blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
eddc44cc0f93e2816fbaba52cbd57eaa11038425
7d1fe1979bccfbe78308c047d40cb50fe87e6fdf
/Data Structure and Algorithms/iterunpack.py
5d4594b86a7d8e371d1b1ce89fb8597f184a0452
[]
no_license
hbenr/pycookbook
ddd13ae13be94438efd20cf4376fe9fbde1da095
52e313eaa7b0d28f1accd7794aa323ab62647b9c
refs/heads/master
2021-08-06T06:41:10.553534
2017-11-03T21:59:42
2017-11-03T21:59:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
576
py
#! python3 from statistics import mean # Use star to unpack multiple variables def drop_first_last(grades): _, *middle, _ = grades print(middle) return mean(middle) # Specially useful with tagged tuples def do_foo(x, y): print('foo', x, y) def do_bar(s): print('bar', s) def unpack_tagged(records): for tag, *args in records: if tag == 'foo': do_foo(*args) elif tag == 'bar': do_bar(*args) # print(drop_first_last([1, 2, 3, 4, 5, 6, 7, 8])) unpack_tagged([('foo', 1, 2), ('bar', 'ok'), ('foo', 3, 4)])
[ "homero.hbr@gmail.com" ]
homero.hbr@gmail.com
a86128cb30226105923c6e41dc98e7d5f5e37ed2
674649dc02390c4a60b9c62b586b81d405969047
/train_SGD.py
c4c73831851732e09a5eaf08ae3159dec8a7c794
[]
no_license
weijiawu/Pytorch_Classification
709513be3e019a896ef11a1739829a97bb99c9db
7609a1d809590c1423f4ed0ee1f0d918954355a9
refs/heads/master
2022-12-06T00:51:26.716590
2020-09-01T07:38:22
2020-09-01T07:38:22
285,811,133
2
0
null
null
null
null
UTF-8
Python
false
false
7,664
py
import torch from torch.utils import data from torch import nn from torch.optim import lr_scheduler import os import time from tqdm import tqdm import numpy as np from PIL import Image, ImageDraw import argparse import os import random import torch.backends.cudnn as cudnn from datasets.dataloader import Dateloader from network.models import create_model import torch.optim as optim import logging import logging.config os.environ["CUDA_VISIBLE_DEVICES"] = "2" parser = argparse.ArgumentParser(description='classification') # Model path parser.add_argument('--exp_name', help='Where to store logs and models') parser.add_argument('--resume', default="/data/glusterfs_cv_04/11121171/AAAI_EAST/Baseline/EAST_v1/model_save/model_epoch_826.pth", type=str, help='Checkpoint state_dict file to resume training from') parser.add_argument('--data_path', default="/data/glusterfs_cv_04/11121171/data/CIFAR/cifar10", type=str, help='the test image of target domain ') parser.add_argument('--save_path', default="/data/glusterfs_cv_04/11121171/AAAI_NL/Baseline_classification/classification/model_save", type=str, help='save model') parser.add_argument('--Backbone', type=str, default="VGG19", help='FeatureExtraction stage. ' 'ResNet18|ResNet34|ResNet50' 'MobileNet_v1|MobileNet_v2' 'VGG11|VGG16|VGG19' 'efficientnet-b0|efficientnet-b1|efficientnet-b2' 'shufflenet_v2_x0_5' ) parser.add_argument('--Datasets', type=str, default="CIFAR10", help=' ImageNet|Clothing|CIFAR10|CIFAR100') parser.add_argument('--num_classes', type=str, default=10, help=' classification') parser.add_argument('--manualSeed', type=int, default=1111, help='for random seed setting') # Training strategy parser.add_argument('--epoch_iter', default=8000, type = int, help='the max epoch iter') parser.add_argument('--batch_size', default=200, type = int, help='batch size of training') parser.add_argument('--lr', '--learning-rate', default=0.05, type=float, help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, help='Momentum value for optim') parser.add_argument('--weight_decay', default=2e-5, type=float, help='Weight decay for SGD') parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD') parser.add_argument('--num_workers', default=10, type=int, help='Number of workers used in dataloading') opt = parser.parse_args() def train(opt): """ dataset preparation """ print("dataset preparation ...") dataset = Dateloader(opt.data_path, mode="train",dataset = opt.Datasets) data_loader = torch.utils.data.DataLoader( dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers, drop_last=True, pin_memory=True) dataset_val = Dateloader(opt.data_path,mode="test", dataset=opt.Datasets) data_loader_val = torch.utils.data.DataLoader( dataset_val, batch_size=opt.batch_size, shuffle=False, num_workers=opt.num_workers) print('| Building net...') model = create_model(opt.Backbone,opt.num_classes) model = torch.nn.DataParallel(model) cudnn.benchmark = True optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=0.9, weight_decay=opt.weight_decay) # optimizer = optim.Adam(model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones =[80, 130, 160, 190, 220], gamma=0.2) CEloss = nn.CrossEntropyLoss() best_acc = 0 for epoch in range(opt.epoch_iter): model.train() lr_scheduler.step() epoch_loss = 0 epoch_time = time.time() for i, (image,gt) in enumerate(data_loader): start_time = time.time() inputs, labels = image.cuda(), gt.cuda() optimizer.zero_grad() outputs = model(inputs) loss = CEloss(outputs, labels) epoch_loss += loss.item() loss.backward() optimizer.step() print('Epoch is [{}/{}], mini-batch is [{}/{}], time consumption is {:.8f}, batch_loss is {:.8f}'.format( \ epoch + 1, opt.epoch_iter, i + 1, int(len(data_loader)), time.time() - start_time, loss.item())) if epoch>10 : best_acc = test(epoch,model,data_loader_val,best_acc) model.train() print("----------------------------------------------------------") print(" best_acc:",best_acc) print(" lr:", optimizer.param_groups[0]['lr']) print("----------------------------------------------------------") print('epoch_loss is {:.8f}, epoch_time is {:.8f},current_time is {:.8f}'.format(epoch_loss / int(len(data_loader)),time.time() - epoch_time,time.time())) print(time.asctime(time.localtime(time.time()))) def test(epoch, model,val_loader,best_acc): model.eval() correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in tqdm(enumerate(val_loader)): inputs, targets = inputs.cuda(), targets.cuda() outputs = model(inputs) _, predicted = torch.max(outputs, 1) total += targets.size(0) correct += predicted.eq(targets).cpu().sum().item() acc = 100. * correct / total print("\n| Validation\t Net Acc: %.2f%%" % acc) if acc > best_acc: best_acc = acc print("best acc",best_acc) print('| Saving Best Net ...') # torch.save(model.state_dict(), save_point) torch.save(model.state_dict(), os.path.join(opt.save_path, f'{opt.Backbone}-{opt.Datasets}'+'.pth')) return best_acc if __name__ == '__main__': if not opt.exp_name: opt.exp_name = f'{opt.Backbone}-{opt.Datasets}' opt.exp_name += f'-Seed{opt.manualSeed}' # print(opt.exp_name) os.makedirs(f'./workspace/{opt.exp_name}', exist_ok=True) # 通过下面的方式进行简单配置输出方式与日志级别 logging.basicConfig( filename=os.path.join(f'./workspace/{opt.exp_name}',"logger.log"), level=logging.INFO,filemode='w') logging.debug('debug message') logging.info('info message') logging.error('error message') logging.critical('critical message') """ Seed and GPU setting """ # print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) np.random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) torch.cuda.manual_seed(opt.manualSeed) cudnn.benchmark = True cudnn.deterministic = True opt.num_gpu = torch.cuda.device_count() if opt.num_gpu > 1: print('------ Use multi-GPU setting ------') print('if you stuck too long time with multi-GPU setting, try to set --workers 0') # check multi-GPU issue https://github.com/clovaai/deep-text-recognition-benchmark/issues/1 opt.workers = opt.num_workers * opt.num_gpu opt.batch_size = opt.batch_size * opt.num_gpu train(opt)
[ "wwj123@zju.edu.cn" ]
wwj123@zju.edu.cn
2c654c66171126629e07bb09e90b3eaa77e578e5
f7fa5c6da8cbde648a15ae13376d2e49f778b191
/hintgen/display.py
2cc5b881b7d94107f7183f286903b456edf0f2b6
[ "MIT" ]
permissive
akonoroshi/ITAP-django
05bee4a26ed65f3a6ba2e7cb0cb692c9af52081d
17d690e0f4c3bbc6bb73406bcaedb673225d34e8
refs/heads/master
2020-12-14T01:54:31.811692
2020-01-29T15:08:56
2020-01-29T15:08:56
234,598,240
1
0
MIT
2020-01-17T17:15:39
2020-01-17T17:15:38
null
UTF-8
Python
false
false
20,993
py
import ast from .tools import log #=============================================================================== # These functions are used for displaying ASTs. printAst displays the tree, # while printFunction displays the syntax #=============================================================================== # TODO: add AsyncFunctionDef, AsyncFor, AsyncWith, AnnAssign, Nonlocal, Await, YieldFrom, FormattedValue, JoinedStr, Starred def printFunction(a, indent=0): s = "" if a == None: return "" if not isinstance(a, ast.AST): log("display\tprintFunction\tNot AST: " + str(type(a)) + "," + str(a), "bug") return str(a) t = type(a) if t in [ast.Module, ast.Interactive, ast.Suite]: for line in a.body: s += printFunction(line, indent) elif t == ast.Expression: s += printFunction(a.body, indent) elif t == ast.FunctionDef: for dec in a.decorator_list: s += (indent * 4 * " ") + "@" + printFunction(dec, indent) + "\n" s += (indent * 4 * " ") + "def " + a.name + "(" + \ printFunction(a.args, indent) + "):\n" for stmt in a.body: s += printFunction(stmt, indent+1) # TODO: returns elif t == ast.ClassDef: for dec in a.decorator_list: s += (indent * 4 * " ") + "@" + printFunction(dec, indent) + "\n" s += (indent * 4 * " ") + "class " + a.name if len(a.bases) > 0 or len(a.keywords) > 0: s += "(" for base in a.bases: s += printFunction(base, indent) + ", " for keyword in a.keywords: s += printFunction(keyword, indent) + ", " s += s[:-2] + ")" s += ":\n" for stmt in a.body: s += printFunction(stmt, indent+1) elif t == ast.Return: s += (indent * 4 * " ") + "return " + \ printFunction(a.value, indent) + "\n" elif t == ast.Delete: s += (indent * 4 * " ") + "del " for target in a.targets: s += printFunction(target, indent) + ", " if len(a.targets) >= 1: s = s[:-2] s += "\n" elif t == ast.Assign: s += (indent * 4 * " ") for target in a.targets: s += printFunction(target, indent) + " = " s += printFunction(a.value, indent) + "\n" elif t == ast.AugAssign: s += (indent * 4 * " ") s += printFunction(a.target, indent) + " " + \ printFunction(a.op, indent) + "= " + \ printFunction(a.value, indent) + "\n" elif t == ast.For: s += (indent * 4 * " ") s += "for " + \ printFunction(a.target, indent) + " in " + \ printFunction(a.iter, indent) + ":\n" for line in a.body: s += printFunction(line, indent + 1) if len(a.orelse) > 0: s += (indent * 4 * " ") s += "else:\n" for line in a.orelse: s += printFunction(line, indent + 1) elif t == ast.While: s += (indent * 4 * " ") s += "while " + printFunction(a.test, indent) + ":\n" for line in a.body: s += printFunction(line, indent + 1) if len(a.orelse) > 0: s += (indent * 4 * " ") s += "else:\n" for line in a.orelse: s += printFunction(line, indent + 1) elif t == ast.If: s += (indent * 4 * " ") s += "if " + printFunction(a.test, indent) + ":\n" for line in a.body: s += printFunction(line, indent + 1) branch = a.orelse # elifs while len(branch) == 1 and type(branch[0]) == ast.If: s += (indent * 4 * " ") s += "elif " + printFunction(branch[0].test, indent) + ":\n" for line in branch[0].body: s += printFunction(line, indent + 1) branch = branch[0].orelse if len(branch) > 0: s += (indent * 4 * " ") s += "else:\n" for line in branch: s += printFunction(line, indent + 1) elif t == ast.With: s += (indent * 4 * " ") s += "with " for item in a.items: s += printFunction(item, indent) + ", " if len(a.items) > 0: s = s[:-2] s += ":\n" for line in a.body: s += printFunction(line, indent + 1) elif t == ast.Raise: s += (indent * 4 * " ") s += "raise" if a.exc != None: s += " " + printFunction(a.exc, indent) # TODO: what is cause?!? s += "\n" elif type(a) == ast.Try: s += (indent * 4 * " ") + "try:\n" for line in a.body: s += printFunction(line, indent + 1) for handler in a.handlers: s += printFunction(handler, indent) if len(a.orelse) > 0: s += (indent * 4 * " ") + "else:\n" for line in a.orelse: s += printFunction(line, indent + 1) if len(a.finalbody) > 0: s += (indent * 4 * " ") + "finally:\n" for line in a.finalbody: s += printFunction(line, indent + 1) elif t == ast.Assert: s += (indent * 4 * " ") s += "assert " + printFunction(a.test, indent) if a.msg != None: s += ", " + printFunction(a.msg, indent) s += "\n" elif t == ast.Import: s += (indent * 4 * " ") + "import " for n in a.names: s += printFunction(n, indent) + ", " if len(a.names) > 0: s = s[:-2] s += "\n" elif t == ast.ImportFrom: s += (indent * 4 * " ") + "from " s += ("." * a.level if a.level != None else "") + a.module + " import " for name in a.names: s += printFunction(name, indent) + ", " if len(a.names) > 0: s = s[:-2] s += "\n" elif t == ast.Global: s += (indent * 4 * " ") + "global " for name in a.names: s += name + ", " s = s[:-2] + "\n" elif t == ast.Expr: s += (indent * 4 * " ") + printFunction(a.value, indent) + "\n" elif t == ast.Pass: s += (indent * 4 * " ") + "pass\n" elif t == ast.Break: s += (indent * 4 * " ") + "break\n" elif t == ast.Continue: s += (indent * 4 * " ") + "continue\n" elif t == ast.BoolOp: s += "(" + printFunction(a.values[0], indent) for i in range(1, len(a.values)): s += " " + printFunction(a.op, indent) + " " + \ printFunction(a.values[i], indent) s += ")" elif t == ast.BinOp: s += "(" + printFunction(a.left, indent) s += " " + printFunction(a.op, indent) + " " s += printFunction(a.right, indent) + ")" elif t == ast.UnaryOp: s += "(" + printFunction(a.op, indent) + " " s += printFunction(a.operand, indent) + ")" elif t == ast.Lambda: s += "lambda " s += printFunction(a.arguments, indent) + ": " s += printFunction(a.body, indent) elif t == ast.IfExp: s += "(" + printFunction(a.body, indent) s += " if " + printFunction(a.test, indent) s += " else " + printFunction(a.orelse, indent) + ")" elif t == ast.Dict: s += "{ " for i in range(len(a.keys)): s += printFunction(a.keys[i], indent) s += " : " s += printFunction(a.values[i], indent) s += ", " if len(a.keys) >= 1: s = s[:-2] s += " }" elif t == ast.Set: # Empty sets must be initialized in a special way if len(a.elts) == 0: s += "set()" else: s += "{" for elt in a.elts: s += printFunction(elt, indent) + ", " s = s[:-2] s += "}" elif t == ast.ListComp: s += "[" s += printFunction(a.elt, indent) + " " for gen in a.generators: s += printFunction(gen, indent) + " " s = s[:-1] s += "]" elif t == ast.SetComp: s += "{" s += printFunction(a.elt, indent) + " " for gen in a.generators: s += printFunction(gen, indent) + " " s = s[:-1] s += "}" elif t == ast.DictComp: s += "{" s += printFunction(a.key, indent) + " : " + \ printFunction(a.value, indent) + " " for gen in a.generators: s += printFunction(gen, indent) + " " s = s[:-1] s += "}" elif t == ast.GeneratorExp: s += "(" s += printFunction(a.elt, indent) + " " for gen in a.generators: s += printFunction(gen, indent) + " " s = s[:-1] s += ")" elif t == ast.Yield: s += "yield " + printFunction(a.value, indent) elif t == ast.Compare: s += "(" + printFunction(a.left, indent) for i in range(len(a.ops)): s += " " + printFunction(a.ops[i], indent) if i < len(a.comparators): s += " " + printFunction(a.comparators[i], indent) if len(a.comparators) > len(a.ops): for i in range(len(a.ops), len(a.comparators)): s += " " + printFunction(a.comparators[i], indent) s += ")" elif t == ast.Call: s += printFunction(a.func, indent) + "(" for arg in a.args: s += printFunction(arg, indent) + ", " for key in a.keywords: s += printFunction(key, indent) + ", " if len(a.args) + len(a.keywords) >= 1: s = s[:-2] s += ")" elif t == ast.Num: if a.n != None: if (type(a.n) == complex) or (type(a.n) != complex and a.n < 0): s += '(' + str(a.n) + ')' else: s += str(a.n) elif t == ast.Str: if a.s != None: val = repr(a.s) if val[0] == '"': # There must be a single quote in there... val = "'''" + val[1:len(val)-1] + "'''" s += val #s += "'" + a.s.replace("'", "\\'").replace('"', "\\'").replace("\n","\\n") + "'" elif t == ast.Bytes: s += str(a.s) elif t == ast.NameConstant: s += str(a.value) elif t == ast.Attribute: s += printFunction(a.value, indent) + "." + str(a.attr) elif t == ast.Subscript: s += printFunction(a.value, indent) + "[" + printFunction(a.slice, indent) + "]" elif t == ast.Name: s += a.id elif t == ast.List: s += "[" for elt in a.elts: s += printFunction(elt, indent) + ", " if len(a.elts) >= 1: s = s[:-2] s += "]" elif t == ast.Tuple: s += "(" for elt in a.elts: s += printFunction(elt, indent) + ", " if len(a.elts) > 1: s = s[:-2] elif len(a.elts) == 1: s = s[:-1] # don't get rid of the comma! It clarifies that this is a tuple s += ")" elif t == ast.Starred: s += "*" + printFunction(a.value, indent) elif t == ast.Ellipsis: s += "..." elif t == ast.Slice: if a.lower != None: s += printFunction(a.lower, indent) s += ":" if a.upper != None: s += printFunction(a.upper, indent) if a.step != None: s += ":" + printFunction(a.step, indent) elif t == ast.ExtSlice: for dim in a.dims: s += printFunction(dim, indent) + ", " if len(a.dims) > 0: s = s[:-2] elif t == ast.Index: s += printFunction(a.value, indent) elif t == ast.comprehension: s += "for " s += printFunction(a.target, indent) + " " s += "in " s += printFunction(a.iter, indent) + " " for cond in a.ifs: s += "if " s += printFunction(cond, indent) + " " s = s[:-1] elif t == ast.ExceptHandler: s += (indent * 4 * " ") + "except" if a.type != None: s += " " + printFunction(a.type, indent) if a.name != None: s += " as " + a.name s += ":\n" for line in a.body: s += printFunction(line, indent + 1) elif t == ast.arguments: # Defaults are only applied AFTER non-defaults defaultStart = len(a.args) - len(a.defaults) for i in range(len(a.args)): s += printFunction(a.args[i], indent) if i >= defaultStart: s += "=" + printFunction(a.defaults[i - defaultStart], indent) s += ", " if a.vararg != None: s += "*" + printFunction(a.vararg, indent) + ", " if a.kwarg != None: s += "**" + printFunction(a.kwarg, indent) + ", " if a.vararg == None and a.kwarg == None and len(a.kwonlyargs) > 0: s += "*, " if len(a.kwonlyargs) > 0: for i in range(len(a.kwonlyargs)): s += printFunction(a.kwonlyargs[i], indent) s += "=" + printFunction(a.kw_defaults, indent) + ", " if (len(a.args) > 0 or a.vararg != None or a.kwarg != None or len(a.kwonlyargs) > 0): s = s[:-2] elif t == ast.arg: s += a.arg if a.annotation != None: s += ": " + printFunction(a.annotation, indent) elif t == ast.keyword: s += a.arg + "=" + printFunction(a.value, indent) elif t == ast.alias: s += a.name if a.asname != None: s += " as " + a.asname elif t == ast.withitem: s += printFunction(a.context_expr, indent) if a.optional_vars != None: s += " as " + printFunction(a.optional_vars, indent) else: ops = { ast.And : "and", ast.Or : "or", ast.Add : "+", ast.Sub : "-", ast.Mult : "*", ast.Div : "/", ast.Mod : "%", ast.Pow : "**", ast.LShift : "<<", ast.RShift : ">>", ast.BitOr : "|", ast.BitXor : "^", ast.BitAnd : "&", ast.FloorDiv : "//", ast.Invert : "~", ast.Not : "not", ast.UAdd : "+", ast.USub : "-", ast.Eq : "==", ast.NotEq : "!=", ast.Lt : "<", ast.LtE : "<=", ast.Gt : ">", ast.GtE : ">=", ast.Is : "is", ast.IsNot : "is not", ast.In : "in", ast.NotIn : "not in"} if type(a) in ops: return ops[type(a)] if type(a) in [ast.Load, ast.Store, ast.Del, ast.AugLoad, ast.AugStore, ast.Param]: return "" log("display\tMissing type: " + str(t), "bug") return s def formatContext(trace, verb): traceD = { "value" : { "Return" : ("return statement"), "Assign" : ("right side of the assignment"), "AugAssign" : ("right side of the assignment"), "Expression" : ("expression"), "Dict Comprehension" : ("left value of the dict comprehension"), "Yield" : ("yield expression"), "Repr" : ("repr expression"), "Attribute" : ("attribute value"), "Subscript" : ("outer part of the subscript"), "Index" : ("inner part of the subscript"), "Keyword" : ("right side of the keyword"), "Starred" : ("value of the starred expression"), "Name Constant" : ("constant value") }, "values" : { "Print" : ("print statement"), "Boolean Operation" : ("boolean operation"), "Dict" : ("values of the dictionary") }, "name" : { "Function Definition" : ("function name"), "Class Definition" : ("class name"), "Except Handler" : ("name of the except statement"), "Alias" : ("alias") }, "names" : { "Import" : ("import"), "ImportFrom" : ("import"), "Global" : ("global variables") }, "elt" : { "List Comprehension" : ("left element of the list comprehension"), "Set Comprehension" : ("left element of the set comprehension"), "Generator" : ("left element of the generator") }, "elts" : { "Set" : ("set"), "List" : ("list"), "Tuple" : ("tuple") }, "target" : { "AugAssign" : ("left side of the assignment"), "For" : ("target of the for loop"), "Comprehension" : ("target of the comprehension") }, "targets" : { "Delete" : ("delete statement"), "Assign" : ("left side of the assignment") }, "op" : { "AugAssign" : ("assignment"), "Boolean Operation" : ("boolean operation"), "Binary Operation" : ("binary operation"), "Unary Operation" : ("unary operation") }, "ops" : { "Compare" : ("comparison operation") }, "arg" : { "Keyword" : ("left side of the keyword"), "Argument" : ("argument") }, "args" : { "Function Definition" : ("function arguments"), # single item "Lambda" : ("lambda arguments"), # single item "Call" : ("arguments of the function call"), "Arguments" : ("function arguments") }, "key" : { "Dict Comprehension" : ("left key of the dict comprehension") }, "keys" : { "Dict" : ("keys of the dictionary") }, "kwarg" : { "Arguments" : ("keyword arg") }, "kwargs" : { "Call" : ("keyword args of the function call") }, # single item "body" : { "Module" : ("main codebase"), # list "Interactive" : ("main codebase"), # list "Expression" : ("main codebase"), "Suite" : ("main codebase"), # list "Function Definition" : ("function body"), # list "Class Definition" : ("class body"), # list "For" : ("lines of the for loop"), # list "While" : ("lines of the while loop"), # list "If" : ("main lines of the if statement"), # list "With" : ("lines of the with block"), # list "Try" : ("lines of the try block"), # list "Execute" : ("exec expression"), "Lambda" : ("lambda body"), "Ternary" : ("ternary body"), "Except Handler" : ("lines of the except block") }, # list "orelse" : { "For" : ("else part of the for loop"), # list "While" : ("else part of the while loop"), # list "If" : ("lines of the else statement"), # list "Try" : ("lines of the else statement"), # list "Ternary" : ("ternary else value") }, "test" : { "While" : ("test case of the while statement"), "If" : ("test case of the if statement"), "Assert" : ("assert expression"), "Ternary" : ("test case of the ternary expression") }, "generators" : { "List Comprehension" : ("list comprehension"), "Set Comprehension" : ("set comprehension"), "Dict Comprehension" : ("dict comprehension"), "Generator" : ("generator") }, "decorator_list" : { "Function Definition" : ("function decorators"), # list "Class Definition" : ("class decorators") }, # list "iter" : { "For" : ("iterator of the for loop"), "Comprehension" : ("iterator of the comprehension") }, "type" : { "Raise" : ("raised type"), "Except Handler" : ("type of the except statement") }, "left" : { "Binary Operation" : ("left side of the binary operation"), "Compare" : ("left side of the comparison") }, "bases" : { "Class Definition" : ("class bases") }, "dest" : { "Print" : ("print destination") }, "nl" : { "Print" : ("comma at the end of the print statement") }, "context_expr" : { "With item" : ("context of the with statement") }, "optional_vars" : { "With item" : ("context of the with statement") }, # single item "inst" : { "Raise" : ("raise expression") }, "tback" : { "Raise" : ("raise expression") }, "handlers" : { "Try" : ("except block") }, "finalbody" : { "Try" : ("finally block") }, # list "msg" : { "Assert" : ("assert message") }, "module" : { "Import From" : ("import module") }, "level" : { "Import From" : ("import module") }, "globals" : { "Execute" : ("exec global value") }, # single item "locals" : { "Execute" : ("exec local value") }, # single item "right" : { "Binary Operation" : ("right side of the binary operation") }, "operand" : { "Unary Operation" : ("value of the unary operation") }, "comparators" : { "Compare" : ("right side of the comparison") }, "func" : { "Call" : ("function call") }, "keywords" : { "Call" : ("keywords of the function call") }, "starargs" : { "Call" : ("star args of the function call") }, # single item "attr" : { "Attribute" : ("attribute of the value") }, "slice" : { "Subscript" : ("inner part of the subscript") }, "lower" : { "Slice" : ("left side of the subscript slice") }, "upper" : { "Slice" : ("right side of the subscript slice") }, "step" : { "Step" : ("rightmost side of the subscript slice") }, "dims" : { "ExtSlice" : ("slice") }, "ifs" : { "Comprehension" : ("if part of the comprehension") }, "vararg" : { "Arguments" : ("vararg") }, "defaults" : { "Arguments" : ("default values of the arguments") }, "asname" : { "Alias" : ("new name") }, "items" : { "With" : ("context of the with statement") } } # Find what type this is by trying to find the closest container in the path i = 0 while i < len(trace): if type(trace[i]) == tuple: if trace[i][0] == "value" and trace[i][1] == "Attribute": pass elif trace[i][0] in traceD: break elif trace[i][0] in ["id", "n", "s"]: pass else: log("display\tformatContext\tSkipped field: " + str(trace[i]), "bug") i += 1 else: return "" # this is probably covered by the line number field,typ = trace[i] if field in traceD and typ in traceD[field]: context = traceD[field][typ] return verb + "the " + context else: log("display\tformatContext\tMissing field: " + str(field) + "," + str(typ), "bug") return "" def formatList(node, field): if type(node) != list: return None s = "" nameMap = { "body" : "line", "targets" : "value", "values" : "value", "orelse" : "line", "names" : "name", "keys" : "key", "elts" : "value", "ops" : "operator", "comparators" : "value", "args" : "argument", "keywords" : "keyword" } # Find what type this is itemType = nameMap[field] if field in nameMap else "line" if len(node) > 1: s = "the " + itemType + "s: " for line in node: s += formatNode(line) + ", " elif len(node) == 1: s = "the " + itemType + " " f = formatNode(node[0]) if itemType == "line": f = "[" + f + "]" s += f return s def formatNode(node): """Create a string version of the given node""" if node == None: return "" t = type(node) if t == str: return "'" + node + "'" elif t == int or t == float: return str(node) elif t == list: return formatList(node, None) else: return printFunction(node, 0)
[ "krivers@andrew.cmu.edu" ]
krivers@andrew.cmu.edu
06d3ca1ff65101808264d7e631adce978fdf8578
4ca3a3958f19650e5861f748727cb55cdedb8841
/hnAnalysis/analyzeUnigrams.py
d22fd39b1a74399280d4b1d84cd36f150dfa67c7
[]
no_license
mhwalker/Projects
6dad8c53f82713d6e1d71e3c704363a60efa7950
fa4c66ea701b4f966e2ed561c76a286678fc1de4
refs/heads/master
2021-01-10T06:33:12.420141
2016-03-22T21:07:45
2016-03-22T21:07:45
54,507,519
0
0
null
null
null
null
UTF-8
Python
false
false
336
py
import simplejson as json import operator unifile = open("skimunigrams.json","r") unigrams = json.load(unifile) unifile.close() sortedunigrams = sorted(unigrams.iteritems(), key = operator.itemgetter(1),reverse=True) i = 0 while True: print i,sortedunigrams[i][0],sortedunigrams[i][1] i += 1 if sortedunigrams[i][1] < 100000:break
[ "matthewwalker@cdopscam003.fnal.gov" ]
matthewwalker@cdopscam003.fnal.gov
45aa22217986347a95b741afab8a15d7af4413fe
b552dd6049a73608bac2a30248a75cf96fc270ce
/Zajecia_1/Zadanie_Domowe/sec2/zad6.py
30eca64d43d34d48c6d61fe2e5bb2e0602a618d1
[]
no_license
marakon/zajecia_python
54ac1f516dd4acf0bc12f9e3ad72af1ff7287e76
7cf01383f0faad9f2c08f77627a9817fe9db25d2
refs/heads/master
2020-05-19T21:40:44.381507
2019-06-10T16:59:59
2019-06-10T16:59:59
185,230,982
0
0
null
null
null
null
UTF-8
Python
false
false
1,308
py
# Zadanie 6 # Zarówno lodówka, jak i winda mają wysokość, szerokość i głębokość. # Dowiedz się, ile miejsca pozostało w windzie, gdy lodówka jest w środku. # Załóżmy, że wymiary lodówki zawsze będą mniejsze niż windy ( jest to prawdopodobne?) # Wejście i wyjście powinny być zrozumiałe dla użytkownika. print("-----------Does my fridge fits?-----------") print("Please enter lenght, height and deepnes of your fridge and the elevator.") print("The script will mesure if your fridge fits and how much space will be left.") fridge_a = float(input("Height of fridge: ")) fridge_b = float(input("Lenght of fridge: ")) fridge_c = float(input("Deepnes of the fridge: ")) elevator_a = float(input("Height of the elevator: ")) elevator_b = float(input("Lenght of the elevator: ")) elevator_c = float(input("Deepnes of the elevator: ")) if fridge_a > elevator_a: print("Your fridge is to high! :O") exit() if fridge_b > elevator_b: print("Your fridge is to long! :O") exit() if fridge_c > elevator_c: print("Your fridge is to deep! :O") exit() print("Nice your fridge fits into the elevator!") print("A few informations in numbers:") print("Elevators volume: ", elevator_a + elevator_b + elevator_c) print("Fridge volume: ", fridge_a + fridge_b + fridge_c)
[ "mateuszosinski96@gmail.com" ]
mateuszosinski96@gmail.com
fd5b3ff54c12e5557de206770406abd6edc0f7b5
81d82c13d53744f04ed1afe1fc1a7536950d34c5
/03.Loops/while_demo.py
6201fb230f621a972bb7eb67a5eb65ac63ecdd60
[]
no_license
giridhersadineni/pythonsrec
991950880dc262eecd39d533ddbd978d37780301
87b843a4d8a5beac4292a58c3f373f8b590a598c
refs/heads/master
2021-12-22T04:33:22.153763
2021-12-08T03:06:26
2021-12-08T03:06:26
199,015,630
2
0
null
null
null
null
UTF-8
Python
false
false
631
py
# i=1 # initialization # while(i<=100): # print(i) # i = i + 1 # else: # print(i) # print("Loop has ended") name = "PYTHON" i=0 while (i<6): print(name[i]) i = i + 1 for character in "Python": print(character) for n in [1,1,435,6,5464,576,76,76,8,"Hello"]: print(n,end="\n") for i in range(100): print(i) else: print(i) # // initialization # int i=10; # while(i<10){ # printf("%d",i); # i++; # } # i=10 // initialisation expression # do # { # printf("%d",i); # i++; // update statements # }while(i<10) // conditional expression # for(i=0; i<10; i++){ # }
[ "giridher@hotmail.com" ]
giridher@hotmail.com
192b0eb6591ffc8f5d377fb8b523bb5cae674a98
344055834858dbea4a745d5855a20b669f50b808
/setup.py
1823587d41de7eb5b3cf2d35d4c9ff69d081289d
[]
no_license
wd5/psh
d1fd4b4a520080626d91c9311b2d5c8a43f66535
33df4636dcbdb66121454214f3d684b3021e3a1e
refs/heads/master
2021-01-16T20:06:10.882649
2012-12-21T08:09:55
2012-12-21T08:39:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,096
py
"""psh installation script.""" from __future__ import unicode_literals from setuptools import find_packages, setup from setuptools.command.test import test as Test class PyTest(Test): def finalize_options(self): Test.finalize_options(self) self.test_args = [ "tests" ] self.test_suite = True def run_tests(self): import pytest pytest.main(self.test_args) description = """\ psh allows you to spawn processes in Unix shell-style way. Unix shell is very convenient for spawning processes, connecting them into pipes, etc., but it has a very limited language which is often not suitable for writing complex programs. Python is a very flexible and reach language which is used in a wide variety of application domains, but its standard subprocess module is very limited. psh combines the power of Python language and an elegant shell-style way to execute processes. Complete documentation is available at http://konishchevdmitry.github.com/psh/\ """ if __name__ == "__main__": setup( name = "psh", version = "0.2.3", description = "Process management library", long_description = description, url = "http://konishchevdmitry.github.com/psh/", license = "GPL3", author = "Dmitry Konishchev", author_email = "konishchev@gmail.com", classifiers = [ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: GNU General Public License v3 (GPLv3)", "Operating System :: MacOS :: MacOS X", "Operating System :: POSIX", "Operating System :: Unix", "Programming Language :: Python :: 2", "Programming Language :: Python :: 3", "Topic :: Software Development :: Libraries :: Python Modules", ], platforms = [ "unix", "linux", "osx" ], install_requires = [ "psys", "psh" ], packages = find_packages(), cmdclass = { "test": PyTest }, tests_require = [ "psys", "pytest" ], )
[ "konishchev@gmail.com" ]
konishchev@gmail.com
06bb3fc516d29ae2feb46b1894c9dc30af3fdd6b
d5215cc7c775734b1edb4dbcece77ce766866892
/venv/bin/pip2
1c7d225bcdb9d1183377bb4c7031eba8c2f3905c
[]
no_license
victorevector/FischerRandom-Web
c01e4e71eca4afabb1f0a2a5b07590b046246cec
6d72c635b529417ccbc98bbc4d338b081c0d8df0
refs/heads/master
2020-12-24T13:36:58.511008
2015-03-10T19:07:50
2015-03-10T19:07:50
31,973,724
4
0
null
null
null
null
UTF-8
Python
false
false
264
#!/Users/victorestebanfimbres/django_workspace/fischer_random/venv/bin/python # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "victorevector@gmail.com" ]
victorevector@gmail.com
72926195d8325cb4e33079fffa1f2b92619e47ba
bfc1b107b2ce8c664b17be7d96b93bf69aaa8665
/lab_03_zadania/1.py
c54d527df02fc52a4eae08211442ca223127a8c4
[]
no_license
bulwan/wizualizacja_danych
db16c97da765646a71a8a794030f8014022cbc19
e305914105f42d22d42deb4e10a09b181534254f
refs/heads/main
2023-05-01T07:16:23.954859
2021-05-26T11:59:18
2021-05-26T11:59:18
346,389,677
0
0
null
null
null
null
UTF-8
Python
false
false
124
py
A=[1/x for x in range(1, 11)] B=[2 ** i for i in range(10)] C=[x for x in B if x % 4 == 0] print(A) print(B) print(C)
[ "noreply@github.com" ]
bulwan.noreply@github.com
443156317a05eae0013f4af0a70968cd51185b81
ef187d259d33e97c7b9ed07dfbf065cec3e41f59
/work/atcoder/arc/arc062/D/answers/30340_oyodr.py
109239b4bbde5980a01c2c90b87d791e6776af19
[]
no_license
kjnh10/pcw
847f7295ea3174490485ffe14ce4cdea0931c032
8f677701bce15517fb9362cc5b596644da62dca8
refs/heads/master
2020-03-18T09:54:23.442772
2018-07-19T00:26:09
2018-07-19T00:26:09
134,586,379
0
0
null
null
null
null
UTF-8
Python
false
false
72
py
S = input() n_p = S.count("p") N = len(S) ans = N // 2 - n_p print(ans)
[ "kojinho10@gmail.com" ]
kojinho10@gmail.com
868fb2901002bfd62248db1dfa59b55c9b15e74e
8dd834ec83f1d2b1e2517514892529b8c07a9765
/Django_platfrom/Django_platfrom/urls.py
d685ce50dcfa1232c1734448c0a57865c7696a5c
[]
no_license
LucarYang/python
f48d33a628cd02a21b1994a85b8c747d622e157d
2afee28ceff1e1304ef7e3a5fdd4a5ea412ce912
refs/heads/master
2020-04-28T08:14:09.235680
2019-11-06T08:40:55
2019-11-06T08:40:55
175,119,420
0
0
null
null
null
null
UTF-8
Python
false
false
1,293
py
"""Django_platfrom URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.conf.urls import url from CommonApps import views from gameConfig import views as game_views from game_issue import views as issue_views urlpatterns = [ url(r'^$', views.home, name='home'), url(r'^signup/',views.signup,name='signup'), url(r'^login/$', views.login, name='login'), url(r'^logout/$', views.logout, name='logout'), url(r'^userInfo/$', views.userInfo, name='userInfo'), path('admin/', admin.site.urls), url(r'^gameList/$', game_views.gameList, name='gameList'), url(r'^issue_upload/$', issue_views.uploadIssue, name='uploadIssue'), ]
[ "v.yanglu@shandagames.com" ]
v.yanglu@shandagames.com
b9b504067996746019a5981337cfef30eb7882d5
5e37047149caaf5bf4543d2f6eb8ceca65ee12b2
/Hijacked/Dico_msg_Carla.py
d4e4b1a11f239123256eaef8754d3adbf1ec0abd
[]
no_license
ilyes-annou/Hijacked
8946f693d64964731c605955a207f9008e9d5fc3
7aabe4ff3b804376a9f841ff03878688b95ac847
refs/heads/master
2021-05-21T02:49:44.328130
2020-04-14T15:22:09
2020-04-14T15:22:09
252,508,647
0
0
null
null
null
null
UTF-8
Python
false
false
2,006
py
msg={"1": "C'est qui?", "2": "euuuh on s'est rencontres ou?", "3": "hmmm ca me dit rien mais tu as peut etre raison", "4": "C'est rare de passer un bon moment avec moi haha", "5": "Beaugosse dis donc :)", "6": "HIHI", "7": "Non j'suis timide", "8": "Je prefere qu'on apprenne a se connaitre.", "9": "bah je vais en cours et apres je rentre chez moi, et toi?", "10": "mmmh pourquoi pas on va ou?", "11": "interressant haha", "12": "C'etait un super moment !", "13": "Nn desole ma mere m'attends ...", "14": "Paco?", "15": "T'es la?", "16": "?????????????", "17": "Je sais la verite maintenant ... tu es un charo !", "18": "J'aimerais qu'on coupe les ponts ... donc supprime tout ce que t'as de moi stp ...", "19": "Paco t'es serieux??? je t'aimais vraiment moi!", "20": "T'es le pire homme ...", "21": "OK j'accepte... mais promets moi de ne rien partager","22":""} msg1={"1": "C'est du harcelement, je vais appeler la police, tu vas etre arrete", "2": "Paco ... aaah a la soiree ! Comment t'as eu num ?", "3": "aah peut etre oui, je fais souvent n'importe quoi quand je suis bourree hihi", "4": "Aaahhh si je me souviens on avait grave passe un bon moment", "5": "euuuh pourquoi tu m'envoies ton visage?", "6": "2secondes je me fais belle ;)", "7": "Ok attends 2 secondes ;)", "8": ";)", "9": "bah je vais en cours et apres je rentre chez moi, et toi?", "10": "mmmh pourquoi pas on va ou?", "11": "interressant haha", "12": "J'ai adore! Je veux vite te revoir!", "13": "OK attends moi j'arrive ;)", "14": "BB?", "15": "Pourquoi tu reponds pas?", "16": "?????????????", "17": "Tu peux supprimer les photos que je t'ai envoyees stp Paco ?", "18": "Appeler la police! Tu seras vite arrete ...", "19": "Tu veux quoi enflure?", "20": "... on peut pas negocier?", "21": "Va te faire f*****! Espece de sale en****!!","22":""} msg2={"6": "Je devrai?", "7": "Et alors??"} y=0 L=list(msg) L1=list(msg1) L2=list(msg2)
[ "noreply@github.com" ]
ilyes-annou.noreply@github.com
eae3bce8fa4c9de33cdba89c8eae2bff45361d49
8c367be1487120323533089f40a8a8884aa3e158
/architectures/eval.py
9addc03f794792b9e35cd4a9ee3f878714c53031
[ "Apache-2.0" ]
permissive
readerbench/IRVIN
eeade83f57eae6d512f8e98b2c1e04812695af35
de894da6b694699f0aa8d67967aab184dbd3e4df
refs/heads/main
2023-07-10T11:24:14.742369
2021-08-20T08:21:18
2021-08-20T08:21:18
396,875,923
1
0
null
null
null
null
UTF-8
Python
false
false
1,332
py
import numpy as np from sklearn.metrics import confusion_matrix #File used to store function to measure performances and other features from results. class Performance: def precision(self, ypred, ytrue):#real pos/estim pos : 1-->everytime we estimate pos, it's pos return np.sum(ytrue*ypred)/np.sum(ypred) def recall(self, ypred, ytrue):#part of pos really detected : 1--> everytime it's pos, we detect it return np.sum(ytrue*ypred)/np.sum(ytrue) def F_score(self, ypred, ytrue, beta=1): p = self.precision(ytrue, ypred) r = self.recall(ytrue, ypred) return (1+beta**2)*p*r/(beta**2*p+r) def accuracy(self, ypred, ytrue):# return np.sum(ypred==ytrue)/len(ypred) def confusion_matrix(self, ypred, ytrue): return confusion_matrix(ytrue, ypred) def show_top(classifier, list_col): feature_names = np.array(list_col)#liste de str top = np.argsort(classifier.coef_[0]) return feature_names[top] #print("%s: %s" % ('RELEVANT', " ".join(feature_names[top10]))) def show_top10(classifier, list_col): feature_names = np.array(list_col) top10 = np.argsort(classifier.coef_[0])[-10:] #print(classifier.coef_[top10]) #print(top10) return "%s: %s" % ('RELEVANT', " ".join(feature_names[top10]))
[ "pierre.frode_de_la_foret@mines-paristech.fr" ]
pierre.frode_de_la_foret@mines-paristech.fr
df65af6fc345dcd9f0bacda3172e5a0908b0a872
d6d9bc2a898bcd0dc4af44b6f432196e4358d8b7
/python/hw02/hw02.py
5464b221a1be2dd8d354075b6ac3825afca35f08
[]
no_license
z80/hw
2e287c2f835cd055f5ef531bdb094e50dd5f4bee
1d368078372ebce445077d66792852d0864ca3c9
refs/heads/master
2021-01-10T19:37:14.697887
2015-08-02T08:59:52
2015-08-02T08:59:52
13,366,888
0
0
null
null
null
null
UTF-8
Python
false
false
1,039
py
#!/usr/bin/env python import sys import math import random import os import flip_coins if len(sys.argv) < 2: print "3\nNumber of Tests\t100000\nNumber of Coins\t1000\nFlip\t10" sys.exit(0) #This function is a stub for your code for the coin flipping simulation, here it just returns three random values for v_1, v_rand, and v_min def flip_coins (coins, flip): vone = random.gauss (0.75, 0.05) vrnd = random.gauss (0.55, 0.05) vmin = random.gauss (0.35, 0.05) return (vone, vrnd, vmin) parameters = [float(x) for x in sys.argv[1:-2]] row_id = int(sys.argv[-2]) out_file = sys.argv[-1] tmp_file = out_file + ".tmp" tests = int (parameters[0]) coins = int (parameters[1]) flip = int (parameters[2]) fout = open (tmp_file, 'w') fout.write ("Test::number,V_one::number,V_rnd::number,V_min::number\n") for t in range (tests): vone, vrnd, vmin = flip_coins (coins, flip) fout.write (str(t) + ',' + str(vone) + ',' + str(vrnd) + ', '+ str(vmin) + '\n') fout.close () os.rename (tmp_file, out_file)
[ "bashkirov.sergey@gmail.com" ]
bashkirov.sergey@gmail.com
4ec77dda1f863652b8ede97e01fa33e69f3b479b
5fc09fdf075e8384fd85b0001f232d2ea384340f
/source/Planet.py
c543a2dfd0ce47c8f42f16b5f6ac86c7baf769ef
[]
no_license
karlmitterhauser/spacesim
c9e11edcacf7061f060fa73ae2795a646e2bbc19
11e31ce4d7f750db4b34b4b1ffee2dec6c7dc414
refs/heads/master
2020-03-14T02:16:17.310841
2018-06-11T09:15:40
2018-06-11T09:15:40
131,395,910
0
1
null
2018-05-19T10:17:32
2018-04-28T09:38:09
Python
UTF-8
Python
false
false
771
py
''' This is a abstract planet class. Created on 28 Apr 2018 @author: Klaus ''' from abc import ABC, abstractmethod import string import random class Planet(ABC): ''' There are 3 types of planets agricultur, industry and hightech Depending on the planet types the wares have different prices ''' def __init__(self): ''' Constructor ''' super().__init__() prices = {'wheat': 0, 'iron': 0, 'phone': 0} self.prices = prices self.name = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(6)) def getPrices(self): return self.prices @abstractmethod def setPrices(self): pass def getName(self): return self.name
[ "tusch.klaus@gmail.com" ]
tusch.klaus@gmail.com
09c72bef322c2d0a17dd270c10a22db10b174c02
46ed67158fcef1b37e76339de40219e7b466f98b
/t5.py
5be6e1a1fc02eab700a00c0fcbbbad9cfabe1046
[]
no_license
RuningBird/TensorFlow
dd0c37796efa2a0690a2ac4c63d0c26f9d725a89
c67b192b69982ac272f4bc6f541c7918e9ba6773
refs/heads/master
2021-01-22T03:45:08.807663
2017-06-08T11:23:20
2017-06-08T11:23:20
92,401,899
0
0
null
null
null
null
UTF-8
Python
false
false
80
py
import tensorflow as tf #############--------激活函数---------#############
[ "ipowerink@outlook.com" ]
ipowerink@outlook.com
a1865ec63daf117e572dec767df1368a078c8ae2
640c9480d8d9ec42ef76c5df6c29734a066edd2c
/network96.py
9c49a4fcc9d329c14c442ea2988f06dca5fb1338
[ "MIT" ]
permissive
nuonuoyaya/DCGAN
28a8a53c903e8ff826ce37a1085f4b4ac8e9e6b4
0219db97ddf966d7a638e1be6b71bcf96fada10d
refs/heads/master
2023-03-27T11:54:00.085204
2021-03-25T05:01:29
2021-03-25T05:01:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,366
py
import tensorflow as tf # 超参数(包括训练的轮数,学习率等,可以根据需要进行更改) EPOCHS = 100 BATCH_SIZE = 128 LEARNING_RATE = 0.0002 BETA_1 = 0.5 # 根据图集的图片尺寸可以调整网络结构,但是图片不要太大,否则会造成训练时间过长。 # 定义判别器模型 def discriminator_model(): model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D( filters=64, # 64个过滤器,输出的深度是 64 kernel_size=(5, 5), # 过滤器在二维的大小是(5 * 5) strides=(2, 2), # 步长为 2 padding='same', # same 表示外围补零 input_shape=(96, 96, 3), # 输入形状 [96, 96, 3]。3 表示 RGB 三原色 kernel_initializer=tf.keras.initializers.TruncatedNormal(mean=0, stddev=0.02) )) model.add(tf.keras.layers.LeakyReLU(alpha=0.2)) model.add(tf.keras.layers.Conv2D( 128, (5, 5), strides=(2, 2), padding="same", kernel_initializer=tf.keras.initializers.TruncatedNormal(mean=0, stddev=0.02) )) model.add(tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9)) # 加入BN层防止模式崩塌,同时加速收敛 model.add(tf.keras.layers.LeakyReLU(alpha=0.2)) model.add(tf.keras.layers.Conv2D( 256, (5, 5), strides=(2, 2), padding="same", kernel_initializer=tf.keras.initializers.TruncatedNormal(mean=0, stddev=0.02) )) model.add(tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9)) model.add(tf.keras.layers.LeakyReLU(alpha=0.2)) model.add(tf.keras.layers.Conv2D( 512, (5, 5), strides=(2, 2), padding="same", kernel_initializer=tf.keras.initializers.TruncatedNormal(mean=0, stddev=0.02) )) model.add(tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9)) model.add(tf.keras.layers.LeakyReLU(alpha=0.2)) model.add(tf.keras.layers.Flatten()) # 扁平化处理 model.add(tf.keras.layers.Dense(1)) model.add(tf.keras.layers.Activation("sigmoid")) # sigmoid 激活层 return model # 定义生成器模型 def generator_model(): model = tf.keras.models.Sequential() # 输入的维度是 100 model.add(tf.keras.layers.Dense(512 * 6 * 6, input_shape=(100, ))) model.add(tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9)) model.add(tf.keras.layers.Activation("relu")) model.add(tf.keras.layers.Reshape((6, 6, 512))) # 6 x 6 像素 model.add(tf.keras.layers.Conv2DTranspose( 256, (5, 5), strides=(2, 2), padding="same", kernel_initializer=tf.keras.initializers.TruncatedNormal(mean=0, stddev=0.02) )) model.add(tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9)) model.add(tf.keras.layers.Activation("relu")) model.add(tf.keras.layers.Conv2DTranspose( 128, (5, 5), strides=(2, 2), padding="same", kernel_initializer=tf.keras.initializers.TruncatedNormal(mean=0, stddev=0.02) )) model.add(tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9)) model.add(tf.keras.layers.Activation("relu")) model.add(tf.keras.layers.Conv2DTranspose( 64, (5, 5), strides=(2, 2), padding="same", kernel_initializer=tf.keras.initializers.TruncatedNormal(mean=0, stddev=0.02) )) model.add(tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9)) model.add(tf.keras.layers.Activation("relu")) model.add(tf.keras.layers.Conv2DTranspose( 3, (5, 5), strides=(2, 2), padding="same", kernel_initializer=tf.keras.initializers.TruncatedNormal(mean=0, stddev=0.02) )) model.add(tf.keras.layers.Activation("tanh")) # tanh 激活层 return model # 构造一个 DCGAN 对象,包含一个生成器和一个判别器 # 输入 -> 生成器 -> 判别器 -> 输出 def generator_containing_discriminator(generator, discriminator): model = tf.keras.Sequential() model.add(generator) discriminator.trainable = False # 初始时判别器不可被训练 model.add(discriminator) return model
[ "noreply@github.com" ]
nuonuoyaya.noreply@github.com
0170bb41ca084d2527f7b9c2b97652ee4c794c72
0e1b1f5e2893070ebdcb5eb15b07b89b0f31f471
/submodules/seqan/util/py_lib/seqan/dox/sig_parser.py
8ba87455ea0259b6f9b67f3da6939a903f68f617
[ "MIT", "BSD-3-Clause" ]
permissive
sheffield-bioinformatics-core/STRique
1a4a3e59e0ac66174ed5c9a4498d6d8bed40b54d
fd2df916847727b3484b2bbad839814043d7dbea
refs/heads/master
2022-12-27T22:28:31.893074
2020-09-29T14:31:45
2020-09-29T14:31:45
296,618,760
0
0
MIT
2020-09-18T12:45:30
2020-09-18T12:45:29
null
UTF-8
Python
false
false
12,109
py
#!/usr/bin/env python2 """Parser for the signature supported by the SeqAn Doxygen-style documentation. """ # TODO(holtgrew): The parser has become quite complex. Maybe using some external library for parsing is in order. import sys import lexer TOKENS = ( ('KWD_TEMPLATE', r'template'), ('KWD_TYPENAME', r'typename'), ('KWD_CLASS', r'class'), ('KWD_CONCEPT', r'concept'), ('KWD_STRUCT', r'struct'), ('KWD_ENUM', r'enum'), ('IDENTIFIER', r'[a-zA-Z_~][a-zA-Z_0-9~]*'), ('COMMA', r','), ('NAME_SEP', r'::'), ('HASH', r'#'), ('SEMICOLON', r';'), ('SPACE', r'[\t ]'), ('PROUND_OPEN', r'\('), ('PROUND_OPEN', r'\('), ('PROUND_CLOSE', r'\)'), ('PANGULAR_OPEN' , r'<'), ('PANGULAR_CLOSE', r'>'), ) class SigParseException(Exception): """Raised in the case of signature parsing error.""" def __init__(self, msg, line=0, column=0): Exception.__init__(self, msg) self.line = line self.column = column class Arg(object): """ @ivar type: The type of the template parameter, e.g. 'typename', 'class', 'int', 'unsigned' etc. str @ivar name: The name of the parameter. str """ def __init__(self, type=None, name=None): self.type = type self.name = name class SigEntry(object): """A signature entry. The following kinds are possible: concept, class, function, variable, enum, struct. @ivar name: Name of the element. @ivar kind: The kind of the element. @ivar params: Parameters of the function, in case of function. @ivar is_tpl: Whether or not the entry is a template. @ivar tparams: Template parameters, in case of templates. @ivar return_type: The name of the return type, in case of function. @ivar return_name: Name after the :: for Metafunctions. @ivar var_type: The type of the variable. """ def __init__(self, name=None, kind=None, params=[], tparams=[], is_tpl=False, return_type=None, return_name=None, var_type=None): self.name = name self.kind = kind self.params = list([]) self.tparams = list([]) self.is_tpl = is_tpl self.return_type = return_type self.return_name = return_name self.var_type = var_type def toString(self): """Convert the SigEntry object back into a string.""" types = ['concept', 'class', 'struct', 'enum'] if not self.is_tpl and self.kind in types: return '%s %s;' % (self.kind, self.name) elif not self.is_tpl and self.kind == 'function': params = ', '.join(['%s %s' % (p.type, p.name) for p in self.params]) if self.return_type: return '%s %s(%s);' % (self.return_type, self.name, params) else: return '%s(%s);' % (self.name, params) elif self.is_tpl and self.kind == 'function': tparams = ', '.join(['%s %s' % (p.type, p.name) for p in self.tparams]) params = ', '.join(['%s %s' % (p.type, p.name) for p in self.params]) return 'template <%s>\n%s %s(%s);' % (tparams, self.return_type, self.name, params) elif self.is_tpl and self.kind in ['struct', 'class']: tparams = ', '.join(['%s %s' % (p.type, p.name) for p in self.tparams]) params = ', '.join(['%s %s' % (p.type, p.name) for p in self.params]) return 'template <%s>\n%s %s;' % (tparams, self.kind, self.name) elif self.kind == 'metafunction': tparams = ', '.join([p.name for p in self.tparams]) if self.return_type: return '%s %s<%s>::%s;' % (self.return_type, self.name, tparams, self.return_name) else: return '%s<%s>::%s;' % (self.name, tparams, self.return_name) elif self.kind == 'variable': return '%s %s;' % (self.var_type, self.name) class SigParser(object): def __init__(self, buffer): self.buffer = buffer self.lexer = lexer.Lexer(TOKENS) self.lexer.input(buffer) self.tokens = self.lexer.tokens() def parseTemplate(self, token): tparams = [] # Read < t = self.tokens.next() self.expectNotEof(t) if t.type != 'PANGULAR_OPEN': raise SigParseException('Expected opening angular parenthesis') # Parse template parameters. self.parseParams('PANGULAR_CLOSE', tparams, ['IDENTIFIER', 'KWD_TYPENAME', 'KWD_CLASS']) # Parse remaining. sig_entry = self.parse() sig_entry.is_tpl = True sig_entry.tparams = tparams return sig_entry def parseParams(self, end_token, params_dest, type_tokens): t = self.tokens.next() self.expectNotEof(t) while t.type != end_token: if t.type not in type_tokens: raise SigParseException('Expected identifier got "%s"' % t.val) arg = Arg(type=t.val) t = self.tokens.next() self.expectNotEof(t) if t.type != 'IDENTIFIER': raise SigParseException('Expected identifier got "%s"' % t.val) arg.name = t.val t = self.tokens.next() self.expectNotEof(t) if t.type not in ['COMMA', end_token]: raise SigParseException('Expected COMMA or closing parenthesis') if t.type != end_token: t = self.tokens.next() params_dest.append(arg) def parseMetafunctionType(self, name): sig_entry = SigEntry(kind='metafunction') sig_entry.name = name # Expect "#$name" or PANGULAR_CLOSE t = self.tokens.next() self.expectNotEof(t) if t.type == 'HASH': sig_entry.name += '#' t = self.tokens.next() self.expectNotEof(t) if t.type != 'IDENTIFIER': raise SigParseException('Expecting identifier') sig_entry.name += t.val t = self.tokens.next() self.expectNotEof(t) while t.type != 'PANGULAR_CLOSE': if t.type != 'IDENTIFIER': raise SigParseException('Expecting identifier') arg = Arg(name=t.val) sig_entry.tparams.append(arg) # Read "," or ">" t = self.tokens.next() self.expectNotEof(t) if t.type not in ['PANGULAR_CLOSE', 'COMMA']: raise SigParseException('Expecting ">" or ","') if t.type == 'COMMA': t = self.tokens.next() self.expectNotEof(t) # Expect "::" t = self.tokens.next() self.expectNotEof(t) if t.type != 'NAME_SEP': raise SigParseException('Expecting "::"') # Read return_name t = self.tokens.next() self.expectNotEof(t) if t.type != 'IDENTIFIER': raise SigParseException('Expecting identifier got %s' % repr(t.val)) sig_entry.return_name = t.val return sig_entry def parseMetafunctionValue(self, return_type, name): sig_entry = self.parseMetafunctionType(name) sig_entry.return_type = return_type return sig_entry def parseFunction(self, token): """Parse a function, variable, or metafunction. We started out with an identifier. The things that this function will be triggered for: TReturn name(T1 x1, T2 x2, ...) TReturn Klass::name(T1 x1, T2 x2, ...) TReturn Klass#name(T1 x1, T2 x2, ...) TReturn Name<TParam>::VALUE TReturn Klass#Name<TParam>::VALUE Name<TParam>::Type Klass#Name<TParam>::Type T var @param token: lexer.Token object with the previous token. """ is_constructor = False other_name = token.val # get next token, i sname or "<" t = self.tokens.next() self.expectNotEof(t) if t.type in ['HASH', 'NAME_SEP']: other_name += t.val t = self.tokens.next() self.expectNotEof(t) if t.type != 'IDENTIFIER': raise SigParseException('Expecting identifier.') other_name += t.val t = self.tokens.next() self.expectNotEof(t) if t.type == 'PANGULAR_OPEN': return self.parseMetafunctionType(other_name) if t.type == 'PROUND_OPEN': is_constructor = True elif t.type != 'IDENTIFIER': raise SigParseException('Expecting identifier as function name.') name = t.val if not is_constructor: t = self.tokens.next() self.expectNotEof(t) if t.type in ['HASH', 'NAME_SEP']: name += t.val t = self.tokens.next() self.expectNotEof(t) if t.type != 'IDENTIFIER': raise SigParseException('Expecting identifier.') name += t.val t = self.tokens.next() self.expectNotEof(t) # expect "(" or "<" if t.type == 'PANGULAR_OPEN': return self.parseMetafunctionValue(other_name, name) # Expecting <eof>, ";", or (. The last triggers generation of a # function, the other of a variable. if t.type in ['EOF', 'SEMICOLON']: sig_entry = SigEntry(kind='variable') sig_entry.var_type = other_name sig_entry.name = name return sig_entry sig_entry = SigEntry(kind='function') if is_constructor: sig_entry.return_type = None sig_entry.name = other_name else: sig_entry.return_type = other_name sig_entry.name = name if t.type in ['HASH', 'NAME_SEP']: sig_entry.name += t.val t = self.tokens.next() self.expectNotEof(t) if t.type != 'IDENTIFIER': raise SigParseException('EOF not expected') sig_entry.name += t.val t = self.tokens.next() self.expectNotEof(t) if t.type != 'PROUND_OPEN': raise SigParseException('Expecting opening parenthesis after ' 'function name') # parse parameters self.parseParams('PROUND_CLOSE', sig_entry.params, ['IDENTIFIER']) return sig_entry def parseCSE(self, kind): """Parse class, struct, enum.""" sig_entry = SigEntry(kind=kind) t = self.tokens.next() self.expectNotEof(t) if t.type != 'IDENTIFIER': raise SigParseException('Expecting identifier after "%s"!' % kind) sig_entry.name = t.val return sig_entry def parseClass(self, token): return self.parseCSE('class') def parseConcept(self, token): return self.parseCSE('concept') def parseStruct(self, token): return self.parseCSE('struct') def parseEnum(self, token): return self.parseCSE('enum') def expectNotEof(self, token): if token.type == 'EOF': raise SigParseException('Unexpecte EOF!') def parse(self): try: t = self.tokens.next() self.expectNotEof(t) m = {'KWD_TEMPLATE': self.parseTemplate, 'KWD_CLASS': self.parseClass, 'KWD_CONCEPT': self.parseConcept, 'KWD_STRUCT': self.parseStruct, 'KWD_ENUM': self.parseEnum, 'IDENTIFIER': self.parseFunction} if not t.type in m: raise SigParseException('Unexpected token of type %s' % t.type) return m[t.type](t) except lexer.LexerError, e: raise SigParseException('Lexer error: %s at pos %s when parsing %s' % (e, e.pos, self.buffer))
[ "matthew.parker@sheffield.ac.uk" ]
matthew.parker@sheffield.ac.uk
6918da170d57086d58de53e73ee734793ca9c647
5b6481da9d47221546382a0f39b73095a18f552b
/prev_ob_models/Migliore2014bulb3d/mig2birg_gloms.py
82d643debacca3139f0f9d1e14c4dc107fc68e04
[ "MIT" ]
permissive
JustasB/OlfactoryBulb
26905f247bb189c7a5359c85a2707fcdeab10de1
ab0d31f84e18d102956a6fec3196ab262fc08c39
refs/heads/master
2023-04-11T19:23:45.731947
2021-05-04T21:55:20
2021-05-04T21:55:20
150,029,110
7
2
MIT
2019-06-08T01:57:46
2018-09-23T21:59:30
Jupyter Notebook
UTF-8
Python
false
false
2,818
py
''' Mapping between Migliore 2014 glomeruli indices and Birgiolas 2020 indices Produced by finding the closest glomeruli pair in blender-files/ob-mig-mcs-aligned-to-gloms.blend ''' mig2birg = {} mig2birg[0] = 1493 mig2birg[100] = 325 mig2birg[101] = 1613 mig2birg[102] = 358 mig2birg[103] = 1403 mig2birg[104] = 840 mig2birg[105] = 918 mig2birg[106] = 544 mig2birg[107] = 938 mig2birg[108] = 1683 mig2birg[109] = 1481 mig2birg[10] = 785 mig2birg[110] = 1652 mig2birg[111] = 1342 mig2birg[112] = 1075 mig2birg[113] = 399 mig2birg[114] = 803 mig2birg[115] = 1614 mig2birg[116] = 224 mig2birg[117] = 870 mig2birg[118] = 1906 mig2birg[119] = 1090 mig2birg[11] = 80 mig2birg[120] = 1736 mig2birg[121] = 1852 mig2birg[122] = 398 mig2birg[123] = 91 mig2birg[124] = 140 mig2birg[125] = 1619 mig2birg[126] = 1912 mig2birg[12] = 521 mig2birg[13] = 1379 mig2birg[14] = 1684 mig2birg[15] = 187 mig2birg[16] = 1573 mig2birg[17] = 202 mig2birg[18] = 1529 mig2birg[19] = 1373 mig2birg[1] = 1057 mig2birg[20] = 748 mig2birg[21] = 690 mig2birg[22] = 1472 mig2birg[23] = 1531 mig2birg[24] = 50 mig2birg[25] = 1339 mig2birg[26] = 1219 mig2birg[27] = 1473 mig2birg[28] = 326 mig2birg[29] = 884 mig2birg[2] = 556 mig2birg[30] = 239 mig2birg[31] = 1551 mig2birg[32] = 834 mig2birg[33] = 60 mig2birg[34] = 275 mig2birg[35] = 1880 mig2birg[36] = 1043 mig2birg[37] = 38 mig2birg[38] = 1280 mig2birg[39] = 141 mig2birg[3] = 184 mig2birg[40] = 1172 mig2birg[41] = 1311 mig2birg[42] = 338 mig2birg[43] = 1520 mig2birg[44] = 590 mig2birg[45] = 1895 mig2birg[46] = 759 mig2birg[47] = 1883 mig2birg[48] = 545 mig2birg[49] = 1851 mig2birg[4] = 1282 mig2birg[50] = 856 mig2birg[51] = 1435 mig2birg[52] = 1170 mig2birg[53] = 598 mig2birg[54] = 1840 mig2birg[55] = 1210 mig2birg[56] = 1567 mig2birg[57] = 1165 mig2birg[58] = 461 mig2birg[59] = 33 mig2birg[5] = 895 mig2birg[60] = 1151 mig2birg[61] = 1340 mig2birg[62] = 1877 mig2birg[63] = 450 mig2birg[64] = 1867 mig2birg[65] = 1382 mig2birg[66] = 104 mig2birg[67] = 1245 mig2birg[68] = 361 mig2birg[69] = 1773 mig2birg[6] = 1669 mig2birg[70] = 1089 mig2birg[71] = 675 mig2birg[72] = 1115 mig2birg[73] = 1474 mig2birg[74] = 1125 mig2birg[75] = 696 mig2birg[76] = 1780 mig2birg[77] = 892 mig2birg[78] = 1589 mig2birg[79] = 167 mig2birg[7] = 1033 mig2birg[80] = 985 mig2birg[81] = 337 mig2birg[82] = 1633 mig2birg[83] = 924 mig2birg[84] = 1140 mig2birg[85] = 114 mig2birg[86] = 829 mig2birg[87] = 1673 mig2birg[88] = 836 mig2birg[89] = 794 mig2birg[8] = 530 mig2birg[90] = 272 mig2birg[91] = 609 mig2birg[92] = 1604 mig2birg[93] = 1483 mig2birg[94] = 429 mig2birg[95] = 1077 mig2birg[96] = 501 mig2birg[97] = 1287 mig2birg[98] = 1878 mig2birg[99] = 1133 mig2birg[9] = 449
[ "jbirgio@gmail.com" ]
jbirgio@gmail.com
f71d99827be90d045ef1488af88ac529bc8fcdc2
aa622a03677b3a52890b8b8ffc13c2f57d6f14c9
/rctk/tests/test_synced_control.py
4e75f893ac1e6086652386acaf6bc34d7525d334
[ "BSD-2-Clause" ]
permissive
rctk/rctk
8c6e0796127dc4ff528c03a840e02173dc660cdf
dc8640e75179c8560ca0cd64e709fefef58d5d2a
refs/heads/master
2020-05-19T16:52:20.687043
2011-09-05T13:02:36
2011-09-05T13:02:36
2,898,310
3
0
null
null
null
null
UTF-8
Python
false
false
3,318
py
from rctk.tests.base import BaseTest from rctk.widgets.control import Control, Attribute class TestSyncedControl(BaseTest): def test_single_attribute(self): class TestControl(Control): a = Attribute("default") t = TestControl(self.tk) assert len(self.tk._queue) == 1 assert self.tk._queue[0]._task['action'] == 'create' assert self.tk._queue[0]._task['a'] == 'default' def test_single_attribute_nondefault(self): class TestControl(Control): a = Attribute("default") t = TestControl(self.tk, a="nondefault") assert len(self.tk._queue) == 1 assert self.tk._queue[0]._task['action'] == 'create' assert self.tk._queue[0]._task['a'] == 'nondefault' def test_update(self): class TestControl(Control): a = Attribute("default") t = TestControl(self.tk, a="nondefault") self.tk._queue.pop() # pop the create task t.a = 'updated' assert len(self.tk._queue) == 1 assert self.tk._queue[0]._task['action'] == 'update' assert self.tk._queue[0]._task['update']['a'] == 'updated' def test_create_filter_default(self): def filter(a): return a[::-1] class TestControl(Control): a = Attribute("default", filter=filter) t = TestControl(self.tk) assert self.tk._queue[0]._task['a'] == 'tluafed' def test_create_filter_nondefault(self): def filter(a): return a[::-1] class TestControl(Control): a = Attribute("default", filter=filter) t = TestControl(self.tk, a="nondefault") assert self.tk._queue[0]._task['a'] == 'tluafednon' def test_update_filter(self): def filter(a): return a[::-1] class TestControl(Control): a = Attribute("default", filter=filter) t = TestControl(self.tk) self.tk._queue.pop() # pop the create task t.a = 'updated' assert len(self.tk._queue) == 1 assert self.tk._queue[0]._task['action'] == 'update' assert self.tk._queue[0]._task['update']['a'] == 'detadpu' def test_remote_sync(self): class TestControl(Control): a = Attribute("default") t = TestControl(self.tk) t.sync(a="synced") assert t.a == "synced" def test_scenario(self): """ a more complete, slightly more complex scenario """ def filter(a): return a[::-1] class TestControl(Control): a = Attribute("default", filter=filter) b = Attribute(1, Attribute.NUMBER) t = TestControl(self.tk, b=2) assert len(self.tk._queue) == 1 assert self.tk._queue[0]._task['action'] == 'create' assert self.tk._queue[0]._task['a'] == 'tluafed' assert self.tk._queue[0]._task['b'] == 2 self.tk._queue.pop() t.a = "updated" t.b = 3 assert len(self.tk._queue) == 2 assert self.tk._queue[0]._task['update']['a'] == 'detadpu' assert self.tk._queue[1]._task['update']['b'] == 3 t.sync(a="synced", b=100) assert t.a == "synced" assert t.b == 100 ## TODO: Integratie attributes into xmlbuilder, test it. # test (remote) sync of attribute
[ "github@in.m3r.nl" ]
github@in.m3r.nl
2e7a77380201c7d92df9a72c9bdbf5361d4d0329
f246b414cce8687d6e5d1bb77cd94132b89580a2
/capstone/capstone/settings.py
a047facfe5fdebea0cdc34e2244ca61154a75b55
[]
no_license
thewolfcommander/cs50-web
edbccd29b0b649852c7af73d5ecba4f51fa47ad3
beead0967d36ef398b699601c8ebae646827556d
refs/heads/master
2022-12-23T08:03:52.729833
2020-10-01T14:14:31
2020-10-01T14:14:31
300,309,278
2
2
null
2020-10-01T14:29:44
2020-10-01T14:29:42
null
UTF-8
Python
false
false
3,681
py
""" Django settings for capstone project. Generated by 'django-admin startproject' using Django 3.1. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve(strict=True).parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 't@^uc32#s6eo4&qf^5v4d05&p-cjlb8@3yyntd@!z3xxg*)4jo' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'tasker', 'rest_framework', 'corsheaders', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'corsheaders.middleware.CorsMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] CORS_ORIGIN_ALLOW_ALL = True # CORS_ORIGIN_WHITELIST = ( # 'http://localhost:3000', # ) ROOT_URLCONF = 'capstone.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] REST_FRAMEWORK = { 'DEFAULT_PERMISSION_CLASSES': ( 'rest_framework.permissions.IsAuthenticated', ), 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework_jwt.authentication.JSONWebTokenAuthentication', 'rest_framework.authentication.SessionAuthentication', 'rest_framework.authentication.BasicAuthentication', ), } WSGI_APPLICATION = 'capstone.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } AUTH_USER_MODEL = 'tasker.User' # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Australia/Sydney' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
[ "nstu778@aucklanduni.ac.nz" ]
nstu778@aucklanduni.ac.nz
cd3954fece8a567c0bd6837d9914e92508b196e0
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_298/ch54_2020_09_29_22_51_12_719433.py
030dbbeba2a0e3cf5a449b226a9408e9dc81ea74
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
279
py
fibonacci = [] fibonacci.append(1) fibonacci.append(1) def calcula_fibonacci(n): t = 0 while t < n: fibonacci_seguinte = fibonacci[t] + fibonacci[t+1] fibonacci.append(fibonacci_seguinte) t += 1 return fibonacci[:n] print(calcula_fibonacci(n))
[ "you@example.com" ]
you@example.com
bd41d5569239641b7cf11f80b1f16949af7fd367
5756d7c546c30924a95d8de484fd1ec66d89f31f
/web/migrations/0007_auto_20201104_0111.py
271be5007be0aca15c92bb8598b6413b9cc74743
[]
no_license
manuguevara/MI-CAR-Django
0e665c7f7f850263ec01be5b8752ac15201ccaf2
90d96f2dafc4af125e3b4c0e03ca5305ccca1646
refs/heads/master
2023-01-30T18:48:03.749094
2020-12-10T00:22:23
2020-12-10T00:22:23
300,990,125
0
0
null
null
null
null
UTF-8
Python
false
false
423
py
# Generated by Django 3.1.1 on 2020-11-04 04:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('web', '0006_insumo'), ] operations = [ migrations.AlterField( model_name='insumo', name='imagen', field=models.ImageField(default=1, upload_to='Insumo'), preserve_default=False, ), ]
[ "manu.guevara@alumnos.duoc.cl" ]
manu.guevara@alumnos.duoc.cl
19ff025373dc4fcab401bdcea7400cec9db59b81
73bb9421b459955af189b75fc01298fb820210c6
/hello_you.py
421d6598333c86ad5b0887c29346fb96cf80aeab
[]
no_license
becerra2906/python_practice_ex
44247f5762b29b2db2e87c24834967f6d3b44941
2522be3a04bc1dc79e391edee0dd2bc239e56604
refs/heads/master
2022-12-22T12:11:07.205038
2020-10-02T17:14:59
2020-10-02T17:14:59
272,989,756
0
0
null
null
null
null
UTF-8
Python
false
false
500
py
# By Alejandro Becerra # done as part of The Python Bible Udemy Course #ask user a name name = input("What's your name?: ") #ask user for age age = input("How old are you?: ") #ask user for city city = input("What city do you live in?: ") #ask user what they enjoy love = input("What do you love doing?: ") #Create ouput string = "Your name is {} and you are {} years old. You live in {} and you love {}." output = string.format(name, age, city, love) #Print output print(output)
[ "noreply@github.com" ]
becerra2906.noreply@github.com
d48b020a384af34542a253fd697fdca212d37b83
a05ce7d365917c2ae6430e522381792a011d5979
/atomtoolbox/classification.py
0314661575a57af915ef3e05b66ea5d0493b2105
[ "MIT" ]
permissive
eschmidt42/AtomToolBox
9d41770e9ebf545ac6cefce5c81226c14ee024c2
25b80675dcaa332fc0c0d702b60ea61dfe2501a0
refs/heads/master
2021-09-14T21:45:57.408383
2018-05-20T09:15:26
2018-05-20T09:15:26
113,569,858
1
0
null
2018-02-10T14:37:36
2017-12-08T12:00:18
null
UTF-8
Python
false
false
64,241
py
import copy, os, pickle, collections, warnings from scipy import stats, optimize import numpy as np from sklearn.mixture import GaussianMixture, BayesianGaussianMixture from sklearn.cluster import KMeans from scipy.cluster import hierarchy from scipy import spatial import matplotlib.pylab as plt import matplotlib as mpl import tensorflow as tf import sklearn from time import time from functools import partial from datetime import datetime def scipy_gmm_wrapper(gmm=None, means_=None, covariances_=None, weights_=None): """Wraps the gmm so it's pdf can be accessed. """ gmm_given = (not gmm is None) parameters_given = not (means_ is None and covariances_ is None and weights_ is None) assert gmm_given or parameters_given,\ "Either 'gmm' needs to be given or 'means_', 'covariances_' and 'weights_'!" if gmm_given: means_ = gmm.means_ covariances_ = gmm.covariances_ weights_ = gmm.weights_ elif parameters_given: assert len(means_)==len(covariances_)==len(weights_), "'means_', 'covariances_' and 'weights_' all need to have the same length!" else: raise ValueError("WTF!") gaussians = [stats.multivariate_normal(mean=means_[i],cov=covariances_[i]) for i in range(weights_.shape[0])] def scipy_gmm(x): if len(x.shape)==1: Phi = np.array([g.pdf(x) for g in gaussians]) elif len(x.shape)==2: Phi = np.array([[g.pdf(_x) for g in gaussians] for _x in x]) else: raise ValueError("Cannot handle 'x' of shape {}!".format(x.shape)) return np.dot(Phi,weights_) return scipy_gmm def get_decomposed_models(in_models, verbose=False): """Decomposes 'models'. Parameters ---------- in_models : dict of lists Example: {"a":[0,2], "b":[0,1]} verbose : boolean, optional, default False Returns ------- out_models : list of np.ndarrays of int Each np.ndarray represents a maximally decomposed model breaking down in_models. Example: >>> in_model = {"a":[0,2], "b":[0,1]} >>> print(get_decomposed_models(in_model)) [array([2]), array([1]), array([0])] """ if verbose: print("in_models ",in_models) out_models = [] num_models = len(in_models) assert num_models > 0, "number of models = {}!".format(num_models) out_models = collections.deque([set(v) for v in in_models.values()]) if num_models > 1: unique_components = np.sort(np.unique(np.hstack(in_models.values()))) if verbose: print("unique_components ",unique_components) for i, uc in enumerate(unique_components): if verbose: print("\nunique component: ",uc) print("out_models ",out_models) # splits out_models into relevant and relevant # relevant models will be decomposed and the remainders # added with relevant_models to proce new out_models relevant_models = [] irrelevant_models = [] while len(out_models)>0: m = out_models.popleft() if verbose: print(" m ",m) if uc in m: relevant_models.append(m) else: irrelevant_models.append(m) if verbose: print(" > relevant ",relevant_models) print(" > irrelevant ",irrelevant_models) # sort relevant models by length relevant_models = sorted(relevant_models, key = lambda x: len(x)) if len(relevant_models)==0 and len(irrelevant_models)==0: # error raise ValueError("Relevant and irrelevant models are surprisingly empty!") elif len(relevant_models)==0: # no model was relevant out_models = collections.deque(irrelevant_models) elif len(relevant_models)==1: # a single model was relevant out_models = collections.deque(relevant_models+irrelevant_models) else: # there were some relevant models i0, i1 = np.triu_indices(len(relevant_models),k=1) # all intersections have the unique component in common intersections = [relevant_models[v0].intersection(relevant_models[v1]) for v0,v1 in zip(i0,i1)] assert len(intersections)>0, "The intersections are surprisingly empty!" # sorting by number of model components intersections = sorted(intersections, key=lambda x: len(x)) if verbose: print(" > intersections ",intersections) # the smallest possible set of components intersection = intersections[0] assert len(intersection)>0, "The intersection is surprisingly empty!" if verbose: print(" > intersection ",intersection) #retrieving remainders remainders = [m.difference(intersection) for m in relevant_models] remainders = [v for v in remainders if len(v)>0] if verbose: print(" > intersection ",intersection) # composing out_models again if verbose: print(" > irrelevant_models ",irrelevant_models) print(" > remainders ",remainders) out_models = collections.deque(irrelevant_models + [intersection] + remainders) if verbose: print(" > new out_models ",out_models) out_models = [np.array(list(v),dtype=int) for v in out_models] assert set([v0 for v1 in in_models.values() for v0 in v1]) == set(np.hstack(out_models)), "Mismatching sets, lost some components!" return out_models def fit_gmm_weights(w0,_gaussians,X,method="Nelder-Mead"): def wbound(w): w = np.absolute(w) return w/w.sum() def _wrap(_gaussians,X): _g = np.array([[g.pdf(x) for g in _gaussians] for x in X]) def fun(w): return - (np.log(np.dot(_g,wbound(w)))).sum() return fun res = optimize.minimize(_wrap(_gaussians,X),w0,method=method) return wbound(res["x"]) class GaussianMixtureClassifier: """Approximates the sample distribution for classification. GaussianMixture and BayesianGaussianMixture as implemented in sklearn classify by individual Gaussian components found during the density regression of the given samples. In this class the training set is split by class and approximates the entire density distributions for each class. The resulting pdfs are then used for classification. This class can also do decomposition of Gaussian Mixture Models (GMMs). The decomposition is triggered when GaussianMixtureClassifier.fit is passed an X that is a list of np.ndarrays. It is then assumed that each array contains a superposition of underlying distributions (which may each be larger than a single Gaussian), e.g. comparison of LAMMPS trajectories of different crystals. Parameters ---------- gmm : instance of GaussianMixture or BayesianGaussianMixture, optional, default None Required to regress data. load_path : str, optional default None To load results of a previous regression. check_labels : boolean, optional, default True Checks upon loading the classifier from disk whether the number of GMM models matches the number of known labels or not. Methods ------- fit : fit(X, y) Approximates the density distributions using the provided gmm. X : float np.ndarray of shape (N, M) y : int np.ndarray of shape (N,) predict_proba : predict_proba(X) Requires previous execution of 'fit'. Returns the probability for the given samples to belong to either of the classes. predict : predict(X, show=False, axes=[0,1]) Requires previous execution of 'fit'. Returns most probably class for all samples. Optionally can also plot the classification along two axes. pdf : pdf(X, label) Requires previous execution of 'fit'. Allows access to the pdf for a specified class. label : int cluster : dict Settings for the clustering/decomposition of Gaussian. See self.decompos_gmms for more detail. weights_fit_method : str, optional, default "Nelder-Mead" Specifies the scipy.optimize.minimize method to use for the optimization of GMM weights. """ fitted_gmms = dict() labels = None idx_class = None weights_ = dict() # keys are integers. correspond to order of 'appearances' (a list) covariances_ = dict() # keys are integers. correspond to order of 'appearances' (a list) means_ = dict() # keys are integers. correspond to order of 'appearances' (a list) label_map = None check_labels = True appearances = None # in which original given crystals centroids were observed default_cluster_kwargs = {"method":"average","metric":"euclidean","cluster_parameters":"mu", "threshold":1e-6,"criterion":"distance","combine":"mean"} def __init__(self, gmm=None, load_path=None, tol0=1e-6, cluster = default_cluster_kwargs, weights_fit_method="Nelder-Mead", verbose=False, check_labels=False): if not gmm is None: assert isinstance(gmm,(GaussianMixture, BayesianGaussianMixture)), "'gmm' needs to be an instance of sklearn.mixture.{GaussianMixture, BayesianGaussianMixture}!" elif isinstance(load_path,str): assert os.path.exists(load_path), "Given 'load_path' ({}) invalid!".format(load_path) else: raise ValueError("Either 'gmm' or 'load_path' needs to be given!") self.gmm = gmm self.check_labels = check_labels if gmm is None: self._load_parameters(load_path) # decomposition related parameters self.tol0 = tol0 for _k, _v in self.default_cluster_kwargs.items(): if not _k in cluster: cluster[_k] = _v self.cluster = cluster self.weights_fit_method = weights_fit_method # misc self.verbose = verbose def _load_parameters(self,load_path): with open(load_path,"rb") as f: params = pickle.load(f) for label in sorted(params["weights_"]): self.fitted_gmms[label] = scipy_gmm_wrapper(weights_=params["weights_"][label],\ covariances_=params["covariances_"][label],\ means_=params["means_"][label]) self.weights_ = params["weights_"] self.covariances_ = params["covariances_"] self.means_ = params["means_"] self.label_map = params["label_map"] if "appearances" in params: self.appearances = params["appearances"] if self.check_labels: assert not self.label_map is None, "No labels are given in the stored file!" assert len(self.fitted_gmms) == len(self.label_map), "The number of GMMs (%i) does not match the number of available labels (%i)!" % (len(self.fitted_gmms),len(self.label_map)) def save(self,save_path): params = {"weights_":self.weights_, "covariances_":self.covariances_, "means_":self.means_, "label_map":self.label_map, "appearances":self.appearances} with open(save_path,"wb") as f: pickle.dump(params,f) def fit(self, X, y=None, label_map=None): """Fits. Parameters ---------- X : np.ndarray of floats or list of np.ndarrays Notes ----- If X is an array then y needs to be given and the classifier is developed directly over all the samples. If, otherwise, X is a list of arrays then y is not needed and labels are generated by decomposing the arrays in X by comparison of their computed pdfs. """ X_is_array = isinstance(X,np.ndarray) X_is_list = isinstance(X,list) if X_is_array: assert isinstance(y,np.ndarray), "'X' is an array and thus 'y' needs to be an array!" assert y.shape[0]==X.shape[0], "The array 'X' of shape {} is not matched by 'y' of shape {}!".format(X.shape,y.shape) elif X_is_list: assert all([isinstance(x,np.ndarray) for x in X]), "'X' is a list and all its entries need to be np.ndarrays! Got: {}".format([type(x) for x in X]) assert len(set([x.shape[1] for x in X]))==1, "All arrays in 'X' need to have the same number of features! Got: {}".format([x.shape[1] for x in X]) n_features = X[0].shape[1] else: raise ValueError("'X' input not understood. Needs to be an array of list of arrays!") if X_is_array: self.label_map=label_map self.labels = np.unique(y) self.idx_class = {k: np.where(y==k)[0] for k in self.labels} for label in sorted(self.idx_class): _gmm = copy.deepcopy(self.gmm) _gmm.fit(X[self.idx_class[label],:]) self.fitted_gmms[label] = scipy_gmm_wrapper(gmm=_gmm) self.weights_[label] = _gmm.weights_ self.covariances_[label] = _gmm.covariances_ self.means_[label] = _gmm.means_ elif X_is_list: Nstructures = len(X) structure_ids = ["structure%s"%i for i in range(Nstructures)] # fit structure pdfs all_gmms = [copy.deepcopy(self.gmm).fit(X[i]) for i in range(Nstructures)] # compressed and decomposed (cd) model mus_cd, covs_cd, appearances = self.decompose_gmms(all_gmms, structure_ids, n_features, method=self.cluster["method"], metric=self.cluster["metric"], threshold=self.cluster["threshold"], criterion=self.cluster["criterion"], cluster_parameters=self.cluster["cluster_parameters"], combine=self.cluster["combine"], verbose=self.verbose) N_cd = len(mus_cd) self.appearances = appearances.copy() # re-fit models gmms_cd = [] _X = np.vstack(X) if self.verbose: print("number of resulting models: ",N_cd) print("number of components in total: ",sum(m.shape[0] for m in mus_cd)) for i in range(N_cd): gaussians = [stats.multivariate_normal(mean=mus_cd[i][j],cov=covs_cd[i][j]) for j in range(mus_cd[i].shape[0])] #check closeness to original models is_new_model = True for _gmm in all_gmms: if _gmm.means_.shape == mus_cd[i].shape and _gmm.covariances_.shape == covs_cd[i].shape: mu_close = np.allclose(_gmm.means_,mus_cd[i]) cov_close = np.allclose(_gmm.covariances_,covs_cd[i]) if mu_close and cov_close: is_new_model = False weights_cd = _gmm.weights_ break Ng = len(gaussians) if is_new_model: # in case it's a new model get new weights if Ng>1: w0 = np.ones(Ng)/float(Ng) weights_cd = fit_gmm_weights(w0, gaussians, _X, method=self.weights_fit_method) assert weights_cd.sum() < 1+1e-6, "Weights invalid!" if np.linalg.norm(w0-weights_cd)<self.tol0: warnings.warn("Weights were not optimized! Changes are smaller than {}.".format(self.tol0)) else: weights_cd = np.array([1.]) # finalize and store models self.fitted_gmms[i] = scipy_gmm_wrapper(means_=mus_cd[i], covariances_=covs_cd[i], weights_=weights_cd) self.weights_[i] = weights_cd self.covariances_[i] = covs_cd[i] self.means_[i] = mus_cd[i] else: raise ValueError("Boink!") @staticmethod def decompose_gmms(gmms, structure_ids, n_features, method="average", metric="euclidean", threshold=1e-6, criterion="distance", cluster_parameters="mu", combine="mean", verbose=False): """Decomposes GMMs. Parameters ---------- gmms : list of GaussianMixtureModel instances structure_ids : list of str Names for the individual structures. n_features : int Number of features. method : str, optional, default "average" Method to use in scipy.cluster.hierarchy.linkage metric: str, optional, default, "euclidean" Metric to use in scipy.cluster.hierarchy.linkage. threshold : float, optional, default 1e-6 Threshold to use in scipy.cluster.hierarchy.fcluster. The smaller the value the more clusters will be found. criterion : str, optional, default "distance" Criterion to use in scipy.cluster.hierarchy.fcluster. cluster_parameters : str, optional, default "mu" Defines what is to be clustered: "mu" : Gaussians are clustered by their mean/mu values. "cov": Gaussians are clustered by their covariance values. "mu+cov": Gaussians are clustered by both their mean/mu and covariance values. combine : str, optional, default "mean" Specifies how Gaussians found to belong to the same cluster are to be combined. Currently "mean" is the only recognized option. """ model_reference = {} N = 0 all_covs = [] all_mus = [] for i,sid in enumerate(structure_ids): model_reference[sid] = np.arange(N,N+gmms[i].weights_.shape[0]) N += gmms[i].weights_.shape[0] covs = np.array([c.ravel() for c in gmms[i].covariances_]) mus = np.array([m for m in gmms[i].means_]) all_covs.append(covs) all_mus.append(mus) all_covs = np.vstack(all_covs) all_mus = np.vstack(all_mus) # find approximately unique components if cluster_parameters == "mu": p = all_mus elif cluster_parameters == "cov": p = all_covs elif cluster_parameters == "mu+cov": p = np.hstack((all_mus, all_covs)) else: raise ValueError("Unexpected 'cluster_parameters' value.") Z = hierarchy.linkage(p, method=method, metric=metric) T = hierarchy.fcluster(Z, threshold, criterion=criterion) -1 # relabel clusters to keep original parameter ordering T_map, _c = {}, 0 for _t in T: if not _t in T_map: T_map[_t] = _c _c += 1 T = np.array([T_map[_t] for _t in T]) T_set = np.sort(np.unique(T)) # combine parameters and thus compress models all_mus_clustered = [] all_covs_clustered = [] for t in T_set: if combine == "mean": _mu = all_mus[T==t,:].mean(axis=0) _cov = all_covs[T==t,:].mean(axis=0).reshape((n_features,n_features)) else: raise ValueError("'combine' ({}) not understood!".format(combine)) all_mus_clustered.append(_mu) all_covs_clustered.append(_cov) all_mus_clustered = np.array(all_mus_clustered) all_covs_clustered = np.array(all_covs_clustered) compressed_model_reference = {sid:np.sort(np.unique(T[vals])) for sid, vals in model_reference.items()} if verbose: print("model_reference:") for sid in sorted(model_reference): print(" initial ",model_reference[sid]) print(" compressed ",compressed_model_reference[sid]) # decompose by comparison compressed_decomposed_models = get_decomposed_models(compressed_model_reference, verbose=verbose) if verbose: print("compressed_decomposed_models ",compressed_decomposed_models) print("all_mus_clustered ",all_mus_clustered.shape) print("all_covs_clustered ",all_covs_clustered.shape) # compressed and decomposed (cd) parameters mus_cd = [all_mus_clustered[m,:] for m in compressed_decomposed_models] covs_cd = [all_covs_clustered[m,:] for m in compressed_decomposed_models] # model origins if verbose: print("\nMaximally decomposed models:") print("Components -> component appearances") appearances = [] for _decomposed_model in compressed_decomposed_models: _appearances = [_label for _label,_vals in compressed_model_reference.items()\ if any([_val in _decomposed_model for _val in _vals])] if verbose: print("%s -> %s"%(str(_decomposed_model), ", ".join(sorted(_appearances)))) appearances.append(_appearances) return mus_cd, covs_cd, appearances def predict_proba(self, X): p = np.zeros((X.shape[0],len(self.fitted_gmms))) for i,label in enumerate(sorted(self.fitted_gmms)): p[:,i] = self.fitted_gmms[label](X) Z = p.sum(axis=1) return (p.T/Z).T def show(self, X, y, axes=[0,1], title=None, xlim=(0,1), ylim=(0,1), xlabel=None, ylabel=None, labelfs=16, tickfs=14, legendfs=12, titlefs=18, data_labels=None, cmap=plt.cm.jet, figsize=(10,5)): """Plots.""" isarray = isinstance(X,np.ndarray) islist = isinstance(X,list) and all([isinstance(x,np.ndarray) for x in X]) if islist: _X = np.vstack(X) else: _X = np.copy(X) uy = np.unique(y) if isarray else np.unique(np.hstack(y)) _y = np.copy(y) if isarray else np.hstack(y) norm = mpl.colors.Normalize(vmin=uy.min(), vmax=uy.max()) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(121) if islist else fig.add_subplot(111) ax.set_aspect("equal") hs = [None for _uy in uy] for i,_uy in enumerate(uy): idx = np.where(_y==_uy)[0] ax.scatter(_X[idx,axes[0]], _X[idx,axes[1]], label="class %i"%_uy, alpha=.5, color=cmap(norm(_uy*np.ones(len(idx))))) ax.scatter(self.means_[i][:,axes[0]], self.means_[i][:,axes[1]], marker="+", color=cmap(norm(_uy*np.ones(len(self.means_[i]))))) if xlabel is None: ax.set_xlabel("Feature {}".format(axes[0]), fontsize=labelfs) else: ax.set_xlabel(xlabel, fontsize=labelfs) if ylabel is None: ax.set_ylabel("Feature {}".format(axes[1]), fontsize=labelfs) else: ax.set_ylabel(ylabel, fontsize=labelfs) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_title("Inferred classes",fontsize=labelfs) ax.tick_params(labelsize=tickfs) ax.legend(loc=0, fontsize=legendfs) if islist: ax2 = fig.add_subplot(122) ax2.set_aspect("equal") norm = mpl.colors.Normalize(vmin=0, vmax=len(X)) hs = [None for _X in X] for i,_X in enumerate(X): if data_labels is None: label = "trajectory #%i"%i else: label = data_labels[i] ax2.scatter(_X[:,axes[0]], _X[:,axes[1]], label=label, c=cmap(norm(np.ones(_X.shape[0])*i)), alpha=.5) if xlabel is None: ax2.set_xlabel("Feature {}".format(axes[0]), fontsize=labelfs) else: ax2.set_xlabel(xlabel, fontsize=labelfs) if ylabel is None: ax2.set_ylabel("Feature {}".format(axes[1]), fontsize=labelfs) else: ax2.set_ylabel(ylabel, fontsize=labelfs) ax2.tick_params(labelsize=tickfs) ax2.set_xlim(xlim) ax2.set_ylim(ylim) ax2.set_title("Trajectories", fontsize=labelfs) ax2.legend(loc=0, fontsize=legendfs) if not title is None: plt.suptitle(title, fontsize=titlefs) plt.tight_layout() plt.show() def predict(self, X, show=False, show_kwargs={}): """Predicts. """ isarray = isinstance(X,np.ndarray) islist = isinstance(X,list) and all([isinstance(x,np.ndarray) for x in X]) if isarray: p = self.predict_proba(X) y = np.argmax(p,axis=1) elif islist: p = [self.predict_proba(x) for x in X] y = [np.argmax(_p,axis=1) for _p in p] else: raise ValueError("X needs to be an array of a list of arrays!") if show: self.show(X,y, **show_kwargs) return y def pdf(self, X, label): return self.fitted_gmms[label](X) def explain_inference(self, abbreviate=True): assert not any([self.appearances is None, len(self.means_)==0]), "Class instance does not appear to have self.appearances and or self.centroids_ set." print("\nMaximally decomposed models:") print("Components -> component appearances") for i, _appearances in enumerate(self.appearances): _decomposed_model = self.means_[i].shape if abbreviate else self.means_[i] print("%s -> %s"%(", ".join(sorted(_appearances)),_decomposed_model)) def set_labels(self,labels): """Sets labels for the label_map. Associates model identifier (integer value of self.centroids_) with a string, e.g. name for a type of crystal. Parameters ---------- labels : dict Example: {"fcc":0, "fccVac":[1,2]} Note: 'labels' can also just set strings for a subset of model identifiers since not always all names which should be assigned are immediately obvious. The remaining labels are set to string versions of integer values. """ assert isinstance(labels,dict) assert all([isinstance(_k,str) for _k in labels.keys()]) assert all([isinstance(_v,(int,list,tuple)) for _v in labels.values()]) if self.label_map is None: self.label_map = dict() values = set() for _k, _v in labels.items(): self.label_map[_k] = _v if isinstance(_v,int): values.add(_v) else: for _v2 in _v: values.add(_v2) for _k in set(self.means_.keys()).difference(values): self.label_map[str(_k)] = _k def kmeans_wrapper(kmeans=None, centroids_=None): """Wraps the kmeans so it can be accessed. """ kmeans_given = (not kmeans is None) parameters_given = not (centroids_ is None) assert kmeans_given or parameters_given,\ "Either 'kmeans' needs to be given or 'centroids_'!" if kmeans_given: centroids_ = kmeans.cluster_centers_.copy() elif parameters_given: pass else: raise ValueError("WTF!") def _kmeans(x): Phi = spatial.distance.cdist(x, centroids_) assert Phi.shape == (x.shape[0], centroids_.shape[0]) return Phi.min(axis=1) return _kmeans class KMeansClassifier: """Approximates the sample distribution for classification. KMeans as implemented in sklearn classifies by individual centroids found during the regression of the given samples. In this class the training set is split by class and approximates the sample distributions for each class. The resulting groups of centroids are then used for classification. This class can also do decomposition of KMeans models. The decomposition is triggered when KMeansClasifier.fit is passed an X that is a list of np.ndarrays. It is then assumed that each array contains a superposition of underlying distributions, e.g. comparison of LAMMPS trajectories of different crystals. Parameters ---------- kmeans : instance of Kmeans, optional, default None Required to regress data. load_path : str, optional default None To load results of a previous regression. check_labels : boolean, optional, default True Checks upon loading the classifier from disk whether the number of Kmeans models matches the number of known labels or not. Methods ------- fit : fit(X, y) Approximates the density distributions using the provided centroids. X : float np.ndarray of shape (N, M) y : int np.ndarray of shape (N,) predict : predict(X, show=False, axes=[0,1]) Requires previous execution of 'fit'. Returns most probably class for all samples. Optionally can also plot the classification along two axes. pdf : pdf(X, label) Requires previous execution of 'fit'. Allows access to the pdf for a specified class. label : int cluster : dict Settings for the clustering/decomposition of centroids. See self.decompos_kmeans for more detail. Example ------- >>> kmc = atb.KMeansClassifier(KMeans(n_clusters=4), cluster={"threshold":.5}) >>> _D = 2 >>> _X = [np.vstack((stats.norm.rvs(size=(220,_D), loc=1, scale=1), stats.norm.rvs(size=(200,_D), loc=0, scale=1.))), stats.norm.rvs(size=(400,_D), loc=3, scale=1.),stats.norm.rvs(size=(200,_D), loc=3, scale=1.)] >>> kmc.fit(_X) >>> kmc.explain_inference() Maximally decomposed models: Components -> component appearances structure2 -> [[4.1626868 3.06136932] [2.16839552 2.92352057] [2.98831573 4.29232913] [2.92131459 1.68174912]] structure1 -> [[3.61949901 4.03556476] [2.38409816 2.06630056] [4.01029769 2.31575259] [2.15251654 3.65100976]] structure0 -> [[-0.32768532 0.96976257] [ 1.39818763 0.33646176] [-0.3366716 -0.75370139] [ 1.2962009 2.09468514]] """ fitted_kmeans = dict() labels = None idx_class = None centroids_ = dict() # keys are integers. correspond to order of 'appearances' (a list) label_map = None # needs to be assigned manually after understanding the meaning of the centroids relative to the given structures check_labels = True appearances = None # in which original given crystals centroids were observed default_cluster_kwargs = {"method":"average","metric":"euclidean", "threshold":1e-6,"criterion":"distance","combine":"mean"} def __init__(self, kmeans=None, load_path=None, tol0=1e-6, cluster = default_cluster_kwargs, verbose=False, check_labels=False): if not kmeans is None: assert isinstance(kmeans,KMeans), "'kmeans' needs to be an instance of sklearn.cluster.KMeans!" elif isinstance(load_path,str): assert os.path.exists(load_path), "Given 'load_path' ({}) invalid!".format(load_path) else: raise ValueError("Either 'kmeans' or 'load_path' needs to be given!") self.kmeans = kmeans self.check_labels = check_labels if kmeans is None: self._load_parameters(load_path) # decomposition related parameters self.tol0 = tol0 for _k, _v in self.default_cluster_kwargs.items(): if not _k in cluster: cluster[_k] = _v self.cluster = cluster # misc self.verbose = verbose def _load_parameters(self,load_path): with open(load_path,"rb") as f: params = pickle.load(f) for label in sorted(params["centroids_"]): self.fitted_kmeans[label] = kmeans_wrapper(centroids_=params["centroids_"][label]) self.centroids_ = params["centroids_"] self.label_map = params["label_map"] if "appearances" in params: self.appearances = params["appearances"] if self.check_labels: assert not self.label_map is None, "No labels are given in the stored file!" assert len(self.fitted_kmeans) == len(self.label_map), "The number of KMeans models (%i) does not match the number of available labels (%i)!" % (len(self.fitted_gmms),len(self.label_map)) def save(self,save_path): params = {"centroids_":self.centroids_, "label_map":self.label_map, "appearances":self.appearances} with open(save_path,"wb") as f: pickle.dump(params,f) def fit(self, X, y=None, label_map=None): """Fits. Parameters ---------- X : np.ndarray of floats or list of np.ndarrays Notes ----- If X is an array then y needs to be given and the classifier is developed directly over all the samples. If, otherwise, X is a list of arrays then y is not needed and labels are generated by decomposing the arrays in X by comparison of their computed pdfs. """ X_is_array = isinstance(X,np.ndarray) X_is_list = isinstance(X,list) if X_is_array: assert isinstance(y,np.ndarray), "'X' is an array and thus 'y' needs to be an array!" assert y.shape[0]==X.shape[0], "The array 'X' of shape {} is not matched by 'y' of shape {}!".format(X.shape,y.shape) elif X_is_list: assert all([isinstance(x,np.ndarray) for x in X]), "'X' is a list and all its entries need to be np.ndarrays! Got: {}".format([type(x) for x in X]) assert len(set([x.shape[1] for x in X]))==1, "All arrays in 'X' need to have the same number of features! Got: {}".format([x.shape[1] for x in X]) n_features = X[0].shape[1] else: raise ValueError("'X' input not understood. Needs to be an array of list of arrays!") if X_is_array: self.label_map=label_map self.labels = np.unique(y) self.idx_class = {k: np.where(y==k)[0] for k in self.labels} for label in sorted(self.idx_class): _km = copy.deepcopy(self.kmeans) _km.fit(X[self.idx_class[label],:]) self.fitted_kmeans[label] = kmeans_wrapper(kmeans=_km) self.centroids_[label] = _km.cluster_centers_ elif X_is_list: Nstructures = len(X) structure_ids = ["structure%s"%i for i in range(Nstructures)] # fit structure pdfs all_kmeans = [copy.deepcopy(self.kmeans).fit(X[i]) for i in range(Nstructures)] # compressed and decomposed (cd) model centroids_cd, appearances = self.decompose_kmeans(all_kmeans, structure_ids, n_features, method=self.cluster["method"], metric=self.cluster["metric"], threshold=self.cluster["threshold"], criterion=self.cluster["criterion"], combine=self.cluster["combine"], verbose=self.verbose) N_cd = len(centroids_cd) self.appearances = appearances.copy() # re-fit models kmeans_cd = [] _X = np.vstack(X) if self.verbose: print("number of resulting models: ",N_cd) print("number of components in total: ",sum(c.shape[0] for c in centroids_cd)) for i in range(N_cd): self.fitted_kmeans[i] = kmeans_wrapper(centroids_=centroids_cd[i]) self.centroids_[i] = centroids_cd[i] else: raise ValueError("Boink!") @staticmethod def decompose_kmeans(kmeans, structure_ids, n_features, method="average", metric="euclidean", threshold=1e-6, criterion="distance", combine="mean", verbose=False): """Decomposes K-Means models. Parameters ---------- kmeans : list of KMeans instances structure_ids : list of str Names for the individual structures. n_features : int Number of features. method : str, optional, default "average" Method to use in scipy.cluster.hierarchy.linkage metric: str, optional, default, "euclidean" Metric to use in scipy.cluster.hierarchy.linkage. threshold : float, optional, default 1e-6 Threshold to use in scipy.cluster.hierarchy.fcluster. The smaller the value the more clusters will be found. criterion : str, optional, default "distance" Criterion to use in scipy.cluster.hierarchy.fcluster. combine : str, optional, default "mean" Specifies how Gaussians found to belong to the same cluster are to be combined. Currently "mean" is the only recognized option. Returns ------- mus_cd : list of np.ndarrays of int Each np.ndarray represents the collection of clusters for a maximally decomposed set of centroids. appearances : list of lists of str Same order as mus_cd, indicating the origin of the collection of clusters. Example: Assume mus_cd = [np.array([0,1]), np.array([2])] and appearances = [["structure0"], ["structure1", "structure2"]]. This means that structure1 and structure2 shared the same centroid number 2 and structure0 was the only one for which centroids number 0 and 1 were found. For crystals that could mean that structure1 and structure2 were really two files containing the same type of crystal. """ model_reference = {} N = 0 all_covs = [] all_mus = [] for i, sid in enumerate(structure_ids): model_reference[sid] = np.arange(N,N+kmeans[i].cluster_centers_.shape[0]) N += kmeans[i].cluster_centers_.shape[0] mus = np.array([m for m in kmeans[i].cluster_centers_]) all_mus.append(mus) all_mus = np.vstack(all_mus) # find approximately unique components p = all_mus Z = hierarchy.linkage(p, method=method, metric=metric) T = hierarchy.fcluster(Z, threshold, criterion=criterion) -1 # relabel clusters to keep original parameter ordering T_map, _c = {}, 0 for _t in T: if not _t in T_map: T_map[_t] = _c _c += 1 T = np.array([T_map[_t] for _t in T]) T_set = np.sort(np.unique(T)) # combine parameters and thus compress models all_mus_clustered = [] for t in T_set: if combine == "mean": _mu = all_mus[T==t,:].mean(axis=0) else: raise ValueError("'combine' ({}) not understood!".format(combine)) all_mus_clustered.append(_mu) all_mus_clustered = np.array(all_mus_clustered) compressed_model_reference = {sid:np.sort(np.unique(T[vals])) for sid, vals in model_reference.items()} if verbose: print("model_reference:") for sid in sorted(model_reference): print(" initial ",model_reference[sid]) print(" compressed ",compressed_model_reference[sid]) # decompose by comparison compressed_decomposed_models = get_decomposed_models(compressed_model_reference, verbose=verbose) if verbose: print("compressed_decomposed_models ",compressed_decomposed_models) print("all_mus_clustered ",all_mus_clustered.shape) # compressed and decomposed (cd) parameters mus_cd = [all_mus_clustered[m,:] for m in compressed_decomposed_models] # model origins if verbose: print("\nMaximally decomposed models:") print("Components -> component appearances") appearances = [] for _decomposed_model in compressed_decomposed_models: _appearances = [_label for _label,_vals in compressed_model_reference.items()\ if any([_val in _decomposed_model for _val in _vals])] if verbose: print("%s -> %s"%(str(_decomposed_model), ", ".join(sorted(_appearances)))) appearances.append(_appearances) return mus_cd, appearances def predict(self, X, show=False, show_kwargs={}): """Predicts. """ isarray = isinstance(X,np.ndarray) islist = isinstance(X,list) and all([isinstance(x,np.ndarray) for x in X]) if isarray: p = np.array([self.fitted_kmeans[_k](X) for _k in sorted(self.fitted_kmeans)]).T y = np.argmin(p,axis=1) elif islist: p = [np.array([self.fitted_kmeans[_k](x) for _k in sorted(self.fitted_kmeans)]).T for x in X] y = [np.argmin(_p,axis=1) for _p in p] else: raise ValueError("X needs to be an array of a list of arrays!") if show: self.show(X,y, **show_kwargs) return y def show(self, X, y, axes=[0,1], title=None, xlim=(0,1), ylim=(0,1), xlabel=None, ylabel=None, labelfs=16, tickfs=14, legendfs=12, titlefs=18, data_labels=None, cmap=plt.cm.jet, figsize=(10,5)): """Plots.""" isarray = isinstance(X,np.ndarray) islist = isinstance(X,list) and all([isinstance(x,np.ndarray) for x in X]) if islist: _X = np.vstack(X) else: _X = np.copy(X) uy = np.unique(y) if isarray else np.unique(np.hstack(y)) _y = np.copy(y) if isarray else np.hstack(y) norm = mpl.colors.Normalize(vmin=uy.min(), vmax=uy.max()) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(121) if islist else fig.add_subplot(111) ax.set_aspect("equal") hs = [None for _uy in uy] for i,_uy in enumerate(uy): idx = np.where(_y==_uy)[0] ax.scatter(_X[idx,axes[0]], _X[idx,axes[1]], label="class %i"%_uy, alpha=.5, color=cmap(norm(_uy*np.ones(len(idx))))) ax.scatter(self.centroids_[i][:,axes[0]], self.centroids_[i][:,axes[1]], marker="+", edgecolor="r", color=cmap(norm(_uy*np.ones(len(self.centroids_[i])))), ) if xlabel is None: ax.set_xlabel("Feature {}".format(axes[0]), fontsize=labelfs) else: ax.set_xlabel(xlabel, fontsize=labelfs) if ylabel is None: ax.set_ylabel("Feature {}".format(axes[1]), fontsize=labelfs) else: ax.set_ylabel(ylabel, fontsize=labelfs) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_title("Inferred classes",fontsize=labelfs) ax.tick_params(labelsize=tickfs) ax.legend(loc=0, fontsize=legendfs) if islist: ax2 = fig.add_subplot(122) ax2.set_aspect("equal") norm = mpl.colors.Normalize(vmin=0, vmax=len(X)) hs = [None for _X in X] for i,_X in enumerate(X): if data_labels is None: label = "trajectory #%i"%i else: label = data_labels[i] ax2.scatter(_X[:,axes[0]], _X[:,axes[1]], label=label, c=cmap(norm(np.ones(_X.shape[0])*i)), alpha=.5) if xlabel is None: ax2.set_xlabel("Feature {}".format(axes[0]), fontsize=labelfs) else: ax2.set_xlabel(xlabel, fontsize=labelfs) if ylabel is None: ax2.set_ylabel("Feature {}".format(axes[1]), fontsize=labelfs) else: ax2.set_ylabel(ylabel, fontsize=labelfs) ax2.tick_params(labelsize=tickfs) ax2.set_xlim(xlim) ax2.set_ylim(ylim) ax2.set_title("Trajectories", fontsize=labelfs) ax2.legend(loc=0, fontsize=legendfs) if not title is None: plt.suptitle(title, fontsize=titlefs) plt.tight_layout() plt.show() def explain_inference(self, abbreviate=True): assert not any([self.appearances is None, len(self.centroids_)==0]), "Class instance does not appear to have self.appearances and or self.centroids_ set." print("\nMaximally decomposed models:") print("Components -> component appearances") for i, _appearances in enumerate(self.appearances): _decomposed_model = self.centroids_[i].shape if abbreviate else self.centroids_[i] print("%s -> %s"%(", ".join(sorted(_appearances)),_decomposed_model)) def set_labels(self,labels): """Sets labels for the label_map. Associates model identifier (integer value of self.centroids_) with a string, e.g. name for a type of crystal. Parameters ---------- labels : dict Example: {"fcc":0, "fccVac":[1,2]} Note: 'labels' can also just set strings for a subset of model identifiers since not always all names which should be assigned are immediately obvious. The remaining labels are set to string versions of integer values. """ assert isinstance(labels,dict) assert all([isinstance(_k,str) for _k in labels.keys()]) assert all([isinstance(_v,(int,list,tuple)) for _v in labels.values()]) if self.label_map is None: self.label_map = dict() values = set() for _k, _v in labels.items(): self.label_map[_k] = _v if isinstance(_v,int): values.add(_v) else: for _v2 in _v: values.add(_v2) for _k in set(self.centroids_.keys()).difference(values): self.label_map[str(_k)] = _k def assign_chemical_disorder_labels(atoms_dict, t_l_flat, Phi, mapper, species_flat, mapper_key=3, count_params={"elements":["Al","Ni"]}, dis_elements=set(["Al","Ni"]), dis_label="gamma"): idx_dis_t = np.array([i for i,v in enumerate(t_l_flat) \ if 'gamma' in v and not 'prime' in v],dtype=int) idx_dis_elements = np.array([i for i,v in enumerate(count_params["elements"]) if v in dis_elements]) sorted_dis_elements = np.array(sorted(list(dis_elements))) idx_Phi = np.where((Phi[:,mapper[mapper_key][idx_dis_elements]]>0).all(axis=1))[0] idx_gamma = np.intersect1d(idx_dis_t,idx_Phi) idx_rest = np.setdiff1d(idx_dis_t, idx_gamma) # also labeled 'gamma' but disobey element condition t_l_flat[idx_gamma] = dis_label for ix in idx_rest: _phi = Phi[ix, mapper[mapper_key][idx_dis_elements]] _phi /= _phi.sum() _ix = np.argsort(_phi)[-1] if np.isclose(_phi[_ix],1): t_l_flat[ix] = sorted_dis_elements[_ix] return t_l_flat def batcher(X, t, n=1): for i in range(1,len(X),n): yield X[i:i+n,:], t[i:i+n] def tf_softmax_dnn(X_in, t_in=None, mode="fit", path_ckpt="/tmp/dnn-softmax_model.ckpt", learning_rate=.01, l1_scale=0.001, n_epochs=5, batch_size=75, n_print=5, verbose=False, n_hidden1=300, n_hidden2=100, n_hidden3=75, n_hidden4=50, n_hidden5=25, n_outputs=10, **kwargs): tf.reset_default_graph() n_samples, n_inputs = X_in.shape # input and output nodes X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X") t = tf.placeholder(tf.int64, shape=(None,) , name="t") # weights initialization (to prevent vanishing gradient) - Xavier (logistic activation) initialization is the default w_init = tf.contrib.layers.variance_scaling_initializer() # He initialization (ReLU activation) # activation activation = tf.nn.relu # L1 regularization my_dense_layer = partial(tf.layers.dense, activation=activation, kernel_regularizer=tf.contrib.layers.l1_regularizer(l1_scale), kernel_initializer=w_init) # pre-packaged neural layer version with tf.name_scope("dnn"): # no batch normalization hidden1 = tf.layers.dense(X, n_hidden1, name="hidden1", activation=activation, kernel_initializer=w_init) hidden2 = tf.layers.dense(hidden1, n_hidden2, name="hidden2", activation=activation, kernel_initializer=w_init) hidden3 = tf.layers.dense(hidden2, n_hidden3, name="hidden3", activation=activation, kernel_initializer=w_init) hidden4 = tf.layers.dense(hidden3, n_hidden4, name="hidden4", activation=activation, kernel_initializer=w_init) hidden5 = tf.layers.dense(hidden4, n_hidden5, name="hidden5", activation=activation, kernel_initializer=w_init) logits = tf.layers.dense(hidden4, n_outputs, name="outputs") # loss with tf.name_scope("loss"): xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=t, logits=logits) # without regularization loss = tf.reduce_mean(xentropy, name="loss") with tf.name_scope("train"): optimizer = tf.train.AdamOptimizer(learning_rate) # constant learning rate update = optimizer.minimize(loss) with tf.name_scope("eval"): correct = tf.nn.in_top_k(logits, t, 1) accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) # logging node now = datetime.utcnow().strftime("%Y%m%d%H%M%S") logdir = "tf_softmax/dnn-%s/" % (now,) init = tf.global_variables_initializer() saver = tf.train.Saver() if mode == "fit": t0 = time() with tf.Session() as sess: init.run() for epoch in range(n_epochs): for X_batch, t_batch in batcher(X_in, t_in, n=batch_size): sess.run(update, feed_dict={X: X_batch, t: t_batch}) acc_train = accuracy.eval(feed_dict={X: X_batch, t:t_batch}) if verbose and (epoch%n_print==0 or epoch+1==n_epochs): print("Epoch", epoch, "Train accuracy", acc_train) save_path = saver.save(sess, path_ckpt) if verbose: print("training took %.3f s" % (time()-t0)) elif mode == "predict": with tf.Session() as sess: saver.restore(sess, path_ckpt) return logits.eval(feed_dict={X:X_in}) else: raise NotImplementedError def tf_softmax_dnn_cnn(X_in, t_in=None, mode="fit", path_ckpt="/tmp/dnn-softmax_model.ckpt", learning_rate=.01, l1_scale=0.001, n_epochs=5, batch_size=75, n_print=5, verbose=False, n_hidden=300, n_outputs=10, height=28, width=28, channels=1, **kwargs): tf.reset_default_graph() n_samples, n_inputs = X_in.shape # input and output nodes X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X") X_reshaped = tf.reshape(X, shape=[-1, height, width, channels]) t = tf.placeholder(tf.int64, shape=(None,) , name="t") # weights initialization (to prevent vanishing gradient) - Xavier (logistic activation) initialization is the default w_init = tf.contrib.layers.variance_scaling_initializer() # He initialization (ReLU activation) # activation activation = tf.nn.relu # L1 regularization my_dense_layer = partial(tf.layers.dense, activation=activation, kernel_regularizer=tf.contrib.layers.l1_regularizer(l1_scale), kernel_initializer=w_init) with tf.name_scope("cnn"): conv = tf.layers.conv2d(X_reshaped, filters=32, kernel_size=3, strides=[1,1], padding="SAME", name="conv") # strides=[1,2,2,1] conv1 = tf.layers.conv2d(conv, filters=64, kernel_size=3, strides=[2,2], padding="SAME", name="conv1") pool = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID") pool_flat = tf.reshape(pool, shape=[-1, pool.get_shape()[1:4].num_elements()]) assert np.prod(pool.shape[1:]) == pool_flat.shape[1], "Shape mismatch pool (%s) != pool_flat (%s)" % (pool.shape, pool_flat.shape) hidden = tf.layers.dense(pool_flat, n_hidden, activation=tf.nn.relu, name="hidden") logits = tf.layers.dense(hidden, n_outputs, name="outputs") # loss with tf.name_scope("loss"): xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=t, logits=logits) # without regularization loss = tf.reduce_mean(xentropy, name="loss") with tf.name_scope("train"): optimizer = tf.train.AdamOptimizer(learning_rate) # constant learning rate update = optimizer.minimize(loss) with tf.name_scope("eval"): correct = tf.nn.in_top_k(logits, t, 1) accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) # logging node now = datetime.utcnow().strftime("%Y%m%d%H%M%S") logdir = "tf_softmax/dnn-%s/" % (now,) init = tf.global_variables_initializer() saver = tf.train.Saver() if mode == "fit": t0 = time() with tf.Session() as sess: init.run() for epoch in range(n_epochs): for X_batch, t_batch in batcher(X_in, t_in, n=batch_size): sess.run(update, feed_dict={X: X_batch, t: t_batch}) acc_train = accuracy.eval(feed_dict={X: X_batch, t:t_batch}) if verbose and (epoch%n_print==0 or epoch+1==n_epochs): print("Epoch", epoch, "Train accuracy", acc_train) save_path = saver.save(sess, path_ckpt) if verbose: print("training took %.3f s" % (time()-t0)) elif mode == "predict": with tf.Session() as sess: saver.restore(sess, path_ckpt) return logits.eval(feed_dict={X:X_in}) else: raise NotImplementedError def tf_softmax_dnn_rnn(X_in, t_in=None, mode="fit", path_ckpt="/tmp/dnn-softmax_model.ckpt", learning_rate=.01, l1_scale=0.001, n_epochs=5, batch_size=75, n_print=5, verbose=False, n_neurons=300, n_outputs=10, n_steps=28, n_inputs=28, **kwargs): tf.reset_default_graph() n_samples, _n_inputs = X_in.shape # input and output nodes assert n_inputs*n_steps == _n_inputs X_in = X_in.reshape((-1, n_steps, n_inputs)) X = tf.placeholder(tf.float32, shape=(None, n_steps, n_inputs), name="X") #X_reshaped = tf.reshape(X, shape=[-1, n_steps, n_inputs,]) #X = tf.placeholder(tf.float32, [None, n_steps, n_inputs], name="X") t = tf.placeholder(tf.int64, shape=(None,) , name="t") with tf.name_scope("rnn"): basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons) outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32) logits = tf.layers.dense(states, n_outputs, name="outputs") # loss with tf.name_scope("loss"): xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=t, logits=logits) # without regularization loss = tf.reduce_mean(xentropy, name="loss") with tf.name_scope("train"): optimizer = tf.train.AdamOptimizer(learning_rate) # constant learning rate update = optimizer.minimize(loss) with tf.name_scope("eval"): correct = tf.nn.in_top_k(logits, t, 1) accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) # logging node now = datetime.utcnow().strftime("%Y%m%d%H%M%S") logdir = "tf_softmax/dnn-%s/" % (now,) init = tf.global_variables_initializer() saver = tf.train.Saver() if mode == "fit": t0 = time() with tf.Session() as sess: init.run() for epoch in range(n_epochs): for X_batch, t_batch in batcher(X_in, t_in, n=batch_size): sess.run(update, feed_dict={X: X_batch, t: t_batch}) acc_train = accuracy.eval(feed_dict={X: X_batch, t:t_batch}) if verbose and (epoch%n_print==0 or epoch+1==n_epochs): print("Epoch", epoch, "Train accuracy", acc_train) save_path = saver.save(sess, path_ckpt) if verbose: print("training took %.3f s" % (time()-t0)) elif mode == "predict": with tf.Session() as sess: saver.restore(sess, path_ckpt) return logits.eval(feed_dict={X:X_in}) else: raise NotImplementedError class DNNSoftmaxClassifier(sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin): dnn_params = dict(n_hidden1 = 300, n_hidden2 = 100, n_hidden3 = 75, n_hidden4 = 50, n_hidden5 = 25, learning_rate = .01, path_ckpt = "/tmp/dnn-softmax_model.ckpt", l1_scale = 0.001, n_epochs = 5, batch_size = 75, n_print = 5, verbose = False,) dnn_type = "simple" dnn_impl = {"simple":tf_softmax_dnn, "cnn":tf_softmax_dnn_cnn, "rnn":tf_softmax_dnn_rnn} def __init__(self, dnn_type=None, dnn_params=None): if (not dnn_type is None) and (dnn_type in self.dnn_impl): self.dnn_type = dnn_type if (not dnn_params is None) and isinstance(dnn_params,dict): self.dnn_params = dnn_params def fit(self, X, y, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. .. versionadded:: 0.17 *sample_weight* support to LogisticRegression. Returns ------- self : object Returns self. """ X, y = sklearn.utils.validation.check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") sklearn.utils.multiclass.check_classification_targets(y) self.classes_ = np.unique(y) n_samples, n_features = X.shape n_classes = len(self.classes_) classes_ = self.classes_ self.dnn_params["n_outputs"] = n_classes if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % classes_[0]) if len(self.classes_) == 2: n_classes = 1 classes_ = classes_[1:] self.dnn_impl[self.dnn_type](X, t_in=y, mode="fit", **self.dnn_params) return self def decision_function(self, X): return self.dnn_impl[self.dnn_type](X, mode="predict", **self.dnn_params) def predict_proba(self, X): """Probability estimates. The returned estimates for all classes are ordered by the label of classes. For a multi_class problem, if multi_class is set to be "multinomial" the softmax function is used to find the predicted probability of each class. Else use a one-vs-rest approach, i.e calculate the probability of each class assuming it to be positive using the logistic function. and normalize these values across all the classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ return sklearn.utils.extmath.softmax(self.decision_function(X), copy=False) def predict_log_proba(self, X): """Log of probability estimates. The returned estimates for all classes are ordered by the label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ return np.log(self.predict_proba(X)) def predict(self, X): """Predict class labels for samples in X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. Returns ------- C : array, shape = [n_samples] Predicted class label per sample. """ scores = self.decision_function(X) if len(scores.shape) == 1: indices = (scores > 0).astype(np.int) else: indices = scores.argmax(axis=1) return self.classes_[indices]
[ "11818904+eschmidt42@users.noreply.github.com" ]
11818904+eschmidt42@users.noreply.github.com
7775a4ca239d36b16639f56bbc191d07f9d8f049
d93fe0484fc3b32c8fd9b33cc66cfd636a148ec4
/AtCoder/AGC-C/037probC.py
e22e44919bb25063bbc000a6d8946f829ba4983e
[]
no_license
wattaihei/ProgrammingContest
0d34f42f60fa6693e04c933c978527ffaddceda7
c26de8d42790651aaee56df0956e0b206d1cceb4
refs/heads/master
2023-04-22T19:43:43.394907
2021-05-02T13:05:21
2021-05-02T13:05:21
264,400,706
0
0
null
null
null
null
UTF-8
Python
false
false
233
py
N = int(input()) A = list(map(int, input().split())) B = list(map(int, input().split())) R = [B[i]-A[i] for i in range(N)] D = [] for i in range(N-1): D.append(A[i-1]+A[i+1]) D.append(A[N-2]+A[0]) for i, r in enumerate(R):
[ "wattaihei.rapyuta@gmail.com" ]
wattaihei.rapyuta@gmail.com
7689cbd6ca525cbb5c93bcf74ecb1f44600ec7cb
b3f5913b9b466ffbcabc0feaef291fa0346caf74
/src/Sheet_Squeeze.py
fbf721c518336ea5415f60814a18d03619ac197d
[]
no_license
boigman/Sheet_Squeeze
ce600e88d057aa00d69a7ad46a15be1e2d35b652
c5cf73e077b441c5f90f670a2808a817b40c89d5
refs/heads/master
2022-04-28T16:21:59.362404
2020-05-06T14:03:55
2020-05-06T14:03:55
261,755,752
0
0
null
null
null
null
UTF-8
Python
false
false
5,397
py
from PIL import Image import png #import ntpath #import os import sys import time white_row_limit = 5 vbar_row_limit = 10 infile = sys.argv[1] print("Input file: "+infile.replace("\\\\","\\")) outfile=infile.replace(".png","_sqz.png") r=png.Reader(filename=infile) xwidth, yheight, pixels, meta = r.asDirect() #print("pixels type="+str(type(pixels))) print("Converting pixels to list()...") tpixels=list(pixels) opixels=[] oidx=0 white_row_count = 0 vbar_row_count = 0 min_row = 99999 max_row = -99999 min_vbar_row = 99999 max_vbar_row = -99999 line_break = 99999 print("Processing...") #w = png.Writer(width=len(tpixels[0]), height=len(tpixels), greyscale=False, interlace=0, bitdepth=8) #f=open(outfile+'x.png', 'wb') #w.write(f, tpixels) #f.close() for xh in range(len(tpixels)): #for xh in range(350): white_count = 0 black_lines = [] white_lines = [] bline_len = 0 wline_len = 0 min_dark_col = 99999 max_dark_col = -99999 left_bar_count = 0 if xh > 1071 and xh < 1100: xxx = 0 if xh == 1511: xxx = 0 for xw in range(0,xwidth*3,3): try: # if tpixels[xh][xw]==255 and tpixels[xh][xw+1]==255 and tpixels[xh][xw+2]==255: if tpixels[xh][xw]>250 and tpixels[xh][xw+1]>250 and tpixels[xh][xw+2]>250: #jj = 1 white_count += 1 tpixels[xh][xw]=255 tpixels[xh][xw+1]=255 tpixels[xh][xw+2]=255 else: min_dark_col = min(min_dark_col, xw) max_dark_col = max(max_dark_col, xw) # if (max_dark_col - min_dark_col)/3 > 5 or xw/3 > 50: # break if (tpixels[xh][xw]==255 and tpixels[xh][xw+1]==255 and tpixels[xh][xw+2]==255) or (tpixels[xh][xw]==0 and tpixels[xh][xw+1]==0 and tpixels[xh][xw+2]==0): if tpixels[xh][xw]==255 and tpixels[xh][xw+1]==255 and tpixels[xh][xw+2]==255: if bline_len>0: black_lines.append(bline_len) bline_len = 0 wline_len +=1 else: if wline_len>0: white_lines.append(wline_len) wline_len = 0 bline_len +=1 else: black_lines = [] white_lines = [] except: print("Invalid Index: wh="+str(xh)+", xh="+str(xw)) # Detect dashed line (line break) - Lots of pure white and black segments approximately equal in number if (len(black_lines)>50 and len(white_lines)>50 and abs(len(black_lines) - len(white_lines))<4 and black_lines[0]<20 and white_lines[0]<20): print("Line break at: "+str(xh)) line_break = xh white_count=xwidth if white_count==xwidth: # print('WhiteRow: '+str(xh)) white_row_count += 1 vbar_row_count = 0 if max_vbar_row > 0 and min_vbar_row < max_vbar_row: print("VBar Rows "+str(min_vbar_row)+" - "+str(max_vbar_row)+ " squeezed out") min_vbar_row = 99999 max_vbar_row = -99999 if white_row_count < white_row_limit: opixels += [tuple(tpixels[xh])] else: min_row=min(min_row, xh) max_row=max(max_row, xh) # print("Row "+str(xh)+" over limit") elif xwidth - white_count < 10 and max_dark_col/3 < 50 and (max_dark_col - min_dark_col) >= 0 and (max_dark_col - min_dark_col)/3 < 5 : vbar_row_count += 1 white_row_count = 0 if max_row > 0 and min_row < max_row: print("White Rows "+str(min_row)+" - "+str(max_row)+ " squeezed out") min_row = 99999 max_row = -99999 if vbar_row_count < vbar_row_limit: opixels += [tuple(tpixels[xh])] else: min_vbar_row=min(min_vbar_row, xh) max_vbar_row=max(max_vbar_row, xh) else: white_row_count = 0 vbar_row_count = 0 if max_row > 0 and min_row < max_row: print("White Rows "+str(min_row)+" - "+str(max_row)+ " squeezed out") min_row = 99999 max_row = -99999 elif max_vbar_row > 0 and min_vbar_row < max_vbar_row: print("VBar Rows "+str(min_vbar_row)+" - "+str(max_vbar_row)+ " squeezed out") min_vbar_row = 99999 max_vbar_row = -99999 if line_break < xh: #Mark as line break line with red dash for xw in range(0,10*3,3): tpixels[xh][xw]=255 tpixels[xh][xw+1]=0 tpixels[xh][xw+2]=0 line_break = 99999 opixels += [tuple(tpixels[xh])] if max_row > 0 and min_row < max_row: print("White Rows "+str(min_row)+" - "+str(max_row)+ " squeezed out") min_row = 99999 max_row = -99999 elif max_vbar_row > 0 and min_vbar_row < max_vbar_row: print("VBar Rows "+str(min_vbar_row)+" - "+str(max_vbar_row)+ " squeezed out") min_vbar_row = 99999 max_vbar_row = -99999 w = png.Writer(width=xwidth, height=len(opixels), greyscale=False, interlace=0, bitdepth=8) f=open(outfile, 'wb') w.write(f, opixels) f.close() print(str(len(opixels))+" lines written to: "+outfile.replace("\\\\","\\")) print(str(len(tpixels)-len(opixels))+" lines squeezed out") print("Finished") time.sleep(5)
[ "Dave.Stauffer@spireenergy.com" ]
Dave.Stauffer@spireenergy.com
80645dfd46c51e1594ab5bcf0406d091b133d28a
6023b767f104d51288fed3e872777f4b974f083d
/6603.py
0afb3699231152e97203bb622340a457cd869f0e
[]
no_license
andyjung2104/BOJ-source-codes
daff7b804469473b898fb58500a1c8cff542b52e
a97b5e2b4bfb6d26fac67bb94d3d259836d875d3
refs/heads/main
2023-07-19T02:30:13.806978
2021-09-13T01:03:06
2021-09-13T01:03:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
214
py
from itertools import combinations import sys while True: a=list(map(int,sys.stdin.readline().split())) if a[0]==0:break n=a.pop(0) y=combinations(a,6) for i in y:print(*i) print()
[ "noreply@github.com" ]
andyjung2104.noreply@github.com
f531bdaa3135afa760dfda6ab0d89945b68fe682
139d4c998e7e06fd160792a485bfc20190c80df1
/aliceroughdraft.py
c76922b1c92b535ed9031e1b7c5b3c4d87c1f400
[]
no_license
MatthewSpecht/memory-game
afcb0d6e8cdf973514834e334b67c445429aee03
dbf2f714953af499c1cc42fcbadf7712dd67fc18
refs/heads/main
2023-03-13T03:38:35.590864
2021-03-09T17:08:54
2021-03-09T17:08:54
334,207,578
0
0
null
null
null
null
UTF-8
Python
false
false
5,361
py
import tkinter as tk from tkinter import messagebox import random from tkinter import PhotoImage root = tk.Tk() root.title("Memory Game") # root.geometery("550x550") # matches = [PhotoImage(file = "fruit-pictures/apple.png"),PhotoImage(file = "fruit-pictures/orange.png"),PhotoImage(file = "fruit-pictures/banana.png"),PhotoImage(file = "fruit-pictures/grape.png"), PhotoImage(file = "fruit-pictures/peach.png"),PhotoImage(file = "fruit-pictures/pear.png"),PhotoImage(file = "fruit-pictures/watermelon.png"),PhotoImage(file = "fruit-pictures/strawberry.png")]*2 #matches = [PhotoImage(file = "fruit-pictures/banana.gif")]*16 # matches = [1,2,3,4,5,6,7,8]*2 random.shuffle(matches) my_frame = tk.Frame(root) my_frame.pack(pady=10) count = 0 answer_list = [] answer_dict ={} def button_click(b, i): global count, answer_list, answer_dict if b["text"] == '?' and count < 2: b["text"] = matches[i] # b.photo = matches[i] #keep a refrence to it # add num to answer list answer_list.append(i) # add button & num to answer dict answer_dict[b] = matches[i] #turn +1 count+=1 #print answer_list ##keeps track of tile #print answer_dict ##keeps track of num on tile if len(answer_list) == 2: if matches[answer_list[0]] == matches[answer_list[1]]: my_label.config(text="MATCH!") for key in answer_dict: key["state"] = "disabled" count = 0 answer_list = [] answer_dict = {} else: my_label.config(text="NO!") count = 0 answer_list = [] messagebox.showinfo("Incorrect!","Incorrect") for key in answer_dict: key["text"] = '?' key.configure answer_dict = {} def reset(): #global matches, winner matches = [1,2,3,4,5,6,7,8]*2 random.shuffle(matches) my_label.config(text="") buttonlist = [b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15] for button in buttonlist: button.config(text='?', state="normal") restart= tk.Button(my_frame, text='Restart', width= 6, height = 2, command = reset).grid(row=4, column=0, columnspan = 1, sticky = tk.W) # x = PhotoImage(file = "fruit-pictures/banana.png") b0= tk.Button(my_frame, text = '?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b0, 0)) b1= tk.Button(my_frame, text='?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b1, 1)) b2= tk.Button(my_frame, text='?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b2, 2)) b3= tk.Button(my_frame, text='?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b3, 3)) b4= tk.Button(my_frame, text='?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b4, 4)) b5= tk.Button(my_frame, text='?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b5, 5)) b6= tk.Button(my_frame, text='?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b6, 6)) b7= tk.Button(my_frame, text='?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b7, 7)) b8= tk.Button(my_frame, text='?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b8, 8)) b9= tk.Button(my_frame, text='?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b9, 9)) b10= tk.Button(my_frame, text='?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b10, 10)) b11= tk.Button(my_frame, text='?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b11, 11)) b12= tk.Button(my_frame, text='?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b12, 12)) b13= tk.Button(my_frame, text='?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b13, 13)) b14= tk.Button(my_frame, text='?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b14, 14)) b15= tk.Button(my_frame, text='?', font=("Helvetica", 10), bg = 'Red', command = lambda: button_click(b15, 15)) b0.grid(row=0, column=0, columnspan = 1, sticky = tk.W) b1.grid(row=0, column=1, columnspan = 1, sticky = tk.W) b2.grid(row=0, column=2, columnspan = 1, sticky = tk.W) b3.grid(row=0, column=3, columnspan = 1, sticky = tk.W) b4.grid(row=1, column=0, columnspan = 1, sticky = tk.W) b5.grid(row=1, column=1, columnspan = 1, sticky = tk.W) b6.grid(row=1, column=2, columnspan = 1, sticky = tk.W) b7.grid(row=1, column=3, columnspan = 1, sticky = tk.W) b8.grid(row=2, column=0, columnspan = 1, sticky = tk.W) b9.grid(row=2, column=1, columnspan = 1, sticky = tk.W) b10.grid(row=2, column=2, columnspan = 1, sticky = tk.W) b11.grid(row=2, column=3, columnspan = 1, sticky = tk.W) b12.grid(row=3, column=0, columnspan = 1, sticky = tk.W) b13.grid(row=3, column=1, columnspan = 1, sticky = tk.W) b14.grid(row=3, column=2, columnspan = 1, sticky = tk.W) b15.grid(row=3, column=3, columnspan = 1, sticky = tk.W) my_label = tk.Label(root, text = ' ') my_label.pack(pady = 20) root.mainloop()
[ "720azpeng@gmail.com" ]
720azpeng@gmail.com
fe9e28083d4916e855a1cf96981aa7e1a10e9203
03c14cd6730d9c90f9ac79c516e0e0f2783a2662
/trap_rain_water_leetcode.py
528289d5d41e686bbbc81c822a761f31645265ef
[]
no_license
ismailej/General-Programming
4458d70a31565331d2773207edc4df0ee69a753f
3c5822617a4b19422be9def02d657e09cf968524
refs/heads/master
2021-01-10T10:19:47.717434
2016-05-01T13:41:07
2016-05-01T13:41:07
53,746,520
0
0
null
null
null
null
UTF-8
Python
false
false
1,465
py
class Solution(object): def calculate(self, height, start, count, ref): print('Reached calculate with start, end', start, count) store = 0 #ref = height[start] #print(ref) i = start + 1 end = count - 1 while i <= end: store += ref - height[i] i += 1 #print(store) #print('Returned value - ', store) return store def calculate_max_array(self, height): i = len(height) - 1 elem_max = -1 max_array = [-1]*len(height) while i >= 0: if elem_max < height[i]: max_array[i] = elem_max elem_max = height[i] else: max_array[i] = elem_max i -= 1 #print(max_array) return max_array def trap(self, height): """ :type height: List[int] :rtype: int """ if height == []: return 0 start = 0 count = 1 length = len(height) total = 0 max_array = self.calculate_max_array(height) ref = min(height[start], max_array[start]) while(count < length): if ref <= height[count]: total += self.calculate(height, start, count, ref) start = count ref = min(height[start], max_array[start]) count += 1 return total
[ "ejismail@gmail.com" ]
ejismail@gmail.com
83f27e5da39ecc5798b8676ef45a90581bb4630b
2c02ad2867e86aadc14fa63fb6f11b380b7a38b8
/src/draw_q.py
5182519501edb76b5c8ac5cee6e78ed6a57cf01c
[]
no_license
xiecailang/leetcodes
8ac61846d1b9c1b2f9d1638d8dda7f04fc47a9b7
49f00cd47344c3861ae8a0b25db9f0a0a0a2ae3e
refs/heads/master
2020-03-27T19:21:18.834973
2018-10-30T03:33:57
2018-10-30T03:33:57
146,983,326
0
0
null
null
null
null
UTF-8
Python
false
false
2,797
py
#画家小Q n, m = 4, 4 str_ = [] str_.append(list('YXXB')) str_.append(list('XYGX')) str_.append(list('XBYY')) str_.append(list('BXXY')) cnt = 0 def findY(i, j): if i >=0 and i < n and j >=0 and j < m and (str_[i][j] == 'Y' or str_[i][j] == 'G'): if str_[i][j] == 'G': str_[i][j] = 'B' else: str_[i][j] = 'X' findY(i+1, j+1) return def findB(i, j): if i >=0 and i < n and j >=0 and j < m and (str_[i][j] == 'B' or str_[i][j] == 'G'): if str_[i][j] == 'G': str_[i][j] = 'Y' else: str_[i][j] = 'X' findB(i+1, j-1) return for i in range(n): for j in range(m): if str_[i][j] == 'Y': findY(i, j) cnt += 1 elif str_[i][j] == 'B': findB(i, j) cnt += 1 elif str_[i][j] == 'G': findY(i, j) cnt += 1 str_[i][j] = 'B' findB(i, j) cnt += 1 print(cnt) cnt = 0 mark = [([0] * n) for i in range(m)] for i in range(n): for j in range(m): if mark[i][j] == 2 or (mark[i][j] == 1 and str_[i][j] != 'G'): continue if str_[i][j] == 'Y': p, q = i+1, j+1 mark[i][j] += 1 cnt += 1 while p < n and q < m: if not mark[p][q]: if str_[p][q] == 'Y' or 'G': mark[p][q] += 1 else: break p += 1 q += 1 elif str_[i][j] == 'B': p, q = i + 1, j - 1 mark[i][j] += 1 cnt += 1 while p >= 0 and q >= 0: if not mark[p][q]: if str_[p][q] == 'B' or 'G': mark[p][q] += 1 else: break p += 1 q -= 1 elif str_[i][j] == 'G': p, q = i+1, j+1 if not mark[i][j]: cnt += 2 elif mark[i][j] == 1: cnt += 1 else: continue mark[i][j] += 1 while p < n and q < m: if not mark[p][q]: if str_[p][q] == 'Y' or 'G': mark[p][q] += 1 else: break p += 1 q += 1 p, q = i + 1, j-1 while p >= 0 and q >= 0: if not mark[p][q]: if str_[p][q] == 'B' or 'G': mark[p][q] += 1 else: break p += 1 q -= 1 else: mark[i][j] = 1 print(cnt)
[ "cailangxie@sina.com" ]
cailangxie@sina.com
d554dc494835296bc0a6175544783f5452d6a9e1
83ecabbeea8b17a3fd9b8142062f09c76198e232
/wso2_apim_publisherclient/models/api_object_2.py
703f56a19f1ec2597a91ddf4689042a03983c124
[]
no_license
junetigerlee/python-wso2-apim-publisherclient
387f581bb48645b35f256159cce0031babd493f0
5e1cadeab4eb37ebc93e46b45d6d1f98f4fdfde9
refs/heads/master
2021-01-01T16:11:45.362270
2017-07-25T06:20:46
2017-07-25T06:20:46
97,783,584
0
0
null
null
null
null
UTF-8
Python
false
false
26,626
py
# coding: utf-8 """ WSO2 API Manager - Publisher API This specifies a **RESTful API** for WSO2 **API Manager** - Publisher. Please see [full swagger definition](https://raw.githubusercontent.com/wso2/carbon-apimgt/v6.0.4/components/apimgt/org.wso2.carbon.apimgt.rest.api.publisher/src/main/resources/publisher-api.yaml) of the API which is written using [swagger 2.0](http://swagger.io/) specification. OpenAPI spec version: 0.11.0 Contact: architecture@wso2.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class APIObject2(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'str', 'name': 'str', 'description': 'str', 'context': 'str', 'version': 'str', 'provider': 'str', 'api_definition': 'str', 'wsdl_uri': 'str', 'status': 'str', 'response_caching': 'str', 'cache_timeout': 'int', 'destination_stats_enabled': 'str', 'is_default_version': 'bool', 'type': 'str', 'transport': 'list[str]', 'tags': 'list[str]', 'tiers': 'list[str]', 'max_tps': 'ApisMaxTps', 'thumbnail_uri': 'str', 'visibility': 'str', 'visible_roles': 'list[str]', 'visible_tenants': 'list[str]', 'endpoint_config': 'str', 'endpoint_security': 'ApisEndpointSecurity', 'gateway_environments': 'str', 'sequences': 'list[Sequence1]', 'subscription_availability': 'str', 'subscription_available_tenants': 'list[str]', 'business_information': 'ApisBusinessInformation', 'cors_configuration': 'ApisCorsConfiguration' } attribute_map = { 'id': 'id', 'name': 'name', 'description': 'description', 'context': 'context', 'version': 'version', 'provider': 'provider', 'api_definition': 'apiDefinition', 'wsdl_uri': 'wsdlUri', 'status': 'status', 'response_caching': 'responseCaching', 'cache_timeout': 'cacheTimeout', 'destination_stats_enabled': 'destinationStatsEnabled', 'is_default_version': 'isDefaultVersion', 'type': 'type', 'transport': 'transport', 'tags': 'tags', 'tiers': 'tiers', 'max_tps': 'maxTps', 'thumbnail_uri': 'thumbnailUri', 'visibility': 'visibility', 'visible_roles': 'visibleRoles', 'visible_tenants': 'visibleTenants', 'endpoint_config': 'endpointConfig', 'endpoint_security': 'endpointSecurity', 'gateway_environments': 'gatewayEnvironments', 'sequences': 'sequences', 'subscription_availability': 'subscriptionAvailability', 'subscription_available_tenants': 'subscriptionAvailableTenants', 'business_information': 'businessInformation', 'cors_configuration': 'corsConfiguration' } def __init__(self, id=None, name=None, description=None, context=None, version=None, provider=None, api_definition=None, wsdl_uri=None, status=None, response_caching=None, cache_timeout=None, destination_stats_enabled=None, is_default_version=None, type='HTTP', transport=None, tags=None, tiers=None, max_tps=None, thumbnail_uri=None, visibility=None, visible_roles=None, visible_tenants=None, endpoint_config=None, endpoint_security=None, gateway_environments=None, sequences=None, subscription_availability=None, subscription_available_tenants=None, business_information=None, cors_configuration=None): """ APIObject2 - a model defined in Swagger """ self._id = None self._name = None self._description = None self._context = None self._version = None self._provider = None self._api_definition = None self._wsdl_uri = None self._status = None self._response_caching = None self._cache_timeout = None self._destination_stats_enabled = None self._is_default_version = None self._type = None self._transport = None self._tags = None self._tiers = None self._max_tps = None self._thumbnail_uri = None self._visibility = None self._visible_roles = None self._visible_tenants = None self._endpoint_config = None self._endpoint_security = None self._gateway_environments = None self._sequences = None self._subscription_availability = None self._subscription_available_tenants = None self._business_information = None self._cors_configuration = None if id is not None: self.id = id self.name = name if description is not None: self.description = description self.context = context self.version = version if provider is not None: self.provider = provider if api_definition is not None: self.api_definition = api_definition if wsdl_uri is not None: self.wsdl_uri = wsdl_uri if status is not None: self.status = status if response_caching is not None: self.response_caching = response_caching if cache_timeout is not None: self.cache_timeout = cache_timeout if destination_stats_enabled is not None: self.destination_stats_enabled = destination_stats_enabled self.is_default_version = is_default_version self.type = type self.transport = transport if tags is not None: self.tags = tags self.tiers = tiers if max_tps is not None: self.max_tps = max_tps if thumbnail_uri is not None: self.thumbnail_uri = thumbnail_uri self.visibility = visibility if visible_roles is not None: self.visible_roles = visible_roles if visible_tenants is not None: self.visible_tenants = visible_tenants self.endpoint_config = endpoint_config if endpoint_security is not None: self.endpoint_security = endpoint_security if gateway_environments is not None: self.gateway_environments = gateway_environments if sequences is not None: self.sequences = sequences if subscription_availability is not None: self.subscription_availability = subscription_availability if subscription_available_tenants is not None: self.subscription_available_tenants = subscription_available_tenants if business_information is not None: self.business_information = business_information if cors_configuration is not None: self.cors_configuration = cors_configuration @property def id(self): """ Gets the id of this APIObject2. UUID of the api registry artifact :return: The id of this APIObject2. :rtype: str """ return self._id @id.setter def id(self, id): """ Sets the id of this APIObject2. UUID of the api registry artifact :param id: The id of this APIObject2. :type: str """ self._id = id @property def name(self): """ Gets the name of this APIObject2. :return: The name of this APIObject2. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this APIObject2. :param name: The name of this APIObject2. :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") self._name = name @property def description(self): """ Gets the description of this APIObject2. :return: The description of this APIObject2. :rtype: str """ return self._description @description.setter def description(self, description): """ Sets the description of this APIObject2. :param description: The description of this APIObject2. :type: str """ self._description = description @property def context(self): """ Gets the context of this APIObject2. :return: The context of this APIObject2. :rtype: str """ return self._context @context.setter def context(self, context): """ Sets the context of this APIObject2. :param context: The context of this APIObject2. :type: str """ if context is None: raise ValueError("Invalid value for `context`, must not be `None`") self._context = context @property def version(self): """ Gets the version of this APIObject2. :return: The version of this APIObject2. :rtype: str """ return self._version @version.setter def version(self, version): """ Sets the version of this APIObject2. :param version: The version of this APIObject2. :type: str """ if version is None: raise ValueError("Invalid value for `version`, must not be `None`") self._version = version @property def provider(self): """ Gets the provider of this APIObject2. If the provider value is not given user invoking the api will be used as the provider. :return: The provider of this APIObject2. :rtype: str """ return self._provider @provider.setter def provider(self, provider): """ Sets the provider of this APIObject2. If the provider value is not given user invoking the api will be used as the provider. :param provider: The provider of this APIObject2. :type: str """ self._provider = provider @property def api_definition(self): """ Gets the api_definition of this APIObject2. Swagger definition of the API which contains details about URI templates and scopes :return: The api_definition of this APIObject2. :rtype: str """ return self._api_definition @api_definition.setter def api_definition(self, api_definition): """ Sets the api_definition of this APIObject2. Swagger definition of the API which contains details about URI templates and scopes :param api_definition: The api_definition of this APIObject2. :type: str """ self._api_definition = api_definition @property def wsdl_uri(self): """ Gets the wsdl_uri of this APIObject2. WSDL URL if the API is based on a WSDL endpoint :return: The wsdl_uri of this APIObject2. :rtype: str """ return self._wsdl_uri @wsdl_uri.setter def wsdl_uri(self, wsdl_uri): """ Sets the wsdl_uri of this APIObject2. WSDL URL if the API is based on a WSDL endpoint :param wsdl_uri: The wsdl_uri of this APIObject2. :type: str """ self._wsdl_uri = wsdl_uri @property def status(self): """ Gets the status of this APIObject2. :return: The status of this APIObject2. :rtype: str """ return self._status @status.setter def status(self, status): """ Sets the status of this APIObject2. :param status: The status of this APIObject2. :type: str """ self._status = status @property def response_caching(self): """ Gets the response_caching of this APIObject2. :return: The response_caching of this APIObject2. :rtype: str """ return self._response_caching @response_caching.setter def response_caching(self, response_caching): """ Sets the response_caching of this APIObject2. :param response_caching: The response_caching of this APIObject2. :type: str """ self._response_caching = response_caching @property def cache_timeout(self): """ Gets the cache_timeout of this APIObject2. :return: The cache_timeout of this APIObject2. :rtype: int """ return self._cache_timeout @cache_timeout.setter def cache_timeout(self, cache_timeout): """ Sets the cache_timeout of this APIObject2. :param cache_timeout: The cache_timeout of this APIObject2. :type: int """ self._cache_timeout = cache_timeout @property def destination_stats_enabled(self): """ Gets the destination_stats_enabled of this APIObject2. :return: The destination_stats_enabled of this APIObject2. :rtype: str """ return self._destination_stats_enabled @destination_stats_enabled.setter def destination_stats_enabled(self, destination_stats_enabled): """ Sets the destination_stats_enabled of this APIObject2. :param destination_stats_enabled: The destination_stats_enabled of this APIObject2. :type: str """ self._destination_stats_enabled = destination_stats_enabled @property def is_default_version(self): """ Gets the is_default_version of this APIObject2. :return: The is_default_version of this APIObject2. :rtype: bool """ return self._is_default_version @is_default_version.setter def is_default_version(self, is_default_version): """ Sets the is_default_version of this APIObject2. :param is_default_version: The is_default_version of this APIObject2. :type: bool """ if is_default_version is None: raise ValueError("Invalid value for `is_default_version`, must not be `None`") self._is_default_version = is_default_version @property def type(self): """ Gets the type of this APIObject2. :return: The type of this APIObject2. :rtype: str """ return self._type @type.setter def type(self, type): """ Sets the type of this APIObject2. :param type: The type of this APIObject2. :type: str """ if type is None: raise ValueError("Invalid value for `type`, must not be `None`") allowed_values = ["HTTP", "WS"] if type not in allowed_values: raise ValueError( "Invalid value for `type` ({0}), must be one of {1}" .format(type, allowed_values) ) self._type = type @property def transport(self): """ Gets the transport of this APIObject2. Supported transports for the API (http and/or https). :return: The transport of this APIObject2. :rtype: list[str] """ return self._transport @transport.setter def transport(self, transport): """ Sets the transport of this APIObject2. Supported transports for the API (http and/or https). :param transport: The transport of this APIObject2. :type: list[str] """ if transport is None: raise ValueError("Invalid value for `transport`, must not be `None`") self._transport = transport @property def tags(self): """ Gets the tags of this APIObject2. :return: The tags of this APIObject2. :rtype: list[str] """ return self._tags @tags.setter def tags(self, tags): """ Sets the tags of this APIObject2. :param tags: The tags of this APIObject2. :type: list[str] """ self._tags = tags @property def tiers(self): """ Gets the tiers of this APIObject2. :return: The tiers of this APIObject2. :rtype: list[str] """ return self._tiers @tiers.setter def tiers(self, tiers): """ Sets the tiers of this APIObject2. :param tiers: The tiers of this APIObject2. :type: list[str] """ if tiers is None: raise ValueError("Invalid value for `tiers`, must not be `None`") self._tiers = tiers @property def max_tps(self): """ Gets the max_tps of this APIObject2. :return: The max_tps of this APIObject2. :rtype: ApisMaxTps """ return self._max_tps @max_tps.setter def max_tps(self, max_tps): """ Sets the max_tps of this APIObject2. :param max_tps: The max_tps of this APIObject2. :type: ApisMaxTps """ self._max_tps = max_tps @property def thumbnail_uri(self): """ Gets the thumbnail_uri of this APIObject2. :return: The thumbnail_uri of this APIObject2. :rtype: str """ return self._thumbnail_uri @thumbnail_uri.setter def thumbnail_uri(self, thumbnail_uri): """ Sets the thumbnail_uri of this APIObject2. :param thumbnail_uri: The thumbnail_uri of this APIObject2. :type: str """ self._thumbnail_uri = thumbnail_uri @property def visibility(self): """ Gets the visibility of this APIObject2. :return: The visibility of this APIObject2. :rtype: str """ return self._visibility @visibility.setter def visibility(self, visibility): """ Sets the visibility of this APIObject2. :param visibility: The visibility of this APIObject2. :type: str """ if visibility is None: raise ValueError("Invalid value for `visibility`, must not be `None`") allowed_values = ["PUBLIC", "PRIVATE", "RESTRICTED", "CONTROLLED"] if visibility not in allowed_values: raise ValueError( "Invalid value for `visibility` ({0}), must be one of {1}" .format(visibility, allowed_values) ) self._visibility = visibility @property def visible_roles(self): """ Gets the visible_roles of this APIObject2. :return: The visible_roles of this APIObject2. :rtype: list[str] """ return self._visible_roles @visible_roles.setter def visible_roles(self, visible_roles): """ Sets the visible_roles of this APIObject2. :param visible_roles: The visible_roles of this APIObject2. :type: list[str] """ self._visible_roles = visible_roles @property def visible_tenants(self): """ Gets the visible_tenants of this APIObject2. :return: The visible_tenants of this APIObject2. :rtype: list[str] """ return self._visible_tenants @visible_tenants.setter def visible_tenants(self, visible_tenants): """ Sets the visible_tenants of this APIObject2. :param visible_tenants: The visible_tenants of this APIObject2. :type: list[str] """ self._visible_tenants = visible_tenants @property def endpoint_config(self): """ Gets the endpoint_config of this APIObject2. :return: The endpoint_config of this APIObject2. :rtype: str """ return self._endpoint_config @endpoint_config.setter def endpoint_config(self, endpoint_config): """ Sets the endpoint_config of this APIObject2. :param endpoint_config: The endpoint_config of this APIObject2. :type: str """ if endpoint_config is None: raise ValueError("Invalid value for `endpoint_config`, must not be `None`") self._endpoint_config = endpoint_config @property def endpoint_security(self): """ Gets the endpoint_security of this APIObject2. :return: The endpoint_security of this APIObject2. :rtype: ApisEndpointSecurity """ return self._endpoint_security @endpoint_security.setter def endpoint_security(self, endpoint_security): """ Sets the endpoint_security of this APIObject2. :param endpoint_security: The endpoint_security of this APIObject2. :type: ApisEndpointSecurity """ self._endpoint_security = endpoint_security @property def gateway_environments(self): """ Gets the gateway_environments of this APIObject2. Comma separated list of gateway environments. :return: The gateway_environments of this APIObject2. :rtype: str """ return self._gateway_environments @gateway_environments.setter def gateway_environments(self, gateway_environments): """ Sets the gateway_environments of this APIObject2. Comma separated list of gateway environments. :param gateway_environments: The gateway_environments of this APIObject2. :type: str """ self._gateway_environments = gateway_environments @property def sequences(self): """ Gets the sequences of this APIObject2. :return: The sequences of this APIObject2. :rtype: list[Sequence1] """ return self._sequences @sequences.setter def sequences(self, sequences): """ Sets the sequences of this APIObject2. :param sequences: The sequences of this APIObject2. :type: list[Sequence1] """ self._sequences = sequences @property def subscription_availability(self): """ Gets the subscription_availability of this APIObject2. :return: The subscription_availability of this APIObject2. :rtype: str """ return self._subscription_availability @subscription_availability.setter def subscription_availability(self, subscription_availability): """ Sets the subscription_availability of this APIObject2. :param subscription_availability: The subscription_availability of this APIObject2. :type: str """ allowed_values = ["current_tenant", "all_tenants", "specific_tenants"] if subscription_availability not in allowed_values: raise ValueError( "Invalid value for `subscription_availability` ({0}), must be one of {1}" .format(subscription_availability, allowed_values) ) self._subscription_availability = subscription_availability @property def subscription_available_tenants(self): """ Gets the subscription_available_tenants of this APIObject2. :return: The subscription_available_tenants of this APIObject2. :rtype: list[str] """ return self._subscription_available_tenants @subscription_available_tenants.setter def subscription_available_tenants(self, subscription_available_tenants): """ Sets the subscription_available_tenants of this APIObject2. :param subscription_available_tenants: The subscription_available_tenants of this APIObject2. :type: list[str] """ self._subscription_available_tenants = subscription_available_tenants @property def business_information(self): """ Gets the business_information of this APIObject2. :return: The business_information of this APIObject2. :rtype: ApisBusinessInformation """ return self._business_information @business_information.setter def business_information(self, business_information): """ Sets the business_information of this APIObject2. :param business_information: The business_information of this APIObject2. :type: ApisBusinessInformation """ self._business_information = business_information @property def cors_configuration(self): """ Gets the cors_configuration of this APIObject2. :return: The cors_configuration of this APIObject2. :rtype: ApisCorsConfiguration """ return self._cors_configuration @cors_configuration.setter def cors_configuration(self, cors_configuration): """ Sets the cors_configuration of this APIObject2. :param cors_configuration: The cors_configuration of this APIObject2. :type: ApisCorsConfiguration """ self._cors_configuration = cors_configuration def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, APIObject2): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
[ "junetigerlee@gmail.com" ]
junetigerlee@gmail.com
78a8943f8ce2436866eaef9d626cb0df1c6b6eda
6258769282bb5d23c0ae12064c76597014f64463
/sorting/insertion_sort.py
9461306d62d3b90ce11fe8b1582bbe462b4fee61
[]
no_license
PandaMia/Python
91c9ceb949791bc8d6d549aa69b380e5d18ea2d2
98a1cb0d970607b7160336c705ff9f0f4c8d1edc
refs/heads/master
2022-11-20T00:28:49.881340
2020-07-12T12:51:15
2020-07-12T12:51:15
276,862,618
0
0
null
null
null
null
UTF-8
Python
false
false
368
py
from random import randint def insertion_sort(array): for i in range(1, len(array)): spam = array[i] j = i while array[j - 1] > spam and j > 0: array[j] = array[j - 1] j -= 1 array[j] = spam array = [randint(-10, 10) for i in range(10)] print(array) insertion_sort(array) print(array)
[ "noreply@github.com" ]
PandaMia.noreply@github.com
0afbee7eba27aebba2818dd3c350919085a06630
f6204b85b4b0662eecda8cfd77e41ef51a8e97fb
/projectpythonlaptophp/escapechar.py
c0751920dbe670df4d359ec05d254143853197b6
[]
no_license
sergiosanchezbarradas/Udemy_Masterclass_Python
0084e781fac9db8cca2b0dd3afec3dd69f7a3ed7
da8fc6105a04379e4ddeaf9df782115462408153
refs/heads/master
2023-04-14T22:53:58.527942
2021-04-21T10:51:23
2021-04-21T10:51:23
336,501,693
1
0
null
null
null
null
UTF-8
Python
false
false
441
py
splitstring = "This string has been\nsplit over\nseveral\nlines" print(splitstring) tabstring = "1\t25\t3\t" print(tabstring) print('The pet owner said "No,no, \'e\'s uh,....he\'s resting".') #or print("The owner said \"No, no, 'e's uh,...he's resting\".") print("""The owner said hmmmm "No,no...'e's \ uh...he's resting".""") triplequotessplit = """this has been split many times""" print(triplequotessplit) print(r"C:\Users\sergio")
[ "sergio_sanchez_b@hotmail.com" ]
sergio_sanchez_b@hotmail.com
e3dd261be5438e3b948ea7d2190b0fc491879986
9ba3e1a001ffa4d4a93387c8685b6e1f5b7c48dc
/code/other-sims/case4.py
b0c25dae51509b1f7b1aeb268ce5b52ffc320602
[ "MIT", "Apache-2.0" ]
permissive
filecoin-project/consensus
b194e8f061ab541d7e6d20d760e89705993cabdc
8824ad5fb8948706995805692d594f6ccf199176
refs/heads/master
2022-03-28T21:35:04.670512
2020-05-29T19:40:44
2020-05-29T19:40:44
130,159,711
44
5
NOASSERTION
2020-03-19T02:37:58
2018-04-19T04:38:19
Python
UTF-8
Python
false
false
1,715
py
import numpy as np import time from math import floor import multiprocessing as mp nh=67 na=33 ntot=na+nh heights=range(250,251,10) e=1 p=float(e)/float(1*ntot) sim=1000000 ec =[] num=1 if e==1: num=77 if e==5: num=54 start_time = time.time() # Step 1: Init multiprocessing.Pool() pool = mp.Pool(mp.cpu_count()) for height in heights: #the adversary tries to keep maintaining two chain of same weight and #length "height", we try different heights and see the probability of succeeding. Ig this probability is #small enough, we consider this height a good finality candidate. win_ec = 0 longestfork =[] for i in range(sim): ch = np.random.binomial(nh, p, height) ca = np.random.binomial(na, p, height) # result of flipping a coin nha times, tested height times. (i.e. number of leaders # at ach slot for both adversary and honest players) j=0 w_h = 0 w_a = 0 praos_h=0 praos_a=0 j=0 while ca[j]>0 and j<height: #determine if adversary or honest is winning w_h+=1 w_a+=ca[j]#adv adds all blocks possible to its chain praos_a j+=1 if w_a>=w_h and w_a>0: win_ec+=1 longestfork.append(j) #print np.average(longestfork) ec.append(float(win_ec)/float(sim)) # longestfork.sort() # print ec,np.average(longestfork), np.median(longestfork),max(longestfork), sum(longestfork[-54:]) #before sorting, we group them by groups of num stop = int(floor(sim/num)*num) #need to stop before the end of the longest fork #if it is not a multiple of num groupedfork=[ sum(longestfork[x:x+num]) for x in range(0, stop, num)] print ec, np.average(groupedfork), np.median(groupedfork), max(groupedfork), len(groupedfork) print("--- %s seconds ---" % (time.time() - start_time))
[ "sarah8@bitbucket.org" ]
sarah8@bitbucket.org
110a6ab2cb322a10543de21c59650d94d221ef39
054c0bdf2ed7db0975828355562b7b0a7bad7e5c
/myapp/home/views.py
3b1cc4004190dd397091eceb3f851ab81243868c
[]
no_license
fbbenod/Touristy-Information-System
d8024a5d9df0712d336d18cf1a2ac5b235b3b58e
8122a8b9f343fd952a052d2c435f914d0b82079c
refs/heads/master
2020-07-14T19:39:20.759408
2019-08-31T12:16:04
2019-08-31T12:16:04
205,385,231
1
0
null
null
null
null
UTF-8
Python
false
false
2,745
py
from django.shortcuts import render from .models import FirstContent, SecondContent,ThirdContent,Package,BodyContent1,\ BodyContent2, OurService1, OurService2,\ OurServiceImage, PopularDestination, HomeQuestion, OurPlaces, Footer from django.views.generic import ( ListView, DetailView ) def index(request): if request.method == 'GET': firstcontent=FirstContent.objects.all() secondcontent=SecondContent.objects.all() thirdcontent = ThirdContent.objects.all() bodycontent1= BodyContent1.objects.all() bodycontent2= BodyContent2.objects.all() populardestination = PopularDestination.objects.all() ourservice1 = OurService1.objects.all() ourservice2 = OurService2.objects.all() ourserviceimage = OurServiceImage.objects.all() package = Package.objects.all() homequestion = HomeQuestion.objects.all() ourplaces = OurPlaces.objects.all() footer = Footer.objects.all() context = { 'firstcontent': firstcontent, 'secondcontent': secondcontent, 'thirdcontent' : thirdcontent, 'bodycontent1' :bodycontent1, 'bodycontent2' :bodycontent2, 'populardestination': populardestination, 'ourservice1' : ourservice1, 'ourservice2' : ourservice2, 'ourserviceimage': ourserviceimage, 'package' : package, 'homequestion' :homequestion, 'ourplaces' : ourplaces, 'footer':footer } return render(request, 'home/index.html', context) class PostListView(ListView): model = FirstContent template_name = 'home/index.html' context_object_name = 'firstcontent' def get_context_data(self, **kwargs): context = super(PostListView, self).get_context_data(**kwargs) context.update({ 'secondcontent':SecondContent.objects.all(), 'thirdcontent': ThirdContent.objects.all(), 'bodycontent2': BodyContent2.objects.all(), 'bodycontent1': BodyContent1.objects.all(), 'populardestination': PopularDestination.objects.all(), 'ourservice1': OurService1.objects.all(), 'ourservice2': OurService2.objects.all(), 'ourserviceimage': OurServiceImage.objects.all(), 'package': Package.objects.all(), 'homequestion': HomeQuestion.objects.all(), 'ourplaces': OurPlaces.objects.all(), 'footer': Footer.objects.all(), }) return context class PostDetailView(DetailView): model = PopularDestination template_name = 'home/index2.html' context_object_name = 'populardestinations'
[ "b3nodbanjara@gmail.com" ]
b3nodbanjara@gmail.com
c576359869c6d2ae332e6910e94e31783d8ab1ec
c0d489046bc114672139873916a118a203c6f850
/Medium/1669. Merge In Between Linked Lists.py
d226397c60258d906ee028c656b938c7f36208fd
[]
no_license
shifty049/LeetCode_Practice
165ada14a8fd436e9068bd94d6b82b1ed312013c
ca8be179282be86450c9959fb239466d152a55e5
refs/heads/master
2022-05-25T16:23:05.736852
2022-03-29T13:48:21
2022-03-29T13:48:21
249,737,622
0
0
null
null
null
null
UTF-8
Python
false
false
965
py
class Solution: def mergeInBetween(self, list1: ListNode, a: int, b: int, list2: ListNode) -> ListNode: ix = 0 while True: if ix == 0: head = list1 if ix ==a-1: lst1_head = list1 if ix == b +1: lst1_tail = list1 break list1 = list1.next ix+=1 lst2_head = list2 while list2: if not list2.next: lst2_tail = list2 list2= list2.next lst1_head.next = lst2_head lst2_tail.next = lst1_tail return head #Runtime: 456 ms, faster than 51.12% of Python3 online submissions for Merge In Between Linked Lists. #Memory Usage: 20.1 MB, less than 36.68% of Python3 online submissions for Merge In Between Linked Lists. #Fu-Ti, Hsu #shifty049@gmail.com
[ "shifty049@gmail.com" ]
shifty049@gmail.com
de01fe52eb92564309ff7696b0b605bb26095c8d
9d844faeec40e4fd3dfaf7e79004831752090454
/kaplanmeier/helpers/savefig.py
198e47da65c7e032d87c9bf40dc11788474ffed1
[ "MIT" ]
permissive
erdogant/kaplanmeier
8b498218f3105d905087aef713cfeb25d69fbf43
97c49d7c3f7c1385b895729a3dbffc2012cd50a2
refs/heads/master
2023-05-23T01:28:07.905957
2023-05-08T20:30:12
2023-05-08T20:30:12
231,418,764
24
9
MIT
2022-03-10T23:54:05
2020-01-02T16:25:50
Python
UTF-8
Python
false
false
1,668
py
""" This function saves figures in PNG format. A=savefig(data, <optional>) INPUT: data: fig object OPTIONAL showprogress : Boolean [0,1] [0]: No (default) [1]: Yes OUTPUT BOOLEAN [0]: If not succesful [1]: If succesful DESCRIPTION his function saves figures in PNG format. EXAMPLE %reset -f print(os.getcwd()) from donutchart import donutchart A = donutchart([15, 30, 45, 10],['aap','boom','mies','banaan']) B = savefig(A,"c://temp//magweg//fig.png",showprogress=1) SEE ALSO """ #print(__doc__) #-------------------------------------------------------------------------- # Name : savefig.py # Version : 1.0 # Author : E.Taskesen # Date : Sep. 2017 #-------------------------------------------------------------------------- # Libraries from os import mkdir from os import path #%% Main def savefig(fig, filepath, dpi=100, transp=False, showprogress=0): out=0 # Returns 1 if succesful # Make dictionary to store Parameters Param = {} Param['showprogress'] = showprogress Param['filepath'] = filepath Param['dpi'] = dpi Param['transp'] = transp # Write figure to path if Param['filepath']!="": # Check dir [getpath, getfilename] = path.split(Param['filepath']) if path.exists(getpath)==False: mkdir(getpath) #end #save file #print(fig.canvas.get_supported_filetypes()) fig.savefig(Param['filepath'], dpi=Param['dpi'], transparent=Param['transp'], bbox_inches='tight') out=1 return(out)
[ "erdogant@gmail.com" ]
erdogant@gmail.com
c330eb6da60dfa3e0ce1b2b9441715280a20da9c
12662aff12b6651a3cc046950e5ea57f60dd0a09
/16. Numpy/Inner_and_outer.py
0587955f2ce1d316ab30af51dbd4c7e31e925f13
[]
no_license
basakmugdha/HackerRank-Python-Practice
3c563d68e002c1b04dc59594f3c84070babf443a
fa41f263eb310755a1da1c9d6f2f74dc9e0329b5
refs/heads/master
2023-06-18T05:07:58.563967
2021-07-11T16:29:34
2021-07-11T16:29:34
354,798,352
0
0
null
null
null
null
UTF-8
Python
false
false
133
py
import numpy as np A = np.array(input().split(), int) B = np.array(input().split(), int) print(np.inner(A,B)) print(np.outer(A,B))
[ "51905437+basakmugdha@users.noreply.github.com" ]
51905437+basakmugdha@users.noreply.github.com
1294aa6cc306f575071bc36fb1e6ad6462da9268
3ae37808b1d2cee080d9dc6a8695ca822e02b9cd
/udemy/lazyprogrammer/linear-regression-python/lr_2d.py
a2682eb360002ca6324e3d34a0012e887d04d18b
[ "Apache-2.0" ]
permissive
balazssimon/ml-playground
8dc9896a46bd468a74e0e04ba94889c009655216
c2eba497bebc53e5a03807bdd8873c55f0ec73e1
refs/heads/master
2023-08-11T04:36:11.084644
2019-07-30T14:39:23
2019-07-30T14:39:23
65,571,533
0
0
null
null
null
null
UTF-8
Python
false
false
492
py
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import pandas as pd df = pd.read_csv("data_2d.csv", header=None) X = df[[0,1]].values y = df[2].values w = np.linalg.solve(np.dot(X.T, X), np.dot(X.T, y)) y_hat = np.dot(X, w) d1 = y-y_hat d2 = y-y.mean() SS_res = d1.dot(d1) SS_tot = d2.dot(d2) R2 = 1-SS_res/SS_tot fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(X[:,0], X[:,1], y) plt.show()
[ "balazssimon@gmail.com" ]
balazssimon@gmail.com
0215b7bbb2f8facc2a6d7f58206630b3e43c303c
0a7b9005e93ad0ac846568d54d52c8faef8aa53b
/Old Files/Generation V3/ball_recognition_tensorflow/object_detection/eval_util.py
c1a09ec0e5d7677971b860159ce262ee101c5217
[]
no_license
msumccoy/robotics
9d177710cd4e61c38fda26c0f72d8fbf25c7cfdd
63cec377ee7efb6e2297669a91e930f415ad8a6a
refs/heads/master
2021-12-12T16:25:33.840760
2021-11-12T19:20:43
2021-11-12T19:20:43
206,330,614
0
1
null
2021-11-12T19:20:44
2019-09-04T13:50:47
Python
UTF-8
Python
false
false
44,765
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Common utility functions for evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import re import time import numpy as np from six.moves import range import tensorflow as tf from object_detection.core import box_list from object_detection.core import box_list_ops from object_detection.core import keypoint_ops from object_detection.core import standard_fields as fields from object_detection.metrics import coco_evaluation from object_detection.utils import label_map_util from object_detection.utils import object_detection_evaluation from object_detection.utils import ops from object_detection.utils import shape_utils from object_detection.utils import visualization_utils as vis_utils slim = tf.contrib.slim # A dictionary of metric names to classes that implement the metric. The classes # in the dictionary must implement # utils.object_detection_evaluation.DetectionEvaluator interface. EVAL_METRICS_CLASS_DICT = { 'coco_detection_metrics': coco_evaluation.CocoDetectionEvaluator, 'coco_mask_metrics': coco_evaluation.CocoMaskEvaluator, 'oid_challenge_detection_metrics': object_detection_evaluation.OpenImagesDetectionChallengeEvaluator, 'oid_challenge_segmentation_metrics': object_detection_evaluation .OpenImagesInstanceSegmentationChallengeEvaluator, 'pascal_voc_detection_metrics': object_detection_evaluation.PascalDetectionEvaluator, 'weighted_pascal_voc_detection_metrics': object_detection_evaluation.WeightedPascalDetectionEvaluator, 'precision_at_recall_detection_metrics': object_detection_evaluation.PrecisionAtRecallDetectionEvaluator, 'pascal_voc_instance_segmentation_metrics': object_detection_evaluation.PascalInstanceSegmentationEvaluator, 'weighted_pascal_voc_instance_segmentation_metrics': object_detection_evaluation.WeightedPascalInstanceSegmentationEvaluator, 'oid_V2_detection_metrics': object_detection_evaluation.OpenImagesDetectionEvaluator, } EVAL_DEFAULT_METRIC = 'coco_detection_metrics' def write_metrics(metrics, global_step, summary_dir): """Write metrics to a summary directory. Args: metrics: A dictionary containing metric names and values. global_step: Global step at which the metrics are computed. summary_dir: Directory to write tensorflow summaries to. """ tf.logging.info('Writing metrics to tf summary.') summary_writer = tf.summary.FileWriterCache.get(summary_dir) for key in sorted(metrics): summary = tf.Summary(value=[ tf.Summary.Value(tag=key, simple_value=metrics[key]), ]) summary_writer.add_summary(summary, global_step) tf.logging.info('%s: %f', key, metrics[key]) tf.logging.info('Metrics written to tf summary.') # TODO(rathodv): Add tests. def visualize_detection_results(result_dict, tag, global_step, categories, summary_dir='', export_dir='', agnostic_mode=False, show_groundtruth=False, groundtruth_box_visualization_color='black', min_score_thresh=.5, max_num_predictions=20, skip_scores=False, skip_labels=False, keep_image_id_for_visualization_export=False): """Visualizes detection results and writes visualizations to image summaries. This function visualizes an image with its detected bounding boxes and writes to image summaries which can be viewed on tensorboard. It optionally also writes images to a directory. In the case of missing entry in the label map, unknown class name in the visualization is shown as "N/A". Args: result_dict: a dictionary holding groundtruth and detection data corresponding to each image being evaluated. The following keys are required: 'original_image': a numpy array representing the image with shape [1, height, width, 3] or [1, height, width, 1] 'detection_boxes': a numpy array of shape [N, 4] 'detection_scores': a numpy array of shape [N] 'detection_classes': a numpy array of shape [N] The following keys are optional: 'groundtruth_boxes': a numpy array of shape [N, 4] 'groundtruth_keypoints': a numpy array of shape [N, num_keypoints, 2] Detections are assumed to be provided in decreasing order of score and for display, and we assume that scores are probabilities between 0 and 1. tag: tensorboard tag (string) to associate with image. global_step: global step at which the visualization are generated. categories: a list of dictionaries representing all possible categories. Each dict in this list has the following keys: 'id': (required) an integer id uniquely identifying this category 'name': (required) string representing category name e.g., 'cat', 'dog', 'pizza' 'supercategory': (optional) string representing the supercategory e.g., 'animal', 'vehicle', 'food', etc summary_dir: the output directory to which the image summaries are written. export_dir: the output directory to which images are written. If this is empty (default), then images are not exported. agnostic_mode: boolean (default: False) controlling whether to evaluate in class-agnostic mode or not. show_groundtruth: boolean (default: False) controlling whether to show groundtruth boxes in addition to detected boxes groundtruth_box_visualization_color: box color for visualizing groundtruth boxes min_score_thresh: minimum score threshold for a box to be visualized max_num_predictions: maximum number of detections to visualize skip_scores: whether to skip score when drawing a single detection skip_labels: whether to skip label when drawing a single detection keep_image_id_for_visualization_export: whether to keep image identifier in filename when exported to export_dir Raises: ValueError: if result_dict does not contain the expected keys (i.e., 'original_image', 'detection_boxes', 'detection_scores', 'detection_classes') """ detection_fields = fields.DetectionResultFields input_fields = fields.InputDataFields if not set([ input_fields.original_image, detection_fields.detection_boxes, detection_fields.detection_scores, detection_fields.detection_classes, ]).issubset(set(result_dict.keys())): raise ValueError('result_dict does not contain all expected keys.') if show_groundtruth and input_fields.groundtruth_boxes not in result_dict: raise ValueError('If show_groundtruth is enabled, result_dict must contain ' 'groundtruth_boxes.') tf.logging.info('Creating detection visualizations.') category_index = label_map_util.create_category_index(categories) image = np.squeeze(result_dict[input_fields.original_image], axis=0) if image.shape[2] == 1: # If one channel image, repeat in RGB. image = np.tile(image, [1, 1, 3]) detection_boxes = result_dict[detection_fields.detection_boxes] detection_scores = result_dict[detection_fields.detection_scores] detection_classes = np.int32((result_dict[ detection_fields.detection_classes])) detection_keypoints = result_dict.get(detection_fields.detection_keypoints) detection_masks = result_dict.get(detection_fields.detection_masks) detection_boundaries = result_dict.get(detection_fields.detection_boundaries) # Plot groundtruth underneath detections if show_groundtruth: groundtruth_boxes = result_dict[input_fields.groundtruth_boxes] groundtruth_keypoints = result_dict.get(input_fields.groundtruth_keypoints) vis_utils.visualize_boxes_and_labels_on_image_array( image=image, boxes=groundtruth_boxes, classes=None, scores=None, category_index=category_index, keypoints=groundtruth_keypoints, use_normalized_coordinates=False, max_boxes_to_draw=None, groundtruth_box_visualization_color=groundtruth_box_visualization_color) vis_utils.visualize_boxes_and_labels_on_image_array( image, detection_boxes, detection_classes, detection_scores, category_index, instance_masks=detection_masks, instance_boundaries=detection_boundaries, keypoints=detection_keypoints, use_normalized_coordinates=False, max_boxes_to_draw=max_num_predictions, min_score_thresh=min_score_thresh, agnostic_mode=agnostic_mode, skip_scores=skip_scores, skip_labels=skip_labels) if export_dir: if keep_image_id_for_visualization_export and result_dict[fields. InputDataFields() .key]: export_path = os.path.join(export_dir, 'export-{}-{}.png'.format( tag, result_dict[fields.InputDataFields().key])) else: export_path = os.path.join(export_dir, 'export-{}.png'.format(tag)) vis_utils.save_image_array_as_png(image, export_path) summary = tf.Summary(value=[ tf.Summary.Value( tag=tag, image=tf.Summary.Image( encoded_image_string=vis_utils.encode_image_array_as_png_str( image))) ]) summary_writer = tf.summary.FileWriterCache.get(summary_dir) summary_writer.add_summary(summary, global_step) tf.logging.info('Detection visualizations written to summary with tag %s.', tag) def _run_checkpoint_once(tensor_dict, evaluators=None, batch_processor=None, checkpoint_dirs=None, variables_to_restore=None, restore_fn=None, num_batches=1, master='', save_graph=False, save_graph_dir='', losses_dict=None, eval_export_path=None, process_metrics_fn=None): """Evaluates metrics defined in evaluators and returns summaries. This function loads the latest checkpoint in checkpoint_dirs and evaluates all metrics defined in evaluators. The metrics are processed in batch by the batch_processor. Args: tensor_dict: a dictionary holding tensors representing a batch of detections and corresponding groundtruth annotations. evaluators: a list of object of type DetectionEvaluator to be used for evaluation. Note that the metric names produced by different evaluators must be unique. batch_processor: a function taking four arguments: 1. tensor_dict: the same tensor_dict that is passed in as the first argument to this function. 2. sess: a tensorflow session 3. batch_index: an integer representing the index of the batch amongst all batches By default, batch_processor is None, which defaults to running: return sess.run(tensor_dict) To skip an image, it suffices to return an empty dictionary in place of result_dict. checkpoint_dirs: list of directories to load into an EnsembleModel. If it has only one directory, EnsembleModel will not be used -- a DetectionModel will be instantiated directly. Not used if restore_fn is set. variables_to_restore: None, or a dictionary mapping variable names found in a checkpoint to model variables. The dictionary would normally be generated by creating a tf.train.ExponentialMovingAverage object and calling its variables_to_restore() method. Not used if restore_fn is set. restore_fn: None, or a function that takes a tf.Session object and correctly restores all necessary variables from the correct checkpoint file. If None, attempts to restore from the first directory in checkpoint_dirs. num_batches: the number of batches to use for evaluation. master: the location of the Tensorflow session. save_graph: whether or not the Tensorflow graph is stored as a pbtxt file. save_graph_dir: where to store the Tensorflow graph on disk. If save_graph is True this must be non-empty. losses_dict: optional dictionary of scalar detection losses. eval_export_path: Path for saving a json file that contains the detection results in json format. process_metrics_fn: a callback called with evaluation results after each evaluation is done. It could be used e.g. to back up checkpoints with best evaluation scores, or to call an external system to update evaluation results in order to drive best hyper-parameter search. Parameters are: int checkpoint_number, Dict[str, ObjectDetectionEvalMetrics] metrics, str checkpoint_file path. Returns: global_step: the count of global steps. all_evaluator_metrics: A dictionary containing metric names and values. Raises: ValueError: if restore_fn is None and checkpoint_dirs doesn't have at least one element. ValueError: if save_graph is True and save_graph_dir is not defined. """ if save_graph and not save_graph_dir: raise ValueError('`save_graph_dir` must be defined.') sess = tf.Session(master, graph=tf.get_default_graph()) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) sess.run(tf.tables_initializer()) checkpoint_file = None if restore_fn: restore_fn(sess) else: if not checkpoint_dirs: raise ValueError('`checkpoint_dirs` must have at least one entry.') checkpoint_file = tf.train.latest_checkpoint(checkpoint_dirs[0]) saver = tf.train.Saver(variables_to_restore) saver.restore(sess, checkpoint_file) if save_graph: tf.train.write_graph(sess.graph_def, save_graph_dir, 'eval.pbtxt') counters = {'skipped': 0, 'success': 0} aggregate_result_losses_dict = collections.defaultdict(list) with tf.contrib.slim.queues.QueueRunners(sess): try: for batch in range(int(num_batches)): if (batch + 1) % 100 == 0: tf.logging.info('Running eval ops batch %d/%d', batch + 1, num_batches) if not batch_processor: try: if not losses_dict: losses_dict = {} result_dict, result_losses_dict = sess.run([tensor_dict, losses_dict]) counters['success'] += 1 except tf.errors.InvalidArgumentError: tf.logging.info('Skipping image') counters['skipped'] += 1 result_dict = {} else: result_dict, result_losses_dict = batch_processor( tensor_dict, sess, batch, counters, losses_dict=losses_dict) if not result_dict: continue for key, value in iter(result_losses_dict.items()): aggregate_result_losses_dict[key].append(value) for evaluator in evaluators: # TODO(b/65130867): Use image_id tensor once we fix the input data # decoders to return correct image_id. # TODO(akuznetsa): result_dict contains batches of images, while # add_single_ground_truth_image_info expects a single image. Fix if (isinstance(result_dict, dict) and fields.InputDataFields.key in result_dict and result_dict[fields.InputDataFields.key]): image_id = result_dict[fields.InputDataFields.key] else: image_id = batch evaluator.add_single_ground_truth_image_info( image_id=image_id, groundtruth_dict=result_dict) evaluator.add_single_detected_image_info( image_id=image_id, detections_dict=result_dict) tf.logging.info('Running eval batches done.') except tf.errors.OutOfRangeError: tf.logging.info('Done evaluating -- epoch limit reached') finally: # When done, ask the threads to stop. tf.logging.info('# success: %d', counters['success']) tf.logging.info('# skipped: %d', counters['skipped']) all_evaluator_metrics = {} if eval_export_path and eval_export_path is not None: for evaluator in evaluators: if (isinstance(evaluator, coco_evaluation.CocoDetectionEvaluator) or isinstance(evaluator, coco_evaluation.CocoMaskEvaluator)): tf.logging.info('Started dumping to json file.') evaluator.dump_detections_to_json_file( json_output_path=eval_export_path) tf.logging.info('Finished dumping to json file.') for evaluator in evaluators: metrics = evaluator.evaluate() evaluator.clear() if any(key in all_evaluator_metrics for key in metrics): raise ValueError('Metric names between evaluators must not collide.') all_evaluator_metrics.update(metrics) global_step = tf.train.global_step(sess, tf.train.get_global_step()) for key, value in iter(aggregate_result_losses_dict.items()): all_evaluator_metrics['Losses/' + key] = np.mean(value) if process_metrics_fn and checkpoint_file: m = re.search(r'model.ckpt-(\d+)$', checkpoint_file) if not m: tf.logging.error('Failed to parse checkpoint number from: %s', checkpoint_file) else: checkpoint_number = int(m.group(1)) process_metrics_fn(checkpoint_number, all_evaluator_metrics, checkpoint_file) sess.close() return (global_step, all_evaluator_metrics) # TODO(rathodv): Add tests. def repeated_checkpoint_run(tensor_dict, summary_dir, evaluators, batch_processor=None, checkpoint_dirs=None, variables_to_restore=None, restore_fn=None, num_batches=1, eval_interval_secs=120, max_number_of_evaluations=None, max_evaluation_global_step=None, master='', save_graph=False, save_graph_dir='', losses_dict=None, eval_export_path=None, process_metrics_fn=None): """Periodically evaluates desired tensors using checkpoint_dirs or restore_fn. This function repeatedly loads a checkpoint and evaluates a desired set of tensors (provided by tensor_dict) and hands the resulting numpy arrays to a function result_processor which can be used to further process/save/visualize the results. Args: tensor_dict: a dictionary holding tensors representing a batch of detections and corresponding groundtruth annotations. summary_dir: a directory to write metrics summaries. evaluators: a list of object of type DetectionEvaluator to be used for evaluation. Note that the metric names produced by different evaluators must be unique. batch_processor: a function taking three arguments: 1. tensor_dict: the same tensor_dict that is passed in as the first argument to this function. 2. sess: a tensorflow session 3. batch_index: an integer representing the index of the batch amongst all batches By default, batch_processor is None, which defaults to running: return sess.run(tensor_dict) checkpoint_dirs: list of directories to load into a DetectionModel or an EnsembleModel if restore_fn isn't set. Also used to determine when to run next evaluation. Must have at least one element. variables_to_restore: None, or a dictionary mapping variable names found in a checkpoint to model variables. The dictionary would normally be generated by creating a tf.train.ExponentialMovingAverage object and calling its variables_to_restore() method. Not used if restore_fn is set. restore_fn: a function that takes a tf.Session object and correctly restores all necessary variables from the correct checkpoint file. num_batches: the number of batches to use for evaluation. eval_interval_secs: the number of seconds between each evaluation run. max_number_of_evaluations: the max number of iterations of the evaluation. If the value is left as None the evaluation continues indefinitely. max_evaluation_global_step: global step when evaluation stops. master: the location of the Tensorflow session. save_graph: whether or not the Tensorflow graph is saved as a pbtxt file. save_graph_dir: where to save on disk the Tensorflow graph. If store_graph is True this must be non-empty. losses_dict: optional dictionary of scalar detection losses. eval_export_path: Path for saving a json file that contains the detection results in json format. process_metrics_fn: a callback called with evaluation results after each evaluation is done. It could be used e.g. to back up checkpoints with best evaluation scores, or to call an external system to update evaluation results in order to drive best hyper-parameter search. Parameters are: int checkpoint_number, Dict[str, ObjectDetectionEvalMetrics] metrics, str checkpoint_file path. Returns: metrics: A dictionary containing metric names and values in the latest evaluation. Raises: ValueError: if max_num_of_evaluations is not None or a positive number. ValueError: if checkpoint_dirs doesn't have at least one element. """ if max_number_of_evaluations and max_number_of_evaluations <= 0: raise ValueError( '`max_number_of_evaluations` must be either None or a positive number.') if max_evaluation_global_step and max_evaluation_global_step <= 0: raise ValueError( '`max_evaluation_global_step` must be either None or positive.') if not checkpoint_dirs: raise ValueError('`checkpoint_dirs` must have at least one entry.') last_evaluated_model_path = None number_of_evaluations = 0 while True: start = time.time() tf.logging.info('Starting evaluation at ' + time.strftime( '%Y-%m-%d-%H:%M:%S', time.gmtime())) model_path = tf.train.latest_checkpoint(checkpoint_dirs[0]) if not model_path: tf.logging.info('No model found in %s. Will try again in %d seconds', checkpoint_dirs[0], eval_interval_secs) elif model_path == last_evaluated_model_path: tf.logging.info('Found already evaluated checkpoint. Will try again in ' '%d seconds', eval_interval_secs) else: last_evaluated_model_path = model_path global_step, metrics = _run_checkpoint_once( tensor_dict, evaluators, batch_processor, checkpoint_dirs, variables_to_restore, restore_fn, num_batches, master, save_graph, save_graph_dir, losses_dict=losses_dict, eval_export_path=eval_export_path, process_metrics_fn=process_metrics_fn) write_metrics(metrics, global_step, summary_dir) if (max_evaluation_global_step and global_step >= max_evaluation_global_step): tf.logging.info('Finished evaluation!') break number_of_evaluations += 1 if (max_number_of_evaluations and number_of_evaluations >= max_number_of_evaluations): tf.logging.info('Finished evaluation!') break time_to_next_eval = start + eval_interval_secs - time.time() if time_to_next_eval > 0: time.sleep(time_to_next_eval) return metrics def _scale_box_to_absolute(args): boxes, image_shape = args return box_list_ops.to_absolute_coordinates( box_list.BoxList(boxes), image_shape[0], image_shape[1]).get() def _resize_detection_masks(args): detection_boxes, detection_masks, image_shape = args detection_masks_reframed = ops.reframe_box_masks_to_image_masks( detection_masks, detection_boxes, image_shape[0], image_shape[1]) return tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8) def _resize_groundtruth_masks(args): mask, image_shape = args mask = tf.expand_dims(mask, 3) mask = tf.image.resize_images( mask, image_shape, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR, align_corners=True) return tf.cast(tf.squeeze(mask, 3), tf.uint8) def _scale_keypoint_to_absolute(args): keypoints, image_shape = args return keypoint_ops.scale(keypoints, image_shape[0], image_shape[1]) def result_dict_for_single_example(image, key, detections, groundtruth=None, class_agnostic=False, scale_to_absolute=False): """Merges all detection and groundtruth information for a single example. Note that evaluation tools require classes that are 1-indexed, and so this function performs the offset. If `class_agnostic` is True, all output classes have label 1. Args: image: A single 4D uint8 image tensor of shape [1, H, W, C]. key: A single string tensor identifying the image. detections: A dictionary of detections, returned from DetectionModel.postprocess(). groundtruth: (Optional) Dictionary of groundtruth items, with fields: 'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in normalized coordinates. 'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes. 'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional) 'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional) 'groundtruth_difficult': [num_boxes] int64 tensor. (Optional) 'groundtruth_group_of': [num_boxes] int64 tensor. (Optional) 'groundtruth_instance_masks': 3D int64 tensor of instance masks (Optional). class_agnostic: Boolean indicating whether the detections are class-agnostic (i.e. binary). Default False. scale_to_absolute: Boolean indicating whether boxes and keypoints should be scaled to absolute coordinates. Note that for IoU based evaluations, it does not matter whether boxes are expressed in absolute or relative coordinates. Default False. Returns: A dictionary with: 'original_image': A [1, H, W, C] uint8 image tensor. 'key': A string tensor with image identifier. 'detection_boxes': [max_detections, 4] float32 tensor of boxes, in normalized or absolute coordinates, depending on the value of `scale_to_absolute`. 'detection_scores': [max_detections] float32 tensor of scores. 'detection_classes': [max_detections] int64 tensor of 1-indexed classes. 'detection_masks': [max_detections, H, W] float32 tensor of binarized masks, reframed to full image masks. 'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in normalized or absolute coordinates, depending on the value of `scale_to_absolute`. (Optional) 'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes. (Optional) 'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional) 'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional) 'groundtruth_difficult': [num_boxes] int64 tensor. (Optional) 'groundtruth_group_of': [num_boxes] int64 tensor. (Optional) 'groundtruth_instance_masks': 3D int64 tensor of instance masks (Optional). """ if groundtruth: max_gt_boxes = tf.shape( groundtruth[fields.InputDataFields.groundtruth_boxes])[0] for gt_key in groundtruth: # expand groundtruth dict along the batch dimension. groundtruth[gt_key] = tf.expand_dims(groundtruth[gt_key], 0) for detection_key in detections: detections[detection_key] = tf.expand_dims( detections[detection_key][0], axis=0) batched_output_dict = result_dict_for_batched_example( image, tf.expand_dims(key, 0), detections, groundtruth, class_agnostic, scale_to_absolute, max_gt_boxes=max_gt_boxes) exclude_keys = [ fields.InputDataFields.original_image, fields.DetectionResultFields.num_detections, fields.InputDataFields.num_groundtruth_boxes ] output_dict = { fields.InputDataFields.original_image: batched_output_dict[fields.InputDataFields.original_image] } for key in batched_output_dict: # remove the batch dimension. if key not in exclude_keys: output_dict[key] = tf.squeeze(batched_output_dict[key], 0) return output_dict def result_dict_for_batched_example(images, keys, detections, groundtruth=None, class_agnostic=False, scale_to_absolute=False, original_image_spatial_shapes=None, true_image_shapes=None, max_gt_boxes=None): """Merges all detection and groundtruth information for a single example. Note that evaluation tools require classes that are 1-indexed, and so this function performs the offset. If `class_agnostic` is True, all output classes have label 1. Args: images: A single 4D uint8 image tensor of shape [batch_size, H, W, C]. keys: A [batch_size] string tensor with image identifier. detections: A dictionary of detections, returned from DetectionModel.postprocess(). groundtruth: (Optional) Dictionary of groundtruth items, with fields: 'groundtruth_boxes': [batch_size, max_number_of_boxes, 4] float32 tensor of boxes, in normalized coordinates. 'groundtruth_classes': [batch_size, max_number_of_boxes] int64 tensor of 1-indexed classes. 'groundtruth_area': [batch_size, max_number_of_boxes] float32 tensor of bbox area. (Optional) 'groundtruth_is_crowd':[batch_size, max_number_of_boxes] int64 tensor. (Optional) 'groundtruth_difficult': [batch_size, max_number_of_boxes] int64 tensor. (Optional) 'groundtruth_group_of': [batch_size, max_number_of_boxes] int64 tensor. (Optional) 'groundtruth_instance_masks': 4D int64 tensor of instance masks (Optional). class_agnostic: Boolean indicating whether the detections are class-agnostic (i.e. binary). Default False. scale_to_absolute: Boolean indicating whether boxes and keypoints should be scaled to absolute coordinates. Note that for IoU based evaluations, it does not matter whether boxes are expressed in absolute or relative coordinates. Default False. original_image_spatial_shapes: A 2D int32 tensor of shape [batch_size, 2] used to resize the image. When set to None, the image size is retained. true_image_shapes: A 2D int32 tensor of shape [batch_size, 3] containing the size of the unpadded original_image. max_gt_boxes: [batch_size] tensor representing the maximum number of groundtruth boxes to pad. Returns: A dictionary with: 'original_image': A [batch_size, H, W, C] uint8 image tensor. 'original_image_spatial_shape': A [batch_size, 2] tensor containing the original image sizes. 'true_image_shape': A [batch_size, 3] tensor containing the size of the unpadded original_image. 'key': A [batch_size] string tensor with image identifier. 'detection_boxes': [batch_size, max_detections, 4] float32 tensor of boxes, in normalized or absolute coordinates, depending on the value of `scale_to_absolute`. 'detection_scores': [batch_size, max_detections] float32 tensor of scores. 'detection_classes': [batch_size, max_detections] int64 tensor of 1-indexed classes. 'detection_masks': [batch_size, max_detections, H, W] float32 tensor of binarized masks, reframed to full image masks. 'num_detections': [batch_size] int64 tensor containing number of valid detections. 'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes, in normalized or absolute coordinates, depending on the value of `scale_to_absolute`. (Optional) 'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed classes. (Optional) 'groundtruth_area': [batch_size, num_boxes] float32 tensor of bbox area. (Optional) 'groundtruth_is_crowd': [batch_size, num_boxes] int64 tensor. (Optional) 'groundtruth_difficult': [batch_size, num_boxes] int64 tensor. (Optional) 'groundtruth_group_of': [batch_size, num_boxes] int64 tensor. (Optional) 'groundtruth_instance_masks': 4D int64 tensor of instance masks (Optional). 'num_groundtruth_boxes': [batch_size] tensor containing the maximum number of groundtruth boxes per image. Raises: ValueError: if original_image_spatial_shape is not 2D int32 tensor of shape [2]. ValueError: if true_image_shapes is not 2D int32 tensor of shape [3]. """ label_id_offset = 1 # Applying label id offset (b/63711816) input_data_fields = fields.InputDataFields if original_image_spatial_shapes is None: original_image_spatial_shapes = tf.tile( tf.expand_dims(tf.shape(images)[1:3], axis=0), multiples=[tf.shape(images)[0], 1]) else: if (len(original_image_spatial_shapes.shape) != 2 and original_image_spatial_shapes.shape[1] != 2): raise ValueError( '`original_image_spatial_shape` should be a 2D tensor of shape ' '[batch_size, 2].') if true_image_shapes is None: true_image_shapes = tf.tile( tf.expand_dims(tf.shape(images)[1:4], axis=0), multiples=[tf.shape(images)[0], 1]) else: if (len(true_image_shapes.shape) != 2 and true_image_shapes.shape[1] != 3): raise ValueError('`true_image_shapes` should be a 2D tensor of ' 'shape [batch_size, 3].') output_dict = { input_data_fields.original_image: images, input_data_fields.key: keys, input_data_fields.original_image_spatial_shape: ( original_image_spatial_shapes), input_data_fields.true_image_shape: true_image_shapes } detection_fields = fields.DetectionResultFields detection_boxes = detections[detection_fields.detection_boxes] detection_scores = detections[detection_fields.detection_scores] num_detections = tf.cast(detections[detection_fields.num_detections], dtype=tf.int32) if class_agnostic: detection_classes = tf.ones_like(detection_scores, dtype=tf.int64) else: detection_classes = ( tf.to_int64(detections[detection_fields.detection_classes]) + label_id_offset) if scale_to_absolute: output_dict[detection_fields.detection_boxes] = ( shape_utils.static_or_dynamic_map_fn( _scale_box_to_absolute, elems=[detection_boxes, original_image_spatial_shapes], dtype=tf.float32)) else: output_dict[detection_fields.detection_boxes] = detection_boxes output_dict[detection_fields.detection_classes] = detection_classes output_dict[detection_fields.detection_scores] = detection_scores output_dict[detection_fields.num_detections] = num_detections if detection_fields.detection_masks in detections: detection_masks = detections[detection_fields.detection_masks] # TODO(rathodv): This should be done in model's postprocess # function ideally. output_dict[detection_fields.detection_masks] = ( shape_utils.static_or_dynamic_map_fn( _resize_detection_masks, elems=[detection_boxes, detection_masks, original_image_spatial_shapes], dtype=tf.uint8)) if detection_fields.detection_keypoints in detections: detection_keypoints = detections[detection_fields.detection_keypoints] output_dict[detection_fields.detection_keypoints] = detection_keypoints if scale_to_absolute: output_dict[detection_fields.detection_keypoints] = ( shape_utils.static_or_dynamic_map_fn( _scale_keypoint_to_absolute, elems=[detection_keypoints, original_image_spatial_shapes], dtype=tf.float32)) if groundtruth: if max_gt_boxes is None: if input_data_fields.num_groundtruth_boxes in groundtruth: max_gt_boxes = groundtruth[input_data_fields.num_groundtruth_boxes] else: raise ValueError( 'max_gt_boxes must be provided when processing batched examples.') if input_data_fields.groundtruth_instance_masks in groundtruth: masks = groundtruth[input_data_fields.groundtruth_instance_masks] groundtruth[input_data_fields.groundtruth_instance_masks] = ( shape_utils.static_or_dynamic_map_fn( _resize_groundtruth_masks, elems=[masks, original_image_spatial_shapes], dtype=tf.uint8)) output_dict.update(groundtruth) image_shape = tf.cast(tf.shape(images), tf.float32) image_height, image_width = image_shape[1], image_shape[2] def _scale_box_to_normalized_true_image(args): """Scale the box coordinates to be relative to the true image shape.""" boxes, true_image_shape = args true_image_shape = tf.cast(true_image_shape, tf.float32) true_height, true_width = true_image_shape[0], true_image_shape[1] normalized_window = tf.stack([0.0, 0.0, true_height / image_height, true_width / image_width]) return box_list_ops.change_coordinate_frame( box_list.BoxList(boxes), normalized_window).get() groundtruth_boxes = groundtruth[input_data_fields.groundtruth_boxes] groundtruth_boxes = shape_utils.static_or_dynamic_map_fn( _scale_box_to_normalized_true_image, elems=[groundtruth_boxes, true_image_shapes], dtype=tf.float32) output_dict[input_data_fields.groundtruth_boxes] = groundtruth_boxes if scale_to_absolute: groundtruth_boxes = output_dict[input_data_fields.groundtruth_boxes] output_dict[input_data_fields.groundtruth_boxes] = ( shape_utils.static_or_dynamic_map_fn( _scale_box_to_absolute, elems=[groundtruth_boxes, original_image_spatial_shapes], dtype=tf.float32)) # For class-agnostic models, groundtruth classes all become 1. if class_agnostic: groundtruth_classes = groundtruth[input_data_fields.groundtruth_classes] groundtruth_classes = tf.ones_like(groundtruth_classes, dtype=tf.int64) output_dict[input_data_fields.groundtruth_classes] = groundtruth_classes output_dict[input_data_fields.num_groundtruth_boxes] = max_gt_boxes return output_dict def get_evaluators(eval_config, categories, evaluator_options=None): """Returns the evaluator class according to eval_config, valid for categories. Args: eval_config: An `eval_pb2.EvalConfig`. categories: A list of dicts, each of which has the following keys - 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog'. evaluator_options: A dictionary of metric names (see EVAL_METRICS_CLASS_DICT) to `DetectionEvaluator` initialization keyword arguments. For example: evalator_options = { 'coco_detection_metrics': {'include_metrics_per_category': True} } Returns: An list of instances of DetectionEvaluator. Raises: ValueError: if metric is not in the metric class dictionary. """ evaluator_options = evaluator_options or {} eval_metric_fn_keys = eval_config.metrics_set if not eval_metric_fn_keys: eval_metric_fn_keys = [EVAL_DEFAULT_METRIC] evaluators_list = [] for eval_metric_fn_key in eval_metric_fn_keys: if eval_metric_fn_key not in EVAL_METRICS_CLASS_DICT: raise ValueError('Metric not found: {}'.format(eval_metric_fn_key)) kwargs_dict = (evaluator_options[eval_metric_fn_key] if eval_metric_fn_key in evaluator_options else {}) evaluators_list.append(EVAL_METRICS_CLASS_DICT[eval_metric_fn_key]( categories, **kwargs_dict)) return evaluators_list def get_eval_metric_ops_for_evaluators(eval_config, categories, eval_dict): """Returns eval metrics ops to use with `tf.estimator.EstimatorSpec`. Args: eval_config: An `eval_pb2.EvalConfig`. categories: A list of dicts, each of which has the following keys - 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog'. eval_dict: An evaluation dictionary, returned from result_dict_for_single_example(). Returns: A dictionary of metric names to tuple of value_op and update_op that can be used as eval metric ops in tf.EstimatorSpec. """ eval_metric_ops = {} evaluator_options = evaluator_options_from_eval_config(eval_config) evaluators_list = get_evaluators(eval_config, categories, evaluator_options) for evaluator in evaluators_list: eval_metric_ops.update(evaluator.get_estimator_eval_metric_ops( eval_dict)) return eval_metric_ops def evaluator_options_from_eval_config(eval_config): """Produces a dictionary of evaluation options for each eval metric. Args: eval_config: An `eval_pb2.EvalConfig`. Returns: evaluator_options: A dictionary of metric names (see EVAL_METRICS_CLASS_DICT) to `DetectionEvaluator` initialization keyword arguments. For example: evalator_options = { 'coco_detection_metrics': {'include_metrics_per_category': True} } """ eval_metric_fn_keys = eval_config.metrics_set evaluator_options = {} for eval_metric_fn_key in eval_metric_fn_keys: if eval_metric_fn_key in ('coco_detection_metrics', 'coco_mask_metrics'): evaluator_options[eval_metric_fn_key] = { 'include_metrics_per_category': ( eval_config.include_metrics_per_category) } elif eval_metric_fn_key == 'precision_at_recall_detection_metrics': evaluator_options[eval_metric_fn_key] = { 'recall_lower_bound': (eval_config.recall_lower_bound), 'recall_upper_bound': (eval_config.recall_upper_bound) } return evaluator_options
[ "54901117+wykek@users.noreply.github.com" ]
54901117+wykek@users.noreply.github.com
78894df958990f55a0db33727dca30b40db76d1d
3eab5f92b07fe3a7ca0c082cd65a7a31cc00f831
/utilities/welcome.py
e752282f2cd8783707e39b8f5dbb3b52e869b011
[]
no_license
rodriguez-facundo/nwb-explorer
5cc287adf8f1b4509009ce1dec4feff9aaf723a5
3d04605ed30cebd4ff9db4e61dc2fc2cb269aeab
refs/heads/test-branch-001
2020-06-17T08:31:57.555113
2019-07-09T00:32:20
2019-07-09T00:32:20
195,862,486
0
0
null
2020-10-14T12:03:37
2019-07-08T18:04:38
Python
UTF-8
Python
false
false
1,806
py
donkey =f'''\033[0m {'_'*(58)} ( ) ( \U0001F604 Welcome to \033[36;3mNWB-Explorer\033[0m development installation ) ( ) ( \U0001F463 We will execute the following steps: ) ( ) ( \U0001F40D Install Python requirements. ) ( ) ( \U0001F63C Clone some GitHub repositories ) ( ) ( \U0001F9D9 Setup a custom Geppetto Application: ) ( ) ( \U0001F41E Install frontend NPM packages. ) ( ) ( \U0001F9F1 Build frontend bundle. ) ( ) ( \U0001F316 Enable Jupyter extensions. ) ( ) ( \U0001F52C Test NWB-Explorer. ) ( ) ( \U0001F433 Wrap-up and tag the Docker image. ) ( ) ( \U0000231B The whole process takes between 3 to 5 minutes. ) ( ) ( \U0001F3C4 Thank you for using NWB-Explorer! ) ({"_"*59}) o o ^__^ o (oo)\_________ (__)\ )\\/\\ ||------W | || || '''
[ "bruseghini.f@gmail.com" ]
bruseghini.f@gmail.com
35d500ef398e45b60227585fdebc4d98ad493da8
7b1ae566c39aac0626c8c414a153895728c6d02a
/tester new.py
0d49cccfb4fdf61a53368419e9dbdf6645ebf415
[]
no_license
seansliu/Twitter_Filter
a3f70f10a11c6b8b935b44593152d9528e38694f
ceca0d4252e35c18dfbbca74f4cc53156cca6fc0
refs/heads/master
2016-09-10T19:23:30.762719
2013-12-15T16:23:22
2013-12-15T16:23:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,163
py
import tweeter as t def main(): # Phase 1 functions. print 'Making tweets...' tweets = t.make_tweets('some_tweets.txt') tweets = tweets[0:100] print ' Tweets made. \nAdding state and ZIP...' t.add_geo(tweets) print ' State and ZIP added. \nAdding sentiments...' # Phase 2 functions. t.add_sentiments(tweets) print ' Sentiments added. \nWriting to new file...' t.write_newtweets(tweets, 'newtweets.txt') print ' File created. \n' print 'Filtering tweets. If filter unwanted, do not enter anything.' word = raw_input('Word filter: ') state = raw_input('State filter: ') zip = raw_input('ZIP filter: ') ftweets = t.tweet_filter(tweets, word = word, state = state, zip = zip) print 'Average sentiment of filtered tweets: ', t.avg_sentiment(ftweets) print '' # Extra credit below. word = raw_input('Most positive state filter word: ') print t.most_positive(tweets, word = word), '\n' word = raw_input('Most negative state filter word: ') print t.most_negative(tweets, word = word), '\n' print 'Testing complete.' main()
[ "seanliu216@gmail.com" ]
seanliu216@gmail.com
ba432695aa9d5c0e423720d792084fef3f477aac
c956401119e44e41f3873b4734c857eda957e2cd
/programs/templates/ma2/ma2.py
caee4b1f0edb70879bcd4be3fbabca3b25a59657
[]
no_license
zhekunz2/c4pp
6f689bce42215507d749b8b2be96c7f68ed8c49c
9f8054addb48d9440662d8c8f494359846423ffd
refs/heads/master
2020-09-24T06:17:29.866975
2019-12-03T17:41:25
2019-12-03T17:41:25
225,678,894
0
0
null
null
null
null
UTF-8
Python
false
false
19,915
py
import pyro, numpy as np, torch, pyro.distributions as dist, torch.nn as nn from pyro.optim import Adam import torch.distributions.constraints as constraints from pyro.infer import SVI if pyro.__version__ > '0.1.2': from pyro.infer import Trace_ELBO from pyro.contrib.autoguide import * import math def amb(x): return x.data.numpy().tolist() if isinstance(x, torch.Tensor) else x y= np.array([-1.28817828364, -0.89881365019, -1.50208718224, -0.53595539928, -0.67026167768, -0.835147405489, -0.656487360935, -1.64548643704, -0.114178263542, 0.156199482775, -0.124825179024, -0.49876451538, -0.4305749626, -0.728660555711, -0.433830846505, -2.13599811869, -1.85111280561, -1.08534800456, -1.56583461781, -1.66157341094, -2.59491987718, -0.805394755877, 0.43300875633, 1.27121596528, 0.0907573885568, -0.0406016925726, -1.60742934034, -2.43167179315, -1.65607518837, -0.824574055502, -1.30924277076, -1.43639799405, -2.26351673294, -1.69564187881, -1.39174067788, -0.489415522765, -0.119955400397, -0.710421943851, -3.15421837823, -2.22579409979, -1.71698730599, -2.58672035774, -1.95493881519, -0.900292934526, -0.128031056099, -0.0171343834403, -0.166018444639, -1.77431583497, -1.55935361193, -1.70925857447, -1.69305241292, -1.86069481994, -1.79249551908, -3.33651821096, -1.52094732495, -1.39086075024, 0.92314181119, -0.321359347491, -1.09559664272, -1.58497800893, -2.25886166527, -1.2290595633, -2.33362119818, -1.47194761375, -1.53759697603, -0.761777759618, -2.56142619304, -1.76090723359, 0.453782665069, 0.241805656945, -1.29707753606, -2.84638262607, -1.54169792533, -0.0538004852358, -0.544579283221, -1.4867085929, -1.4136817588, -1.0459515402, -0.448806727723, -0.398754129286, -0.797914494747, -0.932848087835, -1.64980338912, -1.12943338341, -2.37702591135, -3.16309526276, -1.90716345595, -0.992280587119, -0.651929425349, -0.906343126553, -0.311177158806, -0.651598236481, -0.93400696165, -1.78956543969, -1.57263239818, -0.389161381095, -1.28936689219, -1.06778572038, -1.40788906151, -1.1672517898, -2.69199192684, -2.41110419262, -3.22592010144, -2.16176652204, -1.94575111914, -2.36895195456, -1.6958388518, -2.39567613449, -2.33641302208, -2.58871617972, -1.26741878052, -1.40378916529, -0.673134049956, -1.36643293924, -1.25882179652, -1.32335468481, -2.47359424233, -1.06789246555, -0.0067803102322, -0.974168570546, -1.80354201192, -1.39032582725, 0.692057867602, 1.15660036291, 0.867635305076, -0.177578433807, -1.89955423067, -1.67579908991, -2.0937718522, -2.46548527862, -2.87628407821, -1.43645281878, -1.17513833731, -1.32782608875, -1.25687733585, -1.89226163339, -1.65078961752, -0.524502872992, -1.46371003895, -0.924427299351, -1.92758842003, -1.54364762602, -0.614534519322, -0.98251840227, 0.0542681165961, -1.11119214541, -1.06229654857, -0.614827553561, -0.713586466959, -0.73635027274, -1.75161658337, -1.03282522594, -1.21189237002, 0.0967693290224, 0.314023737324, 0.744891835557, -0.497985176747, -1.13912864292, -1.80358092595, -2.07052872981, -2.60625787903, -0.496613488914, -1.18244533012, -0.271533505929, -0.957096988747, -1.56511055989, -1.67149026644, -2.11285656834, -2.38901120054, -2.15372797834, -2.08725148282, -1.6845037273, -1.14596756901, -1.9934362037, -2.25722324988, -2.06626025294, -1.67047663698, -1.58753729901, -1.57775336918, -1.63882576381, -1.0383302488, -1.26396898732, -1.18196603952, -1.96070091666, -1.39970643996, 0.185384923343, 0.385010248637, -1.38083956552, -2.84493182625, -3.07169515732, -2.83486459413, -1.44819756536, -1.41775782062, -1.28210902012, -1.38876395567, -0.955123225697, 0.33895884407, 1.22046956648, -0.457501490715, -2.02427765906, -2.13621312586, -1.4070858944, -1.7992834282, -0.619022214569, -0.26352512754, -1.05973523375, -2.39056175402, -2.69434442286, -2.53776516232, -2.40341537091, -2.31305508468, -3.16378893106, -0.821310820135, 0.00693804176907, 0.238142407697, 0.195206506739, -0.561516468345, -1.79347587136, -0.417926001645, 0.459393068737, -0.258671471445, -1.37548138955, -2.54424952736, -2.24026246421, -2.78494823819, -1.82744538, -0.700413733102, -0.365332219389, -0.871156420364, -1.62312131811, -2.96509233778, -0.624404155507, -1.15076305795, -1.52251749114, -1.57870866347, -0.203202369295, -0.37493353849, 0.684072860564, 0.246609335439, -1.3345754953, -2.58956548475, -2.39223598495, -0.137936548144, 0.326089035369, 0.672703834, -1.01499404409, -2.36340341768, -2.55628335352, -1.28848116814, -1.65591954691, -1.23007279655, -1.08665078753, -1.46340325053, -1.4122988983, -1.0870266606, -1.01888701201, -1.33686230419, -1.80608653408, -2.72630670304, -2.37105682541, -1.32331104154, -1.80190624761, -2.15885772805, -0.793379112147, -1.05504769304, -1.28289420141, -0.839346210783, 0.0744103415615, -1.98734309688, -2.6569129188, -2.2386191751, -0.122329167174, 0.257983212579, -0.0917714070871, -0.63411610728, -2.62765906873, -2.17393596451, -2.55680364352, -0.437345005181, -0.297253582634, -1.13099116691, -1.10278395825, -1.65727357699, -1.17952743027, -1.58339519785, -1.58772996341, -1.62169862157, -1.40128685868, -1.60861350904, -1.0715477106, -2.79240726175, -2.01361120823, -2.19782653978, -1.45605516802, -1.02543928287, -1.37586123849, -1.16585011452, -1.01112744427, -0.124955261214, -0.741950130348, -0.406577969246, -1.42516401472, -1.80017108988, -0.528817527429, -0.0652627326947, -1.22486232445, -1.28012611832, -0.128951914581, -1.10054945646, -0.823297403364, -0.696786840412, -0.750347329395, -0.0151395361469, -0.100756916032, 0.402211624283, -1.46300556306, -1.53139389029, 0.128578415651, -1.31936359937, -0.502049351644, -0.379686054916, -1.08000935851, -1.47947123629, -2.91020918248, -1.95411632514, -0.799881278621, -0.207824485985, -0.684745888, -1.27098307018, -0.775560605957, -0.124789680101, 1.21886528096, 0.146928722799, -0.429434087789, -0.30801747701, 0.283329278984, -1.29880052415, -2.69669024132, -0.794801967046, -0.455489923065, -0.623749691476, 0.256373096743, -0.812144151093, -0.419790648897, -0.610628380319, -0.975656800725, -1.43945593204, -3.46713841146, -2.84327950019, -1.20319847727, -0.808682327575, -1.50842602792, -0.870848957067, -1.68724758181, -0.946248823711, -1.19464876461, -1.50047423405, -1.80899583185, -1.09666134063, -0.076451926968, -1.43375225906, -1.43112558998, -0.913936235936, -1.70954954074, -1.87482858818, -2.93515579919, -1.62000952425, -1.23852433684, -1.03514868547, -1.29851401096, -2.00985392933, -2.52847347233, -2.26228043026, -2.01667844017, -1.45664704538, -0.622258364283, -0.416109933379, -0.574205151249, -1.19439143722, -0.366367616172, -0.194520582137, 0.029627232661, -0.824146933657, -0.800332585759, -0.303342851003, -1.26941155483, -2.54050790903, -1.94114345627, -2.78766113545, -1.88674220614, -0.602204012034, -0.519633699669, -0.539703818077, -1.30916796065, -2.03898802372, -2.06896824014, -2.66117157499, -2.92175590401, -2.79409530976, -2.62572901375, -1.91416415658, -2.35001912648, -1.41438729769, -0.179139713514, -2.89379005154, -3.71251159448, -3.6111087692, -0.846343489268, -1.20588701694, -0.792402634636, -1.85966761315, -1.70904545043, -1.51171881561, -0.894128827824, -0.735009004484, -2.27514971687, -1.67986361464, -1.70837839372, -0.205759894069, -1.47637346987, -2.58109043424, -1.59475207267, -0.92053407106, -0.732807533246, -2.53269210708, -1.2110423345, -2.01549277894, -0.190212569334, -1.76946767565, 0.0146261767786, 0.00207824046943, -0.483866736662, -1.5570144038, -1.125697451, -1.99698575745, -1.79061888676, -1.39704321108, -1.54523824144, -0.54172843683, -0.727962218408, -1.52288105108, -2.31002217985, -3.36598071902, -1.86867725373, -1.79179493406, -1.75825765931, -2.02830210926, -2.21411386579, -2.07412156429, -1.65064047949, -1.36842009445, -0.849602004792, -0.825839578236, -1.0827243956, -1.93768059967, -1.38545885469, -2.39718990862, -2.29868869908, -0.753955071445, -1.52476749372, -0.993069735822, -1.00492005773, 0.00982874412454, -0.549297121687, -0.0962851062745, -1.40859942241, -2.14044230832, -1.07908958941, -1.28251982898, -1.19385261979, -2.84335277281, -2.14477668165, -1.40141304798, -1.06165727149, -2.56302753001, -4.05396608067, -2.57166008422, -2.01663979579, -0.144043891831, -1.27960695629, -1.32383189416, -1.64693553758, 0.18456900798, 0.496748385668, 0.452029025942, -1.91613624292, -1.63964438573, -1.81701602466, -1.06887247846, -0.847786067257, -0.837915690589, -0.945800119729, -1.34474066349, -2.05726917156, -1.66461458816, -0.576082033857, -2.4375456523, -2.52473777362, -1.96872391511, -1.09670095919, 0.315303997766, -0.214308904421, -0.969386733671, -0.626066792499, -2.41616480356, -1.47865144997, -1.3861885354, -0.815297665615, -1.99466111373, -1.4606246154, -2.19035813483, -3.24644292523, -2.93800660564, -2.26134902188, -2.98293772492, -1.58543090903, -1.8201497994, -2.27269460793, -1.16902516942, -0.892832559014, 0.447190014875, -0.266327520935, -2.20657814537, -2.38489501953, -2.77925678326, -3.20504466862, -1.61152356374, -1.17435813239, -1.12295842262, -2.516868514, -2.20157067513, -2.62294527227, -1.09695178606, -1.66406912364, -1.43161117267, -1.30724519595, -0.0827584872046, 0.720177165707, -1.61352766506, -1.10504731517, -0.402874236399, -0.372448204965, -0.697055036508, -1.11267799773, -1.08546367349, -0.942690390338, -0.432714724536, -1.42487518691, -1.63494207331, -0.671591410162, -0.693324706943, -0.866106707545, -1.32719600045, -2.28349889258, -2.09301825478, -0.561560977288, 0.555589089534, -0.69287130853, -0.931341647802, -0.867795407003, -0.70052170936, -0.459610725751, -0.528974736173, -0.156145084931, -1.50818792226, -2.9093057965, -2.32144730859, -2.63852406371, -2.66291301349, -1.8402626495, -1.56398665409, -0.387286539039, 0.526214694047, 0.28767578768, 0.699764921572, 0.333360945508, -1.0232802596, -2.40321999699, -1.05335978437, -0.889353786125, -1.80252429141, -2.49676952341, -0.776453884663, -0.148182607935, -1.55815418515, -1.49293373416, -1.68973627306, -0.865343203713, -1.89721215668, -1.3521765439, -1.15998018295, -0.979938337546, -1.42091698738, -0.645905833567, -0.515920918537, -1.44774396751, -0.810728687557, -0.0695483300609, -0.14928894577, -1.75720693074, -1.71791866332, -0.305335690969, 0.0631083224194, -0.121819731307, -0.62884744608, 0.101247783918, 0.161171297024, 0.183115750795, -2.4197979235, -2.94548298226, -2.34511337146, -1.13239209139, -0.746328343429, -0.0093829082104, -0.683867570062, -0.618098821889, -0.6233494396, -1.92097497511, -2.32016414836, -1.79139079583, -1.75464178414, -1.54718660013, -0.263858761795, -0.656569923354, -2.65631385162, -2.61458786174, -2.1057035288, -1.63041975039, -0.614911317595, -1.42167749482, -2.01311680592, -0.430263416279, 0.152372381471, -0.599377745282, -0.480170362573, -1.77763451432, -0.792563419732, -1.40957115244, -2.08859815905, -0.95856324177, -0.858334307966, -1.03885007804, -0.880069946346, -0.949815435201, -1.7145479582, -1.85033392923, -1.93619419086, -1.31729780691, -1.62076274039, 0.353842145448, 0.0935713579185, -0.525105033009, -1.07201668718, -2.11777949931, -2.31208027056, -2.63556287615, -2.1410362571, -0.889745634153, -1.00338198293, -0.905124214637, -1.90892854498, -0.679516151219, -0.0697464025947, 0.282115948148, -0.583632010053, -1.54688420164, -1.73858869483, -1.72954831265, -0.739848041102, -0.734084758427, -1.75334264831, -0.62368659661, -0.937470561718, -2.50077879944, -2.83438240112, -0.842679813472, -1.46639708608, -2.89602896898, -4.46721998179, -2.20375226758, -1.38858423414, -0.282431630336, -0.693707851525, -0.809119080883, -1.64436697412, -1.15239763516, -0.856810488132, -1.97511447109, -0.859963935154, -1.19703039997, -1.18907058669, -1.78013649931, -0.891060763371, -2.1425012242, -1.60136258739, -0.605867970456, -1.12931539841, -1.78175315189, -2.33958290898, -1.7271570232, -1.32264515126, -1.11753851901, -0.483841363052, 0.497244600547, -0.4289476144, -1.48049883537, -1.83403610786, -1.49097886074, -1.59612592534, -2.02080965045, -2.15236243595, -1.80104532285, -2.58146158535, -3.72198545557, -1.50130905766, -0.550126528747, 0.104920372141, -0.591974740737, -1.1874108699, -1.77138925197, -1.62150814293, -2.54740975978, -1.61384319624, -2.30447210457, -2.77607494858, -2.13275065999, -2.13465322616, -2.41613000943, -1.85384778241, -2.05245133085, -0.679274954559, -0.409218910197, 0.310272725645, -0.864658400615, 0.0605528009482, 0.20907084323, -1.4842824164, -0.467160922172, -0.847737546376, -0.889576174999, -1.05974405444, -1.46362888194, -1.08084540906, -1.8493333792, -1.01159429796, -0.683163541095, -0.495735902933, 0.335757916562, 0.308262683989, -0.452294283194, -1.03556574241, -0.999622500662, -1.23253798753, -0.545482333186, -1.42710220689, -2.27689311581, -1.70962089169, -0.69863137867, -1.43229407623, -1.41699049745, -1.31473437788, -0.436345732383, -0.556300278179, -1.11778728484, -1.58162699728, -2.01176803947, -1.32848031244, -0.343991624499, -2.22041537606, -2.74032622864, -2.22338939268, -1.4449883213, -0.337366255237, -0.814176028625, -0.630071650406, -1.14787243637, -0.128339439908, 0.827470342227, 0.37434613998, -2.41074138827, -2.10945970354, -1.30295295397, -0.866505220681, -1.16862969519, 0.135103939943, -0.0864227792678, -2.58283402065, -2.24756432931, -1.94366841263, -0.78296854649, -1.16173229828, -2.17299604909, -2.52108237117, -1.4264984798, -1.14379897021, 0.11866901983, -0.982926428419, -1.78311324247, -2.95214487065, -2.26284400662, -1.89348026099, -2.16114567944, -2.77751409618, -2.04530842361, -1.4165274172, -2.44085334543, -2.32157370223, -1.57211012046, -0.411537686242, -0.46244862687, -0.239228921094, 0.0584624012253, -1.00829161739, -0.821072747075, -0.393958377759, -0.503934384051, -1.36563053553, -2.10843378434, -0.682877666111, -1.37416250727, -2.03763372552, -2.05584729394, -2.75614471996, -2.72259317961, -2.1802912808, -3.01583739202, -3.32141290734, -1.8796369986, -0.995645334692, -0.662415439756, -0.926211356448, -1.470926628, -1.55631217981, -1.63750035791, -0.749625981013, -0.407268585023, -0.0206507381091, -0.784652888395, -0.964717008335, -3.05220648876, -2.95320149648, -0.873574849226, -2.047385356, -2.10158098041, -0.868480133617, -0.95140461349, 0.119620547893, -1.11973483903, -1.47984798232, -1.52333851493, -2.83605106214, -3.65690457846, -1.85764082307, -1.02779872428, -0.143223209722, -0.840547100655, -0.941414478832, -0.827634628781, -0.0117038168844, -1.29509971248, -0.698217121759, -0.215377799592, -2.05994136857, -2.76905877503, -0.590362378603, 1.2022265016, 0.37564081281, 0.625298124356, 1.02636341876, 1.01344406009, 0.112217147862, -0.480941398175, -0.668441616013, -1.34520183382, 0.0704388675702, -1.0787991139, 0.132802044339, 0.346596549171, 0.0178003917763, -0.99527089911, -1.83877027832, -1.49695148408, -2.4970869299, -2.72972187752, -2.6107715155, -2.56686675937, -1.85254550578, -1.76164513187, -0.923704665961, -0.990352891402, 0.188223328345, -1.64642838688, -2.09937924157, -1.75625984329, -1.50572996551, -1.51600315435, -1.12741576265, -0.715537495046, -2.01685019508, -2.42838540175, -0.991892833282, -1.12669942366, -0.370146527404, -1.61780637986, -1.00003509245, -0.378869967177, -1.35999613223, -2.19616360253, -0.510101904702, -0.74686161991, -0.806731024822, -0.523884534559, -0.431062920139, 0.0251041431125, -1.0031317561, -1.64956332691, -1.18767109118, -1.6555239111, -3.57516097627, -3.32110170139, -1.7528759845, -1.01273934349, -0.503387252073, -1.52715401199, -1.8552567692, -0.573089432577, -0.46198070483, -0.241442729855, -0.758738213928, -1.13376385399, -1.8541567977, -2.3827654496, -2.38284410701, -2.30532093064, -1.64397174719, -1.07922478624, 0.760926136688, -0.087614867278, -0.772643508543, -1.50843279058, -0.774090501416, -0.238840062214, -0.335678668261, -0.580574728976, -1.62353515368, -1.6972824555, -2.08630757807, -0.223385819112, -1.06841805774, -1.46253902461, -1.67568799451, -1.24394276736, -1.76776355295, -0.532529796952, -0.916519126128, -0.963651339225, -1.40771012456, -2.61049452077, -3.17887048353, -1.61119147437, -1.91838181074, -0.840476633234, -0.364698948293, -1.700915498, -1.57784401329, -0.401078430311, 0.330759045292, -1.33884984061, -0.244174850975, -0.387969386247, -1.5034518314, -2.01985409533, -1.30224545427, -2.0964539077, -2.59679131442, -0.470968546562, -0.265134179108, -1.81147934139, -1.66337012622, -1.4440349286, -0.952057797231, -1.04982847231, -0.770670360467, -1.2235665756, -1.26090091359, 0.319753918352, -0.732204423568, -1.38258556572, -3.04303202913, -3.2369140087, -1.61035050772, -1.92483870062, -3.02067819881, -2.29423998712, -1.62013289507, -2.3861463406, -2.53707545745, -2.48428177672, -0.888591054707, -1.96425746269], dtype=np.float32).reshape(1000,1) y=torch.tensor(y) T=1000 T=torch.tensor(T) def model(y,T): mu = pyro.sample('mu'.format(''), dist.Cauchy(torch.tensor(0.0)*torch.ones([amb(1)]),torch.tensor(2.5)*torch.ones([amb(1)]))) with pyro.iarange('theta_range_'.format('')): theta = pyro.sample('theta'.format(''), dist.Cauchy(torch.tensor(0.0)*torch.ones([amb(2)]),torch.tensor(2.5)*torch.ones([amb(2)]))) epsilon = torch.zeros([amb(T)]) epsilon[1-1]=y[1-1]-mu epsilon[2-1]=y[2-1]-mu-theta[1-1]*epsilon[1-1] for t in range(3, T+1): epsilon[t-1]=(y[t-1]-mu-theta[1-1]*epsilon[t-1-1]-theta[2-1]*epsilon[t-2-1]) sigma = pyro.sample('sigma'.format(''), dist.Cauchy(torch.tensor(0.0)*torch.ones([amb(1)]),torch.tensor(2.5)*torch.ones([amb(1)]))) for t in range(3, T+1): pyro.sample('obs_{0}_100'.format(t), dist.Normal(mu+theta[0-1]*epsilon[t-1-1]+theta[1-1]*epsilon[t-2-1],sigma), obs=y[t-1]) def guide(y,T): arg_1 = pyro.param('arg_1', torch.ones((amb(1))), constraint=constraints.positive) arg_2 = pyro.param('arg_2', torch.ones((amb(1)))) arg_3 = pyro.param('arg_3', torch.ones((amb(1))), constraint=constraints.positive) mu = pyro.sample('mu'.format(''), dist.StudentT(df=arg_1,loc=arg_2,scale=arg_3)) arg_4 = pyro.param('arg_4', torch.ones((amb(2))), constraint=constraints.positive) arg_5 = pyro.param('arg_5', torch.ones((amb(2))), constraint=constraints.positive) with pyro.iarange('theta_prange'): theta = pyro.sample('theta'.format(''), dist.Beta(arg_4,arg_5)) for t in range(3, T+1): pass arg_6 = pyro.param('arg_6', torch.ones((amb(1))), constraint=constraints.positive) arg_7 = pyro.param('arg_7', torch.ones((amb(1))), constraint=constraints.positive) sigma = pyro.sample('sigma'.format(''), dist.Gamma(arg_6,arg_7)) for t in range(3, T+1): pass pass return { "mu": mu,"theta": theta,"sigma": sigma, } optim = Adam({'lr': 0.05}) svi = SVI(model, guide, optim, loss=Trace_ELBO() if pyro.__version__ > '0.1.2' else 'ELBO') for i in range(4000): loss = svi.step(y,T) if ((i % 1000) == 0): print(loss) for name in pyro.get_param_store().get_all_param_names(): print(('{0} : {1}'.format(name, pyro.param(name).data.numpy()))) print('mu_mean', np.array2string(dist.StudentT(pyro.param('arg_1')).mean.detach().numpy(), separator=',')) print('theta_mean', np.array2string(dist.Beta(pyro.param('arg_4'), pyro.param('arg_5')).mean.detach().numpy(), separator=',')) print('sigma_mean', np.array2string(dist.Gamma(pyro.param('arg_6'), pyro.param('arg_7')).mean.detach().numpy(), separator=',')) np.set_printoptions(threshold=np.inf) with open('samples','w') as samplefile: samplefile.write('mu:') samplefile.write(np.array2string(np.array([guide(y,T)['mu'].data.numpy() for _ in range(1000)]), separator=',').replace('\n','')) samplefile.write('\n') samplefile.write('theta:') samplefile.write(np.array2string(np.array([guide(y,T)['theta'].data.numpy() for _ in range(1000)]), separator=',').replace('\n','')) samplefile.write('\n') samplefile.write('sigma:') samplefile.write(np.array2string(np.array([guide(y,T)['sigma'].data.numpy() for _ in range(1000)]), separator=',').replace('\n','')) samplefile.write('\n')
[ "zhekunz2@Zhekuns-MacBook-Pro.local" ]
zhekunz2@Zhekuns-MacBook-Pro.local
3b13833a39f9e9368ed077ab78b9898a7d50c57e
3255eb9597c65f7b4d3c882a86a4cc8c3283f828
/replaceText.py
415828feebe734175adfb486cef995604e8c7ed4
[]
no_license
bsaakash/SummerInternship2018
c3069c94070f845e6680530027c2fcbdcf4d8f7a
fe14a2ffcd8f8ad9cdc5a046230b63db4d2b7f94
refs/heads/master
2020-03-21T16:00:17.999559
2018-08-02T00:02:37
2018-08-02T00:02:37
138,745,314
0
0
null
2018-07-10T14:20:26
2018-06-26T13:53:43
Python
UTF-8
Python
false
false
1,137
py
""" Write a python function to find and replace text in a file. This function takes three inputs - 1 string, 1 filename, and 1 number. It searches for the input string in the file, enclosed within '< >' and replaces '' with the number passed as input. i.e., if the input string is 'var1', the filename is 'Input_File_1.txt', and the input number is 12.34, the function searches for and replaces all instances of '' in the file 'Input_File_1.txt' with 12.34. There should be no other changes to the file.""" import re print("Enter the File Name.") fileName = input() print("Enter the string to replace.") changeString = input() print("Enter the number to replace the string with.") replace = int(input()) file = open(fileName) fileData = str(file.read()) file.close() stringRegex = re.compile(r"<"+changeString+r">") newData = "" for instance in stringRegex.findall(fileData): newData= newData + fileData[0:fileData.index(instance)]+str(replace) fileData = fileData[(fileData.index(instance)+len(instance)):] newData = newData + fileData file = open(fileName,"w") file.write(newData) file.close()
[ "noreply@github.com" ]
bsaakash.noreply@github.com
df00a7056301265671659106b1ca0ef1e1c7d558
2745dfc935b023f21e8f2aabe98e22ca41d2fc82
/temp.py
73944875cf9b6f48bde226774eff1d066ce41f32
[]
no_license
redteamcaliber/fireEye
5e5a78c2a6fb07ed7c29d0b467f0a3c0f3977378
1360ddc878dba29df3f6c0d12e8a399a08249abb
refs/heads/master
2020-05-29T12:24:46.167705
2016-03-10T06:59:54
2016-03-10T06:59:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
757
py
# -*-encode utf-8-*- #post.py import urllib,urllib2 import hmac from test import insert_a_task import re import os import random # signature and communication key = '123456' msg = str(random.uniform(1,100)) sign = hmac.new(key,msg).hexdigest() #url = 'http://localhost/test999.php' url = 'http://wtf.thinkphp.com/index.php?m=index&c=tools&a=sureport' values = {'msg':msg,'sign':sign,'qid':25} data = urllib.urlencode(values) req = urllib2.Request(url,data) res = urllib2.urlopen(req).read() print res # task insert into mysql #insert_a_task(b[0],b[1]) #cmd = 'python ./wyportmap/wyportmap.py ' + b[1] +' ' + b[0] #os.system(cmd) # select result from mysql and send to apache # read a task and run it ,if done return 1 else return 0
[ "root@localhost.localdomain" ]
root@localhost.localdomain
f28f9bbd8171763ce2ea81c3645f32432618f581
2509b353c9180cfbdeea8e4841fb17bc8535802d
/flask_db.py
766ad06b9973a88048582c3e95258b67566b9460
[]
no_license
aberle/Learning-Challenges
e2d7b0917958e478e39c51f1de314fba7e6e96cc
72b945abdc7f76cab14b440960b7e166b3086a27
refs/heads/master
2021-01-13T01:30:59.513710
2014-03-07T03:02:17
2014-03-07T03:02:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
559
py
from flask import Flask from flask.ext.sqlalchemy import SQLAlchemy app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///flask.db' db = SQLAlchemy(app) class User(db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(80), unique=True) email = db.Column(db.String(120), unique=True) def __init__(self, username, email): self.username = username self.email = email def __repr__(self): return 'User:%s, Email:%s' % (self.username, self.email)
[ "aberle.nick@gmail.com" ]
aberle.nick@gmail.com
63c02af323bc75b27051e9b4e4cc7cb662253e65
42d9eb520b87c76fee45168ee3771bb50e705b07
/Web_Integration/face_api/request_draw.py
650491c32ea4935577cf47451ab352e1166c7eb4
[]
no_license
LovepreetSingh-09/OpenCV
a6b57b1dffcad7f807edf5bd2cb05ea916aff498
02c1e2062287b60b13b01eb641ab834c3a3188f4
refs/heads/master
2022-11-06T22:23:31.234468
2020-07-17T19:10:24
2020-07-17T19:10:24
270,727,867
0
0
null
null
null
null
UTF-8
Python
false
false
1,248
py
import cv2 import numpy as np import requests from matplotlib import pyplot as plt def show_img_with_matplotlib(color_img, title, pos): img_RGB = color_img[:, :, ::-1] ax = plt.subplot(1, 1, pos) plt.imshow(img_RGB) plt.title(title) plt.axis('off') FACE_DETECTION_REST_API_URL = "http://localhost:5000/detect" IMAGE_PATH = "test_face_processing.jpg" image = open(IMAGE_PATH, "rb").read() payload = {"image": image} r = requests.post(FACE_DETECTION_REST_API_URL, files=payload) print("status code: {}".format(r.status_code)) print("headers: {}".format(r.headers)) print("content: {}".format(r.json())) json_data = r.json() result = json_data['result'] image_array = np.asarray(bytearray(image), dtype=np.uint8) img_opencv = cv2.imdecode(image_array, -1) for face in result: left, top, right, bottom = face['box'] cv2.rectangle(img_opencv, (left, top), (right, bottom), (0, 255, 255), 2) cv2.circle(img_opencv, (left, top), 5, (0, 0, 255), -1) cv2.circle(img_opencv, (right, bottom), 5, (255, 0, 0), -1) fig = plt.figure(figsize=(8, 6)) plt.suptitle("Using face API", fontsize=14, fontweight='bold') fig.patch.set_facecolor('silver') show_img_with_matplotlib(img_opencv, "face detection", 1) plt.show()
[ "slovepreet435@gmail.com" ]
slovepreet435@gmail.com
3034f85c3d2b6f91c7e721a076903dfaa30112f3
68200741ecec49667620d1f3424852f0d7e99470
/plugins/Snoo/flair.py
fc3ae268dd6a6f6d956212b91db4a5414eb0b501
[]
no_license
frumiousbandersnatch/sobrieti-plugins
30c1079f3027226465d8faec9e88d2bcbb5bdc7a
b627829c974f6cadce471e904dbbcca608158360
refs/heads/master
2022-05-28T10:48:30.309250
2022-04-16T01:57:11
2022-04-16T01:57:11
6,642,855
1
0
null
null
null
null
UTF-8
Python
false
false
1,762
py
#!/usr/bin/env python import json import requests headers = { 'Accept': 'application/json', 'Content-Type': 'application/json; charset=UTF-8', 'user-agent': 'sobrietibot' } comment_urlpat = "https://www.reddit.com/user/{username}/comments/{subreddit}.json" search_urlpat = "https://www.reddit.com/r/{subreddit}/search.json" def get_recent_search(subreddit, username): url = search_urlpat.format(**locals()) params = dict(sort='new', q="author:"+username, restrict_sr='on', t='all') r = requests.get(url, params = params, headers=headers) return r.json() def get_recent_comments(subreddit, username): url = comment_urlpat.format(**locals()) params = dict(sort='new') r = requests.get(url, params = params, headers=headers) return r.json() def get_data_entry(data, subreddit, username, entryname = 'author_flair_text'): if data is None: return data = data.get('data',None) if data is None: return children = data.get('children',[]) for child in children: data = child.get('data',None) if data is None: continue sub = data.get('subreddit',None) if sub != subreddit: continue author = data.get('author',None) if author != username: continue return data.get(entryname, None) return def get_flair(subreddit, username): res = get_recent_search(subreddit, username) if not res: res = get_recent_comments(subreddit, username) if not res: return flair = get_data_entry(res, subreddit, username) return flair if __name__ == '__main__': import sys sub,user = sys.argv[1], sys.argv[2] flair = get_flair(sub, user) or 'no flair' print 'In %s, %s has flair: "%s"' % (sub, user, flair)
[ "frumious.irc@gmail.com" ]
frumious.irc@gmail.com
698a7d4dc268ac9ca974a56bd1e79774c9989ff8
7e15a679d37e8d8449871c8f6f3f649d05b33b36
/web/ui_modules/__init__.py
b1c0a69df33032c18f535f065b303a88ebb878de
[]
no_license
SuprDewd/gamma
a7514aaa86790e92df481da75c283279ac7a1678
98b291da26d8b54959134e493a25b73234d7df63
refs/heads/master
2021-01-17T16:59:05.247942
2014-03-22T23:09:28
2014-03-22T23:09:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
427
py
import os import glob import importlib modules = {} for f in glob.glob(os.path.dirname(__file__) + '/*.py'): name = os.path.basename(f)[:-3] if name == '__init__': continue module = importlib.import_module('ui_modules.' + name) for k, v in module.__dict__.items(): if k.endswith('Module'): exec('from %s import %s' % (name, k)) # ugh modules[k[:-len('Module')]] = v
[ "suprdewd@gmail.com" ]
suprdewd@gmail.com
052e50b5a5df887c17bdbb27be56c70b493aca1b
a41c3e646114d95482a9a71713151501d3b7d090
/Finite_fields&Signal_design/fundamental_tools/A_way_of_q_Field.py
5ce55f3415eb07da631205677d48ccebb3964ed1
[]
no_license
ZckFreedom/Mathworks
574adbd81da4507724f0c4584254cbd5b6a67187
ce76c05cd9094f7e3378be1ef7478c7cb1492f0e
refs/heads/master
2021-08-22T02:55:09.698849
2020-09-25T04:12:18
2020-09-25T04:12:18
203,349,377
0
0
null
null
null
null
UTF-8
Python
false
false
4,826
py
from Polynomials_Field import * ''' 以1,θ,θ^2等为基,定义了基本运算,以及求逆等运算 ''' class Field_q: def __init__(self, list1, h): if not isinstance(h, PolynomialsField): raise FieldError('定义错误') if not h.is_irreducible(): raise FieldError('f不是不可约,不是域') p = h.get_home() if isinstance(list1, int): if list1 == 0: self._body = PolynomialsField([0], p) else: g = PolynomialsField(list1, p) self._body = g % h elif isinstance(list1[0], int): if list1 == [0]: self._body = PolynomialsField([0], p) else: g = PolynomialsField(list1, p) self._body = g % h elif isinstance(list1, PolynomialsField): if list1 == PolynomialsField([0], p): self._body = PolynomialsField([0], p) else: g = PolynomialsField(list1, p) self._body = g % h self._character = p self._mother = h def __add__(self, other): if self._mother != other.get_mother(): raise FieldError('不是一个域中的元素') p = self._character h = self._body.get_body().copy() g = other.get_body().get_body().copy() new_polynomial = PolynomialsField(h, p) + PolynomialsField(g, p) new_coefficients = new_polynomial.get_body().copy() return Field_q(new_coefficients, self._mother) def __sub__(self, other): if self._mother != other.get_mother(): raise FieldError('不是一个域中的元素') p = self._character h = self._body.get_body().copy() g = other.get_body().get_body().copy() new_polynomial = PolynomialsField(h, p) - PolynomialsField(g, p) new_coefficients = new_polynomial.get_body().copy() return Field_q(new_coefficients, self._mother) def __mul__(self, other): if self._mother != other.get_mother(): raise FieldError('不是一个域中的元素') p = self._character h = self._body.get_body().copy() g = other.get_body().get_body().copy() new_polynomial = PolynomialsField(h, p) * PolynomialsField(g, p) new_coefficients = new_polynomial.get_body().copy() return Field_q(new_coefficients, self._mother) def __eq__(self, other): if self._mother != other.get_mother(): raise FieldError('不是一个域中的元素') return self._body == other.get_body() def __pow__(self, p): r = self._mother g = Field_q([1], r) h = Field_q(self._body.get_body().copy(), r) while p > 0: g *= h p -= 1 return g def ord(self): if self == Field_q([0], self.get_mother()): return 0 r = self._mother ids = Field_q([1], r) h = Field_q(self._body.get_body().copy(), r) g = Field_q([1], r) n = 1 while True: g = g * h if g == ids: return n n += 1 def inverse(self): r = self._mother h = Field_q(self._body.get_body().copy(), r) g = Field_q([1], r) n = self.ord() while n > 1: g = g * h n -= 1 return g def __truediv__(self, other): the_inverse = self.inverse() return other*the_inverse def get_mother(self): return self._mother def get_body(self): return self._body def get_character(self): return self._character def trace(self): n = self.get_mother().get_deg() p = self._character h = Field_q([0], self.get_mother()) g = Field_q(self._body.get_body().copy(), self.get_mother()) while n > 0: h += g g = g**p n -= 1 return h def __str__(self): k = self.get_body().get_deg() list1 = self.get_body().get_body().copy() a = list1.pop(0) p = self.get_body().get_home() str1 = '' ids = Field_p(1, p) zero = Field_p(0, p) if k > 0: if a == ids and k == 1: str1 += 'θ' k -= 1 elif a != ids and k == 1: str1 += str(a) + '*θ' k -= 1 elif a == ids and k != 1: str1 += 'θ^' + str(k) k -= 1 else: str1 += str(a) + 'θ^' + str(k) k -= 1 while k > 0: a = list1.pop(0) if a == zero: k -= 1 continue elif a == ids and k != 1: str1 += '+' + 'θ^' + str(k) k -= 1 elif a == ids and k == 1: str1 += '+' + 'θ' k -= 1 elif a != ids and k == 1: str1 += '+' + str(a) + '*θ' k -= 1 elif a != ids and k != 1: str1 += '+' + str(a) + '*θ^' + str(k) k -= 1 a = list1[0] if a == zero: pass else: str1 += '+' + str(a) list1.clear() return str1 elif k == 0: list1.clear() return str(self._body.get_body()[0]) elif k == -1: list1.clear() return str(0) # h1 = [1, 0, 0, 1, 1] # h2 = [1, 0] # g1 = PolynomialsField(h1, 2) # # print(g1.is_irreducible()) # f = Field_q(h2, g1) # # print(f.trace().get_body()) # sequence_a = [1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0] # for k in range(0, len(sequence_a)): # sequence_a[k] = Field_q(sequence_a[k], g1) # for k in range(0, len(sequence_a)): # g = Field_q([0], g1) # for t in range(0, len(sequence_a)): # g += sequence_a[t] * f**(t*k) # print(g) # # print(f)
[ "zhu2010_546@163.com" ]
zhu2010_546@163.com
43e35b37ae4cd2c1a13852accc79600fe35aabde
88ae8695987ada722184307301e221e1ba3cc2fa
/third_party/webgl/src/resources/html5lib/src/html5lib/inputstream.py
edec132975d95602c261c56fe59183204cc70bdf
[ "LicenseRef-scancode-khronos", "BSD-3-Clause", "Apache-2.0", "LGPL-2.0-or-later", "MIT", "GPL-1.0-or-later" ]
permissive
iridium-browser/iridium-browser
71d9c5ff76e014e6900b825f67389ab0ccd01329
5ee297f53dc7f8e70183031cff62f37b0f19d25f
refs/heads/master
2023-08-03T16:44:16.844552
2023-07-20T15:17:00
2023-07-23T16:09:30
220,016,632
341
40
BSD-3-Clause
2021-08-13T13:54:45
2019-11-06T14:32:31
null
UTF-8
Python
false
false
27,795
py
import codecs import re import types import sys from constants import EOF, spaceCharacters, asciiLetters, asciiUppercase from constants import encodings, ReparseException import utils #Non-unicode versions of constants for use in the pre-parser spaceCharactersBytes = frozenset([str(item) for item in spaceCharacters]) asciiLettersBytes = frozenset([str(item) for item in asciiLetters]) asciiUppercaseBytes = frozenset([str(item) for item in asciiUppercase]) spacesAngleBrackets = spaceCharactersBytes | frozenset([">", "<"]) invalid_unicode_re = re.compile(u"[\u0001-\u0008\u000B\u000E-\u001F\u007F-\u009F\uD800-\uDFFF\uFDD0-\uFDEF\uFFFE\uFFFF\U0001FFFE\U0001FFFF\U0002FFFE\U0002FFFF\U0003FFFE\U0003FFFF\U0004FFFE\U0004FFFF\U0005FFFE\U0005FFFF\U0006FFFE\U0006FFFF\U0007FFFE\U0007FFFF\U0008FFFE\U0008FFFF\U0009FFFE\U0009FFFF\U000AFFFE\U000AFFFF\U000BFFFE\U000BFFFF\U000CFFFE\U000CFFFF\U000DFFFE\U000DFFFF\U000EFFFE\U000EFFFF\U000FFFFE\U000FFFFF\U0010FFFE\U0010FFFF]") non_bmp_invalid_codepoints = set([0x1FFFE, 0x1FFFF, 0x2FFFE, 0x2FFFF, 0x3FFFE, 0x3FFFF, 0x4FFFE, 0x4FFFF, 0x5FFFE, 0x5FFFF, 0x6FFFE, 0x6FFFF, 0x7FFFE, 0x7FFFF, 0x8FFFE, 0x8FFFF, 0x9FFFE, 0x9FFFF, 0xAFFFE, 0xAFFFF, 0xBFFFE, 0xBFFFF, 0xCFFFE, 0xCFFFF, 0xDFFFE, 0xDFFFF, 0xEFFFE, 0xEFFFF, 0xFFFFE, 0xFFFFF, 0x10FFFE, 0x10FFFF]) ascii_punctuation_re = re.compile(ur"[\u0009-\u000D\u0020-\u002F\u003A-\u0040\u005B-\u0060\u007B-\u007E]") # Cache for charsUntil() charsUntilRegEx = {} class BufferedStream: """Buffering for streams that do not have buffering of their own The buffer is implemented as a list of chunks on the assumption that joining many strings will be slow since it is O(n**2) """ def __init__(self, stream): self.stream = stream self.buffer = [] self.position = [-1,0] #chunk number, offset def tell(self): pos = 0 for chunk in self.buffer[:self.position[0]]: pos += len(chunk) pos += self.position[1] return pos def seek(self, pos): assert pos < self._bufferedBytes() offset = pos i = 0 while len(self.buffer[i]) < offset: offset -= pos i += 1 self.position = [i, offset] def read(self, bytes): if not self.buffer: return self._readStream(bytes) elif (self.position[0] == len(self.buffer) and self.position[1] == len(self.buffer[-1])): return self._readStream(bytes) else: return self._readFromBuffer(bytes) def _bufferedBytes(self): return sum([len(item) for item in self.buffer]) def _readStream(self, bytes): data = self.stream.read(bytes) self.buffer.append(data) self.position[0] += 1 self.position[1] = len(data) return data def _readFromBuffer(self, bytes): remainingBytes = bytes rv = [] bufferIndex = self.position[0] bufferOffset = self.position[1] while bufferIndex < len(self.buffer) and remainingBytes != 0: assert remainingBytes > 0 bufferedData = self.buffer[bufferIndex] if remainingBytes <= len(bufferedData) - bufferOffset: bytesToRead = remainingBytes self.position = [bufferIndex, bufferOffset + bytesToRead] else: bytesToRead = len(bufferedData) - bufferOffset self.position = [bufferIndex, len(bufferedData)] bufferIndex += 1 data = rv.append(bufferedData[bufferOffset: bufferOffset + bytesToRead]) remainingBytes -= bytesToRead bufferOffset = 0 if remainingBytes: rv.append(self._readStream(remainingBytes)) return "".join(rv) class HTMLInputStream: """Provides a unicode stream of characters to the HTMLTokenizer. This class takes care of character encoding and removing or replacing incorrect byte-sequences and also provides column and line tracking. """ _defaultChunkSize = 10240 def __init__(self, source, encoding=None, parseMeta=True, chardet=True): """Initialises the HTMLInputStream. HTMLInputStream(source, [encoding]) -> Normalized stream from source for use by html5lib. source can be either a file-object, local filename or a string. The optional encoding parameter must be a string that indicates the encoding. If specified, that encoding will be used, regardless of any BOM or later declaration (such as in a meta element) parseMeta - Look for a <meta> element containing encoding information """ #Craziness if len(u"\U0010FFFF") == 1: self.reportCharacterErrors = self.characterErrorsUCS4 self.replaceCharactersRegexp = re.compile(u"[\uD800-\uDFFF]") else: self.reportCharacterErrors = self.characterErrorsUCS2 self.replaceCharactersRegexp = re.compile(u"([\uD800-\uDBFF](?![\uDC00-\uDFFF])|(?<![\uD800-\uDBFF])[\uDC00-\uDFFF])") # List of where new lines occur self.newLines = [0] self.charEncoding = (codecName(encoding), "certain") # Raw Stream - for unicode objects this will encode to utf-8 and set # self.charEncoding as appropriate self.rawStream = self.openStream(source) # Encoding Information #Number of bytes to use when looking for a meta element with #encoding information self.numBytesMeta = 512 #Number of bytes to use when using detecting encoding using chardet self.numBytesChardet = 100 #Encoding to use if no other information can be found self.defaultEncoding = "windows-1252" #Detect encoding iff no explicit "transport level" encoding is supplied if (self.charEncoding[0] is None): self.charEncoding = self.detectEncoding(parseMeta, chardet) self.reset() def reset(self): self.dataStream = codecs.getreader(self.charEncoding[0])(self.rawStream, 'replace') self.chunk = u"" self.chunkSize = 0 self.chunkOffset = 0 self.errors = [] # number of (complete) lines in previous chunks self.prevNumLines = 0 # number of columns in the last line of the previous chunk self.prevNumCols = 0 #Deal with CR LF and surrogates split over chunk boundaries self._bufferedCharacter = None def openStream(self, source): """Produces a file object from source. source can be either a file object, local filename or a string. """ # Already a file object if hasattr(source, 'read'): stream = source else: # Otherwise treat source as a string and convert to a file object if isinstance(source, unicode): source = source.encode('utf-8') self.charEncoding = ("utf-8", "certain") try: from io import BytesIO except: # 2to3 converts this line to: from io import StringIO from cStringIO import StringIO as BytesIO stream = BytesIO(source) if (not(hasattr(stream, "tell") and hasattr(stream, "seek")) or stream is sys.stdin): stream = BufferedStream(stream) return stream def detectEncoding(self, parseMeta=True, chardet=True): #First look for a BOM #This will also read past the BOM if present encoding = self.detectBOM() confidence = "certain" #If there is no BOM need to look for meta elements with encoding #information if encoding is None and parseMeta: encoding = self.detectEncodingMeta() confidence = "tentative" #Guess with chardet, if avaliable if encoding is None and chardet: confidence = "tentative" try: from chardet.universaldetector import UniversalDetector buffers = [] detector = UniversalDetector() while not detector.done: buffer = self.rawStream.read(self.numBytesChardet) if not buffer: break buffers.append(buffer) detector.feed(buffer) detector.close() encoding = detector.result['encoding'] self.rawStream.seek(0) except ImportError: pass # If all else fails use the default encoding if encoding is None: confidence="tentative" encoding = self.defaultEncoding #Substitute for equivalent encodings: encodingSub = {"iso-8859-1":"windows-1252"} if encoding.lower() in encodingSub: encoding = encodingSub[encoding.lower()] return encoding, confidence def changeEncoding(self, newEncoding): newEncoding = codecName(newEncoding) if newEncoding in ("utf-16", "utf-16-be", "utf-16-le"): newEncoding = "utf-8" if newEncoding is None: return elif newEncoding == self.charEncoding[0]: self.charEncoding = (self.charEncoding[0], "certain") else: self.rawStream.seek(0) self.reset() self.charEncoding = (newEncoding, "certain") raise ReparseException, "Encoding changed from %s to %s"%(self.charEncoding[0], newEncoding) def detectBOM(self): """Attempts to detect at BOM at the start of the stream. If an encoding can be determined from the BOM return the name of the encoding otherwise return None""" bomDict = { codecs.BOM_UTF8: 'utf-8', codecs.BOM_UTF16_LE: 'utf-16-le', codecs.BOM_UTF16_BE: 'utf-16-be', codecs.BOM_UTF32_LE: 'utf-32-le', codecs.BOM_UTF32_BE: 'utf-32-be' } # Go to beginning of file and read in 4 bytes string = self.rawStream.read(4) # Try detecting the BOM using bytes from the string encoding = bomDict.get(string[:3]) # UTF-8 seek = 3 if not encoding: # Need to detect UTF-32 before UTF-16 encoding = bomDict.get(string) # UTF-32 seek = 4 if not encoding: encoding = bomDict.get(string[:2]) # UTF-16 seek = 2 # Set the read position past the BOM if one was found, otherwise # set it to the start of the stream self.rawStream.seek(encoding and seek or 0) return encoding def detectEncodingMeta(self): """Report the encoding declared by the meta element """ buffer = self.rawStream.read(self.numBytesMeta) parser = EncodingParser(buffer) self.rawStream.seek(0) encoding = parser.getEncoding() if encoding in ("utf-16", "utf-16-be", "utf-16-le"): encoding = "utf-8" return encoding def _position(self, offset): chunk = self.chunk nLines = chunk.count(u'\n', 0, offset) positionLine = self.prevNumLines + nLines lastLinePos = chunk.rfind(u'\n', 0, offset) if lastLinePos == -1: positionColumn = self.prevNumCols + offset else: positionColumn = offset - (lastLinePos + 1) return (positionLine, positionColumn) def position(self): """Returns (line, col) of the current position in the stream.""" line, col = self._position(self.chunkOffset) return (line+1, col) def char(self): """ Read one character from the stream or queue if available. Return EOF when EOF is reached. """ # Read a new chunk from the input stream if necessary if self.chunkOffset >= self.chunkSize: if not self.readChunk(): return EOF chunkOffset = self.chunkOffset char = self.chunk[chunkOffset] self.chunkOffset = chunkOffset + 1 return char def readChunk(self, chunkSize=None): if chunkSize is None: chunkSize = self._defaultChunkSize self.prevNumLines, self.prevNumCols = self._position(self.chunkSize) self.chunk = u"" self.chunkSize = 0 self.chunkOffset = 0 data = self.dataStream.read(chunkSize) #Deal with CR LF and surrogates broken across chunks if self._bufferedCharacter: data = self._bufferedCharacter + data self._bufferedCharacter = None elif not data: # We have no more data, bye-bye stream return False if len(data) > 1: lastv = ord(data[-1]) if lastv == 0x0D or 0xD800 <= lastv <= 0xDBFF: self._bufferedCharacter = data[-1] data = data[:-1] self.reportCharacterErrors(data) # Replace invalid characters # Note U+0000 is dealt with in the tokenizer data = self.replaceCharactersRegexp.sub(u"\ufffd", data) data = data.replace(u"\r\n", u"\n") data = data.replace(u"\r", u"\n") self.chunk = data self.chunkSize = len(data) return True def characterErrorsUCS4(self, data): for i in xrange(len(invalid_unicode_re.findall(data))): self.errors.append("invalid-codepoint") def characterErrorsUCS2(self, data): #Someone picked the wrong compile option #You lose skip = False import sys for match in invalid_unicode_re.finditer(data): if skip: continue codepoint = ord(match.group()) pos = match.start() #Pretty sure there should be endianness issues here if utils.isSurrogatePair(data[pos:pos+2]): #We have a surrogate pair! char_val = utils.surrogatePairToCodepoint(data[pos:pos+2]) if char_val in non_bmp_invalid_codepoints: self.errors.append("invalid-codepoint") skip = True elif (codepoint >= 0xD800 and codepoint <= 0xDFFF and pos == len(data) - 1): self.errors.append("invalid-codepoint") else: skip = False self.errors.append("invalid-codepoint") def charsUntil(self, characters, opposite = False): """ Returns a string of characters from the stream up to but not including any character in 'characters' or EOF. 'characters' must be a container that supports the 'in' method and iteration over its characters. """ # Use a cache of regexps to find the required characters try: chars = charsUntilRegEx[(characters, opposite)] except KeyError: if __debug__: for c in characters: assert(ord(c) < 128) regex = u"".join([u"\\x%02x" % ord(c) for c in characters]) if not opposite: regex = u"^%s" % regex chars = charsUntilRegEx[(characters, opposite)] = re.compile(u"[%s]+" % regex) rv = [] while True: # Find the longest matching prefix m = chars.match(self.chunk, self.chunkOffset) if m is None: # If nothing matched, and it wasn't because we ran out of chunk, # then stop if self.chunkOffset != self.chunkSize: break else: end = m.end() # If not the whole chunk matched, return everything # up to the part that didn't match if end != self.chunkSize: rv.append(self.chunk[self.chunkOffset:end]) self.chunkOffset = end break # If the whole remainder of the chunk matched, # use it all and read the next chunk rv.append(self.chunk[self.chunkOffset:]) if not self.readChunk(): # Reached EOF break r = u"".join(rv) return r def unget(self, char): # Only one character is allowed to be ungotten at once - it must # be consumed again before any further call to unget if char is not None: if self.chunkOffset == 0: # unget is called quite rarely, so it's a good idea to do # more work here if it saves a bit of work in the frequently # called char and charsUntil. # So, just prepend the ungotten character onto the current # chunk: self.chunk = char + self.chunk self.chunkSize += 1 else: self.chunkOffset -= 1 assert self.chunk[self.chunkOffset] == char class EncodingBytes(str): """String-like object with an associated position and various extra methods If the position is ever greater than the string length then an exception is raised""" def __new__(self, value): return str.__new__(self, value.lower()) def __init__(self, value): self._position=-1 def __iter__(self): return self def next(self): p = self._position = self._position + 1 if p >= len(self): raise StopIteration elif p < 0: raise TypeError return self[p] def previous(self): p = self._position if p >= len(self): raise StopIteration elif p < 0: raise TypeError self._position = p = p - 1 return self[p] def setPosition(self, position): if self._position >= len(self): raise StopIteration self._position = position def getPosition(self): if self._position >= len(self): raise StopIteration if self._position >= 0: return self._position else: return None position = property(getPosition, setPosition) def getCurrentByte(self): return self[self.position] currentByte = property(getCurrentByte) def skip(self, chars=spaceCharactersBytes): """Skip past a list of characters""" p = self.position # use property for the error-checking while p < len(self): c = self[p] if c not in chars: self._position = p return c p += 1 self._position = p return None def skipUntil(self, chars): p = self.position while p < len(self): c = self[p] if c in chars: self._position = p return c p += 1 self._position = p return None def matchBytes(self, bytes): """Look for a sequence of bytes at the start of a string. If the bytes are found return True and advance the position to the byte after the match. Otherwise return False and leave the position alone""" p = self.position data = self[p:p+len(bytes)] rv = data.startswith(bytes) if rv: self.position += len(bytes) return rv def jumpTo(self, bytes): """Look for the next sequence of bytes matching a given sequence. If a match is found advance the position to the last byte of the match""" newPosition = self[self.position:].find(bytes) if newPosition > -1: # XXX: This is ugly, but I can't see a nicer way to fix this. if self._position == -1: self._position = 0 self._position += (newPosition + len(bytes)-1) return True else: raise StopIteration class EncodingParser(object): """Mini parser for detecting character encoding from meta elements""" def __init__(self, data): """string - the data to work on for encoding detection""" self.data = EncodingBytes(data) self.encoding = None def getEncoding(self): methodDispatch = ( ("<!--",self.handleComment), ("<meta",self.handleMeta), ("</",self.handlePossibleEndTag), ("<!",self.handleOther), ("<?",self.handleOther), ("<",self.handlePossibleStartTag)) for byte in self.data: keepParsing = True for key, method in methodDispatch: if self.data.matchBytes(key): try: keepParsing = method() break except StopIteration: keepParsing=False break if not keepParsing: break return self.encoding def handleComment(self): """Skip over comments""" return self.data.jumpTo("-->") def handleMeta(self): if self.data.currentByte not in spaceCharactersBytes: #if we have <meta not followed by a space so just keep going return True #We have a valid meta element we want to search for attributes while True: #Try to find the next attribute after the current position attr = self.getAttribute() if attr is None: return True else: if attr[0] == "charset": tentativeEncoding = attr[1] codec = codecName(tentativeEncoding) if codec is not None: self.encoding = codec return False elif attr[0] == "content": contentParser = ContentAttrParser(EncodingBytes(attr[1])) tentativeEncoding = contentParser.parse() codec = codecName(tentativeEncoding) if codec is not None: self.encoding = codec return False def handlePossibleStartTag(self): return self.handlePossibleTag(False) def handlePossibleEndTag(self): self.data.next() return self.handlePossibleTag(True) def handlePossibleTag(self, endTag): data = self.data if data.currentByte not in asciiLettersBytes: #If the next byte is not an ascii letter either ignore this #fragment (possible start tag case) or treat it according to #handleOther if endTag: data.previous() self.handleOther() return True c = data.skipUntil(spacesAngleBrackets) if c == "<": #return to the first step in the overall "two step" algorithm #reprocessing the < byte data.previous() else: #Read all attributes attr = self.getAttribute() while attr is not None: attr = self.getAttribute() return True def handleOther(self): return self.data.jumpTo(">") def getAttribute(self): """Return a name,value pair for the next attribute in the stream, if one is found, or None""" data = self.data # Step 1 (skip chars) c = data.skip(spaceCharactersBytes | frozenset("/")) # Step 2 if c in (">", None): return None # Step 3 attrName = [] attrValue = [] #Step 4 attribute name while True: if c == "=" and attrName: break elif c in spaceCharactersBytes: #Step 6! c = data.skip() c = data.next() break elif c in ("/", ">"): return "".join(attrName), "" elif c in asciiUppercaseBytes: attrName.append(c.lower()) elif c == None: return None else: attrName.append(c) #Step 5 c = data.next() #Step 7 if c != "=": data.previous() return "".join(attrName), "" #Step 8 data.next() #Step 9 c = data.skip() #Step 10 if c in ("'", '"'): #10.1 quoteChar = c while True: #10.2 c = data.next() #10.3 if c == quoteChar: data.next() return "".join(attrName), "".join(attrValue) #10.4 elif c in asciiUppercaseBytes: attrValue.append(c.lower()) #10.5 else: attrValue.append(c) elif c == ">": return "".join(attrName), "" elif c in asciiUppercaseBytes: attrValue.append(c.lower()) elif c is None: return None else: attrValue.append(c) # Step 11 while True: c = data.next() if c in spacesAngleBrackets: return "".join(attrName), "".join(attrValue) elif c in asciiUppercaseBytes: attrValue.append(c.lower()) elif c is None: return None else: attrValue.append(c) class ContentAttrParser(object): def __init__(self, data): self.data = data def parse(self): try: #Check if the attr name is charset #otherwise return self.data.jumpTo("charset") self.data.position += 1 self.data.skip() if not self.data.currentByte == "=": #If there is no = sign keep looking for attrs return None self.data.position += 1 self.data.skip() #Look for an encoding between matching quote marks if self.data.currentByte in ('"', "'"): quoteMark = self.data.currentByte self.data.position += 1 oldPosition = self.data.position if self.data.jumpTo(quoteMark): return self.data[oldPosition:self.data.position] else: return None else: #Unquoted value oldPosition = self.data.position try: self.data.skipUntil(spaceCharactersBytes) return self.data[oldPosition:self.data.position] except StopIteration: #Return the whole remaining value return self.data[oldPosition:] except StopIteration: return None def codecName(encoding): """Return the python codec name corresponding to an encoding or None if the string doesn't correspond to a valid encoding.""" if (encoding is not None and type(encoding) in types.StringTypes): canonicalName = ascii_punctuation_re.sub("", encoding).lower() return encodings.get(canonicalName, None) else: return None
[ "jengelh@inai.de" ]
jengelh@inai.de
c7dfeaa97bf0eb949d1a6d2ecdeeed03f601b720
bdb8848a5e44bc6ae6f7e8ecb0eb5a88f048c9f1
/To_Do.py
60ce32259f489783b59f352213508d048b101038
[]
no_license
adiG48/TO-DO-LIST-PROGRAM-1
2dd4e576307bdf5d9e1578538ab25ce2cde9c102
9da60f1c094ce6ae2bb2ceb46a190632f64433d0
refs/heads/main
2023-01-30T12:23:22.428522
2020-12-11T10:10:25
2020-12-11T10:10:25
320,536,121
0
0
null
null
null
null
UTF-8
Python
false
false
1,264
py
import PySimpleGUI as sg from file import file_read, file_write fname = "Text.txt" tasks = file_read(fname) layout = [ [sg.Text("ToDo List")], [sg.InputText("", key='todo_item'), sg.Button(button_text="Add", key='add_save')], [sg.Listbox(values=tasks, size=(40, 10), key="items"), sg.Button("Delete"), sg.Button("Edit"), sg.Button("Exit")] ] window = sg.Window("ToDo App", layout) while True: events, values = window.Read() if events == 'add_save': tasks.append(values['todo_item']) window.FindElement('items').Update(values=tasks) window.FindElement('add_save').Update("Add") window.FindElement('todo_item').Update('') elif events == "Delete": tasks.remove(values["items"][0]) window.FindElement('items').Update(values=tasks) file_write(fname, tasks) elif events == "Edit": edit_val = values["items"][0] tasks.remove(values["items"][0]) window.FindElement('items').Update(values=tasks) window.FindElement('todo_item').Update(value=edit_val) window.FindElement('add_save').Update("Save") file_write(fname, tasks) elif events == None or events == "Exit": break window.Close()
[ "noreply@github.com" ]
adiG48.noreply@github.com
cae7bb386694e35e4716a59c8b4be78241ca9398
ceca10c49f709958535004770d1688f0ee04988a
/Django/DjangoNrps/fragment/migrations/0002_auto__add_field_gene_viewable.py
356a66fd8ae135bba78308d961f612f36d53e297
[]
no_license
igemsoftware/Heidelberg_2013
13c20de982b51606367ee69f1ba71e957e2dfb87
85e4966d7ebf04173ae3db8d72f5b122d9a2475e
refs/heads/master
2020-04-04T09:00:38.005070
2013-10-28T15:26:45
2013-10-28T15:26:45
12,770,105
2
0
null
null
null
null
UTF-8
Python
false
false
6,918
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Gene.viewable' db.add_column(u'fragment_gene', 'viewable', self.gf('django.db.models.fields.CharField')(default='L', max_length=1), keep_default=False) def backwards(self, orm): # Deleting field 'Gene.viewable' db.delete_column(u'fragment_gene', 'viewable') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'fragment.annotation': { 'Meta': {'object_name': 'Annotation'}, 'gene': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'annotations'", 'to': u"orm['fragment.Gene']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '5120', 'blank': 'True'}) }, u'fragment.feature': { 'Meta': {'ordering': "['start']", 'object_name': 'Feature'}, 'direction': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'end': ('django.db.models.fields.PositiveIntegerField', [], {}), 'gene': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'features'", 'to': u"orm['fragment.Gene']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'start': ('django.db.models.fields.PositiveIntegerField', [], {}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '30'}) }, u'fragment.gene': { 'Meta': {'object_name': 'Gene'}, 'description': ('django.db.models.fields.CharField', [], {'max_length': '500'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'origin': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}), 'sequence': ('django.db.models.fields.TextField', [], {'max_length': '500000'}), 'viewable': ('django.db.models.fields.CharField', [], {'default': "'L'", 'max_length': '1'}) }, u'fragment.qualifier': { 'Meta': {'object_name': 'Qualifier'}, 'data': ('django.db.models.fields.CharField', [], {'max_length': '512'}), 'feature': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'qualifiers'", 'to': u"orm['fragment.Feature']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '30'}) }, u'fragment.reference': { 'Meta': {'object_name': 'Reference'}, 'authors': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'gene': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'references'", 'to': u"orm['fragment.Gene']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'journal': ('django.db.models.fields.CharField', [], {'max_length': '512'}), 'medline_id': ('django.db.models.fields.CharField', [], {'max_length': '24', 'blank': 'True'}), 'pubmed_id': ('django.db.models.fields.CharField', [], {'max_length': '24', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '1024'}) } } complete_apps = ['fragment']
[ "nikos.ignatiadis01@gmail.com" ]
nikos.ignatiadis01@gmail.com
407c6028f97b46141f099e0a26ec293cc0b975ea
68bf63745beb76f230fca9e23782d4e2acc91fac
/src/PidginCli/send.py
3ad973bce1ebbaac92d799dfb7143f948b53dd03
[ "Apache-2.0" ]
permissive
tfga/pidginCli
4064e8756844190bdfcae4999b266b4ac22da8ce
91f4a22d0ca7108af7ac1372de12ea22fc7de081
refs/heads/master
2021-12-23T04:06:51.762882
2020-11-02T14:34:54
2020-11-09T18:55:10
81,127,521
4
3
Apache-2.0
2021-12-15T11:51:08
2017-02-06T20:07:28
Python
UTF-8
Python
false
false
240
py
# encoding: utf-8 from PidginCli.pidginCli import purple, account # Send message def send(msg, user): conv = purple.PurpleConversationNew(1, account, user) im = purple.PurpleConvIm(conv) purple.PurpleConvImSend(im, msg)
[ "thiagofga@gmail.com" ]
thiagofga@gmail.com
b6c772dff8fac1b0e1adcfc9afe1571acbd74b5f
f1cb02057956e12c352a8df4ad935d56cb2426d5
/LeetCode/783. Minimum Distance Between BST Nodes/Solution.py
5ad0c386380db865bc897b2d1ac85f219bc9371c
[]
no_license
nhatsmrt/AlgorithmPractice
191a6d816d98342d723e2ab740e9a7ac7beac4ac
f27ba208b97ed2d92b4c059848cc60f6b90ce75e
refs/heads/master
2023-06-10T18:28:45.876046
2023-05-26T07:46:42
2023-05-26T07:47:10
147,932,664
15
2
null
null
null
null
UTF-8
Python
false
false
634
py
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def minDiffInBST(self, root: TreeNode) -> int: vals = [] self.inorder(root, vals) ret = 1000000000 for i in range(len(vals) - 1): ret = min(ret, vals[i + 1] - vals[i]) return ret def inorder(self, node: TreeNode, ret: List[int]): if node: self.inorder(node.left, ret) ret.append(node.val) self.inorder(node.right, ret)
[ "nhatsmrt@uw.edu" ]
nhatsmrt@uw.edu
a303ba8ab2ce0786a55da5529a6697c736cf51c8
3583a2f44149acc17cfd5e97f0f000b3a7ba94b8
/025/script.py
2589426ffe5be67e2930aad49200553aa960ff17
[]
no_license
jmfennell/project_euler
5561438c96b010d02aa585fcc03a6c47bdbd5a1c
23edec8db3dcd3dad4607a6b916ac41f280d0ce2
refs/heads/master
2021-01-20T12:04:33.125362
2018-11-03T16:59:37
2018-11-03T16:59:37
20,556,964
0
0
null
null
null
null
UTF-8
Python
false
false
334
py
#!/usr/bin/env python3 from functools import lru_cache from itertools import count length = 1000 @lru_cache(maxsize=None) def fib(i): if i <= 2: return i return fib(i-1) + fib(i-2) def main(): for i in count(): l = str(fib(i)) if len(l) == length: print(i+1) break if __name__ == '__main__': main()
[ "j.fennell@pinbellcom.co.uk" ]
j.fennell@pinbellcom.co.uk
1d1c44c8ffee81958006ceb271816629bba8cdcc
b5187b5ffd53a2cdc8ec6ed94effc39702c1ea31
/loyalty_app/loyalty/doctype/staff/test_staff.py
99156913065f175eb9514772eee1155414b32e63
[ "MIT" ]
permissive
vignesharumainayagam/engagex-loyalty_app-backup-
946a7f75c5ae5cce33313142a0b4e6ba29d67cb6
4c326c5f7b22572146f0b946d6498e85ac22a143
refs/heads/master
2020-03-11T18:00:14.106005
2018-04-19T05:36:06
2018-04-19T05:36:06
130,163,935
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
# -*- coding: utf-8 -*- # Copyright (c) 2018, Loyalty and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest class TestStaff(unittest.TestCase): pass
[ "vigneshwaran@valiantsystems.com" ]
vigneshwaran@valiantsystems.com
f8b2fd3a6f7e61063a3ef0e9d53bb2456ae68816
920baca8ee6cbd3c140cc54fada286ca7ecd20ed
/controlled_experiment/analysis_scripts/src/verification/verify_experiment.py
78177a4ff10103156c7dba085905031b3f445ca1
[ "MIT" ]
permissive
lesunb/jss-2022-replication-package
79dffe25d469a5258d252214959aac5392a261da
35e2a0fddeedb8fdb5a1b1e4ad4b7a7658e39148
refs/heads/main
2023-04-07T08:10:19.818820
2022-05-03T22:40:43
2022-05-03T22:40:43
488,244,608
0
0
MIT
2022-05-03T21:40:28
2022-05-03T14:33:21
Jupyter Notebook
UTF-8
Python
false
false
886
py
from utils import iter_map from .verify_lab_samples_trials import check_mission_coordination from .verify_task_execution import check_task_execution def check_experiment(exec_code): mc_verification = check_mission_coordination(exec_code) mc_verification_list = [] te_verification_list = [] for trial, (property, value) in iter_map(mc_verification, 2): trial_verification = { "trial": trial, "property": property, "result": value } mc_verification_list.append(trial_verification) te_verification = check_task_execution(exec_code) for exec_group, (trial, (property, value)) in iter_map(te_verification, 3): trial_exec_verification = { "exec_group": exec_group, "trial": trial, "property": property, "result": value } te_verification_list.append(trial_exec_verification) return mc_verification_list, te_verification_list
[ "vicenteromeiromoraes@gmail.com" ]
vicenteromeiromoraes@gmail.com
29b4cdb20fae1c0f6d7dae7b4c9ad88447c69b9f
747f759311d404af31c0f80029e88098193f6269
/addons/etl_interface/etl/lib/etl/component/transform/data_filter.py
04246f50b258fe91bc33047f978f34bd4710ca6c
[]
no_license
sgeerish/sirr_production
9b0d0f7804a928c0c582ddb4ccb7fcc084469a18
1081f3a5ff8864a31b2dcd89406fac076a908e78
refs/heads/master
2020-05-19T07:21:37.047958
2013-09-15T13:03:36
2013-09-15T13:03:36
9,648,444
0
1
null
null
null
null
UTF-8
Python
false
false
98
py
/home/openerp/production/extra-addons/etl_interface/etl/lib/etl/component/transform/data_filter.py
[ "geerish@omerp.net" ]
geerish@omerp.net
2efe39c54fddd62483270bd193e7f178b12f6cc2
f7a4cbd50e391af66b76d58994b50b6baaeb2255
/Problem 169/problem_169.py
a94299fa9b262469c60b7449be7621a167d6af82
[]
no_license
orralacm/LeetCode
3754df2a220fbfa900185c5b3823d73613e462b3
869d539105da5af8452fa67f63bd6e408c1bf72a
refs/heads/main
2023-08-07T19:14:44.067421
2021-09-16T04:48:40
2021-09-16T04:48:40
380,321,737
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
#Given an array nums of size n, return the majority element. nums = [2,2,1,1,1,2,2] nums.sort() n = 0 output = 0 for i in range (len(nums)) : if (nums.count(nums[i]) > n) : n = nums.count(nums[i]) print(n) output = nums[i] else : continue print(f"The majority element is: {output}")
[ "orrala@live.com.mx" ]
orrala@live.com.mx
b249130aedf8b8dc019a2fd6eb0baf79b26eb634
a4a016e8bc1f077707733d7f404d5612deb6b4eb
/dash/bin/runxlrd.py
90f89fda49c01022ed296cc3fec54cac266e853b
[]
no_license
naveenkonam/my_projects
e39749e99ccc59d2f2db5edac3b4602570f51612
64dae9eca6a402da378759668801597208df90e5
refs/heads/master
2023-03-04T10:26:50.003756
2021-02-20T14:13:52
2021-02-20T14:13:52
323,029,307
0
0
null
null
null
null
UTF-8
Python
false
false
16,320
py
#!/home/konam/Documents/pythonsamples/dash/bin/python3 # Copyright (c) 2005-2012 Stephen John Machin, Lingfo Pty Ltd # This script is part of the xlrd package, which is released under a # BSD-style licence. from __future__ import print_function cmd_doc = """ Commands: 2rows Print the contents of first and last row in each sheet 3rows Print the contents of first, second and last row in each sheet bench Same as "show", but doesn't print -- for profiling biff_count[1] Print a count of each type of BIFF record in the file biff_dump[1] Print a dump (char and hex) of the BIFF records in the file fonts hdr + print a dump of all font objects hdr Mini-overview of file (no per-sheet information) hotshot Do a hotshot profile run e.g. ... -f1 hotshot bench bigfile*.xls labels Dump of sheet.col_label_ranges and ...row... for each sheet name_dump Dump of each object in book.name_obj_list names Print brief information for each NAME record ov Overview of file profile Like "hotshot", but uses cProfile show Print the contents of all rows in each sheet version[0] Print versions of xlrd and Python and exit xfc Print "XF counts" and cell-type counts -- see code for details [0] means no file arg [1] means only one file arg i.e. no glob.glob pattern """ options = None if __name__ == "__main__": PSYCO = 0 import xlrd import sys import time import glob import traceback import gc from xlrd.timemachine import xrange, REPR class LogHandler(object): def __init__(self, logfileobj): self.logfileobj = logfileobj self.fileheading = None self.shown = 0 def setfileheading(self, fileheading): self.fileheading = fileheading self.shown = 0 def write(self, text): if self.fileheading and not self.shown: self.logfileobj.write(self.fileheading) self.shown = 1 self.logfileobj.write(text) null_cell = xlrd.empty_cell def show_row(bk, sh, rowx, colrange, printit): if bk.ragged_rows: colrange = range(sh.row_len(rowx)) if not colrange: return if printit: print() if bk.formatting_info: for colx, ty, val, cxfx in get_row_data(bk, sh, rowx, colrange): if printit: print("cell %s%d: type=%d, data: %r, xfx: %s" % (xlrd.colname(colx), rowx+1, ty, val, cxfx)) else: for colx, ty, val, _unused in get_row_data(bk, sh, rowx, colrange): if printit: print("cell %s%d: type=%d, data: %r" % (xlrd.colname(colx), rowx+1, ty, val)) def get_row_data(bk, sh, rowx, colrange): result = [] dmode = bk.datemode ctys = sh.row_types(rowx) cvals = sh.row_values(rowx) for colx in colrange: cty = ctys[colx] cval = cvals[colx] if bk.formatting_info: cxfx = str(sh.cell_xf_index(rowx, colx)) else: cxfx = '' if cty == xlrd.XL_CELL_DATE: try: showval = xlrd.xldate_as_tuple(cval, dmode) except xlrd.XLDateError as e: showval = "%s:%s" % (type(e).__name__, e) cty = xlrd.XL_CELL_ERROR elif cty == xlrd.XL_CELL_ERROR: showval = xlrd.error_text_from_code.get(cval, '<Unknown error code 0x%02x>' % cval) else: showval = cval result.append((colx, cty, showval, cxfx)) return result def bk_header(bk): print() print("BIFF version: %s; datemode: %s" % (xlrd.biff_text_from_num[bk.biff_version], bk.datemode)) print("codepage: %r (encoding: %s); countries: %r" % (bk.codepage, bk.encoding, bk.countries)) print("Last saved by: %r" % bk.user_name) print("Number of data sheets: %d" % bk.nsheets) print("Use mmap: %d; Formatting: %d; On demand: %d" % (bk.use_mmap, bk.formatting_info, bk.on_demand)) print("Ragged rows: %d" % bk.ragged_rows) if bk.formatting_info: print("FORMATs: %d, FONTs: %d, XFs: %d" % (len(bk.format_list), len(bk.font_list), len(bk.xf_list))) if not options.suppress_timing: print("Load time: %.2f seconds (stage 1) %.2f seconds (stage 2)" % (bk.load_time_stage_1, bk.load_time_stage_2)) print() def show_fonts(bk): print("Fonts:") for x in xrange(len(bk.font_list)): font = bk.font_list[x] font.dump(header='== Index %d ==' % x, indent=4) def show_names(bk, dump=0): bk_header(bk) if bk.biff_version < 50: print("Names not extracted in this BIFF version") return nlist = bk.name_obj_list print("Name list: %d entries" % len(nlist)) for nobj in nlist: if dump: nobj.dump(sys.stdout, header="\n=== Dump of name_obj_list[%d] ===" % nobj.name_index) else: print("[%d]\tName:%r macro:%r scope:%d\n\tresult:%r\n" % (nobj.name_index, nobj.name, nobj.macro, nobj.scope, nobj.result)) def print_labels(sh, labs, title): if not labs:return for rlo, rhi, clo, chi in labs: print("%s label range %s:%s contains:" % (title, xlrd.cellname(rlo, clo), xlrd.cellname(rhi-1, chi-1))) for rx in xrange(rlo, rhi): for cx in xrange(clo, chi): print(" %s: %r" % (xlrd.cellname(rx, cx), sh.cell_value(rx, cx))) def show_labels(bk): # bk_header(bk) hdr = 0 for shx in range(bk.nsheets): sh = bk.sheet_by_index(shx) clabs = sh.col_label_ranges rlabs = sh.row_label_ranges if clabs or rlabs: if not hdr: bk_header(bk) hdr = 1 print("sheet %d: name = %r; nrows = %d; ncols = %d" % (shx, sh.name, sh.nrows, sh.ncols)) print_labels(sh, clabs, 'Col') print_labels(sh, rlabs, 'Row') if bk.on_demand: bk.unload_sheet(shx) def show(bk, nshow=65535, printit=1): bk_header(bk) if 0: rclist = xlrd.sheet.rc_stats.items() rclist = sorted(rclist) print("rc stats") for k, v in rclist: print("0x%04x %7d" % (k, v)) if options.onesheet: try: shx = int(options.onesheet) except ValueError: shx = bk.sheet_by_name(options.onesheet).number shxrange = [shx] else: shxrange = range(bk.nsheets) # print("shxrange", list(shxrange)) for shx in shxrange: sh = bk.sheet_by_index(shx) nrows, ncols = sh.nrows, sh.ncols colrange = range(ncols) anshow = min(nshow, nrows) print("sheet %d: name = %s; nrows = %d; ncols = %d" % (shx, REPR(sh.name), sh.nrows, sh.ncols)) if nrows and ncols: # Beat the bounds for rowx in xrange(nrows): nc = sh.row_len(rowx) if nc: sh.row_types(rowx)[nc-1] sh.row_values(rowx)[nc-1] sh.cell(rowx, nc-1) for rowx in xrange(anshow-1): if not printit and rowx % 10000 == 1 and rowx > 1: print("done %d rows" % (rowx-1,)) show_row(bk, sh, rowx, colrange, printit) if anshow and nrows: show_row(bk, sh, nrows-1, colrange, printit) print() if bk.on_demand: bk.unload_sheet(shx) def count_xfs(bk): bk_header(bk) for shx in range(bk.nsheets): sh = bk.sheet_by_index(shx) nrows = sh.nrows print("sheet %d: name = %r; nrows = %d; ncols = %d" % (shx, sh.name, sh.nrows, sh.ncols)) # Access all xfindexes to force gathering stats type_stats = [0, 0, 0, 0, 0, 0, 0] for rowx in xrange(nrows): for colx in xrange(sh.row_len(rowx)): xfx = sh.cell_xf_index(rowx, colx) assert xfx >= 0 cty = sh.cell_type(rowx, colx) type_stats[cty] += 1 print("XF stats", sh._xf_index_stats) print("type stats", type_stats) print() if bk.on_demand: bk.unload_sheet(shx) def main(cmd_args): import optparse global options, PSYCO usage = "\n%prog [options] command [input-file-patterns]\n" + cmd_doc oparser = optparse.OptionParser(usage) oparser.add_option( "-l", "--logfilename", default="", help="contains error messages") oparser.add_option( "-v", "--verbosity", type="int", default=0, help="level of information and diagnostics provided") oparser.add_option( "-m", "--mmap", type="int", default=-1, help="1: use mmap; 0: don't use mmap; -1: accept heuristic") oparser.add_option( "-e", "--encoding", default="", help="encoding override") oparser.add_option( "-f", "--formatting", type="int", default=0, help="0 (default): no fmt info\n" "1: fmt info (all cells)\n", ) oparser.add_option( "-g", "--gc", type="int", default=0, help="0: auto gc enabled; 1: auto gc disabled, manual collect after each file; 2: no gc") oparser.add_option( "-s", "--onesheet", default="", help="restrict output to this sheet (name or index)") oparser.add_option( "-u", "--unnumbered", action="store_true", default=0, help="omit line numbers or offsets in biff_dump") oparser.add_option( "-d", "--on-demand", action="store_true", default=0, help="load sheets on demand instead of all at once") oparser.add_option( "-t", "--suppress-timing", action="store_true", default=0, help="don't print timings (diffs are less messy)") oparser.add_option( "-r", "--ragged-rows", action="store_true", default=0, help="open_workbook(..., ragged_rows=True)") options, args = oparser.parse_args(cmd_args) if len(args) == 1 and args[0] in ("version", ): pass elif len(args) < 2: oparser.error("Expected at least 2 args, found %d" % len(args)) cmd = args[0] xlrd_version = getattr(xlrd, "__VERSION__", "unknown; before 0.5") if cmd == 'biff_dump': xlrd.dump(args[1], unnumbered=options.unnumbered) sys.exit(0) if cmd == 'biff_count': xlrd.count_records(args[1]) sys.exit(0) if cmd == 'version': print("xlrd: %s, from %s" % (xlrd_version, xlrd.__file__)) print("Python:", sys.version) sys.exit(0) if options.logfilename: logfile = LogHandler(open(options.logfilename, 'w')) else: logfile = sys.stdout mmap_opt = options.mmap mmap_arg = xlrd.USE_MMAP if mmap_opt in (1, 0): mmap_arg = mmap_opt elif mmap_opt != -1: print('Unexpected value (%r) for mmap option -- assuming default' % mmap_opt) fmt_opt = options.formatting | (cmd in ('xfc', )) gc_mode = options.gc if gc_mode: gc.disable() for pattern in args[1:]: for fname in glob.glob(pattern): print("\n=== File: %s ===" % fname) if logfile != sys.stdout: logfile.setfileheading("\n=== File: %s ===\n" % fname) if gc_mode == 1: n_unreachable = gc.collect() if n_unreachable: print("GC before open:", n_unreachable, "unreachable objects") if PSYCO: import psyco psyco.full() PSYCO = 0 try: t0 = time.time() bk = xlrd.open_workbook( fname, verbosity=options.verbosity, logfile=logfile, use_mmap=mmap_arg, encoding_override=options.encoding, formatting_info=fmt_opt, on_demand=options.on_demand, ragged_rows=options.ragged_rows, ) t1 = time.time() if not options.suppress_timing: print("Open took %.2f seconds" % (t1-t0,)) except xlrd.XLRDError as e: print("*** Open failed: %s: %s" % (type(e).__name__, e)) continue except KeyboardInterrupt: print("*** KeyboardInterrupt ***") traceback.print_exc(file=sys.stdout) sys.exit(1) except BaseException as e: print("*** Open failed: %s: %s" % (type(e).__name__, e)) traceback.print_exc(file=sys.stdout) continue t0 = time.time() if cmd == 'hdr': bk_header(bk) elif cmd == 'ov': # OverView show(bk, 0) elif cmd == 'show': # all rows show(bk) elif cmd == '2rows': # first row and last row show(bk, 2) elif cmd == '3rows': # first row, 2nd row and last row show(bk, 3) elif cmd == 'bench': show(bk, printit=0) elif cmd == 'fonts': bk_header(bk) show_fonts(bk) elif cmd == 'names': # named reference list show_names(bk) elif cmd == 'name_dump': # named reference list show_names(bk, dump=1) elif cmd == 'labels': show_labels(bk) elif cmd == 'xfc': count_xfs(bk) else: print("*** Unknown command <%s>" % cmd) sys.exit(1) del bk if gc_mode == 1: n_unreachable = gc.collect() if n_unreachable: print("GC post cmd:", fname, "->", n_unreachable, "unreachable objects") if not options.suppress_timing: t1 = time.time() print("\ncommand took %.2f seconds\n" % (t1-t0,)) return None av = sys.argv[1:] if not av: main(av) firstarg = av[0].lower() if firstarg == "hotshot": import hotshot import hotshot.stats av = av[1:] prof_log_name = "XXXX.prof" prof = hotshot.Profile(prof_log_name) # benchtime, result = prof.runcall(main, *av) result = prof.runcall(main, *(av, )) print("result", repr(result)) prof.close() stats = hotshot.stats.load(prof_log_name) stats.strip_dirs() stats.sort_stats('time', 'calls') stats.print_stats(20) elif firstarg == "profile": import cProfile av = av[1:] cProfile.run('main(av)', 'YYYY.prof') import pstats p = pstats.Stats('YYYY.prof') p.strip_dirs().sort_stats('cumulative').print_stats(30) elif firstarg == "psyco": PSYCO = 1 main(av[1:]) else: main(av)
[ "naveenkonam@gmail.com" ]
naveenkonam@gmail.com
33a102440c5c223b71051fb2300c6a994629c3cc
0e7af30dd1cecd193b81224360011758fe153e35
/Code/warp_testing.py
9465f0ec968da42be821eb0a3fb0095f3895972c
[]
no_license
chittojnr/360VideoTruckCam
ad329c71db8fe5680361e3326343d5d456d48c2b
1ffdee7dbfa2eec7e0234ce39cdec0c54aa73e87
refs/heads/master
2023-03-24T06:48:51.569267
2018-06-08T09:03:09
2018-06-08T09:03:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,126
py
# -*- coding: utf-8 -*- """ Created on Wed Feb 28 03:23:43 2018 @author: Etcyl """ # -*- coding: utf-8 -*- # USAGE # python realtime_stitching.py # import the necessary packages from imutils.video import VideoStream import datetime import imutils import cv2 import numpy as np H = np.matrix('0.7494203, 0.0063932, 118.9597; -0.156886, 0.9848, 2.9166; -0.000986577, 0.0002825271, 1') # initialize the video streams and allow them to warmup print("[INFO] starting cameras...") leftStream = VideoStream(0).start() rightStream = VideoStream(1).start() #second_right = VideoStream(2).start() while True: imageB=leftStream.read() imageA=rightStream.read() #s_right=second_right.read() imageB=imutils.resize(imageB, width=400) imageA=imutils.resize(imageA, width=400) #s_right=imutils.resize(s_right, width=400) #result=stitcher.stitch([right, s_right]) #result=stitcher.stitch([left, right]) #result1=stitcher.stitch([left, result]) #h_mtx = stitcher.H #B should be from the left frame result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0])) result2 = cv2.warpPerspective(imageB, H, (imageB.shape[1] + imageA.shape[1], imageB.shape[0])) result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB if result is None: print("[INFO] homography could not be computed") break timestamp=datetime.datetime.now() ts=timestamp.strftime("%A %d %B %Y %I:%M:%S%p") cv2.putText(result, ts, (10, result.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1) cv2.putText(result2, ts, (10, result2.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1) cv2.imshow("Combined", result) cv2.imshow("Left frame", imageB) cv2.imshow("Right frame", imageA) # cv2.imshow("Second right frame", s_right) cv2.imshow("Warped left", result2) key = cv2.waitKey(1) & 0xFF if key==ord("q"): break print("[INFO] cleaning up...") cv2.destroyAllWindows() leftStream.stop() rightStream.stop() #second_right.stop()
[ "noreply@github.com" ]
chittojnr.noreply@github.com
724e56efe7cac39f00bc8a77242a56c6ad487a42
1eff1347aa8d7f36b71a4145c28d674036514d1a
/page/home.py
aeac96595c54a9fdaac66bdb97887bda1a5a4c7f
[]
no_license
laoji888/automated_testing
84b6f8616476257eb4668756afaf7fa82b0611b9
fcc813bda079293a5041724de36babaa2b7f9a0e
refs/heads/master
2021-01-05T02:47:25.702181
2020-03-27T15:05:22
2020-03-27T15:05:22
240,850,558
0
0
null
null
null
null
UTF-8
Python
false
false
1,689
py
from selenium import webdriver from common.ui_base import base from time import sleep class Home(base): def element(self, rows): """ 获取元素信息 :param rows: 元素信息所在的行(索引) :return: """ element = self.element_info("elements/csms_elements.xlsx", 0, rows, clos=1, ty=1) return element def login(self, name, pwd): """ 登录到csms :param name: 用户名 :param pwd: 密码 :return: """ self.open() self.send_keys(name, *self.element(0)) self.send_keys(pwd, *self.element(1)) self.find_element_click(*self.element(2)) def log_in_again(self, name, pwd): """ 在登录状态下重新登录 :param name: 用户名 :param pwd: 密码 :return: """ self.action_chains(*self.element(6)) self.action_chains(*self.element(4)) self.find_element_click(*self.element(5)) self.send_keys(name, *self.element(0)) self.send_keys(pwd, *self.element(1)) self.find_element_click(*self.element(2)) # 进入工作台 def enter_workbench(self): """ 登录后进入工作台 :return: """ self.find_element_click(*self.element(7)) def enter_Recruitment_management(self): """ 鼠标悬停到合作伙伴管理后点击招募管理 :return: """ self.action_chains(*self.element(8)) self.find_element_click(*self.element(9)) sleep(2) self.action_chains(*self.element(10)) self.find_element_click(*self.element(10))
[ "xztlaoji@163.com" ]
xztlaoji@163.com
171dc773c6e37191ecd6ac776dd6d79d45cc3742
469d509e41858c31cd06df4668b430a7fd618acd
/joonas/089.py
97857927692755cc1d86475e83238209e20d004e
[]
no_license
joonas-yoon/ps4ct
a1d4a01da8804c72aeab56b5334d58ffe23f8913
2dab68e9dafc6fed33cb18c96a6c23985a17597d
refs/heads/main
2023-07-25T07:54:51.198751
2021-08-30T12:22:16
2021-08-30T12:22:16
323,814,120
0
0
null
2021-05-20T03:31:39
2020-12-23T05:46:43
C++
UTF-8
Python
false
false
165
py
def solution(n): k = 1 a = [] while n >= k: n -= k a.insert(0, 2 ** ((n % (3 * k)) // k)) k *= 3 return ''.join(map(str, a))
[ "joonas.yoon@gmail.com" ]
joonas.yoon@gmail.com
8dcb81a59cf89ec26f6c9dd5cec4de00091d8eea
9454c33413acdb78097f6c57dda145bbfba2d252
/test_rpg.py
5cc9a8a1181a5c46fbf150c2e82dee395a5ddf96
[]
no_license
eximius8/knight-game
43b1d5939e78ce950db0215d59183714544fcb67
44bba2234522cb8376707fcea2e1d942418ef509
refs/heads/master
2023-07-08T23:27:20.336499
2021-08-09T06:29:34
2021-08-09T06:29:34
384,995,550
0
0
null
2021-08-09T06:29:35
2021-07-11T16:16:34
Python
UTF-8
Python
false
false
2,170
py
import unittest from unittest import TestCase from unittest.mock import patch import importlib rpg = importlib.import_module("main") class RpgTestCase(TestCase): """Юнит тест для домашнего задания 1.""" def setUp(self) -> None: """Начальные условия для тестов.""" self.input = "" self.victory_count = 0 self.fail_count = 0 def fake_io_with_asserts(self, *args): """Обработка print() и input() в программе с проверками результата.""" last_io = "".join(args) if "БОЙ" in last_io: self.input = "1" elif "МЕЧ" in last_io: self.input = "2" elif "ПОБЕДА" in last_io: self.assertEqual(rpg.monster_counter, 10) self.assertTrue(rpg.hp > 0) self.victory_count += 1 self.input = "\n" elif "ПОРАЖЕНИЕ" in last_io: self.assertTrue(rpg.monster_counter < 10) self.assertTrue(rpg.hp <= 0) self.fail_count += 1 self.input = "\n" else: self.input = "\n" return last_io def test_game_e2e(self): """Тест, выполняющий полностью прохождение игры.""" with patch("builtins.print", new=self.fake_io_with_asserts): with patch("builtins.input", side_effect=lambda _: self.input): with self.assertRaises(SystemExit): rpg.game() def test_game_e2e_until_at_least_one_victory(self): """Тест, проверяющий что в игру возможно когда-нибудь выиграть.""" with patch("builtins.print", new=self.fake_io_with_asserts): with patch("builtins.input", side_effect=lambda _: self.input): while self.victory_count == 0: with self.assertRaises(SystemExit): rpg.game() self.assertEqual(self.victory_count, 1) if __name__ == "__main__": unittest.main()
[ "mikhail.trunov@gmail.com" ]
mikhail.trunov@gmail.com
350f79b305a537f68059e5788baf3ab821036519
b888846d0c3f0451f04887a761cb823a881b3dc7
/.py
077cb2daaa76cdf9b20cbb8a88c85fa73ebdf7e4
[]
no_license
bjamalbasha/dmart
5a5373f3e793cf63338b32818d74620c1e16179b
de5c12629de0a47733dc189de7c8cd98bbb8ae58
refs/heads/master
2021-01-13T02:14:58.445190
2015-01-29T07:34:45
2015-01-29T07:34:45
30,008,104
0
0
null
null
null
null
UTF-8
Python
false
false
35
py
d={'a':1,'b':2,'a':3} print d['a']
[ "bjamalbasha121@gmail.com" ]
bjamalbasha121@gmail.com
9bae511953f0571839bde0acc0198b67814e55d2
77796d2d4e1fd931ef57620ac27a97cfd30158e5
/Python_Elasticsearch_Bulk_With_Geo.py
03ef0769db4a06d5cedd6ba04a8b958ff20403d1
[]
no_license
florenefeyzi/Elastic_with_python
d8ac3a0748370e1b7e498d8206f7f8629488afef
4fbf0cf45523d7de068fb370c2fe590426ab6228
refs/heads/master
2023-03-20T19:21:58.306814
2019-05-20T07:10:49
2019-05-20T07:10:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,072
py
from elasticsearch import Elasticsearch from elasticsearch import helpers import json import time, datetime import os # es = Elasticsearch(['192.168.16.246:9200'], timeout=60, retry_on_timeout=True) es = Elasticsearch(['192.168.2.12:9200'], timeout=60, retry_on_timeout=True) request_body = { "mappings": { "_doc": { "properties": { "USE_DT": { "type": "date" }, "location": { "type": "geo_point" } # "dest_port": { # "type": "text" # } } } } } if __name__ == "__main__": # res = es.indices.delete(index='seoul-metro-passenger-geo2') es.indices.create(index='seoul-metro-passenger-geo', body=request_body) es_data = [] if es is not None: path_to_json = '/home/data/ressssssssssssssssss' json_files = [pos_json for pos_json in os.listdir(path_to_json) if pos_json.endswith('.json')] for file in json_files: es_data = [] with open(os.path.join(path_to_json, file), "r") as fr: a = fr.readlines() for i in a: data = json.loads(i) if 'xpoint_wgs' not in data or 'ypoint_wgs' not in data: continue data['location'] = { 'lat': float(data['xpoint_wgs']), 'lon': float(data['ypoint_wgs']) } action = {"_index": "seoul-metro-passenger-geo", "_type": "_doc", '_source': data} es_data.append(action) if len(es_data) > 500: helpers.bulk(es, es_data, stats_only=False) es_data = [] if len(es_data) > 0: helpers.bulk(es, es_data, stats_only=False)
[ "Yu.david880@gmail.com" ]
Yu.david880@gmail.com
4e36113442dabd353a6e1e7392f30fd0253a1c08
dc3f5701727d5623b3cfd9f8277b08c864925b7f
/working_with_files.py
864b7256a7aa13dd0465204c576ed8e7b2c0d767
[]
no_license
kurskovp/cook_book
da051441d80938a471db0210d7a27e52cb2d864d
bcefb43ee8c7b9690fd275cff502303099b72202
refs/heads/master
2023-03-25T17:38:58.115408
2021-03-26T10:28:15
2021-03-26T10:28:15
351,729,777
0
0
null
null
null
null
UTF-8
Python
false
false
1,302
py
# Задание №3 my_file1 = open('text_1.txt', 'r') content1 = my_file1.readlines() print(f'Количество строк в файле1 - {len(content1)}') my_file2 = open('text_2.txt','r') content2 = my_file2.readlines( ) print(f'Количество строк в файле2 - {len(content2)}') my_file3 = open('text_3.txt','r') content3 = my_file3.readlines( ) print(f'Количество строк в файле3 - {len(content3)}') my_file1.close() my_file2.close() my_file3.close() # f = open('text_4.txt') in_file = open('text_2.txt', 'r',) indata = in_file.read() out_file = open('text_4.txt', 'w', encoding='UTF-8') out_file.write(indata + '\n') out_file.close() in_file.close() in_file = open('text_1.txt', 'r',) indata = in_file.read() out_file = open('text_4.txt', 'a', encoding='UTF-8') out_file.write(indata + '\n') out_file.close() in_file.close() in_file = open('text_3.txt', 'r',) indata = in_file.read() out_file = open('text_4.txt', 'a', encoding='UTF-8') out_file.write(indata + '\n') out_file.close() in_file.close() print() in_file = open('text_4.txt', 'r') indata = in_file.read() print(indata) in_file.close() # Второе условие к заданию не смог понять как сделать, Через какую функцию....
[ "kurskovp@gmail.com" ]
kurskovp@gmail.com
61db38c6fff5ec768e392047ba9405acbc49c1da
ebd66a708457ed11c1063bd596727a5fd8c93d02
/Notepad++/小红书:最长不降子序列.py
7ef7d2913239d810955011cc599e79daaa2bb7b3
[]
no_license
lovewyy/exam
f53647b2640b6d83326c8b77393f794e08845b41
f8e30e944110d3b21e8477769cf218879cbdd65b
refs/heads/master
2020-07-22T03:58:49.126161
2019-09-24T13:23:23
2019-09-24T13:23:23
207,066,681
0
0
null
null
null
null
UTF-8
Python
false
false
612
py
import sys n = int(sys.stdin.readline().strip()) a = [] for i in range(n): line = sys.stdin.readline().strip() a.append(list(map(int, line.split()))) def func1(a): return a[1] def func0(a): return a[0] a.sort(key = func1) print(a) a.sort(key = func0) print(a) b = [] for i in range(n): b.append(a[i][1]) print(b) b = [3, 2, 2, 1, 5] # 改变了B print(b) dp = [1 for _ in range(len(b))] for i in range(len(b)): for j in range(i): if b[i] >= b[j]: dp[i] = max(dp[i], dp[j] + 1) else: dp[i] = dp[j] print(dp) print(dp[-1])
[ "lxclxc@126.com" ]
lxclxc@126.com
6dba52157f9423fcce1040d984617cb4c4384391
760f612846c3c1f4cf8ccff929f93f469c993974
/IAM/req.py
0674695629581950b765305deb5f0da3f03c4829
[]
no_license
keni-chi/AWS
da943b740f425c9ea0decb466eee1f90fb0479c7
cf5f89300fe29124bad6a0cfeb1b55bbb3943084
refs/heads/master
2022-12-13T23:47:35.043833
2022-12-02T14:29:08
2022-12-02T14:29:08
165,391,253
1
0
null
null
null
null
UTF-8
Python
false
false
920
py
import requests import json from aws_requests_auth.aws_auth import AWSRequestsAuth # STSToken response = {"Credentials": {"AccessKeyId": "XXXXXXXX"}} credentials = response['Credentials'] # request info aws_host = 'XXXXXXXX.execute-api.ap-northeast-1.amazonaws.com' url = 'https://' + aws_host + '/prod/functionA-1' body_dict = {"k": "v"} # execute auth = AWSRequestsAuth(aws_access_key=credentials['AccessKeyId'], aws_secret_access_key=credentials['SecretAccessKey'], aws_host=aws_host, aws_region='ap-northeast-1', aws_service='execute-api') headers = {'x-amz-security-token':credentials['SessionToken']} body = json.dumps(body_dict) # res = requests.get(url, auth=auth, headers=headers) res = requests.post(url, data=body, auth=auth, headers=headers) print("code: " + str(res.status_code) print("content: " + res.text)
[ "neko9dog9access@gmail.com" ]
neko9dog9access@gmail.com
529df2d660f2c0c964cbbcdc35d016c7da8030ef
a66b31a9de7def4de6b26ea705617fbb412dadb0
/COVID_19 detection/BERT/run_classifier.py
cc061cad00dfd025b743d503132841b9b61160c5
[]
no_license
PHISSTOOD/COVID-19-rummor-detection
6e471c9ced78b9131c5cd4b868de229f67922b69
3cb6b1034a108d7b778bfb7c67ce659b8468a0a9
refs/heads/master
2022-07-21T16:56:02.822888
2020-05-17T15:30:38
2020-05-17T15:30:38
264,697,206
0
0
null
null
null
null
UTF-8
Python
false
false
31,152
py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning runner.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import os import modeling import optimization import tokenization import tensorflow as tf flags = tf.flags FLAGS = flags.FLAGS ## Required parameters flags.DEFINE_string( "data_dir", "C:\\Users\\PHISSTOOD\\Desktop\\Machine Learning\\Bert_data\\", "The input data dir. Should contain the .tsv files (or other data files) " "for the task.") flags.DEFINE_string( "bert_config_file", "C:\\Users\\PHISSTOOD\\Desktop\\Machine Learning\\Bert\\google\\bert_config.json", "The config json file corresponding to the pre-trained BERT model. " "This specifies the model architecture.") flags.DEFINE_string("task_name", "rumor", "The name of the task to train.") flags.DEFINE_string("vocab_file", "C:\\Users\\PHISSTOOD\\Desktop\\Machine Learning\\Bert\\google\\vocab.txt", "The vocabulary file that the BERT model was trained on.") flags.DEFINE_string( "output_dir", "C:\\Users\\PHISSTOOD\\Desktop\\Machine Learning\\Bert_data\\output\\", "The output directory where the model checkpoints will be written.") ## Other parameters flags.DEFINE_string( "init_checkpoint", "C:\\Users\\PHISSTOOD\\Desktop\\Machine Learning\\Bert\\google\\bert_model.ckpt", "Initial checkpoint (usually from a pre-trained BERT model).") flags.DEFINE_bool( "do_lower_case", True, "Whether to lower case the input text. Should be True for uncased " "models and False for cased models.") flags.DEFINE_integer( "max_seq_length", 128, "The maximum total input sequence length after WordPiece tokenization. " "Sequences longer than this will be truncated, and sequences shorter " "than this will be padded.") flags.DEFINE_bool("do_train", True, "Whether to run training.") flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.") flags.DEFINE_bool( "do_predict", True, "Whether to run the model in inference mode on the test set.") flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.") flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.") flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.") flags.DEFINE_float("learning_rate", 1e-5, "The initial learning rate for Adam.") flags.DEFINE_float("num_train_epochs", 3.0, "Total number of training epochs to perform.") flags.DEFINE_float( "warmup_proportion", 0.1, "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.") flags.DEFINE_integer("save_checkpoints_steps", 1000, "How often to save the model checkpoint.") flags.DEFINE_integer("iterations_per_loop", 1000, "How many steps to make in each estimator call.") flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.") tf.flags.DEFINE_string( "tpu_name", None, "The Cloud TPU to use for training. This should be either the name " "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 " "url.") tf.flags.DEFINE_string( "tpu_zone", None, "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string( "gcp_project", None, "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer( "num_tpu_cores", 8, "Only used if `use_tpu` is True. Total number of TPU cores to use.") class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class PaddingInputExample(object): """Fake example so the num input examples is a multiple of the batch size. When running eval/predict on the TPU, we need to pad the number of examples to be a multiple of the batch size, because the TPU requires a fixed batch size. The alternative is to drop the last batch, which is bad because it means the entire output data won't be generated. We use this class instead of `None` because treating `None` as padding battches could cause silent errors. """ class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id, is_real_example=True): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id self.is_real_example = is_real_example class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for prediction.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with tf.gfile.Open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=None) lines = [] for line in reader: lines.append(line) return lines class RumorProcessor(DataProcessor): """ Rumor data processor """ def _read_csv(self, data_dir, file_name): with tf.gfile.Open(data_dir + file_name, "r") as f: reader = csv.reader(f, delimiter=",", quotechar=None) lines = [] for line in reader: lines.append(line) return lines def get_train_examples(self, data_dir): lines = self._read_csv(data_dir, "train.csv") examples = [] for (i, line) in enumerate(lines): guid = "train-%d" % (i) text_a = tokenization.convert_to_unicode(line[0]) label = tokenization.convert_to_unicode(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, label=label)) return examples def get_dev_examples(self, data_dir): lines = self._read_csv(data_dir, "dev.csv") examples = [] for (i, line) in enumerate(lines): guid = "dev-%d" % (i) text_a = tokenization.convert_to_unicode(line[0]) label = tokenization.convert_to_unicode(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, label=label)) return examples def get_test_examples(self, data_dir): lines = self._read_csv(data_dir, "test.csv") examples = [] for (i, line) in enumerate(lines): guid = "test-%d" % (i) text_a = tokenization.convert_to_unicode(line[0]) label = tokenization.convert_to_unicode(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, label=label)) return examples def get_labels(self): return ["0", "1"] def convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer): """Converts a single `InputExample` into a single `InputFeatures`.""" if isinstance(example, PaddingInputExample): return InputFeatures( input_ids=[0] * max_seq_length, input_mask=[0] * max_seq_length, segment_ids=[0] * max_seq_length, label_id=0, is_real_example=False) label_map = {} for (i, label) in enumerate(label_list): label_map[label] = i tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:(max_seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length label_id = label_map[example.label] if ex_index < 5: tf.logging.info("*** Example ***") tf.logging.info("guid: %s" % (example.guid)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) tf.logging.info("label: %s (id = %d)" % (example.label, label_id)) feature = InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id, is_real_example=True) return feature def file_based_convert_examples_to_features( examples, label_list, max_seq_length, tokenizer, output_file): """Convert a set of `InputExample`s to a TFRecord file.""" writer = tf.python_io.TFRecordWriter(output_file) for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: tf.logging.info("Writing example %d of %d" % (ex_index, len(examples))) feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer) def create_int_feature(values): f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) return f features = collections.OrderedDict() features["input_ids"] = create_int_feature(feature.input_ids) features["input_mask"] = create_int_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) features["label_ids"] = create_int_feature([feature.label_id]) features["is_real_example"] = create_int_feature( [int(feature.is_real_example)]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) writer.close() def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([], tf.int64), "is_real_example": tf.FixedLenFeature([], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. d = tf.data.TFRecordDataset(input_file) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) d = d.apply( tf.contrib.data.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, drop_remainder=drop_remainder)) return d return input_fn def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, labels, num_labels, use_one_hot_embeddings): """Creates a classification model.""" model = modeling.BertModel( config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) # In the demo, we are doing a simple classification task on the entire # segment. # # If you want to use the token-level output, use model.get_sequence_output() # instead. output_layer = model.get_pooled_output() hidden_size = output_layer.shape[-1].value output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, logits, probabilities) def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] label_ids = features["label_ids"] is_real_example = None if "is_real_example" in features: is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32) else: is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32) is_training = (mode == tf.estimator.ModeKeys.TRAIN) (total_loss, per_example_loss, logits, probabilities) = create_model( bert_config, is_training, input_ids, input_mask, segment_ids, label_ids, num_labels, use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(per_example_loss, label_ids, logits, is_real_example): predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example) return { "eval_accuracy": accuracy, "eval_loss": loss, } eval_metrics = (metric_fn, [per_example_loss, label_ids, logits, is_real_example]) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, eval_metrics=eval_metrics, scaffold_fn=scaffold_fn) else: output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions={"probabilities": probabilities}, scaffold_fn=scaffold_fn) return output_spec return model_fn # This function is not used by this file but is still used by the Colab and # people who depend on it. def input_fn_builder(features, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" all_input_ids = [] all_input_mask = [] all_segment_ids = [] all_label_ids = [] for feature in features: all_input_ids.append(feature.input_ids) all_input_mask.append(feature.input_mask) all_segment_ids.append(feature.segment_ids) all_label_ids.append(feature.label_id) def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. d = tf.data.Dataset.from_tensor_slices({ "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32), "label_ids": tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32), }) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder) return d return input_fn # This function is not used by this file but is still used by the Colab and # people who depend on it. def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer): """Convert a set of `InputExample`s to a list of `InputFeatures`.""" features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: tf.logging.info("Writing example %d of %d" % (ex_index, len(examples))) feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer) features.append(feature) return features def main(_): tf.logging.set_verbosity(tf.logging.INFO) processors = { "rumor": RumorProcessor, } tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, FLAGS.init_checkpoint) if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict: raise ValueError( "At least one of `do_train`, `do_eval` or `do_predict' must be True.") bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) tf.gfile.MakeDirs(FLAGS.output_dir) task_name = FLAGS.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() label_list = processor.get_labels() tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) tpu_cluster_resolver = None if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, master=FLAGS.master, model_dir=FLAGS.output_dir, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host)) train_examples = None num_train_steps = None num_warmup_steps = None if FLAGS.do_train: train_examples = processor.get_train_examples(FLAGS.data_dir) num_train_steps = int( len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) model_fn = model_fn_builder( bert_config=bert_config, num_labels=len(label_list), init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_tpu) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, predict_batch_size=FLAGS.predict_batch_size) if FLAGS.do_train: train_file = os.path.join(FLAGS.output_dir, "train.tf_record") file_based_convert_examples_to_features( train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) if FLAGS.do_eval: eval_examples = processor.get_dev_examples(FLAGS.data_dir) num_actual_eval_examples = len(eval_examples) if FLAGS.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. These do NOT count towards the metric (all tf.metrics # support a per-instance weight, and these get a weight of 0.0). while len(eval_examples) % FLAGS.eval_batch_size != 0: eval_examples.append(PaddingInputExample()) eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record") file_based_convert_examples_to_features( eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(eval_examples), num_actual_eval_examples, len(eval_examples) - num_actual_eval_examples) tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) # This tells the estimator to run through the entire set. eval_steps = None # However, if running eval on the TPU, you will need to specify the # number of steps. if FLAGS.use_tpu: assert len(eval_examples) % FLAGS.eval_batch_size == 0 eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size) eval_drop_remainder = True if FLAGS.use_tpu else False eval_input_fn = file_based_input_fn_builder( input_file=eval_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=eval_drop_remainder) result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps) output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") with tf.gfile.GFile(output_eval_file, "w") as writer: tf.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if FLAGS.do_predict: predict_examples = processor.get_test_examples(FLAGS.data_dir) num_actual_predict_examples = len(predict_examples) if FLAGS.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. while len(predict_examples) % FLAGS.predict_batch_size != 0: predict_examples.append(PaddingInputExample()) predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record") file_based_convert_examples_to_features(predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file) tf.logging.info("***** Running prediction*****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(predict_examples), num_actual_predict_examples, len(predict_examples) - num_actual_predict_examples) tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_drop_remainder = True if FLAGS.use_tpu else False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) result = estimator.predict(input_fn=predict_input_fn) output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv") with tf.gfile.GFile(output_predict_file, "w") as writer: num_written_lines = 0 tf.logging.info("***** Predict results *****") for (i, prediction) in enumerate(result): probabilities = prediction["probabilities"] if i >= num_actual_predict_examples: break output_line = "\t".join( str(class_probability) for class_probability in probabilities) + "\n" writer.write(output_line) num_written_lines += 1 assert num_written_lines == num_actual_predict_examples if __name__ == "__main__": flags.mark_flag_as_required("data_dir") flags.mark_flag_as_required("task_name") flags.mark_flag_as_required("vocab_file") flags.mark_flag_as_required("bert_config_file") flags.mark_flag_as_required("output_dir") tf.app.run()
[ "noreply@github.com" ]
PHISSTOOD.noreply@github.com
7cecbeb3415d3934da46d952c6e585cd3932209e
da3e1c0a01c290593d9f6d378a5fb41e0cf0b237
/Scripts/remove_duplicate.py
d2c7e667179c80091759af0a9145d17611261e8b
[]
no_license
phsiao91/python_learning
32741ae623e3d7b4ff8a0328e3ad1af596dcac81
216e7b22cb649aba9ea60c0cbe486b145764c692
refs/heads/master
2023-05-14T16:15:56.254399
2021-06-08T23:46:55
2021-06-08T23:46:55
332,631,639
0
0
null
null
null
null
UTF-8
Python
false
false
161
py
numbers = [2, 6, 16, 8, 31, 41, 24, 6, 8, 45, 21] uniques = [] for number in numbers: if number not in uniques: uniques.append(number) print(uniques)
[ "phinganhsiao@gmail.com" ]
phinganhsiao@gmail.com
a3d53c5c1f2d259358462eef485a49d3241f9904
c3c996a134b0ab475f363c1bf644c9b6cecec42e
/leetcode/longest_substring_no_repeats.py
d41d5a0ebef9893cd442d68e6305f6710ac8758b
[]
no_license
alexinkc/prog-problems
7ed424a3ce7ec5cf4f653a93a30e878e6e78a643
81d46d742e61215b90aee6865dc57ad622ef516c
refs/heads/master
2021-08-29T22:17:34.835624
2017-12-15T05:16:38
2017-12-15T05:16:38
114,326,756
0
0
null
null
null
null
UTF-8
Python
false
false
1,258
py
class Solution(object): """ find the longest unique character substring in the string s. time complexity: O(n) maintain a sliding range from i to j. Assume a longest substring from s[i]..s[j]. Store each character as a key in a dict, with its respective value being its index in the string. For s[j+1], two outcomes are possible: 1. The character is unique and not in the dict. increment j 2. the character is in the dict. take the max(i, dict[s[j+1]]) to find the correct i Take the max of the maxLen value max(max, j-i+1) store char in dict: dict[s[j+1]] = j+1 """ @classmethod def length_of_longest_substring(cls, given_str): """ :type s: str :rtype: int """ max_len = 0 start = 0 letters = {} for j, char in enumerate(given_str): if given_str[j] in letters: if start < letters[given_str[j]]: start = letters[given_str[j]] if max_len < j - start + 1: max_len = j - start + 1 letters[given_str[j]] = j + 1 return max_len if __name__ == '__main__': SAMPLE = "pwwkew" print(Solution.length_of_longest_substring(SAMPLE))
[ "alexmclaurian@gmail.com" ]
alexmclaurian@gmail.com
39d16424c56d0f0764dbf16f4320096eecf18022
eb84cb547ce9a43c5f2c7989bba84b6d74f3529e
/python/TTT/Players/minimax.py
5a7eb2e8c0489cc69677a4820a6625b5f2ab75b8
[]
no_license
Keitling/algorithms
6a92b2dde68d717c03d9b1f4e29091124ef8318e
ad38a0341a37e7576b9ca014458f4cd24a5e2f85
refs/heads/master
2023-08-13T22:26:43.758938
2021-10-15T00:39:21
2021-10-15T00:39:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,235
py
""" Minimax Tic-Tac-Toe player. """ import sys sys.path.append('../GameLogic') import gamelogic as provided name = "Minimax" # SCORING VALUES SCORES = {provided.PLAYERX: 1, provided.DRAW: 0, provided.PLAYERO: -1} def move_mm(board, player, trials=None): """ Make a move on the board. """ score = board.check_win() if score is not None: return SCORES[score], (-1, -1) else: moves = board.get_empty_squares() compare = -2 best_move = (-1, -1) best_score = -2 for amove in moves: new_board = board.clone() new_board.move(amove[0], amove[1], player) result = move_mm(new_board, provided.switch_player(player)) value = result[0] * SCORES[player] if value > 0: return result[0], amove else: if value > compare: compare = value best_score = result[0] best_move = amove return best_score, best_move def move(board, player, trials=None): """ Wrapper for move_mm. This function is what is called by other modules. """ return move_mm(board, player)[1]
[ "nemesis4go10@hotmail.com" ]
nemesis4go10@hotmail.com
9db1b1956d09e1f8786b792370c44b29fba8a2e2
6efdf80d8075b5d3fc95046307a23fbf0f239785
/doc/source/conf.py
62bf9866c6266839fd9f64e12db2f84369b40c33
[ "Apache-2.0" ]
permissive
Wilbert-Zhang/nuclei-sdk
2e962be3219339f5e55d84b80a2cefbccda94ce0
74efdfb054a5d057e12609fd7fd9368e319eb6ef
refs/heads/master
2021-02-26T20:28:12.484593
2020-03-04T04:01:26
2020-03-04T04:02:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,243
py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'Nuclei SDK' copyright = '2019-Present, Nuclei' author = 'Nuclei' # The short X.Y version version = '0.2.0' # The full version, including alpha/beta/rc tags release = '0.2.0-alpha' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx_rtd_theme', 'breathe', 'sphinx.ext.githubpages', 'sphinx.ext.mathjax', 'recommonmark' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # Show build timestamp html_last_updated_fmt = "" # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' html_logo = 'asserts/images/nsdk_logo_small.png' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_theme_options = { 'logo_only': True, 'navigation_depth': 6 } # -- Options for Breathe Project --------------------------------------------- breathe_projects = { } breathe_default_project = "" breathe_show_define_initializer = True # -- Options for Latex output ------------------------------------------------- latex_logo = 'asserts/images/nsdk_logo_small.png' latex_show_pagerefs = True latex_toplevel_sectioning = 'chapter' latex_show_urls = 'footnote' rst_prolog = """ .. |nuclei_contact| replace:: email support@nucleisys.com .. |NMSIS| replace:: `NMSIS`_ .. _NMSIS: https://github.com/Nuclei-Software/NMSIS .. |nuclei_sdk| replace:: `Nuclei SDK`_ .. _Nuclei SDK: https://github.com/Nuclei-Software/Nuclei-SDK .. |nuclei_download_center| replace:: `Nuclei Download Center`_ .. _Nuclei Download Center: https://nucleisys.com/download.php .. |github| replace:: `Github`_ .. _Github: https://github.com .. |gitee| replace:: `Gitee`_ .. _Gitee: https://gitee.com .. |github_nuclei_sdk| replace:: `Nuclei SDK in Github`_ .. _Nuclei SDK in Github: https://github.com/Nuclei-Software/Nuclei-SDK .. |gitee_nuclei_sdk| replace:: `Nuclei SDK in Gitee`_ .. _Nuclei SDK in Gitee: https://gitee.com/Nuclei-Software/Nuclei-SDK .. |github_nuclei_sdk_release| replace:: `Nuclei SDK Release in Github`_ .. _Nuclei SDK Release in Github: https://github.com/Nuclei-Software/nuclei-sdk/releases .. |teraterm| replace:: `TeraTerm in Windows`` .. _TeraTerm in Windows: http://ttssh2.osdn.jp/ .. |minicom| replace:: ``Minicom in Linux`` .. _Minicom in Linux: https://help.ubuntu.com/community/Minicom """ rst_epilog = """ .. |nuclei_core| replace:: Nuclei N/NX Class Processors .. |nuclei_ncore| replace:: Nuclei N Class Processors .. |nuclei_nxcore| replace:: Nuclei NX Class Processors .. |nmsis_support_cores| replace:: N200, N300, N600, NX600 .. |nmsis_core_defines| replace:: **NUCLEI_N200**, **NUCLEI_N300**, **NUCLEI_N600** or **NUCLEI_NX600** """ # -- Extension configuration ------------------------------------------------- def setup(app): app.add_css_file("css/custom.css")
[ "hqfang@nucleisys.com" ]
hqfang@nucleisys.com
95700aac6a23dba1d2ff5e33b581cf34c47ca05d
c91085f8311d5327f7256849a573e7923a729abd
/html/0090_code/util2.py
5eb3384c81d8112cfbc3f2640b5bf68f7ff99b45
[]
no_license
yuichi110/www.yuichi.com-python
59903bd76b5ef70451377839f029618f5bb4b51c
440b11e27248bf775f30dde9b6abe0e62ea10e7a
refs/heads/master
2020-06-16T14:31:58.465782
2018-03-11T11:58:41
2018-03-11T11:58:41
94,149,071
0
1
null
null
null
null
UTF-8
Python
false
false
36
py
def test(): print('test') test()
[ "yito86@gmail.com" ]
yito86@gmail.com
21470e9f54e3cb8b265549e85b3b6baecb59c5dd
9f25ac38773b5ccdc0247c9d43948d50e60ab97a
/content/test/gpu/gpu_tests/webcodecs_integration_test.py
6c42350ca65144ca9068a34c2a66514213254bdc
[ "BSD-3-Clause" ]
permissive
liang0/chromium
e206553170eab7b4ac643ef7edc8cc57d4c74342
7a028876adcc46c7f7079f894a810ea1f511c3a7
refs/heads/main
2023-03-25T05:49:21.688462
2021-04-28T06:07:52
2021-04-28T06:07:52
362,370,889
1
0
BSD-3-Clause
2021-04-28T07:04:42
2021-04-28T07:04:41
null
UTF-8
Python
false
false
2,060
py
# Copyright 2021 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import sys import time from gpu_tests import gpu_integration_test from gpu_tests import path_util data_path = os.path.join(path_util.GetChromiumSrcDir(), 'content', 'test', 'data', 'gpu', 'webcodecs') class WebCodecsIntegrationTest(gpu_integration_test.GpuIntegrationTest): @classmethod def Name(cls): return 'webcodecs' @classmethod def GenerateGpuTests(cls, options): yield ('WebCodecs_EncodeDecodeRender_h264_baseline', 'encode-decode-render.html', ('{ codec : "avc1.42001E" }')) yield ('WebCodecs_EncodeDecodeRender_vp8', 'encode-decode-render.html', ('{ codec : "vp8" }')) yield ('WebCodecs_EncodeDecodeRender_vp9', 'encode-decode-render.html', ('{ codec : "vp09.00.10.08" }')) def RunActualGpuTest(self, test_path, *args): url = self.UrlOfStaticFilePath(test_path) tab = self.tab arg_obj = args[0] tab.Navigate(url) tab.action_runner.WaitForJavaScriptCondition( 'document.readyState == "complete"', timeout=5) tab.EvaluateJavaScript('TEST.run(' + str(arg_obj) + ')') tab.action_runner.WaitForJavaScriptCondition('TEST.finished', timeout=60) if not tab.EvaluateJavaScript('TEST.success'): self.fail('Test failure:' + tab.EvaluateJavaScript('TEST.summary()')) @classmethod def SetUpProcess(cls): super(WebCodecsIntegrationTest, cls).SetUpProcess() cls.CustomizeBrowserArgs(['--enable-blink-features=WebCodecs']) cls.StartBrowser() cls.SetStaticServerDirs([data_path]) @classmethod def ExpectationsFiles(cls): return [ os.path.join(os.path.dirname(os.path.abspath(__file__)), 'test_expectations', 'webcodecs_expectations.txt') ] def load_tests(loader, tests, pattern): del loader, tests, pattern # Unused. return gpu_integration_test.LoadAllTestsInModule(sys.modules[__name__])
[ "chromium-scoped@luci-project-accounts.iam.gserviceaccount.com" ]
chromium-scoped@luci-project-accounts.iam.gserviceaccount.com
2699df5e343f682772b4e50daf6a2313b2858c4a
429b1905ec09b4f3b1b640c64800286bc5bdd921
/single-server.py
d87c314e9027742938813b5869c1e067ffde6454
[]
no_license
hariton594/web
57bd7b3032f3a5d4463a78dbd41baf5d400be159
072de8178b9963a663ba6387ef4c5c21cfb91f24
refs/heads/master
2021-01-10T11:33:23.458248
2016-03-16T17:31:36
2016-03-16T17:31:36
53,646,057
0
0
null
null
null
null
UTF-8
Python
false
false
736
py
import socket s = socket.socket() s.bind(('', 2222)) s.listen(1) conn, addr = s.accept() while True: data = conn.recv(1024) if data=='close' : break conn.send(data) conn.close()
[ "hariton_stas@mail.ru" ]
hariton_stas@mail.ru
82c0016fbcb397cc07b5f736ecc9521a7addc969
1361d634b8f5eeb060b0a25dada9e0d4d584beb6
/generate.py
31b85138277f0773c596b736acf5955f88cd7f08
[ "MIT" ]
permissive
overskylab/python-auth_roundcube
5cee0fb74baf659f357d6cc6b823a07877c21718
f3af887c6717d45f1b7c5951d2ac91434ab40454
refs/heads/master
2021-01-11T07:16:19.967941
2016-11-03T07:10:21
2016-11-03T07:10:21
72,516,549
0
0
null
null
null
null
UTF-8
Python
false
false
2,188
py
#!/usr/bin/python from datetime import datetime, timedelta import random, string, os class Generate: def __init__(self): self.title = 'This class to generate password as your need' def password(self, length=6, special=0): if special == 1: chars = string.ascii_letters + string.digits + '!@#$%^&*()' else: chars = string.ascii_letters + string.digits random.seed = (os.urandom(1024)) password = ''.join(random.choice(chars) for i in range(length)) return password class vb_script: user_list = [] def __init__(self): self.title = 'This class to generate excel vb script' self.code = '' def add_user(self, username, password): credential = {'username': username, 'password': password} self.user_list.append(credential) def gen_script(self, priviledge): code = \ ''' Private Sub Workbook_Open() Dim Edate As Date ''' if priviledge == 1: # For postmaster time_result = datetime.now() + timedelta(days=+7) else: # For user time_result = datetime.now() + timedelta(days=+5) time_result = time_result.strftime("%d/%m") code += ' Edate = Format("'+time_result+'", "DD/MM")' code += \ ''' If Date > Edate Then MsgBox ("This worksheet was valid upto " & Format(Edate, "dd-mmm") & " and will be closed") ActiveWorkbook.Close savechanges:=False End If If Edate - Date < 30 Then MsgBox ("This worksheet expires on " & Format(Edate, "dd-mmm") & " You have " & Edate - Date & " Days left ") ''' for i in range (len(self.user_list)): code += ' Range("B'+str(i+3)+'").value = "'+self.user_list[i]['username']+'"'+"\n" code += ' Range("C'+str(i+3)+'").value = "'+self.user_list[i]['password']+'"'+"\n" code += \ ''' End If End Sub ''' return code #test = vb_script() #test.add_user('user1','pass1') #test.add_user('user2','pass2') #print test.user_list #priviledge = 0 #test.gen_script(priviledge) #print test.code #test = password() #print test.generate(6)
[ "noreply@github.com" ]
overskylab.noreply@github.com
4af6cca770e6d93be2a6efab6853f02acf4c0b95
996c920adbf99c78be2848e99707ee9a0db30d97
/gallery/urls.py
dc86b0e84b88991f852bd53bb631540612d99f3f
[]
no_license
Bella-Amandine/gallery-app
4c991c5d4a819cbfda3fd046f01db039cee3faea
7dfba7e8b561bb9625bc5b9116d95d3c44e53854
refs/heads/master
2023-02-13T15:12:53.405938
2021-01-02T10:54:48
2021-01-02T10:54:48
322,631,772
0
0
null
null
null
null
UTF-8
Python
false
false
819
py
"""gallery URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'', include('galleryapp.urls')) ]
[ "bellamandy45@gmail.com" ]
bellamandy45@gmail.com
215d165cc62da96a342ace4a7d8752e088ad51b4
a9cf474a7a257e48258f08a73f021cf89f77adee
/samples.py
726e142c1b0955adcd981a7a987d96fbd4e60c18
[]
no_license
mode89/vc
eb9fab15f31241570d799d9eef5a442dd366803b
cd205cf94b48b9fa7700dd6f7cceaf31f6f975b1
refs/heads/master
2020-12-09T09:30:04.997810
2015-11-27T09:47:29
2015-11-27T09:47:29
40,854,285
0
0
null
null
null
null
UTF-8
Python
false
false
1,121
py
import glob import numpy import os import wave class Sample: def __init__(self, path): file = wave.open(path, "r") frame_count = file.getnframes() self.frames = numpy.fromstring(file.readframes(frame_count), dtype=numpy.int16) / float(2 ** 15) self.frame_rate = file.getframerate() file.close() self.pointer = 0 def read_frames(self, time): count = int(time * self.frame_rate) lower = self.pointer upper = self.pointer + count if upper > len(self.frames): return None else: self.pointer = upper return self.frames[lower:upper] def reset(self): self.pointer = 0 DATA_DIR = os.path.join( os.path.dirname(os.path.realpath(__file__)), "data") MUSIC = list(Sample(path) for path in glob.glob(os.path.join(DATA_DIR, "music*"))) CLAP = list(Sample(path) for path in glob.glob(os.path.join(DATA_DIR, "clap*"))) COMPUTER = list(Sample(path) for path in glob.glob(os.path.join(DATA_DIR, "computer*"))) NOISE = Sample(os.path.join(DATA_DIR, "noise.wav"))
[ "mode89@mail.ru" ]
mode89@mail.ru
f9fd0bb6eed8ef61e24348be845175a2aa74a99f
f6b339dc252a314b8c0a87b085a9a36bdb2eac69
/blog/migrations/0001_initial.py
d410c11e2ad2a44db5c69ee58420ce6286203a15
[]
no_license
schaggar/django3-personal-portfolio
f44b2ddec14fe54224d50e74d89751e2b24c3ed3
0816a24a816efd403dabff49e5e3799c95b9bd72
refs/heads/master
2022-12-06T07:51:47.726949
2020-08-22T14:24:53
2020-08-22T14:24:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
582
py
# Generated by Django 3.1 on 2020-08-20 14:48 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Blog', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('description', models.TextField()), ('date', models.DateField()), ], ), ]
[ "saravjeet.singh@hotmail.com" ]
saravjeet.singh@hotmail.com
e5f9a83b0e3eee542832fe69f6f89ce5d6a43c19
c4444845012bb07ce6fdd2d5aed9725e31c0577a
/all_py/newegg_web.py
81bf8217f0a65e43ccc80c7d72f4ac834ff9e617
[]
no_license
AzhaarMohidden/image_down_search
307494e5c7392b26ab1fa5b46de2852a067633a9
f6c13f0fbd8810ed1085ef0c1d1b455af33f9073
refs/heads/master
2020-11-29T13:15:38.485224
2019-12-25T15:47:26
2019-12-25T15:47:26
230,121,499
0
0
null
null
null
null
UTF-8
Python
false
false
739
py
from bs4 import BeautifulSoup as soup from urllib.request import urlopen as uReq #my_url = 'https://vk.com/video?notsafe=1&q=anal' my_url = 'https://www.porntrex.com/categories/anal/' uClient = uReq(my_url) page_html =uClient.read() uClient.close() page_soup = soup(page_html, "html.parser") containers = page_soup.findAll("div",{"class":"video-list"}) #containers = page_soup.findAll("div", {"class":"video_item _video_item ge_video_item_"}) out_filename = "newegg.csv" headers= "URL" f = open(out_filename, "w") f.write(headers) for x in range(len(containers)): Img = containers[x].div.a.img["data-src"] Img_url= str(Img).strip().replace("//","") print(Img_url) f.write(Img_url+ "\n") f.close() # Close the file
[ "azhaarm94@gmail.com" ]
azhaarm94@gmail.com
f6b9576f5930e6d0d3d09f7be33f07e1c47f70a9
35859245b22aa8439e8fd2a3dcb236df91face94
/poc1/poc_mancala_student_v3.py
93d6ca51c3a33aa0da57dc9a061a957b7cf8b873
[]
no_license
victory118/foc_rice
dbf7a90a1e70baf268082621c47de05e9bd37f77
491f794e4f452490eefd38034ecd673459a04cd1
refs/heads/master
2021-10-11T16:31:55.734845
2019-01-28T15:56:33
2019-01-28T15:56:33
146,216,912
0
0
null
null
null
null
UTF-8
Python
false
false
1,962
py
Looking for Python 3? Try py3.codeskulptor.org! Run (Accesskey R) Save (Accesskey S) Download Fresh URL Open Local Reset (Accesskey X) CodeSkulptor Docs Demos Viz Mode house zero corresponds to the store and is on right houses are number in ascending order from right to left """ self.board = list(configuration) def __str__(self): """ Return string representation for Mancala board """ temp = list(self.board) temp.reverse() return str(temp) def get_num_seeds(self, house_num): """ Return the number of seeds in given house on board """ return self.board[house_num] ​ def is_game_won(self): """ Check to see if all houses but house zero are empty """ return True def is_legal_move(self, house_num): """ Check whether a given move is legal """ return True ​ def apply_move(self, house_num): """ Move all of the stones from house to lower/left houses Last seed must be played in the store (house zero) """ pass ​ def choose_move(self): """ Return the house for the next shortest legal move Shortest means legal move from house closest to store Note that using a longer legal move would make smaller illegal If no legal move, return house zero """ return 0 def plan_moves(self): """ Return sequence of shortest legal moves until none are available Not used in GUI version, only for machine testing """ return [] # import test suite and run import poc_mancala_testsuite_v2 as poc_mancala_testsuite poc_mancala_testsuite.run_suite(SolitaireMancala) ​ ​ Ran 5 tests. 0 failures. CodeSkulptor was built by Scott Rixner and is based upon CodeMirror and Skulpt.
[ "victory118@gmail.com" ]
victory118@gmail.com
517d08e9b33117c08a698c910c44b1ed079c38e7
3c8cf9ff96cdc77cee8620a48bda9b3e911aea78
/testPositiveEntries.py
fde2a6a8ac93c562624cd667cd107487f18e8265
[]
no_license
ssmoewe/BA_Python_Code
d5139593f80f048791343dfb225cc63f18250a36
0fa2a65c43baef1564698d810b22bcef36edc28a
refs/heads/master
2020-03-22T10:08:27.696849
2018-12-10T11:30:00
2018-12-10T11:30:00
139,883,448
1
0
null
null
null
null
UTF-8
Python
false
false
910
py
import os import csv import sys import time directory = "C:\\Users\\Arne\\bwSyncAndShare\\Linus-BA-EDR-Data (Richard Jumar)\\EDR0006_2016_L4I_csv" t1 = time.time() allFiles = len([name for name in os.listdir(directory) if os.path.isfile(os.path.join(directory, name))]) iterator = 0 for filename in os.listdir(directory): rf = open(os.path.join(directory, filename)) reader = csv.reader(rf, delimiter=";") readData = list(reader) calc = 0 first = [] found = False for i in range(1, len(readData)): if '-' in readData[i][2]: found = True calc += 1 first.append(i) if found: print("\n", filename, calc, first) rf.close() sys.stdout.write("\r{0} %".format(round(iterator/allFiles * 100, 2))) sys.stdout.flush() iterator += 1 t2 = time.time() print("\nTook {} seconds".format(t2 - t1))
[ "linus.engler4@gmail.com" ]
linus.engler4@gmail.com
665cb7c3db67b3b75d40dcf622a36c3a3bcc2d1b
2da6cab107e6189bf3f29d5029525b336547d408
/Assignment2.py
a9529df72054610d4b83f6503318769d3dd1b41b
[ "Apache-2.0" ]
permissive
DHNGUYEN68/Application-of-Deep-Neural-Network
4e1047511c0c2ffa40b5fc6e4434829df2a20c35
9c609f30cb15da9fb39a3589b50cb2a3617cd946
refs/heads/master
2020-04-07T10:49:14.015929
2018-11-23T14:32:26
2018-11-23T14:32:26
158,301,613
0
0
Apache-2.0
2018-11-19T23:07:15
2018-11-19T23:07:15
null
UTF-8
Python
false
false
9,784
py
# coding: utf-8 # In[ ]: import os import sklearn import pandas as pd import numpy as np import tensorflow.contrib.learn as skflow from sklearn.cross_validation import KFold from scipy.stats import zscore from sklearn import metrics from sklearn import preprocessing from sklearn.cross_validation import KFold from sklearn.cross_validation import train_test_split path = "./data/" # These four functions will help you, they were covered in class. # Encode a text field to dummy variables def encode_text_dummy(df,name): dummies = pd.get_dummies(df[name]) for x in dummies.columns: dummy_name = "{}-{}".format(name,x) df[dummy_name] = dummies[x] df.drop(name, axis=1, inplace=True) # Encode a text field to a single index value def encode_text_index(df,name): le = preprocessing.LabelEncoder() df[name] = le.fit_transform(df[name]) return le.classes_ # Encode a numeric field to Z-Scores def encode_numeric_zscore(df,name,mean=None,sd=None): if mean is None: mean = df[name].mean() if sd is None: sd = df[name].std() df[name] = (df[name]-mean)/sd # Encode a numeric field to fill missing values with the median. def missing_median(df, name): med = df[name].median() df[name] = df[name].fillna(med) # Convert a dataframe to x/y suitable for training. def to_xy(df,target): result = [] for x in df.columns: if x != target: result.append(x) return df.as_matrix(result),df[target] # Encode the toy dataset def question1(): print() print("***Question 1***") path = "./data/" filename_read = os.path.join(path,"toy1.csv") df = pd.read_csv(filename_read,na_values=['NA','?']) filename_write = os.path.join(path,"submit-hanmingli-prog2q1.csv") df['height'] = zscore(df['height']) df['width'] = zscore(df['width']) encode_numeric_zscore(df,'length') encode_text_dummy(df,'metal') encode_text_dummy(df,'shape') df.to_csv(filename_write,index=False) print("Wrote {} lines.".format(len(df))) def question2(): print() print("***Question 2***") path = "./data/" # Read dataset filename_read = os.path.join(path,"submit-hanmingli-prog2q1.csv") df = pd.read_csv(filename_read,na_values=['NA','?']) weight = encode_text_index(df,"weight") # Create x(predictors) and y (expected outcome) x,y = to_xy(df,'weight') num_classes = len(weight) # Split into train/test x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.25, random_state=45) # Create a deep neural network with 3 hidden layers of 10, 20, 10 regressor = skflow.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=num_classes, steps=10000) # Early stopping early_stop = skflow.monitors.ValidationMonitor(x_test, y_test, early_stopping_rounds=10000, print_steps=100, n_classes=num_classes) # Fit/train neural network regressor.fit(x_train, y_train, monitor=early_stop) # Measure accuracy pred = regressor.predict(x_test) score = np.sqrt(metrics.mean_squared_error(pred,y_test)) print("Final score (RMSE): {}".format(score)) def question3(): print() print("***Question 3***") path = "./data/" filename_read = os.path.join(path,"toy1.csv") df = pd.read_csv(filename_read,na_values=['NA','?']) filename_write = os.path.join(path,"submit-hanmingli-prog2q3.csv") length_mean=df['length'].mean() width_mean=df['width'].mean() height_mean=df['height'].mean() length_std=df['length'].std() width_std=df['width'].std() height_std=df['height'].std() print("length: ({}, {})".format(length_mean,length_std)) print("width:({}, {})".format(width_mean,width_std)) print("height:({}, {})".format(height_mean,height_std)) # Z-Score encode these using the mean/sd from the dataset (you got ← this in question 2) testDF = pd.DataFrame([ {'length':1, 'width':2, 'height': 3}, {'length':3, 'width':2, 'height': 5}, {'length':4, 'width':1, 'height': 3} ]) encode_numeric_zscore(testDF,'length',mean=length_mean,sd=length_std) encode_numeric_zscore(testDF,'width',mean=width_mean,sd=width_std) encode_numeric_zscore(testDF,'height',mean=height_mean,sd=height_std) print(testDF) testDF.to_csv(filename_write,index=False) def question4(): print() print("***Question 4***") path = "./data/" filename_read = os.path.join(path,"iris.csv") filename_write = os.path.join(path,"submit-hanmingli-prog2q4.csv") df = pd.read_csv(filename_read,na_values=['NA','?']) name = ['species', 'sepal_l', 'sepal_w', 'petal_l','petal_w'] df = pd.DataFrame(df[name]) encode_numeric_zscore(df,'petal_l') encode_numeric_zscore(df,'sepal_w') encode_numeric_zscore(df,'sepal_l') encode_text_dummy(df,"species") np.random.seed(42) df = df.reindex(np.random.permutation(df.index)) df.reset_index(inplace=True, drop=True) x, y = to_xy(df,'petal_w') # Cross validate kf = KFold(len(x), n_folds=5) oos_y = [] oos_pred = [] oos_x = [] fold = 1 for train, test in kf: print("Fold #{}".format(fold)) fold+=1 x_train = x[train] y_train = y[train] x_test = x[test] y_test = y[test] # Create a deep neural network with 3 hidden layers of 10, 20, 10 regressor = skflow.TensorFlowDNNRegressor(hidden_units=[10, 20, 10], steps=500) # Early stopping early_stop = skflow.monitors.ValidationMonitor(x_test, y_test, early_stopping_rounds=200, print_steps=50) # Fit/train neural network regressor.fit(x_train, y_train, monitor=early_stop) # Add the predictions to the oos prediction list pred = regressor.predict(x_test) oos_y.append(y_test) oos_pred.append(pred) oos_x.append(x_test) # Measure accuracy score = np.sqrt(metrics.mean_squared_error(pred,y_test)) print("Fold score (RMSE): {}".format(score)) # Build the oos prediction list and calculate the error. oos_y = np.concatenate(oos_y) oos_pred = np.concatenate(oos_pred) oos_x = np.concatenate(oos_x) score = np.sqrt(metrics.mean_squared_error(oos_pred,oos_y)) print("Final, out of sample score (RMSE): {}".format(score)) # Write the cross-validated prediction oos_y = pd.DataFrame(oos_y) oos_pred = pd.DataFrame(oos_pred) oos_x = pd.DataFrame(oos_x) oos_x.insert(3,'petal_w',oos_y[:]) oosDF = pd.concat([oos_x,oos_y, oos_pred],axis=1 ) oosDF.columns = ['sepal_l','sepal_w','petal_l','petal_w','species-Iris-setosa','species-Iris-versicolor','species-Iris-virginica',0,0] oosDF.to_csv(filename_write,index=False) def question5(): print() print("***Question 5***") filename_read = os.path.join(path,"auto-mpg.csv") filename_write = os.path.join(path,"submit-hanmingli-prog2q5.csv") df = pd.read_csv(filename_read,na_values=['NA','?']) # create feature vector missing_median(df, 'horsepower') encode_numeric_zscore(df, 'mpg') encode_numeric_zscore(df, 'horsepower') encode_numeric_zscore(df, 'weight') encode_numeric_zscore(df, 'displacement') encode_numeric_zscore(df, 'acceleration') encode_numeric_zscore(df, 'origin') tem=df['name'] df.drop('name',1,inplace=True) # Shuffle np.random.seed(42) df = df.reindex(np.random.permutation(df.index)) df.reset_index(inplace=True, drop=True) # Encode to a 2D matrix for training x,y = to_xy(df,'cylinders') # Cross validate kf = KFold(len(x), n_folds=5) oos_y = [] oos_pred = [] fold = 1 for train, test in kf: print("Fold #{}".format(fold)) fold+=1 x_train = x[train] y_train = y[train] x_test = x[test] y_test = y[test] # Create a deep neural network with 3 hidden layers of 10, 20, 10 classifier = skflow.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=9, steps=500) # Early stopping early_stop = skflow.monitors.ValidationMonitor(x_test, y_test, early_stopping_rounds=200, print_steps=50, n_classes=9) # Fit/train neural network classifier.fit(x_train, y_train, monitor=early_stop) # Add the predictions to the oos prediction list pred = classifier.predict(x_test) oos_y.append(y_test) oos_pred.append(pred) # Measure accuracy score = np.sqrt(metrics.mean_squared_error(pred,y_test)) print("Fold score: {}".format(score)) # Build the oos prediction list and calculate the error. oos_y = np.concatenate(oos_y) oos_pred = np.concatenate(oos_pred) score = np.sqrt(metrics.mean_squared_error(oos_pred,oos_y)) print("Final, out of sample score: {}".format(score)) # Write the cross-validated prediction oos_y = pd.DataFrame(oos_y) oos_pred = pd.DataFrame(oos_pred) oos_y.columns = ['ideal'] oos_pred.columns = ['predict'] oosDF = pd.concat( [df, tem,oos_y, oos_pred],axis=1 ) oosDF.to_csv(filename_write,index=False) question1() question2() question3() question4() question5() # In[ ]: # In[ ]: # In[ ]:
[ "henryfeng1008@126.com" ]
henryfeng1008@126.com
9b3e9a53a8ca23b453acfac6da8baab1f428b4f3
9214728da797cdad0300d854113ba41c7a522f9d
/Main.py
40305859e0d3651539c8eff04068cdcae005ba14
[]
no_license
Muhammad-Osama31/pancake-Problem
f9fe37e990e33992426b2787ad32571ada7b8075
5edf50f6ad827c770e315c3f37f6b279ed22801f
refs/heads/master
2022-07-26T05:06:23.320333
2020-05-16T10:51:36
2020-05-16T10:51:36
264,415,918
0
1
null
null
null
null
UTF-8
Python
false
false
414
py
if __name__ =='__main__': # 0,8,7,6,5,4,3,2,1 goal = [0,1,2,4,5,6,7,8,9,10,11,12] heuristic = Greedy(goal) searchProblem = pankcakeproblem([10,9,4,6,3,7,12,11,,8,5,3,2,1], goal) searchStrategy = GreedySearch(heuristic) search = Search(searchProblem, searchStrategy) result = search.solveProblem() if result is not None: search.printResult(result)
[ "noreply@github.com" ]
Muhammad-Osama31.noreply@github.com
828f32e305d7ca3322babf7d52f911304cd842a2
7e160316663c37d23df9346e8390fcba5460ea00
/Django/crud_board/board/models.py
686a91ca6e3b02a6e62e4068db458885fd144693
[]
no_license
calofmijuck/2018WaffleStudio
5f96594a2c2f5764f1cfb696ab03f3bddd14b0be
4ddc85916b6420dcd61f4ce76d5541e023b10874
refs/heads/master
2021-06-07T09:36:31.058129
2020-01-21T15:36:32
2020-01-21T15:36:32
150,717,634
0
0
null
null
null
null
UTF-8
Python
false
false
735
py
from django.db import models from django.urls import reverse # Create your models here. class Post(models.Model): title = models.CharField(max_length=140) content = models.TextField() author = models.CharField(max_length=40) created_at = models.DateTimeField(auto_now_add=True) modified_at = models.DateTimeField(auto_now=True) hits = models.IntegerField(default=0) # id = models.IntegerField() password = models.CharField(max_length=20) def get_absolute_url(self): # hits += 1 return reverse('post-detail', kwargs={'pk': self.pk}) def __str__(self): # hits += 1 return f"({self.pk}) {self.title}" def increase(self): self.hits += 1
[ "noreply@github.com" ]
calofmijuck.noreply@github.com
d47b3b64babd6d4f72e784d8842b05c14bdeb686
3627bf10d438665c5ac1320c4d91bf69821cb6e7
/main.py
a65b4e7332fec3dad9502ead6a6e445bd7963ffa
[ "WTFPL" ]
permissive
Johan-Mi/PingPongBot
4dc79dab48ff1637f63300a23bf7c88e1bbdd265
60afe66544639de4fcb321aa48f7eb5264c7400b
refs/heads/master
2023-01-28T20:24:24.953225
2020-12-07T17:30:49
2020-12-07T17:30:49
278,606,177
1
0
null
null
null
null
UTF-8
Python
false
false
878
py
#!/usr/bin/env python3 """This module contains the ping pong bot, which responds to messages that contain the word 'ping'.""" import re import discord client = discord.Client() @client.event async def on_ready(): """Lets you know when the bot starts.""" print(f"Discord version: {discord.__version__}") print(f"Logged in as {client.user}") @client.event async def on_message(message): """Responds when someone else sends a message.""" if message.author == client.user: return if "ping" in message.content.lower(): await message.channel.send( re.sub("ping", "pong", message.content, flags=re.IGNORECASE)) def main(): """Runs the bot with the token from the file called 'token'.""" with open("token") as token_file: token = token_file.read() client.run(token) if __name__ == "__main__": main()
[ "johanmilanov@outlook.com" ]
johanmilanov@outlook.com
e6d69ed90a24e786c6d568dfc9b49d4cb145ac24
d3419120a66da711887697800a0aece10a009a52
/restapi-teach/backend/tests/cases/course2/conftest.py
e692acaa56a29d16a2ad03cc9eac896afb57bd83
[]
no_license
zscdh1992/test
ca96f80e66d96f77883af4a4a9a067a39f6288b0
d88d99c327bf8aaaf2fc201fcf891ce9d05b7edd
refs/heads/master
2020-07-26T22:30:18.109138
2019-09-16T12:01:51
2019-09-16T12:01:51
208,784,364
0
1
null
null
null
null
UTF-8
Python
false
false
231
py
import pytest @pytest.fixture(scope='package',autouse=True) def couse2(request): print("*** !!! couse2 setting up ***") def teardown(): print("*** !!! couse2 tear down ***") request.addfinalizer(teardown)
[ "1002711754@qq.com" ]
1002711754@qq.com
bfe37cde5dbbfe4bd88752353a379bbf9eec65f1
eadcdcdbe46a5208f163ef22e668e42d6fff94a6
/customSDK/servicefabric/models/setting_py3.py
8e51284c997f5b15f33472171b6c5f679e3b6861
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
yu-supersonic/service-fabric-cli
beed8c4b4d8a17a5fbcb5d0578a8e6c166dd9695
cc2838597e7d236852c6d95e1b5c54980e0fac96
refs/heads/master
2023-04-11T15:04:25.213876
2021-02-25T19:39:23
2021-02-25T19:39:23
348,077,179
0
0
NOASSERTION
2021-04-07T11:33:05
2021-03-15T18:16:11
null
UTF-8
Python
false
false
1,606
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class Setting(Model): """Describes a setting for the container. The setting file path can be fetched from environment variable "Fabric_SettingPath". The path for Windows container is "C:\\secrets". The path for Linux container is "/var/secrets". :param type: The type of the setting being given in value. Possible values include: 'ClearText', 'KeyVaultReference', 'SecretValueReference'. Default value: "ClearText" . :type type: str or ~azure.servicefabric.models.SettingType :param name: The name of the setting. :type name: str :param value: The value of the setting, will be processed based on the type provided. :type value: str """ _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'value': {'key': 'value', 'type': 'str'}, } def __init__(self, *, type="ClearText", name: str=None, value: str=None, **kwargs) -> None: super(Setting, self).__init__(**kwargs) self.type = type self.name = name self.value = value
[ "noreply@github.com" ]
yu-supersonic.noreply@github.com
0efce220f61576109fdfa2a5c69ec7994cf7825b
47aa27752421393451ebed3389b5f3a52a57577c
/src/Lib/test/test_asyncore.py
3018cf75cb7e1dcc6ed52e4e2713c0fa26e1209a
[ "MIT" ]
permissive
NUS-ALSET/ace-react-redux-brython
e66db31046a6a3cd621e981977ed0ca9a8dddba9
d009490263c5716a145d9691cd59bfcd5aff837a
refs/heads/master
2021-08-08T08:59:27.632017
2017-11-10T01:34:18
2017-11-10T01:34:18
110,187,226
1
1
null
null
null
null
UTF-8
Python
false
false
27,523
py
import asyncore import unittest import select import os import socket import sys import time import warnings import errno import struct from test import support from test.support import TESTFN, run_unittest, unlink, HOST, HOSTv6 from io import BytesIO from io import StringIO try: import threading except ImportError: threading = None HAS_UNIX_SOCKETS = hasattr(socket, 'AF_UNIX') class dummysocket: def __init__(self): self.closed = False def close(self): self.closed = True def fileno(self): return 42 class dummychannel: def __init__(self): self.socket = dummysocket() def close(self): self.socket.close() class exitingdummy: def __init__(self): pass def handle_read_event(self): raise asyncore.ExitNow() handle_write_event = handle_read_event handle_close = handle_read_event handle_expt_event = handle_read_event class crashingdummy: def __init__(self): self.error_handled = False def handle_read_event(self): raise Exception() handle_write_event = handle_read_event handle_close = handle_read_event handle_expt_event = handle_read_event def handle_error(self): self.error_handled = True # used when testing senders; just collects what it gets until newline is sent def capture_server(evt, buf, serv): try: serv.listen(5) conn, addr = serv.accept() except socket.timeout: pass else: n = 200 start = time.time() while n > 0 and time.time() - start < 3.0: r, w, e = select.select([conn], [], [], 0.1) if r: n -= 1 data = conn.recv(10) # keep everything except for the newline terminator buf.write(data.replace(b'\n', b'')) if b'\n' in data: break time.sleep(0.01) conn.close() finally: serv.close() evt.set() def bind_af_aware(sock, addr): """Helper function to bind a socket according to its family.""" if HAS_UNIX_SOCKETS and sock.family == socket.AF_UNIX: # Make sure the path doesn't exist. unlink(addr) sock.bind(addr) class HelperFunctionTests(unittest.TestCase): def test_readwriteexc(self): # Check exception handling behavior of read, write and _exception # check that ExitNow exceptions in the object handler method # bubbles all the way up through asyncore read/write/_exception calls tr1 = exitingdummy() self.assertRaises(asyncore.ExitNow, asyncore.read, tr1) self.assertRaises(asyncore.ExitNow, asyncore.write, tr1) self.assertRaises(asyncore.ExitNow, asyncore._exception, tr1) # check that an exception other than ExitNow in the object handler # method causes the handle_error method to get called tr2 = crashingdummy() asyncore.read(tr2) self.assertEqual(tr2.error_handled, True) tr2 = crashingdummy() asyncore.write(tr2) self.assertEqual(tr2.error_handled, True) tr2 = crashingdummy() asyncore._exception(tr2) self.assertEqual(tr2.error_handled, True) # asyncore.readwrite uses constants in the select module that # are not present in Windows systems (see this thread: # http://mail.python.org/pipermail/python-list/2001-October/109973.html) # These constants should be present as long as poll is available @unittest.skipUnless(hasattr(select, 'poll'), 'select.poll required') def test_readwrite(self): # Check that correct methods are called by readwrite() attributes = ('read', 'expt', 'write', 'closed', 'error_handled') expected = ( (select.POLLIN, 'read'), (select.POLLPRI, 'expt'), (select.POLLOUT, 'write'), (select.POLLERR, 'closed'), (select.POLLHUP, 'closed'), (select.POLLNVAL, 'closed'), ) class testobj: def __init__(self): self.read = False self.write = False self.closed = False self.expt = False self.error_handled = False def handle_read_event(self): self.read = True def handle_write_event(self): self.write = True def handle_close(self): self.closed = True def handle_expt_event(self): self.expt = True def handle_error(self): self.error_handled = True for flag, expectedattr in expected: tobj = testobj() self.assertEqual(getattr(tobj, expectedattr), False) asyncore.readwrite(tobj, flag) # Only the attribute modified by the routine we expect to be # called should be True. for attr in attributes: self.assertEqual(getattr(tobj, attr), attr==expectedattr) # check that ExitNow exceptions in the object handler method # bubbles all the way up through asyncore readwrite call tr1 = exitingdummy() self.assertRaises(asyncore.ExitNow, asyncore.readwrite, tr1, flag) # check that an exception other than ExitNow in the object handler # method causes the handle_error method to get called tr2 = crashingdummy() self.assertEqual(tr2.error_handled, False) asyncore.readwrite(tr2, flag) self.assertEqual(tr2.error_handled, True) def test_closeall(self): self.closeall_check(False) def test_closeall_default(self): self.closeall_check(True) def closeall_check(self, usedefault): # Check that close_all() closes everything in a given map l = [] testmap = {} for i in range(10): c = dummychannel() l.append(c) self.assertEqual(c.socket.closed, False) testmap[i] = c if usedefault: socketmap = asyncore.socket_map try: asyncore.socket_map = testmap asyncore.close_all() finally: testmap, asyncore.socket_map = asyncore.socket_map, socketmap else: asyncore.close_all(testmap) self.assertEqual(len(testmap), 0) for c in l: self.assertEqual(c.socket.closed, True) def test_compact_traceback(self): try: raise Exception("I don't like spam!") except: real_t, real_v, real_tb = sys.exc_info() r = asyncore.compact_traceback() else: self.fail("Expected exception") (f, function, line), t, v, info = r self.assertEqual(os.path.split(f)[-1], 'test_asyncore.py') self.assertEqual(function, 'test_compact_traceback') self.assertEqual(t, real_t) self.assertEqual(v, real_v) self.assertEqual(info, '[%s|%s|%s]' % (f, function, line)) class DispatcherTests(unittest.TestCase): def setUp(self): pass def tearDown(self): asyncore.close_all() def test_basic(self): d = asyncore.dispatcher() self.assertEqual(d.readable(), True) self.assertEqual(d.writable(), True) def test_repr(self): d = asyncore.dispatcher() self.assertEqual(repr(d), '<asyncore.dispatcher at %#x>' % id(d)) def test_log(self): d = asyncore.dispatcher() # capture output of dispatcher.log() (to stderr) fp = StringIO() stderr = sys.stderr l1 = "Lovely spam! Wonderful spam!" l2 = "I don't like spam!" try: sys.stderr = fp d.log(l1) d.log(l2) finally: sys.stderr = stderr lines = fp.getvalue().splitlines() self.assertEqual(lines, ['log: %s' % l1, 'log: %s' % l2]) def test_log_info(self): d = asyncore.dispatcher() # capture output of dispatcher.log_info() (to stdout via print) fp = StringIO() stdout = sys.stdout l1 = "Have you got anything without spam?" l2 = "Why can't she have egg bacon spam and sausage?" l3 = "THAT'S got spam in it!" try: sys.stdout = fp d.log_info(l1, 'EGGS') d.log_info(l2) d.log_info(l3, 'SPAM') finally: sys.stdout = stdout lines = fp.getvalue().splitlines() expected = ['EGGS: %s' % l1, 'info: %s' % l2, 'SPAM: %s' % l3] self.assertEqual(lines, expected) def test_unhandled(self): d = asyncore.dispatcher() d.ignore_log_types = () # capture output of dispatcher.log_info() (to stdout via print) fp = StringIO() stdout = sys.stdout try: sys.stdout = fp d.handle_expt() d.handle_read() d.handle_write() d.handle_connect() finally: sys.stdout = stdout lines = fp.getvalue().splitlines() expected = ['warning: unhandled incoming priority event', 'warning: unhandled read event', 'warning: unhandled write event', 'warning: unhandled connect event'] self.assertEqual(lines, expected) def test_issue_8594(self): # XXX - this test is supposed to be removed in next major Python # version d = asyncore.dispatcher(socket.socket()) # make sure the error message no longer refers to the socket # object but the dispatcher instance instead self.assertRaisesRegex(AttributeError, 'dispatcher instance', getattr, d, 'foo') # cheap inheritance with the underlying socket is supposed # to still work but a DeprecationWarning is expected with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") family = d.family self.assertEqual(family, socket.AF_INET) self.assertEqual(len(w), 1) self.assertTrue(issubclass(w[0].category, DeprecationWarning)) def test_strerror(self): # refers to bug #8573 err = asyncore._strerror(errno.EPERM) if hasattr(os, 'strerror'): self.assertEqual(err, os.strerror(errno.EPERM)) err = asyncore._strerror(-1) self.assertTrue(err != "") class dispatcherwithsend_noread(asyncore.dispatcher_with_send): def readable(self): return False def handle_connect(self): pass class DispatcherWithSendTests(unittest.TestCase): usepoll = False def setUp(self): pass def tearDown(self): asyncore.close_all() @unittest.skipUnless(threading, 'Threading required for this test.') @support.reap_threads def test_send(self): evt = threading.Event() sock = socket.socket() sock.settimeout(3) port = support.bind_port(sock) cap = BytesIO() args = (evt, cap, sock) t = threading.Thread(target=capture_server, args=args) t.start() try: # wait a little longer for the server to initialize (it sometimes # refuses connections on slow machines without this wait) time.sleep(0.2) data = b"Suppose there isn't a 16-ton weight?" d = dispatcherwithsend_noread() d.create_socket() d.connect((HOST, port)) # give time for socket to connect time.sleep(0.1) d.send(data) d.send(data) d.send(b'\n') n = 1000 while d.out_buffer and n > 0: asyncore.poll() n -= 1 evt.wait() self.assertEqual(cap.getvalue(), data*2) finally: t.join() class DispatcherWithSendTests_UsePoll(DispatcherWithSendTests): usepoll = True @unittest.skipUnless(hasattr(asyncore, 'file_wrapper'), 'asyncore.file_wrapper required') class FileWrapperTest(unittest.TestCase): def setUp(self): self.d = b"It's not dead, it's sleeping!" with open(TESTFN, 'wb') as file: file.write(self.d) def tearDown(self): unlink(TESTFN) def test_recv(self): fd = os.open(TESTFN, os.O_RDONLY) w = asyncore.file_wrapper(fd) os.close(fd) self.assertNotEqual(w.fd, fd) self.assertNotEqual(w.fileno(), fd) self.assertEqual(w.recv(13), b"It's not dead") self.assertEqual(w.read(6), b", it's") w.close() self.assertRaises(OSError, w.read, 1) def test_send(self): d1 = b"Come again?" d2 = b"I want to buy some cheese." fd = os.open(TESTFN, os.O_WRONLY | os.O_APPEND) w = asyncore.file_wrapper(fd) os.close(fd) w.write(d1) w.send(d2) w.close() with open(TESTFN, 'rb') as file: self.assertEqual(file.read(), self.d + d1 + d2) @unittest.skipUnless(hasattr(asyncore, 'file_dispatcher'), 'asyncore.file_dispatcher required') def test_dispatcher(self): fd = os.open(TESTFN, os.O_RDONLY) data = [] class FileDispatcher(asyncore.file_dispatcher): def handle_read(self): data.append(self.recv(29)) s = FileDispatcher(fd) os.close(fd) asyncore.loop(timeout=0.01, use_poll=True, count=2) self.assertEqual(b"".join(data), self.d) class BaseTestHandler(asyncore.dispatcher): def __init__(self, sock=None): asyncore.dispatcher.__init__(self, sock) self.flag = False def handle_accept(self): raise Exception("handle_accept not supposed to be called") def handle_accepted(self): raise Exception("handle_accepted not supposed to be called") def handle_connect(self): raise Exception("handle_connect not supposed to be called") def handle_expt(self): raise Exception("handle_expt not supposed to be called") def handle_close(self): raise Exception("handle_close not supposed to be called") def handle_error(self): raise class BaseServer(asyncore.dispatcher): """A server which listens on an address and dispatches the connection to a handler. """ def __init__(self, family, addr, handler=BaseTestHandler): asyncore.dispatcher.__init__(self) self.create_socket(family) self.set_reuse_addr() bind_af_aware(self.socket, addr) self.listen(5) self.handler = handler @property def address(self): return self.socket.getsockname() def handle_accepted(self, sock, addr): self.handler(sock) def handle_error(self): raise class BaseClient(BaseTestHandler): def __init__(self, family, address): BaseTestHandler.__init__(self) self.create_socket(family) self.connect(address) def handle_connect(self): pass class BaseTestAPI: def tearDown(self): asyncore.close_all() def loop_waiting_for_flag(self, instance, timeout=5): timeout = float(timeout) / 100 count = 100 while asyncore.socket_map and count > 0: asyncore.loop(timeout=0.01, count=1, use_poll=self.use_poll) if instance.flag: return count -= 1 time.sleep(timeout) self.fail("flag not set") def test_handle_connect(self): # make sure handle_connect is called on connect() class TestClient(BaseClient): def handle_connect(self): self.flag = True server = BaseServer(self.family, self.addr) client = TestClient(self.family, server.address) self.loop_waiting_for_flag(client) def test_handle_accept(self): # make sure handle_accept() is called when a client connects class TestListener(BaseTestHandler): def __init__(self, family, addr): BaseTestHandler.__init__(self) self.create_socket(family) bind_af_aware(self.socket, addr) self.listen(5) self.address = self.socket.getsockname() def handle_accept(self): self.flag = True server = TestListener(self.family, self.addr) client = BaseClient(self.family, server.address) self.loop_waiting_for_flag(server) def test_handle_accepted(self): # make sure handle_accepted() is called when a client connects class TestListener(BaseTestHandler): def __init__(self, family, addr): BaseTestHandler.__init__(self) self.create_socket(family) bind_af_aware(self.socket, addr) self.listen(5) self.address = self.socket.getsockname() def handle_accept(self): asyncore.dispatcher.handle_accept(self) def handle_accepted(self, sock, addr): sock.close() self.flag = True server = TestListener(self.family, self.addr) client = BaseClient(self.family, server.address) self.loop_waiting_for_flag(server) def test_handle_read(self): # make sure handle_read is called on data received class TestClient(BaseClient): def handle_read(self): self.flag = True class TestHandler(BaseTestHandler): def __init__(self, conn): BaseTestHandler.__init__(self, conn) self.send(b'x' * 1024) server = BaseServer(self.family, self.addr, TestHandler) client = TestClient(self.family, server.address) self.loop_waiting_for_flag(client) def test_handle_write(self): # make sure handle_write is called class TestClient(BaseClient): def handle_write(self): self.flag = True server = BaseServer(self.family, self.addr) client = TestClient(self.family, server.address) self.loop_waiting_for_flag(client) def test_handle_close(self): # make sure handle_close is called when the other end closes # the connection class TestClient(BaseClient): def handle_read(self): # in order to make handle_close be called we are supposed # to make at least one recv() call self.recv(1024) def handle_close(self): self.flag = True self.close() class TestHandler(BaseTestHandler): def __init__(self, conn): BaseTestHandler.__init__(self, conn) self.close() server = BaseServer(self.family, self.addr, TestHandler) client = TestClient(self.family, server.address) self.loop_waiting_for_flag(client) def test_handle_close_after_conn_broken(self): # Check that ECONNRESET/EPIPE is correctly handled (issues #5661 and # #11265). data = b'\0' * 128 class TestClient(BaseClient): def handle_write(self): self.send(data) def handle_close(self): self.flag = True self.close() def handle_expt(self): self.flag = True self.close() class TestHandler(BaseTestHandler): def handle_read(self): self.recv(len(data)) self.close() def writable(self): return False server = BaseServer(self.family, self.addr, TestHandler) client = TestClient(self.family, server.address) self.loop_waiting_for_flag(client) @unittest.skipIf(sys.platform.startswith("sunos"), "OOB support is broken on Solaris") def test_handle_expt(self): # Make sure handle_expt is called on OOB data received. # Note: this might fail on some platforms as OOB data is # tenuously supported and rarely used. if HAS_UNIX_SOCKETS and self.family == socket.AF_UNIX: self.skipTest("Not applicable to AF_UNIX sockets.") class TestClient(BaseClient): def handle_expt(self): self.socket.recv(1024, socket.MSG_OOB) self.flag = True class TestHandler(BaseTestHandler): def __init__(self, conn): BaseTestHandler.__init__(self, conn) self.socket.send(bytes(chr(244), 'latin-1'), socket.MSG_OOB) server = BaseServer(self.family, self.addr, TestHandler) client = TestClient(self.family, server.address) self.loop_waiting_for_flag(client) def test_handle_error(self): class TestClient(BaseClient): def handle_write(self): 1.0 / 0 def handle_error(self): self.flag = True try: raise except ZeroDivisionError: pass else: raise Exception("exception not raised") server = BaseServer(self.family, self.addr) client = TestClient(self.family, server.address) self.loop_waiting_for_flag(client) def test_connection_attributes(self): server = BaseServer(self.family, self.addr) client = BaseClient(self.family, server.address) # we start disconnected self.assertFalse(server.connected) self.assertTrue(server.accepting) # this can't be taken for granted across all platforms #self.assertFalse(client.connected) self.assertFalse(client.accepting) # execute some loops so that client connects to server asyncore.loop(timeout=0.01, use_poll=self.use_poll, count=100) self.assertFalse(server.connected) self.assertTrue(server.accepting) self.assertTrue(client.connected) self.assertFalse(client.accepting) # disconnect the client client.close() self.assertFalse(server.connected) self.assertTrue(server.accepting) self.assertFalse(client.connected) self.assertFalse(client.accepting) # stop serving server.close() self.assertFalse(server.connected) self.assertFalse(server.accepting) def test_create_socket(self): s = asyncore.dispatcher() s.create_socket(self.family) self.assertEqual(s.socket.family, self.family) SOCK_NONBLOCK = getattr(socket, 'SOCK_NONBLOCK', 0) self.assertEqual(s.socket.type, socket.SOCK_STREAM | SOCK_NONBLOCK) def test_bind(self): if HAS_UNIX_SOCKETS and self.family == socket.AF_UNIX: self.skipTest("Not applicable to AF_UNIX sockets.") s1 = asyncore.dispatcher() s1.create_socket(self.family) s1.bind(self.addr) s1.listen(5) port = s1.socket.getsockname()[1] s2 = asyncore.dispatcher() s2.create_socket(self.family) # EADDRINUSE indicates the socket was correctly bound self.assertRaises(socket.error, s2.bind, (self.addr[0], port)) def test_set_reuse_addr(self): if HAS_UNIX_SOCKETS and self.family == socket.AF_UNIX: self.skipTest("Not applicable to AF_UNIX sockets.") sock = socket.socket(self.family) try: sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) except socket.error: unittest.skip("SO_REUSEADDR not supported on this platform") else: # if SO_REUSEADDR succeeded for sock we expect asyncore # to do the same s = asyncore.dispatcher(socket.socket(self.family)) self.assertFalse(s.socket.getsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR)) s.socket.close() s.create_socket(self.family) s.set_reuse_addr() self.assertTrue(s.socket.getsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR)) finally: sock.close() @unittest.skipUnless(threading, 'Threading required for this test.') @support.reap_threads def test_quick_connect(self): # see: http://bugs.python.org/issue10340 if self.family in (socket.AF_INET, getattr(socket, "AF_INET6", object())): server = BaseServer(self.family, self.addr) t = threading.Thread(target=lambda: asyncore.loop(timeout=0.1, count=500)) t.start() self.addCleanup(t.join) s = socket.socket(self.family, socket.SOCK_STREAM) s.settimeout(.2) s.setsockopt(socket.SOL_SOCKET, socket.SO_LINGER, struct.pack('ii', 1, 0)) try: s.connect(server.address) except socket.error: pass finally: s.close() class TestAPI_UseIPv4Sockets(BaseTestAPI): family = socket.AF_INET addr = (HOST, 0) @unittest.skipUnless(support.IPV6_ENABLED, 'IPv6 support required') class TestAPI_UseIPv6Sockets(BaseTestAPI): family = socket.AF_INET6 addr = (HOSTv6, 0) @unittest.skipUnless(HAS_UNIX_SOCKETS, 'Unix sockets required') class TestAPI_UseUnixSockets(BaseTestAPI): if HAS_UNIX_SOCKETS: family = socket.AF_UNIX addr = support.TESTFN def tearDown(self): unlink(self.addr) BaseTestAPI.tearDown(self) class TestAPI_UseIPv4Select(TestAPI_UseIPv4Sockets, unittest.TestCase): use_poll = False @unittest.skipUnless(hasattr(select, 'poll'), 'select.poll required') class TestAPI_UseIPv4Poll(TestAPI_UseIPv4Sockets, unittest.TestCase): use_poll = True class TestAPI_UseIPv6Select(TestAPI_UseIPv6Sockets, unittest.TestCase): use_poll = False @unittest.skipUnless(hasattr(select, 'poll'), 'select.poll required') class TestAPI_UseIPv6Poll(TestAPI_UseIPv6Sockets, unittest.TestCase): use_poll = True class TestAPI_UseUnixSocketsSelect(TestAPI_UseUnixSockets, unittest.TestCase): use_poll = False @unittest.skipUnless(hasattr(select, 'poll'), 'select.poll required') class TestAPI_UseUnixSocketsPoll(TestAPI_UseUnixSockets, unittest.TestCase): use_poll = True if __name__ == "__main__": unittest.main()
[ "chrisboesch@nus.edu.sg" ]
chrisboesch@nus.edu.sg
53cb07a0d22ea3a2429216985c1150d2d1273144
09c7f9719517a2d7fee9a784276dcbc898ad8160
/beagleBoxRasp/beagleBoxRaspCode.py
d3fef1980a63372809d9d7dad1ecae437d3b9ed6
[]
no_license
BeagleBox/beagleBox_Eletronica
3e89b86f8fe9be314af263d7d5fae04cc2f2e68c
13280c9dd27873b17512d8619688f6727ca00df9
refs/heads/master
2021-06-18T16:43:24.277618
2017-07-02T18:03:32
2017-07-02T18:03:32
93,672,889
0
0
null
null
null
null
UTF-8
Python
false
false
1,070
py
# No caso eu to mandando uma mensagem "aviso" e "Desolocamento" # pra identificar o tipo de dado que eu estou enviando, # a questão do nivel de bateria, e da balança a agente vai pegar da propria placa, # ou seja, vai tá disponível a todo momento, não vai vir do arduino import RPi.GPIO as GPIO import time import serial #Configura a serial e a velocidade de transmissao ser = serial.Serial("/dev/ttyAMA0", 115200) GPIO.setmode(GPIO.BOARD) #Entrada do sinal da balança GPIO.setup(10,GPIO,IN) #Entrada do sinal do nivel de bateria GPIO.setup(12,GPIO,IN) ser.write(identificadorDeCaminho) while(1): balanca = GPIO.input(10) nivelBateria = GPIO.input(12) resposta = ser.readline() if (resposta == "Aviso") : aviso = ser.readline() #INICIO, FIM, OBSTRUIDO if (resposta == "Deslocamento") : deslocamento = ser.readline() #NUMERO DE VEZES QUE DESLOCOU NO EIXO X. if (trancar == 1) : ser.write(trancar) time.sleep(0.5)
[ "hdcjuninho@gmail.com" ]
hdcjuninho@gmail.com
8e0fb7e19066bff63db68684d7a0451e3083fed4
e2bd9a2f5db45cee5456e7f48d7418af2d4081e4
/DynamicProgramming/LCS/PrintSCSuperSequence.py
2751b53c3e09578058e91ca0d5bf4d6569db1068
[ "MIT" ]
permissive
26tanishabanik/Interview-Coding-Questions
9b46b9e943cc0547ea4a9d4af833f6ee24d4d616
dfed88c7067fcfcb3c1929730464ad12389d1da6
refs/heads/main
2023-08-17T05:41:54.617103
2021-10-05T07:08:02
2021-10-05T07:08:02
413,709,370
1
0
null
2021-10-05T07:03:56
2021-10-05T07:03:55
null
UTF-8
Python
false
false
1,503
py
''' Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them. (A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.) Example 1: Input: str1 = "abac", str2 = "cab" Output: "cabac" Explanation: str1 = "abac" is a subsequence of "cabac" because we can delete the first "c". str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac". The answer provided is the shortest such string that satisfies these properties. ''' from icecream import ic def PrintSCS(s1, s2, n, m): dp = [[0 for _ in range(m+1)]for _ in range(n+1)] for i in range(1, n+1): for j in range(1, m+1): if s1[i-1] == s2[j-1]: dp[i][j] = 1+dp[i-1][j-1] else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) i = n j = m ans = '' while i > 0 and j > 0: if s1[i-1] == s2[j-1]: ans += s2[j-1] j -= 1 i -= 1 else: if dp[i][j-1] < dp[i-1][j]: ans += s1[i-1] i -= 1 else: ans += s2[j-1] j -= 1 while i > 0: ans += s1[i-1] i -= 1 while j > 0: ans += s2[j-1] j -= 1 return ans[::-1] print(PrintSCS( "bbbaaaba", "bbababbb", 8, 8))
[ "mahankalisaicharan@gmail.com" ]
mahankalisaicharan@gmail.com
5d106286401eb861ce4ca131c415bf3aa36cf860
2a60d6095dad452eabcbf99583421435126c2a3c
/home/migrations/0097_auto_20180911_1919.py
411cd3b2c6c3b144769b696d28cccd5c8c702240
[]
no_license
dentemm/healthhouse
7aa6dd68363f6ad0c76e3aaa83d74707930e9e34
da76f4406e9fb134ab8d94cf5f7f968523939b44
refs/heads/master
2023-03-19T21:08:07.136774
2023-03-12T19:45:23
2023-03-12T19:45:23
92,063,083
0
0
null
null
null
null
UTF-8
Python
false
false
1,353
py
# Generated by Django 2.0.7 on 2018-09-11 19:19 from django.db import migrations import wagtail.core.blocks import wagtail.core.fields import wagtail.images.blocks class Migration(migrations.Migration): dependencies = [ ('home', '0096_auto_20180911_1917'), ] operations = [ migrations.AlterField( model_name='discoverypage', name='content', field=wagtail.core.fields.StreamField([('parallax', wagtail.core.blocks.StructBlock([('image', wagtail.images.blocks.ImageChooserBlock()), ('title', wagtail.core.blocks.CharBlock(max_length=64)), ('info_text', wagtail.core.blocks.CharBlock(max_length=255)), ('background_color', wagtail.core.blocks.ChoiceBlock(choices=[('primary', 'HH blue'), ('white', 'White'), ('dark-blue', 'HH dark')])), ('image_position', wagtail.core.blocks.ChoiceBlock(choices=[('left', 'Left'), ('right', 'Right')])), ('links', wagtail.core.blocks.ListBlock(wagtail.core.blocks.PageChooserBlock(), required=False)), ('external_links', wagtail.core.blocks.ListBlock(wagtail.core.blocks.URLBlock())), ('external_links2', wagtail.core.blocks.ListBlock(wagtail.core.blocks.StructBlock([('url', wagtail.core.blocks.URLBlock(required=False)), ('url_title', wagtail.core.blocks.CharBlock(max_length=28, required=False))]), required=False))]))], null=True), ), ]
[ "tim.claes@me.com" ]
tim.claes@me.com
4f431509568bd27c45f52f4280cc40dcc68d86dd
6bdb32ddbd72c4337dab12002ff05d6966538448
/gridpack_folder/mc_request/LHEProducer/Spin-2/BulkGraviton_WW_WhadWhad/BulkGraviton_WW_WhadWhad_narrow_M4500_13TeV-madgraph_cff.py
7e6dfa7d29a8f12fbc0e6cd0897dc8190314a5f5
[]
no_license
cyrilbecot/DibosonBSMSignal_13TeV
71db480de274c893ba41453025d01bfafa19e340
d8e685c40b16cde68d25fef9af257c90bee635ba
refs/heads/master
2021-01-11T10:17:05.447035
2016-08-17T13:32:12
2016-08-17T13:32:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
759
py
import FWCore.ParameterSet.Config as cms # link to cards: # https://github.com/cms-sw/genproductions/tree/master/bin/MadGraph5_aMCatNLO/cards/production/13TeV/exo_diboson/Spin-2/BulkGraviton_WW_WhadWhad/BulkGraviton_WW_WhadWhad_narrow_M4500 externalLHEProducer = cms.EDProducer("ExternalLHEProducer", args = cms.vstring('/cvmfs/cms.cern.ch/phys_generator/gridpacks/slc6_amd64_gcc481/13TeV/madgraph/V5_2.2.2/exo_diboson/Spin-2/BulkGraviton_WW_WhadWhad/narrow/v2/BulkGraviton_WW_WhadWhad_narrow_M4500_tarball.tar.xz'), nEvents = cms.untracked.uint32(5000), numberOfParameters = cms.uint32(1), outputFile = cms.string('cmsgrid_final.lhe'), scriptName = cms.FileInPath('GeneratorInterface/LHEInterface/data/run_generic_tarball_cvmfs.sh') )
[ "syu@cern.ch" ]
syu@cern.ch
66f5083717011c1209ab870fbda9e2804badb4e4
d091ab3f316066327c3daf66814803516e73be18
/AITrans_Competition_withRainbow/memory.py
8743ea3e7f306fa440ce1a1d2704247bba413101
[]
no_license
lilyhpeng/AItrans-2019-MMGC
c53f1c3d6136ddd1ab248794a3a82b6b3ad972ba
d8fb03eb70be75684f1e3b0e4d31d29956269ef9
refs/heads/master
2023-06-08T18:09:47.515957
2021-06-27T07:52:57
2021-06-27T07:52:57
380,681,345
1
0
null
null
null
null
UTF-8
Python
false
false
8,388
py
from collections import namedtuple import numpy as np import torch Transition = namedtuple('Transition', ('timestep', 'state', 'action', 'reward', 'nonterminal')) blank_trans = Transition(0, torch.zeros(84, 84, dtype=torch.uint8), None, 0, False) # Segment tree data structure where parent node values are sum/max of children node values class SegmentTree(): def __init__(self, size): self.index = 0 self.size = size self.full = False # Used to track actual capacity self.sum_tree = np.zeros((2 * size - 1, ), dtype=np.float32) # Initialise fixed size tree with all (priority) zeros self.data = np.array([None] * size) # Wrap-around cyclic buffer self.max = 1 # Initial max value to return (1 = 1^ω) # Propagates value up tree given a tree index def _propagate(self, index, value): parent = (index - 1) // 2 left, right = 2 * parent + 1, 2 * parent + 2 self.sum_tree[parent] = self.sum_tree[left] + self.sum_tree[right] if parent != 0: self._propagate(parent, value) # Updates value given a tree index def update(self, index, value): self.sum_tree[index] = value # Set new value self._propagate(index, value) # Propagate value self.max = max(value, self.max) def append(self, data, value): self.data[self.index] = data # Store data in underlying data structure self.update(self.index + self.size - 1, value) # Update tree self.index = (self.index + 1) % self.size # Update index self.full = self.full or self.index == 0 # Save when capacity reached self.max = max(value, self.max) # Searches for the location of a value in sum tree def _retrieve(self, index, value): left, right = 2 * index + 1, 2 * index + 2 if left >= len(self.sum_tree): return index elif value <= self.sum_tree[left]: return self._retrieve(left, value) else: return self._retrieve(right, value - self.sum_tree[left]) # Searches for a value in sum tree and returns value, data index and tree index def find(self, value): index = self._retrieve(0, value) # Search for index of item from root data_index = index - self.size + 1 return (self.sum_tree[index], data_index, index) # Return value, data index, tree index # Returns data given a data index def get(self, data_index): return self.data[data_index % self.size] def total(self): return self.sum_tree[0] class ReplayMemory(): def __init__(self, args, capacity): self.device = args.device self.capacity = capacity self.history = args.history_length self.discount = args.discount self.n = args.multi_step self.priority_weight = args.priority_weight # Initial importance sampling weight β, annealed to 1 over course of training self.priority_exponent = args.priority_exponent self.t = 0 # Internal episode timestep counter self.transitions = SegmentTree(capacity) # Store transitions in a wrap-around cyclic buffer within a sum tree for querying priorities # Adds state and action at time t, reward and terminal at time t + 1 def append(self, state, action, reward, terminal): # changed by penghuan on 20190527 # state = state[-1].mul(255).to(dtype=torch.uint8, device=torch.device('cpu')) # Only store last frame and discretise to save memory self.transitions.append(Transition(self.t, state, action, reward, not terminal), self.transitions.max) # Store new transition with maximum priority self.t = 0 if terminal else self.t + 1 # Start new episodes with t = 0 # Returns a transition with blank states where appropriate def _get_transition(self, idx): transition = np.array([None] * (self.history + self.n)) transition[self.history - 1] = self.transitions.get(idx) for t in range(self.history - 2, -1, -1): # e.g. 2 1 0 if transition[t + 1].timestep == 0: transition[t] = blank_trans # If future frame has timestep 0 else: transition[t] = self.transitions.get(idx - self.history + 1 + t) for t in range(self.history, self.history + self.n): # e.g. 4 5 6 if transition[t - 1].nonterminal: transition[t] = self.transitions.get(idx - self.history + 1 + t) else: transition[t] = blank_trans # If prev (next) frame is terminal return transition # Returns a valid sample from a segment def _get_sample_from_segment(self, segment, i): valid = False while not valid: sample = np.random.uniform(i * segment, (i + 1) * segment) # Uniformly sample an element from within a segment prob, idx, tree_idx = self.transitions.find(sample) # Retrieve sample from tree with un-normalised probability # Resample if transition straddled current index or probablity 0 if (self.transitions.index - idx) % self.capacity > self.n and (idx - self.transitions.index) % self.capacity >= self.history and prob != 0: valid = True # Note that conditions are valid but extra conservative around buffer index 0 # Retrieve all required transition data (from t - h to t + n) transition = self._get_transition(idx) # Create un-discretised state and nth next state data = [trans.state for trans in transition[:self.history]] print(data) state = torch.stack(data).to(dtype=torch.float32, device=self.device).div(255) next_state = torch.stack([trans.state for trans in transition[self.n:self.n + self.history]]).to(dtype=torch.float32, device=self.device).div(255) # Discrete action to be used as index action = torch.tensor([transition[self.history - 1].action], dtype=torch.int64, device=self.device) # Calculate truncated n-step discounted return R^n = Σ_k=0->n-1 (γ^k)R_t+k+1 (note that invalid nth next states have reward 0) R = torch.tensor([sum(self.discount ** n * transition[self.history + n - 1].reward for n in range(self.n))], dtype=torch.float32, device=self.device) # Mask for non-terminal nth next states nonterminal = torch.tensor([transition[self.history + self.n - 1].nonterminal], dtype=torch.float32, device=self.device) return prob, idx, tree_idx, state, action, R, next_state, nonterminal def sample(self, batch_size): p_total = self.transitions.total() # Retrieve sum of all priorities (used to create a normalised probability distribution) segment = p_total / batch_size # Batch size number of segments, based on sum over all probabilities batch = [self._get_sample_from_segment(segment, i) for i in range(batch_size)] # Get batch of valid samples probs, idxs, tree_idxs, states, actions, returns, next_states, nonterminals = zip(*batch) states, next_states, = torch.stack(states), torch.stack(next_states) actions, returns, nonterminals = torch.cat(actions), torch.cat(returns), torch.stack(nonterminals) probs = np.array(probs, dtype=np.float32) / p_total # Calculate normalised probabilities capacity = self.capacity if self.transitions.full else self.transitions.index weights = (capacity * probs) ** -self.priority_weight # Compute importance-sampling weights w weights = torch.tensor(weights / weights.max(), dtype=torch.float32, device=self.device) # Normalise by max importance-sampling weight from batch return tree_idxs, states, actions, returns, next_states, nonterminals, weights def update_priorities(self, idxs, priorities): priorities = np.power(priorities, self.priority_exponent) [self.transitions.update(idx, priority) for idx, priority in zip(idxs, priorities)] # Set up internal state for iterator def __iter__(self): self.current_idx = 0 return self # Return valid states for validation def __next__(self): if self.current_idx == self.capacity: raise StopIteration # Create stack of states state_stack = [None] * self.history state_stack[-1] = self.transitions.data[self.current_idx].state prev_timestep = self.transitions.data[self.current_idx].timestep for t in reversed(range(self.history - 1)): if prev_timestep == 0: state_stack[t] = blank_trans.state # If future frame has timestep 0 else: state_stack[t] = self.transitions.data[self.current_idx + t - self.history + 1].state prev_timestep -= 1 state = torch.stack(state_stack, 0).to(dtype=torch.float32, device=self.device).div_(255) # Agent will turn into batch self.current_idx += 1 return state
[ "peng_h30@163.com" ]
peng_h30@163.com
8e94d6b6e9eab0ee3e5aae875fea2da1e8c09c25
eddba20dfd883e6ac710fd7c7035a9da1a06ff96
/dataprep/CombineEventFiles.py
c7b30741a1fe034ab6c597b869f4a893230edaff
[]
no_license
philippwindischhofer/HiggsPivoting
cc64ea6f75919c78a88ae4a182e30eb6f2669767
c103de67d4c8358aba698ecf4b1491c05b8f6494
refs/heads/paper
2022-11-27T18:03:17.491300
2020-04-15T14:39:43
2020-04-15T14:39:43
193,477,990
3
0
null
2022-11-21T21:31:39
2019-06-24T09:46:32
Python
UTF-8
Python
false
false
1,772
py
import os, glob from argparse import ArgumentParser from h5add import h5add def IsGoodEventFile(eventfile): try: import pandas as pd df = pd.read_hdf(eventfile) return True except: return False def CombineEventFiles(indir, channel): from CombineLumiFiles import IsGoodLumiFile # the assumed event file names eventfile = {"0lep": "events_0lep.h5", "1lep": "events_1lep.h5"} assert len(indir) == 1 indir = indir[0] # first, look for all existing lumi files # Note: this semi-automatic way of doing it is faster than simply # lumifiles = glob.glob(os.path.join(indir, "**/lumi.conf"), recursive = True) sub_dirs = glob.glob(os.path.join(indir, '*/')) event_file_candidates = [] for sub_dir in sub_dirs: eventfile_path = os.path.join(sub_dir, eventfile[channel]) # ignore any subdirectory that does not have a lumi file in it if IsGoodLumiFile(os.path.join(sub_dir, "lumi.conf")) and IsGoodEventFile(eventfile_path): event_file_candidates.append(eventfile_path) else: print("Warning: '{}' does not have a good lumi file or a corrupted event file, ignoring its events!".format(sub_dir)) print("have found {} good event files in this directory".format(len(event_file_candidates))) # combine them together output_file = os.path.join(indir, "events.h5") h5add(output_file, event_file_candidates) if __name__ == "__main__": parser = ArgumentParser(description = "combine event files") parser.add_argument("indir", nargs = '+', action = "store") parser.add_argument("--channel", action = "store", default = "0lep") args = vars(parser.parse_args()) CombineEventFiles(**args)
[ "philipp.windischhofer@cern.ch" ]
philipp.windischhofer@cern.ch
1e380dd89f23fb303d9f546af9e4298c9b1f44de
cd784ca69d8cc3d1977cd86296052c556e7050ff
/week8/venv/bin/wheel
8dd655b5046ec634eebcb7dc6be179fbe01c0a29
[]
no_license
bennerl/qbb2016-answers
15d7c67b927ecb4c175dcc8b1669e952c12cbefc
2868aae69f1105e6aa20fdb7e99c139f3ca88e82
refs/heads/master
2020-12-01T16:37:42.568744
2016-11-28T03:12:41
2016-11-28T03:12:41
74,932,378
1
0
null
null
null
null
UTF-8
Python
false
false
248
#!/Users/cmdb/qbb2016-answers/week8/venv/bin/python2.7 # -*- coding: utf-8 -*- import re import sys from wheel.tool import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "leif.benner@gmail.com" ]
leif.benner@gmail.com