blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
d48b98c5bc5c10dfb688d580ddef94ddd8f71891
df015a639d78b2c5c40463356c93d67effca2f4c
/algo/ten.py
e759915d1597f9d54aec23ceb371b09ae5be835c
[]
no_license
opklnm102/python-tutorial
5b53cd234b1b519230776cf4308ff1c41f62a2ae
cb400d5e318c59d42703ce1f8a12c5693bea07c8
refs/heads/master
2020-12-29T02:38:32.172485
2017-03-31T23:34:12
2017-03-31T23:34:12
48,275,041
1
0
null
null
null
null
UTF-8
Python
false
false
206
py
#문장에서 알파벳 갯수 카운트 string = str(input("input string; ")) alpha = str(input("input search alphabet: ")) count = 0 for i in string: if i == alpha: count += 1 print(count)
[ "opklnm102@gmail.com" ]
opklnm102@gmail.com
a882e8c2d54e99f64a919245322746ff4a2e8004
5ee0f0f8d96f6666f4f0a065c754e9469924d2d4
/xyz_web/contributions/views.py
7ab84f7447599825f60357220fcbfbe6153cb633
[ "MIT" ]
permissive
amunso/xyz_web
81e1533fd403ba45064a6de5c33593113a11d29c
756e217c55ccbd22be8de8228f758cdb5581227a
refs/heads/master
2022-12-20T10:37:17.551520
2020-09-23T17:34:07
2020-09-23T17:34:07
298,033,987
0
0
null
2020-09-23T16:45:16
2020-09-23T16:45:15
null
UTF-8
Python
false
false
2,437
py
from django.forms import ModelForm, ModelChoiceField, RadioSelect, CheckboxSelectMultiple, Form, ModelMultipleChoiceField from django.views.generic.list import ListView from django.views.generic.edit import CreateView, FormView from .models import Contribution, Vote from django.utils.html import mark_safe from django.urls import reverse_lazy from django.shortcuts import redirect from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth import logout def confirm(request, token): # TODO: handle object not found Vote.objects.get(confirmation_token=token).confirm() return redirect('vote') class MainView(ListView): model = Contribution class ContributionPlayerLabelMixin: def label_from_instance(self, obj): return mark_safe(obj.video_player()) class RadioSelectCustomOption(RadioSelect): """RadioSelect widget where order of label and input in template is reversed.""" option_template_name = 'contributions/input_option_reversed.html' class VoteChoiceField(ContributionPlayerLabelMixin, ModelChoiceField): widget = RadioSelectCustomOption def __init__(self, *args, **kwargs): # TODO: There has to be a more elegant way to to this. # This is a hack. kwargs['queryset'] = kwargs['queryset'].filter(approved=True) return super().__init__(*args, **kwargs) class ContributionApproveField(ContributionPlayerLabelMixin, ModelMultipleChoiceField): widget = CheckboxSelectMultiple class VoteForm(ModelForm): class Meta: model = Vote fields = ['username', 'contribution'] field_classes = {'contribution': VoteChoiceField} class VoteView(CreateView): form_class = VoteForm success_url = reverse_lazy('vote') model = Vote class ContributionApproveForm(Form): contributions = ContributionApproveField( queryset=Contribution.objects.filter(approved=False)) class ApproveContributionView(LoginRequiredMixin, FormView): form_class = ContributionApproveForm success_url = "/approve/" template_name = "contributions/contribution_approve.html" def form_valid(self, form): approved_contributions = form.cleaned_data['contributions'] for contribution in approved_contributions: contribution.approved = True contribution.save() # Log out user logout(self.request) return super().form_valid(form)
[ "thorvalb@stud.ntnu.no" ]
thorvalb@stud.ntnu.no
7229d4da19911690a42c9a6785e092cf7365c860
818325a5f0d7c2a105e81ce67bc9b8608b835f03
/app.py
8f19ac7cfb635f27d48260be767be5565e2f0e5c
[]
no_license
seladb/simple-analytics2
134121e1195e6539ff7106637e8eadb12e687a13
ec8d71af9785c6634ddabe9366ff75f4c64ff7b6
refs/heads/master
2023-05-08T14:15:23.167377
2021-06-02T01:12:53
2021-06-02T01:12:53
372,994,564
0
0
null
null
null
null
UTF-8
Python
false
false
950
py
import logging # https://docs.python.org/3/library/queue.html import threading import queue from flask import Flask, request from flask.logging import default_handler from services.enrich_geo_location import EnrichGeoLocation from services.request_anomaly_ranking import AnomalyRanking from services.db_service import DBService from common.record import Record app = Flask(__name__) root = logging.getLogger() root.setLevel(logging.INFO) root.addHandler(default_handler) @app.route('/') def serve_requests(): enrich_geo = EnrichGeoLocation() enriched_data = enrich_geo.enrich(request.remote_addr) anomaly_rank = AnomalyRanking() request_rank = anomaly_rank.rank_request(request.headers) db_service = DBService() db_service.write_to_db( Record( geo_location=enriched_data, rank=request_rank ) ) return "Hello world" if __name__ == '__main__': app.run(debug=True, host='0.0.0.0')
[ "pcapplusplus@gmail.com" ]
pcapplusplus@gmail.com
6f1f73cfc55c33a0424408de4d246780a15a3935
d4ea02450749cb8db5d8d557a4c2616308b06a45
/students/luyao_xu/lesson05/mailroom3.py
f320ecd0b76e8fb1819cb61f48cc0ffa9f73bbc0
[]
no_license
UWPCE-PythonCert-ClassRepos/Self_Paced-Online
75421a5bdd6233379443fc310da866ebfcd049fe
e298b1151dab639659d8dfa56f47bcb43dd3438f
refs/heads/master
2021-06-16T15:41:07.312247
2019-07-17T16:02:47
2019-07-17T16:02:47
115,212,391
13
160
null
2019-11-13T16:07:35
2017-12-23T17:52:41
Python
UTF-8
Python
false
false
4,972
py
#!/Library/Frameworks/Python.framework/Versions/3.7/bin/python3 from pathlib import Path def initialize_db(): don_1 = {'name': 'Amy Walker', 'donation amount': [18900.90, 4500]} don_2 = {'name': 'Peter Thomson', 'donation amount': [9999.99, 500, 6000.88]} don_3 = {'name': 'July Jensen', 'donation amount': [5300.00, 200]} don_4 = {'name': 'Paul Allen', 'donation amount': [320.57]} don_5 = {'name': 'Jenny Palmer', 'donation amount': [66.89]} data = [don_1, don_2, don_3, don_4, don_5] return data donations = initialize_db() def donate_amount(donor, donation_amount): donation_list = donor['donation amount'] donation_list.append(donation_amount) donor['donation amount'] = donation_list return donor def donate_sum(donor): return sum(donor['donation amount']) def donate(donor): # Once a name has been selected, prompt for a donation amount try: donation_amount = float(input('Enter the amount you want to donate: $')) donor = donate_amount(donor, donation_amount) while True: more = input('Is there another gift amount you want to enter? (y/n) ') if more[0].lower() == 'y': donation_amount = float(input('That\'s so nice of you! Enter the amount you want to donate: $')) # Once an amount has been given, add that amount to the donation history of the selected user donor = donate_amount(donor, donation_amount) # Use string formatting to compose an email thanking the donor for their generous donation. elif more.lower() == 'n': print(letter(donor)) break except ValueError: print("please enter a valid number") donate(donor) return donor def create_donor(name): return {'name': name, 'donation amount': []} def send_thank(): while True: # If the user types ‘list’, show them a list of the donor names and re-prompt user_input = input( 'Please enter a full name, type "list" to see the list of donors, type "back" to go back: ') if user_input.lower() == 'list': for name in donations: print(name['name']) continue elif user_input.lower() == 'back': # back to the main menu return # If the user types a name in the list, use it. elif user_input.lower() in [d['name'].lower() for d in donations]: for d in donations: if d['name'] == user_input: donate(d) # exit for loop on name match break else: # If the user types a name not in the list, add that name to the data structure and use it d = create_donor(user_input) donations.append(donate(d)) break def sort_total_given(k): return sum(k['donation amount']) def report_string(d): result = '{:<26} | {:^11} | {:^8} | {:>12}\n'.format('Donor Name', 'Total Given', 'Num Gifts', 'Average Gift') result += '-' * len(result) + '\n' for i in d: name = i['name'] total_donation = sum(i['donation amount']) gift_number = len(i['donation amount']) average_donation = total_donation / gift_number result += '{:<27} ${:>11.2f} {:>12} ${:>13.2f}\n'.format(name, total_donation, gift_number, average_donation) return result def create_report(): donations.sort(key=sort_total_given, reverse=True) # print a list of your donors, sorted by total historical donation amount print(report_string(donations)) def letter(donor): letter = 'Dear {}, we want to thank you for your total donation amount of ${}. Have a nice day!'.format( donor['name'], donate_sum(donor)) return letter def send_to_everyone(): for donor in donations: filename = Path('./letters/' + donor['name'] + '.txt') filename.parent.mkdir(parents=True, exist_ok=True) with filename.open('w') as outfile: outfile.write(letter(donor)) def menu_selection(prompt, dispatch_dict): while True: response = input(prompt) result = dispatch_dict[response]() if result == "exit": break # quote menu function def quit_program(): print('Bye.') return "exit" if __name__ == "__main__": main_prompt = ("Please choose one of the actions in menu:\n1. Send a Thank you.\n2. Create a report.\n" "3. Send thank you letter to everyone.\n4. Quit.\nEnter the number of the action you want to make: ") main_dispatch = {'1': send_thank, '2': create_report, '3': send_to_everyone, '4': quit_program} try: menu_selection(main_prompt, main_dispatch) except KeyError: print("The action you take is not valid.") menu_selection(main_prompt, main_dispatch)
[ "xuluyao19931213@gmail.com" ]
xuluyao19931213@gmail.com
c80f65a316cce749b4402378910cf0b906c8d8fa
5d2a2887bafa327492022fc0826738cc2d3dbae0
/day_01.py
31651d03616bdc7ff6b183dffed597696ff81db9
[]
no_license
mullevik/advent-of-code-2019
c32a09a8674bef4f828f4cc0d3624b714c21a16a
876ceb350db7e0241015740e093b99cd8d7a7485
refs/heads/master
2020-09-22T12:30:27.159006
2019-12-13T19:43:38
2019-12-13T19:43:38
225,195,119
0
0
null
null
null
null
UTF-8
Python
false
false
547
py
import fileinput def calculate_fuel(mass: int) -> int: return (mass // 3) - 2 if __name__ == "__main__": total_fuel_requirement = 0 for line in fileinput.input(): module_mass = int(line) fuel_requirements = [] fuel_requirement = calculate_fuel(module_mass) while fuel_requirement > 0: fuel_requirements.append(fuel_requirement) fuel_requirement = calculate_fuel(fuel_requirement) total_fuel_requirement += sum(fuel_requirements) print(total_fuel_requirement)
[ "muller.viktor.muller@gmail.com" ]
muller.viktor.muller@gmail.com
3e122dfa2ff830a984a694cea5458b47c7620559
1e74402cd0db4e283e9b274f59035d98344cc83c
/setup.py
eab885a3b4b7911e77ee3a7e6a2781c36909c3fa
[ "MIT" ]
permissive
MarkMurillo/python_ctype_structure_example
025d7f8c38b21333dc0a2bc287f92691adb8dd9a
9e889cc4cbdeab8433c396262f086071bb961e13
refs/heads/master
2020-03-13T21:49:37.620364
2018-10-14T18:59:58
2018-10-14T18:59:58
131,304,851
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
""" setup.py Builds the test c-extension python module. Author: Mark Murillo """ from distutils.core import setup, Extension testModule = Extension( 'testMod', include_dir=[], libraries=[], library_dirs=[], sources=['test.c'] ) setup( name='testMod', version='1.0', description='A library to test the c extension capabilities', ext_modules=[testModule] )
[ "mark.sj.murillo@gmail.com" ]
mark.sj.murillo@gmail.com
cd95b19f6d4f93b14d14a0883f75efb49067cd20
0ba2e5061577f6286ff9265ef1df9aca96769445
/sort/python/Piegon Sort.py
cc6205f804dcef84994b2ca7406186657254e296
[ "CC0-1.0" ]
permissive
ZoranPandovski/al-go-rithms
68d5d02f80a61de9baf8e50a81a52e7d0b3983a0
4ae6ba54e90af14af236e03e435eb0402dcac787
refs/heads/master
2023-09-04T16:04:04.321676
2023-06-06T15:22:16
2023-06-06T15:22:16
93,438,176
1,421
2,445
CC0-1.0
2023-06-15T14:24:28
2017-06-05T19:20:20
Jupyter Notebook
UTF-8
Python
false
false
1,722
py
""" This is an implementation of Pigeon Hole Sort. For doctests run following command: python3 -m doctest -v pigeon_sort.py or python -m doctest -v pigeon_sort.py For manual testing run: python pigeon_sort.py """ def pigeon_sort(array): """ Implementation of pigeon hole sort algorithm :param array: Collection of comparable items :return: Collection sorted in ascending order >>> pigeon_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> pigeon_sort([]) [] >>> pigeon_sort([-2, -5, -45]) [-45, -5, -2] """ if len(array) == 0: return array # Manually finds the minimum and maximum of the array. min = array[0] max = array[0] for i in range(len(array)): if array[i] < min: min = array[i] elif array[i] > max: max = array[i] # Compute the variables holes_range = max - min + 1 holes = [0 for _ in range(holes_range)] holes_repeat = [0 for _ in range(holes_range)] # Make the sorting. for i in range(len(array)): index = array[i] - min if holes[index] != array[i]: holes[index] = array[i] holes_repeat[index] += 1 else: holes_repeat[index] += 1 # Makes the array back by replacing the numbers. index = 0 for i in range(holes_range): while holes_repeat[i] > 0: array[index] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": user_input = input("Enter numbers separated by comma:\n") unsorted = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
[ "zoran.pandovski@gmail.com" ]
zoran.pandovski@gmail.com
032e16ace2a8d54eed495da1838d6c543d7890c8
a907c2cdcf2587dad8cafeef3b851addaef127de
/fnndsc.py
1a903afea89822bc8c2fcef87ef4b1e41de6b72f
[]
no_license
FNNDSC/scripts
10d443612fcf8a206fa33c13dbc1f5aa17d2e2c9
fafa74576d7f37b901cdc8c28e6343141df648eb
refs/heads/master
2023-04-17T01:46:09.155442
2023-04-11T02:15:37
2023-04-11T02:15:37
2,512,788
5
2
null
null
null
null
UTF-8
Python
false
false
3,127
py
#!/usr/bin/env python import os import sys import string import getopt import argparse import csv from _common import systemMisc as misc from _common import crun import error import message import stage class FNNDSC(): ''' The 'FNNDSC' class provides the base infrastructure for batched pipelined processessing. It provides the basic level of services and abstractions needed to run staged (serial) pipelined analysis streams. Sub-classes of this base provide experiment-specific specializations. ''' def log(self, *args): ''' get/set the internal pipeline log message object. Caller can further manipulate the log object with object-specific calls. ''' if len(args): self._log = args[0] else: return self._log def name(self, *args): ''' get/set the descriptive name text of this object. ''' if len(args): self.__name = args[0] else: return self.__name def pipeline(self, *args): if len(args): self._pipeline = args[0] else: return self._pipeline def verbosity(self, *args): if len(args): self._verbosity = args[0] self._log.verbosity(args[0]) self._pipeline._log.verbosity(args[0]) else: return self._verbosity def vprintf(self, alevel, format, *args): ''' A verbosity-aware print. ''' if self._verbosity and self._verbosity <= alevel: sys.stdout.write(format % args) def __init__(self, **kwargs): ''' Basic constructor. Checks on named input args, checks that files exist and creates directories. ''' self.__name = 'FNNDSC-base' self._verbosity = 0 self._log = message.Message() self._log.tee(True) self._log.syslog(True) self._pipeline = stage.Pipeline(name = self.__name) self._pipeline.log(self._log) self._str_subjectDir = '' self._b_debugMode = False for key, value in kwargs.iteritems(): if key == 'syslog': self._log.syslog(value) if key == 'logTo': self._log.to(value) if key == 'logTee': self._log.tee(value) def initialize(self): ''' This method provides some "post-constructor" initialization. It is typically called after the constructor and after other class flags have been set (or reset). ''' def run(self): ''' The main 'engine' of the class. ''' self._log('Starting %s...\n' % self.__name) self._pipeline.execute() self._log('Finished %s\n' % self.__name) def stage_add(self, stage): self._pipeline.stage_add(stage)
[ "rudolph.pienaar@gmail.com" ]
rudolph.pienaar@gmail.com
910c40a79a455b4bbc008bbdbb80be0f86e7421c
fbea0f58191fd13c5fecc86d24b02032761699bc
/users/urls.py
c8ca8686832ef10215ce800de49d5dc25dbc720f
[]
no_license
HOTGU/nbnb-clone
ef29b339032a2fc3d07035ba5c1e456933cb5434
fae3a4f2aa5b3c5ed983c2fc34b223e8d0814703
refs/heads/master
2023-07-14T05:01:07.506626
2021-08-23T07:52:16
2021-08-23T07:52:16
383,764,793
0
0
null
null
null
null
UTF-8
Python
false
false
889
py
from django.urls import path from . import views app_name = "users" urlpatterns = [ path("login/", views.LoginView.as_view(), name="login"), path("login/github/", views.github_login, name="github-login"), path("login/github/callback/", views.github_callback, name="github-callback"), path("login/kakao/", views.kakao_login, name="kakao-login"), path("login/kakao/callback/", views.kakao_callback, name="kakao-callback"), path("logout/", views.log_out, name="logout"), path("signup/", views.SignUpView.as_view(), name="signup"), path("update-profile/", views.UpdateProfileView.as_view(), name="update"), path( "update-password/", views.UpdatePasswordView.as_view(), name="update-password" ), path("switch-hosting/", views.switch_hosting, name="switch-hosting"), path("<int:pk>/", views.UserProfileView.as_view(), name="profile"), ]
[ "gksrn42@gmail.com" ]
gksrn42@gmail.com
f6415420e3a9b8fff87cdc63145da81445c0f1e5
e6b9527ca455149f2a257e7fa8936c3b67bbb108
/ruby/test_ruby_bindings.py
18c9ccd7df236f44ba2d2cc72079059627631092
[]
no_license
theoweiss/generators
ae269659e794ca24c49b5ff4fc52aaaf795b0eb6
13d1f8f2ed70aaa85ee001f57852f9233064c748
refs/heads/master
2020-04-22T18:15:24.371245
2019-02-13T17:08:29
2019-02-13T17:08:29
170,570,998
0
0
null
2019-02-13T20:00:41
2019-02-13T20:00:41
null
UTF-8
Python
false
false
1,955
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Ruby Bindings Tester Copyright (C) 2012-2014, 2017-2018 Matthias Bolte <matthias@tinkerforge.com> test_ruby_bindings.py: Tests the Ruby bindings This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ import sys import os sys.path.append(os.path.split(os.getcwd())[0]) import common class RubyTester(common.Tester): def __init__(self, root_dir, extra_paths): common.Tester.__init__(self, 'ruby', '.rb', root_dir, subdirs=['examples', 'source'], extra_paths=extra_paths) def test(self, cookie, path, extra): args = ['ruby', '-wc', path] retcode, output = common.check_output_and_error(args) output = output.strip('\r\n') success = retcode == 0 and len(output.split('\n')) == 1 and 'Syntax OK' in output self.handle_result(cookie, output, success) def run(root_dir): extra_paths = [os.path.join(root_dir, '../../weather-station/write_to_lcd/ruby/weather_station.rb'), os.path.join(root_dir, '../../hardware-hacking/remote_switch/ruby/remote_switch.rb'), os.path.join(root_dir, '../../hardware-hacking/smoke_detector/ruby/smoke_detector.rb')] return RubyTester(root_dir, extra_paths).run() if __name__ == '__main__': run(os.getcwd())
[ "matthias@tinkerforge.com" ]
matthias@tinkerforge.com
ffdc58bdbc38eae855b064d75da1b278d2b35797
825ab7f2431bf040259bc6f725054152d8bf6da3
/Projeto Naval Final/TABULEIRO_Brincando.py
6cf470e3cfccc064eb008b39a1ada2e293d94db1
[]
no_license
leandro1989/Projetos
f70856be008ac1e59ddea339d0d74b8512e52353
dc8931e1fc7caf1ab03414d8f07f7373f0790ad3
refs/heads/master
2021-01-19T23:24:57.826068
2017-04-21T11:14:12
2017-04-21T11:14:12
88,975,459
0
0
null
null
null
null
UTF-8
Python
false
false
20,615
py
from random import * import sys from termcolor import colored def resultado(): print('') print('Os resultados foram:') print('') for i in range(len(nomes_jogador)): print(nomes_jogador[i], '--->' , contador_de_seus_acertos) def cria_grelha(matriz): '''esta função cria uma matriz 10X10''' for i in range(10): matriz.append([]) for j in range(10): matriz[i].append(colored('~', 'blue')) def interface(matriz): '''Mostra o Tabuleiro que aparecerá as embarcações e os tiros dados''' print(' | %i | %i | %i | %i | %i | %i | %i | %i | %i | %i |'%(linha_numero[0],linha_numero[1],linha_numero[2],linha_numero[3],linha_numero[4], linha_numero[5],linha_numero[6],linha_numero[7],linha_numero[8],linha_numero[9])) print(' ---------------------------------------------------------------') for k in range(10): print(' %s | %s %s %s %s %s %s %s %s %s %s | ' %(letras[k],matriz[k][0],matriz[k][1], matriz[k][2], matriz[k][3], matriz[k][4],matriz[k][5],matriz[k][6], matriz[k][7], matriz[k][8], matriz[k][9])) print(' ---------------------------------------------------------------') print(' Mar das embarcações do meu INIMIGO ') def verifica_tiro(numero,letra_tiro): '''esta função verifica se na matriz_aliado contém algum barco e substitui na matriz_inimigo que é a matriz do adversário''' if matriz_aliado[letras.find(letra_tiro)][numero - 1] == 1: '''Caso acerte o tiro aparece o número 1''' X = colored('X', 'red') matriz_inimigo[letras.find(letra_tiro)][numero - 1] = X else: matriz_inimigo[letras.find(letra_tiro)][numero - 1] = 'O' print('Tiro em alto Mar. Atire novamente!') def coloca_barco(linha,coluna,sentido_do_barco,matriz_aliado,barco,i): '''Esta função coloca o barco na posição desejada e coloca 'a' em volta dos barcos para não ser possível colocar barcos adjacentes''' a = 'x' #O caractere atribuido ao termo 'a' será colocado em volta dos barcos if i == 0: '''Esta parte coloca 'a' ao redor do barco quando os barcos forem colocados na horizontal''' if sentido_do_barco == 1: matriz_aux0 = [] for v in range(coluna, 10): matriz_aux0.append(v) if 0 < coluna < 9 and 0 < linha < 9: matriz_aliado[linha][coluna - 1] = a if len(barco) < matriz_aux0.index(matriz_aux0[-1]) + 1: '''Esta parte verifica se o limite do barco encosta ou não no limite do tabuleiro para acrecentar ou não o 'a'.''' matriz_aliado[linha][coluna + len(barco)] = a for v in range(coluna - 1, coluna + len(barco) + 1): matriz_aliado[linha - 1][v] = a matriz_aliado[linha + 1][v] = a else: matriz_aliado[linha][coluna - 1] = a for v in range(coluna - 1, coluna + len(barco)): matriz_aliado[linha - 1][v] = a matriz_aliado[linha + 1][v] = a matriz_aux0.clear() if 0 < coluna < 9 and linha == 0: matriz_aliado[linha][coluna - 1] = a if coluna + len(barco) <= 9: '''Se existir mais elementos depois da ultima parte do barco acrecenta-se 'a'. ''' matriz_aliado[linha][coluna + len(barco)] = a if coluna + len(barco) + 1 <= 10: for v in range(coluna - 1, coluna + len(barco) + 1): matriz_aliado[linha + 1][v] = a else: for v in range(coluna - 1, coluna + len(barco)): matriz_aliado[linha + 1][v] = a elif 0 < coluna < 9 and linha == 9: matriz_aliado[linha][coluna - 1] = a if coluna + len(barco) <= 9: matriz_aliado[linha][coluna + len(barco)] = a if coluna + len(barco) + 1 <= 10: for v in range(coluna - 1, coluna + len(barco) + 1): matriz_aliado[linha - 1][v] = a else: for v in range(coluna - 1, coluna + len(barco)): matriz_aliado[linha - 1][v] = a elif coluna == 0 and 0 < linha < 9: matriz_aliado[linha][coluna + len(barco)] = a for v in range(coluna , coluna + len(barco) + 1): matriz_aliado[linha - 1][v] = a matriz_aliado[linha + 1][v] = a elif coluna == 9 and 0 < linha < 9: matriz_aliado[linha][coluna - 1] = a for v in range(coluna - 1, coluna + len(barco)): matriz_aliado[linha - 1][v] = a matriz_aliado[linha + 1][v] = a elif coluna == 0 and linha == 0: matriz_aliado[linha][coluna + len(barco)] = a for v in range(coluna , coluna + len(barco) + 1): matriz_aliado[linha + 1][v] = a elif coluna == 9 and linha == 0: matriz_aliado[linha][coluna - 1] = a for v in range(coluna - 1, coluna + len(barco)): matriz_aliado[linha + 1][v] = a elif coluna == 0 and linha == 9: matriz_aliado[linha][coluna + len(barco)] = a for v in range(coluna , coluna + len(barco) + 1): matriz_aliado[linha - 1][v] = a elif coluna == 9 and linha == 9: matriz_aliado[linha][coluna - 1] = a for v in range(coluna - 1, coluna + len(barco)): matriz_aliado[linha - 1][v] = a if sentido_do_barco == 2: '''Esta parte coloca 'a' em volta dos barcos colocados na vertical.''' j = len(barco) matriz_aux = [] for r in range(linha, 10): matriz_aux.append(matriz_aliado[r][coluna]) if linha != 0 and linha != 9 and coluna != 0 and coluna != 9 and (len(barco) != len(matriz_aux)): matriz_aliado[linha - 1][coluna] = a matriz_aliado[linha + j][coluna] = a for r in range(linha - 1, linha + len(barco) + 1): matriz_aliado[r][coluna - 1] = a matriz_aliado[r][coluna + 1] = a elif (0 < linha < 9) and coluna == 9 and (len(barco) != len(matriz_aux)): matriz_aliado[linha - 1][coluna] = a matriz_aliado[linha + j][coluna] = a for r in range(linha - 1, linha + len(barco) + 1): matriz_aliado[r][coluna - 1] = a elif (0 < linha < 9) and coluna == 0 and (len(barco) != len(matriz_aux)): matriz_aliado[linha - 1][coluna] = a matriz_aliado[linha + j][coluna] = a for r in range(linha - 1, linha + len(barco) + 1): matriz_aliado[r][coluna + 1] = a elif linha == 0 and 0 < coluna < 9: matriz_aliado[j][coluna] = a for r in range(linha, linha + j + 1): matriz_aliado[r][coluna - 1] = a matriz_aliado[r][coluna + 1] = a elif linha == 9 and 0 < coluna < 9: matriz_aliado[linha - 1][coluna] = a for r in range(linha - 1, linha + len(barco)): matriz_aliado[r][coluna - 1] = a matriz_aliado[r][coluna + 1] = a elif linha == 0 and coluna == 0: matriz_aliado[j][coluna] = a for r in range(linha, linha + j + 1): matriz_aliado[r][coluna + 1] = a elif linha == 0 and coluna == 9: matriz_aliado[j][coluna] = a for r in range(linha, linha + j + 1): matriz_aliado[r][coluna - 1] = a elif len(barco) == len(matriz_aux): if coluna == 0: matriz_aliado[linha - 1][coluna] = a for r in range(linha - 1, linha + len(barco)): matriz_aliado[r][coluna + 1] = a elif coluna == 9: matriz_aliado[linha - 1][coluna] = a for r in range(linha - 1, linha + len(barco)): matriz_aliado[r][coluna - 1] = a elif 0 < coluna < 9: matriz_aliado[linha - 1][coluna] = a for r in range(linha - 1, linha + len(barco)): matriz_aliado[r][coluna - 1] = a matriz_aliado[r][coluna + 1] = a matriz_aux.clear() if i == len(barco): return matriz_aliado matriz_aliado[linha][coluna] = barco[i] #Coloca barco na Horizontal if sentido_do_barco == 1: return coloca_barco(linha,coluna+1,sentido_do_barco,matriz_aliado,barco,i+1) # Coloca barco na Vertical else: return coloca_barco(linha+1,coluna,sentido_do_barco,matriz_aliado,barco,i+1) '''Fim da def coloca_barco''' def corrige(barco,linha,coluna): '''Verifica se a posição do barco é válida nos limites das matriz_aliado''' '''Verifica na Horizontal''' if len(matriz_aliado[linha][coluna:]) < len(barco) and sentido_do_barco == 1: return False cont = 1 for i in range(linha, 10): cont += 1 '''Verifica na vertical''' if cont < len(barco) and sentido_do_barco == 2: return False else: return True def verifica_coloca_barco(barco,linha,coluna,sentido_do_barco): '''Verifica se um barco esta sendo colocado em cima de outro sentido_do_barco == 1(Horizontal) e sentido_do_barco == 2 (vertical)''' a = '~' if sentido_do_barco == 1: try: for p in range(len(barco)): '''Verifica se tem algum 'x' ou '1' nas posições que serão ocupadas pelo barco ou se o barco excede o limite do tabuleiro , permitindo ou não que o barco seja inserido''' if 'x' not in matriz_aliado[linha][coluna:coluna + len(barco)] and 1 not in matriz_aliado[linha][coluna:coluna + len(barco)]: return True except: return False cont_h = 0 for p in range(coluna - 1, coluna + len(barco)): '''Esta parte verifica e impede que alguma parte do barco seja substituida por 'a', impedindo a colocação do barco. O elemento matriz_aliado[linha][p] pode ser uma parte de uma embarcação colocada anteriormente.''' if a != matriz_aliado[linha][p]: cont_h += 1 if cont_h == 0: return True else: return False elif sentido_do_barco == 2: '''Esta parte verifica se o barco pode ser colocado verticalmente na posição solicitada''' cont_v = 0 for p in range(linha, linha + len(barco)): try: if matriz_aliado[p][coluna] == a: cont_v += 1 except IndexError: return False if cont_v >= len(barco): return True else: return False print('\n Lembrando algumas regras da Batalha Naval: \n ' '\n 1 - Não é possível colocar um embarcação ao lado de outra embarcação; ' '\n 2 - Os limites dados no tabuleiro devem ser respeitados, ou seja, não pode ficar nenhuma parte da embarcação fora ' '\n do tabuleleiro, caso isso ocorra será solicitada uma nova posição; ' '\n 3 - Uma embarcação não pode ser colocada em uma posição já ocupada por alguma parte de outra embarcação;' '\n 4 - Caso uma embarcação seja acertada aparecerá o número 1 no local atirado, caso contrário será exibida a letra "x";' '\n 5 - O jogador que primeiro afundar todas embarcações ganha;' '\n 6 - Ao selecinar uma posição para o barco, a parte inicial da embarcação será colocada na posição selecinada,' ' \n as demais parte serão colocada no sentido(Horizontal ou vertical) que você escolher;' '\n 7 - Tabuleiro do jogo: ') print('') print('Saudações, Capitão! Bem vindo a bordo! Para iniciarmos a batalha vamos posicionar nossas embarcações: ') print('') resp = 's' nomes_jogador = [] acertos_jogador = [] while resp == 's': letras = 'ABCDEFGHIJ' linha_numero = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] matriz_aliado = [] matriz_inimigo = [] barcos = [[1], [1, 1], [1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1, 1]] cria_grelha(matriz_aliado) cria_grelha(matriz_inimigo) interface(matriz_inimigo) print('') jogador = input('Qual seu nome Senhor? E futuro CAPITÃO!? ') nomes_jogador.append(jogador) while True: try: nivel_dificuldade = int(input('Qual é a nivel que o CAPITÃO que jogar( 1 - Fácil(Errar 25 tiros), 2 - Normal(Errar 20 tiros), ' '3 - Difícil(Errar 15 tiros) ou 4 - Quase Impossível(Errar 10 tiros)? ')) if nivel_dificuldade not in [1,2,3,4]: print('Número inválido. Informe um número de 1 a 4.') continue break except ValueError: print('Caractere inválido. Informe um número de 1 a 4.') print('') n = [] for i in range(len(barcos)): '''Esta parte do código pede ao usuário as posição e o sentido que o barco deve ser colocado, além de chamar funções para verificar se a posição é valida ou não.''' while True: '''Esta parte parte impede que o mesmo barco seja posicionado mais de uma vez no tabuleiro.''' x = randint(0,4) if x not in n: n.append(x) break while True: '''Posiciona aleatoriamente o barco.''' sentido_do_barco = randint(1,2) linha = randint(0, 9) coluna = randint(0, 9) if corrige(barcos[x],linha,coluna) == True and verifica_coloca_barco(barcos[x], linha, coluna, sentido_do_barco) == True: '''Esta parte chama as funções acima para verificar se é possível o barco ser colocado na posição solicitada.''' coloca_barco(linha,coluna,sentido_do_barco,matriz_aliado,barcos[x],0) break else: continue '''Fim do For ''' print('\n Agora começa a Batalha Naval! Informe a posicão que devemos atirar, Capitão!') print('') while True: '''Esta parte pede a posição que o jogador vai atirar''' while True: c = input('Informe a letra da linha que o tiro vai ser disparado: ') letra_tiro = c.upper() if letra_tiro not in letras: print('Letra inválida. Informe uma letra maiúscula de A a J.') print('') continue else: break while True: try: numero = int(input('Informe o número da coluna que o tiro vai ser disparado: ')) if numero < 0 or numero > 10: print('Valor inválido. Informe um número de 1 a 10.') continue else: print('') break except: print('Valor inválido. Informe um número de 1 a 10.') continue verifica_tiro(numero,letra_tiro) interface(matriz_inimigo) print('') '''A qui começa a parte de contagem de erros e acertos dos tiros, determinado quando o jogo acaba. ''' contador_de_erros = 0 contador_de_seus_acertos = 0 for y in range(0,10): '''Verifica se vc ganhou a batalha.''' contador_de_erros += matriz_inimigo[y].count('O') if nivel_dificuldade == 1: if contador_de_erros == 25: interface(matriz_aliado) print('ACABOU nossas BALAS Capitão!!') for y in range(0, 10): '''Verifica se vc ganhou a batalha.''' contador_de_seus_acertos += matriz_inimigo[y].count(1) acertos_jogador.append(contador_de_seus_acertos) while True: resp = input('Gostaria de ARMAR os CANHÕES e ATIRAR novamente(s ou n)? ') if resp == 'n': resultado() elif resp not in ['s','n']: print('Informe s para jogar novamente ou n para parar de jogar!') continue break break else: print('Em qual posição vai atirar novamente Capitão??') elif nivel_dificuldade == 2: if contador_de_erros == 20: interface(matriz_aliado) print('ACABOU nossas BALAS Capitão!!') for y in range(0, 10): '''Verifica se vc ganhou a batalha.''' contador_de_seus_acertos += matriz_inimigo[y].count(1) acertos_jogador.append(contador_de_seus_acertos) while True: resp = input('Gostaria de ARMAR os CANHÕES e ATIRAR novamente(s ou n)? ') if resp == 'n': resultado() elif resp not in ['s','n']: print('Informe s para jogar novamente ou n para parar de jogar!') continue break break else: print('Em qual posição vai atirar novamente Capitão??') elif nivel_dificuldade == 3: if contador_de_erros == 15: interface(matriz_aliado) print('ACABOU nossas BALAS Capitão!!') for y in range(0, 10): '''Verifica se vc ganhou a batalha.''' contador_de_seus_acertos += matriz_inimigo[y].count(1) acertos_jogador.append(contador_de_seus_acertos) while True: resp = input('Gostaria de ARMAR os CANHÕES e ATIRAR novamente(s ou n)? ') if resp == 'n': interface(matriz_aliado) elif resp not in ['s', 'n']: print('Informe s para jogar novamente ou n para parar de jogar!') continue break break else: print('Em qual posição vai atirar novamente Capitão??') elif nivel_dificuldade == 4: if contador_de_erros == 10: interface(matriz_aliado) print('ACABOU nossas BALAS Capitão!!') for y in range(0, 10): '''Verifica se vc ganhou a batalha.''' contador_de_seus_acertos += matriz_inimigo[y].count(1) acertos_jogador.append(contador_de_seus_acertos) while True: resp = input('Gostaria de ARMAR os CANHÕES e ATIRAR novamente(s ou n)? ') if resp == 'n': resultado() elif resp not in ['s', 'n']: print('Informe s para jogar novamente ou n para parar de jogar!') continue break break else: print('Em qual posição vai atirar novamente Capitão??')
[ "leandrolinken@gmail.com" ]
leandrolinken@gmail.com
ba8682459d95aafa9bb23a4013ed976df4ed69dd
289e3289897f7e794e3f6b281c727f74185ab5ff
/deid/dicom/validate.py
061406f407b7b40643fa3c4188ca3e56c76cc461
[ "MIT" ]
permissive
W7CAM/deid
fd3df596e0c48d243b838c1a31ed5376f02eaf61
808bbf6355b923f26694d8a73dc21d35a857a145
refs/heads/master
2020-03-30T02:12:11.790957
2018-09-19T15:47:57
2018-09-19T15:47:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,932
py
''' utils.py: helper functions for working with dicom module Copyright (c) 2017-2018 Vanessa Sochat Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' from deid.logger import bot from pydicom import read_file import sys def validate_dicoms(dcm_files,force=False): '''validate dicoms will test opening one or more dicom files, and return a list of valid files. :param dcm_files: one or more dicom files to test''' if not isinstance(dcm_files,list): dcm_files = [dcm_files] valids = [] bot.debug("Checking %s dicom files for validation." %(len(dcm_files))) for dcm_file in dcm_files: try: with open(dcm_file, 'rb') as filey: dataset = read_file(filey, force=force) valids.append(dcm_file) except: bot.warning('Cannot read input file {0!s}, skipping.'.format(dcm_file)) bot.info("Found %s valid dicom files" %(len(valids))) return valids
[ "vsochat@stanford.edu" ]
vsochat@stanford.edu
9e166518f56b8cab93f0dc4a84da5f13cc0fbc28
0d2668b04d29e52972e9c2c71df8a597e9e3b06f
/collectData.py
cafb864218497d186bd3de75e1197a849a10cb75
[]
no_license
mhenstell/cb-collect
dceb96062b50e9eecdf85656ae75c3c36a458b86
e2295ce5c2047d2f9caedfd93e74929ed7c1ff35
refs/heads/master
2020-05-17T17:02:52.307848
2014-02-28T01:35:45
2014-02-28T01:35:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,751
py
from pycitibike import Citibike import time import psycopg2 import sys import signal def signal_handler(signal, frame): print 'You pressed Ctrl+C!' con.close() sys.exit(0) con = None try: con = psycopg2.connect(host='localhost', database='citibike', user='citibike', password=sys.argv[1]) cur = con.cursor() con.autocommit = True cur.execute('SELECT version()') ver = cur.fetchone() print ver except psycopg2.DatabaseError, e: print 'Error %s' % e sys.exit(1) client = Citibike() stations = {} oldStations = {} lastTime = 0 signal.signal(signal.SIGINT, signal_handler) while True: start = time.time() try: stations = client.stations() except Exception as e: print e continue timestamp = psycopg2.TimestampFromTicks(time.time()) print "Updating %s" % timestamp for station in stations: sid = station['id'] if sid not in oldStations: pass elif station['availableDocks'] != oldStations[sid]['availableDocks'] or station['availableBikes'] != oldStations[sid]['availableBikes']: sql = "insert into log(stationid, timestamp, availableBikes, availableDocks) values (%i, %s, %i, %i)" % (sid, timestamp, station['availableBikes'], station['availableDocks']) # print sql cur.execute(sql) oldStations[sid] = station end = time.time() runlength = int(end - start) cur.execute("insert into runlog(runlength) values(%i)" % runlength) time.sleep(30)
[ "max@kapamaki.net" ]
max@kapamaki.net
7ac11c9aec24b2e8c50fd89a65f84931e2d16081
1cdc31a292e51419988604e0f2284f802c03fc80
/WSDAN_model/acc.py
e45eeffb0c04e8f9038fd0fb9a292d870379fe68
[]
no_license
liuhy14/CS231N_project
b27692b9e8c762111d53aed361eeb85e995e4502
882d70aba4f507bae653c050d455b41f44bf74b4
refs/heads/master
2020-05-22T02:13:36.719970
2019-06-05T18:20:32
2019-06-05T18:20:32
186,194,025
2
1
null
null
null
null
UTF-8
Python
false
false
2,530
py
from dataset import * from models import * import torch from torch.utils.data import DataLoader import torch.backends.cudnn as cudnn from utils import accuracy import torch.nn as nn import os import numpy as np import csv import pickle os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3' data_root = os.path.join('..','..','dataset') train_file = os.path.join('..','..','dataset','train2019.json') val_file = os.path.join('..','..','dataset','val2019.json') test_file = os.path.join('..','..','dataset','test2019.json') image_size = (512,512) num_attentions = 32 feature_net = inception_v3(pretrained=True) num_classes = 1010 batch = 64 net = WSDAN(num_classes=num_classes, M=num_attentions,net=feature_net) #ckpt = '../../backup_main/latest.ckpt' ckpt = '../../backup_balanced/latest.ckpt' #ckpt = '../../backup_balanced/best_top1_val_acc.ckpt' checkpoint = torch.load(ckpt) state_dict = checkpoint['state_dict'] cudnn.benchmark = True net.load_state_dict(state_dict) net.to('cuda') net = nn.DataParallel(net) validate_dataset = INAT(data_root,val_file,image_size, is_train=False) validate_loader = DataLoader(validate_dataset,batch_size=batch,shuffle=False,num_workers=4,pin_memory=True) top1 = np.zeros(num_classes) top3 = np.zeros(num_classes) top5 = np.zeros(num_classes) total = np.zeros(num_classes) net.eval() with torch.no_grad(): for i,(X,_,y,_) in enumerate(validate_loader): n = y.size(0) X = X.to('cuda') y = y.to('cuda') y_pred,feature_matrix,attention_map = net(X) values,indices = y_pred.max(1) _, top_3_pred = y_pred.topk(3,1,True,True) _, top_5_pred = y_pred.topk(5,1,True,True) print('Batch:',i) top_1 = indices.data.cpu().numpy() top_3 = top_3_pred.data.cpu().numpy() top_5 = top_5_pred.data.cpu().numpy() y_targ = y.data.cpu().numpy() #print('Accuracy: ',np.sum(top_1==y_targ)/n) for j in range(n): total[y_targ[j]] += 1; if (y_targ[j] == top_1[j]): top1[y_targ[j]] += 1; if (y_targ[j] in top_3[j]): top3[y_targ[j]] += 1; if (y_targ[j] in top_5[j]): top5[y_targ[j]] += 1; pickle.dump(top1,open("top1.pkl","wb")) pickle.dump(top3,open("top3.pkl","wb")) pickle.dump(top5,open("top5.pkl","wb")) #pickle.dump(total,open("total.pkl","wb")) print("Top 1 Accuracy",sum(top1)/sum(total)) print("Top 3 Accuracy",sum(top3)/sum(total)) print("Top 5 Accuracy",sum(top5)/sum(total))
[ "google-dl-platform@googlegroups.com" ]
google-dl-platform@googlegroups.com
c6be021a4d77d891dc84989797588b97e80fd579
a230e4c7f4cd862de09201da08babc5e8165052b
/wishlist/migrations/0006_remove_wishlist_price.py
c11c42285c90680222083a72fd58f547b35077c9
[]
no_license
Code-Institute-Submissions/richard-ui-b_fitness_store_SepResub
c172e7f2fbaee24093168f4c3d7721a29a708392
4dbb32c790d0013a07c0912abeed0b9bab3a5571
refs/heads/master
2023-08-21T13:16:16.700565
2021-09-22T10:47:53
2021-09-22T10:47:53
409,634,426
0
0
null
null
null
null
UTF-8
Python
false
false
328
py
# Generated by Django 3.2 on 2021-08-18 11:57 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('wishlist', '0005_auto_20210817_1707'), ] operations = [ migrations.RemoveField( model_name='wishlist', name='price', ), ]
[ "richard-jones96@hotmail.co.uk" ]
richard-jones96@hotmail.co.uk
60b68041d2d0675f6dc9214fa697608944bf01d7
125082a3987e95df7eeb0f181dc7125276d761dd
/src/test/javaFileReaderTestPackage/Orange.py
3ba54aee734c7cf71ad1db7e747b5c648bf2fb42
[]
no_license
EvanQuan/SENG300G1
a2568a9d3cbd99e5b006c6a7ae3053f20e9f2af0
a1328481680bf49b2307296e30c63d3ea898680b
refs/heads/master
2021-03-19T13:42:38.443321
2018-04-30T01:42:17
2018-04-30T01:42:17
123,995,626
0
0
null
null
null
null
UTF-8
Python
false
false
41
py
# Test python file print("Hello world!")
[ "slchan@XIV.com" ]
slchan@XIV.com
dbde6670e5fecf5794b21381026175dcc3c768de
ede97a8afbf35b325a0ada346b45566b7b88312d
/app/.~c9_invoke_vwc6aL.py
c5d8e94047bbe69c17fd9f49e86638d6716d73fc
[]
no_license
loni-mitch/Photogram
2ca2a4cd165dcca4d10159d54c5a448ad057d0da
ecbdc54949a0b04caa990c07f5bdbd356a1b473e
refs/heads/master
2020-03-14T09:55:46.236533
2018-07-18T17:46:48
2018-07-18T17:46:48
131,555,353
0
0
null
null
null
null
UTF-8
Python
false
false
12,662
py
""" Flask Documentation: http://flask.pocoo.org/docs/ Jinja2 Documentation: http://jinja.pocoo.org/2/documentation/ Werkzeug Documentation: http://werkzeug.pocoo.org/documentation/ This file creates your application. """ import os from app import app,db,filefolder,token_key from flask import render_template, request, redirect, url_for, flash, g,jsonify,session,abort import os, datetime from flask_login import login_user, logout_user, current_user, login_required from forms import SignUpForm,LoginForm,PostForm from functools import wraps from models import Users, Posts, Likes, Follows from werkzeug.utils import secure_filename from app.models import Users,Posts, Follows, Likes from werkzeug.security import generate_password_hash, check_password_hash import jwt from functools import wraps ### # Routing for your application. ### #***************************************FRONT END ROUTES************************************ #---------------------------------------AUTHENTICATION----------------------------------------- def requires_auth(f): @wraps(f) def decorated(*args, **kwargs): auth = request.headers.get('Authorization', None) if not auth: return jsonify({'code': 'authorization_header_missing', 'description': 'Authorization header is expected'}), 401 parts = auth.split() if parts[0].lower() != 'bearer': return jsonify({'code': 'invalid_header', 'description': 'Authorization header must start with Bearer'}), 401 elif len(parts) == 1: return jsonify({'code': 'invalid_header', 'description': 'Token not found'}), 401 elif len(parts) > 2: return jsonify({'code': 'invalid_header', 'description': 'Authorization header must be Bearer + \s + token'}), 401 token = parts[1] try: payload = jwt.decode(token, token_key) get_user = Users.query.filter_by(id=payload['user_id']).first() except jwt.ExpiredSignature: return jsonify({'code': 'token_expired', 'description': 'token is expired'}), 401 except jwt.DecodeError: return jsonify({'code': 'token_invalid_signature', 'description': 'Token signature is invalid'}), 401 g.current_user = user = get_user return f(*args, **kwargs) return decorated #----------------------------------------INDEX--------------------------------------------- @app.route('/') def index(): initial_form = SignUpForm() """Render website's initial page and let VueJS take over.""" return render_template('index.html', initial_form = initial_form) #-----------------------------------------LOGIN------------------------------------------- @app.route('/api/auth/login', methods=["POST"]) def login(): form = LoginForm() if request.method == "POST" and form.validate_on_submit(): username = request.form['username'] password = request.form['password'] user = Users.query.filter_by(username = username).first() if user and check_password_hash(user.password, password): payload = {'user_id' : user.id} token = jwt.encode(payload, token_key) session['userid'] = user.id; return jsonify(data={'token': token, 'userid': user.id}, message="User successfully logged in") else: return jsonify(errorm="Incorrect username or password") error_msgs = form_errors(form) error = [{'errors': error_msgs}] return jsonify(errors=error) #----------------------------------------LOGOUT------------------------------------------ @app.route('/api/auth/logout', methods = ['GET']) @requires_auth def logout(): g.current_user = None session.pop('userid', None) return jsonify(message = "User successfully logged out") #----------------------------------------REGISTER------------------------------------------ @app.route('/api/users/register', methods = ['POST']) def register(): form = SignUpForm() if request.method == 'POST' and form.validate_on_submit(): firstname = request.form['firstname'] lastname = request.form['lastname'] username = request.form['username'] password = generate_password_hash(request.form['password']) location = request.form['location'] email = request.form['email'] bio = request.form['biography'] image = request.files['image'] profile_created_on = datetime.datetime.now() filename = secure_filename(image.filename) image.save(os.path.join(filefolder, filename)) user = Users(username = username, password = password, firstname = firstname, lastname = lastname, email = email,location = location, biography = bio, image = filename, joined_on = profile_created_on) db.session.add(user) db.session.commit() response = [{'message': 'User has been successfully registered'}] return jsonify(result = response) error_msgs = form_errors(form) error = [{'errors': error_msgs}] return jsonify(errors =error) #--------------------------------------------POSTS------------------------------------------- @app.route('/api/posts/', methods=["GET"]) @requires_auth def show_all_posts(): all_posts = Posts.query.order_by(Posts.created_on.desc()).all() postlist = [] for post in all_posts: user = Users.query.filter_by(id = post.user_id).first() likes = Likes.query.filter_by(post_id = post.id).all() likescount = []; for like in likes: count = {'test': "counted"} likescount.append(count) liked_post = Likes.query.filter_by(user_id = session['userid'], post_id= post.id).first() if(liked_post is None): likeflag = False else: likeflag = True postdate= post.created_on.strftime("%d %b %Y"); posted = {"postid":post.id,"userid": post.user_id, "username": user.username, "profilephoto": user.image, "photo": post.postimage, "caption": post.caption, "created_on": postdate, "likes": likescount, "likeflag": likeflag} postlist.append(posted) return jsonify(data = postlist) #------------------------------------USER POSTS---------------------------------------------- @app.route('/api/users/<user_id>/posts',methods=["GET","POST"]) @requires_auth def add_post(user_id): form = PostForm() if request.method == "POST": if form.validate_on_submit(): userid = user_id caption = request.form['caption'] photo = request.files['postimage'] post_date = datetime.datetime.now() post_photo = secure_filename(photo.filename) post = Posts(user_id = userid, postimage = post_photo, caption = caption, created_on = post_date) db.session.add(post) db.session.commit() photo.save(os.path.join(filefolder, post_photo)) return jsonify({'message':"Successfully created a new post"}) elif request.method == "GET": user = Users.query.filter_by(id = user_id).first() if not user: return jsonify({'message': "no user found"}) user_posts = Posts.query.filter_by(user_id = user_id).all() userposts = [] for user_post in user_posts: post_data = {'id':user_post.id,'user_id': user_post.user_id,'postimage': user_post.post_photo,'caption': user_post.caption,'created_on': user_post.post_date} userposts.append(post_data) return jsonify(data = userposts) error_msgs = form_errors(form) error = [{'errors': error_msgs}] return jsonify(errors = error) #------------------------------------------USER---------------------------------------------- @app.route('/api/users/<user_id>/', methods=["GET"]) @requires_auth def get_user(user_id): user = Users.query.filter_by(id = user_id).first() userlist = [] if (int(user_id) == session['userid']): date_join = user.joined_on.strftime("%B %Y"); user_info = {"userid": user.id, "username": user.username, "firstname": user.firstname, "lastname": user.lastname, "email": user.email, "location": user.location, "biography": user.biography,"photo": user.image, "joined_on": date_join} userlist.append(user_info) return jsonify(profile = userlist, isuser =True) date_join = user.joined_on.strftime("%B %Y"); user_info = {"userid": user.id, "username": user.username, "firstname": user.firstname, "lastname": user.lastname, "email": user.email, "location": user.location, "biography": user.biography,"photo": user.image, "joined_on": date_join} userlist.append(user_info) return jsonify(profile = user_list) #-------------------------------------------LIKE-------------------------------------------- @app.route('/api/users/<post_id>/like',methods=["POST"]) @requires_auth def like_post(post_id): like_check = Likes.query.filter_by(user_id = session['userid'], post_id = post_id).first() if(like_check is None): like = Likes(user_id = session['userid'], post_id = post_id) db.session.add(like) db.session.commit() return jsonify (message= 'Post liked!') return jsonify (DB = 'Cannot like post again!') #------------------------------------FOLLOW-------------------------------------------------- @app.route('/api/users/<user_id>/followers',methods=["GET"]) @requires_auth def followers(user_id): followers_count = Follows.query.filter_by(user_id = user_id).all() number_of_followers = [] for count in followers_count: num = {'test': "counted"} number_of_followers.append(num) return jsonify (follower = number_of_followers) @app.route('/api/users/<user_id>/following',methods=["GET"]) @requires_auth def followers_check(user_id): follow_check = Follows.query.filter_by(user_id = user_id, follower_id = session['userid']).first() if(follow_check is None): return jsonify (following = False) return jsonify (following = True) @app.route('/api/users/<user_id>/follow',methods=["POST"]) @requires_auth def follow_user(user_id): follow = Follows(user_id = user_id, follower_id = session['userid']) db.session.add(follow) db.session.commit() return jsonify (message = 'you are now following this user!') #-------------------------------OTHER USEFUL ROUTES-------------------------------------- # Here we define a function to collect form errors from Flask-WTF # which we can later use def form_errors(form): error_messages = [] """Collects form errors""" for field, errors in form.errors.items(): for error in errors: message = u"Error in the %s field - %s" % ( getattr(form, field).label.text, error ) error_messages.append(message) return error_messages ### # The functions below should be applicable to all Flask apps. ### def dictify(data_object): """ Returns a dictionary containing the attributes and thier values for an object returned from a DB query """ key_value_pairs = data_object.__dict__.items() object_dictionary = {} for key,value in key_value_pairs: if not key == '_sa_instance_state': #All db ojects will have this but we do not need it here # for example: ('_sa_instance_state', <sqlalchemy.orm.state.InstanceState object at 0x7f6696d831d0>) object_dictionary[key] = value return object_dictionary def flash_errors(form): for field, errors in form.errors.items(): for error in errors: flash(u"Error in the %s field - %s" % ( getattr(form, field).label.text, error), 'danger') @app.route('/<file_name>.txt') def send_text_file(file_name): """Send your static text file.""" file_dot_text = file_name + '.txt' return app.send_static_file(file_dot_text) @app.after_request def add_header(response): """ Add headers to both force latest IE rendering engine or Chrome Frame, and also tell the browser not to cache the rendered page. If we wanted to we could change max-age to 600 seconds which would be 10 minutes. """ response.headers['X-UA-Compatible'] = 'IE=Edge,chrome=1' response.headers['Cache-Control'] = 'public, max-age=0' return response @app.errorhandler(404) def page_not_found(error): """Custom 404 page.""" return render_template('404.html'), 404 if __name__ == '__main__': app.run(debug=True, host="0.0.0.0", port="8080")
[ "tajsivers@live.com" ]
tajsivers@live.com
76eff1ed6e5549116e7a44b5f0bee37b329388b9
ab4fd9eed607a25f214d830d12ebc6149b4a7bc4
/Page1/Euler23.py
daadd0369717292b5bfd9a67051694034e77f6f0
[]
no_license
lj8175/Euler
422b31cef99b31030d91f5b49c92016e2a923d2f
9a48771754fe4af964a5f8384eb65edde238620f
refs/heads/master
2021-01-23T13:22:38.151411
2013-12-24T02:51:06
2013-12-24T02:51:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
687
py
''' Created on 2013-5-26 @author: lj8175 ''' import math def listDivisors(x): ret = [] if x > 1: ret.append(1) for i in range(2,int(math.sqrt(x))+1): if x%i == 0: ret.append(i) if i != x/i : ret.append(x/i) return ret def isAbundant(x): if sum(listDivisors(x)) > x: return True return False def isSumOfTwoAbundant(x): for i in range(x/2+1): if isAbundant(i) and isAbundant(x-i): return True return False if __name__ == '__main__': ret = [] for i in range(28123+1): if not isSumOfTwoAbundant(i): ret.append(i) print sum(ret)
[ "lj8175@gmail.com" ]
lj8175@gmail.com
439d4e0e01a0dbd199dfabeb358cc8ce71c00c81
6923f79f1eaaba0ab28b25337ba6cb56be97d32d
/Non_Linear_Finite_Element_Analysis_of_Solids_and_Structures_Borst/pyfem-1.0/pyfem/util/kinematics.py
62c043d65dd3620dc582fc2b0ff225e5bda9f2e4
[]
no_license
burakbayramli/books
9fe7ba0cabf06e113eb125d62fe16d4946f4a4f0
5e9a0e03aa7ddf5e5ddf89943ccc68d94b539e95
refs/heads/master
2023-08-17T05:31:08.885134
2023-08-14T10:05:37
2023-08-14T10:05:37
72,460,321
223
174
null
2022-10-24T12:15:06
2016-10-31T17:24:00
Jupyter Notebook
UTF-8
Python
false
false
2,178
py
############################################################################ # This Python file is part of PyFEM-1.0, released on Aug. 29, 2012. # # The PyFEM code accompanies the book: # # # # 'Non-Linear Finite Element Analysis of Solids and Structures' # # R. de Borst, M.A. Crisfield, J.J.C. Remmers and C.V. Verhoosel # # John Wiley and Sons, 2012, ISBN 978-0470666449 # # # # The code is written by J.J.C. Remmers, C.V. Verhoosel and R. de Borst. # # Comments and suggestions can be sent to: # # PyFEM-support@tue.nl # # # # The latest version can be downloaded from the web-site: # # http://www.wiley.com/go/deborst # # # # The code is open source and intended for educational and scientific # # purposes only. If you use PyFEM in your research, the developers would # # be grateful if you could cite the book. # # # # Disclaimer: # # The authors reserve all rights but do not guarantee that the code is # # free from errors. Furthermore, the authors shall not be liable in any # # event caused by the use of the program. # ############################################################################ from numpy import zeros class Kinematics: def __init__( self , nDim , nStr ): self.F = zeros( shape=( nDim , nDim ) ) self.E = zeros( shape=( nDim , nDim ) ) self.strain = zeros( nStr )
[ "me@yomama.com" ]
me@yomama.com
2062ec0c1307e51392ea5eab1970a6f67bf27a58
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02699/s393112489.py
3018e717e89c8ac744d09ee4877d1e238df00bde
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
136
py
nums = [int(e) for e in input().split()] Sheep = nums[0] Wolves = nums[1] if Sheep > Wolves: print("safe") else: print("unsafe")
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
62aeb3577cd61fb36517bd3075a4b2748176647b
1d3235c4818de4ed5abd683381ccf2768b8cf202
/examples/qm9/train_qm9.py
a1d28788f92edd4f10bcefede07c712bdaae9038
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
corochann/chainer-chemistry
af9284815b4982123f22f1302ff959fd6577adaa
8e918e557fe9bce865d9d543ea2864d027827941
refs/heads/master
2021-06-01T13:14:08.313857
2017-12-01T10:03:04
2017-12-01T10:03:04
112,725,110
2
0
null
null
null
null
UTF-8
Python
false
false
7,749
py
#!/usr/bin/env python from __future__ import print_function import argparse import os try: from sklearn.preprocessing import StandardScaler except ImportError: print('You need to install scikit-learn to run this example,' 'please run `pip install -U scikit-learn`') try: import matplotlib matplotlib.use('Agg') except ImportError: pass import chainer from chainer import functions as F, cuda, Variable from chainer import iterators as I from chainer import links as L from chainer import optimizers as O from chainer import training from chainer.datasets import split_dataset_random from chainer.training import extensions as E import numpy from chainerchem import datasets as D from chainerchem.models import MLP, NFP, GGNN, SchNet, WeaveNet from chainerchem.dataset.converters import concat_mols from chainerchem.dataset.preprocessors import preprocess_method_dict from chainerchem.datasets import NumpyTupleDataset class GraphConvPredictor(chainer.Chain): def __init__(self, graph_conv, mlp): """ Args: graph_conv: graph convolution network to obtain molecule feature representation mlp: multi layer perceptron, used as final connected layer """ super(GraphConvPredictor, self).__init__() with self.init_scope(): self.graph_conv = graph_conv self.mlp = mlp def __call__(self, atoms, adjs): x = self.graph_conv(atoms, adjs) x = self.mlp(x) return x def _predict(self, atoms, adjs): with chainer.no_backprop_mode(), chainer.using_config('train', False): x = self.__call__(atoms, adjs) return F.sigmoid(x) def predict(self, *args, batchsize=32, device=-1): if device >= 0: chainer.cuda.get_device_from_id(device).use() self.to_gpu() # Copy the model to the GPU # TODO: Not test yet, check behavior data = args[0] y_list = [] for i in range(0, len(data), batchsize): #adj, atom_types = concat_examples(data[i:i + batchsize], device=device) atoms, adjs = concat_mols(data[i:i + batchsize], device=device)[:2] y = self._predict(atoms, adjs) y_list.append(cuda.to_cpu(y.data)) y_array = numpy.concatenate(y_list, axis=0) return y_array def main(): # Supported preprocessing/network list method_list = ['nfp', 'ggnn', 'schnet', 'weavenet'] label_names = ['A', 'B', 'C', 'mu', 'alpha', 'homo', 'lumo', 'gap', 'r2', 'zpve', 'U0', 'U', 'H', 'G', 'Cv'] parser = argparse.ArgumentParser( description='Regression with QM9.') parser.add_argument('--method', '-m', type=str, choices=method_list, default='nfp') parser.add_argument('--label', '-l', type=str, choices=label_names, default='', help='target label for regression, ' 'empty string means to predict all ' 'property at once') parser.add_argument('--scale', type=str, default='standardize', help='Label scaling method') parser.add_argument('--conv_layers', '-c', type=int, default=4) parser.add_argument('--batchsize', '-b', type=int, default=128) parser.add_argument('--gpu', '-g', type=int, default=-1) parser.add_argument('--out', '-o', type=str, default='result') parser.add_argument('--epoch', '-e', type=int, default=20) parser.add_argument('--unit_num', '-u', type=int, default=16) args = parser.parse_args() seed = 777 train_data_ratio = 0.7 method = args.method if args.label: labels = args.label cache_dir = os.path.join('input', '{}_{}'.format(method, labels)) class_num = len(labels) if isinstance(labels, list) else 1 else: labels = None cache_dir = os.path.join('input', '{}_all'.format(method)) class_num = len(D.get_qm9_label_names()) # Dataset preparation dataset = None #cache_dir = os.path.join('input', '{}'.format(method)) if os.path.exists(cache_dir): print('load from cache {}'.format(cache_dir)) dataset = NumpyTupleDataset.load(os.path.join(cache_dir, 'data.npz')) if dataset is None: print('preprocessing dataset...') preprocessor = preprocess_method_dict[method]() dataset = D.get_qm9(preprocessor, labels=labels) os.makedirs(cache_dir) NumpyTupleDataset.save(os.path.join(cache_dir, 'data.npz'), dataset) if args.scale == 'standardize': # Standard Scaler for labels ss = StandardScaler() labels = ss.fit_transform(dataset._datasets[-1]) dataset = NumpyTupleDataset(*dataset._datasets[:-1], labels) train_data_size = int(len(dataset) * train_data_ratio) train, val = split_dataset_random(dataset, train_data_size, seed) # Network if method == 'nfp': print('Train NFP model...') n_unit = args.unit_num model = GraphConvPredictor(NFP(n_unit, n_unit, args.conv_layers), MLP(n_unit, class_num)) elif method == 'ggnn': print('Train GGNN model...') n_unit = args.unit_num model = GraphConvPredictor(GGNN(n_unit, n_unit, args.conv_layers), MLP(n_unit, class_num)) elif method == 'schnet': print('Train SchNet model...') model = SchNet(out_dim=class_num) elif method == 'weavenet': print('Train WeaveNet model...') # TODO: Review default parameter n_unit = args.unit_num n_atom = 20 k_unit = 10 n_layer = 1 n_sub_layer = 1 fully_channels = [5] n_output = class_num model = GraphConvPredictor(WeaveNet(n_output, n_atom, [k_unit]*n_layer, fully_channels, n_sub_layer), MLP(n_unit, class_num)) else: print('[ERROR] Invalid mode') exit() train_iter = I.SerialIterator(train, args.batchsize) val_iter = I.SerialIterator(val, args.batchsize, repeat=False, shuffle=False) def scaled_abs_error(x0, x1): if isinstance(x0, Variable): x0 = cuda.to_cpu(x0.data) if isinstance(x1, Variable): x1 = cuda.to_cpu(x1.data) scaled_x0 = ss.inverse_transform(cuda.to_cpu(x0)) scaled_x1 = ss.inverse_transform(cuda.to_cpu(x1)) return numpy.mean(numpy.absolute(scaled_x0 - scaled_x1), axis=0)[0] classifier = L.Classifier(model, lossfun=F.mean_squared_error, accfun=scaled_abs_error) if args.gpu >= 0: chainer.cuda.get_device_from_id(args.gpu).use() classifier.to_gpu() optimizer = O.Adam() optimizer.setup(classifier) updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu, converter=concat_mols) trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out) trainer.extend(E.Evaluator(val_iter, classifier, device=args.gpu, converter=concat_mols)) trainer.extend(E.snapshot(), trigger=(args.epoch, 'epoch')) trainer.extend(E.LogReport()) trainer.extend(E.PrintReport(['epoch', 'main/loss', 'main/accuracy', 'validation/main/loss', 'validation/main/accuracy', 'elapsed_time'])) trainer.extend(E.ProgressBar()) trainer.run() if __name__ == '__main__': main()
[ "nakago@preferred.jp" ]
nakago@preferred.jp
0189ddf0d26e6d06e0b79df3d3273c4c0c1f694a
61f12e69b3d7a11f9e0e6cf9cedb43c9af07c245
/Demo/Dijkstra's Algorithm.py
d5d67db1c533113b8ba3caf4eddfe0d5c418e877
[]
no_license
ananabh/Graph_Algorithm
7bc6c35031fb82638239adb394fa41d27a632e14
c9d3c4b5ee720701d76d65eace00eeab484d4187
refs/heads/master
2021-07-24T13:40:21.312361
2020-01-03T10:19:08
2020-01-03T10:19:08
101,926,480
5
2
null
null
null
null
UTF-8
Python
false
false
1,778
py
import priority_dict from Adjecency_Matrix import * def build_distance_table(graph,source): distance_table = {} for i in range(graph.numVertices): distance_table[i] = (None,None) distance_table[source] = (0, source) priority_queue = priority_dict.priority_dict() priority_queue[source] = 0 while len(priority_queue.keys()) > 0: current_vertex=priority_queue.pop_smallest() current_distance=distance_table[current_vertex][0] for neighbour in graph.get_adjacent_vertices(current_vertex): distance = current_distance + graph.get_edge_weight(current_vertex,neighbour) neighbour_distance=distance_table[neighbour][0] if neighbour_distance is None or neighbour_distance > distance: distance_table[neighbour]=(distance,current_vertex) priority_queue[neighbour]=distance return distance_table def shortest_path(graph, source, destination): distance_table = build_distance_table(graph, source) path = [destination] previous_vertex = distance_table[destination][1] while previous_vertex is not None and previous_vertex is not source: path = [previous_vertex] + path previous_vertex = distance_table[previous_vertex][1] if previous_vertex is None: print("There is no path from %d to %d" % (source, destination)) else: path = [source] + path print("Shortest path is : ", path) g = AdjacencyMatrixGraph(8, directed=False) g.add_edge(0, 1, 1) g.add_edge(1, 2, 2) g.add_edge(1, 3, 6) g.add_edge(2, 3, 2) g.add_edge(1, 4, 3) g.add_edge(3, 5, 1) g.add_edge(5, 4, 5) g.add_edge(3, 6, 1) g.add_edge(6, 7, 1) g.add_edge(0, 7, 8) shortest_path(g, 0, 6) shortest_path(g, 4, 7) shortest_path(g, 7, 0)
[ "abhianan@users.noreply.github.com" ]
abhianan@users.noreply.github.com
120095782bf255595410ef8fa35a4d001f991f29
b4ba59a2fce3a3a69989e5326e437310254f9a51
/1/day16/json模块.py
f4abcf5ff6999177f9e77c37c21bd7c8d963c0b0
[]
no_license
tianshang486/python
afaa206067715732ab828aad7f6afc8e9a475268
6414390d98dbf9c4428f1f54519f6c134cbd69b9
refs/heads/master
2022-08-31T05:49:15.711924
2020-05-22T03:08:14
2020-05-22T03:08:14
265,782,349
0
0
null
null
null
null
UTF-8
Python
false
false
2,087
py
# JavaScript Object Notation:java脚本兑现标记语言 # 已经成为了一种简单的数据交换格式 # 序列化和反序列化: # 将内存中的数据,转换为字节串,用以保存在文件或通过网络传输,称为序列化过程,反序列化也就是相反在转换回去. # 序列化:serialization,反序列化:deserialization # # json 将数据转换为字符串,用于储存或网络传输 import json # a = json.dumps([1,2,3,]) # print(a,type(a)) # # 元组序列化后,变成列表,但也是字符串 # b = json.dumps((4,5,6)) # print(b,type(b)) # # 字典效果与列表一样 # c = json.dumps({'name':'zxl','age':18}) # print(c,type(c)) # # 除开集合,其他任何格式都可以 # # # at以文本的方式进行追加 # # # 序列化 # # 将json结果写到文件中 # with open('b.txt',mode='at',encoding='utf-8') as f1: # s = json.dump([1,2,3,4],f1) # print(s,type(s)) # # 反序列化 # res = json.dumps([1,2,3]) # lst = json.loads(res) # print(lst,type(lst)) # # 元组反序列化后依然是列表属性 # res1 = json.dumps((1,2,3)) # lst1 = json.loads(res1) # print(lst,type(lst1)) # # # 在文件中反序列化 # with open('b.txt',encoding='utf-8') as f1: # res = json.load(f1) # print(res,type(res)) '''----------------------------------------------''' # json文件通常是一次性写一次性读 # 使用另一种方式,可以实现多次写,多次读 # 把需要序列化的对象,通过多次序列化的方式,用文件的write方法, # 把多次序列化后的json字符串写到文件 with open('json.txt',mode='at',encoding='utf-8') as f2: f2.write(json.dumps([1,2,3,4,5,6]) + '\n') f2.write(json.dumps([1,2,3,4,5,6]) + '\n') # 多次序列化后,反序列化回来 with open('json.txt',mode='rt',encoding='utf-8') as f3: # res = json.loads(f3.readline().strip()) # print(res,type(res)) # res1 = json.loads(f3.readline().strip()) # print(res1,type(res1)) for i in f3: print(json.loads(i.strip())) # json 是一种不完全的序列化,序列化成字符串
[ "tianshang486@users.noreply.github.com" ]
tianshang486@users.noreply.github.com
b5449d99fb517d8b9c52684e5f6997cde5af9cda
c7c1830f23d99806c3532b9a929c08ca0736ad58
/tests/distributions/test_1d_dependencies.py
22e5547558473d687ada797d9025dbc3d979cfa1
[ "MIT" ]
permissive
jonathf/chaospy
8a92df59fd83e39bb64921586e7971c03791eea4
b5959a24e0bd9b214c292485919d7ce58795f5dc
refs/heads/master
2023-08-15T16:04:55.764743
2023-06-03T11:35:53
2023-06-03T11:35:53
22,848,758
405
87
MIT
2023-05-18T11:52:46
2014-08-11T17:54:25
Python
UTF-8
Python
false
false
2,094
py
"""Test dependent distributions with 1-D components.""" from pytest import raises import numpy import chaospy DIST1 = chaospy.Uniform(1, 2) DIST2 = chaospy.Gamma(DIST1) JOINT1 = chaospy.J(DIST1, DIST2) JOINT2 = chaospy.J(DIST2, DIST1) def test_1d_stochastic_dependencies(): """Ensure ``stochastic_dependencies`` behaves as expected for dependent 1-D distributions.""" assert not DIST1.stochastic_dependent assert DIST2.stochastic_dependent assert JOINT1.stochastic_dependent assert JOINT2.stochastic_dependent def test_1d_dependent_bounds(): """Ensure lower and upper bounds works for dependent 1-D distributions.""" assert numpy.isclose(DIST2.lower, 0) assert numpy.isclose(DIST2.upper, 35.84367486) assert numpy.allclose(JOINT1.lower, [1, 0]) assert numpy.allclose(JOINT1.upper, [2, 35.84367486]) assert numpy.allclose(JOINT2.lower, [0, 1]) assert numpy.allclose(JOINT2.upper, [35.84367486, 2]) def test_1d_dependent_mapping(): """Ensure inverse and forward behaves as expected for dependent 1-D distributions.""" grid = numpy.array([[0, 0, 1, 1], [0, 1, 0, 1]]) inv_map1 = numpy.array([[1, 1, 2, 2], [0, 32.2369909, 0, 35.84367486]]) inv_map2 = numpy.array([[0, 0, 32.2369909, 35.84367486], [1, 2, 1, 2]]) assert numpy.allclose(JOINT1.inv(grid), inv_map1) assert numpy.allclose(JOINT2.inv(grid), inv_map2) assert numpy.allclose(JOINT1.fwd(inv_map1), grid) assert numpy.allclose(JOINT2.fwd(inv_map2), grid) def test_1d_dependent_density(): """Ensure probability density function behaves as expected for dependent 1-D distributions.""" x_loc1 = numpy.array([0.8, 1.8, 1.2, 1.8]) x_loc2 = numpy.array([2, 4, 6, 8]) y_loc1 = numpy.array([0, 1, 1, 1]) y_loc2 = numpy.array([0.1011967, 0.05961306, 0.00386314, 0.00190102]) assert numpy.allclose( JOINT1.pdf([x_loc1, x_loc2], decompose=True, allow_approx=False), [y_loc1, y_loc2] ) assert numpy.allclose( JOINT2.pdf([x_loc2, x_loc1], decompose=True, allow_approx=False), [y_loc2, y_loc1] )
[ "noreply@github.com" ]
jonathf.noreply@github.com
b676b205a6acf36a4e4bf6a4dc8048857dcfd928
81cac5d646fc14e52b3941279d59fdd957b10f7e
/homeassistant/components/nest/sensor_sdm.py
a574e92791a4a190e6d2d5a35b3918a851ecf84f
[ "Apache-2.0" ]
permissive
arsaboo/home-assistant
6b6617f296408a42874a67a71ad9bc6074acd000
554e51017e7b1b6949783d9684c4a0e8ca21e466
refs/heads/dev
2023-07-27T20:56:52.656891
2022-01-19T19:30:57
2022-01-19T19:30:57
207,046,472
2
0
Apache-2.0
2019-09-08T01:35:16
2019-09-08T01:35:16
null
UTF-8
Python
false
false
3,871
py
"""Support for Google Nest SDM sensors.""" from __future__ import annotations import logging from google_nest_sdm.device import Device from google_nest_sdm.device_traits import HumidityTrait, TemperatureTrait from google_nest_sdm.exceptions import ApiException from homeassistant.components.sensor import ( SensorDeviceClass, SensorEntity, SensorStateClass, ) from homeassistant.config_entries import ConfigEntry from homeassistant.const import PERCENTAGE, TEMP_CELSIUS from homeassistant.core import HomeAssistant from homeassistant.exceptions import PlatformNotReady from homeassistant.helpers.entity_platform import AddEntitiesCallback from .const import DATA_SUBSCRIBER, DOMAIN from .device_info import NestDeviceInfo _LOGGER = logging.getLogger(__name__) DEVICE_TYPE_MAP = { "sdm.devices.types.CAMERA": "Camera", "sdm.devices.types.DISPLAY": "Display", "sdm.devices.types.DOORBELL": "Doorbell", "sdm.devices.types.THERMOSTAT": "Thermostat", } async def async_setup_sdm_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback ) -> None: """Set up the sensors.""" subscriber = hass.data[DOMAIN][DATA_SUBSCRIBER] try: device_manager = await subscriber.async_get_device_manager() except ApiException as err: _LOGGER.warning("Failed to get devices: %s", err) raise PlatformNotReady from err entities: list[SensorEntity] = [] for device in device_manager.devices.values(): if TemperatureTrait.NAME in device.traits: entities.append(TemperatureSensor(device)) if HumidityTrait.NAME in device.traits: entities.append(HumiditySensor(device)) async_add_entities(entities) class SensorBase(SensorEntity): """Representation of a dynamically updated Sensor.""" _attr_shoud_poll = False _attr_state_class = SensorStateClass.MEASUREMENT def __init__(self, device: Device) -> None: """Initialize the sensor.""" self._device = device self._device_info = NestDeviceInfo(device) self._attr_unique_id = f"{device.name}-{self.device_class}" self._attr_device_info = self._device_info.device_info async def async_added_to_hass(self) -> None: """Run when entity is added to register update signal handler.""" self.async_on_remove( self._device.add_update_listener(self.async_write_ha_state) ) class TemperatureSensor(SensorBase): """Representation of a Temperature Sensor.""" _attr_device_class = SensorDeviceClass.TEMPERATURE _attr_native_unit_of_measurement = TEMP_CELSIUS @property def name(self) -> str: """Return the name of the sensor.""" return f"{self._device_info.device_name} Temperature" @property def native_value(self) -> float: """Return the state of the sensor.""" trait: TemperatureTrait = self._device.traits[TemperatureTrait.NAME] # Round for display purposes because the API returns 5 decimal places. # This can be removed if the SDM API issue is fixed, or a frontend # display fix is added for all integrations. return float(round(trait.ambient_temperature_celsius, 1)) class HumiditySensor(SensorBase): """Representation of a Humidity Sensor.""" _attr_device_class = SensorDeviceClass.HUMIDITY _attr_native_unit_of_measurement = PERCENTAGE @property def name(self) -> str: """Return the name of the sensor.""" return f"{self._device_info.device_name} Humidity" @property def native_value(self) -> int: """Return the state of the sensor.""" trait: HumidityTrait = self._device.traits[HumidityTrait.NAME] # Cast without loss of precision because the API always returns an integer. return int(trait.ambient_humidity_percent)
[ "noreply@github.com" ]
arsaboo.noreply@github.com
963f0a6fa90b3ce87aa8172d17f135d79aa2b0dc
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/request/MybankCreditSceneprodFinanceConsultRequest.py
5fb1cae90a610a37d48aa1ca0226fff708a1ac50
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
4,009
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.MybankCreditSceneprodFinanceConsultModel import MybankCreditSceneprodFinanceConsultModel class MybankCreditSceneprodFinanceConsultRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, MybankCreditSceneprodFinanceConsultModel): self._biz_content = value else: self._biz_content = MybankCreditSceneprodFinanceConsultModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'mybank.credit.sceneprod.finance.consult' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
[ "liuqun.lq@alibaba-inc.com" ]
liuqun.lq@alibaba-inc.com
5d545d7a7feb7adf03ff88f55614ff258a9f8342
184f13269249b08e5b62444ece10af8a3a35c9a5
/stop_starting_start_stopping/json_to_pandas/002_json_to_pandas.py
d99fc291b4c8ed7c70d85051cc1d0ae8a529d7c4
[ "MIT" ]
permissive
bflaven/BlogArticlesExamples
3decf588098897b104d429054b8e44efec796557
aca40bb33f1ad4e140ddd67d6bb39bdd029ef266
refs/heads/master
2023-09-04T16:57:57.498673
2023-09-01T13:14:12
2023-09-01T13:14:12
42,390,873
9
4
MIT
2023-03-02T22:39:06
2015-09-13T09:48:34
HTML
UTF-8
Python
false
false
796
py
#!/usr/bin/python # -*- coding: utf-8 -*- ''' [env] To activate this environment, use :: conda activate pandas_ga_1 To deactivate an active environment, use :: conda deactivate # you have created a env with all the required packages source activate pandas_ga_1 [path] cd /Users/brunoflaven/Documents/01_work/blog_articles/stop_starting_start_stopping/json_to_pandas [file] python 002_json_to_pandas.py [source] https://chrisalbon.com/code/python/data_wrangling/load_json_file_into_pandas/ ''' import numpy as np import json import pandas as pd FILE_JSON_SOURCE = 'data/news_category_dataset_light_20k_v4.json' with open(FILE_JSON_SOURCE) as project_file: data = json.load(project_file) df = pd.json_normalize(data) # View the first ten rows df.head(10) print(df.head(10))
[ "bflaven@gmail.com" ]
bflaven@gmail.com
4ecb5a23d59eb2dd2e99f7d121543dffa0cbe848
8a70a0b13083fa1405da0b3c5e1f2a4ea961a0b6
/tests/unit/states/test_boto_iam_role.py
ea9eca19a406f54653f5985affdf15e3d692ec7e
[ "Apache-2.0" ]
permissive
major0/salt-aws-extension
2940037302e8bfcb86c1460624154a087248e7f2
ba3b2456a9829af47e0488157d29fd3188ce12df
refs/heads/master
2023-04-10T11:53:42.045542
2021-03-27T00:39:42
2021-03-27T00:49:43
351,498,283
1
0
null
null
null
null
UTF-8
Python
false
false
7,470
py
""" :codeauthor: Jayesh Kariya <jayeshk@saltstack.com> """ import salt.states.boto_iam_role as boto_iam_role from tests.support.mixins import LoaderModuleMockMixin from tests.support.mock import MagicMock from tests.support.mock import patch from tests.support.unit import TestCase class BotoIAMRoleTestCase(TestCase, LoaderModuleMockMixin): """ Test cases for salt.states.boto_iam_role """ def setup_loader_modules(self): return {boto_iam_role: {}} # 'present' function tests: 1 def test_present(self): """ Test to ensure the IAM role exists. """ name = "myrole" ret = {"name": name, "result": False, "changes": {}, "comment": ""} _desc_role = { "create_date": "2015-02-11T19:47:14Z", "role_id": "HIUHBIUBIBNKJNBKJ", "assume_role_policy_document": { "Version": "2008-10-17", "Statement": [ { "Action": "sts:AssumeRole", "Principal": {"Service": "ec2.amazonaws.com"}, "Effect": "Allow", } ], }, "role_name": "myfakerole", "path": "/", "arn": "arn:aws:iam::12345:role/myfakerole", } _desc_role2 = { "create_date": "2015-02-11T19:47:14Z", "role_id": "HIUHBIUBIBNKJNBKJ", "assume_role_policy_document": { "Version": "2008-10-17", "Statement": [ { "Action": "sts:AssumeRole", "Principal": { "Service": [ "ec2.amazonaws.com", "datapipeline.amazonaws.com", ] }, "Effect": "Allow", } ], }, "role_name": "myfakerole", "path": "/", "arn": "arn:aws:iam::12345:role/myfakerole", } mock_desc = MagicMock(side_effect=[False, _desc_role, _desc_role, _desc_role2, _desc_role]) _build_policy = { "Version": "2008-10-17", "Statement": [ { "Action": "sts:AssumeRole", "Effect": "Allow", "Principal": {"Service": "ec2.amazonaws.com"}, } ], } mock_policy = MagicMock(return_value=_build_policy) mock_ipe = MagicMock(side_effect=[False, True, True, True]) mock_pa = MagicMock(side_effect=[False, True, True, True]) mock_bool = MagicMock(return_value=False) mock_lst = MagicMock(return_value=[]) with patch.dict( boto_iam_role.__salt__, { "boto_iam.describe_role": mock_desc, "boto_iam.create_role": mock_bool, "boto_iam.build_policy": mock_policy, "boto_iam.update_assume_role_policy": mock_bool, "boto_iam.instance_profile_exists": mock_ipe, "boto_iam.list_attached_role_policies": mock_lst, "boto_iam.create_instance_profile": mock_bool, "boto_iam.profile_associated": mock_pa, "boto_iam.associate_profile_to_role": mock_bool, "boto_iam.list_role_policies": mock_lst, }, ): with patch.dict(boto_iam_role.__opts__, {"test": False}): comt = " Failed to create {} IAM role.".format(name) ret.update({"comment": comt}) assert boto_iam_role.present(name) == ret comt = " myrole role present. " "Failed to create myrole instance profile." ret.update({"comment": comt}) assert boto_iam_role.present(name) == ret comt = ( " myrole role present. Failed to associate myrole" " instance profile with myrole role." ) ret.update({"comment": comt}) assert boto_iam_role.present(name) == ret comt = " myrole role present. Failed to update assume role" " policy." ret.update({"comment": comt}) assert boto_iam_role.present(name) == ret comt = " myrole role present. " ret.update({"comment": comt, "result": True}) assert boto_iam_role.present(name) == ret # 'absent' function tests: 1 def test_absent(self): """ Test to ensure the IAM role is deleted. """ name = "myrole" ret = {"name": name, "result": False, "changes": {}, "comment": ""} mock = MagicMock( side_effect=[ ["mypolicy"], ["mypolicy"], False, True, False, False, True, False, False, False, True, ] ) mock_bool = MagicMock(return_value=False) mock_lst = MagicMock(return_value=[]) with patch.dict( boto_iam_role.__salt__, { "boto_iam.list_role_policies": mock, "boto_iam.delete_role_policy": mock_bool, "boto_iam.profile_associated": mock, "boto_iam.disassociate_profile_from_role": mock_bool, "boto_iam.instance_profile_exists": mock, "boto_iam.list_attached_role_policies": mock_lst, "boto_iam.delete_instance_profile": mock_bool, "boto_iam.role_exists": mock, "boto_iam.delete_role": mock_bool, }, ): with patch.dict(boto_iam_role.__opts__, {"test": False}): comt = " Failed to add policy mypolicy to role myrole" ret.update( { "comment": comt, "changes": { "new": {"policies": ["mypolicy"]}, "old": {"policies": ["mypolicy"]}, }, } ) assert boto_iam_role.absent(name) == ret comt = ( " No policies in role myrole." " No attached policies in role myrole. Failed to disassociate " "myrole instance profile from myrole role." ) ret.update({"comment": comt, "changes": {}}) assert boto_iam_role.absent(name) == ret comt = ( " No policies in role myrole." " No attached policies in role myrole. " " Failed to delete myrole instance profile." ) ret.update({"comment": comt, "changes": {}}) assert boto_iam_role.absent(name) == ret comt = ( " No policies in role myrole." " No attached policies in role myrole. myrole instance profile " "does not exist. Failed to delete myrole iam role." ) ret.update({"comment": comt, "changes": {}}) assert boto_iam_role.absent(name) == ret
[ "major@homeonderanged.org" ]
major@homeonderanged.org
1b7dda606e204c9adb7afa7747442c587010c773
b7f1b4df5d350e0edf55521172091c81f02f639e
/ui/display/manager/chromeos/DEPS
11d4683fe1f5978952f42d107f090539f3546ffe
[ "BSD-3-Clause" ]
permissive
blusno1/chromium-1
f13b84547474da4d2702341228167328d8cd3083
9dd22fe142b48f14765a36f69344ed4dbc289eb3
refs/heads/master
2023-05-17T23:50:16.605396
2018-01-12T19:39:49
2018-01-12T19:39:49
117,339,342
4
2
NOASSERTION
2020-07-17T07:35:37
2018-01-13T11:48:57
null
UTF-8
Python
false
false
570
include_rules = [ "+chromeos", # DeviceDataManager is not created in all environments (such as ash when # running in mus/mash). "-ui/events/devices/device_data_manager.h", ] specific_include_rules = { "default_touch_transform_setter.cc": [ # DefaultTouchTransformSetter only runs in environments where # DeviceDataManager exists. "+ui/events/devices/device_data_manager.h", ], "touch_transform_controller.cc": [ "+third_party/skia", ], "touch_transform_controller_unittest.cc": [ "+ui/events/devices/device_data_manager.h", ], }
[ "commit-bot@chromium.org" ]
commit-bot@chromium.org
b892094c906e669ca13ea77da3f7255061dbb084
15fb62305a2fa0146cc84b289642cc01a8407aab
/Python/260-SingleNumberIII.py
5aa0250e74cf6f16323e8337d59d32df42e14435
[]
no_license
geniousisme/leetCode
ec9bc91864cbe7520b085bdab0db67539d3627bd
6e12d67e4ab2d197d588b65c1ddb1f9c52a7e047
refs/heads/master
2016-09-09T23:34:03.522079
2015-09-23T16:15:05
2015-09-23T16:15:05
32,052,408
1
0
null
null
null
null
UTF-8
Python
false
false
440
py
class Solution: # @param {integer[]} nums # @return {integer[]} def singleNumber(self, nums): res_dict = {} for i in xrange(len(nums)): if res_dict.get(nums[i]): del res_dict[nums[i]] else: res_dict[nums[i]] = 1 return res_dict.keys() if __name__ == '__main__': s = Solution() nums = [1, 2, 1, 3, 2, 5] print s.singleNumber(nums)
[ "chia-hao.hsu@aiesec.net" ]
chia-hao.hsu@aiesec.net
099016f383108c0d3506befd143281fa30515a8e
89ce4730897195dc99072fb251c94016d27e8538
/p28.py
afd0e4d7d9db988a0597f51e15416eb43832306a
[]
no_license
paulhunter/ProjectEuler_Python
aba2be51398dc5663ef361cfdd1387aeaf814232
b70aaac5cd37ff6f112faae874a0e8c91e7f930d
refs/heads/master
2020-05-30T14:48:49.685036
2013-02-25T04:43:36
2013-02-25T04:43:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,407
py
#Project Euler Problem 28 ''' Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows: 21 22 23 24 25 20 7 8 9 10 19 6 1 2 11 18 5 4 3 12 17 16 15 14 13 It can be verified that the sum of the numbers on the diagonals is 101. What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the same way? ''' ''' NOTES: There is a very easy pattern to identify when creating this spiral, after we create the 1 in the center, we add 2 to it to get 3, which is the next diagonal, then add 2 and get 5, 2 -> 7.... You basically get a pattern of adding 2,2,2,2,4,4,4,4,6,6,6,6..... to get the diagonals. At the end of each sequence of the same number, you have a grid that is n+1 x n+1 if n is the number you added. so we just need to do this until we hit the fourth time we add 1000 and we are done. EZPZ ''' # we are going to add val+i, val+i+i, val+i+i+i and val+i+i+i+i before we #add to the value of i, so, we can skip an innder loop and use the formula #sum += 4*val * 10*i, and then set val to val += 4*i EZPZ import time t = time.clock() sum = 1 i = 2 #Interval val = 1 #Current diag value we are going to add and our place holder for where we are while i <= 1000: sum += 4*val + 10*i val += 4*i i += 2 print "Answer: ",sum print "Time: ",time.clock()-t
[ "p.hunter.eng@gmail.com" ]
p.hunter.eng@gmail.com
42deec200686e5cebbb1212044985190796f824f
a4deea660ea0616f3b5ee0b8bded03373c5bbfa2
/executale_binaries/register-variants/vpsrld_xmm_xmm_xmm.gen.vex.py
ab8f856bb1af006584b77351f5ffadc8b2fefaf1
[]
no_license
Vsevolod-Livinskij/x86-64-instruction-summary
4a43472e26f0e4ec130be9a82f7e3f3c1361ccfd
c276edab1b19e3929efb3ebe7514489f66087764
refs/heads/master
2022-02-02T18:11:07.818345
2019-01-25T17:19:21
2019-01-25T17:19:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
162
py
import angr proj = angr.Project('vpsrld_xmm_xmm_xmm.exe') print proj.arch print proj.entry print proj.filename irsb = proj.factory.block(proj.entry).vex irsb.pp()
[ "sdasgup3@illinois.edu" ]
sdasgup3@illinois.edu
2d70f8ba02da9ab61aabd14e2102db3ec4010d1d
25ad0b1a056c6fb988fa8c8718bb7cd55388ee5f
/interactions/migrations/0001_initial.py
a00fef0274e5c3249ea75cb5c5fe438d9a63f978
[ "MIT" ]
permissive
CSI-BennettUniversity/Sample-Project-1
eeab14a36eeae8d65cdd85efaf54c85732985dcf
23197352372b7ad00a026683477b5a95a4178e35
refs/heads/master
2023-05-13T17:25:26.652317
2021-06-05T14:53:15
2021-06-05T14:53:15
374,136,065
0
0
null
null
null
null
UTF-8
Python
false
false
3,041
py
# Generated by Django 3.1 on 2020-08-04 08:38 from django.db import migrations, models import django.db.models.deletion import interactions.validators class Migration(migrations.Migration): initial = True dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.CreateModel( name='GlobalAverages', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('openness', models.JSONField(editable=False)), ('conscientiousness', models.JSONField(editable=False)), ('extraversion', models.JSONField(editable=False)), ('agreeableness', models.JSONField(editable=False)), ('neuroticism', models.JSONField(editable=False)), ('calculated_on', models.DateTimeField(auto_now=True)), ], options={ 'get_latest_by': 'calculated_on', }, ), migrations.CreateModel( name='SelfAnswerGroup', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('answer_date_and_time', models.DateTimeField(auto_now_add=True)), ('answers', models.JSONField(editable=False)), ('accuracy', models.FloatField(blank=True, editable=False, null=True, validators=[interactions.validators.percentage_validator])), ('scores', models.JSONField(editable=False)), ('self_user_profile', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='selfanswergroup_self', to='users.userprofile')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='RelationAnswerGroup', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('answer_date_and_time', models.DateTimeField(auto_now_add=True)), ('answers', models.JSONField(editable=False)), ('accuracy', models.FloatField(blank=True, editable=False, null=True, validators=[interactions.validators.percentage_validator])), ('scores', models.JSONField(editable=False)), ('attempted_against', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='relationanswergroup_attempted', to='interactions.selfanswergroup')), ('relation_user_profile', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='relationanswergroup_relation', to='users.userprofile')), ('self_user_profile', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='relationanswergroup_self', to='users.userprofile')), ], options={ 'abstract': False, }, ), ]
[ "diptesh.choudhuri@gmail.com" ]
diptesh.choudhuri@gmail.com
5d8904e9ba7cf7983dfde2e7977062b9ad52108c
30cc48472cd666467a41565a456e84b4fa7da375
/mnist/MNIST_data/train-images-idx3-ubyte/train-images-idx3-ubyte/train-images-idx3-ubyte/train-images-idx3-ubyte/test.py
44d127b0123cb5cceccd6fcd21709ad0992c3016
[]
no_license
stuian/tensorflow
0bed07c4ecbd7495081ceed0b6c042803457286d
4da9762ac09f4772f91ca6e2e356cb505b486b83
refs/heads/master
2022-01-22T00:19:38.168252
2019-07-26T03:01:21
2019-07-26T03:01:21
114,263,715
0
0
null
null
null
null
UTF-8
Python
false
false
505
py
import numpy as np import struct import matplotlib.pyplot as plt filename = 'train-images.idx3-ubyte' binfile = open(filename , 'rb') buf = binfile.read() index = 0 magic, numImages , numRows , numColumns = struct.unpack_from('>IIII' , buf , index) index += struct.calcsize('>IIII') im = struct.unpack_from('>784B' ,buf, index) index += struct.calcsize('>784B') im = np.array(im) im = im.reshape(28,28) fig = plt.figure() plotwindow = fig.add_subplot(111) plt.imshow(im , cmap='gray') plt.show()
[ "892545949@qq.com" ]
892545949@qq.com
feb157dbafc6815b94d9a8421695893060d6345a
fe09b5107ec3869beed7a6c955beff7b23372f28
/flowitem.py
423cbe4486b75dc3932c16e4f25241cfb9f31d71
[]
no_license
ArnoKasper/ProcessSim
d24bea86a095a774b8510fc8bbb701d37cd2762e
100c067ddb38f7ae094b8f61a678df81c4372d45
refs/heads/main
2023-03-14T13:50:58.371304
2021-03-09T14:18:48
2021-03-09T14:18:48
328,982,762
0
1
null
null
null
null
UTF-8
Python
false
false
5,314
py
""" Project: ProcessSim Made By: Arno Kasper Version: 1.0.0 """ class Order(object): # __ Set all params related to an instance of an process (order) def __init__(self, simulation): """ object having all attributes of the an flow item :param simulation: simulation object stored in simulation_model.py :return: void """ # Set up individual parameters for each order ------------------------------------------------------------------ self.sim = simulation self.customized_control = self.sim.model_panel.CUSTOM_CONTROL # CEM params self.entry_time = 0 # pool params self.release = False self.first_entry = True self.release_time = 0 self.pool_time = 0 # rotting sequence params if self.sim.model_panel.WC_AND_FLOW_CONFIGURATION == "GFS" or \ self.sim.model_panel.WC_AND_FLOW_CONFIGURATION == "RJS": self.routing_sequence = self.sim.random_generator.sample( self.sim.model_panel.MANUFACTURING_FLOOR_LAYOUT, self.sim.random_generator.randint(1, len(self.sim.model_panel.MANUFACTURING_FLOOR_LAYOUT))) # Sort the routing if necessary if self.sim.model_panel.WC_AND_FLOW_CONFIGURATION == "GFS": self.routing_sequence.sort() # GFS or PFS require sorted list of stations elif self.sim.model_panel.WC_AND_FLOW_CONFIGURATION == "PFS": self.routing_sequence = self.sim.model_panel.MANUFACTURING_FLOOR_LAYOUT.copy() elif self.sim.model_panel.WC_AND_FLOW_CONFIGURATION == "PJS": self.routing_sequence = \ self.sim.random_generator.shuffle(self.sim.model_panel.MANUFACTURING_FLOOR_LAYOUT) else: raise Exception("Please indicate an allowed the work centre and flow configuration") # Make a variable independent from routing sequence to allow for queue switching self.routing_sequence_data = self.routing_sequence[:] # Make libary variables according to routing_sequence ---------------------------------------------------------- # process time self.process_time = {} self.process_time_cumulative = 0 # priority self.dispatching_priority = {} # data collection variables self.queue_entry_time = {} self.proc_finished_time = {} self.queue_time = {} self.order_start_time = {} self.machine_route = {} # tracks which machine was used for WC in self.routing_sequence: # Type of process time distribution if self.sim.model_panel.PROCESS_TIME_DISTRIBUTION == "2_erlang": self.process_time[WC] = self.sim.general_functions.two_erlang_truncated() elif self.sim.model_panel.PROCESS_TIME_DISTRIBUTION == "lognormal": self.process_time[WC] = self.sim.general_functions.log_normal_truncated() elif self.sim.model_panel.PROCESS_TIME_DISTRIBUTION == "constant": self.process_time[WC] = self.sim.model_panel.MEAN_PROCESS_TIME else: raise Exception("Please indicate a allowed process time distribution") # calculate cum self.process_time_cumulative += self.process_time[WC] self.dispatching_priority[WC] = 0 # data collection variables self.queue_entry_time[WC] = 0 self.proc_finished_time[WC] = 0 self.queue_time[WC] = 0 self.order_start_time[WC] = 0 self.machine_route[WC] = "NOT_PASSED" # Due Date ----------------------------------------------------------------------------------------------------- self.due_date = None if self.customized_control: self.due_date =self.sim.customized_settings.due_date(order=self) if self.due_date is None: if self.sim.policy_panel.due_date_method == "random": self.due_date = self.sim.general_functions.random_value_DD() elif self.sim.policy_panel.due_date_method == "factor_k": self.due_date = self.sim.general_functions.factor_K_DD(order=self) elif self.sim.policy_panel.due_date_method == "constant": self.due_date = self.sim.general_functions.add_contant_DD(order=self) elif self.sim.policy_panel.due_date_method == "total_work_content": self.due_date = self.sim.general_functions.total_work_content(order=self) else: raise Exception("Please indicate a allowed due date procedure") self.PRD = self.due_date - (len(self.routing_sequence) * self.sim.policy_panel.PRD_k) self.ODDs = {} if self.sim.policy_panel.dispatching_rule == "ODD_k": for WC in self.routing_sequence: self.ODDs[WC] = self.due_date - ( (len(self.routing_sequence) - (self.routing_sequence.index(WC) + 1)) * self.sim.policy_panel.ODD_k) # Other order parameters --------------------------------------------------------------------------------------- # data collection self.finishing_time = 0 # Other self.continuous_trigger = False return
[ "61021358+ZanyAK@users.noreply.github.com" ]
61021358+ZanyAK@users.noreply.github.com
59a4e0f3a4ab3f6b739ff52fa142fce661828d63
2dce494ad49876efcbc2ac08fb4e74d56a524e05
/models/networks.py
c2b1717aba42ef737b1f7aad5fb409f1dacd759e
[]
no_license
Chilie/HDC2021_code
c06f2c4d024ccd08d93271893c4e87a1f9086a54
72482ed6037feacc45683f5e83267ce11c2697d8
refs/heads/main
2023-09-01T03:57:37.726998
2021-09-29T15:11:59
2021-09-29T15:11:59
410,872,698
2
0
null
null
null
null
UTF-8
Python
false
false
15,761
py
import torch import torch.nn as nn from torch.nn import init import functools from torch.autograd import Variable import numpy as np from models.fpn_mobilenet import FPNMobileNet from models.fpn_inception import FPNInception from models.fpn_inception_cconditionalsr import FPNInceptionCCSR from models.fpn_inception_simple import FPNInceptionSimple from models.fpn_densenet import FPNDense ############################################################################### # Functions ############################################################################### class ConditionalBatchNorm2d(nn.Module): def __init__(self, num_features, num_classes, bias=True): super().__init__() self.num_features = num_features self.bias = bias self.bn = nn.BatchNorm2d(num_features, affine=False) if self.bias: self.embed = nn.Embedding(num_classes, num_features * 2) self.embed.weight.data[:, :num_features].uniform_() # Initialise scale at N(1, 0.02) self.embed.weight.data[:, num_features:].zero_() # Initialise bias at 0 else: self.embed = nn.Embedding(num_classes, num_features) self.embed.weight.data.uniform_() def forward(self, x, y): out = self.bn(x) if self.bias: gamma, beta = self.embed(y).chunk(2, dim=1) out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1, self.num_features, 1, 1) else: gamma = self.embed(y) out = gamma.view(-1, self.num_features, 1, 1) * out return out class ConditionalInstanceNorm2d(nn.Module): def __init__(self, num_features, num_classes=20, bias=True): super().__init__() self.num_features = num_features self.bias = bias self.instance_norm = nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False) if bias: self.embed = nn.Embedding(num_classes, num_features * 2) self.embed.weight.data[:, :num_features].uniform_() # Initialise scale at N(1, 0.02) self.embed.weight.data[:, num_features:].zero_() # Initialise bias at 0 else: self.embed = nn.Embedding(num_classes, num_features) self.embed.weight.data.uniform_() def forward(self, x, y): h = self.instance_norm(x) if self.bias: gamma, beta = self.embed(y).chunk(2, dim=-1) out = gamma.view(-1, self.num_features, 1, 1) * h + beta.view(-1, self.num_features, 1, 1) else: gamma = self.embed(y) out = gamma.view(-1, self.num_features, 1, 1) * h return out def get_norm_layer(norm_type='instance'): if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=True, track_running_stats=True) # False elif norm_type == 'conditional-batch': norm_layer = ConditionalBatchNorm2d elif norm_type == 'conditional-instance': norm_layer = ConditionalInstanceNorm2d elif norm_type == 'conditional-instance10': norm_layer = functools.partial(ConditionalInstanceNorm2d, num_classes=10) else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer ############################################################################## # Classes ############################################################################## def concatenation(input1, input2): inputs_shapes2 = [input1.shape[2], input2.shape[2]] inputs_shapes3 = [input1.shape[3], input2.shape[3]] if np.all(np.array(inputs_shapes2) == min(inputs_shapes2)) and np.all(np.array(inputs_shapes3) == min(inputs_shapes3)): inputs_ = [input1, input2] else: target_shape2 = min(inputs_shapes2) target_shape3 = min(inputs_shapes3) # Get the minimal size of the input. inputs_ = [] for inp in [input1, input2]: diff2 = (inp.size(2) - target_shape2) // 2 diff3 = (inp.size(3) - target_shape3) // 2 inputs_.append(inp[:, :, diff2: diff2 + target_shape2, diff3:diff3 + target_shape3]) # Cut the redundant dimensions return torch.cat(inputs_, dim=1) # Defines the generator that consists of Resnet blocks between a few # downsampling/upsampling operations. # Code and idea originally from Justin Johnson's architecture. # https://github.com/jcjohnson/fast-neural-style/ class ResnetGenerator(nn.Module): def __init__(self, input_nc=1, output_nc=1, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, use_parallel=True, learn_residual=True, padding_type='reflect'): assert(n_blocks >= 0) super(ResnetGenerator, self).__init__() self.input_nc = input_nc self.output_nc = output_nc self.ngf = ngf self.use_parallel = use_parallel self.learn_residual = learn_residual if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): mult = 2**i model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] mult = 2**n_downsampling for i in range(n_blocks): model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] for i in range(n_downsampling): mult = 2**(n_downsampling - i) model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] # model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input): output = self.model(input) if self.learn_residual: output = input + output output = torch.clamp(output,min = -1,max = 1) return output # Define a resnet block class ResnetBlock(nn.Module): def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): out = x + self.conv_block(x) return out class DicsriminatorTail(nn.Module): def __init__(self, nf_mult, n_layers, ndf=64, norm_layer=nn.BatchNorm2d, use_parallel=True): super(DicsriminatorTail, self).__init__() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = int(np.ceil((kw-1)/2)) nf_mult_prev = nf_mult nf_mult = min(2**n_layers, 8) sequence = [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] self.model = nn.Sequential(*sequence) def forward(self, input): return self.model(input) class MultiScaleDiscriminator(nn.Module): def __init__(self, input_nc=3, ndf=64, norm_layer=nn.BatchNorm2d, use_parallel=True): super(MultiScaleDiscriminator, self).__init__() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = int(np.ceil((kw-1)/2)) sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] nf_mult = 1 for n in range(1, 3): nf_mult_prev = nf_mult nf_mult = min(2**n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] self.scale_one = nn.Sequential(*sequence) self.first_tail = DicsriminatorTail(nf_mult=nf_mult, n_layers=3) nf_mult_prev = 4 nf_mult = 8 self.scale_two = nn.Sequential( nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True)) nf_mult_prev = nf_mult self.second_tail = DicsriminatorTail(nf_mult=nf_mult, n_layers=4) self.scale_three = nn.Sequential( nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True)) self.third_tail = DicsriminatorTail(nf_mult=nf_mult, n_layers=5) def forward(self, input): x = self.scale_one(input) x_1 = self.first_tail(x) x = self.scale_two(x) x_2 = self.second_tail(x) x = self.scale_three(x) x = self.third_tail(x) return [x_1, x_2, x] # Defines the PatchGAN discriminator with the specified arguments. class NLayerDiscriminator(nn.Module): def __init__(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).__init__() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = int(np.ceil((kw-1)/2)) sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2**n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2**n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: sequence += [nn.Sigmoid()] self.model = nn.Sequential(*sequence) def forward(self, input): return self.model(input) def get_fullD(model_config): model_d = NLayerDiscriminator(n_layers=5, # norm_layer=get_norm_layer(norm_type=model_config['norm_layer']), use_sigmoid=False) return model_d def get_generator(model_config): generator_name = model_config['g_name'] if generator_name == 'resnet': model_g = ResnetGenerator(norm_layer=get_norm_layer(norm_type=model_config['norm_layer']), use_dropout=model_config['dropout'], n_blocks=model_config['blocks'], learn_residual=model_config['learn_residual']) elif generator_name == 'fpn_mobilenet': model_g = FPNMobileNet(norm_layer=get_norm_layer(norm_type=model_config['norm_layer'])) elif generator_name == 'fpn_inception': model_g = FPNInception(norm_layer=get_norm_layer(norm_type=model_config['norm_layer']),output_ch=3) elif generator_name == 'fpn_inceptioncc+sr': model_g = FPNInceptionCCSR(norm_layer=get_norm_layer(norm_type=model_config['norm_layer']),output_ch=3) elif generator_name == 'fpn_inception_simple': model_g = FPNInceptionSimple(norm_layer=get_norm_layer(norm_type=model_config['norm_layer'])) elif generator_name == 'fpn_dense': model_g = FPNDense() else: raise ValueError("Generator Network [%s] not recognized." % generator_name) return nn.DataParallel(model_g) def get_discriminator(model_config): discriminator_name = model_config['d_name'] if discriminator_name == 'no_gan': model_d = None elif discriminator_name == 'patch_gan': model_d = NLayerDiscriminator(n_layers=model_config['d_layers'], norm_layer=get_norm_layer(norm_type=model_config['norm_layer']), use_sigmoid=False) model_d = nn.DataParallel(model_d) elif discriminator_name == 'double_gan': patch_gan = NLayerDiscriminator(n_layers=model_config['d_layers'], # norm_layer=get_norm_layer(norm_type=model_config['norm_layer']), use_sigmoid=False) patch_gan = nn.DataParallel(patch_gan) full_gan = get_fullD(model_config) full_gan = nn.DataParallel(full_gan) model_d = {'patch': patch_gan, 'full': full_gan} elif discriminator_name == 'multi_scale': model_d = MultiScaleDiscriminator(norm_layer=get_norm_layer(norm_type=model_config['norm_layer'])) model_d = nn.DataParallel(model_d) else: raise ValueError("Discriminator Network [%s] not recognized." % discriminator_name) return model_d def get_nets(model_config): return get_generator(model_config), get_discriminator(model_config)
[ "matliji@nus.edu.sg" ]
matliji@nus.edu.sg
fa802519ff310cbc0067f8afe4833b3721023352
c18780e8d58422ad2d63515484101f227d30a8e8
/tools/c7n_policystream/setup.py
fa8d0fc26246a52c76e428ff14f5ec60583525f0
[ "Apache-2.0" ]
permissive
stefangordon/cloud-custodian
18dc02d5f605b4896d745e51d7005055e595e45a
099d9c03f787b43c97e2acb9bbf97bc5a092b644
refs/heads/master
2021-07-14T14:21:38.529152
2021-02-16T15:22:38
2021-02-16T15:22:38
125,872,127
0
0
Apache-2.0
2020-05-25T13:49:14
2018-03-19T14:37:36
Python
UTF-8
Python
false
false
5,399
py
# Automatically generated from poetry/pyproject.toml # flake8: noqa # -*- coding: utf-8 -*- from setuptools import setup modules = \ ['policystream'] install_requires = \ ['argcomplete (>=1.12.2,<2.0.0)', 'attrs (>=20.3.0,<21.0.0)', 'boto3 (>=1.17.5,<2.0.0)', 'boto3>=1.12.0,<2.0.0', 'botocore (>=1.20.5,<2.0.0)', 'c7n (>=0.9.10,<0.10.0)', 'click>=7.0,<8.0', 'importlib-metadata (>=3.4.0,<4.0.0)', 'jmespath (>=0.10.0,<0.11.0)', 'jsonpickle (>=1.3,<2.0)', 'jsonschema (>=3.2.0,<4.0.0)', 'pygit2>=1.0,<1.1', 'pyrsistent (>=0.17.3,<0.18.0)', 'python-dateutil (>=2.8.1,<3.0.0)', 'pyyaml (>=5.4.1,<6.0.0)', 'pyyaml>=5.3,<6.0', 'requests>=2.22.0,<3.0.0', 's3transfer (>=0.3.4,<0.4.0)', 'six (>=1.15.0,<2.0.0)', 'tabulate (>=0.8.7,<0.9.0)', 'typing-extensions (>=3.7.4.3,<4.0.0.0)', 'urllib3 (>=1.26.3,<2.0.0)', 'zipp (>=3.4.0,<4.0.0)'] entry_points = \ {'console_scripts': ['c7n-policystream = policystream:cli']} setup_kwargs = { 'name': 'c7n-policystream', 'version': '0.4.9', 'description': 'Cloud Custodian - Git Commits as Logical Policy Changes', 'long_description': '# c7n-policystream: Policy Changes from Git\n\n[//]: # ( !!! IMPORTANT !!! )\n[//]: # (This file is moved during document generation.)\n[//]: # (Only edit the original document at ./tools/c7n_policystream/README.md)\n\nUsing custodian in accordance with infrastructure as code principles,\nwe store policy assets in a versioned control repository. This\nprovides for an audit log and facilitates code reviews. However this\ncapability is primarily of use to humans making semantic interpretations\nof changes.\n\nThis script also provides logical custodian policy changes over a git\nrepo and allows streaming those changes for machine readable/application\nconsumption. Its typically used as a basis for CI integrations or indexes\nover policies.\n\nTwo example use cases:\n\n - Doing dryrun only on changed policies within a pull request\n - Constructing a database of policy changes.\n\nPolicystream works on individual github repositories, or per Github integration\nacross an organization\'s set of repositories.\n\n## Install\n\npolicystream can be installed via pypi, provided the require pre-requisites\nlibraries are available (libgit2 > 0.26)\n\n```\npip install c7n-policystream\n```\n\nDocker images available soon, see build for constructing your own.\n\n## Build\n\nAlternatively a docker image can be built as follows\n\n```shell\n# Note must be top level directory of checkout\ncd cloud-custodian\n\ndocker build -t policystream:latest -f tools/c7n_policystream/Dockerfile .\n\ndocker run --mount src="$(pwd)",target=/repos,type=bind policystream:latest\n```\n\n## Usage\n\nStreaming use case (default stream is to stdout, also supports kinesis, rdbms and sqs)\n\n```\n $ c7n-policystream stream -r foo\n 2018-08-12 12:37:00,567: c7n.policystream:INFO Cloning repository: foo\n <policy-add policy:foi provider:aws resource:ec2 date:2018-08-02T15:13:28-07:00 author:Kapil commit:09cb85>\n <policy-moved policy:foi provider:aws resource:ec2 date:2018-08-02T15:14:24-07:00 author:Kapil commit:76fce7>\n <policy-remove policy:foi provider:aws resource:ec2 date:2018-08-02T15:14:46-07:00 author:Kapil commit:570ca4>\n <policy-add policy:ec2-guard-duty provider:aws resource:ec2 date:2018-08-02T15:14:46-07:00 author:Kapil commit:570ca4>\n <policy-add policy:ec2-run provider:aws resource:ec2 date:2018-08-02T15:16:00-07:00 author:Kapil commit:d3d8d4>\n <policy-remove policy:ec2-run provider:aws resource:ec2 date:2018-08-02T15:18:31-07:00 author:Kapil commit:922c1a>\n <policy-modified policy:ec2-guard-duty provider:aws resource:ec2 date:2018-08-12T09:39:43-04:00 author:Kapil commit:189ea1>\n 2018-08-12 12:37:01,275: c7n.policystream:INFO Streamed 7 policy changes\n```\n\nPolicy diff between two source and target revision specs. If source\nand target are not specified default revision selection is dependent\non current working tree branch. The intent is for two use cases, if on\na non-master branch then show the diff to master. If on master show\nthe diff to previous commit on master. For repositories not using the\n`master` convention, please specify explicit source and target.\n\n\n```\n $ c7n-policystream diff -r foo -v\n```\n\nPull request use, output policies changes between current branch and master.\n\n```\n $ c7n-policystream diff -r foo\n policies:\n - filters:\n - {type: cross-account}\n name: lambda-access-check\n resource: aws.lambda\n```\n\n## Options\n\n```\n$ c7n-policystream --help\nUsage: c7n-policystream [OPTIONS] COMMAND [ARGS]...\n\n Policy changes from git history\n\nOptions:\n --help Show this message and exit.\n\nCommands:\n diff Policy diff between two arbitrary revisions.\n org-checkout Checkout repositories from a GitHub organization.\n org-stream Stream changes for repos in a GitHub organization.\n stream Stream git history policy changes to destination.\n```\n', 'long_description_content_type': 'text/markdown', 'author': 'Cloud Custodian Project', 'author_email': None, 'maintainer': None, 'maintainer_email': None, 'url': 'https://cloudcustodian.io', 'py_modules': modules, 'install_requires': install_requires, 'entry_points': entry_points, 'python_requires': '>=3.6,<4.0', } setup(**setup_kwargs)
[ "noreply@github.com" ]
stefangordon.noreply@github.com
c59a9e19a3ac0d9385b405c97d8d7785de977646
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03284/s851420398.py
cab7da04f619aeda933ba8430cc5633f70494311
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
186
py
n, k = map(int, input().split()) h = [0]*k while True: for j in range(k): h[j] += 1 n -= 1 if n <= 0: print(max(h) - min(h)) exit()
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
d682999bd96d9638a182f78f631d75cb4acf4bbd
b4e704f67214028cd0ba8b7a641a2267faf606e4
/projectmf/functional_tests/fulldayofeating/test_calculate_full_day_of_eating_without_ingredient.py
5eb64f17f3655f768d4b3d1a671fb416382b07d2
[]
no_license
matthias4366/mf-2
d21b32aae9ae617d78b4b1541edc196f6f822e4e
73e2110c031c8c17596e27af1143b557b1062b3c
refs/heads/master
2022-10-23T05:54:32.889983
2020-06-11T15:40:04
2020-06-11T15:40:04
190,999,715
0
0
null
null
null
null
UTF-8
Python
false
false
4,847
py
from selenium.webdriver.support.ui import Select from functional_tests.utils.click_navbar_item import \ click_navbar_item from ..base import FunctionalTestWithUserLoggedIn from selenium.webdriver.common.keys import Keys import time from measuredfood.models import ( FullDayOfEating, NutrientProfile, ) import json # import the ingredient dictionaries import sys sys.path.insert(0, '/projectmf/data/') sys.path.append('..') sys.path.append('...') sys.path.append('....') sys.path.append('.....') sys.path.append('......') sys.path.append('.......') with open( 'data/nutrient_profile/nutrient_profile_sandor_clegane.json', 'r') as fp: nutrient_profile_dict_list = json.load(fp) class FullDayOfEatingTest(FunctionalTestWithUserLoggedIn): def test_calculate_full_day_of_eating_without_ingredient(self): """ The test case is the creation of a full day of eating without a SpecificIngredient. It is successful if the correct error message is produced. """ # The user objects can be accessed with self.user. # Create a NutrientProfile. # Simulate clicking on the navbar item for nutrient profiles. click_navbar_item( 'id_menu_item_nutrient_profiles', self.browser, Keys, time, ) time.sleep(0.1) # Add the first nutrient profile from the list of nutrient profiles # saved in the fixtures. new_nutrient_profile_button = self.browser.find_element_by_id( 'id_button_new_nutrient_profile' ) new_nutrient_profile_button.click() time.sleep(0.1) # Iterator for the nutrient profile. k_np = 0 for key, value in nutrient_profile_dict_list[k_np].items(): id_from_key = 'id_' + key if value is not None: self.browser.find_element_by_id(id_from_key).send_keys( str(value) ) # Simulate clicking the save button save_button = self.browser.find_element_by_id( 'id_button_save_new_nutrientprofile' ) save_button.click() time.sleep(1) # Test whether the saved nutrient profile is in the database. nutrient_profile_query = NutrientProfile.objects.filter( name=nutrient_profile_dict_list[k_np]['name'] ) nutrient_profile_was_saved = nutrient_profile_query.exists() self.assertTrue(nutrient_profile_was_saved) # Create FullDayOfEating object. # Simulate clicking the navbar item Full days of eating. click_navbar_item( 'id_menu_item_fulldayofeating', self.browser, Keys, time, ) time.sleep(0.1) # Simulate click on 'New full day of eating' button. new_fulldayofeating_button = self.browser.find_element_by_id( 'id_button_new_fulldayofeating' ) new_fulldayofeating_button.click() name_dummy_full_day_of_eating = 'Dummy full day of eating' # Type in the name of the new full day of eating. self.browser.find_element_by_id('id_name').send_keys( name_dummy_full_day_of_eating ) # From the nutrient profile dropdown menu, select the nutrient # profile that was created at the beginning of this test. select_nutrient_profile = Select(self.browser.find_element_by_id( 'id_nutrient_profile' )) select_nutrient_profile.select_by_visible_text( nutrient_profile_dict_list[k_np]['name'] ) save_full_day_of_eating_button = self.browser.find_element_by_id( 'id_button_save_new_fulldayofeating' ) save_full_day_of_eating_button.click() # Check that full day of eating object exists in the database. full_day_of_eating_query = FullDayOfEating.objects.filter( name=name_dummy_full_day_of_eating ) full_day_of_eating_was_saved = full_day_of_eating_query.exists() self.assertTrue(full_day_of_eating_was_saved) time.sleep(0.5) # Click the button 'Calculate full day of eating'. calculate_button = self.browser.find_element_by_id( 'id_button_calculate_full_day_of_eating' ) calculate_button.click() # time.sleep(7) # Check if the correct error message is displayed. # id = NoSpecificIngredientInFullDayOfEatingError # Test whether the appropriate error page is shown. error_paragraph = self.browser.find_elements_by_id( 'NoSpecificIngredientInFullDayOfEatingError' ) error_page_is_shown = \ len(error_paragraph) > 0 self.assertTrue(error_page_is_shown)
[ "spam.matthias.h.schulz@gmail.com" ]
spam.matthias.h.schulz@gmail.com
f2d230e0ae384792d15e162bc278f5e4f24b7a82
faf2d6fd277ef996359e0841dc77c440152c21eb
/main1.py
c0f3cc23ae68382bd71eb9753d8713ca94867b8b
[]
no_license
Nithinpadmaprabhu/Air-Quality
cf41340d9797e413c1c900199e99c5df43b282df
674afcc5ea3a01b69b6b77d1d5e7e1eb0c621764
refs/heads/master
2021-03-26T15:59:42.724411
2020-03-16T14:22:13
2020-03-16T14:22:13
247,720,263
0
1
null
null
null
null
UTF-8
Python
false
false
4,552
py
#!/usr/bin/python3 ''' Created on 01 October 2017 @author: Yahya Almardeny This is the main entry point to the program The Flow of this program goes here ''' import time as t , socket, os, datetime from mq import MQ from mcp3008 import MCP3008 from point import Point from groveO2 import Grove_O2 from soundDetector import Sound_Detector from tmp36 import TMP36 from humidity import Humidity from gp2y import * import promptWindow as window import db as db if __name__ == '__main__': pass ########################### Format JSON ############################ # Input: device name, sensors readings in JSON format # Output: data ################################################################### def format(deviceName, *args): data = "{\"" +deviceName+"\":[" for i in range(len(args)): if(i==len(args)-1): data += str(args[i]) else: data += str(args[i]) +"," data += "]}" return data while True: # global scope vars to set the interval time for sending data to the database (3600 means every 1 hour) global counter, limit counter, limit = 0, 30. # every 30 second , that means 120 readings in one hour of deployment (gives nice graph, not crowded) # Ask user for Device and Server Information at startup in the first run window.get_information("/home/pi/Desktop/EAPMS/device_info.csv") # Data for MQ Sensors from Datasheet mq2_data = {"Smoke":[Point(200,3.45) ,Point(500,2.5), Point(800,2), Point(1000,1.9), Point(1600,1.65), Point(2000,1.5),Point(3000,1.3),Point(5000,0.92), Point(10000,0.6)], "LPG":[Point(200,1.75) ,Point(500,1.2), Point(800,0.88), Point(1000,0.68), Point(1600,0.56), Point(2000,0.48),Point(3000,0.38),Point(5000,0.28), Point(10000,0.24)], "Propane":[Point(200,1.78) ,Point(500,1.2), Point(800,0.88), Point(1000,0.7), Point(1600,0.6), Point(2000,0.5),Point(3000,0.40),Point(5000,0.30), Point(10000,0.25)], "CH4":[Point(200,3) ,Point(500,2.4), Point(800,1.9), Point(1000,1.8), Point(1600,1.6), Point(2000,1.4),Point(3000,1.3),Point(5000,0.92), Point(10000,0.7)]}; mq135_data = {"CO2":[Point(10,2.5) ,Point(40,1.5), Point(100,1.1), Point(200,0.8)], "CO":[Point(10,2.9) ,Point(40,1.95), Point(100,1.7), Point(200,1.5)], "NH4":[Point(10,2.7) ,Point(40,1.53), Point(100,1), Point(200,0.785)], "Benzene":[Point(10,1.6) ,Point(40,1.1), Point(100,0.8), Point(200,0.65)]}; mq131_data = {"Ozone":[Point(5,6),Point(10,4),Point(20, 1.5),Point(100,0.5)], "NO2": [Point(5,9),Point(10,8), Point(20,7), Point(100,4.5)], "CL2": [Point(5,8),Point(10,6.8), Point(20,4.8), Point(100,0.8)]}; so2_data = {"SO2":[Point(35,1),Point(100,1.5),Point(200, 1.95), Point(300,2.2),Point(400,2.35),Point(500,2.45),Point(600,2.5)]}; # Initalize the required sensors devices mcp = MCP3008() mq2 = MQ("MQ2", mcp,0,5,9.8, mq2_data) mq135 = MQ("MQ135", mcp,1,20,3.75, mq135_data) mq131 = MQ("MQ131", mcp, 2, 20,20,mq131_data) o2 = Grove_O2(mcp, 3, 3.3, 7.43) noise = Sound_Detector(mcp, 4) sh12 = MQ("2SH12", mcp, 5, 50, 6, so2_data) tmp36 = TMP36(mcp, 6, 3.3) humidity = Humidity(mcp, 7, 3.3) pm = GP2Y(13, 3.3, 1) # Initialize Connection with UDP Server & MySQL Server device_infoFile = open("/home/pi/Desktop/EAPMS/device_info.csv", 'r') info = device_infoFile.read().split(',') deviceName, serverIp, port = info[0],str(info[1]), int(info[2]) serverSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) cursor = db.connect_to_mysqlServer(serverIp, 'pi', 'pi', 'eapmsDB', 'data'); while True: mq2R, mq135R, mq131R, sh12R, o2R, noiseR, tempR, humidityR, pmR = mq2.read(),mq135.read(),mq131.readPPB(), sh12.read(), o2.read(), noise.read(), tmp36.read(), humidity.read(tmp36.readTemp()), pm.read(); data = format(deviceName,mq2R, mq135R, mq131R, sh12R, o2R, noiseR, tempR, humidityR, pmR) print(data) serverSocket.sendto(bytes(data, 'UTF-8'), (serverIp, port)) # send data in JSON format to the Server counter = db.send_to_database(cursor, deviceName, counter, limit, mq2R, mq135R, mq131R, sh12R, o2R, noiseR, tempR, humidityR, pmR) # send data to database on the Server t.sleep(1)
[ "npadmaprabhu@tssg.org" ]
npadmaprabhu@tssg.org
54efbe8f8beeb4862f01be570c1ab80e8425d577
d66818f4b951943553826a5f64413e90120e1fae
/hackerrank/Python/Validating Credit Card Numbers/solution.py
84526230cfaed162d112747247d775c3adf85975
[ "MIT" ]
permissive
HBinhCT/Q-project
0f80cd15c9945c43e2e17072416ddb6e4745e7fa
19923cbaa3c83c670527899ece5c3ad31bcebe65
refs/heads/master
2023-08-30T08:59:16.006567
2023-08-29T15:30:21
2023-08-29T15:30:21
247,630,603
8
1
MIT
2020-07-22T01:20:23
2020-03-16T06:48:02
Python
UTF-8
Python
false
false
233
py
import re for _ in range(int(input())): s = input().strip() if re.match(r'^[456](\d{15}|\d{3}(-\d{4}){3})$', s) and not re.search(r'(\d)\1\1\1', s.replace('-', '')): print('Valid') else: print('Invalid')
[ "hbinhct@gmail.com" ]
hbinhct@gmail.com
c87b761f3286e13710b7d0867cbfa6847bae3448
6b0b119709ea55a06aa982bb022fc96d85c0cd68
/ex_4_2.py
c4c2f537ef7535828e929f21eb7e7d3c81cf3884
[]
no_license
VincentLu91/Python
878ebaf1ed845463c6acc9997be5a36d25edfb2d
27dcf28c0e5b0c5d16132b9a38acfea3828fdf4c
refs/heads/master
2020-06-01T07:00:27.772672
2014-11-17T19:54:20
2014-11-17T19:54:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
493
py
''' Ask the user to type something (use raw_input). To find out whether the input was a number, compare whether the input is after "0" and before ":" in alphabetical order. If it is a number convert it into an integer. Then print the input and its type. (Note: this won't work if the user enters a real number.) ''' n = raw_input("Type something: ") if (n > "0") and (n < ":"): n = int(n) # convert input number to integer print "The input is ", n print "The type of this input is ", type(n)
[ "vincentlu@hotmail.ca" ]
vincentlu@hotmail.ca
b9c170fac8be79c709b437a07518b7f7c61d83c9
cdd6c79dc5d42af57dc305c45f6d773383a9b433
/weather/migrations/0001_initial.py
219e63f83774f072cdd214131d944e84b0a897f8
[]
no_license
ins099/weatherapp
021c14a71daf9e4499be17eabf7a385158744a65
ca11e8ab7ade6017ce2b91657d40eeda3141bc62
refs/heads/master
2022-12-21T11:22:36.720534
2020-09-22T18:24:47
2020-09-22T18:24:47
297,736,100
0
0
null
null
null
null
UTF-8
Python
false
false
483
py
# Generated by Django 3.1.1 on 2020-09-22 15:54 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='City', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=25)), ], ), ]
[ "alaminsaram92@gmail.com" ]
alaminsaram92@gmail.com
ce2c657ba2500a9211c7b986a84657c4bcb1bc17
f70fd4b12df2d4456a0353c8b43d48f52441d204
/apps/users/adminx.py
d19cc196af3ec8d246fdd1ddc52d1eef2e347daf
[]
no_license
gauravjha111/Online-Learning-Platform-based-on-Django-Admin
698cac2cc8f0852f046060e800985a3125abf160
b22dccf9536ecd21283e1f6b6d0ee6360b6c09fc
refs/heads/master
2021-08-07T04:59:42.938019
2017-11-07T15:36:08
2017-11-07T15:36:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,251
py
# _*_ coding: utf-8 _*_ __author__ = 'Yujia Lian' __date__ = '6/6/17 1:52 AM' import xadmin from .models import EmailVerifyRecord, Banner, UserProfile from xadmin import views from xadmin.layout import Fieldset, Main, Side, Row from xadmin.plugins.auth import UserAdmin class BaseSetting(object): enable_themes = True use_bootswatch = True class UserProfileAdmin(UserAdmin): pass class GlobalSettings(object): site_title = "Geek education backend manage system" site_footer = "Geek education all rights reserved. Contact:yujia.lian001@gmail.com" menu_style = "accordion" class EmailVerifyRecordAdmin(object): list_display = ['code', 'email', 'send_type', 'send_time'] search_fields = ['code', 'email', 'send_type'] list_filter = ['code', 'email', 'send_type', 'send_time'] class BannerAdmin(object): list_display = ['title', 'image', 'url', 'index', 'add_time'] search_fields = ['title', 'image', 'url', 'index'] list_filter = ['title', 'image', 'url', 'index', 'add_time'] xadmin.site.register(EmailVerifyRecord, EmailVerifyRecordAdmin) xadmin.site.register(Banner, BannerAdmin) xadmin.site.register(views.BaseAdminView, BaseSetting) xadmin.site.register(views.CommAdminView, GlobalSettings)
[ "yujia.lian001@gmail.com" ]
yujia.lian001@gmail.com
1c85c1d3be0dee8a1f0ef5c6fa751e8de61604ad
17a6a8e37dfb3ab1121009c8cf77c0d4d2454d4b
/news_crawler/modules/clean_text.py
716d5e4f62d53af6b5aa08c027386362f58050fe
[]
no_license
andymithamclarke/fashionjoblosses
2c0031e3ba865b4e13196c43ca55f0865b908924
dbad52fd6820a777ff4485a833f011969c53a4bf
refs/heads/master
2023-04-14T14:11:36.889824
2020-10-29T15:19:34
2020-10-29T15:19:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
766
py
# ========================= # Clean the scraped text of irregularities # ========================= # Irregularities found: # - '\n' can appear within the body of the text # - <p> elements can be too short and thus useless # Solutions implemented: # - Returning the <p> element only if it's str(length) is greater than 10 chars # __Note__: # Expecting that there will be more solutions required as the volume of the corpus increases # ================ # IMPORTS # ================ import re # Function to remove tags def remove_tags(text): TAG_RE = re.compile(r'<[^>]+>') return TAG_RE.sub('', text) # Core function that is called by article_scraper def clean_text(full_text_list): return [remove_tags(item) for item in full_text_list]
[ "andrewjhclarke@gmail.com" ]
andrewjhclarke@gmail.com
300c776ef0c3046017fa26b509976d23f5146208
226e283c7a367e61a55cd9cc6d2549409522756d
/Manuel_upper/Board.py
0aae053e21ce884612b2cbfe7350660e753a4434
[]
no_license
diontran/GameSearchROPASCI360
fe2454d1b55736494739b307b3410a8f3b87cacd
c6cf333dd72c3e746eff7b376d577eab53f29a9a
refs/heads/main
2023-05-13T16:59:25.785871
2021-06-02T17:33:45
2021-06-02T17:33:45
373,251,997
0
0
null
null
null
null
UTF-8
Python
false
false
5,672
py
import itertools class Board: """A class representing the board to the player, providing information for the player to make a decision""" def __init__(self, player_type): self.player_type = player_type self.game_state = {'R':[], 'P':[], 'S':[], 'r':[], 'p':[], 's':[]} #A list of list of hex, where each list represents one row on the board board_hex = [[(4, -4),(4, -3),(4, -2),(4, -1),(4, -0)], [(3, -4),(3, -3),(3, -2),(3, -1),(3, 0),(3, 1)], [(2, -4),(2, -3),(2, -2),(2, -1),(2, 0),(2, 1),(2, 2)], [(1, -4),(1, -3),(1, -2),(1, -1),(1, 0),(1, 1),(1, 2),(1, 3)], [(0, -4),(0, -3),(0, -2),(0, -1),(0, 0),(0, 1),(0, 2),(0, 3),(0, 4)], [(-1, -3),(-1, -2),(-1, -1),(-1, 0),(-1, 1),(-1, 2),(-1, 3),(-1, 4)], [(-2, -2),(-2, -1),(-2, 0),(-2, 1),(-2, 2),(-2, 3),(-2, 4)], [(-3, -1),(-3, 0),(-3, 1),(-3, 2),(-3, 3),(-3, 4)], [(-4, 0),(-4, 1),(-4, 2),(-4, 3),(-4, 4)]] def get_row(self,row_num): """Function returns the list of hex corresponding to row number from top to bottom, row 0 being the first row""" return self.board_hex[4-row_num] def update_move(self,action,player_side): """Update the board's game state according to the action player passed into""" #Add the token to the board if action[0] == 'THROW': self.game_state[action[1]].insert(0,action[2]) if action[0] == 'SLIDE' or action[0] == 'SWING': original_pos = action[1] new_pos = action[2] #update list of key in game state accordingly if self.player_type == 'upper' and player_side == 'player': search_keys = ['R', 'P', 'S'] elif self.player_type == 'upper' and player_side == 'opponent': search_keys = ['r', 'p', 's'] elif self.player_type == 'lower' and player_side == 'player': search_keys = ['r', 'p', 's'] elif self.player_type == 'lower' and player_side == 'opponent': search_keys = ['R', 'P', 'S'] for key in search_keys: if original_pos in self.game_state.get(key): updated_list = self.game_state.get(key) updated_list.remove(original_pos) updated_list.insert(0, new_pos) self.game_state[key] = updated_list #Battle if there are other tokens in the spot tokens_in_pos = [] for key in self.game_state.keys(): for pos in self.game_state[key]: if pos == action[2]: tokens_in_pos.insert(0, key) kill_types = self.kill_tokens(tokens_in_pos) #Remove tokens in kill_types all_kill_types = [] if kill_types != []: for type in kill_types: all_kill_types.insert(0, type) all_kill_types.insert(0, type.lower()) if all_kill_types != []: for token in all_kill_types: self.game_state[token].remove(action[2]) def get_player_token(self): """Function returns a dictionary of player's tokens""" if self.player_type == 'upper': included_keys = ['R', 'P', 'S'] else: included_keys = ['r', 'p', 's'] return {k:v for k,v in self.game_state.items() if k in included_keys} def generate_possible_move(self,pos): """Function returns a list of possible new positions that the current token in pos can move to""" possible_positions = [] #Positions for swinging directions = [(0,-1),(1,-1),(1,0),(0,1),(-1,1),(-1,0)] for tuple in directions: new_pos = ((pos[0] + tuple[0]) , (pos[1] + tuple[1])) if new_pos in list(itertools.chain(*self.board_hex)): possible_positions.insert(0,new_pos) return possible_positions def token_win(type1, type2): """Function that returns if token type 1 beats token type 2""" t1 = type1.upper() t2 = type2.upper() if t1 == 'R': if t2 == 'S': return True else: return False if t1 == 'P': if t2 == 'R': return True else: return False if t1 == 'S': if t2 == 'P': return True else: return False def kill_tokens(self,tokens_in_pos): """Function receives a list of types of tokens in the same position, and remove the one which loses in battle""" capital = [] for type in tokens_in_pos: if type.upper() not in capital: capital.insert(0, type.upper) #Case where all three types in same position if 'R' in capital and 'P' in capital and 'S' in capital: return capital #All tokens removed #Cases where two token types battle elif 'R' in capital and 'P' in capital: return ['R'] elif 'P' in capital and 'S' in capital: return ['P'] elif 'S' in capital and 'R' in capital: return ['S'] else: return [] def player_no_token(self): if self.player_type == 'upper': keys = ['R', 'P', 'S'] else: keys = ['r', 'p', 's'] number_of_tokens = 0 for key in keys: number_of_tokens += len(self.game_state[key]) if number_of_tokens == 0: return True else: return False
[ "dion.doanh.tran@gmail.com" ]
dion.doanh.tran@gmail.com
e5d651724d5f41ceac086f9d0da8f159b38821bf
a572103139a007d45f27ba9f86a174537f5725ae
/blog/urls.py
d69766315002496350281a4f7d3b6533ce9e53eb
[]
no_license
VitoCorleonexin/Blog
f406d31a9f4fdbadd2a8819615996e3f3d6d7b6e
5336711abe63a1a4982e9e33f237e9d59588eae9
refs/heads/master
2022-04-20T07:47:55.319747
2020-04-22T16:05:36
2020-04-22T16:05:36
256,343,214
0
0
null
null
null
null
UTF-8
Python
false
false
611
py
from django.urls import path from . import views app_name = 'blog' urlpatterns = [ path('',views.PostListView.as_view(), name='blog-home'), path('about/',views.about, name='blog-about'), path('post/<int:pk>/',views.PostDetailView.as_view(), name='post-detail'), path('post/new/',views.PostCreateView.as_view(), name='post-create'), path('post/<int:pk>/update/',views.PostUpdateView.as_view(), name='post-update'), path('post/<int:pk>/delete/',views.PostDeleteView.as_view(), name='post-delete'), path('user/<str:username>/',views.UserPostListView.as_view(), name='user-posts'), ]
[ "wangwenxin03@sina.com" ]
wangwenxin03@sina.com
ad3a2801016e2887d1a8afbfb79b40f4b67fd555
9f1e45b3deb43eb971ce5872eb832fef56672d20
/__init__.py
c7a258bfb60d7be0a842f236558ce0add704368d
[ "BSD-3-Clause" ]
permissive
fhLUG/limnoria-mittag.at
b8825301c3503a68cf8dbabc97f01efe2878b9d6
2dd20e58d56e762e3eae47c9745ea7f9838d86e7
refs/heads/master
2020-06-25T13:14:04.681377
2016-07-30T13:28:21
2016-09-22T15:54:26
67,422,238
3
0
null
null
null
null
UTF-8
Python
false
false
2,577
py
### # Copyright (c) 2016, fhLUG # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### """ Mittag: Mittag.at IRC plugin """ import supybot import supybot.world as world # Use this for the version of this plugin. You may wish to put a CVS keyword # in here if you're keeping the plugin in CVS or some similar system. __version__ = ".01" # Replace this with an appropriate author or supybot.Author instance. __author__ = supybot.Author('fhLUG') # This is a dictionary mapping supybot.Author instances to lists of # contributions. __contributors__ = {} # This is a url where the most recent plugin package can be downloaded. __url__ = 'http://fhLUG.at' from . import config from . import plugin from imp import reload # In case we're being reloaded. reload(config) reload(plugin) # Add more reloads here if you add third-party modules and want them to be # reloaded when this plugin is reloaded. Don't forget to import them as well! if world.testing: from . import test Class = plugin.Class configure = config.configure # vim:set shiftwidth=4 tabstop=4 expandtab textwidth=79:
[ "knittl89+git@googlemail.com" ]
knittl89+git@googlemail.com
61b0d22c7fff82918f2b874d0859a21b34fbdb70
426e7709cf8ac82fc928a489f52cad1a17019a5d
/OOP/math_dojo.py
49737d89234c919a70f6dc444b57ab30cb235722
[ "MIT" ]
permissive
gfhuertac/coding_dojo_python
3eb3fa98175e7d55f5d2510355f932342649fc25
4d17bb63fb2b9669216a0f60326d4a4b9055af7e
refs/heads/master
2022-05-09T21:51:37.534322
2020-06-06T21:28:52
2020-06-06T21:28:52
229,930,788
0
0
MIT
2022-04-22T23:15:54
2019-12-24T11:37:27
Python
UTF-8
Python
false
false
788
py
import unittest from functools import reduce class MathDojo: def __init__(self): self.result = 0 def add(self, num, *nums): self.result += num + reduce(lambda x,y: x+y, nums, 0) return self def subtract(self, num, *nums): self.result -= num + reduce(lambda x,y: x+y, nums, 0) return self class MathDojoTestCase(unittest.TestCase): def setUp(self): self.md = MathDojo() def testBase(self): x = self.md.add(2).add(2,5,1).subtract(3,2).result self.assertEqual(x, 5) def testNegative(self): x = self.md.add(-2).add(2).result self.assertEqual(x, 0) if __name__ == '__main__': unittest.main() # create an instance: md = MathDojo() # to test: x = md.add(2).add(2,5,1).subtract(3,2).result print(x)
[ "gonzalo@huerta.cl" ]
gonzalo@huerta.cl
cc4a079b90a29d40b63d8616277c45c31f14704d
cc03e0d7ceb6ca5e37c239a5c354cad36c78ade6
/urban/urban/settings.py
a88876ae562b71fce74454b6ca279c39313c8e82
[]
no_license
randypantinople/Analysis-of-Starbucks-Global-Presence
87235315e048baea7f0ead7f1ddfa48ecd915c38
5516ae5095bf07d2936c57da0704ae3af0a0bfc8
refs/heads/master
2022-11-26T09:31:03.309927
2020-08-01T16:23:05
2020-08-01T16:23:05
281,262,650
0
0
null
null
null
null
UTF-8
Python
false
false
3,135
py
# Scrapy settings for urban project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'urban' SPIDER_MODULES = ['urban.spiders'] NEWSPIDER_MODULE = 'urban.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'urban (Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36)' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs DOWNLOAD_DELAY = 2 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'urban.middlewares.UrbanSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'urban.middlewares.UrbanDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'urban.pipelines.WriteItemPipeline': 200 } # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
[ "randypantinople@yahoo.com" ]
randypantinople@yahoo.com
5ce94942c2232ed793c891c895905868df103abb
580d6acdbb6dc3d6d27cb164097731fa601de292
/ECS655U_VENV_P3/bin/jupyter-run
134c4b6eed9c33a3c1cbb504758780012f85651d
[]
no_license
johnsn27/security_engineering
182418530bdf3c1c3927dfcad686e7bbe9bbfc9f
996341864a5e2a8e7bd7ea24b05fdeca7e3f7938
refs/heads/main
2023-03-02T18:59:15.608520
2021-02-13T19:52:34
2021-02-13T19:52:34
338,605,903
0
0
null
null
null
null
UTF-8
Python
false
false
301
#!/Users/johnsn27/Documents/Uni/security_engineering/ECS655U_VENV_P3/bin/python # -*- coding: utf-8 -*- import re import sys from jupyter_client.runapp import RunApp if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(RunApp.launch_instance())
[ "nathan.johnson@bbc.co.uk" ]
nathan.johnson@bbc.co.uk
9086642ccad8678a2bfbd13c03b645bdc7cd6bcc
10a4151ad6143d75a000b2c71957e2b698f704fa
/2920.py
e014cbe94c61fd34a28b2ec8db16a45cf0dfb052
[]
no_license
Yabby1997/Baekjoon-Online-Judge
2f811507be6d725bfcf33c1e1dd2ccbf052fba47
3aa74d89f8accc98fbcdba1bf705d5291a80178c
refs/heads/master
2021-12-30T02:53:56.897972
2021-12-26T07:18:46
2021-12-26T07:18:46
231,369,092
0
0
null
null
null
null
UTF-8
Python
false
false
563
py
melodyList = list(map(int, input().split())) melodyCheck = [0]*7 output = 0 for i in range(len(melodyList)-1): #LEN FUNCTION RETURNS LENGTH OF LIST melodyCheck[i] = melodyList[i+1]-melodyList[i] for i in range(len(melodyCheck)-1): if melodyCheck[i] == melodyCheck[i+1]: output = melodyCheck[i] else: output = 0 break #YOU CAN USE BREAK IN PYTHON if output == 1: print("ascending") elif output == -1: print("descending") else: print("mixed")
[ "yabby1997@gmail.com" ]
yabby1997@gmail.com
87d3f98dcf7aebf0fbec3905291a13e56a4136f2
661aad54c4ea654b197d0fdff3e18e3aa0056661
/constants.py
80453ccde24a468b2fb3a17da51d161d9a5a79a8
[]
no_license
mohit89mohit/instabot
0a884d523ca96c35f011eebdc0b082133b95dc58
9221185e14cc5b6ba76a2acc40916802d108fef1
refs/heads/master
2020-06-24T07:02:39.766014
2017-07-11T18:49:53
2017-07-11T18:49:53
96,926,119
0
0
null
null
null
null
UTF-8
Python
false
false
195
py
# global variables file # instagram API access token APP_ACCESS_TOKEN = '2288274672.6d26f8c.5209938e17cd40619b178ddc37793f48' # instagram API base url BASE_URL = 'https://api.instagram.com/v1/'
[ "mohitchambial89mohit@gmail.com" ]
mohitchambial89mohit@gmail.com
594a55f3e4d5cd1c2c14230e6bd967f1d7b7f5d8
61febabc6aa34b7c47208aa7be5dfca88287ddaf
/Ch. 7 User Input and while Loops/Deli.py
ef00a69b390ec09c873760b47c3a2dd13dd6aa42
[]
no_license
chrisstophere/Python-Crash-Course
4be7262acc2ff8ad26d99aceb028c25e4c7f9b0b
702c44734e93df68ec55831626fb7a7a22ce2b8d
refs/heads/master
2021-05-24T10:31:54.679224
2020-05-07T21:10:09
2020-05-07T21:10:09
253,520,738
0
0
null
null
null
null
UTF-8
Python
false
false
324
py
sandwich_orders = ['ham', 'roast beef', 'turkey'] finished_sandwiches = [] while sandwich_orders: sandwich = sandwich_orders.pop() print(f"I made your {sandwich.title()}.") finished_sandwiches.append(sandwich) print("\n") for sandwich in finished_sandwiches: print(f"I have made your {sandwich} sandwich.")
[ "chris@ewentech.com" ]
chris@ewentech.com
95cdcd2931a7898d7fc1fcb55a5ae3669b6636f8
ddbac0c502110680e0d48974bb55c2032962f4a7
/password_test.py
2d1eb5418c4b6809938dd5e838869992fb3d527a
[ "MIT" ]
permissive
NinahMo/password-locker
97a1b34488e56b8d8fab3a38965c6cac0f041ef4
4c8a9ad740e95da8cccfe82bbbaefdcce753728f
refs/heads/master
2022-11-11T12:40:43.552476
2020-06-29T12:20:45
2020-06-29T12:20:45
275,170,419
0
0
null
null
null
null
UTF-8
Python
false
false
1,535
py
import unittest from password import Password class TestUser(unittest.TestCase): def setUp(self): self.new_password = Password("Ninahmozzy","0712345678","aBcDeF","aBcDeF") def tearDown(self): Password.password_list = [] def test_init(self): self.assertEqual(self.new_password.username,"Ninahmozzy") self.assertEqual(self.new_password.phone_number,"0712345678") self.assertEqual(self.new_password.password,"aBcDeF") self.assertEqual(self.new_password.pas2,"aBcDeF") def test_save_password(self): self.new_password.save_password() self.assertEqual(len(Password.password_list),1) def test_save_multiple_contact(self): ''' ''' self.new_password.save_password() test_password=Password("Ninahmozzy","0712345678","aBcDeF","aBcDeF") test_password.save_password() self.assertEqual(len(Password.password_list),2) def delete_password(self): Password.password_list.remove(self) def test_find_password_by_username(self): self.new_password.save_password() test_password = Password("Ninahmozzy","0712345678","aBcDeF","aBcDeF") test_password.save_password() found_password = Password.find_by_username("Ninahmozzy") self.assertEqual(found_password.password,test_password.password) def test_display_all_usernames(self): self.assertEqual(Password.display_passwords(),Password.password_list) if __name__ == '__main__': unittest.main()
[ "ninahb746@gmail.com" ]
ninahb746@gmail.com
db32be82e4cbb8041e41a5706bfdb1e999fedfae
6b065c0e4e2d103f37b5d7ac062c8f778cc7b960
/set-01/length.py
47eaf20923af1513b3f035ea1bf38fe31157f74d
[]
no_license
abhi1615/GUVI
3033dd953175976431a10f86384c489ee683c0d1
6563279d7cfd293962e863f42dded676e0a7cbf5
refs/heads/master
2020-03-31T09:48:18.645870
2019-01-19T14:20:44
2019-01-19T14:20:44
152,111,496
1
0
null
null
null
null
UTF-8
Python
false
false
108
py
def len(): n=int(input()) c=0 while n>0: c+=1 n//=10 print(c) len()
[ "noreply@github.com" ]
abhi1615.noreply@github.com
a57e9b2e13acb81a055216ed04bc58da919abdcd
e568e1fc751d16b739c16d6d396f18ca5c520be2
/microblog/app/__init__.py
1ef6a54dfa8255ec1ac774ab2bd04a5d89711899
[]
no_license
KennF/Timeline
3a76dd38a7dc9e174265932d33202e7e981d5a65
c4faa4d7ab8d2d6cda81226678a7bd669e4efcaf
refs/heads/master
2021-01-10T16:49:09.748686
2013-09-04T10:34:31
2013-09-04T10:34:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,277
py
import os from flask import Flask from flask.ext.sqlalchemy import SQLAlchemy from flask.ext.login import LoginManager from flask.ext.openid import OpenID from config import basedir, ADMINS, MAIL_SERVER, MAIL_PORT, MAIL_USERNAME, MAIL_PASSWORD app = Flask(__name__) app.config.from_object('config') db = SQLAlchemy(app) lm = LoginManager() lm.setup_app(app) lm.login_view = 'login' oid = OpenID(app, os.path.join(basedir, 'tmp')) if not app.debug: import logging from logging.handlers import SMTPHandler credentials = None if MAIL_USERNAME or MAIL_PASSWORD: credentials = (MAIL_USERNAME, MAIL_PASSWORD) mail_handler = SMTPHandler((MAIL_SERVER, MAIL_PORT), 'no-reply@' + MAIL_SERVER, ADMINS, 'microblog failure', credentials) mail_handler.setLevel(logging.ERROR) app.logger.addHandler(mail_handler) if not app.debug: import logging from logging.handlers import RotatingFileHandler file_handler = RotatingFileHandler('tmp/microblog', 'a', 1*1024*1024, 10) file_handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s: %(message)s [in %(pathname)s:%(lineno)d]')) app.logger.setLevel(logging.INFO) file_handler.setLevel(logging.INFO) app.logger.addHandler(file_handler) from app import views, models
[ "cactus.fxy@gmail.com" ]
cactus.fxy@gmail.com
bba7c9430acdb73d6eda2a0982f190538c19e509
6c671228ff9e08cbdbd58eba7938bc363cc7d55a
/infrastructure/serializers/__init__.py
7f944e47bf94bc82b63ee4b7ac9c87fddb13671b
[ "MIT" ]
permissive
joaquinquintas/shipwell_backend_ricardo
a9ee69ec48ecdb09a4748d30d319d1a2ecfe948d
55de24c8c7e3a685a1dca786e5c026410d353473
refs/heads/master
2020-07-27T04:47:22.679327
2019-09-16T18:53:46
2019-09-16T18:53:46
208,873,814
0
0
null
null
null
null
UTF-8
Python
false
false
383
py
''' serializer package ''' from .dict_serializer import DictSerializer from .average_temperature_serializer import AverageTemperatureSerializer from .temperature_serializer import TemperatureSerializer from .validation_error_serializer import ValidationErrorSerializer __all__ = [ 'AverageTemperatureSerializer', 'TemperatureSerializer', 'ValidationErrorSerializer', ]
[ "ricardosiri68@gmail.com" ]
ricardosiri68@gmail.com
006672a2ef6b5dce7819eac585bedfefdbb99216
7bf756218bacb058a10e81964a5b9722dd8a82c2
/rentspace/apps/userprofile/views/admin_restapi.py
30421afa3234920a6ba9eac75862911de2cb73db
[]
no_license
saikumar-divvela/rentspace
a30f3450d545718893a93cfd4f333c7dce441c29
81065e27d4b1b3c6d1ffdadb7e1948592f21932e
refs/heads/master
2021-06-17T13:59:41.376526
2017-05-24T07:55:37
2017-05-24T07:55:37
57,314,062
1
0
null
null
null
null
UTF-8
Python
false
false
2,444
py
from django.http import HttpResponse from django.http import Http404 from rest_framework import status from userprofile.models import User from userprofile.serializers import UserSerializer class JSONResponse(HttpResponse): """ An HttpResponse that renders its content into JSON. """ def __init__(self, data, **kwargs): content = JSONRenderer().render(data) kwargs['content_type'] = 'application/json' super(JSONResponse, self).__init__(content, **kwargs) @permission_classes((permissions.AllowAny,)) class UserList(APIView): def get(self,request,format=None): users = User.objects.all(); serializer = UserSerializer(users,many=True) print (request.session) print (request.session.keys()) print (request.session.items()) #print (serializer.data) return Response(serializer.data) def post(self,request,format=None): print (request.data) serializer = UserSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @permission_classes((permissions.AllowAny,)) class UserDetail(APIView): def get_object(self,pk): try: return User.objects.get(pk=pk) except User.DoesNotExist: raise Http404 def get(self, request, pk, format=None): user = self.get_object(pk) serializer = UserSerializer(user) return Response(serializer.data) def put(self, request, pk, format=None): user = self.get_object(pk) serializer = UserSerializer(user,data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self,request,pk,format=None): user = self.get_object(pk) user.delete() return Response(status=status.HTTP_204_NO_CONTENT) def get_status(self,request,pk,format=None): user = self.get_object(pk) output = {} output["is_email_verified"] = user.is_email_verified output["is_phone_verified"] = user.is_phone_verified output["is_id_verified"] = user.is_id_verified return Response(output)
[ "saikumar.divvela@gmail.com" ]
saikumar.divvela@gmail.com
a790c33ec9c44720c105c842259b2b07a70bb80d
95d73f1daebb98fe6707b999c9763f3b84d418a4
/cms/plugin_pool.py
2ba37a444175b8cab1731ac1a6ac72031895f547
[]
no_license
leotop/django_ukrhim
8e01e284076878c7691986d5e8d056795d2bb900
e5a60a79f441ae732350e518f9b71e2724dc010a
refs/heads/master
2021-01-22T15:51:27.617651
2015-01-23T11:00:37
2015-01-23T11:00:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,063
py
# -*- coding: utf-8 -*- from cms.exceptions import PluginAlreadyRegistered, PluginNotRegistered from cms.plugin_base import CMSPluginBase from cms.utils.django_load import load from cms.utils.helpers import reversion_register from cms.utils.placeholder import get_placeholder_conf from django.conf import settings from django.core.exceptions import ImproperlyConfigured import warnings class PluginPool(object): def __init__(self): self.plugins = {} self.discovered = False def discover_plugins(self): if self.discovered: return self.discovered = True load('cms_plugins') def register_plugin(self, plugin): """ Registers the given plugin(s). If a plugin is already registered, this will raise PluginAlreadyRegistered. """ if not issubclass(plugin, CMSPluginBase): raise ImproperlyConfigured( "CMS Plugins must be subclasses of CMSPluginBase, %r is not." % plugin ) plugin_name = plugin.__name__ if plugin_name in self.plugins: raise PluginAlreadyRegistered( "Cannot register %r, a plugin with this name (%r) is already " "registered." % (plugin, plugin_name) ) plugin.value = plugin_name self.plugins[plugin_name] = plugin if 'reversion' in settings.INSTALLED_APPS: try: from reversion.registration import RegistrationError except ImportError: from reversion.revisions import RegistrationError try: reversion_register(plugin.model) except RegistrationError: pass def unregister_plugin(self, plugin): """ Unregisters the given plugin(s). If a plugin isn't already registered, this will raise PluginNotRegistered. """ plugin_name = plugin.__name__ if plugin_name not in self.plugins: raise PluginNotRegistered( 'The plugin %r is not registered' % plugin ) del self.plugins[plugin_name] def get_all_plugins(self, placeholder=None, page=None, setting_key="plugins", include_page_only=True): self.discover_plugins() plugins = self.plugins.values()[:] plugins.sort(key=lambda obj: unicode(obj.name)) final_plugins = [] if page: template = page.get_template() else: template = None allowed_plugins = get_placeholder_conf( setting_key, placeholder, template, ) for plugin in plugins: include_plugin = False if placeholder: if allowed_plugins: if plugin.__name__ in allowed_plugins: include_plugin = True elif setting_key == "plugins": include_plugin = True if plugin.page_only and not include_page_only: include_plugin = False if include_plugin: final_plugins.append(plugin) if final_plugins: plugins = final_plugins # plugins sorted by modules plugins = sorted(plugins, key=lambda obj: unicode(obj.module)) return plugins def get_text_enabled_plugins(self, placeholder, page): plugins = self.get_all_plugins(placeholder, page) plugins +=self.get_all_plugins(placeholder, page, 'text_only_plugins') final = [] for plugin in plugins: if plugin.text_enabled: if plugin not in final: final.append(plugin) return final def get_plugin(self, name): """ Retrieve a plugin from the cache. """ self.discover_plugins() return self.plugins[name] plugin_pool = PluginPool()
[ "root@ip-172-31-19-251.us-west-2.compute.internal" ]
root@ip-172-31-19-251.us-west-2.compute.internal
0dfc17422b802593624f2382527227749645fa83
5a411f275eaf9d177bdae83c2c06990dcdff3e1e
/mm.py
e5a2c8b518855246b960d10cc8fc8f2e33e20b71
[]
no_license
jimmy1231/mental-math
9f91e6b08931dcdb7752535695939ad907d551dc
9c92af42890f466cfdaf97390e7e832d99f22822
refs/heads/master
2021-03-02T10:47:13.502317
2020-03-08T18:02:15
2020-03-08T18:02:15
245,862,312
0
0
null
null
null
null
UTF-8
Python
false
false
1,027
py
import pyttsx3 import random import math if __name__ == "__main__": ops = ['+', '-', '*', '/']; engine = pyttsx3.init() engine.setProperty('volume', 1.0) engine.setProperty('rate', 130) eval = random.randint(0, 20) print('Start with {}'.format(eval)) engine.say('Start with {}'.format(eval)) engine.runAndWait() for i in range(0, 10): op = ops[random.randint(0,len(ops)-1)] str = '' if op == '+': num = random.randint(1, 20) eval = eval + num str += 'plus {}'.format(num) elif op == '-': num = random.randint(1, 20) eval = eval - num str += 'minus {}'.format(num) elif op == '*': num = random.randint(1, 3) eval = eval * num str += 'times {}'.format(num) elif op == '/': num = random.randint(1, 3) if math.fmod(eval/num, 1) != 0: continue eval = eval / num str += 'divide by {}'.format(num) print(str) engine.say(str) engine.runAndWait() print('Did you get {}?'.format(int(eval))) engine.say('Did you get {}?'.format(int(eval))) engine.runAndWait()
[ "dfjimmy.li@gmail.com" ]
dfjimmy.li@gmail.com
2a8416de77ac7dd2c7768c9e83a912883f727d7f
05b1db9381b60f58f7372b0cb7977dc7bf700358
/sec6_lec_66_filehandling_loops_func_cond.py
318048abad7d83243b59c70ceaf140a3d24bf6ee
[]
no_license
tgolf4fun/the_python_mega_course
0b1d8370dacadfc92963dd2bf16b6b54ec4fc745
23c8519fcbd9a973bd69ac45acfb98ea56ab4388
refs/heads/master
2021-08-17T10:17:51.995596
2017-11-21T04:08:13
2017-11-21T04:08:13
108,569,577
0
0
null
null
null
null
UTF-8
Python
false
false
269
py
temperatures = [10, -20, -289, 100] def writer(temperatures): with open("files/sec6lec66.txt", "w") as file: for t in temperatures: if t > -273.15: t = t*9/5 + 32 file.write(str(t) + "\n") writer(temperatures)
[ "tgolf4fun@gmail.com" ]
tgolf4fun@gmail.com
5acee9d5a274bab67816f86b40e55547c4a86bd9
479bb9dbed79a8e3756a52d05ab74d3001a13110
/ex6.py
468ad17f638defa555b5019b9203ab9ea19d5f02
[]
no_license
DavidLohrentz/LearnPy3HardWay
49c1c8f130df916ca369449851db7a0bd5dcae5a
39ef557b9ba6f9b82defd474659eecf27441b0e1
refs/heads/master
2021-09-05T06:28:49.373804
2018-01-24T20:17:56
2018-01-24T20:17:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,141
py
print() print() # define types_of_people types_of_people = "1,000,000" # define x with formatted string containing variable above x = f"There are {types_of_people} types of people." print("<<<<<<< x after assigning value", x) # define binary binary = "binary" # define do_not do_not = "refuse to self-flaggelate" print("<<<<<< after assigning do_not", do_not) #define y formatted string with two variables y = f"Those who know {binary} and those who {do_not}." #print variable x print(x) # print variable y print(y) # print a string containing variable x print(f"I said: {x}") # print a string containing variable y print(f"I also said '{y}'") # Define variable hilarious as boolean with value of False hilarious = False # define T, N & G T = True N = "No" G = "Eat shit and die, Trump" # define joke_evaluation as a string with an undefined variable joke_evaluation = "Isn't that joke so funny?! {}" # print joke_evaluation and call hilarious to fill the empty variable print(joke_evaluation.format(G)) #define w w = "This is the left side of..." # define e e = "a banana." print(w + e)
[ "noreply@github.com" ]
DavidLohrentz.noreply@github.com
d6fd438475d5a3584caedb9bb0912b0d23438de0
7935b04458783507cc83bbed73140aae4c826f58
/docxtemplater/xml_helper.py
3270f56d85cd0df4ef8ba8d8c00ce9f4036f74ae
[]
no_license
nikhildamle/docx-templater
c164f64e6ce04b58202897eba119866584b89acf
bd7b2f654fd3976551f7bfe37875afc862893db9
refs/heads/master
2021-01-10T20:06:27.986756
2015-09-13T07:50:23
2015-09-13T07:50:23
42,385,402
0
0
null
null
null
null
UTF-8
Python
false
false
1,294
py
from xml.dom.minidom import Node, Element def get_text(node: Element): text = None for child in node.childNodes: if child.nodeType == Node.TEXT_NODE: if text is None: text = '' text += child.nodeValue return text def set_text(node: Element, text): dom = node.ownerDocument for child in node.childNodes: if child.nodeType == Node.TEXT_NODE: node.removeChild(child) text_node = dom.createTextNode(text) text_node.nodeValue = text node.appendChild(text_node) def remove_whitespace_only_nodes(node: Node): """Removes all of the whitespace-only text descendants of a DOM node. :param node: Node to cleanup If the specified node is a whitespace-only text node then it is left unmodified. """ remove_list = [] for child in node.childNodes: # Below if returns true for TEXT_NODE which contains no characters # other than spaces and old lines if child.nodeType == Node.TEXT_NODE and not child.data.strip(): remove_list.append(child) elif child.hasChildNodes(): remove_whitespace_only_nodes(child) for node in remove_list: node.parentNode.removeChild(node) node.unlink() # Garbage collect unneeded Nodes
[ "nikhilbcd@gmail.com" ]
nikhilbcd@gmail.com
90c39d6e77cf38bb10df1f74b31b59ebf3379d89
97bc215350175b6322afe94e22a468d7b522352c
/GrackleHeatingCloud_0.01/Plots/scripts/temperature_timeseries.py
fb0a1a3916c47c25c31fddcb2102c60ffc12be23
[]
no_license
rickyfernandez/enzo_runs
5e57baea83682237dfb13e081c6eb277cc22f397
62f0f914513426610aadf7b372e1a7615212ec87
refs/heads/master
2021-01-19T01:06:04.316227
2016-09-01T18:49:41
2016-09-01T18:49:41
41,223,407
0
0
null
null
null
null
UTF-8
Python
false
false
969
py
import yt import os import numpy as np import matplotlib.pyplot as plt pc_to_cm = 3.0857E18 # 1pc in cm plot_range = range(0,12,2) plot_range.append(11) num_plots = len(plot_range) colormap = plt.cm.gist_ncar plt.gca().set_color_cycle([colormap(i) for i in np.linspace(0,0.9, num_plots)]) file_names = [] for i in plot_range: file_names.append("../../DD" + `i`.zfill(4) + "/" + "cloud_collision_" + `i`.zfill(4)) labels = [] for file in file_names: ds = yt.load(file) sphere = ds.sphere("max", (75, "pc")) plot = yt.ProfilePlot(sphere, "radius", ["temperature"], weight_field="cell_mass") profile = plot.profiles[0] plt.loglog(profile.x/pc_to_cm, profile["temperature"]) labels.append(r"%0.2f Myr" % ds.current_time.value) plt.xlabel(r"Radius $(\mathrm{pc})$") plt.ylabel(r"Temperature $(\mathrm{K})$") plt.xlim(1,75) plt.legend(labels, loc="upper left", frameon=False, prop={'size':10}) plt.savefig("temperature_series")
[ "rafernandezjr@gmail.com" ]
rafernandezjr@gmail.com
a4c2fdcc6b5ae2ee1d96826b298814f675fbe913
796e17c8b983281f8ff24abc37a7ecb173ad6acd
/tests/examples/agnostic-examples/h_cost_functions/SConstruct
239c437fed168901a8c39630ed8b70e72c6009c2
[ "MIT" ]
permissive
anubhav-cs/LAPKT-public
d556783d1fc7f9b9a7f9d0b88a4a95ffdebcd2e6
87407cf6995baa50b54f63eb0c3de4e724dd23cb
refs/heads/master
2023-07-19T09:39:22.125096
2022-10-12T10:48:20
2022-10-12T10:48:20
456,788,199
1
1
null
2022-02-08T04:56:00
2022-02-08T04:55:59
null
UTF-8
Python
false
false
1,229
import os debug = ARGUMENTS.get('debug', 0) common_env = Environment() include_paths = ['../../../include', '../../../interfaces/agnostic', '../..' ] lib_paths = [ ] libs = [ ] common_env.Append( CPPPATH = [ os.path.abspath(p) for p in include_paths ] ) if int(debug) == 1 : common_env.Append( CCFLAGS = ['-g','-Wall', '-std=c++0x', '-DDEBUG' ] ) elif int(debug) == 2 : common_env.Append( CCFLAGS = ['-g','-Wall', '-std=c++0x', '-DNDEBUG' ] ) else: common_env.Append( CCFLAGS = ['-O3','-Wall', '-std=c++0x', '-DNDEBUG'] ) cxx_sources = Glob('*.cxx') c_sources = Glob('*.c') src_objs = [ common_env.Object(s) for s in cxx_sources ] + [ common_env.Object(s) for s in c_sources ] Export('common_env') src_objs += SConscript( '../../common/SConscript', 'common_env' ) generic_objs = SConscript('../../../src/SConscript.aptk') agnostic_objs = SConscript('../../../interfaces/agnostic/SConscript.agnostic') ff_wrapper_objs = SConscript('../../../interfaces/ff-wrapped/SConscript.ff') common_env.Append( LIBS=libs) common_env.Append( LIBPATH=[ os.path.abspath(p) for p in lib_paths ] ) common_env.Program( 'h-cost-funcs', src_objs + generic_objs + agnostic_objs + ff_wrapper_objs )
[ "anubhav.singh.eng@gmail.com" ]
anubhav.singh.eng@gmail.com
28b4bb1bb6be3fc429a488b7d4d0e9130a698355
8dd519098e0066a985d654576c5350280e5a9042
/master/Chapter08/07_dqn_distrib_plots.py
d215acd77ca1b93f054074481f32631c79cfbd6b
[]
no_license
mecha2k/rl_handson
491f0dfb161d0d968eb2941ade9de1c33addb282
b6f025e1cca07cfddc6eb5c4b78dc2c7a3b6071a
refs/heads/master
2023-03-22T05:49:19.932512
2021-03-15T22:49:33
2021-03-15T22:49:33
330,268,772
0
1
null
null
null
null
UTF-8
Python
false
false
10,374
py
#!/usr/bin/env python3 import gym import ptan import ptan.ignite as ptan_ignite from datetime import datetime, timedelta import argparse import random import numpy as np import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from ignite.engine import Engine from ignite.metrics import RunningAverage from ignite.contrib.handlers import tensorboard_logger as tb_logger import libc.dqn_extra from libc import dqn_model, common NAME = "07_distrib" SAVE_STATES_IMG = True SAVE_TRANSITIONS_IMG = True if SAVE_STATES_IMG or SAVE_TRANSITIONS_IMG: import matplotlib as mpl mpl.use("Agg") import matplotlib.pylab as plt Vmax = 10 Vmin = -10 N_ATOMS = 51 DELTA_Z = (Vmax - Vmin) / (N_ATOMS - 1) STATES_TO_EVALUATE = 1000 EVAL_EVERY_FRAME = 100 class DistributionalDQN(nn.Module): def __init__(self, input_shape, n_actions): super(DistributionalDQN, self).__init__() self.conv = nn.Sequential( nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(), ) conv_out_size = self._get_conv_out(input_shape) self.fc = nn.Sequential( nn.Linear(conv_out_size, 512), nn.ReLU(), nn.Linear(512, n_actions * N_ATOMS) ) self.register_buffer("supports", torch.arange(Vmin, Vmax + DELTA_Z, DELTA_Z)) self.softmax = nn.Softmax(dim=1) def _get_conv_out(self, shape): o = self.conv(torch.zeros(1, *shape)) return int(np.prod(o.size())) def forward(self, x): batch_size = x.size()[0] fx = x.float() / 256 conv_out = self.conv(fx).view(batch_size, -1) fc_out = self.fc(conv_out) return fc_out.view(batch_size, -1, N_ATOMS) def both(self, x): cat_out = self(x) probs = self.apply_softmax(cat_out) weights = probs * self.supports res = weights.sum(dim=2) return cat_out, res def qvals(self, x): return self.both(x)[1] def apply_softmax(self, t): return self.softmax(t.view(-1, N_ATOMS)).view(t.size()) def calc_values_of_states(states, net, device="cpu"): mean_vals = [] for batch in np.array_split(states, 64): states_v = torch.tensor(batch).to(device) action_values_v = net.qvals(states_v) best_action_values_v = action_values_v.max(1)[0] mean_vals.append(best_action_values_v.mean().item()) return np.mean(mean_vals) def save_state_images(frame_idx, states, net, device="cpu", max_states=200): ofs = 0 p = np.arange(Vmin, Vmax + DELTA_Z, DELTA_Z) for batch in np.array_split(states, 64): states_v = torch.tensor(batch).to(device) action_prob = net.apply_softmax(net(states_v)).data.cpu().numpy() batch_size, num_actions, _ = action_prob.shape for batch_idx in range(batch_size): plt.clf() for action_idx in range(num_actions): plt.subplot(num_actions, 1, action_idx + 1) plt.bar(p, action_prob[batch_idx, action_idx], width=0.5) plt.savefig("states/%05d_%08d.png" % (ofs + batch_idx, frame_idx)) ofs += batch_size if ofs >= max_states: break def save_transition_images( batch_size, predicted, projected, next_distr, dones, rewards, save_prefix ): for batch_idx in range(batch_size): is_done = dones[batch_idx] reward = rewards[batch_idx] plt.clf() p = np.arange(Vmin, Vmax + DELTA_Z, DELTA_Z) plt.subplot(3, 1, 1) plt.bar(p, predicted[batch_idx], width=0.5) plt.title("Predicted") plt.subplot(3, 1, 2) plt.bar(p, projected[batch_idx], width=0.5) plt.title("Projected") plt.subplot(3, 1, 3) plt.bar(p, next_distr[batch_idx], width=0.5) plt.title("Next state") suffix = "" if reward != 0.0: suffix = suffix + "_%.0f" % reward if is_done: suffix = suffix + "_done" plt.savefig("%s_%02d%s.png" % (save_prefix, batch_idx, suffix)) def calc_loss(batch, net, tgt_net, gamma, device="cpu", save_prefix=None): states, actions, rewards, dones, next_states = common.unpack_batch(batch) batch_size = len(batch) states_v = torch.tensor(states).to(device) actions_v = torch.tensor(actions).to(device) next_states_v = torch.tensor(next_states).to(device) # next state distribution next_distr_v, next_qvals_v = tgt_net.both(next_states_v) next_actions = next_qvals_v.max(1)[1].data.cpu().numpy() next_distr = tgt_net.apply_softmax(next_distr_v).data.cpu().numpy() next_best_distr = next_distr[range(batch_size), next_actions] dones = dones.astype(np.bool) # project our distribution using Bellman update proj_distr = libc.dqn_extra.distr_projection( next_best_distr, rewards, dones, Vmin, Vmax, N_ATOMS, gamma ) # calculate net output distr_v = net(states_v) state_action_values = distr_v[range(batch_size), actions_v.data] state_log_sm_v = F.log_softmax(state_action_values, dim=1) proj_distr_v = torch.tensor(proj_distr).to(device) if save_prefix is not None: pred = F.softmax(state_action_values, dim=1).data.cpu().numpy() save_transition_images( batch_size, pred, proj_distr, next_best_distr, dones, rewards, save_prefix ) loss_v = -state_log_sm_v * proj_distr_v return loss_v.sum(dim=1).mean() if __name__ == "__main__": random.seed(common.SEED) torch.manual_seed(common.SEED) params = common.HYPERPARAMS["pong"] parser = argparse.ArgumentParser() parser.add_argument("--cuda", default=False, action="store_true", help="Enable cuda") args = parser.parse_args() device = torch.device("cuda" if args.cuda else "cpu") env = gym.make(params.env_name) env = ptan.common.wrappers.wrap_dqn(env) env.seed(common.SEED) net = DistributionalDQN(env.observation_space.shape, env.action_space.n).to(device) tgt_net = ptan.agent.TargetNet(net) selector = ptan.actions.EpsilonGreedyActionSelector(epsilon=params.epsilon_start) epsilon_tracker = common.EpsilonTracker(selector, params) agent = ptan.agent.DQNAgent(lambda x: net.qvals(x), selector, device=device) exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, gamma=params.gamma) buffer = ptan.experience.ExperienceReplayBuffer(exp_source, buffer_size=params.replay_size) optimizer = optim.Adam(net.parameters(), lr=params.learning_rate) def process_batch(engine, batch): save_prefix = None prev_save = getattr(engine.state, "prev_save", 0) if SAVE_TRANSITIONS_IMG: interesting = any(map(lambda s: s.last_state is None or s.reward != 0.0, batch)) if interesting and engine.state.iteration // 30000 > prev_save: save_prefix = "images/img_%08d" % engine.state.iteration engine.state.prev_save = engine.state.iteration // 30000 optimizer.zero_grad() loss_v = calc_loss( batch, net, tgt_net.target_model, gamma=params.gamma, device=device, save_prefix=save_prefix, ) loss_v.backward() optimizer.step() epsilon_tracker.frame(engine.state.iteration) if engine.state.iteration % params.target_net_sync == 0: tgt_net.sync() eval_states = getattr(engine.state, "eval_states", None) if eval_states is None: eval_states = buffer.sample(STATES_TO_EVALUATE) eval_states = [np.array(transition.state, copy=False) for transition in eval_states] engine.state.eval_states = np.array(eval_states, copy=False) if engine.state.iteration % EVAL_EVERY_FRAME == 0: engine.state.metrics["values"] = calc_values_of_states(eval_states, net, device=device) if SAVE_STATES_IMG and engine.state.iteration % 10000 == 0: save_state_images(engine.state.iteration, eval_states, net, device=device) return { "loss": loss_v.item(), "epsilon": selector.epsilon, } engine = Engine(process_batch) ptan_ignite.EndOfEpisodeHandler(exp_source, bound_avg_reward=params.stop_reward).attach(engine) ptan_ignite.EpisodeFPSHandler().attach(engine) @engine.on(ptan_ignite.EpisodeEvents.EPISODE_COMPLETED) def episode_completed(trainer: Engine): print( "Episode %d: reward=%s, steps=%s, speed=%.3f frames/s, elapsed=%s" % ( trainer.state.episode, trainer.state.episode_reward, trainer.state.episode_steps, trainer.state.metrics.get("avg_fps", 0), timedelta(seconds=trainer.state.metrics.get("time_passed", 0)), ) ) @engine.on(ptan_ignite.EpisodeEvents.BOUND_REWARD_REACHED) def game_solved(trainer: Engine): print( "Game solved in %s, after %d episodes and %d iterations!" % ( timedelta(seconds=trainer.state.metrics["time_passed"]), trainer.state.episode, trainer.state.iteration, ) ) trainer.should_terminate = True logdir = f"runs/{datetime.now().isoformat(timespec='minutes')}-{params.run_name}-{NAME}" tb = tb_logger.TensorboardLogger(log_dir=logdir) RunningAverage(output_transform=lambda v: v["loss"]).attach(engine, "avg_loss") episode_handler = tb_logger.OutputHandler( tag="episodes", metric_names=["reward", "steps", "avg_reward"] ) tb.attach( engine, log_handler=episode_handler, event_name=ptan_ignite.EpisodeEvents.EPISODE_COMPLETED ) # write to tensorboard every 100 iterations ptan_ignite.PeriodicEvents().attach(engine) handler = tb_logger.OutputHandler( tag="train", metric_names=["avg_loss", "avg_fps", "values"], output_transform=lambda a: a ) tb.attach(engine, log_handler=handler, event_name=ptan_ignite.PeriodEvents.ITERS_100_COMPLETED) engine.run(common.batch_generator(buffer, params.replay_initial, params.batch_size))
[ "mecha2k@naver.com" ]
mecha2k@naver.com
72d60ae0420addea5f29714026881b3dbb90d936
51965a7eaa6891151274f0659402f0106f5045cb
/01-headers.py
5c4ae6e1d7d955b21fe08f96a435392c66627853
[]
no_license
Susielove/MySpider
246b699533678004f9ce62ba6e1b30bfd994ed13
091f14fed755446634fd4603ef25d65a5edf4dc7
refs/heads/master
2020-04-10T05:03:15.224090
2019-01-05T14:18:33
2019-01-05T14:18:33
160,816,339
0
0
null
null
null
null
UTF-8
Python
false
false
283
py
import requests headers ={"User-Agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 11_0 like Mac OS X) AppleWebKit/604.1.38 (KHTML, like Gecko) Version/11.0 Mobile/15A372 Safari/604.1"} response = requests.get("http://www.baidu.com",headers=headers) b = response.content.decode() print(b)
[ "44665170+Susielove@users.noreply.github.com" ]
44665170+Susielove@users.noreply.github.com
c2e7fe9e5e348b121084739d363788f95d4b4160
4f2cdd9a34fce873ff5995436edf403b38fb2ea5
/Data-Structures/List/Part2/P015.py
9bbc2f8f0beb4506bc15ef903c2418a9aa774178
[]
no_license
sanjeevseera/Python-Practice
001068e9cd144c52f403a026e26e9942b56848b0
5ad502c0117582d5e3abd434a169d23c22ef8419
refs/heads/master
2021-12-11T17:24:21.136652
2021-08-17T10:25:01
2021-08-17T10:25:01
153,397,297
0
1
null
null
null
null
UTF-8
Python
false
false
279
py
""" Write a Python program to get the frequency of the elements in a list """ import collections my_list = [10,10,10,10,20,20,20,20,40,40,50,50,30] print("Original List : ",my_list) ctr = collections.Counter(my_list) print("Frequency of the elements in the List : ",ctr)
[ "seerasanjeev@gmail.com" ]
seerasanjeev@gmail.com
ee5ad823b9c373e0a19790607fc0fe2e979a1d71
03a91e45aaa056d45d6b613c826aca4a4da12edf
/Lists.py
f7ad3467afb52c193d279bd8ccfbc02826a533b2
[]
no_license
Anoosha-Shetty/Learn-Python
deb785a3557e364b505a6f6f584f7c0340556d16
9c733004c560225bb6d80aae60cf565e408161c0
refs/heads/master
2021-01-17T05:21:40.341096
2017-03-22T23:01:12
2017-03-22T23:01:12
61,144,553
0
0
null
null
null
null
UTF-8
Python
false
false
1,232
py
fruits = ["Apple", "Banana", "Orange"] print("fruits[0]: " , fruits[0]) print("fruits[1]: " , fruits[1]) print("fruits[2]: " , fruits[2]) print("Length of the list: " , len(fruits)) for i in range(len(fruits)): pos = i + 1 pos = str(pos) fruits[i] = pos + "." + " " + fruits[i] + "**" print(fruits) fruits.append("r74385742") print(fruits) fruits.insert(2, "Strawberry") print(fruits) fruits.extend(["4t2u9tghwign", "nruwg59tu", (4,5,7), "nruwg59tu"]) print(fruits) del fruits[5] print(fruits) fruits.remove("nruwg59tu") print(fruits) del fruits[5] print(fruits) fruits.sort() print("sorted list: " , fruits) #note: if the list contains a tuple then we cannot use the sort command squares = [0,1,4,9,16,25,36,49,64,81,100] print(squares) print("squares(0:3) - " , squares[0:3]) print("squares(:5) - " , squares[:5]) print("squares(:) - " , squares[:]) print("squares(-1) - " , squares[-1]) print("squares(2:7) - " , squares[2:7]) #below command will delete 2 elements from the end del squares[-2:] print(squares) for i in range(len(squares)): print("Element : " , squares[i]) for i,j in enumerate(squares): print("Element", i, " --> ", j)
[ "noreply@github.com" ]
Anoosha-Shetty.noreply@github.com
44d5e9f7235af8fbb5cbafc29da89178edc03e76
9c2957e9e5c456c36cc1f4e15cbc8e97c1035830
/Chapters 1-11/Chapter 5/checking_usernames.py
15a32fd66f73f804987fbe1fdd6575acd3975906
[]
no_license
beardedsamwise/Python-Crash-Course
fa88e846026d234011f44e2488b94c67116560ef
6e64e9b1cd5675ef62048446188cfde5d0799f28
refs/heads/master
2020-04-30T19:11:47.791817
2019-06-23T23:45:02
2019-06-23T23:45:02
177,031,562
2
0
null
null
null
null
UTF-8
Python
false
false
423
py
current_users = ['peter','alex','john','steve','dave'] new_users = ['Ralph','Alex','Michael','Stewart','Reginald'] #finish this off current_users_lower = [] for users in current_users: current_users_lower.append(users.lower()) for new_user in new_users: if new_user.lower() in current_users_lower: print("This username " + new_user + " is not available") else: print("The username " + new_user + " is available")
[ "samjamesbentley@gmail.com" ]
samjamesbentley@gmail.com
46af2291173cadcb72ea56fa2c5ab0fd636c8a92
233eeb7ea61ff92c1a2230792a761626256805ba
/serializers/JsonSerializer.py
068997afff5052250bf4d967c20c9cdc640b2292
[]
no_license
PowerOfDark/micro_tcp
6651984879352510a24d85d169901ec689c84801
f28ccb5378b03b2d77ff7443b0de7c2089cb20b0
refs/heads/master
2020-09-21T05:47:43.223863
2019-11-28T18:55:53
2019-11-28T18:55:53
224,699,462
0
0
null
null
null
null
UTF-8
Python
false
false
289
py
import json from serializers.Serializer import Serializer class JsonSerializer(Serializer): def __init__(self): super().__init__() def serialize(self, payload): return json.dumps(payload) def deserialize(self, payload): return json.loads(payload)
[ "przem2003@o2.pl" ]
przem2003@o2.pl
bcefaa1d1848f6a61eba54b36b4a2f7e18e44c95
e0bd2e00cbdfb758872a2603b0ccf68d4c882309
/vid_addons/l10n_in_dealers_discount/l10n_in_dealers_discount.py
828f1a1aaf7bd16b63ef73d61926d3f0fa379a2b
[]
no_license
vineeth993/NiceBackUp
58fdc5cc11df50ec5baf20bce2806e1a5b617475
303e26a9b7e4e731ba13033cd15e754578dfab08
refs/heads/master
2021-07-16T23:12:22.909970
2021-06-19T09:20:28
2021-06-19T09:20:28
111,262,234
0
2
null
null
null
null
UTF-8
Python
false
false
9,639
py
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2013 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import time from openerp.osv import fields, osv from openerp.tools.translate import _ import openerp.addons.decimal_precision as dp from openerp.tools import DEFAULT_SERVER_DATE_FORMAT class sale_order_line(osv.osv): _inherit = 'sale.order.line' _columns = { 'price_dealer': fields.float('Dealer Price', readonly=True, select=True, states={'draft': [('readonly', False)], 'sent': [('readonly', False)]}), 'dealer_discount': fields.float('Dealer Discount', readonly=True, select=True, states={'draft': [('readonly', False)], 'sent': [('readonly', False)]}), 'dealer_discount_per': fields.float('Dealer Discount (%)', readonly=True, select=True, states={'draft': [('readonly', False)], 'sent': [('readonly', False)]}) } def _prepare_order_line_invoice_line(self, cr, uid, line, account_id=False, context=None): res = super(sale_order_line, self)._prepare_order_line_invoice_line(cr, uid, line=line, account_id=account_id, context=context) res = dict(res, price_dealer=line.price_dealer * line.product_uom_qty, dealer_discount=line.dealer_discount * line.product_uom_qty, dealer_discount_per=line.dealer_discount_per/100) return res def product_id_change(self, cr, uid, ids, pricelist, product, qty=0, uom=False, qty_uos=0, uos=False, name='', partner_id=False, lang=False, update_tax=True, date_order=False, packaging=False, fiscal_position=False, flag=False, context=None): ''' The purpose of this function to get value of price unit, list price, packing amount on product change. :return: return this value list price , price unit, packing amount. :rtype: dictionary ''' res = super(sale_order_line, self).product_id_change(cr, uid, ids, pricelist, product, qty=qty, uom=uom, qty_uos=qty_uos, uos=uos, name=name, partner_id=partner_id, lang=lang, update_tax=update_tax, date_order=date_order, packaging=packaging, fiscal_position=fiscal_position, flag=flag, context=context) if context is None: context = {} dealer_id = context.get('dealer_id') dealer_pricelist_id = context.get('dealer_pricelist_id') if dealer_id and dealer_pricelist_id: dealer_res = super(sale_order_line, self).product_id_change(cr, uid, ids, dealer_pricelist_id, product, qty=qty, uom=uom, qty_uos=qty_uos, uos=uos, name=name, partner_id=dealer_id, lang=lang, update_tax=False, date_order=date_order, packaging=False, fiscal_position=fiscal_position, flag=flag, context=context) price_unit = res['value']['price_unit'] price_dealer = dealer_res['value']['price_unit'] dealer_discount = price_unit - price_dealer res['value']['price_dealer'] = price_dealer res['value']['dealer_discount'] = dealer_discount res['value']['dealer_discount_per'] = (dealer_discount * 100) / price_unit return res class sale_order(osv.Model): _inherit = 'sale.order' _columns = { 'dealer_id': fields.many2one('res.partner', 'Dealer'), 'dealer_pricelist_id': fields.many2one('product.pricelist', 'Dealer Pricelist', domain=[('type','=','sale')]) } def onchange_dealer_id(self, cr, uid, ids, part, context=None): if not part: return {'value': {'dealer_pricelist_id': False}} val = {} part = self.pool.get('res.partner').browse(cr, uid, part, context=context) pricelist = part.property_product_pricelist and part.property_product_pricelist.id or False if pricelist: val['dealer_pricelist_id'] = pricelist return {'value': val} def _get_default_values(self, cr, uid, preline, context=None): res = super(sale_order, self)._get_default_values(cr, uid, preline=preline, context=context) res = dict(res, price_dealer = -preline.price_dealer, dealer_discount = -preline.dealer_discount, dealer_discount_per = -preline.dealer_discount_per ) return res def _make_invoice(self, cr, uid, order, lines, context=None): inv_obj = self.pool.get('account.invoice') obj_invoice_line = self.pool.get('account.invoice.line') if context is None: context = {} invoiced_sale_line_ids = self.pool.get('sale.order.line').search(cr, uid, [('order_id', '=', order.id), ('invoiced', '=', True)], context=context) from_line_invoice_ids = [] for invoiced_sale_line_id in self.pool.get('sale.order.line').browse(cr, uid, invoiced_sale_line_ids, context=context): for invoice_line_id in invoiced_sale_line_id.invoice_lines: if invoice_line_id.invoice_id.id not in from_line_invoice_ids: from_line_invoice_ids.append(invoice_line_id.invoice_id.id) for preinv in order.invoice_ids: if preinv.state not in ('cancel',) and preinv.id not in from_line_invoice_ids: for preline in preinv.invoice_line: res = self._get_default_values(cr, uid, preline, context=context) inv_line_id = obj_invoice_line.copy(cr, uid, preline.id, res, context=context) lines.append(inv_line_id) inv = self._prepare_invoice(cr, uid, order, lines, context=context) inv.update({ 'dealer_id':order.dealer_id.id }) inv_id = inv_obj.create(cr, uid, inv, context=context) data = inv_obj.onchange_payment_term_date_invoice(cr, uid, [inv_id], inv['payment_term'], time.strftime(DEFAULT_SERVER_DATE_FORMAT)) if data.get('value', False): inv_obj.write(cr, uid, [inv_id], data['value'], context=context) inv_obj.button_compute(cr, uid, [inv_id]) return inv_id def _prepare_order_line_move(self, cr, uid, order, line, picking_id, date_planned, context=None): res = super(sale_order, self)._prepare_order_line_move(cr, uid, order=order, line=line, picking_id=picking_id, date_planned=date_planned, context=context) res = dict(res, price_dealer = line.price_dealer, dealer_discount=line.dealer_discount, dealer_discount_per=line.dealer_discount_per) return res def _prepare_invoice(self, cr, uid, order, lines, context=None): invoice_vals = super(sale_order, self)._prepare_invoice(cr, uid, order, lines, context=context) invoice_vals.update({ 'dealer_id': order.dealer_id.id, 'dealer_pricelist_id': order.dealer_pricelist_id }) return invoice_vals class sale_advance_payment_inv(osv.osv_memory): _inherit = 'sale.advance.payment.inv' def _prepare_advance_invoice_vals(self, cr, uid, ids, context=None): if context is None: context = {} result = super(sale_advance_payment_inv, self)._prepare_advance_invoice_vals(cr, uid, ids, context) sale_obj = self.pool.get('sale.order') wizard = self.browse(cr, uid, ids[0], context) sale_ids = context.get('active_ids', []) update_val = {} for sale in sale_obj.browse(cr, uid, sale_ids, context=context): total_price_dealer = total_dealer_discount = 0.0 price_dealer = dealer_discount = 0.0 for line in sale.order_line: total_price_dealer += line.price_dealer * line.product_uom_qty total_dealer_discount += line.dealer_discount * line.product_uom_qty res = {} total_amount = 0.0 if wizard.advance_payment_method == 'percentage': price_dealer = total_price_dealer * (wizard.amount / 100) dealer_discount = total_dealer_discount * (wizard.amount / 100) total_amount = (sale.amount_total * wizard.amount) / 100 else: inv_amount = wizard.amount percent = inv_amount / sale.amount_total total_amount = inv_amount price_dealer = total_price_dealer * percent dealer_discount = total_dealer_discount * percent res['price_dealer'] = price_dealer res['dealer_discount'] = dealer_discount res['dealer_discount_per'] = dealer_discount / total_amount update_val[sale.id] = res #TODO: Need to re-implement it in best way for line in result: line[1].get('invoice_line')[0][2].update(update_val.get(line[0])) return result sale_advance_payment_inv() # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
[ "vineeth@vidts.in" ]
vineeth@vidts.in
532a4bf5539dd341150d7a4edec95945232e13fe
4b447c626792d9d38de26bcfcc1ad29de77c4b4f
/run_cross_domain_disen_sGRL_NoAE_cyc.py
b18d35507a0927e335e49acbf50f23bf5206af3f
[ "MIT" ]
permissive
jordi-bird/cross-domain-disen
d8408dfb0cd6db0c7e5afadd669a72af48a734c6
f49422d2defde5e1c88ea5bb7d2989b87fd49ce5
refs/heads/master
2020-04-23T23:50:32.100687
2019-05-08T13:28:24
2019-05-08T13:28:24
171,547,670
0
0
null
2019-02-19T20:50:56
2019-02-19T20:50:56
null
UTF-8
Python
false
false
25,766
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import numpy as np import scipy.io as sio import argparse import os import json import glob import random import collections import math import time from ops import * from model_sGRL_NoAE_cyc import create_model import os parser = argparse.ArgumentParser() parser.add_argument("--input_dir", help="path to folder containing images") # Added features mode to extract features for retrieval parser.add_argument("--mode", required=True, choices=["train", "test", "features"]) parser.add_argument("--output_dir", required=True, help="where to put output files") parser.add_argument("--seed", type=int) parser.add_argument("--checkpoint", default=None, help="directory with checkpoint to resume training from or use for testing") parser.add_argument("--max_steps", type=int, help="number of training steps (0 to disable)") parser.add_argument("--max_epochs", type=int, help="number of training epochs") parser.add_argument("--summary_freq", type=int, default=30, help="update summaries every summary_freq steps") parser.add_argument("--progress_freq", type=int, default=50, help="display progress every progress_freq steps") parser.add_argument("--trace_freq", type=int, default=0, help="trace execution every trace_freq steps") parser.add_argument("--display_freq", type=int, default=0, help="write current training images every display_freq steps") parser.add_argument("--save_freq", type=int, default=5000, help="save model every save_freq steps, 0 to disable") parser.add_argument("--separable_conv", action="store_true", help="use separable convolutions in the generator") parser.add_argument("--aspect_ratio", type=float, default=1.0, help="aspect ratio of output images (width/height)") parser.add_argument("--lab_colorization", action="store_true", help="split input image into brightness (A) and color (B)") parser.add_argument("--batch_size", type=int, default=8, help="number of images in batch") parser.add_argument("--which_direction", type=str, default="AtoB", choices=["AtoB", "BtoA"]) parser.add_argument("--ngf", type=int, default=64, help="number of generator filters in first conv layer") parser.add_argument("--ndf", type=int, default=64, help="number of discriminator filters in first conv layer") parser.add_argument("--scale_size", type=int, default=256, help="scale images to this size before cropping to 256x256") parser.add_argument("--flip", dest="flip", action="store_true", help="flip images horizontally") parser.add_argument("--no_flip", dest="flip", action="store_false", help="don't flip images horizontally") parser.set_defaults(flip=False) parser.add_argument("--lr", type=float, default=0.0002, help="initial learning rate for adam") parser.add_argument("--beta1", type=float, default=0.5, help="momentum term of adam") parser.add_argument("--l1_weight", type=float, default=100.0, help="weight on L1 term for generator gradient") parser.add_argument("--gan_weight", type=float, default=1.0, help="weight on GAN term for generator gradient") # Cross-domain-disen new arugments parser.add_argument("--gan_exclusive_weight", type=float, default=0.1, help="weight on GAN term for exclusive generator gradient") parser.add_argument("--classifier_shared_weight", type=float, default=0.2, help="weight on domain classifier term") parser.add_argument("--cyc_weight", type=float, default=100, help="weight on cycle consistency term") parser.add_argument("--noise", type=float, default=0.1, help="Stddev for noise input into representation") # export options parser.add_argument("--output_filetype", default="png", choices=["png", "jpeg"]) a = parser.parse_args() CROP_SIZE = 256 Examples = collections.namedtuple("Examples", "paths, inputsX, inputsY, count, steps_per_epoch") def load_examples(): if a.input_dir is None or not os.path.exists(a.input_dir): raise Exception("input_dir does not exist") input_paths = glob.glob(os.path.join(a.input_dir, "*.jpg")) decode = tf.image.decode_jpeg if len(input_paths) == 0: input_paths = glob.glob(os.path.join(a.input_dir, "*.png")) decode = tf.image.decode_png if len(input_paths) == 0: raise Exception("input_dir contains no image files") def get_name(path): name, _ = os.path.splitext(os.path.basename(path)) return name # if the image names are numbers, sort by the value rather than asciibetically # having sorted inputs means that the outputs are sorted in test mode if all(get_name(path).isdigit() for path in input_paths): input_paths = sorted(input_paths, key=lambda path: int(get_name(path))) else: input_paths = sorted(input_paths) with tf.name_scope("load_images"): path_queue = tf.train.string_input_producer(input_paths, shuffle=a.mode == "train") reader = tf.WholeFileReader() paths, contents = reader.read(path_queue) raw_input = decode(contents) raw_input = tf.image.convert_image_dtype(raw_input, dtype=tf.float32) assertion = tf.assert_equal(tf.shape(raw_input)[2], 3, message="image does not have 3 channels") with tf.control_dependencies([assertion]): raw_input = tf.identity(raw_input) raw_input.set_shape([None, None, 3]) if a.lab_colorization: # load color and brightness from image, no B image exists here lab = rgb_to_lab(raw_input) L_chan, a_chan, b_chan = preprocess_lab(lab) a_images = tf.expand_dims(L_chan, axis=2) b_images = tf.stack([a_chan, b_chan], axis=2) else: # break apart image pair and move to range [-1, 1] width = tf.shape(raw_input)[1] # [height, width, channels] a_images = preprocess(raw_input[:, :width // 2, :]) b_images = preprocess(raw_input[:, width // 2:, :]) # No longer in terms of input/target, but bidirectionally on domains X and Y inputsX, inputsY = [a_images, b_images] # synchronize seed for image operations so that we do the same operations to both # input and output images seed = random.randint(0, 2 ** 31 - 1) def transform(image): r = image if a.flip: r = tf.image.random_flip_left_right(r, seed=seed) # area produces a nice downscaling, but does nearest neighbor for upscaling # assume we're going to be doing downscaling here r = tf.image.resize_images(r, [a.scale_size, a.scale_size], method=tf.image.ResizeMethod.AREA) offset = tf.cast(tf.floor(tf.random_uniform([2], 0, a.scale_size - CROP_SIZE + 1, seed=seed)), dtype=tf.int32) if a.scale_size > CROP_SIZE: r = tf.image.crop_to_bounding_box(r, offset[0], offset[1], CROP_SIZE, CROP_SIZE) elif a.scale_size < CROP_SIZE: raise Exception("scale size cannot be less than crop size") return r with tf.name_scope("inputX_images"): inputX_images = transform(inputsX) with tf.name_scope("inputY_images"): inputY_images = transform(inputsY) paths_batch, inputsX_batch, inputsY_batch = tf.train.batch([paths, inputX_images, inputY_images], batch_size=a.batch_size) # shuffle Y images to obtain unpaired data inputsY_batch = tf.random.shuffle(inputsY_batch) steps_per_epoch = int(math.ceil(len(input_paths) / a.batch_size)) return Examples( paths=paths_batch, inputsX=inputsX_batch, inputsY=inputsY_batch, count=len(input_paths), steps_per_epoch=steps_per_epoch, ) def save_images(fetches, step=None): image_dir = os.path.join(a.output_dir, "images") if not os.path.exists(image_dir): os.makedirs(image_dir) filesets = [] for i, in_path in enumerate(fetches["paths"]): name, _ = os.path.splitext(os.path.basename(in_path.decode("utf8"))) fileset = {"name": name, "step": step} all_kinds = ["inputsX", "outputsX2Y", "outputsX2Yp", "im_swapped_X", "sel_auto_X", "inputsY", "outputsY2X", "outputsY2Xp", "im_swapped_Y", "sel_auto_Y", "cycX_output", "cycY_output"] for kind in all_kinds: filename = name + "-" + kind + ".png" if step is not None: filename = "%08d-%s" % (step, filename) fileset[kind] = filename out_path = os.path.join(image_dir, filename) contents = fetches[kind][i] with open(out_path, "wb") as f: f.write(contents) filesets.append(fileset) return filesets def save_features(fetches, step=None): image_dir = os.path.join(a.output_dir, "features") if not os.path.exists(image_dir): os.makedirs(image_dir) filesets = [] for i, in_path in enumerate(fetches["paths"]): name, _ = os.path.splitext(os.path.basename(in_path.decode("utf8"))) fileset = {"name": name, "step": step} filename = name + ".mat" out_path = os.path.join(image_dir, filename) sio.savemat(out_path, {'inX': fetches["inputsX"][i], 'inY': fetches["inputsY"][i], 'sR_X2Y': fetches["sR_X2Y"][i], 'sR_Y2X': fetches["sR_Y2X"][i], 'eR_X2Y': fetches["eR_X2Y"][i], 'eR_Y2X': fetches["eR_Y2X"][i]}) return filesets def append_index(filesets, step=False): index_path = os.path.join(a.output_dir, "index.html") if os.path.exists(index_path): index = open(index_path, "a") else: index = open(index_path, "w") index.write("<html><body><table><tr>") if step: index.write("<th>step</th>") index.write( "<th>name</th><th>inX</th><th>out(1)</th><th>out(2)</th><th>swap</th><th>randomimage</th><th>cyc</th><th>inY</th><th>out(1)</th><th>out(2)</th><th>swap</th><th>rnd</th><th>cyc</th></tr>") for fileset in filesets: index.write("<tr>") if step: index.write("<td>%d</td>" % fileset["step"]) index.write("<td>%s</td>" % fileset["name"]) all_kinds = ["inputsX", "outputsX2Y", "outputsX2Yp", "im_swapped_X", "sel_auto_X","cycX_output", "inputsY", "outputsY2X", "outputsY2Xp", "im_swapped_Y", "sel_auto_Y", "cycY_output"] for kind in all_kinds: index.write("<td><img src='images/%s'></td>" % fileset[kind]) index.write("</tr>") return index_path def main(): if a.seed is None: a.seed = random.randint(0, 2 ** 31 - 1) tf.set_random_seed(a.seed) np.random.seed(a.seed) random.seed(a.seed) if not os.path.exists(a.output_dir): os.makedirs(a.output_dir) if a.mode == "test" or a.mode == "features": if a.checkpoint is None: raise Exception("checkpoint required for test mode") # load some options from the checkpoint options = {"which_direction", "ngf", "ndf", "lab_colorization"} with open(os.path.join(a.checkpoint, "options.json")) as f: for key, val in json.loads(f.read()).items(): if key in options: print("loaded", key, "=", val) setattr(a, key, val) # disable these features in test mode a.scale_size = CROP_SIZE a.flip = False for k, v in a._get_kwargs(): print(k, "=", v) with open(os.path.join(a.output_dir, "options.json"), "w") as f: f.write(json.dumps(vars(a), sort_keys=True, indent=4)) examples = load_examples() print("examples count = %d" % examples.count) # inputs and targets are [batch_size, height, width, channels] model = create_model(examples.inputsX, examples.inputsY, a) # undo colorization splitting on images that we use for display/output inputsX = deprocess(examples.inputsX) inputsY = deprocess(examples.inputsY) outputsX2Y = deprocess(model.outputsX2Y) outputsY2X = deprocess(model.outputsY2X) outputsX2Yp = deprocess(model.outputsX2Yp) outputsY2Xp = deprocess(model.outputsY2Xp) outputs_exclusiveX2Y = deprocess(model.outputs_exclusiveX2Y) outputs_exclusiveY2X = deprocess(model.outputs_exclusiveY2X) im_swapped_X = deprocess(model.im_swapped_X) im_swapped_Y = deprocess(model.im_swapped_Y) sel_auto_X = deprocess(model.sel_auto_X) sel_auto_Y = deprocess(model.sel_auto_Y) sR_X2Y = model.sR_X2Y sR_Y2X = model.sR_Y2X eR_X2Y = model.eR_X2Y eR_Y2X = model.eR_Y2X cycX_output = deprocess(model.cycX_output) cycY_output = deprocess(model.cycY_output) def convert(image): if a.aspect_ratio != 1.0: # upscale to correct aspect ratio size = [CROP_SIZE, int(round(CROP_SIZE * a.aspect_ratio))] image = tf.image.resize_images(image, size=size, method=tf.image.ResizeMethod.BICUBIC) return tf.image.convert_image_dtype(image, dtype=tf.uint8, saturate=True) # reverse any processing on images so they can be written to disk or displayed to user with tf.name_scope("convert_inputsX"): converted_inputsX = convert(inputsX) with tf.name_scope("convert_inputsY"): converted_inputsY = convert(inputsY) with tf.name_scope("convert_outputsX2Y"): converted_outputsX2Y = convert(outputsX2Y) with tf.name_scope("convert_outputsY2X"): converted_outputsY2X = convert(outputsY2X) with tf.name_scope("convert_outputsX2Yp"): converted_outputsX2Yp = convert(outputsX2Yp) with tf.name_scope("convert_outputsY2Xp"): converted_outputsY2Xp = convert(outputsY2Xp) with tf.name_scope("convert_outputs_exclusiveX2Y"): converted_outputs_exclusiveX2Y = convert(outputs_exclusiveX2Y) with tf.name_scope("convert_outputs_exclusiveY2X"): converted_outputs_exclusiveY2X = convert(outputs_exclusiveY2X) with tf.name_scope("convert_im_swapped_Y"): converted_im_swapped_Y = convert(im_swapped_Y) with tf.name_scope("convert_sel_auto_Y"): converted_sel_auto_Y = convert(sel_auto_Y) with tf.name_scope("convert_im_swapped_X"): converted_im_swapped_X = convert(im_swapped_X) with tf.name_scope("convert_sel_auto_X"): converted_sel_auto_X = convert(sel_auto_X) with tf.name_scope("convert_cycX_output"): converted_cycX_output = convert(cycX_output) with tf.name_scope("convert_cycY_output"): converted_cycY_output = convert(cycY_output) with tf.name_scope("encode_images"): display_fetches = { "paths": examples.paths, "inputsX": tf.map_fn(tf.image.encode_png, converted_inputsX, dtype=tf.string, name="inputX_pngs"), "inputsY": tf.map_fn(tf.image.encode_png, converted_inputsY, dtype=tf.string, name="inputY_pngs"), "outputsX2Y": tf.map_fn(tf.image.encode_png, converted_outputsX2Y, dtype=tf.string, name="outputX2Y_pngs"), "outputsY2X": tf.map_fn(tf.image.encode_png, converted_outputsY2X, dtype=tf.string, name="outputY2X_pngs"), "outputsX2Yp": tf.map_fn(tf.image.encode_png, converted_outputsX2Yp, dtype=tf.string, name="outputX2Yp_pngs"), "outputsY2Xp": tf.map_fn(tf.image.encode_png, converted_outputsY2Xp, dtype=tf.string, name="outputY2Xp_pngs"), "outputs_exclusiveX2Y": tf.map_fn(tf.image.encode_png, converted_outputs_exclusiveX2Y, dtype=tf.string, name="output_exclusiveX2Y_pngs"), "outputs_exclusiveY2X": tf.map_fn(tf.image.encode_png, converted_outputs_exclusiveY2X, dtype=tf.string, name="output_exclusiveY2X_pngs"), "im_swapped_Y": tf.map_fn(tf.image.encode_png, converted_im_swapped_Y, dtype=tf.string, name="im_swapped_Y_pngs"), "sel_auto_Y": tf.map_fn(tf.image.encode_png, converted_sel_auto_Y, dtype=tf.string, name="sel_auto_Y_pngs"), "im_swapped_X": tf.map_fn(tf.image.encode_png, converted_im_swapped_X, dtype=tf.string, name="im_swapped_X_pngs"), "sel_auto_X": tf.map_fn(tf.image.encode_png, converted_sel_auto_X, dtype=tf.string, name="sel_auto_X_pngs"), "cycX_output": tf.map_fn(tf.image.encode_png, converted_cycX_output, dtype=tf.string, name="cycX_output_pngs"), "cycY_output": tf.map_fn(tf.image.encode_png, converted_cycY_output, dtype=tf.string, name="cycY_output_pngs") } with tf.name_scope("extract_features"): features_fetches = { "paths": examples.paths, "inputsX": converted_inputsX, "sR_X2Y": sR_X2Y, "eR_X2Y": eR_X2Y, "inputsY": converted_inputsY, "sR_Y2X": sR_Y2X, "eR_Y2X": eR_Y2X, } # summaries with tf.name_scope("X1_input_summary"): tf.summary.image("inputsX", converted_inputsX, max_outputs=3) with tf.name_scope("Y1_input_summary"): tf.summary.image("inputsY", converted_inputsY, max_outputs=3) with tf.name_scope("X2Y_output_summary"): tf.summary.image("outputsX2Y", converted_outputsX2Y, max_outputs=3) with tf.name_scope("Y2X_output2_summary"): tf.summary.image("outputsY2X", converted_outputsY2X, max_outputs=3) with tf.name_scope("swapped_1Y_summary"): tf.summary.image("im_swapped_Y", converted_im_swapped_Y, max_outputs=3) tf.summary.image("sel_auto_Y", converted_sel_auto_Y, max_outputs=3) with tf.name_scope("swapped_2X_summary"): tf.summary.image("im_swapped_X", converted_im_swapped_X, max_outputs=3) tf.summary.image("sel_auto_X", converted_sel_auto_X, max_outputs=3) with tf.name_scope("otherNoise_output_summary"): tf.summary.image("outputsX2Yp", converted_outputsX2Yp, max_outputs=3) tf.summary.image("outputsY2Xp", converted_outputsY2Xp, max_outputs=3) with tf.name_scope("zzexclusive_X2Y_summary"): tf.summary.image("outputsX2Y", converted_outputs_exclusiveX2Y, max_outputs=3) with tf.name_scope("zzexclusive_Y2X_summary"): tf.summary.image("outputsY2X", converted_outputs_exclusiveY2X, max_outputs=3) with tf.name_scope("cycX_output_summary"): tf.summary.image("cycX_output", converted_cycX_output, max_outputs=3) with tf.name_scope("cycY_output_summary"): tf.summary.image("cycY_output", converted_cycY_output, max_outputs=3) tf.summary.scalar("discriminatorX2Y_loss", model.discrimX2Y_loss) tf.summary.scalar("discriminatorY2X_loss", model.discrimY2X_loss) tf.summary.scalar("generatorX2Y_loss", model.genX2Y_loss) tf.summary.scalar("generatorY2X_loss", model.genY2X_loss) tf.summary.scalar("generator_exclusiveX2Y_loss", model.gen_exclusiveX2Y_loss) tf.summary.scalar("discriminator_exclusiveX2Y_loss", model.discrim_exclusiveX2Y_loss) tf.summary.scalar("generator_exclusiveY2X_loss", model.gen_exclusiveY2X_loss) tf.summary.scalar("discriminator_exclusiveY2X_loss", model.discrim_exclusiveY2X_loss) tf.summary.scalar("discriminator_sharedX2Y_loss", model.discrim_sharedX2Y_loss) tf.summary.scalar("discriminator_sharedY2X_loss", model.discrim_sharedY2X_loss) tf.summary.scalar("code_sR_X2Y_recon_loss", model.code_sR_X2Y_recon_loss) tf.summary.scalar("code_sR_Y2X_recon_loss", model.code_sR_Y2X_recon_loss) tf.summary.scalar("code_eR_X2Y_recon_loss", model.code_eR_X2Y_recon_loss) tf.summary.scalar("code_eR_Y2X_recon_loss", model.code_eR_Y2X_recon_loss) tf.summary.scalar("code_recon_loss", model.code_recon_loss) tf.summary.scalar("cycX_loss", model.cycX_loss) tf.summary.scalar("cycX_loss", model.cycY_loss) # for var in tf.trainable_variables(): # tf.summary.histogram(var.op.name + "/values", var) # for grad, var in model.discrimX2Y_grads_and_vars + model.genX2Y_grads_and_vars: # tf.summary.histogram(var.op.name + "/gradientsX2Y", grad) # for grad, var in model.discrimY2X_grads_and_vars + model.genY2X_grads_and_vars: # tf.summary.histogram(var.op.name + "/gradientsY2X", grad) with tf.name_scope("parameter_count"): parameter_count = tf.reduce_sum([tf.reduce_prod(tf.shape(v)) for v in tf.trainable_variables()]) saver = tf.train.Saver(max_to_keep=1) logdir = a.output_dir if (a.trace_freq > 0 or a.summary_freq > 0) else None sv = tf.train.Supervisor(logdir=logdir, save_summaries_secs=0, saver=None) with sv.managed_session(config=tf.ConfigProto( allow_soft_placement=True, log_device_placement=True)) as sess: print("parameter_count =", sess.run(parameter_count)) if a.checkpoint is not None: print("loading model from checkpoint") checkpoint = tf.train.latest_checkpoint(a.checkpoint) saver.restore(sess, checkpoint) max_steps = 2 ** 31 - 1 if a.max_epochs is not None: max_steps = examples.steps_per_epoch * a.max_epochs if a.max_steps is not None: max_steps = a.max_steps if a.mode == "test": # testing # at most, process the test data once start = time.time() max_steps = min(examples.steps_per_epoch, max_steps) for step in range(max_steps): results = sess.run(display_fetches) filesets = save_images(results) for i, f in enumerate(filesets): print("evaluated image", f["name"]) index_path = append_index(filesets) print("wrote index at", index_path) print("rate", (time.time() - start) / max_steps) elif a.mode == "features": max_steps = min(examples.steps_per_epoch, max_steps) for step in range(max_steps): results = sess.run(features_fetches) save_features(results) else: # training start = time.time() for step in range(max_steps): def should(freq): return freq > 0 and ((step + 1) % freq == 0 or step == max_steps - 1) options = None run_metadata = None if should(a.trace_freq): options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() fetches = { "train": model.train, "global_step": sv.global_step, } if should(a.progress_freq): fetches["discrimX2Y_loss"] = model.discrimX2Y_loss fetches["discrimY2X_loss"] = model.discrimY2X_loss fetches["genX2Y_loss"] = model.genX2Y_loss fetches["genY2X_loss"] = model.genY2X_loss fetches["code_recon_loss"] = model.code_recon_loss fetches["cycX_loss"] = model.cycX_loss fetches["cycY_loss"] = model.cycY_loss if should(a.summary_freq): fetches["summary"] = sv.summary_op if should(a.display_freq): fetches["display"] = display_fetches results = sess.run(fetches, options=options, run_metadata=run_metadata) if should(a.summary_freq): print("recording summary") sv.summary_writer.add_summary(results["summary"], results["global_step"]) if should(a.display_freq): print("saving display images") filesets = save_images(results["display"], step=results["global_step"]) append_index(filesets, step=True) if should(a.trace_freq): print("recording trace") sv.summary_writer.add_run_metadata(run_metadata, "step_%d" % results["global_step"]) if should(a.progress_freq): # global_step will have the correct step count if we resume from a checkpoint train_epoch = math.ceil(results["global_step"] / examples.steps_per_epoch) train_step = (results["global_step"] - 1) % examples.steps_per_epoch + 1 rate = (step + 1) * a.batch_size / (time.time() - start) remaining = (max_steps - step) * a.batch_size / rate print("progress epoch %d step %d image/sec %0.1f remaining %dm" % ( train_epoch, train_step, rate, remaining / 60)) print("discrimX2Y_loss", results["discrimX2Y_loss"]) print("discrimY2X_loss", results["discrimY2X_loss"]) print("genX2Y_loss", results["genX2Y_loss"]) print("genY2X_loss", results["genY2X_loss"]) print("code_recon_loss", results["code_recon_loss"]) print("cycX_loss", results["cycX_loss"]) print("cycY_loss", results["cycY_loss"]) if should(a.save_freq): print("saving model") saver.save(sess, os.path.join(a.output_dir, "model"), global_step=sv.global_step) if sv.should_stop(): break main()
[ "jordi.puyoles.calafell@gmail.com" ]
jordi.puyoles.calafell@gmail.com
164097886c1763fa882e36260fc4dd6d31deb96b
f291410c0162cb976e9b42c3ff5108bff9e4498a
/operators/position_suzanne.py
001dde4c5d10ecfaddad19dfa28b4fa09a7ce878
[]
no_license
PawitraStudio/PSTools
03f20897ed3498f978621c25ad78ddd30b21db92
a34d15f6ab93697e4a5f3087970f544fcfa270a2
refs/heads/master
2021-06-04T06:17:21.835779
2018-11-07T05:47:44
2018-11-07T05:47:44
57,173,184
1
0
null
null
null
null
UTF-8
Python
false
false
836
py
import bpy class KMSPositionedSuzanne(bpy.types.Operator): 'Adjust monkey to sit on the ground' bl_idname = 'ps.position_suz' bl_label = 'Suzanne Sit' @classmethod def poll(cls, context): return (context.mode == 'OBJECT') def execute(self, context): cloc = bpy.context.scene.cursor_location objs = bpy.context.selected_objects for o in objs: if o.name == "Suzanne": o.location.x = cloc.x o.location.y = cloc.y o.location.z = cloc.z+0.4955 bpy.ops.object.shade_smooth() bpy.ops.object.subdivision_set(level=3) bpy.context.object.modifiers["Subsurf"].render_levels = 3 bpy.context.object.rotation_euler.x = -0.6254132986068726 return {'FINISHED'}
[ "aditia.ap@gmail.com" ]
aditia.ap@gmail.com
cf13e49e8f4465317d1b5cc42220f8382bb2ab6b
04809a3617564ec5ce3251e1603fb99252ff1d88
/Assignment 1.py
59315cb28ac36f7ecd08bc24dcc8f0bc64acffa3
[]
no_license
keshavshah2196/Consultadd
e1ce4e0b16dcbc3744b2a24eb80034f3b06a20f5
51f59acba33c72b8e1891cba353215951f76e502
refs/heads/master
2022-07-14T16:44:22.020502
2020-05-15T00:34:49
2020-05-15T00:34:49
263,134,588
0
0
null
null
null
null
UTF-8
Python
false
false
1,265
py
#Q1 print("Q1") a,b,c=5,7,"Ktsh" print("a=",a) print("b=",b) print("c=",c) print("_-----") #Q2 print("Q2") p=8+9j q=67 print("Elements before swapping",p,q) p,q=q,p print("Elemens after swappind",p,q) print("------") #Q3 print("Q3") d=46 f=7/5 print("Original values") print("d=",d,"f=",f) temp=d d=f f=temp print("Values afetr swapping") print("d=",d,"f=",f) print("------") #Q4 print("Q4") print("------") #Q5 print("Q5") b=eval(input("Enter any number")) j=eval(input("Enter any value")) print("Additin of 2 values=",b+j) print("Result number 2:",b+j+30) print("------") #Q6 print("Q6") r=eval(input("Enter anu value")) k=eval(input("Enetr any number or string")) print("Data type for v1st variable is:",type(r)) print("Data type fpr 2nd variable is:",type(k)) print("------") #Q7 print("Q7") getValue=5/7 GetValue=9+8.6j GETVALUE="Welcome to training" print(getValue,GetValue,GETVALUE) print("------") #Q8 print("Q8") print("Yes, the value assigned to the ‘a’ variable in the second time will be the final value because Python is “Imperative” language such that it changes the state of the variable every time the variable is defined.") print("------")
[ "noreply@github.com" ]
keshavshah2196.noreply@github.com
7052ee3967aad693dfc6f1cd72bf9eb072dfe7e9
850915135e59bf50efdaa02c2d13990529557daf
/models/__init__.py
ef9be443229d80b11727e20146d8f93b9715f1b7
[ "MIT" ]
permissive
VamshiTeja/SMDL
9ab387a439f9ae5521273640b3835a1eb897258a
0dda36df9d0f2f921f365cc644f61dd81798693c
refs/heads/master
2022-11-29T09:23:39.755149
2020-11-27T08:54:57
2020-11-27T08:54:57
154,336,728
20
8
MIT
2022-11-22T03:14:42
2018-10-23T13:52:05
Python
UTF-8
Python
false
false
101
py
from .resnet import * from .SimpleNet import * from .imagenet_resnet import resnet34, resnet18_ILSVRC
[ "josephkj20@gmail.com" ]
josephkj20@gmail.com
ea1ab922b20fdef95fef88c09c6746131b654f70
c174107bfe612602658ef7bce64983b04602c92f
/ConfidenceDM/decision_model.py
d087eee1dfe144ef629f3a2b07a52e3e0aef72bc
[]
no_license
lucianopaz/unknownVarianceInferenceModel
eda0c50aa9c090c060032546cd0a36af3fdaf0db
887ef82556dddd330e30752355c3464fde8638c4
refs/heads/master
2018-09-10T12:08:32.464708
2018-06-05T10:02:17
2018-06-05T10:02:17
76,459,305
0
1
null
2017-02-15T13:59:38
2016-12-14T12:51:21
Python
UTF-8
Python
false
false
39,390
py
#!/usr/bin/python #-*- coding: UTF-8 -*- """ Decision Model package Defines the DecisionModel class, which computes the decision bounds, belief values, maps belief and accumulated evidence, computes first passage time probability distributions, convolutions with non-decision time and belief to confidence mappings. This class implements the entire decision model. Author: Luciano Paz Year: 2016 """ from __future__ import (division, print_function, absolute_import, unicode_literals) import numpy as np from scipy.signal import fftconvolve from scipy import io from scipy import optimize import math, copy, sys, warnings from .utils import normcdf, normcdfinv, normpdf, average_downsample try: from . import dmmodule except ImportError: raise ImportError('C++ extension module could not be imported, please ' 'rebuild the package or submit an issue in github.') class DecisionModel(): """ Class that implements the dynamic programming method that optimizes reward rate and computes the optimal decision bounds """ def __init__(self,model_var=None,internal_var=0.,external_var=None, prior_mu_mean=0.,prior_mu_var=1.,n=500,dt=1e-2,T=10., reward=1.,penalty=0.,iti=1.,tp=0.,cost=0.05,discrete_prior=None, prior_var_prob=None): """ Constructor input: model_var = True variance rate of the process that generates samples. If the variance is unknown by the DecisionModel, the model_var can be a numpy.ndarray specifying posible values. Notice that in this case, the prior_var_prob must be a numpy.ndarray of the same shape as model_var. If model_var is None, its value is computed from the internal_var and external_var inputs. internal_var = A float that represents the internal variance rate. If the input model_var is None, then its value is computed based on internal_var and external_var. external_var = A float or numpy.ndarray encoding the true external variance underlying the sample generation. If external_var is a numpy.ndarray, it is assumed to represent the posible variances that can underly the sample generation and the true variance is a priori unknown. If model_var is None, the value of internal_var and external_var are used to set model_var = internal_var + external_var prior_mu_mean = Mean of the prior distribution on mu prior_mu_var = Var of the prior distribution on mu n = Discretization of belief space. Number of elements in g dt = Time steps T = Max time where the value is supposed to have converged already reward = Numerical value of reward upon success penalty = Numerical value of penalty upon failure iti = Inter trial interval tp = Penalty time added to iti after failure cost = Cost of accumulating new evidence. Can be a float or a numpy ndarray. See set_cost for details of the accepted costs. discrete_prior = can be None or a tuple like (mu_prior,weight_prior) mu_prior and weight_prior must be numpy 1-D arrays of the same shape that hold the discrete set of posible positive mu values (mu_prior) and their weight (weight_prior). The initialization then renormalizes the weights to 0.5, because the prior is assumed symmetric around zero. """ if internal_var is None and external_var is None: self.model_var = model_var self.internal_var = None self.external_var = None elif internal_var is None and not model_var is None: self.model_var = model_var self.internal_var = None self.external_var = external_var elif not internal_var is None: self.model_var = internal_var+external_var self.internal_var = internal_var self.external_var = external_var if self.model_var is None: raise ValueError('The resulting model_var cannot be None. There are two alternatives to specify the model_var. 1) specify its value as the input "model_var". 2) specify "internal_var" and "external_var", in this case model_var=internal_var+external_var.') elif not(isinstance(self.model_var,float) or isinstance(self.model_var,np.ndarray)): raise ValueError('The resulting model_var must be a float or numpy.ndarray. Instead type(model_var)={0}'.format(type(self.model_var))) elif isinstance(self.model_var,np.ndarray): if self.model_var.ndim>1: raise ValueError('The resulting model_var must be a 1 dimensional numpy.ndarray') if discrete_prior: temp = copy.deepcopy(discrete_prior) self.mu_prior,self.weight_prior = temp self.prior_mu_mean = 0. self.weight_prior/=(2*np.sum(self.weight_prior)) self.prior_mu_var = np.sum(2*self.weight_prior*self.mu_prior**2) self.prior_type = 2 warnings.warn("Discrete mu prior is still an experimental feauture with buggy behavior",FutureWarning) else: self.prior_mu_mean = prior_mu_mean self.prior_mu_var = prior_mu_var self.prior_type = 1 self.set_n(n) self.dt = float(dt) self.T = float(T) self.nT = int(T/dt)+1 self.t = np.arange(0.,self.nT,dtype=np.float64)*self.dt self.set_cost(cost) self.reward = reward self.penalty = penalty self.iti = iti self.tp = tp self.rho = 0. if not self.known_variance(): if prior_var_prob is None or self.model_var.shape!=prior_var_prob.shape: raise ValueError('When model_var is an array (unknown variance), prior_var_prob must be an array with the same shape') self.prior_var_prob = prior_var_prob/np.sum(prior_var_prob) inds = self.model_var.argsort() self.model_var = self.model_var[inds] if isinstance(self.external_var,np.ndarray) and self.external_var.shape==self.model_var.shape: self.external_var = self.external_var[inds] if isinstance(self.internal_var,np.ndarray) and self.internal_var.shape==self.model_var.shape: self.internal_var = self.internal_var[inds] self.prior_var_prob = prior_var_prob[inds]/np.sum(prior_var_prob) else: self.prior_var_prob = None def known_variance(self): return isinstance(self.model_var,float) or self.model_var.size==1 def conjugate_mu_prior(self): return self.prior_type==1 def __str__(self): if hasattr(self,'_cost_details'): _cost_details = self._cost_details if _cost_details['type']<2: cost = self._cost_details['details'] else: cost = self.cost else: _cost_details = {'type':None,'details':None} cost = self.cost if hasattr(self,'bounds'): bounds = self.bounds else: bounds = None string = """ <{class_module}.{class_name} object at {address}> model_var = {model_var}, internal_var = {internal_var}, external_var = {external_var}, prior_mu_mean = {prior_mu_mean}, prior_mu_var = {prior_mu_var}, prior_type = {prior_type}, dg = {dg}, n = {n}, dt = {dt}, nT = {nT}, T = {T}, reward = {reward}, penalty = {penalty}, iti = {iti}, tp = {tp}, rho = {rho}, cost_type = {cost_type}, cost = {cost}, bounds = {bounds} """.format(class_module=self.__class__.__module__, class_name=self.__class__.__name__, address=hex(id(self)), model_var=self.model_var, internal_var=self.internal_var, external_var=self.external_var, prior_mu_mean=self.prior_mu_mean, prior_mu_var=self.prior_mu_var, prior_type=self.prior_type, dg=self.dg, n=self.n, dt=self.dt, nT=self.nT, T=self.T, reward=self.reward, penalty=self.penalty, iti=self.iti, tp=self.tp, rho=self.rho, cost_type=_cost_details['type'], cost=cost, bounds=bounds) return string def set_n(self,n): self.n = int(n) if self.n%2==0: self.n+=1 self.dg = 1./float(self.n) self.g = np.linspace(self.dg/2.,1.-self.dg/2.,self.n) def set_dt(self,dt): oldt = self.t self.dt = float(dt) self.nT = int(self.T/self.dt)+1 self.t = np.arange(0.,self.nT,dtype=np.float64)*self.dt if self._cost_details['type']==0: self.set_constant_cost(self._cost_details['details']) elif self._cost_details['type']==1: self.set_polynomial_cost(self._cost_details['details']) else: self.cost = np.interp(self.t[:-1], oldt[:-1], self.cost) def set_T(self,T): self.T = float(T) old_nT = self.nT self.nT = int(self.T/self.dt)+1 self.t = np.arange(0.,self.nT,dtype=np.float64)*self.dt if self._cost_details['type']==0: self.set_constant_cost(self._cost_details['details']) elif self._cost_details['type']==1: self.set_polynomial_cost(self._cost_details['details']) else: old_cost = self.cost self.cost = np.zeros_like(self.t) self.cost[:old_nT-1] = old_cost self.cost[old_nT-1:] = old_cost[-1] def copy(self): model_var = copy.deepcopy(self.model_var) out = DecisionModel(model_var=copy.deepcopy(self.model_var), internal_var=copy.deepcopy(self.internal_var), external_var=copy.deepcopy(self.external_var), prior_mu_mean=self.prior_mu_mean,prior_mu_var=self.prior_mu_var, n=self.n,dt=self.dt,T=self.T,reward=self.reward, penalty=self.penalty,iti=self.iti,tp=self.tp, cost=0,discrete_prior=copy.deepcopy(self.discrete_prior), prior_var_prob=self.prior_var_prob) out.cost = copy.deepcopy(self.cost) out._cost_details = copy.deepcopy(self._cost_details) try: out.value = copy.deepcopy(self.value) except: pass try: out.bounds = copy.deepcopy(self.bounds) except: pass return out def set_internal_var(self,internal_var): self.internal_var = internal_var self.model_var = self.external_var + self.internal_var def set_external_var(self,external_var): self.external_var = external_var self.model_var = self.external_var + self.internal_var def set_cost(self,cost): """ This function constructs a DecisionModel's cost array of shape (nT-1,). Syntax: self.set_cost(cost) Input: cost: a float or a numpy ndarray. If cost is a float, self.cost set as a numpy array with all of its values equal to the supplied float. If cost is a numpy ndarray, the cost array is constructed in one of two ways. If the supplied cost's shape is equal to (nT-1,) then the array is copied as is to the DecisionModel's cost array. If the shape is not equal, then the supplied array is assumed to hold the coefficients of a polynomial and the cost array is constructed as a polyval(cost,self.t[:-1]). Related functions: set_constant_cost, set_polynomial_cost, set_array_cost """ if isinstance(cost,np.ndarray) and not np.isscalar(cost): s = cost.shape if len(s)>1: raise ValueError("Cost must be a scalar or a one dimensional numpy ndarray") if s[0]==self.nT-1: self.set_cost_array(cost) else: self.set_polynomial_cost(cost) else: self.set_constant_cost(cost) def set_constant_cost(self,cost): """ self.set_constant_cost(cost) Primitive function that sets the instances cost array as self.cost = float(cost)*numpy.ones(self.nT-1) """ self.cost = float(cost)*np.ones(self.nT-1) self._cost_details = {'type':0,'details':cost} #~ self.shift_cost() def set_polynomial_cost(self,coefs): """ self.set_polynomial_cost(coefs) Primitive function that sets the instances cost array as self.cost = numpy.polyval(coefs,self.t[:-1]) """ self.cost = np.polyval(coefs,self.t[:-1]) self._cost_details = {'type':1,'details':coefs[:]} #~ self.shift_cost() def set_array_cost(self,cost,shift_cost=False): """ self.set_array_cost(cost) Primitive function that sets the instances cost array as self.cost = cost[:] """ self.cost = cost[:] self._cost_details = {'type':2,'details':None} #~ if shift_cost: #~ self.shift_cost() def shift_cost(self): """ self.shift_cost() Shift cost array rigidly until after the fixed_stim_duration """ index = (self.t>=self.fixed_stim_duration).nonzero()[0][0] self.cost[index:] = self.cost[:(self.nT-index)] self.cost[:index] = 0. def post_mu_var(self,t,var_ind=None): """ Bayes update of the posterior variance at time t post_mu_var(self,t,var_ind=None) Input: t: A float or numpy.ndarray that is the time at which the posterior mu variance is desired. """ if var_ind is None: return 1./(t/self.model_var+1./self.prior_mu_var) else: return 1./(t/self.model_var[var_ind]+1./self.prior_mu_var) def post_mu_mean(self,t,x,var_ind=None): """ Bayes update of the posterior mean at time t with cumulated sample x """ if var_ind is None: return (x/self.model_var+self.prior_mu_mean/self.prior_mu_var)*self.post_mu_var(t) else: return (x/self.model_var[var_ind]+self.prior_mu_mean/self.prior_mu_var)*self.post_mu_var(t,var_ind=var_ind) def x2g(self,t,x): """ Mapping from cumulated sample x at time t to belief self.x2g(t,x) Input: t and x: Can be floats or numpy arrays that can be broadcasted together. Output: A numpy array or float depending on the inputs with the values of the x to g mapping at times t and points x. """ if self.conjugate_mu_prior(): if self.known_variance(): # Simplest case known variance conjugate mu prior return normcdf(self.post_mu_mean(t,x)/np.sqrt(self.post_mu_var(t))) else: # Unknown variance but conjugate mu prior num = 0. den = 0. for var_ind,mvar in enumerate(self.model_var): st = np.sqrt(self.post_mu_var(t,var_ind)) pst = self.prior_var_prob[var_ind]*st num+=(pst*normcdf(self.post_mu_mean(t,x,var_ind)/st)) den+=pst return num/den else: # Discrete mu prior but known variance num = 0. den = 0. t_over_model_var = t/self.model_var x_over_model_var = x/self.model_var for mu, weight in zip(self.mu_prior,self.weight_prior): alpha_expmu2t = weight*np.exp(-0.5*mu**2*t_over_model_var) num+= alpha_expmu2t*np.exp(-mu*x_over_model_var) den+= alpha_expmu2t*np.exp(mu*x_over_model_var) return 1./(1.+num/den) def dx2g(self,t,x): """ Derivate of the mapping from cumulated sample x at time t to belief self.dx2g(t,x) Input: t and x: Can be floats or numpy arrays that can be broadcasted together. Output: A numpy array or float depending on the inputs with the derivative of the x to g mapping at times t and points x. """ if self.conjugate_mu_prior(): if self.known_variance(): # Simplest case known variance conjugate mu prior return np.exp(-0.5*self.post_mu_mean(t,x)**2/self.post_mu_var(t))*np.sqrt(self.post_mu_var(t)/(2*np.pi))/self.model_var else: # Unknown variance but conjugate mu prior num = 0. den = 0. for var_ind,mvar in enumerate(self.model_var): vt = self.post_mu_var(t,var_ind) st = np.sqrt(vt) p = self.prior_var_prob[var_ind] num+=(p*vt/mvar*np.exp(-0.5*self.post_mu_mean(t,x,var_ind)**2/vt)) den+=p*st return 0.3989422804014327*num/den else: # Discrete mu prior but known variance inv_model_var = 1./self.model_var; t_over_model_var = t*inv_model_var; x_over_model_var = x*inv_model_var; plus = 0. minus = 0. dplus = 0. dminus = 0. for mu, weight in zip(self.mu_prior,self.weight_prior): alpha_expmu2t = weight*np.exp(-0.5*mu**2*t_over_model_var) mu_over_model_var = mu*inv_model_var plus+= alpha_expmu2t*np.exp(mu*x_over_model_var) minus+= alpha_expmu2t*np.exp(-mu*x_over_model_var) dplus+= mu_over_model_var*alpha_expmu2t*np.exp(mu*x_over_model_var) dminus+= mu_over_model_var*alpha_expmu2t*np.exp(-mu*x_over_model_var) return (dminus*plus+dplus*minus)/((plus+minus)**2) def g2x(self,t,g): """ Mapping from belief at time t to cumulated sample x (inverse of x2g) """ if self.conjugate_mu_prior() and self.known_variance(): return self.model_var*(normcdfinv(g)/np.sqrt(self.post_mu_var(t))-self.prior_mu_mean/self.prior_mu_var) else: it = np.nditer([np.array(t),np.array(g),None]) for t_i,g_i,out in it: f = lambda x: self.x2g(t_i,x)-g_i fprime = lambda x: self.dx2g(t_i,x) out[...] = optimize.newton(f, 0., fprime=fprime) return it.operands[2] def xbounds(self, tolerance=1e-12, set_rho=True, set_bounds=True, return_values=False, root_bounds=None): return dmmodule.xbounds(self,tolerance=tolerance, set_rho=set_rho, set_bounds=set_bounds, return_values=return_values, root_bounds=root_bounds) xbounds.__doc__ = dmmodule.xbounds.__doc__ def xbounds_fixed_rho(self, rho=None, set_bounds=False, return_values=False): return dmmodule.xbounds_fixed_rho(self,rho=rho, set_bounds=set_bounds, return_values=return_values) xbounds_fixed_rho.__doc__ = dmmodule.xbounds_fixed_rho.__doc__ def values(self, rho=None): return dmmodule.values(self,rho=rho) values.__doc__ = dmmodule.values.__doc__ def fpt(self,mu,model_var=None,bounds=None): return dmmodule.fpt(self,mu,model_var=model_var,bounds=bounds) fpt.__doc__ = dmmodule.fpt.__doc__ def fpt_conf_matrix(self,first_passage_time, confidence_response, confidence_partition=100): return dmmodule.fpt_conf_matrix(self,first_passage_time, confidence_response, confidence_partition=confidence_partition) fpt_conf_matrix.__doc__ = dmmodule.fpt_conf_matrix.__doc__ def rt_confidence_pdf(self,first_passage_time, confidence_response, dead_time_convolver, confidence_partition=100): """ rt_confidence_pdf(self,first_passage_time, confidence_response, dead_time_convolver, confidence_partition=100) This method computes the joint probability of a given response time, confidence and performance for the supplied model parameters and first passage probability density. Input: first_passage_time: First passage time probability density. A numpy array of shape (2,self.nT) that can be the result of np.array(cost_time.DecisionModel.fpt()) confidence_response: The output from self.confidence_mapping(...) dead_time_convolver: The output from self.get_dead_time_convolver(...) confidence_partition: An int that is passed to fpt_conf_matrix in order to discretize the confidence response range. Output: The joint probability density. A numpy array with of shape (2,confidence_partition,self.nT+len(dead_time_convolver)-1). The first axis represents hits [0] or misses [1]. The second axis represents time as indeces to numpy.arange(out.shape[1])*self.dt The third axis represents the confidence as indeces to numpy.linspace(0,1,confidence_partition) """ if isinstance(dead_time_convolver,tuple): dead_time_convolver = dead_time_convolver[0] with warnings.catch_warnings(): warnings.simplefilter("ignore",np.VisibleDeprecationWarning) out = fftconvolve(self.fpt_conf_matrix(first_passage_time=first_passage_time, confidence_response=confidence_response, confidence_partition=confidence_partition), dead_time_convolver[None,None,:],mode='full') out[out<0] = 0. out/=(np.sum(out)*self.dt) return out def rt_pdf(self,first_passage_pdfs,dead_time_convolver): """ self.rt_pdf(first_passage_pdfs,dead_time_convolver) This method computes the joint probability of a given response time and performance for the supplied model parameters and the first passage probability density. Input: first_passage_pdfs: First passage probability density. A numpy array of shape (2,self.nT) that can be the output of np.array(self.fpt(...)) dead_time_convolver: The output from self.get_dead_time_convolver(...) Output: pdf: The joint probability density. A numpy array with of shape (2,self.nT+len(dead_time_convolver)-1). The first axis represents hits [0] or misses [1]. The second array represents time as indeces to numpy.arange(0,pdf.shape[1],dtype=np.float)*self.dt """ if isinstance(dead_time_convolver,tuple): dead_time_convolver = dead_time_convolver[0] with warnings.catch_warnings(): warnings.simplefilter("ignore",np.VisibleDeprecationWarning) decision_pdfs = fftconvolve(first_passage_pdfs,dead_time_convolver[None,:],mode='full') decision_pdfs[decision_pdfs<0] = 0. decision_pdfs/=(np.sum(decision_pdfs)*self.dt) return decision_pdfs def binary_confidence_rt_pdf(self,first_passage_pdfs,confidence_response,dead_time_convolver): """ self.binary_confidence_rt_pdf(first_passage_pdfs,confidence_response,dead_time_convolver) This method computes the joint probability of a given response time, binary confidence and performance for the supplied model parameters and first passage probability density. Input: first_passage_pdfs: First passage probability density. A numpy array of shape (2,self.nT) that can be the output of np.array(self.fpt(...)) confidence_response: The output from self.confidence_mapping(...) dead_time_convolver: The output from self.get_dead_time_convolver(...) Output: pdf: The joint probability density. A numpy array with of shape (2,2,self.nT+len(dead_time_convolver)-1). The first axis represents hits [0] or misses [1]. The second axis represents low [0] and high [1] confidence The third array represents time as indeces to numpy.arange(0,pdf.shape[2],dtype=np.float)*self.dt """ if isinstance(dead_time_convolver,tuple): dead_time_convolver = dead_time_convolver[0] phigh = confidence_response plow = 1.-phigh confidence_rt = np.concatenate((np.array(first_passage_pdfs)[:,None,:]*plow[:,None,:],np.array(first_passage_pdfs)[:,None,:]*phigh[:,None,:]),axis=1) with warnings.catch_warnings(): warnings.simplefilter("ignore",np.VisibleDeprecationWarning) confidence_pdfs = fftconvolve(confidence_rt,dead_time_convolver[None,None,:],mode='full') confidence_pdfs[confidence_pdfs<0] = 0. confidence_pdfs/=(np.sum(confidence_pdfs)*self.dt) return confidence_pdfs def get_dead_time_convolver(self,dead_time,dead_time_sigma,return_conv_x=False): """ self.get_dead_time_convolver(dead_time,dead_time_sigma,return_conv_x=False): This function returns the dead time (aka non-decision time) distribution, which is convolved with the first passage time probability density to get the real response time distribution. Input: dead_time: A float that represents the center of the gaussian used as the dead time distribution (actually only the upper half is used) dead_time_sigma: A float that represents the gaussian's standard deviation. return_conv_x: A bool. If True, the convolution's corresponding time numpy.array is also returned. Output: conv_val or (conv_val,conv_x) depending on whether return_conv_x is True or not. conv_val is an array with the values of the dead time distribution for the times that are in conv_x. """ must_downsample = True if self.dt>1e-3: _dt = 1e-3 else: must_downsample = False _dt = self.dt conv_x_T = dead_time+6*dead_time_sigma dense_conv_x_nT = int(conv_x_T/_dt)+1 conv_x_nT = int(conv_x_T/self.dt)+1 dense_conv_x = np.arange(0,dense_conv_x_nT)*_dt if dead_time_sigma>0: dense_conv_val = normpdf(dense_conv_x,dead_time,dead_time_sigma) dense_conv_val[dense_conv_x<dead_time] = 0. else: dense_conv_val = np.zeros_like(dense_conv_x) dense_conv_val[np.floor(dead_time/_dt)] = 1. conv_x = np.arange(0,conv_x_nT)*self.dt if must_downsample: #~ conv_val = average_downsample(dense_conv_val,conv_x_nT) if dense_conv_x_nT%conv_x_nT==0: ratio = int(np.round(dense_conv_x_nT/conv_x_nT)) else: ratio = int(np.ceil(dense_conv_x_nT/conv_x_nT)) tail = dense_conv_x_nT%ratio if tail!=0: padded_cv = np.concatenate((dense_conv_val,np.nan*np.ones(ratio-tail,dtype=np.float)),axis=0) else: padded_cv = dense_conv_val padded_cv = np.reshape(padded_cv,(-1,ratio)) conv_val = np.nanmean(padded_cv,axis=1) else: conv_val = dense_conv_val conv_val/=np.sum(conv_val) if return_conv_x: return conv_val,conv_x else: return conv_val def refine_value(self,tolerance=1e-12,dt=None,n=None,T=None): """ This method re-computes the value of the beliefs using the average reward (rho) that was already computed. """ change = False if dt is not None: if dt<self.dt: change = True oldt = self.t.copy() self.dt = float(dt) self.nT = int(self.T/self.dt)+1 self.t = np.arange(0.,self.nT,dtype=np.float64)*self.dt if self._cost_details['type']==0: self.set_constant_cost(self._cost_details['details']) elif self._cost_details['type']==1: self.set_polynomial_cost(self._cost_details['details']) else: self.cost = np.interp(self.t[:-1], oldt[:-1], self.cost) if T is not None: if T>self.T: change = True self.T = float(T) old_nT = self.nT old_cost = self.cost self.nT = int(self.T/self.dt)+1 self.t = np.arange(0.,self.nT,dtype=np.float64)*self.dt if self._cost_details['type']==0: self.set_constant_cost(self._cost_details['details']) elif self._cost_details['type']==1: self.set_polynomial_cost(self._cost_details['details']) else: self.cost = np.zeros_like(self.t) self.cost[:old_nT-1] = old_cost self.cost[old_nT-1:] = old_cost[-1] if n is not None: n = int(n) if n%2==0: n+=1 if n>self.n: change = True self.n = n self.g = np.linspace(0.,1.,self.n) if change: temp = self.xbounds_fixed_rho(set_bounds=True, return_values=True) val0 = temp[2][0,int(0.5*self.n)] if abs(val0)>tolerance: if val0<0: ub = self.rho lb = self.rho-1e-2 else: ub = self.rho+1e-2 lb = self.rho xbs = self.xbounds(tolerance=tolerance, set_rho=True, set_bounds=True, root_bounds=(lb,ub)) else: self.value = temp[0] xbs = (temp[0],temp[1]) else: xbs = self.belief_bound_to_x_bound() xbs = (xbs[0],xbs[1]) return xbs def log_odds(self): ret = np.log(self.bounds)-np.log(1-self.bounds) ret[1]*=-1 return ret def confidence_mapping(self,high_confidence_threshold,confidence_map_slope,confidence_mapping_method='log_odds'): """ self.high_confidence_mapping(high_confidence_threshold,confidence_map_slope) Get the high confidence mapping as a function of time. Returns a numpy array of shape (2,self.nT) The output[0] is the mapping for hits and output[1] is the mapping for misses. """ if confidence_mapping_method=='log_odds': return self.confidence_mapping_log_odds(high_confidence_threshold,confidence_map_slope) elif confidence_mapping_method=='belief': return self.confidence_mapping_belief(high_confidence_threshold,confidence_map_slope) else: raise ValueError('Undefined high confidence mapping method: {0}'.format(confidence_mapping_method)) def confidence_mapping_log_odds(self,high_confidence_threshold,confidence_map_slope): """ self.high_confidence_mapping_log_odds(high_confidence_threshold,confidence_map_slope) Backend of self.high_confidence_mapping that implements the log_odds mapping. Returns the same type as self.high_confidence_mapping. """ if self.dt>1e-3: _dt = 1e-3 else: _dt = None if _dt: _nT = int(self.T/_dt)+1 _t = np.arange(0.,_nT,dtype=np.float64)*_dt log_odds = self.log_odds() log_odds = np.array([np.interp(_t,self.t,log_odds[0]),np.interp(_t,self.t,log_odds[1])]) else: _nT = self.nT log_odds = self.log_odds() _dt = self.dt # Likely to raise warnings with exp overflows or invalid values in multiply # if confidence_map_slope is inf or log_odds==high_confidence_threshold # These issues are resolved naturally in the two-line statements with warnings.catch_warnings(): warnings.simplefilter("ignore") phigh = 1./(1.+np.exp(confidence_map_slope*(high_confidence_threshold-log_odds))) phigh[high_confidence_threshold==log_odds] = 0.5 if _dt: if _nT%self.nT==0: ratio = int(np.round(_nT/self.nT)) else: ratio = int(np.ceil(_nT/self.nT)) tail = _nT%ratio if tail!=0: padded_phigh = np.concatenate((phigh,np.nan*np.ones((2,ratio-tail),dtype=np.float)),axis=1) else: padded_phigh = phigh padded_phigh = np.reshape(padded_phigh,(2,-1,ratio)) phigh = np.nanmean(padded_phigh,axis=2) return phigh def confidence_mapping_belief(self,high_confidence_threshold,confidence_map_slope): """ self.high_confidence_mapping_belief(high_confidence_threshold,confidence_map_slope) Backend of self.high_confidence_mapping that implements the belief mapping. Returns the same type as self.high_confidence_mapping. """ if self.dt>1e-3: _dt = 1e-3 else: _dt = None if _dt: _nT = int(self.T/_dt)+1 _t = np.arange(0.,_nT,dtype=np.float64)*_dt belief = self.bounds.copy() belief = np.array([np.interp(_t,self.t,2*(belief[0]-0.5)),np.interp(_t,self.t,2*(0.5-belief[1]))]) else: _nT = self.nT belief = self.bounds.copy() belief[0] = 2*(belief[0]-0.5) belief[1] = 2*(0.5-belief[1]) _dt = self.dt with warnings.catch_warnings(): warnings.simplefilter("ignore") phigh = confidence_map_slope*(belief-high_confidence_threshold) phigh[np.isnan(phigh)] = 0.5 phigh[phigh>1] = 1 phigh[phigh<0] = 0 if _dt: if _nT%self.nT==0: ratio = int(np.round(_nT/self.nT)) else: ratio = int(np.ceil(_nT/self.nT)) tail = _nT%ratio if tail!=0: padded_phigh = np.concatenate((phigh,np.nan*np.ones((2,ratio-tail),dtype=np.float)),axis=1) else: padded_phigh = phigh padded_phigh = np.reshape(padded_phigh,(2,-1,ratio)) phigh = np.nanmean(padded_phigh,axis=2) return phigh def diffusion_path_samples(mu,var_rate,dt,T,xb,reps=10): paths = [] sigma = np.sqrt(var_rate*dt) if not isinstance(mu,np.ndarray): mus = mu*np.ones(reps) else: mus = mu nT = int(T/dt)+1 for mu in mus: path = {'x':[0],'t':[0]} decided = False for t_i in np.arange(1,nT): t = t_i*dt stim = sigma*np.random.randn(1)+mu*dt path['x'].append(path['x'][-1]+stim) path['t'].append(t) if path['x'][-1]>=xb[0][t_i+1]: path['dec']=1 path['rt']=t decided = True break elif path['x'][-1]<=xb[1][t_i+1]: path['dec']=2 path['rt']=t decided = True break if not decided: path['dec']=None path['rt']=None paths.append(path) return sorted(paths,key=lambda path:path['rt'], reverse=True) def sim_rt(mu,var_rate,dt,T,xb,reps=10000): if not isinstance(mu,np.ndarray): mu = mu*np.ones(reps) sim = np.zeros_like(mu) rt = np.zeros_like(mu) decision = np.zeros_like(mu) not_decided = np.ones_like(mu,dtype=np.bool) sigma = np.sqrt(dt*var_rate) nT = int(T/dt)+1 for i in range(1,nT): t = float(dt)*i sim+= sigma*np.random.randn(*mu.shape) stim = sim+t*mu dec1 = np.logical_and(stim>=xb[0][i+1],not_decided) dec2 = np.logical_and(stim<=xb[1][i+1],not_decided) if any(dec1): rt[dec1] = t decision[dec1] = 1 not_decided[dec1] = 0 if any(dec2): rt[dec2] = t decision[dec2] = 2 not_decided[dec2] = 0 if not any(not_decided): break out = (rt,decision) return out def _test(): out = dmmodule.testsuite() dict1,dict2,dict3,t,cx,cg1,cg2,cg3,cdg1,cdg2,cdg3,cx1,cx2,cx3 = out dict1['T'] = dict2['T'] = dict3['T'] = 3. d1 = DecisionModel(**dict1) d2 = DecisionModel(**dict2) d3 = DecisionModel(**dict3) d1.set_internal_var(10.) d2.set_internal_var(10.) d3.set_internal_var(10.) print(d1) print(d2) print(d3) from matplotlib import pyplot as plt from matplotlib.colors import LogNorm x = np.linspace(-30,30,100) dx = x[1]-x[0] g1 = d1.x2g(t,x)[:,None] g2 = d2.x2g(t,x)[:,None] g3 = d3.x2g(t,x)[:,None] dg1 = d1.dx2g(t,x) dg2 = d2.dx2g(t,x) dg3 = d3.dx2g(t,x) numdg1 = np.vstack(((g1[1,:]-g1[0,:])/dx,0.5*(g1[2:,:]-g1[:-2,:])/dx,(g1[-1,:]-g1[-2,:])/dx)) numdg2 = np.vstack(((g2[1,:]-g2[0,:])/dx,0.5*(g2[2:,:]-g2[:-2,:])/dx,(g2[-1,:]-g2[-2,:])/dx)) numdg3 = np.vstack(((g3[1,:]-g3[0,:])/dx,0.5*(g3[2:,:]-g3[:-2,:])/dx,(g3[-1,:]-g3[-2,:])/dx)) x1 = d1.g2x(t,g1[:,0]) x2 = d2.g2x(t,g2[:,0]) x3 = d3.g2x(t,g3[:,0]) plt.subplot(131) plt.plot(x,g1,label='conj',color='b') plt.plot(x,g2,label='discrete mu',color='g') plt.plot(x,g3,label='discrete var',color='r') plt.plot(cx,cg1,label='C conj',color='b',linestyle='--') plt.plot(cx,cg2,label='C discrete mu',color='g',linestyle='--') plt.plot(cx,cg3,label='C discrete var',color='r',linestyle='--') plt.legend(loc='best', fancybox=True, framealpha=0.5) plt.title('x2g') plt.subplot(132) plt.plot(x,dg1,label='conj',color='b') plt.plot(x,dg2,label='discrete mu',color='g') plt.plot(x,dg3,label='discrete var',color='r') plt.plot(cx,cdg1,label='C conj',color='b',linestyle='--') plt.plot(cx,cdg2,label='C discrete mu',color='g',linestyle='--') plt.plot(cx,cdg3,label='C discrete var',color='r',linestyle='--') plt.title('dx2g') plt.subplot(133) plt.plot(cx,x1-cx1,label='C conj',color='b',linestyle='-') plt.plot(cx,x2-cx2,label='C discrete mu',color='g',linestyle='-') plt.plot(cx,x3-cx3,label='C discrete var',color='r',linestyle='-') plt.title('g2x') plt.suptitle(r'x $\leftrightarrow$ Mapping') print(t) print('conj') xub1,xlb1,v1,ve1,_,_ = d1.xbounds(return_values=True) print(d1.rho) print('discrete mu') xub2,xlb2,v2,ve2,_,_ = d2.xbounds(return_values=True) print(d2.rho) print('discrete var') xub3,xlb3,v3,ve3,_,_ = d3.xbounds(return_values=True) print(d3.rho) plt.figure() plt.subplot(211) plt.plot(d1.t,xub1,'b',label='Conj') plt.plot(d1.t,xlb1,'b') plt.plot(d2.t,xub2,'g',label='Discrete mu') plt.plot(d2.t,xlb2,'g') plt.plot(d3.t,xub3,'r',label='Discrete var') plt.plot(d3.t,xlb3,'r') plt.legend(loc='best', fancybox=True, framealpha=0.5) plt.ylabel('x(t) bounds') plt.subplot(212) plt.plot(d1.t,d1.bounds[0],'b',label='Conj') plt.plot(d1.t,d1.bounds[1],'b') plt.plot(d2.t,d2.bounds[0],'g',label='Discrete mu') plt.plot(d2.t,d2.bounds[1],'g') plt.plot(d3.t,d3.bounds[0],'r',label='Discrete var') plt.plot(d3.t,d3.bounds[1],'r') plt.suptitle('Bounds') plt.ylabel('g(t) bounds') plt.xlabel('T') print('Computing rt') print('Conj') mu = 1. rt1 = np.array(d1.fpt(mu,bounds=(xub1,xlb1))) print('Discrete mu') rt2 = np.array(d2.fpt(mu,bounds=(xub2,xlb2))) rt3 = np.zeros_like(rt1) for model_var,prior_var_prob in zip(d3.model_var,d3.prior_var_prob): print('Discrete var: {0}'.format(model_var)) rt3+= np.array(d3.fpt(mu,bounds=(xub1,xlb1),model_var=model_var))*prior_var_prob plt.figure() plt.plot(d1.t,rt1[0],'b',label='Conj hit') plt.plot(d1.t,rt1[1],'--b',label='Conj miss') plt.plot(d2.t,rt2[0],'g',label='Discrete mu') plt.plot(d2.t,rt2[1],'--g') plt.plot(d3.t,rt3[0],'r',label='Discrete var hit') plt.plot(d3.t,rt3[1],'--r',label='Discrete var miss') plt.ylabel('RT prob') plt.xlabel('T') plt.legend(loc='best', fancybox=True, framealpha=0.5) plt.suptitle('First passage time') plt.figure() plt.subplot(311) plt.imshow((v1[1:]-ve1).T,aspect='auto',cmap='jet',interpolation='none',origin='lower',extent=[d1.t[0],d1.t[-1],d1.g[0],d1.g[-1]]) plt.colorbar() plt.subplot(312) plt.imshow((v2[1:]-ve2).T,aspect='auto',cmap='jet',interpolation='none',origin='lower',extent=[d2.t[0],d2.t[-1],d2.g[0],d2.g[-1]]) plt.colorbar() plt.subplot(313) plt.imshow((v3[1:]-ve3).T,aspect='auto',cmap='jet',interpolation='none',origin='lower',extent=[d3.t[0],d3.t[-1],d3.g[0],d3.g[-1]]) plt.colorbar() plt.suptitle(r'$\tilda{V}-V_{explore}') print('Computing confidence mappings') high_confidence_threshold = 0.3 confidence_map_slope = 1.7 dead_time = 0.2 dead_time_sigma = 0.4 confidence_response1 = d1.confidence_mapping(high_confidence_threshold,confidence_map_slope,confidence_mapping_method='belief') confidence_response2 = d2.confidence_mapping(high_confidence_threshold,confidence_map_slope,confidence_mapping_method='belief') confidence_response3 = d3.confidence_mapping(high_confidence_threshold,confidence_map_slope,confidence_mapping_method='belief') plt.figure() ax = plt.subplot(211) plt.plot(d1.t,(d1.bounds.T*2-1)*np.array([1,-1]),label='conj') plt.plot(d2.t,(d2.bounds.T*2-1)*np.array([1,-1]),label='Discrete mu') plt.plot(d3.t,(d3.bounds.T*2-1)*np.array([1,-1]),label='Discrete var') plt.ylabel('Normed Belief') plt.subplot(212,sharex=ax) plt.plot(d1.t,confidence_response1.T,label='conj') plt.plot(d2.t,confidence_response2.T,label='Discrete mu') plt.plot(d3.t,confidence_response3.T,label='Discrete var') plt.ylabel('Confidence response') plt.xlabel('T') print('Computing first passage time confidence response partition matrix') fpt_conf1 = d1.fpt_conf_matrix(rt1,confidence_response1,100) fpt_conf2 = d2.fpt_conf_matrix(rt2,confidence_response2,100) fpt_conf3 = d3.fpt_conf_matrix(rt3,confidence_response3,100) plt.figure() ax1 = plt.subplot(231) plt.imshow(fpt_conf1[0].T,aspect='auto',cmap='jet',origin='lower',interpolation='none',extent=[d1.t[0],d1.t[-1],0,1]) plt.plot(d1.t,confidence_response1[0],'--k') plt.title('Conj') ax2 = plt.subplot(232) plt.imshow(fpt_conf2[0].T,aspect='auto',cmap='jet',origin='lower',interpolation='none',extent=[d2.t[0],d2.t[-1],0,1]) plt.plot(d2.t,confidence_response2[0],'--k') plt.title('Discrete mu') ax3 = plt.subplot(233) plt.imshow(fpt_conf3[0].T,aspect='auto',cmap='jet',origin='lower',interpolation='none',extent=[d3.t[0],d3.t[-1],0,1]) plt.plot(d3.t,confidence_response3[0],'--k') plt.title('Discrete var') plt.subplot(234,sharex=ax1) plt.plot(d1.t,np.sum(fpt_conf1,axis=1).T) plt.plot(d1.t,rt1.T,'--') plt.ylabel('Prob') plt.xlabel('T') plt.subplot(235,sharex=ax2) plt.plot(d2.t,np.sum(fpt_conf2,axis=1).T) plt.plot(d2.t,rt2.T,'--') plt.xlabel('T') plt.subplot(236,sharex=ax3) plt.plot(d3.t,np.sum(fpt_conf3,axis=1).T) plt.plot(d3.t,rt3.T,'--') plt.xlabel('T') print('Computing dead time convolver and adding dead time to response time distributions') dead_time_convolver1 = d1.get_dead_time_convolver(dead_time,dead_time_sigma) dead_time_convolver2 = d2.get_dead_time_convolver(dead_time,dead_time_sigma) dead_time_convolver3 = d3.get_dead_time_convolver(dead_time,dead_time_sigma) rt_conf1 = d1.rt_confidence_pdf(rt1,confidence_response1,dead_time_convolver1,100) rt_conf2 = d2.rt_confidence_pdf(rt2,confidence_response2,dead_time_convolver2,100) rt_conf3 = d3.rt_confidence_pdf(rt3,confidence_response3,dead_time_convolver3,100) t1 = np.arange(rt_conf1.shape[1])*d1.dt t2 = np.arange(rt_conf2.shape[1])*d2.dt t3 = np.arange(rt_conf3.shape[1])*d3.dt plt.figure() ax = plt.subplot(231) plt.imshow(rt_conf1[0].T,aspect='auto',cmap='jet',origin='lower',interpolation='none',extent=[t1[0],t1[-1],0,1]) ax = plt.subplot(234) plt.imshow(rt_conf1[1].T,aspect='auto',cmap='jet',origin='lower',interpolation='none',extent=[t1[0],t1[-1],0,1]) ax = plt.subplot(232) plt.imshow(rt_conf2[0].T,aspect='auto',cmap='jet',origin='lower',interpolation='none',extent=[t2[0],t2[-1],0,1]) ax = plt.subplot(235) plt.imshow(rt_conf2[1].T,aspect='auto',cmap='jet',origin='lower',interpolation='none',extent=[t2[0],t2[-1],0,1]) ax = plt.subplot(233) plt.imshow(rt_conf3[0].T,aspect='auto',cmap='jet',origin='lower',interpolation='none',extent=[t3[0],t3[-1],0,1]) ax = plt.subplot(236) plt.imshow(rt_conf3[1].T,aspect='auto',cmap='jet',origin='lower',interpolation='none',extent=[t3[0],t3[-1],0,1]) print('Finished test suite') plt.show(True) if __name__=="__main__": _test()
[ "chulo1787@gmail.com" ]
chulo1787@gmail.com
207c2c9724fd0274e408dc29c05b801c94a3e1be
262c70153995349ccb80fb3f4a6e9a85c4495d9b
/web/turk/catalog/migrations/0007_auto_20171122_2107.py
06cdf3ecb182099aa49a8867767be458600ed857
[]
no_license
nghiank/rec_table
2ec43bc673a731e13daf5b69f9cce6be4b295bb6
d0f25716b932cc01a57fb476898b2fd297b7e227
refs/heads/master
2022-04-30T04:05:54.316739
2022-03-27T20:20:01
2022-03-27T20:20:01
100,076,073
0
0
null
null
null
null
UTF-8
Python
false
false
676
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2017-11-22 21:07 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('catalog', '0006_auto_20171107_1502'), ] operations = [ migrations.AddField( model_name='cell', name='file_path', field=models.CharField(default=' ', help_text='S3 relative file path', max_length=254), preserve_default=False, ), migrations.AlterUniqueTogether( name='cell', unique_together=set([('image_sheet', 'file_path')]), ), ]
[ "nghiank@hotmail.com" ]
nghiank@hotmail.com
bb78898b6eaa938bae587f12df5d3feac094861e
52a023aee8818c6b1fa8316ff0b6ab83ed00d211
/aircraft/aircraft.py
43864d8bc7bbc278a71112cfdd1efe6e5eb17f7b
[ "MIT" ]
permissive
6110-CTO/piawaredump1090wrapper
9092c1aa3d237b55ec437620d328df57f774b71c
c7cc1570a797f12b00908e2e49eb7fd2954f3752
refs/heads/master
2023-06-21T19:50:05.363966
2020-04-13T21:35:46
2020-04-13T21:35:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,601
py
from .calculate_distance_of_aircraft import calculate_distance_of_aircraft from .exceptions import NotofTypeFloat, IncorrectDeltaCalculation, IncorrectLngLat class Aircraft: """ Airacraft class containg information regarding a single aircraft. Some notes about arugments: Note: maybe we can make another class or method that tracks location? Note: hex is ICAO number. ADSBexchange gives it the name hex. Note: lat and lng have differing names in class verus API Note: gs is ground speed. Note: alt_geom is altitude icaco_number is used to identify the object when created """ def __init__(self, hex, flight=None, squawk=None, lat=None, lon=None, alt_geom=None, geom_rate=None, track=None, gs=None, seen=None, *args, **kwargs,): self.icao_number = hex self.flight = flight self.squawk = squawk self.lat = lat self.lng = lon self.altitude = alt_geom self.ver_rate = geom_rate self.track = track self.speed = gs self.seen = seen self.is_within_distance = None # boolean if within a certain distance self.distance_specific_point = None # value from that distance def __repr__(self): """ :Returns: Flight number if available or ICACO number """ if self.flight is not None: return f'{self.flight}' else: return f'{self.icao_number}' def __str__(self): """ :Returns: Flight number if available or ICACO number """ if self.flight is not None: return f'{self.flight}' else: return f'{self.icao_number}' def __eq__(self, other): """ Compares the two icao numbers and returns. ICAO is the identifies for a unique aircarft """ return self.icao_number == other.icao_number def __key(self): """ Key for __hash__ """ return (self.icao_number) def __hash__(self): """ Hashes based on __key, which is the icao number """ hash_val = hash(self.__key()) print(hash_val) return hash_val def update_info(self, **kwargs) -> bool: """ Updates attirubutes of the airplane. :param: **kwargs: Dictionary of values to update :return: Boolean value if update was sucessful or not """ #: To-do: Check if an attributes exists before adding it. if not kwargs: return False for key, value in kwargs.items(): setattr(self, key, value) return True def get_aircraft_within_specific_distance(self, distance: float, lat: float, lng: float) -> float: """ Returns the aircrafts distance from a cente :params: distance: The radius to be measured from the central point in lng and lat lng: Longitude of location lat: Latitude of location """ _dist = None try: _dist = calculate_distance_of_aircraft(lat, lng, self.lat, self.lng) self.distance_specific_point = _dist except NotofTypeFloat as err: self.distance_specific_point = None except IncorrectLngLat as err: self.distance_specific_point = None except IncorrectDeltaCalculation as err: self.distance_specific_point = None if self.distance_specific_point and _dist <= distance: self.is_within_distance = True else: self.is_within_distance = False return _dist def get_aircraft_info(self) -> tuple: """ Returns a tuple of all parameters of the aircraft. Some may be "None" if they did not get populated during init. Usually due to lack of information from the ADSB scanner. :param: None :return: Tuple of all characteristics of the aircraft """ return ( f'ICAO#: {self.icao_number}, \ Flight#: {self.flight}, \ SQUAWK: {self.squawk}, \ LAT: {self.lat}, \ LNG: {self.lng}, \ ALT: {self.altitude}ft, \ VERT_RATE: {self.ver_rate}, \ TRACK: {self.track}, \ SPEED: {self.speed}kt, \ SEEN: {self.seen}, \ ')
[ "kc8@users.noreply.github.com" ]
kc8@users.noreply.github.com
c709c9a204f4ac884ebdf50acfacc83a34d4793a
f1878806a8787d607705158906a830b06f7cdcf8
/tests/utils/tensorflow/test_data_generator.py
7f92f97cd90ce2dadde295e564267079afde9480
[ "MIT", "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
2boloto/rasa
58c1511c2bbc98e8b15900bd011a6f4d0dcf1d81
6a73b2e799b495411af46230dbc02f5edec3741c
refs/heads/main
2023-04-11T03:42:24.370663
2021-04-29T15:55:40
2021-04-29T15:55:40
362,908,820
1
1
Apache-2.0
2021-04-29T18:19:04
2021-04-29T18:19:03
null
UTF-8
Python
false
false
6,496
py
import pytest import scipy.sparse import numpy as np from rasa.utils.tensorflow.model_data import FeatureArray, RasaModelData from rasa.utils.tensorflow.data_generator import ( RasaDataGenerator, RasaBatchDataGenerator, ) def test_data_generator_with_increasing_batch_size(model_data: RasaModelData): epochs = 2 data_generator = RasaBatchDataGenerator( model_data, batch_size=[1, 2], epochs=epochs, batch_strategy="balanced", shuffle=True, ) expected_batch_sizes = [[1, 1, 1, 1, 1], [2, 2, 1]] for _epoch in range(epochs): iterator = iter(data_generator) assert len(data_generator) == len(expected_batch_sizes[_epoch]) for i in range(len(data_generator)): batch, _ = next(iterator) assert len(batch) == 11 assert len(batch[0]) == expected_batch_sizes[_epoch][i] with pytest.raises(StopIteration): next(iterator) data_generator.on_epoch_end() def test_data_generator_with_fixed_batch_size(model_data: RasaModelData): data_generator = RasaBatchDataGenerator( model_data, batch_size=2, epochs=1, batch_strategy="balanced", shuffle=True ) expected_batch_sizes = [2, 2, 1] iterator = iter(data_generator) assert len(data_generator) == len(expected_batch_sizes) for i in range(len(data_generator)): batch, _ = next(iterator) assert len(batch) == 11 assert len(batch[0]) == expected_batch_sizes[i] with pytest.raises(StopIteration): next(iterator) @pytest.mark.parametrize( "incoming_data, expected_shape", [ (FeatureArray(np.random.rand(7, 12), number_of_dimensions=2), (7, 12)), (FeatureArray(np.random.rand(7), number_of_dimensions=1), (7,)), ( FeatureArray( np.array( [ np.random.rand(1, 10), np.random.rand(3, 10), np.random.rand(7, 10), np.random.rand(1, 10), ] ), number_of_dimensions=3, ), (4, 7, 10), ), ( FeatureArray( np.array( [ np.array( [ np.random.rand(1, 10), np.random.rand(5, 10), np.random.rand(7, 10), ] ), np.array( [ np.random.rand(1, 10), np.random.rand(3, 10), np.random.rand(3, 10), np.random.rand(7, 10), ] ), np.array([np.random.rand(2, 10)]), ] ), number_of_dimensions=4, ), (8, 7, 10), ), ], ) def test_pad_dense_data(incoming_data: FeatureArray, expected_shape: np.ndarray): padded_data = RasaDataGenerator._pad_dense_data(incoming_data) assert padded_data.shape == expected_shape @pytest.mark.parametrize( "incoming_data, expected_shape", [ ( FeatureArray( np.array([scipy.sparse.csr_matrix(np.random.randint(5, size=(7, 12)))]), number_of_dimensions=3, ), [1, 7, 12], ), ( FeatureArray( np.array([scipy.sparse.csr_matrix(np.random.randint(5, size=(7,)))]), number_of_dimensions=2, ), [1, 1, 7], ), ( FeatureArray( np.array( [ scipy.sparse.csr_matrix(np.random.randint(10, size=(1, 10))), scipy.sparse.csr_matrix(np.random.randint(10, size=(3, 10))), scipy.sparse.csr_matrix(np.random.randint(10, size=(7, 10))), scipy.sparse.csr_matrix(np.random.randint(10, size=(1, 10))), ] ), number_of_dimensions=3, ), (4, 7, 10), ), ( FeatureArray( np.array( [ np.array( [ scipy.sparse.csr_matrix( np.random.randint(10, size=(1, 10)) ), scipy.sparse.csr_matrix( np.random.randint(10, size=(5, 10)) ), scipy.sparse.csr_matrix( np.random.randint(10, size=(7, 10)) ), ] ), np.array( [ scipy.sparse.csr_matrix( np.random.randint(10, size=(1, 10)) ), scipy.sparse.csr_matrix( np.random.randint(10, size=(3, 10)) ), scipy.sparse.csr_matrix( np.random.randint(10, size=(1, 10)) ), scipy.sparse.csr_matrix( np.random.randint(10, size=(7, 10)) ), ] ), np.array( [ scipy.sparse.csr_matrix( np.random.randint(10, size=(2, 10)) ) ] ), ] ), number_of_dimensions=4, ), (8, 7, 10), ), ], ) def test_scipy_matrix_to_values( incoming_data: FeatureArray, expected_shape: np.ndarray ): indices, data, shape = RasaDataGenerator._scipy_matrix_to_values(incoming_data) assert np.all(shape == expected_shape)
[ "noreply@github.com" ]
2boloto.noreply@github.com
41f27f6cf3509d3cdac25470365372a01d6a6123
ffdea80b45e9c86abde16bf77c05589b1901d64f
/froide_exam/__init__.py
e9ae091b0acbcbf56486c18daf32536a8c039176
[ "MIT" ]
permissive
okfde/froide-exam
081315f061d54969ad2441c8411f7e8a8915ae81
1f7baf4c2e72a623e17962d111efcd9dbf3ad875
refs/heads/main
2023-01-28T16:13:23.636740
2023-01-24T17:38:51
2023-01-24T17:38:51
159,523,223
2
1
MIT
2023-01-23T16:48:07
2018-11-28T15:26:41
Python
UTF-8
Python
false
false
79
py
__version__ = '0.0.1' default_app_config = 'froide_exam.apps.FroideExamConfig'
[ "12673799+krmax44@users.noreply.github.com" ]
12673799+krmax44@users.noreply.github.com
f589c68eff5b987ab19d8b991f42b49334791897
3a913e87c7301b43c995482246394efac042db26
/venv/bin/pip3.7
0ad8aedd5f40a6cbf006c1c23103341bdc0b77bd
[]
no_license
ananthgoyal/Raga_Indentification
bdf1119f3672cb0ccc6707ff5a31e387b5aa9449
40276340be12a1b62e2fca4d4bc2ae1f7e6a0fcc
refs/heads/master
2023-02-06T11:00:48.431506
2020-12-28T21:32:50
2020-12-28T21:32:50
324,671,425
0
0
null
null
null
null
UTF-8
Python
false
false
426
7
#!/Users/ananthgoyal/PycharmProjects/Raga_Indentification/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3.7' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3.7')() )
[ "ananthgoyal@gmail.com" ]
ananthgoyal@gmail.com
8e532955036b1f55a5d628d121dbb98e2d470b75
b0ad03dc1ad141ef9d669758e6f295787b71a721
/api/server.py
c87aee62570101ef9d27226fda49a110d0c0b796
[]
no_license
AlecAivazis/recipeBook
5e375fd01813a19eb15f3e74033211ba685b4b74
92522c5d678b85b9f03c7d8815c765dcbf30f911
refs/heads/master
2023-03-12T14:15:59.887428
2017-12-18T02:01:36
2017-12-18T02:01:36
52,736,616
0
4
null
2017-12-18T02:01:37
2016-02-28T18:33:32
Python
UTF-8
Python
false
false
298
py
# external imports import nautilus # create a nautilus service with just the schema class RecipeBookAPI(nautilus.APIGateway): @nautilus.auth_criteria('recipe') async def auth_recipe(self, model, user_id): # only recipes with id 2 are visible return await model._has_id(2)
[ "alec@aivazis.com" ]
alec@aivazis.com
955c655db3b4b204697aa1b3c2295968e255b9a7
7d0c6df6480402642a327b1e6bca353047cea444
/app/.~c9_invoke_NNKGkQ.py
550f3e20837a23b76f47741511c1cb799a97820a
[]
permissive
HaywardPeirce/battlesnake
b7ab99016ea9d624e71c1969cfb1e56d0e9bcf5c
759c399c60a1f292a621dc276cb1a02f164e1134
refs/heads/master
2020-04-21T04:37:02.342034
2019-02-13T05:28:37
2019-02-13T05:28:37
169,317,516
1
0
MIT
2019-02-13T05:28:38
2019-02-05T21:40:48
Python
UTF-8
Python
false
false
16,102
py
from battlesnakeClasses import * import random, math #import each of the component files running sections of the snake #check if squatchy will hit himself def squatchyHitCheck(squatchy, score): #get current squatchy head location print("------------------------------------------------") print("Checking whether squatchy will hit himself") print("squatchy head: [{}]".format(squatchy.head())) #see if squatchy's head will hit his body tempDirection = squatchy.conllisionCheck(squatchy.head(), score) #print(tempDirection) tempDirection.printMoves() return tempDirection #get list of squatchy non-head locations #bodyLocations = #check if squatchy will run into a wall def wallHitCheck(squatchy, height, width, freespaceScore): print("------------------------------------------------") print("Checking whether squatchy will hit the wall") print("squatchy head: [{}]".format(squatchy.head())) #how wide is the board? #freespaceScore = 1 tempDirection = MoveChoices() #if squatchy isnt right up againts to left side of the board if squatchy.head()[0] > 0: tempDirection.left = freespaceScore #if squatchy isn't right up againt the right side (assuming board locations are indexed starting at 0) if squatchy.head()[0] < (width - 1): tempDirection.right = freespaceScore if squatchy.head()[1] > 0: tempDirection.up = freespaceScore if squatchy.head()[1] < (height - 1): tempDirection.down = freespaceScore tempDirection.printMoves() return tempDirection def enemyHitCheck(squatchy, enemies, score): print("------------------------------------------------") print("Check whether squatchy will hit any other snakes") #loop through each enemy, `conllisionCheck` for our snake head print("squatchy head: [{}]".format(squatchy.head())) #value to use when weighting enemy detection #score = 1 #set initial enemy direction to "safe" as hit detection will set unsafe options to 0 enemyDirections = MoveChoices(score, score, score, score) #loop through each enemy snake for enemy in enemies: print("------------------------") print("Checking whether squatchy will hit '{}'".format(enemy.name)) #see if squatchy's head will collide with any part of this enemy snake tempDirection = enemy.conllisionCheck(squatchy.head(), score) tempDirection.printMoves() enemyDirections.boolDownMoves(tempDirection) #if the scores for the hit checks againts this snake turn up new collisons, count out those moves. (less than means a new dangerous move) # if tempDirection.up < enemyDirections.up: # enemyDirections.up = tempDirection.up # if tempDirection.down < enemyDirections.down: # enemyDirections.down = tempDirection.down # if tempDirection.right < enemyDirections.right: # enemyDirections.right = tempDirection.right # if tempDirection.left < enemyDirections.left: # enemyDirections.left = tempDirection.left enemyDirections.printMoves("After `enemyDirections` for {}".format(enemy.name)) return enemyDirections def moveToSameCheck(squatchy, enemies, score): print("------------------------------------------------") print("Check whether squatchy might be moving to the same square as another snake") enemyDirections = MoveChoices(score, score, score, score) directions = [(0,-1),(1,0),(1,1),(-1,0)] #TODO: squatchyNextTurn = squatchy.possibleMoves() print("squatchy head: [{}]".format(squatchy.head())) #loop through each enemy for enemy in enemies: print("------------------------") print("Checking whether squatchy might move into '{}'".format(enemy.name)) #print("{} head: [{}]".format(enemy.name, enemy.head())) enemyNextTurn = enemy.possibleMoves() #loop through the enemies possible moves, and check if it would collide with where squatchy would be for position in enemyNextTurn: tempDirection = conllisionCheck(position, squatchy.head(), score) #tempDirection.printMoves() enemyDirections.boolDownMoves(tempDirection) #if the scores for the hit checks againts this snake turn up new collisons, count out those moves. (less than means a new dangerous move) # if tempDirection.up < enemyDirections.up: # enemyDirections.up = tempDirection.up # if tempDirection.down < enemyDirections.down: # enemyDirections.down = tempDirection.down # if tempDirection.right < enemyDirections.right: # enemyDirections.right = tempDirection.right # if tempDirection.left < enemyDirections.left: # enemyDirections.left = tempDirection.left enemyDirections.printMoves("After `enemyDirections` for {}".format(enemy.name)) return enemyDirections def foodCheck(squatchy, height, width, food, score): print("------------------------------------------------") print("Check whether squatchy should head towards any food") foodDirections = MoveChoices() bestDist = max(height, width) bestFood = [] #calculate directions to closest food. Maybe see of we are the closest as well? for nibble in food: #tempDistance = math.sqrt( ((squatchy.head()[0]-nibble[0])**2)+((squatchy.head()[1]-nibble[1])**2) ) #just sum each component of the distance rather than finding the diagonal route tempDistance = abs(squatchy.head()[0]-nibble[0]) + abs(squatchy.head()[1]-nibble[1]) if tempDistance < bestDist: bestFood = [tuple((nibble[0],nibble[1]))] bestDist = tempDistance elif tempDistance == bestDist: bestFood.append(tuple((nibble[0],nibble[1]))) #print(squatchy.health, score) print("The best food items are {}, and are {} spaces away.".format(bestFood, bestDist)) #TODO: work out scaling/weighting factor based on how hungry squatchy is. Maybe look at using the distance to the food if squatchy.health > 30: score = score/2 #elif squatchy.health < 20 and bestDist > 10: elif squatchy.health < 20: score = score*3 print("The weighted food score is now {}".format(score)) #loop through the food items that are closest for item in bestFood: tempDirection = squatchy.directionCheck(item, score) #tempDirection.printMoves("after best direction") #take all the directions which lead to the closest foods, but don't go above the value of `score` if tempDirection.up > foodDirections.up: foodDirections.up = tempDirection.up if tempDirection.down > foodDirections.down: foodDirections.down = tempDirection.down if tempDirection.right > foodDirections.right: foodDirections.right = tempDirection.right if tempDirection.left > foodDirections.left: foodDirections.left = tempDirection.left foodDirections.printMoves("The recommendation for `foodCheck` is ") return foodDirections #return the direction of the quadant with the least other snakes in it def findOpenSpace(squatchy, enemies, gameBoard, score): print("------------------------------------------------") print("Check which directions lead towards open space") tempDirection = MoveChoices(score, score, score, score) #q1, q2, q3, q4 = 0, 0, 0, 0 #set the x and y values that the higher-numbered quadrants will start on #tempDirection.addMoves(gameBoard.wayToMin(squatchy.head(), enemies)) tempDirection.boolDownMoves(gameBoard.wayToMin(squatchy.head(), enemies, 100)) #TODO: check which quadrant has the least snake parts, move there. If there are two equally empty ones? #find min value #find which quadrants have this least value #find squatchy quadrants #return directionToQuadrant() tempDirection.printMoves("After `findOpenSpace`(inside): ") return tempDirection #return a string of which way squatchy should move def turn(turnData, gameBoard, squatchy, enemies): #TODO: setup snakes based on the their initial positions #print('hello world') #print(turnData) # myLocation = [] # for point in turnData['you']['body']['data']: # myLocation.append(tuple((point['x'],point['y']))) # # squatchy.locations = myLocation # squatchy.health = turnData['you']['health'] # squatchy.length = turnData['you']['length'] #update positions, length, and health of each of the opponent snakes. Maybe check if it's turn 1 to initilize (name, ID...) the snakes, otherwise just update the values #first turn, setup opponent snakes #if turnData['turn'] == 0: #TODO: setup initialization info about each snake #add food points into game boad declaration gameBoard.food = [] gameBoard.addFood(turnData['food']['data']) enemies = [] for snake in turnData['snakes']['data']: tempSnake = Snake(snake['id'], snake['name']) tempLocations = [] for location in snake['body']['data']: tempLocations.append(tuple((location['x'],location['y']))) tempSnake.locations = tempLocations tempSnake.length = snake['length'] tempSnake.health = snake['health'] if snake['id'] == turnData['you']['id']: print("Adding data in for snake: {} (squatchy)".format(snake['name'])) squatchy = tempSnake squatchy.isUs = True else: print("Adding data in for snake: {}".format(snake['name'])) enemies.append(tempSnake) #non-first turn snake updates: positions, length, and health # else: # #TODO: second turn+ snake info updates # # for snake in turnData['snakes']['data']: # # for enemy in enemies: # #print(enemy.id) # #print(enemy.name) # # if enemy.id == snake['id']: # print(snake['id']) # print(snake['name']) # # print(enemy.locations) # # tempLocations = [] # for location in snake['body']['data']: # tempLocations.append(tuple((location['x'],location['y']))) # # enemy.locations = tempLocations # # enemy.length = snake['length'] # # enemy.health = snake['health'] #initialize the security score for the turn as being zero securityScore = MoveChoices(100,100,100,100) strategyScore = MoveChoices() #list of moves which are allowed from a security standpoint, and are optimal from a strategy standpoint finalDirectionList = [] #securityScore checks, to make sure this next turn's move is safe #check to see we wont hit ourself #securityScore.addMoves(squatchyHitCheck(squatchy, 100)) securityScore.boolDownMoves(squatchyHitCheck(squatchy, 100)) securityScore.printMoves("After `squatchyHitCheck`: ") #check to see we won't hit a wall #securityScore.addMoves(wallHitCheck(squatchy, gameBoard.height, gameBoard.width, 100)) securityScore.boolDownMoves(wallHitCheck(squatchy, gameBoard.height, gameBoard.width, 100)) securityScore.printMoves("After `wallHitCheck`: ") #check to see we won't hit another snake #securityScore.addMoves(enemyHitCheck(squatchy, enemies, 100)) securityScore.boolDownMoves(enemyHitCheck(squatchy, enemies, 100)) securityScore.printMoves("After `enemyHitCheck`: ") #TODO: check to see if another snake might move into the same spot as us next turns securityScore.boolDownMoves(moveToSameCheck(squatchy, enemies, 100)) securityScore.printMoves("After `moveToSameCheck`: ") #if the `securityScore.bestDirection` is a list, move on to the strategyScore direction #returns a list of directions that should be moved in securityScoreDirections = securityScore.bestDirection() if len(securityScoreDirections) == 1: print("------------------------------------------------") print("The only safe direction to move is: {}".format(securityScoreDirections)) #return the only element of the list of available moves return securityScoreDirections[0] #else, if the `securityScore.bestDirection` is only one direction, return that elif len(securityScoreDirections) > 1: print("------------------------------------------------") print("There is more than one safe choice({}), moving on to use strategy choices".format(securityScoreDirections)) #strategyScore calculations #TODO: check to see if another snake might move into the same spot as us next turns # strategyScore.addMoves(moveToSameCheck(squatchy, enemies, 100)) # strategyScore.printMoves("After `moveToSameCheck`: ") #TODO: check to see if the snake will have moved away from a spot next turn. maybe have this and `moveToSameCheck` in security check? #TODO: check if they are moving into an enclosed space, don't do that (flood fill?) #TODO: check to see if we an eat next turn print("------------------------------------------------") #print(gameBoard.food) if gameBoard.food: if squatchy.health < 50: strategyScore.addMoves(foodCheck(squatchy, gameBoard.height, gameBoard.width, gameBoard.food, 100)) strategyScore.printMoves("After `foodCheck`: ") else: print("Squatchy's health is above 50, so no food moves will be recommended") else: print("There is no food on the board") # simplest stategy play is moving to the empty quadrant strategyScore.addMoves(findOpenSpace(squatchy, enemies, gameBoard, 100)) print("------------------------------------------------") strategyScore.printMoves("After `findOpenSpace`: ") #TODO: advanced strategy move checks #reconcile security and strategy scores print("------------------------------------------------") print("strategyScore bestDirection:") strategyScoreDirections = strategyScore.bestDirection() #loop through each of the good security moves, and better strategy moves for secureDirection in securityScoreDirections: for stratDirection in strategyScoreDirections: #if the move in strategy is also safe, add it to the final list of moves that could be made if secureDirection == stratDirection: finalDirectionList.append(secureDirection) else: print("------------------------------------------------") print("No safe move available, returning totally random direction") #fallback, return a random direction returnValue = random.choice("up", "right", "down", "left") print("Returning totally random direction: {}".format(returnValue)) return returnValue print("------------------------------------------------") print("finalDirectionList: {}".format(finalDirectionList)) #if there is only one "final" approved move, return that if len(finalDirectionList) == 1: return finalDirectionList[0] #if there are multiple options for safe and strategic moves, return a random one elif len(finalDirectionList) > 1: returnValue = random.choice(finalDirectionList) print("Returning random move from multiple finalDirectionList options: {}".format(returnValue)) return returnValue else: print("------------------------------------------------") print("couldn't work out a strategic move to make, falling back to random safe move") #fallback, return a random direction returnValue = random.choice(securityScoreDirections) print("Returning random safe move: {}".format(returnValue)) return returnValue
[ "noreply@github.com" ]
HaywardPeirce.noreply@github.com
47d46c7d33dabb7020a5068dbdaaf4be937aceac
fb9371054b6ce236c6b202cc51c6bc98a3483060
/Python_code/温度转换.py
140faf39bf17196b0dd75cfc0e3cf9b6cc6990b5
[]
no_license
skymoonfp/python_learning
621d5e72c5b356fd507e4a00c463ea8d565588fb
1e8340303809d8c7c3af3201084b158c1784f22e
refs/heads/master
2020-06-04T10:07:27.009212
2019-06-19T13:52:44
2019-06-19T13:52:44
191,978,868
0
0
null
null
null
null
UTF-8
Python
false
false
452
py
# TempConvert.py for i in range(3): val = input("请输入带温度表示符号的温度值(例如:32C):") if val[-1] in ['C', 'c']: f = 1.8 * float(val[0:-1]) + 32 print("转换后的温度为:%.2fF" % f) elif val[-1] in ['F', 'f']: c = (float(val[0:-1]) - 32) / 1.8 print("转换后的温度为:%.2fC" % c) else: print("输入有误") print('\n') input("请按回车键退出!")
[ "954918@qq.com" ]
954918@qq.com
abf2922e39479afdfe5a6e1d45f967bfc3638731
aec4af85df25a0ddda5d67fdf29299e0831a6233
/controller/auth_decorator.py
4c0e3d112e80133110c73144092d07ae13de45b1
[]
no_license
charliebrown314/StartupCentral
9068875cb0c1288b2ed8b05ef153051316115032
d5c22be1d565a3b5bcfe2a8993541b589d92da61
refs/heads/master
2023-01-02T21:15:09.520376
2020-10-25T13:57:47
2020-10-25T13:57:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
869
py
from flask import session from functools import wraps def login_required(f): @wraps(f) def decorated_function(*args, **kwargs): user = dict(session).get('profile', None) # You would add a check here and usethe user id or something to fetch # the other data for that user/check if they exist if user: return f(*args, **kwargs) return 'You need to login to view this page' return decorated_function def requires_access_level(access_level): def decorator(f): @wraps(f) def decorated_function(*args, **kwargs): user = dict(session).get('profile', None) if user and user["access_level"] >= access_level: return f(*args, **kwargs) return 'You need higher permissions to view this' return decorated_function return decorator
[ "jmacias@buffalo.edu" ]
jmacias@buffalo.edu
c40701fb8d96eab1d4aaa9bee3007096c7172f85
7310939920afe496c04b955f0f27635ea7d5336d
/lists/migrations/0003_list.py
1ec3b29a4b30595a91697a574afba98e9e9c41fd
[]
no_license
liuxscn/superlists_dev
d0948c33b9652f0694a6934de45de4d2c5c8b4c1
dd58546751f82e83fe363f0c4e8a80d37423371e
refs/heads/master
2021-06-19T11:04:02.701819
2019-06-26T09:19:59
2019-06-26T09:19:59
186,582,675
0
0
null
2021-06-10T21:28:07
2019-05-14T08:48:33
JavaScript
UTF-8
Python
false
false
507
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.10 on 2019-05-06 11:32 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('lists', '0002_item_text'), ] operations = [ migrations.CreateModel( name='List', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ], ), ]
[ "emlliuxiang@126.com" ]
emlliuxiang@126.com
59e7790c6c4ef66d796b0e1c45ec5b6d63f65425
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_055/ch164_2020_06_15_19_30_32_293205.py
ac84822dea86b620649440fd541237100d42a2d1
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
def traduz(words, eng2port): palavras = [] for word in words: for ing, port in eng2port.items(): if word == ing: palavras.append(port) return palavras
[ "you@example.com" ]
you@example.com
e2434f40a00d22e0c2f82535ba496a02aa1cc1a5
714537c7579a79dcd1a3337de12d183e7bbdb103
/data_operation/augmentation/mosaic_instance_coco.py
170079e32533f8ea9232a5035733f3c1928b8fee
[ "MIT" ]
permissive
lyw615/code_accumulation
5cfba3260bcd53a191886f57770c5fcaa34dad0b
5b2a5c039a725def37e19f226906ed1087880118
refs/heads/main
2023-09-06T03:58:12.907777
2021-11-16T04:07:52
2021-11-16T04:07:52
366,018,841
3
0
MIT
2021-11-16T04:07:53
2021-05-10T11:26:53
Python
UTF-8
Python
false
false
28,635
py
import sys,os file_path = os.path.abspath(__file__) sys.path.append(os.path.abspath(os.path.join(file_path, "..", "..","..", ".."))) from code_aculat.visualize.visual_base import draw_multi_bboxes import numpy as np import json,copy import cv2 as cv from PIL import Image,ImageDraw import random import matplotlib.pyplot as plt from albumentations import Resize,HorizontalFlip,VerticalFlip,ChannelShuffle from matplotlib.colors import rgb_to_hsv, hsv_to_rgb from pycocotools.coco import COCO def rand(a=0, b=1): # 总区间的比例再加上区间下限,生成随机数 return np.random.rand() * (b - a) + a def merge_bboxes(bboxes, cutx, cuty, h, w, save_proportion): """ 对于合成到新图像中的bbox,单个部分超出cutx,y以及新图片宽高的进行删除或者修改,保留不低于原来面积指定比例的bbox """ merge_bbox = [] for i in range(len(bboxes)): for box in bboxes[i]: tmp_box = [] x1, y1, x2, y2 = box[0], box[1], box[2], box[3] raw_x1, raw_y1, raw_x2, raw_y2 = box[0], box[1], box[2], box[3] clipped = False if i == 0: # 合成后的图被cutx,cuty分成四个部分,单个图超出界限的将被覆盖,这里y1,x1就是判断是否超出该部分界限,以下i==之后的第一个判断都是这个意图 if y1 > cuty or x1 > cutx: continue # ***处理x和y方向上,跨越界限的y2或者x2,如果这个bbox这样处理之后在x,y任一方向上小于5个像素,那就舍弃改bbox,而我也是在这里判断保留比例 if y2 >= cuty and y1 <= cuty: clipped = True y2 = cuty if x2 >= cutx and x1 <= cutx: clipped = True x2 = cutx if clipped: cut_area = (x2 - x1) * (y2 - y1) raw_area = (raw_x2 - raw_x1) * (raw_y2 - raw_y1) if not (cut_area / raw_area >= save_proportion): continue elif i == 1: if y2 < cuty or x1 > cutx or y1 > h: continue if y2 >= cuty and y1 <= cuty: clipped = True y1 = cuty if x2 >= cutx and x1 <= cutx: clipped = True x2 = cutx if clipped: cut_area = (x2 - x1) * (y2 - y1) raw_area = (raw_x2 - raw_x1) * (raw_y2 - raw_y1) if not (cut_area / raw_area >= save_proportion): continue elif i == 2: if y2 < cuty or x2 < cutx or x1 > w or y1 > h: continue if y2 >= cuty and y1 <= cuty: clipped = True y1 = cuty if x2 >= cutx and x1 <= cutx: clipped = True x1 = cutx if clipped: cut_area = (x2 - x1) * (y2 - y1) raw_area = (raw_x2 - raw_x1) * (raw_y2 - raw_y1) if not (cut_area / raw_area >= save_proportion): continue elif i == 3: if y1 > cuty or x2 < cutx or x1 > w: continue if y2 >= cuty and y1 <= cuty: clipped = True y2 = cuty if x2 >= cutx and x1 <= cutx: clipped = True x1 = cutx if clipped: cut_area = (x2 - x1) * (y2 - y1) raw_area = (raw_x2 - raw_x1) * (raw_y2 - raw_y1) if not (cut_area / raw_area >= save_proportion): continue tmp_box.append(x1) tmp_box.append(y1) tmp_box.append(x2) tmp_box.append(y2) tmp_box.append(box[-1]) # bbox有5列,最后一列是类别编号 merge_bbox.append(tmp_box) return merge_bbox def show_two_image(image1, image2, title=None): # 同时可视化两个RGB或者mask from matplotlib import pyplot as plt fig = plt.figure(figsize=(10, 10)) ax1 = plt.subplot(1, 2, 1) ax2 = plt.subplot(1, 2, 2) plt.sca(ax1) plt.imshow(image1) plt.sca(ax2) plt.imshow(image2) if title: plt.title(title) plt.show() def get_rgb(v): """ 获取RGB颜色 :param v: 十六进制颜色码 :return: RGB颜色值 """ r, g, b = v[1:3], v[3:5], v[5:7] return int(r, 16), int(g, 16), int(b, 16) # def get_resize_scale(index,): def get_mosaic_coco(save_proportion=0.9, hue=.1, sat=1.5, val=1.5, proc_img=True, color_p=(3, 6), color_aug=False): json_path=r"G:\hrsc\annotations\train.json" image_dir=r"G:\hrsc\images\val" coco = COCO(json_path) imgIds=coco.getImgIds() catIds=coco.getCatIds() seleted_imgids = np.random.choice(imgIds, 4) min_offset_x = 0.4 min_offset_y = 0.4 scale_low = 1 - min(min_offset_x, min_offset_y) scale_high = scale_low + 0.2 image_datas = [] mask_datas = [] bbox_datas = [] index = 0 # place_x,y组合起来就是这张图复制到新图上,所在的左上角坐标 # images=jf['images'] # imgid2img_info={} # imgid2annos={} # for anno in jf['annotations']: # if anno['image_id'] not in imgid2annos.keys(): # imgid2annos[anno['image_id']]=[] # # imgid2annos[anno['image_id']].append(anno) # # for img in jf['images']: # imgid2img_info[img['id']]=img h,w=0,0 for imid in seleted_imgids: #选中图片里最大的作为最终合成图片的size img=coco.loadImgs(int(imid)) if not img: break img=img[0] h=max(img['height'],h) w=max(img['width'],w) place_x = [0, 0, int(w * min_offset_x), int(w * min_offset_x)] place_y = [0, int(h * min_offset_y), int(h * min_offset_y), 0] #处理单张数据 for imid in seleted_imgids: #获取该图上的mask img=coco.loadImgs(int(imid)) if not img: break img=img[0] annIds=coco.getAnnIds(imgIds=img['id'],catIds=catIds,iscrowd=None) annos=coco.loadAnns(annIds) # 获取该图上的bbox和class_id cat_ids_img=[] bboxes_img=[] if len(annos)>0: mask_raw=coco.annToMask(annos[0])*annos[0]['category_id'] cat_ids_img.append(annos[0]['category_id']) bboxes_img.append(annos[0]['bbox']) for i in range(len(annos)-1): mask_raw+=coco.annToMask(annos[i+1])*annos[i+1]['category_id'] cat_ids_img.append(annos[i+1]['category_id']) bboxes_img.append(annos[i+1]['bbox']) img_origin_path=os.path.join(image_dir,img['file_name']) # 打开图片 image = Image.open(img_origin_path) image = image.convert("RGB") # 打开图片的大小 iw, ih = image.size if len(bboxes_img) < 1: "没有标签,那后续的操作无法进行" break bbox = np.array(bboxes_img) bbox[:,2]+=bbox[:,0] bbox[:,3]+=bbox[:,1] # shw_img = image # draw_multi_bboxes(shw_img, bbox) # drawed_img = np.array(shw_img, dtype=np.uint8) # show_two_image(drawed_img, drawed_img) bbox = np.insert(bbox, 4, cat_ids_img, axis=1) # image.save(str(index)+".jpg") # 是否翻转图片 flip = rand() < .5 if flip and len(bbox) > 0: image = image.transpose(Image.FLIP_LEFT_RIGHT) mask_raw=cv.flip(mask_raw, flipCode=1) bbox[:, [0, 2]] = iw - bbox[:, [2, 0]] # 将图片进行放置,分别对应四张分割图片的左上角位置 dx = place_x[index] dy = place_y[index] # 缩放后的图片应该能够填充满指定区域 if index == 0: min_x, min_y = place_x[2], place_y[2] elif index == 1: min_x, min_y = place_x[2], h - place_y[2] elif index == 2: min_x, min_y = w - place_x[2], h - place_y[2] elif index == 3: min_x, min_y = w - place_x[2], place_y[2] scale = rand(scale_low, scale_high) nw,nh=int(iw*scale),int(ih*scale) min_scale=min(nw/min_x,nh/min_y,1)+0.001 nw,nh=int(nw/min_scale),int(nh/min_scale) # show_two_image(image,mask_raw) # 图片resize到指定尺寸 image = image.resize((nw, nh), Image.BICUBIC) mask = cv.resize(mask_raw, dsize=(nw, nh), interpolation=cv.INTER_NEAREST) # show_two_image(image,mask) # 进行色域变换,用现成的 hue = rand(-hue, hue) sat = rand(1, sat) if rand() < .5 else 1 / rand(1, sat) val = rand(1, val) if rand() < .5 else 1 / rand(1, val) x = rgb_to_hsv(np.array(image) / 255.) x[..., 0] += hue x[..., 0][x[..., 0] > 1] -= 1 x[..., 0][x[..., 0] < 0] += 1 x[..., 1] *= sat x[..., 2] *= val x[x > 1] = 1 x[x < 0] = 0 image = hsv_to_rgb(x) image = Image.fromarray((image * 255).astype(np.uint8)) # **image.show() # w h 是设定的合成后图片的宽高 new_image = Image.new('RGB', (w, h)) new_mask = np.zeros(shape=(h,w),dtype=np.uint8) new_mask=Image.fromarray(new_mask) # dx, dy是左上角的坐标点,paste会有损失吗?有的,只指定了左上角,溢出的就浪费了 new_image.paste(image, (dx, dy)) mask = Image.fromarray(mask) new_mask.paste(mask, (dx, dy)) #用mask去填new mask那点右下部分,填不满就算了,超过就取部分 # new_mask[dx:,dy:]=mask[:w-dx,:h-dy] image_data = np.array(new_image) if color_aug: "在拼图中随机使用颜色增强" apply_p = random.randint(color_p[0], color_p[1]) / 10 if random.randint(0, 10) / 10 > apply_p: color_change = random.randint(0, 1) if color_change == 0: image_data = ChannelShuffle(p=1)(image=image_data)["image"] elif color_change == 1: image_gray = cv.cvtColor(image_data, cv.COLOR_RGB2GRAY) image_data = cv.cvtColor(image_gray, cv.COLOR_GRAY2RGB) mask_data = np.array(new_mask,dtype=np.uint8) # show_two_image(image_data,mask_data) image_data = image_data / 255 index = index + 1 bbox_data = [] # 对bbox进行重新处理 if len(bbox) > 0: # 根据新的宽高与原来宽高的比例得到缩放后的坐标,再加上这张图片在新的大图上的左上角坐标 bbox[:, [0, 2]] = bbox[:, [0, 2]] * nw / iw + dx bbox[:, [1, 3]] = bbox[:, [1, 3]] * nh / ih + dy raw_bbox = copy.deepcopy(bbox) # 小于0的都变成0,超过w,h的bbox值都变成w,h bbox[:, 0:2][bbox[:, 0:2] < 0] = 0 ##超过像素索引,255之后会从0开始,-1已经到像素的最大索引了 bbox[:, 2][bbox[:, 2] > (w - 1)] = w - 1 bbox[:, 3][bbox[:, 3] > (h - 1)] = h - 1 # 计算前后的面积比例,保留大于一定比例的标注 now_areas = (bbox[:, 2] - bbox[:, 0]) * (bbox[:, 3] - bbox[:, 1]) raw_areas = (raw_bbox[:, 2] - raw_bbox[:, 0]) * (raw_bbox[:, 3] - raw_bbox[:, 1]) save_index = np.where(now_areas / raw_areas > save_proportion)[0] bbox = bbox[save_index] # #可视化缩放后的bbox是否能重叠到贴上去的图 # shw_img = Image.fromarray(np.array(image_data *255,dtype=np.uint8)) # draw_multi_bboxes(shw_img, bbox) # drawed_img = np.array(shw_img, dtype=np.uint8) # show_two_image(drawed_img, new_mask) # ** "用面积过滤指定类别对象" # both_save_inds=np.array([]) # bask_inds=np.where(bbox[:,4]==bask_num)[0] # bask_save_inds=np.where(now_areas[bask_inds]>3200)[0] # both_save_inds=both_save_inds+bask_inds[bask_save_inds] # # trace_inds = np.where(bbox[:, 4] == trace_num)[0] # trace_save_inds = np.where(now_areas[trace_inds] > 43000)[0] # both_save_inds = both_save_inds + trace_inds[trace_save_inds] # # bbox=bbox[both_save_inds] if len(bbox) > 0: bbox_w = bbox[:, 2] - bbox[:, 0] bbox_h = bbox[:, 3] - bbox[:, 1] # 需要bbox的宽高都大于1的bbox才能进入下一步,and表示为与操作,两者都正确则结果正确,bbox[True,True,True...] bbox = bbox[np.logical_and(bbox_w > 1, bbox_h > 1)] bbox_data = np.zeros((len(bbox), 5)) bbox_data[:len(bbox)] = bbox image_datas.append(image_data) mask_datas.append(mask_data) bbox_datas.append(bbox_data) # 将图片分割,放在一起 cutx = np.random.randint(int(w * min_offset_x), int(w * (1 - min_offset_x))) cuty = np.random.randint(int(h * min_offset_y), int(h * (1 - min_offset_y))) new_image = np.zeros([h, w, 3]) new_image[:cuty, :cutx, :] = image_datas[0][:cuty, :cutx, :] new_image[cuty:, :cutx, :] = image_datas[1][cuty:, :cutx, :] new_image[cuty:, cutx:, :] = image_datas[2][cuty:, cutx:, :] new_image[:cuty, cutx:, :] = image_datas[3][:cuty, cutx:, :] new_image = (new_image * 255).astype(np.uint8) # **#检验第四个顺序的图bbox对应标签 # mmask=Image.fromarray((mask_datas[3]*255).astype(np.uint8)) # for num in range(len(bbox_datas[3])): # left, top, right, bottom = bbox_datas[3][num] # draw = ImageDraw.Draw(mmask) # draw.rectangle([left , top , right, bottom ], outline="green",width=2) # # mmask.show() new_mask = np.zeros([h, w]) new_mask[:cuty, :cutx] = mask_datas[0][:cuty, :cutx] new_mask[cuty:, :cutx] = mask_datas[1][cuty:, :cutx] new_mask[cuty:, cutx:] = mask_datas[2][cuty:, cutx:] new_mask[:cuty, cutx:] = mask_datas[3][:cuty, cutx:] new_mask = new_mask.astype(np.uint8) # shw_img = Image.fromarray(new_image) # for i in range(len(bbox_datas)): # draw_multi_bboxes(shw_img, bbox_datas[i]) # drawed_img = np.array(shw_img, dtype=np.uint8) # show_two_image(drawed_img, new_mask) new_bbox = merge_bboxes(bbox_datas, cutx, cuty, h, w, save_proportion=save_proportion) # if len(new_bbox)>0: # **"合并bbox后,再次用面积过滤指定类别对象" # new_bbox=np.array(new_bbox) # now_areas = (new_bbox[:, 2] - new_bbox[:, 0]) * (new_bbox[:, 3] - new_bbox[:, 1]) # if len(new_bbox) > 0: new_bbox = np.array(new_bbox).astype(np.int) # [xmin:xmax,ymin:ymax]没取到xmax,ymax new_bbox[:, 2] = new_bbox[:, 2] + 1 new_bbox[:, 3] = new_bbox[:, 3] + 1 new_bbox[:, 2][new_bbox[:, 2] > w - 1] = w - 1 new_bbox[:, 3][new_bbox[:, 3] > h - 1] = h - 1 clean_mask=np.zeros(shape=new_mask.shape,dtype=np.uint8) masks=[] for idx in range(len(new_bbox)): rectangle=new_bbox[idx] xmin, ymin, xmax, ymax,cls_num = rectangle[0], rectangle[1], rectangle[2], rectangle[3],rectangle[4] mask = np.zeros_like(new_mask, np.uint8) mask[ymin:ymax, xmin:xmax] = new_mask[ymin:ymax, xmin:xmax] # 计算矩形中点像素值 mean_x = (xmin + xmax) // 2 mean_y = (ymin + ymax) // 2 end = min((mask.shape[1], round(xmax) + 1)) start = max((0, round(xmin) - 1)) flag = True for i in range(mean_x, end): x_ = i y_ = mean_y pixels = new_mask[y_, x_] if pixels != 0: # 0 对应背景 mask = (mask == pixels).astype(np.uint8) flag = False break if flag: for i in range(mean_x, start, -1): x_ = i y_ = mean_y pixels = new_mask[y_, x_] if pixels != 0: mask = (mask == pixels).astype(np.uint8) break masks.append(mask) clean_mask+=mask*cls_num shw_img=Image.fromarray(new_image) draw_multi_bboxes(shw_img,new_bbox) shw_mask = Image.fromarray(clean_mask) draw_multi_bboxes(shw_mask, new_bbox) drawed_img=np.array(shw_img,dtype=np.uint8) drawed_mask=np.array(shw_mask,dtype=np.uint8) show_two_image(drawed_img,drawed_mask) return new_image, new_mask, new_bbox else: return [], [], [] for i in range(11): get_mosaic_coco() # def get_mosaic_data(images_dir, files, class_dict, input_shape, save_proportion=0.9, # hue=.1, sat=1.5, val=1.5, proc_img=True, color_p=(3, 6), color_aug=False): # '''random preprocessing for real-time data augmentation''' # h, w = input_shape # min_offset_x = 0.4 # min_offset_y = 0.4 # scale_low = 1 - min(min_offset_x, min_offset_y) # scale_high = scale_low + 0.2 # # image_datas = [] # mask_datas = [] # bbox_datas = [] # index = 0 # # place_x,y组合起来就是这张图复制到新图上,所在的左上角坐标 # place_x = [0, 0, int(w * min_offset_x), int(w * min_offset_x)] # place_y = [0, int(h * min_offset_y), int(w * min_offset_y), 0] # img_suffix = os.listdir(images_dir) # img_suffix = img_suffix[-1].split(".")[-1] # for mask_path in files: # # 每一行进行分割,一行对应一个图片的名称和图片里的bboxes # # img_file = mask_file.replace("png", img_suffix) # img_path = os.path.join(images_dir, img_file) # # xml_file = mask_file.replace("png", "xml") # xml_path = os.path.join(xmls_dir, xml_file) # # 打开图片 # image = Image.open(img_path) # image = image.convert("RGB") # # 打开图片的大小 # iw, ih = image.size # mask_raw = # # # 解析出的bbox与要求的一致 # class_name, bbox = # if len(bbox) < 1: # "没有标签,那后续的操作无法进行" # return [], [], [] # class_id = np.array([class_dict[x] for x in class_name]) # bbox = np.array(bbox) # bbox = np.insert(bbox, 4, class_id, axis=1) # # # image.save(str(index)+".jpg") # # 是否翻转图片 # flip = rand() < .5 # if flip and len(bbox) > 0: # image = image.transpose(Image.FLIP_LEFT_RIGHT) # cv.flip(mask_raw, flipCode=1, dst=mask_raw) # bbox[:, [0, 2]] = iw - bbox[:, [2, 0]] # # # 对输入进来的图片进行缩放,缩放的比例跟合并后的图像宽高相关,与图片本身的宽高无关 # new_ar = w / h # scale = rand(scale_low, scale_high) # # 对长度更多的那一边先缩放,在利用宽高比例来得到短边 # if new_ar < 1: # nh = int(scale * h) # # 保持宽高比例,用缩放后的高求宽 # nw = int(nh * new_ar) # else: # nw = int(scale * w) # nh = int(nw / new_ar) # # 图片resize到指定尺寸 # image = image.resize((nw, nh), Image.BICUBIC) # mask = cv.resize(mask_raw, dsize=(nh, nw), interpolation=cv.INTER_NEAREST) # # # 进行色域变换,用现成的 # hue = rand(-hue, hue) # sat = rand(1, sat) if rand() < .5 else 1 / rand(1, sat) # val = rand(1, val) if rand() < .5 else 1 / rand(1, val) # x = rgb_to_hsv(np.array(image) / 255.) # x[..., 0] += hue # x[..., 0][x[..., 0] > 1] -= 1 # x[..., 0][x[..., 0] < 0] += 1 # x[..., 1] *= sat # x[..., 2] *= val # x[x > 1] = 1 # x[x < 0] = 0 # image = hsv_to_rgb(x) # # image = Image.fromarray((image * 255).astype(np.uint8)) # # **image.show() # # 将图片进行放置,分别对应四张分割图片的位置 # dx = place_x[index] # dy = place_y[index] # # w h 是设定的合成后图片的宽高,128设定的是color # new_image = Image.new('RGB', (w, h), (128, 128, 128)) # new_mask = Image.new('RGB', (w, h), (128, 128, 128)) # # dx, dy是左上角的坐标点,paste会有损失吗?有的,只指定了左上角,溢出的就浪费了 # new_image.paste(image, (dx, dy)) # mask = Image.fromarray(mask) # new_mask.paste(mask, (dx, dy)) # image_data = np.array(new_image) # # if color_aug: # "在拼图中随机使用颜色增强" # apply_p = random.randint(color_p[0], color_p[1]) / 10 # if random.randint(0, 10) / 10 > apply_p: # color_change = random.randint(0, 1) # if color_change == 0: # image_data = ChannelShuffle(p=1)(image=image_data)["image"] # elif color_change == 1: # image_gray = cv.cvtColor(image_data, cv.COLOR_RGB2GRAY) # image_data = cv.cvtColor(image_gray, cv.COLOR_GRAY2RGB) # # image_data = image_data / 255 # mask_data = np.array(new_mask) # # index = index + 1 # bbox_data = [] # # 对bbox进行重新处理 # if len(bbox) > 0: # # 根据新的宽高与原来宽高的比例得到缩放后的坐标,再加上这张图片在新的大图上的左上角坐标 # bbox[:, [0, 2]] = bbox[:, [0, 2]] * nw / iw + dx # bbox[:, [1, 3]] = bbox[:, [1, 3]] * nh / ih + dy # # raw_bbox = copy.deepcopy(bbox) # # # 小于0的都变成0,超过w,h的bbox值都变成w,h # bbox[:, 0:2][bbox[:, 0:2] < 0] = 0 # # ##超过像素索引,255之后会从0开始,-1已经到像素的最大索引了 # bbox[:, 2][bbox[:, 2] > (w - 1)] = w - 1 # bbox[:, 3][bbox[:, 3] > (h - 1)] = h - 1 # # # 计算前后的面积比例,保留大于一定比例的标注 # now_areas = (bbox[:, 2] - bbox[:, 0]) * (bbox[:, 3] - bbox[:, 1]) # raw_areas = (raw_bbox[:, 2] - raw_bbox[:, 0]) * (raw_bbox[:, 3] - raw_bbox[:, 1]) # # save_index = np.where(now_areas / raw_areas > 0.95)[0] # bbox = bbox[save_index] # # ** "用面积过滤指定类别对象" # # both_save_inds=np.array([]) # # bask_inds=np.where(bbox[:,4]==bask_num)[0] # # bask_save_inds=np.where(now_areas[bask_inds]>3200)[0] # # both_save_inds=both_save_inds+bask_inds[bask_save_inds] # # # # trace_inds = np.where(bbox[:, 4] == trace_num)[0] # # trace_save_inds = np.where(now_areas[trace_inds] > 43000)[0] # # both_save_inds = both_save_inds + trace_inds[trace_save_inds] # # # # bbox=bbox[both_save_inds] # # if len(bbox) > 0: # bbox_w = bbox[:, 2] - bbox[:, 0] # bbox_h = bbox[:, 3] - bbox[:, 1] # # 需要bbox的宽高都大于1的bbox才能进入下一步,and表示为与操作,两者都正确则结果正确,bbox[True,True,True...] # bbox = bbox[np.logical_and(bbox_w > 1, bbox_h > 1)] # # bbox_data = np.zeros((len(bbox), 5)) # bbox_data[:len(bbox)] = bbox # # image_datas.append(image_data) # mask_datas.append(mask_data) # bbox_datas.append(bbox_data) # # # **mask_show = Image.fromarray((mask_data * 255).astype(np.uint8)) # # for j in range(len(bbox_data)): # # # # left, top, right, bottom = bbox_data[j][0:4] # # draw = ImageDraw.Draw(mask_show) # # draw.rectangle([left , top , right, bottom ], outline="green",width=2) # # # #thickness这里控制了i的值,会使得bbox相对于真实值往内收缩 # # # thickness = 3 # # # for i in range(thickness): # # # draw.rectangle([left + i, top + i, right - i, bottom - i], outline=(255, 255, 255)) # # mask_show.show() # # **print("fsdff") # # # **img = Image.fromarray((image_data * 255).astype(np.uint8)) # # # **img.show() # # 经过以上处理就是把一张图片处理完了 # # # 将图片分割,放在一起 # cutx = np.random.randint(int(w * min_offset_x), int(w * (1 - min_offset_x))) # cuty = np.random.randint(int(h * min_offset_y), int(h * (1 - min_offset_y))) # # new_image = np.zeros([h, w, 3]) # new_image[:cuty, :cutx, :] = image_datas[0][:cuty, :cutx, :] # new_image[cuty:, :cutx, :] = image_datas[1][cuty:, :cutx, :] # new_image[cuty:, cutx:, :] = image_datas[2][cuty:, cutx:, :] # new_image[:cuty, cutx:, :] = image_datas[3][:cuty, cutx:, :] # # new_image = (new_image * 255).astype(np.uint8) # # # **#检验第四个顺序的图bbox对应标签 # # mmask=Image.fromarray((mask_datas[3]*255).astype(np.uint8)) # # for num in range(len(bbox_datas[3])): # # left, top, right, bottom = bbox_datas[3][num] # # draw = ImageDraw.Draw(mmask) # # draw.rectangle([left , top , right, bottom ], outline="green",width=2) # # # # **mmask.show() # # new_mask = np.zeros([h, w, 3]) # new_mask[:cuty, :cutx, :] = mask_datas[0][:cuty, :cutx, :] # new_mask[cuty:, :cutx, :] = mask_datas[1][cuty:, :cutx, :] # new_mask[cuty:, cutx:, :] = mask_datas[2][cuty:, cutx:, :] # new_mask[:cuty, cutx:, :] = mask_datas[3][:cuty, cutx:, :] # new_mask = new_mask.astype(np.uint8) # # new_bbox = merge_bboxes(bbox_datas, cutx, cuty, h, w, save_proportion=save_proportion) # # if len(new_bbox)>0: # # **"合并bbox后,再次用面积过滤指定类别对象" # # new_bbox=np.array(new_bbox) # # now_areas = (new_bbox[:, 2] - new_bbox[:, 0]) * (new_bbox[:, 3] - new_bbox[:, 1]) # # # # both_save_inds = np.array([]) # # bask_inds = np.where(new_bbox[:, 4] == bask_num)[0] # # bask_save_inds = np.where(now_areas[bask_inds] > 2000)[0] # # # bask_save_inds = np.where(now_areas[bask_inds] > 3200)[0] # # both_save_inds = np.concatenate((both_save_inds , bask_inds[bask_save_inds]),axis=0) # # # # trace_inds = np.where(new_bbox[:, 4] == trace_num)[0] # # trace_save_inds = np.where(now_areas[trace_inds] > 16000)[0] # # both_save_inds = np.concatenate((both_save_inds , trace_inds[trace_save_inds]),axis=0) # # both_save_inds=both_save_inds.astype(np.uint8) # # if len(both_save_inds)>0: # # new_bbox = list(new_bbox[both_save_inds]) # # else: # # return [],[],[] # if len(new_bbox) > 0: # new_bbox = np.array(new_bbox).astype(np.uint16) # # [xmin:xmax,ymin:ymax]没取到xmax,ymax # new_bbox[:, 2] = new_bbox[:, 2] + 1 # new_bbox[:, 3] = new_bbox[:, 3] + 1 # # new_bbox[:, 2][new_bbox[:, 2] > w - 1] = w - 1 # new_bbox[:, 3][new_bbox[:, 3] > h - 1] = h - 1 # # # **for j in range(len(new_bbox)): # # left, top, right, bottom = new_bbox[j][0:4] # # draw = ImageDraw.Draw(show_mask) # # draw.rectangle([left, top, right, bottom], outline="red", width=1) # # # # **show_mask.show() # # return new_image, new_mask, new_bbox # else: # return [], [], []
[ "shwwgrshbd@qq.com" ]
shwwgrshbd@qq.com
3c6c662ac03d2f07a98ed0f8b23024a2730b8ee7
dbc60695216bcb29feeb6b383f7acef045853363
/train.py
49c2649408d2073c82ca5ccb52fd6eec241f8ea6
[]
no_license
Hauf3n/Categorical-DQN-Atari-PyTorch
c0e4e173664a52b9b89adedd21f30adf24b09621
aed0e99b1f1648667442aad33240075af7ac4b96
refs/heads/master
2022-12-11T12:30:48.912889
2020-09-14T15:56:22
2020-09-14T15:56:22
260,343,819
1
0
null
null
null
null
UTF-8
Python
false
false
8,203
py
import argparse import numpy as np import gym import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import time import random import os from Agents import C51_Agent from Atari_Wrapper import Atari_Wrapper from Env_Runner import Env_Runner from Experience_Replay import Experience_Replay device = torch.device("cuda:0") dtype = torch.float def make_transitions(obs, actions, rewards, dones): # observations are in uint8 format tuples = [] steps = len(obs) - 1 for t in range(steps): tuples.append((obs[t], actions[t], rewards[t], obs[t+1], int(not dones[t]))) return tuples def train(hyperparameters): # ARGS env_name = hyperparameters.env env_with_lives = hyperparameters.lives v_min = hyperparameters.v_min v_max = hyperparameters.v_max num_atoms = hyperparameters.atoms num_stacked_frames = hyperparameters.stacked_frames replay_memory_size = hyperparameters.replay_memory_size min_replay_size_to_update = hyperparameters.replay_size_to_update lr = hyperparameters.lr gamma = hyperparameters.gamma minibatch_size = hyperparameters.minibatch_size steps_rollout = hyperparameters.steps_rollout start_eps = hyperparameters.start_eps final_eps = hyperparameters.final_eps final_eps_frame = hyperparameters.final_eps_frame total_steps = hyperparameters.total_steps target_net_update = hyperparameters.target_net_update save_model_steps = hyperparameters.save_model_steps report = hyperparameters.report # INIT delta_z = (v_max - v_min)/ (num_atoms - 1) value_support = torch.tensor([ v_min + (i * delta_z) for i in range(num_atoms)]).to(device) raw_env = gym.make(env_name) env = Atari_Wrapper(raw_env, env_name, num_stacked_frames, use_add_done=env_with_lives) in_channels = num_stacked_frames num_actions = env.action_space.n eps_interval = start_eps-final_eps agent = C51_Agent(in_channels, num_actions, num_atoms, value_support, start_eps).to(device) target_agent = C51_Agent(in_channels, num_actions, num_atoms, value_support, start_eps).to(device) target_agent.load_state_dict(agent.state_dict()) replay = Experience_Replay(replay_memory_size) runner = Env_Runner(env, agent) optimizer = optim.Adam(agent.parameters(), lr=lr) num_steps = 0 num_model_updates = 0 corrected_index = torch.tensor([num_atoms*i for i in range(minibatch_size)]).to(device) corrected_index = corrected_index.repeat_interleave(num_atoms).reshape(minibatch_size, num_atoms) # TRAIN start_time = time.time() while num_steps < total_steps: # set agent exploration | cap exploration after x timesteps to final epsilon new_epsilon = np.maximum(final_eps, start_eps - ( eps_interval * num_steps/final_eps_frame)) agent.set_epsilon(new_epsilon) # get data obs, actions, rewards, dones = runner.run(steps_rollout) transitions = make_transitions(obs, actions, rewards, dones) replay.insert(transitions) # add num_steps += steps_rollout # check if update if num_steps < min_replay_size_to_update: continue # update for update in range(4): optimizer.zero_grad() minibatch = replay.get(minibatch_size) # uint8 to float32 and normalize to 0-1 obs = (torch.stack([i[0] for i in minibatch]).to(device).to(dtype)) / 255 actions = np.stack([i[1] for i in minibatch]) rewards = torch.tensor([i[2] for i in minibatch]).to(device) # uint8 to float32 and normalize to 0-1 next_obs = (torch.stack([i[3] for i in minibatch]).to(device).to(dtype)) / 255 dones = torch.tensor([i[4] for i in minibatch]).to(device) # *** C51 *** # get atom probabilities for obs and next obs obs_Ps = agent(obs)[range(minibatch_size), actions] # get atoms from used action next_obs_Ps = target_agent(next_obs).detach() # will be used as label later # get a* from target network best_a = target_agent.greedy(next_obs_Ps) # get next_obs atoms from a* next_obs_Ps = next_obs_Ps[range(minibatch_size), best_a] # ^T_z tmp=torch.ones(minibatch_size, num_atoms).to(device).to(dtype) * (gamma * value_support) rewards = rewards.repeat_interleave(num_atoms).reshape(minibatch_size,num_atoms) dones = dones.repeat_interleave(num_atoms).reshape(minibatch_size,num_atoms) T_z = rewards + tmp * dones # clip to value interval T_z = torch.clamp(T_z, min=v_min, max=v_max) # b b = (T_z - torch.tensor(v_min).to(device)) / torch.tensor(delta_z).to(device) # l , u l = torch.floor(b) u = torch.ceil(b) # distribute probability m_l = next_obs_Ps * (u-b) m_u = next_obs_Ps * (b-l) # much faster than using a loop m = torch.zeros(minibatch_size*num_atoms).to(device).to(dtype) l = l + corrected_index u = u + corrected_index m = m.index_add(0,l.reshape(-1).long(),m_l.reshape(-1)) m = m.index_add(0,u.reshape(-1).long(),m_u.reshape(-1)) m = m.reshape(minibatch_size,num_atoms) # cross entropy loss loss = torch.mean( - torch.sum( m * torch.log(obs_Ps) ,dim=1)) loss.backward() optimizer.step() num_model_updates += 1 # update target network if num_model_updates%target_net_update == 0: target_agent.load_state_dict(agent.state_dict()) # print time if num_steps%report < steps_rollout: end_time = time.time() print(f'*** total steps: {num_steps} | time: {end_time - start_time} ***') start_time = time.time() # save the dqn after some time if num_steps%save_model_steps < steps_rollout: torch.save(agent,f"{env_name}-{num_steps}.pt") env.close() if __name__ == "__main__": hyperparameters = argparse.ArgumentParser() # set hyperparameter hyperparameters.add_argument('-lr', type=float, default=2.5e-4) hyperparameters.add_argument('-v_min', type=float, default=-10) hyperparameters.add_argument('-v_max', type=float, default=10) hyperparameters.add_argument('-atoms', type=int, default=51) hyperparameters.add_argument('-env', default='PongNoFrameskip-v4') hyperparameters.add_argument('-lives', type=bool, default=False) hyperparameters.add_argument('-stacked_frames', type=int, default=4) hyperparameters.add_argument('-replay_memory_size', type=int, default=250000) hyperparameters.add_argument('-replay_size_to_update', type=int, default=20000) hyperparameters.add_argument('-gamma', type=float, default=0.99) hyperparameters.add_argument('-minibatch_size', type=int, default=32) hyperparameters.add_argument('-steps_rollout', type=int, default=16) hyperparameters.add_argument('-start_eps', type=float, default=1) hyperparameters.add_argument('-final_eps', type=float, default=0.05) hyperparameters.add_argument('-final_eps_frame', type=int, default=1000000) hyperparameters.add_argument('-total_steps', type=int, default=25000000) hyperparameters.add_argument('-target_net_update', type=int, default=625) hyperparameters.add_argument('-save_model_steps', type=int, default=500000) hyperparameters.add_argument('-report', type=int, default=50000) train(hyperparameters.parse_args())
[ "53398268+Hauf3n@users.noreply.github.com" ]
53398268+Hauf3n@users.noreply.github.com
cfae4a8360740edba9366fc11b72439016faa4be
5960271837100a5008870fb05300d75a9230f56d
/test-scripts/completeTest.py
7b5acb01f0e6d443542e35cc511f87ebe9b23f33
[ "MIT" ]
permissive
speakerbug/ChristmasPi
3f55fd660911a831054860d79216559f13b49d39
9277b19047b2b3fa8beb39d0251fa53607c58998
refs/heads/master
2021-01-19T02:48:17.659593
2016-06-16T23:09:15
2016-06-16T23:09:15
46,230,957
0
0
null
null
null
null
UTF-8
Python
false
false
7,300
py
import RPi.GPIO as GPIO, time one = 11 two = 12 three = 13 four = 15 five = 16 six = 18 seven = 22 eight = 7 nine = 29 ten = 31 eleven = 32 twelve = 33 fastspeed = 0.2 slowspeed = 2.0 GPIO.setmode(GPIO.BOARD) print("Getting Started") time.sleep(fastspeed) print("Turning on 1") GPIO.setup(one, GPIO.OUT) GPIO.output(one, True) time.sleep(slowspeed) print("Turning off 1") GPIO.output(one, False) print("Turning on 2") GPIO.setup(two, GPIO.OUT) GPIO.output(two, True) time.sleep(slowspeed) print("Turning off 2") GPIO.output(two, False) print("Turning on 3") GPIO.setup(three, GPIO.OUT) GPIO.output(three, True) time.sleep(slowspeed) print("Turning off 3") GPIO.output(three, False) print("Turning on 4") GPIO.setup(four, GPIO.OUT) GPIO.output(four, True) time.sleep(slowspeed) print("Turning off 4") GPIO.output(four, False) print("Turning on 5") GPIO.setup(five, GPIO.OUT) GPIO.output(five, True) time.sleep(slowspeed) print("Turning off 5") GPIO.output(five, False) print("Turning on 6") GPIO.setup(six, GPIO.OUT) GPIO.output(six, True) time.sleep(slowspeed) print("Turning off 6") GPIO.output(six, False) print("Turning on 7") GPIO.setup(seven, GPIO.OUT) GPIO.output(seven, True) time.sleep(slowspeed) print("Turning off 7") GPIO.output(seven, False) print("Turning on 8") GPIO.setup(eight, GPIO.OUT) GPIO.output(eight, True) time.sleep(slowspeed) print("Turning off 8") GPIO.output(eight, False) print("Turning on 9") GPIO.setup(nine, GPIO.OUT) GPIO.output(nine, True) time.sleep(slowspeed) print("Turning off 9") GPIO.output(nine, False) print("Turning on 10") GPIO.setup(ten, GPIO.OUT) GPIO.output(ten, True) time.sleep(slowspeed) print("Turning off 10") GPIO.output(ten, False) print("Turning on 11") GPIO.setup(eleven, GPIO.OUT) GPIO.output(eleven, True) time.sleep(slowspeed) print("Turning off 11") GPIO.output(eleven, False) print("Turning on 12") GPIO.setup(twelve, GPIO.OUT) GPIO.output(twelve, True) time.sleep(slowspeed) print("Turning off 12") GPIO.output(twelve, False) #all on then off print("Turning on 1") GPIO.setup(one, GPIO.OUT) GPIO.output(one, True) time.sleep(fastspeed) print("Turning on 2") GPIO.setup(two, GPIO.OUT) GPIO.output(two, True) time.sleep(fastspeed) print("Turning on 3") GPIO.setup(three, GPIO.OUT) GPIO.output(three, True) time.sleep(fastspeed) print("Turning on 4") GPIO.setup(four, GPIO.OUT) GPIO.output(four, True) time.sleep(fastspeed) print("Turning on 5") GPIO.setup(five, GPIO.OUT) GPIO.output(five, True) time.sleep(fastspeed) print("Turning on 6") GPIO.setup(six, GPIO.OUT) GPIO.output(six, True) time.sleep(fastspeed) print("Turning on 7") GPIO.setup(seven, GPIO.OUT) GPIO.output(seven, True) time.sleep(fastspeed) print("Turning on 8") GPIO.setup(eight, GPIO.OUT) GPIO.output(eight, True) time.sleep(fastspeed) print("Turning on 9") GPIO.setup(nine, GPIO.OUT) GPIO.output(nine, True) time.sleep(fastspeed) print("Turning on 10") GPIO.setup(ten, GPIO.OUT) GPIO.output(ten, True) time.sleep(fastspeed) print("Turning on 11") GPIO.setup(eleven, GPIO.OUT) GPIO.output(eleven, True) time.sleep(fastspeed) print("Turning on 12") GPIO.setup(twelve, GPIO.OUT) GPIO.output(twelve, True) time.sleep(fastspeed) print("Turning off 1") GPIO.output(one, False) print("Turning off 2") GPIO.output(two, False) print("Turning off 3") GPIO.output(three, False) print("Turning off 4") GPIO.output(four, False) print("Turning off 5") GPIO.output(five, False) print("Turning off 6") GPIO.output(six, False) print("Turning off 7") GPIO.output(seven, False) print("Turning off 8") GPIO.output(eight, False) print("Turning off 9") GPIO.output(nine, False) print("Turning off 10") GPIO.output(ten, False) print("Turning off 11") GPIO.output(eleven, False) print("Turning off 12") GPIO.output(twelve, False) #all on then off print("Turning on 1") GPIO.setup(one, GPIO.OUT) GPIO.output(one, True) time.sleep(fastspeed) print("Turning on 2") GPIO.setup(two, GPIO.OUT) GPIO.output(two, True) time.sleep(fastspeed) print("Turning on 3") GPIO.setup(three, GPIO.OUT) GPIO.output(three, True) time.sleep(fastspeed) print("Turning on 4") GPIO.setup(four, GPIO.OUT) GPIO.output(four, True) time.sleep(fastspeed) print("Turning on 5") GPIO.setup(five, GPIO.OUT) GPIO.output(five, True) time.sleep(fastspeed) print("Turning on 6") GPIO.setup(six, GPIO.OUT) GPIO.output(six, True) time.sleep(fastspeed) print("Turning on 7") GPIO.setup(seven, GPIO.OUT) GPIO.output(seven, True) time.sleep(fastspeed) print("Turning on 8") GPIO.setup(eight, GPIO.OUT) GPIO.output(eight, True) time.sleep(fastspeed) print("Turning on 9") GPIO.setup(nine, GPIO.OUT) GPIO.output(nine, True) time.sleep(fastspeed) print("Turning on 10") GPIO.setup(ten, GPIO.OUT) GPIO.output(ten, True) time.sleep(fastspeed) print("Turning on 11") GPIO.setup(eleven, GPIO.OUT) GPIO.output(eleven, True) time.sleep(fastspeed) print("Turning on 12") GPIO.setup(twelve, GPIO.OUT) GPIO.output(twelve, True) time.sleep(fastspeed) print("Turning off 1") GPIO.output(one, False) print("Turning off 2") GPIO.output(two, False) print("Turning off 3") GPIO.output(three, False) print("Turning off 4") GPIO.output(four, False) print("Turning off 5") GPIO.output(five, False) print("Turning off 6") GPIO.output(six, False) print("Turning off 7") GPIO.output(seven, False) print("Turning off 8") GPIO.output(eight, False) print("Turning off 9") GPIO.output(nine, False) print("Turning off 10") GPIO.output(ten, False) print("Turning off 11") GPIO.output(eleven, False) print("Turning off 12") GPIO.output(twelve, False) #all on then off print("Turning on 1") GPIO.setup(one, GPIO.OUT) GPIO.output(one, True) time.sleep(fastspeed) print("Turning on 2") GPIO.setup(two, GPIO.OUT) GPIO.output(two, True) time.sleep(fastspeed) print("Turning on 3") GPIO.setup(three, GPIO.OUT) GPIO.output(three, True) time.sleep(fastspeed) print("Turning on 4") GPIO.setup(four, GPIO.OUT) GPIO.output(four, True) time.sleep(fastspeed) print("Turning on 5") GPIO.setup(five, GPIO.OUT) GPIO.output(five, True) time.sleep(fastspeed) print("Turning on 6") GPIO.setup(six, GPIO.OUT) GPIO.output(six, True) time.sleep(fastspeed) print("Turning on 7") GPIO.setup(seven, GPIO.OUT) GPIO.output(seven, True) time.sleep(fastspeed) print("Turning on 8") GPIO.setup(eight, GPIO.OUT) GPIO.output(eight, True) time.sleep(fastspeed) print("Turning on 9") GPIO.setup(nine, GPIO.OUT) GPIO.output(nine, True) time.sleep(fastspeed) print("Turning on 10") GPIO.setup(ten, GPIO.OUT) GPIO.output(ten, True) time.sleep(fastspeed) print("Turning on 11") GPIO.setup(eleven, GPIO.OUT) GPIO.output(eleven, True) time.sleep(fastspeed) print("Turning on 12") GPIO.setup(twelve, GPIO.OUT) GPIO.output(twelve, True) time.sleep(fastspeed) print("Turning off 1") GPIO.output(one, False) print("Turning off 2") GPIO.output(two, False) print("Turning off 3") GPIO.output(three, False) print("Turning off 4") GPIO.output(four, False) print("Turning off 5") GPIO.output(five, False) print("Turning off 6") GPIO.output(six, False) print("Turning off 7") GPIO.output(seven, False) print("Turning off 8") GPIO.output(eight, False) print("Turning off 9") GPIO.output(nine, False) print("Turning off 10") GPIO.output(ten, False) print("Turning off 11") GPIO.output(eleven, False) print("Turning off 12") GPIO.output(twelve, False) GPIO.cleanup()
[ "henry@henrysaniuk.com" ]
henry@henrysaniuk.com
52f77928fb0b623c06887de428aff8930460aeee
cac5c013d2ec78bb291b9c023987c215f6979799
/magic/python/tcpClient.py
4943a0b5a087290183191bfa2e66cf2c6bada85e
[]
no_license
elitecodegroovy/MagicPython
94dc9f55bee699ef978bcd8de72488042a836f59
7ef6ffc059c042ab1c81185b4b69ecfbeb794a0d
refs/heads/master
2021-01-22T20:44:20.322734
2015-04-10T07:19:24
2015-04-10T07:19:24
8,220,003
0
0
null
null
null
null
UTF-8
Python
false
false
376
py
__author__ = 'JohnLiu' from socket import * HOST = 'localhost' PORT = 21567 BUFSIZ = 1024 ADDR = (HOST, PORT) tcpCliSock = socket(AF_INET, SOCK_STREAM) tcpCliSock.connect(ADDR) while True: data = raw_input('> ') if not data: break tcpCliSock.send(data) data = tcpCliSock.recv(BUFSIZ) if not data: break print data tcpCliSock.close()
[ "elite_jigang@163.com" ]
elite_jigang@163.com
07df02977d52ce2be8857d94da104372134c3813
fd64e364368bcb2cdcf77ab1e0fc234a6b698f69
/Python/PERFCONT.py
43eb9b9989a3d5b14e0e975b890428725a70f37f
[]
no_license
Parizval/CodeChefCodes
57712069f3d56cc42282f9e35c6ddd9398e4a5bf
cfd2876816be806882650b6ea51431b1f8d6bec5
refs/heads/master
2021-07-16T13:10:15.668713
2020-07-06T21:40:09
2020-07-06T21:40:09
188,693,667
5
1
null
null
null
null
UTF-8
Python
false
false
408
py
for a in range(int(input())): n,p = map(int,input().split()) val = list(map(int,input().split())) cakewalk = 0 hard = 0 for i in val : if i >= p //2 : cakewalk += 1 elif i <= p // 10 : hard += 1 if cakewalk > 1 and hard > 3 : break if cakewalk == 1 and hard == 2 : print("yes") else: print("no")
[ "anmolgoyal@gmail.com" ]
anmolgoyal@gmail.com
b73e2bb9b0234950feed26a11ecc351761a01508
be19bb8435a33965682571cb7a286f728d27cfe9
/Main2.py
c3d4684ae1ddd7d2d83474123055b89a9b0b9a4d
[]
no_license
Papyrosaurus/Aprrendre_python
0b1c83c19aaf7315ec06f30bc0c79a35fd9754ac
c80ea2de3408c9466454a5a0e2183981f77eb2c4
refs/heads/main
2022-12-09T15:16:22.949442
2022-11-24T15:14:38
2022-11-24T15:14:38
257,275,601
0
0
null
null
null
null
UTF-8
Python
false
false
22
py
#Exercice day 001-002
[ "59684985+Papyrosaurus@users.noreply.github.com" ]
59684985+Papyrosaurus@users.noreply.github.com
c783c7ed8acee2bf4687d046333989bc8c85a5fb
7974cd9076dcd50f52f16ce618d94c14de36674d
/saved/_vim.py
df4ee182f5f1e48cf3919047b1d7c56746a949c6
[]
no_license
grant-h/vocode
501f78ed72595cfa43ee186a4875ad855ce7483b
c35e90b29eb5a203fc01d85ab1547cff31fc5bb9
refs/heads/master
2021-01-11T18:48:19.297703
2017-01-22T17:47:55
2017-01-22T17:47:55
79,630,403
2
1
null
2017-01-22T07:10:39
2017-01-21T07:15:08
Python
UTF-8
Python
false
false
487
py
from dragonfly import * # modes # 0 - normal # 1 - insert # 2 - visual mode = 0 grammar = Grammar("vim_example") ex_rule = MappingRule( name="insert", mapping={ "insert mode": Key("I"), "select all text": Key("g, g, V, G"), "undo": Key("u"), "redo": Key("c-r"), "escape" : Key("escape"), "end command" : Key("escape") } ) grammar.add_rule(ex_rule) grammar.load() def unload(): global grammar if grammar: grammar.unload() grammar = None
[ "elanrasabi80@gmail.com" ]
elanrasabi80@gmail.com
4a3a7618fb14017d8c2c38dfba10422ff2fa9bb2
999d971820020a50e1a13046c4df255c71f0f5f9
/Week 6/richTask 6/redoingStaticEquilibrium.py
f843efd2c851d8f50631498fd15f524c8560bdee
[]
no_license
kelvincaoyx/UTEA-PYTHON
062019f1ea79b98ee8a5f1ecf41d0fdda27cabda
65891610cc2ca1f662082785eb44eac1368ccc8e
refs/heads/master
2023-07-08T02:57:30.991448
2021-08-13T01:34:02
2021-08-13T01:34:02
382,920,297
0
0
null
null
null
null
UTF-8
Python
false
false
5,125
py
''' This program is used to help the user practice calculating net torque and estimating which direction the metre stick is going to tip ''' #importing the random library to get random number generator import pyfiglet import math from library import cls from library import randomDigit #function that generates a list of weights that the game will be based on. #Just input the number of weights you want def weightGenerator(numberOfWeightsRequired): #defining some variables thisRoundsindexes = [0,1,2,3,4,6,7,8,9,10] thisRoundsList = [0,0,0,0,0,"_/\_",0,0,0,0,0] weightsToBeAdded = [] #gives us random numbers that will be added to the scale while numberOfWeightsRequired > 0: weightsToBeAdded.append(randomDigit(1,5)) numberOfWeightsRequired -= 1 #Puts the random weights generated into the list. it uses #another list to determine indexes because we don't want overlap counter = 0 while counter < len(weightsToBeAdded): index = thisRoundsindexes[randomDigit(0,len(thisRoundsindexes))] thisRoundsindexes.remove(index) thisRoundsList.insert(index,weightsToBeAdded[counter]) thisRoundsList.pop(index+1) counter += 1 #returning the list for use return thisRoundsList #function that takes in a list a=of weights and calculates the which way it will turn def netForceCalc(weightList): #calculates the torque that causes the scale to turn in a negative direction negativeTorque = 0 negativeTorqueList = weightList[:5] counter = 4 runcount = 1 while counter >= 0: negativeTorque += negativeTorqueList[counter]*0.1*runcount counter -=1 runcount += 1 #calculates the torque that causes the scale to turn in a postitive direction positiveTorque = 0 positiveTorqueList = weightList[6:] counter = 0 runcount = 1 while counter < 5: positiveTorque += positiveTorqueList[counter]*0.1*runcount counter += 1 runcount += 1 #returns the predicted position that the scale will turn if negativeTorque > positiveTorque: return "a" elif negativeTorque == positiveTorque: return "b" else: return "c" #helper function that will start the entire program and access the other functions def helper(): #defining some variables that will be used throughout the function start = 2 winCounter = 0 gameCounter = 1 continueGame = input("Would you like to continue (y/n)? ") #while loop to keep the game going until they don't want to play while continueGame.lower() == "y": cls() print(pyfiglet.figlet_format("Game " + str(gameCounter) + " !")) #Printing the header for the scale print("0.0m 0.1m 0.2m 0.3m 0.4m 0.5m 0.6m 0.7m 0.8m 0.9m 1.0m") #generation of the weightlist that will be used throughout weightList = weightGenerator(start) #caluculating the direction that the scale will go answer = netForceCalc(weightList) #printing out the weightlist in a way that it lines up with the header from above counter = 0 display = "" while True: if weightList[counter] == 0: weightList[counter] = " " elif counter == 5: weightList[counter] = str(weightList[counter] + " ") else: weightList[counter] = str(weightList[counter]) + "N " counter += 1 if counter == 11: display = display.join(weightList) print(display) break #retreiving the user's guess userAnswer = input("\n\nChoose the correct answer (a,b,c):\n \ a)spin left\t b)equilibrium\t c)spin right\t") #comparing the user's input with the answer. Will increase the weights #depending on the result of the game if userAnswer == answer: print("\nCorrect\n") #keeps track of the wins winCounter += 1 start += randomDigit(1,3) if start > 10: start = 10 else: print("\nIncorrect\n") start -= randomDigit(1,3) if start <=0: start = 1 #keeping track of the total number of games gameCounter += 1 #asks if the user wants to continue or not. continueGame = input("Would you like to continue (y/n)? ") #prints the results of the games cls() if gameCounter-1 == 0: print(pyfiglet.figlet_format("Sorry to see you go without playing")) else: score = winCounter/(gameCounter-1)*100 print(pyfiglet.figlet_format("You got " + str(winCounter) + " out of " + str(gameCounter-1) + " !")) print("That is a " + str(math.trunc(score)) + "% win rate!") #printing the header for the game print(pyfiglet.figlet_format("Welcome to the static equilbrium quiz!")) #activating the helper function helper()
[ "kelvincaoyx@gmail.com" ]
kelvincaoyx@gmail.com
fdf3e8e89abd0314c8aaf816005a86c63aa0ef28
25ea73671a2556652afb7805bc164adaff2f1cee
/sigecc/settings.py
d0bc282182f177dc5f6683ab172c8c9b6043eb67
[]
no_license
lyralemos/sigecc
852857c63b5b81782b6208faefa1cc93e2656c3b
c90bed4a3e40f1cdf89a3a7cbcf450bec9d9d859
refs/heads/master
2022-12-15T11:15:49.254269
2019-05-23T11:46:33
2019-05-23T11:46:33
138,098,152
0
0
null
2022-12-08T05:41:22
2018-06-20T23:59:06
Vue
UTF-8
Python
false
false
4,675
py
""" Django settings for sigecc project. Generated by 'django-admin startproject' using Django 2.0.6. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '(4gryvk*gdj$5dor!wap)ap&411$c7pzs10=19(w5@r%r&e&2-' # SECURITY WARNING: don't run with debug turned on in production! ENV = os.environ.get('APP_ENV', 'dev') if ENV == 'dev': DEBUG = True STATS_FILE = os.path.join(BASE_DIR, 'webpack-stats.json') else: DEBUG = False STATS_FILE = os.path.join(BASE_DIR, 'webpack-stats-prod.json') ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework.authtoken', 'webpack_loader', 'apps.core', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'sigecc.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'sigecc.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'postgres', 'USER': 'postgres', 'HOST': 'db', 'PORT': 5432, } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'pt-br' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'dist'), os.path.join(BASE_DIR, 'static'), ) MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'public/media') STATIC_ROOT = os.path.join(BASE_DIR, 'public') WEBPACK_LOADER = { 'DEFAULT': { 'BUNDLE_DIR_NAME': '', 'STATS_FILE': STATS_FILE, } } REST_FRAMEWORK = { 'DEFAULT_PERMISSION_CLASSES': [ 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly' ], 'DEFAULT_AUTHENTICATION_CLASSES': [ 'rest_framework.authentication.TokenAuthentication' ] } if not DEBUG: LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'console': { 'level': 'DEBUG', 'filters': ['require_debug_false'], 'class': 'logging.StreamHandler', } }, 'loggers': { 'django': { 'level': 'DEBUG', 'handlers': ['console'], } } }
[ "lyralemos@gmail.com" ]
lyralemos@gmail.com
4dda8de1c3e32995b1e0f278b75c069fe523ad7b
ce074998469af446e33d0fab7adb01320ccc77ed
/src_procedures/Winlogon Userinit Key Persistence- PowerShell.py
c5c9fac1511cb362c646b704a32ea46482bba7dd
[]
no_license
parahaoer/detection_rules
1341063568b0ccfa180da129a29aeec0a62e679e
c9f3408eccbcb4b61d1d441af31839872f9bb26c
refs/heads/master
2023-02-09T13:54:40.254874
2020-12-28T09:25:31
2020-12-28T09:25:31
265,990,044
0
0
null
null
null
null
UTF-8
Python
false
false
1,576
py
from elasticsearch import Elasticsearch es = Elasticsearch('10.25.23.161:9200') doc = { "query": { "constant_score": { "filter": { "bool": { "must": [ { "match_phrase": { "event_id": "4104" } }, { "bool": { "should": [ { "multi_match": { "query": "*Set-ItemProperty*", "fields": [], "type": "phrase" } }, { "multi_match": { "query": "*New-Item*", "fields": [], "type": "phrase" } } ] } }, { "multi_match": { "query": "*CurrentVersion\\Winlogon*", "fields": [], "type": "phrase" } } ] } } } } } res = es.search(index="logs-endpoint-winevent-*",body=doc) count = res['hits']['total']['value'] tactic = "Persistence" technique = "Winlogon Helper DLL" procedure = "Winlogon Userinit Key Persistence- PowerShell" tech_code = "T1004" action ={ "Tactic": tactic, "Technique": technique, "Tech_code": tech_code, "Procedure": procedure, "EventCount": count, } es.index(index="represent_5",body = action, id = 117)
[ "33771109+parahaoer@users.noreply.github.com" ]
33771109+parahaoer@users.noreply.github.com
a91769c383e39d1b234b1d9b68cefbe2d29c1618
143bccd5ca0aefed912bdeefe353a6a3382ba55e
/Unideadline/settings.py
e9eb022be01b2b4e37f51a49931d0fc16c150068
[ "MIT" ]
permissive
marvinguelzow/Unideadline
aacc049999d8c71f04fc682e30fd4d0ae2087ffa
4abbb1109cb9cc0f7cbbcf744683c7ab486e716a
refs/heads/master
2021-05-28T05:34:30.146237
2015-03-13T18:54:01
2015-03-13T18:54:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,073
py
""" Django settings for Unideadline project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '8%tbsd2g-ls_ok&55jk3s3lvsuvff@6mrgsy*)ptg0z-*frz%a' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'todolist', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'Unideadline.urls' WSGI_APPLICATION = 'Unideadline.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ STATIC_URL = '/static/'
[ "marvinguelzow@googlemail.com" ]
marvinguelzow@googlemail.com