blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 2
616
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
69
| license_type
stringclasses 2
values | repo_name
stringlengths 5
118
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringlengths 4
63
| visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 2.91k
686M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 23
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 213
values | src_encoding
stringclasses 30
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 2
10.3M
| extension
stringclasses 246
values | content
stringlengths 2
10.3M
| authors
listlengths 1
1
| author_id
stringlengths 0
212
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8b968103f0b9abceb9934710a91e091091a816f6
|
1ab794d1368ad5b6770c68d6efba85f095ecdfe1
|
/getter_setter2.py
|
8157abac58cdc29759d58dc1d077e9c34861b354
|
[] |
no_license
|
ssavann/PY-POO
|
d94303dd0d754c3aed4e9c7c32c9018acad04e65
|
b16f4ab35deca89e1dad0007e7b5285c3a3cca3c
|
refs/heads/master
| 2023-01-13T21:36:16.718070
| 2020-11-25T02:11:27
| 2020-11-25T02:11:27
| 315,803,120
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 677
|
py
|
'''
POO : les propriétés -> Modifier/controler les attributs (Encapsulation)
<getter> Accesseur --> Recuperer la valeur de l'attribut
<setter> Mutateur --> Définir la valeur de l'attribut
<property> (<getter>, <setter>)
'''
class Humain:
#constructeur
def __init__(self, nom, prenom):
self._nom = nom
self.prenom = prenom
def get_nom(self):
return self._nom
def set_nom(self, nouveauNom):
if nouveauNom == "":
print("Chaine vide interdite")
else:
self._nom = nouveauNom
LeNom = property(get_nom, set_nom)
#programme
h1 = Humain("Tremblay", "David")
#h1.LeNom = "Desjardins"
h1.LeNom = ""
print("L'objet h1 se nomme", h1._nom, h1.prenom)
|
[
"sousavann@gmail.com"
] |
sousavann@gmail.com
|
b2909cd9124676debb2c51fd41fb133e1e0cd503
|
da522791a92ca6627b25c0fe46032c533a7d3029
|
/client/server.py
|
f1e98f98ed5afcd1ffc5beec5a7df0c1cbe0c431
|
[] |
no_license
|
Shreyas097/P2P-CI-communication
|
3cc2fe0e8e67fddbc1b67104b773145f2bf7ea42
|
beff05c51527998ef6a98638b55d7bceac869cde
|
refs/heads/master
| 2020-05-25T14:35:56.013912
| 2019-05-21T14:02:37
| 2019-05-21T14:02:37
| 187,848,460
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,283
|
py
|
import socket
import threading
import os
import shlex
count=0
list_peers=list()
list_idx=list()
list_rfc=list()
SERVER_PORT = 7734
class RFCRecord:
def __init__(self, rfc_no = -1, rfc_title = 'None', peer_hostname ='None', peer_id =-1):
self.rfc_no = rfc_no
self.rfc_title = rfc_title
self.peer_hostname = peer_hostname
self.peer_id=peer_id
def __str__(self):
return str(self.rfc_no)+' '+str(self.rfc_title)+' '+str(self.peer_hostname)+' '+str(self.peer_id)
class PeerRecord:
def __init__(self,peer_hostname='None',peer_postno=10000,peer_id=-1):
self.peer_hostname=peer_hostname
self.peer_postno=peer_postno
self.peer_id=peer_id
def __str__(self):
return str(self.peer_hostname)+' '+str(self.peer_postno)+' '+str(self.peer_id)
def port_acquire(peer_id):
for peer_record in list_peers:
if peer_record.peer_id == peer_id:
return peer_record.peer_postno
def REGISTER(data, clientsocket):
global count
count = count+1
rlist=shlex.split(data)
temp=list()
a=list()
b=list()
rfc_list=str(data).rsplit(':',1)
c=shlex.split(rfc_list[1])
list_peers.insert(0,PeerRecord(rlist[3],rlist[5],count))
for i,j in zip(c[::2],c[1::2]):
list_idx.insert(0,RFCRecord(i,j,rlist[3],count))
reply="CLIENT REGISTRATION SUCCESSFUL"
clientsocket.send(reply)
def LIST_ALL(clientsocket):
global status
status=0
global phrase
phrase=''
reply=list()
if list_idx:
for x in list_idx:
peer_port = port_acquire(x.peer_id)
reply.append(RFCRecord(x.rfc_no,x.rfc_title,x.peer_hostname,peer_port))
status=200
phrase='OK'
else:
status=400
phrase='BAD REQUEST'
response="P2P-CI/1.0 "+str(status)+" "+str(phrase)+" - LIST_ALL"+"\n"
for i in reply:
reply_list=shlex.split(str(i))
response=response+"File name: "+str(reply_list[1])+"_"+reply_list[0]+" HOST: "+reply_list[2]+" PORT: "+str(reply_list[3])+"\n"
clientsocket.send(response)
def LOOKUP(clientsocket, rlist):
reply=list()
flag=0
for x in list_idx:
if int(x.rfc_no)==int(rlist[1]):
reply.append(RFCRecord(x.rfc_no,x.rfc_title,x.peer_hostname,x.peer_id))
code=200
phrase='OK'
flag = 1
if(flag==0):
code=404
phrase='FILE NOT FOUND'
response="P2P-CI/1.0 "+str(code)+" "+str(phrase)+" - LOOKUP"+"\n"
for i in reply:
reply_list=shlex.split(str(i))
response=response+"File found: "+str(reply_list[1])+"_"+reply_list[0]+" HOST: "+reply_list[2]+" CLIENT NUM: "+str(reply_list[3])+"\n"
clientsocket.send(response)
def ADD(clientsocket, rlist, count, data):
list_idx.insert(0,RFCRecord(rlist[1],rlist[8],rlist[4],count))
code=200
phrase='OK'
a=data.splitlines()
title=a[3].split(":")
response="P2P-CI/1.0 "+str(code)+" "+str(phrase)+" - ADD"+"\n"
response=response+"File added: RFC_"+rlist[1]+" HOST: "+rlist[4]+" PORT: "+rlist[6]
clientsocket.send(response)
def REMOVE(rlist, count):
rfc_pos = 0
phostname=rlist[4]
peerport=rlist[6]
rfc_title=rlist[8]
for q in list_idx:
if q.rfc_no==rlist[1] and q.peer_hostname==phostname and q.peer_id == count:
del list_idx[rfc_pos]
rfc_pos = rfc_pos + 1
clientsocket.send("REMOVAL SUCCESS")
def EXIT(rlist, count):
global peerhost
templ=list()
temil=list()
phostname=rlist[3]
peerport=rlist[5]
for q in list_peers:
if q.peer_postno==peerport:
peerhost=q.peer_hostname
idx2=[x for x,y in enumerate(list_idx) if y.peer_hostname==str(peerhost)]
for i in sorted(idx2, reverse=True):
del list_idx[i]
idx=[x for x,y in enumerate(list_peers) if y.peer_postno==peerport]
for i in idx:
del list_peers[i]
clientsocket.send("CLIENT CLOSED - SHUTDOWN SUCCESSFUL")
def req_processing(clientsocket, clientaddr):
data = clientsocket.recv(1024)
global count
print "*"*37
print "REQUEST FROM CLIENT: "
print data
print "*"*37
rlist=shlex.split(data)
if rlist[0] == 'REGISTER':
REGISTER(data, clientsocket)
elif rlist[0] == 'LISTALL':
LIST_ALL(clientsocket)
elif rlist[0] == 'LOOKUP':
LOOKUP(clientsocket, rlist)
elif rlist[0] == 'ADD':
ADD(clientsocket, rlist, count, data)
elif rlist[0] == 'EXIT':
EXIT(rlist, count)
elif rlist[0] == 'REMOVE':
REMOVE(rlist, count)
if __name__=="__main__":
HOST=socket.gethostname()
PORT=SERVER_PORT
IP = socket.gethostbyname(HOST)
print "SERVER NAME - HOST NAME: "+HOST+" PORT:"+str(PORT)+" IP:"+IP
serversocket = socket.socket()
serversocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
serversocket.bind((HOST,PORT))
serversocket.listen(5)
print "SERVER ACTIVELY LISTENING FOR CONNECTIONS \n"
while(1):
clientsocket, clientaddr = serversocket.accept()
serverThread = threading.Thread(target=req_processing, args=(clientsocket,clientaddr))
serverThread.start()
serversocket.close()
|
[
"noreply@github.com"
] |
Shreyas097.noreply@github.com
|
e72622090d163499f2589915a6bbfb4e5ab08d70
|
daf2da00f5c5000ab63697a16a2af9027bfdb521
|
/CLI/src/f4i_del_vthing_endpoint.py
|
9244f871f63e7e3f5aa5abc6ae27a1f5d61aa91e
|
[
"BSD-4-Clause"
] |
permissive
|
fed4iot/VirIoT
|
b4b781ca419faaf50858118b1bc8c80cea6c011a
|
0301a908554f31748985b82b9f310ce9b9af1f9b
|
refs/heads/master
| 2023-01-29T06:41:27.379050
| 2023-01-25T08:56:51
| 2023-01-25T08:56:51
| 242,765,526
| 12
| 11
|
NOASSERTION
| 2021-12-07T18:53:03
| 2020-02-24T15:02:23
|
C
|
UTF-8
|
Python
| false
| false
| 1,664
|
py
|
#!/usr/bin/python3
import argparse
import requests
import json
import os
from pathlib import Path
viriot_dir = str(Path.home()) + "/.viriot"
token_file = viriot_dir + "/token"
def get_token():
if not os.path.isfile(token_file):
print("Token not found")
return None
with open(token_file, 'r') as file:
data = json.load(file)
token = data["access_token"]
return token
def printj(msg):
print("\n")
print(json.dumps(json.loads(msg), indent=4, sort_keys=True))
print("\n")
def init_args(parser):
parser.add_argument('-c', action='store', dest='controllerUrl',
help='Controller url (default: http://127.0.0.1:8090)', default='http://127.0.0.1:8090')
parser.add_argument('-v', action='store', dest='vThingID',
help='vThingID (default: helloWorld/hello)', default='helloWorld/hello')
parser.set_defaults(func=run)
def run(args):
url = args.controllerUrl + "/delVThingEndpoint"
print("Setting vThing endpoint, please wait ....")
msg={}
msg['vThingID'] = args.vThingID
payload = json.dumps(msg)
printj(payload)
token = get_token()
if not token:
return
headers = {
'Authorization': "Bearer " + token,
'accept': "application/json",
'content-type': "application/json",
'cache-control': "no-cache",
}
response = requests.request("POST", url, data=payload, headers=headers)
print(response.json().get('message') + "\n")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
init_args(parser)
args = parser.parse_args()
args.func(args)
|
[
"andreaD"
] |
andreaD
|
52b6869373b921dfebae787ad8e70c1b548dc106
|
c7cebec6209866b02ee654cffeafe0f2cf0646f1
|
/samsung sw/level2/mode.py
|
3fe4aa5dac038c280907fab6877799aea5700ff4
|
[] |
no_license
|
dondon17/algorithm
|
5492cf039a96ecf5a944816bdca9b5755e5a2623
|
da4d6ca1c21c31c6521a62b38855e0b9cf4b0d91
|
refs/heads/master
| 2023-05-02T14:54:35.185914
| 2021-05-30T07:31:40
| 2021-05-30T07:31:40
| 323,802,402
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 426
|
py
|
import collections
def solution(scores):
data = collections.Counter(scores)
data_list = dict(data)
max_value = max(list(data.values()))
mode_val = [num for num, freq in data_list.items() if freq == max_value]
return max(mode_val)
t = int(input())
for i in range(1, t+1):
n = int(input())
scores = list(map(int, input().split()))
answer = solution(scores)
print("#{} {}".format(i, answer))
|
[
"qwerqw889@ajou.ac.kr"
] |
qwerqw889@ajou.ac.kr
|
bec8e741e255e39fa4861665362abc28d22d5f28
|
5cc204e2ecb9a756127e7c71633a1edcdb3e989b
|
/Archive_sand/MOF_plus/ff_gen/ff_gen/objectives/energy_fit.py
|
59b2452633a8988fb134b6502d0a377336b29ac0
|
[] |
no_license
|
hopefulp/sandbox
|
1a1d518cf7b5e6bca2b2776be1cac3d27fc4bcf8
|
4d26767f287be6abc88dc74374003b04d509bebf
|
refs/heads/master
| 2023-06-27T17:50:16.637851
| 2023-06-15T03:53:39
| 2023-06-15T03:53:39
| 218,209,112
| 1
| 0
| null | 2022-09-13T13:22:34
| 2019-10-29T05:14:02
|
C++
|
UTF-8
|
Python
| false
| false
| 3,911
|
py
|
"""
This file implements a force_fit class.
It handles the reference force arrays and calculates the msd.
In addition, a weight matrix is held to evaluate various kinds of weighted mean
square deviations to be used as ingredients to fittness values
"""
import string
import numpy as np
import copy
import os
import refclass
import matplotlib.pyplot as plt
import pickle
class energy_fit:
"""
class to compute the msd between the reference forces and the model forces.
"""
def __init__(self, tag, skip_bonded = False, ref_diff = 0.0, set_cell = False, verbose = False):
self.tag = tag
self.ref_diff = ref_diff
self.skip_bonded = skip_bonded
self.set_cell = set_cell
self.verbose = verbose
self.geomparams = None
return
def initialize(self, pd, ref):
self.pd = pd
self.ref = ref
self.generate_reference()
self.fact_energy = 1.0
#self.get_weights()
self.cycle = 0
self.fdiagnostics = open('force_energy_%s.punch' % self.tag, 'w')
return
def set_geomparams(self, geomparams):
self.geomparams = geomparams
return
def generate_reference(self):
self.structures = copy.deepcopy(self.ref(info = 'structures',
branch = 'forcematch', tag = self.tag))
self.geomvectors = copy.deepcopy(self.ref(info = 'vectors',
branch = 'forcematch', tag = self.tag))
self.nstruc = np.shape(self.structures)[0]
self.natoms = np.shape(self.structures)[1]
self.energy = np.zeros((self.nstruc))
energies = copy.deepcopy(self.ref(info = 'energies',
branch = 'forcematch', tag = self.tag)[:,0])
self.indmin = np.argsort(energies)[0]
self.min_e = energies[self.indmin]
# self.ref_energy = energies - self.min_e
self.ref_energy = energies - self.ref_diff
if self.set_cell == True:
self.cells = - copy.deepcopy(self.ref(info = 'cells',
branch = 'forcematch', tag = self.tag))
return
def __call__(self):
for i in range(self.nstruc):
if self.set_cell == True:
self.pd.set_cell(self.cells[i,:,:])
if self.geomparams != None:
structure = self.structures[i,:,:] + (self.geomparams * \
self.geomvectors[i,:,:])
self.pd.set_xyz(structure)
else:
self.pd.set_xyz(self.structures[i,:,:])
self.pd.set_atoms_moved()
if self.skip_bonded:
self.pd.skip_bonded()
e, f = self.pd.calc_energy_force()
self.energy[i] = e
#self.energy = self.energy-self.energy[self.indmin]
self.calc_msd()
self.cycle += 1
if self.verbose:
self.print_energies()
return self.msd, [self.a_msd]
def calc_msd(self):
assert np.shape(self.energy) == np.shape(self.ref_energy)
delt = (self.energy - self.ref_energy)*self.fact_energy
self.msd = (delt*delt).sum()/self.nstruc
self.a_msd = [self.msd]
self.fdiagnostics.write("%s %6.6f\n" % (self.cycle, self.msd))
return
def print_energies(self, element = 100):
lref = []
lfit = []
for i in xrange(self.nstruc):
if i % 500 == 0:
#lref.append(np.sum(self.ref_energy[i:i+500]+self.min_e)/self.nstruc)
#lfit.append(np.sum(self.energy[i:i+500]+self.energy[self.indmin])/self.nstruc)
lref.append(np.sum(self.ref_energy[i:i+500])/500.0)
lfit.append(np.sum(self.energy[i:i+500])/500.0)
print i, self.ref_energy[i], self.energy[i], self.ref_energy[i] -self.energy[i]
pickle.dump(lref, open('ref.pickle', 'wb'))
pickle.dump(lfit, open('fit.pickle', 'wb'))
return
|
[
"hopefulp@gmail.com"
] |
hopefulp@gmail.com
|
b2238d921ad8dbc4f7739b6e6a2c56d29ecb57bd
|
08eee2aa3767a94e14f2fb8c1ab8044d69d2ef37
|
/BacData/BacItem.py
|
be5152851d5298d2dae70fbacfb8669671d07734
|
[] |
no_license
|
msorins/Bacalaureat2017-Crawler
|
fd74c40709cbf9da60dfbff58e14b0c7279c5279
|
af18b50b8b642bec81dcbfc05c2341add7d950ea
|
refs/heads/master
| 2020-12-02T17:58:42.357631
| 2017-07-07T10:03:12
| 2017-07-07T10:03:12
| 96,457,865
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,319
|
py
|
import scrapy
class BacItem(scrapy.Item):
# define the fields for your item here like:
nr = scrapy.Field()
nume = scrapy.Field()
posIerarhieJudet = scrapy.Field()
posIerarhieTara = scrapy.Field()
unitInvatamant = scrapy.Field()
judet = scrapy.Field()
promotieAnterioara = scrapy.Field()
formaEducatie = scrapy.Field()
specializare = scrapy.Field()
examenOralRomana = scrapy.Field()
notaScrisaRomana = scrapy.Field()
notaContestatieRomana = scrapy.Field()
notaFinalaRomana = scrapy.Field()
limbaMaterna = scrapy.Field()
limbaModerna = scrapy.Field()
notaLimbaModerna = scrapy.Field()
disciplinaObligatorie = scrapy.Field()
disciplinaAlegere = scrapy.Field()
competenteDigitale = scrapy.Field()
medie = scrapy.Field()
rezultatFinal = scrapy.Field()
competenteMaterna = scrapy.Field()
notaScrisaMaterna = scrapy.Field()
notaContestatieMaterna = scrapy.Field()
notaFinalaMaterna = scrapy.Field()
notaDisciplinaObligatorie = scrapy.Field()
notaContestatieDisciplinaObligatorie = scrapy.Field()
notaFinalaDisciplinaObligatorie = scrapy.Field()
notaDisciplinaAlegere = scrapy.Field()
notaContestatieDisciplinaAlegere = scrapy.Field()
notaFinalaDisciplinaAlegere = scrapy.Field()
pass
|
[
"sorynsoo@gmail.com"
] |
sorynsoo@gmail.com
|
28c2e084211d7511caea9b3e9b12e41899b03a51
|
3c48cb09c8925108284a5a074f2ce45614f974e1
|
/GroupClientAudio.py
|
76e90510aa302f76f6aefd2c427a4e5fd557858b
|
[] |
no_license
|
HsimWong/PythonChat
|
fe0269f6a1cb252ea0cfe14f4245d076c50402bf
|
0dbe53959a69fb4a14240d60a0cc8532a98c9588
|
refs/heads/master
| 2020-06-12T03:15:29.709148
| 2019-07-01T00:07:33
| 2019-07-01T00:07:33
| 194,178,846
| 4
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,215
|
py
|
from socket import socket, AF_INET, SOCK_STREAM
from threading import Thread
import pyaudio
from array import array
HOST = input("Enter Server IP\n")
PORT = 4000
BufferSize = 4096
FORMAT=pyaudio.paInt16
CHANNELS=2
RATE=44100
CHUNK=1024
def SendAudio():
while True:
data = stream.read(CHUNK)
dataChunk = array('h', data)
vol = max(dataChunk)
if(vol > 500):
print("Recording Sound...")
else:
print("Silence..")
client.sendall(data)
def RecieveAudio():
while True:
data = recvall(BufferSize)
stream.write(data)
def recvall(size):
databytes = b''
while len(databytes) != size:
to_read = size - len(databytes)
if to_read > (4 * CHUNK):
databytes += client.recv(4 * CHUNK)
else:
databytes += client.recv(to_read)
return databytes
client = socket(family=AF_INET, type=SOCK_STREAM)
client.connect((HOST, PORT))
audio=pyaudio.PyAudio()
stream=audio.open(format=FORMAT,channels=CHANNELS, rate=RATE, input=True, output = True,frames_per_buffer=CHUNK)
RecieveAudioThread = Thread(target=RecieveAudio).start()
SendAudioThread = Thread(target=SendAudio).start()
|
[
"16074101@emails.bjut.edu.cn"
] |
16074101@emails.bjut.edu.cn
|
7760f4ddb317f0829c74cbe78d8c30155f2a7ae2
|
2baf3b1d757ee94cbac55f15ca847a2eaf85ebb0
|
/code/batch_driver.py
|
b917168f9d867023213d7641c60331cb34b246ab
|
[] |
no_license
|
gatech-cse6730/proj2-code
|
e96a932ebdec19aa5d6946ce4af3c0260deac780
|
a8453dd56107b142f4c313dc6dd26d7ced1b4f78
|
refs/heads/master
| 2021-01-01T04:35:38.666339
| 2016-05-02T18:55:20
| 2016-05-02T18:55:20
| 56,277,428
| 0
| 8
| null | 2016-05-02T13:59:19
| 2016-04-14T23:59:16
|
Python
|
UTF-8
|
Python
| false
| false
| 928
|
py
|
from driver import Driver
import numpy as np
class BatchDriver(object):
"""
Performs a batch of simulation runs. Only for use by analyzer.py.
"""
def __init__(self, num_sims=20):
self.num_sims = num_sims
def drive(self, initial_pop=50):
random_seed = 0
results = []
print('-'*50)
print('---> Initializing batch for initial_pop %d.', initial_pop)
for i in xrange(self.num_sims):
print('---> Initializing simulation run %d for initial pop %d.' % (i, initial_pop))
driver = Driver(vis=False)
result = driver.drive(max_iterations=1500,
random_seed=random_seed,
initial_pop=initial_pop)
results.append(result)
random_seed += 2
return results
if __name__ == '__main__':
driver = BatchDriver()
driver.drive()
|
[
"matthewbentonmay@gmail.com"
] |
matthewbentonmay@gmail.com
|
7b5135db6ba20d4dd0d5ac8f2cb1c8c27a76fff4
|
dba3e87b75a782e2083d59957d79b4448854a8b4
|
/settings.py
|
d8eb8ebb7727327530297a1513d028b6773ebf14
|
[] |
no_license
|
mountainhound/roan-trader
|
803f8eaccd6c950dcecdd14a18e45a25bfbb02e9
|
47ef5ef50e1a7fd84ffcc7c5372fb96e041c573d
|
refs/heads/master
| 2020-03-07T07:53:58.567099
| 2018-04-25T18:46:00
| 2018-04-25T18:46:00
| 127,361,676
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 460
|
py
|
#GDAX Credentials
GDAX_API_KEY = "CHANGE_ME"
GDAX_PRIVATE_KEY = "CHANGE_ME"
GDAX_PASSPHRASE = "CHANGE_ME"
#BANDWIDTH API Credentials
BANDWIDTH_USER = "CHANGE_ME"
BANDWIDTH_TOKEN = "CHANGE_ME"
BANDWIDTH_SECRET = "CHANGE_ME"
ROOT_NUMBER = "CHANGE_ME"
ORIGIN_NUMBER = "CHANGE_ME"
#MAILGUN API Credentials
MAILGUN_API_KEY = "CHANGE_ME"
MAILGUN_API_URL = "CHANGE_ME"
#COIN Settings
COIN_LIST = ["LTC","ETH","BTC"]
#APP Settings
APP_URL = "http://localhost:5000"
|
[
"parker@fopark.com"
] |
parker@fopark.com
|
0ccd2913d0c8ddb2a1b22ebbba253486884ded42
|
64e6d36fe639bdf37773a1d1a2ec5664538d325e
|
/sdk/python/tests/dsl/metric_utils_test.py
|
5898561f61e31b7da4c33a30e21d956c70ff804d
|
[
"Apache-2.0"
] |
permissive
|
JohanWork/pipelines
|
5c4ba6bba30ace675df80761dd483612a79c3f29
|
f32915e88f501dd9256eb259288a00e0e6f9c9e0
|
refs/heads/master
| 2021-07-16T00:11:46.065197
| 2021-04-10T16:20:04
| 2021-04-10T16:20:04
| 244,719,809
| 1
| 0
|
Apache-2.0
| 2020-03-03T19:10:35
| 2020-03-03T19:10:35
| null |
UTF-8
|
Python
| false
| false
| 2,235
|
py
|
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for kfp.dsl.metrics_utils."""
import os
import unittest
import yaml
import json
import jsonschema
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Struct
from kfp.dsl import metrics_utils
from google.protobuf import json_format
class MetricsUtilsTest(unittest.TestCase):
def test_confusion_matrix(self):
conf_matrix = metrics_utils.ConfusionMatrix()
conf_matrix.set_categories(['dog', 'cat', 'horses'])
conf_matrix.log_row('dog', [2, 6, 0])
conf_matrix.log_cell('cat', 'dog', 3)
with open(os.path.join(os.path.dirname(__file__),
'test_data', 'expected_confusion_matrix.json')) as json_file:
expected_json = json.load(json_file)
self.assertEqual(expected_json, conf_matrix.get_metrics())
def test_bulkload_confusion_matrix(self):
conf_matrix = metrics_utils.ConfusionMatrix()
conf_matrix.load_matrix(['dog', 'cat', 'horses'], [
[2, 6, 0], [3, 5,6], [5,7,8]])
with open(os.path.join(os.path.dirname(__file__),
'test_data',
'expected_bulk_loaded_confusion_matrix.json')) as json_file:
expected_json = json.load(json_file)
self.assertEqual(expected_json, conf_matrix.get_metrics())
def test_confidence_metrics(self):
confid_metrics = metrics_utils.ConfidenceMetrics()
confid_metrics.confidenceThreshold = 24.3
confid_metrics.recall = 24.5
confid_metrics.falsePositiveRate = 98.4
expected_dict = {
'confidenceThreshold': 24.3,
'recall': 24.5,
'falsePositiveRate': 98.4
}
self.assertEqual(expected_dict, confid_metrics.get_metrics())
if __name__ == '__main__':
unittest.main()
|
[
"noreply@github.com"
] |
JohanWork.noreply@github.com
|
43e5286bb463c6cdd9fb51b5ad5f5f618582a702
|
74b310d13d317cd29a5b5a8f22fcbeeb7cb0f07d
|
/gallery/ising-square-tc/plot.py
|
1c0142441ac43d25ecc9bd0532d5c10a52964ebb
|
[
"Apache-2.0"
] |
permissive
|
todo-group/exact
|
1bb146ee9a616a36a0f2b4f4b2c0ce1db3e7c39e
|
ee76421fab9b2b1eaf77d6b01830a18e66f7180a
|
refs/heads/master
| 2021-12-15T15:16:54.043117
| 2021-12-14T11:27:41
| 2021-12-14T11:27:41
| 60,764,380
| 3
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 945
|
py
|
import math
import matplotlib.pyplot as plt
filename = "result-p15.dat"
with open(filename, 'r') as f:
for line in f:
data = line.split()
if (data[0] == "inf"):
free_energy_inf = float(data[6])
energy_inf = float(data[7])
L = []
free_energy = []
energy = []
with open(filename, 'r') as f:
for line in f:
data = line.split()
if (data[0] != '#' and data[0] != "inf"):
L.append(int(data[0]))
free_energy.append(math.fabs(float(data[6])-free_energy_inf))
energy.append(math.fabs(float(data[7])-energy_inf))
plt.plot(L, free_energy, marker = 'o', label = 'finite-size error of free energy density')
plt.plot(L, energy, marker = 'v', label = 'finite-size error of energy density')
plt.xlabel('L')
plt.xscale('log')
plt.yscale('log')
plt.grid()
plt.legend()
plt.savefig('plot.pdf')
plt.show()
print(L)
print(free_energy)
print(energy)
|
[
"wistaria@phys.s.u-tokyo.ac.jp"
] |
wistaria@phys.s.u-tokyo.ac.jp
|
f63531c28c4ac3e571b51097354a358deee7dda5
|
baa39ba9fce126d012b3161231890eaf193a7d4c
|
/code/projects/word_count/main.py
|
ef24d67bededa99c3e480b89265d595c408a932d
|
[] |
no_license
|
pmayd/python-complete
|
fa0e3e7ad35ce7b8fba9effa7868d206e8901ff6
|
6c5d35cb88452898e6798ab9914139151228318b
|
refs/heads/main
| 2021-12-23T06:22:31.366878
| 2021-11-29T07:25:26
| 2021-11-29T07:25:26
| 233,419,063
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 596
|
py
|
#!/usr/bin/env python3
""" Reads a file and returns the number of lines, words,
and characters - similar to the UNIX wc utility
"""
from pathlib import Path
def word_count():
"""
To give you a better sense of how a Python program works, this section looks at a small sample that roughly replicates the UNIX wc utility and reports the number of lines, words, and characters in a file. The sample in this listing is deliberately written to be clear to programmers who are new to Python and to be as simple as possible.
"""
pass
if __name__ == "__main__":
word_count()
|
[
"michael.aydinbas@gmail.com"
] |
michael.aydinbas@gmail.com
|
ab3c213726a9356b82943980533101b0cf5a99d5
|
cdb05e62e14623f18f84797c4b6780a9d7032478
|
/perfkitbenchmarker/linux_benchmarks/messaging_service_benchmark.py
|
1da35bc6a27cbc1ceeb88f397306207334ae391a
|
[
"BSD-3-Clause",
"MIT",
"Classpath-exception-2.0",
"AGPL-3.0-only",
"GPL-2.0-only",
"Apache-2.0",
"LicenseRef-scancode-public-domain"
] |
permissive
|
pdeyhim/PerfKitBenchmarker
|
eece17148862f8c902d7404f9740abefb305d43c
|
0e1f6caaceb771437e0e8d8d7724b41be040df0d
|
refs/heads/master
| 2023-07-20T06:13:42.021733
| 2023-07-19T03:47:04
| 2023-07-19T03:47:04
| 67,570,369
| 0
| 0
|
Apache-2.0
| 2023-07-19T03:47:05
| 2016-09-07T03:56:58
|
Python
|
UTF-8
|
Python
| false
| false
| 5,514
|
py
|
# Copyright 2021 PerfKitBenchmarker Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Messaging Service benchmark.
This benchmark runs in a client VM and benchmarks messaging services from
different cloud providers. It measures latency to publish/pull messages from
the client VM.
This benchmark first send a command to the client VM to publish messages. When
that completes it send commands to pull the messages. Measuring latency of
single message publish/pull in each scenario:
- publish: it publishes N messages of size X (N and X can be specified
with number_of_messages, and message_size FLAGS respectively). It
measures the latency between each call to publish the message and the
message being successfully published.
- pull: It pulls N messages 1 by 1. It measures the latency of:
- A call to pull the message and the message being received.
- A call to pull the message and the message being received and
acknowledged.
"""
from typing import Any, Dict, List
from absl import flags
from perfkitbenchmarker import benchmark_spec as bm_spec
from perfkitbenchmarker import configs
from perfkitbenchmarker import sample
BENCHMARK_NAME = 'messaging_service'
BENCHMARK_CONFIG = """
messaging_service:
description: messaging_service benchmark
vm_groups:
default:
os_type: debian10
vm_spec:
AWS:
machine_type: m5.2xlarge
zone: us-east-1a
Azure:
machine_type: Standard_D8d_v4
zone: eastus
GCP:
machine_type: n2-standard-8
zone: us-central1-a
messaging_service:
delivery: pull
"""
SINGLE_OP = 'single_op'
END_TO_END = 'end_to_end'
MEASUREMENT_CHOICES = [SINGLE_OP, END_TO_END]
FLAGS = flags.FLAGS
_MEASUREMENT = flags.DEFINE_enum(
'messaging_service_measurement',
'single_op',
MEASUREMENT_CHOICES,
help='Way to measure latency.')
_NUMBER_OF_MESSAGES = flags.DEFINE_integer(
'messaging_service_number_of_messages',
100,
help='Number of messages to use on benchmark.')
_MESSAGE_SIZE = flags.DEFINE_integer(
'messaging_service_message_size',
10,
help='Number of characters to have in a message. '
"Ex: 1: 'A', 2: 'AA', ...")
def GetConfig(user_config: Dict[Any, Any]) -> Dict[Any, Any]:
return configs.LoadConfig(BENCHMARK_CONFIG, user_config, BENCHMARK_NAME)
def _CreateSamples(results: Dict[str, Any], number_of_messages: int,
message_size: int, cloud: str) -> List[sample.Sample]:
"""Handles sample creation from benchmark_scenario results."""
samples = []
common_metadata = {
'number_of_messages': number_of_messages,
'message_size': message_size,
'cloud': cloud
}
for metric_name in results:
metric_value = results[metric_name]['value']
metric_unit = results[metric_name]['unit']
metric_metadata = results[metric_name]['metadata']
metric_metadata.update(common_metadata)
# aggregated metrics, such as: mean, p50, p99...
samples.append(
sample.Sample(metric_name, metric_value, metric_unit, metric_metadata))
return samples
def Prepare(benchmark_spec: bm_spec.BenchmarkSpec):
"""Prepares the client VM.
Runs the prepare function from get_instance. It prepares the cloud environment
with resource creation (for GCP Cloud Pub/Sub it creates topic and
subscription) and prepares the client VM with packages and files needed to
run the benchmark.
Args:
benchmark_spec: The benchmark specification.
"""
benchmark_spec.messaging_service.PrepareClientVm()
def Run(benchmark_spec: bm_spec.BenchmarkSpec) -> List[sample.Sample]:
"""Measure the latency to publish, pull, or publish and pull messages.
Runs the run function from get_instance. It runs the benchmark specified with
the flag: 'messaging_service_benchmark' from the client VM.
Args:
benchmark_spec: The benchmark specification.
Returns:
List of samples. Produced when running the benchmark from client VM
(on 'messaging_service.Run()' call).
"""
service = benchmark_spec.messaging_service
if _MEASUREMENT.value == SINGLE_OP:
publish_results = service.Run(service.PUBLISH_LATENCY,
int(_NUMBER_OF_MESSAGES.value),
int(_MESSAGE_SIZE.value))
pull_results = service.Run(service.PULL_LATENCY,
int(_NUMBER_OF_MESSAGES.value),
int(_MESSAGE_SIZE.value))
publish_results.update(pull_results)
results = publish_results
elif _MEASUREMENT.value == END_TO_END:
results = service.Run(service.END_TO_END_LATENCY,
int(_NUMBER_OF_MESSAGES.value),
int(_MESSAGE_SIZE.value))
# Creating samples from results
samples = _CreateSamples(results, int(_NUMBER_OF_MESSAGES.value),
int(_MESSAGE_SIZE.value), FLAGS.cloud)
return samples
def Cleanup(_: bm_spec.BenchmarkSpec):
pass
|
[
"copybara-worker@google.com"
] |
copybara-worker@google.com
|
0bf0a1ab2006bc6c08a47a99e365f27567f909c5
|
24057bbc039c4cd39000c09b5d8954dc080d90a8
|
/Clase 2/Ejemplos/02 - funciones/02 - argumentos/b_args_con_clave.py
|
1fd88e08f39777b41b4d2e82ee63e2c98edf4772
|
[
"MIT"
] |
permissive
|
Python-Academy-Argentina/Fundamentals
|
9c2e551a38729bd58f54f0b0071fe4f704b6ed19
|
000b7c75269b99dfe3abfe01062bf17115bab2c3
|
refs/heads/master
| 2023-06-08T04:55:34.884583
| 2021-06-21T15:26:46
| 2021-06-21T15:26:46
| 364,298,252
| 11
| 4
|
MIT
| 2021-06-08T20:27:32
| 2021-05-04T15:15:57
|
Python
|
UTF-8
|
Python
| false
| false
| 1,764
|
py
|
# b_args_con_clave.py
# muestra ejemplos de funciones con argumentos con clave (keyword arguments)
# en la función <operaciones> de a_args_posicionales.py vemos que se aceptan
# dos argumentos: <a> y <b>
# estos argumentos tienen nombre (clave), aunque aceptan ser tratados posicionales
# en la medida en la que no se los referencie por su nombre:
def operaciones(a, b):
"""
Devuelve el resultado de resolver distintas operaciones
aritméticas entre <a> y <b>.
"""
print(f'\nEl orden no importa para las sumas:')
print(f'{a} + {b} es {a + b} y {b} + {a} también es {b + a}')
print(f'\nNi tampoco para las multiplicaciones:')
print(f'{a} * {b} es {a * b} y {b} * {a} también es {b * a}')
print('\nSin embargo, restas y divisiones ya no son tan simples...')
print(f'{a} - {b} es {a - b}, pero {b} - {a} es {b - a}')
print(f'{a} / {b} es {a / b}, pero {b} / {a} es {b / a}')
print('\nPasando a = 5 y b = 2 con sus respectivos nombres:')
operaciones(b=2, a=5) # doy vuelta los valores, pero el resultado es el mismo
print('\nPasando a=7 y b=1 con sus respectivos nombres:')
operaciones(b=1, a=7)
# si quisiera prohibir el uso de claves para ciertos argumentos, Python nos permite
# delimitarlos pasando / como si fuera una variable:
print('\n\nAhora probamos pasar argumentos posicionales con clave:')
def suma_posicionales(a, b, /): # después de / puedo seguir agregando argumentos con clave
"""
Esta no admite hacer algo como 'suma_posicionales(a=1, b=0)'.
"""
print(f'\n{a} + {b} es {a + b}')
print('\nPasando <a> y <b> sin clave:')
suma_posicionales(5, 2) # esto no falla
print('\nPasando a=5 y b=2 con clave:')
suma_posicionales(a=5, b=2) # esto resulta en TypeError
print()
|
[
"67435760+xthehatterx@users.noreply.github.com"
] |
67435760+xthehatterx@users.noreply.github.com
|
455626e28d9feee7af502b9f88ffba687191d61e
|
637f82f7803b639178c1a961abcf357039ddc0ef
|
/src/azure-cli-core/azure/cli/core/auth/identity.py
|
729f01a64f559e99d4cd9bb8a131ccd11c22f8b7
|
[
"MIT",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"GPL-1.0-or-later",
"MPL-2.0",
"Apache-2.0",
"BSD-2-Clause",
"LGPL-2.1-only",
"LGPL-2.1-or-later"
] |
permissive
|
vadeveka/azure-cli
|
44a6986b9a4c1765a2c305a4edf07152f55012f9
|
abb232d7105118500fa0fb1255e5183132806725
|
refs/heads/dev
| 2022-07-06T15:48:48.766428
| 2021-12-17T09:05:52
| 2021-12-17T09:05:52
| 197,075,859
| 0
| 0
|
MIT
| 2022-06-27T12:55:19
| 2019-07-15T21:37:08
|
Python
|
UTF-8
|
Python
| false
| false
| 15,362
|
py
|
# --------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# --------------------------------------------------------------------------------------------
import json
import os
import re
from azure.cli.core._environment import get_config_dir
from msal import PublicClientApplication
from knack.log import get_logger
from knack.util import CLIError
# Service principal entry properties
from .msal_authentication import _CLIENT_ID, _TENANT, _CLIENT_SECRET, _CERTIFICATE, _CLIENT_ASSERTION, \
_USE_CERT_SN_ISSUER
from .msal_authentication import UserCredential, ServicePrincipalCredential
from .persistence import load_persisted_token_cache, file_extensions, load_secret_store
from .util import check_result
AZURE_CLI_CLIENT_ID = '04b07795-8ddb-461a-bbee-02f9e1bf7b46'
logger = get_logger(__name__)
class Identity: # pylint: disable=too-many-instance-attributes
"""Class to manage identities:
- user
- service principal
- TODO: managed identity
"""
# MSAL token cache.
# It follows singleton pattern so that all MSAL app instances share the same token cache.
_msal_token_cache = None
# MSAL HTTP cache for MSAL's tenant discovery, retry-after error cache, etc.
# It *must* follow singleton pattern so that all MSAL app instances share the same HTTP cache.
# https://github.com/AzureAD/microsoft-authentication-library-for-python/pull/407
_msal_http_cache = None
# Instance of ServicePrincipalStore.
# It follows singleton pattern so that _secret_file is read only once.
_service_principal_store_instance = None
def __init__(self, authority, tenant_id=None, client_id=None, encrypt=False):
"""
:param authority: Authentication authority endpoint. For example,
- AAD: https://login.microsoftonline.com
- ADFS: https://adfs.redmond.azurestack.corp.microsoft.com/adfs
:param tenant_id: Tenant GUID, like 00000000-0000-0000-0000-000000000000. If unspecified, default to
'organizations'.
:param client_id: Client ID of the CLI application.
:param encrypt: Whether to encrypt MSAL token cache and service principal entries.
"""
self.authority = authority
self.tenant_id = tenant_id
self.client_id = client_id or AZURE_CLI_CLIENT_ID
self.encrypt = encrypt
# Build the authority in MSAL style
self._msal_authority, self._is_adfs = _get_authority_url(authority, tenant_id)
config_dir = get_config_dir()
self._token_cache_file = os.path.join(config_dir, "msal_token_cache")
self._secret_file = os.path.join(config_dir, "service_principal_entries")
self._http_cache_file = os.path.join(config_dir, "msal_http_cache.bin")
# We make _msal_app_instance an instance attribute, instead of a class attribute,
# because MSAL apps can have different tenant IDs.
self._msal_app_instance = None
@property
def _msal_app_kwargs(self):
"""kwargs for creating UserCredential or ServicePrincipalCredential.
MSAL token cache and HTTP cache are lazily created.
"""
if not Identity._msal_token_cache:
Identity._msal_token_cache = self._load_msal_token_cache()
if not Identity._msal_http_cache:
Identity._msal_http_cache = self._load_msal_http_cache()
return {
"authority": self._msal_authority,
"token_cache": Identity._msal_token_cache,
"http_cache": Identity._msal_http_cache
}
@property
def _msal_app(self):
"""A PublicClientApplication instance for user login/logout.
The instance is lazily created.
"""
if not self._msal_app_instance:
self._msal_app_instance = PublicClientApplication(self.client_id, **self._msal_app_kwargs)
return self._msal_app_instance
def _load_msal_token_cache(self):
# Store for user token persistence
cache = load_persisted_token_cache(self._token_cache_file, self.encrypt)
return cache
def _load_msal_http_cache(self):
import atexit
import pickle
logger.debug("_load_msal_http_cache: %s", self._http_cache_file)
try:
with open(self._http_cache_file, 'rb') as f:
persisted_http_cache = pickle.load(f)
except (pickle.UnpicklingError, FileNotFoundError) as ex:
logger.debug("Failed to load MSAL HTTP cache: %s", ex)
persisted_http_cache = {} # Ignore a non-exist or corrupted http_cache
atexit.register(lambda: pickle.dump(
# When exit, flush it back to the file.
# If 2 processes write at the same time, the cache will be corrupted,
# but that is fine. Subsequent runs would reach eventual consistency.
persisted_http_cache, open(self._http_cache_file, 'wb')))
return persisted_http_cache
@property
def _service_principal_store(self):
"""A ServicePrincipalStore instance for service principal entries persistence.
The instance is lazily created.
"""
if not Identity._service_principal_store_instance:
store = load_secret_store(self._secret_file, self.encrypt)
Identity._service_principal_store_instance = ServicePrincipalStore(store)
return Identity._service_principal_store_instance
def login_with_auth_code(self, scopes, **kwargs):
# Emit a warning to inform that a browser is opened.
# Only show the path part of the URL and hide the query string.
logger.warning("The default web browser has been opened at %s. Please continue the login in the web browser. "
"If no web browser is available or if the web browser fails to open, use device code flow "
"with `az login --use-device-code`.", self._msal_app.authority.authorization_endpoint)
from .util import read_response_templates
success_template, error_template = read_response_templates()
# For AAD, use port 0 to let the system choose arbitrary unused ephemeral port to avoid port collision
# on port 8400 from the old design. However, ADFS only allows port 8400.
result = self._msal_app.acquire_token_interactive(
scopes, prompt='select_account', port=8400 if self._is_adfs else None,
success_template=success_template, error_template=error_template, **kwargs)
return check_result(result)
def login_with_device_code(self, scopes, **kwargs):
flow = self._msal_app.initiate_device_flow(scopes, **kwargs)
if "user_code" not in flow:
raise ValueError(
"Fail to create device flow. Err: %s" % json.dumps(flow, indent=4))
logger.warning(flow["message"])
result = self._msal_app.acquire_token_by_device_flow(flow, **kwargs) # By default it will block
return check_result(result)
def login_with_username_password(self, username, password, scopes, **kwargs):
result = self._msal_app.acquire_token_by_username_password(username, password, scopes, **kwargs)
return check_result(result)
def login_with_service_principal(self, client_id, credential, scopes):
"""
`credential` is a dict returned by ServicePrincipalAuth.build_credential
"""
sp_auth = ServicePrincipalAuth.build_from_credential(self.tenant_id, client_id, credential)
# This cred means SDK credential object
cred = ServicePrincipalCredential(sp_auth, **self._msal_app_kwargs)
result = cred.acquire_token_for_client(scopes)
check_result(result)
# Only persist the service principal after a successful login
entry = sp_auth.get_entry_to_persist()
self._service_principal_store.save_entry(entry)
def login_with_managed_identity(self, scopes, identity_id=None): # pylint: disable=too-many-statements
raise NotImplementedError
def login_in_cloud_shell(self, scopes):
raise NotImplementedError
def logout_user(self, user):
accounts = self._msal_app.get_accounts(user)
for account in accounts:
self._msal_app.remove_account(account)
def logout_all_users(self):
for e in file_extensions.values():
_try_remove(self._token_cache_file + e)
def logout_service_principal(self, sp):
# remove service principal secrets
self._service_principal_store.remove_entry(sp)
def logout_all_service_principal(self):
# remove service principal secrets
for e in file_extensions.values():
_try_remove(self._secret_file + e)
def get_user(self, user=None):
accounts = self._msal_app.get_accounts(user) if user else self._msal_app.get_accounts()
return accounts
def get_user_credential(self, username):
return UserCredential(self.client_id, username, **self._msal_app_kwargs)
def get_service_principal_credential(self, client_id):
entry = self._service_principal_store.load_entry(client_id, self.tenant_id)
sp_auth = ServicePrincipalAuth(entry)
return ServicePrincipalCredential(sp_auth, **self._msal_app_kwargs)
def get_service_principal_entry(self, client_id):
"""This method is only used by --sdk-auth. DO NOT use it elsewhere."""
return self._service_principal_store.load_entry(client_id, self.tenant_id)
def get_managed_identity_credential(self, client_id=None):
raise NotImplementedError
class ServicePrincipalAuth:
def __init__(self, entry):
self.__dict__.update(entry)
if _CERTIFICATE in entry:
from OpenSSL.crypto import load_certificate, FILETYPE_PEM, Error
self.public_certificate = None
try:
with open(self.certificate, 'r') as file_reader:
self.certificate_string = file_reader.read()
cert = load_certificate(FILETYPE_PEM, self.certificate_string)
self.thumbprint = cert.digest("sha1").decode().replace(':', '')
if entry.get(_USE_CERT_SN_ISSUER):
# low-tech but safe parsing based on
# https://github.com/libressl-portable/openbsd/blob/master/src/lib/libcrypto/pem/pem.h
match = re.search(r'-----BEGIN CERTIFICATE-----(?P<cert_value>[^-]+)-----END CERTIFICATE-----',
self.certificate_string, re.I)
self.public_certificate = match.group()
except (UnicodeDecodeError, Error) as ex:
raise CLIError('Invalid certificate, please use a valid PEM file. Error detail: {}'.format(ex))
@classmethod
def build_from_credential(cls, tenant_id, client_id, credential):
entry = {
_TENANT: tenant_id,
_CLIENT_ID: client_id
}
entry.update(credential)
return ServicePrincipalAuth(entry)
@classmethod
def build_credential(cls, secret_or_certificate=None, client_assertion=None, use_cert_sn_issuer=None):
"""Build credential from user input. The credential looks like below, but only one key can exist.
{
'client_secret': 'my_secret',
'certificate': '/path/to/cert.pem',
'client_assertion': 'my_federated_token'
}
"""
entry = {}
if secret_or_certificate:
if os.path.isfile(secret_or_certificate):
entry[_CERTIFICATE] = secret_or_certificate
if use_cert_sn_issuer:
entry[_USE_CERT_SN_ISSUER] = use_cert_sn_issuer
else:
entry[_CLIENT_SECRET] = secret_or_certificate
elif client_assertion:
entry[_CLIENT_ASSERTION] = client_assertion
return entry
def get_entry_to_persist(self):
persisted_keys = [_CLIENT_ID, _TENANT, _CLIENT_SECRET, _CERTIFICATE, _USE_CERT_SN_ISSUER, _CLIENT_ASSERTION]
return {k: v for k, v in self.__dict__.items() if k in persisted_keys}
class ServicePrincipalStore:
"""Save secrets in MSAL custom secret store for Service Principal authentication.
"""
def __init__(self, secret_store):
self._secret_store = secret_store
self._entries = []
def load_entry(self, sp_id, tenant):
self._load_persistence()
matched = [x for x in self._entries if sp_id == x[_CLIENT_ID]]
if not matched:
raise CLIError("Could not retrieve credential from local cache for service principal {}. "
"Run `az login` for this service principal."
.format(sp_id))
matched_with_tenant = [x for x in matched if tenant == x[_TENANT]]
if matched_with_tenant:
cred = matched_with_tenant[0]
else:
logger.warning("Could not retrieve credential from local cache for service principal %s under tenant %s. "
"Trying credential under tenant %s, assuming that is an app credential.",
sp_id, tenant, matched[0][_TENANT])
cred = matched[0]
return cred
def save_entry(self, sp_entry):
self._load_persistence()
self._entries = [
x for x in self._entries
if not (sp_entry[_CLIENT_ID] == x[_CLIENT_ID] and
sp_entry[_TENANT] == x[_TENANT])]
self._entries.append(sp_entry)
self._save_persistence()
def remove_entry(self, sp_id):
self._load_persistence()
state_changed = False
# clear service principal creds
matched = [x for x in self._entries
if x[_CLIENT_ID] == sp_id]
if matched:
state_changed = True
self._entries = [x for x in self._entries
if x not in matched]
if state_changed:
self._save_persistence()
def _save_persistence(self):
self._secret_store.save(self._entries)
def _load_persistence(self):
self._entries = self._secret_store.load()
def _get_authority_url(authority_endpoint, tenant):
"""Convert authority endpoint (active_directory) to MSAL authority:
- AAD: https://login.microsoftonline.com/your_tenant
- ADFS: https://adfs.redmond.azurestack.corp.microsoft.com/adfs
For ADFS, tenant is discarded.
"""
# Some Azure Stack (bellevue)'s metadata returns
# "loginEndpoint": "https://login.microsoftonline.com/"
# Normalize it by removing the trailing /, so that authority_url won't become
# "https://login.microsoftonline.com//tenant_id".
authority_endpoint = authority_endpoint.rstrip('/').lower()
is_adfs = authority_endpoint.endswith('adfs')
if is_adfs:
authority_url = authority_endpoint
else:
authority_url = '{}/{}'.format(authority_endpoint, tenant or "organizations")
return authority_url, is_adfs
def _try_remove(path):
try:
os.remove(path)
except FileNotFoundError:
pass
|
[
"noreply@github.com"
] |
vadeveka.noreply@github.com
|
5bd57c08061cf6dac76186a8312d874462cbc7c0
|
5d8585f6518fa96dc7e60ba8c6d5cecac010433d
|
/qsbk/venv/bin/tkconch
|
798588e3ec42e70107afd355071f5b90666d335e
|
[] |
no_license
|
Fessible/PythonLearning
|
25218cdd38f708f62e7e50990015713ca88541ec
|
8a07610a8548ba8b006da61e51f5fcdac6788c21
|
refs/heads/master
| 2022-12-10T03:27:47.177447
| 2019-07-26T07:44:47
| 2019-07-26T07:44:47
| 191,890,736
| 0
| 0
| null | 2022-12-08T05:55:28
| 2019-06-14T06:48:35
|
Python
|
UTF-8
|
Python
| false
| false
| 422
|
#!/Users/rhm/github/PythonLearning/qsbk/venv/bin/python
# EASY-INSTALL-ENTRY-SCRIPT: 'Twisted==19.2.1','console_scripts','tkconch'
__requires__ = 'Twisted==19.2.1'
import re
import sys
from pkg_resources import load_entry_point
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
sys.exit(
load_entry_point('Twisted==19.2.1', 'console_scripts', 'tkconch')()
)
|
[
"499953902@qq.com"
] |
499953902@qq.com
|
|
1de2aad3e1648f8a0ece58926c2bb7625469dbd9
|
b588428c3e115cc638808762b058b633a9495ca8
|
/ModelPlotter/migrations/0006_xmlfile.py
|
5f4da49c9159814e145a20d7b7f028583bf19e2b
|
[
"MIT"
] |
permissive
|
gw-vis/VISapps
|
a5a8b3f20bd7256bc21ee254cee475d53aa8597b
|
42978cc7747b05fbcd3325b15ded4be08e9da45e
|
refs/heads/main
| 2023-03-05T05:58:58.452626
| 2021-02-20T05:35:08
| 2021-02-20T05:35:08
| 340,561,510
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 572
|
py
|
# Generated by Django 2.0.13 on 2019-07-31 06:30
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('ModelPlotter', '0005_optics'),
]
operations = [
migrations.CreateModel(
name='XMLfile',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('filename', models.CharField(max_length=50)),
('t_file', models.FileField(upload_to='')),
],
),
]
|
[
"miyo@icrr.u-tokyo.ac.jp"
] |
miyo@icrr.u-tokyo.ac.jp
|
0bbcb49bcd2d54187bbc70f78e4838c2bfc15499
|
768faa9e30b7879e68f1c4f45ad305c45909fe48
|
/views.py
|
309bc10c5396c9bb2e537225c0982b2803701edf
|
[] |
no_license
|
jptree/bond-project
|
9d539b4d595d763741932fa6aa995f19d839a513
|
6cab9789b6667250104a39888ff26932cc423b48
|
refs/heads/master
| 2023-07-01T18:19:09.151985
| 2021-08-11T03:33:14
| 2021-08-11T03:33:14
| 393,229,834
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 12,318
|
py
|
def intro():
import streamlit as st
st.sidebar.success("Select a view above.")
st.markdown(
"""
This application was developed by Jason F. Petri. There are various views to select from--all of which help
in the analysis of the securities provided.
*August 10, 2021*
"""
)
def pnl_cusip_attribution():
import streamlit as st
import numpy as np
import pandas as pd
from datetime import timedelta
from main import cumulative_pnl, cumulative_change_window_gains_losses, cumulative_winners_losers_new
df = pd.read_csv('ctap_analytics_pnl_decomp_sample_day.csv')
df['timestamp'] = pd.to_datetime(df['timestamp'])
# df['cumulative_pnl'] = cumulative_pnl(df).reset_index()
cumulative = df.groupby(['cusip', 'timestamp'])['spread_pnl'].sum().groupby(level=0).cumsum().reset_index()
cumulative.columns = ['cusip', 'timestamp', 'cumulative_pnl']
df = pd.merge(df, cumulative, on=['timestamp', 'cusip'])
# Add time frequency?
time_window = st.slider(
"Select chart time window range:",
value=(df['timestamp'].min().to_pydatetime(), df['timestamp'].max().to_pydatetime()),
min_value=df['timestamp'].min().to_pydatetime(),
max_value=df['timestamp'].max().to_pydatetime(),
step=timedelta(0, 60 * 5),
format='D-M-YYYY H:m'
)
start_time = time_window[0]
end_time = time_window[1]
data = df[(df['timestamp'] >= start_time) & (df['timestamp'] <= end_time)]
chart = st.line_chart(cumulative_pnl(data))
n_cusip_input = st.text_input(
label='Enter number of CUSIPS desired in table below',
value='5'
)
try:
n_cusip = int(n_cusip_input)
except ValueError:
st.error('Please enter a valid integer')
n_cusip = 5
winners, losers = cumulative_winners_losers_new(data, n_cusip)
winners = winners.reset_index()
winners.index = np.arange(1, len(winners) + 1)
winners.columns = ['CUSIP', 'Profits']
losers = losers.reset_index()
losers.index = np.arange(1, len(losers) + 1)
losers.columns = ['CUSIP', 'Losses']
st.header('Total P&L from Beginning to End of Period')
col1, spacing, col2 = st.columns([5, 1, 5])
with col1:
st.table(winners)
st.text('List of all CUSIPS')
st.text(' '.join(list(winners['CUSIP'])))
with col2:
st.table(losers)
st.text('List of all CUSIPS')
st.text(' '.join(list(losers['CUSIP'])))
def individual_cusip_analysis():
import streamlit as st
import pandas as pd
from datetime import timedelta
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_csv('ctap_analytics_pnl_decomp_sample_day.csv')
df['timestamp'] = pd.to_datetime(df['timestamp'])
cumulative = df.groupby(['cusip', 'timestamp'])['spread_pnl'].sum().groupby(level=0).cumsum().reset_index()
cumulative.columns = ['cusip', 'timestamp', 'cumulative_pnl']
df = pd.merge(df, cumulative, on=['timestamp', 'cusip'])
desired_cusips_input = st.text_input(
label='Enter desired CUSIPS separated by a space',
value='928563AJ4 285512AE9 254709AM0 760759AU4 92826CAP7'
)
desired_cusips = desired_cusips_input.split(' ')
time_window = st.slider(
"Select chart time window range:",
value=(df['timestamp'].min().to_pydatetime(), df['timestamp'].max().to_pydatetime()),
min_value=df['timestamp'].min().to_pydatetime(),
max_value=df['timestamp'].max().to_pydatetime(),
step=timedelta(0, 60 * 5),
format='D-M-YYYY H:m'
)
start_time = time_window[0]
end_time = time_window[1]
data = df[(df['timestamp'] >= start_time) & (df['timestamp'] <= end_time)]
data = data[data['cusip'].isin(desired_cusips)]
other_cusip_info = data.drop_duplicates('cusip')[['cusip', 'type', 'benchmark_cusip', 'ticker', 'securitydes',
'industrySector', 'mat_bucket', 'liq_score', 'liq_bucket', 'weightedage']].set_index('cusip')
cusip_data = data.groupby(['cusip', 'timestamp'])['cumulative_pnl'].sum()
normalize = st.checkbox(label='Normalize data')
plot_data = {}
for c in desired_cusips:
if normalize:
plot_data[c] = cusip_data[c] - cusip_data[c][0]
else:
plot_data[c] = cusip_data[c]
chart = st.line_chart(plot_data)
st.header('Characteristics of desired cusips')
st.table(other_cusip_info)
st.header('P&L Change Distribution')
selected_cusip = st.selectbox(label='Select one of your CUSIPs', options=desired_cusips)
number_of_bins = st.slider(label='Select the number of bins', min_value=10, max_value=100, value=40)
selected_cusip_data = data[data['cusip'] == selected_cusip]['spread_pnl']
fig, ax = plt.subplots()
ax.hist(selected_cusip_data, number_of_bins, density=False)
ax.set_xlabel('P&L')
ax.set_ylabel('Frequency')
ax.set_title(f'Frequency of P&L for {selected_cusip}, {number_of_bins} Bins')
st.pyplot(fig)
def bucket_industry():
import streamlit as st
import pandas as pd
from datetime import timedelta
from numpy import cumsum
from main import cumulative_pnl, cumulative_change_window_gains_losses, cumulative_winners_losers_new
# def select_all(column, key, all, label):
# if all:
# return st.multiselect(
# label=label,
# options=df[column].unique(),
# default=df[column].unique(),
# key=key
# )
# else:
# return st.multiselect(
# label=label,
# options=df[column].unique()
# )
def filter(column, selected, data):
return data[data[column].isin(selected)]
df = pd.read_csv('ctap_analytics_pnl_decomp_sample_day.csv')
df['timestamp'] = pd.to_datetime(df['timestamp'])
cumulative = df.groupby(['cusip', 'timestamp'])['spread_pnl'].sum().groupby(level=0).cumsum().reset_index()
cumulative.columns = ['cusip', 'timestamp', 'cumulative_pnl']
df = pd.merge(df, cumulative, on=['timestamp', 'cusip'])
data = df.copy()
st.header('Filter universe of securities below')
industry_filter = st.multiselect(label='Select industries', options=df['industrySector'].unique(), default=df['industrySector'].unique())
# industry_all = st.checkbox("Select all", key='industry')
# industry_filter = select_all('industrySector', 'industryFilter', industry_all, 'Select industries')
if not industry_filter:
st.error('Select at least one industry!')
else:
data = filter('industrySector', industry_filter, data)
benchmark_filter = st.multiselect(label='Select benchmark CUSIPs', options=df['benchmark_cusip'].unique(),
default=df['benchmark_cusip'].unique())
# benchmark_all = st.checkbox("Select all", key='benchmark')
# benchmark_filter = select_all('benchmark_cusip', 'benchmarkFilter', benchmark_all, 'Select benchmark CUSIPs')
if not benchmark_filter:
st.error('Select at least one benchmark CUSIPs!')
else:
data = filter('benchmark_cusip', benchmark_filter, data)
maturity_filter = st.multiselect(label='Select maturity buckets', options=df['mat_bucket'].unique(),
default=df['mat_bucket'].unique())
# maturity_all = st.checkbox("Select all", key='maturity')
# maturity_filter = select_all('mat_bucket', 'maturityFilter', maturity_all, 'Select maturity buckets')
if not maturity_filter:
st.error('Select at least one maturity bucket!')
else:
data = filter('mat_bucket', maturity_filter, data)
liquidity_filter = st.multiselect(label='Select liquidity buckets', options=df['liq_bucket'].unique(),
default=df['liq_bucket'].unique())
# liquidity_all = st.checkbox("Select all", key='liquidity')
# liquidity_filter = select_all('liq_bucket', 'liquidityFilter', liquidity_all, 'Select liquidity buckets')
if not liquidity_filter:
st.error('Select at least one liquidity bucket!')
else:
data = filter('liq_bucket', liquidity_filter, data)
# st.table(data)
st.header('Plot of P&L performance')
time_window = st.slider(
"Select chart time window range:",
value=(df['timestamp'].min().to_pydatetime(), df['timestamp'].max().to_pydatetime()),
min_value=df['timestamp'].min().to_pydatetime(),
max_value=df['timestamp'].max().to_pydatetime(),
step=timedelta(0, 60 * 5),
format='D-M-YYYY H:m'
)
start_time = time_window[0]
end_time = time_window[1]
# data = df[(df['timestamp'] >= start_time) & (df['timestamp'] <= end_time)]
sorting_options = ['industrySector', 'benchmark_cusip', 'mat_bucket', 'liq_bucket']
selected_sort = st.selectbox(label='Select the characteristic you want to plot on', options=sorting_options)
normalize = st.checkbox(label='Normalize data')
plot_data = cumsum(data.groupby([selected_sort, 'timestamp'])['spread_pnl'].sum().unstack().T.fillna(0))
plot_data = plot_data[(plot_data.index >= start_time) & (plot_data.index <= end_time)]
if len(plot_data) != 0:
plot = {}
for s in data[selected_sort].unique():
if normalize:
plot[s] = plot_data[s] - plot_data[s][0]
else:
plot[s] = plot_data[s]
chart = st.line_chart(plot)
else:
st.error('No data available with the current combination of filters!')
# change_pnl = data.groupby([selected_sort, 'timestamp'])['cumulative_pnl'].sum().reset_index()
# change_pnl = change_pnl.groupby([selected_sort])['cumulative_pnl'].last() - change_pnl.groupby([selected_sort])['cumulative_pnl'].first()
# change_pnl = change_pnl.reset_index()
# change_pnl.columns = [selected_sort, 'Cumulative P&L Difference']
# change_pnl = change_pnl.sort_values(by='Cumulative P&L Difference').reset_index()[[selected_sort, 'Cumulative P&L Difference']]
# # st.table([change_pnl[change_pnl])
# st.table(change_pnl)
change_pnl = plot_data.iloc[-1] - plot_data.iloc[0]
change_pnl = change_pnl.sort_values().reset_index()
change_pnl.columns = [selected_sort, 'Cumulative P&L Difference']
st.table(change_pnl)
def merchant_extraction():
import streamlit as st
from main import load_and_use_model
from PIL import Image
import numpy as np
sample_inputs = ['DISCOUNT DRUG MART 83 MEDINA OH',
'AKRONYM BREWING LLC AKRON OH',
'STEAK-N-SHAKE#0578 Q99 BRUNSWICK OH',
'BUFFALO WILD WINGS MED STRONGSVILLE OH',
'CHICK-FIL-A #01920 FAIRLAWN OH',
'APPLE STORE #45 FRESNO CA']
# sample_choice = random.choice(sample_inputs)
sample_outputs = ['DISCOUNT DRUG MART', 'AKRONYM BREWING', 'STEAK-N-SHAKE', 'BUFFALO WILD WINGS', 'CHICK-FIL-A',
'APPLE STORE #']
raw_input = st.text_input(label='Enter a raw transaction statement', value='CHICK-FIL-A #01920 FAIRLAWN OH')
st.text(f'Output: {load_and_use_model("models/20210809-120113", [raw_input])}')
st.header('Sample transaction inputs and outputs')
st.table({'Inputs': sample_inputs, 'Outputs': sample_outputs})
st.header('What is a convolutional neural network?')
st.image(np.array(Image.open('cnn_image.jpeg')))
st.header('Full disclosures...')
st.markdown(
"""
This *current* model will not be fantastic (on data it has not seen yet) for one big reason:
I need more data! I am not a big time shopper, and these neural network models need data to function. The model
will only be able to perform well if it has learned patterns from previous training data. This model was trained
on my banking history and my parents (they do more shopping than I do!). All in, I had about 300 records that
I manually classified (dictating where the merchant name is). The model could near human levels of performance
with a larger training set and more trainable parameters.
"""
)
|
[
"jasonfpetri@outlook.com"
] |
jasonfpetri@outlook.com
|
89de947f8d9c81ba8d53f65322d7259200b4fe9a
|
54648f2e17e0146f7adc51aeddacd943bf2f2c20
|
/saleor/saleor/graphql/translations/tests/test_translations.py
|
7dbed94fc48c5c61a427561cc5ed1b9bbec9c47d
|
[
"BSD-3-Clause",
"CC-BY-4.0"
] |
permissive
|
ridwanray/shop
|
999792222ab12ab72af8901fdc9ee3b769b8e283
|
0f90e94e63129f0f1797f27f26f9c3ec08712fbb
|
refs/heads/master
| 2022-11-19T15:33:27.467896
| 2020-06-08T12:06:52
| 2020-06-08T12:06:52
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 59,496
|
py
|
import graphene
import pytest
from django.contrib.auth.models import Permission
from saleor.graphql.tests.utils import assert_no_permission, get_graphql_content
from saleor.graphql.translations.schema import TranslatableKinds
from saleor.graphql.translations.types import LanguageCodeEnum
def test_product_translation(user_api_client, product):
product.translations.create(language_code="pl", name="Produkt")
query = """
query productById($productId: ID!) {
product(id: $productId) {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
"""
product_id = graphene.Node.to_global_id("Product", product.id)
response = user_api_client.post_graphql(query, {"productId": product_id})
data = get_graphql_content(response)["data"]
assert data["product"]["translation"]["name"] == "Produkt"
assert data["product"]["translation"]["language"]["code"] == "PL"
def test_product_variant_translation(user_api_client, variant):
variant.translations.create(language_code="pl", name="Wariant")
query = """
query productVariantById($productVariantId: ID!) {
productVariant(id: $productVariantId) {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
"""
product_variant_id = graphene.Node.to_global_id("ProductVariant", variant.id)
response = user_api_client.post_graphql(
query, {"productVariantId": product_variant_id}
)
data = get_graphql_content(response)["data"]
assert data["productVariant"]["translation"]["name"] == "Wariant"
assert data["productVariant"]["translation"]["language"]["code"] == "PL"
def test_collection_translation(user_api_client, collection):
collection.translations.create(language_code="pl", name="Kolekcja")
query = """
query collectionById($collectionId: ID!) {
collection(id: $collectionId) {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
"""
collection_id = graphene.Node.to_global_id("Collection", collection.id)
response = user_api_client.post_graphql(query, {"collectionId": collection_id})
data = get_graphql_content(response)["data"]
assert data["collection"]["translation"]["name"] == "Kolekcja"
assert data["collection"]["translation"]["language"]["code"] == "PL"
def test_category_translation(user_api_client, category):
category.translations.create(language_code="pl", name="Kategoria")
query = """
query categoryById($categoryId: ID!) {
category(id: $categoryId) {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
"""
category_id = graphene.Node.to_global_id("Category", category.id)
response = user_api_client.post_graphql(query, {"categoryId": category_id})
data = get_graphql_content(response)["data"]
assert data["category"]["translation"]["name"] == "Kategoria"
assert data["category"]["translation"]["language"]["code"] == "PL"
def test_voucher_translation(staff_api_client, voucher, permission_manage_discounts):
voucher.translations.create(language_code="pl", name="Bon")
query = """
query voucherById($voucherId: ID!) {
voucher(id: $voucherId) {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
"""
voucher_id = graphene.Node.to_global_id("Voucher", voucher.id)
response = staff_api_client.post_graphql(
query, {"voucherId": voucher_id}, permissions=[permission_manage_discounts]
)
data = get_graphql_content(response)["data"]
assert data["voucher"]["translation"]["name"] == "Bon"
assert data["voucher"]["translation"]["language"]["code"] == "PL"
def test_sale_translation(staff_api_client, sale, permission_manage_discounts):
sale.translations.create(language_code="pl", name="Wyprz")
query = """
query saleById($saleId: ID!) {
sale(id: $saleId) {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
"""
sale_id = graphene.Node.to_global_id("Sale", sale.id)
response = staff_api_client.post_graphql(
query, {"saleId": sale_id}, permissions=[permission_manage_discounts]
)
data = get_graphql_content(response)["data"]
assert data["sale"]["translation"]["name"] == "Wyprz"
assert data["sale"]["translation"]["language"]["code"] == "PL"
def test_page_translation(user_api_client, page):
page.translations.create(language_code="pl", title="Strona")
query = """
query pageById($pageId: ID!) {
page(id: $pageId) {
translation(languageCode: PL) {
title
language {
code
}
}
}
}
"""
page_id = graphene.Node.to_global_id("Page", page.id)
response = user_api_client.post_graphql(query, {"pageId": page_id})
data = get_graphql_content(response)["data"]
assert data["page"]["translation"]["title"] == "Strona"
assert data["page"]["translation"]["language"]["code"] == "PL"
def test_attribute_translation(user_api_client, color_attribute):
color_attribute.translations.create(language_code="pl", name="Kolor")
query = """
query {
attributes(first: 1) {
edges {
node {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
}
"""
response = user_api_client.post_graphql(query)
data = get_graphql_content(response)["data"]
attribute = data["attributes"]["edges"][0]["node"]
assert attribute["translation"]["name"] == "Kolor"
assert attribute["translation"]["language"]["code"] == "PL"
def test_attribute_value_translation(user_api_client, pink_attribute_value):
pink_attribute_value.translations.create(language_code="pl", name="Różowy")
query = """
query {
attributes(first: 1) {
edges {
node {
values {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
}
}
"""
attribute_value_id = graphene.Node.to_global_id(
"AttributeValue", pink_attribute_value.id
)
response = user_api_client.post_graphql(
query, {"attributeValueId": attribute_value_id}
)
data = get_graphql_content(response)["data"]
attribute_value = data["attributes"]["edges"][0]["node"]["values"][-1]
assert attribute_value["translation"]["name"] == "Różowy"
assert attribute_value["translation"]["language"]["code"] == "PL"
def test_shipping_method_translation(
staff_api_client, shipping_method, permission_manage_shipping
):
shipping_method.translations.create(language_code="pl", name="DHL Polska")
query = """
query shippingZoneById($shippingZoneId: ID!) {
shippingZone(id: $shippingZoneId) {
shippingMethods {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
shipping_zone_id = graphene.Node.to_global_id(
"ShippingZone", shipping_method.shipping_zone.id
)
response = staff_api_client.post_graphql(
query,
{"shippingZoneId": shipping_zone_id},
permissions=[permission_manage_shipping],
)
data = get_graphql_content(response)["data"]
shipping_method = data["shippingZone"]["shippingMethods"][-1]
assert shipping_method["translation"]["name"] == "DHL Polska"
assert shipping_method["translation"]["language"]["code"] == "PL"
def test_menu_item_translation(user_api_client, menu_item):
menu_item.translations.create(language_code="pl", name="Odnośnik 1")
query = """
query menuItemById($menuItemId: ID!) {
menuItem(id: $menuItemId) {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
"""
menu_item_id = graphene.Node.to_global_id("MenuItem", menu_item.id)
response = user_api_client.post_graphql(query, {"menuItemId": menu_item_id})
data = get_graphql_content(response)["data"]
assert data["menuItem"]["translation"]["name"] == "Odnośnik 1"
assert data["menuItem"]["translation"]["language"]["code"] == "PL"
def test_shop_translation(user_api_client, site_settings):
site_settings.translations.create(language_code="pl", header_text="Nagłówek")
query = """
query {
shop {
translation(languageCode: PL) {
headerText
language {
code
}
}
}
}
"""
response = user_api_client.post_graphql(query)
data = get_graphql_content(response)["data"]
assert data["shop"]["translation"]["headerText"] == "Nagłówek"
assert data["shop"]["translation"]["language"]["code"] == "PL"
def test_product_no_translation(user_api_client, product):
query = """
query productById($productId: ID!) {
product(id: $productId) {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
"""
product_id = graphene.Node.to_global_id("Product", product.id)
response = user_api_client.post_graphql(query, {"productId": product_id})
data = get_graphql_content(response)["data"]
assert data["product"]["translation"] is None
def test_product_variant_no_translation(user_api_client, variant):
query = """
query productVariantById($productVariantId: ID!) {
productVariant(id: $productVariantId) {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
"""
product_variant_id = graphene.Node.to_global_id("ProductVariant", variant.id)
response = user_api_client.post_graphql(
query, {"productVariantId": product_variant_id}
)
data = get_graphql_content(response)["data"]
assert data["productVariant"]["translation"] is None
def test_collection_no_translation(user_api_client, collection):
query = """
query collectionById($collectionId: ID!) {
collection(id: $collectionId) {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
"""
collection_id = graphene.Node.to_global_id("Collection", collection.id)
response = user_api_client.post_graphql(query, {"collectionId": collection_id})
data = get_graphql_content(response)["data"]
assert data["collection"]["translation"] is None
def test_category_no_translation(user_api_client, category):
query = """
query categoryById($categoryId: ID!) {
category(id: $categoryId) {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
"""
category_id = graphene.Node.to_global_id("Category", category.id)
response = user_api_client.post_graphql(query, {"categoryId": category_id})
data = get_graphql_content(response)["data"]
assert data["category"]["translation"] is None
def test_voucher_no_translation(staff_api_client, voucher, permission_manage_discounts):
query = """
query voucherById($voucherId: ID!) {
voucher(id: $voucherId) {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
"""
voucher_id = graphene.Node.to_global_id("Voucher", voucher.id)
response = staff_api_client.post_graphql(
query, {"voucherId": voucher_id}, permissions=[permission_manage_discounts]
)
data = get_graphql_content(response)["data"]
assert data["voucher"]["translation"] is None
def test_page_no_translation(user_api_client, page):
query = """
query pageById($pageId: ID!) {
page(id: $pageId) {
translation(languageCode: PL) {
title
language {
code
}
}
}
}
"""
page_id = graphene.Node.to_global_id("Page", page.id)
response = user_api_client.post_graphql(query, {"pageId": page_id})
data = get_graphql_content(response)["data"]
assert data["page"]["translation"] is None
def test_attribute_no_translation(user_api_client, color_attribute):
query = """
query {
attributes(first: 1) {
edges {
node {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
}
"""
response = user_api_client.post_graphql(query)
data = get_graphql_content(response)["data"]
attribute = data["attributes"]["edges"][0]["node"]
assert attribute["translation"] is None
def test_attribute_value_no_translation(user_api_client, pink_attribute_value):
query = """
query {
attributes(first: 1) {
edges {
node {
values {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
}
}
"""
attribute_value_id = graphene.Node.to_global_id(
"AttributeValue", pink_attribute_value.id
)
response = user_api_client.post_graphql(
query, {"attributeValueId": attribute_value_id}
)
data = get_graphql_content(response)["data"]
attribute_value = data["attributes"]["edges"][0]["node"]["values"][-1]
assert attribute_value["translation"] is None
def test_shipping_method_no_translation(
staff_api_client, shipping_method, permission_manage_shipping
):
query = """
query shippingZoneById($shippingZoneId: ID!) {
shippingZone(id: $shippingZoneId) {
shippingMethods {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
shipping_zone_id = graphene.Node.to_global_id(
"ShippingZone", shipping_method.shipping_zone.id
)
response = staff_api_client.post_graphql(
query,
{"shippingZoneId": shipping_zone_id},
permissions=[permission_manage_shipping],
)
data = get_graphql_content(response)["data"]
shipping_method = data["shippingZone"]["shippingMethods"][0]
assert shipping_method["translation"] is None
def test_menu_item_no_translation(user_api_client, menu_item):
query = """
query menuItemById($menuItemId: ID!) {
menuItem(id: $menuItemId) {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
"""
menu_item_id = graphene.Node.to_global_id("MenuItem", menu_item.id)
response = user_api_client.post_graphql(query, {"menuItemId": menu_item_id})
data = get_graphql_content(response)["data"]
assert data["menuItem"]["translation"] is None
def test_shop_no_translation(user_api_client, site_settings):
query = """
query {
shop {
translation(languageCode: PL) {
headerText
language {
code
}
}
}
}
"""
response = user_api_client.post_graphql(query)
data = get_graphql_content(response)["data"]
assert data["shop"]["translation"] is None
def test_product_create_translation(
staff_api_client, product, permission_manage_translations
):
query = """
mutation productTranslate($productId: ID!) {
productTranslate(
id: $productId, languageCode: PL,
input: {name: "Produkt PL"}) {
product {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
product_id = graphene.Node.to_global_id("Product", product.id)
response = staff_api_client.post_graphql(
query, {"productId": product_id}, permissions=[permission_manage_translations]
)
data = get_graphql_content(response)["data"]["productTranslate"]
assert data["product"]["translation"]["name"] == "Produkt PL"
assert data["product"]["translation"]["language"]["code"] == "PL"
def test_product_update_translation(
staff_api_client, product, permission_manage_translations
):
product.translations.create(language_code="pl", name="Produkt")
query = """
mutation productTranslate($productId: ID!) {
productTranslate(
id: $productId, languageCode: PL,
input: {name: "Produkt PL"}) {
product {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
product_id = graphene.Node.to_global_id("Product", product.id)
response = staff_api_client.post_graphql(
query, {"productId": product_id}, permissions=[permission_manage_translations]
)
data = get_graphql_content(response)["data"]["productTranslate"]
assert data["product"]["translation"]["name"] == "Produkt PL"
assert data["product"]["translation"]["language"]["code"] == "PL"
def test_product_variant_create_translation(
staff_api_client, variant, permission_manage_translations
):
query = """
mutation productVariantTranslate($productVariantId: ID!) {
productVariantTranslate(
id: $productVariantId, languageCode: PL,
input: {name: "Wariant PL"}) {
productVariant {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
product_variant_id = graphene.Node.to_global_id("ProductVariant", variant.id)
response = staff_api_client.post_graphql(
query,
{"productVariantId": product_variant_id},
permissions=[permission_manage_translations],
)
data = get_graphql_content(response)["data"]["productVariantTranslate"]
assert data["productVariant"]["translation"]["name"] == "Wariant PL"
assert data["productVariant"]["translation"]["language"]["code"] == "PL"
def test_product_variant_update_translation(
staff_api_client, variant, permission_manage_translations
):
variant.translations.create(language_code="pl", name="Wariant")
query = """
mutation productVariantTranslate($productVariantId: ID!) {
productVariantTranslate(
id: $productVariantId, languageCode: PL,
input: {name: "Wariant PL"}) {
productVariant {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
product_variant_id = graphene.Node.to_global_id("ProductVariant", variant.id)
response = staff_api_client.post_graphql(
query,
{"productVariantId": product_variant_id},
permissions=[permission_manage_translations],
)
data = get_graphql_content(response)["data"]["productVariantTranslate"]
assert data["productVariant"]["translation"]["name"] == "Wariant PL"
assert data["productVariant"]["translation"]["language"]["code"] == "PL"
def test_collection_create_translation(
staff_api_client, collection, permission_manage_translations
):
query = """
mutation collectionTranslate($collectionId: ID!) {
collectionTranslate(
id: $collectionId, languageCode: PL,
input: {name: "Kolekcja PL"}) {
collection {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
collection_id = graphene.Node.to_global_id("Collection", collection.id)
response = staff_api_client.post_graphql(
query,
{"collectionId": collection_id},
permissions=[permission_manage_translations],
)
data = get_graphql_content(response)["data"]["collectionTranslate"]
assert data["collection"]["translation"]["name"] == "Kolekcja PL"
assert data["collection"]["translation"]["language"]["code"] == "PL"
def test_collection_update_translation(
staff_api_client, collection, permission_manage_translations
):
collection.translations.create(language_code="pl", name="Kolekcja")
query = """
mutation collectionTranslate($collectionId: ID!) {
collectionTranslate(
id: $collectionId, languageCode: PL,
input: {name: "Kolekcja PL"}) {
collection {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
collection_id = graphene.Node.to_global_id("Collection", collection.id)
response = staff_api_client.post_graphql(
query,
{"collectionId": collection_id},
permissions=[permission_manage_translations],
)
data = get_graphql_content(response)["data"]["collectionTranslate"]
assert data["collection"]["translation"]["name"] == "Kolekcja PL"
assert data["collection"]["translation"]["language"]["code"] == "PL"
def test_category_create_translation(
staff_api_client, category, permission_manage_translations
):
query = """
mutation categoryTranslate($categoryId: ID!) {
categoryTranslate(
id: $categoryId, languageCode: PL,
input: {name: "Kategoria PL"}) {
category {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
category_id = graphene.Node.to_global_id("Category", category.id)
response = staff_api_client.post_graphql(
query, {"categoryId": category_id}, permissions=[permission_manage_translations]
)
data = get_graphql_content(response)["data"]["categoryTranslate"]
assert data["category"]["translation"]["name"] == "Kategoria PL"
assert data["category"]["translation"]["language"]["code"] == "PL"
def test_category_update_translation(
staff_api_client, category, permission_manage_translations
):
category.translations.create(language_code="pl", name="Kategoria")
query = """
mutation categoryTranslate($categoryId: ID!) {
categoryTranslate(
id: $categoryId, languageCode: PL,
input: {name: "Kategoria PL"}) {
category {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
category_id = graphene.Node.to_global_id("Category", category.id)
response = staff_api_client.post_graphql(
query, {"categoryId": category_id}, permissions=[permission_manage_translations]
)
data = get_graphql_content(response)["data"]["categoryTranslate"]
assert data["category"]["translation"]["name"] == "Kategoria PL"
assert data["category"]["translation"]["language"]["code"] == "PL"
def test_voucher_create_translation(
staff_api_client, voucher, permission_manage_translations
):
query = """
mutation voucherTranslate($voucherId: ID!) {
voucherTranslate(
id: $voucherId, languageCode: PL,
input: {name: "Bon PL"}) {
voucher {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
voucher_id = graphene.Node.to_global_id("Voucher", voucher.id)
response = staff_api_client.post_graphql(
query, {"voucherId": voucher_id}, permissions=[permission_manage_translations]
)
data = get_graphql_content(response)["data"]["voucherTranslate"]
assert data["voucher"]["translation"]["name"] == "Bon PL"
assert data["voucher"]["translation"]["language"]["code"] == "PL"
def test_voucher_update_translation(
staff_api_client, voucher, permission_manage_translations
):
voucher.translations.create(language_code="pl", name="Kategoria")
query = """
mutation voucherTranslate($voucherId: ID!) {
voucherTranslate(
id: $voucherId, languageCode: PL,
input: {name: "Bon PL"}) {
voucher {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
voucher_id = graphene.Node.to_global_id("Voucher", voucher.id)
response = staff_api_client.post_graphql(
query, {"voucherId": voucher_id}, permissions=[permission_manage_translations]
)
data = get_graphql_content(response)["data"]["voucherTranslate"]
assert data["voucher"]["translation"]["name"] == "Bon PL"
assert data["voucher"]["translation"]["language"]["code"] == "PL"
def test_sale_create_translation(
staff_api_client, sale, permission_manage_translations
):
query = """
mutation saleTranslate($saleId: ID!) {
saleTranslate(
id: $saleId, languageCode: PL,
input: {name: "Wyprz PL"}) {
sale {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
sale_id = graphene.Node.to_global_id("Sale", sale.id)
response = staff_api_client.post_graphql(
query, {"saleId": sale_id}, permissions=[permission_manage_translations]
)
data = get_graphql_content(response)["data"]["saleTranslate"]
assert data["sale"]["translation"]["name"] == "Wyprz PL"
assert data["sale"]["translation"]["language"]["code"] == "PL"
def test_page_create_translation(
staff_api_client, page, permission_manage_translations
):
query = """
mutation pageTranslate($pageId: ID!) {
pageTranslate(
id: $pageId, languageCode: PL,
input: {title: "Strona PL"}) {
page {
translation(languageCode: PL) {
title
language {
code
}
}
}
}
}
"""
page_id = graphene.Node.to_global_id("Page", page.id)
response = staff_api_client.post_graphql(
query, {"pageId": page_id}, permissions=[permission_manage_translations]
)
data = get_graphql_content(response)["data"]["pageTranslate"]
assert data["page"]["translation"]["title"] == "Strona PL"
assert data["page"]["translation"]["language"]["code"] == "PL"
def test_page_update_translation(
staff_api_client, page, permission_manage_translations
):
page.translations.create(language_code="pl", title="Strona")
query = """
mutation pageTranslate($pageId: ID!) {
pageTranslate(
id: $pageId, languageCode: PL,
input: {title: "Strona PL"}) {
page {
translation(languageCode: PL) {
title
language {
code
}
}
}
}
}
"""
page_id = graphene.Node.to_global_id("Page", page.id)
response = staff_api_client.post_graphql(
query, {"pageId": page_id}, permissions=[permission_manage_translations]
)
data = get_graphql_content(response)["data"]["pageTranslate"]
assert data["page"]["translation"]["title"] == "Strona PL"
assert data["page"]["translation"]["language"]["code"] == "PL"
def test_attribute_create_translation(
staff_api_client, color_attribute, permission_manage_translations
):
query = """
mutation attributeTranslate($attributeId: ID!) {
attributeTranslate(
id: $attributeId, languageCode: PL,
input: {name: "Kolor PL"}) {
attribute {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
attribute_id = graphene.Node.to_global_id("Attribute", color_attribute.id)
response = staff_api_client.post_graphql(
query,
{"attributeId": attribute_id},
permissions=[permission_manage_translations],
)
data = get_graphql_content(response)["data"]["attributeTranslate"]
assert data["attribute"]["translation"]["name"] == "Kolor PL"
assert data["attribute"]["translation"]["language"]["code"] == "PL"
def test_attribute_update_translation(
staff_api_client, color_attribute, permission_manage_translations
):
color_attribute.translations.create(language_code="pl", name="Kolor")
query = """
mutation attributeTranslate($attributeId: ID!) {
attributeTranslate(
id: $attributeId, languageCode: PL,
input: {name: "Kolor PL"}) {
attribute {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
attribute_id = graphene.Node.to_global_id("Attribute", color_attribute.id)
response = staff_api_client.post_graphql(
query,
{"attributeId": attribute_id},
permissions=[permission_manage_translations],
)
data = get_graphql_content(response)["data"]["attributeTranslate"]
assert data["attribute"]["translation"]["name"] == "Kolor PL"
assert data["attribute"]["translation"]["language"]["code"] == "PL"
def test_attribute_value_create_translation(
staff_api_client, pink_attribute_value, permission_manage_translations
):
query = """
mutation attributeValueTranslate($attributeValueId: ID!) {
attributeValueTranslate(
id: $attributeValueId, languageCode: PL,
input: {name: "Róż PL"}) {
attributeValue {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
attribute_value_id = graphene.Node.to_global_id(
"AttributeValue", pink_attribute_value.id
)
response = staff_api_client.post_graphql(
query,
{"attributeValueId": attribute_value_id},
permissions=[permission_manage_translations],
)
data = get_graphql_content(response)["data"]["attributeValueTranslate"]
assert data["attributeValue"]["translation"]["name"] == "Róż PL"
assert data["attributeValue"]["translation"]["language"]["code"] == "PL"
def test_attribute_value_update_translation(
staff_api_client, pink_attribute_value, permission_manage_translations
):
pink_attribute_value.translations.create(language_code="pl", name="Różowy")
query = """
mutation attributeValueTranslate($attributeValueId: ID!) {
attributeValueTranslate(
id: $attributeValueId, languageCode: PL,
input: {name: "Róż PL"}) {
attributeValue {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
attribute_value_id = graphene.Node.to_global_id(
"AttributeValue", pink_attribute_value.id
)
response = staff_api_client.post_graphql(
query,
{"attributeValueId": attribute_value_id},
permissions=[permission_manage_translations],
)
data = get_graphql_content(response)["data"]["attributeValueTranslate"]
assert data["attributeValue"]["translation"]["name"] == "Róż PL"
assert data["attributeValue"]["translation"]["language"]["code"] == "PL"
def test_shipping_method_create_translation(
staff_api_client, shipping_method, permission_manage_translations
):
query = """
mutation shippingPriceTranslate($shippingMethodId: ID!) {
shippingPriceTranslate(
id: $shippingMethodId, languageCode: PL,
input: {name: "DHL PL"}) {
shippingMethod {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
shipping_method_id = graphene.Node.to_global_id(
"ShippingMethod", shipping_method.id
)
response = staff_api_client.post_graphql(
query,
{"shippingMethodId": shipping_method_id},
permissions=[permission_manage_translations],
)
data = get_graphql_content(response)["data"]["shippingPriceTranslate"]
assert data["shippingMethod"]["translation"]["name"] == "DHL PL"
assert data["shippingMethod"]["translation"]["language"]["code"] == "PL"
def test_shipping_method_update_translation(
staff_api_client, shipping_method, permission_manage_translations
):
shipping_method.translations.create(language_code="pl", name="DHL")
query = """
mutation shippingPriceTranslate($shippingMethodId: ID!) {
shippingPriceTranslate(
id: $shippingMethodId, languageCode: PL,
input: {name: "DHL PL"}) {
shippingMethod {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
shipping_method_id = graphene.Node.to_global_id(
"ShippingMethod", shipping_method.id
)
response = staff_api_client.post_graphql(
query,
{"shippingMethodId": shipping_method_id},
permissions=[permission_manage_translations],
)
data = get_graphql_content(response)["data"]["shippingPriceTranslate"]
assert data["shippingMethod"]["translation"]["name"] == "DHL PL"
assert data["shippingMethod"]["translation"]["language"]["code"] == "PL"
def test_menu_item_update_translation(
staff_api_client, menu_item, permission_manage_translations
):
menu_item.translations.create(language_code="pl", name="Odnośnik")
query = """
mutation menuItemTranslate($menuItemId: ID!) {
menuItemTranslate(
id: $menuItemId, languageCode: PL,
input: {name: "Odnośnik PL"}) {
menuItem {
translation(languageCode: PL) {
name
language {
code
}
}
}
}
}
"""
menu_item_id = graphene.Node.to_global_id("MenuItem", menu_item.id)
response = staff_api_client.post_graphql(
query,
{"menuItemId": menu_item_id},
permissions=[permission_manage_translations],
)
data = get_graphql_content(response)["data"]["menuItemTranslate"]
assert data["menuItem"]["translation"]["name"] == "Odnośnik PL"
assert data["menuItem"]["translation"]["language"]["code"] == "PL"
def test_shop_create_translation(staff_api_client, permission_manage_translations):
query = """
mutation shopSettingsTranslate {
shopSettingsTranslate(
languageCode: PL, input: {headerText: "Nagłówek PL"}) {
shop {
translation(languageCode: PL) {
headerText
language {
code
}
}
}
}
}
"""
response = staff_api_client.post_graphql(
query, permissions=[permission_manage_translations]
)
data = get_graphql_content(response)["data"]["shopSettingsTranslate"]
assert data["shop"]["translation"]["headerText"] == "Nagłówek PL"
assert data["shop"]["translation"]["language"]["code"] == "PL"
def test_shop_update_translation(
staff_api_client, site_settings, permission_manage_translations
):
site_settings.translations.create(language_code="pl", header_text="Nagłówek")
query = """
mutation shopSettingsTranslate {
shopSettingsTranslate(
languageCode: PL, input: {headerText: "Nagłówek PL"}) {
shop {
translation(languageCode: PL) {
headerText
language {
code
}
}
}
}
}
"""
response = staff_api_client.post_graphql(
query, permissions=[permission_manage_translations]
)
data = get_graphql_content(response)["data"]["shopSettingsTranslate"]
assert data["shop"]["translation"]["headerText"] == "Nagłówek PL"
assert data["shop"]["translation"]["language"]["code"] == "PL"
@pytest.mark.parametrize(
"kind, expected_typename",
[
(TranslatableKinds.PRODUCT, "ProductTranslatableContent"),
(TranslatableKinds.COLLECTION, "CollectionTranslatableContent"),
(TranslatableKinds.CATEGORY, "CategoryTranslatableContent"),
(TranslatableKinds.PAGE, "PageTranslatableContent"),
(TranslatableKinds.SHIPPING_METHOD, "ShippingMethodTranslatableContent"),
(TranslatableKinds.VOUCHER, "VoucherTranslatableContent"),
(TranslatableKinds.SALE, "SaleTranslatableContent"),
(TranslatableKinds.ATTRIBUTE, "AttributeTranslatableContent"),
(TranslatableKinds.ATTRIBUTE_VALUE, "AttributeValueTranslatableContent"),
(TranslatableKinds.VARIANT, "ProductVariantTranslatableContent"),
(TranslatableKinds.MENU_ITEM, "MenuItemTranslatableContent"),
],
)
def test_translations_query(
user_api_client,
product,
collection,
voucher,
sale,
shipping_method,
page,
menu_item,
kind,
expected_typename,
):
query = """
query TranslationsQuery($kind: TranslatableKinds!) {
translations(kind: $kind, first: 1) {
edges {
node {
__typename
}
}
}
}
"""
response = user_api_client.post_graphql(query, {"kind": kind.name})
data = get_graphql_content(response)["data"]["translations"]
assert data["edges"][0]["node"]["__typename"] == expected_typename
def test_translations_query_inline_fragment(user_api_client, product):
product.translations.create(language_code="pl", name="Produkt testowy")
query = """
{
translations(kind: PRODUCT, first: 1) {
edges {
node {
... on ProductTranslatableContent {
name
translation(languageCode: PL) {
name
}
}
}
}
}
}
"""
response = user_api_client.post_graphql(query)
data = get_graphql_content(response)["data"]["translations"]["edges"][0]
assert data["node"]["name"] == "Test product"
assert data["node"]["translation"]["name"] == "Produkt testowy"
QUERY_TRANSLATION_PRODUCT = """
query translation(
$kind: TranslatableKinds!, $id: ID!, $languageCode: LanguageCodeEnum!
){
translation(kind: $kind, id: $id){
__typename
...on ProductTranslatableContent{
id
name
translation(languageCode: $languageCode){
name
}
product{
id
name
}
}
}
}
"""
@pytest.mark.parametrize(
"is_published, perm_codenames, return_product",
[
(True, ["manage_translations"], True),
(False, ["manage_translations"], False),
(False, ["manage_translations", "manage_products"], True),
],
)
def test_translation_query_product(
staff_api_client,
product,
product_translation_fr,
is_published,
perm_codenames,
return_product,
):
product.is_published = is_published
product.save()
product_id = graphene.Node.to_global_id("Product", product.id)
perms = list(Permission.objects.filter(codename__in=perm_codenames))
variables = {
"id": product_id,
"kind": TranslatableKinds.PRODUCT.name,
"languageCode": LanguageCodeEnum.FR.name,
}
response = staff_api_client.post_graphql(
QUERY_TRANSLATION_PRODUCT, variables, permissions=perms
)
content = get_graphql_content(response)
data = content["data"]["translation"]
assert data["name"] == product.name
assert data["translation"]["name"] == product_translation_fr.name
if return_product:
assert data["product"]["name"] == product.name
else:
assert not data["product"]
QUERY_TRANSLATION_COLLECTION = """
query translation(
$kind: TranslatableKinds!, $id: ID!, $languageCode: LanguageCodeEnum!
){
translation(kind: $kind, id: $id){
__typename
...on CollectionTranslatableContent{
id
name
translation(languageCode: $languageCode){
name
}
collection{
id
name
}
}
}
}
"""
@pytest.mark.parametrize(
"is_published, perm_codenames, return_collection",
[
(True, ["manage_translations"], True),
(False, ["manage_translations"], False),
(False, ["manage_translations", "manage_products"], True),
],
)
def test_translation_query_collection(
staff_api_client,
collection,
collection_translation_fr,
is_published,
perm_codenames,
return_collection,
):
collection.is_published = is_published
collection.save()
collection_id = graphene.Node.to_global_id("Collection", collection.id)
perms = list(Permission.objects.filter(codename__in=perm_codenames))
variables = {
"id": collection_id,
"kind": TranslatableKinds.COLLECTION.name,
"languageCode": LanguageCodeEnum.FR.name,
}
response = staff_api_client.post_graphql(
QUERY_TRANSLATION_COLLECTION, variables, permissions=perms
)
content = get_graphql_content(response)
data = content["data"]["translation"]
assert data["name"] == collection.name
assert data["translation"]["name"] == collection_translation_fr.name
if return_collection:
assert data["collection"]["name"] == collection.name
else:
assert not data["collection"]
QUERY_TRANSLATION_CATEGORY = """
query translation(
$kind: TranslatableKinds!, $id: ID!, $languageCode: LanguageCodeEnum!
){
translation(kind: $kind, id: $id){
__typename
...on CategoryTranslatableContent{
id
name
translation(languageCode: $languageCode){
name
}
category {
id
name
}
}
}
}
"""
def test_translation_query_category(
staff_api_client, category, category_translation_fr, permission_manage_translations
):
category_id = graphene.Node.to_global_id("Category", category.id)
variables = {
"id": category_id,
"kind": TranslatableKinds.CATEGORY.name,
"languageCode": LanguageCodeEnum.FR.name,
}
response = staff_api_client.post_graphql(
QUERY_TRANSLATION_CATEGORY,
variables,
permissions=[permission_manage_translations],
)
content = get_graphql_content(response)
data = content["data"]["translation"]
assert data["name"] == category.name
assert data["translation"]["name"] == category_translation_fr.name
assert data["category"]["name"] == category.name
QUERY_TRANSLATION_ATTRIBUTE = """
query translation(
$kind: TranslatableKinds!, $id: ID!, $languageCode: LanguageCodeEnum!
){
translation(kind: $kind, id: $id){
__typename
...on AttributeTranslatableContent{
id
name
translation(languageCode: $languageCode){
name
}
attribute {
id
name
}
}
}
}
"""
def test_translation_query_attribute(
staff_api_client, translated_attribute, permission_manage_translations
):
attribute = translated_attribute.attribute
attribute_id = graphene.Node.to_global_id("Attribute", attribute.id)
variables = {
"id": attribute_id,
"kind": TranslatableKinds.ATTRIBUTE.name,
"languageCode": LanguageCodeEnum.FR.name,
}
response = staff_api_client.post_graphql(
QUERY_TRANSLATION_ATTRIBUTE,
variables,
permissions=[permission_manage_translations],
)
content = get_graphql_content(response)
data = content["data"]["translation"]
assert data["name"] == attribute.name
assert data["translation"]["name"] == translated_attribute.name
assert data["attribute"]["name"] == attribute.name
QUERY_TRANSLATION_ATTRIBUTE_VALUE = """
query translation(
$kind: TranslatableKinds!, $id: ID!, $languageCode: LanguageCodeEnum!
){
translation(kind: $kind, id: $id){
__typename
...on AttributeValueTranslatableContent{
id
name
translation(languageCode: $languageCode){
name
}
attributeValue {
id
name
}
}
}
}
"""
def test_translation_query_attribute_value(
staff_api_client,
pink_attribute_value,
translated_attribute_value,
permission_manage_translations,
):
attribute_value_id = graphene.Node.to_global_id(
"AttributeValue", pink_attribute_value.id
)
variables = {
"id": attribute_value_id,
"kind": TranslatableKinds.ATTRIBUTE_VALUE.name,
"languageCode": LanguageCodeEnum.FR.name,
}
response = staff_api_client.post_graphql(
QUERY_TRANSLATION_ATTRIBUTE_VALUE,
variables,
permissions=[permission_manage_translations],
)
content = get_graphql_content(response)
data = content["data"]["translation"]
assert data["name"] == pink_attribute_value.name
assert data["translation"]["name"] == translated_attribute_value.name
assert data["attributeValue"]["name"] == pink_attribute_value.name
QUERY_TRANSLATION_VARIANT = """
query translation(
$kind: TranslatableKinds!, $id: ID!, $languageCode: LanguageCodeEnum!
){
translation(kind: $kind, id: $id){
__typename
...on ProductVariantTranslatableContent{
id
name
translation(languageCode: $languageCode){
name
}
productVariant {
id
name
}
}
}
}
"""
@pytest.mark.parametrize(
"is_published, perm_codenames, return_variant",
[
(True, ["manage_translations"], True),
(False, ["manage_translations"], False),
(False, ["manage_translations", "manage_products"], True),
],
)
def test_translation_query_variant(
staff_api_client,
product,
variant,
variant_translation_fr,
is_published,
perm_codenames,
return_variant,
):
product.is_published = is_published
product.save()
variant_id = graphene.Node.to_global_id("ProductVariant", variant.id)
perms = list(Permission.objects.filter(codename__in=perm_codenames))
variables = {
"id": variant_id,
"kind": TranslatableKinds.VARIANT.name,
"languageCode": LanguageCodeEnum.FR.name,
}
response = staff_api_client.post_graphql(
QUERY_TRANSLATION_VARIANT, variables, permissions=perms
)
content = get_graphql_content(response)
data = content["data"]["translation"]
assert data["name"] == variant.name
assert data["translation"]["name"] == variant_translation_fr.name
if return_variant:
assert data["productVariant"]["name"] == variant.name
else:
assert not data["productVariant"]
QUERY_TRANSLATION_PAGE = """
query translation(
$kind: TranslatableKinds!, $id: ID!, $languageCode: LanguageCodeEnum!
){
translation(kind: $kind, id: $id){
__typename
...on PageTranslatableContent{
id
title
translation(languageCode: $languageCode){
title
}
page {
id
title
}
}
}
}
"""
@pytest.mark.parametrize(
"is_published, perm_codenames, return_page",
[
(True, ["manage_translations"], True),
(False, ["manage_translations"], False),
(False, ["manage_translations", "manage_pages"], True),
],
)
def test_translation_query_page(
staff_api_client,
page,
page_translation_fr,
is_published,
perm_codenames,
return_page,
):
page.is_published = is_published
page.save()
page_id = graphene.Node.to_global_id("Page", page.id)
perms = list(Permission.objects.filter(codename__in=perm_codenames))
variables = {
"id": page_id,
"kind": TranslatableKinds.PAGE.name,
"languageCode": LanguageCodeEnum.FR.name,
}
response = staff_api_client.post_graphql(
QUERY_TRANSLATION_PAGE, variables, permissions=perms
)
content = get_graphql_content(response)
data = content["data"]["translation"]
assert data["title"] == page.title
assert data["translation"]["title"] == page_translation_fr.title
if return_page:
assert data["page"]["title"] == page.title
else:
assert not data["page"]
QUERY_TRANSLATION_SHIPPING_METHOD = """
query translation(
$kind: TranslatableKinds!, $id: ID!, $languageCode: LanguageCodeEnum!
){
translation(kind: $kind, id: $id){
__typename
...on ShippingMethodTranslatableContent{
id
name
translation(languageCode: $languageCode){
name
}
shippingMethod {
id
name
}
}
}
}
"""
@pytest.mark.parametrize(
"perm_codenames, return_shipping_method",
[
(["manage_translations"], False),
(["manage_translations", "manage_shipping"], True),
],
)
def test_translation_query_shipping_method(
staff_api_client,
shipping_method,
shipping_method_translation_fr,
perm_codenames,
return_shipping_method,
):
shipping_method_id = graphene.Node.to_global_id(
"ShippingMethod", shipping_method.id
)
perms = list(Permission.objects.filter(codename__in=perm_codenames))
variables = {
"id": shipping_method_id,
"kind": TranslatableKinds.SHIPPING_METHOD.name,
"languageCode": LanguageCodeEnum.FR.name,
}
response = staff_api_client.post_graphql(
QUERY_TRANSLATION_SHIPPING_METHOD, variables, permissions=perms
)
content = get_graphql_content(response, ignore_errors=True)
data = content["data"]["translation"]
assert data["name"] == shipping_method.name
assert data["translation"]["name"] == shipping_method_translation_fr.name
if return_shipping_method:
assert data["shippingMethod"]["name"] == shipping_method.name
else:
assert not data["shippingMethod"]
QUERY_TRANSLATION_SALE = """
query translation(
$kind: TranslatableKinds!, $id: ID!, $languageCode: LanguageCodeEnum!
){
translation(kind: $kind, id: $id){
__typename
...on SaleTranslatableContent{
id
name
translation(languageCode: $languageCode){
name
}
sale {
id
name
}
}
}
}
"""
@pytest.mark.parametrize(
"perm_codenames, return_sale",
[
(["manage_translations"], False),
(["manage_translations", "manage_discounts"], True),
],
)
def test_translation_query_sale(
staff_api_client, sale, sale_translation_fr, perm_codenames, return_sale
):
sale_id = graphene.Node.to_global_id("Sale", sale.id)
perms = list(Permission.objects.filter(codename__in=perm_codenames))
variables = {
"id": sale_id,
"kind": TranslatableKinds.SALE.name,
"languageCode": LanguageCodeEnum.FR.name,
}
response = staff_api_client.post_graphql(
QUERY_TRANSLATION_SALE, variables, permissions=perms
)
content = get_graphql_content(response, ignore_errors=True)
data = content["data"]["translation"]
assert data["name"] == sale.name
assert data["translation"]["name"] == sale_translation_fr.name
if return_sale:
assert data["sale"]["name"] == sale.name
else:
assert not data["sale"]
QUERY_TRANSLATION_VOUCHER = """
query translation(
$kind: TranslatableKinds!, $id: ID!, $languageCode: LanguageCodeEnum!
){
translation(kind: $kind, id: $id){
__typename
...on VoucherTranslatableContent{
id
name
translation(languageCode: $languageCode){
name
}
voucher {
id
name
}
}
}
}
"""
@pytest.mark.parametrize(
"perm_codenames, return_voucher",
[
(["manage_translations"], False),
(["manage_translations", "manage_discounts"], True),
],
)
def test_translation_query_voucher(
staff_api_client, voucher, voucher_translation_fr, perm_codenames, return_voucher
):
voucher_id = graphene.Node.to_global_id("Voucher", voucher.id)
perms = list(Permission.objects.filter(codename__in=perm_codenames))
variables = {
"id": voucher_id,
"kind": TranslatableKinds.VOUCHER.name,
"languageCode": LanguageCodeEnum.FR.name,
}
response = staff_api_client.post_graphql(
QUERY_TRANSLATION_VOUCHER, variables, permissions=perms
)
content = get_graphql_content(response, ignore_errors=True)
data = content["data"]["translation"]
assert data["name"] == voucher.name
assert data["translation"]["name"] == voucher_translation_fr.name
if return_voucher:
assert data["voucher"]["name"] == voucher.name
else:
assert not data["voucher"]
QUERY_TRANSLATION_MENU_ITEM = """
query translation(
$kind: TranslatableKinds!, $id: ID!, $languageCode: LanguageCodeEnum!
){
translation(kind: $kind, id: $id){
__typename
...on MenuItemTranslatableContent{
id
name
translation(languageCode: $languageCode){
name
}
menuItem {
id
name
}
}
}
}
"""
def test_translation_query_menu_item(
staff_api_client,
menu_item,
menu_item_translation_fr,
permission_manage_translations,
):
menu_item_id = graphene.Node.to_global_id("MenuItem", menu_item.id)
variables = {
"id": menu_item_id,
"kind": TranslatableKinds.MENU_ITEM.name,
"languageCode": LanguageCodeEnum.FR.name,
}
response = staff_api_client.post_graphql(
QUERY_TRANSLATION_MENU_ITEM,
variables,
permissions=[permission_manage_translations],
)
content = get_graphql_content(response)
data = content["data"]["translation"]
assert data["name"] == menu_item.name
assert data["translation"]["name"] == menu_item_translation_fr.name
assert data["menuItem"]["name"] == menu_item.name
def test_translation_query_incorrect_kind(
staff_api_client, menu_item, permission_manage_translations
):
menu_item_id = graphene.Node.to_global_id("MenuItem", menu_item.id)
variables = {
"id": menu_item_id,
"kind": TranslatableKinds.PRODUCT.name,
"languageCode": LanguageCodeEnum.FR.name,
}
response = staff_api_client.post_graphql(
QUERY_TRANSLATION_MENU_ITEM,
variables,
permissions=[permission_manage_translations],
)
content = get_graphql_content(response)
assert not content["data"]["translation"]
def test_translation_query_no_permission(staff_api_client, menu_item):
menu_item_id = graphene.Node.to_global_id("MenuItem", menu_item.id)
variables = {
"id": menu_item_id,
"kind": TranslatableKinds.MENU_ITEM.name,
"languageCode": LanguageCodeEnum.FR.name,
}
response = staff_api_client.post_graphql(QUERY_TRANSLATION_MENU_ITEM, variables)
assert_no_permission(response)
|
[
"rafmme@gmail.com"
] |
rafmme@gmail.com
|
f795d91ef6a578af3e5b22300688668c97622fb4
|
deb89dfe22f3668dbfafabe8b353560e605ce17e
|
/Optimizer.py
|
8f6a68f4eccf3551307ca31faf7059433549532d
|
[
"MIT"
] |
permissive
|
AndrCarvalho/DroneOpenTool
|
012699d69f2ba443e5d11b43c3c340e6da6a2deb
|
db22d18bc0f2ae4f2d6338130b8b536f0d4af829
|
refs/heads/master
| 2023-08-21T21:53:50.184130
| 2021-10-02T18:39:31
| 2021-10-02T18:39:31
| 307,439,304
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,151
|
py
|
import pyproj
geodesic = pyproj.Geod(ellps='WGS84') #notice: [lon lat] notation!!!
# Removes co-linear points in sequence, do multiple times to remove every occurrence.
def remove_path_excess(path):
new_path = [path[0]]
for i in range(0, len(path)-1, 2):
if i + 2 >= len(path):
continue
#Project
fw_az1, bck_az1, dist1 = geodesic.inv(path[i][1], path[i][0], path[i + 1][1], path[i + 1][0])
fw_az2, bck_az2, dist2 = geodesic.inv(path[i + 1][1], path[i + 1][0], path[i + 2][1], path[i + 2][0])
if abs(fw_az2 - fw_az1) >= 5:
new_path.append(path[i + 1])
new_path.append(path[i + 2])
if path[len(path)-1] not in new_path:
new_path.append(path[len(path)-1])
#print("smooth:", new_path)
return new_path
def smooth_path(path):
new_path = [path[0]]
for i in range(0, len(path)-1, 2):
if i + 2 >= len(path):
continue
#Project
fw_az1, bck_az1, dist1 = geodesic.inv(path[i][1], path[i][0], path[i + 1][1], path[i + 1][0])
fw_az2, bck_az2, dist2 = geodesic.inv(path[i + 1][1], path[i + 1][0], path[i + 2][1], path[i + 2][0])
if abs(abs(fw_az2 - fw_az1) - 45) <= 5:
pass # remove
else:
new_path.append(path[i + 1]) # keep the node
new_path.append(path[i + 2])
if path[len(path)-1] not in new_path:
new_path.append(path[len(path)-1])
#print("smooth:", new_path)
return new_path
def optimize_path(path):
initial_path = path
check = False
while not check:
old_path = path
path = remove_path_excess(path)
if path == old_path:
check = True
#print("Initial path:", len(initial_path), " | Remove Excess path:", len(path))
#print("Difference path excess:", len(initial_path) - len(path))
n_excess_path = path
path = smooth_path(path)
#print("Non-excess path:", len(n_excess_path), " | Smooth path:", len(path))
#print("Difference path smoothing:", len(n_excess_path) - len(path))
print("Points removed:", str(len(initial_path) - len(path)))
return path
|
[
"AndrCarvalho@users.noreply.github.com"
] |
AndrCarvalho@users.noreply.github.com
|
3ae3771d1e81939378ef90067c2137fbe4d29742
|
0c85ffd1fc2ecb2ada296a1af6afbb0b57ad4130
|
/sm.py
|
cbdf9524b55fdbfe6ae201337c7ceb5d29f3c9a4
|
[
"MIT"
] |
permissive
|
sevenjames/fpie-scripts
|
c945d4f212dfe05cceaab537e5e03684be12b059
|
4aed642ca60ee1da4ffb07823a2e206957597498
|
refs/heads/master
| 2021-02-14T03:02:42.640879
| 2020-06-11T08:03:40
| 2020-06-11T08:03:40
| 244,760,779
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 200
|
py
|
"""minimized stick mouse"""
if starting:
import time
frame_start = time.time()
mouse.deltaX = filters.delta(joystick[0].xRotation) * 0.25
time.sleep(max(1./60 - (time.time() - frame_start), 0))
|
[
"sevenjames@users.noreply.github.com"
] |
sevenjames@users.noreply.github.com
|
467367f6c141bab5ccd0bf6bb614ab26e0f5199f
|
2c68c8e13ee4e6d37388c76d7cc1a53f0e2caf90
|
/LTM/For_excel/test_check_ip.py
|
a7f5efab584c692f186aa034fbf87e78b4e674f6
|
[] |
no_license
|
oscarobwu/Memo_F5
|
f6b6226dfde0a7a17ece04d6439003bf1e3b48bb
|
53d651c8fd51e5ce792d669167a01850596998ec
|
refs/heads/main
| 2023-02-26T18:51:30.893181
| 2021-02-05T23:34:57
| 2021-02-05T23:34:57
| 336,413,167
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,350
|
py
|
#!/usr/bin/python
#-*- coding: utf-8 -*-
#===============================================================================
#
# Filename: test_check_ip.py
#
# USAGE: test_check_ip.py
#
# DESCRIPTION:
#
# OPTIONS: ---
# REQUIREMENTS: ---
# BUGS: ---
# NOTES: ---
# AUTHOR: Oscarob Wu(oscarobwu@gmail.com),
# ORGANIZATION:
# VERSION: 1.0
# Created Time: 2021-01-28 18:18:47
# Last modified: 2021-01-28 18:59
# REVISION: ---
#===============================================================================
import re
import os
os.system("")
# Group of ***different*** functions for different styles
class style():
BLACK = '\033[30m'
RED = '\033[91m'
GREEN = '\033[42m'
YELLOW = '\033[33m'
BLUE = '\033[34m'
MAGENTA = '\033[35m'
CYAN = '\033[36m'
WHITE = '\033[37m'
UNDERLINE = '\033[4m'
RESET = '\033[0m'
print(style.YELLOW + "Hello, World!" + '\033[0m')
ipv=input("Enter an ip address : ")
a=ipv.split('.')
s=str(bin(int(a[0]))+bin(int(a[1]))+bin(int(a[2]))+bin(int(a[3])))
s=s.replace("0b",".")
m=re.search('\.[0,1]{1,8}\.[0,1]{1,8}\.[0,1]{1,8}\.[0,1]{1,8}$',s)
if m is not None:
print(style.GREEN + "Valid sequence of input" + '\033[0m')
else :
print(style.RED + "Invalid input sequence" + '\033[0m')
print("End Job Good Bye!!!")
|
[
"root@Debian10-6-Jenkins-Ansible-02.localdomain"
] |
root@Debian10-6-Jenkins-Ansible-02.localdomain
|
5091cde131222d65fd968409d5c999a7772611c5
|
975ecceab70eb4d75b1fe1b61a14c8375c291adb
|
/3.1_introduction_to_python_I/in_practice/12-Stu_NumberChain/number_chain.py
|
eb70bb0b43edbb154ae8e222d54796be5843789a
|
[] |
no_license
|
carlabeltran/data_analytics_visualization
|
82306b44570ba89ef298d8cf07f9151e0d7cb031
|
7985138ff3fbbdcf077c08aaea6dcb64f12b9a22
|
refs/heads/master
| 2020-12-09T17:38:34.458647
| 2020-01-12T03:03:35
| 2020-01-12T03:03:35
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 377
|
py
|
user_plays = "y"
starting_number = 0
while user_plays == "y":
user_number = int(input("How many numbers?"))
for number in range(starting_number, user_number + starting_number):
print(number)
starting_number = user_number + starting_number
user_plays = input(
"Do you want to play again? Enter 'y' to play again. Enter 'n' to exit the game.")
|
[
"philipstubbs13@gmail.com"
] |
philipstubbs13@gmail.com
|
256be955ac5bbbb095774605fb0337a77bc3fa15
|
8152b055c7275751ac56476218012448de1bfd57
|
/mia/xmgr/views.py
|
29fc63a4ea48ac80acada10b5c56efe657370cd6
|
[] |
no_license
|
gregfelice/mia
|
7f1376c2e1a54dd9038b66bd5e71941a7d30410b
|
4a3a0ff6670e385d70abf6c793bc91d927e8a859
|
refs/heads/master
| 2021-01-17T12:00:45.455553
| 2016-07-21T03:33:26
| 2016-07-21T03:33:26
| 63,834,246
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 543
|
py
|
from django.http import HttpResponse
from django.template import loader
from django.shortcuts import get_object_or_404, render
from django.http import HttpResponseRedirect
from django.core.urlresolvers import reverse
from django.views import generic
from .models import Person
class IndexView(generic.ListView):
template_name = 'index.html'
context_object_name = 'people'
def get_queryset(self):
return Person.objects.all()
class DetailView(generic.DetailView):
model = Person
template_name = 'detail.html'
|
[
"gregf@bogo.constantlabs.com"
] |
gregf@bogo.constantlabs.com
|
33189ef2893eeb9cacde0e3f2a86934c39a8868e
|
78f85c9d1587244c8a5aa087f88d4af862865858
|
/english_speak_backend/storage/csv_converter2.py
|
1b8d17fbf12c12105e45f530d1ba2cce6845e1b6
|
[] |
no_license
|
fedor-malyshkin/english-speak-backend
|
ceaf7759bac4a1ff5ef7cf8b2bfe327701393cf8
|
28d75646a4acd45f18209b3c28ba8a2bef1edded
|
refs/heads/master
| 2023-03-08T13:33:19.940272
| 2021-02-13T17:40:15
| 2021-02-13T17:40:15
| 264,500,506
| 0
| 0
| null | 2021-02-13T17:40:16
| 2020-05-16T18:26:18
|
Python
|
UTF-8
|
Python
| false
| false
| 4,565
|
py
|
import csv
import re
from english_speak_backend.storage import builder
REGEXP_MEANING_SAMPLE = r'\((.*)\)'
REGEXP_NOTE_VARIANT = r'var\. [0-9]'
def convert_to_map(row):
return {'name': row[0], 'meaning': row[1], 'sample': row[2], 'note': row[3]}
class CsvConverter2:
def __init__(self):
self.orig = []
self.additional = []
self.aggregated = []
def read(self):
phrasal_verbs_data = builder.flat_file_pairs("data/expressions.list")
self.orig = phrasal_verbs_data.get_all()
with open("data/csv/lw-output.csv") as fp:
reader = csv.reader(fp, delimiter=",", quotechar='"')
self.additional = [convert_to_map(row) for row in reader]
@staticmethod
def convert_ep(m):
m['plain_name'] = CsvConverter2.remove_spare_spaces(m['name'])
m['meaning'] = CsvConverter2.remove_spare_spaces(m['meaning'])
m['sample'] = CsvConverter2.remove_spare_spaces(m['sample'])
m['note'] = CsvConverter2.remove_spare_spaces(m['note'])
return m
@staticmethod
def convert_ep_name(name):
name = name.replace("*", "").strip()
name = name.replace("+", "").strip()
return name
def convert(self):
self.additional = [CsvConverter2.convert_ep(map) for map in self.additional]
self.orig = [CsvConverter2.convert_original(map) for map in self.orig if map['name'].startswith("LW:")]
self.aggregated = self.orig
self.aggregated.extend(self.additional)
@staticmethod
def convert_original(m):
m['plain_name'], m['meaning'] = CsvConverter2.extract_name_and_meaning(m['name'])
m['plain_name'] = CsvConverter2.removeLW(m['plain_name'])
m['sample'] = CsvConverter2.remove_spare_spaces(m.get('meaning'))
m['note'] = CsvConverter2.remove_spare_spaces(m.get('note'))
return m
@staticmethod
def extract_name_and_meaning(input2):
m = re.search(r'(.+) += (.+)', input2)
if m is not None:
return m.group(1).strip(), m.group(2).strip()
else:
return '', ''
@staticmethod
def convert_original_name(name):
name = re.sub(r'(sb|sth)/(sth|sb)?', "", name).strip()
name = re.sub(r'(smb|sth)/(sth|smb)?', "", name).strip()
name = re.sub(r'(somewhere|sth)/(somewhere|sth)?', "", name).strip()
name = re.sub(r' (sb|smb|somebody|someone)', "", name).strip()
name = re.sub(r' (something|sth)', "", name).strip()
return name
@staticmethod
def removeLW(input2):
if not input2:
return ""
m = re.search(r'LW:(.+)', input2)
if m is not None:
return m.group(1).strip()
else:
return ""
@staticmethod
def extract_original_sample(input2):
if not input2:
return ""
reg_expression = REGEXP_MEANING_SAMPLE
m = re.search(reg_expression, input2)
if m is not None:
return m.group(1).strip()
else:
return ""
@staticmethod
def remove_original_sample(input2):
if not input2:
return ""
reg_expression = REGEXP_MEANING_SAMPLE
m = re.search(reg_expression, input2)
if m is not None:
return re.sub(REGEXP_MEANING_SAMPLE, "", input2).strip()
else:
return input2
@staticmethod
def remove_original_variants(input2):
if not input2:
return ""
reg_expression = REGEXP_NOTE_VARIANT
m = re.search(reg_expression, input2)
if m is not None:
return re.sub(REGEXP_NOTE_VARIANT, "", input2).strip()
else:
return input2
@staticmethod
def remove_spare_spaces(input2):
if not input2:
return ""
return input2.replace(" ", " ")
def output(self):
"""
Write data to a CSV file path
"""
with open("data/csv/lw.csv", "w") as csv_file:
writer = csv.writer(csv_file, delimiter=',')
writer.writerow(['plain_name',
'meaning',
'sample',
'note'])
for line in self.aggregated:
writer.writerow([line['plain_name'],
line['meaning'],
line['sample'],
line['note']])
if __name__ == "__main__":
cnv = CsvConverter2()
cnv.read()
cnv.convert()
cnv.output()
|
[
"fedor.malyshkin@yandex.ru"
] |
fedor.malyshkin@yandex.ru
|
e5a79048e3102c2eba2db114ca4160c3e3953ac2
|
73f6ba42a793d18ad5b4c44cfdc278e51aa1b9b0
|
/perum/admin.py
|
826368cf4da71c07441a9b74c16ab876d01bd44b
|
[] |
no_license
|
akbarlintang/perumahan
|
e14eb922a86c76581d8faae5700ff21e83ba13ee
|
66c908a382bc32e9b9abc69b3a6f22eab12d8d2c
|
refs/heads/main
| 2022-12-30T08:11:23.856824
| 2020-10-22T15:33:30
| 2020-10-22T15:33:30
| 306,377,878
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 316
|
py
|
from django.contrib import admin
# Register your models here.
from .models import *
admin.site.register(Pelanggan)
admin.site.register(Unit)
admin.site.register(Administrasi)
admin.site.register(Harga)
admin.site.register(Angsuran)
admin.site.register(Booking)
admin.site.register(Lokasi)
admin.site.register(Tipe)
|
[
"lintangajiakbar@gmail.com"
] |
lintangajiakbar@gmail.com
|
4c3c32a1d4681cd40a82b7f1ba078e8eca062f0a
|
9aea1b19a8681b4c6b15d628a080982fb2d98b39
|
/mianJing111111/geeksforgeeks/tree/Convert a BST to a Binary Tree such that sum of all greater keys is added to every key.py
|
b7844963d0363ace092c3fb4c04ebe355d2e84b6
|
[] |
no_license
|
yzl232/code_training
|
ee7612efc6f166742fcf48e1af715f57a624d3aa
|
fc165027c3d7b1fec58ebfad2f9ada275a6b8c03
|
refs/heads/master
| 2021-01-21T04:32:02.522931
| 2016-07-01T21:35:29
| 2016-07-01T21:35:29
| 26,989,266
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,276
|
py
|
# encoding=utf-8
'''
Convert a BST to a Binary Tree such that sum of all greater keys is added to every key
Given a Binary Search Tree (BST), convert it to a Binary Tree such that every key of the original BST is changed to key plus sum of all greater keys in BST.
Examples:
Input: Root of following BST
5
/ \
2 13
Output: The given BST is converted to following Binary Tree
18
/ \
20 13
Source: Convert a BST
Solution: Do reverse Inoorder traversal. Keep track of the sum of nodes visited so far. Let this sum be sum. For every node currently being visited, first add the key of this node to sum, i.e. sum = sum + node->key. Then change the key of current node to sum, i.e., node->key = sum.
When a BST is being traversed in reverse Inorder, for every key currently being visited, all keys that are already visited are all greater keys.
'''
#顺序。 right, root, left
#因为bst本身排好了序 。 所以就容易了很多
class Solution:
def addGreater(self, root):
self.s = 0
self.dfs(root)
def dfs(self, root):
if not root: return
self.dfs(root.right)
self.s +=root.val
root.val = self.s
self.dfs(root.left)
|
[
"buptyuzhenglin@gmail.com"
] |
buptyuzhenglin@gmail.com
|
4f9d5463d4ac234ca46cd78969c11d0fe88dc7e6
|
3bd31700ebf05dcbdf16ba622fcc1551522c3118
|
/denoise/denoise_shrink_mask.py
|
e52f41c315cb391f09f5aa6e16a435e4b5f3623a
|
[
"MIT"
] |
permissive
|
yl3506/iMVPD_denoise
|
78a410ad8093e213078af92c354ef8aeacd28100
|
96dff9d4a72086d1b7348403d0c71c43b5456933
|
refs/heads/master
| 2020-03-31T06:14:57.865578
| 2019-01-18T05:01:46
| 2019-01-18T05:01:46
| 151,973,975
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,914
|
py
|
# generate noise mask and shrink by 1 voxel on the surface
import os, json
import nibabel as nib
import numpy as np
from scipy import ndimage
# initalize data
### work_dir = '/mindhive/saxelab3/anzellotti/forrest/derivatives/fmriprep/'
### all_subjects = ['sub-01', 'sub-02', 'sub-03', 'sub-04', 'sub-05', 'sub-09', 'sub-10', 'sub-14', 'sub-15', 'sub-16', 'sub-17', 'sub-18', 'sub-19', 'sub-20']
work_dir = '/Users/chloe/Documents/'
all_subjects = ['sub-01']
masks = ['_T1w_space-MNI152NLin2009cAsym_class-CSF_probtissue.nii.gz', '_T1w_space-MNI152NLin2009cAsym_class-WM_probtissue.nii.gz']
mask_thr = 0.5
shrink_size = 1 # shrink mask by this amount of voxels on the boundary
# iterate through all subjects
for sub in all_subjects:
# generate union mask
# initialize info
sub_dir = work_dir + sub + '_complete/'
mask_dir = sub_dir + 'anat/'
sub_out_dir = work_dir + sub + '_complete/' + sub + '_ROIs/'
if not os.path.exists(sub_out_dir):
os.makedirs(sub_out_dir)
# load masks
mask_CSF = nib.load(mask_dir + sub + masks[0])
mask_WM = nib.load(mask_dir + sub + masks[1])
mask_CSF_affine = mask_CSF.affine
mask_WM_affine = mask_WM.affine
mask_CSF_header = mask_CSF.header
mask_CSF = mask_CSF.get_data()
mask_WM = mask_WM.get_data() # mask CSF and WM should be of same shape
# make union of the two masks, filter with threshold
mask_union = np.zeros(mask_CSF.shape)
for x in range(0, mask_CSF.shape[0]):
for y in range(0, mask_CSF.shape[1]):
for z in range(0, mask_CSF.shape[2]):
if mask_CSF[x, y, z] >= mask_thr or mask_WM[x, y, z] >= mask_thr:
mask_union[x, y, z] = 1
# shrink the mask
mask_union = ndimage.binary_erosion(mask_union, iterations = shrink_size).astype(int)
# save the shrinked mask somewhere
mask_union_img = nib.Nifti1Image(mask_union, mask_CSF_affine, mask_CSF_header)
nib.save(mask_union_img, sub_out_dir + sub + '_CSF_WM_mask_union_bin_shrinked.nii.gz')
|
[
"yl3506@nyu.edu"
] |
yl3506@nyu.edu
|
c63ab88a1b3faf2cb4abf1a0c1bb74d644de8b85
|
e806a4ca5276d5bbe6c79806986aadd105de6490
|
/pdp7_pt/measures/admin.py
|
3e36d026e6004c4743fa0ceb4f924274c3217b26
|
[] |
no_license
|
alexpdp7/pdp7_pt
|
36d5ea058040cfee4a2536d894db4339a2b9cd14
|
c5568c4a85f1d716d452607af73ea1ebc468e12c
|
refs/heads/master
| 2020-04-17T20:16:20.983886
| 2020-03-27T15:23:04
| 2020-03-27T15:23:04
| 66,585,470
| 0
| 0
| null | 2016-08-28T11:36:10
| 2016-08-25T19:06:39
|
Python
|
UTF-8
|
Python
| false
| false
| 301
|
py
|
from django.contrib import admin
from pdp7_pt.measures import models
class MeasureAdmin(admin.ModelAdmin):
date_hierarchy = 'when'
admin.site.register(models.Series)
admin.site.register(models.FloatMeasure, MeasureAdmin)
admin.site.register(models.DoublePositiveIntegerMeasure, MeasureAdmin)
|
[
"alex@pdp7.net"
] |
alex@pdp7.net
|
3b01ef52fe6dd9707ec569c0266c5d04749fc773
|
9e131c705936db8b9d3a473a13c5f17aab5b6bda
|
/tensorflow_/tensorflowcv/models/preresnet.py
|
a8d923f83115ed214bcd917f4303382cc7962deb
|
[
"MIT"
] |
permissive
|
kolingv/imgclsmob
|
0b792cdcc88abbfb63bebbe8a45e5772e755aed0
|
11e77cf36f0c99be044597d5be29313be394a692
|
refs/heads/master
| 2020-04-23T14:12:08.784090
| 2019-02-17T19:39:48
| 2019-02-17T19:39:48
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 27,590
|
py
|
"""
PreResNet, implemented in TensorFlow.
Original paper: 'Identity Mappings in Deep Residual Networks,' https://arxiv.org/abs/1603.05027.
"""
__all__ = ['PreResNet', 'preresnet10', 'preresnet12', 'preresnet14', 'preresnet16', 'preresnet18_wd4',
'preresnet18_wd2', 'preresnet18_w3d4', 'preresnet18', 'preresnet34', 'preresnet50', 'preresnet50b',
'preresnet101', 'preresnet101b', 'preresnet152', 'preresnet152b', 'preresnet200', 'preresnet200b',
'preres_block', 'preres_bottleneck_block', 'preres_init_block', 'preres_activation']
import os
import tensorflow as tf
from .common import pre_conv1x1_block, pre_conv3x3_block, conv2d, conv1x1, batchnorm, maxpool2d, is_channels_first,\
flatten
def preres_block(x,
in_channels,
out_channels,
strides,
training,
data_format,
name="preres_block"):
"""
Simple PreResNet block for residual path in PreResNet unit.
Parameters:
----------
x : Tensor
Input tensor.
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
strides : int or tuple/list of 2 int
Strides of the convolution.
training : bool, or a TensorFlow boolean scalar tensor
Whether to return the output in training mode or in inference mode.
data_format : str
The ordering of the dimensions in tensors.
name : str, default 'preres_block'
Block name.
Returns
-------
tuple of two Tensors
Resulted tensor and preactivated input tensor.
"""
x, x_pre_activ = pre_conv3x3_block(
x=x,
in_channels=in_channels,
out_channels=out_channels,
strides=strides,
return_preact=True,
training=training,
data_format=data_format,
name=name + "/conv1")
x = pre_conv3x3_block(
x=x,
in_channels=in_channels,
out_channels=out_channels,
training=training,
data_format=data_format,
name=name + "/conv2")
return x, x_pre_activ
def preres_bottleneck_block(x,
in_channels,
out_channels,
strides,
conv1_stride,
training,
data_format,
name="preres_bottleneck_block"):
"""
PreResNet bottleneck block for residual path in PreResNet unit.
Parameters:
----------
x : Tensor
Input tensor.
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
strides : int or tuple/list of 2 int
Strides of the convolution.
conv1_stride : bool
Whether to use stride in the first or the second convolution layer of the block.
training : bool, or a TensorFlow boolean scalar tensor
Whether to return the output in training mode or in inference mode.
data_format : str
The ordering of the dimensions in tensors.
name : str, default 'preres_bottleneck_block'
Block name.
Returns
-------
tuple of two Tensors
Resulted tensor and preactivated input tensor.
"""
mid_channels = out_channels // 4
x, x_pre_activ = pre_conv1x1_block(
x=x,
in_channels=in_channels,
out_channels=mid_channels,
strides=(strides if conv1_stride else 1),
return_preact=True,
training=training,
data_format=data_format,
name=name + "/conv1")
x = pre_conv3x3_block(
x=x,
in_channels=in_channels,
out_channels=mid_channels,
strides=(1 if conv1_stride else strides),
training=training,
data_format=data_format,
name=name + "/conv2")
x = pre_conv1x1_block(
x=x,
in_channels=in_channels,
out_channels=out_channels,
training=training,
data_format=data_format,
name=name + "/conv3")
return x, x_pre_activ
def preres_unit(x,
in_channels,
out_channels,
strides,
bottleneck,
conv1_stride,
training,
data_format,
name="preres_unit"):
"""
PreResNet unit with residual connection.
Parameters:
----------
x : Tensor
Input tensor.
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
strides : int or tuple/list of 2 int
Strides of the convolution.
bottleneck : bool
Whether to use a bottleneck or simple block in units.
conv1_stride : bool
Whether to use stride in the first or the second convolution layer of the block.
training : bool, or a TensorFlow boolean scalar tensor
Whether to return the output in training mode or in inference mode.
data_format : str
The ordering of the dimensions in tensors.
name : str, default 'preres_unit'
Unit name.
Returns
-------
Tensor
Resulted tensor.
"""
identity = x
if bottleneck:
x, x_pre_activ = preres_bottleneck_block(
x=x,
in_channels=in_channels,
out_channels=out_channels,
strides=strides,
conv1_stride=conv1_stride,
training=training,
data_format=data_format,
name=name + "/body")
else:
x, x_pre_activ = preres_block(
x=x,
in_channels=in_channels,
out_channels=out_channels,
strides=strides,
training=training,
data_format=data_format,
name=name + "/body")
resize_identity = (in_channels != out_channels) or (strides != 1)
if resize_identity:
identity = conv1x1(
x=x_pre_activ,
in_channels=in_channels,
out_channels=out_channels,
strides=strides,
data_format=data_format,
name=name + "/identity_conv/conv")
x = x + identity
return x
def preres_init_block(x,
in_channels,
out_channels,
training,
data_format,
name="preres_init_block"):
"""
PreResNet specific initial block.
Parameters:
----------
x : Tensor
Input tensor.
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
training : bool, or a TensorFlow boolean scalar tensor
Whether to return the output in training mode or in inference mode.
data_format : str
The ordering of the dimensions in tensors.
name : str, default 'preres_init_block'
Block name.
Returns
-------
Tensor
Resulted tensor.
"""
x = conv2d(
x=x,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=7,
strides=2,
padding=3,
use_bias=False,
data_format=data_format,
name=name + "/conv")
x = batchnorm(
x=x,
training=training,
data_format=data_format,
name=name + "/bn")
x = tf.nn.relu(x, name=name + "/activ")
x = maxpool2d(
x=x,
pool_size=3,
strides=2,
padding=1,
data_format=data_format,
name=name + "/pool")
return x
def preres_activation(x,
training,
data_format,
name="preres_activation"):
"""
PreResNet pure pre-activation block without convolution layer. It's used by itself as the final block.
Parameters:
----------
x : Tensor
Input tensor.
training : bool, or a TensorFlow boolean scalar tensor
Whether to return the output in training mode or in inference mode.
data_format : str
The ordering of the dimensions in tensors.
name : str, default 'preres_activation'
Block name.
Returns
-------
Tensor
Resulted tensor.
"""
x = batchnorm(
x=x,
training=training,
data_format=data_format,
name=name + "/bn")
x = tf.nn.relu(x, name=name + "/activ")
return x
class PreResNet(object):
"""
PreResNet model from 'Identity Mappings in Deep Residual Networks,' https://arxiv.org/abs/1603.05027.
Parameters:
----------
channels : list of list of int
Number of output channels for each unit.
init_block_channels : int
Number of output channels for the initial unit.
bottleneck : bool
Whether to use a bottleneck or simple block in units.
conv1_stride : bool
Whether to use stride in the first or the second convolution layer in units.
in_channels : int, default 3
Number of input channels.
in_size : tuple of two ints, default (224, 224)
Spatial size of the expected input image.
classes : int, default 1000
Number of classification classes.
data_format : str, default 'channels_last'
The ordering of the dimensions in tensors.
"""
def __init__(self,
channels,
init_block_channels,
bottleneck,
conv1_stride,
in_channels=3,
in_size=(224, 224),
classes=1000,
data_format="channels_last",
**kwargs):
super(PreResNet, self).__init__(**kwargs)
assert (data_format in ["channels_last", "channels_first"])
self.channels = channels
self.init_block_channels = init_block_channels
self.bottleneck = bottleneck
self.conv1_stride = conv1_stride
self.in_channels = in_channels
self.in_size = in_size
self.classes = classes
self.data_format = data_format
def __call__(self,
x,
training=False):
"""
Build a model graph.
Parameters:
----------
x : Tensor
Input tensor.
training : bool, or a TensorFlow boolean scalar tensor, default False
Whether to return the output in training mode or in inference mode.
Returns
-------
Tensor
Resulted tensor.
"""
in_channels = self.in_channels
x = preres_init_block(
x=x,
in_channels=in_channels,
out_channels=self.init_block_channels,
training=training,
data_format=self.data_format,
name="features/init_block")
in_channels = self.init_block_channels
for i, channels_per_stage in enumerate(self.channels):
for j, out_channels in enumerate(channels_per_stage):
strides = 2 if (j == 0) and (i != 0) else 1
x = preres_unit(
x=x,
in_channels=in_channels,
out_channels=out_channels,
strides=strides,
bottleneck=self.bottleneck,
conv1_stride=self.conv1_stride,
training=training,
data_format=self.data_format,
name="features/stage{}/unit{}".format(i + 1, j + 1))
in_channels = out_channels
x = preres_activation(
x=x,
training=training,
data_format=self.data_format,
name="features/post_activ")
x = tf.layers.average_pooling2d(
inputs=x,
pool_size=7,
strides=1,
data_format=self.data_format,
name="features/final_pool")
# x = tf.layers.flatten(x)
x = flatten(
x=x,
data_format=self.data_format)
x = tf.layers.dense(
inputs=x,
units=self.classes,
name="output")
return x
def get_preresnet(blocks,
conv1_stride=True,
width_scale=1.0,
model_name=None,
pretrained=False,
root=os.path.join('~', '.tensorflow', 'models'),
**kwargs):
"""
Create PreResNet or SE-PreResNet model with specific parameters.
Parameters:
----------
blocks : int
Number of blocks.
conv1_stride : bool, default True
Whether to use stride in the first or the second convolution layer in units.
width_scale : float, default 1.0
Scale factor for width of layers.
model_name : str or None, default None
Model name for loading pretrained model.
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
if blocks == 10:
layers = [1, 1, 1, 1]
elif blocks == 12:
layers = [2, 1, 1, 1]
elif blocks == 14:
layers = [2, 2, 1, 1]
elif blocks == 16:
layers = [2, 2, 2, 1]
elif blocks == 18:
layers = [2, 2, 2, 2]
elif blocks == 34:
layers = [3, 4, 6, 3]
elif blocks == 50:
layers = [3, 4, 6, 3]
elif blocks == 101:
layers = [3, 4, 23, 3]
elif blocks == 152:
layers = [3, 8, 36, 3]
elif blocks == 200:
layers = [3, 24, 36, 3]
else:
raise ValueError("Unsupported PreResNet with number of blocks: {}".format(blocks))
init_block_channels = 64
if blocks < 50:
channels_per_layers = [64, 128, 256, 512]
bottleneck = False
else:
channels_per_layers = [256, 512, 1024, 2048]
bottleneck = True
channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)]
if width_scale != 1.0:
channels = [[int(cij * width_scale) for cij in ci] for ci in channels]
init_block_channels = int(init_block_channels * width_scale)
net = PreResNet(
channels=channels,
init_block_channels=init_block_channels,
bottleneck=bottleneck,
conv1_stride=conv1_stride,
**kwargs)
if pretrained:
if (model_name is None) or (not model_name):
raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.")
from .model_store import download_state_dict
net.state_dict, net.file_path = download_state_dict(
model_name=model_name,
local_model_store_dir_path=root)
else:
net.state_dict = None
net.file_path = None
return net
def preresnet10(**kwargs):
"""
PreResNet-10 model from 'Identity Mappings in Deep Residual Networks,' https://arxiv.org/abs/1603.05027.
It's an experimental model.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=10, model_name="preresnet10", **kwargs)
def preresnet12(**kwargs):
"""
PreResNet-12 model from 'Identity Mappings in Deep Residual Networks,' https://arxiv.org/abs/1603.05027.
It's an experimental model.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=12, model_name="preresnet12", **kwargs)
def preresnet14(**kwargs):
"""
PreResNet-14 model from 'Identity Mappings in Deep Residual Networks,' https://arxiv.org/abs/1603.05027.
It's an experimental model.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=14, model_name="preresnet14", **kwargs)
def preresnet16(**kwargs):
"""
PreResNet-16 model from 'Identity Mappings in Deep Residual Networks,' https://arxiv.org/abs/1603.05027.
It's an experimental model.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=16, model_name="preresnet16", **kwargs)
def preresnet18_wd4(**kwargs):
"""
PreResNet-18 model with 0.25 width scale from 'Identity Mappings in Deep Residual Networks,'
https://arxiv.org/abs/1603.05027. It's an experimental model.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=18, width_scale=0.25, model_name="preresnet18_wd4", **kwargs)
def preresnet18_wd2(**kwargs):
"""
PreResNet-18 model with 0.5 width scale from 'Identity Mappings in Deep Residual Networks,'
https://arxiv.org/abs/1603.05027. It's an experimental model.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=18, width_scale=0.5, model_name="preresnet18_wd2", **kwargs)
def preresnet18_w3d4(**kwargs):
"""
PreResNet-18 model with 0.75 width scale from 'Identity Mappings in Deep Residual Networks,'
https://arxiv.org/abs/1603.05027. It's an experimental model.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=18, width_scale=0.75, model_name="preresnet18_w3d4", **kwargs)
def preresnet18(**kwargs):
"""
PreResNet-18 model from 'Identity Mappings in Deep Residual Networks,' https://arxiv.org/abs/1603.05027.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=18, model_name="preresnet18", **kwargs)
def preresnet34(**kwargs):
"""
PreResNet-34 model from 'Identity Mappings in Deep Residual Networks,' https://arxiv.org/abs/1603.05027.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=34, model_name="preresnet34", **kwargs)
def preresnet50(**kwargs):
"""
PreResNet-50 model from 'Identity Mappings in Deep Residual Networks,' https://arxiv.org/abs/1603.05027.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=50, model_name="preresnet50", **kwargs)
def preresnet50b(**kwargs):
"""
PreResNet-50 model with stride at the second convolution in bottleneck block from 'Identity Mappings in Deep
Residual Networks,' https://arxiv.org/abs/1603.05027.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=50, conv1_stride=False, model_name="preresnet50b", **kwargs)
def preresnet101(**kwargs):
"""
PreResNet-101 model from 'Identity Mappings in Deep Residual Networks,' https://arxiv.org/abs/1603.05027.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=101, model_name="preresnet101", **kwargs)
def preresnet101b(**kwargs):
"""
PreResNet-101 model with stride at the second convolution in bottleneck block from 'Identity Mappings in Deep
Residual Networks,' https://arxiv.org/abs/1603.05027.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=101, conv1_stride=False, model_name="preresnet101b", **kwargs)
def preresnet152(**kwargs):
"""
PreResNet-152 model from 'Identity Mappings in Deep Residual Networks,' https://arxiv.org/abs/1603.05027.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=152, model_name="preresnet152", **kwargs)
def preresnet152b(**kwargs):
"""
PreResNet-152 model with stride at the second convolution in bottleneck block from 'Identity Mappings in Deep
Residual Networks,' https://arxiv.org/abs/1603.05027.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=152, conv1_stride=False, model_name="preresnet152b", **kwargs)
def preresnet200(**kwargs):
"""
PreResNet-200 model from 'Identity Mappings in Deep Residual Networks,' https://arxiv.org/abs/1603.05027.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=200, model_name="preresnet200", **kwargs)
def preresnet200b(**kwargs):
"""
PreResNet-200 model with stride at the second convolution in bottleneck block from 'Identity Mappings in Deep
Residual Networks,' https://arxiv.org/abs/1603.05027.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.tensorflow/models'
Location for keeping the model parameters.
Returns
-------
functor
Functor for model graph creation with extra fields.
"""
return get_preresnet(blocks=200, conv1_stride=False, model_name="preresnet200b", **kwargs)
def _test():
import numpy as np
data_format = "channels_last"
pretrained = False
models = [
preresnet10,
preresnet12,
preresnet14,
preresnet16,
preresnet18_wd4,
preresnet18_wd2,
preresnet18_w3d4,
preresnet18,
preresnet34,
preresnet50,
preresnet50b,
preresnet101,
preresnet101b,
preresnet152,
preresnet152b,
preresnet200,
preresnet200b,
]
for model in models:
net = model(pretrained=pretrained, data_format=data_format)
x = tf.placeholder(
dtype=tf.float32,
shape=(None, 3, 224, 224) if is_channels_first(data_format) else (None, 224, 224, 3),
name="xx")
y_net = net(x)
weight_count = np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()])
print("m={}, {}".format(model.__name__, weight_count))
assert (model != preresnet10 or weight_count == 5417128)
assert (model != preresnet12 or weight_count == 5491112)
assert (model != preresnet14 or weight_count == 5786536)
assert (model != preresnet16 or weight_count == 6967208)
assert (model != preresnet18_wd4 or weight_count == 830680)
assert (model != preresnet18_wd2 or weight_count == 3055048)
assert (model != preresnet18_w3d4 or weight_count == 6674104)
assert (model != preresnet18 or weight_count == 11687848)
assert (model != preresnet34 or weight_count == 21796008)
assert (model != preresnet50 or weight_count == 25549480)
assert (model != preresnet50b or weight_count == 25549480)
assert (model != preresnet101 or weight_count == 44541608)
assert (model != preresnet101b or weight_count == 44541608)
assert (model != preresnet152 or weight_count == 60185256)
assert (model != preresnet152b or weight_count == 60185256)
assert (model != preresnet200 or weight_count == 64666280)
assert (model != preresnet200b or weight_count == 64666280)
with tf.Session() as sess:
if pretrained:
from .model_store import init_variables_from_state_dict
init_variables_from_state_dict(sess=sess, state_dict=net.state_dict)
else:
sess.run(tf.global_variables_initializer())
x_value = np.zeros((1, 3, 224, 224) if is_channels_first(data_format) else (1, 224, 224, 3), np.float32)
y = sess.run(y_net, feed_dict={x: x_value})
assert (y.shape == (1, 1000))
tf.reset_default_graph()
if __name__ == "__main__":
_test()
|
[
"osemery@gmail.com"
] |
osemery@gmail.com
|
696666f703b9b3f54267ca9038eff6745d675137
|
e3da426fbe6be0f2c90a83bb8f2354e1bb3fc740
|
/app/modules/curso.py
|
796a0244780aa753d144098c8dc193e4db06d159
|
[] |
no_license
|
raloxxx/proyectoprueba2
|
3789b80c533209fa8d66674787a7b6b0be17d47c
|
eae662a8643241c061143b6471a7ae69c3136317
|
refs/heads/master
| 2022-11-17T12:12:31.794620
| 2020-07-16T05:20:25
| 2020-07-16T05:20:25
| 275,482,504
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 478
|
py
|
# Una clase esta definida por atributos y metodos
# atributos = variables
# metodos = funciones
# Curso
# instancias
# Matematica Comunicacion Religion
class Curso:
def __init__(self, id, nombre):
self.id = id
self.nombre = nombre
def getId(self):
return self.id
def setId(self, id):
self.id = id
def getNombre(self):
return self.nombre
def setNombre(self, nombre):
self.nombre = nombre
|
[
"juan.15121001@gmail.com"
] |
juan.15121001@gmail.com
|
1f1c4775c1f9cb17c43d65e1d87a0b05f31bbbfd
|
4fc0d62e546c8d73971f8a460c291494c1b2133f
|
/main.py
|
98e64ba7b4ab5f2dd16973c05a14f74dd2d7b033
|
[] |
no_license
|
NicKomarov73/git_test
|
55c87425e7f6e4348ba4f6cb6c2fbbf00f4324b5
|
12380c47aeac4511bb12b2ddda0f6755bdad9b0b
|
refs/heads/main
| 2023-01-09T15:57:13.661918
| 2020-11-14T14:02:40
| 2020-11-14T14:02:40
| 312,816,898
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 162
|
py
|
from tkinter import *
# creating window
window = Tk()
window.title("Testing system")
window.geometry('400x500')
window.resizable(False, False)
window.mainloop()
|
[
"komarov@lic145.kiev.ua"
] |
komarov@lic145.kiev.ua
|
b27818b5634093e58370be65ddee9767958e0082
|
0620d5e4489a9ab59fd07dc9db424ebb7e1d2b53
|
/Tensorflow/ActivMaxim1/script.py
|
45251cc0139f25221d8e566c9e60e40d77a120e4
|
[] |
no_license
|
lephamcong/LAID
|
22e15b088293c304b561d8c60fc3d4333caacad0
|
356ab14dedfded27d7915c0c7c029b7182765552
|
refs/heads/master
| 2023-04-14T23:38:15.127191
| 2018-10-27T19:36:12
| 2018-10-27T19:36:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,725
|
py
|
import tensorflow as tf
import numpy as np
import jmlipman.ml
import time,os
from Model import Model as MNIST_Model
import scipy.misc
import itertools
class ActivationMaximization(MNIST_Model):
def __init__(self,config,weights=None):
self.conf = config
self.placeholder = {}
self.sess = tf.Session()
self.load_weights(weights)
self.create_train_step()
def train(self,target):
""" This function trains the network.
"""
print("Training")
ep = self.conf["epochs"]
# Preprocess the data
#np.random.seed(seed=42)
#res = [np.random.random((28*28))]
res = [np.zeros(28*28)]
Y = jmlipman.ml.hotvector(np.array([target]),self.conf["classes"])
np.save("res/other",res)
for e in range(ep):
[res,loss,pred] = self.sess.run([self.train_step,self.loss,self.prediction],
feed_dict={self.placeholder["input"]: np.expand_dims(res[0],0),
self.placeholder["output"]: Y})
print(e,loss,np.argmax(pred))
res2 = np.reshape(res[0],(28,28))
np.save("res/other",res2)
scipy.misc.imsave("res/other.png",res2)
def predict(self,data):
pred = self.sess.run(self.prediction,feed_dict={self.placeholder["input"]: data})
return pred
# Get the data and split it
#data = jmlipman.ml.getDataset("mnist")
#data = jmlipman.ml.splitDataset(data,[0.8,0.2,0])
# Configuration part
learning_rate = 0.1
optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate)
initializer = tf.keras.initializers.he_uniform()
classes = 10
sizes = [28,28]
epochs = 10
config = {"optimizer": optimizer, "learning_rate": learning_rate,
"classes": classes, "sizes": sizes, "epochs": epochs,
"initializer": initializer }
AM = ActivationMaximization(config,weights="weights/")
AM.train(2)
|
[
"jvmlipman@hotmail.com"
] |
jvmlipman@hotmail.com
|
d586790bd7bff025ce7f4098a3885a42d649403c
|
36bdbbf1be53ba5f09b9a2b1dd15e91f8f6b0da1
|
/tour/migrations/0019_auto_20181209_0803.py
|
40dfec86d7904ad87c59944319dc512cd92ec9df
|
[] |
no_license
|
phufoxy/fotourNew
|
801ab2518424118020dc6e5f31a7ba90a654e56a
|
6048c24f5256c8c5a0d18dc7b38c106a7c92a29c
|
refs/heads/master
| 2023-04-13T01:34:22.510717
| 2018-12-26T03:46:09
| 2018-12-26T03:46:09
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 404
|
py
|
# Generated by Django 2.1 on 2018-12-09 01:03
import ckeditor.fields
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('tour', '0018_auto_20181209_0730'),
]
operations = [
migrations.AlterField(
model_name='placetour',
name='description',
field=ckeditor.fields.RichTextField(),
),
]
|
[
"vanphudhsp2015@gmail.com"
] |
vanphudhsp2015@gmail.com
|
a186c3a680db9ce50eb284cddc769a829a1f71b5
|
7865087569122e271b34f3d46fb011c445f233dc
|
/Modern_Python3_Bootcamp/Modules/Custom_modules/Fruits.py
|
5e838541535e0eb3b17182459eae6d134d4dcaa7
|
[] |
no_license
|
mikaelbeat/Modern_Python3_Bootcamp
|
1cc5a83fef65377b6cebbeba91538bb94703b0cd
|
b5f281a718c50097421210507efa351e9780688d
|
refs/heads/master
| 2020-05-06T12:29:40.430456
| 2019-06-07T07:22:14
| 2019-06-07T07:22:14
| 180,125,537
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 86
|
py
|
import Bananas, Apples
print(Bananas.dip_in_chocolate())
print(Apples.offer())
|
[
"ryynanenphm@gmail.com"
] |
ryynanenphm@gmail.com
|
2f3980ef2f1f859c6455897332790c674646fc9a
|
cc2a312f1ab75c6970b40d18a82454a6909648bd
|
/python-module-study/exercise.py
|
da2ca6f2b3681aeda943691d0167ad15d891fec3
|
[] |
no_license
|
FantasybabyChange/python-study
|
f68317b6a6ef683f109b66d4637d63d9c97b8848
|
fb4ca2466ccd9ebacfcc54bf8759533cc941e834
|
refs/heads/master
| 2023-01-23T19:18:32.748497
| 2022-12-27T03:20:41
| 2022-12-27T03:20:41
| 240,224,390
| 2
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 88
|
py
|
# 1. 导入os模块,并使用help(os)查看os模块的帮助文档
import os
help(os)
|
[
"625353861@qq.com"
] |
625353861@qq.com
|
b8480b8605b74221a144d204ed4fea2604c6faa9
|
5f2be2a5a01f0449a8e75947b60ea403f8b61e9a
|
/6.py
|
24fdb05719e2c4a89d8e3d144e160ec6791b788c
|
[] |
no_license
|
Rafael-F-S/OPP
|
a5c6bf0981a2a75981dcb6fd81c1ee6cb3a43a00
|
195af023210503439986b8e1f76b8bf34009931e
|
refs/heads/master
| 2020-05-18T04:57:56.738877
| 2019-04-30T04:23:02
| 2019-04-30T04:23:02
| 184,189,745
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,121
|
py
|
"""
class Employee:
raise_amt = 1.04
def __init__(self, first, last, ):
self.first = first
self.last = last
self.email = first+"."+last+"@company.com"
def fullname(self):
return "{} {}".format(self.first, self.last)
emp_1 = Employee("Corey", "Schafer")
emp_1.first = "Jim"
print(emp_1.first)
print(emp_1.email)
print(emp_1.fullname())
"""
class Employee:
raise_amt = 1.04
def __init__(self, first, last, ):
self.first = first
self.last = last
@property
def email(self):
return '{}.{}@company.com'.format(self.first, self.last)
@property
def fullname(self):
return "{} {}".format(self.first, self.last)
@fullname.setter
def fullname(self, name):
first, last = name.split(' ')
self.first = first
self.last = last
@fullname.deleter
def fullname(self):
print('Delete Name')
self.first = None
self.last = None
emp_1 = Employee("Rafael", "Silva")
emp_1.first = "Jim"
print(emp_1.first)
print(emp_1.email)
print(emp_1.fullname)
del emp_1.fullname
|
[
"rfsminas89@gmail.com"
] |
rfsminas89@gmail.com
|
d70262d86638bee1df9318ad355ac96f77fa37f0
|
da0adac2efc05ee27e6545f5b5e311cd780300a9
|
/src/t1000/application/result/result_abstract.py
|
fa92d975183660b9e9728958d024317fe0615bc4
|
[
"MIT"
] |
permissive
|
helcerion/T1000
|
9986ed645cf5ddb3dec1075206d856084ac97c18
|
25684e88dc8adb37fe07ff358f84f797f7b9c716
|
refs/heads/develop
| 2022-12-23T21:01:55.846337
| 2019-10-29T18:34:54
| 2019-10-29T18:34:54
| 218,250,199
| 1
| 0
|
MIT
| 2022-12-08T06:47:33
| 2019-10-29T09:29:33
|
Python
|
UTF-8
|
Python
| false
| false
| 614
|
py
|
from ..command import command_abstract
class ResultAbstract():
_command: command_abstract.CommandAbstract
def __init__(self, command: command_abstract.CommandAbstract, resource):
self._command = command
self._resource = resource
def set_command(self, command: command_abstract.CommandAbstract):
self._command = command
def set_resource(self, resource):
self._resource = resource
def get(self, *args, **kwargs):
raise Exception(
'You need to implement get function from %s.' %
(self.__class__.__name__)
)
|
[
"alonso.albert@gmail.com"
] |
alonso.albert@gmail.com
|
b899c2f940469ffda705dc73fa659605f21e977a
|
913d22cf09d5e6cde0e66e11215794b7e64b92b6
|
/alien_color_6.py
|
432cbef15957f145ab519be3cc0ad8504455184b
|
[] |
no_license
|
chenp0088/git
|
94beb31b6c90fe477ad3764fe73f3f1807ed4999
|
0a9782ca00d3d217fc7989e0bb5107d3f49066c2
|
refs/heads/master
| 2020-03-25T21:04:41.439874
| 2019-06-15T00:43:10
| 2019-06-15T00:43:10
| 144,158,352
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 138
|
py
|
alien_color=['green','yellow','red']
alien='green'
if alien=='green':
print("You get 5 points")
else:
print("Your get 10 points")
|
[
"pc008@sohu.com"
] |
pc008@sohu.com
|
489d849197b680e79a7a8cd6da2aadf65e574532
|
7dbe31a463e96de737a3004eba413f8d94923a66
|
/PythonTutorial/helloworld.py
|
0e96c4c1af5dda5d020d4f72ff63a58cddaa35c9
|
[] |
no_license
|
thienlerva/PythonTutorial
|
66abbdedff9147f06cedf680a519ee9512c5030a
|
c93dae23168a8d38559d8346fc3047509addf7a3
|
refs/heads/master
| 2023-03-02T11:27:10.087916
| 2021-02-16T20:09:32
| 2021-02-16T20:09:32
| 336,053,626
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 773
|
py
|
# run script python helloworld.py
x = "Hello World"
print(x)
fruits = []
fruits.append("orange")
print(fruits)
colors = ["yellow", "green", "blue"]
colors.append("gray")
colors.sort()
print(colors)
numList = [50, 100, 65, 82, 23]
numList.sort(reverse = True)
print(numList)
def comparable(n):
return abs(n - 50)
numList.sort(key = comparable)
print(numList)
sortFruits = ["banana", "Orange", "Kiwi", "cherry"]
sortFruits.sort(key = str.lower)
print(sortFruits)
sortFruits.reverse()
print(sortFruits)
f = open("demofile.txt", "a")
f.write("This is first line")
f.close()
f = open("demofile.txt", "r")
print(f.read())
import pandas as pd
mydataset = {
'cars': ["BMW", "Volvo", "Ford"],
'passings': [3, 7, 2]
}
myvar = pd.DataFrame(mydataset)
print(myvar)
|
[
"thienxuanle@yahoo.com"
] |
thienxuanle@yahoo.com
|
42bd3c170d0de2ff43b6f1b9bbabbea30e21b314
|
2af9a95586c893d386172bac61994518196da1da
|
/server/run.py
|
016084476dae50f2edbb5e589389c6d9cfa1ca27
|
[] |
no_license
|
freddyli7/WaterlooDiscovery
|
2e70eb8f5112f987ec57204bfdeddc8faf236057
|
e720baeae406b9d5c9d84572eda3945014fc3222
|
refs/heads/master
| 2021-06-12T17:32:35.453555
| 2017-03-09T18:38:27
| 2017-03-09T18:38:27
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 73
|
py
|
#!/usr/bin/python
SQLALCHEMY_ECHO = False
PORT = 8000
HOST = '0.0.0.0'
|
[
"zbhknight@gmail.com"
] |
zbhknight@gmail.com
|
ecdf152974a86661c7d07aee826c3d4d1c27557b
|
c9fe05f893deff75232aabca4e877c144972249a
|
/arcpyenv/arcgispro-py3-clone/Scripts/jupyter-kernelspec-script.py
|
57f54379d60ae219e875731f31db4a9367c56a12
|
[
"Python-2.0"
] |
permissive
|
SherbazHashmi/HackathonServer
|
4d1dc7f0122a701a0f3a17787d32efe83bc67601
|
a874fe7e5c95196e4de68db2da0e2a05eb70e5d8
|
refs/heads/master
| 2022-12-26T06:46:33.893749
| 2019-11-03T10:49:47
| 2019-11-03T10:49:47
| 218,912,149
| 3
| 3
| null | 2022-12-11T11:52:37
| 2019-11-01T04:16:38
|
Python
|
UTF-8
|
Python
| false
| false
| 256
|
py
|
# -*- coding: utf-8 -*-
import re
import sys
from jupyter_client.kernelspecapp import KernelSpecApp
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
sys.exit(KernelSpecApp.launch_instance())
|
[
"sherbaz.hashmi@gmail.com"
] |
sherbaz.hashmi@gmail.com
|
0d15c94e8d8e655948d98ae5da0947de75b7aefa
|
2aabe86ae30aa5fdbae1a161e4330f891c81aa6b
|
/test/hard_function_chain.py
|
1584d6e3b311d72f920282755ed1f9fc6b0792c0
|
[] |
no_license
|
Cyberdog52/saep2
|
50fb80cf5173cbf2d6bdf17bd6cd91a5537b32af
|
a26017fcd8d9c742b81fb12d63ccef76cf1d054c
|
refs/heads/master
| 2020-05-29T23:10:53.531954
| 2015-05-24T20:44:14
| 2015-05-24T20:44:14
| 35,619,678
| 1
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 301
|
py
|
def chain4(asdf):
return asdf
def chain3(x, y, z):
if x > 1:
if y > 1:
if z > 1:
return chain4(42)
return chain4(10000)
def chain2(y):
return chain3(y, y, y)
def chain1(asdf, a):
return chain2(asdf+a)
def main (x,y):
return chain1(x,y)
def expected_result():
return [42, 1000]
|
[
"Andres@Andress-MacBook-Air.local"
] |
Andres@Andress-MacBook-Air.local
|
4eac9f6b223afbd5dc25d6c4dacd6d371c18fd5c
|
7b50e5b78248940d9abbdbc1f9736746cca39343
|
/tests/integration/rolling_update/test_rolling_update.py
|
e6800e86408d3c28b1599c81d74057b217e81183
|
[
"Apache-2.0"
] |
permissive
|
Aqiry/jina
|
1fb62a6c07b211c3e8757b88f275f5ef72819700
|
5604b9a0bb6d6a5ded7ee731b8b1f35735c26fdd
|
refs/heads/master
| 2023-08-12T07:31:49.282176
| 2021-10-09T08:11:00
| 2021-10-09T08:11:00
| 415,276,147
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 8,199
|
py
|
import collections
import os
import time
import threading
import numpy as np
import pytest
from jina import Document, Flow, Executor, requests
cur_dir = os.path.dirname(os.path.abspath(__file__))
@pytest.fixture
def config(tmpdir):
os.environ['JINA_REPLICA_DIR'] = str(tmpdir)
yield
del os.environ['JINA_REPLICA_DIR']
@pytest.fixture
def docs():
return [
Document(id=str(i), text=f'doc {i}', embedding=np.array([i] * 5))
for i in range(20)
]
class DummyMarkExecutor(Executor):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.metas.name = 'dummy'
@requests
def foo(self, docs, *args, **kwargs):
for doc in docs:
doc.tags['replica'] = self.runtime_args.replica_id
doc.tags['shard'] = self.runtime_args.pea_id
def close(self) -> None:
import os
os.makedirs(self.workspace, exist_ok=True)
def test_normal(docs):
NUM_REPLICAS = 3
NUM_SHARDS = 2
doc_id_path = collections.OrderedDict()
def handle_search_result(resp):
for doc in resp.data.docs:
doc_id_path[int(doc.id)] = (doc.tags['replica'], doc.tags['shard'])
flow = Flow().add(
name='executor1',
uses=DummyMarkExecutor,
replicas=NUM_REPLICAS,
parallel=NUM_SHARDS,
)
with flow:
flow.search(inputs=docs, request_size=1, on_done=handle_search_result)
assert len(doc_id_path.keys()) == len(docs)
num_used_replicas = len(set(map(lambda x: x[0], doc_id_path.values())))
assert num_used_replicas == NUM_REPLICAS
shards = collections.defaultdict(list)
for replica, shard in doc_id_path.values():
shards[replica].append(shard)
assert len(shards.keys()) == NUM_REPLICAS
for shard_list in shards.values():
assert len(set(shard_list)) == NUM_SHARDS
@pytest.mark.timeout(60)
def test_simple_run(docs):
flow = Flow().add(
name='executor1',
replicas=2,
parallel=3,
)
with flow:
# test rolling update does not hang
flow.search(docs)
flow.rolling_update('executor1', None)
flow.search(docs)
@pytest.fixture()
def docker_image():
docker_file = os.path.join(cur_dir, 'Dockerfile')
os.system(f"docker build -f {docker_file} -t test_rolling_update_docker {cur_dir}")
time.sleep(3)
yield
os.system(f"docker rmi $(docker images | grep 'test_rolling_update_docker')")
@pytest.mark.repeat(5)
@pytest.mark.timeout(60)
@pytest.mark.parametrize('uses', ['docker://test_rolling_update_docker'])
def test_thread_run(docs, mocker, reraise, docker_image, uses):
def update_rolling(flow, pod_name):
with reraise:
flow.rolling_update(pod_name)
error_mock = mocker.Mock()
total_responses = []
with Flow().add(
uses=uses,
name='executor1',
replicas=2,
parallel=2,
timeout_ready=5000,
) as flow:
x = threading.Thread(
target=update_rolling,
args=(
flow,
'executor1',
),
)
for i in range(50):
responses = flow.search(
docs, on_error=error_mock, request_size=10, return_results=True
)
total_responses.extend(responses)
if i == 5:
x.start()
x.join()
error_mock.assert_not_called()
assert len(total_responses) == (len(docs) * 50 / 10)
@pytest.mark.repeat(5)
@pytest.mark.timeout(60)
def test_vector_indexer_thread(config, docs, mocker, reraise):
def update_rolling(flow, pod_name):
with reraise:
flow.rolling_update(pod_name)
error_mock = mocker.Mock()
total_responses = []
with Flow().add(
name='executor1',
uses=DummyMarkExecutor,
replicas=2,
parallel=3,
timeout_ready=5000,
) as flow:
for i in range(5):
flow.search(docs, on_error=error_mock)
x = threading.Thread(
target=update_rolling,
args=(
flow,
'executor1',
),
)
for i in range(40):
responses = flow.search(
docs, on_error=error_mock, request_size=10, return_results=True
)
total_responses.extend(responses)
if i == 5:
x.start()
x.join()
error_mock.assert_not_called()
assert len(total_responses) == (len(docs) * 40 / 10)
def test_workspace(config, tmpdir, docs):
with Flow().add(
name='executor1',
uses=DummyMarkExecutor,
workspace=str(tmpdir),
replicas=2,
parallel=3,
) as flow:
# in practice, we don't send index requests to the compound pod this is just done to test the workspaces
for i in range(10):
flow.index(docs)
# validate created workspaces
assert set(os.listdir(str(tmpdir))) == {'dummy'}
assert set(os.listdir(os.path.join(tmpdir, 'dummy'))) == {'0', '1'}
for replica_id in {'0', '1'}:
assert set(os.listdir(os.path.join(tmpdir, 'dummy', replica_id))) == {
'0',
'1',
'2',
}
@pytest.mark.parametrize(
'replicas_and_parallel',
(
((3, 1),),
((2, 3),),
((2, 3), (3, 4), (2, 2), (2, 1)),
),
)
def test_port_configuration(replicas_and_parallel):
def validate_ports_replica(replica, replica_port_in, replica_port_out, parallel):
assert replica_port_in == replica.args.port_in
assert replica.args.port_out == replica_port_out
peas_args = replica.peas_args
peas = peas_args['peas']
assert len(peas) == parallel
if parallel == 1:
assert peas_args['head'] is None
assert peas_args['tail'] is None
assert peas[0].port_in == replica_port_in
assert peas[0].port_out == replica_port_out
else:
shard_head = peas_args['head']
shard_tail = peas_args['tail']
assert replica.args.port_in == shard_head.port_in
assert replica.args.port_out == shard_tail.port_out
for pea in peas:
assert shard_head.port_out == pea.port_in
assert pea.port_out == shard_tail.port_in
flow = Flow()
for i, (replicas, parallel) in enumerate(replicas_and_parallel):
flow.add(
name=f'pod{i}',
replicas=replicas,
parallel=parallel,
copy_flow=False,
)
with flow:
pods = flow._pod_nodes
for pod_name, pod in pods.items():
if pod_name == 'gateway':
continue
if pod.args.replicas == 1:
if int(pod.args.parallel) == 1:
assert len(pod.peas_args['peas']) == 1
else:
assert len(pod.peas_args) == 3
replica_port_in = pod.args.port_in
replica_port_out = pod.args.port_out
else:
replica_port_in = pod.head_args.port_out
replica_port_out = pod.tail_args.port_in
assert pod.head_pea.args.port_in == pod.args.port_in
assert pod.head_pea.args.port_out == replica_port_in
assert pod.tail_pea.args.port_in == replica_port_out
assert pod.tail_pea.args.port_out == pod.args.port_out
if pod.args.replicas > 1:
for replica in pod.replicas:
validate_ports_replica(
replica,
replica_port_in,
replica_port_out,
getattr(pod.args, 'parallel', 1),
)
assert pod
def test_num_peas(config):
with Flow().add(
name='executor1',
uses='!DummyMarkExecutor',
replicas=3,
parallel=4,
) as flow:
assert flow.num_peas == (
3 * (4 + 1 + 1) # replicas 3 # parallel 4 # pod head # pod tail
+ 1 # compound pod head
+ 1 # compound pod tail
+ 1 # gateway
)
|
[
"noreply@github.com"
] |
Aqiry.noreply@github.com
|
3241190153a590daac0b3947d9f74fcbd5eb76e2
|
8952c3edb27752fe08b577a89d100c432433a00a
|
/entities/items/__init__.py
|
50ec215edf587191c08159e4d15c38646c250761
|
[
"MIT"
] |
permissive
|
newobj/lunch-break-rl
|
ce0f147e25b1fe919b3d0991d53bf5f66a7957c5
|
67604d9393e2382bed8d4ce05dcac99fa0ac4b93
|
refs/heads/master
| 2021-01-20T10:57:11.728812
| 2017-08-27T05:20:04
| 2017-08-27T05:20:04
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 389
|
py
|
def register():
from entities.items.weapons import battleaxe
from entities.items.weapons import dagger
from entities.items.weapons import fist
# from entities.items.weapons import glove
from entities.items.weapons import pickaxe
from entities.items.weapons import sword
from entities.items.weapons import whip
from entities.items.consumables import potion
|
[
"joshua.skelton@gmail.com"
] |
joshua.skelton@gmail.com
|
dea9df6d61e8ff8aec50fd395427af2ef14cbe01
|
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
|
/call_life_beneath_different_year.py
|
8b63938cea369307ce22c5d3c863f32c9f6781a9
|
[] |
no_license
|
JingkaiTang/github-play
|
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
|
51b550425a91a97480714fe9bc63cb5112f6f729
|
refs/heads/master
| 2021-01-20T20:18:21.249162
| 2016-08-19T07:20:12
| 2016-08-19T07:20:12
| 60,834,519
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 190
|
py
|
#! /usr/bin/env python
def think_place(str_arg):
hand(str_arg)
print('leave_hand')
def hand(str_arg):
print(str_arg)
if __name__ == '__main__':
think_place('last_group')
|
[
"jingkaitang@gmail.com"
] |
jingkaitang@gmail.com
|
ae9205eb82e6c82b7a04567ddef23cb9d7392aa9
|
15c7a09c290ca405885ba532e54ac6054632d0ab
|
/src/eval.py
|
aabbd27a15e3e57ff3075a975f09d91addc1466d
|
[
"Apache-2.0"
] |
permissive
|
DianaTaukin/DSD-SATN
|
8304bb2794533dcb30fbf687b4d6c9dae04d461d
|
5a4ab5e3cfcb00e72ca27cf5ec10a8d8e29ef312
|
refs/heads/master
| 2020-08-12T19:50:55.644682
| 2019-10-14T21:27:24
| 2019-10-14T21:27:24
| 214,833,038
| 0
| 0
|
Apache-2.0
| 2019-10-13T14:17:43
| 2019-10-13T14:17:43
| null |
UTF-8
|
Python
| false
| false
| 5,298
|
py
|
from base import *
def val_result(self,epoch,evaluation = False,data_loader=None):
if data_loader is None:
data_loader = self.loader_val
if self.video and not self.eval_pw3d:
self.generator.eval()
print('evaluation ...')
MPJPE = AverageMeter()
PA_MPJPE = AverageMeter()
integral_kp2d_error = AverageMeter()
integral_kp2d_pckh = AverageMeter()
PA_MPJPE_results, MPJPE_results, imgpaths = [], [], []
entire_length = len(data_loader)
vnum = self.val_batch_size if self.visual_all else 6
with torch.no_grad():
for test_iter,data_3d in enumerate(data_loader):
outputs,kps,details = self.net_forward(data_3d,self.generator,video=self.video)
kps_gt = data_3d['kp_2d'].cuda().reshape(data_3d['kp_2d'].shape[0],14,2)
vis = (kps_gt!=-2.).float()
if not self.eval_pw3d:
integral_kp2d_error.update((((kps_gt-kps.reshape(kps_gt.shape[0],14,-1))**2)*vis).sum(-1).mean(0).detach().cpu().numpy())
integral_kp2d_pckh.update(compute_pckh_lsp(kps_gt.cpu().numpy(),kps.reshape(kps_gt.shape[0],14,-1).detach().cpu().numpy(),vis.cpu()))
if test_iter%self.val_batch_size==0 and not evaluation:
name = self.result_img_dir+'/{}_{}_val_{}'.format(self.tab,epoch,test_iter)
self.visualizer.visulize_result(outputs,kps,data_3d,name,vnum = vnum)
print('PCKh: {:.3f}'.format(integral_kp2d_pckh.avg))
((cam,pose,shape), predict_verts, predict_j2d, predict_j3d, predict_Rs,verts_camed,j3d_camed) = outputs
if self.save_smpl_params or self.save_obj:
img_paths = data_3d['imgpath']
verts = predict_verts.cpu().numpy().astype(np.float16)
params = torch.cat([cam,pose,shape],dim=-1).detach().cpu().numpy()
for idx, img_path in enumerate(img_paths):
save_name = os.path.join(self.result_img_dir,os.path.basename(img_path))
if self.save_smpl_params:
np.save(save_name+'.npy',params[idx])
if self.save_obj:
self.smpl.save_obj(verts[idx],save_name+'.obj')
if self.eval_pw3d:
h36m_idx = np.arange(len(data_3d['imgpath']))
else:
h36m_idx = np.where(np.array(data_3d['data_set'])=='h36m')[0]
if len(h36m_idx)<2:
continue
predict_j3d = predict_j3d[h36m_idx]
real_3d = data_3d['kp_3d'][h36m_idx]
smpl_trans = data_3d['param'][h36m_idx, :3].cuda()
global_rotation = data_3d['global_rotation'][h36m_idx].cuda()
imgpaths.append(np.array(data_3d['imgpath'])[h36m_idx])
kp3d_mono = data_3d['kp3d_mono'][h36m_idx].reshape(-1,self.kp3d_num,3).cuda()
predicts = j3d_camed[h36m_idx].reshape(-1,self.kp3d_num,3)#.cpu().numpy()
if self.eval_pw3d:
predicts_aligned = align_by_pelvis(predicts)
kp3d_mono = align_by_pelvis(kp3d_mono)
else:
predicts_aligned = align_by_pelvis(predicts)
mpjpe_each = torch.sqrt(((predicts_aligned - kp3d_mono)**2).sum(-1)).mean(-1)*1000
MPJPE_results.append(mpjpe_each.cpu())
mpjpe_error = mpjpe_each.mean()
MPJPE.update(mpjpe_error)
per_verts_error = p_mpjpe(predict_j3d.detach().cpu().numpy(),real_3d.numpy().reshape(-1,self.kp3d_num,3),each_separate=True).mean(-1)*1000
PA_MPJPE_results.append(per_verts_error)
PA_MPJPE.update(np.mean(per_verts_error))
if test_iter>3*self.val_batch_size and not evaluation:
break
if test_iter%self.val_batch_size==0 and evaluation:
print('evaluation {}/{}: {:.3f}, {:.3f}'.format(test_iter,len(data_loader),MPJPE.avg,PA_MPJPE.avg))
PA_MPJPE_result = PA_MPJPE.avg
MPJPE_result = MPJPE.avg
PA_MPJPE_acts = self.h36m_evaluation_act_wise(np.concatenate(PA_MPJPE_results,axis=0),np.concatenate(np.array(imgpaths),axis=0))
MPJPE_acts = self.h36m_evaluation_act_wise(np.concatenate(MPJPE_results,axis=0),np.concatenate(np.array(imgpaths),axis=0))
print('-'*20)
print('MPJPE: {:.3f}'.format(MPJPE_result))
print('PA_MPJPE: {:.3f}'.format(PA_MPJPE_result))
print('-'*20)
table = PrettyTable(['Protocol']+config.h36m_action_names)
table.add_row(['1']+MPJPE_acts)
table.add_row(['2']+PA_MPJPE_acts)
print(table)
print('-'*20)
print('integral_kp2d_PCKh:',integral_kp2d_pckh.avg)
print('-'*20)
if not self.eval_pw3d:
scale_factor = 256
print('integral_kp2d_error:')
table = PrettyTable(['部位']+config.j14_names+['均值'])
table.add_row(['pixel error']+np.array(integral_kp2d_error.avg*scale_factor,dtype=np.float16).astype(np.str).tolist()\
+['{:.2f}'.format(integral_kp2d_error.avg.mean()*scale_factor)])
print(table)
print('-'*20)
if evaluation:
print(self.gmodel_path)
print(self.best_save_path)
return MPJPE_result, PA_MPJPE_result
|
[
"936605403@qq.com"
] |
936605403@qq.com
|
094ba89b95b8fedc9a4b7f76c03b16b1a734a651
|
2d1832f2334760188125d9593ae7fdc50ee66ea1
|
/Multidimensional List/08_miner_v1.py
|
5b307aaff6f22dcac6020a365a2942ee80397b4c
|
[] |
no_license
|
IvayloValkov/Python-Advanced
|
49bc73abbeb5be4173a323dc415aa2d1809061a1
|
15ce73276ba8cb9285018d23b7e0a69b7689f5e5
|
refs/heads/main
| 2023-02-22T14:29:24.945194
| 2021-01-28T18:24:47
| 2021-01-28T18:24:47
| 330,350,520
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,467
|
py
|
def field_as_input_matrix(n) -> [[str]]:
return [input().split() for _ in range(n)]
def starting_position(matrix, start_symbol) -> tuple:
side = len(matrix)
for row in range(side):
for col in range(side):
if matrix[row][col] == start_symbol:
return row, col
def all_coals_on_field(matrix, coal_symbol) -> int:
total = 0
for row in range(len(matrix)):
total += matrix[row].count(coal_symbol)
return total
def next_move(current_pos, current_command) -> tuple:
moves = {"up": (-1, 0), "down": (1, 0), "left": (0, -1), "right": (0, 1)}
return tuple(sum(pair) for pair in zip(current_pos, moves[current_command]))
def valid_indexes(matrix, position) -> bool:
r, c = position
return 0 <= r < len(matrix) and 0 <= c < len(matrix)
def move_symbol(matrix, current_pos, next_pos, miner_symbol) -> [[str]]:
regular_position_symbol = "*"
matrix[current_pos[0]][current_pos[1]] = regular_position_symbol
matrix[next_pos[0]][next_position[1]] = miner_symbol
return matrix
REGULAR_POSITION = "*"
ROUTE_END = "e"
COAL = "c"
MINER_SYMBOL = "s"
field_size = int(input())
list_of_commands = input().split()
field = field_as_input_matrix(field_size)
miner_position = starting_position(field, MINER_SYMBOL)
total_coals_on_field = all_coals_on_field(field, COAL)
coal_counter = 0
game_over = False
for command in list_of_commands:
current_position = miner_position
next_position = next_move(current_position, command)
if not valid_indexes(field, next_position):
continue
if field[next_position[0]][next_position[1]] == COAL:
coal_counter += 1
if coal_counter == total_coals_on_field:
print(f"You collected all coals! {next_position[0], next_position[1]}")
game_over = True
break
move_symbol(field, current_position, next_position, MINER_SYMBOL)
elif field[next_position[0]][next_position[1]] == ROUTE_END:
print(f"Game over! {next_position[0], next_position[1]}")
game_over = True
break
else:
move_symbol(field, current_position, next_position, MINER_SYMBOL)
miner_position = next_position
# print("\n".join(" ".join(row) for row in field))
if not game_over:
print(f"{total_coals_on_field - coal_counter} coals left. {miner_position[0], miner_position[1]}")
|
[
"noreply@github.com"
] |
IvayloValkov.noreply@github.com
|
fb6cfaa7fe768449761e0dd5008a4ff9e54cf458
|
ce94d5a598d9a5558d99bc86757952ac6d3dfb8a
|
/Django_Polling_Page_Github/poll_site_GitHub/polls/views.py
|
7b0c51f489b2a91979ba6643c9fee899538da1ad
|
[] |
no_license
|
DeltaForce14/polling-with-django
|
bbcefe99851e69133c642c4108e023a5b07e3885
|
0e7f0061e55e6a941edc4e0d943dcc781c9be10e
|
refs/heads/master
| 2022-12-14T10:39:36.291688
| 2019-07-23T16:15:02
| 2019-07-23T16:15:02
| 198,462,191
| 0
| 0
| null | 2022-04-22T21:59:24
| 2019-07-23T15:50:25
|
Python
|
UTF-8
|
Python
| false
| false
| 2,037
|
py
|
from django.http import HttpResponse, HttpResponseRedirect
from django.shortcuts import get_object_or_404, render
from django.urls import reverse
from django.views import generic
from django.utils import timezone
from .models import Question, Choice
# Create your views here.
class IndexView(generic.ListView):
template_name = 'polls/index.html'
context_object_name = 'latest_question_list'
def get_queryset(self):
# Retutn the last five published questions(not displaying the questions published in the future)
return Question.objects.filter(pub_date__lte=timezone.now()).order_by('pub_date')[:5]
# Question “detail” page – displays a question text, with no results but with a form to vote.
class DetailView(generic.DetailView):
model = Question
template_name = 'polls/detail.html'
def get_queryset(self):
# Excludes any questions that aren't published yet.
return Question.objects.filter(pub_date__lte=timezone.now())
# Question “results” page – displays results for a particular question.
class ResultsView(generic.DetailView):
model = Question
template_name = 'polls/results.html'
# Vote action – handles voting for a particular choice in a particular question.
def vote(request, question_id):
question = get_object_or_404(Question, pk=question_id)
try:
selected_choice = question.choice_set.get(pk=request.POST['choice'])
except (KeyError, Choice.DoesNotExist):
# Redisplay the question voting form.
return render(request, 'polls/detail.html', {
'question': question,
'error_message': "You didn't select a choice.",
})
else:
selected_choice.votes += 1
selected_choice.save()
# Always return an HttpResponseRedirect after successfully dealing
# with POST data. This prevents data from being posted twice if a
# user hits the Back button.
return HttpResponseRedirect(reverse('polls:results', args=(question.id,)))
|
[
"ditapeskova@Ditas-MacBook-Air.local"
] |
ditapeskova@Ditas-MacBook-Air.local
|
f69736435500c47405b5828275a10e269b94bf24
|
09f8a3825c5109a6cec94ae34ea17d9ace66f381
|
/cohesity_management_sdk/models/cluster_config_proto_vault_cloud_tier_info.py
|
b29b932f0b1fd01320bf6519b3e2c7657bda8028
|
[
"Apache-2.0"
] |
permissive
|
cohesity/management-sdk-python
|
103ee07b2f047da69d7b1edfae39d218295d1747
|
e4973dfeb836266904d0369ea845513c7acf261e
|
refs/heads/master
| 2023-08-04T06:30:37.551358
| 2023-07-19T12:02:12
| 2023-07-19T12:02:12
| 134,367,879
| 24
| 20
|
Apache-2.0
| 2023-08-31T04:37:28
| 2018-05-22T06:04:19
|
Python
|
UTF-8
|
Python
| false
| false
| 3,380
|
py
|
# -*- coding: utf-8 -*-
# Copyright 2023 Cohesity Inc.
import cohesity_management_sdk.models.cluster_config_proto_vault_cloud_tier_type
class ClusterConfigProto_Vault_CloudTierInfo(object):
"""Implementation of the 'ClusterConfigProto_Vault_CloudTierInfo' model.
TODO: type description here.
Attributes:
honor_tier_info (bool): Flag that determines whether this tiering info
is to be honored or not. By default this tiering setting will be
ignored. This must be explicitly set to true in order to honor this
setting.
num_secs_to_move_after (long|int): Represents the number of seconds
since the snapshot first got archived (to default tier) after which
it needs to be moved to the target tier. For example, if user
selects target as an AWS vault (default: S3 tier) with 3 months
retention, move to glacier after 1 month, and move to deep glacier
after 2 months, then the below field should be set to appropriate
number of seconds corresponding to 1 or 2 months by iris. The
snapshot will reside in S3 (default tier) for 1 month, then 1 month
in glacier tier, and then another 1 month in deep glacier before
being deleted.
target_tier_type (ClusterConfigProto_Vault_CloudTierType): Represents
the target tier to which a archive snapshot needs to be
moved/migrated. Currently we only allow down-tiering (i.e. moving
snapshots to a colder tier compared to current tier).
"""
# Create a mapping from Model property names to API property names
_names = {
"honor_tier_info":'honorTierInfo',
"num_secs_to_move_after":'numSecsToMoveAfter',
"target_tier_type":'targetTierType',
}
def __init__(self,
honor_tier_info=None,
num_secs_to_move_after=None,
target_tier_type=None,
):
"""Constructor for the ClusterConfigProto_Vault_CloudTierInfo class"""
# Initialize members of the class
self.honor_tier_info = honor_tier_info
self.num_secs_to_move_after = num_secs_to_move_after
self.target_tier_type = target_tier_type
@classmethod
def from_dictionary(cls,
dictionary):
"""Creates an instance of this model from a dictionary
Args:
dictionary (dictionary): A dictionary representation of the object as
obtained from the deserialization of the server's response. The keys
MUST match property names in the API description.
Returns:
object: An instance of this structure class.
"""
if dictionary is None:
return None
# Extract variables from the dictionary
honor_tier_info = dictionary.get('honorTierInfo')
num_secs_to_move_after = dictionary.get('numSecsToMoveAfter')
target_tier_type = cohesity_management_sdk.models.cluster_config_proto_vault_cloud_tier_type.ClusterConfigProto_Vault_CloudTierType.from_dictionary(dictionary.get('targetTierType')) if dictionary.get('targetTierType') else None
# Return an object of this model
return cls(
honor_tier_info,
num_secs_to_move_after,
target_tier_type
)
|
[
"naveena.maplelabs@cohesity.com"
] |
naveena.maplelabs@cohesity.com
|
34e017a7c8f5ffa5bc2b23842213868fa9995371
|
d0aecacc74ec19abe7ac05d92a34d3762565e7f6
|
/src/model/post.py
|
3cf036998c9f83bd24dac8f28c49992ba9d8339a
|
[] |
no_license
|
donaldng/bumpbot
|
a7cea4c911803c1f2af88178b93546461fd88887
|
3f37a231332203d2ae8800ece0c751f4679b9ca2
|
refs/heads/master
| 2022-12-10T00:10:35.750507
| 2018-04-18T23:07:09
| 2018-04-18T23:07:09
| 125,709,192
| 0
| 0
| null | 2022-12-08T00:56:29
| 2018-03-18T09:21:29
|
Python
|
UTF-8
|
Python
| false
| false
| 4,114
|
py
|
from requests_html import HTMLSession
from environment.config import *
from util.misc import log
from splinter import Browser
import sqlite3, records
import time
class Post:
def __init__(self, user=None):
self.db = records.Database('sqlite:///{}'.format(dbname))
self.topic_url = "https://forum.lowyat.net/topic/"
self.requestor = user
self.limit = 1
def add(self, url):
post_id = self.process_id(url)
log("post_id is {}".format(post_id))
post_title, post_owner = self.getPostInfo(post_id)
is_owner = post_owner.lower() == self.requestor.lower()
if post_id and is_owner:
status = "Verified success, will bump {}{} for {}!".format(self.topic_url, post_id, self.requestor)
try:
self.db.query("INSERT OR IGNORE INTO post (post_id, title, url, count, status, user_id, created_at, updated_at) VALUES ({pid}, '{title}', '{base}{pid}', 0, 1, (SELECT user_id FROM user WHERE LOWER(username)='{uname}'), {t}, {t})".format(pid=post_id, base=self.topic_url, uname=self.requestor.lower(), t=int(time.time()), title=post_title))
self.db.query("UPDATE post SET deleted=0, updated_at={t} WHERE post_id={pid} AND user_id=(SELECT user_id FROM user WHERE LOWER(username)='{uname}')".format(pid=post_id, uname=self.requestor.lower(), t=int(time.time())))
except:
status = "Error inserting post"
log(status)
pass
elif not is_owner:
status = "post owner is {}, not you, {}".format(post_owner, self.requestor)
log(status)
else:
status = "unable to process url {}".format(url)
log(status)
return status
def delete(self, post_id):
log("delete post_id {}".format(post_id))
post_owner = self.db.query("SELECT u.username FROM post p, user u WHERE u.user_id=p.user_id AND post_id=:post_id", False, post_id=post_id)[0].username
log("post_owner is {}".format(post_owner))
if post_owner.lower() == self.requestor.lower():
self.db.query("UPDATE post SET deleted=1, status=0 WHERE post_id=:post_id", False, post_id=post_id)
log("deleted")
def updateStatus(self, post_id, status):
log("stop post_id {}".format(post_id))
post_owner = self.db.query("SELECT u.username FROM post p, user u WHERE u.user_id=p.user_id AND post_id=:post_id", False, post_id=post_id)[0].username
if post_owner.lower() == self.requestor.lower():
self.db.query("UPDATE post SET status=:status WHERE post_id=:post_id", False, status=status, post_id=post_id)
def process_id(self, url):
post_id = 0
if "lowyat.net/topic" in url:
post_id = url.split(".lowyat.net/topic/")[1].split("/")[0]
# https://forum.lowyat.net/index.php?showtopic=873687&hl=
if not post_id:
post_id = url.split("showtopic=")[1].split("&")[0]
return post_id
def get(self, user_id=0, username=None):
condition = []
where_statement = ""
if user_id:
condition.append("user_id='{}'".format(user_id))
if username:
condition.append("username='{}'".format(username))
if len(condition) > 0:
where_statement = " AND {}".format(" AND ".join(condition))
return self.db.query('SELECT * FROM post WHERE deleted=0 {};'.format(where_statement))
def getPostInfo(self, post_id):
log("get post info of post_id {}".format(post_id))
session = HTMLSession()
url = "{}{}".format(self.topic_url, post_id)
r = session.get(url)
body = r.html
topic_owner = body.find("span.normalname", first=True).text
title = body.find("title", first=True).text
log("topic owner={};title={}".format(topic_owner, title))
return title, topic_owner
if __name__ == "__main__":
post = Post("ACHARR")
status = post.add("https://forum.lowyat.net/topic/4503006/+20")
|
[
"donaldyann@gmail.com"
] |
donaldyann@gmail.com
|
6c84d74e6e8dd91c7f2d2a598a8a90dde07190c7
|
6278f9dce690bc0304cea0b872c232923302bab7
|
/scripts/simulator_node.py
|
8da44d47ada411704bfa6b31ef1eb7be96fcac29
|
[] |
no_license
|
jaredsfrank/atb_ros
|
c144d4a200beff423deca0280563ce58eb0a5c39
|
bd404f9591c824a3f9d1f8d4688c592895d10ea0
|
refs/heads/master
| 2020-05-21T10:39:40.323097
| 2017-03-11T03:00:21
| 2017-03-11T03:00:21
| 84,618,782
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,272
|
py
|
#!/usr/bin/env python
import rospy
from std_msgs.msg import String
from geometry_msgs.msg import Pose2D
import time
import random
import matplotlib
import matplotlib.pyplot as plt
import simulator
import nav
import numpy as np
from matplotlib import collections as mc
from std_msgs.msg import Int32MultiArray
def update_graph(data):
bike_sim.update_bike()
dir_to_turn = int(float(data.data))
if dir_to_turn == 0:
bike_sim.move_straight()
else:
bike_sim.rotate(dir_to_turn, bike_sim.bike.turning_r)
def path_parse(data):
d = np.array(data.data).reshape(len(data.data)/4, 2, 2)
map_model.paths = d
def listener():
pub = rospy.Publisher('bike_pos', Pose2D, queue_size=10)
rospy.init_node('simulator', anonymous=True)
rospy.Subscriber("dir_to_turn", String, update_graph)
rospy.Subscriber("paths", Int32MultiArray, path_parse)
rate = rospy.Rate(100)
rospy.loginfo(rospy.is_shutdown())
while not rospy.is_shutdown():
pub.publish(bike_sim.x, bike_sim.y, bike_sim.theta)
rate.sleep()
if __name__ == '__main__':
new_bike = nav.Bike((1,8), np.radians(0), .02)
map_model = nav.Map_Model(new_bike, [[],[]], [])
bike_sim = simulator.bike_sim(map_model.bike)
listener()
|
[
"jaredsfrank@gmail.com"
] |
jaredsfrank@gmail.com
|
c539bf7bdc584af315154cc21957adbad9ea738a
|
1a9ccaa3e9edeadcae31ff81ee20ee22327b5c10
|
/sayun/dfs_bfs/check.py
|
43fea031c5e2ebe8121f7105ac7adf4cbc6de3c2
|
[] |
no_license
|
42somoim/42somoim3
|
e939a11f39ac5bc00f73df0bda4f5aa43bb99360
|
7b4b123e50363861475a9888ec330e4acc275fea
|
refs/heads/main
| 2023-02-22T05:29:53.472744
| 2021-01-26T10:59:02
| 2021-01-26T10:59:02
| 300,508,013
| 0
| 1
| null | 2020-11-17T11:20:54
| 2020-10-02T05:15:00
|
C++
|
UTF-8
|
Python
| false
| false
| 395
|
py
|
N, M, V = map(int, input().split())
matrix = [[0]for i in range(N + 1)]
for i in range(M):
a, b = map(int,input().split())
matrix[a].append(b)
matrix[b].append(a)
visit_list = [0] * (N + 1)
s_result = []
def dfs(V, s_result):
visit_list[V] = 1
s_result.append(V)
for i in range(1, N + 1):
if (i in matrix[V] and visit_list[i] == 0):
dfs(i, s_result)
dfs(V, s_result)
print(s_result)
|
[
"noreply@github.com"
] |
42somoim.noreply@github.com
|
3338afd711d10bf178ef77bbfd41ec873d687373
|
24e7c44605140e3033bc0be18853bb9f59d8027a
|
/wsgi.py
|
9f46dc64667bc6c5180f358db44a750815da5155
|
[
"MIT"
] |
permissive
|
ytaro-office/modest
|
82d4ef5cd2bd65d07928c047868f60be64933386
|
8efaa1b1afe8a00afa56142ea436b5278a098d0e
|
refs/heads/master
| 2021-08-30T04:03:28.311987
| 2017-12-16T00:04:39
| 2017-12-16T00:04:39
| 114,419,567
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 389
|
py
|
"""
WSGI config for modest project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/
"""
import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "modest.settings")
application = get_wsgi_application()
|
[
"ryusuke.maeda1107@gmail.com"
] |
ryusuke.maeda1107@gmail.com
|
042c57f7e5757202d59f7988f3c44d5ae2bd9a79
|
630fe47bb5aa5e49b45ab101d87c2dd2c53d180f
|
/venv/Lib/site-packages/com/vmware/nsx/node/services/syslog_client.py
|
f822d5ad5df9a3d50c24353423651dbc003b7846
|
[] |
no_license
|
shrivastava-himanshu/Leetcode_practice
|
467497a58d82ff3ae2569d5e610dc6f27a1f31d6
|
4c59799947c2b17bfd22ca2a08707ef85e84a913
|
refs/heads/main
| 2023-06-12T13:14:45.381839
| 2021-07-05T04:09:05
| 2021-07-05T04:09:05
| 367,546,005
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 23,001
|
py
|
# -*- coding: utf-8 -*-
#---------------------------------------------------------------------------
# Copyright 2021 VMware, Inc. All rights reserved.
# AUTO GENERATED FILE -- DO NOT MODIFY!
#
# vAPI stub file for package com.vmware.nsx.node.services.syslog.
#---------------------------------------------------------------------------
"""
"""
__author__ = 'VMware, Inc.'
__docformat__ = 'restructuredtext en'
import sys
from vmware.vapi.bindings import type
from vmware.vapi.bindings.converter import TypeConverter
from vmware.vapi.bindings.enum import Enum
from vmware.vapi.bindings.error import VapiError
from vmware.vapi.bindings.struct import VapiStruct
from vmware.vapi.bindings.stub import (
ApiInterfaceStub, StubFactoryBase, VapiInterface)
from vmware.vapi.bindings.common import raise_core_exception
from vmware.vapi.data.validator import (UnionValidator, HasFieldsOfValidator)
from vmware.vapi.exception import CoreException
from vmware.vapi.lib.constants import TaskType
from vmware.vapi.lib.rest import OperationRestMetadata
class Exporters(VapiInterface):
"""
"""
_VAPI_SERVICE_ID = 'com.vmware.nsx.node.services.syslog.exporters'
"""
Identifier of the service in canonical form.
"""
def __init__(self, config):
"""
:type config: :class:`vmware.vapi.bindings.stub.StubConfiguration`
:param config: Configuration to be used for creating the stub.
"""
VapiInterface.__init__(self, config, _ExportersStub)
self._VAPI_OPERATION_IDS = {}
def create(self,
node_syslog_exporter_properties,
):
"""
Adds a rule for exporting syslog information to a specified server. The
required parameters are the rule name (exporter_name); severity level
(emerg, alert, crit, and so on); transmission protocol (TCP or UDP);
and server IP address or hostname. The optional parameters are the
syslog port number, which can be 1 through 65,535 (514, by default);
facility level to use when logging messages to syslog (kern, user,
mail, and so on); and message IDs (msgids), which identify the types of
messages to export.
:type node_syslog_exporter_properties: :class:`com.vmware.nsx.model_client.NodeSyslogExporterProperties`
:param node_syslog_exporter_properties: (required)
:rtype: :class:`com.vmware.nsx.model_client.NodeSyslogExporterProperties`
:return: com.vmware.nsx.model.NodeSyslogExporterProperties
:raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable`
Service Unavailable
:raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest`
Bad Request, Precondition Failed
:raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError`
Internal Server Error
:raise: :class:`com.vmware.vapi.std.errors_client.ConcurrentChange`
Conflict
:raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized`
Forbidden
:raise: :class:`com.vmware.vapi.std.errors_client.NotFound`
Not Found
"""
return self._invoke('create',
{
'node_syslog_exporter_properties': node_syslog_exporter_properties,
})
def delete(self):
"""
Removes all syslog exporter rules.
:raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable`
Service Unavailable
:raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest`
Bad Request, Precondition Failed
:raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError`
Internal Server Error
:raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized`
Forbidden
:raise: :class:`com.vmware.vapi.std.errors_client.NotFound`
Not Found
"""
return self._invoke('delete', None)
def delete_0(self,
exporter_name,
):
"""
Removes a specified rule from the collection of syslog exporter rules.
:type exporter_name: :class:`str`
:param exporter_name: Name of syslog exporter to delete (required)
:raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable`
Service Unavailable
:raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest`
Bad Request, Precondition Failed
:raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError`
Internal Server Error
:raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized`
Forbidden
:raise: :class:`com.vmware.vapi.std.errors_client.NotFound`
Not Found
"""
return self._invoke('delete_0',
{
'exporter_name': exporter_name,
})
def get(self,
exporter_name,
):
"""
Returns information about a specific syslog collection point.
:type exporter_name: :class:`str`
:param exporter_name: Name of syslog exporter (required)
:rtype: :class:`com.vmware.nsx.model_client.NodeSyslogExporterProperties`
:return: com.vmware.nsx.model.NodeSyslogExporterProperties
:raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable`
Service Unavailable
:raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest`
Bad Request, Precondition Failed
:raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError`
Internal Server Error
:raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized`
Forbidden
:raise: :class:`com.vmware.vapi.std.errors_client.NotFound`
Not Found
"""
return self._invoke('get',
{
'exporter_name': exporter_name,
})
def list(self):
"""
Returns the collection of registered syslog exporter rules, if any. The
rules specify the collector IP address and port, and the protocol to
use.
:rtype: :class:`com.vmware.nsx.model_client.NodeSyslogExporterPropertiesListResult`
:return: com.vmware.nsx.model.NodeSyslogExporterPropertiesListResult
:raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable`
Service Unavailable
:raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest`
Bad Request, Precondition Failed
:raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError`
Internal Server Error
:raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized`
Forbidden
:raise: :class:`com.vmware.vapi.std.errors_client.NotFound`
Not Found
"""
return self._invoke('list', None)
def verify(self):
"""
Collect iptables rules needed for all existing syslog exporters and
verify if the existing iptables rules are the same. If not, remove the
stale rules and add the new rules to make sure all exporters work
properly.
:raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable`
Service Unavailable
:raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest`
Bad Request, Precondition Failed
:raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError`
Internal Server Error
:raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized`
Forbidden
:raise: :class:`com.vmware.vapi.std.errors_client.NotFound`
Not Found
"""
return self._invoke('verify', None)
class Status(VapiInterface):
"""
"""
_VAPI_SERVICE_ID = 'com.vmware.nsx.node.services.syslog.status'
"""
Identifier of the service in canonical form.
"""
def __init__(self, config):
"""
:type config: :class:`vmware.vapi.bindings.stub.StubConfiguration`
:param config: Configuration to be used for creating the stub.
"""
VapiInterface.__init__(self, config, _StatusStub)
self._VAPI_OPERATION_IDS = {}
def get(self):
"""
Read syslog service status
:rtype: :class:`com.vmware.nsx.model_client.NodeServiceStatusProperties`
:return: com.vmware.nsx.model.NodeServiceStatusProperties
:raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable`
Service Unavailable
:raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest`
Bad Request, Precondition Failed
:raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError`
Internal Server Error
:raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized`
Forbidden
:raise: :class:`com.vmware.vapi.std.errors_client.NotFound`
Not Found
"""
return self._invoke('get', None)
class _ExportersStub(ApiInterfaceStub):
def __init__(self, config):
# properties for create operation
create_input_type = type.StructType('operation-input', {
'node_syslog_exporter_properties': type.ReferenceType('com.vmware.nsx.model_client', 'NodeSyslogExporterProperties'),
})
create_error_dict = {
'com.vmware.vapi.std.errors.service_unavailable':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'),
'com.vmware.vapi.std.errors.invalid_request':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'),
'com.vmware.vapi.std.errors.internal_server_error':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'),
'com.vmware.vapi.std.errors.concurrent_change':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'ConcurrentChange'),
'com.vmware.vapi.std.errors.unauthorized':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'),
'com.vmware.vapi.std.errors.not_found':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'),
}
create_input_value_validator_list = [
]
create_output_validator_list = [
]
create_rest_metadata = OperationRestMetadata(
http_method='POST',
url_template='/api/v1/node/services/syslog/exporters',
request_body_parameter='node_syslog_exporter_properties',
path_variables={
},
query_parameters={
},
content_type='application/json'
)
# properties for delete operation
delete_input_type = type.StructType('operation-input', {})
delete_error_dict = {
'com.vmware.vapi.std.errors.service_unavailable':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'),
'com.vmware.vapi.std.errors.invalid_request':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'),
'com.vmware.vapi.std.errors.internal_server_error':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'),
'com.vmware.vapi.std.errors.unauthorized':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'),
'com.vmware.vapi.std.errors.not_found':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'),
}
delete_input_value_validator_list = [
]
delete_output_validator_list = [
]
delete_rest_metadata = OperationRestMetadata(
http_method='DELETE',
url_template='/api/v1/node/services/syslog/exporters',
path_variables={
},
query_parameters={
},
content_type='application/json'
)
# properties for delete_0 operation
delete_0_input_type = type.StructType('operation-input', {
'exporter_name': type.StringType(),
})
delete_0_error_dict = {
'com.vmware.vapi.std.errors.service_unavailable':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'),
'com.vmware.vapi.std.errors.invalid_request':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'),
'com.vmware.vapi.std.errors.internal_server_error':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'),
'com.vmware.vapi.std.errors.unauthorized':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'),
'com.vmware.vapi.std.errors.not_found':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'),
}
delete_0_input_value_validator_list = [
]
delete_0_output_validator_list = [
]
delete_0_rest_metadata = OperationRestMetadata(
http_method='DELETE',
url_template='/api/v1/node/services/syslog/exporters/{exporter-name}',
path_variables={
'exporter_name': 'exporter-name',
},
query_parameters={
},
content_type='application/json'
)
# properties for get operation
get_input_type = type.StructType('operation-input', {
'exporter_name': type.StringType(),
})
get_error_dict = {
'com.vmware.vapi.std.errors.service_unavailable':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'),
'com.vmware.vapi.std.errors.invalid_request':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'),
'com.vmware.vapi.std.errors.internal_server_error':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'),
'com.vmware.vapi.std.errors.unauthorized':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'),
'com.vmware.vapi.std.errors.not_found':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'),
}
get_input_value_validator_list = [
]
get_output_validator_list = [
]
get_rest_metadata = OperationRestMetadata(
http_method='GET',
url_template='/api/v1/node/services/syslog/exporters/{exporter-name}',
path_variables={
'exporter_name': 'exporter-name',
},
query_parameters={
},
content_type='application/json'
)
# properties for list operation
list_input_type = type.StructType('operation-input', {})
list_error_dict = {
'com.vmware.vapi.std.errors.service_unavailable':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'),
'com.vmware.vapi.std.errors.invalid_request':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'),
'com.vmware.vapi.std.errors.internal_server_error':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'),
'com.vmware.vapi.std.errors.unauthorized':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'),
'com.vmware.vapi.std.errors.not_found':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'),
}
list_input_value_validator_list = [
]
list_output_validator_list = [
]
list_rest_metadata = OperationRestMetadata(
http_method='GET',
url_template='/api/v1/node/services/syslog/exporters',
path_variables={
},
query_parameters={
},
content_type='application/json'
)
# properties for verify operation
verify_input_type = type.StructType('operation-input', {})
verify_error_dict = {
'com.vmware.vapi.std.errors.service_unavailable':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'),
'com.vmware.vapi.std.errors.invalid_request':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'),
'com.vmware.vapi.std.errors.internal_server_error':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'),
'com.vmware.vapi.std.errors.unauthorized':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'),
'com.vmware.vapi.std.errors.not_found':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'),
}
verify_input_value_validator_list = [
]
verify_output_validator_list = [
]
verify_rest_metadata = OperationRestMetadata(
http_method='POST',
url_template='/api/v1/node/services/syslog/exporters?action=verify',
path_variables={
},
query_parameters={
},
content_type='application/json'
)
operations = {
'create': {
'input_type': create_input_type,
'output_type': type.ReferenceType('com.vmware.nsx.model_client', 'NodeSyslogExporterProperties'),
'errors': create_error_dict,
'input_value_validator_list': create_input_value_validator_list,
'output_validator_list': create_output_validator_list,
'task_type': TaskType.NONE,
},
'delete': {
'input_type': delete_input_type,
'output_type': type.VoidType(),
'errors': delete_error_dict,
'input_value_validator_list': delete_input_value_validator_list,
'output_validator_list': delete_output_validator_list,
'task_type': TaskType.NONE,
},
'delete_0': {
'input_type': delete_0_input_type,
'output_type': type.VoidType(),
'errors': delete_0_error_dict,
'input_value_validator_list': delete_0_input_value_validator_list,
'output_validator_list': delete_0_output_validator_list,
'task_type': TaskType.NONE,
},
'get': {
'input_type': get_input_type,
'output_type': type.ReferenceType('com.vmware.nsx.model_client', 'NodeSyslogExporterProperties'),
'errors': get_error_dict,
'input_value_validator_list': get_input_value_validator_list,
'output_validator_list': get_output_validator_list,
'task_type': TaskType.NONE,
},
'list': {
'input_type': list_input_type,
'output_type': type.ReferenceType('com.vmware.nsx.model_client', 'NodeSyslogExporterPropertiesListResult'),
'errors': list_error_dict,
'input_value_validator_list': list_input_value_validator_list,
'output_validator_list': list_output_validator_list,
'task_type': TaskType.NONE,
},
'verify': {
'input_type': verify_input_type,
'output_type': type.VoidType(),
'errors': verify_error_dict,
'input_value_validator_list': verify_input_value_validator_list,
'output_validator_list': verify_output_validator_list,
'task_type': TaskType.NONE,
},
}
rest_metadata = {
'create': create_rest_metadata,
'delete': delete_rest_metadata,
'delete_0': delete_0_rest_metadata,
'get': get_rest_metadata,
'list': list_rest_metadata,
'verify': verify_rest_metadata,
}
ApiInterfaceStub.__init__(
self, iface_name='com.vmware.nsx.node.services.syslog.exporters',
config=config, operations=operations, rest_metadata=rest_metadata,
is_vapi_rest=False)
class _StatusStub(ApiInterfaceStub):
def __init__(self, config):
# properties for get operation
get_input_type = type.StructType('operation-input', {})
get_error_dict = {
'com.vmware.vapi.std.errors.service_unavailable':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'),
'com.vmware.vapi.std.errors.invalid_request':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'),
'com.vmware.vapi.std.errors.internal_server_error':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'),
'com.vmware.vapi.std.errors.unauthorized':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'),
'com.vmware.vapi.std.errors.not_found':
type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'),
}
get_input_value_validator_list = [
]
get_output_validator_list = [
]
get_rest_metadata = OperationRestMetadata(
http_method='GET',
url_template='/api/v1/node/services/syslog/status',
path_variables={
},
query_parameters={
},
content_type='application/json'
)
operations = {
'get': {
'input_type': get_input_type,
'output_type': type.ReferenceType('com.vmware.nsx.model_client', 'NodeServiceStatusProperties'),
'errors': get_error_dict,
'input_value_validator_list': get_input_value_validator_list,
'output_validator_list': get_output_validator_list,
'task_type': TaskType.NONE,
},
}
rest_metadata = {
'get': get_rest_metadata,
}
ApiInterfaceStub.__init__(
self, iface_name='com.vmware.nsx.node.services.syslog.status',
config=config, operations=operations, rest_metadata=rest_metadata,
is_vapi_rest=False)
class StubFactory(StubFactoryBase):
_attrs = {
'Exporters': Exporters,
'Status': Status,
}
|
[
"Himanshu.Shrivastava@vce.com"
] |
Himanshu.Shrivastava@vce.com
|
b1944869e6423f695c47e849bfb352d5771a5139
|
c13aba57d849d98e25c509c9db021e14b4a63cc7
|
/Easy_NN_sample.py
|
db22217e27c7ab2b25d09a50abe10e75a9f77df6
|
[] |
no_license
|
cool425589/tensorflow_example
|
a7a0bd79609dc00852a04a66ab492737b51e0c40
|
0e8d31674b3203f95dc69068767d591c8f53e94b
|
refs/heads/master
| 2021-09-06T11:54:14.905140
| 2018-02-06T08:13:04
| 2018-02-06T08:13:04
| 105,788,483
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,148
|
py
|
import tensorflow as tf
import numpy as np
#training data
train_1 = np.array( [[1.,2.,3.],
[3.,4.,5.],
[8.,5.,7.],
[7.,1.,8.]] )
train_2 = np.array( [[1.],
[0.],
[0.],
[1.]] )
"""
3 x [1,3] input , 3 x [1] real answer
hidden layer_1 have 3 input and 2 output
hidden layer_2 have 2 input and 1 output
Activation function : sigmoid
loss function : Mean squared error
Optimizer : Gradient Descent
"""
input_1 = tf.placeholder(tf.float32, shape = [None, 3])
input_2 = tf.placeholder(tf.float32, shape = [None, 1])
weight_1 = tf.get_variable(name='weight_1', shape = [3,2], dtype = tf.float32, initializer = tf.truncated_normal_initializer(mean=0.0, stddev=0.1) )
bias_1 = tf.get_variable(name='bias_1', shape = [2], dtype = tf.float32, initializer = tf.truncated_normal_initializer(mean=0.0, stddev=0.1) )
layer_1_output = tf.add(tf.matmul( input_1, weight_1 ), bias_1)
weight_2 = tf.get_variable(name='weight_2', shape = [2,1], dtype = tf.float32, initializer = tf.truncated_normal_initializer(mean=0.0, stddev=0.1) )
bias_2 = tf.get_variable(name='bias_2', shape = [1], dtype = tf.float32, initializer = tf.truncated_normal_initializer(mean=0.0, stddev=0.1) )
layer_2_output = tf.sigmoid( tf.add(tf.matmul( layer_1_output, weight_2 ), bias_2) )
#Mean squared error
#train_2 is our desired output and layer_2_output is output that our network calculated
#Use GradientDescent Minimize the loss to approach our desired output
loss = tf.losses.mean_squared_error(train_2, layer_2_output)
#our goal minimize squared error
optimizer = tf.train.GradientDescentOptimizer(0.1)
train = optimizer.minimize(loss)
with tf.Session() as sess:
#initial
init = tf.global_variables_initializer()
sess.run( init )
#train
for step in range(201) :
if step % 20 == 0:
print ('loss : ', sess.run(loss, feed_dict = {input_1: train_1, input_2: train_2}))
print ('predict : ', sess.run(layer_2_output, feed_dict = {input_1: train_1}))
sess.run(train, feed_dict = {input_1: train_1, input_2: train_2})
|
[
"noreply@github.com"
] |
cool425589.noreply@github.com
|
d053a67afacf36a8c8d5424e30e4c754c3cf8e08
|
b7077b6a139e8369bb6e0c99d8222dcdf78c3513
|
/week9/1-Money-In-The-Bank/sql_manager.py
|
cbb78d6090b94e5c39cbcd7ade67b80c622efbfd
|
[] |
no_license
|
siyana-plachkova/programming101
|
4276af6c271516cec4c357e7bed303276cb45db5
|
867c6f1f2131460113b1c1f88e53034283ad5abb
|
refs/heads/master
| 2020-04-15T02:47:14.865659
| 2015-05-25T20:04:24
| 2015-05-25T20:04:24
| 32,450,967
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,021
|
py
|
import sqlite3
from client import Client
class Database:
def __init__(self):
self._conn = sqlite3.connect("bank.db")
self._cursor = self._conn.cursor()
@property
def conn(self):
return self._conn
@property
def cursor(self):
return self._cursor
def create_clients_table(self):
create_query = '''CREATE TABLE IF NOT EXISTS
clients(id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT,
email TEXT,
password TEXT,
balance REAL DEFAULT 0,
message TEXT,
reset_password_hash TEXT)'''
self._cursor.execute(create_query)
def change_message(self, new_message, logged_user):
update_sql = "UPDATE clients SET message = ? WHERE id = ?"
self._cursor.execute(update_sql, (new_message, logged_user.get_id()))
self._conn.commit()
logged_user.set_message(new_message)
def change_pass(self, new_pass, logged_user):
update_sql = "UPDATE clients SET password = ? WHERE id = ?"
self._cursor.execute(update_sql, (new_pass, logged_user.get_id()))
self._conn.commit()
def register(self, username, email, password):
insert_sql = "INSERT INTO clients (username, email, password) VALUES (?, ?, ?)"
self._cursor.execute(insert_sql, (username, email, password))
self._conn.commit()
def login(self, username, password):
select_query = "SELECT id, username, balance, message, email FROM clients WHERE username = ? AND password = ? LIMIT 1"
self._cursor.execute(select_query, (username, password))
user = self._cursor.fetchone()
if user:
return Client(user[0], user[1], user[2], user[3], user[4])
else:
return False
def get_user_email(self, username):
get_email = "SELECT email FROM clients WHERE username = ? LIMIT 1"
self._cursor.execute(get_email, (username, ))
user = self._cursor.fetchone()
if user:
return user[0]
return False
def update_reset_pass(self, reset_pass_hash, username):
update_reset_pass_hash = "UPDATE clients SET reset_password_hash = ? WHERE username = ?"
self._cursor.execute(update_reset_pass_hash, (reset_pass_hash, username))
self._conn.commit()
def get_reset_pass_hash(self, username):
get_reset_pass = "SELECT reset_password_hash FROM clients WHERE username = ? LIMIT 1"
self._cursor.execute(get_reset_pass, (username, ))
user = self._cursor.fetchone()
if user:
return user[0]
return False
def clear_reset_hash(self, username):
clear_reset_hash = "UPDATE clients SET reset_password_hash = ? WHERE username = ?"
self._cursor.execute(clear_reset_hash, (None, username))
self._conn.commit()
def close(self):
self._cursor.close()
self._conn.close()
|
[
"siyanaplachkova@gmail.com"
] |
siyanaplachkova@gmail.com
|
4d2f4158c0cba41bc73889d655da2690c7826d74
|
3d19e1a316de4d6d96471c64332fff7acfaf1308
|
/Users/F/flukebox/bscgraduate.py
|
88a566fdb06b75cfda7c693b694d6464e67172ca
|
[] |
no_license
|
BerilBBJ/scraperwiki-scraper-vault
|
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
|
65ea6a943cc348a9caf3782b900b36446f7e137d
|
refs/heads/master
| 2021-12-02T23:55:58.481210
| 2013-09-30T17:02:59
| 2013-09-30T17:02:59
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 7,102
|
py
|
###############################################################################
# START HERE: Tutorial for scraping ASP.NET pages (HTML pages that end .aspx), using the
# very powerful Mechanize library. In general, when you follow a 'next' link on
# .aspx pages, you're actually submitting a form.
# This tutorial demonstrates scraping a particularly tricky example.
###############################################################################
import scraperwiki
import mechanize
from BeautifulSoup import BeautifulSoup
def bootstrap(soup):
br.open(base_url + 'default.aspx')
br.open(base_url + 'defaulthome.aspx')
current = base_url + 'allotedseat/stream.aspx'
br.open(base_url + 'allotedseat/stream.aspx')
soup = BeautifulSoup(br.response().read())
print soup
alink = "http://seeuptu.nic.in/allotedseat/strconn_OPCR.aspx?streamcd=9&__EVENTARGUMENT=&__EVENTTARGET=STRMNM&__EVENTVALIDATION=%2FwEWDAKd0MScAgLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BA1Rj7Q3On1yIicBeWq3K%2Bdv9%2Fx6n&__PREVIOUSPAGE=_A0fAcgbfcl7jZI6MTsl0RhBaMQr9o92tyUw3tPTTk8hKPOJUV8RrKtqY9-_OYa1gsmdZxPLORNdVEiCkEA_Kztd6GVW4KRZuVaH8aoE_w8dfH690&__VIEWSTATE=%2FwEPDwUJNjE0NTgzMzgxZGR3h8JfMHDP635QJ3PCDYpgC6GJeQ%3D%3D"
br.open(alink)
soup = BeautifulSoup(br.response().read())
print soup
options = soup.find("select", {"id":"DDL_Institute"}).findAll("option")
for option in options:
print option["value"]
br.select_form(name='form1')
br.form.set_all_readonly(False)
br['DDL_Institute'] = [option["value"]]
institute = option.text
institute_code = option["value"]
br.submit()
soup = BeautifulSoup(br.response().read())
rows = soup.find("table", {"id":"Table1"}).findAll("tr");
cols = ["","","","","",""]
for row in rows[1:]:
index =0
for col in row.findAll("td"):
if col.text: cols[index]=col.text
index=index+1
print "%s,%s,%s,%s,%s,%s,%s" %(institute_code,institute,cols[0],cols[1],cols[2],cols[3],cols[4])
record = {
"InstituteCode":institute_code,
"InstituteName":institute,
"SerialNumber":cols[0],
"BranchCourse":cols[1],
"AlottedUCAT":cols[2],
"OPRank":cols[3],
"CLRank":cols[4]
}
scraperwiki.datastore.save(["InstituteCode","BranchCourse","AlottedUCAT"],record)
# ---------------------------------------------------------------------------
# START HERE: setting up Mechanize
# We need to set the user-agent header so the page thinks we're a browser,
# as otherwise it won't show all the fields we need
# ---------------------------------------------------------------------------
base_url = 'http://seeuptu.nic.in/'
starting_url = base_url + 'index.aspx'
br = mechanize.Browser()
# Set the user-agent as Mozilla - if the page knows we're Mechanize, it won't return all fields
br.addheaders = [('User-agent', 'Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.1) Gecko/2008071615 Fedora/3.0.1-1.fc9 Firefox/3.0.1')]
br.open(starting_url)
soup = BeautifulSoup(br.response().read())
# Have a look at 'soup': note the 'onSubmit' JavaScript function that is called when
# you click on the 'next' link. We'll mimic this in the function above.
print soup
# start scraping
bootstrap(soup)
###############################################################################
# START HERE: Tutorial for scraping ASP.NET pages (HTML pages that end .aspx), using the
# very powerful Mechanize library. In general, when you follow a 'next' link on
# .aspx pages, you're actually submitting a form.
# This tutorial demonstrates scraping a particularly tricky example.
###############################################################################
import scraperwiki
import mechanize
from BeautifulSoup import BeautifulSoup
def bootstrap(soup):
br.open(base_url + 'default.aspx')
br.open(base_url + 'defaulthome.aspx')
current = base_url + 'allotedseat/stream.aspx'
br.open(base_url + 'allotedseat/stream.aspx')
soup = BeautifulSoup(br.response().read())
print soup
alink = "http://seeuptu.nic.in/allotedseat/strconn_OPCR.aspx?streamcd=9&__EVENTARGUMENT=&__EVENTTARGET=STRMNM&__EVENTVALIDATION=%2FwEWDAKd0MScAgLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BAwLNiZW%2BA1Rj7Q3On1yIicBeWq3K%2Bdv9%2Fx6n&__PREVIOUSPAGE=_A0fAcgbfcl7jZI6MTsl0RhBaMQr9o92tyUw3tPTTk8hKPOJUV8RrKtqY9-_OYa1gsmdZxPLORNdVEiCkEA_Kztd6GVW4KRZuVaH8aoE_w8dfH690&__VIEWSTATE=%2FwEPDwUJNjE0NTgzMzgxZGR3h8JfMHDP635QJ3PCDYpgC6GJeQ%3D%3D"
br.open(alink)
soup = BeautifulSoup(br.response().read())
print soup
options = soup.find("select", {"id":"DDL_Institute"}).findAll("option")
for option in options:
print option["value"]
br.select_form(name='form1')
br.form.set_all_readonly(False)
br['DDL_Institute'] = [option["value"]]
institute = option.text
institute_code = option["value"]
br.submit()
soup = BeautifulSoup(br.response().read())
rows = soup.find("table", {"id":"Table1"}).findAll("tr");
cols = ["","","","","",""]
for row in rows[1:]:
index =0
for col in row.findAll("td"):
if col.text: cols[index]=col.text
index=index+1
print "%s,%s,%s,%s,%s,%s,%s" %(institute_code,institute,cols[0],cols[1],cols[2],cols[3],cols[4])
record = {
"InstituteCode":institute_code,
"InstituteName":institute,
"SerialNumber":cols[0],
"BranchCourse":cols[1],
"AlottedUCAT":cols[2],
"OPRank":cols[3],
"CLRank":cols[4]
}
scraperwiki.datastore.save(["InstituteCode","BranchCourse","AlottedUCAT"],record)
# ---------------------------------------------------------------------------
# START HERE: setting up Mechanize
# We need to set the user-agent header so the page thinks we're a browser,
# as otherwise it won't show all the fields we need
# ---------------------------------------------------------------------------
base_url = 'http://seeuptu.nic.in/'
starting_url = base_url + 'index.aspx'
br = mechanize.Browser()
# Set the user-agent as Mozilla - if the page knows we're Mechanize, it won't return all fields
br.addheaders = [('User-agent', 'Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.1) Gecko/2008071615 Fedora/3.0.1-1.fc9 Firefox/3.0.1')]
br.open(starting_url)
soup = BeautifulSoup(br.response().read())
# Have a look at 'soup': note the 'onSubmit' JavaScript function that is called when
# you click on the 'next' link. We'll mimic this in the function above.
print soup
# start scraping
bootstrap(soup)
|
[
"pallih@kaninka.net"
] |
pallih@kaninka.net
|
850867f87e7ed3b89e151c8fab97f417fe20b4c3
|
9edaf93c833ba90ae9a903aa3c44c407a7e55198
|
/travelport/models/air_reprice_search_port_type_service_input.py
|
cf8d7d4b04fd3fcd488875ffd4bb7190b6b63c17
|
[] |
no_license
|
tefra/xsdata-samples
|
c50aab4828b8c7c4448dbdab9c67d1ebc519e292
|
ef027fe02e6a075d8ed676c86a80e9647d944571
|
refs/heads/main
| 2023-08-14T10:31:12.152696
| 2023-07-25T18:01:22
| 2023-07-25T18:01:22
| 222,543,692
| 6
| 1
| null | 2023-06-25T07:21:04
| 2019-11-18T21:00:37
|
Python
|
UTF-8
|
Python
| false
| false
| 858
|
py
|
from __future__ import annotations
from dataclasses import dataclass, field
from travelport.models.air_reprice_req import AirRepriceReq
__NAMESPACE__ = "http://www.travelport.com/service/air_v52_0"
@dataclass
class AirRepriceSearchPortTypeServiceInput:
class Meta:
name = "Envelope"
namespace = "http://schemas.xmlsoap.org/soap/envelope/"
body: None | AirRepriceSearchPortTypeServiceInput.Body = field(
default=None,
metadata={
"name": "Body",
"type": "Element",
}
)
@dataclass
class Body:
air_reprice_req: None | AirRepriceReq = field(
default=None,
metadata={
"name": "AirRepriceReq",
"type": "Element",
"namespace": "http://www.travelport.com/schema/air_v52_0",
}
)
|
[
"chris@komposta.net"
] |
chris@komposta.net
|
dd07bf9ee6534d7aa6e2e55ddca99569bf0667a9
|
d620ee5a3fdb00ade6ccc996db3b0fcbf2e4d8c8
|
/simfinder.py
|
b4a9d16e3d62d6ec3c64e5151cec4e094f5bd9e4
|
[] |
no_license
|
feipeixuan/common_script
|
573327db1d3816d92092026c0cf5598ae0a82d7e
|
6bdff21837da9578b2f12596fdc9a9755dd8ff46
|
refs/heads/master
| 2020-04-26T02:14:03.456346
| 2019-05-15T02:09:30
| 2019-05-15T02:09:30
| 173,228,721
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,054
|
py
|
#!/usr/bin/python
# coding=utf-8
import sys
import os
from PIL import Image
import imagehash
import distance
from shutil import copyfile
# 相似图片发现器
class SimFinder:
def __init__(self):
self.groups = []
self.indexs = []
for i in range(0, 8):
self.indexs.append({})
# 产生图片指纹
def getFinger(self, image):
hash = imagehash.average_hash(Image.open(image), hash_size=16)
return str(hash)
# 对图片进行聚类
def clusterPhotos(self, baseDir, imageList):
for image in imageList:
# 计算指纹
finger = self.getFinger(baseDir + image)
group = self.getGroup(finger, image)
if group == None:
self.addGroup(finger, image)
# 获取高相似度图片
def getSimPhotos(self, baseDir, imageList):
simPhotos = []
self.clusterPhotos(baseDir, imageList)
for group in self.groups:
for finger in group.keys():
if (len(group[finger]) >= 5):
simPhotos.extend(group[finger])
return simPhotos
# 获取单独图片
def getAlonePhotos(self, baseDir, imageList):
alonePhotos = []
self.clusterPhotos(baseDir, imageList)
for group in self.groups:
for finger in group.keys():
if (len(group[finger]) < 5):
alonePhotos.extend(group[finger])
return alonePhotos
# 获取组
def getGroup(self, finger, image):
for i in range(0, 8):
subFinger = finger[i * 8:(i + 1) * 8]
if subFinger not in self.indexs[i]:
continue
for groupIndex in self.indexs[i][subFinger]:
fingerTmp = self.groups[groupIndex].keys()[0]
if self.computeDiff(fingerTmp, finger) <= 10:
self.groups[groupIndex][fingerTmp].append(image)
return self.groups[groupIndex]
return None
# 添加组
def addGroup(self, finger, image):
# 添加group
groupIndex = len(self.groups)
self.groups.append({finger: [image]})
# 添加索引
for i in range(0, 8):
subFinger = finger[i * 8:(i + 1) * 8]
if subFinger not in self.indexs[i]:
self.indexs[i][subFinger] = []
self.indexs[i][subFinger].append(groupIndex)
# 计算两个指纹的距离
def computeDiff(self, hash1, hash2):
return distance.hamming(str(hash1), str(hash2))
def main():
inputDir = sys.argv[1]
outputDir = sys.argv[2]
strategy = sys.argv[3]
simfinder = SimFinder()
photoList = os.listdir(inputDir)
if strategy == "sim":
photoList = simfinder.getSimPhotos(inputDir,photoList)
elif strategy == "alone":
photoList = simfinder.getAlonePhotos(inputDir, photoList)
for photoUrl in photoList:
copyfile(inputDir + "/" + photoUrl, outputDir + "/" + photoUrl)
if __name__ == '__main__':
main()
|
[
"feipeixuan@163.com"
] |
feipeixuan@163.com
|
8128fdb7f3771e6e201275c2f4b661d15ba64eb6
|
58e6d305d70f18c89606ac4f2d112e37821030b9
|
/mainApp/migrations/0001_initial.py
|
3fe5335c0551c723de1bf7a8575bc84ba23bc982
|
[] |
no_license
|
JorgeVidalCano/petShelter
|
b34735d41d206fc64ad006cb2dfd9abb8ea338de
|
ea22f3d2f5a74ad6035c4ce656cd53290da3906d
|
refs/heads/master
| 2023-02-03T09:50:19.216348
| 2020-12-28T12:00:21
| 2020-12-28T12:00:21
| 305,349,641
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,388
|
py
|
# Generated by Django 3.1.2 on 2020-10-23 17:36
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
import django.utils.timezone
class Migration(migrations.Migration):
initial = True
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
]
operations = [
migrations.CreateModel(
name='Shelter',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(max_length=60, unique=True)),
('location', models.CharField(max_length=255)),
('slug', models.SlugField(blank='True', unique=True)),
('manager', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='usuario', to=settings.AUTH_USER_MODEL)),
],
),
migrations.CreateModel(
name='Pet',
fields=[
('id', models.AutoField(primary_key=True, serialize=False)),
('name', models.CharField(max_length=60)),
('about', models.CharField(max_length=300)),
('age', models.PositiveIntegerField(default=0)),
('sex', models.CharField(choices=[('Male', 'Male'), ('Female', 'Female'), ('Unknown', 'Unknown')], default='Unknown', max_length=10)),
('kind', models.CharField(choices=[('Cat', 'Cat'), ('Dog', 'Dog'), ('Other', 'Other')], default='Cat', max_length=5)),
('weight', models.PositiveIntegerField(default=0)),
('visits', models.PositiveIntegerField(default=0)),
('status', models.CharField(choices=[('Adoption', 'Adoption'), ('Adopted', 'Adopted'), ('Urgent', 'Urgent')], default='Adoption', max_length=10)),
('color', models.CharField(choices=[('#fbfbfa', 'White'), ('000', 'Black'), ('#800000', 'Brown'), ('#808080', 'Gray')], default='FFF', max_length=7)),
('date_created', models.DateField(default=django.utils.timezone.now)),
('slug', models.SlugField(blank=True, unique=True)),
('shelter', models.ForeignKey(default=None, on_delete=django.db.models.deletion.CASCADE, related_name='albergue', to='mainApp.shelter')),
],
),
migrations.CreateModel(
name='Images',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(blank=True, default='', max_length=60)),
('image', models.ImageField(upload_to='pet_imagen')),
('pet', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='pet_imagenes', to='mainApp.pet')),
],
),
migrations.CreateModel(
name='Feature',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(max_length=30, unique=True)),
('description', models.CharField(max_length=60)),
('pet', models.ForeignKey(blank=True, on_delete=django.db.models.deletion.CASCADE, related_name='pet_atributos', to='mainApp.pet')),
],
),
]
|
[
"jorge.vidal.cano@gmail.com"
] |
jorge.vidal.cano@gmail.com
|
bfeff981fd1df505268725a68dbeecffff38eead
|
b22588340d7925b614a735bbbde1b351ad657ffc
|
/athena/Generators/MadGraphModels/python/models/Zp2HDM_UFO/particles.py
|
879051c3c964ef8edb6aa11708e447d0ec186aaa
|
[] |
no_license
|
rushioda/PIXELVALID_athena
|
90befe12042c1249cbb3655dde1428bb9b9a42ce
|
22df23187ef85e9c3120122c8375ea0e7d8ea440
|
refs/heads/master
| 2020-12-14T22:01:15.365949
| 2020-01-19T03:59:35
| 2020-01-19T03:59:35
| 234,836,993
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 14,534
|
py
|
# This file was automatically created by FeynRules 2.0.25
# Mathematica version: 9.0 for Mac OS X x86 (64-bit) (January 24, 2013)
# Date: Wed 11 Nov 2015 22:20:11
from __future__ import division
from object_library import all_particles, Particle
import parameters as Param
import propagators as Prop
a = Particle(pdg_code = 22,
name = 'a',
antiname = 'a',
spin = 3,
color = 1,
mass = Param.ZERO,
width = Param.ZERO,
texname = 'a',
antitexname = 'a',
charge = 0,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
Z = Particle(pdg_code = 23,
name = 'Z',
antiname = 'Z',
spin = 3,
color = 1,
mass = Param.MZ,
width = Param.WZ,
texname = 'Z',
antitexname = 'Z',
charge = 0,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
W__plus__ = Particle(pdg_code = 24,
name = 'W+',
antiname = 'W-',
spin = 3,
color = 1,
mass = Param.MW,
width = Param.WW,
texname = 'W+',
antitexname = 'W-',
charge = 1,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
W__minus__ = W__plus__.anti()
g = Particle(pdg_code = 21,
name = 'g',
antiname = 'g',
spin = 3,
color = 8,
mass = Param.ZERO,
width = Param.ZERO,
texname = 'g',
antitexname = 'g',
charge = 0,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
Zp = Particle(pdg_code = 32,
name = 'Zp',
antiname = 'Zp',
spin = 3,
color = 1,
mass = Param.MZp,
width = Param.WZp,
texname = 'Zp',
antitexname = 'Zp',
charge = 0,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
ghA = Particle(pdg_code = 9000001,
name = 'ghA',
antiname = 'ghA~',
spin = -1,
color = 1,
mass = Param.ZERO,
width = Param.ZERO,
texname = 'ghA',
antitexname = 'ghA~',
charge = 0,
GhostNumber = 1,
LeptonNumber = 0,
QZ = 0,
Y = 0)
ghA__tilde__ = ghA.anti()
ghZ = Particle(pdg_code = 9000002,
name = 'ghZ',
antiname = 'ghZ~',
spin = -1,
color = 1,
mass = Param.MZ,
width = Param.ZERO,
texname = 'ghZ',
antitexname = 'ghZ~',
charge = 0,
GhostNumber = 1,
LeptonNumber = 0,
QZ = 0,
Y = 0)
ghZ__tilde__ = ghZ.anti()
ghZp = Particle(pdg_code = 9000003,
name = 'ghZp',
antiname = 'ghZp~',
spin = -1,
color = 1,
mass = Param.MZp,
width = Param.ZERO,
texname = 'ghZp',
antitexname = 'ghZp~',
charge = 0,
GhostNumber = 1,
LeptonNumber = 0,
QZ = 0,
Y = 0)
ghZp__tilde__ = ghZp.anti()
ghWp = Particle(pdg_code = 9000004,
name = 'ghWp',
antiname = 'ghWp~',
spin = -1,
color = 1,
mass = Param.MW,
width = Param.ZERO,
texname = 'ghWp',
antitexname = 'ghWp~',
charge = 1,
GhostNumber = 1,
LeptonNumber = 0,
QZ = 0,
Y = 0)
ghWp__tilde__ = ghWp.anti()
ghWm = Particle(pdg_code = 9000005,
name = 'ghWm',
antiname = 'ghWm~',
spin = -1,
color = 1,
mass = Param.MW,
width = Param.ZERO,
texname = 'ghWm',
antitexname = 'ghWm~',
charge = -1,
GhostNumber = 1,
LeptonNumber = 0,
QZ = 0,
Y = 0)
ghWm__tilde__ = ghWm.anti()
ghG = Particle(pdg_code = 9000006,
name = 'ghG',
antiname = 'ghG~',
spin = -1,
color = 8,
mass = Param.ZERO,
width = Param.ZERO,
texname = 'ghG',
antitexname = 'ghG~',
charge = 0,
GhostNumber = 1,
LeptonNumber = 0,
QZ = 0,
Y = 0)
ghG__tilde__ = ghG.anti()
ve = Particle(pdg_code = 12,
name = 've',
antiname = 've~',
spin = 2,
color = 1,
mass = Param.ZERO,
width = Param.ZERO,
texname = 've',
antitexname = 've~',
charge = 0,
GhostNumber = 0,
LeptonNumber = 1,
QZ = 0,
Y = 0)
ve__tilde__ = ve.anti()
vm = Particle(pdg_code = 14,
name = 'vm',
antiname = 'vm~',
spin = 2,
color = 1,
mass = Param.ZERO,
width = Param.ZERO,
texname = 'vm',
antitexname = 'vm~',
charge = 0,
GhostNumber = 0,
LeptonNumber = 1,
QZ = 0,
Y = 0)
vm__tilde__ = vm.anti()
vt = Particle(pdg_code = 16,
name = 'vt',
antiname = 'vt~',
spin = 2,
color = 1,
mass = Param.ZERO,
width = Param.ZERO,
texname = 'vt',
antitexname = 'vt~',
charge = 0,
GhostNumber = 0,
LeptonNumber = 1,
QZ = 0,
Y = 0)
vt__tilde__ = vt.anti()
e__minus__ = Particle(pdg_code = 11,
name = 'e-',
antiname = 'e+',
spin = 2,
color = 1,
mass = Param.ZERO,
width = Param.ZERO,
texname = 'e-',
antitexname = 'e+',
charge = -1,
GhostNumber = 0,
LeptonNumber = 1,
QZ = 0,
Y = 0)
e__plus__ = e__minus__.anti()
mu__minus__ = Particle(pdg_code = 13,
name = 'mu-',
antiname = 'mu+',
spin = 2,
color = 1,
mass = Param.MM,
width = Param.ZERO,
texname = 'mu-',
antitexname = 'mu+',
charge = -1,
GhostNumber = 0,
LeptonNumber = 1,
QZ = 0,
Y = 0)
mu__plus__ = mu__minus__.anti()
ta__minus__ = Particle(pdg_code = 15,
name = 'ta-',
antiname = 'ta+',
spin = 2,
color = 1,
mass = Param.MTA,
width = Param.ZERO,
texname = 'ta-',
antitexname = 'ta+',
charge = -1,
GhostNumber = 0,
LeptonNumber = 1,
QZ = 0,
Y = 0)
ta__plus__ = ta__minus__.anti()
u = Particle(pdg_code = 2,
name = 'u',
antiname = 'u~',
spin = 2,
color = 3,
mass = Param.ZERO,
width = Param.ZERO,
texname = 'u',
antitexname = 'u~',
charge = 2/3,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
u__tilde__ = u.anti()
c = Particle(pdg_code = 4,
name = 'c',
antiname = 'c~',
spin = 2,
color = 3,
mass = Param.ZERO,
width = Param.ZERO,
texname = 'c',
antitexname = 'c~',
charge = 2/3,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
c__tilde__ = c.anti()
t = Particle(pdg_code = 6,
name = 't',
antiname = 't~',
spin = 2,
color = 3,
mass = Param.MT,
width = Param.WT,
texname = 't',
antitexname = 't~',
charge = 2/3,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
t__tilde__ = t.anti()
d = Particle(pdg_code = 1,
name = 'd',
antiname = 'd~',
spin = 2,
color = 3,
mass = Param.ZERO,
width = Param.ZERO,
texname = 'd',
antitexname = 'd~',
charge = -1/3,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
d__tilde__ = d.anti()
s = Particle(pdg_code = 3,
name = 's',
antiname = 's~',
spin = 2,
color = 3,
mass = Param.ZERO,
width = Param.ZERO,
texname = 's',
antitexname = 's~',
charge = -1/3,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
s__tilde__ = s.anti()
b = Particle(pdg_code = 5,
name = 'b',
antiname = 'b~',
spin = 2,
color = 3,
mass = Param.MB,
width = Param.ZERO,
texname = 'b',
antitexname = 'b~',
charge = -1/3,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
b__tilde__ = b.anti()
h = Particle(pdg_code = 25,
name = 'h',
antiname = 'h',
spin = 1,
color = 1,
mass = Param.Mh,
width = Param.Wh,
texname = 'h',
antitexname = 'h',
charge = 0,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
H = Particle(pdg_code = 26,
name = 'H',
antiname = 'H',
spin = 1,
color = 1,
mass = Param.MH,
width = Param.WH,
texname = 'H',
antitexname = 'H',
charge = 0,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
H__plus__ = Particle(pdg_code = 27,
name = 'H+',
antiname = 'H-',
spin = 1,
color = 1,
mass = Param.MHP,
width = Param.WHP,
texname = 'H+',
antitexname = 'H-',
charge = 1,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
H__minus__ = H__plus__.anti()
A0 = Particle(pdg_code = 28,
name = 'A0',
antiname = 'A0',
spin = 1,
color = 1,
mass = Param.MA0,
width = Param.WA0,
texname = 'A0',
antitexname = 'A0',
charge = 0,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
phip = Particle(pdg_code = 29,
name = 'phip',
antiname = 'phip',
spin = 1,
color = 1,
mass = Param.Mphip,
width = Param.Wphip,
texname = 'phip',
antitexname = 'phip',
charge = 0,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
G0 = Particle(pdg_code = 250,
name = 'G0',
antiname = 'G0',
spin = 1,
color = 1,
mass = Param.MZ,
width = Param.ZERO,
texname = 'G0',
antitexname = 'G0',
goldstone = True,
charge = 0,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
G__plus__ = Particle(pdg_code = 251,
name = 'G+',
antiname = 'G-',
spin = 1,
color = 1,
mass = Param.MW,
width = Param.ZERO,
texname = 'G+',
antitexname = 'G-',
goldstone = True,
charge = 1,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
G__minus__ = G__plus__.anti()
G0p = Particle(pdg_code = 252,
name = 'G0p',
antiname = 'G0p',
spin = 1,
color = 1,
mass = Param.MZp,
width = Param.ZERO,
texname = 'G0p',
antitexname = 'G0p',
goldstone = True,
charge = 0,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
n1 = Particle(pdg_code = 1000022,
name = 'n1',
antiname = 'n1~',
spin = 2,
color = 1,
mass = Param.MX,
width = Param.ZERO,
texname = 'n1',
antitexname = 'n1~',
charge = 0,
GhostNumber = 0,
LeptonNumber = 0,
QZ = 0,
Y = 0)
n1__tilde__ = n1.anti()
|
[
"rushioda@lxplus754.cern.ch"
] |
rushioda@lxplus754.cern.ch
|
bcacf2a72fbc8b0401ba68d9f8d12ce63d997aff
|
8cde023db3f53aa3f5b9aed20fcc769bdc85dd3f
|
/Regression/exercise_ml_internship_altair.py
|
9056dc3c08e227d9890d22a383915e26c90796b4
|
[] |
no_license
|
bhumikdv/Assignments
|
5c688c12f57033c7d2f8625942465d99d71c8879
|
e55e53131d3b14e666a35db18e7364e191cc3900
|
refs/heads/main
| 2023-03-28T16:29:37.178449
| 2021-03-28T23:34:11
| 2021-03-28T23:34:11
| 351,596,597
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 13,112
|
py
|
#!/usr/bin/env python
# coding: utf-8
# - """
# Here are 2 small exercises to evaluate your motivation and skills.
# The first one is simply a question, and the second one is related to
# applying a regression model to a dataset. The approach is at least or even
# more important than the result, please detail all the steps of your research.
# """
#
# # 1 - Data preprocessing
# In[1]:
# ----------------------
# In a dataset, there is a feature named "Server/Machine Type", how would you
# transform/prepare this feature so that it can be used in a regression model
# (one only accepting float/bool as value), you don't have to code a solution,
# just write an answer on what you would do.
# Some example of values on this feature:
# Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GHz (x86_64), 2950 MHz, 385570 MB RAM, 12079 MB swap
# Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz (x86_64), 2500 MHz, 95717 MB RAM, 149012 MB swap
# Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz (x86_64), 1300 MHz, 257868 MB RAM, 12027 MB swap
# Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GHz (x86_64), 3138 MHz, 772642 MB RAM, 9042 MB swap
# Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GHz (x86_64), 2214 MHz, 385570 MB RAM, 12090 MB swap
# Core(TM) i7-6700HQ CPU @ 2.60GHz (x86_64), 2600 MHz, 40078 MB RAM, 75183 MB swap
# Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz (x86_64), 1199 MHz, 257868 MB RAM, 12247 MB swap
# Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GHz (x86_64), 3246 MHz, 514658 MB RAM, 10770 MB swap
# Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GHz (x86_64), 2483 MHz, 772642 MB RAM, 8266 MB swap
# # Your full text (not python) answer:
#
# - There is no simple answer to transform this textual (non-numeric) data to float/bool value.
# - One way to solve this problem is,
# - We have one feature named "Server/Machine Type", we can transform this single feature into multiple features.
# - As we can see the value of the feature is a configuration of the "Server/Machine Type", we can break it to multiple
# features like Server/Machine Name, Processor Speed (GHz), (32 or 64 bit), Processor Number(2950, 2500, 2600.. ),
# RAM(385570, 95717..), Swap Memory(12079, 149012..).
#
# - Most of the new columns are numeric values and doesn't need to transform again.
# - For Server/Machine Name other textual data we can handle in different ways like One Hot Encoding.
#
# - Although we are increasing the dimension by transforming single feature into mulltiple features, We enable machine learning
# algorithm to comprehend them and extract the useful information.
# # 2 - Regression
# 1. You are given a dataset (providing as additional file to this exercise) with 34 features and 1 target to predict, your task is to train a regression model on this dataset.
#
# <br>
# 2. Code it in python3, provide as well a requirements.txt containing the version you use
# I should be able to run directly in my linux terminal:
#
# - pip install -r requirements.txt && python exercise_ml_internship_altair.py
#
# <br>
# 3. You are free to use every library you think is appropriate
#
# # 2.1 loading dataset
import pandas as pd
df = pd.read_csv("dataset_ml_exo.csv")
# # 2.2 Data preparation
# This dataset has already been mostly prepared (it contains only float/bool features), but you may
# still have to do pre-processing (e.g. features reduction, other...).
df.head()
df['Unnamed: 0'].head()
# drop unnamed column (Index column)
df = df.drop(['Unnamed: 0'], axis=1)
# display dataframe
print(df)
# - Index column dropped
# ## 2.2.2 Checking for duplicate records
# checking whether we have any duplicated rows
df.duplicated().sum()
# - No duplicate records.
# Details of the dataset like number of columns, non=null count and the data type of each column
df.info()
# - feature_1 has mixed values (int, float, 'unknown').
# - Althought the column looks like it is a Date column, we will fill the unknown values with most frequently occurred value.
# ## 2.2.3 Handling unknown values in feature_1 column
# Filling the "unknown" values with most frequently occurred value.
df['feature_1'] = pd.to_numeric(df['feature_1'], errors='coerce')
df['feature_1'] = df['feature_1'].fillna(int(df.feature_1.mode()))
# display dataframe
print(df.head())
# Details of the dataset like number of columns and the data type of each column
df.info()
# ## 2.2.4 Filling the missing values with mean
# Checking for null values in all the column (features & columns)
df.isnull().sum()
# - feature_20, feature_26, feature_27, feature_28, feature_29, feature_30 has missing values which need to be filled.
# Filling the missing values with mean
df = df.apply(pd.to_numeric, errors='coerce')
df = df.fillna(df.mean())
# Checking for null values in all the column after filling the missing values with mean
df.isnull().sum()
# - No more missing values in the dataset
# ## 2.2.5 Changing boolean to 0 and 1 values
# Making sure whether all the columns are numberic values
df.info()
# - We have 2 columns (feature_12,feature_16) which are boolean and we need to convert it to numeric; 1 for True and 0 for False
# Changing boolean to 0 and 1 values
df['feature_12'] = df['feature_12'].astype(int)
df['feature_16'] = df['feature_16'].astype(int)
# Checking the dataframe again to confirm that all the columns are numberic values
df.info()
# - Now all the values in the dataframe are numeric
# ## 2.2.6 Dropping feature_1 as the column values are not consistent and we are not performing any time series analysis
df = df.drop(['feature_1'], axis=1)
df.head()
# ## 2.2.7 Feature Selection
from sklearn import preprocessing
# Feature Scaling: Transform features by scaling each feature to a (0, 1) range
x = df.values #returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df_scaled = pd.DataFrame(x_scaled)
print(df_scaled)
X = df_scaled.iloc[:, :-1]
y = df_scaled.iloc[:, -1]
print(X.shape)
print(y.shape)
# Splitting test and train data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.2, random_state= 0) #fitting multiple regression model to the training set
print("Shape of X_train: ",X_train.shape)
print("Shape of X_test: ", X_test.shape)
print("Shape of y_train: ",y_train.shape)
print("Shape of y_test",y_test.shape)
# ## Checking the correlation among the features
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(25,20))
cor = X_train.corr()
sns.heatmap(cor, annot=True, cmap=plt.cm.CMRmap_r)
plt.show()
# function to find highly correlated features
def correlation(dataset, threshold):
"""
dataset: pass the dataset to find the correlation
threshold: features with more than threshold value will be added to set - col_corr
return: returns col_corr set contains all the features with correlation more than threshold value.
Here absolute coeff value is taken into consideration.
"""
col_corr = set() # Set of all the names of correlated columns
corr_matrix = dataset.corr()
for i in range(len(corr_matrix.columns)):
for j in range(i):
if abs(corr_matrix.iloc[i, j]) > threshold: # we are interested in absolute coeff value
colname = corr_matrix.columns[i] # getting the name of column
col_corr.add(colname)
return col_corr
corr_features = correlation(X_train, 0.89) # gets correlated features with more than .89 value
len(set(corr_features))
print(corr_features)
# dropped correlated features
X_train_dropped = X_train.drop(corr_features,axis=1)
X_test_dropped = X_test.drop(corr_features,axis=1)
# # 2.3 model training
# metrics
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
# ## 2.3.1 Linear Regression
# Fitting the Linear Regression Model to the dataset
from sklearn.linear_model import LinearRegression
regressor_lr = LinearRegression()
regressor_lr.fit(X_train_dropped, y_train)
#predicting the test set results
y_pred_lr = regressor_lr.predict(X_test_dropped)
# calculating metrics
r2_score_lr =r2_score(y_test, y_pred_lr)
mae_lr = mean_absolute_error(y_test, y_pred_lr)
mse_lr = mean_squared_error(y_test, y_pred_lr)
rmse_lr = (np.sqrt(mse_lr))
print('R2_score: ', r2_score_lr)
print('Mean Absolute Error: ', mae_lr)
print('Mean Squared Error: ', mse_lr)
print("RMSE: ", rmse_lr)
# ## 2.3.2 Support Vector Regression
# Fitting the Support Vector Regression Model to the dataset
from sklearn.svm import SVR
regressor_svr = SVR(kernel = 'poly', gamma = 'scale')
regressor_svr.fit(X_train_dropped, y_train)
#predicting the test set results
y_pred_svr = regressor_svr.predict(X_test_dropped)
# calculating metrics
r2_score_svr =r2_score(y_test, y_pred_svr)
mae_svr = mean_absolute_error(y_test, y_pred_svr)
mse_svr = mean_squared_error(y_test, y_pred_svr)
rmse_svr = (np.sqrt(mse_svr))
print('R2_score: ', r2_score_svr)
print('Mean Absolute Error: ', mae_svr)
print('Mean Squared Error: ', mse_svr)
print("RMSE: ", rmse_svr)
# ## 2.3.3 Decision Tree
# Fitting the Decision Tree Regression Model to the dataset
from sklearn.tree import DecisionTreeRegressor
regressor_dt = DecisionTreeRegressor(random_state = 0)
regressor_dt.fit(X_train_dropped, y_train)
#predicting the test set results
y_pred_dt = regressor_dt.predict(X_test_dropped)
# calculating metrics
r2_score_dt = r2_score(y_test, y_pred_dt)
mae_dt = mean_absolute_error(y_test, y_pred_dt)
mse_dt = mean_squared_error(y_test, y_pred_dt)
rmse_dt = (np.sqrt(mse_dt))
print('R2_score: ', r2_score_dt)
print('Mean Absolute Error: ', mae_dt)
print('Mean Squared Error: ', mse_dt)
print("RMSE: ", rmse_dt)
# ## 2.3.4 Random Forest
# Fitting the Random Forest Regression Model to the dataset
from sklearn.ensemble import RandomForestRegressor
regressor_rf = RandomForestRegressor(n_estimators = 100, random_state = 0)
regressor_rf.fit(X_train_dropped, y_train)
#predicting the test set results
y_pred_rf = regressor_rf.predict(X_test_dropped)
# calculating metrics
r2_score_rf =r2_score(y_test, y_pred_rf)
mae_rf = mean_absolute_error(y_test, y_pred_rf)
mse_rf = mean_squared_error(y_test, y_pred_rf)
rmse_rf = (np.sqrt(mse_rf))
print('R2_score: ', r2_score_rf)
print('Mean Absolute Error: ', mae_rf)
print('Mean Squared Error: ', mse_rf)
print("RMSE: ", rmse_rf)
# # 2.4 model evaluation (evaluate model perf and display metrics)
# All metric appended to the list
benchmark_metrics = ['Linear Regression', 'Support Vector Regression',
'Decision Tree', 'Random Forest']
# All model RMSE values appended to the list
RMSE_values = [rmse_lr, rmse_svr, rmse_dt, rmse_rf]
# All model MAE values appended to the list
MAE_values = [mae_lr, mae_svr, mae_dt, mae_rf]
# All model MSE values appended to the list
MSE_values = [mse_lr, mse_svr, mse_dt, mse_rf]
# All model R2_score values appended to the list
R2_score = [r2_score_lr, r2_score_svr, r2_score_dt, r2_score_rf]
# ### Bar graph for models Vs RMSE values
fig_dims = (10, 5)
fig, ax = plt.subplots(figsize=fig_dims)
ax.bar(benchmark_metrics,RMSE_values,color=['#2a9d8f', '#e9c46a', '#f4a261', '#e76f51'] )
ax.set_xlabel("Model", fontweight='bold')
ax.set_ylabel("RMSE values", fontweight='bold')
ax.set_title('Accuracy by model and RMSE value', fontweight='bold')
plt.show()
# ### Bar graph for models Vs MSE values
fig_dims = (10, 5)
fig, ax = plt.subplots(figsize=fig_dims)
ax.bar(benchmark_metrics, MSE_values,color=['#2a9d8f', '#e9c46a', '#f4a261', '#e76f51'] )
ax.set_xlabel("Model", fontweight='bold')
ax.set_ylabel("MSE values", fontweight='bold')
ax.set_title('Accuracy by model and MSE value', fontweight='bold')
plt.show()
# ### Bar graph for models Vs MAE values
fig_dims = (10, 5)
fig, ax = plt.subplots(figsize=fig_dims)
ax.bar(benchmark_metrics,MAE_values,color=['#2a9d8f', '#e9c46a', '#f4a261', '#e76f51'] )
ax.set_xlabel("Model", fontweight='bold')
ax.set_ylabel("MAE values", fontweight='bold')
ax.set_title('Accuracy by model and MAE value', fontweight='bold')
# plt.xticks(rotation=90)
plt.show()
X = np.arange(4)
barWidth = 0.2
fig = plt.figure(figsize=(10,5))
ax = fig.add_axes([0,0,1,1])
ax.bar(X + 0.00, RMSE_values, color = 'b', width = 0.2, label = 'RMSE')
ax.bar(X + 0.2, MAE_values, color = 'g', width = 0.2, label = 'MAE')
ax.bar(X + 0.40, MSE_values, color = 'r', width = 0.2, label = 'MSE')
ax.set_title('Accuracy of model Vs RMSE, MAE, MSE value', fontweight='bold')
plt.xlabel('Model', fontweight='bold')
plt.xticks([r + barWidth for r in range(len(benchmark_metrics))], benchmark_metrics)
plt.legend()
plt.show()
# ### Bar graph for models Vs R2_score values
fig_dims = (10, 5)
fig, ax = plt.subplots(figsize=fig_dims)
ax.bar(benchmark_metrics,R2_score,color=['#2a9d8f', '#e9c46a', '#f4a261', '#e76f51'] )
ax.set_xlabel("Model", fontweight='bold')
ax.set_ylabel("R2_score values", fontweight='bold')
ax.set_title('Accuracy by model and R2_score value', fontweight='bold')
# plt.xticks(rotation=90)
plt.show()
# Thanks !
|
[
"bhumikdv@gmail.com"
] |
bhumikdv@gmail.com
|
a8528dc9fa8df8318566fef48cd5e410399b8155
|
6db6d7445b51eb6c2aae428f8481dabbd49ba5ec
|
/ATAL/contest2Q2.py
|
62d8563d8d0b9736f44e5860df969d2d6459312f
|
[] |
no_license
|
ManoMax/python-studies
|
ab16535cab30965710331d1fa6d8e0ecb219b657
|
cd73b830f7e2894af4eda700c71e2992b0160f7a
|
refs/heads/master
| 2023-04-18T03:06:12.958281
| 2021-04-26T00:20:35
| 2021-04-26T00:20:35
| 130,414,154
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 413
|
py
|
num = int(input())
cont = 0
array_x = []
array_y = []
used = [0] * num
for i in range(num):
ax, ay = [int(j) for j in input().split()]
array_x.append(ax)
array_y.append(ay)
def aux(elem):
used[elem] = 1
for i in range(num):
if not used[i] and (array_x[i] == array_x[elem] or array_y[i] == array_y[elem]):
aux(i)
for i in range(num):
if not used[i]:
aux(i)
cont = cont + 1
print(cont-1)
|
[
"gabrielmaxcontato@gmail.com"
] |
gabrielmaxcontato@gmail.com
|
899eacf0f831e91334c97c6010b2d9b3db685973
|
79f99302533d155f1f471629fafe24e352f0fb93
|
/bancabcco/settings.py
|
bf26a76956ffe52085a72e09f77164bf761b1250
|
[] |
no_license
|
hristo-grudev/bancabcco
|
c37030e7fd5d275d05a3996e43bf3d98b5addb6f
|
022bd28a6622ce683c6eea120d0d6611e65f64b8
|
refs/heads/main
| 2023-04-03T16:24:13.752705
| 2021-04-12T10:56:27
| 2021-04-12T10:56:27
| 357,158,495
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 359
|
py
|
BOT_NAME = 'bancabcco'
SPIDER_MODULES = ['bancabcco.spiders']
NEWSPIDER_MODULE = 'bancabcco.spiders'
FEED_EXPORT_ENCODING = 'utf-8'
LOG_LEVEL = 'ERROR'
DOWNLOAD_DELAY = 0
ROBOTSTXT_OBEY = True
ITEM_PIPELINES = {
'bancabcco.pipelines.BancabccoPipeline': 100,
}
USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:47.0) Gecko/20100101 Firefox/47.0'
|
[
"hr.grudev@gmail.com"
] |
hr.grudev@gmail.com
|
a4a3eb1a39616bff525f509f8aa457b29a995d8e
|
91015480741ec59dda36712d71e7e6f0704bc516
|
/model_zoo/official/cv/resnet152/src/dataset.py
|
020ecb5d2367f09a1b58d18af9a74b80edc0a50e
|
[
"Apache-2.0",
"Libpng",
"LGPL-3.0-only",
"AGPL-3.0-only",
"MPL-1.1",
"BSD-3-Clause-Open-MPI",
"LicenseRef-scancode-mit-nagy",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-proprietary-license",
"LicenseRef-scancode-python-cwi",
"LGPL-2.1-only",
"OpenSSL",
"LicenseRef-scancode-other-copyleft",
"IJG",
"Zlib",
"MPL-1.0",
"LicenseRef-scancode-other-permissive",
"libtiff",
"NTP",
"MIT",
"LicenseRef-scancode-unknown-license-reference",
"Python-2.0",
"GPL-1.0-or-later",
"LicenseRef-scancode-gary-s-brown",
"MPL-2.0",
"BSD-3-Clause",
"Unlicense",
"0BSD",
"MPL-2.0-no-copyleft-exception",
"LicenseRef-scancode-free-unknown",
"GPL-2.0-only",
"BSL-1.0",
"LicenseRef-scancode-public-domain",
"BSD-2-Clause"
] |
permissive
|
Ming-blue/mindspore
|
b5dfa6af7876b00163ccfa2e18512678026c232b
|
9ec8bc233c76c9903a2f7be5dfc134992e4bf757
|
refs/heads/master
| 2023-06-23T23:35:38.143983
| 2021-07-14T07:36:40
| 2021-07-14T07:36:40
| 286,421,966
| 1
| 0
|
Apache-2.0
| 2020-08-10T08:41:45
| 2020-08-10T08:41:45
| null |
UTF-8
|
Python
| false
| false
| 9,887
|
py
|
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
create train or eval dataset.
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as C2
from mindspore.communication.management import init, get_rank, get_group_size
def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend", distribute=False):
"""
create a train or evaluate cifar10 dataset for resnet50
Args:
dataset_path(string): the path of dataset.
do_train(bool): whether dataset is used for train or eval.
repeat_num(int): the repeat times of dataset. Default: 1
batch_size(int): the batch size of dataset. Default: 32
target(str): the device target. Default: Ascend
distribute(bool): data for distribute or not. Default: False
Returns:
dataset
"""
if not do_train:
dataset_path = os.path.join(dataset_path, 'eval')
else:
dataset_path = os.path.join(dataset_path, 'train')
if target == "Ascend":
device_num, rank_id = _get_rank_info()
else:
if distribute:
init()
rank_id = get_rank()
device_num = get_group_size()
else:
device_num = 1
if device_num == 1:
ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
# define map operations
trans = []
if do_train:
trans += [
C.RandomCrop((32, 32), (4, 4, 4, 4)),
C.RandomHorizontalFlip(prob=0.5)
]
trans += [
C.Resize((224, 224)),
C.Rescale(1.0 / 255.0, 0.0),
C.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
C.HWC2CHW()
]
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
return ds
def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend", distribute=False):
"""
create a train or eval imagenet2012 dataset for resnet50
Args:
dataset_path(string): the path of dataset.
do_train(bool): whether dataset is used for train or eval.
repeat_num(int): the repeat times of dataset. Default: 1
batch_size(int): the batch size of dataset. Default: 32
target(str): the device target. Default: Ascend
distribute(bool): data for distribute or not. Default: False
Returns:
dataset
"""
if not do_train:
dataset_path = os.path.join(dataset_path, 'val')
else:
dataset_path = os.path.join(dataset_path, 'train')
if target == "Ascend":
device_num, rank_id = _get_rank_info()
else:
if distribute:
init()
rank_id = get_rank()
device_num = get_group_size()
else:
device_num = 1
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
image_size = 224
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
# define map operations
if do_train:
trans = [
C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
C.RandomHorizontalFlip(prob=0.5),
C.Normalize(mean=mean, std=std),
C.HWC2CHW()
]
else:
trans = [
C.Decode(),
C.Resize(256),
C.CenterCrop(image_size),
C.Normalize(mean=mean, std=std),
C.HWC2CHW()
]
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
return ds
def create_dataset3(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend", distribute=False):
"""
create a train or eval imagenet2012 dataset for resnet101
Args:
dataset_path(string): the path of dataset.
do_train(bool): whether dataset is used for train or eval.
repeat_num(int): the repeat times of dataset. Default: 1
batch_size(int): the batch size of dataset. Default: 32
target(str): the device target. Default: Ascend
distribute(bool): data for distribute or not. Default: False
Returns:
dataset
"""
if not do_train:
dataset_path = os.path.join(dataset_path, 'val')
else:
dataset_path = os.path.join(dataset_path, 'train')
if target == "Ascend":
device_num, rank_id = _get_rank_info()
else:
if distribute:
init()
rank_id = get_rank()
device_num = get_group_size()
else:
device_num = 1
rank_id = 1
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
image_size = 224
mean = [0.475 * 255, 0.451 * 255, 0.392 * 255]
std = [0.275 * 255, 0.267 * 255, 0.278 * 255]
# define map operations
if do_train:
trans = [
C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
C.RandomHorizontalFlip(rank_id / (rank_id + 1)),
C.Normalize(mean=mean, std=std),
C.HWC2CHW()
]
else:
trans = [
C.Decode(),
C.Resize(256),
C.CenterCrop(image_size),
C.Normalize(mean=mean, std=std),
C.HWC2CHW()
]
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
return ds
def create_dataset4(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend", distribute=False):
"""
create a train or eval imagenet2012 dataset for se-resnet50
Args:
dataset_path(string): the path of dataset.
do_train(bool): whether dataset is used for train or eval.
repeat_num(int): the repeat times of dataset. Default: 1
batch_size(int): the batch size of dataset. Default: 32
target(str): the device target. Default: Ascend
distribute(bool): data for distribute or not. Default: False
Returns:
dataset
"""
if target == "Ascend":
device_num, rank_id = _get_rank_info()
else:
if distribute:
init()
rank_id = get_rank()
device_num = get_group_size()
else:
device_num = 1
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=12, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=12, shuffle=True,
num_shards=device_num, shard_id=rank_id)
image_size = 224
mean = [123.68, 116.78, 103.94]
std = [1.0, 1.0, 1.0]
# define map operations
if do_train:
trans = [
C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
C.RandomHorizontalFlip(prob=0.5),
C.Normalize(mean=mean, std=std),
C.HWC2CHW()
]
else:
trans = [
C.Decode(),
C.Resize(292),
C.CenterCrop(256),
C.Normalize(mean=mean, std=std),
C.HWC2CHW()
]
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=12)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=12)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
return ds
def _get_rank_info():
"""
get rank size and rank id
"""
rank_size = int(os.environ.get("RANK_SIZE", 1))
if rank_size > 1:
rank_size = get_group_size()
rank_id = get_rank()
else:
rank_size = 1
rank_id = 0
return rank_size, rank_id
|
[
"ruippan@126.com"
] |
ruippan@126.com
|
e7c7e1ac5d231ee5f40f075cb49c007b28690385
|
c9036301aff9c02162f1a5a0641d16c94367a8f4
|
/highway_tramultask/train.py
|
7cd1267c3bb8587d25011109e2f9e0b1777e101a
|
[
"MIT"
] |
permissive
|
daweidavidwang/temp
|
cb54bebf45214d80fe8727977b526bab4432df94
|
c9014595bd9a391a542adbb6ed434ccb7efc254d
|
refs/heads/master
| 2023-02-25T03:18:38.802374
| 2021-01-29T11:32:36
| 2021-01-29T11:32:36
| 316,666,342
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,676
|
py
|
import os
import torch
import gym
import numpy as np
from tensorboardX import SummaryWriter
import highway_env
from dqnagent import DQNAgent
ENV = gym.make('highway-v0')
EPISODES = 200000
STORE_PATH = "./model"
tensorboard_saved_dir = os.path.join(STORE_PATH,"tensorboard")
writer = SummaryWriter(tensorboard_saved_dir)
def write_tenboard(writer,episode,reward,step):
writer.add_scalar('episode/reward',np.sum(reward),episode)
writer.add_scalar('episode/step',step,episode)
def train():
agent = DQNAgent(ENV)
agent.set_writer(writer)
for episde in range(0,EPISODES):
reward = []
step = 0
current_state, current_future_pos, current_past_pos = \
ENV.reset()
while True:
ENV.render()
action = agent.act(current_state, current_past_pos)
next_state, next_future_pos, next_past_pos, reward, done, info = \
ENV.step(action)
#state, action, reward, next_state, done, info
agent.record(current_state, current_future_pos, current_past_pos,\
action,reward,\
next_state, next_future_pos, next_past_pos, \
done,info)
step += 1
if done:
if episde % 100 ==0:
filename = os.path.join(STORE_PATH,str(episde))
agent.save(filename)
write_tenboard(writer,episde,reward,step)
print("step = ",step," sum reward = ",np.sum(reward))
break
current_state, current_future_pos, current_past_pos = \
next_state, next_future_pos, next_past_pos
def test():
agent = DQNAgent(ENV)
agent.set_writer(writer)
agent.eval()
agent.load("/home/glp/highway_project/highway_envimage/model/6100")
for episde in range(EPISODES):
reward = []
step = 0
state = ENV.reset()
done = False
average_speed = 0
slowernum = 0
step = 1
while True:
ENV.render()
action = agent.act(state)
next_state, reward, done, info = ENV.step(action)
#state, action, reward, next_state, done, info
state = next_state
average_speed = average_speed + (info['speed'] - average_speed) / step
if info['action'] == 4:
slowernum += 1
step += 1
if done:
print("average speed = ",average_speed,' slowernum = ',slowernum,' crash = ',info['crashed'])
break
if __name__ == "__main__":
train()
#test()
|
[
"dawei.wang@inceptio.ai"
] |
dawei.wang@inceptio.ai
|
7a7801229cd87021ea7f5fef9aa98f4639ba4fde
|
8a2d2d4419180576f9a4ceefbca5cc207d13ed0a
|
/dataset/pascal2tfrecord.py
|
87ff642dda430f4b054f69bbb0efaff161d9c141
|
[] |
no_license
|
Samjith888/EfficientDet-tf-custom_dataset
|
570eb6ede1f704a4b71573c736d6eed422a79aed
|
a0129e810b169b485f94860a6a650c28e83241f8
|
refs/heads/master
| 2022-05-28T13:38:23.524304
| 2020-04-29T07:52:34
| 2020-04-29T07:52:34
| 257,501,864
| 2
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 7,924
|
py
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import glob
import logging
import numpy as np
import xml.etree.cElementTree as ET
import os
import tensorflow.compat.v1 as tf
NAME_LABEL_MAP = {'back_ground': 0,
'class_name': 1,}
def int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def int64_list_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def bytes_list_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
def float_list_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def open_sharded_output_tfrecords(exit_stack, base_path, num_shards):
"""Opens all TFRecord shards for writing and adds them to an exit stack.
Args:
exit_stack: A context2.ExitStack used to automatically closed the TFRecords
opened in this function.
base_path: The base path for all shards
num_shards: The number of shards
Returns:
The list of opened TFRecords. Position k in the list corresponds to shard k.
"""
tf_record_output_filenames = [
'{}-{:05d}-of-{:05d}'.format(base_path, idx, num_shards)
for idx in range(num_shards)
]
tfrecords = [
exit_stack.enter_context(tf.python_io.TFRecordWriter(file_name))
for file_name in tf_record_output_filenames
]
return tfrecords
def read_xml_gtbox_and_label(xml_path):
tree = ET.parse(xml_path)
root = tree.getroot()
img_width = None
img_height = None
box_list = []
for child_of_root in root:
if child_of_root.tag == 'size':
for child_item in child_of_root:
if child_item.tag == 'width':
img_width = int(child_item.text)
if child_item.tag == 'height':
img_height = int(child_item.text)
if child_of_root.tag == 'object':
label = None
for child_item in child_of_root:
if child_item.tag == 'name':
label = NAME_LABEL_MAP[child_item.text]
if child_item.tag == 'polygon':
tmp_box = []
for node in child_item:
tmp_box.append(float(node.text))
assert label is not None, 'label is none, error'
tmp_box.append(label)
box_list.append(tmp_box)
gtbox_label = np.array(box_list, dtype=np.int32)
xmin=(gtbox_label[:,0:-1:2].min(axis=1)/img_width).tolist()
xmax=(gtbox_label[:,0:-1:2].max(axis=1)/img_width).tolist()
ymin=(gtbox_label[:,1:-1:2].min(axis=1)/img_height).tolist()
ymax=(gtbox_label[:,1:-1:2].max(axis=1)/img_height).tolist()
category_ids = gtbox_label[:,-1].tolist()
return img_height, img_width, xmin,ymin,xmax,ymax,category_ids
def load_txt_annotations(txt_annotation_path):
with open(txt_annotation_path, 'r') as f:
txt = f.readlines()
annotations = [line.strip() for line in txt if len(line.strip().split()[1:]) != 0]
return annotations
def read_txt_gtbox_and_label(annotation):
line = annotation.split()
image_name = line[0].split('/')[-1]
bboxes = np.array([list(map(lambda x: int(float(x)), box.split(','))) for box in line[1:]])
#shape [m,9]
bboxes = np.reshape(bboxes, [-1, 9])
x_list = bboxes[:, 0:-2:2]
y_list = bboxes[:, 1:-1:2]
class_id = (bboxes[:, -1]+1).tolist()
print(class_id)
y_max = (np.max(y_list, axis=1)/2048).tolist()
y_min = (np.min(y_list, axis=1)/2048).tolist()
x_max = (np.max(x_list, axis=1)/2448).tolist()
x_min = (np.min(x_list, axis=1)/2448).tolist()
print(y_max)
return image_name,x_min,y_min,x_max,y_max,class_id
def create_tf_example(img_height, img_width,
box_xmin,box_ymin,box_xmax,box_ymax,category_ids,
image_path):
img_full_path = image_path
with tf.gfile.GFile(img_full_path, 'rb') as fid:
encoded_jpg = fid.read()
if img_height and img_width:
image_height = img_height
image_width = img_width
else:
with tf.Session() as sess:
image = tf.image.decode_png(encoded_jpg)
shape_tuple=image.eval().shape
image_height=shape_tuple[0]
image_width =shape_tuple[1]
feature_dict = {
'image/height' :int64_feature(image_height),
'image/width' :int64_feature(image_width),
'image/encoded' :bytes_feature(encoded_jpg),
'image/format' :bytes_feature('png'.encode('utf8')),}
xmin=box_xmin
xmax=box_xmax
ymin=box_ymin
ymax=box_ymax
category_ids=category_ids
feature_dict.update({
'image/object/bbox/xmin' :float_list_feature(xmin),
'image/object/bbox/xmax' :float_list_feature(xmax),
'image/object/bbox/ymin' :float_list_feature(ymin),
'image/object/bbox/ymax' :float_list_feature(ymax),
'image/object/class/label':int64_list_feature(category_ids)
})
example = tf.train.Example(features=tf.train.Features(feature=feature_dict))
return example
def create_tf_record_from_xml(image_path,xml_path,tf_output_path,
tf_record_num_shards,img_format):
logging.info('writing to output path: %s', tf_output_path)
writers = [tf.python_io.TFRecordWriter(tf_output_path+ '-%05d-of-%05d.tfrecord' % (i, tf_record_num_shards))
for i in range(tf_record_num_shards)]
for count, xml in enumerate(glob.glob(xml_path + '/*.xml')):
# to avoid path error in different development platform
xml = xml.replace('\\', '/')
img_name = xml.split('/')[-1].split('.')[0] + img_format
img_path = image_path + '/' + img_name
if not os.path.exists(img_path):
print('{} is not exist!'.format(img_path))
continue
img_height,img_width,xmin,ymin,xmax,ymax,category_ids=read_xml_gtbox_and_label(xml)
example = create_tf_example(None, None, xmin, ymin, xmax, ymax, category_ids, img_path)
#example=create_tf_example(img_height, img_width,xmin,ymin,xmax,ymax,category_ids,img_path)
writers[count % tf_record_num_shards].write(example.SerializeToString())
def create_tf_record_from_txt(image_dir_path,txt_path,tf_output_path,
tf_record_num_shards):
logging.info('writing to output path: %s', tf_output_path)
writers = [tf.python_io.TFRecordWriter(tf_output_path+ '-%05d-of-%05d.tfrecord' % (i, tf_record_num_shards))
for i in range(tf_record_num_shards)]
annotations=load_txt_annotations(txt_path)
for count, annotation in enumerate(annotations):
#to avoid path error in different development platform
print("****************************")
image_name,xmin,ymin,xmax,ymax,category_ids=read_txt_gtbox_and_label(annotation)
img_path = image_dir_path + '/' + image_name
if not os.path.exists(img_path):
print('{} is not exist!'.format(img_path))
continue
example = create_tf_example(None, None, xmin, ymin, xmax, ymax, category_ids, img_path)
writers[count % tf_record_num_shards].write(example.SerializeToString())
def main(_):
#create_tf_record_from_xml(image_path="/home/lwp/efficientdet/dataset/img",
#xml_path ="/home/lwp/efficientdet/dataset/xml",
#tf_output_path="/home/lwp/efficientdet/dataset/tfrecord/",
#tf_record_num_shards=5,img_format=".png")
create_tf_record_from_txt(image_dir_path="",
txt_path="trainnew.txt",
tf_output_path="/tfrecord",
tf_record_num_shards=5)
if __name__ == '__main__':
tf.app.run(main)
|
[
"samjith@detecttechnologies.com"
] |
samjith@detecttechnologies.com
|
94370865d26031d9d5c812275cd02b83ef10dd0e
|
138c81b38013bc19eed814458c1440d641d18a9f
|
/dldt/dldt_object_detection.py
|
473487df9532c5082b63d33f53fcc9e748046125
|
[] |
no_license
|
vdevaram/deep_learning_utilities_cpu
|
b12c4a49759274533ba09880616e67385b92115c
|
d2a0dd3362443bb25715c7f953ca41ca1504aa7e
|
refs/heads/master
| 2021-05-09T06:40:21.265510
| 2020-12-01T10:55:19
| 2020-12-01T10:55:19
| 119,337,125
| 4
| 6
| null | 2020-03-22T12:43:46
| 2018-01-29T05:40:54
|
Python
|
UTF-8
|
Python
| false
| false
| 8,813
|
py
|
###########################################################################
# This is a sample script file to run Caffe/TF inference benchmarks with
# mkldnn library on Intel CPUs using DLDT tool
# Please contact vinod.devarampati@intel.com for any clarifications
# Instructions to fill the variable are given in comments
############################################################################
# Mandatory : Install latest DLDT from
# - https://software.intel.com/en-us/openvino-toolkit/choose-download
############################################################################
import argparse
import os
MODEL_COMMON_PATH = "/home/vinod/dldt/object_detection/"
SAMPLES_COMMON_PATH = "/home/vinod/dldt/samples/intel64/Release/"
models = {\
"MASK_RCNN_RES50":
[ MODEL_COMMON_PATH + "mask_rcnn_resnet50_atrous_coco_2018_01_28/frozen_inference_graph.xml",
SAMPLES_COMMON_PATH + "mask_rcnn_demo"],
"MASK_RCNN_RES101":
[ MODEL_COMMON_PATH + "mask_rcnn_resnet101_atrous_coco_2018_01_28/frozen_inference_graph.xml",
SAMPLES_COMMON_PATH + "mask_rcnn_demo"],
"FRCNN_RES50":
[ MODEL_COMMON_PATH + "faster_rcnn_resnet50_coco_2018_01_28/frozen_inference_graph.xml",
SAMPLES_COMMON_PATH + "object_detection_sample_ssd"],
"FRCNN_RES101":
[ MODEL_COMMON_PATH + "faster_rcnn_resnet101_coco_2018_01_28/frozen_inference_graph.xml",
SAMPLES_COMMON_PATH + "object_detection_sample_ssd"],
"RFCN_RES101":
[ MODEL_COMMON_PATH + "rfcn_resnet101_coco_2018_01_28/frozen_inference_graph.xml",
SAMPLES_COMMON_PATH + "object_detection_sample_ssd"],
"SSD_MOB_V2":
[ MODEL_COMMON_PATH + "ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.xml",
SAMPLES_COMMON_PATH + "object_detection_sample_ssd"],
"I8_FRCNN_RES50":
[ MODEL_COMMON_PATH + "faster_rcnn_resnet50_coco_2018_01_28/frozen_inference_graph_i8.xml",
SAMPLES_COMMON_PATH + "object_detection_sample_ssd"],
"I8_FRCNN_RES101":
[ MODEL_COMMON_PATH + "faster_rcnn_resnet101_coco_2018_01_28/frozen_inference_graph_i8.xml",
SAMPLES_COMMON_PATH + "object_detection_sample_ssd"],
"I8_RFCN_RES101":
[ MODEL_COMMON_PATH + "rfcn_resnet101_coco_2018_01_28/frozen_inference_graph_i8.xml",
SAMPLES_COMMON_PATH + "object_detection_sample_ssd"],
"I8_SSD_MOB_V2":
[ MODEL_COMMON_PATH + "ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph_i8.xml",
SAMPLES_COMMON_PATH + "object_detection_sample_ssd"],
"I8_MASK_RCNN_RES50":
[ MODEL_COMMON_PATH + "imask_rcnn_resnet50_atrous_coco_2018_01_28/frozen_inference_graph.xml",
SAMPLES_COMMON_PATH + "mask_rcnn_demo"],
"I8_MASK_RCNN_RES101":
[ MODEL_COMMON_PATH + "mask_rcnn_resnet101_atrous_coco_2018_01_28/frozen_inference_graph.xml",
SAMPLES_COMMON_PATH + "mask_rcnn_demo"],
}
def print_results(args):
"""
"""
files = os.listdir(args.log_dir)
topology = {}
for file_name in files:
if file_name.endswith(".log"):
with open(os.path.join(args.log_dir,file_name)) as fp:
data = fp.read()
start = data.find("iteration:")+11
if start <= 11:
continue
end = data.find(" ",start)
val = float(data[start:end])
parse = file_name.split(".")[0].split('_')
bs = parse[-2]
stream = parse[-1]
top = parse[0]
for name in parse[1:-3]:
top = top+'_'+name
if topology.get(top) != None:
if topology[top].get(bs) != None:
if topology[top][bs].get(stream) != None:
topology[top][bs][stream].append(val)
else:
topology[top][bs][stream] = []
topology[top][bs][stream].append(val)
else:
topology[top][bs] = {}
topology[top][bs][stream] = []
topology[top][bs][stream].append(val)
else:
topology[top] = {}
topology[top][bs] = {}
topology[top][bs][stream] = []
topology[top][bs][stream].append(val)
for top in topology:
for bs in topology[top]:
for stream in topology[top][bs]:
average_latency = sum(topology[top][bs][stream])/float(len(topology[top][bs][stream]))
num_streams = float(stream[3:])
fps = int(bs[2:])*1000*num_streams/average_latency
print(top,"\t\t",bs[2:],"\t",num_streams,"\t",average_latency,"\t",fps)
def create_shell_script(args):
"""
"""
bs = args.batch_size
if args.cpu == "8180" or args.cpu == "8280":
NUM_CORES = 56
SOCK_CORES = 28
if bs == 1:
NUM_STREAMS = [1,2,4,8,14,28,56]
elif bs == 14:
NUM_STREAMS = [1,2,4,8]
elif bs == 16:
NUM_STREAMS = [1,2,4,8]
elif bs == 28:
NUM_STREAMS = [1,2,4]
elif bs == 32:
NUM_STREAMS = [1,2,4]
elif bs == 56:
NUM_STREAMS = [1,2,4]
elif args.cpu == "6140" or args.cpu == "6240":
NUM_CORES = 36
SOCK_CORES = 18
if bs == 1:
NUM_STREAMS = [1,2,4,6]#,9,12,18,36]
elif bs == 6:
NUM_STREAMS = [1,2,4,6]
elif bs == 9:
NUM_STREAMS = [1,2,4]
elif bs == 18:
NUM_STREAMS = [1,2,4]
elif bs == 36:
NUM_STREAMS = [1,2]
elif args.cpu == "6154" or args.cpu == "6254":
NUM_CORES = 36
SOCK_CORES = 18
if bs == 1:
NUM_STREAMS = [1,2,4,6]#,9,12,18,36]
elif bs == 6:
NUM_STREAMS = [1,2,4,6]
elif bs == 9:
NUM_STREAMS = [1,2,4]
elif bs == 18:
NUM_STREAMS = [1,2,4]
elif bs == 36:
NUM_STREAMS = [1,2]
elif args.cpu == "VM6254" or args.cpu == "VM6154":
NUM_CORES = 16
SOCK_CORES = 16
if bs == 1:
NUM_STREAMS = [1,2,4]
elif bs == 8:
NUM_STREAMS = [1,2,4]
elif bs == 16:
NUM_STREAMS = [1,2,4]
elif bs == 32:
NUM_STREAMS = [1,2]
elif args.cpu == "4S6248":
NUM_CORES = 80
SOCK_CORES = 20
if bs == 1:
NUM_STREAMS = [1,2,4,8]
elif bs == 8:
NUM_STREAMS = [1,2,4,5]
elif bs == 20:
NUM_STREAMS = [1,2,4]
elif bs == 40:
NUM_STREAMS = [1,2,4]
elif args.cpu == "6148" or args.cpu == "6248":
NUM_CORES = 40
SOCK_CORES = 20
if bs == 1:
NUM_STREAMS = [1,2,4,8]
elif bs == 8:
NUM_STREAMS = [1,2,4,5]
elif bs == 20:
NUM_STREAMS = [1,2,4]
elif bs == 40:
NUM_STREAMS = [1,2,4]
print("export WKDIR=$HOME/dldt/object_detection")
if args.topology == 'all':
top_list = [ key for key in models]
else:
top_list = args.topology.split(',')
LOGS_PATH="$WKDIR/logs"
print("export DATA_PATH=$WKDIR/coco_test_data")
print("export SAMPLES_PATH=$WKDIR/samples")
print("export VINO_PATH=$HOME/intel/openvino/deployment_tools")
print("source $VINO_PATH/../bin/setupvars.sh")
for topology in top_list:
sleep_time = "111s"
for ns in NUM_STREAMS:
cores_per_stream = NUM_CORES//ns
for i in range(ns):
j = i*cores_per_stream
k = (i+1)*cores_per_stream-1
log_file = os.path.join(LOGS_PATH,topology+"_"+str(i)+"_bs"+str(bs)+"_str"+str(ns)+".log &")
if (j < SOCK_CORES) and (k < SOCK_CORES):
node = 0
elif (j >= SOCK_CORES) and (k < SOCK_CORES*2):
node = 1
elif (j >= SOCK_CORES*2) and (k < SOCK_CORES*3):
node = 2
elif (j >= SOCK_CORES*3) and (k < SOCK_CORES*4):
node = 3
else:
node = -1
if node >= 0:
opt = "numactl -N "+ str(node)+" -m " + str(node)+ " -C "+ str(j) + "-" + str(k) + " "
else:
opt = "numactl -l -C "+ str(j) + "-" + str(k) + " "
print( opt + models[topology][1] + ' -i $DATA_PATH/'+str(bs)+' -m ' +\
models[topology][0]+' -nthreads '+ str(cores_per_stream) +\
' -d CPU -ni 100 &>'+log_file)
print("echo 'Waiting for "+str(ns)+"-streams to finish'")
print("sleep "+sleep_time)
print("ps -elf | grep samples | for i in $(awk '{print $4}');do kill -9 $i; done")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--cpu", default="6254", help="SKU name")
parser.add_argument("--topology", default="SSD_MOB_V2", help=" topology name")
#parser.add_argument("--fw", default="TF", help="caffe/tf")
parser.add_argument("--batch_size", type=int, default=1, help="i Batch size")
parser.add_argument("--mode", type=str, default="exe", help="exe/log")
parser.add_argument("--data_type", type=str, default="f32", help="f32/f16/i8")
parser.add_argument("--log_dir", type=str, default="./", help="logs directory")
parser.add_argument("--display", type=bool, default=False, help="Display supported topologies")
args = parser.parse_args()
if args.display:
for key in models:
print(key,end = ",")
else:
if args.mode == "exe":
create_shell_script(args)
else:
print_results(args)
|
[
"noreply@github.com"
] |
vdevaram.noreply@github.com
|
91ea86d8c1433c4f3b991f43622c0b3bbe3136b3
|
8700ea37c191dd6d7d21a9c8c245ccba59e73124
|
/EstimateTimeForATransition.py
|
c4cd39aeb1cc1af1e8ef7947e7c7ca51f8dc6650
|
[] |
no_license
|
rolaechea/ml-traces-analysis
|
b62ca205bf13edf7a56e3e3d231618cb11c2a3b6
|
4d43e61298f6c0eb54b93eae2fedd6a72c5e6151
|
refs/heads/master
| 2020-04-05T13:12:03.764118
| 2019-06-11T18:58:36
| 2019-06-11T18:58:36
| 156,891,518
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,916
|
py
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 25 14:40:55 2019
@author: rafaelolaechea
"""
import argparse
import MLConstants
from pickleFacade import loadObjectFromPickle
from AnalyzerRQ2 import getRegressorToTransitionIdMapping
from AutonomooseTraces import generateBitsetForOneConfigurationAutonomoose
from ConfigurationUtilities import generateBitsetForOneConfiguration, transformFeatureBitmapsToIncludeSquares
def parseArguments():
"""
Returns an args object with parsed argument or throws an error and exit.
"""
parser = argparse.ArgumentParser()
parser.add_argument("subjectSystem")
parser.add_argument("regressorInputFilename", help="filename of learnt regressor to use")
parser.add_argument("configurationId", help="configuration whose transition execution time will be estimated")
parser.add_argument("transitionId", help="Transition Id of transition's execution time to estimate")
args = parser.parse_args()
if args.subjectSystem not in MLConstants.lstSubjectSystems:
print ("Subject systems must be one of {0}".format(", ".join(MLConstants.lstSubjectSystems)))
exit(0)
return args
class TransitionEstimator(object):
def __init__(self, SubjectSystem, regressorInputFilename=""):
self.SubjectSystem = SubjectSystem
self.loadEstimatorForTransitions(regressorInputFilename)
# if self.SubjectSystem == MLConstants.x264Name
# self.
def loadEstimatorForTransitions(self, regressorInputFilename=""):
"""
Load estimator to use as a library.
"""
self.regressorsArray = loadObjectFromPickle(regressorInputFilename)
self.transitionToRegressorMapping = getRegressorToTransitionIdMapping(self.regressorsArray)
def estimate(self, configurationId, transitionId):
"""
Return the estimate for the given configurationId
"""
if self.SubjectSystem == MLConstants.x264Name:
configurationInBitset = generateBitsetForOneConfiguration(configurationId)
else:
configurationInBitset = generateBitsetForOneConfigurationAutonomoose(configurationId)
regressorWrapperForSelectedTransition = self.regressorsArray[self.transitionToRegressorMapping[transitionId]]
if regressorWrapperForSelectedTransition.getUseSquareX():
configurationInBitset = transformFeatureBitmapsToIncludeSquares([configurationInBitset])[0]
skRegressor = regressorWrapperForSelectedTransition.getRegressor()
RawPrediction = skRegressor.predict([configurationInBitset])
PredictedTransitionExecutionTime = regressorWrapperForSelectedTransition.getScaler().inverse_transform(RawPrediction)[0]
if not regressorWrapperForSelectedTransition.isLasso():
PredictedTransitionExecutionTime = PredictedTransitionExecutionTime[0]
return PredictedTransitionExecutionTime
if __name__ == "__main__":
"""
Prints the prediction for a given subject system, regressor, videofile and transition id.
"""
args = parseArguments()
SubjectSystem = args.subjectSystem
regressorInputFilename = args.regressorInputFilename
configurationId = int(args.configurationId)
transitionId = int(args.transitionId)
regressorsArray = loadObjectFromPickle(regressorInputFilename)
transitionToRegressorMapping = getRegressorToTransitionIdMapping(regressorsArray)
regressorWrapperForSelectedTransition = regressorsArray[transitionToRegressorMapping[transitionId]]
transitionToConfArrayTimeTaken = {}
if SubjectSystem == MLConstants.x264Name:
configurationInBitset = generateBitsetForOneConfiguration(configurationId)
else:
print ("Not yet implemented for Autonomoose.")
exit(0)
if regressorWrapperForSelectedTransition.getUseSquareX():
configurationInBitset = transformFeatureBitmapsToIncludeSquares([configurationInBitset])[0]
skRegressor = regressorWrapperForSelectedTransition.getRegressor()
RawPrediction = skRegressor.predict([configurationInBitset])
PredictedTransitionExecutionTime = regressorWrapperForSelectedTransition.getScaler().inverse_transform(RawPrediction)[0]
print ( dir(skRegressor))
print ( skRegressor.coef_)
print ( skRegressor.intercept_[0])
print("Scaler : {0}".format(regressorWrapperForSelectedTransition.getScaler().mean_[0]))
if not regressorWrapperForSelectedTransition.isLasso():
PredictedTransitionExecutionTime = PredictedTransitionExecutionTime[0]
print(PredictedTransitionExecutionTime)
|
[
"rolaechea@gsd.uwaterloo.ca"
] |
rolaechea@gsd.uwaterloo.ca
|
a5bece4fd2c50b5f90963b093272617330b42b75
|
6ade743d033a23311a45bffea2d423254a16032b
|
/dev/track-sale-sms-py/controls_frame.py
|
005e4f0b54086c3f53610e6a2a56ed862fb5e685
|
[
"Apache-2.0"
] |
permissive
|
capitalch/trace
|
ebeb7d86ace4c711cf2be27d914f1a6d0ddaafad
|
510c947609b06fc179bc8fe5b981a4e3bcb6d610
|
refs/heads/main
| 2023-09-01T21:51:45.021429
| 2023-08-28T07:01:32
| 2023-08-28T07:01:32
| 213,639,100
| 0
| 0
|
Apache-2.0
| 2019-11-17T15:37:44
| 2019-10-08T12:41:22
|
TypeScript
|
UTF-8
|
Python
| false
| false
| 1,475
|
py
|
from tkinter import Button, Frame
from tkinter.constants import E, RIDGE
from tkcalendar import DateEntry
from utils import fetch_local_data
from ibuki import Ibuki
sale_date = ''
def fetch_sale_data():
tuple_data = fetch_local_data('track-sale-sms', sale_date)
Ibuki.emit('POPULATE-DATA-TABLE-TREE-VIEW',
tuple_data)
def send_sms():
Ibuki.emit('SEND-SMS', '')
def get_controls_frame(root):
def change_date(e):
global sale_date
sale_date = (e.widget.get_date()).isoformat()
fetch_sale_data()
global sale_date
frame = Frame(root, height=50, pady=5, borderwidth=3, relief=RIDGE)
btn_refresh = Button(frame, text='Refresh', width=10,
fg='blue', font=12, padx=10, command=fetch_sale_data)
btn_refresh.grid(row=0, column=1)
date_entry = DateEntry(frame, width=12, background='darkblue',
foreground='white', borderwidth=2, date_pattern='dd/MM/yyyy')
date_entry.grid(row=0, column=0, padx=5)
btn_send_sms = Button(frame, text='Send SMS',
width=10,bg='yellow', fg='red', font=12, padx=10, command=send_sms)
frame.columnconfigure(0, weight=1)
frame.columnconfigure(1, weight=1)
frame.columnconfigure(2, weight=10)
btn_send_sms.grid(row=0, column=2, sticky=E)
sale_date = (date_entry.get_date()).isoformat()
date_entry.bind('<<DateEntrySelected>>', change_date)
return(frame)
|
[
"capitalch@gmail.com"
] |
capitalch@gmail.com
|
64f7c71a570166d36c95ad273c373ac5bff92033
|
76aa7635803e3c573dffe1892b5ffaebff792000
|
/work/bayes.py
|
3c4b1afa1584f343f387222fa846372e7320463f
|
[] |
no_license
|
bruceSz/ML-some-implementation
|
d809b832ed19db335840ee774e895806c444f3dc
|
9a39ebb01f43f55aa82a7489c7ecada13893c55f
|
refs/heads/master
| 2020-06-17T19:48:36.559759
| 2018-09-16T11:19:15
| 2018-09-16T11:19:15
| 74,975,314
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,473
|
py
|
#!/usr/bin/python
import numpy as np
def loadDataSet():
postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
class_v = [0,1,0,1,0,1]
return postingList, class_v
def createVList(dataSet):
vSet = set([])
for doc in dataSet:
vSet = vSet|set(doc)
return list(vSet)
def setOfWordsVec(vList,InputSet):
retVlist = [0]*len(vList)
for w in InputSet:
if w in vList:
retVlist[vList.index(w)] = 1
else:
print 'word ', w, "not in dict"
return retVlist
def bagOfW2Vec(vList, InputSet):
retV = [0] * len(vList)
for w in InputSet:
if w in vList:
retV[vList.index(w)] +=1
return retV
def trainBN0(trainM, trainC):
numDoc = len(trainM)
numWord = len(trainM[0])
pAbusive = sum(trainC)/float(numDoc)
p0Num = np.ones(numWord)
p1Num = np.ones(numWord)
p0Denom = 2.0
p1Denom = 2.0
for i in range(numDoc):
if trainC[i] == 1:
p1Num += trainM[i]
p1Denom += sum(trainM[i])
else:
p0Num += trainM[i]
p0Denom += sum(trainM[i])
p1Vect = np.log(p1Num/p1Denom)
p0Vect = np.log(p0Num/p0Denom)
return p0Vect,p1Vect,pAbusive
def classifyNB(vec2C, p0V, p1V, pClass):
p1 = sum(vec2C * p1V) + np.log(pClass)
p0 = sum(vec2C * p0V) + np.log(1.0-pClass)
if p1 > p0:
return 1
else:
return 0
def testingNB():
listPosts, listC = loadDataSet()
myVList = createVList(listPosts)
trainM = []
for post in listPosts:
trainM.append(setOfWordsVec(myVList, post))
p0v, p1v, pAb = trainBN0(np.array(trainM),np.array(listC))
testE = ['love','my','dalmation']
thisdoc = np.array(setOfWordsVec(myVList,testE))
print testE, 'classified as : ',classifyNB(thisdoc, p0v,p1v,pAb)
testE = ['stupid','garbage']
thisdoc = np.array(setOfWordsVec(myVList,testE))
print testE,"classfied as :", classifyNB(thisdoc, p0v, p1v, pAb )
def main():
testingNB()
if __name__ == "__main__":
main()
|
[
"brucesz@zhangsongdeMacBook-Pro.local"
] |
brucesz@zhangsongdeMacBook-Pro.local
|
1aa131979281a93765cfeb1f8add5cec5fd1acd7
|
17f5dfd1e4f2e6b4f4a497350ca541c341e2ea3c
|
/models.py
|
96779476f1870c75f3743ec8664a52156c458f5b
|
[] |
no_license
|
Nikolai-veb/Blog_Flask
|
fbbd74f9b5177376174fb9c751030c453bbfe78f
|
4a0fc7b6b1c55065af7fe3879d838c741066c6ce
|
refs/heads/master
| 2022-12-22T03:18:06.789044
| 2020-10-03T17:53:21
| 2020-10-03T17:53:21
| 297,778,202
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,406
|
py
|
from app import db
from datetime import datetime
import re
def slugfy(s):
pattern = r'[^\w+]'
return re.sub(pattern, '-', s)
post_tags = db.Table('post_tags',
db.Column('post_id', db.Integer, db.ForeignKey('posts.id')),
db.Column('tag_id', db.Integer, db.ForeignKey('tag.id'))
)
class Posts(db.Model):
id = db.Column(db.Integer, primary_key=True)
title = db.Column(db.String(150))
slug = db.Column(db.String(150), unique=True)
text = db.Column(db.Text)
created = db.Column(db.DateTime, default=datetime.now())
tags = db.relationship('Tag', secondary=post_tags, backref=db.backref('posts', lazy='dynamic'),)
def __init__(self, *args, **kwargs):
super(Posts, self).__init__(*args, **kwargs)
self.generate_slug()
def generate_slug(self):
if self.title:
self.slug = slugfy(self.title.lower())
def __repr__(self):
return '<Post_id: {} title: {}'.format(self.id, self.title.lower())
class Tag(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String(100))
slug = db.Column(db.String(100))
def __init__(self, *args, **kwargs):
super(Tag, self).__init__(*args, **kwargs)
self.slug = slugfy(self.name)
def __repr__(self):
return '< Tag id: {}, name {}>'.format(self.id, self.name)
|
[
"nik.vagin1995@mail.ru"
] |
nik.vagin1995@mail.ru
|
29fb88a6bf317c7942af8630380f72c794e35206
|
d2b81ede3d3a516f5313835ce07dfea97db46c87
|
/maple/thomas_kacz/Kacz.py
|
1a9383ff786c003763e244a203dd078fec7d251f
|
[] |
no_license
|
p15-git-acc/code
|
8b847ad95cd59a13446f595ac65d96d6bc45b512
|
59337447523018dfab71cbbbda53b4bb88b7ce59
|
refs/heads/master
| 2022-12-16T14:38:09.073676
| 2020-09-16T09:23:00
| 2020-09-16T09:23:00
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,798
|
py
|
from scipy import pi
from scipy import sin
from scipy import exp
import numpy as np
from scipy.optimize import newton
from scipy.optimize import minimize
from scipy.optimize import basinhopping
file = open('zeros1', 'r')
zeros = file.read().split('\n')
zeros = [float(string) for string in zeros[:4000]]
file.close()
print('Approximating by using first {} zeros of zeta.'.format(len(zeros)))
def F(z):
sum = 0
for zero in zeros:
sum += exp(complex(0, zero)*z)/complex(0.5, zero)
return sum
def f(z):
sum = 0
for zero in zeros:
sum += complex(0, zero)*exp(complex(0, zero)*z)/complex(0.5, zero)
return sum
def F_N(z, N):
sum = 0
for zero in zeros[:N]:
sum += exp(complex(0, zero)*z)/complex(0.5, zero)
return sum
def root_near(guess, silent=False):
"""Find a root of F near guess using Newton's method.
"""
root = None
try:
root = newton(F, guess, fprime=f)
except:
if not silent:
print("Newton's method failed.")
finally:
return root
def alpha_a_b(coord, N, silent=True):
"""Calculate alpha, a, b for a rectangle with coordinates coord and
truncation at N."""
[x0, x1, y0, y1] = coord
a = 0
for zero in zeros[:N]:
a += exp(-zero*y0)/abs(complex(0.5, zero))
b = 0
for zero in zeros[N:]:
b += exp(-zero*y0)/abs(complex(0.5, zero))
def F_north(x):
return abs(F_N(complex(x, y1), N))
def F_south(x):
return abs(F_N(complex(x, y0), N))
def F_east(y):
return abs(F_N(complex(x1, y), N))
def F_west(y):
return abs(F_N(complex(x0, y), N))
def x_bounds(f_new, x_new, f_old, x_old):
return x0 <= x_new <= x1
def y_bounds(f_new, x_new, f_old, x_old):
return y0 <= x_new <= y1
min_north = basinhopping(F_north, 0.5*(x0 + x1), stepsize=0.5*(x1-x0), accept_test=x_bounds).fun
min_south = basinhopping(F_south, 0.5*(x0 + x1), stepsize=0.5*(x1-x0), accept_test=x_bounds).fun
min_east = basinhopping(F_east, 0.5*(y0 + y1), stepsize=0.5*(y1-y0), accept_test=y_bounds).fun
min_west = basinhopping(F_west, 0.5*(y0 + y1), stepsize=0.5*(y1-y0), accept_test=y_bounds).fun
if not silent:
tuple = (min_north, min_south, min_east, min_west)
print("alpha = min{}.".format(tuple))
alpha = min(min_north, min_south, min_east, min_west)
return alpha, a, b
def old_box_q(coord, N, root):
"""Calculate alpha, a, b according to Kaczorowski."""
[alpha, a, b] = alpha_a_b(coord, N)
if alpha - 3*b < 0:
return None
return int(4*pi*a/(alpha - 3*b)) + 1
def box_q(coord, N, root, silent=True, compare=False):
"""Calculate q according to Morrill, Platt and Trudgian, with the option of
comparing to Kaczorowski.
"""
[x0, x1, y0, y1] = coord
if not (x0 <= root.real <= x1 and y0 <= root.imag <= y1) and not silent:
string = 'Error: Box does not contain root:'
if not x0 < root.real:
string += ' x0 too large,'
if not root.real < x1:
string += ' x1 too small,'
if not y0 < root.imag:
string += ' y0 too large,'
if not root.imag < y1:
string += ' y1 too small'
string = string[:-1] + '.'
print(string)
return None
[alpha, a, b] = alpha_a_b(coord, N, silent=silent)
if not silent:
print("alpha = {}.".format(alpha))
print("a = {}.".format(a))
print("b = {}.".format(b))
w = root.imag
aw = 0
for zero in zeros[:N]:
aw += exp(-zero*w)/abs(complex(0.5, zero))
if not silent:
print("a_w = {}.".format(aw))
bw = 0
for zero in zeros[N:]:
bw += exp(-zero*w)/abs(complex(0.5, zero))
if not silent:
print("b_w = {}.".format(bw))
q = int(pi*a/(alpha - b - 2*bw))
i = 0
if alpha - b - 2*bw <= 0:
if not silent:
print('Error: Inadmissable box/N.')
return None
while not 2*aw*sin(pi/q) + 2*pi*a/q <= alpha - b - 2*bw:
q += 1
i += 1
if i == 1000:
if not silent:
print('Error: Timed out.')
return None
if compare:
Kacz_q = old_box_q(coord, N, root)
if not Kacz_q:
Kacz_q = 'no result'
print('As compared to {},'.format(Kacz_q))
return q
def opti_box(guess, N, root):
"""Optimize q^(-N) as a function of the coordinates (x0, x1, y0, y1).
"""
if not box_q(guess, N, root, silent=False):
return None
x, y = root.real, root.imag
class MyBounds(object):
def __init__(self, xymax=[x, np.inf, y, np.inf], xymin=[0, x, 0, y]):
self.xymax = np.array(xymax)
self.xymin = np.array(xymin)
def __call__(self, **kwargs):
x = kwargs["x_new"]
coord_max = bool(np.all(x <= self.xymax))
coord_min = bool(np.all(x >= self.xymin))
unit_wide = bool(x[1] - x[0] < 1)
good_alpha = bool(box_q(x, N, root, silent=True))
return coord_max and coord_min and unit_wide and good_alpha
mybounds = MyBounds()
class RandomDisplacementBounds(object):
"""random displacement with bounds"""
def __init__(self, x, y, stepsize=0.5):
self.x = x
self.y = y
self.stepsize = stepsize
def __call__(self, x):
"""take a random step but ensure the new position is within the bounds"""
while True:
xnew = x + np.random.uniform(-self.stepsize, self.stepsize,
np.shape(x))
if x[0] < self.x < x[1] and x[2] < self.y < x[3]:
break
return xnew
take_step = RandomDisplacementBounds(x, y)
def opti_q(x):
coord = x
q = box_q(coord, N, root, silent=True)
if not q:
return 10000
return q
result = basinhopping(opti_q, guess, niter=1000, accept_test=mybounds,
take_step=take_step)
if result.fun == 1:
print("That ain't good.")
return result
def epsilon_box(x_epsilon, y_epsilon, N, root):
x, y = root.real, root.imag
guess = [x - x_epsilon, x + x_epsilon, y - y_epsilon, y + y_epsilon]
return opti_box(guess, N, root)
def min_N(coord, N, root, silent=False):
"""Find a better for a (coord, N, root) that works."""
X = box_q(coord, N, root, silent=True)**(-N)
best_N = N
for n in range(N+11)[:0:-1]:
q = box_q(coord, n, root, silent=True)
if q:
if not silent:
print(q**(-n))
if q**(-n) > X:
X = q**(-n)
best_N = n
return best_N
|
[
"dave.platt@bris.ac.uk"
] |
dave.platt@bris.ac.uk
|
b190c54adbe0a9fd40c58475eaabbd0a3217a96c
|
6d9bfaa330fbe3076637b6beaaa62a69b28d0e9c
|
/manage.py
|
547113df814a95436179ed34505af810631ef67b
|
[] |
no_license
|
edubega0707/ventas-backend
|
71fcf1470d1f0349ce1ab256057790e50b690c0a
|
3fa6580c738c710509177b0ac8e5924d6a398dce
|
refs/heads/master
| 2020-03-28T00:30:40.586243
| 2018-09-04T21:47:08
| 2018-09-04T21:47:08
| 147,423,682
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 535
|
py
|
#!/usr/bin/env python
import os
import sys
if __name__ == "__main__":
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "nfh.settings")
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn't import Django. Are you sure it's installed and "
"available on your PYTHONPATH environment variable? Did you "
"forget to activate a virtual environment?"
) from exc
execute_from_command_line(sys.argv)
|
[
"eduardobenitez@MacBook-Pro-de-EDUARDO.local"
] |
eduardobenitez@MacBook-Pro-de-EDUARDO.local
|
f063485253aa0a5721efdf11de85a116fdc1277e
|
e10bc27de5a63b9fac8b663bf69b501ecb6b3adf
|
/shop/migrations/0001_initial.py
|
bd4b0139e40f86222f2069234cba0ad391bd056a
|
[] |
no_license
|
rahultanwar8814/Retail_India
|
acac5f60a65655ed3f607084211b5b8d0d08b218
|
baa6059ab949c08f47c56adb094041c53bbafca8
|
refs/heads/master
| 2023-06-03T14:22:52.683850
| 2021-06-20T12:57:22
| 2021-06-20T12:57:22
| 378,247,883
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 693
|
py
|
# Generated by Django 3.1.7 on 2021-06-04 08:41
from django.db import migrations, models
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='item',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(max_length=50)),
('price', models.CharField(max_length=50)),
('description', models.CharField(max_length=300)),
('image', models.ImageField(default='', upload_to='shop/images')),
],
),
]
|
[
"hulkvsironmanmark2@gamil.com"
] |
hulkvsironmanmark2@gamil.com
|
1b1c6f1ffe39f736efb69c58a0d9e489f47a50ae
|
7d1f481cdb53c1b4edd19a0d77611059e2f7f722
|
/appengine/antonym/model.py
|
d530e79863b5d1b16370a1a1266ca385256306c3
|
[] |
no_license
|
Mohibtech/antonym
|
9b3f81def92043dbe2d9fee4d38c0e7fd533a475
|
89781b6b3428f21997a2f9e687d0688ab78ab2ca
|
refs/heads/master
| 2020-04-27T02:20:13.920032
| 2013-01-13T00:36:18
| 2013-01-13T00:36:18
| 173,990,863
| 0
| 0
| null | 2019-03-05T17:27:56
| 2019-03-05T17:27:56
| null |
UTF-8
|
Python
| false
| false
| 9,792
|
py
|
import logging
from google.appengine.ext import db, search
from google.appengine.api import users
from katapult.log import LoggerFactory
from katapult.models import entity_has_property, IdGenerator
from antonym.core import IllegalArgumentException, NotFoundException
def strict_key_lookup():
"""
decorator to return single entity for single key-like param, or fail.
keywords:
return_none - True if method should return none instead of raising NotFoundException (defaults to False)
raises:
NotFoundException
"""
def func_wrapper(f):
def args_wrapper(*args, **kw):
return_none = kw.pop("return_none", False)
cls = args[0]
key_arg = args[1]
entities = f(*args, **kw)
if not entities:
if return_none:
result = None
else:
raise NotFoundException("%s %s" % (cls.__name__, key_arg))
else:
result = entities
return result
return args_wrapper
return func_wrapper
def single_result_query():
""" decorator enforces that query returned by wrapped method returns only one result """
def func_wrapper(f):
def args_wrapper(*args, **kw):
return_none = kw.pop("return_none", False)
cls = args[0]
q = f(*args, **kw)
q_count = q.count()
result = None
if not q_count:
if not return_none:
raise NotFoundException("%s query" % cls.__name__)
elif q_count > 1:
raise DuplicateDataException("%s query" % cls.__name__)
else:
result = q.fetch(1)[0]
return result
return args_wrapper
return func_wrapper
class ArtifactSource(db.Model):
name = db.StringProperty(required=True)
@classmethod
@strict_key_lookup()
def get_by_name(cls, name, **kw):
return cls.get_by_key_name(name, **kw)
@classmethod
@strict_key_lookup()
def get_multiple_by_name(cls, *names, **kw):
return cls.get_by_key_name(names, **kw)
@classmethod
def get_or_create(cls, name):
"""
returns:
source key
"""
source = cls.get_by_name(name, return_none=True)
return source.key() if source else cls.create(name)
@classmethod
def create(cls, name):
return cls(key_name=name, name=name).put()
def __repr__(self):
return "%s{name='%s'}" % (self.__class__.__name__, self.name)
class UrlResource(db.Model):
url = db.StringProperty(required=True)
modified = db.DateTimeProperty(required=True, auto_now=True)
source_modified = db.DateTimeProperty()
etag = db.StringProperty()
# TODO: how to create bidirectional references between Feed and UrlResource?
feed = db.ReferenceProperty()
@classmethod
@strict_key_lookup()
def get_by_url(cls, url, **kw):
return cls.get_by_key_name(url)
@classmethod
def create(cls, url, **kw):
return cls(key_name=url, url=url, **kw).put()
@classmethod
def find_latest(cls, **kw):
return cls.all().order("-modified")
@classmethod
def search_by_url(cls, url_regex, **kw):
for u in cls.all().fetch(1000):
if url_regex.search(u.url):
yield u
class Feed(db.Model):
url = db.StringProperty(required=True)
artifact_source = db.ReferenceProperty(ArtifactSource, required=True)
url_resource = db.ReferenceProperty(UrlResource, required=True)
active = db.BooleanProperty(required=True)
@classmethod
@strict_key_lookup()
def get_by_source_name(cls, source_name, **kw):
return cls.get_by_key_name(source_name)
@classmethod
def get_by_url(cls, url, **kw):
return cls.all(**kw).filter("url =", url)
@classmethod
@single_result_query()
def get_by_source(cls, source, **kw):
return cls.all(**kw).filter("artifact_source =", source)
@classmethod
def find_active(cls, **kw):
return cls.all(**kw).filter("active =", True)
@classmethod
def create(cls, source_name, **kw):
return cls(key_name=source_name, **kw).put()
class ArtifactInfo(db.Model):
# identifier. will be the same for matching ArtifactContent instance.
guid = db.StringProperty(required=True)
source = db.ReferenceProperty(ArtifactSource, required=True)
source_name = db.StringProperty(required=True)
content_type = db.StringProperty(required=True)
modified = db.DateTimeProperty(required=True, auto_now_add=True)
modified_by = db.UserProperty(required=True)
content_md5 = db.StringProperty(required=True)
# references the source resource
# TODO: why does artifactinfo_set exist, I see no ReferenceProperties implying its existence
url = db.StringProperty()
url_resource = db.ReferenceProperty(UrlResource, collection_name="artifactinfo_set2")
@classmethod
def create(cls, **kw):
guid = IdGenerator.uuid()
return cls(key_name=guid, guid=guid, **kw).put()
@classmethod
def get_by_guid(cls, guid):
return cls.get_by_key_name(guid)
@classmethod
def find_by_source(cls, source, **kw):
return cls.all(**kw).filter("source =", source)
@classmethod
def find_by_content_md5(cls, md5, **kw):
return cls.all(**kw).filter("content_md5 =", md5)
@classmethod
def find_newer(cls, datetime, **kw):
return cls.all(**kw).filter("modified > ", datetime)
@classmethod
def find_by_source_in_reverse_modified_order(cls, source, **kw):
return cls.all(**kw).filter("source =", source).order("-modified")
@classmethod
def delete_oldest_by_source(cls, source, keep_count, max_delete=500):
keys = cls.find_by_source_in_reverse_modified_order(source, keys_only=True).fetch(max_delete, keep_count)
key_names = [m.name() for m in keys]
db.delete(keys)
return key_names
class ArtifactContent(search.SearchableModel):
# identifier. will be the same for matching ArtifactInfo instance.
guid = db.StringProperty(required=True)
source = db.ReferenceProperty(ArtifactSource, required=True)
source_name = db.StringProperty(required=True)
info = db.ReferenceProperty(ArtifactInfo, required=True)
body = db.TextProperty(required=True)
# TODO: make required
modified = db.DateTimeProperty(auto_now_add=True)
@classmethod
def create(cls, guid, **kw):
return cls(key_name=guid, guid=guid, **kw).put()
@classmethod
def get_by_guid(cls, guid):
return cls.get_by_key_name(guid)
@classmethod
def find_by_source(cls, source, **kw):
return cls.all().filter("source =", source)
@classmethod
def find_by_source_in_reverse_modified_order(cls, source, **kw):
return cls.all().filter("source =", source).order("-modified")
@classmethod
def delete_oldest_by_source(cls, source, keep_count, pre_call=None, max_delete=500):
models = cls.find_by_source_in_reverse_modified_order(source).fetch(max_delete, keep_count)
key_names = []
for m in models:
try:
key_name = m.key().name()
if pre_call:
pre_call(m)
m.delete()
key_names.append(key_name)
except Exception, e:
logging.error(e)
return key_names
def __repr__(self):
return "%s(guid=%s, source=%s, body=%s)" % \
(self.__class__.__name__, self.guid, self.source_name, self.body)
class TwitterResponse(db.Model):
MENTION = 'mention'
DIRECT = 'direct'
RETWEET = 'retweet'
# TODO: are there conflicts between direct message ids and public status ids?
# twitter ids
message_id = db.StringProperty(required=True)
response_id = db.StringProperty(required=True)
# twitter user
user = db.StringProperty(required=True)
# can't be required, since this was added for retweets
tweet_type = db.StringProperty(set([MENTION, DIRECT, RETWEET]))
timestamp = db.DateTimeProperty(required=True, auto_now_add=True)
@classmethod
def get_by_message_id(cls, message_id):
return cls.get_by_key_name(message_id)
@classmethod
def create(cls, message_id, **kw):
return cls(key_name=message_id, message_id=message_id, **kw).put()
@classmethod
def find_latest(cls, **kw):
return cls.all().order("-timestamp")
class Configuration(db.Model):
twitter_access_token = db.StringProperty()
twitter_oauth_enabled = db.StringProperty()
is_tweeting = db.StringProperty()
twitter_read_only = db.StringProperty(default="1")
@classmethod
def _key_name(cls):
return cls.__name__
@classmethod
def get(cls):
return cls.get_by_key_name(cls._key_name())
@classmethod
def get_or_create(cls):
c = cls.get()
if not c:
c = cls._new()
c.put()
return c
@classmethod
def _new(cls):
return cls(key_name=cls._key_name())
@classmethod
def update(cls, **kw):
entity = cls.get()
if not entity:
entity = cls._new()
defined_props = entity.properties()
for k, v in kw.iteritems():
logging.info("%s %s=%s" % (cls._key_name(), k, v))
if not k in defined_props:
raise IllegalArgumentException("invalid field: %s" % k)
setattr(entity, k, v)
return entity.put()
|
[
"mhawthorne@gmail.com"
] |
mhawthorne@gmail.com
|
2f81c857ad70cb625554c4685c89572ec852b616
|
e79fcba3028185673337b657d42d104249a936ab
|
/main_keyword_extraction.py
|
1a895944ece983c77b3b9dbfe6a4d39340506965
|
[] |
no_license
|
NusretOzates/TransformerFromTheGround
|
a7701438105bf8261589d49108f4b89a6774a2bc
|
a3b6f194ed594742613d95a0c306218cd877db96
|
refs/heads/master
| 2023-04-19T13:14:00.092586
| 2021-05-06T19:26:25
| 2021-05-06T19:26:25
| 364,676,410
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 11,174
|
py
|
### This is a deprecated file, to see nice example look at the main_tr_to_en.py file!
import tensorflow as tf
import time
from tokenizers import BertWordPieceTokenizer
from transformers import T5TokenizerFast
from learning_scheduler import CustomScheduler
from models.transformer import Transformer
from utilities import filter_max_length, loss_function, accuracy_function
BUFFER_SIZE = 5000
BATCH_SIZE = 32
EPOCH = 5
# Hyperparameters
num_layers = 8
d_model = 512
dff = 512
num_heads = 8
dropout_rate = 0.2
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
tf.compat.v1.InteractiveSession(config=config)
print("Loading data")
import pandas as pd
df = pd.read_json('data/sikayetvar.jsonl', lines=True, encoding='utf8')
df['keywords'] = df['keywords'].apply(lambda x: ','.join(x))
df = df.sort_values(by='text', key=lambda x: x.str.len())
ds = tf.data.Dataset.from_tensor_slices((df['text'].to_numpy(), df['keywords'].to_numpy()))
cardinality = tf.data.experimental.cardinality(ds).numpy()
print('Create the Tokenizer')
tokenizer = BertWordPieceTokenizer('turkish-tokenizer-vocab.txt', clean_text=False, lowercase=False)
print(tokenizer.encode('merhaba ben nusret').tokens)
def encode(tr, en):
tr_text = tf.compat.as_text(tr.numpy()).lower()
en_text = tf.compat.as_text(en.numpy()).lower()
tr = tokenizer.encode(tr_text).ids
en = tokenizer.encode(en_text).ids
tr = tf.constant(tr, dtype=tf.int32)
en = tf.constant(en, dtype=tf.int32)
return tr, en
def tf_encode(tr, en):
result_tr, result_en = tf.py_function(encode, [tr, en], [tf.int32, tf.int32])
result_tr.set_shape([None])
result_en.set_shape([None])
return result_tr, result_en
print('Encode Dataset')
test_dataset = ds.take(2000)
train_dataset = ds.skip(2000)
train_dataset = train_dataset.map(tf_encode, num_parallel_calls=tf.data.AUTOTUNE)
train_dataset = train_dataset.filter(filter_max_length)
train_dataset = train_dataset.cache()
train_dataset = train_dataset.padded_batch(BATCH_SIZE)
train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)
print('encode val dataset')
val_dataset = test_dataset.map(tf_encode, num_parallel_calls=tf.data.AUTOTUNE)
val_dataset = val_dataset.filter(filter_max_length).padded_batch(BATCH_SIZE)
# i = 0
# for (batch, (inp, tar)) in enumerate(train_dataset):
# i+=1
#
# print(i)
print('Create Scheduler and Optimizer etc.')
learning_rate = CustomScheduler(d_model)
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9)
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=tf.keras.losses.Reduction.NONE)
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.Mean(name='train_accuracy')
val_loss = tf.keras.metrics.Mean(name='val_loss')
val_accuracy = tf.keras.metrics.Mean(name='val_accuracy')
vocab_size = tokenizer.get_vocab_size()
print('Create Transformer model')
transformer = Transformer(num_layers, d_model, num_heads, dff,
vocab_size, vocab_size,
pe_input=vocab_size,
pe_target=vocab_size,
rate=dropout_rate)
inputs = tf.keras.Input(shape=(1, None), batch_size=BATCH_SIZE, name='inputs')
targets = tf.keras.Input(shape=(1, None), batch_size=BATCH_SIZE, name='targets')
preds, tar_real = Transformer(num_layers, d_model, num_heads, dff,
vocab_size, vocab_size,
pe_input=vocab_size,
pe_target=vocab_size,
rate=dropout_rate)([inputs, targets])
model = tf.keras.Model(inputs=[inputs, targets], outputs=[preds, tar_real])
model.compile(optimizer=optimizer, loss=loss_object, metrics=['accuracy'], run_eagerly=True)
model.fit(x=train_dataset, validation_data=val_dataset)
# inp = tf.convert_to_tensor([[2, 44, 22, 66, 77, 3]], dtype=tf.int32)
# tar_inp = tf.convert_to_tensor([[2]], dtype=tf.int32)
#
# print(transformer((inp, tar_inp), training=False))
# print(transformer.summary())
# transformer.save('saved_tf', save_format='tf')
# print('==='*35)
# model = tf.keras.models.load_model('saved_tf')
# print(model((inp, tar_inp), training=False))
checkpoint_path = './checkpoints/train'
ckpt = tf.train.Checkpoint(transformer=transformer, optimizer=optimizer)
# ckpt = tf.train.Checkpoint(transformer=model, optimizer=optimizer)
ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5)
# if ckpt_manager.latest_checkpoint:
# ckpt.restore(ckpt_manager.latest_checkpoint)
# print('Latest Checkpoint restored!!')
"""
The @tf.function trace-compiles train_step into a TF graph for faster execution.
The function specialized to the precise shape of the argument tensors. To avoid
re-tracing due to the variable sequence lengths or variable batch sizes (the last
batch is smaller), use input_signature to specify more generic shape
"""
train_step_signature = [
tf.TensorSpec(shape=(None, None), dtype=tf.int32),
tf.TensorSpec(shape=(None, None), dtype=tf.int32)
]
@tf.function(input_signature=train_step_signature)
def train_step(inp, tar):
with tf.GradientTape() as tape:
preds, tar_real = transformer([inp, tar], training=True, mask=None)
loss = loss_function(tar_real, preds, loss_object)
gradients = tape.gradient(loss, transformer.trainable_variables)
optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))
# preds, tar_real, _ = model([inp, tar])
# loss = loss_function(tar_real, preds, loss_object)
# gradients = tape.gradient(loss, model.trainable_variables)
# optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(accuracy_function(tar_real, preds))
@tf.function(input_signature=train_step_signature)
def evaluate(inp, tar):
preds, tar_real = transformer([inp, tar], True)
loss = loss_function(tar_real, preds, loss_object)
val_loss(loss)
val_accuracy(accuracy_function(tar_real, preds))
print('Begin Training')
for epoch in range(EPOCH):
start = time.time()
train_loss.reset_states()
train_accuracy.reset_states()
val_loss.reset_states()
val_accuracy.reset_states()
for (batch, (inp, tar)) in enumerate(train_dataset):
train_step(inp, tar)
if batch % 200 == 0:
print('Epoch {} Batch {} Loss {:.4f} Accuracy {:.4f}'.format(
epoch + 1, batch, train_loss.result(), train_accuracy.result()))
if (epoch + 1) % 1 == 0:
ckpt_save_path = ckpt_manager.save()
print('Saving checkpoint for epoch {} at {}'.format(epoch + 1,
ckpt_save_path))
print('Epoch {} Loss {:.4f} Accuracy {:.4f}'.format(epoch + 1,
train_loss.result(),
train_accuracy.result()))
# print('Time taken for 1 epoch: {} secs\n'.format(time.time() - start))
# Add validation code here!
for (batch, (inp, tar)) in enumerate(val_dataset):
evaluate(inp, tar)
print('-' * 35)
print('Validation Epoch {} Loss {:.4f} Accuracy {:.4f}'.format(epoch + 1,
val_loss.result(),
val_accuracy.result()))
print('-' * 35)
transformer.summary()
transformer.save('saved_tf', save_format='tf')
# for sentence, prediction in val_dataset.take(5):
# sentence_text = tokenizer.decode(sentence.numpy().tolist()[0], skip_special_tokens=False)
# end = tf.convert_to_tensor([tokenizer.token_to_id('[SEP]')], dtype=tf.int64)
# output = tf.convert_to_tensor([tokenizer.token_to_id('[CLS]')], dtype=tf.int64)
# output = tf.expand_dims(output, 0)
# encoder_input = sentence
# for i in range(20):
# enc_padding_mask, combined_mask, dec_padding_mask = create_masks(
# encoder_input, output)
#
# # predictions.shape == (batch_size, seq_len, vocab_size)
# predictions, attention_weights = transformer(encoder_input,
# output,
# False,
# enc_padding_mask,
# combined_mask,
# dec_padding_mask)
#
# # select the last word from the seq_len dimension
# predictions = predictions[:, -1:, :] # (batch_size, 1, vocab_size)
#
# predicted_id = tf.argmax(predictions, axis=-1)
#
# # concatentate the predicted_id to the output which is given to the decoder
# # as its input.
# output = tf.concat([output, predicted_id], axis=-1)
#
# # return the result if the predicted_id is equal to the end token
# if predicted_id == end:
# break
#
# tokens = output.numpy().tolist()[0]
# text = tokenizer.decode(tokens) # shape: ()
# # print(output)
# print('text: ')
# print(sentence_text)
# print('prediction:')
# print(text)
# print('real value')
# real = prediction.numpy().tolist()[0]
# real = tokenizer.decode(real)
# print(real)
#
# # tokens = tokenizer_keyword.lookup(output.numpy().tolist())[0]
# #
# # print(tokens)
# as the target is english, the first word to the transformer should be the
# english start token.
# start, end = tf.convert_to_tensor([tokenizer_keyword.vocab_size], dtype=tf.int64), tf.convert_to_tensor(
# [tokenizer_keyword.vocab_size + 1], dtype=tf.int64)
# output = start
# output = tf.expand_dims(output, 0)
#
# for i in range(20):
# enc_padding_mask, combined_mask, dec_padding_mask = create_masks(
# encoder_input, output)
#
# # predictions.shape == (batch_size, seq_len, vocab_size)
# predictions, attention_weights = transformer(encoder_input,
# output,
# False,
# enc_padding_mask,
# combined_mask,
# dec_padding_mask)
#
# # select the last word from the seq_len dimension
# predictions = predictions[:, -1:, :] # (batch_size, 1, vocab_size)
#
# predicted_id = tf.argmax(predictions, axis=-1)
#
# # concatentate the predicted_id to the output which is given to the decoder
# # as its input.
# output = tf.concat([output, predicted_id], axis=-1)
#
# # return the result if the predicted_id is equal to the end token
# if predicted_id == end:
# break
#
# # output.shape (1, tokens)
# tokens = output.numpy().tolist()[0][1:-1]
# text = tokenizer_keyword.decode(tokens) # shape: ()
# print(output)
# print(text)
# tokens = tokenizer_keyword.lookup(output.numpy().tolist())[0]
#
# print(tokens)
|
[
"nozatespc@gmail.com"
] |
nozatespc@gmail.com
|
757e6d2de18eccf6e3b67a96e24952d1ff951630
|
384a30df1d8ed9c811c6ceed3db42eb3b5fe83ba
|
/configs/ocr/cascade.py
|
aff1403368b70e014a327c5466c89990595aee8d
|
[] |
no_license
|
clw5180/prcv-ocr-detection
|
4a04300d1ebc7605b6f17467c5375464e79a5635
|
7c6187d9cfde3e91de84a25d36f359295e411ce6
|
refs/heads/master
| 2021-04-22T18:34:07.879055
| 2019-11-08T07:50:38
| 2019-11-08T07:50:38
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 7,514
|
py
|
# model settings
model = dict(
type='CascadeRCNN',
num_stages=3,
pretrained='open-mmlab://resnext101_32x4d',
backbone=dict(
type='ResNeXt',
depth=101,
groups=32,
base_width=4,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_scales=[8],
anchor_ratios=[0.5, 1.0, 2.0],
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=[
dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=3,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0,
loss_weight=1.0)),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=3,
target_means=[0., 0., 0., 0.],
target_stds=[0.05, 0.05, 0.1, 0.1],
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0,
loss_weight=1.0)),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=3,
target_means=[0., 0., 0., 0.],
target_stds=[0.033, 0.033, 0.067, 0.067],
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0,
loss_weight=1.0))
])
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)
],
stage_loss_weights=[1, 0.5, 0.25])
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05, nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05), max_per_img=100),
keep_all_stages=False)
# dataset settings
dataset_type = 'CocoDataset'
data_root = '/gruntdata/openImages/ocr/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
imgs_per_gpu=1,
workers_per_gpu=1,
train=dict(
type=dataset_type,
ann_file=data_root + 'OCR-train-publish-v2/train.json',
img_prefix=data_root + 'OCR-train-publish-v2/images_labels/images',
img_scale=[(1800, 1400), (1800, 1300), (1800, 1200)],
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0.5,
with_mask=False,
with_crowd=True,
with_label=True),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_crowd=True,
with_label=True),
test=dict(
type=dataset_type,
ann_file=data_root + 'val.json',
img_prefix=data_root + 'val_images',
img_scale=[(2000, 1800), (2000, 1700), (2000, 1600), (1800, 1500), (1800, 1400)],
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=1,
with_mask=False,
with_label=False,
test_mode=True))
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[16, 22])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 24
dist_params = dict(backend='nccl', port='2019')
log_level = 'INFO'
work_dir = '/gruntdata/openImages/ocr/models/cascade_rcnn_x101_32x4d_fpn_1x'
load_from = '/gruntdata/openImages/pretrained/cascade_rcnn_x101_32x4d_fpn_2x_20181218-28f73c4c.pth'
resume_from = None
workflow = [('train', 1)]
|
[
"hope@peterzhangdeMacBook-Pro.local"
] |
hope@peterzhangdeMacBook-Pro.local
|
7f5f88e7d894c4c6be190b9fd4c1111002cfb9fb
|
3e9b9c0257f7b009aa37dfc75524333ba6edc44e
|
/src-Webpage/old/main_old.py
|
6aa222c8dd5d205ca7791a5fd3452b784a322b45
|
[] |
no_license
|
jaguila/councilmatic
|
dcf461b077194a1be04310ec2ef575aa95e71c46
|
5b00aa1f704ed3db866ee5039c87f13efd7dd915
|
refs/heads/main
| 2023-03-09T18:33:04.124110
| 2021-02-24T01:07:31
| 2021-02-24T01:07:31
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 9,874
|
py
|
# THIS IS NO LONGER USED IT IS FOR REFERENCE
#
# This program creates a web page
# Create by Howard Matis for OpenOakland - October 19, 2018
#
# Takes data scraped from Oakland Legistar web page - https://oakland.legistar.com/Calendar.aspx
#
import csv
from datetime import datetime, timedelta
import shutil
from create_html import create_html
import os
def dateLessThanEqual(date1, date2): # Compare whether deadline has passed
datetime1 = datetime.strptime(date1, '%m/%d/%Y')
datetime2 = datetime.strptime(date2, '%m/%d/%Y')
return datetime1 <= datetime2
def read_csvfile(datafile, search_string, f2):
data = list(csv.reader(open(datafile, encoding="utf-8"), delimiter=',', quotechar='"', quoting=csv.QUOTE_ALL,
skipinitialspace=True))
numrows = len(data)
# numcolumns = len(data[0])
citycouncil = search_string
https = "https://"
for i in range(numrows):
if len(data[i][:]) >= 9:
meeting = data[i][0]
meeting = meeting.replace(" and ", " & ") # must do this because non-standardization of Oakland
if citycouncil in meeting:
meeting_video = data[i][8]
meeting_date = data[i][1]
meeting_time = data[i][3]
meeting_room = data[i][4]
meeting_agenda = data[i][6]
meeting_minutes = data[i][7]
ecomment = data[i][9]
if https in meeting_video:
link = meeting_video
link_text = "Click for Video Minutes and Agenda"
elif https in meeting_minutes:
link = meeting_minutes
link_text = "Click for Minutes"
elif https in meeting_agenda:
link = meeting_agenda
link_text = "Click for Agenda"
else:
link = 'none'
link_text = 'none'
present = datetime.now().strftime('%m/%d/%Y')
agenda_deadline = datetime.strptime(meeting_date, '%m/%d/%Y') + timedelta(days=10)
agenda_deadline = agenda_deadline.strftime('%m/%d/%Y')
if dateLessThanEqual(present, meeting_date):
link_text = "Meeting at " + meeting_time + " in the " + meeting_room
write_http_row(f2, meeting_date, link, link_text, ecomment)
elif dateLessThanEqual(agenda_deadline, present):
# 10 days have passed since meeting. Only keep if have video minutes
if link_text == "Click for Video Minutes and Agenda":
# Need video minutes for this length of time
write_http_row(f2, meeting_date, link, link_text, "video")
else:
# print out meeting details in preliminary time
write_http_row(f2, meeting_date, link, link_text, "video")
else:
print("***Error** on line", i) # Error condition
if len(data[i][:]) > 0:
print(data[i][0])
print(' ')
def write_http_row(f2, date, link, message, emessage):
https = "https://"
f2.write("\n")
lineout = "<tr>"
f2.write(lineout + "\n")
lineout = "<td><span class=\nstyle1\n>" + date + "</span></td>"
f2.write(lineout + "\n")
if link == "none":
lineout = '<td>' + message # if no link omit it
elif emessage == "video":
lineout = '<td> <a href="' + link + '" target=\n_top data-toggle="tooltip" title="Open in new page">' \
+ message + "</a>"
else:
lineout = '<td>' + message + " | "'<a href="' + link + '" target=\n_top">' + "Click for agenda</a>"
if https in emessage: # to add e-comment
lineout = lineout + " | " '<a href="' + emessage + '" target=\n_top">' + "Click to comment electronically</a>"
f2.write(lineout + "\n")
lineout = '</td>'
f2.write(lineout + "\n")
lineout = "</tr>"
f2.write(lineout + "\n")
#
# Write out a navigation bar
#
def make_navbar(type, list, year_list, committee_list, loop_type, loop_index, f2):
# write the top of navbar
if type ==1:
url = "template/template_navbar_top.txt"
tooltip = "Select committee of interest"
else:
url = "template/template_navbar_top2.txt"
tooltip = "Select year of interest"
create_html(url, f2) # Create template for HTML page
#
for index, item in enumerate(list):
linenav = '<li class="nav-item">'
f2.write(linenav + "\n")
if loop_type:
year_bar = str(year_list[loop_index]) # Looping over the committees so fixed year
committee_bar = str(index)
else:
year_bar = str(year_list[index]) # Looping over the years so fixed committee
committee_bar = str(loop_index)
urlnavbar = '../' + year_bar + '/committee' + committee_bar + ".html" # looping over years
linenav = '<a class="nav-link" target="_self" href="' + urlnavbar + '" data-toggle="tooltip" title="' \
+ tooltip + '">' + item + '</a>' # Problem may be here
f2.write(linenav + "\n")
f2.write(" </li>" + "\n")
url = "template/template_navbar_bottom.txt"
create_html(url, f2) # Create template for HTML page
f2.write(" " + "\n")
#
# Main program
#
version = "4.0"
print(" ")
print("<------------------Running main.py - Version", version, "------------------>")
committees = ["City Council", "Rules & Legislation", "Public Works", "Life Enrichment", "Public Safety",
"Oakland Redevelopment", "Community & Economic Development", "Finance & Management"]
# Figure out which years to use
earliestYear = 2013 # The earliest year to process minus 1
maxyears = 10 # Maximum number of years to look at
currentYear = datetime.now().year
currentMonth = datetime.now().month
if currentMonth == 12: # Start processing the next year in December
startyear = currentYear + 1
else:
startyear = currentYear
endyear = max(earliestYear, earliestYear - maxyears)
years = []
for i in range(startyear, endyear, -1): # Calculated the years to process
years.append(str(i))
for index_year, year in enumerate(years):
print()
for index, committee in enumerate(committees):
print(year, committee)
outfile = "../website/" + year + "/committee" + str(index) + ".html"
os.makedirs(os.path.dirname(outfile), exist_ok=True)
if index == 0:
save_outfile = outfile # Save the first committee as default
with open(outfile, "w") as f1:
#
# write style section of the web page
url = "template/template_style.txt"
create_html(url, f1) # Create template for HTML page
f1.write(" " + "\n")
#
# write the top section of the web page
url = "template/template_top1.txt"
create_html(url, f1) # Create template for HTML page
f1.write(" " + "\n")
#
f1.write("<tbody> " + "\n") # Needed when use columns for full webpage
# write the sidebar
#
f1.write("<tr>" + "\n") # Needed when use columns for full webpage
#
f1.write('<td style="width: 388px;">' + "\n") # Needed when use columns for full webpage
#
# write the sidebar
url = "temp/dynamic_calendar.txt"
create_html(url, f1) # Create template for HTML page
f1.write(" " + "\n")
#
# write the second top of the web page
url = "template/template_top2.txt"
create_html(url, f1) # Create template for HTML page
f1.write(" " + "\n")
#
loop_committee = True # Loop over committees
loop_index = index_year # Fix the year
make_navbar(1, committees, years, committees, loop_committee, loop_index, f1)
# write the top of the web page
url = "template/template_above_table.txt"
create_html(url, f1) # Create template for HTML page
f1.write(" " + "\n")
line = '<div align="center"><h3>' + committee + " - " + year + '</h3></div>'
f1.write(line)
url = "template/template_table_top.txt"
create_html(url, f1) # Write bottom of header file
f1.write(" " + "\n")
scraper_file = "../website/scraped/year" + str(year) + ".csv"
read_csvfile(scraper_file, committees[index], f1)
# write the bottom of the table
url = "template/template_table_bottom.txt"
create_html(url, f1) # Create template for HTML page
f1.write(" " + "\n")
# create the lower navigation bar
loop_committee = False # Loop over years
loop_index = index # Fix the year
make_navbar(2, years, years, committees, loop_committee, loop_index, f1)
# write the bottom of the web page
url = "template/template_bottom.txt"
create_html(url, f1) # Create template for HTML page
f1.write(" " + "\n")
f1.close() # Close the file
if index ==0:
indexfile = "../website/" + year + "/index.html"
shutil.copyfile(outfile, indexfile)
if years[index_year] == str(currentYear): # Put the main index.html as current year
indexfile = "../website/pc/index.html"
shutil.copyfile(save_outfile, indexfile)
print("Saving ", year, save_outfile, "as default file")
print("<-----------------End of main.py------------------------------->")
quit()
|
[
"hsmatis@gmail.com"
] |
hsmatis@gmail.com
|
bfc341b43e90e607ae4959008f9a5864d4b91510
|
9c6b4fd7e92918a7e9962ad6156b91b0eba0087e
|
/gossip/__init__.py
|
9f920f4b01416c553063c44b4483080553f18fde
|
[] |
no_license
|
schatt/gossip
|
2145e26ddf50e35d060eedd2ea1575e9f3ebe45f
|
2d772125332667b78f1dc001458c764077a2e5b3
|
refs/heads/master
| 2021-01-18T07:41:11.752950
| 2012-11-08T22:18:56
| 2012-11-08T22:18:56
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 23
|
py
|
"""
Gossip module.
"""
|
[
"rudnyh@corp.mail.ru"
] |
rudnyh@corp.mail.ru
|
821dcfad9c455b3d5649a9d49a2739ac928f2005
|
1b1e8e73649ad1eed89556a5d479b0a549354fd5
|
/opennem/db/migrations/versions/12c8cbba29f0_update_mv_facility_all_view.py
|
0cb19d2383f03ce37029805efd331870c6553bbc
|
[
"MIT"
] |
permissive
|
zalihat/opennem
|
3ea8db7246f350fb0eacf8c6078dbffa4fe9aea2
|
0f82e4fc3fd2bcfbf56a2741d89e4228d017dcf3
|
refs/heads/master
| 2023-02-27T15:37:47.206336
| 2021-02-08T07:28:57
| 2021-02-08T07:28:57
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,995
|
py
|
# pylint: disable=no-member
"""
Update mv_facility_all view
Revision ID: 12c8cbba29f0
Revises: 3f6867b6de7e
Create Date: 2021-01-19 17:15:59.557141
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "12c8cbba29f0"
down_revision = "3f6867b6de7e"
branch_labels = None
depends_on = None
stmt_drop = "drop materialized view if exists mv_facility_all cascade;"
stmt = """
create materialized view mv_facility_all as
select
fs.trading_interval,
f.code,
f.fueltech_id,
f.network_id,
f.network_region,
f.interconnector,
f.interconnector_region_to,
date_trunc('day', fs.trading_interval at time zone 'AEST') as ti_day_aest,
date_trunc('month', fs.trading_interval at time zone 'AEST') as ti_month_aest,
date_trunc('day', fs.trading_interval at time zone 'AWST') as ti_day_awst,
date_trunc('month', fs.trading_interval at time zone 'AWST') as ti_month_awst,
max(fs.energy) as energy,
case when avg(bs.price) >= 0 and min(fs.energy) >= 0 then
coalesce(
max(fs.energy) * avg(bs.price),
0.0
)
else 0.0
end as market_value,
case when avg(f.emissions_factor_co2) >= 0 and min(fs.energy) >= 0 then
coalesce(
max(fs.energy) * avg(f.emissions_factor_co2),
0.0
)
else 0.0
end as emissions
from mv_facility_energy_hour fs
left join facility f on fs.facility_code = f.code
left join balancing_summary bs on
bs.trading_interval = fs.trading_interval
and bs.network_id=f.network_id
and bs.network_region = f.network_region
where
f.fueltech_id is not null
group by
1,
f.code,
f.fueltech_id,
f.network_id,
f.network_region,
f.interconnector,
f.interconnector_region_to
order by 1 desc;
"""
def upgrade() -> None:
with op.get_context().autocommit_block():
op.execute(stmt_drop)
op.execute(stmt)
def downgrade() -> None:
op.execute(stmt_drop)
|
[
"git@nikcub.me"
] |
git@nikcub.me
|
157f95fbb9a5d858c93915e607ca89bf51d90eee
|
5eafdf502a7545ba33adedca2692aed7a20d129b
|
/books/migrations/0006_auto_20191201_1446.py
|
3e812a6c3aaf138809e2388a82b89273734d7a40
|
[] |
no_license
|
tsuno1045/TadokuRecord
|
9e28555f34a54b0d01f90526278882b0ed8f40ab
|
8cee1fa3eed39da52120716f2a0fb9aef110b0f7
|
refs/heads/master
| 2021-09-27T00:13:42.315646
| 2020-04-24T17:18:41
| 2020-04-24T17:18:41
| 228,169,711
| 0
| 0
| null | 2021-09-22T18:16:23
| 2019-12-15T10:59:26
|
Python
|
UTF-8
|
Python
| false
| false
| 587
|
py
|
# Generated by Django 2.2.7 on 2019-12-01 05:46
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('books', '0005_auto_20191201_1442'),
]
operations = [
migrations.AddField(
model_name='readingrecord',
name='read_page_count',
field=models.IntegerField(blank=True, null=True),
),
migrations.AddField(
model_name='readingrecord',
name='read_word_count',
field=models.IntegerField(blank=True, null=True),
),
]
|
[
"tsuno1045@gmail.com"
] |
tsuno1045@gmail.com
|
d7f7a0cf28f990fa3f14fef754d51440f5c3f5f2
|
1db9fb289ac9987cd206d3736d2399ed59bebac6
|
/6 Типы данных/6.1 Числовые типы данных: int, float/2.py
|
be9488f6ff24dbb26c3fb8e8b92204e369d1c3d0
|
[] |
no_license
|
vqpv/stepik-course-58852
|
780576c291aad481612d547405acb2bdf85b9feb
|
bcc1afbae4d8f35bc825e6cedb6645a4afa0604c
|
refs/heads/master
| 2023-05-13T07:36:49.331649
| 2021-06-02T20:31:41
| 2021-06-02T20:31:41
| 309,791,060
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 81
|
py
|
s, v1, v2 = float(input()), float(input()), float(input())
print(s / (v1 + v2))
|
[
"raxer93@mail.ru"
] |
raxer93@mail.ru
|
c43e9f244010e00a1d2ac7ef61e8a358e7114137
|
72b77f97876983025eb05a5aa1d6f248a1be3074
|
/nearest_exit_from_entrance_in_maze.py
|
09ca501f24559d8dce1ac7e51885cbd6b539e663
|
[
"Apache-2.0"
] |
permissive
|
erjan/coding_exercises
|
4c6bccb2cdac65ccbc3107a482914275ecd157f7
|
68dac358a6d4dabd41d47dbd4addb2ec50e0ca11
|
refs/heads/master
| 2023-09-02T07:25:30.886175
| 2023-08-27T06:13:06
| 2023-08-27T06:13:06
| 236,281,070
| 5
| 0
|
Apache-2.0
| 2020-05-05T15:08:49
| 2020-01-26T07:32:09
|
Python
|
UTF-8
|
Python
| false
| false
| 3,839
|
py
|
'''
You are given an m x n matrix maze (0-indexed) with empty cells (represented as '.') and walls (represented as '+'). You are also given the entrance of the maze, where entrance = [entrancerow, entrancecol] denotes the row and column of the cell you are initially standing at.
In one step, you can move one cell up, down, left, or right. You cannot step into a cell with a wall, and you cannot step outside the maze. Your goal is to find the nearest exit from the entrance. An exit is defined as an empty cell that is at the border of the maze. The entrance does not count as an exit.
Return the number of steps in the shortest path from the entrance to the nearest exit, or -1 if no such path exists.
'''
class Solution:
def nearestExit(self, maze: List[List[str]], entr: List[int]) -> int:
rows, cols = len(maze), len(maze[0])
deq = deque()
deq.append([entr[0], entr[1], -1])
while deq:
r, c, dist = deq.popleft()
if not (0 <= r < rows and 0 <= c < cols):
if dist > 0:
return dist
continue
if maze[r][c] == '+':
continue
maze[r][c] = '+'
for _r, _c in ((0, 1), (0, -1), (1, 0), (-1, 0)):
deq.append([r + _r, c + _c, dist + 1])
return -1
---------------------------------------------------------------------------------------------------------
class Solution:
def nearestExit(self, maze: List[List[str]], entrance: List[int]) -> int:
q = collections.deque([(*entrance, 0)])
m, n = len(maze), len(maze[0])
maze[entrance[0]][entrance[1]] == '+'
while q:
x, y, c = q.popleft()
if (x == 0 or x == m-1 or y == 0 or y == n-1) and [x, y] != entrance:
return c
for i, j in [(x+_x, y+_y) for _x, _y in [(-1, 0), (1, 0), (0, -1), (0, 1)]]:
if 0 <= i < m and 0 <= j < n and maze[i][j] == '.':
maze[i][j] = '+'
q.append((i, j, c + 1))
return -1
----------------------------------------------------------------------------------------------------------------------------------
def nearestExit(self, maze: List[List[str]], entrance: List[int]) -> int:
m, n = len(maze), len(maze[0])
q = [entrance]
vis = {(entrance[0], entrance[1])}
ans = 0
while(q):
l = len(q)
ans += 1
for _ in range(l):
[i, j] = q.pop(0)
if((i == 0 or i == m-1 or j == 0 or j == n-1) and [i, j] != entrance):
return ans-1
for x, y in [(1, 0), (-1, 0), (0, -1), (0, 1)]:
if(0<=i+x<m and 0<=j+y<n and maze[i+x][j+y] == "." and (i+x, j+y) not in vis):
vis.add((i+x, j+y))
q.append([i+x, j+y])
return -1
--------------------------------------------------------------------------------------------------------------------
class Solution:
def nearestExit(self, maze: List[List[str]], entrance: List[int]) -> int:
directions = [[1, 0], [-1, 0], [0, 1], [0, -1]]
rows = len(maze)
cols = len(maze[0])
result = -1
q = collections.deque()
q.append((entrance[0], entrance[1], 0))
alreadyVisited = set()
alreadyVisited.add((entrance[0], entrance[1]))
while q:
r, c, step = q.popleft()
if (r == 0 or c == 0 or r == rows-1 or c == cols-1) and [r,c] != entrance:
return step
step += 1
for dr, dc in directions:
if (r + dr) in range(rows) and (c + dc) in range(cols) and \
maze[r + dr][c + dc] == '.' and (r + dr, c + dc) not in alreadyVisited:
alreadyVisited.add((r + dr, c + dc))
q.append((r + dr, c + dc, step))
return -1
|
[
"noreply@github.com"
] |
erjan.noreply@github.com
|
16e30da4b6f91ca32176574c0adce3cd21cfc776
|
b7e5f03fa633a6a2d86fec39c4afee5186bb9b42
|
/scripts/doug
|
a99efc64846eac4eab0f3da893704e199c64aabe
|
[] |
no_license
|
moretea/doug
|
858a59914d5f13120ab462224a4c0ee4f091146a
|
1ff4acdba0e6d4167f9a79c6790cc4ba4d2b56b2
|
refs/heads/master
| 2021-05-09T04:27:49.033901
| 2018-01-28T16:12:40
| 2018-01-28T16:12:40
| 119,274,543
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 240
|
#!/usr/bin/env python
from gui.application import Application
from gui import Gtk
# Initialize application
Application()
# Make CTRL+C work in GTK
import signal
signal.signal(signal.SIGINT, signal.SIG_DFL)
# Run GTK main loop
Gtk.main()
|
[
"maarten@moretea.nl"
] |
maarten@moretea.nl
|
|
71dce96d87c61d035b1a2b7516eb19663198d0ea
|
5855d7432fecdf58341d8410ed34a1ccf13b516c
|
/algorithms/flat.py
|
225b784b060166bc71d6b626eaafed988ce326f6
|
[] |
no_license
|
zyz10086/leetcode
|
376fc648b218e869e1213dbbbb12a07751cb35a3
|
2358c417d4d31739e79e965e1a0093db9e7a6b1b
|
refs/heads/master
| 2022-10-01T10:20:44.518761
| 2020-06-07T12:48:36
| 2020-06-07T12:48:36
| 259,667,994
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,054
|
py
|
# 给你们个题玩玩:
# 写一个flat函数,拍平一个数组,数组内可能有多重嵌套,例如这种:
# [1,"2",[3,"4",[5,undefined,[null,[1,[2,3,[{}]]]]],null]]
# 拍平后返回
# [1, "2", 3, "4", 5, undefined, null, 1, 2, 3, {}, null]
# 要求不能使用语言提供的原生flat方法,不能使用第三方库,不能使用递归
# [1,2,[3,[4]],5]
def flat(datas):
if(not datas):
return datas
res,stack = [],[]
tmp,tmp_index = datas,0
tmp_len = len(tmp)
while(tmp_index<tmp_len):
if(type(tmp[tmp_index])==list):
if(tmp_index!=tmp_len-1):
stack.append(tmp)
stack.append(tmp_index)
tmp,tmp_index = tmp[tmp_index],0
tmp_len = len(tmp)
continue
res.append(tmp[tmp_index])
if(tmp_index == tmp_len-1 and len(stack) ):
tmp_index,tmp = stack.pop(),stack.pop()
tmp_len = len(tmp)
tmp_index += 1
return res
print(flat([1,[[2],[3],[1,[2,[3]]]]]))
|
[
"693076854@qq.com"
] |
693076854@qq.com
|
f19b5bd0d68a0ea60efb0252df8167f299652108
|
5da6e6cc655421038efc1e4fcb4bd28b36055a11
|
/Python/cadenas.py
|
2fd8a725981e869e95f05a88bcea5e7359f2ccd4
|
[] |
no_license
|
rmlu20xx/MiPrimerRepositorio
|
2ea8b408f927fbb9fa4e97d07d50b8b9a1d68214
|
9512e8211fb8d47b1da6c022553e5218184b1ab0
|
refs/heads/master
| 2023-07-20T05:47:53.120660
| 2021-09-07T01:31:28
| 2021-09-07T01:31:28
| 403,801,718
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,305
|
py
|
#***************************************************************************************************************************************************
#***************************************************************************************************************************************************
# ANALIZANDO CADENAS
#***************************************************************************************************************************************************
cadena ="Esto es una prueba"
lista=list(cadena)
print('Convierte una cadena en una lista de caracteres con la funcion "list"',lista)
#['E', 's', 't', 'o', ' ', 'e', 's', ' ', 'u', 'n', 'a', ' ', 'p', 'r', 'u', 'e', 'b', 'a']
lista=cadena.split()
print('Convierte una cadena en una lista de palabras con la funcion "split"',lista)
#['Esto', 'es', 'una', 'prueba']
limite='-'
lista=limite.join(lista)
print('Convierte una cadena en otra cadena y le agrega un delimitador con la funcion "join" ',lista)
#Esto-es-una-prueba
cadena=cadena.upper()
print("Imprime la cadena toda en mayuscula",cadena)
# capturar el nombre de usuario de una direccion de internet
dato='From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
espacio=dato.find(' ')
arroba_pos = dato.find('@')
nombre_usuario=dato[espacio+1:arroba_pos]
print(nombre_usuario)
|
[
"rmlu20xx@gmail.com"
] |
rmlu20xx@gmail.com
|
79c023c03992644798a3cfc41a250db969961b86
|
5cb29d1ddd97f5836ed407bb82ee340c3c49169f
|
/py/examples/client_send_request.py
|
155452b1687a5f30a206409fb40438ca499ba0ed
|
[
"MIT"
] |
permissive
|
Mee6/loqui
|
6de1ce7a192303d60dd165199ac9f870e4a83406
|
34c7d1c016ed646589068536987a04c4cdae0696
|
refs/heads/master
| 2020-05-07T09:08:04.082314
| 2019-04-09T12:40:26
| 2019-04-09T12:40:26
| 180,363,712
| 2
| 1
|
MIT
| 2019-04-09T12:39:11
| 2019-04-09T12:39:11
| null |
UTF-8
|
Python
| false
| false
| 125
|
py
|
from loqui.client import LoquiClient
client = LoquiClient(('localhost', 4001))
print len(client.send_request('hello world'))
|
[
"me@jh.gg"
] |
me@jh.gg
|
6304c7501303e467156ad1a4ee7a4123d27ec28a
|
642401fc5ed408de3d9cf44cd66a73ed4937415f
|
/Scraping/models.py
|
c4e060b11dafa81f4f6c708fc14bf10d7bfddff2
|
[] |
no_license
|
cacamacho6/Scraping
|
632df28848950aef358b3e6966fb3d4e5377e503
|
0a9403775b84cec1c21677209c1cf1d61e78986c
|
refs/heads/master
| 2020-12-11T02:43:06.500216
| 2020-01-14T06:33:48
| 2020-01-14T06:33:48
| 233,770,550
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 239
|
py
|
from django.conf import settings
from django.db import models
class Producto(models.Model):
titulo = models.CharField()
precio = models.CharField()
envio = models.CharField()
def _str_(self):
return self.titulo
|
[
"carloscamacho09@hotmail.com"
] |
carloscamacho09@hotmail.com
|
0d0aeca39228f1876ddd1e96fff08303e582462d
|
feb4dbe7f57b617151bf2e85f202ba423955513a
|
/hdv/redfish/conftest.py
|
b1d8d5f0ea7324d8b9efd34ff74153d3794d2d9d
|
[
"Apache-2.0",
"CC-BY-4.0"
] |
permissive
|
opnfv/cirv-hdv
|
6d91a0c19c9f970dd1e991718b0f0ef957fd71f7
|
2d145d4f1fd231def2c9d52a71267031b938c0ac
|
refs/heads/master
| 2023-01-23T12:27:33.545466
| 2020-11-18T03:21:10
| 2020-11-18T03:21:10
| 293,824,124
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 745
|
py
|
import pytest
from hdv_redfish import read_yaml, parse_config
def pytest_addoption(parser):
parser.addoption(
"--cases", action="store", default="./conf/cases.yaml", help="case yaml file"
)
parser.addoption(
"--config", action="store", default="./conf/pdf2.0.json", help="given global config.yaml file"
)
def pytest_generate_tests(metafunc):
if "config_list" in metafunc.fixturenames:
config_file = metafunc.config.getoption("--config")
metafunc.parametrize("config_list", parse_config(config_file), indirect=True, scope='session')
if "case" in metafunc.fixturenames:
cases_file = metafunc.config.getoption("--cases")
metafunc.parametrize("case", read_yaml(cases_file))
|
[
"shivam828787@gmail.com"
] |
shivam828787@gmail.com
|
675455d54ade58bd3490f43bcfb4faa5e0edaf0b
|
f829b3c47acd05a48991dfd28431a2628cf7d62c
|
/blog/views.py
|
1d94385e891151bf588f57f119b128c762308970
|
[] |
no_license
|
jamcoy/Django-blog
|
18d6831969ee36e4ebeca5d1e2f0231ae155a175
|
40a631f9375a2b711d4142d9533002c1c8d2bcbd
|
refs/heads/master
| 2020-07-12T11:51:17.386761
| 2016-12-02T13:24:08
| 2016-12-02T13:24:08
| 73,909,077
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,331
|
py
|
from django.utils import timezone
from .models import Post
from django.shortcuts import render, get_object_or_404
from .forms import BlogPostForm
from django.shortcuts import redirect
def post_detail(request, db_id):
"""
Create a view that return a single
Post object based on the post ID and
and render it to the 'postdetail.html'
template. Or return a 404 error if the
post is not found
"""
post = get_object_or_404(Post, pk=db_id) # pk is primary key
post.views += 1 # clock up the number of post views
post.save()
return render(request, "blog/postdetail.html", {'post': post})
def post_list(request):
"""
Create a view that will return a
list of Posts that were published prior to'now'
and render them to the 'blogposts.html' template
"""
posts = Post.objects.filter(published_date__lte=timezone.now()
).order_by('-published_date')
return render(request, "blog/blogposts.html", {'posts': posts})
def top_posts(request):
"""
Get list of posts ordered by number of views
Return top 5. Render to blogposts.html
"""
posts = Post.objects.filter(published_date__lte=timezone.now()
).order_by('-views')[:5]
return render(request, "blog/blogposts.html", {'posts': posts})
def new_post(request):
if request.method == "POST":
form = BlogPostForm(request.POST, request.FILES)
if form.is_valid():
post = form.save(commit=False)
post.author = request.user
post.published_date = timezone.now()
post.save()
return redirect(post_detail, post.pk)
else:
form = BlogPostForm()
return render(request, 'blog/blogpostform.html', {'form': form})
def edit_post(request, db_id):
post = get_object_or_404(Post, pk=db_id)
if request.method == "POST":
form = BlogPostForm(request.POST, request.FILES, instance=post)
if form.is_valid():
post = form.save(commit=False)
post.author = request.user
post.published_date = timezone.now()
post.save()
return redirect(post_detail, post.pk)
else:
form = BlogPostForm(instance=post)
return render(request, 'blog/blogpostform.html', {'form': form})
|
[
"james@coynemail.net"
] |
james@coynemail.net
|
af5289946025cce438a0d5c1c4207ff8809d349e
|
8a6db656031a7225c9a27ec830f93fff12b612be
|
/tests/settings.py
|
a3a1ce02052c9513de957f3eb438d10e70424527
|
[
"BSD-3-Clause"
] |
permissive
|
arneb/django-campaign
|
aa149bb5724bf6e2a1f7024d2402e09d95418951
|
181d96d1af31f60f426b64ea79fc9acd6608a001
|
refs/heads/master
| 2023-07-07T12:55:51.237537
| 2023-06-30T13:26:34
| 2023-06-30T13:26:34
| 8,314,115
| 57
| 27
|
BSD-3-Clause
| 2023-08-16T09:28:43
| 2013-02-20T14:00:23
|
Python
|
UTF-8
|
Python
| false
| false
| 2,402
|
py
|
import os
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'only-for-the-test-suite'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = []
SITE_ID = 1
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'django.contrib.sites',
'campaign',
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'wsgi.application'
# Database
# https://docs.djangoproject.com/en/2.2/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
}
}
# Password validation
# https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = []
# Internationalization
# https://docs.djangoproject.com/en/2.2/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/2.2/howto/static-files/
STATIC_URL = '/static/'
|
[
"mail@arnebrodowski.de"
] |
mail@arnebrodowski.de
|
f579e96041e0b2e5e50434649ec9ccf0fc33072b
|
397ee3067ccd999bd1dc7d3e2779961d9dfb92f0
|
/backbone/MNISTMLP_OC.py
|
7ad88caa644e96d2f7b9aebe3e860f6b1385abc5
|
[] |
no_license
|
tq-zhang/ILCOC
|
afd491cf8c5c070335494fb32710ffba0a2aba28
|
14de25e22f975d88fcb408416a86a26ba8e8d71f
|
refs/heads/main
| 2023-08-02T20:37:45.323567
| 2021-09-21T11:49:00
| 2021-09-21T11:49:00
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,023
|
py
|
# Copyright 2020-present, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from backbone import xavier, num_flat_features, He_init
class MNISTMLP_OC(nn.Module):
"""
Network composed of two hidden layers, each containing 100 ReLU activations.
Designed for the MNIST dataset.
"""
def __init__(self, input_size: int, embedding_dim: int, output_size: int) -> None:
"""
Instantiates the layers of the network.
:param input_size: the size of the input data
:param output_size: the size of the output
"""
super(MNISTMLP_OC, self).__init__()
self.input_size = input_size
self.embedding_dim = embedding_dim
self.output_size = output_size
self.fc1 = nn.Linear(self.input_size, 128, bias=False)
self.fc2 = nn.Linear(128, 256, bias=False)
self.fc3 = nn.Linear(256, self.embedding_dim, bias=False)
self._features = nn.Sequential(
self.fc1,
nn.ReLU(),
self.fc2,
nn.ReLU(),
self.fc3,
)
self.classifier = nn.Linear(self.embedding_dim, self.output_size, bias=False)
self.net = nn.Sequential(
self._features,
nn.ReLU(),
self.classifier)
self.reset_parameters()
def classify(self, x: torch.Tensor) -> torch.Tensor:
"""
Returns the non-activated output of the second-last layer.
:param x: input tensor (batch_size, input_size)
:return: output tensor (100)
"""
x = x.view(-1, num_flat_features(x))
return self.net(x)
def reset_parameters(self) -> None:
"""
Calls the Xavier parameter initialization function.
"""
self.net.apply(He_init)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Compute a forward pass.
:param x: input tensor (batch_size, input_size)
:return: output tensor (output_size)
"""
x = x.view(-1, num_flat_features(x))
return self._features(x)
def get_params(self) -> torch.Tensor:
"""
Returns all the parameters concatenated in a single tensor.
:return: parameters tensor (input_size * 100 + 100 + 100 * 100 + 100 +
+ 100 * output_size + output_size)
"""
params = []
for pp in list(self.parameters()):
params.append(pp.view(-1))
return torch.cat(params)
def set_params(self, new_params: torch.Tensor) -> None:
"""
Sets the parameters to a given value.
:param new_params: concatenated values to be set (input_size * 100
+ 100 + 100 * 100 + 100 + 100 * output_size + output_size)
"""
assert new_params.size() == self.get_params().size()
progress = 0
for pp in list(self.parameters()):
cand_params = new_params[progress: progress +
torch.tensor(pp.size()).prod()].view(pp.size())
progress += torch.tensor(pp.size()).prod()
pp.data = cand_params
def get_grads(self) -> torch.Tensor:
"""
Returns all the gradients concatenated in a single tensor.
:return: gradients tensor (input_size * 100 + 100 + 100 * 100 + 100 +
+ 100 * output_size + output_size)
"""
grads = []
for pp in list(self.parameters()):
grads.append(pp.grad.view(-1))
return torch.cat(grads)
def get_grads_list(self):
"""
Returns a list containing the gradients (a tensor for each layer).
:return: gradients list
"""
grads = []
for pp in list(self.parameters()):
grads.append(pp.grad.view(-1))
return grads
|
[
"swjyouxiang@126.com"
] |
swjyouxiang@126.com
|
a89b19068362d568996f1248eb937e7a3f09c0d2
|
5e358c2f37e8e2b329b412bc153377d3b62e916d
|
/tests/test_doctest.py
|
9344c70d5723c0e4646249977ad200bbbc955fb3
|
[
"MIT"
] |
permissive
|
miketheman/pytest-socket
|
3f81470c2dd12f9769a98482013130aa4d6c4ee7
|
bdf012cffdfd6606dfac504fa033a3ca55b374ee
|
refs/heads/main
| 2023-08-07T22:30:32.218725
| 2023-07-31T23:41:04
| 2023-07-31T23:41:04
| 93,013,711
| 233
| 42
|
MIT
| 2023-09-12T00:39:48
| 2017-06-01T03:43:01
|
Python
|
UTF-8
|
Python
| false
| false
| 326
|
py
|
def test_function_with_doctest(testdir):
testdir.makepyfile(
'''
def my_sum(a, b):
"""Sum two values.
>>> my_sum(1, 1)
2
"""
return a + b
'''
)
result = testdir.runpytest("--doctest-modules")
result.assert_outcomes(passed=1)
|
[
"noreply@github.com"
] |
miketheman.noreply@github.com
|
1af00bc3688f5f95b5a75de652d9bcd3650618be
|
36885d07b9a5fa3d805547d99457ccbce7211fea
|
/isprime.py
|
235c68d316a34c64a49fb1649791e29e3f4dd72e
|
[] |
no_license
|
kks18/solutions
|
ee25cc16540cc531bb0f76f525c19ef6be209690
|
c39026acee2c80bdab7f809b385feb82b4a05dc4
|
refs/heads/master
| 2020-04-09T16:41:26.659671
| 2018-12-05T04:39:43
| 2018-12-05T04:39:43
| 160,459,995
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 249
|
py
|
#function definitions
def IsNum(x):
if x % 2 == 0:
print "%d is not a prime number" %x
elif x == 1:
print "1 is a prime number indeed"
else:
print "%s is a prime number" %x
x = input('enter a number')
IsNum(x)
|
[
"kks2018y@gmail.com"
] |
kks2018y@gmail.com
|
a0e99c6c50719741c81822c086a9c47b494cfd24
|
48fff5012b0459f7f7cd3a4374b7c56351461409
|
/_utils/util_evaluate.py
|
344ed1985408f3005cd1a2cf7a8581307e20b9ed
|
[] |
no_license
|
ikesan009/CCSSAV-SpeechEnhancement
|
5bd16fe9b8086691f03d48c8a53a0d2b066e0508
|
5a98db38e70ee4802eb52cac5f8ab18d80cf5be7
|
refs/heads/master
| 2023-03-13T17:59:56.433503
| 2021-03-09T07:17:49
| 2021-03-09T07:17:49
| 345,915,866
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,415
|
py
|
#coding: utf-8
import math
import pickle
import numpy as np
from pypesq import pypesq
from collections import namedtuple
import _utils.data_processor
Sample = namedtuple('Sample', [
'speaker_id',
'video_file_path',
'speech_file_path',
'noise_file_path',
'video_samples',
'mixed_spectrograms',
'speech_spectrograms',
'noise_spectrograms',
'mixed_signal',
'video_frame_rate'
])
def preprocess_sample(path_audio, path_video, path_noise, slice_duration_ms=200):
video_samples, video_frame_rate = _utils.data_processor.preprocess_video_sample(path_video, slice_duration_ms)
mixed_spectrograms, speech_spectrograms, noise_spectrograms, mixed_signal = \
_utils.data_processor.preprocess_audio_pair(
path_audio, path_noise, slice_duration_ms, video_samples.shape[0],
video_frame_rate)
n_slices = min(video_samples.shape[0], mixed_spectrograms.shape[0])
sample = Sample(
speaker_id=None,
video_file_path=path_video,
speech_file_path=path_audio,
noise_file_path=path_noise,
video_samples=video_samples[:n_slices],
mixed_spectrograms=mixed_spectrograms[:n_slices],
speech_spectrograms=speech_spectrograms[:n_slices],
noise_spectrograms=noise_spectrograms[:n_slices],
mixed_signal=mixed_signal,
video_frame_rate=video_frame_rate
)
return sample
def make_normalizer(args, assets, name_model):
with open(assets.get_normalization_cache_path(name_model, args.data_dir), 'rb') as normalization_fd:
video_normalizer = pickle.load(normalization_fd)
return video_normalizer
"""
def calcurate_snr(signal, noise):
s = signal.get_data()
n = noise.get_data()
snr = 10 * math.log10(np.var(s) / np.var(n))
return snr
"""
def calcurate_snr(signal, mixed_signal):
signal = signal.get_data()
mixed_signal = mixed_signal.get_data()
n_len = min(signal.size, mixed_signal.size)
signal = signal[:n_len]
mixed_signal = mixed_signal[:n_len]
noise = mixed_signal - signal
snr = 10 * math.log10(np.var(signal) / np.var(noise))
return snr
def calcurate_pesq(signal, noise):
s = signal.get_data()
n = noise.get_data()
sr = signal.get_sample_rate()
n_len = min(s.size, n.size)
pesq = pypesq(sr, s[:n_len], n[:n_len], 'wb')
return pesq
|
[
"ikesan009@gmail.com"
] |
ikesan009@gmail.com
|
d3398311ad24bdba3ea54ffed03ff46a20de77fc
|
2d634953149d5e6c793123349b1d56606a945c41
|
/bin/freeze_graph
|
342bf4965165eda9e404d8918a817600f4a511b0
|
[] |
no_license
|
Bhoomikapanwar/S-P-Index-Predictor
|
cb705bbf7ad2b8d9713bc5ad68302001ceb8f862
|
c53418079226a246dac37d9fa21237bd43c9edd5
|
refs/heads/master
| 2020-04-03T22:21:02.002222
| 2018-07-25T16:35:43
| 2018-07-25T16:35:43
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 284
|
#!/home/shivam/gitRepos/stockPricePredictor/bin/python3
# -*- coding: utf-8 -*-
import re
import sys
from tensorflow.python.tools.freeze_graph import run_main
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
sys.exit(run_main())
|
[
"shivam.mcs17.du@gmail.com"
] |
shivam.mcs17.du@gmail.com
|
|
9d786ce994891cf351b32beb491a051eb0956581
|
1418e843a6535d934cd3b0d4452de00eaa37b6ad
|
/02.Part B/19.graph-algos/graph.py
|
f6895cdee03a899aa034502fcafcadb9183388f0
|
[] |
no_license
|
filvi/sciprog
|
afdd9bb629570a381c0f71d3451946708a943f83
|
1393ca95e8645f608826bd43cd6bfa488229853e
|
refs/heads/master
| 2023-02-02T12:30:31.847045
| 2020-12-16T10:17:27
| 2020-12-16T10:17:27
| 310,028,831
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 17,160
|
py
|
import pprint
from queue import Queue
from collections import deque
DEBUG = True
def debug(msg):
if DEBUG:
print("DEBUG: ", msg.replace('\n', '\n' + (' '*8)))
#PrettyPrint(indent=4)
pp = pprint.PrettyPrinter(indent=4).pprint
pformat = pprint.PrettyPrinter(indent=4).pformat
class DiGraph:
""" A simple graph data structure, represented as a dictionary of adjacency lists
Verteces can be of any type, to keep things simple in this data model they coincide with their labels.
Adjacency lists hold the target verteces.
Attempts to add duplicate targets will be silently ignored.
For shorthand construction, see separate dig() function
"""
def __init__(self):
# The class just holds the dictionary _edges: as keys it has the verteces, and
# to each vertex associates a list with the verteces it is linked to.
self._edges = {}
def add_vertex(self, vertex):
""" Adds vertex to the DiGraph. A vertex can be any object.
If the vertex already exist, does nothing.
"""
if vertex not in self._edges:
self._edges[vertex] = []
def verteces(self):
""" Returns a set of the graph verteces. Verteces can be any object. """
# Note dict keys() return a list, not a set. Bleah.
# See http://stackoverflow.com/questions/13886129/why-does-pythons-dict-keys-return-a-list-and-not-a-set
return set(self._edges.keys())
def has_vertex(self, vertex):
""" Returns true if graph contains given vertex. A vertex can be any object. """
return vertex in self._edges
def add_edge(self, vertex1, vertex2):
""" Adds an edge to the graph, from vertex1 to vertex2
If verteces don't exist, raises a ValueError
If there is already such an edge, exits silently.
"""
if not vertex1 in self._edges:
raise ValueError("Couldn't find source vertex: " + str(vertex1))
if not vertex2 in self._edges:
raise ValueError("Couldn't find target vertex: " + str(vertex2))
if not vertex2 in self._edges[vertex1]:
self._edges[vertex1].append(vertex2)
def __str__(self):
""" Returns a string representation like the following:
>>> print gr('a',['b','c', 'd'],
'b', ['b'],
'c', ['a'])
a: [b,c]
b: [b]
c: [a]
d: []
"""
if (len(self._edges) == 0):
return "\nDiGraph()"
max_len=0
sorted_verteces = sorted(self._edges.keys(), key=str)
for source in self._edges:
max_len = max(max_len, len(str(source)))
strings = ["\n"]
for source in sorted_verteces:
strings.append(str(source).ljust(max_len))
strings.append(': ')
strings.append(str(self._edges[source]))
strings.append('\n')
return ''.join(strings)
def __repr__(self):
return self.__str__()
def adj(self, vertex):
""" Returns the verteces adjacent to vertex.
- If vertex is not in edges, raises a ValueError
- NOTE: verteces are returned in a NEW list.
Modifying the list will have NO effect on the graph!
"""
if not vertex in self._edges:
raise ValueError("Couldn't find a vertex " + str(vertex))
return self._edges[vertex][:]
def __eq__(self, other):
""" !!! NOTE: although we represent the set with adjanceny lists, for __eq__
graph dig('a', ['b','c']) is considered equals to a graph dig('a', ['c', 'b']) !!!
"""
if not isinstance(other, DiGraph):
return False
if self.verteces() != other.verteces():
return False
for source in self._edges:
if set(self._edges[source]) != set(other._edges[source]):
return False
return True
def is_empty(self):
""" A DiGraph for us is empty if it has no verteces and no edges """
return len(self._edges) == 0
def bfs(self, source):
""" Example bfs that performs a simple breadth first search
in the graph and prints visited nodes.
Starts from provided source vertex id.
If source is not in the graph, raises a ValueError
"""
if not source in self.verteces():
raise ValueError("Can't find vertex:" + str(source))
Q = deque()
# we start from source
Q.append(source)
visited = set()
visited.add(source)
while len(Q)>0:
u = Q.popleft()
debug("Removed from queue: %s" % u)
# Visit node u
for v in self._edges[u]:
debug(" Found neighbor: %s" % v)
# Visit edge (u,v)
if v not in visited:
debug(" not yet visited, enqueueing ..")
visited.add(v)
Q.append(v)
else:
debug(" already visited")
debug(" Queue is: %s " % list(Q))
def dfs(self, source):
""" Example of a simple recursive depth first search on the graph,
Starts from source vertex id and prints steps.
Already visited nodes are set in provided boolean list mark
- If the graph is empty, raises a ValueError
"""
if self.is_empty():
raise ValueError("Cannot perform DFS on an empty graph!")
S = []
S.append(source)
visited = set()
debug("Stack is: %s " % S)
while not len(S) == 0:
u = S.pop()
debug("popping from stack: %s" % u)
if u not in visited:
debug(" not yet visited")
# visit node u (pre-order)
visited.add(u)
for v in self.adj(u):
debug(" Scheduling for visit: %s" % v)
# visit edge (u,v)
S.append(v)
debug("Stack is : %s " % S)
else:
debug(" already visited!")
def has_edge(self, source, target):
""" Returns True if there is an edge between source vertex and target vertex.
Otherwise returns False.
If either source, target or both verteces don't exist raises a ValueError
"""
raise Exception('TODO IMPLEMENT ME !')
def remove_vertex(self, vertex):
""" Removes the provided vertex and returns it
If the vertex is not found, raises a LookupError
"""
raise Exception('TODO IMPLEMENT ME !')
def transpose(self):
""" Reverses the direction of all the edges
NOTE: this method changes in-place the graph: does **not** create a new instance
and does *not* return anything !!
NOTE: To implement it *avoid* modifying the existing _edges dictionary (would
probably more problems than anything else).
Instead, create a new dictionary, fill it with the required
verteces and edges ad then set _edges to point to the new dictionary.
"""
raise Exception('TODO IMPLEMENT ME !')
def has_self_loops(self):
""" Returns True if the graph has any self loop (a.k.a. cap), False otherwise """
raise Exception('TODO IMPLEMENT ME !')
def remove_self_loops(self):
""" Removes all of the self-loops edges (a.k.a. caps)
NOTE: Removes just the edges, not the verteces!
"""
raise Exception('TODO IMPLEMENT ME !')
def undir(self):
""" Return a *NEW* undirected version of this graph, that is, if an edge a->b exists in this graph, the returned graph must also have both edges a->b and b->a
*DO NOT* modify the current graph, just return an entirely new one.
"""
raise Exception('TODO IMPLEMENT ME !')
def distances(self, source):
"""
Returns a dictionary where the keys are verteces, and each vertex v is associated
to the *minimal* distance in number of edges required to go from the source
vertex to vertex v. If node is unreachable, the distance will be -1
Source has distance zero from itself
Verteces immediately connected to source have distance one.
- if source is not a vertex, raises a LookupError
- MUST execute in O(|V| + |E|)
- HINT: implement this using bfs search.
"""
raise Exception('TODO IMPLEMENT ME !')
def equidistances(self, va, vb):
""" RETURN a dictionary holding the nodes which
are equidistant from input verteces va and vb.
The dictionary values will be the distances of the nodes.
- if va or vb are not present in the graph, raises LookupError
- MUST execute in O(|V| + |E|)
- HINT: To implement this, you can use the previously defined distances() method
"""
raise Exception('TODO IMPLEMENT ME !')
def cp(self, source):
""" Performs a BFS search starting from provided node label source and
RETURN a dictionary of nodes representing the visit tree in the
child-to-parent format, that is, each key is a node label and as value
has the node label from which it was discovered for the first time
So if node "n2" was discovered for the first time while
inspecting the neighbors of "n1", then in the output dictionary there
will be the pair "n2":"n1".
The source node will have None as parent, so if source is "n1" in the
output dictionary there will be the pair "n1": None
- if source is not found, raise LookupError
- MUST execute in O(|V| + |E|)
- NOTE: This method must *NOT* distinguish between exits
and normal nodes, in the tests we label them n1, e1 etc just
because we will reuse in next exercise
- NOTE: You are allowed to put debug prints, but the only thing that
matters for the evaluation and tests to pass is the returned
dictionary
"""
raise Exception('TODO IMPLEMENT ME !')
def cc(self):
""" Finds the connected components of the graph, returning a dict object
which associates to the verteces the corresponding connected component
number id, where 1 <= id <= |V|
IMPORTANT: ASSUMES THE GRAPH IS UNDIRECTED !
ON DIRECTED GRAPHS, THE RESULT IS UNPREDICTABLE !
To develop this function, implement also ccdfs function inside this method.
"""
raise Exception('TODO IMPLEMENT ME !')
def has_cycle(self):
""" Return True if this directed graph has a cycle, return False otherwise.
- To develop this function, implement also has_cycle_rec(u) inside this method
- Inside has_cycle_rec, to reference variables of has_cycle you need to
declare them as nonlocal like
nonlocal clock, dt, ft
- MUST be able to also detect self-loops
"""
raise Exception('TODO IMPLEMENT ME !')
def top_sort(self):
""" RETURN a topological sort of the graph. To implement this code,
feel free to adapt Montresor algorithm
- implement Stack S as a list
- implement visited as a set
- NOTE: differently from Montresor code, for tests to pass
you will need to return a reversed list. Why ?
"""
raise Exception('TODO IMPLEMENT ME !')
def full_graph(verteces):
""" Returns a DiGraph which is a full graph with provided verteces list.
In a full graph all verteces link to all other verteces (including themselves!).
"""
raise Exception('TODO IMPLEMENT ME !')
def dag(verteces):
""" Returns a DiGraph which is DAG (Directed Acyclic Graph) made out of provided verteces list
Provided list is intended to be in topological order.
NOTE: a DAG is ACYCLIC, so caps (self-loops) are not allowed !!
"""
raise Exception('TODO IMPLEMENT ME !')
def list_graph(n):
""" Return a graph of n verteces displaced like a
monodirectional list: 1 -> 2 -> 3 -> ... -> n
Each vertex is a number i, 1 <= i <= n and has only one edge connecting it
to the following one in the sequence
If n = 0, return the empty graph.
if n < 0, raises a ValueError.
"""
raise Exception('TODO IMPLEMENT ME !')
def star_graph(n):
""" Returns graph which is a star with n nodes
First node is the center of the star and it is labeled with 1. This node is linked
to all the others. For example, for n=4 you would have a graph like this:
3
^
|
2 <- 1 -> 4
If n = 0, the empty graph is returned
If n < 0, raises a ValueError
"""
raise Exception('TODO IMPLEMENT ME !')
def odd_line(n):
""" Returns a DiGraph with n verteces, displaced like a line of odd numbers
Each vertex is an odd number i, for 1 <= i < 2n. For example, for
n=4 verteces are displaced like this:
1 -> 3 -> 5 -> 7
For n = 0, return the empty graph
"""
raise Exception('TODO IMPLEMENT ME !')
def even_line(n):
""" Returns a DiGraph with n verteces, displaced like a line of even numbers
Each vertex is an even number i, for 2 <= i <= 2n. For example, for
n=4 verteces are displaced like this:
2 <- 4 <- 6 <- 8
For n = 0, return the empty graph
"""
raise Exception('TODO IMPLEMENT ME !')
def quads(n):
""" Returns a DiGraph with 2n verteces, displaced like a strip of quads.
Each vertex is a number i, 1 <= i <= 2n.
For example, for n = 4, verteces are displaced like this:
1 -> 3 -> 5 -> 7
^ | ^ |
| ; | ;
2 <- 4 <- 6 <- 8
where
^ |
| represents an upward arrow, while ; represents a downward arrow
"""
raise Exception('TODO IMPLEMENT ME !')
def pie(n):
""" Returns a DiGraph with n+1 verteces, displaced like a polygon with a perimeter
of n verteces progressively numbered from 1 to n. A central vertex numbered zero
has outgoing edges to all other verteces.
For n = 0, return the empty graph.
For n = 1, return vertex zero connected to node 1, and node 1 has a self-loop.
"""
raise Exception('TODO IMPLEMENT ME !')
def flux(depth):
""" Returns a DiGraph with 1 + (d * 3) verteces displaced like a Y:
- from a central node numbered 0, three branches depart
- all edges are directed outward
- on each branch there are 'depth' verteces.
- if depth < 0, raises a ValueError
For example, for depth=2 we get the following graph (suppose arrows point outward):
4 5
\ /
1 2
\ /
0
|
3
|
6
"""
raise Exception('TODO IMPLEMENT ME !')
def exits(cp):
"""
INPUT: a dictionary of nodes representing a visit tree in the
child-to-parent format, that is, each key is a node label and
as value has its parent as a node label. The root has
associated None as parent.
OUTPUT: a dictionary mapping node labels of exits to a list
of node labels representing the the shortest path from
the root to the exit (root and exit included)
- MUST execute in O(|V| + |E|)
"""
raise Exception('TODO IMPLEMENT ME !')
|
[
"fil.vicari@gmail.com"
] |
fil.vicari@gmail.com
|
6e5fbc9f665ac5fad6c6debd465470d6056c7bef
|
6cf01d84ec49050ffa0a5f4f10e79c89e3970818
|
/gufm1/__init__.py
|
550cd7a479d6531766edf144c76417d9a897bd2a
|
[
"MIT"
] |
permissive
|
nknezek/gufm1
|
1a4e72df6f826dadae6b46b96239165de5556823
|
a0ca60aa9b1932bfc63713ce8d95d0443746aa3c
|
refs/heads/master
| 2022-02-18T20:00:48.718995
| 2016-03-14T22:31:57
| 2016-03-14T22:31:57
| 52,418,205
| 0
| 1
|
MIT
| 2022-02-07T02:00:44
| 2016-02-24T05:56:12
|
Python
|
UTF-8
|
Python
| false
| false
| 20
|
py
|
from .gufm1 import *
|
[
"nknezek@mcc-411-6.geo.berkeley.edu"
] |
nknezek@mcc-411-6.geo.berkeley.edu
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.