conv3 = tf.keras.layers.Conv2D(64, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(pool2) conv3 = tf.keras.layers.Dropout(0.1)(conv3) conv3 = tf.keras.layers.Conv2D(64, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(conv3) pool3 = tf.keras.layers.MaxPooling2D(2,2)(conv3) conv4 = tf.keras.layers.Conv2D(128, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(pool3) conv4 = tf.keras.layers.Dropout(0.1)(conv4) conv4 = tf.keras.layers.Conv2D(128, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(conv4) pool4 = tf.keras.layers.MaxPooling2D(2,2)(conv4) conv5 = tf.keras.layers.Conv2D(256, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(pool4) conv5 = tf.keras.layers.Dropout(0.1)(conv5) conv5 = tf.keras.layers.Conv2D(256, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(conv5) #EXPANSIVE U-NET u6 = tf.keras.layers.Conv2DTranspose(128,(2,2), strides=(2,2), padding='same')(conv5) u6 = tf.keras.layers.concatenate([u6, conv4]) conv6 = tf.keras.layers.Conv2D(128, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(u6) conv6 = tf.keras.layers.Dropout(0.1)(conv6) conv6 = tf.keras.layers.Conv2D(128, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(conv6) u7 = tf.keras.layers.Conv2DTranspose(64,(2,2), strides=(2,2), padding='same')(conv6) u7 = tf.keras.layers.concatenate([u7, conv3]) conv7 = tf.keras.layers.Conv2D(64, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(u7) conv7 = tf.keras.layers.Dropout(0.1)(conv7) conv7 = tf.keras.layers.Conv2D(64, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(conv7) u8 = tf.keras.layers.Conv2DTranspose(32,(2,2), strides=(2,2), padding='same')(conv7) u8 = tf.keras.layers.concatenate([u8, conv2]) conv8 = tf.keras.layers.Conv2D(32, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(u8) conv8 = tf.keras.layers.Dropout(0.1)(conv8) conv8 = tf.keras.layers.Conv2D(32, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(conv8) u9 = tf.keras.layers.Conv2DTranspose(16,(2,2), strides=(2,2), padding='same')(conv8) u9 = tf.keras.layers.concatenate([u9, conv1]) conv9 = tf.keras.layers.Conv2D(16, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(u9) conv9 = tf.keras.layers.Dropout(0.1)(conv9) conv9 = tf.keras.layers.Conv2D(16, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(conv9) outputs = tf.keras.layers.Conv2D(NUM_CLASSES,(1,1), activation='softmax')(conv9) model = tf.keras.Model(inputs = [inputs], outputs = [outputs]) model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=['accuracy']) es = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10) checkpoint = tf.keras.callbacks.ModelCheckpoint('unet_model_for_lancover_2.h5', verbose=1, save_best_only=True) tensorboard = tf.keras.callbacks.TensorBoard(log_dir='logs') results = model.fit(dataset['train'], steps_per_epoch=STEPS_PER_EPOCH, epochs = 50, validation_data = dataset['val'], validation_steps = VALIDATION_STEPS, callbacks = [es,checkpoint,tensorboard])
[ "shantunath778@gmail.com" ]
shantunath778@gmail.com
d8ee10cbc40b90df55996475316537ec7e192c61
24fe1f54fee3a3df952ca26cce839cc18124357a
/servicegraph/lib/python2.7/site-packages/acimodel-4.0_3d-py2.7.egg/cobra/modelimpl/infra/rtpathtospaccgrp.py
eef4e3bb87ae031c1d22f63484adf1bc4d67f73b
[]
no_license
aperiyed/servicegraph-cloudcenter
4b8dc9e776f6814cf07fe966fbd4a3481d0f45ff
9eb7975f2f6835e1c0528563a771526896306392
refs/heads/master
2023-05-10T17:27:18.022381
2020-01-20T09:18:28
2020-01-20T09:18:28
235,065,676
0
0
null
2023-05-01T21:19:14
2020-01-20T09:36:37
Python
UTF-8
Python
false
false
4,746
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2019 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class RtPathToSpAccGrp(Mo): """ Mo doc not defined in techpub!!! """ meta = TargetRelationMeta("cobra.model.infra.RtPathToSpAccGrp", "cobra.model.infra.SHPathS") meta.moClassName = "infraRtPathToSpAccGrp" meta.rnFormat = "rtpathToSpAccGrp-[%(tDn)s]" meta.category = MoCategory.RELATIONSHIP_FROM_LOCAL meta.label = "Host Path Selector" meta.writeAccessMask = 0x100000000001 meta.readAccessMask = 0x80100000000001 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.parentClasses.add("cobra.model.infra.SpAccPortGrp") meta.superClasses.add("cobra.model.reln.From") meta.superClasses.add("cobra.model.reln.Inst") meta.rnPrefixes = [ ('rtpathToSpAccGrp-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "tCl", "tCl", 24369, PropCategory.REGULAR) prop.label = "Target-class" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 8244 prop.defaultValueStr = "infraSHPathS" prop._addConstant("infraSHPathS", None, 8244) prop._addConstant("unspecified", "unspecified", 0) meta.props.add("tCl", prop) prop = PropMeta("str", "tDn", "tDn", 24368, PropCategory.REGULAR) prop.label = "Target-dn" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True meta.props.add("tDn", prop) meta.namingProps.append(getattr(meta.props, "tDn")) getattr(meta.props, "tDn").needDelimiter = True # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Ancestor" meta.deploymentQueryPaths.append(DeploymentPathMeta("AccBaseGrpToEthIf", "Interface", "cobra.model.l1.EthIf")) def __init__(self, parentMoOrDn, tDn, markDirty=True, **creationProps): namingVals = [tDn] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
[ "rrishike@cisco.com" ]
rrishike@cisco.com
caad58faa73eecb141cdfe7e2295c03ac8db6083
427eefd3d18d4323ac2e3920aabc50d7346b7c11
/reading.py
f7b67bdddb023032fa6d9f934129b0e3478374df
[]
no_license
jvparidon/tamil-test-suite
b9f0f53002793103a4e6e2686dff8547df0ba94d
74bd6b45555ad35aa9c3969e65185de5a1407ebb
refs/heads/master
2021-07-02T17:44:00.313961
2020-09-01T16:52:31
2020-09-01T16:52:31
155,201,570
0
0
null
null
null
null
UTF-8
Python
false
false
1,619
py
import audio from psychopy import prefs prefs.general['audioLib'] = ['pygame'] from psychopy import core, visual from test_tools import get_pp_info, pause # experiment routines for presenting word reading stimuli and recording spoken responses class Experiment(object): def __init__(self, mode, pp_info, fps=60.0): self.mode = mode self.pp_info = pp_info self.fps = fps # set up file paths, etc. self.log_fname = 'logs/reading/' + mode + '_' + pp_info['literate'] + '_' + pp_info['number'] + '.wav' def run(self): # set up presentation window color, and size bgcolor = 'black' txtcolor = 'white' self.win = visual.Window(fullscr=True, color=bgcolor) #self.win = visual.Window((1200, 900), color=bgcolor) # temporary presentation window setup, exchange for line above when running actual experiment self.text = visual.TextStim(self.win, color=txtcolor) for i in range(5, 0, -1): self.text.text = '+' * (2 * i - 1) self.text.draw() self.win.flip() core.wait(1) self.text.text = '-' self.text.draw() self.win.flip() # record samples = audio.record(60, wait=True) self.text.text = '+' self.text.draw() self.win.flip() audio.write(self.log_fname, samples) core.wait(3) self.win.close() if __name__ == '__main__': pp_info = get_pp_info() for mode in ['tamil', 'tamil_nonword', 'english', 'english_nonword']: pause() Experiment(mode, pp_info).run()
[ "jvparidon@gmail.com" ]
jvparidon@gmail.com
b7c1d90ded90c00f06a5b584532562d4652f4c1e
d98d2f725cb425eb38de6a34a7ba601b84fcad44
/MediaPrep1.py
35d8199d4543d6fcc55c4e4fdc5d817082fd8c6a
[]
no_license
Naturalenemy07/Opentrons
438f624001b759dcdc43793342e3e996e1625a9b
3470dc46e3c970a696d4397ce3613527618ba972
refs/heads/master
2020-04-07T01:12:27.519214
2020-01-20T03:55:08
2020-01-20T03:55:08
157,934,798
0
0
null
null
null
null
UTF-8
Python
false
false
4,442
py
"""This protocol is for prepping different media conditions in a plate (Duetz or otherwise). It relies on a list from the Opentrons Protocol Settings protocol to determine the type of media and what wells to add it to.""" from opentrons import robot, containers, instruments class MediaPrepSettings: def __init__(self): self.mediadict = dict() # names of media and their locations def add_media(self, name, concentration, location): mytuple = (concentration, location, list()) self.mediadict[name] = mytuple # This function is written pretty general, it can be used for multiple read ins. def importmediasettings(self): f = open('C:/Users/User/Desktop/mediasettings.txt') Medias = list() while True: line = f.readline() if line.find("Media Stocks:") != -1: num_media = int(line[-2]) for i in range(num_media): media = f.readline()[-1] media = media.split('\t') Medias.append(media) if line.find("Strains") != -1: num_strains = int(line[-2]) if ismedia != -1: medianame = line[ismedia+11:-1] else: self.mediadict[medianame][2].append(line[:-1]) f.close() #if no number assume a concentration of 1x class Plate: def __init__(self): self.totalvolume = 500 self.wellmatrix = dict() self.fill_wellmatrix() def fill_wellmatrix(self): f = open('C:/Users/Trinh Lab/Desktop/OpentronsProtocols/96welllist.txt') for line in f: self.wellmatrix[line[:-1]] = 0 f.close() def change_well_volume(self, mywell, amount_added): self.wellmatrix[mywell] += amount_added def get_well_volume(self, mywell): return self.wellmatrix[mywell] # Initializing the containers and media p1000rack = containers.load('tiprack-1000ul', 'D2') trash = containers.load('point', 'D1') DuetzPlate = containers.load('96-deep-well', 'A1') smalltubes = containers.load('tube-rack-2ml', 'B2') bigtubes = containers.load('tube-rack-15_50ml', 'C2') # These are the hardcoded media that will be added via the protocol gui later. MyMedia = MediaPrepSettings() Plate1 = Plate() # Medias MyMedia.add_media('SC-Leu-Ura',2, bigtubes.wells('A4')) MyMedia.add_media('Leu', 40, bigtubes.wells('B4')) MyMedia.add_media('Ura', 50, bigtubes.wells('B2')) MyMedia.add_media('YPD', 1.11, bigtubes.wells('A2')) # Carbon Sources MyMedia.add_media('Galactose', 10, bigtubes.wells('B1')) MyMedia.add_media('Glucose', 10, bigtubes.wells('A1')) # Antibiotics MyMedia.add_media('G418', 10, bigtubes.wells('C1')) MyMedia.add_media('Amp', 10, bigtubes.wells('C2')) MyMedia.importmediasettings() # Initialize the Pipette p1000_single = instruments.Pipette( axis="b", name='p1000', max_volume=900, min_volume=50, channels=1, trash_container=trash, tip_racks=[p1000rack] ) # ---PROTOCOL--- # # Distribute every needed media from the list for media, info in MyMedia.mediadict.items(): vol = Plate1.totalvolume / info[0] p1000_single.distribute(vol, info[1], DuetzPlate.wells(info[2]), disposal_vol=10) for well in info[2]: # Iterates through every well that requires the media and adds media to it Plate1.change_well_volume(well, vol) # reset the volume on the plate tracker # Determine the appropriate volume of water for each well to get to its final total volume wells_lists = list() # Temporary Storage cum_volume = 0 well_subset = list() for well in Plate1.wellmatrix: vol_water = int(Plate1.totalvolume) - int(Plate1.wellmatrix[well]) if cum_volume + vol_water >= 800: # Consolidate current information: wells_lists.append([well_subset, cum_volume]) #Reset the temporary storage: well_subset = [] cum_volume = 0 # Add inf into temporary storage vectors cum_volume += vol_water well_subset.append([well, vol_water]) wells_lists.append([well_subset, cum_volume]) #Add the appropriate volume of water to each of the wells p1000_single.pick_up_tip(p1000rack) for wells in wells_lists: p1000_single.aspirate(wells[1]+10, bigtubes.wells('A3')) for awell in wells[0]: p1000_single.dispense(awell[1], DuetzPlate.wells(awell[0])) # index 1 gives volume, index 0 is the well name p1000_single.blow_out(trash) p1000_single.drop_tip(trash)
[ "noreply@github.com" ]
Naturalenemy07.noreply@github.com
595e5bca39ed448a4b056fa662028de4209da8f1
aa6667f476b2c6f9c79d49acffc3f6c0f9b69597
/setup.py
3089700fb7316e15568bf9f812cf712bff36472d
[ "WTFPL" ]
permissive
jziemer1996/BanDiTS
212f84c4ddc616b4cbd44f2429745e6ac4dfe040
f6a2b2fda4363f83de18059366381c4fbe7f1e5b
refs/heads/master
2021-06-13T23:20:12.412149
2020-05-11T14:27:07
2020-05-11T14:27:07
254,461,079
0
0
WTFPL
2020-04-09T19:31:06
2020-04-09T19:31:06
null
UTF-8
Python
false
false
1,308
py
from setuptools import setup, find_packages import os import sys directory = os.path.abspath(os.path.dirname(__file__)) if sys.version_info >= (3, 0): with open(os.path.join(directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() else: with open(os.path.join(directory, 'README.md')) as f: long_description = f.read() setup(name='BanDiTS', packages=find_packages(), include_package_data=True, setup_requires=['setuptools_scm'], use_scm_version=True, description='A Python module for time series analysis', classifiers=[ 'License :: FSF Approved :: WTFPL License', 'Operating System :: Microsoft :: Windows', 'Programming Language :: Python', ], install_requires=["fiona", 'scipy', 'rasterio', 'pathos>=0.2', 'numpy'], python_requires='>=3.6.0', url='https://github.com/marlinmm/GEO419_South_Africa.git', author='Marlin Mueller', #'Jonas Ziemer' # how to add second author? author_email='marlin.markus.mueller@uni-jena.de', license='WTFPL', zip_safe=False, long_description=long_description, long_description_content_type='text/markdown')
[ "marlinmueller.mm@gmail.com" ]
marlinmueller.mm@gmail.com
f73f3efc3938ee3cf1a170decf4ffb381517ee34
97d1fe99690ea7e02d2ba0e1750b27c5123ecbcc
/tuxradar/mousegame/ball1.py
501c737b038d3065d11dda7e65a8ae4e72627561
[]
no_license
AdmiralAsshat/learn_python
3c7f9ac7518b9da1e6d6bdc5dcf6bc4bdb813d67
89fd515855b5dd487e45d0970f1790cde1e88657
refs/heads/master
2021-01-19T10:02:22.650283
2016-10-29T18:46:03
2016-10-29T18:46:03
13,074,466
7
0
null
null
null
null
UTF-8
Python
false
false
906
py
from pygame import * # Why this instead of just import pygame? ballpic = image.load('ball.png') done = False ballx = 0 # ball_x would be easier to read bally = 0 ballxmove = 1 # velocity ballymove = 1 init() screen = display.set_mode((640,480)) # Is there an autodetect native resolution function? display.set_caption('Balls in my mouth') while done == False: screen.fill(0) # Fill screen with black (color 0) screen.blit(ballpic, (ballx, bally)) # Does blit insert pic at center or at bottom-left corner? display.update() time.delay(1) # Slow it down! ballx += ballxmove # Update ball position bally += ballymove if ballx > 600: # Ball reached screen edges? ballxmove = -1 if ballx < 0: ballxmove = 1 if bally > 440: ballymove = -1 if bally < 0: ballymove = 1 for e in event.get(): # Check for ESC pressed if e.type == KEYUP: if e.key == K_ESCAPE: done = True
[ "asshatadmiral@gmail.com" ]
asshatadmiral@gmail.com
a26b89cd6a7378808cf4517d87628ab0508d4c0b
7db3d7f745693479238f6d3af98cb970408bfcca
/src/python/pants/engine/internals/options_parsing_test.py
047964d04683963d0024b7e1c2edf0c7aee882ca
[ "Apache-2.0" ]
permissive
silverguo/pants
3b75bc0e736f2de5b41c2ddb8ba21f0d7cc314da
141510d03fbf2b7e1a0b54f66b54088697f6fa51
refs/heads/master
2022-05-24T13:57:02.596103
2020-04-23T02:39:59
2020-04-23T02:39:59
257,949,101
0
0
Apache-2.0
2020-04-22T15:54:24
2020-04-22T15:54:24
null
UTF-8
Python
false
false
2,716
py
# Copyright 2018 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from pants.engine.selectors import Params from pants.init.options_initializer import BuildConfigInitializer from pants.option.options_bootstrapper import OptionsBootstrapper from pants.option.scope import GLOBAL_SCOPE, Scope, ScopedOptions from pants.testutil.test_base import TestBase from pants.util.logging import LogLevel class TestEngineOptionsParsing(TestBase): def _ob(self, args=tuple(), env=tuple()): self.create_file("pants.toml") options_bootstrap = OptionsBootstrapper.create(args=tuple(args), env=dict(env),) # NB: BuildConfigInitializer has sideeffects on first-run: in actual usage, these # sideeffects will happen during setup. We force them here. BuildConfigInitializer.get(options_bootstrap) return options_bootstrap def test_options_parse_scoped(self): options_bootstrapper = self._ob( args=["./pants", "-ldebug", "binary", "src/python::"], env=dict(PANTS_ENABLE_PANTSD="True", PANTS_BINARIES_BASEURLS='["https://bins.com"]'), ) global_options_params = Params(Scope(str(GLOBAL_SCOPE)), options_bootstrapper) python_setup_options_params = Params(Scope(str("python-setup")), options_bootstrapper) global_options, python_setup_options = self.scheduler.product_request( ScopedOptions, [global_options_params, python_setup_options_params], ) self.assertEqual(global_options.options.level, LogLevel.DEBUG) self.assertEqual(global_options.options.enable_pantsd, True) self.assertEqual(global_options.options.binaries_baseurls, ["https://bins.com"]) self.assertEqual(python_setup_options.options.platforms, ["current"]) def test_options_parse_memoization(self): # Confirm that re-executing with a new-but-identical Options object results in memoization. def ob(): return self._ob(args=["./pants", "-ldebug", "binary", "src/python::"]) def parse(ob): params = Params(Scope(str(GLOBAL_SCOPE)), ob) return self.request_single_product(ScopedOptions, params) # If two OptionsBootstrapper instances are not equal, memoization will definitely not kick in. one_opts = ob() two_opts = ob() self.assertEquals(one_opts, two_opts) self.assertEquals(hash(one_opts), hash(two_opts)) # If they are equal, executing parsing on them should result in a memoized object. one = parse(one_opts) two = parse(two_opts) self.assertEqual(one, two) self.assertIs(one, two)
[ "noreply@github.com" ]
silverguo.noreply@github.com
50ddaaeab08af012481289d7553d0e3129d36c18
0f9a97d48a9f0179bcf1e3d80c08340096eb561e
/ДЗ-5. Функции и рекурсия/K. Возведение в степень.py
b21cb2ad4fda6a241147eb326ed1dbb62d7ade51
[]
no_license
dmitryokh/python
96d8ec8c3f2d3428b90d510a1003aecf102b13d0
8efe761412779bed9a7516832d3152843088fa43
refs/heads/master
2020-04-24T03:08:42.865813
2019-02-20T11:41:52
2019-02-20T11:41:52
171,661,235
0
0
null
null
null
null
UTF-8
Python
false
false
189
py
def power(a, n): if n == 0: return("1") elif n == 1: return(a) else: return(power(a, n - 1) * a) a = float(input()) n = int(input()) print(power(a, n))
[ "noreply@github.com" ]
dmitryokh.noreply@github.com
d17c784e4f5fe6bed513799634a673e566433300
7c3ba04f7a7894d95da7ef0affc57e609ca03459
/differentModels/train4.py
57f5451f13bb596efbbaab4aa44fd2e488751e37
[]
no_license
muellerelias/nnpostprocessing
cc49adbbc17cdb15e5923e485823687c6f3e3a77
f4686cd205c95da232f9711dea69d250efe20ac9
refs/heads/master
2023-01-28T09:56:53.692428
2020-12-15T08:31:23
2020-12-15T08:31:23
272,470,116
0
0
null
null
null
null
UTF-8
Python
false
false
6,193
py
# go to parent directory import sys sys.path.append('..') import argparse import json import os from datetime import datetime import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.keras import utils from tensorflow.keras.layers import (Activation, Concatenate, Dense, Embedding, Flatten, Input, InputLayer) from tensorflow.keras.models import Model, Sequential from tensorflow.keras.optimizers import SGD, Adam import dataset.converter as converter import dataset.helper.crps as crps import dataset.shape as shape import helper as helpers import model.build_model as modelprovider import model.loss_functions as loss """ - temperature + remaining NWP inputs """ expname = 'model-4' forecast = '15days' numpy_path = '/home/elias/Nextcloud/1.Masterarbeit/Daten/'+forecast+'/vorverarbeitetRegime/' logdir = '/home/elias/Nextcloud/1.Masterarbeit/Tests/'+forecast+'/' batchsize = 16 epochs = 30 initial_epochs = 0 learning_rate = 5e-05 train_model = False def main(): start = datetime.now() # get the data train_data = helpers.load_data(numpy_path, 'train_set.npy') valid_data = helpers.load_data(numpy_path, 'valid_set.npy') test_data = helpers.load_data(numpy_path, 'test_set.npy') # filter the data test_data_labels = np.array([item[0] for item in test_data[:, 2]]) test_data_countries = np.array([item[0] for item in test_data[:, 0]]) test_data_month = test_data[:, 5] # convert the data train_dataset, train_shape = convert_dataset( train_data, batchsize=batchsize, shuffle=1000, shape=True) valid_dataset = convert_dataset( valid_data, batchsize=1000, shuffle=100) test_dataset = convert_dataset( test_data, batchsize=1000) # build the model model = build_model( train_shape[1], train_shape[2]) # Print Model # modelprovider.printModel(model, dir=os.path.join( # logdir, expname), name=expname+".png") # compiling the model lossfn = loss.crps_cost_function opt = Adam(lr=learning_rate, amsgrad=True) model.compile(loss=lossfn, optimizer=opt) # Load model if exits checkpoint_dir = os.path.join(logdir, expname, 'checkpoints/') # begin with training 10 times print('[INFO] Starting training') predictions = [] for i in range(1, 11): print('Round number: '+str(i)) model = build_model( train_shape[1], train_shape[2]) # compile new model with new inital weights model.compile(loss=lossfn, optimizer=opt) # checkpoint callbacks # all checkpoints cp_callback_versuch = tf.keras.callbacks.ModelCheckpoint( os.path.join(checkpoint_dir, 'round-'+str(i)+'/')+"checkpoint_{epoch}", monitor='val_loss', save_weights_only=True, mode='min', verbose=0) # best checkpoint cp_callback = tf.keras.callbacks.ModelCheckpoint( os.path.join(checkpoint_dir, 'round-'+str(i)+'/checkpoint'), monitor='val_loss', save_weights_only=True, mode='min', save_best_only=True, verbose=0) # train the model if train_model: model.fit( train_dataset, epochs=epochs, initial_epoch=initial_epochs, batch_size=batchsize, verbose=1, validation_data=valid_dataset, validation_batch_size=1000, callbacks=[cp_callback, cp_callback_versuch], ) # load the best checkpoint of round i model.load_weights(os.path.join(checkpoint_dir, 'round-'+str(i)+'/checkpoint')).expect_partial() predictions.append(model.predict( test_dataset, batch_size=1000, verbose=0)) # convert to numpy array predictions = np.array(predictions) # Make sure std is positive predictions[:, :, 1] = np.abs(predictions[:, :, 1]) mean_predictions = np.mean(predictions, 0) # calculate the score for each record in test set test_crps = crps.norm_data(test_data_labels, mean_predictions) # print the results with filters helpers.printIntCountries(test_data_labels, test_data_countries , mean_predictions) helpers.printHist(helpers.datasetPIT(mean_predictions, test_data_labels)) np.save(os.path.join(logdir, expname, 'prediction'), predictions) print(datetime.now()-start) def build_model(shape_vec, shape_mat): # first branch for the inp1 = Input(shape=(1,), name='Country_ID') model1 = Embedding(23, 2, name='Country_Embedding')(inp1) model1 = Flatten()(model1) # second branch for the vector input inp2 = Input(shape=(1,), name="Date_and_Regimes") # third branch for the matrix input inp3 = Input(shape=shape_mat, name="Ensemble") model3 = Flatten()(inp3) # concatenate the two inputs x = Concatenate(axis=1)([model1,inp2, model3]) # add the hiddden layers x = Dense(100, activation='linear' , name="Combined_Hidden_Layer_1")(x) x = Dense(100, activation='relu' , name="Combined_Hidden_Layer_2")(x) x = Dense(100, activation='relu' , name="Combined_Hidden_Layer_3")(x) x = Dense( 2, activation='linear' , name="Output_Layer")(x) # returns the Model return Model([inp1,inp2, inp3], outputs=x) def convert_dataset(data, batchsize=None, shuffle=None, shape=False): input1 = [] input2 = [] input3 = [] label = [] for item in data: input1.append( item[0][0] ) input2.append(item[0][1]) input3.append(item[1]) label.append(item[2][0]) dataset_input = tf.data.Dataset.from_tensor_slices((input1, input2, input3)) dataset_label = tf.data.Dataset.from_tensor_slices(label) dataset = tf.data.Dataset.zip((dataset_input, dataset_label)) if (shuffle != None): dataset = dataset.shuffle(shuffle) if (batchsize != None): dataset = dataset.batch(batchsize) if (shape): return dataset, (input1[0].shape , input2[0].shape, input3[0].shape) else: return dataset if __name__ == "__main__": helpers.mkdir_not_exists(os.path.join(logdir, expname)) main()
[ "elias@mumail.de" ]
elias@mumail.de
295b40469d0181e648db1e4009021cac508e9f74
bf2553af41f11067751000f4e504399cce5c4e49
/Prediction of Wastewater Treatment Plant Performances by Artificial Intelligence/Asya/ultrafiltrasyon/forxgboost.py
4d0ae375c5449b2facac0236eb71af17ac28fd9e
[]
no_license
emrecemaksu/Python
ae6d27bd934b050c962527310a6be13bdec462ff
07091f100293999f9669120ba5bf28ea2f8dff2d
refs/heads/master
2020-06-19T14:57:11.121356
2019-07-13T18:20:31
2019-07-13T18:20:31
196,753,154
0
0
null
null
null
null
UTF-8
Python
false
false
3,044
py
# -*- coding: utf-8 -*- """ Created on Thu Feb 20 21:13:46 2019 @author: emrecemaksu """ import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.preprocessing import Imputer from sklearn.model_selection import train_test_split from sklearn import ensemble from xgboost.sklearn import XGBRegressor from sklearn.metrics import r2_score from sklearn.svm import SVR from sklearn.preprocessing import StandardScaler veriler = pd.read_csv("veriler_uf.csv") Nhdort = veriler[["NH4N"]] ALF = veriler[["Averageleachateflow"]] SS = veriler[["SS"]] Sicaklik = veriler[["Temperature"]] Cod = veriler[["COD"]] MLSSAero = veriler[["MLSSaerobic"]] Nuf = veriler[["NH4NUF"]] Coduf = veriler[["CODUF"]] imputer= Imputer imputer= Imputer(missing_values='NaN', strategy = 'mean', axis=0 ) SS = imputer.fit_transform(SS) MLSSAero = imputer.fit_transform(MLSSAero) SS = pd.DataFrame(data = SS, index = range(358), columns=['SS']) MLSSAero = pd.DataFrame(data = MLSSAero, index = range(358), columns =['MLSSAero']) degerler = pd.concat([Cod, Nhdort, SS, ALF, Sicaklik, MLSSAero], axis=1) x_train, x_test, y_train, y_test = train_test_split(degerler, Coduf, test_size=0.25, random_state=57) params = {'n_estimators': 9, 'max_depth': 14, 'min_samples_split': 12,'learning_rate': 0.3, 'loss': 'ls'} model = ensemble.GradientBoostingRegressor(**params) model.fit(x_train, y_train) y_pred = model.predict(x_test) print('\nXGBOOST CODUF R2 Skoru => ') print(r2_score(y_test, y_pred)) """ x_train_NUF, x_test_NUF, y_train_NUF, y_test_NUF = train_test_split(degerler, Nuf, test_size=0.10, random_state=5) params2 = {'n_estimators': 16, 'max_depth': 5, 'min_samples_split': 4,'learning_rate': 0.66, 'loss': 'ls'} model_NUF = ensemble.GradientBoostingRegressor(**params2) model_NUF.fit(x_train_NUF, y_train_NUF) y_pred_NUF = model_NUF.predict(x_test_NUF) print('\nXGBOOST NH4UF R2 Skoru => ') print(r2_score(y_test_NUF, y_pred_NUF)) eskiskor = 0 eskiestimator = 0 eskidepth = 0 eskisplit = 0 eskirandom = 0 eskirate = 0 for rate in np.arange(0.3, 1, 0.10): for estimator in range(1,30): for depth in range(1,30): for randomsta in range(0,75): for split in range(2,75): x_train, x_test, y_train, y_test = train_test_split(degerler, Coduf, test_size=0.25, random_state=randomsta) params2 = {'n_estimators': estimator, 'max_depth': depth, 'min_samples_split': split,'learning_rate': rate, 'loss': 'ls'} model = ensemble.GradientBoostingRegressor(**params2) model.fit(x_train, y_train) y_pred = model.predict(x_test) skor = r2_score(y_test, y_pred) if(skor > eskiskor): eskiskor = skor eskirandom = randomsta eskisplit = split eskidepth = depth eskiestimator = estimator eskirate = rate """
[ "emrecemaksu@hotmail.com" ]
emrecemaksu@hotmail.com
1a83cc3491267b032c141421d5d9bb8d0fc1472a
c702d957c9bb1655ffab7da46c54fc3d0c1c21a8
/flask/citation_venn.py
2bba0088e32f1622be58f24ad0ba7b251a79a9c6
[]
no_license
julianpistorius/Webdev-for-bioNLP-lit-tool
87af23f5657b58a4e914057f1e5bbfe3b8ab2159
3a1646314c21a0b749437fa08fd63ff50f330e0c
refs/heads/master
2021-01-25T09:44:54.349659
2017-06-06T19:01:22
2017-06-06T19:01:22
93,875,232
1
0
null
2017-06-09T16:00:34
2017-06-09T16:00:34
null
UTF-8
Python
false
false
3,357
py
from database_management import db_citation_titles, db_citation_pmc_ids from itertools import combinations from collections import defaultdict #pmid_list = ['18269575'] #pmid_list = ['18269575', '18952863'] def make_venn(pmid_list): i = 0 i_count = [] all_pmcids = [] #[pmc1, pmc2, ... pmc-n] pmc_id_list = [] #list of lists [[pmid_ids paper1], [pmid_ids paper2]] citationsDict = defaultdict(list) possible_vals = [] venn_data = [] for pmid in pmid_list: #add pmc_ids to master list for making citationsDict pmc_ids = db_citation_pmc_ids(pmid) pmc_id_list.append(pmc_ids) for id in pmc_ids: all_pmcids.append(id) #do first entries for venn x = [int(i)] pmid_label = 'PMID:'+str(pmid)+' ('+str(len(pmc_ids))+')' #href_base = 'https://www.ncbi.nlm.nih.gov/pubmed/'+str(pmid) #href_label = str('<a href="'+href_base+'">'+str(pmid_label)+'</a>') pmid_Dict = {'sets': x, 'label': pmid_label, 'size': (len(pmc_ids))} #print(pmid_Dict) venn_data.append(pmid_Dict) i_count.append(str(i)) i+=1 #if there is more than one pmid, if (len(pmid_list)) > 1: #print("more than 1") #make dictionary of {citating: ['papers', 'that', 'are', 'cited'] } for citation in all_pmcids: j = 0 papers = [] for pmclist in pmc_id_list: if citation in pmclist: #print(str(citation) + " is in P"+str(j)) if j not in papers: papers.append(j) j +=1 #print(papers) citationsDict[citation] = papers ### enumerate all possible dictionary values #### s = '' combos = s.join(i_count) #format combos for 'combinations' method #print(combos) for n in range(2, len(pmid_list)+1): compare_all = (combinations(combos, int(n))) for c in compare_all: option_list = [] #dict keys are in list format [1, 2] #print("c") #print(c) for number in c: #print("number") #print(number) option_list.append(int(number)) possible_vals.append(option_list) #print("inside possible_vals") #print(possible_vals) #print(citationsDict) #print("OUTSIDE possible vales") #print(possible_vals) #if there were multiple pmids, must look at overlap if citationsDict: for p_vals in possible_vals: #print(p_vals) sum = 0 for key, value in citationsDict.items(): if value == p_vals: #print(str(key)+' has '+str(value)+' == '+str(p_vals)) sum += 1 #print(sum) if sum > 0: count_label = str(sum) overlap_Dict = {'sets': p_vals, 'label': count_label, 'size': sum } #print(overlap_Dict) venn_data.append(overlap_Dict) #if there was only 1 input pmid, no other work needed if not citationsDict: #print("there's no citationDict") pass return venn_data #venn_data = make_venn(pmid_list) #print(venn_data)
[ "hclent1@gmail.com" ]
hclent1@gmail.com
91d36c7e5037514ae3939fb1980f2e0cd06f21b7
90656f5ce4efdf07ea0a61ad425673887e517371
/ch8/message.py
fec37600c7f48a2cda8521e610a80c72b491bfe9
[]
no_license
fjluartes/pcc
bec2e15e8b70aaee11f562cdf78c39e3a9844269
cda4510937f5772d3a0a0b51609ab9554206aa06
refs/heads/master
2021-06-04T14:37:03.953253
2020-05-03T13:09:10
2020-05-03T13:09:10
144,001,097
1
0
null
null
null
null
UTF-8
Python
false
false
184
py
#!/usr/bin/env python # message.py: Exercise 8-1 # 22 Aug 2018 | fjgl def display_message(): """Display a message""" print("I'm learning about functions.") display_message()
[ "fjluartes@gmail.com" ]
fjluartes@gmail.com
22dd5027964a66ca1a9bb0aa89892e6a475aa7d9
f67fe1dfb0c02cab1e61db17bbec9948ac907a6c
/torch_utils.py
7cf684213d67772c20a361b184633efaac7e8d5f
[ "Apache-2.0" ]
permissive
terrifyzhao/torch_utils
c404435896ae9aed23c50d55d13339343114f909
5a62cc1e97435db02c0441f9f95d69d6f5db9e15
refs/heads/master
2022-11-27T10:15:36.738686
2020-08-06T01:43:39
2020-08-06T01:43:39
285,166,603
0
0
null
null
null
null
UTF-8
Python
false
false
7,759
py
import torch import time import numpy as np import six class TrainHandler: def __init__(self, train_loader, valid_loader, model, criterion, optimizer, model_path, batch_size=32, epochs=5, scheduler=None, gpu_num=0): self.train_loader = train_loader self.valid_loader = valid_loader self.criterion = criterion self.optimizer = optimizer self.model_path = model_path self.batch_size = batch_size self.epochs = epochs self.scheduler = scheduler if torch.cuda.is_available(): self.device = torch.device(f'cuda:{gpu_num}') print('Training device is gpu:{gpu_num}') else: self.device = torch.device('cpu') print('Training device is cpu') self.model = model.to(self.device) def _train_func(self): train_loss = 0 train_correct = 0 for i, (x, y) in enumerate(self.train_loader): self.optimizer.zero_grad() x, y = x.to(self.device), y.to(self.device) output = self.model(x) loss = self.criterion(output, y) train_loss += loss.item() loss.backward() self.optimizer.step() train_correct += (output.argmax(1) == y).sum().item() if self.scheduler is not None: self.scheduler.step() return train_loss / len(self.train_loader), train_correct / len(self.train_loader.dataset) def _test_func(self): valid_loss = 0 valid_correct = 0 for x, y in self.valid_loader: x, y = x.to(self.device), y.to(self.device) with torch.no_grad(): output = self.model(x) loss = self.criterion(output, y) valid_loss += loss.item() valid_correct += (output.argmax(1) == y).sum().item() return valid_loss / len(self.valid_loader), valid_correct / len(self.valid_loader.dateset) def train(self): min_valid_loss = float('inf') for epoch in range(self.epochs): start_time = time.time() train_loss, train_acc = self._train_func() valid_loss, valid_acc = self._test_func() if min_valid_loss > valid_loss: min_valid_loss = valid_loss torch.save(self.model.state_dict(), self.model_path) print(f'\tSave model done valid loss: {valid_loss:.4f}') secs = int(time.time() - start_time) mins = secs / 60 secs = secs % 60 print('Epoch: %d' % (epoch + 1), " | time in %d minutes, %d seconds" % (mins, secs)) print(f'\tLoss: {train_loss:.4f}(train)\t|\tAcc: {train_acc * 100:.1f}%(train)') print(f'\tLoss: {valid_loss:.4f}(valid)\t|\tAcc: {valid_acc * 100:.1f}%(valid)') def torch_text_process(): from torchtext import data def tokenizer(text): import jieba return list(jieba.cut(text)) TEXT = data.Field(sequential=True, tokenize=tokenizer, lower=True, fix_length=20) LABEL = data.Field(sequential=False, use_vocab=False) all_dataset = data.TabularDataset.splits(path='', train='LCQMC.csv', format='csv', fields=[('sentence1', TEXT), ('sentence2', TEXT), ('label', LABEL)])[0] TEXT.build_vocab(all_dataset) train, valid = all_dataset.split(0.1) (train_iter, valid_iter) = data.BucketIterator.splits(datasets=(train, valid), batch_sizes=(64, 128), sort_key=lambda x: len(x.sentence1)) return train_iter, valid_iter def pad_sequences(sequences, maxlen=None, dtype='int32', padding='post', truncating='pre', value=0.): """Pads sequences to the same length. This function transforms a list of `num_samples` sequences (lists of integers) into a 2D Numpy array of shape `(num_samples, num_timesteps)`. `num_timesteps` is either the `maxlen` argument if provided, or the length of the longest sequence otherwise. Sequences that are shorter than `num_timesteps` are padded with `value` at the end. Sequences longer than `num_timesteps` are truncated so that they fit the desired length. The position where padding or truncation happens is determined by the arguments `padding` and `truncating`, respectively. Pre-padding is the default. # Arguments sequences: List of lists, where each element is a sequence. maxlen: Int, maximum length of all sequences. dtype: Type of the output sequences. To pad sequences with variable length strings, you can use `object`. padding: String, 'pre' or 'post': pad either before or after each sequence. truncating: String, 'pre' or 'post': remove values from sequences larger than `maxlen`, either at the beginning or at the end of the sequences. value: Float or String, padding value. # Returns x: Numpy array with shape `(len(sequences), maxlen)` # Raises ValueError: In case of invalid values for `truncating` or `padding`, or in case of invalid shape for a `sequences` entry. """ if not hasattr(sequences, '__len__'): raise ValueError('`sequences` must be iterable.') num_samples = len(sequences) lengths = [] for x in sequences: try: lengths.append(len(x)) except TypeError: raise ValueError('`sequences` must be a list of iterables. ' 'Found non-iterable: ' + str(x)) if maxlen is None: maxlen = np.max(lengths) # take the sample shape from the first non empty sequence # checking for consistency in the main loop below. sample_shape = tuple() for s in sequences: if len(s) > 0: sample_shape = np.asarray(s).shape[1:] break is_dtype_str = np.issubdtype(dtype, np.str_) or np.issubdtype(dtype, np.unicode_) if isinstance(value, six.string_types) and dtype != object and not is_dtype_str: raise ValueError("`dtype` {} is not compatible with `value`'s type: {}\n" "You should set `dtype=object` for variable length strings." .format(dtype, type(value))) x = np.full((num_samples, maxlen) + sample_shape, value, dtype=dtype) for idx, s in enumerate(sequences): if not len(s): continue # empty list/array was found if truncating == 'pre': trunc = s[-maxlen:] elif truncating == 'post': trunc = s[:maxlen] else: raise ValueError('Truncating type "%s" ' 'not understood' % truncating) # check `trunc` has expected shape trunc = np.asarray(trunc, dtype=dtype) if trunc.shape[1:] != sample_shape: raise ValueError('Shape of sample %s of sequence at position %s ' 'is different from expected shape %s' % (trunc.shape[1:], idx, sample_shape)) if padding == 'post': x[idx, :len(trunc)] = trunc elif padding == 'pre': x[idx, -len(trunc):] = trunc else: raise ValueError('Padding type "%s" not understood' % padding) return x if __name__ == '__main__': torch_text_process()
[ "zjiuzhou@gmail.com" ]
zjiuzhou@gmail.com
67c1f43f556c5731c6222cc2ab1ca7d5cf18afd8
685e4b07ee6458a9eb5be4cc213c940050c7af0b
/Kg Convert.py
8d50a92cf1ff4e88af1bb874b6836aa8543bfe84
[]
no_license
FatematuzZohura/Python
574343ef46651ac6478e50966d7c04eb0811935f
36e1abe6cb701ac38a3504d02cf8564ba0916426
refs/heads/main
2023-08-17T05:41:00.459969
2021-10-05T04:35:58
2021-10-05T04:35:58
410,034,302
0
0
null
null
null
null
UTF-8
Python
false
false
1,493
py
from tkinter import * # Create a GUI window window = Tk() window.title("Converter app") # Function to convert weight # given in kg to grams, pounds # and ounces def from_kg(): # convert kg to gram gram = float(e2_value.get()) * 1000 # convert kg to pound pound = float(e2_value.get()) * 2.20462 # convert kg to ounce ounce = float(e2_value.get()) * 35.274 # Enters the converted weight to # the text widget t1.delete("1.0", END) t1.insert(END, gram) t2.delete("1.0", END) t2.insert(END, pound) t3.delete("1.0", END) t3.insert(END, ounce) # Create the Label widgets e1 = Label(window, text="Enter the weight in Kg") e2_value = StringVar() e2 = Entry(window, textvariable=e2_value) e3 = Label(window, text='Gram') e4 = Label(window, text='Pounds') e5 = Label(window, text='Ounce') # Create the Text Widgets t1 = Text(window, height=1, width=20) t2 = Text(window, height=1, width=20) t3 = Text(window, height=1, width=20) # Create the Button Widget b1 = Button(window, text="Convert", command=from_kg) # grid method is used for placing # the widgets at respective positions # in table like structure e1.grid(row=0, column=0) e2.grid(row=0, column=1) e3.grid(row=1, column=0) e4.grid(row=1, column=1) e5.grid(row=1, column=2) t1.grid(row=2, column=0) t2.grid(row=2, column=1) t3.grid(row=2, column=2) b1.grid(row=0, column=2) # Start the GUI window.mainloop()
[ "noreply@github.com" ]
FatematuzZohura.noreply@github.com