blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 2
616
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
69
| license_type
stringclasses 2
values | repo_name
stringlengths 5
118
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringlengths 4
63
| visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 2.91k
686M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 23
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 213
values | src_encoding
stringclasses 30
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 2
10.3M
| extension
stringclasses 246
values | content
stringlengths 2
10.3M
| authors
listlengths 1
1
| author_id
stringlengths 0
212
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
e56ce9c71bd9dc955427805035ddc283b94e8211
|
53fab060fa262e5d5026e0807d93c75fb81e67b9
|
/backup/user_267/ch85_2020_04_29_12_14_54_819750.py
|
1ab78a8ff779b99ecb2dcb2b151354b83bdb4f79
|
[] |
no_license
|
gabriellaec/desoft-analise-exercicios
|
b77c6999424c5ce7e44086a12589a0ad43d6adca
|
01940ab0897aa6005764fc220b900e4d6161d36b
|
refs/heads/main
| 2023-01-31T17:19:42.050628
| 2020-12-16T05:21:31
| 2020-12-16T05:21:31
| 306,735,108
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 307
|
py
|
with open('macacos-me-mordam.txt', 'r') as arquivo:
conteudo = arquivo.read()
lista = conteudo.split()
contador = 0
for i in range(len(lista)):
if lista[i] == 'banana' or lista[i] == 'Banana' or lista[i] == 'BaNaNa' lista[i] == 'BANANA'
contador += 1
print(contador)
|
[
"you@example.com"
] |
you@example.com
|
ce7a2a937ce01cf33f5c9586c6521a548bedf3b3
|
158a84b7419c494b077bf9a3820e46757258865b
|
/emojifier/settings.py
|
e1cd2d2a1844d3ad77d3c4f87891ac2ce46fc764
|
[
"MIT"
] |
permissive
|
shivambhat45/Emojifier-Integrated-with-django
|
6ff2d549bd818c620c11004ac6def5007930ca95
|
8194227203feda7addbab09d45b51fd1c4a2b720
|
refs/heads/main
| 2023-05-09T08:26:31.741863
| 2021-05-30T09:29:24
| 2021-05-30T09:29:24
| 372,063,416
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,238
|
py
|
"""
Django settings for emojifier project.
Generated by 'django-admin startproject' using Django 3.1.5.
For more information on this file, see
https://docs.djangoproject.com/en/3.1/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/3.1/ref/settings/
"""
from pathlib import Path
import os
# Build paths inside the project like this: BASE_DIR / 'subdir'.
BASE_DIR = Path(__file__).resolve().parent.parent
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = '=vj$y)$z6df%kp3v^h0c9y^!r4uxys)n8nnp%%^*8s02k&6pxe'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = ['*']
# Application definition
INSTALLED_APPS = [
'main',
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'emojifier.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [os.path.join(BASE_DIR,'templates')],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'emojifier.wsgi.application'
# Database
# https://docs.djangoproject.com/en/3.1/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': BASE_DIR / 'db.sqlite3',
}
}
# Password validation
# https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/3.1/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/3.1/howto/static-files/
STATIC_URL = '/static/'
STATICFILES_DIRS=(
os.path.join(BASE_DIR,'static'),
)
STATIC_ROOT=os.path.join(BASE_DIR,'staticfiles')
|
[
"shivambhat45@gmail.com"
] |
shivambhat45@gmail.com
|
98bf26dea29031908a03ac901fb0cace10a7fff3
|
5472dfcdd14184c5d046be01d9c764973dfc4f50
|
/A4/latex-files/src/3.fetchBoilerpipeForMementos.py
|
a2db28d8db565b344777c8530dcb097e012c0363
|
[
"MIT"
] |
permissive
|
r0hitl/cs851-s15
|
623a4b650593fd8a5687831ce638fd37743f21f5
|
29716c2935d73d5bd47065ee46d71c6d67391013
|
refs/heads/master
| 2021-01-15T18:40:29.569514
| 2015-05-03T07:42:20
| 2015-05-03T07:42:20
| 30,781,438
| 0
| 0
| null | 2015-02-13T23:55:19
| 2015-02-13T23:55:19
| null |
UTF-8
|
Python
| false
| false
| 3,192
|
py
|
import json
import os
from boilerpipe.extract import Extractor
from nltk.util import ngrams
import urllib2
INPUT_PATH = '3.selected-timemaps/'
OUTPUT_PATH = 'mementos/'
OUTPUT_FILE = 'mementoCount.txt'
def removePunctuation(paragraph):
paragraph = re.sub('[\",():;?\\[\\].{}#$&_*+=%!<>~0-9]', '', paragraph)
return paragraph
def normalizeString(paragraph):
words = paragraph.split()
normalizedWordList = []
for word in words:
word = word.lower()
word = word.strip()
#word = removePunctuation(word);
normalizedWordList.append(word)
return normalizedWordList
def getUniqueNgram(paragraph, n):
nGrams = ngrams(normalizeString(paragraph), n)
uniqueNGrams = set(nGrams)
return uniqueNGrams
def calculateJaccardDistance(a3Words, a4Words):
union = set(a3Words).union(a4Words)
intersect = set(a3Words).intersection(a4Words)
jacDist = (len(union) - len(intersect)) * 1.0 / len(union)
return jacDist
def getNgrams(filePath):
f = open(filePath, 'r')
paragraph = f.read()
f.close()
uniGram = getUniqueNgram(paragraph, 1)
return uniGram
def saveBoilerpipeText(URL, mementoId, bPipeOpFilePath):
extractor = Extractor(url=URL)
extracted_text = extractor.getText()
fil = open(bPipeOpFilePath, 'w')
fil.write(extracted_text.encode('UTF-8'))
fil.close()
if not os.path.exists(OUTPUT_PATH):
print 'Creating folder - ' + OUTPUT_PATH
os.makedirs(OUTPUT_PATH)
fileList = os.listdir(INPUT_PATH)
#fileList = ['1201']
for fName in fileList:
print 'processing for ' + fName
iFile = open(INPUT_PATH + fName, 'r')
jsonContent = iFile.read()
if len(jsonContent) != 0:
fContent = json.loads(jsonContent)
#print fContent['mementos']['list'][0]['uri']
mementoURIs = fContent['mementos']['list']
BPIPE_OUTPUT_PATH = OUTPUT_PATH + fName + '/'
if not os.path.exists(BPIPE_OUTPUT_PATH):
os.makedirs(BPIPE_OUTPUT_PATH)
oFile = open(BPIPE_OUTPUT_PATH + 'jacard-distance.txt', 'w')
for i, URI in enumerate(mementoURIs):
mementoId = i + 1
bPipeOpFilePath = BPIPE_OUTPUT_PATH + str(mementoId)
try:
print str(mementoId), '\t', URI['uri']
saveBoilerpipeText(URI['uri'], mementoId, bPipeOpFilePath)
currentMementoWords = getNgrams(bPipeOpFilePath)
if mementoId == 1:
firstMementoWords = currentMementoWords
if currentMementoWords != None:
jacDist = calculateJaccardDistance(firstMementoWords, currentMementoWords)
oFile.write('1\t' + str(mementoId) + '\t' + str(jacDist) + '\t' + URI['datetime'] + '\n')
except urllib2.HTTPError:
print 'HTTP Error'
continue
except:
print 'Error'
continue
oFile.close()
iFile.close()
|
[
"rlambi@cs.odu.edu"
] |
rlambi@cs.odu.edu
|
f8bfdfb8b63786a8c027e69eb622f8272df8b0f4
|
c4a0d5574f02d8c8ee3a979304a0c1746e533dcb
|
/app/migrations/0001_initial.py
|
3f7952b629f4bf7e1e0a60616d3a191306a77417
|
[] |
no_license
|
mmllyy/XinPianChang_project
|
3b7c8f329b1189b727b030b5034c55ca599f11de
|
9a8d568af22f8ae527e3ced2f1e8459d04cdb77d
|
refs/heads/master
| 2020-03-22T00:08:14.456244
| 2018-06-30T06:51:45
| 2018-06-30T06:51:45
| 139,226,351
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 779
|
py
|
# Generated by Django 2.0.6 on 2018-06-26 13:24
from django.db import migrations, models
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='User',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('userName', models.CharField(max_length=50)),
('userPasswd', models.CharField(max_length=32)),
('img', models.CharField(max_length=200)),
('state', models.BooleanField(default=True, verbose_name='用户状态')),
],
options={
'db_table': 'xpc_user',
},
),
]
|
[
"38482318+mmllyy@users.noreply.github.com"
] |
38482318+mmllyy@users.noreply.github.com
|
850e1aaddc7ea61e606783d01bc7fc4a402846e1
|
cdd14180f7600918822a9357c88bbcb6651a398f
|
/mpas_analysis/sea_ice/climatology_map_sea_ice_thick.py
|
063e6b5dbceae188d8445dcad1d4c3f2afd20e9a
|
[
"LicenseRef-scancode-warranty-disclaimer",
"BSD-2-Clause"
] |
permissive
|
kevinrosa/MPAS-Analysis
|
43e0272ed05300ba71eb8a478cf6fcc18954e784
|
b2799099b49cc678734771fdc721bc8e81eb86a8
|
refs/heads/eke_plots
| 2020-03-20T10:30:50.446658
| 2018-07-26T21:54:46
| 2018-07-26T21:54:46
| 137,374,333
| 0
| 0
| null | 2018-07-09T21:39:12
| 2018-06-14T15:08:38
|
Python
|
UTF-8
|
Python
| false
| false
| 8,282
|
py
|
# Copyright (c) 2017, Los Alamos National Security, LLC (LANS)
# and the University Corporation for Atmospheric Research (UCAR).
#
# Unless noted otherwise source code is licensed under the BSD license.
# Additional copyright and license information can be found in the LICENSE file
# distributed with this code, or at http://mpas-dev.github.com/license.html
#
from __future__ import absolute_import, division, print_function, \
unicode_literals
import xarray as xr
from mpas_analysis.shared import AnalysisTask
from mpas_analysis.shared.climatology import RemapMpasClimatologySubtask, \
RemapObservedClimatologySubtask
from mpas_analysis.sea_ice.plot_climatology_map_subtask import \
PlotClimatologyMapSubtask
from mpas_analysis.shared.io.utility import build_config_full_path
from mpas_analysis.shared.grid import LatLonGridDescriptor
class ClimatologyMapSeaIceThick(AnalysisTask): # {{{
"""
An analysis task for comparison of sea ice thickness against
observations
"""
# Authors
# -------
# Luke Van Roekel, Xylar Asay-Davis, Milena Veneziani
def __init__(self, config, mpasClimatologyTask, hemisphere,
refConfig=None): # {{{
"""
Construct the analysis task.
Parameters
----------
config : ``MpasAnalysisConfigParser``
Configuration options
mpasClimatologyTask : ``MpasClimatologyTask``
The task that produced the climatology to be remapped and plotted
hemisphere : {'NH', 'SH'}
The hemisphere to plot
refConfig : ``MpasAnalysisConfigParser``, optional
Configuration options for a reference run (if any)
"""
# Authors
# -------
# Xylar Asay-Davis
taskName = 'climatologyMapSeaIceThick{}'.format(hemisphere)
fieldName = 'seaIceThick'
# call the constructor from the base class (AnalysisTask)
super(ClimatologyMapSeaIceThick, self).__init__(
config=config, taskName=taskName,
componentName='seaIce',
tags=['climatology', 'horizontalMap', fieldName,
'publicObs'])
mpasFieldName = 'timeMonthly_avg_iceVolumeCell'
iselValues = None
sectionName = taskName
if hemisphere == 'NH':
hemisphereLong = 'Northern'
else:
hemisphereLong = 'Southern'
# read in what seasons we want to plot
seasons = config.getExpression(sectionName, 'seasons')
if len(seasons) == 0:
raise ValueError('config section {} does not contain valid list '
'of seasons'.format(sectionName))
comparisonGridNames = config.getExpression(sectionName,
'comparisonGrids')
if len(comparisonGridNames) == 0:
raise ValueError('config section {} does not contain valid list '
'of comparison grids'.format(sectionName))
# the variable self.mpasFieldName will be added to mpasClimatologyTask
# along with the seasons.
remapClimatologySubtask = RemapMpasClimatologySubtask(
mpasClimatologyTask=mpasClimatologyTask,
parentTask=self,
climatologyName='{}{}'.format(fieldName, hemisphere),
variableList=[mpasFieldName],
comparisonGridNames=comparisonGridNames,
seasons=seasons,
iselValues=iselValues)
if refConfig is None:
refTitleLabel = 'Observations (ICESat)'
galleryName = 'Observations: ICESat'
diffTitleLabel = 'Model - Observations'
refFieldName = 'seaIceThick'
else:
refRunName = refConfig.get('runs', 'mainRunName')
galleryName = None
refTitleLabel = 'Ref: {}'.format(refRunName)
refFieldName = mpasFieldName
diffTitleLabel = 'Main - Reference'
remapObservationsSubtask = None
for season in seasons:
if refConfig is None:
obsFileName = build_config_full_path(
config=config, section='seaIceObservations',
relativePathOption='thickness{}_{}'.format(hemisphere,
season),
relativePathSection=sectionName)
remapObservationsSubtask = RemapObservedThickClimatology(
parentTask=self, seasons=[season],
fileName=obsFileName,
outFilePrefix='{}{}_{}'.format(refFieldName,
hemisphere,
season),
comparisonGridNames=comparisonGridNames,
subtaskName='remapObservations{}'.format(season))
self.add_subtask(remapObservationsSubtask)
for comparisonGridName in comparisonGridNames:
imageDescription = \
'{} Climatology Map of {}-Hemisphere Sea-Ice ' \
'Thickness.'.format(season, hemisphereLong)
imageCaption = imageDescription
galleryGroup = \
'{}-Hemisphere Sea-Ice Thickness'.format(
hemisphereLong)
# make a new subtask for this season and comparison grid
subtask = PlotClimatologyMapSubtask(
self, hemisphere, season, comparisonGridName,
remapClimatologySubtask, remapObservationsSubtask,
refConfig)
subtask.set_plot_info(
outFileLabel='icethick{}'.format(hemisphere),
fieldNameInTitle='Sea ice thickness',
mpasFieldName=mpasFieldName,
refFieldName=refFieldName,
refTitleLabel=refTitleLabel,
diffTitleLabel=diffTitleLabel,
unitsLabel=r'm',
imageDescription=imageDescription,
imageCaption=imageCaption,
galleryGroup=galleryGroup,
groupSubtitle=None,
groupLink='{}_thick'.format(hemisphere.lower()),
galleryName=galleryName,
maskValue=0)
self.add_subtask(subtask)
# }}}
# }}}
class RemapObservedThickClimatology(RemapObservedClimatologySubtask): # {{{
"""
A subtask for reading and remapping sea ice thickness observations
"""
# Authors
# -------
# Xylar Asay-Davis
def get_observation_descriptor(self, fileName): # {{{
'''
get a MeshDescriptor for the observation grid
Parameters
----------
fileName : str
observation file name describing the source grid
Returns
-------
obsDescriptor : ``MeshDescriptor``
The descriptor for the observation grid
'''
# Authors
# -------
# Xylar Asay-Davis
# create a descriptor of the observation grid using the lat/lon
# coordinates
obsDescriptor = LatLonGridDescriptor.read(fileName=fileName,
latVarName='t_lat',
lonVarName='t_lon')
return obsDescriptor # }}}
def build_observational_dataset(self, fileName): # {{{
'''
read in the data sets for observations, and possibly rename some
variables and dimensions
Parameters
----------
fileName : str
observation file name
Returns
-------
dsObs : ``xarray.Dataset``
The observational dataset
'''
# Authors
# -------
# Xylar Asay-Davis
dsObs = xr.open_dataset(fileName)
dsObs.rename({'HI': 'seaIceThick'}, inplace=True)
return dsObs
# }}}
# }}}
# vim: foldmethod=marker ai ts=4 sts=4 et sw=4 ft=python
|
[
"xylarstorm@gmail.com"
] |
xylarstorm@gmail.com
|
dc338b94720902b803cdd21ce58507f59ae51d26
|
f20f7dac823855d837eb1a921f06a0ecdd7b3b99
|
/response_functions/get_time_response.py
|
8b4b7758869ea72ed8379264e86ddc53cab67cc8
|
[] |
no_license
|
GustavoAngulo/cmu-dining-assistant
|
4eecfd904c854c89423f85a274d3c620eb5c4eab
|
f1926122678925287f403abb5cf7cdb5bdac8c25
|
refs/heads/master
| 2021-01-13T02:54:07.589269
| 2017-02-03T20:15:16
| 2017-02-03T20:15:16
| 77,093,975
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,799
|
py
|
from datetime import date
def get_time_response(req, CMU_dining_dict):
result = req.get("result")
parameters = result.get("parameters")
location = parameters.get("location")
location_status = parameters.get("location-status")
##############
## get date ##
##############
# reqDate == "" or "YYYY-DD-MM"
reqDate = parameters.get("date")
date_responses = ["on Sunday.",
"on Monday.",
"on Tuesday.",
"on Wednesday.",
"on Thursday.",
"on Friday.",
"on Saturday."]
# reqDate: 0 is Sunday, 1 Monday, ..., 6 Saturday
if reqDate == "":
reqDate = (date.today().weekday() + 1) % 7
speech_date = "today."
else:
reqDate = reqDate.split("-")
reqDate = (date(int(reqDate[0]),
int(reqDate[1]),
int(reqDate[2])).weekday() + 1) % 7
speech_date = date_responses[reqDate]
##############
## get time ##
##############
if location_status == "open":
time = modify_time(*get_time(location, "start", reqDate, CMU_dining_dict))
elif location_status == "close":
time = modify_time(*get_time(location, "end", reqDate, CMU_dining_dict))
else:
time_start = modify_time(*get_time(location, "start", reqDate, CMU_dining_dict))
time_end = modify_time(*get_time(location, "end", reqDate, CMU_dining_dict))
#####################
## return response ##
#####################
if (location_status == "open" or location_status == "close") and time == None:
message = (location + " is not open " + speech_date)
elif location_status == "" and (time_start == None or time_end == None):
message = (location + " is not open " + speech_date)
else:
if location_status == "open":
message = (location + " opens at " + time + " " + speech_date)
elif location_status == "close":
message = (location + " closes at " + time + " " + speech_date)
elif location_status == "":
message = (location + " opens at " + time_start +
" and closes at " + time_end + " " + speech_date)
else:
message = ("There was an error in retrieving the times for " + location + ".")
return (message + " Is there anything else I can help with?")
def get_time(location, status, date, CMU_dining_dict):
# location
# type: string
# content: location name
#
# status
# type: string
# content: "start"/"end"
#
# date
# type: int
# content: 0 is Sunday, 1 Monday, ..., 6 Saturday
info = CMU_dining_dict[location]
for day in info["times"]:
if day["start"]["day"] == date:
return (day[status]["hour"], day[status]["min"])
else:
# location is not open on day date
return (None,None)
def modify_time(hour, minute):
# hour
# type: int
# content: hour time 0-23
#
# minute
# type: int
# content: minute time 0-59
if hour == None and minute == None:
return None
# changing military time to standard time and returning it as a string
if hour == 0:
(hour, time_suffix) = ("12", "am")
elif hour < 12:
(hour, time_suffix) = (str(hour), "am")
elif hour == 12:
(hour, time_suffix) = (str(hour), "pm")
else:
(hour, time_suffix) = (str(hour - 12), "pm")
# prevents 8:5 instead of 8:05
if minute < 10:
minute = "0" + str(minute)
else:
minute = str(minute)
return (hour + ":" + minute + " " + time_suffix)
|
[
"gangulo@andrew.cmu.edu"
] |
gangulo@andrew.cmu.edu
|
ae8e57f12c53f000ecf4cd7f28a45489546661e1
|
76658996d34eb37505b1165a9c1a9d103e9f68e9
|
/Project/human-emotion-generation-with-gan-encoder/load_csv.py
|
1e1d2ddf1852c2ef6ae36bd15d8a2fae0964a4d2
|
[] |
no_license
|
wewan/DD2424
|
9efe1d4abd7f11f209cda42c09a0cedbae990b3f
|
ea7f8aa43d71cb8717cafcd003d2cc7de62aad30
|
refs/heads/master
| 2020-03-18T04:53:46.872524
| 2018-10-16T13:42:38
| 2018-10-16T13:42:38
| 107,393,688
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 623
|
py
|
import csv
import numpy as np
def load_csv():
L=35887 #length of data
y_dim=7
labels=np.zeros(L)
images_reshape=np.zeros((L,2304))
with open("./data/fer2013/fer2013.csv","rb") as csvfile:
reader = csv.DictReader(csvfile)
count=0
for row in reader:
labels[count]=row['emotion']
images_reshape[count]=(row['pixels'].split())
count=count+1
X=images_reshape.reshape((L,48,48,1)).astype(np.float)/255.0
Y_=labels.astype(np.int)
y_vec = np.zeros((len(Y_), y_dim), dtype=np.float)
y_vec[np.arange(L), Y_] = 1.0
return X,y_vec
|
[
"wewang@kth.se"
] |
wewang@kth.se
|
01ceda39e559358a92eb24f5146bd52812bbf8e2
|
aa743e124d5fc3fae7f16aa4e4760b670273089d
|
/serialInput.py
|
ac12e356255644f3feb4694096661e67560a5b6c
|
[] |
no_license
|
ljdixon/fabio
|
6fa1ba2d5151b13bcb31cfa5189e1e91de84f96e
|
fb61d47f3f11a67f854bf5581fea166d9416e417
|
refs/heads/master
| 2022-06-30T22:51:08.767338
| 2020-05-12T19:16:36
| 2020-05-12T19:16:36
| 262,373,629
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 479
|
py
|
import serial, string, time
ser = serial.Serial('\\\\.\\CNCB0', 9600, 8, 'N', 1, timeout=3)
fs = open('nellcor.txt', 'r')
count = 0
while True:
# Get next line from file
line = fs.readline()
# if line is empty
# end of file is reached
if line.strip() == "":
continue
elif not line:
break
count += 1
print("Line{}: {}".format(count, line.strip()))
ser.write(bytes(line, 'ascii'))
time.sleep(2)
fs.close()
|
[
"ldixon@compunetix.com"
] |
ldixon@compunetix.com
|
a065696021e76bedc5755d43faab10c00e47aff6
|
75c6be6b0bd8cf52b183092d497d3cd558fa866f
|
/main.py
|
0f33d8e9207d8e96b6b111717f45554db367cdce
|
[] |
no_license
|
wuyanxin/gitbranch-d
|
f4baee37013826c3c96dfb259b272961e657ef22
|
7d1437cd72382b636c437f7760978299b4924ac0
|
refs/heads/master
| 2023-02-03T23:05:27.776577
| 2020-12-21T02:21:04
| 2020-12-21T02:26:40
| 323,207,174
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 657
|
py
|
from programs import interative, except_master
programList = [
interative.delete,
except_master.delete,
]
# programNo = input("\n 1. 交互式删除 \n 2. 只保留master \n 3. 输入保留分支,其它都删除 \n 请输入编号选择(默认0):")
programNo = input("\n 1. interative delete (recommanded) \n 2. keep master, delete others \n input number for chosing program (default 1): ")
if programNo == '':
programNo = 0
else:
try:
programNo = int(programNo)
except Exception:
print("illegal input")
exit()
if programNo > len(programList):
print("illegal input")
exit()
program = programList[programNo]
program()
|
[
"wyx.ethan@gmail.com"
] |
wyx.ethan@gmail.com
|
bfb17d35888656bd42a1319500ff40815aed2e4e
|
3218dcf8fb0796394f82e81f258e7c0e8280bdd4
|
/block/admin.py
|
a7f998ab5627586365b07ad9c337d07d085ea6e1
|
[] |
no_license
|
Ansagan-Kabdolla/New_visit
|
8f9afaa84a2cef68c00456389efceccb525180a2
|
fae95abf0bc24588a11cc087b9313b9828101560
|
refs/heads/master
| 2022-11-25T12:02:16.128112
| 2020-07-21T08:26:08
| 2020-07-21T08:26:08
| 281,340,122
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 169
|
py
|
from django.contrib import admin
from .models import Zakaz
@admin.register(Zakaz)
class ZakazAdmin(admin.ModelAdmin):
list_display = ('name','organization','date')
|
[
"ansagankabdolla4@gmail.com"
] |
ansagankabdolla4@gmail.com
|
65ed37ceef3043ad22a98d2e443a593540968d79
|
adc3d3a91012e6f7e6fdde346108fb75dec70c66
|
/mark/migrations/0001_initial.py
|
a7bb1beab324e5c586be6a084c4438a00c821e30
|
[] |
no_license
|
ynggny/ei
|
1eeb0b53df30238d0fe316620d007fca60c29f8a
|
4a9d222e7621fbd29c02f6d3e2a7cf65d821c147
|
refs/heads/master
| 2020-05-24T06:43:00.319761
| 2019-05-20T10:16:26
| 2019-05-20T10:16:26
| 187,144,566
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 644
|
py
|
# Generated by Django 2.2 on 2019-05-13 02:23
from django.db import migrations, models
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='Stu',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(max_length=200, verbose_name='名前')),
],
options={
'verbose_name': 'アイテム',
'verbose_name_plural': 'アイテム',
},
),
]
|
[
"yudai1151judo@ryuuyuudai-no-MacBook-Air.local"
] |
yudai1151judo@ryuuyuudai-no-MacBook-Air.local
|
a74bc85180ea2a3bfd589b48c649c92b1ee80199
|
f985153c6c41db10270601a58d7d062010792b4c
|
/Character.py
|
91db5277e93a8b6a2660ad3b8ce3f707b84283e1
|
[] |
no_license
|
Zebra385/P3_JeuMcGyver
|
dd67d4056d82c9cd13d2e7c39c84c6556720c194
|
10c27e76704ec387090dcac8149e485e793d7bed
|
refs/heads/master
| 2020-09-05T01:15:45.631476
| 2019-11-23T10:33:00
| 2019-11-23T10:33:00
| 219,942,308
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,139
|
py
|
"""
Create a class Character with attribute
a position: x_position for index of line
and y_position for index of column
"""
class Character:
def __init__(self, character, x_position, y_position):
self.character = character
self.x_position = x_position
self.y_position = y_position
"""
Create class McGyver those are a
children-class Character with
special character = m
"""
class McGyver(Character):
def __init__(self, x_position, y_position):
Character.__init__(self, "m", x_position, y_position)
# A list to stock the object (item) that Mc Gyver take
self.inventury = []
"""
Method move to move m like My Gyver with keyboard
z to up, s: down, q : left and d : right
"""
def move(self):
keyboard = input("Tell me how you want move"
" Mc Gyver; the key z to "
"up, s: down, q : left "
"and d : right ")
if keyboard == 'z': # if key 'z' is pressed
self.x_position -= 1
return self.x_position, self.y_position
elif keyboard == 's':
self.x_position += 1
return self.x_position, self.y_position
if keyboard == 'q':
self.y_position -= 1
return self.x_position, self.y_position
elif keyboard == 'd':
self.y_position += 1
return self.x_position, self.y_position
# if an other key : make nothing and write a message
else:
print("!!!!!!This key of keyboard is forbiden!!!!!!!!")
return self.x_position, self.y_position
"""
Methode to know the position
"""
def position(self):
return self.x_position, self.y_position
"""
Method to set position
"""
def set_position(self, x, y):
self.x_position = x
self.y_position = y
"""
Create class Guard those are a
children-class Character with
special character = g
"""
class Guard(Character):
def __init__(self, x_position, y_position,):
Character.__init__(self, "g", x_position, y_position)
|
[
"houcheserge@gmail.com"
] |
houcheserge@gmail.com
|
3475e4ec6fd3df25b207dd2cb8b7ab2305e435c1
|
6d39d9724fe7ca1696d8096b7fb751de01cc4883
|
/inference.py
|
78521d23e3206b4a444738a41b12e0b037e162ff
|
[] |
no_license
|
achillesheel02/ksl-repo
|
687d834ba209b6a46b44c920c45dfa04465cd91a
|
f4a00f568a3e02bb3527124daee1b0b7076333e1
|
refs/heads/master
| 2022-12-10T05:01:48.711087
| 2020-08-24T16:48:49
| 2020-08-24T16:48:49
| 287,957,500
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,003
|
py
|
import numpy as np
import glob
import utils
from keras.models import load_model
from collections import deque
import cv2
from tqdm import tqdm
import ffmpeg
TEST_VIDEO_PATH = 'test_videos/'
test_videos_paths = glob.glob(TEST_VIDEO_PATH + '*.mov')
MODEL_PATH = 'models/model.h5'
model = load_model(MODEL_PATH)
classes = utils.generate_labels().classes_
SEQ_LENGTH = utils.get_sequence_length()
for path in test_videos_paths:
print('Processing...')
data = utils.convert_to_csv(path)
filename = path.split('/')[-1].split('.')[0]
target_video = TEST_VIDEO_PATH + filename + '_annotated.mp4'
cap = cv2.VideoCapture(target_video)
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
out = cv2.VideoWriter(TEST_VIDEO_PATH + filename + '.avi', cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'),
30,
(frame_width, frame_height))
counter = 0
frames = deque(maxlen=SEQ_LENGTH)
frame_length = data.shape[0]
while counter < frame_length:
ret, frame = cap.read()
font = cv2.FONT_HERSHEY_SIMPLEX
frames.append(data[counter, :])
counter += 1
outputs = []
output_name = ''
if len(frames) is SEQ_LENGTH:
input_data = np.array(frames)
input_data = input_data[np.newaxis, np.newaxis, ...]
output = model.predict(input_data)
output_name = classes[np.argmax(output)]
output_value = output[0][np.argmax(output)]
print( output_name , output_value)
if output_value > 0.85:
outputs.append([output_name, output_value])
cv2.putText(frame, 'Prediction: ' + output_name, (50, 50), font, 1, (0, 255, 255), 1, cv2.LINE_4)
out.write(frame)
out.release()
ffmpeg.input(TEST_VIDEO_PATH + filename + '.avi').output(TEST_VIDEO_PATH + filename + '_compressed.mp4').run()
cap.release()
cv2.destroyAllWindows()
print('Video saved\n\n')
|
[
"bachillah@gmail.com"
] |
bachillah@gmail.com
|
6e14502757b800020040de7b5767e50940006584
|
5644f2e0d8ca8f4394ef5368cc5ef2830a8a9c8c
|
/auctions/urls.py
|
e89799a09a2a6b1f2d7b2941e2220e7f029d1541
|
[] |
no_license
|
Mebar-prog/online-bidding-system
|
684f9d1cb679569a23f08e0114f5c7cbc358d9e8
|
736e7b3b9c1b9781e910e975445c360172441148
|
refs/heads/master
| 2023-09-05T22:47:22.464316
| 2021-11-19T13:40:04
| 2021-11-19T13:40:04
| 429,808,234
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,157
|
py
|
from django.urls import path
from . import views
app_name = "auctions"
urlpatterns = [
path("", views.index, name="index"),
path("login/", views.login_view, name="login"),
path("logout/", views.logout_view, name="logout"),
path("register/", views.register, name="register"),
path("cards/", views.cards_view, name="cards"),
path("add/", views.add, name="add"),
path("add_comment/", views.add_comment, name="add_comment"),
path("listing_details/", views.listing_details_view, name="listing_details"),
path("watchlist/", views.watchlist_view, name="watchlist"),
path("category_list/", views.category_list, name="category_list"),
path("category_list/<str:category>", views.category_list_redirect, name="category_list_redirect"),
path("add_to_watchlist/", views.add_to_watchlist, name="add_to_watchlist"),
path("place_bid/", views.place_bid, name="place_bid"),
path("end_listing/", views.end_listing, name="end_listing"),
path("auctions_history/", views.auctions_history, name="auctions_history"),
path("delete_item_watchlist/", views.delete_item_watchlist, name="delete_item_watchlist")
]
|
[
"sherabwangchuk@Sherabs-MacBook-Air.local"
] |
sherabwangchuk@Sherabs-MacBook-Air.local
|
619bd9403b8527dc7aa9af1d1db0c477eb2b5103
|
68cdbb632cb4ad1798efb68b324b39ef2665c5ea
|
/scripts/makeQ2.py
|
2ac00bfff915794553bb0c82d6730b2613e5e366
|
[
"MIT"
] |
permissive
|
Zwerd/oldzwerd.github.io
|
c376bfeaabf0e2f127fef2599f2b44063e386d6e
|
f7f4e06f6bb5a2bbc7cc67b35f05798d3b040f46
|
refs/heads/master
| 2021-09-14T12:04:49.073216
| 2018-05-13T09:50:48
| 2018-05-13T09:50:48
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,976
|
py
|
from shutil import copyfile
import shutil
shutil.copy('../_posts/2018-04-23-javascript-tutorial.md', './jsPost.md')
jsOldPost = open('./jsPost.md','r')
count = len(jsOldPost.readlines())
jsOldPost.close()
jsNewPost = open('./jsNewPost.md', 'w')
jsOldPost = open('./jsPost.md', 'r')
for i in range(count):
jsNewPost.write(jsOldPost.readline())
if i == count-6:
jsOldPost.close()
break
loopNum = int(raw_input("How much questions you want to write?: "))
string = ''
script = open('./quiz.js', 'w')
for a in range(1, loopNum+1):
questionNum = int(raw_input("How much questions do you have so far?: "))
questionLine = str(raw_input("please type the question line: ")).replace('<', '<').replace('>', '>')
string += '<p class = "questions">'+str(questionNum+a)+'.'+questionLine +'</p>\n'
for i in range(1,5):
answer = str(raw_input("please type answer number " + str(i) + ": ")).replace('<', '<').replace('>', '>')
correct = int(raw_input("is it the correct answer (1 for yes, 0 for no)?: "))
string += '<input type="radio" id="mc" name="q'+str(questionNum+1)+'" value="'+str(correct)+'">' + answer +'<br>\n'
##for my js script
jsCount = loopNum + questionNum
jsString = ''
jsString += 'function check(){var answer = document.getElementById("answer");\nvar correct = 0\n'
for i in range(1,jsCount+1):
jsString += 'var q' + str(i) +'= document.quiz.q'+str(i)+'.value;\n'
jsString += "if(q"+str(i)+"== '1'){correct++};\n"
jsString += "answer.innerHTML='Your scor is: '+correct*100/" + str(jsCount)+";\n"
string += "\n\n\n\n" + "<script>\n"+jsString+"\n</script>"
string += "\n\n\n\n<br>\n"
string += '<input id = "button" type = "button" value = "End The Exam!" style="font-size:20px" onclick = "check();">\n'
string += '<p id="answer"></p>\n'
string += '</form>\n'
jsNewPost.write(string)
jsNewPost.close()
shutil.copy('./jsNewPost.md', '../_posts/2018-04-23-javascript-tutorial.md')
|
[
"guy.zwerdling@gmail.com"
] |
guy.zwerdling@gmail.com
|
54f07d34db1492f4ee7dc5264d05d386b5d245f4
|
1954c351980f8f1829beaf8f2d2f88032dc81849
|
/apps/screen-lock/gen_gradient.py
|
dbc425e6cb0c8cc573767f38c649b351eb81b07e
|
[
"Apache-2.0"
] |
permissive
|
VincentWei/cell-phone-ux-demo
|
e219913d9032b20b4b2f221ddf8c55f05701191c
|
1085ba798dafe4c32ca4cf8eb65f348c762c224e
|
refs/heads/master
| 2023-01-09T16:56:42.756418
| 2022-09-15T03:17:54
| 2022-09-15T03:17:54
| 112,908,546
| 14
| 8
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,739
|
py
|
#! /usr/bin/env python
import sys
import os
def handle_line(line, transparent):
line = line.replace('#', '')
L = line.split()
if (len(L) < 2): return None
pos = int(L[0])
#color = int(L[1], 16)
color = L[1]
return "\t{ %0.2ff, %s%s, },\n" % ((100-pos)/100.0, transparent, color)
#return "\t{ %0.2ff, %s%s, },\n" % ((64-(pos-36))/64.0, transparent, color)
def gen_gradient(fin, fout, arrayname):
L = []
transparent = 'ff'
name = arrayname
def gen_array():
text = '''
static const GradientData %s[] = {
%s};
''' % (name, ''.join(L))
fout.write(text)
for line in fin:
if line.startswith('#'):
continue
if line.startswith('name:'):
if (len(L)>0):
gen_array()
del L[:]
name = line.replace('name:', '')
name = name.strip()
elif line.startswith('transparence:'):
transparent = line.replace('transparence:', '')
transparent = transparent.replace('%', '')
transparent = transparent.strip()
transparent = int(int(transparent) / 100.0 * 255)
transparent = hex(transparent)
else:
entry = handle_line(line, transparent)
if entry is not None:
L.append(entry)
gen_array()
if __name__ == '__main__':
if len(sys.argv) <= 1:
print "Usage: gen_gradient.py filename"
exit(1)
infile = sys.argv[1]
fin = open(infile)
fout = sys.stdout
if len(sys.argv) > 2:
fout = open(sys.argv[2], 'w')
arrayname = os.path.splitext(os.path.basename(infile))[0]
gen_gradient(fin, fout, arrayname)
fout.close()
fin.close()
|
[
"vincent@minigui.org"
] |
vincent@minigui.org
|
c2ddc57ff92cf54eda387010664a3029ee50e35a
|
0c6ac3b70c9e04f91265461c0782984732fb6156
|
/polyglot/managers.py
|
fb5a0250f15a93a054de9892897fed68028850cf
|
[] |
no_license
|
fgallina/django-polyglot
|
71aa05359ff64df39344e2a268dac85cfb329ad3
|
37991d67eb38aac90eac6c3a721931b3217fce2c
|
refs/heads/master
| 2016-09-15T16:15:54.017218
| 2009-09-04T17:46:47
| 2009-09-04T17:46:47
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 987
|
py
|
from django.utils import translation
from django.db import models
from django.db.models import Q
from polyglot import defaults
from polyglot import helpers
class LanguageFieldManager(models.Manager):
"""Returns elements of the current language."""
def lall(self):
lang = translation.get_language()[:2]
filterby = {str(defaults.MANAGER_LANG_FIELD): lang}
return self.get_query_set().filter(**filterby)
class LanguageManager(models.Manager):
"""Returns elements of the current language."""
def __init__(self, *fields):
super(LanguageManager, self).__init__()
self.fields = fields
def lall(self, *fields):
if not fields:
fields = self.fields
qstring = ''
for field in fields:
field_name = helpers.format_field_name(field)
qstring += 'Q(%s="") | ' % field_name
qstring = qstring[:-2]
q = eval(qstring)
return self.get_query_set().exclude(q)
|
[
"fgallina@cuca.(none)"
] |
fgallina@cuca.(none)
|
bcdcdf1fc18c8ea9916c786987ef64ce2de7fd7d
|
038e9356a9c41541d3eb8f457ce2b651fafaa159
|
/TRBlog/blog/migrations/0002_auto_20201029_2139.py
|
8bf1fd5b3f8de15a074e68c59ed567ddad01e331
|
[] |
no_license
|
VipinDodke/TRB
|
0ed6c64757ab9d2850c8e6c8ccc553d7a910ac28
|
9ce7c7cb1548df6b18160688be50dfc99684cd19
|
refs/heads/master
| 2023-02-22T12:58:01.738082
| 2021-01-25T19:44:48
| 2021-01-25T19:44:48
| 314,181,723
| 6
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 559
|
py
|
# Generated by Django 3.1.2 on 2020-10-30 04:39
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('blog', '0001_initial'),
]
operations = [
migrations.AddField(
model_name='page',
name='image',
field=models.ImageField(default='', upload_to='blog/images'),
),
migrations.AddField(
model_name='page',
name='video',
field=models.FileField(default='', upload_to='blog/video'),
),
]
|
[
"vipin830525@gmail.com"
] |
vipin830525@gmail.com
|
cb8e3b9ba3c52a1ab5dc80b848533e056101ac52
|
4a038fdb8acd8c25822630f1e18316ab694baa02
|
/sibs_parch2.py
|
faf72c6664eed209b7b99d96a0a8549ef054d88c
|
[] |
no_license
|
soumoks/Titanic-Kaggle-Competition
|
c8ab104e655ddfa86d2d706859ba49cf29b04cb2
|
c6f838740da8caf641ef6f71311574ba47572ce3
|
refs/heads/master
| 2021-04-07T04:06:54.981926
| 2020-04-01T02:38:30
| 2020-04-01T02:38:30
| 248,644,295
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,349
|
py
|
# %%
# Import libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import seaborn as sns
from sklearn import tree
# %%
# Load data from csv
df = pd.read_csv('train.csv', index_col='PassengerId')
# %%
# Add a feature called Family Size
for id, attributes in df.iterrows():
df.loc[id, 'Relatives'] = attributes['SibSp'] + attributes['Parch']
if df.loc[id, 'Relatives'] == 0:
df.loc[id, 'FamilySize'] = 0
if df.loc[id, 'Relatives'] > 0:
df.loc[id, 'FamilySize'] = 1
if df.loc[id, 'Relatives'] > 2:
df.loc[id, 'FamilySize'] = 2
if df.loc[id, 'Relatives'] > 3:
df.loc[id, 'FamilySize'] = 3
if df.loc[id, 'Relatives'] > 5:
df.loc[id, 'FamilySize'] = 4
if df.loc[id, 'Relatives'] > 6:
df.loc[id, 'FamilySize'] = 5
#df = df[df.Relatives != 0]
axes = sns.factorplot('Relatives','Survived', data=df, aspect = 2.5)
# %%
#Extract the passenger Title from Name
df2 = df
df2['Title'] = df2.Name
df2.Title = df2.Title.replace(regex={
r'.*, Capt.*': 'Officer',
r'.*, Col.*': 'Officer',
r'.*, Major.*': 'Officer',
r'.*, Jonkheer.*': 'Royalty',
r'.*, Don.*': 'Royalty',
r'.*, Sir.*': 'Royalty',
r'.*, Dr.*': 'Officer',
r'.*, Rev.*': 'Officer',
r'.*, the Countess.*': 'Royalty',
r'.*, Mme.*': 'Mrs',
r'.*, Mlle.*': 'Miss',
r'.*, Ms.*': 'Mrs',
r'.*, Mrs.*': 'Mrs',
r'.*, Mr.*': 'Mr',
r'.*, Miss.*': 'Miss',
r'.*, Master.*': 'Master',
r'.*, Lady.*': 'Royalty'
})
axes = sns.factorplot('Title','Survived', data=df2, aspect = 2.5)
df2.Title = df2.Title.replace({'Officer': 1, 'Mrs': 2, 'Miss': 3, 'Mr': 4, 'Master': 5, 'Royalty': 6})
# %%
# Add a feature called AgeGroup
df3 = df2
bins = list(range(0, 71, 5))
labels = list(range(len(bins)-1))
df3['AgeGroup'] = pd.cut(df3.Age, bins, labels=labels, include_lowest=True)
axes = sns.factorplot('AgeGroup','Survived', data=df3, aspect = 2.5)
df3.AgeGroup = df3.AgeGroup = df.AgeGroup.replace({
0:3,
1:1,
2:2,
3:2,
4:2,
5:1,
6:2,
7:2,
8:1,
9:3,
10:3,
11:3,
12:1,
13:0
})
# %%
# Replace Sex with values
df4 = df3
df4.Sex = df4.Sex.replace({'male': 1, 'female':0})
axes = sns.factorplot('Sex','Survived', data=df3, aspect = 2.5)
# %%
# Prepare data for training
df5=df4
df5 = df5.dropna(subset=['AgeGroup'])
df5 = df5.loc[:, ['AgeGroup', 'Sex', 'Title', 'FamilySize', 'Survived']]
# %%
# Train a RandomForst model
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
df6 = df5
y = df6['Survived'].to_numpy()
X = df6.drop('Survived', axis=1).to_numpy()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
clf = RandomForestClassifier()
clf.fit(X_train, y_train)
#print(clf.score(X_test, y_test))
print('RandomForst, Train score:', cross_val_score(clf, X_train, y_train, cv=20).mean())
print('RandomForst, Test score:', cross_val_score(clf, X_test, y_test, cv=20).mean())
# %%
# Train a Decision Tree model
clf = tree.DecisionTreeClassifier()
clf.fit(X_train, y_train)
#print(clf.score(X_test, y_test))
print('DecisionTree, Train score:', cross_val_score(clf, X_train, y_train, cv=20).mean())
print('DecisionTree, Test score:', cross_val_score(clf, X_test, y_test, cv=20).mean())
# %%
|
[
"yuelin8879@gmail.com"
] |
yuelin8879@gmail.com
|
3aa97bc0dd6c3d3c3ce765409fb7ccd121a10ff0
|
9743d5fd24822f79c156ad112229e25adb9ed6f6
|
/xai/brain/wordbase/otherforms/_reforested.py
|
2264bbdb8609e7079f50a2202870980d6e5df0a0
|
[
"MIT"
] |
permissive
|
cash2one/xai
|
de7adad1758f50dd6786bf0111e71a903f039b64
|
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
|
refs/heads/master
| 2021-01-19T12:33:54.964379
| 2017-01-28T02:00:50
| 2017-01-28T02:00:50
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 232
|
py
|
#calss header
class _REFORESTED():
def __init__(self,):
self.name = "REFORESTED"
self.definitions = reforest
self.parents = []
self.childen = []
self.properties = []
self.jsondata = {}
self.basic = ['reforest']
|
[
"xingwang1991@gmail.com"
] |
xingwang1991@gmail.com
|
5d047e167ece1fb4fc981b472c5603b58b1c13ca
|
6c3d274858d062894ac4ff8aed2e4962f3a0d1fb
|
/tests/infra/utils.py
|
b91f51d357547a71c52fccdf43ef208630567ed4
|
[
"Apache-2.0"
] |
permissive
|
eddyashton/CCF
|
eab68ba7afb05a3cc4460aacae2c52fbe7c6171f
|
de7329a31d57774bc135c41bc60c0fd4888fb107
|
refs/heads/main
| 2023-08-19T08:53:19.594030
| 2022-08-02T14:10:12
| 2022-08-02T14:10:12
| 184,758,106
| 0
| 1
|
Apache-2.0
| 2023-03-20T14:59:57
| 2019-05-03T13:15:33
|
C++
|
UTF-8
|
Python
| false
| false
| 784
|
py
|
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the Apache 2.0 License.
import infra.path
import hashlib
import os
import subprocess
def get_code_id(enclave_type, oe_binary_dir, package, library_dir="."):
lib_path = infra.path.build_lib_path(package, enclave_type, library_dir)
if enclave_type == "virtual":
return hashlib.sha256(lib_path.encode()).hexdigest()
else:
res = subprocess.run(
[os.path.join(oe_binary_dir, "oesign"), "dump", "-e", lib_path],
capture_output=True,
check=True,
)
lines = [
line
for line in res.stdout.decode().split(os.linesep)
if line.startswith("mrenclave=")
]
return lines[0].split("=")[1]
|
[
"noreply@github.com"
] |
eddyashton.noreply@github.com
|
e42dea08bf272369445f8bf0a9c1bf8981c56105
|
0e83d1463adf0d6d4ca27e5d48bbc3d091f60bcd
|
/packages/core/src/RPA/core/notebook.py
|
dc2da2dcef2d43f3950fe923059cfe966ff622d9
|
[
"Apache-2.0"
] |
permissive
|
krehl/rpaframework
|
8e6a2df5072412315339317f333a37d0ecc95450
|
86a8e33fafe65dcc092a12e2e75774463d33d358
|
refs/heads/master
| 2022-12-03T07:36:36.902265
| 2020-08-24T19:49:36
| 2020-08-24T19:49:36
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,785
|
py
|
from functools import wraps
from importlib import util
import inspect
import os
from typing import Any
IPYTHON_AVAILABLE = False
ipython_module = util.find_spec("IPython")
if ipython_module:
# pylint: disable=C0415
from IPython.display import ( # noqa
Audio,
display,
FileLink,
FileLinks,
Image,
JSON,
Markdown,
Video,
)
IPYTHON_AVAILABLE = True
def _get_caller_prefix(calframe):
keyword_name = (
calframe[1][3] if calframe[1][3] not in ["<module>", "<lambda>"] else None
)
if keyword_name:
keyword_name = keyword_name.replace("_", " ").title()
return f"Output from **{keyword_name}**"
return ""
def print_precheck(f):
@wraps(f)
def wrapper(*args, **kwargs):
if not IPYTHON_AVAILABLE:
return None
output_level = os.getenv("RPA_NOTEBOOK_OUTPUT_LEVEL", "1")
if output_level == "0":
return None
curframe = inspect.currentframe()
calframe = inspect.getouterframes(curframe, 2)
prefix = _get_caller_prefix(calframe)
if prefix != "":
display(Markdown(prefix))
return f(*args, **kwargs)
return wrapper
@print_precheck
def notebook_print(arg=None, **kwargs) -> Any:
"""Display IPython Markdown object in the notebook
Valid parameters are `text`, `image`, `link` or `table`.
:param text: string to output (can contain markdown)
:param image: path to the image file
:param link: path to the link
:param table: `RPA.Table` object to print
"""
if arg and "text" in kwargs.keys():
kwargs["text"] = f"{arg} {kwargs['text']}"
elif arg:
kwargs["text"] = arg
output = _get_markdown(**kwargs)
if output:
display(Markdown(output))
@print_precheck
def notebook_file(filepath):
"""Display IPython FileLink object in the notebook
:param filepath: location of the file
"""
if filepath:
display(FileLink(filepath))
@print_precheck
def notebook_dir(directory, recursive=False):
"""Display IPython FileLinks object in the notebook
:param directory: location of the directory
:param recursive: if all subdirectories should be shown also, defaults to False
"""
if directory:
display(FileLinks(directory, recursive=recursive))
@print_precheck
def notebook_table(table):
"""Display RPA.Table as IPython Markdown object in the notebook
:param table: `RPA.Table` object to print
"""
output = _get_table_output(table)
if output:
display(Markdown(output))
@print_precheck
def notebook_image(image):
"""Display IPython Image object in the notebook
:param image: path to the image file
"""
if image:
display(Image(image))
@print_precheck
def notebook_video(video):
"""Display IPython Video object in the notebook
:param video: path to the video file
"""
if video:
display(Video(video))
@print_precheck
def notebook_audio(audio):
"""Display IPython Audio object in the notebook
:param audio: path to the audio file
"""
if audio:
display(Audio(filename=audio))
@print_precheck
def notebook_json(json_object):
"""Display IPython JSON object in the notebook
:param json_object: item to show
"""
if json_object:
display(JSON(json_object))
def _get_table_output(table):
output = ""
try:
# pylint: disable=C0415
from RPA.Tables import Tables, Table # noqa
if isinstance(table, Table):
output = "<table class='rpafw-notebook-table'>"
header = Tables().table_head(table, count=1)
for row in header:
output += "<tr>"
for h, _ in row.items():
output += f"<th>{h}</th>"
output += "</tr>"
for row in table:
output += "<tr>"
for _, cell in row.items():
output += f"<td>{cell}</td>"
output += "</tr>"
output += "</table><br>"
except ImportError:
pass
return None if output == "" else output
def _get_markdown(**kwargs):
output = ""
for key, val in kwargs.items():
if key == "text":
output += f"<span class='rpafw-notebook-text'>{val}</span><br>"
if key == "image":
output += f"<img class='rpafw-notebook-image' src='{val}'><br>"
if key == "link":
link_text = (val[:75] + "..") if len(val) > 75 else val
output += f"<a class='rpafw-notebook-link' href='{val}'>{link_text}</a><br>"
if key == "table":
output += _get_table_output(val)
return None if output == "" else output
|
[
"mika@robocorp.com"
] |
mika@robocorp.com
|
31ed7465cf76aea2045bb913368d9bcac7f71b8b
|
3295631ed075b6e69ea586d7339fd6ad7fa2e78e
|
/hayalet.py
|
56a4f233ec18c77c0e180e277070bb0f9b4c4642
|
[] |
no_license
|
siberhayalet/Hayalet-DDOS
|
609b99d284cef7238121840d272bea97f0b5d618
|
c4fde885dd987512dc449c814f2d0ac16c563193
|
refs/heads/master
| 2021-05-18T02:50:45.943289
| 2020-03-29T16:02:15
| 2020-03-29T16:02:15
| 251,072,161
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 9,959
|
py
|
!/usr/bin/python3
-*- coding: utf-8 -*-
python 3.3.2+ Hammer Dos Script v.1
by Can Yalçın
only for legal purpose
from queue import Queue
from optparse import OptionParser
import time,sys,socket,threading,logging,urllib.request,random
def user_agent():
global uagent
uagent=[]
uagent.append("Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.0) Opera 12.14")
uagent.append("Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:26.0) Gecko/20100101 Firefox/26.0")
uagent.append("Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.1.3) Gecko/20090913 Firefox/3.5.3")
uagent.append("Mozilla/5.0 (Windows; U; Windows NT 6.1; en; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 3.5.30729)")
uagent.append("Mozilla/5.0 (Windows NT 6.2) AppleWebKit/535.7 (KHTML, like Gecko) Comodo_Dragon/16.1.1.0 Chrome/16.0.912.63 Safari/535.7")
uagent.append("Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 3.5.30729)")
uagent.append("Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.1) Gecko/20090718 Firefox/3.5.1")
return(uagent)
def my_bots():
global bots
bots=[]
bots.append("http://validator.w3.org/check?uri=")
bots.append("http://www.facebook.com/sharer/sharer.php?u=")
return(bots)
def bot_hammering(url):
try:
while True:
req = urllib.request.urlopen(urllib.request.Request(url,headers={'User-Agent': random.choice(uagent)}))
print("\033[94mbot is hammering...\033[0m")
time.sleep(.1)
except:
time.sleep(.1)
def down_it(item):
try:
while True:
packet = str("GET / HTTP/1.1\nHost: "+host+"\n\n User-Agent: "+random.choice(uagent)+"\n"+data).encode('utf-8')
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((host,int(port)))
if s.sendto( packet, (host, int(port)) ):
s.shutdown(1)
print ("\033[92m",time.ctime(time.time()),"\033[0m \033[94m <--packet sent! hammering--> \033[0m")
else:
s.shutdown(1)
print("\033[91mshut<->down\033[0m")
time.sleep(.1)
except socket.error as e:
print("\033[91mno connection! server maybe down\033[0m")
#print("\033[91m",e,"\033[0m")
time.sleep(.1)
def dos():
while True:
item = q.get()
down_it(item)
q.task_done()
def dos2():
while True:
item=w.get()
bot_hammering(random.choice(bots)+"http://"+host)
w.task_done()
def usage():
print (''' \033[92m Hammer Dos Script v.1 http://www.canyalcin.com/
It is the end user's responsibility to obey all applicable laws.
It is just for server testing script. Your ip is visible. \n
usage : python3 hammer.py [-s] [-p] [-t]
-h : yardım
-s : server ip
-p : port default 80
-t : turbo default 135 \033[0m''')
sys.exit()
def get_parameters():
global host
global port
global thr
global item
optp = OptionParser(add_help_option=False,epilog="Hammers")
optp.add_option("-q","--quiet", help="set logging to ERROR",action="store_const", dest="loglevel",const=logging.ERROR, default=logging.INFO)
optp.add_option("-s","--server", dest="host",help="attack to server ip -s ip")
optp.add_option("-p","--port",type="int",dest="port",help="-p 80 default 80")
optp.add_option("-t","--turbo",type="int",dest="turbo",help="default 135 -t 135")
optp.add_option("-h","--help",dest="help",action='store_true',help="help you")
opts, args = optp.parse_args()
logging.basicConfig(level=opts.loglevel,format='%(levelname)-8s %(message)s')
if opts.help:
usage()
if opts.host is not None:
host = opts.host
else:
usage()
if opts.port is None:
port = 80
else:
port = opts.port
if opts.turbo is None:
thr = 135
else:
thr = opts.turbo
# reading headers
global data
headers = open("headers.txt", "r")
data = headers.read()
headers.close()
#task queue are q,w
q = Queue()
w = Queue()
if __name__ == '__main__':
if len(sys.argv) < 2:
usage()
get_parameters()
print("\033[92m",host," port: ",str(port)," turbo: ",str(thr),"\033[0m")
print("\033[94mPlease wait...\033[0m")
user_agent()
my_bots()
time.sleep(5)
try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((host,int(port)))
s.settimeout(1)
except socket.error as e:
print("\033[91mcheck server ip and port\033[0m")
usage()
while True:
for i in range(int(thr)):
t = threading.Thread(target=dos)
t.daemon = True # if thread is exist, it dies
t.start()
t2 = threading.Thread(target=dos2)
t2.daemon = True # if thread is exist, it dies
t2.start()
start = time.time()
#tasking
item = 0
while True:
if (item>1800): # for no memory crash
item=0
time.sleep(.1)
item = item + 1
q.put(item)
w.put(item)
q.join()
w.join()
|
[
"noreply@github.com"
] |
siberhayalet.noreply@github.com
|
2d73c0b4136544ae41233e0c4dddb23db861355c
|
e53baa85a296b89abce5bccbf89d7d71cf59c7dd
|
/SyntaxAnalyzer.py
|
8d4c931641597fca203abd48de384223b54a9037
|
[] |
no_license
|
NagariaHussain/JackCompiler
|
bb93b861b5bad3b6444a7332e1b10678c65716d3
|
319599caba15c6541d3b0fc7373dcf3e49cf0308
|
refs/heads/master
| 2023-01-20T03:50:30.797052
| 2020-11-22T11:11:02
| 2020-11-22T11:11:02
| 299,852,411
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,056
|
py
|
# For accessing command line args
from sys import argv
# For handling file/dir paths
from pathlib import Path
# Import Analyzer components
from compilation_engine import CompilationEngine
from jack_tokenizer import JackTokenizer
# Get input path
in_path = Path(argv[1])
if in_path.is_file():
# Path points to a file
# Initialize tokenizer
tokenizer = JackTokenizer(in_path)
# Initialize compilation engine
compilationEngine = CompilationEngine(
tokenizer,
in_path.with_suffix(".xml")
)
# Start compilation
compilationEngine.start_compilation()
elif in_path.is_dir():
# Path points to a directory
for item in in_path.iterdir():
if item.is_file():
# Compile every jack file
if item.suffix == ".jack":
tokenizer = JackTokenizer(item)
ci = CompilationEngine(
tokenizer,
item.with_suffix(".xml")
)
ci.start_compilation()
# END OF FILE
|
[
"hussainbhaitech@gmail.com"
] |
hussainbhaitech@gmail.com
|
4e3c5f132dfc414b615aaa2c224ea9a0c52c998a
|
749ece8be5d38fbda341d86101ccf1b3661195ad
|
/week-3/python-syntax/test.py
|
cb937196beec01933f9a4d819534e047e452ab60
|
[] |
no_license
|
NicolasGuerrero/react-custom-hooks
|
e00dd8168a454db59e95955a45080dd034bbd0f4
|
63df6053c510c5d4e3210baf3ab5d09abba0cf17
|
refs/heads/master
| 2022-12-25T19:39:46.325300
| 2020-02-29T01:12:21
| 2020-02-29T01:12:21
| 243,882,996
| 0
| 0
| null | 2022-12-12T03:02:45
| 2020-02-29T01:11:49
|
JavaScript
|
UTF-8
|
Python
| false
| false
| 109
|
py
|
def my_function(nums):
for num in nums:
print(num)
my_nums = [1, 2, 10]
my_function(my_nums)
|
[
"saynaysurf@gmail.com"
] |
saynaysurf@gmail.com
|
de06cf8c6463a615ed1808701fc0072c86973115
|
5ab4dfce4aa368855708880e27f9b0032fa5c7aa
|
/replay_component/scripts/config.py
|
a8ba12a0e00a78808d9233019f3bd2ca2ee41a87
|
[] |
no_license
|
itzranjeet/replay_component
|
d11e720142d349818fbed1aa82eda738282cd103
|
bc4cb17bb9182d8f8e08961bf4f4d15ae2577c5a
|
refs/heads/master
| 2022-12-31T13:29:48.105507
| 2020-10-20T07:40:37
| 2020-10-20T07:40:37
| 305,627,532
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 512
|
py
|
import json
config_file_path = '/home/jesmij/ros_ws/src/replay_component/config/config.json'
with open(config_file_path) as config_file:
config = json.load(config_file)
class Config:
BENCH_DATA_DIRECTORY = config.get("BENCH_DATA_DIRECTORY")
SQLALCHEMY_TRACK_MODIFICATIONS = False
SERVICES = [
{'path': '.server.routes', 'blueprint': 'server'}
]
BUNDLE_FILE_LOC = config.get("BUNDLE_BENCH_FILE_LOCATION")
TCP_IP = config.get("TCP_IP")
PORT = config.get("PORT")
|
[
"ranjeet.patil@kpit.com"
] |
ranjeet.patil@kpit.com
|
e191e24a90476161be215f639c498635ef7d140c
|
7bc54bae28eec4b735c05ac7bc40b1a8711bb381
|
/src/arg/perspectives/gen_runner/run_ngram_collector_subword_train.py
|
9bde1ee31a94937ac3d4bd71f06730c26fa0a7ee
|
[] |
no_license
|
clover3/Chair
|
755efd4abbd5f3f2fb59e9b1bc6e7bc070b8d05e
|
a2102ebf826a58efbc479181f1ebb5de21d1e49f
|
refs/heads/master
| 2023-07-20T17:29:42.414170
| 2023-07-18T21:12:46
| 2023-07-18T21:12:46
| 157,024,916
| 0
| 0
| null | 2023-02-16T05:20:37
| 2018-11-10T21:55:29
|
Python
|
UTF-8
|
Python
| false
| false
| 487
|
py
|
from arg.perspectives.n_gram_feature_collector_subword import PCNgramSubwordWorker
from data_generator.job_runner import JobRunner, sydney_working_dir
if __name__ == "__main__":
def worker_factory(out_dir):
return PCNgramSubwordWorker(
input_job_name="rel_score_to_para_train",
max_para=30,
out_dir=out_dir
)
runner = JobRunner(sydney_working_dir, 606, "pc_ngram_subword_all_train", worker_factory)
runner.start()
|
[
"lesterny@gmail.com"
] |
lesterny@gmail.com
|
b2d8c460e3695b8e62944fbd80126bdd465de832
|
901c62fda0c629843ec5077e34d5d4da387e3455
|
/model/common.py
|
8fde25a1829ff205c919fe7f788c6ce425bfee51
|
[] |
no_license
|
mikeizbicki/ccTLD
|
99a1a442216763bf417e2d441a87b22f77eebcee
|
f461d87f70ef7da7ca91bbc451859c9cbc5a10ae
|
refs/heads/master
| 2020-05-01T12:48:52.492075
| 2019-05-09T06:15:48
| 2019-05-09T06:15:48
| 177,475,383
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,120
|
py
|
countries={
'ar':'Argentina',
'bo':'Bolivia',
'cl':'Chile',
'co':'Colombia',
'cr':'Costa Rica',
'cu':'Cuba',
'do':'Dominican Republic',
'ec':'Ecuador',
'sv':'El Salvador',
'gt':'Guatemala',
'hn':'Honduras',
'mx':'Mexico',
'ni':'Nicaragua',
'pa':'Panama',
'py':'Paraguay',
'pe':'Peru',
'pr':'Puerto Rico',
'es':'Spain',
'uy':'Uruguay',
've':'Venezuela',
'gq':'Equatorial Guinea',
'us':'United States',
'pt':'Portugal',
'bz':'Belize',
'br':'Brazil',
}
ccTLDs=sorted(countries.keys())
def get_vocab(vocab_size,vocab_filename='bin/all.vocab'):
import pickle
vocab_top_filename='bin/'+str(vocab_size)+'.vocab'
try:
with open(vocab_top_filename,'r') as f:
vocab_top=pickle.load(f)
except:
with open(vocab_filename,'r') as f:
vocab=pickle.load(f)
vocab_top=map(lambda (x,y):x,vocab.most_common(vocab_size-1))
vocab_top.append('<<UNK>>')
with open(vocab_top_filename,'w') as f:
pickle.dump(vocab_top,f)
return vocab_top
|
[
"mike@izbicki.me"
] |
mike@izbicki.me
|
f180557feef9db0d6538d1491c772a735dc9d47a
|
b2f256c584aa071a58d8905c3628d4a4df25a506
|
/utils/python/python/fanalyse.py
|
a2d9cd1089ec72aac1282dd4331b2a44fbb8b3d5
|
[
"MIT"
] |
permissive
|
maximebenoitgagne/wintertime
|
6865fa4aff5fb51d50ea883b2e4aa883366227d8
|
129758e29cb3b85635c878dadf95e8d0b55ffce7
|
refs/heads/main
| 2023-04-16T22:08:24.256745
| 2023-01-10T20:15:33
| 2023-01-10T20:15:33
| 585,290,944
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 34,126
|
py
|
'''find all write access to variables in fortran files.
First direct assignments, then indirect writes through subroutine calls.
'''
import sys
import os
import re
import glob
import shlex
import json
import string
import cgi
from pyparsing import nestedExpr, ParseException
SRPATT = re.compile(r'^ .... *(program|subroutine|(?:[a-zA-Z0-9_*]+ +)?function) *(\w+) *(\([^!]*)?', re.I)
CALLPATT = re.compile(r'^( .... *call *)(\w+) *(\([^!]*)', re.I)
INCLUDEPATT = re.compile(r'^# *include +"([^"]+)"')
COMMONPATT = re.compile(r'^ .... *common */ *(\w+) */ *(.*) *$', re.I)
INLINECOMMENTPATT = re.compile(r'\!.*$')
CONTLINEPATT = re.compile(r'^ [^ ]')
parenexpr = nestedExpr('(', ')')
angleexpr = nestedExpr('<', '>')
_defdirs = ['model/inc',
'model/src',
'eesupp/inc',
'eesupp/src',
'pkg/*']
_defexcludes = ['pkg/atm_ocn_coupler',
'pkg/aim_compon_interf',
'pkg/chronos',
'pkg/cfc',
'pkg/dic',
'pkg/ecco',
'pkg/autodiff',
]
_IGNOREHEADERS = ['mpif.h',
'netcdf.inc',
'tamc.h',
'tamc_keys.h',
'PACKAGES_CONFIG.h',
'AD_CONFIG.h',
'BUILD_INFO.h',
'ecco_cost.h',
'ecco_ad_check_lev1_dir.h',
'ecco_ad_check_lev2_dir.h',
'ecco_ad_check_lev3_dir.h',
'ecco_ad_check_lev4_dir.h',
'dic_ad_check_lev1_dir.h',
'dic_ad_check_lev2_dir.h',
'dic_ad_check_lev3_dir.h',
'dic_ad_check_lev4_dir.h',
'ebm_ad_check_lev2_dir.h',
'ebm_ad_check_lev4_dir.h',
'checkpoint_lev1_template.h',
'checkpoint_lev1_directives.h',
'checkpoint_lev2_directives.h',
'checkpoint_lev3_directives.h',
'checkpoint_lev4_directives.h',
'ctrparam.h',
'adcommon.h',
'f_hpm.h',
]
U = True
I = False
_KNOWNINTENTS = {'flush': [I],
'mpi_wait': [I,U,U],
'mpi_comm_size': [I,U,U],
'mpi_comm_rank': [I,U,U],
'mpi_cart_rank': [I,I,U,U],
'mpi_cart_coords': [I,I,I,U,U],
'mpi_cart_create': [I,I,I,I,I,U,U],
'mpi_bcast': [U,I,I,I,I,U],
'mpi_recv': [U,I,I,I,I,I,U,U],
'mpi_send': [I,I,I,I,I,I,U],
'mpi_isend': [I,I,I,I,I,I,U,U],
'mpi_type_commit': [I,U],
'mpi_type_contiguous': [I,I,U,U],
'mpi_type_vector': [I,I,I,I,U,U],
'mpi_type_hvector': [I,I,I,I,U,U],
'mpi_allreduce': [I,U,I,I,I,I,U],
}
_IGNORESUBPATTS = ['active_read_',
'active_write_',
'adactive_',
'autodiff_',
'ampi_',
'mpi_waitall$',
'mpi_barrier$',
]
_IGNORESUBPATTS = [ re.compile(s) for s in _IGNORESUBPATTS ]
def dump(fname, obj):
with open(fname, 'w') as f:
json.dump(obj, f)
def load(fname):
with open(fname) as f:
obj = json.load(f)
return obj
def pathdict(dirglobs=_defdirs, ext='.h', excludes=_defexcludes, rootdir=''):
'''return dictionary mapping names of files with extension ext in directories
matching dirglobs under rootdir to their paths
'''
paths = {}
for dg in dirglobs:
for dir in glob.glob(os.path.join(rootdir,dg)):
if dir.rstrip('/') not in excludes:
for path in glob.glob('{}/*{}'.format(dir,ext)):
d,name = os.path.split(path)
if name in paths:
print 'duplicate:', paths[name], path
paths[name] = path
return paths
def joinacrosscpp(lines, i=0, argstr=''):
while lines[i+1][:1] == '#' or CONTLINEPATT.match(lines[i+1]):
i += 1
#lline = lines[i].lower()
lline = lines[i]
if CONTLINEPATT.match(lline):
arg = INLINECOMMENTPATT.sub('', lline[6:]).strip()
argstr = argstr + arg
return i,argstr
def stripallcpp(fname):
lines = []
linenum = []
with open(fname) as fid:
for n,line in enumerate(fid):
line = INLINECOMMENTPATT.sub('', line.rstrip().lower())
if line[:1] == ' ':
lines.append(line)
linenum.append(n+1)
return lines, linenum
def stripcpp(fname):
with open(fname) as fid:
lines = fid.readlines()
# remove comments and preprocessor directives, except includes
i = 0
n = 1
linenum = [1]
# includes = []
while i < len(lines):
# remove newline
lines[i] = INLINECOMMENTPATT.sub('', lines[i].rstrip())
# m = re.match(r'# *include +"([^"]+)"', lines[i+1])
# if m:
# includes.append(m.group(1))
if lines[i][:1] == ' ':
lines[i] = lines[i].lower()
if lines[i][:1] != ' ' and not INCLUDEPATT.match(lines[i]):
lines.pop(i)
else:
linenum[i:i+1] = [n]
i += 1
n += 1
return lines, linenum #, includes
def joincontinuation(lines):
'''joins continuation lines in place
'''
# join continuation lines
# assumes that cpp directives and comments have already been stripped
i = 0
while i < len(lines)-1:
if CONTLINEPATT.match(lines[i+1]):
line = INLINECOMMENTPATT.sub('', lines.pop(i+1)[6:].strip())
lines[i] = lines[i] + ' ' + line
else:
i += 1
def parseinclude(incname, paths, commsbyinc=None, varsbyinc=None):
if commsbyinc is None: commsbyinc = {}
if varsbyinc is None: varsbyinc = {}
if incname in varsbyinc:
return commsbyinc[incname], varsbyinc[incname]
try:
fname = paths[incname]
except KeyError:
if incname not in _IGNOREHEADERS:
print 'Missing:', incname
return {},{}
commons = {}
globvars = {}
lines,_ = stripcpp(fname)
joincontinuation(lines)
for line in lines:
m = INCLUDEPATT.match(line)
if m:
inc = m.group(1)
if inc in paths:
c,g = parseinclude(m.group(1), paths, commsbyinc, varsbyinc)
commons.update(c)
globvars.update(g)
else:
if inc not in _IGNOREHEADERS:
print 'WARNING: {}: Missing header {}'.format(fname, inc)
continue
m = COMMONPATT.match(line)
if m:
commname,varstr = m.groups()
varnames = [ s.strip() for s in varstr.split(',') ]
if commname in commons:
if commons[commname] != incname:
print 'WARNING: common block', commname, 'in', paths[commons[commname]], fname
else:
commons[commname] = incname
for varname in varnames:
if varname in globvars:
c = globvars[varname]
inc = commons[c]
if inc == incname and c == commname:
print 'WARNING: {}: {} appears twice in /{}/'.format(fname, varname, commname)
else:
print 'WARNING:', fname+':', varname, 'already in', paths[inc]+':'+c
globvars[varname] = commname
continue
commsbyinc[incname] = commons
varsbyinc[incname] = globvars
return commons, globvars
#def parseallincludes(paths):
# c = {}
# g = {}
# for incname in paths:
# parseinclude(incname, paths, c, g)
# return c,g
def getglobals(fname, paths, commsbyinc=None, varsbyinc=None, commons=None, globvars=None):
if commsbyinc is None: commsbyinc = {}
if varsbyinc is None: varsbyinc = {}
if commons is None: commons = {}
if globvars is None: globvars = {}
lines,_ = stripcpp(fname)
joincontinuation(lines)
srname = ''
for line in lines:
m = SRPATT.match(line)
if m:
_,srname,_ = m.groups()
if srname in commons:
print 'WARNING: {}: S/R {} appears twice in'.format(fname, srname)
else:
commons[srname] = {}
globvars[srname] = {}
continue
m = INCLUDEPATT.match(line)
if m:
inc = m.group(1)
if srname == '':
if not 'OPTIONS.h' in inc and not 'CONFIG.h' in inc and not inc in _IGNOREHEADERS:
print '{}: skipping pre-subroutine include {}'.format(fname, inc)
elif inc in paths:
c,g = parseinclude(m.group(1), paths, commsbyinc, varsbyinc)
commons[srname].update(c)
globvars[srname].update(g)
else:
if inc not in _IGNOREHEADERS:
print 'WARNING: {}: Missing header {}'.format(fname, inc)
continue
m = COMMONPATT.match(line)
if m:
commname,varstr = m.groups()
varnames = [ s.strip() for s in varstr.split(',') ]
globvar = {}
for varname in varnames:
if varname in globvars[srname]:
c = globvars[srname][varname]
inc = commons[srname][c]
if inc is None:
print 'WARNING:', fname+':', varname, 'in', c, commname
else:
print 'WARNING:', fname+':', varname, 'in', paths[inc]+':'+c, fname+':'+commname
globvar[varname] = commname
if commname in commons[srname]:
inc = commons[srname][commname]
vs = set( k for k,v in globvars[srname].items() if v == commname )
if inc is None:
if vs.symmetric_difference(globvar.values()):
print 'WARNING: {}: /{}/ appears twice'.format(fname, commname)
else:
print 'WARNING:', fname+': common block', commname, 'in', paths[inc], fname
# will overwrite commons and update globvars
globvars[srname].update(globvar)
commons[srname][commname] = None
continue
return globvars, commons
def getallglobals(fnames, incpaths, commsbyinc=None, varsbyinc=None, commons=None, globvars=None):
if commsbyinc is None: commsbyinc = {}
if varsbyinc is None: varsbyinc = {}
if commons is None: commons = {}
if globvars is None: globvars = {}
for fname in fnames:
getglobals(fname, incpaths, commsbyinc, varsbyinc, commons, globvars)
return globvars, commons
#def parseincludes(paths, incnames=None, commons={}, globvars={}):
# if incnames is None:
# incnames = paths.keys()
#
# for incname in incnames:
# try:
# fname = paths[incname]
# except KeyError:
# if incname not in _IGNOREHEADERS:
# print 'Missing:', incname
# continue
#
# lines,_ = stripcpp(fname)
# lines = joincontinuation(lines)
# for line in lines:
# m = INCLUDEPATT.match(line)
# if m:
# parseincludes(paths, [m.group(1)], commons, globvars)
# continue
#
# m = COMMONPATT.match(line)
# if m:
# name,varstr = m.groups()
# varnames = [ s.strip() for s in varstr.split(',') ]
# if name in commons:
# if commons[name] != incname:
# print 'WARNING: common block', name, 'in', paths[commons[name]], paths[incname]
# else:
# commons[name] = incname
# for varname in varnames:
# if varname in globvars:
# c = globvars[varname]
# print 'WARNING:', varname, 'in', paths[commons[c]]+':'+c, paths[commons[name]]+':'+name
# globvars[varname] = name
#
# continue
#
# return commons, globvars
def getdirect(fname):
# strip comments, cpp directives
lines,linenum = stripallcpp(fname)
# identify subroutines
srfiles = {}
# subargs[srname] = [arg, ...]
subargs = {}
# calls[srname] = [(called,args), ...]
calls = {}
srname = ''
for i in range(len(lines)):
lline = lines[i].lower()
m = SRPATT.match(lline)
if m:
tp,srname,argstr = m.groups()
srfiles[srname] = (fname, linenum[i])
if argstr is None:
args = []
else:
while lines[i+1][:1] == '#' or CONTLINEPATT.match(lines[i+1]):
i += 1
lline = lines[i].lower()
if CONTLINEPATT.match(lline):
arg = re.sub(r'!.*$', '', lline[6:]).strip()
argstr = argstr + arg
argstr = argstr.strip()
assert argstr[0] == '('
assert argstr[-1] == ')'
args = [ s.strip() for s in argstr[1:-1].split(',') ]
if srname in subargs:
print 'WARNING: {}: subroutine encountered twice: {} {} {}'.format(fname, srname, len(subargs[srname]), len(args))
subargs[srname] = args
calls[srname] = []
continue
m = CALLPATT.match(lline)
if m:
called = m.group(2)
argstr = m.group(3)
i0 = i
i,argstr = joinacrosscpp(lines, i, argstr)
try:
argl, = parenexpr.parseString(argstr).asList()
except ParseException:
print '{}:{}'.format(fname, linenum[i]), argstr
raise
args1 = ' '.join([ s for s in argl if type(s) != type([]) and s[0] not in "'" + '"' ])
def argvars(args1):
for s in args1.split(','):
m1 = re.match(r' *(\w*)', s)
yield m1.group(1)
args = list(argvars(args1))
if srname == '':
print fname, called
l = str(linenum[i0])
if i != i0: l += '-{}'.format(linenum[i])
calls[srname].append((l, called, args))
continue
# direct[srname][varname] = [line1, line2, ...]
direct = {}
srname = ''
for i,line in enumerate(lines):
m = SRPATT.match(line)
if m:
srname = m.group(2)
direct[srname] = {}
continue
m = re.match(r' .... *([a-zA-Z_][a-zA-Z0-9_]*) *(?:\([^)]*\))? *=', line)
if m:
name = m.group(1)
if srname == '':
print '{}:{}: assignment outside of subroutine: {}'.format(
fname,linenum[i],line)
direct[srname].setdefault(name, []).append(str(linenum[i]))
continue
def joinvalues(d):
s = set()
for l in d.values():
s.update(l)
return s
# globmod = {}
# for sr in direct:
# globmod[sr] = [ v for v in direct[sr] if v in globvars[sr] ]
return subargs, direct, calls, srfiles
def getdirects(patts, incpaths):
fnames = [ s for patt in patts for s in glob.glob(patt) ]
srfiles = {}
subargs = {}
calls = {}
direct = {}
for fname in fnames:
s,d,c,f = getdirect(fname)
for sub in s:
if sub in subargs:
print 'WARNING: {}: S/R {} already in {} {} {}'.format(
fname, sub, srfiles[sub], len(subargs[sub]), len(s[sub]))
i = 2
while str(i)+sub in subargs: i += 1
s[str(i)+sub] = s[sub]
d[str(i)+sub] = d[sub]
c[str(i)+sub] = c[sub]
f[str(i)+sub] = f[sub]
del s[sub]
del d[sub]
del c[sub]
del f[sub]
subargs.update(s)
calls.update(c)
direct.update(d)
srfiles.update(f)
return subargs, direct, calls, srfiles
def findintents(srname, subargs, direct, calls, cache=None, worklist=None):
if worklist is None:
worklist = {}
try:
return cache[srname]
except:
pass
# print srname, worklist.keys()
sys.stdout.flush()
worklist[srname] = True
myargs = subargs[srname]
mydirect = direct[srname]
out = dict((k, k in mydirect) for k in myargs)
# out = dict.fromkeys(myargs, False)
for l,sub,args in calls[srname]:
if sub not in subargs and sub not in cache:
ignore = False
for patt in _IGNORESUBPATTS:
if patt.match(sub):
ignore = True
break
if not ignore and sub not in ['print_error', 'print_message']:
print '{}: skipping {}'.format(srname, sub)
continue
if sub == srname:
print '{}: skipping self'.format(sub)
elif sub in worklist:
print 'Avoiding recursion:', srname, sub
else:
subout = findintents(sub, subargs, direct, calls, cache, worklist)
if len(subout) != len(args):
print sub+': have', len(args), 'needs', len(subout)
for arg,so in zip(args, subout):
if arg in out:
out[arg] = out[arg] or so
isout = [ out[a] for a in myargs ]
if '2'+srname in subargs:
i = 2
while str(i)+srname in subargs:
if str(i)+srname in worklist:
print 'Avoiding recursion:', srname, str(i)+srname
else:
isout2 = findintents(str(i)+srname, subargs, direct, calls, cache, worklist)
if len(isout2) == len(isout) and isout2 != isout:
print 'Mismatch', str(i)+srname, isout, isout2
i += 1
if cache is not None:
cache[srname] = isout
del worklist[srname]
return isout
def findallintents(subargs, direct, calls):
cache = {}
cache.update(_KNOWNINTENTS)
for srname in subargs:
# will fill cache
findintents(srname, subargs, direct, calls, cache)
return cache
def findglobmods(srname, subargs, direct, calls, intents, globvars, cache=None, worklist=None):
if worklist is None:
worklist = {}
try:
return cache[srname]
except:
pass
# print srname, worklist.keys()
sys.stdout.flush()
worklist[srname] = True
if srname[0] in string.digits:
srname0 = srname.lstrip(string.digits)
else:
srname0 = srname
mydirect = direct[srname]
myglobals = globvars[srname0]
# globmods = set(mydirect).intersection(myglobals)
globmods = dict((k,v) for k,v in mydirect.items() if k in myglobals)
for l,sub,args in calls[srname]:
if sub not in subargs:
ignore = sub in _KNOWNINTENTS
for patt in _IGNORESUBPATTS:
if patt.match(sub):
ignore = True
break
if not ignore and sub not in ['print_error', 'print_message']:
print '{}: skipping {}'.format(srname, sub)
continue
if sub == srname:
print '{}: skipping self'.format(sub)
elif sub in worklist:
print 'Avoiding recursion:', srname, sub
else:
submods = findglobmods(sub, subargs, direct, calls, intents, globvars, cache, worklist)
for k,v in submods.items():
globmods.setdefault(k, []).append(l) # '{}:{}'.format(sub, v)
intent = intents[sub]
if len(intent) != len(args):
print sub+': have', len(args), 'needs', len(intent)
for arg,isout in zip(args, intent):
if isout and arg in myglobals:
globmods.setdefault(arg, []).append(l) # '{}({})'.format(sub, args.index(arg)+1)
if '2'+srname in subargs:
i = 2
while str(i)+srname in subargs:
if str(i)+srname in worklist:
print 'Avoiding recursion:', srname, str(i)+srname
else:
gm = findglobmods(str(i)+srname, subargs, direct, calls, intents, globvars, cache, worklist)
globmods.update(gm)
i += 1
if cache is not None:
cache[srname] = globmods
del worklist[srname]
return globmods
def findallglobmods(subargs, direct, calls, intents, globvars):
cache = {}
for srname in globvars:
findglobmods(srname, subargs, direct, calls, intents, globvars, cache)
return cache
globformat='\033[1m{}\033[0m'
gmodformat='\033[1;31m{}\033[0m'
argformat='\033[1;34m{}\033[0m'
argmodformat='\033[1;35m{}\033[0m'
def amptodot(s):
return re.sub(r'^ (....)&', r' \1*', s)
def escapeangles(s):
s = s.replace("<", "<")
s = s.replace(">", ">")
return s
def markupfile(fname, srfiles, subargs, globvars, globmods, intents, globformat=globformat,
gmodformat=gmodformat, argformat=argformat, argmodformat=argmodformat,
escape=lambda x:x, mklink=lambda x,y:x):
#lines = map(escape, map(amptodot, open(fname).readlines()))
lines = map(escape, open(fname).readlines())
linenum = range(1,len(lines)+1)
srname = ''
markup = []
i = 0
while i < len(lines):
markup += '<a name="{}"></a>'.format(i+1)
line = lines[i]
m = SRPATT.match(line)
if m:
tp,srname,argstr = m.groups()
srname = srname.lower()
def format(arg, intent=None, write=True, iswrite=False):
if srname in subargs and arg.lower() in subargs[srname]:
if write and (iswrite or intent):
arg = argmodformat.format(arg)
else:
arg = argformat.format(arg)
elif srname in globvars and arg.lower() in globvars[srname]:
if intent is None:
intent = arg.lower() in globmods[srname]
if write and intent:
arg = gmodformat.format(arg)
else:
arg = globformat.format(arg)
return arg
if argstr and srname in intents:
ints = intents[srname]
markup += ' ' + tp + ' ' + srname + '('
line = argstr[1:]
pre = ''
iarg = 0
while True:
markup += pre
myargs = [ s.strip(' )') for s in line.strip().split(',') ]
for j in range(len(myargs)):
arg = myargs[j]
if arg != '':
if iarg < len(ints):
# print subargs[srname][iarg], arg
if arg.lower() != subargs[srname][iarg]:
print 'WARNING: {}: argument mismatch {}: {} {}'.format(
srname, iarg+1, subargs[srname][iarg], arg)
markup += format(arg, iswrite=ints[iarg])
else:
markup += arg
print '{}: extra argument: {}'.format(srname, arg)
iarg += 1
if j < len(myargs) - 1:
markup += ','
if myargs[j+1] != '':
markup += ' '
extra = []
while lines[i+1][:1] == '#':
i += 1
extra += lines[i]
i += 1
if CONTLINEPATT.match(lines[i]):
pre = lines[i][:6] + ' '
line = lines[i][6:].strip()
markup += '\n'
markup += extra
else:
markup += ')\n'
markup += extra
break
continue
m = CALLPATT.match(line)
if m:
if srname == '':
print fname, called
prefix,called,argstr = m.groups()
i1,argstr = joinacrosscpp(lines, i, argstr)
try:
argl, = parenexpr.parseString(argstr).asList()
except ParseException:
print '{}:{}'.format(fname, linenum[i]), argstr
raise
args = []
sufs = []
arg = ''
suf = ''
def reparen(l):
res = []
for s in l:
if type(s) == type([]):
res += reparen(s)
else:
res += s
return '(' + ''.join(res) + ')'
for s in argl:
if type(s) == type([]):
suf += reparen(s)
elif s[0] in "'"+'"':
suf += s
else:
arg += s
if ',' in arg:
pr,sf = re.split(r',', arg, maxsplit=1)
arg = pr.strip()
args.append(arg)
arg = sf
sufs.append(suf)
suf = ''
while ',' in arg:
pr,sf = re.split(',', arg, maxsplit=1)
arg = pr.strip()
args.append(arg)
arg = sf
sufs.append('')
args.append(arg)
sufs.append(suf)
if called.lower() in srfiles:
# srfile,srline = srfiles[called.lower()]
s = mklink(called, srfiles[called.lower()])
myline = prefix + '{}('.format(s)
else:
myline = prefix + '{}('.format(called)
textline = prefix + '{}('.format(called)
def join(args,sufs,ints):
for arg,suf,intent in zip(args,sufs,ints):
arg = format(arg, intent)
yield arg + suf
try:
ints = intents[called.lower()]
except KeyError:
print 'No intent founds for', called.lower()
ints = len(args)*[False]
joined = list(join(args,sufs,ints))
pre = ''
for j in joined:
e = angleexpr.parseString('<'+j+'>').asList()[0]
text = ''.join( s for s in e if type(s) != type([]) )
if len(textline+text) > 72:
markup += myline
pre = ',\n & '
myline = ''
textline = ''
myline += pre + j
textline += pre + text
pre = ', '
markup += myline + ')\n'
# args1 = ' '.join([ s for s in argl if type(s) != type([]) and s[0] not in "'" + '"' ])
# def argvars(args1):
# for s in args1.split(','):
# m1 = re.match(r' *(\w*)', s)
# yield m1.group(1)
# args = list(argvars(args1))
i = i1 + 1
continue
# m = re.match(r'( .... *)([a-zA-Z_][a-zA-Z0-9_]*)( *\([^)]*\))?( *=.*$)', line)
m = re.match(r'( .... *)([^=]*)(=.*$)', line)
if m:
#pre,name,args,rhs = m.groups()
pre,lhs,rhs = m.groups()
try:
# check parenthesis on lhs are balanced, or '=' may be in a keyword argument
_ = parenexpr.parseString('(' + lhs + ')').asList()[0]
except ParseException:
iscode = False
else:
if '(' in lhs:
lhs,args = re.split(r'\(', lhs, maxsplit=1)
args = '(' + args
else:
args = ''
if srname == '':
print '{}:{}: assignment outside of subroutine: {}'.format(
fname,linenum[i],line)
else:
lhs = format(lhs, iswrite=True)
# if lhs.lower() in globvars[srname]:
# if lhs.lower() in globmods[srname]:
## line = re.sub(lhs, '#{}#'.format(lhs), line, 1, re.I)
# lhs = gmodformat.format(lhs)
# else:
## line = re.sub(lhs, '|{}|'.format(lhs), line, 0, re.I)
# lhs = globformat.format(lhs)
markup += pre + lhs
# if args:
# markup += args
# lhs,rhs = re.split(r'=', line, maxsplit=1)
# markup += lhs + '='
line = args + rhs + '\n'
iscode = True
else:
iscode = False
if iscode or line[:1] == ' ':
s = shlex.shlex(line)
try:
tokens = list(s)
except ValueError:
pass
else:
# collaps .*. operators
j = 0
while j < len(tokens)-2:
if tokens[j] == '.' and tokens[j+2] == '.':
if all( s in string.letters for s in tokens[j+1] ):
tokens[j:j+3] = [ ''.join(tokens[j:j+3]) ]
j += 1
j = 0
for tok in tokens:
lentok = len(tok)
while line[j] in s.whitespace:
markup += line[j]
j += 1
# skip over tok
if line[j:j+lentok] != tok:
if (line[j] == '.' and tok[0] == '.' and tok[-1] == '.' and
line[j+1:].lstrip()[:lentok-2] == tok[1:-1] and
line[j+1:].lstrip()[lentok-2:].lstrip()[0] == '.'):
namestart = line[j+1:].lstrip()
nblank = len(line[j+1:]) - len(namestart)
nblank += len(namestart[lentok-2:]) - len(namestart[lentok-2:].lstrip())
tok = line[j:j+lentok+nblank]
print '{}: joined token {}'.format(fname, tok)
else:
raise ValueError('{}: expecting token {} found {}'.format(fname, tok, line[j:j+lentok]))
assert line[j:j+len(tok)] == tok
j += len(tok)
if srname:
tok = format(tok, write=False)
# if srname in globvars and tok.lower() in globvars[srname]:
# tok = globformat.format(tok)
markup += tok
line = line[j:]
markup += line
i += 1
return ''.join(markup)
def mkhtmllink(name, fnameline):
fname,line = fnameline
link = re.sub(r'^.*/', '', fname)
link = re.sub(r'(\.F)?$', '.html', link)
return '<a href="{}#{}"><font color="#000000">{}</font></a>'.format(link, line, name)
def markuphtml(outname, fname, srfiles, subargs, globvars, globmods, intents, link='', fmt='{}'):
f = open(outname, 'w')
f.write('''<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>''' + fname + '''</title>
</head>
<body>
<pre>
''')
if link:
globformat = '<a href="{}{{0}}"><font color="#000000"><b>{{0}}</b></font></a>'.format(link)
gmodformat = '<a href="{}{{0}}"><font color="#ff0000"><b>{{0}}</b></font></a>'.format(link)
argformat = '<a href="{}{{0}}"><font color="#0000ff"><b>{{0}}</b></font></a>'.format(link)
argmodformat = '<a href="{}{{0}}"><font color="#ff00ff"><b>{{0}}</b></font></a>'.format(link)
else:
globformat = '<b>{}</b>'.format(fmt)
gmodformat = '<font color="#ff0000"><b>{}</b></font>'.format(fmt)
argformat = '<font color="#0000ff"><b>{}</b></font>'.format(fmt)
argmodformat = '<font color="#ff00ff"><b>{}</b></font>'.format(fmt)
markup = markupfile(fname, srfiles, subargs, globvars, globmods, intents,
globformat, gmodformat, argformat, argmodformat, escape=escapeangles,
mklink=mkhtmllink)
f.write(markup)
f.write('''</pre>
</body>
</html>
''')
if __name__ == '__main__':
if '-l' in sys.argv[1:]:
subargs = load('subargs.json')
direct = load('direct.json')
calls = load('calls.json')
srfiles = load('srfiles.json')
intents = load('intents.json')
commons = load('commons.json')
globvars = load('globvars.json')
globmods = load('globmods.json')
else:
incpaths = pathdict(rootdir='', ext='.h')
forpaths = pathdict(rootdir='', ext='.F')
globvars,commons = getallglobals(forpaths.values(), incpaths)
subargs,direct,calls,srfiles = getdirects(forpaths.values(), incpaths)
intents = findallintents(subargs, direct, calls)
globmods = findallglobmods(subargs, direct, calls, intents, globvars)
dump('subargs.json', subargs)
dump('direct.json', direct)
dump('calls.json', calls)
dump('srfiles.json', srfiles)
dump('intents.json', intents)
dump('commons.json', commons)
dump('globvars.json', globvars)
dump('globmods.json', globmods)
|
[
"maxime.benoit-gagne@takuvik.ulaval.ca"
] |
maxime.benoit-gagne@takuvik.ulaval.ca
|
edf81931238add46f55efc612d3815bd32e466ee
|
b5da4e77d400b5c293390bf071ac710bbbeec90f
|
/lesson2/s2_decorators.py
|
5c8648727355c5f14940500d5ac4b5ddde04e8af
|
[] |
no_license
|
HLevering/python_lectures
|
7f2a06a62b1931c24e1a000122c9dbc905438355
|
2e626c218892f50d48648ffbfa4856618eccaa61
|
refs/heads/master
| 2022-11-16T11:17:18.649464
| 2020-07-09T17:58:37
| 2020-07-09T17:58:37
| 276,714,821
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,824
|
py
|
# we already learned, that functions are first class objects in Python and we
# learned that functions can accept other functions as parameters and return
# functions
# let's assume, we have the following function
def add(a, b):
return a + b
# let's assume, that we want to write some html
def tagged(message):
return f"<p>{message}</p>"
print(tagged(add(1, 2)))
# now we can print our tagged result, but we have to use tagged every time
# together with add
#lets write another function
def tagged1(func):
def tagged_func(arg1, arg2):
return f"<p>{func(arg1, arg2)}<p>"
return tagged_func
add = tagged1(add)
print(add(1,2))
print(add(2,2))
# Lets pause for a moment. We created a function that takes another function,
# wrapped it another function and returned the wrapped version and assigned to
# the initial function name. Now, we have a new function that not only
# calculates the addition but also tagges the result in html. This pattern:
# 1. call a function with a function
# 2. return a new function
# 3. assign the new function to original function name
# is called decorator pattern and it is so common that we have a special
# syntax for it
def tagged(func):
def tagged_func(arg1, arg2):
return f"<p>{func(arg1, arg2)}<p>"
return tagged_func
@tagged
def add(a, b):
return a + b
print(add(1,2))
# the @tagged is syntactic sugar for the above mentioned 3 steps
# now we are able to tag further functions
@tagged
def sub(a, b):
return a - b
print(sub(2,1))
# but there is one problem, what happens, if we want to tag other functions
# which do not take exactly 2 arguments
@tagged
def squared(a):
return a**2
#print(squared(2)) # this will fail
# However, if we change our tagged function a little bit ...
def tagged(func):
def tagged_func(*args, **kwargs):
return f"<p>{func(*args, **kwargs)}<p>"
return tagged_func
# it can decorate every function, no matter what kind of parameters this
# function expects
@tagged
def squared(a):
return a**2
print(squared(2)) # now, this will work
# there is one further problem. After decorating the squared function its
# original name has vanished
print(squared)
# The functools module provides a decorator wraps, which conserves the original
# function name (and some further attributes)
from functools import wraps
def tagged(func):
@wraps(func)
def tagged_func(*args, **kwargs):
return f"<p>{func(*args, **kwargs)}<p>"
return tagged_func
@tagged
def squared(a):
return a**2
print(squared(2))
print(squared)
# now, the function's name will stay the same
# Let's go one step further. We can only tag functions with a <p> tag, which is
# in some kind limiting. If we add one further layer, we can solve this
# problem, too
from functools import wraps
def tagged(tag):
def tag_with_tag(func):
@wraps(func)
def tagged_func(*args, **kwargs):
return f"<{tag}>{func(*args, **kwargs)}</{tag}>"
return tagged_func
return tag_with_tag
@tagged("h1")
def squared(a):
return a**2
print(squared(2))
# now, we have a flexible tagged function
# decorators are a powerfull tool, which enable you to combine orthogonal
# functionality in your program
@tagged("h1")
@tagged("p")
def squared(a):
return a**2
print(squared(2))
# the functools module provides some decorators
# lru_cache caches a function result and returns the cached value on subsequent
# calls
from functools import lru_cache
from time import sleep
@lru_cache()
def expensive_job(arg):
sleep(2) # wait for 2 seconds
return arg
print(expensive_job(42))
print(expensive_job(42))
# we already saw @wraps which is used in function decorators to preserve names.
# Checkout the docs for functools to discover more usefull stuff
|
[
"12120186+HLevering@users.noreply.github.com"
] |
12120186+HLevering@users.noreply.github.com
|
676b046bc41775722da817f6d75afe50bed5a6a4
|
dab3dde990e2eb9cb94bfd441ac60513480d84d0
|
/Titanic/lasso.py
|
d17b81a6f8952aadc7768051302d1b14233e838e
|
[] |
no_license
|
TommyCpp/KagglePlayground
|
2829d69ccebe7a0113badea9bafca113ec6aee66
|
857ef3b4c3c0638d09394895fcd502110640ab6a
|
refs/heads/master
| 2021-09-04T19:09:11.049711
| 2018-01-21T13:43:13
| 2018-01-21T13:43:13
| 115,982,956
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,153
|
py
|
from sklearn import preprocessing, linear_model, metrics
from Titanic.io import *
TEST_FEATURE = ['Pclass', 'Sex', 'Age', 'Fare']
def _preprocessing(x):
return preprocessing.scale(x)
def train_Lasso():
data, raw_data = read_data("./train.csv",)
data = feature_engineer(data, raw_data)
test_data = data.sample(frac=0.2)
data.drop(test_data.index)
data = data.as_matrix()
label = data[:, 0]
x = data[:, 1:]
x = _preprocessing(x)
reg = linear_model.Lasso(alpha=0.1)
reg.fit(x, label)
return reg, test_data
def test_Lasso():
model, data = train_Lasso()
data = data.as_matrix()
y_true = data[:, 0]
x = data[:, 1:]
x = _preprocessing(x)
y_pred = model.predict(x).round()
print(metrics.f1_score(y_true, y_pred))
def write_result_Lasso():
raw_data, x, result = read_test_data(TEST_FEATURE) # type:DataFrame
x = feature_engineer(x, raw_data)
X = _preprocessing(x)
reg, _ = train_Lasso()
y = reg.predict(X).round()
result['Survived'] = y.astype(int)
result.to_csv("./result.csv", index=False)
if __name__ == "__main__":
write_result_Lasso()
|
[
"a444529216@hotmail.com"
] |
a444529216@hotmail.com
|
2a262987febcb198d0d3d8bcd2fee42aebf137ba
|
e688f87faf74abbe66e0bcec9e5da2e3b5b8127f
|
/eqnsolve/eqn4.py
|
49c7432156017373091cd6b935070a187547e569
|
[
"MIT"
] |
permissive
|
TeamC-AAD/Library
|
50d27fc3531eba7d1b4b2795535346c283b1a013
|
e44296799dcfc06356873942c72ee81da185a07e
|
refs/heads/main
| 2023-02-07T12:47:00.886584
| 2021-01-01T09:31:27
| 2021-01-01T09:31:27
| 302,106,738
| 3
| 5
|
MIT
| 2021-01-01T09:31:28
| 2020-10-07T17:10:58
|
HTML
|
UTF-8
|
Python
| false
| false
| 455
|
py
|
import numpy as np
var = 6
def eqnfit(chromosome):
'''
Equation 1: x^53 + y^42 - z^76 + a^106 + b^25 - c^46 = 0
'''
eqn = chromosome[0]**53 + chromosome[1]**42 - chromosome[2]**76 + chromosome[3]**106 + chromosome[4]**25 - chromosome[5]**46
val = 226
return (1/(eqn-val))
def value(chromosome):
return chromosome[0]**53 + chromosome[1]**42 - chromosome[2]**76 + chromosome[3]**106 + chromosome[4]**25 - chromosome[5]**46
|
[
"karthik.viswanathan@research.iiit.ac.in"
] |
karthik.viswanathan@research.iiit.ac.in
|
1c9e15d5133c1d93fd343e6858a4ddb2e831bc3f
|
1257ccf0f2e5585714988c54478e1c10385f6585
|
/1_linear_regression.py
|
92688e57d5c3b2b9e578cf06b2d274ebcfcd212e
|
[
"MIT"
] |
permissive
|
domluna/cgt_tutorials
|
ee3685d7cba60b46333e1ab2217c862e02255f4e
|
67672a0b4ed8b30d5e5e1bc552c52d8d7f46b09f
|
refs/heads/master
| 2018-12-29T21:26:46.981711
| 2015-09-17T23:39:03
| 2015-09-17T23:39:03
| 42,020,289
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,669
|
py
|
from __future__ import print_function
import cgt
import numpy as np
from cgt import nn
from sklearn import datasets
from sklearn.cross_validation import train_test_split
boston = datasets.load_boston()
data = boston.data
targets = boston.target
nfeats = data.shape[1]
# scale data
# scaler = StandardScaler().fit(data, targets)
# scaled_data = scaler.transform(data, targets)
# split data
X_train, X_test, Y_train, Y_test = train_test_split(data, targets,
test_size=.2, random_state=0)
# hyperparams
#
# Be careful when setting alpha! If it's too large
# here the cost will blow up.
alpha = 1e-7
epochs = 100
# Linear regression model
np.random.seed(0)
X = cgt.matrix('X', fixed_shape=(None, nfeats))
Y = cgt.vector('Y')
w = cgt.shared(np.random.randn(nfeats) * 0.01)
# prediction
ypred = cgt.dot(X, w)
# cost
cost = cgt.square(Y - ypred).mean()
# derivative with respect to w
dw = cgt.grad(cost=cost, wrt=w)
updates = [(w, w - dw * alpha)]
# training function
trainf = cgt.function(inputs=[X, Y], outputs=[], updates=updates)
# cost function, no updates
costf = cgt.function(inputs=[X, Y], outputs=cost)
for i in xrange(epochs):
trainf(X_train, Y_train)
C = costf(X_test, Y_test)
print("epoch {} cost = {}".format(i+1, C))
wval = w.op.get_value()
print("Linear Regression ", wval)
# closed form solution
wclosed = np.linalg.lstsq(data, targets)[0]
print("Closed form ", wclosed)
# Tests, linreg_err ~= closed_err
linreg_err = np.square(np.dot(X_test, wval) - Y_test).mean()
closed_err = np.square(np.dot(X_test, wclosed) - Y_test).mean()
print("Linear Regression error = ", linreg_err)
print("Closed Form error = ", closed_err)
|
[
"dluna132@gmail.com"
] |
dluna132@gmail.com
|
b64604c9b648998ed3bbfa759b42faad81c34425
|
cb363afddfd74df579eb93810b90a21574d4907c
|
/58 mylist.py
|
1239c64cae4975ebb29349e946f1ca6bedd4df7e
|
[] |
no_license
|
Mohit130422/python-code
|
ca0580c1f057070d11c154cca6ea8891e7c6672d
|
6fb04b5b3456136a139a16ace636dfcc5df31912
|
refs/heads/master
| 2022-11-21T03:29:16.726081
| 2020-07-26T18:33:52
| 2020-07-26T18:33:52
| 282,705,039
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 355
|
py
|
#mylist- in python list an object which cna be crated by placing out element inside[].Seprated by(,) it can be of any No. and any types.
mylist1=[]#empty
mylist2=[1,2,3,4,5]#same type element
mylist3=[1,2,"mohit",45.78]#mixed type element
print(type(mylist1),' ',type(mylist2),' ',type(mylist3))
print(mylist1)
print(mylist2)
print(mylist3)
#run
|
[
"noreply@github.com"
] |
Mohit130422.noreply@github.com
|
ad1bc8a97b26cb2986ff7b6d88f73c5c06e513f4
|
08b9515df99b5d2fa6a3957fdf7d09156f9f37ac
|
/Seq2SeqWithAttn/Attn.py
|
2ffb084d796638245d30e3e348e62cc46abab5da
|
[] |
no_license
|
AlexYMH/NN_models_pytorch
|
1cc849e00d0b333f879960343cf0c838c030986a
|
4d2cbd3429984517de27c35eaf49f203a1cd9d9b
|
refs/heads/master
| 2020-04-12T13:51:48.089779
| 2018-12-20T12:12:46
| 2018-12-20T12:12:46
| 162,534,123
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,801
|
py
|
# Luong attention layer
class Attn(torch.nn.Module):
def __init__(self, method, hidden_size):
super(Attn, self).__init__()
self.method = method
if self.method not in ['dot', 'general', 'concat']:
raise ValueError(self.method, "is not an appropriate attention method.")
self.hidden_size = hidden_size
if self.method == 'general':
self.attn = torch.nn.Linear(self.hidden_size, hidden_size)
elif self.method == 'concat':
self.attn = torch.nn.Linear(self.hidden_size * 2, hidden_size)
self.v = torch.nn.Parameter(torch.FloatTensor(hidden_size))
def dot_score(self, hidden, encoder_output):
return torch.sum(hidden * encoder_output, dim=2)
def general_score(self, hidden, encoder_output):
energy = self.attn(encoder_output)
return torch.sum(hidden * energy, dim=2)
def concat_score(self, hidden, encoder_output):
energy = self.attn(torch.cat((hidden.expand(encoder_output.size(0), -1, -1), encoder_output), 2)).tanh()
return torch.sum(self.v * energy, dim=2)
def forward(self, hidden, encoder_outputs):
# Calculate the attention weights (energies) based on the given method
if self.method == 'general':
attn_energies = self.general_score(hidden, encoder_outputs)
elif self.method == 'concat':
attn_energies = self.concat_score(hidden, encoder_outputs)
elif self.method == 'dot':
attn_energies = self.dot_score(hidden, encoder_outputs)
# Transpose max_length and batch_size dimensions
attn_energies = attn_energies.t()
# Return the softmax normalized probability scores (with added dimension)
return F.softmax(attn_energies, dim=1).unsqueeze(1)
|
[
"noreply@github.com"
] |
AlexYMH.noreply@github.com
|
a51a800fa3cbcdbdabc508f2cfbcbe3ad8d165cc
|
3bc44aaf9cd96cf0a93512cdfe0c45cf372cb275
|
/run_service.py
|
39d5b344816e449f260b60c62bb8ee4a84a0b444
|
[
"MIT",
"GPL-1.0-or-later"
] |
permissive
|
singnet/semantic-segmentation-aerial
|
7e731cda8f3a7c1dbb68a3fb0cf4e1561a424381
|
1fe9b63bdeafd9f81ec95a846b5a1510f32578f0
|
refs/heads/master
| 2020-05-02T05:35:28.314835
| 2019-04-09T11:04:13
| 2019-04-09T11:04:13
| 177,775,037
| 0
| 1
|
MIT
| 2019-04-09T11:04:14
| 2019-03-26T11:30:38
|
Python
|
UTF-8
|
Python
| false
| false
| 3,770
|
py
|
import argparse
import glob
import json
import logging
import os
import pathlib
import signal
import subprocess
import sys
import time
from service import registry
logging.basicConfig(level=10, format="%(asctime)s - [%(levelname)8s] - %(name)s - %(message)s")
log = logging.getLogger("run_semantic_segmentation_aerial_service")
def main():
parser = argparse.ArgumentParser(description="Run services")
parser.add_argument("--no-daemon", action="store_false", dest="run_daemon", help="do not start the daemon")
parser.add_argument("--ssl", action="store_true", dest="run_ssl", help="start the daemon with SSL")
args = parser.parse_args()
root_path = pathlib.Path(__file__).absolute().parent
# All services modules go here
service_modules = ["service.semantic_segmentation_aerial_service"]
# Call for all the services listed in service_modules
all_p = start_all_services(root_path, service_modules, args.run_daemon, args.run_ssl)
# Continuously checking all subprocesses
while True:
for p in all_p:
p.poll()
if p.returncode and p.returncode != 0:
log.debug("Subprocess returned code: {}. Killing service and daemon.".format(p.returncode))
kill_processes(all_p)
if p.returncode == 5:
log.debug("Restarting!")
all_p = start_all_services(root_path, service_modules, args.run_daemon, args.run_ssl)
else:
log.debug("Exiting!")
exit(1)
time.sleep(1)
def start_all_services(cwd, service_modules, run_daemon, run_ssl):
"""
Loop through all service_modules and start them.
For each one, an instance of Daemon "snetd" is created.
snetd will start with configs from "snetd.config.json"
"""
all_p = []
for i, service_module in enumerate(service_modules):
service_name = service_module.split(".")[-1]
log.info("Launching {} on port {}".format(service_module, str(registry[service_name])))
all_p += start_service(cwd, service_module, run_daemon, run_ssl)
for p in all_p:
log.debug("Service {} started with PID {}".format(service_module, p.pid))
return all_p
def start_service(cwd, service_module, run_daemon, run_ssl):
"""
Starts SNET Daemon ("snetd") and the python module of the service
at the passed gRPC port.
"""
def add_ssl_configs(conf):
"""Add SSL keys to snetd.config.json"""
with open(conf, "r") as f:
snetd_configs = json.load(f)
snetd_configs["ssl_cert"] = "/opt/singnet/.certs/fullchain.pem"
snetd_configs["ssl_key"] = "/opt/singnet/.certs/privkey.pem"
with open(conf, "w") as f:
json.dump(snetd_configs, f, sort_keys=True, indent=4)
all_p = []
if run_daemon:
for idx, config_file in enumerate(glob.glob("./snetd_configs/*.json")):
if run_ssl:
add_ssl_configs(config_file)
all_p.append(start_snetd(str(cwd), config_file))
service_name = service_module.split(".")[-1]
grpc_port = registry[service_name]["grpc"]
p = subprocess.Popen([sys.executable, "-m", service_module, "--grpc-port", str(grpc_port)], cwd=str(cwd))
all_p.append(p)
return all_p
def start_snetd(cwd, config_file=None):
"""
Starts the Daemon "snetd":
"""
cmd = ["snetd", "serve"]
if config_file:
cmd = ["snetd", "serve", "--config", config_file]
return subprocess.Popen(cmd, cwd=str(cwd))
def kill_processes(all_p):
for p in all_p:
try:
os.kill(p.pid, signal.SIGTERM)
except Exception as e:
log.error(e)
if __name__ == "__main__":
main()
|
[
"ramongduraes@gmail.com"
] |
ramongduraes@gmail.com
|
6f4a22497ae14ada89eb32132e17f7bec24251cb
|
ff6248be9573caec94bea0fa2b1e4b6bf0aa682b
|
/StudentProblem/10.21.11.16/7/1569573907.py
|
cbf009c8a9c9a1fa8778de699f7b2208205bfaab
|
[] |
no_license
|
LennartElbe/codeEvo
|
0e41b1a7705204e934ef71a5a28c047366c10f71
|
e89b329bc9edd37d5d9986f07ca8a63d50686882
|
refs/heads/master
| 2020-12-21T17:28:25.150352
| 2020-03-26T10:22:35
| 2020-03-26T10:22:35
| 236,498,032
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 475
|
py
|
import functools
import typing
import string
import random
import pytest
## Lösung Teil 1.
def divisors(n: int) -> list:
start_lst = list(range(1, n+1))
teiler = []
for i, k in start_lst:
if i % k == 0:
teiler.append(k)
return teiler
######################################################################
## Lösung Teil 2. (Tests)
print(divisors(20))
######################################################################
|
[
"lenni.elbe@gmail.com"
] |
lenni.elbe@gmail.com
|
26f2d1bab1848a901cb0659bbcd4ef8252ac6ddb
|
3625ad889a461e0893e5ff6a87cddb8ee15d9d7d
|
/Hackerrank/Algorithms/Problem_Solving/cut_the_sticks.py
|
00533de8fcb2ff76200c7aed329ded4117085698
|
[] |
no_license
|
prateekiiest/Competitive-Programming-Algo-DS
|
dec8cdb2f0b7989264476dc82e460a6a3f11b9df
|
50eca64d2346d6664de0cb510874081962a425fe
|
refs/heads/master
| 2020-05-03T22:49:06.909307
| 2020-01-19T03:34:17
| 2020-01-19T03:34:17
| 178,850,703
| 7
| 1
| null | 2020-01-14T17:29:05
| 2019-04-01T11:40:54
|
Python
|
UTF-8
|
Python
| false
| false
| 359
|
py
|
# Problem Statement : https://www.hackerrank.com/challenges/cut-the-sticks
#!/bin/python
import sys
n = int(raw_input().strip())
arr = map(int,raw_input().strip().split(' '))
while(arr !=[]):
print(len(arr))
m = min(arr)
for j in range(len(arr)):
arr[j] -= m
while(0 in arr):
arr.remove(0)
|
[
"noreply@github.com"
] |
prateekiiest.noreply@github.com
|
f8d0c5c753ad7ccabf9e7c86bcfbb6185ec5457b
|
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
|
/number/problem_and_work/long_person_or_year.py
|
b73e563cf6e130a4db95d764f909eae8a01b9de5
|
[] |
no_license
|
JingkaiTang/github-play
|
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
|
51b550425a91a97480714fe9bc63cb5112f6f729
|
refs/heads/master
| 2021-01-20T20:18:21.249162
| 2016-08-19T07:20:12
| 2016-08-19T07:20:12
| 60,834,519
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 206
|
py
|
#! /usr/bin/env python
def great_part(str_arg):
long_eye(str_arg)
print('own_week_and_old_eye')
def long_eye(str_arg):
print(str_arg)
if __name__ == '__main__':
great_part('feel_woman')
|
[
"jingkaitang@gmail.com"
] |
jingkaitang@gmail.com
|
365c627fb4954fed4a73f6275d7644a764b3efc2
|
d8c46a4e541bbc181831b85a32cc49038a2f5b17
|
/tests/test_data_utils/test_du_wide.py
|
c5005b252c71007760a53338f1f8b9fc5627a806
|
[
"MIT"
] |
permissive
|
awesome-archive/pytorch-widedeep
|
d2146aafa215e25718721ea7f5a027cd6264ae3a
|
abb74df8cef8564d13743c309c9e158aacbcdb75
|
refs/heads/master
| 2023-08-09T21:32:27.149152
| 2019-11-14T22:46:52
| 2019-11-14T22:46:52
| 223,354,477
| 0
| 0
|
MIT
| 2020-01-13T04:36:56
| 2019-11-22T08:08:50
| null |
UTF-8
|
Python
| false
| false
| 2,189
|
py
|
import numpy as np
import pandas as pd
import pytest
from pytorch_widedeep.preprocessing import WidePreprocessor
def create_test_dataset(input_type, with_crossed=True):
df = pd.DataFrame()
col1 = list(np.random.choice(input_type, 3))
col2 = list(np.random.choice(input_type, 3))
df['col1'], df['col2'] = col1, col2
if with_crossed:
crossed = ['_'.join([str(c1), str(c2)]) for c1,c2 in zip(col1, col2)]
nuniques = df.col1.nunique() + df.col2.nunique() + len(np.unique(crossed))
else:
nuniques = df.col1.nunique() + df.col2.nunique()
return df, nuniques
some_letters = ['a', 'b', 'c', 'd', 'e']
some_numbers = [1,2,3,4,5]
wide_cols = ['col1', 'col2']
cross_cols = [('col1', 'col2')]
###############################################################################
# Simple test of functionality making sure the shape match
###############################################################################
df_letters, unique_letters = create_test_dataset(some_letters)
df_numbers, unique_numbers = create_test_dataset(some_numbers)
preprocessor1 = WidePreprocessor(wide_cols, cross_cols)
@pytest.mark.parametrize('input_df, expected_shape',
[
(df_letters, unique_letters),
(df_numbers, unique_numbers)
]
)
def test_preprocessor1(input_df, expected_shape):
wide_mtx = preprocessor1.fit_transform(input_df)
assert wide_mtx.shape[1] == expected_shape
###############################################################################
# Same test as before but checking that all works when no passing crossed cols
###############################################################################
df_letters_wo_crossed, unique_letters_wo_crossed = create_test_dataset(some_letters, with_crossed=False)
df_numbers_wo_crossed, unique_numbers_wo_crossed = create_test_dataset(some_numbers, with_crossed=False)
preprocessor2 = WidePreprocessor(wide_cols)
@pytest.mark.parametrize('input_df, expected_shape',
[
(df_letters_wo_crossed, unique_letters_wo_crossed),
(df_numbers_wo_crossed, unique_numbers_wo_crossed)
]
)
def test_prepare_wide_wo_crossed(input_df, expected_shape):
wide_mtx = preprocessor2.fit_transform(input_df)
assert wide_mtx.shape[1] == expected_shape
|
[
"jrzaurin@gmail.com"
] |
jrzaurin@gmail.com
|
98d1cd1a9fb72344f4f3f4e437cf774c5b51a588
|
4a7ede06edbe66f9d1eb485261f94cc3251a914b
|
/test/pyaz/security/setting/__init__.py
|
eed74dfb019fcaa8df05a7d249e7140a118338a0
|
[
"MIT"
] |
permissive
|
bigdatamoore/py-az-cli
|
a9e924ec58f3a3067b655f242ca1b675b77fa1d5
|
54383a4ee7cc77556f6183e74e992eec95b28e01
|
refs/heads/main
| 2023-08-14T08:21:51.004926
| 2021-09-19T12:17:31
| 2021-09-19T12:17:31
| 360,809,341
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 963
|
py
|
import json, subprocess
from ... pyaz_utils import get_cli_name, get_params
def list():
params = get_params(locals())
command = "az security setting list " + params
print(command)
output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout = output.stdout.decode("utf-8")
stderr = output.stderr.decode("utf-8")
if stdout:
return json.loads(stdout)
print(stdout)
else:
raise Exception(stderr)
print(stderr)
def show(name):
params = get_params(locals())
command = "az security setting show " + params
print(command)
output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout = output.stdout.decode("utf-8")
stderr = output.stderr.decode("utf-8")
if stdout:
return json.loads(stdout)
print(stdout)
else:
raise Exception(stderr)
print(stderr)
|
[
"“bigdatamoore@users.noreply.github.com”"
] |
“bigdatamoore@users.noreply.github.com”
|
1c30ba72a4d9693963319dac4acfa0264cfd3719
|
1f154f3ab10c1ea12f830026d5449e87a29b5c42
|
/PE17.py
|
00ea313c8e90592969d68fd94ccf784ad19b22a4
|
[
"LicenseRef-scancode-warranty-disclaimer"
] |
no_license
|
Cyborn13x/PE
|
e0e17f2142dea12ffc36a4b00c3089ad5312c10e
|
8e09bc67e863f597807d7adc08c7686b6234a9c4
|
refs/heads/master
| 2020-04-05T23:39:07.147492
| 2012-12-19T21:14:14
| 2012-12-19T21:14:14
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,993
|
py
|
__docformat__ = "restructuredtext en"
import re
_NUMBER_NAMES = {1: "one", 2: "two", 3: "three", 4: "four", 5: "five",
6: "six", 7: "seven", 8: "eight", 9: "nine", 10: "ten",
11: "eleven", 12: "twelve", 13: "thirteen", 14: "fourteen",
15: "fifteen", 16: "sixteen", 17: "seventeen",
18: "eighteen", 19: "nineteen", 20: "twenty",
21: "twenty-one", 22: "twenty-two", 23: "twenty-three",
24: "twenty-four", 25: "twenty-five", 26: "twenty-six",
27: "twenty-seven", 28: "twenty-eight", 29: "twenty-nine",
30: "thirty", 31: "thirty-one", 32: "thirty-two",
33: "thirty-three", 34: "thirty-four", 35: "thirty-five",
36: "thirty-six", 37: "thirty-seven", 38: "thirty-eight",
39: "thirty-nine", 40: "forty", 41: "forty-one",
42: "forty-two", 43: "forty-three", 44: "forty-four",
45: "forty-five", 46: "forty-six", 47: "forty-seven",
48: "forty-eight", 49: "forty-nine", 50: "fifty",
51: "fifty-one", 52: "fifty-two", 53: "fifty-three",
54: "fifty-four", 55: "fifty-five", 56: "fifty-six",
57: "fifty-seven", 58: "fifty-eight", 59: "fifty-nine",
60: "sixty", 61: "sixty-one", 62: "sixty-two",
63: "sixty-three", 64: "sixty-four", 65: "sixty-five",
66: "sixty-six", 67: "sixty-seven", 68: "sixty-eight",
69: "sixty-nine", 70: "seventy", 71: "seventy-one",
72: "seventy-two", 73: "seventy-three", 74: "seventy-four",
75: "seventy-five", 76: "seventy-six", 77: "seventy-seven",
78: "seventy-eight", 79: "seventy-nine", 80: "eighty",
81: "eighty-one", 82: "eighty-two", 83: "eighty-three",
84: "eighty-four", 85: "eighty-five", 86: "eighty-six",
87: "eighty-seven", 88: "eighty-eight", 89: "eighty-nine",
90: "ninety", 91: "ninety-one", 92: "ninety-two",
93: "ninety-three", 94: "ninety-four", 95: "ninety-five",
96: "ninety-six", 97: "ninety-seven", 98: "ninety-eight",
99: "ninety-nine"}
_CHARACTERS_WE_CARE_ABOUT = re.compile("\w")
def _words_from_num(num):
"""
Convert ``num`` to its (British) English phrase equivalent.
If ``num`` is greater than 9,999 then raise an ``Exception``.
>>> _words_from_num(115)
'one hundred and fifteen'
"""
if num >= 10000:
raise Exception, 'This function only supports numbers less than 10000.'
parts_list = []
if num >= 1000:
thousands = num // 1000
parts_list.append(_NUMBER_NAMES[thousands])
parts_list.append(" thousand")
num -= thousands * 1000
if num >= 100:
hundreds = num // 100
parts_list.append(_NUMBER_NAMES[hundreds])
parts_list.append(" hundred")
num -= hundreds * 100
if num:
if parts_list:
parts_list.append(" and")
parts_list.extend([" ", _NUMBER_NAMES[num]])
return "".join(parts_list)
def _count_characters_we_care_about(string_to_count):
"""
Count the characters in ``string_to_count``, excluding things like hyphens and spaces.
>>> _count_characters_we_care_about("one hundred and twenty-three")
24
"""
return len(_CHARACTERS_WE_CARE_ABOUT.findall(string_to_count))
def problem_17(upper_bound = 1000):
"""
Find the solution to `Problem 17`_ at `Project Euler`_.
.. _Problem 17: http://projecteuler.net/index.php?section=problems&id=17
.. _Project Euler: http://projecteuler.net/
>>> problem_17(2)
6
"""
converted_nums = (_words_from_num(num) for num in xrange(1, upper_bound + 1))
lengths = (_count_characters_we_care_about(phrase) for phrase in converted_nums)
return sum(lengths)
if __name__ == '__main__':
print problem_17()
|
[
"zobayer1@gmail.com"
] |
zobayer1@gmail.com
|
8939079c53a08d34a569651cdfae036e60ac4efe
|
b755c8897aef34b2ce71b0ee00215207c29a50a5
|
/src/zukebox/tests/__init__.py
|
0ace4cc0bc80741bac4fa7a8fb097ddfe3c4a71f
|
[
"MIT"
] |
permissive
|
zanalaci/zukebox
|
d705eb082659a71cb87d48ddf9395a0bc348aab2
|
ed1694eba91be3053063fa553aa4139a90228c8a
|
refs/heads/master
| 2020-04-05T18:32:20.625164
| 2016-01-18T13:26:44
| 2016-01-18T13:26:44
| 49,878,392
| 0
| 1
| null | 2016-01-18T13:24:45
| 2016-01-18T13:24:45
| null |
UTF-8
|
Python
| false
| false
| 192
|
py
|
'''
zukebox: tests module.
Meant for use with py.test.
Organize tests into files, each named xxx_test.py
Read more here: http://pytest.org/
Copyright 2015, Tamas Domok
Licensed under MIT
'''
|
[
"domoktams@gmail.com"
] |
domoktams@gmail.com
|
0b88f173868acd1d12a5be49bf9fa636bdcb0795
|
baa41ceeb7778900eeaed0ce9b64c16cc02727c6
|
/学习/mnist(4).py
|
2c47e86ca9561ac96bcddd86aac4aa0d318d8638
|
[] |
no_license
|
FaskyCC/tensorflow
|
aea4ad11a889b8b60f8beed3a80aabbd9b34cc0a
|
1485293ded88b43bdae55d741cb92b7f49639c87
|
refs/heads/master
| 2020-04-06T11:13:42.164859
| 2019-03-18T01:28:59
| 2019-03-18T01:28:59
| 157,408,790
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,807
|
py
|
import tensorflow as tf
# 导入MNIST
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/",one_hot = True)
# 定义输入层、隐含层、输出层的神经元个数
input = 784
hidden1 = 300
output = 10
epoch_size = 50
batch_size = 1000
batch_num = int(mnist.train.num_examples/batch_size)
dropout = 1
def add_layer(inputs, in_size, out_size, layer_name, activation_function = None):
# 定义隐含层的权重、偏置、激活函数
with tf.name_scope(layer_name):
with tf.name_scope("weight"):
#Weights = tf.Variable(tf.random_uniform([in_size, out_size])-0.5)
Weights = tf.Variable(tf.fill([in_size, out_size], 0.001))
tf.summary.histogram('Weight', Weights)
with tf.name_scope("biase"):
biases = tf.Variable(tf.zeros([1, out_size]) + 0.01)
tf.summary.histogram('biases', biases)
with tf.name_scope("Wx_b"):
output = tf.matmul(inputs, Weights) + biases
if activation_function is None:
return output
else:
output = activation_function(output)
return output
# 定义输入层,keep_prob是dropout的比例
with tf.name_scope("input"):
xs = tf.placeholder(tf.float32, [None, input])
ys = tf.placeholder(tf.float32, [None, output])
keep_prob = tf.placeholder(tf.float32)
# 定义隐含层
layer1 = add_layer(xs, 784, 300, 'layer1', activation_function=tf.nn.relu)
#定义输出层
prediction = add_layer(layer1, 300, 10, 'layer2', activation_function=tf.nn.softmax)
# 定义损失函数———交叉熵
with tf.name_scope("loss"):
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(tf.clip_by_value(prediction, 1e-10, 1.0)),
reduction_indices = [1]))
tf.summary.scalar('cross_entropy', cross_entropy)
# 计算准确率
with tf.name_scope("accuracy"):
correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(ys, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 定义优化器和学习率
with tf.name_scope("train"):
train_step = tf.train.GradientDescentOptimizer(0.3).minimize(cross_entropy)
# 初始化所有的变量
init = tf.global_variables_initializer()
# 开始导入数据,正式计算,迭代3000步,训练时batch size=100
with tf.Session() as sess:
sess.run(init)
merge = tf.summary.merge_all()
writer = tf.summary.FileWriter("log", sess.graph)
for i in range(epoch_size*batch_num+1):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: dropout})
result = sess.run(merge, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 1})
writer.add_summary(result, i)
# 训练完加载测试集数据,进行测试
if i % 100 == 0:
loss_run = sess.run(cross_entropy, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: dropout})
accuracy_run = sess.run(accuracy, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: dropout})
print('After %d steps training steps,The loss is %g and The accuracy is %g' % (i, loss_run, accuracy_run))
loss_run = sess.run(cross_entropy, feed_dict={xs: mnist.test.images, ys: mnist.test.labels, keep_prob: 1})
accuracy_run = sess.run(accuracy,feed_dict={xs: mnist.test.images,ys: mnist.test.labels, keep_prob: 1})
print('The loss in test dataset is %g and The accuracy in test dataset is %g' % (loss_run, accuracy_run))
accuracy_run = sess.run(accuracy, feed_dict={xs: mnist.test.images, ys: mnist.test.labels, keep_prob: 1})
print('The final accuracy in test dataset is %g' % (accuracy_run))
|
[
"1791853817@qq.com"
] |
1791853817@qq.com
|
0ad6cc77e8705f974a1a89318b81f90fa9e1a6a2
|
24cf6d01fc9485c2e5578523bce6313aab47a30e
|
/Callbacks/snapshot.py
|
ed17d03d6c29c383cb9934faf19472a25dbe1a5e
|
[] |
no_license
|
sahahn/GenDiagFramework
|
352212b2c540a6db73e810e416a9d3d4fa84f95a
|
29498d3667d644d5b3a8fd0f0e277cbdd14027ba
|
refs/heads/master
| 2020-04-14T06:10:10.609366
| 2019-06-18T20:22:31
| 2019-06-18T20:22:31
| 163,678,894
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,037
|
py
|
import numpy as np
import os
import keras.callbacks as callbacks
from keras.callbacks import Callback
class SnapshotModelCheckpoint(Callback):
"""Callback that saves the snapshot weights of the model.
Saves the model weights on certain epochs (which can be considered the
snapshot of the model at that epoch).
Should be used with the cosine annealing learning rate schedule to save
the weight just before learning rate is sharply increased.
# Arguments:
nb_epochs: total number of epochs that the model will be trained for.
nb_snapshots: number of times the weights of the model will be saved.
fn_prefix: prefix for the filename of the weights.
"""
def __init__(self, nb_epochs, nb_snapshots, fn_prefix='Model'):
super(SnapshotModelCheckpoint, self).__init__()
self.check = nb_epochs // nb_snapshots
self.fn_prefix = fn_prefix
def on_epoch_end(self, epoch, logs={}):
if epoch != 0 and (epoch + 1) % self.check == 0:
filepath = self.fn_prefix + "-%d.h5" % ((epoch + 1) // self.check)
self.model.save_weights(filepath, overwrite=True)
#print("Saved snapshot at weights/%s_%d.h5" % (self.fn_prefix, epoch))
class SnapshotCallbackBuilder:
"""Callback builder for snapshot ensemble training of a model.
Creates a list of callbacks, which are provided when training a model
so as to save the model weights at certain epochs, and then sharply
increase the learning rate.
"""
def __init__(self, nb_epochs, nb_snapshots, init_lr=0.1):
"""
Initialize a snapshot callback builder.
# Arguments:
nb_epochs: total number of epochs that the model will be trained for.
nb_snapshots: number of times the weights of the model will be saved.
init_lr: initial learning rate
"""
self.T = nb_epochs
self.M = nb_snapshots
self.alpha_zero = init_lr
def get_callbacks(self, model_prefix='Model'):
"""
Creates a list of callbacks that can be used during training to create a
snapshot ensemble of the model.
Args:
model_prefix: prefix for the filename of the weights.
Returns: list of 3 callbacks [ModelCheckpoint, LearningRateScheduler,
SnapshotModelCheckpoint] which can be provided to the 'fit' function
"""
if not os.path.exists('weights/'):
os.makedirs('weights/')
callback_list = [
callbacks.LearningRateScheduler(schedule=self._cosine_anneal_schedule),
SnapshotModelCheckpoint(self.T, self.M, fn_prefix=model_prefix)]
return callback_list
def _cosine_anneal_schedule(self, t):
cos_inner = np.pi * (t % (self.T // self.M)) # t - 1 is used when t has 1-based indexing.
cos_inner /= self.T // self.M
cos_out = np.cos(cos_inner) + 1
return float(self.alpha_zero / 2 * cos_out)# -*- coding: utf-8 -*-
|
[
"sahahn@uvm.edu"
] |
sahahn@uvm.edu
|
0a1d1c3822ccedbd1f4744673b22edeea3b3e6ee
|
86b20a173952d1975e8cedd252f79da8bb1e44ce
|
/source/models.py
|
3a7f418d144769f749a9e9d3801468d4d37c4e48
|
[] |
no_license
|
olegtropinin/gaia_data_api
|
8975e7580ce63a5156452afad356a6dab76336dd
|
b4e5db2401e7a80cf5e85407813ca2cf9e150adf
|
refs/heads/master
| 2022-12-06T16:08:10.212944
| 2020-08-24T06:12:35
| 2020-08-24T06:12:35
| 289,843,826
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,837
|
py
|
from django.db import models
# Create your models here.
class GaiaSource(models.Model):
# TODO: Go over all fields to do models.Choices or models.IntegerChoices. For example priam_flags.
solution_id = models.PositiveBigIntegerField(help_text='1635721458409799680')
designation = models.CharField(max_length=28, help_text='Gaia DR2 1000225938242805248')
source_id = models.PositiveBigIntegerField(primary_key=True, help_text='1000225938242805248')
random_index = models.PositiveIntegerField(help_text='1197051105')
ref_epoch = models.CharField(max_length=6, null=True, help_text='2015.5')
ra = models.FloatField(null=True)
ra_error = models.FloatField(null=True)
dec = models.FloatField(null=True)
dec_error = models.FloatField(null=True)
parallax = models.FloatField(null=True)
parallax_error = models.FloatField(null=True)
parallax_over_error = models.FloatField(null=True)
pmra = models.FloatField(null=True)
pmra_error = models.FloatField(null=True)
pmdec = models.FloatField(null=True)
pmdec_error = models.FloatField(null=True)
ra_dec_corr = models.FloatField(null=True)
ra_parallax_corr = models.FloatField(null=True)
ra_pmra_corr = models.FloatField(null=True)
ra_pmdec_corr = models.FloatField(null=True)
dec_parallax_corr = models.FloatField(null=True)
dec_pmra_corr = models.FloatField(null=True)
dec_pmdec_corr = models.FloatField(null=True)
parallax_pmra_corr = models.FloatField(null=True)
parallax_pmdec_corr = models.FloatField(null=True)
pmra_pmdec_corr = models.FloatField(null=True)
astrometric_n_obs_al = models.PositiveSmallIntegerField(null=True, help_text='184')
astrometric_n_obs_ac = models.PositiveSmallIntegerField(null=True, help_text='0')
astrometric_n_good_obs_al = models.PositiveSmallIntegerField(null=True, help_text='181')
astrometric_n_bad_obs_al = models.PositiveSmallIntegerField(null=True, help_text='3')
astrometric_gof_al = models.FloatField(null=True)
astrometric_chi2_al = models.FloatField(null=True)
astrometric_excess_noise = models.FloatField(null=True)
astrometric_excess_noise_sig = models.FloatField(null=True)
astrometric_params_solved = models.PositiveSmallIntegerField(null=True, help_text='3 or 31')
astrometric_primary_flag = models.BooleanField(null=True)
astrometric_weight_al = models.FloatField(null=True)
astrometric_pseudo_colour = models.FloatField(null=True)
astrometric_pseudo_colour_error = models.FloatField(null=True)
mean_varpi_factor_al = models.FloatField(null=True)
astrometric_matched_observations = models.PositiveSmallIntegerField(null=True, help_text='21')
visibility_periods_used = models.PositiveSmallIntegerField(null=True, help_text='10')
astrometric_sigma5d_max = models.FloatField(null=True)
frame_rotator_object_type = models.PositiveSmallIntegerField(null=True, help_text='0')
matched_observations = models.PositiveSmallIntegerField(null=True, help_text='22')
duplicated_source = models.BooleanField(null=True)
phot_g_n_obs = models.PositiveSmallIntegerField(null=True, help_text='189')
phot_g_mean_flux = models.FloatField(null=True)
phot_g_mean_flux_error = models.FloatField(null=True)
phot_g_mean_flux_over_error = models.FloatField(null=True)
phot_g_mean_mag = models.FloatField(null=True)
phot_bp_n_obs = models.PositiveSmallIntegerField(null=True, help_text='189')
phot_bp_mean_flux = models.FloatField(null=True)
phot_bp_mean_flux_error = models.FloatField(null=True)
phot_bp_mean_flux_over_error = models.FloatField(null=True)
phot_bp_mean_mag = models.FloatField(null=True)
phot_rp_n_obs = models.PositiveSmallIntegerField(null=True, help_text='21')
phot_rp_mean_flux = models.FloatField(null=True)
phot_rp_mean_flux_error = models.FloatField(null=True)
phot_rp_mean_flux_over_error = models.FloatField(null=True)
phot_rp_mean_mag = models.FloatField(null=True)
phot_bp_rp_excess_factor = models.FloatField(null=True)
phot_proc_mode = models.PositiveSmallIntegerField(null=True, help_text='0, 1 or 2')
bp_rp = models.FloatField(null=True)
bp_g = models.FloatField(null=True)
g_rp = models.FloatField(null=True)
radial_velocity = models.FloatField(null=True)
radial_velocity_error = models.FloatField(null=True)
rv_nb_transits = models.PositiveSmallIntegerField(null=True, help_text='0')
rv_template_teff = models.FloatField(null=True)
rv_template_logg = models.FloatField(null=True)
rv_template_fe_h = models.FloatField(null=True)
phot_variable_flag = models.CharField(max_length=13, null=True, help_text='NOT_AVAILABLE')
l = models.FloatField(null=True)
b = models.FloatField(null=True)
ecl_lon = models.FloatField(null=True)
ecl_lat = models.FloatField(null=True)
priam_flags = models.PositiveIntegerField(null=True, help_text='100001')
teff_val = models.FloatField(null=True)
teff_percentile_lower = models.FloatField(null=True)
teff_percentile_upper = models.FloatField(null=True)
a_g_val = models.FloatField(null=True)
a_g_percentile_lower = models.FloatField(null=True)
a_g_percentile_upper = models.FloatField(null=True)
e_bp_min_rp_val = models.FloatField(null=True)
e_bp_min_rp_percentile_lower = models.FloatField(null=True)
e_bp_min_rp_percentile_upper = models.FloatField(null=True)
flame_flags = models.PositiveIntegerField(null=True, help_text='200111')
radius_val = models.FloatField(null=True)
radius_percentile_lower = models.FloatField(null=True)
radius_percentile_upper = models.FloatField(null=True)
lum_val = models.FloatField(null=True)
lum_percentile_lower = models.FloatField(null=True)
lum_percentile_upper = models.FloatField(null=True)
|
[
"oleg@iptech.kz"
] |
oleg@iptech.kz
|
3ff2599f16e8ef4b6964f06e4b62bec8ec230c2c
|
739f6d736ae008b13ffdc71e163c4a6b20baf50c
|
/inhan/점프투파이썬/chapter02/Inhan/1.py
|
c2eb2482f9efddce3269a17d820b6f5b6ed7be5f
|
[] |
no_license
|
ingithub777/Guri
|
7862c606f731401d30ffaf6f1500c92ff1335625
|
5737146c1d0d0b76edc88db0e77a89791f29a9b5
|
refs/heads/master
| 2021-09-09T12:45:08.587169
| 2018-03-16T07:31:00
| 2018-03-16T07:31:00
| 111,864,366
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 433
|
py
|
정수형
a=123
a=-178
a=0
실수형
a=1.2
a=-3.45
지수표현방식
a=4.24E10
a=4.24e-10
8진수와 16진수
a=0o177
a=0x8ff
a=0xabc
복소수
a=1+2j
b=3-4j
복소수.real
a=1+2j
a.real
1.0
복소수.imag
a=1+2j
a.imag
2.0
복소수.conjugate()
a=1+2j
a.conjugate()
(1-2j)
abs복소수
a=1+2j
abs(a)
2.2360679774997898
사칙연산
a=3
b=4
a+b
7
a*b
12
a/b
0.75
x의 y제곱을 나타내는 ** 연산자
a=3
b=4
a**b
81
|
[
"rladlsgks4@naver.com"
] |
rladlsgks4@naver.com
|
cc5e8dc5903e1d0352fb1da8f5664b9b528c2fd8
|
08d256c60ac584185781ddb303c4eca90ced6cdb
|
/generate_datasets.py
|
e39f54aee59767d95edfc40b7cf04497e4a43eb8
|
[] |
no_license
|
bootphon/phonrulemodel
|
b8c191b59c18d46353245917ea52d5b9612c3dd2
|
dadf444a90ce7200a430bca8754bd6c742975a1a
|
refs/heads/master
| 2021-01-10T14:18:02.212832
| 2015-05-29T10:14:24
| 2015-05-29T10:14:24
| 36,012,459
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 9,888
|
py
|
"""
generate datasets
"""
from __future__ import division
from collections import defaultdict
from itertools import chain, product
import cPickle as pickle
import numpy as np
from scipy.stats import multivariate_normal
from util import verb_print
import csv
import glob
import os.path as path
import pandas as pd
def constcorr(X):
"""Calculate the constant correlation matrix.
Parameters
----------
X : ndarray (nsamples, nfeatures)
observations
Returns
-------
constant correlation matrix of X
Notes
-----
"Honey, I shrunk the sample covariance matrix", Ledoit and Wolf
"""
N, D = X.shape
X_ = X - X.mean(0) # centered samples
s = np.dot(X_.T, X_) / (N-1) # sample covariance
d = np.diag(s)
sq = np.sqrt(np.outer(d, d))
d = s / sq # sample correlation
r = np.triu(d, 1).sum() * 2 / ((N-1)*N) # average correlation
f = r * sq
f[np.diag_indices(D)] = np.diag(s)
return f
def transform_estimates(d, mean_dispersal_factor=1, cov_shrink_factor=0):
"""Manipulate the estimated distributions by shrinking the covariance
or dispersing the means from their center point.
Parameters
----------
d : dict from phone to condition to rv_continuous
estimated distributions
cov_shrink_factor : float in [0, 1]
interpolation factor between the estimated covariance and the constant
correlation matrix. if `shrink_factor`==0, no further shrinkage is
performed, if 1, the constant correlation matrix is used instead of
covariance.
mean_dispersal_factor : float
the means of the classes can be brought further apart or closer
together by this factor.
Returns
-------
dict from phone to condition to rv_continuous
transformed distributions
"""
if mean_dispersal_factor == 1 and cov_shrink_factor == 0:
return d
means = defaultdict(dict)
covs = defaultdict(dict)
for phone in d:
for condition in d[phone]:
means[phone][condition] = d[phone][condition].mean
cov = d[phone][condition].cov
if cov_shrink_factor > 1:
cov *= (1-cov_shrink_factor)
covs[phone][condition] = cov
if mean_dispersal_factor != 1:
center = np.vstack([means[phone][condition] for phone in means
for conditions in means[phone]]).mean(0)
means = {p: {c: (means[p][c]-center)*mean_dispersal_factor + center
for c in means[p]}
for p in means}
return {phone: {cond: multivariate_normal(mean=means[phone][cond],
cov=covs[phone][cond])
for cond in d[phone]}
for phone in d}
def resample(d, n):
return {p: {c: d[p][c].rvs(size=n)
for c in d[p]}
for p in d}
def generate_test(df_test, estimates, nsamples, output, mean_dispersal_factor=1,
cov_shrink_factor=0, verbose=False):
with verb_print('transforming distributions', verbose=verbose):
estimates = transform_estimates(estimates, mean_dispersal_factor,
cov_shrink_factor)
samples = resample(estimates, nsamples)
"""
x1 x2 y setting x1_c1 x1_v x1_c2 x2_c1 x2_v x2_c2
0 FIN-ADS ZUL-ADS 1 ADS F I N Z U L
"""
df_x1_c1 = df_test['c1'].values
df_x1_v = df_test['v'].values
df_x1_c2 = df_test['c2'].values
df_x2_c1 = df_test['c1'].values
df_x2_v = df_test['v'].values
df_x2_c2 = df_test['c2'].values
df_y = df_test['y'].values
setting = df_test['setting'].values
x1_c1s = []
x1_vs = []
x1_c2s = []
x1_ys = []
x2_c1s = []
x2_vs = []
x2_c2s = []
x2_ys = []
for i in range(len(df_c1)):
x1_c1 = samples.get(df_x1_c1[i].lower())
MFCCs_x1_c1 = x1_c1.get(setting[i])
x1_c1s.append(MFCCs_c1)
x1_v = samples.get(df_x1_v[i].lower())
MFCCs_x1_v = x1_v.get(setting[i])
x1_vs.append(MFCCs_x1_v)
x1_c2 = samples.get(df_x1_c2[i].lower())
MFCCs_x1_c2 = x1_c2.get(setting[i])
x1_c2s.append(MFCCs_c2)
x2_c1 = samples.get(df_x2_c1[i].lower())
MFCCs_x2_c1 = x2_c1.get(setting[i])
x2_c1s.append(MFCCs_c1)
x2_v = samples.get(df_x2_v[i].lower())
MFCCs_x2_v = x2_v.get(setting[i])
x2_vs.append(MFCCs_x2_v)
x2_c2 = samples.get(df_x2_c2[i].lower())
MFCCs_x2_c2 = x2_c2.get(setting[i])
x2_c2s.append(MFCCs_c2)
y = df_y[i]
s = setting[i]
ys.append([y,s])
x1_c1s = np.array(x1_c1s)
x1_vs = np.array(x1_vs)
x1_c2s = np.array(x1_c2s)
x2_c1s = np.array(x2_c1s)
x2_vs = np.array(x2_vs)
x2_c2s = np.array(x2_c2s)
X_x1 = np.column_stack((x1_c1s,x1_vs,x1_c2s))
X_x2 = np.column_stack((x2_c1s,x2_vs,x2_c2s))
X = np.column_stack(X_x1,X_x2)
y = np.array(ys) #example: ['1' 'ADS']
labels = ['e','i','o','u','b','d','p','f','s','z','v','f']
labels = np.array(labels)
np.savez(output, X=X, y = y, labels = labels)
def generate_train(df_train, estimates, nsamples, output, mean_dispersal_factor=1, cov_shrink_factor=0,
verbose=False):
with verb_print('transforming distributions', verbose=verbose):
estimates = transform_estimates(estimates, mean_dispersal_factor,
cov_shrink_factor)
"""
z': {'ADS': <scipy.stats._multivariate.multivariate_normal_frozen object at 0x1069e60d0>,
'IDS': <scipy.stats._multivariate.multivariate_normal_frozen object at 0x1069e6150>}
54 ZUN-ADS Z U N ADS
55 ZUR-ADS Z U R ADS
56 PEM-ADS P E M ADS
57 PEL-ADS P E L ADS
"""
samples = resample(estimates, nsamples)
df_c1 = df_train['c1'].values
df_v = df_train['v'].values
df_c2 = df_train['c2'].values
setting = df_train['setting'].values
c1s = []
vs = []
c2s = []
ys = []
#print samples
for i in range(len(df_c1)):
c1 = samples.get(df_c1[i].lower())
MFCCs_c1 = c1.get(setting[i])
c1s.append(MFCCs_c1)
v = samples.get(df_v[i].lower())
MFCCs_v = v.get(setting[i])
vs.append(MFCCs_v)
c2 = samples.get(df_c2[i].lower())
MFCCs_c2 = c2.get(setting[i])
c2s.append(MFCCs_c2)
y = [df_c1[i].lower(),df_v[i].lower(),df_c2[i].lower()]
s = setting[i]
ys.append([y,s])
c1s = np.array(c1s)
vs = np.array(vs)
c2s = np.array(c2s)
X = np.column_stack((c1s,vs,c2s))
y = np.array(ys) #example: [['d', 'o', 'n'] 'ADS']
labels = ['e','i','o','u','b','d','p','f','s','z','v','f']
labels = np.array(labels)
np.savez(output, X=X, y = y, labels = labels)
def load_estimates(fname):
with open(fname, 'rb') as fin:
e = pickle.load(fin)
return e
def train_data(dir,estimates,output_dir):
header = ['stimulus']
counter = 1
for condition in glob.iglob(path.join(dir, '*.csv')):
df_train = pd.read_csv(condition, names= header)
stimulus = df_train['stimulus'].values
c1 = []
v = []
c2 = []
setting = []
for stim in stimulus:
c1.append(stim[0])
v.append (stim[1])
c2.append(stim[2])
setting.append(stim[4:7])
c1 = np.array(c1)
v = np.array(v)
c2 = np.array(c2)
setting = np.array(setting)
df_train['c1'] = c1
df_train['v'] = v
df_train['c2'] = c2
df_train['setting'] = setting
output = output_dir + 'train_condition' + str(counter)
counter = counter + 1
generate_train(df_train,estimates,nsamples, output, mean_dispersal_factor=1, cov_shrink_factor=0,verbose=False)
def test_data(dir,estimates,output_dir):
counter = 1
for condition in glob.iglob(path.join(dir, '*.csv')):
df_test = pd.read_csv(condition, names= ['x1','x2','y','setting'])
x1 = df_test['x1'].values
x2 = df_test['x2'].values
x1_c1 = []
x1_v = []
x1_c2 = []
s = []
for stim in x1:
x1_c1.append(stim[0])
x1_v.append (stim[1])
x1_c2.append(stim[2])
s.append(stim[4:7])
x2_c1 = []
x2_v = []
x2_c2 = []
for stim in x2:
x2_c1.append(stim[0])
x2_v.append (stim[1])
x2_c2.append(stim[2])
x1_c1 = np.array(x1_c1)
x1_v = np.array(x1_v)
x1_c2 = np.array(x1_c2)
x2_c1 = np.array(x2_c1)
x2_v = np.array(x2_v)
x2_c2 = np.array(x2_c2)
df_test['x1_c1'] = x1_c1
df_test['x1_v'] = x1_v
df_test['x1_c2'] = x1_c2
df_test['x2_c1'] = x2_c1
df_test['x2_v'] = x2_v
df_test['x2_c2'] = x2_c2
df_test['setting'] = s
output = output_dir + 'test_condition' + str(counter)
counter = counter + 1
generate_test(df_test,estimates,nsamples, output,
mean_dispersal_factor=1, cov_shrink_factor=0,verbose=False)
if __name__ == '__main__':
nsamples = 1000
input_fname = '/Users/ingeborg/Desktop/estimates.pkl'
shrink = 0
dispersal = 1
train_stimulus_dir = '/Users/ingeborg/phonrulemodel/conditions/train'
test_stimulus_dir = '/Users/ingeborg/phonrulemodel/conditions/test'
output_dir = '/Users/ingeborg/Desktop/'
estimates = load_estimates(input_fname)
train_data(train_stimulus_dir,estimates, output_dir)
test_data(test_stimulus_dir,estimates, output_dir)
|
[
"ingeborg.roete@gmail.com"
] |
ingeborg.roete@gmail.com
|
c73c084c3cb10cd9b273a4f306578ad0d671c470
|
6c016f5c52613039764b3cecdd0b786a6da08955
|
/gui/main_window.py
|
b13994e9c3f56eff77253ed4f836f00381e1f8a8
|
[] |
no_license
|
spinny/ggscraper
|
d77ec39a24fc2fd9c92166b7af2c08c2662afe33
|
ff024ea97e0b57817f8ad1b0edfc19f2692068d3
|
refs/heads/master
| 2021-01-19T20:16:18.495353
| 2013-08-13T21:18:59
| 2013-08-13T21:18:59
| 2,508,547
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,163
|
py
|
#!/usr/bin/env python
## -*- coding: UTF -*-
import gtk
import google
from tabs.scrape import ScrapeTab
from tabs.domains import DomainsTab
from tabs.filetypes import FiletypesTab
from tabs.files import FilesTab
from tabs.all import AllTab
class MainNotebook(gtk.Notebook):
def __init__(self):
super(MainNotebook, self).__init__()
self.tab_scrape = ScrapeTab()
self.tab_scrape.show()
l = gtk.Label("Scrape")
self.append_page(self.tab_scrape, l)
self.tab_domains = DomainsTab()
self.tab_domains.show()
l = gtk.Label("Domains")
self.append_page(self.tab_domains, l)
self.tab_filetypes = FiletypesTab()
self.tab_filetypes.show()
l = gtk.Label("Filetypes")
self.append_page(self.tab_filetypes, l)
self.tab_files = FilesTab()
self.tab_files.show()
l = gtk.Label("Files")
self.append_page(self.tab_files, l)
self.tab_all = AllTab()
self.tab_all.show()
l = gtk.Label("All")
self.append_page(self.tab_all, l)
class MainWindow(gtk.Window):
def __build_menu__(self, root, items):
for i in items:
if not i["label"]:
t = gtk.SeparatorMenuItem()
t.show()
root.append(t)
else:
t = gtk.MenuItem()
t.set_use_underline(True)
t.set_label(i["label"])
t.show()
if "connect" in i:
t.connect(*i["connect"])
if "accel" in i:
key, mod = gtk.accelerator_parse(i["accel"])
t.add_accelerator("activate", self.accel_group, key, mod, gtk.ACCEL_VISIBLE)
if "sub" in i:
tt = gtk.Menu()
tt.show()
self.__build_menu__(tt, i["sub"])
t.set_submenu(tt)
root.append(t)
def __init__(self):
super(MainWindow, self).__init__()
# set window properties
self.set_title("GTK Google Scraper")
self.set_position(gtk.WIN_POS_CENTER)
scr = self.get_screen()
self.set_default_size(int(scr.get_width() * 0.8), int(scr.get_height() * 0.8))
# add accelerator group
self.accel_group = gtk.AccelGroup()
self.add_accel_group(self.accel_group)
# build menu bar
self.mnu_main = gtk.MenuBar()
self.mnu_main.show()
self.__build_menu__(self.mnu_main, [
{"label":"_File", "sub":[
{
"label":"_New",
"connect":("activate", self.__mnu_main_new__),
"accel":"<Control>N"
},
{"label":None},
{
"label":"_Save",
"connect":("activate", self.__mnu_main_save__),
"accel":"<Control>S"
},
{
"label":"Save _As",
"connect":("activate", self.__mnu_main_save_as__),
"accel":"<Control>E"
},
{
"label":"_Open",
"connect":("activate", self.__mnu_main_open__),
"accel":"<Control>O"
},
{"label":None},
{
"label":"_Quit",
"connect":("activate", self.__win_main_on_delete_event__),
"accel":"<Control>Q"
}
]}
])
# build notebook
self.notebook = MainNotebook()
self.notebook.show()
# build status bar
self.status_bar = gtk.Statusbar()
self.status_bar.show()
# main VBox
vb = gtk.VBox()
vb.pack_start(self.mnu_main, False, False, 2)
vb.pack_start(self.notebook, True, True, 2)
vb.pack_end(self.status_bar, False, False, 2)
vb.show()
self.add(vb)
# set google preferences
self.notebook.tab_scrape.webview.load_uri("http://www.google.com/ncr")
|
[
"spinny666@gmail.com"
] |
spinny666@gmail.com
|
65448ca89f8d0e2ac0da8300625a2441110c79ab
|
82d5744e038f914c7832775989dd8b25224d6e91
|
/_41.py
|
efc538881b2e8fdb652e312dd8e58febc0bf7c9f
|
[] |
no_license
|
ProgrammAbelSchool/Programming-Challenges
|
1743f19c88f360931823df9e8066a7e82978ff09
|
d72a19f79e3892ce1f9be9c83b397c18de8e0234
|
refs/heads/master
| 2023-02-26T03:18:52.086242
| 2021-02-03T14:33:01
| 2021-02-03T14:33:01
| 315,135,657
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 193
|
py
|
name = input("enter your name: ")
number = int(input("enter a number: "))
if number < 10:
for i in range(number):
print(name)
else:
for i in range(3):
print("Too high")
|
[
"binoop-a17@boswells-school.com"
] |
binoop-a17@boswells-school.com
|
546c7504739979a6fadddacfd941a5bee6fc2d0e
|
c617129d66a8728601794e6069b71259e58c86b2
|
/test/test_hash_table_separate_chaning.py
|
0ae1a92dc336074aac5b1c2b6ee9e45ef00929d5
|
[] |
no_license
|
tcongg/data-structures-and-algorithms
|
de5fd13a8c1a05bb7813f9d00c76f6226d8285a0
|
6b3ef0b8ccc39a2633a03a8feaeccd0c425f4a92
|
refs/heads/master
| 2020-04-22T20:32:16.634974
| 2019-03-05T12:52:52
| 2019-03-05T12:52:52
| 170,486,025
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,347
|
py
|
import unittest
from hash_table_separate_chaning import HashTable
class TestHashTable(unittest.TestCase):
def test_add(self):
table = HashTable(7)
table.add(1, 1)
self.assertEqual(table.get(1), 1)
table.add(2, 2)
table.add(3, 3)
self.assertEqual(table.get(2), 2)
self.assertEqual(table.get(3), 3)
def test_get(self):
table = HashTable(7)
self.assertEqual(table.get(100), None)
table.add(1, 1)
self.assertEqual(table.get(1), 1)
table.add(2, 2)
table.add(3, 3)
self.assertEqual(table.get(2), 2)
self.assertEqual(table.get(3), 3)
def test_exists(self):
table = HashTable(7)
self.assertFalse(table.exists(1111))
table.add(1, 99)
self.assertTrue(1)
def test_remove(self):
table = HashTable(7)
table.add(1, 1)
table.add(2, 2)
table.add(3, 3)
table.add(8, 99)
table.add(16, 88)
table.remove(1)
self.assertEqual(table.get(1), None)
table.remove(2)
self.assertEqual(table.get(2), None)
table.remove(3)
self.assertEqual(table.get(3), None)
table.remove(16)
self.assertEqual(table.get(16), None)
table.remove(8)
self.assertEqual(table.get(8), None)
|
[
"noreply@github.com"
] |
tcongg.noreply@github.com
|
fd26a03d00d4f842d49979c205418dd51a5c755a
|
274211f77fc9699b19ed70c8d3deca5017c76889
|
/navec/train/ctl/quantize.py
|
02052beb23dc2421402266e48b0bf5764b05d162
|
[] |
no_license
|
EruditePanda/navec
|
347bf3f6b47caa534a855bffd38cefa2868f4bf0
|
92985269f58d8cd18ebb6ccf71234349fcc3690f
|
refs/heads/master
| 2020-06-03T19:34:56.800023
| 2019-06-12T09:31:20
| 2019-06-12T09:31:20
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 720
|
py
|
from navec.pq import quantize as quantize__
from navec.vocab import Vocab
from navec import Navec
from ..glove import parse_glove_emb
from ..log import log_info
def quantize(args):
quantize_(args.emb, args.output, args.subdim, args.sample, args.iterations)
def quantize_(emb, output, subdim, sample, iterations):
with open(emb) as file:
log_info('Load %s', emb)
words, weights = parse_glove_emb(file)
log_info(
'PQ, subdim: %d, sample: %d, iterations: %d',
subdim, sample, iterations
)
pq = quantize__(weights, subdim, sample, iterations)
vocab = Vocab(words)
log_info('Dump %s', output)
Navec(vocab, pq).dump(output)
|
[
"alex@alexkuk.ru"
] |
alex@alexkuk.ru
|
2ba1670f3851c924b251dfce026d182554ea1dfd
|
e3524ac37416d723901c41d1df873df1fda93d3d
|
/books/migrations/0001_initial.py
|
7504204e860a161a78266f9511c63c390ef9087f
|
[] |
no_license
|
rwajon/python-graphql
|
82e942bc5dc809e0251be93ab41ca7a49b62e9a8
|
87ecfd71493dc2edaf549fb7c3efe94e323a745e
|
refs/heads/develop
| 2022-05-10T16:03:31.850669
| 2019-10-09T15:51:38
| 2019-10-09T15:51:38
| 213,409,049
| 1
| 0
| null | 2022-04-22T22:25:56
| 2019-10-07T14:42:29
|
Python
|
UTF-8
|
Python
| false
| false
| 873
|
py
|
# Generated by Django 2.2.6 on 2019-10-07 15:20
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
('authors', '0001_initial'),
]
operations = [
migrations.CreateModel(
name='Book',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('title', models.CharField(max_length=100)),
('synopsis', models.TextField()),
('published_date', models.DateField()),
('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='books', to='authors.Author')),
],
options={
'ordering': ('title',),
},
),
]
|
[
"jonathanrwabahizi@gmai.com"
] |
jonathanrwabahizi@gmai.com
|
42b69a10939d1b711c024f3cd5df47f4c4840fee
|
af4abf0a22db1cebae466c56b45da2f36f02f323
|
/parser/team07/Proyecto/clasesAbstractas/select_query.py
|
93f098d149c2b574891d5d6f72d450da3592e61d
|
[
"MIT"
] |
permissive
|
joorgej/tytus
|
0c29408c09a021781bd3087f419420a62194d726
|
004efe1d73b58b4b8168f32e01b17d7d8a333a69
|
refs/heads/main
| 2023-02-17T14:00:00.571200
| 2021-01-09T00:48:47
| 2021-01-09T00:48:47
| 322,429,634
| 3
| 0
|
MIT
| 2021-01-09T00:40:50
| 2020-12-17T22:40:05
|
Python
|
UTF-8
|
Python
| false
| false
| 604
|
py
|
from .instruccionAbstracta import InstruccionAbstracta
class select_query(InstruccionAbstracta):
'''Esta es la instruccion general de un query que puede unir varios select
esta tiene los 2 querys que se unen y el tipo de union'''
def __init__(self, query1, query2, tipoUnion):
self.query1 = query1
self.query2 = query2
self.tipoUnion = tipoUnion
def ejecutar(self, tabalSimbolos, listaErrores):
if self.query2 is None:
self.query1.ejecutar(tabalSimbolos, listaErrores)
else:
print("Vienen 2 querys")
pass
|
[
"carloscante@gmail.com"
] |
carloscante@gmail.com
|
472cc265eb8efba7a97821c1b47be51224d34724
|
94cb9dcbac4c35a30b684de3338ac31ed9fd5165
|
/backend/healthiswealth_28409/settings.py
|
623002b24c290293a28f4cbf5f527f04ed9f2eab
|
[] |
no_license
|
crowdbotics-apps/healthiswealth-28409
|
64b410d10e6faf5540402b7b59897d583cd8201d
|
abe1e12bb5f06ea6f2dddcdf73a1d08115b073f9
|
refs/heads/master
| 2023-06-14T10:30:40.144603
| 2021-07-03T09:57:58
| 2021-07-03T09:57:58
| 382,580,789
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 7,244
|
py
|
"""
Django settings for healthiswealth_28409 project.
Generated by 'django-admin startproject' using Django 2.2.2.
For more information on this file, see
https://docs.djangoproject.com/en/2.2/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/2.2/ref/settings/
"""
import os
import environ
import logging
env = environ.Env()
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = env.bool("DEBUG", default=False)
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = env.str("SECRET_KEY")
ALLOWED_HOSTS = env.list("HOST", default=["*"])
SITE_ID = 1
SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https")
SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False)
# Application definition
INSTALLED_APPS = [
"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"django.contrib.sites",
"task_category",
"task",
"wallet",
"task_profile",
"location",
"tasker_business",
]
LOCAL_APPS = [
"home",
"modules",
"users.apps.UsersConfig",
]
THIRD_PARTY_APPS = [
"rest_framework",
"rest_framework.authtoken",
"rest_auth",
"rest_auth.registration",
"bootstrap4",
"allauth",
"allauth.account",
"allauth.socialaccount",
"allauth.socialaccount.providers.google",
"django_extensions",
"drf_yasg",
"storages",
# start fcm_django push notifications
"fcm_django",
# end fcm_django push notifications
]
INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS
MIDDLEWARE = [
"django.middleware.security.SecurityMiddleware",
"django.contrib.sessions.middleware.SessionMiddleware",
"django.middleware.common.CommonMiddleware",
"django.middleware.csrf.CsrfViewMiddleware",
"django.contrib.auth.middleware.AuthenticationMiddleware",
"django.contrib.messages.middleware.MessageMiddleware",
"django.middleware.clickjacking.XFrameOptionsMiddleware",
]
ROOT_URLCONF = "healthiswealth_28409.urls"
TEMPLATES = [
{
"BACKEND": "django.template.backends.django.DjangoTemplates",
"DIRS": [os.path.join(BASE_DIR, "web_build")],
"APP_DIRS": True,
"OPTIONS": {
"context_processors": [
"django.template.context_processors.debug",
"django.template.context_processors.request",
"django.contrib.auth.context_processors.auth",
"django.contrib.messages.context_processors.messages",
],
},
},
]
WSGI_APPLICATION = "healthiswealth_28409.wsgi.application"
# Database
# https://docs.djangoproject.com/en/2.2/ref/settings/#databases
DATABASES = {
"default": {
"ENGINE": "django.db.backends.sqlite3",
"NAME": os.path.join(BASE_DIR, "db.sqlite3"),
}
}
if env.str("DATABASE_URL", default=None):
DATABASES = {"default": env.db()}
# Password validation
# https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
"NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator",
},
{
"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator",
},
{
"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator",
},
{
"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator",
},
]
# Internationalization
# https://docs.djangoproject.com/en/2.2/topics/i18n/
LANGUAGE_CODE = "en-us"
TIME_ZONE = "UTC"
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/2.2/howto/static-files/
STATIC_URL = "/static/"
MIDDLEWARE += ["whitenoise.middleware.WhiteNoiseMiddleware"]
AUTHENTICATION_BACKENDS = (
"django.contrib.auth.backends.ModelBackend",
"allauth.account.auth_backends.AuthenticationBackend",
)
STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles")
STATICFILES_DIRS = [
os.path.join(BASE_DIR, "static"),
os.path.join(BASE_DIR, "web_build/static"),
]
STATICFILES_STORAGE = "whitenoise.storage.CompressedManifestStaticFilesStorage"
# allauth / users
ACCOUNT_EMAIL_REQUIRED = True
ACCOUNT_AUTHENTICATION_METHOD = "email"
ACCOUNT_USERNAME_REQUIRED = False
ACCOUNT_EMAIL_VERIFICATION = "optional"
ACCOUNT_CONFIRM_EMAIL_ON_GET = True
ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True
ACCOUNT_UNIQUE_EMAIL = True
LOGIN_REDIRECT_URL = "users:redirect"
ACCOUNT_ADAPTER = "users.adapters.AccountAdapter"
SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter"
ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True)
SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True)
REST_AUTH_SERIALIZERS = {
# Replace password reset serializer to fix 500 error
"PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer",
}
REST_AUTH_REGISTER_SERIALIZERS = {
# Use custom serializer that has no username and matches web signup
"REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer",
}
# Custom user model
AUTH_USER_MODEL = "users.User"
EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net")
EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "")
EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "")
EMAIL_PORT = 587
EMAIL_USE_TLS = True
# AWS S3 config
AWS_ACCESS_KEY_ID = env.str("AWS_ACCESS_KEY_ID", "")
AWS_SECRET_ACCESS_KEY = env.str("AWS_SECRET_ACCESS_KEY", "")
AWS_STORAGE_BUCKET_NAME = env.str("AWS_STORAGE_BUCKET_NAME", "")
AWS_STORAGE_REGION = env.str("AWS_STORAGE_REGION", "")
USE_S3 = (
AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY
and AWS_STORAGE_BUCKET_NAME
and AWS_STORAGE_REGION
)
if USE_S3:
AWS_S3_CUSTOM_DOMAIN = env.str("AWS_S3_CUSTOM_DOMAIN", "")
AWS_S3_OBJECT_PARAMETERS = {"CacheControl": "max-age=86400"}
AWS_DEFAULT_ACL = env.str("AWS_DEFAULT_ACL", "public-read")
AWS_MEDIA_LOCATION = env.str("AWS_MEDIA_LOCATION", "media")
AWS_AUTO_CREATE_BUCKET = env.bool("AWS_AUTO_CREATE_BUCKET", True)
DEFAULT_FILE_STORAGE = env.str(
"DEFAULT_FILE_STORAGE", "home.storage_backends.MediaStorage"
)
MEDIA_URL = "/mediafiles/"
MEDIA_ROOT = os.path.join(BASE_DIR, "mediafiles")
# start fcm_django push notifications
FCM_DJANGO_SETTINGS = {"FCM_SERVER_KEY": env.str("FCM_SERVER_KEY", "")}
# end fcm_django push notifications
# Swagger settings for api docs
SWAGGER_SETTINGS = {
"DEFAULT_INFO": f"{ROOT_URLCONF}.api_info",
}
if DEBUG or not (EMAIL_HOST_USER and EMAIL_HOST_PASSWORD):
# output email to console instead of sending
if not DEBUG:
logging.warning(
"You should setup `SENDGRID_USERNAME` and `SENDGRID_PASSWORD` env vars to send emails."
)
EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
|
[
"team@crowdbotics.com"
] |
team@crowdbotics.com
|
67c9080a7f9ac9b40d314c9bcf57e801dc181277
|
df917d838b85ec6cd7b6fda56176a0403fa88f3d
|
/e2e_test/app/components/event/event_handler.py
|
2773e8feff3e1f3c826964ffa03d687cf58adcab
|
[
"MIT"
] |
permissive
|
jivago-python/jivago
|
ea3b50dad3eab7cebaffff2b2e9d9a911ee31bc0
|
8c8c72e179899357f80b91ae7454f638a0225d1c
|
refs/heads/master
| 2021-07-04T07:33:46.836249
| 2019-11-18T17:00:09
| 2019-11-18T17:00:09
| 173,117,930
| 0
| 0
| null | 2019-02-28T13:33:45
| 2019-02-28T13:33:44
| null |
UTF-8
|
Python
| false
| false
| 950
|
py
|
import anachronos
from anachronos import Anachronos
from e2e_test.testing_messages import RUNNABLE_EVENT_HANDLER, INSTANTIATED_EVENT_HANDLER, FUNCTION_EVENT_HANDLER
from jivago.event.config.annotations import EventHandler, EventHandlerClass
from jivago.lang.annotations import Override, Inject
from jivago.lang.runnable import Runnable
@EventHandler("event")
class MyHandler(Runnable):
@Inject
def __init__(self, anachronos: Anachronos):
self.anachronos = anachronos
@Override
def run(self):
self.anachronos.store(RUNNABLE_EVENT_HANDLER)
@EventHandlerClass
class MyHandlerClass(object):
@Inject
def __init__(self, anachronos: Anachronos):
self.anachronos = anachronos
@EventHandler("event")
def handle(self):
self.anachronos.store(INSTANTIATED_EVENT_HANDLER)
@EventHandler("event")
def my_event_handler_function():
anachronos.get_instance().store(FUNCTION_EVENT_HANDLER)
|
[
"kento.lauzon@ligature.ca"
] |
kento.lauzon@ligature.ca
|
f3e0a1ee0c51c30c907d6fbca3bac49e77f2e626
|
163bbb4e0920dedd5941e3edfb2d8706ba75627d
|
/Code/CodeRecords/2969/60796/287884.py
|
5d7f6824025a8984ecb4a4c0e69f947082fe52de
|
[] |
no_license
|
AdamZhouSE/pythonHomework
|
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
|
ffc5606817a666aa6241cfab27364326f5c066ff
|
refs/heads/master
| 2022-11-24T08:05:22.122011
| 2020-07-28T16:21:24
| 2020-07-28T16:21:24
| 259,576,640
| 2
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 177
|
py
|
s=input()
result=[]
for i in range(1,len(s)):
if s[i]<=s[i-1]:
result.append(i)
result.append(len(s))
for i in range(len(result)):
print(result[i],end=' ')
|
[
"1069583789@qq.com"
] |
1069583789@qq.com
|
4baeb8c8d4d436eae9f7b82b7561636213a44f9c
|
6c040af1e37fa45735e0704d779425f36ab9cba3
|
/usr_dir/grid_decoders.py
|
8945a004f3ec0f021f69a72fb33216370225c9b2
|
[] |
no_license
|
SegwangKim/neural-seq2grid-module
|
86eadf836663c2f654153c8036bbcfa2dad33776
|
6d2f34824af901850ede61a5c86f3da8a8fd990f
|
refs/heads/main
| 2023-02-16T15:53:24.190202
| 2021-01-15T08:40:40
| 2021-01-15T08:40:40
| 323,207,737
| 6
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 12,899
|
py
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensor2tensor.layers import common_layers
from tensor2tensor.models import resnet
def dot_product_local_atten_2d(grid_structured, weight_q, weight_k, weight_v, rel_pos_embs):
_, num_stacks, stack_size, hidden_size = common_layers.shape_list(grid_structured)
grid_q = tf.nn.conv2d(grid_structured, weight_q, strides=[1, 1, 1, 1], padding='VALID')
grid_k = tf.nn.conv2d(grid_structured, weight_k, strides=[1, 1, 1, 1], padding='VALID')
grid_v = tf.nn.conv2d(grid_structured, weight_v, strides=[1, 1, 1, 1], padding='VALID')
def translate_grid(grid_structured, row_offset, col_offset, constant_values=0):
padded_grid = tf.pad(grid_structured, [[0, 0], col_offset, row_offset, [0, 0]], constant_values=constant_values)
padded_grid = padded_grid[:, col_offset[1]:col_offset[1]+num_stacks, row_offset[1]:row_offset[1]+stack_size, :]
return padded_grid
def get_bias(grid_structured, row_offset, col_offset):
return translate_grid(tf.zeros_like(grid_structured), row_offset, col_offset, constant_values=-100000)
padded_grid_qks = []
padded_grid_vs = []
for r, row_offset in enumerate([[1, 0], [0, 0], [0, 1]]):
for c, col_offset in enumerate([[1, 0], [0, 0], [0, 1]]):
extended_padded_grid_v = tf.expand_dims(translate_grid(grid_v, row_offset, col_offset), axis=-1)
padded_grid_vs.append(extended_padded_grid_v) # [b, n, s, h, 1]
padded_grid_k = translate_grid(grid_k, row_offset, col_offset)
padded_grid_qk = tf.reduce_sum(grid_q * padded_grid_k, axis=-1, keep_dims=True) # [b, n, s, 1]
padded_grid_qk /= tf.math.sqrt(tf.cast(hidden_size, tf.float32))
# relative position embedding
padded_grid_qk += tf.nn.conv2d(grid_q, rel_pos_embs[r*3+c], strides=[1, 1, 1, 1], padding='VALID')
# masking interactions happened beyond the grid
bias = get_bias(padded_grid_qk, row_offset, col_offset)
bias = tf.identity(bias, f"bias_{r}{c}")
padded_grid_qk += bias
padded_grid_qks.append(padded_grid_qk)
padded_grid_qks = tf.concat(padded_grid_qks, axis=-1) # [batch_size, num_stacks, stack_size, 9]
padded_grid_qks = tf.nn.softmax(padded_grid_qks, axis=-1)
padded_grid_qks = tf.identity(padded_grid_qks, "padded_grid_qks_probs")
padded_grid_vs = tf.concat(padded_grid_vs, axis=-1) # [batch_size, num_stacks, stack_size, hidden_size, 9]
self_atten_res = tf.einsum("bnsl, bnshl -> bnsh", padded_grid_qks, padded_grid_vs)
return self_atten_res
def prepare_local_weights(hp):
hidden_size = hp.hidden_size
weight_q = tf.get_variable("w_q", shape=[1, 1, hidden_size, hidden_size], dtype=tf.float32)
weight_k = tf.get_variable("w_k", shape=[1, 1, hidden_size, hidden_size], dtype=tf.float32)
weight_v = tf.get_variable("w_v", shape=[1, 1, hidden_size, hidden_size], dtype=tf.float32)
rel_row_pos_embs = []
rel_col_pos_embs = []
for r in range(-1, 2, 1):
rel_row_pos_embs.append(tf.get_variable(f"rel_row_pos_emb_{r}",
shape=[1, 1, hidden_size//2, 1], dtype=tf.float32))
rel_col_pos_embs.append(tf.get_variable(f"rel_col_pos_emb_{r}",
shape=[1, 1, hidden_size//2, 1], dtype=tf.float32))
rel_pos_embs = []
for r, row_offset in enumerate([[1, 0], [0, 0], [0, 1]]):
for c, col_offset in enumerate([[1, 0], [0, 0], [0, 1]]):
rel_pos_embs.append(tf.concat([rel_row_pos_embs[r], rel_col_pos_embs[c]], axis=-2))
return weight_q, weight_k, weight_v, rel_pos_embs
def local_self_attention(grid_structured, hp, name=""):
with tf.variable_scope(name):
weight_q, weight_k, weight_v, rel_pos_embs = prepare_local_weights(hp)
dot_product_res = dot_product_local_atten_2d(grid_structured, weight_q, weight_k, weight_v, rel_pos_embs)
return dot_product_res
def bottleneck_tlsa_block(grid_structured, hp):
data_format = "channels_last"
is_training = hp.mode == tf.estimator.ModeKeys.TRAIN
hidden_size_base = hp.hidden_size
filters_out = 4 * hidden_size_base
def projection_shortcut(inputs):
inputs = resnet.conv2d_fixed_padding(inputs, filters_out, kernel_size=1, data_format=data_format,
strides=1, is_training=is_training)
return resnet.batch_norm_relu(inputs, is_training, relu=False, data_format=data_format)
residual = projection_shortcut(grid_structured)
inputs = resnet.conv2d_fixed_padding(
inputs=grid_structured,
filters=hidden_size_base,
kernel_size=1,
strides=1,
data_format=data_format,
is_training=is_training)
inputs = resnet.batch_norm_relu(inputs, is_training, data_format=data_format)
inputs = local_self_attention(inputs, hp, name="tlsa")
inputs = resnet.batch_norm_relu(inputs, is_training, data_format=data_format)
inputs = resnet.conv2d_fixed_padding(
inputs=inputs,
filters=filters_out,
kernel_size=1,
strides=1,
data_format=data_format,
is_training=is_training)
inputs = resnet.batch_norm_relu(
inputs,
is_training,
relu=False,
init_zero=False,
data_format=data_format)
return tf.nn.relu(inputs + residual)
def bottleneck_resnet_block_downsample(grid_structured, hp):
data_format = "channels_last"
is_training = hp.mode == tf.estimator.ModeKeys.TRAIN
hidden_size_base = hp.hidden_size
filters_out = 4 * hidden_size_base
strides = 2 # downsample
use_td = hp.use_td
targeting_rate = hp.targeting_rate
keep_prob = hp.keep_prob
def projection_shortcut(inputs):
"""Project identity branch."""
inputs = resnet.conv2d_fixed_padding(
inputs=inputs,
filters=filters_out,
kernel_size=1,
strides=strides,
data_format=data_format,
use_td=use_td,
targeting_rate=targeting_rate,
keep_prob=keep_prob,
is_training=is_training)
return resnet.batch_norm_relu(inputs, is_training, relu=False, data_format=data_format)
# Only the first block per block_layer uses projection_shortcut and strides
inputs = resnet.bottleneck_block(
grid_structured,
hidden_size_base,
is_training,
projection_shortcut,
strides,
False,
data_format,
use_td=use_td,
targeting_rate=targeting_rate,
keep_prob=keep_prob)
return inputs
def bottleneck_resnet_block_1d(grid_structured, hp):
data_format = "channels_last"
is_training = hp.mode == tf.estimator.ModeKeys.TRAIN
hidden_size_base = hp.hidden_size
filters_out = 4 * hidden_size_base
def projection_shortcut(inputs):
inputs = resnet.conv2d_fixed_padding(inputs, filters_out, kernel_size=1, data_format=data_format,
strides=1, is_training=is_training)
return resnet.batch_norm_relu(inputs, is_training, relu=False, data_format=data_format)
residual = projection_shortcut(grid_structured)
inputs = resnet.conv2d_fixed_padding(
inputs=grid_structured,
filters=hidden_size_base,
kernel_size=1,
strides=1,
data_format=data_format,
is_training=is_training)
inputs = resnet.batch_norm_relu(inputs, is_training, data_format=data_format)
inputs = resnet.conv2d_fixed_padding(
inputs=inputs,
filters=hidden_size_base,
kernel_size=[1, 3],
strides=1,
data_format=data_format,
is_training=is_training)
inputs = resnet.batch_norm_relu(inputs, is_training, data_format=data_format)
inputs = resnet.conv2d_fixed_padding(
inputs=inputs,
filters=filters_out,
kernel_size=1,
strides=1,
data_format=data_format,
is_training=is_training)
inputs = resnet.batch_norm_relu(
inputs,
is_training,
relu=False,
init_zero=False,
data_format=data_format)
return tf.nn.relu(inputs + residual)
def bottleneck_resnet_block(grid_structured, hp, kernel_size=3, out_multiple=4):
data_format = "channels_last"
is_training = hp.mode == tf.estimator.ModeKeys.TRAIN
hidden_size_base = hp.hidden_size
filters_out = out_multiple * hidden_size_base
def projection_shortcut(inputs):
inputs = resnet.conv2d_fixed_padding(inputs, filters_out, kernel_size=1, data_format=data_format,
strides=1, is_training=is_training)
return resnet.batch_norm_relu(inputs, is_training, relu=False, data_format=data_format)
residual = projection_shortcut(grid_structured)
inputs = resnet.conv2d_fixed_padding(
inputs=grid_structured,
filters=hidden_size_base,
kernel_size=1,
strides=1,
data_format=data_format,
is_training=is_training)
inputs = resnet.batch_norm_relu(inputs, is_training, data_format=data_format)
inputs = resnet.conv2d_fixed_padding(
inputs=inputs,
filters=hidden_size_base,
kernel_size=kernel_size,
strides=1,
data_format=data_format,
is_training=is_training)
inputs = resnet.batch_norm_relu(inputs, is_training, data_format=data_format)
inputs = resnet.conv2d_fixed_padding(
inputs=inputs,
filters=filters_out,
kernel_size=1,
strides=1,
data_format=data_format,
is_training=is_training)
inputs = resnet.batch_norm_relu(
inputs,
is_training,
relu=False,
init_zero=False,
data_format=data_format)
return tf.nn.relu(inputs + residual)
def bottleneck_tlsa(grid_structured, hp):
for layer in range(hp.num_hidden_layers):
with tf.variable_scope(f"bottleneck_tlsa_block_{layer}"):
grid_structured = bottleneck_tlsa_block(grid_structured, hp)
return grid_structured
def bottleneck_resnet(grid_structured, hp, kernel_size=3):
for layer in range(hp.num_hidden_layers):
with tf.variable_scope(f"bottleneck_resnet_block_{layer}"):
grid_structured = bottleneck_resnet_block(grid_structured, hp, kernel_size)
return grid_structured
def text_tcnn_body(grid_structured_states, hparams):
"""TextCNN main model_fn.
Args:
"grid_structured_states": Text inputs.
[batch_size, num_stacks, stack_size, hidden_dim].
Returns:
Final encoder representation. [batch_size, 1, 1, hidden_dim]
"""
inputs = grid_structured_states
xshape = common_layers.shape_list(inputs)
vocab_size = xshape[3]
pooled_outputs = []
for _, filter_size in enumerate(hparams.filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
filter_shape = [filter_size, filter_size, vocab_size, hparams.num_filters]
filter_var = tf.Variable(
tf.truncated_normal(filter_shape, stddev=0.1), name="W")
filter_bias = tf.Variable(
tf.constant(0.1, shape=[hparams.num_filters]), name="b")
conv = tf.nn.conv2d(
inputs,
filter_var,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
conv_outputs = tf.nn.relu(
tf.nn.bias_add(conv, filter_bias), name="relu")
pooled = tf.math.reduce_max(
conv_outputs, axis=1, keepdims=True, name="max")
pooled = tf.math.reduce_max(
pooled, axis=2, keepdims=True, name="max")
pooled_outputs.append(pooled)
num_filters_total = hparams.num_filters * len(hparams.filter_sizes)
h_pool = tf.concat(pooled_outputs, 3)
h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total])
# Add dropout
output = tf.nn.dropout(h_pool_flat, 1 - hparams.output_dropout)
output = tf.reshape(output, [-1, 1, 1, num_filters_total])
return output
def decode_by_decoder_type(grid_structured_states, hp, features=None):
if hp.decoder_type == "cnn":
grid_structured_outputs = bottleneck_resnet(grid_structured_states, hp)
elif hp.decoder_type == "acnn":
grid_structured_outputs = bottleneck_tlsa(grid_structured_states, hp)
elif hp.decoder_type == "text_tcnn":
grid_structured_outputs = text_tcnn_body(grid_structured_states, hp)
else:
grid_structured_outputs = grid_structured_states
grid_structured_outputs = tf.identity(grid_structured_outputs, "grid_structured_outputs")
return grid_structured_outputs
|
[
"ksk5693@snu.ac.kr"
] |
ksk5693@snu.ac.kr
|
fee16caa3dd2f6b61d0a0ef336efadf80ff70336
|
0e9726bced390513f6d8076c240b09e0a1a8961c
|
/manage.py
|
0c0a3050bcd1374a05682c49f5f1587ed72908db
|
[] |
no_license
|
EwdAger/mailAlarm
|
dbfe8ba03bfede1dfbb670f707a88bc5bd6d144c
|
fae43b0c2b33bab0c8a894e50602c983d7f58577
|
refs/heads/master
| 2022-12-10T01:41:57.412145
| 2020-03-31T01:57:18
| 2020-03-31T01:57:18
| 249,985,604
| 1
| 0
| null | 2022-12-08T03:53:40
| 2020-03-25T13:27:19
|
Python
|
UTF-8
|
Python
| false
| false
| 629
|
py
|
#!/usr/bin/env python
"""Django's command-line utility for administrative tasks."""
import os
import sys
def main():
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mailAlarm.settings')
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn't import Django. Are you sure it's installed and "
"available on your PYTHONPATH environment variable? Did you "
"forget to activate a virtual environment?"
) from exc
execute_from_command_line(sys.argv)
if __name__ == '__main__':
main()
|
[
"ningwenjie@getech.cn"
] |
ningwenjie@getech.cn
|
8399ada2cac36ef84801fd128ad5754773477d68
|
32a65b2bfcb3d3e85bb64bf1bc0e829a634c23cd
|
/lab2/src/emulation.py
|
a8f8c295cd65ac911179c76867f34e7b8bbf8499
|
[] |
no_license
|
dpalii/db_sem2
|
99b8c07268d4233464e0d4e749b0324ddad1268e
|
05e933feb74aaecf311b85899eb7da8559a49a52
|
refs/heads/main
| 2023-05-07T12:17:21.584093
| 2021-05-29T21:27:09
| 2021-05-29T21:27:09
| 343,198,627
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,613
|
py
|
import random
from threading import Thread
import user
from faker import Faker
import redis
import atexit
class User(Thread):
def __init__(self, connection, username, users_list, users_count):
Thread.__init__(self)
self.connection = connection
self.users_list = users_list
self.users_count = users_count
user.register(conn, username)
self.user_id = user.sign_in(conn, username)
def run(self):
for x in range(6):
message_text = fake.sentence(nb_words=10, variable_nb_words=True,
ext_word_list=None) if random.choice([True, False]) else 'spam'
receiver = users[random.randint(0, users_count - 1)]
print(f"Message {message_text} was sent to {receiver}")
user.create_message(self.connection, message_text, self.user_id, receiver)
def exit_handler():
redis_conn = redis.Redis(charset="utf-8", decode_responses=True)
online = redis_conn.smembers("online:")
for x in online:
redis_conn.srem("online:", x)
print("EXIT")
if __name__ == '__main__':
atexit.register(exit_handler)
fake = Faker()
users_count = 5
users = [fake.profile(fields=['username'], sex=None)['username'] for u in range(users_count)]
threads = []
for x in range(users_count):
conn = redis.Redis(charset="utf-8", decode_responses=True)
print(users[x])
threads.append(User(
redis.Redis(charset="utf-8", decode_responses=True),
users[x], users, users_count))
for t in threads:
t.start()
|
[
"dpalii.study@gmail.com"
] |
dpalii.study@gmail.com
|
d82c14428e5db53afc6e67f452fca67e343550bd
|
9f299a8ac1bb9fb5bb8a93067f9f09ce46812c5e
|
/meta.py
|
8f53c1ee54690b97372c826c367504f73d93238d
|
[] |
no_license
|
hlycharles/WarfarinDoseRL
|
2ba831c93a6de5929531dacd7bfc70e7e82d89e7
|
f67650b8bcc176d6e5efee846e25797d4533c195
|
refs/heads/master
| 2020-04-26T00:59:31.315566
| 2019-04-04T22:17:39
| 2019-04-04T22:17:39
| 173,193,170
| 6
| 3
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,225
|
py
|
# feature names
GENDER = 1
RACE = 2
ETHNICITY = 3
AGE = 4
HEIGHT = 5
WEIGHT = 6
INDICATION = 7
COMORBIDITIES = 8
DIABETES = 9
CONG_HEART = 10
VALVE = 11
MEDICATIONS = 12
ASPIRIN = 13
TYLENOL = 14
WAS_TYLENOL = 15
SIMVASTATIN = 16
ATORVASTATIN = 17
FLUVASTATIN = 18
LOVASTATIN = 19
PARAVASTATIN = 20
ROSUVASTATIN = 21
CERIVASTATIN = 22
AMIODARONE = 23
CARBAMAZEP = 24
PHENYTOIN = 25
RIFAMPIN = 26
SULFONAMIDE = 27
MACROLIDE = 28
ANTI_FUNGAL = 29
HERBAL = 30
TARGET_INR = 31
EST_INR = 32
STBLE_DOSE = 33
THERAPEUTIC_DOSE = 34
INR_REP = 35
SMOKER = 36
CYP_2C9 = 37
CYP_2C92 = 38
CYP_2C93 = 39
COMB_CYP2C9 = 40
VKORC1_3673 = 41
VKORC1_3673_QC = 42
VKORC1_5808 = 43
VKORC1_5808_QC = 44
VKORC1_6484 = 45
VKORC1_6484_QC = 46
VKORC1_6853 = 47
VKORC1_6853_QC = 48
VKORC1_9041 = 49
VKORC1_9041_QC = 50
VKORC1_7566 = 51
VKORC1_7566_QC = 52
VKORC1_861 = 53
VKORC1_861_QC = 54
CYP_CONS = 55
VKORC1_N1639_CONS = 56
VKORC1_497_CONS = 57
VKORC1_1173_CONS = 58
VKORC1_1542_CONS = 59
VKORC1_3730_CONS = 60
VKORC1_2255_CONS = 61
VKORC1_N4451_CONS = 62
# feature tags
FEATURE_NO = 0
FEATURE_LIST_ENUM = 1
FEATURE_ENUM = 2
FEATURE_RANGE = 3
FEATURE_NUM = 4
FEATURE_BIN = 5
FEATURE_LIST_MAX = 6
# dose ranges
DOSE_LO = 0
DOSE_MD = 1
DOSE_HI = 2
|
[
"hly.charles@gmail.com"
] |
hly.charles@gmail.com
|
15d8e4e96406fa345ca1a8f85f263bd230c55691
|
c91b284acf6bdca5683f080dd4ba77fd394451ae
|
/Easy Problems/RemoveLinkedListElements.py
|
052f5750fff77a57aeb20a942affee8938a60f03
|
[] |
no_license
|
darpanmehra/Leetcode
|
f523ac5ea4f9ba0e0ccaaeab259212c1ee188de8
|
18335b9a6d3da305c968acb90f9cf86cd6c40692
|
refs/heads/master
| 2020-05-28T09:47:41.175070
| 2019-05-29T12:30:51
| 2019-05-29T12:30:51
| 188,960,041
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,101
|
py
|
#203. Remove Linked List Elements
#Problem Link: https://leetcode.com/problems/remove-linked-list-elements/
#Remove all elements from a linked list of integers that have value val.
#Example:
#Input: 1->2->6->3->4->5->6, val = 6
#Output: 1->2->3->4->5
# Definition for singly-linked list.
# class ListNode(object):
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution(object):
def removeElements(self, head, val):
"""
:type head: ListNode
:type val: int
:rtype: ListNode
"""
dummyhead = ListNode(-1)
dummyhead.next = head
current_node=dummyhead
while current_node.next != None:
if current_node.next.val == val:
current_node.next = current_node.next.next
else:
current_node = current_node.next
return dummyhead.next
#Runtime: 56 ms, faster than 96.16% of Python online submissions for Remove Linked List Elements.
#Memory Usage: 18.8 MB, less than 18.13% of Python online submissions for Remove Linked List Elements
|
[
"darpan.mehra10@gmail.com"
] |
darpan.mehra10@gmail.com
|
1000b8d48680faa5d595c54a4a316f790e37b492
|
7381c70b78a1841e3a14fd6d6b933e9de503bbea
|
/semana5/horno_alternativo.py
|
8d8d697a0257fb6531f514191b749181d4f7e571
|
[] |
no_license
|
mundostr/adimra_introprog21_raf
|
c594a958f77797b67b9925671341ffe8ae4899ea
|
d529daae684268b6e8548e53dfdba7092bf83081
|
refs/heads/master
| 2023-07-17T15:06:23.775878
| 2021-08-27T23:17:12
| 2021-08-27T23:17:12
| 370,476,686
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,340
|
py
|
# LIBRERIAS
import random
# DEFINICIONES
TEMP_MIN = 100
TEMP_MAX = 200
TEMP_TOL = 2
TEMP_OBJ = 150
TEMP_PRUEBA = 145
# FUNCIONES
def generarArchivoRandomSensor():
# r = read (lectura)
# w = write (escritura sobreescrita)
# a = append (escritura agregada)
archivo = open("lecturas_horno.txt", "w")
for x in range(50):
valorRandom = random.randint(TEMP_PRUEBA - TEMP_TOL, TEMP_PRUEBA + TEMP_TOL + 1)
valorRandom = str(valorRandom) + "\n"
archivo.write(valorRandom)
archivo.close()
print("Archivo generado")
def verificarTemperatura():
# Recuperación de lecturas de sensor
archivo = open("lecturas_horno.txt", "r")
lista = archivo.read().split("\n")
archivo.close()
# Obtención de promedio
totalLecturas = 0
for indice, item in enumerate(lista):
lista[indice] = int(item) # lista[indice] = int(lista[indice])
totalLecturas = totalLecturas + lista[indice]
promedio = totalLecturas / 50
print(promedio)
# Comparación de promedio con obj
OBJ_MIN = TEMP_OBJ - TEMP_TOL
OBJ_MAX = TEMP_OBJ + TEMP_TOL
# if (promedio >= OBJ_MIN and promedio <= OBJ_MAX):
if (OBJ_MIN <= promedio <= OBJ_MAX):
print("Horno estable")
elif (promedio > OBJ_MAX):
print("Horno muy caliente, apagar quemador")
else:
print("Horno frío, encender quemador")
# PRINCIPAL
# generarArchivoRandomSensor()
verificarTemperatura()
|
[
"idux.net@gmail.com"
] |
idux.net@gmail.com
|
63ee8feb4bb7423ab04b8f7cb28741718b479ce5
|
6f178111463bcdbdd285c7480938c826c0a422e5
|
/python/find_n.py
|
3dd58d322f43b1fd048eb2aa08dea349e1822d26
|
[] |
no_license
|
ivanliu/fun
|
a77c37f651d87907c39e2ebc671f12b696e9b746
|
ad986f8ffdf3d5e06e5ac31c77c1442f6e48042e
|
refs/heads/master
| 2021-01-13T04:31:00.944989
| 2020-03-22T15:09:51
| 2020-03-22T15:09:51
| 9,335,143
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 292
|
py
|
def find_n(A, B, n):
'''
find the n-th largest item in two sorted arrays
'''
if __name__ == '__main__':
A = [100, 98, 89, 77, 66, 55,44]
B = [101, 94, 67, 50, 20,3]
print "Array A: ", A
print "Array B: ", B
print "The 5th largest number: ", find_n(A, B, 5)
|
[
"kailiu@yahoo-inc.com"
] |
kailiu@yahoo-inc.com
|
fe3b3cdb958b9b7d1dc73d3f854f5f3811da9d6c
|
f94d9cf5ed8b90a4406b38d3ba223eab8778a6d9
|
/app.py
|
d5475d39ff05e614a8cf80ea68b65c8e023e2d24
|
[] |
no_license
|
alexaapetrei/flask-helloworld
|
e646c4baaa939a15ed1c567c0074ff4c2b6fd4f3
|
ccb0a0f76dbe9a2cc58d645f3c1f52ac292927be
|
refs/heads/master
| 2020-03-15T12:01:47.303237
| 2018-10-08T09:03:11
| 2018-10-08T09:03:11
| 132,135,016
| 0
| 0
| null | 2018-05-04T12:04:54
| 2018-05-04T12:04:54
| null |
UTF-8
|
Python
| false
| false
| 118
|
py
|
import os
from flask import Flask
app = Flask(__name__)
@app.route("/")
def hello():
return "Hello from Python!"
|
[
"craig.kerstiens@gmail.com"
] |
craig.kerstiens@gmail.com
|
4bb368bc464136b85a108a937fac5d39a43dfd85
|
b43db176243e768771e24ceb637206803e044272
|
/setup_control/setup.py
|
a7e8058a6981d24cc94797c568637be2242783c0
|
[] |
no_license
|
jc-roth/Microwave-Transmission-Experiment
|
3cf886383d4be079167207c61361b373be0ca2d5
|
bb287726f422e17ee9692e3edd8b314a968067cc
|
refs/heads/master
| 2021-06-24T08:03:50.701185
| 2017-08-19T00:10:26
| 2017-08-19T00:10:26
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 330
|
py
|
from setuptools import setup
setup(name='setup_control',
version=1.0,
description='For use controling the microwave transmission setup',
url='https://github.com/catsandcode/Microwave-Transmission-Experiment',
packages=['setup_control'],
install_requires=['numpy', 'pyserial'],
zip_safe=False)
|
[
"jc.roth73@gmail.com"
] |
jc.roth73@gmail.com
|
be724e65f91b25edf4c500268e61aaea8fe67371
|
c6fb8ed0717859364999b45daa43e4288be2e928
|
/Assignment4/Q4/ocr/linear/linear.py
|
c43b591b1608b844afdca530db4d755e0c7b3062
|
[] |
no_license
|
aditya3513/Machine-Learning-using-Numpy-and-Pandas
|
d74777cbe314ea1cc438f9afe527aebb3e1ca2ba
|
eb6ed9dda9534490bfe100b5d4bcb0cac30a9c62
|
refs/heads/master
| 2020-04-14T14:17:41.127609
| 2019-01-02T21:40:17
| 2019-01-02T21:40:17
| 163,892,438
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,923
|
py
|
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from sklearn.metrics import recall_score
from sklearn.metrics import precision_score
from sklearn import metrics
#reading data in nd-Arrays
train_data = np.genfromtxt ('../train.csv', delimiter=",")
test_data = np.genfromtxt ('../test.csv', delimiter=",")
#shuffle data
np.random.shuffle(train_data)
np.random.shuffle(test_data)
# nd array of Features
X_train = train_data[:, :-1].astype(np.float)
#nd array of Labels
Y_train = train_data[:, -1].flatten()
# nd array of Features
X_test = test_data[:, :-1].astype(np.float)
#nd array of Labels
Y_test = test_data[:, -1].flatten()
#for class 1 and all else nagative
def getY(Y, index):
Y_input = Y
print("//////////",Y_input)
for i in range(len(Y_input)):
if Y_input[i] == index:
Y_input[i] = 1
else:
Y_input[i] = 0
return Y_input
def getC():
C = []
for i in np.arange(-5, 10, dtype=float):
val = np.power(2,i)
C.append(val)
return C
def getCombinations(C):
combinations = []
for c in C:
combinations.append(c)
return combinations
def run(X_train, Y_train, X_test, Y_test):
C = getC()
combinations = getCombinations(C) # C array
final_acc = []
final_recall = []
final_precision = []
#generating K folds, i.e 10 folds
# kf_k = KFold(n_splits=10)
k = 1
#this splis data in to 90:10 train-test split
# for train_index, test_index in kf_k.split(X):
kf_m = KFold(n_splits=5)
# X_train, X_test = X[train_index], X[test_index]
# Y_train = Y[train_index].flatten()
# Y_test = Y[test_index].flatten()
# Y_train, Y_test = Y[train_index], Y[test_index]
best_score = -999
best_score_combo = 0
for combination in combinations:
scores = []
for train_index_m, test_index_m in kf_m.split(X_train):
X_train_m, X_test_m = X_train[train_index_m], X_train[test_index_m]
Y_train_m = Y_train[train_index_m]
Y_test_m = Y_train[test_index_m]
scaler_m = StandardScaler().fit(X_train_m)
X_train_m_scaled = scaler_m.transform(X_train_m)
X_test_m_scaled = scaler_m.transform(X_test_m)
X_train_m_scaled = np.insert(X_train_m_scaled, 0, np.ones(X_train_m.shape[0]), axis=1)
X_test_m_scaled = np.insert(X_test_m_scaled, 0, np.ones(X_test_m.shape[0]), axis=1)
model = SVC(C=combination, kernel='linear', max_iter=1000, probability=True)
model.fit(X_train_m_scaled, Y_train_m)
# score = model.score(X_test_m_scaled, Y_test_m)
train_preds = model.predict_proba(X_test_m_scaled)[:,1]
training_acc = accuracy_score(Y_test_m, train_preds.round())
# train_fpr, train_tpr, train_threshold = metrics.roc_curve(Y_test_m, train_preds.round())
# train_roc_auc = metrics.auc(train_fpr, train_tpr)
scores.append(training_acc)
mean_score = np.mean(scores)
# print("----------Tuning [gamma, C] = ",combination, " score = ", mean_score)
# print("mean score = ",mean_score)
# combo_scores.append(mean_score)
if mean_score > best_score:
best_score = mean_score
best_score_combo = combination
print("------------------------------------------")
print("Training results for fold = ",k, " [C] = ", best_score_combo)
print("Final Results for all k folds")
print("auc score = ", best_score)
#normalizing Training data
scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
X_train_scaled = np.insert(X_train_scaled, 0, np.ones(X_train.shape[0]), axis=1)
X_test_scaled = np.insert(X_test_scaled, 0, np.ones(X_test.shape[0]), axis=1)
# Y_train = Y[train_index].flatten()
# Y_test = Y[test_index].flatten()
model = SVC(C=best_score_combo, kernel='linear', max_iter=1000, probability=True)
model.fit(X_train_scaled, Y_train)
preds = model.predict_proba(X_test_scaled)[:,1]
preds = preds.round()
# preds = pred
# actual_score = model.score(X_test_scaled, Y_test)
# final_acc.append(actual_score)
'''
Now we calculate accuracy, recall, percision
'''
# accuracy
validation_acc = accuracy_score(Y_test, preds)
final_acc.append(validation_acc)
# recall
validation_recall = recall_score(Y_test, preds)
final_recall.append(validation_recall)
# precision
validation_precision = precision_score(Y_test, preds)
final_precision.append(validation_precision)
print("\n\n Validation results for fold = ",k, " [C] = ", best_score_combo)
print("Final Results for all k folds")
print("accuracy = ", validation_acc)
print("recall = ", validation_recall)
print("precision = ", validation_precision)
# print("Validation at fold k = ",k," best combination [gamma, C] = ",best_score_combo, " score = ", actual_score)
'''
Now we calculate auc, roc and curves
'''
fpr, tpr, threshold = metrics.roc_curve(Y_test, preds)
df = pd.DataFrame(dict(fpr = fpr, tpr = tpr))
roc_auc = metrics.auc(fpr, tpr)
plt.figure()
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
file_name = "fold_k_"+ str(k)+".png"
plt.savefig(file_name)
# k = k + 1
print("\n\n\n\n================================")
print("Final Results for all k folds")
print("mean accuracy = ", np.mean(final_acc))
print("std dev. accuracy = ", np.std(final_acc))
print("mean recall = ", np.mean(final_recall))
print("std dev. recall = ", np.std(final_recall))
print("mean precision = ", np.mean(final_precision))
print("std dev. precision = ", np.std(final_precision))
# print("Mean = ", np.mean(acc)*100)
# print("Stand Deviation = ", np.std(acc)*100)
print(set(Y_train))
for i in set(Y_train):
print(set(getY(Y_train, i)))
|
[
"aditya413sharma@gmail.com"
] |
aditya413sharma@gmail.com
|
2a6f0478aedfaa1dd0ee1c606fd33b53ae3cd21c
|
18e2acae29b5fabf3e0286a863d4266eb03478c7
|
/regressionMetrics.py
|
b52ceaf0ccad5ce230f19043af2a3f3accfc6592
|
[] |
no_license
|
moone009/wec_python
|
b0cbae0082e9fa7e0b8c5279693bca74780332ef
|
2f1942de0548a22880720a0cba548352468cb4ce
|
refs/heads/master
| 2020-07-02T06:20:24.870695
| 2016-09-01T20:11:29
| 2016-09-01T20:11:29
| 66,573,846
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,495
|
py
|
## from regressionMetrics import *
## performancemetrics.regression_metrics(predictions,Y_train)
import math
import pandas as pd
class performancemetrics:
def __init__(self, predictions,test_var):
self.predictions = predictions
self.test_var = test_var
def regression_metrics(predictions,test_var):
predictions = pd.DataFrame(predictions)
nrows = len(pd.DataFrame.as_matrix(test_var))
sum = test_var.sum()
average = float(sum/nrows)
SSR = (predictions - average) ** 2
SSR = SSR.sum()
SSE = (pd.DataFrame.as_matrix(test_var)-predictions) ** 2
SSE = SSE.sum()
SST = (pd.DataFrame.as_matrix(test_var) - average) ** 2
SST = SST.sum()
R2 = SSR/SST
RMSE = (predictions - pd.DataFrame.as_matrix(test_var)) ** 2
RMSE = RMSE.sum()
RMSE = math.sqrt(RMSE) / len(predictions)
MAE = predictions - pd.DataFrame.as_matrix(test_var)
MAE = MAE.abs().sum()/ len(predictions)
values = [['Numer of Predictions',len(predictions)],
['Numer of Test Variables',nrows],
['SSR',SSR],['SSE',SSE],
['SST',SST],
['R2',R2],
['MAE',MAE],
['RMSE',RMSE]]
df = pd.DataFrame(values, columns=['Measurement', 'value'])
df.a = df.value.astype(float).fillna(0.0)
return(df)
|
[
"mooneychristopher1@gmail.com"
] |
mooneychristopher1@gmail.com
|
40311c7c994be4510606c7f9f288c52cf5295113
|
a882b5aa0af27fe29a0a76f2e555409a1f1b766a
|
/Python Projects/Script/wifi_script.py
|
5396155ad1e73275ccce1132f99ed4c21d96cd5b
|
[] |
no_license
|
Kunvuthi/pythonlearningprojects
|
d75394378641cedf85994ef78451e7ef3cc57712
|
c86d04e1520c3d8d05505bd383533d0f1caf85c4
|
refs/heads/master
| 2023-04-03T10:01:39.299732
| 2021-04-05T09:38:50
| 2021-04-05T09:38:50
| 281,588,497
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 444
|
py
|
import sys
import os
import subprocess
from decouple import config
IP_NETWORK = config("IP_NETWORK")
IP_DEVICE = config("IP_DEVICE")
proc = subprocess.Popen(['ping', IP_NETWORK], stdout=subprocess.PIPE)
while True:
line = proc.stdout.readline()
if not line:
break
connected_ip = line.decode('utf-8').split()[3]
if connected_ip == IP_DEVICE:
subprocess.Popen(['say','Someone has connected to your network!'])
|
[
"43140224+Kunvuthi@users.noreply.github.com"
] |
43140224+Kunvuthi@users.noreply.github.com
|
524eda43cc3d3cacbdb8b9cbb191765a11acb289
|
cb6461bfae8b0935b7885697dad0df60670da457
|
/pychron/envisage/tasks/tip_view.py
|
1efc181187008c5bcdf0132eeb50734615cd992f
|
[
"Apache-2.0"
] |
permissive
|
USGSMenloPychron/pychron
|
00e11910511ca053e8b18a13314da334c362695a
|
172993793f25a82ad986e20e53e979324936876d
|
refs/heads/develop
| 2021-01-12T14:09:18.983658
| 2018-02-06T14:25:05
| 2018-02-06T14:25:05
| 69,751,244
| 0
| 0
| null | 2016-10-01T16:59:46
| 2016-10-01T16:59:46
| null |
UTF-8
|
Python
| false
| false
| 1,706
|
py
|
# ===============================================================================
# Copyright 2015 Jake Ross
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
from pychron.core.ui import set_qt
set_qt()
# ============= enthought library imports =======================
from traits.api import HasTraits, Str
from traitsui.api import View, UItem, TextEditor
# ============= standard library imports ========================
# ============= local library imports ==========================
class TipView(HasTraits):
text = Str
message = Str('<h1><font color=orange>Did you know?</font></h1>')
def traits_view(self):
v = View(UItem('message', style='readonly'),
UItem('text',
style='custom',
editor=TextEditor(read_only=True)),
buttons=['OK'],
height=400,
width=400,
title='Random Tip',
kind='livemodal')
return v
if __name__ == '__main__':
t = TipView()
t.configure_traits()
# ============= EOF =============================================
|
[
"jirhiker@gmail.com"
] |
jirhiker@gmail.com
|
f713f430a98ab0141570b2c3c365da0b4c1344c1
|
55ceefc747e19cdf853e329dba06723a44a42623
|
/_CodeTopics/LeetCode_contest/weekly/weekly2022/277/277_1.py
|
7ac9d39d8d60e1bb49d3f1b90acd2e1e7d3db2db
|
[] |
no_license
|
BIAOXYZ/variousCodes
|
6c04f3e257dbf87cbe73c98c72aaa384fc033690
|
ee59b82125f100970c842d5e1245287c484d6649
|
refs/heads/master
| 2023-09-04T10:01:31.998311
| 2023-08-26T19:44:39
| 2023-08-26T19:44:39
| 152,967,312
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 593
|
py
|
class Solution(object):
def countElements(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
nums.sort()
n = len(nums)
if len(set(nums)) <= 2:
return 0
i = 0
while i < n and nums[i] == nums[0]:
i += 1
j = 0
while n-1-j >= 0 and nums[n-1-j] == nums[-1]:
j += 1
return n - i - j
"""
https://leetcode-cn.com/submissions/detail/261446098/
127 / 127 个通过测试用例
状态:通过
执行用时: 20 ms
内存消耗: 13.2 MB
"""
|
[
"noreply@github.com"
] |
BIAOXYZ.noreply@github.com
|
52a294d4e7dcf0184eef8ccdef0e45ee6835ba3f
|
c17d2622df1979c853fb2bdf5637daaabafa34df
|
/src/pyroxy/repositories.py
|
70b1e547ba0ddcfd56bc530398883b171d8aa817
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
amcfague/pyroxy
|
a24d066dd7925e6618b55c4828ee310e84b49901
|
362c84335e1ca62c2edc5056b3732ad36d99240a
|
refs/heads/master
| 2021-01-22T20:08:47.453313
| 2012-04-27T04:39:45
| 2012-04-27T04:39:45
| 2,990,266
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,180
|
py
|
import os.path
import urllib2
from pyroxy.exceptions import SecurityException
__all__ = ["BaseRepository", "LocalPypiRepository", "RemotePypiRepository"]
DEFAULT_PYPI_URL = "http://pypi.python.org"
def urljoin(*segments):
return "/".join(segments)
class BaseRepository(object):
def get_index(self, package_name):
return self.open_index(package_name).read()
def get_static(self, path):
return self.open_static(path).read()
def open_index(self, package_name):
"""
Opens an index page, based on the specified ``package_name``. This
usually resolves to some kind of index.html page.
:param string package_name:
The name of the package to resolve. Depending on the system, this
may or may not be case sensitive.
:returns:
File-like object that implements the :func:`read` method.
"""
raise NotImplementedError
def open_static(self, path):
"""
Opens a static file based on ``path``.
:param path:
Relative path to a static file, most likely a binary file.
:returns:
File-like object that implements the :func:`read` method.
warning::
Be warned, this could be a relatively path that is a parent of the
root directory. This function should insure that files outside of
the root directory cannot be accessed.
"""
raise NotImplementedError
class LocalPypiRepository(BaseRepository):
def __init__(self, base_path):
"""
:param base_path: An absolute path to the `web` directory.
"""
self._base_path = os.path.abspath(base_path)
def open_index(self, package_name):
"""
See :meth:`pyroxy.repositories.BaseRepository.open_index`.
"""
simple_index_path = os.path.join(
self._base_path, "simple", package_name, "index.html")
return open(simple_index_path, "r")
def open_static(self, path):
"""
See :meth:`pyroxy.repositories.BaseRepository.open_static`.
"""
static_path = os.path.abspath(os.path.join(self._base_path, path))
if not static_path.startswith(self._base_path):
raise SecurityException("Security breach!!")
return open(static_path, "r")
class RemotePypiRepository(BaseRepository):
def __init__(self, pypi_base_url=DEFAULT_PYPI_URL):
"""
:param pypi_base_url: An absolute URL to the `web` directory online.
"""
self._url = pypi_base_url
def open_index(self, package_name):
"""
See :meth:`pyroxy.repositories.BaseRepository.open_index`.
"""
# Add a trailing slash to indicate the directory; PyPI sometimes hides
# its index files.
simple_index_path = urljoin(self._url, "simple", package_name) + "/"
return urllib2.urlopen(simple_index_path)
def open_static(self, path):
"""
See :meth:`pyroxy.repositories.BaseRepository.open_static`.
"""
static_path = urljoin(self._url, path)
return urllib2.urlopen(static_path)
|
[
"redmumba@gmail.com"
] |
redmumba@gmail.com
|
64c731c3350074e539343ad99aedc0166911d7f9
|
8f887b19f25328c0a844b7e251e297af58ec72f8
|
/src/orderdetails/admin.py
|
79bde7c4836651890d713424f9d265c82620cd1a
|
[] |
no_license
|
rushabh2390/shoppingwebsites
|
cdc22db4e00a770653168e5115f0e18af6151d51
|
946e3c1e33653fd8f8e39bd22d627322b63021b6
|
refs/heads/main
| 2023-08-24T19:33:23.724485
| 2021-09-10T06:18:13
| 2021-09-10T06:18:13
| 404,971,702
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 122
|
py
|
from django.contrib import admin
# Register your models here.
from .models import OrderDetail
admin.register(OrderDetail)
|
[
"er.rushabhdoshi@gmail.com"
] |
er.rushabhdoshi@gmail.com
|
d46605a963cc8f769dbe759ad483fc416defb7bd
|
d5d189fff2e027f7aa38ecde58952bcb4b636d47
|
/include/ocr/train/backend/gen_sample.py
|
c27926b5f86b197603348478fb379288bd02955d
|
[] |
no_license
|
wyc2015fq/cstd
|
5979a3c26d5c7f00aadda440b04176dcf043e7dc
|
664bcb4680a32811767f5541a8aae1551d621598
|
refs/heads/master
| 2020-05-15T20:22:19.209717
| 2019-04-20T16:08:03
| 2019-04-20T16:08:03
| null | 0
| 0
| null | null | null | null |
GB18030
|
Python
| false
| false
| 6,014
|
py
|
import sys
import cv2 as cv
import numpy as np
import random
import matplotlib.pyplot as plt
#draw circle
def randint(min_int,max_int):
return int(min_int + (max_int-min_int)*random.random())
def randi(min_int,max_int):
lis = []
for i in range(len(max_int)):
lis.append(randint(min_int[i], max_int[i]))
return tuple(lis)
def circle(img, a, c, r, color):
img2 = img.copy()
cv.circle(img2,c, r, color, -1)
img3 = img*(1-a) + img2*a
return img3
# 定义旋转rotate函数
def rotate(image1, angle, center=None, scale=1.0):
k = 50
image = cv.copyMakeBorder(image1,k,k,k,k,cv.BORDER_REFLECT)
# 获取图像尺寸
(h, w) = image.shape[:2]
# 若未指定旋转中心,则将图像中心设为旋转中心
if center is None:
center = (w / 2, h / 2)
# 执行旋转
M = cv.getRotationMatrix2D(center, angle, scale)
rotated = cv.warpAffine(image, M, (w, h))
# 返回旋转后的图像
out = rotated[k:(h-k), k:(w-k)]
return out
def randd(a, b):
t = random.random()
return t*(b-a)+a
def rand_crop(img, a, b):
h,w = img.shape
c = b-a
while(1):
x1 = int(randd(0, c*w))
y1 = int(randd(0, c*h))
x2 = int(randd((1-c)*w, w))
y2 = int(randd((1-c)*h, h))
if y1>y2:
y1,y2=y2,y1
if x1>x2:
x1,x2=x2,x1
h1 = y2-y1
w1 = x2-x1
t = (h1*w1)/(h*w)
if t>a and t<=b:
#print(t, x1, x2, y1, y2)
return img[y1:y2, x1:x2]
def add_shader(img):
img3 = img.copy()
img3 = rotate(img3, randint(-10, 10))
img3 = rand_crop(img3, 0.8, 1)
h,w = img3.shape
k = 20
#img3 = img3[randint(0,k):h-k,randint(0,k):w-k]
h,w = img3.shape
#print(h,w)
g = 10
k = 255
r = 0.5+0.5*random.random()
img3 = circle(img3,0.1,randi([0,0],[w,h]), randi([50],[255])[0], randi([g,g,g],[k,k,k]))
img3 = circle(img3, 0.1,randi([w*2/3,0],[w,h]), randi([10],[100])[0], randi([g,g,g],[k,k,k]))
r = 3+2*int(random.random()*2)
kernel = cv.getStructuringElement(cv.MORPH_RECT,(r, r))
if random.random()<0.5:
img3 = cv.dilate(img3,kernel)
else:
img3 = cv.erode(img3,kernel)
if random.random()>0.5:
k = 1/(1+random.random())
else:
k = 1+random.random()
img3 = np.power(img3/float(np.max(img3)), k)
return img3
def add_shader_neg(img):
img3 = img.copy()
if 0:
img3 = rotate(img3, randint(-30, 30))
img3 = rand_crop(img3, 0.1, 0.6)
if 0:
t = randint(30, 360-30)
img3 = rotate(img3, t)
if 1:
img3 = rotate(img3, 180)
img3 = rand_crop(img3, 0.1, 1)
img4 = img3.copy()
kernel = cv.getStructuringElement(cv.MORPH_RECT,(3, 3))
img3 = cv.erode(img3,kernel)
h,w = img3.shape
k = 20
#img3 = img3[randint(0,k):h-k,randint(0,k):w-k]
h,w = img3.shape
#print(h,w)
g = 10
k = 255
r = 0.5+0.5*random.random()
img3 = circle(img3,0.1,randi([0,0],[w,h]), randi([50],[255])[0], randi([g,g,g],[k,k,k]))
img3 = circle(img3, 0.1,randi([w*2/3,0],[w,h]), randi([10],[100])[0], randi([g,g,g],[k,k,k]))
r = 3+2*int(random.random()*2)
kernel = cv.getStructuringElement(cv.MORPH_RECT,(r, r))
if random.random()<0.5:
img3 = cv.dilate(img3,kernel)
else:
img3 = cv.erode(img3,kernel)
if random.random()>0.5:
k = 1/(1+random.random())
else:
k = 1+random.random()
img3 = np.power(img3/float(np.max(img3)), k)
return img3
#print(randi(img.shape))
#print(randi([255,255,255]))
#cv.circle(img,(447,63), 63, (255,255,255), -1)
if 0:
img = cv.imread('E:/OCR_Line/demo_images/018.jpg', 0)
#print(img.shape)
#img = cv.cvtColor(img,cv.COLOR_BGR2RGB)
img2 = cv.resize(img, (30,20),interpolation=cv.INTER_AREA)
plt.subplot(221)
plt.imshow(img, cmap=plt.cm.gray)
plt.subplot(222)
plt.imshow(img2, cmap=plt.cm.gray)
img3 = add_shader(img);
plt.subplot(223)
plt.imshow(img3, cmap=plt.cm.gray)
img4 = cv.resize(img3, (60,40),interpolation=cv.INTER_AREA)
plt.subplot(224)
plt.imshow(img4, cmap=plt.cm.gray)
#plt.xticks([])
#plt.yticks([])
plt.show()
if 0:
img = cv.imread('E:/OCR_Line/demo_images/018.jpg', 0)
for i in range(100):
print(i)
img3 = add_shader(img)
img4 = cv.resize(img3, (60,40),interpolation=cv.INTER_AREA)
img5 = (img4*255).astype(np.uint8);
cv.imwrite("E:/OCR_Line/adaboost/pos/%05d.bmp" % i, img5)
#plt.show()
def readtxtlist(fn):
flist=[]
with open(fn,'r') as f:
for line in f:
flist.append(line.strip('\n'))
return flist
if 0:
li = readtxtlist('./list.txt')
for j in range(len(li)):
img = cv.imread(li[j], 0)
for i in range(50):
print(j, i)
img3 = add_shader(img)
img4 = cv.resize(img3, (60,40),interpolation=cv.INTER_AREA)
img5 = (img4*255).astype(np.uint8);
img5 = cv.equalizeHist(img5)
cv.imwrite("E:/OCR_Line/adaboost/pos/%02d_%05d.bmp" % (j, i), img5)
#plt.show()
if 1:
li = readtxtlist('./list.txt')
for j in range(len(li)):
img = cv.imread(li[j], 0)
for i in range(200):
print(j, i)
img3 = add_shader_neg(img)
img4 = cv.resize(img3, (60,40),interpolation=cv.INTER_AREA)
img5 = (img4*255).astype(np.uint8);
img5 = cv.equalizeHist(img5)
cv.imwrite("E:/OCR_Line/adaboost/neg4/%02d_%05d.bmp" % (j, i), img5)
#plt.show()
if 0:
flist = readtxtlist('E:/www/news.ifeng.com/jpg/list.txt')
#print(result)
for i in range(len(flist)):
fn = flist[i]
print(fn)
img = cv.imread(fn, 0)
if img.shape(0)>10:
img4 = cv.resize(img, (60,40),interpolation=cv.INTER_AREA)
cv.imwrite("E:/OCR_Line/adaboost/neg/%05d.bmp" % i, img4)
|
[
"31720406@qq.com"
] |
31720406@qq.com
|
e635cfe5a94a774b7cab354764b2bf54d830b1eb
|
4ad37c3a80265f9bf4fadaa796382057fd6334bd
|
/Heroku-Confessions-master/app.py
|
1261ae25d357201e6ff68ff679f32cbc9c9c17da
|
[] |
no_license
|
gauravsingh13091990/web-app
|
919354292286c0e9ee52ae4d9be3273e4aea21c3
|
c40e38c3f868e063e4a20fb2263526fb46ebd5bd
|
refs/heads/master
| 2020-04-08T07:36:15.837614
| 2018-11-26T09:39:58
| 2018-11-26T09:39:58
| 159,144,700
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,941
|
py
|
import os
import sqlite3
from flask import *
from flask_sqlalchemy import *
from datetime import datetime
from flask import send_from_directory
from werkzeug.utils import secure_filename
from sqlalchemy import update
from sqlalchemy import desc
app = Flask(__name__) # create the application instance :)
app.config.from_object(__name__) # load config from this file , flaskr.py
app.config['SQLALCHEMY_DATABASE_URI']='sqlite:///confessions.db'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS']=False
app.secret_key = 'random string'
UPLOAD_FOLDER = 'static'
ALLOWED_EXTENSIONS = set(['jpeg', 'jpg', 'png', 'gif','txt','pdf','JPG'])
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
db = SQLAlchemy(app)
class Users(db.Model):
__tablename__='users'
password = db.Column(db.String(255))
email = db.Column(db.String(255),primary_key=True)
name = db.Column(db.String(255))
phone = db.Column(db.String(255))
gender = db.Column(db.String(255))
Birthday = db.Column(db.String(255))
class Image(db.Model):
__tablename__='images'
title = db.Column(db.String(255))
desc = db.Column(db.String(255))
id =db.Column(db.Integer,primary_key=True)
imagename = db.Column(db.String(255))
upvotes =db.Column(db.Integer)
downvotes =db.Column(db.Integer)
comment = db.Column(db.String(255))
class Like(db.Model):
__tablename__='votes'
likes_id =db.Column(db.String(255),primary_key=True)
db.create_all()
@app.route("/register",methods = ['GET','POST'])
def registers():
if request.method =='POST':
password = request.form['password']
password1= request.form['password1']
email = request.form['email']
name = request.form['name']
gender = request.form['gender']
Birthday = request.form['Birthday']
phone = request.form['phone']
if(password == password1):
try:
user = Users(password=password,email=email,name=name,gender=gender,Birthday=Birthday,phone=phone)
db.session.add(user)
db.session.commit()
msg="registered successfully"
except:
db.session.rollback()
msg="error occured"
else:
return render_template("layout.html",error1="password doesnot match")
db.session.close()
return render_template("layout.html",msg=msg)
@app.route("/loginForm")
def loginForm():
return render_template('layout.html', error='')
@app.route('/')
def layout():
return render_template("page1.html")
@app.route("/registerationForm")
def registrationForm():
return render_template("layout.html")
@app.route("/login", methods = ['POST', 'GET'])
def login():
if request.method == 'POST':
email = request.form['email']
password = request.form['password']
if is_valid(email, password):
session['email'] = email
session['logged_in'] = True
global x
x = email
return redirect(url_for('index'))
else:
error = 'Invalid UserId / Password'
return render_template('layout.html', error=error)
x=""
@app.route('/index')
def index():
if 'email' in session:
email = session['email']
image1 = "SELECT * FROM images"
data1 = db.engine.execute(image1).fetchall()
data2=reversed(data1)
return render_template('main.html',email=email,name=data2)
return render_template('page1.html')
def is_valid(email,password):
stmt = "SELECT email, password FROM users"
data = db.engine.execute(stmt).fetchall()
for row in data:
if row[0] == email and row[1] == password:
return True
return False
@app.route("/write")
def write():
return render_template('post.html')
@app.route("/About")
def about():
stmt = "SELECT * FROM users"
data = db.engine.execute(stmt).fetchall()
for confession1 in data:
if(confession1.email==x):
Name=confession1.name
Email=confession1.email
Birthday=confession1.Birthday
gender=confession1.gender
mobile=confession1.phone
return render_template('about.html',Name=Name,Email=Email,Birthday=Birthday,gender=gender,mobile=mobile)
@app.route('/upload', methods=['GET', 'POST'])
def upload_file():
if request.method == 'POST':
title = request.form['title']
desc = request.form['text']
# check if post request has file path
if 'file' not in request.files:
print ("return.............")
flash('No file part')
return redirect(request.url)
file = request.files['file']
print (file)
# if user does not select file, browser also
# submit a empty part without filename
if file.filename == '':
flash('No selected file')
return redirect(request.url)
print("path doesn't know....")
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
MYDIR = os.path.dirname(__file__)
print ("Is saving.....", MYDIR)
file.save(os.path.join(MYDIR + "/" + app.config['UPLOAD_FOLDER'] + "/" + filename))
return redirect(url_for('uploaded_file',filename=file.filename,title=title,desc=desc))
error="error occured"
return render_template("post.html",error=error)
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
@app.route('/uploads/<filename>/<title>/<desc>',methods=['GET', 'POST'])
def uploaded_file(filename,title,desc):
print (filename)
ImagesAll = Image(imagename=filename,title=title,desc=desc,upvotes=0,downvotes=0,comment="comments goes here \n")
db.session.add(ImagesAll)
db.session.commit()
return redirect(url_for('index'))
@app.route('/votes/<xid>', methods=['GET', 'POST'])
def votes(xid):
xid=int(xid)
s=x+str(xid)
if request.method == 'POST':
name = request.form['voted']
stmt=Image.query.filter_by(id=xid).all()[0]
stmt2=Like.query.filter_by(likes_id=s).all()
if(len(stmt2)==0):
if(name =="like"):
liked=Like(likes_id=s)
db.session.add(liked)
# db.session.commit()
stmt.upvotes+=1
db.session.commit()
return redirect(url_for('index'))
else:
liked=Like(likes_id=s)
db.session.add(liked)
stmt.downvotes+=1
db.session.commit()
return redirect(url_for('index'))
return redirect(url_for('index'))
return render_template("page1.html")
@app.route('/comment/<xid>', methods=['GET', 'POST'])
def comment(xid):
xid=int(xid)
if request.method == 'POST':
name = request.form['text']
if(len(name)>0):
stmt=Image.query.filter_by(id=xid).all()[0]
z=stmt.comment.replace('\n','<br>')
s=z+"\n"+name
s=s.replace('\n','<br>')
stmt.comment=s
db.session.commit()
return redirect(url_for('index'))
return redirect(url_for('index'))
@app.route('/sign/<name>/<email>')
def sign(name,email):
try:
user = Users(password=None,email=email,name=name,gender=None,Birthday=None,phone=None)
db.session.add(user)
db.session.commit()
msg="registered successfully"
except:
db.session.rollback()
msg="error occured"
session['email'] = email
session['logged_in'] = True
global y
y=email
return redirect(url_for('index'))
@app.route('/logout')
def logout():
session['logged_in'] = False
session.pop('email',None)
x=''
return redirect(url_for('index'))
if __name__ =='__main__':
app.run(port=5128)
|
[
"noreply@github.com"
] |
gauravsingh13091990.noreply@github.com
|
bd7d1f6c3c40c8a80f51858712aabba6fcefb304
|
48e124e97cc776feb0ad6d17b9ef1dfa24e2e474
|
/sdk/python/pulumi_azure_native/storage/v20210401/list_storage_account_service_sas.py
|
7afff96cc0049e93f01fbcf87cda9dfb98dc0d89
|
[
"BSD-3-Clause",
"Apache-2.0"
] |
permissive
|
bpkgoud/pulumi-azure-native
|
0817502630062efbc35134410c4a784b61a4736d
|
a3215fe1b87fba69294f248017b1591767c2b96c
|
refs/heads/master
| 2023-08-29T22:39:49.984212
| 2021-11-15T12:43:41
| 2021-11-15T12:43:41
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 11,290
|
py
|
# coding=utf-8
# *** WARNING: this file was generated by the Pulumi SDK Generator. ***
# *** Do not edit by hand unless you're certain you know what you are doing! ***
import warnings
import pulumi
import pulumi.runtime
from typing import Any, Mapping, Optional, Sequence, Union, overload
from ... import _utilities
from ._enums import *
__all__ = [
'ListStorageAccountServiceSASResult',
'AwaitableListStorageAccountServiceSASResult',
'list_storage_account_service_sas',
'list_storage_account_service_sas_output',
]
@pulumi.output_type
class ListStorageAccountServiceSASResult:
"""
The List service SAS credentials operation response.
"""
def __init__(__self__, service_sas_token=None):
if service_sas_token and not isinstance(service_sas_token, str):
raise TypeError("Expected argument 'service_sas_token' to be a str")
pulumi.set(__self__, "service_sas_token", service_sas_token)
@property
@pulumi.getter(name="serviceSasToken")
def service_sas_token(self) -> str:
"""
List service SAS credentials of specific resource.
"""
return pulumi.get(self, "service_sas_token")
class AwaitableListStorageAccountServiceSASResult(ListStorageAccountServiceSASResult):
# pylint: disable=using-constant-test
def __await__(self):
if False:
yield self
return ListStorageAccountServiceSASResult(
service_sas_token=self.service_sas_token)
def list_storage_account_service_sas(account_name: Optional[str] = None,
cache_control: Optional[str] = None,
canonicalized_resource: Optional[str] = None,
content_disposition: Optional[str] = None,
content_encoding: Optional[str] = None,
content_language: Optional[str] = None,
content_type: Optional[str] = None,
i_p_address_or_range: Optional[str] = None,
identifier: Optional[str] = None,
key_to_sign: Optional[str] = None,
partition_key_end: Optional[str] = None,
partition_key_start: Optional[str] = None,
permissions: Optional[Union[str, 'Permissions']] = None,
protocols: Optional['HttpProtocol'] = None,
resource: Optional[Union[str, 'SignedResource']] = None,
resource_group_name: Optional[str] = None,
row_key_end: Optional[str] = None,
row_key_start: Optional[str] = None,
shared_access_expiry_time: Optional[str] = None,
shared_access_start_time: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListStorageAccountServiceSASResult:
"""
The List service SAS credentials operation response.
:param str account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only.
:param str cache_control: The response header override for cache control.
:param str canonicalized_resource: The canonical path to the signed resource.
:param str content_disposition: The response header override for content disposition.
:param str content_encoding: The response header override for content encoding.
:param str content_language: The response header override for content language.
:param str content_type: The response header override for content type.
:param str i_p_address_or_range: An IP address or a range of IP addresses from which to accept requests.
:param str identifier: A unique value up to 64 characters in length that correlates to an access policy specified for the container, queue, or table.
:param str key_to_sign: The key to sign the account SAS token with.
:param str partition_key_end: The end of partition key.
:param str partition_key_start: The start of partition key.
:param Union[str, 'Permissions'] permissions: The signed permissions for the service SAS. Possible values include: Read (r), Write (w), Delete (d), List (l), Add (a), Create (c), Update (u) and Process (p).
:param 'HttpProtocol' protocols: The protocol permitted for a request made with the account SAS.
:param Union[str, 'SignedResource'] resource: The signed services accessible with the service SAS. Possible values include: Blob (b), Container (c), File (f), Share (s).
:param str resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive.
:param str row_key_end: The end of row key.
:param str row_key_start: The start of row key.
:param str shared_access_expiry_time: The time at which the shared access signature becomes invalid.
:param str shared_access_start_time: The time at which the SAS becomes valid.
"""
__args__ = dict()
__args__['accountName'] = account_name
__args__['cacheControl'] = cache_control
__args__['canonicalizedResource'] = canonicalized_resource
__args__['contentDisposition'] = content_disposition
__args__['contentEncoding'] = content_encoding
__args__['contentLanguage'] = content_language
__args__['contentType'] = content_type
__args__['iPAddressOrRange'] = i_p_address_or_range
__args__['identifier'] = identifier
__args__['keyToSign'] = key_to_sign
__args__['partitionKeyEnd'] = partition_key_end
__args__['partitionKeyStart'] = partition_key_start
__args__['permissions'] = permissions
__args__['protocols'] = protocols
__args__['resource'] = resource
__args__['resourceGroupName'] = resource_group_name
__args__['rowKeyEnd'] = row_key_end
__args__['rowKeyStart'] = row_key_start
__args__['sharedAccessExpiryTime'] = shared_access_expiry_time
__args__['sharedAccessStartTime'] = shared_access_start_time
if opts is None:
opts = pulumi.InvokeOptions()
if opts.version is None:
opts.version = _utilities.get_version()
__ret__ = pulumi.runtime.invoke('azure-native:storage/v20210401:listStorageAccountServiceSAS', __args__, opts=opts, typ=ListStorageAccountServiceSASResult).value
return AwaitableListStorageAccountServiceSASResult(
service_sas_token=__ret__.service_sas_token)
@_utilities.lift_output_func(list_storage_account_service_sas)
def list_storage_account_service_sas_output(account_name: Optional[pulumi.Input[str]] = None,
cache_control: Optional[pulumi.Input[Optional[str]]] = None,
canonicalized_resource: Optional[pulumi.Input[str]] = None,
content_disposition: Optional[pulumi.Input[Optional[str]]] = None,
content_encoding: Optional[pulumi.Input[Optional[str]]] = None,
content_language: Optional[pulumi.Input[Optional[str]]] = None,
content_type: Optional[pulumi.Input[Optional[str]]] = None,
i_p_address_or_range: Optional[pulumi.Input[Optional[str]]] = None,
identifier: Optional[pulumi.Input[Optional[str]]] = None,
key_to_sign: Optional[pulumi.Input[Optional[str]]] = None,
partition_key_end: Optional[pulumi.Input[Optional[str]]] = None,
partition_key_start: Optional[pulumi.Input[Optional[str]]] = None,
permissions: Optional[pulumi.Input[Optional[Union[str, 'Permissions']]]] = None,
protocols: Optional[pulumi.Input[Optional['HttpProtocol']]] = None,
resource: Optional[pulumi.Input[Optional[Union[str, 'SignedResource']]]] = None,
resource_group_name: Optional[pulumi.Input[str]] = None,
row_key_end: Optional[pulumi.Input[Optional[str]]] = None,
row_key_start: Optional[pulumi.Input[Optional[str]]] = None,
shared_access_expiry_time: Optional[pulumi.Input[Optional[str]]] = None,
shared_access_start_time: Optional[pulumi.Input[Optional[str]]] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[ListStorageAccountServiceSASResult]:
"""
The List service SAS credentials operation response.
:param str account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only.
:param str cache_control: The response header override for cache control.
:param str canonicalized_resource: The canonical path to the signed resource.
:param str content_disposition: The response header override for content disposition.
:param str content_encoding: The response header override for content encoding.
:param str content_language: The response header override for content language.
:param str content_type: The response header override for content type.
:param str i_p_address_or_range: An IP address or a range of IP addresses from which to accept requests.
:param str identifier: A unique value up to 64 characters in length that correlates to an access policy specified for the container, queue, or table.
:param str key_to_sign: The key to sign the account SAS token with.
:param str partition_key_end: The end of partition key.
:param str partition_key_start: The start of partition key.
:param Union[str, 'Permissions'] permissions: The signed permissions for the service SAS. Possible values include: Read (r), Write (w), Delete (d), List (l), Add (a), Create (c), Update (u) and Process (p).
:param 'HttpProtocol' protocols: The protocol permitted for a request made with the account SAS.
:param Union[str, 'SignedResource'] resource: The signed services accessible with the service SAS. Possible values include: Blob (b), Container (c), File (f), Share (s).
:param str resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive.
:param str row_key_end: The end of row key.
:param str row_key_start: The start of row key.
:param str shared_access_expiry_time: The time at which the shared access signature becomes invalid.
:param str shared_access_start_time: The time at which the SAS becomes valid.
"""
...
|
[
"noreply@github.com"
] |
bpkgoud.noreply@github.com
|
04eeebd05c2dbf3ebe636925fd43e2f9fc5dcfbe
|
15a9f47c159e9eb3be8b885022479aa23853ffc7
|
/bluefruit/Control Code/raspberryPi/connect.py
|
0d71a243d2740d699d2a2116cf4c166c00e60e7d
|
[] |
no_license
|
faron323/Robot_App_V0_1
|
557578e52d6f0650c5b5b1073caebafa7b0ad075
|
25d1455069fd8059ced6dcc02afa3b8863ac63db
|
refs/heads/master
| 2020-04-12T10:12:56.027122
| 2019-08-08T01:25:13
| 2019-08-08T01:25:13
| 162,422,627
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,167
|
py
|
import serial
from serial.tools import list_ports
import struct
class Arduino(object):
def __repr__(self):
return self.name
def __init__(self, name='Arduino', port='/dev/ttyACM0', baud=115200):
self.name = name
self.baudrate = baud
ser_port = port
try:
self.ser = serial.Serial(
ser_port,
baudrate=baud,
parity=serial.PARITY_NONE,
stopbits=serial.STOPBITS_ONE,
bytesize=serial.EIGHTBITS,
timeout=1
)
except Exception as e:
print(e)
quit()
def disconnect(self):
try:
self.ser.close()
except Exception as e:
print("failed to disconnect")
print(e)
def read(self, *args, **kwargs):
input = self.ser.read()
print(input)
def write(self, data, **kwargs):
try:
try:
self.ser.write(struct.pack('>B', data))
except Exception:
self.ser.write(data.encode())
except Exception as e:
print(e)
exit()
|
[
"47199407+phillipili@users.noreply.github.com"
] |
47199407+phillipili@users.noreply.github.com
|
74df9aba0e946cddf8c5deb57ab76399969b9081
|
ea2015881c18583a4295122f2e2c1d2dbd3e32f9
|
/_pipeline_scripts/NameChangers/Obsolete/1_3_2_reformFastaAt.py
|
bd85a8e86462822dee810d4e64c861fa8a9be8aa
|
[] |
no_license
|
panchyni/PseudogenePipeline
|
ad0b210d943bfdc83da1eeb63c0d7dec2a8719ae
|
44a5bfd034dfd9b21808b6e6c5b789f141912c33
|
refs/heads/master
| 2021-01-11T15:54:57.514872
| 2017-04-17T21:13:16
| 2017-04-17T21:13:16
| 79,955,253
| 4
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 660
|
py
|
#this script is designed to remove the decimals from At names in a fasta file
#Created by: David E. Hufnagel on 5-7-2012
import sys
inp = open(sys.argv[1]) #input file
out = open(sys.argv[2], "w") #output file
#print the unix command line that called this script
out.write('#python %s\n'%(' '.join(sys.argv)))
def FixName(old):
if old.startswith("AT"):
new = old.split(".")[0]
return new
else:
return old
for line in inp:
if line.startswith(">"):
newName = FixName(line[1:])
newLine = ">%s\n" % (newName)
out.write(newLine)
else:
out.write(line)
inp.close()
out.close()
|
[
"panchyni.msu.edu"
] |
panchyni.msu.edu
|
a1f83f8c8d3f544bcb99b66c3c2ff5c842e97bcd
|
76d941f2ea57882581f9b3c1b6049e60b72f64a3
|
/Snakefile
|
7ad9a868d35b93b3ef5f7a187eec25fd38b15925
|
[] |
no_license
|
ACStoneLab/MitoPipe
|
c347a40104e899fcad2ff3e238f046d63f5cd903
|
59a316e9fc045549e66b37116ccd4a517b747691
|
refs/heads/main
| 2023-07-17T16:05:29.006776
| 2021-08-26T23:24:33
| 2021-08-26T23:24:33
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 14,285
|
import os.path
import subprocess
import json
import csv
configfile: "SampleList.test"
current_dir = os.getcwd() + "/"
sequence_fasta = current_dir+ "path/to/reference.fasta"
# Enable or disable individual rules.
run_rmdup_bams = True
run_fastqc_original_samples = True
run_fastqc_rmdup_bams = True
run_mapdamage = True
run_qualimap = True
run_haplogrep = False
run_haplocheck = False
run_ind_mapping_report = True
run_agr_mapping_report = True
run_multiqc_report = False
run_bam_to_fasta = False
# folder paths
samples = current_dir + "Data/samples/"
merged_trimmed = current_dir + "Data/merged_trimmed/"
aligned_mito = current_dir + "Data/aligned_mito/"
bam_folder = current_dir + "Data/bams/"
filtered = current_dir + "Data/filtered_bams/"
q30 = current_dir + "Data/q30/"
sort_to_left_dir = current_dir + "Data/sort/"
rem_dups = current_dir + "Data/rmdup/"
min35_folder = current_dir + "Data/min_35/"
clipped_folder = current_dir + "Data/clipped/"
fqc_folder = current_dir + "Data/fqc_samples/"
fqctrim_folder = current_dir + "Data/fqc_trimmed/"
md_folder = current_dir + "Data/mapdamage_reports/"
hg_folder = current_dir + "Data/haplogrep/"
hc_folder = current_dir + "Data/haplocheck/"
rmdupf_folder = current_dir + "Data/rmdup_fasta/"
qualimap_folder = current_dir + "Data/qualimap/"
mapping_folder = current_dir + "Data/mapping_reports/"
# app paths
# leeHom = current_dir + "apps/leeHom/src/leeHomMulti"
# schmutzi_endocaller = current_dir + "apps/schmutzi/src/endoCaller"
leeHom = "leeHom"
schmutzi_endocaller = current_dir + "apps/schmutzi/src/endoCaller"
realign_sam_prg = current_dir + "apps/realign.jar"
g_threads = 12
# gets all the files for our pipeline
def get_files():
files = config["samples"]
ids = []
for file in files:
ids.append(file["id"])
return ids
def target_files():
target_list = []
if run_rmdup_bams:
target_list += expand(rem_dups + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30_sort_rmdup.bam", sample=get_files())
if run_fastqc_original_samples:
target_list += expand(fqc_folder + "{sample}_{part}_001_fastqc.html", sample=get_files(), part=["R1", "R2"])
if run_fastqc_rmdup_bams:
target_list += expand(fqctrim_folder + "{sample}_trimmed_merged_fastqc.html", sample=get_files())
if run_mapdamage:
target_list += expand(md_folder + "{sample}/Fragmisincorporation_plot.pdf", sample=get_files())
if run_qualimap:
target_list += expand(qualimap_folder + "{sample}/", sample=get_files())
if run_haplogrep:
target_list += expand(hg_folder + "{sample}_trimmed_mapped_realigned_f4_q30_sort_rmdup_fasta_haplogrep.out", sample=get_files())
if run_haplocheck:
target_list += expand(hc_folder + "{sample}_haplochecked", sample=get_files())
if run_ind_mapping_report:
target_list += expand(mapping_folder + "{sample}_mapping_report.json", sample=get_files())
if run_agr_mapping_report:
target_list.append(mapping_folder + "aggregated_mapping_report_mqc.tsv")
if run_multiqc_report:
target_list.append(current_dir + "Data/multiqc/")
if run_bam_to_fasta:
target_list += expand(rmdupf_folder + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30_sort_rmdup.fasta", sample=get_files())
return target_list
def mk_dirs():
#mk_dirs if they don't exist
dir_list = [
merged_trimmed,
aligned_mito,
bam_folder,
filtered,
q30,
sort_to_left_dir,
rem_dups,
min35_folder,
clipped_folder,
fqc_folder,
fqctrim_folder,
md_folder,
hg_folder,
hc_folder,
rmdupf_folder,
qualimap_folder,
mapping_folder,
]
for dr in dir_list:
subprocess.check_output("mkdir -p " + dr, shell=True, text=True)
def parse_leeHom(text):
text = text.strip().split(";")
parsed = {
"total": text[0].split(" ")[-1],
"merged_trim": text[1].split(" ")[-1],
"merged_overlap": text[2].split(" ")[-1],
"kept": text[3].split(" ")[-1],
"trimmed_sr": text[4].split(" ")[-1],
"adapter_dimers_chimeras": text[5].split(" ")[-1],
"failed_key": text[6].split(" ")[-1],
"umi_problems": text[7].split(" ")[-1],
}
return parsed
def parse_markdup(text):
text = text.strip().split("\n")
parsed = {}
for line in text:
splitter = line.split(":")
parsed[splitter[0].lower().replace(" ", "_")] = splitter[1].strip()
return parsed
def parse_qualimap(text):
text = text.strip().splitlines()
parsed = {
"mean": -1,
"std": -1,
"reads": -1,
}
for line in text:
if 'mean coverageData' in line:
parsed["mean"] = line.split(" ")[-1]
if 'std coverageData' in line:
parsed["std"] = line.split(" ")[-1]
if 'number of reads' in line:
parsed["reads"] = line.split(" ")[-1]
return parsed
def parse_it(sample, trim_report, q_bam, qmapdir):
trim_report = open(trim_report, "r")
# mdup_report = open(mdup_report, "r")
quality_bam = subprocess.check_output("samtools view -c " + q_bam, shell=True, text=True)
if os.path.exists(qmapdir + "/genome_results.txt"):
qmap_report = open(qmapdir + "/genome_results.txt")
qmap_dict = parse_qualimap(qmap_report.read())
else:
qmap_dict = parse_qualimap("")
leehom_dict = parse_leeHom(trim_report.read())
#markdup_dict = parse_markdup(mdup_report.read())
trim_report.close()
#mdup_report.close()
parsed = {
"sample": sample,
"leeHom": leehom_dict,
# "markdup": markdup_dict,
"q30_bam": quality_bam.strip(),
"qualimap": qmap_dict,
}
return parsed
rule target:
input:
target_files()
rule trim_merge:
input:
fastq1 = samples + "{sample}_R1_001.fastq.gz",
fastq2 = samples + "{sample}_R2_001.fastq.gz"
output:
fastq = merged_trimmed + "{sample}_trimmed_merged.fq.gz",
report = merged_trimmed + "{sample}_report.txt"
params:
threads = g_threads,
forward_adapter = "AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC",
second_adapter = "AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTA",
sample = merged_trimmed + "{sample}_trimmed_merged",
leeHom = leeHom
shell:
"{params.leeHom} -t {params.threads} -f {params.forward_adapter} -s {params.second_adapter} "
"--ancientdna -fq1 {input.fastq1} -fq2 {input.fastq2} -fqo {params.sample} 2> {output.report}"
rule index_ref:
input:
ref = sequence_fasta
output:
"sequence.fasta.amb",
"sequence.fasta.ann",
"sequence.fasta.bwt",
"sequence.fasta.pac",
"sequence.fasta.sa"
run:
shell("samtools faidx {input.ref}")
rule alignment:
input:
fastq = merged_trimmed + "{sample}_trimmed_merged.fq.gz",
ref = sequence_fasta
output:
sam = aligned_mito + "{sample}_trimmed_merged_mapped.sam"
run:
shell("bwa mem -t {g_threads} {input.ref} {input.fastq} > {output.sam}")
rule awk_rm_softclip:
input:
sam = aligned_mito + "{sample}_trimmed_merged_mapped.sam",
ref = sequence_fasta
output:
clipped = clipped_folder + "{sample}_trimmed_merged_mapped_clipped.sam"
run:
shell("samclip --ref {input.ref} {input.sam} > {output.clipped}")
# shell:
# """
# awk 'BEGIN {{OFS="t"}} {{split($6,C,/[0-9]*/); split($6,L,/[SMDIN]/); if (C[2]=="S") {{$10=substr($10,L[1]+1); $11=substr($11,L[1]+1)}}; if (C[length(C)]=="S") {{L1=length($10)-L[length(L)-1]; $10=substr($10,1,L1); $11=substr($11,1,L1); }}; gsub(/[0-9]*S/,"",$6); print}}' {input.sam} > {output.clipped}
# """
# rule realign_sam_to_bam:
# input:
# sam = clipped_folder + "{sample}_trimmed_merged_mapped_clipped.sam",
# ref = sequence_fasta
# output:
# bam = bam_folder + "{sample}_trimmed_merged_mapped_realigned.bam"
# params:
# elongate = 500
# run:
# shell("java -jar {realign_sam_prg} -e {params.elongate} -i {input.sam} -r {input.ref};mv {aligned_mito}{wildcards.sample}_trimmed_merged_mapped_realigned.bam {bam_folder}")
rule sam_to_bam:
input:
sam = clipped_folder + "{sample}_trimmed_merged_mapped_clipped.sam",
output:
bam = bam_folder + "{sample}_trimmed_merged_mapped_realigned.bam"
run:
shell("samtools view -@ {g_threads} -bSh {input.sam} > {output.bam}")
rule read_filter_f4:
input:
bam = bam_folder + "{sample}_trimmed_merged_mapped_realigned.bam"
output:
filtered = filtered + "{sample}_trimmed_merged_mapped_realigned_f4.bam"
run:
shell("samtools view -@ {g_threads} -bh -F4 {input.bam} > {output.filtered}")
rule min_35:
input:
filtered = filtered + "{sample}_trimmed_merged_mapped_realigned_f4.bam"
output:
filtered = min35_folder + "{sample}_trimmed_merged_mapped_realigned_f4_min35.bam"
run:
shell("samtools view -@ {g_threads} -h {input.filtered} | awk 'length($10) > 30 || $1 ~ /^@/' | samtools view -bS - > {output.filtered}")
rule read_filter_q30:
input:
filtered = min35_folder + "{sample}_trimmed_merged_mapped_realigned_f4_min35.bam"
output:
quality = q30 + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30.bam"
params:
filter_amount = 30
run:
shell('samtools view -@ {g_threads} -bh -q {params.filter_amount} {input.filtered} > {output.quality}')
rule sort_to_left:
input:
quality = q30 + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30.bam"
output:
sort_to_left = sort_to_left_dir + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30_sort.bam"
run:
shell("samtools sort -@ {g_threads} {input.quality} -o {output.sort_to_left}")
rule remove_duplicates:
input:
sort_to_left = sort_to_left_dir + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30_sort.bam"
output:
rmdupss = rem_dups + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30_sort_rmdup.bam",
run:
shell("bam-rmdup -o {output.rmdupss} {input.sort_to_left} --verbose")
rule bam_to_fasta:
input:
rmdupss = rem_dups + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30_sort_rmdup.bam",
ref = sequence_fasta,
output:
fasta = rmdupf_folder + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30_sort_rmdup.fasta"
shell:
"{schmutzi_endocaller} {input.rmdupss} {input.ref} {output.fasta}"
rule index_rmdups:
input:
rmdupss = rem_dups + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30_sort_rmdup.bam"
output:
indexed_rmdupss = rem_dups + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30_sort_rmdup.bam.bai"
run:
shell("samtools index -@ {g_threads} {input.rmdupss}")
# reporting shizzle
rule fqc_sample:
input:
fastq = samples + "{sample}_{part}_001.fastq.gz"
output:
folder = fqc_folder + "{sample}_{part}_001_fastqc.html"
wildcard_constraints:
part="R1|R2"
shell:
"fastqc -o {fqc_folder} {input.fastq}"
rule fqc_trimmed:
input:
fastq = merged_trimmed + "{sample}_trimmed_merged.fq.gz"
output:
fastqc = fqctrim_folder + "{sample}_trimmed_merged_fastqc.html"
shell:
"fastqc -o {fqctrim_folder} {input.fastq}"
rule mapDamage:
input:
rmdupss = rem_dups + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30_sort_rmdup.bam",
indexed_rmdupss = rem_dups + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30_sort_rmdup.bam.bai"
output:
sample = md_folder + "{sample}/Fragmisincorporation_plot.pdf"
params:
settings = "--rescale",
outfolder = md_folder + "{sample}"
shell:
"mapDamage -i {input.rmdupss} -r {sequence_fasta} -d {params.outfolder} {params.settings}"
rule qualiMap:
input:
rmdupss = rem_dups + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30_sort_rmdup.bam"
output:
results = directory(qualimap_folder + "{sample}/"),
shell:
"qualimap bamqc -bam {input} -outdir {output.results} -outformat HTML || mkdir -p {output.results}"
rule mapping_report:
input:
quality = q30 + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30.bam",
rmdup = rem_dups + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30_sort_rmdup.bam",
trim_report = merged_trimmed + "{sample}_report.txt",
qualimap = qualimap_folder + "{sample}/"
output:
mapping_report = mapping_folder + "{sample}_mapping_report.json"
run:
f = open(output.mapping_report, "w")
f.write(json.dumps(parse_it(wildcards.sample, input.trim_report, input.quality, input.qualimap), indent=4, sort_keys=True))
f.close()
rule agr_mapping_report:
input:
expand(mapping_folder + "{sample}_mapping_report.json", sample=get_files())
output:
tsv = mapping_folder + "aggregated_mapping_report_mqc.tsv"
run:
aggr_report = open(output.tsv, "w")
tsv = csv.writer(aggr_report, delimiter='\t')
tsv.writerow(['sample', 'lh_total', 'lh_mergTrim', 'lh_mergOver', 'lh_kept', 'lh_chimer', 'q30_bam',
'qm_cov_mean', 'qm_cov_std', 'qm_reads'])
for f in input:
report = open(f, "r")
data = json.load(report)
tsv.writerow([
data['sample'],data['leeHom']['total'], data['leeHom']['merged_trim'], data['leeHom']['merged_overlap'],
data['leeHom']['kept'], data['leeHom']['adapter_dimers_chimeras'], data['q30_bam'],
data['qualimap']['mean'], data['qualimap']['std'], data['qualimap']['reads']])
report.close()
aggr_report.close()
rule multiqc:
output:
directory(current_dir + "Data/multiqc/")
shell:
"multiqc -o {output} Data/"
rule haplogrep:
input:
fasta = rmdupf_folder + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30_sort_rmdup.fasta"
output:
haplogrep = hg_folder + "{sample}_trimmed_mapped_realigned_f4_q30_sort_rmdup_fasta_haplogrep.out"
shell:
"haplogrep --in {input.fasta} --format fasta --out {output.haplogrep}"
rule haplocheck:
input:
rmdupss = rem_dups + "{sample}_trimmed_merged_mapped_realigned_f4_min35_q30_sort_rmdup.bam"
output:
haplocheck = directory(hc_folder + "{sample}/")
shell:
"cloudgene run haplocheck@1.3.2 --files {input.rmdupss} --format bam --output {output.haplocheck}"
mk_dirs()
|
[
"noreply@github.com"
] |
ACStoneLab.noreply@github.com
|
|
4956ab547a3325427872b4a0ef50190a420e012b
|
a119b2a9d6532cd4fd8e824786913eecd539bb95
|
/PvP/Die at once/1.1.3 KRBT.py
|
1e29189e03ea299169a9194e6b962531a95c2521
|
[] |
no_license
|
EEExphon/Simple_Text_Games_
|
622ab792136bd93a8eeb54e9a9a0f9ae30f77476
|
59e03bf054698c02dc988697c5d9f3e55d41006a
|
refs/heads/master
| 2022-09-13T02:32:10.510201
| 2020-06-03T08:58:14
| 2020-06-03T08:58:14
| 269,037,860
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 16,136
|
py
|
print(" Welcome to VAN (PvP) by Richard.")
print(" 1.2.3")
input(" WE HAVE THREE HEROS:(press enter to continue)")
print(" YOU CAN USE 3 AFTER THE 4TH ROUND AND 4ROUNDS AFTER.")
print(" BRUCE : |HP=150|a_10|1_强化a或2|2_+20HP |3_ +50HP |")
print(" THE HIGHEST HP IS 150")
print(" RICHARD : |HP=150|a_15|1_+10HP |2_ 30 |3_ ANI'HP/2|")
print(" 生命值小于等于三十,a=20,2=40")
print(" KATE : |HP=250|a_10|1_+30HP |2_100HP |3_伤害(250-HP)/2|")
print(" THE HIGHEST HP IS 250")
print(" TONY : |HP=150|a=10|1_三回合持续伤害,每回合10.|2_+20HP|3_伤害自己10HP,抉择:敌方HP-45 or 三回合持续攻击15/round|")
print(" |4.消灭TONY并以LUIS大王代替之。LUIS:HP=100 a=20 1_ 30 2_+20HP 3_ 持续三回合攻击15/round|")
PLAYER1=input("Now , player1 choose the hero:")
while PLAYER1 != "BRUCE" and PLAYER1 != "RICHARD" and PLAYER1 != "KATE" and PLAYER1 != "TONY":
PLAYER1=input("Now , player1 choose the hero:")
if PLAYER1=="BRUCE":
HPI=150
NI=150
if PLAYER1=="RICHARD":
HPI=150
NI=150
if PLAYER1=="KATE":
HPI=250
NI=250
if PLAYER1=="TONY":
HPI=150
NI=150
PLAYER2=input("Now , player2 choose the hero:")
while PLAYER2 != "BRUCE" and PLAYER2 != "RICHARD" and PLAYER2 != "KATE" and PLAYER2 != "TONY":
PLAYER2=input("Now , player2 choose the hero:")
if PLAYER2=="BRUCE":
HPII=150
NII=150
if PLAYER2=="RICHARD":
HPII=150
NII=150
if PLAYER2=="KATE":
HPII=250
NII=250
if PLAYER2=="TONY":
HPII=150
NII=150
input("(press enter to continue)")
MODE=input("CHOOSE YOUR GAME MODE: 1-血战到底 2-打死你.")
print(" AND NOW THE GAME BEGINS")
print(" IF YOU DIED IN 1-19 ROUND ")
print(" YOU ARE NOT THE LOSER")
print(" YOU CAN STILL ADD HP!!!!!")
print(" NEVER GIVE UP!")
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
while HPI>0 and HPII>0:
print("----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------")
PL1=input(" NOW , PLAYER 1 CHOOSE WHAT TO DO.")
if PLAYER1=="BRUCE":
if PL1=="a":
HPII=HPII-10
if PL1=="1":
BNM1=input("a or 2")
if BNM1=="a":
if HPI<=140:
HPI=HPI+10
else:
HPI=150
HPII=HPII-10
if BNM1=="2":
if HPI<=130:
HPI=HPI+20
else:
HPI=150
HPII=HPII-5
if PL1=="2":
if HPI<=130:
HPI=HPI+20
else:
HPI=150
if PL1=="3":
if HPI<=100:
HPI=HPI+50
else:
HPI=150
if PLAYER1=="RICHARD":
if PL1=="a":
if HPI>30:
HPII=HPII-15
else:
HPII=HPII-20
if PL1=="1":
if HPI<=140:
HPI=HPI+10
else:
HPI=150
if PL1=="2":
if HPI>30:
HPII=HPII-30
else:
HPII=HPII-40
if PL1=="3":
HPII=HPII/2
if PLAYER1=="KATE":
if PL1=="a":
HPII=HPII-10
if PL1=="1":
if HPI<=220:
HPI=HPI+30
else:
HPI=250
if PL1=="2":
HPI=100
if PL1=="3":
HPII=HPII-(250-HPI)/2
if PLAYER1=="TONY":
TO1=0
TOTO1=0
MNMNMN1=1
if PL1=="a":
HPII=HPII-10
if PL1=="1":
TO1=4
if PL1=="2":
if HPI>=130:
HPI=150
if HPI<130:
HPI=HPI+20
if PL1=="3":
HPI=HPI-10
CHOOSE=input("choose 1 or 2:1-敌方HP-30 or 2-三回合持续攻击10/round")
if CHOOSE=="1":
HPII=HPII-45
if CHOOSE=="2":
TOTO1=4
if PL1=="4":
PLAYER1="LUIS"
print("You are Luis The King now!")
print(" ")
print("LUIS:HP=100 a=20 1_ 30 2_+20HP 3_ 持续三回合攻击15/round")
print(" ")
print("WRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY!!!")
print(" ")
HPI=100
NI=100
TO1=TO1-1
if TO1<=0:
TO1=0
if TO1==1 or TO1==2 or TO1==3:
HPII=HPII-10
TOTO1=TOTO1-1
if TOTO1<=0:
TOTO1=0
if TOTO1==1 or TOTO1==2 or TOTO1==3:
HPII=HPII-15
if PLAYER1=="LUIS":
LUISGOOD1=0
if PL1=="a":
HPII=HPII-20
if PL1=="1":
HPII=HPII-30
if PL1=="2":
if HPI>=80:
HPI=100
if HPI<80:
HPI=HPI+20
if PL1=="3":
LUISGOOD1=4
LUISGOOD1=LUISGOOD1-1
if LUISGOOD1<=0:
LUISGOOD1=0
if LUISGOOD1==1 or LUISGOOD1==2 or LUISGOOD1==3:
HPII=HPII-15
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
#----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
PL2=input(" NOW , PLAYER 2 CHOOSE WHAT TO DO.")
if PLAYER2=="BRUCE":
if PL2=="a":
HPI=HPI-10
if PL2=="1":
BNM2=input("a or 2")
if BNM2=="a":
if HPII<=140:
HPII=HPII+10
else:
HPII=150
HPI=HPI-10
if BNM2=="2":
if HPII<=130:
HPII=HPII+20
else:
HPII=150
HPI=HPI-5
if PL2=="2":
if HPII<=130:
HPII=HPII+20
else:
HPII=150
if PL2=="3":
if HPII<=100:
HPII=HPII+50
else:
HPII=150
if PLAYER2=="RICHARD":
if PL2=="a":
if HPII>30:
HPI=HPI-15
else:
HPI=HPI-20
if PL2=="1":
if HPII<=140:
HPII=HPII+10
else:
HPII=150
if PL2=="2":
if HPII>30:
HPI=HPI-30
else:
HPI=HPI-40
if PL2=="3":
HPI=HPI/2
if PLAYER2=="KATE":
if PL2=="a":
HPI=HPI-10
if PL2=="1":
if HPII<=220:
HPII=HPII+30
else:
HPII=250
if PL2=="2":
HPII=100
if PL2=="3":
HPI=HPI-(250-HPII)/2
if PLAYER2=="TONY":
TO2=0
TOTO2=0
MNMNMN2=1
if PL2=="a":
HPI=HPI-10
if PL2=="1":
TO2=4
if PL2=="2":
if HPII>=130:
HPII=150
if HPII<130:
HPII=HPII+20
if PL2=="3":
HPII=HPII-10
CHOOSE=input("choose 1 or 2:1-敌方HP-30 or 2-三回合持续攻击10/round")
if CHOOSE=="1":
HPI=HPI-45
if CHOOSE=="2":
TOTO2=4
if PL2=="4":
PLAYER2="LUIS"
print("You are Luis The King now!")
print(" ")
print("LUIS:HP=100 a=20 1_ 30 2_+20HP 3_ 持续三回合攻击15/round")
print(" ")
print("WRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY!!!")
print(" ")
HPII=100
NII=100
TO2=TO2-1
if TO2<=0:
TO2=0
if TO2==1 or TO2==2 or TO2==3:
HPI=HPI-10
TOTO2=TOTO2-1
if TOTO2<=0:
TOTO2=0
if TOTO2==1 or TOTO2==2 or TOTO2==3:
HPI=HPI-15
if PLAYER2=="LUIS":
LUISGOOD2=0
if PL2=="a":
HPI=HPI-20
if PL2=="1":
HPI=HPI-30
if PL2=="2":
if HPII>=80:
HPII=100
if HPII<80:
HPII=HPII+20
if PL2=="3":
LUISGOOD2=4
LUISGOOD2=LUISGOOD2-1
if LUISGOOD2<=0:
LUISGOOD2=0
if LUISGOOD2==1 or LUISGOOD2==2 or LUISGOOD2==3:
HPI=HPI-15
print("PLAYER ONE HP:",HPI,"/",NI)
print("PLAYER TWO HP:",HPII,"/",NII)
print("----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------")
#----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if HPI==0:
print("PLAYER TWO IS THE WINNER !")
if HPII==0:
print("PLAYER ONE IS THE WINNER !")
#============================================ENDING==================================
ENDINGCHOICE=input("You can end this program by pressing enter . Or you can enter 'ending' to see the ending .")
if ENDINGCHOICE=="ending" or ENDINGCHOICE=="ENDING":
print("THIS GAME IS PRESENTED BY =BRICONIS= .")
input("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
print("WE WILL KEEP UPDATING THIS GAME UNTIL IT IS COMPLETELY COMPLETED .")
input("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
print("FOR TEAM BRICONIS , WE HAVE BRUCE , RICHARD , TONY AND LUIS .")
input("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
print("AND WE ARE ALL EXPECTING YOU TO HAVE A GOOD LIFE .")
input("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
print(" ___________ ")
print(" || BRUCE || ")
print(" ||RICHARD|| ")
print(" || TONY || ")
print(" || LUIS || ")
print(" ||<<<|>>>|| ")
print(" ||THANKS || ")
print(" || FOR || ")
print(" ||PLAYING|| ")
print(" ++++++++++++++++++++++++++++++++++++++++++++~~~~~~~~~~+++++++ ")
print(" ========================================================================= ")
print(" ===================================================================================== ")
print(" =================================================================================================")
print(" ||| |||")
print(" ||| ____________________________________________________________________________ |||")
print(" ||| {YOU DON'T HAVE TO LOOK AT THIS ENDING EVERY TIME AFTER YOU PLAY THIS GAME.} |||")
print(" ||| {THIS ENDING IS FOR THOSE PEOPLE WHO IS THE FIRST TIME PLAYING THIS GAME .} |||")
print(" ||| {WE MADE THIS GAME FOR YOU GUYS TO RELAX AND TO HAVE A LITTLE COMPETITION .} |||")
print(" ||| { AND WE WILL BE VERY GLAD IF YOU GUYS LIKE IT .} |||")
print(" ||| {I HAVE A LOT OF THINGS TO SAY , BUT I'M AFRAID OF THIS HOUSE WOULD BE TOO } |||")
print(" ||| { HIGH .} |||")
print(" ||| {WELL , I SUDDENLY REALIZED THAT IT IS NON OF MY BUSINESS HOW HIGH THIS } |||")
print(" ||| { HOUSE WILL BE .} |||")
print(" ||| {HOWEVER , DO YOU THINK THIS IS A GOOD EXPERIENCE of.......................} |||")
print(" ||| {..........................................................TALKING WITH ME?} |||")
print(" ||| {WISH YOU HAVE A GOOD TIME DURING ENJOYING YOUR LIFE !} |||")
print(" ||| {IF YOU THINK YOUR LIFE IS UNLUCKY.........................................} |||")
print(" ||| { WISH YOU WILL BE LUCKY TOMORROW .} |||")
print(" ||| { SEE YOU NEXT TIME!!!!!!!!} |||")
print(" ||| ---------------------------------------------------------------------------- |||")
print(" ||| |||")
print(" ||| |||")
print(" ||| |||")
print(" ||| ____________ |||")
print(" ||| | | |||")
print(" ||| | | |||")
print(" ||| | | |||")
print(" ||| | @ | |||")
print(" ||| | | |||")
print(" ||| | | |||")
print(" ||| | | |||")
print(" #################################################################################################")
print(" #################################################################################################")
print(" #################################################################################################")
print("\n")
input(" press enter to open the door...... ")
input(" AND...............................it is locked. Press enter again please. ")
print(" THERE IS NOTHING IN HERE , DUDE ! WHY DID YOU BELIEVE IN RICHARD'S LIE!!!!!!!!!!!!!!!!")
input("=============================================THANKS FOR PLAYING!=============================================")
print(" (and being an ideat.hahaha!)")
else:
print("=============================================THANKS FOR PLAYING!=============================================")
|
[
"66343319+EEExphon@users.noreply.github.com"
] |
66343319+EEExphon@users.noreply.github.com
|
a84ac936437258717daeea9c08499dcb1c33ff47
|
3c5e6b918166ad716010521fc97511d92a459297
|
/tech_academy/forms.py
|
fdc814cfff959a4e0d59424f276b561b077e05e5
|
[] |
no_license
|
akenz1901/Tech_Academy
|
53bbd60825e2e9c50300d9e74f8182f67dfe8746
|
59a7679fe603edab8413a97654c20038a059c382
|
refs/heads/main
| 2023-08-01T01:57:41.829603
| 2021-09-29T18:39:35
| 2021-09-29T18:39:35
| 408,521,010
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 317
|
py
|
from django import forms
from .models import Cohort, Native
class CohortForm(forms.ModelForm):
class Meta:
model = Cohort
fields = ('name', 'description')
class NativeForm(forms.ModelForm):
class Meta:
model = Native
fields = ('first_name', 'last_name', 'image', 'cohort')
|
[
"michael_aka1@icloud.com"
] |
michael_aka1@icloud.com
|
12ed10992acff4d7f93ed92ce7a5f1479b3bbcd2
|
360009e71b07da5cd99660c0cd14bfb0b989fa98
|
/views.py
|
eea045eda30457221cc8d17c3baa2ac8665ffe1a
|
[] |
no_license
|
xml-star/dangdang
|
4438b7e2be3eaf3d428f60b173a5305635b2953c
|
6360350cede21f0b33506fe8004eb4981f76e73b
|
refs/heads/master
| 2022-12-29T16:43:09.940206
| 2020-10-19T13:51:45
| 2020-10-19T13:51:45
| 305,377,233
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 148
|
py
|
this is my first view
this is my second view
this is my third view
this is my fifth view
this is my sixth view
this is my 7 view
this is my 8 views
|
[
"xml@qq.com"
] |
xml@qq.com
|
b4220ae436274742cb4a64b35868e2a7c4a956f0
|
fd1dba8223ad1938916369b5eb721305ef197b30
|
/AtCoder/AGC/agc027/agc027d.py
|
b8ef2fee8aa0ffdd70bf993f73acf5770998734c
|
[] |
no_license
|
genkinanodesu/competitive
|
a3befd2f4127e2d41736655c8d0acfa9dc99c150
|
47003d545bcea848b409d60443655edb543d6ebb
|
refs/heads/master
| 2020-03-30T07:41:08.803867
| 2019-06-10T05:22:17
| 2019-06-10T05:22:17
| 150,958,656
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,046
|
py
|
N = int(input())
if N == 2:
print(4, 7)
print(23, 10)
exit()
a= [[0] * N for _ in range(N)]
def sieve(n):
'''
:param n:
:return: n以下の素数のリストを返す
エラトステネスの篩→O(n log log n)
'''
prime = []
is_prime = [True] * (n + 1) #is_prime[i] = Trueならiは素数
is_prime[0] = False
is_prime[1] = False
for i in range(2, n+1):
if is_prime[i]:
prime.append(i)
for j in range(2 * i, n + 1, i):
is_prime[j] = False
return prime
P = sieve(8000) #len(P) > 1000
def p1(k):
return P[(k // 2) + 1]
def p2(k):
if k >= 0:
return P[(k // 2) + N + 1]
else:
return P[k // 2]
for i in range(N):
for j in range(N):
if (i + j) % 2 == 0:
a[i][j] = p1(i + j) * p2(i - j)
else:
a[i][j] = p1(i + j + 1) * p1(i + j - 1) * p2(i - j + 1) * p2(i - j - 1) + 1
for i in range(N):
print(' '.join(map(str, a[i])))
|
[
"s.genki0605@gmail.com"
] |
s.genki0605@gmail.com
|
ef2c699870744ffa06c10e14205661496f9ab442
|
545afb3cfe89f82b558faa5b5b28c28b8e3effce
|
/venv/Lib/site-packages/google/protobuf/internal/message_factory_test.py
|
3a2cbdeb8bedd3ae240aa5b38eca968c61e35421
|
[
"MIT"
] |
permissive
|
parthpankajtiwary/keras-groundup
|
24ad45a4b872e6d77fff8a6f4a3a6d60124a0628
|
0df0844e7d9dca741fad0965761a12f72ee51f07
|
refs/heads/master
| 2022-11-09T22:34:35.716466
| 2019-10-01T11:01:59
| 2019-10-01T11:01:59
| 210,914,101
| 0
| 1
|
MIT
| 2022-10-25T06:47:55
| 2019-09-25T18:31:49
|
Python
|
UTF-8
|
Python
| false
| false
| 9,896
|
py
|
#! /usr/bin/env python
#
# Protocol Buffers - Google's data interchange format
# Copyright 2008 Google Inc. All rights reserved.
# https://developers.google.com/protocol-buffers/
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Tests for google.protobuf.message_factory."""
__author__ = 'matthewtoia@google.com (Matt Toia)'
try:
import unittest2 as unittest #PY26
except ImportError:
import unittest
from google.protobuf import descriptor_pb2
from google.protobuf.internal import api_implementation
from google.protobuf.internal import factory_test1_pb2
from google.protobuf.internal import factory_test2_pb2
from google.protobuf.internal import testing_refleaks
from google.protobuf import descriptor_database
from google.protobuf import descriptor_pool
from google.protobuf import message_factory
@testing_refleaks.TestCase
class MessageFactoryTest(unittest.TestCase):
def setUp(self):
self.factory_test1_fd = descriptor_pb2.FileDescriptorProto.FromString(
factory_test1_pb2.DESCRIPTOR.serialized_pb)
self.factory_test2_fd = descriptor_pb2.FileDescriptorProto.FromString(
factory_test2_pb2.DESCRIPTOR.serialized_pb)
def _ExerciseDynamicClass(self, cls):
msg = cls()
msg.mandatory = 42
msg.nested_factory_2_enum = 0
msg.nested_factory_2_message.value = 'nested message value'
msg.factory_1_message.factory_1_enum = 1
msg.factory_1_message.nested_factory_1_enum = 0
msg.factory_1_message.nested_factory_1_message.value = (
'nested message value')
msg.factory_1_message.scalar_value = 22
msg.factory_1_message.list_value.extend([u'one', u'two', u'three'])
msg.factory_1_message.list_value.append(u'four')
msg.factory_1_enum = 1
msg.nested_factory_1_enum = 0
msg.nested_factory_1_message.value = 'nested message value'
msg.circular_message.mandatory = 1
msg.circular_message.circular_message.mandatory = 2
msg.circular_message.scalar_value = 'one deep'
msg.scalar_value = 'zero deep'
msg.list_value.extend([u'four', u'three', u'two'])
msg.list_value.append(u'one')
msg.grouped.add()
msg.grouped[0].part_1 = 'hello'
msg.grouped[0].part_2 = 'world'
msg.grouped.add(part_1='testing', part_2='123')
msg.loop.loop.mandatory = 2
msg.loop.loop.loop.loop.mandatory = 4
serialized = msg.SerializeToString()
converted = factory_test2_pb2.Factory2Message.FromString(serialized)
reserialized = converted.SerializeToString()
self.assertEqual(serialized, reserialized)
result = cls.FromString(reserialized)
self.assertEqual(msg, result)
def testGetPrototype(self):
db = descriptor_database.DescriptorDatabase()
pool = descriptor_pool.DescriptorPool(db)
db.Add(self.factory_test1_fd)
db.Add(self.factory_test2_fd)
factory = message_factory.MessageFactory()
cls = factory.GetPrototype(pool.FindMessageTypeByName(
'google.protobuf.python.internal.Factory2Message'))
self.assertFalse(cls is factory_test2_pb2.Factory2Message)
self._ExerciseDynamicClass(cls)
cls2 = factory.GetPrototype(pool.FindMessageTypeByName(
'google.protobuf.python.internal.Factory2Message'))
self.assertTrue(cls is cls2)
def testGetMessages(self):
# performed twice because multiple calls with the same input must be allowed
for _ in range(2):
# GetMessage should work regardless of the order the FileDescriptorProto
# are provided. In particular, the function should succeed when the files
# are not in the topological order of dependencies.
# Assuming factory_test2_fd depends on factory_test1_fd.
self.assertIn(self.factory_test1_fd.name,
self.factory_test2_fd.dependency)
# Get messages should work when a file comes before its dependencies:
# factory_test2_fd comes before factory_test1_fd.
messages = message_factory.GetMessages([self.factory_test2_fd,
self.factory_test1_fd])
self.assertTrue(
set(['google.protobuf.python.internal.Factory2Message',
'google.protobuf.python.internal.Factory1Message'],
).issubset(set(messages.keys())))
self._ExerciseDynamicClass(
messages['google.protobuf.python.internal.Factory2Message'])
factory_msg1 = messages['google.protobuf.python.internal.Factory1Message']
self.assertTrue(set(
['google.protobuf.python.internal.Factory2Message.one_more_field',
'google.protobuf.python.internal.another_field'],).issubset(set(
ext.full_name
for ext in factory_msg1.DESCRIPTOR.file.pool.FindAllExtensions(
factory_msg1.DESCRIPTOR))))
msg1 = messages['google.protobuf.python.internal.Factory1Message']()
ext1 = msg1.Extensions._FindExtensionByName(
'google.protobuf.python.internal.Factory2Message.one_more_field')
ext2 = msg1.Extensions._FindExtensionByName(
'google.protobuf.python.internal.another_field')
self.assertEqual(0, len(msg1.Extensions))
msg1.Extensions[ext1] = 'test1'
msg1.Extensions[ext2] = 'test2'
self.assertEqual('test1', msg1.Extensions[ext1])
self.assertEqual('test2', msg1.Extensions[ext2])
self.assertEqual(None,
msg1.Extensions._FindExtensionByNumber(12321))
self.assertEqual(2, len(msg1.Extensions))
if api_implementation.Type() == 'cpp':
self.assertRaises(TypeError,
msg1.Extensions._FindExtensionByName, 0)
self.assertRaises(TypeError,
msg1.Extensions._FindExtensionByNumber, '')
else:
self.assertEqual(None,
msg1.Extensions._FindExtensionByName(0))
self.assertEqual(None,
msg1.Extensions._FindExtensionByNumber(''))
def testDuplicateExtensionNumber(self):
pool = descriptor_pool.DescriptorPool()
factory = message_factory.MessageFactory(pool=pool)
# Add Container message.
f = descriptor_pb2.FileDescriptorProto()
f.name = 'google/protobuf/internal/container.proto'
f.package = 'google.protobuf.python.internal'
msg = f.message_type.add()
msg.name = 'Container'
rng = msg.extension_range.add()
rng.start = 1
rng.end = 10
pool.Add(f)
msgs = factory.GetMessages([f.name])
self.assertIn('google.protobuf.python.internal.Container', msgs)
# Extend container.
f = descriptor_pb2.FileDescriptorProto()
f.name = 'google/protobuf/internal/extension.proto'
f.package = 'google.protobuf.python.internal'
f.dependency.append('google/protobuf/internal/container.proto')
msg = f.message_type.add()
msg.name = 'Extension'
ext = msg.extension.add()
ext.name = 'extension_field'
ext.number = 2
ext.label = descriptor_pb2.FieldDescriptorProto.LABEL_OPTIONAL
ext.type_name = 'Extension'
ext.extendee = 'Container'
pool.Add(f)
msgs = factory.GetMessages([f.name])
self.assertIn('google.protobuf.python.internal.Extension', msgs)
# Add Duplicate extending the same field number.
f = descriptor_pb2.FileDescriptorProto()
f.name = 'google/protobuf/internal/duplicate.proto'
f.package = 'google.protobuf.python.internal'
f.dependency.append('google/protobuf/internal/container.proto')
msg = f.message_type.add()
msg.name = 'Duplicate'
ext = msg.extension.add()
ext.name = 'extension_field'
ext.number = 2
ext.label = descriptor_pb2.FieldDescriptorProto.LABEL_OPTIONAL
ext.type_name = 'Duplicate'
ext.extendee = 'Container'
pool.Add(f)
with self.assertRaises(Exception) as cm:
factory.GetMessages([f.name])
self.assertIn(str(cm.exception),
['Extensions '
'"google.protobuf.python.internal.Duplicate.extension_field" and'
' "google.protobuf.python.internal.Extension.extension_field"'
' both try to extend message type'
' "google.protobuf.python.internal.Container"'
' with field number 2.',
'Double registration of Extensions'])
if __name__ == '__main__':
unittest.main()
|
[
"parthpankajtiwary@gmail.com"
] |
parthpankajtiwary@gmail.com
|
08a9f916a169cc7477429191108a198d7dbcfc99
|
7949f96ee7feeaa163608dbd256b0b76d1b89258
|
/toontown/minigame/MinigameRulesPanel.py
|
e895a9cd4459e40afe609b5becb4e06f92614d2b
|
[] |
no_license
|
xxdecryptionxx/ToontownOnline
|
414619744b4c40588f9a86c8e01cb951ffe53e2d
|
e6c20e6ce56f2320217f2ddde8f632a63848bd6b
|
refs/heads/master
| 2021-01-11T03:08:59.934044
| 2018-07-27T01:26:21
| 2018-07-27T01:26:21
| 71,086,644
| 8
| 10
| null | 2018-06-01T00:13:34
| 2016-10-17T00:39:41
|
Python
|
UTF-8
|
Python
| false
| false
| 2,924
|
py
|
# File: t (Python 2.4)
from direct.task import Task
from direct.fsm import StateData
from toontown.toonbase.ToontownGlobals import *
from direct.gui.DirectGui import *
from pandac.PandaModules import *
from toontown.toonbase import ToontownTimer
from toontown.toonbase import TTLocalizer
import MinigameGlobals
class MinigameRulesPanel(StateData.StateData):
def __init__(self, panelName, gameTitle, instructions, doneEvent, timeout = MinigameGlobals.rulesDuration):
StateData.StateData.__init__(self, doneEvent)
self.gameTitle = gameTitle
self.instructions = instructions
self.TIMEOUT = timeout
def load(self):
minigameGui = loader.loadModel('phase_4/models/gui/minigame_rules_gui')
buttonGui = loader.loadModel('phase_3.5/models/gui/inventory_gui')
self.frame = DirectFrame(image = minigameGui.find('**/minigame-rules-panel'), relief = None, pos = (0.13750000000000001, 0, -0.66669999999999996))
self.gameTitleText = DirectLabel(parent = self.frame, text = self.gameTitle, scale = TTLocalizer.MRPgameTitleText, text_align = TextNode.ACenter, text_font = getSignFont(), text_fg = (1.0, 0.33000000000000002, 0.33000000000000002, 1.0), pos = TTLocalizer.MRgameTitleTextPos, relief = None)
self.instructionsText = DirectLabel(parent = self.frame, text = self.instructions, scale = TTLocalizer.MRPinstructionsText, text_align = TextNode.ACenter, text_wordwrap = TTLocalizer.MRPinstructionsTextWordwrap, pos = TTLocalizer.MRPinstructionsTextPos, relief = None)
self.playButton = DirectButton(parent = self.frame, relief = None, image = (buttonGui.find('**/InventoryButtonUp'), buttonGui.find('**/InventoryButtonDown'), buttonGui.find('**/InventoryButtonRollover')), image_color = Vec4(0, 0.90000000000000002, 0.10000000000000001, 1), text = TTLocalizer.MinigameRulesPanelPlay, text_fg = (1, 1, 1, 1), text_pos = (0, -0.02, 0), text_scale = TTLocalizer.MRPplayButton, pos = (1.0024999999999999, 0, -0.20300000000000001), scale = 1.05, command = self.playCallback)
minigameGui.removeNode()
buttonGui.removeNode()
self.timer = ToontownTimer.ToontownTimer()
self.timer.reparentTo(self.frame)
self.timer.setScale(0.40000000000000002)
self.timer.setPos(0.997, 0, 0.064000000000000001)
self.frame.hide()
def unload(self):
self.frame.destroy()
del self.frame
del self.gameTitleText
del self.instructionsText
self.playButton.destroy()
del self.playButton
del self.timer
def enter(self):
self.frame.show()
self.timer.countdown(self.TIMEOUT, self.playCallback)
self.accept('enter', self.playCallback)
def exit(self):
self.frame.hide()
self.timer.stop()
self.ignore('enter')
def playCallback(self):
messenger.send(self.doneEvent)
|
[
"fr1tzanatore@aol.com"
] |
fr1tzanatore@aol.com
|
c94905a59ff5189af34e689384643c0f2425d9aa
|
ed566ffe316fd54aaf4945ce18bb1d9d95597a1b
|
/www/webframe.py
|
190d96d36c6b29dc91e2344608fcd8cf59e66120
|
[] |
no_license
|
wbjxxzx/aiohttp_blog
|
b63f7339c0d081a1525d12223ee8d882e2f80273
|
af4ac2c7deffd40ac31f9a92cb37277e33f1de0a
|
refs/heads/master
| 2020-03-27T00:51:20.493394
| 2018-09-12T10:59:33
| 2018-09-12T10:59:33
| 145,662,544
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 7,715
|
py
|
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
'''
__author__ = wbjxxzx
'''
import asyncio
import os
import inspect
import functools
from urllib import parse
from aiohttp import web
from apis import APIError
from mylogger import logger
def get(path):
"""
define decorator @get('/path')
"""
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kw):
return func(*args, **kw)
wrapper.__method__ = 'GET'
wrapper.__route__ = path
return wrapper
return decorator
def post(path):
"""
define decorator @post('/path')
"""
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kw):
return func(*args, **kw)
wrapper.__method__ = 'POST'
wrapper.__route__ = path
return wrapper
return decorator
def get_required_kw_args(fn):
''' 将所有无默认值的命名关键字参数作为一个tuple 返回 '''
args = []
params = inspect.signature(fn).parameters
for name, param in params.items():
if param.kind == inspect.Parameter.KEYWORD_ONLY and \
param.default == inspect.Parameter.empty:
args.append(name)
return tuple(args)
def get_named_kw_args(fn):
''' 将所有的命名关键字参数作为一个tuple 返回 '''
args = []
params = inspect.signature(fn).parameters
for name, param in params.items():
if param.kind == inspect.Parameter.KEYWORD_ONLY:
args.append(name)
return tuple(args)
def has_named_kw_args(fn):
''' 检查是否有命名关键字参数 '''
params = inspect.signature(fn).parameters
for name, param in params.items():
if param.kind == inspect.Parameter.KEYWORD_ONLY:
return True
def has_var_kw_arg(fn):
''' 检查是否有关键字参数集 '''
params = inspect.signature(fn).parameters
for name, param in params.items():
if param.kind == inspect.Parameter.VAR_KEYWORD:
return True
def has_request_arg(fn):
'''
检查函数是否有 request 参数,若有,判断是否为最后一个参数
'''
sig = inspect.signature(fn)
params = sig.parameters
found = False
for name, param in params.items():
if name == 'request':
found = True
continue
# 找到 'request' 后,还出现位置参数,则抛出异常
if found and(
param.kind != inspect.Parameter.VAR_POSITIONAL and
param.kind != inspect.Parameter.KEYWORD_ONLY and
param.kind != inspect.Parameter.VAR_KEYWORD):
raise ValueError('request parameter must be the last named parameter in function: {}{}'.format(
fn.__name__, str(sig)
))
return found
class RequestHandler(object):
''' 封闭url处理函数 '''
def __init__(self, app, fn):
self._app = app
self._func = fn
self._has_request_arg = has_request_arg(fn)
self._has_var_kw_arg = has_var_kw_arg(fn)
self._has_named_kw_args = has_named_kw_args(fn)
self._named_kw_args = get_named_kw_args(fn)
self._required_kw_args = get_required_kw_args(fn)
async def __call__(self, request):
kw = None
# 当传入的处理函数具有 关键字参数集 或 命名关键字参数 或 request参数
if self._has_var_kw_arg or self._has_named_kw_args or self._required_kw_args:
if request.method == 'POST':
if not request.content_type:
return web.HTTPBadRequest('missing content-type')
ct = request.content_type.lower()
if ct.startswith('application/json'):
params = await request.json()
if not isinstance(params, dict):
return web.HTTPBadRequest('JSON body must be object')
kw = params
elif ct.startswith(('application/x-www-form-urlencoded', 'multipart/form-data')):
# 处理表单类型的数据,传入参数字典中
params = await request.post()
kw = dict(**params)
else:
# 暂不支持处理其他正文类型的数据
return web.HTTPBadRequest('unsupported content-type: {}'.format(request.content_type))
if request.method == 'GET':
qs = request.query_string
if qs:
# 获取URL中的请求参数,如 id=1
kw = dict()
for k, v in parse.parse_qs(qs, True).items():
kw[k] = v[0]
if kw is None:
kw = dict(**request.match_info)
else:
if not self._has_var_kw_arg and self._named_kw_args:
# remove all unamed kw:
copy = {}
for name in self._named_kw_args:
if name in kw:
copy[name] = kw[name]
kw = copy
# check named arg:
for k, v in request.match_info.items():
if k in kw:
logger.warning('duplicat arg name in named arg and kw args: {}'.format(k))
kw[k] = v
if self._has_request_arg:
kw['request'] = request
# check required kw:
if self._required_kw_args:
# 收集无默认值的关键字参数
for name in self._required_kw_args:
if not name in kw:
return web.HTTPBadRequest('missing argument: {}'.format(name))
logger.warning('call with args: {}'.format(kw))
try:
# 最后调用处理函数,并传入请求参数,进行请求处理
r = await self._func(**kw)
return r
except APIError as e:
return dict(error=e.error, data=e.data, message=e.message)
def add_static(app):
''' 添加静态资源路径 '''
path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'static')
app.router.add_static('/static/', path)
logger.info('add static {}=>{}'.format('/static/', path))
def add_route(app, fn):
''' 注册处理函数到web服务器的路由 '''
method = getattr(fn, '__method__', None)
path = getattr(fn, '__route__', None)
if path is None or method is None:
raise ValueError('@get or @post not defined in {}'.format(fn))
if not asyncio.iscoroutinefunction(fn) and not inspect.isgeneratorfunction(fn):
fn = asyncio.coroutine(fn)
logger.info('add route {} {}=>{}({})'.format(method, path, fn.__name__,
', '.join(inspect.signature(fn).parameters.keys()))
)
app.router.add_route(method, path, RequestHandler(app, fn))
def add_routes(app, module_name):
''' 自动注册符合条件的函数 '''
logger.debug('add url handlers {}...'.format(module_name))
n = module_name.rfind('.')
if n == -1:
mod = __import__(module_name, globals(), locals())
else:
# 模块名,如 os.path 中的 path
name = module_name[n+1:]
mod = getattr(__import__(module_name[:n], globals(), locals(), [name]), name)
for attr in dir(mod):
# 模块所有属性,忽略私有
if attr.startswith('_'):
continue
fn = getattr(mod, attr)
if callable(fn):
method = getattr(fn, '__method__', None)
path = getattr(fn, '__route__', None)
if method and path:
# 已经处理过的url函数注册到web服务器
logger.debug('find handler function: {}'.format(fn))
add_route(app, fn)
|
[
"wbjxxzx@163.com"
] |
wbjxxzx@163.com
|
d9574ccc9abb854423191f325895d1951e3af024
|
1c0b48565e0e5f8815a271b8ece4c7f0dac450b7
|
/problems/ps1/code/pmfig.py
|
1beb83f86e1792d2099b23b3b59b0a698969122f
|
[] |
no_license
|
dfm/biophysics
|
bbe450e8290268a13200e83c456e28c8f42237a7
|
188de89fed355ea00ebc7004c5e1ff792bcd1d28
|
refs/heads/master
| 2023-08-30T01:50:59.960527
| 2014-11-03T16:09:27
| 2014-11-03T16:09:27
| 24,002,443
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,679
|
py
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
import matplotlib.pyplot as pl
pl.figure(figsize=(10, 4))
bg = dict(color="b", alpha=0.5, lw=0, edgecolor="none")
scat = dict(color="r", alpha=0.5, lw=0, edgecolor="none")
pl.fill_between([4.333, 5, 8], [0.05, 0.6, 0], [-0.05, -0.6, 0], **scat)
pl.fill_between([1, 2], [1, 1], [-1, -1], **bg)
pl.fill_between([2, 3, 5], [1, 1, -0.4], [0.9, 0.9, -0.5], **bg)
pl.fill_between([2, 3, 5], [-0.9, -0.9, 0.5], [-1, -1, 0.4], **bg)
pl.fill_between([5, 8], [-0.4, 0], [-0.5, 0], **bg)
pl.fill_between([5, 8], [0.4, 0], [0.5, 0], **bg)
pl.plot([2, 2], [-0.9, 0.9], "k", lw=2)
pl.plot([2, 2], [1, 1.5], "k", lw=2)
pl.plot([2, 2], [-1, -1.5], "k", lw=2)
pl.plot([3, 3], [-1.5, 1.5], "k", lw=2)
pl.plot([4.333, 4.333], [-0.1, 0.1], "k", lw=2)
pl.plot([4.333, 4.333], [-1.5, 1.5], ":k")
pl.plot([5, 5], [-1.5, 1.5], "k", lw=2)
pl.plot([6, 6], [-1.5, 1.5], ":k")
pl.plot([6, 6], [-0.32, -0.28], "k", lw=2)
pl.plot([6, 6], [0.32, 0.28], "k", lw=2)
ax = pl.gca()
ax.annotate("(a)", xy=(2, 1.5), xytext=(0, 10), textcoords="offset points",
ha="center")
ax.annotate("(b)", xy=(3, 1.5), xytext=(0, 10), textcoords="offset points",
ha="center")
ax.annotate("(c)", xy=(4.33, 1.5), xytext=(0, 10), textcoords="offset points",
ha="center")
ax.annotate("(d)", xy=(5, 1.5), xytext=(0, 10), textcoords="offset points",
ha="center")
ax.annotate("(e)", xy=(6, 1.5), xytext=(0, 10), textcoords="offset points",
ha="center")
pl.ylim(-1.5, 2)
pl.axis("off")
pl.gcf().subplots_adjust(left=0, right=1, bottom=0, top=1)
pl.savefig("../phase_micro.pdf")
|
[
"danfm@nyu.edu"
] |
danfm@nyu.edu
|
2f3e2bb3b574fb3c194fea01a846219c31977b6d
|
94a71148eab47c3a1ec544908e7e6b412566df68
|
/vouchers/admin.py
|
8bf8a0dc7e17ddda25d0431f17922ba9a813ee90
|
[] |
no_license
|
hawkson-lemuel/shuttleapi
|
6d01a11d6a0dbdb12b7c49861aa48a5d89151c07
|
d55922f3cdb2d4346c5ba63465d2870308646942
|
refs/heads/master
| 2021-06-16T03:49:00.764031
| 2017-05-18T12:01:05
| 2017-05-18T12:01:05
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 90
|
py
|
from django.contrib import admin
from .models import Voucher
admin.site.register(Voucher)
|
[
"digiwebguy@gmail.com"
] |
digiwebguy@gmail.com
|
5789908bf068c65a3e6da973128bbb0c6705d196
|
cdd90e6d02b93b7ee73feadc99625440b64853d4
|
/tallerAjax/tallerAjax/wsgi.py
|
ed97529410f17c96544e40b26656c1736f6a5d75
|
[] |
no_license
|
alvaromartinez986/tallerAjax
|
f8f741ffde4c2d2e4b68dccb73528c993a894681
|
e62c73c5ecc15b878458f54c4f62a5741bb96e62
|
refs/heads/master
| 2021-05-30T07:27:53.940582
| 2015-09-18T06:22:23
| 2015-09-18T06:22:23
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 395
|
py
|
"""
WSGI config for tallerAjax project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/1.7/howto/deployment/wsgi/
"""
import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "tallerAjax.settings")
from django.core.wsgi import get_wsgi_application
application = get_wsgi_application()
|
[
"martinez.alvaro@correounivalle.edu.co"
] |
martinez.alvaro@correounivalle.edu.co
|
a5e8d26bef7222b0c8b18c4ab01d38a4f6dd7c5c
|
c3592ad2229ef0b99b611765339ae86221931804
|
/DAY1/translation_word.py
|
1e5bb18823224b38a75207f8df8bc747690dba45
|
[] |
no_license
|
asd307769162/Python-Learning
|
5073eb71977418e317bc6467295be775eea28708
|
2be768ec8fddb594edcd386e22201ae18aa1928f
|
refs/heads/master
| 2021-05-18T16:41:11.114222
| 2018-04-14T03:24:51
| 2018-04-14T03:24:51
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 537
|
py
|
import urllib.request
import urllib.parse
import json
translation=input('请输入要翻译的内容:')
url= 'http://fy.iciba.com/ajax.php?a=fy'
data={}
data['f']='auto'
data['t']='auto'
data['w']=translation
data=urllib.parse.urlencode(data).encode('utf-8')
response =urllib.request.urlopen(url,data)
html=response.read().decode('utf-8')
json.loads(html)
target=json.loads(html)
answer=target['content']['word_mean']
print('原文:'+translation)
n=len(answer)
i=0
while i<n:
print('结果:'+answer[i])
i=i+1
|
[
"admin@busby.com.cn"
] |
admin@busby.com.cn
|
c05db998bdb2296022feab4c528a8fe046e2d833
|
b365e0a65ce204708b52959f08da0ae7605e69c2
|
/python/modules/kivydd/app/CAppThread.py
|
ede2bbfdf9ee5dbb311218d6648158e7f5179c71
|
[
"MIT"
] |
permissive
|
darwinbeing/deepdriving-tensorflow
|
af500f2caf6ffb9cc1f019fbdb79878e6a468a96
|
036a83871f3515b2c041bc3cd5e845f6d8f7b3b7
|
refs/heads/master
| 2021-06-26T15:41:18.031684
| 2017-08-23T13:11:37
| 2017-08-23T13:11:37
| 103,213,437
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,751
|
py
|
# The MIT license:
#
# Copyright 2017 Andre Netzeband
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of
# the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
# THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Note: The DeepDriving project on this repository is derived from the DeepDriving project devloped by the princeton
# university (http://deepdriving.cs.princeton.edu/). The above license only applies to the parts of the code, which
# were not a derivative of the original DeepDriving project. For the derived parts, the original license and
# copyright is still valid. Keep this in mind, when using code from this project.
import kivy
from kivy.app import App
from kivy.uix.widget import Widget
from .main_app import MainApp
import threading
class CAppThread():
_Name = "main"
_Memory = None
_App = None
_Thread = None
_IsExist = False
def __init__(self, Name):
self._Name = Name
def run(self, MainWindow):
kivy.require('1.10.0')
self._Memory = self.initMemory()
self._App = MainApp(MainWindow, self._Memory, self)
self._App.title = self._Name
self.initApp(self._Memory, self._App)
self._Thread = threading.Thread(target=self._mainLoop)
self._IsExit = False
self._Thread.start()
self._App.run()
self._IsExit = True
self._Thread.join()
self._Thread = None
self._cleanUp(self._Memory, self._App)
self._Memory = None
self._App.deleteAll()
self._App = None
def _mainLoop(self):
while self._IsExit == False:
if self.doLoop(self._Memory, self._App) == False:
break
def initMemory(self):
return None
def initApp(self, Memory, App):
pass
def doLoop(self, Memory, App):
return True
def _cleanUp(self, Memory, App):
pass
|
[
"andre.netzeband@hm.edu"
] |
andre.netzeband@hm.edu
|
e72d43a85c51a829ebef00ad4403ee76822eabb5
|
9fa429bcb1750317b962c1c0ed8d0be689ed1137
|
/gitview/gitview/gitview/product_settings.py
|
13783213241fec5109d7ff7e59c2a55fd517e21c
|
[] |
no_license
|
dfguan/gitview
|
4f870d9977133a4a70e11438a58cc8edd62f1b41
|
1594f29fd52d43d6483da5b8f023f934369b45f4
|
refs/heads/master
| 2021-05-27T03:36:20.768224
| 2014-02-25T03:04:07
| 2014-02-25T03:04:07
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 807
|
py
|
import os
from gitview.settings import *
DEBUG = False
TEMPLATE_DEBUG = DEBUG
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.mysql',
'NAME': 'gitview',
'USER': 'root',
'PASSWORD': '',
'HOST': '',
'PORT': '',
}
}
# Following settings must be changed for server environment
PROJECT_DATA_ROOT = '/usr/share/gitview'
TEMPLATE_DIRS = (
os.path.join(PROJECT_DATA_ROOT, 'templates'),
)
# Path to static files, that should be /usr/share/gitview/media
STATIC_ROOT = os.path.join(PROJECT_DATA_ROOT, 'static')
GITVIEW_DATA_ROOT = '/var/gitview'
# Path to store PDF report files
PDF_REPORTFILES = os.path.join(GITVIEW_DATA_ROOT, 'pdfs')
# Viewapp will clone projects to this path
PROJECT_DIR = os.path.join(GITVIEW_DATA_ROOT, 'projects')
|
[
"zyang@redhat.com"
] |
zyang@redhat.com
|
7b06a1a4ee0ccd926b9d516d17e90b5f44961331
|
7f4b902c164249f231acc53320b5cce6650abaed
|
/tests/helpers.py
|
a09a6ff493cc2a48076566955c7dae8879b9eaed
|
[
"MIT"
] |
permissive
|
flacerdk/smoke-signal
|
2322ce0b59278004c8665d6754e0317b6b58ed82
|
f6cf85dba87348f97d94e3e464e1eb552c1ea72e
|
refs/heads/master
| 2020-04-05T23:03:30.229076
| 2017-02-25T11:20:50
| 2017-02-25T11:20:50
| 32,870,595
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,648
|
py
|
import codecs
import json
from urllib.parse import urlparse
from utils.generate_feed import SampleFeed
def get_json(response):
return json.loads(codecs.decode(response.get_data(), "utf-8"))
def create_mock_rss(title, feed_path, num_entries):
feed = SampleFeed(title, num_entries)
feed.write_to_file(feed_path)
return feed_path
def add_feed(app, url):
data = json.dumps({"url": url})
return app.post("/api/feed", data=data,
content_type="application/json")
def add_mock_feed(test_app, title, feed_path, num_entries):
feed_path = create_mock_rss(title, feed_path, num_entries)
resp = add_feed(test_app, "file://" + feed_path)
return get_json(resp)
def add_entries(feed, num_entries):
title = feed["title"]
feed_path = urlparse(feed["url"]).path
new_feed = SampleFeed(title, num_entries)
new_feed.write_to_file(feed_path)
def refresh_feed(app, feed, num_entries):
add_entries(feed, num_entries)
return app.post("/api/feed/{}".format(feed["id"]))
def get_entries_response(app, feed):
app.post("/api/feed/{}".format(feed["id"]))
return app.get("/api/feed/{}".format(feed["id"]))
def change_first_entry(app, feed, data):
parsed_json = get_json(get_entries_response(app, feed))
entry_list = parsed_json["_embedded"]["entries"]
entry = entry_list[0]
return get_json(
change_entry_status(app, entry, data))["_embedded"]["entry"]
def change_entry_status(app, entry, data):
resp = app.post(
"/api/entry/{}".format(entry["id"]),
data=json.dumps(data),
content_type="application/json")
return resp
|
[
"fegolac@gmail.com"
] |
fegolac@gmail.com
|
cb883f0edecad79859e6b0bf8405b1f641e8f013
|
049500afdada566385fc4d80f3040a5b22b3f753
|
/Beatles.py
|
14c7f75af67fc2b1ab1808ade94d7a69e9eaa010
|
[] |
no_license
|
wyattm14/Song-Lyric-Generation
|
7db29b7ea4e2a52539fe1ba65baa66b2a64b08f6
|
4eaa297e9d4545cda946d2a9d4402256d8deb005
|
refs/heads/master
| 2022-04-21T19:12:04.063364
| 2020-04-26T00:32:52
| 2020-04-26T00:32:52
| 258,903,288
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 343
|
py
|
with open("test.txt", "r") as file:
lines = file.read().splitlines()
uniques = set()
for line in lines:
line.lower()
uniques |= set(line.split())
# print(f"Unique words: {len(uniques)}")
# print(uniques)
print(lines.count())
list = []
for w in uniques:
print(w)
list.append(w)
|
[
"wyattmiller@Wyatts-MBP.hsd1.co.comcast.net"
] |
wyattmiller@Wyatts-MBP.hsd1.co.comcast.net
|
9e2a5e831ec60facce6748b8c74c0304230be665
|
a5d211cc00e481482c2f7185e4bbb081c53f1be2
|
/src/LocalSaliencyModel/model.py
|
9326f9a0b58e0a88e54cd8106c2c338a8e67fda8
|
[
"MIT"
] |
permissive
|
noashin/local_global_attention_model
|
ca51b7a2fb71e3a4c61b429aa82cee3f4413793b
|
531e6a4cc1dc364a6a4168de1b9f972727a8aeb1
|
refs/heads/master
| 2022-12-05T23:15:43.564526
| 2020-08-26T14:56:27
| 2020-08-26T14:56:27
| 290,518,017
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,510
|
py
|
import sys
import pickle
import numpy as np
sys.path.append('./../')
sys.path.append('./../../')
from src.LocalGlobalAttentionModel.model import Model as parent_model
from .vel_param import VelParam as vel_param
from src.HMC.hmc import HMC
class Model(parent_model):
"""
This class describes a model where fixations are chosen from the static saliency
convolved with a Gaussian.
p(z_t|z_{t-1}) = s(t) * n(z_t|z_{t-1}, xi)
"""
def __init__(self, saliencies, xi):
super().__init__(saliencies)
self.xi = xi
self.gammas = None
def get_next_fix(self, im_ind, sub_ind, prev_fix, cur_fix, s_t):
"""
This method samples the next fixation given the current fixation from
p(z_t|z_{t-1}) = s(t) * n(z_t|z_{t-1}, xi).
It includes
:param im_ind: index of the current image
:param sub_ind:
:param prev_fix:
:param cur_fix: coordinates of the current fixation
:param s_t:
:return: [z_x, z_y] coordinates of the next fixation location.
"""
xi_val = self.xi.value
mean = cur_fix
rad_rows = (self.rows_grid - mean[0]) ** 2
rad_cols = (self.cols_grid - mean[1]) ** 2
# normal distribution over the entire image
gauss = np.exp(- rad_rows / (2 * xi_val[0]) - rad_cols / (2 * xi_val[1])) / \
(2 * np.pi * np.sqrt(xi_val[0] * xi_val[1]))
prob = gauss * self.saliencies[im_ind]
prob /= prob.sum()
# chose a pixel in the image from the distribution defined above
inds = np.random.choice(range(self.pixels_num), 1,
p=prob.flatten()) # choice uses the inverse transform method in 1d
next_fix = np.unravel_index(inds, self.saliencies[im_ind].shape)
next_fix = np.array([next_fix[0][0], next_fix[1][0]])
return next_fix, 0
def generate_gammas(self):
"""
In this model gamma = 1 for each data point.
"""
self.gammas = []
for i in range(len(self.fix_dists_2)):
self.gammas.append([])
for s in range(len(self.fix_dists_2[i])):
self.gammas[-1].append(np.zeros(self.fix_dists_2[i][s].shape[1]))
def sample(self, num_samples, save_steps, file_path):
"""
This methods generates samples from the posterior distribution of xi.
Since there is no explicit form for the posterior distribution of xi an HMC sampler is used.
See paper for further information.
:param num_samples: number of sampled to be generated.
:param save_steps: whether to save the chain
:param file_path: path where to save the chain
:return: list of length num_samples with samples of xi
"""
if not self.gammas:
self.generate_gammas()
vel = vel_param([0.1, 0.1])
delta = 1.5
n = 10
m = num_samples
# initiate an HMC instance
hmc = HMC(self.xi, vel, delta, n, m)
gammas_xi = [[self.gammas[i][s].copy() - 1] for i in range(len(self.gammas)) for s in
range(len(self.gammas[i]))]
# perform the sampling
hmc.HMC(gammas_xi, self.saliencies, self.fix_dists_2, self.dist_mat_per_fix)
samples_xi = hmc.get_samples()
if save_steps:
with open(file_path, 'wb') as f:
pickle.dump([samples_xi], f)
return samples_xi
def calc_prob_local(self, *args):
"""
This method calculates the probability of a local step which is always 0 in the case of this model.
:return: 0
"""
return 0
def calc_prob_global(self, im_ind, fixs_dists_2, sal_ts, fixs, for_nss=False):
"""
This method calculates the probability of a global step according to the local saliency model,
for an entire scanpath.
p(z_t|z_{t-1}) = s(z_t) * n(z_t|z_{t-1}, xi)
:param im_ind: index of the image
:param fixs_dists_2: an array of shape 3 x (T -1). see set_fix_dist_2 for description.
:param sal_ts: time series of the saliency value for each fixation. Array of length T.
:param fixs: fixation locations. Array of shape 2 x T
:param for_nss: whether to standerize the density for NSS or not.
:return: array of length T with the probability of each fixation
"""
xi = self.xi.value
radx = (self.rows_grid[:, :, np.newaxis] - fixs[im_ind][0][0, :-1]) ** 2
rady = (self.cols_grid[:, :, np.newaxis] - fixs[im_ind][0][1, :-1]) ** 2
gauss = np.exp(- radx / (2 * xi[0]) - rady / (2 * xi[1])) / (2 * np.pi * np.sqrt(xi[0] * xi[1]))
prob_all_pixels = gauss * self.saliencies[im_ind][:, :, np.newaxis]
if for_nss:
prob_global = prob_all_pixels / prob_all_pixels.sum(axis=(0, 1))
else:
# we assume here just one subject
sub = 0
X = fixs_dists_2[im_ind][sub]
nominator_gauss = np.exp(- 0.5 * X[0] / xi[0] - 0.5 * X[1] / xi[1]) / \
(2 * np.pi * np.sqrt(xi[0] * xi[1]))
nominator = nominator_gauss * sal_ts[im_ind][0][1:]
prob_global = nominator / prob_all_pixels.sum(axis=(0, 1))
return prob_global
def calc_ros(self, *args):
"""
This methods calculates the probability of a local step. In this model it is always 0.
:return: 0
"""
return 0
|
[
"noa.shinitski@gmail.com"
] |
noa.shinitski@gmail.com
|
6536b5bcc05825f3f3292d35495e36d9918b7ebb
|
f1c840c4f3bdb0fc5d97eba16f6718c1bca2ae50
|
/handlers/library/read_unread.py
|
c420dec74e27dd714ce31c620d05c037c9c7186c
|
[] |
no_license
|
dpvazquez20/ComicLib
|
01be35bb674f37240d131d912c2239fcafd17f6c
|
b7dfbd6d2c05b251e6bf08f7c93d691fa263eda9
|
refs/heads/master
| 2020-06-10T00:24:55.579127
| 2019-06-27T14:33:10
| 2019-06-27T14:33:10
| 193,528,678
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 11,094
|
py
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import webapp2
import time
import copy
from webapp2_extras import jinja2
from google.appengine.ext import ndb
from handlers.elements.sessions import BaseHandler
from handlers.lang.spa import lang as spa
from handlers.lang.eng import lang as eng
from models.db import User, ComicBook, Author, Shelving
""" Modify handler in the library home page
Get: redirect to the library home page
Post: it's responsible for modifying the comic data in the database"""
class ReadUnreadLibraryHandler(BaseHandler):
# Redirect to the library home page
def get(self):
self.redirect("/library")
# Modify a comic
def post(self):
jinja = jinja2.get_jinja2(app=self.app)
# Check if the client is logged in
if self.session.get('session_role') == 'client':
# If it's logged in, get the session variables, show the home page
# Get the comic attributes
state = self.request.get("state", "") # Comic read or unread
state = state.decode("utf8")
key = self.request.get("comic_key", "")
key = ndb.Key(urlsafe=key)
comic = key.get() # Get the comic with that key
keys_page_list = self.request.get("keys_page_list", "") # Comic keys (only comics in the current page)
aux_all_keys = self.request.get("all_keys", "") # All the comic keys (for the order field)
# Initialize variables
aux = list() # Support variable
aux3 = list() # Support variable
all_comics = list() # All comics (for the user search field)
shelving_name = list() # Shelving name
# Get the shelvings
shelvings = Shelving.query(Shelving.username == self.session.get('session_name')).order(Shelving.name).fetch()
# Transform the HTML string in a list
all_keys = copy.copy(aux_all_keys)
aux_all_keys = self.transform_keys(aux_all_keys)
# Get all comics that belongs to the current user
if not self.session.get("shelving"):
comics = ComicBook.query(ComicBook.users.username == self.session.get('session_name')).order(ComicBook.users.addition_date) # All comics ordered by the addition date
all_comics_user = copy.copy(comics) # ALL comics (for the search field)
all_comics_user = all_comics_user.fetch()
else:
key = ndb.Key(urlsafe=self.session.get("shelving"))
comics = ComicBook.query(ComicBook.users.username == self.session.get('session_name'), ComicBook.users.shelving == key).order(ComicBook.users.addition_date) # Comics in the shelving ordered by the addition date
shelving = key.get()
shelving_name = shelving.name
del shelving
all_comics_user = ComicBook.query(ComicBook.users.username == self.session.get('session_name')).fetch() # ALL comics (for the search field)
for comic2 in comics: # Get ALL the keys
aux.append(comic2.key.urlsafe())
del comic2
for key3 in aux_all_keys: # Compare the "list" given by HTML with aux for making the new all keys list (all_keys)
for key2 in aux:
if key3 == str(key2):
key2 = ndb.Key(urlsafe=key2)
aux3.append(key2)
break
del key2
del key3
# Get all db comics
offset = (self.session.get('current_number_page') - 1) * self.session.get('num_elems_page')
comics = ComicBook.query(ComicBook.key.IN(aux3)).fetch(self.session.get('num_elems_page'), offset=offset)
# Get the comics (if --> default, else --> see shelving)
if not self.session.get('shelving'):
comics = self.get_comics_read_and_without_shelving(comics) # Get read comics and the ones that aren't in a shelving
else:
self.get_comics_read(comics) # Get read comics
# Set the default language of the app
if self.session['session_idiom'] == "spa":
lang = spa # Spanish strings
elif self.session['session_idiom'] == "eng":
lang = eng # English strings
else:
lang = eng # Default english
# Variables to be sent to the HTML page
values = {
"lang": lang, # Language strings
"session_name": self.session.get('session_name'), # User name
"session_role": self.session.get('session_role'), # User role
"session_picture": self.get_session_image(self.session.get('session_name')), # User picture
"session_genre": self.session.get('session_genre'), # User genre
"comics": comics, # Comics
"current_number_page": self.session.get('current_number_page'), # Current number page
"pages": self.session.get('pages'), # Pages for the pagination
"last_page": self.session.get('last_page'), # Last page number
"keys_page_list": keys_page_list, # Comics keys that are currently in the page
"all_keys": all_keys, # All comic keys
"all_comics_user": all_comics_user, # All user comic (for the search field)
"all_comics": all_comics, # ALL comics (for the user search field)
"shelvings": shelvings, # All user shelvings
"shelving_name": shelving_name # Shelving name
}
# If the key is from an comic
if comic and comic is not None and (state == "read" or state == "unread"):
# Modify the comic state
for user_comic in comic.users:
if user_comic.username == self.session.get("session_name"):
user_comic.state = state
aux2 = comic.put()
time.sleep(1)
# If the modification was successful
if aux2 is not None:
# Variables to be sent to the HTML page
values["ok_message"] = lang["comic_modified_successfully"] # Ok message (Comic modified successfully)
# Get all db Comics (Limited to the number given by the session variable [10 by default])
comics = ComicBook.query(ComicBook.key.IN(aux3)).fetch(self.session.get('num_elems_page'), offset=offset)
# Get the comics (if --> default, else --> see shelving)
if not self.session.get('shelving'):
comics = self.get_comics_read_and_without_shelving(comics) # Get read comics and the ones that aren't in a shelving
else:
self.get_comics_read(comics) # Get read comics
values["comics"] = comics
# Else show an error message
else:
# Variables to be sent to the HTML page
values["error_message"] = lang["error_modify"] # Error message (The modification couldn't be done)
del aux2 # Delete variables to free memory
# Else show an error message
else:
# Values to be sent to the HTML page
values["error_message"] = lang["comic_not_modified"] # Error message (Comic couldn't be modified)
all_comics_user = ComicBook.query(ComicBook.users.username == self.session.get('session_name')).fetch()
values["all_comics_user"] = all_comics_user
all_comics = ComicBook.query().fetch()
del lang, key, comic, keys_page_list, aux_all_keys, aux, aux3, \
all_comics_user, offset, all_keys, all_comics, shelving_name # Delete variables to free memory
self.session_store.save_sessions(self.response) # Save sessions
self.response.write(jinja.render_template("/library/default.html", **values)) # Go to the library home page
# If it isn't logged in, redirect to the login page
else:
self.redirect("/login")
# Transform the HTML string in a list
def transform_keys(self, keys):
keys = keys.replace("[", "")
keys = keys.replace("]", "")
keys = keys.replace("'", "")
keys = keys.replace('"', '')
keys = keys.split(", ")
return keys
# Get the session user image
def get_session_image(self, name):
user = User.query(User.name == name).fetch()
return user[0].picture
# Get all authors for the add author
def get_authors(self):
authors = Author.query().fetch()
return authors
# Get the read comics and the ones that aren't in a shelving
def get_comics_read_and_without_shelving(self, comics):
if len(comics) > 0:
aux = list()
for i in range(0, len(comics)):
for user_comic in comics[i].users:
if user_comic.username == self.session.get('session_name'):
if user_comic.state == "read":
comics[i].is_read = True
else:
comics[i].is_read = False
if user_comic.shelving is None:
aux.append(comics[i])
del user_comic
del i
return aux
# Get the read comics
def get_comics_read(self, comics):
if len(comics) > 0:
for i in range(0, len(comics)):
for user_comic in comics[i].users:
if user_comic.username == self.session.get('session_name'):
if user_comic.state == "read":
comics[i].is_read = True
else:
comics[i].is_read = False
del user_comic
del i
app = webapp2.WSGIApplication([], debug=True)
|
[
"noreply@github.com"
] |
dpvazquez20.noreply@github.com
|
8640d72e0036ff5b463c83ed75490757728cf6e7
|
243770b01999a2d2854207da6032c9ea420a8e20
|
/moldyn/dumpPlotProjections.py
|
472c6ed174b9523933b201ce347e106677bb071f
|
[] |
no_license
|
acadien/matcalc
|
54a9b9d5a944f9b4a27f3e0dc905c40391da9c07
|
037d7080c07856877d7a3f5f9dcbb2dec5f38dd1
|
refs/heads/master
| 2016-09-11T08:28:07.310789
| 2015-05-19T18:14:56
| 2015-05-19T18:14:56
| 3,674,764
| 8
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,992
|
py
|
#!/usr/bin/python
import plotRemote as pr #mine
import sys
import pylab as pl
def usage():
print "%s <dump file with atomic coordinates>"%sys.argv[0].split("/")[-1]
if len(sys.argv)!=2:
usage()
exit(0)
#Prepare data
fname=sys.argv[1]
fraw = open(fname,"r").readlines()
#Prepare plotting
mxc=20
iline=0
natoms=0
c=0
while True:
cfgFound=False
info="Configuration Number %d\n"%c
for i,line in enumerate(fraw[iline:]):
if "ITEM: TIMESTEP" in line:
info+="Timestep = %d\n"%int(fraw[iline+i+1])
if "ITEM: NUMBER OF ATOMS" in line:
natoms=int(fraw[iline+i+1])
info+="N-Atoms = %d\n"%natoms
if "ITEM: ATOMS" in line:
cfgFound=True
iline+=i+1
break
#no more configurations, stop plotting yo
if not cfgFound: break
c+=1
#Parsing function for parsing atomic coordinates and types
parse=lambda x:[int(x[0]),float(x[1])/mxc,float(x[2]),float(x[3]),float(x[4])]
#Apply the parse on the portion of the datafile containing coordinates
number,colors,xs,ys,zs = \
zip(*[parse(line.split()) for line in fraw[iline:iline+natoms]])
iline+=natoms
cmn=min(colors)
cmx=max(colors)
xmn,xmx=min(xs),max(xs)
ymn,ymx=min(ys),max(ys)
zmn,zmx=min(zs),max(zs)
pl.subplot(221)
pl.scatter(xs,ys,c=colors,vmin=cmn,vmax=cmx,marker='+',faceted=False)
pl.xlim(xmn,xmx)
pl.ylim(ymn,ymx)
pl.title("Z")
pl.subplot(222)
pl.scatter(xs,zs,c=colors,vmin=cmn,vmax=cmx,marker='+',faceted=False)
pl.title("Y")
pl.xlim(xmn,xmx)
pl.ylim(zmn,zmx)
pl.subplot(223)
pl.scatter(ys,zs,c=colors,vmin=cmn,vmax=cmx,marker='+',faceted=False)
pl.title("X")
pl.xlim(ymn,ymx)
pl.ylim(zmn,zmx)
pl.subplot(224)
pl.text(0,0.1,info)
pl.gca().set_xticks([])
pl.gca().set_yticks([])
pl.axis('off')
#pr.prshow("atomProjection.png")
pl.show()
pl.gca().clear()
|
[
"adamcadien@gmail.com"
] |
adamcadien@gmail.com
|
8195edf8895623ef20cce4da3bd20701b61e13b8
|
57235522083cb011ca26aae8fdda96ee71805593
|
/UdemyPrograms/UserInputExcer/user_input.py
|
d7e4badfc059ad32cb638abf18d3e9e5c2b7428c
|
[] |
no_license
|
mrparmer/Python
|
2fef63ecc936692ec5d99e72ac66bb931f2242c2
|
5d3b6b447889721481176708d4be87c86e024655
|
refs/heads/master
| 2020-03-29T01:23:42.001973
| 2018-10-07T02:41:51
| 2018-10-07T02:41:51
| 149,386,382
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 64
|
py
|
user_input= input("Enter a number: ")
print(int(user_input)**2)
|
[
"37225891+mrparmer@users.noreply.github.com"
] |
37225891+mrparmer@users.noreply.github.com
|
35ac0b974d2e672a37a882191546ee8fa07e7d3d
|
0cc138aa5d5316cdc35cb7ba703df30a5a981cdf
|
/stockcode_update.py
|
a1ae9af3bbe0108df8095ebcb7627e9f0f73b2ac
|
[] |
no_license
|
tyronedong/AnalystReportResearch
|
d47e0f1199b0562fc6534e34b5fcf7c768296b6c
|
ab3259ba4b169a104574725036f068d93f5e16bb
|
refs/heads/master
| 2021-06-14T16:12:30.277223
| 2017-03-28T12:53:04
| 2017-03-28T12:53:04
| 72,734,477
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 608
|
py
|
# -*- coding: utf-8 -*-
from pymongo import *
client = MongoClient('localhost', 27017)
db = client.AnalystReport
collection1 = db.Reports
insert_coll = db.Report
table_file = open('./data/id_code_table.txt')
lines = table_file.readlines()
dict = {}
for line in lines:
if(line == '\n'):
continue
tokens = line.split('\t')
dict[tokens[0]] = tokens[1].replace('\n', '')
for report in collection1.find({}):
if dict.get(report["_id"]) == None:
continue
report["StockCode"] = dict[report["_id"]]
insert_coll.insert(report)
print report["_id"], report["StockCode"]
|
[
"noreply@github.com"
] |
tyronedong.noreply@github.com
|
4a3ff9a8e88e8868aec89209334ea37fbf3fb0d3
|
a462a24ff937e151e8151f3a1bdc9c3714b12c0e
|
/2021EJOR/scripts/meprcw/meprcw_8_2001.py
|
293656891fc70f001ebe66c6ec8d211cdbdef93c
|
[] |
no_license
|
noeliarico/kemeny
|
b4cbcac57203237769252de2c50ce959aa4ca50e
|
50819f8bf0d19fb29a0b5c6d2ee031e8a811497d
|
refs/heads/main
| 2023-03-29T14:36:37.931286
| 2023-03-16T09:04:12
| 2023-03-16T09:04:12
| 330,797,494
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 171,087
|
py
|
import numpy as np
import pandas as pd
import time
from kemeny import algorithms as alg
rep = 1
results = np.zeros(0).reshape(0,7+rep)
##############################################################
om = np.array([
[0,1006,965,883,1004,920,1012,963],
[995,0,1001,982,1028,960,932,979],
[1036,1000,0,924,978,987,1013,966],
[1118,1019,1077,0,1004,995,995,1025],
[997,973,1023,997,0,961,994,944],
[1081,1041,1014,1006,1040,0,1004,969],
[989,1069,988,1006,1007,997,0,992],
[1038,1022,1035,976,1057,1032,1009,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 1, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1013,1019,1005,971,1046,999,1053],
[988,0,988,976,970,1014,973,987],
[982,1013,0,1002,1022,1035,978,1024],
[996,1025,999,0,1013,1014,964,1020],
[1030,1031,979,988,0,1059,1006,1019],
[955,987,966,987,942,0,940,1005],
[1002,1028,1023,1037,995,1061,0,1043],
[948,1014,977,981,982,996,958,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 2, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1053,1044,970,997,1036,1006,1007],
[948,0,1007,1031,950,994,970,957],
[957,994,0,976,943,971,963,978],
[1031,970,1025,0,957,991,939,1016],
[1004,1051,1058,1044,0,1023,991,975],
[965,1007,1030,1010,978,0,1025,967],
[995,1031,1038,1062,1010,976,0,1009],
[994,1044,1023,985,1026,1034,992,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 3, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,993,992,1011,1031,1027,1016,971],
[1008,0,1009,1048,1034,1027,1049,998],
[1009,992,0,1015,1019,988,990,998],
[990,953,986,0,1034,993,1005,967],
[970,967,982,967,0,978,952,952],
[974,974,1013,1008,1023,0,1025,971],
[985,952,1011,996,1049,976,0,1026],
[1030,1003,1003,1034,1049,1030,975,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 4, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1024,983,968,1027,1015,1024,1001],
[977,0,970,982,983,960,957,958],
[1018,1031,0,1009,1005,1001,1007,987],
[1033,1019,992,0,1036,1020,1014,976],
[974,1018,996,965,0,977,972,954],
[986,1041,1000,981,1024,0,987,962],
[977,1044,994,987,1029,1014,0,955],
[1000,1043,1014,1025,1047,1039,1046,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 5, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1016,994,1007,1003,1003,1036,999],
[985,0,994,969,1001,982,1016,1018],
[1007,1007,0,1000,1012,991,1065,1010],
[994,1032,1001,0,1006,979,1059,1012],
[998,1000,989,995,0,998,1025,1009],
[998,1019,1010,1022,1003,0,1030,1007],
[965,985,936,942,976,971,0,988],
[1002,983,991,989,992,994,1013,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 6, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,990,1018,1000,971,963,995,956],
[1011,0,1008,1011,999,974,966,985],
[983,993,0,979,965,959,997,965],
[1001,990,1022,0,1005,975,982,956],
[1030,1002,1036,996,0,1019,1020,1008],
[1038,1027,1042,1026,982,0,1017,993],
[1006,1035,1004,1019,981,984,0,955],
[1045,1016,1036,1045,993,1008,1046,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 7, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,998,1032,1034,972,1066,1028,987],
[1003,0,1017,981,1005,1013,1015,994],
[969,984,0,993,993,1053,1050,966],
[967,1020,1008,0,999,1095,1009,955],
[1029,996,1008,1002,0,1053,1011,1028],
[935,988,948,906,948,0,1005,952],
[973,986,951,992,990,996,0,980],
[1014,1007,1035,1046,973,1049,1021,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 8, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,970,1024,984,1029,989,1021,1029],
[1031,0,1025,1004,1016,1004,997,1023],
[977,976,0,985,1021,1014,1006,1016],
[1017,997,1016,0,1010,1027,1015,992],
[972,985,980,991,0,964,988,996],
[1012,997,987,974,1037,0,994,1006],
[980,1004,995,986,1013,1007,0,985],
[972,978,985,1009,1005,995,1016,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 9, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,993,999,982,941,1023,959,1002],
[1008,0,1083,968,976,1044,956,993],
[1002,918,0,950,981,1040,962,963],
[1019,1033,1051,0,1008,1028,985,997],
[1060,1025,1020,993,0,1051,1035,1033],
[978,957,961,973,950,0,960,941],
[1042,1045,1039,1016,966,1041,0,1010],
[999,1008,1038,1004,968,1060,991,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 10, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,920,960,973,930,1051,973,974],
[1081,0,1028,1017,1001,1081,984,1053],
[1041,973,0,972,969,1071,967,998],
[1028,984,1029,0,973,1069,1015,1021],
[1071,1000,1032,1028,0,1100,979,1048],
[950,920,930,932,901,0,910,958],
[1028,1017,1034,986,1022,1091,0,1039],
[1027,948,1003,980,953,1043,962,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 11, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1004,1040,986,994,964,1000,968],
[997,0,1086,1005,1008,967,1029,1031],
[961,915,0,957,977,927,933,933],
[1015,996,1044,0,997,948,976,975],
[1007,993,1024,1004,0,934,995,955],
[1037,1034,1074,1053,1067,0,1004,974],
[1001,972,1068,1025,1006,997,0,972],
[1033,970,1068,1026,1046,1027,1029,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 12, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,968,961,987,1008,1043,983,1029],
[1033,0,1043,1047,1023,1030,988,1058],
[1040,958,0,993,963,1005,912,1031],
[1014,954,1008,0,999,1035,956,1089],
[993,978,1038,1002,0,1033,1014,1055],
[958,971,996,966,968,0,918,1005],
[1018,1013,1089,1045,987,1083,0,1104],
[972,943,970,912,946,996,897,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 13, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1029,1030,1006,975,1037,983,1026],
[972,0,1004,981,947,985,990,994],
[971,997,0,981,978,1008,1004,1005],
[995,1020,1020,0,960,1013,999,987],
[1026,1054,1023,1041,0,1003,1022,986],
[964,1016,993,988,998,0,997,1006],
[1018,1011,997,1002,979,1004,0,1010],
[975,1007,996,1014,1015,995,991,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 14, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1017,1053,1062,1025,1019,981,1042],
[984,0,1030,1019,995,1001,975,999],
[948,971,0,1013,957,966,920,997],
[939,982,988,0,984,984,950,1033],
[976,1006,1044,1017,0,1001,1003,1037],
[982,1000,1035,1017,1000,0,1001,1043],
[1020,1026,1081,1051,998,1000,0,1068],
[959,1002,1004,968,964,958,933,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 15, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,957,1019,949,1003,975,957,982],
[1044,0,998,970,1004,973,982,983],
[982,1003,0,936,993,964,954,996],
[1052,1031,1065,0,1034,1019,988,1013],
[998,997,1008,967,0,974,1001,1017],
[1026,1028,1037,982,1027,0,1024,1029],
[1044,1019,1047,1013,1000,977,0,1024],
[1019,1018,1005,988,984,972,977,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 16, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,999,1021,993,1003,1004,990,980],
[1002,0,1030,1016,1036,1036,1001,985],
[980,971,0,998,994,986,991,988],
[1008,985,1003,0,983,1016,971,985],
[998,965,1007,1018,0,985,982,972],
[997,965,1015,985,1016,0,965,973],
[1011,1000,1010,1030,1019,1036,0,1001],
[1021,1016,1013,1016,1029,1028,1000,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 17, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,968,989,993,925,918,934,876],
[1033,0,1019,987,982,985,1052,941],
[1012,982,0,1043,1011,987,1003,1002],
[1008,1014,958,0,1042,1055,974,963],
[1076,1019,990,959,0,990,1001,981],
[1083,1016,1014,946,1011,0,1065,952],
[1067,949,998,1027,1000,936,0,945],
[1125,1060,999,1038,1020,1049,1056,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 18, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,973,1003,928,947,985,984,908],
[1028,0,1088,1008,1088,1032,1022,980],
[998,913,0,933,985,992,949,948],
[1073,993,1068,0,1029,1054,1004,1019],
[1054,913,1016,972,0,979,957,941],
[1016,969,1009,947,1022,0,995,944],
[1017,979,1052,997,1044,1006,0,970],
[1093,1021,1053,982,1060,1057,1031,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 19, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,991,1034,1009,1017,1012,974,1020],
[1010,0,1008,1037,1007,1041,1041,985],
[967,993,0,1008,1035,1037,991,967],
[992,964,993,0,1038,1006,993,1004],
[984,994,966,963,0,966,954,971],
[989,960,964,995,1035,0,955,988],
[1027,960,1010,1008,1047,1046,0,996],
[981,1016,1034,997,1030,1013,1005,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 20, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1023,996,971,941,1005,1010,979],
[978,0,974,982,973,1006,969,1024],
[1005,1027,0,1020,956,1058,1055,1018],
[1030,1019,981,0,1024,1017,1009,1015],
[1060,1028,1045,977,0,1041,1004,1016],
[996,995,943,984,960,0,1005,964],
[991,1032,946,992,997,996,0,992],
[1022,977,983,986,985,1037,1009,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 21, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,996,1031,1012,981,1039,1060,997],
[1005,0,1011,1028,1016,1007,1102,994],
[970,990,0,1001,974,1003,1046,953],
[989,973,1000,0,964,1019,1053,986],
[1020,985,1027,1037,0,1034,1055,1024],
[962,994,998,982,967,0,1029,943],
[941,899,955,948,946,972,0,920],
[1004,1007,1048,1015,977,1058,1081,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 22, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1036,996,1032,1017,1061,1037,1048],
[965,0,952,976,981,976,957,914],
[1005,1049,0,1029,1057,1011,978,988],
[969,1025,972,0,1034,1068,1036,944],
[984,1020,944,967,0,1010,1004,887],
[940,1025,990,933,991,0,1044,984],
[964,1044,1023,965,997,957,0,997],
[953,1087,1013,1057,1114,1017,1004,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 23, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,994,1008,996,1050,1039,1018,1031],
[1007,0,1014,1017,976,1045,958,1015],
[993,987,0,983,982,1007,1015,1020],
[1005,984,1018,0,1019,1032,1000,1004],
[951,1025,1019,982,0,993,1010,984],
[962,956,994,969,1008,0,1001,1045],
[983,1043,986,1001,991,1000,0,993],
[970,986,981,997,1017,956,1008,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 24, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,988,991,1040,1039,1013,1028,1006],
[1013,0,989,1017,1057,953,1028,1009],
[1010,1012,0,1018,1042,968,1004,1011],
[961,984,983,0,1008,935,1015,1001],
[962,944,959,993,0,959,955,993],
[988,1048,1033,1066,1042,0,1043,1045],
[973,973,997,986,1046,958,0,989],
[995,992,990,1000,1008,956,1012,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 25, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,990,960,998,996,978,969,991],
[1011,0,1011,996,1006,1018,986,986],
[1041,990,0,999,1047,1048,1001,1015],
[1003,1005,1002,0,1067,1046,992,1018],
[1005,995,954,934,0,965,994,966],
[1023,983,953,955,1036,0,989,978],
[1032,1015,1000,1009,1007,1012,0,1005],
[1010,1015,986,983,1035,1023,996,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 26, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,993,984,1022,1034,1002,1022,1031],
[1008,0,981,1015,1009,956,972,981],
[1017,1020,0,1052,1013,977,1015,1035],
[979,986,949,0,1032,944,968,1016],
[967,992,988,969,0,960,965,998],
[999,1045,1024,1057,1041,0,1000,1030],
[979,1029,986,1033,1036,1001,0,1017],
[970,1020,966,985,1003,971,984,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 27, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1008,1002,1020,952,1018,1016,1024],
[993,0,1055,1031,979,1003,1079,1085],
[999,946,0,1031,1021,1010,1038,1016],
[981,970,970,0,942,1016,1025,989],
[1049,1022,980,1059,0,1065,1091,1077],
[983,998,991,985,936,0,1022,1015],
[985,922,963,976,910,979,0,975],
[977,916,985,1012,924,986,1026,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 28, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1020,1015,1034,1012,1052,1016,1000],
[981,0,1028,970,1030,1026,970,940],
[986,973,0,917,1009,1006,931,934],
[967,1031,1084,0,1036,1012,1011,981],
[989,971,992,965,0,998,987,1004],
[949,975,995,989,1003,0,993,952],
[985,1031,1070,990,1014,1008,0,1000],
[1001,1061,1067,1020,997,1049,1001,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 29, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,991,1000,1005,1016,1004,1001,1030],
[1010,0,1010,979,1050,1001,987,977],
[1001,991,0,966,1003,983,977,983],
[996,1022,1035,0,1027,1024,1005,1005],
[985,951,998,974,0,981,976,988],
[997,1000,1018,977,1020,0,992,1006],
[1000,1014,1024,996,1025,1009,0,1008],
[971,1024,1018,996,1013,995,993,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 30, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,956,977,1009,974,904,1032,925],
[1045,0,953,1023,1006,900,946,963],
[1024,1048,0,1045,1075,976,1024,962],
[992,978,956,0,1000,954,989,961],
[1027,995,926,1001,0,1005,1017,949],
[1097,1101,1025,1047,996,0,1011,1019],
[969,1055,977,1012,984,990,0,989],
[1076,1038,1039,1040,1052,982,1012,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 31, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1038,1047,1057,1021,1020,998,988],
[963,0,1021,1014,978,998,984,1014],
[954,980,0,983,984,981,987,994],
[944,987,1018,0,1015,981,1018,979],
[980,1023,1017,986,0,991,1028,1003],
[981,1003,1020,1020,1010,0,991,959],
[1003,1017,1014,983,973,1010,0,984],
[1013,987,1007,1022,998,1042,1017,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 32, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1006,996,997,991,1036,996,1022],
[995,0,983,1011,995,1045,998,1023],
[1005,1018,0,995,1004,1063,985,1040],
[1004,990,1006,0,998,1040,1012,993],
[1010,1006,997,1003,0,1057,993,1019],
[965,956,938,961,944,0,959,971],
[1005,1003,1016,989,1008,1042,0,1005],
[979,978,961,1008,982,1030,996,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 33, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,923,1051,1063,999,999,1086,1045],
[1078,0,1144,1141,981,1004,1126,1112],
[950,857,0,1000,884,941,1083,918],
[938,860,1001,0,974,975,1136,1004],
[1002,1020,1117,1027,0,926,1093,1079],
[1002,997,1060,1026,1075,0,1101,1011],
[915,875,918,865,908,900,0,946],
[956,889,1083,997,922,990,1055,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 34, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1042,1024,997,964,931,932,1027],
[959,0,986,959,936,940,925,998],
[977,1015,0,982,957,959,967,971],
[1004,1042,1019,0,984,953,1006,1035],
[1037,1065,1044,1017,0,1004,993,1031],
[1070,1061,1042,1048,997,0,1032,1088],
[1069,1076,1034,995,1008,969,0,1012],
[974,1003,1030,966,970,913,989,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 35, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1058,979,1075,986,961,1017,1048],
[943,0,949,967,958,953,971,982],
[1022,1052,0,1081,981,1022,974,1029],
[926,1034,920,0,945,942,915,929],
[1015,1043,1020,1056,0,966,1032,1015],
[1040,1048,979,1059,1035,0,1063,970],
[984,1030,1027,1086,969,938,0,1009],
[953,1019,972,1072,986,1031,992,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 36, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,986,950,949,978,984,1018,977],
[1015,0,943,957,1004,971,1014,996],
[1051,1058,0,1019,1041,1033,1062,998],
[1052,1044,982,0,1043,997,1061,1028],
[1023,997,960,958,0,947,979,937],
[1017,1030,968,1004,1054,0,1042,1016],
[983,987,939,940,1022,959,0,972],
[1024,1005,1003,973,1064,985,1029,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 37, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1008,1113,1077,989,1242,1097,1024],
[993,0,1026,911,892,1113,1081,1028],
[888,975,0,930,987,1233,987,1009],
[924,1090,1071,0,1064,1205,1123,965],
[1012,1109,1014,937,0,1099,1120,991],
[759,888,768,796,902,0,851,813],
[904,920,1014,878,881,1150,0,942],
[977,973,992,1036,1010,1188,1059,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 38, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,993,1062,962,1002,1015,953,1001],
[1008,0,992,982,966,1003,979,947],
[939,1009,0,935,997,912,970,935],
[1039,1019,1066,0,1026,995,964,941],
[999,1035,1004,975,0,949,914,932],
[986,998,1089,1006,1052,0,1010,1003],
[1048,1022,1031,1037,1087,991,0,980],
[1000,1054,1066,1060,1069,998,1021,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 39, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1039,1021,1020,1009,986,997,989],
[962,0,976,1019,978,990,951,976],
[980,1025,0,1026,1011,1006,1005,1003],
[981,982,975,0,990,1019,988,1003],
[992,1023,990,1011,0,1002,1009,1014],
[1015,1011,995,982,999,0,1020,1032],
[1004,1050,996,1013,992,981,0,1032],
[1012,1025,998,998,987,969,969,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 40, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1009,999,991,970,981,998,998],
[992,0,1008,995,971,1006,981,974],
[1002,993,0,1007,964,988,975,999],
[1010,1006,994,0,976,1012,1017,999],
[1031,1030,1037,1025,0,1016,1021,975],
[1020,995,1013,989,985,0,971,1008],
[1003,1020,1026,984,980,1030,0,952],
[1003,1027,1002,1002,1026,993,1049,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 41, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1017,1010,987,951,964,1007,936],
[984,0,971,962,984,980,1012,1003],
[991,1030,0,986,960,981,1021,982],
[1014,1039,1015,0,1012,987,981,996],
[1050,1017,1041,989,0,999,1001,999],
[1037,1021,1020,1014,1002,0,1013,995],
[994,989,980,1020,1000,988,0,985],
[1065,998,1019,1005,1002,1006,1016,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 42, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1004,1049,992,1023,980,1032,987],
[997,0,1085,1024,933,972,1007,1062],
[952,916,0,959,958,948,960,958],
[1009,977,1042,0,991,967,962,1014],
[978,1068,1043,1010,0,996,1012,1026],
[1021,1029,1053,1034,1005,0,1041,993],
[969,994,1041,1039,989,960,0,973],
[1014,939,1043,987,975,1008,1028,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 43, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,921,993,928,915,1022,922,958],
[1080,0,1014,1085,1014,1066,1020,981],
[1008,987,0,1009,1011,1059,975,947],
[1073,916,992,0,1012,1074,997,989],
[1086,987,990,989,0,1053,995,980],
[979,935,942,927,948,0,935,929],
[1079,981,1026,1004,1006,1066,0,1043],
[1043,1020,1054,1012,1021,1072,958,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 44, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,966,960,1018,984,1003,987,1016],
[1035,0,959,1001,987,1015,1048,1027],
[1041,1042,0,1025,999,1015,1036,1013],
[983,1000,976,0,961,973,998,1011],
[1017,1014,1002,1040,0,1002,997,1009],
[998,986,986,1028,999,0,1019,1006],
[1014,953,965,1003,1004,982,0,1010],
[985,974,988,990,992,995,991,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 45, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,998,1043,1021,1030,1023,991,1005],
[1003,0,1015,1011,1047,1013,1015,993],
[958,986,0,987,979,1007,987,995],
[980,990,1014,0,1000,995,966,969],
[971,954,1022,1001,0,1007,960,984],
[978,988,994,1006,994,0,969,996],
[1010,986,1014,1035,1041,1032,0,1015],
[996,1008,1006,1032,1017,1005,986,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 46, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,988,977,984,1000,989,978,1038],
[1013,0,1030,1009,996,995,1018,1045],
[1024,971,0,985,998,968,994,1018],
[1017,992,1016,0,981,982,1015,1022],
[1001,1005,1003,1020,0,1021,997,1027],
[1012,1006,1033,1019,980,0,1019,1038],
[1023,983,1007,986,1004,982,0,1041],
[963,956,983,979,974,963,960,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 47, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1067,975,938,992,1030,938,938],
[934,0,958,949,959,999,936,936],
[1026,1043,0,1009,993,1068,978,1026],
[1063,1052,992,0,1064,996,1032,1067],
[1009,1042,1008,937,0,1071,938,997],
[971,1002,933,1005,930,0,1027,966],
[1063,1065,1023,969,1063,974,0,1026],
[1063,1065,975,934,1004,1035,975,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 48, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,979,970,929,937,963,967,913],
[1022,0,1009,1062,988,966,994,1049],
[1031,992,0,1034,962,922,967,982],
[1072,939,967,0,935,871,982,931],
[1064,1013,1039,1066,0,975,997,935],
[1038,1035,1079,1130,1026,0,1021,915],
[1034,1007,1034,1019,1004,980,0,978],
[1088,952,1019,1070,1066,1086,1023,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 49, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,992,1010,982,1006,1008,962,1024],
[1009,0,1032,1024,979,1031,1013,988],
[991,969,0,983,969,981,995,996],
[1019,977,1018,0,960,1014,1001,983],
[995,1022,1032,1041,0,1030,1008,1049],
[993,970,1020,987,971,0,976,991],
[1039,988,1006,1000,993,1025,0,1031],
[977,1013,1005,1018,952,1010,970,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 50, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,741,653,999,877,1387,909,954],
[1260,0,1075,1314,828,1402,1358,1510],
[1348,926,0,1186,958,901,1235,1273],
[1002,687,815,0,857,1066,1128,1009],
[1124,1173,1043,1144,0,1112,819,884],
[614,599,1100,935,889,0,688,1137],
[1092,643,766,873,1182,1313,0,1096],
[1047,491,728,992,1117,864,905,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 51, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,958,1019,991,988,934,914,974],
[1043,0,1061,974,986,973,952,1015],
[982,940,0,993,916,934,948,980],
[1010,1027,1008,0,971,966,1032,935],
[1013,1015,1085,1030,0,1022,1048,990],
[1067,1028,1067,1035,979,0,1038,1038],
[1087,1049,1053,969,953,963,0,987],
[1027,986,1021,1066,1011,963,1014,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 52, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,996,951,949,989,1020,982,1022],
[1005,0,993,1002,978,1054,1018,1015],
[1050,1008,0,1031,998,1068,1000,1027],
[1052,999,970,0,1002,1014,1035,1041],
[1012,1023,1003,999,0,1042,1037,1035],
[981,947,933,987,959,0,928,984],
[1019,983,1001,966,964,1073,0,1022],
[979,986,974,960,966,1017,979,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 53, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1026,999,1019,1094,949,1026,942],
[975,0,1031,1019,1018,907,961,1051],
[1002,970,0,1071,1013,862,1068,1046],
[982,982,930,0,999,961,1054,963],
[907,983,988,1002,0,926,1003,993],
[1052,1094,1139,1040,1075,0,1081,981],
[975,1040,933,947,998,920,0,950],
[1059,950,955,1038,1008,1020,1051,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 54, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,993,990,1002,1007,1002,1019,1003],
[1008,0,997,1005,992,1025,1025,971],
[1011,1004,0,987,1012,1041,1042,984],
[999,996,1014,0,1005,1037,1011,1010],
[994,1009,989,996,0,1028,1011,995],
[999,976,960,964,973,0,1003,997],
[982,976,959,990,990,998,0,994],
[998,1030,1017,991,1006,1004,1007,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 55, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,847,974,849,906,930,980,1014],
[1154,0,998,1031,961,1186,1174,1216],
[1027,1003,0,935,676,957,935,964],
[1152,970,1066,0,1083,1049,1074,1193],
[1095,1040,1325,918,0,1034,1222,1049],
[1071,815,1044,952,967,0,1041,1152],
[1021,827,1066,927,779,960,0,1050],
[987,785,1037,808,952,849,951,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 56, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,998,1019,994,980,992,980,1021],
[1003,0,985,1014,998,989,989,1009],
[982,1016,0,1030,1013,1014,1005,990],
[1007,987,971,0,982,1005,980,995],
[1021,1003,988,1019,0,1016,1009,1018],
[1009,1012,987,996,985,0,990,1014],
[1021,1012,996,1021,992,1011,0,1023],
[980,992,1011,1006,983,987,978,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 57, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,970,968,969,947,986,944,1032],
[1031,0,983,1004,963,1062,949,1004],
[1033,1018,0,1003,1000,1068,942,1006],
[1032,997,998,0,1014,1088,1004,1032],
[1054,1038,1001,987,0,1077,1017,1034],
[1015,939,933,913,924,0,956,952],
[1057,1052,1059,997,984,1045,0,1080],
[969,997,995,969,967,1049,921,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 58, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,990,984,964,1004,981,980,978],
[1011,0,1003,1020,1032,1030,992,1014],
[1017,998,0,1002,1049,1027,1014,1000],
[1037,981,999,0,1033,1018,958,970],
[997,969,952,968,0,1011,987,1007],
[1020,971,974,983,990,0,987,1001],
[1021,1009,987,1043,1014,1014,0,1004],
[1023,987,1001,1031,994,1000,997,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 59, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,936,961,904,979,900,988,985],
[1065,0,971,975,958,1001,1042,955],
[1040,1030,0,1015,1017,958,1037,1006],
[1097,1026,986,0,1034,991,1017,1008],
[1022,1043,984,967,0,948,1021,1016],
[1101,1000,1043,1010,1053,0,1041,1005],
[1013,959,964,984,980,960,0,1027],
[1016,1046,995,993,985,996,974,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 60, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,964,1087,1045,1077,992,1079,1062],
[1037,0,1018,960,1062,993,1040,1064],
[914,983,0,969,998,957,1021,1029],
[956,1041,1032,0,1008,1030,1034,1045],
[924,939,1003,993,0,981,1018,1001],
[1009,1008,1044,971,1020,0,1054,1027],
[922,961,980,967,983,947,0,988],
[939,937,972,956,1000,974,1013,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 61, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,983,985,993,962,961,1030,1028],
[1018,0,997,939,1004,1013,1047,1002],
[1016,1004,0,982,1031,987,1052,1058],
[1008,1062,1019,0,987,1016,1002,1022],
[1039,997,970,1014,0,921,1021,1050],
[1040,988,1014,985,1080,0,993,989],
[971,954,949,999,980,1008,0,986],
[973,999,943,979,951,1012,1015,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 62, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1050,1041,1090,1025,1097,985,1098],
[951,0,993,1034,1011,1073,1042,1071],
[960,1008,0,1040,974,1030,987,1051],
[911,967,961,0,917,1025,953,994],
[976,990,1027,1084,0,1077,1010,1109],
[904,928,971,976,924,0,954,1019],
[1016,959,1014,1048,991,1047,0,1036],
[903,930,950,1007,892,982,965,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 63, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,973,926,944,973,902,926,902],
[1028,0,981,985,995,933,972,983],
[1075,1020,0,1009,1020,1006,984,933],
[1057,1016,992,0,974,943,994,958],
[1028,1006,981,1027,0,934,979,941],
[1099,1068,995,1058,1067,0,1039,1028],
[1075,1029,1017,1007,1022,962,0,970],
[1099,1018,1068,1043,1060,973,1031,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 64, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1029,946,938,973,963,986,1183],
[972,0,915,1070,1041,924,996,1086],
[1055,1086,0,1061,1050,931,1052,1103],
[1063,931,940,0,1036,1027,1109,1151],
[1028,960,951,965,0,922,1087,1158],
[1038,1077,1070,974,1079,0,1005,1141],
[1015,1005,949,892,914,996,0,1146],
[818,915,898,850,843,860,855,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 65, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1013,969,1021,1037,1011,985,983],
[988,0,1067,1017,1056,1033,1033,1008],
[1032,934,0,1022,1086,965,1024,988],
[980,984,979,0,1052,1002,1022,1032],
[964,945,915,949,0,969,980,900],
[990,968,1036,999,1032,0,966,1007],
[1016,968,977,979,1021,1035,0,991],
[1018,993,1013,969,1101,994,1010,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 66, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1057,988,1048,1014,990,1032,1019],
[944,0,981,996,986,940,1078,971],
[1013,1020,0,1064,987,989,990,1005],
[953,1005,937,0,1051,1031,961,1029],
[987,1015,1014,950,0,991,989,1054],
[1011,1061,1012,970,1010,0,1033,1023],
[969,923,1011,1040,1012,968,0,1071],
[982,1030,996,972,947,978,930,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 67, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1018,993,959,1003,982,1009,1033],
[983,0,1022,999,1044,1064,1074,1014],
[1008,979,0,1005,923,998,981,1048],
[1042,1002,996,0,1011,1040,985,1054],
[998,957,1078,990,0,964,971,1025],
[1019,937,1003,961,1037,0,1041,1020],
[992,927,1020,1016,1030,960,0,985],
[968,987,953,947,976,981,1016,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 68, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,947,966,955,936,972,945,974],
[1054,0,985,972,1029,990,992,1005],
[1035,1016,0,972,972,962,1009,1023],
[1046,1029,1029,0,983,995,1032,997],
[1065,972,1029,1018,0,1006,1033,1022],
[1029,1011,1039,1006,995,0,1029,1023],
[1056,1009,992,969,968,972,0,1012],
[1027,996,978,1004,979,978,989,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 69, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1011,1002,984,985,1006,1007,999],
[990,0,1004,997,967,980,972,988],
[999,997,0,981,963,1024,997,986],
[1017,1004,1020,0,1011,1002,1004,972],
[1016,1034,1038,990,0,992,1012,991],
[995,1021,977,999,1009,0,1011,996],
[994,1029,1004,997,989,990,0,1002],
[1002,1013,1015,1029,1010,1005,999,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 70, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1008,954,1024,978,990,931,1001],
[993,0,947,995,976,974,964,994],
[1047,1054,0,1031,999,1011,977,1023],
[977,1006,970,0,952,989,985,1010],
[1023,1025,1002,1049,0,982,1002,1024],
[1011,1027,990,1012,1019,0,970,1026],
[1070,1037,1024,1016,999,1031,0,1019],
[1000,1007,978,991,977,975,982,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 71, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,964,936,986,987,1016,988,1015],
[1037,0,993,1018,1048,1025,1023,1046],
[1065,1008,0,1004,1023,1024,991,1042],
[1015,983,997,0,1026,1010,997,1041],
[1014,953,978,975,0,971,970,1023],
[985,976,977,991,1030,0,1010,994],
[1013,978,1010,1004,1031,991,0,977],
[986,955,959,960,978,1007,1024,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 72, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,972,972,919,971,922,962,1034],
[1029,0,1015,1046,1044,999,991,1048],
[1029,986,0,1059,1074,955,1047,1046],
[1082,955,942,0,1057,999,1012,1051],
[1030,957,927,944,0,959,1024,1050],
[1079,1002,1046,1002,1042,0,961,1007],
[1039,1010,954,989,977,1040,0,1051],
[967,953,955,950,951,994,950,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 73, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,999,1000,1037,1050,1073,970,1024],
[1002,0,935,972,967,1015,944,988],
[1001,1066,0,990,1022,1067,977,1014],
[964,1029,1011,0,984,1061,960,953],
[951,1034,979,1017,0,1030,959,967],
[928,986,934,940,971,0,907,942],
[1031,1057,1024,1041,1042,1094,0,972],
[977,1013,987,1048,1034,1059,1029,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 74, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,992,999,1027,1015,962,996,971],
[1009,0,1047,1002,976,947,1026,961],
[1002,954,0,1007,972,968,1034,1009],
[974,999,994,0,946,938,1017,997],
[986,1025,1029,1055,0,1016,1052,1028],
[1039,1054,1033,1063,985,0,1010,1016],
[1005,975,967,984,949,991,0,964],
[1030,1040,992,1004,973,985,1037,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 75, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,973,967,1015,958,945,983,930],
[1028,0,981,995,985,990,958,1006],
[1034,1020,0,1005,961,960,1005,972],
[986,1006,996,0,964,975,976,991],
[1043,1016,1040,1037,0,952,1011,974],
[1056,1011,1041,1026,1049,0,984,963],
[1018,1043,996,1025,990,1017,0,969],
[1071,995,1029,1010,1027,1038,1032,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 76, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1001,990,938,988,930,946,962],
[1000,0,997,1003,1020,1014,1010,1008],
[1011,1004,0,949,982,960,955,965],
[1063,998,1052,0,1024,1016,1028,1021],
[1013,981,1019,977,0,984,986,976],
[1071,987,1041,985,1017,0,964,1009],
[1055,991,1046,973,1015,1037,0,1006],
[1039,993,1036,980,1025,992,995,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 77, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1023,1041,989,1029,968,1032,1053],
[978,0,966,977,948,979,985,1012],
[960,1035,0,1001,1049,1035,1038,1048],
[1012,1024,1000,0,988,1030,997,1033],
[972,1053,952,1013,0,1008,1003,1035],
[1033,1022,966,971,993,0,1083,1047],
[969,1016,963,1004,998,918,0,1000],
[948,989,953,968,966,954,1001,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 78, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1016,1014,1040,978,1032,985,1003],
[985,0,1001,1016,977,1009,962,978],
[987,1000,0,1011,961,979,959,979],
[961,985,990,0,917,985,1012,973],
[1023,1024,1040,1084,0,1053,994,1029],
[969,992,1022,1016,948,0,971,980],
[1016,1039,1042,989,1007,1030,0,996],
[998,1023,1022,1028,972,1021,1005,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 79, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1024,1028,1067,1041,1015,993,1047],
[977,0,993,974,997,1009,1001,986],
[973,1008,0,1026,1023,976,1035,978],
[934,1027,975,0,1012,971,1021,973],
[960,1004,978,989,0,995,982,954],
[986,992,1025,1030,1006,0,986,933],
[1008,1000,966,980,1019,1015,0,971],
[954,1015,1023,1028,1047,1068,1030,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 80, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,993,971,984,970,960,999,985],
[1008,0,964,985,987,1008,1010,985],
[1030,1037,0,1020,985,1000,1061,1042],
[1017,1016,981,0,1009,1018,1023,1000],
[1031,1014,1016,992,0,996,1023,1028],
[1041,993,1001,983,1005,0,1005,984],
[1002,991,940,978,978,996,0,1018],
[1016,1016,959,1001,973,1017,983,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 81, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,997,981,955,957,981,971,984],
[1004,0,969,931,977,976,933,945],
[1020,1032,0,952,986,1025,994,988],
[1046,1070,1049,0,1013,1022,1029,986],
[1044,1024,1015,988,0,1022,1018,1007],
[1020,1025,976,979,979,0,1009,969],
[1030,1068,1007,972,983,992,0,1005],
[1017,1056,1013,1015,994,1032,996,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 82, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1025,1099,1050,1024,973,1042,1023],
[976,0,992,982,1077,975,1050,1023],
[902,1009,0,1028,911,1052,1004,967],
[951,1019,973,0,927,1067,1003,925],
[977,924,1090,1074,0,1077,1073,1006],
[1028,1026,949,934,924,0,1023,979],
[959,951,997,998,928,978,0,943],
[978,978,1034,1076,995,1022,1058,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 83, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1303,1267,958,1000,1252,817,1056],
[698,0,1040,954,1171,738,899,816],
[734,961,0,775,1088,819,1047,794],
[1043,1047,1226,0,1036,862,999,922],
[1001,830,913,965,0,981,894,824],
[749,1263,1182,1139,1020,0,1179,1350],
[1184,1102,954,1002,1107,822,0,1136],
[945,1185,1207,1079,1177,651,865,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 84, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1022,1025,990,1024,978,984,974],
[979,0,981,983,991,955,976,963],
[976,1020,0,992,995,960,1005,990],
[1011,1018,1009,0,1002,993,1003,1006],
[977,1010,1006,999,0,978,1005,967],
[1023,1046,1041,1008,1023,0,1026,998],
[1017,1025,996,998,996,975,0,991],
[1027,1038,1011,995,1034,1003,1010,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 85, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1002,998,993,1024,1048,981,1036],
[999,0,1005,965,1017,1001,998,1001],
[1003,996,0,1001,1037,1013,1039,972],
[1008,1036,1000,0,1055,1032,1036,1039],
[977,984,964,946,0,992,1040,968],
[953,1000,988,969,1009,0,1008,1014],
[1020,1003,962,965,961,993,0,992],
[965,1000,1029,962,1033,987,1009,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 86, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,903,895,890,870,976,964,965],
[1098,0,1032,995,1083,1062,1070,1012],
[1106,969,0,970,1023,982,1019,1103],
[1111,1006,1031,0,976,1056,987,1041],
[1131,918,978,1025,0,1003,998,1055],
[1025,939,1019,945,998,0,1078,1061],
[1037,931,982,1014,1003,923,0,1082],
[1036,989,898,960,946,940,919,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 87, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,978,1008,965,1012,921,942,1028],
[1023,0,1007,985,956,962,1004,1040],
[993,994,0,1012,965,970,932,1005],
[1036,1016,989,0,947,947,983,974],
[989,1045,1036,1054,0,1030,1010,1049],
[1080,1039,1031,1054,971,0,1012,1030],
[1059,997,1069,1018,991,989,0,1061],
[973,961,996,1027,952,971,940,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 88, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1030,944,935,1024,1004,1020,995],
[971,0,942,925,933,959,1006,950],
[1057,1059,0,1026,1005,971,1098,976],
[1066,1076,975,0,1020,1034,1060,1009],
[977,1068,996,981,0,1001,1019,1035],
[997,1042,1030,967,1000,0,1041,1033],
[981,995,903,941,982,960,0,1040],
[1006,1051,1025,992,966,968,961,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 89, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,964,1005,980,1009,977,1019,970],
[1037,0,1011,1001,1025,1036,963,1092],
[996,990,0,935,1017,949,977,985],
[1021,1000,1066,0,1090,1052,1083,1054],
[992,976,984,911,0,942,985,1009],
[1024,965,1052,949,1059,0,1038,983],
[982,1038,1024,918,1016,963,0,1047],
[1031,909,1016,947,992,1018,954,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 90, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1021,1014,998,994,1011,1013,1017],
[980,0,991,988,984,975,994,1008],
[987,1010,0,978,989,976,1006,996],
[1003,1013,1023,0,962,976,989,971],
[1007,1017,1012,1039,0,996,1023,1009],
[990,1026,1025,1025,1005,0,1010,993],
[988,1007,995,1012,978,991,0,963],
[984,993,1005,1030,992,1008,1038,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 91, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,995,985,1003,1001,981,993,1002],
[1006,0,1038,1004,1018,995,1041,1026],
[1016,963,0,999,999,976,991,993],
[998,997,1002,0,1024,987,1006,981],
[1000,983,1002,977,0,976,1010,994],
[1020,1006,1025,1014,1025,0,1039,999],
[1008,960,1010,995,991,962,0,995],
[999,975,1008,1020,1007,1002,1006,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 92, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1032,1028,1007,995,1059,1000,1050],
[969,0,1000,954,999,1026,961,1026],
[973,1001,0,973,981,1034,994,1016],
[994,1047,1028,0,1017,1094,968,1018],
[1006,1002,1020,984,0,1018,1008,991],
[942,975,967,907,983,0,925,978],
[1001,1040,1007,1033,993,1076,0,1039],
[951,975,985,983,1010,1023,962,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 93, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,868,886,1024,869,783,900,915],
[1133,0,996,1057,1061,1169,966,1090],
[1115,1005,0,1077,1048,869,998,1004],
[977,944,924,0,986,940,787,892],
[1132,940,953,1015,0,920,940,986],
[1218,832,1132,1061,1081,0,1020,1042],
[1101,1035,1003,1214,1061,981,0,1090],
[1086,911,997,1109,1015,959,911,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 94, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1005,1010,971,1020,998,993,997],
[996,0,1024,1029,1035,1034,1044,998],
[991,977,0,963,1015,937,1019,1009],
[1030,972,1038,0,1048,998,1003,1039],
[981,966,986,953,0,974,1001,985],
[1003,967,1064,1003,1027,0,1016,1008],
[1008,957,982,998,1000,985,0,1005],
[1004,1003,992,962,1016,993,996,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 95, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1016,984,984,1064,1024,1028,1011],
[985,0,958,1033,991,1020,979,938],
[1017,1043,0,994,1029,1012,1060,1030],
[1017,968,1007,0,1063,985,1018,970],
[937,1010,972,938,0,922,972,915],
[977,981,989,1016,1079,0,1023,978],
[973,1022,941,983,1029,978,0,962],
[990,1063,971,1031,1086,1023,1039,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 96, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,985,915,917,977,1037,955,980],
[1016,0,1000,989,993,1073,980,1022],
[1086,1001,0,1034,1011,1090,993,1059],
[1084,1012,967,0,966,1100,1029,1036],
[1024,1008,990,1035,0,1082,1007,1018],
[964,928,911,901,919,0,961,929],
[1046,1021,1008,972,994,1040,0,1019],
[1021,979,942,965,983,1072,982,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 97, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1032,1007,987,968,1038,1066,1033],
[969,0,1022,978,987,1005,1048,1012],
[994,979,0,1011,1026,1047,1068,1029],
[1014,1023,990,0,1011,1022,1051,1018],
[1033,1014,975,990,0,1012,1054,1005],
[963,996,954,979,989,0,1024,987],
[935,953,933,950,947,977,0,962],
[968,989,972,983,996,1014,1039,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 98, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1019,962,989,982,1021,1090,1030],
[982,0,1044,1066,1047,995,1044,1048],
[1039,957,0,1024,955,1046,1048,1022],
[1012,935,977,0,966,996,1049,1044],
[1019,954,1046,1035,0,939,1027,1049],
[980,1006,955,1005,1062,0,978,1021],
[911,957,953,952,974,1023,0,994],
[971,953,979,957,952,980,1007,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 99, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1013,983,1004,1006,990,1026,989],
[988,0,968,1019,1034,980,972,1001],
[1018,1033,0,992,1020,958,1071,974],
[997,982,1009,0,1071,967,970,1021],
[995,967,981,930,0,943,1013,973],
[1011,1021,1043,1034,1058,0,998,1012],
[975,1029,930,1031,988,1003,0,959],
[1012,1000,1027,980,1028,989,1042,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 100, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,987,1016,1040,1007,1049,1053,1033],
[1014,0,968,988,998,1012,1037,1021],
[985,1033,0,1020,1036,1034,1037,1027],
[961,1013,981,0,1014,1024,1009,1028],
[994,1003,965,987,0,983,996,1035],
[952,989,967,977,1018,0,1027,1039],
[948,964,964,992,1005,974,0,1023],
[968,980,974,973,966,962,978,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 101, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1060,1099,1076,993,1011,981,1100],
[941,0,957,1010,1094,1026,914,1063],
[902,1044,0,968,930,974,961,974],
[925,991,1033,0,1003,1111,1092,1019],
[1008,907,1071,998,0,983,908,1058],
[990,975,1027,890,1018,0,1006,863],
[1020,1087,1040,909,1093,995,0,1028],
[901,938,1027,982,943,1138,973,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 102, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1003,1035,986,997,1011,1002,1016],
[998,0,1019,985,979,983,976,988],
[966,982,0,951,951,977,959,996],
[1015,1016,1050,0,1008,998,1012,999],
[1004,1022,1050,993,0,1010,1010,1006],
[990,1018,1024,1003,991,0,1010,1010],
[999,1025,1042,989,991,991,0,984],
[985,1013,1005,1002,995,991,1017,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 103, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1060,954,996,1177,1010,1128,1090],
[941,0,1054,999,1160,938,963,1045],
[1047,947,0,1031,1143,1058,1085,1071],
[1005,1002,970,0,1070,961,1045,1078],
[824,841,858,931,0,902,1019,970],
[991,1063,943,1040,1099,0,1140,1061],
[873,1038,916,956,982,861,0,978],
[911,956,930,923,1031,940,1023,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 104, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1011,1037,998,1030,1014,1001,1024],
[990,0,1004,967,1009,958,993,981],
[964,997,0,976,1017,981,998,980],
[1003,1034,1025,0,1000,982,1002,962],
[971,992,984,1001,0,940,977,994],
[987,1043,1020,1019,1061,0,1048,991],
[1000,1008,1003,999,1024,953,0,985],
[977,1020,1021,1039,1007,1010,1016,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 105, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,999,920,922,929,979,977,988],
[1002,0,993,1005,990,1035,986,1026],
[1081,1008,0,981,1057,1060,1013,1099],
[1079,996,1020,0,1007,1024,1096,1058],
[1072,1011,944,994,0,1060,1047,1057],
[1022,966,941,977,941,0,991,1006],
[1024,1015,988,905,954,1010,0,967],
[1013,975,902,943,944,995,1034,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 106, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1010,992,994,967,980,1005,984],
[991,0,963,988,973,978,978,1011],
[1009,1038,0,1006,990,1004,996,1004],
[1007,1013,995,0,1008,1000,1021,1009],
[1034,1028,1011,993,0,987,1026,1004],
[1021,1023,997,1001,1014,0,1011,1018],
[996,1023,1005,980,975,990,0,970],
[1017,990,997,992,997,983,1031,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 107, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,971,983,1030,982,946,993,997],
[1030,0,1007,1054,999,1019,1024,1014],
[1018,994,0,1035,1013,990,962,1038],
[971,947,966,0,988,957,951,931],
[1019,1002,988,1013,0,982,996,1022],
[1055,982,1011,1044,1019,0,986,1028],
[1008,977,1039,1050,1005,1015,0,1018],
[1004,987,963,1070,979,973,983,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 108, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1016,956,987,978,998,950,977],
[985,0,1013,1016,1002,956,962,999],
[1045,988,0,1000,995,959,963,989],
[1014,985,1001,0,981,1004,936,949],
[1023,999,1006,1020,0,995,981,1021],
[1003,1045,1042,997,1006,0,939,1016],
[1051,1039,1038,1065,1020,1062,0,999],
[1024,1002,1012,1052,980,985,1002,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 109, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,962,1013,974,1017,974,978,1005],
[1039,0,1005,1027,1033,1010,994,1014],
[988,996,0,1033,1029,1033,1019,1030],
[1027,974,968,0,1027,1011,993,1033],
[984,968,972,974,0,952,989,1011],
[1027,991,968,990,1049,0,1016,1073],
[1023,1007,982,1008,1012,985,0,1030],
[996,987,971,968,990,928,971,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 110, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1001,1000,1025,1040,1089,1023,1020],
[1000,0,994,1054,1014,1056,977,1004],
[1001,1007,0,1004,982,1048,987,1017],
[976,947,997,0,966,1010,993,947],
[961,987,1019,1035,0,1053,992,1031],
[912,945,953,991,948,0,975,964],
[978,1024,1014,1008,1009,1026,0,1029],
[981,997,984,1054,970,1037,972,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 111, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1023,997,1048,1020,960,1020,988],
[978,0,1037,1028,1018,1003,990,975],
[1004,964,0,1033,999,1015,1002,1013],
[953,973,968,0,991,955,963,953],
[981,983,1002,1010,0,1004,1002,1011],
[1041,998,986,1046,997,0,1021,989],
[981,1011,999,1038,999,980,0,999],
[1013,1026,988,1048,990,1012,1002,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 112, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1001,1013,992,997,966,982,980],
[1000,0,1003,1020,1003,992,995,989],
[988,998,0,1008,989,982,987,988],
[1009,981,993,0,975,990,999,973],
[1004,998,1012,1026,0,1020,1007,1007],
[1035,1009,1019,1011,981,0,997,1018],
[1019,1006,1014,1002,994,1004,0,977],
[1021,1012,1013,1028,994,983,1024,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 113, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,992,937,991,997,928,920,946],
[1009,0,1026,1001,1014,980,966,1017],
[1064,975,0,1017,1037,978,1010,997],
[1010,1000,984,0,1037,997,929,957],
[1004,987,964,964,0,975,930,939],
[1073,1021,1023,1004,1026,0,965,1031],
[1081,1035,991,1072,1071,1036,0,979],
[1055,984,1004,1044,1062,970,1022,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 114, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,982,1004,988,983,1045,936,956],
[1019,0,1016,1025,999,1050,968,997],
[997,985,0,988,964,1028,1019,1025],
[1013,976,1013,0,1012,1059,932,932],
[1018,1002,1037,989,0,1090,992,997],
[956,951,973,942,911,0,883,954],
[1065,1033,982,1069,1009,1118,0,1039],
[1045,1004,976,1069,1004,1047,962,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 115, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1005,1044,985,997,979,991,1002],
[996,0,1018,976,1022,983,1027,1010],
[957,983,0,978,990,997,988,965],
[1016,1025,1023,0,1016,1006,1025,942],
[1004,979,1011,985,0,956,1010,925],
[1022,1018,1004,995,1045,0,1048,973],
[1010,974,1013,976,991,953,0,936],
[999,991,1036,1059,1076,1028,1065,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 116, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1015,1013,981,978,1012,1006,984],
[986,0,1005,1013,999,1027,995,1001],
[988,996,0,982,993,999,996,986],
[1020,988,1019,0,1019,1011,1015,1014],
[1023,1002,1008,982,0,992,1007,1002],
[989,974,1002,990,1009,0,1012,951],
[995,1006,1005,986,994,989,0,941],
[1017,1000,1015,987,999,1050,1060,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 117, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1027,1022,948,1076,956,967,991],
[974,0,1013,938,1015,954,1021,934],
[979,988,0,970,1030,955,998,950],
[1053,1063,1031,0,1078,1041,1006,998],
[925,986,971,923,0,989,968,903],
[1045,1047,1046,960,1012,0,1004,1042],
[1034,980,1003,995,1033,997,0,955],
[1010,1067,1051,1003,1098,959,1046,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 118, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1181,944,1061,899,1103,1004,931],
[820,0,1095,926,773,1011,1100,1205],
[1057,906,0,833,753,1094,970,958],
[940,1075,1168,0,1037,1312,1135,1282],
[1102,1228,1248,964,0,1281,1259,972],
[898,990,907,689,720,0,964,1076],
[997,901,1031,866,742,1037,0,935],
[1070,796,1043,719,1029,925,1066,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 119, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1030,1058,1058,1054,981,1059,1026],
[971,0,1071,1040,1037,968,994,984],
[943,930,0,992,1035,946,987,960],
[943,961,1009,0,1021,938,957,946],
[947,964,966,980,0,947,972,953],
[1020,1033,1055,1063,1054,0,1038,993],
[942,1007,1014,1044,1029,963,0,968],
[975,1017,1041,1055,1048,1008,1033,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 120, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1025,1020,985,1053,1060,1017,1044],
[976,0,1008,950,1010,963,938,1011],
[981,993,0,1004,1009,1024,1008,1033],
[1016,1051,997,0,1036,1007,995,1045],
[948,991,992,965,0,1000,961,994],
[941,1038,977,994,1001,0,954,996],
[984,1063,993,1006,1040,1047,0,1042],
[957,990,968,956,1007,1005,959,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 121, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,963,985,974,960,1045,976,960],
[1038,0,988,970,987,989,964,1013],
[1016,1013,0,963,953,1043,961,978],
[1027,1031,1038,0,999,1024,1045,1015],
[1041,1014,1048,1002,0,994,1099,1065],
[956,1012,958,977,1007,0,979,984],
[1025,1037,1040,956,902,1022,0,1045],
[1041,988,1023,986,936,1017,956,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 122, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1023,1016,1005,975,997,1011,1009],
[978,0,963,986,955,962,994,939],
[985,1038,0,1042,1018,1000,1032,982],
[996,1015,959,0,996,988,1013,969],
[1026,1046,983,1005,0,1020,990,1017],
[1004,1039,1001,1013,981,0,1034,978],
[990,1007,969,988,1011,967,0,954],
[992,1062,1019,1032,984,1023,1047,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 123, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,990,1020,1056,1002,903,973,984],
[1011,0,1070,1067,1037,1003,997,1018],
[981,931,0,997,951,913,911,894],
[945,934,1004,0,981,938,961,967],
[999,964,1050,1020,0,908,918,965],
[1098,998,1088,1063,1093,0,1010,1076],
[1028,1004,1090,1040,1083,991,0,1037],
[1017,983,1107,1034,1036,925,964,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 124, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,943,980,1224,943,850,1004,957],
[1058,0,1095,1080,812,972,1136,953],
[1021,906,0,1142,1064,987,898,1035],
[777,921,859,0,801,903,833,880],
[1058,1189,937,1200,0,1117,1047,1101],
[1151,1029,1014,1098,884,0,1110,995],
[997,865,1103,1168,954,891,0,972],
[1044,1048,966,1121,900,1006,1029,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 125, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1066,934,943,987,1039,1074,930],
[935,0,838,816,840,958,829,898],
[1067,1163,0,974,1032,1109,1065,1109],
[1058,1185,1027,0,1003,1017,959,1016],
[1014,1161,969,998,0,1025,1031,989],
[962,1043,892,984,976,0,1061,965],
[927,1172,936,1042,970,940,0,962],
[1071,1103,892,985,1012,1036,1039,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 126, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1038,1004,991,1048,1012,1053,1047],
[963,0,959,968,1021,971,949,923],
[997,1042,0,971,1061,899,1041,975],
[1010,1033,1030,0,1040,956,982,955],
[953,980,940,961,0,953,937,942],
[989,1030,1102,1045,1048,0,1038,985],
[948,1052,960,1019,1064,963,0,975],
[954,1078,1026,1046,1059,1016,1026,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 127, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,978,1004,1023,1035,968,977,978],
[1023,0,1045,1050,1031,985,1020,1009],
[997,956,0,1008,1023,1003,969,994],
[978,951,993,0,991,973,952,990],
[966,970,978,1010,0,963,980,1005],
[1033,1016,998,1028,1038,0,1008,1020],
[1024,981,1032,1049,1021,993,0,997],
[1023,992,1007,1011,996,981,1004,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 128, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1063,1024,992,995,971,987,991],
[938,0,988,1018,974,985,992,973],
[977,1013,0,1016,975,1015,1046,977],
[1009,983,985,0,1010,1000,1026,1009],
[1006,1027,1026,991,0,1040,1039,1014],
[1030,1016,986,1001,961,0,1044,993],
[1014,1009,955,975,962,957,0,973],
[1010,1028,1024,992,987,1008,1028,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 129, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,974,999,996,929,975,979,957],
[1027,0,999,1028,1008,999,1026,1014],
[1002,1002,0,1020,1020,996,1006,1013],
[1005,973,981,0,987,968,1043,968],
[1072,993,981,1014,0,1039,1006,1004],
[1026,1002,1005,1033,962,0,1033,998],
[1022,975,995,958,995,968,0,989],
[1044,987,988,1033,997,1003,1012,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 130, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,990,1062,1011,1036,1045,1021,1019],
[1011,0,1035,976,1036,985,986,1047],
[939,966,0,935,1001,1013,1028,982],
[990,1025,1066,0,1055,1036,984,1090],
[965,965,1000,946,0,988,972,1015],
[956,1016,988,965,1013,0,991,1061],
[980,1015,973,1017,1029,1010,0,1017],
[982,954,1019,911,986,940,984,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 131, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1020,967,1020,1002,1031,1022,1003],
[981,0,996,1033,973,989,977,967],
[1034,1005,0,1030,997,1040,1029,988],
[981,968,971,0,977,974,993,1011],
[999,1028,1004,1024,0,1012,1018,1030],
[970,1012,961,1027,989,0,982,981],
[979,1024,972,1008,983,1019,0,982],
[998,1034,1013,990,971,1020,1019,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 132, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,979,1055,958,941,974,935,884],
[1022,0,1023,943,889,923,987,926],
[946,978,0,920,891,912,966,949],
[1043,1058,1081,0,995,1030,1051,1006],
[1060,1112,1110,1006,0,982,1019,1111],
[1027,1078,1089,971,1019,0,1045,988],
[1066,1014,1035,950,982,956,0,956],
[1117,1075,1052,995,890,1013,1045,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 133, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1104,999,1032,1005,1002,937,1063],
[897,0,987,1008,951,945,919,916],
[1002,1014,0,1036,959,1009,1061,1045],
[969,993,965,0,956,940,920,1045],
[996,1050,1042,1045,0,998,1074,1006],
[999,1056,992,1061,1003,0,936,1020],
[1064,1082,940,1081,927,1065,0,1051],
[938,1085,956,956,995,981,950,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 134, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1013,1035,1049,1013,1012,1070,991],
[988,0,971,1023,1020,1010,1036,936],
[966,1030,0,1027,1032,980,1041,949],
[952,978,974,0,998,951,1032,966],
[988,981,969,1003,0,991,1062,978],
[989,991,1021,1050,1010,0,1050,1015],
[931,965,960,969,939,951,0,912],
[1010,1065,1052,1035,1023,986,1089,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 135, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1021,1025,1012,991,1011,1010,1018],
[980,0,1011,987,988,968,968,998],
[976,990,0,1000,998,983,981,982],
[989,1014,1001,0,973,974,1001,1028],
[1010,1013,1003,1028,0,979,1007,996],
[990,1033,1018,1027,1022,0,1025,1006],
[991,1033,1020,1000,994,976,0,991],
[983,1003,1019,973,1005,995,1010,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 136, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,978,996,1039,1030,982,1016,1017],
[1023,0,1053,1009,1037,1029,1028,985],
[1005,948,0,1016,982,982,974,993],
[962,992,985,0,1019,978,1010,994],
[971,964,1019,982,0,1017,1050,1000],
[1019,972,1019,1023,984,0,1066,1002],
[985,973,1027,991,951,935,0,980],
[984,1016,1008,1007,1001,999,1021,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 137, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1030,994,962,971,999,984,1045],
[971,0,963,1018,975,994,983,967],
[1007,1038,0,961,1043,1086,1028,1062],
[1039,983,1040,0,1041,1002,1032,1016],
[1030,1026,958,960,0,1014,1006,1037],
[1002,1007,915,999,987,0,1072,1020],
[1017,1018,973,969,995,929,0,1025],
[956,1034,939,985,964,981,976,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 138, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,882,1019,985,971,1027,977,998],
[1119,0,1073,1047,1005,1012,984,966],
[982,928,0,939,981,1004,916,926],
[1016,954,1062,0,1000,1072,1001,1042],
[1030,996,1020,1001,0,1137,1050,957],
[974,989,997,929,864,0,1029,921],
[1024,1017,1085,1000,951,972,0,952],
[1003,1035,1075,959,1044,1080,1049,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 139, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,991,1042,1000,938,960,938,994],
[1010,0,1016,986,961,972,977,1015],
[959,985,0,974,954,982,923,961],
[1001,1015,1027,0,1008,1001,981,1020],
[1063,1040,1047,993,0,983,1038,1005],
[1041,1029,1019,1000,1018,0,962,996],
[1063,1024,1078,1020,963,1039,0,1021],
[1007,986,1040,981,996,1005,980,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 140, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,977,1000,1043,1044,1022,976,975],
[1024,0,1025,1020,994,1001,989,1069],
[1001,976,0,974,1017,994,983,1015],
[958,981,1027,0,1027,1028,1004,1013],
[957,1007,984,974,0,1051,999,1007],
[979,1000,1007,973,950,0,993,1033],
[1025,1012,1018,997,1002,1008,0,1081],
[1026,932,986,988,994,968,920,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 141, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,976,982,987,950,982,987,1010],
[1025,0,962,993,962,962,956,984],
[1019,1039,0,1048,974,996,975,976],
[1014,1008,953,0,933,932,941,986],
[1051,1039,1027,1068,0,955,1047,1003],
[1019,1039,1005,1069,1046,0,999,1031],
[1014,1045,1026,1060,954,1002,0,1003],
[991,1017,1025,1015,998,970,998,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 142, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1111,1044,866,1102,952,1006,947],
[890,0,819,1007,879,1002,887,842],
[957,1182,0,983,959,1057,922,1019],
[1135,994,1018,0,937,1079,930,1037],
[899,1122,1042,1064,0,976,992,1054],
[1049,999,944,922,1025,0,996,1001],
[995,1114,1079,1071,1009,1005,0,1109],
[1054,1159,982,964,947,1000,892,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 143, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,990,983,1014,1001,975,973,1017],
[1011,0,1013,969,972,992,993,972],
[1018,988,0,1001,974,977,945,965],
[987,1032,1000,0,979,1004,979,974],
[1000,1029,1027,1022,0,1006,995,988],
[1026,1009,1024,997,995,0,1005,992],
[1028,1008,1056,1022,1006,996,0,1005],
[984,1029,1036,1027,1013,1009,996,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 144, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1006,971,1011,1019,1001,1022,1028],
[995,0,975,955,935,955,987,972],
[1030,1026,0,1034,1047,1012,1026,983],
[990,1046,967,0,1032,1021,1024,1034],
[982,1066,954,969,0,1036,997,976],
[1000,1046,989,980,965,0,1034,1051],
[979,1014,975,977,1004,967,0,1023],
[973,1029,1018,967,1025,950,978,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 145, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1039,1011,1031,977,1022,1029,1040],
[962,0,969,965,981,1065,1004,1009],
[990,1032,0,1018,975,1053,1006,1077],
[970,1036,983,0,990,1018,984,1012],
[1024,1020,1026,1011,0,996,1002,1030],
[979,936,948,983,1005,0,991,968],
[972,997,995,1017,999,1010,0,1035],
[961,992,924,989,971,1033,966,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 146, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1023,1052,1001,1009,1019,1029,994],
[978,0,1025,971,978,983,1021,978],
[949,976,0,966,975,968,989,961],
[1000,1030,1035,0,1028,1026,1056,1010],
[992,1023,1026,973,0,1031,1006,1007],
[982,1018,1033,975,970,0,993,982],
[972,980,1012,945,995,1008,0,996],
[1007,1023,1040,991,994,1019,1005,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 147, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1024,1012,821,1026,958,944,1104],
[977,0,1048,970,1042,1036,1091,1119],
[989,953,0,939,1005,937,910,1006],
[1180,1031,1062,0,1016,1064,943,1108],
[975,959,996,985,0,1015,962,1075],
[1043,965,1064,937,986,0,1042,1186],
[1057,910,1091,1058,1039,959,0,1142],
[897,882,995,893,926,815,859,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 148, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1031,1006,980,1031,1052,1006,994],
[970,0,982,977,981,1004,949,998],
[995,1019,0,991,1012,1059,1019,998],
[1021,1024,1010,0,1021,1053,990,997],
[970,1020,989,980,0,1003,987,987],
[949,997,942,948,998,0,963,1007],
[995,1052,982,1011,1014,1038,0,1022],
[1007,1003,1003,1004,1014,994,979,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 149, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1037,982,1038,1003,1044,1038,1041],
[964,0,985,986,970,976,994,986],
[1019,1016,0,1039,971,1013,1038,998],
[963,1015,962,0,974,943,969,988],
[998,1031,1030,1027,0,973,1025,1007],
[957,1025,988,1058,1028,0,995,995],
[963,1007,963,1032,976,1006,0,980],
[960,1015,1003,1013,994,1006,1021,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 150, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1022,1000,996,999,985,1031,1003],
[979,0,1004,988,999,971,979,1020],
[1001,997,0,1024,959,1022,1033,963],
[1005,1013,977,0,986,982,1026,964],
[1002,1002,1042,1015,0,1005,1031,998],
[1016,1030,979,1019,996,0,1045,968],
[970,1022,968,975,970,956,0,947],
[998,981,1038,1037,1003,1033,1054,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 151, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,966,987,985,999,964,1008,996],
[1035,0,992,1011,1013,1039,1023,1008],
[1014,1009,0,1007,1018,997,997,989],
[1016,990,994,0,1015,975,1012,985],
[1002,988,983,986,0,969,1030,970],
[1037,962,1004,1026,1032,0,1041,1011],
[993,978,1004,989,971,960,0,995],
[1005,993,1012,1016,1031,990,1006,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 152, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1002,1058,1013,1049,1002,957,989],
[999,0,1122,986,1043,993,1012,1028],
[943,879,0,920,966,942,906,952],
[988,1015,1081,0,1055,964,988,1010],
[952,958,1035,946,0,934,942,975],
[999,1008,1059,1037,1067,0,1061,1046],
[1044,989,1095,1013,1059,940,0,1018],
[1012,973,1049,991,1026,955,983,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 153, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1002,1011,1051,994,1002,1007,1008],
[999,0,975,1015,967,1003,970,986],
[990,1026,0,1008,973,990,1020,990],
[950,986,993,0,1000,991,963,981],
[1007,1034,1028,1001,0,1001,997,1001],
[999,998,1011,1010,1000,0,988,995],
[994,1031,981,1038,1004,1013,0,998],
[993,1015,1011,1020,1000,1006,1003,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 154, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1186,1051,1065,1023,1129,998,1152],
[815,0,878,913,883,915,951,1020],
[950,1123,0,1062,1020,1006,914,1016],
[936,1088,939,0,901,936,984,964],
[978,1118,981,1100,0,958,972,1084],
[872,1086,995,1065,1043,0,943,1132],
[1003,1050,1087,1017,1029,1058,0,975],
[849,981,985,1037,917,869,1026,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 155, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1068,963,976,973,1019,1043,990],
[933,0,941,956,1011,975,988,1010],
[1038,1060,0,990,1019,990,1038,1029],
[1025,1045,1011,0,988,1017,1014,1035],
[1028,990,982,1013,0,1055,1033,1002],
[982,1026,1011,984,946,0,993,1011],
[958,1013,963,987,968,1008,0,981],
[1011,991,972,966,999,990,1020,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 156, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,961,961,982,975,1004,1007,977],
[1040,0,1002,1028,985,1031,1033,1026],
[1040,999,0,995,1018,1002,1017,1006],
[1019,973,1006,0,1042,1003,1050,1027],
[1026,1016,983,959,0,1015,986,993],
[997,970,999,998,986,0,995,973],
[994,968,984,951,1015,1006,0,984],
[1024,975,995,974,1008,1028,1017,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 157, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1009,995,993,995,967,958,1012],
[992,0,1010,982,1032,978,975,993],
[1006,991,0,977,990,994,963,1018],
[1008,1019,1024,0,1011,975,973,1015],
[1006,969,1011,990,0,960,949,968],
[1034,1023,1007,1026,1041,0,945,1022],
[1043,1026,1038,1028,1052,1056,0,995],
[989,1008,983,986,1033,979,1006,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 158, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,933,1049,924,962,966,974,1028],
[1068,0,1053,1055,1062,994,1062,1038],
[952,948,0,1013,861,924,937,958],
[1077,946,988,0,936,910,1015,1038],
[1039,939,1140,1065,0,1030,1012,1107],
[1035,1007,1077,1091,971,0,945,1046],
[1027,939,1064,986,989,1056,0,1021],
[973,963,1043,963,894,955,980,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 159, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,968,1033,1006,1071,1049,1064,1035],
[1033,0,1006,974,1061,1009,1048,1037],
[968,995,0,995,1002,1038,1015,1002],
[995,1027,1006,0,1019,1028,994,992],
[930,940,999,982,0,990,982,983],
[952,992,963,973,1011,0,997,997],
[937,953,986,1007,1019,1004,0,983],
[966,964,999,1009,1018,1004,1018,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 160, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1173,1322,899,883,1100,1084,1079],
[828,0,1001,990,898,941,887,1249],
[679,1000,0,896,897,959,765,938],
[1102,1011,1105,0,1002,875,1109,1071],
[1118,1103,1104,999,0,993,1072,1199],
[901,1060,1042,1126,1008,0,988,1007],
[917,1114,1236,892,929,1013,0,1198],
[922,752,1063,930,802,994,803,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 161, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1022,989,1052,990,1038,964,1005],
[979,0,945,1011,966,967,977,970],
[1012,1056,0,1087,1011,1045,1010,998],
[949,990,914,0,956,984,951,958],
[1011,1035,990,1045,0,1024,1022,989],
[963,1034,956,1017,977,0,972,986],
[1037,1024,991,1050,979,1029,0,1007],
[996,1031,1003,1043,1012,1015,994,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 162, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1126,1126,1056,1063,926,1127,1044],
[875,0,962,901,973,920,1198,1001],
[875,1039,0,1028,994,866,1167,892],
[945,1100,973,0,974,859,1045,967],
[938,1028,1007,1027,0,1066,962,1033],
[1075,1081,1135,1142,935,0,1151,1036],
[874,803,834,956,1039,850,0,971],
[957,1000,1109,1034,968,965,1030,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 163, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1018,1005,981,1040,1023,1003,1044],
[983,0,1024,1020,1042,971,896,1067],
[996,977,0,1007,1066,981,894,1019],
[1020,981,994,0,987,1012,926,941],
[961,959,935,1014,0,964,954,1082],
[978,1030,1020,989,1037,0,964,1059],
[998,1105,1107,1075,1047,1037,0,1103],
[957,934,982,1060,919,942,898,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 164, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1016,986,996,1005,1071,1046,1020],
[985,0,959,999,999,1051,1081,1012],
[1015,1042,0,1045,991,1016,1032,993],
[1005,1002,956,0,998,1002,1007,1005],
[996,1002,1010,1003,0,1041,1050,959],
[930,950,985,999,960,0,985,984],
[955,920,969,994,951,1016,0,949],
[981,989,1008,996,1042,1017,1052,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 165, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1052,959,961,1008,1003,892,1006],
[949,0,1069,947,1016,931,893,879],
[1042,932,0,883,1011,899,911,892],
[1040,1054,1118,0,1085,1080,1000,1083],
[993,985,990,916,0,1012,974,978],
[998,1070,1102,921,989,0,997,937],
[1109,1108,1090,1001,1027,1004,0,997],
[995,1122,1109,918,1023,1064,1004,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 166, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1006,997,927,966,891,987,975],
[995,0,984,907,960,977,954,974],
[1004,1017,0,939,985,955,993,1051],
[1074,1094,1062,0,1048,1002,999,1036],
[1035,1041,1016,953,0,965,1006,1046],
[1110,1024,1046,999,1036,0,1030,1027],
[1014,1047,1008,1002,995,971,0,1020],
[1026,1027,950,965,955,974,981,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 167, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,975,996,1002,1026,1014,996,1000],
[1026,0,1015,1007,994,1017,999,986],
[1005,986,0,936,985,1006,954,970],
[999,994,1065,0,1017,1009,984,1025],
[975,1007,1016,984,0,997,1017,973],
[987,984,995,992,1004,0,1009,986],
[1005,1002,1047,1017,984,992,0,1015],
[1001,1015,1031,976,1028,1015,986,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 168, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,829,933,1124,1014,1135,944,1063],
[1172,0,1037,1285,1040,1280,1102,985],
[1068,964,0,1193,969,1190,1043,1036],
[877,716,808,0,771,1011,938,875],
[987,961,1032,1230,0,1164,1065,1109],
[866,721,811,990,837,0,769,928],
[1057,899,958,1063,936,1232,0,955],
[938,1016,965,1126,892,1073,1046,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 169, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1001,1011,1005,993,1017,1023,998],
[1000,0,997,997,985,1020,987,981],
[990,1004,0,991,1023,1030,987,1056],
[996,1004,1010,0,973,1001,1001,1041],
[1008,1016,978,1028,0,1009,979,1019],
[984,981,971,1000,992,0,966,981],
[978,1014,1014,1000,1022,1035,0,1054],
[1003,1020,945,960,982,1020,947,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 170, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1005,966,969,990,1012,990,1022],
[996,0,983,1013,1021,979,1003,1012],
[1035,1018,0,1009,1012,991,1011,1019],
[1032,988,992,0,1021,991,1018,1020],
[1011,980,989,980,0,974,990,1020],
[989,1022,1010,1010,1027,0,1003,1040],
[1011,998,990,983,1011,998,0,1024],
[979,989,982,981,981,961,977,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 171, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1015,1044,950,1014,985,1076,1088],
[986,0,1036,971,1057,1014,994,917],
[957,965,0,998,1115,1024,1109,1057],
[1051,1030,1003,0,1038,942,1074,1009],
[987,944,886,963,0,986,1045,1040],
[1016,987,977,1059,1015,0,1046,1037],
[925,1007,892,927,956,955,0,811],
[913,1084,944,992,961,964,1190,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 172, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1023,1043,1001,986,1043,1010,1062],
[978,0,971,981,1000,1010,978,1043],
[958,1030,0,971,966,990,988,1007],
[1000,1020,1030,0,1015,991,1009,1054],
[1015,1001,1035,986,0,1002,986,1048],
[958,991,1011,1010,999,0,992,1027],
[991,1023,1013,992,1015,1009,0,1022],
[939,958,994,947,953,974,979,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 173, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,988,1037,993,1020,966,983,1021],
[1013,0,1018,1012,1064,972,1053,1044],
[964,983,0,957,1026,979,1001,983],
[1008,989,1044,0,1048,1006,1032,1018],
[981,937,975,953,0,944,978,970],
[1035,1029,1022,995,1057,0,1025,1007],
[1018,948,1000,969,1023,976,0,998],
[980,957,1018,983,1031,994,1003,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 174, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,975,1014,962,1001,1011,1020,974],
[1026,0,982,993,1027,1000,1025,1010],
[987,1019,0,973,1036,1003,989,1017],
[1039,1008,1028,0,1030,987,1020,1027],
[1000,974,965,971,0,987,974,1004],
[990,1001,998,1014,1014,0,1023,1037],
[981,976,1012,981,1027,978,0,1001],
[1027,991,984,974,997,964,1000,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 175, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1014,998,1005,1030,997,1019,990],
[987,0,1030,996,1000,1018,1013,992],
[1003,971,0,979,996,963,979,998],
[996,1005,1022,0,1042,1017,1020,1020],
[971,1001,1005,959,0,960,1005,972],
[1004,983,1038,984,1041,0,1019,1014],
[982,988,1022,981,996,982,0,1008],
[1011,1009,1003,981,1029,987,993,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 176, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,974,944,967,955,979,1022,1030],
[1027,0,979,985,984,1017,1036,1042],
[1057,1022,0,1052,940,986,1019,1065],
[1034,1016,949,0,1072,1048,1041,1032],
[1046,1017,1061,929,0,1033,1040,1083],
[1022,984,1015,953,968,0,993,1004],
[979,965,982,960,961,1008,0,1011],
[971,959,936,969,918,997,990,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 177, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,996,1011,969,1008,955,1000,981],
[1005,0,969,952,990,960,976,970],
[990,1032,0,994,993,1008,1003,1013],
[1032,1049,1007,0,1049,997,1019,1027],
[993,1011,1008,952,0,952,978,994],
[1046,1041,993,1004,1049,0,1034,1001],
[1001,1025,998,982,1023,967,0,991],
[1020,1031,988,974,1007,1000,1010,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 178, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1017,951,998,928,990,935,989],
[984,0,949,996,1019,1019,955,949],
[1050,1052,0,1039,1004,994,1043,984],
[1003,1005,962,0,979,993,985,968],
[1073,982,997,1022,0,980,967,989],
[1011,982,1007,1008,1021,0,981,1006],
[1066,1046,958,1016,1034,1020,0,1007],
[1012,1052,1017,1033,1012,995,994,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 179, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,968,970,957,951,969,923,966],
[1033,0,997,993,988,1022,989,1018],
[1031,1004,0,1020,1021,1009,991,1022],
[1044,1008,981,0,986,1004,985,991],
[1050,1013,980,1015,0,1002,982,1039],
[1032,979,992,997,999,0,1007,984],
[1078,1012,1010,1016,1019,994,0,997],
[1035,983,979,1010,962,1017,1004,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 180, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1049,1147,1104,1197,1116,1162,989],
[952,0,1045,1032,1024,974,1023,987],
[854,956,0,957,953,860,987,850],
[897,969,1044,0,975,913,1019,846],
[804,977,1048,1026,0,952,1071,888],
[885,1027,1141,1088,1049,0,1011,1007],
[839,978,1014,982,930,990,0,931],
[1012,1014,1151,1155,1113,994,1070,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 181, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1023,1014,1003,955,982,988,997],
[978,0,1007,948,983,977,938,987],
[987,994,0,964,979,984,968,993],
[998,1053,1037,0,1009,973,1011,1001],
[1046,1018,1022,992,0,1024,968,1007],
[1019,1024,1017,1028,977,0,975,983],
[1013,1063,1033,990,1033,1026,0,994],
[1004,1014,1008,1000,994,1018,1007,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 182, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1006,990,979,1041,1043,1026,1022],
[995,0,1027,1006,1051,1009,995,1041],
[1011,974,0,1000,1018,1026,999,1019],
[1022,995,1001,0,1033,1046,991,1057],
[960,950,983,968,0,983,961,1017],
[958,992,975,955,1018,0,950,985],
[975,1006,1002,1010,1040,1051,0,1037],
[979,960,982,944,984,1016,964,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 183, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1039,981,1004,1011,1011,1050,995],
[962,0,967,977,980,979,1006,932],
[1020,1034,0,1006,999,1012,1043,1005],
[997,1024,995,0,960,985,993,959],
[990,1021,1002,1041,0,1004,1018,959],
[990,1022,989,1016,997,0,1020,965],
[951,995,958,1008,983,981,0,945],
[1006,1069,996,1042,1042,1036,1056,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 184, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,993,1003,1021,982,999,1047,1003],
[1008,0,1017,975,990,1033,1015,976],
[998,984,0,999,988,1012,1031,1003],
[980,1026,1002,0,981,1024,1020,976],
[1019,1011,1013,1020,0,1031,1013,982],
[1002,968,989,977,970,0,1036,989],
[954,986,970,981,988,965,0,962],
[998,1025,998,1025,1019,1012,1039,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 185, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1230,894,1065,933,920,747,813],
[771,0,1034,887,1037,1077,799,988],
[1107,967,0,1041,1289,1382,1170,1070],
[936,1114,960,0,1110,1347,1310,1079],
[1068,964,712,891,0,1225,1197,1068],
[1081,924,619,654,776,0,1027,624],
[1254,1202,831,691,804,974,0,873],
[1188,1013,931,922,933,1377,1128,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 186, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1059,1014,983,961,853,1031,1053],
[942,0,950,853,872,1013,1022,991],
[987,1051,0,1000,859,971,1092,931],
[1018,1148,1001,0,1020,986,1060,957],
[1040,1129,1142,981,0,1056,1085,1021],
[1148,988,1030,1015,945,0,1067,1012],
[970,979,909,941,916,934,0,899],
[948,1010,1070,1044,980,989,1102,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 187, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,940,942,944,1007,976,961,984],
[1061,0,1033,999,1045,1024,1021,1016],
[1059,968,0,1032,1051,1032,995,1015],
[1057,1002,969,0,1038,1005,1028,995],
[994,956,950,963,0,964,963,972],
[1025,977,969,996,1037,0,992,978],
[1040,980,1006,973,1038,1009,0,994],
[1017,985,986,1006,1029,1023,1007,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 188, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1013,1090,990,1078,1085,1006,1043],
[988,0,1106,1008,1009,1051,995,1061],
[911,895,0,959,890,976,951,931],
[1011,993,1042,0,1031,1019,1074,1010],
[923,992,1111,970,0,999,987,1025],
[916,950,1025,982,1002,0,1037,989],
[995,1006,1050,927,1014,964,0,1040],
[958,940,1070,991,976,1012,961,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 189, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1090,1030,943,951,921,1040,1074],
[911,0,968,953,929,918,1032,971],
[971,1033,0,897,1001,979,981,947],
[1058,1048,1104,0,988,1028,1032,1023],
[1050,1072,1000,1013,0,1001,1029,1060],
[1080,1083,1022,973,1000,0,1108,1059],
[961,969,1020,969,972,893,0,969],
[927,1030,1054,978,941,942,1032,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 190, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,928,994,953,947,978,996,945],
[1073,0,1051,989,1027,980,1004,1010],
[1007,950,0,918,954,978,992,985],
[1048,1012,1083,0,997,1050,994,1039],
[1054,974,1047,1004,0,1021,1010,1041],
[1023,1021,1023,951,980,0,1042,1030],
[1005,997,1009,1007,991,959,0,976],
[1056,991,1016,962,960,971,1025,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 191, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,993,910,997,989,957,966,985],
[1008,0,1046,1000,1052,1060,1055,1074],
[1091,955,0,1002,1050,1030,997,996],
[1004,1001,999,0,1005,968,996,997],
[1012,949,951,996,0,963,998,969],
[1044,941,971,1033,1038,0,1031,1049],
[1035,946,1004,1005,1003,970,0,1015],
[1016,927,1005,1004,1032,952,986,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 192, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,971,1024,969,992,1019,983,964],
[1030,0,1016,986,999,1016,1005,992],
[977,985,0,952,990,1011,956,1001],
[1032,1015,1049,0,1031,1044,986,1014],
[1009,1002,1011,970,0,1027,1012,949],
[982,985,990,957,974,0,979,963],
[1018,996,1045,1015,989,1022,0,1013],
[1037,1009,1000,987,1052,1038,988,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 193, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1004,960,968,1021,1022,973,1028],
[997,0,966,973,1034,1028,1018,1032],
[1041,1035,0,985,1021,1025,1022,1041],
[1033,1028,1016,0,1024,999,1001,1019],
[980,967,980,977,0,953,935,973],
[979,973,976,1002,1048,0,967,1022],
[1028,983,979,1000,1066,1034,0,1018],
[973,969,960,982,1028,979,983,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 194, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1077,967,1052,1045,1067,1021,1033],
[924,0,942,961,1001,956,953,976],
[1034,1059,0,991,1075,981,1009,1020],
[949,1040,1010,0,1000,970,1010,1009],
[956,1000,926,1001,0,976,941,1000],
[934,1045,1020,1031,1025,0,1073,974],
[980,1048,992,991,1060,928,0,1042],
[968,1025,981,992,1001,1027,959,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 195, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1016,1019,1030,1019,989,1020,994],
[985,0,990,1004,970,999,983,981],
[982,1011,0,990,993,1026,986,993],
[971,997,1011,0,981,983,1007,957],
[982,1031,1008,1020,0,997,1014,989],
[1012,1002,975,1018,1004,0,1008,1012],
[981,1018,1015,994,987,993,0,985],
[1007,1020,1008,1044,1012,989,1016,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 196, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,1080,917,1026,939,1032,952,1167],
[921,0,861,1047,863,981,866,924],
[1084,1140,0,983,983,1051,1071,1171],
[975,954,1018,0,939,992,927,1103],
[1062,1138,1018,1062,0,1121,984,1153],
[969,1020,950,1009,880,0,828,1083],
[1049,1135,930,1074,1017,1173,0,992],
[834,1077,830,898,848,918,1009,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 197, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,994,1024,993,960,979,976,1006],
[1007,0,1037,988,1005,1023,1009,1004],
[977,964,0,955,942,947,982,997],
[1008,1013,1046,0,1022,997,1027,1032],
[1041,996,1059,979,0,1037,1042,1032],
[1022,978,1054,1004,964,0,1004,1013],
[1025,992,1019,974,959,997,0,991],
[995,997,1004,969,969,988,1010,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 198, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,917,995,1137,1043,1127,1143,1108],
[1084,0,1044,1031,977,1035,1119,1057],
[1006,957,0,1055,803,1038,1186,1127],
[864,970,946,0,1036,1067,1131,921],
[958,1024,1198,965,0,1129,1182,1127],
[874,966,963,934,872,0,985,1064],
[858,882,815,870,819,1016,0,945],
[893,944,874,1080,874,937,1056,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 199, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
##############################################################
om = np.array([
[0,955,948,891,955,824,966,911],
[1046,0,1138,1092,891,1269,1192,1032],
[1053,863,0,950,856,1216,1069,832],
[1110,909,1051,0,948,1109,1141,705],
[1046,1110,1145,1053,0,1288,1246,971],
[1177,732,785,892,713,0,998,917],
[1035,809,932,860,755,1003,0,736],
[1090,969,1169,1296,1030,1084,1265,0]])
times = np.zeros(rep)
for i in range(rep):
# Algorithm with Condorcet winner
algorithm = alg.AzziniMunda5(om, float("inf"))
start_time = time.time()
sol = algorithm.execute()
t = (time.time() - start_time)
times[i] = t
#print(t)
exec_time = np.median(times)
result = np.append(np.array([8, 2001, 200, "ME-PRCW", exec_time, sol.shape[0], algorithm.ntentative], dtype=np.dtype(object)), times)
print(result[:7])
results = np.vstack((results, result))
pd.DataFrame(results).to_csv("/Users/noeliarico/Desktop/folder-kemeny/ejor/results/meprcw/meprcw_8_2001.csv", index=False, header=False)
|
[
"noeliarico@uniovi.es"
] |
noeliarico@uniovi.es
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.