blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
e5672f4fe584c8f4396ae6b8030cbba66b775c5b
b48afc357cd9fccdcef52d7be2385db04189324b
/sockets/pentesting/prueba.py
c674741734c8d3f53e9f245731fd08aad2b199cc
[]
no_license
binarioGH/programas_de_prueba
0703cc8565aad6dcb9f48495393897dbeef48ac9
c9cc63b505f26c5720dc7298cdf35b14cba5c067
refs/heads/master
2020-03-06T21:28:23.663063
2020-02-07T05:07:21
2020-02-07T05:07:21
127,078,188
0
0
null
null
null
null
UTF-8
Python
false
false
163
py
#-*-coding: utf-8-*- import socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect(("192.168.0.5",21)) banner = sock.recv(1024) print(banner)
[ "lacuentafalsadediegojonas@gmail.com" ]
lacuentafalsadediegojonas@gmail.com
965954113fe472d45d3521f7b0dc9b0e9933fad9
fe24b009913d625f8dca547cf5a3956514678e04
/plugins/nn/unet_v2/src/py_example.py
b0fafe457bfb563d99a3f4119fefd0fe77d12af3
[]
no_license
ai-motive/supervisely
6fed135b27afe166627c24bbee811d07053bd0e0
f6ef26cbb8a5f3457f97b2db600a442aa03aa5d2
refs/heads/master
2023-07-13T21:36:00.541608
2021-08-24T03:05:07
2021-08-24T03:05:07
372,686,196
1
0
null
2021-06-01T03:05:10
2021-06-01T03:05:09
null
UTF-8
Python
false
false
520
py
import requests from requests_toolbelt import MultipartEncoder if __name__ == '__main__': content_dict = {} content_dict['image'] = ("big_image.png", open("/workdir/src/big_image.jpg", 'rb'), 'image/*') content_dict['mode'] = ("mode", open('/workdir/src/sliding_window_mode_example.json', 'rb')) encoder = MultipartEncoder(fields=content_dict) response = requests.post("http://0.0.0.0:5000/model/inference", data=encoder, headers={'Content-Type': encoder.content_type}) print(response.json())
[ "max@supervise.ly" ]
max@supervise.ly
0bd2b3207f1c166cf6cd840b7f6f2f4ba9ad1f37
ec3090f90b1c3fe7e0550473d719ccc18d130dfe
/sample/linear_algebra.py
785e43e91f5ce3948d96dc6d183265f7c5269da2
[]
no_license
EDAriR/Data_Science_from_Scratch
349ecb54bc5ebb5520d2d6bbe717bed911dc8177
471b3fe6d6bcd27f5f617c7784547ddb98989e9b
refs/heads/master
2020-03-15T21:46:40.167703
2018-05-15T15:48:34
2018-05-15T15:48:34
132,361,385
0
0
null
null
null
null
UTF-8
Python
false
false
3,922
py
# -*- coding: iso-8859-15 -*- import re, math, random # regexes, math functions, random numbers import matplotlib.pyplot as plt # pyplot from collections import defaultdict, Counter from functools import partial, reduce # # functions for working with vectors # def vector_add(v, w): """adds two vectors componentwise""" """相應元素相加""" return [v_i + w_i for v_i, w_i in zip(v, w)] def vector_subtract(v, w): """subtracts two vectors componentwise""" """相應元素相減""" return [v_i - w_i for v_i, w_i in zip(v, w)] def vector_sum(vectors): """相應元素總和""" return reduce(vector_add, vectors) def scalar_multiply(c, v): """c 是一個數值, v 是一個向量""" return [c * v_i for v_i in v] def vector_mean(vectors): """compute the vector whose i-th element is the mean of the i-th elements of the input vectors""" """計算出一個向量,其元素值為所有向量相應元素的平均值""" n = len(vectors) return scalar_multiply(1 / n, vector_sum(vectors)) def dot(v, w): """v_1 * w_1 + ... + v_n * w_n""" """點積 相應元素相乘之後加總""" return sum(v_i * w_i for v_i, w_i in zip(v, w)) def sum_of_squares(v): """v_1 * v_1 + ... + v_n * v_n""" return dot(v, v) def magnitude(v): return math.sqrt(sum_of_squares(v)) def squared_distance(v, w): return sum_of_squares(vector_subtract(v, w)) def distance(v, w): return math.sqrt(squared_distance(v, w)) # # functions for working with matrices # def shape(A): num_rows = len(A) num_cols = len(A[0]) if A else 0 return num_rows, num_cols def get_row(A, i): return A[i] def get_column(A, j): return [A_i[j] for A_i in A] def make_matrix(num_rows, num_cols, entry_fn): """returns a num_rows x num_cols matrix whose (i,j)-th entry is entry_fn(i, j)""" return [[entry_fn(i, j) for j in range(num_cols)] for i in range(num_rows)] def is_diagonal(i, j): """1's on the 'diagonal', 0's everywhere else""" return 1 if i == j else 0 identity_matrix = make_matrix(5, 5, is_diagonal) # user 0 1 2 3 4 5 6 7 8 9 # friendships = [[0, 1, 1, 0, 0, 0, 0, 0, 0, 0], # user 0 [1, 0, 1, 1, 0, 0, 0, 0, 0, 0], # user 1 [1, 1, 0, 1, 0, 0, 0, 0, 0, 0], # user 2 [0, 1, 1, 0, 1, 0, 0, 0, 0, 0], # user 3 [0, 0, 0, 1, 0, 1, 0, 0, 0, 0], # user 4 [0, 0, 0, 0, 1, 0, 1, 1, 0, 0], # user 5 [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], # user 6 [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], # user 7 [0, 0, 0, 0, 0, 0, 1, 1, 0, 1], # user 8 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]] # user 9 ##### # DELETE DOWN # def matrix_add(A, B): if shape(A) != shape(B): raise ArithmeticError("cannot add matrices with different shapes") num_rows, num_cols = shape(A) def entry_fn(i, j): return A[i][j] + B[i][j] return make_matrix(num_rows, num_cols, entry_fn) def make_graph_dot_product_as_vector_projection(plt): v = [2, 1] w = [math.sqrt(.25), math.sqrt(.75)] c = dot(v, w) vonw = scalar_multiply(c, w) o = [0, 0] plt.arrow(0, 0, v[0], v[1], width=0.002, head_width=.1, length_includes_head=True) plt.annotate("v", v, xytext=[v[0] + 0.1, v[1]]) plt.arrow(0, 0, w[0], w[1], width=0.002, head_width=.1, length_includes_head=True) plt.annotate("w", w, xytext=[w[0] - 0.1, w[1]]) plt.arrow(0, 0, vonw[0], vonw[1], length_includes_head=True) plt.annotate(u"(v•w)w", vonw, xytext=[vonw[0] - 0.1, vonw[1] + 0.1]) plt.arrow(v[0], v[1], vonw[0] - v[0], vonw[1] - v[1], linestyle='dotted', length_includes_head=True) plt.scatter(*zip(v, w, o), marker='.') plt.axis('equal') plt.show() make_graph_dot_product_as_vector_projection(plt)
[ "ed_he@syntrontech.com" ]
ed_he@syntrontech.com
f83158efa33a39673f800fe504ec1c01c3306456
083ca3df7dba08779976d02d848315f85c45bf75
/DiagonalTraverse6.py
08697eb1bb23cd57f8ecca6a47acfe8dd293814f
[]
no_license
jiangshen95/UbuntuLeetCode
6427ce4dc8d9f0f6e74475faced1bcaaa9fc9f94
fa02b469344cf7c82510249fba9aa59ae0cb4cc0
refs/heads/master
2021-05-07T02:04:47.215580
2020-06-11T02:33:35
2020-06-11T02:33:35
110,397,909
0
0
null
null
null
null
UTF-8
Python
false
false
671
py
class Solution: def findDiagonalOrder(self, matrix: list) -> list: if not matrix: return [] m, n = len(matrix), len(matrix[0]) entries = [[] for _ in range(m + n - 1)] for i in range(m): for j in range(n): entries[i + j].append(matrix[i][j]) result = [] for i in range(len(entries)): result += entries[i][::i % 2 * 2 - 1] return result if __name__ == '__main__': m = int(input()) matrix = [] for i in range(m): matrix.append([int(num) for num in input().split()]) solution = Solution() print(solution.findDiagonalOrder(matrix))
[ "jiangshen95@163.com" ]
jiangshen95@163.com
409e3ddf97c77d5f12416e5923d48d09f61b0418
eee4f528b8e3f0ed5a2cfe1359996ecc5293a45a
/clickTracker/views.py
a3516e4689050f26d76d0133118ac6e3010a7327
[]
no_license
anoncb1754/VideoSoup
56baf4cabc2911768cdabab4037c4e73e362d7d0
b7afb1e00f0558c98448fae1f99fd7fe2b257ff5
refs/heads/master
2021-01-19T09:31:13.039227
2013-04-22T20:10:09
2013-04-22T20:10:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
592
py
from django.http import HttpResponse from django.http import HttpResponseRedirect from django.http import Http404 from datetime import datetime from clickTracker.models import ClicksTracked def clickTracker(request): ''' Does click tracking on post urls ''' destination = request.GET.get('dst') post_id = request.GET.get('id') timestamp = datetime.now() try: click = ClicksTracked(post_id=post_id, destination=destination, timestamp=str(timestamp)) click.save() except DatabaseError: raise Http404 try: return HttpResponseRedirect(destination) except: raise Http404
[ "cb1754@cb1754s-MacBook-Air.local" ]
cb1754@cb1754s-MacBook-Air.local
22b0d22cc8f6ae16c5bdf42259895c0463786f0e
42aa91a206bd5a685f84e3751732bacc03a2674d
/polls/migrations/0001_initial.py
8666e22fb7e460b193932bcb82d0e839e859f7a4
[]
no_license
deepanshubadshah/Django-polls
e4996ca5a84202cf86a6a26557def8f0abf46e93
52aeabb614cec46964ed8423ef4dea4ed4a33507
refs/heads/master
2020-08-18T01:46:19.091597
2019-10-17T20:20:58
2019-10-17T20:20:58
215,733,853
0
0
null
2019-10-18T03:02:53
2019-10-17T07:50:19
Python
UTF-8
Python
false
false
1,075
py
# Generated by Django 2.2.6 on 2019-10-16 04:29 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('question_text', models.CharField(max_length=200)), ('pub_date', models.DateTimeField(verbose_name='date published')), ], ), migrations.CreateModel( name='Choice', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('choice_text', models.CharField(max_length=200)), ('votes', models.IntegerField(default=0)), ('question', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='polls.Question')), ], ), ]
[ "deepanshu16144@iiitd.ac.in" ]
deepanshu16144@iiitd.ac.in
944ea00d1ec201dd0709e03276f8bdd7cb76fc26
8a2842ad67c3388d26688f78fb8bf828ac9912da
/app/api/urls.py
958b5719b2f93dc31996f5d138ee1268f0d98a15
[]
no_license
gsi-sandy/django-on-docker
2532eedad0be704ac8ebda029067026fdc0c823b
e46d4e157243a37a53c003007669cadaac0afcda
refs/heads/master
2022-11-30T16:05:00.788144
2020-08-04T12:50:26
2020-08-04T12:50:26
276,133,260
2
0
null
null
null
null
UTF-8
Python
false
false
420
py
from django.urls import include, path from rest_framework import routers from . import views router = routers.DefaultRouter() router.register(r'persons', views.PersonViewSet) # Wire up our API using automatic URL routing. # Additionally, we include login URLs for the browsable API. urlpatterns = [ path('', include(router.urls)), path('api-auth/', include('rest_framework.urls', namespace='rest_framework')) ]
[ "sandy@generalsoftwareinc.com" ]
sandy@generalsoftwareinc.com
9cb90f35ed78d85d682a190e8d2c536e11bcdc87
b62a4f4cc42aee1066c591e91a9c83c899329fbc
/print_table.py
e5144da8c4f33bcdb0a69abda3418032e69014b6
[]
no_license
LiliyaRachkova/TVShows
f0fff2b23e322fb85882acabf52ed6f8c2cb51de
54068623380bd9c2f8d13f501a072e99b97a5d24
refs/heads/master
2023-06-03T13:09:31.850099
2021-06-18T19:14:33
2021-06-18T19:14:33
378,075,823
0
0
null
null
null
null
UTF-8
Python
false
false
600
py
import psycopg2 import pandas as pd import numpy as np TVSHOW = "http://api.tvmaze.com/search/shows?q=" def print_table(cur): cur.execute("select name, premiered from tvshows order by premiered") tab = cur.fetchall() try: tab = np.array(tab) df = pd.DataFrame(data=tab, columns=["name", "premiered"]) print(df) except ValueError: print("Таблица пуста") if __name__ == '__main__': with psycopg2.connect(dbname="postgres", user="postgres", password="example") as conn: with conn.cursor() as cur: print_table(cur)
[ "lili.rachkova@ya.ru" ]
lili.rachkova@ya.ru
48fd5cd10a183f7b303fce8d996994720b59e4a7
edb09b9297e960ee3208077c4a15d3497136337b
/server.py
0df7b753bddf5d55a941a3c722f75c84b7013113
[]
no_license
Mathes5556/interview
5fdf8d807b75e49de351c5a81a2d1f3f6badfbbf
156e3d734ea3883ae529e244117f981800ef09dc
refs/heads/master
2021-01-18T20:11:50.634786
2017-08-17T01:43:57
2017-08-17T01:43:57
100,546,106
0
0
null
null
null
null
UTF-8
Python
false
false
1,491
py
from flask import Flask, request from traingFlow import wholeTraingFlow from utils import get_logger from model import provideRecommendation import pandas as pd from model import provideRecommendation app = Flask(__name__) global models # well, global variables are bad, but this is for storing trained models during running of server models = [] LOG = get_logger('RECOMENDATION_EXPONEA_LOG.log') #initialize of logger @app.route('/') def about(): ''' Just for ensure server works :return: ''' return 'Hello, World!' @app.route('/train') def train(): ''' Whole process of training applied on history data :return: ''' global models models = wholeTraingFlow(LOG) LOG.info("Models for products were sucesfully created!") return "model was just trained!" @app.route('/recommendationForUser/', methods=['POST']) def recommendUser(): ''' based on POST user data get recommendation :return: list of products which model recommend for given user ''' global models if len(models) == 0: return "Please train models first!" userJson = request.get_json() userJsonReadyToDF = {} for k in userJson: userJsonReadyToDF[k] = [userJson[k]] result = provideRecommendation(models, pd.DataFrame.from_dict(userJsonReadyToDF), LOG ) return "recomended products: " + str(result["recommendations"][0]) if __name__ == "__main__": app.run()
[ "noreply@github.com" ]
Mathes5556.noreply@github.com
a47231f66de9ee45eddd9c3bc0cf3ff7e80eff0d
6def27a464d1e7457731a40d268bc9d30bc42ba2
/middle_project 最终版/client/game1/game1_client.py
2071faeebd181518d4a8457cfe9e8e02d7ee666c
[]
no_license
liu-xinke/playroom
43201c297ef92c294fd295ecf52946ff2c968fb2
4c44c47fd6dc0c71a34a65023692f34c60ece861
refs/heads/master
2020-03-26T23:58:57.966356
2018-08-22T01:10:36
2018-08-22T01:10:36
145,583,463
2
0
null
null
null
null
UTF-8
Python
false
false
6,840
py
import sys sys.path.append(r'./database') from socket import * import os import random from tkinter import * from threading import Thread from time import sleep import buried_point2 import game1_secondground #利用全局变量获取按下按钮后的返回值 #给定一个初始值 i = '123' name = '' other = '' #界面信息提示 text1 = '正在匹配玩家...' #客户端(用于接收/发送服务器信息) def client(): global i global text1 global other s = socket() try: s.connect(('0.0.0.0',8080)) except ConnectionRefusedError: text1 = '无法连接服务器!' else: print('waiting...') while True: if text1 != '正在匹配玩家...': text1 = '正在匹配玩家...' if i == 'q': break elif i == '123': s.send(('connected ').encode()) sleep(0.5) data = s.recv(1024).decode() text1 = data print(data) if not data or data == '匹配成功': s.send(name.encode()) try: other = s.recv(1024).decode().split(' ')[2] if other == name: text1 = '不能自己匹配自己噢!' i = 'q' break except: pass break else: i = "123" while True: if i == '123': pass else: print(i) if i == 'q': s.send(i.encode()) break else: #第一次选择时向服务器发送选择信息 k = 0 print(i) ch ={'1':'剪刀','2':'石头','3':'布'} text1 = '你的选择是 %s \n请等待对方玩家选择' % ch[i] if k == 0: s.send(i.encode()) sleep(0.1) k += 1 game = "猜拳" w = buried_point2.buried_point(name,game) #多次点击后不会向服务器发送选择信息,只取第一次选择情况 else: print('你的选择是',i,'请等待对方玩家选择') #接收服务器返回消息 data = s.recv(1024).decode() print('receive:',data) if data[-13:] == '对方已退出\n 游戏结束!': text1 = '对方已退出\n 游戏结束!' break text1 = data if not data or data== '对方已退出\n 游戏结束!': break #接收对方玩家选择信息后判定胜负 if data == "1" or data == "2" or data == "3": play_multi_result(i,data,s) #还原初始值 i = '123' i = '123' other = '' # 猜拳小游戏主程序 #胜负判定函数 def play_multi_result(you,other,s): global text1 print(name) i = you c = other if i == '1': if c == '2': text1 = '对方选择了石头\n 你输了!' msg = 'l %s' % name s.send(msg.encode()) pass #输不加分 elif c == '1': text1 = '对方选择了剪刀\n 平局!' pass #平不加分 else: text1 = '对方选择了布\n 你赢了!' msg = 'w %s' % name s.send(msg.encode()) #赢了去修改数据库 elif i == '2': if c == '3': text1 = '对方选择了布\n 你输了!' msg = 'l %s' % name s.send(msg.encode()) pass elif c == '2': text1 = '对方选择了石头\n 平局!' pass else: text1 = '对方选择了剪刀\n 你赢了!' msg = 'w %s' % name s.send(msg.encode()) elif i == '3': if c == '1': text1 = '对方选择了剪刀\n 你输了!' msg = 'l %s' % name s.send(msg.encode()) pass elif c == '3': text1 = '对方选择了布\n 平局!' pass else: text1 = '对方选择了石头\n 你赢了!' msg = 'w %s' % name s.send(msg.encode()) #游戏可视化窗口函数 def play_windows(Online): global i global text1 global other #按钮事件函数 def press1(): global i if i == '123': i = '1' def press2(): global i if i == '123': i = '2' def press3(): global i if i == '123': i = '3' def press4(): global i try: Online.config(state=ACTIVE) except: pass if text1 == '对方已退出\n 游戏结束!': root.destroy() else: i = 'q' root.destroy() #实时更新界面函数 def update_ui(): t1.configure(text=text1) l1.configure(text=('你的对手:\n' + other.center(9))) root.after(100,update_ui) #主窗口函数 root = Toplevel() root.title('猜拳小游戏') root.geometry('400x600+800+250') #对手信息区 frame1 = Frame(root,width=400,height=200,bg='yellow') l1 = Label(frame1,font=('黑体',30)) l1.pack() frame1.propagate(False) frame1.pack() #游戏日志区 frame2 = Frame(root,width=400,height=100) t1 = Label(frame2,font=('宋体',30),bg='purple') t1.pack(expand=YES,fill=BOTH) frame2.propagate(False) frame2.pack() #游戏区 frame3 = Frame(root,width=400,height=250,bg='green') b1 = Button(frame3,text='剪刀',font=('黑体',25),command=press1).pack(padx=25,side=LEFT) b2 = Button(frame3,text='石头',font=('黑体',25),command=press2).pack(padx=25,side=LEFT) b3 = Button(frame3,text='布',font=('黑体',25),command=press3).pack(padx=25,side=LEFT) frame3.propagate(False) frame3.pack() #退出按钮 b4 = Button(root,text='退出',font=('黑体',25),command=press4).pack(side=BOTTOM) update_ui() root.protocol('WM_DELETE_WINDOW',press4) root.mainloop() #多线程函数 def main(who,Online): global name name = who t1 = Thread(target=client) t1.setDaemon(True) t1.start() play_windows(Online) if __name__ == '__main__': main(name,Online)
[ "953576288@qq.com" ]
953576288@qq.com
bd1c3994e1c7429e1072cf4d027c437ad6f3987a
62a33631aae3af5ae1406e4f63d4591838a569ae
/src/apps/shop_managment/serializers/category_serializer.py
227d08429e061a8c0e4443e5602ab9e1222ef4e7
[]
no_license
er5bus/shop-api
092a52a198c620becc48506aee6ef4c333f9798f
7feef3959fa3be69fcbbcf9c2f363757035968b4
refs/heads/main
2023-07-26T23:56:54.422996
2021-09-12T16:33:28
2021-09-12T16:33:28
343,736,798
0
0
null
null
null
null
UTF-8
Python
false
false
1,066
py
import datetime from rest_framework import serializers from ..models.category import Category from core.mixins.serializers import UniqueFieldsMixin class CategorySerializer(UniqueFieldsMixin): class Meta: model = Category fields = ( 'id', 'category_name', 'description', 'created_at', 'is_active', ) read_only_fields = ( 'id', 'created_at', 'is_active', ) def create(self, validated_data): current_user = self.context.get('request').user validated_data['created_by'] = current_user return super().create(validated_data) def update(self, instance, validated_data): current_user = self.context.get('request').user validated_data['updated_by'] = current_user validated_data['updated_at'] = datetime.datetime.now() import pprint pp = pprint.PrettyPrinter(depth=6) pp.pprint(validated_data) return super().update(instance, validated_data)
[ "rami2sfari@gmail.com" ]
rami2sfari@gmail.com
6c88248aa22465ec68fe92b2d27487bb17fc0874
61283bb32652990d882c6856cdc25868f91088d1
/Python/WebDev/Django/Tutorial/users/views.py
57308ac2ad847c9dc4f98963a5294785c7964d34
[ "MIT" ]
permissive
michaelg29/Programming
1fbd03099ad75eeab7f0be9d4ee83cb4e5ef6c3f
7f726fbd8e97fe3d32d58265ab753735d88be3e0
refs/heads/master
2023-03-09T08:05:11.314808
2023-02-07T18:04:59
2023-02-07T18:04:59
163,780,658
5
3
MIT
2023-03-06T12:39:52
2019-01-02T01:35:00
C++
UTF-8
Python
false
false
824
py
from django.shortcuts import render, redirect from django.contrib import messages from django.contrib.auth.decorators import login_required from .forms import UserRegisterForm def register(request): if request.method == 'POST': form = UserRegisterForm(request.POST) if form.is_valid(): form.save() username = form.cleaned_data.get('username') messages.success(request, f'Your account has been created! You are now able to log in') return redirect('login') else: form = UserRegisterForm() return render(request, 'users/register.html', {'form': form}) @login_required def profile(request): return render(request, 'users/profile.html') """ message.debug message.info message.success message.warning message.error """
[ "30534878+michaelg29@users.noreply.github.com" ]
30534878+michaelg29@users.noreply.github.com
8e71e1bca19fca69e10a9eeb6c69b6b561b6e6b1
26a2e9220b4008d1249ed9ee4e6fa60423985d3a
/Blackbox Optimization Techniques/frogger_env/envs/crossing_env_v1.py
ae10003bc3b391dbec91c58633ca12844e42a901
[]
no_license
rprasan/Reinforcement-Learning
6f9a5d210c3bd8a5d79d128df0af87e618e18a96
7bca1ffa2b3a4ff729cb75b84c3ee9adbe3010f0
refs/heads/main
2023-08-03T13:43:08.486955
2023-07-27T21:49:05
2023-07-27T21:49:05
346,599,933
0
0
null
null
null
null
UTF-8
Python
false
false
4,824
py
# Licensing information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to the authors. # # Authors: Avishek Biswas (avisheb@g.clemson.edu) and Ioannis Karamouzas (ioannis@g.clemson.edu) import numpy as np from gym.envs.registration import register from frogger_env.envs.abstract import AbstractEnv from frogger_env.agent.road import Road, Vehicle from frogger_env.agent.frogger_agent import Agent class CrossingEnv_V1(AbstractEnv): """ A modified frogger environment. The agent has to cross the highway and reach the other side. """ """The reward received when reaching the other side of the highway.""" GOAL_REWARD = 1.0 """ The reward received when colliding with a vehicle. """ COLLISION_REWARD = -0.3 """ The reward associated with how much aligned the agent is to its goal. """ GOAL_ALIGNMENT_REWARD = 0.01 ACTIONS_MAP = np.array([[0, 0], [0, 1], [0, -1], [-1, 0], [1, 0]]) def default_config(self) -> dict: config = super().default_config() config.update({ "observation": { "lidar": { "sensing_distance": 10, "angle_resolution": 12, "frame_history": 4, "flatten_observation": True, "include_goal_distance": True, "include_goal_local_coodinates": True }, "occupancy_grid": { "frame_history": 1, "flatten_observation": True, "include_goal_distance": True, "include_goal_local_coodinates": True }, }, "observation_type": "lidar", "world_bounds": [0., 0., 50., 50], "lanes_count": 4, "vehicles_count": 20, # upper bound "duration": 60, "vehicle_spacing": 2.5, "vehicle_speed": 3.5, "vehicle_width": 2., "random_init": 1, "bidirectional": 1 }) return config def _reset(self): self._create_road() self._create_agent() def _create_road(self): """ Create a road composed of straight adjacent lanes and populate it with vehicles. """ self.road = Road(vehicles=[], lanes=[], np_random=self.np_random, bidirectional=self.config["bidirectional"]) self.road.generate_lanes(self.config["lanes_count"], length=50.) for _ in range(self.config["vehicles_count"]): self.road.generate_random_vehicle(speed=self.config["vehicle_speed"], lane_id=None, spacing=self.config["vehicle_spacing"], width=self.config["vehicle_width"]) def _create_agent(self): """ Create the agent. Could be spawn randomly. """ self.agent_spawn = [10 + np.random.rand()*30., self.road.get_first_lane_Y() -4] if self.config["random_init"]\ else [25, self.road.get_first_lane_Y() - 4] self.goal = [25, self.road.get_last_lane_Y() + 8] self.agent = Agent(np.array(self.agent_spawn), radius=0.75, goal=self.goal, action_map=self.ACTIONS_MAP, speed=2, world_bounds=self.config["world_bounds"]) self.lower_boundary = [self.agent_spawn[0], self.agent_spawn[1] - 2] def _reward(self, action): """ The reward is defined to encourage the agent move towards the goal and cross the highway, while avoiding collisions. """ reward = self.COLLISION_REWARD * int(self.agent.crashed) \ + self.GOAL_REWARD * int(self.agent.goal_distance < 5) \ + self.GOAL_ALIGNMENT_REWARD * np.dot(self.agent.velocity_direction, self.agent.goal_direction) return reward def _is_terminal(self): """ The episode is over if the agent collides, or the episode duration is met, or the agent is close to the goal. """ return self.agent.crashed or \ (self.time >= self.config["duration"] and not self.config["manual_control"]) or \ self.agent.goal_distance < 5 or \ self.agent.position[1] < self.lower_boundary[1] register( id='frogger-v1', entry_point='frogger_env.envs:CrossingEnv_V1', )
[ "rprasan@clemson.edu" ]
rprasan@clemson.edu
820a35381bbb8b848bc8bc4310a9d3d09d1bfd40
e3f4cf19cd3514a9dd7a758212fb9a0d36d0935d
/auth_backend/role/migrations/0003_auto_20181217_0701.py
39157942f7c71dc5923ebab2458bb1dcc046448c
[]
no_license
dbykov/auth-backend
236b60faca3c41b66bea51db0235b1a03ae1efd9
6e57aa91e0d7cce77a17ba61bc07def053756c40
refs/heads/master
2022-05-31T02:11:36.795650
2019-07-25T12:46:27
2019-07-25T12:46:27
199,646,871
0
0
null
2022-05-25T02:19:42
2019-07-30T12:25:07
Python
UTF-8
Python
false
false
455
py
# Generated by Django 2.1.3 on 2018-12-17 07:01 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('role', '0002_auto_20181129_0702'), ] operations = [ migrations.AlterModelOptions( name='role', options={'ordering': ('-id',), 'verbose_name': 'Роль пользователя', 'verbose_name_plural': 'Роли пользователей'}, ), ]
[ "dbykov@mail.ru" ]
dbykov@mail.ru
a510cfec10e0a86ccf1d7cd7c1232f1a3b41a9f4
c394ed7555ee10b2819f1af4773aaf4703887a96
/lab_03/lab_01.py
9466abf0f46539126f301dbc4dc49df0f238c937
[]
no_license
LozovskiAlexey/Computational-Algorithms
5ea587e6669a7475f6aca912e24c24a0703e83f5
62ab440564d152d89e45cc0c30291b74622c9b3b
refs/heads/master
2023-02-21T13:28:03.322795
2021-01-22T09:05:53
2021-01-22T09:05:53
331,891,999
0
0
null
null
null
null
UTF-8
Python
false
false
4,109
py
from math import fabs def f(x): return x**2 def print_mtx(m): print("!!!----------------------------") for i in m: for j in i: if j is not None: print("{:.3f}".format(j), end=' ') print() print("!!!----------------------------") def print_data(data): for i in data: print("x = {:.3f}; f(x) = {:.3f}".format(i[0], i[1])) def data_input(): data = list() left, right, step = map(float, input('Введите "Левая граница Правая граница Шаг":').split()) while left < right + step / 2: data.append((left, f(left))) left += step return data def point_selection(data, n, x): # n + 1 points d_len = len(data) new_data = list() if d_len < n + 1: return None left = -1 index = 0 right = 1 mins = fabs(x - data[0][0]) count = 0 for i in range(d_len): if fabs(x - data[i][0]) < mins: left = i - 1 index = i right = i + 1 mins = fabs(x - data[i][0]) new_data.append(data[index]) while left != -1 or right != d_len: if right != d_len: new_data.append(data[right]) right += 1 count += 1 if count == n: break if left != -1: new_data.insert(0, data[left]) left -= 1 count += 1 if count == n: break return sorted(new_data) def swap_cords(data): new_data = list() for i in data: new_data.append((i[1], i[0])) return new_data # interpolation def get_table(data, n): m = [[None for j in range(2 + n)] for i in range(n + 1)] for i in range(n + 1): m[i][0] = data[i][0] m[i][1] = data[i][1] for col in range(n): for row in range(n - col): denominator = (m[row + 1 + col][0] - m[row][0]) denominator = denominator if denominator != 0 else 1e-10 m[row][col + 2] = (m[row + 1][col + 1] - m[row][col + 1]) / denominator return m def p(table, n, x): # Pn(x) = f(x0) + (x − x0) · f(x0, x1) + (x − x0)(x − x1) · f(x0, x1, x2) + ... # +(x − x0)(x − x1) ...(x − xn−1) · f(x0, x1, ..., xn). mult = 1 Pn = table[0][1] for i in range(n): mult *= (x - table[i][0]) Pn += mult * table[0][2 + i] return Pn def interpolation(data, n, x): # print(data) # print(n) # print(x) data = point_selection(data, n, x) table = get_table(data, n) #print_mtx(table) y = p(table, n, x) return y # main def main(): ''' # f = open('input.txt', 'r') # data = [] # for line in f: # data.append((float(line.split()[0]), float(line.split()[1]))) # f.close() ''' main_data = data_input() print_data(main_data) n = int(input("Введите степень многочлена: ")) x = float(input("Введите x: ")) data = point_selection(main_data, n, x) if data is not None: y = interpolation(data, n, x) print("f({:.3f}) = {:.3f}".format(x, y)) # нахождение корня flag = 0 if main_data[0][1] == 0: flag = 1 else: for i in range(1, len(main_data)): if main_data[i][1] < 0 and main_data[i-1][1] > 0 or \ main_data[i][1] > 0 and main_data[i-1][1] < 0 or \ main_data[i][1] == 0: flag = 1 break if flag: swap_data = swap_cords(main_data) data = point_selection(swap_data, n, 0) root = interpolation(data, n, 0) print("f({:.3f}) = 0".format(root)) else: print("Нельзя найти корень") else: print("Недотаточно точек, чтобы посчитать полином {:d} степени.".format(n)) if __name__ == '__main__': main()
[ "55348265+LozovskiAlexey@users.noreply.github.com" ]
55348265+LozovskiAlexey@users.noreply.github.com
ca28d6c5b515dfda3cbdafb46b37d89a8095da1b
b284d59bdf2c01977eb6d80795e2c75cb95b9b2c
/danibraz/checkout/validate_error_invoice.py
bda27a0d3f0ca85671f619873e051cf1c9bc10ab
[ "MIT" ]
permissive
CoutinhoElias/danibraz
58d27cb30661d06091196cc487a9d902f4f8dac9
b21f3ce3477ded74c901fa377a5b2ac5e68faf36
refs/heads/master
2021-01-20T02:12:30.096953
2018-04-01T15:52:40
2018-04-01T15:52:40
89,386,992
0
1
MIT
2017-12-01T16:52:47
2017-04-25T17:14:27
JavaScript
UTF-8
Python
false
false
154
py
from django.core.exceptions import ValidationError def validate_quantity(value): if not value < 5: raise ValidationError("Campomenor que 5.")
[ "coutinho.elias@gmail.com" ]
coutinho.elias@gmail.com
450788f02ffc268c72c96c8be14bc7828af2e160
cc81637c0cd6e23e0eca70ad00aaa53ef26ebd1d
/website/urls.py
bc690cab54bc82745fbe49f4ea60f6af92eeceef
[]
no_license
madgeekfiend/django-screens
826d5cdbb90175e4c606ef8ed2347ee50092951e
d76a0eff62d201404db5d56e55f5612c4f76cc15
refs/heads/master
2021-01-21T05:05:47.304035
2014-08-07T15:36:48
2014-08-07T15:36:48
22,726,430
0
1
null
null
null
null
UTF-8
Python
false
false
388
py
from django.conf.urls import patterns, url from website import views urlpatterns = patterns('', # You know what this file is for url(r'^upload/', views.upload, name='upload'), url(r'^review/', views.review, name='review'), url(r'^(?P<screen_id>\d+)/$', views.view_screen, name='view_screen'), url(r'^(?P<screen_id>\d+)/comment/$', views.comment, name='comment'), )
[ "totalgeek@outlook.com" ]
totalgeek@outlook.com
19eaca7ff57991686ef9fc408897335ccb114c66
54077cef77625f39fd65b1df2b2a0bc82ca04773
/back/manage.py
61c0db9e2f3a1fadfe07bee429aba8144d128549
[]
no_license
tabishkhan96/resa
e43ead182b36a34ed6ef0dee8e1def7152b7676e
5789d7e11a984f70e6509b0e2d82e9f149b55b91
refs/heads/master
2023-03-18T17:59:02.936862
2017-06-04T15:27:57
2017-06-04T15:27:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
822
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "meeting_room_reservation.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
[ "tryphtik@hotmail.com" ]
tryphtik@hotmail.com
24cc74599fb36feb9338f0a3d7920eb7c44d090c
9611f657bbb92d2cc3edd556ea3ffaa702e997f0
/utils/__init__.py
de17b5c9298991340efacc77b8a968e617660208
[]
no_license
donhilion/JumpAndRun
10fdfdcc5fdcd5619b757c3f65e68d2bf4085852
0308785a51bf61d9a4fec2d8370540df502b8178
refs/heads/master
2021-01-23T08:38:53.808186
2014-01-28T20:26:53
2014-01-28T20:26:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
25
py
__author__ = 'Donhilion'
[ "donhilion@googlemail.com" ]
donhilion@googlemail.com
aeb3b8ff1f2ad11c5a1eabcd0b4aded91f0a5863
66dc2116f2c99cb79ad97a5320f99aedecfd9ac5
/select/src/median.py
1bd5547bf970eae3924f993d37e6e5ab89d240de
[]
no_license
mregulski/ppt-4-aisd
9cee11d7d44df03a7b61ff228f761385349a280b
7a813ea66c7793e5681a9ddffbe1dd9a6a3951af
refs/heads/master
2021-01-12T13:38:07.140724
2017-03-07T22:21:17
2017-03-07T22:21:17
69,969,983
0
0
null
null
null
null
UTF-8
Python
false
false
6,992
py
#!/usr/bin/python3 import random import argparse import sys import math logging = 0 cmps = 0 def comparison(): global cmps cmps += 1 return True def partition(array, start=0, end=-1, depth=0): if(end == -1): end = len(array)-1 pivot = array[random.randrange(start, end+1)] if logging >= 5: print("{indent}partitioning array[{start}:{end}] around \x1b[1;33m{pivot}\x1b[0m" .format(indent=" "*depth, start=start, end=end+1, pivot=pivot)) print("{}before: {}".format(" "*depth, array[start:end+1])) print("{}pivot: {}".format(" "*depth, pivot)) i = start-1 j = end+1 while(comparison() and i < j): j-=1 while(comparison() and array[j] > pivot): j-=1 i+=1 while(comparison() and array[i] < pivot): i+=1 if(comparison() and i < j): array[i], array[j] = array[j], array[i] if logging >= 5: print("{}after (j={}):".format(" "*depth, j), end='') print_array_marked(array[start:end+1], [j-start]) return j def random_select(array, k, start=0, end=-1, depth=0): if(end == -1): end=len(array)-1 if(start == end): return array[start] split = partition(array, start, end, depth+1) n = split - start + 1 if (comparison() and k <= n): if logging >=5: print("{indent}k={k} <= n={n}, searching element #{k} in array[{start}:{end}]" .format(k=k, n=n, start=start, end=split+1, indent=" "*depth)) return random_select(array, k, start, split, depth+1) else: if logging >=5: print("{indent}k={k} > n={n}, searching element #{i} in array[{start}:{end}]" .format(k=k, n=n, i=k-n, start=split+1, end=end+1, indent=" "*depth)) return random_select(array, k-n, split+1, end, depth+1) def select(array, k, depth=0): global logging if(len(array) <= 5): array.sort() # print('array:', array) # print("k:", k) return(array[k-1]) fives = [array[i:i+5] for i in range(0, len(array), 5)] if(logging >= 5): i = 0 for five in fives: print("{}group[{}]:".format(" "*depth, i), five) i += 1 x = [] ceil = math.ceil(len(array)/5) # print("ceil: ", ceil) # print("lenfives:" ,len(fives)) for i in range(ceil): m_idx = math.ceil(len(fives[i])/2); # print("m_idx:", m_idx) x.append(select(fives[i], m_idx)) if(logging >= 1): print("{}medians:".format(" "*depth), x) M = select(x, math.ceil(len(x)/2), depth+1) if(logging >= 1): print("{}Median-of-medians:".format(" "*depth), M) P1, P2, P3 = [], [], [] for val in array: if (comparison() and val < M): P1.append(val) elif (comparison() and val == M): P2.append(val) else: P3.append(val) if logging >= 1: print("{}P1 < Median ({} elem.):".format(" "*depth, len(P1)), P1) print("{}P2 = Median ({} elem.):".format(" "*depth, len(P2)), P2) print("{}P3 > Median ({} elem.):".format(" "*depth, len(P3)), P3) # print("{}k:".format(" "*depth), k) if (comparison() and k <= len(P1)): if logging >= 1: print("{0}k={1} <= len(P1), searching for element #{1}. in P1".format(" "*depth, k)) return select(P1, k, depth+1) elif (comparison() and k > len(P1)+len(P2)): if logging >= 1: print("{}k={} > len(P1)+len(P2), searching for element #{} in P3" .format(" "*depth, k, k-len(P1)-len(P2))) return select(P3, k-len(P1)-len(P2), depth+1) else: if logging >= 1: print("{}len(P1) < k={} < len(P1)+len(P2), returning median ({})" .format(" "*depth, k, M)) return M def generate_random(size): x = [] for i in range(size): x.append(random.randrange(size*2)) return x def generate_perm(size): x = [0]*size used = [0]*(size) for i in range(size): while(True): val = random.randint(1, size) x[i] = val if used[val-1] != 1: break used[val-1] = 1 return x def print_array_marked(array, mark_indices): print('[', end='') for i in range(len(array)): print("{col_start}{var}{col_end}{comma}".format(var=array[i], col_start="\x1b[1;33m" if i in mark_indices else "", col_end="\x1b[0m", comma="," if i < len(array) - 1 else ''), end='') print(']') def main(args): global cmps array = args.generator(args.size) if(args.interactive): print("data:", array) input("press ENTER to find element #{} deterministically.".format(args.position)) print("\x1b[1melement #{}\x1b[0m: \x1b[1;33m{}\x1b[0m".format(args.position, select(array[:], args.position))) input("press ENTER to find element #{} randomly.".format(args.position)) print("\x1b[1melement #{}\x1b[0m: \x1b[1;33m{}\x1b[0m".format(args.position, random_select(array[:], args.position))) input("press ENTER to check with sorted data") print_array_marked(sorted(array), [args.position-1]) else: test_count = 10 max_size = 10000 for i in range(test_count): print("\x1b[1;36mTest #{}\x1b[0m".format(i+1)) rs_out = open('./random.out', 'a+') s_out = open('./select.out', 'a+') for size in range(100, max_size+1, 100): print("\r\x1b[2Ksize: {}...".format(size),end=' ') array = generate_random(size) k = random.randrange(size) cmps = 0 x = random_select(array[:], k) # print("cmps:",cmps,end=' ') rs_out.write("{:8d}\t{:8d}\t{:8d}\n".format(size, cmps, k)) cmps = 0 x = select(array[:], k) s_out.write("{:8d}\t{:8d}\t{:8d}\n".format(size, cmps, k)) # print("cmps:",cmps,end=' ') print("done.".format(size=size)) rs_out.close() s_out.close() if __name__ == '__main__': def generator(string): if string in ['perm', 'permutation']: value = generate_perm else: value = generate_random return value parser = argparse.ArgumentParser() parser.add_argument('--size', '-s', type=int, default=20) parser.add_argument('--position', '-i', type=int, default=10) parser.add_argument('--generator', '-t', type=generator, default="rand") parser.add_argument('--logging', '-v', type=int, default=0) parser.add_argument('--interactive', action='store_const', const=True, default=False) args = parser.parse_args() logging = 5 if args.interactive else args.logging main(args)
[ "maarcin.regulski@gmail.com" ]
maarcin.regulski@gmail.com
0f9d370037e854c8b1e43ca32b4093a32a97b926
f36cb3559618915ca36c7abb29a49aec5a972afe
/week-3/assignment_1.py
260a391cf7677f8498ee685ea6af737d2cbece56
[]
no_license
snsn/programmers-data-engineering-study
3e31b1100625500796b182b796f8f5b0fb377f00
e5f92b1183c4f35e33a84e34bf8aced5fbf65a5d
refs/heads/master
2022-12-04T02:47:05.823218
2020-08-12T05:30:02
2020-08-12T05:30:02
283,785,212
0
0
null
2020-08-12T05:30:05
2020-07-30T13:35:49
null
UTF-8
Python
false
false
3,977
py
# -*- coding: utf-8 -*- """assignment-1.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1L0TgaTyi_KjfnSa3EjhI5M2ue_6ER3Bd """ import sqlalchemy user = 'peter' password = 'PeterWoW1!' sql_conn_str = 'postgresql://{user}:{password}@grepp-data.cduaw970ssvt.ap-northeast-2.redshift.amazonaws.com:5439/dev'.format( user=user, password=password ) sqlalchemy.create_engine(sql_conn_str) # Commented out IPython magic to ensure Python compatibility. # %load_ext sql # Commented out IPython magic to ensure Python compatibility. # %%sql # # SELECT * FROM raw_data.session_timestamp LIMIT 10 # Commented out IPython magic to ensure Python compatibility. # %sql sql_conn_str # Commented out IPython magic to ensure Python compatibility. # %sql postgresql://peter:PeterWoW1!@grepp-data.cduaw970ssvt.ap-northeast-2.redshift.amazonaws.com:5439/dev # Commented out IPython magic to ensure Python compatibility. # %%sql # # CREATE TABLE adhoc.peter_channel ( # channel varchar(32) primary key # ); # Commented out IPython magic to ensure Python compatibility. # %%sql # # INSERT INTO adhoc.peter_channel VALUES ('FACEBOOK'), ('GOOGLE'); # # SELECT * FROM adhoc.peter_channel; # Commented out IPython magic to ensure Python compatibility. # %%sql # # DROP TABLE adhoc.peter_channel; # # CREATE TABLE adhoc.peter_channel AS # SELECT DISTINCT channel # FROM raw_data.user_session_channel; # Commented out IPython magic to ensure Python compatibility. # %%sql # # SELECT * # FROM adhoc.peter_channel # LIMIT 10; # Commented out IPython magic to ensure Python compatibility. # %%sql # # ALTER TABLE adhoc.peter_channel # RENAME channel to channelname; # # INSERT INTO adhoc.peter_channel VALUES ('TIKTOK'); # Commented out IPython magic to ensure Python compatibility. # %%sql # # SELECT * # FROM adhoc.peter_channel; # Commented out IPython magic to ensure Python compatibility. # %%sql # # SELECT COUNT(1) # FROM raw_data.session_timestamp; # Commented out IPython magic to ensure Python compatibility. # %%sql # # SELECT usc.channel, COUNT(1) # FROM raw_data.user_session_channel usc # JOIN raw_data.session_timestamp st # ON st.sessionid = usc.sessionid # GROUP BY 1; # Commented out IPython magic to ensure Python compatibility. # %%sql # # SELECT COUNT(1) # FROM raw_data.user_session_channel usc # WHERE usc.channel in ('Google','Facebook'); # Commented out IPython magic to ensure Python compatibility. # %%sql # # SELECT COUNT(1) # FROM raw_data.user_session_channel usc # WHERE channel ilike 'Google' or channel ilike 'Facebook'; # Commented out IPython magic to ensure Python compatibility. # %%sql # # SELECT DISTINCT channel # FROM raw_data.user_session_channel # WHERE channel ILIKE '%o%'; # Commented out IPython magic to ensure Python compatibility. # %%sql # # SELECT DISTINCT channel # FROM raw_data.user_session_channel # WHERE channel NOT ILIKE '%o%'; # Commented out IPython magic to ensure Python compatibility. # %%sql # # SELECT # LEN(channelname), # UPPER(channelname), # LOWER(channelname), # LEFT(channelname, 4) # FROM adhoc.peter_channel; # Commented out IPython magic to ensure Python compatibility. # %%sql # # SELECT EXTRACT(HOUR FROM st.ts), COUNT(1) # FROM raw_data.user_session_channel usc # JOIN raw_data.session_timestamp st # ON st.sessionid = usc.sessionid # GROUP BY 1 # ORDER BY 2 DESC; # Commented out IPython magic to ensure Python compatibility. # %%sql # # SELECT usc.channel, COUNT(1) # FROM raw_data.channel c # JOIN raw_data.user_session_channel usc # ON usc.channel = c.channelname # GROUP BY 1; # Commented out IPython magic to ensure Python compatibility. # %%sql # # SELECT st.ts, usc.channel, ROW_NUMBER() OVER (PARTITION BY usc.userid ORDER BY st.ts) # FROM raw_data.user_session_channel usc # JOIN raw_data.session_timestamp st # ON usc.sessionid = st.sessionid # WHERE userid = 251 # ORDER BY 1;
[ "peter@grepp.co" ]
peter@grepp.co
f16c0eb80ddbde537a25faa6d4acb812b83a763e
e6053153c9baa95156f0e7aa700047ea2d26e249
/Data/__init__.py
c586133032f53376ef402302e9f20d5b22bba2a7
[]
no_license
Songtuan/Show-and-Tell-Model
d8d6b71fb8cf3274862c63aa324445d8e802ce41
7b298bd8ab30c9b052d144838ecf022220d41628
refs/heads/master
2020-07-22T07:23:55.489781
2019-10-14T03:01:24
2019-10-14T03:01:24
207,115,342
0
0
null
null
null
null
UTF-8
Python
false
false
1,425
py
import torch from torch.utils.data import Dataset import torchvision.transforms as trn import h5py class CaptionDataset(Dataset): def __init__(self, input_file, transform=None): h = h5py.File(input_file) self.imgs = h['images'] self.captions = h['captions'] self.captions_per_img = h.attrs['captions_per_image'] self.captions_unencode = h['captions_uncode'] assert self.captions.shape[0] // self.imgs.shape[0] == self.captions_per_img if transform is not None: self.transform = transform else: self.transform = trn.Compose([trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) assert self.imgs.shape[0] * 1 == self.captions.shape[0] def __getitem__(self, item): img = self.imgs[item // self.captions_per_img] img = trn.ToTensor()(img) if img[img > 1].shape[0] != 0 or img[img < 0].shape[0] != 0: img = self.transform(img) img = img.float() assert img.shape == torch.Size([3, 256, 256]) caption = self.captions[item] caption = torch.from_numpy(caption).long() caption_unencode = self.captions_unencode[item] data = {'image': img, 'caption': caption, 'caption_unencode': caption_unencode} # data = {'image': img, 'caption': caption} return data def __len__(self): return self.captions.shape[0]
[ "u6162630@anu.edu.au" ]
u6162630@anu.edu.au
a8cb34215357391688c6922cc45ce8c787596bbc
84243e597645fb81d1300ea8ecf7f398f94089da
/StackedDateHistogram.py
d824e847f74eda1da4a93ade6f2456ebda5e230d
[ "MIT" ]
permissive
stevezieglerva/plot-wrappers
07fc24f1f1e1140d9040034087a294b3c704cc8d
e1acd92a0c4452280974e6e28340c849bb63c818
refs/heads/main
2023-05-30T02:08:39.665311
2021-06-18T20:25:00
2021-06-18T20:25:00
339,087,341
0
0
null
null
null
null
UTF-8
Python
false
false
4,294
py
import json import pandas as pd import matplotlib.pyplot as plt class StackedDateHistogram: def __init__( self, date_column_name, grouping_column, value_column, df, ): self._max_groupings = 5 self._date_column_name = date_column_name self._date_period_name = date_column_name self._grouping_column = grouping_column self._value_column = value_column self._aggregation = "sum" self._chart_type = "area" self._input_df = df plt.style.use("seaborn") # plt.show() def set_max_groupings(self, max_groupings): self._max_groupings = max_groupings def set_aggregation(self, aggregation): possible_values = ["sum", "count", "unique_count"] assert ( aggregation in possible_values ), f"aggregation must be one of: {possible_values}" self._aggregation = aggregation def set_chart_type(self, chart_type): possible_values = ["area", "bar"] assert ( chart_type in possible_values ), f"chart_type must be one of: {possible_values}" self._chart_type = chart_type def set_date_period(self, date_format, period): self._input_df["new_date"] = pd.to_datetime( self._input_df[self._date_column_name], format=date_format ).dt.to_period(period) self._date_period_name = "new_date" print(self._input_df) def _group_data(self): if self._aggregation == "sum": largest_df = ( self._input_df.groupby([self._grouping_column])[self._value_column] .sum() .nlargest(self._max_groupings) .to_frame() ) largest_categories = largest_df.index.values.tolist() # print(largest_categories) filtered_to_largest = self._input_df[ self._input_df[self._grouping_column].isin(largest_categories) ] new_group = filtered_to_largest.groupby( [self._date_period_name, self._grouping_column] )[self._value_column].sum() if self._aggregation == "count": largest_df = ( self._input_df.groupby([self._grouping_column])[self._value_column] .count() .nlargest(self._max_groupings) .to_frame() ) largest_categories = largest_df.index.values.tolist() # print(largest_categories) filtered_to_largest = self._input_df[ self._input_df[self._grouping_column].isin(largest_categories) ] new_group = filtered_to_largest.groupby( [self._date_period_name, self._grouping_column] )[self._value_column].count() if self._aggregation == "unique_count": largest_df = ( self._input_df.groupby([self._grouping_column])[self._value_column] .nunique() .nlargest(self._max_groupings) .to_frame() ) largest_categories = largest_df.index.values.tolist() # print(largest_categories) filtered_to_largest = self._input_df[ self._input_df[self._grouping_column].isin(largest_categories) ] new_group = filtered_to_largest.groupby( [self._date_period_name, self._grouping_column] )[self._value_column].nunique() return new_group def to_json(self): self._grouped_df = self._group_data().unstack() json_str = self._grouped_df.to_json() json_dict = json.loads(json_str) return json_dict def save_plot(self, filename): fig, ax = plt.subplots() self._grouped_df = self._group_data().unstack() if self._chart_type == "bar": self._grouped_df.plot(kind=self._chart_type, stacked=True, width=0.8, ax=ax) else: self._grouped_df.plot(kind=self._chart_type, stacked=True, ax=ax) plt.xticks(rotation=90) legend = plt.legend(frameon=1) frame = legend.get_frame() frame.set_facecolor("white") plt.tight_layout() plt.savefig(filename)
[ "stephen.v.ziegler@gmail.com" ]
stephen.v.ziegler@gmail.com
fb411458ce67bc348b868b70def5489795c60675
2442d45c9d98f7175447fd1d62212cbba0604bc8
/실전연습/뱀게임/SnakeGame.py
7fb21478b91b6f1c19d28ad158083534d4a7dd85
[]
no_license
yerimroh/Python-Practice
5f25db8ae50f89da3a909a37486bfcf7f044bec9
1faeba80062e4a16ae33673490821d424cd77d1f
refs/heads/master
2023-07-31T20:26:07.064031
2021-09-16T21:20:09
2021-09-16T21:20:09
283,073,517
0
0
null
null
null
null
UTF-8
Python
false
false
5,709
py
import pygame import sys from pygame.locals import * from random import* pygame.init() # Initializing ############################################################# # The node class that composese the snake's body headSize = 20 class Node(pygame.Rect): def __init__(self, x, y): super().__init__(int(x), int(y), headSize, headSize) # Initialte the Rect class ############################################################## # Screen setting screenWidth = 460 screenHeight = 640 screen =pygame.display.set_mode((screenWidth, screenHeight)) pygame.display.set_caption("Snake Game") # The title of the game ############################################################## # Other settings gameFont = pygame.font.Font(None, 30) # Game Font snakeColor = (55, 120, 120) # color of the snake clock = pygame.time.Clock() # FPS ############################################################## # Load sources background = pygame.image.load("sources\\background.png") eatingSound = pygame.mixer.Sound("sources\\eating sound effect.wav") apple = pygame.image.load("sources\\apple.png") appleSize = apple.get_rect().size appleWidth = appleSize[0] appleHeight = appleSize[1] appleX = randrange(5, screenWidth - appleWidth) appleY = randrange(5, screenHeight - appleHeight) ############################################################# # Snake Setting snakeSpeed = 0.3 toX = 0 toY = 0 totalApple = 0 # keep track of the number of apples that the snake got # Snake Head head = Node((screenWidth / 2 - headSize / 2), (screenHeight / 2 - headSize / 2)) # Create head # Snake Body nodes = [] nodes.append(head) # add head to the list before the game loop direction = None # method that will grow body each time the snake obtains the apple def growBody(): if direction == "LEFT": newNode = Node(nodes[len(nodes) - 1].left + headSize, nodes[len(nodes) - 1].top) nodes.append(newNode) elif direction == "RIGHT": newNode = Node(nodes[len(nodes) - 1].left - headSize, nodes[len(nodes) - 1].top) nodes.append(newNode) elif direction == "UP": newNode = Node(nodes[len(nodes) - 1].left, nodes[len(nodes) - 1].top + headSize) nodes.append(newNode) elif direction == "DOWN": newNode = Node(nodes[len(nodes) - 1].left, nodes[len(nodes) - 1].top - headSize) nodes.append(newNode) ############################################################## # Game Loop isRunning = True isGameOver = False while(isRunning): dt = clock.tick(30) # FPS = 30 for event in pygame.event.get(): if event.type == pygame.QUIT: isRunning = False # Handle keyboard inputs if event.type == pygame.KEYDOWN and isGameOver == False: if event.key == pygame.K_RIGHT: toX += snakeSpeed toY = 0 direction = "RIGHT" elif event.key == pygame.K_LEFT: toX -= snakeSpeed toY = 0 direction = "LEFT" elif event.key == pygame.K_UP: toY -= snakeSpeed toX = 0 direction = "UP" elif event.key == pygame.K_DOWN: toY += snakeSpeed toX = 0 direction = "DOWN" # When the player let go of the keyboard (do not move) if event.type == pygame.KEYUP and isGameOver == False: if event.key == pygame.K_RIGHT or event.key == pygame.K_LEFT: toX = 0 if event.key == pygame.K_UP or event.key == pygame.K_DOWN: toY = 0 if isGameOver == False and event.type == pygame.KEYDOWN: # store the movement to trace the path the head took newX = [] newY = [] for i in range(0, len(nodes) - 1): newX.append(nodes[i].left) newY.append(nodes[i].top) # move around the head head.left += int(toX * dt) head.top += int(toY * dt) # make the body to follow the trace of the path for j in range(0, len(newX)): nodes[j + 1].left = newX[j] nodes[j + 1].top = newY[j] ###################################################################### # Handle game events # If the snake collides with any of the edges of the screen if head.left > screenWidth - headSize or head.left < -5: isGameOver = True background = pygame.image.load("sources\\gameover.png") elif head.top > screenHeight - headSize or head.left < -5: isGameOver = True background = pygame.image.load("sources\\gameover.png") appleRect = apple.get_rect() # apple appleRect.left = appleX appleRect.top = appleY # when the snake obtains the apple if head.colliderect(appleRect): pygame.mixer.Sound.play(eatingSound) appleX = randrange(5, screenWidth - appleWidth) appleY = randrange(5, screenHeight - appleHeight) totalApple += 1 growBody() # When the snake head collides with its body for node in nodes: if head.colliderect(node) and nodes.index(node) > 4: isGameOver = True background = pygame.image.load("sources\\gameover.png") ##################################################################### # Draw components on the screen screen.blit(background, (0, 0)) # background if isGameOver == False: for node in nodes: pygame.draw.rect(screen, snakeColor, node) # draw snake screen.blit(apple, (appleX, appleY)) # draw apple pygame.display.update() # update the screen each time # Exit out from the game pygame.time.delay(1000) pygame.quit()
[ "yerimmie1125@gmail.com" ]
yerimmie1125@gmail.com
a9a87a3073f5e5b306e21351d62078b946fb85c8
36724b5400430baea62119bf3c91fe2cc2cb61e7
/apps/mensura/migrations/0001_initial.py
13218e40b736ec489c83f76d84e882e00c899c53
[]
no_license
cerbeerza/Peritos
20883e476b83bddbe7f735fe7918f107ee812795
96b10520fbd4d373bc731492ef97c156b8efc6b3
refs/heads/master
2021-01-16T18:24:00.921061
2019-09-03T20:02:24
2019-09-03T20:02:24
100,069,043
0
0
null
null
null
null
UTF-8
Python
false
false
858
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2018-03-21 13:42 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='MensuraGeneral', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('periodo', models.CharField(max_length=4)), ('num_mensura', models.IntegerField()), ('promedio', models.FloatField()), ('empresa', models.CharField(max_length=40)), ('situacion', models.CharField(max_length=20)), ('usuario_id', models.CharField(max_length=10)), ], ), ]
[ "cerbeerza@gmail.com" ]
cerbeerza@gmail.com
243a9a8513dbd98f7277254c647f9c346def832a
ac5bc9956bf97beb0135384f1592b59c12ffe1bb
/arview.py
1cdbed837b1130114515dc37a4fbc930927b03ca
[ "MIT" ]
permissive
hirax/restaurants_viewer
7e89b404d8be68d74794e5ed095f51b5fd57f6e0
eae056893941cf39fa87640bffea72a8aed47c4a
refs/heads/master
2020-07-21T16:32:51.652150
2019-06-03T23:30:10
2019-06-03T23:30:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,194
py
# coding: utf-8 import json import time from enum import IntFlag from math import pi import location import numpy import requests import ui from numpy import sin, cos from objc_util import * class SCNVector3(Structure): _fields_ = [('x', c_float), ('y', c_float), ('z', c_float)] load_framework('SceneKit') load_framework('ARKit') with open('token.txt') as f: API_KEY = f.read().replace('\n', '') URL = 'http://webservice.recruit.co.jp/hotpepper/gourmet/v1/?key={0}&lat={1}&lng={2}&range=5&format=json' byou = 25.2 scale = 40 W = 4 L = 100 H = 4 class_list = [ 'NSError', 'SCNScene', 'ARSCNView', 'ARWorldTrackingConfiguration', 'ARSession', 'UIViewController', 'ARPlaneAnchor', 'SCNView', 'SCNBox', 'SCNText', 'SCNNode', 'SCNLight', 'SCNCamera', 'SCNAction', 'SCNTransaction', 'UIFont', 'SCNSphere', 'SCNFloor', 'SCNLookAtConstraint', 'SCNPhysicsShape', 'SCNPhysicsBody', 'UIColor', 'NSObject' ] NSError, SCNScene, ARSCNView, ARWorldTrackingConfiguration, \ ARSession, UIViewController, ARPlaneAnchor, SCNView, SCNBox, \ SCNText, SCNNode, SCNLight, SCNCamera, SCNAction, SCNTransaction, \ UIFont, SCNSphere, SCNFloor, SCNLookAtConstraint, \ SCNPhysicsShape, SCNPhysicsBody, UIColor, NSObject = map(ObjCClass, class_list) deepskyblue = UIColor.color(red=0.0, green=191.0, blue=255.0, alpha=1.0) rotate_action = SCNAction.rotateByX_y_z_duration_(0, pi * 2, 0, 10) up = SCNAction.moveByX_y_z_duration_(0, 30, 0, 3) down = SCNAction.moveByX_y_z_duration_(0, -30, 0, 3) up_down = SCNAction.sequence_([up, down]) scene_view = None class ARWorldAlignment(IntFlag): ARWorldAlignmentGravity = 0 ARWorldAlignmentGravityAndHeading = 1 ARWorldAlignmentCamera = 2 class ARPlaneDetection(IntFlag): ARPlaneDetectionNone = 0 ARPlaneDetectionHorizontal = 1 << 0 ARPlaneDetectionVertical = 1 << 1 class ARSessionRunOptions(IntFlag): ARSessionRunOptionsNone = 0 ARSessionRunOptionResetTracking = 1 << 0 ARSessionRunOptionRemoveExistingAnchors = 1 << 1 def get_location(): location.start_updates() # GPSデータ更新を開始 gps_data = location.get_location() # GPSデータを取得する location.stop_updates() # GPSデータ更新を終了 return gps_data['latitude'], gps_data['longitude'] def get_restaurants(_lat, _lng): """緯度: lat 経度: lng""" response = requests.get(URL.format(API_KEY, _lat, _lng)) result = json.loads(response.text) lat_lng = [] for restaurant in result['results']['shop']: lat = float(restaurant['lat']) lng = float(restaurant['lng']) lat_lng.append((lat, lng, restaurant['name'])) r = [] for lat, lng, name in lat_lng: r2 = [] difference = (_lat - lat) * 3600 r2.append(int(difference * byou)) difference = (lng - _lng) * 3600 r2.append(int(difference * byou)) r2.append(name) r.append(r2) return r def createARSceneView(x, y, w, h, debug=True): v = ARSCNView.alloc().initWithFrame_((CGRect(CGPoint(x, y), CGSize(w, h)))) v.setShowsStatistics_(debug) return v @on_main_thread def run(ar_session): ar_configuration = ARWorldTrackingConfiguration.alloc().init() ar_configuration.setPlaneDetection_(ARPlaneDetection.ARPlaneDetectionHorizontal) ar_configuration.setWorldAlignment_( ARWorldAlignment.ARWorldAlignmentGravity) ar_session.runWithConfiguration_options_(ar_configuration, ARSessionRunOptions.ARSessionRunOptionResetTracking | ARSessionRunOptions.ARSessionRunOptionRemoveExistingAnchors) time.sleep(0.5) def CustomViewController_viewWillAppear_(_self, _cmd, animated): return def CustomViewController_viewWillDisappear_(_self, _cmd, animated): session = scene_view.session() session.pause() def MyARSCNViewDelegate_renderer_didAdd_for_(_self, _cmd, scenerenderer, node, anchor): if not isinstance(anchor, ARPlaneAnchor): return def MyARSCNViewDelegate_session_didFailWithError_(_self, _cmd, _session, _error): print('error', _error, _cmd, _session) err_obj = ObjCInstance(_error) print(err_obj) def convert_round(x, z, r): cosr = cos(r) sinr = sin(r) X = cosr * x - sinr * z Z = sinr * x + cosr * z return X, Z def get_text(text, x, y, z): text_mesh = SCNText.textWithString_extrusionDepth_(text, 3.0) text_mesh.setFlatness_(0.2) text_mesh.setChamferRadius_(0.4) text_mesh.setFont_(UIFont.fontWithName_size_('HoeflerText-Black', 15)) bbox_min, bbox_max = SCNVector3(), SCNVector3() text_mesh.getBoundingBoxMin_max_(byref(bbox_min), byref(bbox_max), restype=None, argtypes=[POINTER(SCNVector3), POINTER(SCNVector3)]) text_width = bbox_max.x - bbox_min.x text_node = SCNNode.nodeWithGeometry_(text_mesh) text_node.setCastsShadow_(True) text_container = SCNNode.node() text_container.addChildNode_(text_node) text_container.setPosition_((x, y, z)) text_container.runAction(SCNAction.repeatActionForever(SCNAction.group([rotate_action, up_down]))) text_node.setPosition_((-text_width / 2, 0, 0)) return text_container def add_restaurants(root_node, round_num): restaurants = get_restaurants(*get_location()) if round_num == 90.0 or round_num == 0: r = 0 elif round_num < 90: if round_num < 45: r = round_num + (45 - round_num) else: r = 45 + round_num * 2 else: r = round_num for restaurant in restaurants: box = SCNBox.boxWithWidth_height_length_chamferRadius_(W, L, H, 0) box_node = SCNNode.nodeWithGeometry_(box) x, z = restaurant[1], restaurant[0] if r: x, z = convert_round(x, z, r) box_node.setPosition_((x, 25, z)) box_node.runAction(SCNAction.repeatActionForever(rotate_action)) a = numpy.array([0, 0]) b = numpy.array(restaurant[:2]) u = b - a length = numpy.linalg.norm(u) if length < 100: box.material().setColor_(deepskyblue.CGColor()) else: box.material().setColor_(UIColor.blueColor().CGColor()) name = str(restaurant[2]) metal = '{}メートル'.format(int(length)) root_node.addChildNode_( get_text('{0}\n{1}'.format(name, metal.center(len(name))), x - 6, 25, z - 6)) root_node.addChildNode_(box_node) class MyARView(ui.View): def __init__(self): super().__init__(self) self.flex = 'WH' @on_main_thread def initialize(self, round_num): global scene_view screen = ui.get_screen_size() # シーンのセットアップ scene = SCNScene.scene() # view delegateのセットアップ methods = [MyARSCNViewDelegate_renderer_didAdd_for_, MyARSCNViewDelegate_session_didFailWithError_] protocols = ['ARSCNViewDelegate'] MyARSCNViewDelegate = create_objc_class('MyARSCNViewDelegate', NSObject, methods=methods, protocols=protocols) delegate = MyARSCNViewDelegate.alloc().init() # シーンviewのセットアップ scene_view = createARSceneView(0, 0, screen.width, screen.height) scene_view.scene = scene scene_view.setDelegate_(delegate) # コントローラーのセットアップ methods = [CustomViewController_viewWillAppear_, CustomViewController_viewWillDisappear_] protocols = [] CustomViewController = create_objc_class('CustomViewController', UIViewController, methods=methods, protocols=protocols) cvc = CustomViewController.alloc().init() cvc.view = scene_view # 初期設定 self_objc = ObjCInstance(self) self_objc.nextResponder().addChildViewController_(cvc) self_objc.addSubview_(scene_view) cvc.didMoveToParentViewController_(self_objc) # ARのセッションを開始 run(scene_view.session()) root_node = scene.rootNode() scene_view = SCNView.alloc().initWithFrame_options_(((0, 0), (400, 400)), None).autorelease() scene_view.setAutoresizingMask_(18) scene_view.setAllowsCameraControl_(True) # 光源設定 light_node = SCNNode.node() light_node.setPosition_((1.5, 1.5, 1.5)) light = SCNLight.light() light.setType_('omni') light.setCastsShadow_(True) light_node.setLight_(light) # カメラ設定 camera = SCNCamera.camera() camera_node = SCNNode.node() camera_node.setCamera(camera) camera_node.setPosition((0, 2, 0)) # メインノードに子ノードを追加 root_node.addChildNode_(camera_node) root_node.addChildNode_(light_node) add_restaurants(root_node, round_num) def will_close(self): session = scene_view.session() session.pause() if __name__ == '__main__': v = MyARView() v.present('full_screen', hide_title_bar=True, orientations=['portrait']) v.initialize(0)
[ "noreply@github.com" ]
hirax.noreply@github.com
92574a41f24fa70f4056ae2050c2c690a412eac4
5e5d5fd3d6da5191c426679f3c3ff34a53bf65f9
/tests/conftest.py
23b7134ac9a4bd87b2089dd90dace00f62feeaa4
[ "MIT" ]
permissive
Locotar/anerp
36f0e5b1b6e6b7b3ab9b821fba7d8008e185b6dc
784d990071b6b380bfd532db76f242af3a98e4e4
refs/heads/master
2022-04-26T13:25:17.865775
2016-02-01T06:12:18
2016-02-01T06:12:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
985
py
# -*- coding: utf-8 -*- '''Defines fixtures available to all tests.''' import pytest from webtest import TestApp from anerp.app import create_app from anerp.lib.database import db as _db from anerp.settings import TestConfig from .factories import UserFactory @pytest.yield_fixture(scope='function') def app(): '''An application for the tests.''' _app = create_app(TestConfig) ctx = _app.test_request_context() ctx.push() yield _app ctx.pop() @pytest.fixture(scope='function') def testapp(app): '''A Webtest app.''' return TestApp(app) @pytest.yield_fixture(scope='function') def db(app): '''A database for the tests.''' _db.app = app with app.app_context(): _db.create_all() yield _db # Explicitly close DB connection _db.session.close() _db.drop_all() @pytest.fixture def user(db): '''A user for the tests.''' user = UserFactory(password='myprecious') db.session.commit() return user
[ "fernandojr.ifcg@live.com" ]
fernandojr.ifcg@live.com
57bbdb4ebc42d7134e424b6f16fcbb7fa1ec8d7a
6d03a06a80910d13023949b4297aaa1ac348980b
/cifar10.py
2ac72eecceae47c5cb7993ef3fe24343da264ce4
[]
no_license
strike60/cifar10-NIN
0f6d83ef3b80689f65c3a5e48ab48662ef44641f
259f81801c7bbd58211994e4281db2d771aa69f3
refs/heads/master
2021-01-25T14:10:43.958757
2018-03-05T02:11:01
2018-03-05T02:11:01
123,663,580
0
0
null
null
null
null
UTF-8
Python
false
false
11,385
py
import tensorflow as tf import cifar10_input import os import numpy as np import re import sys import tarfile from six.moves import urllib FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_integer( 'batch_size', 128, """Number of images to process in a batch""") tf.app.flags.DEFINE_string( 'data_dir', '../cifar10_data', """Path to the CIFAR-10 data directory.""") IMAGE_SIZE = cifar10_input.IMAGE_SIZE NUM_CLASSES = cifar10_input.NUM_CLASSES NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL MOVING_AVERAGE_DECAY = 0.9999 NUM_EPOCHS_PER_DECAY = 300 LEARNING_RATE_DECAY_FACTOR = 0.9 INITIAL_LEARNING_RATE = 0.0001 conv_weight_decay = 0.00005 TOWER_NAME = 'tower' DATA_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz' def _activation_summary(x): tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name) tf.summary.histogram(tensor_name + '/activations', x) tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x)) def _variable_on_cpu(name, shape, initializer): with tf.device('/cpu:0'): var = tf.get_variable( name, shape, initializer=initializer, dtype=tf.float32) return var def _variable_with_weight_decay(name, shape, stddev, wd): var = _variable_on_cpu(name, shape, tf.truncated_normal_initializer( stddev=stddev, dtype=tf.float32)) if wd is not None: weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var def distorted_inputs(): if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs( data_dir=data_dir, batch_size=FLAGS.batch_size) return images, labels def inputs(eval_data): if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs( eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) return images, labels def inference(images, keep_prob): # images size is [batch,32,32,3] with tf.variable_scope('conv1') as scope: kernel = _variable_with_weight_decay( 'weights', shape=[5, 5, 3, 192], stddev=5e-2, wd=conv_weight_decay) conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding="SAME") biases = _variable_on_cpu( 'biases', [192], tf.constant_initializer(0.0)) pre_activation = tf.nn.bias_add(conv, biases) conv1 = tf.nn.relu(pre_activation, name=scope.name) _activation_summary(conv1) # conv1 size is [batch,32,32,192] with tf.variable_scope('cccp1') as scope: kernel = _variable_with_weight_decay( 'weights', shape=[1, 1, 192, 160], stddev=5e-2, wd=conv_weight_decay) conv = tf.nn.conv2d(conv1, kernel, [1, 1, 1, 1], padding="SAME") biases = _variable_on_cpu( 'biases', [160], tf.constant_initializer(0.0)) pre_activation = tf.nn.bias_add(conv, biases) cccp1 = tf.nn.relu(pre_activation, name=scope.name) _activation_summary(cccp1) # cccp1 size is [batch,32,32,160] with tf.variable_scope('cccp2') as scope: kernel = _variable_with_weight_decay( 'weights', shape=[1, 1, 160, 96], stddev=5e-2, wd=conv_weight_decay) conv = tf.nn.conv2d(cccp1, kernel, [1, 1, 1, 1], padding="SAME") biases = _variable_on_cpu('biases', [96], tf.constant_initializer(0.0)) pre_activation = tf.nn.bias_add(conv, biases) cccp2 = tf.nn.relu(pre_activation, name=scope.name) _activation_summary(cccp2) # cccp2 size is [batch,32,32,96] with tf.variable_scope('pool1') as scope: pool1 = tf.nn.max_pool(cccp2, ksize=[1, 3, 3, 1], strides=[ 1, 2, 2, 1], padding="SAME", name='pool1') # pool1 size is [batch,16,16,96] with tf.variable_scope('dropout1') as scope: dropout = tf.nn.dropout(pool1, keep_prob, name='dropout1') # dropout size is [batch,16,16,96] with tf.variable_scope('conv2') as scope: kernel = _variable_with_weight_decay( 'weights', shape=[5, 5, 96, 192], stddev=5e-2, wd=conv_weight_decay) conv = tf.nn.conv2d(dropout, kernel, [1, 1, 1, 1], padding="SAME") biases = _variable_on_cpu( 'biases', [192], tf.constant_initializer(0.0)) pre_activation = tf.nn.bias_add(conv, biases) conv2 = tf.nn.relu(pre_activation, name=scope.name) _activation_summary(conv2) # conv2 size is [batch,16,16,192] with tf.variable_scope('cccp3') as scope: kernel = _variable_with_weight_decay( 'weights', shape=[1, 1, 192, 192], stddev=5e-2, wd=conv_weight_decay) conv = tf.nn.conv2d(conv2, kernel, [1, 1, 1, 1], padding="SAME") biases = _variable_on_cpu( 'biases', [192], tf.constant_initializer(0.0)) pre_activation = tf.nn.bias_add(conv, biases) cccp3 = tf.nn.relu(pre_activation, name=scope.name) _activation_summary(cccp3) # cccp3 size is [batch,16,16,192] with tf.variable_scope('cccp4') as scope: kernel = _variable_with_weight_decay( 'weights', shape=[1, 1, 192, 192], stddev=5e-2, wd=conv_weight_decay) conv = tf.nn.conv2d(cccp3, kernel, [1, 1, 1, 1], padding="SAME") biases = _variable_on_cpu( 'biases', [192], tf.constant_initializer(0.0)) pre_activation = tf.nn.bias_add(conv, biases) cccp4 = tf.nn.relu(pre_activation, name=scope.name) _activation_summary(cccp4) # cccp4 size is [batch,16,16,192] with tf.variable_scope('pool2') as scope: pool2 = tf.nn.max_pool(cccp4, ksize=[1, 3, 3, 1], strides=[ 1, 2, 2, 1], padding="SAME", name='pool2') # pool2 size is [batch,8,8,192] with tf.variable_scope('dropout2') as scope: dropout2 = tf.nn.dropout(pool2, keep_prob, name='dropout2') # dropout2 size is [batch,8,8,192] with tf.variable_scope('conv3') as scope: kernel = _variable_with_weight_decay( 'weights', shape=[3, 3, 192, 192], stddev=5e-2, wd=conv_weight_decay) conv = tf.nn.conv2d(dropout2, kernel, [1, 1, 1, 1], padding="SAME") biases = _variable_on_cpu( 'biases', [192], tf.constant_initializer(0.0)) pre_activation = tf.nn.bias_add(conv, biases) conv3 = tf.nn.relu(pre_activation, name=scope.name) _activation_summary(conv3) # conv3 size is [batch,8,8,192] with tf.variable_scope('cccp5') as scope: kernel = _variable_with_weight_decay( 'weights', shape=[1, 1, 192, 192], stddev=5e-2, wd=conv_weight_decay) conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding="SAME") biases = _variable_on_cpu( 'biases', [192], tf.constant_initializer(0.0)) pre_activation = tf.nn.bias_add(conv, biases) cccp5 = tf.nn.relu(pre_activation, name=scope.name) _activation_summary(cccp5) # cccp5 size is [batch,8,8,192] with tf.variable_scope('cccp6') as scope: kernel = _variable_with_weight_decay( 'weights', shape=[1, 1, 192, 10], stddev=5e-2, wd=conv_weight_decay) conv = tf.nn.conv2d(cccp5, kernel, [1, 1, 1, 1], padding="SAME") biases = _variable_on_cpu('biases', [10], tf.constant_initializer(0.0)) pre_activation = tf.nn.bias_add(conv, biases) cccp6 = tf.nn.relu(pre_activation, name=scope.name) _activation_summary(cccp6) # cccp6 size is [batch,8,8,10] logits = tf.reduce_mean(cccp6, [1, 2]) return logits def loss(logits, labels): labels = tf.cast(labels, tf.int64) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=labels, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) return tf.add_n(tf.get_collection('losses'), name='total_loss') def _add_loss_summaries(total_loss): loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') losses = tf.get_collection('losses') loss_averages_op = loss_averages.apply(losses + [total_loss]) for l in losses + [total_loss]: tf.summary.scalar(l.op.name + ' (raw)', l) tf.summary.scalar(l.op.name, loss_averages.average(l)) return loss_averages_op def train(total_loss, global_step): num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN/FLAGS.batch_size decay_steps = int(num_batches_per_epoch*NUM_EPOCHS_PER_DECAY) lr = tf.train.exponential_decay( INITIAL_LEARNING_RATE, global_step, decay_steps, LEARNING_RATE_DECAY_FACTOR, staircase=True) tf.summary.scalar('learning_rate', lr) loss_averages_op = _add_loss_summaries(total_loss) with tf.control_dependencies([loss_averages_op]): opt = tf.train.AdamOptimizer(lr) grads = opt.compute_gradients(total_loss) apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) for var in tf.trainable_variables(): tf.summary.histogram(var.op.name, var) for grad, var in grads: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) variable_averages = tf.train.ExponentialMovingAverage( MOVING_AVERAGE_DECAY, global_step) variable_averages_op = variable_averages.apply( tf.trainable_variables()) with tf.control_dependencies([apply_gradient_op, variable_averages_op]): train_op = tf.no_op(name='train') return train_op def maybe_download_and_extract(): """Download and extract the tarball from Alex's website.""" dest_directory = FLAGS.data_dir if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') extracted_dir_path = os.path.join(dest_directory, 'cifar-10-batches-bin') if not os.path.exists(extracted_dir_path): tarfile.open(filepath, 'r:gz').extractall(dest_directory) # if __name__ == "__main__": # a = np.ones([10, 32, 32, 3], dtype=np.float32) # c = tf.constant([1, 2, 3, 4, 5, 6, 7, 8, 9, 9], dtype=tf.int32) # a_ = tf.constant(a) # b = inference(a_) # d = tf.nn.in_top_k(b, c, 1) # with tf.Session() as sess: # sess.run(tf.global_variables_initializer()) # print(sess.run(b)) # print(np.sum(sess.run(d)))
[ "xiangdanqi60@gmail.com" ]
xiangdanqi60@gmail.com
899597fd8353a77813a37816a08ac1651bfc58e9
f6cd0b0ffa6638318ca7f23077245b6379286975
/mod/wotstat/res/scripts/client/gui/mods/wot_stat/asyncRsponce.py
8b7981fccaf2463bfccc4205a87b462a16e84607
[ "MIT" ]
permissive
Steelwall2014/wot-stat
54ddfea0597252e4d3b1cfc2a122b7dc5c5f34e1
0439c56cfdc0ef6e9c3011850e624d6712daaa77
refs/heads/main
2023-07-04T02:12:55.787612
2021-08-11T01:00:21
2021-08-11T01:00:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,119
py
# -*- coding: utf-8 -*- import BigWorld import threading import urllib2 json_headers = {'Content-type': 'application/json', 'Accept': 'application/json'} def get_async(url, data=None, callback=None): request_async(url, data, get, callback) def post_async(url, data=None, callback=None): request_async(url, data, post, callback) def request_async(url, data, method, callback): event = threading.Event() runner = threading.Thread(target=run, args=(event, url, data, method, callback)) runner.start() event.wait() def run(event, url, data, method, callback): event.set() result = method(url, data) if callback: callback(result) def get(url, data): if data: params = urllib2.urlencode(data) url = '?'.join(url, params) return urllib2.urlopen(url).read() def post(url, data): if data: req = urllib2.Request(url, data, headers=json_headers) return urllib2.urlopen(req).read() else: return urllib2.urlopen(url).read()
[ "soprachev@mail.ru" ]
soprachev@mail.ru
64a0114f9c5ff58208a57a2598eee7dcbe253ab4
3e1b705d7e2d771a13bbb29d5c9e0279ec7922e9
/kmeans-7.py
adf5c14c0ae62424d646af97b1df100408ee5beb
[]
no_license
Chandu-K/machinelearninginpython
77c51a04afc833f0ae26df6579fa0c09b6457d0d
324b0f3566959c2ea7d2b484ffd812e5d6357cfb
refs/heads/master
2020-03-22T03:27:54.535129
2018-07-02T10:17:54
2018-07-02T10:17:54
139,433,638
0
0
null
null
null
null
UTF-8
Python
false
false
540
py
import matplotlib.pyplot as plt from matplotlib import style style.use('ggplot') import numpy as np from sklearn.cluster import KMeans X= np.array([[1,2],[1.5,1.8],[5,8],[8,8],[1,0.6],[9,11]]) #plt.scatter(X[:,0],X[:,1],s=150) #plt.show() clf=KMeans(n_clusters=2) clf.fit(X) centroids =clf.cluster_centers_ labels=clf.labels_ colors=["g.","r.","c.","b.","k.","o."] for i in range(len(X)): plt.plot(X[i][0],X[i][1],colors[labels[i]], markersize=100) plt.scatter(centroids[:,0],centroids[:,1], marker='x',s=150,linewidth=5) plt.show()
[ "chandu.kota.pk@gmail.com" ]
chandu.kota.pk@gmail.com
6103a26c7c46df208b2a6c1245e86efe9f687c8c
ea532c855f5372888f91c60d95a51b89bf091749
/controllers/userTable.py
6cb95b1faef8c340cf5e0c6ea6303f8f31382602
[]
no_license
ndohertyjr/the_professor
383f04b42e1ccd6e06fca8a41387f23ac5b15e05
c2bec1423af4a415f67e9d99105110655205fb3f
refs/heads/main
2023-09-02T00:57:44.766728
2021-10-31T20:27:19
2021-10-31T20:27:19
382,406,350
0
0
null
null
null
null
UTF-8
Python
false
false
3,902
py
# Database controller class from model.database import get_db from sqlite3 import Error """ Controls access to the user table in the database """ ''' CREATE FUNCTION ''' # Verify user does not exist in table, then add user def add_user(user_id, username, role, points): db = get_db() cursor = db.cursor() query = ''' INSERT INTO users(id,username,role,points) VALUES(?,?,?,?) ''' user = (user_id, username, role, points) if user_exists(cursor, user_id): print("User already exists") else: try: cursor.execute(query, user) print("User added!") db.commit() except Error as e: print(e, "Failed to add user to DB") if db: db.close() ''' READ FUNCTIONS ''' # Get user id from username def get_user_id(username): db = get_db() cursor = db.cursor() query = ''' SELECT id FROM users WHERE username= ? ''' cursor.execute(query, (username,)) user_id = cursor.fetchone()[0] print(user_id) db.close() return user_id # Return all the usernames in the table sorted alphabetically def get_all_usernames(): db = get_db() cursor = db.cursor() query = ''' SELECT username FROM users ORDER BY username COLLATE NOCASE ASC''' cursor.execute(query) all_users = [] for username in cursor.fetchall(): all_users.append(username[0]) db.close() return all_users # Get username by querying the users unique id def get_username(user_id): db = get_db() cursor = db.cursor() query = ''' SELECT username FROM users WHERE id=?''' cursor.execute(query, (user_id,)) username = cursor.fetchone()[0] db.close() return username # Get user's current participation points based on query of their unique id def get_user_points(user_id): db = get_db() cursor = db.cursor() query = ''' SELECT points FROM users WHERE id=?''' cursor.execute(query, (user_id,)) points = cursor.fetchone()[0] db.close() return points ''' UPDATE FUNCTIONS ''' # updates the username associated with user id def update_user_name(user_id, new_username): db = get_db() cursor = db.cursor() update_query = ''' UPDATE users SET username = ? WHERE id = ? ''' updated_info = new_username, user_id try: cursor.execute(update_query, updated_info) db.commit() print("Username changed for user", user_id, "to", new_username) except Error as e: print(e, " ***Update username query failed***") finally: if db: db.close() # Update user points based on a value change def update_user_points(user_id, points_val_change): db = get_db() cursor = db.cursor() current_points = get_user_points(user_id) current_points += points_val_change update_query = ''' UPDATE users SET points = ? WHERE id = ? ''' update_values = current_points, user_id try: cursor.execute(update_query, update_values) db.commit() print("Point value updated!") except Error as e: print(e, "Update failed!") finally: if db: db.close() ''' DELETE FUNCTION ''' # Delete user record by querying id def delete_user(user_id): db = get_db() cursor = db.cursor() delete_query = ''' DELETE FROM users WHERE id = ? ''' try: cursor.execute(delete_query, (user_id,)) db.commit() print("User deleted!") except Error as e: print(e, "Delete failed!") finally: if db: db.close() ''' TERTIARY FUNCTIONS ''' # Validation function to confirm if user exists in DB def user_exists(cursor, user_id): query = ''' SELECT id FROM users WHERE id=? ''' cursor.execute(query, (user_id,)) result = cursor.fetchone() if result: return True else: return False
[ "51974523+ndohertyjr@users.noreply.github.com" ]
51974523+ndohertyjr@users.noreply.github.com
24d6c9ac7d8ee3f90c92b2f6116de6365a619256
858943227f43c2b6ad387a31120b86235152a0fb
/reporting/basic/username_to_hash_id_reports.py
6c10f486862315a415b4a7f0355da5b81b775083
[ "MIT" ]
permissive
qjyzwlz/edx_data_research
2e14db206a5fef9a41c7a6470bf16591298f6dd9
6fb22ae7a40a1c531887a109a9e5aa4cc02cd189
refs/heads/master
2021-01-16T21:50:21.922901
2015-06-07T14:47:49
2015-06-07T14:47:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,015
py
''' In this script, we take a csv report as input and maps usernames to their hash ids and return a new csv_report Usage: python username_to_hash_id_reports.py db_name csv_report ''' import sys import csv from common.base_edx import EdXConnection from common.generate_csv_report import CSV db_name = sys.argv[1] # Change name of collection as required connection = EdXConnection(db_name, 'user_id_map' ) collection = connection.get_access_to_collection() with open(sys.argv[2]) as f: headers = next(f) reader = csv.reader(f) data = [row for row in reader] result = [] for row in data: cursor = collection['user_id_map'].find_one({'username' : row[0]}) hash_id = cursor['hash_id'] user_id = cursor['id'] result.append([row[0], user_id, hash_id] + row[1:]) input_file, extension = sys.argv[2].split('.') output = CSV(result, [headers.split(',')[0],'User ID','User Hash ID'] + headers.split(',')[1:], output_file=input_file+'_username_anon.'+extension) output.generate_csv()
[ "uehtesham90@gmail.com" ]
uehtesham90@gmail.com
f8d6a6d886bf761a7a3d19afa1fc71b998ed7ede
3d3bfef2045fcadb15033f4d291d9fd8deb42286
/Uploader/serializer.py
7eed05788a14086778be098d62ea117004a8a0f6
[]
no_license
dheerajnishad/django-interior-design-api
778e6cf8b302b96cf0b70f93404b3d3571028540
103481613e40b45dda4eab3d50853ce2be1bb9d8
refs/heads/master
2023-03-31T20:32:54.116498
2021-03-26T14:46:40
2021-03-26T14:46:40
351,811,361
1
0
null
null
null
null
UTF-8
Python
false
false
236
py
from rest_framework import serializers from Uploader.models import ProjectImageUploader class ProjectImageUploadSerializer(serializers.ModelSerializer): class Meta: model = ProjectImageUploader fields = "__all__"
[ "dheerajnishad22@gmail.com" ]
dheerajnishad22@gmail.com
8dc48a952db7cb203c4fca96f582f6db69b40e10
db2d1f36f348576d96b10f151f51c820d19b671c
/memory.py
682d98e5dcbb02a20b61aa08e1c49e52c84d2c48
[]
no_license
kq2/Games
aa269ad43ea86ba0df09f699655fcd02f9089155
0908455c584205fcaaacb1f208582456e1072471
refs/heads/master
2021-01-01T03:49:48.799541
2016-10-03T01:04:20
2016-10-03T01:04:20
56,762,106
1
0
null
null
null
null
UTF-8
Python
false
false
4,515
py
""" Game Memory """ import math import random import kq2tile import kq2grid import kq2gui import kq2animation TILE_SIZE = 100, 100 CELL_SIZE = 106, 106 ANGLE_ANIMATION = [ 0.16, 0.31, 0.45, 0.58, 0.7, 0.81, 0.91, 1.0, 1.08, 1.15, 1.14, 1.12, 1.09, 1.05, 1 ] def random_colors(num_color): """ Return given number of random paired colors. """ ans = [] while len(ans) < num_color: color, _ = kq2tile.random_color() ans.append(color) ans.append(color) random.shuffle(ans) return ans def valid_click(pos, tile): """ Return true if click is valid to Memory game. """ animation = tile.get_animation() return (not animation.is_moving() and animation.is_front() and tile.has_pos(pos)) def new_tile(tile, tile_color): """ Add animation to new tile. """ animation = kq2animation.Flipping(0, tile_color, tile_color) tile.set_animation(animation) def reset_tile(tile): """ Add animation to show tile's color then hide. """ animation = tile.get_animation() animation.set_back_color(tile.get_color()) animation.move(math.pi) animation.move(0, ANGLE_ANIMATION) def flip_tile(tile, angle, is_vel=False): """ Add animation to flip tile. """ animation = tile.get_animation() animation.move(angle, ANGLE_ANIMATION, is_vel) class Game(kq2grid.Grid, kq2gui.Game): """ Memory game. """ def __init__(self, rows, cols): """ Initialize a game with tiles. """ kq2grid.Grid.__init__(self, rows, cols) self.score = 0 self.exposed_tiles = [] tile_color = 'White' for row, col in self: tile = kq2tile.Tile(row, col, CELL_SIZE, TILE_SIZE, tile_color) tile.set_border_color(tile_color) self.set_tile(row, col, tile) new_tile(tile, tile_color) def reset(self): """ Override to reset each tile's color and animation. """ self.score = 0 self.exposed_tiles = [] self.get_gui().update_score(self.score) colors = random_colors(len(self)) for row, col in self: tile = self.get_tile(row, col) tile.set_color(colors.pop()) reset_tile(tile) def click(self, pos): """ Click on a tile. """ row, col = kq2tile.pos2cell(pos, CELL_SIZE) tile = self.get_tile(row, col) if tile and valid_click(pos, tile): click_on_left = pos[0] < tile.get_center()[0] angle = -math.pi if click_on_left else math.pi self.flip(tile, angle) def flip(self, tile, angle): """ Flip a tile. Main game logic. """ # if 2 tiles are already exposed, flip them back if # they have different colors. if len(self.exposed_tiles) == 2: tile1 = self.exposed_tiles.pop() tile2 = self.exposed_tiles.pop() if tile1.get_color() != tile2.get_color(): flip_tile(tile1, 0) flip_tile(tile2, 0) # if 1 or 0 tile exposed, flip it to expose if len(self.exposed_tiles) < 2: flip_tile(tile, angle, is_vel=True) self.exposed_tiles.append(tile) self.score += 1 self.get_gui().update_score(self.score) def draw(self, canvas): """ Draw all tiles on canvas. """ for row, col in self: self.get_tile(row, col).draw(canvas) class GUI(kq2gui.GUI): """ Memory game GUI. """ def __init__(self, gui, game): """ Initialize a game GUI, encapsulating the game and a real GUI, so that the real GUI can be easily replaced. """ kq2gui.GUI.__init__(self, gui, game, 'Memory', CELL_SIZE[0] * game.get_cols(), CELL_SIZE[1] * game.get_rows(), 'Black') self.set_mouse_click_handler(self.click) self.label = self.add_label('0') self.start_frame() def click(self, pos): """ Mouse click handler. """ self.get_game().click(pos) def update_score(self, score): """ Update score on GUI. """ self.label.set_text(str(score)) def run(gui): """ Start a game. """ game = Game(3, 3) GUI(gui, game).new_game()
[ "kq2@rice.edu" ]
kq2@rice.edu
2cfec2b157b72c86df79a7c60561062d66386896
a57cc7eb409c4dfac08753544e6fdce5842e8c30
/bought/admin.py
de206e3cf9f1a41819f39c68939d9210acbfcb1d
[]
no_license
satizz/satiz_gallery
4ef307fdd54dc1e698a045141b7a5581fd858b7f
b7518a14b57bc78cb7bb05b3393b6a3ae8681327
refs/heads/master
2021-01-10T04:05:08.468337
2016-03-11T07:43:02
2016-03-11T07:43:02
52,650,796
0
0
null
null
null
null
UTF-8
Python
false
false
535
py
from django.contrib import admin from bought.models import item # Register your models here. class itemAdmin(admin.ModelAdmin): fieldsets = [ ('Item Details',{'fields':[]} ), (None, {'fields':['name']}), (None,{'fields':['quan']}), (None,{'fields':['rate']}), (None,{'fields':['date']}), ('status',{'fields':['status']}), ] list_filter = ['date'] search_fields = ['name'] list_display = ('name','quan','rate','total','status') admin.site.register(item, itemAdmin)
[ "sat.nep001@gmail.com" ]
sat.nep001@gmail.com
290bb219c322d38a5d7f352adeacb26b906d1b1c
e767f21e012d76038086935754a2099e3a161aa5
/figure_scripts/Malezieux_CellRep_Fig3_kinetics.py
4ec5d479ab2a24fa7122178bf48fa102a17a2fa6
[]
no_license
MerylMalezieux/Malezieux_CellRep_2020
99344888c47c11f2321dee907b9a428a539f4750
dac469bf9eb28134132cc81d9ee99fed2d391668
refs/heads/master
2022-11-26T18:22:29.985598
2020-05-27T15:14:08
2020-05-27T15:14:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
26,479
py
# -*- coding: utf-8 -*- """ Created on Thu Nov 21 15:31:32 2019 @author: Ashley """ # Manuscript Malezieux, Kees, Mulle submitted to Cell Reports # Figure 3 # Description: onset and offset kinetics of dVm with theta # %% import modules import os import numpy as np from scipy import stats import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from itertools import compress import matplotlib as mpl # %% definitions # eta = event triggered averages. CHANGE: nans instead of removing events # VERSION: sample window is more likely to be the same in different recordings def prepare_eta(signal, ts, event_times, win): samp_period = np.round((ts[1] - ts[0]), decimals=3) win_npts = [np.round(np.abs(win[0])/samp_period).astype(int), np.round(np.abs(win[1])/samp_period).astype(int)] # win_npts = [ts[ts < ts[0] + np.abs(win[0])].size, # ts[ts < ts[0] + np.abs(win[1])].size] et_ts = ts[0:np.sum(win_npts)] - ts[0] + win[0] et_signal = np.empty(0) if event_times.size > 0: if signal.ndim == 1: et_signal = np.zeros((et_ts.size, event_times.size)) for i in np.arange(event_times.size): if np.logical_or((event_times[i]+win[0]<ts[0]), (event_times[i]+win[1]>ts[-1])): et_signal[:, i] = np.nan*np.ones(et_ts.size) else: # find index of closest timestamp to the event time ind = np.argmin(np.abs(ts-event_times[i])) et_signal[:, i] = signal[(ind - win_npts[0]): (ind + win_npts[1])] elif signal.ndim == 2: et_signal = np.zeros((signal.shape[0], et_ts.size, event_times.size)) for i in np.arange(event_times.size): if np.logical_or((event_times[i]+win[0]<ts[0]), (event_times[i]+win[1]>ts[-1])): et_signal[:, :, i] = np.nan*np.ones([signal.shape[0], et_ts.size]) else: # find index of closest timestamp to the event time ind = np.argmin(np.abs(ts-event_times[i])) et_signal[:, :, i] = signal[:, (ind - win_npts[0]): (ind + win_npts[1])] return et_signal, et_ts # eta = event triggered averages. # VERSION: sample window is more likely to be the same in different recordings # VERSION: Keep good part of signal, put nans when recording ends within the window # only remove events where there is no recording for the dVm comparison windows # Note: only for 1d signals def prepare_eta_keep(signal, ts, event_times, win, dVm_win): samp_period = np.round((ts[1] - ts[0]), decimals=3) win_npts = [np.round(np.abs(win[0])/samp_period).astype(int), np.round(np.abs(win[1])/samp_period).astype(int)] #et_ts = ts[0:np.sum(win_npts)] - ts[0] + win[0] et_ts = np.arange(win[0], win[1], samp_period) et_signal = np.empty(0) # pad signal and ts with nans at front and end signal = np.concatenate((np.full(win_npts[0], np.nan), signal, np.full(win_npts[1], np.nan)), axis=None) ts_pad = np.concatenate((et_ts[:win_npts[0]]+ts[0], ts, et_ts[win_npts[0]:]+ts[-1]), axis=None) if event_times.size > 0: et_signal = np.zeros((et_ts.size, event_times.size)) for i in np.arange(event_times.size): if np.logical_or((event_times[i]+dVm_win[0]<ts[0]), (event_times[i]+dVm_win[1]>ts[-1])): et_signal[:, i] = np.nan*np.ones(et_ts.size) else: #ind = np.argmin(np.abs(ts-event_times[i])) + win_npts[0] ind = np.searchsorted(ts_pad, event_times[i]) et_signal[:, i] = signal[(ind - win_npts[0]): (ind + win_npts[1])] return et_signal, et_ts # eta = event triggered averages: Version: skip events too close to edge # VERSION: sample window is more likely to be the same in different recordings def prepare_eta_skip(signal, ts, event_times, win): samp_period = np.round((ts[1] - ts[0]), decimals=3) win_npts = [np.round(np.abs(win[0])/samp_period).astype(int), np.round(np.abs(win[1])/samp_period).astype(int)] # win_npts = [ts[ts < ts[0] + np.abs(win[0])].size, # ts[ts < ts[0] + np.abs(win[1])].size] et_ts = ts[0:np.sum(win_npts)] - ts[0] + win[0] et_signal = np.empty(0) if event_times.size > 0: # remove any events that are too close to the beginning or end of recording if event_times[0]+win[0] < ts[0]: event_times = event_times[1:] if event_times[-1]+win[1] > ts[-1]: event_times = event_times[:-1] if signal.ndim == 1: et_signal = np.zeros((et_ts.size, event_times.size)) for i in np.arange(event_times.size): # find index of closest timestamp to the event time ind = np.argmin(np.abs(ts-event_times[i])) et_signal[:, i] = signal[(ind - win_npts[0]): (ind + win_npts[1])] elif signal.ndim == 2: et_signal = np.zeros((signal.shape[0], et_ts.size, event_times.size)) for i in np.arange(event_times.size): # find index of closest timestamp to the event time ind = np.argmin(np.abs(ts-event_times[i])) et_signal[:, :, i] = signal[:, (ind - win_npts[0]): (ind + win_npts[1])] return et_signal, et_ts # eta = event triggered averages # this code is for point processes, but times instead of inds def prepare_eta_times(pt_times, event_times, win): et_signal = [] if (pt_times.size > 0) & (event_times.size > 0): # find pt_times that occur within window of each event_time for i in np.arange(event_times.size): ts_section = pt_times[(pt_times > event_times[i] + win[0]) & (pt_times < event_times[i] + win[1])] ts_section = ts_section - event_times[i] et_signal.append(ts_section) else: et_signal = [np.empty(0) for k in np.arange(event_times.size)] return et_signal # definition for self_calculated variance def MADAM(data_pts, descriptor): v = np.sum(np.abs(data_pts-descriptor))/data_pts.size return v # %% Load data dataset_folder = (r'C:\Users\akees\Documents\Ashley\Papers\MIND 1\Cell Reports\Dryad upload\Dataset') cell_files = os.listdir(dataset_folder) data = [{} for k in np.arange(len(cell_files))] for i in np.arange(len(cell_files)): full_file = os.path.join(dataset_folder, cell_files[i]) data[i] = np.load(full_file, allow_pickle=True).item() states = [{'state':'theta', 'bef':-2.5, 'aft':0.5, 'samp_time':2, 't_win':[-30, 30], 'd_win':[-4, 12]}, {'state':'LIA', 'bef':-4, 'aft':-1, 'samp_time':2, 't_win':[-30, 30], 'd_win':[-4, 12]}, {'state':'run_theta', 'bef':-2.5, 'aft':0.5, 'samp_time':2, 't_win':[-30, 30], 'd_win':[-4, 12]}, {'state':'nonrun_theta', 'bef':-2.5, 'aft':0.5, 'samp_time':2, 't_win':[-30, 30], 'd_win':[-4, 12]}] # %% process data # make a dictionary to hold values collapsed over all cells events = [{} for k in np.arange(len(states))] # find Vm0, dVm and significance for each run, excluding when Ih is changed for l in np.arange(len(states)): all_c_p = np.empty(0) all_Ih = np.empty(0) all_Vm0 = np.empty(0) all_dVm = np.empty(0) all_dVm_p = np.empty(0) for i in np.arange(len(data)): samp_freq = 1/(data[i]['Vm_ds_ts'][1] - data[i]['Vm_ds_ts'][0]) num_ind = int(states[l]['samp_time']*samp_freq) # find index of dIh_times dIh_ind = data[i]['dIh_times']*samp_freq dIh_ind = dIh_ind.astype(int) c_p = np.zeros(data[i][states[l]['state']+'_start'].size) Ih = np.zeros(data[i][states[l]['state']+'_start'].size) Vm0 = np.zeros(data[i][states[l]['state']+'_start'].size) dVm = np.zeros(data[i][states[l]['state']+'_start'].size) dVm_p = np.zeros(data[i][states[l]['state']+'_start'].size) for j in np.arange(data[i][states[l]['state']+'_start'].size): # find indices bef_ind = int(np.sum(data[i]['Vm_ds_ts'] < (data[i][states[l]['state']+'_start'][j] + states[l]['bef']))) aft_ind = int(np.sum(data[i]['Vm_ds_ts'] < (data[i][states[l]['state']+'_start'][j] + states[l]['aft']))) # put nan if times are straddling a time when dIh is changed dIh_true = np.where((dIh_ind > bef_ind) & (dIh_ind < aft_ind + num_ind))[0] if dIh_true.size > 0: Ih[j] = np.nan Vm0[j] = np.nan dVm[j] = np.nan dVm_p[j] = np.nan else: if np.logical_or(l==0, l==1): c_p[j] = data[i][states[l]['state']+'_cell_p'] else: c_p[j] = data[i]['theta_cell_p'] Ih_ind = np.searchsorted(data[i]['Vm_Ih_ts'], data[i][states[l]['state']+'_start'][j]) Ih[j] = data[i]['Vm_Ih'][Ih_ind] # test whether Vm values are significantly different # Welch's t-test: normal, unequal variances, independent samp t, p = stats.ttest_ind(data[i]['Vm_ds'][bef_ind:bef_ind+num_ind], data[i]['Vm_ds'][aft_ind:aft_ind+num_ind], equal_var=False, nan_policy='omit') dVm_p[j] = p if (np.nanmean(data[i]['Vm_ds'][aft_ind:aft_ind+num_ind]) - np.nanmean(data[i]['Vm_ds'][bef_ind:bef_ind+num_ind])) > 0: Vm0[j] = np.nanmin(data[i]['Vm_s_ds'][bef_ind:bef_ind+num_ind]) dVm[j] = (np.nanmax(data[i]['Vm_s_ds'][aft_ind:aft_ind+num_ind]) - np.nanmin(data[i]['Vm_s_ds'][bef_ind:bef_ind+num_ind])) else: Vm0[j] = np.nanmax(data[i]['Vm_s_ds'][bef_ind:bef_ind+num_ind]) dVm[j] = (np.nanmin(data[i]['Vm_s_ds'][aft_ind:aft_ind+num_ind]) - np.nanmax(data[i]['Vm_s_ds'][bef_ind:bef_ind+num_ind])) data[i][states[l]['state']+'_c_p'] = c_p data[i][states[l]['state']+'_Ih'] = Ih data[i][states[l]['state']+'_Vm0'] = Vm0 data[i][states[l]['state']+'_dVm'] = dVm data[i][states[l]['state']+'_dVm_p'] = dVm_p all_c_p = np.append(all_c_p, c_p) all_Ih = np.append(all_Ih, Ih) all_Vm0 = np.append(all_Vm0, Vm0) all_dVm = np.append(all_dVm, dVm) all_dVm_p = np.append(all_dVm_p, dVm_p) events[l]['c_p'] = all_c_p events[l]['Ih'] = all_Ih events[l]['Vm0'] = all_Vm0 events[l]['dVm'] = all_dVm events[l]['dVm_p'] = all_dVm_p # add windows triggered by start of some brain states for l in np.arange(len(states)): for i in np.arange(len(data)): dVm_win = [states[l]['bef'], states[l]['aft']+states[l]['samp_time']] t_Vm, t_ts = prepare_eta_keep(data[i]['Vm_s_ds'], data[i]['Vm_ds_ts'], data[i][states[l]['state']+'_start'], states[l]['t_win'], dVm_win) t_sp = prepare_eta_times(data[i]['sp_times'], data[i][states[l]['state']+'_start'], states[l]['t_win']) data[i][states[l]['state']+'_Vm'] = t_Vm data[i][states[l]['state']+'_sp'] = t_sp states[l]['t_ts'] = t_ts ## add windows triggered by offset of some brain states #for l in np.arange(len(states)): # for i in np.arange(len(data)): # dVm_win = [states[l]['bef'], states[l]['aft']+states[l]['samp_time']] # t_Vm, t_ts = prepare_eta_keep(data[i]['Vm_s_ds'], data[i]['Vm_ds_ts'], # data[i][states[l]['state']+'_stop'], # states[l]['t_win'], dVm_win) # t_sp = prepare_eta_times(data[i]['sp_times'], # data[i][states[l]['state']+'_start'], # states[l]['t_win']) # data[i][states[l]['state']+'_Vm'] = t_Vm # data[i][states[l]['state']+'_sp'] = t_sp # states[l]['t_ts'] = t_ts # add triggered windows to event dictionary # VERSION: only removes events with all nans (not any nans) for l in np.arange(len(events)): raster_sp = [] psth_sp = np.empty(0) Vm = np.empty((states[l]['t_ts'].shape[0], 0)) duration = np.empty(0) cell_id = np.empty(0) for i in np.arange(len(data)): cell_psth_sp = np.empty(0) if data[i][states[l]['state']+'_start'].size > 0: Vm = np.append(Vm, data[i][states[l]['state']+'_Vm'], axis=1) duration = np.append(duration, (data[i][states[l]['state']+'_stop'] - data[i][states[l]['state']+'_start'])) if isinstance(data[i]['cell_id'], str): ind = data[i]['cell_id'].find('_') cell_int = int(data[i]['cell_id'][:ind])*np.ones(data[i][states[l]['state']+'_start'].size) cell_id = np.append(cell_id, cell_int) else: cell_int = data[i]['cell_id']*np.ones(data[i][states[l]['state']+'_start'].size) cell_id = np.append(cell_id, cell_int) for j in np.arange(data[i][states[l]['state']+'_start'].size): psth_sp = np.append(psth_sp, data[i][states[l]['state']+'_sp'][j]) cell_psth_sp = np.append(cell_psth_sp, data[i][states[l]['state']+'_sp'][j]) raster_sp.append(data[i][states[l]['state']+'_sp'][j]) data[i][states[l]['state']+'_psth_sp'] = cell_psth_sp # remove nans no_nan = np.logical_and([~np.isnan(Vm).all(axis=0)], [~np.isnan(events[l]['Vm0'])]).flatten() events[l]['Vm'] = Vm[:, no_nan] events[l]['cell_id'] = cell_id[no_nan] events[l]['duration'] = duration[no_nan] events[l]['raster_sp'] = list(compress(raster_sp, no_nan)) events[l]['c_p'] = events[l]['c_p'][no_nan] events[l]['Ih'] = events[l]['Ih'][no_nan] events[l]['Vm0'] = events[l]['Vm0'][no_nan] events[l]['dVm'] = events[l]['dVm'][no_nan] events[l]['dVm_p'] = events[l]['dVm_p'][no_nan] # normalize the Vm to start of the event-triggered window for l in np.arange(len(events)): start_ind = np.sum(states[l]['t_ts'] < states[l]['bef']) stop_ind = np.sum(states[l]['t_ts'] < (states[l]['bef'] + states[l]['samp_time'])) comp = np.mean(events[l]['Vm'][start_ind:stop_ind], axis=0) events[l]['norm_Vm'] = events[l]['Vm'] - comp # for each event, label with -1 (hyp), 0 (no), 1 (dep) for l in np.arange(len(events)): dVm_type = np.zeros(events[l]['dVm'].size) dVm_type[np.logical_and(events[l]['dVm']<0, events[l]['dVm_p']<0.05)] = -1 dVm_type[np.logical_and(events[l]['dVm']>0, events[l]['dVm_p']<0.05)] = 1 events[l]['dVm_type'] = dVm_type # take the norm_Vm matrices and realign them to the offsets for l in np.arange(len(events)): d_win = -1*np.array(states[l]['d_win'][::-1]) win_ind = np.searchsorted(states[l]['t_ts'], d_win) states[l]['t_ts_off'] = states[l]['t_ts'][win_ind[0]:win_ind[1]] ind0 = np.searchsorted(states[l]['t_ts'], 0) off_norm_Vm = np.full((int(np.diff(win_ind)), events[l]['duration'].size), np.nan) for j in np.arange(events[l]['duration'].size): shift_ind = np.searchsorted(states[l]['t_ts'], events[l]['duration'][j]) - ind0 off_norm_Vm[:, j] = events[l]['norm_Vm'][win_ind[0]+shift_ind:win_ind[1]+shift_ind, j] events[l]['off_norm_Vm'] = off_norm_Vm # %% make average spectrograms #l = 0 #spec_win = [-3, 3] # ## triggered z_Sxx for theta onset #t_Sxx, t_spec_ts = prepare_eta_skip(data[0]['z_Sxx'], data[0]['spec_ts'], # data[0]['theta_start'], spec_win) #t_num_pts_spec = t_spec_ts.shape[0] #f_num_pts = data[0]['z_Sxx'].shape[0] #all_t_Sxx = np.empty([f_num_pts, t_num_pts_spec, 0]) #for i in np.arange(len(data)): # t_Sxx, t_spec_ts = prepare_eta_skip(data[i]['z_Sxx'], data[i]['spec_ts'], # data[i]['theta_start'], spec_win) # if t_Sxx.size > 0: # all_t_Sxx = np.append(all_t_Sxx, t_Sxx, axis=2) #mean_on_Sxx = np.mean(all_t_Sxx, axis=2) ## triggered z_Sxx for theta offset #t_Sxx, t_spec_ts = prepare_eta_skip(data[0]['z_Sxx'], data[0]['spec_ts'], # data[0]['theta_stop'], spec_win) #t_num_pts_spec = t_spec_ts.shape[0] #f_num_pts = data[0]['z_Sxx'].shape[0] #all_t_Sxx = np.empty([f_num_pts, t_num_pts_spec, 0]) #for i in np.arange(len(data)): # t_Sxx, t_spec_ts = prepare_eta_skip(data[i]['z_Sxx'], data[i]['spec_ts'], # data[i]['theta_stop'], spec_win) # if t_Sxx.size > 0: # all_t_Sxx = np.append(all_t_Sxx, t_Sxx, axis=2) #mean_off_Sxx = np.mean(all_t_Sxx, axis=2) # %% set figure parameters # set colors # states c_run_theta = [0.398, 0.668, 0.547] c_nonrun_theta = [0.777, 0.844, 0.773] c_LIA = [0.863, 0.734, 0.582] # response type c_hyp = [0.184, 0.285, 0.430] c_dep = [0.629, 0.121, 0.047] c_no = [1, 1, 1] # dependent variables c_sp = [0.398, 0.461, 0.703] c_Vm = [0.398, 0.461, 0.703] # other c_lgry = [0.75, 0.75, 0.75] c_mgry = [0.5, 0.5, 0.5] c_dgry = [0.25, 0.25, 0.25] c_wht = [1, 1, 1] c_blk = [0, 0, 0] c_bwn = [0.340, 0.242, 0.125] c_lbwn = [0.645, 0.484, 0.394] c_grn = [0.148, 0.360, 0.000] c_dVm = [c_hyp, c_mgry, c_dep] c_state = [c_run_theta, c_LIA, c_mgry] # set style defaults mpl.rcParams['font.size'] = 8 mpl.rcParams['savefig.dpi'] = 1200 mpl.rcParams['lines.linewidth'] = 1.5 mpl.rcParams['font.sans-serif'] = "Arial" mpl.rcParams['font.family'] = "sans-serif" mpl.rcParams['axes.spines.right'] = False mpl.rcParams['axes.spines.top'] = False mpl.rcParams['axes.linewidth'] = 1 mpl.rcParams['xtick.major.size'] = 4 mpl.rcParams['xtick.major.width'] = 1 mpl.rcParams['ytick.major.size'] = 4 mpl.rcParams['ytick.major.width'] = 1 mpl.rcParams['boxplot.whiskerprops.linestyle'] = '-' mpl.rcParams['patch.force_edgecolor'] = True mpl.rcParams['patch.facecolor'] = 'b' # set figure output folder fig_folder = r'C:\Users\akees\Documents\Ashley\Figures\2020-05_Paper_MIND1\Fig3' # %% Make figures dVm = ['hyp', 'no', 'dep'] # plot the dVm color plot, events organized by event duration # version: blue/red for hyp/dep; hyp/dep/no events plotted on separated figures l = 0 m = 0 fig, ax = plt.subplots(1, 1, figsize=[1.8, 3.45]) # transpose the norm Vm norm_Vm = np.transpose(events[l]['norm_Vm'][:, events[l]['dVm_type'] == m-1]) duration = events[l]['duration'][events[l]['dVm_type'] == m-1] # set order order = np.flip(np.argsort(duration), axis=0) p = ax.pcolormesh(states[l]['t_ts'], np.arange(order.size), norm_Vm[order], cmap='RdBu_r', vmin=-5, vmax=5) ax.scatter(duration[order], np.arange(order.size)+0.5, color=c_blk, s=1) ax.scatter(np.zeros(order.size), np.arange(order.size)+0.5, color=c_blk, s=1) ax.axis('tight') ax.set_xlim(states[l]['d_win']) ax.set_xticks([-4, 0, 4, 8, 12]) ax.set_yticks([order.size-1]) ax.set_yticklabels([order.size]) ax.set_ylim([0, order.size-1]) ax.set_ylabel('events', verticalalignment='center') ax.yaxis.set_label_coords(-0.1, 0.5, transform=None) ax.spines['top'].set_visible(True) ax.spines['right'].set_visible(True) ax.set_xlabel('time relative to theta\nonset (s)') fig.tight_layout() plt.savefig(os.path.join(fig_folder, 'Vm_color_' + dVm[m] + '.png'), transparent=True) m = 2 fig, ax = plt.subplots(1, 1, figsize=[1.8, 2.1]) # transpose the norm Vm norm_Vm = np.transpose(events[l]['norm_Vm'][:, events[l]['dVm_type'] == m-1]) duration = events[l]['duration'][events[l]['dVm_type'] == m-1] # set order order = np.flip(np.argsort(duration), axis=0) p = ax.pcolormesh(states[l]['t_ts'], np.arange(order.size), norm_Vm[order], cmap='RdBu_r', vmin=-5, vmax=5) ax.scatter(duration[order], np.arange(order.size)+0.5, color=c_blk, s=1) ax.scatter(np.zeros(order.size), np.arange(order.size)+0.5, color=c_blk, s=1) ax.axis('tight') ax.set_xlim(states[l]['d_win']) ax.set_xticks([-4, 0, 4, 8, 12]) ax.set_yticks([order.size-1]) ax.set_yticklabels([order.size]) ax.set_ylim([0, order.size-1]) ax.set_ylabel('events', verticalalignment='center') ax.yaxis.set_label_coords(-0.1, 0.5, transform=None) ax.spines['top'].set_visible(True) ax.spines['right'].set_visible(True) ax.set_xlabel('time relative to theta\nonset (s)') # add a scale bar for the colors divider = make_axes_locatable(ax) cax = divider.append_axes("top", size="10%", pad=0.1) cb = plt.colorbar(p, cax=cax, orientation="horizontal", ticks=[-5, 5]) cb.set_label(r'$\Delta$'+' Vm (mV)', labelpad=-22) axcb = cb.ax axcb.tick_params(bottom=False, top=True, labelbottom=False, labeltop=True) #axcb.text(0, 15, r'$\Delta$'+' Vm (mV)', rotation=0, horizontalalignment='center') fig.tight_layout() plt.savefig(os.path.join(fig_folder, 'Vm_color_' + dVm[m] + '.png'), transparent=True) #%% make figures for on/offset kinetics ## avg spectrograms and on/offset kinetics # VERSION: hyp and dep traces on same axis # onset kinetics fig, ax = plt.subplots(2, 2, figsize=[3.4, 3.5], sharex='col', sharey='row', gridspec_kw = {'height_ratios':[1, 2]}) ## average spectrogram - onset #im = ax[0, 0].pcolormesh(t_spec_ts, data[0]['f'][data[0]['f']<16], # mean_on_Sxx[data[0]['f']<16], # shading='flat', cmap='viridis', vmin=-0.5, vmax=0.5) #ax[0, 0].axvline(0, linestyle='--', color=c_blk) #ax[0, 0].axis('tight') #ax[0, 0].set_yticks([8, 16]) #ax[0, 0].spines['top'].set_visible(True) #ax[0, 0].spines['right'].set_visible(True) #divider = make_axes_locatable(ax[0, 0]) #cax = divider.append_axes("top", size="10%", pad=0.1) #cb = plt.colorbar(im, cax=cax, orientation="horizontal", ticks=[-0.5, 0.5]) #cb.set_label('power (z)', labelpad=-21) #axcb = cb.ax #axcb.tick_params(bottom=False, top=True, labelbottom=False, labeltop=True) ## average spectrogram - offset #im = ax[0, 1].pcolormesh(t_spec_ts, data[0]['f'][data[0]['f']<16], # mean_off_Sxx[data[0]['f']<16], # shading='flat', cmap='viridis', vmin=-0.5, vmax=0.5) #ax[0, 1].axvline(0, linestyle='--', color=c_blk) #ax[0, 1].axis('tight') #ax[0, 1].set_yticks([8, 16]) #ax[0, 1].spines['top'].set_visible(True) #ax[0, 1].spines['right'].set_visible(True) #divider = make_axes_locatable(ax[0, 1]) #cax = divider.append_axes("top", size="10%", pad=0.1) #cb = plt.colorbar(im, cax=cax, orientation="horizontal", ticks=[-0.5, 0.5]) #cb.set_label('power (z)', labelpad=-21) #axcb = cb.ax #axcb.tick_params(bottom=False, top=True, labelbottom=False, labeltop=True) # average hyp - onset m = 0 mean_Vm = np.nanmean(events[l]['norm_Vm'][:, events[l]['dVm_type'] == m-1], axis=1) sem_Vm = stats.sem(events[l]['norm_Vm'][:, events[l]['dVm_type'] == m-1], axis=1, nan_policy='omit') ax[1, 0].fill_between(states[l]['t_ts'], (mean_Vm + sem_Vm), (mean_Vm - sem_Vm), facecolor=c_hyp, linewidth=0, alpha=0.5, zorder=1) ax[1, 0].plot(states[0]['t_ts'], mean_Vm, color=c_hyp, zorder=4) ax[1, 0].axhline(0, linestyle='--', color=c_blk) ax[1, 0].axvline(0, linestyle='--', color=c_blk) # average hyp - offset m = 0 mean_Vm = np.nanmean(events[l]['off_norm_Vm'][:, events[l]['dVm_type'] == m-1], axis=1) sem_Vm = stats.sem(events[l]['off_norm_Vm'][:, events[l]['dVm_type'] == m-1], axis=1, nan_policy='omit') ax[1, 1].fill_between(states[0]['t_ts_off'], (mean_Vm + sem_Vm), (mean_Vm - sem_Vm), facecolor=c_hyp, linewidth=0, alpha=0.5, zorder=1) ax[1, 1].plot(states[0]['t_ts_off'], mean_Vm, color=c_hyp, zorder=4) ax[1, 1].axhline(0, linestyle='--', color=c_blk) ax[1, 1].axvline(0, linestyle='--', color=c_blk) # average dep - onset m = 2 mean_Vm = np.nanmean(events[l]['norm_Vm'][:, events[l]['dVm_type'] == m-1], axis=1) sem_Vm = stats.sem(events[l]['norm_Vm'][:, events[l]['dVm_type'] == m-1], axis=1, nan_policy='omit') ax[1, 0].fill_between(states[l]['t_ts'], (mean_Vm + sem_Vm), (mean_Vm - sem_Vm), facecolor=c_dep, linewidth=0, alpha=0.5, zorder=1) ax[1, 0].plot(states[0]['t_ts'], mean_Vm, color=c_dep, zorder=4) ax[1, 0].axhline(0, linestyle='--', color=c_blk) ax[1, 0].axvline(0, linestyle='--', color=c_blk) # average dep - offset m = 2 mean_Vm = np.nanmean(events[l]['off_norm_Vm'][:, events[l]['dVm_type'] == m-1], axis=1) sem_Vm = stats.sem(events[l]['off_norm_Vm'][:, events[l]['dVm_type'] == m-1], axis=1, nan_policy='omit') ax[1, 1].fill_between(states[l]['t_ts_off'], (mean_Vm + sem_Vm), (mean_Vm - sem_Vm), facecolor=c_dep, linewidth=0, alpha=0.5, zorder=1) ax[1, 1].plot(states[l]['t_ts_off'], mean_Vm, color=c_dep, zorder=4) ax[1, 1].axhline(0, linestyle='--', color=c_blk) ax[1, 1].axvline(0, linestyle='--', color=c_blk) # format ax[1, 0].set_xlim([-2, 1.5]) ax[1, 1].set_xlim([-1.5, 2]) ax[1, 0].set_xticks([-2, -1, 0, 1]) ax[1, 1].set_xticks([-1, 0, 1, 2]) ax[1, 0].set_ylim([-3.6, 3.1]) ax[0, 1].tick_params(left=False, right=True) ax[1, 1].spines['left'].set_visible(False) ax[1, 1].spines['right'].set_visible(True) ax[1, 1].tick_params(left=False, right=True) ax[0, 0].set_ylabel('Hz', rotation=0, verticalalignment='center') ax[1, 0].set_ylabel(r'$\Delta$'+' Vm (mV)') ax[1, 0].set_xlabel('time relative to theta\nonset (s)') ax[1, 1].set_xlabel('time relative to theta\noffset (s)') ax[0, 0].set_yticks([8, 16]) fig.tight_layout() plt.savefig(os.path.join(fig_folder, 'avg_on_off_v2.png'), transparent=True)
[ "noreply@github.com" ]
MerylMalezieux.noreply@github.com
cf3e55341e073c593654b0ce4d048e66abc3427b
0e950f5d08149dd1e0e4380964144287a8edc6e7
/steps/step11.py
432fbdd184225fd543c0eaf5bf2e9a1b1120cafe
[]
no_license
shotakikuchi/deeplearning-from-scratch3
ff65e88216a6332e1679d04b66cc17ec87711ea0
ac09afc2d00064d7327d19d6a4de6096215430e2
refs/heads/master
2022-07-19T08:20:07.182011
2020-05-24T12:34:01
2020-05-24T12:34:01
266,511,741
1
0
null
null
null
null
UTF-8
Python
false
false
1,701
py
import numpy as np import unittest class Variable: def __init__(self, data): if data is not None: if not isinstance(data, np.ndarray): raise TypeError(f'{type(data)} is not supported') self.data = data self.grad = None self.creator = None def set_creator(self, func): self.creator = func def backward(self): if self.grad is None: self.grad = np.ones_like(self.data) funcs = [self.creator] while funcs: f = funcs.pop() # 関数を取得 x, y = f.input, f.output # 関数の入出力を取得 x.grad = f.backward(y.grad) # 関数のbackwardメソッドを呼ぶ if x.creator is not None: funcs.append(x.creator) # 1つ前の関数をリストに追加 class Function: def __call__(self, inputs): xs = [x.data for x in inputs] ys = self.forward(xs) outputs = [Variable(as_array(y)) for y in ys] for output in outputs: # memorize parent creator to output output.set_creator(self) # memorize inputs self.inputs = inputs # memorize outputs self.outputs = outputs return outputs def forward(self, x): raise NotImplementedError() def backward(self, x): raise NotImplementedError() class Add(Function): def forward(self, xs): x0, x1 = xs y = x0 + x1 return (y,) def as_array(x): if np.isscalar(x): return np.array(x) return x
[ "shota.kikuchi@coconala.com" ]
shota.kikuchi@coconala.com
cf4004f1e7c009c4ded193633c9c4aa8c7cda448
005355a6ef55bd41c608b25bdbb4c6ede7927053
/password_generator/settings.py
86a40e45f48e8a4ec594389b4a1e32d772789d78
[]
no_license
dcepticonMan/django3-password-generator
b0dc0e6623f2c635c9048902e4b19bbe25137032
22ddfb2683dc2807baee9e437da152df796af7ad
refs/heads/master
2023-02-16T21:03:59.866296
2021-01-15T18:52:06
2021-01-15T18:52:06
329,997,859
0
0
null
null
null
null
UTF-8
Python
false
false
3,115
py
""" Django settings for password_generator project. Generated by 'django-admin startproject' using Django 3.1.4. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'mb%2u&a1$5hpy#n2ms-dx+d9-o9c9)ol#5*@p@h0)_teqid287' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'generator', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'password_generator.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'password_generator.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
[ "mobooks2020@gmail.com" ]
mobooks2020@gmail.com
49984aaf6964669dd79c03129fbee288768035b4
d856fe696f688f3dcda6b990f280ae789d47273f
/test/test_tensor_creation_ops.py
3575095066daf6c95cc81e216e6ede3b05581a55
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0", "BSD-2-Clause" ]
permissive
BBIGCat111/pytorch
8f8cd0d9d3fc63b8ae33b6f0ebf87c561734d6ff
d3cde6c23c1a7d184f38d4e5fb797257e39d3376
refs/heads/master
2023-03-15T12:46:26.442454
2021-03-08T06:54:31
2021-03-08T06:57:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
150,435
py
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, slowTest, TEST_SCIPY, IS_MACOS, IS_PPC, IS_WINDOWS) from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, deviceCountAtLeast, onlyOnCPUAndCUDA, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU) # TODO: refactor tri_tests_args, _compare_trilu_indices, run_additional_tri_tests from torch.testing._internal.common_methods_invocations import ( tri_tests_args, _compare_trilu_indices, run_additional_tri_tests) # TODO: replace with make_tensor def _generate_input(shape, dtype, device, with_extremal): if shape == (): x = torch.tensor((), dtype=dtype, device=device) else: if dtype.is_floating_point or dtype.is_complex: # work around torch.randn not being implemented for bfloat16 if dtype == torch.bfloat16: x = torch.randn(*shape, device=device) * random.randint(30, 100) x = x.to(torch.bfloat16) else: x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(30, 100) x[torch.randn(*shape) > 0.5] = 0 if with_extremal and dtype.is_floating_point: # Use extremal values x[torch.randn(*shape) > 0.5] = float('nan') x[torch.randn(*shape) > 0.5] = float('inf') x[torch.randn(*shape) > 0.5] = float('-inf') elif with_extremal and dtype.is_complex: x[torch.randn(*shape) > 0.5] = complex('nan') x[torch.randn(*shape) > 0.5] = complex('inf') x[torch.randn(*shape) > 0.5] = complex('-inf') elif dtype == torch.bool: x = torch.zeros(shape, dtype=dtype, device=device) x[torch.randn(*shape) > 0.5] = True else: x = torch.randint(15, 100, shape, dtype=dtype, device=device) return x # TODO: replace with make_tensor def _rand_shape(dim, min_size, max_size): shape = [] for i in range(dim): shape.append(random.randint(min_size, max_size)) return tuple(shape) # Test suite for tensor creation ops # # Includes creation functions like torch.eye, random creation functions like # torch.rand, and *like functions like torch.ones_like. # DOES NOT INCLUDE view ops, which are tested in TestViewOps (currently in # test_torch.py) OR numpy interop (which is also still tested in test_torch.py) # # See https://pytorch.org/docs/master/torch.html#creation-ops class TestTensorCreation(TestCase): exact_dtype = True @onlyCPU @dtypes(torch.float) def test_diag_embed(self, device, dtype): x = torch.arange(3 * 4, dtype=dtype, device=device).view(3, 4) result = torch.diag_embed(x) expected = torch.stack([torch.diag(r) for r in x], 0) self.assertEqual(result, expected) result = torch.diag_embed(x, offset=1, dim1=0, dim2=2) expected = torch.stack([torch.diag(r, 1) for r in x], 1) self.assertEqual(result, expected) def test_cat_mem_overlap(self, device): x = torch.rand((1, 3), device=device).expand((6, 3)) y = torch.rand((3, 3), device=device) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): torch.cat([y, y], out=x) @onlyOnCPUAndCUDA def test_vander(self, device): x = torch.tensor([1, 2, 3, 5], device=device) self.assertEqual((0, 0), torch.vander(torch.tensor([]), 0).shape) with self.assertRaisesRegex(RuntimeError, "N must be non-negative."): torch.vander(x, N=-1) with self.assertRaisesRegex(RuntimeError, "x must be a one-dimensional tensor."): torch.vander(torch.stack((x, x))) @onlyOnCPUAndCUDA @dtypes(torch.bool, torch.uint8, torch.int8, torch.short, torch.int, torch.long, torch.float, torch.double, torch.cfloat, torch.cdouble) def test_vander_types(self, device, dtype): if dtype is torch.uint8: # Note: no negative uint8 values X = [[1, 2, 3, 5], [0, 1 / 3, 1, math.pi, 3 / 7]] elif dtype is torch.bool: # Note: see https://github.com/pytorch/pytorch/issues/37398 # for why this is necessary. X = [[True, True, True, True], [False, True, True, True, True]] elif dtype in [torch.cfloat, torch.cdouble]: X = [[1 + 1j, 1 + 0j, 0 + 1j, 0 + 0j], [2 + 2j, 3 + 2j, 4 + 3j, 5 + 4j]] else: X = [[1, 2, 3, 5], [-math.pi, 0, 1 / 3, 1, math.pi, 3 / 7]] N = [None, 0, 1, 3] increasing = [False, True] for x, n, inc in product(X, N, increasing): numpy_dtype = torch_to_numpy_dtype_dict[dtype] pt_x = torch.tensor(x, device=device, dtype=dtype) np_x = np.array(x, dtype=numpy_dtype) pt_res = torch.vander(pt_x, increasing=inc) if n is None else torch.vander(pt_x, n, inc) np_res = np.vander(np_x, n, inc) self.assertEqual( pt_res, torch.from_numpy(np_res), atol=1e-3, rtol=0, exact_dtype=False) def test_cat_all_dtypes_and_devices(self, device): for dt in torch.testing.get_all_dtypes(): x = torch.tensor([[1, 2], [3, 4]], dtype=dt, device=device) expected1 = torch.tensor([[1, 2], [3, 4], [1, 2], [3, 4]], dtype=dt, device=device) self.assertEqual(torch.cat((x, x), 0), expected1) expected2 = torch.tensor([[1, 2, 1, 2], [3, 4, 3, 4]], dtype=dt, device=device) self.assertEqual(torch.cat((x, x), 1), expected2) def test_fill_all_dtypes_and_devices(self, device): for dt in torch.testing.get_all_dtypes(): for x in [torch.tensor((10, 10), dtype=dt, device=device), torch.empty(10000, dtype=dt, device=device)]: # large tensor numel = x.numel() bound = 100 if dt in (torch.uint8, torch.int8) else 2000 for n in range(-bound, bound, bound // 10): x.fill_(n) self.assertEqual(x, torch.tensor([n] * numel, dtype=dt, device=device)) self.assertEqual(dt, x.dtype) def test_roll(self, device): numbers = torch.arange(1, 9, device=device) single_roll = numbers.roll(1, 0) expected = torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device) self.assertEqual(single_roll, expected, msg="{} did not equal expected result".format(single_roll)) roll_backwards = numbers.roll(-2, 0) expected = torch.tensor([3, 4, 5, 6, 7, 8, 1, 2], device=device) self.assertEqual(roll_backwards, expected, msg="{} did not equal expected result".format(roll_backwards)) data = numbers.view(2, 2, 2) rolled = data.roll(1, 0) expected = torch.tensor([5, 6, 7, 8, 1, 2, 3, 4], device=device).view(2, 2, 2) self.assertEqual(expected, rolled, msg="{} did not equal expected result: {}".format(rolled, expected)) data = data.view(2, 4) # roll a loop until back where started loop_rolled = data.roll(2, 0).roll(4, 1) self.assertEqual(data, loop_rolled, msg="{} did not equal the original: {}".format(loop_rolled, data)) # multiple inverse loops self.assertEqual(data, data.roll(-20, 0).roll(-40, 1)) self.assertEqual(torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device), numbers.roll(1, 0)) # test non-contiguous # strided equivalent to numbers.as_strided(size=(4, 2), stride=(1, 4)) strided = numbers.view(2, 4).transpose(0, 1) self.assertFalse(strided.is_contiguous(), "this test needs a non-contiguous tensor") expected = torch.tensor([4, 8, 1, 5, 2, 6, 3, 7]).view(4, 2) rolled = strided.roll(1, 0) self.assertEqual(expected, rolled, msg="non contiguous tensor rolled to {} instead of {} ".format(rolled, expected)) # test roll with no dimension specified expected = numbers.roll(1, 0).view(2, 4) self.assertEqual(expected, data.roll(1), msg="roll with no dims should flatten and roll.") self.assertEqual(expected, data.roll(1, dims=None), msg="roll with no dims should flatten and roll.") # test roll over multiple dimensions expected = torch.tensor([[7, 8, 5, 6], [3, 4, 1, 2]], device=device) double_rolled = data.roll(shifts=(2, -1), dims=(1, 0)) self.assertEqual(double_rolled, expected, msg="should be able to roll over two dimensions, got {}".format(double_rolled)) self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=())) self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=1)) # shifts/dims should align self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1, 2), dims=(1,))) self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1,), dims=(1, 2))) # test bool tensor t = torch.zeros(6, dtype=torch.bool, device=device) t[0] = True t[3] = True self.assertEqual(torch.tensor([False, True, False, False, True, False]), t.roll(1, 0)) # test complex tensor t = torch.tensor([1, 2 + 1j, 3.5, 4. + 2j, 5j, 6.], device=device) t[0] = 1 + 0.5j t[3] = 4. expected = torch.tensor([6., 1 + 0.5j, 2 + 1j, 3.5, 4., 5j], device=device) self.assertEqual(expected, t.roll(1, 0)) @slowTest def test_triu_tril(self, device): def gen_mask(shape, diagonal, device, upper): mask = torch.zeros(*shape[-2:]).byte() for i in range(shape[-2]): for j in range(shape[-1]): cond = j - i < diagonal if upper else j - i > diagonal if cond: mask[i, j] = 1 return mask.expand(*shape).to(device) torch_functions = {True: torch.triu, False: torch.tril} numpy_functions = {True: np.triu, False: np.tril} # TODO: remove this when bool and half are supported for torch.where def bool_half_compat_where(pred, true_tensor, false_tensor, dtype): if dtype == torch.bool or dtype == torch.half: return torch.where(pred.byte(), true_tensor.byte(), false_tensor.byte()).to(dtype=dtype) else: return torch.where(pred, true_tensor, false_tensor) def run_test(shape, device, diagonal, dtype): x = torch.empty(*shape, device=device, dtype=dtype).fill_(2) for upper in [True, False]: # normal test with mask torch_tri_func = torch_functions[upper] res1 = torch_tri_func(x, diagonal=diagonal) res2 = torch.empty(0, device=device, dtype=dtype) torch_tri_func(x, diagonal=diagonal, out=res2) exp_mask = gen_mask(shape, diagonal, device, upper) expected = bool_half_compat_where(exp_mask, torch.tensor(0).type_as(x), x, dtype) self.assertEqual(res1, res2, atol=0, rtol=0) self.assertEqual(expected, res1, atol=0, rtol=0) # non-contiguous and expanded tensors test if 0 not in shape: for s in range(-len(shape), -1): # non-contiguous tensors x_nc = x.clone().transpose(s, s + 1) exp_mask = gen_mask(x_nc.size(), diagonal, device, upper) if 1 not in shape: assert not x_nc.is_contiguous(), "x is intentionally non-contiguous" exp_nc = bool_half_compat_where(exp_mask, torch.tensor(0).type_as(x), x_nc, dtype) self.assertEqual(torch_tri_func(x_nc, diagonal), exp_nc, atol=0, rtol=0) x_nc_is_contiguous = x_nc.is_contiguous() if upper: self.assertEqual(x_nc.triu_(diagonal), exp_nc, atol=0, rtol=0) else: self.assertEqual(x_nc.tril_(diagonal), exp_nc, atol=0, rtol=0) self.assertTrue(x_nc.is_contiguous() == x_nc_is_contiguous, "contiguity of x_nc should not be changed") # expanded tensors expanded_size = (x.size(0),) + x.size() x_expanded = x.clone().expand(*expanded_size) if x.size(0) != 1: assert 0 in x_expanded.stride(), "x intentionally has 0 in its stride" output = torch_tri_func(x_expanded, diagonal) self.assertEqual(output, expected.expand(expanded_size), atol=0, rtol=0) if x.size(0) != 1: self.assertTrue(0 in x_expanded.stride(), "geometry of x_expanded should be the same") if upper: self.assertEqual(output, x_expanded.triu_(diagonal), atol=0, rtol=0) else: self.assertEqual(output, x_expanded.tril_(diagonal), atol=0, rtol=0) # numpy test numpy_tri_func = numpy_functions[upper] self.assertEqual(numpy_tri_func(x.to('cpu').numpy(), diagonal), res1.cpu().numpy()) diagonals = [-2, -1, 0, 1, 2] shapes = [(3, 3), (5, 3, 3), (7, 5, 3, 3), # square matrices (7, 3), (5, 7, 3), (7, 5, 7, 3), # fat matrices (3, 7), (5, 3, 7), (7, 5, 3, 7), # thin matrices (3, 0), (0, 3, 3), (3, 3, 0, 0), # no numel matrices (3, 1), (5, 3, 1), (7, 5, 3, 1), # very fat matrices (1, 3), (5, 1, 3), (7, 5, 1, 3), # very thin matrices (1, 3, 3, 3), (3, 1, 3, 3, 3)] # unsqueezed batch dimensions dtypes = [dtype for dtype in torch.testing.get_all_dtypes() if dtype != torch.bfloat16] for s, d, dtype in product(shapes, diagonals, dtypes): run_test(s, device, d, dtype) def test_diagflat(self, device): dtype = torch.float32 # Basic sanity test x = torch.randn((100,), dtype=dtype, device=device) result = torch.diagflat(x) expected = torch.diag(x) self.assertEqual(result, expected) # Test offset x = torch.randn((100,), dtype=dtype, device=device) result = torch.diagflat(x, 17) expected = torch.diag(x, 17) self.assertEqual(result, expected) # Test where input has more than one dimension x = torch.randn((2, 3, 4), dtype=dtype, device=device) result = torch.diagflat(x) expected = torch.diag(x.contiguous().view(-1)) self.assertEqual(result, expected) # Noncontig input x = torch.randn((2, 3, 4), dtype=dtype, device=device).transpose(2, 0) self.assertFalse(x.is_contiguous()) result = torch.diagflat(x) expected = torch.diag(x.contiguous().view(-1)) self.assertEqual(result, expected) # Complex number support result = torch.diagflat(torch.ones(4, dtype=torch.complex128)) expected = torch.eye(4, dtype=torch.complex128) self.assertEqual(result, expected) def test_block_diag(self, device): def block_diag_workaround(*arrs): arrs_expanded = [] for a in arrs: if a.dim() == 2: arrs_expanded.append(a) elif a.dim() == 1: arrs_expanded.append(a.expand(1, a.size(0))) elif a.dim() == 0: arrs_expanded.append(a.expand(1, 1)) shapes = torch.tensor([a.shape for a in arrs_expanded], device=device) out = torch.zeros( torch.sum(shapes, dim=0).tolist(), dtype=arrs_expanded[0].dtype, device=device ) r, c = 0, 0 for i, (rr, cc) in enumerate(shapes): out[r:r + rr, c:c + cc] = arrs_expanded[i] r += rr c += cc return out tensors = [ torch.rand((2, 2), device=device), torch.rand((2, 3), device=device), torch.rand(10, device=device), torch.rand((8, 1), device=device), torch.rand(1, device=device)[0] ] result = torch.block_diag(*tensors) result_check = block_diag_workaround(*tensors) self.assertEqual(result, result_check) tensor = torch.rand(1, device=device)[0] result = torch.block_diag(tensor) result_check = tensor.expand(1, 1) self.assertEqual(result, result_check) tensor = torch.rand(10, device=device) result = torch.block_diag(tensor) result_check = tensor.expand(1, tensor.size(0)) self.assertEqual(result, result_check) result = torch.block_diag() result_check = torch.empty(1, 0, device=device) self.assertEqual(result, result_check) self.assertEqual(result.device.type, 'cpu') test_dtypes = [ torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float32, torch.float64, torch.complex64, torch.complex128 ] # Test pairs of different dtypes for dtype1 in test_dtypes: for dtype2 in test_dtypes: a = torch.tensor(1, device=device, dtype=dtype1) b = torch.tensor(2, device=device, dtype=dtype2) result = torch.block_diag(a, b) result_dtype = torch.result_type(a, b) result_check = torch.tensor([[1, 0], [0, 2]], device=device, dtype=result_dtype) self.assertEqual(result, result_check) with self.assertRaisesRegex( RuntimeError, "torch.block_diag: Input tensors must have 2 or fewer dimensions. Input 1 has 3 dimensions" ): torch.block_diag(torch.tensor(5), torch.tensor([[[6]]])) with self.assertRaisesRegex( RuntimeError, "torch.block_diag: Input tensors must have 2 or fewer dimensions. Input 0 has 4 dimensions" ): torch.block_diag(torch.tensor([[[[6]]]])) if device != 'cpu': with self.assertRaisesRegex( RuntimeError, ( "torch.block_diag: input tensors must all be on the same device." " Input 0 is on device cpu and input 1 is on device " ) ): torch.block_diag(torch.ones(2, 2).cpu(), torch.ones(2, 2, device=device)) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") def test_block_diag_scipy(self, device): import scipy.linalg scipy_tensors_list = [ [ 1, [2], [], [3, 4, 5], [[], []], [[6], [7.3]] ], [ [[1, 2], [3, 4]], [1] ], [ [[4, 9], [7, 10]], [4.6, 9.12], [1j + 3] ], [] ] expected_torch_types = [ torch.float32, torch.int64, torch.complex64, torch.float32 ] expected_scipy_types = [ torch.float64, # windows scipy block_diag returns int32 types torch.int32 if IS_WINDOWS else torch.int64, torch.complex128, torch.float64 ] for scipy_tensors, torch_type, scipy_type in zip(scipy_tensors_list, expected_torch_types, expected_scipy_types): torch_tensors = [torch.tensor(t, device=device) for t in scipy_tensors] torch_result = torch.block_diag(*torch_tensors) self.assertEqual(torch_result.dtype, torch_type) scipy_result = torch.tensor( scipy.linalg.block_diag(*scipy_tensors), device=device ) self.assertEqual(scipy_result.dtype, scipy_type) scipy_result = scipy_result.to(torch_type) self.assertEqual(torch_result, scipy_result) @onlyOnCPUAndCUDA @dtypes(torch.float32, torch.float64) def test_torch_complex(self, device, dtype): real = torch.tensor([1, 2], device=device, dtype=dtype) imag = torch.tensor([3, 4], device=device, dtype=dtype) z = torch.complex(real, imag) complex_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 self.assertEqual(torch.tensor([1.0 + 3.0j, 2.0 + 4.0j], dtype=complex_dtype), z) @onlyOnCPUAndCUDA @dtypes(torch.float32, torch.float64) def test_torch_polar(self, device, dtype): abs = torch.tensor([1, 2, -3, -4.5, 1, 1], device=device, dtype=dtype) angle = torch.tensor([math.pi / 2, 5 * math.pi / 4, 0, -11 * math.pi / 6, math.pi, -math.pi], device=device, dtype=dtype) z = torch.polar(abs, angle) complex_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 self.assertEqual(torch.tensor([1j, -1.41421356237 - 1.41421356237j, -3, -3.89711431703 - 2.25j, -1, -1], dtype=complex_dtype), z, atol=1e-5, rtol=1e-5) @onlyOnCPUAndCUDA @dtypes(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float16, torch.complex64, torch.complex128, torch.bool) def test_torch_complex_floating_dtype_error(self, device, dtype): for op in (torch.complex, torch.polar): a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=dtype) error = r"Expected both inputs to be Float or Double tensors but " \ r"got [A-Za-z]+ and [A-Za-z]+" with self.assertRaisesRegex(RuntimeError, error): op(a, b) @onlyOnCPUAndCUDA @dtypes(torch.float32, torch.float64) def test_torch_complex_same_dtype_error(self, device, dtype): def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' for op in (torch.complex, torch.polar): other_dtype = torch.float64 if dtype == torch.float32 else torch.float32 a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=other_dtype) error = "Expected object of scalar type {} but got scalar type " \ "{} for second argument".format(dtype_name(dtype), dtype_name(other_dtype)) with self.assertRaisesRegex(RuntimeError, error): op(a, b) @onlyOnCPUAndCUDA @dtypes(torch.float32, torch.float64) def test_torch_complex_out_dtype_error(self, device, dtype): def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' def complex_dtype_name(dtype): return 'ComplexFloat' if dtype == torch.complex64 else 'ComplexDouble' for op in (torch.complex, torch.polar): a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=dtype) out = torch.zeros(2, device=device, dtype=dtype) expected_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 error = "Expected object of scalar type {} but got scalar type " \ "{} for argument 'out'".format( complex_dtype_name(expected_dtype), dtype_name(dtype)) with self.assertRaisesRegex(RuntimeError, error): op(a, b, out=out) def test_cat_empty_legacy(self, device): # FIXME: this is legacy behavior and should be removed # when we support empty tensors with arbitrary sizes dtype = torch.float32 x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) empty = torch.randn((0,), dtype=dtype, device=device) res1 = torch.cat([x, empty], dim=1) res2 = torch.cat([empty, x], dim=1) self.assertEqual(res1, res2) res1 = torch.cat([empty, empty], dim=1) self.assertEqual(res1, empty) with self.assertRaisesRegex(RuntimeError, 'non-empty list of Tensors'): torch.cat([], dim=1) def test_cat_empty(self, device): dtype = torch.float32 x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) empty = torch.randn((4, 0, 32, 32), dtype=dtype, device=device) res1 = torch.cat([x, empty], dim=1) res2 = torch.cat([empty, x], dim=1) self.assertEqual(res1, res2) res1 = torch.cat([empty, empty], dim=1) self.assertEqual(res1, empty) # check non-legacy-behavior (sizes don't match) empty = torch.randn((4, 0, 31, 32), dtype=dtype, device=device) self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1)) self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1)) # check non-legacy-behavior (dimensions don't match) empty = torch.randn((4, 0), dtype=dtype, device=device) self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1)) self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1)) def test_cat_out(self, device): x = torch.zeros((0), device=device) y = torch.randn((4, 6), device=device) with self.assertRaisesRegex( RuntimeError, r"unsupported operation:.* input tensor 0"): torch.cat([x, y], dim=0, out=x) with self.assertRaisesRegex( RuntimeError, r"unsupported operation:.* input tensor 1"): torch.cat([x, y], dim=0, out=y) z = torch.zeros((4, 6), device=device) with self.assertRaisesRegex( RuntimeError, r"unsupported operation:.* input tensor 1"): torch.cat([y, z], out=z[:2, :]) w = y.view(-1).clone() a = torch.cat([w[:2], w[4:6]]) b = torch.cat([w[:2], w[4:6]], out=w[6:10]) self.assertEqual(a, b) self.assertEqual(w[:6], y.view(-1)[:6]) # Case: # Reference: https://github.com/pytorch/pytorch/issues/49878 for dim in [0, 1]: x = torch.zeros((10, 5, 2), device=device) random_length = random.randint(1, 4) y = x.narrow(dim, 0, x.shape[dim] - random_length) val = torch.full_like(y[0], 3., device=device) if dim == 0: self.assertTrue(y.is_contiguous()) else: self.assertFalse(y.is_contiguous()) torch.cat((val[None],) * y.shape[0], dim=0, out=y) expected_y = torch.cat((val[None],) * y.shape[0], dim=0) expected_x = torch.zeros((10, 5, 2), device=device) if dim == 0: expected_x[:x.shape[dim] - random_length, :, :] = expected_y elif dim == 1: expected_x[:, :x.shape[dim] - random_length, :] = expected_y self.assertEqual(y, expected_y) self.assertEqual(x, expected_x) def test_cat_out_channels_last(self, device): x = torch.randn((4, 3, 8, 8)) y = torch.randn(x.shape) res1 = torch.cat((x, y)) z = res1.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), out=z) self.assertEqual(res1, res2) @onlyCPU def test_cat_in_channels_last(self, device): for dim in range(4): x = torch.randn((4, 15, 8, 8), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y), dim=dim) x = x.clone().contiguous(memory_format=torch.channels_last) y = y.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), dim=dim) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(res1, res2) # Size larger than grain size. x = torch.randn((4, 15, 256, 256), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y), dim=dim) x = x.clone().contiguous(memory_format=torch.channels_last) y = y.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), dim=dim) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(res1, res2) @onlyCUDA def test_cat_preserve_channels_last(self, device): x = torch.randn((4, 3, 8, 8), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y)) res2 = torch.cat((x.contiguous(memory_format=torch.channels_last), y.contiguous(memory_format=torch.channels_last))) self.assertEqual(res1, res2) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) @onlyCUDA @deviceCountAtLeast(2) def test_cat_different_devices(self, devices): cuda0 = torch.randn((3, 3), device=devices[0]) cuda1 = torch.randn((3, 3), device=devices[1]) with self.assertRaisesRegex(RuntimeError, "input tensors must be on the same device"): torch.cat((cuda0, cuda1)) cpu = torch.randn(3, 3) with self.assertRaisesRegex(RuntimeError, "input tensors must be on the same device"): torch.cat((cuda0, cpu)) with self.assertRaisesRegex(RuntimeError, "input tensors must be on the same device"): torch.cat((cpu, cuda0)) # TODO: reconcile with other cat tests # TODO: Compare with a NumPy reference instead of CPU @onlyCUDA def test_cat(self, device): SIZE = 10 for dim in range(-3, 3): pos_dim = dim if dim >= 0 else 3 + dim x = torch.rand(13, SIZE, SIZE, device=device).transpose(0, pos_dim) y = torch.rand(17, SIZE, SIZE, device=device).transpose(0, pos_dim) z = torch.rand(19, SIZE, SIZE, device=device).transpose(0, pos_dim) res1 = torch.cat((x, y, z), dim) self.assertEqual(res1.narrow(pos_dim, 0, 13), x, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 13, 17), y, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 30, 19), z, atol=0, rtol=0) x = torch.randn(20, SIZE, SIZE, device=device) self.assertEqual(torch.cat(torch.split(x, 7)), x) self.assertEqual(torch.cat(torch.chunk(x, 7)), x) y = torch.randn(1, SIZE, SIZE, device=device) z = torch.cat([x, y]) self.assertEqual(z.size(), (21, SIZE, SIZE)) # TODO: update this test to compare against NumPy instead of CPU @onlyCUDA @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_device_rounding(self, device, dtype): # test half-to-even a = [-5.8, -3.5, -2.3, -1.5, -0.5, 0.5, 1.5, 2.3, 3.5, 5.8] res = [-6., -4., -2., -2., 0., 0., 2., 2., 4., 6.] a_tensor = torch.tensor(a, device=device).round() res_tensor = torch.tensor(res, device='cpu') self.assertEqual(a_tensor, res_tensor) # Note: This test failed on XLA since its test cases are created by empty_strided which # doesn't support overlapping sizes/strides in XLA impl @onlyOnCPUAndCUDA def test_like_fn_stride_proparation_vs_tensoriterator_unary_op(self, device): # Test like functions against tensoriterator based unary operator (exp) to # make sure the returned tensor from like function follows the same stride propergation # rule as what tensoriterator does for unary operator. The like function's output strides # is computed on CPU side always, no need to test GPU here. def compare_helper_(like_fn, t): te = torch.exp(t) tl = like_fn(t) self.assertEqual(te.stride(), tl.stride()) self.assertEqual(te.size(), tl.size()) like_fns = [ lambda t, **kwargs: torch.zeros_like(t, **kwargs), lambda t, **kwargs: torch.ones_like(t, **kwargs), lambda t, **kwargs: torch.randint_like(t, 10, 100, **kwargs), lambda t, **kwargs: torch.randint_like(t, 100, **kwargs), lambda t, **kwargs: torch.randn_like(t, **kwargs), lambda t, **kwargs: torch.rand_like(t, **kwargs), lambda t, **kwargs: torch.full_like(t, 7, **kwargs), lambda t, **kwargs: torch.empty_like(t, **kwargs)] # dense non-overlapping tensor, # non-dense non-overlapping sliced tensor # non-dense non-overlapping gapped tensor # non-dense non-overlapping 0 strided tensor # non-dense overlapping general tensor # non-dense overlapping sliced tensor # non-dense overlapping gapped tensor # non-dense overlapping 0 strided tensor # non-dense overlapping equal strides tset = ( torch.randn(4, 3, 2, device=device), torch.randn(4, 3, 2, device=device)[:, :, ::2], torch.empty_strided((4, 3, 2), (10, 3, 1), device=device).fill_(1.0), torch.empty_strided((4, 3, 2), (10, 0, 3), device=device).fill_(1.0), torch.empty_strided((4, 3, 2), (10, 1, 2), device=device).fill_(1.0), torch.empty_strided((4, 3, 2), (4, 2, 1), device=device)[:, :, ::2].fill_(1.0), torch.empty_strided((4, 3, 2), (10, 1, 1), device=device).fill_(1.0), torch.empty_strided((4, 1, 1, 2), (10, 0, 0, 2), device=device).fill_(1.0), torch.empty_strided((4, 2, 3), (10, 3, 3), device=device).fill_(1.0)) for like_fn in like_fns: for t in tset: for p in permutations(range(t.dim())): tp = t.permute(p) compare_helper_(like_fn, tp) def _test_special_stacks(self, dim, at_least_dim, torch_fn, np_fn, device, dtype): # Test error for non-tuple argument t = torch.randn(10) with self.assertRaisesRegex(TypeError, "must be tuple of Tensors, not Tensor"): torch_fn(t) # Test error for a single array with self.assertRaisesRegex(TypeError, "must be tuple of Tensors, not Tensor"): torch_fn((t)) # Test 0-D num_tensors = random.randint(1, 5) input_t = [torch.tensor(random.uniform(0, 10), device=device, dtype=dtype) for i in range(num_tensors)] actual = torch_fn(input_t) expected = np_fn([input.cpu().numpy() for input in input_t]) self.assertEqual(actual, expected) for ndims in range(1, 5): base_shape = list(_rand_shape(ndims, min_size=1, max_size=5)) for i in range(ndims): shape = list(base_shape) num_tensors = random.randint(1, 5) torch_input = [] # Create tensors with shape being different along one axis only for param in range(num_tensors): shape[i] = random.randint(1, 5) torch_input.append(_generate_input(tuple(shape), dtype, device, with_extremal=False)) # Determine if input tensors have valid dimensions. valid_dim = True for k in range(len(torch_input) - 1): for tdim in range(ndims): # Test whether all tensors have the same shape except in concatenating dimension # Unless the number of dimensions is less than the corresponding at_least function dimension # Since the original concatenating dimension would shift after applying at_least and would no # longer be the concatenating dimension if (ndims < at_least_dim or tdim != dim) and torch_input[k].size()[tdim] != torch_input[k + 1].size()[tdim]: valid_dim = False # Special case for hstack is needed since hstack works differently when ndims is 1 if valid_dim or (torch_fn is torch.hstack and ndims == 1): # Valid dimensions, test against numpy np_input = [input.cpu().numpy() for input in torch_input] actual = torch_fn(torch_input) expected = np_fn(np_input) self.assertEqual(actual, expected) else: # Invalid dimensions, test for error with self.assertRaisesRegex(RuntimeError, "Sizes of tensors must match except in dimension"): torch_fn(torch_input) with self.assertRaises(ValueError): np_input = [input.cpu().numpy() for input in torch_input] np_fn(np_input) @onlyOnCPUAndCUDA @dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes(include_bfloat16=False) + torch.testing.get_all_complex_dtypes())) def test_hstack_column_stack(self, device, dtype): ops = ((torch.hstack, np.hstack), (torch.column_stack, np.column_stack)) for torch_op, np_op in ops: self._test_special_stacks(1, 1, torch_op, np_op, device, dtype) # Test torch.column_stack with combinations of 1D and 2D tensors input one_dim_tensor = torch.arange(0, 10).to(dtype=dtype, device=device) two_dim_tensor = torch.arange(0, 100).to(dtype=dtype, device=device).reshape(10, 10) inputs = two_dim_tensor, one_dim_tensor, two_dim_tensor, one_dim_tensor torch_result = torch.column_stack(inputs) np_inputs = [input.cpu().numpy() for input in inputs] np_result = np.column_stack(np_inputs) self.assertEqual(np_result, torch_result) @onlyOnCPUAndCUDA @dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes(include_bfloat16=False) + torch.testing.get_all_complex_dtypes())) def test_vstack_row_stack(self, device, dtype): ops = ((torch.vstack, np.vstack), (torch.row_stack, np.row_stack)) for torch_op, np_op in ops: self._test_special_stacks(0, 2, torch_op, np_op, device, dtype) for i in range(5): # Test dimension change for 1D tensor of size (N) and 2D tensor of size (1, N) n = random.randint(1, 10) input_a = _generate_input((n,), dtype, device, with_extremal=False) input_b = _generate_input((1, n), dtype, device, with_extremal=False) torch_input = [input_a, input_b] np_input = [input.cpu().numpy() for input in torch_input] actual = torch_op(torch_input) expected = np_op(np_input) self.assertEqual(actual, expected) @onlyOnCPUAndCUDA @dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes(include_bfloat16=False) + torch.testing.get_all_complex_dtypes())) def test_dstack(self, device, dtype): self._test_special_stacks(2, 3, torch.dstack, np.dstack, device, dtype) for i in range(5): # Test dimension change for 1D tensor of size (N), 2D tensor of size (1, N), and 3D tensor of size (1, N, 1) n = random.randint(1, 10) input_a = _generate_input((n,), dtype, device, with_extremal=False) input_b = _generate_input((1, n), dtype, device, with_extremal=False) input_c = _generate_input((1, n, 1), dtype, device, with_extremal=False) torch_input = [input_a, input_b, input_c] np_input = [input.cpu().numpy() for input in torch_input] actual = torch.dstack(torch_input) expected = np.dstack(np_input) self.assertEqual(actual, expected) # Test dimension change for 2D tensor of size (M, N) and 3D tensor of size (M, N, 1) m = random.randint(1, 10) n = random.randint(1, 10) input_a = _generate_input((m, n), dtype, device, with_extremal=False) input_b = _generate_input((m, n, 1), dtype, device, with_extremal=False) torch_input = [input_a, input_b] np_input = [input.cpu().numpy() for input in torch_input] actual = torch.dstack(torch_input) expected = np.dstack(np_input) self.assertEqual(actual, expected) @dtypes(torch.int32, torch.int64) def test_large_linspace(self, device, dtype): start = torch.iinfo(dtype).min end = torch.iinfo(dtype).max & ~0xfff steps = 15 x = torch.linspace(start, end, steps, dtype=dtype, device=device) self.assertGreater(x[1] - x[0], (end - start) / steps) @dtypes(torch.float32, torch.float64) def test_unpack_double(self, device, dtype): # Reference: https://github.com/pytorch/pytorch/issues/33111 vals = (2 ** 24 + 1, 2 ** 53 + 1, np.iinfo(np.int64).max, np.iinfo(np.uint64).max, np.iinfo(np.uint64).max + 1, -1e500, 1e500) for val in vals: t = torch.tensor(val, dtype=dtype, device=device) a = np.array(val, dtype=torch_to_numpy_dtype_dict[dtype]) self.assertEqual(t, torch.from_numpy(a)) def _float_to_int_conversion_helper(self, vals, device, dtype): a = np.array(vals, dtype=np.float32).astype(torch_to_numpy_dtype_dict[dtype]) t = torch.tensor(vals, device=device, dtype=torch.float).to(dtype) self.assertEqual(torch.from_numpy(a), t.cpu()) # Checks that float->integer casts don't produce undefined behavior errors. # Note: In C++, casting from a floating value to an integral dtype # is undefined if the floating point value is not within the integral # dtype's dynamic range. This can (and should) cause undefined behavior # errors with UBSAN. These casts are deliberate in PyTorch, however, and # NumPy has the same behavior. @onlyOnCPUAndCUDA @unittest.skipIf(IS_MACOS, "Test is broken on MacOS, see https://github.com/pytorch/pytorch/issues/38752") @unittest.skipIf(IS_PPC, "Test is borken on PowerPC, see https://github.com/pytorch/pytorch/issues/39671") @dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64) def test_float_to_int_conversion_finite(self, device, dtype): min = torch.finfo(torch.float).min max = torch.finfo(torch.float).max # Note: CUDA max float -> integer conversion is divergent on some dtypes vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2, max) if self.device_type == 'cuda': if torch.version.hip: # HIP min float -> int64 conversion is divergent vals = (-2, -1.5, -.5, 0, .5, 1.5, 2) else: vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2) self._float_to_int_conversion_helper(vals, device, dtype) # Note: CUDA will fail this test on most dtypes, often dramatically. @onlyCPU @dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64) def test_float_to_int_conversion_nonfinite(self, device, dtype): vals = (float('-inf'), float('inf'), float('nan')) self._float_to_int_conversion_helper(vals, device, dtype) # TODO: re-enable this test @unittest.skipIf(True, "real and imag not implemented for complex") @onlyOnCPUAndCUDA def test_complex_type_conversions(self, device): dtypes = [torch.float, torch.complex64, torch.complex128] for from_type in dtypes: for to_type in dtypes: from_tensor = torch.randn(4, dtype=from_type, device=device) to_tensor = from_tensor.to(to_type) if from_type.is_complex and not to_type.is_complex: self.assertEqual(torch.real(from_tensor), to_tensor, exact_dtype=False) elif not from_type.is_complex and to_type.is_complex: self.assertEqual(from_tensor, torch.real(to_tensor), exact_dtype=False) self.assertEqual(torch.zeros_like(torch.imag(to_tensor)), torch.imag(to_tensor), exact_dtype=False) else: self.assertEqual(from_tensor, to_tensor, exact_dtype=False) @slowTest @onlyCPU def test_cat_big(self, device): SIZE1 = 6500 SIZE2 = 4500 concat_list = [] concat_list.append(torch.ones((SIZE1, 1024 * 512), dtype=torch.uint8, device=device)) concat_list.append(torch.ones((SIZE2, 1024 * 512), dtype=torch.uint8, device=device)) result = torch.cat(concat_list) self.assertEqual(result.size(0), SIZE1 + SIZE2) @onlyCPU def test_cat_bad_input_sizes(self, device): x = torch.randn(2, 1, device=device) y = torch.randn(2, 1, 1, device=device) z = torch.randn(2, 1, 1, device=device) self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z])) x = torch.randn(2, 1, 2, device=device) y = torch.randn(2, 1, 1, device=device) z = torch.randn(2, 2, 1, device=device) self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z], dim=1)) @onlyCPU @dtypes(torch.half, torch.double, torch.int) def test_cat2(self, device, dtype): SIZE = 10 for dim in range(-3, 3): pos_dim = dim if dim >= 0 else 3 + dim x = torch.randint(low=-100, high=100, size=(13, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) y = torch.randint(low=-100, high=100, size=(17, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) z = torch.randint(low=-100, high=100, size=(19, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) res1 = torch.cat((x, y, z), dim) self.assertEqual(res1.narrow(pos_dim, 0, 13), x, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 13, 17), y, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 30, 19), z, atol=0, rtol=0) x = torch.randint(low=-100, high=100, size=(20, SIZE, SIZE), device=device).to(dtype) self.assertEqual(torch.cat(torch.split(x, 7)), x) self.assertEqual(torch.cat(torch.chunk(x, 7)), x) y = torch.randint(low=-100, high=100, size=(1, SIZE, SIZE), device=device).to(dtype) z = torch.cat([x, y]) self.assertEqual(z.size(), (21, SIZE, SIZE)) self.assertRaises(RuntimeError, lambda: torch.cat([])) self.assertRaisesRegex(TypeError, 'got None', lambda: torch.cat([x, None])) @onlyCPU def test_cat_scalars(self, device): x = torch.tensor(0, device=device) y = torch.tensor(1, device=device) with self.assertRaisesRegex(RuntimeError, 'zero-dimensional.*cannot be concatenated'): torch.cat([x, y]) def test_zeros_dtype_out_match(self, device): d = torch.tensor((2, 3), device=device, dtype=torch.double) self.assertRaises(RuntimeError, lambda: torch.zeros((2, 3), device=device, dtype=torch.float32, out=d)) # TODO: update to work on CUDA, too @onlyCPU def test_trilu_indices(self, device): for test_args in tri_tests_args: _compare_trilu_indices(self, *test_args) run_additional_tri_tests(self, 'cpu') # test default options x = torch.ones( 3, 3, dtype=torch.long, device='cpu', layout=torch.strided) self.assertEqual( x.tril(0).nonzero().transpose(0, 1), torch.tril_indices(3, 3)) self.assertEqual( x.triu(0).nonzero().transpose(0, 1), torch.triu_indices(3, 3)) # test stride 0 cases x = torch.ones( 3, 1, 3, 3, dtype=torch.long, device='cpu', layout=torch.strided) output = x.triu(2).expand(3, 3, 3, 3) b = x.clone().expand(3, 3, 3, 3) self.assertEqual(b.triu(2), output) self.assertRaises(RuntimeError, lambda: b.triu_(2)) # TODO: update to work on CUDA, too @onlyCPU def test_stack(self, device): for dtype in (torch.half, torch.double, torch.int): x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) for dim in range(4): res = torch.stack((x, y, z), dim) res_neg = torch.stack((x, y, z), dim - 4) expected_size = x.size()[:dim] + (3,) + x.size()[dim:] self.assertEqual(res, res_neg) self.assertEqual(res.size(), expected_size) self.assertEqual(res.select(dim, 0), x, atol=0, rtol=0) self.assertEqual(res.select(dim, 1), y, atol=0, rtol=0) self.assertEqual(res.select(dim, 2), z, atol=0, rtol=0) # TODO: update to work on CUDA, too @onlyCPU def test_stack_out(self, device): for dtype in (torch.half, torch.double, torch.int): x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) for dim in range(4): expected_size = x.size()[:dim] + (3,) + x.size()[dim:] res_out = x.new(expected_size) res_neg_out = x.new(expected_size) res_out_dp = res_out.data_ptr() res_out_neg_dp = res_neg_out.data_ptr() torch.stack((x, y, z), dim, out=res_out) torch.stack((x, y, z), dim - 4, out=res_neg_out) self.assertEqual(res_out, res_neg_out) self.assertEqual(res_out.size(), expected_size) self.assertEqual(res_out_dp, res_out.data_ptr()) self.assertEqual(res_out_neg_dp, res_neg_out.data_ptr()) self.assertEqual(res_out.select(dim, 0), x, atol=0, rtol=0) self.assertEqual(res_out.select(dim, 1), y, atol=0, rtol=0) self.assertEqual(res_out.select(dim, 2), z, atol=0, rtol=0) def test_repeat_interleave(self, device): x = torch.tensor([0, 1, 2, 3], device=device) expected = torch.tensor([1, 2, 2, 3, 3, 3], device=device) self.assertEqual(torch.repeat_interleave(x), expected) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4, device=device).reshape(2, 2)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4.0, device=device)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.tensor([1, 2, -1, 3, 4], device=device)) y = torch.tensor([[1, 2], [3, 4]], device=device) y1_v1 = torch.repeat_interleave(y, 2) y1_v2 = torch.repeat_interleave(y, torch.tensor(2, device=device)) y1_v3 = torch.repeat_interleave(y, torch.tensor([2], device=device)) y1_expect = torch.tensor([1, 1, 2, 2, 3, 3, 4, 4], device=device) self.assertEqual(y1_v1, y1_expect) self.assertEqual(y1_v2, y1_expect) self.assertEqual(y1_v3, y1_expect) y2 = torch.repeat_interleave(y, 3, dim=1) y2_expect = torch.tensor([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]], device=device) self.assertEqual(y2, y2_expect) y3 = torch.repeat_interleave(y, torch.tensor([1, 2], device=device), dim=0) y3_expect = torch.tensor([[1, 2], [3, 4], [3, 4]], device=device) self.assertEqual(y3, y3_expect) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.tensor([1, 2, 3], device=device), dim=0) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.arange(9, device=device).reshape(3, 3), dim=0) # test zero sized dimension x = torch.zeros((5, 0), device=device) y = torch.repeat_interleave(x, repeats=3, dim=1) self.assertEqual(y, x.new_zeros(5, 0, device=device)) x = torch.tensor([], dtype=torch.int64, device=device) y = torch.repeat_interleave(x, x) self.assertEqual(y, x) # TODO: udpate to work on CUDA, too @onlyCPU def test_new_methods_requires_grad(self, device): size = (10,) test_cases = [ # method name, args ('new_full', [size, 1]), ('new_empty', [size]), ('new_zeros', [size]), ] for method_name, args in test_cases: x = torch.randn(size) for requires_grad in [True, False]: x_new = x.__getattribute__(method_name)(*args, requires_grad=requires_grad) self.assertEqual(x_new.requires_grad, requires_grad) x = torch.randint(10, size) with self.assertRaisesRegex( RuntimeError, r'Only Tensors of floating point and complex dtype can require gradients'): x_new = x.__getattribute__(method_name)(*args, requires_grad=True) # TODO: update to work on CUDA, too? @onlyCPU def test_tensor_from_sequence(self, device): class MockSequence(object): def __init__(self, lst): self.lst = lst def __len__(self): return len(self.lst) def __getitem__(self, item): raise TypeError class GoodMockSequence(MockSequence): def __getitem__(self, item): return self.lst[item] bad_mock_seq = MockSequence([1.0, 2.0, 3.0]) good_mock_seq = GoodMockSequence([1.0, 2.0, 3.0]) with self.assertRaisesRegex(ValueError, 'could not determine the shape'): torch.Tensor(bad_mock_seq) self.assertEqual(torch.Tensor([1.0, 2.0, 3.0]), torch.Tensor(good_mock_seq)) # TODO: update to work on CUDA, too? @onlyCPU def test_simple_scalar_cast(self, device): ok = [torch.Tensor([1.5]), torch.zeros(1, 1, 1, 1)] ok_values = [1.5, 0] not_ok = map(torch.Tensor, [[], [1, 2], [[1, 2], [3, 4]]]) for tensor, value in zip(ok, ok_values): self.assertEqual(int(tensor), int(value)) self.assertEqual(float(tensor), float(value)) self.assertEqual(complex(tensor), complex(value)) self.assertEqual(complex(torch.tensor(1.5j)), 1.5j) for tensor in not_ok: self.assertRaises(ValueError, lambda: int(tensor)) self.assertRaises(ValueError, lambda: float(tensor)) self.assertRaises(ValueError, lambda: complex(tensor)) self.assertRaises(RuntimeError, lambda: float(torch.tensor(1.5j))) self.assertRaises(RuntimeError, lambda: int(torch.tensor(1.5j))) # TODO: update to work on CUDA, too? @onlyCPU def test_offset_scalar_cast(self, device): x = torch.Tensor([1, 2, 3]) y = x[2:] self.assertEqual(int(y), 3) def test_meshgrid(self, device): a = torch.tensor(1, device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) grid_a, grid_b, grid_c = torch.meshgrid([a, b, c]) self.assertEqual(grid_a.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c.shape, torch.Size([1, 3, 2])) grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c) self.assertEqual(grid_a2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c2.shape, torch.Size([1, 3, 2])) expected_grid_a = torch.ones(1, 3, 2, dtype=torch.int64, device=device) expected_grid_b = torch.tensor([[[1, 1], [2, 2], [3, 3]]], device=device) expected_grid_c = torch.tensor([[[1, 2], [1, 2], [1, 2]]], device=device) self.assertTrue(grid_a.equal(expected_grid_a)) self.assertTrue(grid_b.equal(expected_grid_b)) self.assertTrue(grid_c.equal(expected_grid_c)) self.assertTrue(grid_a2.equal(expected_grid_a)) self.assertTrue(grid_b2.equal(expected_grid_b)) self.assertTrue(grid_c2.equal(expected_grid_c)) def test_cartesian_prod(self, device): a = torch.tensor([1], device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) prod = torch.cartesian_prod(a, b, c) expected = torch.tensor(list(product([a], b, c)), device=device) self.assertEqual(expected, prod) # test 0 size input d = torch.empty(0, dtype=b.dtype, device=device) prod = torch.cartesian_prod(a, b, c, d) expected = torch.empty(0, 4, dtype=b.dtype, device=device) self.assertEqual(expected, prod) # test single input prod = torch.cartesian_prod(b) self.assertEqual(b, prod) def test_combinations(self, device): a = torch.tensor([1, 2, 3], device=device) c = torch.combinations(a, r=1) expected = torch.tensor(list(combinations(a, r=1)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=1, with_replacement=True) expected = torch.tensor(list(combinations_with_replacement(a, r=1)), device=device) self.assertEqual(c, expected) c = torch.combinations(a) expected = torch.tensor(list(combinations(a, r=2)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, with_replacement=True) expected = torch.tensor(list(combinations_with_replacement(a, r=2)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=3) expected = torch.tensor(list(combinations(a, r=3)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=4) expected = torch.empty(0, 4, dtype=a.dtype, device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=5) expected = torch.empty(0, 5, dtype=a.dtype, device=device) self.assertEqual(c, expected) # test empty imput a = torch.empty(0, device=device) c1 = torch.combinations(a) c2 = torch.combinations(a, with_replacement=True) expected = torch.empty(0, 2, dtype=a.dtype, device=device) self.assertEqual(c1, expected) self.assertEqual(c2, expected) def test_linlogspace_mem_overlap(self, device): x = torch.rand(1, device=device).expand(10) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): torch.linspace(1, 10, 10, out=x) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): torch.logspace(1, 10, 10, out=x) def test_ctor_with_numpy_array(self, device): correct_dtypes = [ np.double, np.float, np.float16, np.int64, np.int32, np.int16, np.int8, np.uint8, np.bool, ] incorrect_byteorder = '>' if sys.byteorder == 'little' else '<' incorrect_dtypes = [incorrect_byteorder + t for t in ['d', 'f']] for dtype in correct_dtypes: array = np.array([1, 2, 3, 4], dtype=dtype) # Upcast tensor = torch.DoubleTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) # Downcast (sometimes) tensor = torch.FloatTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) tensor = torch.HalfTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) @dtypes(torch.float, torch.double, torch.int8, torch.int16, torch.int32, torch.int64) def test_random(self, device, dtype): # This test is flaky with p<=(2/(ub-lb))^200=6e-36 t = torch.empty(200, dtype=dtype, device=device) lb = 1 ub = 4 t.fill_(-1) t.random_(lb, ub) self.assertEqual(t.min(), lb) self.assertEqual(t.max(), ub - 1) t.fill_(-1) t.random_(ub) self.assertEqual(t.min(), 0) self.assertEqual(t.max(), ub - 1) def test_random_bool(self, device): size = 2000 t = torch.empty(size, dtype=torch.bool, device=device) t.fill_(False) t.random_() self.assertEqual(t.min(), False) self.assertEqual(t.max(), True) self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6) t.fill_(True) t.random_() self.assertEqual(t.min(), False) self.assertEqual(t.max(), True) self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6) def test_random_from_to_bool(self, device): size = 2000 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max min_val = 0 max_val = 1 froms = [int64_min_val, -42, min_val - 1, min_val, max_val, max_val + 1, 42] tos = [-42, min_val - 1, min_val, max_val, max_val + 1, 42, int64_max_val] for from_ in froms: for to_ in tos: t = torch.empty(size, dtype=torch.bool, device=device) if to_ > from_: if not (min_val <= from_ <= max_val): self.assertRaisesRegex( RuntimeError, "from is out of bounds", lambda: t.random_(from_, to_) ) elif not (min_val <= (to_ - 1) <= max_val): self.assertRaisesRegex( RuntimeError, "to - 1 is out of bounds", lambda: t.random_(from_, to_) ) else: t.random_(from_, to_) range_ = to_ - from_ delta = 1 self.assertTrue(from_ <= t.to(torch.int).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.int).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) @dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes())) def test_random_full_range(self, device, dtype): size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype == torch.double: fp_limit = 2**53 elif dtype == torch.float: fp_limit = 2**24 elif dtype == torch.half: fp_limit = 2**11 elif dtype == torch.bfloat16: fp_limit = 2**8 else: fp_limit = 0 t = torch.empty(size, dtype=dtype, device=device) if dtype in [torch.float, torch.double, torch.half, torch.bfloat16]: from_ = int(max(-fp_limit, int64_min_val)) to_inc_ = int(min(fp_limit, int64_max_val)) else: from_ = int(max(torch.iinfo(dtype).min, int64_min_val)) to_inc_ = int(min(torch.iinfo(dtype).max, int64_max_val)) range_ = to_inc_ - from_ + 1 t.random_(from_, None) delta = max(1, alpha * range_) self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_inc_ - delta) < t.to(torch.double).max() <= to_inc_) @dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes())) def test_random_from_to(self, device, dtype): size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype in [torch.float, torch.double, torch.half]: min_val = int(max(torch.finfo(dtype).min, int64_min_val)) max_val = int(min(torch.finfo(dtype).max, int64_max_val)) froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.bfloat16: min_val = int64_min_val max_val = int64_max_val froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.uint8: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max froms = [int64_min_val, -42, min_val - 1, min_val, 42, max_val, max_val + 1] tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val] elif dtype == torch.int64: min_val = int64_min_val max_val = int64_max_val froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val] else: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max froms = [int64_min_val, min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1] tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val] if dtype == torch.double: fp_limit = 2**53 elif dtype == torch.float: fp_limit = 2**24 elif dtype == torch.half: fp_limit = 2**11 elif dtype == torch.bfloat16: fp_limit = 2**8 else: fp_limit = 0 for from_ in froms: for to_ in tos: t = torch.empty(size, dtype=dtype, device=device) if to_ > from_: if not (min_val <= from_ <= max_val): self.assertRaisesRegex( RuntimeError, "from is out of bounds", lambda: t.random_(from_, to_) ) elif not (min_val <= (to_ - 1) <= max_val): self.assertRaisesRegex( RuntimeError, "to - 1 is out of bounds", lambda: t.random_(from_, to_) ) else: if dtype.is_floating_point and ( not (-fp_limit <= from_ <= fp_limit) or not (-fp_limit <= (to_ - 1) <= fp_limit)): if not (-fp_limit <= from_ <= fp_limit): self.assertWarnsRegex(UserWarning, "from is out of bounds", lambda: t.random_(from_, to_)) if not (-fp_limit <= (to_ - 1) <= fp_limit): self.assertWarnsRegex(UserWarning, "to - 1 is out of bounds", lambda: t.random_(from_, to_)) else: t.random_(from_, to_) range_ = to_ - from_ delta = max(1, alpha * range_) if dtype == torch.bfloat16: # Less strict checks because of rounding errors # TODO investigate rounding errors self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_) else: self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) @dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes())) def test_random_to(self, device, dtype): size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype in [torch.float, torch.double, torch.half]: min_val = int(max(torch.finfo(dtype).min, int64_min_val)) max_val = int(min(torch.finfo(dtype).max, int64_max_val)) tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.bfloat16: min_val = int64_min_val max_val = int64_max_val tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.uint8: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val] elif dtype == torch.int64: min_val = int64_min_val max_val = int64_max_val tos = [-42, 0, 42, max_val] else: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val] from_ = 0 for to_ in tos: t = torch.empty(size, dtype=dtype, device=device) if to_ > from_: if not (min_val <= (to_ - 1) <= max_val): self.assertRaisesRegex( RuntimeError, "to - 1 is out of bounds", lambda: t.random_(from_, to_) ) else: t.random_(to_) range_ = to_ - from_ delta = max(1, alpha * range_) if dtype == torch.bfloat16: # Less strict checks because of rounding errors # TODO investigate rounding errors self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_) else: self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) @dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes())) def test_random_default(self, device, dtype): size = 2000 alpha = 0.1 if dtype == torch.float: to_inc = 1 << 24 elif dtype == torch.double: to_inc = 1 << 53 elif dtype == torch.half: to_inc = 1 << 11 elif dtype == torch.bfloat16: to_inc = 1 << 8 else: to_inc = torch.iinfo(dtype).max t = torch.empty(size, dtype=dtype, device=device) t.random_() self.assertTrue(0 <= t.to(torch.double).min() < alpha * to_inc) self.assertTrue((to_inc - alpha * to_inc) < t.to(torch.double).max() <= to_inc) # TODO: this test should be updated @onlyOnCPUAndCUDA def test_empty_full(self, device): torch_device = torch.device(device) device_type = torch_device.type if device_type == 'cpu': do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, torch_device) if device_type == 'cuda': do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, None) do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, torch_device) # TODO: this test should be updated @suppress_warnings @onlyOnCPUAndCUDA @deviceCountAtLeast(1) def test_tensor_device(self, devices): device_type = torch.device(devices[0]).type if device_type == 'cpu': self.assertEqual('cpu', torch.tensor(5).device.type) self.assertEqual('cpu', torch.ones((2, 3), dtype=torch.float32, device='cpu').device.type) self.assertEqual('cpu', torch.ones((2, 3), dtype=torch.float32, device='cpu:0').device.type) self.assertEqual('cpu', torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cpu:0').device.type) self.assertEqual('cpu', torch.tensor(np.random.randn(2, 3), device='cpu').device.type) if device_type == 'cuda': self.assertEqual('cuda:0', str(torch.tensor(5).cuda(0).device)) self.assertEqual('cuda:0', str(torch.tensor(5).cuda('cuda:0').device)) self.assertEqual('cuda:0', str(torch.tensor(5, dtype=torch.int64, device=0).device)) self.assertEqual('cuda:0', str(torch.tensor(5, dtype=torch.int64, device='cuda:0').device)) self.assertEqual('cuda:0', str(torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:0').device)) self.assertEqual('cuda:0', str(torch.tensor(np.random.randn(2, 3), device='cuda:0').device)) for device in devices: with torch.cuda.device(device): device_string = 'cuda:' + str(torch.cuda.current_device()) self.assertEqual(device_string, str(torch.tensor(5, dtype=torch.int64, device='cuda').device)) with self.assertRaises(RuntimeError): torch.tensor(5).cuda('cpu') with self.assertRaises(RuntimeError): torch.tensor(5).cuda('cpu:0') if len(devices) > 1: self.assertEqual('cuda:1', str(torch.tensor(5).cuda(1).device)) self.assertEqual('cuda:1', str(torch.tensor(5).cuda('cuda:1').device)) self.assertEqual('cuda:1', str(torch.tensor(5, dtype=torch.int64, device=1).device)) self.assertEqual('cuda:1', str(torch.tensor(5, dtype=torch.int64, device='cuda:1').device)) self.assertEqual('cuda:1', str(torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:1').device)) self.assertEqual('cuda:1', str(torch.tensor(np.random.randn(2, 3), device='cuda:1').device)) # TODO: this test should be updated @onlyOnCPUAndCUDA def test_as_strided_neg(self, device): error = r'as_strided: Negative strides are not supported at the ' \ r'moment, got strides: \[-?[0-9]+(, -?[0-9]+)*\]' with self.assertRaisesRegex(RuntimeError, error): torch.as_strided(torch.ones(3, 3, device=device), (1, 1), (2, -1)) with self.assertRaisesRegex(RuntimeError, error): torch.as_strided(torch.ones(14, device=device), (2,), (-11,)) # TODO: this test should be updated def test_zeros(self, device): res1 = torch.zeros(100, 100, device=device) res2 = torch.tensor((), device=device) torch.zeros(100, 100, device=device, out=res2) self.assertEqual(res1, res2) boolTensor = torch.zeros(2, 2, device=device, dtype=torch.bool) expected = torch.tensor([[False, False], [False, False]], device=device, dtype=torch.bool) self.assertEqual(boolTensor, expected) halfTensor = torch.zeros(1, 1, device=device, dtype=torch.half) expected = torch.tensor([[0.]], device=device, dtype=torch.float16) self.assertEqual(halfTensor, expected) bfloat16Tensor = torch.zeros(1, 1, device=device, dtype=torch.bfloat16) expected = torch.tensor([[0.]], device=device, dtype=torch.bfloat16) self.assertEqual(bfloat16Tensor, expected) complexTensor = torch.zeros(2, 2, device=device, dtype=torch.complex64) expected = torch.tensor([[0., 0.], [0., 0.]], device=device, dtype=torch.complex64) self.assertEqual(complexTensor, expected) # TODO: this test should be updated def test_zeros_out(self, device): shape = (3, 4) out = torch.zeros(shape, device=device) torch.zeros(shape, device=device, out=out) # change the dtype, layout, device with self.assertRaises(RuntimeError): torch.zeros(shape, device=device, dtype=torch.int64, out=out) with self.assertRaises(RuntimeError): torch.zeros(shape, device=device, layout=torch.sparse_coo, out=out) # leave them the same self.assertEqual(torch.zeros(shape, device=device), torch.zeros(shape, device=device, dtype=out.dtype, out=out)) self.assertEqual(torch.zeros(shape, device=device), torch.zeros(shape, device=device, layout=torch.strided, out=out)) self.assertEqual(torch.zeros(shape, device=device), torch.zeros(shape, device=device, out=out)) # TODO: this test should be updated def test_ones(self, device): res1 = torch.ones(100, 100, device=device) res2 = torch.tensor((), device=device) torch.ones(100, 100, device=device, out=res2) self.assertEqual(res1, res2) # test boolean tensor res1 = torch.ones(1, 2, device=device, dtype=torch.bool) expected = torch.tensor([[True, True]], device=device, dtype=torch.bool) self.assertEqual(res1, expected) # TODO: this test should be updated @onlyCPU def test_constructor_dtypes(self, device): default_type = torch.Tensor().type() self.assertIs(torch.Tensor().dtype, torch.get_default_dtype()) self.assertIs(torch.uint8, torch.ByteTensor.dtype) self.assertIs(torch.float32, torch.FloatTensor.dtype) self.assertIs(torch.float64, torch.DoubleTensor.dtype) torch.set_default_tensor_type('torch.FloatTensor') self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.FloatStorage, torch.Storage) torch.set_default_dtype(torch.float64) self.assertIs(torch.float64, torch.get_default_dtype()) self.assertIs(torch.DoubleStorage, torch.Storage) torch.set_default_tensor_type(torch.FloatTensor) self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.FloatStorage, torch.Storage) if torch.cuda.is_available(): torch.set_default_tensor_type(torch.cuda.FloatTensor) self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.float32, torch.cuda.FloatTensor.dtype) self.assertIs(torch.cuda.FloatStorage, torch.Storage) torch.set_default_dtype(torch.float64) self.assertIs(torch.float64, torch.get_default_dtype()) self.assertIs(torch.cuda.DoubleStorage, torch.Storage) # don't support integral or sparse default types. self.assertRaises(TypeError, lambda: torch.set_default_tensor_type('torch.IntTensor')) self.assertRaises(TypeError, lambda: torch.set_default_dtype(torch.int64)) # don't allow passing dtype to set_default_tensor_type self.assertRaises(TypeError, lambda: torch.set_default_tensor_type(torch.float32)) torch.set_default_tensor_type(default_type) # TODO: this test should be updated @onlyCPU def test_constructor_device_legacy(self, device): self.assertRaises(RuntimeError, lambda: torch.FloatTensor(device='cuda')) self.assertRaises(RuntimeError, lambda: torch.FloatTensor(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.FloatTensor((2.0, 3.0), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cuda')) x = torch.randn((3,), device='cpu') self.assertRaises(RuntimeError, lambda: x.new(device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cuda')) if torch.cuda.is_available(): self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor((2.0, 3.0), device='cpu')) default_type = torch.Tensor().type() torch.set_default_tensor_type(torch.cuda.FloatTensor) self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cpu')) torch.set_default_tensor_type(torch.cuda.FloatTensor) torch.set_default_tensor_type(default_type) x = torch.randn((3,), device='cuda') self.assertRaises(RuntimeError, lambda: x.new(device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cpu')) # TODO: this test should be updated @suppress_warnings @onlyCPU def test_tensor_factory(self, device): # TODO: This test probably doesn't make too much sense now that # torch.tensor has been established for a while; it makes more # sense to test the legacy behavior in terms of the new behavior expected = torch.Tensor([1, 1]) # test data res1 = torch.tensor([1, 1]) self.assertEqual(res1, expected, exact_dtype=False) res1 = torch.tensor([1, 1], dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy res2 = torch.tensor(expected) self.assertEqual(res2, expected) res2[1] = 2 self.assertEqual(expected, torch.ones_like(expected)) res2 = torch.tensor(expected, dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy with numpy for dtype in [np.float64, np.int64, np.int8, np.uint8]: a = np.array([5.]).astype(dtype) res1 = torch.tensor(a) self.assertEqual(5., res1[0].item()) a[0] = 7. self.assertEqual(5., res1[0].item()) # test boolean tensor a = torch.tensor([True, True, False, True, True], dtype=torch.bool) b = torch.tensor([-1, -1.1, 0, 1, 1.1], dtype=torch.bool) self.assertEqual(a, b) c = torch.tensor([-0.1, -1.1, 0, 1, 0.1], dtype=torch.bool) self.assertEqual(a, c) d = torch.tensor((-.3, 0, .3, 1, 3 / 7), dtype=torch.bool) e = torch.tensor((True, False, True, True, True), dtype=torch.bool) self.assertEqual(e, d) f = torch.tensor((-1, 0, -1.1, 1, 1.1), dtype=torch.bool) self.assertEqual(e, f) int64_max = torch.iinfo(torch.int64).max int64_min = torch.iinfo(torch.int64).min float64_max = torch.finfo(torch.float64).max float64_min = torch.finfo(torch.float64).min g_1 = torch.tensor((float('nan'), 0, int64_min, int64_max, int64_min - 1), dtype=torch.bool) self.assertEqual(e, g_1) g_2 = torch.tensor((int64_max + 1, 0, (int64_max + 1) * 2, (int64_max + 1) * 2 + 1, float64_min), dtype=torch.bool) self.assertEqual(e, g_2) g_3 = torch.tensor((float64_max, 0, float64_max + 1, float64_min - 1, float64_max + 1e291), dtype=torch.bool) self.assertEqual(e, g_3) h = torch.tensor([True, False, False, True, False, True, True], dtype=torch.bool) i = torch.tensor([1e-323, 1e-324, 0j, 1e-323j, 1e-324j, 1 + 2j, -1j], dtype=torch.bool) self.assertEqual(h, i) j = torch.tensor((True, True, True, True), dtype=torch.bool) k = torch.tensor((1e323, -1e323, float('inf'), -float('inf')), dtype=torch.bool) self.assertEqual(j, k) # TODO: this test should be updated @suppress_warnings @onlyCPU def test_tensor_factory_copy_var(self, device): def check_copy(copy, is_leaf, requires_grad, data_ptr=None): if data_ptr is None: data_ptr = copy.data_ptr self.assertEqual(copy, source, exact_dtype=False) self.assertTrue(copy.is_leaf == is_leaf) self.assertTrue(copy.requires_grad == requires_grad) self.assertTrue(copy.data_ptr == data_ptr) source = torch.randn(5, 5, dtype=torch.double, requires_grad=True) # test torch.tensor() check_copy(torch.tensor(source), True, False) check_copy(torch.tensor(source, requires_grad=False), True, False) check_copy(torch.tensor(source, requires_grad=True), True, True) # test tensor.new_tensor() copy = torch.randn(1) check_copy(copy.new_tensor(source), True, False) check_copy(copy.new_tensor(source, requires_grad=False), True, False) check_copy(copy.new_tensor(source, requires_grad=True), True, True) # test torch.as_tensor() check_copy(torch.as_tensor(source), source.is_leaf, source.requires_grad, source.data_ptr) # not copy check_copy(torch.as_tensor(source, dtype=torch.float), False, True) # copy and keep the graph # TODO: this test should be updated @onlyCPU def test_tensor_factory_type_inference(self, device): def test_inference(default_dtype): saved_dtype = torch.get_default_dtype() torch.set_default_dtype(default_dtype) default_complex_dtype = torch.complex64 if default_dtype == torch.float32 else torch.complex128 self.assertIs(default_dtype, torch.tensor(()).dtype) self.assertIs(default_dtype, torch.tensor(5.).dtype) self.assertIs(torch.int64, torch.tensor(5).dtype) self.assertIs(torch.bool, torch.tensor(True).dtype) self.assertIs(torch.int32, torch.tensor(5, dtype=torch.int32).dtype) self.assertIs(default_dtype, torch.tensor(((7, 5), (9, 5.))).dtype) self.assertIs(default_dtype, torch.tensor(((5., 5), (3, 5))).dtype) self.assertIs(torch.int64, torch.tensor(((5, 3), (3, 5))).dtype) self.assertIs(default_complex_dtype, torch.tensor(((5, 3 + 2j), (3, 5 + 4j))).dtype) self.assertIs(torch.float64, torch.tensor(np.array(())).dtype) self.assertIs(torch.float64, torch.tensor(np.array(5.)).dtype) if np.array(5).dtype == np.int64: # np long, which can be 4 bytes (e.g. on windows) self.assertIs(torch.int64, torch.tensor(np.array(5)).dtype) else: self.assertIs(torch.int32, torch.tensor(np.array(5)).dtype) self.assertIs(torch.uint8, torch.tensor(np.array(3, dtype=np.uint8)).dtype) self.assertIs(default_dtype, torch.tensor(((7, np.array(5)), (np.array(9), 5.))).dtype) self.assertIs(torch.float64, torch.tensor(((7, 5), (9, np.array(5.)))).dtype) self.assertIs(torch.int64, torch.tensor(((5, np.array(3)), (np.array(3), 5))).dtype) torch.set_default_dtype(saved_dtype) test_inference(torch.float64) test_inference(torch.float32) # TODO: this test should be updated @suppress_warnings @onlyCPU def test_new_tensor(self, device): expected = torch.autograd.Variable(torch.ByteTensor([1, 1])) # test data res1 = expected.new_tensor([1, 1]) self.assertEqual(res1, expected) res1 = expected.new_tensor([1, 1], dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy res2 = expected.new_tensor(expected) self.assertEqual(res2, expected) res2[1] = 2 self.assertEqual(expected, torch.ones_like(expected)) res2 = expected.new_tensor(expected, dtype=torch.int) self.assertEqual(res2, expected, exact_dtype=False) self.assertIs(torch.int, res2.dtype) # test copy with numpy a = np.array([5.]) res1 = torch.tensor(a) res1 = res1.new_tensor(a) self.assertEqual(5., res1[0].item()) a[0] = 7. self.assertEqual(5., res1[0].item()) if torch.cuda.device_count() >= 2: expected = expected.cuda(1) res1 = expected.new_tensor([1, 1]) self.assertEqual(res1.get_device(), expected.get_device()) res1 = expected.new_tensor([1, 1], dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res1.get_device(), expected.get_device()) res2 = expected.new_tensor(expected) self.assertEqual(res2.get_device(), expected.get_device()) res2 = expected.new_tensor(expected, dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res2.get_device(), expected.get_device()) res2 = expected.new_tensor(expected, dtype=torch.int, device=0) self.assertIs(torch.int, res1.dtype) self.assertEqual(res2.get_device(), 0) res1 = expected.new_tensor(1) self.assertEqual(res1.get_device(), expected.get_device()) res1 = expected.new_tensor(1, dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res1.get_device(), expected.get_device()) # TODO: this test should be updated @onlyCPU def test_as_tensor(self, device): # from python data x = [[0, 1], [2, 3]] self.assertEqual(torch.tensor(x), torch.as_tensor(x)) self.assertEqual(torch.tensor(x, dtype=torch.float32), torch.as_tensor(x, dtype=torch.float32)) # python data with heterogeneous types z = [0, 'torch'] with self.assertRaisesRegex(TypeError, "invalid data type"): torch.tensor(z) torch.as_tensor(z) # python data with self-referential lists z = [0] z += [z] with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"): torch.tensor(z) torch.as_tensor(z) z = [[1, 2], z] with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"): torch.tensor(z) torch.as_tensor(z) # from tensor (doesn't copy unless type is different) y = torch.tensor(x) self.assertIs(y, torch.as_tensor(y)) self.assertIsNot(y, torch.as_tensor(y, dtype=torch.float32)) if torch.cuda.is_available(): self.assertIsNot(y, torch.as_tensor(y, device='cuda')) y_cuda = y.to('cuda') self.assertIs(y_cuda, torch.as_tensor(y_cuda)) self.assertIs(y_cuda, torch.as_tensor(y_cuda, device='cuda')) # doesn't copy for dtype in [np.float64, np.int64, np.int8, np.uint8]: n = np.random.rand(5, 6).astype(dtype) n_astensor = torch.as_tensor(n) self.assertEqual(torch.tensor(n), n_astensor) n_astensor[0][0] = 25.7 self.assertEqual(torch.tensor(n), n_astensor) # changing dtype causes copy n = np.random.rand(5, 6).astype(np.float32) n_astensor = torch.as_tensor(n, dtype=torch.float64) self.assertEqual(torch.tensor(n, dtype=torch.float64), n_astensor) n_astensor[0][1] = 250.8 self.assertNotEqual(torch.tensor(n, dtype=torch.float64), n_astensor) # changing device causes copy if torch.cuda.is_available(): n = np.random.randn(5, 6) n_astensor = torch.as_tensor(n, device='cuda') self.assertEqual(torch.tensor(n, device='cuda'), n_astensor) n_astensor[0][2] = 250.9 self.assertNotEqual(torch.tensor(n, device='cuda'), n_astensor) # TODO: this test should be updated @suppress_warnings def test_range(self, device): res1 = torch.range(0, 1, device=device) res2 = torch.tensor((), device=device) torch.range(0, 1, device=device, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # Check range for non-contiguous tensors. x = torch.zeros(2, 3, device=device) torch.range(0, 3, device=device, out=x.narrow(1, 1, 2)) res2 = torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=torch.float32) self.assertEqual(x, res2, atol=1e-16, rtol=0) # Check negative res1 = torch.tensor((1, 0), device=device, dtype=torch.float32) res2 = torch.tensor((), device=device) torch.range(1, 0, -1, device=device, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # Equal bounds res1 = torch.ones(1, device=device) res2 = torch.tensor((), device=device) torch.range(1, 1, -1, device=device, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) torch.range(1, 1, 1, device=device, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # TODO: this test should be updated def test_range_warning(self, device): with warnings.catch_warnings(record=True) as w: torch.range(0, 10, device=device) self.assertEqual(len(w), 1) # TODO: this test should be updated @onlyCPU def test_arange(self, device): res = torch.tensor(range(10000)) res1 = torch.arange(0, 10000) # Use a larger number so vectorized code can be triggered res2 = torch.tensor([], dtype=torch.int64) torch.arange(0, 10000, out=res2) self.assertEqual(res, res1, atol=0, rtol=0) self.assertEqual(res, res2, atol=0, rtol=0) # Vectorization on non-contiguous tensors res = torch.rand(3, 3, 300000).to(torch.int64) res = res.permute(2, 0, 1) torch.arange(0, 300000 * 3 * 3, out=res) self.assertEqual(res.flatten(), torch.arange(0, 300000 * 3 * 3)) # Check arange with only one argument res1 = torch.arange(10) res2 = torch.arange(0, 10) self.assertEqual(res1, res2, atol=0, rtol=0) # Check arange for non-contiguous tensors. x = torch.zeros(2, 3) torch.arange(0, 4, out=x.narrow(1, 1, 2)) res2 = torch.Tensor(((0, 0, 1), (0, 2, 3))) self.assertEqual(x, res2, atol=1e-16, rtol=0) # Check negative res1 = torch.Tensor((1, 0)) res2 = torch.Tensor() torch.arange(1, -1, -1, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # Equal bounds res1 = torch.ones(1) res2 = torch.Tensor() torch.arange(1, 0, -1, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) torch.arange(1, 2, 1, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # FloatTensor res1 = torch.arange(0.6, 0.89, 0.1, out=torch.FloatTensor()) self.assertEqual(res1, [0.6, 0.7, 0.8]) res1 = torch.arange(1, 10, 0.3, out=torch.FloatTensor()) self.assertEqual(res1.size(0), 30) self.assertEqual(res1[0], 1) self.assertEqual(res1[29], 9.7) # DoubleTensor res1 = torch.arange(0.6, 0.89, 0.1, out=torch.DoubleTensor()) self.assertEqual(res1, [0.6, 0.7, 0.8]) res1 = torch.arange(1, 10, 0.3, out=torch.DoubleTensor()) self.assertEqual(res1.size(0), 30) self.assertEqual(res1[0], 1) self.assertEqual(res1[29], 9.7) # Bool Input matching numpy semantics r = torch.arange(True) self.assertEqual(r[0], 0) r2 = torch.arange(False) self.assertEqual(len(r2), 0) self.assertEqual(r.dtype, torch.int64) self.assertEqual(r2.dtype, torch.int64) # Check that it's exclusive r = torch.arange(0, 5) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 4) self.assertEqual(r.numel(), 5) r = torch.arange(0, 5, 2) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 4) self.assertEqual(r.numel(), 3) r1 = torch.arange(0, 5 + 1e-6) # NB: without the dtype, we'll infer output type to be int64 r2 = torch.arange(0, 5, dtype=torch.float32) r3 = torch.arange(0, 5 - 1e-6) self.assertEqual(r1[:-1], r2, atol=0, rtol=0) self.assertEqual(r2, r3, atol=0, rtol=0) r1 = torch.arange(10, -1 + 1e-6, -1) # NB: without the dtype, we'll infer output type to be int64 r2 = torch.arange(10, -1, -1, dtype=torch.float32) r3 = torch.arange(10, -1 - 1e-6, -1) self.assertEqual(r1, r2, atol=0, rtol=0) self.assertEqual(r2, r3[:-1], atol=0, rtol=0) # Test Rounding Errors line = torch.zeros(size=(1, 49)) self.assertWarnsRegex(UserWarning, 'The out tensor will be resized', lambda: torch.arange(-1, 1, 2. / 49, dtype=torch.float32, out=line)) self.assertEqual(line.shape, [50]) x = torch.empty(1).expand(10) self.assertRaises(RuntimeError, lambda: torch.arange(10, out=x)) msg = "unsupported range" self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'))) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'))) for device in torch.testing.get_all_device_types(): self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(-5, float('nan'), device=device)) # check with step size self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('-inf'), -1, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'), device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('-inf'), 10, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), 10, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'), device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), device=device)) self.assertRaisesRegex( RuntimeError, "overflow", lambda: torch.arange(1.175494351e-38, 3.402823466e+38, device=device)) # check that it holds a consistent output shape on precision-cornered step sizes d = torch.arange(-4.0, 4.0, 0.01, dtype=torch.float32, device=device) self.assertEqual(d.shape[0], 800) # TODO: this test should be updated @onlyCPU def test_arange_inference(self, device): saved_dtype = torch.get_default_dtype() torch.set_default_dtype(torch.float32) # end only self.assertIs(torch.float32, torch.arange(1.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1.)).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64)).dtype) self.assertIs(torch.int64, torch.arange(1).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1)).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1, dtype=torch.int16)).dtype) # start, end, [step] self.assertIs(torch.float32, torch.arange(1., 3).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64), 3).dtype) self.assertIs(torch.float32, torch.arange(1, 3.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1, dtype=torch.int16), torch.tensor(3.)).dtype) self.assertIs(torch.float32, torch.arange(1, 3, 1.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16), torch.tensor(1., dtype=torch.float64)).dtype) self.assertIs(torch.int64, torch.arange(1, 3).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), 3).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16)).dtype) self.assertIs(torch.int64, torch.arange(1, 3, 1).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3), torch.tensor(1, dtype=torch.int16)).dtype) torch.set_default_dtype(saved_dtype) def test_empty_strided(self, device): for shape in [(2, 3, 4), (0, 2, 0)]: # some of these cases are pretty strange, just verifying that if as_strided # allows them then empty_strided can as well. for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]: empty_strided = torch.empty_strided(shape, strides, device=device) # as_strided checks the storage size is big enough to support such a strided tensor; # instead of repeating this calculation, we just use empty_strided which does the same # calculation when setting the storage size. as_strided = torch.empty(empty_strided.storage().size(), device=device).as_strided(shape, strides) self.assertEqual(empty_strided.shape, as_strided.shape) self.assertEqual(empty_strided.stride(), as_strided.stride()) def test_new_empty_strided(self, device): def _test(sizes, strides, dtype): x = torch.zeros(5, 5, dtype=dtype, device=device) result = x.new_empty_strided(sizes, strides) expected = torch.empty_strided(sizes, strides, dtype=x.dtype, device=x.device) self.assertEqual(result.shape, expected.shape) self.assertEqual(result.stride(), expected.stride()) self.assertEqual(result.dtype, expected.dtype) self.assertEqual(result.device, expected.device) _test([2, 3], [3, 1], torch.float) _test([5, 3], [0, 1], torch.int) _test([], [], torch.float) # Some really weird cases for shape in [(2, 3, 4), (0, 2, 0)]: for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]: _test(shape, strides, torch.float) def test_strided_mismatched_stride_shape(self, device): for shape, strides in [((1, ), ()), ((1, 2), (1, ))]: with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"): torch.tensor(0.42, device=device).as_strided(shape, strides) with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"): torch.tensor(0.42, device=device).as_strided_(shape, strides) def test_empty_tensor_props(self, device): sizes = [(0,), (0, 3), (5, 0), (5, 0, 3, 0, 2), (0, 3, 0, 2), (0, 5, 0, 2, 0)] for size in sizes: x = torch.empty(tuple(size), device=device) self.assertEqual(size, x.shape) self.assertTrue(x.is_contiguous()) size_ones_instead_of_zeros = (x if x != 0 else 1 for x in size) y = torch.empty(tuple(size_ones_instead_of_zeros), device=device) self.assertEqual(x.stride(), y.stride()) def test_eye(self, device): for dtype in torch.testing.get_all_dtypes(): if dtype == torch.bfloat16: continue # Test the RuntimeError is raised when either m or n is a negative number for n, m in ((-1, 1), (1, -1), (-1, -1)): with self.assertRaisesRegex(RuntimeError, 'must be greater or equal to'): torch.eye(n, m, device=device, dtype=dtype) # Test when the `m` parameter is not provided for n in (3, 5, 7): res1 = torch.eye(n, device=device, dtype=dtype) naive_eye = torch.zeros(n, n, dtype=dtype, device=device) naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1) self.assertEqual(naive_eye, res1) # Check eye_out outputs res2 = torch.empty(0, device=device, dtype=dtype) torch.eye(n, out=res2) self.assertEqual(res1, res2) for n, m in product([3, 5, 7], repeat=2): # Construct identity using diagonal and fill res1 = torch.eye(n, m, device=device, dtype=dtype) naive_eye = torch.zeros(n, m, dtype=dtype, device=device) naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1) self.assertEqual(naive_eye, res1) # Check eye_out outputs res2 = torch.empty(0, device=device, dtype=dtype) torch.eye(n, m, out=res2) self.assertEqual(res1, res2) @precisionOverride({torch.float: 1e-8, torch.double: 1e-10}) @dtypes(*(torch.testing.get_all_fp_dtypes(include_half=False, include_bfloat16=False) + torch.testing.get_all_complex_dtypes())) def test_linspace_vs_numpy(self, device, dtype): start = -0.0316082797944545745849609375 + (0.8888888888j if dtype.is_complex else 0) end = .0315315723419189453125 + (0.444444444444j if dtype.is_complex else 0) for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: t = torch.linspace(start, end, steps, device=device, dtype=dtype) a = np.linspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) self.assertTrue(t[0].item() == a[0]) self.assertTrue(t[steps - 1].item() == a[steps - 1]) def _test_linspace_logspace_complex_helper(self, torch_fn, np_fn, device, dtype): start = torch.randn(1, dtype=dtype).item() end = (start + torch.randn(1, dtype=dtype) + random.randint(5, 15)).item() def test_fn(torch_fn, numpy_fn, steps): t = torch_fn(start, end, steps, device=device) a = numpy_fn(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: test_fn(torch.linspace, np.linspace, steps) @dtypes(torch.complex64) def test_linspace_vs_numpy_complex(self, device, dtype): self._test_linspace_logspace_complex_helper(torch.linspace, np.linspace, device, dtype) @dtypes(torch.complex64) def test_logspace_vs_numpy_complex(self, device, dtype): self._test_linspace_logspace_complex_helper(torch.logspace, np.logspace, device, dtype) @precisionOverride({torch.float: 1e-6, torch.double: 1e-10}) @dtypes(*torch.testing.get_all_fp_dtypes(include_half=False, include_bfloat16=False)) def test_logspace_vs_numpy(self, device, dtype): start = -0.0316082797944545745849609375 end = .0315315723419189453125 for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: t = torch.logspace(start, end, steps, device=device, dtype=dtype) a = np.logspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) self.assertEqual(t[0], a[0]) self.assertEqual(t[steps - 1], a[steps - 1]) def _linspace_logspace_warning_helper(self, op, device, dtype): with self.maybeWarnsRegex(UserWarning, "Not providing a value for .+"): op(0, 10, device=device, dtype=dtype) @dtypes(torch.float) def test_linspace_steps_warning(self, device, dtype): self._linspace_logspace_warning_helper(torch.linspace, device, dtype) @dtypes(torch.float) def test_logspace_steps_warning(self, device, dtype): self._linspace_logspace_warning_helper(torch.logspace, device, dtype) @onlyCUDA @largeTensorTest('16GB') def test_range_factories_64bit_indexing(self, device): bigint = 2 ** 31 + 1 t = torch.arange(bigint, dtype=torch.long, device=device) self.assertEqual(t[-1].item(), bigint - 1) del t t = torch.linspace(0, 1, bigint, dtype=torch.float, device=device) self.assertEqual(t[-1].item(), 1) del t t = torch.logspace(0, 1, bigint, 2, dtype=torch.float, device=device) self.assertEqual(t[-1].item(), 2) del t @onlyOnCPUAndCUDA def test_tensor_ctor_device_inference(self, device): torch_device = torch.device(device) values = torch.tensor((1, 2, 3), device=device) # Tests tensor and as_tensor # Note: warnings are suppressed (suppresses warnings) for op in (torch.tensor, torch.as_tensor): with warnings.catch_warnings(): warnings.simplefilter("ignore") self.assertEqual(op(values).device, torch_device) self.assertEqual(op(values, dtype=torch.float64).device, torch_device) if self.device_type == 'cuda': with torch.cuda.device(device): self.assertEqual(op(values.cpu()).device, torch.device('cpu')) # Tests sparse ctor indices = torch.tensor([[0, 1, 1], [2, 0, 1], [2, 1, 0]], device=device) sparse_size = (3, 3, 3) sparse_default = torch.sparse_coo_tensor(indices, values, sparse_size) self.assertEqual(sparse_default.device, torch_device) sparse_with_dtype = torch.sparse_coo_tensor(indices, values, sparse_size, dtype=torch.float64) self.assertEqual(sparse_with_dtype.device, torch_device) if self.device_type == 'cuda': with torch.cuda.device(device): sparse_with_dtype = torch.sparse_coo_tensor(indices.cpu(), values.cpu(), sparse_size, dtype=torch.float64) self.assertEqual(sparse_with_dtype.device, torch.device('cpu')) @onlyOnCPUAndCUDA @precisionOverride({torch.bfloat16: 5e-2, torch.half: 1e-3}) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") @dtypesIfCUDA(torch.float, torch.double, torch.bfloat16, torch.half, torch.long) @dtypesIfCPU(torch.float, torch.double, torch.long) def test_signal_window_functions(self, device, dtype): import scipy.signal as signal def test(name, kwargs): torch_method = getattr(torch, name + '_window') if not dtype.is_floating_point: with self.assertRaisesRegex(RuntimeError, r'floating point'): torch_method(3, dtype=dtype) return for size in [0, 1, 2, 5, 10, 50, 100, 1024, 2048]: for periodic in [True, False]: res = torch_method(size, periodic=periodic, **kwargs, device=device, dtype=dtype) # NB: scipy always returns a float64 result ref = torch.from_numpy(signal.get_window((name, *(kwargs.values())), size, fftbins=periodic)) self.assertEqual(res, ref, exact_dtype=False) with self.assertRaisesRegex(RuntimeError, r'not implemented for sparse types'): torch_method(3, layout=torch.sparse_coo) self.assertTrue(torch_method(3, requires_grad=True).requires_grad) self.assertFalse(torch_method(3).requires_grad) for window in ['hann', 'hamming', 'bartlett', 'blackman']: test(window, kwargs={}) for num_test in range(50): test('kaiser', kwargs={'beta': random.random() * 30}) def test_tensor_factories_empty(self, device): # ensure we can create empty tensors from each factory function shapes = [(5, 0, 1), (0,), (0, 0, 1, 0, 2, 0, 0)] for shape in shapes: for dt in torch.testing.get_all_dtypes(): self.assertEqual(shape, torch.zeros(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.zeros_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.full(shape, 3, device=device, dtype=dt).shape) self.assertEqual(shape, torch.full_like(torch.zeros(shape, device=device, dtype=dt), 3).shape) self.assertEqual(shape, torch.ones(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.ones_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.empty(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.empty_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.empty_strided(shape, (0,) * len(shape), device=device, dtype=dt).shape) if dt == torch.bool: self.assertEqual(shape, torch.randint(2, shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 2).shape) elif dt.is_complex: self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt).shape) else: self.assertEqual(shape, torch.randint(6, shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 6).shape) if dt not in {torch.double, torch.float, torch.half, torch.bfloat16, torch.complex64, torch.complex128}: self.assertRaises(RuntimeError, lambda: torch.rand(shape, device=device, dtype=dt).shape) if dt == torch.double or dt == torch.float or dt.is_complex: self.assertEqual(shape, torch.randn(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randn_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual((0,), torch.arange(0, device=device).shape) self.assertEqual((0, 0), torch.eye(0, device=device).shape) self.assertEqual((0, 0), torch.eye(0, 0, device=device).shape) self.assertEqual((5, 0), torch.eye(5, 0, device=device).shape) self.assertEqual((0, 5), torch.eye(0, 5, device=device).shape) self.assertEqual((0,), torch.linspace(1, 1, 0, device=device).shape) self.assertEqual((0,), torch.logspace(1, 1, 0, device=device).shape) self.assertEqual((0,), torch.randperm(0, device=device).shape) self.assertEqual((0,), torch.bartlett_window(0, device=device).shape) self.assertEqual((0,), torch.bartlett_window(0, periodic=False, device=device).shape) self.assertEqual((0,), torch.hamming_window(0, device=device).shape) self.assertEqual((0,), torch.hann_window(0, device=device).shape) self.assertEqual((0,), torch.kaiser_window(0, device=device).shape) self.assertEqual((1, 1, 0), torch.tensor([[[]]], device=device).shape) self.assertEqual((1, 1, 0), torch.as_tensor([[[]]], device=device).shape) @onlyCUDA def test_tensor_factory_gpu_type_inference(self, device): saved_type = torch.Tensor().type() torch.set_default_tensor_type(torch.cuda.DoubleTensor) torch.set_default_dtype(torch.float32) self.assertIs(torch.float32, torch.tensor(0.).dtype) self.assertEqual(torch.device(device), torch.tensor(0.).device) torch.set_default_dtype(torch.float64) self.assertIs(torch.float64, torch.tensor(0.).dtype) self.assertEqual(torch.device(device), torch.tensor(0.).device) torch.set_default_tensor_type(saved_type) @onlyCUDA def test_tensor_factory_gpu_type(self, device): saved_type = torch.Tensor().type() torch.set_default_tensor_type(torch.cuda.FloatTensor) x = torch.zeros((5, 5)) self.assertIs(torch.float32, x.dtype) self.assertTrue(x.is_cuda) torch.set_default_tensor_type(torch.cuda.DoubleTensor) x = torch.zeros((5, 5)) self.assertIs(torch.float64, x.dtype) self.assertTrue(x.is_cuda) torch.set_default_tensor_type(saved_type) @skipCPUIf(True, 'compares device with cpu') @dtypes(torch.int, torch.long, torch.float, torch.double) def test_arange_device_vs_cpu(self, device, dtype): cpu_tensor = torch.arange(0, 10, dtype=dtype, device='cpu') device_tensor = torch.arange(0, 10, dtype=dtype, device=device) self.assertEqual(cpu_tensor, device_tensor) @onlyCUDA def test_arange_bfloat16(self, device): ref_tensor = torch.tensor([0, 1, 2, 3], dtype=torch.bfloat16, device=device) bfloat16_tensor = torch.arange(0, 4, dtype=torch.bfloat16, device=device) self.assertEqual(ref_tensor, bfloat16_tensor) # step=2 ref_tensor = torch.tensor([0, 2, 4], dtype=torch.bfloat16, device=device) bfloat16_tensor = torch.arange(0, 6, step=2, dtype=torch.bfloat16, device=device) self.assertEqual(ref_tensor, bfloat16_tensor) @dtypes(*torch.testing.get_all_dtypes(include_bool=False, include_half=False)) @dtypesIfCUDA(*torch.testing.get_all_dtypes(include_bool=False, include_half=True)) def test_linspace(self, device, dtype): _from = random.random() to = _from + random.random() res1 = torch.linspace(_from, to, 137, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.linspace(_from, to, 137, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # small tensor self.assertEqual(torch.linspace(10, 20, 11, device=device, dtype=dtype), torch.tensor(list(range(10, 21)), device=device, dtype=dtype)) # large tensor if dtype not in (torch.int8, torch.uint8): self.assertEqual(torch.linspace(10, 2000, 1991, device=device, dtype=dtype), torch.tensor(list(range(10, 2001)), device=device, dtype=dtype)) # Vectorization on non-contiguous tensors if dtype not in (torch.int8, torch.uint8): # int8 and uint8 are too small for this test res = torch.rand(3, 3, 1000, device=device).to(dtype) res = res.permute(2, 0, 1) torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, out=res) self.assertEqual(res.flatten(), torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, device=device, dtype=dtype)) self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, -1, device=device, dtype=dtype)) # steps = 1 self.assertEqual(torch.linspace(0, 1, 1, device=device, dtype=dtype), torch.zeros(1, device=device, dtype=dtype), atol=0, rtol=0) # steps = 0 self.assertEqual(torch.linspace(0, 1, 0, device=device, dtype=dtype).numel(), 0, atol=0, rtol=0) # Check linspace for generating the correct output for each dtype. start = 0 if dtype == torch.uint8 else -100 expected_lin = torch.tensor([start + .5 * i for i in range(401)], device=device, dtype=torch.double) actual_lin = torch.linspace(start, start + 200, 401, device=device, dtype=dtype) # If on GPU, allow for minor error depending on dtype. tol = 0. if device != 'cpu': if dtype == torch.half: tol = 1e-1 elif dtype == torch.float: tol = 1e-5 elif dtype == torch.double: tol = 1e-10 self.assertEqual(expected_lin.to(dtype), actual_lin, atol=tol, rtol=0) # Check linspace for generating with start > end. self.assertEqual(torch.linspace(2, 0, 3, device=device, dtype=dtype), torch.tensor((2, 1, 0), device=device, dtype=dtype), atol=0, rtol=0) # Check for race condition (correctness when applied on a large tensor). if dtype not in (torch.int8, torch.uint8, torch.int16, torch.half, torch.bfloat16): y = torch.linspace(0, 999999 + (999999j if dtype.is_complex else 0), 1000000, device=device, dtype=dtype) if dtype.is_complex: cond = torch.logical_and(y[:-1].real < y[1:].real, y[:-1].imag < y[1:].imag) else: cond = y[:-1] < y[1:] correct = all(cond) self.assertTrue(correct) # Check linspace for non-contiguous tensors. x = torch.zeros(2, 3, device=device, dtype=dtype) y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2), dtype=dtype) self.assertEqual(x, torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=dtype), atol=0, rtol=0) def _test_linspace_logspace_deduction_helper(self, fn, device): for start, end in [(1, 2), (1., 2), (1., -2.), (1j, 2j), (0., 2j), (1j, 2)]: dtype = torch.float32 if isinstance(start, complex) or isinstance(end, complex): dtype = torch.cfloat if dtype == torch.cfloat: # TODO(kshitij12345): Fix unnecessary warning # Reference: https://github.com/pytorch/pytorch/issues/53171 with self.assertWarnsRegex(UserWarning, "As either `start` or `stop` is complex"): self.assertEqual(fn(start, end, steps=100, device=device).dtype, dtype) else: self.assertEqual(fn(start, end, steps=100, device=device).dtype, dtype) def test_linspace_deduction(self, device): # Test deduction from input parameters. self._test_linspace_logspace_deduction_helper(torch.linspace, device) def test_logspace_deduction(self, device): # Test deduction from input parameters. self._test_linspace_logspace_deduction_helper(torch.logspace, device) # The implementation of linspace+logspace goes through a different path # when the steps arg is equal to 0 or 1. For other values of `steps` # they call specialized linspace (or logspace) kernels. LINSPACE_LOGSPACE_SPECIAL_STEPS = [0, 1] # NOTE [Linspace+Logspace precision override] # Our Linspace and logspace torch.half CUDA kernels are not very precise. # Since linspace/logspace are deterministic, we can compute an expected # amount of error (by testing without a precision override), adding a tiny # amount (EPS) to that, and using that value as the override. LINSPACE_LOGSPACE_EXTRA_EPS = 1e-5 # Compares linspace device vs. cpu def _test_linspace(self, device, dtype, steps): a = torch.linspace(0, 10, steps=steps, dtype=dtype, device=device) b = torch.linspace(0, 10, steps=steps) self.assertEqual(a, b, exact_dtype=False) # See NOTE [Linspace+Logspace precision override] @skipCPUIf(True, "compares with CPU") @precisionOverride({torch.half: 0.0039 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypesIfCUDA(*(torch.testing.get_all_fp_dtypes() + torch.testing.get_all_complex_dtypes())) def test_linspace_device_vs_cpu(self, device, dtype): self._test_linspace(device, dtype, steps=10) @skipCPUIf(True, "compares with CPU") @dtypesIfCUDA(*(torch.testing.get_all_fp_dtypes() + torch.testing.get_all_complex_dtypes())) def test_linspace_special_steps(self, device, dtype): for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS: self._test_linspace(device, dtype, steps=steps) # Compares logspace device vs cpu def _test_logspace(self, device, dtype, steps): a = torch.logspace(1, 1.1, steps=steps, dtype=dtype, device=device) b = torch.logspace(1, 1.1, steps=steps) self.assertEqual(a, b, exact_dtype=False) # Compares logspace device vs cpu def _test_logspace_base2(self, device, dtype, steps): a = torch.logspace(1, 1.1, steps=steps, base=2, dtype=dtype, device=device) b = torch.logspace(1, 1.1, steps=steps, base=2) self.assertEqual(a, b, exact_dtype=False) # See NOTE [Linspace+Logspace precision override] @skipCPUIf(True, "compares with CPU") @precisionOverride({torch.half: 0.025 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_device_vs_cpu(self, device, dtype): self._test_logspace(device, dtype, steps=10) # See NOTE [Linspace+Logspace precision override] @skipCPUIf(True, "compares with CPU") @precisionOverride({torch.half: 0.0201 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_base2(self, device, dtype): self._test_logspace_base2(device, dtype, steps=10) @skipCPUIf(True, "compares with CPU") @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_special_steps(self, device, dtype): for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS: self._test_logspace(device, dtype, steps=steps) self._test_logspace_base2(device, dtype, steps=steps) @dtypes(*torch.testing.get_all_dtypes(include_bool=False, include_half=False, include_complex=False)) @dtypesIfCUDA(*((torch.testing.get_all_int_dtypes() + [torch.float32, torch.float16, torch.bfloat16]) if TEST_WITH_ROCM else torch.testing.get_all_dtypes(include_bool=False, include_half=True, include_complex=False))) def test_logspace(self, device, dtype): _from = random.random() to = _from + random.random() res1 = torch.logspace(_from, to, 137, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.logspace(_from, to, 137, device=device, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, -1, device=device, dtype=dtype)) self.assertEqual(torch.logspace(0, 1, 1, device=device, dtype=dtype), torch.ones(1, device=device, dtype=dtype), atol=0, rtol=0) # Check precision - start, stop and base are chosen to avoid overflow # steps is chosen so that step size is not subject to rounding error # a tolerance is needed for gpu tests due to differences in computation atol = None rtol = None if self.device_type == 'cpu': atol = 0 rtol = 0 self.assertEqual(torch.tensor([2. ** (i / 8.) for i in range(49)], device=device, dtype=dtype), torch.logspace(0, 6, steps=49, base=2, device=device, dtype=dtype), atol=atol, rtol=rtol) # Check non-default base=2 self.assertEqual(torch.logspace(1, 1, 1, 2, device=device, dtype=dtype), torch.ones(1, device=device, dtype=dtype) * 2) self.assertEqual(torch.logspace(0, 2, 3, 2, device=device, dtype=dtype), torch.tensor((1, 2, 4), device=device, dtype=dtype)) # Check logspace_ for generating with start > end. self.assertEqual(torch.logspace(1, 0, 2, device=device, dtype=dtype), torch.tensor((10, 1), device=device, dtype=dtype), atol=0, rtol=0) # Check logspace_ for non-contiguous tensors. x = torch.zeros(2, 3, device=device, dtype=dtype) y = torch.logspace(0, 3, 4, base=2, device=device, dtype=dtype, out=x.narrow(1, 1, 2)) self.assertEqual(x, torch.tensor(((0, 1, 2), (0, 4, 8)), device=device, dtype=dtype), atol=0, rtol=0) @onlyOnCPUAndCUDA @dtypes(torch.half, torch.float, torch.double) def test_full_inference(self, device, dtype): size = (2, 2) prev_default = torch.get_default_dtype() torch.set_default_dtype(dtype) # Tests bool fill value inference t = torch.full(size, True) self.assertEqual(t.dtype, torch.bool) # Tests integer fill value inference t = torch.full(size, 1) self.assertEqual(t.dtype, torch.long) # Tests float fill value inference t = torch.full(size, 1.) self.assertEqual(t.dtype, dtype) # Tests complex inference t = torch.full(size, (1 + 1j)) ctype = torch.complex128 if dtype is torch.double else torch.complex64 self.assertEqual(t.dtype, ctype) torch.set_default_dtype(prev_default) def test_full_out(self, device): size = (5,) o = torch.empty(size, device=device, dtype=torch.long) # verifies dtype/out conflict throws a RuntimeError with self.assertRaises(RuntimeError): torch.full(o.shape, 1., dtype=torch.float, out=o) # verifies out dtype overrides inference self.assertEqual(torch.full(o.shape, 1., out=o).dtype, o.dtype) self.assertEqual(torch.full(size, 1, out=o).dtype, o.dtype) # check that warning for numpy being not writable is suppressed # when a copy of it is being created. # see issue #47160 def test_tensor_from_non_writable_numpy(self, device): with warnings.catch_warnings(record=True) as w: a = np.arange(5.) a.flags.writeable = False t = torch.tensor(a) self.assertEqual(len(w), 0) # Class for testing random tensor creation ops, like torch.randint class TestRandomTensorCreation(TestCase): exact_dtype = True # TODO: add torch.complex64, torch.complex128 @dtypes(torch.float, torch.double) def test_normal(self, device, dtype): def helper(self, device, dtype, ptype, t_transform, std_transform): q = torch.empty(100, 100, dtype=dtype, device=device) q.normal_() self.assertEqual(t_transform(q).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(q).std(), std_transform(1), atol=0.2, rtol=0) q.normal_(2, 3) self.assertEqual(t_transform(q).mean(), 2, atol=0.3, rtol=0) self.assertEqual(t_transform(q).std(), std_transform(3), atol=0.3, rtol=0) q = torch.empty(100, 100, dtype=dtype, device=device) q_row1 = q[0:1].clone() q[99:100].normal_() self.assertEqual(t_transform(q[99:100]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(q[99:100]).std(), std_transform(1), atol=0.2, rtol=0) self.assertEqual(t_transform(q[0:1]).clone(), t_transform(q_row1)) mean = torch.empty(100, 100, dtype=dtype, device=device) mean[:50].fill_(ptype(0)) mean[50:].fill_(ptype(1)) std = torch.empty(100, 100, dtype=torch.float, device=device) std[:, :50] = 4 std[:, 50:] = 1 r = torch.normal(mean) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(1), atol=0.2, rtol=0) r.fill_(42) r = torch.normal(mean, 3) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.2, rtol=0) r.fill_(42) torch.normal(mean, 3, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.2, rtol=0) r.fill_(42) r = torch.normal(2, std) self.assertFalse(r.dtype.is_complex) self.assertEqual(str(r.device), device) self.assertEqual(r.mean(), 2, atol=0.2, rtol=0) self.assertEqual(r[:, :50].std(), 4, atol=0.3, rtol=0) self.assertEqual(r[:, 50:].std(), 1, atol=0.2, rtol=0) r.fill_(42) torch.normal(2, std, out=r) self.assertFalse(r.dtype.is_complex) self.assertEqual(str(r.device), device) self.assertEqual(r.mean(), 2, atol=0.2, rtol=0) self.assertEqual(r[:, :50].std(), 4, atol=0.3, rtol=0) self.assertEqual(r[:, 50:].std(), 1, atol=0.2, rtol=0) r.fill_(42) r = torch.normal(mean, std) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), atol=0.3, rtol=0) self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), atol=0.2, rtol=0) r.fill_(42) torch.normal(mean, std, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), atol=0.3, rtol=0) self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), atol=0.2, rtol=0) r.fill_(42) r = torch.normal(2, 3, (100, 100), dtype=dtype, device=device) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r).mean(), 2, atol=0.3, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.3, rtol=0) r.fill_(42) torch.normal(2, 3, (100, 100), dtype=dtype, device=device, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r).mean(), 2, atol=0.3, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.3, rtol=0) if dtype.is_complex: helper(self, device, dtype, lambda x: complex(x, x), lambda t: torch.real(t).to(torch.float), lambda mean: mean / math.sqrt(2)) helper(self, device, dtype, lambda x: complex(x, x), lambda t: torch.imag(t).to(torch.float), lambda mean: mean / math.sqrt(2)) self.assertRaisesRegex( RuntimeError, "normal expects standard deviation to be non-complex", lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device))) out = torch.empty(100, 100, dtype=dtype, device=device) self.assertRaisesRegex( RuntimeError, "normal expects standard deviation to be non-complex", lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device), out=out)) else: helper(self, device, dtype, lambda x: x, lambda t: t, lambda mean: mean) @dtypes(torch.float, torch.double, torch.half) @dtypesIfCUDA(torch.float, torch.double, torch.half, torch.bfloat16) def test_uniform_from_to(self, device, dtype): size = 2000 alpha = 0.1 float_min = torch.finfo(torch.float).min float_max = torch.finfo(torch.float).max double_min = torch.finfo(torch.double).min double_max = torch.finfo(torch.double).max if dtype == torch.bfloat16: min_val = -3.389531389251535e+38 max_val = 3.389531389251535e+38 else: min_val = torch.finfo(dtype).min max_val = torch.finfo(dtype).max values = [double_min, float_min, -42, 0, 42, float_max, double_max] for from_ in values: for to_ in values: t = torch.empty(size, dtype=dtype, device=device) if not (min_val <= from_ <= max_val) or not (min_val <= to_ <= max_val): pass elif to_ < from_: self.assertRaisesRegex( RuntimeError, "uniform_ expects to return", lambda: t.uniform_(from_, to_) ) elif to_ - from_ > max_val: self.assertRaisesRegex( RuntimeError, "uniform_ expects to-from", lambda: t.uniform_(from_, to_) ) else: t.uniform_(from_, to_) range_ = to_ - from_ if not (dtype == torch.bfloat16) and not ( dtype == torch.half and device == 'cpu') and not torch.isnan(t).all(): delta = alpha * range_ double_t = t.to(torch.double) if range_ == 0: self.assertTrue(double_t.min() == from_) self.assertTrue(double_t.max() == to_) elif dtype == torch.half: self.assertTrue(from_ <= double_t.min() <= (from_ + delta)) self.assertTrue((to_ - delta) <= double_t.max() <= to_) else: self.assertTrue(from_ <= double_t.min() <= (from_ + delta)) self.assertTrue((to_ - delta) <= double_t.max() < to_) def test_random_neg_values(self, device): SIZE = 10 signed_dtypes = [torch.double, torch.float, torch.long, torch.int, torch.short] for dtype in signed_dtypes: res = torch.rand(SIZE, SIZE).to(device=device, dtype=dtype) res.random_(-10, -1) self.assertLessEqual(res.max().item(), 9) self.assertGreaterEqual(res.min().item(), -10) # TODO: this test should be updated @onlyCPU def test_randint_inference(self, device): size = (2, 1) for args in [(3,), (1, 3)]: # (low,) and (low, high) self.assertIs(torch.int64, torch.randint(*args, size=size).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, layout=torch.strided).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, generator=torch.default_generator).dtype) self.assertIs(torch.float32, torch.randint(*args, size=size, dtype=torch.float32).dtype) out = torch.empty(size, dtype=torch.float32) self.assertIs(torch.float32, torch.randint(*args, size=size, out=out).dtype) self.assertIs(torch.float32, torch.randint(*args, size=size, out=out, dtype=torch.float32).dtype) out = torch.empty(size, dtype=torch.int64) self.assertIs(torch.int64, torch.randint(*args, size=size, out=out).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, out=out, dtype=torch.int64).dtype) # TODO: this test should be updated @onlyCPU def test_randint(self, device): SIZE = 100 def seed(generator): if generator is None: torch.manual_seed(123456) else: generator.manual_seed(123456) return generator for generator in (None, torch.Generator()): generator = seed(generator) res1 = torch.randint(0, 6, (SIZE, SIZE), generator=generator) res2 = torch.empty((), dtype=torch.int64) generator = seed(generator) torch.randint(0, 6, (SIZE, SIZE), generator=generator, out=res2) generator = seed(generator) res3 = torch.randint(6, (SIZE, SIZE), generator=generator) res4 = torch.empty((), dtype=torch.int64) generator = seed(generator) torch.randint(6, (SIZE, SIZE), out=res4, generator=generator) self.assertEqual(res1, res2) self.assertEqual(res1, res3) self.assertEqual(res1, res4) self.assertEqual(res2, res3) self.assertEqual(res2, res4) self.assertEqual(res3, res4) self.assertTrue((res1 < 6).all().item()) self.assertTrue((res1 >= 0).all().item()) @dtypes(torch.half, torch.float, torch.bfloat16, torch.double, torch.complex32, torch.complex64, torch.complex128) def test_randn(self, device, dtype): SIZE = 100 for size in [0, SIZE]: torch.manual_seed(123456) res1 = torch.randn(size, size, dtype=dtype, device=device) res2 = torch.tensor([], dtype=dtype, device=device) torch.manual_seed(123456) torch.randn(size, size, out=res2) self.assertEqual(res1, res2) @dtypes(torch.float, torch.double, torch.complex64, torch.complex128) def test_rand(self, device, dtype): SIZE = 100 for size in [0, SIZE]: torch.manual_seed(123456) res1 = torch.rand(size, size, dtype=dtype, device=device) res2 = torch.tensor([], dtype=dtype, device=device) torch.manual_seed(123456) torch.rand(size, size, out=res2) self.assertEqual(res1, res2) @slowTest def test_randperm(self, device): if device == 'cpu': rng_device = None else: rng_device = [device] # Test core functionality. On CUDA, for small n, randperm is offloaded to CPU instead. For large n, randperm is # executed on GPU. for n in (100, 50000, 100000): # Ensure both integer and floating-point numbers are tested. Half follows an execution path that is # different from others on CUDA. for dtype in (torch.long, torch.half, torch.float): if n > 2049 and dtype == torch.half: # Large n for torch.half will raise an exception, do not test here. continue with torch.random.fork_rng(devices=rng_device): res1 = torch.randperm(n, dtype=dtype, device=device) res2 = torch.empty(0, dtype=dtype, device=device) torch.randperm(n, out=res2, dtype=dtype, device=device) self.assertEqual(res1, res2, atol=0, rtol=0) # Default type is long for n in (100, 10000): self.assertEqual(torch.randperm(n, device=device).dtype, torch.long) # randperm of 0 elements is an empty tensor res1 = torch.randperm(0) res2 = torch.tensor(5, dtype=dtype, device=device) torch.randperm(0, out=res2) self.assertEqual(res1.numel(), 0) self.assertEqual(res2.numel(), 0) # Test exceptions when n is too large for a floating point type for dtype, small_n, large_n in ((torch.half, 2**11 + 1, 2**11 + 2), (torch.float, 2**24 + 1, 2**24 + 2), (torch.double, 2**25, # 2**53 + 1 is too large to run 2**53 + 2)): res = torch.empty(0, dtype=dtype, device=device) torch.randperm(small_n, out=res) # No exception expected self.assertRaises(RuntimeError, lambda: torch.randperm(large_n, out=res, device=device)) # Test non-contiguous tensors for n in (4, 5, 6, 10, 20): non_contiguous_tensor = torch.zeros((2, 3), dtype=torch.long, device=device).t() self.assertFalse(non_contiguous_tensor.is_contiguous()) with torch.random.fork_rng(devices=rng_device): res = torch.randperm(n, dtype=torch.long, device=device) torch.randperm(n, out=non_contiguous_tensor) self.assertEqual(non_contiguous_tensor, res) # Test exceptions when device and generator types are incompatible @onlyCUDA def test_randperm_device_compatibility(self, device): cuda_gen = torch.Generator(device='cuda') cpu_gen = torch.Generator(device='cpu') for n in (0, 3, 100, 30000): regex = 'Expected a .* generator device but found .*' cuda_t = torch.tensor(n, device='cuda') self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cuda', generator=cpu_gen)) self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cuda', generator=cpu_gen, out=cuda_t)) cpu_t = torch.tensor(n, device='cpu') self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cpu', generator=cuda_gen)) self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cpu', generator=cuda_gen, out=cpu_t)) self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, generator=cuda_gen)) # implicitly on CPU # Class for testing *like ops, like torch.ones_like class TestLikeTensorCreation(TestCase): exact_dtype = True # TODO: this test should be updated def test_ones_like(self, device): expected = torch.ones(100, 100, device=device) res1 = torch.ones_like(expected) self.assertEqual(res1, expected) # test boolean tensor expected = torch.tensor([True, True], device=device, dtype=torch.bool) res1 = torch.ones_like(expected) self.assertEqual(res1, expected) # TODO: this test should be updated @onlyCPU def test_empty_like(self, device): x = torch.autograd.Variable(torch.Tensor()) y = torch.autograd.Variable(torch.randn(4, 4)) z = torch.autograd.Variable(torch.IntTensor([1, 2, 3])) for a in (x, y, z): self.assertEqual(torch.empty_like(a).shape, a.shape) self.assertEqualTypeString(torch.empty_like(a), a) def test_zeros_like(self, device): expected = torch.zeros((100, 100,), device=device) res1 = torch.zeros_like(expected) self.assertEqual(res1, expected) @deviceCountAtLeast(2) def test_zeros_like_multiple_device(self, devices): expected = torch.zeros(100, 100, device=devices[0]) x = torch.randn(100, 100, device=devices[1], dtype=torch.float32) output = torch.zeros_like(x) self.assertEqual(output, expected) @deviceCountAtLeast(2) def test_ones_like_multiple_device(self, devices): expected = torch.ones(100, 100, device=devices[0]) x = torch.randn(100, 100, device=devices[1], dtype=torch.float32) output = torch.ones_like(x) self.assertEqual(output, expected) # Full-like precedence is the explicit dtype then the dtype of the "like" # tensor. @onlyOnCPUAndCUDA def test_full_like_inference(self, device): size = (2, 2) like = torch.empty((5,), device=device, dtype=torch.long) self.assertEqual(torch.full_like(like, 1.).dtype, torch.long) self.assertEqual(torch.full_like(like, 1., dtype=torch.complex64).dtype, torch.complex64) instantiate_device_type_tests(TestTensorCreation, globals()) instantiate_device_type_tests(TestRandomTensorCreation, globals()) instantiate_device_type_tests(TestLikeTensorCreation, globals()) if __name__ == '__main__': run_tests()
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
4af06ebfc8fef42f9edfc1ec9452157f468d98fa
7a86aabeae1071c09573dde886d7d31b472cbd35
/intro_to_cs/pycharm/exercise1_sct.py
816ee3843065c66f4ffbb397182600d983e170f2
[]
no_license
kkrugler/codecademy-validator
7453f1f82e6488aecb959af0f9d3a8b05eca2ee2
fe5749cfb12705e0c16f7060111dd4e9b4ffc9ba
refs/heads/master
2021-01-21T21:40:01.819302
2016-05-17T15:43:43
2016-05-17T15:43:43
29,620,988
0
0
null
null
null
null
UTF-8
Python
false
false
8,195
py
import re printed_lines = CC.prints() def check_text(expected, actual, desc, is_describe_expected=True): last_char_desc = None if (type(actual) != str): return '''Your %s is not even a String.''' % desc if (expected[-1] == '.'): last_char_desc = 'period' elif (expected[-1] == '!'): last_char_desc = 'exclamation point' if ( (last_char_desc) and (actual == expected[:-1])): return '''It looks like you forgot the %s at the end of your %s.''' % (last_char_desc, desc) if (actual.find(' ') > 0): return '''Your %s contains two spaces in a row. Check its construction over carefully to avoid this problem.''' % desc if (actual.startswith(' ')): return '''Your %s starts with a space. Check its construction over carefully to avoid this problem.''' % desc if (actual.endswith(' ')): return '''Your %s ends with a space. Check its construction over carefully to avoid this problem.''' % desc case_warning = '' if (actual.lower() == expected.lower()): case_warning = ''' The difference is only a question of uppercase vs. lowercase, so check your text over carefully.''' if (actual == expected): return True # Although the following error message is not always grammatically # correct (since the first sentence doesn't end in a period), # that period was confusing students, who assumed it was part # of the expected string. if (is_describe_expected): return '''Your %s was "%s" instead of "%s"%s''' % (desc, actual, expected, case_warning) return '''Your %s was incorrect.%s''' % (desc, case_warning) def check_prediction(expected, name, line, prediction_pattern, no_match_msg, section=None): actual = globals().get(name) if (not (name in globals())): return '''You seem to have modified the program somehow so that it no longer assigns %s to anything. Click the Reset Code button and start over.''' % name assignment_re = re.compile(r'^([^ \t=]+)[ \t]*=([^=].*)?$') assignment_match = assignment_re.match(line) if ( (assignment_match) and (assignment_match.groups()[0] == name)): prediction_re = re.compile(prediction_pattern) if (not prediction_re.match(line)): return no_match_msg if (type(expected) == str): return check_text(expected, actual, name, False) if (expected != actual): if (section): return '''One of the predictions in your %s set was incorrect.''' % section else: return '''Your %s was not correct.''' % name return True def check_int_prediction(expected, name, line, section=None): no_match_msg = '''You must assign %s to a single Integer literal value. No "re-computing" your prediction!''' % name return check_prediction(expected, name, line, r'^[^ \t=]+[ \t]*=[ \t]*(\+|-)?\d+[ \t]*(#.*)?$', no_match_msg, section) def check_str_prediction(expected, name, line, section=None): no_match_msg = '''You must assign %s to a single String literal value. No "re-computing" your prediction!''' % name return check_prediction(expected, name, line, r'^[^ \t=]+[ \t]*=[ \t]*(\'|")[^+%]+[ \t]*(#.*)?$', no_match_msg, section) if (error): return """You broke the code with your changes so that it is no longer valid Python syntax. The cryptic error message to the right will identify the first line that Python didn't like. You can try to fix the error you introduced, or just click the Reset Code button and start over.""" code_lines = code.splitlines() line_number = 0 for line in code_lines: line_number += 1 result = check_int_prediction(15, 'answer_1', line) if (result != True): return result result = check_int_prediction(0, 'answer_2', line) if (result != True): return result result = check_str_prediction('red', 'answer_3', line) if (result != True): return result result = check_str_prediction('blue', 'answer_4', line) if (result != True): result = check_str_prediction('red', 'answer_4', line) if (result != True): return result result = check_str_prediction('increase', 'answer_5', line) if (result != True): return result result = check_str_prediction('yes', 'answer_6', line) if (result != True): return result result = check_int_prediction(10, 'answer_7', line) if (result != True): return result result = check_str_prediction('num_cats', 'answer_8_name', line) if (result != True): return result result = check_int_prediction(17, 'answer_8_value', line) if (result != True): return result result = check_str_prediction('num_cats', 'answer_9_name', line) if (result != True): return result result = check_int_prediction(18, 'answer_9_value', line) if (result != True): return result result = check_int_prediction(8, 'answer_10', line) if (result != True): return result result = check_str_prediction('yes', 'answer_11', line) if (result != True): return result result = check_str_prediction('increase, game.py:5', 'answer_12', line) if (result != True): return result result = check_int_prediction(8, 'answer_13', line) if (result != True): return result result = check_str_prediction('num_cats', 'answer_14_name', line) if (result != True): return result result = check_int_prediction(20, 'answer_14_value', line) if (result != True): return result result = check_int_prediction(8, 'answer_15', line) if (result != True): return result result = check_int_prediction(9, 'answer_16', line) if (result != True): return result result = check_str_prediction('no', 'answer_17', line) if (result != True): return result result = check_int_prediction(11, 'answer_18', line) if (result != True): return result result = check_str_prediction('4. 1', 'answer_19', line) if (result != True): return result result = check_int_prediction(25, 'answer_20', line) if (result != True): return result return True
[ "Schmed@TransPac.com" ]
Schmed@TransPac.com
b1d924e93f89ee833b35e7cf845dd9470032aca3
4749276f3075c477598eba4be32db32e23226f86
/numpy_and_plt/plt.py
09aa76bb99b53358aec3532b4d8b5083121abbd5
[]
no_license
hangdragon/DNN
1eca7268f72e412cca4624e3236736e3f22d7921
1bc80d067a74168d8eaf452e54eb2f1e97a62036
refs/heads/master
2022-07-31T18:04:47.551383
2020-05-25T13:34:45
2020-05-25T13:34:45
266,782,474
0
0
null
null
null
null
UTF-8
Python
false
false
16,173
py
# -*- coding : utf - 8 -*- import tensorflow as tf import numpy as np class Perceptron_tf : def architecture(self): ########## layer의 갯수(layer_number)입력 ########### self.number_of_layers = int(input('원하시는 레이어의 갯수를 입력하세요(1이상인 정수입니다!) : ')) self.number_of_nodes = [[] for i in range(self.number_of_layers + 1)] # SLP이면 x,y , DLP이면 x,h1,y,,,의 노드 갯수를 담으려고 만든 리스트. # x,h1,y에서 x는 트레이닝 데이터의 노드들 갯수. h1는 hidden layer1에 대한 노드들 갯수. y는 출력 데이터 노드들 갯수를 의미한다. # number_of_nodes라는 리스트 안에는 각 단계별 노드 갯수인 '스칼라'값이 들어간다. number_of_nodes의 길이는 number_of_layers의 +1! ########## 히든 레이어 갯수 및 입력,출력,히든 레이어 각각의 노드 갯수들 초기화 ############ if self.number_of_layers == 1: print('{}를 선택하셨습니다.\n트레이닝 데이터, 출력 데이터 노드의 갯수를 각각 입력하세요.'.format('SLP')) for i in range(len(self.number_of_nodes)): if i == 0: self.number_of_nodes[i] = int(input('$트레이닝 데이터 노드 갯수 >>>'))-1 elif i == self.number_of_layers: self.number_of_nodes[i] = int(input('$출력 데이터 노드 갯수 >>>')) elif self.number_of_layers == 2: print('{}를 선택하셨습니다.\n트레이닝 데이터, 히든 레이어 노드, 출력 데이터 노드의 갯수를 각각 입력하세요.'.format('DLP')) for i in range(len(self.number_of_nodes)): if i == 0: self.number_of_nodes[i] = int(input('$트레이닝 데이터 노드 갯수 >>>'))-1 elif i == self.number_of_layers: self.number_of_nodes[i] = int(input('$출력 데이터 노드 갯수 >>>')) else: self.number_of_nodes[i] = int(input('$히든 레이어 노드 갯수 >>>'))-1 else: print('히든 레이어가 {}개인 {}를 선택하셨습니다.'.format(self.number_of_layers - 1, 'MLP')) print('\n트레이닝 데이터, 히든 레이어들의 노드, 출력 데이터 노드의 갯수를 각각 입력하세요.') for i in range(len(self.number_of_nodes)): if i == 0: self.number_of_nodes[i] = int(input('$트레이닝 데이터 노드 갯수 >>>'))-1 elif i == self.number_of_layers: self.number_of_nodes[i] = int(input('$출력 데이터 노드 갯수 >>>')) else: self.number_of_nodes[i] = int(input(f'$히든 레이어{i}의 노드 갯수 >>>'))-1 print(f'\n노드 갯수들은 다음과 같습니다 {self.number_of_nodes}') ############트레이닝 데이터의 갯수 입력############# self.number_of_training_data = int(input('\n원하시는 트레이닝 데이터의 갯수를 입력하세요 : ')) # ex) (0,0),(0,1),(1,0),(1,1)이면 n = 4 def __init__(self): # 생성자는 멤버 변수들의 선언 및 아키텍처 단계를 수행한다. self.number_of_layers = 0 # layer 갯수 self.number_of_nodes = [] # 선택한 아키텍처에 대한 레이어별 노드 갯수들 self.number_of_training_data = 0 # training data 갯수이자 label 갯수 self.architecture() # architecture 멤버 함수를 실행하여 위의 세개의 변수 값을 초기화! self.number_of_input_node = self.number_of_nodes[0] self.number_of_output_node = self.number_of_nodes[-1] self.t_data = np.zeros((self.number_of_training_data, self.number_of_input_node)) # 입력 트레이닝 데이터 self.x_ = tf.placeholder(tf.float32,[None,self.number_of_input_node],name = 't_data') self.label = np.zeros((self.number_of_training_data, self.number_of_output_node)) # 출력 트레이닝 데이터(레이블들) self.y_ = tf.placeholder(tf.float32, [None, self.number_of_output_node], name='label') self.weight_for_layers = [[] for i in range(self.number_of_layers)] # 전체 레이어의 갯수만큼 각각에 해당하는 웨이트 벡터들을 담을 리스트 self.bias_for_layers = [[] for i in range(self.number_of_layers)] # 전체 레이어의 갯수만큼 각각에 해당하는 바이어스들을 담을 리스트 self.y_est_for_layers = [[] for i in range(self.number_of_layers)] # 전체 레이어의 갯수만큼 각각에 해당하는 y 벡터들을 담을 리스트 self.y_est_final = [] self.cost = 0 # 최종 에러함수(비용함수) ###########learning rate 입력############ self.lr = float(input('\n원하시는 learning rate를 입력해주세요 : ')) self.select_ftn = None def initialize(self): ########## 트레이닝 데이터들 (x벡터들) 입력 ############ print('\n트레이닝 데이터를 하나씩 입력하세요. (입력 예시 : (0,0)이면 >>>0 0)\n') for i in range(self.number_of_training_data): self.t_data[i] = list(map(float, input(f'요소의 갯수가 {self.number_of_input_node}개인 {(i + 1)}번째 트레이닝 데이터 입력 >>').strip().split())) self.t_data = np.array(self.t_data,dtype=np.float32) #self.x_ = tf.placeholder(tf.float32,[None,self.number_of_input_node],name = 't_data') ########## 레이블들 (y벡터들) 입력 ############ print('\n라벨들을 하나씩 입력하세요. (입력 예시 : (1,2)이면 >>>1 2)\n') for j in range(self.number_of_training_data): self.label[j] = list(map(float, input(f'요소의 갯수가 {self.number_of_output_node}인 {(j + 1)}번째 레이블 입력 >>').strip().split())) self.label = np.array(self.label, dtype=np.float32) #self.y_ = tf.placeholder(tf.float32, [None, self.number_of_output_node], name='label') ########### activation ftn을 sigmoid로 할지 relu로 할지 결정하는 곳 ########### print('\nweight vector들을 초기화 하기전에 먼저 activation ftn를 뭘로할지 선탁해야합니다.') self.select_ftn = input('activation ftn을 선택하세요.\nex) sigmoid를 쓰고싶다면 sigmoid, relu를 쓰고싶다면 relu, leaky_relu를 쓰고싶다면 leaky_relu.\n\n>>>') if self.select_ftn == 'sigmoid': ########## sigmoid-> 웨이트벡터들(w벡터들)을 가우시안으로 초기화 ############ for iter in range(len(self.weight_for_layers)): print('#######{}번째 layer의 weight 초기화#######'.format(iter + 1)) # 각 뉴런마다의 웨이트벡터를 초기화 해주기 위함 print(f'\n제 {iter + 1}번째 뉴런의 웨이트 벡터의 요소의 갯수는 {self.number_of_nodes[iter] * self.number_of_nodes[iter + 1]}개 입니다.') print(f'{iter + 1}번째 뉴런의 웨이트 벡터들을 가우시안 분포를 사용한 Xavier방법으로 초기화 하겠습니다.') self.weight_for_layers[iter] = tf.Variable(tf.random_normal((self.number_of_nodes[iter], self.number_of_nodes[iter + 1]),0,np.sqrt(2/((self.number_of_nodes[iter]+self.number_of_nodes[iter + 1]))))) self.bias_for_layers[iter] = tf.Variable(tf.random_normal([self.number_of_nodes[iter + 1]], 0, np.sqrt(2 / ((self.number_of_nodes[iter] + self.number_of_nodes[iter + 1]))))) if iter == 0 : self.y_est_for_layers[0] = tf.nn.sigmoid(tf.matmul(self.x_, self.weight_for_layers[0]) + self.bias_for_layers[0]) else: self.y_est_for_layers[iter] = tf.nn.sigmoid(tf.matmul(self.y_est_for_layers[iter-1], self.weight_for_layers[iter]) + self.bias_for_layers[iter]) elif self.select_ftn == 'relu': ########## relu-> 웨이트벡터들(w벡터들)을 He Initialization으로 초기화 ############ for iter in range(len(self.weight_for_layers)): print('#######{}번째 layer의 weight 초기화#######'.format(iter + 1)) # 각 뉴런마다의 웨이트벡터를 초기화 해주기 위함 print(f'\n제 {iter + 1}번째 뉴런의 웨이트 벡터의 요소의 갯수는 {self.number_of_nodes[iter] * self.number_of_nodes[iter + 1]}개 입니다.') print(f'{iter + 1}번째 뉴런의 웨이트 벡터들을 He Initialization으로 초기화 하겠습니다.') self.weight_for_layers[iter] = tf.Variable(tf.random_normal((self.number_of_nodes[iter], self.number_of_nodes[iter + 1]),0,np.sqrt(2/self.number_of_nodes[iter]))) self.bias_for_layers[iter] = tf.Variable(tf.random_normal([self.number_of_nodes[iter + 1]], 0, np.sqrt(2 / self.number_of_nodes[iter]))) if iter == 0 : self.y_est_for_layers[0] = tf.nn.relu(tf.matmul(self.x_, self.weight_for_layers[0]) + self.bias_for_layers[0]) elif iter == self.number_of_layers-1 : #마지막 뉴런에서는 늘 sigmoid로 해주기 위함 self.y_est_for_layers[iter] = tf.sigmoid(tf.matmul(self.y_est_for_layers[iter - 1], self.weight_for_layers[iter]) + self.bias_for_layers[iter]) else: self.y_est_for_layers[iter] = tf.nn.relu(tf.matmul(self.y_est_for_layers[iter-1], self.weight_for_layers[iter]) + self.bias_for_layers[iter]) elif self.select_ftn == 'leaky_relu': ########## relu-> 웨이트벡터들(w벡터들)을 He Initialization으로 초기화 ############ for iter in range(len(self.weight_for_layers)): print('#######{}번째 layer의 weight 초기화#######'.format(iter + 1)) # 각 뉴런마다의 웨이트벡터를 초기화 해주기 위함 print(f'\n제 {iter + 1}번째 뉴런의 웨이트 벡터의 요소의 갯수는 {self.number_of_nodes[iter] * self.number_of_nodes[iter + 1]}개 입니다.') print(f'{iter + 1}번째 뉴런의 웨이트 벡터들을 He Initialization으로 초기화 하겠습니다.') self.weight_for_layers[iter] = tf.Variable(tf.random_normal((self.number_of_nodes[iter], self.number_of_nodes[iter + 1]),0, np.sqrt(2 / self.number_of_nodes[iter]))) self.bias_for_layers[iter] = tf.Variable(tf.random_normal([self.number_of_nodes[iter + 1]], 0, np.sqrt(2 / self.number_of_nodes[iter]))) if iter == 0 : self.y_est_for_layers[0] = tf.nn.leaky_relu(tf.matmul(self.x_, self.weight_for_layers[0]) + self.bias_for_layers[0],0.0001) elif iter == self.number_of_layers-1 : #마지막 뉴런에서는 늘 sigmoid로 해주기 위함 self.y_est_for_layers[iter] = tf.sigmoid(tf.matmul(self.y_est_for_layers[iter - 1], self.weight_for_layers[iter]) + self.bias_for_layers[iter]) else: self.y_est_for_layers[iter] = tf.nn.leaky_relu(tf.matmul(self.y_est_for_layers[iter-1], self.weight_for_layers[iter]) + self.bias_for_layers[iter],0.0001) self.y_est_final = self.y_est_for_layers[-1] self.cost = tf.reduce_sum(((self.y_ - self.y_est_final) ** 2)) def feed_forward_and_gradient_back_propagation(self,loop_number=20000) : train = tf.train.GradientDescentOptimizer(learning_rate=self.lr).minimize(self.cost) predicted = tf.cast(self.y_est_final > 0.5, dtype=tf.float32) accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, self.y_), dtype=tf.float32)) # ================================================= with tf.Session() as sess: #이 블럭 안에서만 세션이 유효하다. 이 블럭 나가게되면 세션값들의 데이터엔 접근할 수 없다. sess.run(tf.global_variables_initializer()) for step in range(loop_number): sess.run(train, feed_dict={self.x_: self.t_data, self.y_: self.label}) if step % 100 == 0: print(step, sess.run(self.cost, feed_dict={self.x_: self.t_data, self.y_: self.label}), sess.run(self.weight_for_layers)) h, c, a = sess.run([self.y_, predicted, accuracy], feed_dict={self.x_: self.t_data, self.y_: self.label}) print("\nHypothesis: ", h, "\nCorrect: ", c, "\nAccuracy: ", a) print(sess.run(self.weight_for_layers), sess.run(self.bias_for_layers)) # 여기 위에선 W와 b에 무엇을 넣어준다 이런것도 없다. 근데 업데이트(학습)이 될수 있었던 이유는 train세션의 cost부분에서 W와 b를 알아서 찾아내어서 학습을 시킴. self.weight_for_layers = sess.run(self.weight_for_layers) #세션 종료전에 self.weight를 세선 런한 값으로 초기화 해줘야함. 이거 안해주면 학습 전의 이상한 웨이트가 들어가버림 self.bias_for_layers = sess.run(self.bias_for_layers) #바이어스도 마찬가지! def testing(self): sigma = float(input('가우시안 노이즈의 표준편차를 입력해주세요(0을 입력하면 binary 분포를 따릅니다) : ')) test_x = np.zeros((1, self.number_of_input_node)) # 입력 트레이닝 데이터 for i in range(len(test_x[0])): test_x[0][i] = np.random.randint(2) + np.random.normal(0,sigma)# 0 또는 1에 대해 equivalent하게 할당.(binary) # 한편, 입력받은 표준편차를 바탕으로 평균이 0 이고 분산이 sigma^2인 가우시안 확률변수를 더해줬음. test_x = np.array(test_x,dtype=np.float32) ####### 수렴된 w벡터들을 가지고 퍼셉트론안에서 계속 절차를 돌린 후, y_test값을 얻어내면 끝! ####### if self.select_ftn == 'sigmoid': ########## sigmoid-> 웨이트벡터들(w벡터들)을 가우시안으로 초기화 ############ for iter in range(len(self.weight_for_layers)): if iter == 0 : self.y_est_for_layers[0] = tf.nn.sigmoid(tf.matmul(test_x, self.weight_for_layers[0]) + self.bias_for_layers[0]) else: self.y_est_for_layers[iter] = tf.nn.sigmoid(tf.matmul(self.y_est_for_layers[iter-1], self.weight_for_layers[iter]) + self.bias_for_layers[iter]) elif self.select_ftn == 'relu': ########## relu-> 웨이트벡터들(w벡터들)을 He Initialization으로 초기화 ############ for iter in range(len(self.weight_for_layers)): if iter == 0 : self.y_est_for_layers[0] = tf.nn.relu(tf.matmul(test_x, self.weight_for_layers[0]) + self.bias_for_layers[0]) else: self.y_est_for_layers[iter] = tf.nn.relu(tf.matmul(self.y_est_for_layers[iter-1], self.weight_for_layers[iter]) + self.bias_for_layers[iter]) elif self.select_ftn == 'leaky_relu': ########## relu-> 웨이트벡터들(w벡터들)을 He Initialization으로 초기화 ############ for iter in range(len(self.weight_for_layers)): if iter == 0 : self.y_est_for_layers[0] = tf.nn.leaky_relu(tf.matmul(test_x, self.weight_for_layers[0]) + self.bias_for_layers[0]) else: self.y_est_for_layers[iter] = tf.nn.leaky_relu(tf.matmul(self.y_est_for_layers[iter-1], self.weight_for_layers[iter]) + self.bias_for_layers[iter]) self.y_est_final = self.y_est_for_layers[-1] predicted = tf.cast(self.y_est_final > 0.5, dtype=tf.float32) self.cost = tf.reduce_sum(((self.y_ - self.y_est_final) ** 2)) sess = tf.Session() sess.run(tf.global_variables_initializer()) print(f'test데이터 {test_x}를 넣었을때 추정값 y는 {sess.run(predicted,feed_dict={self.x_:test_x})}') perceptron = Perceptron_tf() perceptron.initialize() perceptron.feed_forward_and_gradient_back_propagation() perceptron.testing()
[ "hanjiyong@HANui-MacBookPro.local" ]
hanjiyong@HANui-MacBookPro.local
53f90f9fd678ba7dd9efc74fe19bb7a39c50362f
1fe113a1521d65b5067956437219aade3f5954d3
/expressivity/midiio/RawInstreamFile.py
f9c40e1578a690fbf47bbe9a6dfe25348b80d7c3
[]
no_license
bjvanderweij/expressivity
b7c00b935da88d51cb3532e960e93b2c9d455976
579108611d9f7201b5047444f6bd7973bee302a2
refs/heads/master
2016-09-10T19:43:50.299929
2015-04-05T20:41:11
2015-04-05T20:41:11
1,846,634
0
0
null
null
null
null
UTF-8
Python
false
false
2,908
py
# -*- coding: ISO-8859-1 -*- # standard library imports from struct import unpack # custom import from midiio.DataTypeConverters import readBew, readVar, varLen class RawInstreamFile: """ It parses and reads data from an input file. It takes care of big endianess, and keeps track of the cursor position. The midi parser only reads from this object. Never directly from the file. """ def __init__(self, infile=''): """ If 'file' is a string we assume it is a path and read from that file. If it is a file descriptor we read from the file, but we don't close it. Midi files are usually pretty small, so it should be safe to copy them into memory. """ if infile: if isinstance(infile, str): infile = open(infile, 'rb') self.data = infile.read() infile.close() else: # don't close the f self.data = infile.read() else: self.data = '' # start at beginning ;-) self.cursor = 0 # setting up data manually def setData(self, data=''): "Sets the data from a string." self.data = data # cursor operations def setCursor(self, position=0): "Sets the absolute position if the cursor" self.cursor = position def getCursor(self): "Returns the value of the cursor" return self.cursor def moveCursor(self, relative_position=0): "Moves the cursor to a new relative position" self.cursor += relative_position # native data reading functions def nextSlice(self, length, move_cursor=1): "Reads the next text slice from the raw data, with length" c = self.cursor slc = self.data[c:c+length] if move_cursor: self.moveCursor(length) return slc def readBew(self, n_bytes=1, move_cursor=1): """ Reads n bytes of date from the current cursor position. Moves cursor if move_cursor is true """ return readBew(self.nextSlice(n_bytes, move_cursor)) def readVarLen(self): """ Reads a variable length value from the current cursor position. Moves cursor if move_cursor is true """ MAX_VARLEN = 4 # Max value varlen can be var = readVar(self.nextSlice(MAX_VARLEN, 0)) # only move cursor the actual bytes in varlen self.moveCursor(varLen(var)) return var if __name__ == '__main__': test_file = 'test/midifiles/minimal.mid' fis = RawInstreamFile(test_file) print(fis.nextSlice(len(fis.data))) test_file = 'test/midifiles/cubase-minimal.mid' cubase_minimal = open(test_file, 'rb') fis2 = RawInstreamFile(cubase_minimal) print(fis2.nextSlice(len(fis2.data))) cubase_minimal.close()
[ "bjvanderweij@gmail.com" ]
bjvanderweij@gmail.com
12647e19ddbcc77e4aa3c3ad0e1ebd5240dfb434
299ffd64164158ee111a250884c3788cc2ffd983
/backend/zoom_24987/settings.py
bd6f2b9ba71e741b359d63319c516d67959dedc4
[]
no_license
crowdbotics-apps/zoom-24987
eaebe40b8bfc363750075f69946c94c32250a618
fcefda700a3dcae95410edf518e17ebacf51f69a
refs/heads/master
2023-03-21T00:50:54.786881
2021-03-12T01:53:33
2021-03-12T01:53:33
346,899,137
0
0
null
null
null
null
UTF-8
Python
false
false
7,096
py
""" Django settings for zoom_24987 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ import logging env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'modules', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', 'storages', # start fcm_django push notifications 'fcm_django', # end fcm_django push notifications ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'zoom_24987.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'web_build')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'zoom_24987.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static'), os.path.join(BASE_DIR, 'web_build/static')] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "optional" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # AWS S3 config AWS_ACCESS_KEY_ID = env.str("AWS_ACCESS_KEY_ID", "") AWS_SECRET_ACCESS_KEY = env.str("AWS_SECRET_ACCESS_KEY", "") AWS_STORAGE_BUCKET_NAME = env.str("AWS_STORAGE_BUCKET_NAME", "") AWS_STORAGE_REGION = env.str("AWS_STORAGE_REGION", "") USE_S3 = ( AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY and AWS_STORAGE_BUCKET_NAME and AWS_STORAGE_REGION ) if USE_S3: AWS_S3_CUSTOM_DOMAIN = env.str("AWS_S3_CUSTOM_DOMAIN", "") AWS_S3_OBJECT_PARAMETERS = {"CacheControl": "max-age=86400"} AWS_DEFAULT_ACL = env.str("AWS_DEFAULT_ACL", "public-read") AWS_MEDIA_LOCATION = env.str("AWS_MEDIA_LOCATION", "media") AWS_AUTO_CREATE_BUCKET = env.bool("AWS_AUTO_CREATE_BUCKET", True) DEFAULT_FILE_STORAGE = env.str( "DEFAULT_FILE_STORAGE", "home.storage_backends.MediaStorage" ) MEDIA_URL = '/mediafiles/' MEDIA_ROOT = os.path.join(BASE_DIR, 'mediafiles') # start fcm_django push notifications FCM_DJANGO_SETTINGS = { "FCM_SERVER_KEY": env.str("FCM_SERVER_KEY", "") } # end fcm_django push notifications # Swagger settings for api docs SWAGGER_SETTINGS = { "DEFAULT_INFO": f"{ROOT_URLCONF}.api_info", } if DEBUG or not (EMAIL_HOST_USER and EMAIL_HOST_PASSWORD): # output email to console instead of sending if not DEBUG: logging.warning("You should setup `SENDGRID_USERNAME` and `SENDGRID_PASSWORD` env vars to send emails.") EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
[ "team@crowdbotics.com" ]
team@crowdbotics.com
708723aa3ef6416f3039260ae36ae594d3543ed8
d64cf6fbb39ddc42a0dd7c73fb970eca458c584d
/system/indy-node-tests/TestAdHocSuite.py
08d89d2443e91fc9002bea83d3d447bc7285601d
[ "Apache-2.0" ]
permissive
AYCH-Inc/aych.hyperindy.autest
81173b28314ff9e6e74adaea6c60f961e002c858
8486267e45c362a28843e64634c6a5f0ea0edb9e
refs/heads/master
2021-04-09T23:27:22.308251
2020-02-17T12:49:29
2020-02-17T12:49:29
248,891,962
0
0
null
null
null
null
UTF-8
Python
false
false
13,680
py
import pytest from system.utils import * import docker from random import choice @pytest.mark.usefixtures('docker_setup_and_teardown') @pytest.mark.usefixtures('check_no_failures_fixture') class TestAdHocSuite: @pytest.mark.nodes_num(4) @pytest.mark.asyncio # staging net issue (INDY-2233) async def test_rotate_bls_and_get_txn( self, pool_handler, wallet_handler, get_default_trustee, nodes_num ): docker_client = docker.from_env() trustee_did, _ = get_default_trustee steward_did, steward_vk = await did.create_and_store_my_did( wallet_handler, json.dumps({'seed': '000000000000000000000000Steward4'}) ) await ensure_pool_performs_write_read(pool_handler, wallet_handler, trustee_did, nyms_count=3) for i in range(10): # rotate bls keys for Node4 res1 = docker_client.containers.list( filters={'name': 'node4'} )[0].exec_run( ['init_bls_keys', '--name', 'Node4'], user='indy' ) bls_key, bls_key_pop = res1.output.decode().splitlines() bls_key, bls_key_pop = bls_key.split()[-1], bls_key_pop.split()[-1] data = json.dumps( { 'alias': 'Node4', 'blskey': bls_key, 'blskey_pop': bls_key_pop } ) req = await ledger.build_node_request(steward_did, '4PS3EDQ3dW1tci1Bp6543CfuuebjFrg36kLAUcskGfaA', data) res2 = json.loads( await ledger.sign_and_submit_request(pool_handler, wallet_handler, steward_did, req) ) assert res2['op'] == 'REPLY' # write txn await ensure_pool_performs_write_read(pool_handler, wallet_handler, trustee_did) # get txn req = await ledger.build_get_txn_request(None, 'DOMAIN', 10) res3 = json.loads(await ledger.submit_request(pool_handler, req)) assert res3['result']['seqNo'] is not None # check that pool is ok await ensure_all_nodes_online(pool_handler, wallet_handler, trustee_did) await ensure_ledgers_are_in_sync(pool_handler, wallet_handler, trustee_did) await ensure_state_root_hashes_are_in_sync(pool_handler, wallet_handler, trustee_did) @pytest.mark.asyncio # SN-7 async def test_drop_states( self, payment_init, pool_handler, wallet_handler, get_default_trustee, initial_token_minting, initial_fees_setting ): libsovtoken_payment_method = 'sov' trustee_did, _ = get_default_trustee address2 = await payment.create_payment_address(wallet_handler, libsovtoken_payment_method, '{}') # mint tokens address = initial_token_minting # set fees print(initial_fees_setting) # set auth rule for schema req = await ledger.build_auth_rule_request(trustee_did, '101', 'ADD', '*', None, '*', json.dumps( { 'constraint_id': 'OR', 'auth_constraints': [ { 'constraint_id': 'ROLE', 'role': '0', 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {'fees': 'add_schema_250'} }, { 'constraint_id': 'ROLE', 'role': '2', 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {'fees': 'add_schema_250'} }, { 'constraint_id': 'ROLE', 'role': '101', 'sig_count': 1, 'need_to_be_owner': False, 'metadata': {'fees': 'add_schema_250'} } ] } ) ) res1 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res1) assert res1['op'] == 'REPLY' # write schema with fees source1, _ = await get_payment_sources(pool_handler, wallet_handler, address) schema_id, schema_json = await anoncreds.issuer_create_schema( trustee_did, random_string(5), '1.0', json.dumps(['name', 'age']) ) req = await ledger.build_schema_request(trustee_did, schema_json) req_with_fees_json, _ = await payment.add_request_fees( wallet_handler, trustee_did, req, json.dumps([source1]), json.dumps( [{'recipient': address, 'amount': 750 * 100000}] ), None ) res2 = json.loads( await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req_with_fees_json) ) print(res2) assert res2['op'] == 'REPLY' # send payment source2, _ = await get_payment_sources(pool_handler, wallet_handler, address) req, _ = await payment.build_payment_req( wallet_handler, trustee_did, json.dumps([source2]), json.dumps( [{"recipient": address2, "amount": 500 * 100000}, {"recipient": address, "amount": 250 * 100000}] ), None ) res3 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) print(res3) assert res3['op'] == 'REPLY' # stop Node7 -> drop token state -> start Node7 node7 = NodeHost(7) node7.stop_service() time.sleep(3) for _ledger in ['pool', 'domain', 'config', 'sovtoken']: print(node7.run('rm -rf /var/lib/indy/sandbox/data/Node7/{}_state'.format(_ledger))) time.sleep(3) node7.start_service() # check that pool is ok await ensure_all_nodes_online(pool_handler, wallet_handler, trustee_did) await ensure_ledgers_are_in_sync(pool_handler, wallet_handler, trustee_did) await ensure_state_root_hashes_are_in_sync(pool_handler, wallet_handler, trustee_did) # write some txns await ensure_pool_performs_write_read(pool_handler, wallet_handler, trustee_did, nyms_count=10) # send another payment source3, _ = await get_payment_sources(pool_handler, wallet_handler, address) req, _ = await payment.build_payment_req( wallet_handler, trustee_did, json.dumps([source3]), json.dumps( [{"recipient": address2, "amount": 125 * 100000}, {"recipient": address, "amount": 125 * 100000}] ), None ) res4 = json.loads(await ledger.sign_and_submit_request(pool_handler, wallet_handler, trustee_did, req)) assert res4['op'] == 'REPLY' # check again that pool is ok await ensure_all_nodes_online(pool_handler, wallet_handler, trustee_did) await ensure_ledgers_are_in_sync(pool_handler, wallet_handler, trustee_did) await ensure_state_root_hashes_are_in_sync(pool_handler, wallet_handler, trustee_did) @pytest.mark.parametrize( 'demote_count, promote_count', [ (1, 5), (100, 5), (100, 1) ] ) @pytest.mark.asyncio async def test_misc_redundant_demotions_promotions( self, pool_handler, wallet_handler, get_default_trustee, payment_init, initial_token_minting, nodes_num, demote_count, promote_count ): trustee_did, _ = get_default_trustee pool_info = get_pool_info('1') node_list = ['Node{}'.format(x) for x in range(1, nodes_num + 1)] address = initial_token_minting fees = await fees_setter(pool_handler, wallet_handler, trustee_did, 'sov') # find primary primary, primary_alias, primary_did = await get_primary(pool_handler, wallet_handler, trustee_did) # select random node node_to_demote = choice(node_list) # demote it demote_tasks = [] for i in range(demote_count): task = demote_node(pool_handler, wallet_handler, trustee_did, node_to_demote, pool_info[node_to_demote]) demote_tasks.append(task) await asyncio.gather(*demote_tasks, return_exceptions=True) await pool.refresh_pool_ledger(pool_handler) # make sure VC is done new_primary = await ensure_primary_changed(pool_handler, wallet_handler, trustee_did, primary) new_primary_name = 'Node{}'.format(new_primary) # demote new primary demote_tasks = [] for i in range(demote_count): task = demote_node( pool_handler, wallet_handler, trustee_did, new_primary_name, pool_info[new_primary_name] ) demote_tasks.append(task) await asyncio.gather(*demote_tasks, return_exceptions=True) await pool.refresh_pool_ledger(pool_handler) # make sure VC is done super_new_primary = await ensure_primary_changed(pool_handler, wallet_handler, trustee_did, new_primary) # write txn with fees req = await ledger.build_attrib_request(trustee_did, trustee_did, None, None, random_string(256)) await add_fees_and_send_request(pool_handler, wallet_handler, trustee_did, address, req, fees['attrib']) # promote both nodes back simultaneously promote_tasks = [] for i in range(promote_count): task1 = promote_node(pool_handler, wallet_handler, trustee_did, node_to_demote, pool_info[node_to_demote]) promote_tasks.append(task1) task2 = promote_node( pool_handler, wallet_handler, trustee_did, new_primary_name, pool_info[new_primary_name] ) promote_tasks.append(task2) await asyncio.gather(*promote_tasks, return_exceptions=True) await pool.refresh_pool_ledger(pool_handler) # make sure VC is done await ensure_primary_changed(pool_handler, wallet_handler, trustee_did, super_new_primary) await ensure_pool_is_functional(pool_handler, wallet_handler, trustee_did, nyms_count=10) await ensure_pool_is_okay(pool_handler, wallet_handler, trustee_did) @pytest.mark.parametrize( 'iterations, nyms_count', [ (1, 10), (5, 10), (5, 1) ] ) @pytest.mark.asyncio async def test_misc_cyclic_demotions_promotions( self, pool_handler, wallet_handler, get_default_trustee, payment_init, initial_token_minting, nodes_num, iterations, nyms_count ): trustee_did, _ = get_default_trustee pool_info = get_pool_info('1') node_list = ['Node{}'.format(x) for x in range(1, nodes_num + 1)] address = initial_token_minting fees = await fees_setter(pool_handler, wallet_handler, trustee_did, 'sov') for _ in range(iterations): # find primary primary, primary_alias, primary_did = await get_primary(pool_handler, wallet_handler, trustee_did) # select random node node_to_demote = choice(node_list) # demote it await demote_node(pool_handler, wallet_handler, trustee_did, node_to_demote, pool_info[node_to_demote]) await pool.refresh_pool_ledger(pool_handler) # make sure VC is done new_primary = await ensure_primary_changed(pool_handler, wallet_handler, trustee_did, primary) # make sure pool works await ensure_pool_is_functional(pool_handler, wallet_handler, trustee_did, nyms_count=nyms_count) # write txn with fees req = await ledger.build_attrib_request(trustee_did, trustee_did, None, None, random_string(256)) await add_fees_and_send_request(pool_handler, wallet_handler, trustee_did, address, req, fees['attrib']) # promote node back await promote_node(pool_handler, wallet_handler, trustee_did, node_to_demote, pool_info[node_to_demote]) await pool.refresh_pool_ledger(pool_handler) # make sure VC is done await ensure_primary_changed(pool_handler, wallet_handler, trustee_did, new_primary) # make sure pool works await ensure_pool_is_functional(pool_handler, wallet_handler, trustee_did, nyms_count=nyms_count) await ensure_pool_is_okay(pool_handler, wallet_handler, trustee_did)
[ "vladimir.shishkin@dsr-corporation.com" ]
vladimir.shishkin@dsr-corporation.com
8bf7f50220f7b1f42f0f502c85f94c86400cf9ff
dd04c22836edefe77eeeaedc92662f09fc66c09c
/examples/indicators/moving_averages/indicators_ema.py
5026aa9e5c6ff4ebb42b3b5090945de3300e86db
[ "MIT" ]
permissive
MyBourse/trading-technical-indicators
0d7e3e86a274f3ed50290072e2d716416a8d485d
908e93018b3aa8ba9bee099ce9f1813ea64c6d72
refs/heads/master
2022-04-14T13:27:01.261453
2020-02-09T12:31:07
2020-02-09T12:31:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,540
py
''' File name: indicators_ema.py Example code rlated to the tradingti.indicator package. EMA Trading Indicator. Author: Vasileios Saveris enail: vsaveris@gmail.com License: MIT Date last modified: 26.01.2020 Python Version: 3.6 ''' import pandas as pd from tradingti.indicators import EMA # Future Warning matplotlib from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() # Read data from csv file. Set the index to the correct column (dates column) df = pd.read_csv('../data/sample_data.csv', parse_dates = True, index_col = 0) # Calculate the EMA indicator ema = EMA(df[df.index >= '2011-01-01'], span_periods = [200]) # Save the plot of the calculated Technical Indicator ema.getTiPlot().savefig('../figures/indicators_ema_200_example.png') print('- Graph ../figures/indicators_ema_200_example.png saved.') # Calculate the EMA indicator for the default span periods (short term ema = 26, # long term ema = 200) ema = EMA(df[df.index >= '2011-01-01']) # Save the plot of the calculated Technical Indicator ema.getTiPlot().savefig('../figures/indicators_ema_50_200_example.png') print('- Graph ../figures/indicators_ema_50_200_example.png saved.') # Get EMA calculated data print('\nEMA data:\n', ema.getTiData()) # Get EMA value for a specific date print('\nEMA value at 2012-09-06:', ema.getTiValue('2012-09-06')) # Get the most recent EMA value print('\nEMA value at', df.index[0], ':', ema.getTiValue()) # Get signal from EMA print('\nSignal:', ema.getSignal())
[ "vsaveris@gmail.com" ]
vsaveris@gmail.com
3737ae2448b4558433d4e71caef1f5ebcd5b024c
c8b819d5e728e30d4d796a5c6821421e01529302
/djProject/apps/tasks/migrations/0004_auto__add_comment.py
06648e54504d10f9f6aa913ad137b245ad927135
[ "BSD-3-Clause" ]
permissive
devsar/djProject
729e42ab8799ec648810eb7151c08cf4102efbbd
503fb9dd06c304f0450977bf4bac87d238b71626
refs/heads/master
2020-05-20T06:41:33.500733
2011-08-01T02:08:32
2011-08-01T02:08:32
1,985,397
1
0
null
null
null
null
UTF-8
Python
false
false
8,233
py
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Comment' db.create_table('tasks_comment', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('task', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['tasks.Task'])), ('user', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'])), ('comment', self.gf('django.db.models.fields.TextField')()), ('created', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), )) db.send_create_signal('tasks', ['Comment']) def backwards(self, orm): # Deleting model 'Comment' db.delete_table('tasks_comment') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'projects.project': { 'Meta': {'object_name': 'Project'}, 'creator': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'feed': ('django.db.models.fields.URLField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'since': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'max_length': '12'}) }, 'sprints.sprint': { 'Meta': {'object_name': 'Sprint'}, 'end_date': ('django.db.models.fields.DateField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['projects.Project']"}), 'start_date': ('django.db.models.fields.DateField', [], {}), 'status': ('django.db.models.fields.CharField', [], {'max_length': '12'}) }, 'tasks.comment': { 'Meta': {'object_name': 'Comment'}, 'comment': ('django.db.models.fields.TextField', [], {}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'task': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tasks.Task']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'tasks.log': { 'Meta': {'object_name': 'Log'}, 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'task': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tasks.Task']"}) }, 'tasks.tag': { 'Meta': {'object_name': 'Tag'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'task': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tasks.Task']"}) }, 'tasks.task': { 'Meta': {'object_name': 'Task'}, 'description': ('django.db.models.fields.TextField', [], {'max_length': '255'}), 'estimated': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '4', 'decimal_places': '2', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tasks.Task']", 'null': 'True', 'blank': 'True'}), 'priority': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['projects.Project']"}), 'remaining': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '4', 'decimal_places': '2', 'blank': 'True'}), 'spend': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '4', 'decimal_places': '2', 'blank': 'True'}), 'sprint': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sprints.Sprint']", 'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'default': "'N'", 'max_length': '2'}) } } complete_apps = ['tasks']
[ "sebastian@devsar.com" ]
sebastian@devsar.com
172af6bb4452711f78a3c0202568c7e899d5c577
238e46a903cf7fac4f83fa8681094bf3c417d22d
/VTK/vtk_7.1.1_x64_Debug/lib/python2.7/site-packages/twisted/words/test/test_oscar.py
b2035d1afb15fa8f92969c10f1ffd8f6810ac5bf
[ "LicenseRef-scancode-unknown-license-reference", "MIT", "BSD-3-Clause" ]
permissive
baojunli/FastCAE
da1277f90e584084d461590a3699b941d8c4030b
a3f99f6402da564df87fcef30674ce5f44379962
refs/heads/master
2023-02-25T20:25:31.815729
2021-02-01T03:17:33
2021-02-01T03:17:33
268,390,180
1
0
BSD-3-Clause
2020-06-01T00:39:31
2020-06-01T00:39:31
null
UTF-8
Python
false
false
689
py
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for L{twisted.words.protocols.oscar}. """ from twisted.trial.unittest import TestCase from twisted.words.protocols.oscar import encryptPasswordMD5 class PasswordTests(TestCase): """ Tests for L{encryptPasswordMD5}. """ def test_encryptPasswordMD5(self): """ L{encryptPasswordMD5} hashes the given password and key and returns a string suitable to use to authenticate against an OSCAR server. """ self.assertEqual( encryptPasswordMD5('foo', 'bar').encode('hex'), 'd73475c370a7b18c6c20386bcf1339f2')
[ "l”ibaojunqd@foxmail.com“" ]
l”ibaojunqd@foxmail.com“
6ff915ccb108c93545ca357fe9633d124c416a8e
f120d4902578e9d531a9e3a6701a9ea4030c7c80
/Python_NLP_backend/news/realnews.py
963dfa9f0415ccd6eae813f3ce041e0f6aeb2b73
[]
no_license
mjosephan2/baermaster
89e5589a04b03b59b868f3e6eb97d318420d423e
cfda4cb5a37a55303abb0e4470c249ffd321d965
refs/heads/master
2020-08-13T11:43:33.543997
2019-09-26T10:57:32
2019-09-26T10:57:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,107
py
import newsapi from newsapi import NewsApiClient import numpy as np import pandas as pd import time import scipy.sparse as ss import matplotlib.pyplot as plt import csv import collections import string import nltk from nltk.tokenize import RegexpTokenizer from nltk.corpus import stopwords import re from sklearn.feature_extraction.text import CountVectorizer from nltk import ngrams import logging import spacy from nltk import ngrams from nltk.stem.wordnet import WordNetLemmatizer import time import warnings warnings.filterwarnings("ignore",category=DeprecationWarning) # Init #q='bitcoin', # /v2/top-headlines class news_text(): newsapi = NewsApiClient(api_key='1ca90686b682467a97477cdef14ef436') everything = newsapi.get_everything(sources='financial-post',language='en') def assign_data(self): completearticles=[] articles=[] titles=[] urls=[] imgurls=[] dictionaries=self.everything["articles"] for dic in dictionaries: text=(dic["content"]) completearticles.append(dic["title"]+". "+text) articles.append(text) titles.append(dic["title"]) urls.append(dic["url"]) imgurls.append(dic["urlToImage"]) self.completearticles=completearticles self.articles=articles self.titles=titles self.urls=urls self.imgurls=imgurls def return_articles(self): return(self.articles) def return_titles(self): return(self.titles) def return_urls(self): return(self.urls) def return_imgurls(self): return(self.imgurls) #preprocessing step before converting to vectors def preprocess_text(self,text): textlist=text.split("… [+") text2=textlist[0] text2=text2.replace("\r"," ") text2=text2.replace("\n"," ") textlist=text2.split(" ") textlist=[text for text in textlist if text!=""] textlist=textlist[:len(textlist)-1] text=" ".join(textlist) text = text.lower() tokenizer = RegexpTokenizer(r'\w+') #tokenize words tokens = tokenizer.tokenize(text) punctuation = list(string.punctuation) stoplist = stopwords.words('english') stoplist = set(stoplist) #like a list, but can use hash table tokens = [WordNetLemmatizer().lemmatize(token) for token in tokens] #lemmatize all tokens tokens = [w for w in tokens if not w.isdigit()] #remove digits tokens = [w for w in tokens if len(w)>2] #remove words having 2 or less chars tokens = [w for w in tokens if not w in punctuation] #remove punctuations tokens = [w for w in tokens if not w in stoplist] #remove stopwords # stemmed = [sno.stem(words) for words in filtered_words] return (" ".join(tokens)) #remove large sentence with all purified words def return_processed_texts(self): articles=np.array(self.completearticles) processed_articles=[self.preprocess_text(text) for text in articles] return(processed_articles)
[ "jason.chowcs#gmail.com" ]
jason.chowcs#gmail.com
e2874dfd6f8aca2ed3abbd73ad1d33af2537a36c
b2d5ab7f1b7d2cebd25a2a4ec4a1f3d834ec442c
/1044.py
52fdf47bdf58592f204eae61aa2b69745642c29a
[]
no_license
henriqueparaguassu/uri-online-judge
d3a1663e9f054a6c8f9255606576492f0710f7c1
793579a3c31d5577283dcb3c209eb279fa76f673
refs/heads/main
2023-08-05T12:17:42.099688
2021-09-16T00:54:59
2021-09-16T00:54:59
406,966,727
0
0
null
null
null
null
UTF-8
Python
false
false
151
py
n = input() A = n.split() x = int(A[0]) y = int(A[1]) if (x % y == 0) or (y % x == 0): print('Sao Multiplos') else: print('Nao sao Multiplos')
[ "henriquevoglerparaguassu@gmail.com" ]
henriquevoglerparaguassu@gmail.com
ab6f3a4d3ab74a2ba6c4d84ce083ce4ccbe64a61
25c86c9a28308ae3237dacc0d59c204cfc393003
/app/maps/migrations/0014_auto_20170611_2126.py
1bc96f9c5b37bd7995f1a28364418200cae01811
[ "MIT" ]
permissive
bladekp/DroniadaDjangoDronekitAPP
ec6002eef27706413340e1c2c4afcd92f094939a
2a829ee5f1cc718b501ae315e812433b8ef49293
refs/heads/master
2021-12-14T17:25:19.893776
2021-12-06T16:54:57
2021-12-06T16:54:57
91,502,139
1
1
null
null
null
null
UTF-8
Python
false
false
773
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-06-11 21:26 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('maps', '0013_auto_20170611_2123'), ] operations = [ migrations.AlterField( model_name='beacon', name='altitude', field=models.BigIntegerField(default=0.0), ), migrations.AlterField( model_name='beacon', name='latitude', field=models.BigIntegerField(default=0.0), ), migrations.AlterField( model_name='beacon', name='longitude', field=models.BigIntegerField(default=0.0), ), ]
[ "bladekp@ee.pw.edu.pl" ]
bladekp@ee.pw.edu.pl
4e0d695cc5dadb7408ed67f7b27413687749c8f5
f994051a71b2a6fe5ba1357bc9da9b38d5843e26
/react_frontend/views.py
bbd03c3b92037a5c37c21486493ad11c1f80726e
[]
no_license
mohsam97/complaint-management-portal
ed6be88668764f24db506c15f827f864e9ea0cba
0314a18af297637f6f7107c58d9cce2850a48fc4
refs/heads/master
2023-07-04T13:33:40.040202
2021-08-07T17:44:53
2021-08-07T17:44:53
393,752,758
0
0
null
null
null
null
UTF-8
Python
false
false
107
py
from django.shortcuts import render def index(request): return render(request, "frontend/index.html")
[ "mohsam97@gmail.com" ]
mohsam97@gmail.com
42e731c4a27671293b4759fbeac2b6d133bfb510
85e6d039205878475e05957219aa6fb32b04b086
/28-implement-strstr.py
34ad216b73d8add1e35e450064f5b8b85f47dec5
[ "MIT" ]
permissive
LGX95/leetcode
e4e3fd98527a8559b60beb572b1f728b97357c14
a25813975beca8e24e8b0c920d6e2ef488c848da
refs/heads/master
2023-01-28T13:00:16.624801
2020-12-07T15:17:58
2020-12-07T15:17:58
292,799,111
0
0
null
null
null
null
UTF-8
Python
false
false
571
py
"""Question: https://leetcode.com/problems/implement-strstr/ """ from util import print_vars class Solution: def strStr(self, haystack: str, needle: str) -> int: if haystack == "" and needle == "": return 0 for i in range(len(haystack) - len(needle) + 1): if haystack[i:i + len(needle)] == needle: return i return -1 if __name__ == "__main__": haystack = "hello" needle = "ll" output = Solution().strStr(haystack, needle) print_vars(haystack, needle, output) assert output == 2
[ "ligengxin95@gmail.com" ]
ligengxin95@gmail.com
c58a2bd5c02ec9417df7aefbfc85f7b4a8906bb1
c44a2871e1fc79f91d195acfac4642fc22f9017a
/MachineLearning/StockPricePredictor/LinRegLearner.py
0e79c3d9a71234cfc2cd427296ccbfa854c65482
[]
no_license
mkumble/codestack
299155657a6310f70080acc9c9e2755a1e7f6c31
a3ef98b8c8563082fa7e618cb1e06db52e02c413
refs/heads/master
2020-05-18T23:34:15.833632
2015-04-22T05:13:20
2015-04-22T05:13:20
23,770,326
0
0
null
null
null
null
UTF-8
Python
false
false
2,426
py
#!/usr/bin/env python __author__ = "Mithun Kumble" import numpy from scipy.spatial import cKDTree import math,random,sys,bisect,time import numpy,scipy.spatial.distance import cProfile,pstats import sys from CommonUtils import calculateRMSError from DataHandler import getflatcsv class LinRegLearner: def __init__(self): """ Initialize the variables """ self.Xtrain = None self.Ytrain = None self.coeff = None self.res = None def addEvidence(self,Xtrain,Ytrain=None): """ Trains the Linear Regression Learner from the XTrain values """ self.Xtrain = Xtrain self.Ytrain = Ytrain xTrainIdentityMatrix = numpy.hstack([self.Xtrain, numpy.ones((len(self.Xtrain), 1))]) self.coeff = numpy.zeros(2) self.coeff[0] = numpy.linalg.lstsq(xTrainIdentityMatrix, Ytrain)[0][0] self.coeff[1] = numpy.linalg.lstsq(xTrainIdentityMatrix, Ytrain)[0][1] self.res = numpy.linalg.lstsq(xTrainIdentityMatrix, Ytrain)[0][2] def query(self,XTest): """ Retrieves the predicted Y values based on the input XTest values """ Y = numpy.dot(XTest, self.coeff) + self.res return Y def testLinRegLearner(fname): """ The function testLinRegLearner does the following things: i) Creates a Linear Regression Learner ii) Trains the learner using about 60% of the data iii Tests the learner using 40% of the data - Calculates the Root Mean Square Error, Correlation Coefficient for the predicted values. """ learner = LinRegLearner() data = getflatcsv(fname) xTrainData = data[0:0.6*len(data),0:2] yTrainData = data[0:0.6*len(data),2:3] xTest = data[0.6*len(data):len(data),0:2] learner.addEvidence(xTrainData,yTrainData) yResult = learner.query(xTest) yActual = data[0.6*len(data):len(data),2] rmse = calculateRMSError(yResult,yActual) corrCoeff= numpy.corrcoef(yResult, yActual)[0,1] return rmse,corrCoeff,yActual,yResult fname = "data-classification-prob.csv" rmse,corrCoeff,yActual,yResult = testLinRegLearner(fname) print "\n\tLearner: Linear Regression Learner" print "\t\tFile Name: "+fname print "\t\tRMS Error = "+str(rmse) print "\t\tCorrelation Coefficient = "+str(corrCoeff)+"\n\n" fname = "data-ripple-prob.csv" rmse,corrCoeff,yActual,yResult = testLinRegLearner(fname) print "\n\tLearner: Linear Regression Learner" print "\t\tFile Name: "+fname print "\t\tRMS Error = "+str(rmse) print "\t\tCorrelation Coefficient = "+str(corrCoeff)+"\n\n"
[ "mkumble@gmail.com" ]
mkumble@gmail.com
a4198b01c54441278045f5049ab837b159422e89
f8ff804676002a23ec59b470a41c784a2ad9d1b8
/z3_toolbox.py
20d209942d1bd0943c29625656aa722082d7ac7c
[]
no_license
NickF0211/2542project-pre-study
ebce207987d2a405dd14cb388b6d21ffc030a4ab
29d80d0ab2f79dda92c8c1e709bdb13f7fc5e3e3
refs/heads/master
2023-04-24T08:26:27.578385
2021-05-09T00:14:29
2021-05-09T00:14:29
342,433,404
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
from z3 import * def atMostOne(candidates): if candidates == []: return True else: head = candidates[0] rst = candidates[1:] return And(Implies(head, Not(Or(rst))), Implies(Not(head), atMostOne(rst)))
[ "lkbjhgfd@hotmail.com" ]
lkbjhgfd@hotmail.com
1dfed182f707b1230da4ea92963aa1a4bc0ae4ce
a1dee1218ca6d948e6c9ba5f5bc299357fa17cf3
/tests/utils-tests.py
9da2d628f93fc7eb9ecaabb7bd718234ae31dca7
[ "MIT" ]
permissive
koaning/wallholla
27d3a7cf310ec093f0b37db9d3bf9e025f44ee09
6641928dab90b19f02de9a8bfecac88d773e35ae
refs/heads/master
2021-03-29T02:05:19.133413
2018-06-01T12:15:58
2018-06-01T12:15:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,597
py
import unittest from utils import make_pretrained_filenames class MakeFileNameTestCase(unittest.TestCase): def test_basic_usage1(self): res = make_pretrained_filenames("catdog", "random", "mobilenet", 200, (100, 100)) outcome = [ 'catdog-mobilenet-random-200-100x100-train-data.npy', 'catdog-mobilenet-random-200-100x100-train-label.npy', 'catdog-mobilenet-random-200-100x100-valid-data.npy', 'catdog-mobilenet-random-200-100x100-valid-label.npy'] for i in range(4): self.assertEqual(res[i], outcome[i]) def test_basic_usage2(self): res = make_pretrained_filenames("dogcatz", "random", "foofoo", 200, (100, 100)) outcome = [ 'dogcatz-foofoo-random-200-100x100-train-data.npy', 'dogcatz-foofoo-random-200-100x100-train-label.npy', 'dogcatz-foofoo-random-200-100x100-valid-data.npy', 'dogcatz-foofoo-random-200-100x100-valid-label.npy'] for i in range(4): self.assertEqual(res[i], outcome[i]) def test_basic_usage3(self): res = make_pretrained_filenames("catdog", "random", "mobilenet", 20000, (5, 5)) outcome = [ 'catdog-mobilenet-random-20000-5x5-train-data.npy', 'catdog-mobilenet-random-20000-5x5-train-label.npy', 'catdog-mobilenet-random-20000-5x5-valid-data.npy', 'catdog-mobilenet-random-20000-5x5-valid-label.npy'] for i in range(4): self.assertEqual(res[i], outcome[i]) if __name__ == '__main__': unittest.main()
[ "vincentwarmerdam@Vincents-MacBook-Pro.local" ]
vincentwarmerdam@Vincents-MacBook-Pro.local
c66c0543322bb8f8a5580de0e145f2b559ec397a
9bbb7685f7a85f505784543694cb94431326c83b
/tests/test_install.py
2901da1126623c5f614a826cb5bad1443040b8dd
[ "Apache-2.0" ]
permissive
hunter-packages/fruit
88248cb71b7fedc455ebdd7ac3624dfd8f030331
71d9ada48f7bf1749ce2889250955404582a7c6b
refs/heads/hunter-3.1.1
2020-03-27T13:03:06.281313
2018-08-29T11:29:11
2018-08-29T11:29:11
146,586,928
1
2
Apache-2.0
2018-08-29T11:29:12
2018-08-29T10:58:43
C++
UTF-8
Python
false
false
33,914
py
#!/usr/bin/env python3 # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from fruit_test_common import * COMMON_DEFINITIONS = ''' #include "test_common.h" struct X; struct Annotation1 {}; using XAnnot1 = fruit::Annotated<Annotation1, X>; ''' @pytest.mark.parametrize('XParamInChildComponent,XParamInRootComponent', [ ('X', 'X'), ('X', 'const X'), ('fruit::Annotated<Annotation1, X>', 'fruit::Annotated<Annotation1, X>'), ('fruit::Annotated<Annotation1, X>', 'fruit::Annotated<Annotation1, const X>'), ]) def test_success(XParamInChildComponent, XParamInRootComponent): source = ''' struct X { int n; X(int n) : n(n) {} }; fruit::Component<XParamInChildComponent> getChildComponent() { return fruit::createComponent() .registerProvider<XParamInChildComponent()>([]() { return X(5); }); } fruit::Component<XParamInRootComponent> getRootComponent() { return fruit::createComponent() .install(getChildComponent); } int main() { fruit::Injector<XParamInRootComponent> injector(getRootComponent); X x = injector.get<XParamInRootComponent>(); Assert(x.n == 5); } ''' expect_success( COMMON_DEFINITIONS, source, locals()) @pytest.mark.parametrize('XParamInChildComponent,XParamInRootComponent', [ ('const X', 'X'), ('fruit::Annotated<Annotation1, const X>', 'fruit::Annotated<Annotation1, X>'), ]) def test_install_error_child_component_provides_const(XParamInChildComponent, XParamInRootComponent): source = ''' struct X {}; fruit::Component<XParamInChildComponent> getChildComponent(); fruit::Component<XParamInRootComponent> getRootComponent() { return fruit::createComponent() .install(getChildComponent); } ''' expect_compile_error( 'NonConstBindingRequiredButConstBindingProvidedError<XParamInRootComponent>', 'The type T was provided as constant, however one of the constructors/providers/factories in this component', COMMON_DEFINITIONS, source, locals()) @pytest.mark.parametrize('ProvidedXParam,RequiredXParam', [ ('X', 'X'), ('X', 'const X'), ('const X', 'const X'), ('fruit::Annotated<Annotation1, X>', 'fruit::Annotated<Annotation1, X>'), ('fruit::Annotated<Annotation1, X>', 'fruit::Annotated<Annotation1, const X>'), ('fruit::Annotated<Annotation1, const X>', 'fruit::Annotated<Annotation1, const X>'), ]) def test_with_requirements_success(ProvidedXParam, RequiredXParam): ProvidedXParamWithoutConst = ProvidedXParam.replace('const ', '') source = ''' struct X { int n; X(int n) : n(n) {} }; struct Y { X x; Y(X x): x(x) {} }; fruit::Component<fruit::Required<RequiredXParam>, Y> getChildComponent1() { return fruit::createComponent() .registerProvider<Y(RequiredXParam)>([](X x) { return Y(x); }); } fruit::Component<ProvidedXParam> getChildComponent2() { return fruit::createComponent() .registerProvider<ProvidedXParamWithoutConst()>([]() { return X(5); }); } fruit::Component<Y> getRootComponent() { return fruit::createComponent() .install(getChildComponent1) .install(getChildComponent2); } int main() { fruit::Injector<Y> injector(getRootComponent); Y y = injector.get<Y>(); Assert(y.x.n == 5); } ''' expect_success( COMMON_DEFINITIONS, source, locals()) @pytest.mark.parametrize('ProvidedXParam,RequiredXParam', [ ('const X', 'X'), ('fruit::Annotated<Annotation1, const X>', 'fruit::Annotated<Annotation1, X>'), ]) def test_with_requirements_error_only_nonconst_provided(ProvidedXParam, RequiredXParam): source = ''' struct X {}; struct Y {}; fruit::Component<fruit::Required<RequiredXParam>, Y> getChildComponent1(); fruit::Component<ProvidedXParam> getChildComponent2(); fruit::Component<Y> getRootComponent() { return fruit::createComponent() .install(getChildComponent1) .install(getChildComponent2); } ''' expect_compile_error( 'NonConstBindingRequiredButConstBindingProvidedError<RequiredXParam>', 'The type T was provided as constant, however one of the constructors/providers/factories in this component', COMMON_DEFINITIONS, source, locals()) @pytest.mark.parametrize('ProvidedXParam,RequiredXParam', [ ('const X', 'X'), ('fruit::Annotated<Annotation1, const X>', 'fruit::Annotated<Annotation1, X>'), ]) def test_with_requirements_error_only_nonconst_provided_reversed_install_order(ProvidedXParam, RequiredXParam): source = ''' struct X {}; struct Y {}; fruit::Component<fruit::Required<RequiredXParam>, Y> getChildComponent1(); fruit::Component<ProvidedXParam> getChildComponent2(); fruit::Component<Y> getRootComponent() { return fruit::createComponent() .install(getChildComponent2) .install(getChildComponent1); } ''' expect_compile_error( 'NonConstBindingRequiredButConstBindingProvidedError<RequiredXParam>', 'The type T was provided as constant, however one of the constructors/providers/factories in this component', COMMON_DEFINITIONS, source, locals()) def test_with_requirements_not_specified_in_child_component_error(): source = ''' struct X { int n; X(int n) : n(n) {} }; struct Y { X x; Y(X x): x(x) {} }; fruit::Component<fruit::Required<X>, Y> getParentYComponent() { return fruit::createComponent() .registerProvider([](X x) { return Y(x); }); } // We intentionally don't have fruit::Required<X> here, we want to test that this results in an error. fruit::Component<Y> getYComponent() { return fruit::createComponent() .install(getParentYComponent); } ''' expect_compile_error( 'NoBindingFoundError<X>', 'No explicit binding nor C::Inject definition was found for T', COMMON_DEFINITIONS, source) @pytest.mark.parametrize('XAnnot,ConstXAnnot', [ ('X', 'const X'), ('fruit::Annotated<Annotation1, X>', 'fruit::Annotated<Annotation1, const X>'), ]) def test_install_requiring_nonconst_then_install_requiring_const_ok(XAnnot, ConstXAnnot): source = ''' struct X {}; struct Y {}; struct Z {}; fruit::Component<fruit::Required<XAnnot>, Y> getChildComponent1() { return fruit::createComponent() .registerConstructor<Y()>(); } fruit::Component<fruit::Required<ConstXAnnot>, Z> getChildComponent2() { return fruit::createComponent() .registerConstructor<Z()>(); } fruit::Component<Y, Z> getRootComponent() { return fruit::createComponent() .install(getChildComponent1) .install(getChildComponent2) .registerConstructor<XAnnot()>(); } int main() { fruit::Injector<Y, Z> injector(getRootComponent); injector.get<Y>(); injector.get<Z>(); } ''' expect_success( COMMON_DEFINITIONS, source, locals()) def test_install_requiring_nonconst_then_install_requiring_const_declaring_const_requirement_error(): source = ''' struct X {}; struct Y {}; struct Z {}; fruit::Component<fruit::Required<X>, Y> getChildComponent1(); fruit::Component<fruit::Required<const X>, Z> getChildComponent2(); fruit::Component<fruit::Required<const X>, Y, Z> getRootComponent() { return fruit::createComponent() .install(getChildComponent1) .install(getChildComponent2); } ''' expect_compile_error( 'ConstBindingDeclaredAsRequiredButNonConstBindingRequiredError<X>', 'The type T was declared as a const Required type in the returned Component, however', COMMON_DEFINITIONS, source, locals()) def test_install_requiring_const_then_install_requiring_nonconst_ok(): source = ''' struct X {}; struct Y {}; struct Z {}; fruit::Component<fruit::Required<const X>, Y> getChildComponent1() { return fruit::createComponent() .registerConstructor<Y()>(); } fruit::Component<fruit::Required<X>, Z> getChildComponent2() { return fruit::createComponent() .registerConstructor<Z()>(); } fruit::Component<Y, Z> getRootComponent() { return fruit::createComponent() .install(getChildComponent1) .install(getChildComponent2) .registerConstructor<X()>(); } int main() { fruit::Injector<Y, Z> injector(getRootComponent); injector.get<Y>(); injector.get<Z>(); } ''' expect_success( COMMON_DEFINITIONS, source, locals()) def test_install_requiring_const_then_install_requiring_nonconst_declaring_const_requirement_error(): source = ''' struct X {}; struct Y {}; struct Z {}; fruit::Component<fruit::Required<const X>, Y> getChildComponent1(); fruit::Component<fruit::Required<X>, Z> getChildComponent2(); fruit::Component<fruit::Required<const X>, Y, Z> getRootComponent() { return fruit::createComponent() .install(getChildComponent1) .install(getChildComponent2); } ''' expect_compile_error( 'ConstBindingDeclaredAsRequiredButNonConstBindingRequiredError<X>', 'The type T was declared as a const Required type in the returned Component, however', COMMON_DEFINITIONS, source, locals()) def test_install_with_args_success(): source = ''' struct X { int n; X(int n) : n(n) {} }; struct Arg { Arg(int) {} Arg() = default; Arg(const Arg&) = default; Arg(Arg&&) = default; Arg& operator=(const Arg&) = default; Arg& operator=(Arg&&) = default; }; bool operator==(const Arg&, const Arg&) { return true; } namespace std { template <> struct hash<Arg> { size_t operator()(const Arg&) { return 0; } }; } fruit::Component<X> getParentComponent(int, std::string, Arg, Arg) { return fruit::createComponent() .registerProvider([]() { return X(5); }); } fruit::Component<X> getComponent() { return fruit::createComponent() .install(getParentComponent, 5, std::string("Hello"), Arg{}, 15); } int main() { fruit::Injector<X> injector(getComponent); X x = injector.get<X>(); Assert(x.n == 5); } ''' expect_success(COMMON_DEFINITIONS, source) def test_install_with_args_error_not_move_constructible(): source = ''' struct Arg { Arg() = default; Arg(const Arg&) = default; Arg(Arg&&) = delete; Arg& operator=(const Arg&) = default; Arg& operator=(Arg&&) = default; }; bool operator==(const Arg&, const Arg&); namespace std { template <> struct hash<Arg> { size_t operator()(const Arg&); }; } fruit::Component<X> getParentComponent(int, std::string, Arg); fruit::Component<X> getComponent() { return fruit::createComponent() .install(getParentComponent, 5, std::string("Hello"), Arg{}); } ''' expect_generic_compile_error( 'error: use of deleted function .Arg::Arg\(Arg&&\).' + '|error: call to deleted constructor of .Arg.' + '|.Arg::Arg\(Arg &&\).: cannot convert argument 1 from .std::_Tuple_val<_This>. to .const Arg &.', COMMON_DEFINITIONS, source) def test_install_with_args_error_not_move_constructible_with_conversion(): source = ''' struct Arg { Arg(int) {} Arg() = default; Arg(const Arg&) = default; Arg(Arg&&) = delete; Arg& operator=(const Arg&) = default; Arg& operator=(Arg&&) = default; }; bool operator==(const Arg&, const Arg&); namespace std { template <> struct hash<Arg> { size_t operator()(const Arg&); }; } fruit::Component<X> getParentComponent(int, std::string, Arg); fruit::Component<X> getComponent() { return fruit::createComponent() .install(getParentComponent, 5, std::string("Hello"), 15); } ''' expect_generic_compile_error( 'error: use of deleted function .Arg::Arg\(Arg&&\).' + '|error: call to deleted constructor of .Arg.' + '|.Arg::Arg\(Arg &&\).: cannot convert argument 1 from .std::_Tuple_val<_This>. to .int.', COMMON_DEFINITIONS, source) def test_install_with_args_error_not_copy_constructible(): source = ''' struct X { int n; X(int n) : n(n) {} }; struct Arg { Arg() = default; Arg(const Arg&) = delete; Arg(Arg&&) = default; Arg& operator=(const Arg&) = default; Arg& operator=(Arg&&) = default; }; bool operator==(const Arg&, const Arg&); namespace std { template <> struct hash<Arg> { size_t operator()(const Arg&); }; } fruit::Component<X> getParentComponent(int, std::string, Arg); fruit::Component<X> getComponent() { return fruit::createComponent() .install(getParentComponent, 5, std::string("Hello"), Arg{}); } ''' expect_generic_compile_error( 'error: use of deleted function .Arg::Arg\(const Arg&\).' + '|error: call to deleted constructor of .Arg.' + '|error C2280: .Arg::Arg\(const Arg &\).: attempting to reference a deleted function', COMMON_DEFINITIONS, source) def test_install_with_args_error_not_copy_constructible_with_conversion(): source = ''' struct X { int n; X(int n) : n(n) {} }; struct Arg { Arg(int) {} Arg() = default; Arg(const Arg&) = delete; Arg(Arg&&) = default; Arg& operator=(const Arg&) = default; Arg& operator=(Arg&&) = default; }; bool operator==(const Arg&, const Arg&); namespace std { template <> struct hash<Arg> { size_t operator()(const Arg&); }; } fruit::Component<X> getParentComponent(int, std::string, Arg); fruit::Component<X> getComponent() { return fruit::createComponent() .install(getParentComponent, 5, std::string("Hello"), 15); } ''' expect_generic_compile_error( 'error: use of deleted function .Arg::Arg\(const Arg&\).' + '|error: call to deleted constructor of .Arg.' + '|error C2280: .Arg::Arg\(const Arg &\).: attempting to reference a deleted function', COMMON_DEFINITIONS, source) def test_install_with_args_error_not_move_assignable(): source = ''' struct Arg { Arg() = default; Arg(const Arg&) = default; Arg(Arg&&) = default; Arg& operator=(const Arg&) = default; Arg& operator=(Arg&&) = delete; }; bool operator==(const Arg&, const Arg&); namespace std { template <> struct hash<Arg> { size_t operator()(const Arg&); }; } fruit::Component<X> getParentComponent(int, std::string, Arg); fruit::Component<X> getComponent() { return fruit::createComponent() .install(getParentComponent, 5, std::string("Hello"), Arg{}); } ''' expect_generic_compile_error( 'error: use of deleted function .Arg& Arg::operator=\(Arg&&\).' + '|error: overload resolution selected deleted operator .=.' + '|error C2280: .Arg &Arg::operator =\(Arg &&\).: attempting to reference a deleted function', COMMON_DEFINITIONS, source) def test_install_with_args_error_not_move_assignable_with_conversion(): source = ''' struct Arg { Arg(int) {} Arg() = default; Arg(const Arg&) = default; Arg(Arg&&) = default; Arg& operator=(const Arg&) = default; Arg& operator=(Arg&&) = delete; }; bool operator==(const Arg&, const Arg&); namespace std { template <> struct hash<Arg> { size_t operator()(const Arg&); }; } fruit::Component<X> getParentComponent(int, std::string, Arg); fruit::Component<X> getComponent() { return fruit::createComponent() .install(getParentComponent, 5, std::string("Hello"), 15); } ''' expect_generic_compile_error( 'error: use of deleted function .Arg& Arg::operator=\(Arg&&\).' + '|error: overload resolution selected deleted operator .=.' + '|error C2280: .Arg &Arg::operator =\(Arg &&\).: attempting to reference a deleted function', COMMON_DEFINITIONS, source) def test_install_with_args_error_not_copy_assignable(): source = ''' struct X { int n; X(int n) : n(n) {} }; struct Arg { Arg() = default; Arg(const Arg&) = default; Arg(Arg&&) = default; Arg& operator=(const Arg&) = delete; Arg& operator=(Arg&&) = default; }; bool operator==(const Arg&, const Arg&); namespace std { template <> struct hash<Arg> { size_t operator()(const Arg&); }; } fruit::Component<X> getParentComponent(int, std::string, Arg); fruit::Component<X> getComponent() { return fruit::createComponent() .install(getParentComponent, 5, std::string("Hello"), Arg{}); } ''' expect_generic_compile_error( 'error: use of deleted function .Arg& Arg::operator=\(const Arg&\).' + '|error: overload resolution selected deleted operator .=.' + '|error C2280: .Arg &Arg::operator =\(const Arg &\).: attempting to reference a deleted function', COMMON_DEFINITIONS, source) def test_install_with_args_error_not_copy_assignable_with_conversion(): source = ''' struct X { int n; X(int n) : n(n) {} }; struct Arg { Arg(int) {} Arg() = default; Arg(const Arg&) = default; Arg(Arg&&) = default; Arg& operator=(const Arg&) = delete; Arg& operator=(Arg&&) = default; }; bool operator==(const Arg&, const Arg&); namespace std { template <> struct hash<Arg> { size_t operator()(const Arg&); }; } fruit::Component<X> getParentComponent(int, std::string, Arg); fruit::Component<X> getComponent() { return fruit::createComponent() .install(getParentComponent, 5, std::string("Hello"), 15); } ''' expect_generic_compile_error( 'error: use of deleted function .Arg& Arg::operator=\(const Arg&\).' + '|error: overload resolution selected deleted operator .=.' + '|error C2280: .Arg &Arg::operator =\(const Arg &\).: attempting to reference a deleted function', COMMON_DEFINITIONS, source) def test_install_with_args_error_not_equality_comparable(): source = ''' struct X { int n; X(int n) : n(n) {} }; struct Arg { Arg() = default; Arg(const Arg&) = default; Arg(Arg&&) = default; Arg& operator=(const Arg&) = default; Arg& operator=(Arg&&) = default; }; namespace std { template <> struct hash<Arg> { size_t operator()(const Arg&); }; } fruit::Component<X> getParentComponent(int, std::string, Arg); fruit::Component<X> getComponent() { return fruit::createComponent() .install(getParentComponent, 5, std::string("Hello"), Arg{}); } ''' expect_generic_compile_error( 'error: no match for .operator==. \(operand types are .const Arg. and .const Arg.\)' + '|error: invalid operands to binary expression \(.const Arg. and .const Arg.\)' + '|error C2676: binary .==.: .const Arg. does not define this operator', COMMON_DEFINITIONS, source) def test_install_with_args_error_not_equality_comparable_with_conversion(): source = ''' struct X { int n; X(int n) : n(n) {} }; struct Arg { Arg(int) {} Arg() = default; Arg(const Arg&) = default; Arg(Arg&&) = default; Arg& operator=(const Arg&) = default; Arg& operator=(Arg&&) = default; }; namespace std { template <> struct hash<Arg> { size_t operator()(const Arg&); }; } fruit::Component<X> getParentComponent(int, std::string, Arg); fruit::Component<X> getComponent() { return fruit::createComponent() .install(getParentComponent, 5, std::string("Hello"), 15); } ''' expect_generic_compile_error( 'error: no match for .operator==. \(operand types are .const Arg. and .const Arg.\)' + '|error: invalid operands to binary expression \(.const Arg. and .const Arg.\)' + '|error C2676: binary .==.: .const Arg. does not define this operator', COMMON_DEFINITIONS, source) def test_install_with_args_error_not_hashable(): source = ''' struct Arg { Arg() = default; Arg(const Arg&) = default; Arg(Arg&&) = default; Arg& operator=(const Arg&) = default; Arg& operator=(Arg&&) = default; }; bool operator==(const Arg&, const Arg&); fruit::Component<X> getParentComponent(int, std::string, Arg); fruit::Component<X> getComponent() { return fruit::createComponent() .install(getParentComponent, 5, std::string("Hello"), Arg{}); } ''' expect_generic_compile_error( 'error: use of deleted function .std::hash<Arg>::hash\(\).' + '|error: call to implicitly-deleted default constructor of .std::hash<Arg>.' + '|error: invalid use of incomplete type .struct std::hash<Arg>.' + '|error: implicit instantiation of undefined template .std::(__1::)?hash<Arg>.' + '|error C2338: The C\+\+ Standard doesn.t provide a hash for this type.' + '|error C2064: term does not evaluate to a function taking 1 arguments', COMMON_DEFINITIONS, source) def test_install_with_args_error_not_hashable_with_conversion(): source = ''' struct Arg { Arg(int) {} Arg() = default; Arg(const Arg&) = default; Arg(Arg&&) = default; Arg& operator=(const Arg&) = default; Arg& operator=(Arg&&) = default; }; bool operator==(const Arg&, const Arg&); fruit::Component<X> getParentComponent(int, std::string, Arg); fruit::Component<X> getComponent() { return fruit::createComponent() .install(getParentComponent, 5, std::string("Hello"), 15); } ''' expect_generic_compile_error( 'error: use of deleted function .std::hash<Arg>::hash\(\).' + '|error: call to implicitly-deleted default constructor of .std::hash<Arg>.' + '|error: invalid use of incomplete type .struct std::hash<Arg>.' + '|error: implicit instantiation of undefined template .std::(__1::)?hash<Arg>.' + '|error C2338: The C\+\+ Standard doesn.t provide a hash for this type.' + '|error C2064: term does not evaluate to a function taking 1 arguments', COMMON_DEFINITIONS, source) @pytest.mark.parametrize('XAnnot', [ 'X', 'fruit::Annotated<Annotation1, X>', ]) def test_install_component_functions_deduped(XAnnot): source = ''' struct X {}; X x; fruit::Component<> getComponent() { return fruit::createComponent() .addInstanceMultibinding<XAnnot, X>(x); } fruit::Component<> getComponent2() { return fruit::createComponent() .install(getComponent); } fruit::Component<> getComponent3() { return fruit::createComponent() .install(getComponent); } fruit::Component<> getComponent4() { return fruit::createComponent() .install(getComponent2) .install(getComponent3); } int main() { fruit::Injector<> injector(getComponent4); // We test multibindings because the effect on other bindings is not user-visible (that only affects // performance). std::vector<X*> multibindings = injector.getMultibindings<XAnnot>(); Assert(multibindings.size() == 1); Assert(multibindings[0] == &x); } ''' expect_success( COMMON_DEFINITIONS, source, locals()) @pytest.mark.parametrize('XAnnot', [ 'X', 'fruit::Annotated<Annotation1, X>', ]) def test_install_component_functions_deduped_across_normalized_component(XAnnot): source = ''' struct X {}; X x; fruit::Component<> getComponent() { return fruit::createComponent() .addInstanceMultibinding<XAnnot, X>(x); } fruit::Component<> getComponent2() { return fruit::createComponent() .install(getComponent); } fruit::Component<> getComponent3() { return fruit::createComponent() .install(getComponent); } int main() { fruit::NormalizedComponent<> normalizedComponent(getComponent2); fruit::Injector<> injector(normalizedComponent, getComponent3); // We test multibindings because the effect on other bindings is not user-visible (that only affects // performance). std::vector<X*> multibindings = injector.getMultibindings<XAnnot>(); Assert(multibindings.size() == 1); Assert(multibindings[0] == &x); } ''' expect_success( COMMON_DEFINITIONS, source, locals()) @pytest.mark.parametrize('XAnnot', [ 'X', 'fruit::Annotated<Annotation1, X>', ]) def test_install_component_functions_with_args_deduped(XAnnot): source = ''' struct X {}; X x; fruit::Component<> getComponent(int) { return fruit::createComponent() .addInstanceMultibinding<XAnnot, X>(x); } fruit::Component<> getComponent2() { return fruit::createComponent() .install(getComponent, 1); } fruit::Component<> getComponent3() { return fruit::createComponent() .install(getComponent, 1); } fruit::Component<> getComponent4() { return fruit::createComponent() .install(getComponent2) .install(getComponent3); } int main() { fruit::Injector<> injector(getComponent4); // We test multibindings because the effect on other bindings is not user-visible (that only affects // performance). std::vector<X*> multibindings = injector.getMultibindings<XAnnot>(); Assert(multibindings.size() == 1); Assert(multibindings[0] == &x); } ''' expect_success( COMMON_DEFINITIONS, source, locals()) @pytest.mark.parametrize('XAnnot', [ 'X', 'fruit::Annotated<Annotation1, X>', ]) def test_install_component_functions_different_args_not_deduped(XAnnot): source = ''' struct X {}; X x; fruit::Component<> getComponent(int) { return fruit::createComponent() .addInstanceMultibinding<XAnnot, X>(x); } fruit::Component<> getComponent2() { return fruit::createComponent() .install(getComponent, 1); } fruit::Component<> getComponent3() { return fruit::createComponent() .install(getComponent, 2); } fruit::Component<> getComponent4() { return fruit::createComponent() .install(getComponent2) .install(getComponent3); } int main() { fruit::Injector<> injector(getComponent4); // We test multibindings because the effect on other bindings is not user-visible (it only affects // performance). std::vector<X*> multibindings = injector.getMultibindings<XAnnot>(); Assert(multibindings.size() == 2); Assert(multibindings[0] == &x); Assert(multibindings[1] == &x); } ''' expect_success( COMMON_DEFINITIONS, source, locals()) def test_install_component_functions_loop(): source = ''' struct X {}; struct Y {}; struct Z {}; // X -> Y -> Z -> Y fruit::Component<X> getXComponent(); fruit::Component<Y> getYComponent(); fruit::Component<Z> getZComponent(); fruit::Component<X> getXComponent() { return fruit::createComponent() .registerConstructor<X()>() .install(getYComponent); } fruit::Component<Y> getYComponent() { return fruit::createComponent() .registerConstructor<Y()>() .install(getZComponent); } fruit::Component<Z> getZComponent() { return fruit::createComponent() .registerConstructor<Z()>() .install(getYComponent); } int main() { fruit::Injector<X> injector(getXComponent); (void)injector; } ''' expect_runtime_error( 'Component installation trace \(from top-level to the most deeply-nested\):\n' + '(class )?fruit::Component<(struct )?X> ?\((__cdecl)?\*\)\((void)?\)\n' + '<-- The loop starts here\n' + '(class )?fruit::Component<(struct )?Y> ?\((__cdecl)?\*\)\((void)?\)\n' + '(class )?fruit::Component<(struct )?Z> ?\((__cdecl)?\*\)\((void)?\)\n' + '(class )?fruit::Component<(struct )?Y> ?\((__cdecl)?\*\)\((void)?\)\n', COMMON_DEFINITIONS, source, locals()) def test_install_component_functions_different_arguments_loop_not_reported(): source = ''' struct X {}; struct Y {}; struct Z {}; // X -> Y(1) -> Z -> Y(2) fruit::Component<X> getXComponent(); fruit::Component<Y> getYComponent(int); fruit::Component<Z> getZComponent(); fruit::Component<X> getXComponent() { return fruit::createComponent() .registerConstructor<X()>() .install(getYComponent, 1); } fruit::Component<Y> getYComponent(int n) { if (n == 1) { return fruit::createComponent() .registerConstructor<Y()>() .install(getZComponent); } else { return fruit::createComponent() .registerConstructor<Y()>(); } } fruit::Component<Z> getZComponent() { return fruit::createComponent() .registerConstructor<Z()>() .install(getYComponent, 2); } int main() { fruit::Injector<X> injector(getXComponent); injector.get<X>(); } ''' expect_success( COMMON_DEFINITIONS, source, locals()) if __name__== '__main__': main(__file__)
[ "poletti.marco@gmail.com" ]
poletti.marco@gmail.com
e82872e0749461c4e0d26b538971dd6af10c902e
6ec710d4577e1e06b3c57fd49ac88e9bce1b82ed
/venv/bin/pygubu-designer
13d69bca40150a647a9232994f85fdecdc5e4aff
[]
no_license
TandyTnd/electricidad
a35cbf1b0618e763d1355c8adfdf7654f44f5420
7344ef1e2ab2c91f8c3149f4e124ea884d290ac6
refs/heads/master
2023-04-07T16:27:22.877466
2020-01-10T20:42:38
2020-01-10T20:42:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
280
#!/home/tndrdesk/PycharmProjects/electricidad/venv/bin/python # -*- coding: utf-8 -*- import re import sys from pygubudesigner.main import start_pygubu if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(start_pygubu())
[ "A01654827@itesm.mx" ]
A01654827@itesm.mx
da57267020f99209add791345266dff1d04c191c
39b3c5b822244c970be17da4bba52e394bc3f258
/TIDALDL-PY/tidal_dl/download.py
0b5ad83ea871d1f2b51d7231654eb4568654169b
[ "Apache-2.0" ]
permissive
ModProg/Tidal-Media-Downloader
897c6ec725818050c43e70b38143847afd174c48
50b08a3f68426d765a943049fc921ef178083929
refs/heads/master
2022-11-19T17:01:32.866966
2020-07-03T11:32:57
2020-07-03T11:32:57
276,871,019
0
0
Apache-2.0
2020-07-03T10:18:30
2020-07-03T10:18:29
null
UTF-8
Python
false
false
32,358
py
#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @File : download.py @Time : 2019/02/27 @Author : Yaron Huang @Version : 1.0 @Contact : yaronhuang@qq.com @Desc : Download Function ''' import sys import os import codecs from datetime import datetime from aigpy import pathHelper # from tidal_dl import netHelper from aigpy import netHelper from aigpy import fileHelper from aigpy import cmdHelper from aigpy import systemHelper # from tidal_dl.ffmpegHelper import FFmpegTool from aigpy.ffmpegHelper import FFmpegTool from aigpy.cmdHelper import myinput, myinputInt from aigpy.threadHelper import ThreadTool from aigpy.progressHelper import ProgressTool from tidal_dl.check import CheckTool from tidal_dl.tidal import TidalTool from tidal_dl.tidal import TidalConfig from tidal_dl.tidal import TidalAccount from tidal_dl.decryption import decrypt_security_token from tidal_dl.decryption import decrypt_file from tidal_dl.printhelper import printChoice, printErr, printSUCCESS, printWarning, printInfo class Download(object): def __init__(self, threadNum=3): self.config = TidalConfig() self.tool = TidalTool() self.thread = ThreadTool(int(threadNum)) self.ffmpeg = FFmpegTool(mergerTimeout=45) self.progress = ProgressTool(100) self.check = CheckTool() self.showpro = False if self.config.showprogress == 'True': self.showpro = True pathHelper.mkdirs(self.config.outputdir + "/Album/") pathHelper.mkdirs(self.config.outputdir + "/Playlist/") pathHelper.mkdirs(self.config.outputdir + "/Video/") pathHelper.mkdirs(self.config.outputdir + "/Favorite/") def __isNeedDownload(self, path, url): curSize = fileHelper.getFileSize(path) if curSize <= 0: return True netSize = netHelper.getFileSize(url) if curSize >= netSize: return False return True # dowmload track thread def __thradfunc_dl(self, paraList): count = 1 printRet = True pstr = paraList['title'] + "(Download Err!)" redownload = True needDl = True bIsSuccess = False albumInfo = None index = None coverpath = None err = None ignoreCertificate = False if 'redownload' in paraList: redownload = paraList['redownload'] if 'retry' in paraList: count = count + paraList['retry'] if 'show' in paraList: printRet = paraList['show'] if 'album' in paraList: albumInfo = paraList['album'] if 'index' in paraList: index = paraList['index'] if 'coverpath' in paraList: coverpath = paraList['coverpath'] if redownload is False: needDl = self.__isNeedDownload(paraList['path'], paraList['url']) # DEBUG # self.tool.setTrackMetadata(paraList['trackinfo'], paraList['path'], albumInfo, index, coverpath) showprogress = False if int(self.config.threadnum) <= 1 and self.showpro: showprogress = True Contributors = self.tool.getTrackContributors(paraList['trackinfo']['id']) if needDl: try: while count > 0: count = count - 1 check, err = netHelper.downloadFileRetErr(paraList['url'], paraList['path']+'.part', showprogress=showprogress, stimeout=20, ignoreCertificate=ignoreCertificate) if check is True: if paraList['key'] == '': # unencrypted -> just move into place os.replace(paraList['path']+'.part', paraList['path']) break else: # encrypted -> decrypt and remove encrypted file key, nonce = decrypt_security_token(paraList['key']) decrypt_file(paraList['path']+'.part', paraList['path'], key, nonce) os.remove(paraList['path']+'.part') break else: ignoreCertificate = True if check: bIsSuccess = True if self.tool.isNeedCovertToM4a(paraList['path']): if paraList['codec'] == 'ac4': printInfo(14, 'Skip convert to m4a(AC4-Codec).') elif paraList['codec'] == 'mha1': printInfo(14, 'Skip convert to m4a(MHA1-Codec).') else: paraList['path'] = self.tool.covertMp4toM4a(paraList['path']) self.tool.setTrackMetadata(paraList['trackinfo'], paraList['path'], albumInfo, index, coverpath, Contributors) pstr = paraList['title'] except Exception as e: printErr(14, str(e) + " while downloading " + paraList['url']) else: pstr = paraList['title'] bIsSuccess = True if printRet: if(bIsSuccess): printSUCCESS(14, pstr) else: if err is None: errmsg = "Unknow!" + paraList['url'] else: errmsg = str(err) + '!' + paraList['url'] printErr(14, pstr + ' ' + errmsg) return # creat album output dir def __creatAlbumDir(self, albumInfo, quality='LOW'): # creat outputdir title = pathHelper.replaceLimitChar(albumInfo['title'], '-') author = pathHelper.replaceLimitChar(albumInfo['artist']['name'], '-') # add year if self.config.addyear != 'No': if self.config.addyear == 'Before': title = '[' + str(datetime.strptime(albumInfo['releaseDate'], '%Y-%m-%d').year) + '] '+title elif self.config.addyear == 'After': title = title+' [' + str(datetime.strptime(albumInfo['releaseDate'], '%Y-%m-%d').year) + ']' else: title = title # add albumid labels if self.config.addAlbumidbeforefolder == 'True': title = '[' + str(albumInfo['id']) + '] ' + title # add quality[M] labels and explicit[E] labels flag = '' if 'audioQuality' in albumInfo and albumInfo['audioQuality'] == 'HI_RES' and quality == 'HI_RES': flag = 'M' if 'explicit' in albumInfo and albumInfo['explicit']: flag += 'E' if flag != '': title = '[' + flag + '] '+ title targetDir = self.config.outputdir + "/Album/" + author + '/' + title targetDir = os.path.abspath(targetDir) pathHelper.mkdirs(targetDir) # creat volumes dir count = 1 numOfVolumes = int(albumInfo['numberOfVolumes']) if numOfVolumes > 1: while count < numOfVolumes + 1: volumeDir = targetDir + "/CD" + str(count) pathHelper.mkdirs(volumeDir) count = count + 1 return targetDir def _getSongExtension(self, downloadUrl): if downloadUrl.find('.flac?') != -1: return '.flac' if downloadUrl.find('.m4a?') != -1: return '.m4a' if downloadUrl.find('.mp4?') != -1: return '.mp4' return '.m4a' def _IsExplicitString(self, IsExplicit): String = None if IsExplicit: String = 'Explicit' return String def __getAlbumSongSavePath(self, targetDir, albumInfo, item, extension): if extension is None: extension = ".m4a" seq = self.tool.getIndexStr(item['trackNumber'], albumInfo['numberOfTracks']) if self.config.addhyphen == 'True': seq += '- ' if self.config.artistbeforetitle == 'True': seq += pathHelper.replaceLimitChar(albumInfo['artist']['name'], '-') + ' - ' name = seq + pathHelper.replaceLimitChar(item['title'], '-') fileExplicit = self._IsExplicitString(item['explicit']) # if self.config.addhyphen == 'True': # name = seq + '- ' + pathHelper.replaceLimitChar(item['title'], '-') if self.config.addexplicit == "True" and fileExplicit is not None: name = name + " - " + fileExplicit seq = item['volumeNumber'] path = targetDir + "/" if int(albumInfo['numberOfVolumes']) > 1: path += 'CD' + str(seq) + "/" maxlen = 255 if systemHelper.isLinux(): maxlen = 4090 # truncate filename when it's longer than system's # filename limit which is 255 len_sum = len(path) + len(name) + len(extension) if len_sum > maxlen: diff = maxlen - len_sum name = name[: len(name) + diff] filePath = path + name + extension checklen = len(filePath) return filePath def __getExistFiles(self, paths): ret = [] for item in paths: if os.path.isfile(item): ret.append(item) return ret def __getVideoResolutionIndex(self, reslist): array = [] # if reslist != None: # for item in reslist: # subs = item.split('x') # subs = subs[1].split(',') # array.append(int(subs[0])) for item in reslist: subs = item.split('x') subs = subs[1].split(',') array.append(int(subs[0])) cmp = int(self.config.resolution) ret = 0 for item in array: if cmp >= item: return ret ret += 1 return len(array) - 1 def downloadAlbum(self, album_id=None, redl_flag=None): while_count = 9999 while while_count > 0: while_count -= 1 if album_id is not None: while_count = 0 sID = album_id else: print("----------------ALBUM------------------") sID = printChoice("Enter AlbumID(Enter '0' go back):", True, 0) if sID == 0: return aAlbumInfo = self.tool.getAlbum(sID) if self.tool.errmsg != "": printErr(0, "Get AlbumInfo Err! " + self.tool.errmsg) continue print("[Title] %s" % (aAlbumInfo['title'])) print("[SongNum] %s\n" % (aAlbumInfo['numberOfTracks'])) # Get Tracks aAlbumTracks = self.tool.getAlbumTracks(sID) if self.tool.errmsg != "": printErr(0, "Get AlbumTracks Err!" + self.tool.errmsg) continue aAlbumVideos = self.tool.getAlbumVideos(sID) # Creat OutputDir targetDir = self.__creatAlbumDir(aAlbumInfo, self.config.quality) # write msg string = self.tool.convertAlbumInfoToString(aAlbumInfo, aAlbumTracks) with codecs.open(targetDir + "/AlbumInfo.txt", 'w', 'utf-8') as fd: fd.write(string) # download cover coverPath = targetDir + '/' + pathHelper.replaceLimitChar(aAlbumInfo['title'], '-') + '.jpg' if aAlbumInfo['cover'] is not None: coverUrl = self.tool.getAlbumArtworkUrl(aAlbumInfo['cover']) netHelper.downloadFile(coverUrl, coverPath) # check exist files redownload = True if redl_flag is None: existFiles = pathHelper.getDirFiles(targetDir) for item in existFiles: if '.txt' in item: continue if '.jpg' in item: continue check = printChoice("Some tracks already exist. Redownload?(y/n):") if not cmdHelper.isInputYes(check): redownload = False break else: redownload = redl_flag # download album tracks for item in aAlbumTracks['items']: streamInfo = self.tool.getStreamUrl(str(item['id']), self.config.quality) if self.tool.errmsg != "" or not streamInfo: printErr(14, item['title'] + "(Get Stream Url Err!" + self.tool.errmsg + ")") continue fileType = self._getSongExtension(streamInfo['url']) filePath = self.__getAlbumSongSavePath(targetDir, aAlbumInfo, item, fileType) paraList = {'album': aAlbumInfo, 'redownload': redownload, 'title': item['title'], 'trackinfo': item, 'url': streamInfo['url'], 'path': filePath, 'retry': 3, 'key': streamInfo['encryptionKey'], 'coverpath': coverPath, 'codec': streamInfo['codec']} self.thread.start(self.__thradfunc_dl, paraList) # wait all download thread self.thread.waitAll() self.tool.removeTmpFile(targetDir) # remove cover if self.config.savephoto != 'True': pathHelper.remove(coverPath) # download video for item in aAlbumVideos: item = item['item'] filePath = targetDir + '/' + pathHelper.replaceLimitChar(item['title'], '-') + ".mp4" filePath = os.path.abspath(filePath) if os.access(filePath, 0): os.remove(filePath) try: resolutionList, urlList = self.tool.getVideoResolutionList(item['id']) selectIndex = self.__getVideoResolutionIndex(resolutionList) if self.ffmpeg.mergerByM3u8_Multithreading2(urlList[int(selectIndex)], filePath, showprogress=self.showpro): printSUCCESS(14, item['title']) else: printErr(14, item['title']) except: printErr(14, item['title']) # return return def downloadArtistAlbum(self, includeSingles=True, artistID=None): while True: print("-------------ARTIST ALBUM--------------") if artistID is not None: sID = artistID else: sID = printChoice("Enter Artist ID(Enter '0' go back):", True, 0) if sID == 0: return array = self.tool.getArtistAlbum(sID, includeSingles) if self.tool.errmsg != "": printErr(0, "Get AlbumList Err! " + self.tool.errmsg) continue redownload = True if artistID is None: check = printChoice("Skip downloaded files?(y/n):") if cmdHelper.isInputYes(check): redownload = False for index, item in enumerate(array): print("----Album[{0}/{1}]----".format(index+1, len(array))) self.downloadAlbum(item['id'], redownload) if artistID is not None: # Break out of the function if we are only downloading one artist's albums return def downloadTrack(self, track_id=None): while_count = 9999 while while_count > 0: while_count -= 1 if track_id is not None: while_count = 0 sID = track_id else: print("----------------TRACK------------------") sID = printChoice("Enter TrackID(Enter '0' go back):", True, 0) if sID == 0: return aTrackInfo = self.tool.getTrack(sID) if self.tool.errmsg != "": printErr(0, "Get TrackInfo Err! " + self.tool.errmsg) return aAlbumInfo = self.tool.getAlbum(aTrackInfo['album']['id']) if self.tool.errmsg != "": printErr(0, "Get TrackInfo Err! " + self.tool.errmsg) return # t = self.tool.getTrackContributors(sID) print("[AlbumTitle ] %s" % (aAlbumInfo['title'])) print("[TrackTitle ] %s" % (aTrackInfo['title'])) print("[Duration ] %s" % (aTrackInfo['duration'])) print("[TrackNumber] %s" % (aTrackInfo['trackNumber'])) print("[Explicit ] %s" % (aAlbumInfo['explicit'])) # print("[Version ] %s\n" % (aTrackInfo['version'])) # Creat OutputDir targetDir = self.__creatAlbumDir(aAlbumInfo, self.config.quality) # download cover coverPath = targetDir + '/' + pathHelper.replaceLimitChar(aAlbumInfo['title'], '-') + '.jpg' if aAlbumInfo['cover'] is not None: coverUrl = self.tool.getAlbumArtworkUrl(aAlbumInfo['cover']) netHelper.downloadFile(coverUrl, coverPath) # download streamInfo = self.tool.getStreamUrl(sID, self.config.quality) if self.tool.errmsg != "" or not streamInfo: printErr(14, aTrackInfo['title'] + "(Get Stream Url Err!" + self.tool.errmsg + ")") continue print("[Codec ] %s" % (streamInfo['codec'])) fileType = self._getSongExtension(streamInfo['url']) filePath = self.__getAlbumSongSavePath(targetDir, aAlbumInfo, aTrackInfo, fileType) paraList = {'album': aAlbumInfo, 'title': aTrackInfo['title'], 'trackinfo': aTrackInfo, 'url': streamInfo['url'], 'path': filePath, 'retry': 3, 'key': streamInfo['encryptionKey'], 'coverpath': coverPath, 'codec': streamInfo['codec']} self.thread.start(self.__thradfunc_dl, paraList) # wait all download thread self.thread.waitAll() self.tool.removeTmpFile(targetDir) # remove cover if self.config.savephoto != 'True': pathHelper.remove(coverPath) return def downloadVideo(self, video_id=None): flag = True while flag: targetDir = self.config.outputdir + "/Video/" if video_id is None: print("----------------VIDEO------------------") sID = printChoice("Enter VideoID(Enter '0' go back):", True, 0) if sID == 0: return else: flag = False sID = video_id aVideoInfo = self.tool.getVideo(sID) if self.tool.errmsg != "": printErr(0, "Get VideoInfo Err! " + self.tool.errmsg) continue print("[Title ] %s" % (aVideoInfo['title'])) print("[Duration ] %s" % (aVideoInfo['duration'])) print("[TrackNumber] %s" % (aVideoInfo['trackNumber'])) print("[Type ] %s\n" % (aVideoInfo['type'])) # get resolution index = 0 resolutionList, urlList = self.tool.getVideoResolutionList(sID) if self.tool.errmsg != "": printErr(14, self.tool.errmsg) continue index = self.__getVideoResolutionIndex(resolutionList) path = targetDir + "/" + pathHelper.replaceLimitChar(aVideoInfo['title'], '-') + ".mp4" path = os.path.abspath(path) if os.access(path, 0): os.remove(path) if self.ffmpeg.mergerByM3u8_Multithreading2(urlList[int(index)], path, True): printSUCCESS(14, aVideoInfo['title']) else: printErr(14, aVideoInfo['title']) return def downloadPlaylist(self, playlist_id=None): while True: targetDir = self.config.outputdir + "/Playlist/" if playlist_id is None: print("--------------PLAYLIST-----------------") sID = printChoice("Enter PlayListID(Enter '0' go back):") if sID == '0': return else: sID = playlist_id aPlaylistInfo, aItemInfo = self.tool.getPlaylist(sID) if self.tool.errmsg != "": printErr(0, "Get PlaylistInfo Err! " + self.tool.errmsg) return print("[Title] %s" % (aPlaylistInfo['title'])) print("[Type] %s" % (aPlaylistInfo['type'])) print("[NumberOfTracks] %s" % (aPlaylistInfo['numberOfTracks'])) print("[NumberOfVideos] %s" % (aPlaylistInfo['numberOfVideos'])) print("[Duration] %s\n" % (aPlaylistInfo['duration'])) # Creat OutputDir targetDir = targetDir + pathHelper.replaceLimitChar(aPlaylistInfo['title'], '-') targetDir = os.path.abspath(targetDir).strip() pathHelper.mkdirs(targetDir) # write msg string = self.tool.convertPlaylistInfoToString(aPlaylistInfo, aItemInfo) with codecs.open(targetDir + "/PlaylistInfo.txt", 'w', 'utf-8') as fd: fd.write(string) # download cover coverPath = targetDir + '/' + pathHelper.replaceLimitChar(aPlaylistInfo['title'], '-') + '.jpg' coverUrl = self.tool.getPlaylistArtworkUrl(aPlaylistInfo['uuid']) check = netHelper.downloadFile(coverUrl, coverPath) # download track bBreakFlag = False bFirstTime = True errIndex = [] index = 0 while bBreakFlag is False: self.check.clear() index = 0 tmpcoverpath = [] for item in aItemInfo: type = item['type'] item = item['item'] if type != 'track': continue index = index + 1 if bFirstTime is False: if self.check.isInErr(index - 1, errIndex) == False: continue streamInfo = self.tool.getStreamUrl(str(item['id']), self.config.quality) # streamInfo = self.tool.getStreamUrl(str(item['id']), 'DOLBY_ATMOS') if self.tool.errmsg != "" or not streamInfo: printErr(14, item['title'] + "(Get Stream Url Err!!" + self.tool.errmsg + ")") continue aAlbumInfo = self.tool.getAlbum(item['album']['id']) fileType = self._getSongExtension(streamInfo['url']) # change targetDir targetDir2 = targetDir if self.config.plfile2arfolder == "True": targetDir2 = self.__creatAlbumDir(aAlbumInfo, self.config.quality) filePath = self.__getAlbumSongSavePath(targetDir2, aAlbumInfo, item, fileType) paraList = {'album': aAlbumInfo, 'title': item['title'], 'trackinfo': item, 'url': streamInfo['url'], 'path': filePath, 'retry': 3, 'key': streamInfo['encryptionKey'], 'codec': streamInfo['codec']} else: seq = self.tool.getIndexStr(index, len(aItemInfo)) filePath = targetDir2 + '/' + seq + " "+ pathHelper.replaceLimitChar(item['title'], '-') + fileType paraList = {'album': aAlbumInfo, 'index': index, 'title': item['title'], 'trackinfo': item, 'url': streamInfo['url'], 'path': filePath, 'retry': 3, 'key': streamInfo['encryptionKey'], 'codec': streamInfo['codec']} try: coverPath = targetDir2 + '/' + pathHelper.replaceLimitChar(aAlbumInfo['title'], '-') + '.jpg' coverUrl = self.tool.getAlbumArtworkUrl(aAlbumInfo['cover']) netHelper.downloadFile(coverUrl, coverPath) paraList['coverpath'] = coverPath tmpcoverpath.append(coverPath) except: cmdHelper.myprint("Could not download artwork for '{}'".format( item['title']), cmdHelper.TextColor.Red, None) if self.config.onlym4a == "True": self.check.addPath(filePath.replace(".mp4", ".m4a")) else: self.check.addPath(filePath) self.thread.start(self.__thradfunc_dl, paraList) self.thread.waitAll() self.tool.removeTmpFile(targetDir) # remove cover if self.config.savephoto != 'True': for item in tmpcoverpath: pathHelper.remove(item) bBreakFlag = True bFirstTime = False # check isErr, errIndex = self.check.checkPaths() if isErr: check = printChoice("[Err]\t\t" + str(len(errIndex)) + " Tracks Download Failed.Try Again?(y/n):") if check == 'y' or check == 'Y': bBreakFlag = False # download video for item in aItemInfo: type = item['type'] item = item['item'] if type != 'video': continue filePath = targetDir + '/' + pathHelper.replaceLimitChar(item['title'], '-') + ".mp4" filePath = os.path.abspath(filePath) if os.access(filePath, 0): os.remove(filePath) videoID = item['id'] resolutionList, urlList = self.tool.getVideoResolutionList(videoID) if urlList is None: printErr(14, item['title'] + '(' + self.tool.errmsg + ')') else: selectIndex = self.__getVideoResolutionIndex(resolutionList) if self.ffmpeg.mergerByM3u8_Multithreading2(urlList[int(selectIndex)], filePath, showprogress=self.showpro): printSUCCESS(14, item['title']) else: printErr(14, item['title'] + "(Download Or Merger Err!)") if playlist_id is not None: return return def downloadFavorite(self): targetDir = self.config.outputdir + "/Favorite/" pathHelper.mkdirs(targetDir) trackList, videoList = self.tool.getFavorite(self.config.userid) if self.tool.errmsg != "": printErr(0, "Get FavoriteList Err! " + self.tool.errmsg) return print("[NumberOfTracks] %s" % (len(trackList))) print("[NumberOfVideos] %s" % (len(videoList))) # download track for item in trackList: item = item['item'] streamInfo = self.tool.getStreamUrl(str(item['id']), self.config.quality) if self.tool.errmsg != "" or not streamInfo: printErr(14, item['title'] + "(Get Stream Url Err!!" + self.tool.errmsg + ")") continue fileType = self._getSongExtension(streamInfo['url']) filePath = targetDir + '/' + pathHelper.replaceLimitChar(item['title'], '-') + fileType aAlbumInfo = self.tool.getAlbum(item['album']['id']) paraList = {'album': aAlbumInfo, 'title': item['title'], 'trackinfo': item, 'url': streamInfo['url'], 'path': filePath, 'retry': 3, 'key': streamInfo['encryptionKey'], 'codec': streamInfo['codec']} self.thread.start(self.__thradfunc_dl, paraList) self.thread.waitAll() # download video for item in videoList: item = item['item'] filePath = targetDir + '/' + pathHelper.replaceLimitChar(item['title'], '-') + ".mp4" filePath = os.path.abspath(filePath) if os.access(filePath, 0): os.remove(filePath) resolutionList, urlList = self.tool.getVideoResolutionList(item['id']) selectIndex = self.__getVideoResolutionIndex(resolutionList) if self.ffmpeg.mergerByM3u8_Multithreading2(urlList[int(selectIndex)], filePath, showprogress=self.showpro): printSUCCESS(14, item['title']) else: printErr(14, item['title']) return def downloadUrl(self, link): stype, sid = self.tool.parseLink(link) if stype is None or sid is None: return if stype == "album": print("----------------ALBUM------------------") self.downloadAlbum(sid) elif stype == "track": print("----------------TRACK------------------") self.downloadTrack(sid) elif stype == "video": print("----------------VIDEO------------------") self.downloadVideo(sid) elif stype == "playlist": print("--------------PLAYLIST-----------------") self.downloadPlaylist(sid) elif stype == "artist": print("----------------ARTIST-----------------") self.downloadArtistAlbum(self.config.includesingle == "True", sid) def downloadByFile(self, path): if not os.path.exists(path): return arr = self.tool.parseFile(path) print("----------------FILE------------------") print("[Number of albums] %s" % (len(arr['album']))) print("[Number of artists] %s" % (len(arr['artist']))) print("[Number of tracks] %s" % (len(arr['track']))) print("[Number of videos] %s" % (len(arr['video']))) print("[Number of URLs] %s" % (len(arr['url']))) if len(arr['album']) > 0: redownload = True check = printChoice("Skip downloaded files?(y/n):") if not cmdHelper.isInputYes(check): redownload = False for index, item in enumerate(arr['album']): print("----Album[{0}/{1}]----".format(index+1, len(arr['album']))) print("[ID] %s" % (item)) self.downloadAlbum(item, redownload) for index, item in enumerate(arr['artist']): print(index) print("----Artist[{0}/{1}]----".format(index+1, len(arr['artist']))) print("[ID] %s" % (item)) includeSingles = self.config.includesingle == "True" self.downloadArtistAlbum(includeSingles, item) for index, item in enumerate(arr['track']): print("----Track[{0}/{1}]----".format(index+1, len(arr['track']))) print("[ID] %s" % (item)) self.downloadTrack(item) for index, item in enumerate(arr['video']): print("----Video[{0}/{1}]----".format(index+1, len(arr['video']))) print("[ID] %s" % (item)) self.downloadVideo(item) for index, item in enumerate(arr['url']): print("----Url[{0}/{1}]----".format(index+1, len(arr['url']))) print("[link] %s" % (item)) stype, sid = self.tool.parseLink(item) if stype is None or sid is None: printErr(14, 'Link can`t parse!') continue print("[ID] %s" % (sid)) if stype == "album": print("[Type] %s" % ("album")) self.downloadAlbum(sid) if stype == "track": print("[Type] %s" % ("track")) self.downloadTrack(sid) if stype == "video": print("[Type] %s" % ("video")) self.downloadVideo(sid)
[ "392309221@qq.com" ]
392309221@qq.com
dee56192c665947a5c40981b9f530c8e07040c27
bef915f5c24958737f9bbecb5ed51b485bb86384
/pddlstream/algorithms/satisfaction2.py
6239d323c4b3db1b1423818b6ba4985be04d0375
[ "MIT" ]
permissive
aiyi2099/pddlstream
c7757764d066e95fc533e9f7ce318bfbe935f6c5
2efd66351f9f2ae875d3b3629a49d9c22fa54896
refs/heads/master
2020-04-25T21:39:42.959640
2019-02-25T23:46:54
2019-02-25T23:46:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,272
py
from __future__ import print_function from pddlstream.algorithms.algorithm import parse_stream_pddl, evaluations_from_init from pddlstream.algorithms.common import SolutionStore from pddlstream.algorithms.downward import make_domain, make_predicate, add_predicate, make_axiom from pddlstream.algorithms.recover_optimizers import retrace_instantiation, combine_optimizers from pddlstream.algorithms.reorder import reorder_stream_plan from pddlstream.algorithms.scheduling.postprocess import reschedule_stream_plan #from pddlstream.algorithms.skeleton import SkeletonQueue from pddlstream.algorithms.skeleton2 import SkeletonQueue from pddlstream.algorithms.scheduling.utils import partition_external_plan from pddlstream.language.constants import is_parameter, get_length, partition_facts from pddlstream.language.conversion import revert_solution, \ evaluation_from_fact, replace_expression, get_prefix, get_args from pddlstream.language.object import Object, OptimisticObject from pddlstream.language.optimizer import UNSATISFIABLE from pddlstream.language.stream import Stream from pddlstream.language.function import Function, Predicate from pddlstream.language.statistics import write_stream_statistics, compute_plan_effort from pddlstream.utils import INF, get_mapping, elapsed_time, str_from_object, safe_zip from pddlstream.algorithms.reorder import get_partial_orders from pddlstream.utils import get_connected_components, grow_component, adjacent_from_edges, incoming_from_edges import time BIND_ACTION = 'bindings' def obj_from_existential_expression(parent): # obj_from_value_expression return replace_expression(parent, lambda o: OptimisticObject .from_opt(o, o) if is_parameter(o) else Object.from_value(o)) def create_domain(goal_facts): domain = make_domain() for fact in goal_facts: # TODO: consider removing this annoying check name = get_prefix(fact) parameters = ['?x{}'.format(i) for i in range(len(get_args(fact)))] add_predicate(domain, make_predicate(name, parameters)) return domain def plan_functions(functions, externals): external_from_function = {} for external in filter(lambda e: isinstance(e, Function), externals): assert external.function not in external_from_function external_from_function[external.function] = external function_plan = set() for term in functions: if get_prefix(term) not in external_from_function: raise ValueError('{} is not implemented'.format(get_prefix(term))) external = external_from_function[get_prefix(term)] instance = external.get_instance(get_args(term)) [result] = instance.next_optimistic() function_plan.add(result) print('Function plan:', str_from_object(function_plan)) return function_plan def get_parameters(goal_facts): return {o for f in goal_facts for o in get_args(f) if isinstance(o, OptimisticObject)} def extract_streams(evaluations, externals, goal_facts): streams = list(filter(lambda e: isinstance(e, Stream), externals)) free_parameters = get_parameters(goal_facts) visited_facts = set() stream_results = [] for fact in goal_facts: # TODO: prune results that already exceed effort limit retrace_instantiation(fact, streams, evaluations, free_parameters, visited_facts, stream_results) print('Streams:', stream_results) # TODO: express some of this pruning using effort (e.g. unlikely to sample bound value) return stream_results def get_optimistic_cost(function_plan): return sum([0.] + [result.value for result in function_plan if type(result.external) == Function]) def bindings_from_plan(plan_skeleton, action_plan): if action_plan is None: return None bindings = {} for (name1, args1), (name2, args2) in safe_zip(plan_skeleton, action_plan): assert name1 == name2 parameter_names = [o.value for o in args1] bindings.update(get_mapping(parameter_names, args2)) return bindings ################################################## def create_disable_axiom(external_plan): # TODO: express constraint mutexes upfront stream_plan, _ = partition_external_plan(external_plan) #print(stream_plan) parameters = [] preconditions = [result.stream_fact for result in stream_plan] derived = (UNSATISFIABLE,) # TODO: add parameters in the event that the same skeleton can be blocked twice return make_axiom(parameters, preconditions, derived) def compute_failed_indices(skeleton): failed_indices = set() for binding in skeleton.root.post_order(): result = binding.next_result if (result is not None) and result.instance.num_calls and (not result.instance.successes): failed_indices.add(binding.stream_indices[0]) #assert not binding.children return sorted(failed_indices) def current_failed_cluster(binding): failed_index = binding.stream_indices[0] assert 1 <= binding.stream_attempts[0] failed_result = binding.skeleton.stream_plan[failed_index] successful_results = [result for i, result in enumerate(binding.skeleton.stream_plan) if i not in binding.stream_indices] stream_plan = successful_results + [failed_result] partial_orders = get_partial_orders(stream_plan) # All connected components #return get_connected_components(stream_plan, partial_orders) # Only the failed connected component return [grow_component([failed_result], adjacent_from_edges(partial_orders))] def current_failure_contributors(binding): # Alternatively, find unsuccessful streams in cluster and add ancestors failed_index = binding.stream_indices[0] assert 1 <= binding.stream_attempts[0] failed_result = binding.skeleton.stream_plan[failed_index] failed_indices = compute_failed_indices(binding.skeleton) # Use last index? partial_orders = get_partial_orders(binding.skeleton.stream_plan) incoming = incoming_from_edges(partial_orders) failed_ancestors = grow_component([failed_result], incoming) for index in reversed(failed_indices): if index == failed_index: continue result = binding.skeleton.stream_plan[index] ancestors = grow_component([result], incoming) if ancestors & failed_ancestors: failed_ancestors.update(ancestors) return [failed_ancestors] def extract_disabled_clusters(queue): clusters = set() for skeleton in queue.skeletons: # TODO: include costs within clustering? # What is goal is to be below a cost threshold? # In satisfaction, no need because costs are fixed # Make stream_facts for externals to prevent use of the same ones # This ordering is why it's better to put likely to fail first # Branch on the different possible binding outcomes # TODO: consider a nonlinear version of this that evaluates out of order # Need extra sampling effort to identify infeasible subsets # Treat unevaluated optimistically, as in always satisfiable # Need to keep streams with outputs to connect if downstream is infeasible # TODO: prune streams that always have at least one success # TODO: CSP identification of irreducible unsatisfiable subsets # TODO: take into consideration if a stream is enumerated to mark as a hard failure # Decompose down optimizers #cluster_plans = [skeleton.stream_plan] partial_orders = get_partial_orders(skeleton.stream_plan) cluster_plans = get_connected_components(skeleton.stream_plan, partial_orders) binding = skeleton.best_binding if not binding.is_bound(): # TODO: block if cost sensitive to possibly get cheaper solutions #cluster_plans = current_failed_cluster(binding) cluster_plans = current_failure_contributors(binding) for cluster_plan in cluster_plans: clusters.add(frozenset(cluster_plan)) return clusters def are_domainated(clusters1, clusters2): return all(any(c1 <= c2 for c2 in clusters2) for c1 in clusters1) ################################################## def constraint_satisfaction(stream_pddl, stream_map, init, terms, stream_info={}, costs=True, max_cost=INF, success_cost=INF, max_time=INF, max_effort=INF, max_skeletons=INF, search_sample_ratio=1, verbose=True, **search_args): # Approaches # 1) Existential quantification of bindings in goal conditions # 2) Backtrack useful streams and then schedule. Create arbitrary outputs for not mentioned. # 3) Construct all useful streams and then associate outputs with bindings # Useful stream must satisfy at least one fact. How should these assignments be propagated though? # Make an action that maps each stream result to unbound values? # TODO: include functions again for cost-sensitive satisfaction # TODO: convert init into streams to bind certain facts # TODO: investigate constraint satisfaction techniques for binding instead # TODO: could also instantiate all possible free parameters even if not useful # TODO: effort that is a function of the number of output parameters (degrees of freedom) # TODO: use a CSP solver instead of a planner internally # TODO: max_iterations? if not terms: return {}, 0, init constraints, negated, functions = partition_facts(set(map(obj_from_existential_expression, terms))) if not costs: functions = [] evaluations = evaluations_from_init(init) goal_facts = set(filter(lambda f: evaluation_from_fact(f) not in evaluations, constraints)) free_parameters = sorted(get_parameters(goal_facts)) externals = parse_stream_pddl(stream_pddl, stream_map, stream_info) stream_results = extract_streams(evaluations, externals, goal_facts) function_plan = plan_functions(negated + functions, externals) plan_skeleton = [(BIND_ACTION, free_parameters)] cost = get_optimistic_cost(function_plan) if max_cost < cost: return None, INF, init # TODO: detect connected components # TODO: eagerly evaluate fully bound constraints # TODO: consider other results if this fails domain = create_domain(goal_facts) init_evaluations = evaluations.copy() store = SolutionStore(evaluations, max_time=max_time, success_cost=success_cost, verbose=verbose) queue = SkeletonQueue(store, domain, disable=False) num_iterations = search_time = sample_time = 0 last_clusters = set() last_success = True while not store.is_terminated(): num_iterations += 1 start_time = time.time() print('\nIteration: {} | Skeletons: {} | Skeleton Queue: {} | Evaluations: {} | ' 'Cost: {:.3f} | Search Time: {:.3f} | Sample Time: {:.3f} | Total Time: {:.3f}'.format( num_iterations, len(queue.skeletons), len(queue), len(evaluations), store.best_cost, search_time, sample_time, store.elapsed_time())) external_plan = None if len(queue.skeletons) < max_skeletons: clusters = extract_disabled_clusters(queue) domain.axioms[:] = [create_disable_axiom(cluster) for cluster in clusters] dominated = are_domainated(last_clusters, clusters) last_clusters = clusters planner = 'ff-astar' # TODO: toggle within reschedule_stream_plan #if last_success or not dominated: # Could also keep a history of results stream_plan = reschedule_stream_plan(init_evaluations, goal_facts, domain, stream_results, unique_binding=True, unsatisfiable=True, max_effort=max_effort, planner=planner, **search_args) if stream_plan is not None: external_plan = reorder_stream_plan(combine_optimizers( init_evaluations, stream_plan + list(function_plan))) print('Stream plan ({}, {:.3f}): {}'.format( get_length(external_plan), compute_plan_effort(external_plan), external_plan)) last_success = (external_plan is not None) search_time += elapsed_time(start_time) # Once a constraint added for a skeleton, it should only be relaxed start_time = time.time() if last_success: # Only works if create_disable_axioms never changes allocated_sample_time = (search_sample_ratio * search_time) - sample_time else: allocated_sample_time = INF queue.process(external_plan, plan_skeleton, cost=cost, complexity_limit=INF, max_time=allocated_sample_time) sample_time += elapsed_time(start_time) if not last_success and not queue: break # TODO: exhaustively compute all plan skeletons and add to queue within the focused algorithm write_stream_statistics(externals, verbose) action_plan, cost, facts = revert_solution(store.best_plan, store.best_cost, evaluations) bindings = bindings_from_plan(plan_skeleton, action_plan) return bindings, cost, facts
[ "caelan@mit.edu" ]
caelan@mit.edu
22db28b27bcda667767fa13f454db3c18a2c3a11
9d3171d191914bb980f8fea2b895de79d9893db6
/scikits/statsmodels/stats/tests/test_diagnostic.py
ac1e07b146b8b7f9f439869919dcbdbfd6620fb7
[ "BSD-2-Clause", "BSD-3-Clause" ]
permissive
takluyver/statsmodels
2d3ba11035501bd1e35f23daf27bca823eec2cb5
3f1aeba98cd4bc2f326f9c18c34e66c396be99cf
refs/heads/master
2023-06-19T18:51:28.464440
2012-02-29T16:24:25
2012-02-29T16:24:25
3,585,072
0
0
null
null
null
null
UTF-8
Python
false
false
28,983
py
# -*- coding: utf-8 -*- """Tests for Regression Diagnostics and Specification Tests Created on Thu Feb 09 13:19:47 2012 Author: Josef Perktold License: BSD-3 currently all tests are against R """ import os import numpy as np from numpy.testing import (assert_, assert_almost_equal, assert_equal, assert_approx_equal) from scikits.statsmodels.regression.linear_model import OLS, GLSAR from scikits.statsmodels.tools.tools import add_constant from scikits.statsmodels.datasets import macrodata import scikits.statsmodels.sandbox.panel.sandwich_covariance as sw import scikits.statsmodels.stats.diagnostic as smsdia #import scikits.statsmodels.sandbox.stats.diagnostic as smsdia import scikits.statsmodels.stats.outliers_influence as oi cur_dir = os.path.abspath(os.path.dirname(__file__)) def compare_t_est(sp, sp_dict, decimal=(14, 14)): assert_almost_equal(sp[0], sp_dict['statistic'], decimal=decimal[0]) assert_almost_equal(sp[1], sp_dict['pvalue'], decimal=decimal[1]) def notyet_atst(): d = macrodata.load().data realinv = d['realinv'] realgdp = d['realgdp'] realint = d['realint'] endog = realinv exog = add_constant(np.c_[realgdp, realint],prepend=True) res_ols1 = OLS(endog, exog).fit() #growth rates gs_l_realinv = 400 * np.diff(np.log(d['realinv'])) gs_l_realgdp = 400 * np.diff(np.log(d['realgdp'])) lint = d['realint'][:-1] tbilrate = d['tbilrate'][:-1] endogg = gs_l_realinv exogg = add_constant(np.c_[gs_l_realgdp, lint], prepend=True) exogg2 = add_constant(np.c_[gs_l_realgdp, tbilrate], prepend=True) res_ols = OLS(endogg, exogg).fit() res_ols2 = OLS(endogg, exogg2).fit() #the following were done accidentally with res_ols1 in R, #with original Greene data params = np.array([-272.3986041341653, 0.1779455206941112, 0.2149432424658157]) cov_hac_4 = np.array([1321.569466333051, -0.2318836566017612, 37.01280466875694, -0.2318836566017614, 4.602339488102263e-05, -0.0104687835998635, 37.012804668757, -0.0104687835998635, 21.16037144168061]).reshape(3,3, order='F') cov_hac_10 = np.array([2027.356101193361, -0.3507514463299015, 54.81079621448568, -0.350751446329901, 6.953380432635583e-05, -0.01268990195095196, 54.81079621448564, -0.01268990195095195, 22.92512402151113]).reshape(3,3, order='F') #goldfeld-quandt het_gq_greater = dict(statistic=13.20512768685082, df1=99, df2=98, pvalue=1.246141976112324e-30, distr='f') het_gq_less = dict(statistic=13.20512768685082, df1=99, df2=98, pvalue=1.) het_gq_2sided = dict(statistic=13.20512768685082, df1=99, df2=98, pvalue=1.246141976112324e-30, distr='f') #goldfeld-quandt, fraction = 0.5 het_gq_greater_2 = dict(statistic=87.1328934692124, df1=48, df2=47, pvalue=2.154956842194898e-33, distr='f') gq = smsdia.het_goldfeldquandt(endog, exog, split=0.5) compare_t_est(gq, het_gq_greater, decimal=(13, 14)) assert_equal(gq[-1], 'increasing') harvey_collier = dict(stat=2.28042114041313, df=199, pvalue=0.02364236161988260, distr='t') #hc = harvtest(fm, order.by=ggdp , data = list()) harvey_collier_2 = dict(stat=0.7516918462158783, df=199, pvalue=0.4531244858006127, distr='t') ################################## class TestDiagnosticG(object): def __init__(self): d = macrodata.load().data #growth rates gs_l_realinv = 400 * np.diff(np.log(d['realinv'])) gs_l_realgdp = 400 * np.diff(np.log(d['realgdp'])) lint = d['realint'][:-1] tbilrate = d['tbilrate'][:-1] endogg = gs_l_realinv exogg = add_constant(np.c_[gs_l_realgdp, lint], prepend=True) exogg2 = add_constant(np.c_[gs_l_realgdp, tbilrate], prepend=True) exogg3 = add_constant(np.c_[gs_l_realgdp], prepend=True) res_ols = OLS(endogg, exogg).fit() res_ols2 = OLS(endogg, exogg2).fit() res_ols3 = OLS(endogg, exogg3).fit() self.res = res_ols self.res2 = res_ols2 self.res3 = res_ols3 self.endog = self.res.model.endog self.exog = self.res.model.exog def test_basic(self): #mainly to check I got the right regression #> mkarray(fm$coefficients, "params") params = np.array([-9.48167277465485, 4.3742216647032, -0.613996969478989]) assert_almost_equal(self.res.params, params, decimal=14) def test_hac(self): res = self.res #> nw = NeweyWest(fm, lag = 4, prewhite = FALSE, verbose=TRUE) #> nw2 = NeweyWest(fm, lag=10, prewhite = FALSE, verbose=TRUE) #> mkarray(nw, "cov_hac_4") cov_hac_4 = np.array([1.385551290884014, -0.3133096102522685, -0.0597207976835705, -0.3133096102522685, 0.1081011690351306, 0.000389440793564336, -0.0597207976835705, 0.000389440793564339, 0.0862118527405036]).reshape(3,3, order='F') #> mkarray(nw2, "cov_hac_10") cov_hac_10 = np.array([1.257386180080192, -0.2871560199899846, -0.03958300024627573, -0.2871560199899845, 0.1049107028987101, 0.0003896205316866944, -0.03958300024627578, 0.0003896205316866961, 0.0985539340694839]).reshape(3,3, order='F') cov, bse_hac = sw.cov_hac_simple(res, nlags=4, use_correction=False) assert_almost_equal(cov, cov_hac_4, decimal=14) assert_almost_equal(bse_hac, np.sqrt(np.diag(cov)), decimal=14) cov, bse_hac = sw.cov_hac_simple(res, nlags=10, use_correction=False) assert_almost_equal(cov, cov_hac_10, decimal=14) assert_almost_equal(bse_hac, np.sqrt(np.diag(cov)), decimal=14) def test_het_goldfeldquandt(self): #TODO: test options missing #> gq = gqtest(fm, alternative='greater') #> mkhtest_f(gq, 'het_gq_greater', 'f') het_gq_greater = dict(statistic=0.5313259064778423, pvalue=0.9990217851193723, parameters=(98, 98), distr='f') #> gq = gqtest(fm, alternative='less') #> mkhtest_f(gq, 'het_gq_less', 'f') het_gq_less = dict(statistic=0.5313259064778423, pvalue=0.000978214880627621, parameters=(98, 98), distr='f') #> gq = gqtest(fm, alternative='two.sided') #> mkhtest_f(gq, 'het_gq_two_sided', 'f') het_gq_two_sided = dict(statistic=0.5313259064778423, pvalue=0.001956429761255241, parameters=(98, 98), distr='f') #> gq = gqtest(fm, fraction=0.1, alternative='two.sided') #> mkhtest_f(gq, 'het_gq_two_sided_01', 'f') het_gq_two_sided_01 = dict(statistic=0.5006976835928314, pvalue=0.001387126702579789, parameters=(88, 87), distr='f') #> gq = gqtest(fm, fraction=0.5, alternative='two.sided') #> mkhtest_f(gq, 'het_gq_two_sided_05', 'f') het_gq_two_sided_05 = dict(statistic=0.434815645134117, pvalue=0.004799321242905568, parameters=(48, 47), distr='f') endogg, exogg = self.endog, self.exog #tests gq = smsdia.het_goldfeldquandt(endogg, exogg, split=0.5) compare_t_est(gq, het_gq_greater, decimal=(14, 14)) assert_equal(gq[-1], 'increasing') gq = smsdia.het_goldfeldquandt(endogg, exogg, split=0.5, alternative='decreasing') compare_t_est(gq, het_gq_less, decimal=(14, 14)) assert_equal(gq[-1], 'decreasing') gq = smsdia.het_goldfeldquandt(endogg, exogg, split=0.5, alternative='two-sided') compare_t_est(gq, het_gq_two_sided, decimal=(14, 14)) assert_equal(gq[-1], 'two-sided') #TODO: forcing the same split as R 202-90-90-1=21 gq = smsdia.het_goldfeldquandt(endogg, exogg, split=90, drop=21, alternative='two-sided') compare_t_est(gq, het_gq_two_sided_01, decimal=(14, 14)) assert_equal(gq[-1], 'two-sided') #TODO other options ??? def test_het_breush_pagan(self): res = self.res bptest = dict(statistic=0.709924388395087, pvalue=0.701199952134347, parameters=(2,), distr='f') bp = smsdia.het_breushpagan(res.resid, res.model.exog) compare_t_est(bp, bptest, decimal=(13, 13)) def test_het_white(self): res = self.res #TODO: regressiontest compare with Greene or Gretl or Stata hw = smsdia.het_white(res.resid, res.model.exog) hw_values = (33.503722896538441, 2.9887960597830259e-06, 7.7945101228430946, 1.0354575277704231e-06) assert_almost_equal(hw, hw_values) def test_het_arch(self): #> library(FinTS) #> at = ArchTest(residuals(fm), lags=4) #> mkhtest(at, 'archtest_4', 'chi2') archtest_4 = dict(statistic=3.43473400836259, pvalue=0.487871315392619, parameters=(4,), distr='chi2') #> at = ArchTest(residuals(fm), lags=12) #> mkhtest(at, 'archtest_12', 'chi2') archtest_12 = dict(statistic=8.648320999014171, pvalue=0.732638635007718, parameters=(12,), distr='chi2') at4 = smsdia.het_arch(self.res.resid, maxlag=4) at12 = smsdia.het_arch(self.res.resid, maxlag=12) compare_t_est(at4[:2], archtest_4, decimal=(12, 13)) compare_t_est(at12[:2], archtest_12, decimal=(13, 14)) def test_acorr_breush_godfrey(self): res = self.res #bgf = bgtest(fm, order = 4, type="F") breushgodfrey_f = dict(statistic=1.179280833676792, pvalue=0.321197487261203, parameters=(4,195,), distr='f') #> bgc = bgtest(fm, order = 4, type="Chisq") #> mkhtest(bgc, "breushpagan_c", "chi2") breushgodfrey_c = dict(statistic=4.771042651230007, pvalue=0.3116067133066697, parameters=(4,), distr='chi2') bg = smsdia.acorr_breush_godfrey(res, nlags=4) bg_r = [breushgodfrey_c['statistic'], breushgodfrey_c['pvalue'], breushgodfrey_f['statistic'], breushgodfrey_f['pvalue']] assert_almost_equal(bg, bg_r, decimal=13) def test_acorr_ljung_box(self): res = self.res #> bt = Box.test(residuals(fm), lag=4, type = "Ljung-Box") #> mkhtest(bt, "ljung_box_4", "chi2") ljung_box_4 = dict(statistic=5.23587172795227, pvalue=0.263940335284713, parameters=(4,), distr='chi2') #> bt = Box.test(residuals(fm), lag=4, type = "Box-Pierce") #> mkhtest(bt, "ljung_box_bp_4", "chi2") ljung_box_bp_4 = dict(statistic=5.12462932741681, pvalue=0.2747471266820692, parameters=(4,), distr='chi2') #ddof correction for fitted parameters in ARMA(p,q) fitdf=p+q #> bt = Box.test(residuals(fm), lag=4, type = "Ljung-Box", fitdf=2) #> mkhtest(bt, "ljung_box_4df2", "chi2") ljung_box_4df2 = dict(statistic=5.23587172795227, pvalue=0.0729532930400377, parameters=(2,), distr='chi2') #> bt = Box.test(residuals(fm), lag=4, type = "Box-Pierce", fitdf=2) #> mkhtest(bt, "ljung_box_bp_4df2", "chi2") ljung_box_bp_4df2 = dict(statistic=5.12462932741681, pvalue=0.0771260128929921, parameters=(2,), distr='chi2') lb, lbpval, bp, bppval = smsdia.acorr_ljungbox(res.resid, 4, boxpierce=True) compare_t_est([lb[-1], lbpval[-1]], ljung_box_4, decimal=(13, 14)) compare_t_est([bp[-1], bppval[-1]], ljung_box_bp_4, decimal=(13, 14)) def test_harvey_collier(self): #> hc = harvtest(fm, order.by = NULL, data = list()) #> mkhtest_f(hc, 'harvey_collier', 't') harvey_collier = dict(statistic=0.494432160939874, pvalue=0.6215491310408242, parameters=(198), distr='t') #> hc2 = harvtest(fm, order.by=ggdp , data = list()) #> mkhtest_f(hc2, 'harvey_collier_2', 't') harvey_collier_2 = dict(statistic=1.42104628340473, pvalue=0.1568762892441689, parameters=(198), distr='t') hc = smsdia.linear_harvey_collier(self.res) compare_t_est(hc, harvey_collier, decimal=(12, 12)) def test_rainbow(self): #rainbow test #> rt = raintest(fm) #> mkhtest_f(rt, 'raintest', 'f') raintest = dict(statistic=0.6809600116739604, pvalue=0.971832843583418, parameters=(101, 98), distr='f') #> rt = raintest(fm, center=0.4) #> mkhtest_f(rt, 'raintest_center_04', 'f') raintest_center_04 = dict(statistic=0.682635074191527, pvalue=0.971040230422121, parameters=(101, 98), distr='f') #> rt = raintest(fm, fraction=0.4) #> mkhtest_f(rt, 'raintest_fraction_04', 'f') raintest_fraction_04 = dict(statistic=0.565551237772662, pvalue=0.997592305968473, parameters=(122, 77), distr='f') #> rt = raintest(fm, order.by=ggdp) #Warning message: #In if (order.by == "mahalanobis") { : # the condition has length > 1 and only the first element will be used #> mkhtest_f(rt, 'raintest_order_gdp', 'f') raintest_order_gdp = dict(statistic=1.749346160513353, pvalue=0.002896131042494884, parameters=(101, 98), distr='f') rb = smsdia.linear_rainbow(self.res) compare_t_est(rb, raintest, decimal=(13, 14)) rb = smsdia.linear_rainbow(self.res, frac=0.4) compare_t_est(rb, raintest_fraction_04, decimal=(13, 14)) def test_compare_lr(self): res = self.res res3 = self.res3 #nested within res #lrtest #lrt = lrtest(fm, fm2) #Model 1: ginv ~ ggdp + lint #Model 2: ginv ~ ggdp lrtest = dict(loglike1=-763.9752181602237, loglike2=-766.3091902020184, chi2value=4.66794408358942, pvalue=0.03073069384028677, df=(4,3,1)) lrt = res.compare_lr_test(res3) assert_almost_equal(lrt[0], lrtest['chi2value'], decimal=14) assert_almost_equal(lrt[1], lrtest['pvalue'], decimal=14) waldtest = dict(fvalue=4.65216373312492, pvalue=0.03221346195239025, df=(199,200,1)) wt = res.compare_f_test(res3) assert_almost_equal(wt[0], waldtest['fvalue'], decimal=13) assert_almost_equal(wt[1], waldtest['pvalue'], decimal=14) def test_compare_nonnested(self): res = self.res res2 = self.res2 #jt = jtest(fm, lm(ginv ~ ggdp + tbilrate)) #Estimate Std. Error t value Pr(>|t|) jtest = [('M1 + fitted(M2)', 1.591505670785873, 0.7384552861695823, 2.155182176352370, 0.032354572525314450, '*'), ('M2 + fitted(M1)', 1.305687653016899, 0.4808385176653064, 2.715438978051544, 0.007203854534057954, '**')] jt1 = smsdia.compare_j(res2, res) assert_almost_equal(jt1, jtest[0][3:5], decimal=13) jt2 = smsdia.compare_j(res, res2) assert_almost_equal(jt2, jtest[1][3:5], decimal=14) #Estimate Std. Error z value Pr(>|z|) coxtest = [('fitted(M1) ~ M2', -0.782030488930356, 0.599696502782265, -1.304043770977755, 1.922186587840554e-01, ' '), ('fitted(M2) ~ M1', -2.248817107408537, 0.392656854330139, -5.727181590258883, 1.021128495098556e-08, '***')] ct1 = smsdia.compare_cox(res, res2) assert_almost_equal(ct1, coxtest[0][3:5], decimal=13) ct2 = smsdia.compare_cox(res2, res) assert_almost_equal(ct2, coxtest[1][3:5], decimal=12) #TODO should be approx # Res.Df Df F Pr(>F) encomptest = [('M1 vs. ME', 198, -1, 4.644810213266983, 0.032354572525313666, '*'), ('M2 vs. ME', 198, -1, 7.373608843521585, 0.007203854534058054, '**')] # Estimate Std. Error t value petest = [('M1 + log(fit(M1))-fit(M2)', -229.281878354594596, 44.5087822087058598, -5.15139, 6.201281252449979e-07), ('M2 + fit(M1)-exp(fit(M2))', 0.000634664704814, 0.0000462387010349, 13.72583, 1.319536115230356e-30)] def test_cusum_ols(self): #R library(strucchange) #> sc = sctest(ginv ~ ggdp + lint, type="OLS-CUSUM") #> mkhtest(sc, 'cusum_ols', 'BB') cusum_ols = dict(statistic=1.055750610401214, pvalue=0.2149567397376543, parameters=(), distr='BB') #Brownian Bridge k_vars=3 cs_ols = smsdia.breaks_cusumolsresid(self.res.resid, ddof=k_vars) # compare_t_est(cs_ols, cusum_ols, decimal=(12, 12)) def test_breaks_hansen(self): #> sc = sctest(ginv ~ ggdp + lint, type="Nyblom-Hansen") #> mkhtest(sc, 'breaks_nyblom_hansen', 'BB') breaks_nyblom_hansen = dict(statistic=1.0300792740544484, pvalue=0.1136087530212015, parameters=(), distr='BB') bh = smsdia.breaks_hansen(self.res) assert_almost_equal(bh[0], breaks_nyblom_hansen['statistic'], decimal=14) #TODO: breaks_hansen doesn't return pvalues def test_recursive_residuals(self): reccumres_standardize = np.array([-2.151, -3.748, -3.114, -3.096, -1.865, -2.230, -1.194, -3.500, -3.638, -4.447, -4.602, -4.631, -3.999, -4.830, -5.429, -5.435, -6.554, -8.093, -8.567, -7.532, -7.079, -8.468, -9.320, -12.256, -11.932, -11.454, -11.690, -11.318, -12.665, -12.842, -11.693, -10.803, -12.113, -12.109, -13.002, -11.897, -10.787, -10.159, -9.038, -9.007, -8.634, -7.552, -7.153, -6.447, -5.183, -3.794, -3.511, -3.979, -3.236, -3.793, -3.699, -5.056, -5.724, -4.888, -4.309, -3.688, -3.918, -3.735, -3.452, -2.086, -6.520, -7.959, -6.760, -6.855, -6.032, -4.405, -4.123, -4.075, -3.235, -3.115, -3.131, -2.986, -1.813, -4.824, -4.424, -4.796, -4.000, -3.390, -4.485, -4.669, -4.560, -3.834, -5.507, -3.792, -2.427, -1.756, -0.354, 1.150, 0.586, 0.643, 1.773, -0.830, -0.388, 0.517, 0.819, 2.240, 3.791, 3.187, 3.409, 2.431, 0.668, 0.957, -0.928, 0.327, -0.285, -0.625, -2.316, -1.986, -0.744, -1.396, -1.728, -0.646, -2.602, -2.741, -2.289, -2.897, -1.934, -2.532, -3.175, -2.806, -3.099, -2.658, -2.487, -2.515, -2.224, -2.416, -1.141, 0.650, -0.947, 0.725, 0.439, 0.885, 2.419, 2.642, 2.745, 3.506, 4.491, 5.377, 4.624, 5.523, 6.488, 6.097, 5.390, 6.299, 6.656, 6.735, 8.151, 7.260, 7.846, 8.771, 8.400, 8.717, 9.916, 9.008, 8.910, 8.294, 8.982, 8.540, 8.395, 7.782, 7.794, 8.142, 8.362, 8.400, 7.850, 7.643, 8.228, 6.408, 7.218, 7.699, 7.895, 8.725, 8.938, 8.781, 8.350, 9.136, 9.056, 10.365, 10.495, 10.704, 10.784, 10.275, 10.389, 11.586, 11.033, 11.335, 11.661, 10.522, 10.392, 10.521, 10.126, 9.428, 9.734, 8.954, 9.949, 10.595, 8.016, 6.636, 6.975]) rr = smsdia.recursive_olsresiduals(self.res, skip=3, alpha=0.95) assert_equal(np.round(rr[5][1:], 3), reccumres_standardize) #extra zero in front #assert_equal(np.round(rr[3][4:], 3), np.diff(reccumres_standardize)) assert_almost_equal(rr[3][4:], np.diff(reccumres_standardize),3) assert_almost_equal(rr[4][3:].std(ddof=1), 10.7242, decimal=4) #regression number, visually checked with graph from gretl ub0 = np.array([ 13.37318571, 13.50758959, 13.64199346, 13.77639734, 13.91080121]) ub1 = np.array([ 39.44753774, 39.58194162, 39.7163455 , 39.85074937, 39.98515325]) lb, ub = rr[6] assert_almost_equal(ub[:5], ub0, decimal=7) assert_almost_equal(lb[:5], -ub0, decimal=7) assert_almost_equal(ub[-5:], ub1, decimal=7) assert_almost_equal(lb[-5:], -ub1, decimal=7) #test a few values with explicit OLS endog = self.res.model.endog exog = self.res.model.exog params = [] ypred = [] for i in range(3,10): resi = OLS(endog[:i], exog[:i]).fit() ypred.append(resi.model.predict(resi.params, exog[i])) params.append(resi.params) assert_almost_equal(rr[2][3:10], ypred, decimal=12) assert_almost_equal(rr[0][3:10], endog[3:10] - ypred, decimal=12) assert_almost_equal(rr[1][2:9], params, decimal=12) def test_normality(self): res = self.res #> library(nortest) #Lilliefors (Kolmogorov-Smirnov) normality test #> lt = lillie.test(residuals(fm)) #> mkhtest(lt, "lillifors", "-") lillifors1 = dict(statistic=0.0723390908786589, pvalue=0.01204113540102896, parameters=(), distr='-') #> lt = lillie.test(residuals(fm)**2) #> mkhtest(lt, "lillifors", "-") lillifors2 = dict(statistic=0.301311621898024, pvalue=1.004305736618051e-51, parameters=(), distr='-') #> lt = lillie.test(residuals(fm)[1:20]) #> mkhtest(lt, "lillifors", "-") lillifors3 = dict(statistic=0.1333956004203103, pvalue=0.4618672180799566, parameters=(), distr='-') lf1 = smsdia.lillifors(res.resid) lf2 = smsdia.lillifors(res.resid**2) lf3 = smsdia.lillifors(res.resid[:20]) compare_t_est(lf1, lillifors1, decimal=(15, 15)) compare_t_est(lf2, lillifors2, decimal=(15, 15)) #pvalue very small assert_approx_equal(lf2[1], lillifors2['pvalue'], significant=10) compare_t_est(lf3, lillifors3, decimal=(15, 1)) #R uses different approximation for pvalue in last case #> ad = ad.test(residuals(fm)) #> mkhtest(ad, "ad3", "-") adr1 = dict(statistic=1.602209621518313, pvalue=0.0003937979149362316, parameters=(), distr='-') #> ad = ad.test(residuals(fm)**2) #> mkhtest(ad, "ad3", "-") adr2 = dict(statistic=np.inf, pvalue=np.nan, parameters=(), distr='-') #> ad = ad.test(residuals(fm)[1:20]) #> mkhtest(ad, "ad3", "-") adr3 = dict(statistic=0.3017073732210775, pvalue=0.5443499281265933, parameters=(), distr='-') ad1 = smsdia.normal_ad(res.resid) compare_t_est(ad1, adr1, decimal=(14, 18)) ad2 = smsdia.normal_ad(res.resid**2) assert_(np.isinf(ad2[0])) ad3 = smsdia.normal_ad(res.resid[:20]) compare_t_est(ad3, adr3, decimal=(14, 14)) def test_influence(self): res = self.res #this test is slow import json fp = file(os.path.join(cur_dir,"results/influence_lsdiag_R.json")) lsdiag = json.load(fp) #basic assert_almost_equal(lsdiag['cov.scaled'], res.cov_params().ravel(), decimal=14) assert_almost_equal(lsdiag['cov.unscaled'], res.normalized_cov_params.ravel(), decimal=14) infl = oi.Influence(res) c0, c1 = infl.cooks_distance() #TODO: what's c1 assert_almost_equal(c0, lsdiag['cooks'], decimal=14) assert_almost_equal(infl.hat_matrix_diag, lsdiag['hat'], decimal=14) assert_almost_equal(infl.resid_studentized_internal, lsdiag['std.res'], decimal=14) #slow: infl.get_all_obs() #slow, nobs estimation loop dffits, dffth = infl.dffits assert_almost_equal(dffits, lsdiag['dfits'], decimal=14) assert_almost_equal(infl.resid_studentized_external, lsdiag['stud.res'], decimal=14) import pandas fn = os.path.join(cur_dir,"results/influence_measures_R.csv") infl_r = pandas.read_csv(fn, index_col=0) conv = lambda s: 1 if s=='TRUE' else 0 fn = os.path.join(cur_dir,"results/influence_measures_bool_R.csv") #not used yet: #infl_bool_r = pandas.read_csv(fn, index_col=0, # converters=dict(zip(range(7),[conv]*7))) infl_r2 = np.asarray(infl_r) assert_almost_equal(infl.dfbetas, infl_r2[:,:3], decimal=13) assert_almost_equal(infl.cov_ratio, infl_r2[:,4], decimal=14) #duplicates assert_almost_equal(dffits, infl_r2[:,3], decimal=14) assert_almost_equal(c0, infl_r2[:,5], decimal=14) assert_almost_equal(infl.hat_matrix_diag, infl_r2[:,6], decimal=14) #Note: for dffits, R uses a threshold around 0.36, mine: dffits[1]=0.24373 #TODO: finish and check thresholds and pvalues ''' R has >>> np.nonzero(np.asarray(infl_bool_r["dffit"]))[0] array([ 6, 26, 63, 76, 90, 199]) >>> np.nonzero(np.asarray(infl_bool_r["cov.r"]))[0] array([ 4, 26, 59, 61, 63, 72, 76, 84, 91, 92, 94, 95, 108, 197, 198]) >>> np.nonzero(np.asarray(infl_bool_r["hat"]))[0] array([ 62, 76, 84, 90, 91, 92, 95, 108, 197, 199]) ''' def grangertest(): #> gt = grangertest(ginv, ggdp, order=4) #> gt #Granger causality test # #Model 1: ggdp ~ Lags(ggdp, 1:4) + Lags(ginv, 1:4) #Model 2: ggdp ~ Lags(ggdp, 1:4) grangertest = dict(fvalue=1.589672703015157, pvalue=0.178717196987075, df=(198,193)) if __name__ == '__main__': t = TestDiagnosticG() t.test_basic() t.test_hac() t.test_acorr_breush_godfrey() t.test_acorr_ljung_box() t.test_het_goldfeldquandt() t.test_het_breush_pagan() t.test_het_white() t.test_compare_lr() t.test_compare_nonnested() t.test_influence() ################################################## ''' J test Model 1: ginv ~ ggdp + lint Model 2: ginv ~ ggdp + tbilrate Estimate Std. Error t value Pr(>|t|) M1 + fitted(M2) 1.591505670785873 0.7384552861695823 2.15518 0.0323546 * M2 + fitted(M1) 1.305687653016899 0.4808385176653064 2.71544 0.0072039 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 = lm(ginv ~ ggdp + tbilrate) > ct = coxtest(fm, fm3) > ct Cox test Model 1: ginv ~ ggdp + lint Model 2: ginv ~ ggdp + tbilrate Estimate Std. Error z value Pr(>|z|) fitted(M1) ~ M2 -0.782030488930356 0.599696502782265 -1.30404 0.19222 fitted(M2) ~ M1 -2.248817107408537 0.392656854330139 -5.72718 1.0211e-08 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 > et = encomptest(fm, fm3) > et Encompassing test Model 1: ginv ~ ggdp + lint Model 2: ginv ~ ggdp + tbilrate Model E: ginv ~ ggdp + lint + tbilrate Res.Df Df F Pr(>F) M1 vs. ME 198 -1 4.64481 0.0323546 * M2 vs. ME 198 -1 7.37361 0.0072039 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 > fm4 = lm(realinv ~ realgdp + realint, data=d) > fm5 = lm(log(realinv) ~ realgdp + realint, data=d) > pet = petest(fm4, fm5) > pet PE test Model 1: realinv ~ realgdp + realint Model 2: log(realinv) ~ realgdp + realint Estimate Std. Error t value M1 + log(fit(M1))-fit(M2) -229.281878354594596 44.5087822087058598 -5.15139 M2 + fit(M1)-exp(fit(M2)) 0.000634664704814 0.0000462387010349 13.72583 Pr(>|t|) M1 + log(fit(M1))-fit(M2) 6.2013e-07 *** M2 + fit(M1)-exp(fit(M2)) < 2.22e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 '''
[ "josef.pktd@gmail.com" ]
josef.pktd@gmail.com
98e2d1500a5338b9d1789e2f09a9c8c3deeadece
d1d81b97f4f6c733841150b95d9f966fc97e3846
/dir()语句.py
3659532052568344541c9ab7d0d2887541f18cbd
[]
no_license
A-lPha/-python-test
15ce38d473811d0a68a04d18e841543bdfa03688
3b8300f87e4be0145ed78f4a2ffe641adef6e25f
refs/heads/master
2021-01-13T14:48:31.681494
2016-12-15T15:01:21
2016-12-15T15:01:21
76,569,324
0
0
null
null
null
null
UTF-8
Python
false
false
26
py
import os print dir(os)
[ "noreply@github.com" ]
A-lPha.noreply@github.com
3c68c0ecfbf00348fbd1c2d22ad0713d11d9420b
a1e98002088582085f0733d7bbe3c6416a28f2ca
/Django/june5/manage.py
02adebf23b3ece45366357e172c531d64ae63bcf
[]
no_license
flannerykj/modules-archive
ff7dbde76ccac873d0a6ed15ad8458d827b9008f
1c10d04794b497354d976d8bd9814db2bb2b48ad
refs/heads/master
2020-12-02T16:36:43.702798
2017-07-07T16:36:52
2017-07-07T16:36:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
803
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "june5.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
[ "flannj@gmail.com" ]
flannj@gmail.com
16f537a1b9f7d342b7d0390549a86589bdc67781
5a0dc727d87f2e46c56299a4084877e9c1633141
/src/pageobject/loginpage.py
1141f09be460e506337882775b0f0302e4c78b00
[]
no_license
llllllinggggwei/auto_UI
f0bbe17cd6dd1f21768867dbfb6ff57a08519600
6108fba3dc94c12ea3620758f078df469747c621
refs/heads/master
2023-04-14T00:29:36.211286
2021-04-27T03:39:33
2021-04-27T03:39:33
360,745,275
0
0
null
null
null
null
UTF-8
Python
false
false
910
py
from src.pageobject.basepage import Page from selenium.webdriver.common.by import By # 登录页面 class LoginPage(Page): # 元素集 # 账号输入框 account_input = (By.NAME, "account") # 密码输入框 password_input = (By.NAME, "password") # 登录按钮 login_button = (By.XPATH, "//span[text()='登 录']") # 关闭窗口按钮 close_button = (By.CLASS_NAME, "icon-close") # 验证元素 # 退出系统按钮 logout_button = (By.XPATH, "//span[text()='退出系统']") def __init__(self, driver): Page.__init__(self, driver) # 输入账号 def input_account(self, account): self.input_text(self.account_input, account) # 输入密码 def input_password(self, password): self.input_text(self.password_input, password) # 点击登录 def click_login(self): self.click(self.login_button)
[ "419056831@qq.com" ]
419056831@qq.com
31fef5230a0f043658d1beccdb76fae0ca3d4085
2c7608ea752fee771f4e69fcaf6716ba2e82fce7
/bin/pasteurize
35b93faf5839293fd403c90c5b41e50c099808c7
[]
no_license
YLZLY/ChatterBot_
5ea57eb68759e2676706672587c3f97457ca35be
a0333f5e703065bafb6a7e1b28c44bad1fa797c1
refs/heads/master
2020-09-14T10:43:46.292984
2018-05-03T19:32:53
2018-05-03T19:32:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
255
#!/Users/amarchisio/starterbot/starterbot/bin/python # -*- coding: utf-8 -*- import re import sys from libpasteurize.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "noreply@github.com" ]
YLZLY.noreply@github.com
882398f469ad3b3c3ed122b0a18d5b1cd52427ee
0451afefb78e8bff2804b3a0aa9e7420b84e3a19
/03-equality.py
7f0aae3fec436c4818e13280a6d33a0a159bfd01
[]
no_license
jarednthomas/python-challenge-2021
f3ee348e1aadf37665b5735f2e0f3ad472bcebb5
0646c4374e50734504c94cd2d887a96e4bc15074
refs/heads/main
2023-07-02T07:19:39.788371
2021-08-02T06:57:27
2021-08-02T06:57:27
391,512,416
0
0
null
null
null
null
UTF-8
Python
false
false
936
py
#!/usr/bin/env python3 import re, requests from bs4 import BeautifulSoup, Comment # Set url and headers url = "http://www.pythonchallenge.com/pc/def/equality.html" headers = { 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Methods': 'GET', 'Access-Control-Allow-Headers': 'Content-Type', 'Access-Control-Max-Age': '3600', 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0' } # Parse html with bs4 response = requests.get(url, headers) soup = BeautifulSoup(response.content, 'html.parser') # Extract comments from soup and save last comments = soup.find_all(text=lambda text: isinstance(text, Comment)) last_comment = comments[-1] # Find all matches of hint using a regular expression regex = r"[a-z][A-Z]{3}[a-z]{1}[A-Z]{3}[a-z]" matches = re.findall(regex, last_comment) # Return solution url print(url.replace("equality", "".join( i[4] for i in matches )))
[ "jaredpyrothomas@gmail.com" ]
jaredpyrothomas@gmail.com
8a6cad25cd8faee53fb079d4f2d6261d56c6bb5d
e6145805bc3a338fab6dbe8a2737f4047a654ef6
/project_site/sql-orm.py
717347861bc5e445d1a4d1e82876ec42de80102a
[]
no_license
Danko99/site_django_first
654017e7fc8c923b30e249c419616653c636bc4a
63a4a45633c25cf8f073a3b78e9f3d2b2b83e7da
refs/heads/master
2023-08-07T19:20:14.135840
2021-09-23T16:40:11
2021-09-23T16:40:11
405,380,071
0
0
null
null
null
null
UTF-8
Python
false
false
119
py
from news.models import News news1 = News(title="Новость 2", content="Контент новости 2").save()
[ "58398839+Danko998@users.noreply.github.com" ]
58398839+Danko998@users.noreply.github.com
39b633a1c1e7311cd3957b5b541a863b54ca8d09
f3bd271bf00325881fb5b2533b9ef7f7448a75ec
/xcp2k/classes/_rho0_information1.py
266e763637cc4db3096f702b0dc24ff4016f5056
[]
no_license
obaica/xcp2k
7f99fc9d494859e16b9b0ea8e217b0493f4b2f59
6e15c2c95658f545102595dc1783f5e03a9e6916
refs/heads/master
2020-07-15T17:27:43.378835
2019-02-11T16:32:24
2019-02-11T16:32:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
721
py
from xcp2k.inputsection import InputSection from _each249 import _each249 class _rho0_information1(InputSection): def __init__(self): InputSection.__init__(self) self.Section_parameters = None self.Add_last = None self.Common_iteration_levels = None self.Filename = None self.Log_print_key = None self.Unit = None self.EACH = _each249() self._name = "RHO0_INFORMATION" self._keywords = {'Common_iteration_levels': 'COMMON_ITERATION_LEVELS', 'Log_print_key': 'LOG_PRINT_KEY', 'Add_last': 'ADD_LAST', 'Unit': 'UNIT', 'Filename': 'FILENAME'} self._subsections = {'EACH': 'EACH'} self._attributes = ['Section_parameters']
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
dbf8bbb76fa72d0dc5d11a244358c3400d2a591c
b03fe7009626eb0001ab9e797e098ea248291910
/Contest/SymmetricTree.py
38c5c45288c627e9378cdef4d253b7a896ace901
[]
no_license
Anirudh-thakur/LeetCodeProblems
84761bd006527fb485a7e6a24047fc9d8cbde7fc
1e59e40df06df85d8f3366c326cb4392d27b9e64
refs/heads/main
2023-07-01T13:34:45.166492
2021-08-07T02:09:10
2021-08-07T02:09:10
367,592,489
0
0
null
null
null
null
UTF-8
Python
false
false
1,322
py
# https://leetcode.com/problems/symmetric-tree/ # Definition for a binary tree node. class TreeNode(object): def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution(object): def isSymmetric(self, root): """ :type root: TreeNode :rtype: bool """ if root == None: return True if root.left == None and root.right == None: return True if root.left == None or root.left == None: return False if root.left.val != root.right.val: return False return self.findSymmetry(root.left,root.right) def findSymmetry(self,p,q): if p == None and q == None: return True if p == None or q == None: return False result = self.findSymmetry(p.left,q.right) result = result and self.findSymmetry(p.right,q.left) return p.val == q.val and result if __name__ == '__main__': objS = Solution() root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(2) root.left.left = TreeNode(3) root.left.right = TreeNode(4) root.right.right = TreeNode(3) root.right.left = TreeNode(4) result = objS.isSymmetric(root) print(result)
[ "anirudh.thakur94@gmail.com" ]
anirudh.thakur94@gmail.com
d24ea9e87cc6ec4b639a144c8ebb515845c2ea48
439ab4a51a4fc1f0877a6bdc5092d6761ff46b96
/polls/urls.py
cfadddf3130ffaecdd0410152bc698a2c4a26e12
[]
no_license
UsernameForGerman/askru
e58ccd13d6e0da9abe103e75688ab6f97698438b
c2b62c175cc38abf0d565d2e0e42f05e19bf878d
refs/heads/master
2022-12-11T09:20:50.071495
2020-09-16T19:23:12
2020-09-16T19:23:12
295,678,924
0
0
null
null
null
null
UTF-8
Python
false
false
143
py
from django.urls import include, path from .routings import router app_name = 'polls' urlpatterns = [ path('', include(router.urls)), ]
[ "polyakgerman@gmail.com" ]
polyakgerman@gmail.com
d2f8a4958bd91a5421dcd5d164e905b1d5656717
0d546bff5f7421c5b118ff9dce257b9c65291689
/services/cms_app.py
111edca6c0b1f00f6802f2029a0ca604d80cf403
[]
no_license
ZloiGremlin/agentstvo
cace44c9298b2e5d2767094e5bacd6cd130eb451
1d39694caf89c66ac67489aa3add2482d7e139e1
refs/heads/master
2016-09-01T19:48:04.140064
2013-06-01T14:08:28
2013-06-01T14:08:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,208
py
# vim:fileencoding=utf-8 from cms.app_base import CMSApp from cms.apphook_pool import apphook_pool class CakesApp(CMSApp): name = u'Услуги: Торты' urls = ["services.cake_urls"] class DecoratesApp(CMSApp): name = u'Услуги: Украшения' urls = ["services.decorate_urls"] class RequisitesApp(CMSApp): name = u'Услуги: Реквизиты' urls = ["services.req_urls"] class ArtistApp(CMSApp): name = u'Услуги: Артисты' urls = ["services.artist_urls"] class McApp(CMSApp): name = u'Услуги: Ведущие' urls = ["services.mc_urls"] class KidsApp(CMSApp): name = u'Услуги: Для детей' urls = ["services.kids_urls"] class MusicApp(CMSApp): name = u'Услуги: Музыканты' urls = ["services.music_urls"] class CarApp(CMSApp): name = u'Услуги: Автомобили' urls = ["services.car_urls"] apphook_pool.register(CakesApp) apphook_pool.register(DecoratesApp) apphook_pool.register(RequisitesApp) apphook_pool.register(ArtistApp) apphook_pool.register(McApp) apphook_pool.register(KidsApp) apphook_pool.register(MusicApp) apphook_pool.register(CarApp)
[ "zloi.gremlin@gmail.com" ]
zloi.gremlin@gmail.com
05ba170c288cc1402abe1c388ae50633613b71c6
e49d335d66e6ce28330cd9bb1731152d41dff8f8
/favNumber.py
b6695a2034523df6ae714dfa81d806816e74774e
[]
no_license
sizif/ps-python-path-one
fe52b2b9e3328e752497f4e23cfbadc889e1a9f4
a4e4aa552a5028979ddc04546ef7fdefcc39c8c9
refs/heads/master
2020-06-18T17:56:23.760126
2016-10-14T19:56:28
2016-10-14T19:56:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
68
py
print("What's your favorite number?") # print to console # git test
[ "ImsirovicAjdin@users.noreply.github.com" ]
ImsirovicAjdin@users.noreply.github.com
c2505100ccc3c9c808011a301d677a8ff2f94b66
8e57713c7662fb4e851b4a60e1aa743143e94940
/To_From_dynamo.py
82b1799ddbfbe39ba3d568dc76e13f5bf84615c8
[]
no_license
Prathyusha277/Cloud_Project
5ca4538bc102e30ef58d7a482cd54bdab34563a1
78b4f6b56e32f793f0ac8b8b412a3b085f85599c
refs/heads/master
2020-04-03T00:55:32.589432
2016-11-30T19:37:16
2016-11-30T19:37:16
60,643,786
0
0
null
null
null
null
UTF-8
Python
false
false
733
py
import boto import csv import random from boto import dynamodb2 from boto.dynamodb2.exceptions import ItemNotFound from boto.dynamodb2.table import Table from boto.dynamodb.condition import LE, EQ, GE, BETWEEN def cc_prediction(From_user,TO_USER): dynamodb_conn = boto.dynamodb2.connect_to_region('us-west-2') dynamodb_table = Table('Enron_Data',connection=dynamodb_conn) print From_user print TO_USER to_user_list = dynamodb_table.query_2(From__eq =From_user,To_List__eq =TO_USER) no_of_cc = 2 cc_list = [] print to_user_list.__sizeof__() for user in to_user_list: print "In" cc_list = user['CC'] predicted_list = [] if len(cc_list) > 0: predicted_list = random.sample(cc_list,no_of_cc) return predicted_list
[ "prathyu@uw.edu" ]
prathyu@uw.edu
2d2e271336619fd6ce911645db998560f6dc91c4
18c10aa1261bea4ae02fa79598446df714519c6f
/80_pythonProject/code07-01.py
09a2e9b1428a585abf14afa2b2ae0c0adc62af93
[]
no_license
giveseul-23/give_Today_I_Learn
3077efbcb11ae4632f68dfa3f9285d2c2ad27359
f5599f0573fbf0ffdfbcc9c79b468e3c76303dd4
refs/heads/master
2023-05-06T08:13:49.845436
2021-05-25T04:33:20
2021-05-25T04:33:20
330,189,867
0
0
null
null
null
null
UTF-8
Python
false
false
192
py
# a = 10 # b = 20 # c = 30 # hap = a + b + c a = [10, 20, 30] a = [0, 0, 0] a[0] = 10 a[1] = 20 a[2] = 30 #a[3] = 40 hap = a[0] + a[1] + a[2] print(hap) print(len(a)) # 방의 전체 갯수
[ "joodasel@icloud.com" ]
joodasel@icloud.com
00b1556f93908ce7243de4a76431a0482c4fb549
58338d473f34e7fdcb80e6a281a65e8cbb6826e8
/showing_digit.py
06134f8291c74ae70effecef62f6668c0658825b
[]
no_license
sandeep9889/neural_network
5b0bddec899418f8434c5b25b7198338d79190b6
634beb5a161a2ceead3fdd924bb4834d7169273d
refs/heads/main
2023-08-27T18:42:01.810711
2021-11-15T06:49:46
2021-11-15T06:49:46
427,841,196
0
0
null
null
null
null
UTF-8
Python
false
false
338
py
import numpy import matplotlib.pyplot %matplotlib inline data_file = open("mnist_dataset/mnist_train_100.csv","r") data_list = data_file.readlines() data_file.close all_values = data_list[0].split(',') image_array = numpy.asfarray(all_values[1:]).reshape((28,28)) matplotlib.pyplot.imshow(image_array,cmap='Greys', interpolation='none')
[ "sandeepchauhan9630228313@gmail.com" ]
sandeepchauhan9630228313@gmail.com
af63607ea6184a20fe8159adf2d867627c3ab91f
53bd1888e29dd76a2aed467eb5122dcc4802013b
/src/test/s3.py
27015fbf30e579d9ae3efbd53e1c558df9434937
[]
no_license
hongyunnchen/TWCC-CLI
254c45830c39047d6e08e798de85bec6c48b0359
7b80dd5df86199a6c0544d42a0648fbcf44fc9db
refs/heads/master
2023-01-07T14:15:20.826838
2020-06-17T01:06:10
2020-06-17T01:06:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,867
py
from __future__ import print_function import sys, os TWCC_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path[1]=TWCC_PATH from termcolor import colored def TWCC_LOGO(): print ( colored(">"*10+" Welcome to ", 'yellow'), colored('TWCC.ai', 'white', attrs=['reverse', 'blink']), colored(" "+"<"*10, 'yellow') ) TWCC_LOGO() ## here is logo import re from twcc.services.s3_tools import S3 import click,time @click.group() def cli(): pass # Bucket functions @click.command() @click.option('-n','--name','bucket_name',required=True,type=str,help='Name of the Bucket') def create_bucket(bucket_name): ''' Create new s3 bucket. ''' s3 = S3() s3.create_bucket(bucket_name) @click.command() #@click.option('-lb','list4buckets',is_flag = False,type=bool, help = 'Show all buckets in this project') def list_buckets(): ''' List all the exist s3 buckets in the project. ''' s3 = S3() #if not list4buckets: buckets = s3.list_bucket() s3.test_table(buckets) @click.command() @click.option('-n','--name','bucket_name',required=True, help = 'Name of the Bucket.') @click.option('-df','df',is_flag = True,help = 'Help delete all the files inside the bucket before delete bucket.') def del_bucket(bucket_name,df): ''' Delete s3 bucket ''' s3 = S3() s3.del_bucket(bucket_name,df) # File functions @click.command() @click.option('-n','--name','bucket_name',required=True, help = 'Name of the Bucket.') def list_files(bucket_name): ''' List all the exist files inside the s3 bucket. ''' s3 = S3() files = s3.list_object(bucket_name) s3.test_table(files) @click.command() @click.option('-n','--name','bucket_name',required=True, help = 'Name of the Bucket.') @click.option('-f','--file_name','file_name',required=True, help = 'Name of the File.') def del_file(bucket_name,file_name): ''' Delete file from s3 bucket ''' s3 = S3() s3.del_object(bucket_name,file_name) @click.command() @click.option('-s','--source','source',required=True, help = 'Name of the File.') @click.option('-d','--directory','directory',required=True, help = 'Name of the Bucket.') @click.option('-k','--key','key',help ='The name of the key to upload to.') @click.option('-r','r',is_flag = True,help = 'Recursively copy entire directories.' ) def upload(source,directory,key,r): ''' Upload to s3 bucket ''' s3 = S3() # Check for source type if os.path.isdir(source): if r != True: raise Exception("{} is path, need to set recursive to True".format(source)) s3.upload_bucket(path = source ,bucket_name = directory,r=r) else: if key == None: key = source.split('/')[-1] s3.upload_bucket(file_name = source ,bucket_name = directory,key = key) #download_bucket(self,bucket_name=None,key=None,file_name=None,path=None,r=False) @click.command() @click.option('-s','--source','source',required=True, help = 'Name of the Bucket.') @click.option('-d','--directory','directory',required=True, help = 'Name of the path.') @click.option('-k','--key','key',help ='The name of the key to download.') @click.option('-r','r',is_flag = True,help = 'Recursively copy entire directories.' ) def download(source,directory,key,r): ''' Download from s3 bucket ''' s3 = S3() # Check for source type if not s3.check_4_bucket(source): raise Exception("No such bucket name {} exists".format(source)) # Check if the directory exists # Download everything inside the bucket if os.path.isdir(directory) and key == None: if r != True: raise Exception("{} is path, need to set recursive to True".format(directory)) s3.download_bucket(bucket_name = source,path=directory,r=r) else: # Download everthing from a folder if key.endswith('*'): files = s3.list_object(source) prefix_folder = '/'.join(key.split('/')[:-1]) desire_files = s3.list_files_v2(bucket_name=source,delimiter='',prefix=prefix_folder) for desire_file in desire_files: if not desire_file.endswith('/'): print(desire_file) new_directory = directory + desire_file s3.download_bucket(file_name = new_directory,bucket_name = source,key = desire_file) else: # Download a single file from a folder or bucket if directory.endswith('/'): directory = directory + key s3.download_bucket(file_name = directory,bucket_name = source,key = key) cli.add_command(create_bucket) cli.add_command(list_buckets) cli.add_command(del_bucket) cli.add_command(list_files) cli.add_command(del_file) cli.add_command(upload) cli.add_command(download) if __name__ == '__main__': cli()
[ "taiwanpride888@gmail.com" ]
taiwanpride888@gmail.com
bd58898ff5e639d5aed47288e437c57b6290db16
f19012ef68807173eea827c0315f672ef56290ce
/python/problem10/sol.py
e7b438949e76985aab91857547173180efafd201
[]
no_license
dkuldeep11/project-euler
33b49202c401d649b2dd61b1243f7aa0d3a7dbd9
2e9e33b9e9e1207e73a119a68ff0eacbfc682d82
refs/heads/master
2020-08-06T20:03:14.035077
2016-10-22T08:01:41
2016-10-22T08:01:41
21,801,851
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
marked = [0] * 1000000 value = 3 s = 2 while value < 1000000: if marked[value] == 0: s += value i = value while i < 1000000: marked[i] = 1 i += value value += 2 print s
[ "dkuldeep11@gmail.com" ]
dkuldeep11@gmail.com
07af8e9ef55e0b2579cbc523d01dae3e7ecc544f
e46c72e21f3eb65f79d6100a50ae008d60e34946
/old/language/python/udemy/ds/135/135.py
9d5df69b4678a9f72bdcd3bd70f4d26f8bb1b94f
[]
no_license
jsmack/learn
cacacdad07c56d73c32797f6393c89185e549bc5
2bc31eb32100eaff7409d6932eb67fb18be37cd8
refs/heads/master
2023-04-15T17:45:14.402233
2023-03-20T06:20:57
2023-03-20T06:20:57
126,584,082
0
1
null
2023-03-09T00:44:18
2018-03-24T09:24:08
Jupyter Notebook
UTF-8
Python
false
false
766
py
import sqlite3 #conn = sqlite3.connect('test_sqlite.db') ## in memory conn = sqlite3.connect(':memory:') curs = conn.cursor() curs.execute( 'create table persons(id INTEGER PRIMARY KEY AUTOINCREMENT, name STRING)' ) conn.commit() curs.execute( 'INSERT INTO persons(name) values("Mike")' ) conn.commit() curs.execute('select * from persons') print(curs.fetchall()) curs.execute( 'INSERT INTO persons(name) values("Nancy")' ) curs.execute( 'INSERT INTO persons(name) values("Jun")' ) conn.commit() curs.execute('UPDATE persons set name = "Michel" where name = "Mike"') conn.commit() curs.execute('DELETE FROM persons where name ="Michel"') conn.commit() curs.execute('select * from persons') print(curs.fetchall()) curs.close() conn.close()
[ "noreply@github.com" ]
jsmack.noreply@github.com
7bcdde9d69bbfdf507ab5deb5fc46e32a41bc479
5af6c600306d0bb2ad9ff9b7ac660c4f0b250a54
/analyses/scripts/plots/create_audio_filter_plots.py
df4f9a6deb5ed23d8608ad824c4a417a01791a1c
[ "MIT" ]
permissive
jean-andre-gauthier/findsong
2c1c47fa4313bae3da6b34c893465c070b20ffe3
7dbac881d4ac8aeb0826c5999e1a5bf9ca68ff2f
refs/heads/master
2021-06-07T07:14:04.182444
2020-07-01T07:32:32
2020-07-01T07:32:32
125,167,600
3
0
null
null
null
null
UTF-8
Python
false
false
4,768
py
""" Generates a plot for audio filter analyses WARNING: contains hardcoded values (taken from analyses/data/audio_filters/recognition_rate_for_matches) """ from argparse import ArgumentParser import matplotlib matplotlib.use("Agg") from itertools import groupby import matplotlib.pyplot as plt import numpy as np from os import path def main(): parser = ArgumentParser() parser.add_argument( "--audiofilterplotpath", help="path to the audio filter output plot (path)", required=True, type=str) parser.add_argument( "--pitchplotpath", help="path to the pitch output plot (path)", required=True, type=str) parser.add_argument( "--tempoplotpath", help="path to the tempo output plot (path)", required=True, type=str) args = parser.parse_args() if path.exists(args.audiofilterplotpath): print(f"Error: {args.audiofilterplotpath} already exists") exit(1) if path.exists(args.pitchplotpath): print(f"Error: {args.pitchplotpath} already exists") exit(1) if path.exists(args.tempoplotpath): print(f"Error: {args.tempoplotpath} already exists") exit(1) create_audio_filter_plot(args.audiofilterplotpath) create_pitch_plot(args.pitchplotpath) create_tempo_plot(args.tempoplotpath) def create_audio_filter_plot(audio_filter_plot_path): plt.figure(0, figsize=(5, 7.5)) axes = [plt.subplot2grid((2, 1), (0, 0)), plt.subplot2grid((2, 1), (1, 0))] plt.suptitle( "Matcher peformance with distorted audio", fontsize=12, y=0.05) plt.tight_layout(pad=4.0, w_pad=4.0, h_pad=4.0) indices = np.arange(1, 8) labels = np.array([ "aecho", "aphaser", "chorus", "clean", "flanger", "highpass", "lowpass" ]) values = np.array([97.55, 97.91, 98.05, 99.36, 97.81, 97.88, 99.21]) aecho, aphaser, chorus, clean, flanger, highpass, lowpass = axes[0].bar( indices, values) axes[0].set_xticks(indices) axes[0].set_xticklabels(labels, rotation=45) axes[0].set_ylim([95, 100]) axes[0].set_ylabel("Recognition rate in %") cell_text = np.array([["aecho", "0.8:0.8:1000:0.8"], [ "aphaser", "delay=5.0:speed=2.0" ], ["chorus", "0.7:0.9:55:0.4:0.25:2"], ["clean", "-"], ["flanger", "delay=20:depth=5:regen=10:speed=2"], ["highpass", "f=440"], ["lowpass", "f=440"]]) col_labels = np.array(["filter name", "filter parameter"]) axes[1].xaxis.set_visible(False) axes[1].yaxis.set_visible(False) table = axes[1].table( cellText=cell_text, colLabels=col_labels, alpha=0.0, bbox=None, colLoc="center", cellLoc="center", loc="center", rasterized=False, rowLoc="center") table.auto_set_font_size(False) table.set_fontsize(6) table.scale(1, 1.75) for (line, col), cell in table.get_celld().items(): if line == 0: cell._text.set_weight("bold") cell.set_linewidth(0) cell.set_fill(False) plt.savefig(audio_filter_plot_path, transparent=True) def create_pitch_plot(pitch_plot_path): xs = np.arange(1, 7) ys1 = np.array([41, 12, 5, 2, 10, 1]) ys2 = np.array([38.29, 24.33, 20.4, 15, 16.3, 13]) create_plot(xs, "Pitch shift (halftones)", ys1, "Recognition rate in %", ys2, "Average match score", "Matcher performance with pitch shift", pitch_plot_path) def create_tempo_plot(tempo_plot_path): xs = np.array([2.5, 5, 7.5, 10, 12.5, 15]) ys1 = np.array([97, 95, 73, 54, 49, 36]) ys2 = np.array([76.26, 39.14, 26.93, 23.74, 21.24, 20.28]) create_plot(xs, "Tempo increase (percent)", ys1, "Recognition rate in %", ys2, "Average match score", "Matcher performance with tempo increase", tempo_plot_path) def create_plot(xs, xs_label, ys1, ys_label1, ys2, ys_label2, title, file_name): figure, axis1 = plt.subplots() axis1.set_xlabel(xs_label) axis1.set_ylabel(ys_label1, color="red") axis1.tick_params(axis='y', labelcolor="red") handle1, = plt.plot(xs, ys1, "r--", label=ys_label1) ticks = [tick for tick in plt.gca().get_yticks() if tick >= 0] plt.gca().set_yticks(ticks) axis2 = axis1.twinx() axis2.set_ylabel(ys_label2, color="blue") axis2.tick_params(axis='y', labelcolor="blue") handle2, = plt.plot(xs, ys2, "b--", label=ys_label2) figure.tight_layout(pad=3.0, w_pad=3.0, h_pad=3.0) figure.suptitle(title, fontsize=12, y=0.05) plt.legend(handles=[handle1, handle2], loc=1) plt.savefig(file_name, transparent=True) if __name__ == "__main__": main()
[ "jean.andre.gauthier@gmail.com" ]
jean.andre.gauthier@gmail.com
321011e09a0f1060c3d37f2603fac8f748d076a1
0c165b875e9c0189a01fdd77b6a5c22a371be1f5
/bp_locations/deprecated/get_TopBPs.py
60328b4a9fd5431f7f8c102588aa7a2ed60a87ab
[ "MIT" ]
permissive
gunnarpope/eosblocklife
ed904c9257860660a98fb8719cd8398e88cf9455
1028788f73568de68f7df51f5d960e3e38d9bc4e
refs/heads/master
2020-04-07T06:12:36.129427
2019-07-19T18:35:10
2019-07-19T18:35:10
158,126,213
1
0
null
null
null
null
UTF-8
Python
false
false
1,373
py
import os import requests import json from pprint import pprint from get_api import * # output = str(os.system('cleos -u https://api.eossweden.org system listproducers -l 100 > bp_list.txt')) with open('bp_list.txt','r') as f: data = f.readlines() # create a row entry for each BP bps = [ row.strip().split() for row in data] header = bps[0] bps = bps[1:] # strip the header # print the top 21 BPs for bp in bps[:21]: print(bp) rank = 1 for i in range(len(bps)): # bp[i][3] = float(bp[i][3]) bps[i].append(rank) rank += 1 # top21bp = bps[:21] top21bp = bps[:2] # REMOVE LATER, FOR TESTING ONLY print(len(top21bp)) print(top21bp[:5]) bot21bp = bps[21:] print(len(bot21bp)) print(bot21bp[:5]) # get the url for each bp urls = [ [x[0], x[2]] for x in top21bp] print(urls) # get the gps coordinates for each bp bp_url = top21bp[0][2] print(bp_url) bp_list = [] bp_error= [] bpjson = {} for bp in top21bp: bpname = bp[0] rank = bp[4] lat, lon, country, city = get_location(bp[2]) if city != 'NULL': print(bpname, rank, lat, lon) bp_list.append((bpname, rank, lat, lon)) bpjson[bpname] = {'rank': rank, 'lat': lat, 'lon': lon} else: print(bpname, rank, 'NULL','NULL') bp_error.append(bpname) bpjson[bpname] = {'rank': rank, 'lat':'NULL', 'lon':'NULL'} # if with open('bp_rank_location.json','w') as f: f.write(json.dumps(bpjson))
[ "gunnar@gmail.com" ]
gunnar@gmail.com
d01fc85129d2621718d9fb4e85e5e59853382e4e
85291887cc4550a45acc077d0ef007efca39460c
/fastreid/solver/optim/__init__.py
35166055399065859dc667f41a27d92176acc14e
[ "Apache-2.0" ]
permissive
lingxiao-he/fast-reid
309915e98b679264ae6d57b3573cf00502e8576a
29f318c609a6c94b4ae8ab2d88ca37f689e6c109
refs/heads/master
2022-09-12T04:18:21.906079
2020-06-01T02:42:33
2020-06-01T02:42:33
268,408,241
0
1
Apache-2.0
2020-06-01T02:38:57
2020-06-01T02:38:56
null
UTF-8
Python
false
false
291
py
from .lamb import Lamb from .lookahead import Lookahead, LookaheadAdam from .novograd import Novograd from .over9000 import Over9000, RangerLars from .radam import RAdam, PlainRAdam, AdamW from .ralamb import Ralamb from .ranger import Ranger from .swa import SWA from torch.optim import *
[ "sherlockliao01@gmail.com" ]
sherlockliao01@gmail.com
09312b413626034603d22e8710c8a59d6faa95ce
3199589c741e1be8bf226bfdb557978cf36b10f7
/smartrez/migrations/0005_auto_20170602_0531.py
f6b0b866fe027243eeb270ce98ca028249e0e61e
[]
no_license
yadav1aryan/smartrez
566f0555850bc8143edd53222018025706529864
89caa41005fd9d2a26bfd9ef05522e05a255f885
refs/heads/master
2021-01-23T10:21:25.226003
2017-06-06T06:05:54
2017-06-06T06:05:54
93,055,895
0
0
null
null
null
null
UTF-8
Python
false
false
479
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-06-02 05:31 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('smartrez', '0004_img_thumb_url'), ] operations = [ migrations.RemoveField( model_name='selected_imgs', name='search_query', ), migrations.DeleteModel( name='Selected_imgs', ), ]
[ "yadav1aryan@gmail.com" ]
yadav1aryan@gmail.com
72d6712831449572e9936eb833178603ded478e6
5c7da7dabdc076ad7113ccd20561a8bbf5f9a70e
/investments/api/urls.py
324a28aca34350ecc4cebfd00b973c17458b954b
[]
no_license
aqcloudacio/cloudaciofeez
2499fb5fc5334fa871daab2abea6c34bfa8c7667
8399560ece9aa10a6d6801f42c027dca26a65936
refs/heads/master
2023-02-27T22:36:20.501159
2021-02-11T00:03:46
2021-02-11T00:03:46
337,887,413
0
0
null
null
null
null
UTF-8
Python
false
false
2,887
py
from django.urls import include, path from rest_framework.routers import SimpleRouter from rest_framework_nested import routers from investments.api.views import (InvestmentViewSet, InvestmentClassViewSet, AssetAllocationViewSet, AssetAllocationNameViewSet, InvestmentNameViewSet, NABInvestmentViewSet, InvestmentTemplateViewSet, AssetAllocationTemplateViewSet, UnlinkedAssetAllocationNameViewSet, UnlinkedInvestmentNameViewSet, InvestmentAASummaryViewset) from portfolios.api.urls import platform_router app_name = "investments" ######### # Full length routes ######### portfolio_router = routers.NestedSimpleRouter(platform_router, r'portfolios', lookup='portfolio') portfolio_router.register(r'investments', InvestmentViewSet, 'investments') investments_router = routers.NestedSimpleRouter(portfolio_router, r'investments', lookup='investment') investments_router.register(r'aa', AssetAllocationViewSet, 'aa') ######### # Template routes ######### templaterouter = SimpleRouter() templaterouter.register(r"investmenttemplate", InvestmentTemplateViewSet) investment_template_router = routers.NestedSimpleRouter(templaterouter, r'investmenttemplate', lookup='investmenttemplate') investment_template_router.register(r'aa', AssetAllocationTemplateViewSet, 'aa') ######### # Basename routes ######### rootrouter = SimpleRouter() rootrouter.register(r"investmentclass", InvestmentClassViewSet) rootrouter.register(r"aaname", AssetAllocationNameViewSet) rootrouter.register(r"unlinkedaaname", UnlinkedAssetAllocationNameViewSet) # All investment names rootrouter.register(r"investmentname", InvestmentNameViewSet) # Only investment names that are not linked to a platform (non-specific invs) rootrouter.register(r"unlinkedinvestmentname", UnlinkedInvestmentNameViewSet) rootrouter.register(r"NABinvestment", NABInvestmentViewSet) urlpatterns = [ path("", include(portfolio_router.urls)), path("", include(investments_router.urls)), path("", include(templaterouter.urls)), path("", include(investment_template_router.urls)), path("", include(rootrouter.urls)) ]
[ "alejandro.quintero@clouxter.com" ]
alejandro.quintero@clouxter.com
87b391c44ecdd79cf4d4aa98c49de5f95409783b
ac562c0d008a282bef5ea4705b4fc8c2b8897964
/Ch07_exceptions/TRY_EXTENSIONS/ch07_09_assertion.py
2376c7c5769be7bd3562d34a00bcfa0da2a2e6a0
[]
no_license
jimmus69/python-projects
ed78a50250356e9366c9d10303facf037a310596
9a91fe7f979e6e09dedec7b60595e91ae2d0d321
refs/heads/master
2021-01-21T10:52:08.486557
2017-05-18T18:51:54
2017-05-18T18:51:54
91,708,264
0
0
null
null
null
null
UTF-8
Python
false
false
728
py
#! /usr/bin/python -O """ Program: ch07_06_assertion.py Function: An exploration of assertion """ import sys def get_number(): number = int(raw_input("Enter a number (10 - 99): ")) assert number > 9 and number < 100, "Number must be between 10 and 99" return number while True: try: number = get_number() result = 100 / number except AssertionError, error_string: print error_string except (KeyboardInterrupt, EOFError): break except: print "specific exception =", str(sys.exc_info()[0]).split('.')[-1][:-2] print "error string =", str(sys.exc_info()[1]) else: print "The value is ", result print "Good bye!" exit(0)
[ "noreply@github.com" ]
jimmus69.noreply@github.com
99d5bdfc4d5e27844954b4dc1ceb95a16c54bf99
0322f3ea9e66a303d46e229ddf2cbd46e794f46e
/model/label.py
3506eecf086118b43ecaa9df7026b9755a24bbea
[]
no_license
WangYX-TKZ/AdvancedEAST-caffe
3df0c7cff265439bf2e1b888be0b9e3d9920dd95
0e56626165fd679f2daa302286d5025078b131ef
refs/heads/master
2022-12-04T13:01:46.971973
2020-08-27T06:44:00
2020-08-27T06:44:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,787
py
import numpy as np import os import cv2 from PIL import Image, ImageDraw from tqdm import tqdm import cfg def point_inside_of_quad(px, py, quad_xy_list, p_min, p_max): if (p_min[0] <= px <= p_max[0]) and (p_min[1] <= py <= p_max[1]): xy_list = np.zeros((4, 2)) xy_list[:3, :] = quad_xy_list[1:4, :] - quad_xy_list[:3, :] xy_list[3] = quad_xy_list[0, :] - quad_xy_list[3, :] yx_list = np.zeros((4, 2)) yx_list[:, :] = quad_xy_list[:, -1:-3:-1] a = xy_list * ([py, px] - yx_list) b = a[:, 0] - a[:, 1] if np.amin(b) >= 0 or np.amax(b) <= 0: return True else: return False else: return False def point_inside_of_nth_quad(px, py, xy_list, shrink_1, long_edge): nth = -1 vs = [[[0, 0, 3, 3, 0], [1, 1, 2, 2, 1]], [[0, 0, 1, 1, 0], [2, 2, 3, 3, 2]]] for ith in range(2): quad_xy_list = np.concatenate(( np.reshape(xy_list[vs[long_edge][ith][0]], (1, 2)), np.reshape(shrink_1[vs[long_edge][ith][1]], (1, 2)), np.reshape(shrink_1[vs[long_edge][ith][2]], (1, 2)), np.reshape(xy_list[vs[long_edge][ith][3]], (1, 2))), axis=0) p_min = np.amin(quad_xy_list, axis=0) p_max = np.amax(quad_xy_list, axis=0) if point_inside_of_quad(px, py, quad_xy_list, p_min, p_max): if nth == -1: nth = ith else: nth = -1 break return nth def shrink(xy_list, ratio=cfg.shrink_ratio): if ratio == 0.0: return xy_list, xy_list diff_1to3 = xy_list[:3, :] - xy_list[1:4, :] diff_4 = xy_list[3:4, :] - xy_list[0:1, :] diff = np.concatenate((diff_1to3, diff_4), axis=0) dis = np.sqrt(np.sum(np.square(diff), axis=-1)) # determine which are long or short edges long_edge = int(np.argmax(np.sum(np.reshape(dis, (2, 2)), axis=0))) short_edge = 1 - long_edge # cal r length array r = [np.minimum(dis[i], dis[(i + 1) % 4]) for i in range(4)] # cal theta array diff_abs = np.abs(diff) diff_abs[:, 0] += cfg.epsilon theta = np.arctan(diff_abs[:, 1] / diff_abs[:, 0]) # shrink two long edges temp_new_xy_list = np.copy(xy_list) shrink_edge(xy_list, temp_new_xy_list, long_edge, r, theta, ratio) shrink_edge(xy_list, temp_new_xy_list, long_edge + 2, r, theta, ratio) # shrink two short edges new_xy_list = np.copy(temp_new_xy_list) shrink_edge(temp_new_xy_list, new_xy_list, short_edge, r, theta, ratio) shrink_edge(temp_new_xy_list, new_xy_list, short_edge + 2, r, theta, ratio) return temp_new_xy_list, new_xy_list, long_edge def shrink_edge(xy_list, new_xy_list, edge, r, theta, ratio=cfg.shrink_ratio): if ratio == 0.0: return start_point = edge end_point = (edge + 1) % 4 long_start_sign_x = np.sign( xy_list[end_point, 0] - xy_list[start_point, 0]) new_xy_list[start_point, 0] = \ xy_list[start_point, 0] + \ long_start_sign_x * ratio * r[start_point] * np.cos(theta[start_point]) long_start_sign_y = np.sign( xy_list[end_point, 1] - xy_list[start_point, 1]) new_xy_list[start_point, 1] = \ xy_list[start_point, 1] + \ long_start_sign_y * ratio * r[start_point] * np.sin(theta[start_point]) # long edge one, end point long_end_sign_x = -1 * long_start_sign_x new_xy_list[end_point, 0] = \ xy_list[end_point, 0] + \ long_end_sign_x * ratio * r[end_point] * np.cos(theta[start_point]) long_end_sign_y = -1 * long_start_sign_y new_xy_list[end_point, 1] = \ xy_list[end_point, 1] + \ long_end_sign_y * ratio * r[end_point] * np.sin(theta[start_point]) def process_label(data_dir=cfg.data_dir): with open(os.path.join(data_dir, cfg.val_fname), 'r') as f_val: f_list = f_val.readlines() with open(os.path.join(data_dir, cfg.train_fname), 'r') as f_train: f_list.extend(f_train.readlines()) for line, _ in zip(f_list, tqdm(range(len(f_list)))): line_cols = str(line).strip().split(',') img_name, width, height = \ line_cols[0].strip(), int(line_cols[1].strip()), \ int(line_cols[2].strip()) gt = np.zeros((7,height // cfg.pixel_size, width // cfg.pixel_size)) # gt = np.zeros((height // cfg.pixel_size, width // cfg.pixel_size, 7)) 7 128 128 train_label_dir = os.path.join(data_dir, cfg.train_label_dir_name) xy_list_array = np.load(os.path.join(train_label_dir, img_name[:-4] + '.npy')) train_image_dir = os.path.join(data_dir, cfg.train_image_dir_name) img_path = os.path.join(train_image_dir, img_name) im = cv2.imread(img_path) if im == None: print(img_path) continue # with Image.open(os.path.join(train_image_dir, img_name)) as im: # draw = ImageDraw.Draw(im) for xy_list in xy_list_array: _, shrink_xy_list, _ = shrink(xy_list, cfg.shrink_ratio) shrink_1, _, long_edge = shrink(xy_list, cfg.shrink_side_ratio) p_min = np.amin(shrink_xy_list, axis=0) p_max = np.amax(shrink_xy_list, axis=0) # floor of the float ji_min = (p_min / cfg.pixel_size - 0.5).astype(int) - 1 # +1 for ceil of the float and +1 for include the end ji_max = (p_max / cfg.pixel_size - 0.5).astype(int) + 3 imin = np.maximum(0, ji_min[1]) imax = np.minimum(height // cfg.pixel_size, ji_max[1]) jmin = np.maximum(0, ji_min[0]) jmax = np.minimum(width // cfg.pixel_size, ji_max[0]) for i in range(imin, imax): for j in range(jmin, jmax): px = (j + 0.5) * cfg.pixel_size py = (i + 0.5) * cfg.pixel_size if point_inside_of_quad(px, py, shrink_xy_list, p_min, p_max): gt[0,i, j] = 1 line_width, line_color = 1, (0,0,255) ith = point_inside_of_nth_quad(px, py, xy_list, shrink_1, long_edge) vs = [[[3, 0], [1, 2]], [[0, 1], [2, 3]]] if ith in range(2): gt[1,i, j] = 1 if ith == 0: line_width, line_color = 2, (0,255,255) else: line_width, line_color = 2, (0,255,0) gt[2:3,i, j] = ith gt[3:5,i, j]=xy_list[vs[long_edge][ith][0]] - [px, py] gt[5:,i, j]=xy_list[vs[long_edge][ith][1]] - [px, py] cv2.line(im, (int(px - 0.5 * cfg.pixel_size), int(py - 0.5 * cfg.pixel_size)), (int(px + 0.5 * cfg.pixel_size), int(py - 0.5 * cfg.pixel_size)), line_color, line_width) cv2.line(im, (int(px + 0.5 * cfg.pixel_size), int(py - 0.5 * cfg.pixel_size)), (int(px + 0.5 * cfg.pixel_size), int(py + 0.5 * cfg.pixel_size)), line_color, line_width) cv2.line(im, (int(px + 0.5 * cfg.pixel_size), int(py + 0.5 * cfg.pixel_size)), (int(px - 0.5 * cfg.pixel_size), int(py + 0.5 * cfg.pixel_size)), line_color, line_width) cv2.line(im, (int(px - 0.5 * cfg.pixel_size), int(py + 0.5 * cfg.pixel_size)), (int(px - 0.5 * cfg.pixel_size), int(py - 0.5 * cfg.pixel_size)), line_color, line_width) cv2.line(im, (int(px - 0.5 * cfg.pixel_size), int(py - 0.5 * cfg.pixel_size)), (int(px + 0.5 * cfg.pixel_size), int(py - 0.5 * cfg.pixel_size)), line_color, line_width) act_image_dir = os.path.join(cfg.data_dir, cfg.show_act_image_dir_name) if cfg.draw_act_quad: # im.save(os.path.join(act_image_dir, img_name)) cv2.imwrite(os.path.join(act_image_dir, img_name),im) train_label_dir = os.path.join(data_dir, cfg.train_label_dir_name) np.save(os.path.join(train_label_dir, img_name[:-4] + '_gt.npy'), gt) if __name__ == '__main__': process_label()
[ "395934383@qq.com" ]
395934383@qq.com
979fda9d64ffb33988e33d552691c2db5cf5b8c9
cc3b5dca5e969b3890ccd91d41d04b068e21b13a
/graph.py
25c4859fc4c756d4a071916d28163ecb5d7f5bfa
[]
no_license
saransappa/Graph-Algorithms-in-Python
846cfe53ed4dc5ac3ab093f20b4db7580c85a502
2d8530ce8037e093ce5aa0dd8129b10dee308cfa
refs/heads/master
2022-11-26T10:33:50.629733
2020-07-27T05:41:59
2020-07-27T05:41:59
281,698,931
1
0
null
null
null
null
UTF-8
Python
false
false
7,403
py
# @author: Saran Sappa class graph_node: label = None adjlist = None # adjacency list of the node visited = None # -1 if node is not visited, 0 if visited but still under process and 1 if node visited component = None # Used for assigning connected component number def __init__(self, l): self.label = l self.adjlist = [] self.visited = -1 self.component = -1 def add_neighbour(self, k): self.adjlist.append(k) def print(self,adj = True): print(self.label,end = " ") if adj: print("->",end=" ") for i in self.adjlist: print(i.label, end=" -> ") print("\n") def dfs(self,output=True, count=-1): #count defines the connected component number while finding the connected components if output: print(self.label,end=" -> ") self.visited = 0 if count>0: self.component = count for i in self.adjlist: if i.visited == -1: i.dfs(output=output,count=count) self.visited = 1 def SCC_dfs(self,arr): self.visited = 0 k = arr k.append(self.label) for i in self.adjlist: if i.visited == -1: k = i.SCC_dfs(k) self.visited = 1 return k def isCyclic(self): self.visited = 0 k = False for i in self.adjlist: if i.visited == -1: k = i.isCyclic() if i.visited == 0: return True self.visited = 1 return k class graph: size = None directed = None nodes = None cyclic = None def __init__(self, s, directed=True): self.size =s self.cyclic = False self.directed = directed self.nodes = [] for i in range(s): g= graph_node(i) self.nodes.append(g) def print(self): print('-'*10+ " Adjacency lists of all vertices "+'-'*10) for i in self.nodes: i.print() def add_edge(self,k,l): p = None #Temporary variable q = None #Temporary variable for i in self.nodes: if i.label == k: p = i break for i in self.nodes: if i.label == l: q = i if self.directed: p.add_neighbour(q) else: p.add_neighbour(q) q.add_neighbour(p) def dfs(self, start = -1,output=True,mod_visited = True): # start denotes the label of starting node for DFS. if output: #output is True if we want to print DFS output else it is False. print('-'*10 + " Depth First Search "+'-'*10) if start==-1: # start becomes -1 if label if start node is not provided for i in self.nodes: if i.visited == -1: i.dfs(output=output) else: self.nodes[start].dfs(output=output) if mod_visited: # mod_visited if True if we want to clear visited attribute of all vertices else it is False. for i in self.nodes: # Marking all nodes as unvisited after completion of DFS i.visited = -1 print("\n") def bfs(self, start = -1): # start denotes the label of starting node for BFS print('-'*10 + " Breadth First Search "+'-'*10) initial = None if start==-1: # start becomes -1 if label if start node is not provided initial = 0 else: initial = start queue = [] queue.append(self.nodes[initial]) #self.nodes[initial].visited = 1 while len(queue)!=0: p = queue.pop(0) p.visited = 1 print(p.label,end=" -> ") for i in p.adjlist: if i.visited == -1: queue.append(i) i.visited = 0 for i in self.nodes: # Marking all nodes as unvisited after completion of BFS i.visited = -1 print("\n") def isConnected(self): self.dfs(start = 0,output=False, mod_visited=False) for i in self.nodes: if i.visited == -1: print("The graph is disconnected.") return print("The graph is connected.") def noOfConnectedComponents(self): _count = 1 for i in self.nodes: if i.visited == -1: i.dfs(output=False, count = _count) _count+=1 for i in self.nodes: # Marking all nodes as unvisited after completion of BFS i.visited = -1 print("\n") return _count def connectedComponents(self): count = self.noOfConnectedComponents() for i in range(1,count): print("Connected Component "+str(i)) for j in self.nodes: if j.component == i: print(j.label,end=" -> ") print() def SCC_dfs(self): arr = [] for i in self.nodes: if i.visited == -1: arr = i.SCC_dfs(arr) for i in self.nodes: # Marking all nodes as unvisited after completion of BFS i.visited = -1 return arr def SCCUtil(self,count_): count = count_ for i in range(1,count): print("Strongly Connected Component "+str(i)) for j in self.nodes: if j.component == i: print(j.label,end=" -> ") print() def SCC(self,g_): # Call this method to find strongly connected components g= given graph, g_ = reverse graph k = g_.SCC_dfs() k.reverse() count = 1 for i in k: if self.nodes[i].visited == -1: self.nodes[i].dfs(output=False,count = count) count+=1 self.SCCUtil(count_ = count) def isCyclic(self): # Call this method to check the cyclicity of a graph for i in self.nodes: if i.visited == -1: self.cyclic = i.isCyclic() if i.visited == 0: self.cyclic = True print(self.cyclic) for i in self.nodes: # Marking all nodes as unvisited after completion of BFS i.visited = -1 if __name__ == "__main__": s = int(input("Please enter the size of the graph : ")) k = int(input("Please enter 1 for directed graph or 0 for undirected graph : ")) z = None if k==1: z = True else: z = False g = graph(s, directed=z) t = int(input("Please enter the no.of edges : ")) print("Please enter the edges in the format \"K l\" (without quotes) for an edge(k,l)") if k == 1: g_ = graph(s,directed=True) for i in range(t): k = input().split() g.add_edge(int(k[0]),int(k[1])) g_.add_edge(int(k[1]),int(k[0])) """ Note: Use SCC for directed graphs and connectedComponents for undirected graphs respectively. """ #g.print() #g_.print() #g.dfs() #g_.dfs() #g.SCC(g_) #g.isCyclic() #g.dfs(start=1) #g.bfs() #g.bfs(start =2) #g.isConnected() #print("No. of connected components in the graph = "+str(g.noOfConnectedComponents())) #g.connectedComponents()
[ "saran.sappa@gmail.com" ]
saran.sappa@gmail.com
42c706c83bf0ed544bdb726a8bf29c823388270e
56a4b179029d1808151bd8435b7b357f6247d8c0
/idealab/makeGallery.py
2202f2a336ca4feb01898faf62482d220e07f0c7
[]
no_license
jtmorgan/grantsbot
8bfa1adec259054e75b6391e260c05cf48377a35
0d334a962e08e0e0c6eb5970d70a830e596913fa
refs/heads/master
2020-03-30T23:51:54.143130
2019-02-25T23:01:12
2019-02-25T23:01:12
8,145,168
2
3
null
2015-06-22T18:07:50
2013-02-11T19:50:11
Python
UTF-8
Python
false
false
3,244
py
#! /usr/bin/python2.7 # Copyright 2013 Jtmorgan # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import grantsbot_settings import output_settings import profiles from random import shuffle import sys import templates ###FUNCTIONS def makeGallery(): """ Makes featured profiles for IdeaLab galleries. """ if params['subtype'] in ['intro', 'new_idea', 'ieg_draft', 'participants_wanted']: featured_list = getFeaturedProfiles() else: sys.exit("unrecognized featured content type " + params['subtype']) prepOutput(featured_list) def getFeaturedProfiles(): """ Gets info about the top-billed profiles in a guide. """ featured_list = [] profile_page = profiles.Profiles(params[params['subtype']]['input page path'], params[params['subtype']]['input page id'], params) profile_list = profile_page.getPageSectionData(level = params[params['subtype']]['profile toclevel']) for profile in profile_list: # print profile text = profile_page.getPageText(profile['index']) profile = profile_page.scrapeInfobox(profile, text) if len(profile['summary']) > 1 and len(profile['image']) > 1: profile['action'] = params[params['subtype']]['action'] profile['summary'] = tools.formatSummaries(profile['summary']) featured_list.append(profile) shuffle(featured_list) featured_list = featured_list[:params[params['subtype']]['number featured']] return featured_list def prepOutput(featured_list): first_subpage = params[params['subtype']]['first subpage'] number_featured = params[params['subtype']]['number featured'] featured_list = tools.addDefaults(featured_list) output = profiles.Profiles(params[params['subtype']]['output path'], settings = params) #stupid tocreate a new profile object here. and stupid to re-specify the path below i = first_subpage for f in featured_list: if i <= first_subpage + (number_featured - 1): f['profile'] = output.formatProfile(f) f['profile'] = params['header template'] + '\n' + f['profile'] edit_summ = params['edit summary'] % (params['subtype'] + " " + params['type']) output.publishProfile(f['profile'], params[params['subtype']]['output path'], edit_summ, sb_page = i) i += 1 else: break if __name__ == "__main__": param = output_settings.Params() params = param.getParams(sys.argv[1]) params['type'] = sys.argv[1] params['subtype'] = sys.argv[2] tools = profiles.Toolkit() makeGallery()
[ "jonnymorgan.esq@gmail.com" ]
jonnymorgan.esq@gmail.com
688d7c6bcc6a6697f9f6c1936e4fbe8249fa496d
d43f7f98ebadc574fe0c1195c98da3a59803b060
/api/migrations/0001_initial.py
41d837d580acf874a71dbf5bca1ff0f05cb130f2
[]
no_license
rauloojs/tata_heroku
1400b74f5a24d1b99657debee641fcebf9d2812c
3c5cd6c08c32d53b10915bc07729f331755971fd
refs/heads/master
2020-05-18T18:59:02.560111
2015-09-22T05:32:37
2015-09-22T05:32:37
42,086,021
1
1
null
null
null
null
UTF-8
Python
false
false
1,117
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Doctor', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('doc_name', models.CharField(max_length=100)), ('doc_esp', models.CharField(max_length=100)), ], ), migrations.CreateModel( name='Patient', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('pat_name', models.CharField(max_length=100)), ], ), migrations.CreateModel( name='Tags', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('tag_name', models.CharField(max_length=50)), ], ), ]
[ "rauloojs@gmail.com" ]
rauloojs@gmail.com
cb7409896fed2288aa583a0de9b5fa86614e9641
07c8f75a5b061f3a8070bf053311692e4c9a3dce
/wage-calculator.py
b749dc7cba0b00b3cd5029aa374f0f72c4824387
[]
no_license
kuzmicheff/wage-calculator
3d4981b84582250eac3be6f2cdc05e60080f12a7
d7568684016c1becd1c74aca856cf268e05123b1
refs/heads/master
2020-12-24T21:01:42.549374
2016-05-14T23:00:38
2016-05-14T23:00:38
58,769,831
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
print ("Wage Calculator") weeklyHours=input("Enter work hours: ") hourlyWage=input("Enter pay rate: ") weeklyPay=weeklyHours*hourlyWage if weeklyHours>40: overtimeWage=hourlyWage*1.5 overtimeAmount=(weeklyHours-40)*overtimeWage weeklyHours=40 weeklyPay=weeklyHours*hourlyWage+overtimeAmount weeklyPay=str(weeklyPay) message="The weekly pay is $" print (message+weeklyPay)
[ "kuzmicheff@gmail.com" ]
kuzmicheff@gmail.com
a9838870e87d81f80191e3ce0af0627564cd2c98
30f1efe7d81334daff4175e32f347798ddfef6e5
/sqlmaparch/lib/request/connect.py
7a964d84d9c6f8a0ff40da18b752e95c1880cd5c
[]
no_license
HyperionGray/mr-injector
056f3479a3debee0ee78570a0225f14604da0038
e3e7f007bfbbb2746493a5ea0e28bd56aab3cd6b
refs/heads/master
2021-01-19T11:46:19.070871
2013-09-25T15:56:57
2013-09-25T15:56:57
32,473,527
3
3
null
null
null
null
UTF-8
Python
false
false
40,430
py
#!/usr/bin/env python """ Copyright (c) 2006-2013 sqlmap developers (http://sqlmap.org/) See the file 'doc/COPYING' for copying permission """ import httplib import json import logging import re import socket import string import time import urllib2 import urlparse import traceback from extra.safe2bin.safe2bin import safecharencode from lib.core.agent import agent from lib.core.common import asciifyUrl from lib.core.common import calculateDeltaSeconds from lib.core.common import clearConsoleLine from lib.core.common import cpuThrottle from lib.core.common import evaluateCode from lib.core.common import extractRegexResult from lib.core.common import findMultipartPostBoundary from lib.core.common import getCurrentThreadData from lib.core.common import getHostHeader from lib.core.common import getRequestHeader from lib.core.common import getUnicode from lib.core.common import logHTTPTraffic from lib.core.common import pushValue from lib.core.common import popValue from lib.core.common import randomizeParameterValue from lib.core.common import randomInt from lib.core.common import randomStr from lib.core.common import readInput from lib.core.common import removeReflectiveValues from lib.core.common import singleTimeLogMessage from lib.core.common import singleTimeWarnMessage from lib.core.common import stdev from lib.core.common import wasLastResponseDelayed from lib.core.common import unicodeencode from lib.core.common import urldecode from lib.core.common import urlencode from lib.core.data import conf from lib.core.data import kb from lib.core.data import logger from lib.core.dicts import POST_HINT_CONTENT_TYPES from lib.core.enums import ADJUST_TIME_DELAY from lib.core.enums import AUTH_TYPE from lib.core.enums import CUSTOM_LOGGING from lib.core.enums import HTTP_HEADER from lib.core.enums import HTTPMETHOD from lib.core.enums import NULLCONNECTION from lib.core.enums import PAYLOAD from lib.core.enums import PLACE from lib.core.enums import POST_HINT from lib.core.enums import REDIRECTION from lib.core.enums import WEB_API from lib.core.exception import SqlmapCompressionException from lib.core.exception import SqlmapConnectionException from lib.core.exception import SqlmapSyntaxException from lib.core.exception import SqlmapValueException from lib.core.settings import ASTERISK_MARKER from lib.core.settings import CUSTOM_INJECTION_MARK_CHAR from lib.core.settings import DEFAULT_CONTENT_TYPE from lib.core.settings import DEFAULT_GET_POST_DELIMITER from lib.core.settings import HTTP_ACCEPT_HEADER_VALUE from lib.core.settings import HTTP_ACCEPT_ENCODING_HEADER_VALUE from lib.core.settings import MAX_CONNECTION_CHUNK_SIZE from lib.core.settings import MAX_CONNECTIONS_REGEX from lib.core.settings import MAX_CONNECTION_TOTAL_SIZE from lib.core.settings import META_REFRESH_REGEX from lib.core.settings import MIN_TIME_RESPONSES from lib.core.settings import IS_WIN from lib.core.settings import LARGE_CHUNK_TRIM_MARKER from lib.core.settings import PAYLOAD_DELIMITER from lib.core.settings import PERMISSION_DENIED_REGEX from lib.core.settings import PLAIN_TEXT_CONTENT_TYPE from lib.core.settings import UNENCODED_ORIGINAL_VALUE from lib.core.settings import URI_HTTP_HEADER from lib.core.settings import WARN_TIME_STDEV from lib.request.basic import decodePage from lib.request.basic import forgeHeaders from lib.request.basic import processResponse from lib.request.direct import direct from lib.request.comparison import comparison from lib.request.methodrequest import MethodRequest from thirdparty.socks.socks import ProxyError from thirdparty.multipart import multipartpost class Connect(object): """ This class defines methods used to perform HTTP requests """ @staticmethod def _getPageProxy(**kwargs): return Connect.getPage(**kwargs) @staticmethod def _retryProxy(**kwargs): threadData = getCurrentThreadData() threadData.retriesCount += 1 if kb.testMode and kb.previousMethod == PAYLOAD.METHOD.TIME: # timed based payloads can cause web server unresponsiveness # if the injectable piece of code is some kind of JOIN-like query warnMsg = "most probably web server instance hasn't recovered yet " warnMsg += "from previous timed based payload. If the problem " warnMsg += "persists please wait for few minutes and rerun " warnMsg += "without flag T in option '--technique' " warnMsg += "(e.g. '--flush-session --technique=BEUS') or try to " warnMsg += "lower the value of option '--time-sec' (e.g. '--time-sec=2')" singleTimeWarnMessage(warnMsg) elif kb.originalPage is None: if conf.tor: warnMsg = "please make sure that you have " warnMsg += "Tor installed and running so " warnMsg += "you could successfully use " warnMsg += "switch '--tor' " if IS_WIN: warnMsg += "(e.g. 'https://www.torproject.org/download/download.html.en')" else: warnMsg += "(e.g. 'https://help.ubuntu.com/community/Tor')" else: warnMsg = "if the problem persists please check that the provided " warnMsg += "target URL is valid. In case that it is, you can try to rerun " warnMsg += "with the switch '--random-agent' turned on " warnMsg += "and/or proxy switches ('--ignore-proxy', '--proxy',...)" singleTimeWarnMessage(warnMsg) elif conf.threads > 1: warnMsg = "if the problem persists please try to lower " warnMsg += "the number of used threads (option '--threads')" singleTimeWarnMessage(warnMsg) time.sleep(1) kwargs['retrying'] = True return Connect._getPageProxy(**kwargs) @staticmethod def _connReadProxy(conn): retVal = "" if not kb.dnsMode and conn: headers = conn.info() if headers and (headers.getheader(HTTP_HEADER.CONTENT_ENCODING, "").lower() in ("gzip", "deflate")\ or "text" not in headers.getheader(HTTP_HEADER.CONTENT_TYPE, "").lower()): retVal = conn.read(MAX_CONNECTION_TOTAL_SIZE) if len(retVal) == MAX_CONNECTION_TOTAL_SIZE: warnMsg = "large compressed response detected. Disabling compression" singleTimeWarnMessage(warnMsg) kb.pageCompress = False else: while True: _ = conn.read(MAX_CONNECTION_CHUNK_SIZE) if len(_) == MAX_CONNECTION_CHUNK_SIZE: warnMsg = "large response detected. This could take a while" singleTimeWarnMessage(warnMsg) _ = re.sub(r"(?si)%s.+?%s" % (kb.chars.stop, kb.chars.start), "%s%s%s" % (kb.chars.stop, LARGE_CHUNK_TRIM_MARKER, kb.chars.start), _) retVal += _ else: retVal += _ break if len(retVal) > MAX_CONNECTION_TOTAL_SIZE: warnMsg = "too large response detected. Automatically trimming it" singleTimeWarnMessage(warnMsg) break return retVal @staticmethod def getPage(**kwargs): """ This method connects to the target URL or proxy and returns the target URL page content """ if conf.delay is not None and isinstance(conf.delay, (int, float)) and conf.delay > 0: time.sleep(conf.delay) elif conf.cpuThrottle: cpuThrottle(conf.cpuThrottle) if conf.dummy: return randomStr(int(randomInt()), alphabet=[chr(_) for _ in xrange(256)]), {}, int(randomInt()) threadData = getCurrentThreadData() with kb.locks.request: kb.requestCounter += 1 threadData.lastRequestUID = kb.requestCounter url = kwargs.get("url", None) or conf.url get = kwargs.get("get", None) post = kwargs.get("post", None) method = kwargs.get("method", None) cookie = kwargs.get("cookie", None) ua = kwargs.get("ua", None) or conf.agent referer = kwargs.get("referer", None) or conf.referer host = kwargs.get("host", None) or conf.host direct_ = kwargs.get("direct", False) multipart = kwargs.get("multipart", False) silent = kwargs.get("silent", False) raise404 = kwargs.get("raise404", True) timeout = kwargs.get("timeout", None) or conf.timeout auxHeaders = kwargs.get("auxHeaders", None) response = kwargs.get("response", False) ignoreTimeout = kwargs.get("ignoreTimeout", False) or kb.ignoreTimeout refreshing = kwargs.get("refreshing", False) retrying = kwargs.get("retrying", False) crawling = kwargs.get("crawling", False) skipRead = kwargs.get("skipRead", False) if not urlparse.urlsplit(url).netloc: url = urlparse.urljoin(conf.url, url) # flag to know if we are dealing with the same target host target = reduce(lambda x, y: x == y, map(lambda x: urlparse.urlparse(x).netloc.split(':')[0], [url, conf.url or ""])) if not retrying: # Reset the number of connection retries threadData.retriesCount = 0 # fix for known issue when urllib2 just skips the other part of provided # url splitted with space char while urlencoding it in the later phase url = url.replace(" ", "%20") conn = None code = None page = None _ = urlparse.urlsplit(url) requestMsg = u"HTTP request [#%d]:\n%s " % (threadData.lastRequestUID, method or (HTTPMETHOD.POST if post is not None else HTTPMETHOD.GET)) requestMsg += ("%s%s" % (_.path or "/", ("?%s" % _.query) if _.query else "")) if not any((refreshing, crawling)) else url responseMsg = u"HTTP response " requestHeaders = u"" responseHeaders = None logHeaders = u"" skipLogTraffic = False raise404 = raise404 and not kb.ignoreNotFound # support for non-latin (e.g. cyrillic) URLs as urllib/urllib2 doesn't # support those by default url = asciifyUrl(url) # fix for known issues when using url in unicode format # (e.g. UnicodeDecodeError: "url = url + '?' + query" in redirect case) url = unicodeencode(url) try: socket.setdefaulttimeout(timeout) if direct_: if '?' in url: url, params = url.split('?', 1) params = urlencode(params) url = "%s?%s" % (url, params) requestMsg += "?%s" % params elif multipart: # Needed in this form because of potential circle dependency # problem (option -> update -> connect -> option) from lib.core.option import proxyHandler multipartOpener = urllib2.build_opener(proxyHandler, multipartpost.MultipartPostHandler) conn = multipartOpener.open(unicodeencode(url), multipart) page = Connect._connReadProxy(conn) if not skipRead else None responseHeaders = conn.info() responseHeaders[URI_HTTP_HEADER] = conn.geturl() page = decodePage(page, responseHeaders.get(HTTP_HEADER.CONTENT_ENCODING), responseHeaders.get(HTTP_HEADER.CONTENT_TYPE)) return page elif any((refreshing, crawling)): pass elif target: if conf.forceSSL and urlparse.urlparse(url).scheme != "https": url = re.sub("\Ahttp:", "https:", url, re.I) url = re.sub(":80/", ":443/", url, re.I) if PLACE.GET in conf.parameters and not get: get = conf.parameters[PLACE.GET] if not conf.skipUrlEncode: get = urlencode(get, limit=True) if get: url = "%s?%s" % (url, get) requestMsg += "?%s" % get if PLACE.POST in conf.parameters and not post and method in (None, HTTPMETHOD.POST): post = conf.parameters[PLACE.POST] elif get: url = "%s?%s" % (url, get) requestMsg += "?%s" % get requestMsg += " %s" % httplib.HTTPConnection._http_vsn_str # Prepare HTTP headers headers = forgeHeaders({HTTP_HEADER.COOKIE: cookie, HTTP_HEADER.USER_AGENT: ua, HTTP_HEADER.REFERER: referer}) if kb.authHeader: headers[HTTP_HEADER.AUTHORIZATION] = kb.authHeader if kb.proxyAuthHeader: headers[HTTP_HEADER.PROXY_AUTHORIZATION] = kb.proxyAuthHeader headers[HTTP_HEADER.ACCEPT] = HTTP_ACCEPT_HEADER_VALUE headers[HTTP_HEADER.ACCEPT_ENCODING] = HTTP_ACCEPT_ENCODING_HEADER_VALUE if kb.pageCompress else "identity" headers[HTTP_HEADER.HOST] = host or getHostHeader(url) if post is not None and HTTP_HEADER.CONTENT_TYPE not in headers: headers[HTTP_HEADER.CONTENT_TYPE] = POST_HINT_CONTENT_TYPES.get(kb.postHint, DEFAULT_CONTENT_TYPE) if headers.get(HTTP_HEADER.CONTENT_TYPE) == POST_HINT_CONTENT_TYPES[POST_HINT.MULTIPART]: warnMsg = "missing 'boundary parameter' in '%s' header. " % HTTP_HEADER.CONTENT_TYPE warnMsg += "Will try to reconstruct" singleTimeWarnMessage(warnMsg) boundary = findMultipartPostBoundary(conf.data) if boundary: headers[HTTP_HEADER.CONTENT_TYPE] = "%s; boundary=%s" % (headers[HTTP_HEADER.CONTENT_TYPE], boundary) if auxHeaders: for key, item in auxHeaders.items(): headers[key] = item for key, item in headers.items(): del headers[key] headers[unicodeencode(key, kb.pageEncoding)] = unicodeencode(item, kb.pageEncoding) post = unicodeencode(post, kb.pageEncoding) if method: req = MethodRequest(url, post, headers) req.set_method(method) else: req = urllib2.Request(url, post, headers) requestHeaders += "\n".join("%s: %s" % (key.capitalize() if isinstance(key, basestring) else key, getUnicode(value)) for (key, value) in req.header_items()) if not getRequestHeader(req, HTTP_HEADER.COOKIE) and conf.cj: conf.cj._policy._now = conf.cj._now = int(time.time()) cookies = conf.cj._cookies_for_request(req) requestHeaders += "\n%s" % ("Cookie: %s" % ";".join("%s=%s" % (getUnicode(cookie.name), getUnicode(cookie.value)) for cookie in cookies)) if post is not None: if not getRequestHeader(req, HTTP_HEADER.CONTENT_LENGTH): requestHeaders += "\n%s: %d" % (string.capwords(HTTP_HEADER.CONTENT_LENGTH), len(post)) if not getRequestHeader(req, HTTP_HEADER.CONNECTION): requestHeaders += "\n%s: close" % HTTP_HEADER.CONNECTION requestMsg += "\n%s" % requestHeaders if post is not None: requestMsg += "\n\n%s" % getUnicode(post) requestMsg += "\n" threadData.lastRequestMsg = requestMsg logger.log(CUSTOM_LOGGING.TRAFFIC_OUT, requestMsg) conn = urllib2.urlopen(req) if not kb.authHeader and getRequestHeader(req, HTTP_HEADER.AUTHORIZATION) and conf.aType == AUTH_TYPE.BASIC: kb.authHeader = getRequestHeader(req, HTTP_HEADER.AUTHORIZATION) if not kb.proxyAuthHeader and getRequestHeader(req, HTTP_HEADER.PROXY_AUTHORIZATION): kb.proxyAuthHeader = getRequestHeader(req, HTTP_HEADER.PROXY_AUTHORIZATION) # Return response object if response: return conn, None, None # Get HTTP response if hasattr(conn, 'redurl'): page = (threadData.lastRedirectMsg[1] if kb.redirectChoice == REDIRECTION.NO\ else Connect._connReadProxy(conn)) if not skipRead else None skipLogTraffic = kb.redirectChoice == REDIRECTION.NO code = conn.redcode else: page = Connect._connReadProxy(conn) if not skipRead else None code = code or conn.code responseHeaders = conn.info() responseHeaders[URI_HTTP_HEADER] = conn.geturl() page = decodePage(page, responseHeaders.get(HTTP_HEADER.CONTENT_ENCODING), responseHeaders.get(HTTP_HEADER.CONTENT_TYPE)) status = getUnicode(conn.msg) if extractRegexResult(META_REFRESH_REGEX, page) and not refreshing: url = extractRegexResult(META_REFRESH_REGEX, page) debugMsg = "got HTML meta refresh header" logger.debug(debugMsg) if kb.alwaysRefresh is None: msg = "sqlmap got a refresh request " msg += "(redirect like response common to login pages). " msg += "Do you want to apply the refresh " msg += "from now on (or stay on the original page)? [Y/n]" choice = readInput(msg, default="Y") kb.alwaysRefresh = choice not in ("n", "N") if kb.alwaysRefresh: if url.lower().startswith('http://'): kwargs['url'] = url else: kwargs['url'] = conf.url[:conf.url.rfind('/') + 1] + url threadData.lastRedirectMsg = (threadData.lastRequestUID, page) kwargs['refreshing'] = True kwargs['get'] = None kwargs['post'] = None try: return Connect._getPageProxy(**kwargs) except SqlmapSyntaxException: pass # Explicit closing of connection object if not conf.keepAlive: try: if hasattr(conn.fp, '_sock'): conn.fp._sock.close() conn.close() except Exception, msg: warnMsg = "problem occured during connection closing ('%s')" % msg logger.warn(warnMsg) except urllib2.HTTPError, e: page = None responseHeaders = None try: page = e.read() if not skipRead else None responseHeaders = e.info() responseHeaders[URI_HTTP_HEADER] = e.geturl() page = decodePage(page, responseHeaders.get(HTTP_HEADER.CONTENT_ENCODING), responseHeaders.get(HTTP_HEADER.CONTENT_TYPE)) except socket.timeout: warnMsg = "connection timed out while trying " warnMsg += "to get error page information (%d)" % e.code logger.warn(warnMsg) return None, None, None except KeyboardInterrupt: raise except: pass finally: page = page if isinstance(page, unicode) else getUnicode(page) code = e.code threadData.lastHTTPError = (threadData.lastRequestUID, code) kb.httpErrorCodes[code] = kb.httpErrorCodes.get(code, 0) + 1 status = getUnicode(e.msg) responseMsg += "[#%d] (%d %s):\n" % (threadData.lastRequestUID, code, status) if responseHeaders: logHeaders = "\n".join("%s: %s" % (getUnicode(key.capitalize() if isinstance(key, basestring) else key), getUnicode(value)) for (key, value) in responseHeaders.items()) logHTTPTraffic(requestMsg, "%s%s\n\n%s" % (responseMsg, logHeaders, (page or "")[:MAX_CONNECTION_CHUNK_SIZE])) skipLogTraffic = True if conf.verbose <= 5: responseMsg += getUnicode(logHeaders) elif conf.verbose > 5: responseMsg += "%s\n\n%s" % (logHeaders, (page or "")[:MAX_CONNECTION_CHUNK_SIZE]) logger.log(CUSTOM_LOGGING.TRAFFIC_IN, responseMsg) if e.code == httplib.UNAUTHORIZED: errMsg = "not authorized, try to provide right HTTP " errMsg += "authentication type and valid credentials (%d)" % code raise SqlmapConnectionException(errMsg) elif e.code == httplib.NOT_FOUND: if raise404: errMsg = "page not found (%d)" % code raise SqlmapConnectionException(errMsg) else: debugMsg = "page not found (%d)" % code singleTimeLogMessage(debugMsg, logging.DEBUG) processResponse(page, responseHeaders) elif e.code == httplib.GATEWAY_TIMEOUT: if ignoreTimeout: return None, None, None else: warnMsg = "unable to connect to the target URL (%d - %s)" % (e.code, httplib.responses[e.code]) if threadData.retriesCount < conf.retries and not kb.threadException: warnMsg += ". sqlmap is going to retry the request" logger.critical(warnMsg) return Connect._retryProxy(**kwargs) elif kb.testMode: logger.critical(warnMsg) return None, None, None else: raise SqlmapConnectionException(warnMsg) else: debugMsg = "got HTTP error code: %d (%s)" % (code, status) logger.debug(debugMsg) except (urllib2.URLError, socket.error, socket.timeout, httplib.BadStatusLine, httplib.IncompleteRead, ProxyError, SqlmapCompressionException), e: tbMsg = traceback.format_exc() if "no host given" in tbMsg: warnMsg = "invalid URL address used (%s)" % repr(url) raise SqlmapSyntaxException(warnMsg) elif "forcibly closed" in tbMsg: warnMsg = "connection was forcibly closed by the target URL" elif "timed out" in tbMsg: warnMsg = "connection timed out to the target URL" elif "URLError" in tbMsg or "error" in tbMsg: warnMsg = "unable to connect to the target URL" elif "BadStatusLine" in tbMsg: warnMsg = "connection dropped or unknown HTTP " warnMsg += "status code received. Try to force the HTTP User-Agent " warnMsg += "header with option '--user-agent' or switch '--random-agent'" elif "IncompleteRead" in tbMsg: warnMsg = "there was an incomplete read error while retrieving data " warnMsg += "from the target URL" else: warnMsg = "unable to connect to the target URL" if "BadStatusLine" not in tbMsg: warnMsg += " or proxy" if silent: return None, None, None elif "forcibly closed" in tbMsg: logger.critical(warnMsg) return None, None, None elif ignoreTimeout and any(_ in tbMsg for _ in ("timed out", "IncompleteRead")): return None, None, None elif threadData.retriesCount < conf.retries and not kb.threadException: warnMsg += ". sqlmap is going to retry the request" logger.critical(warnMsg) return Connect._retryProxy(**kwargs) elif kb.testMode: logger.critical(warnMsg) return None, None, None else: raise SqlmapConnectionException(warnMsg) finally: page = page if isinstance(page, unicode) else getUnicode(page) socket.setdefaulttimeout(conf.timeout) processResponse(page, responseHeaders) if conn and getattr(conn, "redurl", None): _ = urlparse.urlsplit(conn.redurl) _ = ("%s%s" % (_.path or "/", ("?%s" % _.query) if _.query else "")) requestMsg = re.sub("(\n[A-Z]+ ).+?( HTTP/\d)", "\g<1>%s\g<2>" % getUnicode(_), requestMsg, 1) responseMsg += "[#%d] (%d %s):\n" % (threadData.lastRequestUID, conn.code, status) else: responseMsg += "[#%d] (%d %s):\n" % (threadData.lastRequestUID, code, status) if responseHeaders: logHeaders = "\n".join("%s: %s" % (getUnicode(key.capitalize() if isinstance(key, basestring) else key), getUnicode(value)) for (key, value) in responseHeaders.items()) if not skipLogTraffic: logHTTPTraffic(requestMsg, "%s%s\n\n%s" % (responseMsg, logHeaders, (page or "")[:MAX_CONNECTION_CHUNK_SIZE])) if conf.verbose <= 5: responseMsg += getUnicode(logHeaders) elif conf.verbose > 5: responseMsg += "%s\n\n%s" % (logHeaders, (page or "")[:MAX_CONNECTION_CHUNK_SIZE]) logger.log(CUSTOM_LOGGING.TRAFFIC_IN, responseMsg) return page, responseHeaders, code @staticmethod def queryPage(value=None, place=None, content=False, getRatioValue=False, silent=False, method=None, timeBasedCompare=False, noteResponseTime=True, auxHeaders=None, response=False, raise404=None, removeReflection=True): """ This method calls a function to get the target URL page content and returns its page MD5 hash or a boolean value in case of string match check ('--string' command line parameter) """ if conf.direct: return direct(value, content) get = None post = None cookie = None ua = None referer = None host = None page = None pageLength = None uri = None code = None urlEncodePost = None if not place: place = kb.injection.place or PLACE.GET raise404 = place != PLACE.URI if raise404 is None else raise404 value = agent.adjustLateValues(value) payload = agent.extractPayload(value) threadData = getCurrentThreadData() if conf.httpHeaders: headers = dict(conf.httpHeaders) contentType = max(headers[_] if _.upper() == HTTP_HEADER.CONTENT_TYPE.upper() else None for _ in headers.keys()) urlEncodePost = contentType and "urlencoded" in contentType or contentType is None if (kb.postHint or conf.skipUrlEncode) and urlEncodePost: urlEncodePost = False conf.httpHeaders = [_ for _ in conf.httpHeaders if _[1] != contentType] contentType = POST_HINT_CONTENT_TYPES.get(kb.postHint, PLAIN_TEXT_CONTENT_TYPE) conf.httpHeaders.append((HTTP_HEADER.CONTENT_TYPE, contentType)) if payload: if kb.tamperFunctions: for function in kb.tamperFunctions: payload = function(payload=payload, headers=auxHeaders) if not isinstance(payload, basestring): errMsg = "tamper function '%s' returns " % function.func_name errMsg += "invalid payload type ('%s')" % type(payload) raise SqlmapValueException(errMsg) value = agent.replacePayload(value, payload) logger.log(CUSTOM_LOGGING.PAYLOAD, safecharencode(payload)) if place == PLACE.CUSTOM_POST: if kb.postHint in (POST_HINT.SOAP, POST_HINT.XML): # payloads in SOAP/XML should have chars > and < replaced # with their HTML encoded counterparts payload = payload.replace('>', "&gt;").replace('<', "&lt;") elif kb.postHint == POST_HINT.JSON: if payload.startswith('"') and payload.endswith('"'): payload = json.dumps(payload[1:-1]) else: payload = json.dumps(payload)[1:-1] value = agent.replacePayload(value, payload) else: # GET, POST, URI and Cookie payload needs to be throughly URL encoded if place in (PLACE.GET, PLACE.URI, PLACE.COOKIE) and not conf.skipUrlEncode or place in (PLACE.POST,) and urlEncodePost: payload = urlencode(payload, '%', False, place != PLACE.URI) value = agent.replacePayload(value, payload) if conf.hpp: if not any(conf.url.lower().endswith(_.lower()) for _ in (WEB_API.ASP, WEB_API.ASPX)): warnMsg = "HTTP parameter pollution should work only against " warnMsg += "ASP(.NET) targets" singleTimeWarnMessage(warnMsg) if place in (PLACE.GET, PLACE.POST): _ = re.escape(PAYLOAD_DELIMITER) match = re.search("(?P<name>\w+)=%s(?P<value>.+?)%s" % (_, _), value) if match: payload = match.group("value") for splitter in (urlencode(' '), ' '): if splitter in payload: prefix, suffix = ("*/", "/*") if splitter == ' ' else (urlencode(_) for _ in ("*/", "/*")) parts = payload.split(splitter) parts[0] = "%s%s" % (parts[0], suffix) parts[-1] = "%s%s=%s%s" % (DEFAULT_GET_POST_DELIMITER, match.group("name"), prefix, parts[-1]) for i in xrange(1, len(parts) - 1): parts[i] = "%s%s=%s%s%s" % (DEFAULT_GET_POST_DELIMITER, match.group("name"), prefix, parts[i], suffix) payload = "".join(parts) for splitter in (urlencode(','), ','): payload = payload.replace(splitter, "%s%s=" % (DEFAULT_GET_POST_DELIMITER, match.group("name"))) value = agent.replacePayload(value, payload) else: warnMsg = "HTTP parameter pollution works only with regular " warnMsg += "GET and POST parameters" singleTimeWarnMessage(warnMsg) if place: value = agent.removePayloadDelimiters(value) if PLACE.GET in conf.parameters: get = conf.parameters[PLACE.GET] if place != PLACE.GET or not value else value if PLACE.POST in conf.parameters: post = conf.parameters[PLACE.POST] if place != PLACE.POST or not value else value if PLACE.CUSTOM_POST in conf.parameters: post = conf.parameters[PLACE.CUSTOM_POST].replace(CUSTOM_INJECTION_MARK_CHAR, "") if place != PLACE.CUSTOM_POST or not value else value post = post.replace(ASTERISK_MARKER, '*') if post else post if PLACE.COOKIE in conf.parameters: cookie = conf.parameters[PLACE.COOKIE] if place != PLACE.COOKIE or not value else value if PLACE.USER_AGENT in conf.parameters: ua = conf.parameters[PLACE.USER_AGENT] if place != PLACE.USER_AGENT or not value else value if PLACE.REFERER in conf.parameters: referer = conf.parameters[PLACE.REFERER] if place != PLACE.REFERER or not value else value if PLACE.HOST in conf.parameters: host = conf.parameters[PLACE.HOST] if place != PLACE.HOST or not value else value if PLACE.URI in conf.parameters: uri = conf.url if place != PLACE.URI or not value else value else: uri = conf.url if value and place == PLACE.CUSTOM_HEADER: if not auxHeaders: auxHeaders = {} auxHeaders[value.split(',')[0]] = value.split(',', 1)[1] if conf.rParam: def _randomizeParameter(paramString, randomParameter): retVal = paramString match = re.search("%s=(?P<value>[^&;]+)" % randomParameter, paramString) if match: origValue = match.group("value") retVal = re.sub("%s=[^&;]+" % randomParameter, "%s=%s" % (randomParameter, randomizeParameterValue(origValue)), paramString) return retVal for randomParameter in conf.rParam: for item in (PLACE.GET, PLACE.POST, PLACE.COOKIE): if item in conf.parameters: if item == PLACE.GET and get: get = _randomizeParameter(get, randomParameter) elif item == PLACE.POST and post: post = _randomizeParameter(post, randomParameter) elif item == PLACE.COOKIE and cookie: cookie = _randomizeParameter(cookie, randomParameter) if conf.evalCode: delimiter = conf.pDel or DEFAULT_GET_POST_DELIMITER variables = {} originals = {} for item in filter(None, (get, post)): for part in item.split(delimiter): if '=' in part: name, value = part.split('=', 1) value = urldecode(value, convall=True, plusspace=(item==post and kb.postSpaceToPlus)) evaluateCode("%s=%s" % (name, repr(value)), variables) originals.update(variables) evaluateCode(conf.evalCode, variables) for name, value in variables.items(): if name != "__builtins__" and originals.get(name, "") != value: if isinstance(value, (basestring, int)): value = unicode(value) if '%s=' % name in (get or ""): get = re.sub("((\A|\W)%s=)([^%s]+)" % (name, delimiter), "\g<1>%s" % value, get) elif '%s=' % name in (post or ""): post = re.sub("((\A|\W)%s=)([^%s]+)" % (name, delimiter), "\g<1>%s" % value, post) elif post is not None: post += "%s%s=%s" % (delimiter, name, value) else: get += "%s%s=%s" % (delimiter, name, value) if not conf.skipUrlEncode: get = urlencode(get, limit=True) if post is not None: if place not in (PLACE.POST, PLACE.CUSTOM_POST) and hasattr(post, UNENCODED_ORIGINAL_VALUE): post = getattr(post, UNENCODED_ORIGINAL_VALUE) elif urlEncodePost: post = urlencode(post, spaceplus=kb.postSpaceToPlus) if timeBasedCompare: if len(kb.responseTimes) < MIN_TIME_RESPONSES: clearConsoleLine() if conf.tor: warnMsg = "it's highly recommended to avoid usage of switch '--tor' for " warnMsg += "time-based injections because of its high latency time" singleTimeWarnMessage(warnMsg) warnMsg = "time-based comparison needs larger statistical " warnMsg += "model. Making a few dummy requests, please wait.." singleTimeWarnMessage(warnMsg) while len(kb.responseTimes) < MIN_TIME_RESPONSES: Connect.queryPage(content=True) elif not kb.testMode: warnMsg = "it is very important not to stress the network adapter's " warnMsg += "bandwidth during usage of time-based payloads" singleTimeWarnMessage(warnMsg) if not kb.laggingChecked: kb.laggingChecked = True deviation = stdev(kb.responseTimes) if deviation > WARN_TIME_STDEV: kb.adjustTimeDelay = ADJUST_TIME_DELAY.DISABLE warnMsg = "there is considerable lagging " warnMsg += "in connection response(s). Please use as high " warnMsg += "value for option '--time-sec' as possible (e.g. " warnMsg += "10 or more)" logger.critical(warnMsg) if conf.safUrl and conf.saFreq > 0: kb.queryCounter += 1 if kb.queryCounter % conf.saFreq == 0: Connect.getPage(url=conf.safUrl, cookie=cookie, direct=True, silent=True, ua=ua, referer=referer, host=host) start = time.time() if kb.nullConnection and not content and not response and not timeBasedCompare: noteResponseTime = False pushValue(kb.pageCompress) kb.pageCompress = False if kb.nullConnection == NULLCONNECTION.HEAD: method = HTTPMETHOD.HEAD elif kb.nullConnection == NULLCONNECTION.RANGE: if not auxHeaders: auxHeaders = {} auxHeaders[HTTP_HEADER.RANGE] = "bytes=-1" _, headers, code = Connect.getPage(url=uri, get=get, post=post, cookie=cookie, ua=ua, referer=referer, host=host, silent=silent, method=method, auxHeaders=auxHeaders, raise404=raise404, skipRead=(kb.nullConnection == NULLCONNECTION.SKIP_READ)) if headers: if kb.nullConnection in (NULLCONNECTION.HEAD, NULLCONNECTION.SKIP_READ) and HTTP_HEADER.CONTENT_LENGTH in headers: pageLength = int(headers[HTTP_HEADER.CONTENT_LENGTH]) elif kb.nullConnection == NULLCONNECTION.RANGE and HTTP_HEADER.CONTENT_RANGE in headers: pageLength = int(headers[HTTP_HEADER.CONTENT_RANGE][headers[HTTP_HEADER.CONTENT_RANGE].find('/') + 1:]) kb.pageCompress = popValue() if not pageLength: try: page, headers, code = Connect.getPage(url=uri, get=get, post=post, cookie=cookie, ua=ua, referer=referer, host=host, silent=silent, method=method, auxHeaders=auxHeaders, response=response, raise404=raise404, ignoreTimeout=timeBasedCompare) except MemoryError: page, headers, code = None, None, None warnMsg = "site returned insanely large response" if kb.testMode: warnMsg += " in testing phase. This is a common " warnMsg += "behavior in custom WAF/IDS/IPS solutions" singleTimeWarnMessage(warnMsg) if conf.secondOrder: page, headers, code = Connect.getPage(url=conf.secondOrder, cookie=cookie, ua=ua, silent=silent, auxHeaders=auxHeaders, response=response, raise404=False, ignoreTimeout=timeBasedCompare, refreshing=True) threadData.lastQueryDuration = calculateDeltaSeconds(start) kb.originalCode = kb.originalCode or code if kb.testMode: kb.testQueryCount += 1 if timeBasedCompare: return wasLastResponseDelayed() elif noteResponseTime: kb.responseTimes.append(threadData.lastQueryDuration) if not response and removeReflection: page = removeReflectiveValues(page, payload) kb.maxConnectionsFlag = re.search(MAX_CONNECTIONS_REGEX, page or "", re.I) is not None kb.permissionFlag = re.search(PERMISSION_DENIED_REGEX, page or "", re.I) is not None if content or response: return page, headers if getRatioValue: return comparison(page, headers, code, getRatioValue=False, pageLength=pageLength), comparison(page, headers, code, getRatioValue=True, pageLength=pageLength) else: return comparison(page, headers, code, getRatioValue, pageLength)
[ "punk@localhost.localdomain" ]
punk@localhost.localdomain
b5518ff31854762bc8a611482d0b0bf0adbeae35
c7a9727f0fd2eaf28a1dcb8ba121634e0620d24d
/WassersteinGAN_template/FrameSenderReciver_A.py
469634bb7f0484665a332cc3887ea70f6caf8056
[]
no_license
lvwanyou/SAGAN_MQTT
649c52826cb4c48cbd5c79302242737b9e8dc17e
c91c7e998fb81b3fbe2f6eea0d75cf2a715ed40a
refs/heads/master
2022-07-15T14:00:08.532699
2020-05-19T09:57:00
2020-05-19T09:57:00
228,141,607
0
0
null
null
null
null
UTF-8
Python
false
false
2,246
py
import socket from handle_data_util import dataSwitch import time import os import sys if __name__ == '__main__': TCP_IP = '127.0.0.1' TCP_PORT = 502 BUFFER_SIZE = 10000 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setblocking(0) s.settimeout(2) s.connect((TCP_IP, TCP_PORT)) logs = [] if len(sys.argv) > 1: count = int(sys.argv[1]) ############################################################################################## else: count = 0 #with open('GeneratedDataModbus/generated_data_write_single_register_16.txt', 'r') as f: #with open('dataseven1.txt', 'r') as f: with open('modbus_write_single_register.txt', 'r') as f: try: content = f.readlines() for i, val in enumerate(content): if i >= count: if val is not None and val != '\n': val = val.strip() count = count + 1 string = dataSwitch(val.strip('\n')) # switch hex to bit for sending it to the simulations s.send(string) logs.append(str(i) + ' TX ' + val) time.sleep(0.1) data = s.recv(BUFFER_SIZE) # result = data.encode('hex')######################################################################## result = data.hex() logs.append(str(i) + ' RX ' + result + '\n') except IOError as e: s.close() f.close() os.system("python FrameSenderReciver_B.py " + str(count)) print('can not read the file!') finally: with open("LogDataCommunications/logfirst33.txt", "a") as f: f.write(" ".join(logs)) #RX Reciving Data #TX Sending Data #RX Reciving Data #TX Sending Data #RX Reciving Data #TX Sending Data #RX Reciving Data #TX Sending Data #RX Reciving Data #TX Sending Data #RX Reciving Data #TX Sending Data #RX Reciving Data #TX Sending Data #RX Reciving Data #TX Sending Data #RX Reciving Data #TX Sending Data #RX Reciving Data #TX Sending Data #RX Reciving Data #TX Sending Data #RX Reciving Data
[ "lvwanyou@163.com" ]
lvwanyou@163.com
c56a30d7e9a2a3015e39f40d95876a92ff6ac4d6
2c88a421e5fcb9fe62a96c83522a464a41316962
/resources/user.py
d035db209c84fcbaa1aee420ca5fa7a1cfb69fad
[]
no_license
kurtispinkney/UdemyAPICourse
06409b97c0507ee46389d177ec923297944461f9
4ac83915bac1deacf08b08de6fef45db6cbeb694
refs/heads/master
2020-04-25T19:32:11.369004
2019-03-02T20:34:46
2019-03-02T20:34:46
173,023,786
0
0
null
null
null
null
UTF-8
Python
false
false
842
py
import sqlite3 from flask_restful import Resource, reqparse from models.user import UserModel class UserRegister(Resource): parser = reqparse.RequestParser() parser.add_argument("username", type=str, required=True, help="This field cannot be left blank") parser.add_argument("password", type=str, required=True, help="This field cannot be left blank") def post(self): data = UserRegister.parser.parse_args() if UserModel.find_by_username(data['username']): return {"message": "A user with that username already exists."}, 400 user = UserModel(**data) user.save_to_db() return {"message": "User created successfully."}, 201
[ "kurtis.pinkney@gmail.com" ]
kurtis.pinkney@gmail.com
a852056766b2efab5ac506625b024a0666dd43fd
3ed82278dc32f90996484552ef25adc2086830a9
/web/open_webpage.py
cdd38c1ad07347fef58604a97a6ce05ce35744eb
[]
no_license
arunkuttiyara/python
f9f3bb25eebba08855a9398475a67147863fe0da
5dbabd1b2f9e1dcc7c8ef092ffe2ce6644547c26
refs/heads/master
2021-01-21T13:57:55.652389
2016-04-13T01:11:09
2016-04-13T01:11:09
39,611,387
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
#!/usr/bin/python import webbrowser webbrowser.open('https://www.google.ca/?gfe_rd=cr&ei=BdWdVbj_DOaM8Qf2tLjYAQ&gws_rd=ssl') webbrowser.open('https://drive.google.com/drive/my-drive?ltmpl=drive')
[ "arunkuttiyara@yahoo.com" ]
arunkuttiyara@yahoo.com
eba0be807bb462569eca6e28182a3f6c2562cedc
1a2422ffcbd5edd61d1f22951b615a59bcdae782
/svhn/fitting_eae_svhn.py
8b4d3bc2350e7a4c1e99b304bc6d74f5b6a232fa
[]
no_license
laoyangui/autoencoder_based_image_compression
1e5180af0cfb03128c7f2599c17b43e5e3e5687b
5c65bd56299c2c9bb98c54e968420009827053f0
refs/heads/master
2020-04-19T16:08:19.115634
2019-01-06T14:34:29
2019-01-06T14:34:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,564
py
"""A script to fit a Laplace density to the normed histogram of the latent variables in a trained entropy autoencoder. 250 digits from the SVHN test set are used for the fitting. """ import argparse import matplotlib try: import PyQt5 matplotlib.use('Qt5Agg') except ImportError: matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy import os import pickle import scipy.stats import parsing.parsing import svhn.svhn import tools.tools as tls def fitting_eae_svhn(reference_float64, entropy_ae, title, path): """Fits a Laplace density to the normed histogram of the latent variables in the trained entropy autoencoder. Parameters ---------- reference_float64 : numpy.ndarray 2D array with data-type `numpy.float64`. RGB digits after the preprocessing. `reference_float64[i, :]` contains the ith RGB digit after the preprocessing. entropy_ae : EntropyAutoencoder Entropy autoencoder trained with a specific scaling coefficient. title : str Title of the saved normed histogram. path : str Path to the saved normed histogram. The path must end with ".png". """ y = entropy_ae.encoder(reference_float64)[1] max_abs_y = numpy.ceil(numpy.amax(numpy.absolute(y))).item() # The grid below contains 20 points # per unit interval. grid = numpy.linspace(-max_abs_y, max_abs_y, num=40*int(max_abs_y) + 1) # Let's assume that `y` contains i.i.d samples from # an unknown probability density function. The two # equations below result from the minimization of # the Kullback-Lieber divergence of the unknown # probability density function from our statistical # model (Laplace density of location `laplace_location` # and scale `laplace_scale`). Note that this minimization # is equivalent to the maximum likelihood estimator. # To dive into the details, see: # "Estimating distributions and densities". 36-402, # advanced data analysis, CMU, 27 January 2011. laplace_location = numpy.mean(y).item() laplace_scale = numpy.mean(numpy.absolute(y - laplace_location)).item() laplace_pdf = scipy.stats.laplace.pdf(grid, loc=laplace_location, scale=laplace_scale) handle = [plt.plot(grid, laplace_pdf, color='red')[0]] hist, bin_edges = numpy.histogram(y, bins=60, density=True) plt.bar(bin_edges[0:60], hist, width=bin_edges[1] - bin_edges[0], align='edge', color='blue') plt.title(title) plt.legend(handle, [r'$f( . ; {0}, {1})$'.format(str(round(laplace_location, 2)), str(round(laplace_scale, 2)))], prop={'size': 30}, loc=9) plt.savefig(path) plt.clf() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Fits a Laplace density to the normed histogram of the latent variables in a trained entropy autoencoder.') parser.add_argument('bin_width_init', help='value of the quantization bin width at the beginning of the training', type=parsing.parsing.float_strictly_positive) parser.add_argument('gamma', help='scaling coefficient', type=parsing.parsing.float_strictly_positive) parser.add_argument('--learn_bin_width', help='if given, at training time, the quantization bin width was learned', action='store_true', default=False) args = parser.parse_args() path_to_test = 'svhn/results/test_data.npy' path_to_mean_training = 'svhn/results/mean_training.npy' path_to_std_training = 'svhn/results/std_training.npy' if args.learn_bin_width: suffix = 'learning_bw_{0}_{1}'.format(tls.float_to_str(args.bin_width_init), tls.float_to_str(args.gamma)) else: suffix = '{0}_{1}'.format(tls.float_to_str(args.bin_width_init), tls.float_to_str(args.gamma)) path_to_checking_f = os.path.join('eae/visualization/test/checking_fitting/', suffix) if not os.path.exists(path_to_checking_f): os.makedirs(path_to_checking_f) path_to_model = 'eae/results/eae_svhn_{}.pkl'.format(suffix) # `reference_uint8.dtype` is equal to `numpy.uint8`. reference_uint8 = numpy.load(path_to_test)[0:250, :] # `mean_training.dtype` and `std_training.dtype` # are equal to `numpy.float64`. mean_training = numpy.load(path_to_mean_training) std_training = numpy.load(path_to_std_training) # The function `svhn.svhn.preprocess_svhn` checks # that `reference_uint8.dtype` is equal to `numpy.uint8` # and `reference_uint8.ndim` is equal to 2. reference_float64 = svhn.svhn.preprocess_svhn(reference_uint8, mean_training, std_training) with open(path_to_model, 'rb') as file: entropy_ae = pickle.load(file) fitting_eae_svhn(reference_float64, entropy_ae, 'Latent variables', os.path.join(path_to_checking_f, 'fitting_laplace.png'))
[ "tdumas@ad.inria.fr" ]
tdumas@ad.inria.fr
e97ca3fe809c877888d219f53ac676b825839591
948d3b8c03e2fecc4f852cd8b4120e1b3378bfaf
/API/PYTHON/20181127/5.py
826ec3e8b0c07b4cd384e744b2d3522295f7a33a
[]
no_license
ezhuo/ezhuo.github.io
e370abb4bfbbfcc5750a5f9fafa2b995bb1d7d48
977f3ecdd5dee4eb0f10a42572aaecb335145313
refs/heads/master
2021-05-05T20:13:35.446537
2019-01-26T08:39:26
2019-01-26T08:39:26
115,300,126
1
0
null
null
null
null
UTF-8
Python
false
false
824
py
from collections import Counter from collections import OrderedDict from collections import defaultdict d = defaultdict(list) d['a'].append(1) d['a'].append(2) d['b'].append(4) print(d) d = defaultdict(set) d['a'].add(1) d['a'].add(2) d['b'].add(4) print(d) d = OrderedDict() d['foo'] = 1 d['bar'] = 2 d['spam'] = 3 d['grok'] = 4 d['abc'] = 1 # Outputs "foo 1", "bar 2", "spam 3", "grok 4" for key in d: print(key, d[key]) print(d) words = [ 'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes', 'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around', 'the', 'eyes', "don't", 'look', 'around', 'the', 'eyes', 'look', 'into', 'my', 'eyes', "you're", 'under' ] word_counts = Counter(words) # 出现频率最高的3个单词 top_three = word_counts.most_common(3) print(sorted(top_three))
[ "hi371@qq.com" ]
hi371@qq.com
0a16b1f1e718525cf07bd396651a1c7750109c8e
2e358129de246b0894e4f0682353016c5d847926
/streams_err.py
5eeed01adfc4b2a77e660db80d5293dd2e11ee4e
[]
no_license
davidtaxer/scripts
98095f6ddc9b590228ebcf9e5ad1c6a3172df627
977b2ed2efcb05cefc4dfedc74c3b3e7297b97a7
refs/heads/main
2023-06-09T15:51:54.950345
2021-03-06T21:08:50
2021-03-06T21:08:50
345,185,801
1
1
null
null
null
null
UTF-8
Python
false
false
167
py
#!/usr/bin/env python3 data = input("This will come from STDIN: ") print("Now we write it to STDOUT: " + data) raise ValueError("Now we generate an error to STDERR")
[ "noreply@github.com" ]
davidtaxer.noreply@github.com
33be4cfc896102f5652fad7640e441ab9af55c97
c66955c6fc178955c2024e0318ec7a91a8386c2d
/testframework/excise/testcases/utdemo/bubble_parametrize.py
25b4b472273f4c30378806ba74ca347527b84f05
[]
no_license
duheng18/python-study
a98642d6ee1b0043837c3e7c5b91bf1e28dfa588
13c0571ac5d1690bb9e615340482bdb2134ecf0e
refs/heads/master
2022-11-30T17:36:57.060130
2019-11-18T07:31:40
2019-11-18T07:31:40
147,268,053
1
0
null
2022-11-22T03:36:51
2018-09-04T00:49:42
Python
UTF-8
Python
false
false
1,170
py
''' 对下面测试方法使用pytest的rerun, 参数化方法来实现自动化测试 def bubble_sort(nums): for i in range(len(nums) - 1): for j in range(len(nums) - i - 1): if nums[j] > nums[j + 1]: nums[j], nums[j + 1] = nums[j + 1], nums[j] return random.choice([nums, None, 10]) ''' import pytest import random data = [([1, 2, 3, 4], [1, 2, 3, 4]), ([4, 5, 6,7], [4, 7, 6,5])] def bubble_sort(nums): for i in range(len(nums) - 1): for j in range(len(nums) - i - 1): if nums[j] > nums[j + 1]: nums[j], nums[j + 1] = nums[j + 1], nums[j] return random.choice([nums, None, 10]) def bubble_sort_new(nums): for i in range(len(nums) - 1): for j in range(len(nums) - i - 1): if nums[j] > nums[j + 1]: nums[j], nums[j + 1] = nums[j + 1], nums[j] return nums @pytest.mark.flaky(reruns=3,reruns_delay=2) @pytest.mark.parametrize("nums", data) def test_bubble_sort(nums): print(bubble_sort(nums)) print(bubble_sort_new(nums)) assert bubble_sort(nums) == bubble_sort_new(nums) if __name__ == '__main__': pytest.main()
[ "emaildh@163.com" ]
emaildh@163.com
51426d948c70181ff18426bfe1fcfb5e2adf5b0a
01a1643de3348991dfdf47f34002095d5e57e43d
/bot/handlers/GetMarkup.py
34c6c5f083c2e3d76410982f55431ff70eed4baa
[]
no_license
Sortia/alexworld
e5344734a3d702240b028471ddb614c161de2dbb
42654ce7f761a450150ca074f92b7f8019795897
refs/heads/master
2022-11-25T23:56:21.396363
2020-07-16T16:06:21
2020-07-16T16:06:21
279,020,788
0
0
null
null
null
null
UTF-8
Python
false
false
247
py
from bot.handlers.Markup import Markup class GetMarkupHandler: @staticmethod def handle(message, bot): bot.send_message( message.chat.id, "Держи", reply_markup=Markup.default() )
[ "alexkiyan.lug@gmail.com" ]
alexkiyan.lug@gmail.com
73149def26bab2a8b1756d768a1175d96d9c84e1
9059fbaf6e3686a46612a88e9a9cdc6e664e8aa8
/genplur.py
53f9d049b4ae9c796d207e196d88b9e0ae05671a
[]
no_license
religofsil/progs
4422d1918c50eaa25d0a689febcb1bd2216c88ba
cf7ebb7a1fdd0c0beeb73d96b6a59c1d92a6605f
refs/heads/master
2020-04-16T00:22:31.853907
2018-02-02T11:20:49
2018-02-02T11:20:49
33,817,293
0
0
null
null
null
null
UTF-8
Python
false
false
359
py
# -*- coding: utf-8 -*- import codecs import re count=0 f = codecs.open("fiction3.xml", "r", "utf8") for line in f: if re.search("pl.*gen", line): count+=1 a=re.search(u"</ana>[а-яА-ЯЁё]*`[а-яё]*", line) if a!=None: l=a.group() l=l.replace("</ana>", "") print l f.close() print count
[ "religionofsilence@gmail.com" ]
religionofsilence@gmail.com
dd6014899756f2ffdd627d017aaea8d03d985aee
c7fa04eac79c3be523bebdec84cf31f500225de9
/direction/interfaces/protocol.py
c0ef5a1b0c9bbe2dc6c4bf9737a040ae79980a08
[]
no_license
iancmcc/direction
aa56231aa3faf003807fd1afcac63cde93e7978e
b3685a3ff8f11fe80b4f400c2079d31c3d1b2680
refs/heads/master
2021-01-22T11:47:57.738178
2010-10-10T04:51:22
2010-10-10T04:51:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,205
py
from abc import ABCMeta, abstractmethod, abstractproperty __metaclass__ = type __all__ = ['Transaction', 'Request', 'SuccessResult', 'FailureResult', 'Response'] class Transaction: """ A transaction representing a single remote method call. """ __metaclass__ = ABCMeta @abstractproperty def action(self): """ Action. """ @abstractproperty def method(self): """ Method. """ @abstractproperty def data(self): """ Data. """ @abstractproperty def type(self): """ Type. """ @abstractproperty def tid(self): """ Transaction ID. """ class Request: """ A set of transactions representing a single request to the service. """ __metaclass__ = ABCMeta @abstractproperty def transactions(self): """ The set of Transactions that came with this request. """ class Result: """ The result of a single transaction call. """ __metaclass__ = ABCMeta def type(self): """ Type of this result. """ class SuccessResult(Result): """ A successful result. """ @abstractproperty def action(self): """ Action that produced this result. """ @abstractproperty def method(self): """ Method that produced this result. """ @abstractproperty def result(self): """ Result of the method call. """ @abstractproperty def tid(self): """ Transaction ID for this result. """ class FailureResult(Result): """ A failed result. """ @abstractproperty def message(self): """ Message indicating what went wrong. """ @abstractproperty def where(self): """ Information about where the error occurred. """ class Response: """ A response containing multiple serialized TransactionResults. """ __metaclass__ = ABCMeta @abstractproperty def results(self): """ All the results for this response. """
[ "ian.mccracken@gmail.com" ]
ian.mccracken@gmail.com
c67d5704121265e4071cf2fac6c05bea4386e156
2c64663773bb08d3f16b2f5a16ade67436fe18a5
/3. django/1026/07_django_rest_framework/articles/views.py
a915beaba4787c2718c2183291fda7819d2790bd
[]
no_license
teqn99/TIL
2cf5bb9c4e8c8e84fcb6108d4e1b75f3777dbbe9
fa6517aa0e6af737dd8d2e62bc23facc71470d13
refs/heads/master
2023-08-28T20:48:24.374417
2021-11-15T14:56:02
2021-11-15T14:56:02
333,354,614
0
0
null
null
null
null
UTF-8
Python
false
false
3,537
py
from rest_framework.response import Response from rest_framework.decorators import api_view from rest_framework import status from django.shortcuts import get_list_or_404, get_object_or_404 from articles.models import Article from .models import Article, Comment from .serializers import ArticleListSerializer, ArticleSerializer, CommentSerializer from articles import serializers # article_list에서 @api_view를 사용하는 이유는 # @api_view가 없으면, 404 페이지가 HTML로 보여짐 # @api_view가 있으면, 404 페이지가 JSON으로 응답 @api_view(['GET', 'POST']) # DRF에서 데코레이터가 없으면 응답이 되지 않는다 -> 필수 def article_list(request): # 전체 게시글 조회 if request.method == 'GET': articles = get_list_or_404(Article) serializers = ArticleListSerializer(articles, many=True) return Response(serializers.data) # 게시글 생성 elif request.method == 'POST': serializers = ArticleSerializer(data=request.data) if serializers.is_valid(raise_exception=True): # 예외 발생 처리를 통해 맨아래 부분을 쓰지 않아도 됨 # raise_exception=True는 기본적으로 문제가 있을 경우 HTTP 400 코드를 응답함 serializers.save() return Response(serializers.data, status=status.HTTP_201_CREATED) # 생성 성공 시 잘 만들었다는 메세지 출력 # return Response(serializers.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET', 'PUT', 'DELETE']) def article_detail(request, article_pk): article = get_object_or_404(Article, pk=article_pk) if request.method == 'GET': serializer = ArticleSerializer(article) return Response(serializer.data) elif request.method == 'PUT': # serializer = ArticleSerializer(instance=article, data=request.data) serializer = ArticleSerializer(article, data=request.data) if serializer.is_valid(raise_exception=True): serializer.save() return Response(serializer.data) elif request.method == 'DELETE': article.delete() data = { 'delete': f'데이터 {article_pk}번이 삭제되었습니다.' } return Response(data, status=status.HTTP_204_NO_CONTENT) @api_view(['GET']) def comment_list(request): comments = get_list_or_404(Comment) serializer = CommentSerializer(comments, many=True) return Response(serializer.data) @api_view(['GET', 'PUT', 'DELETE']) def comment_detail(request, comment_pk): comment = get_object_or_404(Comment, pk=comment_pk) if request.method == 'GET': serializer = CommentSerializer(comment) return Response(serializer.data) elif request.method == 'PUT': serializer = CommentSerializer(comment, data=request.data) if serializer.is_valid(raise_exception=True): serializer.save() return Response(serializer.data) elif request.method == 'DELETE': comment.delete() data = { 'delete': f'댓글 {comment_pk}번이 삭제되었습니다.' } return Response(data, status=status.HTTP_204_NO_CONTENT) @api_view(['POST']) def comment_create(request, article_pk): article = get_object_or_404(Article, pk=article_pk) serializer = CommentSerializer(data=request.data) if serializer.is_valid(raise_exception=True): serializer.save(article=article) return Response(serializer.data, status=status.HTTP_201_CREATED)
[ "teqn99@gmail.com" ]
teqn99@gmail.com