blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
360ba0b1b762d53dadf4c5dd5863880fcc1a54a8
e1c9acaa95b467a08483ff1d3cb1d4b145b68967
/main.py
ef8c063cac066699603ede049d23a071b88b264f
[]
no_license
FredericStraub/CalendarApp
de7e172dc0bddd80619cc51ee2496f64afd44553
9936762042f99508af39be36744501ea1e04c010
refs/heads/main
2023-02-27T05:25:24.422060
2021-02-04T21:21:23
2021-02-04T21:21:23
336,084,362
0
0
null
null
null
null
UTF-8
Python
false
false
3,078
py
from kivymd.app import MDApp from kivy.lang import Builder from kivymd.theming import ThemeManager from kivy.uix.boxlayout import BoxLayout from kivymd.uix.picker import MDDatePicker, MDThemePicker, MDTimePicker from kivymd.uix.expansionpanel import MDExpansionPanel, MDExpansionPanelThreeLine import datetime from kivymd.uix.label import MDLabel from kivy.uix.textinput import TextInput from kivy.uix.popup import Popup from kivy.uix.floatlayout import FloatLayout class Inputtext(FloatLayout): pass class Content(BoxLayout): pass class MainApp(MDApp): #define builder def build(self): self.theme_cls.theme_style = "Dark" self.meetingname = "" self.dates = {} self.temp_date_storage = None self.popup = None #sets meeting name and picks time def set_meeting_name(self): self.meetingname = self.popup.content.ids.input.text self.popup.dismiss() self.show_timepicker() #pick date def show_datepicker(self): picker = MDDatePicker(callback = self.got_date) picker.open() #saves date in dict (database still in progress) and opens popup for description def got_date(self, the_date): print(the_date) if the_date in self.dates.keys(): pass else: self.dates[the_date] = 0 self.temp_date_storage = the_date self.popup = Popup(title="Name of Meeting",content=Inputtext(), size_hint=(None,None),size=(300, 300)) self.popup.open() #sets time def show_timepicker(self): picker = MDTimePicker() picker.bind(time = self.got_time) picker.open() #saves time in dict (database still in progress) def got_time(self, picker_widget,the_time): print(the_time) p=Inputtext() if self.dates.get(self.temp_date_storage) == 0: self.dates[self.temp_date_storage] = [the_time] else: self.dates.get(self.temp_date_storage).append(the_time) dropdown = Content() dropdown.ids.drawout.text = self.popup.content.ids.input2.text self.root.ids.box.add_widget(MDExpansionPanel( content=dropdown, panel_cls=MDExpansionPanelThreeLine( text=self.meetingname, secondary_text=str(the_time), tertiary_text=str(self.temp_date_storage) ))) self.temp_date_storage = None #define themepicker def show_themepicker(self): picker = MDThemePicker() picker.open() #define bar of current weekdays (will be connected later accrodingly with the dates) def show_getday(self,dayint): l = ["Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday"] x = datetime.datetime.today().weekday() + dayint if x >= 7: x -= 7 return l[x] MainApp().run()
[ "noreply@github.com" ]
FredericStraub.noreply@github.com
f0d3b443e3d1229ac55830a7ca6100f493115d2a
1b10d96758c45e1746d8ca69b3222fc90aae012e
/document_validation/models/models.py
48a7d794822bf31d1b290260068d3872d2e7d86f
[]
no_license
hassanfadl/livedhalts
1565e3b9dec1b470c1700b90c927724cf02a99ae
dab87ade79a97b616fda3b52c38b2cea695ee4d5
refs/heads/main
2023-06-29T04:29:34.679643
2021-07-15T11:11:43
2021-07-15T11:11:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
649
py
# -*- coding: utf-8 -*- from odoo import models, fields, api,_ from odoo.exceptions import ValidationError, UserError class DocumentAttachmentCustomValidate(models.Model): _inherit = "ir.attachment" @api.model_create_multi def create(self, vals_list): if len(vals_list) > 0 and 'name' in vals_list[0]: prev_files = self.env['documents.document'].search([]).mapped('name') if vals_list[0]['name'] in prev_files: raise UserError(_('file already existed')) else: res = super(DocumentAttachmentCustomValidate, self).create(vals_list) return res
[ "noreply@github.com" ]
hassanfadl.noreply@github.com
dc0e48787640ae04b76fedf2b7227688743ab729
05bcad1eee910ef13272ffbda397066ac09a6078
/books/data/urls.py
c618829e59bff176ff323b0e2df348873df3284b
[]
no_license
Erlan1998/python_group_7_exam_6_Erlan_Kurbanaliev
9aa0f5c36a7101ffb949d40f0b996fb0400fc52c
aaa88e7a1aae29485512bfd6980e1e6b5242e1f0
refs/heads/master
2023-03-13T20:28:19.395508
2021-03-06T12:38:42
2021-03-06T12:38:42
345,087,063
0
0
null
null
null
null
UTF-8
Python
false
false
1,170
py
"""data URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from webapp.views import ( index_view, guest_add_view, guest_update_view, guest_delete_view, search_view, ) urlpatterns = [ path('admin/', admin.site.urls), path('', index_view, name='index_all'), path('guest/add/', guest_add_view, name='guest_add'), path('guest/<int:id>/update', guest_update_view, name='guest_update'), path('guest/<int:id>/delete', guest_delete_view, name='guest_delete'), path('search/', search_view, name='search') ]
[ "kurbanalieverlan@gmail.com" ]
kurbanalieverlan@gmail.com
aaf627500a44341044bdd665ff30927d5f3938fe
ef9f3550249b961fbe43f1bc7e581cbb80a50063
/dict_and_list_random_access/run.py
0ad00ed631dadf32ef8e01ddcf0a6bc4cef87d9a
[]
no_license
fatowl-dev/python_performance_test
08efe5fa77bf0bbb5ffa9f9306bc228a39b16703
53c6d340be11e51d5100214e077ad02b13f6af0c
refs/heads/master
2020-12-14T13:36:53.806073
2020-01-18T18:06:49
2020-01-18T18:06:49
234,760,459
0
0
null
null
null
null
UTF-8
Python
false
false
2,688
py
# list、dict ランダムアクセス速度比較 import random import string import gc N = 100 # 試行回数 REF_COUNT = 100000 # 1回の試行で参照する回数 ITEM_COUNT = 100 # アイテム数 KEY_LENGTH = 32 # 辞書のキーの長さ SLEEP_TIME = 0.1 # 試行前の待ち時間(なぜかこれを入れないとおかしな値になる) list_results = [] dict_results = [] # 辞書のキーを作成する keys = [] for i in range(ITEM_COUNT): while True: randlist = [random.choice(string.ascii_letters + string.digits) for i in range(KEY_LENGTH)] key = ''.join(randlist) if key not in keys: keys.append(key) break # リストを作成 item_list = [ i for i in range(ITEM_COUNT)] # 辞書を作成 item_dict = {keys[i]: i for i in range(ITEM_COUNT)} print('--------------------------------------') print('テスト開始') print('--------------------------------------') print(f'試行回数: {N}回') print(f'参照回数: {REF_COUNT}回') print(f'辞書のキーの長さ: {KEY_LENGTH}文字') print(f'要素数: {ITEM_COUNT}個') for count in range(N): print('\n--------------------------------------') print(f'{count+1}回目') print('--------------------------------------') # ゴミ掃除 gc.collect() # 何故かこのスリープを入れないとおかしな値になる time.sleep(SLEEP_TIME) # ランダムアクセスのインデックスリストを作成 rand_indexes = [random.randrange(0, ITEM_COUNT) for i in range(REF_COUNT)] # ランダムアクセスのキーリストを作成 rand_keys = [keys[n] for n in rand_indexes] # list start_time = time.time() for i in rand_indexes: x = item_list[i] end_time = time.time() elapsed_time = end_time - start_time list_results.append(elapsed_time) print(f'list: {elapsed_time}') # dict start_time = time.time() for key in rand_keys: x = item_dict[key] end_time = time.time() elapsed_time = end_time - start_time dict_results.append(elapsed_time) print(f'dict: {elapsed_time}') print('\n--------------------------------------') print('条件') print('--------------------------------------') print(f'試行回数: {N}回') print(f'参照回数: {REF_COUNT}回') print(f'辞書のキーの長さ: {KEY_LENGTH}文字') print(f'要素数: {ITEM_COUNT}個') print('\n--------------------------------------') print('結果') print('--------------------------------------') print(f'list average: {sum(list_results) / len(list_results)}') print(f'dict average: {sum(dict_results) / len(dict_results)}')
[ "kingyo.summer.japan@gmail.com" ]
kingyo.summer.japan@gmail.com
921817ab1c99956af4f567eedbe80116edbdde30
4464aa9d3c42a20caf7b769d39015d439d856c48
/pypm/utils/evaluate.py
145f0b5145f8febefcff15b8808f19c9e017a470
[ "MIT" ]
permissive
Yansf677/PyPM
070e49d6cd69f5d5b51ead1cdb45c847e9532007
3012416aa04bb10f88689c2745702c71858bbe24
refs/heads/master
2022-10-25T01:22:21.835663
2020-06-16T14:54:00
2020-06-16T14:54:00
267,231,636
2
2
MIT
2020-05-28T07:54:14
2020-05-27T05:45:30
Python
UTF-8
Python
false
false
613
py
# -*- coding: utf-8 -*- def detective_rate(statistic, threshold): """ function to calculate detective rate parameters ---------- statistic: statistics of testing data threshold: threshold by the offline data return ------ fault detective rate or false alarm """ n_sample = statistic.shape[0] detective_rate = 0 for i in range(n_sample): if statistic[i] > threshold: detective_rate += 1/n_sample return detective_rate def accuracy(): """ f1_score... """
[ "13122282826@163.com" ]
13122282826@163.com
42e4e64761ede6a73a14b630e8b5611c15e53445
58c5ea755a8e37b90534432593b12e7039ad06b4
/puppet_gui/src/puppet_gui/actions/ActionSet.py
64b9ada092326831300a39b0f8b91732f5f9863b
[]
no_license
ros-visualization/puppet
d40f5e3b15781f8aacf8444035edff770ab3d8f2
621342735092f86a205826a75d0d27ffdf07f168
refs/heads/master
2023-08-30T14:01:07.039995
2013-07-17T16:02:33
2013-07-17T16:02:33
7,615,088
0
1
null
null
null
null
UTF-8
Python
false
false
4,158
py
from Action import Action from Pr2SpeakAction import Pr2SpeakAction # Andreas: added dependency on Pr2SpeakAction to hack in speech running in parallel to motion. class ActionSet(Action): def __init__(self): super(ActionSet, self).__init__() self._actions = [] self._executing = 0 def add_action(self, action): self._actions.append(action) def remove_all_actions(self): self._actions = [] def get_duration(self): duration = 0.0 for action in self._actions: duration = max(duration, action.get_duration()) return duration def set_duration(self, duration): for action in self._actions: action.set_duration(duration) def get_labels(self): labels = [] for action in self._actions: try: labels += action.get_labels() except AttributeError: # action does not support get_value pass return labels def get_value(self, label): for action in self._actions: try: value = action.get_value(label) return value except AttributeError: # action does not support get_value pass except KeyError: # action does not have a joint with that label pass raise KeyError('joint with label "%s" not found' % label) def get_joint_info(self, label): for action in self._actions: try: indexes = [i for i, data in enumerate(action._joints) if data['label'] == label] if len(indexes) == 1: return action._joints[indexes[0]] except AttributeError: # action does not support get_value pass raise KeyError('joint with label "%s" not found' % label) def update_value(self, label, value): for action in self._actions: try: action.update_value(label, value) return except: pass raise KeyError('joint with label "%s" not found' % label) def to_string(self): data = [] for action in self._actions: data.append(action.to_string()) return ';'.join(data) def deepcopy(self): set = super(ActionSet, self).deepcopy() for action in self._actions: set.add_action(action.deepcopy()) return set def serialize(self, stream): stream.serialize_data(len(self._actions)) for action in self._actions: stream.serialize_instance(action) def deserialize(self, stream): self.remove_all_actions() count = stream.deserialize_data() for i in range(count): action = stream.deserialize_instance() self.add_action(action) def execute(self): if self._executing > 0: print('ActionSet.execute() skipped because previous execute has not yet finished') return #print('ActionSet.execute() %d' % len(self._actions)) self._executing = len(self._actions) for action in self._actions: action.execute_finished_signal.connect(self._action_finished) action.execute() def _action_finished(self): assert(self._executing > 0) self._executing -= 1 if self._executing == 0: #print('ActionSet.execute() finished\n') self._stop() self._execute_finished() def stop(self, reason=None): print('ActionSet.stop()\n') self._stop(reason) self._executing = 0 def _stop(self, reason=None): for action in self._actions: action.execute_finished_signal.disconnect(self._action_finished) action.stop(reason) # Speech utterances can run in parallel to motions. # So there might be no action registered here, but # yet speech actions are running in the background: if reason is not None: Pr2SpeakAction.stopAllSpeech();
[ "paepcke@cs.stanford.edu" ]
paepcke@cs.stanford.edu
17d148604b81fa22333cc519233fa00399b10bd3
2ab391bfaadf0743da8ffee084896b999e88482d
/base.py
45620e4642ea2d812e1babc45e4a2fd9ff569477
[]
no_license
wean/coupon-windows
552a59637ea45539bdfa70c6d1bd04626f0fdbd0
9565b23c7f44594f182d7a268d4ed45bdeaf8dd3
refs/heads/master
2020-04-05T07:11:43.024665
2017-11-24T08:23:50
2017-11-24T08:23:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,675
py
#!/usr/bin/env python # -*- coding:utf-8 -*- import json import math import os import pathlib import time from datetime import tzinfo, timedelta, datetime from functools import total_ordering from imgkit import ImageKit from infor import getSlogan, getComments from network import Network from operator import attrgetter from urlutils import UrlUtils from utils import atoi, chmod, seconds2Datetime, datetime2Seconds, hexlifyUtf8, unhexlifyUtf8, OutputPath from validation import Validation class BaseDict: def __init__(self, data): self.data = data def insert(self, db, tableName): if db is None or tableName is None: return keys = self.getAlterKeys() for key in keys: if key not in self.data.keys(): self.data[key] = None db.insert(tableName, self.data, keys) def getAlterKeys(self): return None def __repr__(self): return json.dumps(self.data, ensure_ascii=False, indent=4, sort_keys=True) class SkuBase(BaseDict): def __init__(self, data): BaseDict.__init__(self, data) def equals(self, skuid): return skuid == self.data['skuid'] class Sku(SkuBase): def __init__(self, data): SkuBase.__init__(self, data) self.data['skuid'] = int(self.data.pop('skuid')) self.data['price'] = float(self.data.pop('price')) self.data['comRate'] = float(self.data.pop('comRate')) # TODO: Commission price can be calculate by price and comRate self.data['commissionprice'] = float(self.data.pop('commissionprice')) self.data['goodCom'] = atoi(self.data.pop('goodCom')) self.data['salecount'] = int(self.data.pop('salecount')) def getAlterKeys(self): return ['skuid', 'title'] class Coupon(SkuBase): def __init__(self, data): SkuBase.__init__(self, data) # Set as the same name self.data['skuid'] = int(self.data.pop('skuId')) # XXX: Sometimes quota is NOT as same as price in SKU, because the coupon # may be invalid then. So don't worry about that. self.data['quota'] = float(self.data.pop('quota')) self.data['denomination'] = float(self.data.pop('denomination')) self.data['usedNum'] = int(self.data.pop('usedNum')) self.data['couponNum'] = int(self.data.pop('couponNum')) self.data['cutPrice'] = self.data['quota'] - self.data['denomination'] self.data['validBeginTime'] = int(self.data.pop('validBeginTime')) self.data['validEndTime'] = int(self.data.pop('validEndTime')) self.data['couponValid'] = int(self.data.pop('couponValid')) def getAlterKeys(self): return ['skuid', 'validBeginTime', 'validEndTime'] class Discount(SkuBase): def __init__(self, data): SkuBase.__init__(self, data) self.data['skuid'] = int(self.data.pop('skuid')) self.data['cutPrice'] = float(self.data.pop('promoPrice')) def getAlterKeys(self): return ['skuid'] class MatchesItem(BaseDict): def __init__(self, data): BaseDict.__init__(self, data) class Seckill(BaseDict): def __init__(self, data): BaseDict.__init__(self, data) self.data['skuid'] = int(self.data.pop('wareId')) self.data['title'] = self.data.pop('wname') self.data['cutPrice'] = float(self.data.pop('miaoShaPrice')) self.data['jdPrice'] = float(self.data.pop('jdPrice')) def setPeriod(self, startTime, endTime): self.data['startTime'] = startTime self.data['endTime'] = endTime def getAlterKeys(self): return ['skuid', 'startTimeMills', 'rate', 'title', 'tagText', 'cName', 'adword', 'mTips', 'tips'] class PromotionHistory(BaseDict): def __init__(self, data): BaseDict.__init__(self, data) class PriceHistory: def __init__(self, **kwargs): self.set(**kwargs) def set(self, **kwargs): for keyword in ['price', 'time']: setattr(self, keyword, kwargs[keyword]) def __repr__(self): fields = [' {}={!r}'.format(k, v) for k, v in self.__dict__.items() if not k.startswith('_')] return ' {}:\n{}'.format(self.__class__.__name__, '\n'.join(fields)) class Price: def __init__(self, price, days, ratio): self.price = price self.days = days self.ratio = ratio def __repr__(self): fields = [' {}={!r}'.format(k, v) for k, v in self.__dict__.items() if not k.startswith('_')] return ' {}:\n{}'.format(self.__class__.__name__, '\n'.join(fields)) class PriceHistoryData(BaseDict): def __init__(self, data): BaseDict.__init__(self, data) self.data['skuid'] = int(self.data.pop('skuid')) def getAlterKeys(self): return ['skuid'] def updatePromotion(self, promotionHistoryList): # TODO: Update history price by the promotion history pass def __repr__(self): fields = [' {}={}'.format(k, v) for k, v in self.__dict__.items() if not k.startswith('_') and 'data' != k] str = BaseDict.__repr__(self) return '{}:\n{}\n{}'.format(self.__class__.__name__, '\n'.join(fields), str) class SkuInformation(BaseDict): def __init__(self, data, version, clock=None): BaseDict.__init__(self, data) self.data['skuid'] = int(self.data.pop('skuid')) self.data['version'] = version self.data['historyList'] = json.loads(self.data.pop('historyList')) keys = ['startTime', 'endTime'] for key in keys: if key not in self.data.keys(): self.data[key] = None if 'validBeginTime' in self.data.keys(): self.data['startTime'] = seconds2Datetime(self.data.pop('validBeginTime') / 1000L) if 'validEndTime' in self.data.keys(): self.data['endTime'] = seconds2Datetime(self.data.pop('validEndTime') / 1000L) if 'outputTime' not in self.data.keys(): if clock is not None: self.data['outputTime'] = clock.randomTime(self.data['startTime'], self.data['endTime']) elif self.data['startTime'] is None: self.data['outputTime'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S') else: self.data['outputTime'] = self.data['startTime'] def setSlogan(self, slogan): self.data['slogan'] = slogan def setComments(self, data): self.data.update(data) self.data.pop('code') self.data['allCnt'] = int(self.data.pop('allCnt')) self.data['goodCnt'] = int(self.data.pop('goodCnt')) self.data['badCnt'] = int(self.data.pop('badCnt')) self.data['normalCnt'] = int(self.data.pop('normalCnt')) self.data['pictureCnt'] = int(self.data.pop('pictureCnt')) self.data['showPicCnt'] = int(self.data.pop('showPicCnt')) self.data['consultationCount'] = int(self.data.pop('consultationCount')) self.data['percentOfGoodComments'] = self.data.pop('goods') commentInfoList = list() for info in self.data.pop('commentInfoList'): commentInfo = dict() commentInfo['commentShareUrl'] = info['commentShareUrl'] commentInfo['userNickName'] = info['userNickName'] commentInfo['commentData'] = hexlifyUtf8(info['commentData']) commentInfo['commentScore'] = int(info['commentScore']) commentInfoList.append(commentInfo) self.data['commentList'] = json.dumps(commentInfoList, ensure_ascii=False, indent=4, sort_keys=True) def getAlterKeys(self): return ['skuid', 'slogan', 'commentList'] def updatePrices(self): cutPrice = self.data['cutPrice'] # Correct cut-price if not right if cutPrice > self.data['price']: self.priceCorrected = True cutPrice = self.data['price'] else: self.priceCorrected = False self.prices = list() self.histories = list() self.histories.append(PriceHistory(price=float(cutPrice), time=datetime.now().strftime('%Y-%m-%d'))) for history in self.data.pop('historyList'): self.histories.append(PriceHistory(price=float(history['price']), time=history['time'])) # Sort histories self.histories.sort(key=attrgetter('time')) # Calculate prices ratios prices = [] totalDays = 0 size = len(self.histories) for i in range(0, size): history = self.histories[i] days = 1 if i < size - 1: thisDate = datetime.strptime(history.time, '%Y-%m-%d') nextDate = datetime.strptime(self.histories[i+1].time, '%Y-%m-%d') days = (nextDate - thisDate).days totalDays += days prices.append((history.price, days)) prices.sort() pos = -1 for price in prices: if pos >= 0 and self.prices[pos].price == price[0]: self.prices[pos].days += price[1] self.prices[pos].ratio = float(self.prices[pos].days) / float(totalDays) else: self.prices.append(Price(price[0], price[1], float(price[1]) / float(totalDays))) pos += 1 # Calculate prices and discounts lowestPrice = float(int(100 * self.prices[0].price)) / 100 avgPrice = 0.0 for price in self.prices: avgPrice += float(price.price) * price.ratio avgPrice = float(int(100 * avgPrice)) / 100 # Calculate discounts discount = int(100 * float(cutPrice) / float(avgPrice)) if 0 == discount: discount = 1 lowestRatio = int(100 * float(lowestPrice) / float(avgPrice)) # Calculate weights ''' Weight should be measured by factors as following: 1, discount relative to lowest prices 2, discount relative to average prices 3, off amount 4, days ''' lowestDiscount = float(cutPrice) / float(lowestPrice) lg = math.log(totalDays) if 0 == lg: lg = 0.1 # Log(1) is 0.0 weight = lowestDiscount / lg self.data['totalDays'] = totalDays self.data['weight'] = weight self.data['lowestPrice'] = lowestPrice self.data['avgPrice'] = avgPrice self.data['discount'] = discount self.data['lowestRatio'] = lowestRatio def updateSlogan(self): slogan = getSlogan(self.data['skuid']) self.setSlogan(slogan) def updateComments(self): comments = getComments(self.data['skuid']) if comments is not None: self.setComments(comments) def updateCouponLink(self): couponLink = None if 'couponLink' in self.data.keys(): url = self.data.pop('couponLink') if url is not None: pos = url.find('?') if pos > 0: url = 'http://coupon.m.jd.com/coupons/show.action{}'.format(url[pos:]) couponLink = UrlUtils.toShortUrl(url) self.data['couponLink'] = couponLink def update(self): self.updatePrices() self.updateSlogan() self.updateComments() self.updateCouponLink() @total_ordering class Special(SkuBase): def __init__(self, data): SkuBase.__init__(self, data) if 'commentList' in self.data.keys(): comments = json.loads(self.data.pop('commentList')) self.data['commentList'] = list() for comment in comments: comment['commentData'] = unhexlifyUtf8(comment.pop('commentData')) if Validation.isCommentBad(comment['commentData']): continue self.data['commentList'].append(comment) def update(self, db=None, tableName=None): if db is None or tableName is None: return if 'outputTime' not in self.data.keys(): return data = dict() data['id'] = self.data['id'] # XXX: Postpone and set outputTime to that after next three days THREE_DAYS_TICKS = 3 * 24 * 3600 now = time.time() outputTs = datetime2Seconds(self.data['outputTime']) diff = now - outputTs if diff < 0: diff = 1.0 # Set as positive outputTs += math.ceil(diff / THREE_DAYS_TICKS) * THREE_DAYS_TICKS data['outputTime'] = seconds2Datetime(outputTs) print 'Update', '{}'.format(self.data['skuid']).ljust(16), ':', print self.data['outputTime'], '-->', data['outputTime'], print 'in (', self.data['startTime'], ',', self.data['endTime'], ')' db.update(tableName, data, ['id']) def __lt__(self, other): return (self.data['weight'] < other.data['weight']) def __gt__(self, other): return (self.data['weight'] > other.data['weight']) class SpecialFormatter: def __init__(self, data): self.data = data @staticmethod def create(data): formatter = SpecialFormatter(data) formatter.prepare() return formatter def prepare(self): self.skuid = self.data['skuid'] self.title = self.data['title'] self.slogan = self.data['slogan'] if self.slogan is None: self.slogan = '' self.skuimgurl = self.data['skuimgurl'] self.price = self.data['price'] self.lowestPrice = self.data['lowestPrice'] self.avgPrice = self.data['avgPrice'] self.cutPrice = self.data['cutPrice'] self.totalDays = self.data['totalDays'] self.percentOfGoodComments = self.data['percentOfGoodComments'] self.startTime = self.data['startTime'] self.endTime = self.data['endTime'] self.comments = self.data['commentList'] self.couponLink = self.data['couponLink'] def preparePlate(self, qwd): if self.avgPrice < self.price: self.plateAvgPrice = '历史平均价:¥{}'.format(self.avgPrice) else: self.plateAvgPrice = '' if self.totalDays < 30: self.plateTotalDays = '{}天'.format(self.totalDays) elif self.totalDays < 360: self.plateTotalDays = '{}个月'.format(self.totalDays/30) else: self.plateTotalDays = '超过1年' if self.startTime is not None and self.endTime is not None: self.platePeriod = u'特价时间:{}到{}'.format(self.startTime, self.endTime) else: self.platePeriod = '' self.plateComments = '' for comment in self.comments: commentData = comment['commentData'].replace('\n', '') self.plateComments += u'{}:{}\n'.format(comment['userNickName'], commentData) if self.couponLink is not None: self.plateCouponLink = u'领券:{}'.format(self.couponLink) else: self.plateCouponLink = '' self.plateShareUrl = qwd.getShareUrl(self.skuid) def getPlate(self, qwd): self.preparePlate(qwd) with open('plate/special.txt') as fp: content = fp.read().format(self) return content.replace('\n\n', '\n') def prepareHtml(self): if self.couponLink is not None: icon = 'coupon.png' elif self.cutPrice <= self.lowestPrice: icon = 'lowest.png' elif self.cutPrice < self.price: icon = 'discount.png' else: icon = 'good.png' path = os.path.dirname(os.path.realpath(__file__)) path = os.path.join(path, 'images') path = os.path.join(path, icon) self.icon = pathlib.Path(path).as_uri() self.discount = int(self.cutPrice * 100 / self.price) self.lowestRatio = int(self.lowestPrice * 100 / self.price) self.avgRatio = int(self.avgPrice * 100 / self.price) self.curRatio = 100 maxRatio = 76 self.discountDisplay = int(self.cutPrice * maxRatio / self.price) self.lowestRatioDisplay = int(self.lowestPrice * maxRatio / self.price) self.avgRatioDisplay = int(self.avgPrice * maxRatio / self.price) self.curRatioDisplay = maxRatio # Colors if self.totalDays < 30: self.totalDaysColor = 'rgb(255, 57, 31)' elif self.totalDays < 60: self.totalDaysColor = 'rgb(255, 169, 33)' elif self.totalDays < 90: self.totalDaysColor = 'rgb(5, 157, 127)' else: self.totalDaysColor = '#666' def getHtml(self): self.prepareHtml() with open('html/special.html') as fp: content = fp.read().format(self) return content def getPlateImage(self): if self.skuimgurl is None: return None path = OutputPath.getDataPath('sku-{}-plate'.format(self.skuid), 'jpeg') ret = Network.saveGetUrl(path, self.skuimgurl) if ret < 0: return None return path def getComplexImage(self): content = self.getHtml() path = OutputPath.getDataPath('sku-{}-complex'.format(self.skuid), 'html') with open(path, 'w') as fp: fp.write(content) chmod(path) return ImageKit.fromHtml(path, pageSize=(80, 150)) def getImage(self, imageType): if imageType is 0: # 0, Plate return self.getPlateImage() # 1, Complex return self.getComplexImage()
[ "974644081@qq.com" ]
974644081@qq.com
16c0fa0f1493a48823e1692fafd6ad8476c2b198
bfbf4c7df621a8190f00f58d981b6ccfb4dc3382
/21_naive_baysian_test/home_word.py
7196f82fd385ba4786bc892ed0ac718a397b6ce7
[]
no_license
zjtprince/DataAnalysisTraining
5786725431c7f47041826bc08cad0109c9902c77
4c2167e0edbddbeb74621d2a02d3ee56f85586a2
refs/heads/master
2023-01-28T16:42:05.457291
2020-12-13T06:38:04
2020-12-13T06:38:04
320,966,541
0
0
null
null
null
null
UTF-8
Python
false
false
2,000
py
import jieba from sklearn.naive_bayes import MultinomialNB import os from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import accuracy_score BASE_DIR='/home/zjtprince/Documents/text_classification/text classification/' def cut_text(filepath): text = open(filepath,'r',encoding='gb18030').read() words = jieba.cut(text) return ' '.join(words) ; def load_features_and_labels(dir , label): features = [] labels = [] files = os.listdir(dir) for file in files: features.append(cut_text(dir + os.sep + file)) labels.append(label) return features , labels def build_word_list_and_label_list(type_name): train_features1, labels1 = load_features_and_labels(BASE_DIR+type_name+'/女性', '女性') train_features2, labels2 = load_features_and_labels(BASE_DIR+type_name+'/文学', '文学') train_features3, labels3 = load_features_and_labels(BASE_DIR+type_name+'/校园', '校园') train_features4, labels4 = load_features_and_labels(BASE_DIR+type_name+'/体育', '体育') train_list = train_features1 + train_features2 + train_features3 + train_features4 label_list = labels1 + labels2 + labels3 + labels4 return train_list, label_list def load_stop_words(): stop_words = open(BASE_DIR+"stop/stopword.txt", 'r',encoding='utf-8').read() stop_words = stop_words.encode('utf-8').decode('utf-8-sig') return stop_words.split('\n') if __name__ == '__main__': stop_words = load_stop_words() train_list, label_list = build_word_list_and_label_list('train') test_list, test_labels = build_word_list_and_label_list('test') vec = TfidfVectorizer(stop_words=stop_words) vec.fit(train_list) train_data = vec.transform(train_list) test_data = vec.transform(test_list) bayes = MultinomialNB(alpha=0.001) ctf = bayes.fit(train_data, label_list) predict = ctf.predict(test_data) accur = accuracy_score(predict,test_labels) print("准确率为:%f" , accur)
[ "zjtprince@qq.com" ]
zjtprince@qq.com
7c1c4d76de80e3cfdd0bfce9ad4f252d6ef21326
f1fe88da8f05ae54b17eeb328bc6c4e1bf9ebd0b
/test2/booktest/urls.py
70b13a0f42d35ef0aa55d5ec40c617a600dcf8dd
[]
no_license
itachaaa/pytest
8a8af6f1e834c9841a21986881b0dbe62d653d56
907d181121ef83c53982446d7c7cdc034762f55a
refs/heads/master
2021-08-29T23:20:54.544775
2017-12-15T08:03:51
2017-12-15T08:03:51
114,343,804
0
0
null
null
null
null
UTF-8
Python
false
false
183
py
from django.conf.urls import url from booktest import views urlpatterns = [ url(r'index', views.index), url(r'^booklist$', views.booklist), url(r'^area$', views.area), ]
[ "LC@LCdeMacBook-Air.local" ]
LC@LCdeMacBook-Air.local
9b1b453afef1fcb92f4f6772ca25369709d8c1cd
1fc2b8709668c2b7f735b7694e67e8c7d57dca04
/crawler/AppUI.py
6e2f6378a31ddbec8b5ebbec6d74116e8b3bac35
[]
no_license
arno06/SimpleCrawler
1cce2d28fa87f5b31537e40ebbbab4e8681df963
310059815b8ac0aaaac42174431b62902918de5a
refs/heads/master
2021-01-23T11:55:10.736206
2015-06-26T08:09:59
2015-06-26T08:09:59
38,098,701
2
1
null
null
null
null
UTF-8
Python
false
false
4,322
py
from tkinter import * from tkinter import ttk class Main(): def __init__(self): self.running = False self.toggle_handler = None self.window = Tk() self.window.columnconfigure(0, weight=1) self.window.rowconfigure(0, weight=1) self.main_panel = ttk.Frame(self.window, padding=(5, 5, 5, 5)) self.main_panel.grid(column=0, row=0, sticky=(N, S, E, W)) self.main_panel.columnconfigure(0, weight=1) self.main_panel.rowconfigure(1, weight=1) self.nav_panel = ttk.Frame(self.main_panel) self.nav_panel.grid(column=0, row=0, sticky=(N, E, W)) self.nav_panel.columnconfigure(0, weight=1) self.base_url = StringVar() self.base_url.set("http://") self.entry = ttk.Entry(self.nav_panel, textvariable=self.base_url, width=100) self.toggle_button = ttk.Button(self.nav_panel, text="Go", command=self.click_handler) self.entry.grid(column=0, row=0, sticky=(N, W, E, S)) self.toggle_button.grid(column=1, row=0, sticky=(N, W, E, S)) self.content = ttk.Frame(self.main_panel, padding=(0, 5, 0, 0)) self.content.grid(column=0, row=1, sticky=(N, W, E, S)) self.content.columnconfigure(0, weight=1) self.content.rowconfigure(0, weight=1) self.left_content = ttk.Frame(self.content) self.left_content.grid(column=0, row=0, sticky=(N, W, E, S)) self.left_content.columnconfigure(0, weight=1) self.left_content.rowconfigure(1, weight=1) self.content.columnconfigure(0, weight=1) self.todo_count = ttk.Label(self.left_content, text=" ") self.todo_count.grid(column=0, row=0, sticky=(N, W, E, S)) scrollbar = ttk.Scrollbar(self.left_content) self.todo_label = Text(self.left_content, yscrollcommand=scrollbar.set) scrollbar.config(command=self.todo_label.yview) self.todo_label.grid(column=0, row=1, sticky=(N, W, E, S)) scrollbar.grid(column=1, row=1, sticky=(N, W, E, S)) self.right_content = ttk.Frame(self.content) self.right_content.grid(column=1, row=0, sticky=(N, W, E, S)) self.content.columnconfigure(1, weight=1) self.content.rowconfigure(0, weight=1) self.right_content.columnconfigure(0, weight=1) self.right_content.rowconfigure(1, weight=1) scrollbar = ttk.Scrollbar(self.right_content) self.main_label = Text(self.right_content, yscrollcommand=scrollbar.set) scrollbar.config(command=self.main_label.yview) self.main_label.grid(column=0, row=1, sticky=(N, W, E, S)) scrollbar.grid(column=1, row=1, sticky=(N, W, E, S)) self.done_count = ttk.Label(self.right_content, text=" ") self.done_count.grid(column=0, row=0, sticky=(N, W, E, S)) def mainloop(self): self.window.mainloop() def update(self, _tbd, _crawled, _global_time, _remaining): self.todo_count['text'] = str(len(_tbd))+" urls restantes ("+self.format_time(_remaining)+")" self.todo_label.delete(1.0, END) self.todo_label.insert(END, "\n".join(_tbd)) self.done_count['text'] = str(len(_crawled))+" urls parcourues ("+self.format_time(_global_time)+")" self.main_label.delete(1.0, END) self.main_label.insert(END, "\n".join(_crawled)) def click_handler(self): if self.toggle_handler is None or callable(self.toggle_handler) is False or self.base_url.get() == "http://": return self.running = False if self.running is True else True if self.running is True: self.entry.config(state="disable") self.toggle_button.config(text='Stop') else: self.entry.config(state="normal") self.toggle_button.config(text='Go') self.toggle_handler(self.running, self.base_url.get()) def reset(self): if self.running is True: self.click_handler() @staticmethod def format_time(_time): if _time < 60: return str(round(_time, 2))+" sec" _time /= 60 if _time < 60: return str(round(_time, 2))+" min" _time /= 60 if _time < 24: return str(round(_time, 2))+" h" _time /= 24 return str(round(_time, 2))+" j"
[ "arno06@gmail.com" ]
arno06@gmail.com
3301c1cfa4fc89a77fbb5449ec4d0a37e120dd1d
6449afd5e812de0ece5d5932dc567dddfbd1ef51
/testing.py
ca90e77df96f41d85b8073a6fc269a3c8672032d
[ "BSD-3-Clause" ]
permissive
AgPipeline/template-rgb-plot
1dabeaec29c6af5569972105e0720e04357fec86
34f6eab3edbeaf995d7e888a2e8004963ec9ba4d
refs/heads/main
2021-12-26T11:54:57.604066
2021-09-13T20:13:55
2021-09-13T20:13:55
223,216,077
2
3
BSD-3-Clause
2021-09-13T20:13:56
2019-11-21T16:23:53
Python
UTF-8
Python
false
false
5,064
py
#!/usr/bin/env python3 """Test script for algorithm_rgb code """ import os import sys import numpy as np from PIL import Image import algorithm_rgb def _get_variables_header_fields() -> str: """Returns a string representing the variable header fields Return: Returns a string representing the variables' header fields """ variables = algorithm_rgb.VARIABLE_NAMES.split(',') labels = algorithm_rgb.VARIABLE_LABELS.split(',') labels_len = len(labels) units = algorithm_rgb.VARIABLE_UNITS.split(',') units_len = len(units) if labels_len != len(variables): sys.stderr.write("The number of defined labels doesn't match the number of defined variables") sys.stderr.write(" continuing processing") if units_len != len(variables): sys.stderr.write("The number of defined units doesn't match the number of defined variables") sys.stderr.write(" continuing processing") headers = '' for idx, variable_name in enumerate(variables): variable_header = variable_name if idx < labels_len: variable_header += ' - %s' % labels[idx] if idx < units_len: variable_header += ' (%s)' % units[idx] headers += variable_header + ',' return headers def print_usage(): """Displays information on how to use this script """ argc = len(sys.argv) if argc: our_name = os.path.basename(sys.argv[0]) else: our_name = os.path.basename(__file__) print(our_name + " <folder>|<filename> ...") print(" folder: path to folder containing images to process") print(" filename: path to an image file to process") print("") print(" One or more folders and/or filenames can be used") print(" Only files at the top level of a folder are processed") def check_arguments(): """Checks that we have script argument parameters that appear valid """ argc = len(sys.argv) if argc < 2: sys.stderr.write("One or more paths to images need to be specified on the command line\n") print_usage() return False # Check that the paths exist. have_errors = False for idx in range(1, argc): if not os.path.exists(sys.argv[idx]): print("The following path doesn't exist: " + sys.argv[idx]) have_errors = True if have_errors: sys.stderr.write("Please correct any problems and try again\n") return not have_errors def check_configuration(): """Checks if the configuration is setup properly for testing """ if not hasattr(algorithm_rgb, 'VARIABLE_NAMES') or not algorithm_rgb.VARIABLE_NAMES: sys.stderr.write("Variable names configuration variable is not defined yet. Please define and try again") sys.stderr.write(" Update configuration.py and set VALUE_NAMES variable with your variable names") return False return True def run_test(filename): """Runs the extractor code using pixels from the file Args: filename(str): Path to image file Return: The result of calling the extractor's calculate() method Notes: Assumes the path passed in is valid. An error is reported if the file is not an image file. """ try: open_file = Image.open(filename) if open_file: # Get the pixels and call the calculation pix = np.array(open_file.ReadAsArray()) calc_val = algorithm_rgb.calculate(np.rollaxis(pix, 0, 3)) # Check for unsupported types if isinstance(calc_val, set): raise RuntimeError("A 'set' type of data was returned and isn't supported. Please use a list or a tuple instead") # Perform any type conversions to a printable string if isinstance(calc_val, str): print_val = calc_val else: # Check if the return is iterable and comma separate the values if it is try: _ = iter(calc_val) print_val = ",".join(map(str, calc_val)) except Exception: print_val = str(calc_val) print(filename + "," + print_val) except Exception as ex: sys.stderr.write("Exception caught: " + str(ex) + "\n") sys.stderr.write(" File: " + filename + "\n") def process_files(): """Processes the command line file/folder arguments """ argc = len(sys.argv) if argc: print("Filename," + _get_variables_header_fields()) for idx in range(1, argc): cur_path = sys.argv[idx] if not os.path.isdir(cur_path): run_test(cur_path) else: allfiles = [os.path.join(cur_path, fn) for fn in os.listdir(cur_path) if os.path.isfile(os.path.join(cur_path, fn))] for one_file in allfiles: run_test(one_file) if __name__ == "__main__": if check_arguments() and check_configuration(): process_files()
[ "schnaufer@email.arizona.edu" ]
schnaufer@email.arizona.edu
a98631e0b1a78861f698b938b9ac1138db85b93e
8bd51cc155b88b251115b7542065dc45431125d4
/distribution_utils.py
1a8b93d11552ab9f403870ac1ed81d6b131125b4
[]
no_license
sunke123/tf-hrnet-imagenet-tmp
e7ec84fc4fbc20dd5feb2c4dddd955344b95a8d8
05c381cb35949317a10b70a70c909be737135612
refs/heads/master
2020-09-23T02:48:30.396786
2019-10-04T07:12:21
2019-10-04T07:12:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,954
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for running models in a distributed setting.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os import tensorflow as tf def _collective_communication(all_reduce_alg): """Return a CollectiveCommunication based on all_reduce_alg. Args: all_reduce_alg: a string specifying which collective communication to pick, or None. Returns: tf.distribute.experimental.CollectiveCommunication object Raises: ValueError: if `all_reduce_alg` not in [None, 'ring', 'nccl'] """ collective_communication_options = { None: tf.distribute.experimental.CollectiveCommunication.AUTO, "ring": tf.distribute.experimental.CollectiveCommunication.RING, "nccl": tf.distribute.experimental.CollectiveCommunication.NCCL } if all_reduce_alg not in collective_communication_options: raise ValueError( "When used with `multi_worker_mirrored`, valid values for " "all_reduce_alg are ['ring', 'nccl']. Supplied value: {}".format( all_reduce_alg)) return collective_communication_options[all_reduce_alg] def _mirrored_cross_device_ops(all_reduce_alg, num_packs): """Return a CrossDeviceOps based on all_reduce_alg and num_packs. Args: all_reduce_alg: a string specifying which cross device op to pick, or None. num_packs: an integer specifying number of packs for the cross device op. Returns: tf.distribute.CrossDeviceOps object or None. Raises: ValueError: if `all_reduce_alg` not in [None, 'nccl', 'hierarchical_copy']. """ if all_reduce_alg is None: return None mirrored_all_reduce_options = { "nccl": tf.distribute.NcclAllReduce, "hierarchical_copy": tf.distribute.HierarchicalCopyAllReduce } if all_reduce_alg not in mirrored_all_reduce_options: raise ValueError( "When used with `mirrored`, valid values for all_reduce_alg are " "['nccl', 'hierarchical_copy']. Supplied value: {}".format( all_reduce_alg)) cross_device_ops_class = mirrored_all_reduce_options[all_reduce_alg] return cross_device_ops_class(num_packs=num_packs) # NOTE def get_distribution_strategy(distribution_strategy="default", num_gpus=0, num_workers=1, all_reduce_alg=None, num_packs=1): """Return a DistributionStrategy for running the model. Args: distribution_strategy: a string specifying which distribution strategy to use. Accepted values are 'off', 'default', 'one_device', 'mirrored', 'parameter_server', and 'multi_worker_mirrored' -- case insensitive. 'off' means not to use Distribution Strategy; 'default' means to choose from `MirroredStrategy`, `MultiWorkerMirroredStrategy`, or `OneDeviceStrategy` according to the number of GPUs and number of workers. num_gpus: Number of GPUs to run this model. num_workers: Number of workers to run this model. all_reduce_alg: Optional. Specifies which algorithm to use when performing all-reduce. For `MirroredStrategy`, valid values are "nccl" and "hierarchical_copy". For `MultiWorkerMirroredStrategy`, valid values are "ring" and "nccl". If None, DistributionStrategy will choose based on device topology. num_packs: Optional. Sets the `num_packs` in `tf.distribute.NcclAllReduce` or `tf.distribute.HierarchicalCopyAllReduce` for `MirroredStrategy`. Returns: tf.distribute.DistibutionStrategy object. Raises: ValueError: if `distribution_strategy` is 'off' or 'one_device' and `num_gpus` is larger than 1; or `num_gpus` is negative. """ if num_gpus < 0: raise ValueError("`num_gpus` can not be negative.") distribution_strategy = distribution_strategy.lower() if distribution_strategy == "off": if num_gpus > 1: raise ValueError( "When {} GPUs and {} workers are specified, distribution_strategy " "flag cannot be set to 'off'.".format(num_gpus, num_workers)) return None if distribution_strategy == "multi_worker_mirrored": return tf.distribute.experimental.MultiWorkerMirroredStrategy( communication=_collective_communication(all_reduce_alg)) if (distribution_strategy == "one_device" or (distribution_strategy == "default" and num_gpus <= 1)): if num_gpus == 0: return tf.distribute.OneDeviceStrategy("device:CPU:0") else: if num_gpus > 1: raise ValueError("`OneDeviceStrategy` can not be used for more than " "one device.") return tf.distribute.OneDeviceStrategy("device:GPU:0") if distribution_strategy in ("mirrored", "default"): if num_gpus == 0: assert distribution_strategy == "mirrored" devices = ["device:CPU:0"] else: devices = ["device:GPU:%d" % i for i in range(num_gpus)] return tf.distribute.MirroredStrategy( devices=devices, cross_device_ops=_mirrored_cross_device_ops(all_reduce_alg, num_packs)) if distribution_strategy == "parameter_server": return tf.distribute.experimental.ParameterServerStrategy() raise ValueError( "Unrecognized Distribution Strategy: %r" % distribution_strategy) def per_replica_batch_size(batch_size, num_gpus): """For multi-gpu, batch-size must be a multiple of the number of GPUs. Note that distribution strategy handles this automatically when used with Keras. For using with Estimator, we need to get per GPU batch. Args: batch_size: Global batch size to be divided among devices. This should be equal to num_gpus times the single-GPU batch_size for multi-gpu training. num_gpus: How many GPUs are used with DistributionStrategies. Returns: Batch size per device. Raises: ValueError: if batch_size is not divisible by number of devices """ if num_gpus <= 1: return batch_size remainder = batch_size % num_gpus if remainder: err = ('When running with multiple GPUs, batch size ' 'must be a multiple of the number of available GPUs. Found {} ' 'GPUs with a batch size of {}; try --batch_size={} instead.' ).format(num_gpus, batch_size, batch_size - remainder) raise ValueError(err) return int(batch_size / num_gpus) def configure_cluster(worker_hosts=None, task_index=-1): """Set multi-worker cluster spec in TF_CONFIG environment variable. Args: worker_hosts: comma-separated list of worker ip:port pairs. Returns: Number of workers in the cluster. """ tf_config = json.loads(os.environ.get('TF_CONFIG', '{}')) if tf_config: num_workers = (len(tf_config['cluster'].get('chief', [])) + len(tf_config['cluster'].get('worker', []))) elif worker_hosts: workers = worker_hosts.split(',') num_workers = len(workers) if num_workers > 1 and task_index < 0: raise ValueError('Must specify task_index when number of workers > 1') task_index = 0 if num_workers == 1 else task_index os.environ['TF_CONFIG'] = json.dumps({ 'cluster': { 'worker': workers }, 'task': {'type': 'worker', 'index': task_index} }) else: num_workers = 1 return num_workers
[ "c.r.deng2012@gmail.com" ]
c.r.deng2012@gmail.com
db2ed20cd3e6ba74bf7c30085f6f1b7f1526181c
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/invariant_slot_attention/modules/__init__.py
4de3565ef241189eac33dea9d2f901f5305be01f
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
2,255
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module library.""" # pylint: disable=g-multiple-import # pylint: disable=g-bad-import-order # Re-export commonly used modules and functions from .attention import (GeneralizedDotProductAttention, InvertedDotProductAttention, SlotAttention, TransformerBlock, Transformer) from .convolution import (SimpleCNN, CNN) from .decoders import (SpatialBroadcastDecoder, SiameseSpatialBroadcastDecoder) from .initializers import (GaussianStateInit, ParamStateInit, SegmentationEncoderStateInit, CoordinateEncoderStateInit) from .misc import (Dense, GRU, Identity, MLP, PositionEmbedding, Readout, RelativePositionEmbedding) from .video import (CorrectorPredictorTuple, FrameEncoder, Processor, SAVi) from .resnet import (ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, ResNet200) from .invariant_attention import (InvertedDotProductAttentionKeyPerQuery, SlotAttentionExplicitStats, SlotAttentionPosKeysValues, SlotAttentionTranslEquiv, SlotAttentionTranslScaleEquiv, SlotAttentionTranslRotScaleEquiv) from .invariant_initializers import ( ParamStateInitRandomPositions, ParamStateInitRandomPositionsScales, ParamStateInitRandomPositionsRotationsScales, ParamStateInitLearnablePositions, ParamStateInitLearnablePositionsScales, ParamStateInitLearnablePositionsRotationsScales) # pylint: enable=g-multiple-import
[ "copybara-worker@google.com" ]
copybara-worker@google.com
0a597db3d461f09e56059cf629f3e82694d6008a
61b8d32a16ca2e5dc0162b65ac2beef8cb60bc05
/test/show_data.py
d22cbdfe4e006c73019d0020e596499f48ecd79c
[]
no_license
antique493/2021_huawei_model
1f9d6dbf6fa8ef245bbafb69a085f5cf509b34d9
6793fd4ca9640cd34e2d89091183d3ccb88c1c10
refs/heads/main
2023-08-20T10:09:47.062840
2021-10-16T02:39:03
2021-10-16T02:39:03
416,988,399
0
2
null
null
null
null
UTF-8
Python
false
false
2,001
py
import numpy as np import glob import matplotlib.pyplot as plt def read_tags(): tags = [] with open("./数据集/Tag坐标信息.txt", encoding='UTF-8') as f: lines = f.readlines() for line in lines: results = line.split() tag = [] for i in range(1,len(results)): a = int(results[i]) tag.append(a) tags.append(tag) # [N, 3] return np.array(tags) def read_files(): # estimate_results [files, 4, N] estimate_results = [] files = [] for i in range(1,325): files.append("数据集/正常数据清洗/"+str(i)+".正常.txt") for file in files: with open(file,"r") as f: lines = f.readlines()[1:] file_results = [[],[],[],[]] for line in lines: res = line.split(":") for i in range(len(res)): file_results[i].append(int(res[i])) estimate_results.append(file_results) # print(file) # print(len(file_results[0])) # print(len(file_results[1])) # print(len(file_results[2])) # print(len(file_results[3])) # [file, 4, N] return estimate_results if __name__ == '__main__': input_data = np.array([[0,0,1300],[5000,0,1700],[0,5000,1700],[5000,5000,1300]]) tags = read_tags() distances = read_files() for which in range(4): x = [] y = [] for i in range(tags.shape[0]): tag = tags[i] distance_gt = ((tag - input_data/10)**2).sum(axis=1)**0.5*10 pose = distances[i] x += pose[which] y += list((pose[which]-distance_gt[which])) with open(str(which)+".txt", "w") as f: for x_r in x: f.write(str(x_r)+" ") f.write("\n") for x_r in y: f.write(str(x_r)+" ") plt.scatter(x, y) plt.show()
[ "tianyuxin@buaa.edu.cn" ]
tianyuxin@buaa.edu.cn
244da2e90a574f3a7c00e6e17460aa91ecec4cd7
0b456a4506670be25f95f7790f78f9f91d81530b
/script/githubregister/get_confirm_url.py
c3d7e254096ce4556e8f41205e3f15f6a3d5a99c
[ "MIT" ]
permissive
atupalykl/github-crawler
e862b18e43d18baad2f5af3f73a97b0e248ab750
8298a7ab2980447d65522fd966afe39dae8d8955
refs/heads/master
2020-05-29T11:07:39.271991
2015-11-29T11:52:43
2015-11-29T11:52:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
571
py
#!/usr/bin/python #coding:utf8 import poplib import re def get_mail(user, password): M = poplib.POP3_SSL('pop3.live.com') M.user(user) M.pass_(password) num_messages = len(M.list()[1]) for i in range(num_messages): for j in M.retr(i+1)[1]: github_confirm_url = re.findall("https://github.com/users/.*", j) if github_confirm_url: return github_confirm_url[0] return None def main(): print get_mail("cardiganpater@hotmail.com", "EmerY444443") if __name__ == '__main__': main()
[ "binhe22@gmail.com" ]
binhe22@gmail.com
8c4ce3ae200b52e3a8b57d1c0a960df0d3dbc5f1
d7a1478256fea3c5a5d94c4ddfd8ffc4f2d87ab2
/radix_r_sort.py
588b8a62e438c47b578feb4bdf59ca60c55f5556
[]
no_license
Awarua-/Cosc262_Assignment_Part1
0db96927f79065799a1f43ca14feae127fe92746
7e3e05c59ff8a24323c06055ff7769e1961a3dd7
refs/heads/master
2021-01-14T11:53:06.553242
2015-03-17T08:43:30
2015-03-17T08:43:30
18,115,199
0
0
null
null
null
null
UTF-8
Python
false
false
845
py
__author__ = 'Dion' def main(data, base, max_len): """ Runs the algorithm :param data: the data array :param base: the base of the data in a :param max_len: the maximum number of places in the largest data entry in a :return: """ # Create an array of buckets according to the base buckets = [] for _ in range(0, base): buckets.append([]) i = 0 while i < max_len: # sort current place into buckets for k in data[1:]: x = (k // base ** i) % base buckets[x].append(k) # reset the data array # copy the results out of the buckets back into the data array # and empty the bucket array data = data[:1] for j in buckets: r, j[:] = j[:], [] data.extend(r) i += 1 return data
[ "woolley.dion@gmail.com" ]
woolley.dion@gmail.com
c1a60a1a5803673add99db26807bf8e620335a83
17c08826eac8129c0c83ecaa368ac305f9b03a11
/Code/S_add_sym_on_pareto.py
75bb613a4da3b71168ed5c2e1238855fdfc0ea51
[ "MIT" ]
permissive
abdalazizrashid/AI-Feynman
f445062b831cf835c2f53111e85fd615ecb7d38d
3121276389a2cb6749592206268ac8f31f6c1bbc
refs/heads/master
2022-12-06T01:18:47.214162
2020-08-05T18:04:39
2020-08-05T18:04:39
279,799,700
1
2
MIT
2020-07-15T07:37:34
2020-07-15T07:37:33
null
UTF-8
Python
false
false
902
py
# Combines 2 pareto fromtier obtained from the separability test into a new one. from get_pareto import Point, ParetoSet from sympy.parsing.sympy_parser import parse_expr import numpy as np import matplotlib.pyplot as plt import os from os import path from sympy import Symbol, lambdify, N from get_pareto import Point, ParetoSet def add_sym_on_pareto(pathdir,filename,PA1,idx1,idx2,PA,sym_typ): possible_vars = ["x%s" %i for i in np.arange(0,30,1)] PA1 = np.array(PA1.get_pareto_points()).astype('str') for i in range(len(PA1)): exp1 = PA1[i][2] for j in range(len(possible_vars)-2,idx2-1,-1): exp1 = exp1.replace(possible_vars[j],possible_vars[j+1]) exp1 = exp1.replace(possible_vars[idx1],"(" + possible_vars[idx1] + sym_typ + possible_vars[idx2] + ")") PA.add(Point(x=float(PA1[i][0]),y=float(PA1[i][1]),data=str(exp1))) return PA
[ "noreply@github.com" ]
abdalazizrashid.noreply@github.com
143d796996a3fdd288046d70f7fd9193c1bf3abd
aee291b86d7fabb4c6b7d484712c6a0d5d1753d1
/config.py
330ff01c3a29f97add90a7477cf7d615271efc2c
[ "MIT" ]
permissive
liubing1545/flask-scan-ftp-directory
2e76c88df580bba3ec85dd479dfff84b6d7c56f9
bbf0096b8590da8e2fe30c5520fcfd47ec293904
refs/heads/master
2021-04-15T04:54:39.685586
2018-04-01T04:59:24
2018-04-01T04:59:24
126,834,103
6
0
null
null
null
null
UTF-8
Python
false
false
2,007
py
import os from app.main import timer basedir = os.path.abspath(os.path.dirname(__file__)) class Config: SECRET_KEY = os.environ.get('SECRET_KEY') or 'hard to guess string' SSL_DISABLE = False SQLALCHEMY_COMMIT_ON_TEARDOWN = True SQLALCHEMY_RECORD_QUERIES = True CELERY_BROKER_URL = 'redis://localhost:6379/0' CELERY_RESULT_BACKEND = 'redis://localhost:6379/0' FLASKY_ADMIN = os.environ.get('FLASKY_ADMIN') FLASKY_SLOW_DB_QUERY_TIME=0.5 JOBS = [ { 'id': 'job1', 'func': timer.cron_scan, 'trigger': 'interval', 'seconds': 5 } ] # SCHEDULER_JOBSTORES = { # 'default': SQLAlchemyJobStore(url='sqlite:///flask_context.db') # } SCHEDULER_API_ENABLED = True @staticmethod def init_app(app): pass class DevelopmentConfig(Config): DEBUG = True SQLALCHEMY_DATABASE_URI = os.environ.get('DEV_DATABASE_URL') or \ 'sqlite:///' + os.path.join(basedir, 'data-dev.sqlite') class TestingConfig(Config): TESTING = True SQLALCHEMY_DATABASE_URI = os.environ.get('TEST_DATABASE_URL') or \ 'sqlite:///' + os.path.join(basedir, 'data-test.sqlite') WTF_CSRF_ENABLED = False class ProductionConfig(Config): SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') or \ 'sqlite:///' + os.path.join(basedir, 'data.sqlite') @classmethod def init_app(cls, app): Config.init_app(app) class UnixConfig(ProductionConfig): @classmethod def init_app(cls, app): ProductionConfig.init_app(app) # log to syslog import logging from logging.handlers import SysLogHandler syslog_handler = SysLogHandler() syslog_handler.setLevel(logging.WARNING) app.logger.addHandler(syslog_handler) config = { 'development': DevelopmentConfig, 'testing': TestingConfig, 'production': ProductionConfig, 'unix': UnixConfig, 'default': DevelopmentConfig }
[ "lbingg@hotmail.com" ]
lbingg@hotmail.com
c629cbdd90dab58a61b3447a0fd008ed272ee17d
9ec46412be4b97c29b57feacd99d3142b80871f8
/unit6-4.py
3a0729c75e3647c0b011484155334b1f0255386c
[]
no_license
klim1286/PythonBasics
6e788544b06b8e5017d7bfaae66646359f67a420
5b8a23a27c6308505e3d10fd1b650c11c2bebe7f
refs/heads/master
2023-02-16T01:39:48.519366
2021-01-11T21:43:01
2021-01-11T21:43:01
311,781,511
0
0
null
2021-01-11T21:43:02
2020-11-10T20:50:35
Python
UTF-8
Python
false
false
1,443
py
from random import choice class Car: def __init__(self, speed, color, name, is_police): self.speed = speed self.color = color self.name = name self.is_police = is_police def go(self): print(f'{self.name} поехала') def stop(self): print(f'{self.name} остановилась') def turn(self): print(f'{self.name} {choice(["вперед", "назад", "на лево", "на право"])}') def show_speed(self): print(f'{self.name} движется со скоростью {self.speed}') class TownCar(Car): def show_speed(self): super().show_speed() if self.speed >= 60: print(f'{self.name} превысила скорость!') class SportCar(Car): pass class WorkCar(Car): def show_speed(self): super().show_speed() if self.speed >= 40: print(f'{self.name} превысила скорость!') class PoliceCar(Car): pass mazeratty = SportCar(100, 'blue', 'mazeratty', False) cruma = TownCar(100, 'black', 'cruma', False) lada = WorkCar(60, 'yellow', '2107', False) crown = PoliceCar(100, 'white', 'victoriya', True) mazeratty.go() mazeratty.turn() mazeratty.show_speed() mazeratty.stop() cruma.go() cruma.turn() cruma.show_speed() cruma.stop() lada.go() lada.turn() lada.show_speed() lada.stop() crown.go() crown.turn() crown.show_speed() crown.stop()
[ "klim1286@gmail.com" ]
klim1286@gmail.com
1f3c07e46d45ac1e84121a5bb87edf9005f788f0
b170fb19f25507533dd31006c9776aa2df387ca1
/utils/utils.py
cd1a1749936cfb8cc0a7d1a1d996492db20a9237
[ "MIT" ]
permissive
LCFractal/YOLOV4_MCMOT
cf58603386a68824509120c1068523aeb7f258fb
0caf0c2feb788c2c3428b4917ace46e437e71b2f
refs/heads/master
2023-02-26T21:10:31.474650
2020-11-06T07:47:10
2020-11-06T07:47:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
62,728
py
import glob import math import os import random import shutil import subprocess from pathlib import Path import cv2 import matplotlib import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torchvision from tqdm import tqdm from . import torch_utils # , google_utils # Set printoptions torch.set_printoptions(linewidth=320, precision=5, profile='long') np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 matplotlib.rc('font', **{'size': 11}) # Prevent OpenCV from multithreading (to use PyTorch DataLoader) cv2.setNumThreads(0) def init_seeds(seed=0): random.seed(seed) np.random.seed(seed) torch_utils.init_seeds(seed=seed) def check_git_status(): # Suggest 'git pull' if repo is out of date s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8') if 'Your branch is behind' in s: print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n') def load_classes(path): # Loads *.names file at 'path' with open(path, 'r') as f: names = f.read().split('\n') return list(filter(None, names)) # filter removes empty strings (such as last line) def labels_to_class_weights(labels, nc=80): # Get class weights (inverse frequency) from training labels if labels[0] is None: # no labels loaded return torch.Tensor() labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO classes = labels[:, 0].astype(np.int) # labels = [class xywh] weights = np.bincount(classes, minlength=nc) # occurences per class # Prepend gridpoint count (for uCE trianing) # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start weights[weights == 0] = 1 # replace empty bins with 1 weights = 1 / weights # number of targets per class weights /= weights.sum() # normalize return torch.from_numpy(weights) def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): # Produces image weights based on class mAPs n = len(labels) class_counts = np.array([np.bincount(labels[i][:, 0].astype(np.int), minlength=nc) for i in range(n)]) image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample return image_weights def coco_class_weights(): # frequency of each class in coco train2014 n = [187437, 4955, 30920, 6033, 3838, 4332, 3160, 7051, 7677, 9167, 1316, 1372, 833, 6757, 7355, 3302, 3776, 4671, 6769, 5706, 3908, 903, 3686, 3596, 6200, 7920, 8779, 4505, 4272, 1862, 4698, 1962, 4403, 6659, 2402, 2689, 4012, 4175, 3411, 17048, 5637, 14553, 3923, 5539, 4289, 10084, 7018, 4314, 3099, 4638, 4939, 5543, 2038, 4004, 5053, 4578, 27292, 4113, 5931, 2905, 11174, 2873, 4036, 3415, 1517, 4122, 1980, 4464, 1190, 2302, 156, 3933, 1877, 17630, 4337, 4624, 1075, 3468, 135, 1380] weights = 1 / torch.Tensor(n) weights /= weights.sum() # with open('data/coco.names', 'r') as f: # for k, v in zip(f.read().splitlines(), n): # print('%20s: %g' % (k, v)) return weights def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] return x def xyxy2xywh(x): # Transform box coordinates from [x1, y1, x2, y2] (where xy1=top-left, xy2=bottom-right) to [x, y, w, h] y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center y[:, 2] = x[:, 2] - x[:, 0] # width y[:, 3] = x[:, 3] - x[:, 1] # height return y def xywh2xyxy(x): # Transform box coordinates from [x, y, w, h] to [x1, y1, x2, y2] (where xy1=top-left, xy2=bottom-right) y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y return y # def xywh2xyxy(box): # # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] # if isinstance(box, torch.Tensor): # x, y, w, h = box.t() # return torch.stack((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).t() # else: # numpy # x, y, w, h = box.T # return np.stack((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).T # # # def xyxy2xywh(box): # # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] # if isinstance(box, torch.Tensor): # x1, y1, x2, y2 = box.t() # return torch.stack(((x1 + x2) / 2, (y1 + y2) / 2, x2 - x1, y2 - y1)).t() # else: # numpy # x1, y1, x2, y2 = box.T # return np.stack(((x1 + x2) / 2, (y1 + y2) / 2, x2 - x1, y2 - y1)).T def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): # Rescale coords (xyxy) from img1_shape to img0_shape if ratio_pad is None: # calculate from img0_shape gain = max(img1_shape) / max(img0_shape) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding else: gain = ratio_pad[0][0] pad = ratio_pad[1] coords[:, [0, 2]] -= pad[0] # x padding coords[:, [1, 3]] -= pad[1] # y padding coords[:, :4] /= gain # scale back to img0's scale clip_coords(coords, img0_shape) return coords def clip_coords(boxes, img_shape): # Clip bounding xyxy bounding boxes to image shape (height, width) boxes[:, 0].clamp_(0, img_shape[1]) # x1 boxes[:, 1].clamp_(0, img_shape[0]) # y1 boxes[:, 2].clamp_(0, img_shape[1]) # x2 boxes[:, 3].clamp_(0, img_shape[0]) # y2 def ap_per_class(tp, conf, pred_cls, target_cls): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. # Arguments tp: True positives (nparray, nx1 or nx10). conf: Objectness value from 0-1 (nparray). pred_cls: Predicted object classes (nparray). target_cls: True object classes (nparray). # Returns The average precision as computed in py-faster-rcnn. """ # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes = np.unique(target_cls) # Create Precision-Recall curve and compute AP for each class pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898 s = [len(unique_classes), tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95) ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s) for ci, c in enumerate(unique_classes): i = pred_cls == c n_gt = (target_cls == c).sum() # Number of ground truth objects n_p = i.sum() # Number of predicted objects if n_p == 0 or n_gt == 0: continue else: # Accumulate FPs and TPs fpc = (1 - tp[i]).cumsum(0) tpc = tp[i].cumsum(0) # Recall recall = tpc / (n_gt + 1e-16) # recall curve r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases # Precision precision = tpc / (tpc + fpc) # precision curve p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score # AP from recall-precision curve for j in range(tp.shape[1]): ap[ci, j] = compute_ap(recall[:, j], precision[:, j]) # Plot # fig, ax = plt.subplots(1, 1, figsize=(5, 5)) # ax.plot(recall, precision) # ax.set_xlabel('Recall') # ax.set_ylabel('Precision') # ax.set_xlim(0, 1.01) # ax.set_ylim(0, 1.01) # fig.tight_layout() # fig.savefig('PR_curve.png', dpi=300) # Compute F1 score (harmonic mean of precision and recall) f1 = 2 * p * r / (p + r + 1e-16) return p, r, ap, f1, unique_classes.astype('int32') def compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rbgirshick/py-faster-rcnn. # Arguments recall: The recall curve (list). precision: The precision curve (list). # Returns The average precision as computed in py-faster-rcnn. """ # Append sentinel values to beginning and end mrec = np.concatenate(([0.], recall, [min(recall[-1] + 1E-3, 1.)])) mpre = np.concatenate(([0.], precision, [0.])) # Compute the precision envelope mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) # Integrate area under curve method = 'interp' # methods: 'continuous', 'interp' if method == 'interp': x = np.linspace(0, 1, 101) # 101-point interp (COCO) ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate else: # 'continuous' i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve return ap def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.t() # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 union = (w1 * h1 + 1e-16) + w2 * h2 - inter iou = inter / union # iou if GIoU or DIoU or CIoU: cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if GIoU: # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf c_area = cw * ch + 1e-16 # convex area return iou - (c_area - union) / c_area # GIoU if DIoU or CIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 # convex diagonal squared c2 = cw ** 2 + ch ** 2 + 1e-16 # centerpoint distance squared rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4 if DIoU: return iou - rho2 / c2 # DIoU elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) with torch.no_grad(): alpha = v / (1 - iou + v) return iou - (rho2 / c2 + v * alpha) # CIoU return iou def box_iou(box1, box2): # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: box1 (Tensor[N, 4]) box2 (Tensor[M, 4]) Returns: iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """ def box_area(box): # box = 4xn return (box[2] - box[0]) * (box[3] - box[1]) area1 = box_area(box1.t()) area2 = box_area(box2.t()) # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter) def wh_iou(wh1, wh2): """ Using tensor's broadcasting mechanism :param wh1: :param wh2: :return: N×M matrix for each N×M's iou """ # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 wh1 = wh1[:, None] # [N, 1, 2] wh2 = wh2[None] # [1, M, 2] min_wh = torch.min(wh1, wh2) # min w and min h for N and M box: N×M×2 inter = min_wh.prod(dim=2) # min_w × min_h for [N, M] return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter) class FocalLoss(nn.Module): # Wraps focal loss_funcs around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super(FocalLoss, self).__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) # p_t = torch.exp(-loss_funcs) # loss_funcs *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = torch.sigmoid(pred) # prob from logits p_t = true * pred_prob + (1 - true) * (1 - pred_prob) alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = (1.0 - p_t) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 # return positive, negative label smoothing BCE targets return 1.0 - 0.5 * eps, 0.5 * eps def compute_loss_no_upsample(preds, reid_feat_out, targets, track_ids, model): """ :param preds: :param reid_feat_out: :param targets: :param track_ids: :param model: :return: """ ft = torch.cuda.FloatTensor if preds[0].is_cuda else torch.Tensor l_cls, l_box, l_obj, l_reid = ft([0]), ft([0]), ft([0]), ft([0]) # build targets for loss_funcs computation t_cls, t_box, indices, anchor_vec, t_track_ids = build_targets_with_ids(preds, targets, track_ids, model) h = model.hyp # hyper parameters red = 'mean' # Loss reduction (sum or mean) # Define criteria BCE_cls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']]), reduction=red) BCE_obj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]), reduction=red) CE_reid = nn.CrossEntropyLoss() # class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 cp, cn = smooth_BCE(eps=0.0) # focal loss_funcs g = h['fl_gamma'] # focal loss_funcs gamma if g > 0: BCE_cls, BCE_obj = FocalLoss(BCE_cls, g), FocalLoss(BCE_obj, g) np, ng = 0, 0 # number grid points, targets(GT) # Compute losses for each YOLO layer for i, pred_i in enumerate(preds): # layer index, layer predictions id_map_w, id_map_h = reid_feat_out[i].shape[3], reid_feat_out[i].shape[2] # 3 feature map layers ny, nx = pred_i.shape[2], pred_i.shape[3] b, a, gy, gx = indices[i] # image, anchor, grid_y, grid_x tr_ids = t_track_ids[i] # track ids cls_ids = t_cls[i] t_obj = torch.zeros_like(pred_i[..., 0]) # target obj(confidence score), e.g. 5×3×96×96 np += t_obj.numel() # total number of elements # Compute losses nb = len(b) # number of targets(GT boxes) if nb: # if exist GT box ng += nb # prediction subset corresponding to targets # specified item_i_in_batch, anchor_i, grid_y, grid_x pred_s = pred_i[b, a, gy, gx] # nb × 10 # pred_s[:, 2:4] = torch.sigmoid(pred_s[:, 2:4]) # wh power loss_funcs (uncomment) # GIoU pxy = torch.sigmoid(pred_s[:, 0:2]) # pxy = pxy * s - (s - 1) / 2, s = 1.5 (scale_xy) pwh = torch.exp(pred_s[:, 2:4]).clamp(max=1E3) * anchor_vec[i] p_box = torch.cat((pxy, pwh), 1) # predicted bounding box g_iou = bbox_iou(p_box.t(), t_box[i], x1y1x2y2=False, GIoU=True) # g_iou computation: in YOLO layer's scale l_box += (1.0 - g_iou).sum() if red == 'sum' else (1.0 - g_iou).mean() # g_iou loss_funcs t_obj[b, a, gy, gx] = (1.0 - model.gr) + model.gr * g_iou.detach().clamp(0).type( t_obj.dtype) # g_iou ratio taken into account if model.nc > 1: # cls loss_funcs (only if multiple classes) t = torch.full_like(pred_s[:, 5:], cn) # targets: nb × num_classes t[range(nb), cls_ids] = cp l_cls += BCE_cls(pred_s[:, 5:], t) # BCE loss for each object class # l_cls += CE(pred_s[:, 5:], cls_ids) # CE # ----- compute reid loss_funcs for each GT box # get center point coordinates for all GT center_x = gx + pred_s[:, 0] center_y = gy + pred_s[:, 1] # convert to reid_feature map's scale center_x *= float(id_map_w) / float(nx) center_y *= float(id_map_h) / float(ny) # convert to int64 for indexing center_x += 0.5 center_y += 0.5 center_x = center_x.long() center_y = center_y.long() # avoid exceed reid feature map's range center_x.clamp_(0, id_map_w - 1) center_y.clamp_(0, id_map_h - 1) # get reid feature vector for GT boxes t_reid_feat_vects = reid_feat_out[i][b, :, center_y, center_x] # nb × 128 # ----- compute each object class's reid loss_funcs multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) if multi_gpu: for cls_id, id_num in model.module.max_id_dict.items(): inds = torch.where(cls_ids == cls_id) if inds[0].shape[0] == 0: # print('skip class id', cls_id) continue id_vects = t_reid_feat_vects[inds] id_vects = F.normalize(id_vects, dim=1) # L2 normalize the feature vector fc_preds = model.module.id_classifiers[cls_id].forward(id_vects).contiguous() l_reid += CE_reid(fc_preds, tr_ids[inds]) else: for cls_id, id_num in model.max_id_dict.items(): inds = torch.where(cls_ids == cls_id) if inds[0].shape[0] == 0: # print('skip class id', cls_id) continue id_vects = t_reid_feat_vects[inds] # L2 normalize the feature vector id_vects = F.normalize(id_vects, dim=1) fc_preds = model.id_classifiers[cls_id].forward(id_vects).contiguous() l_reid += CE_reid(fc_preds, tr_ids[inds]) # Append targets to text file # with open('targets.txt', 'a') as file: # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] l_obj += BCE_obj(pred_i[..., 4], t_obj) # obj loss_funcs(confidence score loss_funcs) l_box *= h['giou'] l_obj *= h['obj'] l_cls *= h['cls'] # l_reid *= h['reid'] l_reid /= float(nb) # reid loss_funcs normalize by number of GT objects if red == 'sum': bs = t_obj.shape[0] # batch size l_obj *= 3 / (6300 * bs) * 2 # 3 / np * 2 if ng: l_cls *= 3 / ng / model.nc l_box *= 3 / ng loss = l_box + l_obj + l_cls + l_reid return loss, torch.cat((l_box, l_obj, l_cls, l_reid, loss)).detach() def compute_loss_with_ids(preds, reid_feat_map, targets, track_ids, model): """ :param preds: :param reid_feat_map: :param targets: :param track_ids: :param model: :return: """ ft = torch.cuda.FloatTensor if preds[0].is_cuda else torch.Tensor l_cls, l_box, l_obj, l_reid = ft([0]), ft([0]), ft([0]), ft([0]) # build targets for loss_funcs computation t_cls, t_box, indices, anchor_vec, t_track_ids = build_targets_with_ids(preds, targets, track_ids, model) h = model.hyp # hyper parameters red = 'mean' # Loss reduction (sum or mean) # Define criteria BCE_cls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']]), reduction=red) BCE_obj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]), reduction=red) CE_reid = nn.CrossEntropyLoss() # class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 cp, cn = smooth_BCE(eps=0.0) # focal loss_funcs g = h['fl_gamma'] # focal loss_funcs gamma if g > 0: BCE_cls, BCE_obj = FocalLoss(BCE_cls, g), FocalLoss(BCE_obj, g) id_map_w, id_map_h = reid_feat_map.shape[3], reid_feat_map.shape[2] np, ng = 0, 0 # number grid points, targets(GT) # Compute losses for each YOLO layer for i, pred_i in enumerate(preds): # layer index, layer predictions ny, nx = pred_i.shape[2], pred_i.shape[3] b, a, gy, gx = indices[i] # image, anchor, grid_y, grid_x tr_ids = t_track_ids[i] # track ids cls_ids = t_cls[i] t_obj = torch.zeros_like(pred_i[..., 0]) # target obj(confidence score), e.g. 5×3×96×96 np += t_obj.numel() # total number of elements # Compute losses nb = len(b) # number of targets(GT boxes) if nb: # if exist GT box ng += nb # prediction subset corresponding to targets # specified item_i_in_batch, anchor_i, grid_y, grid_x pred_s = pred_i[b, a, gy, gx] # nb × 10 # pred_s[:, 2:4] = torch.sigmoid(pred_s[:, 2:4]) # wh power loss_funcs (uncomment) # GIoU pxy = torch.sigmoid(pred_s[:, 0:2]) # pxy = pxy * s - (s - 1) / 2, s = 1.5 (scale_xy) pwh = torch.exp(pred_s[:, 2:4]).clamp(max=1E3) * anchor_vec[i] p_box = torch.cat((pxy, pwh), 1) # predicted bounding box g_iou = bbox_iou(p_box.t(), t_box[i], x1y1x2y2=False, GIoU=True) # g_iou computation: in YOLO layer's scale l_box += (1.0 - g_iou).sum() if red == 'sum' else (1.0 - g_iou).mean() # g_iou loss_funcs t_obj[b, a, gy, gx] = (1.0 - model.gr) + model.gr * g_iou.detach().clamp(0).type( t_obj.dtype) # g_iou ratio taken into account if model.nc > 1: # cls loss_funcs (only if multiple classes) t = torch.full_like(pred_s[:, 5:], cn) # targets: nb × num_classes t[range(nb), cls_ids] = cp l_cls += BCE_cls(pred_s[:, 5:], t) # BCE loss for each object class # l_cls += CE(pred_s[:, 5:], cls_ids) # CE # ----- compute reid loss_funcs for each GT box # get center point coordinates for all GT center_x = gx + pred_s[:, 0] center_y = gy + pred_s[:, 1] # convert to reid_feature map's scale center_x *= float(id_map_w) / float(nx) center_y *= float(id_map_h) / float(ny) # convert to int64 for indexing center_x += 0.5 center_y += 0.5 center_x = center_x.long() center_y = center_y.long() # avoid exceed reid feature map's range center_x.clamp_(0, id_map_w - 1) center_y.clamp_(0, id_map_h - 1) # get reid feature vector for GT boxes t_reid_feat_vects = reid_feat_map[b, :, center_y, center_x] # nb × 128 # ----- compute each object class's reid loss_funcs multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) if multi_gpu: for cls_id, id_num in model.module.max_id_dict.items(): inds = torch.where(cls_ids == cls_id) if inds[0].shape[0] == 0: # print('skip class id', cls_id) continue id_vects = t_reid_feat_vects[inds] id_vects = F.normalize(id_vects, dim=1) # L2 normalize the feature vector fc_preds = model.module.id_classifiers[cls_id].forward(id_vects).contiguous() l_reid += CE_reid(fc_preds, tr_ids[inds]) else: for cls_id, id_num in model.max_id_dict.items(): inds = torch.where(cls_ids == cls_id) if inds[0].shape[0] == 0: # print('skip class id', cls_id) continue id_vects = t_reid_feat_vects[inds] id_vects = F.normalize(id_vects, dim=1) # L2 normalize the feature vector fc_preds = model.id_classifiers[cls_id].forward(id_vects).contiguous() l_reid += CE_reid(fc_preds, tr_ids[inds]) # Append targets to text file # with open('targets.txt', 'a') as file: # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] l_obj += BCE_obj(pred_i[..., 4], t_obj) # obj loss_funcs(confidence score loss_funcs) l_box *= h['giou'] l_obj *= h['obj'] l_cls *= h['cls'] # l_reid *= h['reid'] l_reid /= float(nb) # reid loss_funcs normalize by number of GT objects if red == 'sum': bs = t_obj.shape[0] # batch size l_obj *= 3 / (6300 * bs) * 2 # 3 / np * 2 if ng: l_cls *= 3 / ng / model.nc l_box *= 3 / ng loss = l_box + l_obj + l_cls + l_reid return loss, torch.cat((l_box, l_obj, l_cls, l_reid, loss)).detach() def compute_loss(preds, targets, model): # predictions, targets, model ft = torch.cuda.FloatTensor if preds[0].is_cuda else torch.Tensor l_cls, l_box, l_obj = ft([0]), ft([0]), ft([0]) t_cls, t_box, indices, anchor_vec = build_targets(preds, targets, model) h = model.hyp # hyper parameters red = 'mean' # Loss reduction (sum or mean) # Define criteria BCE_cls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']]), reduction=red) BCE_obj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]), reduction=red) # class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 cp, cn = smooth_BCE(eps=0.0) # focal loss_funcs g = h['fl_gamma'] # focal loss_funcs gamma if g > 0: BCE_cls, BCE_obj = FocalLoss(BCE_cls, g), FocalLoss(BCE_obj, g) # Compute losses np, ng = 0, 0 # number grid points, targets(GT) for i, pred_i in enumerate(preds): # layer index, layer predictions b, a, gj, gi = indices[i] # image, anchor, grid_y, grid_x t_obj = torch.zeros_like(pred_i[..., 0]) # target obj(confidence score), e.g. 5×3×96×96 np += t_obj.numel() # total number of elements # Compute losses nb = len(b) # number of targets(GT boxes) if nb: # if exist GT box ng += nb # prediction subset corresponding to targets # specified item_i_in_batch, anchor_i, grid_y, grid_x pred_s = pred_i[b, a, gj, gi] # nb × 10 # pred_s[:, 2:4] = torch.sigmoid(pred_s[:, 2:4]) # wh power loss_funcs (uncomment) # GIoU pxy = torch.sigmoid(pred_s[:, 0:2]) # pxy = pxy * s - (s - 1) / 2, s = 1.5 (scale_xy) pwh = torch.exp(pred_s[:, 2:4]).clamp(max=1E3) * anchor_vec[i] p_box = torch.cat((pxy, pwh), 1) # predicted bounding box g_iou = bbox_iou(p_box.t(), t_box[i], x1y1x2y2=False, GIoU=True) # g_iou computation l_box += (1.0 - g_iou).sum() if red == 'sum' else (1.0 - g_iou).mean() # g_iou loss_funcs t_obj[b, a, gj, gi] = (1.0 - model.gr) \ + model.gr * g_iou.detach().clamp(0).type( t_obj.dtype) # g_iou ratio taken into account if model.nc > 1: # cls loss_funcs (only if multiple classes) t = torch.full_like(pred_s[:, 5:], cn) # targets: nb × num_classes t[range(nb), t_cls[i]] = cp l_cls += BCE_cls(pred_s[:, 5:], t) # BCE # l_cls += CE(pred_s[:, 5:], t_cls[i]) # CE # Append targets to text file # with open('targets.txt', 'a') as file: # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] l_obj += BCE_obj(pred_i[..., 4], t_obj) # obj loss_funcs(confidence score loss_funcs) l_box *= h['giou'] l_obj *= h['obj'] l_cls *= h['cls'] if red == 'sum': bs = t_obj.shape[0] # batch size l_obj *= 3 / (6300 * bs) * 2 # 3 / np * 2 if ng: l_cls *= 3 / ng / model.nc l_box *= 3 / ng loss = l_box + l_obj + l_cls return loss, torch.cat((l_box, l_obj, l_cls, loss)).detach() def build_targets_with_ids(preds, targets, track_ids, model): """ :param preds: :param targets: :param track_ids: :param model: :return: """ # targets = [image, class, x, y, w, h] nt = targets.shape[0] t_cls, t_box, indices, av, t_track_ids = [], [], [], [], [] reject, use_all_anchors = True, True gain = torch.ones(6, device=targets.device) # normalized to grid space gain # m = list(model.modules())[-1] # for i in range(m.nl): # anchors = m.anchors[i] multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) # build each YOLO layer of corresponding scale for i, idx in enumerate(model.yolo_layer_inds): # get number of grid points and anchor vec for this YOLO layer: # anchors in YOLO layer(feature map)'s scale anchors = model.module.module_list[idx].anchor_vec if multi_gpu else model.module_list[idx].anchor_vec # iou of targets-anchors gain[2:] = torch.tensor(preds[i].shape)[[3, 2, 3, 2]] # xyxy gain t, a = targets * gain, [] gwh = t[:, 4:6] # targets(GT): bbox_w, bbox_h in yolo layer(feature map)'s scale if nt: iou = wh_iou(anchors, gwh) # iou(3,n) = wh_iou(anchors(3,2), gwh(n,2)) if use_all_anchors: na = anchors.shape[0] # number of anchors a = torch.arange(na).view(-1, 1).repeat(1, nt).view( -1) # anchor index, N_a × N_gt_box:e.g. 56个0, 56个1, 56个2 t = t.repeat(na, 1) # 56 × 6 -> (56×3) × 6 tr_ids = track_ids.repeat(na) # 56 -> 56×3 else: # use best anchor only iou, a = iou.max(0) # best iou and anchor # reject anchors below iou_thres (OPTIONAL, increases P, lowers R) if reject: # get index whose anchor and gt box's iou exceeds the iou threshold, # defined as positive sample idx = iou.view(-1) > model.hyp['iou_t'] # iou threshold hyper parameter t, a = t[idx], a[idx] # GT track ids: for reid classification training tr_ids = tr_ids[idx] # Indices b, c = t[:, :2].long().t() # target image index in the batch, class id gxy = t[:, 2:4] # grid x, y (GT center) gwh = t[:, 4:6] # grid w, h gi, gj = gxy.long().t() # grid x, y indices(int64), .t(): transpose a matrix indices.append((b, a, gj, gi)) # Box gxy -= gxy.floor() # GT box center xy 's fractional part t_box.append(torch.cat((gxy, gwh), 1)) # xywh (grids) av.append(anchors[a]) # anchor vectors of corresponding GT boxes # GT track ids t_track_ids.append(tr_ids) # GT Class ids t_cls.append(c) if c.shape[0]: # if any targets assert c.max() < model.nc, \ 'Model accepts %g classes labeled from 0-%g, however you labelled a class %g. ' \ 'See https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data' % ( model.nc, model.nc - 1, c.max()) return t_cls, t_box, indices, av, t_track_ids def build_targets(preds, targets, model): # targets = [image, class, x, y, w, h] nt = targets.shape[0] t_cls, t_box, indices, av = [], [], [], [] reject, use_all_anchors = True, True gain = torch.ones(6, device=targets.device) # normalized to grid space gain # m = list(model.modules())[-1] # for i in range(m.nl): # anchors = m.anchors[i] multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) for i, idx in enumerate(model.yolo_layer_inds): # each YOLO layer of corresponding scale # get number of grid points and anchor vec for this YOLO layer: # anchors in YOLO layer(feature map)'s scale anchors = model.module.module_list[idx].anchor_vec if multi_gpu else model.module_list[idx].anchor_vec # iou of targets-anchors gain[2:] = torch.tensor(preds[i].shape)[[3, 2, 3, 2]] # xyxy gain t, a = targets * gain, [] gwh = t[:, 4:6] # targets(GT): bbox_w, bbox_h in yolo layer(feature map)'s scale if nt: iou = wh_iou(anchors, gwh) # iou(3,n) = wh_iou(anchors(3,2), gwh(n,2)) if use_all_anchors: na = anchors.shape[0] # number of anchors a = torch.arange(na).view(-1, 1).repeat(1, nt).view( -1) # anchor index, N_a × N_gt_box:e.g. 56个0, 56个1, 56个2 t = t.repeat(na, 1) # 56 × 6 -> (56×3) × 6 else: # use best anchor only iou, a = iou.max(0) # best iou and anchor # reject anchors below iou_thres (OPTIONAL, increases P, lowers R) if reject: # get index whose anchor and gt box's iou exceeds the iou threshold, # defined as positive sample idx = iou.view(-1) > model.hyp['iou_t'] # iou threshold hyper parameter t, a = t[idx], a[idx] # Indices b, c = t[:, :2].long().t() # target image index in the batch, class id gxy = t[:, 2:4] # grid x, y (GT center) gwh = t[:, 4:6] # grid w, h gi, gj = gxy.long().t() # grid x, y indices(int64), .t(): transpose a matrix indices.append((b, a, gj, gi)) # Box gxy -= gxy.floor() # GT box center xy 's fractional part t_box.append(torch.cat((gxy, gwh), 1)) # xywh (grids) av.append(anchors[a]) # anchor vectors of corresponding GT boxes # GT Class ids t_cls.append(c) if c.shape[0]: # if any targets assert c.max() < model.nc, \ 'Model accepts %g classes labeled from 0-%g, however you labelled a class %g. ' \ 'See https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data' % ( model.nc, model.nc - 1, c.max()) return t_cls, t_box, indices, av def non_max_suppression_with_yolo_inds(predictions, yolo_inds, conf_thres=0.1, iou_thres=0.6, merge=False, classes=None, agnostic=False): """Performs Non-Maximum Suppression (NMS) on inference results Returns: detections with shape: nx6 (x1, y1, x2, y2, conf, cls) """ if predictions.dtype is torch.float16: predictions = predictions.float() # to FP32 nc = predictions[0].shape[1] - 5 # number of classes xc = predictions[..., 4] > conf_thres # candidates # Settings min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height max_det = 300 # maximum number of detections per image time_limit = 10.0 # seconds to quit after redundant = True # require redundant detections multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img) # t = time.time() output = [None] * predictions.shape[0] output_yolo_inds = [None] * predictions.shape[0] for xi, x in enumerate(predictions): # xi: image index in the batch, image inference # Apply constraints # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height x = x[xc[xi]] # confidence yolo_inds = yolo_inds[xi][xc[xi]] # If none remain process next image if not x.shape[0]: continue # Compute conf x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf(目标概率*前景概率) # Box (center x, center y, width, height) to (x1, y1, x2, y2) box = xywh2xyxy(x[:, :4]) # Detections matrix nx6 (xyxy, conf, cls) if multi_label: i, j = (x[:, 5:] > conf_thres).nonzero().t() boxes = box[i] cls_scores = x[i, j + 5, None] cls_inds = j[:, None].float() yolo_inds = yolo_inds[i] # x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) x = torch.cat((boxes, cls_scores, cls_inds), 1) # box(4), cls_score(1), cls_id(1): n×6 else: # best class only conf, j = x[:, 5:].max(1, keepdim=True) x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] # Filter by class if classes: x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] # Apply finite constraint # if not torch.isfinite(x).all(): # x = x[torch.isfinite(x).all(1)] # If none remain process next image n = x.shape[0] # number of boxes if not n: continue # Sort by confidence # x = x[x[:, 4].argsort(descending=True)] # Batched NMS c = x[:, 5:6] * (0 if agnostic else max_wh) # classes boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores i = torchvision.ops.boxes.nms(boxes, scores, iou_thres) if i.shape[0] > max_det: # limit detections i = i[:max_det] if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix weights = iou * scores[None] # box weights x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes if redundant: i = i[iou.sum(1) > 1] # require redundancy except: # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139 print(x, i, x.shape, i.shape) pass output[xi] = x[i] # if (time.time() - t) > time_limit: # break # time limit exceeded output_yolo_inds[xi] = yolo_inds[i] return output, output_yolo_inds def non_max_suppression(predictions, conf_thres=0.1, iou_thres=0.6, merge=False, classes=None, agnostic=False): """Performs Non-Maximum Suppression (NMS) on inference results Returns: detections with shape: nx6 (x1, y1, x2, y2, conf, cls) """ if predictions.dtype is torch.float16: predictions = predictions.float() # to FP32 nc = predictions[0].shape[1] - 5 # number of classes xc = predictions[..., 4] > conf_thres # candidates # Settings min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height max_det = 300 # maximum number of detections per image time_limit = 10.0 # seconds to quit after redundant = True # require redundant detections multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img) # t = time.time() output = [None] * predictions.shape[0] for xi, x in enumerate(predictions): # image index, image inference # Apply constraints # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height x = x[xc[xi]] # confidence # If none remain process next image if not x.shape[0]: continue # Compute conf x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf # Box (center x, center y, width, height) to (x1, y1, x2, y2) box = xywh2xyxy(x[:, :4]) # Detections matrix nx6 (xyxy, conf, cls) if multi_label: i, j = (x[:, 5:] > conf_thres).nonzero().t() x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) else: # best class only conf, j = x[:, 5:].max(1, keepdim=True) x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] # Filter by class if classes: x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] # Apply finite constraint # if not torch.isfinite(x).all(): # x = x[torch.isfinite(x).all(1)] # If none remain process next image n = x.shape[0] # number of boxes if not n: continue # Sort by confidence # x = x[x[:, 4].argsort(descending=True)] # Batched NMS c = x[:, 5:6] * (0 if agnostic else max_wh) # classes boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores i = torchvision.ops.boxes.nms(boxes, scores, iou_thres) if i.shape[0] > max_det: # limit detections i = i[:max_det] if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix weights = iou * scores[None] # box weights x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes if redundant: i = i[iou.sum(1) > 1] # require redundancy except: # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139 print(x, i, x.shape, i.shape) pass output[xi] = x[i] # if (time.time() - t) > time_limit: # break # time limit exceeded return output def get_yolo_layers(model): bool_vec = [x['type'] == 'yolo' for x in model.module_defs] return [i for i, x in enumerate(bool_vec) if x] # [82, 94, 106] for yolov3 def print_model_biases(model): # prints the bias neurons preceding each yolo layer print('\nModel Bias Summary: %8s%18s%18s%18s' % ('layer', 'regression', 'objectness', 'classification')) try: multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) for l in model.yolo_layer_inds: # print pretrained biases if multi_gpu: na = model.module.module_list[l].na # number of anchors b = model.module.module_list[l - 1][0].bias.view(na, -1) # bias 3x85 else: na = model.module_list[l].na b = model.module_list[l - 1][0].bias.view(na, -1) # bias 3x85 print(' ' * 20 + '%8g %18s%18s%18s' % (l, '%5.2f+/-%-5.2f' % (b[:, :4].mean(), b[:, :4].std()), '%5.2f+/-%-5.2f' % (b[:, 4].mean(), b[:, 4].std()), '%5.2f+/-%-5.2f' % (b[:, 5:].mean(), b[:, 5:].std()))) except: pass def strip_optimizer(f='weights/last.pt'): # from utils.utils import *; strip_optimizer() # Strip optimizer from *.pt files for lighter files (reduced by 2/3 size) x = torch.load(f, map_location=torch.device('cpu')) x['optimizer'] = None torch.save(x, f) def create_backbone(f='weights/last.pt'): # from utils.utils import *; create_backbone() # create a backbone from a *.pt file x = torch.load(f, map_location=torch.device('cpu')) x['optimizer'] = None x['training_results'] = None x['epoch'] = -1 for p in x['model'].values(): try: p.requires_grad = True except: pass torch.save(x, 'weights/backbone.pt') def coco_class_count(path='../coco/labels/train2014/'): # Histogram of occurrences per class nc = 80 # number classes x = np.zeros(nc, dtype='int32') files = sorted(glob.glob('%s/*.*' % path)) for i, file in enumerate(files): labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) x += np.bincount(labels[:, 0].astype('int32'), minlength=nc) print(i, len(files)) def coco_only_people(path='../coco/labels/train2017/'): # from utils.utils import *; coco_only_people() # Find images with only people files = sorted(glob.glob('%s/*.*' % path)) for i, file in enumerate(files): labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) if all(labels[:, 0] == 0): print(labels.shape[0], file) def select_best_evolve(path='evolve*.txt'): # from utils.utils import *; select_best_evolve() # Find best evolved mutation for file in sorted(glob.glob(path)): x = np.loadtxt(file, dtype=np.float32, ndmin=2) print(file, x[fitness(x).argmax()]) def crop_images_random(path='../images/', scale=0.50): # from utils.utils import *; crop_images_random() # crops images into random squares up to scale fraction # WARNING: overwrites images! for file in tqdm(sorted(glob.glob('%s/*.*' % path))): img = cv2.imread(file) # BGR if img is not None: h, w = img.shape[:2] # create random mask a = 30 # minimum size (pixels) mask_h = random.randint(a, int(max(a, h * scale))) # mask height mask_w = mask_h # mask width # box xmin = max(0, random.randint(0, w) - mask_w // 2) ymin = max(0, random.randint(0, h) - mask_h // 2) xmax = min(w, xmin + mask_w) ymax = min(h, ymin + mask_h) # apply random color mask cv2.imwrite(file, img[ymin:ymax, xmin:xmax]) def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43): # Makes single-class coco datasets. from utils.utils import *; coco_single_class_labels() if os.path.exists('new/'): shutil.rmtree('new/') # delete output folder os.makedirs('new/') # make new output folder os.makedirs('new/labels/') os.makedirs('new/images/') for file in tqdm(sorted(glob.glob('%s/*.*' % path))): with open(file, 'r') as f: labels = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) i = labels[:, 0] == label_class if any(i): img_file = file.replace('labels', 'images').replace('txt', 'jpg') labels[:, 0] = 0 # reset class to 0 with open('new/images.txt', 'a') as f: # add image to dataset list f.write(img_file + '\n') with open('new/labels/' + Path(file).name, 'a') as f: # write label for l in labels[i]: f.write('%g %.6f %.6f %.6f %.6f\n' % tuple(l)) shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images def kmean_anchors(path='../coco/train2017.txt', n=12, img_size=(320, 1024), thr=0.10, gen=1000): # Creates kmeans anchors for use in *.cfg files: from utils.utils import *; _ = kmean_anchors() # n: number of anchors # img_size: (min, max) image size used for multi-scale training (can be same values) # thr: IoU threshold hyperparameter used for training (0.0 - 1.0) # gen: generations to evolve anchors using genetic algorithm from utils.datasets import LoadImagesAndLabels def print_results(k): k = k[np.argsort(k.prod(1))] # sort small to large iou = wh_iou(wh, torch.Tensor(k)) max_iou = iou.max(1)[0] bpr, aat = (max_iou > thr).float().mean(), (iou > thr).float().mean() * n # best possible recall, anch > thr print('%.2f iou_thr: %.3f best possible recall, %.2f anchors > thr' % (thr, bpr, aat)) print('n=%g, img_size=%s, IoU_all=%.3f/%.3f-mean/best, IoU>thr=%.3f-mean: ' % (n, img_size, iou.mean(), max_iou.mean(), iou[iou > thr].mean()), end='') for i, x in enumerate(k): print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg return k def fitness(k): # mutation fitness iou = wh_iou(wh, torch.Tensor(k)) # iou max_iou = iou.max(1)[0] return (max_iou * (max_iou > thr).float()).mean() # product # Get label wh wh = [] dataset = LoadImagesAndLabels(path, augment=True, rect=True, cache_labels=True) nr = 1 if img_size[0] == img_size[1] else 10 # number augmentation repetitions for s, l in zip(dataset.shapes, dataset.labels): wh.append(l[:, 3:5] * (s / s.max())) # image normalized to letterbox normalized wh wh = np.concatenate(wh, 0).repeat(nr, axis=0) # augment 10x wh *= np.random.uniform(img_size[0], img_size[1], size=(wh.shape[0], 1)) # normalized to pixels (multi-scale) wh = wh[(wh > 2.0).all(1)] # remove below threshold boxes (< 2 pixels wh) # Darknet yolov3.cfg anchors use_darknet = False if use_darknet and n == 9: k = np.array([[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]]) else: # Kmeans calculation from scipy.cluster.vq import kmeans print('Running kmeans for %g anchors on %g points...' % (n, len(wh))) s = wh.std(0) # sigmas for whitening k, dist = kmeans(wh / s, n, iter=30) # points, mean distance k *= s wh = torch.Tensor(wh) k = print_results(k) # # Plot # k, d = [None] * 20, [None] * 20 # for i in tqdm(range(1, 21)): # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # ax = ax.ravel() # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh # ax[0].hist(wh[wh[:, 0]<100, 0],400) # ax[1].hist(wh[wh[:, 1]<100, 1],400) # fig.tight_layout() # fig.savefig('wh.png', dpi=200) # Evolve npr = np.random f, sh, mp, s = fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma for _ in tqdm(range(gen), desc='Evolving anchors'): v = np.ones(sh) while (v == 1).all(): # mutate until a change occurs (prevent duplicates) v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) # 98.6, 61.6 kg = (k.copy() * v).clip(min=2.0) fg = fitness(kg) if fg > f: f, k = fg, kg.copy() print_results(k) k = print_results(k) return k def print_mutation(hyp, results, bucket=''): # Print mutation results to evolve.txt (for use with train.py --evolve) a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values c = '%10.4g' * len(results) % results # results (P, R, mAP, F1, test_loss) print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) if bucket: os.system('gsutil cp gs://%s/evolve.txt .' % bucket) # download evolve.txt with open('evolve.txt', 'a') as f: # append result f.write(c + b + '\n') x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%10.3g') # save sort by fitness if bucket: os.system('gsutil cp evolve.txt gs://%s' % bucket) # upload evolve.txt def apply_classifier(x, model, img, im0): # applies a second stage classifier to yolo outputs im0 = [im0] if isinstance(im0, np.ndarray) else im0 for i, d in enumerate(x): # per image if d is not None and len(d): d = d.clone() # Reshape and pad cutouts b = xyxy2xywh(d[:, :4]) # boxes b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad d[:, :4] = xywh2xyxy(b).long() # Rescale boxes from img_size to im0 size scale_coords(img.shape[2:], d[:, :4], im0[i].shape) # Classes pred_cls1 = d[:, 5].long() ims = [] for j, a in enumerate(d): # per item cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] im = cv2.resize(cutout, (224, 224)) # BGR # cv2.imwrite('test%i.jpg' % j, cutout) im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 im /= 255.0 # 0 - 255 to 0.0 - 1.0 ims.append(im) pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections return x def fitness(x): # Returns fitness (for use with results.txt or evolve.txt) w = [0.0, 0.01, 0.99, 0.00] # weights for [P, R, mAP, F1]@0.5 or [P, R, mAP@0.5, mAP@0.5:0.95] return (x[:, :4] * w).sum(1) # Plotting functions --------------------------------------------------------------------------------------------------- def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1) # filled cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) def plot_wh_methods(): # from utils.utils import *; plot_wh_methods() # Compares the two methods for width-height anchor multiplication # https://github.com/ultralytics/yolov3/issues/168 x = np.arange(-4.0, 4.0, .1) ya = np.exp(x) yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2 fig = plt.figure(figsize=(6, 3), dpi=150) plt.plot(x, ya, '.-', label='yolo method') plt.plot(x, yb ** 2, '.-', label='^2 power method') plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method') plt.xlim(left=-4, right=4) plt.ylim(bottom=0, top=6) plt.xlabel('input') plt.ylabel('output') plt.legend() fig.tight_layout() fig.savefig('comparison.png', dpi=200) def plot_images(imgs, targets, paths=None, fname='images.png'): # Plots training images overlaid with targets imgs = imgs.cpu().numpy() targets = targets.cpu().numpy() # targets = targets[targets[:, 1] == 21] # plot only one class fig = plt.figure(figsize=(10, 10)) bs, _, h, w = imgs.shape # batch size, _, height, width bs = min(bs, 16) # limit plot to 16 images ns = np.ceil(bs ** 0.5) # number of subplots for i in range(bs): boxes = xywh2xyxy(targets[targets[:, 0] == i, 2:6]).T boxes[[0, 2]] *= w boxes[[1, 3]] *= h plt.subplot(int(ns), int(ns), int(i + 1)).imshow(imgs[i].transpose(1, 2, 0)) plt.plot(boxes[[0, 2, 2, 0, 0]], boxes[[1, 1, 3, 3, 1]], '.-') plt.axis('off') if paths is not None: s = Path(paths[i]).name plt.title(s[:min(len(s), 40)], fontdict={'size': 8}) # limit to 40 characters fig.tight_layout() fig.savefig(fname, dpi=200) plt.close() def plot_test_txt(): # from utils.utils import *; plot_test() # Plot test.txt histograms x = np.loadtxt('test.txt', dtype=np.float32) box = xyxy2xywh(x[:, :4]) cx, cy = box[:, 0], box[:, 1] fig, ax = plt.subplots(1, 1, figsize=(6, 6)) ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) ax.set_aspect('equal') fig.tight_layout() plt.savefig('hist2d.png', dpi=300) fig, ax = plt.subplots(1, 2, figsize=(12, 6)) ax[0].hist(cx, bins=600) ax[1].hist(cy, bins=600) fig.tight_layout() plt.savefig('hist1d.png', dpi=200) def plot_targets_txt(): # from utils.utils import *; plot_targets_txt() # Plot targets.txt histograms x = np.loadtxt('targets.txt', dtype=np.float32).T s = ['x targets', 'y targets', 'width targets', 'height targets'] fig, ax = plt.subplots(2, 2, figsize=(8, 8)) ax = ax.ravel() for i in range(4): ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std())) ax[i].legend() ax[i].set_title(s[i]) fig.tight_layout() plt.savefig('targets.jpg', dpi=200) def plot_evolution_results(hyp): # from utils.utils import *; plot_evolution_results(hyp) # Plot hyperparameter evolution results in evolve.txt x = np.loadtxt('evolve.txt', ndmin=2) f = fitness(x) weights = (f - f.min()) ** 2 # for weighted results fig = plt.figure(figsize=(12, 10)) matplotlib.rc('font', **{'size': 8}) for i, (k, v) in enumerate(hyp.items()): y = x[:, i + 7] # mu = (y * weights).sum() / weights.sum() # best weighted result mu = y[f.argmax()] # best single result plt.subplot(4, 5, i + 1) plt.plot(mu, f.max(), 'o', markersize=10) plt.plot(y, f, '.') plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters print('%15s: %.3g' % (k, mu)) fig.tight_layout() plt.savefig('evolve.png', dpi=200) def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_results_overlay() # Plot training results files 'results*.txt', overlaying train and val losses s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'F1'] # legends t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T n = results.shape[1] # number of rows x = range(start, min(stop, n) if stop else n) fig, ax = plt.subplots(1, 5, figsize=(14, 3.5)) ax = ax.ravel() for i in range(5): for j in [i, i + 5]: y = results[j, x] if i in [0, 1, 2]: y[y == 0] = np.nan # dont show zero loss_funcs values ax[i].plot(x, y, marker='.', label=s[j]) ax[i].set_title(t[i]) ax[i].legend() ax[i].set_ylabel(f) if i == 0 else None # add filename fig.tight_layout() fig.savefig(f.replace('.txt', '.png'), dpi=200) def plot_results(start=0, stop=0, bucket='', id=()): # from utils.utils import *; plot_results() # Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov3#training fig, ax = plt.subplots(2, 5, figsize=(12, 6)) ax = ax.ravel() s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall', 'val GIoU', 'val Objectness', 'val Classification', 'mAP@0.5', 'F1'] if bucket: os.system('rm -rf storage.googleapis.com') files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id] else: files = glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt') for f in sorted(files): try: results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T n = results.shape[1] # number of rows x = range(start, min(stop, n) if stop else n) for i in range(10): y = results[i, x] if i in [0, 1, 2, 5, 6, 7]: y[y == 0] = np.nan # dont show zero loss_funcs values # y /= y[0] # normalize ax[i].plot(x, y, marker='.', label=Path(f).stem, linewidth=2, markersize=8) ax[i].set_title(s[i]) if i in [5, 6, 7]: # share train and val loss_funcs y axes ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) except: print('Warning: Plotting error for %s, skipping file' % f) fig.tight_layout() ax[1].legend() fig.savefig('results.png', dpi=200)
[ "765305261@qq.com" ]
765305261@qq.com
c22f4a16a3db433255b5d0f0612f123d1d394bce
3aada9baaac59b10d63ab1af6841a1d8d8fcbf7b
/confer/wsgi.py
cada8d65d116841dad5f96f5a926a1894c7d1940
[]
no_license
lesage20/confer
576840454d2204a67cca086cf4e64b6cb2a87b2d
f512262cc102a81907dda5ad41f935131c629f51
refs/heads/master
2022-11-03T02:48:00.409562
2020-06-11T04:44:07
2020-06-11T04:44:07
271,451,315
0
0
null
2020-06-11T04:30:28
2020-06-11T04:29:29
HTML
UTF-8
Python
false
false
389
py
""" WSGI config for confer project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'confer.settings') application = get_wsgi_application()
[ "angezanou00@gmail.com" ]
angezanou00@gmail.com
acbf78ac1d2e46d4f344a6c734e372bd1e2986d6
a8062308fb3bf6c8952257504a50c3e97d801294
/problems/N1959_Minimum_Total_Space_Wasted_With_K_Resizing_Operations.py
bbd38bedade264e75ad702da913ea3aee2e9f0cd
[]
no_license
wan-catherine/Leetcode
650d697a873ad23c0b64d08ad525bf9fcdb62b1b
238995bd23c8a6c40c6035890e94baa2473d4bbc
refs/heads/master
2023-09-01T00:56:27.677230
2023-08-31T00:49:31
2023-08-31T00:49:31
143,770,000
5
0
null
null
null
null
UTF-8
Python
false
false
817
py
import sys from typing import List class Solution: def minSpaceWastedKResizing(self, nums: List[int], k: int) -> int: length = len(nums) dp = [[sys.maxsize] * (k + 1) for _ in range(length)] total, mx = 0, 0 for i in range(length): mx = max(mx, nums[i]) total += nums[i] dp[i][0] = mx * (i + 1) - total for i in range(1, length): for j in range(1, min(i, k) + 1): cur, mx = 0, 0 for p in range(i, max(j-1,1)-1, -1): mx = max(mx, nums[p]) cur += nums[p] dp[i][j] = min(dp[i][j], dp[p-1][j-1] + mx * (i - p + 1) - cur) res = sys.maxsize for i in range(k + 1): res = min(res, dp[-1][i]) return res
[ "rarry1988528@126.com" ]
rarry1988528@126.com
a439070bbb0e642be64dd9784c376bc0b3f450d8
c577eaf5cde0f1313b6ea7103f8e595f929dd8e6
/ml/k.txt
15e9555a16b57d749990763e8c19a4b4677b49c7
[]
no_license
rutvij26/sem7
856e281a5022450eaf7eb7f422d46a9f4256f29a
a745dc3aa28e8728b712ef13fc58b89303044232
refs/heads/master
2020-08-26T13:36:22.242421
2019-10-23T14:46:07
2019-10-23T14:46:07
217,027,442
0
0
null
null
null
null
UTF-8
Python
false
false
3,771
txt
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt # In[2]: # Data set is given below df = pd.DataFrame({ 'x': [12, 20, 28, 18, 29, 33, 24, 45, 45, 52, 51, 52, 55, 53, 55, 61, 64, 69, 72], 'y': [39, 36, 30, 52, 54, 46, 55, 59, 63, 70, 66, 63, 58, 23, 14, 8, 19, 7, 24] }) # generate random numbers np.random.seed(200) k = 3 # centroids[i] = [x, y] # Return random integers centroids = { i+1: [np.random.randint(0, 80), np.random.randint(0, 80)] #Dictionary comprehension for i in range(k) } print("Centroid=",centroids) fig = plt.figure(figsize=(5, 5)) plt.scatter(df['x'], df['y'], color='k') # k is for BLACK colmap = {1: 'r', 2: 'g', 3: 'b'} for i in centroids.keys(): # represent color centroid ... plt.scatter(*centroids[i], color=colmap[i]) # .keys() returns a view object that displays a list of all the keys. plt.xlim(0, 80) plt.ylim(0, 80) plt.show() # In[3]: ##. Assignment Stage def assignment(df, centroids): for i in centroids.keys(): #start from 1 to 3 everytime # sqrt((x1 - x2)^2 - (y1 - y2)^2) df['distance_from_{}'.format(i)] = ( np.sqrt( (df['x'] - centroids[i][0]) ** 2 + (df['y'] - centroids[i][1]) ** 2 ) ) centroid_distance_cols = ['distance_from_{}'.format(i) for i in centroids.keys()] df['closest'] = df.loc[:, centroid_distance_cols].idxmin(axis=1) df['closest'] = df['closest'].map(lambda x: int(x.lstrip('distance_from_'))) df['color'] = df['closest'].map(lambda x: colmap[x]) return df df = assignment(df, centroids) print(df) fig = plt.figure(figsize=(5, 5)) plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k') for i in centroids.keys(): plt.scatter(*centroids[i], color=colmap[i]) plt.xlim(0, 80) plt.ylim(0, 80) plt.show() # In[4]: ## Update Stage import copy old_centroids = copy.deepcopy(centroids) #create bindings between a target and an object def update(k): for i in centroids.keys(): centroids[i][0] = np.mean(df[df['closest'] == i]['x']) centroids[i][1] = np.mean(df[df['closest'] == i]['y']) return k centroids = update(centroids) print("Updated centroids",centroids) fig = plt.figure(figsize=(5, 5)) ax = plt.axes() plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k') #alpha value for intensity for i in centroids.keys(): plt.scatter(*centroids[i], color=colmap[i]) plt.xlim(0, 80) plt.ylim(0, 80) for i in old_centroids.keys(): old_x = old_centroids[i][0] old_y = old_centroids[i][1] dx = (centroids[i][0] - old_centroids[i][0]) * 0.75 dy = (centroids[i][1] - old_centroids[i][1]) * 0.75 ax.arrow(old_x, old_y, dx, dy, head_width=2, head_length=3, fc=colmap[i], ec=colmap[i]) plt.show() # In[5]: ## Repeat Assigment Stage df = assignment(df, centroids) # Plot results fig = plt.figure(figsize=(5, 5)) plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k') for i in centroids.keys(): plt.scatter(*centroids[i], color=colmap[i]) plt.xlim(0, 80) plt.ylim(0, 80) plt.show() # In[6]: while True: closest_centroids = df['closest'].copy(deep=True) centroids = update(centroids) df = assignment(df, centroids) if closest_centroids.equals(df['closest']): break fig = plt.figure(figsize=(5, 5)) plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k') for i in centroids.keys(): plt.scatter(*centroids[i], color=colmap[i]) plt.xlim(0, 80) plt.ylim(0, 80) plt.show()
[ "noreply@github.com" ]
rutvij26.noreply@github.com
fb0be32e19d129913ec1f4e1c6d8ae956fdecfb8
51935327470f48ac055d9511a969b679b8637697
/admin_ser/apps.py
315c1b2b4548c4c0b81cbe9e6d980719a6815939
[]
no_license
AngeLShuang/minon
06e614e4684e7b7c73ee1e378a894ca59ca58dc8
9ef62d227b52c5533f5e9994e25a3b9aa0826e4d
refs/heads/master
2020-04-06T08:22:07.579222
2018-11-13T01:36:00
2018-11-13T01:36:00
157,302,327
1
0
null
null
null
null
UTF-8
Python
false
false
89
py
from django.apps import AppConfig class AdminConfig(AppConfig): name = 'admin_ser'
[ "1418727910@qq.com" ]
1418727910@qq.com
4dba18ca0f90ca2fa410d98db21e6342d97ac10f
987fcdd9e4cf41f3f0341fe04ff60472e727dc15
/cans/cans2/data/sim_data/gen_sim_data.py
0fb84ad2275acfc6620544cd4085bd700c659454
[]
no_license
lwlss/CANS
c7734a980259136d03a5a94f1d36785c9ce16bba
9db811f25bf22d13f898466af3bf232e0d4571f9
refs/heads/master
2021-01-09T07:59:25.671370
2016-10-15T17:48:48
2016-10-15T17:48:48
39,069,739
1
0
null
null
null
null
UTF-8
Python
false
false
1,128
py
"""Simulate plate amounts and save data as json.""" import numpy as np import json from cans2.plate import Plate from cans2.model import CompModel from cans2.cans_funcs import dict_to_json mean = 5 var = 3 rows = 5 cols = 5 file_name = '{0}x{1}_comp_model/mean_5_var_3.json'.format(rows, cols) custom_params = { 'C_0': 0.0001, 'N_0': 1.0, 'kn': 0.1, } custom_params['kn'] = 0.2 model = CompModel() times = np.linspace(0, 5, 21) # Generate sets of simulated amounts for i in range(1): plate1 = Plate(rows, cols) plate1.times = times plate1.set_sim_data(model, r_mean=mean, r_var=var, custom_params=custom_params) data = { 'sim_params': plate1.sim_params, 'sim_amounts': plate1.sim_amounts, 'c_meas': plate1.c_meas, 'times': plate1.times, 'r_mean': mean, 'r_var': var, 'rows': plate1.rows, 'cols': plate1.cols, 'model': model.name, 'model_params': model.params, } data = dict_to_json(data) with open(file_name, 'w') as f: json.dump(data, f, sort_keys=True, indent=4)
[ "daniel.boocock@protonmail.ch" ]
daniel.boocock@protonmail.ch
8828cbd790210db9499074eb33cea8aec7a3dbb7
3fcb5f11cd7a666d9f938db90877ad1bbce57a1b
/datasets/generate_datalist_pixelshift.py
b499306fd5fc4567561b3e01d487450adb18aba5
[ "MIT" ]
permissive
guochengqian/TENet
362f498078895ec1e7718483f35ef8fc9fef0fab
098262e7e0ba979e303bea643b0b366efc50dcd3
refs/heads/master
2023-07-11T00:50:41.733358
2023-07-02T23:19:26
2023-07-02T23:19:26
186,419,827
261
37
null
2019-05-28T12:47:34
2019-05-13T12:56:56
Python
UTF-8
Python
false
false
1,615
py
import os import random import argparse parser = argparse.ArgumentParser(description='A multi-thread tool to crop sub images') parser.add_argument('--train_path', type=str, default='../data/pixelshift200/train/train_rggb_512') parser.add_argument('--test_path', type=str, default='../data/pixelshift200/test/test_rggb_1024') args = parser.parse_args() train_data_path = args.train_path test_data_path = args.test_path train_dst_path = 'train_pixelshift.txt' val_dst_path = 'val_pixelshift.txt' # val_datasets_num = 200 # type_list = ['png', 'PNG', 'tiff', 'tif', 'TIFF', 'JPG', 'jgp'] type_list = ['mat', 'MAT'] # remove old if os.path.exists(train_dst_path): os.system('rm '+train_dst_path) if os.path.exists(val_dst_path): os.system('rm '+val_dst_path) # change to absolute path if train_data_path[0] != '/': train_data_path = os.path.join(os.getcwd(), train_data_path) if test_data_path[0] != '/': test_data_path = os.path.join(os.getcwd(), test_data_path) # image list lines = [] for file in os.listdir(train_data_path): if file.split('.')[-1] in type_list: lines.append(os.path.join(train_data_path, file)+'\n') random.shuffle(lines) train_lines = lines lines = [] for file in os.listdir(test_data_path): if file.split('.')[-1] in type_list: lines.append(os.path.join(test_data_path,file)+'\n') random.shuffle(lines) val_lines = lines # write datalist with open(train_dst_path, 'a') as train_files: for line in train_lines: train_files.write(line) with open(val_dst_path, 'w')as val_files: for line in val_lines: val_files.write(line)
[ "guocheng.qian@outlook.com" ]
guocheng.qian@outlook.com
504b50f13d44873d865dc30cdf90fd690c5aa3b3
762de1c66746267e05d53184d7854934616416ee
/tools/MolSurfGenService/MolSurfaceGen32/chimera/share/Bld2VRML/bld2vrml.py
66ea92d6eb6e5dc3eca472a5e20da974259f17f1
[]
no_license
project-renard-survey/semanticscience
6e74f5d475cf0ebcd9bb7be6bb9522cf15ed8677
024890dba56c3e82ea2cf8c773965117f8cda339
refs/heads/master
2021-07-07T21:47:17.767414
2017-10-04T12:13:50
2017-10-04T12:13:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,660
py
import sys from string import * from math import * # Utility functions def getDistance(p1, p2): return ( (p2[0] - p1[0])**2 + (p2[1] - p1[1])**2 + (p2[2] - p1[2])**2 ) ** 0.5 def interp(t, a, b): c = list(a) for i in range(3): c[i] += t*(float(b[i]) - float(a[i])) return c def getMidpoint(p1, p2): return tuple(interp(0.5, p1, p2)) def getRGBcolor(nCol): if nCol == 0: return (1, 1, 1) if nCol < 9: return interp( (nCol - 1)/8.0, (0, 1, 0), (0, 1, 1)) if nCol < 17: return interp( (nCol - 8)/8.0, (0, 1, 1), (0, 0, 1)) if nCol < 25: return interp( (nCol - 16)/8.0, (0, 0, 1), (1, 0, 1)) if nCol < 33: return interp( (nCol - 24)/8.0, (1, 0, 1), (1, 0, 0)) if nCol < 49: return interp( (nCol - 32)/16.0, (1, 0, 0), (1, 1, 0)) if nCol < 65: return interp( (nCol - 48)/16.0, (1, 1, 0), (0, 0, 0)) if nCol == 65: return (0.7, 0.7, 0.7) return None def getRGBcolor_byName(sCol): from chimera import colorTable try: c = colorTable.getColorByName(sCol) return c.rgba()[:3] except KeyError: return None ####################### # Generic object class; used to hold environment data class Object: def __init__(self, **pw): for k in pw.keys(): setattr(self, k, pw[k]) # Generic output object; used to hold output data class Output: def __init__(self): self.indentLength = 0 self.textList = [] def __lt__(self, line): if len(line) < 1: self.textList.append('\n') else: if line[0] == "]" or line[0] == "}": self.indentLength -= 1 self.textList.append(("\t" * self.indentLength) + line) if line[-1] == "[" or line[-1] == "{": self.indentLength += 1 def __str__(self): return join(self.textList, '\n') class Environment: def __init__(self): self.transformStack = [] self.curLines = None self.lineObjs = [] self.geomObjs = [] self.polyObjs = [] self.color = None self.transparency = 0 self.tCoords = (0, 0, 0) self.fontSize = 5 self.fontStyle = "PLAIN" self.fontFamily = "TYPEWRITER" def handleLine(self, line): if len(line) < 2: return if line[0] != '.': self.handleLine(".text " + line) return line = split(line[1:]) if line[0] == "arrow": p1 = [float(line[1]), float(line[2]), float(line[3])] p2 = [float(line[4]), float(line[5]), float(line[6])] if len(line) > 7: r1 = float(line[7]) else: r1 = 0.1 if len(line) > 8: r2 = float(line[8]) else: r2 = 4.0 * r1 if len(line) > 9: rho = float(line[9]) else: rho = 0.75 pJunct = list(interp(rho, p1, p2)) self.handleLine(".cylinder %f %f %f %f %f %f %f" % tuple(p1 + pJunct + [r1])) self.handleLine(".cone %f %f %f %f %f %f %f" % tuple(pJunct + p2 + [r2])) elif line[0] == "cmov": self.tCoords = (float(line[1]), float(line[2]), float(line[3])) elif line[0] == "color": if len(line) == 2: try: color = getRGBcolor(int(line[1])) except: if line[1].lower() == "none": self.color = color = None else: color = getRGBcolor_byName( line[1]) else: try: color = (float(line[1]), float(line[2]), float(line[3])) except: color = getRGBcolor_byName(" ".join(line[1:])) if color: color = tuple(map(float, color)) self.color = color elif line[0] == "transparency": try: transparency = float(line[1]) except: transparency = 0 self.transparency = transparency elif line[0] == "box": obj = Object(shape = "box") p1 = (float(line[1]), float(line[2]), float(line[3])) p2 = (float(line[4]), float(line[5]), float(line[6])) pCentre = getMidpoint(p1, p2) obj.width = p2[0] - p1[0] obj.height = p2[1] - p1[1] obj.depth = p2[2] - p1[2] obj.color = self.color obj.transparency = self.transparency obj.transforms = self.transformStack[:] obj.transforms.append(Object(to=pCentre, form='translate')) self.geomObjs.append(obj) elif line[0] == "cone": obj = Object(shape = "cone") p1 = (float(line[1]), float(line[2]), float(line[3])) p2 = (float(line[4]), float(line[5]), float(line[6])) obj.radius = float(line[7]) obj.height = getDistance(p1, p2) pCentre = getMidpoint(p1, p2) if len(line) < 9: obj.closed = True elif lower(line[8]) == "open": obj.closed = False obj.color = self.color obj.transparency = self.transparency obj.transforms = self.transformStack[:] fTheta = asin( (p2[2] - p1[2]) / obj.height ) try: fPhi = atan2(p2[0] - p1[0], p2[1] - p1[1]) except ValueError: fPhi = 0.0 obj.transforms.append(Object(to=pCentre, form='translate')) obj.transforms.append(Object(angle=-fPhi, axis='z', form='rotate')) obj.transforms.append(Object(angle=fTheta, axis='x', form='rotate')) self.geomObjs.append(obj) elif line[0] == "cylinder": obj = Object(shape = "cylinder") p1 = (float(line[1]), float(line[2]), float(line[3])) p2 = (float(line[4]), float(line[5]), float(line[6])) obj.radius = float(line[7]) obj.height = getDistance(p1, p2) pCentre = getMidpoint(p1, p2) if len(line) < 9: obj.closed = True elif lower(line[8]) == "open": obj.closed = False obj.color = self.color obj.transparency = self.transparency obj.transforms = self.transformStack[:] fTheta = asin( (p2[2] - p1[2]) / obj.height ) try: fPhi = atan2(p2[0] - p1[0], p2[1] - p1[1]) except ValueError: fPhi = 0.0 obj.transforms.append(Object(to=pCentre, form='translate')) obj.transforms.append(Object(angle=-fPhi, axis='z', form='rotate')) obj.transforms.append(Object(angle=fTheta, axis='x', form='rotate')) self.geomObjs.append(obj) elif line[0] in ("d", "draw"): if self.curLines: x, y, z = (float(line[1]), float(line[2]), float(line[3])) self.curPosition = (x, y, z) self.curLines.vertices.append(self.curPosition) self.curLines.vertex_colors.append(self.color) else: self.handleLine(".move " + join(line[1:])) elif line[0] in ("dot", "dotat"): self.handleLine(".move " + join(line[1:])) self.handleLine(".sphere " + join(line[1:]) + " 1") elif line[0] in ("dr", "drawrel"): dx, dy, dz = (float(line[1]), float(line[2]), float(line[3])) x, y, z = self.curPosition self.handleLine(".draw " + join(map(str, (x+dx, y+dy, z+dz)))) elif line[0] == "font": family, size = lower(line[1]), int(line[2]) if len(line) > 3: style = lower(line[3]) else: style = "plain" self.fontSize = size if family[:5] == "times": self.fontFamily = "SERIF" elif family == "helvetica": self.fontFamily = "SANS" elif family == "courier": self.fontFamily = "TYPEWRITER" elif family == "serif": self.fontFamily = "SERIF" elif family[:4] == "sans": self.fontFamily = "SANS" elif family == "typewriter": self.fontFamily = "TYPEWRITER" elif family == "tt": self.fontFamily = "TYPEWRITER" else: self.fontFamily = "TYPEWRITER" if style == "plain": self.fontStyle = "PLAIN" elif style == "bold": self.fontStyle = "BOLD" elif style == "italic": self.fontStyle = "ITALIC" elif style == "bold italic": self.fontStyle = "BOLD ITALIC" else: self.fontStyle = "PLAIN" elif line[0] in ("m", "move"): self.flush() x, y, z = (float(line[1]), float(line[2]), float(line[3])) self.curPosition = (x, y, z) self.curLines = Object() self.curLines.vertices = [self.curPosition] self.curLines.vertex_colors = [self.color] elif line[0] == "marker": self.handleLine(".move " + join(line[1:])) x, y, z = float(line[1]), float(line[2]), float(line[3]) self.handleLine(".box %f %f %f %f %f %f" % (x-0.5, y-0.5, z-0.5, x+0.5, y+0.5, z+0.5)) elif line[0] == "mr" or line[0] == "moverel": dx, dy, dz = (float(line[1]), float(line[2]), float(line[3])) x, y, z = self.curPosition self.handleLine(".move " + join(map(str, (x+dx, y+dy, z+dz)))) elif line[0] == "polygon": obj = Object(shape = "polygon") obj.vertices = [] for i in range(1, len(line), 3): x = float(line[i]) y = float(line[i + 1]) z = float(line[i + 2]) obj.vertices.append( (x, y, z) ) obj.color = self.color obj.transparency = self.transparency obj.transforms = self.transformStack[:] self.polyObjs.append(obj) elif line[0] == "pop": self.flush() self.transformStack.pop() elif line[0] in ("rot", "rotate"): self.flush() if line[2][0] in 'xyzXYZ': obj = Object(form='rotate', axis=lower(line[2][0]), angle=radians(float(line[1]))) else: obj = Object(form='rotate', axis=(float(line[2]), float(line[3]), float(line[4])), angle=radians(float(line[1]))) self.transformStack.append(obj) elif line[0] == "scale": self.flush() obj = Object(form = 'scale') xscale = float(line[1]) if len(line) > 2: yscale = float(line[2]) zscale = float(line[3]) else: yscale = zscale = xscale obj.xscale, obj.yscale, obj.zscale = xscale, yscale, zscale self.transformStack.append(obj) elif line[0] == "sphere": obj = Object(shape = "sphere") pCentre = (float(line[1]), float(line[2]), float(line[3])) obj.radius = float(line[4]) obj.color = self.color obj.transparency = self.transparency obj.transforms = self.transformStack[:] obj.transforms.append(Object(to=pCentre, form='translate')) self.geomObjs.append(obj) elif line[0] == "text": obj = Object(shape = "text") obj.color = self.color obj.transparency = self.transparency obj.string = join(line[1:]) obj.fontSize = self.fontSize obj.fontStyle = self.fontStyle obj.fontFamily = self.fontFamily obj.transforms = self.transformStack[:] obj.transforms.append(Object(to=self.tCoords, form='translate')) self.geomObjs.append(obj) elif line[0] in ("tran", "translate"): self.flush() tCoords = (float(line[1]), float(line[2]), float(line[3])) self.transformStack.append(Object(form='translate', to=tCoords)) elif line[0] == "v" or line[0] == "vector": self.handleLine(".m " + join(line[1:4])) self.handleLine(".d " + join(line[4:7])) elif line[0] in ("c", "comment"): pass else: raise "Unrecognized Command" def flush(self): if self.curLines: self.curLines.transforms = self.transformStack[:] self.lineObjs.append(self.curLines) self.curLines = None # Finish generating the environment object; called after the last handleLine(). def finish(self): self.flush() # Convert from the "environment" object to a VRML output def buildVRML(self): o = Output() o < "#VRML V2.0 utf8" for obj in self.lineObjs: post = handleTransform(o, obj.transforms) o < "" o < "Transform {" o < "children [" o < "Shape {" o < "geometry IndexedLineSet {" o < "coord Coordinate {" o < "point [" for vertex in obj.vertices: o < "%f %f %f," % vertex o < "0 0 0" o < "]" o < "}" o < "coordIndex [" o < join(map(str, range(len(obj.vertices)))) o < "]" if obj.vertex_colors[0] is not None: o < "color Color {" o < "color [" for vcolor in obj.vertex_colors: o < "%f %f %f," % vcolor o < "0 0 0" o < "]" o < "}" o < "colorIndex [" o < join(map(str, range(len(obj.vertex_colors)))) o < "]" o < "colorPerVertex TRUE" o < "}" o < "}" o < "]" o < "}" for s in post: o < s for obj in self.polyObjs: post = handleTransform(o, obj.transforms) o < "" o < "Transform {" o < "children [" o < "Shape {" o < "appearance Appearance {" if obj.color is None: o < 'namedColor "__model__"' else: o < "material Material {" o < "diffuseColor %f %f %f" % obj.color o < "transparency %f" % obj.transparency o < "}" o < "}" o < "geometry IndexedFaceSet {" o < "coord Coordinate {" o < "point [" for vertex in obj.vertices: o < "%f %f %f," % vertex o < "0 0 0" o < "]" o < "}" o < "coordIndex [" o < join(map(str, range(len(obj.vertices)))) o < "]" o < "color Color {" o < "color [" for vertex in obj.vertices: o < "%f %f %f," % obj.color o < "0 0 0" o < "]" o < "}" o < "colorIndex [" o < join(map(str, range(len(obj.vertices)))) o < "]" o < "solid FALSE" o < "colorPerVertex TRUE" o < "}" o < "}" o < "]" o < "}" for s in post: o < s for obj in self.geomObjs: post = handleTransform(o, obj.transforms) o < "" o < "Shape {" o < "appearance Appearance {" if obj.color is None: o < 'namedColor "__model__"' else: o < "material Material {" o < "diffuseColor %f %f %f" % obj.color o < "transparency %f" % obj.transparency o < "}" o < "}" if obj.shape == "sphere": o < "geometry Sphere {" o < "radius %f" % obj.radius o < "}" elif obj.shape == "cylinder": o < "geometry Cylinder {" o < "radius %f" % obj.radius o < "height %f" % obj.height if not obj.closed: o < "top FALSE" o < "bottom FALSE" o < "}" elif obj.shape == "cone": o < "geometry Cone {" o < "bottomRadius %f" % obj.radius o < "height %f" % obj.height if not obj.closed: o < "bottom FALSE" o < "}" elif obj.shape == "box": o < "geometry Box {" o < "size %f %f %f" % (obj.width, obj.height, obj.depth) o < "}" elif obj.shape == "text": o < "geometry Text {" o < "string [ \"%s\" ]" % obj.string o < "fontStyle FontStyle {" o < "size %d" % obj.fontSize o < "family \"%s\"" % obj.fontFamily o < "style \"%s\"" % obj.fontStyle o < "}" o < "}" o < "}" for s in post: o < s return str(o) # Appropriately generate the enclosing Transform blocks from the environment transform stack # Return the lines that go at the end def handleTransform(o, tStack): if not tStack: return [] else: post = handleTransform(o, tStack[:-1]) trans = tStack[-1] o < "Transform {" if trans.form == "translate": o < "translation %f %f %f" % trans.to elif trans.form == "rotate" and isinstance(trans.axis, tuple): o < "rotation %f %f %f %f" % (trans.axis + (trans.angle,)) elif trans.form == "rotate" and trans.axis == 'x': o < "rotation 1 0 0 %f" % trans.angle elif trans.form == "rotate" and trans.axis == 'y': o < "rotation 0 1 0 %f" % trans.angle elif trans.form == "rotate" and trans.axis == 'z': o < "rotation 0 0 1 %f" % trans.angle elif trans.form == "scale": o < "scale %f %f %f" % (trans.xscale, trans.yscale, trans.zscale) o < "children [" post.append(']') post.append('}') return post def main(): env = Environment() code = [".color white", ".dot 0 0 0"] code += [".color red", ".vector 0 0 0 20 0 0", ".dot 20 0 0"] code += [".color green", ".vector 0 0 0 0 20 0", ".dot 0 20 0"] code += [".color blue", ".vector 0 0 0 0 0 20", ".dot 0 0 20"] code += [".color 44", ".arrow 1 1 1 5 5 5", ".arrow 1 1 2 8 6 9"] code += [".arrow 1 2 1 10 10 4", ".arrow 2 1 1 -2 7 10"] code += [".color 22", ".polygon 20 0 0 0 20 0 0 0 20"] code += [".color 5", ".marker 20 20 20", ".dr -20 0 0"] code += [".v 20 20 20 20 0 20", ".dr 0 20 -20"] code += [".v 20 20 20 20 20 0", ".dr -20 0 20", ".dr 20 -20 0"] code += [".color 12", ".sphere 10 10 10 3"] code += [".color 10", ".arrow 19 19 19 12 12 12 0.2 1.0"] code += [".color 53", ".cylinder 14 -5 14 14 0 14 2 open"] code += [".sphere 14 -5 14 2", ".sphere 14 0 14 2"] for line in code: try: env.handleLine(line) except: sys.stderr.write("ERROR: \"%s\" raised an %s:\n\t\"%s\"\n" % (line, str(sys.exc_type), str(sys.exc_value))) env.finish() print env.buildVRML() if __name__ == "__main__": main()
[ "alex.gawronski@d60594c4-dda9-11dd-87d8-31aa04531ed5" ]
alex.gawronski@d60594c4-dda9-11dd-87d8-31aa04531ed5
f93ebfa2f9e08428f3cbfe27e0ea99e6437e4a2f
5b77cd52b82ac205cc4dabe8715e419ec0bd14d6
/python_xpath_Process_duoyexiaoshuo.py
20046a2382679929b30121b625bbdff5caa13b33
[ "Apache-2.0" ]
permissive
17790793549/tongjier
c9ab29e4737e8f0c5406847907a4f9a5ab92c3e9
79d1657f2b99595604ec65992f37d09e5da6215c
refs/heads/master
2020-03-19T13:21:16.991108
2020-01-16T08:45:13
2020-01-16T08:45:13
136,575,007
10
3
null
null
null
null
UTF-8
Python
false
false
1,932
py
""" http://www.quanben.io/n/guantiwanzhengban/list.html 1. 开启两个进程 master, worker1 2. master 去爬取该页面的所有连接 3. worker1 爬取页面详细存入本地(可以考虑进程锁) """ """ 开多进程... 在2209个文件中检索关键字为"美丽,帅哥." """ import multiprocessing from random import randint from time import time, sleep import os import requests from lxml import etree import time import multiprocessing def dict_1(): url = 'http://www.quanben.io/n/guantiwanzhengban/list.html' dict_ = {} response = requests.get(url) response.encoding='gbk' wb=response.text html=etree.HTML(wb) html_data = html.xpath('/html/body/div[3]/ul/li/a/@href') for i in html_data: q = i.split('/')[-1] w = q.split('.')[0] dict_[w]=i return dict_ def download_task(num1,num2,dict_): for i in range(num1,num2+1): i_ = dict_[str(i)] url = 'http://www.quanben.io{}'.format(i_) response = requests.get(url) response.encoding = 'utf8' wb_data = response.text html = etree.HTML(wb_data) html_data = html.xpath('//*[@id="content"]/p/text()') path = 'D://PYTHON//{}.txt'.format(str(i)) with open(path,'w',encoding='utf8',errors='ignore') as f: for ii in html_data: f.write('\n'+ii) print('完成') def main(): dict_ = dict_1() download_task(1,5,dict_) # 开启两个多进程, 函数名 传递的参数,需要注意的是,它接受的是一个元组(tuple) p1 = multiprocessing.Process(target=download_task, args=(1,20,dict_)) p2 = multiprocessing.Process(target=download_task, args=(21,40,dict_)) # 获取进程号 # 启动进程 p1.start() p2.start() ############## # 进程阻塞. p1.join() p2.join() ############## if __name__ == '__main__': main()
[ "noreply@github.com" ]
17790793549.noreply@github.com
6157904590133276d22da7f720c8e9ba2659740c
a1119965e2e3bdc40126fd92f4b4b8ee7016dfca
/trunk/network_semantics_tests/tests/sendmess/sendmess_bad_host.py
e953c972d2377e0f14234eb4c8d78f1737c344da
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
SeattleTestbed/attic
0e33211ddf39efdbcf5573d4fc7fa5201aa7310d
f618a962ce2fd3c4838564e8c62c10924f5df45f
refs/heads/master
2021-06-10T23:10:47.792847
2017-05-15T12:05:43
2017-05-15T12:05:43
20,154,061
0
1
null
2014-10-16T17:21:06
2014-05-25T12:34:00
Python
UTF-8
Python
false
false
267
py
# if a host name that cannot be resolved is used an exception occurs. if callfunc == 'initialize': port = 12345 try: sendmess('notactuallyahost',port,'ping') except: pass else: print "using 'notactuallyahost' did not cause exception"
[ "USER@DOMAIN" ]
USER@DOMAIN
f252c21a4d16a3088e67a2cec3db1c7097ef3c80
4929b54ac86e5d0064913b097da89abfb079fd48
/KNN/kNN.py
deb9ba15653c05271e039bf45405b7e6bc632bfd
[]
no_license
haiboowang/meachine-learning-in-action-in-python3-
5914135cc1b95a3058a1e52680f1f1f4343bfcc8
aa9f916add6a973592b5493b368be5600f7e4f8d
refs/heads/master
2021-07-08T22:48:01.412645
2017-10-06T12:14:36
2017-10-06T12:14:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,125
py
from numpy import * import operator def createDataSet(): group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels=['A','A','B','B'] return group,labels #2-1 k-邻近算法 def classify0(inX,dataSet,labels,k): #构造与dataSet格式相同的矩阵并计算距离 dataSetSize=dataSet.shape[0] diffMat=tile(inX,(dataSetSize,1))-dataSet sqDiffMat=diffMat**2 sqDistances=sqDiffMat.sum(axis=1) distances=sqDistances**0.5 #根据距离排序,argsort()返回排序后的下标 默认升序 sortedDistIndicies=distances.argsort() classCount={} #统计前k个距离小的点的标签并计数 for i in range(k): voteIlabel=labels[sortedDistIndicies[i]] classCount[voteIlabel]=classCount.get(voteIlabel,0)+1 sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) #返回数量最多的标签 return sortedClassCount[0][0] #2-2 将文本记录转换为Numpy的解析程序 def file2matrix(filename): fr=open(filename) arraylines=fr.readlines() numberOflines=len(arraylines) returnMat=zeros((numberOflines,3)) classLabelVector=[] index=0 #分别将每行的数据读到returnMat中,标签读到classLableVector中 for line in arraylines: line=line.strip() listFormLine=line.split('\t')#以空格为标志分割数据 returnMat[index ,:]=listFormLine[0:3] classLabelVector.append(int(listFormLine[-1])) index+=1 return returnMat,classLabelVector #2-3 归一化特征值 def autoNorm(dataSet): minVals=dataSet.min(0) maxVals=dataSet.max(0) ranges=maxVals-minVals normDataSet=zeros(shape(dataSet)) m=dataSet.shape[0] normDataSet=dataSet-tile(minVals,(m,1)) normDataSet=normDataSet/tile(ranges,(m,1)) return normDataSet,ranges,minVals #2-4 分类器针对约会网站的测试代码 def datingClassTest(): hoRatio=0.50 datingDataMat,datingLabels=file2matrix('datingTestSet2.txt') normMat,ranges,minVals=autoNorm(datingDataMat) m=normMat.shape[0] numTestVecs=int(m*hoRatio) errorCount=0.0 for i in range(numTestVecs): classifierResult=classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3) print("the classifier came back with:%d,the real answer is:%d"%(classifierResult,datingLabels[i])) if(classifierResult!=datingLabels[i]):errorCount+=1.0 print("the total error rate is :%f" %(errorCount/float(numTestVecs))) print(errorCount) #2-5 约会网站预测函数 def classifyPerson(): resultList=['不喜欢','有点喜欢','很喜欢'] percentTats=float(input("每天玩游戏所占百分比?")) ffMiles=float(input("每年飞行的里程?")) iceCream=float(input("一年吃的冰淇淋的数量(升)?")) datingDataMat,datingLabels=file2matrix('datingTestSet2.txt') normMat,ranges,minVals=autoNorm(datingDataMat) inArr=array([ffMiles,percentTats,iceCream]) inArr=array((inArr - minVals) / ranges) classifierResult=classify0(inArr,normMat,datingLabels,3) print("you will probably like this person:",resultList[classifierResult-1]) #使用sklearn实现KNN的例子 def sklearnKNN(): resultList=['不喜欢','有点喜欢','很喜欢'] percentTats=float(input("每天玩游戏所占百分比?")) ffMiles=float(input("每年飞行的里程?")) iceCream=float(input("一年吃的冰淇淋的数量(升)?")) datingDataMat,datingLabels=file2matrix('datingTestSet2.txt') normMat,ranges,minVals=autoNorm(datingDataMat) inArr=[ffMiles,percentTats,iceCream] inArr = array([(inArr - minVals) / ranges]) X_test=[[37777,5.99911,1.58877]] from sklearn.neighbors import KNeighborsClassifier neigh=KNeighborsClassifier(n_neighbors=3) neigh.fit(normMat,datingLabels) Y_pred=neigh.predict(inArr) print(Y_pred) print("you will probably like this person:", resultList[Y_pred[0] - 1]) if __name__=='__main__': #group,labels=createDataSet() #print(classify0([0,0],group,labels,3)) # db,dl=file2matrix('datingTestSet2.txt') # print(db) # normMat,ranges,minVals=autoNorm(db) # print(normMat) # datingClassTest() # classifyPerson() sklearnKNN()
[ "noreply@github.com" ]
haiboowang.noreply@github.com
724f4a0ba505bb08a9c2d1a3642182e18d2d45dd
929c9fc294df777ea3f795e0ff6c96edcfc307c0
/gnn.py
cc31f03a1206341987998bb100fd1af09e620195
[]
no_license
charudatta10/gnn
61d0062a4a7039dc57a914ac1f65f0d5bdca7847
020e1b12047d3bca1b7661f8adb5e650d506d7c8
refs/heads/master
2022-01-07T18:51:48.322545
2019-08-25T12:53:22
2019-08-25T12:53:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,680
py
import tensorflow as tf class GCNLayer(tf.keras.layers.Layer): def __init__(self, output_dim, activation=None, **kwargs): self.output_dim = output_dim self.activation = activation super().__init__(**kwargs) def build(self, input_shape): # [batch_size, num_vertices, num_vertices], [batch_size, num_vertices, num_features] A_shape, H_shape = input_shape self.num_vertices = A_shape[1].value self.W = self.add_weight( # [num_features, output_dim] name='W', shape=[H_shape[2].value, self.output_dim] ) super().build(input_shape) def call(self, inputs, **kwargs): """ :param inputs: A for adjacent matrix [batch_size, num_vertices, num_vertices] (should be normalized in advance) H for features [batch_size, num_vertices, num_features] """ A, H = inputs[0], inputs[1] # A * H * W [batch_size, num_vertices, num_vertices] * [batch_size, num_vertices, num_features] * [num_features, output_dim] # see https://www.tensorflow.org/api_docs/python/tf/tensordot and https://www.machenxiao.com/blog/tensordot # for tf.tensordot() H_next = tf.tensordot(tf.matmul(A, H), self.W, axes=[2, 0]) if self.activation is not None: H_next = self.activation(H_next) return H_next class GATLayer(tf.keras.layers.Layer): # reference: https://github.com/danielegrattarola/keras-gat/blob/master/keras_gat/graph_attention_layer.py def __init__(self, output_dim, activation=None, **kwargs): self.output_dim = output_dim self.activation = activation super().__init__(**kwargs) def build(self, input_shape): A_shape, H_shape = input_shape self.W = self.add_weight( # [output_dim, num_features] name='W', shape=[H_shape[2].value, self.output_dim] ) # a = [a_1, a_2] self.a_1 = self.add_weight(name='a_1', shape=[self.output_dim, 1]) self.a_2 = self.add_weight(name='a_2', shape=[self.output_dim, 1]) def call(self, inputs, **kwargs): A, H = inputs[0], inputs[1] # [batch_size, num_vertices, num_features] * [num_features, output_dim] H_ = tf.tensordot(H, self.W, axes=[2, 0]) # [batch_size, num_vertices, output_dim] e = tf.nn.leaky_relu( tf.tensordot(H_, self.a_1, axes=[2, 0]) + tf.transpose(tf.tensordot(H_, self.a_2, axes=[2, 0]), perm=[0, 2, 1]), alpha=0.2 ) # [batch_size, num_vertices, num_vertices] A = tf.cast(tf.math.greater(A, 0.0), dtype=tf.float32) alpha = tf.nn.softmax(e * A) H_next = tf.matmul(alpha, H_) if self.activation is not None: return self.activation(H_next) else: return H_next class MultiHeadGATLayer(tf.keras.layers.Layer): def __init__(self, output_dim, num_heads, activation, aggregation, **kwargs): """ :param aggregation: 'concat' or 'average' """ self.output_dim = output_dim self.num_heads = num_heads self.activation = activation self.aggregation = aggregation self.layers = [GATLayer(output_dim, activation=None) for _ in range(num_heads)] super().__init__(**kwargs) def call(self, inputs, **kwargs): A, H = inputs[0], inputs[1] H_next_list = [self.layers[i](A, H) for i in self.num_heads] if self.aggregation == 'concat': return self.activation(tf.concat(H_next_list, axis=-1)) else: return self.activation(tf.reduce_mean(tf.stack(H_next_list, axis=-1), axis=-1))
[ "xihanli316@gmail.com" ]
xihanli316@gmail.com
253260a9a8189faaf006e479b65e1a1ce4a1c6e1
3daae8bdcc94142cd22fdb3d25580960e84e59b8
/moose_nerp/cells/proto154_84362/param_chan.py
e1ee455a38ab2d4781f14aec784d733343632d6d
[]
no_license
neurord/moose_nerp
a2cc543fe0e02fc5bd473a1b991d599211b36398
74bc20685c6e68cbc7a786271c55a6387f437965
refs/heads/master
2022-10-11T15:22:14.251028
2022-08-24T21:25:31
2022-08-24T21:25:31
27,131,330
4
3
null
null
null
null
UTF-8
Python
false
false
9,319
py
# Generated from npzfile: fitgp-proto-cmaes_proto154_84362_24.npz of fit number: 6398 from moose_nerp.prototypes.util import NamedDict from moose_nerp.prototypes.chan_proto import ( AlphaBetaChannelParams, StandardMooseTauInfChannelParams, TauInfMinChannelParams, ZChannelParams, BKChannelParams, ChannelSettings, TypicalOneD, TwoD) #units for membrane potential: volts krev=-90e-3 narev=50e-3 carev=130e-3 hcnrev=-30e-3 ZpowCDI=2 VMIN = -120e-3 VMAX = 50e-3 VDIVS = 3401 #0.5 mV steps #units for calcium concentration: mM CAMIN = 0.01e-3 #10 nM CAMAX = 60e-3 #40 uM, might want to go up to 100 uM with spines CADIVS = 5999 #10 nM steps #contains all gating parameters and reversal potentials # Gate equations have the form: # AlphaBetaChannelParams (specify forward and backward transition rates): # alpha(v) or beta(v) = (rate + B * v) / (C + exp((v + vhalf) / vslope)) # OR # StandardMooseTauInfChannelParams (specify steady state and time constants): # tau(v) or inf(v) = (rate + B * v) / (C + exp((v + vhalf) / vslope)) # OR # TauInfMinChannelParams (specify steady state and time constants with non-zero minimum - useful for tau): # inf(v) = min + max / (1 + exp((v + vhalf) / vslope)) # tau(v) = taumin + tauVdep / (1 + exp((v + tauVhalf) / tauVslope)) # or if tau_power=2: tau(v) = taumin + tauVdep / (1 + exp((v + tauVhalf) / tauVslope))* 1 / (1 + exp((v + tauVhalf) / -tauVslope)) # # where v is membrane potential in volts, vhalf and vslope have units of volts # C, min and max are dimensionless; and C should be either +1, 0 or -1 # Rate has units of per sec, and B has units of per sec per volt # taumin and tauVdep have units of per sec qfactNaF = 1.0 #These values were too fast - change rate from 35e3 to 16e3 Na_m_params = AlphaBetaChannelParams(A_rate=28854.29710252535, A_B=0.0, A_C=1, A_vhalf=0.032944893267078876, A_vslope=-0.005, B_rate=28854.29710252535, B_B=0.0, B_C=1, B_vhalf=0.032944893267078876, B_vslope=0.005) Na_h_params = AlphaBetaChannelParams(A_rate=7358.084358004004, A_B=0.0, A_C=1, A_vhalf=0.07381216143041182, A_vslope=0.009, B_rate=7358.084358004004, B_B=0.0, B_C=1, B_vhalf=0.03381216143041183, B_vslope=-0.005) ''' Na_s_params= AlphaBetaChannelParams(A_rate = 100, A_B = 0, A_C = 1, A_vhalf = 84e-3, A_vslope = 10.0e-3, B_rate = 80, B_B = 0.0, B_C = 1, B_vhalf = -26e-3, B_vslope = -14e-3) ''' Na_s_params = TauInfMinChannelParams(T_min=0.01, T_vdep=2.2, T_vhalf=-0.032, T_vslope=0.012, SS_min=0.15, SS_vdep=0.85, SS_vhalf=-0.045, SS_vslope=0.0054, T_power=2) NaFparam = ChannelSettings(Xpow=3, Ypow=1, Zpow=0, Erev=narev, name='NaF') #persistent Na_channel. Slow down from Dieter Jaeger ''' NaS_m_params = AlphaBetaChannelParams(A_rate=76e3, A_B=0, A_C=1, A_vhalf=-55.4e-3, A_vslope=-13.6e-3, B_rate=70e3, B_B=0.0, B_C=1, B_vhalf=135e-3, B_vslope=13.5e-3) ''' NaS_m_params = AlphaBetaChannelParams(A_rate=26240.667648781226, A_B=0.0, A_C=1, A_vhalf=-0.0615232210785421, A_vslope=-0.027, B_rate=26240.667648781226, B_B=0.0, B_C=1, B_vhalf=0.1288767789214579, B_vslope=0.0262) NaS_h_params = AlphaBetaChannelParams(A_rate=23.59121938827259, A_B=0.0, A_C=1, A_vhalf=0.05911281386076481, A_vslope=0.0045, B_rate=22.116768176505555, B_B=0.0, B_C=1, B_vhalf=0.058112813860764806, B_vslope=-0.004) NaS_s_params = AlphaBetaChannelParams(A_rate=-0.147, A_B=-8.64, A_C=1, A_vhalf=0.017, A_vslope=0.00463, B_rate=1.341, B_B=20.82, B_C=1, B_vhalf=0.0644, B_vslope=-0.00263) ''' NaS_s_params = TauInfMinChannelParams(SS_min = 0, SS_vdep = 1, SS_vhalf = -0.010, SS_vslope = 0.0049, T_min = 0.5, T_vdep = 8, T_vhalf = -0.066, T_vslope = -0.016, T_power=2) ''' NaSparam = ChannelSettings(Xpow=3, Ypow=1, Zpow=0, Erev=narev, name='NaP') #KDrparam -Kv2 KDrparam = ChannelSettings(Xpow=4, Ypow=1, Zpow=0, Erev=krev, name='KDr') KDr_X_params = AlphaBetaChannelParams(A_rate=5400.0, A_B=0, A_C=1, A_vhalf=-0.049, A_vslope=-0.015, B_rate=2300.0, B_B=0.0, B_C=1, B_vhalf=0.12, B_vslope=0.022) KDr_Y_params = AlphaBetaChannelParams(A_rate=0.292, A_B=0, A_C=1, A_vhalf=0.0, A_vslope=0.015, B_rate=0.292, B_B=0.0, B_C=1, B_vhalf=0.0, B_vslope=-0.015) Kv3param = ChannelSettings(Xpow=4, Ypow=1, Zpow=0, Erev=krev, name='Kv3') #qfactKrp=1 Kv3_X_params = AlphaBetaChannelParams(A_rate=7450.388612841055, A_B=0.0, A_C=1, A_vhalf=-0.025848597988629853, A_vslope=-0.015, B_rate=10132.528513463834, B_B=0.0, B_C=1, B_vhalf=0.08515140201137016, B_vslope=0.015) Kv3_Y_params = TauInfMinChannelParams(T_min=0.0055144867513592715, T_vdep=0.020482379362191577, T_vhalf=-0.0029495138630166806, T_vslope=0.01, SS_min=0.6, SS_vdep=0.4, SS_vhalf=-0.02294951386301668, SS_vslope=0.01, T_power=1) KvFparam = ChannelSettings(Xpow=4, Ypow=1, Zpow=0, Erev=krev, name='KvF') KvF_X_params = AlphaBetaChannelParams(A_rate=5368.493927236361, A_B=0.0, A_C=1, A_vhalf=-0.036008449930908994, A_vslope=-0.026, B_rate=5368.493927236361, B_B=0.0, B_C=1, B_vhalf=0.12599155006909102, B_vslope=0.027) KvF_Y_params = AlphaBetaChannelParams(A_rate=209.86251175212638, A_B=0.0, A_C=1, A_vhalf=0.09433084562399177, A_vslope=0.012, B_rate=198.66984445867965, B_B=0.0, B_C=1, B_vhalf=0.06933084562399178, B_vslope=-0.012) KvSparam = ChannelSettings(Xpow=2, Ypow=1, Zpow=0, Erev=krev, name='KvS') KvS_X_params = AlphaBetaChannelParams(A_rate=6604.590651800115, A_B=0.0, A_C=1, A_vhalf=-0.028709824768143793, A_vslope=-0.022, B_rate=2607.075257289519, B_B=0.0, B_C=1, B_vhalf=0.10129017523185621, B_vslope=0.02) KvS_Y_params = AlphaBetaChannelParams(A_rate=12.845858592579612, A_B=0.0, A_C=1, A_vhalf=0.08844775082089602, A_vslope=0.01, B_rate=13.521956413241696, B_B=0.0, B_C=1, B_vhalf=0.07344775082089602, B_vslope=-0.012) KCNQparam = ChannelSettings(Xpow=4, Ypow=0, Zpow=0, Erev=krev, name='KCNQ') KCNQ_X_params = AlphaBetaChannelParams(A_rate=195, A_B=0, A_C=1, A_vhalf=-0.039, A_vslope=-0.0295, B_rate=120, B_B=0, B_C=1, B_vhalf=0.128, B_vslope=0.032) KCNQ_Y_params = [] HCN1param = ChannelSettings(Xpow=1, Ypow=0, Zpow=0, Erev=hcnrev, name='HCN1') HCN1_X_params = AlphaBetaChannelParams(A_rate=90.63953483779824, A_B=0.0, A_C=1, A_vhalf=0.1312855411436227, A_vslope=0.01, B_rate=39.2771317630459, B_B=0.0, B_C=1, B_vhalf=0.011285541143622714, B_vslope=-0.012) HCN1_Y_params=[] HCN2param = ChannelSettings(Xpow=1, Ypow=0, Zpow=0, Erev=hcnrev, name='HCN2') HCN2_X_params = AlphaBetaChannelParams(A_rate=13.842119385137138, A_B=0.0, A_C=1, A_vhalf=0.14198712434702515, A_vslope=0.01, B_rate=9.228079590091426, B_B=0.0, B_C=1, B_vhalf=0.02198712434702514, B_vslope=-0.012) HCN2_Y_params=[] #Caparam - D.James Surmeier, ( tau and ss) Caparam=ChannelSettings(Xpow=1 , Ypow=0 , Zpow=0, Erev=carev , name='Ca') Ca_X_params = AlphaBetaChannelParams(A_rate=378823.64359600894, A_B=-5389963.259331261, A_C=-1, A_vhalf=-0.07028315878409347, A_vslope=-0.011, B_rate=889.343936900314, B_B=0.0, B_C=1, B_vhalf=0.008716841215906525, B_vslope=0.013) Ca_Y_params=[] SKparam= ChannelSettings(Xpow=0, Ypow=0, Zpow=1, Erev=krev, name='SKCa') SK_Z_params = ZChannelParams(Kd=0.00035, power=4.6, tau=0.002, taumax=0.0037928, tau_power=4.3, cahalf=0.002703) #BK channel BKparam = ChannelSettings(Xpow=1, Ypow=0, Zpow=0, Erev=krev, name='BKCa') BK_X_params=[BKChannelParams(alphabeta=480, K=0.18, delta=-0.84), BKChannelParams(alphabeta=280, K=0.011, delta=-1.0)] Channels = NamedDict( 'Channels', KDr = TypicalOneD(KDrparam, KDr_X_params, KDr_Y_params), Kv3 = TypicalOneD(Kv3param, Kv3_X_params, Kv3_Y_params), KvF = TypicalOneD(KvFparam, KvF_X_params, KvF_Y_params), KvS = TypicalOneD(KvSparam, KvS_X_params, KvS_Y_params), HCN1 = TypicalOneD(HCN1param,HCN1_X_params, []), HCN2 = TypicalOneD(HCN2param,HCN2_X_params, []), KCNQ = TypicalOneD(KCNQparam,KCNQ_X_params, []), NaF = TypicalOneD(NaFparam, Na_m_params, Na_h_params,Na_s_params), NaS= TypicalOneD(NaSparam,NaS_m_params,NaS_h_params,NaS_s_params), Ca = TypicalOneD(Caparam,Ca_X_params, [],[], calciumPermeable=True), SKCa= TypicalOneD(SKparam, [], [], SK_Z_params , calciumDependent=True), BKCa=TwoD(BKparam, BK_X_params, calciumDependent=True), ) # have to add NaP and calcium channels
[ "avrama@gmu.edu" ]
avrama@gmu.edu
1efde54ba66e1b49a043e16ee6709eb0c5fbc0d3
09a970bebcbcd1fd1e1e6703e1fccc3c05d6a813
/client/configuration/tests/configuration_test.py
1f133401c2949db35cea10e6c3a4f69f1ec50d7c
[ "MIT" ]
permissive
joshkehn/pyre-check
ff401557de08a46d6ddb9d4c2aee34f3779b1747
922b62e78e4990d8d268bb2ebde5912ceea9e226
refs/heads/master
2022-06-06T10:36:06.142551
2022-05-20T19:27:06
2022-05-20T19:27:06
166,895,044
0
0
MIT
2019-01-21T23:32:17
2019-01-21T23:32:17
null
UTF-8
Python
false
false
52,365
py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import shutil import site import subprocess import sys import tempfile import unittest from pathlib import Path import testslide from ... import command_arguments, find_directories from ...find_directories import BINARY_NAME from ...tests.setup import ( ensure_directories_exists, ensure_files_exist, switch_environment, switch_working_directory, write_configuration_file, ) from ..configuration import ( check_nested_local_configuration, Configuration, create_configuration, ExtensionElement, get_default_site_roots, PartialConfiguration, ) from ..exceptions import InvalidConfiguration from ..ide_features import IdeFeatures from ..platform_aware import PlatformAware from ..python_version import PythonVersion from ..search_path import ( SimpleElement, SimpleRawElement, SitePackageRawElement, SubdirectoryRawElement, ) from ..shared_memory import SharedMemory from ..site_packages import SearchStrategy from ..unwatched import UnwatchedDependency, UnwatchedFiles class PartialConfigurationTest(unittest.TestCase): def test_create_from_command_arguments(self) -> None: configuration = PartialConfiguration.from_command_arguments( command_arguments.CommandArguments( local_configuration=None, logger="logger", targets=[], source_directories=[], search_path=["x", "y"], binary="binary", buck_mode="opt", exclude=["excludes"], typeshed="typeshed", dot_pyre_directory=Path(".pyre"), python_version="3.6.7", shared_memory_heap_size=42, number_of_workers=43, use_buck2=True, ) ) self.assertEqual(configuration.binary, "binary") self.assertEqual( configuration.buck_mode, PlatformAware.from_json("opt", "buck_mode") ) self.assertEqual(configuration.dot_pyre_directory, Path(".pyre")) self.assertListEqual(list(configuration.excludes), ["excludes"]) self.assertEqual(configuration.logger, "logger") self.assertEqual(configuration.oncall, None) self.assertListEqual( list(configuration.search_path), [SimpleRawElement("x"), SimpleRawElement("y")], ) self.assertIsNone(configuration.source_directories) self.assertEqual(configuration.strict, None) self.assertIsNone(configuration.targets) self.assertEqual(configuration.typeshed, "typeshed") self.assertEqual(configuration.unwatched_dependency, None) self.assertEqual( configuration.python_version, PythonVersion(major=3, minor=6, micro=7) ) self.assertEqual(configuration.shared_memory, SharedMemory(heap_size=42)) self.assertEqual(configuration.site_package_search_strategy, None) self.assertEqual(configuration.site_roots, None) self.assertEqual(configuration.number_of_workers, 43) self.assertEqual(configuration.use_buck2, True) def test_create_from_command_arguments__ide_features(self) -> None: configuration = PartialConfiguration.from_command_arguments( command_arguments.CommandArguments( enable_hover=True, enable_go_to_definition=True, enable_find_symbols=True, ) ) assert configuration.ide_features is not None self.assertTrue(configuration.ide_features.is_hover_enabled()) self.assertTrue(configuration.ide_features.is_go_to_definition_enabled()) self.assertTrue(configuration.ide_features.is_find_symbols_enabled()) configuration = PartialConfiguration.from_command_arguments( command_arguments.CommandArguments( enable_hover=False, enable_go_to_definition=False, ) ) assert configuration.ide_features is not None self.assertFalse(configuration.ide_features.is_hover_enabled()) self.assertFalse(configuration.ide_features.is_go_to_definition_enabled()) configuration = PartialConfiguration.from_command_arguments( command_arguments.CommandArguments() ) self.assertEqual(configuration.ide_features, None) def test_create_from_string_success(self) -> None: self.assertEqual( PartialConfiguration.from_string(json.dumps({"binary": "foo"})).binary, "foo", ) for mode in [ "foo", {"default": "foo"}, {"linux": "foo"}, {"default": "bar", "macos": "foo", "linux": "foo"}, ]: buck_mode = PartialConfiguration.from_string( json.dumps({"buck_mode": mode}) ).buck_mode expected_value = PlatformAware.from_json("foo", "buck_mode") self.assertIsNotNone(buck_mode) self.assertIsNotNone(expected_value) self.assertEqual(buck_mode.get(), expected_value.get()) for null_mode in [{}, None]: self.assertIsNone( PartialConfiguration.from_string( json.dumps({"buck_mode": null_mode}) ).buck_mode ) self.assertListEqual( list( PartialConfiguration.from_string( json.dumps({"do_not_ignore_errors_in": ["foo", "bar"]}) ).do_not_ignore_errors_in ), ["foo", "bar"], ) self.assertEqual( PartialConfiguration.from_string( json.dumps({"dot_pyre_directory": "foo"}) ).dot_pyre_directory, Path("foo"), ) self.assertListEqual( list( PartialConfiguration.from_string( json.dumps({"exclude": "foo"}) ).excludes ), ["foo"], ) self.assertListEqual( list( PartialConfiguration.from_string( json.dumps({"exclude": ["foo", "bar"]}) ).excludes ), ["foo", "bar"], ) self.assertListEqual( list( PartialConfiguration.from_string( json.dumps({"extensions": [".foo", ".bar"]}) ).extensions ), [ExtensionElement(".foo", False), ExtensionElement(".bar", False)], ) self.assertListEqual( list( PartialConfiguration.from_string( json.dumps( { "extensions": [ ".foo", { "suffix": ".bar", "include_suffix_in_module_qualifier": True, }, { "suffix": ".baz", "include_suffix_in_module_qualifier": False, }, ] } ) ).extensions ), [ ExtensionElement(".foo", False), ExtensionElement(".bar", True), ExtensionElement(".baz", False), ], ) self.assertListEqual( list( PartialConfiguration.from_string( json.dumps({"ignore_all_errors": ["foo", "bar"]}) ).ignore_all_errors ), ["foo", "bar"], ) self.assertEqual( PartialConfiguration.from_string(json.dumps({"logger": "foo"})).logger, "foo", ) self.assertEqual( PartialConfiguration.from_string(json.dumps({"oncall": "foo"})).oncall, "foo", ) self.assertEqual( PartialConfiguration.from_string( json.dumps({"workers": 42}) ).number_of_workers, 42, ) self.assertListEqual( list( PartialConfiguration.from_string( json.dumps({"critical_files": ["foo", "bar"]}) ).other_critical_files ), ["foo", "bar"], ) self.assertListEqual( list( PartialConfiguration.from_string( json.dumps({"search_path": "foo"}) ).search_path ), [SimpleRawElement("foo")], ) self.assertListEqual( list( PartialConfiguration.from_string( json.dumps( {"search_path": ["foo", {"root": "bar", "subdirectory": "baz"}]} ) ).search_path ), [ SimpleRawElement("foo"), SubdirectoryRawElement("bar", "baz"), ], ) self.assertIsNone( PartialConfiguration.from_string( json.dumps({}) ).site_package_search_strategy ) self.assertEqual( PartialConfiguration.from_string( json.dumps({"site_package_search_strategy": "pep561"}) ).site_package_search_strategy, SearchStrategy.PEP561, ) self.assertEqual( PartialConfiguration.from_string(json.dumps({"strict": True})).strict, True ) self.assertListEqual( list( PartialConfiguration.from_string( json.dumps({"taint_models_path": "foo"}) ).taint_models_path ), ["foo"], ) self.assertListEqual( list( PartialConfiguration.from_string( json.dumps({"taint_models_path": ["foo", "bar"]}) ).taint_models_path ), ["foo", "bar"], ) self.assertEqual( PartialConfiguration.from_string(json.dumps({"typeshed": "foo"})).typeshed, "foo", ) self.assertEqual( PartialConfiguration.from_string( json.dumps({"version": "abc"}) ).version_hash, "abc", ) self.assertEqual( PartialConfiguration.from_string( json.dumps({"pysa_version": "abc"}) ).pysa_version_hash, "abc", ) self.assertEqual( PartialConfiguration.from_string( json.dumps({"python_version": "3"}) ).python_version, PythonVersion(major=3, minor=0, micro=0), ) self.assertEqual( PartialConfiguration.from_string( json.dumps({"python_version": "3.6"}) ).python_version, PythonVersion(major=3, minor=6, micro=0), ) self.assertEqual( PartialConfiguration.from_string( json.dumps({"python_version": "3.6.7"}) ).python_version, PythonVersion(major=3, minor=6, micro=7), ) self.assertEqual( PartialConfiguration.from_string( json.dumps({"shared_memory": {"heap_size": 1}}) ).shared_memory, SharedMemory(heap_size=1), ) self.assertEqual( PartialConfiguration.from_string( json.dumps({"shared_memory": {"dependency_table_power": 2}}) ).shared_memory, SharedMemory(dependency_table_power=2), ) self.assertEqual( PartialConfiguration.from_string( json.dumps({"shared_memory": {"hash_table_power": 3}}) ).shared_memory, SharedMemory(hash_table_power=3), ) self.assertEqual( PartialConfiguration.from_string( json.dumps({"use_buck2": False}) ).use_buck2, False, ) self.assertIsNone(PartialConfiguration.from_string("{}").source_directories) source_directories = PartialConfiguration.from_string( json.dumps({"source_directories": ["foo", "bar"]}) ).source_directories self.assertIsNotNone(source_directories) self.assertListEqual( list(source_directories), [SimpleRawElement("foo"), SimpleRawElement("bar")], ) self.assertIsNone(PartialConfiguration.from_string(json.dumps({})).site_roots) site_roots = PartialConfiguration.from_string( json.dumps({"site_roots": ["foo", "bar"]}) ).site_roots self.assertIsNotNone(site_roots) self.assertListEqual( list(site_roots), ["foo", "bar"], ) source_directories = PartialConfiguration.from_string( json.dumps( { "source_directories": [ "foo", {"root": "bar", "subdirectory": "baz"}, ] } ) ).source_directories self.assertIsNotNone(source_directories) self.assertListEqual( list(source_directories), [ SimpleRawElement("foo"), SubdirectoryRawElement("bar", "baz"), ], ) source_directories = PartialConfiguration.from_string( json.dumps( { "source_directories": [ "foo", {"import_root": "bar", "source": "baz"}, ] } ) ).source_directories self.assertIsNotNone(source_directories) self.assertListEqual( list(source_directories), [ SimpleRawElement("foo"), SubdirectoryRawElement("bar", "baz"), ], ) self.assertIsNone(PartialConfiguration.from_string("{}").targets) targets = PartialConfiguration.from_string( json.dumps({"targets": ["//foo", "//bar"]}) ).targets self.assertIsNotNone(targets) self.assertListEqual(list(targets), ["//foo", "//bar"]) unwatched_dependency = PartialConfiguration.from_string( json.dumps( { "unwatched_dependency": { "change_indicator": "foo", "files": {"root": "bar", "checksum_path": "baz"}, } } ) ).unwatched_dependency self.assertIsNotNone(unwatched_dependency) self.assertEqual( unwatched_dependency, UnwatchedDependency( change_indicator="foo", files=UnwatchedFiles(root="bar", checksum_path="baz"), ), ) def test_create_from_string_failure(self) -> None: def assert_raises(content: str) -> None: with self.assertRaises(InvalidConfiguration): PartialConfiguration.from_string(content) assert_raises("") assert_raises("{") assert_raises(json.dumps({"binary": True})) assert_raises(json.dumps({"buck_mode": {"default": 5}})) assert_raises(json.dumps({"buck_mode": {"bad-platform": "mode"}})) assert_raises( json.dumps( { "buck_mode": { "win": "valid", "bad": "valid-also", } } ) ) assert_raises(json.dumps({"do_not_ignore_errors_in": "abc"})) assert_raises(json.dumps({"dot_pyre_directory": {}})) assert_raises(json.dumps({"exclude": 42})) assert_raises(json.dumps({"extensions": 42})) assert_raises(json.dumps({"ignore_all_errors": [1, 2, 3]})) assert_raises(json.dumps({"logger": []})) assert_raises(json.dumps({"oncall": []})) assert_raises(json.dumps({"workers": "abc"})) assert_raises(json.dumps({"critical_files": "abc"})) assert_raises(json.dumps({"source_directories": "abc"})) assert_raises(json.dumps({"strict": 42})) assert_raises(json.dumps({"taint_models_path": True})) assert_raises(json.dumps({"taint_models_path": ["foo", 42]})) assert_raises(json.dumps({"targets": "abc"})) assert_raises(json.dumps({"typeshed": ["abc"]})) assert_raises(json.dumps({"version": 123})) assert_raises(json.dumps({"pysa_version": 123})) assert_raises(json.dumps({"python_version": "abc"})) assert_raises(json.dumps({"python_version": 42})) assert_raises(json.dumps({"shared_memory": "abc"})) assert_raises(json.dumps({"shared_memory": {"heap_size": "abc"}})) assert_raises(json.dumps({"site_package_search_strategy": False})) assert_raises(json.dumps({"site_roots": 42})) assert_raises(json.dumps({"unwatched_dependency": {"change_indicator": "abc"}})) assert_raises(json.dumps({"use_buck2": {}})) def test_expand_relative_paths(self) -> None: self.assertEqual( PartialConfiguration(binary="foo").expand_relative_paths("bar").binary, "bar/foo", ) self.assertEqual( PartialConfiguration(binary="~/foo").expand_relative_paths("bar").binary, str(Path.home() / "foo"), ) self.assertEqual( PartialConfiguration(do_not_ignore_errors_in=["foo", "bar"]) .expand_relative_paths("baz") .do_not_ignore_errors_in, ["baz/foo", "baz/bar"], ) self.assertEqual( PartialConfiguration(ignore_all_errors=["foo", "bar"]) .expand_relative_paths("baz") .ignore_all_errors, ["baz/foo", "baz/bar"], ) self.assertEqual( PartialConfiguration(logger="foo").expand_relative_paths("bar").logger, "bar/foo", ) self.assertEqual( PartialConfiguration(other_critical_files=["foo", "bar"]) .expand_relative_paths("baz") .other_critical_files, ["baz/foo", "baz/bar"], ) self.assertEqual( PartialConfiguration( search_path=[ SimpleRawElement("foo"), SubdirectoryRawElement("bar", "baz"), SitePackageRawElement("package"), ] ) .expand_relative_paths("root") .search_path, [ SimpleRawElement("root/foo"), SubdirectoryRawElement("root/bar", "baz"), SitePackageRawElement("package"), ], ) self.assertEqual( PartialConfiguration( source_directories=[ SimpleRawElement("foo"), SimpleRawElement("bar"), ] ) .expand_relative_paths("baz") .source_directories, [ SimpleRawElement("baz/foo"), SimpleRawElement("baz/bar"), ], ) self.assertEqual( PartialConfiguration(taint_models_path=["foo", "bar"]) .expand_relative_paths("baz") .taint_models_path, ["baz/foo", "baz/bar"], ) self.assertEqual( PartialConfiguration(typeshed="foo").expand_relative_paths("bar").typeshed, "bar/foo", ) def assert_expanded_unwatched_root( original: str, root: str, expected: str ) -> None: actual = ( PartialConfiguration( unwatched_dependency=UnwatchedDependency( change_indicator="indicator", files=UnwatchedFiles(root=original, checksum_path="checksum"), ) ) .expand_relative_paths(root) .unwatched_dependency ) self.assertIsNotNone(actual) self.assertEqual(actual.files.root, expected) assert_expanded_unwatched_root( original="foo", root="bar", expected="bar/foo", ) class ConfigurationTest(testslide.TestCase): def test_from_partial_configuration(self) -> None: configuration = Configuration.from_partial_configuration( project_root=Path("root"), relative_local_root="local", partial_configuration=PartialConfiguration( binary="binary", buck_mode=PlatformAware.from_json("opt", "buck_mode"), do_not_ignore_errors_in=["foo"], dot_pyre_directory=None, excludes=["exclude"], extensions=[ExtensionElement(".ext", False)], ide_features=IdeFeatures( hover_enabled=True, go_to_definition_enabled=True, find_symbols_enabled=True, ), ignore_all_errors=["bar"], logger="logger", number_of_workers=3, oncall="oncall", other_critical_files=["critical"], python_version=PythonVersion(major=3, minor=6, micro=7), search_path=[SimpleRawElement("search_path")], shared_memory=SharedMemory(heap_size=1024), site_package_search_strategy=SearchStrategy.NONE, site_roots=["site_root"], source_directories=None, strict=None, taint_models_path=["taint"], targets=None, typeshed="typeshed", unwatched_dependency=None, use_buck2=None, version_hash="abc", ), ) self.assertEqual(configuration.project_root, "root") self.assertEqual(configuration.relative_local_root, "local") self.assertEqual(configuration.binary, "binary") self.assertIsNotNone(configuration.buck_mode) self.assertEqual(configuration.buck_mode.get(), "opt") self.assertListEqual(list(configuration.do_not_ignore_errors_in), ["foo"]) self.assertEqual(configuration.dot_pyre_directory, Path("root/.pyre")) self.assertListEqual(list(configuration.excludes), ["exclude"]) self.assertEqual(configuration.extensions, [ExtensionElement(".ext", False)]) self.assertEqual( configuration.ide_features, IdeFeatures( hover_enabled=True, go_to_definition_enabled=True, find_symbols_enabled=True, ), ) self.assertListEqual(list(configuration.ignore_all_errors), ["bar"]) self.assertEqual(configuration.logger, "logger") self.assertEqual(configuration.number_of_workers, 3) self.assertEqual(configuration.oncall, "oncall") self.assertListEqual(list(configuration.other_critical_files), ["critical"]) self.assertListEqual( list(configuration.search_path), [SimpleRawElement("search_path")] ) self.assertEqual( configuration.python_version, PythonVersion(major=3, minor=6, micro=7) ) self.assertEqual(configuration.source_directories, None) self.assertEqual(configuration.shared_memory, SharedMemory(heap_size=1024)) self.assertEqual( configuration.site_package_search_strategy, SearchStrategy.NONE ) self.assertEqual(configuration.site_roots, ["site_root"]) self.assertEqual(configuration.strict, False) self.assertEqual(configuration.taint_models_path, ["taint"]) self.assertEqual(configuration.targets, None) self.assertEqual(configuration.typeshed, "typeshed") self.assertEqual(configuration.unwatched_dependency, None) self.assertEqual(configuration.use_buck2, False) self.assertEqual(configuration.version_hash, "abc") def test_get_default_site_roots(self) -> None: global_site_package = "/venv/lib/pythonX/site-packages" user_site_package = "/user/lib/pythonX/site-packages" self.mock_callable(site, "getsitepackages").to_return_value( [global_site_package] ).and_assert_called_once() self.mock_callable(site, "getusersitepackages").to_return_value( user_site_package ).and_assert_called_once() self.assertListEqual( get_default_site_roots(), [user_site_package, global_site_package] ) def test_derived_attributes(self) -> None: self.assertIsNone( Configuration( project_root="foo", dot_pyre_directory=Path(".pyre") ).local_root ) self.assertEqual( Configuration( project_root="foo", dot_pyre_directory=Path(".pyre"), relative_local_root="bar", ).local_root, "foo/bar", ) self.assertEqual( Configuration( project_root="foo", dot_pyre_directory=Path(".pyre"), relative_local_root="bar/baz", ).local_root, "foo/bar/baz", ) self.assertEqual( Configuration( project_root="foo", dot_pyre_directory=Path(".pyre") ).log_directory, ".pyre", ) self.assertEqual( Configuration( project_root="foo", dot_pyre_directory=Path(".pyre"), relative_local_root="bar", ).log_directory, ".pyre/bar", ) self.assertEqual( Configuration( project_root="foo", dot_pyre_directory=Path(".pyre"), relative_local_root="bar/baz", ).log_directory, ".pyre/bar/baz", ) def test_existent_search_path_with_typeshed(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root) ensure_directories_exists(root_path, ["a"]) ensure_directories_exists( root_path, ["typeshed/stdlib", "typeshed/stubs/foo"] ) self.assertListEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), search_path=[ SimpleRawElement(str(root_path / "a")), ], typeshed=str(root_path / "typeshed"), ).expand_and_get_existent_search_paths(), [ SimpleElement(str(root_path / "a")), SimpleElement(str(root_path / "typeshed/stdlib")), SimpleElement(str(root_path / "typeshed/stubs/foo")), ], ) def test_existent_unwatched_dependency(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() ensure_files_exist(root_path, ["a/b"]) self.assertIsNotNone( Configuration( project_root=str(root_path), dot_pyre_directory=Path(".pyre"), unwatched_dependency=UnwatchedDependency( change_indicator="indicator", files=UnwatchedFiles( root=str(root_path / "a"), checksum_path="b" ), ), ).get_existent_unwatched_dependency() ) self.assertIsNone( Configuration( project_root=str(root_path), dot_pyre_directory=Path(".pyre"), unwatched_dependency=UnwatchedDependency( change_indicator="indicator", files=UnwatchedFiles( root=str(root_path / "a"), checksum_path="c" ), ), ).get_existent_unwatched_dependency() ) self.assertIsNone( Configuration( project_root=str(root_path), dot_pyre_directory=Path(".pyre"), unwatched_dependency=UnwatchedDependency( change_indicator="indicator", files=UnwatchedFiles( root=str(root_path / "c"), checksum_path="b" ), ), ).get_existent_unwatched_dependency() ) def test_existent_do_not_ignore_errors(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() ensure_directories_exists(root_path, ["a", "b/c"]) self.assertCountEqual( Configuration( project_root=str(root_path), dot_pyre_directory=Path(".pyre"), do_not_ignore_errors_in=[ str(root_path / "a"), str(root_path / "x"), "//b/c", "//y/z", ], ).get_existent_do_not_ignore_errors_in_paths(), [str(root_path / "a"), str(root_path / "b/c")], ) def test_existent_ignore_all_errors(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() ensure_directories_exists(root_path, ["a", "b/c", "b/d"]) self.assertCountEqual( Configuration( project_root=str(root_path), dot_pyre_directory=Path(".pyre"), ignore_all_errors=[ str(root_path / "a"), str(root_path / "x"), "//b/c", "//y/z", f"{root_path}/b/*", ], ).get_existent_ignore_all_errors_paths(), [ str(root_path / "a"), str(root_path / "b/c"), str(root_path / "b/c"), str(root_path / "b/d"), ], ) def test_get_binary_version_ok(self) -> None: binary_path = "foo" version = "facefacefaceb00" self.mock_callable(subprocess, "run").to_return_value( subprocess.CompletedProcess( args=[binary_path, "-version"], returncode=0, stdout=f"{version}\n" ) ).and_assert_called_once() self.assertEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), binary=binary_path, ).get_binary_version(), version, ) def test_get_binary_version_fail(self) -> None: binary_path = "foo" self.mock_callable(subprocess, "run").to_return_value( subprocess.CompletedProcess( args=[binary_path, "-version"], returncode=1, stdout="derp" ) ).and_assert_called_once() self.assertIsNone( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), binary=binary_path, ).get_binary_version() ) def test_get_number_of_workers(self) -> None: self.assertEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), number_of_workers=42, ).get_number_of_workers(), 42, ) # Whatever the default number is, it should be positive self.assertGreater( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), number_of_workers=None, ).get_number_of_workers(), 0, ) def test_get_python_versions(self) -> None: self.assertEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), python_version=PythonVersion(major=3, minor=6, micro=7), ).get_python_version(), PythonVersion(major=3, minor=6, micro=7), ) self.assertEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), python_version=None, ).get_python_version(), PythonVersion( major=sys.version_info.major, minor=sys.version_info.minor, micro=sys.version_info.micro, ), ) def test_get_binary_from_configuration(self) -> None: with switch_environment({}): self.assertEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), binary="foo", ).get_binary_respecting_override(), "foo", ) def test_get_binary_auto_determined(self) -> None: self.mock_callable(shutil, "which").for_call(BINARY_NAME).to_return_value( "foo" ).and_assert_called_once() with switch_environment({}): self.assertEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), binary=None, ).get_binary_respecting_override(), "foo", ) def test_get_binary_cannot_auto_determine(self) -> None: self.mock_callable(shutil, "which").to_return_value(None).and_assert_called() with switch_environment({}): self.assertEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), binary=None, ).get_binary_respecting_override(), None, ) def test_get_typeshed_from_configuration(self) -> None: with switch_environment({}): self.assertEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), typeshed="foo", ).get_typeshed_respecting_override(), "foo", ) def test_get_typeshed_auto_determined(self) -> None: self.mock_callable( find_directories, "find_typeshed" ).for_call().to_return_value(Path("foo")).and_assert_called_once() with switch_environment({}): self.assertEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), typeshed=None, ).get_typeshed_respecting_override(), "foo", ) def test_get_typeshed_cannot_auto_determine(self) -> None: self.mock_callable( find_directories, "find_typeshed" ).for_call().to_return_value(None).and_assert_called_once() with switch_environment({}): self.assertEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), typeshed=None, ).get_typeshed_respecting_override(), None, ) def test_get_version_hash_from_configuration(self) -> None: with switch_environment({}): self.assertEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), version_hash="abc", ).get_version_hash_respecting_override(), "abc", ) def test_get_version_hash_environment_override(self) -> None: with switch_environment({"PYRE_VERSION_HASH": "abc"}): self.assertEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), version_hash=None, ).get_version_hash_respecting_override(), "abc", ) self.assertEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), version_hash="def", ).get_version_hash_respecting_override(), "abc", ) def test_get_valid_extension_suffixes(self) -> None: self.assertListEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), extensions=[], ).get_valid_extension_suffixes(), [], ) self.assertListEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), extensions=[ ExtensionElement(".foo", False), ExtensionElement(".bar", False), ], ).get_valid_extension_suffixes(), [".foo", ".bar"], ) self.assertListEqual( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), extensions=[ ExtensionElement("foo", False), ExtensionElement(".bar", False), ExtensionElement("baz", False), ], ).get_valid_extension_suffixes(), [".bar"], ) def test_is_hover_enabled(self) -> None: self.assertFalse( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), ).is_hover_enabled(), ) self.assertTrue( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), ide_features=IdeFeatures(hover_enabled=True), ).is_hover_enabled(), ) def test_is_go_to_definition_enabled(self) -> None: self.assertFalse( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), ).is_go_to_definition_enabled(), ) self.assertTrue( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), ide_features=IdeFeatures(go_to_definition_enabled=True), ).is_go_to_definition_enabled(), ) def test_is_find_symbols_enabled(self) -> None: self.assertFalse( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), ).is_find_symbols_enabled(), ) self.assertTrue( Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), ide_features=IdeFeatures(find_symbols_enabled=True), ).is_find_symbols_enabled(), ) def test_create_from_command_arguments_only(self) -> None: # We assume there does not exist a `.pyre_configuration` file that # covers this temporary directory. with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() with switch_working_directory(root_path): configuration = create_configuration( command_arguments.CommandArguments( source_directories=["."], dot_pyre_directory=None ), base_directory=Path(root), ) self.assertEqual(configuration.project_root, str(root_path)) self.assertEqual(configuration.relative_local_root, None) self.assertEqual(configuration.dot_pyre_directory, root_path / ".pyre") self.assertListEqual( list(configuration.source_directories or []), [SimpleRawElement(str(root_path))], ) def test_create_from_global_configuration(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() write_configuration_file(root_path, {"strict": False}) with switch_working_directory(root_path): configuration = create_configuration( command_arguments.CommandArguments( strict=True, # override configuration file source_directories=["."], dot_pyre_directory=Path(".pyre"), ), base_directory=Path(root), ) self.assertEqual(configuration.project_root, str(root_path)) self.assertEqual(configuration.relative_local_root, None) self.assertEqual(configuration.dot_pyre_directory, Path(".pyre")) self.assertEqual(configuration.strict, True) self.assertListEqual( list(configuration.source_directories or []), [SimpleRawElement(str(root_path))], ) def test_create_from_local_configuration(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() ensure_directories_exists(root_path, ["foo", "bar", "baz"]) write_configuration_file( root_path, {"strict": False, "search_path": ["foo"]} ) write_configuration_file( root_path, {"strict": True, "search_path": ["//bar", "baz"]}, relative="local", ) with switch_working_directory(root_path): configuration = create_configuration( command_arguments.CommandArguments( local_configuration="local", source_directories=["."], dot_pyre_directory=Path(".pyre"), ), base_directory=Path(root), ) self.assertEqual(configuration.project_root, str(root_path)) self.assertEqual(configuration.relative_local_root, "local") self.assertEqual(configuration.dot_pyre_directory, Path(".pyre")) self.assertEqual(configuration.strict, True) self.assertListEqual( list(configuration.source_directories or []), [SimpleRawElement(str(root_path))], ) self.assertListEqual( list(configuration.search_path), [ SimpleRawElement(str(root_path / "bar")), SimpleRawElement(str(root_path / "local/baz")), SimpleRawElement(str(root_path / "foo")), ], ) def test_check_nested_local_configuration_no_nesting(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() write_configuration_file(root_path, {}) write_configuration_file(root_path, {}, relative="local") try: check_nested_local_configuration( Configuration( project_root=root, dot_pyre_directory=Path(".pyre"), relative_local_root="local", ) ) except InvalidConfiguration: self.fail("Nested local configuration check fails unexpectedly!") def test_check_nested_local_configuration_not_excluded(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() write_configuration_file(root_path, {}) write_configuration_file(root_path, {}, relative="nest") write_configuration_file(root_path, {}, relative="nest/local") with self.assertRaises(InvalidConfiguration): check_nested_local_configuration( Configuration( project_root=root, dot_pyre_directory=Path(".pyre"), relative_local_root="nest/local", ) ) def test_check_nested_local_configuration_excluded(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() write_configuration_file(root_path, {}) write_configuration_file( root_path, {"ignore_all_errors": [str(root_path / "nest/local")]}, relative="nest", ) write_configuration_file(root_path, {}, relative="nest/local") try: check_nested_local_configuration( Configuration( project_root=root, dot_pyre_directory=Path(".pyre"), relative_local_root="nest/local", ) ) except InvalidConfiguration: self.fail("Nested local configuration check fails unexpectedly!") def test_check_nested_local_configuration_excluded_parent(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() write_configuration_file(root_path, {}) write_configuration_file( root_path, {"ignore_all_errors": [str(root_path / "nest")]}, relative="nest", ) write_configuration_file(root_path, {}, relative="nest/local") try: check_nested_local_configuration( Configuration( project_root=root, dot_pyre_directory=Path(".pyre"), relative_local_root="nest/local", ) ) except InvalidConfiguration: self.fail("Nested local configuration check fails unexpectedly!") def test_check_nested_local_configuration_not_all_nesting_excluded(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() write_configuration_file(root_path, {}) write_configuration_file(root_path, {}, relative="nest0") write_configuration_file( root_path, {"ignore_all_errors": [str(root_path / "nest0/nest1/local")]}, relative="nest0/nest1", ) write_configuration_file(root_path, {}, relative="nest0/nest1/local") with self.assertRaises(InvalidConfiguration): check_nested_local_configuration( Configuration( project_root=root, dot_pyre_directory=Path(".pyre"), relative_local_root="nest0/nest1/local", ) ) def test_check_nested_local_configuration_all_nesting_excluded(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() write_configuration_file(root_path, {}) write_configuration_file( root_path, {"ignore_all_errors": [str(root_path / "nest0/nest1/local")]}, relative="nest0", ) write_configuration_file( root_path, {"ignore_all_errors": [str(root_path / "nest0/nest1/local")]}, relative="nest0/nest1", ) write_configuration_file(root_path, {}, relative="nest0/nest1/local") try: check_nested_local_configuration( Configuration( project_root=root, dot_pyre_directory=Path(".pyre"), relative_local_root="nest0/nest1/local", ) ) except InvalidConfiguration: self.fail("Nested local configuration check fails unexpectedly!") def test_check_nested_local_configuration_expand_global_root(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() write_configuration_file(root_path, {}) write_configuration_file( root_path, {"ignore_all_errors": ["//nest0/nest1/local"]}, relative="nest0", ) write_configuration_file( root_path, {"ignore_all_errors": [str(root_path / "nest0/**")]}, relative="nest0/nest1", ) write_configuration_file(root_path, {}, relative="nest0/nest1/local") try: check_nested_local_configuration( Configuration( project_root=root, dot_pyre_directory=Path(".pyre"), relative_local_root="nest0/nest1/local", ) ) except InvalidConfiguration: self.fail("Nested local configuration check fails unexpectedly!") def test_check_nested_local_configuration_expand_relative_root(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root).resolve() write_configuration_file(root_path, {}) write_configuration_file( root_path, {"ignore_all_errors": ["nest1/local"]}, relative="nest0" ) write_configuration_file( root_path, {"ignore_all_errors": ["*"]}, relative="nest0/nest1" ) write_configuration_file(root_path, {}, relative="nest0/nest1/local") try: check_nested_local_configuration( Configuration( project_root=root, dot_pyre_directory=Path(".pyre"), relative_local_root="nest0/nest1/local", ) ) except InvalidConfiguration: self.fail("Nested local configuration check fails unexpectedly!") def test_source_directories_glob(self) -> None: with tempfile.TemporaryDirectory() as root: root_path = Path(root) ensure_directories_exists(root_path, ["a1", "a2", "b", "c"]) source_directories = Configuration( project_root="irrelevant", dot_pyre_directory=Path(".pyre"), source_directories=[ SimpleRawElement(str(root_path / "a*")), SimpleRawElement(str(root_path / "b")), ], ).expand_and_get_existent_source_directories() self.assertIsNotNone(source_directories) self.assertListEqual( list(source_directories), [ SimpleElement(str(root_path / "a1")), SimpleElement(str(root_path / "a2")), SimpleElement(str(root_path / "b")), ], )
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
415b68c26b7d3402984137aa26281194e8b527b6
54b46ac21712627097e2938b9508150f7f797b28
/docs/conf.py
9d24e85e760d9cc4eec4be8de3b3137d7f163d33
[ "MIT" ]
permissive
riskybacon/mnist_arma
69987e1cd7c8117976bc1af4e8791a22b7570a29
4921686adf2382d7fb87d41d25d5e7e6342e6ec3
refs/heads/master
2021-08-26T09:25:49.401537
2017-11-22T21:00:07
2017-11-22T21:00:07
110,301,106
1
0
null
null
null
null
UTF-8
Python
false
false
5,299
py
# -*- coding: utf-8 -*- # # mnist_arma documentation build configuration file, created by # sphinx-quickstart on Tue Nov 14 14:53:19 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.imgmath', 'breathe'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'mnist_arma' copyright = u'2017, Jeffrey Bowles' author = u'Jeffrey Bowles' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'0.1' # The full version, including alpha/beta/rc tags. release = u'0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # This is required for the alabaster theme # refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars html_sidebars = { '**': [ 'relations.html', # needs 'show_related': True theme option to display 'searchbox.html', ] } # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'mnist_armadoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'mnist_arma.tex', u'mnist\\_arma Documentation', u'Jeffrey Bowles', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'mnist_arma', u'mnist_arma Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'mnist_arma', u'mnist_arma Documentation', author, 'mnist_arma', 'One line description of project.', 'Miscellaneous'), ] breathe_projects = {'mnist_arma': './doxyxml/'} breathe_default_project = 'mnist_arma'
[ "jbowles@newmexicoconsortium.org" ]
jbowles@newmexicoconsortium.org
50bba1b031f6b26df64745a4488f051af8cc1198
76f7cc243a743904c24dc328d057306720251e30
/Week_02/429_n_ary_levelorder_traversal.py
eed438eb66bb3f8d6ed0d4b4cd369408fb509b50
[]
no_license
underseatravel/AlgorithmQIUZHAO
e2340ad8f3e723fd1e25fe678bdd547bb76483e0
b41e4ddae5e31074992d0b96bd029fcb6291d2ed
refs/heads/master
2022-11-29T05:25:00.338298
2020-08-22T10:23:17
2020-08-22T10:23:17
279,102,613
0
0
null
2020-07-12T16:22:05
2020-07-12T16:22:04
null
UTF-8
Python
false
false
432
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- # @Time : 2020/7/22 1:26 # @Author : weiyu # @File : 429_n_ary_levelorder_traversal.py class Solution: def levelOrder(self, root): if not root: return [] queue = [root] res = [] while queue: res.append([node.val for node in queue]) queue = [child for node in queue for child in node.children if child] return res
[ "1355472435@qq.com" ]
1355472435@qq.com
e74b3048c30aaaa5c659ce91f95b5db92a2aaa1d
052275c2dd6d59a0d0fcfe85591b44106343662b
/env/lib/python3.8/site-packages/openpyxl/worksheet/worksheet.py
95186be4844a6f205071fab8860f3c97f8c1014a
[]
no_license
nimadorostkar/Django-Real-Estate
93d104ad1847674103e525ae428af186fffa9e30
bf868e49bb4703e4081d8e7e9fd5e3ae23fc9af9
refs/heads/master
2023-08-10T17:07:29.829253
2021-09-19T10:55:47
2021-09-19T10:55:47
338,533,461
23
9
null
null
null
null
UTF-8
Python
false
false
27,473
py
# Copyright (c) 2010-2020 openpyxl """Worksheet is the 2nd-level container in Excel.""" # Python stdlib imports from itertools import chain from operator import itemgetter from inspect import isgenerator from warnings import warn # compatibility imports from openpyxl.compat import ( deprecated, ) # package imports from openpyxl.utils import ( column_index_from_string, get_column_letter, range_boundaries, coordinate_to_tuple, absolute_coordinate, ) from openpyxl.cell import Cell, MergedCell from openpyxl.formatting.formatting import ConditionalFormattingList from openpyxl.packaging.relationship import RelationshipList from openpyxl.workbook.child import _WorkbookChild from openpyxl.workbook.defined_name import COL_RANGE_RE, ROW_RANGE_RE from openpyxl.formula.translate import Translator from .datavalidation import DataValidationList from .page import ( PrintPageSetup, PageMargins, PrintOptions, ) from .dimensions import ( ColumnDimension, RowDimension, DimensionHolder, SheetFormatProperties, ) from .protection import SheetProtection from .filters import AutoFilter from .views import ( Pane, Selection, SheetViewList, ) from .cell_range import MultiCellRange, CellRange from .merge import MergedCellRange from .properties import WorksheetProperties from .pagebreak import RowBreak, ColBreak from .scenario import ScenarioList from .table import TableList class Worksheet(_WorkbookChild): """Represents a worksheet. Do not create worksheets yourself, use :func:`openpyxl.workbook.Workbook.create_sheet` instead """ _rel_type = "worksheet" _path = "/xl/worksheets/sheet{0}.xml" mime_type = "application/vnd.openxmlformats-officedocument.spreadsheetml.worksheet+xml" BREAK_NONE = 0 BREAK_ROW = 1 BREAK_COLUMN = 2 SHEETSTATE_VISIBLE = 'visible' SHEETSTATE_HIDDEN = 'hidden' SHEETSTATE_VERYHIDDEN = 'veryHidden' # Paper size PAPERSIZE_LETTER = '1' PAPERSIZE_LETTER_SMALL = '2' PAPERSIZE_TABLOID = '3' PAPERSIZE_LEDGER = '4' PAPERSIZE_LEGAL = '5' PAPERSIZE_STATEMENT = '6' PAPERSIZE_EXECUTIVE = '7' PAPERSIZE_A3 = '8' PAPERSIZE_A4 = '9' PAPERSIZE_A4_SMALL = '10' PAPERSIZE_A5 = '11' # Page orientation ORIENTATION_PORTRAIT = 'portrait' ORIENTATION_LANDSCAPE = 'landscape' def __init__(self, parent, title=None): _WorkbookChild.__init__(self, parent, title) self._setup() def _setup(self): self.row_dimensions = DimensionHolder(worksheet=self, default_factory=self._add_row) self.column_dimensions = DimensionHolder(worksheet=self, default_factory=self._add_column) self.row_breaks = RowBreak() self.col_breaks = ColBreak() self._cells = {} self._charts = [] self._images = [] self._rels = RelationshipList() self._drawing = None self._comments = [] self.merged_cells = MultiCellRange() self._tables = TableList() self._pivots = [] self.data_validations = DataValidationList() self._hyperlinks = [] self.sheet_state = 'visible' self.page_setup = PrintPageSetup(worksheet=self) self.print_options = PrintOptions() self._print_rows = None self._print_cols = None self._print_area = None self.page_margins = PageMargins() self.views = SheetViewList() self.protection = SheetProtection() self._current_row = 0 self.auto_filter = AutoFilter() self.paper_size = None self.formula_attributes = {} self.orientation = None self.conditional_formatting = ConditionalFormattingList() self.legacy_drawing = None self.sheet_properties = WorksheetProperties() self.sheet_format = SheetFormatProperties() self.scenarios = ScenarioList() @property def sheet_view(self): return self.views.sheetView[0] @property def selected_cell(self): return self.sheet_view.selection[0].sqref @property def active_cell(self): return self.sheet_view.selection[0].activeCell @property def page_breaks(self): return (self.row_breaks, self.col_breaks) # legacy, remove at some point @property def show_gridlines(self): return self.sheet_view.showGridLines """ To keep compatibility with previous versions""" @property def show_summary_below(self): return self.sheet_properties.outlinePr.summaryBelow @property def show_summary_right(self): return self.sheet_properties.outlinePr.summaryRight @property def freeze_panes(self): if self.sheet_view.pane is not None: return self.sheet_view.pane.topLeftCell @freeze_panes.setter def freeze_panes(self, topLeftCell=None): if isinstance(topLeftCell, Cell): topLeftCell = topLeftCell.coordinate if topLeftCell == 'A1': topLeftCell = None if not topLeftCell: self.sheet_view.pane = None return row, column = coordinate_to_tuple(topLeftCell) view = self.sheet_view view.pane = Pane(topLeftCell=topLeftCell, activePane="topRight", state="frozen") view.selection[0].pane = "topRight" if column > 1: view.pane.xSplit = column - 1 if row > 1: view.pane.ySplit = row - 1 view.pane.activePane = 'bottomLeft' view.selection[0].pane = "bottomLeft" if column > 1: view.selection[0].pane = "bottomRight" view.pane.activePane = 'bottomRight' if row > 1 and column > 1: sel = list(view.selection) sel.insert(0, Selection(pane="topRight", activeCell=None, sqref=None)) sel.insert(1, Selection(pane="bottomLeft", activeCell=None, sqref=None)) view.selection = sel def cell(self, row, column, value=None): """ Returns a cell object based on the given coordinates. Usage: cell(row=15, column=1, value=5) Calling `cell` creates cells in memory when they are first accessed. :param row: row index of the cell (e.g. 4) :type row: int :param column: column index of the cell (e.g. 3) :type column: int :param value: value of the cell (e.g. 5) :type value: numeric or time or string or bool or none :rtype: openpyxl.cell.cell.Cell """ if row < 1 or column < 1: raise ValueError("Row or column values must be at least 1") cell = self._get_cell(row, column) if value is not None: cell.value = value return cell def _get_cell(self, row, column): """ Internal method for getting a cell from a worksheet. Will create a new cell if one doesn't already exist. """ if not 0 < row < 1048577: raise ValueError("Row numbers must be between 1 and 1048576") coordinate = (row, column) if not coordinate in self._cells: cell = Cell(self, row=row, column=column) self._add_cell(cell) return self._cells[coordinate] def _add_cell(self, cell): """ Internal method for adding cell objects. """ column = cell.col_idx row = cell.row self._current_row = max(row, self._current_row) self._cells[(row, column)] = cell def __getitem__(self, key): """Convenience access by Excel style coordinates The key can be a single cell coordinate 'A1', a range of cells 'A1:D25', individual rows or columns 'A', 4 or ranges of rows or columns 'A:D', 4:10. Single cells will always be created if they do not exist. Returns either a single cell or a tuple of rows or columns. """ if isinstance(key, slice): if not all([key.start, key.stop]): raise IndexError("{0} is not a valid coordinate or range".format(key)) key = "{0}:{1}".format(key.start, key.stop) if isinstance(key, int): key = str(key ) min_col, min_row, max_col, max_row = range_boundaries(key) if not any([min_col, min_row, max_col, max_row]): raise IndexError("{0} is not a valid coordinate or range".format(key)) if min_row is None: cols = tuple(self.iter_cols(min_col, max_col)) if min_col == max_col: cols = cols[0] return cols if min_col is None: rows = tuple(self.iter_rows(min_col=min_col, min_row=min_row, max_col=self.max_column, max_row=max_row)) if min_row == max_row: rows = rows[0] return rows if ":" not in key: return self._get_cell(min_row, min_col) return tuple(self.iter_rows(min_row=min_row, min_col=min_col, max_row=max_row, max_col=max_col)) def __setitem__(self, key, value): self[key].value = value def __iter__(self): return self.iter_rows() def __delitem__(self, key): row, column = coordinate_to_tuple(key) if (row, column) in self._cells: del self._cells[(row, column)] @property def min_row(self): """The minimium row index containing data (1-based) :type: int """ min_row = 1 if self._cells: rows = set(c[0] for c in self._cells) min_row = min(rows) return min_row @property def max_row(self): """The maximum row index containing data (1-based) :type: int """ max_row = 1 if self._cells: rows = set(c[0] for c in self._cells) max_row = max(rows) return max_row @property def min_column(self): """The minimum column index containing data (1-based) :type: int """ min_col = 1 if self._cells: cols = set(c[1] for c in self._cells) min_col = min(cols) return min_col @property def max_column(self): """The maximum column index containing data (1-based) :type: int """ max_col = 1 if self._cells: cols = set(c[1] for c in self._cells) max_col = max(cols) return max_col def calculate_dimension(self): """Return the minimum bounding range for all cells containing data (ex. 'A1:M24') :rtype: string """ if self._cells: rows = set() cols = set() for row, col in self._cells: rows.add(row) cols.add(col) max_row = max(rows) max_col = max(cols) min_col = min(cols) min_row = min(rows) else: return "A1:A1" return f"{get_column_letter(min_col)}{min_row}:{get_column_letter(max_col)}{max_row}" @property def dimensions(self): """Returns the result of :func:`calculate_dimension`""" return self.calculate_dimension() def iter_rows(self, min_row=None, max_row=None, min_col=None, max_col=None, values_only=False): """ Produces cells from the worksheet, by row. Specify the iteration range using indices of rows and columns. If no indices are specified the range starts at A1. If no cells are in the worksheet an empty tuple will be returned. :param min_col: smallest column index (1-based index) :type min_col: int :param min_row: smallest row index (1-based index) :type min_row: int :param max_col: largest column index (1-based index) :type max_col: int :param max_row: largest row index (1-based index) :type max_row: int :param values_only: whether only cell values should be returned :type values_only: bool :rtype: generator """ if self._current_row == 0 and not any([min_col, min_row, max_col, max_row ]): return iter(()) min_col = min_col or 1 min_row = min_row or 1 max_col = max_col or self.max_column max_row = max_row or self.max_row return self._cells_by_row(min_col, min_row, max_col, max_row, values_only) def _cells_by_row(self, min_col, min_row, max_col, max_row, values_only=False): for row in range(min_row, max_row + 1): cells = (self.cell(row=row, column=column) for column in range(min_col, max_col + 1)) if values_only: yield tuple(cell.value for cell in cells) else: yield tuple(cells) @property def rows(self): """Produces all cells in the worksheet, by row (see :func:`iter_rows`) :type: generator """ return self.iter_rows() @property def values(self): """Produces all cell values in the worksheet, by row :type: generator """ for row in self.iter_rows(values_only=True): yield row def iter_cols(self, min_col=None, max_col=None, min_row=None, max_row=None, values_only=False): """ Produces cells from the worksheet, by column. Specify the iteration range using indices of rows and columns. If no indices are specified the range starts at A1. If no cells are in the worksheet an empty tuple will be returned. :param min_col: smallest column index (1-based index) :type min_col: int :param min_row: smallest row index (1-based index) :type min_row: int :param max_col: largest column index (1-based index) :type max_col: int :param max_row: largest row index (1-based index) :type max_row: int :param values_only: whether only cell values should be returned :type values_only: bool :rtype: generator """ if self._current_row == 0 and not any([min_col, min_row, max_col, max_row]): return iter(()) min_col = min_col or 1 min_row = min_row or 1 max_col = max_col or self.max_column max_row = max_row or self.max_row return self._cells_by_col(min_col, min_row, max_col, max_row, values_only) def _cells_by_col(self, min_col, min_row, max_col, max_row, values_only=False): """ Get cells by column """ for column in range(min_col, max_col+1): cells = (self.cell(row=row, column=column) for row in range(min_row, max_row+1)) if values_only: yield tuple(cell.value for cell in cells) else: yield tuple(cells) @property def columns(self): """Produces all cells in the worksheet, by column (see :func:`iter_cols`)""" return self.iter_cols() def set_printer_settings(self, paper_size, orientation): """Set printer settings """ self.page_setup.paperSize = paper_size self.page_setup.orientation = orientation def add_data_validation(self, data_validation): """ Add a data-validation object to the sheet. The data-validation object defines the type of data-validation to be applied and the cell or range of cells it should apply to. """ self.data_validations.append(data_validation) def add_chart(self, chart, anchor=None): """ Add a chart to the sheet Optionally provide a cell for the top-left anchor """ if anchor is not None: chart.anchor = anchor self._charts.append(chart) def add_image(self, img, anchor=None): """ Add an image to the sheet. Optionally provide a cell for the top-left anchor """ if anchor is not None: img.anchor = anchor self._images.append(img) def add_table(self, table): """ Check for duplicate name in definedNames and other worksheet tables before adding table. """ if self.parent._duplicate_name(table.name): raise ValueError("Table with name {0} already exists".format(table.name)) if not hasattr(self, "_get_cell"): warn("In write-only mode you must add table columns manually") self._tables.add(table) @property def tables(self): return self._tables def add_pivot(self, pivot): self._pivots.append(pivot) def merge_cells(self, range_string=None, start_row=None, start_column=None, end_row=None, end_column=None): """ Set merge on a cell range. Range is a cell range (e.g. A1:E1) """ if range_string is None: cr = CellRange(range_string=range_string, min_col=start_column, min_row=start_row, max_col=end_column, max_row=end_row) range_string = cr.coord mcr = MergedCellRange(self, range_string) self.merged_cells.add(mcr) self._clean_merge_range(mcr) def _clean_merge_range(self, mcr): """ Remove all but the top left-cell from a range of merged cells and recreate the lost border information. Borders are then applied """ cells = mcr.cells next(cells) # skip first cell for row, col in cells: self._cells[row, col] = MergedCell(self, row, col) mcr.format() @property @deprecated("Use ws.merged_cells.ranges") def merged_cell_ranges(self): """Return a copy of cell ranges""" return self.merged_cells.ranges[:] def unmerge_cells(self, range_string=None, start_row=None, start_column=None, end_row=None, end_column=None): """ Remove merge on a cell range. Range is a cell range (e.g. A1:E1) """ cr = CellRange(range_string=range_string, min_col=start_column, min_row=start_row, max_col=end_column, max_row=end_row) if cr.coord not in self.merged_cells: raise ValueError("Cell range {0} is not merged".format(cr.coord)) self.merged_cells.remove(cr) cells = cr.cells next(cells) # skip first cell for row, col in cells: del self._cells[(row, col)] def append(self, iterable): """Appends a group of values at the bottom of the current sheet. * If it's a list: all values are added in order, starting from the first column * If it's a dict: values are assigned to the columns indicated by the keys (numbers or letters) :param iterable: list, range or generator, or dict containing values to append :type iterable: list|tuple|range|generator or dict Usage: * append(['This is A1', 'This is B1', 'This is C1']) * **or** append({'A' : 'This is A1', 'C' : 'This is C1'}) * **or** append({1 : 'This is A1', 3 : 'This is C1'}) :raise: TypeError when iterable is neither a list/tuple nor a dict """ row_idx = self._current_row + 1 if (isinstance(iterable, (list, tuple, range)) or isgenerator(iterable)): for col_idx, content in enumerate(iterable, 1): if isinstance(content, Cell): # compatible with write-only mode cell = content if cell.parent and cell.parent != self: raise ValueError("Cells cannot be copied from other worksheets") cell.parent = self cell.column = col_idx cell.row = row_idx else: cell = Cell(self, row=row_idx, column=col_idx, value=content) self._cells[(row_idx, col_idx)] = cell elif isinstance(iterable, dict): for col_idx, content in iterable.items(): if isinstance(col_idx, str): col_idx = column_index_from_string(col_idx) cell = Cell(self, row=row_idx, column=col_idx, value=content) self._cells[(row_idx, col_idx)] = cell else: self._invalid_row(iterable) self._current_row = row_idx def _move_cells(self, min_row=None, min_col=None, offset=0, row_or_col="row"): """ Move either rows or columns around by the offset """ reverse = offset > 0 # start at the end if inserting row_offset = 0 col_offset = 0 # need to make affected ranges contiguous if row_or_col == 'row': cells = self.iter_rows(min_row=min_row) row_offset = offset key = 0 else: cells = self.iter_cols(min_col=min_col) col_offset = offset key = 1 cells = list(cells) for row, column in sorted(self._cells, key=itemgetter(key), reverse=reverse): if min_row and row < min_row: continue elif min_col and column < min_col: continue self._move_cell(row, column, row_offset, col_offset) def insert_rows(self, idx, amount=1): """ Insert row or rows before row==idx """ self._move_cells(min_row=idx, offset=amount, row_or_col="row") self._current_row = self.max_row def insert_cols(self, idx, amount=1): """ Insert column or columns before col==idx """ self._move_cells(min_col=idx, offset=amount, row_or_col="column") def delete_rows(self, idx, amount=1): """ Delete row or rows from row==idx """ remainder = _gutter(idx, amount, self.max_row) self._move_cells(min_row=idx+amount, offset=-amount, row_or_col="row") # calculating min and max col is an expensive operation, do it only once min_col = self.min_column max_col = self.max_column + 1 for row in remainder: for col in range(min_col, max_col): if (row, col) in self._cells: del self._cells[row, col] self._current_row = self.max_row if not self._cells: self._current_row = 0 def delete_cols(self, idx, amount=1): """ Delete column or columns from col==idx """ remainder = _gutter(idx, amount, self.max_column) self._move_cells(min_col=idx+amount, offset=-amount, row_or_col="column") # calculating min and max row is an expensive operation, do it only once min_row = self.min_row max_row = self.max_row + 1 for col in remainder: for row in range(min_row, max_row): if (row, col) in self._cells: del self._cells[row, col] def move_range(self, cell_range, rows=0, cols=0, translate=False): """ Move a cell range by the number of rows and/or columns: down if rows > 0 and up if rows < 0 right if cols > 0 and left if cols < 0 Existing cells will be overwritten. Formulae and references will not be updated. """ if isinstance(cell_range, str): cell_range = CellRange(cell_range) if not isinstance(cell_range, CellRange): raise ValueError("Only CellRange objects can be moved") if not rows and not cols: return down = rows > 0 right = cols > 0 if rows: cells = sorted(cell_range.rows, reverse=down) else: cells = sorted(cell_range.cols, reverse=right) for row, col in chain.from_iterable(cells): self._move_cell(row, col, rows, cols, translate) # rebase moved range cell_range.shift(row_shift=rows, col_shift=cols) def _move_cell(self, row, column, row_offset, col_offset, translate=False): """ Move a cell from one place to another. Delete at old index Rebase coordinate """ cell = self._get_cell(row, column) new_row = cell.row + row_offset new_col = cell.column + col_offset self._cells[new_row, new_col] = cell del self._cells[(cell.row, cell.column)] cell.row = new_row cell.column = new_col if translate and cell.data_type == "f": t = Translator(cell.value, cell.coordinate) cell.value = t.translate_formula(row_delta=row_offset, col_delta=col_offset) def _invalid_row(self, iterable): raise TypeError('Value must be a list, tuple, range or generator, or a dict. Supplied value is {0}'.format( type(iterable)) ) def _add_column(self): """Dimension factory for column information""" return ColumnDimension(self) def _add_row(self): """Dimension factory for row information""" return RowDimension(self) @property def print_title_rows(self): """Rows to be printed at the top of every page (ex: '1:3')""" if self._print_rows: return self._print_rows @print_title_rows.setter def print_title_rows(self, rows): """ Set rows to be printed on the top of every page format `1:3` """ if rows is not None: if not ROW_RANGE_RE.match(rows): raise ValueError("Print title rows must be the form 1:3") self._print_rows = rows @property def print_title_cols(self): """Columns to be printed at the left side of every page (ex: 'A:C')""" if self._print_cols: return self._print_cols @print_title_cols.setter def print_title_cols(self, cols): """ Set cols to be printed on the left of every page format ``A:C` """ if cols is not None: if not COL_RANGE_RE.match(cols): raise ValueError("Print title cols must be the form C:D") self._print_cols = cols @property def print_titles(self): if self.print_title_cols and self.print_title_rows: return ",".join([self.print_title_rows, self.print_title_cols]) else: return self.print_title_rows or self.print_title_cols @property def print_area(self): """ The print area for the worksheet, or None if not set. To set, supply a range like 'A1:D4' or a list of ranges. """ return self._print_area @print_area.setter def print_area(self, value): """ Range of cells in the form A1:D4 or list of ranges """ if isinstance(value, str): value = [value] self._print_area = [absolute_coordinate(v) for v in value] def _gutter(idx, offset, max_val): """ When deleting rows and columns are deleted we rely on overwriting. This may not be the case for a large offset on small set of cells: range(cells_to_delete) > range(cell_to_be_moved) """ gutter = range(max(max_val+1-offset, idx), min(idx+offset, max_val)+1) return gutter
[ "nimadorostkar97@gmail.com" ]
nimadorostkar97@gmail.com
34cb20d94952a36b1456472333a03be16addc0c7
644163d6cafa83976fd7cb9216bbe6b1b2a25109
/ex25.py
0f988e02c4c86018c96da5732d93ef98517c3caa
[]
no_license
wen-t/Learn-Python
6f52773144b2c358aa931a22a529063a8b1ff648
ea8ccb7d1f62c73a5da9c16e12c8aa113b8a2cb7
refs/heads/master
2021-01-10T01:39:11.646276
2015-11-30T14:02:17
2015-11-30T14:02:17
45,468,678
0
0
null
null
null
null
UTF-8
Python
false
false
981
py
def break_words(stuff): """This function will break up words for us.""" words = stuff.split(' ') return words def sort_words(words): """Sorts the word.""" return sorted(words) def print_first_word(words): """Prints the first word after poppin it off.""" word = words.pop(0) print word def print_last_word(words): """Prints the last word after popping it off.""" word = words.pop(-1) print word def sort_sentence(sentence): """Takes in a full sentence and returns the sorted words.""" words = break_words(sentence) return sort_words(words) def print_first_and_last(sentence): """Prints the first and last words of the sentence.""" words = break_words(sentence) print_first_word(words) print_last_word(words) def print_first_and_last_sorted(sentence): """Sorts the words then prints the first and last one.""" words = sort_sentence(sentence) print_first_word(words) print_last_word(words)
[ "mail.wen.t@gmail.com" ]
mail.wen.t@gmail.com
76a76c143edcf3347857cf52bb1c494b0d17340f
57a0bbdacb39c652570fe4132cf6df77242480d3
/serving_patterns/src/api_composition_proxy/routers/proxy.py
011975457ef19238db90a225444a926ce465f903
[ "MIT" ]
permissive
GeHongpeng/ml-system-in-action
cca7e722f9725ce3df7372125a91c6e2405f895d
0aa9d6bc4a4346236b9c971ec90afad04bcf5cca
refs/heads/master
2023-04-16T19:47:08.367659
2021-05-01T02:07:28
2021-05-01T02:07:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,681
py
from fastapi import APIRouter, Body, BackgroundTasks import logging import aiohttp import asyncio from typing import Dict, Any from pydantic import BaseModel import uuid from src.api_composition_proxy.configurations import ServiceConfigurations from src.api_composition_proxy import helpers from src.jobs import store_data_job from src.helper import get_job_id logger = logging.getLogger(__name__) router = APIRouter() class Data(BaseModel): data: Any = None async def _get_redirect(session, url: str, alias: str) -> Dict[str, Any]: async with session.get(url) as response: response_json = await response.json() resp = {alias: {"response": response_json, "status_code": response.status}} logger.info(f"response: {resp}") return resp @router.get("/{redirect_path:path}") async def get_redirect(redirect_path: str) -> Dict[str, Any]: logger.info(f"GET redirect to: /{redirect_path}") async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=2)) as session: tasks = [ asyncio.ensure_future( _get_redirect(session, helpers.customized_redirect_builder(k, v, redirect_path, ServiceConfigurations.customized_redirect_map), k) ) for k, v in ServiceConfigurations.urls.items() ] responses = await asyncio.gather(*tasks) logger.info(f"responses: {responses}") return responses async def _post_redirect(session, url: str, data: Dict[Any, Any], alias: str) -> Dict[str, Any]: async with session.post(url, json=data) as response: response_json = await response.json() resp = {alias: {"response": response_json, "status_code": response.status}} logger.info(f"response: {resp}") return resp @router.post("/{redirect_path:path}") async def post_redirect(redirect_path: str, data: Data, background_tasks: BackgroundTasks) -> Dict[str, Any]: data.data["job_id"] = get_job_id() logger.info(f'POST redirect to: /{redirect_path} as {data.data["job_id"]}') if ServiceConfigurations.enqueue: store_data_job._save_data_job(data.data, data.data["job_id"], background_tasks, True) async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=2)) as session: tasks = [ asyncio.ensure_future( _post_redirect(session, helpers.customized_redirect_builder(k, v, redirect_path, ServiceConfigurations.customized_redirect_map), data.data, k) ) for k, v in ServiceConfigurations.urls.items() ] responses = await asyncio.gather(*tasks) logger.info(f"responses: {responses}") return responses
[ "shibuiyusuke@gmail.com" ]
shibuiyusuke@gmail.com
cddaacb4ec03f46b0039d3f454686cec9cd18af0
31ce1d0fa2f527d52c19c52e50a90e2ca83279e7
/Chapter_13/json_example2.py
6a7a9b428cb9ed6014e0f595b696a0b5cae27770
[]
no_license
Gaborjan/Python_Coursera
4ef58cbf1f5bdef12cce8d1e05a4748793dbb66a
3f53b0a9da53410f38eb3df50b4f021ba0a28784
refs/heads/master
2022-09-11T06:28:24.309200
2020-05-27T19:23:24
2020-05-27T19:23:24
255,036,306
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
import json input='''[ { "id":"001", "x":"2", "name":"Chuck" }, { "id":"009", "x":"7", "name":"Gabika" } ]''' info=json.loads(input) print(type(info)) print('User count:',len(info)) for item in info: print(type(item)) print('Name:',item["name"]) print('Id:',item["id"]) print('Attribute:',item["x"])
[ "janvari.gabor2@gmail.com" ]
janvari.gabor2@gmail.com
f9a07f1248b76978e6b8b1c52aeada5995d17cd4
ea35068bdeb270cfde9ef8cb5803c9510016a55f
/HomeFeed-Web App/HomeFeed/flaskblog/__init__.py
dd6333ffead67db53ec66f51a5405f8f4add1fe3
[]
no_license
PawanPatankar/Web_Apps
398f6c8430fb73c24e5a452504a9c45d9716bab9
997e65350005fca690341a58233e72375b39eda9
refs/heads/master
2021-07-06T23:13:39.632789
2020-10-03T07:57:08
2020-10-03T07:57:08
187,206,307
0
0
null
null
null
null
UTF-8
Python
false
false
721
py
from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_bcrypt import Bcrypt from flask_login import LoginManager from flask_mail import Mail app = Flask(__name__) app.config['SECRET_KEY']='dbd1c16a8d17965dc1e39fe73b6c4586' app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///site.db' db = SQLAlchemy(app) bcrypt = Bcrypt(app) login_manager = LoginManager(app) login_manager.login_view = 'login' login_manager.login_message_category='info' app.config['MAIL_SERVER'] = 'smtp.googlemail.com' app.config['MAIL_PORT'] = 587 app.config['MAIL_USE_TLS'] = True app.config['MAIL_USERNAME'] = "wingloryold@gmail.com" app.config['MAIL_PASSWORD'] = "25051998" mail = Mail(app) from flaskblog import routes
[ "patankarpawan03@gmail.com" ]
patankarpawan03@gmail.com
0b5cf38e9adaf27a8761abf91e7c9e0a67abfe46
955c2caeb13ac0b493d0ef147c44a0d76b5ede28
/B1_course/week12/solution.py
ee5b2523d78dcca477df413fbad0f750fd2e6b41
[]
no_license
ryanh153/Morsels
dcb079cafec63d895160a028fffdb799112cf364
087d8f4e548e31223acb39862b7491b819542320
refs/heads/master
2022-05-27T22:45:02.492518
2022-03-23T22:39:22
2022-03-23T22:39:22
214,299,982
0
0
null
null
null
null
UTF-8
Python
false
false
818
py
from random import randint from typing import List class RandMemory: """Takes in a max/min value Generates random numbers in that range (inclusive) Stores the history of numbers generated""" def __init__(self, lowest: int, highest: int) -> None: self._lowest = lowest self._highest = highest self._result_log: List[int] = list() @property def lowest(self) -> int: return self._lowest @property def highest(self) -> int: return self._highest @property def get(self) -> int: """Get a new number and log it""" self._result_log.append(randint(self.lowest, self.highest)) return self._result_log[-1] def history(self) -> List[int]: """Return list of logged numbers""" return self._result_log
[ "rhorton@scitec.com" ]
rhorton@scitec.com
f2e63399077fa27918591fffb6acefe07330bce8
98ccf9473905b25fda057d441381c3b66f4ad9a7
/interfaces/azure/vcycleAzure.py
ec518b6a11b6c600038fca67ab57821ea01102db
[ "BSD-2-Clause" ]
permissive
cjdcordeiro/vcycle
623cf6956738b614e3c2069e249252b310225f7e
26b291ff8e301def73086467a90aa6a7a4f924fb
refs/heads/master
2021-01-18T12:56:16.772671
2015-03-27T16:22:50
2015-03-27T16:22:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,196
py
from vcycleBase import vcycleBase import os import VCYCLE import uuid import time , calendar import interfaces.azure.client class vcycleAzure(vcycleBase): def _create_client(self): '''Creates a new Azure client''' tenancy = self.tenancy self.provider_name = tenancy['tenancy_name'] return interfaces.azure.client.Azure(tenancy['proxy'], tenancy['tenancy_name'], storage_account=tenancy['storage_account'], account_key=tenancy['storage_key']) def _servers_list(self): '''Returns a list of all servers created and not deleted in the tenancy''' return self.client.list_vms() def _retrieve_properties(self, server, vmtypeName, servers): '''Returns the server's properties''' properties = {} start_time = server.name[server.name.find("-",server.name.find('-')+1)+1:] properties['startTime'] = int(start_time) properties['ip'] = server.ip try: properties['heartbeatTime'] = int(os.stat('/var/lib/vcycle/machines/' + server['name'] + '/machineoutputs/vm-heartbeat').st_ctime) properties['heartbeatStr'] = str(int(time.time() - properties['heartbeatTime'])) + 's' except: properties['heartbeatTime'] = None properties['heartbeatStr'] = '-' try: properties['fizzleTime'] = int(os.stat('/var/lib/vcycle/machines/' + server.name + '/machineoutputs/vm-start').st_ctime) properties['fizzleStr'] = str(int(properties['fizzleTime']) - int(properties['startTime'])) + 's' servers[server.name]['fizzle'] = int(properties['startTime']) - int(servers[server.name]['start_time']) except Exception: properties['fizzleTime'] = None properties['fizzleStr'] = '-' VCYCLE.logLine(self.tenancyName, server.name + ' ' + (vmtypeName + ' ')[:16] + (properties['ip'] + ' ')[:16] + (server.state + ' ')[:8] + properties['fizzleStr'] + " " + properties['heartbeatStr'] + " " + str(int(time.time()) - properties['startTime'] ) + "s" ) return properties def _update_properties(self, server, vmtypeName,runningPerVmtype, notPassedFizzleSeconds, properties, totalRunning): '''Updates the server's properties''' tenancy = self.tenancy tenancyName = self.tenancyName if server.state == 'Stopped' and (properties['startTime']) < tenancy['vmtypes'][vmtypeName]['fizzle_seconds']: VCYCLE.logLine(tenancyName, server.name + ' was a fizzle! ' + properties['startTime']) + ' seconds' if server.state == 'Started': # These ones are running properly totalRunning += 1 if vmtypeName not in runningPerVmtype: runningPerVmtype[vmtypeName] = 1 else: runningPerVmtype[vmtypeName] += 1 # These ones are starting/running, but not yet passed tenancy['vmtypes'][vmtypeName]['fizzle_seconds'] if server.state in ['Starting','Started'] and \ (int(time.time() - properties['startTime']) < tenancy['vmtypes'][vmtypeName]['fizzle_seconds']): if vmtypeName not in notPassedFizzleSeconds: notPassedFizzleSeconds[vmtypeName] = 1 else: notPassedFizzleSeconds[vmtypeName] += 1 return totalRunning def _describe(self, server): '''Returns the descripion of a server. This method is empty because when the server is created, Azure returns directly all the vm description''' pass def _delete(self, server, vmtypeName, properties): '''Deletes a server''' tenancy = self.tenancy if server.state == 'Starting': return False if server.state == 'Stopped' or \ (server.state == 'Started' and ((int(time.time()) - properties['startTime']) > tenancy['vmtypes'][vmtypeName]['max_wallclock_seconds'])) or \ ( # STARTED gets deleted if heartbeat defined in configuration but not updated by the VM 'heartbeat_file' in tenancy['vmtypes'][vmtypeName] and 'heartbeat_seconds' in tenancy['vmtypes'][vmtypeName] and server.state == 'Started' and ((int(time.time()) - properties['startTime']) > tenancy['vmtypes'][vmtypeName]['heartbeat_seconds']) and ( (properties['heartbeatTime'] is None) or ((int(time.time()) - properties['heartbeatTime']) > tenancy['vmtypes'][vmtypeName]['heartbeat_seconds']) ) ): VCYCLE.logLine(self.tenancyName, 'Deleting ' + server.name) try: self.client.delete_vm(server.name) return True except Exception as e: VCYCLE.logLine(self.tenancyName, 'Delete ' + server.name + ' fails with ' + str(e)) return False def _server_name(self, name=None): '''Returns the server name''' return 'vcycle-' + name + '-' + str(int(time.time())) def _create_machine(self, server_name, vmtypeName, proxy=False): import base64 tenancy_name = self.tenancyName user_data = open("/var/lib/vcycle/user_data/%s:%s" % (tenancy_name, vmtypeName), 'r').read() return self.client.create_virtual_machine(server_name, username=VCYCLE.tenancies[tenancy_name]['vmtypes'][vmtypeName]['username'], password=VCYCLE.tenancies[tenancy_name]['vmtypes'][vmtypeName]['password'], image_name=VCYCLE.tenancies[tenancy_name]['vmtypes'][vmtypeName]['image_name'], flavor=VCYCLE.tenancies[tenancy_name]['vmtypes'][vmtypeName]['flavor_name'], user_data="/var/lib/vcycle/user_data/%s:%s" % (tenancy_name, vmtypeName))
[ "luis.villazon.esteban@cern.ch" ]
luis.villazon.esteban@cern.ch
d12d2181b7bdfe380b28d28879d1043d0486ef8b
5c96777507c87a293c34e03b5f6b768c8a6bddf2
/objeto.py
7689e82b3ca97b004818940bf4ec9e72b7fc3849
[]
no_license
mtgsjr/Machine_Learning
63f3162f9d15dd3536399b3615fe6f79f23e8dc9
f7c886f9b11d5ea6f4b858117bd1a2228eb4ce83
refs/heads/master
2023-03-15T10:18:40.536845
2021-03-04T23:57:18
2021-03-04T23:57:18
344,641,687
2
0
null
null
null
null
UTF-8
Python
false
false
558
py
import cv2 import numpy as np cam=cv2.VideoCapture(0) kernel=np.ones((5,5),np.uint8) while (1): ret,frame=cam.read() rangomax=np.array([50,255,50]) rangomin=np.array([0,51,0]) mascara=cv2.inRange(frame,rangomin,rangomax) opening=cv2.morphologyEx(mascara, cv2.MORPH_OPEN, kernel) x,y,w,h=cv2.boundingRect(opening) cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),3) cv2.circle(frame,(x+w/2,y+h/2),5,(0,0,255),-1) cv2.imshow('Camera',frame) k=cv2.waitKey(1) & 0xFF if k==27: break captura.release() cv2.destroyAllWindows()
[ "mtgsjr@hotmail.com" ]
mtgsjr@hotmail.com
229e1fd8c5d5880338a604437236c845881625d6
11228a51cf7bfe3cef852efb0de393ae42c768f2
/rules/gatk3/gatk_genotype_gvcfs.smk
46b05bc905018529fb1c2267a13a418372eaec26
[ "MIT" ]
permissive
orionzhou/snk
cd36c6ced8fb514101b1de7c70f322e76368e760
5ead8aebf5ed00a2aec15363b8023c9b75b0ed4a
refs/heads/master
2021-07-13T12:08:53.168670
2020-06-01T05:19:46
2020-06-01T05:19:46
133,903,231
0
0
null
null
null
null
UTF-8
Python
false
false
1,441
smk
def gatk_gg_cmd(wildcards): java_mem = config['java']['mem'] if 'java_mem' in config['gatk']: java_mem = config['gatk']['java_mem'] if 'java_mem' in config['gatk']['genotype_gvcfs']: java_mem = config['gatk']['genotype_gvcfs']['java_mem'] java_tmpdir = config['tmpdir'] if 'tmpdir' in config['java']: java_tmpdir = config['java']['tmpdir'] cmd = "%s -Xmx%s -Djava.io.tmpdir=%s" % (config['gatk']['cmd'], java_mem, java_tmpdir) return cmd rule gatk_genotype_gvcfs: input: expand(["%s/{sid}.g.vcf.gz" % config['gatk']['odir']], sid = config['t']['SampleID']) output: protected(config['gatk']['outfile']) log: "%s/gatk.log" % config['dirl'] params: cmd = gatk_gg_cmd, ref = config['gatk']['ref'], gvcfs = lambda wildcards, input: ["-V %s" % x for x in input], gvcf = "%s/all.g.vcf.gz" % config['gatk']['odir'], extra = config['gatk']['genotype_gvcfs']['extra'], threads: config["gatk"]['genotype_gvcfs']["threads"] shell: """ source activate gatk {params.cmd} -T CombineGVCFs \ -R {params.ref} \ {params.extra} \ {params.gvcfs} \ -o {params.gvcf} 2>{log} {params.cmd} -T GenotypeGVCFs \ -nt {threads} \ -R {params.ref} \ {params.extra} \ -V {params.gvcf} \ -o {output} 2>{log} """
[ "zhoupenggeni@gmail.com" ]
zhoupenggeni@gmail.com
f12b661134198995402bfdfd54a3df7c0e327f53
89e141cf19b1bafc5b2ef186aeb2631a893d3378
/2601/main.py
2eea3a2f9c1fc3f121e4d6879b1bb5535f7f77f7
[]
no_license
100ballovby/8v_3ch
7369c287b6f95cf3a7e54a142e8b22c8b7394183
e064d920ff12cdab65cb4dcb1132af00ae7a693c
refs/heads/master
2023-02-23T08:45:03.374521
2021-01-26T09:20:38
2021-01-26T09:20:38
329,604,273
0
0
null
null
null
null
UTF-8
Python
false
false
930
py
''' while логическое_выражение: действие 1 ... действие n ''' # просим ввести в переменную число с клавиатуры n = input('Введите число: ') # пока в переменной n не будет целого числа (int) while type(n) != int: # пытаемся привести число n к целому виду try: n = int(n) # если не получается - ловим ошибку ValueError except ValueError: # пишем об этом и просим ввести число еще раз print('Вы ввели не целое число!') n = input('Введите число: ') """Как только цикл получит целое число, он остановится""" if n % 2 == 0: print('Четное!') else: print('Нечетное!')
[ "greatraksin@icloud.com" ]
greatraksin@icloud.com
571ca496b3b9b4f0cc92ccbe72be970e9ffc1562
f7f54c3a496ed05a315919db452d0198488d7d3e
/utils.py
915f1f7d0c7cd0b52bc9db6f094269f073797d8a
[]
no_license
hiyouthinker/tcp_fsm
b3867918a079f2b8f2471b620551de4d50b0d879
d2d0a5b96fbd28a2d5b2e5df5fffcba65bdf765f
refs/heads/master
2023-04-18T01:54:30.099968
2021-05-04T22:33:25
2021-05-04T22:33:25
363,361,315
1
0
null
null
null
null
UTF-8
Python
false
false
2,090
py
#!/usr/bin/env python #coding=utf-8 ''' BigBro @ 2021.04 ''' from scapy.all import * import signal import tcp_state def send_tcp_pkts(type): keys = tcp_state.sessions.keys() for key in keys : value = tcp_state.sessions.get(key) state = value[0] seq = value[2] ack = value[1] + value[3] flags = tcp_state.tcp_flags_rstack target = "RST" substate = tcp_state.TCP_SESSION_SUBSTATE_CLOSED | tcp_state.tcp_session_server_rst if ((value[0] == tcp_state.TCP_FIN_WAIT) and (value[4] & 0x0f) == tcp_state.TCP_SESSION_SUBSTATE_CLOSED): continue if (type == 1) : flags = tcp_state.tcp_flags_fin target = "FIN" substate = tcp_state.TCP_SESSION_SUBSTATE_FIN_WAIT1 | tcp_state.tcp_session_server_fin print ("send %s to [%s:%d => %s:%d] session (state: %s, seq/ack: %d/%d, length: %d)" % (target, key[2], key[3], key[0], key[1], tcp_state.tcp_session_states[state], seq, ack, value[3])) value = (tcp_state.TCP_FIN_WAIT, value[1], value[2], value[3], substate) tcp_state.sessions.update({key : value}) l3 = IP(src=key[2], dst=key[0])/TCP(sport=key[3], dport=key[1], flags=flags, seq=seq, ack=ack) send(l3, verbose=False) def show_tcp_all_sessions(): keys = tcp_state.sessions.keys() print "\nsession table: %d item(s)" % len(keys) for key in keys : value = tcp_state.sessions.get(key) state = value[0] if (state == tcp_state.TCP_FIN_WAIT): print ("\t[%s:%d => %s:%d], state: %s/%s (first %s)" % (key[0], key[1], key[2], key[3], tcp_state.tcp_session_states[state], tcp_state.tcp_session_substates[value[4] & 0x0f], tcp_state.tcp_session_destroy_first_pkt_dir[value[4] & 0xf0])) else : print ("\t[%s:%d => %s:%d], state: %s" % (key[0], key[1], key[2], key[3], tcp_state.tcp_session_states[state])) def signal_handler(signum, stack): print 'Received: %d' % signum if (signum == signal.SIGINT): show_tcp_all_sessions() send_tcp_pkts(0) show_tcp_all_sessions() exit(0) elif (signum == signal.SIGUSR1): show_tcp_all_sessions() else : show_tcp_all_sessions() send_tcp_pkts(1) show_tcp_all_sessions()
[ "hi.youthinker@gmail.com" ]
hi.youthinker@gmail.com
514db84cd47d638f0cb747ea8fba0c4df5427e73
873bcf16ea9438d03c14bba89be548e4d566d6b7
/mini-projects/Library/microtest.py
7376990417f302e62cf964971bc1bbfe4bf6de08
[]
no_license
snaik/codeskulptor-mini-projects
4af46b3d17bff396284b9f33a1271bb3c1090e77
6a12cdf44a6fecd929b468b7ced2827649cac832
refs/heads/master
2020-12-24T16:58:42.550286
2012-11-09T08:10:06
2012-11-09T08:10:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,306
py
import types, sys, traceback class TestException(Exception): pass def test(modulename, verbose=None, log=sys.stdout): ''' Execute all functions in the named module which have __test__ in their name and take no arguments. modulename: name of the module to be tested. verbose: If true, print test names as they are executed Returns None on success, raises exception on failure. ''' module = __import__(modulename) total_tested = 0 total_failed = 0 for name in dir(module): if '__test__' in name: obj = getattr(module, name) if (isinstance(obj, types.FunctionType) and not obj.func_code.co_argcount): if verbose: print>>log, 'Testing %s' % name try: total_tested += 1 obj() except Exception, e: total_failed += 1 print>>sys.stderr, '%s.%s FAILED' % (modulename, name) traceback.print_exc() message = 'Module %s failed %s out of %s unittests.' % ( modulename, total_failed, total_tested) if total_failed: raise TestException(message) if verbose: print>>log, message def __test__(): print 'in __test__'
[ "sachin.u.naik@gmail.com" ]
sachin.u.naik@gmail.com
dd75b7eb7bc4981c28a04e678eb2541210ddbf26
b5f7f7df4c6066508dfe3667018c74424c55c2f3
/teachers/apps.py
43c7c3112f47f758302b27fda48cf990c25f9b69
[]
no_license
miha-pavel/hillel_students_tracker
539d8b13c8cd210e17d2f10232fae79a663e21c6
b510e7035faa2b5865491bf2fb167236fda9bf83
refs/heads/master
2022-12-12T04:56:52.921872
2020-02-12T05:35:29
2020-02-12T05:35:29
230,735,782
0
0
null
2022-12-08T03:27:12
2019-12-29T10:37:01
JavaScript
UTF-8
Python
false
false
211
py
from django.apps import AppConfig class TeachersConfig(AppConfig): name = 'teachers' def ready(self): # Импорт делаеться только здесь import teachers.signals
[ "pavlom@oneplanetops.com" ]
pavlom@oneplanetops.com
38e32c8adec32252e5a5ee80d1c30ea914b8702f
3992bdce87f78028fd4f9f48d954d6ccbfcd5ad5
/Codes/ssort.py
20430a46b9f9a2ee525fe4719909f9e1de665170
[]
no_license
IIInvokeII/1st_sem_python
b8d973da8349b0b0b148683dd16abe9a25d77b8d
508fe50a85f9fd056b7e53b05ea2ae1b0ae420d1
refs/heads/main
2023-07-10T22:46:58.220059
2021-08-11T11:27:20
2021-08-11T11:27:20
394,961,452
0
0
null
null
null
null
UTF-8
Python
false
false
626
py
def ssortasc(a): for i in range(len(a)): mini=i for j in range(i+1,len(a)): if(a[mini]>a[j]): mini=j a[mini],a[i]=a[i],a[mini] return a def ssortdesc(a): for i in range(len(a)): mini=i for j in range(i+1,len(a)): if(a[mini]<a[j]): mini=j a[mini],a[i]=a[i],a[mini] return a a=[76,9,233,6564,254,6,7,4,2,6,8,4,2,5,1] print(ssortasc(a)) print(ssortdesc(a)) print("--------------------") import bsort as b b.bsortasc(a) print(a) c=a[3:] print(c) print("Min :",min(c))
[ "noreply@github.com" ]
IIInvokeII.noreply@github.com
edb8a2e13321ebe34626eb8f672c16db8392b8d2
0e1e64bd49cce6e94543ba473edc69fb2547905b
/deepneuro/pipelines/Skull_Stripping/cli.py
e3b07ea02050cedd058b5d11b0e60cbb65844278
[ "MIT" ]
permissive
medical-projects/DeepRad
ab967577695c657d181adba933c2e1af81c26fab
96b16aac873089e0d766fea34ed428a59c9e9080
refs/heads/master
2021-09-22T23:09:36.208120
2018-09-12T08:53:42
2018-09-12T08:53:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,500
py
import argparse import sys import os from deepneuro.docker.docker_cli import nvidia_docker_wrapper class Skull_Stripping_cli(object): def __init__(self): parser = argparse.ArgumentParser( description='A number of pre-packaged commands used by the Quantiative Tumor Imaging Lab at the Martinos Center', usage='''skull_stripping <command> [<args>] The following commands are available: pipeline Run the entire segmentation pipeline, with options to leave certain pre-processing steps out. docker_pipeline Run the previous command via a Docker container via nvidia-docker. ''') parser.add_argument('command', help='Subcommand to run') args = parser.parse_args(sys.argv[1:2]) if not hasattr(self, args.command): print('Sorry, that\'s not one of the commands.') parser.print_help() exit(1) # use dispatch pattern to invoke method with same name getattr(self, args.command)() def parse_args(self): parser = argparse.ArgumentParser( description='''skull_strip pipeline <T1post> <FLAIR> <output_folder> [-gpu_num <int> -niftis -nobias -preprocessed -keep_outputs] Segment an image from DICOMs with all preprocessing steps included. -output_folder: A filepath to your output folder. Two nifti files will be generated "enhancingtumor.nii.gz" and "wholetumor.nii.gz" -T1POST, -FLAIR: Filepaths to input MR modalities. Inputs can be either nifti files or DICOM folders. Note that DICOM folders should only contain one volume each. -mask_output: Name of output for your binary skull mask. Should not be a filepath, like '/home/user/enhancing.nii.gz', but just a name, like "enhancing" -gpu_num: Which CUDA GPU ID # to use. Defaults to 0, i.e. the first gpu. -debiased: If flagged, data is assumed to already have been N4 bias-corrected, and skips that preprocessing step. -resampled: If flagged, data is assumed to already have been isotropically resampled, and skips that preprocessing step. -registered: If flagged, data is assumed to already have been registered into the same space, and skips that preprocessing step. -save_all_steps: If flagged, intermediate volumes in between preprocessing steps will be saved in output_folder. -save_preprocessed: If flagged, the final volume after all preprocessing steps will be saved in output_folder ''') parser.add_argument('-output_folder', type=str) parser.add_argument('-T1POST', type=str) parser.add_argument('-FLAIR', type=str) parser.add_argument('-input_directory', type=str) parser.add_argument('-mask_output', nargs='?', type=str, const='skullstrip_mask', default='skullstrip_mask.nii.gz') parser.add_argument('-gpu_num', nargs='?', const='0', default='0', type=str) parser.add_argument('-debiased', action='store_true') parser.add_argument('-resampled', action='store_true') parser.add_argument('-registered', action='store_true') parser.add_argument('-normalized', action='store_true') parser.add_argument('-save_preprocess', action='store_true') parser.add_argument('-save_all_steps', action='store_true') parser.add_argument('-output_probabilities', action='store_true') args = parser.parse_args(sys.argv[2:]) return args def pipeline(self): args = self.parse_args() os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_num) from deepneuro.pipelines.Skull_Stripping.predict import skull_strip skull_strip(output_folder=args.output_folder, T1POST=args.T1POST, FLAIR=args.FLAIR, ground_truth=None, input_directory=args.input_directory, bias_corrected=args.debiased, resampled=args.resampled, registered=args.registered, normalized=args.normalized, save_preprocess=args.save_preprocess, save_all_steps=args.save_all_steps, mask_output=args.mask_output) def docker_pipeline(self): args = self.parse_args() nvidia_docker_wrapper(['skull_strip', 'pipeline'], vars(args), ['output_folder', 'T1POST', 'FLAIR', 'input_directory'], docker_container='qtimlab/deepneuro_skull_strip:latest') def main(): Skull_Stripping_cli()
[ "andrew_beers@alumni.brown.edu" ]
andrew_beers@alumni.brown.edu
92663081b0db9c1d5fd17c8e4658db632ac361e8
ca5201a99fa9271e7833e88c5926d48a11061519
/brynweb/userdb/migrations/0017_team_tenants_available.py
ffe40d9028c0caef9ce3b53d94b1c197de939c00
[]
no_license
m-bull/bryn
c94ba0347f2e48e2f921393818150a072cd6d66a
68a42d45d1938f7219b4af1666d70cae0b34cf32
refs/heads/master
2020-03-06T19:10:25.268797
2018-08-31T12:45:45
2018-08-31T12:45:45
127,021,966
1
0
null
2018-03-27T17:41:04
2018-03-27T17:23:16
Python
UTF-8
Python
false
false
459
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-07-13 07:41 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('userdb', '0016_auto_20160712_0722'), ] operations = [ migrations.AddField( model_name='team', name='tenants_available', field=models.BooleanField(default=False), ), ]
[ "n.j.loman@bham.ac.uk" ]
n.j.loman@bham.ac.uk
c6df51600a30b2b426cae7397d74df668ae25de0
5092b7eab30ae9a1e0c17d6915b9da13ae91e663
/mit-6.00-ex/ps5/ps5_ghost.py
676e46fff504071c2180fa4abc6403ba54de1f8e
[ "Giftware" ]
permissive
Hausdorffcode/mit-ex
acf2db5d645c887b09d021aacceeddcca5bea8b8
48d34a1de35a1fd789d1cb5278a5510be356da87
refs/heads/master
2021-01-12T10:47:15.249520
2016-11-03T02:04:45
2016-11-03T02:04:45
72,699,475
0
0
null
null
null
null
UTF-8
Python
false
false
3,229
py
# Problem Set 5: Ghost # Name: # Collaborators: # Time: # import random import string # ----------------------------------- # Helper code # (you don't need to understand this helper code) import string WORDLIST_FILENAME = "words.txt" def load_words(): """ Returns a list of valid words. Words are strings of lowercase letters. Depending on the size of the word list, this function may take a while to finish. """ print "Loading word list from file..." # inFile: file inFile = open(WORDLIST_FILENAME, 'r', 0) # wordlist: list of strings wordlist = [] for line in inFile: wordlist.append(line.strip().lower()) print " ", len(wordlist), "words loaded." return wordlist def get_frequency_dict(sequence): """ Returns a dictionary where the keys are elements of the sequence and the values are integer counts, for the number of times that an element is repeated in the sequence. sequence: string or list return: dictionary """ # freqs: dictionary (element_type -> int) freq = {} for x in sequence: freq[x] = freq.get(x,0) + 1 return freq # (end of helper code) # ----------------------------------- # Actually load the dictionary of words and point to it with # the wordlist variable so that it can be accessed from anywhere # in the program. wordlist = load_words() # TO DO: your code begins here! def display_fragment(fragment): print "Current word fragment: '" + fragment + "'" def is_vaild_letter(letter): return letter in string.ascii_letters def player_number(player): if player: return '2' else: return '1' def find_str(fragment, wordlist): isIn = False for word in wordlist: if fragment in word: isIn = True return isIn def who_wins(fragment, player, wordlist): if len(fragment) > 3 and fragment in wordlist: print "Player " + player_number(player) + " loses because '" + fragment + "' is a word!" print "Player " + player_number(not player) + " wins!" return True elif not find_str(fragment, wordlist): print "Player " + player_number(player) + " loses because no word begins with '" + fragment + "'!" print "Player " + player_number(not player) + " wins!" return True else: return False def input_letter(player, fragment): letter = "1" while not is_vaild_letter(letter): if player: letter = raw_input("Player 2 says letter: ") else: letter = raw_input("Player 1 says letter: ") fragment += string.lower(letter) return fragment def whosTurn(player): if player: print "Player 2's turn." else: print "Player 1's turn." def play_game(wordlist): print "Welcome to Ghost!" player = False print "Player 1 goes first." fragment = '' display_fragment(fragment) while True: fragment = input_letter(player, fragment) print display_fragment(fragment) if who_wins(fragment, player, wordlist): break else: player = not player whosTurn(player) play_game(wordlist)
[ "m15950172843@163.com" ]
m15950172843@163.com
fc9f30f416f389d049fb8ed919eb064c11d92309
4faee7abaf73112bc07ac9c32f3ed97b26d82d52
/pirpy/io/filenames.py
26c26f0f48e6f506c0445d9d10ee8b0fd9afce74
[]
no_license
juliotux/pirpy
8eeca3cd3d03553264e9081f28aae7fff154d426
9b590d4d61fa0d8220114f6c38163c0773048942
refs/heads/master
2020-04-21T03:40:56.861887
2016-02-26T17:27:56
2016-02-26T17:27:56
38,067,852
0
0
null
null
null
null
UTF-8
Python
false
false
2,194
py
''' Functions to easy generate lists of fits files names, following some standarts. ''' from os.path import join import glob __all__ = ['from_basename', 'from_file', 'ls'] def from_basename(basename, start_count, n_img, pad, sep='_', base_dir=''): ''' This routine generates a file list, based on a basename, incrementing from a start_count by n_img times. The names follows the standart of the aquisition program from Pico dos Dias Observatory, and looks like: basename_0000.fits basename_0001.fits basename_0002.fits As this kind of name is used for other observatories, with different basename-number separator, you can set the sep variable to customize it. Parameters: basename : string The basename of the file list. start_count : int The number of the first image. n_img : int The total number of images. pad : int The number of digits to increment, like 4 for 0000.fits sep (optional) : string The string that separates the basename and the number. Default: '_' base_dir (optional) : string The path to be appended before the name. Returns: list of string: A list with the filenames. ''' return [join(base_dir,basename + sep + str(i+start_count).rjust(pad,'0') + '.fits') for i in xrange(n_img)] def from_file(filename): ''' Generates a list of files from a file that contains the list. What??? Example: $ ls *.fits >> mylist.txt mylist.txt ---- file01.fits file02.fits file03.fits ---- This code will read this and return: ['file01.fits','file02.fits','file03.fits'] Parameters: filename : string The file that contains the list. Returns: list of string: The list of the filenames found inside the file. ''' f1 = open(filename, 'rb').readlines() f2 = [] for i in f1: f2.append(i.strip('\n')) return f2 def ls(pattern): ''' Returns a list of filenames with a `ls` pattern. ''' return glob.glob(str(pattern))
[ "juliocampagnolo@gmail.com" ]
juliocampagnolo@gmail.com
0abc1075d8f5d1b2f7f2d1a31f01c198def2afc2
9e397b7e5787826534d06972ce7bb3390aab3677
/manage.py
d7c015a88c210b2a2cabe4ce7772f3f1bb913329
[]
no_license
KangSuzy/My_first_blog
88d6dca24026c00471f1b9fa0e0ca9f62b6a82e6
17b7591cde84f223a01c4265ca9f71e20f193741
refs/heads/master
2020-04-14T00:30:37.131183
2019-01-01T16:09:01
2019-01-01T16:09:01
163,535,213
1
0
null
null
null
null
UTF-8
Python
false
false
516
py
import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mysite.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
[ "astnwl321@gmail.com" ]
astnwl321@gmail.com
14cd63d1eece035c530e8b448b2b946ff4fbb808
bbea674e2c8b377dc4ba98bb32c9945d161e5c79
/Single_pair_of_images_model/unetmodel.py
5715399cf3db34f0fef73bf1782c8150250fc6a9
[]
no_license
AtilaSaraiva/Unet-LSRTM-filter
a9084382ed9e8dc2195d2c1b5d05a551b3eccec6
841bc14b57568fd07a051d140c7e7660730b6684
refs/heads/master
2023-07-02T14:16:55.790062
2021-08-11T22:28:44
2021-08-11T22:28:44
358,454,156
1
0
null
null
null
null
UTF-8
Python
false
false
11,142
py
from keras.layers import Conv2D, MaxPooling2D, Dropout, concatenate, UpSampling2D from keras.optimizers import Adam from keras.models import * from keras.utils import plot_model def unet2(pretrained_weights = None,input_size = (512,512,1)): inputs = Input(input_size) conv1 = Conv2D(64, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(inputs) conv1 = Conv2D(64, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(pool1) conv2 = Conv2D(128, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(256, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(pool2) conv3 = Conv2D(256, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv3) # pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) # conv4 = Conv2D(512, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(pool3) # conv4 = Conv2D(512, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv4) # drop4 = Dropout(0.5)(conv4) # pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) # conv5 = Conv2D(1024, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(pool4) # conv5 = Conv2D(1024, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv5) # drop5 = Dropout(0.5)(conv2) # up6 = Conv2D(512, 2, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5)) # merge6 = concatenate([drop4,up6], axis = 3) # conv6 = Conv2D(512, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(merge6) # conv6 = Conv2D(512, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv6) # up7 = Conv2D(256, 2, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6)) # merge7 = concatenate([conv3,up7], axis = 3) # conv7 = Conv2D(256, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(merge7) # conv7 = Conv2D(256, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv7) up8 = Conv2D(128, 2, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv3)) merge8 = concatenate([conv2,up8], axis = 3) conv8 = Conv2D(128, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(merge8) conv8 = Conv2D(128, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv8) up9 = Conv2D(64, 2, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8)) merge9 = concatenate([conv1,up9], axis = 3) conv9 = Conv2D(64, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(merge9) conv9 = Conv2D(64, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv9) conv9 = Conv2D(2, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv9) conv10 = Conv2D(1, 1)(conv9) model = Model(inputs = inputs, outputs = conv10) # model.compile(optimizer = Adam(lr = 1e-4), loss = 'mean_squared_error', metrics = ['mean_squared_error']) model.compile(optimizer = Adam(lr = 0.5e-4), loss = 'mean_squared_error', metrics = ['mean_squared_error']) #model.summary() plot_model(model, to_file='model.png') if(pretrained_weights): model.load_weights(pretrained_weights) return model def unet1(pretrained_weights = None,input_size = (512,512,1)): inputs = Input(input_size) conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs) conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1) conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2) conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3) conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4) drop4 = Dropout(0.5)(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4) conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5) drop5 = Dropout(0.5)(conv5) up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5)) merge6 = concatenate([drop4,up6], axis = 3) conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6) conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6) up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6)) merge7 = concatenate([conv3,up7], axis = 3) conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7) conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7) up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7)) merge8 = concatenate([conv2,up8], axis = 3) conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8) conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8) up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8)) merge9 = concatenate([conv1,up9], axis = 3) conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9) conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9) model = Model(inputs = inputs, outputs = conv1) # model.compile(optimizer = Adam(lr = 1e-4), loss = 'mean_squared_error', metrics = ['mean_squared_error']) model.compile(optimizer = Adam(lr = 1e4), loss = 'cosine_similarity', metrics = ['mean_squared_error']) #model.summary() if(pretrained_weights): model.load_weights(pretrained_weights) return model def unet(pretrained_weights = None,input_size = (512,512,1),learningRate=0.5e-4): inputs = Input(input_size) conv1 = Conv2D(64, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(inputs) conv1 = Conv2D(64, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(pool1) conv2 = Conv2D(128, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(256, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(pool2) conv3 = Conv2D(256, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Conv2D(512, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(pool3) conv4 = Conv2D(512, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv4) drop4 = Dropout(0.5)(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) conv5 = Conv2D(1024, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(pool4) conv5 = Conv2D(1024, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv5) drop5 = Dropout(0.5)(conv5) up6 = Conv2D(512, 2, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5)) merge6 = concatenate([drop4,up6], axis = 3) conv6 = Conv2D(512, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(merge6) conv6 = Conv2D(512, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv6) up7 = Conv2D(256, 2, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6)) merge7 = concatenate([conv3,up7], axis = 3) conv7 = Conv2D(256, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(merge7) conv7 = Conv2D(256, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv7) up8 = Conv2D(128, 2, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7)) merge8 = concatenate([conv2,up8], axis = 3) conv8 = Conv2D(128, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(merge8) conv8 = Conv2D(128, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv8) up9 = Conv2D(64, 2, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8)) merge9 = concatenate([conv1,up9], axis = 3) conv9 = Conv2D(64, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(merge9) conv9 = Conv2D(64, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv9) conv9 = Conv2D(2, 3, activation = 'tanh', padding = 'same', kernel_initializer = 'he_normal')(conv9) conv10 = Conv2D(1, 1, activation = 'tanh')(conv9) model = Model(inputs = inputs, outputs = conv10) # model.compile(optimizer = Adam(lr = 1e-4), loss = 'mean_squared_error', metrics = ['mean_squared_error']) model.compile(optimizer = Adam(learning_rate = learningRate), loss = 'mean_squared_error', metrics = ['mean_squared_error']) #model.summary() if(pretrained_weights): model.load_weights(pretrained_weights) return model if __name__ == "__main__": model = unet() plot_model(model, to_file='model.png')
[ "atilasaraiva@gmail.com" ]
atilasaraiva@gmail.com
1c06cea3dc146b10c247aa89165127ff7527308d
4e891592463f5daa53573a89a8ed3eaa1ca20c30
/test/test_db_matches_ui.py
2fa2528d8dceae2b116d1aff18b82467a79d3f58
[ "Apache-2.0" ]
permissive
Doc-fee/python_training
36940047e5cd8d21a44e2b51e5fbf82e68e5684c
67464bba88a6ddfc05eb93fde4866de6b0542b63
refs/heads/master
2021-04-14T05:21:02.346418
2020-05-25T17:35:22
2020-05-25T17:35:22
249,209,496
0
0
null
null
null
null
UTF-8
Python
false
false
317
py
from model.grroup import Group def test_group_list(app, db): ui_list = app.group.get_group_list() def clean(group): return Group(id=group.id, name=group.name.strip()) db_list = map(clean, db.get_group_list()) assert sorted(ui_list, key=Group.id_or_max) == sorted(db_list, key=Group.id_or_max)
[ "bugsbunny.k38@gmail.ru" ]
bugsbunny.k38@gmail.ru
f7757b2880b47dfefd72c18007828fbbe1155d51
4dfea1afb726814bb6ff8d4f1da8b1106afe39a7
/istype/internal/__init__.py
440c5a335bbba2b9587b71d6b06f6ac0829e2973
[ "MIT" ]
permissive
Cologler/istype-python
ddd1b7341d2b940fccdf5f32d370842936fb7b95
b4dcea88468b1ee43ebb36413b099e3e8508b3ce
refs/heads/master
2021-06-05T18:40:54.585381
2020-06-29T03:43:44
2020-06-29T03:43:44
114,655,652
6
0
MIT
2020-06-29T03:43:00
2017-12-18T15:16:22
Python
UTF-8
Python
false
false
375
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2017~2999 - cologler <skyoflw@gmail.com> # ---------- # # ---------- import os import importlib from .common import TypeMatcher for name in os.listdir(os.path.dirname(__file__)): if name.startswith('_') or not name.endswith('.py'): continue importlib.import_module('.' + name[:-3], __name__)
[ "skyoflw@gmail.com" ]
skyoflw@gmail.com
f83352d6e3685adb02728b8444acd02c40e198b8
8a2aa2c4480c0c874275a8d8984d292b495bdd16
/tutorons/common/migrations/0002_auto_20160208_0000.py
a0b707c5149c3271fca3c98ba71d4e6a627797f3
[]
no_license
andrewhead/tutorons-server
76318bf75420f962da55c4acbd1b3c9fa56dd7ce
8ea4cc3d7d1431de03aef1806d7d5f6e4a2fa3c0
refs/heads/master
2021-01-15T13:14:20.157931
2018-10-24T18:17:42
2018-10-24T18:17:42
26,420,128
7
2
null
2016-07-08T06:53:38
2014-11-10T03:53:42
Python
UTF-8
Python
false
false
569
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('common', '0001_initial'), ] operations = [ migrations.AddField( model_name='region', name='end_time', field=models.DateTimeField(null=True, blank=True), ), migrations.AddField( model_name='region', name='start_time', field=models.DateTimeField(null=True, blank=True), ), ]
[ "head.andrewm@gmail.com" ]
head.andrewm@gmail.com
d1394ce8aee7d45bdd5c7b4ac0743949f87e6994
985013eb7f20a38b756ca1f000971df1cd0f0746
/LoadAllJsonFilesFromDir.py
d939bdecd551ce0bc0f121ffbb0e883f972c16c5
[]
no_license
hasantuberlin/Impro-project
6fc3ee344cf840ee5f9fe89fb72769a7aa05cc6a
a52f6b03b584cce75004eecea5fa1edbc9f2a2ab
refs/heads/master
2023-01-05T03:27:12.558540
2020-11-05T12:37:01
2020-11-05T12:37:01
310,293,438
0
0
null
null
null
null
UTF-8
Python
false
false
614
py
''' loading data in elasticsearch ''' import requests, json, os from elasticsearch import Elasticsearch #connecting to elastic search res = requests.get('http://localhost:9200') print (res.content) es = Elasticsearch([{'host': 'localhost', 'port': '9200'}]) directory = os.getcwd() for filename in os.listdir(directory): if filename.endswith(".json"): f = open(filename) print(filename) #docket_content = f.read() # Send the data into es #es.index(index='myindex', ignore=400, doc_type='docket', #id=i, body=json.loads(docket_content)) #i = i + 1
[ "hasan.1@campus.tu-berlin.de" ]
hasan.1@campus.tu-berlin.de
ada4d7c93cd7370c5ea393351b6cc0a57da531b7
1643d6745b3806e7c52c6ea7e744ebee0eb518fd
/SE_Backend/ContestPlus/migrations/0006_auto_20201210_1617.py
988b5e354d1897ba1f24fd5b59fc80a42b57dce1
[]
no_license
cobs14/SE_ContestServicePlatform
7eb3279a5f42bc34343eabaa303789d984e2834a
3a3d9d4fe7cbfa6a61110a7ea7da7eb5e7db4535
refs/heads/master
2023-02-27T19:58:32.348228
2021-01-31T13:19:53
2021-01-31T13:19:53
299,851,916
1
0
null
null
null
null
UTF-8
Python
false
false
410
py
# Generated by Django 3.1.3 on 2020-12-10 16:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('ContestPlus', '0005_contest_publishresult'), ] operations = [ migrations.AlterField( model_name='user', name='userType', field=models.CharField(default='guest', max_length=16), ), ]
[ "52957393+LiXCloudland@users.noreply.github.com" ]
52957393+LiXCloudland@users.noreply.github.com
e9f99dd72dc9800d274ca3b2ee210f847433f7ee
be4de24b9cca2fe00328c30c609e53b46e698d17
/quandl_to_db.py
140d170e7c6373def894c2590ae2fb11f8d7c165
[]
no_license
carstenf/Security-Master
2544a8a18c293be5b8b38a4c80d07dbb5f110756
230a029c1d942a8be2af042e5ab4cb6503b02c57
refs/heads/master
2021-08-22T04:09:22.134263
2021-01-10T13:55:11
2021-01-10T13:55:11
242,366,399
15
4
null
null
null
null
UTF-8
Python
false
false
33,363
py
import time import math import pandas as pd from sqlalchemy import create_engine from tqdm import tqdm import quandl import zipfile import timeit # create the engine for the database engine = create_engine('mysql+mysqlconnector://root:root@localhost/securities_master') # define path to data dump from data vendor #path_dir = '/Users/carsten/opt/data/quandl/' path_dir = '/Users/carsten/ziplinetools/data/quandl/' #ext = '.zip' # for data downloaded with this method -> quandl.export_table('SHARADAR/TICKERS', filename=path) #ext = '.csv' # download manually from Quandl # input you Quand Api key quandl.ApiConfig.api_key = 'Quand Api key' quandl.ApiConfig.api_version = '2015-04-09' # if initalise_from_quandl == TRUE, download budels from Quandel and store them on the disk # if initalise_from_quandl == False, read from on the disk # from_quandl = False # mode_db == 1 read everything / from disk, with manual downloaded file from quandl # mode_db == 2 read everything / get data directly fom quandel with Quand Api key mode_db = 1 # todo, define as input if mode_db == 1: from_quandl = False ext = '.csv' if mode_db == 2: from_quandl = True ext = '.zip' def get_symbol_security_id_quandl(qtable): ## get ticker symbol and security_id relation # query data_vendor_id from the data_vendor table query = """SELECT id FROM data_vendor WHERE name = 'Quandl';""" value = pd.read_sql_query(query, engine) data_vendor_id = value.id[0].astype(int) # query ticker symbols and the ticker_id from the security table query_1 = """SELECT ticker, id FROM security WHERE """ # choose the Quandel table, ticker for SF1=fundamental , SEP=price or SFP=ETF,INDEX if qtable == 'SF1': query_2 = """ ttable = '{}' """.format( 'SF1') if qtable == 'SEP': query_2 = """ ttable = '{}' """.format( 'SEP') if qtable == 'SFP': query_2 = """ ttable = '{}' """.format( 'SFP') query_3 = """ and data_vendor_id = {} """.format( data_vendor_id ) query = query_1 + query_2 + query_3 # query securities_master result = pd.read_sql_query(query, engine) return result def get_name_exchange_id(): query = """SELECT id, name FROM exchange;""" result = pd.read_sql_query(query, engine) return result def initalise_database(): ############################## fill the 3 small table Data Vendor, Asset Class and Exchange Table ######## #Define Data Vendors and populate data_vendor table df_vendor=pd.DataFrame({'names': ['Quandl','yahoo'], 'website': ['www.qandl.com', 'www.yahoo.com']}) # Fill Data Vendor # initial insert_init = """insert into data_vendor (name, website_url) values """ # Add values for all days to the insert statement vals = ",".join(["""('{}','{}')""".format(row.names,row.website)for items,row in df_vendor.iterrows()]) # Handle duplicates - Avoiding errors if you've already got some data # in your table insert_end = """ on duplicate key update name=values(name),website_url=values(website_url);""" # Put the parts together query = insert_init + vals + insert_end # Fire insert statement engine.execute(query) Process=True print('data_vendor table filled') # Define Asset Classes and populate asset_class table list_asset=['stocks','future'] # Fill Asset Class # initial insert_init = """insert into asset_class (asset_class) values """ # Add values for all days to the insert statement vals = ",".join(["""('{}')""".format(items)for items in list_asset]) # Handle duplicates - Avoiding errors if you've already got some data # in your table insert_end = """ on duplicate key update asset_class=values(asset_class);""" # Put the parts together query = insert_init + vals + insert_end # Fire insert statement engine.execute(query) Process=True print('asset_class table filled') # Define Exchanges and populate exchange table df_exchange=pd.DataFrame({'exchange': ['NYSE','NASDAQ','NYSEMKT','OTC','NYSEARCA','BATS','INDEX','None'], 'currency': ['USD','USD','USD','USD','USD','USD','P','None']}) # Fill Exchange # initial insert_init = """insert into exchange (name, currency) values """ # Add values for all days to the insert statement vals = ",".join(["""('{}','{}')""".format(row.exchange,row.currency)for items,row in df_exchange.iterrows()]) # Handle duplicates - Avoiding errors if you've already got some data # in your table insert_end = """ on duplicate key update name=values(name),currency=values(currency);""" # Put the parts together query = insert_init + vals + insert_end # Fire insert statement engine.execute(query) Process=True print('exchange table filled') def fill_ticker(): ############################################################## Fill Security / Ticker table ## next step, need always updates if new ipo's exists # Polulate security table with ticker symbols # defintion of the asset class # need to be adjusted if other securities should be read into database # query asset_class_id query = """SELECT id FROM asset_class WHERE asset_class = 'stocks';""" value = pd.read_sql_query(query, engine) asset_class_id = value.id[0].astype(int) # definition of the vendor # need to be adjusted if other securities should be read into database # query data_vendor_id query = """SELECT id FROM data_vendor WHERE name = 'Quandl';""" value = pd.read_sql_query(query, engine) data_vendor_id = value.id[0].astype(int) # read ticker data from file file_name = 'SHARADAR_TICKERS' + ext path = path_dir + file_name data = pd.read_csv(path) data = data.fillna(0) # sending the ticker information to the security table insert_init = """insert into security (ticker, name, code, sector, isdelisted, ttable, category, exchange_id, asset_class_id, data_vendor_id) values """ # get the exchange and exchange_id relation name_ex_id=get_name_exchange_id() for index, row in tqdm(data.iterrows(), total=data.shape[0]): # check if empty if name_ex_id[name_ex_id['name'] == row.exchange ].empty: print ("""please add ("{}") to exchange list""".format(row.exchange) ) # find the exchange_id exchange_id=name_ex_id[name_ex_id['name'] == row.exchange ].id.iloc[0] if math.isnan(exchange_id): print('error, exchange not in database') print(row.exchange) # Add values for all days to the insert statement vals = """("{}","{}",{},"{}","{}","{}","{}",{},{},{})""".format( row.ticker, row['name'], row.siccode, row.sector, row.isdelisted, row.table, row.category, exchange_id, asset_class_id, data_vendor_id) # write all the data into memory and dump them all to the database to improve speed # not possible with price and fundamental table; gets overflow message from database # if there is an error regarding overflow from database, remove this and change it accordingly if index == 0: all_vals=vals else: all_vals= ",".join([all_vals,vals]) # Handle duplicates - Avoiding errors if you've already got some data # in your table insert_end = """ on duplicate key update ticker =values(ticker), name =values(name), code =values(code), sector =values(sector), isdelisted =values(isdelisted), ttable =values(ttable), category =values(category), exchange_id =values(exchange_id), asset_class_id=values(asset_class_id), data_vendor_id=values(data_vendor_id) ;""" # Put the parts together query = insert_init + all_vals + insert_end #query = insert_init + vals + insert_end # Fire insert statement engine.execute(query) Process=True print('ticker table filled') def fill_SP500_member(): ################################################################ fill SP00 Members table # exchange_id, vendor_id and asset_class_id relation is already stored in the security_id # read data from file file_name = 'SHARADAR_SP500' + ext path = path_dir + file_name data_read = pd.read_csv(path) # get symbol and security_id from Quandl query_result_df = get_symbol_security_id_quandl('SEP') for index, row in tqdm(query_result_df.iterrows(), total=query_result_df.shape[0]): tik = row.ticker security_id = row.id data = data_read.loc[data_read['ticker'] == tik ] # handle NaN data = data.fillna(0) #print(data) if not data.empty: # sending the information to the security table insert_init = """insert into SP500_const (date, action, ticker, contraticker, security_id) values """ # Add values for all days to the insert statement vals = ",".join(["""('{}','{}','{}','{}',{})""".format( row.date, row.action, row.ticker, row.contraticker, security_id) for index, row in data.iterrows()]) insert_end = """ on duplicate key update date =values(date), action =values(action), ticker =values(ticker), contraticker =values(contraticker), security_id =values(security_id) ;""" # Put the 3 query parts together query = insert_init + vals + insert_end # Fire insert statement engine.execute(query) Process=True print('SP500_const table filled') def fill_corporate_action(): ############################################################## fill corporate action # exchange_id, vendor_id and asset_class_id relation is already stored in the security_id # read data from file file_name = 'SHARADAR_ACTIONS' + ext path = path_dir + file_name data_read = pd.read_csv(path) # get symbol and security_id from Quandl query_result_df = get_symbol_security_id_quandl('SEP') for index, row in tqdm(query_result_df.iterrows(), total=query_result_df.shape[0]): tik = row.ticker security_id = row.id data = data_read.loc[data_read['ticker'] == tik ] # handle NaN data = data.fillna(0) if not data.empty: # send the prices to the daily_price table insert_init = """insert into corp_action (date, action, value, contraticker, security_id) values """ # Add values for all days to the insert statement vals = ",".join(["""('{}','{}',{},'{}',{})""".format ( row.date, row.action, row.value, row.contraticker, security_id ) for index, row in data.iterrows()]) insert_end = """ on duplicate key update date =values(date), action =values(action), value =values(value), contraticker =values(contraticker), security_id =values(security_id) ;""" # Put the 3 query parts together query = insert_init + vals + insert_end # Fire insert statement #print(query) engine.execute(query) Process=True print('corp_action table filled') def fill_price_div_data(name): ###################################### populate price table ########### populate dividents table ###### this part ist still very very slow, needs around 12 hours to store in database...... # exchange_id, vendor_id and asset_class_id relation is already stored in the security_id # read price into memonry if name == 'SEP': file_name = 'SHARADAR_SEP' + ext # get symbol and security_id from Quandl query_result_df = get_symbol_security_id_quandl('SEP') if name == 'SFP': file_name = 'SHARADAR_SFP' + ext # get symbol and security_id from Quandl query_result_df = get_symbol_security_id_quandl('SFP') path = path_dir + file_name print('reading {} '.format(path)) data_price = pd.read_csv(path) insert_init_price = """insert into daily_price (trade_date, open, high, low, close, closeunadj, volume , security_id) values """ insert_end_price = """ on duplicate key update trade_date =values(trade_date), open =values(open), high =values(high), low =values(low), close =values(close), closeunadj =values(closeunadj), volume =values(volume), security_id =values(security_id) ;""" insert_init_div = """insert into dividends (date, dividends, security_id) values """ insert_end_div = """ on duplicate key update date =values(date), dividends =values(dividends), security_id =values(security_id) ;""" #j=0 # got it from last run , TODO tqdm for ticker, data in tqdm(data_price.groupby('ticker')): #j=j+1 #print(j,ticker) if not data.empty: if not query_result_df[query_result_df.ticker == ticker ].empty: security_id=query_result_df[query_result_df.ticker == ticker ].id.iloc[0] # handle NaN, database error if get NaN data = data.fillna(0) #data.fillna(method='ffill', inplace=True) #Add values for all days to the insert statement vals = ",".join(["""('{}',{},{},{},{},{},{},{})""".format ( data.at[i, 'date'], data.at[i, 'open'], data.at[i, 'high'], data.at[i, 'low'], data.at[i, 'close'], data.at[i, 'closeunadj'], data.at[i, 'volume'], security_id ) for i in data.index]) # Put the 3 query parts together query = insert_init_price + vals + insert_end_price # Fire insert statement engine.execute(query) Process=True # send the dividends to the dividends table # Add values for all days to the insert statement vals = ",".join(["""('{}',{},{})""".format ( data.at[i, 'date'], data.at[i, 'dividends'], security_id ) for i in data.index]) # Put the 3 query parts together query = insert_init_div + vals + insert_end_div # Fire insert statement engine.execute(query) Process=True else: print(""" ("{}") not in the SEP or SEF dump file""".format(ticker) ) else: # don't print that message for update==True, as a lot of the ticker are delisted print("""Missing, no price data for ("{}") found""".format(ticker) ) print('{} daily_price table filled and dividends table filled'.format(name)) def fill_fundamental_data(): ############################################################ populate fundamentals table ###### this part ist as well still very very slow to store in database...... # exchange_id, vendor_id and asset_class_id relation is already stored in the security_id # read price into memonry file_name = 'SHARADAR_SF1' + ext path = path_dir + file_name data_funda = pd.read_csv(path) # Build a list with tickers from security table query_result_df = get_symbol_security_id_quandl('SF1') # send the prices to the daily_price table insert_init = """insert into fundamental (revenue, cor, sgna, rnd, opex, intexp, taxexp, netincdis, consolinc, netincnci, netinc, prefdivis, netinccmn, eps, epsdil, shareswa, shareswadil, capex, ncfbus, ncfinv, ncff, ncfdebt, ncfcommon, ncfdiv, ncfi, ncfo, ncfx, ncf, sbcomp, depamor, assets, cashneq, investments, investmentsc, investmentsnc, deferredrev, deposits, ppnenet, inventory, taxassets, receivables, payables, intangibles, liabilities, equity, retearn, accoci, assetsc, assetsnc, liabilitiesc, liabilitiesnc, taxliabilities, debt, debtc, debtnc, ebt, ebit, ebitda, fxusd, equityusd, epsusd, revenueusd, netinccmnusd, cashnequsd, debtusd, ebitusd, ebitdausd, sharesbas, dps, sharefactor, marketcap, ev, invcap, equityavg, assetsavg, invcapavg, tangibles, roe, roa, fcf, roic, gp, opinc, grossmargin, netmargin, ebitdamargin, ros, assetturnover, payoutratio, evebitda, evebit, pe, pe1, sps, ps1, ps, pb, de, divyield, currentratio, workingcapital, fcfps, bvps, tbvps, price, ticker, dimension, calendardate, datekey,reportperiod, lastupdated, security_id) values """ insert_end = """ on duplicate key update revenue =values(revenue), cor =values(cor), sgna =values(sgna), rnd =values(rnd), opex =values(opex), intexp =values(intexp), taxexp =values(taxexp), netincdis =values(netincdis), consolinc =values(consolinc), netincnci =values(netincnci), netinc =values(netinc), prefdivis =values(prefdivis), netinccmn =values(netinccmn), eps =values(eps), epsdil =values(epsdil), shareswa =values(shareswa), shareswadil =values(shareswadil), capex =values(capex), ncfbus =values(ncfbus), ncfinv =values(ncfinv), ncff =values(ncff), ncfdebt =values(ncfdebt), ncfcommon =values(ncfcommon), ncfdiv =values(ncfdiv), ncfi =values(ncfi), ncfo =values(ncfo), ncfx =values(ncfx), ncf =values(ncf), sbcomp =values(sbcomp), depamor =values(depamor), assets =values(assets), cashneq =values(cashneq), investments =values(investments), investmentsc =values(investmentsc), investmentsnc =values(investmentsnc), deferredrev =values(deferredrev), deposits =values(deposits), ppnenet =values(ppnenet), inventory =values(inventory), taxassets =values(taxassets), receivables =values(receivables), payables =values(payables), intangibles =values(intangibles), liabilities =values(liabilities), equity =values(equity), retearn =values(retearn), accoci =values(accoci), assetsc =values(assetsc), assetsnc =values(assetsnc), liabilitiesc =values(liabilitiesc), liabilitiesnc =values(liabilitiesnc), taxliabilities =values(taxliabilities), debt =values(debt), debtc =values(debtc), debtnc =values(debtnc), ebt =values(ebt), ebit =values(ebit), ebitda =values(ebitda), fxusd =values(fxusd), equityusd =values(equityusd), epsusd =values(epsusd), revenueusd =values(revenueusd), netinccmnusd =values(netinccmnusd), cashnequsd =values(cashnequsd), debtusd =values(debtusd), ebitusd =values(ebitusd), ebitdausd =values(ebitdausd), sharesbas =values(sharesbas), dps =values(dps), sharefactor =values(sharefactor), marketcap =values(marketcap), ev =values(ev), invcap =values(invcap), equityavg =values(equityavg), assetsavg =values(assetsavg), invcapavg =values(invcapavg), tangibles =values(tangibles), roe =values(roe), roa =values(roa), fcf =values(fcf), roic =values(roic), gp =values(gp), opinc =values(opinc), grossmargin =values(grossmargin), netmargin =values(netmargin), ebitdamargin =values(ebitdamargin), ros =values(ros), assetturnover =values(assetturnover), payoutratio =values(payoutratio), evebitda =values(evebitda), evebit =values(evebit), pe =values(pe), pe1 =values(pe1), sps =values(sps), ps1 =values(ps1), ps =values(ps), pb =values(pb), de =values(de), divyield =values(divyield), currentratio =values(currentratio), workingcapital =values(workingcapital), fcfps =values(fcfps), bvps =values(bvps), tbvps =values(tbvps), price =values(price), ticker =values(ticker), dimension =values(dimension), calendardate =values(calendardate), datekey =values(datekey), reportperiod =values(reportperiod), lastupdated =values(lastupdated), security_id =values(security_id) ;""" #i=0 # got it from last run , TODO tqdm for ticker, result in tqdm(data_funda.groupby('ticker')): #i=i+1 #print(i,ticker) if not result.empty: if not query_result_df[query_result_df.ticker == ticker ].empty: security_id=query_result_df[query_result_df.ticker == ticker ].id.iloc[0] # copy required dimensions into data # ???? (result.loc[result.dimension == 'MRY' ] and result.[result.dimension == 'MRY' ] gets same result ???) #result6 = result.loc[result.dimension == 'MRY' ] #result5 = result.loc[result.dimension == 'MRQ'] #result4 = result.loc[result.dimension == 'MRT'] result3 = result.loc[result.dimension == 'ARY'] result2 = result.loc[result.dimension == 'ARQ' ] result1 = result.loc[result.dimension == 'ART' ] data = pd.concat([result1, result2, result3], ignore_index=True) if not data.empty: # handle NaN, database error if get NaN data = data.fillna(0) #data.fillna(method='ffill', inplace=True) # did not work # Add values for all days to the insert statement vals = ",".join(["""( {},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{}, {},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{}, {},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{}, {},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{}, {},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{}, {},{},{},{},{},'{}','{}','{}','{}','{}', '{}',{})""".format ( row.revenue, row.cor, row.sgna, row.rnd, row.opex, row.intexp, row.taxexp, row.netincdis, row.consolinc, row.netincnci, row.netinc, row.prefdivis, row.netinccmn, row.eps, row.epsdil, row.shareswa, row.shareswadil, row.capex, row.ncfbus, row.ncfinv, row.ncff, row.ncfdebt, row.ncfcommon, row.ncfdiv, row.ncfi, row.ncfo, row.ncfx, row.ncf, row.sbcomp, row.depamor, row.assets, row.cashneq, row.investments, row.investmentsc, row.investmentsnc, row.deferredrev, row.deposits, row.ppnenet, row.inventory, row.taxassets, row.receivables, row.payables, row.intangibles, row.liabilities, row.equity, row.retearn, row.accoci, row.assetsc, row.assetsnc, row.liabilitiesc, row.liabilitiesnc, row.taxliabilities, row.debt, row.debtc, row.debtnc, row.ebt, row.ebit, row.ebitda, row.fxusd, row.equityusd, row.epsusd, row.revenueusd, row.netinccmnusd, row.cashnequsd, row.debtusd, row.ebitusd, row.ebitdausd, row.sharesbas, row.dps, row.sharefactor, row.marketcap, row.ev, row.invcap, row.equityavg, row.assetsavg, row.invcapavg, row.tangibles, row.roe, row.roa, row.fcf, row.roic, row.gp, row.opinc, row.grossmargin, row.netmargin, row.ebitdamargin, row.ros, row.assetturnover, row.payoutratio, row.evebitda, row.evebit, row.pe, row.pe1, row.sps, row.ps1, row.ps, row.pb, row.de, row.divyield, row.currentratio, row.workingcapital, row.fcfps, row.bvps, row.tbvps, row.price, row.ticker, row.dimension, row.calendardate, row.datekey, row.reportperiod, row.lastupdated, security_id) for index, row in data.iterrows()]) # Put the 3 query parts together query = insert_init + vals + insert_end # Fire insert statement engine.execute(query) Process=True else: # theoretical should be no error, only if ticker is in the fundamental ist and is not in the ticker list print("""Strange, no ticker found in security db but fundamental data for ("{}") exist""".format(ticker) ) else: # don't print that message for update==True, as a lot of the ticker are delisted print("""Missing, no fundamental data for ("{}") found""".format(ticker) ) print('fundamental table filled') if __name__ == '__main__': # update or initialize same method if from_quandl == True: print('get ticker data from Quandl...') file_name = 'SHARADAR_TICKERS.zip' path = path_dir + file_name dummy = quandl.export_table('SHARADAR/TICKERS', filename=path) # download SP00 Members table print('get SP00 Members from Quandl...') file_name = 'SHARADAR_SP500.zip' path = path_dir + file_name dummy = quandl.export_table('SHARADAR/SP500', filename=path) # download corporate action print('get corporate action from Quandl...') file_name = 'SHARADAR_ACTIONS.zip' path = path_dir + file_name dummy = quandl.export_table('SHARADAR/ACTIONS', filename=path) # download SEP price data print('get price data from Quandl...downloading price date, takes 5 min') file_name = 'SHARADAR_SEP.zip' path = path_dir + file_name dummy = quandl.export_table('SHARADAR/SEP', filename=path) # download SFP price data print('get price data from Quandl...downloading price date, takes 5 min') file_name = 'SHARADAR_SFP.zip' path = path_dir + file_name dummy = quandl.export_table('SHARADAR/SFP', filename=path) # download fundamental data print('get fundamental data from Quandl...downloading fundamental date, takes 5 min') file_name = 'SHARADAR_SF1.zip' path = path_dir + file_name dummy = quandl.export_table('SHARADAR/SF1', filename=path) print('All files downloaded from Quandl') # else # read everything from disk initalise_database() fill_ticker() fill_SP500_member() fill_corporate_action() fill_price_div_data('SEP') fill_price_div_data('SFP') fill_fundamental_data() print('job done')
[ "noreply@github.com" ]
carstenf.noreply@github.com
3d1e6770334522878a01c66e9e49e03b04187275
31b482a5a44209a7a0607acd7a28ff30a70fc412
/aladdin-cas/init/init_object_detection.py
dca6024bb4d48c28e4eac7bb6616da5ddc0e201e
[]
no_license
ARES3366/aladdin
3ac526ccff98972233c05c262e38e434d0fcf235
fb268cf7901322bb16b8b295f2c791628665bfb8
refs/heads/main
2023-08-20T11:42:21.614951
2021-10-28T07:25:55
2021-10-28T07:25:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,755
py
from utils import get_mongo_client, mongo_config, milvus_config from time import sleep from milvus import Milvus, IndexType, MetricType, Status def init_object_detection_mongodb(): try: print(mongo_config) client, _ = get_mongo_client(mongo_config) db = client[mongo_config["db"]] db["object_detection"].create_index("url") db["object_detection"].create_index("vid") db["tbl_face_info"].drop() return True except Exception as e: print(e) return False def init_object_detection_milvus(): collection_name = "object_detection" try: print("Name of Milvus' Collection : {} ".format(collection_name)) milvus = Milvus(host=milvus_config["host"], port=milvus_config["port"]) param = { 'collection_name': collection_name, 'dimension': 128, 'index_file_size': 1024, 'metric_type': MetricType.L2 } milvus.create_collection(param) for i in range(1000): milvus.create_partition(collection_name, str(i)) ivf_param = {"m": 16, "nlist": 1024} milvus.create_index(collection_name, IndexType.IVF_PQ, ivf_param) return True except Exception as e: print(e) return False def init_face_recognition_milvus(): collection_name = "face_recognition" try: print("Name of Milvus' Collection : {} ".format(collection_name)) milvus = Milvus(host=milvus_config["host"], port=milvus_config["port"]) param = { 'collection_name': collection_name, 'dimension': 128, 'index_file_size': 1024, 'metric_type': MetricType.L2 } milvus.create_collection(param) ivf_param = {"m": 16, "nlist": 1024} milvus.create_index(collection_name, IndexType.IVF_PQ, ivf_param) return True except Exception as e: print(e) return False def init_object_detection(): x = 1 while True: print("=="*14 + " Ready to Init MongoDB In Object Detection : {} ".format(x) + "=="*14) res = init_object_detection_mongodb() if res: print("=="*14 + " Successfully Initialized MongoDB In Object Detection " + "=="*14 + "\n\n") break else: print("=="*14 + " Failed Initialization MongoDB In Object Detection " + "=="*14 + "\n\n") print("Sleep for {ti} minutes and try again : {tim} times.".format(ti=5*x, tim=x)) sleep(300*x) continue y = 1 while True: print("=="*14 + " Ready to Init Milvus In Object Detection : {} ".format(y) + "=="*14) res = init_object_detection_milvus() if res: print("=="*14 + " Successfully Initialized Milvus In Object Detection " + "=="*14 + "\n\n") break else: print("=="*14 + " Failed Initialization Milvus In Object Detection " + "=="*14 + "\n\n") print("Sleep for {ti} minutes and try again : {tim} times.".format(ti=5*y, tim=y)) sleep(300*y) continue while True: print("=="*14 + " Ready to Init Milvus In Object Detection : {} ".format(y) + "=="*14) res = init_face_recognition_milvus() if res: print("=="*14 + " Successfully Initialized Milvus In Object Detection " + "=="*14 + "\n\n") break else: print("=="*14 + " Failed Initialization Milvus In Object Detection " + "=="*14 + "\n\n") print("Sleep for {ti} minutes and try again : {tim} times.".format(ti=5*y, tim=y)) sleep(300*y) continue if __name__ == "__main__": init_object_detection()
[ "1010276502@qq.com" ]
1010276502@qq.com
818d0b9f2d7a27de56e82aac986ec04fa6af6318
05dfa7cf71dddb604d8835cc9c16f31c4992f260
/orders/context_processors.py
631bf008fc3146b010dde8f7c743a12a4895e6c8
[]
no_license
asanisimova/ProjectWeb
c605f2848a1a0352b378dd010e0515e292b52392
46f5566fcc1573a999cb0b174679c38e0a2ba453
refs/heads/master
2022-11-23T09:01:38.041139
2020-01-12T18:43:57
2020-01-12T18:43:57
230,278,128
0
0
null
null
null
null
UTF-8
Python
false
false
368
py
from .models import ProductInBasket def getting_basket_info(request): session_key = request.session.session_key if not session_key: request.session.cycle_key() products_in_basket = ProductInBasket.objects.filter(session_key=session_key, is_active=True, order__isnull=True) products_total_nmb = products_in_basket.count() return locals()
[ "anna_anisimova1997@mail.ru" ]
anna_anisimova1997@mail.ru
18e3a7a37db089ffd5b2d90e18d157f16cdf3498
63df49317f5ef093e572c3cb8cd635c2e74ef09a
/ep_clustering/likelihoods/_gaussian_likelihood.py
82b347981917fe64c664071636365dcd3a5cb48a
[ "MIT" ]
permissive
PeiKaLunCi/EP_Collapsed_Gibbs
e4015b9b1dbef8b80a837146794dd71e32ee2c30
3b2e8c3addeab2343837b9e86e9cb57b00798b9a
refs/heads/master
2023-03-16T03:12:27.608096
2019-12-08T00:24:08
2019-12-10T06:23:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,234
py
#!/usr/bin/env python """ Gaussian Likelihood """ # Import Modules import numpy as np import logging from ep_clustering._utils import fix_docs from ep_clustering.likelihoods._likelihoods import Likelihood from ep_clustering.exp_family._normal_mean import ( NormalFamily, DiagNormalFamily ) logger = logging.getLogger(name=__name__) LOGGING_FORMAT = '%(levelname)s: %(asctime)s - %(name)s: %(message)s ...' logging.basicConfig( level = logging.INFO, format = LOGGING_FORMAT, ) @fix_docs class GaussianLikelihood(Likelihood): """ Gaussian Likelihood Object Args: **kwargs : variance (double) - cluster noise """ # Inherit Docstrings __doc__ += Likelihood.__doc__ # Class Variables name = "Gaussian" def __init__(self, data, **kwargs): self.y = data.matrix self.num_dim = data.num_dim super(GaussianLikelihood, self).__init__(data, **kwargs) return def _get_default_prior(self): theta_prior = DiagNormalFamily(num_dim = self.num_dim, precision=np.ones(self.num_dim)/100.0) return theta_prior def _get_default_parameters(self): """Returns default parameters dict""" default_parameter = { "variance": np.ones(self.num_dim), } return default_parameter def _get_default_parameters_prior(self): """Returns default parameters prior dict""" prior = { "alpha_variance0": 3.0, "beta_variance0": 2.0, } return prior def _sample_from_prior(self): parameter = { "variance": 1.0/np.random.gamma( shape=self.prior.alpha_variance0, scale=self.prior.beta_variance0, size=self.num_dim) } return parameter def loglikelihood(self, index, theta): y = self.y[index] loglikelihood = -0.5*((y-theta)/self.parameter.variance).dot(y-theta) +\ -0.5*self.num_dim*np.log(2*np.pi) + \ -0.5*np.sum(np.log(self.parameter.variance)) return loglikelihood def collapsed(self, index, subset_indices, theta_parameter): posterior = theta_parameter for s_index in subset_indices: s_y = self.y[s_index] posterior = (posterior + DiagNormalFamily.from_mean_variance( mean=s_y, variance=self.parameter.variance) ) mean = posterior.get_mean() variance = posterior.get_variance() + self.parameter.variance y = self.y[index] loglikelihood = -0.5*((y-mean)/variance).dot(y-mean) + \ -0.5*self.num_dim*np.log(2*np.pi) + \ -0.5*np.sum(np.log(variance)) return loglikelihood def moment(self, index, theta_parameter): y = self.y[index] site = DiagNormalFamily.from_mean_variance( mean=y, variance=self.parameter.variance, ) unnormalized_post_approx = (theta_parameter + site) unnormalized_post_approx.log_scaling_coef = \ unnormalized_post_approx.logpartition() - \ (theta_parameter.logpartition() + site.logpartition()) return unnormalized_post_approx def sample(self, indices, prior_parameter): posterior = prior_parameter for index in indices: y = self.y[index] posterior = (posterior + DiagNormalFamily.from_mean_variance( mean=y, variance=self.parameter.variance) ) mean = posterior.get_mean() variance = posterior.get_variance() return np.random.randn(posterior.num_dim)*np.sqrt(variance) + mean def update_parameters(self, z, theta, parameter_name = None): if parameter_name is None: self._update_variance(z, theta) elif parameter_name == "variance": self._update_variance(z, theta) else: raise ValueError("Unrecognized parameter_name: " + parameter_name) return def _update_variance(self, z, theta, k_list=None): if k_list is None: k_list = range(np.shape(theta)[0]) sse = 0 N = 0 for k in k_list: ind = (z == k) N += np.sum(ind) sse += np.sum((self.y[ind,:] - theta[k]) ** 2) alpha_variance = self.prior.alpha_variance0 + N/2.0 beta_variance = self.prior.beta_variance0 + sse/2.0 self.parameter.variance = 1.0/np.random.gamma(shape = alpha_variance, scale = 1.0/beta_variance, size = self.num_dim) return def update_local_parameters(self, k, z, theta, parameter_name = None): if parameter_name is None: self._update_variance(z, theta, k_list[k]) elif parameter_name == "variance": self._update_variance(z, theta, k_list[k]) else: raise ValueError("Unrecognized parameter_name: " + parameter_name) return # EOF
[ "aicherc@uw.edu" ]
aicherc@uw.edu
e2cbf792b9c854508db3d2a349801d2165b6ffec
5e29a10631cf23e54adba1109e13c345e2eafba4
/selenium_test/Web_TimeEvent_Test.py
c9fba36dbe0cfc257157a60e7276193cc2a375fe
[]
no_license
kuangtao94/Selenium
1926c9c11790e6fe741fdeb5b0f05278686ebc31
128203d3446b31b31593b7e605a99f75f32e8e40
refs/heads/master
2020-06-29T07:10:41.766221
2019-11-23T16:25:19
2019-11-23T16:25:19
200,471,309
0
0
null
null
null
null
UTF-8
Python
false
false
1,745
py
from selenium import webdriver from selenium.webdriver.support.select import Select from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.support.wait import WebDriverWait import time as t driver = webdriver.Chrome() driver.maximize_window() # driver.get("http://www.baidu.com") driver.get("https://kyfw.12306.cn/otn/leftTicket/init?linktypeid=wf") driver.implicitly_wait(10) # driver.find_element_by_id("kw").send_keys("selenium") # print(driver.find_element_by_id("kw").get_attribute("value")) # action = ActionChains(driver) # chepiao = driver.find_element_by_class_name("nav-hd") # action.move_to_element(chepiao).perform() # t.sleep(2) # # wangfang = driver.find_element_by_link_text("往返") # action.click(wangfang) # t.sleep(2) WebDriverWait(driver,10) driver.find_element_by_id("wf_label").click() #开始地点 driver.find_element_by_id("fromStationText").clear() driver.find_element_by_id("fromStationText").send_keys("东莞\n") t.sleep(3) #到达地点 driver.find_element_by_id("toStationText").clear() driver.find_element_by_id("toStationText").send_keys("广州\n") t.sleep(3) #处理时间 #js去掉readonly属性 js = 'document.getElementById("train_date").removeAttribute("readonly");' driver.execute_script(js) #js添加时间 js_value = 'document.getElementById("train_date").value="2019-5-1"' driver.execute_script(js_value) t.sleep(3) #处理返程时间 JS = 'document.getElementById("back_train_date").removeAttribute("readonly");' driver.execute_script(JS) end_js= 'document.getElementById("back_train_date").value="2019.5.3"' driver.execute_script(end_js) t.sleep(3) #点击查询按钮 driver.find_element_by_id("query_ticket").click() t.sleep(2) #关闭窗口 driver.quit()
[ "1512500241@qq.com" ]
1512500241@qq.com
4241e79403d4a85677d2e3a33a6482de9a703ffa
3740de0d6e43ea140fc09ab314e4c492603ba185
/scripts/sources/s_evaluation_satis_scenprob.py
3b2ec5f3a31142b953373d3773527a921aa13e8e
[ "MIT" ]
permissive
s0ap/arpmRes
29c60c65fd3e11be1cc31d46494e5b3ebf6e05ab
ddcc4de713b46e3e9dcb77cc08c502ce4df54f76
refs/heads/master
2022-02-16T05:01:22.118959
2019-08-20T16:45:02
2019-08-20T16:45:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,446
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.5 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_evaluation_satis_scenprob [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_evaluation_satis_scenprob&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=EBEvalNumericalExample). # + import pandas as pd import numpy as np from scipy.optimize import fsolve from scipy.stats import norm from arpym.portfolio import spectral_index from arpym.statistics import meancov_sp, quantile_sp # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_evaluation_satis_scenprob-parameters) c = 0.99 # confidence level lam_1 = 0.5 # parameter for mean-variance and mean-semideviation trade-off lam_2 = 2 # parameter for certainty-equivalent (exponential function) alpha = 0.25 # parameter for α-expectile zeta = 2 # parameter for Esscher expectation theta = -0.1 # parameter for Wang expectation alpha_ph = 0.5 # parameter for proportional hazards expectation r = 0.0001 # target for omega ratio z = np.array([-0.0041252, -0.00980853, -0.00406089, 0.02680999]) # risk factor # ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_evaluation_satis_scenprob-implementation-step01): Load data from db_aggregation_scenario_numerical j_ = pd.read_csv('../../../databases/temporary-databases/db_aggregation_scenario_numerical.csv', usecols=['j_'], nrows=1).values[0, 0].astype(int) n_ = pd.read_csv('../../../databases/temporary-databases/db_aggregation_scenario_numerical.csv', usecols=['n_'], nrows=1).values[0, 0].astype(int) pi = pd.read_csv('../../../databases/temporary-databases/db_aggregation_scenario_numerical.csv', usecols=['pi']).values.reshape(j_, n_) p = pd.read_csv('../../../databases/temporary-databases/db_aggregation_scenario_numerical.csv', usecols=['p']).iloc[:j_].values.reshape(j_, ) v_h = pd.read_csv('../../../databases/temporary-databases/db_aggregation_scenario_numerical.csv', usecols=['v_h'], nrows=1).values[0, 0].astype(int) v_b = pd.read_csv('../../../databases/temporary-databases/db_aggregation_scenario_numerical.csv', usecols=['v_b'], nrows=1).values[0, 0].astype(int) h = pd.read_csv('../../../databases/temporary-databases/db_aggregation_scenario_numerical.csv', usecols=['h']).iloc[:n_].values.reshape(n_, ) h_b = pd.read_csv('../../../databases/temporary-databases/db_aggregation_scenario_numerical.csv', usecols=['h_b']).iloc[:n_].values.reshape(n_, ) h_tilde = pd.read_csv('../../../databases/temporary-databases/db_aggregation_scenario_numerical.csv', usecols=['h_tilde']).iloc[:n_].values.reshape(n_, ) r_h = pd.read_csv('../../../databases/temporary-databases/db_aggregation_scenario_numerical.csv', usecols=['r_h']).iloc[:j_].values.reshape(j_, ) pi_b_resc = pd.read_csv('../../../databases/temporary-databases/db_aggregation_scenario_numerical.csv', usecols=['pi_b_resc']).iloc[:j_].values.reshape(j_, ) # ## [Step 2](https://www.arpm.co/lab/redirect.php?permalink=s_evaluation_satis_scenprob-implementation-step02): Compute the expectation, variance, standard deviation of the ex-ante performance mu_r_h, s2_r_h = meancov_sp(r_h, p) # ex-ante performance exp. and var. std_r_h = np.sqrt(s2_r_h) # standard deviation s2_satis = - s2_r_h # variance index of satisfaction std_satis = -std_r_h # standard deviation index of satisfaction # ## [Step 3](https://www.arpm.co/lab/redirect.php?permalink=s_evaluation_satis_scenprob-implementation-step03): Compute mean-variance trade-off, expectation and covariance of the instruments P&L's, and then the mean-variance trade-off mv_r_h = mu_r_h - lam_1 / 2 * s2_r_h # mean-variance trade-off (definition) mu_pi, s2_pi = meancov_sp(pi, p) # instruments P&L's exp. and cov. mv_r_h_1 = h_tilde@mu_pi - (lam_1 / 2) * h_tilde@s2_pi@h_tilde # mean-variance trade-off (quadratic form) # ## [Step 4](https://www.arpm.co/lab/redirect.php?permalink=s_evaluation_satis_scenprob-implementation-step04): Compute the certainty-equivalent # + # exponential utility function def exp_utility_f(y, lam): return -np.exp(-lam * y) # inverse exponential utility function def ce_f(z, lam): return -(1 / lam) * np.log(-z) utility_r_h = exp_utility_f(r_h, lam_2) # utility mu_utility = utility_r_h@p # expected utility computation cert_eq_r_h = ce_f(mu_utility, lam_2) # certainty-equivalent] # - # ## [Step 5](https://www.arpm.co/lab/redirect.php?permalink=s_evaluation_satis_scenprob-implementation-step05): Compute the quantile (VaR) q_r_h = quantile_sp(1-c, r_h, p=p) # ## [Step 6](https://www.arpm.co/lab/redirect.php?permalink=s_evaluation_satis_scenprob-implementation-step06): Compute the Expected shortfall # + # compute expected shortfall using spectral_index # indicator function def indicator(x): return (0 <= x and x <= 1-c) # spectrum function def spectr_es(x): return (1 / (1 - c)) * indicator(x) # negative expected shortfall es2, _ = spectral_index(spectr_es, pi, p, h_tilde) r_h_sort = np.sort(r_h) index = np.argsort(r_h) p_sort = p[index] u_sort = np.r_[0, np.cumsum(p_sort)] # cumulative sum of ordered probs. j_c = next(i for i, x in enumerate(u_sort) if 0 <= x and x <= 1-c) es = np.sum(r_h_sort[:j_c+1])/(1-c) # - # ## [Step 7](https://www.arpm.co/lab/redirect.php?permalink=s_evaluation_satis_scenprob-implementation-step07): Compute the Wang expectation f_wang = norm.cdf(norm.ppf(np.cumsum(p_sort)) - theta) w_wang_spectr = np.append(f_wang[0], np.diff(f_wang)) wang_expectation_r_h = r_h_sort@w_wang_spectr # ## [Step 8](https://www.arpm.co/lab/redirect.php?permalink=s_evaluation_satis_scenprob-implementation-step08): Compute the proportional hazard expectation f_prop_haz = (np.cumsum(p_sort)) ** alpha_ph # proportional hazards transform w_prop_haz_spectr = np.append(f_prop_haz[0], np.diff(f_prop_haz)) # derivative # ex-ante performance proportional hazards expectation prop_haz_expectation_r_h = r_h_sort@w_prop_haz_spectr # ## [Step 9](https://www.arpm.co/lab/redirect.php?permalink=s_evaluation_satis_scenprob-implementation-step09): Compute the mean-semideviation trade-off semiv_r_h = sum(((r_h[r_h <= mu_r_h] - mu_r_h) ** 2) * p[r_h <= mu_r_h]) # ex-ante performance semivariance semid_r_h = (semiv_r_h) ** (0.5) # ex-ante performance semideviation # ex-ante performance mean-semideviation trade-off msemid_r_h = mu_r_h - lam_1 * semid_r_h # ## [Step 10](https://www.arpm.co/lab/redirect.php?permalink=s_evaluation_satis_scenprob-implementation-step10): Compute the alpha-expectile # + def expectile_f(x, p, alpha): return alpha * np.sum(p * np.maximum(r_h - x, 0)) + \ (1 - alpha) * (np.sum(p * np.minimum(r_h - x, 0))) # ex-ante performance α-expectile expectile_r_h = fsolve(expectile_f, -0.01, args=(p, alpha)) # - # ## [Step 11](https://www.arpm.co/lab/redirect.php?permalink=s_evaluation_satis_scenprob-implementation-step11): Compute information ratio, Sortino ratio and omega ratio info_ratio_r_h = mu_r_h / std_r_h # ex-ante performance information ratio # ex-ante performance Sortino ratio sortino_ratio_r_h = (mu_r_h - r) / np.sqrt((np.maximum(r - r_h, 0) ** 2)@p) # ex-ante performance omega ratio omega_ratio_r_h = (np.maximum(r_h - r, 0)@p) / (np.maximum(r - r_h, 0)@p) omega_ratio_1_r_h = (r_h@p - r) / (np.maximum(r - r_h, 0)@p) + 1 # ## [Step 12](https://www.arpm.co/lab/redirect.php?permalink=s_evaluation_satis_scenprob-implementation-step12): Compute the scenario-probability distribution of factor Z, beta, correlation mu_z, s2_z = meancov_sp(z, p) # variance of z cv_yz = (r_h * z)@p - mu_r_h * mu_z # covariance of r_h and z beta_r_h_z = - cv_yz / s2_z # ex-ante performance opposite of beta # opposite of correlation between performance and factor corr_r_h_z = - cv_yz / (np.sqrt(s2_r_h) * np.sqrt(s2_z)) # ## [Step 13](https://www.arpm.co/lab/redirect.php?permalink=s_evaluation_satis_scenprob-implementation-step13): Compute the Buhlmann expectation and the Esscher expectation # + bulhmann_expectation_r_h, _ = meancov_sp(np.exp(-zeta * pi_b_resc) * r_h, p)[0] \ / meancov_sp(np.exp(-zeta * pi_b_resc), p) esscher_expectation_r_h, _ = meancov_sp(np.exp(-zeta * r_h) * r_h, p)[0] \ / meancov_sp(np.exp(-zeta * r_h), p) # - # ## [Step 14](https://www.arpm.co/lab/redirect.php?permalink=s_evaluation_satis_scenprob-implementation-step14): Save the data # + output = {'s2_satis': pd.Series(s2_satis), 'std_satis': pd.Series(std_satis), 'wang_expectation_r_h': pd.Series(wang_expectation_r_h), 'prop_haz_expectation_r_h': pd.Series(prop_haz_expectation_r_h), 'expectile_r_h': pd.Series(expectile_r_h), 'bulhmann_expectation_r_h': pd.Series(bulhmann_expectation_r_h), 'esscher_expectation_r_h': pd.Series(esscher_expectation_r_h) } df = pd.DataFrame(output) df.to_csv('../../../databases/temporary-databases/db_evaluation_scenprob.csv')
[ "dario.popadic@yahoo.com" ]
dario.popadic@yahoo.com
64eed1d7f291132bd242926d2ed2a29df9025286
70bbd6e465c2360e71899077a15b376c92d872ea
/config.py
2a7ec4a2de9d2b0755d217bb93a1179b416c61b9
[]
no_license
anchyy/Zavrsni
afe531f590031ef4991bd2b48725ff557dcc9004
e385db393484ded76a39499783723bac7f3e4572
refs/heads/master
2022-12-31T09:15:55.683956
2020-10-21T15:52:50
2020-10-21T15:52:50
296,143,195
0
0
null
null
null
null
UTF-8
Python
false
false
315
py
import os basedir = os.path.abspath(os.path.dirname(__file__)) class Config(object): SECRET_KEY='gvpTrsDaf5vgzIzdzC2XKA' SQLALCHEMY_DATABASE_URI='sqlite:///webshopDB.sqlite' SQLALCHEMY_TRACK_MODIFICATIONS= False #kako bi se koristilo manje memorije SQLALCHEMY_ECHO= True ENV = 'development'
[ "ana.strenja88@gmail.com" ]
ana.strenja88@gmail.com
09222c4ffe43f89b913e1ae57331c6ad73adb1c9
25b007b58317f6f920dc3ca56b5d4a9291096ca2
/Intense/migrations/0019_auto_20201006_1727.py
e052d45e385957d99d5fd9c5ab0e671d1b8ded3d
[]
no_license
kmfaizullah/tango-backend
2a6b79195f86f156f41d780b966d3617724d2527
f6b377fdfe7dc1deee7b0f3df6eba4dfb39b128c
refs/heads/master
2023-01-04T21:08:29.764484
2020-10-11T10:47:38
2020-10-11T10:47:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
417
py
# Generated by Django 2.2.15 on 2020-10-06 11:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Intense', '0018_user_role'), ] operations = [ migrations.AlterField( model_name='user', name='username', field=models.CharField(blank=True, db_index=True, max_length=255, null=True), ), ]
[ "sameesayeed880@gmail.com" ]
sameesayeed880@gmail.com
07bf834854fde7fe6a8945e0e36b96c2d80530b1
cb4be2d145c529192cad597ebf6bba8aed0ec12e
/scripts/00_important/mec_shelf_loader/shelves/00_trash/Thomas_Nathan_CRI1_1409_rigging_tools.py
2081cd5f275dc4ee7849f12dbdd2772d02882a98
[]
no_license
mclavan/Work-Maya-Folder
63e791fdbd6f8ac1f4fda2d46015cd98df38825c
c56dbdb85a7b1a87ef6dd35296c56e0057254617
refs/heads/master
2020-05-20T07:21:15.891179
2014-10-17T14:28:45
2014-10-17T14:28:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,181
py
''' Nathan Thomas Thomas_Nathan_CRI1_1409_rigging_tools.py Description A group of rigging related tools How to Run: import Thomas_Nathan_CRI1_1409_rigging_tools reload(Thomas_Nathan_CRI1_1409_rigging_tools) NOTE: GETTING SELECTED: start with: selected = pm.ls(selection=True) ''' print 'Rigging Tools Active' import pymel.core as pm def tool(): print 'example tool.' ''' tool Description how to run tool ''' def unlock_and_show(): ''' Description: A shortcut for unlocking and showing attributes Can switch inputs around to hide and lock attributes. How to Run: import Thomas_Nathan_CRI1_1409_rigging_tools reload(Thomas_Nathan_CRI1_1409_rigging_tools) Thomas_Nathan_CRI1_1409_rigging_tools.unlock_and_show() ''' selected = pm.ls(selection=True) print 'Currently selected', selected first_selected = selected[0] # t means translate, # r means rotate # s means scale # v means visibility # x,y,z are variables. Lock = false means unlocked, true # means locked. Keyable = true means show, false means hide. # translate first_selected.tx.set(lock=False, keyable=True) first_selected.ty.set(lock=False, keyable=True) first_selected.tz.set(lock=False, keyable=True) # rotate first_selected.rx.set(lock=False, keyable=True) first_selected.ry.set(lock=False, keyable=True) first_selected.rz.set(lock=False, keyable=True) #scale first_selected.sx.set(lock=False, keyable=True) first_selected.sy.set(lock=False, keyable=True) first_selected.sz.set(lock=False, keyable=True) # visibility first_selected.v.set(lock=False,keyable=True) def snapping_tool(): ''' Description: snaps a control to a joint, or similar objects BOTH ROTATION AND TRANSLATION How to Run: import Thomas_Nathan_CRI1_1409_rigging_tools reload(Thomas_Nathan_CRI1_1409_rigging_tools) Thomas_Nathan_CRI1_1409_rigging_tools.snapping_tool() ''' selected = pm.ls(selection=True) print 'Selected: {0}'.format(selected) # by default, commands work on selected items, driver driven. kenny = pm.parentConstraint(selected[0], selected[1]) pm.delete(kenny) print 'The first selected object was moved to the second' def point_snapping_tool(): ''' Description:moves first selected object to the second. JUST TRANSLATION How to Run: import Thomas_Nathan_CRI1_1409_rigging_tools reload(Thomas_Nathan_CRI1_1409_rigging_tools) Thomas_Nathan_CRI1_1409_rigging_tools.point_snapping_tool() Thomas_Nathan_CRI1_1409_rigging_tools.py.point_snapping_tool() ''' selected = pm.ls(selection=True) print 'Selected: {0}'.format(selected) # by default, commands work on selected items, driver driven. kenny = pm.pointConstraint(selected[0], selected[1]) pm.delete(kenny) print 'The first selected object was moved to the second' # Get Selected selected = pm.ls(selection=True) print 'Selected: {0}'.format(selected) first_joint = selected[0] # Create control icon control_icon_1 = pm.circle(normal=[0,1,0], radius = 2)[0] #Move control icon to target joint #delete constraint kenny = pm.pointConstraint(first_joint, control_icon_1) pm.delete(kenny) print 'Icons created' def color_controls(): ''' Color Controls Desccription: changing the color of the control icons/anything selected How to Run: ''' import pymel.core as pm selected = pm.ls(selection=True) print 'Currently selected', selected first_selected = selected[0] ''' NOTE: COPY PASTE FOR EACH COLOR, OTHERWISE WILL CHANGE WHOLE SCENE ''' # pick a color # blue first_selected.overrideEnabled.set(1) blue = 6 first_selected.overrideColor.set(blue) # red first_selected.overrideEnabled.set(1) red = 13 first_selected.overrideColor.set(red) # yellow first_selected.overrideEnabled.set(1) yellow = 17 first_selected.overrideColor.set(yellow) def hierarchy(): ''' Description: create a hierarchy based on a given system. Select root joint chain and execute function. How to Run: import Thomas_Nathan_CRI1_1409_rigging_tools reload(Thomas_Nathan_CRI1_1409_rigging_tools) Thomas_Nathan_CRI1_1409_rigging_tools.hierarchy() ''' ''' Input What are we working on? The root joint. ''' joint_system = pm.ls(selection=True, dag=True) print 'Joint System:', joint_system root_joint = joint_system[0] joint_2 = joint_system[1] joint_3 = joint_system[2] ''' Padding the Root Joint ''' # Create an empty group ''' Creates an empty group for you to use around icons (freeze transforms, etc) ''' root_pad = pm.group(empty=True) # Move Group to Target Joint (snap) temp_constraint = pm.pointConstraint(root_joint, root_pad) pm.delete(temp_constraint ) # Freeze Transforms pm.makeIdentity(root_pad, apply=True, t=1, r=1, s=1, n=0) # Parent constrain joint to group pm.parent(root_joint, root_pad) ''' Local Controls ''' ''' Control 1 - the root_joint ''' # create a control # normal=[1,0,0], radius=2 control_icon_1 = pm.circle(normal=[1,0,0], radius=1, name='lt_middle_00_icon')[0] # create a group # grouping control during this process local_pad_1 = pm.group(name='lt_middle_00_local') # Output control and pad print 'Control 1 created:', control_icon_1 print 'Local Pad 1 created:', local_pad_1 # move group over to the target joint # delete contraint after snapping # driver is joint, driven is group temp_constraint = pm.parentConstraint(root_joint, local_pad_1) pm.delete(temp_constraint) # orient constrain the joint to the control # driver --> driven # control --> joint pm.orientConstraint(control_icon_1, root_joint) ''' Control 2 ''' # create a control # normal=[1,0,0], radius=2 control_icon_2 = pm.circle(normal=[1,0,0], radius=1, name='lt_middle_01_icon')[0] # create a group # grouping control during this process local_pad_2 = pm.group(name='lt_middle_01_local') # Output control and pad print 'Control 2 created:', control_icon_2 print 'Local Pad 2 created:', local_pad_2 # move group over to the target joint # delete contraint after snapping # driver is joint, driven is group temp_constraint = pm.parentConstraint(joint_2, local_pad_2) pm.delete(temp_constraint) # orient constrain the joint to the control # driver --> driven # control --> joint pm.orientConstraint(control_icon_2, joint_2) ''' Control 3 ''' # create a control # normal=[1,0,0], radius=2 control_icon_3 = pm.circle(normal=[1,0,0], radius=1, name='lt_middle_02_icon')[0] # create a group # grouping control during this process local_pad_3 = pm.group(name='lt_middle_02_local') # Output control and pad print 'Control 3 created:', control_icon_3 print 'Local Pad 3 created:', local_pad_3 # move group over to the target joint # delete contraint after snapping # driver is joint, driven is group temp_constraint = pm.parentConstraint(joint_3, local_pad_3) pm.delete(temp_constraint) # orient constrain the joint to the control # driver --> driven # control --> joint pm.orientConstraint(control_icon_3, joint_3) ''' Parent control togethers ''' # connect pad 3 to control icon 2 pm.parent(local_pad_3, control_icon_2) pm.parent(local_pad_2, control_icon_1) ''' # lock and hide ''' # For this, I created a new list for the control icons so I could set # it up in a loop. # t means translate, # r means rotate # s means scale # v means visibility # x,y,z are variables. Lock: false means unlocked, true # means locked. Keyable = true means show, false means hide. control_list = [control_icon_1, control_icon_2, control_icon_3] for indiv_icon in control_list: # translate indiv_icon.tx.set(lock=True, keyable=False) indiv_icon.ty.set(lock=True, keyable=False) indiv_icon.tz.set(lock=True, keyable=False) #scale indiv_icon.sx.set(lock=True, keyable=False) indiv_icon.sy.set(lock=True, keyable=False) indiv_icon.sz.set(lock=True, keyable=False) # visibility indiv_icon.v.set(lock=True, keyable=False) print 'Hierarchy created' def padding_tool(): ''' Description: creates a group, snapping it to a target joint, freezing transforms, then parenting and renaming. How to run: import Thomas_Nathan_CRI1_1409_rigging_tools. reload(Thomas_Nathan_CRI1_1409_rigging_tools) Thomas_Nathan_CRI1_1409_rigging_tools.padding_tool() ''' selected = pm.ls(selection=True) print 'Current Selected:', selected root_joint = selected[0] print 'Padding group created' # create empty group # the flag for empty group is em # empty=True will create empty group pad = pm.group(empty=True) # move group to joint temp_constraint = pm.pointConstraint(root_joint, pad) # delete constraint pm.delete(temp_constraint) # freeze transforms on said group pm.makeIdentity(pad, apply=True, t=1, r=1, s=1, n=0) # Parent group pm.parent(root_joint, pad) # renaming #lt_index_01_bind #lt_index_01_pad pad_name = root_joint.replace('01_bind', '01_pad') pad.rename(pad_name) print 'Padding Group Created' def joint_renamer(): ''' Description: renames joints in scene How to run: import Thomas_Nathan_CRI1_1409_rigging_tools reload(Thomas_Nathan_CRI1_1409_rigging_tools) Thomas_Nathan_CRI1_1409_rigging_tools.joint_renamer() ''' # selection joint_chain = pm.ls(selection=True, dag=True, type='joint') print 'Selected items:', joint_chain # naming convention # figure out lt, rt, ct, etc. Then part, then number, then bind, waste, etc. ori = raw_input() system_name = raw_input() count = 1 suffix = 'bind' # Loop throughout the joint chain for current_joint in joint_chain: new_name = '{0}_{1}_0{2}_{3}'.format(ori, system_name, count, suffix) print 'New Name', new_name # Rename Joint current_joint.rename(new_name) count = count + 1 new_name = '{0}_{1}_0{2}_{3}'.format(ori, system_name, count-1, 'waste') current_joint.rename(new_name) def priming_tool(): ''' Definition: creates local oriented controls. How to Run: import Thomas_Nathan_CRI1_1409_rigging_tools reload(Thomas_Nathan_CRI1_1409_rigging_tools) Thomas_Nathan_CRI1_1409_rigging_tools.priming_tool() ''' # Get Selected: selected = pm.ls(selection=True) # target_joint = selected[0] for target_joint in selected: # Renaming control_icon_name = target_joint.replace('_bind', '_icon') local_pad_name = target_joint.replace('_bind', '_local') # Creating a Control # Set Normal and set Radius control_icon = pm.circle(normal=[1,0,0], radius = 1.8, name=control_icon_name,)[0] # Grouping control (not an empty group) local_pad = pm.group(name=local_pad_name) print 'Control Icon', control_icon print 'Pad Created', local_pad # Snap group to targert joint, and delete constraint temp_constraint = pm.parentConstraint(target_joint, local_pad) pm.delete(temp_constraint) # Orient Constraint joint to Control pm.orientConstraint(control_icon, target_joint) print 'Local Oriented Controls Created' def arrow_icon(): ''' Description: creates an arrow icon How to run: ''' # arrow control icon import pymel.core as pm mel_line = 'curve -d 1 -p 0 0 -10 -p -5 0 -5 -p -10 0 0 -p -5 0 0 -p -5 0 5 -p -5 0 10 -p 0 0 10 -p 5 0 10 -p 5 0 5 -p 5 0 0 -p 10 0 0 -p 5 0 -5 -p 0 0 -10 -k 0 -k 1 -k 2 -k 3 -k 4 -k 5 -k 6 -k 7 -k 8 -k 9 -k 10 -k 11 -k 12 ;' pm.mel.eval(mel_line) print 'Control Icon Created:', icon def square_icon(): ''' Description: creates a square icon How to run: ''' # square control icon import pymel.core as pm mel_line = 'curve -d 1 -p -5 0 5 -p -5 0 0 -p 0 0 0 -p 0 0 5 -p -5 0 5 -k 0 -k 1 -k 2 -k 3 -k 4 ' pm.mel.eval(mel_line) print 'Control Icon Created:', icon def cube_icon(): ''' Description: creates a cube icon in scene. How to run: We use the same method as for the square and arrow icons we created. import Thomas_Nathan_CRI1_1409_rigging_tools reload(Thomas_Nathan_CRI1_1409_rigging_tools) Thomas_Nathan_CRI1_1409_rigging_tools.cube_icon ''' import pymel.core as pm mel_line = 'curve -d 1 -p -0.5 0.5 -0.5 -p -0.5 0.5 0.5 -p -0.5 -0.5 0.5 -p -0.5 -0.5 -0.5 -p -0.5 0.5 -0.5 -p 0.5 0.5 -0.5 -p 0.5 -0.5 -0.5 -p -0.5 -0.5 -0.5 -p -0.5 -0.5 0.5 -p 0.5 -0.5 0.5 -p 0.5 -0.5 -0.5 -p 0.5 0.5 -0.5 -p 0.5 0.5 0.5 -p 0.5 -0.5 0.5 -p -0.5 -0.5 0.5 -p -0.5 0.5 0.5 -p 0.5 0.5 0.5 -k 0 -k 1 -k 2 -k 3 -k 4 -k 5 -k 6 -k 7 -k 8 -k 9 -k 10 -k 11 -k 12 -k 13 -k 14 -k 15 -k 16' pm.mel.eval(mel_line) def leg_ik(): ''' Leg IK' Description: creates an Ik handle for leg (5 joints) ''' import pymel.core as pm # Given to us by the user. joint_chain = pm.ls(selection=True, dag=True) print joint_chain # isolate importatn joint root_joint = joint_chain[0] ankle_joint = joint_chain[2] ball_joint = joint_chain[3] toe_joint = joint_chain[4] # Apply the IKs # This command is pm.ikHandle() # default is single chain solver. We need RPS for first IK. # Flag for solver is: solver (sol). So sol='ikRPsolver' ankle_ik = pm.ikHandle(sol='ikRPsolver', sj=root_joint, ee=ankle_joint, name='lt_ankle_ik') ball_ik = pm.ikHandle(sol='ikSCsolver', sj=ankle_joint, ee=ball_joint, name='lt_ball_ik') toe_ik = pm.ikHandle(sol='ikSCsolver',sj=ball_joint, ee=toe_joint, name='lt_toe_ik')
[ "mclavan@gmail.com" ]
mclavan@gmail.com
b09d3d9917697dc4d1359837a8f9339bfbc5bca3
a0d11652c19fa2a655511ceee87a8d2e05394adb
/3.py
b460667010201582af9bc37cc2401967426f5bc7
[]
no_license
galerra/artem_got_angry
46b391f3ea1e6715e03441bb3050b81a2e7fe8fe
807a4d7f3f55fa42b4b73f2f877979ae65bddfa1
refs/heads/main
2023-08-26T22:11:01.589735
2021-10-21T07:31:00
2021-10-21T07:31:00
417,957,519
0
0
null
null
null
null
UTF-8
Python
false
false
377
py
a3 = int(input("Введите a1:")) a2 = int(input("Введите a2:")) a1 = int(input("Введите a3:")) b2 = int(input("Введите b1:")) b1 = int(input("Введите b2:")) c1 = (a1 + b1) % 10 c2 = (a2 + b2 + (a1 + b1) // 10) % 10 c3 = ((a2 + b2 + (a1 + b1) // 10) // 10) + a3 print("Сотни", c3) print("Десятки", c2) print("Единицы", c1)
[ "artem-newalex@mail.ru" ]
artem-newalex@mail.ru
5f8183e14d9f9cacecae8ab0e3db53d3dece2a16
0244a193f052dcb507b1f45daee3391b26112440
/__openerp__.py
ea6a0f3ecb80e43b63ad94aa3dc979307dc7f19b
[]
no_license
duongduong/report_voucher
aa340377457a3b042b63be349202ca49da9c3973
7559387b04e1d6fafd13165a7959faad49822077
refs/heads/master
2016-08-11T09:22:24.248383
2015-09-28T16:03:15
2015-09-28T16:03:15
43,309,989
0
0
null
null
null
null
UTF-8
Python
false
false
371
py
{ 'name' : 'PJ_Test', 'version' : '1.0', 'description' : "", 'depends' : [ 'product', 'account','base', 'sale','account_voucher' ], 'data': ['_test_view.xml', 'report/report_saleorder_inherit.xml', 'report_acc_voucher.xml', 'report/report_account_voucher_pdf.xml'], 'auto_install': False, }
[ "huongduong328@gmail.com" ]
huongduong328@gmail.com
c84a036fd6d594c1ed61f9b0056ebda6f4b8baa4
a35a2f9dc412b72bd07c36c2de2b8a577e880d11
/redactor_project/redactor/unredactor.py
277a193ec6ad830d8017adafd600a14157106d44
[]
no_license
umeshG34/redactor
95750c93415d349beb2e978691b7d12c6c7f33f9
bcfb43ad33e05d1b3881f0fe36e7d217a990949a
refs/heads/master
2022-12-17T21:51:23.176130
2019-09-30T15:46:46
2019-09-30T15:46:46
172,621,679
0
0
null
2022-12-08T00:02:34
2019-02-26T02:23:33
Python
UTF-8
Python
false
false
7,359
py
#!/usr/bin/pythonw # -*- coding: utf-8 -*- import numpy as np import pandas as pd import argparse import nltk import glob import csv import os import re from nltk.tokenize import sent_tokenize, word_tokenize from nltk.tree import Tree from sklearn.feature_extraction import DictVectorizer from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB ##returns a list of docs when given a list of directories/locations def get(src_list): #print("Files being extracted",src_list) #Need to include try and except docs = [] for src_dir in src_list: for src in src_dir[0:50]: #for src in src_dir: #print("src",src) src_string = open(src, 'r', encoding='utf-8') src_string = src_string.read() docs.append(src_string) # print("Input:",src_string) return docs def find_entity(doc,doc_name): p_name = '' #getting the previous name in the document if any doc_length = len(doc) m = re.findall(r'_(\d{1,2}).txt',doc_name) rate = m[0] prev_chunk = ('','') # names of people present in the text names_l = [] for chunk in nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(doc))): #doc instead of sent if type(chunk) == Tree: #checking for names using the type of the element name = '' length_name = 0 n_wrds = 0 if chunk.label() == 'PERSON': name_dict = {} #print(chunk) name_l = [0,0,0] for ind,i in enumerate(chunk): #For Full names we get back a tuple with multiple names so we iterat)e #print(i) name = name + ' ' +i[0] n_wrds += 1 if ind < 3: name_l[ind] = len(i[0]) #Captuting the length of each of the words in the name name = name[1:] tot_nam_len = len(name) #print(prev_chunk) #prev_c = '^' if prev_chunk[0] == '>' else prev_chunk[0] name_dict = {'name': name,'l_1': name_l[0],'l_2': name_l[1],'l_3':name_l[2], 'no_words': n_wrds ,'name_length':tot_nam_len ,'rating': int(rate),'doc_length': doc_length}#, 'word_b': prev_chunk[0],'word_b_tag' : prev_chunk[1]} #print(name_dict) #p_name = name names_l.append(name_dict) prev_chunk = chunk return names_l if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--train", type=str, required=True, help="Train Source File location", nargs='*', action='append') parser.add_argument("--test", type=str, required=False, help="Test Source File location", nargs='*', action='append') args = parser.parse_args() #---------------------------------------------------------------------------------TRAIN------------------------------------------------------------------------------ if args.train: #print("training args",args.train) train_dirs = [] for i in args.train: train_dirs.append(glob.glob(i[0])) #print("Train dirs:",len(train_dirs)) train = get(train_dirs) #print("End",train) train_fts_d = [] train_dirs_flat = [item for sublist in train_dirs for item in sublist] for ind,doc in enumerate(train): train_fts_d = train_fts_d + find_entity(doc,train_dirs_flat[ind]) print("Train Features Extracted") #creating the training dataset target_train = [] fet_train = [] for name_dict in train_fts_d: #print(name_dict['name']) target_train.append(name_dict['name']) del name_dict['name'] #print(name_dict) fet_train.append(name_dict) #print(y_train,X_train) target_train = np.array(target_train) #target_train = target_train.reshape(-1,1) #Creating X in the training set v = DictVectorizer(sparse=False) fet_train = v.fit_transform(fet_train) print("Features:",v.get_feature_names()) #Training the model #clf = MLPClassifier(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=(50, 25), random_state=1) mod = GaussianNB() #clf = KNeighborsClassifier(n_neighbors=10) mod.fit(fet_train, target_train) print("Model trained") #getting the test data global get_entity_test def get_entity_test(doc,doc_name): #print(doc_name) name_d = {} names_list_t = [] doc_length = len(doc) m = re.findall(r'_(\d{1,2}).txt',doc_name) rate = m[0] #Initializing the feature variables prev_chunk = ' ' name = '' l_1 =0 l_2 = 0 l_3 = 0 n_wrds = 0 total_length = 0 chunks = nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(doc))) flag = False for chunk in chunks: #print(chunk) #Intiating name collection if chunk[0][0] == '█' and flag != True: flag = True name = name + chunk[0] a_prev_chunk = prev_chunk if prev_chunk[0][0] == '█' and chunk[0][0] == '█': name = name + ' ' +chunk[0] elif prev_chunk[0][0] == '█' and chunk[0][0] != '█': # name_dict['name'] = name n = nltk.word_tokenize(name) #print(n) n_wrds = len(n) l_1 = len(n[0]) if n_wrds > 1: l_2 = len(n[1]) if n_wrds > 2: l_3 = len(n[2]) total_length = len(name) #prev_c = '^' if prev_chunk[0] == '>' else prev_chunk[0] #print(a_prev_chunk) name_d = {'l_1':l_1,'l_2':l_2,'l_3':l_3,'no_words':n_wrds, 'name_length':total_length,'rating':int(rate),'doc_length':doc_length}#,'word_b':a_prev_chunk[0],'doc_length':doc_length} names_list_t.append(name_dict) #Resetting values l_1,l_2,l_3,n_wrds,tot_nam_len = 0,0,0,0,0 flag = False name = '' prev_chunk = chunk return names_list_t #test directroies - test text retreival if args.test: #print(args.test) test_dirs = [] for i in args.test: test_dirs.append(glob.glob(i[0])) #print(test_dirs) test = get(test_dirs) #print(test) test_dir_flat = [item for sublist in test_dirs for item in sublist] test_fts_d = [] count = 0 for doc in test: test_fts_d = test_fts_d + get_entity_test(doc, test_dir_flat[count]) count += 1 print("Test Features Extracted") #print(test_fts_d) fet_test = v.transform(test_fts_d) print("Train set size:",fet_train.shape,target_train.shape) #print(fts_test) target_test_pred = mod.predict(fet_test) #print(target_test_pred) print("Accuracy on training set",mod.score(fet_train, target_train)) print("Test values predicted") with open('pred_names.txt', 'w',encoding = 'utf-8') as f: f.write("Predicted Names for the redacted test file\n") for i in target_test_pred: f.write(i+'\n') print("pred_names.txt printed")
[ "umeshsai34@ou.edu" ]
umeshsai34@ou.edu
f1c89f72df982ce0cf4460d3d18d203bb585aeb8
e4f60cbe8b727ce09e7cccf372183a71b90ea6bd
/venv/Scripts/pip3.7-script.py
02bafbe44323096c44b20fddfe2459c592e20992
[]
no_license
yk3996/likelion_task2
82530bdeb3600a3ed3e29d2407d71f530e34c914
1e44c7d1466f27c7f162101fdc9b8053e4b9aa50
refs/heads/master
2020-05-24T01:26:17.363437
2019-06-07T00:06:19
2019-06-07T00:06:19
187,033,511
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
#!C:\Download\PyProject\likelion_task2\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3.7' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3.7')() )
[ "bignfine@naver.com" ]
bignfine@naver.com
90dadd58fbe69e5636c0d358cd9c496fb1c86ceb
30339420bc8827464ce9772e9ad5c7333e5f4ef1
/oscar/bin/easy_install
3e5b0c1c2c6f1447cc25b929411fbd837dd27923
[ "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
Razvancbalaci/djangooscar
0df6425deb8f0a14e6cb9091460e4b36cc32f947
0a4ac1d7e7ccc92b4d4f786c8a2b4bf2a093078d
refs/heads/master
2020-04-18T07:24:39.982801
2019-01-24T19:07:39
2019-01-24T19:07:39
167,358,870
0
0
null
null
null
null
UTF-8
Python
false
false
261
#!/home/razvan/django-oscar/oscar/bin/python3 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "razvan_1997@live.com.pt" ]
razvan_1997@live.com.pt
67b279c2fe03624259dd54e4db9710063fe12276
ddf17869e08f847bd5d273c4ed27b2f9549011d8
/MachineLearningInAction/LogisticRegres/logregres/logRegres.py
f83aeef0ba6a869ed0f19e29f0392d33e74bb4d9
[]
no_license
1astonm1/MachineLearning
a5e8885d4f24c9957bd272b971be067b8c8be033
443bbdfa2ff26f999918a4c4a22a5aea36ef9c0d
refs/heads/master
2020-05-15T22:13:35.607080
2019-07-06T15:48:40
2019-07-06T15:48:40
182,521,366
1
0
null
null
null
null
UTF-8
Python
false
false
4,003
py
from numpy import * def loadDataSet(): dataMat = []; labelMat = [] fr = open('testSet.txt') for line in fr.readlines(): lineArr = line.strip().split() dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) labelMat.append(int(lineArr[2])) return dataMat, labelMat def sigmoid(inX): return 1.0 / (1 + exp(-inX)) def gradAscent(dataMatIn, classLabels): dataMatrix = mat(dataMatIn) # convert to NumPy matrix labelMat = mat(classLabels).transpose() # convert to NumPy matrix m, n = shape(dataMatrix) alpha = 0.001 maxCycles = 500 weights = ones((n, 1)) for k in range(maxCycles): # heavy on matrix operations h = sigmoid(dataMatrix * weights) # matrix mult error = (labelMat - h) # vector subtraction weights = weights + alpha * dataMatrix.transpose() * error # matrix mult return weights def plotBestFit(weights): import matplotlib.pyplot as plt dataMat, labelMat = loadDataSet() dataArr = array(dataMat) n = shape(dataArr)[0] xcord1 = []; ycord1 = [] xcord2 = []; ycord2 = [] for i in range(n): if int(labelMat[i]) == 1: xcord1.append(dataArr[i, 1]); ycord1.append(dataArr[i, 2]) else: xcord2.append(dataArr[i, 1]); ycord2.append(dataArr[i, 2]) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1, ycord1, s=30, c='red', marker='s') ax.scatter(xcord2, ycord2, s=30, c='green') x = arange(-3.0, 3.0, 0.1) y = (-weights[0] - weights[1] * x) / weights[2] ax.plot(x, y) plt.xlabel('X1'); plt.ylabel('X2'); plt.show() def stocGradAscent0(dataMatrix, classLabels): m, n = shape(dataMatrix) alpha = 0.01 weights = ones(n) # initialize to all ones for i in range(m): h = sigmoid(sum(dataMatrix[i] * weights)) error = classLabels[i] - h weights = weights + alpha * error * dataMatrix[i] return weights def stocGradAscent1(dataMatrix, classLabels, numIter=150): m, n = shape(dataMatrix) weights = ones(n) # initialize to all ones for j in range(numIter): dataIndex = range(m) for i in range(m): alpha = 4 / (1.0 + j + i) + 0.0001 # apha decreases with iteration, does not randIndex = int(random.uniform(0, len(dataIndex))) # go to 0 because of the constant h = sigmoid(sum(dataMatrix[randIndex] * weights)) error = classLabels[randIndex] - h weights = weights + alpha * error * dataMatrix[randIndex] # del (dataIndex[randIndex]) return weights def classifyVector(inX, weights): prob = sigmoid(sum(inX * weights)) if prob > 0.5: return 1.0 else: return 0.0 def colicTest(): frTrain = open('horseColicTraining.txt'); frTest = open('horseColicTest.txt') trainingSet = []; trainingLabels = [] for line in frTrain.readlines(): currLine = line.strip().split('\t') lineArr = [] for i in range(21): lineArr.append(float(currLine[i])) trainingSet.append(lineArr) trainingLabels.append(float(currLine[21])) trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000) errorCount = 0; numTestVec = 0.0 for line in frTest.readlines(): numTestVec += 1.0 currLine = line.strip().split('\t') lineArr = [] for i in range(21): lineArr.append(float(currLine[i])) if int(classifyVector(array(lineArr), trainWeights)) != int(currLine[21]): errorCount += 1 errorRate = (float(errorCount) / numTestVec) print("the error rate of this test is: %f" % errorRate) return errorRate def multiTest(): numTests = 10; errorSum = 0.0 for k in range(numTests): errorSum += colicTest() print("after %d iterations the average error rate is: %f" % (numTests, errorSum / float(numTests)))
[ "45306215+1astonm1@users.noreply.github.com" ]
45306215+1astonm1@users.noreply.github.com
1a98406527162c67dcfcb2872cc5fc723e81b60f
f9ac8727c233600e494b74be1e1522004296bedf
/fenv3/catalog.py
1de43c0f494afb0698b6df72259bb40665e22b8d
[]
no_license
mohammadghulmi/DOSfinalproject
072048b25ff266846cdc1956d19945817fe9d7f6
90b4e90aea7cab83929266363caf46573ed4a9bb
refs/heads/main
2023-01-24T03:52:22.799579
2020-12-14T16:49:43
2020-12-14T16:49:43
321,412,588
0
0
null
null
null
null
UTF-8
Python
false
false
1,960
py
from flask import Flask from flask_restful import Api, Resource import json app = Flask(__name__) api = Api(app) books = [["","","","",""],["","","","",""],["","","","",""],["","","","",""],["","","","",""],["","","","",""],["","","","",""]] f = open("data.txt","r") for i in range(7): for j in range(5): books[i][j]=f.readline() books[i][j]=books[i][j].rstrip("\n") print(books[i][j]) f.close() class search(Resource): def get(self, type): print(type) s="" for p in range(7): if books[p][1]==type: s=s+"title : "+ books[p][0]+" , " s=s+"id : " +books[p][4]+" , " return{"books":s} class lookup(Resource): def get(self, id): s="" for p in range(7): if books[p][4]==str(id): s = s + "title : " + books[p][0] + " , " s = s + "stock : " + books[p][3] + " , " s = s + "price : " + books[p][2] + " , " return {"books": s} class buy(Resource): def post(self,id): s="" x=0 for p in range(7): if books[p][4] == str(id): s=books[p][3] x=int(s) if x>0 : return {"stock left": x} else: return {"stock left": 0} class update(Resource): def put(self,id): for p in range(7): if books[p][4] == str(id): books[p][3] = str(int(books[p][3]-1)); f = open("data.txt", "w") for i in range(4): for j in range(5): f.write(books[i][j] + "\n") return {"result": "success"} api.add_resource(search, "/search/<string:type>") api.add_resource(lookup,"/lookup/<int:id>") api.add_resource(buy,"/buy/<int:id>") api.add_resource(update,"/update/<int:id>") if __name__ == "__main__": app.run(port=9000,debug=True)
[ "47061208+mohammadghulmi@users.noreply.github.com" ]
47061208+mohammadghulmi@users.noreply.github.com
44298aa9008a62b04b09d7fe8e6ca9b449475bfd
596ee60e8b469b9e8550be616affad397da4534f
/build/rosserial/rosserial_esp32/catkin_generated/pkg.develspace.context.pc.py
abfb1a14b2c987684745df18d3e99483ef769c96
[]
no_license
jmyth742/veg_picker
4e76fc1e46442d2d1cf3e7915fd419cfe551d5a6
9402d6ef4d89593507dd3bd118501130f2842c87
refs/heads/main
2023-02-23T12:51:16.688520
2021-01-27T17:40:50
2021-01-27T17:40:50
333,507,750
0
0
null
null
null
null
UTF-8
Python
false
false
392
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "message_runtime".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "rosserial_esp32" PROJECT_SPACE_DIR = "/home/jonny/veg_picker/devel" PROJECT_VERSION = "1.0.0"
[ "jmyth742@gmail.com" ]
jmyth742@gmail.com
16e39501d561ff8f399a048debeeac46a05ae18f
7ec64481a66af49071db47c792e5b91390142ed9
/tests/test_order_by_nested.py
165f04e025111c51966b44e189c616bf99489ebb
[ "Apache-2.0" ]
permissive
rafalstapinski/tortoise-orm
73943f0b3dcd84645db46df6dea047ab9dd586af
b310f4fc81e1b817e68110d118cd371280b05a8d
refs/heads/develop
2023-05-25T09:10:42.249656
2021-06-07T03:54:05
2021-06-07T03:54:05
348,920,652
1
0
Apache-2.0
2021-03-18T02:50:46
2021-03-18T02:50:45
null
UTF-8
Python
false
false
1,032
py
from tests.testmodels import Event, Tournament from tortoise.contrib import test class TestOrderByNested(test.TestCase): async def test_basic(self): await Event.create( name="Event 1", tournament=await Tournament.create(name="Tournament 1", desc="B") ) await Event.create( name="Event 2", tournament=await Tournament.create(name="Tournament 2", desc="A") ) self.assertEqual( await Event.all().order_by("-name").values("name"), [{"name": "Event 2"}, {"name": "Event 1"}], ) self.assertEqual( await Event.all().prefetch_related("tournament").values("tournament__desc"), [{"tournament__desc": "B"}, {"tournament__desc": "A"}], ) self.assertEqual( await Event.all() .prefetch_related("tournament") .order_by("tournament__desc") .values("tournament__desc"), [{"tournament__desc": "A"}, {"tournament__desc": "B"}], )
[ "noreply@github.com" ]
rafalstapinski.noreply@github.com
a148d4e1e27e766ce235e0dc45f050400b6627e0
739a84f15a1242ec715c79f4f1fd7657c607f2e6
/intersection_arrays.py
4c16b663b2f428c3ba5571ec36ed912e065e7a64
[]
no_license
ElshadaiK/Competitive-Programming
365683a7af61f881ee9cd56d2124f09cfb88e789
9757395120757a81fb5df0bd4719771e60410b47
refs/heads/master
2023-03-09T04:58:33.262626
2023-02-04T12:24:39
2023-02-04T12:24:39
225,391,846
10
0
null
null
null
null
UTF-8
Python
false
false
352
py
def intersection(nums1, nums2): inter = [0]*1001 result = [] for i in range(len(nums1)): inter[nums1[i]] = 1 for i in range(len(nums2)): if(inter[nums2[i]] == 1): inter[nums2[i]] = 3 for k in range(len(inter)): if(inter[k] == 3): result.append(k) return result
[ "elshadaikassutegegn@gmail.com" ]
elshadaikassutegegn@gmail.com
43d0686cbaf9a0f83c2c555ed97d2fe855a322ba
2256e2a8d7958925a17a31871dc8c674a6f9e6df
/app/bot/core/middlewares.py
bfcf19f7819ad7440f3131662f9d2f6037c92df6
[]
no_license
tabacdenis/fastapi-aiogram-template
7694c5cf2bdca0412d8d3b99b29893bd79cbbb1a
e0b72c9154ece56e5b5139a341ba0bf760b37b20
refs/heads/main
2023-08-26T13:04:42.710513
2021-10-26T09:00:13
2021-10-26T09:00:13
518,385,537
1
0
null
2022-07-27T09:06:54
2022-07-27T09:06:53
null
UTF-8
Python
false
false
2,608
py
import asyncio from aiogram import Dispatcher, types from aiogram.dispatcher.handler import CancelHandler, current_handler, Handler from aiogram.dispatcher.middlewares import BaseMiddleware from aiogram.utils.exceptions import Throttled def rate_limit(limit: float, key=None): def decorator(func): setattr(func, 'throttling_rate_limit', limit) if key: setattr(func, 'throttling_key', key) return func return decorator class ThrottlingMiddleware(BaseMiddleware): def __init__(self, limit=.8, key_prefix='antiflood_'): self.rate_limit = limit self.prefix = key_prefix super(ThrottlingMiddleware, self).__init__() async def on_process_callback_query(self, query: types.CallbackQuery, data: dict): if query.inline_message_id: return handler: Handler = current_handler.get() # Get dispatcher from context dispatcher = Dispatcher.get_current() # If handler was configured, get rate limit and key from handler notify = False if handler: limit = getattr(handler, 'throttling_rate_limit', None) key = getattr(handler, 'throttling_key', f"{self.prefix}_{handler.__name__}") if limit: notify = True else: limit = self.rate_limit else: limit = self.rate_limit key = f"{self.prefix}_message" try: await dispatcher.throttle(key, rate=limit) except Throttled as t: print('key:', key) if notify: await query.answer('Biroz kuting...') else: await query.answer() delta = t.rate - t.delta await asyncio.sleep(delta) raise CancelHandler() async def on_process_message(self, message: types.Message, data: dict): handler = current_handler.get() dispatcher = Dispatcher.get_current() # If handler was configured, get rate limit and key from handler if handler: limit = getattr(handler, 'throttling_rate_limit', self.rate_limit) key = getattr(handler, 'throttling_key', f"{self.prefix}_{handler.__name__}") else: limit = self.rate_limit key = f"{self.prefix}_message" # Use Dispatcher.throttle method. try: await dispatcher.throttle(key, rate=limit) except Throttled as throttled: delta = throttled.rate - throttled.delta await asyncio.sleep(delta) raise CancelHandler()
[ "oopanndaa@gmail.com" ]
oopanndaa@gmail.com
a1be7cf483a9faca9b09118b5a2e540a23142cb3
46e6c78186015ccdf5dae056c106572bb4fb156b
/Poisson/2DPoissonNN.py
68a2530cabf4715436d03fe970dcaafa86adf832
[]
no_license
dmontag23/NNAugmentationForPDEs
b28a67a18e89d19c37b08127b3505c65d8cac9a5
71168f812526ab698ebebcc956c2e28d3cb69d40
refs/heads/master
2021-05-21T05:49:52.598158
2020-04-09T03:56:26
2020-04-09T03:56:26
252,573,556
1
0
null
null
null
null
UTF-8
Python
false
false
4,702
py
import numpy as np from datetime import datetime from fenics import * from fenics_adjoint import * from Poisson.FEM import FEM from Poisson.NN import Network from scipy.optimize import minimize np.random.seed(2) def create_fenics_vector(update_vector): q_function = Function(Q) vertex_to_dofs = vertex_to_dof_map(q_function.function_space()) for i in range(len(vertex_to_dofs)): q_function.vector()[vertex_to_dofs[i]] = update_vector[i] return q_function def process_nn_parameters(params): net.update_parameters(params) output = net(mesh.coordinates()) q_vector = output.detach().numpy() q_function = create_fenics_vector(q_vector) return output, q_function def assemble_functional(params): output, q = process_nn_parameters(params) FEMProblem.q = q FEMProblem.solve_poisson_problem() J = FEMProblem.error_functional(uex_with_noise, qex) return output, q, J def fun_to_minimize(params): output, q_function, J = assemble_functional(params) return float(J) def jac_of_fun(params): output, q_function, J = assemble_functional(params) control = Control(q_function) dJdq = interpolate(compute_gradient(J, control), Q).compute_vertex_values() net.calculate_gradients(dJdq, output) gradients_at_xi = np.concatenate([param.grad.numpy().flatten() for param in net.parameters()]) return gradients_at_xi # ask user which "q" value they would like to observe, what noise level they want, and what value to use for Tikhonov regularization usr_input = int(input("Please enter a number corresponding to the value of q you want:\n " + "0: q = 1 \n 1: q = 1 + x + y \n 2: q = 1 + x^2 + y^2 \n 3: 1 + 0.5 * sin(2*pi*x) * sin(2*pi*y) \n")) delta = float(input("Please enter a number between 0 and 1 corresponding to the value of noise you want:\n")) alpha = Constant(float(input("Please enter Tikhonov regularization constant:\n"))) # store the exact value of q and f for the 4 different options for q all_qex = [Constant(1.0), Expression('1 + x[0] + x[1]', degree=2), Expression('1 + pow(x[0], 2) + pow(x[1], 2)', degree=2), Expression('1 + 0.5 * sin(2 * pi * x[0]) * sin(2 * pi * x[1])', degree=2)] all_f = [Expression('2 * pow(pi, 2) * sin(pi * x[0]) * sin(pi * x[1])', degree=2), Expression('-pi * sin(pi * x[1]) * (cos(pi * x[0]) - pi * (x[0] + x[1] + 1) * sin(pi * x[0])) - pi * sin(pi * x[0]) * (cos(pi * x[1]) - pi * (x[0] + x[1] + 1) * sin(pi * x[1]))', degree=2), Expression('-pi * sin(pi * x[1]) * (2 * x[0] * cos(pi * x[0]) - pi * (pow(x[0], 2) + pow(x[1], 2) + 1) * sin(pi * x[0])) - pi * sin(pi * x[0]) * (2 * x[1] * cos(pi * x[1]) - pi * (pow(x[0], 2) + pow(x[1], 2) + 1) * sin(pi * x[1]))', degree=2), Expression('-sin(pi * x[0]) * sin(pi * x[1]) * (-2* pow(pi, 2) * sin(2 * pi * x[0]) * sin(2 * pi * x[1]) - (2 * pow(pi, 2))) - (2 * pow(pi, 2)) * pow(cos(pi * x[0]), 3) * pow(sin(pi * x[1]), 2) * cos(pi * x[1]) - (2 * pow(pi, 2)) * pow(sin(pi * x[0]), 2) * cos(pi * x[0]) * pow(cos(pi * x[0]), 3)', degree=2)] # create the neural network and initialize the weights to be used net = Network(2, 10) initial_params = np.random.rand(41) initial_params[20:30] = 0.0 initial_params[40] = 0.0 # Create mesh and define the function spaces mesh = UnitSquareMesh(100, 100) V = FunctionSpace(mesh, 'P', 1) Q = FunctionSpace(mesh, 'P', 1) net.update_parameters(initial_params) # define the exact solution for u and q uex = interpolate(Expression('sin(pi * x[0]) * sin(pi * x[1])', degree=2), V) qex = interpolate(all_qex[usr_input], Q) # setup the FEM problem to be solved f = all_f[usr_input] FEMProblem = FEM(mesh, V, f, DirichletBC(V, uex, "on_boundary"), delta, alpha) # find the optimal value for q uex_with_noise = FEMProblem.add_noise(uex) # add noise to the original solution u to simulate noisy data net.print_params() startTime = datetime.now() min_params = minimize(fun_to_minimize, initial_params, method='BFGS', jac=jac_of_fun, options={'disp':True, 'gtol':1e-07}) print("The time it took to optimize the functional: " + str(datetime.now() - startTime)) output, q_function = process_nn_parameters(min_params.x) q_opt = interpolate(q_function, Q) # solve the Poisson problem with the optimal value of q FEMProblem.q = q_opt FEMProblem.solve_poisson_problem() # print the errors FEMProblem.print_L2_errors(uex, qex) # write the optimal value of q to a vtk file vtkfile = File('poisson2d/optq.pvd') vtkfile << q_opt vtkfile = File('poisson2d/optu.pvd') vtkfile << FEMProblem.u
[ "dmontag23@gmail.com" ]
dmontag23@gmail.com
9d8a62fa8fd0d64ef61638773107d879bd039073
8d85393bdae5cdef580dacbf2f296a6882bf765f
/polls/models.py
18f57a0c31fd3bd42ca1519e7de3e53cbddd87ff
[]
no_license
rednibia/djangoproject
6abb8462ad9aa2224553e4d5d2833a9e20e3ab74
679910b268c90f72ca8ec8ec93ca1c6fbe77b559
refs/heads/master
2021-01-10T05:06:34.946338
2016-02-01T19:37:59
2016-02-01T19:37:59
50,608,447
0
0
null
null
null
null
UTF-8
Python
false
false
805
py
import datetime from django.db import models from django.utils.encoding import python_2_unicode_compatible from django.utils import timezone @python_2_unicode_compatible # only if you need to support Python 2 class Question(models.Model): qtxt = models.CharField(max_length=200) pd = models.DateTimeField('date published') def __str__(self): return self.qtxt def publishrec(self): now = timezone.now() return now - datetime.timedelta(days=1) <= self.pd <= now @python_2_unicode_compatible # only if you need to support Python 2 class Choice(models.Model): question = models.ForeignKey(Question, on_delete=models.CASCADE) ctxt = models.CharField(max_length=200) votes = models.IntegerField(default=0) def __str__(self): return self.ctxt
[ "andrewaibinder@gmail.com" ]
andrewaibinder@gmail.com
fd3ead0ab8456a1f33d4469a8d99a8f7f42e9320
0bc80f7bba8d7dfa7b293759b0974b9707d8d450
/testdir-9/test-99.py
72e8f627f0d744e3698025d63a8b04ad6dc17d64
[]
no_license
delcypher/lit-concurrency-windows-bug
da3d5edd63f5feaf8b8b65650e39c877f71f46d8
029eb69219e4b84d33072c26e02663e267a38304
refs/heads/master
2020-06-06T07:24:50.360611
2014-05-19T15:31:52
2014-05-19T15:31:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,231
py
# RUN: python %s > %t # RUN: %diff %s.expect %t print('FOO 0x15bf60ecd0cd69f3') print('FOO 0x60cd668746ccd0fa') print('FOO 0x4ca8480914b6a7d8') print('FOO 0x2e2a685136fefe6f') print('FOO 0x515825fdda953ec7') print('FOO 0x1ca9386430cfd8d2') print('FOO 0x15aba69530aa97aa') print('FOO 0x6c1c6788eaca56ec') print('FOO 0x368eb8fb63fa212e') print('FOO 0x8ab246e72aca81d') print('FOO 0x54f10016b90500b9') print('FOO 0x3cb71a1ef14d6438') print('FOO 0x36bce9ab7d6c52a8') print('FOO 0x5f4a484fcaf6505') print('FOO 0x119a6272f8763132') print('FOO 0x2fbf349067eef70e') print('FOO 0x56d301bbf25afe21') print('FOO 0x2b34b66a107a31d') print('FOO 0x3a53516d2eb29169') print('FOO 0x5ce0911999008cb0') print('FOO 0x2dc276048d3eb3cd') print('FOO 0x3aefbde806eeed6c') print('FOO 0x7b8bbf45ca4e36fc') print('FOO 0x7d78510bda2b6326') print('FOO 0x1b91eb1c30da068a') print('FOO 0xf3615072695147a') print('FOO 0x2e5873619d4f35a1') print('FOO 0x5727f59b22e2de1f') print('FOO 0x7f7be1e40b08b25') print('FOO 0x51ccaabca5285c14') print('FOO 0x64fa0d76240fd031') print('FOO 0xb9de254bd1f2040') print('FOO 0x5072182766e59e88') print('FOO 0x469db8c4c841bf4c') print('FOO 0x11ce87487c1f9a6b') print('FOO 0xdff498e6336a60a') print('FOO 0x77fccf55636a7f4a') print('FOO 0x2f20ad782f7e4ebd') print('FOO 0x319b27532c1d5df6') print('FOO 0x275d03b9954e229c') print('FOO 0x3ccd67a6676e413e') print('FOO 0x133e8262513eb148') print('FOO 0x60443bbbe1e6e224') print('FOO 0x737063821c52d2a9') print('FOO 0x27317e1a3751e6ac') print('FOO 0x88c7420838fc640') print('FOO 0x7667b263f7d6f87d') print('FOO 0x6ed2c0d16d69fccb') print('FOO 0x6f115ff59fb86a50') print('FOO 0x26805b62792403c7') print('FOO 0x6a7a9cdaa8cd325a') print('FOO 0x178a4334a283eff3') print('FOO 0x7e04fb87e05096dd') print('FOO 0x690c5ce413505791') print('FOO 0x6796a3b41e54fa23') print('FOO 0x6947ed679863daf7') print('FOO 0x73baceb380d3a000') print('FOO 0x288713e31cb685f0') print('FOO 0x615a722612c3acf7') print('FOO 0x488abc6b4c98e61') print('FOO 0xa6e777bfcbb617c') print('FOO 0x2d7b23e38f485b84') print('FOO 0xf44b624290e3886') print('FOO 0x12e3f89ca9f2e776') print('FOO 0x2293b434710c87f') print('FOO 0x61c1ed8fcad62252') print('FOO 0x739d7a743940bc49') print('FOO 0x41217a4eb575c911') print('FOO 0x748feb65e4612e63') print('FOO 0x4096649232960b30') print('FOO 0x869218acf04b6ab') print('FOO 0x6637f51238d1651f') print('FOO 0x55a395ae68eece13') print('FOO 0x2d85e365c6b49bc1') print('FOO 0xcd27fb98dd381a') print('FOO 0x5982981f2449a6f8') print('FOO 0x69d2cbcf2b1bc51b') print('FOO 0x6373d76fe1027d15') print('FOO 0x2bdbadab611c7cb0') print('FOO 0x52acac6cf4d7e5fb') print('FOO 0x552b637e4fd2ea77') print('FOO 0x1c7f996cc666b963') print('FOO 0x496a42f3ee3f2e77') print('FOO 0x3572d857f40775c9') print('FOO 0x58f3c1171f06461f') print('FOO 0x5bdc7cce8963f82e') print('FOO 0x49d55108ec928e61') print('FOO 0x17257436cf27d97c') print('FOO 0x380870d2a5966421') print('FOO 0x42b8610db99075b') print('FOO 0xce9db3a5a92f865') print('FOO 0x317531928bd0670d') print('FOO 0x69d2965225478deb') print('FOO 0x651dd6dfa0071231') print('FOO 0x481eadf77fbd1f33') print('FOO 0x47f63daf7296fbc1') print('FOO 0x69137f4ef19dea2f') print('FOO 0x7f1adf459fd598f5') print('FOO 0x1c359cd2a93f83ac') print('FOO 0x11c1b50ce36f9af5')
[ "daniel.liew@imperial.ac.uk" ]
daniel.liew@imperial.ac.uk
e55646a8119970163aeb64b6b83d2aa3d3d683ba
5d60d0d3b474b8f225773330c2f0af63835e2625
/python/analyze_essentia.py
96269a0d03aaddfd9caaf367ef7e449c15fa3e7b
[]
no_license
julesyoungberg/soundboy
3dcd62b031c6552c9ac99309d36245463b6ae4e6
c20bd44b811df5fd399bb03c73ca89e33b5d7609
refs/heads/main
2023-02-02T18:29:38.596939
2020-12-13T22:12:56
2020-12-13T22:12:56
301,028,668
0
4
null
2020-12-13T22:12:57
2020-10-04T03:01:17
TypeScript
UTF-8
Python
false
false
4,707
py
import os import shutil import essentia.standard import numpy as np import essentia from tqdm import tqdm import matplotlib.pyplot as plt import sklearn def get_features(d): try: sr = 22050 duration = 3 nfft = 2048 #loader = essentia.standard.EasyLoader(filename=d, sampleRate = sr, endTime = 5) #loader = essentia.standard.EqloudLoader(filename=d, sampleRate = sr, endTime = duration) loader = essentia.standard.MonoLoader(filename=d, sampleRate=sr) audio = loader() if (len(audio) > duration * sr): audio = audio[:duration * sr] n_coef = 13 n_bands = 40 frame_size = 2048 hop = 1024 w = essentia.standard.Windowing(type='hann') spectrum = essentia.standard.Spectrum() mfcc = essentia.standard.MFCC( numberCoefficients=n_coef, sampleRate=sr, numberBands=n_bands) mfccs = [] for frame in essentia.standard.FrameGenerator(audio, frameSize=frame_size, hopSize=hop): mfcc_bands, mfcc_coeffs = mfcc(spectrum(w(frame))) mfccs.append(mfcc_coeffs) mfccs = essentia.array(mfccs).T pad_width = 95 - mfccs.shape[1] mfccs = np.pad(mfccs, pad_width=( (0, 0), (0, pad_width)), mode='reflect') # centroid = librosa.feature.spectral_centroid(y=audio, sr = sr, n_fft = nfft, hop_length = hop) # bandwidth = librosa.feature.spectral_centroid(y= audio, sr = sr, n_fft = nfft, hop_length = hop) # spectral_contrast = librosa.feature.spectral_contrast(y = audio, sr = sr, n_fft = nfft, hop_length = hop) # spectral_flatness = librosa.feature.spectral_flatness(y = audio, n_fft = nfft, hop_length = hop) # spectral_rolloff = librosa.feature.spectral_rolloff(y = audio, sr = sr, n_fft = nfft, hop_length = hop) # zcr = librosa.feature.zero_crossing_rate(y = audio, hop_length = 1024) # feature_vector = [ # centroid.mean(), # centroid.std(), # bandwidth.mean(), # bandwidth.std(), # # spectral_contrast[0].mean(), # # spectral_contrast[0].std(), # # spectral_contrast[1].mean(), # # spectral_contrast[1].std(), # # spectral_contrast[2].mean(), # # spectral_contrast[2].std(), # # spectral_contrast[3].mean(), # # spectral_contrast[3].std(), # # spectral_contrast[4].mean(), # # spectral_contrast[4].std(), # # spectral_contrast[5].mean(), # # spectral_contrast[5].std(), # spectral_flatness.mean(), # spectral_flatness.std(), # spectral_rolloff.mean(), # spectral_rolloff.std(), # zcr.mean(), # zcr.std(), # mfccs.mean(), # mfccs.std() # ] # feature_vector = np.array(feature_vector) #normalized_feature_vector = (feature_vector - feature_vector.mean(0)) / feature_vector.std(0) return mfccs except Exception as e: print("error processing file ", dir, e) # os.remove(dir) print(f"Deleted file{dir}") return [-1] features = [] mfccs = [] labels = [] i = 10 current_label = "" folder = "./Train" for root, dirs, files in os.walk(folder, topdown=False): for name in tqdm(files): cur_dir = os.path.join(root, name) label = cur_dir.split('/')[-2] # # Testing code # if (current_label != label): # current_label = label # i = 0 # if (i < 10): # feature_vector, mfcc = get_features(cur_dir) # i += 1 # if len(feature_vector) > 1: # features.append(feature_vector) # print(i) # # Standardizing mfcc data so coefficient dimension has zero mean and unit variance # mfcc = sklearn.preprocessing.scale(mfcc.astype(float), axis=0) # mfccs.append(mfcc) # labels.append(label) # Real Code mfcc = get_features(cur_dir) if len(mfcc) > 1: # features.append(feature_vector) # Standardizing mfcc data so coefficient dimension has zero mean and unit variance mfccs.append(mfcc) labels.append(label) features = np.array(features) labels = np.array(labels) mfccs = np.array(mfccs) #np.save('features', features) np.save('essentia_mfccs_new', mfccs) np.save('essentia_labels_new', labels)
[ "noreply@github.com" ]
julesyoungberg.noreply@github.com
aaadd0a0164a4f69dde6224c758243edc8c96d89
442ef15c5cba847a9ede88f7f29d8dab6d72f3dd
/apps/miniwallet/migrations/0001_initial.py
742c76d5cb436d4215aa2851d13d555d25a4aaec
[]
no_license
roopagokul24/testproject
fd526be5dceb70da798282d6f808a32ebca01e09
b638c7e4b621532196e8846bbc650f0ad5cb8e25
refs/heads/main
2023-06-18T21:51:45.215864
2021-07-13T18:33:12
2021-07-13T18:33:12
319,672,245
0
0
null
null
null
null
UTF-8
Python
false
false
1,084
py
# Generated by Django 2.2.3 on 2021-07-13 16:23 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Wallet', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('amount', models.CharField(max_length=15, verbose_name='Amount')), ('balance', models.CharField(max_length=15, null=True, verbose_name='Amount')), ('enable', models.BooleanField(default=False)), ('enabled_time', models.DateTimeField(blank=True, default=None, null=True, verbose_name='Created Time')), ('user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='wallet_owner', to=settings.AUTH_USER_MODEL)), ], ), ]
[ "roopa@impressads.com" ]
roopa@impressads.com
5a6477db916abb1b00d44eb794a0c0276496e045
1afbf755dcb47649cdc5d1d3b908bcd4e60cf24f
/PreDisulfideBond/create_position.py
726740568a783d6101baa986253c30bb4f4c3f7f
[]
no_license
romendlf/SSBONDPredict
cd64d74a4b1814e769ca196388687430fda3af34
524a1c1196377ad4960a1001f42fdd47f19c17bf
refs/heads/master
2022-02-15T16:54:52.964907
2019-08-17T12:19:16
2019-08-17T12:19:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,387
py
import rmsd import numpy as np import sys # this function can produce the sixth position for redius who only have 5 atoms def xyz5_position(i,lines): template1 = np.array([[-0.93454, 0.91954, 1.11786], [-0.01675, 0.03488, 0.58954], [ 1.10621, 0.72253,-0.004 ], [ 1.6148 , 1.14817,-0.57075], [-0.64719,-0.82998,-0.40926]]) template2 = np.array([[-0.93454, 0.91954, 1.11786], [-0.01675, 0.03488, 0.58954], [ 1.10621, 0.72253,-0.004 ], [ 1.6148 , 1.14817,-0.57075], [-0.64719,-0.82998,-0.40926], [-1.12252,-1.99515,-0.72338]]) amino_acid_position = [] for k in range(i, i + 5, 1): try: x = lines[k][30:38] y = lines[k][38:46] z = lines[k][46:54] amino_acid_position.append(np.asarray([x, y ,z], dtype=float)) except: sys.exit("Error parsing input for the following line: \n{0:s}".format(lines[k])) amino_acid_position = np.asarray(amino_acid_position) #print amino_acid_position a_acid_p = amino_acid_position - rmsd.centroid(amino_acid_position) template1 -= rmsd.centroid(template1) #centroid P2 into f template2 = template2 - rmsd.centroid(template2) rot = rmsd.kabsch(template1,a_acid_p) #pp is the rotated martix,Rotate matrix P2 unto Q new_position = np.dot(template2,rot) #translation the P2 into initial position after rotation new_position += rmsd.centroid(amino_acid_position) C = new_position.tolist() #print new_position #change the martix into list #lenthg = len(C) #print lenthg #for n in range(0,6,1): position = ('%8s'%str(float('%.3f'%C[5][0]))) + ('%8s'%str(float('%.3f'%C[5][1]))) + ('%8s'%str(float('%.3f'%C[5][2]))) return position #GLY line5 # this function can produce the fivth position for redius who only have 4 atoms, def xyz4a_position(i,lines): template1 = np.array([[-0.93454, 0.91954, 1.11786], [-0.01675, 0.03488, 0.58954], [ 1.10621, 0.72253,-0.004 ], [ 1.6148 , 1.14817,-0.57075]]) template2 = np.array([[-0.93454, 0.91954, 1.11786], [-0.01675, 0.03488, 0.58954], [ 1.10621, 0.72253,-0.004 ], [ 1.6148 , 1.14817,-0.57075], [-0.64719,-0.82998,-0.40926], [-1.12252,-1.99515,-0.72338]]) amino_acid_position = [] for k in range(i, i + 4, 1): try: x = lines[k][30:38] y = lines[k][38:46] z = lines[k][46:54] amino_acid_position.append(np.asarray([x, y ,z], dtype=float)) except: sys.exit("Error parsing input for the following line: \n{0:s}".format(lines[k])) amino_acid_position = np.asarray(amino_acid_position) #print amino_acid_position a_acid_p = amino_acid_position - rmsd.centroid(amino_acid_position) template1 -= rmsd.centroid(template1) #centroid P2 into f template2 = template2 - rmsd.centroid(template2) #for debug #print '*************8888888888888888' #print template1.shape#(4,3) #print a_acid_p.shape#(5,3) #print template2.shape#(6.3) rot = rmsd.kabsch(template1,a_acid_p) #pp is the rotated martix,Rotate matrix P2 unto Q new_position = np.dot(template2,rot) #translation the P2 into initial position after rotation new_position += rmsd.centroid(amino_acid_position) C = new_position.tolist() #print new_position #print lenthg #for n in range(0,6,1): position5 = ('%8s'%str(float('%.3f'%C[4][0]))) + ('%8s'%str(float('%.3f'%C[4][1]))) + ('%8s'%str(float('%.3f'%C[4][2]))) position6 = ('%8s'%str(float('%.3f'%C[5][0]))) + ('%8s'%str(float('%.3f'%C[5][1]))) + ('%8s'%str(float('%.3f'%C[5][2]))) print 'print the position of position 5 and position 6' return position5,position6 #GLY line6 # this function can produce the sixth position for redius who only have 4 atoms, def xyz4b_position(i,lines): template1 = np.array([[-0.93454, 0.91954, 1.11786], [-0.01675, 0.03488, 0.58954], [ 1.10621, 0.72253,-0.004 ], [ 1.6148 , 1.14817,-0.57075]]) template2 = np.array([[-0.93454, 0.91954, 1.11786], [-0.01675, 0.03488, 0.58954], [ 1.10621, 0.72253,-0.004 ], [ 1.6148 , 1.14817,-0.57075], [-0.64719,-0.82998,-0.40926], [-1.12252,-1.99515,-0.72338]]) amino_acid_position = [] for k in range(i, i + 4, 1): try: x = lines[k][30:38] y = lines[k][38:46] z = lines[k][46:54] amino_acid_position.append(np.asarray([x, y ,z], dtype=float)) except: sys.exit("Error parsing input for the following line: \n{0:s}".format(lines[k])) amino_acid_position = np.asarray(amino_acid_position) #print amino_acid_position a_acid_p = amino_acid_position - rmsd.centroid(amino_acid_position) template1 -= rmsd.centroid(template1) #centroid P2 into f template2 = template2 - rmsd.centroid(template2) rot = rmsd.kabsch(template1,a_acid_p) #pp is the rotated martix,Rotate matrix P2 unto Q new_position = np.dot(template2,rot) #translation the P2 into initial position after rotation new_position += rmsd.centroid(amino_acid_position) C = new_position.tolist() #print new_position #print lenthg #for n in range(0,6,1): position = ('%8s'%str(float('%.3f'%C[5][0]))) + ('%8s'%str(float('%.3f'%C[5][1]))) + ('%8s'%str(float('%.3f'%C[5][2]))) return position
[ "2646510513@qq.com" ]
2646510513@qq.com
91e913b259518577f842264f979128f64c4d2b13
2038db2aa17ec99980b8e942c0af3d1f55158c89
/app/auth/__init__.py
3133d442cf35c62f20bb47562253d9974c0545e9
[]
no_license
Harithmetic1/Alium-Resume-Builder
098011d5ac3a5e5eed8d7f8b431262c293cd90a5
f147c15e0372d51449b41d5a29d4e40b61a7874a
refs/heads/master
2022-12-31T02:10:09.392725
2020-10-09T20:29:41
2020-10-09T20:29:41
297,050,208
2
2
null
2020-10-09T20:29:43
2020-09-20T10:17:29
HTML
UTF-8
Python
false
false
91
py
from flask import Blueprint auth = Blueprint(__name__, 'auth') from app.auth import views
[ "koikibabatunde14@gmail.com" ]
koikibabatunde14@gmail.com
54085cee412af380b8a7357d471d4a1373a35789
18781dfa8e93aeffe05575bf146f54b55bf43587
/src/testscr/test.py
db4d69863700fb7f0ebd61a73552f0efebd7d272
[]
no_license
sailepradh/Rare_variants_atherosclerosis
a7a34edf5cab8f35f0d0f82c96c5e1cb74a2707a
344b1710630ea24e8e04f1a1eab10cfbee57f222
refs/heads/master
2020-12-02T20:57:19.985950
2018-01-29T13:30:44
2018-01-29T13:30:44
96,233,122
0
0
null
null
null
null
UTF-8
Python
false
false
1,345
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' This scripts overlaps the alleles that are present in rare frequency in Swed samples. Considering the rare frequncy of < 1% in the swed frequency data we can estimate the allele count as 1% of 2000 = 20 and removing the private variants present only in one individual we set the lower threshold as 2. ''' import sys from pysam import VariantFile Vcfin = VariantFile("/Users/salendrapradh/Documents/Rare_variants_atherosclerosis/data/swegen_20161223/SNP_VCF.gz") with open ('/Users/salendrapradh/Documents/Rare_variants_atherosclerosis/data/BAV_HiCap/BAV_P-E_InteractionDataset.txt', 'r') as f: for line in f: line = line.strip().split("\t") set = [(line[9])[3:], line[10], line[11]] for field in line: print (field, end = "\t") for rec in Vcfin.fetch (set[0], int(set[1]), int(set[2])): for i in range(0, len(rec.info["AC"])): if rec.info["AC"][i] > 100 : # Common variant # if rec.info["AC"][i] > 20 and (rec.info["AC"])[i] <= 100 : # Low frequency variant # if rec.info["AC"][i] > 2 and (rec.info["AC"])[i] <= 20 : # Rare frequency variant print (rec.chrom,rec.start,rec.stop,rec.alleles,(rec.info["AC"])[i] , end ="\t") print("") # break
[ "sailepradh@gmail.com" ]
sailepradh@gmail.com
c39d1267df6c369e0dbf84fff115e1bc9bd83566
0342288382bdf29396ff25985b4a9502ad1f8037
/LeafNATS/engines/end2end.py
986e8775e42ac5fb61b186d0b524c285b337a519
[ "MIT", "GPL-3.0-only" ]
permissive
rajpratim/TREQS
321455e9bae3468040d525984401565882080a99
773e946aeb2013679b8824e177c4d5a3e6268118
refs/heads/master
2020-07-02T18:02:52.247008
2019-08-10T05:20:00
2019-08-10T05:20:00
201,615,111
0
1
MIT
2019-08-10T10:29:11
2019-08-10T10:29:11
null
UTF-8
Python
false
false
16,600
py
''' @author Tian Shi Please contact tshi@vt.edu ''' import glob import json import os import pickle import re import shutil import time from pprint import pprint import numpy as np import torch from torch.autograd import Variable from LeafNATS.data.utils import create_batch_file from LeafNATS.utils.utils import show_progress class natsEnd2EndBase(object): ''' This engine is for the end2end training for seq2seq models. Actually, it can also be used in other cases without any changes, e.g., classification and QA. Here, we try to make it easy for multi-task, transfer learning, reuse of the pretrained models. We have not tried the RL training. ''' def __init__(self, args=None): ''' Initialize ''' self.args = args self.base_models = {} self.train_models = {} self.batch_data = {} self.global_steps = 0 def build_vocabulary(self): ''' vocabulary ''' raise NotImplementedError def build_models(self): ''' Models: self.base_models: models that will be trained Format: {'name1': model1, 'name2': model2} self.train_models: models that will be trained. Format: {'name1': model1, 'name2': model2} ''' raise NotImplementedError def init_base_model_params(self): ''' Initialize Base Model Parameters. self.base_models. ''' raise NotImplementedError def build_pipelines(self): ''' Pipelines and loss here. ''' raise NotImplementedError def build_optimizer(self, params): ''' define optimizer ''' raise NotImplementedError def print_info_train(self): ''' Print additional information on screen. ''' print('NATS Message: ') def build_batch(self, batch_id): ''' process batch data. ''' raise NotImplementedError def test_worker(self, _nbatch): ''' Used in decoding. Users can define their own decoding process. You do not have to worry about path and prepare input. ''' raise NotImplementedError def app_worker(self): ''' For application. ''' raise NotImplementedError def train(self): ''' training here. Don't overwrite. ''' self.build_vocabulary() self.build_models() print(self.base_models) print(self.train_models) if len(self.base_models) > 0: self.init_base_model_params() # here it is necessary to put list. Instead of directly append. for model_name in self.train_models: try: params += list(self.train_models[model_name].parameters()) except: params = list(self.train_models[model_name].parameters()) if self.args.train_base_model: for model_name in self.base_models: try: params += list(self.base_models[model_name].parameters()) except: params = list(self.base_models[model_name].parameters()) # define optimizer optimizer = self.build_optimizer(params) # load checkpoint uf_model = [0, -1] out_dir = os.path.join('..', 'nats_results') if not os.path.exists(out_dir): os.mkdir(out_dir) if self.args.continue_training: model_para_files = glob.glob(os.path.join(out_dir, '*.model')) if len(model_para_files) > 0: uf_model = [] for fl_ in model_para_files: arr = re.split(r'\/', fl_)[-1] arr = re.split(r'\_|\.', arr) arr = [int(arr[-3]), int(arr[-2])] if arr not in uf_model: uf_model.append(arr) cc_model = sorted(uf_model)[-1] try: print("Try *_{}_{}.model".format(cc_model[0], cc_model[1])) for model_name in self.train_models: fl_ = os.path.join( out_dir, model_name+'_'+str(cc_model[0])+'_'+str(cc_model[1])+'.model') self.train_models[model_name].load_state_dict( torch.load(fl_, map_location=lambda storage, loc: storage)) except: cc_model = sorted(uf_model)[-2] print("Try *_{}_{}.model".format(cc_model[0], cc_model[1])) for model_name in self.train_models: fl_ = os.path.join( out_dir, model_name+'_'+str(cc_model[0])+'_'+str(cc_model[1])+'.model') self.train_models[model_name].load_state_dict( torch.load(fl_, map_location=lambda storage, loc: storage)) print( 'Continue training with *_{}_{}.model'.format(cc_model[0], cc_model[1])) uf_model = cc_model else: shutil.rmtree(out_dir) os.mkdir(out_dir) # train models fout = open('../nats_results/args.pickled', 'wb') pickle.dump(self.args, fout) fout.close() start_time = time.time() cclb = 0 for epoch in range(uf_model[0], self.args.n_epoch): n_batch = create_batch_file( path_data=self.args.data_dir, path_work=os.path.join('..', 'nats_results'), is_shuffle=True, fkey_=self.args.task, file_=self.args.file_corpus, batch_size=self.args.batch_size, is_lower=self.args.is_lower ) print('The number of batches: {}'.format(n_batch)) self.global_steps = n_batch * max(0, epoch) for batch_id in range(n_batch): self.global_steps += 1 if cclb == 0 and batch_id <= uf_model[1]: continue else: cclb += 1 self.build_batch(batch_id) loss = self.build_pipelines() optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(params, self.args.grad_clip) optimizer.step() end_time = time.time() if batch_id % self.args.checkpoint == 0: for model_name in self.train_models: fmodel = open(os.path.join( out_dir, model_name+'_'+str(epoch)+'_'+str(batch_id)+'.model'), 'wb') torch.save( self.train_models[model_name].state_dict(), fmodel) fmodel.close() if batch_id % 1 == 0: end_time = time.time() print('epoch={}, batch={}, loss={}, time_escape={}s={}h'.format( epoch, batch_id, loss.data.cpu().numpy(), end_time-start_time, (end_time-start_time)/3600.0 )) self.print_info_train() del loss for model_name in self.train_models: fmodel = open(os.path.join( out_dir, model_name+'_'+str(epoch)+'_'+str(batch_id)+'.model'), 'wb') torch.save(self.train_models[model_name].state_dict(), fmodel) fmodel.close() def validate(self): ''' Validation here. Don't overwrite. ''' self.build_vocabulary() self.build_models() pprint(self.base_models) pprint(self.train_models) if len(self.base_models) > 0: self.init_base_model_params() best_arr = [] val_file = os.path.join('..', 'nats_results', 'model_validate.txt') if os.path.exists(val_file): fp = open(val_file, 'r') for line in fp: arr = re.split(r'\s', line[:-1]) best_arr.append( [arr[0], arr[1], arr[2], float(arr[3]), float(arr[4])]) fp.close() for model_name in self.base_models: self.base_models[model_name].eval() for model_name in self.train_models: self.train_models[model_name].eval() with torch.no_grad(): while 1: model_para_files = [] model_para_files = glob.glob(os.path.join( '..', 'nats_results', sorted(list(self.train_models))[0]+'*.model')) for j in range(len(model_para_files)): arr = re.split(r'\_|\.', model_para_files[j]) arr = [int(arr[-3]), int(arr[-2]), model_para_files[j]] model_para_files[j] = arr model_para_files = sorted(model_para_files) for fl_ in model_para_files: best_model = {itm[0]: itm[3] for itm in best_arr} if fl_[-1] in best_model: continue print('Validate *_{}_{}.model'.format(fl_[0], fl_[1])) losses = [] start_time = time.time() if os.path.exists(fl_[-1]): time.sleep(3) try: for model_name in self.train_models: fl_tmp = os.path.join( '..', 'nats_results', model_name+'_'+str(fl_[0])+'_'+str(fl_[1])+'.model') self.train_models[model_name].load_state_dict( torch.load(fl_tmp, map_location=lambda storage, loc: storage)) except: continue else: continue val_batch = create_batch_file( path_data=self.args.data_dir, path_work=os.path.join('..', 'nats_results'), is_shuffle=True, fkey_=self.args.task, file_=self.args.file_val, batch_size=self.args.batch_size ) print('The number of batches (test): {}'.format(val_batch)) if self.args.val_num_batch > val_batch: self.args.val_num_batch = val_batch for batch_id in range(self.args.val_num_batch): self.build_batch(batch_id) loss = self.build_pipelines() losses.append(loss.data.cpu().numpy()) show_progress(batch_id+1, self.args.val_num_batch) print() losses = np.array(losses) end_time = time.time() if self.args.use_move_avg: try: losses_out = 0.9*losses_out + \ 0.1*np.average(losses) except: losses_out = np.average(losses) else: losses_out = np.average(losses) best_arr.append( [fl_[2], fl_[0], fl_[1], losses_out, end_time-start_time]) best_arr = sorted(best_arr, key=lambda bb: bb[3]) if best_arr[0][0] == fl_[2]: out_dir = os.path.join('..', 'nats_results', 'model') try: shutil.rmtree(out_dir) except: pass os.mkdir(out_dir) for model_name in self.base_models: fmodel = open(os.path.join( out_dir, model_name+'.model'), 'wb') torch.save( self.base_models[model_name].state_dict(), fmodel) fmodel.close() for model_name in self.train_models: fmodel = open(os.path.join( out_dir, model_name+'.model'), 'wb') torch.save( self.train_models[model_name].state_dict(), fmodel) fmodel.close() try: shutil.copy2(os.path.join( self.args.data_dir, self.args.file_vocab), out_dir) except: pass for itm in best_arr[:self.args.nbestmodel]: print('model={}_{}, loss={}, time={}'.format( itm[1], itm[2], itm[3], itm[4])) for itm in best_arr[self.args.nbestmodel:]: tarr = re.split(r'_|\.', itm[0]) if tarr[-2] == '0': continue if os.path.exists(itm[0]): for model_name in self.train_models: fl_tmp = os.path.join( '..', 'nats_results', model_name+'_'+str(itm[1])+'_'+str(itm[2])+'.model') os.unlink(fl_tmp) fout = open(val_file, 'w') for itm in best_arr: if len(itm) == 0: continue fout.write(' '.join([itm[0], str(itm[1]), str( itm[2]), str(itm[3]), str(itm[4])])+'\n') fout.close() def test(self): ''' testing Don't overwrite. ''' self.build_vocabulary() self.build_models() pprint(self.base_models) pprint(self.train_models) if len(self.base_models) > 0: self.init_base_model_params() _nbatch = create_batch_file( path_data=self.args.data_dir, path_work=os.path.join('..', 'nats_results'), is_shuffle=False, fkey_=self.args.task, file_=self.args.file_test, batch_size=self.args.test_batch_size ) print('The number of batches (test): {}'.format(_nbatch)) for model_name in self.base_models: self.base_models[model_name].eval() for model_name in self.train_models: self.train_models[model_name].eval() with torch.no_grad(): if self.args.use_optimal_model: model_valid_file = os.path.join( '..', 'nats_results', 'model_validate.txt') fp = open(model_valid_file, 'r') for line in fp: arr = re.split(r'\s', line[:-1]) model_optimal_key = ''.join( ['_', arr[1], '_', arr[2], '.model']) break fp.close() else: arr = re.split(r'\D', self.args.model_optimal_key) model_optimal_key = ''.join( ['_', arr[0], '_', arr[1], '.model']) print("You choose to use *{} for decoding.".format(model_optimal_key)) for model_name in self.train_models: model_optimal_file = os.path.join( '..', 'nats_results', model_name+model_optimal_key) self.train_models[model_name].load_state_dict(torch.load( model_optimal_file, map_location=lambda storage, loc: storage)) self.test_worker(_nbatch) print() def app2Go(self): ''' For the application. Don't overwrite. ''' self.build_vocabulary() self.build_models() for model_name in self.train_models: self.base_models[model_name] = self.train_models[model_name] pprint(self.base_models) if len(self.base_models) > 0: self.init_base_model_params() for model_name in self.base_models: self.base_models[model_name].eval() with torch.no_grad(): while 1: self.app_worker()
[ "wangpinggl@gmail.com" ]
wangpinggl@gmail.com
d845a35fbcb26effd1e00ba291cc588970a99974
58a0ba5ee99ec7a0bba36748ba96a557eb798023
/Olympiad Solutions/URI/1383.py
49e1281ab9a943fd05a98225692854fb1e43eef5
[ "MIT" ]
permissive
adityanjr/code-DS-ALGO
5bdd503fb5f70d459c8e9b8e58690f9da159dd53
1c104c33d2f56fe671d586b702528a559925f875
refs/heads/master
2022-10-22T21:22:09.640237
2022-10-18T15:38:46
2022-10-18T15:38:46
217,567,198
40
54
MIT
2022-10-18T15:38:47
2019-10-25T15:50:28
C++
UTF-8
Python
false
false
823
py
# Ivan Carvalho # Solution to https://www.urionlinejudge.com.br/judge/problems/view/1383 #!/usr/bin/env python2.7 # encoding : utf-8 ordem = int(raw_input()) padrao = range(1,10) resposta = [] for j in xrange(ordem): aquilo = "Instancia %d" % (j+1) resposta.append(aquilo) array = [] teste = 0 for i in xrange(9): array.append([int(k) for k in raw_input().split(" ")]) for i in array: if sorted(i) != padrao: teste = 1 for i in zip(*array): if sorted(list(i)) != padrao: teste = 1 for i in [0,3,6]: for k in [0,3,6]: if sorted([array[i][k],array[i][k+1],array[i][k+2],array[i+1][k],array[i+1][k+1],array[i+1][k+2],array[i+2][k],array[i+2][k+1],array[i+2][k+2]]) != padrao: teste = 1 if teste == 1: resposta.extend(["NAO",""]) else: resposta.extend(["SIM",""]) for j in resposta: print j
[ "samant04aditya@gmail.com" ]
samant04aditya@gmail.com
a2f3b5ebace3044d558ab70daa354bccd7830a35
9ca7c1c36ada61da86a631e2e1e867dfbbd728b0
/booksvenv/bin/pip2
bf31215135ccf45832e1eb58b17f7c75441885e3
[]
no_license
SamCD/BooksLibrary
e4e4afb5e1e5fbeb258058d2437a6f57624cecf0
bed01595948c3520d7a9d5fa622efa7efccb039a
refs/heads/master
2021-01-01T17:47:13.912366
2015-05-20T15:26:28
2015-05-20T15:26:28
35,551,799
0
0
null
null
null
null
UTF-8
Python
false
false
240
#!/Users/samdevries/BooksLibrary/booksvenv/bin/python # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "samuel.cohen-devries@spsmail.cuny.edu" ]
samuel.cohen-devries@spsmail.cuny.edu
2eda5e250552c59ee04b8494c22fdb56912333d0
d05fa3feec04c19dad98479a136629039e3bc321
/casepro/contacts/migrations/0011_migrate_suspend_groups.py
6064ce3376342c6250de3627e62962f6353ea499
[ "BSD-3-Clause" ]
permissive
digideskio/casepro
dc3f028ad8a6f49c01cff2dc56bf7c2ce92166c9
54ad1fb58300c86ae07344b2094681106d34b146
refs/heads/master
2020-05-29T11:02:58.368483
2016-03-10T10:55:40
2016-03-10T10:55:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,300
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals import json from django.db import migrations def create_suspend_groups(apps, schema_editor): Org = apps.get_model('orgs', 'Org') Group = apps.get_model('contacts', 'Group') num_created = 0 num_updated = 0 for org in Org.objects.all(): config = json.loads(org.config) if org.config else {} suspend_groups = config.get('suspend_groups', []) for group_uuid in suspend_groups: group = Group.objects.filter(org=org, uuid=group_uuid).first() if group: group.suspend_from = True group.save(update_fields=('suspend_from',)) num_updated += 1 else: # create placeholder which will be updated in next contacts sync Group.objects.create(org=org, uuid=group_uuid, name="Syncing...", suspend_from=True, is_active=False) num_created += 1 if num_created or num_updated: print "Migrated org suspend groups (%d created, %d updated)" % (num_created, num_updated) class Migration(migrations.Migration): dependencies = [ ('contacts', '0010_group_suspend_from'), ] operations = [ migrations.RunPython(create_suspend_groups) ]
[ "rowanseymour@gmail.com" ]
rowanseymour@gmail.com
e6ba3ac66a8898dea92e6348d518bdbf659925b9
f7f49b9270770cde802cb4cc2eea4f0ade10a37c
/main.py
6e3c82fd5e5b3925f52d3e3119d7cd6ef7c79263
[]
no_license
dphillips97/get_naics
f590c4e50cef44e127bd2387fecb5eb6c737fec7
741578a381a81c71f1affaeb8595310cd48f0df2
refs/heads/master
2021-04-03T01:08:38.281556
2018-03-12T17:15:50
2018-03-12T17:15:50
124,593,805
0
0
null
2018-03-12T01:14:05
2018-03-09T21:12:43
Python
UTF-8
Python
false
false
3,952
py
import requests from bs4 import BeautifulSoup import openpyxl import re import time ''' 1st function call. Searches siccode.com for business name (from Excel) and returns all <a> tags if there are multiple results. One of these urls on the results_page will be the business in Madison Heights/MI. ''' # biz_name is from spreadsheet def get_site(biz_name): # returns all search results on 1 page search_url = r'https://siccode.com/en/business-list/' + biz_name # get page object, save as string results_page = requests.get(search_url) results_page_doc = results_page.text # create soup object soup = BeautifulSoup(results_page_doc, 'html.parser') # get all <a>s to use regex on results_links = soup.find_all('a') # return all soup <a> objects return results_links ''' 2nd function call. Loops thru all <a> links on search results page and uses regex to find link of business in Michigan (starts with 480..). ''' # takes as argument all <a> links from business search results def get_url(results_links): for link in results_links: # returns a string using a BS method url = link.get('href') # make regex object to find first(?) url that contains MI zip code url_regex = r'.*48\d\d\d' try: # create match object mo = re.search(url_regex, url) # url string that points to business-specific page biz_url = mo.group() # might return None(?) return biz_url # if mo == None: except: pass ''' 3rd function call. Calls page specific to business and gets NAICS code on that page. May eventually merge this with 2nd function call. ''' def call_url(biz_url): # calls business-specific page biz_page_url = r'http://siccode.com' + biz_url # converts entire page object to text biz_page = requests.get(biz_page_url) biz_page_doc = biz_page.text # gets all <a> text from page soup_2 = BeautifulSoup(biz_page_doc, 'html.parser') naics_a = soup_2.find_all('a') # for each element in <a> object for elem in naics_a: # change each one into text; move outside for loop? elem_doc = elem.text # gets 6-digit naics code and description after dash elem_regex = r'^\s(\d{6})\s-\s(.*)' # may return None; handle this downstream try: mo = re.search(elem_regex, elem_doc) code = mo.group(1) descr = mo.group(2) return code, descr except: pass # main loop def master(): # create workbook & sheet(s) objects wb = openpyxl.load_workbook('biz.xlsx') sheet = wb.active max_col = sheet.max_column # create headers sheet.cell(row = 1, column = max_col + 1, value = 'naics code') sheet.cell(row = 1, column = max_col + 2, value = 'description') #loop through rows to get biz name for row_iter in range(2, sheet.max_row + 1): # get business names from Excel biz_name = sheet.cell(row = row_iter, column = 5).value # print record being looked up and print result on same line print('Looking up code for %s...' % (biz_name), end = ''); # returns soup object of all results matching business name results_links = get_site(biz_name) # returns url segment specific to MI business biz_url = get_url(results_links) try: # uses regex to get naics code from specific website # handle None type below code, descr = call_url(biz_url) # let user know on CLI (mostly for fun) print(' %s - %s' % (str(code), descr)) # write results to sheet sheet.cell(row = row_iter, column = max_col + 1, value = code) sheet.cell(row = row_iter, column = max_col + 2, value = descr) # rest for a moment to avoid battering their servers time.sleep(5) # if biz_url is None except: sheet.cell(row = row_iter, column = max_col + 1, value = 'NOT FOUND') print(' %s' % 'NOT FOUND') # save temp file every 250 records if (row_iter % 251 == 0): wb.save('biz_temp_%i.xlsx' % (row_iter-1)) wb.save('biz_coded.xlsx') master()
[ "dphillips97@gmail.com" ]
dphillips97@gmail.com
282e01cb76a6f171cf0789150afa6235eb4fa83e
3a238c585bb77b6a810d187d571cb2531ad58652
/valuation.py.bak.py
031deba021575bc2a173320d20e62575d974d500
[]
no_license
majidmvulle/vehicle-valuations-py
21b050b7fba6e6c619f4932dd535eeb2526bd536
24fc3e4426acf5bbd76aa1161ddf7db1d7b64cdb
refs/heads/master
2020-04-12T14:05:38.273507
2018-12-17T08:08:04
2018-12-17T08:08:04
162,541,830
0
0
null
null
null
null
UTF-8
Python
false
false
2,432
py
__author__ = 'Majid Mvulle' from sklearn import svm import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.svm import SVR from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor import pandas as pd import json import sys from sklearn.feature_extraction import DictVectorizer import numpy as np from sklearn import ensemble from sklearn import preprocessing from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier, VotingClassifier, BaggingClassifier from sklearn.tree import DecisionTreeClassifier import argparse parser = argparse.ArgumentParser() parser.add_argument("--file", "-f", type=str, required=True) args = parser.parse_args() with open(args.file) as json_file: full_dataset = json.dumps(json.load(json_file)) # clf1 = LogisticRegression(random_state=1) # clf2 = RandomForestClassifier(random_state=1) # clf3 = GaussianNB() df = pd.read_json(full_dataset) # df.drop('z_price', axis=1) car = df.values X, y = car[:, :-1], car[:, -1] X, y = X.astype(int), y.astype(int) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.10, random_state=0) # scaler = preprocessing.MinMaxScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.fit_transform(X_test) #eclf5 = BaggingClassifier() #eclf5.fit(X_train, y_train) #prediction = eclf5.predict(X_test) #print('{"price": '+str(prediction[0])+"}") eclf6 = DecisionTreeClassifier() eclf6.fit(X_train_scaled, y_train) prediction = eclf6.predict(X_test_scaled) print('{"price": '+str(prediction[0])+"}") #lm = LinearRegression() #lm.fit(X_train, y_train) #prediction = lm.predict(X_test) #print('{"price": '+str(prediction[0])+"}") #rf = RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None, max_features='auto', max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, n_estimators=500, n_jobs=1, oob_score=False, random_state=None, verbose=0) #rf.fit(X_train, y_train) #prediction = rf.predict(X_test) #print('{"price": '+str(prediction[0])+"}") # print(clf.score(X_test_scaled, y_test)) #lr = LogisticRegression() #lr.fit(X_train, y_train) #prediction = lr.predict(X_test) #print('{"price": '+str(prediction[0])+"}")
[ "majid@majidmvulle.com" ]
majid@majidmvulle.com
2750d95d9a234865ce4e69664a00150eba2adc59
ff14cd290a7ddcce5de31ebf08dabb65181480d1
/test/solve.py
28384b5557449514300a30301b814cf10519c4e3
[]
no_license
ohk990102/pwntools-addon-dockerized
ea56fbf1181972d7c3e6bd045f0bf4194dc524cb
361851b0fced672f62cc88fb7c17d416ce1a9f68
refs/heads/master
2022-11-12T14:51:01.963599
2020-07-04T16:01:02
2020-07-04T16:01:02
277,038,197
0
0
null
null
null
null
UTF-8
Python
false
false
322
py
from pwn import * from dpwn import dockerized # context.log_level = 'debug' context.terminal = [ '/home/ohk990102/vscode-terminal' ] if __name__ == "__main__": p = dockerized('./realloc', baseimage='ubuntu:19.04', prefer_dockerfile=False, withgdb=True) gdb.attach(p.gdbsock, exe='./realloc') p.interactive()
[ "ohk990102@naver.com" ]
ohk990102@naver.com
7690eaa3ec1c6f41e0e564d537acf9b26d2baafb
717ed5f54ff1244f6d85df1c3207b584767dca35
/detect_face.py
4a7b647a34839b9fd5b28384218a8f82c4f72ae3
[]
no_license
yasin-esfandiari/IranianCelebritiesFacialRecognition
e9a46f42d3deb15d982b6ee440022179ebe1e97e
4d2c718b49170ce1aa801b7aa74b423b7f1e1c8a
refs/heads/master
2020-07-26T22:13:43.938805
2019-09-16T11:17:26
2019-09-16T11:17:26
208,780,882
1
0
null
null
null
null
UTF-8
Python
false
false
32,501
py
""" Tensorflow implementation of the face detection / alignment algorithm found at https://github.com/kpzhang93/MTCNN_face_detection_alignment """ # MIT License # # Copyright (c) 2016 David Sandberg # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import from __future__ import division from __future__ import print_function from six import string_types, iteritems import numpy as np import tensorflow as tf #from math import floor import cv2 import os def layer(op): """Decorator for composable network layers.""" def layer_decorated(self, *args, **kwargs): # Automatically set a name if not provided. name = kwargs.setdefault('name', self.get_unique_name(op.__name__)) # Figure out the layer inputs. if len(self.terminals) == 0: raise RuntimeError('No input variables found for layer %s.' % name) elif len(self.terminals) == 1: layer_input = self.terminals[0] else: layer_input = list(self.terminals) # Perform the operation and get the output. layer_output = op(self, layer_input, *args, **kwargs) # Add to layer LUT. self.layers[name] = layer_output # This output is now the input for the next layer. self.feed(layer_output) # Return self for chained calls. return self return layer_decorated class Network(object): def __init__(self, inputs, trainable=True): # The input nodes for this network self.inputs = inputs # The current list of terminal nodes self.terminals = [] # Mapping from layer names to layers self.layers = dict(inputs) # If true, the resulting variables are set as trainable self.trainable = trainable self.setup() def setup(self): """Construct the network. """ raise NotImplementedError('Must be implemented by the subclass.') def load(self, data_path, session, ignore_missing=False): """Load network weights. data_path: The path to the numpy-serialized network weights session: The current TensorFlow session ignore_missing: If true, serialized weights for missing layers are ignored. """ data_dict = np.load(data_path, encoding = 'latin1', allow_pickle = True).item() #pylint: disable=no-member for op_name in data_dict: with tf.variable_scope(op_name, reuse=True): for param_name, data in iteritems(data_dict[op_name]): try: var = tf.get_variable(param_name) session.run(var.assign(data)) except ValueError: if not ignore_missing: raise def feed(self, *args): """Set the input(s) for the next operation by replacing the terminal nodes. The arguments can be either layer names or the actual layers. """ assert len(args) != 0 self.terminals = [] for fed_layer in args: if isinstance(fed_layer, string_types): try: fed_layer = self.layers[fed_layer] except KeyError: raise KeyError('Unknown layer name fed: %s' % fed_layer) self.terminals.append(fed_layer) return self def get_output(self): """Returns the current network output.""" return self.terminals[-1] def get_unique_name(self, prefix): """Returns an index-suffixed unique name for the given prefix. This is used for auto-generating layer names based on the type-prefix. """ ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1 return '%s_%d' % (prefix, ident) def make_var(self, name, shape): """Creates a new TensorFlow variable.""" return tf.get_variable(name, shape, trainable=self.trainable) def validate_padding(self, padding): """Verifies that the padding is one of the supported ones.""" assert padding in ('SAME', 'VALID') @layer def conv(self, inp, k_h, k_w, c_o, s_h, s_w, name, relu=True, padding='SAME', group=1, biased=True): # Verify that the padding is acceptable self.validate_padding(padding) # Get the number of channels in the input c_i = int(inp.get_shape()[-1]) # Verify that the grouping parameter is valid assert c_i % group == 0 assert c_o % group == 0 # Convolution for a given input and kernel convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding) with tf.variable_scope(name) as scope: kernel = self.make_var('weights', shape=[k_h, k_w, c_i // group, c_o]) # This is the common-case. Convolve the input without any further complications. output = convolve(inp, kernel) # Add the biases if biased: biases = self.make_var('biases', [c_o]) output = tf.nn.bias_add(output, biases) if relu: # ReLU non-linearity output = tf.nn.relu(output, name=scope.name) return output @layer def prelu(self, inp, name): with tf.variable_scope(name): i = int(inp.get_shape()[-1]) alpha = self.make_var('alpha', shape=(i,)) output = tf.nn.relu(inp) + tf.multiply(alpha, -tf.nn.relu(-inp)) return output @layer def max_pool(self, inp, k_h, k_w, s_h, s_w, name, padding='SAME'): self.validate_padding(padding) return tf.nn.max_pool(inp, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding, name=name) @layer def fc(self, inp, num_out, name, relu=True): with tf.variable_scope(name): input_shape = inp.get_shape() if input_shape.ndims == 4: # The input is spatial. Vectorize it first. dim = 1 for d in input_shape[1:].as_list(): dim *= int(d) feed_in = tf.reshape(inp, [-1, dim]) else: feed_in, dim = (inp, input_shape[-1].value) weights = self.make_var('weights', shape=[dim, num_out]) biases = self.make_var('biases', [num_out]) op = tf.nn.relu_layer if relu else tf.nn.xw_plus_b fc = op(feed_in, weights, biases, name=name) return fc """ Multi dimensional softmax, refer to https://github.com/tensorflow/tensorflow/issues/210 compute softmax along the dimension of target the native softmax only supports batch_size x dimension """ @layer def softmax(self, target, axis, name=None): max_axis = tf.reduce_max(target, axis, keep_dims=True) target_exp = tf.exp(target-max_axis) normalize = tf.reduce_sum(target_exp, axis, keep_dims=True) softmax = tf.div(target_exp, normalize, name) return softmax class PNet(Network): def setup(self): (self.feed('data') #pylint: disable=no-value-for-parameter, no-member .conv(3, 3, 10, 1, 1, padding='VALID', relu=False, name='conv1') .prelu(name='PReLU1') .max_pool(2, 2, 2, 2, name='pool1') .conv(3, 3, 16, 1, 1, padding='VALID', relu=False, name='conv2') .prelu(name='PReLU2') .conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv3') .prelu(name='PReLU3') .conv(1, 1, 2, 1, 1, relu=False, name='conv4-1') .softmax(3,name='prob1')) (self.feed('PReLU3') #pylint: disable=no-value-for-parameter .conv(1, 1, 4, 1, 1, relu=False, name='conv4-2')) class RNet(Network): def setup(self): (self.feed('data') #pylint: disable=no-value-for-parameter, no-member .conv(3, 3, 28, 1, 1, padding='VALID', relu=False, name='conv1') .prelu(name='prelu1') .max_pool(3, 3, 2, 2, name='pool1') .conv(3, 3, 48, 1, 1, padding='VALID', relu=False, name='conv2') .prelu(name='prelu2') .max_pool(3, 3, 2, 2, padding='VALID', name='pool2') .conv(2, 2, 64, 1, 1, padding='VALID', relu=False, name='conv3') .prelu(name='prelu3') .fc(128, relu=False, name='conv4') .prelu(name='prelu4') .fc(2, relu=False, name='conv5-1') .softmax(1,name='prob1')) (self.feed('prelu4') #pylint: disable=no-value-for-parameter .fc(4, relu=False, name='conv5-2')) class ONet(Network): def setup(self): (self.feed('data') #pylint: disable=no-value-for-parameter, no-member .conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv1') .prelu(name='prelu1') .max_pool(3, 3, 2, 2, name='pool1') .conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv2') .prelu(name='prelu2') .max_pool(3, 3, 2, 2, padding='VALID', name='pool2') .conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv3') .prelu(name='prelu3') .max_pool(2, 2, 2, 2, name='pool3') .conv(2, 2, 128, 1, 1, padding='VALID', relu=False, name='conv4') .prelu(name='prelu4') .fc(256, relu=False, name='conv5') .prelu(name='prelu5') .fc(2, relu=False, name='conv6-1') .softmax(1, name='prob1')) (self.feed('prelu5') #pylint: disable=no-value-for-parameter .fc(4, relu=False, name='conv6-2')) (self.feed('prelu5') #pylint: disable=no-value-for-parameter .fc(10, relu=False, name='conv6-3')) def create_mtcnn(sess, model_path): if not model_path: model_path,_ = os.path.split(os.path.realpath(__file__)) with tf.variable_scope('pnet'): data = tf.placeholder(tf.float32, (None,None,None,3), 'input') pnet = PNet({'data':data}) pnet.load(os.path.join(model_path, 'det1.npy'), sess) with tf.variable_scope('rnet'): data = tf.placeholder(tf.float32, (None,24,24,3), 'input') rnet = RNet({'data':data}) rnet.load(os.path.join(model_path, 'det2.npy'), sess) with tf.variable_scope('onet'): data = tf.placeholder(tf.float32, (None,48,48,3), 'input') onet = ONet({'data':data}) onet.load(os.path.join(model_path, 'det3.npy'), sess) pnet_fun = lambda img : sess.run(('pnet/conv4-2/BiasAdd:0', 'pnet/prob1:0'), feed_dict={'pnet/input:0':img}) rnet_fun = lambda img : sess.run(('rnet/conv5-2/conv5-2:0', 'rnet/prob1:0'), feed_dict={'rnet/input:0':img}) onet_fun = lambda img : sess.run(('onet/conv6-2/conv6-2:0', 'onet/conv6-3/conv6-3:0', 'onet/prob1:0'), feed_dict={'onet/input:0':img}) return pnet_fun, rnet_fun, onet_fun def detect_face(img, minsize, pnet, rnet, onet, threshold, factor): """Detects faces in an image, and returns bounding boxes and points for them. img: input image minsize: minimum faces' size pnet, rnet, onet: caffemodel threshold: threshold=[th1, th2, th3], th1-3 are three steps's threshold factor: the factor used to create a scaling pyramid of face sizes to detect in the image. """ factor_count=0 total_boxes=np.empty((0,9)) points=np.empty(0) h=img.shape[0] w=img.shape[1] minl=np.amin([h, w]) m=12.0/minsize minl=minl*m # create scale pyramid scales=[] while minl>=12: scales += [m*np.power(factor, factor_count)] minl = minl*factor factor_count += 1 # first stage for scale in scales: hs=int(np.ceil(h*scale)) ws=int(np.ceil(w*scale)) im_data = imresample(img, (hs, ws)) im_data = (im_data-127.5)*0.0078125 img_x = np.expand_dims(im_data, 0) img_y = np.transpose(img_x, (0,2,1,3)) out = pnet(img_y) out0 = np.transpose(out[0], (0,2,1,3)) out1 = np.transpose(out[1], (0,2,1,3)) boxes, _ = generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0]) # inter-scale nms pick = nms(boxes.copy(), 0.5, 'Union') if boxes.size>0 and pick.size>0: boxes = boxes[pick,:] total_boxes = np.append(total_boxes, boxes, axis=0) numbox = total_boxes.shape[0] if numbox>0: pick = nms(total_boxes.copy(), 0.7, 'Union') total_boxes = total_boxes[pick,:] regw = total_boxes[:,2]-total_boxes[:,0] regh = total_boxes[:,3]-total_boxes[:,1] qq1 = total_boxes[:,0]+total_boxes[:,5]*regw qq2 = total_boxes[:,1]+total_boxes[:,6]*regh qq3 = total_boxes[:,2]+total_boxes[:,7]*regw qq4 = total_boxes[:,3]+total_boxes[:,8]*regh total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]])) total_boxes = rerec(total_boxes.copy()) total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32) dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h) numbox = total_boxes.shape[0] if numbox>0: # second stage tempimg = np.zeros((24,24,3,numbox)) for k in range(0,numbox): tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3)) tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:] if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0: tempimg[:,:,:,k] = imresample(tmp, (24, 24)) else: return np.empty() tempimg = (tempimg-127.5)*0.0078125 tempimg1 = np.transpose(tempimg, (3,1,0,2)) out = rnet(tempimg1) out0 = np.transpose(out[0]) out1 = np.transpose(out[1]) score = out1[1,:] ipass = np.where(score>threshold[1]) total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)]) mv = out0[:,ipass[0]] if total_boxes.shape[0]>0: pick = nms(total_boxes, 0.7, 'Union') total_boxes = total_boxes[pick,:] total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:,pick])) total_boxes = rerec(total_boxes.copy()) numbox = total_boxes.shape[0] if numbox>0: # third stage total_boxes = np.fix(total_boxes).astype(np.int32) dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h) tempimg = np.zeros((48,48,3,numbox)) for k in range(0,numbox): tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3)) tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:] if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0: tempimg[:,:,:,k] = imresample(tmp, (48, 48)) else: return np.empty() tempimg = (tempimg-127.5)*0.0078125 tempimg1 = np.transpose(tempimg, (3,1,0,2)) out = onet(tempimg1) out0 = np.transpose(out[0]) out1 = np.transpose(out[1]) out2 = np.transpose(out[2]) score = out2[1,:] points = out1 ipass = np.where(score>threshold[2]) points = points[:,ipass[0]] total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)]) mv = out0[:,ipass[0]] w = total_boxes[:,2]-total_boxes[:,0]+1 h = total_boxes[:,3]-total_boxes[:,1]+1 points[0:5,:] = np.tile(w,(5, 1))*points[0:5,:] + np.tile(total_boxes[:,0],(5, 1))-1 points[5:10,:] = np.tile(h,(5, 1))*points[5:10,:] + np.tile(total_boxes[:,1],(5, 1))-1 if total_boxes.shape[0]>0: total_boxes = bbreg(total_boxes.copy(), np.transpose(mv)) pick = nms(total_boxes.copy(), 0.7, 'Min') total_boxes = total_boxes[pick,:] points = points[:,pick] return total_boxes, points def bulk_detect_face(images, detection_window_size_ratio, pnet, rnet, onet, threshold, factor): """Detects faces in a list of images images: list containing input images detection_window_size_ratio: ratio of minimum face size to smallest image dimension pnet, rnet, onet: caffemodel threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold [0-1] factor: the factor used to create a scaling pyramid of face sizes to detect in the image. """ all_scales = [None] * len(images) images_with_boxes = [None] * len(images) for i in range(len(images)): images_with_boxes[i] = {'total_boxes': np.empty((0, 9))} # create scale pyramid for index, img in enumerate(images): all_scales[index] = [] h = img.shape[0] w = img.shape[1] minsize = int(detection_window_size_ratio * np.minimum(w, h)) factor_count = 0 minl = np.amin([h, w]) if minsize <= 12: minsize = 12 m = 12.0 / minsize minl = minl * m while minl >= 12: all_scales[index].append(m * np.power(factor, factor_count)) minl = minl * factor factor_count += 1 # # # # # # # # # # # # # # first stage - fast proposal network (pnet) to obtain face candidates # # # # # # # # # # # # # images_obj_per_resolution = {} # TODO: use some type of rounding to number module 8 to increase probability that pyramid images will have the same resolution across input images for index, scales in enumerate(all_scales): h = images[index].shape[0] w = images[index].shape[1] for scale in scales: hs = int(np.ceil(h * scale)) ws = int(np.ceil(w * scale)) if (ws, hs) not in images_obj_per_resolution: images_obj_per_resolution[(ws, hs)] = [] im_data = imresample(images[index], (hs, ws)) im_data = (im_data - 127.5) * 0.0078125 img_y = np.transpose(im_data, (1, 0, 2)) # caffe uses different dimensions ordering images_obj_per_resolution[(ws, hs)].append({'scale': scale, 'image': img_y, 'index': index}) for resolution in images_obj_per_resolution: images_per_resolution = [i['image'] for i in images_obj_per_resolution[resolution]] outs = pnet(images_per_resolution) for index in range(len(outs[0])): scale = images_obj_per_resolution[resolution][index]['scale'] image_index = images_obj_per_resolution[resolution][index]['index'] out0 = np.transpose(outs[0][index], (1, 0, 2)) out1 = np.transpose(outs[1][index], (1, 0, 2)) boxes, _ = generateBoundingBox(out1[:, :, 1].copy(), out0[:, :, :].copy(), scale, threshold[0]) # inter-scale nms pick = nms(boxes.copy(), 0.5, 'Union') if boxes.size > 0 and pick.size > 0: boxes = boxes[pick, :] images_with_boxes[image_index]['total_boxes'] = np.append(images_with_boxes[image_index]['total_boxes'], boxes, axis=0) for index, image_obj in enumerate(images_with_boxes): numbox = image_obj['total_boxes'].shape[0] if numbox > 0: h = images[index].shape[0] w = images[index].shape[1] pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Union') image_obj['total_boxes'] = image_obj['total_boxes'][pick, :] regw = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0] regh = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1] qq1 = image_obj['total_boxes'][:, 0] + image_obj['total_boxes'][:, 5] * regw qq2 = image_obj['total_boxes'][:, 1] + image_obj['total_boxes'][:, 6] * regh qq3 = image_obj['total_boxes'][:, 2] + image_obj['total_boxes'][:, 7] * regw qq4 = image_obj['total_boxes'][:, 3] + image_obj['total_boxes'][:, 8] * regh image_obj['total_boxes'] = np.transpose(np.vstack([qq1, qq2, qq3, qq4, image_obj['total_boxes'][:, 4]])) image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy()) image_obj['total_boxes'][:, 0:4] = np.fix(image_obj['total_boxes'][:, 0:4]).astype(np.int32) dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h) numbox = image_obj['total_boxes'].shape[0] tempimg = np.zeros((24, 24, 3, numbox)) if numbox > 0: for k in range(0, numbox): tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3)) tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :] if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0: tempimg[:, :, :, k] = imresample(tmp, (24, 24)) else: return np.empty() tempimg = (tempimg - 127.5) * 0.0078125 image_obj['rnet_input'] = np.transpose(tempimg, (3, 1, 0, 2)) # # # # # # # # # # # # # # second stage - refinement of face candidates with rnet # # # # # # # # # # # # # bulk_rnet_input = np.empty((0, 24, 24, 3)) for index, image_obj in enumerate(images_with_boxes): if 'rnet_input' in image_obj: bulk_rnet_input = np.append(bulk_rnet_input, image_obj['rnet_input'], axis=0) out = rnet(bulk_rnet_input) out0 = np.transpose(out[0]) out1 = np.transpose(out[1]) score = out1[1, :] i = 0 for index, image_obj in enumerate(images_with_boxes): if 'rnet_input' not in image_obj: continue rnet_input_count = image_obj['rnet_input'].shape[0] score_per_image = score[i:i + rnet_input_count] out0_per_image = out0[:, i:i + rnet_input_count] ipass = np.where(score_per_image > threshold[1]) image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(), np.expand_dims(score_per_image[ipass].copy(), 1)]) mv = out0_per_image[:, ipass[0]] if image_obj['total_boxes'].shape[0] > 0: h = images[index].shape[0] w = images[index].shape[1] pick = nms(image_obj['total_boxes'], 0.7, 'Union') image_obj['total_boxes'] = image_obj['total_boxes'][pick, :] image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv[:, pick])) image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy()) numbox = image_obj['total_boxes'].shape[0] if numbox > 0: tempimg = np.zeros((48, 48, 3, numbox)) image_obj['total_boxes'] = np.fix(image_obj['total_boxes']).astype(np.int32) dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h) for k in range(0, numbox): tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3)) tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :] if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0: tempimg[:, :, :, k] = imresample(tmp, (48, 48)) else: return np.empty() tempimg = (tempimg - 127.5) * 0.0078125 image_obj['onet_input'] = np.transpose(tempimg, (3, 1, 0, 2)) i += rnet_input_count # # # # # # # # # # # # # # third stage - further refinement and facial landmarks positions with onet # # # # # # # # # # # # # bulk_onet_input = np.empty((0, 48, 48, 3)) for index, image_obj in enumerate(images_with_boxes): if 'onet_input' in image_obj: bulk_onet_input = np.append(bulk_onet_input, image_obj['onet_input'], axis=0) out = onet(bulk_onet_input) out0 = np.transpose(out[0]) out1 = np.transpose(out[1]) out2 = np.transpose(out[2]) score = out2[1, :] points = out1 i = 0 ret = [] for index, image_obj in enumerate(images_with_boxes): if 'onet_input' not in image_obj: ret.append(None) continue onet_input_count = image_obj['onet_input'].shape[0] out0_per_image = out0[:, i:i + onet_input_count] score_per_image = score[i:i + onet_input_count] points_per_image = points[:, i:i + onet_input_count] ipass = np.where(score_per_image > threshold[2]) points_per_image = points_per_image[:, ipass[0]] image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(), np.expand_dims(score_per_image[ipass].copy(), 1)]) mv = out0_per_image[:, ipass[0]] w = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0] + 1 h = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1] + 1 points_per_image[0:5, :] = np.tile(w, (5, 1)) * points_per_image[0:5, :] + np.tile( image_obj['total_boxes'][:, 0], (5, 1)) - 1 points_per_image[5:10, :] = np.tile(h, (5, 1)) * points_per_image[5:10, :] + np.tile( image_obj['total_boxes'][:, 1], (5, 1)) - 1 if image_obj['total_boxes'].shape[0] > 0: image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv)) pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Min') image_obj['total_boxes'] = image_obj['total_boxes'][pick, :] points_per_image = points_per_image[:, pick] ret.append((image_obj['total_boxes'], points_per_image)) else: ret.append(None) i += onet_input_count return ret # function [boundingbox] = bbreg(boundingbox,reg) def bbreg(boundingbox,reg): """Calibrate bounding boxes""" if reg.shape[1]==1: reg = np.reshape(reg, (reg.shape[2], reg.shape[3])) w = boundingbox[:,2]-boundingbox[:,0]+1 h = boundingbox[:,3]-boundingbox[:,1]+1 b1 = boundingbox[:,0]+reg[:,0]*w b2 = boundingbox[:,1]+reg[:,1]*h b3 = boundingbox[:,2]+reg[:,2]*w b4 = boundingbox[:,3]+reg[:,3]*h boundingbox[:,0:4] = np.transpose(np.vstack([b1, b2, b3, b4 ])) return boundingbox def generateBoundingBox(imap, reg, scale, t): """Use heatmap to generate bounding boxes""" stride=2 cellsize=12 imap = np.transpose(imap) dx1 = np.transpose(reg[:,:,0]) dy1 = np.transpose(reg[:,:,1]) dx2 = np.transpose(reg[:,:,2]) dy2 = np.transpose(reg[:,:,3]) y, x = np.where(imap >= t) if y.shape[0]==1: dx1 = np.flipud(dx1) dy1 = np.flipud(dy1) dx2 = np.flipud(dx2) dy2 = np.flipud(dy2) score = imap[(y,x)] reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ])) if reg.size==0: reg = np.empty((0,3)) bb = np.transpose(np.vstack([y,x])) q1 = np.fix((stride*bb+1)/scale) q2 = np.fix((stride*bb+cellsize-1+1)/scale) boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg]) return boundingbox, reg # function pick = nms(boxes,threshold,type) def nms(boxes, threshold, method): if boxes.size==0: return np.empty((0,3)) x1 = boxes[:,0] y1 = boxes[:,1] x2 = boxes[:,2] y2 = boxes[:,3] s = boxes[:,4] area = (x2-x1+1) * (y2-y1+1) I = np.argsort(s) pick = np.zeros_like(s, dtype=np.int16) counter = 0 while I.size>0: i = I[-1] pick[counter] = i counter += 1 idx = I[0:-1] xx1 = np.maximum(x1[i], x1[idx]) yy1 = np.maximum(y1[i], y1[idx]) xx2 = np.minimum(x2[i], x2[idx]) yy2 = np.minimum(y2[i], y2[idx]) w = np.maximum(0.0, xx2-xx1+1) h = np.maximum(0.0, yy2-yy1+1) inter = w * h if method is 'Min': o = inter / np.minimum(area[i], area[idx]) else: o = inter / (area[i] + area[idx] - inter) I = I[np.where(o<=threshold)] pick = pick[0:counter] return pick # function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h) def pad(total_boxes, w, h): """Compute the padding coordinates (pad the bounding boxes to square)""" tmpw = (total_boxes[:,2]-total_boxes[:,0]+1).astype(np.int32) tmph = (total_boxes[:,3]-total_boxes[:,1]+1).astype(np.int32) numbox = total_boxes.shape[0] dx = np.ones((numbox), dtype=np.int32) dy = np.ones((numbox), dtype=np.int32) edx = tmpw.copy().astype(np.int32) edy = tmph.copy().astype(np.int32) x = total_boxes[:,0].copy().astype(np.int32) y = total_boxes[:,1].copy().astype(np.int32) ex = total_boxes[:,2].copy().astype(np.int32) ey = total_boxes[:,3].copy().astype(np.int32) tmp = np.where(ex>w) edx.flat[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],1) ex[tmp] = w tmp = np.where(ey>h) edy.flat[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],1) ey[tmp] = h tmp = np.where(x<1) dx.flat[tmp] = np.expand_dims(2-x[tmp],1) x[tmp] = 1 tmp = np.where(y<1) dy.flat[tmp] = np.expand_dims(2-y[tmp],1) y[tmp] = 1 return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph # function [bboxA] = rerec(bboxA) def rerec(bboxA): """Convert bboxA to square.""" h = bboxA[:,3]-bboxA[:,1] w = bboxA[:,2]-bboxA[:,0] l = np.maximum(w, h) bboxA[:,0] = bboxA[:,0]+w*0.5-l*0.5 bboxA[:,1] = bboxA[:,1]+h*0.5-l*0.5 bboxA[:,2:4] = bboxA[:,0:2] + np.transpose(np.tile(l,(2,1))) return bboxA def imresample(img, sz): im_data = cv2.resize(img, (sz[1], sz[0]), interpolation=cv2.INTER_AREA) #@UndefinedVariable return im_data # This method is kept for debugging purpose # h=img.shape[0] # w=img.shape[1] # hs, ws = sz # dx = float(w) / ws # dy = float(h) / hs # im_data = np.zeros((hs,ws,3)) # for a1 in range(0,hs): # for a2 in range(0,ws): # for a3 in range(0,3): # im_data[a1,a2,a3] = img[int(floor(a1*dy)),int(floor(a2*dx)),a3] # return im_data
[ "yasin.esfandiari1733@gmail.com" ]
yasin.esfandiari1733@gmail.com
0d66598ee32ccfc0d64f148e09b532ab4ded4c4b
5711615cf36dd216a637b2bbe3ed57a93b86a308
/component.py
a1bd2ce145c54f2e752ce80476b684ab33497c59
[]
no_license
kanandian/opencv_test
4f013734c10d3447989da45d66d5b65280ff48ee
a91d26cc4270486b8370e9a8004d085ad357726e
refs/heads/master
2020-09-11T21:04:05.745447
2019-11-29T13:12:34
2019-11-29T13:12:34
222,189,896
0
0
null
null
null
null
UTF-8
Python
false
false
4,690
py
import constant import random import mthread import math import hand_dectect from PyQt5.QtWidgets import QMainWindow, QLabel from PyQt5.QtGui import QPixmap from PyQt5.QtCore import QBasicTimer, QRect class Leaf: def __init__(self): self.pixmap = QPixmap('images/yezi.png') self.label = 0 self.position_x = float(random.randint(0, constant.screen_width)) self.position_y = float(0) self.rect = QRect(int(self.position_x), int(self.position_y), constant.leaf_width, constant.leaf_height) self.dirction_x = -1 self.dirction_y = -1 self.speed = constant.move_speed def check_edges(self, geometry): if self.rect.right() < 0 or self.rect.left() > geometry.width() or self.rect.bottom() < 0 or self.rect.top() > geometry.height(): return True return False def update(self): if self.dirction_x == -1 and self.dirction_y == -1: self.position_y += self.speed else: if self.dirction_x != -1: self.position_x += self.dirction_x if self.dirction_y != -1: self.position_y += self.dirction_y self.label.move(self.position_x, self.position_y) self.rect.setX(self.position_x) self.rect.setY(self.position_y) class ApplicationByPyqt(QMainWindow): def __init__(self): super().__init__() self.leaves = [] self.backgound_color = constant.background_color self.hand_dectect = hand_dectect.HandDectectByHandXML() self.initUI() self.initTimer() self.startThreads() def initUI(self): #添加初始叶子 for i in range(0,constant.initial_leaves_num): self.add_leaf() self.setGeometry(0, 0 , constant.screen_width, constant.screen_height) self.setWindowTitle('interation_projection') self.show() def initTimer(self): self.timer = QBasicTimer() self.timer.start(30, self) def startThreads(self): self.add_leaf_thread = mthread.AddLeafThread(self) self.add_leaf_thread.addLeafSingal.connect(self.add_leaf) self.add_leaf_thread.start() # 重写关闭应用事件 def closeEvent(self, event): self.add_leaf_thread.running = False self.vc.release() def timerEvent(self, event): if event.timerId() == self.timer.timerId(): self.handle_hand_motion_by_mode() # self.capture_and_handle_frame() self.update_leaves() self.remove_invalid_leaves() self.update() else: super(ApplicationByPyqt, self).timerEvent(event) def handle_hand_motion_by_mode(self): positions = self.hand_dectect.get_hand_positions(constant.dectect_mod) for (x, y) in positions: x *= constant.screen_width / constant.camera_width y *= constant.screen_height / constant.camera_height x = constant.screen_width - x self.sweep_at(x, y) def update_leaves(self): for leaf in self.leaves: leaf.update() def add_leaf(self): leaf = Leaf() label = QLabel(self) label.setPixmap(leaf.pixmap) label.setGeometry(leaf.position_x, leaf.position_y, leaf.rect.width(), leaf.rect.height()) label.setScaledContents(True) leaf.label = label label.show() self.leaves.append(leaf) def remove_invalid_leaves(self): for leaf in self.leaves: if leaf.check_edges(self.geometry()): self.leaves.remove(leaf) def sweep_at(self, x, y): fa = False fb = False for leaf in self.leaves: dist_x = leaf.rect.center().x()-x dist_y = leaf.rect.center().y()-y distance = math.sqrt(math.pow(dist_x, 2) + math.pow(dist_y, 2)) if distance < constant.max_distance: leaf.speed == constant.sweep_speed if dist_x < 0: fa = True if dist_y < 0: fb = True if dist_x == 0: leaf.dirction_x = -1 leaf.dirction_y = constant.sweep_speed if fb: leaf.dirction_y *= -1 else: b = math.fabs(float(dist_y)/float(dist_x)) a = leaf.speed/math.sqrt(1+b*b) b *= a if fa: a *= -1 if fb: b *= -1 leaf.dirction_x = a leaf.dirction_y = b
[ "893979892@qq.com" ]
893979892@qq.com
7b982d89cc00e48375943057fe4852658acece6b
32be8eb323f230d3e97f321cf58ae799632289a0
/ddos/ddos_server.py
500309fe69c7a43e5cde5a60a44f84c470dc7d56
[]
no_license
clouddreamfly/PyTools
838852c669423ccdaebf8cbb8fe29fece5fd24b4
329f985a0b981c41d9872158d6c9b814a9903c0c
refs/heads/master
2023-03-07T19:39:51.984162
2023-03-02T16:23:45
2023-03-02T16:23:45
240,286,058
1
0
null
null
null
null
UTF-8
Python
false
false
1,387
py
#!/usr/bin/python # coding:utf8 import socket import argparse import threading import time socketList = [] # 发送命令到所有的客户机上 def sendCmd(cmd): print('Send command....') for sock in socketList: sock.send(cmd.encode()) # 等待连接,将建立好的连接加入到socketList列表中 def waitConnect(s): while True: sock, addr = s.accept() if sock not in socketList: socketList.append(sock) def main(): # 创建tcp服务端 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR,1) #设置端口重用 s.bind(('0.0.0.0', 58888)) s.listen(1024) # 线程创建等待连接请求 t = threading.Thread(target=waitConnect, args=(s,)) t.start() print("Wait at least a client connection!") while not len(socketList): # 没有连接则一直等待 time.sleep(0.1) pass print("It has been a client connection") while True: print('='*50) # 命令格式 print('The command format:"#-H xxx.xxx.xxx.xxx -p xxxx -c start"') # 等待输入命令 cmd_str = input('please input cmd:') print(cmd_str) if len(cmd_str): if cmd_str[0] == '#': sendCmd(cmd_str) if __name__ == '__main__': main()
[ "dreamfly6789@gmail.com" ]
dreamfly6789@gmail.com
af28415c6367cc31cfcb82f3f071ada9026749b2
1b5f653955779f45e78ca6dda925518779d09e8f
/submissions/1492.py
c75247fa6f7781dc034982b8cc8bd8da3cd85ab8
[]
no_license
LeonardoSaid/uri-py-solutions
ad285f552934ead54ad2410e23113e84b0724f72
43c10c0e99e99d22b4b5ae2871e5d897f8823b42
refs/heads/master
2020-08-11T00:28:48.661578
2020-04-23T20:21:39
2020-04-23T20:21:39
214,453,627
0
0
null
null
null
null
UTF-8
Python
false
false
369
py
import math def count(n): ans = 0 acc = 1 while acc <= n: a = n - acc + 1 b = 2*acc ans += a // b * acc ans += min(a % b, acc) acc = 2* acc return ans def getAns(a,b): return count(b) - count(a-1) while True: try: a,b = map(int, input().split()) print(getAns(a,b)) except EOFError: break
[ "noreply@github.com" ]
LeonardoSaid.noreply@github.com
a5e19b23102e5dcf67188ec4e0263b1fcdb76ea3
54cfd2c2505da41fb4657c36ebc40e886bdb33c9
/model/graph.py
e87ee4a4a655d7e7ecf9854212a0ced865812f8a
[]
no_license
VamshiTeja/Recommendation-Systems-Using-DL
c4bcf672e5b705a913a035c861d3082d357fc3e4
c92f04376645e80f9664baf39b41e2f6e23c0a52
refs/heads/master
2020-03-28T13:51:56.464480
2018-10-25T10:44:34
2018-10-25T10:44:34
148,436,653
1
0
null
null
null
null
UTF-8
Python
false
false
6,152
py
# -*- coding: utf-8 -*- # @Author: vamshi # @Date: 2018-02-04 00:39:34 # @Last Modified by: vamshi # @Last Modified time: 2018-02-10 12:32:44 from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys sys.path.append("../") import dateutil.parser import pickle import os import time import pandas as pd import numpy as np import mmap import argparse from six.moves import cPickle from functools import wraps from tqdm import tqdm from datetime import datetime #from utils import hour2vec import tensorflow as tf from utils import * lambdim = 180*24/0.5 def sur_loss_impl(lamb,b,e,sessLengths,dt,T): ''' lamb: predicted lambda from rnn [batch_size, maxSessLen,lambdim] e : end times of sessions batch_sizep [batch_size,maxSessLen] g : gap times of sessions batch_sizep [batch_size,maxSessLen] dt: 30mts ''' loss = np.zeros(shape=(e.shape[0],),dtype=np.float32) for i in range(lamb.shape[0]): seslen = sessLengths[i] st_time = b[i][0] #calculate third term loss3 = np.sum(lamb[i][seslen-1])*dt loss2 = 0 for j in range(1,seslen): loss2 += np.log(lamb[i][j][int(np.round((b[i][j]-e[i][j-1])/dt))]) loss1=0 for j in range(1,seslen): et = e[i][j-1] - st_time bnext = b[i][j] -st_time dif = int((bnext -et)/dt) for k in range(dif): loss1 += lamb[i][j][k] l = loss2+loss3+loss1 loss[i] = l return np.float32(np.sum(loss)) def sur_loss(lamb,b,e,sessLengths,dt,T): tf.RegisterGradient("sur_loss_grad")(sur_loss_grad) g=tf.get_default_graph() with g.gradient_override_map({"PyFunc":"sur_loss_grad"}): return tf.py_func(sur_loss_impl,[lamb,b,e,sessLengths,dt,T],[tf.float32])[0] def sur_loss_grad_impl(lamb): grad = np.zeros_like(lamb) #num_batches return [np.float32(grad),np.int32(0),np.int32(0),np.int32(0),np.int32(0),np.int32(0)] def sur_loss_grad(op,grad): lamb,b,e,sessLengths,dt,T=op.inputs[0],op.inputs[1],op.inputs[2],op.inputs[3],op.inputs[4],op.inputs[5] return tf.py_func(sur_loss_grad_impl,[lamb],[tf.float32,tf.int32,tf.int32,tf.int32,tf.int32,tf.int32])#assume grad=1 def build_model(args,maxSessLen,sessLengths,gaps,d): ''' gaps,d: [batch_size,maxSessLen] inputs : tuple (gaps,d,u) gaps dim: batch_size*maxSessionLen inputX : dim: [batch_size, maxSessLen, 3*embed_dim] ''' graph = tf.get_default_graph() with tf.variable_scope("gap_embedding"): gap_embedding = tf.get_variable("gap_embedding",[args.n_gaps, args.embed_dim]) with tf.variable_scope("d_embedding"): d_embedding = tf.get_variable("d_embedding",[168,args.embed_dim]) #user_embedding = tf.get_variable("user_embedding",[args.num_users, args.embed_dim]) gap_embedded = tf.nn.embedding_lookup(gap_embedding, gaps) d_embedded = tf.nn.embedding_lookup(d_embedding, d) #user_embedded = tf.nn.embedding_lookup(user_embedding, u) inputX = tf.concat((gap_embedded,d_embedded), axis=2) with tf.variable_scope("cell_def"): lstm_cell = tf.contrib.rnn.LSTMCell(args.n_hidden) with tf.variable_scope("rnn_def"): output,states = tf.nn.dynamic_rnn(lstm_cell, inputX, sequence_length=sessLengths, time_major=False,dtype=tf.float32) W = tf.get_variable("weights", (args.batch_size,args.n_hidden,args.lambdim), initializer=tf.random_normal_initializer()) #b = tf.get_variable("biases", bias_shape,initializer=tf.constant_initializer(0.0)) lamb = tf.matmul(output, W) return tf.nn.softplus(lamb) class Model(): def __init__(self,args,maxSessLen): self.args = args self.maxSessLen = maxSessLen def build_graph(self,args,maxSessLen): self.graph = tf.Graph() with self.graph.as_default(): self.inputg = tf.placeholder(dtype=tf.int32, shape=(args.batch_size,maxSessLen)) self.inputd = tf.placeholder(dtype=tf.int32, shape=(args.batch_size,maxSessLen)) self.inputb = tf.placeholder(dtype=tf.int32, shape=(args.batch_size,maxSessLen)) self.inpute = tf.placeholder(dtype=tf.int32, shape=(args.batch_size,maxSessLen)) self.target_gaps = tf.placeholder(dtype=tf.int32, shape=(args.batch_size,1)) self.sessLengths = tf.placeholder(dtype=tf.int32,shape=[args.batch_size]) self.lamb = build_model(args,maxSessLen,self.sessLengths,self.inputg,self.inputd) self.loss = sur_loss(self.lamb,self.inputb,self.inpute,self.sessLengths,args.dt,args.T) self.var_op = tf.global_variables() self.var_trainable_op = tf.trainable_variables() if args.grad_clip == -1: self.optimizer = tf.train.AdamOptimizer(args.learning_rate).minimize(self.loss) else: grads, _ = tf.clip_by_global_norm(tf.gradients(self.loss, self.var_trainable_op), args.grad_clip) opti = tf.train.AdamOptimizer(args.learning_rate) self.optimizer = opti.apply_gradients(zip(grads, self.var_trainable_op)) self.initial_op = tf.initialize_all_variables() self.summary_op = tf.summary.merge_all() self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=5, keep_checkpoint_every_n_hours=1) #if __name__ == "__main__": #objName = Model() #objName.build_graph()
[ "rachavamshiteja@gmail.com" ]
rachavamshiteja@gmail.com