blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
2a56ecad786f4d182bac09142f6f96074b6ef6f3
74cec3aefc021447b79bd681901d085f207b1e13
/factory-ai-vision/EdgeSolution/modules/WebModule/backend/vision_on_edge/azure_training_status/utils.py
823889e7a4ec6abccf9e01e03cadc8c7dcc6daf3
[ "MIT" ]
permissive
timlawless/azure-intelligent-edge-patterns
83900c7d9cfa0ddd07131fb503e6837fb81f6cf4
d72c3c1c2d56a762b74a72cd3befd076dc77b8ac
refs/heads/master
2022-12-17T06:16:54.677327
2020-09-29T23:52:10
2020-09-29T23:52:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,362
py
""" App Utilities """ import logging from .models import TrainingStatus logger = logging.getLogger(__name__) def upcreate_training_status(project_id, status: str, log: str, performance: str = "{}", need_to_send_notification: bool = False): """upcreate_training_status. Consider using constants.PROGRESS_X to replace status and log. e.g. upcreate_training_status(project_id=project_id, need_to_send_notification=True, **constants.PROGRESS_X) Args: project_id: status (str): status log (str): log performance (str): performance need_to_send_notification (bool): need_to_send_notification """ logger.info("Updating Training Status :%s", status) logger.info("Updating Training Log :%s", log) logger.info("need_to_send_notification :%s", need_to_send_notification) obj, created = TrainingStatus.objects.update_or_create( project_id=project_id, defaults={ "status": status, "log": log.capitalize(), "performance": performance, "need_to_send_notification": need_to_send_notification, }, ) return obj, created
[ "peteeelol@gmail.com" ]
peteeelol@gmail.com
a83f515a19f82123dc8b48be43644a6b9ec26ddb
4f27ee76eeca2422e84d29d483f1f9570d26b6b4
/Finance/Binomial/MultiStep.py
b5678f789a7533f5522d869379ddfcba4a60d868
[]
no_license
dsocaciu/Projects
5a52b98600400d66f4a4f00bb59676bed70ad602
aa722562534408f6c84f6ca2c0b928d038c74cb3
refs/heads/master
2021-01-19T13:01:22.288458
2017-06-14T19:25:59
2017-06-14T19:25:59
82,357,210
0
0
null
null
null
null
UTF-8
Python
false
false
2,360
py
#Step 2 from fractions import Fraction class Node: def __init__(self,Level=None,Price=None,Up=None, Down=None): self.Level = Level self.Price = Price self.Up = Up self.Down = Down def getLevel(self): return self.Level def CalculateNextLevel(node): currentLevel = node.getLevel() UpNode = Node(currentLevel+1,node.Price*u) DownNode = Node(currentLevel+1,node.Price*d) node.Up = UpNode node.Down = DownNode return UpNode,DownNode root = Node(0,Fraction(100,1)) u = Fraction(107,100) d = Fraction(1,u) upNode, downNode = CalculateNextLevel(root) #print(str((100*d)*u)) #Level 0 - Root print(str(root.Level)+ " " * root.Level + str(float(root.Price))) #Level 1 print(str(upNode.Level) + " " * upNode.Level + str(float(upNode.Price))) print(str(downNode.Level) + " " * downNode.Level + str(float(downNode.Price))) #Extensions beyond one step #Level 2 upupNode, updownNode = CalculateNextLevel(upNode) print(str(upupNode.Level) + " " * upupNode.Level + str(float(upupNode.Price))) print(str(updownNode.Level) + " " * updownNode.Level + str(float(updownNode.Price))) downupNode, downdownNode = CalculateNextLevel(downNode) print(str(downupNode.Level) + " " * downupNode.Level + str(float(downupNode.Price))) print(str(downdownNode.Level) + " " * downdownNode.Level + str(float(downdownNode.Price))) # Level 3 upupupNode, upupdownNode= CalculateNextLevel(upupNode) print(str(upupupNode.Level) + " " * upupupNode.Level + str(float(upupupNode.Price))) print(str(upupdownNode.Level) + " " * upupdownNode.Level + str(float(upupdownNode.Price))) updownupNode, updowndownNode = CalculateNextLevel(updownNode) print(str(updownupNode.Level) + " " * updownupNode.Level+ str(float(updownupNode.Price))) print(str(updowndownNode.Level) + " " * updowndownNode.Level+ str(float(updowndownNode.Price))) downupupNode, downupdownNode= CalculateNextLevel(downupNode) print(str(downupupNode.Level) + " " * downupupNode.Level + str(float(downupupNode.Price))) print(str(downupdownNode.Level) + " " * downupdownNode.Level + str(float(downupdownNode.Price))) downdownupNode, downdowndownNode = CalculateNextLevel(downdownNode) print(str(downdownupNode.Level) + " " * downdownupNode.Level+ str(float(downdownupNode.Price))) print(str(downdowndownNode.Level) + " " * downdowndownNode.Level+ str(float(downdowndownNode.Price)))
[ "dan.socaciu@gmail.com" ]
dan.socaciu@gmail.com
ff700f7d454463df58dd34ca5c24e3f7e49d6e50
299daa2b824700c36dde9b192edb44027511da13
/App/models.py
ee6a7ccf9b7e9b689d1e6073ac48223820e15efa
[]
no_license
jacvon/UAV
44d7a2d3a84a3522c11f2bcd3f3eeedf7e61b9d3
9d817607777f01b3564f7723d220102d9cad3ac7
refs/heads/master
2023-02-07T16:52:05.065107
2020-05-12T08:48:57
2020-05-12T08:48:57
249,330,733
0
2
null
null
null
null
UTF-8
Python
false
false
989
py
# This is an auto-generated Django model module. # You'll have to do the following manually to clean this up: # * Rearrange models' order # * Make sure each model has one field with primary_key=True # * Make sure each ForeignKey has `on_delete` set to the desired behavior. # * Remove `managed = False` lines if you wish to allow Django to create, modify, and delete the table # Feel free to rename the models, but don't rename db_table values or field names. from __future__ import unicode_literals from django.db import models #这个没用,懒得删了 class Book(models.Model): b_name = models.CharField(max_length=16, blank=True, null=True) class Meta: managed = False db_table = 'Book' class UserModel(models.Model): u_name = models.CharField(max_length=16) # upload_to 相对路径, 相对于的是MEDIA_ROOT 媒体根目录 u_icon = models.ImageField(upload_to='%Y/%m/%d/icons') u_predict = models.IntegerField(default=0)
[ "jacvon_wan@outlook.com" ]
jacvon_wan@outlook.com
3abdcc5b572a90e3383aecc6e94d1a98320216ed
4577d8169613b1620d70e3c2f50b6f36e6c46993
/students/1803699/homework03/program02.py
344ec0651031695a307c244a2e1dc1133f3d6acc
[]
no_license
Fondamenti18/fondamenti-di-programmazione
cbaf31810a17b5bd2afaa430c4bf85d05b597bf0
031ec9761acb1a425fcc4a18b07884b45154516b
refs/heads/master
2020-03-24T03:25:58.222060
2018-08-01T17:52:06
2018-08-01T17:52:06
142,419,241
0
0
null
null
null
null
UTF-8
Python
false
false
1,636
py
from immagini import * def cammino(fname, fname1): scacchiera=load(fname) posx=0 posy=0 angolo=0 fstring='' spins=0 white=(255,255,255) black=(0,0,0) paint(scacchiera,0,0,(0,255,0)) while spins<4: angolo=fixangle(posx,posy,angolo) sqcoord=findnext(posx,posy,angolo) nextx=sqcoord[0] nexty=sqcoord[1] sqcolor=scacchiera[nexty][nextx] if sqcolor==black or sqcolor==white: posx=nextx posy=nexty scacchiera=paint(scacchiera,posx,posy,(0,255,0)) spins=0 fstring+=str(angolo) else: angolo+=1 if angolo>3: angolo-=4 spins+=1 scacchiera=paint(scacchiera,posx,posy,(0,0,255)) save(scacchiera,fname1) return fstring def findnext(x,y,angolo): if angolo==0: nextsq=(x+40,y) elif angolo==1: nextsq=(x,y+40) elif angolo==2: nextsq=(x-40,y) else: nextsq=(x,y-40) return nextsq def fixangle(x,y,angolo): if x==0: if y==0 and (angolo==2 or angolo==3): angolo=0 elif angolo==2: angolo=3 elif x==560: if y==560 and (angolo==0 or angolo==1): angolo=2 elif angolo==0: angolo=1 elif y==0 and angolo==3: angolo=0 elif y==560 and angolo==1: angolo=2 return angolo def paint(img,x,y,color): for i in range(0,40): for t in range(0,40): img[y+t][x+i]=color return img
[ "a.sterbini@gmail.com" ]
a.sterbini@gmail.com
08ea22b6c1395c1e364e91c3f0876d13382790d2
8dde96b47fa3ec6a8bcbae938da73adc555d4471
/User.py
2f2b5fd491209a276f54dfcc75261711efc908a8
[]
no_license
carmolim/instagram_likes
73c6d2c29452c6b5537777c7003e4bafe7bdde26
7101424e2ae71fdb137cccdc781f80b05e229ee9
refs/heads/master
2021-01-17T09:49:25.801116
2016-03-24T13:06:30
2016-03-24T13:06:30
35,011,422
11
0
null
2015-07-12T23:43:51
2015-05-04T03:10:42
Python
UTF-8
Python
false
false
597
py
class User( object ): def __init__( self, client_user, client_id, access_token, client_secret ): self.client_user = client_user self.client_id = client_id self.access_token = access_token self.client_secret = client_secret print 'User %s created' % self.client_user print '' def get_client_user ( self ): return self.client_user def get_client_id ( self ): return self.client_id def get_access_token( self ): return self.access_token def get_client_secret ( self ): return self.client_secret def get_user_redirect_uri ( self ): return self.redirect_uri
[ "carmolim@gmail.com" ]
carmolim@gmail.com
e8022aab29808323257b230b2cecb0de277cc4cd
5b9bce9fdfc13848b6bacc73741f6e8fc5a4ae99
/testing/pcechoclient.py
d6c4f82a21900e1ac79cde66f76604954c82a49e
[]
no_license
ContinuumBridge/bridge_admin
4a5a036f4e0cb4e96366a85524aef0c33e82a7ff
efd4148a55221f74cb8a11139a8416d1af453408
refs/heads/master
2022-03-20T15:00:01.422221
2020-01-04T11:08:17
2020-01-04T11:08:17
17,435,712
0
0
null
null
null
null
UTF-8
Python
false
false
1,097
py
#!/usr/bin/env python # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. from twisted.internet.protocol import ClientFactory from twisted.protocols.basic import LineReceiver from twisted.internet import reactor import sys class EchoClient(LineReceiver): end="Bye-bye!" def connectionMade(self): self.sendLine("Hello, world!") self.sendLine("What a fine day it is.") self.sendLine(self.end) def lineReceived(self, line): print "receive:", line if line==self.end: self.transport.loseConnection() class EchoClientFactory(ClientFactory): protocol = EchoClient def clientConnectionFailed(self, connector, reason): print 'connection failed:', reason.getErrorMessage() reactor.stop() def clientConnectionLost(self, connector, reason): print 'connection lost:', reason.getErrorMessage() reactor.stop() def main(): factory = EchoClientFactory() reactor.connectUNIX("/tmp/pcsocket", factory, timeout=10) reactor.run() if __name__ == '__main__': main()
[ "peter.claydon@continuumbridge.com" ]
peter.claydon@continuumbridge.com
802a35b2dd53c20416e66ef7eec5d95d5042c007
3fb26a1204611e5e2ab906ce73c4d047eccfd2ef
/__init__.py
b1adf3f14778b65f0f0d7fea72d2d03b8f9a7c10
[]
no_license
Trebolium/nadineVD
e97294a9de36fba2816d98b34f43d24c6c615352
d2e26f84ba2abe85f41abe0ed2a22f8b47791e58
refs/heads/master
2022-02-26T10:57:48.162946
2019-07-25T22:46:59
2019-07-25T22:46:59
198,650,689
0
0
null
null
null
null
UTF-8
Python
false
false
29
py
from vocalDetector import *
[ "brendan242424@gmail.com" ]
brendan242424@gmail.com
138d4fa9febc3f2b3792bf0a311777ffb4e59fcb
5a696135f54c120fab988e4f1198a9ac41cae5b8
/portfolioapi/views.py
41034fc0b0470c8cf64b5c01432dd21d40d8391d
[]
no_license
armstrongsouljah/codemeapi
f1d98ed2035c8131ba5e7611faf3d3eb831fd5f8
21afc2a75b1429bb920023b3cbba5aecc310293d
refs/heads/master
2023-08-17T02:53:03.695526
2020-05-16T07:49:53
2020-05-16T07:49:53
264,371,074
0
0
null
2021-09-22T19:07:11
2020-05-16T06:05:01
Python
UTF-8
Python
false
false
547
py
from django.shortcuts import render from rest_framework import generics as g from .serializers import ProjectSerializer from .models import Project from rest_framework.permissions import ( AllowAny, IsAuthenticated ) class ProjectListView(g.ListAPIView): queryset = Project.objects.all() permission_classes = [AllowAny, ] serializer_class = ProjectSerializer class ProjectAddView(g.CreateAPIView): queryset = Project.objects.all() permission_classes = [IsAuthenticated, ] serializer_class = ProjectSerializer
[ "armstrongsouljah@gmail.com" ]
armstrongsouljah@gmail.com
11b0479a27c5ab90d81cee838e888ab9e14fa8bf
7b4abf7507c6b34244c7d15808f35a0bdd360831
/src/app/channels/channels.py
29e64c47b4ec5c2de4ea0b45908fc921d3412267
[ "MIT" ]
permissive
aldomatus/python_sqlalchemy_mysql_docker_many-to-many
763ab78703cce42e12e20c9c1e58ca6290477590
d3e61761208eb8c604c4e2218ac6effeddd6291b
refs/heads/main
2023-07-12T18:59:47.521556
2021-08-11T23:04:26
2021-08-11T23:04:26
394,622,890
0
0
null
null
null
null
UTF-8
Python
false
false
603
py
from flask import request, jsonify, Blueprint channels = Blueprint('channels', __name__) @channels.route('/channels', methods=['GET']) def users_regards(): return jsonify({'message': 'Welcome!'}) @channels.route('/channel', methods=['POST']) def create_user(): from src.main import db from src.app.models import Channel, channel_schema # Receive requests if request.method == 'POST': name = request.json['name'] new_channel= Channel(name) db.session.add(new_channel) db.session.commit() return channel_schema.jsonify(new_channel)
[ "aldo.matus@outlook.com" ]
aldo.matus@outlook.com
2316b3a02099a1a4c192eadd8ae8fd79893c2aa0
88dd43c9d2acba579c9319332a8ebf26aa2ccd3a
/tests/test_helpers.py
aa16d6dd07d8a9bbabb7a83ed655d657bc903d0e
[ "MIT" ]
permissive
dcramer/exam
063637270d414198dda56b4fccaf1dd0103014af
548d3b3b0711badda67b1c42d84ff1d9b5365212
refs/heads/master
2021-01-16T17:40:14.817038
2012-12-06T01:44:53
2012-12-06T01:44:53
7,027,986
2
0
null
null
null
null
UTF-8
Python
false
false
1,529
py
from unittest2 import TestCase from mock import patch, Mock from exam.helpers import rm_f, track, mock_import from exam.decorators import fixture from describe import expect @patch('exam.helpers.shutil') class TestRmrf(TestCase): path = '/path/to/folder' def test_calls_shutil_rmtreee(self, shutil): rm_f(self.path) shutil.rmtree.assert_called_once_with(self.path, ignore_errors=True) @patch('exam.helpers.os') def test_on_os_errors_calls_os_remove(self, os, shutil): shutil.rmtree.side_effect = OSError rm_f(self.path) os.remove.assert_called_once_with(self.path) class TestTrack(TestCase): @fixture def foo_mock(self): return Mock() @fixture def bar_mock(self): return Mock() def test_makes_new_mock_and_attaches_each_kwarg_to_it(self): tracker = track(foo=self.foo_mock, bar=self.bar_mock) expect(tracker.foo).to == self.foo_mock expect(tracker.bar).to == self.bar_mock class TestMockImport(TestCase): def test_is_a_context_manager_that_yields_patched_import(self): with mock_import('foo') as mock_foo: import foo expect(foo).to == mock_foo def test_mocks_import_for_packages(self): with mock_import('foo.bar.baz') as mock_baz: import foo.bar.baz expect(foo.bar.baz).to == mock_baz @mock_import('foo') def test_can_be_used_as_a_decorator_too(self, mock_foo): import foo expect(foo).to == mock_foo
[ "jeff.pollard@gmail.com" ]
jeff.pollard@gmail.com
6ba9c9abe2cbbb4ac9f451e51b7f6fc3c3f86ed8
267b937afa1e1e3ee0907cdd319327e8f7946746
/wrfchem_v415_ext/scripts/components/old2/old/produce_plots_args_rain_higherres.py
4facbcc9b4464b20b66892d54e08d95e4ab9f623
[]
no_license
eiliscoleman/StreamAIR-AQ
3ed13aaa75f9c3cd9788104ebf794f90b0b7f57b
928f016572036cf7d1ac1ff220281aae314446cb
refs/heads/master
2023-01-23T09:08:52.109971
2020-11-27T09:47:00
2020-11-27T09:47:00
313,920,790
0
0
null
null
null
null
UTF-8
Python
false
false
1,647
py
from __future__ import print_function, unicode_literals import json import matplotlib as mpl mpl.use('Agg') import matplotlib.colors as mc import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import xarray as xr import xarray.ufuncs as xu import seaborn as sns from netCDF4 import Dataset from mpl_toolkits.basemap import Basemap #import mercantile as mti import argparse from argparse import RawDescriptionHelpFormatter parser = argparse.ArgumentParser(description = "read in args", formatter_class = RawDescriptionHelpFormatter) parser.add_argument('filein', help = 'file to plot') parser.add_argument('oproot', help = 'Path for output') args = parser.parse_args() tilesize = 768 dpi = 288 dir_path=args.oproot print(dir_path) png_out_dir=args.oproot fid=args.filein f_path=(png_out_dir+'/'+fid) print(f_path) print('this is the file to be plotted', args.filein) data = xr.open_dataset(f_path) LON, LAT=np.meshgrid(data.lon.values, data.lat.values) print ('RAIN and pressure') out_path=(png_out_dir+'/test_rain_psl.png') plt.figure(figsize=(tilesize/dpi, tilesize/dpi), dpi=dpi) plt.subplots_adjust(bottom=0, left=0, right=1, top=1) plt.axis('off') lev_range=np.arange(0,50,1) levels=lev_range cs=plt.contourf(LON, LAT, data.rain.values[0,:,:], levels, cmap=plt.cm.Blues, extend="both") cs2=plt.contour(LON, LAT, data.p_sl[0,:,:]*1e-2, levels_n=20, linewidths=0.5, colors='k') levels_n=np.arange(1000,1040,1) cs2=plt.contour(LON, LAT, data.p_sl[0,:,:]*1e-2, levels_n, linewidths=0.2, colors='k') plt.clabel(cs2, inline=1, fmt='%.0f', fontsize=2) plt.savefig(out_path, dpi=1152, tilesize=768) plt.close()
[ "eiliscoleman@gmail.com" ]
eiliscoleman@gmail.com
0ee12d9738e4a2948bf9e76868469b53a28b568c
0884bc5f5dca38f239ea0d7d31232a67a9411c27
/format.py
166496d572d670a7e31f70bf6fd83cd5f4bd023d
[]
no_license
d0v34/My-Python
cb6e9e2da266a08e6b948358675e80bcc8bf08dd
321a9545d1cfa4137c8547dc1159779cc8a0f30b
refs/heads/master
2021-08-12T04:15:58.727625
2021-08-05T06:09:07
2021-08-05T06:09:07
212,036,430
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
szer = 42 print("-" * szer) print("| Czas | Zawodnik | Data |") print("*" * szer) print("| {:06.3f} | {:16s} | {:10s} |" .format(9.58, "Usain Bolt", "16.08.2009")) print("| {:6.3f} | {:16s} | {:10s} |" .format(9.69, "Tyson Gay", "20.09.2009")) print("| {:6.3f} | {:16s} | {:10s} |" .format(9.69, "Yohan Blake", "23.09.2012")) print("| {:6.3f} | {:16s} | {:10s} |" .format(9.74, "Asafa Powell", "2.09.2008")) print("-" * szer)
[ "fiat126p@gmail.com" ]
fiat126p@gmail.com
304f7e9f5f5d929203246c25461e28f6a6b175af
ead61cfb84bf9383e3a51cfdd8d01aee05a43008
/networks/blocks/inception_block.py
169b04a0a866b0685f22379567637744056e7f22
[ "Apache-2.0" ]
permissive
whq-hqw/omni_torch
67263676c5d649426c982d148b3816fef6c73e94
9bd654387619c0cbc6aee9e91482ecc9200138ef
refs/heads/master
2022-03-28T20:30:44.293548
2020-01-03T04:03:24
2020-01-03T04:03:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,007
py
""" # Copyright (c) 2019 Wang Hanqin # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import torch import torch.nn as nn import torch.nn.functional as F from .conv_block import conv_block class InceptionBlock(nn.Module): def __init__(self, input, filters, kernel_sizes, stride, padding, groups=1, name=None, dilation=1, bias=True, activation=nn.ReLU(), batch_norm=nn.BatchNorm2d, dropout=0, inner_maxout= None, maxout=None): def concatenate_blocks(block1, block2): list_of_block1 = list(block1.children()) list_of_block1.extend(list(block2.children())) return nn.Sequential(*list_of_block1) """ :param input: int :param filters: in the form of [[...], [...], ... , [...]], each cell represent a stream in the network :param kernel_sizes: in the form of [[...], [...], ... , [...]] :param stride: in the form of [[...], [...], ... , [...]] :param padding: in the form of [[...], [...], ... , [...]] """ assert max([len(filters), len(kernel_sizes), len(stride), len(padding)]) is \ min([len(filters), len(kernel_sizes), len(stride), len(padding)]) inner_groups = len(filters) super().__init__() if inner_maxout is None: inner_maxout = inner_groups * [None] inner_blocks = [] for i in range(inner_groups): if inner_maxout[i]: ops = nn.Sequential(inner_maxout[i]) ops = concatenate_blocks(ops, conv_block(input, filters[i], kernel_sizes[i], stride[i], padding[i], name="incep_" + str(i), activation=activation, batch_norm=batch_norm, dropout=dropout, dilation=dilation, bias=bias, groups=groups)) else: ops = conv_block(input, filters[i], kernel_sizes[i], stride[i], padding[i], name="incep_" + str(i), activation=activation, batch_norm=batch_norm, dropout=dropout, dilation=dilation, bias=bias, groups=groups) inner_blocks.append(ops) if maxout: inner_blocks.append(maxout) self.inner_blocks = nn.ModuleList(inner_blocks) def forward(self, x): out = [block(x) for block in self.inner_blocks] return torch.cat(out, dim=1)
[ "loveorchidsdavid@gmail.com" ]
loveorchidsdavid@gmail.com
421fe091b6410369a00caf0601b89fb067b34c02
b6b2be9866fd16699ad5c30a21bbcb70755f1e57
/Experiments/_Legacy/CoralBleaching/WindowBasedClassifier/windowbasedclassifier_train_THEN_predict.py
883e47e8f8961fd4fb0902b783a4bf205434aca2
[]
no_license
simonhughes22/PythonNlpResearch
24a482c7036c568b063ec099176b393d45a0a86b
2bc2914ce93fcef6dbd26f8097eec20b7d0e476d
refs/heads/master
2022-12-08T17:39:18.332177
2019-10-26T12:48:33
2019-10-26T12:48:33
16,458,105
17
7
null
2022-12-07T23:38:17
2014-02-02T16:36:39
Jupyter Notebook
UTF-8
Python
false
false
7,156
py
from featureextractortransformer import FeatureExtractorTransformer from sent_feats_for_stacking import * from load_data import load_process_essays, extract_features from featurevectorizer import FeatureVectorizer from featureextractionfunctions import * from CrossValidation import cross_validation from wordtagginghelper import * from IterableFP import flatten # Classifiers from sklearn.ensemble import GradientBoostingClassifier from sklearn.linear_model import LogisticRegression from window_based_tagger_config import get_config from model_store import ModelStore from predictions_to_file import predictions_to_file # END Classifiers import Settings import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) logger = logging.getLogger() # Create persister (mongo client) - fail fast if mongo service not initialized # not hashed as don't affect persistence of feature processing SPARSE_WD_FEATS = True SPARSE_SENT_FEATS = True MIN_FEAT_FREQ = 5 # 5 best so far CV_FOLDS = 5 MIN_TAG_FREQ = 5 LOOK_BACK = 0 # how many sentences to look back when predicting tags # end not hashed # construct unique key using settings for pickling settings = Settings.Settings() model_store = ModelStore() """ PETER - CHANGE THESE FILE PATHS """ folder = settings.data_directory + "CoralBleaching/BrattData/EBA1415_Merged/" # Location where the training data is, use EBA_Pre and Post test essays preferably test_folder= settings.data_directory + "CoralBleaching/BrattData/Merged/" # Location where the new essays to tag are located out_predictions_file = settings.data_directory + "CoralBleaching/Results/predictions.txt" # File to dump the predictions to config = get_config(folder) """ FEATURE EXTRACTION """ offset = (config["window_size"] - 1) / 2 unigram_window_stemmed = fact_extract_positional_word_features_stemmed(offset) biigram_window_stemmed = fact_extract_ngram_features_stemmed(offset, 2) #pos_tag_window = fact_extract_positional_POS_features(offset) #pos_tag_plus_wd_window = fact_extract_positional_POS_features_plus_word(offset) #head_wd_window = fact_extract_positional_head_word_features(offset) #pos_dep_vecs = fact_extract_positional_dependency_vectors(offset) extractors = [unigram_window_stemmed, biigram_window_stemmed] feat_config = dict(config.items() + [("extractors", extractors)]) """ LOAD DATA """ tagged_essays = load_process_essays( **config ) logger.info("Essays loaded") # most params below exist ONLY for the purposes of the hashing to and from disk feature_extractor = FeatureExtractorTransformer(extractors) essay_feats = feature_extractor.transform(tagged_essays) logger.info("Features loaded") """ DEFINE TAGS """ _, lst_all_tags = flatten_to_wordlevel_feat_tags(essay_feats) regular_tags = list(set((t for t in flatten(lst_all_tags) if t[0].isdigit()))) CAUSE_TAGS = ["Causer", "Result", "explicit"] CAUSAL_REL_TAGS = [CAUSAL_REL, CAUSE_RESULT, RESULT_REL]# + ["explicit"] """ works best with all the pair-wise causal relation codes """ wd_train_tags = regular_tags + CAUSE_TAGS wd_test_tags = regular_tags + CAUSE_TAGS # tags from tagging model used to train the stacked model sent_input_feat_tags = wd_train_tags # find interactions between these predicted tags from the word tagger to feed to the sentence tagger sent_input_interaction_tags = wd_train_tags # tags to train (as output) for the sentence based classifier sent_output_train_test_tags = list(set(regular_tags + CAUSE_TAGS + CAUSAL_REL_TAGS)) assert set(CAUSE_TAGS).issubset(set(sent_input_feat_tags)), "To extract causal relations, we need Causer tags" # tags to evaluate against """ CLASSIFIERS """ """ Log Reg + Log Reg is best!!! """ fn_create_wd_cls = lambda: LogisticRegression() # C=1, dual = False seems optimal #fn_create_wd_cls = lambda : LinearSVC(C=1.0) #fn_create_sent_cls = lambda : LinearSVC(C=1.0) fn_create_sent_cls = lambda : LogisticRegression(dual=True) # C around 1.0 seems pretty optimal # NOTE - GBT is stochastic in the SPLITS, and so you will get non-deterministic results #fn_create_sent_cls = lambda : GradientBoostingClassifier() #F1 = 0.5312 on numeric + 5b + casual codes for sentences if type(fn_create_sent_cls()) == GradientBoostingClassifier: SPARSE_SENT_FEATS = False #TODO Parallelize essays_TD = essay_feats # TD and VD are lists of Essay objects. The sentences are lists # of featureextractortransformer.Word objects print "Training Tagging Model" """ Data Partitioning and Training """ td_feats, td_tags = flatten_to_wordlevel_feat_tags(essays_TD) feature_transformer = FeatureVectorizer(min_feature_freq=MIN_FEAT_FREQ, sparse=SPARSE_WD_FEATS) td_X = feature_transformer.fit_transform(td_feats) wd_td_ys_bytag = get_wordlevel_ys_by_code(td_tags, wd_train_tags) """ TRAIN Tagger """ tag2word_classifier = train_classifier_per_code(td_X, wd_td_ys_bytag, fn_create_wd_cls, wd_train_tags) print "\nTraining Sentence Model" """ SENTENCE LEVEL PREDICTIONS FROM STACKING """ sent_td_xs, sent_td_ys_bycode = get_sent_feature_for_stacking_from_tagging_model(sent_input_feat_tags, sent_input_interaction_tags, essays_TD, td_X, wd_td_ys_bytag, tag2word_classifier, SPARSE_SENT_FEATS, LOOK_BACK) """ Train Stacked Classifier """ tag2sent_classifier = train_classifier_per_code(sent_td_xs, sent_td_ys_bycode , fn_create_sent_cls, sent_output_train_test_tags) """ END TRAINING """ test_config = get_config(test_folder) test_tagged_essays = load_process_essays(**test_config) test_essay_feats = feature_extractor.transform(test_tagged_essays) cv_wd_td_ys_by_tag, cv_wd_td_predictions_by_tag = defaultdict(list), defaultdict(list) # TD and VD are lists of Essay objects. The sentences are lists # of featureextractortransformer.Word objects print "Running Tagging Model" """ Data Partitioning and Training """ test_feats, _ = flatten_to_wordlevel_feat_tags(test_essay_feats) test_x = feature_transformer.transform(test_feats) """ TEST Tagger """ td_wd_predictions_by_code = test_classifier_per_code(test_x, tag2word_classifier, wd_test_tags) print "\nRunning Sentence Model" """ SENTENCE LEVEL PREDICTIONS FROM STACKING """ dummy_wd_td_ys_bytag = defaultdict(lambda : np.asarray([0.0] * test_x.shape[0])) sent_test_xs, sent_test_ys_bycode = get_sent_feature_for_stacking_from_tagging_model(sent_input_feat_tags, sent_input_interaction_tags, test_essay_feats, test_x, dummy_wd_td_ys_bytag, tag2word_classifier, SPARSE_SENT_FEATS, LOOK_BACK) """ Test Stack Classifier """ test_sent_predictions_by_code \ = test_classifier_per_code(sent_test_xs, tag2sent_classifier, sent_output_train_test_tags ) merge_dictionaries(td_wd_predictions_by_code, cv_wd_td_predictions_by_tag) with open(out_predictions_file, "w+") as f_output_file: f_output_file.write("Essay|Sent Number|Processed Sentence|Concept Codes|Predictions\n") predictions_to_file(f_output_file, sent_test_ys_bycode, test_sent_predictions_by_code, test_essay_feats, regular_tags + CAUSE_TAGS + CAUSAL_REL_TAGS) # print results for each code print out_predictions_file
[ "simon.hughes@dice.com" ]
simon.hughes@dice.com
19abf40fe4e150fdff4ad72dd8e5d5eca00779f5
0e083f405af00029c9ec31849f0f7f81c56844b5
/configs/mmdet/detection/detection_tensorrt_static-800x1344.py
737054533c6d1350e5cf1c3ba8e1c1c7ea026a7c
[ "Apache-2.0" ]
permissive
open-mmlab/mmdeploy
39b9e7b611caab2c76a6142fcb99f0bf1d92ad24
5479c8774f5b88d7ed9d399d4e305cb42cc2e73a
refs/heads/main
2023-09-01T21:29:25.315371
2023-08-31T09:59:29
2023-08-31T09:59:29
441,467,833
2,164
605
Apache-2.0
2023-09-14T10:39:04
2021-12-24T13:04:44
Python
UTF-8
Python
false
false
56
py
_base_ = ['../_base_/base_tensorrt_static-800x1344.py']
[ "noreply@github.com" ]
open-mmlab.noreply@github.com
6aeb18de3effe94c35785f743188edb5b1833d15
89e65f7e2e0196a36f5dfced567a67cab3cba24d
/backend/users/migrations/0002_auto_20210324_0135.py
5236ed70f5577443707f2b8d206f27b9ff10c506
[]
no_license
crowdbotics-apps/l0c4l-25232
e90bab9fd6c44f9bd6d7a8f8fa90684d509840a0
1271c3c84e4465634bcb9d0d46e02c9b794bfdbb
refs/heads/master
2023-04-02T20:27:31.769165
2021-03-24T11:29:42
2021-03-24T11:29:42
350,907,098
0
0
null
null
null
null
UTF-8
Python
false
false
1,275
py
# Generated by Django 2.2.19 on 2021-03-24 01:35 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AddField( model_name='user', name='last_updated', field=models.DateTimeField(auto_now=True, null=True), ), migrations.AddField( model_name='user', name='timestamp_created', field=models.DateTimeField(auto_now_add=True, null=True), ), migrations.AlterField( model_name='user', name='email', field=models.EmailField(blank=True, max_length=255, null=True), ), migrations.AlterField( model_name='user', name='first_name', field=models.CharField(blank=True, max_length=255, null=True), ), migrations.AlterField( model_name='user', name='last_name', field=models.CharField(blank=True, max_length=255, null=True), ), migrations.AlterField( model_name='user', name='name', field=models.CharField(blank=True, max_length=255, null=True), ), ]
[ "team@crowdbotics.com" ]
team@crowdbotics.com
ab5c4a7cc0555180e525b35e0720ede50721f0d0
1c2ed80f77782ebee5b90480dbfc74a2d145d53f
/python-base/src/learn/shell/system_zip4.py
8f4f688b4d50233a9b9278681aa2ed1e5f75ab9f
[]
no_license
icesx/IPython
970dfe7260906d85706b7117044510b5929e9098
452c63e17c6f05cb0540974f7c01c1e73f9836fe
refs/heads/master
2021-07-05T02:30:29.956369
2021-02-02T07:09:58
2021-02-02T07:09:58
220,771,536
0
0
null
null
null
null
UTF-8
Python
false
false
1,441
py
#!/usr/bin/python # Filename: system_zip4.py import os import time # 1. The files and directories to be backed up are specified in a list. source = ['/home/swaroop/byte','/home/swaroop/bin'] # If you are using Windows, use source = [r'C:\Documents', r'D:\Work'] or something like that # 2. The backup must be stored in a main backup directory target_dir = '/mnt/e/backup/' # Remember to change this to what you will be using # 3. The files are backed up into a zip file. # 4. The current day is the name of the subdirectory in the main directory today = target_dir + time.strftime('%Y%m%d') # The current time is the name of the zip archive now = time.strftime('%H%M%S') # Take a comment from the user to create the name of the zip file comment = input('Enter a comment --> ') if len(comment) == 0: # check if a comment was entered target = today + os.sep + now + '.zip' else: target = today + os.sep + now + '_' + \ comment.replace(' ','_') + '.zip' # Notice the backslash! # Create the subdirectory if it isn't already there if not os.path.exists(today): os.mkdir(today) # make directory print('Successfully created directory',today) # 5. We use the zip command (in Unix/Linux) to put the files in a zip archive zip_command = "zip -qr '%s' %s" % (target,' '.join(source)) # Run the backup if os.system(zip_command) == 0: print('Successful backup to',target) else: print('Backup FAILED')
[ "icesxrun@gmail.com" ]
icesxrun@gmail.com
64eabaa4935dd78df0c5e852ab634f5e19a533f4
e3794217c22e3baed4738b1b8b1815b9148355fe
/learning_logs/migrations/0003_auto_20210426_0040.py
ccec2ee7040851ba67afb8831617f3e258be20d8
[]
no_license
aiswfs/learning_log
1de83ea4ce861290a8237822c22ae059f53a648b
05b07ecb75e14c29bcde509e27651bae3120e0b7
refs/heads/master
2023-04-19T22:58:18.661997
2021-04-27T03:36:25
2021-04-27T03:36:25
361,594,549
2
0
null
null
null
null
UTF-8
Python
false
false
1,028
py
# Generated by Django 2.2.20 on 2021-04-25 16:40 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('learning_logs', '0002_entry'), ] operations = [ migrations.AddField( model_name='topic', name='owner', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), preserve_default=False, ), migrations.AlterField( model_name='entry', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='topic', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), ]
[ "1024766276@qq.com" ]
1024766276@qq.com
904e45682fa277c8e3d4b3e9352e0595318d3aa1
ace30d0a4b1452171123c46eb0f917e106a70225
/filesystems/vnx_rootfs_lxc_ubuntu64-16.04-v025-openstack-compute/rootfs/usr/lib/python2.7/dist-packages/neutron/objects/qos/policy.py
dfb84b85d748d70d43b8ae4236a8a20cb12169b9
[ "Python-2.0" ]
permissive
juancarlosdiaztorres/Ansible-OpenStack
e98aa8c1c59b0c0040c05df292964520dd796f71
c01951b33e278de9e769c2d0609c0be61d2cb26b
refs/heads/master
2022-11-21T18:08:21.948330
2018-10-15T11:39:20
2018-10-15T11:39:20
152,568,204
0
3
null
2022-11-19T17:38:49
2018-10-11T09:45:48
Python
UTF-8
Python
false
false
10,103
py
# Copyright 2015 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import itertools from oslo_utils import versionutils from oslo_versionedobjects import base as obj_base from oslo_versionedobjects import exception from oslo_versionedobjects import fields as obj_fields from neutron._i18n import _ from neutron.common import exceptions from neutron.db import api as db_api from neutron.db import models_v2 from neutron.db.qos import api as qos_db_api from neutron.db.qos import models as qos_db_model from neutron.db.rbac_db_models import QosPolicyRBAC from neutron.objects import common_types from neutron.objects.db import api as obj_db_api from neutron.objects.qos import rule as rule_obj_impl from neutron.objects import rbac_db @obj_base.VersionedObjectRegistry.register class QosPolicy(rbac_db.NeutronRbacObject): # Version 1.0: Initial version # Version 1.1: QosDscpMarkingRule introduced # Version 1.2: Added QosMinimumBandwidthRule # Version 1.3: Added standard attributes (created_at, revision, etc) # Version 1.4: Changed tenant_id to project_id VERSION = '1.4' # required by RbacNeutronMetaclass rbac_db_model = QosPolicyRBAC db_model = qos_db_model.QosPolicy port_binding_model = qos_db_model.QosPortPolicyBinding network_binding_model = qos_db_model.QosNetworkPolicyBinding fields = { 'id': common_types.UUIDField(), 'project_id': obj_fields.StringField(), 'name': obj_fields.StringField(), 'shared': obj_fields.BooleanField(default=False), 'rules': obj_fields.ListOfObjectsField('QosRule', subclasses=True), } fields_no_update = ['id', 'project_id'] synthetic_fields = ['rules'] binding_models = {'network': network_binding_model, 'port': port_binding_model} def obj_load_attr(self, attrname): if attrname == 'project_id': return super(QosPolicy, self).obj_load_attr(attrname) if attrname != 'rules': raise exceptions.ObjectActionError( action='obj_load_attr', reason=_('unable to load %s') % attrname) if not hasattr(self, attrname): self.reload_rules() def reload_rules(self): rules = rule_obj_impl.get_rules(self.obj_context, self.id) setattr(self, 'rules', rules) self.obj_reset_changes(['rules']) def get_rule_by_id(self, rule_id): """Return rule specified by rule_id. @raise QosRuleNotFound: if there is no such rule in the policy. """ for rule in self.rules: if rule_id == rule.id: return rule raise exceptions.QosRuleNotFound(policy_id=self.id, rule_id=rule_id) @classmethod def get_object(cls, context, **kwargs): # We want to get the policy regardless of its tenant id. We'll make # sure the tenant has permission to access the policy later on. admin_context = context.elevated() with db_api.autonested_transaction(admin_context.session): policy_obj = super(QosPolicy, cls).get_object(admin_context, **kwargs) if (not policy_obj or not cls.is_accessible(context, policy_obj)): return policy_obj.reload_rules() return policy_obj @classmethod def get_objects(cls, context, _pager=None, validate_filters=True, **kwargs): # We want to get the policy regardless of its tenant id. We'll make # sure the tenant has permission to access the policy later on. admin_context = context.elevated() with db_api.autonested_transaction(admin_context.session): objs = super(QosPolicy, cls).get_objects(admin_context, _pager, validate_filters, **kwargs) result = [] for obj in objs: if not cls.is_accessible(context, obj): continue obj.reload_rules() result.append(obj) return result @classmethod def _get_object_policy(cls, context, model, **kwargs): with db_api.autonested_transaction(context.session): binding_db_obj = obj_db_api.get_object(context, model, **kwargs) if binding_db_obj: return cls.get_object(context, id=binding_db_obj['policy_id']) @classmethod def get_network_policy(cls, context, network_id): return cls._get_object_policy(context, cls.network_binding_model, network_id=network_id) @classmethod def get_port_policy(cls, context, port_id): return cls._get_object_policy(context, cls.port_binding_model, port_id=port_id) # TODO(QoS): Consider extending base to trigger registered methods for us def create(self): with db_api.autonested_transaction(self.obj_context.session): super(QosPolicy, self).create() self.reload_rules() def delete(self): with db_api.autonested_transaction(self.obj_context.session): for object_type, model in self.binding_models.items(): binding_db_obj = obj_db_api.get_object(self.obj_context, model, policy_id=self.id) if binding_db_obj: raise exceptions.QosPolicyInUse( policy_id=self.id, object_type=object_type, object_id=binding_db_obj['%s_id' % object_type]) super(QosPolicy, self).delete() def attach_network(self, network_id): qos_db_api.create_policy_network_binding(self.obj_context, policy_id=self.id, network_id=network_id) def attach_port(self, port_id): qos_db_api.create_policy_port_binding(self.obj_context, policy_id=self.id, port_id=port_id) def detach_network(self, network_id): qos_db_api.delete_policy_network_binding(self.obj_context, policy_id=self.id, network_id=network_id) def detach_port(self, port_id): qos_db_api.delete_policy_port_binding(self.obj_context, policy_id=self.id, port_id=port_id) def get_bound_networks(self): return qos_db_api.get_network_ids_by_network_policy_binding( self.obj_context, self.id) def get_bound_ports(self): return qos_db_api.get_port_ids_by_port_policy_binding( self.obj_context, self.id) @classmethod def _get_bound_tenant_ids(cls, session, binding_db, bound_db, binding_db_id_column, policy_id): return list(itertools.chain.from_iterable( session.query(bound_db.tenant_id).join( binding_db, bound_db.id == binding_db_id_column).filter( binding_db.policy_id == policy_id).all())) @classmethod def get_bound_tenant_ids(cls, context, policy_id): """Implements RbacNeutronObject.get_bound_tenant_ids. :returns: set -- a set of tenants' ids dependant on QosPolicy. """ net = models_v2.Network qosnet = qos_db_model.QosNetworkPolicyBinding port = models_v2.Port qosport = qos_db_model.QosPortPolicyBinding bound_tenants = [] with db_api.autonested_transaction(context.session): bound_tenants.extend(cls._get_bound_tenant_ids( context.session, qosnet, net, qosnet.network_id, policy_id)) bound_tenants.extend( cls._get_bound_tenant_ids(context.session, qosport, port, qosport.port_id, policy_id)) return set(bound_tenants) def obj_make_compatible(self, primitive, target_version): def filter_rules(obj_names, rules): return [rule for rule in rules if rule['versioned_object.name'] in obj_names] _target_version = versionutils.convert_version_to_tuple(target_version) names = [] if _target_version >= (1, 0): names.append(rule_obj_impl.QosBandwidthLimitRule.obj_name()) if _target_version >= (1, 1): names.append(rule_obj_impl.QosDscpMarkingRule.obj_name()) if _target_version >= (1, 2): names.append(rule_obj_impl.QosMinimumBandwidthRule.obj_name()) if 'rules' in primitive and names: primitive['rules'] = filter_rules(names, primitive['rules']) if _target_version < (1, 3): standard_fields = ['revision_number', 'created_at', 'updated_at'] for f in standard_fields: primitive.pop(f) if primitive['description'] is None: # description was not nullable before raise exception.IncompatibleObjectVersion( objver=target_version, objname='QoSPolicy') if _target_version < (1, 4): primitive['tenant_id'] = primitive.pop('project_id')
[ "jcdiaztorres96@gmail.com" ]
jcdiaztorres96@gmail.com
79afb0e2319f1027af485ded125bd8ba9a51eb44
48a3bdc4f63cadd3414665e58d8fb8ab208100ed
/Prediction_file.py
a7e8ff33e63a1bf946b2db5fe6e9c836b3ec6c3a
[]
no_license
HPYC1305KABU/-Voice-Based-Speech-Recognition-System-
f086f3cb07f4e0f84e6948368e0469d06b515d9a
54e70b34307ee72e136201671dd70e3ad6b73276
refs/heads/main
2023-02-28T09:07:36.531766
2021-02-08T19:58:03
2021-02-08T19:58:03
337,192,896
1
0
null
null
null
null
UTF-8
Python
false
false
3,214
py
import numpy as np import pandas as pd #import seaborn as sns #import matplotlib.pyplot as plt #from sklearn.preprocessing import StandardScaler #import scipy as sp #import sklearn #import random #import time from sklearn.preprocessing import MinMaxScaler #from sklearn import preprocessing, model_selection from keras.models import Sequential from keras.layers import Dense from keras.utils import np_utils from sklearn.preprocessing import LabelEncoder from keras.utils.np_utils import to_categorical from sklearn.utils import shuffle from keras.models import model_from_json data = pd.read_csv('Main_file.csv') data = shuffle(data) #for test data------------------------------------------ data_test = pd.read_csv('Test_Data.csv') data_test = shuffle(data_test) #-------------------------------------------- i = 200 #data_to_predict = data_test[:i].reset_index(drop = True) #predict_name = data_to_predict.name #predict_name = np.array(predict_name) #prediction = np.array(data_to_predict.drop(['name'],axis= 1)) #data = data.reset_index(drop = True) #X = data.drop(['name'], axis = 1) #scaler = MinMaxScaler(feature_range=(0, 1)) #X = scaler.fit_transform(X) #X = pd.DataFrame(X) #X = np.array(X) Y = data['name'] # Transform name species into numerical values encoder = LabelEncoder() encoder.fit(Y) Y = encoder.transform(Y) Y = np_utils.to_categorical(Y) #print(Y) #for test data----------------------------------------------------- X_test = data_test.drop(['name'], axis = 1) #X_test = data.dropna(axis = 0, how ='any') scaler = MinMaxScaler(feature_range=(0, 1)) X_test = scaler.fit_transform(X_test) X_test = pd.DataFrame(X_test) X_test = np.array(X_test) #Y_test = data_test['name'] # Transform name species into numerical values #encoder = LabelEncoder() #encoder.fit(Y_test) #Y_test = encoder.transform(Y_test) #Y_test = np_utils.to_categorical(Y_test) #print(Y) # later... # load json and create model json_file = open('xyz.json', 'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) # load weights into new model loaded_model.load_weights("xyz.h5") print("Loaded model from disk") # evaluate loaded model on test data #loaded_model.compile(loss = 'categorical_crossentropy' , optimizer = 'adam' , metrics = ['accuracy'] ) #score = loaded_model.evaluate(X, Y, verbose=0) #print("%s: %.2f%%" % (loaded_model.metrics_names[1], score[1]*100)) for j in range(i): print('-------------------------------------------------------') predictions = loaded_model.predict_classes(X_test) #prediction_ = np.argmax(to_categorical(predictions), axis=1) #prediction_ = np.argsort(predictions, axis=-1, kind='quicksort', order=None) prediction_ = np.argsort(to_categorical(predictions[j]))[:-9:-1] prediction_ = encoder.inverse_transform(prediction_) #print(prediction_) ## print( " the nn predict {}, and the brand to find is {}".format(i,j)) print("----------------------------------------------------------------------------------------------") pred = loaded_model.predict_proba(X_test) dfe = pred[j]*100 wer = np.sort(pred[j]*100)[:-9:-1] abc = dict(zip(prediction_,wer)) print(abc) #print(wer)
[ "noreply@github.com" ]
HPYC1305KABU.noreply@github.com
ff4baa4f91bf4f0f7a02f3ffb5c1b128d0847c97
1ec04220c0528d0068988c0e8e5d2aceb23e4860
/conf/__init__.py
7deef2edc4d30e6c35705dbf5f9da04855a00301
[ "Apache-2.0" ]
permissive
circleJ/owncloud_client
ae0010f79e89604d8169d5db8cdb77b4baaccec2
d650a73938b2fdadf7517344bf773d551d78c993
refs/heads/master
2020-07-01T10:38:55.520797
2019-08-08T01:03:49
2019-08-08T01:03:49
201,149,781
4
0
null
null
null
null
UTF-8
Python
false
false
52
py
#!/usr/bin/env python # -*- coding: utf-8 -*-
[ "noreply@github.com" ]
circleJ.noreply@github.com
c87d5fbee9a277cdd039d9486a6344c9cc7a09a4
671a4ebbd64e1d1784e0821d8ade887d143cde0d
/BB8/sep2/interface.py
59b75f79a192ba8d5d1e1df0ac7b4fb8a2a3eb12
[]
no_license
smithenator5000/bb8
1d08afa7ff104f69ccda4184433e98ead578551c
2dd9be449c7ea4068a2444298c607592e48b212d
refs/heads/master
2020-04-14T19:15:47.629214
2019-01-04T03:27:32
2019-01-04T03:27:32
164,051,693
0
0
null
null
null
null
UTF-8
Python
false
false
9,418
py
import bluepy.btle as bluetooth import threading import struct COMMAND = dict( CMD_PING = [0x00, 0x01], CMD_VERSION = [0x00, 0x02], CMD_CONTROL_UART_TX = [0x00, 0x03], CMD_SET_BT_NAME = [0x00, 0x10], CMD_GET_BT_NAME = [0x00, 0x11], CMD_SET_AUTO_RECONNECT = [0x00, 0x12], CMD_GET_AUTO_RECONNECT = [0x00, 0x13], CMD_GET_PWR_STATE = [0x00, 0x20], CMD_SET_PWR_NOTIFY = [0x00, 0x21], CMD_SLEEP = [0x00, 0x22], GET_POWER_TRIPS = [0x00, 0x23], SET_POWER_TRIPS = [0x00, 0x24], SET_INACTIVE_TIMER = [0x00, 0x25], CMD_GOTO_BL = [0x00, 0x30], CMD_RUN_L1_DIAGS = [0x00, 0x40], CMD_RUN_L2_DIAGS = [0x00, 0x41], CMD_CLEAR_COUNTERS = [0x00, 0x42], CMD_ASSIGN_TIME = [0x00, 0x50], CMD_POLL_TIMES = [0x00, 0x51], BEGIN_REFLASH = [0x01, 0x02], HERE_IS_PAGE = [0x01, 0x03], LEAVE_BOOTLOADER = [0x01, 0x04], IS_PAGE_BLANK = [0x01, 0x05], CMD_ERASE_USER_CONFIG = [0x01, 0x06], CMD_SET_CAL = [0x02, 0x01], CMD_SET_STABILIZ = [0x02, 0x02], CMD_SET_ROTATION_RATE = [0x02, 0x03], CMD_SET_CREATION_DATE = [0x02, 0x04], CMD_REENABLE_DEMO = [0x02, 0x06], CMD_GET_CHASSIS_ID = [0x02, 0x07], CMD_SET_CHASSIS_ID = [0x02, 0x08], CMD_SELF_LEVEL = [0x02, 0x09], CMD_SET_VDL = [0x02, 0x0A], CMD_SET_DATA_STREAMING = [0x02, 0x11], CMD_SET_COLLISION_DET = [0x02, 0x12], CMD_LOCATOR = [0x02, 0x13], CMD_SET_ACCELERO = [0x02, 0x14], CMD_READ_LOCATOR = [0x02, 0x15], CMD_SET_RGB_LED = [0x02, 0x20], CMD_SET_BACK_LED = [0x02, 0x21], CMD_GET_RGB_LED = [0x02, 0x22], CMD_ROLL = [0x02, 0x30], CMD_BOOST = [0x02, 0x31], CMD_MOVE = [0x02, 0x32], CMD_SET_RAW_MOTORS = [0x02, 0x33], CMD_SET_MOTION_TO = [0x02, 0x34], CMD_SET_OPTIONS_FLAG = [0x02, 0x35], CMD_GET_OPTIONS_FLAG = [0x02, 0x36], CMD_SET_TEMP_OPTIONS_FLAG = [0x02, 0x37], CMD_GET_TEMP_OPTIONS_FLAG = [0x02, 0x38], CMD_GET_CONFIG_BLK = [0x02, 0x40], CMD_SET_SSB_PARAMS = [0x02, 0x41], CMD_SET_DEVICE_MODE = [0x02, 0x42], CMD_SET_CFG_BLOCK = [0x02, 0x43], CMD_GET_DEVICE_MODE = [0x02, 0x44], CMD_GET_SSB = [0x02, 0x46], CMD_SET_SSB = [0x02, 0x47], CMD_SSB_REFILL = [0x02, 0x48], CMD_SSD_BUY = [0x02, 0x49], CMD_SSB_USE_CONSUMEABLE = [0x02, 0x4A], CMD_SSB_GRANT_CORES = [0x02, 0x4B], CMD_SSB_ADD_XP = [0x02, 0x4C], CMD_SSB_LEVEL_UP_ATTR = [0x02, 0x4D], CMD_GET_PW_SEED = [0x02, 0x4E], CMD_SSB_ENABLE_ASYNC = [0x02, 0x4F], CMD_RUN_MACRO = [0x02, 0x50], CMD_SAVE_TEMP_MACRO = [0x02, 0x51], CMD_SAVE_MACRO = [0x02, 0x52], CMD_INIT_MACRO_EXECUTIVE = [0x02, 0x54], CMD_ABORT_MACRO = [0x02, 0x55], CMD_MACRO_STATUS = [0x02, 0x56], CMD_SET_MACRO_PARAM = [0x02, 0x57], CMD_APPEND_TEMO_MACRO_CHUNK = [0x02, 0x58], CMD_ERASE_ORBBAS = [0x02, 0x60], CMD_APPEND_FRAG = [0x02, 0x61], CMD_EXEC_ORBBAS = [0x02, 0x62], CMD_ABORT_ORBBAS = [0x02, 0x63], CMD_ANSWER_INPUT = [0x02, 0x64], CMD_COMMIT_TO_FLASH = [0x02, 0x65]) ASYNC = dict( POWER = 0x01, DIAGNOSTICS = 0x02, SENSE = 0x03, CONTENTS = 0x04, PRESLEEP = 0X05, MARKERS = 0x06, COLLISION = 0x07, OBPRINT = 0x08, OBERRASC = 0x09, OBERRBIN = 0x0a, SELFLEVEL = 0x0b, GYROLIM = 0x0c, SOUL = 0x0d, LEVELUP = 0x0e, SHIELD = 0x0f, XP = 0x10, BOOST = 0x11) MRSC = dict( ORBOTIX_RSP_CODE_OK = 0x00, ORBOTIX_RSP_CODE_EGEN = 0x01, ORBOTIX_RSP_CODE_ECHKSUM = 0x02, ORBOTIX_RSP_CODE_EFRAG = 0x03, ORBOTIX_RSP_CODE_EBAD_CMD = 0x04, ORBOTIX_RSP_CODE_EUNSUPP = 0x05, ORBOTIX_RSP_CODE_EBAD_MSG = 0x06, ORBOTIX_RSP_CODE_EPARAM = 0x07, ORBOTIX_RSP_CODE_EEXEC = 0x08, ORBOTIX_RSP_CODE_EBAD_DID = 0x09, ORBOTIX_RSP_CODE_MEM_BUSY = 0x0A, ORBOTIX_RSP_CODE_BAD_PASSWORD = 0x0B, ORBOTIX_RSP_CODE_POWER_NOGOOD = 0x31, ORBOTIX_RSP_CODE_PAGE_ILLEGAL = 0x32, ORBOTIX_RSP_CODE_FLASH_FAIL = 0x33, ORBOTIX_RSP_CODE_MA_CORRUPT = 0x34, ORBOTIX_RSP_CODE_MSG_TIMEOUT = 0x35) class Comm(bluetooth.DefaultDelegate, threading.Thread): #class dealing with sending and receiving Sphero commands device = None per = None msg = [] handle = [] async = [] end = None address = None antidos = None wakecpu = None txpower = None main = None refresh = None pending = None def __init__(self, device, refresh): threading.Thread.__init__(self) self.device = device self.address = device.address self.per = bluetooth.Peripheral(self.address, addrType = bluetooth.ADDR_TYPE_RANDOM) self.per.setDelegate(self) self.antidos = self.per.getCharacteristics(uuid = "22bb746f2bbd75542d6f726568705327")[0] self.wakecpu = self.per.getCharacteristics(uuid = "22bb746f2bbf75542d6f726568705327")[0] self.txpower = self.per.getCharacteristics(uuid = "22bb746f2bb275542d6f726568705327")[0] self.main = self.per.getCharacteristics(uuid = "22bb746f2ba175542d6f726568705327")[0] self.notify = self.per.getCharacteristics(uuid = "22bb746f2ba675542d6f726568705327")[0] self.antidos.write("011i3", withResponse = True) self.txpower.write("\x0007", withResponse = True) self.wakecpu.write("\x01", withResponse = True) self.end = threading.Event() self.refresh = refresh self.pending = False def addMessage(self, msgk, handler): self.msg.append([msgk.seq, msgk]) if(handler is not None): self.handle.append([msgk.seq, handler]) else: self.handle.append([msgk.seq, self.dummy]) def dummy(self, x): i = 1 def addRegime(self, asyncID, handler): self.async.append([ASYNC[asyncID], handler]) def send(self): if(len(self.msg) == 0): return msgk = self.msg[0][1] #print("Sending {}".format(msgk.construct().encode("hex"))) self.main.write(msgk.construct(), withResponse = msgk.response) if(not msgk.response): self.msg = self.msg[1:][:] def run(self): while(not self.end.isSet()): self.send() self.per.waitForNotifications(self.refresh) def handleNotification(self, cHandle, data): responseStr = data.encode("hex") #print(responseStr) if("ff" not in responseStr): return while(responseStr[0:2] != "ff"): responseStr = responseStr[1:] if(len(responseStr) < 12): return if(responseStr[2:4] not in ["ff", "fe"]): return if(responseStr[2:4] == "ff"): seq = int(responseStr[6:8], 16) try: a = self.msg[:][0].index(seq) self.msg = self.msg[0:a][:] + self.msg[(a+1):][:] except: print("Ah, well") if(len(self.handle) > 0): if(seq in self.handle[:][0]): k = self.handle[:][0].index(seq) self.handle[k][1](responseStr) self.handle = self.handle[0:k][:] + self.handle[(k+1):][:] elif(responseStr[2:4] == "fe"): j = int(responseStr[4:6], 16) if(len(self.async) > 0): if(j in self.async[:][0]): k = self.async[:][0].index(j) self.async[k][1](responseStr) class Device: #class dealing with user control of Sphero adress = None comm = None seq = None def __init__(self, address, refresh): self.address = address self.comm = Comm(self, refresh) self.seq = 1 def inc_seq(self): self.seq = self.seq + 1 if(self.seq > 0xff): self.seq = 1 def ping(self, response, handler = None): msg = Message(response, "CMD_PING", self.seq, []) self.comm.addMessage(msg, handler) self.inc_seq() def set_rgb_led(self, response, red, green, blue, custom, handler = None): msg = Message(response, "CMD_SET_RGB_LED", self.seq, [red, green, blue, custom]) self.comm.addMessage(msg, handler) self.inc_seq() def get_rgb_led(self, response, handler = None): msg = Message(response, "CMD_GET_RGB_LED", self.seq, []) self.comm.addMessage(msg, handler) self.inc_seq() def roll(self, response, speed, heading, mode, handler = None): heading = self.split(heading, 2) msg = Message(response, "CMD_ROLL", self.seq, [speed] + heading + [mode]) self.comm.addMessage(msg, handler) self.inc_seq() def set_data_streaming(self, response, N, M, MASK, COUNT, MASK2 = None, handler = None): N = self.split(N, 2) M = self.split(M, 2) MASK = self.split(MASK, 4) data = N + M + MASK + [COUNT] if(MASK2 is not None): MASK2 = self.split(MASK2, 4) data = data + MASK2 msg = Message(response, "CMD_SET_DATA_STREAMING", self.seq, data) self.comm.addMessage(msg, handler) self.inc_seq() def execute_ob(self, response, area, start, handler = None): start = self.split(start, 2) msg = Message(response, "CMD_EXEC_ORBBAS", self.seq, [area] + start) print(msg.construct().encode("hex")) self.comm.addMessage(msg, handler) self.inc_seq() def set_sensor_handler(self, handler): self.comm.addRegime("SENSE", handler) def begin(self): #begins comm thread self.comm.start() def end(self): #ends comm thread self.comm.end.set() self.comm.join() def disconnect(self): self.comm.per.disconnect() def split(self, num, units): num = hex(num)[2:] while(len(num) < 2*units): num = "0" + num res = [] for i in range(units): b = int(num[2*i:2*(i + 1)], 16) res.append(b) return res class Message: #class representing standard messages response = None command = None data = None seq = None def __init__(self, response, command, seq, data): self.response = response self.command = command self.data = data self.seq = seq def construct(self): if(self.response): output = COMMAND[self.command] + [self.seq, len(self.data) + 1] + self.data else: output = COMMAND[self.command] + [0, len(self.data) + 1] + self.data chksum = ~ sum(output) % 256 output = output + [chksum] if(self.response): output = [0xff, 0xff] + output else: output = [0xff, 0xfe] + output msg = "".join(struct.pack("B", x) for x in output) return msg
[ "noreply@github.com" ]
smithenator5000.noreply@github.com
3d860526ef201ce9fd12ae22e5039f7d84358fea
5b8a945adc0ea9e2e355ffc873db5a3760de6133
/proConf/settings.py
010f3289d966cd24fd7ba54af8ca5e27a3d2ff2d
[]
no_license
Shirhussain/realestate
49d6dfc108823e774a4c7ade56f1895be9436616
07746368145fc5a70f4753b9510821911ce5f275
refs/heads/main
2023-02-25T07:32:35.077623
2020-10-30T16:23:04
2020-10-30T16:23:04
308,142,611
2
0
null
null
null
null
UTF-8
Python
false
false
3,830
py
from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '6(6$q1glgy@bm9oycpr*w8gji2d&wdxxm&=4-8catlj!0aiu7m' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ #myapp 'realstate.apps.RealstateConfig', 'account.apps.AccountConfig', 'contact.apps.ContactConfig', #django app 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', #for making humanize and saprated by comma for price i have to do the following code 'django.contrib.humanize', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'proConf.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / "templates"], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'proConf.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'realstatedb', 'USER': 'postgres', 'PASSWORD' : 'king', 'HOST' : 'localhost', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' STATIC_URL = '/media/' #the static root is going to collect all of static files in on root by the name of 'static' #for this purpose you have to run collectstatic STATIC_ROOT = BASE_DIR / "static" MEDIA_ROOT = BASE_DIR / "media" #the following code is going to use when you wanna serve static file #in development that are in specifics root STATICFILES_DIRS = [ BASE_DIR / "realstate/static", ] #django messages from django.contrib.messages import constants as messages MESSAGE_TAGS = { messages.ERROR: 'danger', } #django email config EMAIL_HOST = 'smtp.gmail.com' EMAIL_PORT = 587 EMAIL_HOST_USER = 'yourReal@gmail.com' EMAIL_HOST_PASSWORD = 'yourPasswordOfGamil' EMAIL_USE_TLS = True
[ "sh.danishyar@gmail.com" ]
sh.danishyar@gmail.com
170118c48959a608c2eeb55ce9ba0a772d5ef117
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/mne-tools_mne-python/mne-python-master/mne/io/eeglab/tests/test_eeglab.py
dd69dfd60790326e22307a681e1f7daed0599aef
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
10,518
py
# Author: Mainak Jas <mainak.jas@telecom-paristech.fr> # Mikolaj Magnuski <mmagnuski@swps.edu.pl> # # License: BSD (3-clause) import os.path as op import shutil import warnings from nose.tools import assert_raises, assert_equal, assert_true import numpy as np from numpy.testing import assert_array_equal, assert_array_almost_equal from mne import write_events, read_epochs_eeglab, Epochs, find_events from mne.io import read_raw_eeglab from mne.io.tests.test_raw import _test_raw_reader from mne.io.eeglab.eeglab import _read_eeglab_events from mne.datasets import testing from mne.utils import _TempDir, run_tests_if_main, requires_version base_dir = op.join(testing.data_path(download=False), 'EEGLAB') raw_fname = op.join(base_dir, 'test_raw.set') raw_fname_onefile = op.join(base_dir, 'test_raw_onefile.set') epochs_fname = op.join(base_dir, 'test_epochs.set') epochs_fname_onefile = op.join(base_dir, 'test_epochs_onefile.set') montage = op.join(base_dir, 'test_chans.locs') warnings.simplefilter('always') # enable b/c these tests throw warnings @requires_version('scipy', '0.12') @testing.requires_testing_data def test_io_set(): """Test importing EEGLAB .set files""" from scipy import io with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') # main tests, and test missing event_id _test_raw_reader(read_raw_eeglab, input_fname=raw_fname, montage=montage) _test_raw_reader(read_raw_eeglab, input_fname=raw_fname_onefile, montage=montage) for want in ('Events like', 'consist entirely', 'could not be mapped', 'string preload is not supported'): assert_true(any(want in str(ww.message) for ww in w)) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') # test finding events in continuous data event_id = {'rt': 1, 'square': 2} raw0 = read_raw_eeglab(input_fname=raw_fname, montage=montage, event_id=event_id, preload=True) raw1 = read_raw_eeglab(input_fname=raw_fname, montage=montage, event_id=event_id, preload=False) raw2 = read_raw_eeglab(input_fname=raw_fname_onefile, montage=montage, event_id=event_id) raw3 = read_raw_eeglab(input_fname=raw_fname, montage=montage, event_id=event_id) raw4 = read_raw_eeglab(input_fname=raw_fname, montage=montage) Epochs(raw0, find_events(raw0), event_id) epochs = Epochs(raw1, find_events(raw1), event_id) assert_equal(len(find_events(raw4)), 0) # no events without event_id assert_equal(epochs["square"].average().nave, 80) # 80 with assert_array_equal(raw0[:][0], raw1[:][0], raw2[:][0], raw3[:][0]) assert_array_equal(raw0[:][-1], raw1[:][-1], raw2[:][-1], raw3[:][-1]) assert_equal(len(w), 4) # 1 for preload=False / str with fname_onefile, 3 for dropped events raw0.filter(1, None, l_trans_bandwidth='auto', filter_length='auto', phase='zero') # test that preloading works # test that using uint16_codec does not break stuff raw0 = read_raw_eeglab(input_fname=raw_fname, montage=montage, event_id=event_id, preload=False, uint16_codec='ascii') # test old EEGLAB version event import eeg = io.loadmat(raw_fname, struct_as_record=False, squeeze_me=True)['EEG'] for event in eeg.event: # old version allows integer events event.type = 1 assert_equal(_read_eeglab_events(eeg)[-1, -1], 1) eeg.event = eeg.event[0] # single event assert_equal(_read_eeglab_events(eeg)[-1, -1], 1) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') epochs = read_epochs_eeglab(epochs_fname) epochs2 = read_epochs_eeglab(epochs_fname_onefile) # one warning for each read_epochs_eeglab because both files have epochs # associated with multiple events assert_equal(len(w), 2) assert_array_equal(epochs.get_data(), epochs2.get_data()) # test different combinations of events and event_ids temp_dir = _TempDir() out_fname = op.join(temp_dir, 'test-eve.fif') write_events(out_fname, epochs.events) event_id = {'S255/S8': 1, 'S8': 2, 'S255/S9': 3} epochs = read_epochs_eeglab(epochs_fname, epochs.events, event_id) assert_equal(len(epochs.events), 4) assert_true(epochs.preload) assert_true(epochs._bad_dropped) epochs = read_epochs_eeglab(epochs_fname, out_fname, event_id) assert_raises(ValueError, read_epochs_eeglab, epochs_fname, None, event_id) assert_raises(ValueError, read_epochs_eeglab, epochs_fname, epochs.events, None) # test reading file with one event eeg = io.loadmat(raw_fname, struct_as_record=False, squeeze_me=True)['EEG'] one_event_fname = op.join(temp_dir, 'test_one_event.set') io.savemat(one_event_fname, {'EEG': {'trials': eeg.trials, 'srate': eeg.srate, 'nbchan': eeg.nbchan, 'data': 'test_one_event.fdt', 'epoch': eeg.epoch, 'event': eeg.event[0], 'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}}) shutil.copyfile(op.join(base_dir, 'test_raw.fdt'), op.join(temp_dir, 'test_one_event.fdt')) event_id = {eeg.event[0].type: 1} read_raw_eeglab(input_fname=one_event_fname, montage=montage, event_id=event_id, preload=True) # test reading file with one channel one_chan_fname = op.join(temp_dir, 'test_one_channel.set') io.savemat(one_chan_fname, {'EEG': {'trials': eeg.trials, 'srate': eeg.srate, 'nbchan': 1, 'data': np.random.random((1, 3)), 'epoch': eeg.epoch, 'event': eeg.epoch, 'chanlocs': {'labels': 'E1', 'Y': -6.6069, 'X': 6.3023, 'Z': -2.9423}, 'times': eeg.times[:3], 'pnts': 3}}) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') read_raw_eeglab(input_fname=one_chan_fname, preload=True) # no warning for 'no events found' assert_equal(len(w), 0) # test reading file with 3 channels - one without position information # first, create chanlocs structured array ch_names = ['F3', 'unknown', 'FPz'] x, y, z = [1., 2., np.nan], [4., 5., np.nan], [7., 8., np.nan] dt = [('labels', 'S10'), ('X', 'f8'), ('Y', 'f8'), ('Z', 'f8')] chanlocs = np.zeros((3,), dtype=dt) for ind, vals in enumerate(zip(ch_names, x, y, z)): for fld in range(4): chanlocs[ind][dt[fld][0]] = vals[fld] # save set file one_chanpos_fname = op.join(temp_dir, 'test_chanpos.set') io.savemat(one_chanpos_fname, {'EEG': {'trials': eeg.trials, 'srate': eeg.srate, 'nbchan': 3, 'data': np.random.random((3, 3)), 'epoch': eeg.epoch, 'event': eeg.epoch, 'chanlocs': chanlocs, 'times': eeg.times[:3], 'pnts': 3}}) # load it with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') raw = read_raw_eeglab(input_fname=one_chanpos_fname, preload=True) # one warning because some channels are not found in Montage assert_equal(len(w), 1) # position should be present for first two channels for i in range(2): assert_array_equal(raw.info['chs'][i]['loc'][:3], np.array([-chanlocs[i]['Y'], chanlocs[i]['X'], chanlocs[i]['Z']])) # position of the last channel should be zero assert_array_equal(raw.info['chs'][-1]['loc'][:3], np.array([0., 0., 0.])) # test reading channel names from set and positions from montage with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') raw = read_raw_eeglab(input_fname=one_chanpos_fname, preload=True, montage=montage) # one warning because some channels are not found in Montage assert_equal(len(w), 1) # when montage was passed - channel positions should be taken from there correct_pos = [[-0.56705965, 0.67706631, 0.46906776], [0., 0., 0.], [0., 0.99977915, -0.02101571]] for ch_ind in range(3): assert_array_almost_equal(raw.info['chs'][ch_ind]['loc'][:3], np.array(correct_pos[ch_ind])) # test reading channel names but not positions when there is no X (only Z) # field in the EEG.chanlocs structure nopos_chanlocs = chanlocs[['labels', 'Z']] nopos_fname = op.join(temp_dir, 'test_no_chanpos.set') io.savemat(nopos_fname, {'EEG': {'trials': eeg.trials, 'srate': eeg.srate, 'nbchan': 3, 'data': np.random.random((3, 2)), 'epoch': eeg.epoch, 'event': eeg.epoch, 'chanlocs': nopos_chanlocs, 'times': eeg.times[:2], 'pnts': 2}}) # load the file with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') raw = read_raw_eeglab(input_fname=nopos_fname, preload=True) # test that channel names have been loaded but not channel positions for i in range(3): assert_equal(raw.info['chs'][i]['ch_name'], ch_names[i]) assert_array_equal(raw.info['chs'][i]['loc'][:3], np.array([0., 0., 0.])) # test if .dat file raises an error eeg = io.loadmat(epochs_fname, struct_as_record=False, squeeze_me=True)['EEG'] eeg.data = 'epochs_fname.dat' bad_epochs_fname = op.join(temp_dir, 'test_epochs.set') io.savemat(bad_epochs_fname, {'EEG': {'trials': eeg.trials, 'srate': eeg.srate, 'nbchan': eeg.nbchan, 'data': eeg.data, 'epoch': eeg.epoch, 'event': eeg.event, 'chanlocs': eeg.chanlocs}}) shutil.copyfile(op.join(base_dir, 'test_epochs.fdt'), op.join(temp_dir, 'test_epochs.dat')) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_raises(NotImplementedError, read_epochs_eeglab, bad_epochs_fname) assert_equal(len(w), 1) run_tests_if_main()
[ "659338505@qq.com" ]
659338505@qq.com
f8e0f9ae6ad7f697e748d4e0c96525e5b1d065d9
812007abf3fcc55b71018e0e1d0be24dde8245cf
/analyze_image.py
aabfe565524c539e828fa39cf8e8b6ec73d8890c
[]
no_license
SoftwareDeveloper007/Face-Emotion-Recognition
b7b71a93e5202b45582e780ca45845aba653307d
5d6314d0f3b96e7a1121c25e504e74baa4d43341
refs/heads/master
2021-06-23T00:23:40.147779
2017-08-18T19:38:30
2017-08-18T19:38:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,491
py
import json try: import http.client, urllib.request, urllib.parse, urllib.error, base64, sys class analyze_image(): def __init__(self, API_KEY, IMAGE_URL): self.api_key = API_KEY self.image_url = IMAGE_URL self.get_analyzed_data() def get_analyzed_data(self): headers = { # Request headers. Replace the placeholder key below with your subscription key. 'Content-Type': 'application/octet-stream', 'Ocp-Apim-Subscription-Key': self.api_key, } body = "" # load image #filename = 'D:/9_Github/3_Github Samples/2_Scraping/microsoft-emotion-recognition/chris_young.jpg' filename = self.image_url f = open(filename, "rb") body = f.read() f.close() params = urllib.parse.urlencode({ }) # Replace the example URL below with the URL of the image you want to analyze. #body = "{ 'url': '" + self.image_url + "' }" try: # NOTE: You must use the same region in your REST call as you used to obtain your subscription keys. # For example, if you obtained your subscription keys from westcentralus, replace "westus" in the # URL below with "westcentralus". conn = http.client.HTTPSConnection('westus.api.cognitive.microsoft.com') conn.request("POST", "/emotion/v1.0/recognize?%s" % params, body, headers) response = conn.getresponse().read() self.data = json.loads(response)[0] print(self.data) conn.close() except Exception as e: print(e.args) except: import httplib, urllib, base64 class analyze_image(): def __init__(self, API_KEY, IMAGE_URL): self.api_key = API_KEY self.image_url = IMAGE_URL self.get_analyzed_data() def get_analyzed_data(self): headers = { # Request headers. Replace the placeholder key below with your subscription key. 'Content-Type': 'application/json', 'Ocp-Apim-Subscription-Key': self.api_key, } params = urllib.parse.urlencode({ }) # Replace the example URL below with the URL of the image you want to analyze. body = "{ 'url': '" + self.image_url + "' }" try: # NOTE: You must use the same region in your REST call as you used to obtain your subscription keys. # For example, if you obtained your subscription keys from westcentralus, replace "westus" in the # URL below with "westcentralus". conn = httplib.HTTPSConnection('westus.api.cognitive.microsoft.com') conn.request("POST", "/emotion/v1.0/recognize?%s" % params, body, headers) response = conn.getresponse().read() self.data = json.loads(response)[0] print(self.data) conn.close() except Exception as e: print("[Errno {0}] {1}".format(e.errno, e.strerror)) if __name__ == '__main__': API_KEY = '1b897276f50843f78412b3185b80afcd' IMAGE_URL = 'https://jbf-media.s3.amazonaws.com/production/event/2016/10/3/del_coro_ben1.jpg' app = analyze_image(API_KEY, IMAGE_URL)
[ "28940651+YellowBackCorn@users.noreply.github.com" ]
28940651+YellowBackCorn@users.noreply.github.com
775caf758d235a747c663d12580455c9e9952cb6
78db5bc74181173f2d00bea409997a64b4682adf
/venv/lib/python3.9/site-packages/pip/_vendor/html5lib/serializer.py
f82ea6e5ea48975e1835be992b5f3570968b824f
[ "MIT" ]
permissive
CiscoDevNet/meraki-code
dfe680f077ebd053a3b663f1434f648f5a91b541
d031aab82e3fa5ce7cf57b257fef8c9a4c63d71e
refs/heads/master
2023-05-28T18:43:28.848983
2022-04-11T19:45:19
2022-04-11T19:45:19
188,288,487
67
60
MIT
2023-05-23T00:51:58
2019-05-23T18:43:15
Python
UTF-8
Python
false
false
16,168
py
from __future__ import absolute_import, division, unicode_literals from pip._vendor.six import text_type import re from codecs import register_error, xmlcharrefreplace_errors from .constants import voidElements, booleanAttributes, spaceCharacters from .constants import rcdataElements, entities, xmlEntities from . import treewalkers, _utils from xml.sax.saxutils import escape _quoteAttributeSpecChars = "".join(spaceCharacters) + "\"'=<>`" _quoteAttributeSpec = re.compile("[" + _quoteAttributeSpecChars + "]") _quoteAttributeLegacy = re.compile("[" + _quoteAttributeSpecChars + "\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n" "\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15" "\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f" "\x20\x2f\x60\xa0\u1680\u180e\u180f\u2000" "\u2001\u2002\u2003\u2004\u2005\u2006\u2007" "\u2008\u2009\u200a\u2028\u2029\u202f\u205f" "\u3000]") _encode_entity_map = {} _is_ucs4 = len("\U0010FFFF") == 1 for k, v in list(entities.items()): # skip multi-character entities if ((_is_ucs4 and len(v) > 1) or (not _is_ucs4 and len(v) > 2)): continue if v != "&": if len(v) == 2: v = _utils.surrogatePairToCodepoint(v) else: v = ord(v) if v not in _encode_entity_map or k.islower(): # prefer &lt; over &LT; and similarly for &amp;, &gt;, etc. _encode_entity_map[v] = k def htmlentityreplace_errors(exc): if isinstance(exc, (UnicodeEncodeError, UnicodeTranslateError)): res = [] codepoints = [] skip = False for i, c in enumerate(exc.object[exc.start:exc.end]): if skip: skip = False continue index = i + exc.start if _utils.isSurrogatePair(exc.object[index:min([exc.end, index + 2])]): codepoint = _utils.surrogatePairToCodepoint(exc.object[index:index + 2]) skip = True else: codepoint = ord(c) codepoints.append(codepoint) for cp in codepoints: e = _encode_entity_map.get(cp) if e: res.append("&") res.append(e) if not e.endswith(";"): res.append(";") else: res.append("&#x%s;" % (hex(cp)[2:])) return ("".join(res), exc.end) else: return xmlcharrefreplace_errors(exc) register_error("htmlentityreplace", htmlentityreplace_errors) def serialize(input, tree="etree", encoding=None, **serializer_opts): """Serializes the input token stream using the specified treewalker :arg input: the token stream to serialize :arg tree: the treewalker to use :arg encoding: the encoding to use :arg serializer_opts: any options to pass to the :py:class:`html5lib.serializer.HTMLSerializer` that gets created :returns: the tree serialized as a string Example: >>> from html5lib.html5parser import parse >>> from html5lib.serializer import serialize >>> token_stream = parse('<html><body><p>Hi!</p></body></html>') >>> serialize(token_stream, omit_optional_tags=False) '<html><head></head><body><p>Hi!</p></body></html>' """ # XXX: Should we cache this? walker = treewalkers.getTreeWalker(tree) s = HTMLSerializer(**serializer_opts) return s.render(walker(input), encoding) class HTMLSerializer(object): # attribute quoting options quote_attr_values = "legacy" # be secure by default quote_char = '"' use_best_quote_char = True # tag syntax options omit_optional_tags = True minimize_boolean_attributes = True use_trailing_solidus = False space_before_trailing_solidus = True # escaping options escape_lt_in_attrs = False escape_rcdata = False resolve_entities = True # miscellaneous options alphabetical_attributes = False inject_meta_charset = True strip_whitespace = False sanitize = False options = ("quote_attr_values", "quote_char", "use_best_quote_char", "omit_optional_tags", "minimize_boolean_attributes", "use_trailing_solidus", "space_before_trailing_solidus", "escape_lt_in_attrs", "escape_rcdata", "resolve_entities", "alphabetical_attributes", "inject_meta_charset", "strip_whitespace", "sanitize") def __init__(self, **kwargs): """Initialize HTMLSerializer :arg inject_meta_charset: Whether or not to inject the meta charset. Defaults to ``True``. :arg quote_attr_values: Whether to quote attribute values that don't require quoting per legacy browser behavior (``"legacy"``), when required by the standard (``"spec"``), or always (``"always"``). Defaults to ``"legacy"``. :arg quote_char: Use given quote character for attribute quoting. Defaults to ``"`` which will use double quotes unless attribute value contains a double quote, in which case single quotes are used. :arg escape_lt_in_attrs: Whether or not to escape ``<`` in attribute values. Defaults to ``False``. :arg escape_rcdata: Whether to escape characters that need to be escaped within normal elements within rcdata elements such as style. Defaults to ``False``. :arg resolve_entities: Whether to resolve named character entities that appear in the source tree. The XML predefined entities &lt; &gt; &amp; &quot; &apos; are unaffected by this setting. Defaults to ``True``. :arg strip_whitespace: Whether to remove semantically meaningless whitespace. (This compresses all whitespace to a single space except within ``pre``.) Defaults to ``False``. :arg minimize_boolean_attributes: Shortens boolean attributes to give just the attribute value, for example:: <input disabled="disabled"> becomes:: <input disabled> Defaults to ``True``. :arg use_trailing_solidus: Includes a close-tag slash at the end of the start tag of void elements (empty elements whose end tag is forbidden). E.g. ``<hr/>``. Defaults to ``False``. :arg space_before_trailing_solidus: Places a space immediately before the closing slash in a tag using a trailing solidus. E.g. ``<hr />``. Requires ``use_trailing_solidus=True``. Defaults to ``True``. :arg sanitize: Strip all unsafe or unknown constructs from output. See :py:class:`html5lib.filters.sanitizer.Filter`. Defaults to ``False``. :arg omit_optional_tags: Omit start/end tags that are optional. Defaults to ``True``. :arg alphabetical_attributes: Reorder attributes to be in alphabetical order. Defaults to ``False``. """ unexpected_args = frozenset(kwargs) - frozenset(self.options) if len(unexpected_args) > 0: raise TypeError("__init__() got an unexpected keyword argument '%s'" % next(iter(unexpected_args))) if 'quote_char' in kwargs: self.use_best_quote_char = False for attr in self.options: setattr(self, attr, kwargs.get(attr, getattr(self, attr))) self.errors = [] self.strict = False def encode(self, string): assert(isinstance(string, text_type)) if self.encoding: return string.encode(self.encoding, "htmlentityreplace") else: return string def encodeStrict(self, string): assert(isinstance(string, text_type)) if self.encoding: return string.encode(self.encoding, "strict") else: return string def serialize(self, treewalker, encoding=None): # pylint:disable=too-many-nested-blocks self.encoding = encoding in_cdata = False self.errors = [] if encoding and self.inject_meta_charset: from .filters.inject_meta_charset import Filter treewalker = Filter(treewalker, encoding) # Alphabetical attributes is here under the assumption that none of # the later filters add or change order of attributes; it needs to be # before the sanitizer so escaped elements come out correctly if self.alphabetical_attributes: from .filters.alphabeticalattributes import Filter treewalker = Filter(treewalker) # WhitespaceFilter should be used before OptionalTagFilter # for maximum efficiently of this latter filter if self.strip_whitespace: from .filters.whitespace import Filter treewalker = Filter(treewalker) if self.sanitize: from .filters.sanitizer import Filter treewalker = Filter(treewalker) if self.omit_optional_tags: from .filters.optionaltags import Filter treewalker = Filter(treewalker) for token in treewalker: type = token["type"] if type == "Doctype": doctype = "<!DOCTYPE %s" % token["name"] if token["publicId"]: doctype += ' PUBLIC "%s"' % token["publicId"] elif token["systemId"]: doctype += " SYSTEM" if token["systemId"]: if token["systemId"].find('"') >= 0: if token["systemId"].find("'") >= 0: self.serializeError("System identifier contains both single and double quote characters") quote_char = "'" else: quote_char = '"' doctype += " %s%s%s" % (quote_char, token["systemId"], quote_char) doctype += ">" yield self.encodeStrict(doctype) elif type in ("Characters", "SpaceCharacters"): if type == "SpaceCharacters" or in_cdata: if in_cdata and token["data"].find("</") >= 0: self.serializeError("Unexpected </ in CDATA") yield self.encode(token["data"]) else: yield self.encode(escape(token["data"])) elif type in ("StartTag", "EmptyTag"): name = token["name"] yield self.encodeStrict("<%s" % name) if name in rcdataElements and not self.escape_rcdata: in_cdata = True elif in_cdata: self.serializeError("Unexpected child element of a CDATA element") for (_, attr_name), attr_value in token["data"].items(): # TODO: Add namespace support here k = attr_name v = attr_value yield self.encodeStrict(' ') yield self.encodeStrict(k) if not self.minimize_boolean_attributes or \ (k not in booleanAttributes.get(name, tuple()) and k not in booleanAttributes.get("", tuple())): yield self.encodeStrict("=") if self.quote_attr_values == "always" or len(v) == 0: quote_attr = True elif self.quote_attr_values == "spec": quote_attr = _quoteAttributeSpec.search(v) is not None elif self.quote_attr_values == "legacy": quote_attr = _quoteAttributeLegacy.search(v) is not None else: raise ValueError("quote_attr_values must be one of: " "'always', 'spec', or 'legacy'") v = v.replace("&", "&amp;") if self.escape_lt_in_attrs: v = v.replace("<", "&lt;") if quote_attr: quote_char = self.quote_char if self.use_best_quote_char: if "'" in v and '"' not in v: quote_char = '"' elif '"' in v and "'" not in v: quote_char = "'" if quote_char == "'": v = v.replace("'", "&#39;") else: v = v.replace('"', "&quot;") yield self.encodeStrict(quote_char) yield self.encode(v) yield self.encodeStrict(quote_char) else: yield self.encode(v) if name in voidElements and self.use_trailing_solidus: if self.space_before_trailing_solidus: yield self.encodeStrict(" /") else: yield self.encodeStrict("/") yield self.encode(">") elif type == "EndTag": name = token["name"] if name in rcdataElements: in_cdata = False elif in_cdata: self.serializeError("Unexpected child element of a CDATA element") yield self.encodeStrict("</%s>" % name) elif type == "Comment": data = token["data"] if data.find("--") >= 0: self.serializeError("Comment contains --") yield self.encodeStrict("<!--%s-->" % token["data"]) elif type == "Entity": name = token["name"] key = name + ";" if key not in entities: self.serializeError("Entity %s not recognized" % name) if self.resolve_entities and key not in xmlEntities: data = entities[key] else: data = "&%s;" % name yield self.encodeStrict(data) else: self.serializeError(token["data"]) def render(self, treewalker, encoding=None): """Serializes the stream from the treewalker into a string :arg treewalker: the treewalker to serialize :arg encoding: the string encoding to use :returns: the serialized tree Example: >>> from html5lib import parse, getTreeWalker >>> from html5lib.serializer import HTMLSerializer >>> token_stream = parse('<html><body>Hi!</body></html>') >>> walker = getTreeWalker('etree') >>> serializer = HTMLSerializer(omit_optional_tags=False) >>> serializer.render(walker(token_stream)) '<html><head></head><body>Hi!</body></html>' """ if encoding: return b"".join(list(self.serialize(treewalker, encoding))) else: return "".join(list(self.serialize(treewalker))) def serializeError(self, data="XXX ERROR MESSAGE NEEDED"): # XXX The idea is to make data mandatory. self.errors.append(data) if self.strict: raise SerializeError class SerializeError(Exception): """Error in serialized tree""" pass
[ "agentle@cisco.com" ]
agentle@cisco.com
233538cdcf672154b505c27a6f83b26578ee481e
9e765b38a03c2996e221a42c2a0dbc0fe02824cb
/cracking_the_coding_interview_qs/17.24/get_max_sum_submatrix.py
ee27a1e94867610e61ea9c58ec5ebcf2e73f322a
[ "Apache-2.0" ]
permissive
angelusualle/algorithms
f709b4ae0c3275cece204d5fb56fd6ec34b4683b
86286a49db2a755bc57330cb455bcbd8241ea6be
refs/heads/main
2023-07-02T19:25:11.720114
2021-08-12T16:33:00
2021-08-12T16:33:00
269,791,949
0
0
null
null
null
null
UTF-8
Python
false
false
830
py
#(N^3) in nxn matrix def get_max_sum_submatrix(matrix): num_rows = len(matrix) num_cols = len(matrix[0]) best_one = None for i in range(len(matrix)): partial_sum = [0 for z in range(num_cols)] for j in range(i, num_rows): for z in range(num_cols): partial_sum[z] += matrix[j][z] start = 0 sum_ = 0 best = None for y in range(num_cols): sum_ += partial_sum[y] if best is None or sum_ > best[0]: best = (sum_, start, y) if sum_ < 0: start = y + 1 sum_ = 0 if best_one is None or best[0] > best_one[0]: best_one = (best[0], i, best[1], j, best[2]) return best_one
[ "angelusualle@gmail.com" ]
angelusualle@gmail.com
18bf59837660c6a5c2032b5ffb154da986ab663a
03710012371432e0dbb9668043fefa02b378616f
/lists/migrations/0004_item_list.py
6889d68cdec22f8c01908e1a5cc087cf62221f02
[]
no_license
cgoodfred/tdd-book-python
abfa52a2fe5b9ad4a6e6165a78aa22c22ea78592
a24c2aabf8e5704f4cd874fa75548b249b2571fc
refs/heads/master
2023-05-07T19:55:47.309845
2020-06-06T11:57:13
2020-06-06T11:57:13
268,067,356
0
0
null
2021-06-10T22:58:29
2020-05-30T11:37:05
Python
UTF-8
Python
false
false
525
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.29 on 2020-05-29 21:04 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('lists', '0003_list'), ] operations = [ migrations.AddField( model_name='item', name='list', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.CASCADE, to='lists.List'), ), ]
[ "corey.goodfred@gmail.com" ]
corey.goodfred@gmail.com
8b2349a6bf1ef11db5175235e32c85faa61bb3c4
9a60375964655de04b8a0b66ffdd68b04885d414
/gcloud/tests/apigw/test_apigw.py
d645315895c2e13be24a06577d38b4b1ea0aa24a
[ "MIT", "BSD-3-Clause", "BSL-1.0", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
kellyyk/work-sops
1e9696981f8f2474b1e4273a844277c7881cc722
b114db1b21c14b8454c34dff0453cb4fd8885c2e
refs/heads/master
2022-09-22T23:02:11.154540
2019-07-02T08:25:04
2019-07-02T08:25:04
194,818,709
0
0
NOASSERTION
2022-09-16T18:24:36
2019-07-02T08:11:08
Python
UTF-8
Python
false
false
56,933
py
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2019 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import import copy import json import logging import jsonschema from django.test import TestCase, Client from pipeline.exceptions import PipelineException from gcloud.core.utils import strftime_with_timezone from gcloud.tasktmpl3.models import TaskTemplate from gcloud.taskflow3.models import TaskFlowInstance from gcloud.commons.template.models import CommonTemplate from gcloud.periodictask.models import PeriodicTask from gcloud.tests.mock import * # noqa from gcloud.tests.mock_settings import * # noqa logger = logging.getLogger('root') def dummy_params_wrapper(perm): def inner_dummy_wrapper(func): def wrapper(*args, **kwargs): return func(*args, **kwargs) return wrapper return inner_dummy_wrapper def dummy_wrapper(func): def wrapper(*args, **kwargs): return func(*args, **kwargs) return wrapper TEST_BIZ_CC_ID = '123' # do not change this to non number TEST_BIZ_CC_NAME = 'biz name' TEST_APP_CODE = 'app_code' TEST_TEMPLATE_ID = '1' # do not change this to non number TEST_TASKFLOW_ID = '2' # do not change this to non number TEST_TASKFLOW_URL = 'url' TEST_TASKFLOW_PIPELINE_TREE = 'pipeline_tree' TEST_PERIODIC_TASK_ID = '3' # do not change to this non number TEST_DATA = 'data' TEST_NODE_ID = 'node_id' TEST_CALLBACK_DATA = 'callback_data' TEST_COMPONENT_CODE = 'component_code' TEST_SUBPROCESS_STACK = '[1, 2, 3]' class APITest(TestCase): @classmethod def setUpClass(cls): cls.GET_TEMPLATE_LIST_URL = '/apigw/get_template_list/{biz_cc_id}/' cls.GET_TEMPLATE_INFO_URL = '/apigw/get_template_info/{template_id}/{bk_biz_id}/' cls.CREATE_TASK_URL = '/apigw/create_task/{template_id}/{bk_biz_id}/' cls.START_TASK_URL = '/apigw/start_task/{task_id}/{bk_biz_id}/' cls.OPERATE_TASK_URL = '/apigw/operate_task/{task_id}/{bk_biz_id}/' cls.GET_TASK_STATUS_URL = '/apigw/get_task_status/{task_id}/{bk_biz_id}/' cls.QUERY_TASK_COUNT_URL = '/apigw/query_task_count/{bk_biz_id}/' cls.GET_PERIODIC_TASK_LIST_URL = '/apigw/get_periodic_task_list/{bk_biz_id}/' cls.GET_PERIODIC_TASK_INFO_URL = '/apigw/get_periodic_task_info/{task_id}/{bk_biz_id}/' cls.CREATE_PERIODIC_TASK_URL = '/apigw/create_periodic_task/{template_id}/{bk_biz_id}/' cls.SET_PERIODIC_TASK_ENABLED_URL = '/apigw/set_periodic_task_enabled/{task_id}/{bk_biz_id}/' cls.MODIFY_PERIODIC_TASK_CRON_URL = '/apigw/modify_cron_for_periodic_task/{task_id}/{bk_biz_id}/' cls.MODIFY_PERIODIC_TASK_CONSTANTS_URL = '/apigw/modify_constants_for_periodic_task/{task_id}/{bk_biz_id}/' cls.GET_TASK_DETAIL = '/apigw/get_task_detail/{task_id}/{bk_biz_id}/' cls.GET_TASK_NODE_DETAIL = '/apigw/get_task_node_detail/{task_id}/{bk_biz_id}/' cls.NODE_CALLBACK = '/apigw/node_callback/{task_id}/{bk_biz_id}/' cls.IMPORT_COMMON_FLOW = '/apigw/import_common_template/' super(APITest, cls).setUpClass() def setUp(self): self.white_list_patcher = mock.patch(APIGW_DECORATOR_CHECK_WHITE_LIST, MagicMock(return_value=True)) self.dummy_user = MagicMock() self.dummy_user.username = '' self.user_cls = MagicMock() self.user_cls.objects = MagicMock() self.user_cls.objects.get_or_create = MagicMock(return_value=(self.dummy_user, False)) self.get_user_model_patcher = mock.patch(APIGW_DECORATOR_GET_USER_MODEL, MagicMock(return_value=self.user_cls)) self.prepare_user_business_patcher = mock.patch(APIGW_DECORATOR_PREPARE_USER_BUSINESS, MagicMock()) self.business_exist_patcher = mock.patch(APIGW_DECORATOR_BUSINESS_EXIST, MagicMock(return_value=True)) self.white_list_patcher.start() self.get_user_model_patcher.start() self.prepare_user_business_patcher.start() self.business_exist_patcher.start() self.client = Client() def tearDown(self): self.white_list_patcher.stop() self.get_user_model_patcher.stop() self.prepare_user_business_patcher.stop() self.business_exist_patcher.stop() @mock.patch(BUSINESS_GET, MagicMock(return_value=MockBusiness(cc_id=TEST_BIZ_CC_ID, cc_name=TEST_BIZ_CC_NAME))) def test_get_template_list__for_business_template(self): pt1 = MockPipelineTemplate(id=1, name='pt1') pt2 = MockPipelineTemplate(id=2, name='pt2') task_tmpl1 = MockTaskTemplate(id=1, pipeline_template=pt1) task_tmpl2 = MockTaskTemplate(id=2, pipeline_template=pt2) task_templates = [task_tmpl1, task_tmpl2] with mock.patch(TASKTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet(filter_result=task_templates))): assert_data = [ { 'id': tmpl.id, 'name': tmpl.pipeline_template.name, 'creator': tmpl.pipeline_template.creator, 'create_time': strftime_with_timezone(tmpl.pipeline_template.create_time), 'editor': tmpl.pipeline_template.editor, 'edit_time': strftime_with_timezone(tmpl.pipeline_template.edit_time), 'category': tmpl.category, 'bk_biz_id': TEST_BIZ_CC_ID, 'bk_biz_name': TEST_BIZ_CC_NAME } for tmpl in task_templates ] response = self.client.get(path=self.GET_TEMPLATE_LIST_URL.format(biz_cc_id=TEST_BIZ_CC_ID)) self.assertEqual(response.status_code, 200) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], assert_data) with mock.patch(TASKTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet(filter_result=[]))): assert_data = [] response = self.client.get(path=self.GET_TEMPLATE_LIST_URL.format(biz_cc_id=TEST_BIZ_CC_ID)) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], assert_data) @mock.patch(BUSINESS_GET, MagicMock(return_value=MockBusiness(cc_id=TEST_BIZ_CC_ID, cc_name=TEST_BIZ_CC_NAME))) def test_get_template_list__for_common_template(self): pt1 = MockPipelineTemplate(id=1, name='pt1') pt2 = MockPipelineTemplate(id=2, name='pt2') task_tmpl1 = MockCommonTemplate(id=1, pipeline_template=pt1) task_tmpl2 = MockCommonTemplate(id=2, pipeline_template=pt2) task_templates = [task_tmpl1, task_tmpl2] with mock.patch(COMMONTEMPLATE_SELECT_RELATE, MagicMock( return_value=MockQuerySet(filter_result=task_templates))): assert_data = [ { 'id': tmpl.id, 'name': tmpl.pipeline_template.name, 'creator': tmpl.pipeline_template.creator, 'create_time': strftime_with_timezone(tmpl.pipeline_template.create_time), 'editor': tmpl.pipeline_template.editor, 'edit_time': strftime_with_timezone(tmpl.pipeline_template.edit_time), 'category': tmpl.category, 'bk_biz_id': TEST_BIZ_CC_ID, 'bk_biz_name': TEST_BIZ_CC_NAME } for tmpl in task_templates ] response = self.client.get(path=self.GET_TEMPLATE_LIST_URL.format(biz_cc_id=TEST_BIZ_CC_ID), data={'template_source': 'common'}) self.assertEqual(response.status_code, 200) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], assert_data) with mock.patch(COMMONTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet(filter_result=[]))): assert_data = [] response = self.client.get(path=self.GET_TEMPLATE_LIST_URL.format(biz_cc_id=TEST_BIZ_CC_ID), data={'template_source': 'common'}) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], assert_data) @mock.patch(BUSINESS_GET, MagicMock(return_value=MockBusiness(cc_id=TEST_BIZ_CC_ID, cc_name=TEST_BIZ_CC_NAME))) def test_get_template_info__for_business_template(self): pt1 = MockPipelineTemplate(id=1, name='pt1') tmpl = MockTaskTemplate(id=1, pipeline_template=pt1) with mock.patch(TASKTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet(get_result=tmpl))): pipeline_tree = copy.deepcopy(tmpl.pipeline_tree) pipeline_tree.pop('line') pipeline_tree.pop('location') assert_data = { 'id': tmpl.id, 'name': tmpl.pipeline_template.name, 'creator': tmpl.pipeline_template.creator, 'create_time': strftime_with_timezone(tmpl.pipeline_template.create_time), 'editor': tmpl.pipeline_template.editor, 'edit_time': strftime_with_timezone(tmpl.pipeline_template.edit_time), 'category': tmpl.category, 'bk_biz_id': TEST_BIZ_CC_ID, 'bk_biz_name': TEST_BIZ_CC_NAME, 'pipeline_tree': pipeline_tree } response = self.client.get(path=self.GET_TEMPLATE_INFO_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID)) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(assert_data, data['data']) @mock.patch(TASKTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet(get_raise=TaskTemplate.DoesNotExist()))) @mock.patch(BUSINESS_GET, MagicMock(return_value=MockBusiness(cc_id=TEST_BIZ_CC_ID, cc_name=TEST_BIZ_CC_NAME))) def test_get_template_info__for_business_template_does_not_exists(self): response = self.client.get(path=self.GET_TEMPLATE_INFO_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), ) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(BUSINESS_GET, MagicMock(return_value=MockBusiness(cc_id=TEST_BIZ_CC_ID, cc_name=TEST_BIZ_CC_NAME))) def test_get_template_info__for_common_template(self): pt1 = MockPipelineTemplate(id=1, name='pt1') tmpl = MockCommonTemplate(id=1, pipeline_template=pt1) with mock.patch(COMMONTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet(get_result=tmpl))): pipeline_tree = copy.deepcopy(tmpl.pipeline_tree) pipeline_tree.pop('line') pipeline_tree.pop('location') assert_data = { 'id': tmpl.id, 'name': tmpl.pipeline_template.name, 'creator': tmpl.pipeline_template.creator, 'create_time': strftime_with_timezone(tmpl.pipeline_template.create_time), 'editor': tmpl.pipeline_template.editor, 'edit_time': strftime_with_timezone(tmpl.pipeline_template.edit_time), 'category': tmpl.category, 'bk_biz_id': TEST_BIZ_CC_ID, 'bk_biz_name': TEST_BIZ_CC_NAME, 'pipeline_tree': pipeline_tree } response = self.client.get(path=self.GET_TEMPLATE_INFO_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), data={'template_source': 'common'}) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(assert_data, data['data']) @mock.patch(COMMONTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet(get_raise=CommonTemplate.DoesNotExist()))) @mock.patch(BUSINESS_GET, MagicMock(return_value=MockBusiness(cc_id=TEST_BIZ_CC_ID, cc_name=TEST_BIZ_CC_NAME))) def test_get_template_info__for_common_template_does_not_exists(self): response = self.client.get(path=self.GET_TEMPLATE_INFO_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), data={'template_source': 'common'}) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(TASKINSTANCE_CREATE_PIPELINE, MagicMock(return_value=(True, TEST_DATA))) @mock.patch(TASKINSTANCE_CREATE, MagicMock(return_value=MockTaskFlowInstance(id=TEST_TASKFLOW_ID))) @mock.patch(APIGW_VIEW_JSON_SCHEMA_VALIDATE, MagicMock()) def test_create_task__success(self): pt1 = MockPipelineTemplate(id=1, name='pt1') tmpl = MockTaskTemplate(id=1, pipeline_template=pt1) biz = MockBusiness(cc_id=TEST_BIZ_CC_ID, cc_name=TEST_BIZ_CC_NAME) with mock.patch(BUSINESS_GET, MagicMock(return_value=biz)): with mock.patch(TASKTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet(get_result=tmpl))): assert_data = {'task_id': TEST_TASKFLOW_ID, 'task_url': TEST_TASKFLOW_URL, 'pipeline_tree': TEST_TASKFLOW_PIPELINE_TREE} response = self.client.post(path=self.CREATE_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'name': 'name', 'constants': 'constants', 'exclude_task_nodes_id': 'exclude_task_nodes_id', 'flow_type': 'common'}), content_type="application/json", HTTP_BK_APP_CODE=TEST_APP_CODE) TaskFlowInstance.objects.create_pipeline_instance_exclude_task_nodes.assert_called_once_with( tmpl, {'name': 'name', 'creator': ''}, 'constants', 'exclude_task_nodes_id') TaskFlowInstance.objects.create.assert_called_once_with( business=biz, category=tmpl.category, pipeline_instance=TEST_DATA, template_id=TEST_TEMPLATE_ID, create_method='api', create_info=TEST_APP_CODE, flow_type='common', current_flow='execute_task' ) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], assert_data) TaskFlowInstance.objects.create_pipeline_instance_exclude_task_nodes.reset_mock() TaskFlowInstance.objects.create.reset_mock() pt1 = MockPipelineTemplate(id=1, name='pt1') tmpl = MockCommonTemplate(id=1, pipeline_template=pt1) with mock.patch(COMMONTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet(get_result=tmpl))): assert_data = {'task_id': TEST_TASKFLOW_ID, 'task_url': TEST_TASKFLOW_URL, 'pipeline_tree': TEST_TASKFLOW_PIPELINE_TREE} response = self.client.post(path=self.CREATE_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'name': 'name', 'constants': 'constants', 'exclude_task_nodes_id': 'exclude_task_nodes_id', 'template_source': 'common', 'flow_type': 'common'}), content_type="application/json", HTTP_BK_APP_CODE=TEST_APP_CODE) TaskFlowInstance.objects.create_pipeline_instance_exclude_task_nodes.assert_called_once_with( tmpl, {'name': 'name', 'creator': ''}, 'constants', 'exclude_task_nodes_id') TaskFlowInstance.objects.create.assert_called_once_with( business=biz, category=tmpl.category, pipeline_instance=TEST_DATA, template_id=TEST_TEMPLATE_ID, create_method='api', create_info=TEST_APP_CODE, flow_type='common', current_flow='execute_task' ) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], assert_data) @mock.patch(BUSINESS_GET, MagicMock(return_value=MockBusiness(cc_id=TEST_BIZ_CC_ID, cc_name=TEST_BIZ_CC_NAME))) @mock.patch(TASKTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet())) @mock.patch(COMMONTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet())) @mock.patch(APIGW_VIEW_JSON_SCHEMA_VALIDATE, MagicMock(side_effect=jsonschema.ValidationError(''))) def test_create_task__validate_fail(self): response = self.client.post(path=self.CREATE_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'constants': 'constants', 'exclude_task_node_id': 'exclude_task_node_id'}), content_type="application/json") data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) response = self.client.post(path=self.CREATE_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'constants': 'constants', 'exclude_task_node_id': 'exclude_task_node_id', 'template_source': 'common'}), content_type="application/json") data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(BUSINESS_GET, MagicMock(return_value=MockBusiness(cc_id=TEST_BIZ_CC_ID, cc_name=TEST_BIZ_CC_NAME))) @mock.patch(TASKTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet())) @mock.patch(COMMONTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet())) @mock.patch(APIGW_VIEW_JSON_SCHEMA_VALIDATE, MagicMock()) def test_create_task__without_app_code(self): response = self.client.post(path=self.CREATE_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'constants': 'constants', 'exclude_task_node_id': 'exclude_task_node_id'}), content_type="application/json") data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) response = self.client.post(path=self.CREATE_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'constants': 'constants', 'exclude_task_node_id': 'exclude_task_node_id', 'template_source': 'common'}), content_type="application/json") data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(BUSINESS_GET, MagicMock(return_value=MockBusiness(cc_id=TEST_BIZ_CC_ID, cc_name=TEST_BIZ_CC_NAME))) @mock.patch(TASKINSTANCE_CREATE_PIPELINE, MagicMock(side_effect=PipelineException())) @mock.patch(APIGW_VIEW_JSON_SCHEMA_VALIDATE, MagicMock()) def test_create_task__create_pipeline_raise(self): pt1 = MockPipelineTemplate(id=1, name='pt1') tmpl = MockTaskTemplate(id=1, pipeline_template=pt1) with mock.patch(TASKTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet(get_result=tmpl))): response = self.client.post(path=self.CREATE_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'name': 'name', 'constants': 'constants', 'exclude_task_node_id': 'exclude_task_node_id'}), content_type="application/json", HTTP_BK_APP_CODE=TEST_APP_CODE) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) pt1 = MockPipelineTemplate(id=1, name='pt1') tmpl = MockCommonTemplate(id=1, pipeline_template=pt1) with mock.patch(COMMONTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet(get_result=tmpl))): response = self.client.post(path=self.CREATE_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'name': 'name', 'constants': 'constants', 'exclude_task_node_id': 'exclude_task_node_id', 'template_source': 'common'}), content_type="application/json", HTTP_BK_APP_CODE=TEST_APP_CODE) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(BUSINESS_GET, MagicMock(return_value=MockBusiness(cc_id=TEST_BIZ_CC_ID, cc_name=TEST_BIZ_CC_NAME))) @mock.patch(TASKINSTANCE_CREATE_PIPELINE, MagicMock(return_value=(False, ''))) @mock.patch(APIGW_VIEW_JSON_SCHEMA_VALIDATE, MagicMock()) def test_create_task__create_pipeline_fail(self): pt1 = MockPipelineTemplate(id=1, name='pt1') tmpl = MockTaskTemplate(id=1, pipeline_template=pt1) with mock.patch(TASKTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet(get_result=tmpl))): response = self.client.post(path=self.CREATE_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'name': 'name', 'constants': 'constants', 'exclude_task_node_id': 'exclude_task_node_id'}), content_type="application/json", HTTP_BK_APP_CODE=TEST_APP_CODE) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) pt1 = MockPipelineTemplate(id=1, name='pt1') tmpl = MockCommonTemplate(id=1, pipeline_template=pt1) with mock.patch(COMMONTEMPLATE_SELECT_RELATE, MagicMock(return_value=MockQuerySet(get_result=tmpl))): response = self.client.post(path=self.CREATE_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'name': 'name', 'constants': 'constants', 'exclude_task_node_id': 'exclude_task_node_id', 'template_source': 'common'}), content_type="application/json", HTTP_BK_APP_CODE=TEST_APP_CODE) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) def test_start_task(self): assert_return = {'result': True} task = MockTaskFlowInstance(task_action_return=assert_return) with mock.patch(TASKINSTANCE_GET, MagicMock(return_value=task)): response = self.client.post(path=self.START_TASK_URL.format(task_id=TEST_TASKFLOW_ID, bk_biz_id=TEST_BIZ_CC_ID)) task.task_action.assert_called_once_with('start', '') data = json.loads(response.content) self.assertEqual(data, assert_return) def test_operate_task(self): assert_return = {'result': True} assert_action = 'any_action' task = MockTaskFlowInstance(task_action_return=assert_return) with mock.patch(TASKINSTANCE_GET, MagicMock(return_value=task)): response = self.client.post(path=self.OPERATE_TASK_URL.format(task_id=TEST_TASKFLOW_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'action': assert_action}), content_type='application/json') task.task_action.assert_called_once_with(assert_action, '') data = json.loads(response.content) self.assertEqual(data, assert_return) def test_get_task_status__success(self): task = MockTaskFlowInstance(get_status_return=TEST_DATA) with mock.patch(TASKINSTANCE_GET, MagicMock(return_value=task)): response = self.client.get(path=self.GET_TASK_STATUS_URL.format(task_id=TEST_TASKFLOW_ID, bk_biz_id=TEST_BIZ_CC_ID)) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], TEST_DATA) def test_get_task_status__raise(self): task = MockTaskFlowInstance(get_status_raise=Exception()) with mock.patch(TASKINSTANCE_GET, MagicMock(return_value=task)): response = self.client.get(path=self.GET_TASK_STATUS_URL.format(task_id=TEST_TASKFLOW_ID, bk_biz_id=TEST_BIZ_CC_ID)) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(TASKINSTANCE_FORMAT_STATUS, MagicMock()) @mock.patch(APIGW_VIEW_PIPELINE_API_GET_STATUS_TREE, MagicMock(return_value=TEST_DATA)) def test_get_task_status__is_subprocess(self): task = MockTaskFlowInstance(get_status_raise=TaskFlowInstance.DoesNotExist()) with mock.patch(TASKINSTANCE_GET, MagicMock(return_value=task)): response = self.client.get(path=self.GET_TASK_STATUS_URL.format(task_id=TEST_TASKFLOW_ID, bk_biz_id=TEST_BIZ_CC_ID)) TaskFlowInstance.format_pipeline_status.assert_called_once_with(TEST_DATA) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], TEST_DATA) @mock.patch(APIGW_VIEW_PIPELINE_API_GET_STATUS_TREE, MagicMock(return_value=TEST_DATA)) def test_get_task_status__is_subprocess_raise(self): task = MockTaskFlowInstance(get_status_raise=TaskFlowInstance.DoesNotExist()) with mock.patch(TASKINSTANCE_GET, MagicMock(return_value=task)): with mock.patch(APIGW_VIEW_PIPELINE_API_GET_STATUS_TREE, MagicMock(side_effect=Exception())): response = self.client.get(path=self.GET_TASK_STATUS_URL.format(task_id=TEST_TASKFLOW_ID, bk_biz_id=TEST_BIZ_CC_ID)) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) with mock.patch(TASKINSTANCE_FORMAT_STATUS, MagicMock(side_effect=Exception())): response = self.client.get(path=self.GET_TASK_STATUS_URL.format(task_id=TEST_TASKFLOW_ID, bk_biz_id=TEST_BIZ_CC_ID)) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(TASKINSTANCE_EXTEN_CLASSIFIED_COUNT, MagicMock(return_value=(True, TEST_DATA))) def test_query_task_count__success(self): response = self.client.post(path=self.QUERY_TASK_COUNT_URL.format(bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'group_by': 'category'}), content_type='application/json') data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], TEST_DATA) def test_query_task_count__conditions_is_not_dict(self): response = self.client.post(path=self.QUERY_TASK_COUNT_URL.format(bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'conditions': []}), content_type='application/json') data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) def test_query_task_count__group_by_is_not_valid(self): response = self.client.post(path=self.QUERY_TASK_COUNT_URL.format(bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'group_by': 'invalid_value'}), content_type='application/json') data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(TASKINSTANCE_EXTEN_CLASSIFIED_COUNT, MagicMock(return_value=(False, ''))) def test_query_task_count__extend_classified_count_fail(self): response = self.client.post(path=self.QUERY_TASK_COUNT_URL.format(bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'group_by': 'category'}), content_type='application/json') TaskFlowInstance.objects.extend_classified_count.assert_called_once_with('category', {'business__cc_id': TEST_BIZ_CC_ID, 'is_deleted': False}) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) def test_get_periodic_task_list(self): pt1 = MockPeriodicTask(id='1') pt2 = MockPeriodicTask(id='2') pt3 = MockPeriodicTask(id='3') periodic_tasks = [pt1, pt2, pt3] assert_data = [{ 'id': task.id, 'name': task.name, 'template_id': task.template_id, 'creator': task.creator, 'cron': task.cron, 'enabled': task.enabled, 'last_run_at': strftime_with_timezone(task.last_run_at), 'total_run_count': task.total_run_count, } for task in periodic_tasks] with mock.patch(PERIODIC_TASK_FILTER, MagicMock(return_value=periodic_tasks)): response = self.client.get(path=self.GET_PERIODIC_TASK_LIST_URL.format(bk_biz_id=TEST_BIZ_CC_ID)) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], assert_data) def test_get_periodic_task_info__success(self): task = MockPeriodicTask() assert_data = { 'id': task.id, 'name': task.name, 'template_id': task.template_id, 'creator': task.creator, 'cron': task.cron, 'enabled': task.enabled, 'last_run_at': strftime_with_timezone(task.last_run_at), 'total_run_count': task.total_run_count, 'form': task.form, 'pipeline_tree': task.pipeline_tree } with mock.patch(PERIODIC_TASK_GET, MagicMock(return_value=task)): response = self.client.get(path=self.GET_PERIODIC_TASK_INFO_URL.format(task_id=TEST_PERIODIC_TASK_ID, bk_biz_id=TEST_BIZ_CC_ID)) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], assert_data) @mock.patch(PERIODIC_TASK_GET, MagicMock(side_effect=PeriodicTask.DoesNotExist)) def test_periodic_task_info__task_does_not_exist(self): response = self.client.get(path=self.GET_PERIODIC_TASK_INFO_URL.format(task_id=TEST_PERIODIC_TASK_ID, bk_biz_id=TEST_BIZ_CC_ID)) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(TASKINSTANCE_PREVIEW_TREE, MagicMock()) @mock.patch(APIGW_VIEW_JSON_SCHEMA_VALIDATE, MagicMock()) def test_create_periodic_task__success(self): task = MockPeriodicTask() assert_data = { 'id': task.id, 'name': task.name, 'template_id': task.template_id, 'creator': task.creator, 'cron': task.cron, 'enabled': task.enabled, 'last_run_at': strftime_with_timezone(task.last_run_at), 'total_run_count': task.total_run_count, 'form': task.form, 'pipeline_tree': task.pipeline_tree } biz = MockBusiness(cc_id=TEST_BIZ_CC_ID, cc_name=TEST_BIZ_CC_NAME) template = MockTaskTemplate() replace_template_id_mock = MagicMock() with mock.patch(TASKTEMPLATE_GET, MagicMock(return_value=template)): with mock.patch(BUSINESS_GET, MagicMock(return_value=biz)): with mock.patch(PERIODIC_TASK_CREATE, MagicMock(return_value=task)): with mock.patch(APIGW_REPLACE_TEMPLATE_ID, replace_template_id_mock): response = self.client.post( path=self.CREATE_PERIODIC_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'name': task.name, 'cron': task.cron, 'exclude_task_nodes_id': 'exclude_task_nodes_id'}), content_type='application/json') TaskFlowInstance.objects.preview_pipeline_tree_exclude_task_nodes.assert_called_with( template.pipeline_tree, 'exclude_task_nodes_id' ) PeriodicTask.objects.create.assert_called_once_with( business=biz, template=template, name=task.name, cron=task.cron, pipeline_tree=template.pipeline_tree, creator='' ) data = json.loads(response.content) replace_template_id_mock.assert_called_once_with(TaskTemplate, template.pipeline_tree) self.assertTrue(data['result']) self.assertEqual(data['data'], assert_data) @mock.patch(TASKTEMPLATE_GET, MagicMock(side_effect=TaskTemplate.DoesNotExist())) def test_create_periodic_task__template_does_not_exist(self): response = self.client.post(path=self.CREATE_PERIODIC_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), content_type='application/json') data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(TASKTEMPLATE_GET, MagicMock(return_value=MockTaskTemplate())) @mock.patch(APIGW_VIEW_JSON_SCHEMA_VALIDATE, MagicMock(side_effect=jsonschema.ValidationError(''))) def test_create_periodic_task__params_validate_fail(self): response = self.client.post(path=self.CREATE_PERIODIC_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), content_type='application/json') data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(TASKTEMPLATE_GET, MagicMock(return_value=MockTaskTemplate())) @mock.patch(APIGW_VIEW_JSON_SCHEMA_VALIDATE, MagicMock()) @mock.patch(TASKINSTANCE_PREVIEW_TREE, MagicMock(side_effect=Exception())) def test_create_periodic_task__preview_pipeline_fail(self): response = self.client.post(path=self.CREATE_PERIODIC_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), content_type='application/json') data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(BUSINESS_GET, MagicMock(return_value=MockBusiness(cc_id=TEST_BIZ_CC_ID, cc_name=TEST_BIZ_CC_NAME))) @mock.patch(TASKTEMPLATE_GET, MagicMock(return_value=MockTaskTemplate())) @mock.patch(APIGW_VIEW_JSON_SCHEMA_VALIDATE, MagicMock()) @mock.patch(TASKINSTANCE_PREVIEW_TREE, MagicMock()) @mock.patch(APIGW_REPLACE_TEMPLATE_ID, MagicMock(side_effect=Exception)) def test_create_periodic_task__replace_template_id_fail(self): response = self.client.post(path=self.CREATE_PERIODIC_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'name': 'name', 'cron': 'cron'}), content_type='application/json') data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(BUSINESS_GET, MagicMock(return_value=MockBusiness(cc_id=TEST_BIZ_CC_ID, cc_name=TEST_BIZ_CC_NAME))) @mock.patch(TASKTEMPLATE_GET, MagicMock(return_value=MockTaskTemplate())) @mock.patch(APIGW_VIEW_JSON_SCHEMA_VALIDATE, MagicMock()) @mock.patch(TASKINSTANCE_PREVIEW_TREE, MagicMock()) @mock.patch(PERIODIC_TASK_CREATE, MagicMock(side_effect=Exception())) @mock.patch(APIGW_REPLACE_TEMPLATE_ID, MagicMock()) def test_create_periodic_task__periodic_task_create_fail(self): response = self.client.post(path=self.CREATE_PERIODIC_TASK_URL.format(template_id=TEST_TEMPLATE_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'name': 'name', 'cron': 'cron'}), content_type='application/json') data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(BUSINESS_GET, MagicMock(return_value=MockBusiness())) def test_set_periodic_task_enabled__success(self): task = MockPeriodicTask() with mock.patch(PERIODIC_TASK_GET, MagicMock(return_value=task)): response = self.client.post(path=self.SET_PERIODIC_TASK_ENABLED_URL.format(task_id=TEST_PERIODIC_TASK_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'enabled': True}), content_type='application/json') task.set_enabled.assert_called_once_with(True) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], { 'enabled': task.enabled }) @mock.patch(PERIODIC_TASK_GET, MagicMock(side_effect=PeriodicTask.DoesNotExist)) def test_set_periodic_task_enabled__task_does_not_exist(self): response = self.client.post(path=self.SET_PERIODIC_TASK_ENABLED_URL.format(task_id=TEST_PERIODIC_TASK_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'enabled': True}), content_type='application/json') data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) def test_modify_cron_for_periodic_task__success(self): biz = MockBusiness() task = MockPeriodicTask() cron = {'minute': '*/1'} with mock.patch(BUSINESS_GET, MagicMock(return_value=biz)): with mock.patch(PERIODIC_TASK_GET, MagicMock(return_value=task)): response = self.client.post( path=self.MODIFY_PERIODIC_TASK_CRON_URL.format(task_id=TEST_PERIODIC_TASK_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'cron': cron}), content_type='application/json') task.modify_cron.assert_called_once_with(cron, biz.time_zone) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], {'cron': task.cron}) @mock.patch(BUSINESS_GET, MagicMock(return_value=MockBusiness())) @mock.patch(PERIODIC_TASK_GET, MagicMock(side_effect=PeriodicTask.DoesNotExist)) def test_modify_cron_for_periodic_task__task_does_not_exist(self): response = self.client.post(path=self.MODIFY_PERIODIC_TASK_CRON_URL.format(task_id=TEST_PERIODIC_TASK_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'enabled': True}), content_type='application/json') data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) def test_modify_cron_for_periodic_task__modify_raise(self): biz = MockBusiness() task = MockPeriodicTask() task.modify_cron = MagicMock(side_effect=Exception()) cron = {'minute': '*/1'} with mock.patch(BUSINESS_GET, MagicMock(return_value=biz)): with mock.patch(PERIODIC_TASK_GET, MagicMock(return_value=task)): response = self.client.post( path=self.MODIFY_PERIODIC_TASK_CRON_URL.format(task_id=TEST_PERIODIC_TASK_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'cron': cron}), content_type='application/json') data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) def test_modify_constants_for_periodic_task__success(self): biz = MockBusiness() task = MockPeriodicTask() constants = {'k': 'v'} with mock.patch(BUSINESS_GET, MagicMock(return_value=biz)): with mock.patch(PERIODIC_TASK_GET, MagicMock(return_value=task)): response = self.client.post( path=self.MODIFY_PERIODIC_TASK_CONSTANTS_URL.format(task_id=TEST_PERIODIC_TASK_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({'constants': constants}), content_type='application/json') task.modify_constants.assert_called_once_with(constants) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], task.modify_constants.return_value) @mock.patch(PERIODIC_TASK_GET, MagicMock(side_effect=PeriodicTask.DoesNotExist)) def test_modify_constants_for_periodic_task__task_does_not_exist(self): response = self.client.post(path=self.MODIFY_PERIODIC_TASK_CONSTANTS_URL.format(task_id=TEST_PERIODIC_TASK_ID, bk_biz_id=TEST_BIZ_CC_ID), content_type='application/json') data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) def test_modify_constants_for_periodic_task__modify_constants_raise(self): biz = MockBusiness() task = MockPeriodicTask() task.modify_constants = MagicMock(side_effect=Exception()) with mock.patch(BUSINESS_GET, MagicMock(return_value=biz)): with mock.patch(PERIODIC_TASK_GET, MagicMock(return_value=task)): response = self.client.post( path=self.MODIFY_PERIODIC_TASK_CONSTANTS_URL.format(task_id=TEST_PERIODIC_TASK_ID, bk_biz_id=TEST_BIZ_CC_ID), content_type='application/json') data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) def test_get_task_detail__success(self): mock_taskflow = MockTaskFlowInstance(get_task_detail_return=TEST_DATA) with mock.patch(TASKINSTANCE_GET, MagicMock(return_value=mock_taskflow)): assert_data = TEST_DATA response = self.client.get(path=self.GET_TASK_DETAIL.format(task_id=TEST_TASKFLOW_ID, bk_biz_id=TEST_BIZ_CC_ID)) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], assert_data) @mock.patch(TASKINSTANCE_GET, MagicMock(side_effect=TaskFlowInstance.DoesNotExist())) def test_get_task_detail__success__taskflow_does_not_exists(self): response = self.client.get(path=self.GET_TASK_DETAIL.format(task_id=TEST_TASKFLOW_ID, bk_biz_id=TEST_BIZ_CC_ID)) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) def test_get_task_node_detail__success(self): mock_taskflow = MockTaskFlowInstance(get_node_detail_return={'result': True, 'data': TEST_DATA}) with mock.patch(TASKINSTANCE_GET, MagicMock(return_value=mock_taskflow)): assert_data = TEST_DATA response = self.client.get(path=self.GET_TASK_NODE_DETAIL.format(task_id=TEST_TASKFLOW_ID, bk_biz_id=TEST_BIZ_CC_ID), data={'node_id': TEST_NODE_ID, 'component_code': TEST_COMPONENT_CODE, 'subprocess_stack': TEST_SUBPROCESS_STACK}) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['data'], assert_data) mock_taskflow.get_node_detail.assert_called_once_with(TEST_NODE_ID, TEST_COMPONENT_CODE, json.loads(TEST_SUBPROCESS_STACK)) @mock.patch(TASKINSTANCE_GET, MagicMock(side_effect=TaskFlowInstance.DoesNotExist())) def test_get_task_node_detail__taskflow_doest_not_exist(self): response = self.client.get(path=self.GET_TASK_NODE_DETAIL.format(task_id=TEST_TASKFLOW_ID, bk_biz_id=TEST_BIZ_CC_ID), data={'node_id': TEST_NODE_ID, 'component_code': TEST_COMPONENT_CODE, 'subprocess_stack': TEST_SUBPROCESS_STACK}) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) def test_get_task_node_detail__with_invalid_subprocess_stack(self): response = self.client.get(path=self.GET_TASK_NODE_DETAIL.format(task_id=TEST_TASKFLOW_ID, bk_biz_id=TEST_BIZ_CC_ID), data={'node_id': TEST_NODE_ID, 'component_code': TEST_COMPONENT_CODE, 'subprocess_stack': 'abcdefg'}) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) def test_node_callback__success(self): mock_instance = MockTaskFlowInstance() with mock.patch(TASKINSTANCE_GET, MagicMock(return_value=mock_instance)): response = self.client.post(path=self.NODE_CALLBACK.format(task_id=TEST_TASKFLOW_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({ 'node_id': TEST_NODE_ID, 'callback_data': TEST_CALLBACK_DATA }), content_type='application/json') data = json.loads(response.content) self.assertTrue(data['result']) mock_instance.callback.assert_called_once_with(TEST_NODE_ID, TEST_CALLBACK_DATA) @mock.patch(TASKINSTANCE_GET, MagicMock(side_effect=TaskFlowInstance.DoesNotExist())) def test_node_callback__taskflow_does_not_exists(self): response = self.client.post(path=self.NODE_CALLBACK.format(task_id=TEST_TASKFLOW_ID, bk_biz_id=TEST_BIZ_CC_ID), data=json.dumps({ 'node_id': TEST_NODE_ID, 'callback_data': TEST_CALLBACK_DATA }), content_type='application/json') data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(APIGW_VIEW_CHECK_WHITE_LIST, MagicMock(return_value=False)) @mock.patch(APIGW_READ_TEMPLATE_DATA_FILE, MagicMock()) def test_import_common_template__app_has_no_permission(self): response = self.client.post(path=self.IMPORT_COMMON_FLOW) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) from gcloud.apigw.views import read_template_data_file read_template_data_file.assert_not_called() @mock.patch(APIGW_VIEW_CHECK_WHITE_LIST, MagicMock(return_value=True)) @mock.patch(APIGW_READ_TEMPLATE_DATA_FILE, MagicMock(return_value={'result': False, 'message': 'token'})) def test_import_common_template__read_template_data_file_error(self): response = self.client.post(path=self.IMPORT_COMMON_FLOW) data = json.loads(response.content) self.assertFalse(data['result']) self.assertEqual(data['message'], 'token') @mock.patch(APIGW_VIEW_CHECK_WHITE_LIST, MagicMock(return_value=True)) @mock.patch(APIGW_READ_TEMPLATE_DATA_FILE, MagicMock(return_value={'result': True, 'data': {'template_data': 'token'}})) @mock.patch(COMMONTEMPLATE_IMPORT_TEMPLATES, MagicMock(side_effect=Exception())) def test_import_common_template__import_templates_error(self): response = self.client.post(path=self.IMPORT_COMMON_FLOW) data = json.loads(response.content) self.assertFalse(data['result']) self.assertTrue('message' in data) @mock.patch(APIGW_VIEW_CHECK_WHITE_LIST, MagicMock(return_value=True)) @mock.patch(APIGW_READ_TEMPLATE_DATA_FILE, MagicMock(return_value={'result': True, 'data': {'template_data': 'token'}})) @mock.patch(COMMONTEMPLATE_IMPORT_TEMPLATES, MagicMock(return_value={'result': False, 'message': 'token'})) def test_import_common_template__import_templates_fail(self): response = self.client.post(path=self.IMPORT_COMMON_FLOW) data = json.loads(response.content) self.assertFalse(data['result']) self.assertEqual(data['message'], 'token') @mock.patch(APIGW_VIEW_CHECK_WHITE_LIST, MagicMock(return_value=True)) @mock.patch(APIGW_READ_TEMPLATE_DATA_FILE, MagicMock(return_value={'result': True, 'data': {'template_data': 'token'}})) @mock.patch(COMMONTEMPLATE_IMPORT_TEMPLATES, MagicMock(return_value={'result': True, 'message': 'token'})) def test_import_common_template__success(self): response = self.client.post(path=self.IMPORT_COMMON_FLOW, data={'override': True}) data = json.loads(response.content) self.assertTrue(data['result']) self.assertEqual(data['message'], 'token') CommonTemplate.objects.import_templates.assert_called_once_with('token', True)
[ "yanyukai@xinxindai.com" ]
yanyukai@xinxindai.com
af5d0b52140865dff7f3de167c9c6ff52505eabf
454cb7ce13e0e359b978bc34830f83fdb7426630
/python/d086.py
ce3ddf6249653a79301be63120ae14f8f48af78d
[]
no_license
scorpio-su/zerojudge
d662925b1769e8f2b7cba1db291642b44365e3e8
4897d1626147d432d21577c330d489c6dd576cd6
refs/heads/master
2022-12-06T00:59:20.648107
2020-08-20T13:16:56
2020-08-20T13:16:56
279,103,359
0
0
null
null
null
null
UTF-8
Python
false
false
572
py
# -*- coding: utf-8 -*- """ Created on Wed Jan 8 09:46:45 2020 @author: Username """ dic={'hardwork':98,'knowledge':96,'attitude':100} for s in [input()]: s=s.replace('\n','').replace(' ','') #if s[-1] == '':s=s[:-1] if s == '0': break num=0 s=s.lower() for i in range(len(s)): k='' if s[i]=='a' or s[i]=='h': k=s[i:i+8] if s[i]=='k': k=s[i:i+9] #print(k) if dic.get(k):num+=dic.get(k) if num!=0: print(num) else: print('Fail') #hardwork KNOWLEDGE aTtitUdE C++ #hardworkKNOWLEDGEaTtitUdEC++
[ "aa891119@gmail.com" ]
aa891119@gmail.com
f108e824a0b3288d1e3d3d6a86db62ae697df0a5
2c22736309a50968896b4724df4a7a1d1a150d88
/0x0C-python-almost_a_circle/models/square.py
b9a88f03d6e1fb2b7f14438e3604fc0ce2382063
[]
no_license
gcifuentess/holbertonschool-higher_level_programming
ce9f263c0eef07facc1e02b719a8ae7193233d6d
75e405ec7f1aa9138aa54e86f7b41aa08ead7f2a
refs/heads/master
2023-06-18T08:36:22.580908
2021-07-18T20:46:40
2021-07-18T20:46:40
291,871,342
0
0
null
null
null
null
UTF-8
Python
false
false
1,883
py
#!/usr/bin/python3 """Square module""" from models.rectangle import Rectangle class Square(Rectangle): """Square class as a subclass of Rectangle""" symbol = '#' '''symbol used to print the square''' def __init__(self, size, x=0, y=0, id=None): """Square constructor""" self.size = size super().__init__(self.size, self.size, x, y, id) @property def size(self): return self.width @size.setter def size(self, value): self.width = value self.height = value def __str__(self): """returns the string to be printed when print() invoked""" return "[Square] ({}) {}/{} - {}".format(self.id, self.x, self.y, self.width) def update(self, *args, **kwargs): """Updates Square's attributes (id, size, x and y)""" i = 0 for arg in args: i += 1 if i == 1: self.id = arg elif i == 2: self.size = arg elif i == 3: self.x = arg elif i == 4: self.y = arg else: break if i == 0: for key, value in kwargs.items(): if key == 'size': self.size = value elif key == 'x': self.x = value elif key == 'y': self.y = value elif key == 'id': self.id = value else: break def to_dictionary(self): """retunrs a dictionary with the attributes of the class""" self.new_dict = {} self.new_dict['size'] = self.size self.new_dict['x'] = self.x self.new_dict['y'] = self.y self.new_dict['id'] = self.id return self.new_dict
[ "1795@holbertonschool.com" ]
1795@holbertonschool.com
0e9fbc0615ec3aaf544e09a19d1b254749955762
5352abcba8d8c2f334e8258fa8b67435ab33aff2
/marriage_my_id/settings.py
e374ae53a5f6979d057a36587f3094a7e4d3c134
[]
no_license
hendpraz/marriage_my_id
71440bef7b99794941b82e2ae5340374de82edc6
ed96358d088390a09a206c99991b688fbac14339
refs/heads/master
2023-08-05T17:17:41.564580
2020-01-09T14:34:33
2020-01-09T14:34:33
227,720,334
0
0
null
2021-09-22T18:18:34
2019-12-13T00:15:03
HTML
UTF-8
Python
false
false
3,436
py
""" Django settings for marriage_my_id project. Generated by 'django-admin startproject' using Django 3.0.1. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os from dotenv import load_dotenv load_dotenv() # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '&h*lqtrc85uzu@9c@i-d!%d7+99+fpo^qylr^)8v8#4-abjp5_' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'marriage.apps.MarriageConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'marriage_my_id.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'marriage_my_id.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': str(os.getenv("MYSQL_DATABASE_NAME")), 'USER': str(os.getenv("MYSQL_USER")), 'PASSWORD': str(os.getenv("MYSQL_PASSWORD")), 'HOST': str(os.getenv("MYSQL_HOST")), 'OPTIONS': {'charset': 'utf8mb4'}, } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Jakarta' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = str(os.getenv("STATIC_URL_TANIA_DIKA"))
[ "mhendryp99@gmail.com" ]
mhendryp99@gmail.com
65374bc87c697aa10acae04ee679f3524117e722
c475fdc75bf4d7e40cb86182bb79c6468678cd08
/djrhr/users/migrations/0003_remove_customuser_username.py
b41faefe06e701a76dd4d08d6fe7576c4d190910
[]
no_license
matthewmridha/react-django-boilerplate
a2c9a1e1230399fb391ea94c3165e4a4b1cb57d0
36fb350e055f1d64086f53ca2e5adceb414c43ca
refs/heads/main
2023-07-08T16:53:26.399561
2021-08-14T05:23:30
2021-08-14T05:23:30
382,972,624
0
0
null
null
null
null
UTF-8
Python
false
false
339
py
# Generated by Django 3.2.3 on 2021-05-30 05:29 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('users', '0002_alter_customuser_managers'), ] operations = [ migrations.RemoveField( model_name='customuser', name='username', ), ]
[ "matthewmridha@gmail.com" ]
matthewmridha@gmail.com
fc8196b320bf8b85d4fd7007703d75f76858aa28
fb025fc7b94ef915b6e837e163ad836d6bf4056a
/dtype/dtype-ft2.py
1a8553eb1bdea43913a35961120f537a789ea636
[]
no_license
Richard5127/Python
e50ad205dc2acaf5e1a115f3d443e90ecfeaef6b
55385b3dfbb126f2fec2924bd079afd6f02781d1
refs/heads/main
2023-01-12T23:12:57.081241
2020-11-03T17:05:32
2020-11-03T17:05:32
309,753,464
0
0
null
null
null
null
UTF-8
Python
false
false
79
py
#!/usr/bin/python # coding: utf-8 x = 16.7 y = int(x) + 218 print(y, type(y))
[ "noreply@github.com" ]
Richard5127.noreply@github.com
4e93ae0dfb5d711647264f20366ac5a8b8fe52cf
4fe57e7ed6c937e77e777394b119769e24e0e7e0
/ver1/my_debugger_defines.py
51996bde67b4fb90a3c30c8f90fb42a91231982e
[]
no_license
keko5342/study_reverse_engineering_python
74ee86777ac2c6b6af43176890271fa2ce5f0ed4
1bfc5c2e938f2c301d92d2084eb9f73cfeba526e
refs/heads/master
2020-04-07T05:25:15.126111
2018-11-22T04:18:01
2018-11-22T04:18:01
158,095,970
0
0
null
null
null
null
UTF-8
Python
false
false
1,090
py
from ctypes import * WORD = c_ushort DWORD = c_ulong LPBYTE = POINTER(c_ubyte) LPTSTR = POINTER(c_char) HANDLE = c_void_p DEBUG_PROCESS = 0x00000001 CREATE_NEW_CONSOLE = 0x00000010 class STARTUPINFO(Structure): _fields_ = [ ("cb", DWORD), ("lpReserved", LPTSTR), ("lpDesktop", LPTSTR), ("lpTitle", LPTSTR), ("dwX", DWORD), ("dwY", DWORD), ("dwXSize", DWORD), ("dwYSize", DWORD), ("dwXCountChars", DWORD), ("dwYCountChars", DWORD), ("dwFillAttribute", DWORD), ("dwFlags", DWORD), ("wShowWindow", WORD), ("cbReserved2", WORD), ("lpReserved2", LPBYTE), ("hStdInput", HANDLE), ("hStdOutput", HANDLE), ("hStdError", HANDLE), ] class PROCESS_INFORMATION(Structure): _fields_ = [ ("hProcess", HANDLE), ("hThread", HANDLE), ("dwProcessId", DWORD), ("dwThreadId", DWORD), ]
[ "kekosute@gmail.com" ]
kekosute@gmail.com
e5ebc43703c0fa54cda0b5fdaa1a140684a919df
c9f12789125de168977c3c33764c4262eacb2429
/Solver/fast_solve.py
53ca08c96514ee1624f291abffaac8faa7ace35c
[]
no_license
Sami-AlEsh/Sudoku-Solver
3da8596848130c7408b9cf2d5f52a2b58485e1db
a47ac5810cefe20a6566486c8b6fd50a96f9056b
refs/heads/master
2023-02-15T19:26:48.741716
2021-01-11T08:00:12
2021-01-11T08:00:12
328,574,097
0
0
null
null
null
null
UTF-8
Python
false
false
5,063
py
# written by Nathan Esau, Aug 2020 import copy def get_possible_values(board, row, col): possible_values = [1,2,3,4,5,6,7,8,9] tl_row = row - row % 3 tl_col = col - col % 3 for i in range(9): if len(board[row][i]) == 1: # entry already solved if board[row][i][0] in possible_values: possible_values.remove(board[row][i][0]) if len(board[i][col]) == 1: # entry already solved if board[i][col][0] in possible_values: possible_values.remove(board[i][col][0]) if len(board[tl_row+i//3][tl_col+i%3]) == 1: # entry already solved if board[tl_row+i//3][tl_col+i%3][0] in possible_values: possible_values.remove(board[tl_row+i//3][tl_col+i%3][0]) return possible_values def fill_missing_entries(board, box): row_start, row_end = (0,2) if box in [0,1,2] else (3,5) if box in [3,4,5] else (6,8) col_start, col_end = (0,2) if box in [0,3,6] else (3,5) if box in [1,4,7] else (6,8) for row in range(row_start, row_end + 1): for col in range(col_start, col_end + 1): if len(board[row][col]) == 1: # entry already solved continue board[row][col] = get_possible_values(board, row, col) def solve_missing_entries(board, box): row_start, row_end = (0,2) if box in [0,1,2] else (3,5) if box in [3,4,5] else (6,8) col_start, col_end = (0,2) if box in [0,3,6] else (3,5) if box in [1,4,7] else (6,8) possible_squares = dict((i, []) for i in range(1, 10, 1)) for row in range(row_start, row_end + 1): for col in range(col_start, col_end + 1): for e in board[row][col]: possible_squares[e].append((row, col)) for (k, v) in possible_squares.items(): if len(v) == 1: row, col = v[0] if len(board[row][col]) != 1: # solve entry board[row][col] = [k] def solve_strategy(board): for _ in range(25): # max_iter = 25 initial_board = copy.deepcopy(board) for box in range(9): fill_missing_entries(board, box) solve_missing_entries(board, box) if board == initial_board: return "stuck" solved = True for i in range(9): for j in range(9): if len(board[i][j]) == 0: return "failed" if len(board[i][j]) != 1: solved = False if solved: return "solved" def get_guess(board): solved_count = {} for i in range(9): # row i, col i, box i rc, cc, bc = 0, 0, 0 for j in range(9): if len(board[i][j]) == 1: rc += 1 if len(board[j][i]) == 1: cc += 1 if len(board[i//3*3 + j//3][i%3*3 + j%3]) == 1: bc += 1 if rc < 9: solved_count["r"+str(i)] = rc if cc < 9: solved_count["c"+str(i)] = cc if bc < 9: solved_count["b"+str(i)] = bc rcb = max(solved_count, key=solved_count.get) square = None options = None t, i = rcb[0], int(rcb[1]) for j in range(9): if t == 'r' and len(board[i][j]) > 1: square, options = [i,j], board[i][j] break if t == 'c' and len(board[j][i]) > 1: square, options = [j,i], board[j][i] break if t == 'b' and len(board[i//3*3+j//3][i%3*3+j%3]) > 1: square, options = [i//3*3+j//3, i%3*3+j%3], board[i//3*3+j//3][i%3*3+j%3] break return {"rcb": rcb, "square": square, "options": options} def apply_guess(board, guess, value): square = guess["square"] board[square[0]][square[1]] = [value] def solve(initial_board): # return solved board board = copy.deepcopy(initial_board) root = {"board":board,"parent":None,"child":None,"depth":0,"guess":None,"value":None} node = root while True: state = solve_strategy(board) if state == "solved": return board if state == "stuck": node["board"] = copy.deepcopy(board) node["child"] = {"board": board, "parent": node, "depth": root["depth"] + 1} node = node["child"] node["guess"] = get_guess(board) node["value"] = node["guess"]["options"][0] apply_guess(board, node["guess"], node["value"]) if state == "failed": # backtrack - change guess while len(node["guess"]["options"]) <= 1: node = node["parent"] board = copy.deepcopy(node["parent"]["board"]) node["board"] = copy.deepcopy(board) node["guess"]["options"] = node["guess"]["options"][1:] node["value"] = node["guess"]["options"][0] apply_guess(board, node["guess"], node["value"]) def print_board(board): for i in range(9): for j in range(9): if len(board[i][j]) == 1: print(board[i][j][0], end= " ") else: print("X", end=" ") print("")
[ "sami-esh@hotmail.com" ]
sami-esh@hotmail.com
ba71267f3a8c3e627a0cdf019698551924086c3d
03f00f93b2ad0fe9825617eb9451aa3230465c08
/04-Decision-Science/03-Linear-Regression/02-Sellers/tests/test_seller.py
ca50c662d51e3af83adfd391f42b6245fe46a761
[]
no_license
grinbea/data-challenges-clean
775e2f094f65745956473bdf4fea1016da854e63
8126abd45728e5c64a6b302dd182d8e497376fe3
refs/heads/master
2023-08-15T04:37:35.388965
2021-10-09T19:00:01
2021-10-09T19:00:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,187
py
from nbresult import ChallengeResultTestCase class TestSeller(ChallengeResultTestCase): def test_shape(self): self.assertEqual(self.result.shape, (2970, 14)) def test_columns(self): columns = ['date_first_sale', 'date_last_sale', 'delay_to_carrier', 'n_orders', 'quantity', 'quantity_per_order', 'review_score', 'sales', 'seller_city', 'seller_id', 'seller_state', 'share_of_five_stars', 'share_of_one_stars', 'wait_time'] self.assertEqual(self.result.columns, columns) def test_average_review_score(self): self.assertEqual(self.result.avg_review_score, 4) def test_unique_state(self): states = ['AM', 'BA', 'CE', 'DF', 'ES', 'GO', 'MA', 'MG', 'MS', 'MT', 'PA', 'PB', 'PE', 'PI', 'PR', 'RJ', 'RN', 'RO', 'RS', 'SC', 'SE', 'SP'] self.assertEqual(self.result.unique_state, states) def test_wait_time(self): self.assertEqual(self.result.min_wait_time, 1.21) self.assertEqual(self.result.max_wait_time, 189) self.assertEqual(self.result.avg_wait_time, 12) def test_average_delay_carrier(self): self.assertLess(self.result.avg_delay_carrier, 0.6) self.assertGreater(self.result.avg_delay_carrier, 0.3) def test_quantity(self): self.assertIn(self.result.avg_quantity, (37, 38)) self.assertLess(self.result.max_quantity, 2040) self.assertGreater(self.result.max_quantity, 2030) self.assertEqual(self.result.min_quantity, 1) def test_average_sales(self): self.assertEqual(self.result.avg_sales, 4566)
[ "pedemonte.david@gmail.com" ]
pedemonte.david@gmail.com
6984beeeacc8c0e02d2294688d39c4eb33c50793
865ecabe443e00ed85a2a8ab8ef031807441bcf5
/robot-view-ctrl.py
011b4b31dce3bb2406731bc394a8adfa387faa16
[]
no_license
8HoSsEiN8/HW5
745e889d1be2698a99c31245ef0535571b2eb37c
e3063b9c83f36a76e726063dc399e08f6e46fe3f
refs/heads/master
2021-01-22T14:25:44.056608
2014-10-15T07:45:12
2014-10-15T07:45:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,270
py
#!/usr/bin/env python # /* -*- indent-tabs-mode:t; tab-width: 8; c-basic-offset: 8 -*- */ # /* # Copyright (c) 2014, Daniel M. Lofaro <dan (at) danLofaro (dot) com> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author nor the names of its contributors may # be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # */ import diff_drive import ach import sys import time from ctypes import * import socket import cv2.cv as cv import cv2 import numpy as np from myFunctions import setVelocity import actuator_sim as ser dd = diff_drive ref = dd.H_REF() tim = dd.H_TIME() ROBOT_DIFF_DRIVE_CHAN = 'robot-diff-drive' ROBOT_CHAN_VIEW = 'robot-vid-chan' ROBOT_TIME_CHAN = 'robot-time' # CV setup cv.NamedWindow("wctrl", cv.CV_WINDOW_AUTOSIZE) #capture = cv.CaptureFromCAM(0) #capture = cv2.VideoCapture(0) # added ##sock.connect((MCAST_GRP, MCAST_PORT)) newx = 320 newy = 240 nx = 640 ny = 480 r = ach.Channel(ROBOT_DIFF_DRIVE_CHAN) r.flush() v = ach.Channel(ROBOT_CHAN_VIEW) v.flush() t = ach.Channel(ROBOT_TIME_CHAN) t.flush() i=0 print '======================================' print '============= Robot-View =============' print '========== Daniel M. Lofaro ==========' print '========= dan@danLofaro.com ==========' print '======================================' while True: # Get Frame img = np.zeros((newx,newy,3), np.uint8) c_image = img.copy() vid = cv2.resize(c_image,(newx,newy)) [status, framesize] = v.get(vid, wait=False, last=True) if status == ach.ACH_OK or status == ach.ACH_MISSED_FRAME or status == ach.ACH_STALE_FRAMES: vid2 = cv2.resize(vid,(nx,ny)) img = cv2.cvtColor(vid2,cv2.COLOR_BGR2RGB) cv2.imshow("wctrl", img) cv2.waitKey(10) else: raise ach.AchException( v.result_string(status) ) [status, framesize] = t.get(tim, wait=False, last=True) if status == ach.ACH_OK or status == ach.ACH_MISSED_FRAME or status == ach.ACH_STALE_FRAMES: pass #print 'Sim Time = ', tim.sim[0] else: raise ach.AchException( v.result_string(status) ) #----------------------------------------------------- #--------[ Do not edit above ]------------------------ #----------------------------------------------------- # Def: # ref.ref[0] = Right Wheel Velos # ref.ref[1] = Left Wheel Velos # tim.sim[0] = Sim Time # img = cv image in BGR format # Convert RGB to HSV hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) # Define upper and lower range of green color in HSV lower_green = np.array([50, 50, 50], dtype=np.uint8) upper_green = np.array([70,255,255], dtype=np.uint8) # Threshold the HSV image to get only green colors mask = cv2.inRange(hsv, lower_green, upper_green) # Use findContours to get the boundry of the green blob contours,hierarchy = cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) # Look through all the seperate contours and highlight the boundry and centroid for cnt in contours: # Calculate moments moments = cv2.moments(cnt) if moments['m00']!=0: x = int(moments['m10']/moments['m00']) y = int(moments['m01']/moments['m00']) print 'Center of Mass = ', '(', x, ', ', y, ')' # draw contours cv2.drawContours(img,[cnt],0,(0,0,255),1) # draw centroids in red cv2.circle(img,(x,y),10,(0,0,255),-1) cv2.imshow('wctrl',img) cv2.waitKey(10) s = 57 buff = setVelocity(0, 1, s) ref = ser.serial_sim(r,ref,buff) buff = setVelocity(1, 0, s) ref = ser.serial_sim(r,ref,buff) print 'Sim Time = ', tim.sim[0] # Sleeps time.sleep(0.1) #----------------------------------------------------- #--------[ Do not edit below ]------------------------ #-----------------------------------------------------
[ "h.ghaffarinik@gmail.com" ]
h.ghaffarinik@gmail.com
9f623eedb506f29db43ca466d6b9b966618e24ae
09301742234cb74438145d7d80f9df43511d0264
/statsmodels practice.py
eed8da2b0958bd905df00dbdc09fb3f434923966
[]
no_license
Siphra/udacityprojects
ddfe3b0336325ee95603ef2fe9734fa417220664
f2b7df5c18579acd7a94c5aa429cc108cf4d2ce1
refs/heads/main
2023-02-16T07:15:21.323421
2021-01-15T16:58:50
2021-01-15T16:58:50
318,332,489
1
0
null
null
null
null
UTF-8
Python
false
false
3,898
py
import pandas as pd import numpy as np import statsmodels.api as sm import matplotlib.pyplot as plt import seaborn as sb import math from patsy import dmatrices from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import precision_score, recall_score, accuracy_score, confusion_matrix # lesson 15 multiple linear regression question 4 has a mistake in its grading df = pd.read_csv(r'I:\Python\PycharmProjects\udacityproject1\csv from classes\house_prices.csv') df['intercept'] = 1 dfs = pd.get_dummies(df['style']) dfn = pd.get_dummies(df['neighborhood']) df_new = df.join(dfn) df_new = df_new.join(dfs) lm = sm.OLS(df_new.price, df_new[['intercept','bathrooms','bedrooms','area']]) #simple linear model results = lm.fit() y, X = dmatrices(' price ~ area + bedrooms + bathrooms', df, return_type='dataframe') vif = pd.DataFrame() vif["VIF Factor"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] vif["features"]=X.columns df['bedrooms_squared'] = df.bedrooms * df.bedrooms lm = sm.OLS(df.price, df[['intercept','bedrooms','bedrooms_squared']]) #simple linear model results = lm.fit() # Below is logistic regression testing above is for linear regression df = pd.read_csv(r'I:\Python\PycharmProjects\udacityproject1\csv from classes\fraud_dataset.csv') df[['weekday','weekend']] = pd.get_dummies(df.day) df[['no-fraud','fraud']] = pd.get_dummies(df.fraud) df['intercept'] = 1 lm = sm.Logit(df['fraud'],df[['intercept','duration']]) results = lm.fit() lm = sm.Logit(df['fraud'],df[['intercept','weekday','duration']]) results = lm.fit() df = pd.read_csv(r'I:\Python\PycharmProjects\udacityproject1\csv from classes\admissions.csv') df[['1', '2', '3', '4']] = pd.get_dummies(df.prestige) df['intercept'] = 1 #df.drop(['1'], axis=1, inplace=True) log_mod = sm.Logit(df.admit, df[['intercept', 'gre', 'gpa', '2', '3', '4']]) results = log_mod.fit() gre_eb = math.exp(.0022) gpa_eb = math.exp(.7793) pre_eb = math.exp(-1.3387) gpa_ebi = 1/gpa_eb pre_ebi = 1/pre_eb y = df['admit'] X = df[['gre', 'gpa', '1', '2', '3']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.10, random_state=42) log_mod = LogisticRegression() log_mod.fit(X_train, y_train) y_pred = log_mod.predict(X_test) print(df.head()) print(precision_score(y_test, y_pred)) print(recall_score(y_test, y_pred)) print(accuracy_score(y_test ,y_pred)) print(confusion_matrix(y_test, y_pred)) #below is project code df = pd.read_csv(r'I:\Python\PycharmProjects\udacityproject1\csv from classes\ab_data.csv') print(df.head()) print(df.info()) print(df.nunique()) print(sum(df.converted)/df.user_id.nunique()) dfchk = df[df['group'] == 'treatment'] dfchkop = df[df['group'] == 'control'] dfchk = dfchk[dfchk['landing_page']== 'old_page'] dfchkop = dfchkop[dfchkop['landing_page'] == 'new_page'] dfchk = dfchk.append(dfchkop) print(dfchk.info()) df2 = df[~df.isin(dfchk)].dropna() print(df2.head()) print(df2[((df2['group'] == 'treatment') == (df2['landing_page'] == 'new_page')) == False].shape[0]) print(df2.nunique()) dups = df2[df2.user_id.duplicated(keep = False)==True] print(dups) df2.drop(2893, axis=0, inplace=True) print(df2.shape) conv = sum(df2.converted)/df2.shape[0] print(conv) dfc = df2[df2.group == 'control'] print(sum(dfc.converted)/dfc.shape[0]) dft = df2[df2.group == 'treatment'] print(sum(dft.converted)/dft.shape[0]) print(sum(df2.group == 'treatment')/df2.shape[0]) print(conv,conv, dft.shape[0], dfc.shape[0]) new_page_converted = np.random.choice([0,1], dft.shape[0],replace= True, p=[conv,1-conv]) old_page_converted = np.random.choice([0,1], dfc.shape[0], replace= True, p=[conv, 1-conv]) plt.hist(new_page_converted, color='green') plt.hist(old_page_converted, color='red') plt.show()
[ "47285212+Siphra@users.noreply.github.com" ]
47285212+Siphra@users.noreply.github.com
7a29554c47f64f44a779fbd3cf62cd4b9c870afe
c5959b7e4fc5b752b54a6352449c1bb0d28d9115
/bab/bab-7/readlines.py
80ab2cde68be77c52c9d38e68bb31da2fecf5efc
[]
no_license
romanbatavi/kickstarter-python
f5592a371740b28c045ef99dd510d1c6a92ff8d1
ed3eb692e09a3f44fd3e0b16ab7b042ee2658db6
refs/heads/master
2023-03-29T11:34:23.774873
2021-04-04T09:11:28
2021-04-04T09:11:28
354,500,208
0
0
null
null
null
null
UTF-8
Python
false
false
377
py
###################################################### # Nama file: readlines.py ###################################################### def main(): # membuka file f = open("data.txt", "r") # membaca seluruh baris, dan menampungnya # ke dalam objek list data = f.readlines() print(data) # menutup file f.close() if __name__ == "__main__": main()
[ "romanbatavi98@gmail.com" ]
romanbatavi98@gmail.com
6f68e207244df25bb479e209f3172b7c2c682d62
b91fb7f75909a38eeaf87b8b36880a861ebf2380
/pympack/pympack/settings.py
73015f688290a4d680abf7bf406acb0bda838b5f
[]
no_license
WalterCM/QuickSurvey
a2154051412b2966e40bc39b7a8988603b0acf2f
b4217400d4b664976234f411a0512c2969ee23bb
refs/heads/master
2022-12-12T18:50:59.990264
2018-09-03T22:11:30
2018-09-03T22:11:30
147,231,901
0
0
null
2022-12-08T02:51:41
2018-09-03T16:56:43
Python
UTF-8
Python
false
false
3,271
py
""" Django settings for pympack project. Generated by 'django-admin startproject' using Django 2.1.1. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '-bu)uam##lz3x!p&h@3m^r@7xijzr=1^0pqb-h9t=ur0hd!02u' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ["192.168.0.4"] # Application definition INSTALLED_APPS = [ 'survey', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'pympack.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'pympack.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'es-PE' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' from django.urls import reverse_lazy LOGIN_REDIRECT_URL = reverse_lazy('results') LOGIN_URL = reverse_lazy('login') LOGOUT_URL = reverse_lazy('logout')
[ "walterc316@gmail.com" ]
walterc316@gmail.com
7802429f9b84282a88de994e58ed34b0925e0b40
6c37be61fb4da574f85d359ff077a07ea5332bcd
/ChatBot/ChatBot/ChatterBot Demo/Basic Version.py
e4a1de5763e65309dac92a3070ae5b755148a643
[]
no_license
ArvinRoad/Artificial-Intelligence-study
8c8ec59d8988a4caaec28e89ffb85387ffffdafe
cd32d0096749a2dac3cf2b027502f86a776c6859
refs/heads/main
2023-08-17T22:45:36.708501
2021-10-21T18:13:10
2021-10-21T18:13:10
356,546,971
0
0
null
null
null
null
UTF-8
Python
false
false
1,079
py
# -*- coding: utf-8 -*- from chatterbot import ChatBot # 构建ChatBot并指定Adapter bot = ChatBot( 'Default Response Example Bot', storage_adapter='chatterbot.storage.JsonFileStorageAdapter', logic_adapters=[ { 'import_path': 'chatterbot.logic.BestMatch' }, { 'import_path': 'chatterbot.logic.LowConfidenceAdapter', 'threshold': 0.65, 'default_response': 'I am sorry, but I do not understand.' } ], trainer='chatterbot.trainers.ListTrainer' ) # 手动给定一点语料用于训练 bot.train([ 'How can I help you?', 'I want to create a chat bot', 'Have you read the documentation?', 'No, I have not', 'This should help get you started: http://chatterbot.rtfd.org/en/latest/quickstart.html' ]) # 给定问题并取回结果 question = 'How do I make an omelette?' print(question) response = bot.get_response(question) print(response) print("\n") question = 'how to make a chat bot?' print(question) response = bot.get_response(question) print(response)
[ "53329456+ArvinRoad@users.noreply.github.com" ]
53329456+ArvinRoad@users.noreply.github.com
ccbc9274839f4d29a2a6306498aa6a3beb9e8ef3
1289329a4b29d88b32e5fcb40dbf01ff97f497e9
/main.py
eb40487f28d59c2c797f2b144e4791ad3ebc67c7
[]
no_license
chingchengWan/segmentation_of_word
e6951d22263b67070d5311a4651d5b367651362d
c7f5fffb515e2d40de1ff2c08adf61096d612f2b
refs/heads/master
2020-07-31T10:55:42.975103
2019-12-29T16:16:14
2019-12-29T16:16:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,057
py
from flask import Flask, request, render_template, redirect, url_for import re import json app = Flask(__name__) @app.route('/', methods=['GET', 'POST']) def search(): if request.method == 'POST': target = request.values['keyword'] file = open('/Users/wan/segmentation_of_word/ans_file.txt','r', encoding = 'utf-8') text = file.readlines() #retString = "<h1>Here is the results of {}</h1>".format(target) word = [] for lines in text: if target in lines: word.append(lines) # for _i in word: # retString += _i # retString += "<br><br>" #return word sents = word return render_template('hello.html', sents=sents, keyword=target) ''' # SPA, single page application with open("./templates/index.html", "r") as fp: retpage = fp.readlines() return ''.join(retpage) ''' return render_template('index.html') if __name__ == '__main__': app.debug = True app.run()
[ "noreply@github.com" ]
chingchengWan.noreply@github.com
83d1e632543bd97a4fb84fc4b236b76ed95377cb
97bf4b0653f3c3de13e23ac914c11ec6abf204a2
/Etcd_py/adn_readSspvm.py
4086a39ed0f6b5e46f2e943c7b89a226fc987f72
[]
no_license
riliangxing/Etcd_py
431d1fd3fe81ada500efa61be50f28c1145964d9
acc4c59acb32d7648db62f5f3fcb92a23f37d180
refs/heads/master
2021-01-12T10:42:03.993536
2016-11-02T11:37:23
2016-11-02T11:37:23
72,633,551
0
0
null
null
null
null
UTF-8
Python
false
false
771
py
from adn_checkSsp import _checkSsp from adn_checkSsp import _getSspVm from adn_checkSsp import dir from adn_checkSsp import sspnameArray from adn_checkSsp import _getSsp def _getSspVms(): SspVms = {} if(len(sspnameArray) > 0): if(sspnameArray[0] == "all"): ssps = _getSsp(dir) for ssp in ssps: SspVms[ssp] = _readVm(ssp) else: for sspname in sspnameArray: SspVms[sspname] = _readVm(sspname) return SspVms def _readVm(ssp): signSspvm = {} sspvms = _getSspVm(ssp) for sspvm in sspvms: vmpath = dir + "/" + ssp + "/" + sspvm f = open(vmpath, "r") content = f.read() f.close() signSspvm[sspvm] = content return signSspvm
[ "wb-xrl232180@alibaba-inc.com" ]
wb-xrl232180@alibaba-inc.com
f975d0b27270d50058e8a7590da45e5eef35b251
c24298b258055df330336aad5b92785a12a120e2
/data/rawDataToCsv.py
a03c90d6e467b2b26bb46cfeeda28e40ef3485d3
[]
no_license
sahilmgandhi/FreeThrowClassifier
b1879fee43e97490969cdf7815375d144ebc215c
41da3cbbb088463dd032eabbaae23c3824ffc2ac
refs/heads/master
2020-03-17T07:50:16.959580
2018-06-17T20:22:32
2018-06-17T20:22:32
133,414,657
0
0
null
null
null
null
UTF-8
Python
false
false
2,759
py
import numpy as np import matplotlib as plt from sklearn import linear_model from sklearn.model_selection import train_test_split import pandas as pd # Change the name here sheetMap = pd.read_excel('normal_shot.xlsx', sheet_name=None) # Now you can list all sheets in the file # print(sheetMap.keys()) wristData = {} elbowData = {} shoulderData = {} zeroArr = np.zeros(500) oneArr = np.ones(500) for key in sheetMap: # Change this from zeroArr to oneArr sheetMap[key]['GoodShot?'] = oneArr sheetMap[key] = sheetMap[key].drop( sheetMap[key].columns[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]], axis=1) if "wrist" in key: wristArr = sheetMap[key].as_matrix() for i in range(0, 50): if str(round(wristArr[i][0], 2)) in wristData: wristData[str(round(wristArr[i][0], 2)) ].append(wristArr[i][1:]) else: wristData[str(round(wristArr[i][0], 2))] = [] wristData[str(round(wristArr[i][0], 2)) ].append(wristArr[i][1:]) elif "elbow" in key: elbowArr = sheetMap[key].as_matrix() for i in range(0, 50): if str(round(elbowArr[i][0], 2)) in elbowData: elbowData[str(round(elbowArr[i][0], 2)) ].append(elbowArr[i][1:]) else: elbowData[str(round(elbowArr[i][0], 2))] = [] elbowData[str(round(elbowArr[i][0], 2)) ].append(elbowArr[i][1:]) elif "should" in key: shoulderArr = sheetMap[key].as_matrix() for i in range(0, 50): if str(round(shoulderArr[i][0], 2)) in shoulderData: shoulderData[str(round(shoulderArr[i][0], 2)) ].append(shoulderArr[i][1:]) else: shoulderData[str(round(shoulderArr[i][0], 2))] = [] shoulderData[str(round(shoulderArr[i][0], 2)) ].append(shoulderArr[i][1:]) for key in wristData: for arr in wristData[key]: aa = [arr] a = np.asarray(aa) fileName = 'wrist'+str(key)+'.csv' with open(fileName, 'a') as f: np.savetxt(f, a, delimiter=",") for key in elbowData: for arr in elbowData[key]: aa = [arr] a = np.asarray(aa) fileName = 'elbow'+str(key)+'.csv' with open(fileName, 'a') as f: np.savetxt(f, a, delimiter=",") for key in shoulderData: for arr in shoulderData[key]: aa = [arr] a = np.asarray(aa) fileName = 'shoulder'+str(key)+'.csv' with open(fileName, 'a') as f: np.savetxt(f, a, delimiter=",")
[ "sahilmgandhi@gmail.com" ]
sahilmgandhi@gmail.com
cc888f0656c9c2e5a9dd9321ccbfd11f5faf1447
1c099518cfa5843928763854e6c231d435fc25f4
/deepfake/line_sampler.py
06ca1ce73a4e68885557c2bf30dc3197a429ce1a
[ "CC-BY-2.0" ]
permissive
poke53280/ml_mercari
b3cdda6d53fc4e0f2fca93d9a0ea0231f205ad69
f01ff6c1ca3f341e57c769e06abb136a044c9f74
refs/heads/master
2021-06-02T06:21:57.211262
2020-10-11T12:08:58
2020-10-11T12:08:58
114,643,388
0
0
null
null
null
null
UTF-8
Python
false
false
2,420
py
from mp4_frames import get_output_dir from mp4_frames import get_part_dir from mp4_frames import get_video_path_from_stem_and_ipart from mp4_frames import read_video from image_grid import _get_bb_from_centers_3D from image_grid import GetSubVolume3D import numpy as np import pandas as pd import cv2 from multiprocessing import Pool #################################################################################### # # get_line # # def get_line(p0, p1): dp = p1 - p0 dp = np.abs(dp) num_steps = np.max(dp) # t element of [0, 1] step_size = 1 / num_steps ai = np.arange(start = 0, stop = 1 + step_size, step = step_size) ai_t = np.tile(ai, 3).reshape(-1, ai.shape[0]) p = (p1 - p0).reshape(3, -1) * ai_t p = p + p0.reshape(3, -1) p = np.round(p) return p #################################################################################### # # load_sample_cubes # def load_sample_cubes(original, l_fakes, l_ac, nCubeSize, iPart): l_bb = _get_bb_from_centers_3D(l_ac, nCubeSize) l_video_file = [] l_video_file.append(original) l_video_file.extend(l_fakes) d = nCubeSize // 2 d_cubes = [] for x in l_video_file: print(f"Creating cubes from {x}...") video = read_video_from_stem_and_ipart(x, iPart) l_cubes = [] for bb in l_bb: cube = GetSubVolume3D(video, bb) assert cube.shape == (nCubeSize, nCubeSize, nCubeSize, 3) l_cubes.append(cube) d_cubes.append(l_cubes) """c""" return d_cubes #################################################################################### # # rasterize_lines # def rasterize_lines(p, nLength): l_l = [] for x in p: l = get_line(x[::2], x[1::2]) assert l.shape[1] >= nLength, f"Line is short: {l.shape[1]}" l = np.swapaxes(l, 0, 1) l = l[:nLength] l = l.astype(np.int32) l_l.append(l) anLines = np.stack(l_l) return anLines #################################################################################### # # sample_cube # def sample_cube(r, anLines): l_sample = [] for l in anLines: l_x = l[:, 0] l_y = l[:, 1] l_z = l[:, 2] r_sample = r[l_z, l_y, l_x] l_sample.append(r_sample) anSamples = np.stack(l_sample) return anSamples """c"""
[ "anders.topper@gmail.com" ]
anders.topper@gmail.com
001a991cc4ff599180b6490c8b889c8714b25142
5e47615e6b7f5105b0a1cf0c0f29734d5f6b1be1
/src/make_moves.py
7653fbb7b4b691201754df1ac8055a043ee4a3e3
[]
no_license
palenz/maze_solver
dc0cd08ca9d81cedffb1a3d77afd367c0a92bb48
f49114fb6c34ff2e21d70d32be5adfafc58498cc
refs/heads/main
2023-04-10T04:38:36.409642
2021-04-21T10:45:56
2021-04-21T10:45:56
360,132,079
0
0
null
null
null
null
UTF-8
Python
false
false
6,298
py
import requests import json from game import Game, url # Returns true if domo is one or two steps ahead def domo_ahead(game, first_move, second_move): next_block = position_calculator(game, first_move, game.pony_position) two_ahead = position_calculator(game, second_move, next_block) return game.domokun_position == next_block or game.domokun_position == two_ahead def position_calculator(game, move, position): current_position = position if move == 'east': current_position += 1 elif move == 'west': current_position -= 1 elif move == 'south': current_position += game.width elif move == 'north': current_position -= game.width return current_position # Returns a new list of moves with the last intersection list turned into a simple move def last_intersection(moves): indexes = [] new_moves = None for move in moves: if isinstance(move, list): indexes.append(moves.index(move)) i = max(indexes) new_moves = moves[:i] new_moves.append(moves[i][2]) return new_moves # Returns the block number of the last intersection def last_intersection_position(moves): indexes = [] new_pos = None for move in moves: if isinstance(move, list): indexes.append(moves.index(move)) i = max(indexes) new_pos = moves[i][0] return new_pos # Checks if there is a south wall def south_wall(game, point): if (game.width*game.height) > point >= ((game.width*game.height)-game.width): return True else: south_block = point + game.width return 'north' in game.walls[south_block] # Checks if there is an east wall def east_wall(game, point): if (point+1) % game.width == 0: return True else: east_block = point + 1 return 'west' in game.walls[east_block] # Returns the available moves for any given block number def available_moves(game, position): moves = [] if not('north' in game.walls[position]): moves.append('north') if not('west' in game.walls[position]): moves.append('west') if not(south_wall(game, position)): moves.append('south') if not(east_wall(game, position)): moves.append('east') return moves # Calculates the opposite move def opposite(direction): if direction == 'north': return 'south' elif direction == 'south': return 'north' elif direction == 'east': return 'west' elif direction == 'west': return 'east' # Formats the final path to remove intersection lists def clean_path(path): clean_path = path for move in clean_path: if type(move) == list: to_insert = move[1] i = clean_path.index(move) clean_path.remove(move) clean_path.insert(i, to_insert) return clean_path # Tries possible options until it finds the path to the exit point # Path will look like this [[13, right, left], north, south, south] def find_path(game): path = [] position = game.pony_position while position != game.end_point_position: if len(path) == 0: start_moves = available_moves(game, position) new_position = position_calculator(game, start_moves[0], position) path.append([position]) path[0].extend(start_moves) position = new_position elif len(available_moves(game, position)) == 2: if type(path[-1]) == str: last_move = path[-1] elif type(path[-1]) == list: last_move = path[-1][1] lm_opposite = opposite(last_move) moves = available_moves(game, position) moves.remove(lm_opposite) new_position = position_calculator(game, moves[0], position) path.append(moves[0]) position = new_position elif len(available_moves(game, position)) == 3: if type(path[-1]) == str: last_move = path[-1] elif type(path[-1]) == list: last_move = path[-1][1] lm_opposite = opposite(last_move) moves = available_moves(game, position) moves.remove(lm_opposite) new_position = position_calculator(game, moves[0], position) path.append([position]) path[-1].extend(moves) position = new_position elif len(available_moves(game, position)) == 1: last_int_position = last_intersection_position(path) new_path = last_intersection(path) path = new_path position = position_calculator(game, new_path[-1], last_int_position) return clean_path(path) # Makes the next move post request (also added game.print_game() to view the game in the terminal) def make_move(game, move): game.print_game() move_params = { "direction": move } res = requests.post(url + "/" + game.id, json=move_params) move_response = json.loads(res.text) game.status = move_response['state'] game.status_message = move_response['state-result'] # Follows the path and prints the end result. def solve_maze(game): if game.status == 'Active': vpath = find_path(game) for index, move in enumerate(vpath): i_next_move = index + 1 i_previous_move = index - 1 previous_move = vpath[i_previous_move] run = opposite(previous_move) next_move = vpath[i_next_move] if game.status == 'over': break if domo_ahead(game, move, next_move): # domo_threat = True make_move(game, run) else: # if domo_threat == True: # make_move(game, previous_move) # make_move(game, move) # domo_threat = False # else: make_move(game, move) print(game.status_message) elif game.status == 'over' or game.status == 'won': print(game.status_message) # Initialise and call the create_game() and solve_maze() functions below # Example game1 = Game("Applejack", 15, 15, 1) game1.create_game() solve_maze(game1)
[ "jpalenzuela@outlook.com" ]
jpalenzuela@outlook.com
d81f4f6abd7994a713c18cfc3e930cacbd78ec3f
bd555f64088b9698a8335bb0d66149f02c843b16
/modules/migrations/0001_initial.py
02b2e2ffe92281b357756bc4aaf1be693893b3d2
[]
no_license
gretkierewicz/dissertation
eabd0ac10d1c8cd102ceb49d6c4ff94ad45a9291
57545b82b0e4d9b16334eaf16c2f0e1bdb6f3ece
refs/heads/master
2023-06-04T10:39:05.182020
2021-06-23T20:10:46
2021-06-23T20:10:46
311,950,776
2
0
null
null
null
null
UTF-8
Python
false
false
1,783
py
# Generated by Django 3.1.3 on 2021-06-23 20:03 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('schedules', '0001_initial'), ] operations = [ migrations.CreateModel( name='Modules', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('module_code', models.SlugField(max_length=45)), ('name', models.CharField(max_length=256)), ('examination', models.BooleanField(default=False)), ('language', models.CharField(default='pl', max_length=2)), ('schedule', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='modules', to='schedules.schedules')), ], options={ 'ordering': ['module_code'], 'unique_together': {('module_code', 'schedule')}, }, ), migrations.CreateModel( name='Classes', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=64)), ('classes_hours', models.PositiveIntegerField()), ('students_limit_per_group', models.PositiveIntegerField(null=True)), ('module', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='form_of_classes', to='modules.modules')), ], options={ 'ordering': ['module', 'name'], 'unique_together': {('module', 'name')}, }, ), ]
[ "piotr.gretkierewicz@gmail.com" ]
piotr.gretkierewicz@gmail.com
68ee63b1b259a3d9777bde8e104791dc49f52f81
214216dbf7d84cc7b1d50e281faec14435d17708
/PyEMD/EMD.py
de0af69b39aefd048af2a0d988596a7068ccd491
[]
no_license
hedgefair/PyEMD
9e84d123dd81444c9e449454111f70cf240116d1
6248f85a12e26d59147a34524fec48e84f6822e4
refs/heads/master
2020-12-03T00:34:44.460321
2017-06-13T05:35:00
2017-06-13T05:35:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
34,454
py
#!/usr/bin/python # coding: UTF-8 # # Author: Dawid Laszuk # Contact: laszukdawid@gmail.com # # Edited: 07/06/2017 # # Feel free to contact for any information. from __future__ import division, print_function import logging import numpy as np import os from scipy.interpolate import interp1d from PyEMD.splines import * class EMD: """ **Empirical Mode Decomposition** Method of decomposing signal into Intrinsic Mode Functions (IMFs) based on algorithm presented in Huang et al. [Huang1998]_. Algorithm was validated with Rilling et al. [Rilling2003]_ Matlab's version from 3.2007. Parameters ---------- spline_kind : string, (default: 'cubic') Defines type of spline, which connects extrema. Possible: cubic, akima, slinear. nbsym : int, (default: 2) Number of extrema used in boundary mirroring. extrema_detection : string, (default: 'simple') How extrema are defined. * *simple* - Ext point is one above/below neighbours. * *parabol* - Ext point is a peak of a parabola. References ---------- .. [Huang1998] N. E. Huang et al., "The empirical mode decomposition and the Hilbert spectrum for non-linear and non stationary time series analysis", Proc. Royal Soc. London A, Vol. 454, pp. 903-995, 1998 .. [Rilling2003] G. Rilling, P. Flandrin and P. Goncalves, "On Empirical Mode Decomposition and its algorithms", IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado (I), June 2003 Examples -------- >>> import numpy as np >>> T = np.linspace(0, 1, 100) >>> S = np.sin(2*2*np.pi*T) >>> emd = EMD() >>> emd.extrema_detection = "parabol" >>> IMFs = emd.emd(S) >>> IMFs.shape (1, 100) """ logger = logging.getLogger(__name__) def __init__(self, spline_kind='cubic', nbsym=2, **kwargs): # Declare constants self.std_thr = 0.2 self.svar_thr = 0.001 self.power_thr = -5 self.total_power_thr = 0.01 self.range_thr = 0.001 self.nbsym = nbsym self.reduce_scale = 1. self.scale_factor = 1. self.PLOT = 0 self.INTERACTIVE = 0 self.plotPath = 'splineTest' self.spline_kind = spline_kind self.extrema_detection = 'simple' # simple, parabol self.DTYPE = np.float64 self.FIXE = 0 self.FIXE_H = 0 self.MAX_ITERATION = 1000 # Update based on options for key in kwargs.keys(): if key in self.__dict__.keys(): self.__dict__[key] = kwargs[key] if self.PLOT: import pylab as plt def extract_max_min_spline(self, T, S): """ Extracts top and bottom envelopes based on the signal, which are constructed based on maxima and minima, respectively. Parameters ---------- T : numpy array Position or time array. S : numpy array Input data S(T). Returns ------- max_spline : numpy array Spline spanned on S maxima. min_spline : numpy array Spline spanned on S minima. """ # Get indexes of extrema max_pos, max_val, min_pos, min_val, indzer = self.find_extrema(T, S) if max_pos.dtype!=self.DTYPE: self.logger.error('max_pos.dtype: '+str(max_pos.dtype)) if max_val.dtype!=self.DTYPE: self.logger.error('max_val.dtype: '+str(max_val.dtype)) if min_pos.dtype!=self.DTYPE: self.logger.error('min_pos.dtype: '+str(min_pos.dtype)) if min_val.dtype!=self.DTYPE: self.logger.error('min_val.dtype: '+str(min_val.dtype)) if len(max_pos) + len(min_pos) < 3: return [-1]*4 ######################################### # Extrapolation of signal (over boundaries) pp_res = self.prepare_points(T, S, max_pos, max_val, min_pos, min_val) max_extrema, min_extrema = pp_res max_t_spline, max_spline = self.spline_points(T, max_extrema) min_t_spline, min_spline = self.spline_points(T, min_extrema) if max_extrema.dtype!=self.DTYPE: self.logger.error('max_extrema.dtype: '+str(max_extrema.dtype)) if max_spline.dtype!=self.DTYPE: self.logger.error('max_spline.dtype: '+str(max_spline.dtype)) if max_t_spline.dtype!=self.DTYPE: self.logger.error('maxTSline.dtype: '+str(max_t_spline.dtype)) return max_spline, min_spline, max_extrema, min_extrema def prepare_points(self, T, S, max_pos, max_val, min_pos, min_val): """ Performs extrapolation on edges by adding extra extrema, also known as mirroring signal. The number of added points depends on *nbsym* variable. Input ----- S : numpy array Input signal. T : numpy array Position or time array. max_pos : iterable Sorted time positions of maxima. max_vali : iterable Signal values at max_pos positions. min_pos : iterable Sorted time positions of minima. min_val : iterable Signal values at min_pos positions. Returns ------- min_extrema : numpy array (2 rows) Position (1st row) and values (2nd row) of minima. min_extrema : numpy array (2 rows) Position (1st row) and values (2nd row) of maxima. """ if self.extrema_detection=="parabol": return self._prepare_points_parabol(T, S, max_pos, max_val, min_pos, min_val) elif self.extrema_detection=="simple": return self._prepare_points_simple(T, S, max_pos, max_val, min_pos, min_val) else: msg = "Incorrect extrema detection type. Please try: " msg+= "'simple' or 'parabol'." raise ValueError(msg) def _prepare_points_parabol(self, T, S, max_pos, max_val, min_pos, min_val): """ Performs mirroring on signal which extrema do not necessarily belong on the position array. See self.prepare_points(). """ # Need at least two extrema to perform mirroring max_extrema = np.zeros((2,len(max_pos)), dtype=self.DTYPE) min_extrema = np.zeros((2,len(min_pos)), dtype=self.DTYPE) max_extrema[0], min_extrema[0] = max_pos, min_pos max_extrema[1], min_extrema[1] = max_val, min_val # Local variables nbsym = self.nbsym end_min, end_max = len(min_pos), len(max_pos) #################################### # Left bound dPos = max_pos[0] - min_pos[0] leftExtType = ["min", "max"][dPos<0] if (leftExtType == "max"): if (S[0]>min_val[0]) and (np.abs(dPos)>(max_pos[0]-T[0])): # mirror signal to first extrema expand_left_max_pos = 2*max_pos[0] - max_pos[1:nbsym+1] expand_left_min_pos = 2*max_pos[0] - min_pos[0:nbsym] expand_left_max_val = max_val[1:nbsym+1] expand_left_min_val = min_val[0:nbsym] else: # mirror signal to beginning expand_left_max_pos = 2*T[0] - max_pos[0:nbsym] expand_left_min_pos = 2*T[0] - np.append(T[0], min_pos[0:nbsym-1]) expand_left_max_val = max_val[0:nbsym] expand_left_min_val = np.append(S[0], min_val[0:nbsym-1]) elif (leftExtType == "min"): if (S[0] < max_val[0]) and (np.abs(dPos)>(min_pos[0]-T[0])): # mirror signal to first extrema expand_left_max_pos = 2*min_pos[0] - max_pos[0:nbsym] expand_left_min_pos = 2*min_pos[0] - min_pos[1:nbsym+1] expand_left_max_val = max_val[0:nbsym] expand_left_min_val = min_val[1:nbsym+1] else: # mirror signal to beginning expand_left_max_pos = 2*T[0] - np.append(T[0], max_pos[0:nbsym-1]) expand_left_min_pos = 2*T[0] - min_pos[0:nbsym] expand_left_max_val = np.append(S[0], max_val[0:nbsym-1]) expand_left_min_val = min_val[0:nbsym] if not expand_left_min_pos.shape: expand_left_min_pos, expand_left_min_val = min_pos, min_val if not expand_left_max_pos.shape: expand_left_max_pos, expand_left_max_val = max_pos, max_val expand_left_min = np.vstack((expand_left_min_pos[::-1], expand_left_min_val[::-1])) expand_left_max = np.vstack((expand_left_max_pos[::-1], expand_left_max_val[::-1])) #################################### # Right bound dPos = max_pos[-1] - min_pos[-1] rightExtType = ["min","max"][dPos>0] if (rightExtType == "min"): if (S[-1] < max_val[-1]) and (np.abs(dPos)>(T[-1]-min_pos[-1])): # mirror signal to last extrema idx_max = max(0, end_max-nbsym) idxMin = max(0, end_min-nbsym-1) expand_right_maxPos = 2*min_pos[-1] - max_pos[idx_max:] expand_right_min_pos = 2*min_pos[-1] - min_pos[idxMin:-1] expand_right_max_val = max_val[idx_max:] expand_right_min_val = min_val[idxMin:-1] else: # mirror signal to end idx_max = max(0, end_max-nbsym+1) idxMin = max(0, end_min-nbsym) expand_right_maxPos = 2*T[-1] - np.append(max_pos[idx_max:], T[-1]) expand_right_min_pos = 2*T[-1] - min_pos[idxMin:] expand_right_max_val = np.append(max_val[idx_max:],S[-1]) expand_right_min_val = min_val[idxMin:] elif (rightExtType == "max"): if (S[-1] > min_val[-1]) and len(max_pos)>1 and (np.abs(dPos)>(T[-1]-max_pos[-1])): # mirror signal to last extremum idx_max = max(0, end_max-nbsym-1) idxMin = max(0, end_min-nbsym) expand_right_maxPos = 2*max_pos[-1] - max_pos[idx_max:-1] expand_right_min_pos = 2*max_pos[-1] - min_pos[idxMin:] expand_right_max_val = max_val[idx_max:-1] expand_right_min_val = min_val[idxMin:] else: # mirror signal to end idx_max = max(0, end_max-nbsym) idxMin = max(0, end_min-nbsym+1) expand_right_maxPos = 2*T[-1] - max_pos[idx_max:] expand_right_min_pos = 2*T[-1] - np.append(min_pos[idxMin:], T[-1]) expand_right_max_val = max_val[idx_max:] expand_right_min_val = np.append(min_val[idxMin:], S[-1]) if not expand_right_min_pos.shape: expand_right_min_pos, expand_right_min_val = min_pos, min_val if not expand_right_maxPos.shape: expand_right_maxPos, expand_right_max_val = max_pos, max_val expand_right_min = np.vstack((expand_right_min_pos[::-1], expand_right_min_val[::-1])) expand_right_max = np.vstack((expand_right_maxPos[::-1], expand_right_max_val[::-1])) max_extrema = np.hstack((expand_left_max, max_extrema, expand_right_max)) min_extrema = np.hstack((expand_left_min, min_extrema, expand_right_min)) return max_extrema, min_extrema def _prepare_points_simple(self, T, S, max_pos, max_val, min_pos, min_val): """ Performs mirroring on signal which extrema can be indexed on the position array. See self.prepare_points(). """ # Find indexes of pass indmin = np.array([np.nonzero(T==t)[0] for t in min_pos]).flatten() indmax = np.array([np.nonzero(T==t)[0] for t in max_pos]).flatten() if S.dtype != self.DTYPE: self.logger.error('S.dtype: '+str(S.dtype)) if T.dtype != self.DTYPE: self.logger.error('T.dtype: '+str(T.dtype)) # Local variables nbsym = self.nbsym end_min, end_max = len(min_pos), len(max_pos) #################################### # Left bound - mirror nbsym points to the left if indmax[0] < indmin[0]: if S[0] > S[indmin[0]]: lmax = indmax[1:min(end_max,nbsym+1)][::-1] lmin = indmin[0:min(end_min,nbsym+0)][::-1] lsym = indmax[0] else: lmax = indmax[0:min(end_max,nbsym)][::-1] lmin = np.append(indmin[0:min(end_min,nbsym-1)][::-1],0) lsym = 0 else: if S[0] < S[indmax[0]]: lmax = indmax[0:min(end_max,nbsym+0)][::-1] lmin = indmin[1:min(end_min,nbsym+1)][::-1] lsym = indmin[0] else: lmax = np.append(indmax[0:min(end_max,nbsym-1)][::-1],0) lmin = indmin[0:min(end_min,nbsym)][::-1] lsym = 0 #################################### # Right bound - mirror nbsym points to the right if indmax[-1] < indmin[-1]: if S[-1] < S[indmax[-1]]: rmax = indmax[max(end_max-nbsym,0):][::-1] rmin = indmin[max(end_min-nbsym-1,0):-1][::-1] rsym = indmin[-1] else: rmax = np.append(indmax[max(end_max-nbsym+1,0):], len(S)-1)[::-1] rmin = indmin[max(end_min-nbsym,0):][::-1] rsym = len(S)-1 else: if S[-1] > S[indmin[-1]]: rmax = indmax[max(end_max-nbsym-1,0):-1][::-1] rmin = indmin[max(end_min-nbsym,0):][::-1] rsym = indmax[-1] else: rmax = indmax[max(end_max-nbsym,0):][::-1] rmin = np.append(indmin[max(end_min-nbsym+1,0):], len(S)-1)[::-1] rsym = len(S)-1 # In case any array missing if not lmin.size: lmin = indmin if not rmin.size: rmin = indmin if not lmax.size: lmax = indmax if not rmax.size: rmax = indmax # Mirror points tlmin = 2*T[lsym]-T[lmin] tlmax = 2*T[lsym]-T[lmax] trmin = 2*T[rsym]-T[rmin] trmax = 2*T[rsym]-T[rmax] # If mirrored points are not outside passed time range. if tlmin[0] > T[0] or tlmax[0] > T[0]: if lsym == indmax[0]: lmax = indmax[0:min(end_max,nbsym)][::-1] else: lmin = indmin[0:min(end_min,nbsym)][::-1] if lsym == 0: raise Exception('Left edge BUG') lsym = 0 tlmin = 2*T[lsym]-T[lmin] tlmax = 2*T[lsym]-T[lmax] if trmin[-1] < T[-1] or trmax[-1] < T[-1]: if rsym == indmax[-1]: rmax = indmax[max(end_max-nbsym,0):][::-1] else: rmin = indmin[max(end_min-nbsym,0):][::-1] if rsym == len(S)-1: raise Exception('Right edge BUG') rsym = len(S)-1 trmin = 2*T[rsym]-T[rmin] trmax = 2*T[rsym]-T[rmax] zlmax = S[lmax] zlmin = S[lmin] zrmax = S[rmax] zrmin = S[rmin] tmin = np.append(tlmin, np.append(T[indmin], trmin)) tmax = np.append(tlmax, np.append(T[indmax], trmax)) zmin = np.append(zlmin, np.append(S[indmin], zrmin)) zmax = np.append(zlmax, np.append(S[indmax], zrmax)) max_extrema = np.array([tmax, zmax]) min_extrema = np.array([tmin, zmin]) if max_extrema.dtype != self.DTYPE: self.logger.error('max_extrema.dtype: '+str(max_extrema.dtype)) # Make double sure, that each extremum is significant max_dup_idx = np.where(max_extrema[0,1:]==max_extrema[0,:-1]) max_extrema = np.delete(max_extrema, max_dup_idx, axis=1) min_dup_idx = np.where(min_extrema[0,1:]==min_extrema[0,:-1]) min_extrema = np.delete(min_extrema, min_dup_idx, axis=1) return max_extrema, min_extrema def spline_points(self, T, extrema): """ Constructs spline over given points. Parameters ---------- T : numpy array Position or time array. extrema : numpy array Position (1st row) and values (2nd row) of points. Returns ------- T : numpy array Position array (same as input). spline : numpy array Spline array over given positions T. """ kind = self.spline_kind.lower() t = T[np.r_[T>=extrema[0,0]] & np.r_[T<=extrema[0,-1]]] if t.dtype != self.DTYPE: self.logger.error('t.dtype: '+str(t.dtype)) if extrema.dtype != self.DTYPE: self.logger.error('extrema.dtype: '+str(extrema.dtype)) if kind == "akima": return t, akima(extrema[0], extrema[1], t) elif kind == 'cubic': if extrema.shape[1]>3: return t, interp1d(extrema[0], extrema[1], kind=kind)(t) else: return cubic_spline_3pts(extrema[0], extrema[1], t) elif kind in ['slinear', 'quadratic', 'linear']: return T, interp1d(extrema[0], extrema[1], kind=kind)(t).astype(self.DTYPE) else: raise ValueError("No such interpolation method!") def _not_duplicate(self, S): """ Returns indices for not repeating values, where there is no extremum. Example ------- >>> S = [0, 1, 1, 1, 2, 3] >>> idx = self._not_duplicate(S) [0, 1, 3, 4, 5] """ idx = [0] for i in range(1,len(S)-1): if (S[i] == S[i+1] and S[i] == S[i-1]): pass else: idx.append(i) idx.append(len(S)-1) return idx def find_extrema(self, T, S): """ Returns extrema (minima and maxima) for given signal S. Detection and definition of the extrema depends on **extrema_detection** variable, set on initiation of EMD. Parameters ---------- T : numpy array Position or time array. S : numpy array Input data S(T). Returns ------- local_max_pos : numpy array Position of local maxima. local_max_val : numpy array Values of local maxima. local_min_pos : numpy array Position of local minima. local_min_val : numpy array Values of local minima. """ if self.extrema_detection=="parabol": return self._find_extrema_parabol(T, S) elif self.extrema_detection=="simple": return self._find_extrema_simple(T, S) else: msg = "Incorrect extrema detection type. Please try: " msg+= "'simple' or 'parabol'." raise ValueError(msg) def _find_extrema_parabol(self, T, S): """ Performs parabol estimation of extremum, i.e. an extremum is a peak of parabol spanned on 3 consecutive points, where the mid point is the closest. See `self.find_extrema()`. """ # Finds indexes of zero-crossings S1, S2 = S[:-1], S[1:] indzer = np.nonzero(S1*S2<0)[0] if np.any(S == 0): iz = np.nonzero(S==0)[0] indz = [] if np.any(np.diff(iz)==1): zer = S == 0 dz = np.diff(np.append(np.append(0, zer), 0)) debz = np.nonzero(dz == 1)[0] finz = np.nonzero(dz == -1)[0]-1 indz = np.round((debz+finz)/2.) else: indz = iz indzer = np.sort(np.append(indzer, indz)) dt = float(T[1]-T[0]) scale = 2.*dt*dt idx = self._not_duplicate(S) T = T[idx] S = S[idx] # p - previous # 0 - current # n - next Tp, T0, Tn = T[:-2], T[1:-1], T[2:] Sp, S0, Sn = S[:-2], S[1:-1], S[2:] #~ a = Sn + Sp - 2*S0 #~ b = 2*(Tn+Tp)*S0 - ((Tn+T0)*Sp+(T0+Tp)*Sn) #~ c = Sp*T0*Tn -2*Tp*S0*Tn + Tp*T0*Sn TnTp, T0Tn, TpT0 = Tn-Tp, T0-Tn, Tp-T0 scale = Tp*Tn*Tn + Tp*Tp*T0 + T0*T0*Tn - Tp*Tp*Tn - Tp*T0*T0 - T0*Tn*Tn a = T0Tn*Sp + TnTp*S0 + TpT0*Sn b = (S0-Sn)*Tp**2 + (Sn-Sp)*T0**2 + (Sp-S0)*Tn**2 c = T0*Tn*T0Tn*Sp + Tn*Tp*TnTp*S0 + Tp*T0*TpT0*Sn a = a/scale b = b/scale c = c/scale a[a==0] = 1e-14 #TODO: bad hack for zero div tVertex = -0.5*b/a idx = np.r_[tVertex<T0+0.5*(Tn-T0)] & np.r_[tVertex>=T0-0.5*(T0-Tp)] a, b, c = a[idx], b[idx], c[idx] tVertex = tVertex[idx] _T, _S = T0[idx], S0[idx] #~ sVertex = a*(tVertex+_T)*(tVertex-_T) + b*(tVertex-_T) + _S sVertex = a*tVertex*tVertex + b*tVertex + c local_max_pos, local_max_val = tVertex[a<0], sVertex[a<0] local_min_pos, local_min_val = tVertex[a>0], sVertex[a>0] return local_max_pos, local_max_val, local_min_pos, local_min_val, indzer def _find_extrema_simple(self, T, S): """ Performs extrema detection, where extremum is defined as a point, that is above/below its neighbours. See `self.find_extrema()`. """ # Finds indexes of zero-crossings S1, S2 = S[:-1], S[1:] indzer = np.nonzero(S1*S2<0)[0] if np.any(S==0): iz = np.nonzero(S==0)[0] indz = [] if np.any(np.diff(iz)==1): zer = (S==0) dz = np.diff(np.append(np.append(0, zer), 0)) debz = np.nonzero(dz==1)[0] finz = np.nonzero(dz==-1)[0]-1 indz = np.round((debz+finz)/2.) else: indz = iz indzer = np.sort(np.append(indzer, indz)) # Finds local extrema d = np.diff(S) d1, d2 = d[:-1], d[1:] indmin = np.nonzero(np.r_[d1*d2<0] & np.r_[d1<0])[0]+1 indmax = np.nonzero(np.r_[d1*d2<0] & np.r_[d1>0])[0]+1 # When two or more points have the same value if np.any(d==0): imax, imin = [], [] bad = (d==0) dd = np.diff(np.append(np.append(0, bad), 0)) debs = np.nonzero(dd==1)[0] fins = np.nonzero(dd==-1)[0] if debs[0] == 1: if len(debs)>1: debs, fins = debs[1:], fins[1:] else: debs, fins = [], [] if len(debs) > 0: if fins[-1] == len(S)-1: if len(debs) > 1: debs, fins = debs[:-1], fins[:-1] else: debs, fins = [], [] lc = len(debs) if lc > 0: for k in range(lc): if d[debs[k]-1] > 0: if d[fins[k]] < 0: imax.append(np.round((fins[k]+debs[k])/2.)) else: if d[fins[k]] > 0: imin.append(np.round((fins[k]+debs[k])/2.)) if len(imax) > 0: indmax = indmax.tolist() for x in imax: indmax.append(int(x)) indmax.sort() if len(imin) > 0: indmin = indmin.tolist() for x in imin: indmin.append(int(x)) indmin.sort() local_max_pos = T[indmax] local_max_val = S[indmax] local_min_pos = T[indmin] local_min_val = S[indmin] return local_max_pos, local_max_val, local_min_pos, local_min_val, indzer def end_condition(self, S, IMF): """Tests for end condition of whole EMD. The procedure will stop if: * Absolute amplitude (max - min) is below *range_thr* threshold, or * Metric L1 (mean absolute difference) is below *total_power_thr* threshold. Parameters ---------- S : numpy array Original signal on which EMD was performed. IMF : numpy 2D array Set of IMFs where each row is IMF. Their order is not important. Returns ------- end : bool Is this the end? """ # When to stop EMD tmp = S.copy() - np.sum(IMF, axis=0) # # Power is enough # if np.log10(np.abs(tmp).sum()/np.abs(Res).sum()) < self.power_thr: # self.logger.info("FINISHED -- POWER RATIO") # return True if np.max(tmp) - np.min(tmp) < self.range_thr: self.logger.info("FINISHED -- RANGE") return True if np.sum(np.abs(tmp)) < self.total_power_thr: self.logger.info("FINISHED -- SUM POWER") return True return False def check_imf(self, imf_new, imf_old, eMax, eMin, mean): """ Huang criteria for **IMF** (similar to Cauchy convergence test). Signal is an IMF if consecutive siftings do not affect signal in a significant manner. """ # local max are >0 and local min are <0 if np.any(eMax[1]<0) or np.any(eMin[1]>0): return False # Convergence if np.sum(imf_new**2) < 1e-10: return False # Scaled variance test svar = np.sum((imf_new-imf_old)**2)/(max(imf_old)-min(imf_old)) if svar < self.svar_thr: self.logger.info("Scaled variance -- PASSED") return True # Standard deviation test std = np.sum(((imf_new-imf_old)/imf_new)**2) if std < self.std_thr: self.logger.info("Standard deviation -- PASSED") return True return False def _common_dtype(self, x, y): """Determines common numpy DTYPE for arrays.""" dtype = np.find_common_type([x.dtype, y.dtype], []) if x.dtype != dtype: x = x.astype(dtype) if y.dtype != dtype: y = y.astype(dtype) return x, y def emd(self, S, T=None, max_imf=None): """ Performs Empirical Mode Decomposition on signal S. The decomposition is limited to *max_imf* imfs. Returns IMF functions in numpy array format. Parameters ---------- S : numpy array, Input signal. T : numpy array, (default: None) Position or time array. If None passed numpy arange is created. max_imf : int, (default: -1) IMF number to which decomposition should be performed. Negative value means *all*. Returns ------- IMF : numpy array Set of IMFs producesed from input signal. """ if T is None: T = np.arange(len(S), dtype=S.dtype) if max_imf is None: max_imf = -1 # Make sure same types are dealt S, T = self._common_dtype(S, T) self.DTYPE = S.dtype scale = 1. Res = S.astype(self.DTYPE) Res, scaledS = Res/scale, S/scale imf = np.zeros(len(S), dtype=self.DTYPE) imf_old = Res.copy() N = len(S) if Res.dtype!=self.DTYPE: self.logger.error('Res.dtype: '+str(Res.dtype)) if scaledS.dtype!=self.DTYPE: self.logger.error('scaledS.dtype: '+str(scaledS.dtype)) if imf.dtype!=self.DTYPE: self.logger.error('imf.dtype: '+str(imf.dtype)) if imf_old.dtype!=self.DTYPE: self.logger.error('imf_old.dtype: '+str(imf_old.dtype)) if T.dtype!=self.DTYPE: self.logger.error('T.dtype: '+str(T.dtype)) if S.shape != T.shape: info = "Position or time array should be the same size as signal." raise ValueError(info) # Create arrays imfNo = 0 IMF = np.empty((imfNo, N)) # Numpy container for IMF notFinish = True while(notFinish): self.logger.debug('IMF -- '+str(imfNo)) Res = scaledS - np.sum(IMF[:imfNo], axis=0) imf = Res.copy() mean = np.zeros(len(S), dtype=self.DTYPE) # Counters n = 0 # All iterations for current imf. n_h = 0 # counts when |#zero - #ext| <=1 # Start on-screen displaying if self.PLOT and self.INTERACTIVE: plt.ion() while(n<self.MAX_ITERATION): n += 1 self.logger.debug("Iteration: "+str(n)) max_pos, max_val, min_pos, min_val, indzer = self.find_extrema(T, imf) extNo = len(min_pos)+len(max_pos) nzm = len(indzer) if extNo > 2: # Plotting. Either into file, or on-screen display. if n>1 and self.PLOT: plt.clf() plt.plot(T, imf*scale, 'g') plt.plot(T, max_env*scale, 'b') plt.plot(T, min_env*scale, 'r') plt.plot(T, mean*scale, 'k--') plt.title("imf{}_{:02}".format(imfNo, n-1)) if self.INTERACTIVE: plt.draw() else: fName = "imf{}_{:02}".format(imfNo, n-1) plt.savefig(os.path.join(self.plotPath,fName)) imf_old = imf.copy() imf = imf - self.reduce_scale*mean max_env, min_env, eMax, eMin = self.extract_max_min_spline(T, imf) if type(max_env) == type(-1): notFinish = True break mean = 0.5*(max_env+min_env) if max_env.dtype!=self.DTYPE: self.logger.error('max_envimf.dtype: '+str(max_env.dtype)) if min_env.dtype!=self.DTYPE: self.logger.error('min_envimf.dtype: '+str(min_envimf.dtype)) if imf.dtype!=self.DTYPE: self.logger.error('imf.dtype: '+str(imf.dtype)) if mean.dtype!=self.DTYPE: self.logger.error('mean.dtype: '+str(mean.dtype)) # Fix number of iterations if self.FIXE: if n>=self.FIXE+1: break # Fix number of iterations after number of zero-crossings # and extrema differ at most by one. elif self.FIXE_H: res = self.find_extrema(T, imf) max_pos, max_val, min_pos, min_val, ind_zer = res extNo = len(max_pos)+len(min_pos) nzm = len(ind_zer) if n == 1: continue if abs(extNo-nzm)>1: n_h = 0 else: n_h += 1 #if np.all(max_val>0) and np.all(min_val<0): # n_h += 1 #else: # n_h = 0 # STOP if n_h >= self.FIXE_H: break # Stops after default stopping criteria are met else: ext_res = self.find_extrema(T, imf) max_pos, max_val, min_pos, min_val, ind_zer = ext_res extNo = len(max_pos) + len(min_pos) nzm = len(ind_zer) f1 = self.check_imf(imf, max_env, min_env, mean, extNo) #f2 = np.all(max_val>0) and np.all(min_val<0) f2 = abs(extNo - nzm)<2 # STOP if f1 and f2: break else: notFinish = False break IMF = np.vstack((IMF, imf.copy())) IMF = IMF*scale imfNo += 1 if self.end_condition(scaledS, IMF) or imfNo==max_imf: notFinish = False break #~ # Saving residuum #~ Res = Res - imf #~ #Res = scaledS - np.sum([IMF[i] for i in range(imfNo)],axis=0) #~ IMF[imfNo] = Res #~ imfNo += 1 return IMF ################################################### ## Beginning of program if __name__ == "__main__": import pylab as plt # Logging options logging.basicConfig(level=logging.DEBUG) # EMD options max_imf = -1 DTYPE = np.float64 # Signal options N = 400 tMin, tMax = 0, 2*np.pi T = np.linspace(tMin, tMax, N, dtype=DTYPE) S = np.sin(20*T*(1+0.2*T)) + T**2 + np.sin(13*T) S = S.astype(DTYPE) print("Input S.dtype: "+str(S.dtype)) # Prepare and run EMD emd = EMD() emd.PLOT = 0 emd.FIXE_H = 5 emd.nbsym = 2 emd.spline_kind = 'cubic' emd.DTYPE = DTYPE nIMF = emd.emd(S, T, max_imf) imfNo = nIMF.shape[0] # Plot results c = 1 r = np.ceil((imfNo+1)/c) plt.ioff() plt.subplot(r,c,1) plt.plot(T, S, 'r') plt.xlim((tMin, tMax)) plt.title("Original signal") for num in range(imfNo): plt.subplot(r,c,num+2) plt.plot(T, nIMF[num],'g') plt.xlim((tMin, tMax)) plt.ylabel("Imf "+str(num+1)) plt.tight_layout() plt.show()
[ "laszukdawid@gmail.com" ]
laszukdawid@gmail.com
df8f72f59e79a29fcf54fef95a406b4bea46673c
7a43aaec2bd9d5253140b0f72d9497d39bef0b64
/tests/__init__.py
fac8036076a11c0395797da95b332a29b09b7338
[ "MIT" ]
permissive
gummybuns/cerami
92785dc7cd4c802c73c38cad0895896cd2e22099
e97c0baa42c4bdfb10bbe3b4b859873e3d50aa3a
refs/heads/master
2023-08-29T22:22:28.909170
2021-10-17T17:25:00
2021-10-17T17:25:00
246,976,408
0
0
null
null
null
null
UTF-8
Python
false
false
22
py
from .cerami import *
[ "zmb1391@gmail.com" ]
zmb1391@gmail.com
4b56ab7cc00d775efc6d4bee863ef43a526f7760
7290df6b7b374e8eba076f9f221e1bd397408a06
/photoboard/tests/test.py
b0ce5df3fb7c71f4fde1e8e6183a323e68381800
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
teriyakichild/photoboard
ab7ee65db03194749723ae8e9b57f7045174e494
837d69875a775b765ea01269a9ff4e6b76956fb5
refs/heads/master
2020-05-04T21:52:10.146597
2014-06-11T01:45:55
2014-06-11T01:45:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
133
py
from backend import photos, boards p = photos() #print p.new('asdf',1,1) print p.get(1) b = boards() print p.all(1) print b.get(1)
[ "tony.rogers@rackspace.com" ]
tony.rogers@rackspace.com
d1c0283dbbd07a685621aecc3bcb1b520e23bc80
ffad717edc7ab2c25d5397d46e3fcd3975ec845f
/Python/pyesri 2/EXAMPLES/sequence_operators.py
805cd4fd7825ef7dbbf784c7fcaae6de25d43cbb
[]
no_license
shaunakv1/esri-developer-conference-2015-training
2f74caea97aa6333aa38fb29183e12a802bd8f90
68b0a19aac0f9755202ef4354ad629ebd8fde6ba
refs/heads/master
2021-01-01T20:35:48.543254
2015-03-09T22:13:14
2015-03-09T22:13:14
31,855,365
0
0
null
null
null
null
UTF-8
Python
false
false
616
py
#!/usr/bin/python colors = ["red", "blue", "green", "yellow", "brown", "black"] months = ( "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", ) print "yellow in colors: ",("yellow" in colors) print "pink in colors: ",("pink" in colors) print "colors:", ",".join(colors) del colors[4] # remove brown print "removed 'brown':", ",".join(colors) colors.remove('green') print "removed 'green':", ",".join(colors) sum_of_lists = [True] + [True] + [False] print "sum of lists:",sum_of_lists product = [True] * 5 print "product of lists:",product
[ "shaunakv1@gmail.com" ]
shaunakv1@gmail.com
1c6bb1ac916d6d185e810dbe859a21cf287afe47
801125b61d11a4c1d519cbc77dd96f478678f372
/Parlett-Reid.py
e81ae3f70aecf955fc6166c7053a1e840c6117af
[]
no_license
alex9609/Analisis-Numerico-Copy-
0956f594e489ef07ecf969b4dfcda10c0ecf83f5
2a3cdc771c39471e22b7cec1aed49d5fb45c862c
refs/heads/master
2023-03-23T23:32:05.310942
2020-06-05T07:40:52
2020-06-05T07:40:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,780
py
# Librería numpy import numpy as np from time import* import math import os import csv def mulVector(A,b,n): v=[] for i in range(n): v.append(sum(A[i][j]*b[j] for j in range(n))) return v def mulMatrices(A, B, n): M = [[0 for f in range(n)] for c in range(n)] for i in range(n): for j in range(n): for k in range(n): M[i][j] += A[i][k]*B[k][j] return M def inversa(M,n): I = [] for i in range (n): I.append([0]*(n)) for i in range (n): I[i][i] = 1 mayor = 0 Q = [] Q1 = [] for s in range (n): Q.append(0) Q1.append(0) for i in range (n): j = i+1 if M[i][i] == 0: p = i+1 mayor = M[j][i] for j in range (i+2,n): if(abs(mayor) < abs(M[j][i])): mayor= M[j][i] p = j Q=M[i] M[i]=M[p] M[p]=Q Q1=I[i] I[i]=I[p] I[p]=Q1 for j in range (0,i): w = M[j][i]*(M[i][i])**(-1) for k in range (i,n): M[j][k] =M[j][k] - (w*M[i][k]) M[j][i]=0 for k in range (n): I[j][k] =I[j][k] - (w*I[i][k]) for j in range (i+1,n): w = M[j][i]*(M[i][i])**(-1) for k in range (i,n): M[j][k] =M[j][k] - (w*M[i][k]) M[j][i]=0 for k in range (n): I[j][k] =I[j][k] - (w*I[i][k]) for i in range (n): I[i][i]=I[i][i]*(M[i][i])**(-1) return I def transMatriz(M,n): return [[ M[i][j] for i in range(n)] for j in range(n)] return M def esSimetrica(A,n): for i in range(n): for j in range(i+1,n): if A[i][j] != A[j][i]: return False return True '''def imprimeMatriz(A): for i in range(len(A)): text = " |" for j in range(len(A[i])): if(j==len(A)): text = text +str("%8.3f"%A[i][j]) else: text = text +str("%8.3f"%A[i][j]) print (text+"| ") print ''' def metodoParlet(aa,bb,nn): global A,a,b,n a = aa[:] b = bb[:] n = nn A=[] for i in range(n): A.append([0]*(n+1)) for i in range(n): for j in range(n): A[i][j]=a[i][j] for i in range(n): A[i][n]=b[i] I,P,M,L,U,T,G,F,S,PP,W,PPT,b=[],[],[],[],[],[],[],[],[],[],[],[],[] for i in range (n): I.append([0]*(n)) PPT.append([0]*(n)) P.append([0]*(n)) W.append([0]*(n)) M.append([0]*(n)) L.append([0]*(n)) PP.append([0]*(n)) U.append([0]*(n+1)) T.append([0]*(n+1)) S.append([0]*(n+1)) G.append(0) F.append(0) b.append(0) P[i][i]=1 PP[i][i]=1 I[i][i]=1 W[i][i]=1 for i in range(n): L[i][i]=1 for i in range(n): for j in range(n+1): T[i][j]=A[i][j] #algoritmo# for i in range(n-2): P=[] for j in range (n): P.append([0]*(n)) P[j][j]=1 for j in range(n): for k in range(n): S[j][k] = I[j][k] #Pivoteo# p = i+1 mayor = abs(T[i+1][i]) for j in range (i+2,n): if mayor < abs(T[j][i]): mayor = abs(T[j][i]) p = j P[i+1] = S[p] P[p] = S[i+1] #PAPt# F=T[i+1] T[i+1] = T[p] T[p] = F for j in range(n): for k in range(n+1): U[j][k] = T[j][k] for j in range (n): for k in range (n): suma = 0 for l in range (n): suma = suma + U[j][l]*P[k][l] T[j][k] = suma #Gauss# for j in range (n): G[j]=0 U.append([0]*(n+1)) for j in range (i+2,n): G[j] = U[j][i]*(U[i+1][i]**(-1)) #matriz de gauss# for j in range (n): for l in range (n): M[j][l] = S[j][l] - G[j]*I[i+1][l] #MPAPTMT# for j in range(n): for k in range(n+1): U[j][k] = T[j][k] for j in range(n): for k in range(n): suma = 0 for l in range(n): suma = suma + M[j][l]*U[l][k] T[j][k] = suma for j in range(n): for k in range(n+1): U[j][k] = T[j][k] for j in range(n): for k in range(n): suma = 0 for l in range(n): suma = suma + U[j][l]*M[k][l] T[j][k] = suma #EL P TOTAL# for j in range(n): for k in range(n): suma = 0 for l in range(n): suma = suma + P[j][l]*W[l][k] PP[j][k] = suma for j in range (n): for k in range(n): W[j][k]=PP[j][k] #M2P2M1P1# L= mulMatrices(mulMatrices(M,P,n),L,n) for j in range(n): for k in range(n): PPT[j][k]=PP[k][j] L=mulMatrices(L,PPT,n) L=inversa(L,n) Q=[] for s in range (n+1): Q.append(0) Lt=[] for s in range (n): Lt.append([0]*n) z=[] for i in range (n): z.append(0) z[0]=T[0][n]*(L[0][0]**(-1)) for j in range (1,n): suma=0 for k in range (j): suma+= L[j][k]*z[k] z[j]=(T[j][n]-suma)*(L[j][j]**(-1)) matT=[] for i in range(n): matT.append([]) for j in range(n): matT[i].append(T[i][j]) for i in range (n): j=i+1 if T[i][i]==0: p=i+1 mayor = T[j][i] for j in range (i+2,n): if(abs(mayor) < abs(T[j][i])): mayor= T[j][i] p = j Q=T[i] T[i]=T[p] T[p]=Q k=z[i] z[i]=z[p] z[p]=k for j in range (i+1,n): w = T[j][i]*(T[i][i])**(-1) for k in range (i,n+1): T[j][k] = T[j][k] - (w*T[i][k]) T[j][i]=0 z[j] = z[j] - (w*z[i]) W=[] for i in range (n): W.append(0) W[n-1]=z[n-1]/T[n-1][n-1] for j in range (n-2,-1,-1): suma=0 for k in range (j+1,n): suma+= T[j][k]*W[k] W[j]=(z[j]-suma)/T[j][j] for i in range(n): for j in range (n): Lt[i][j]= L[j][i] y=[] for i in range (n): y.append(0) y[n-1]=W[n-1]/Lt[n-1][n-1] for j in range (n-2,-1,-1): suma=0 for k in range (j+1,n): suma+= Lt[j][k]*y[k] y[j]=(W[j]-suma)*(Lt[j][j]**(-1)) x=[] for i in range (n): x.append(0) for j in range(n): suma = 0 for l in range(n): suma=suma+PPT[j][l]*y[l] x[j]=suma print('MÉTODO DE PAULETT-REID',end="\n\n") print("Este método premultiplica y postmultiplica la matriz A por matrices para generar así la factorización PAPT = LTLT\n") L = np.array(L,float) PP = np.array(PP,float) matT = np.array(matT,float) print ("\nMatriz L:") print(L.round(7)) print ("\nMatriz P:") print(PP.round(7)) print ("\nMatriz T:") print(matT.round(7)) print ("\nDesarrollamos A.x = b, en P.A.Pt = L.T.Lt:") return x # Insertar dimension de la matriz A n = 4 # Matriz a usar: A = np.array([[1,1,1,1], [8,4,2,1], [3,2,1,0], [12,2,0,0]],float) A1 = np.array([[1,1,1,1], [8,4,2,1], [3,2,1,0], [12,2,0,0]],float) # Coloca el vector solución b b=np.array([2,6,5,-6],float) b1=np.array([2,6,5,-6],float) if esSimetrica(A,n): t1=perf_counter(); #Calcula tiempo inicio del algoritmo x= metodoParlet(A,b,n) t2=perf_counter(); #Calcula tiempo inicio del algoritmo x = np.array(x,float) print ("Solucion de 'x' es: "+str(x.round(7))) print("\nEl tiempo de ejecución es: "+str(t2-t1)) R = x - np.linalg.solve(A1,b1) print("\nLa calidad de la solución es:\n") print(str((np.linalg.norm(R,np.inf)/np.linalg.norm(b1,np.inf))*(1/np.linalg.cond(A1,np.inf)))+" ≤ ||E||∞/||x||∞ ≤ "+str((np.linalg.norm(R,np.inf)/np.linalg.norm(b1,np.inf))*np.linalg.cond(A1,np.inf))) else: At = transMatriz(A,n) C = mulMatrices(At, A, n) d = mulVector(At, b, n) t1=perf_counter(); #Calcula tiempo inicio del algoritmo x= metodoParlet(C,d,n) t2=perf_counter(); #Calcula tiempo inicio del algoritmo x = np.array(x,float) print ("Solucion de 'x' es: "+str(x.round(7))) print("\nEl tiempo de ejecución es: "+str(t2-t1)) R = x - np.linalg.solve(A1,b1) print("\nLa calidad de la solución es:\n") print(str((np.linalg.norm(R,np.inf)/np.linalg.norm(b1,np.inf))*(1/np.linalg.cond(A1,np.inf)))+" ≤ ||E||∞/||x||∞ ≤ "+str((np.linalg.norm(R,np.inf)/np.linalg.norm(b1,np.inf))*np.linalg.cond(A1,np.inf)))
[ "noreply@github.com" ]
alex9609.noreply@github.com
f19b9dea2cdbf9d1ae985214ba886a130f688479
ccc717f01d8ef6fcdbd16933213ad15f2d72d60c
/app/models.py
0375fc6c9a7f81f5e9825dcf3c1b375beb2bb435
[]
no_license
benpmeredith/NSSD-app
b910fad3e86fa3baa56686de322567498e247da4
6c9f35bfd180025059521d43beb0e0693e5c26f0
refs/heads/master
2020-04-14T16:47:24.517308
2018-02-14T06:53:15
2018-02-14T06:53:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
665
py
"""Define models for storing user data.""" from app import db import datetime class Search(db.Model): """Search persistence model.""" id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.String()) search_string = db.Column(db.String()) datetime = db.Column( db.DateTime, default=datetime.datetime.utcnow) def __init__(self, user_id, search_string): """Initialize search model.""" self.user_id = user_id self.search_string = search_string def __repr__(self): """Return string representation of search model.""" return '<{}: {}>'.format(self.user_id, self.search_string)
[ "ryantlee9@gmail.com" ]
ryantlee9@gmail.com
89892adafba422b3323e71df969dc9751b91ce37
2e893c59ad8adc85d3421a4a20b23ed3bb8e748e
/mobet/mobet_app/migrations/0004_auto_20200512_0205.py
f3f81ad41b5bae65c5fb4306c7caa60895c0e3a5
[]
no_license
dlwlgjs132/mobet_server
b73e8775ebdcc0bac0eb07e1268eaacbb28e1fc2
2ac1d0b006e5f674821b9e91f2de2d6bfd3c5d1a
refs/heads/master
2022-09-11T15:11:47.628055
2020-06-01T09:38:16
2020-06-01T09:38:16
268,480,263
1
1
null
null
null
null
UTF-8
Python
false
false
411
py
# Generated by Django 3.0.5 on 2020-05-12 02:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mobet_app', '0003_remove_user_imei'), ] operations = [ migrations.AlterField( model_name='user', name='PHONENUM', field=models.CharField(default='', max_length=20, unique=True), ), ]
[ "dlwlgjs132@naver.com" ]
dlwlgjs132@naver.com
dfcd5824ecd123f52783b26c5ed7ada99ea3bb2a
a803c82161b0d74780e9adf2257e6b56f7ad2c14
/POO/encapsulamento/main.py
69de886891be4bf4e2632130dc23c1145b678c1e
[]
no_license
ArondevIta/curso-python
83b9c7e998b753ff8a74bb2ccd1893e356aacf67
5d5519654f166d8e7b27a1f71d48acac6bdd723e
refs/heads/master
2022-12-25T14:02:47.669450
2020-09-17T23:30:02
2020-09-17T23:30:02
295,863,868
0
0
null
null
null
null
UTF-8
Python
false
false
709
py
class BaseDeDados: def __init__(self): self.__dados = {} @property def dados(self): return self.__dados def inserir_cliente(self, id, nome): if 'clientes' not in self.__dados: self.__dados['clientes'] = {id: nome} else: self.__dados['clientes'].update({id: nome}) def lista_clientes(self): for id, nome in self.__dados['clientes'].items(): print(id, nome) def apaga_cliente(self, id): del self.__dados['clientes'][id] bd = BaseDeDados() bd.inserir_cliente(1, 'Otavio') bd.inserir_cliente(2, 'Zaine') bd.inserir_cliente(3, 'João') bd.lista_clientes() print(bd.dados) # _ protected # __ private
[ "aronamaral@gmail.com" ]
aronamaral@gmail.com
733a87559ba5236c55ce878f99afa55fac739206
e8ea4a4af4c5b2e237c372dc56b14026a3d0fa8c
/stack.py
b0f208e91384256fa605dbb889a62f9c51085f26
[]
no_license
ProArif/Python-Data-Structures
ca5233687a17a7c0deb59015a1efba37c5f2cbcd
e2c72a118f72372335a322978bbab6a4ca68fcb4
refs/heads/master
2020-05-01T05:08:28.877351
2019-03-27T17:57:55
2019-03-27T17:57:55
177,293,167
1
0
null
null
null
null
UTF-8
Python
false
false
935
py
class Stack: def __init__(self): self.stack = [] def add(self,value): #add value in the stack if value not in self.stack: self.stack.append(value) return True else: return False def peek(self): #View element at top of the stack (First element of the stack) return self.stack[0] def remove(self): #remove element from the stack if len(self.stack) <=0: return "There is no element in the stack" else: return self.stack.pop() def size(self): return len(self.stack) Astack = Stack() Astack.add("Sat") Astack.add("Sun") Astack.add('Mon') print(Astack.peek()) print() print(Astack.size()) Astack.add('Tue') print(Astack.remove()) print(Astack.remove()) print() print(Astack.peek()) print() print(Astack.remove())
[ "noreply@github.com" ]
ProArif.noreply@github.com
bebed8fe4197ea43a2d1a8fd55cf0e5235c8326a
41f1094515257458849228ac5b026b34c4a7814b
/bind/python/example.py
61181ed59d1a9501a71829e25b58d6c62ee16931
[]
no_license
srsem/fix_parser
db98f4adb9edf96f75cf07555ce3b89f490184e2
91b19abf724c854bf2f7f5b03b412f6c7c69a536
refs/heads/master
2023-06-05T05:27:29.223559
2021-06-26T01:51:30
2021-06-26T01:51:30
380,391,469
0
0
null
null
null
null
UTF-8
Python
false
false
2,019
py
from fix_parser import * from fix_fields import * p = FixParser(b"fix.4.4.xml", PARSER_FLAG_CHECK_ALL) print("PROT VERSION = {0}".format(p.getProtocolVer())) # create Exec Report m = p.createMsg("8") # check its params print("MSG TYPE = {0}".format(m.getType())) print("MSG NAME = {0}".format(m.getName())) # fill message m.setFieldAsString(FIXFieldTag_SenderCompID, b"QWERTY_12345678") m.setFieldAsString(FIXFieldTag_TargetCompID, b"ABCQWE_XYZ") m.setFieldAsInt32(FIXFieldTag_MsgSeqNum, 34) m.setFieldAsString(FIXFieldTag_TargetSubID, "bsrv-ivanov_ii1") m.setFieldAsString(FIXFieldTag_SendingTime, b"20120716-06:00:16.230") m.setFieldAsString(FIXFieldTag_OrderID, b"1") m.setFieldAsString(FIXFieldTag_ClOrdID, b"CL_ORD_ID_1234567") m.setFieldAsString(FIXFieldTag_ExecID, b"FE_1_9494_1") m.setFieldAsChar(FIXFieldTag_ExecType, b"0") m.setFieldAsChar(FIXFieldTag_OrdStatus, b"1") m.setFieldAsString(FIXFieldTag_Account, b"ZUM") m.setFieldAsString(FIXFieldTag_Symbol, b"RTS-12.12") m.setFieldAsChar(FIXFieldTag_Side, b"1") m.setFieldAsDouble(FIXFieldTag_OrderQty, 25.0) m.setFieldAsDouble(FIXFieldTag_Price, 135155.0) m.setFieldAsChar(FIXFieldTag_TimeInForce, b"0") m.setFieldAsDouble(FIXFieldTag_LastQty, 0) m.setFieldAsDouble(FIXFieldTag_LastPx, 0) m.setFieldAsDouble(FIXFieldTag_LeavesQty, 25.0) m.setFieldAsDouble(FIXFieldTag_CumQty, 0) m.setFieldAsDouble(FIXFieldTag_AvgPx, 0) m.setFieldAsChar(FIXFieldTag_HandlInst, b"1") m.setFieldAsString(FIXFieldTag_Text, b"COMMENT12") # convert msg to string, \1 delimiter replaced with '|', just for pretty printing. '|' code is 124 str = m.toString(124) print("MSG = {0}".format(str)) # parse input string and create FIX message m1 = p.parse(str, 124) # just print several fields of m1, to make sure str parsed ok print("MSG1 TYPE = {0}".format(m1.getType())) print("MSG1 NAME = {0}".format(m1.getName())) print("SenderCompID = {0}".format(m1.getFieldAsString(FIXFieldTag_SenderCompID))) print("TargetCompID = {0}".format(m1.getFieldAsString(FIXFieldTag_TargetCompID)))
[ "dmitryme@gmail.com" ]
dmitryme@gmail.com
5065cf76c38d0a632bff95fee81618ee568bade6
0ec65a65935e877dec4fe97ff9b9422eee1b0d74
/installer.py
468708a0518c911dfce8d2f35196f4101398872b
[]
no_license
kuifye/-python-
48f438a9a5bac340175212810e2e8a7c89b6e5ec
26c2d2793901c611c498fe475d0e7af67e71de46
refs/heads/master
2022-11-02T21:45:19.345657
2022-10-18T12:30:00
2022-10-18T12:30:00
266,112,124
0
0
null
null
null
null
UTF-8
Python
false
false
639
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from PyInstaller.__main__ import run # -F:打包成一个EXE文件 # -w:不带console输出控制台,window窗体格式 # --paths:依赖包路径 # --icon:图标 # --noupx:不用upx压缩 # --clean:清理掉临时文件 if __name__ == '__main__': opts = ['-F', #'--paths=D:\\Program Files\\Python\\Lib\\site-packages\\PyQt5\\Qt\\bin', #'--paths=D:\\Program Files\\Python\\Lib\\site-packages\\jpype', #'--noupx', #'--clean', #'--hidden-import=numpy', 'Minions.py'] run(opts)
[ "noreply@github.com" ]
kuifye.noreply@github.com
7917878c65d45f8c8695a604d021cbc8f6a8cbd8
68a52ad1df836c9f6d922515b2f896b6928ce6a0
/SafetyProductionSystem/SafetyProductionSystem/urls.py
8b569622a45638f563c0605df75fb3b870cccf20
[]
no_license
Chuazhen0/SafetyProductionSystem
1141f845e04b032ff2a230c8def26066f061600c
442d5df3818d43aebb9830f2456c73018aae2acf
refs/heads/master
2020-05-20T12:47:46.365020
2019-05-08T09:56:01
2019-05-08T09:56:01
185,579,244
0
0
null
null
null
null
UTF-8
Python
false
false
2,727
py
"""SafetyProductionSystem URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add an import: from blog import urls as blog_urls 2. Import the include() function: from django.conf.urls import url, include 3. Add a URL to urlpatterns: url(r'^blog/', include(blog_urls)) """ from django.conf.urls import include from django.contrib import admin from systemsettings import views from django.conf.urls import url from django.views.static import serve from . import settings urlpatterns = [ url(r'^$', views.mylogin,name='login'), # 系统设置-登录 url(r'^admin/', admin.site.urls), url(r'^netstructure/', include('netstructure.urls')), # 网络结构信息 url(r'^netstaff/', include('netstaff.urls')), # 网络结构信息 url(r'^staff_qua/', include('staff_qua.urls')), # 监督网络结构人员资质信息 url(r'^mon_plan_sum/', include('mon_plan_sum.urls')), # 月度计划与总结 url(r'^monworkexe/', include('monworkexe.urls')), # 月度工作执行 url(r'^yearplan/', include('yearplan.urls')), # 年度计划 url(r'^yearsum/', include('yearsum.urls')), # 年度总结 url(r'^warning/', include('warning.urls')), # 告警通知单 url(r'^warningre/', include('warningre.urls')), # 告警回执单 url(r'^standard/', include('standard.urls')), # 指标管理 url(r'^systemsettings/', include('systemsettings.urls')), # 系统设置 url(r'^weekworkplan/', include('weekworkplan.urls')), # 周期检测计划 url(r'^weekworktask/', include('weekworktask.urls')), # 周期检测任务 url(r'^qua25/', include('qua25.urls')), # 25项反措--资质管理 url(r'^quatype/', include('quatype.urls')), # 资质类型管理 url(r'^regularworkplan/', include('regularworkplan.urls')), # 定期工作标准 url(r'^regularworktask/', include('regularworktask.urls')), # 定期工作任务 #######################################工作流############################################## # url(r'^wf/list/', RedirectView.as_view(url='/wf/list/'), name='home'), url(r'^wf/', include('myworkflow.urls')), url(r'^attachment/', include('lbattachment.urls')), url(r'^myform/', include('myform.urls')), url(r'media/(?P<path>.*)$', serve, {'document_root': settings.MEDIA_ROOT}), ]
[ "Caohuazhenrn@163.com" ]
Caohuazhenrn@163.com
9804f5a0d87e2460671de352627e37ed3849b111
9b32e4f0364d7299d44dde82dae2c785cea4accd
/python/q10.py
927bf2ae7a116d6e629dfce05fbc613df9f790fd
[]
no_license
kyamaguchi/nlp100
59dc92b1f8900fb335565d7e37713995e3e78dd9
4b91454f5c20d3eef11ba48e4bf3a66cdcc7bf9a
refs/heads/master
2020-05-25T07:06:58.531070
2019-06-05T07:29:47
2019-06-05T08:20:07
187,678,700
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
#!/usr/bin/env python def question(): print("10. 行数のカウント") print("行数をカウントせよ.確認にはwcコマンドを用いよ.") import subprocess res = subprocess.check_output('cat hightemp.txt | wc -l', shell=True, universal_newlines=True) def main(): print(len(open('hightemp.txt').readlines())) print(res.strip()) if __name__ == '__main__': question() main()
[ "kzh.yap@gmail.com" ]
kzh.yap@gmail.com
3ec0c53be633c875cc471cd7a3a2712128f74189
893925888bff43d4a2681d8def70474234a05f59
/Scans/MACrossOver/Day100SMACrossDay200SMAFromBelow.py
3ded375a175fe4e87ed4c494de09d279de61e095
[]
no_license
webclinic017/Burrito
05fbfade564a2855a08f7f7975b7094ed1bdc491
086d4d4632e53695e1f43b4efe61c318704936cc
refs/heads/main
2023-07-12T08:38:54.847707
2021-08-15T07:40:40
2021-08-15T07:40:40
460,657,475
1
0
null
2022-02-18T00:38:57
2022-02-18T00:38:56
null
UTF-8
Python
false
false
1,283
py
import os.path import start import pandas as pd from Scans.MACrossOver.MACrossOverScan import isMACrossOver from Scans.Scan import Scan import Constants projectPath = Constants.ProjectPath class Day100SMACrossDay200SMAFromBelow(Scan): def __init__(self): pass def isCriteriaMet(self, symbol, candleSize="DAILY", apiProvider=None, timeSeries=None, interval=None): if timeSeries is None: if os.path.exists(projectPath + "/resources/" + symbol + "/" + candleSize): timeSeries = pd.read_json( projectPath + "/resources/" + symbol + "/" + candleSize + "/" + symbol + ".json", convert_dates=True) else: timeSeries = start.getSeries(apiProvider, symbol, candleSize) if timeSeries is not None: return self.isCriteriaMet(symbol, candleSize, interval) else: return False if interval is not None: df_mask = (interval[0] <= timeSeries['timestamp']) & (timeSeries['timestamp'] <= interval[1]) timeSeries = timeSeries[df_mask] if timeSeries is not None: return isMACrossOver(symbol, [100,200], "SMA", candleSize=candleSize, timeSeries=timeSeries)
[ "dhariwal.mohit9@gmail.com" ]
dhariwal.mohit9@gmail.com
0ba14538001baa0239a52b99643b728a1603f9bf
c2b8adb8b4062a14bfc7d8c8fa2938359530e028
/mfes/evaluate_function/eval_sys_mv.py
9e758009dcb744cd3338767496cf3339a1ee76f9
[]
no_license
thomas-young-2013/hp-tuner
1e7d277f3c0135b9032884e3f20b050f19012918
e606569719a14d8445633e42aedc8296a63a577a
refs/heads/master
2023-04-15T08:41:02.514912
2020-09-14T13:23:55
2020-09-14T13:23:55
225,173,361
0
2
null
2023-03-24T22:31:25
2019-12-01T14:17:29
Python
UTF-8
Python
false
false
402
py
from __future__ import division, print_function, absolute_import import os import sys from functools import partial sys.path.append(os.getcwd()) from solnml.datasets.utils import load_train_test_data from mfes.evaluate_function.sys.combined_evaluator import train as _train train_node, test_node = load_train_test_data('mv', data_dir='./', task_type=0) train = partial(_train, data_node=train_node)
[ "459240868@qq.com" ]
459240868@qq.com
476ef2de7ac6276e12e24a4f0a01f5f5313822c1
949d8f2b9c91194ef75864fd1759902ef76ce770
/aa.py
8bc89b358efd5c841a23155c5ad28f25a961ff67
[]
no_license
panchengl/yolov3_prune
8c4508b8b74fbd0f9a43743acc8bf75c687f99c2
9016e5efa63ffe17801c4e8c0892743f8cb48834
refs/heads/master
2020-08-22T06:09:11.719678
2020-03-31T07:23:02
2020-03-31T07:23:02
216,334,325
14
2
null
null
null
null
UTF-8
Python
false
false
4,603
py
# a =[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 22] # b = 0 # new_shortcut_list = [0, 0, 0, 0, 0] # new_shortcut_list_2 = [0, 0, 0, 0, 0] # # if 0 in a: # new_shortcut_list[0] += 1 # if 1 in a: # new_shortcut_list[1] += 1 # if 2 in a: # new_shortcut_list[1] += 1 # if 3 in a: # new_shortcut_list[2] += 1 # if 4 in a: # new_shortcut_list[2] += 1 # if 5 in a: # new_shortcut_list[2] += 1 # if 6 in a: # new_shortcut_list[2] += 1 # if 7 in a: # new_shortcut_list[2] += 1 # if 8 in a: # new_shortcut_list[2] += 1 # if 9 in a: # new_shortcut_list[2] += 1 # if 10 in a: # new_shortcut_list[2] += 1 # if 11 in a: # new_shortcut_list[3] += 1 # if 12 in a: # new_shortcut_list[3] += 1 # if 13 in a: # new_shortcut_list[3] += 1 # if 14 in a: # new_shortcut_list[3] += 1 # if 15 in a: # new_shortcut_list[3] += 1 # if 16 in a: # new_shortcut_list[3] += 1 # if 17 in a: # new_shortcut_list[3] += 1 # if 18 in a: # new_shortcut_list[3] += 1 # if 19 in a: # new_shortcut_list[4] += 1 # if 20 in a: # new_shortcut_list[4] += 1 # if 21 in a: # new_shortcut_list[4] += 1 # if 22 in a: # new_shortcut_list[4] += 1 # print(new_shortcut_list) # # for i in range(23): # if i in a: # if i == 0: # new_shortcut_list_2[0] += 1 # if 1 <= i and i < 3: # new_shortcut_list_2[1] += 1 # if 3 <= i and i < 11: # new_shortcut_list_2[2] += 1 # if 11 <= i and i < 19: # new_shortcut_list_2[3] += 1 # if 19 <= i and i < 23: # new_shortcut_list_2[4]+= 1 # print(new_shortcut_list_2) # layer_prune_name = [] # prune_darknet_layer = [2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, # 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51] # for i in prune_darknet_layer: # if i == 0: # layer_prune_name.append('yolov3/darknet53_body/Conv/weights:0') # else: # layer_prune_name.append('yolov3/darknet53_body/Conv_' + str(i) + '/weights:0') # a = [11, 19, 21, 12, 20] # b = [] # print(layer_prune_name) # # for prune_id in range(5): # print('prune layer ') # c = a[prune_id] # b.append((prune_darknet_layer[2*c] )) # b.append((prune_darknet_layer[2*c+1] )) # print((prune_darknet_layer[2*c] )) # print((prune_darknet_layer[2*c + 1]) ) # # # first = dict() # # second = dict() # # third = dict() # # fourth = dict() # # last = dict() # first = [] # second = [] # third = [] # fourth = [] # last = [] # import copy # # for i in b: # # layer_prune_name.remove('yolov3/darknet53_body/Conv_' + str(i) + '/weights:0') # first = copy.deepcopy(layer_prune_name) # first.remove('yolov3/darknet53_body/Conv_' + str(27) + '/weights:0') # first.remove('yolov3/darknet53_body/Conv_' + str(28) + '/weights:0') # first.remove('yolov3/darknet53_body/Conv_' + str(44) + '/weights:0') # first.remove('yolov3/darknet53_body/Conv_' + str(45) + '/weights:0') # first.remove('yolov3/darknet53_body/Conv_' + str(48) + '/weights:0') # first.remove('yolov3/darknet53_body/Conv_' + str(49) + '/weights:0') # first.remove('yolov3/darknet53_body/Conv_' + str(29) + '/weights:0') # first.remove('yolov3/darknet53_body/Conv_' + str(30) + '/weights:0') # first.remove('yolov3/darknet53_body/Conv_' + str(46) + '/weights:0') # first.remove('yolov3/darknet53_body/Conv_' + str(47) + '/weights:0') # # layer_prune_name.remove('yolov3/darknet53_body/Conv_' + str(27) + '/weights:0') # for i, j in enumerate(layer_prune_name): # print(str(j).split('/')[2][5:]) # # first[i] = j # # if int(str(j).split('/')[2][5:]) >= b[0]: # # first[i] = 'yolov3/darknet53_body/Conv_' + str(int(str(j).split('/')[2][5:]) -1) + '/weights:0' # # if int(str(j).split('/')[2][5:]) >= b[1]: # # first[i] = 'yolov3/darknet53_body/Conv_' + str(int(str(j).split('/')[2][5:]) - 1) + '/weights:0' # # second = copy.deepcopy(first) # # for i, j in enumerate(first): # # print(str(j).split('/')[2][5:]) # # first[i] = j # # if int(str(j).split('/')[2][5:]) >= b[0]: # # first[i] = 'yolov3/darknet53_body/Conv_' + str(int(str(j).split('/')[2][5:]) -1) + '/weights:0' # # print(layer_prune_name) # print(first) # # c = set(layer_prune_name) # d = c.difference(first) # print(d) a =[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 22] b = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 22] import numpy as np print(np.multiply(np.array(a), np.array(b))) # print(a*b)
[ "2943499076@qq.com" ]
2943499076@qq.com
839021b7c49f18913e28af75bad62f784ba5507c
99dcb18a9e3ea367272f740b8cbf3c34285a0c08
/tests/unit/aiplatform/test_pipeline_based_service.py
f7516714623b2b495b8d567b850c7b62006ddd59
[ "Apache-2.0" ]
permissive
googleapis/python-aiplatform
926a4873f35dbea15b2fd86c0e16b5e6556d803e
76b95b92c1d3b87c72d754d8c02b1bca652b9a27
refs/heads/main
2023-08-19T23:49:02.180075
2023-08-19T13:25:59
2023-08-19T13:27:27
298,017,988
418
240
Apache-2.0
2023-09-14T21:08:33
2020-09-23T15:43:39
Python
UTF-8
Python
false
false
21,933
py
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime import json import pytest from unittest import mock from google.auth import credentials as auth_credentials from google.protobuf import json_format from google.cloud import storage from google.cloud import aiplatform from google.cloud.aiplatform import base from google.cloud.aiplatform.metadata import constants from google.cloud.aiplatform.utils import gcs_utils from google.cloud.aiplatform_v1.services.pipeline_service import ( client as pipeline_service_client_v1, ) from google.cloud.aiplatform_v1.types import ( pipeline_job as gca_pipeline_job_v1, ) from google.cloud.aiplatform_v1.types import ( pipeline_state as gca_pipeline_state_v1, ) from google.cloud.aiplatform._pipeline_based_service import ( pipeline_based_service, ) from google.cloud.aiplatform_v1 import Execution as GapicExecution from google.cloud.aiplatform_v1 import MetadataServiceClient # pipeline job _TEST_PROJECT = "test-project" _TEST_LOCATION = "us-central1" _TEST_PIPELINE_JOB_DISPLAY_NAME = "sample-pipeline-job-display-name" _TEST_PIPELINE_JOB_ID = "sample-test-pipeline-202111111" _TEST_GCS_BUCKET_NAME = "my-bucket" _TEST_CREDENTIALS = auth_credentials.AnonymousCredentials() _TEST_SERVICE_ACCOUNT = "abcde@my-project.iam.gserviceaccount.com" _TEST_COMPONENT_IDENTIFIER = "fake-pipeline-based-service" _TEST_PIPELINE_NAME_IDENTIFIER = "my-pipeline" _TEST_INVALID_PIPELINE_NAME_IDENTIFIER = "not-a-valid-pipeline-name" _TEST_PIPELINE_CREATE_TIME = datetime.datetime.now() _TEST_TEMPLATE_PATH = f"gs://{_TEST_GCS_BUCKET_NAME}/job_spec.json" _TEST_TEMPLATE_REF = {"test_pipeline_type": _TEST_TEMPLATE_PATH} _TEST_PIPELINE_ROOT = f"gs://{_TEST_GCS_BUCKET_NAME}/pipeline_root" _TEST_PARENT = f"projects/{_TEST_PROJECT}/locations/{_TEST_LOCATION}" _TEST_NETWORK = f"projects/{_TEST_PROJECT}/global/networks/{_TEST_PIPELINE_JOB_ID}" _TEST_PIPELINE_JOB_NAME = f"projects/{_TEST_PROJECT}/locations/{_TEST_LOCATION}/pipelineJobs/{_TEST_PIPELINE_JOB_ID}" _TEST_INVALID_PIPELINE_JOB_NAME = ( f"prj/{_TEST_PROJECT}/locations/{_TEST_LOCATION}/{_TEST_PIPELINE_JOB_ID}" ) # executions: this is used in test_list_pipeline_based_service _TEST_EXECUTION_PARENT = ( f"projects/{_TEST_PROJECT}/locations/{_TEST_LOCATION}/metadataStores/default" ) _TEST_RUN = "run-1" _TEST_OTHER_RUN = "run-2" _TEST_EXPERIMENT = "test-experiment" _TEST_EXECUTION_ID = f"{_TEST_EXPERIMENT}-{_TEST_RUN}" _TEST_EXECUTION_NAME = f"{_TEST_EXECUTION_PARENT}/executions/{_TEST_EXECUTION_ID}" _TEST_OTHER_EXECUTION_ID = f"{_TEST_EXPERIMENT}-{_TEST_OTHER_RUN}" _TEST_OTHER_EXECUTION_NAME = ( f"{_TEST_EXECUTION_PARENT}/executions/{_TEST_OTHER_EXECUTION_ID}" ) # execution metadata parameters: used in test_list_pipeline_based_service _TEST_PARAM_KEY_1 = "learning_rate" _TEST_PARAM_KEY_2 = "dropout" _TEST_PIPELINE_PARAM_KEY = "pipeline_job_resource_name" _TEST_PARAMS = { _TEST_PARAM_KEY_1: 0.01, _TEST_PARAM_KEY_2: 0.2, _TEST_PIPELINE_PARAM_KEY: _TEST_PIPELINE_JOB_NAME, } _TEST_OTHER_PARAMS = {_TEST_PARAM_KEY_1: 0.02, _TEST_PARAM_KEY_2: 0.3} # pipeline based service template json _TEST_PIPELINE_PARAMETER_VALUES = { "string_param": "hello world", "bool_param": True, "double_param": 12.34, "int_param": 5678, "list_int_param": [123, 456, 789], "list_string_param": ["lorem", "ipsum"], "struct_param": {"key1": 12345, "key2": 67890}, } _TEST_PIPELINE_SPEC_JSON = json.dumps( { "pipelineInfo": {"name": "my-pipeline"}, "root": { "dag": {"tasks": {}}, "inputDefinitions": { "parameters": { "string_param": {"parameterType": "STRING"}, "bool_param": {"parameterType": "BOOLEAN"}, "double_param": {"parameterType": "NUMBER_DOUBLE"}, "int_param": {"parameterType": "NUMBER_INTEGER"}, "list_int_param": {"parameterType": "LIST"}, "list_string_param": {"parameterType": "LIST"}, "struct_param": {"parameterType": "STRUCT"}, } }, }, "schemaVersion": "2.1.0", "components": {}, } ) _TEST_PIPELINE_JOB = json.dumps( { "runtimeConfig": {"parameterValues": {}}, "pipelineSpec": json.loads(_TEST_PIPELINE_SPEC_JSON), } ) def make_pipeline_job(state): return gca_pipeline_job_v1.PipelineJob( name=_TEST_PIPELINE_JOB_NAME, state=state, create_time=_TEST_PIPELINE_CREATE_TIME, service_account=_TEST_SERVICE_ACCOUNT, network=_TEST_NETWORK, pipeline_spec=json.loads(_TEST_PIPELINE_SPEC_JSON), job_detail=gca_pipeline_job_v1.PipelineJobDetail( task_details=[ gca_pipeline_job_v1.PipelineTaskDetail( task_id=123, execution=GapicExecution( name=_TEST_EXECUTION_NAME, display_name=_TEST_RUN, schema_title=constants.SYSTEM_RUN, schema_version=constants.SCHEMA_VERSIONS[constants.SYSTEM_RUN], metadata={"component_type": _TEST_COMPONENT_IDENTIFIER}, ), ), ], ), ) @pytest.fixture def mock_pipeline_service_create(): with mock.patch.object( pipeline_service_client_v1.PipelineServiceClient, "create_pipeline_job" ) as mock_create_pipeline_job: mock_create_pipeline_job.return_value = make_pipeline_job( gca_pipeline_state_v1.PipelineState.PIPELINE_STATE_SUCCEEDED ) yield mock_create_pipeline_job @pytest.fixture def mock_pipeline_job_get(): with mock.patch.object( pipeline_service_client_v1.PipelineServiceClient, "get_pipeline_job" ) as mock_get_pipeline_job: mock_get_pipeline_job.side_effect = [ make_pipeline_job( gca_pipeline_state_v1.PipelineState.PIPELINE_STATE_RUNNING ), make_pipeline_job( gca_pipeline_state_v1.PipelineState.PIPELINE_STATE_SUCCEEDED ), make_pipeline_job( gca_pipeline_state_v1.PipelineState.PIPELINE_STATE_SUCCEEDED ), make_pipeline_job( gca_pipeline_state_v1.PipelineState.PIPELINE_STATE_SUCCEEDED ), make_pipeline_job( gca_pipeline_state_v1.PipelineState.PIPELINE_STATE_SUCCEEDED ), make_pipeline_job( gca_pipeline_state_v1.PipelineState.PIPELINE_STATE_SUCCEEDED ), make_pipeline_job( gca_pipeline_state_v1.PipelineState.PIPELINE_STATE_SUCCEEDED ), make_pipeline_job( gca_pipeline_state_v1.PipelineState.PIPELINE_STATE_SUCCEEDED ), make_pipeline_job( gca_pipeline_state_v1.PipelineState.PIPELINE_STATE_SUCCEEDED ), ] yield mock_get_pipeline_job @pytest.fixture def mock_pipeline_service_get_with_fail(): with mock.patch.object( pipeline_service_client_v1.PipelineServiceClient, "get_pipeline_job" ) as mock_get_pipeline_job: mock_get_pipeline_job.side_effect = [ make_pipeline_job( gca_pipeline_state_v1.PipelineState.PIPELINE_STATE_RUNNING ), make_pipeline_job( gca_pipeline_state_v1.PipelineState.PIPELINE_STATE_RUNNING ), make_pipeline_job( gca_pipeline_state_v1.PipelineState.PIPELINE_STATE_FAILED ), ] yield mock_get_pipeline_job @pytest.fixture def mock_load_yaml_and_json(job_spec_json): with mock.patch.object( storage.Blob, "download_as_bytes" ) as mock_load_yaml_and_json: mock_load_yaml_and_json.return_value = job_spec_json.encode() yield mock_load_yaml_and_json @pytest.fixture def mock_pipeline_based_service_get(): with mock.patch.object( pipeline_service_client_v1.PipelineServiceClient, "get_pipeline_job" ) as mock_get_pipeline_based_service: mock_get_pipeline_based_service.return_value = make_pipeline_job( gca_pipeline_state_v1.PipelineState.PIPELINE_STATE_SUCCEEDED ) yield mock_get_pipeline_based_service @pytest.fixture def get_execution_mock(): with mock.patch.object( MetadataServiceClient, "get_execution" ) as get_execution_mock: get_execution_mock.return_value = GapicExecution( name=_TEST_EXECUTION_NAME, display_name=_TEST_RUN, schema_title=constants.SYSTEM_RUN, schema_version=constants.SCHEMA_VERSIONS[constants.SYSTEM_RUN], metadata={"component_type": _TEST_COMPONENT_IDENTIFIER}, ) yield get_execution_mock @pytest.fixture def list_executions_mock(): with mock.patch.object( MetadataServiceClient, "list_executions" ) as list_executions_mock: list_executions_mock.return_value = [ GapicExecution( name=_TEST_EXECUTION_NAME, display_name=_TEST_RUN, schema_title=constants.SYSTEM_RUN, schema_version=constants.SCHEMA_VERSIONS[constants.SYSTEM_RUN], metadata=_TEST_PARAMS, ), GapicExecution( name=_TEST_OTHER_EXECUTION_NAME, display_name=_TEST_OTHER_RUN, schema_title=constants.SYSTEM_RUN, schema_version=constants.SCHEMA_VERSIONS[constants.SYSTEM_RUN], metadata=_TEST_OTHER_PARAMS, ), ] yield list_executions_mock @pytest.fixture def mock_pipeline_bucket_exists(): def mock_create_gcs_bucket_for_pipeline_artifacts_if_it_does_not_exist( output_artifacts_gcs_dir=None, service_account=None, project=None, location=None, credentials=None, ): output_artifacts_gcs_dir = ( output_artifacts_gcs_dir or gcs_utils.generate_gcs_directory_for_pipeline_artifacts( project=project, location=location, ) ) return output_artifacts_gcs_dir with mock.patch( "google.cloud.aiplatform.utils.gcs_utils.create_gcs_bucket_for_pipeline_artifacts_if_it_does_not_exist", wraps=mock_create_gcs_bucket_for_pipeline_artifacts_if_it_does_not_exist, ) as mock_context: yield mock_context @pytest.mark.usefixtures("google_auth_mock") class TestPipelineBasedService: class FakePipelineBasedService( pipeline_based_service._VertexAiPipelineBasedService ): _template_ref = _TEST_TEMPLATE_REF _metadata_output_artifact = "TODO" _creation_log_message = ( "Created PipelineJob for your fake PipelineBasedService." ) _component_identifier = _TEST_COMPONENT_IDENTIFIER _template_name_identifier = None @classmethod def submit(cls) -> pipeline_based_service._VertexAiPipelineBasedService: return cls._create_and_submit_pipeline_job( template_params={}, template_path=_TEST_TEMPLATE_PATH ) @pytest.mark.parametrize( "job_spec_json", [_TEST_PIPELINE_JOB], ) @pytest.mark.parametrize( "pipeline_name", [_TEST_PIPELINE_JOB_ID, _TEST_PIPELINE_JOB_NAME] ) def test_init_pipeline_based_service( self, pipeline_name, mock_pipeline_job_get, mock_pipeline_based_service_get, mock_load_yaml_and_json, job_spec_json, mock_pipeline_service_create, get_execution_mock, mock_pipeline_bucket_exists, ): aiplatform.init( project=_TEST_PROJECT, location=_TEST_LOCATION, credentials=_TEST_CREDENTIALS, staging_bucket=_TEST_GCS_BUCKET_NAME, ) pipeline_service = self.FakePipelineBasedService( pipeline_job_name=pipeline_name ) mock_pipeline_based_service_get.assert_called_with( name=_TEST_PIPELINE_JOB_NAME, retry=base._DEFAULT_RETRY ) assert get_execution_mock.call_count == 1 # There are 2 get requests made for each item: 1 in the constructor and # 1 in the validation method assert mock_pipeline_based_service_get.call_count == 2 assert not mock_pipeline_service_create.called assert pipeline_service.backing_pipeline_job._gca_resource == make_pipeline_job( gca_pipeline_state_v1.PipelineState.PIPELINE_STATE_SUCCEEDED ) @pytest.mark.parametrize( "job_spec_json", [_TEST_PIPELINE_JOB], ) @pytest.mark.parametrize( "pipeline_name", [_TEST_PIPELINE_JOB_ID, _TEST_PIPELINE_JOB_NAME] ) def test_init_pipeline_based_service_with_template_name_identifier( self, pipeline_name, mock_pipeline_job_get, mock_pipeline_based_service_get, mock_load_yaml_and_json, job_spec_json, mock_pipeline_service_create, get_execution_mock, mock_pipeline_bucket_exists, ): aiplatform.init( project=_TEST_PROJECT, location=_TEST_LOCATION, credentials=_TEST_CREDENTIALS, staging_bucket=_TEST_GCS_BUCKET_NAME, ) self.FakePipelineBasedService._template_name_identifier = ( _TEST_PIPELINE_NAME_IDENTIFIER ) self.FakePipelineBasedService(pipeline_job_name=_TEST_PIPELINE_JOB_ID) mock_pipeline_based_service_get.assert_called_with( name=_TEST_PIPELINE_JOB_NAME, retry=base._DEFAULT_RETRY ) @pytest.mark.parametrize( "job_spec_json", [_TEST_PIPELINE_JOB], ) @pytest.mark.parametrize( "pipeline_name", [_TEST_PIPELINE_JOB_ID, _TEST_PIPELINE_JOB_NAME] ) def test_init_pipeline_based_service_with_invalid_template_name_identifier_raises( self, pipeline_name, mock_pipeline_job_get, mock_pipeline_based_service_get, mock_load_yaml_and_json, job_spec_json, mock_pipeline_service_create, get_execution_mock, ): aiplatform.init( project=_TEST_PROJECT, location=_TEST_LOCATION, credentials=_TEST_CREDENTIALS, ) self.FakePipelineBasedService._template_name_identifier = ( _TEST_INVALID_PIPELINE_NAME_IDENTIFIER ) with pytest.raises(ValueError): self.FakePipelineBasedService(pipeline_job_name=_TEST_PIPELINE_JOB_ID) @pytest.mark.parametrize( "job_spec_json", [_TEST_PIPELINE_JOB], ) @pytest.mark.parametrize( "pipeline_name", [_TEST_PIPELINE_JOB_ID, _TEST_PIPELINE_JOB_NAME] ) def test_init_pipeline_based_service_with_failed_pipeline_run( self, pipeline_name, mock_pipeline_service_get_with_fail, mock_load_yaml_and_json, job_spec_json, get_execution_mock, mock_pipeline_bucket_exists, ): aiplatform.init( project=_TEST_PROJECT, location=_TEST_LOCATION, credentials=_TEST_CREDENTIALS, staging_bucket=_TEST_GCS_BUCKET_NAME, ) self.FakePipelineBasedService._template_name_identifier = None self.FakePipelineBasedService(pipeline_job_name=_TEST_PIPELINE_JOB_ID) mock_pipeline_service_get_with_fail.assert_called_with( name=_TEST_PIPELINE_JOB_NAME, retry=base._DEFAULT_RETRY ) assert get_execution_mock.call_count == 1 @pytest.mark.parametrize( "pipeline_name", [_TEST_PIPELINE_JOB_ID, _TEST_PIPELINE_JOB_NAME] ) def test_init_pipeline_based_service_without_template_ref_raises( self, pipeline_name, mock_pipeline_job_get, mock_pipeline_service_create, ): """Raises TypeError since abstract properties are not set. _VertexAiPipelineBasedService class should only be instantiated through a child class. """ with pytest.raises(TypeError): pipeline_based_service._VertexAiPipelineBasedService( pipeline_job_id=pipeline_name, ) def test_init_pipeline_based_service_with_invalid_pipeline_run_id_raises( self, mock_pipeline_job_get, ): aiplatform.init( project=_TEST_PROJECT, location=_TEST_LOCATION, credentials=_TEST_CREDENTIALS, ) with pytest.raises(ValueError): self.FakePipelineBasedService( pipeline_job_name=_TEST_INVALID_PIPELINE_JOB_NAME, ) @pytest.mark.parametrize( "job_spec_json", [_TEST_PIPELINE_JOB], ) def test_create_and_submit_pipeline_job( self, mock_pipeline_job_get, mock_pipeline_service_create, mock_load_yaml_and_json, job_spec_json, mock_pipeline_bucket_exists, ): import yaml aiplatform.init( project=_TEST_PROJECT, location=_TEST_LOCATION, credentials=_TEST_CREDENTIALS, staging_bucket=_TEST_GCS_BUCKET_NAME, ) self.FakePipelineBasedService._template_name_identifier = None test_pipeline_service = ( self.FakePipelineBasedService._create_and_submit_pipeline_job( job_id=_TEST_PIPELINE_JOB_ID, template_params=_TEST_PIPELINE_PARAMETER_VALUES, template_path=_TEST_TEMPLATE_PATH, pipeline_root=_TEST_PIPELINE_ROOT, display_name=_TEST_PIPELINE_JOB_DISPLAY_NAME, service_account=_TEST_SERVICE_ACCOUNT, network=_TEST_NETWORK, ) ) expected_runtime_config_dict = { "gcsOutputDirectory": _TEST_PIPELINE_ROOT, "parameterValues": _TEST_PIPELINE_PARAMETER_VALUES, } runtime_config = gca_pipeline_job_v1.PipelineJob.RuntimeConfig()._pb json_format.ParseDict(expected_runtime_config_dict, runtime_config) job_spec_json = yaml.safe_load(job_spec_json) pipeline_spec = job_spec_json.get("pipelineSpec") or job_spec_json # Construct expected request expected_gapic_pipeline_job = gca_pipeline_job_v1.PipelineJob( display_name=_TEST_PIPELINE_JOB_DISPLAY_NAME, pipeline_spec={ "components": {}, "pipelineInfo": pipeline_spec["pipelineInfo"], "root": pipeline_spec["root"], "schemaVersion": "2.1.0", }, runtime_config=runtime_config, service_account=_TEST_SERVICE_ACCOUNT, network=_TEST_NETWORK, ) mock_pipeline_service_create.assert_called_once_with( parent=_TEST_PARENT, pipeline_job=expected_gapic_pipeline_job, pipeline_job_id=_TEST_PIPELINE_JOB_ID, timeout=None, ) assert mock_pipeline_service_create.call_count == 1 test_backing_pipeline_job = test_pipeline_service.backing_pipeline_job assert mock_pipeline_job_get.call_count == 1 assert ( test_pipeline_service.gca_resource.name == test_backing_pipeline_job.resource_name ) def test_list_pipeline_based_service( self, mock_pipeline_based_service_get, get_execution_mock, list_executions_mock, ): aiplatform.init( project=_TEST_PROJECT, location=_TEST_LOCATION, credentials=_TEST_CREDENTIALS, ) test_list_request = self.FakePipelineBasedService.list() list_executions_mock.assert_called_once_with( request={ "parent": _TEST_EXECUTION_PARENT, "filter": f"metadata.component_type.string_value={self.FakePipelineBasedService._component_identifier}", } ) assert isinstance( test_list_request[0], pipeline_based_service._VertexAiPipelineBasedService ) assert ( test_list_request[0]._template_ref == self.FakePipelineBasedService._template_ref ) # only 1 of the 2 executions in list_executions_mock matches the # properties of FakePipelineBasedService assert len(test_list_request) == 1 def test_list_pipeline_based_service_with_template_name_identifier( self, mock_pipeline_based_service_get, get_execution_mock, list_executions_mock, ): aiplatform.init( project=_TEST_PROJECT, location=_TEST_LOCATION, credentials=_TEST_CREDENTIALS, ) self.FakePipelineBasedService._template_name_identifier = ( _TEST_INVALID_PIPELINE_NAME_IDENTIFIER ) test_list_request = self.FakePipelineBasedService.list() # None of the mock pipelines match the `_template_name_identifier` # set above, so the returned list should be empty assert len(test_list_request) == 0
[ "copybara-worker@google.com" ]
copybara-worker@google.com
a143f17f146e06bb8ade6dc3f16b63d24cb99ff9
07214da96a1dfa6bca6d84a4621efcd8a7ffa6ab
/venv/Scripts/easy_install-3.6-script.py
7bf61d6c077b4df38e305c86c56a7c13b70b2fde
[]
no_license
jonys1994/scripts
027a45a5672ff3d8e1888f434f1a4a52699cb3f2
cf934e45df248892362f3b326225a0d7955bafd9
refs/heads/master
2020-03-23T19:06:33.206784
2019-01-18T11:49:31
2019-01-18T11:49:31
141,953,518
0
0
null
null
null
null
UTF-8
Python
false
false
460
py
#!C:\Users\ShineMo\PycharmProjects\scripts\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.0.1','console_scripts','easy_install-3.6' __requires__ = 'setuptools==39.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.0.1', 'console_scripts', 'easy_install-3.6')() )
[ "xiangp@shinemo.com" ]
xiangp@shinemo.com
3faa1755d2e00628d1dd9f0b9f8cdd32cd5462a2
f15d66277991bbb1c5adaf2387570426b02d2aa6
/codingEncryption.py
c6c29babd6812448ad237a919011b5850ecd7e40
[]
no_license
nataliaEscobar/Girls_Who_Code
2e0e8b803a746844779bc29bc975c92582220c19
d2136758d32f57b91b5d8992874b4562683e95ab
refs/heads/master
2020-12-03T03:59:44.434355
2017-07-14T22:45:27
2017-07-14T22:45:27
95,800,220
0
0
null
null
null
null
UTF-8
Python
false
false
1,592
py
#GLOBAL VARIABLES codeWords = [] realWords = [] #FUNCTIONS def createCodeWords(): codingWords = True while codingWords: print("Would you like to add a word to your code? (y/n)") answer = input().lower() if(answer == "y" or "yes"): print("What is the real word you would like to add?") real = input().lower() realWords.append(real) print("What would your code word be?") code = input().lower() codeWords.append(code) elif(answer == "n" or "no"): print("Your code has been saved!") codingWords = False print("Your code words are") print(codeWords) print("They correspond to") print(realWords) else: print("Security break! Abort mission") exit() def encryptMessage(): print() print("______________________") print() print("What is your message that you would like enrypted?") message = input().lower() wordList = message.split() codedMessage = "" for word in wordList: for realWord in realWords: print("Checking Words" + word + "and" + realWord) if(word == realWord): print("MATCH FOUND!") codedMessage = codedMessage + word + codeWords[0] else: codedMessage = codedMessage + word #RUNNING CODE createCodeWords() encryptedMessage()
[ "noreply@github.com" ]
nataliaEscobar.noreply@github.com
a341e8165f551618582e8bd6730337355be1684b
049911b1272653a3f44f0bfbd21c3ec5883775a9
/exercicios/2-6.py
5724d40dbd045950d8a18b198f1a5b07b8e5166f
[]
no_license
jhoonb/III-JTI-MS
da0470404d8e167df9a44c51d1218e086478ede2
cfcedd95348b44d45f26294a2d63327bd5edc89c
refs/heads/master
2016-09-06T06:49:06.649975
2014-11-13T18:00:38
2014-11-13T18:00:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,096
py
# 6) Faça um programa que simule uma calculadora simples, # informe qual operação: +, /, %, -, * # logo após informe dois valores, retorne o valor dessa operação. def soma(a, b): return a+b def sub(a, b): return a-b def mul(a, b): return a*b def div(a, b): if b != 0: return a/b else: return "divisao por zero" def rest(a, b): if b != 0: return a%b else: return "divisao por zero" #---------------------------------------------- def calculadora(op, a, b): if op == "*": return mul(a, b) elif op == "/": return div(a, b) elif op == "%": return rest(a, b) elif op == "-": return sub(a, b) elif op == "+": return soma(a, b) else: return "comando inválido" #------------------------------------------------- op = input("informa a operação (+, /, %, -, *): ") v1 = float(input("informe o valor 1: ")) v2 = float(input("informe o valor 2: ")) print("resultado: ", calculadora(op, v1, v2))
[ "jpbanczek@gmail.com" ]
jpbanczek@gmail.com
e4d17180e87356c886b83e79634455b68f5b9bfe
54bc958af18564f07498e6603a0ea875c938b587
/Advent_of_Code_2016/12.py
85a75bc46863d48fd6271ed472722da266414e15
[]
no_license
drathke924/userscripts
8a07657f81974567b2776fe004f506bb5abcea6c
6de664a3becdf9846b5293fefde7e11d03bc6252
refs/heads/master
2022-12-24T14:38:13.580792
2022-12-15T23:25:57
2022-12-15T23:25:57
76,170,533
0
0
null
null
null
null
UTF-8
Python
false
false
856
py
from time import time start_time = time() with open("12.txt", "r") as f: data = f.read().splitlines() def findReg(reg): i = 0 while i < len(data): line = data[i].split() if line[0] == "cpy": try: reg[line[2]] = int(line[1]) except ValueError: reg[line[2]] = reg[line[1]] elif line[0] == "jnz": if line[1] in reg.keys(): if reg[line[1]] != 0: i += int(line[2]) continue elif int(line[1]) != 0: i += int(line[2]) continue elif line[0] == "inc": reg[line[1]] += 1 elif line[0] == "dec": reg[line[1]] -= 1 i += 1 return reg["a"] registry = {"a" : 0, "b" : 0, "c" : 0, "d" : 0} print(findReg(registry)) print("Run time: %s" % (time() - start_time)) start_time = time() registry = {"a" : 0, "b" : 0, "c" : 1, "d" : 0} print(findReg(registry)) print("Run time: %s" % (time() - start_time))
[ "alpha.zero924@gmail.com" ]
alpha.zero924@gmail.com
d86ef06603d9b162c2f8c9f7d23458b983808203
10d98fecb882d4c84595364f715f4e8b8309a66f
/persistent_es/plot_toy_regression.py
e7888a7de3c7a5d525314fe775497b91f0625aa7
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
afcarl/google-research
51c7b70d176c0d70a5ee31ea1d87590f3d6c6f42
320a49f768cea27200044c0d12f394aa6c795feb
refs/heads/master
2021-12-02T18:36:03.760434
2021-09-30T20:59:01
2021-09-30T21:07:02
156,725,548
1
0
Apache-2.0
2018-11-08T15:13:53
2018-11-08T15:13:52
null
UTF-8
Python
false
false
5,719
py
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Plot loss curves from saved CSV files for the toy regression experiment. Example: -------- python plot_toy_regression.py """ import os import csv import ipdb import pickle as pkl from collections import defaultdict import numpy as np import scipy.ndimage import matplotlib.pyplot as plt import matplotlib.colors as colors import seaborn as sns sns.set_style('white') sns.set_palette('bright') # Darker colors flatui = ["#E00072", "#00830B", "#2B1A7F", "#E06111", "#02D4F9", "#4F4C4B",] sns.set_palette(flatui) sns.palplot(sns.color_palette()) # Plotting from saved CSV files def load_log(exp_dir, log_filename='train_log.csv'): result_dict = defaultdict(list) with open(os.path.join(exp_dir, log_filename), newline='') as csvfile: reader = csv.DictReader(csvfile) for row in reader: for key in row: try: if key in ['global_iteration', 'iteration', 'epoch']: result_dict[key].append(int(row[key])) else: result_dict[key].append(float(row[key])) except: pass return result_dict def plot_heatmap(pkl_path, xlabel, ylabel, smoothed=False, sigma=5.0, cmap=plt.cm.viridis, colorbar=True, figsize=(10,8)): with open(pkl_path, 'rb') as f: heatmap_data = pkl.load(f) if smoothed: smoothed_F_grid = scipy.ndimage.gaussian_filter(heatmap_data['L_grid'], sigma=sigma) best_smoothed_theta = np.unravel_index(smoothed_F_grid.argmin(), smoothed_F_grid.shape) best_smoothed_x = heatmap_data['xv'][best_smoothed_theta] best_smoothed_y = heatmap_data['yv'][best_smoothed_theta] plt.figure(figsize=figsize) plt.pcolormesh(heatmap_data['xv'], heatmap_data['yv'], smoothed_F_grid, norm=colors.LogNorm(), cmap=cmap) if colorbar: plt.colorbar() plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.xlabel(xlabel, fontsize=22) plt.ylabel(ylabel, fontsize=22) else: plt.figure(figsize=figsize) plt.pcolormesh(heatmap_data['xv'], heatmap_data['yv'], heatmap_data['L_grid'], norm=colors.LogNorm(), cmap=cmap) if colorbar: plt.colorbar() plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.xlabel(xlabel, fontsize=22) plt.ylabel(ylabel, fontsize=22) if not os.path.exists('figures'): os.makedirs('figures') tbptt_k10 = load_log('saves/toy_regression/tbptt-s:linear-optim:adam-lr:0.01-T:100-K:10-N:100-sigma:1.0-seed:1', 'iteration.csv') rtrl_k10 = load_log('saves/toy_regression/rtrl-s:linear-optim:adam-lr:0.01-T:100-K:10-N:100-sigma:1.0-seed:1', 'iteration.csv') uoro_k10 = load_log('saves/toy_regression/uoro-s:linear-optim:adam-lr:0.01-T:100-K:10-N:100-sigma:1.0-seed:1', 'iteration.csv') es_k10 = load_log('saves/toy_regression/es-s:linear-optim:adam-lr:0.01-T:100-K:10-N:100-sigma:1.0-seed:1', 'iteration.csv') pes_k10 = load_log('saves/toy_regression/pes-s:linear-optim:adam-lr:0.01-T:100-K:10-N:100-sigma:1.0-seed:1', 'iteration.csv') plot_heatmap('saves/toy_regression/sgd_lr:linear_sum_T_100_N_400_grid.pkl', xlabel='Initial LR', ylabel='Final LR', smoothed=False, cmap=plt.cm.Purples_r, colorbar=False, figsize=(7,5)) plt.plot(np.array(tbptt_k10['theta0']), np.array(tbptt_k10['theta1']), linewidth=3, label='TBPTT') plt.plot(np.array(uoro_k10['theta0']), np.array(uoro_k10['theta1']), linewidth=3, label='UORO') plt.plot(np.array(rtrl_k10['theta0']), np.array(rtrl_k10['theta1']), linewidth=3, label='RTRL') plt.plot(np.array(es_k10['theta0']), np.array(es_k10['theta1']), linewidth=3, label='ES') plt.plot(np.array(pes_k10['theta0']), np.array(pes_k10['theta1']), linewidth=3, label='PES') plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.xlabel('Initial LR', fontsize=24) plt.ylabel('Final LR', fontsize=24) plt.legend(fontsize=20, fancybox=True, framealpha=0.7) plt.savefig('figures/toy_regression_heatmap.png', bbox_inches='tight', pad_inches=0, dpi=300) # ================================================================================================ plt.figure(figsize=(6,4)) plt.plot(tbptt_k10['inner_problem_steps'], tbptt_k10['L'], linewidth=3, label='TBPTT') plt.plot(uoro_k10['inner_problem_steps'], uoro_k10['L'], linewidth=3, label='UORO') plt.plot(rtrl_k10['inner_problem_steps'], rtrl_k10['L'], linewidth=3, label='RTRL') plt.plot(es_k10['inner_problem_steps'], es_k10['L'], linewidth=3, label='ES') plt.plot(pes_k10['inner_problem_steps'], pes_k10['L'], linewidth=3, label='PES') plt.xscale('log') plt.xticks(fontsize=18) plt.yticks([500, 1000, 1500, 2000, 2500], fontsize=18) plt.xlabel('Inner Iterations', fontsize=20) plt.ylabel('Meta Objective', fontsize=20) plt.legend(fontsize=18, fancybox=True, framealpha=0.3) sns.despine() plt.savefig('figures/toy_regression_meta_obj.pdf', bbox_inches='tight', pad_inches=0)
[ "copybara-worker@google.com" ]
copybara-worker@google.com
276475239f152aff88af8db3c953385c75d8eec9
4bbfd93fd76e68cfd69e8908d17f275fb9416a76
/test/common.py
d51fe06cc8433a16f4c802d5f596fa91159f3548
[ "Apache-2.0" ]
permissive
yunsukim86/language_model_sockeye
4aecc9521f674e24b3b7bc432311ed2bae5325e3
74883db1e5b45ae37a97401fa16634ab0f94698d
refs/heads/master
2022-01-05T08:51:59.264969
2018-06-18T07:27:16
2018-06-18T07:27:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,700
py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import logging import os import random import sys from contextlib import contextmanager from tempfile import TemporaryDirectory from typing import List, Optional, Tuple from unittest.mock import patch import mxnet as mx import numpy as np import sockeye.average import sockeye.constants as C import sockeye.evaluate import sockeye.lexicon import sockeye.prepare_data import sockeye.train import sockeye.translate import sockeye.utils from sockeye.evaluate import raw_corpus_bleu, raw_corpus_chrf logger = logging.getLogger(__name__) def gaussian_vector(shape, return_symbol=False): """ Generates random normal tensors (diagonal covariance) :param shape: shape of the tensor. :param return_symbol: True if the result should be a Symbol, False if it should be an Numpy array. :return: A gaussian tensor. """ return mx.sym.random_normal(shape=shape) if return_symbol else np.random.normal(size=shape) def integer_vector(shape, max_value, min_value=1, return_symbol=False): """ Generates a random positive integer tensor :param shape: shape of the tensor. :param max_value: maximum integer value. :param min_value: minimum integer value. :param return_symbol: True if the result should be a Symbol, False if it should be an Numpy array. :return: A random integer tensor. """ return mx.sym.round(mx.sym.random.uniform(low=min_value, high=max_value, shape=shape)) if return_symbol \ else np.random.randint(low=min_value, high=max_value, size=shape) def uniform_vector(shape, min_value=0, max_value=1, return_symbol=False): """ Generates a uniformly random tensor :param shape: shape of the tensor :param min_value: minimum possible value :param max_value: maximum possible value (exclusive) :param return_symbol: True if the result should be a mx.sym.Symbol, False if it should be a Numpy array :return: """ return mx.sym.random.uniform(low=min_value, high=max_value, shape=shape) if return_symbol \ else np.random.uniform(low=min_value, high=max_value, size=shape) def generate_random_sentence(vocab_size, max_len): """ Generates a random "sentence" as a list of integers. :param vocab_size: Number of words in the "vocabulary". Note that due to the inclusion of special words (BOS, EOS, UNK) this does *not* correspond to the maximum possible value. :param max_len: maximum sentence length. """ length = random.randint(1, max_len) # Due to the special words, the actual words start at index 3 and go up to vocab_size+2 return [random.randint(3, vocab_size + 2) for _ in range(length)] _DIGITS = "0123456789" _MID = 5 def generate_digits_file(source_path: str, target_path: str, line_count: int = 100, line_length: int = 9, sort_target: bool = False, line_count_empty: int = 0, seed=13): assert line_count_empty <= line_count random_gen = random.Random(seed) with open(source_path, "w") as source_out, open(target_path, "w") as target_out: all_digits = [] for _ in range(line_count - line_count_empty): digits = [random_gen.choice(_DIGITS) for _ in range(random_gen.randint(1, line_length))] all_digits.append(digits) for _ in range(line_count_empty): all_digits.append([]) random_gen.shuffle(all_digits) for digits in all_digits: print(" ".join(digits), file=source_out) if sort_target: digits.sort() print(" ".join(digits), file=target_out) def generate_low_high_factors(source_path: str, output_path: str): """ Writes low/high factor file given a source file of digit sequences. """ with open(source_path, 'r') as fin, open(output_path, 'w') as fout: for line in fin: digits = map(int, line.rstrip().split()) factors = ["l" if digit < _MID else "h" for digit in digits] print(" ".join(factors), file=fout) def generate_fast_align_lex(lex_path: str): """ Generate a fast_align format lex table for digits. :param lex_path: Path to write lex table. """ with open(lex_path, "w") as lex_out: for digit in _DIGITS: print("{0}\t{0}\t0".format(digit), file=lex_out) _LEXICON_PARAMS_COMMON = "-i {input} -m {model} -k 1 -o {json} {quiet}" @contextmanager def tmp_digits_dataset(prefix: str, train_line_count: int, train_max_length: int, dev_line_count: int, dev_max_length: int, test_line_count: int, test_line_count_empty: int, test_max_length: int, sort_target: bool = False, seed_train: int = 13, seed_dev: int = 13, with_source_factors: bool = False): with TemporaryDirectory(prefix=prefix) as work_dir: # Simple digits files for train/dev data train_source_path = os.path.join(work_dir, "train.src") train_target_path = os.path.join(work_dir, "train.tgt") dev_source_path = os.path.join(work_dir, "dev.src") dev_target_path = os.path.join(work_dir, "dev.tgt") test_source_path = os.path.join(work_dir, "test.src") test_target_path = os.path.join(work_dir, "test.tgt") generate_digits_file(train_source_path, train_target_path, train_line_count, train_max_length, sort_target=sort_target, seed=seed_train) generate_digits_file(dev_source_path, dev_target_path, dev_line_count, dev_max_length, sort_target=sort_target, seed=seed_dev) generate_digits_file(test_source_path, test_target_path, test_line_count, test_max_length, line_count_empty=test_line_count_empty, sort_target=sort_target, seed=seed_dev) data = {'work_dir': work_dir, 'source': train_source_path, 'target': train_target_path, 'validation_source': dev_source_path, 'validation_target': dev_target_path, 'test_source': test_source_path, 'test_target': test_target_path} if with_source_factors: train_factor_path = train_source_path + ".factors" dev_factor_path = dev_source_path + ".factors" test_factor_path = test_source_path + ".factors" generate_low_high_factors(train_source_path, train_factor_path) generate_low_high_factors(dev_source_path, dev_factor_path) generate_low_high_factors(test_source_path, test_factor_path) data['train_source_factors'] = [train_factor_path] data['dev_source_factors'] = [dev_factor_path] data['test_source_factors'] = [test_factor_path] yield data _TRAIN_PARAMS_COMMON = "--use-cpu --max-seq-len {max_len} --source {train_source} --target {train_target}" \ " --validation-source {dev_source} --validation-target {dev_target} --output {model} {quiet}" \ " --seed {seed}" _PREPARE_DATA_COMMON = " --max-seq-len {max_len} --source {train_source} --target {train_target}" \ " --output {output} {quiet}" _TRAIN_WITH_FACTORS_COMMON = " --source-factors {source_factors}" _DEV_WITH_FACTORS_COMMON = " --validation-source-factors {dev_source_factors}" _TRAIN_PARAMS_PREPARED_DATA_COMMON = "--use-cpu --max-seq-len {max_len} --prepared-data {prepared_data}" \ " --validation-source {dev_source} --validation-target {dev_target} " \ "--output {model} {quiet}" _TRANSLATE_PARAMS_COMMON = "--use-cpu --models {model} --input {input} --output {output} {quiet}" _TRANSLATE_WITH_FACTORS_COMMON = " --input-factors {input_factors}" _TRANSLATE_PARAMS_RESTRICT = "--restrict-lexicon {json}" _EVAL_PARAMS_COMMON = "--hypotheses {hypotheses} --references {references} --metrics {metrics} {quiet}" def run_train_translate(train_params: str, translate_params: str, translate_params_equiv: Optional[str], train_source_path: str, train_target_path: str, dev_source_path: str, dev_target_path: str, test_source_path: str, test_target_path: str, train_source_factor_paths: Optional[List[str]] = None, dev_source_factor_paths: Optional[List[str]] = None, test_source_factor_paths: Optional[List[str]] = None, use_prepared_data: bool = False, max_seq_len: int = 10, restrict_lexicon: bool = False, work_dir: Optional[str] = None, seed: int = 13, quiet: bool = False) -> Tuple[float, float, float, float]: """ Train a model and translate a dev set. Report validation perplexity and BLEU. :param train_params: Command line args for model training. :param translate_params: First command line args for translation. :param translate_params_equiv: Second command line args for translation. Should produce the same outputs :param train_source_path: Path to the source file. :param train_target_path: Path to the target file. :param dev_source_path: Path to the development source file. :param dev_target_path: Path to the development target file. :param test_source_path: Path to the test source file. :param test_target_path: Path to the test target file. :param train_source_factor_paths: Optional list of paths to training source factor files. :param dev_source_factor_paths: Optional list of paths to dev source factor files. :param test_source_factor_paths: Optional list of paths to test source factor files. :param use_prepared_data: Whether to use the prepared data functionality. :param max_seq_len: The maximum sequence length. :param restrict_lexicon: Additional translation run with top-k lexicon-based vocabulary restriction. :param work_dir: The directory to store the model and other outputs in. :param seed: The seed used for training. :param quiet: Suppress the console output of training and decoding. :return: A tuple containing perplexity, bleu scores for standard and reduced vocab decoding, chrf score. """ if quiet: quiet_arg = "--quiet" else: quiet_arg = "" with TemporaryDirectory(dir=work_dir, prefix="test_train_translate.") as work_dir: # Optionally create prepared data directory if use_prepared_data: prepared_data_path = os.path.join(work_dir, "prepared_data") params = "{} {}".format(sockeye.prepare_data.__file__, _PREPARE_DATA_COMMON.format(train_source=train_source_path, train_target=train_target_path, output=prepared_data_path, max_len=max_seq_len, quiet=quiet_arg)) if train_source_factor_paths is not None: params += _TRAIN_WITH_FACTORS_COMMON.format(source_factors=" ".join(train_source_factor_paths)) logger.info("Creating prepared data folder.") with patch.object(sys, "argv", params.split()): sockeye.prepare_data.main() # Train model model_path = os.path.join(work_dir, "model") params = "{} {} {}".format(sockeye.train.__file__, _TRAIN_PARAMS_PREPARED_DATA_COMMON.format(prepared_data=prepared_data_path, dev_source=dev_source_path, dev_target=dev_target_path, model=model_path, max_len=max_seq_len, quiet=quiet_arg), train_params) if dev_source_factor_paths is not None: params += _DEV_WITH_FACTORS_COMMON.format(dev_source_factors=" ".join(dev_source_factor_paths)) logger.info("Starting training with parameters %s.", train_params) with patch.object(sys, "argv", params.split()): sockeye.train.main() else: # Train model model_path = os.path.join(work_dir, "model") params = "{} {} {}".format(sockeye.train.__file__, _TRAIN_PARAMS_COMMON.format(train_source=train_source_path, train_target=train_target_path, dev_source=dev_source_path, dev_target=dev_target_path, model=model_path, max_len=max_seq_len, seed=seed, quiet=quiet_arg), train_params) if train_source_factor_paths is not None: params += _TRAIN_WITH_FACTORS_COMMON.format(source_factors=" ".join(train_source_factor_paths)) if dev_source_factor_paths is not None: params += _DEV_WITH_FACTORS_COMMON.format(dev_source_factors=" ".join(dev_source_factor_paths)) logger.info("Starting training with parameters %s.", train_params) with patch.object(sys, "argv", params.split()): sockeye.train.main() logger.info("Translating with parameters %s.", translate_params) # Translate corpus with the 1st params out_path = os.path.join(work_dir, "out.txt") params = "{} {} {}".format(sockeye.translate.__file__, _TRANSLATE_PARAMS_COMMON.format(model=model_path, input=test_source_path, output=out_path, quiet=quiet_arg), translate_params) if test_source_factor_paths is not None: params += _TRANSLATE_WITH_FACTORS_COMMON.format(input_factors=" ".join(test_source_factor_paths)) with patch.object(sys, "argv", params.split()): sockeye.translate.main() # Translate corpus with the 2nd params if translate_params_equiv is not None: out_path_equiv = os.path.join(work_dir, "out_equiv.txt") params = "{} {} {}".format(sockeye.translate.__file__, _TRANSLATE_PARAMS_COMMON.format(model=model_path, input=test_source_path, output=out_path_equiv, quiet=quiet_arg), translate_params_equiv) if test_source_factor_paths is not None: params += _TRANSLATE_WITH_FACTORS_COMMON.format(input_factors=" ".join(test_source_factor_paths)) with patch.object(sys, "argv", params.split()): sockeye.translate.main() # read-in both outputs, ensure they are the same with open(out_path, 'rt') as f: lines = f.readlines() with open(out_path_equiv, 'rt') as f: lines_equiv = f.readlines() assert all(a == b for a, b in zip(lines, lines_equiv)) # Test restrict-lexicon out_restrict_path = os.path.join(work_dir, "out-restrict.txt") if restrict_lexicon: # fast_align lex table lex_path = os.path.join(work_dir, "lex") generate_fast_align_lex(lex_path) # Top-K JSON json_path = os.path.join(work_dir, "json") params = "{} {}".format(sockeye.lexicon.__file__, _LEXICON_PARAMS_COMMON.format(input=lex_path, model=model_path, json=json_path, quiet=quiet_arg)) with patch.object(sys, "argv", params.split()): sockeye.lexicon.main() # Translate corpus with restrict-lexicon params = "{} {} {} {}".format(sockeye.translate.__file__, _TRANSLATE_PARAMS_COMMON.format(model=model_path, input=test_source_path, output=out_restrict_path, quiet=quiet_arg), translate_params, _TRANSLATE_PARAMS_RESTRICT.format(json=json_path)) if test_source_factor_paths is not None: params += _TRANSLATE_WITH_FACTORS_COMMON.format(input_factors=" ".join(test_source_factor_paths)) with patch.object(sys, "argv", params.split()): sockeye.translate.main() # test averaging points = sockeye.average.find_checkpoints(model_path=model_path, size=1, strategy='best', metric=C.PERPLEXITY) assert len(points) > 0 averaged_params = sockeye.average.average(points) assert averaged_params # get best validation perplexity metrics = sockeye.utils.read_metrics_file(path=os.path.join(model_path, C.METRICS_NAME)) perplexity = min(m[C.PERPLEXITY + '-val'] for m in metrics) hypotheses = open(out_path, "r").readlines() references = open(test_target_path, "r").readlines() assert len(hypotheses) == len(references) # compute metrics bleu = raw_corpus_bleu(hypotheses=hypotheses, references=references, offset=0.01) chrf = raw_corpus_chrf(hypotheses=hypotheses, references=references) bleu_restrict = None if restrict_lexicon: bleu_restrict = raw_corpus_bleu(hypotheses=hypotheses, references=references, offset=0.01) # Run BLEU cli eval_params = "{} {} ".format(sockeye.evaluate.__file__, _EVAL_PARAMS_COMMON.format(hypotheses=out_path, references=test_target_path, metrics="bleu chrf", quiet=quiet_arg), ) with patch.object(sys, "argv", eval_params.split()): sockeye.evaluate.main() return perplexity, bleu, bleu_restrict, chrf
[ "tran@i6.informatik.rwth-aachen.de" ]
tran@i6.informatik.rwth-aachen.de
60a2ec58deba6a1dc051a8bc0b9be5886e4c99a7
64d1211404c89da4e09d77d859f2cdf6609a057e
/models/official/nlp/train_ctl_continuous_finetune_test.py
45aa308403b8bb2e3eb86771ad459312e88c0916
[ "Apache-2.0" ]
permissive
Nerfertili/Deep_learning_learning_udemy
f375209e0675ab8f4da9551d8a5bdee4f2948ed8
0fe6c1f36019b29151acb17a1f248b34d6089aeb
refs/heads/master
2023-02-17T10:10:52.536426
2021-01-19T02:48:23
2021-01-19T02:48:23
330,823,730
0
1
null
null
null
null
UTF-8
Python
false
false
3,196
py
# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os from absl import flags from absl.testing import flagsaver from absl.testing import parameterized import tensorflow as tf from official.common import flags as tfm_flags from official.core import task_factory from official.core import train_lib from official.core import train_utils from official.nlp import train_ctl_continuous_finetune FLAGS = flags.FLAGS tfm_flags.define_flags() class ContinuousFinetuneTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super().setUp() self._model_dir = os.path.join(self.get_temp_dir(), 'model_dir') @parameterized.parameters(None, 1) def testTrainCtl(self, pretrain_steps): src_model_dir = self.get_temp_dir() flags_dict = dict( experiment='mock', mode='continuous_train_and_eval', model_dir=self._model_dir, params_override={ 'task': { 'init_checkpoint': src_model_dir, }, 'trainer': { 'continuous_eval_timeout': 1, 'steps_per_loop': 1, 'train_steps': 1, 'validation_steps': 1, 'best_checkpoint_export_subdir': 'best_ckpt', 'best_checkpoint_eval_metric': 'acc', 'optimizer_config': { 'optimizer': { 'type': 'sgd' }, 'learning_rate': { 'type': 'constant' } } } }) with flagsaver.flagsaver(**flags_dict): # Train and save some checkpoints. params = train_utils.parse_configuration(flags.FLAGS) distribution_strategy = tf.distribute.get_strategy() with distribution_strategy.scope(): task = task_factory.get_task(params.task, logging_dir=src_model_dir) _ = train_lib.run_experiment( distribution_strategy=distribution_strategy, task=task, mode='train', params=params, model_dir=src_model_dir) params = train_utils.parse_configuration(FLAGS) eval_metrics = train_ctl_continuous_finetune.run_continuous_finetune( FLAGS.mode, params, FLAGS.model_dir, run_post_eval=True, pretrain_steps=pretrain_steps) self.assertIn('best_acc', eval_metrics) if __name__ == '__main__': tf.test.main()
[ "leal.afonso@outlook.com" ]
leal.afonso@outlook.com
bf52ca5f4007c17ab8c7804bf69009ab397da25b
e888ca363d84f58ac7128d4ad8a1c54b1ff8555c
/tools/c7n_kube/c7n_kube/resources/core/volume.py
a14c868dc2893d4084518afcd8215a75694e3e58
[ "Apache-2.0" ]
permissive
ksteigerwald/cloud-custodian
9f455e0a401f91e2d56302a4b95d173ead4b1b82
b5af4d66fd303579250214082d7ed3e7f4f5ab79
refs/heads/master
2020-03-27T19:30:20.544001
2019-02-26T11:05:37
2019-02-26T11:05:37
146,993,589
1
0
Apache-2.0
2018-09-01T11:42:20
2018-09-01T11:42:20
null
UTF-8
Python
false
false
1,163
py
# Copyright 2019 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from c7n_kube.query import QueryResourceManager, TypeInfo from c7n_kube.provider import resources @resources.register('volume') class PersistentVolume(QueryResourceManager): class resource_type(TypeInfo): group = 'Core' version = 'V1' enum_spec = ('list_persistent_volume', 'items', None) @resources.register('volume-claim') class PersistentVolumeClaim(QueryResourceManager): class resource_type(TypeInfo): group = 'Core' version = 'V1' enum_spec = ('list_persistent_volume_claim_for_all_namespaces', 'items', None)
[ "noreply@github.com" ]
ksteigerwald.noreply@github.com
c3827c6deb502162f773d367c141c37b57bbb1df
d03aba5cdefa68cc375cd7c5ad5214bb1f41328e
/python/searchCrawler/App.py
310576152c11735869d03abcd0ecea3366d06826
[ "Apache-2.0" ]
permissive
TeamTitanz/Word2vecLegalDocumentRetrieval
75a2a06d4c456f40dc6603d5c4cf0b5f5c896c51
d7b8c88cc42f3fdce8926abee0c662632f9597f9
refs/heads/master
2021-01-25T06:49:12.580150
2017-09-22T09:08:46
2017-09-22T09:08:46
93,614,783
0
0
null
null
null
null
UTF-8
Python
false
false
3,102
py
from selenium import webdriver from selenium.common.exceptions import WebDriverException, NoSuchElementException, StaleElementReferenceException from selenium.webdriver.common.desired_capabilities import DesiredCapabilities from bs4 import BeautifulSoup import config import time driver = None sleep_time = 1 caseURL = [] caseNames = [] def loadDriver(): global driver try: profile = webdriver.FirefoxProfile() profile.accept_untrusted_certs = True profile.set_preference('permissions.default.stylesheet', 2) profile.set_preference('permissions.default.image', 2) profile.set_preference('dom.ipc.plugins.enabled.libflashplayer.so', 'false') firefox_capabilities = DesiredCapabilities.FIREFOX firefox_capabilities['marionette'] = True driver = webdriver.Firefox(executable_path=config.GECKO_DRIVER_PATH) driver.set_window_size(1124, 850) except WebDriverException: print("Web driver error") return False def getUrl(url): global driver, sleep_time # Navigate to the hostel form #'http://lawcrawler.findlaw.com/LCsearch.html?restrict=lp&client=lp&entry=harvey+v.+veneman' driver.get(url) time.sleep(1) result = driver.page_source soup = BeautifulSoup(result, 'html.parser') return soup.find(id="gsa_n_1").find("div", class_="gsa_result_url").getText() def getCaseURL(name): oldCharList = [" ", "'", ",", "$", "&", ":", "/", "?"] newCharList = ["+", "%27", "%2C", "%24", "%26", "%3A", "%2F", "%3F"] searchURL = "http://lawcrawler.findlaw.com/LCsearch.html?restrict=lp&client=lp&entry=" for char in name: if(char in oldCharList): searchURL += newCharList[oldCharList.index(char)] else: searchURL += char #print searchURL return getUrl(searchURL) def uniqueID(temID): temID = str(temID) prefixLen = 10 - len(temID) prefix = '0' * prefixLen return prefix + temID def createGraph(): global caseURL loadDriver() with open("NameGraph.csv", "r") as ins: for line in ins: caseURL.append(line.split("_=r=_")[0]) caseNames.append(line.split("_=;=_")[-1]) newCf = open('newCases.txt','w') graphf = open('obGraph.txt','w') index = 0 for mentionNames in caseNames: graphf.write(uniqueID(index)+':') plist = [] temName = mentionNames.split("_=,=_") for name in temName: try: newURL = getCaseURL(name) except AttributeError: continue print newURL if(newURL in caseURL): temID = uniqueID(caseURL.index(newURL)) if(temID not in plist): plist.append(temID) else: newCf.write(newURL+'\n') temID = uniqueID(len(caseURL)) plist.append(temID) caseURL.append(newURL) graphf.write(",".join(plist)+'\n') index += 1 newCf.close() graphf.close() createGraph()
[ "buddhiayesha.13@cse.mrt.ac.lk" ]
buddhiayesha.13@cse.mrt.ac.lk
093732790e4b2c8635b724e49bb6bdab7dceb469
3f9da25e18b9728ec832dc51ac6477d52cd65f58
/blog/migrations/0001_initial.py
f90aca9c6c7dddfebe0896073486eabc6b7d463d
[]
no_license
rachelconnor/my-first-blog
53651d57ca2460552888c533052839668c9fd2a2
72d56c7ebe467e29192a5ae26c57fb538ca517c6
refs/heads/master
2021-01-23T13:16:44.593151
2017-06-03T14:38:02
2017-06-03T14:38:02
93,239,050
0
0
null
null
null
null
UTF-8
Python
false
false
1,051
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2017-06-03 13:37 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('text', models.TextField()), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('published_date', models.DateTimeField(blank=True, null=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "rachconnor@hotmail.com" ]
rachconnor@hotmail.com
333b9e5c7b90c01830816f1cadd469fbec6bcaec
7235deb273d66561d409338d00f6e404c67a8a16
/checkout/views.py
03486986f63d8932c1b0d168fc64ee291262bc4f
[]
no_license
redlik/django_sportclub_m4
b4839e33b3ebf79c7e89f09aa00e2bc79ca6b003
24dda251821a0138a6bcf3325335c65b676008e7
refs/heads/master
2023-02-07T00:34:08.501911
2020-12-31T07:36:17
2020-12-31T07:36:17
285,994,067
0
1
null
null
null
null
UTF-8
Python
false
false
6,727
py
from django.shortcuts import render, redirect, reverse, get_object_or_404, HttpResponse from django.views.decorators.http import require_POST from django.contrib import messages from django.conf import settings import stripe import json from .forms import OrderForm from .models import Order, OrderLineItem from profiles.models import UserProfile from profiles.forms import UserProfileForm from products.models import Product from basket.context import basket_contents @require_POST def cache_checkout_data(request): try: pid = request.POST.get('client_secret').split('_secret')[0] stripe.api_key = settings.STRIPE_SECRET_KEY stripe.PaymentIntent.modify(pid, metadata={ 'basket': json.dumps(request.session.get('basket', {})), 'save_info': request.POST.get('save_info'), 'username': request.user, }) return HttpResponse(status=200) except Exception as e: messages.error(request, 'Sorry, your payment cannot be \ processed right now. Please try again later.') return HttpResponse(content=e, status=400) def checkout(request): """ Function to show checkout page and process the payment """ stripe_public_key = settings.STRIPE_PUBLIC_KEY stripe_secret_key = settings.STRIPE_SECRET_KEY if request.method == 'POST': basket = request.session.get('basket', {}) form_data = { 'full_name': request.POST['full_name'], 'email': request.POST['email'], 'phone_number': request.POST['phone_number'], 'country': request.POST['country'], 'postcode': request.POST['postcode'], 'city': request.POST['city'], 'address1': request.POST['address1'], 'address2': request.POST['address2'], } order_form = OrderForm(form_data) if order_form.is_valid(): order = order_form.save() for product_id, item_data in basket.items(): try: product = Product.objects.get(id=product_id) if isinstance(item_data, int): order_line_item = OrderLineItem( order=order, product=product, quantity=item_data, ) order_line_item.save() else: for size, quantity in item_data['products_by_size'].items(): order_line_item = OrderLineItem( order=order, product=product, quantity=quantity, product_size=size, ) order_line_item.save() except Product.DoesNotExist: messages.error(request, ( "One of the products in your basket wasn't found in our database. " "Please call us for assistance!") ) order.delete() return redirect(reverse('view_basket')) request.session['save_info'] = 'save-info' in request.POST return redirect(reverse('checkout_success', args=[order.order_number])) else: messages.error(request, 'There was an error with your form. \ Please double check your information.') else: basket = request.session.get('basket', {}) if not basket: messages.error(request, "The basket is empty at the moment") return redirect(reverse('shop:all_products')) current_basket = basket_contents(request) total = current_basket['grand_total'] stripe_total = round(total * 100) stripe.api_key = stripe_secret_key intent = stripe.PaymentIntent.create( amount=stripe_total, currency=settings.STRIPE_CURRENCY, ) # Attempt to prefill the form with any info the user maintains in their profile if request.user.is_authenticated: try: profile = UserProfile.objects.get(user=request.user) order_form = OrderForm(initial={ 'full_name': profile.user.get_full_name(), 'email': profile.user.email, 'phone_number': profile.default_phone_number, 'country': profile.default_country, 'postcode': profile.default_postcode, 'city': profile.default_city, 'address1': profile.default_address1, 'address2': profile.default_address2, }) except UserProfile.DoesNotExist: order_form = OrderForm() else: order_form = OrderForm() if not stripe_public_key: messages.warning(request, 'Stripe public key is missing. \ Did you forget to set it in your environment?') context = { 'order_form': order_form, 'stripe_public_key': stripe_public_key, 'client_secret': intent.client_secret, } return render(request, 'checkout/checkout.html', context) def checkout_success(request, order_number): """ Handle successful checkouts """ save_info = request.session.get('save_info') order = get_object_or_404(Order, order_number=order_number) if request.user.is_authenticated: profile = UserProfile.objects.get(user=request.user) # Attach the user's profile to the order order.user_profile = profile order.save() # Save the user's info if save_info: profile_data = { 'default_phone_number': order.phone_number, 'default_country': order.country, 'default_postcode': order.postcode, 'default_city': order.city, 'default_address1': order.address1, 'default_address2': order.address2, } user_profile_form = UserProfileForm(profile_data, instance=profile) if user_profile_form.is_valid(): user_profile_form.save() messages.success(request, f'Order successfully processed! \ Your order number is {order_number}. A confirmation \ email will be sent to {order.email}.') if 'basket' in request.session: del request.session['basket'] template = 'checkout/checkout_success.html' context = { 'order': order, } return render(request, template, context)
[ "ralphr@outlook.com" ]
ralphr@outlook.com
cdba20bfe148ff4fafae0bdf0cd76f543d590cb8
50b2f16f0fcd2d0f1b54471dcc9604e87b401b25
/core/lib/datetime_converters.py
f1627c6c8cfc4f6ce7bb39fa811df0832cabee5b
[]
no_license
nickmatsnev/CRMCars
cf5ca47f5adce8e951386f2bad5d58305a638443
f99ccfa392ac5769b707239ac73ab0fdeb010d8a
refs/heads/master
2023-08-03T14:15:36.253308
2019-08-23T21:02:47
2019-08-23T21:02:47
411,224,903
0
0
null
null
null
null
UTF-8
Python
false
false
699
py
from datetime import datetime from core.lib.constants import BASE_DATE from core.lib.constants import BASE_DATETIME def datetime_converter(input): if input is None: my_datetime = BASE_DATETIME else: my_datetime = input ret = datetime.strptime(my_datetime, '%Y-%m-%d %H:%M:%S') return ret.__str__() def date_converter(input): if input is None: date = BASE_DATE else: date = input try: ret = datetime.strptime(date, '%Y-%m-%d').date() except: try: ret = datetime.strptime(date, '%d.%m.%Y').date() except: ret = datetime.strptime(input, '%Y-%m-%d %H:%M:%S') return ret.__str__()
[ "moalexv@mail.ru" ]
moalexv@mail.ru
2e69daa7c245f25b1a0ca826480e3e6a788c0129
3ca33805ab72db091c27372d7e6e7f0d982d43cd
/argux_server/trigger/__init__.py
aa0eaa86d1e64a3ac54e60da716c73c2ff98f6ef
[ "Apache-2.0" ]
permissive
gitter-badger/server-4
f239abf489c0d4d716b269104abaf0af2f07a130
07b6d4d4c5f58f8259179426feac6bf8b40dea52
refs/heads/master
2021-01-21T03:22:26.550105
2016-05-25T10:32:38
2016-05-25T10:32:38
59,810,905
0
0
null
2016-05-27T06:47:33
2016-05-27T06:47:33
null
UTF-8
Python
false
false
941
py
"""Trigger Module for Worker-Class.""" from threading import ( Thread ) import time from sqlalchemy.orm import ( sessionmaker ) from argux_server.dao import DAO class TriggerWorker(Thread): """ TriggerWorker class. Evaluates all triggers and creates alert objects. """ def __init__(self): super(TriggerWorker, self).__init__() self.daemon = True def run(self): Session = sessionmaker() session = Session() dao = DAO(session) """Thread body.""" while True: # Run once a minute. triggers = dao.trigger_dao.get_all_triggers() for trigger in triggers: dao.trigger_dao.evaluate_trigger(trigger) session.flush() session.commit() try: time.sleep(10) except KeyboardInterrupt: self.stop() session.close()
[ "stephan@xfce.org" ]
stephan@xfce.org
336ed3e2e152a0f3a8a294dc2ecd0844ae2d4408
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/bps_cs22891-188/sdB_bps_cs22891-188_coadd.py
07aa8963d07237f7852743287c0b29cf1dfe6704
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
447
py
from gPhoton.gMap import gMap def main(): gMap(band="NUV", skypos=[293.160958,-60.760281], skyrange=[0.0333333333333,0.0333333333333], stepsz = 30., cntfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdBs/sdB_bps_cs22891-188/sdB_bps_cs22891-188_movie_count.fits", cntcoaddfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdB/sdB_bps_cs22891-188/sdB_bps_cs22891-188_count_coadd.fits", overwrite=True, verbose=3) if __name__ == "__main__": main()
[ "thomas@boudreauxmail.com" ]
thomas@boudreauxmail.com
da5074200b2a4fd42fd0f6dbb7664cb97e9e57cc
fd12e9ad5a78be7cc10776ab4beb88c6c2cc37a8
/testproject/testproject/settings.py
088ec853dd549f523fd7c0218cfe62f9355f1866
[ "BSD-3-Clause" ]
permissive
squarepegsys/django-sass
5467752c70ef8c088a4609dc50d193390a27a769
3e5b59a5f7f79a283efa77ba1d6d189ce4b1abba
refs/heads/master
2022-11-27T05:18:49.491716
2020-08-01T19:31:16
2020-08-01T19:31:16
284,320,948
0
0
null
2020-08-01T18:55:48
2020-08-01T18:55:47
null
UTF-8
Python
false
false
2,619
py
""" Django settings for testproject project. Generated by 'django-admin startproject' using Django 2.2.1. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '-_wl=tq26(*wyvfza+ncg_436c53pu81d=07j62+vm5y2pc)f^' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'app1', 'app2', 'django_sass', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'testproject.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'testproject.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
[ "salvino@coderedcorp.com" ]
salvino@coderedcorp.com
98cc6ae66252911a9e33c16162428f6939d9e972
5705ea1ee285738a7176831d08707039977a1283
/mockserver/settings.py
3681ff27df14e5aca76a90e5416f542f39793c0d
[]
no_license
officina/vortice-mock
70d1c87734529210df5c30876d551a2c7e81f346
03cfdb68f17196abfa786e996c02bbbcb0171fac
refs/heads/master
2020-03-17T11:56:21.833831
2018-06-20T16:16:44
2018-06-20T16:16:44
133,569,638
0
0
null
null
null
null
UTF-8
Python
false
false
3,242
py
""" Django settings for mockserver project. Generated by 'django-admin startproject' using Django 2.0.5. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ from devicesim.apps import DevicesimConfig import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'e=cj_2*sxs8h5q*ebodak=!3kl+jv^qz5d76nj5es%3c1iy)-s' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ["*"] # Application definition INSTALLED_APPS = [ 'devicesim.apps.DevicesimConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', #'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mockserver.urls' PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__)) TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mockserver.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/'
[ "andrea.maschio@gmail.com" ]
andrea.maschio@gmail.com
5d78979a0c009d521bcec91337e3895092584f07
48e58e60489ddaef6aa40c7ade5f5891269babe6
/lib/plotting.py
944e9e2cc5ed6b6ba4515babd5cfa41ce65d8c9c
[]
no_license
jsonbao/adults-dataset-machinelearning
7a552fd9f77074434380f1da4bbcfbec061aae3d
dd87d0a83fe357bd1474c8ea8160f0a77df42693
refs/heads/master
2020-12-29T00:59:10.237349
2016-05-02T04:24:20
2016-05-02T04:24:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,145
py
import numpy as np import matplotlib.pyplot as plt def bar_graph(title, name1,name2,name3, x_data,y_data, maxy=None,ylabel=None): #Create values and labels for bar chart values = y_data inds = x_data labels = [name1,name2,name3] #Plot a bar chart plt.figure(1, figsize=(6,4)) #6x4 is the aspect ratio for the plot plt.bar(inds, values, align='center') #This plots the data plt.grid(True) #Turn the grid on plt.ylabel(ylabel) #Y-axis label plt.xlabel("Method") #X-axis label plt.title(ylabel +" vs Method - " +title) #Plot title plt.xlim(0.5,3.5) #set x axis range plt.ylim(0,maxy) #Set yaxis range #Set the bar labels plt.gca().set_xticks(inds) #label locations plt.gca().set_xticklabels(labels) #label values #Make sure labels and titles are inside plot area plt.tight_layout() #Save the chart plt.savefig("./Figures/"+title+ylabel+"_bar_chart.pdf") #Displays the charts. #You must close the plot window for the code following each show() #to continue to run #plt.show() ##clear graph fpr next set plt.clf() def line_graph_alpha_error(title, name1,name2,name3, x_data,y_data,maxy=None,ylabel=None): #Create values and labels for line graphs values = y_data inds = x_data labels =[name1,name2,name3] flatteny = reduce(list.__add__, (list(mi) for mi in y_data)) #Plot a line graph plt.figure(2, figsize=(6,4)) #6x4 is the aspect ratio for the plot plt.plot(inds,values[0],'or-', linewidth=3) #Plot the first series in red with circle marker plt.plot(inds,values[1],'sb-', linewidth=3) #Plot the first series in blue with square marker plt.plot(inds,values[2],'^g-', linewidth=3) #Plot the first series in gren with ^ marker #This plots the data plt.grid(True) #Turn the grid on plt.ylabel("Error") #Y-axis label plt.xlabel("alpha Values") #X-axis label plt.title("Error vs alpha Value - " +title) #Plot title plt.xlim(-1,max(x_data)*1.1) #set x axis range plt.ticklabel_format(style='sci', axis='x') plt.ylim(0,max(flatteny)*1.1) #Set yaxis range plt.legend(labels,loc="best") #Make sure labels and titles are inside plot area plt.tight_layout() #Save the chart plt.savefig("./Figures/"+title+"_line_plot.pdf") #Displays the plots. #You must close the plot window for the code following each show() #to continue to run ##plt.show() ##clear graph fpr next set plt.clf() def plot_img_array(B,patch_size,grey=False): #This function displays the first 100 elements of an image patch bases. #B is expected to have shape (N,Q) where Q = H*W*3, where H = patch_size[0], and #W=patch_size[1]. Each row of B is converted to a (HxWx3) array, scaled to be positive, #and then displayed as an image. S = min(10,np.ceil(np.sqrt(B.shape[0]))) N = min(100,B.shape[0]) for i, comp in enumerate(B[:N]): plt.subplot(S, S, i + 1) comp=comp-min(comp.flatten()) comp=comp/max(comp.flatten()) if(grey==False): plt.imshow(comp.reshape((patch_size[0],patch_size[1],3)),interpolation="nearest") else: plt.imshow(comp.reshape((patch_size[0],patch_size[1])),interpolation="nearest",cmap='gray') plt.xticks(()) plt.yticks(())
[ "yongbin999@gmail.com" ]
yongbin999@gmail.com
1dbbb51e92472953d51cab51bc50828513d980ab
7a3c7778855cca805aebd56bf9d4599ebcc3afb6
/overhead.py
a4e06d036fff72e2ba7b4bb7357d68790d64e794
[ "MIT" ]
permissive
hcooper/overhead
b95ed1afc86ba47c059bcdce82aef3c5183fcf1f
ddd73acd71ae375fb2b9206760fdf6da1e527852
refs/heads/master
2020-03-20T08:48:54.598092
2019-12-17T07:54:33
2019-12-17T07:54:33
137,319,394
2
0
null
null
null
null
UTF-8
Python
false
false
4,356
py
#!/usr/bin/env python3 import csv import json import re from typing import List import requests class Aircraft(object): """ Object to hold details of a particular aircraft """ def __init__(self, track, model, orig, dest, flight_no): self.track = track self.model_code = model self.orig = orig self.dest = dest self.flight_no = flight_no @property def orig_speech(self): return airports.get(self.orig, " ".join(self.orig)).replace( " International Airport", "" ) @property def dest_speech(self): return airports.get(self.dest, " ".join(self.dest)).replace( " International Airport", "" ) @property def airline(self): return airlines.get(self.airline_code, " ".join(self.airline_code)) @property def airline_code(self): return self.flight_no[:2] @property def model_name(self): return models.get(self.model_code, self.model_code) @property def direction(self): return track_to_direction(self.track) @property def model_speech(self): return model_to_speech(self.model_name) @property def direction_arrow(self): return track_to_direction(self.track, True) def track_to_direction(track, arrow=False): """ For a heading in degrees, return a compass direction """ if track >= 338 or track <= 22: return "↑" if arrow else "north" if track >= 23 and track <= 67: return "↗" if arrow else "north-east" if track >= 68 and track <= 112: return "→" if arrow else "east" if track >= 113 and track <= 157: return "↘" if arrow else "south-east" if track >= 158 and track <= 202: return "↓" if arrow else "south" if track >= 203 and track <= 247: return "↙" if arrow else "south-west" if track >= 248 and track <= 292: return "←" if arrow else "west" if track >= 293 and track <= 337: return "↖" if arrow else "north-west" def model_to_speech(model: str) -> str: """ Covert the model name into a format which makes text-to-speech engines pronounce it realisticly, e.g. Boeing 737-400 --> Boeing 7 3 7 400 Airbus A319 --> Airbus A 3 19 """ if model == "unmatched": return "Unmatched aircraft" if model == "De Havilland Canada DHC-8-400 Dash 8Q": return "Bombardier Dash 8 Q400" res = re.match("(.*) A?(.{3})-?(.{3})?", model) if res: if res.group(1) == "Boeing": resp = "A Boeing " + " ".join(res.group(2)) if res.group(3): resp += " " + res.group(3) return resp if res.group(1) == "Airbus": resp = "An Airbus A 3 " + res.group(2)[1:] if res.group(3): resp += " " + res.group(3) return resp return model # it's a model we don't have a custom lexicon for def get_aircrafts(bounds: str) -> List[Aircraft]: url = ( "https://data-live.flightradar24.com/zones/fcgi/feed.js?bounds={}" "&faa=1&mlat=1&flarm=1&adsb=1&gnd=1&air=1&vehicles=1&estimated=1&maxage=14400&gliders=1&stats=1" ).format(bounds) headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:60.0) Gecko/20100101 Firefox/60.0" } data = json.loads(requests.get(url, headers=headers).text) for f in ["full_count", "version", "stats"]: data.pop(f) # strip unwanted fields return [Aircraft(v[3], v[8], v[11], v[12], v[13]) for v in data.values()] # There's bound to be a better way to do this than using globals. global models models = {id2: name for name, id1, id2 in list(csv.reader(open("planes.dat")))} global airports airports = {a["iata"]: a["name"] for a in json.loads(open("airports.json").read())} global airlines airlines = {a["iata"]: a["name"] for a in json.loads(open("airlines.json").read())} if __name__ == "__main__": bounds = "51.72,51.44,-0.59,0.34" # Central London for aircraft in get_aircrafts(bounds): print( "{:<3}->{:<3} {:<6} {:<1} ({})".format( aircraft.orig, aircraft.dest, aircraft.flight_no, aircraft.direction_arrow, aircraft.model_name, ) )
[ "coops@fawk.eu" ]
coops@fawk.eu
63dc625a4015936f64d30995ee0d8ba96e695ffb
ff8bd1967aeb66ffec17c3ae78102c168414761a
/PythonIntroduction/FlowControl/For/sumofitems.py
a8ccfad115b90247fc45b425f5fb140b3c8e07b3
[]
no_license
charan2108/Pythondirectories
d5cbec41db0685bbfc41a3135edc3e41fd223474
30b4a9f9171fe2295efbf12cbf9cbcf88bdf29b3
refs/heads/master
2023-03-28T03:29:25.039491
2021-03-29T02:45:19
2021-03-29T02:45:19
352,484,535
0
0
null
null
null
null
UTF-8
Python
false
false
99
py
product_cost = [1000, 3000, 5000] sum = 0 for i in product_cost: sum =(sum + i) print(sum)
[ "sumacharan.adabala@gmail.com" ]
sumacharan.adabala@gmail.com
1d13978884bc27abab748785e5b1509cb1d641ab
b0b904a2ac11f1e3e3e9c7f1832a262be4bf1120
/Raspberry Pi/Tests/test_obd2_stats.py
0e1aad24c3a4d76e09f955cb0080b41f276862eb
[]
no_license
aschuldhaus/SmartAVL
8e3ab6de852ecbae8529b3751f977974d32fd7de
6f2e3e5acc2a7cad890d97228d91f2affd8f21d7
refs/heads/master
2020-04-19T13:32:11.609947
2019-04-12T21:06:59
2019-04-12T21:06:59
168,220,068
0
1
null
2019-04-11T05:27:13
2019-01-29T20:04:34
Java
UTF-8
Python
false
false
1,475
py
# Unit tests for obd2_stats.py import unittest import can import sys sys.path.append("..") from obd2_stats import * class TestOBD2Stats(unittest.TestCase): def test_extract_speed(self): msg = can.Message(arbitration_id=OBD2_RESPONSE_ID, data=[0x06, 0x41, PID_SPEED, 0x19, 0x00, 0x00, 0x00, 0x00]) self.assertEqual(extract_speed(msg), 0x19) def test_extract_rpm(self): msg = can.Message(arbitration_id=OBD2_RESPONSE_ID, data=[0x06, 0x41, PID_RPM, 0x0c, 0xda, 0x00, 0x00, 0x00]) self.assertEqual(extract_rpm(msg), 0xcda / 4) def test_extract_distance_since_clear(self): msg = can.Message(arbitration_id=OBD2_RESPONSE_ID, data=[0x06, 0x41, PID_DISTANCE_SINCE_CLEAR, 0xff, 0x3a, 0x00, 0x00, 0x00]) self.assertEqual(extract_distance_since_clear(msg), 0xff3a) def test_extract_monitor_status_light_off(self): msg = can.Message(arbitration_id=OBD2_RESPONSE_ID, data=[0x06, 0x41, PID_MONITOR_STATUS, 0x00, 0x07, 0xe5, 0x00, 0x00]) self.assertEqual(extract_monitor_status(msg), 0) def test_extract_monitor_status_light_on(self): msg = can.Message(arbitration_id=OBD2_RESPONSE_ID, data=[0x06, 0x41, PID_MONITOR_STATUS, 0x80, 0x07, 0xe5, 0x00, 0x00]) self.assertEqual(extract_monitor_status(msg), 1) if __name__ == "__main__": unittest.main()
[ "snickerless1@shaw.ca" ]
snickerless1@shaw.ca
883acf8289e01f3d452d04feeb7202efdfcc7732
147b34b565341789530ece3a953dbdc16cbd6f66
/note/migrations/0010_auto_20191124_1026.py
76c8c1462de994e382477d67ed4bdbebb38da87f
[]
no_license
robakrobak/NOTE_APP
8bfdfb291fb092e4033190e21f7799ad3e88239d
e95c1ecb8c3e2bc3364cb83b17f7295aee7aa307
refs/heads/master
2023-08-09T10:46:19.440507
2020-03-14T19:09:04
2020-03-14T19:09:04
216,201,521
1
2
null
2023-07-22T19:12:38
2019-10-19T12:17:25
Python
UTF-8
Python
false
false
379
py
# Generated by Django 2.2 on 2019-11-24 09:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('note', '0009_auto_20191123_1513'), ] operations = [ migrations.AlterField( model_name='note', name='title', field=models.CharField(max_length=128), ), ]
[ "robakrobak@protonmail.com" ]
robakrobak@protonmail.com
39d4d774d2f72b80c2fc6dc86b1a82206de45e67
99f053c883bc610031c037fc1b038f41408acc7d
/cryptolite/keys.py
a6e7254bc563a764b716c3c03365e8027d4d1f3f
[ "MIT" ]
permissive
davidcarboni/cryptolite-python
55755f4d8ee31475670b92e2c3e741790e84cded
e40ce2f9584fdd9015caad9bf443a50201df743a
refs/heads/master
2020-03-14T17:58:35.238920
2018-05-02T17:37:28
2018-05-02T17:37:28
131,732,325
0
0
null
null
null
null
UTF-8
Python
false
false
7,070
py
""" Generates cryptographic keys. Key types --------- * Secret keys (either randomly generated or deterministic, based on a password). * Public-Private key pairs. How to use keys --------------- * Secret keys are used for encryption (see Crypto). * Secret keys are also used to secure other secret keys and private keys (see KeyWrapper) * Public-Private keys are used for digital signatures (see DigitalSignature). * Public-Private keys are also used for key exchange (see KeyExchange). Managing encryption keys ------------------------ A good applied cryptography design is all about how you manage secrets: keys and passwords. Assuming you're using primitives correctly (that's what Cryptolite does for you) then it'll be all about your key management design. Here are some examples, based on using secret keys to encrypt user data, to give you a primer on the things you'll want to consider when designing with encryption. In these examples, we're choosing between random and deterministic (password-based) keys. Deterministic key design ------------------------ Deterministic keys are the easiest to manage as you don't need to store the key itself. Providing the password used to generate the key is properly managed and is available when you need access to the key, the key can be reliably regenerated each time. The drawback is that if you want to generate more than one key you'll need more than one password. However, if you do only need one key, this approach can be ideal as you could use, say, the user's plaintext password to generate the key. You never store a user's plaintext password (see ``password.hash``) so the right key can only be generated when the user logs in. Bear in mind however that if the user changes (or resets) their password this will generate a different key, so you'll need a plan for recovering data encrypted with the old key and re-encrypting it with the new one. Random key design ----------------- Random keys are simple to generate, but need to be stored because there's no way to regenerate the same key. To store a key you can use ``key_wrapper.wrapSecretKey()``. This encrypts the key which means it can be safely stored in, for example, a database or configuration value. The benefit of the ``key_wrapper`` approach is that when a user changes their password you'll only need to re-encrypt the stored keys using a new ``key_wrapper`` initialised with the new password, rather than have to re-encrypt all data that was encrypted with a key generated based on the user's password (as in a deterministic design). Password recovery and reset --------------------------- In both designs, when a user changes their password you will have the old and the new plaintext passwords, meaning you can decrypt with the old an re-encrypt with the new. The difficulty comes when you need to reset a password, because it's not possible to recover the old password, so you can't recover the encryption key either. In this case you'll either need a backup way to recover the encryption key, or you'll need to be clear that data cannot be recovered at all. Whatever your solution, remember that storing someone's password in any recoverable form is not OK, so you'll need to put some thought into the recovery process. """ import os from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives import hashes from cryptography.hazmat.backends import default_backend from cryptolite import byte_array __author__ = "David Carboni" backend = default_backend() # Please treat the following values as constants. # They are implemented as variables just in case you do need to alter them. # These are the settings that provide "right" cryptography so you'll need to # know what you're doing if you want to alter them. """The secret key algorithm.""" SYMMETRIC_ALGORITHM = "AES" """The key size for secret keys.""" SYMMETRIC_KEY_SIZE = 256 """The algorithm to use to generate password-based secret keys.""" SYMMETRIC_PASSWORD_ALGORITHM = "PBKDF2WithHmacSHA1" """The number of iteration rounds to use for password-based secret keys.""" SYMMETRIC_PASSWORD_ITERATIONS = 1024 """The public-private key pair algorithm.""" ASYMMETRIC_ALGORITHM = "RSA" """The key size for public-private key pairs.""" ASYMMETRIC_KEY_SIZE = 4096 def new_secret_key(): """ Generates a new secret (also known as symmetric) key for use with AES. The key size is determined by SYMMETRIC_KEY_SIZE. :return: A new, randomly generated secret key. """ # FYI: AES keys are just random bytes from a strong source of randomness. return os.urandom(SYMMETRIC_KEY_SIZE // 8) def generate_secret_key(password, salt): """ Generates a new secret (or symmetric) key for use with AES using the given password and salt values. Given the same password and salt, this method will always (re)generate the same key. :param password: The starting point to use in generating the key. This can be a password, or any suitably secret string. It's worth noting that, if a user's plaintext password is used, this makes key derivation secure, but means the key can never be recovered if a user forgets their password. If a different value, such as a password hash is used, this is not really secure, but does mean the key can be recovered if a user forgets their password. It's all about risk, right? :param salt: A value for this parameter can be generated by calling ``generate.salt()``. You'll need to store the salt value (this is ok to do because salt isn't particularly sensitive) and use the same salt each time in order to always generate the same key. Using salt is good practice as it ensures that keys generated from the same password will be different - i.e. if two users use the password, having a salt value avoids the generated keys being identical which might give away someone's password. :return: A deterministic secret key, defined by the given password and salt """ if password is None: return None salt_bytes = bytes(byte_array.from_base64(salt)) key_generator = PBKDF2HMAC( algorithm=hashes.SHA256(), length=SYMMETRIC_KEY_SIZE // 8, salt=salt_bytes, iterations=SYMMETRIC_PASSWORD_ITERATIONS, backend=backend ) password_bytes = password.encode("utf-8") return key_generator.derive(password_bytes) def new_key_pair(): """ Generates a new public-private (or asymmetric) key pair for use with ASYMMETRIC_ALGORITHM. The key size will be ASYMMETRIC_KEY_SIZE bits. :return: A new, randomly generated asymmetric key pair. """ return rsa.generate_private_key( public_exponent=65537, key_size=ASYMMETRIC_KEY_SIZE, backend=default_backend() )
[ "david@carboni.io" ]
david@carboni.io
3538b2cbe981187259b70a05a0484c14cde4e479
f04eed5e6c4499d22fb8e339667267aa59c8dfc7
/6.00.1x Files/ssss.py
557a28808dc8539dcba5391d3ddb6bb6e2877169
[ "Giftware" ]
permissive
shanjgit/previous-work
4ca7e29e231498891752307ba4b04c9726f0eb67
664cc40bd0b97e3adc10f551e18a4a7a62e5a760
refs/heads/master
2021-01-19T20:02:57.744302
2017-08-24T17:57:55
2017-08-24T17:57:55
101,217,213
2
0
null
null
null
null
UTF-8
Python
false
false
516
py
s = 'cqbauathqiqwovzvfx' a = 'abcdefghijklmnopqrstuvwxyz' l1, M = "", "" for i in range(len(s)-1): alph = s[i] beta = s[i+1] if l1 =='': l1 = l1+alph if a.index(alph)<=a.index(beta): l1 = l1+beta if i == len(s)-2 and len(l1)>len(M): M = l1 elif a.index(alph)>a.index(beta): if len(l1)>len(M): M = l1 l1 = '' print 'Longest substring in alphabetical order is:',M
[ "noreply@github.com" ]
shanjgit.noreply@github.com
3e778c892e35ddad7a0a39bc1c5cfc6b2b2aecfa
9228193701e92d841e2f2b6f56418cf561ecf159
/python/system.py
cecb157dc9094fa91594217db01890f9ee704237
[]
no_license
tberrueta/MPPI_Rat
6ff4f7302d6458ff7490478334edd7f0df66fba1
ccc6814c8fcd497bc3fc34629fba504c09003231
refs/heads/master
2023-01-01T01:43:26.801829
2020-10-24T15:15:49
2020-10-24T15:15:49
306,904,822
0
0
null
null
null
null
UTF-8
Python
false
false
1,116
py
from utils import * def diff_drive(x,u): xvel = [u[0]*np.cos(x[2]), u[0]*np.sin(x[2]), u[1]] return np.array(xvel).flatten() def single_int(x,u): xvel = [u[0], u[1]] return np.array(xvel).flatten() def quadratic_objective(xvec,uvec,xdes=None,Q=None,R=None): if Q is None: Q = np.eye(xvec.shape[0]) if R is None: R = np.eye(uvec.shape[0]) if xdes is None: xd = np.zeros(xvec.shape) elif len(xdes.shape) == 1: xd = np.repeat(xdes.reshape(-1,1),xvec.shape[1],axis=1) c = 0 for i in range(xvec.shape[1]): c+=(xvec[:,i]-xd[:,i]).dot(Q).dot((xvec[:,i]-xd[:,i]).T) + uvec[:,i].dot(R).dot(uvec[:,i].T) return c def rattling_objective(xvec, uvec, dt=0.05, w1=1, w2=1, coord_fun=None, w_sz=20, ov=1, xdes=None, Q=None, R=None): c = w1*quadratic_objective(xvec,uvec,xdes,Q,R) if coord_fun is None: r = rattling_windows(xvec.T, dt, w_sz, ov)[0] c += w2*np.mean(r) else: r = rattling_windows(coord_fun(xvec).T, dt, w_sz, ov)[0] c += w2*np.mean(r) return c
[ "tberrueta@github.com" ]
tberrueta@github.com
9101fca3a8ea3a3c2c454d385594c8825fe66392
da865ba713a95ca0d4d900c974d6952661c5d24e
/exercises/spark/logistic_regression.py
3a90b948dddc24ab03ee9588287350719d152b08
[]
no_license
tonellotto/cloud-computing
7befe5f28ec7e6a61a00dec41c1c4168b79a0c9b
71d566f9a5ba18575f7de60638f9a2f6b5ba2bf7
refs/heads/master
2022-08-21T18:50:35.381207
2021-05-04T12:14:40
2021-05-04T12:14:40
253,494,101
14
15
null
2022-08-11T21:16:57
2020-04-06T12:41:43
Jupyter Notebook
UTF-8
Python
false
false
1,352
py
""" A logistic regression implementation that uses NumPy (http://www.numpy.org) to act on batches of input data using efficient matrix operations. """ import sys from random import random from operator import add import numpy as np ### We need to install numpy on all nodes with sudo!!!! from pyspark import SparkContext D = 10 # Number of dimensions def readPoint(line): return np.fromstring(line, dtype=np.float32, sep=' ') if __name__ == "__main__": if len(sys.argv) != 3: print("Usage: logistic_regression <file> <iterations>", file=sys.stderr) sys.exit(-1) master = "yarn" sc = SparkContext(master, "LogisticRegression") points = sc.textFile(sys.argv[1]).filter(lambda line: len(line) > 0).map(readPoint).cache() iterations = int(sys.argv[2]) # Initialize w to a random value w = 2 * np.random.ranf(size=D) - 1 print("Initial w: " + str(w)) def gradient(point): y = point[0] x = point[1:] # For each point (x, y), compute gradient function, then sum these up return ((1.0 / (1.0 + np.exp(-y * x.dot(w))) - 1.0) * y * x.T) def add(x, y): x += y return x for i in range(iterations): print("On iteration %i" % (i + 1)) w -= points.map(lambda point: gradient(point)).reduce(add) print("Final w: " + str(w))
[ "nicola.tonellotto@gmail.com" ]
nicola.tonellotto@gmail.com
9b6b75c1c908ce3bb942074888acb287dbebe9ed
21f9090b4f6d6d73ccfd17f3982b75870bee4a57
/center_sys/account/form.py
58cb1e76110acaadcc79e508e952d7164d6fa96b
[]
no_license
tmars/DS_CW
a41aaf181518d4ba066fe33d90eaad4c84df6bcf
36ae1da8319c51988ad16975762d2a5d211ffeb2
refs/heads/master
2016-09-05T22:59:03.075915
2014-05-29T20:55:10
2014-05-29T20:55:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
#coding=utf8 from django import forms class LoginForm(forms.Form): username = forms.CharField(max_length=50, label='Имя пользователя') password = forms.CharField(max_length=50, label='Пароль') username.widget.attrs['class'] = 'form-control' password.widget.attrs['class'] = 'form-control'
[ "mtalipov@DD_MOS_IT_23.hcredit.local" ]
mtalipov@DD_MOS_IT_23.hcredit.local
e6ece6f7e93e27a090427560e839962053487eb3
15c5419733fd45a7798bf74b59e461da7866b391
/tutes-and-labs/week5lab-text_server.py
3bcb95abc1b5289e3be69bc751963e47f1778152
[]
no_license
Kennyhcto/cs1010-21t2
a7314632ed8b9924cb831a419c792e64fd1ea6cc
fae8ecc99a45bfcb08c943bcf4222fdcf974c7e1
refs/heads/main
2023-07-16T05:21:20.031026
2021-08-20T02:26:07
2021-08-20T02:26:07
398,131,492
0
0
null
2021-08-20T02:25:41
2021-08-20T02:25:40
null
UTF-8
Python
false
false
1,323
py
from flask import Flask, request from pyhtml import html, title, body, label, p, table, tr, td, strong, head, form, input_ import string app = Flask(__name__) @app.route('/') def main(): code = html( head( title("Text Server") ), body( form(action="analyse") ( input_(type="text", name="text"), input_(type="Submit", value="Analyse Text") ) ) ) return str(code) @app.route('/analyse', methods=["POST"]) def analyse_text(): #print(f"{request.form=}") #print(f"all punctuation characters: {string.punctuation}") text = request.form['text'] num_characters = len(text) num_punc = 0 for character in text: if character in string.punctuation or \ character in string.whitespace: num_punc += 1 num_letters = num_characters - num_punc words = text.split() code = html( head( title("First PyHTML Program") ), body( p(f"Your text: {text}"), p(f"Number of characters: {num_characters}"), p(f"Number of letters: {num_letters}"), p(f"Number of words: {len(words)}") ) ) return str(code) if __name__ == "__main__": app.run(debug=True)
[ "s.mautner@unsw.edu.au" ]
s.mautner@unsw.edu.au
9f68b1dfa8525979e01314b634254a27ed0f300d
87fb1775654e4367820e7f421ab4e8e151b15a68
/utils/config_utils.py
b5e6f502f6b5f47f3e95e43481e6188eb910911a
[]
no_license
Walleclipse/AGPC
20dab082f9d4e30c2f06e6b06b6e8235561bea45
126bc75ca5dae1d60590d48ee4d071e7cdbd5077
refs/heads/master
2023-03-31T22:20:58.437731
2019-12-17T14:45:11
2019-12-17T14:45:11
189,249,804
35
7
null
2023-03-24T22:30:16
2019-05-29T15:13:48
Python
UTF-8
Python
false
false
3,785
py
def get_pcgn_model_config(config): encode_num_layers = config["encoder"]["num_layers"] encode_num_units = config["encoder"]["num_units"] encode_cell_type = config["encoder"]["cell_type"] encode_bidir = config["encoder"]["bidirectional"] attn_num_units = config["decoder"]["attn_num_units"] decode_num_layers = config["decoder"]["num_layers"] decode_num_units = config["decoder"]["num_units"] decode_cell_type = config["decoder"]["cell_type"] use_user_feat = config["user_profile"]["use_user_feat"] use_gate_memory = config["user_profile"]["use_gate_memory"] use_user_desc = config["user_profile"]["use_user_desc"] use_blog_user_coattn = config["user_profile"]["use_blog_user_coattn"] use_external_desc_express = config["user_profile"]["use_external_desc_express"] use_external_feat_express = config["user_profile"]["use_external_feat_express"] user_feat_dim = config["user_profile"]["user_feat_dim"] user_feat_unit = config["user_profile"]["user_feat_unit"] user_feat_mem_unit = config["user_profile"]["user_feat_mem_unit"] desc_rnn_unit = config["user_profile"]["desc_rnn_unit"] desc_attn_num_units = config["user_profile"]["desc_attn_num_units"] user_map_unit = config["user_profile"]["user_map_unit"] return (encode_num_layers, encode_num_units, encode_cell_type, encode_bidir, attn_num_units, decode_num_layers, decode_num_units, decode_cell_type, use_user_feat,use_gate_memory,use_user_desc,use_blog_user_coattn, use_external_desc_express,use_external_feat_express, user_feat_dim,user_feat_unit,user_feat_mem_unit, desc_rnn_unit,desc_attn_num_units,user_map_unit, ) def get_pcgn_training_config(config): train_file = config["training"]["train_file"] dev_file = config["training"]["dev_file"] source_max_length = config["training"]["source_max_length"] target_max_length = config["training"]["target_max_length"] desc_max_length = config["training"]["desc_max_length"] gpu_fraction = config["training"]["gpu_fraction"] gpu_id = config["training"]["gpu_id"] train_steps = config["training"]["train_steps"] # 最大训练步数 checkpoint_every = config["training"]["checkpoint_every"] # 保存模型的步数 print_every = config["training"]["print_every"] # 打印信息 batch_size = config["training"]["batch_size"] is_beam_search = False beam_size = 1 infer_max_iter = config["training"]["infer_max_iter"] l2_regularize = config["training"]["l2_regularize"] learning_rate = config["training"]["learning_rate"] max_checkpoints = config["training"]["max_checkpoints"] # 最大保留模型的个数 max_gradient_norm = config["training"]["max_gradient_norm"] # 最大保留模型的个数 return (train_file, dev_file, source_max_length, target_max_length, desc_max_length, gpu_fraction, gpu_id, train_steps, checkpoint_every, print_every, batch_size,is_beam_search,beam_size,infer_max_iter, l2_regularize,learning_rate,max_checkpoints,max_gradient_norm, ) def get_pcgn_infer_config(config): is_beam_search = config["inference"]["is_beam_search"] beam_size = config["inference"]["beam_size"] batch_size = config["inference"]["infer_batch_size"] infer_file = config["inference"]["infer_file"] infer_source_max_length = config["inference"]["infer_source_max_length"] infer_target_max_length = config["inference"]["infer_target_max_length"] infer_desc_max_length = config["inference"]["infer_desc_max_length"] infer_max_iter = config["inference"]["infer_max_iter"] output_path = config["inference"]["output_path"] gpu_fraction = config["training"]["gpu_fraction"] gpu_id = config["training"]["gpu_id"] return (infer_file, batch_size,is_beam_search, beam_size, infer_source_max_length, infer_target_max_length,infer_desc_max_length,infer_max_iter, output_path, gpu_fraction, gpu_id)
[ "abduwali54@163.com" ]
abduwali54@163.com
c9c2a1f4c8d2769981c22ebce87a57a84cb69346
50d74779d4a89db7ed0cc0d08452a65a76f84e93
/directory_analyzer.py
2aee995593eb8413598c451b3d8b96b2f7e4419b
[ "MIT" ]
permissive
sayanm-10/py-modules
1db83f66a64b2127fa03c5756af7a42f57df2715
67a55f7650752bbe7b145510363b45cbb2b8f9cb
refs/heads/master
2020-04-02T22:43:14.140376
2018-10-26T20:30:38
2018-10-26T20:30:38
154,842,247
0
0
null
null
null
null
UTF-8
Python
false
false
2,058
py
import os from prettytable import PrettyTable def print_dir_summary(dir_path): ''' given a directory name, searches that directory for Python files and summarises - the file name - the total number of lines in the file - the total number of characters in the file - the number of Python functions (lines that begin with 'def ') - you should include class methods in the number of functions - the number of Python classes (lines that begin with 'class ') ''' try: py_files = [f for f in os.listdir(path=dir_path) if f.endswith('.py')] except FileNotFoundError: print("System cannot find the path specified", dir_path) else: if len(py_files) > 0: print("\nSummary for", dir_path) pt = PrettyTable(field_names=['File Name', 'Classes', 'Functions', 'Lines', 'Characters']) for f in py_files: try: fp = open(f, 'r') except PermissionError: pt.add_row([f, 'NA', 'NA', 'NA', 'NA']) else: classes, functions, lines, chars = analyze_file(fp) pt.add_row([f, classes, functions, lines, chars]) print(pt) print("\n* NA denotes that file could not be read due to permission error.") else: print("No .py files found in", dir_path) def analyze_file(fp): ''' given a filepointer returns a list containing number of classes, number of functions, number of lines and number of chars in the file''' with fp: line_count = 0 char_count = 0 function_count = 0 class_count = 0 for line in fp: line_count += 1 char_count += len(line) if line.lstrip().startswith('def '): function_count += 1 if line.lstrip().startswith('class '): class_count += 1 return class_count, function_count, line_count, char_count
[ "sayan.mukherjee108@gmail.com" ]
sayan.mukherjee108@gmail.com
beac57a4cdfe2c9cfb783294e1d1516bb67d8896
1b66eaff887c73b69a0ae6a0c498f211fb3dc44d
/DeepLearningNLP/tensorflowRNN.py
9bf917f40593dc529493eb16ec779b9352c374da
[]
no_license
oguzhanbbcn/DataScience
70f7f2bc61c25d8d9d3bfa4be1fdbc093e7fb45f
3ecb5b2507b263cf70f04e91256b52ebeed11226
refs/heads/master
2020-04-13T23:27:39.453786
2018-06-09T03:31:46
2018-06-09T03:31:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,494
py
from data_helpers2 import * import numpy as np from sklearn.model_selection import train_test_split import nltk from nltk.stem import WordNetLemmatizer import tensorflow as tf # from tensorflow.python.ops import rnn as rnn_module from tensorflow.python.ops.rnn import rnn as get_rnn_output from tensorflow.python.ops.rnn_cell import BasicRNNCell, GRUCell from sklearn.utils import shuffle # from util import init_weight, all_parity_pairs_with_sequence_labels, all_parity_pairs def init_weight(Mi, Mo): return np.random.randn(Mi, Mo) / np.sqrt(Mi + Mo) class SimpleRNN: def __init__(self, M): self.M = M # hidden layer size def fit(self, X, Y, batch_sz=20, learning_rate=10e-1, mu=0.99, activation=tf.nn.sigmoid, epochs=100, show_fig=False): D = 1 N, T = X.shape # X is of size N x T(n) x D K = len(set(Y.flatten())) M = self.M self.f = activation # initial weights # note: Wx, Wh, bh are all part of the RNN unit and will be created # by BasicRNNCell Wo = init_weight(M, K).astype(np.float32) bo = np.zeros(K, dtype=np.float32) # make them tf variables self.Wo = tf.Variable(Wo) self.bo = tf.Variable(bo) # tf Graph input tfX = tf.placeholder(tf.float32, shape=(batch_sz, T, D), name='inputs') tfY = tf.placeholder(tf.int64, shape=(batch_sz, T), name='targets') # turn tfX into a sequence, e.g. T tensors all of size (batch_sz, D) sequenceX = x2sequence(tfX, T, D, batch_sz) # create the simple rnn unit rnn_unit = BasicRNNCell(num_units=self.M, activation=self.f) # Get rnn cell output # outputs, states = rnn_module.rnn(rnn_unit, sequenceX, dtype=tf.float32) outputs, states = get_rnn_output(rnn_unit, sequenceX, dtype=tf.float32) # outputs are now of size (T, batch_sz, M) # so make it (batch_sz, T, M) outputs = tf.transpose(outputs, (1, 0, 2)) outputs = tf.reshape(outputs, (T*batch_sz, M)) # Linear activation, using rnn inner loop last output logits = tf.matmul(outputs, self.Wo) + self.bo predict_op = tf.argmax(logits, 1) targets = tf.reshape(tfY, (T*batch_sz,)) cost_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits, targets)) train_op = tf.train.MomentumOptimizer(learning_rate, momentum=mu).minimize(cost_op) costs = [] n_batches = N / batch_sz init = tf.initialize_all_variables() with tf.Session() as session: session.run(init) for i in xrange(epochs): X, Y = shuffle(X, Y) n_correct = 0 cost = 0 for j in xrange(n_batches): Xbatch = X[j*batch_sz:(j+1)*batch_sz] Ybatch = Y[j*batch_sz:(j+1)*batch_sz] _, c, p = session.run([train_op, cost_op, predict_op], feed_dict={tfX: Xbatch, tfY: Ybatch}) cost += c for b in xrange(batch_sz): idx = (b + 1)*T - 1 n_correct += (p[idx] == Ybatch[b][-1]) if i % 10 == 0: print "i:", i, "cost:", cost, "classification rate:", (float(n_correct)/N) if n_correct == N: print "i:", i, "cost:", cost, "classification rate:", (float(n_correct)/N) break costs.append(cost) if show_fig: plt.plot(costs) plt.show() if __name__ == '__main__': X, y, vocabulary, vocabulary_inv = load_data() rnn = SimpleRNN(4) rnn.fit(X, y, batch_sz=10, learning_rate=0.001, epochs=2, activation=tf.nn.sigmoid, show_fig=False )
[ "mevanoff24@gmail.com" ]
mevanoff24@gmail.com
39ee95e61f896ac11d87bc34295ff6fd9acef9e7
44209d963ee6f6fd87cbd558e9e3743c14e369b2
/voice2age.py
207a6731daa6c809da0003eb777e0109a2612b5d
[]
no_license
eseku/voice-to-age
0de01b8de025f2a1fa73ebc421deaf93891df8db
76f97594df2c0912918927d3eb2c55e367ee9eb7
refs/heads/master
2022-08-02T19:01:59.058927
2020-05-26T01:34:29
2020-05-26T01:34:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,171
py
import numpy as np import sys import os import sox import preprocess import scipy.io.wavfile as wav import numpy as np from mfcc import * from keras.models import load_model from keras import backend as K from keras.models import Model from collections import Counter def compute_mel_log(file_name): print (file_name) rate, data = wav.read(file_name); mfcc = MFCC(nfilt = 40, ncep = 13, samprate = rate, wlen = 0.0256, frate = 100, lowerf=133.33334, upperf=6855.4976) mel_log = mfcc.sig2logspec(data) return mel_log if __name__ == "__main__": argv = sys.argv[1:] if(len(argv) != 1): print("Usage: python voice2age.py <full path to wav file>") sys.exit() else: model = load_model("age_range_classifier.h5") tfm = sox.Transformer() tfm.convert(samplerate=16000) tfm.build(argv[0],'downsampled.wav') mel_log = compute_mel_log('downsampled.wav') os.remove('downsampled.wav') preprocessed_x = preprocess.preprocess(mel_log,9) age = model.predict(preprocessed_x) print(age)
[ "joojoquartey11@gmail.com" ]
joojoquartey11@gmail.com
309c3e487ead949217892accd9a0b2e14f2e9918
f33b24766d1d2f4af54e9a0215eca81b4bc2d7db
/Implementation/divisible-sum-pairs.py
f69ac2e26b31c73a11160463d81d66c8f7272268
[]
no_license
Brkgng/HackerRank_Solutions
c5f07662ee7ef512fc9ad22ddb03fd9b25a8a7b2
23dcd7d7f8123cddea053460152186c206b7a8b0
refs/heads/master
2023-08-11T07:10:42.863443
2021-10-16T17:52:54
2021-10-16T17:52:54
383,604,992
0
0
null
null
null
null
UTF-8
Python
false
false
714
py
#!/bin/python3 import math import os import random import re import sys # # # See the problem # https://www.hackerrank.com/challenges/divisible-sum-pairs/problem # # def divisibleSumPairs(n, k, ar): count = 0 for i in range(n - 1): for j in range(i+1, n): if (ar[i] + ar[j]) % k == 0: count += 1 return count if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') first_multiple_input = input().rstrip().split() n = int(first_multiple_input[0]) k = int(first_multiple_input[1]) ar = list(map(int, input().rstrip().split())) result = divisibleSumPairs(n, k, ar) fptr.write(str(result) + '\n') fptr.close()
[ "berkergng457@gmail.com" ]
berkergng457@gmail.com
67315c8bfa6224070d3c979ce9a8d29c7689d65c
905c3fafca1e3d44c50b812da87bbfd0fd340021
/ThresholdAdaptativo/threshold.py
aeb85233b76ba327d5cfb24626ef22b8ec2a02d2
[]
no_license
JCarlosSL/ComputacionGrafica
fce675a278e7b8c9b6e03123aad6fe66beb71e12
1f1984f7cb2ca6045b60394b6f7fbb67e5bde568
refs/heads/master
2022-11-09T18:11:21.767551
2020-06-30T06:46:24
2020-06-30T06:46:24
262,100,015
0
2
null
2020-05-22T06:46:04
2020-05-07T16:18:23
Python
UTF-8
Python
false
false
1,414
py
import numpy as np import cv2 as cv vecinos = [[1,-1][-1,0],[-1,+1], [0,-1],[0,+1],[+1,-1],[+1,0],[+1,+1]] """ vecinos=[[-1,-1],[-1,0],[-1,+1], [0,-1],[0,+1], [+1,-1],[+1,0],[+1,+1], [-2,-2],[-2,-1],[-2,0],[-2,+1],[-2,+2], [-1,-2],[-1,+2], [0,-2],[0,+2], [+1,-2],[+1,+2], [+2,-2],[+2,-1],[+2,0],[+2,+1],[+2,+2]] """ size_vecinos=len(vecinos) class ThresholdAdaptativo: def __init__(self,_img): self.img=_img; self.rows = _img.shape[0] self.cols = _img.shape[1] def Threshold(self,c): new_Matrix= [[] for i in range(self.rows)] for i in range(self.rows): for j in range(self.cols): new_Matrix[i].append(self.change(self.promedio(i,j)-c,img[i,j])) return np.array(new_Matrix) def promedio(self,h,k): suma=0 s=0 x=self.rows y=self.cols for i in range(size_vecinos): if(0<=h+vecinos[i][0] < x and 0<=k+vecinos[i][1]< y): suma+=self.img[h+vecinos[i][0],k+vecinos[i][1]] s+=1 prom=(suma + self.img[h,k])/(s+1) return prom def change(self,prom, limite): if(prom<limite): return 255 else: return 0 img = cv.imread('paper6.jpg',0) th = ThresholdAdaptativo(img) new = th.Threshold(5) cv.imwrite('newpapere.png',new)
[ "jsonccolu@unsa.edu.pe" ]
jsonccolu@unsa.edu.pe
9f423f0d26cdec42b948eb0f8833483b203737d2
7e8592bb05c935472253146dedde903e350b0e73
/samples/polybench/deriche.py
8505bec3720f8ffa25aff05d4a3dc5088e25bf8a
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
1C4nfaN/dace
71d492c56a1947e9365e9294ee773963740966e0
4d65e0951c112160fe783766404a806b6043b521
refs/heads/master
2022-12-05T20:16:28.516525
2020-08-24T07:19:41
2020-08-24T07:19:41
290,365,799
1
0
BSD-3-Clause
2020-08-26T01:39:37
2020-08-26T01:39:36
null
UTF-8
Python
false
false
5,371
py
import math import dace import polybench W = dace.symbol('W') H = dace.symbol('H') #datatypes = [dace.float64, dace.int32, dace.float32] datatype = dace.float32 # Dataset sizes sizes = [{ W: 64, H: 64, }, { W: 192, H: 128, }, { W: 720, H: 480, }, { W: 4096, H: 2160, }, { W: 7680, H: 4320, }] args = [ ([W, H], datatype), ([W, H], datatype), ] # Constants alpha = datatype(0.25) k = (datatype(1.0) - math.exp(-alpha)) * (datatype(1.0) - math.exp(-alpha)) / ( datatype(1.0) + datatype(2.0) * alpha * math.exp(-alpha) - math.exp(datatype(2.0) * alpha)) a1 = a5 = k a2 = a6 = k * math.exp(-alpha) * (alpha - datatype(1.0)) a3 = a7 = k * math.exp(-alpha) * (alpha + datatype(1.0)) a4 = a8 = -k * math.exp(datatype(-2.0) * alpha) b1 = math.pow(datatype(2.0), -alpha) b2 = -math.exp(datatype(-2.0) * alpha) c1 = c2 = 1 def init_array(imgIn, imgOut): w = W.get() h = H.get() for i in range(w): for j in range(h): imgIn[i, j] = datatype((313 * i + 991 * j) % 65536) / 65535.0 @dace.program(datatype[W, H], datatype[W, H]) def deriche(imgIn, imgOut): y1 = dace.define_local([W, H], dtype=datatype) y2 = dace.define_local([W, H], dtype=datatype) ym1 = dace.define_local([1], datatype) ym2 = dace.define_local([1], datatype) xm1 = dace.define_local([1], datatype) tm1 = dace.define_local([1], datatype) yp1 = dace.define_local([1], datatype) yp2 = dace.define_local([1], datatype) xp1 = dace.define_local([1], datatype) xp2 = dace.define_local([1], datatype) tp1 = dace.define_local([1], datatype) tp2 = dace.define_local([1], datatype) for i in range(W): @dace.tasklet def reset(): in_ym1 >> ym1 in_ym2 >> ym2 in_xm1 >> xm1 in_ym1 = 0 in_ym2 = 0 in_xm1 = 0 for j in range(H): @dace.tasklet def comp_y1(): in_img << imgIn[i, j] in_xm1 << xm1 in_ym1 << ym1 in_ym2 << ym2 out_y1 >> y1[i, j] out_xm1 >> xm1 out_ym1 >> ym1 out_ym2 >> ym2 out_y1 = a1 * in_img + a2 * in_xm1 + b1 * in_ym1 + b2 * in_ym2 out_xm1 = in_img out_ym2 = in_ym1 out_ym1 = out_y1 for i in range(W): @dace.tasklet def reset2(): in_yp1 >> yp1 in_yp2 >> yp2 in_xp1 >> xp1 in_xp2 >> xp2 in_yp1 = 0 in_yp2 = 0 in_xp1 = 0 in_xp2 = 0 for j in range(H - 1, -1, -1): @dace.tasklet def comp_y2(): in_img << imgIn[i, j] in_xp1 << xp1 in_xp2 << xp2 in_yp1 << yp1 in_yp2 << yp2 out_y2 >> y2[i, j] out_xp1 >> xp1 out_xp2 >> xp2 out_yp1 >> yp1 out_yp2 >> yp2 out_y2 = a3 * in_xp1 + a4 * in_xp2 + b1 * in_yp1 + b2 * in_yp2 out_xp2 = in_xp1 out_xp1 = in_img out_yp2 = in_yp1 out_yp1 = out_y2 @dace.map def comp_iout(i: _[0:W], j: _[0:H]): in_y1 << y1[i, j] in_y2 << y2[i, j] out_img >> imgOut[i, j] out_img = c1 * (in_y1 + in_y2) for j in range(H): @dace.tasklet def reset3(): in_ym1 >> ym1 in_ym2 >> ym2 in_tm1 >> tm1 in_ym1 = 0 in_ym2 = 0 in_tm1 = 0 for i in range(W): @dace.tasklet def comp_y12(): in_img << imgOut[i, j] in_tm1 << tm1 in_ym1 << ym1 in_ym2 << ym2 out_y1 >> y1[i, j] out_tm1 >> tm1 out_ym1 >> ym1 out_ym2 >> ym2 out_y1 = a5 * in_img + a6 * in_tm1 + b1 * in_ym1 + b2 * in_ym2 out_tm1 = in_img out_ym2 = in_ym1 out_ym1 = out_y1 for j in range(H): @dace.tasklet def reset4(): in_yp1 >> yp1 in_yp2 >> yp2 in_tp1 >> tp1 in_tp2 >> tp2 in_yp1 = 0 in_yp2 = 0 in_tp1 = 0 in_tp2 = 0 for i in range(W - 1, -1, -1): @dace.tasklet def comp_y22(): in_img << imgOut[i, j] in_tp1 << tp1 in_tp2 << tp2 in_yp1 << yp1 in_yp2 << yp2 out_y2 >> y2[i, j] out_tp1 >> tp1 out_tp2 >> tp2 out_yp1 >> yp1 out_yp2 >> yp2 out_y2 = a7 * in_tp1 + a8 * in_tp2 + b1 * in_yp1 + b2 * in_yp2 out_tp2 = in_tp1 out_tp1 = in_img out_yp2 = in_yp1 out_yp1 = out_y2 @dace.map def comp_iout2(i: _[0:W], j: _[0:H]): in_y1 << y1[i, j] in_y2 << y2[i, j] out_img >> imgOut[i, j] out_img = c1 * (in_y1 + in_y2) if __name__ == '__main__': polybench.main(sizes, args, [(1, 'imgOut')], init_array, deriche)
[ "talbn@inf.ethz.ch" ]
talbn@inf.ethz.ch
742a2b870de99651b62e2152aad6c01ba7a5846a
51153c560c0e0443415e08bd2be45419cd97b2c6
/manage.py
8f3a11fbcad74fa8207272abfe6997a6f7385bb9
[ "MIT" ]
permissive
gregschmit/django-pufsim
3b9c91bf87ba577e1739f48a3e52416e2365b37a
5578cdbd2ced5b897868ca6a84217f0843c1269b
refs/heads/master
2021-06-25T21:43:20.428504
2019-06-19T19:53:05
2019-06-19T19:53:05
145,260,609
0
0
null
null
null
null
UTF-8
Python
false
false
744
py
#!/usr/bin/env python3 """ Proxy python3 script for the ``manage.py`` in the ``pufsim`` package. """ import os import subprocess import sys if __name__ == "__main__": # get this directory d = os.path.dirname(os.path.abspath(__file__)) # set the dev directory env variable os.environ["DJANGO_PUFSIM_DEVPATH"] = d # spawn the app manage.py args = sys.argv.copy() args[0] = os.path.join(d, 'pufsim/manage.py') args.insert(0, sys.executable) print("REPO LEVEL EXECUTION\ncwd: {}".format(d)) print("argv: {}\nspawning...".format(str(args))) r = subprocess.run( args, stdout=sys.stdout.fileno(), stderr=sys.stderr.fileno(), stdin=sys.stdin.fileno(), cwd=d, )
[ "schmitgreg@gmail.com" ]
schmitgreg@gmail.com