blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
19f79b9b91ce7137e633b48e72d90d58347c037b
fa6f5f76ba65ce885a5b7bf41e81295a117e8822
/login/views.py
279f6a6c31d0f2deb44ec69f6bf54758835d0cde
[]
no_license
royce1121/login-page
0f2bd462dc859a803589e29b05f2434cd684f9ff
6d5a440adbdb62bc4e9bbacfd7ab1ad8f0c686cd
refs/heads/master
2023-03-02T22:26:41.093143
2021-02-16T04:58:28
2021-02-16T04:58:28
339,283,139
0
0
null
null
null
null
UTF-8
Python
false
false
8,655
py
from .forms import BaseAccountForm from .forms import FirstStepForm from .forms import SecondStepForm from .forms import ThirdStepForm from .forms import UserForm from .models import BaseAccountModel from braces.views import AjaxResponseMixin from braces.views import JsonRequestResponseMixin from django.contrib import messages from django.contrib.auth import login from django.contrib.auth import logout from django.contrib.auth import authenticate from django.contrib.auth.models import User from django.shortcuts import redirect from django.shortcuts import render from django.urls import reverse from django.utils.translation import gettext as _ from django.views.generic import CreateView from django.views.generic import FormView from django.views.generic import ListView from django.views.generic import TemplateView from django.views.generic import UpdateView from django.views.generic import View from django.contrib.auth.decorators import login_required from django.utils.decorators import method_decorator from django.contrib.auth.mixins import LoginRequiredMixin # Create your views here. class ViewsDispatcher(View): def dispatch(self, request, *args, **kwargs): user = self.request.user basic_info = BaseAccountModel.objects.filter( user=user ).first() if basic_info: if not basic_info.is_data_complete(): if basic_info.is_step_two_complete(): return redirect(reverse( 'steps_3', )) if basic_info.is_step_one_complete(): return redirect(reverse( 'steps_2', )) else: return redirect(reverse( 'steps', )) return super().dispatch(request, *args, **kwargs) class StartPageView(FormView): template_name = "index.html" form_class = UserForm def dispatch(self, request, *args, **kwargs): if self.request.user.is_authenticated: return redirect(reverse( 'landing_page', )) return super().dispatch(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super( StartPageView, self ).get_context_data(**kwargs) form = UserForm() context.update({ 'login_type': 'Login', 'form': form, }) return context def post(self, request, *args, **kwargs): username = self.request.POST.get('username') password = self.request.POST.get('password') login_type = self.request.POST.get('login_type') form = UserForm( data=self.request.POST, ) if login_type == 'Register': if form.is_valid(): user = User.objects.create_user(username,None,password) login(request, user) else: return render( request, 'index.html', { 'form': form, 'login_type': 'Register' } ) else: user = authenticate(username=username, password=password) if user: login(request, user) else: messages.error(self.request, _('User not existing in the database.')) return render( request, 'index.html', { 'form': form, 'login_type': 'Login' } ) return redirect(reverse( 'landing_page', )) class LandingPageView( LoginRequiredMixin, FormView, ViewsDispatcher, ): template_name = "landing_page.html" login_url = 'start_page' form_class = BaseAccountForm def get_object(self): basic_account = BaseAccountModel.objects.filter(user=self.request.user).first() return basic_account def get_form_kwargs(self, **kwargs): extra_kwargs = super(LandingPageView, self).get_form_kwargs(**kwargs) extra_kwargs.update({ 'user': self.request.user, 'instance': self.get_object(), }) return extra_kwargs def get_context_data(self, **kwargs): context = super( LandingPageView, self ).get_context_data(**kwargs) context.update({ 'object': self.get_object(), }) return context def post(self, request, *args, **kwargs): logout(request) return redirect(reverse( 'start_page', )) class StepPageView( LoginRequiredMixin, FormView, ): template_name = "steps.html" form_class = FirstStepForm prev_page = None next_page = 'steps_2' def dispatch(self, request, *args, **kwargs): user = self.request.user basic_info = BaseAccountModel.objects.filter( user=user ).first() if basic_info: if basic_info.is_data_complete(): return redirect(reverse( 'landing_page', )) return super().dispatch(request, *args, **kwargs) def get_object(self): basic_account = BaseAccountModel.objects.filter(user=self.request.user) if basic_account: return basic_account.first() else: return None def get_form_kwargs(self, **kwargs): extra_kwargs = super(StepPageView, self).get_form_kwargs(**kwargs) extra_kwargs.update({ 'user': self.request.user, 'instance': self.get_object(), }) return extra_kwargs def get_context_data(self, **kwargs): context = super( StepPageView, self ).get_context_data(**kwargs) steps = [ { 'active': True, 'url': reverse('steps'), 'text': 'First Step', }, ] if self.get_object(): if self.get_object().is_step_one_complete(): url = reverse('steps_2') active = True else: url = '' active = False steps.append( { 'active': active, 'url': url, 'text': 'Second Step', } ) if self.get_object().is_step_two_complete(): url = reverse('steps_3') active = True else: url = '' active = False steps.append( { 'active': active, 'url': url, 'text': 'Third Step', } ) else: steps.append( { 'active': False, 'url': '', 'text': 'Second Step', } ) steps.append( { 'active': False, 'url': '', 'text': 'Third Step', } ) context.update({ 'prev_page_url': self.prev_page, 'steps': steps, }) return context def post(self, request, *args, **kwargs): if 'next' in self.request.POST: form = self.form_class( instance=self.get_object(), data=self.request.POST, user=self.request.user, ) if form.is_valid(): form.save() if 'logout' in self.request.POST: logout(request) return redirect(reverse( 'start_page', )) return redirect(self.get_success_url()) def get_success_url(self): return reverse( self.next_page, ) class SecondStepPageView( StepPageView, ): form_class = SecondStepForm prev_page = 'steps' next_page = 'steps_3' def dispatch(self, request, *args, **kwargs): user = self.request.user basic_info = BaseAccountModel.objects.filter( user=user ).first() if basic_info: if not basic_info.is_step_one_complete(): return redirect(reverse( 'steps', )) return super(SecondStepPageView, self).dispatch(request, *args, **kwargs) class ThirdStepPageView( StepPageView, ): form_class = ThirdStepForm prev_page = 'steps_2' next_page = 'landing_page' def dispatch(self, request, *args, **kwargs): user = self.request.user basic_info = BaseAccountModel.objects.filter( user=user ).first() if basic_info: if not basic_info.is_step_two_complete(): return redirect(reverse( 'steps_2', )) return super(ThirdStepPageView, self).dispatch(request, *args, **kwargs) class AccountDataAjax( JsonRequestResponseMixin, AjaxResponseMixin, View, ): def get_ajax(self, request, *args, **kwargs): pk = request.GET.get('pk', None) user_data = BaseAccountModel.objects.get(pk=pk) data = { 'f_name': user_data.first_name, 'l_name': user_data.last_name, 'adrress': user_data.address, 'gender': user_data.gender, 'date_of_birth': user_data.date_of_birth, 'email': user_data.email, } return self.render_json_response(data) def post_ajax(self, request, *args, **kwargs): user = self.request.user basic_info = BaseAccountModel.objects.filter( user=user ).first() if basic_info: form = BaseAccountForm( data=self.request.POST, instance=basic_info, user=user, ) else: form = BaseAccountForm( data=self.request.POST, user=user, ) if form.is_valid(): person_data = form.save() return self.render_json_response({ "status": "OK", "success": False, 'name': person_data.full_name(), 'adrress': person_data.address, 'gender': person_data.get_gender_display(), 'date_of_birth': person_data.date_of_birth.strftime("%b. %d, %Y"), 'email': person_data.email, }) else: error_dict = form.errors.as_json() return self.render_json_response({ "status": "OK", "success": False, "message": error_dict })
[ "royce@test.com" ]
royce@test.com
053e43676a2bf4488dd298cc5c303b57165e7714
251f998a2feae210d573ebd489c066f81be3d1e1
/test/functional/rpc_invalidateblock.py
b4ce401a99f58832818d0e83cdc1a9aca06297e2
[ "MIT" ]
permissive
Yash02012/bitkincoin
93a7f4aa8781da0b3fa811416733af6aaa99550d
dcfd8575e03ffe654e16cabb5ff6daabae7e24ab
refs/heads/master
2022-01-06T09:51:36.114441
2019-05-09T10:19:23
2019-05-09T10:19:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,937
py
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Bitkincoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the invalidateblock RPC.""" import time from test_framework.test_framework import BitkincoinTestFramework from test_framework.util import assert_equal, connect_nodes_bi, sync_blocks class InvalidateTest(BitkincoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def setup_network(self): self.setup_nodes() def run_test(self): self.log.info("Make sure we repopulate setBlockIndexCandidates after InvalidateBlock:") self.log.info("Mine 4 blocks on Node 0") self.nodes[0].generate(4) assert(self.nodes[0].getblockcount() == 4) besthash = self.nodes[0].getbestblockhash() self.log.info("Mine competing 6 blocks on Node 1") self.nodes[1].generate(6) assert(self.nodes[1].getblockcount() == 6) self.log.info("Connect nodes to force a reorg") connect_nodes_bi(self.nodes,0,1) sync_blocks(self.nodes[0:2]) assert(self.nodes[0].getblockcount() == 6) badhash = self.nodes[1].getblockhash(2) self.log.info("Invalidate block 2 on node 0 and verify we reorg to node 0's original chain") self.nodes[0].invalidateblock(badhash) newheight = self.nodes[0].getblockcount() newhash = self.nodes[0].getbestblockhash() if (newheight != 4 or newhash != besthash): raise AssertionError("Wrong tip for node0, hash %s, height %d"%(newhash,newheight)) self.log.info("Make sure we won't reorg to a lower work chain:") connect_nodes_bi(self.nodes,1,2) self.log.info("Sync node 2 to node 1 so both have 6 blocks") sync_blocks(self.nodes[1:3]) assert(self.nodes[2].getblockcount() == 6) self.log.info("Invalidate block 5 on node 1 so its tip is now at 4") self.nodes[1].invalidateblock(self.nodes[1].getblockhash(5)) assert(self.nodes[1].getblockcount() == 4) self.log.info("Invalidate block 3 on node 2, so its tip is now 2") self.nodes[2].invalidateblock(self.nodes[2].getblockhash(3)) assert(self.nodes[2].getblockcount() == 2) self.log.info("..and then mine a block") self.nodes[2].generate(1) self.log.info("Verify all nodes are at the right height") time.sleep(5) assert_equal(self.nodes[2].getblockcount(), 3) assert_equal(self.nodes[0].getblockcount(), 4) node1height = self.nodes[1].getblockcount() if node1height < 4: raise AssertionError("Node 1 reorged to a lower height: %d"%node1height) if __name__ == '__main__': InvalidateTest().main()
[ "josephdisuja08@gmail.com" ]
josephdisuja08@gmail.com
68aabc2c27d0560ddba1c52b5fc0655252d361dc
7021151239ac415b16799fc81b7ff6d905a108eb
/arrus.py
5d564e0ebfa9a9812a408e057b194b380931c3b5
[]
no_license
mahmoudzeyada/problemsolving-leanring
e6e9798b3010df3b45384fa4eddc2e36ecd4db4c
4e66f301494855183c793fff9903dd93a1e3c329
refs/heads/master
2020-04-22T20:58:54.201887
2019-05-07T16:03:31
2019-05-07T16:03:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
494
py
#!/bin/python3 import math import os import random import re import sys # Complete the hourglassSum function below. def hourglassSum(arr): subset = [] temp = [] for i in range(4): for j in range(4): temp = arr[i][j:j+3] temp.append(arr[i+1][j+8], arr[i+2][j:j+3]) print(sum(temp)) return(max(subset)) if __name__ == '__main__': arr = [] for _ in range(6): arr.append(list(map(int, input().rstrip().split())))
[ "mahmoudzeyada440@gmail.com" ]
mahmoudzeyada440@gmail.com
0ddabb1bbb824ae1a30fc43b16800b8d22816ba1
dafba3fc1e816dbe18c8ec402f5d8108da75ddd7
/eas/api/tests/int/test_secret_santa.py
d2095983f4c509cdbfdfbb479c543ee6e06d89b9
[]
no_license
etcaterva/eas-backend
5a76c6545504078968928f3c5715e1da162d96a8
cc47396c5b8b0a8bfea17ccb7f605ed43a79b76d
refs/heads/master
2023-05-04T03:41:24.973929
2023-02-03T21:55:40
2023-02-04T07:55:49
139,360,853
0
1
null
2023-04-21T22:37:27
2018-07-01T20:43:49
Python
UTF-8
Python
false
false
9,568
py
import datetime as dt from unittest import mock import freezegun from django.urls import reverse from rest_framework import status from rest_framework.test import APILiveServerTestCase from eas.api import models NOW = dt.datetime.now() class SecretSantaTest(APILiveServerTestCase): def setUp(self): self.list_url = reverse("secret-santa-list") self.client.default_format = "json" self.secret_santa_data = { "language": "en", "participants": [ {"name": "First Name", "email": "email@address1.com"}, {"name": "Second Name", "email": "email@address2.com"}, {"name": "Third Name", "email": "email@address2.com"}, ], } boto_patcher = mock.patch("eas.api.amazonsqs.boto3") self.sqs = boto_patcher.start().client.return_value self.addCleanup(boto_patcher.stop) def test_create_secret_santa(self): response = self.client.post(self.list_url, self.secret_santa_data) self.assertEqual( response.status_code, status.HTTP_201_CREATED, response.content ) assert response.json() == {"id": mock.ANY} def test_create_with_exclusions(self): self.secret_santa_data = { "language": "en", "participants": [ { "name": "First Name", "email": "email@address1.com", "exclusions": ["Third Name"], }, { "name": "Second Name", "email": "email@address2.com", "exclusions": ["First Name"], }, { "name": "Third Name", "email": "email@address2.com", "exclusions": ["Second Name"], }, ], } response = self.client.post(self.list_url, self.secret_santa_data) self.assertEqual( response.status_code, status.HTTP_201_CREATED, response.content ) results = list(models.SecretSantaResult.objects.all()) assert len(results) == 3 print(results) assert any( r.source == "First Name" and r.target == "Second Name" for r in results ) assert any( r.source == "Second Name" and r.target == "Third Name" for r in results ) assert any( r.source == "Third Name" and r.target == "First Name" for r in results ) def test_create_impossible(self): self.secret_santa_data = { "language": "en", "participants": [ { "name": "First Name", "email": "email@address1.com", "exclusions": ["Third Name"], }, { "name": "Second Name", "email": "email@address2.com", "exclusions": ["Third Name"], }, { "name": "Third Name", "email": "email@address2.com", "exclusions": ["Second Name"], }, ], } response = self.client.post(self.list_url, self.secret_santa_data) self.assertEqual( response.status_code, status.HTTP_400_BAD_REQUEST, response.content ) assert response.json() == { "general": [{"message": "Unable to match participants", "code": "invalid"}] } def test_retrieve(self): result = models.SecretSantaResult(source="From name", target="To Name") result.save() url = reverse("secret-santa-detail", kwargs=dict(pk=result.id)) response = self.client.get(url) self.assertEqual(response.status_code, status.HTTP_200_OK, response.content) self.assertEqual(response.data, {"source": "From name", "target": "To Name"}) def test_missing_fields(self): secret_santa_data = {} response = self.client.post(self.list_url, secret_santa_data) self.assertEqual( response.status_code, status.HTTP_400_BAD_REQUEST, response.content ) assert response.json() == { "schema": { "participants": [ {"message": "This field is required.", "code": "required"} ], "language": [ {"message": "This field is required.", "code": "required"} ], } } def test_fecth_secret_santa_admin(self): # Create draw response = self.client.post(self.list_url, self.secret_santa_data) self.assertEqual( response.status_code, status.HTTP_201_CREATED, response.content ) draw_id = response.json()["id"] # Fetch admin response = self.client.get( reverse("secret-santa-admin", kwargs=dict(pk=draw_id)) ) self.assertEqual(response.status_code, status.HTTP_200_OK, response.content) result = response.json() assert "id" in result assert "created_at" in result original_participants = { p["name"] for p in self.secret_santa_data["participants"] } returned_participants = { p["name"]: p["revealed"] for p in result["participants"] } assert set(returned_participants) == original_participants assert not any(returned_participants.values()) assert result["participants"][0]["id"] # Fetch one result draw = models.SecretSanta.objects.get(pk=result["id"]) draw_result = models.SecretSantaResult.objects.filter(draw=draw).all()[0] response = self.client.get( reverse("secret-santa-detail", kwargs=dict(pk=draw_result.id)) ) self.assertEqual(response.status_code, status.HTTP_200_OK, response.content) fetched_participant = response.json()["source"] # Fetch admin response = self.client.get( reverse("secret-santa-admin", kwargs=dict(pk=draw_id)) ).json() returned_participants = { p["name"]: p["revealed"] for p in response["participants"] } assert len([1 for x in returned_participants.values() if x]) assert returned_participants[fetched_participant] def test_resend_email_success(self): draw = models.SecretSanta() draw.save() result = models.SecretSantaResult( source="From name", target="To Name", draw=draw ) result.save() assert self.sqs.send_message.call_count == 0 url = reverse( "secret-santa-resend-email", kwargs=dict(draw_pk=draw.id, result_pk=result.id), ) with freezegun.freeze_time(NOW + dt.timedelta(days=3)): response = self.client.post( url, {"language": "en", "email": "mail@mail.com"} ) self.assertEqual(response.status_code, status.HTTP_200_OK, response.content) assert self.sqs.send_message.call_count == 1 def test_resend_email_unlinked_result_fails(self): draw = models.SecretSanta() draw.save() result = models.SecretSantaResult( source="From name", target="To Name", draw=draw ) result.save() draw2 = models.SecretSanta() draw2.save() result2 = models.SecretSantaResult( source="From name", target="To Name", draw=draw2 ) result2.save() url = reverse( "secret-santa-resend-email", kwargs=dict(draw_pk=draw2.id, result_pk=result.id), ) response = self.client.post(url, {"language": "en", "email": "mail@mail.com"}) self.assertEqual( response.status_code, status.HTTP_400_BAD_REQUEST, response.content ) url = reverse( "secret-santa-resend-email", kwargs=dict(draw_pk=draw.id, result_pk=result2.id), ) response = self.client.post(url, {"language": "en", "email": "mail@mail.com"}) self.assertEqual( response.status_code, status.HTTP_400_BAD_REQUEST, response.content ) def test_resend_email_revealed_result_fails(self): draw = models.SecretSanta() draw.save() result = models.SecretSantaResult( source="From name", target="To Name", draw=draw ) result.save() response = self.client.get( reverse("secret-santa-detail", kwargs=dict(pk=result.id)) ) url = reverse( "secret-santa-resend-email", kwargs=dict(draw_pk=draw.id, result_pk=result.id), ) response = self.client.post(url, {"language": "en", "email": "mail@mail.com"}) self.assertEqual( response.status_code, status.HTTP_400_BAD_REQUEST, response.content ) def test_resend_email_too_recent_fails(self): draw = models.SecretSanta() draw.save() result = models.SecretSantaResult( source="From name", target="To Name", draw=draw ) result.save() url = reverse( "secret-santa-resend-email", kwargs=dict(draw_pk=draw.id, result_pk=result.id), ) response = self.client.post(url, {"language": "en", "email": "mail@mail.com"}) self.assertEqual( response.status_code, status.HTTP_400_BAD_REQUEST, response.content )
[ "mariocj89@gmail.com" ]
mariocj89@gmail.com
6ba85a9a9247a3d8c945dc9f5b324c4bc61f4c92
82bccfd9c7db0fed0954ef31aadb7444f155d45c
/draw.py
57decbfb08bd075ac867590271d2975aeaba9497
[]
no_license
Mabedin00/3d
cb0ca938ed70f28e7cd81441de32184e8908538b
50c09ffc194769bc8f3406e7833915182a5aee9c
refs/heads/master
2021-03-27T06:01:42.376243
2020-03-16T19:57:50
2020-03-16T19:57:50
247,794,607
0
0
null
null
null
null
UTF-8
Python
false
false
6,593
py
from display import * from matrix import * # ==================== # add the points for a rectagular prism whose # upper-left corner is (x, y, z) with width, # height and depth dimensions. # ==================== def add_box( points, x, y, z, width, height, depth ): add_edge(points, x, y, z, x + width, y, z) add_edge(points, x, y, z, x, y - height, z) add_edge(points, x + width, y, z, x + width, y - height, z) add_edge(points, x, y - height, z, x + width, y - height, z) add_edge(points, x, y, z - depth, x + width, y, z - depth) add_edge(points, x, y, z - depth, x, y - height, z - depth) add_edge(points, x + width, y, z - depth, x + width, y - height, z - depth) add_edge(points, x, y - height, z - depth, x + width, y - height, z - depth) add_edge(points, x, y, z, x, y, z - depth) add_edge(points, x + width, y, z, x + width, y, z - depth) add_edge(points, x, y - height, z, x, y - height, z - depth) add_edge(points, x + width, y - height, z, x + width, y - height, z - depth) # ==================== # Generates all the points along the surface # of a sphere with center (cx, cy, cz) and # radius r. # Returns a matrix of those points # ==================== def generate_sphere( points, cx, cy, cz, r, step ): rot = 0 cir = 0 while rot <= 1: while cir <= 1: x = r * math.cos(math.pi * cir) + cx y = r * math.sin(math.pi * cir) * math.cos(2 * math.pi * rot) + cy z = r * math.sin(math.pi * cir) * math.sin(2 * math.pi * rot) + cz add_point(points, x, y, z) cir += step rot += step cir = 0 return points # ==================== # adds all the points for a sphere with center # (cx, cy, cz) and radius r to points # should call generate_sphere to create the # necessary points # ==================== def add_sphere( points, cx, cy, cz, r, step ): new = new_matrix(0, 0) mat = generate_sphere(new, cx, cy, cz, r, step) # print_matrix(points) for point in mat: add_point(points, point[0], point[1], point[2]) # ==================== # Generates all the points along the surface # of a torus with center (cx, cy, cz) and # radii r0 and r1. # Returns a matrix of those points # ==================== def generate_torus( points, cx, cy, cz, r0, r1, step ): rot = 0 cir = 0 while rot <= 1: while cir <= 2: x = math.cos(2 * math.pi * rot) * (r0 * math.cos(math.pi * cir) + r1) + cx y = r0 * math.sin(math.pi * cir) + cy z = -1 * math.sin(2 * math.pi * rot) * (r0 * math.cos(math.pi * cir) + r1) + cz add_point(points, x, y, z) cir += step rot += step cir = 0 return points # ==================== # adds all the points for a torus with center # (cx, cy, cz) and radii r0, r1 to points # should call generate_torus to create the # necessary points # ==================== def add_torus( points, cx, cy, cz, r0, r1, step ): new = new_matrix(0, 0) mat = generate_torus(new, cx, cy, cz, r0, r1, step) for point in mat: add_point(points, point[0], point[1], point[2]) def add_circle( points, cx, cy, cz, r, step ): x0 = r + cx y0 = cy i = 1 while i <= step: t = float(i)/step x1 = r * math.cos(2*math.pi * t) + cx; y1 = r * math.sin(2*math.pi * t) + cy; add_edge(points, x0, y0, cz, x1, y1, cz) x0 = x1 y0 = y1 i+= 1 def add_curve( points, x0, y0, x1, y1, x2, y2, x3, y3, step, curve_type ): xcoefs = generate_curve_coefs(x0, x1, x2, x3, curve_type)[0] ycoefs = generate_curve_coefs(y0, y1, y2, y3, curve_type)[0] i = 1 while i <= step: t = float(i)/step x = t * (t * (xcoefs[0] * t + xcoefs[1]) + xcoefs[2]) + xcoefs[3] y = t * (t * (ycoefs[0] * t + ycoefs[1]) + ycoefs[2]) + ycoefs[3] #x = xcoefs[0] * t*t*t + xcoefs[1] * t*t + xcoefs[2] * t + xcoefs[3] #y = ycoefs[0] * t*t*t + ycoefs[1] * t*t + ycoefs[2] * t + ycoefs[3] add_edge(points, x0, y0, 0, x, y, 0) x0 = x y0 = y i+= 1 def draw_lines( matrix, screen, color ): if len(matrix) < 2: print('Need at least 2 points to draw') return point = 0 while point < len(matrix) - 1: draw_line( int(matrix[point][0]), int(matrix[point][1]), int(matrix[point+1][0]), int(matrix[point+1][1]), screen, color) point+= 2 def add_edge( matrix, x0, y0, z0, x1, y1, z1 ): add_point(matrix, x0, y0, z0) add_point(matrix, x1, y1, z1) def add_point( matrix, x, y, z=0 ): matrix.append( [x, y, z, 1] ) def draw_line( x0, y0, x1, y1, screen, color ): #swap points if going right -> left if x0 > x1: xt = x0 yt = y0 x0 = x1 y0 = y1 x1 = xt y1 = yt x = x0 y = y0 A = 2 * (y1 - y0) B = -2 * (x1 - x0) #octants 1 and 8 if ( abs(x1-x0) >= abs(y1 - y0) ): #octant 1 if A > 0: d = A + B/2 while x < x1: plot(screen, color, x, y) if d > 0: y+= 1 d+= B x+= 1 d+= A #end octant 1 while plot(screen, color, x1, y1) #end octant 1 #octant 8 else: d = A - B/2 while x < x1: plot(screen, color, x, y) if d < 0: y-= 1 d-= B x+= 1 d+= A #end octant 8 while plot(screen, color, x1, y1) #end octant 8 #end octants 1 and 8 #octants 2 and 7 else: #octant 2 if A > 0: d = A/2 + B while y < y1: plot(screen, color, x, y) if d < 0: x+= 1 d+= A y+= 1 d+= B #end octant 2 while plot(screen, color, x1, y1) #end octant 2 #octant 7 else: d = A/2 - B; while y > y1: plot(screen, color, x, y) if d > 0: x+= 1 d+= A y-= 1 d-= B #end octant 7 while plot(screen, color, x1, y1) #end octant 7 #end octants 2 and 7 #end draw_line
[ "mabedin00@stuy.edu" ]
mabedin00@stuy.edu
0db846a6e5146c39dbdb5d2ce4971b61cc766b67
78392e1fbb5e5cb73148c9972c9c1df418fbccc0
/hello.py
d101a41630eeb92d77c7ce6c5f0f493320af10c9
[]
no_license
gaomiup20/mine
9ebfc1db6e1642e3ca3b6b22320314d0509f8169
948b5d9932209be16e9ee85553b0de4f55de1a97
refs/heads/master
2021-01-21T10:52:56.929494
2017-02-28T02:42:57
2017-02-28T02:42:57
83,496,567
0
0
null
null
null
null
UTF-8
Python
false
false
47
py
#!/usr/bin /env python # print "hello world"
[ "tom@up.com" ]
tom@up.com
722c89f7c8bd05cab2f40bb54b795413c498ec55
223632474c834264c9f7e4c4c525cf19ca923f7e
/Practices/Practice01/mysite/mysite/urls.py
de5f63a6e035fc2a500f82ec3bef07be0eed2cd8
[]
no_license
englam/Django
2a2a6fd374169a5f5bb779138e4f5c13d3a987b3
db267371bac955254fe76e86447396107d69dfe3
refs/heads/master
2021-01-19T15:35:01.512703
2017-05-28T08:42:44
2017-05-28T08:42:44
88,223,570
2
0
null
null
null
null
UTF-8
Python
false
false
665
py
from django.conf.urls import patterns, include, url from django.contrib import admin from views import here, add, math, math2, math3, math4, math5 urlpatterns = patterns('', # Examples: # url(r'^$', 'mysite.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^admin/', include(admin.site.urls)), url(r'^here1/$',here), #path , object url(r'^(\d{1,2})/plus/(\d{1,2})/$',add), url(r'^(\d{1,2})/math/(\d{1,2})/$',math), url(r'^(\d{1,2})/math2/(\d{1,2})/$',math2), url(r'^(\d{1,2})/math3/(\d{1,2})/$',math3), url(r'^(\d{1,2})/math4/(\d{1,2})/$',math4), url(r'^(\d{1,2})/math5/(\d{1,2})/$',math5), )
[ "englam3345678@gmail.com" ]
englam3345678@gmail.com
d95a888b85475398916a2bb4c33af9ac9d29e373
491d92e941aea7b07390a9310a595d685d83632b
/setup.py
7ab03c954dd08a8eaadc948f409a16aba1a86ccf
[]
no_license
williamschmitt21/ncan_bibrun
94dc7cbb7ace4d2ffb28e3b3f58de891a91559bc
5c15877c5d5e5324528d1561972b4106ab337e78
refs/heads/master
2021-09-16T01:52:34.079686
2018-06-14T20:48:13
2018-06-14T20:48:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
659
py
# Setup File for Python Module ncan-bib-assess # Created by Billy Schmitt from setuptools import setup def readme(): with open('README.rst') as f: return f.read() setup(name='ncan_bibrun', version='0.2', description='NCAN Bibliometric Assessment', url='http://github.com/Schmill731/NCAN-Bibliometric-Analysis', author='Billy Schmitt', author_email='williamschmitt@college.harvard.edu', license='NCAN', packages=['ncan_bibrun'], install_requires=['requests', 'xlsxwriter'], scripts=['bin/ncan-bibrun'], include_package_data=True, long_description=readme(), zip_safe=False)
[ "williamschmitt@college.harvard.edu" ]
williamschmitt@college.harvard.edu
0d5ca9d725f861d5c49cc304d16055ca776924a7
02c5c3329fd00a4261c69dd65bd6b19a8caeaa3e
/lc/hymns/views.py
36a302e1ba444964605eb6314334a80e4030c102
[]
no_license
pantlmn/liturcorpora
c8246f8295fc1cb63c34b68d87335937f8f4949d
4ac52d588e8d21b8e24402663c7b9eec9fe33ac4
refs/heads/github
2022-05-09T17:19:49.654601
2021-04-10T00:29:55
2021-04-10T00:29:55
188,422,528
2
1
null
2022-04-22T21:20:07
2019-05-24T13:00:49
Python
UTF-8
Python
false
false
1,324
py
from django.http import HttpResponse from django.http import HttpResponseRedirect from django.shortcuts import get_object_or_404, render from django.urls import reverse from django.views import generic from django.core.paginator import Paginator from django.db.models import Q import re from .models import TextBlock, Paragraph def index(request, block_id=None): path = [] paragraphs = None if block_id is None: blocks = TextBlock.objects.filter(parent_block=None) else: blocks = TextBlock.objects.filter(parent_block__id=block_id).order_by('order_id') block = TextBlock.objects.get(id=block_id) while block is not None: path = [[block.id, block.name_short]] + path block = block.parent_block paragraphs = Paragraph.objects.filter(parent_block__id=block_id).order_by('order_id') return render(request, 'textblocks.html', {'path' : path, 'blocks' : blocks, 'paragraphs' : paragraphs}) def paragraph(request, paragraph_id=None): paragraph = Paragraph.objects.get(id=paragraph_id) block = paragraph.parent_block path = [] while block is not None: path = [[block.id, block.name_short]] + path block = block.parent_block return render(request, 'paragraph.html', {'path' : path, 'paragraph' : paragraph})
[ "pantlmn@gmail.com" ]
pantlmn@gmail.com
c3332593ef978c5b3b55b4b58e3d4b49a1116ba5
392fe549572572b77f9fc1b852a34ebae519087b
/project/settings.py
55254c5029fae879f43669a2b1cae589d513f37b
[]
no_license
mamee93/like_disqus
cd2cd90c1cf456015d6ee9d51a56a84fc42494f2
9516d714804b067bbaa20e35d8bbf8779bebaa67
refs/heads/main
2022-12-26T12:14:24.904770
2020-10-11T19:49:36
2020-10-11T19:49:36
303,204,974
0
0
null
null
null
null
UTF-8
Python
false
false
3,218
py
""" Django settings for project project. Generated by 'django-admin startproject' using Django 3.1.2. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '-9(k9d3k_qw7rj1(iv@k+d$$_fwaf-ht$o*)30=#ohv3#wa403' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'TopicComm', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': ['templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'project.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ BASE_DIR / "static", ] MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, "media")
[ "mameeal@gmail.com" ]
mameeal@gmail.com
31ed002b7e046f083d95c8d5950e4686b457017a
67c26df6c59f2564082e9cf7caf04ab25c929cb5
/ika_classifier/app/api/tests/Main.py
76bfff3535ff87cadb7fb025d08aea0809fdfe3f
[ "Apache-2.0" ]
permissive
Harisonm/Ika
46e5f51212999a16cadb619c3aafb8c11e39964a
243ceab532007ee4fb05b205e1125fab5d3d325b
refs/heads/master
2023-05-29T16:55:41.854929
2021-01-13T14:48:49
2021-01-13T14:48:49
198,652,172
6
0
Apache-2.0
2021-06-10T15:54:31
2019-07-24T14:30:21
CSS
UTF-8
Python
false
false
2,076
py
from api.classifier_mail.model.KMeansModel import * from api.classifier_mail.model.Metrics import * from ikamail.GmailHelper import GmailHelper import pandas as pd import nltk import sys import os PATH = os.environ.get("PATH_SAVE_TRANSFORM", default=False) nltk.download("punkt") nltk.download("stopwords") def build_label_mail(data): """ Args: data: Returns: """ train = pd.read_csv(PATH + data, encoding="utf-8") clean_train_reviews = pre_processing_dataset(train) vocab_frame = build_vocab_frame(clean_train_reviews) tfidf_matrix, tfidf_vectorizer = build_tfidf_matrix_vector(clean_train_reviews) # calculating the within clusters sum-of-squares for 19 cluster amounts sum_of_squares = calculate_wcss(tfidf_matrix) # calculating the optimal number of clusters n_clusters = optimal_number_of_clusters(sum_of_squares) clusters, k_means_model = build_cluster_from_model(n_clusters, tfidf_matrix) # cluster_labels, silhouette_avg, sample_silhouette_values = predict_clustering_group(k_means_model, tfidf_matrix) labels = build_label_mails( vocab_frame, k_means_model, tfidf_vectorizer, clusters, clean_train_reviews, n_clusters, ) for mail in clean_train_reviews: for lbl in mail["label"][:1]: GmailHelper("dev").create_label( "me", name_label=lbl, label_list_visibility="labelShow", message_list_visibility="show", ) labels_ids = GmailHelper("dev").get_label_ids("me", mail["label"]) GmailHelper("dev").modify_message( user_id="me", mail_id=mail["idMail"], mail_labels=create_msg_labels(labels_ids[:1]), ) def create_msg_labels(labels_ids): """Create object to update labels. Returns: A label update object. """ return {"removeLabelIds": [], "addLabelIds": labels_ids} if __name__ == "__main__": arg1 = str(sys.argv[1]) build_label_mail(arg1)
[ "mranaivoharison@gmail.com" ]
mranaivoharison@gmail.com
4dc41f57067c9b4327b7884014ede075cf83c66b
509bc8038c4ce8f04130b583d4c70bd851f9b83d
/python/weather/weather.py
e86676654ea84e974a4efdbaaa0291eadc55dae8
[]
no_license
AlbertoCastelo/weather-kata
4162fd87ea0f12ab65909f0ef7e3e4201cb2c38f
faa78305050152104d81b3554c0c59e5a2b9d0de
refs/heads/master
2020-03-22T11:17:09.946722
2018-07-06T07:12:29
2018-07-06T07:12:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,283
py
import urllib.request import json import datetime class Weather: def predict(self, city, aDateTime = None, wind = False): # When date is not provided we look for the current prediction if aDateTime is None: aDateTime = datetime.datetime.now() # If there are predictions if (aDateTime < (datetime.datetime.now() + datetime.timedelta(days=6)).replace(hour=0, minute=0, second=0)): # Find the id of the city on metawheather woeid = json.loads(urllib.request.urlopen( "https://www.metaweather.com/api/location/search/?query=" + city).read())[0]['woeid'] # Find the predictions for the city results = json.loads(urllib.request.urlopen( "https://www.metaweather.com/api/location/" + str(woeid)).read())['consolidated_weather'] for result in results: # When the date is the expected if result['applicable_date'] == aDateTime.strftime('%Y-%m-%d'): # If we have to return the wind information if wind: return result['wind_speed'] else: return result['weather_state_name'] else: return ""
[ "luisrovirosa@gmail.com" ]
luisrovirosa@gmail.com
f7e6e122d6cea6eb411ade6ecff40bd031ddd6bd
5e4d4a4f2c27c5ed4b86e67464d5890873857798
/setup/02-robot_syntax_rule.py
9fbe741963dc1c4ad38dd87cc2a6b0682ed2c4b4
[ "MIT" ]
permissive
venetastefanova/rf-katas
a4941cb278c173bb09e567e962a801c9e02290bd
ce693e31303c19d73ed6e3e779a46f7d364a2069
refs/heads/master
2022-12-24T11:27:53.519564
2020-10-07T08:51:54
2020-10-07T08:51:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,086
py
from rflint.common import SuiteRule, TestRule, ERROR MUST_KEYWORDS = [ "Open Browser", "Input Text", "Page Should Contain" ] class TestCaseImplementation02(TestRule): severity = ERROR def apply(self, test): report = False test_steps = [] for step in test.steps: if len(step) > 1: test_steps.append(step[1]) for keyword in MUST_KEYWORDS: if not keyword.strip() in test_steps: report = True if report: self.report(test, "Did you find all keywords from seleniumlibrary documentation?, expected: {}".format(", ".join(MUST_KEYWORDS)), test.linenumber) class CheckTestCasesName02(SuiteRule): severity = ERROR def apply(self, suite): expected_name = "Welcome Page Should Be Visible After Successful Login" for testcase in suite.testcases: if testcase.name.lower() != expected_name.lower(): self.report(suite, "Check test case name: {}, expected: {}".format(testcase.name, expected_name), 0)
[ "joonas.jauhiainen@eficode.com" ]
joonas.jauhiainen@eficode.com
5ec57948a7c2ac91e0df862f3e5ca07b9d830b37
e7340c09cfea3270b067f667c58757f5aa6db449
/users/models.py
546dd7c513c706b437b64ba6098034257824ef12
[]
no_license
emma-code187/blogprojects
737a338e08fa1ea2642139076fa625bba8d82c8e
36cb6880608dbadd946e335a86751371b08cb931
refs/heads/main
2023-03-20T01:55:58.978864
2021-03-21T13:55:25
2021-03-21T13:55:25
305,835,952
0
0
null
null
null
null
UTF-8
Python
false
false
994
py
from django.db import models from django.contrib.auth.models import User from PIL import Image from django.db.models.signals import post_save from django.dispatch import receiver #from django.utils.translation import ugettext_lazy as _ class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) image = models.ImageField(default='default.jpg', upload_to='profile_pics') def __str__(self): return f'{self.user.username} Profile' def save(self, *args, **kwargs): super().save(*args, **kwargs) img = Image.open(self.image.path) if img.height > 300 or img.width > 300: output_size = (300, 300) img.thumbnail(output_size) img.save(self.image.path) @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) @receiver(post_save, sender=User) def save_user_profile(sender, instance, **kwargs): instance.profile.save()
[ "noreply@github.com" ]
emma-code187.noreply@github.com
993c350eb67aa4ef8bfc9ea7648e760612129dac
2d31c6cc2c0f6280e91ca22ef1f4c6da9a0bb165
/src/Filter.py
c70e9e9222777a6b7d396a02e61b9b17dbf19eab
[]
no_license
787890/Music-alib
717e025d02f663d28bed7d86470ef0f0b81050fa
260cc6305835beec42c8ac64cd6ca8a96b0b3ce3
refs/heads/master
2020-04-12T14:44:56.193918
2018-12-24T09:08:38
2018-12-24T09:08:38
162,560,298
1
0
null
null
null
null
UTF-8
Python
false
false
289
py
# -*- coding: utf-8 -*- class SongFilter: DEFAULT_MIN_BITRATE = 320 DEFAULT_MIN_SIMILARITY = 0.5 def __init__(self, min_bitrate=DEFAULT_MIN_BITRATE, min_similarity=DEFAULT_MIN_SIMILARITY): self.min_bitrate = min_bitrate self.min_similarity = min_similarity
[ "787890@gmail.com" ]
787890@gmail.com
51b7086bc2acd7748614797c73980218e910f92a
766a6fdd83608d8faf283b302fa7f6e24b7c4f85
/WHIProject/urls.py
1c6162554a8cc241acb7f37900ea57d09f49ec9f
[]
no_license
harshakhmk/WorldHappinessIndexAPI
d4d1877d6fdb18e058fa6065f4de668178c51057
724532cd1360024a87df3040a013c9028f6764fb
refs/heads/master
2023-04-06T14:28:28.200813
2021-04-12T11:06:08
2021-04-12T11:06:08
355,083,395
1
0
null
null
null
null
UTF-8
Python
false
false
1,213
py
"""WHIProject URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include from django.conf import settings from django.conf.urls.static import static from utils.views import * from django.conf.urls import ( handler400, handler403, handler404, handler500) urlpatterns = [ path('admin/', admin.site.urls), path('v1/',include('HappinessApi.urls')), path('',include('HappinessApi.urls')), ]+ static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) handler404 = error404 handler500 = error500 handler403 = error403 handler400 = error400
[ "kharshakashyap@gmail.com" ]
kharshakashyap@gmail.com
3685cda859c392bd6c76ef33e00dde9c7acda5af
d0360de3fac36e17d4e423844a78c3fe654677ff
/CF/Q.py
f0314366c6c2856b352eb959f0e668f4b49dc78b
[]
no_license
niki999922/Machine-Learning
958109a6a2bb82f9ad2d531bc952509634f568a0
9f5f13774a12a4e32697e10de6372d1251776007
refs/heads/master
2023-02-10T01:32:18.307707
2021-01-11T20:34:34
2021-01-11T20:34:34
298,417,040
0
0
null
null
null
null
UTF-8
Python
false
false
520
py
import math if __name__ == '__main__': k1, k2 = map(int, input().split(" ")) n = int(input()) xs, ys = [], [] ans = 0 p = [0 for _ in range(k1)] m = {} for _ in range(n): x, y = map(int, input().split(" ")) p[x - 1] += 1 / n if not m.__contains__(f'{x - 1} {y - 1}'): m[f'{x - 1} {y - 1}'] = 0 m[f'{x - 1} {y - 1}'] += 1 / n for key in m: x, _ = map(int, key.split(" ")) ans += -m[key] * math.log(m[key] / p[x]) print(ans)
[ "nikita.kochetkov@jetbrains.com" ]
nikita.kochetkov@jetbrains.com
c2d6d0cecb6ab276a78410a0afe6e8ca0c4e41b4
505a155fe624fd9d028cbd960ed4c819dbfac2ed
/backendbase.py
569028aae98304a9ad1dde2beedf5e20acd58710
[]
no_license
WalkingMachine/vizbox
054332c1e30297faac3084af312edbb42d1cca54
1d290581f16d5b775e55f5bcc4f3d03993bc6331
refs/heads/master
2021-04-03T06:48:33.881853
2018-05-22T20:25:32
2018-05-22T20:25:32
124,595,894
0
0
null
2018-05-22T19:37:02
2018-03-09T21:35:59
Python
UTF-8
Python
false
false
1,990
py
def call_callbacks_in(cb_list, converter): def callback(message): converted = converter(message) for cb in cb_list: cb(converted) return callback class BackendBase(object): @staticmethod def get_instance(): raise NotImplementedError() def __init__(self): self.on_operator_text = [] self.on_robot_text = [] self.on_challenge_step = [] self.on_image = [] self.on_story = [] def attach_operator_text(self, callback): self.on_operator_text += [callback] def attach_robot_text(self, callback): self.on_robot_text += [callback] def attach_challenge_step(self, callback): self.on_challenge_step += [callback] def detach_operator_text(self, callback): self.on_operator_text.remove(callback) def detach_robot_text(self, callback): self.on_robot_text.remove(callback) def detach_challenge_step(self, callback): self.on_challenge_step.remove(callback) def accept_command(self, command_text): raise NotImplementedError() def attach_image(self, callback): """ Add a callback for when an Image is received :param callback: function accepting a base64-encoded image :return: """ self.on_image += [callback] def detach_image(self, callback): """ Remove a callback from when an Image is received :param callback: :return: """ self.on_image.remove(callback) def attach_story(self, callback): """ Add a callback for when a Story is received :param callback: function accepting a tuple of (title: str, storyline: [str]) :return: """ self.on_story += [callback] def detach_story(self, callback): """ Remove a callback from when a Story is received :param callback: :return: """ self.on_story.remove(callback)
[ "loy.vanbeek@gmail.com" ]
loy.vanbeek@gmail.com
9b5752bb27cebacb768b2952a976016fc3e1f6ed
6649efd4a95645938221eca58404db5663cd2491
/official/vision/losses/retinanet_losses.py
91aaecf082d4d5d390a2445c5e3290767401c578
[ "Apache-2.0" ]
permissive
Dithn/models
8447866855959946358f2e5160b7d31aaafcfc98
36a140b8765eaa07525ac42a00cbd01a8b03b98e
refs/heads/master
2023-09-01T07:41:28.596877
2022-03-16T18:12:00
2022-03-16T18:13:23
228,201,096
1
0
Apache-2.0
2021-09-23T21:19:16
2019-12-15T14:52:24
Python
UTF-8
Python
false
false
8,097
py
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Losses used for detection models.""" # Import libraries import tensorflow as tf def focal_loss(logits, targets, alpha, gamma): """Compute the focal loss between `logits` and the golden `target` values. Focal loss = -(1-pt)^gamma * log(pt) where pt is the probability of being classified to the true class. Args: logits: A float32 tensor of size [batch, d_1, ..., d_k, n_classes]. targets: A float32 tensor of size [batch, d_1, ..., d_k, n_classes]. alpha: A float32 scalar multiplying alpha to the loss from positive examples and (1-alpha) to the loss from negative examples. gamma: A float32 scalar modulating loss from hard and easy examples. Returns: loss: A float32 Tensor of size [batch, d_1, ..., d_k, n_classes] representing normalized loss on the prediction map. """ with tf.name_scope('focal_loss'): positive_label_mask = tf.equal(targets, 1.0) cross_entropy = ( tf.nn.sigmoid_cross_entropy_with_logits(labels=targets, logits=logits)) probs = tf.sigmoid(logits) probs_gt = tf.where(positive_label_mask, probs, 1.0 - probs) # With small gamma, the implementation could produce NaN during back prop. modulator = tf.pow(1.0 - probs_gt, gamma) loss = modulator * cross_entropy weighted_loss = tf.where(positive_label_mask, alpha * loss, (1.0 - alpha) * loss) return weighted_loss class FocalLoss(tf.keras.losses.Loss): """Implements a Focal loss for classification problems. Reference: [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002). """ def __init__(self, alpha, gamma, num_classes, reduction=tf.keras.losses.Reduction.AUTO, name=None): """Initializes `FocalLoss`. Args: alpha: The `alpha` weight factor for binary class imbalance. gamma: The `gamma` focusing parameter to re-weight loss. num_classes: Number of foreground classes. reduction: (Optional) Type of `tf.keras.losses.Reduction` to apply to loss. Default value is `AUTO`. `AUTO` indicates that the reduction option will be determined by the usage context. For almost all cases this defaults to `SUM_OVER_BATCH_SIZE`. When used with `tf.distribute.Strategy`, outside of built-in training loops such as `tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE` will raise an error. Please see this custom training [tutorial]( https://www.tensorflow.org/tutorials/distribute/custom_training) for more details. name: Optional name for the op. Defaults to 'retinanet_class_loss'. """ self._num_classes = num_classes self._alpha = alpha self._gamma = gamma super(FocalLoss, self).__init__(reduction=reduction, name=name) def call(self, y_true, y_pred): """Invokes the `FocalLoss`. Args: y_true: Ordered Dict with level to [batch, height, width, num_anchors]. for example, {3: tf.Tensor(shape=[32, 512, 512, 9], dtype=tf.float32), 4: tf.Tensor([shape=32, 256, 256, 9, dtype=tf.float32])} y_pred: Ordered Dict with level to [batch, height, width, num_anchors * num_classes]. for example, {3: tf.Tensor(shape=[32, 512, 512, 9], dtype=tf.int64), 4: tf.Tensor(shape=[32, 256, 256, 9 * 21], dtype=tf.int64)} Returns: Summed loss float `Tensor`. """ flattened_cls_outputs = [] flattened_labels = [] batch_size = None for level in y_pred.keys(): cls_output = y_pred[level] label = y_true[level] if batch_size is None: batch_size = cls_output.shape[0] or tf.shape(cls_output)[0] flattened_cls_outputs.append( tf.reshape(cls_output, [batch_size, -1, self._num_classes])) flattened_labels.append(tf.reshape(label, [batch_size, -1])) cls_outputs = tf.concat(flattened_cls_outputs, axis=1) labels = tf.concat(flattened_labels, axis=1) cls_targets_one_hot = tf.one_hot(labels, self._num_classes) return focal_loss( tf.cast(cls_outputs, dtype=tf.float32), tf.cast(cls_targets_one_hot, dtype=tf.float32), self._alpha, self._gamma) def get_config(self): config = { 'alpha': self._alpha, 'gamma': self._gamma, 'num_classes': self._num_classes, } base_config = super(FocalLoss, self).get_config() return dict(list(base_config.items()) + list(config.items())) class RetinanetBoxLoss(tf.keras.losses.Loss): """RetinaNet box Huber loss.""" def __init__(self, delta, reduction=tf.keras.losses.Reduction.AUTO, name=None): """Initializes `RetinanetBoxLoss`. Args: delta: A float, the point where the Huber loss function changes from a quadratic to linear. reduction: (Optional) Type of `tf.keras.losses.Reduction` to apply to loss. Default value is `AUTO`. `AUTO` indicates that the reduction option will be determined by the usage context. For almost all cases this defaults to `SUM_OVER_BATCH_SIZE`. When used with `tf.distribute.Strategy`, outside of built-in training loops such as `tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE` will raise an error. Please see this custom training [tutorial]( https://www.tensorflow.org/tutorials/distribute/custom_training) for more details. name: Optional name for the op. Defaults to 'retinanet_class_loss'. """ self._huber_loss = tf.keras.losses.Huber( delta=delta, reduction=tf.keras.losses.Reduction.NONE) self._delta = delta super(RetinanetBoxLoss, self).__init__(reduction=reduction, name=name) def call(self, y_true, y_pred): """Computes box detection loss. Computes total detection loss including box and class loss from all levels. Args: y_true: Ordered Dict with level to [batch, height, width, num_anchors * 4] for example, {3: tf.Tensor(shape=[32, 512, 512, 9 * 4], dtype=tf.float32), 4: tf.Tensor([shape=32, 256, 256, 9 * 4, dtype=tf.float32])} y_pred: Ordered Dict with level to [batch, height, width, num_anchors * 4]. for example, {3: tf.Tensor(shape=[32, 512, 512, 9 * 4], dtype=tf.int64), 4: tf.Tensor(shape=[32, 256, 256, 9 * 4], dtype=tf.int64)} Returns: an integer tensor representing total box regression loss. """ # Sums all positives in a batch for normalization and avoids zero # num_positives_sum, which would lead to inf loss during training flattened_box_outputs = [] flattened_labels = [] batch_size = None for level in y_pred.keys(): box_output = y_pred[level] label = y_true[level] if batch_size is None: batch_size = box_output.shape[0] or tf.shape(box_output)[0] flattened_box_outputs.append(tf.reshape(box_output, [batch_size, -1, 4])) flattened_labels.append(tf.reshape(label, [batch_size, -1, 4])) box_outputs = tf.concat(flattened_box_outputs, axis=1) labels = tf.concat(flattened_labels, axis=1) loss = self._huber_loss(labels, box_outputs) return loss def get_config(self): config = { 'delta': self._delta, } base_config = super(RetinanetBoxLoss, self).get_config() return dict(list(base_config.items()) + list(config.items()))
[ "gardener@tensorflow.org" ]
gardener@tensorflow.org
023837f61204966e0a2fbe0fd3a4300a089a5156
bf461a8a1b29b305073f7123205a0071f439fe37
/Day 9/travel_log.py
5e1c98b53d984fe2036c59abde4a214af6250898
[]
no_license
d0ntblink/100-Days-of-Code
ab45b878d2a3de57a5f7dacd706b16425e9497aa
f8c00469284934e65672f6f2925784225b0e8e99
refs/heads/master
2023-07-04T12:21:10.169523
2021-02-23T06:49:34
2021-02-23T06:49:34
341,440,513
0
0
null
2021-07-27T22:24:37
2021-02-23T05:34:16
Python
UTF-8
Python
false
false
849
py
travel_log = [ { "country": "France", "visits": 12, "cities": ["Paris", "Lille", "Dijon"] }, { "country": "Germany", "visits": 5, "cities": ["Berlin", "Hamburg", "Stuttgart"] }, ] #🚨 Do NOT change the code above ''' add_new_country("Russia", 2, ["Moscow", "Saint Petersburg"]) add_new_country("Russia", 2, ["Moscow", "Saint Petersburg"]) You've visited Russia 2 times. You've been to Moscow and Saint Petersburg. ''' #TODO: Write the function that will allow new countries #to be added to the travel_log. 👇 def add_new_country(country, visits, city) : new_country = {} new_country["country"] = country new_country["visits"] = visits new_country["cities"] = city travel_log.append(new_country) #🚨 Do not change the code below add_new_country("Russia", 2, ["Moscow", "Saint Petersburg"]) print(travel_log)
[ "33300872+d0ntblink@users.noreply.github.com" ]
33300872+d0ntblink@users.noreply.github.com
71974246c15cd9d899006c0243f48b88b426b3cf
cad2b9873e641862c0896c68cfc12620a34cce03
/src/controller.py
398e578f49070f28f614651dbc0dac291c21e7c7
[]
no_license
xiaoniaoyou/Galieo
de5113f5dcf20518d966c3a474066bda3cf408a7
5c9cac0914b871245dc75d63714fd6eaf2a20ad5
refs/heads/master
2020-03-12T12:29:37.243459
2018-04-23T02:38:23
2018-04-23T02:38:23
130,619,592
0
0
null
2018-04-23T02:38:24
2018-04-23T00:27:08
null
UTF-8
Python
false
false
3,221
py
#!/usr/bin/env python # -*- coding:utf-8 -*- ''' 此界面用于上传指定目录的文件夹,打包该文件夹并压缩,然后上传到远程服务器上指定目录(默认桌面下) 版本3.0.0,此版本用于上传打包压缩后的文件 版本2.0.0,此版本用于上传文件夹 ''' __version__ = '3.0.2' __author__ = 'Eric' import MainFrame as mainFrame import wx from wx.lib.pubsub import pub import sys reload(sys) sys.setdefaultencoding('utf-8') import model import view class Controller: def __init__(self, app): self.model = model.Model() self.main_view = view.MainView(None) self.main_view.Show() self.main_view.m_button_config.Bind(wx.EVT_BUTTON, self.on_show_config_dlg) self.main_view.m_button_choose_dir.Bind(wx.EVT_BUTTON, self.on_choose_dir) self.main_view.m_button_choose_single_file.Bind(wx.EVT_BUTTON, self.on_choose_file) self.main_view.m_button_upload.Bind(wx.EVT_BUTTON, self.on_upload_file) self.main_view.m_button_quit.Bind(wx.EVT_BUTTON, self.on_quit_main_frame) self.config_view = None pub.subscribe(self.show_main_msg, 'show_main_msg') pub.subscribe(self.show_dlg_msg, 'show_dlg_msg') # msg = self.model.display_main_msg() # self.show_main_msg(str=msg) self.model.display_main_msg() def on_show_config_dlg(self, evt): self.config_view = view.ConfigView(None) self.config_view.m_button_ip.Bind(wx.EVT_BUTTON, self.on_config_ip) self.config_view.m_button_file_path.Bind(wx.EVT_BUTTON, self.on_config_file_path) self.config_view.m_button_password.Bind(wx.EVT_BUTTON, self.on_config_password) self.config_view.m_button_quit_dlg.Bind(wx.EVT_BUTTON, self.on_quit_config_dlg) # msg = self.model.display_dlg_msg() # self.show_dlg_msg(str=msg) self.model.display_dlg_msg() self.config_view.ShowModal() def on_quit_main_frame(self, evt): self.main_view.Destroy() def on_choose_dir(self, evt): self.model.on_choose_dir() def on_choose_file(self, evt): self.model.on_choose_file() def on_upload_file(self, evt): self.model.on_upload_file() # -------------------------------------------- def on_config_ip(self, evt): server_address = self.config_view.m_textCtrl_server_address.GetValue() self.model.on_config_ip(server_address) def on_config_file_path(self, evt): server_file_dir = self.config_view.m_textCtrl_server_file_dir.GetValue() self.model.on_config_file_path(server_file_dir) def on_config_password(self, evt): password = self.config_view.m_textCtrl_password.GetValue() self.model.on_config_password(password) def on_quit_config_dlg(self, evt): self.config_view.Destroy() self.model.display_main_msg() # -------------------------------------------- def show_main_msg(self, str): self.main_view.show_main_msg(str) def show_dlg_msg(self, str): self.config_view.show_dlg_msg(str) if __name__ == '__main__': app = wx.App() frame = Controller(app) app.MainLoop()
[ "wu_yj@piec.com.cn" ]
wu_yj@piec.com.cn
b834c33ade319d41d9a8a61c437fabc082d3bf4f
2527a4d313cf10e38a1efdd90ec8031aa6538be7
/examples/juniper_bring_up_interface/post_check_delete_disable_statement.py
9150fae9c45e7965bdc34edee455d4ec17c0d67b
[]
no_license
syynack/moss
db4d9b2203494374b62891ab8cb32a033baa760b
5cc3cb1c99af3edf78a002d37ae02bdab7062da0
refs/heads/master
2021-03-27T20:08:00.479428
2018-05-08T17:42:56
2018-05-08T17:42:56
73,017,030
0
0
null
null
null
null
UTF-8
Python
false
false
1,544
py
#! /usr/bin/env python # Created by mcli. # This file should be used as a template for any user created modules. from moss import ModuleResult, execute_device_operation, register # ModuleResult can be used to influence the outcome of a task. # ModuleResult.end Module will be marked as successful but task will not continue # ModuleResult.branch Module will branch to another module # ModuleResult.fail Module will be marked as a failure and task will not continue # ModuleResult.success Module will be marked as a success and will continue (this is implicit) # ModuleResult.retry Module will be retried # It is not required that a module result must be returned, by default the module will # be marked as a success if not specified otherwise. # VENDOR = 'juniper' @register(vendor = VENDOR) def post_check_delete_disable_statement(connection, store): ''' Checks configuration to make sure the deactivation config has been applied ''' configuration_check_output = execute_device_operation( 'juniper_check_configuration', connection, config_statements = ["disable"], area = 'interfaces {}'.format(store["arguments"]["interface"]) ) if configuration_check_output["result"] == "fail": return ModuleResult.fail for statement in configuration_check_output["stdout"]["present_config_statements"]: if "disable;" in statement: return ModuleResult.fail return ModuleResult.success
[ "mlhome96@gmail.com" ]
mlhome96@gmail.com
9692ae2f3ad46ef6e51bf5de0d8e41074f3d0c79
5141a0ec55675aebf6b2a3f2454022e3fd8ad639
/bin/ExpRunner
e4640a0b471ef966b328437e4779c8d8f89c1edf
[ "Apache-2.0" ]
permissive
bbastardes/TractSeg
303871586c682983b451885e069a75822a6c09db
70714fca0e0dc241946ffc704f05b65095c7effb
refs/heads/master
2020-05-27T03:02:27.806224
2019-05-16T14:50:12
2019-05-16T14:50:12
188,459,492
0
0
null
2019-05-24T17:04:07
2019-05-24T17:04:06
null
UTF-8
Python
false
false
14,469
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2017 Division of Medical Image Computing, German Cancer Research Center (DKFZ) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module is for training the model. See Readme.md for more details about training your own model. How to use this module: #Run local: ExpRunner --config=XXX #Run slurm cluster: sbatch --job-name=XXX ~/runner.sh (runner.sh not provided) #Predicting with new config setup: ExpRunner --train=False --seg --lw --config=XXX ExpRunner --train=False --test=True --lw --config=XXX """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import warnings warnings.simplefilter("ignore", UserWarning) #hide scipy warnings warnings.simplefilter("ignore", FutureWarning) #hide h5py warnings warnings.filterwarnings("ignore", message="numpy.dtype size changed") #hide Cython benign warning warnings.filterwarnings("ignore", message="numpy.ufunc size changed") #hide Cython benign warning import os import importlib import argparse import pickle import time from pprint import pprint import distutils.util from os.path import join import nibabel as nib import numpy as np import pickle as pkl from tractseg.libs import direction_merger from tractseg.libs import exp_utils from tractseg.libs import img_utils from tractseg.libs import metric_utils from tractseg.libs.system_config import SystemConfig as C from tractseg.libs import trainer from tractseg.data.data_loader_training import DataLoaderTraining as DataLoaderTraining2D from tractseg.data.data_loader_training_3D import DataLoaderTraining as DataLoaderTraining3D from tractseg.data.data_loader_inference import DataLoaderInference from tractseg.models.base_model import BaseModel def main(): parser = argparse.ArgumentParser(description="Train a network on your own data to segment white matter bundles.", epilog="Written by Jakob Wasserthal. Please reference 'Wasserthal et al. " "TractSeg - Fast and accurate white matter tract segmentation. " "https://doi.org/10.1016/j.neuroimage.2018.07.070)'") parser.add_argument("--config", metavar="name", help="Name of configuration to use") parser.add_argument("--train", metavar="True/False", help="Train network", type=distutils.util.strtobool, default=True) parser.add_argument("--test", metavar="True/False", help="Test network", type=distutils.util.strtobool, default=False) parser.add_argument("--seg", action="store_true", help="Create binary segmentation") parser.add_argument("--probs", action="store_true", help="Create probmap segmentation") parser.add_argument("--lw", action="store_true", help="Load weights of pretrained net") parser.add_argument("--en", metavar="name", help="Experiment name") parser.add_argument("--fold", metavar="N", help="Which fold to train when doing CrossValidation", type=int) parser.add_argument("--verbose", action="store_true", help="Show more intermediate output", default=True) args = parser.parse_args() Config = getattr(importlib.import_module("tractseg.experiments.base"), "Config")() if args.config: # Config.__dict__ does not work properly Config = getattr(importlib.import_module("tractseg.experiments.custom." + args.config), "Config")() if args.en: Config.EXP_NAME = args.en Config.TRAIN = bool(args.train) Config.TEST = bool(args.test) if args.seg: Config.SEGMENT = True if args.probs: Config.GET_PROBS = True if args.lw: Config.LOAD_WEIGHTS = args.lw if args.fold: Config.CV_FOLD= args.fold Config.VERBOSE = args.verbose Config.MULTI_PARENT_PATH = join(C.EXP_PATH, Config.EXP_MULTI_NAME) Config.EXP_PATH = join(C.EXP_PATH, Config.EXP_MULTI_NAME, Config.EXP_NAME) Config.TRAIN_SUBJECTS, Config.VALIDATE_SUBJECTS, Config.TEST_SUBJECTS = exp_utils.get_cv_fold(Config.CV_FOLD, dataset=Config.DATASET) if Config.WEIGHTS_PATH == "": Config.WEIGHTS_PATH = exp_utils.get_best_weights_path(Config.EXP_PATH, Config.LOAD_WEIGHTS) #Autoset input dimensions based on settings Config.INPUT_DIM = exp_utils.get_correct_input_dim(Config) Config = exp_utils.get_labels_filename(Config) if Config.EXPERIMENT_TYPE == "peak_regression": Config.NR_OF_CLASSES = 3*len(exp_utils.get_bundle_names(Config.CLASSES)[1:]) else: Config.NR_OF_CLASSES = len(exp_utils.get_bundle_names(Config.CLASSES)[1:]) if Config.TRAIN: Config.EXP_PATH = exp_utils.create_experiment_folder(Config.EXP_NAME, Config.MULTI_PARENT_PATH, Config.TRAIN) if Config.DIM == "2D": Config.EPOCH_MULTIPLIER = 1 else: Config.EPOCH_MULTIPLIER = 3 if Config.VERBOSE: print("Hyperparameters:") exp_utils.print_Configs(Config) with open(join(Config.EXP_PATH, "Hyperparameters.txt"), "w") as f: Config_dict = {attr: getattr(Config, attr) for attr in dir(Config) if not callable(getattr(Config, attr)) and not attr.startswith("__")} pprint(Config_dict, f) Config = exp_utils.get_correct_labels_type(Config) # do after saving Hyperparameters as txt pkl.dump(Config, open(join(Config.EXP_PATH, "Hyperparameters.pkl"), "wb")) def test_whole_subject(Config, model, subjects, type): metrics = { "loss_" + type: [0], "f1_macro_" + type: [0], } # Metrics per bundle metrics_bundles = {} for bundle in exp_utils.get_bundle_names(Config.CLASSES)[1:]: metrics_bundles[bundle] = [0] for subject in subjects: print("{} subject {}".format(type, subject)) start_time = time.time() data_loader = DataLoaderInference(Config, subject=subject) img_probs, img_y = trainer.predict_img(Config, model, data_loader, probs=True) # img_probs_xyz, img_y = DirectionMerger.get_seg_single_img_3_directions(Config, model, subject=subject) # img_probs = DirectionMerger.mean_fusion(Config.THRESHOLD, img_probs_xyz, probs=True) print("Took {}s".format(round(time.time() - start_time, 2))) if Config.EXPERIMENT_TYPE == "peak_regression": f1 = metric_utils.calc_peak_length_dice(Config, img_probs, img_y, max_angle_error=Config.PEAK_DICE_THR, max_length_error=Config.PEAK_DICE_LEN_THR) peak_f1_mean = np.array([s for s in f1.values()]).mean() # if f1 for multiple bundles metrics = metric_utils.calculate_metrics(metrics, None, None, 0, f1=peak_f1_mean, type=type, threshold=Config.THRESHOLD) metrics_bundles = metric_utils.calculate_metrics_each_bundle(metrics_bundles, None, None, exp_utils.get_bundle_names(Config.CLASSES)[1:], f1, threshold=Config.THRESHOLD) else: img_probs = np.reshape(img_probs, (-1, img_probs.shape[-1])) #Flatten all dims except nrClasses dim img_y = np.reshape(img_y, (-1, img_y.shape[-1])) metrics = metric_utils.calculate_metrics(metrics, img_y, img_probs, 0, type=type, threshold=Config.THRESHOLD) metrics_bundles = metric_utils.calculate_metrics_each_bundle(metrics_bundles, img_y, img_probs, exp_utils.get_bundle_names(Config.CLASSES)[1:], threshold=Config.THRESHOLD) metrics = metric_utils.normalize_last_element(metrics, len(subjects), type=type) metrics_bundles = metric_utils.normalize_last_element_general(metrics_bundles, len(subjects)) print("WHOLE SUBJECT:") pprint(metrics) print("WHOLE SUBJECT BUNDLES:") pprint(metrics_bundles) with open(join(Config.EXP_PATH, "score_" + type + "-set.txt"), "w") as f: pprint(metrics, f) f.write("\n\nWeights: {}\n".format(Config.WEIGHTS_PATH)) f.write("type: {}\n\n".format(type)) pprint(metrics_bundles, f) pickle.dump(metrics, open(join(Config.EXP_PATH, "score_" + type + ".pkl"), "wb")) return metrics model = BaseModel(Config) if Config.DIM == "2D": data_loader = DataLoaderTraining2D(Config) else: data_loader = DataLoaderTraining3D(Config) if Config.TRAIN: print("Training...") model = trainer.train_model(Config, model, data_loader) # After Training if Config.TRAIN: # Have to load other weights, because after training it has the weights of the last epoch print("Loading best epoch: {}".format(Config.BEST_EPOCH)) Config.WEIGHTS_PATH = Config.EXP_PATH + "/best_weights_ep" + str(Config.BEST_EPOCH) + ".npz" Config.LOAD_WEIGHTS = True model.load_model(join(Config.EXP_PATH, Config.WEIGHTS_PATH)) model_test = model else: # Weight_path already set to best model (when reading program parameters) -> will be loaded automatically model_test = model if Config.SEGMENT: exp_utils.make_dir(join(Config.EXP_PATH, "segmentations")) # all_subjects = Config.VALIDATE_SUBJECTS + Config.TEST_SUBJECTS all_subjects = ["599469"] for subject in all_subjects: print("Get_segmentation subject {}".format(subject)) if Config.EXPERIMENT_TYPE == "peak_regression": data_loader = DataLoaderInference(Config, subject=subject) img_probs, img_y = trainer.predict_img(Config, model_test, data_loader, probs=True) # only x or y or z img_seg = img_utils.peak_image_to_binary_mask(img_probs, len_thr=0.4) # thr: 0.4 slightly better than 0.2 else: # returns probs not binary seg img_seg, img_y = direction_merger.get_seg_single_img_3_directions(Config, model, subject) img_seg = direction_merger.mean_fusion(Config.THRESHOLD, img_seg, probs=False) #TractSeg # img_utils.save_multilabel_img_as_multiple_files(Config, img_seg, # img_utils.get_dwi_affine(Config.DATASET, Config.RESOLUTION), # join(Config.EXP_PATH, "segmentations_" + subject)) #Tract Beginnings and Endings # img_utils.save_multilabel_img_as_multiple_files_endings(Config, img_seg, # img_utils.get_dwi_affine(Config.DATASET, Config.RESOLUTION), # join(Config.EXP_PATH, "segmentations_" + subject)) img = nib.Nifti1Image(img_seg.astype(np.uint8), img_utils.get_dwi_affine(Config.DATASET, Config.RESOLUTION)) nib.save(img, join(Config.EXP_PATH, "segmentations", subject + "_segmentation.nii.gz")) if Config.TEST: test_whole_subject(Config, model_test, Config.VALIDATE_SUBJECTS, "validate") # test_whole_subject(Config, model_test, Config.TEST_SUBJECTS, "test") if Config.GET_PROBS: exp_utils.make_dir(join(Config.EXP_PATH, "probmaps")) # all_subjects = Config.TRAIN_SUBJECTS + Config.VALIDATE_SUBJECTS + Config.TEST_SUBJECTS all_subjects = ["599469", "992774", "994273"] for subject in all_subjects: print("Get_probs subject {}".format(subject)) data_loader = DataLoaderInference(Config, subject=subject) if Config.EXPERIMENT_TYPE == "peak_regression": # trainerSingle = Trainer(model_test, dataManagerSingle) img_probs, img_y = trainer.predict_img(Config, model_test, data_loader, probs=True) img_probs = img_utils.remove_small_peaks(img_probs, len_thr=0.4) else: img_probs, img_y = direction_merger.get_seg_single_img_3_directions(Config, model, subject=subject) img_probs = direction_merger.mean_fusion(Config.THRESHOLD, img_probs, probs=True) # img_utils.save_multilabel_img_as_multiple_files_peaks(Config, img_probs, # img_utils.get_dwi_affine(Config.DATASET, Config.RESOLUTION), # join(Config.EXP_PATH, "probmaps_" + subject)) # img_utils.save_multilabel_img_as_multiple_files(Config, img_probs, # img_utils.get_dwi_affine(Config.DATASET, Config.RESOLUTION), # join(Config.EXP_PATH, "probmaps_" + subject)) img = nib.Nifti1Image(img_probs, img_utils.get_dwi_affine(Config.DATASET, Config.RESOLUTION)) nib.save(img, join(Config.EXP_PATH, "probmaps", subject + "_peak.nii.gz")) eval_script_path = join(os.path.expanduser("~"), "dev/bsp/eval_nonHCP.py") if os.path.exists(eval_script_path): print("Evaluating on non HCP data...") os.system("python " + eval_script_path + " " + Config.EXP_NAME) if __name__ == '__main__': main()
[ "j.wasserthal@dkfz.de" ]
j.wasserthal@dkfz.de
8b6ffcd96094ac867fd890ed8f60f53285d739e4
90bce847e6b10f5a71c88231059b3ab8d35d9f0a
/4.Talleres/Taller2/EjemploEntradaP3.py
adcdf9c734954e3616388812406163ec273048da
[]
no_license
smonsalve/ST0240-20162
66f929e7e541845df658206d25640367eb03f379
74ee1f2c9d2106fb7ec7a736b6f33d70325219b4
refs/heads/master
2020-04-13T04:02:19.854744
2016-10-07T19:27:42
2016-10-07T19:27:42
61,818,937
1
0
null
null
null
null
UTF-8
Python
false
false
435
py
t = int(raw_input()) def zanb(lista): impo = 0 ### aca es donde ustedes escriben su algoritmo que calcula las tortugas importadas return impo for i in range(t): # a = [int(x) for x in raw_input().split()] #Esta linea hace lo mismo que las siguientes lineas a = raw_input() b = a.split() c = [] for item in b: d = int(item) c.append(d) #print c print zanb(c)
[ "smonsalve@gmail.com" ]
smonsalve@gmail.com
87c550f3b569961d6e961f57d086f3d2d140b32b
1f38af9bae11acbe20dd8f5057b374b9760e6659
/pyscf/grad/ucisd.py
74df32da3f812e9fb33e3a66d1db2e66c274c27d
[ "Apache-2.0" ]
permissive
highlight0112/pyscf
d36104ef727f593d46fbfd3e5d865c6cd0316d84
4afbd42bad3e72db5bb94d8cacf1d5de76537bdd
refs/heads/master
2020-03-25T01:16:59.927859
2019-03-06T01:11:59
2019-03-06T01:11:59
143,229,588
0
0
Apache-2.0
2019-03-06T01:12:00
2018-08-02T02:05:59
Python
UTF-8
Python
false
false
4,303
py
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Qiming Sun <osirpt.sun@gmail.com> # ''' UCISD analytical nuclear gradients ''' import numpy from pyscf import lib from pyscf.lib import logger from pyscf import ao2mo from pyscf.ci import ucisd from pyscf.grad import cisd as cisd_grad from pyscf.grad import uccsd as uccsd_grad def kernel(myci, civec=None, eris=None, atmlst=None, mf_grad=None, verbose=logger.INFO): if civec is None: civec = mycc.ci nocc = myci.nocc nmo = myci.nmo d1 = ucisd._gamma1_intermediates(myci, civec, nmo, nocc) d2 = ucisd._gamma2_intermediates(myci, civec, nmo, nocc) dovov, dovOV, dOVov, dOVOV = d2[0] dvvvv, dvvVV, dVVvv, dVVVV = d2[1] doooo, dooOO, dOOoo, dOOOO = d2[2] doovv, dooVV, dOOvv, dOOVV = d2[3] dovvo, dovVO, dOVvo, dOVVO = d2[4] dvvov, dvvOV, dVVov, dVVOV = d2[5] dovvv, dovVV, dOVvv, dOVVV = d2[6] dooov, dooOV, dOOov, dOOOV = d2[7] nocca, nvira, noccb, nvirb = dovOV.shape dvvvv = dvvvv + dvvvv.transpose(1,0,2,3) dvvvv = ao2mo.restore(4, dvvvv, nvira) * .5 dvvVV = dvvVV + dvvVV.transpose(1,0,2,3) dvvVV = lib.pack_tril(dvvVV[numpy.tril_indices(nvira)]) * .5 dVVVV = dVVVV + dVVVV.transpose(1,0,2,3) dVVVV = ao2mo.restore(4, dVVVV, nvirb) * .5 d2 = ((dovov, dovOV, dOVov, dOVOV), (dvvvv, dvvVV, dVVvv, dVVVV), (doooo, dooOO, dOOoo, dOOOO), (doovv, dooVV, dOOvv, dOOVV), (dovvo, dovVO, dOVvo, dOVVO), (dvvov, dvvOV, dVVov, dVVOV), (dovvv, dovVV, dOVvv, dOVVV), (dooov, dooOV, dOOov, dOOOV)) t1 = t2 = l1 = l2 = civec return uccsd_grad.kernel(myci, t1, t2, l1, l2, eris, atmlst, mf_grad, d1, d2, verbose) class Gradients(cisd_grad.Gradients): def kernel(self, civec=None, eris=None, atmlst=None, mf_grad=None, verbose=None): return cisd_grad.Gradients.kernel(self, civec, eris, atmlst, mf_grad, verbose, _kern=kernel) Grad = Gradients ucisd.UCISD.Gradients = lib.class_as_method(Gradients) if __name__ == '__main__': from pyscf import gto from pyscf import scf from pyscf import ao2mo mol = gto.M( atom = [ ["O" , (0. , 0. , 0.)], [1 , (0. ,-0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '631g', spin = 2, ) mf = scf.UHF(mol).run() myci = ucisd.UCISD(mf).run() g1 = myci.Gradients().kernel() # O 0.0000000000 -0.0000000000 0.1456473095 # H -0.0000000000 0.1107223084 -0.0728236548 # H 0.0000000000 -0.1107223084 -0.0728236548 print(lib.finger(g1) - -0.22651886837710072) print('-----------------------------------') mol = gto.M( atom = [ ["O" , (0. , 0. , 0.)], [1 , (0. ,-0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '631g', spin = 2, ) mf = scf.UHF(mol).run() myci = ucisd.UCISD(mf) myci.frozen = [0,1,10,11,12] myci.max_memory = 1 myci.kernel() g1 = Gradients(myci).kernel() # O -0.0000000000 -0.0000000000 0.1540204772 # H 0.0000000000 0.1144196177 -0.0770102386 # H 0.0000000000 -0.1144196177 -0.0770102386 print(lib.finger(g1) - -0.23578589551312196) mol = gto.M( atom = 'H 0 0 0; H 0 0 1.76', basis = '631g', unit='Bohr') mf = scf.UHF(mol).run(conv_tol=1e-14) myci = ucisd.UCISD(mf) myci.conv_tol = 1e-10 myci.kernel() g1 = Gradients(myci).kernel() #[[ 0. 0. -0.07080036] # [ 0. 0. 0.07080036]]
[ "osirpt.sun@gmail.com" ]
osirpt.sun@gmail.com
039bf8cf22fcf317f864eef838cb0f33bc452080
155fa6aaa4ef31cc0dbb54b7cf528f36743b1663
/Exam/project/baked_food/bread.py
c8aab8182c29a939a53facfa397544e410d27da2
[]
no_license
GBoshnakov/SoftUni-OOP
efe77b5e1fd7d3def19338cc7819f187233ecab0
0145abb760b7633ca326d06a08564fad3151e1c5
refs/heads/main
2023-07-13T18:54:39.761133
2021-08-27T08:31:07
2021-08-27T08:31:07
381,711,275
1
0
null
null
null
null
UTF-8
Python
false
false
158
py
from project.baked_food.baked_food import BakedFood class Bread(BakedFood): def __init__(self, name, price): super().__init__(name, 200, price)
[ "boshnakov.g@gmail.com" ]
boshnakov.g@gmail.com
60d6d4f3fdc42b1fe667839a45df723147035b3a
a058b1a86822a3ebd324908b4cf07529b9bb615b
/make_data/gen_data.py
8ce63d53a120ace052e493870069b801cb0744e0
[]
no_license
powern90/Category-Model
8f085640782313de2ec85b75b248374b113944c9
664474eccf08d319a58659ab21d8380aeab0b7de
refs/heads/main
2023-05-08T20:55:55.435135
2021-06-07T10:29:11
2021-06-07T10:29:11
374,625,183
0
0
null
null
null
null
UTF-8
Python
false
false
2,370
py
from konlpy.tag import Mecab import pandas as pd import pymysql import re import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm metadata = pd.read_csv("metadata_1.tsv", delimiter='\t') vector = pd.read_csv("vectors_1.tsv", delimiter='\t') with open('stop_words.csv', 'r', encoding='utf-8') as f: stop_words = [] while x := f.readline(): stop_words.append(x.replace('\n', '')) tags = ['NNG', 'NNP', 'NNB', 'XR'] def get_vector(sentence): selected = [] pos = mecab.pos( re.sub('<.+?>', '', sentence, 0, re.I | re.S).replace('[', '').replace(']', '').replace('\r', '').replace('\n', '')) for one in pos: idx = metadata.index[metadata['word'] == one[0]].tolist() if one[1] in tags and len(idx) == 1 and one[0] not in stop_words: selected.append(vector.iloc[idx[0]].tolist()) return selected if __name__ == "__main__": data = [] label = [] count = {} conn = pymysql.connect(host='192.168.1.10', user='gajok', password='1234!', charset='utf8', db='crolls') cursor = conn.cursor() sql = "SELECT title, content, etc FROM data_set2" cursor.execute(sql) res = cursor.fetchall() mecab = Mecab() for one in tqdm(res): article = get_vector(one[0]) article += get_vector(one[1]) word_count = len(article) if word_count > 40: data.append(article[0:40]) elif word_count < 40: for i in range(0, 40-word_count): article.append([0 for j in range(0, 16)]) data.append(article) else: data.append(article) if one[2].split(',')[0] == "장애인": label.append([1, 0, 0, 0, 0]) elif one[2].split(',')[0] == "저소득": label.append([0, 1, 0, 0, 0]) elif one[2].split(',')[0] == "다문화": label.append([0, 0, 1, 0, 0]) elif one[2].split(',')[0] == "고령자": label.append([0, 0, 0, 1, 0]) elif one[2].split(',')[0] == "한부모": label.append([0, 0, 0, 0, 1]) data = np.array(data) label = np.array(label) np.save("data2", data) np.save("label2", label) plt.plot(count.values(), count.keys()) plt.show()
[ "rlghd1996@gmail.com" ]
rlghd1996@gmail.com
b40d7372d41bbefde5b77bb5572d16513ce31e82
eed1701c99b2fdf778f24898c793c77f3dfcd9eb
/a32_nbc/mnb_spam.py
f96064fdabf37cb723d42c1770a925dcc3cf033f
[]
no_license
hnmspirit/mlcb
b47eef614229752d0cef1e24336b3c5c39c1e624
1a27462053b003c5631526040734e845744a3f76
refs/heads/master
2020-06-27T21:56:34.282786
2020-03-01T05:04:48
2020-03-01T05:04:48
200,060,596
2
0
null
null
null
null
UTF-8
Python
false
false
919
py
import os from os.path import join import numpy as np from scipy.sparse import coo_matrix as cmat from sklearn.naive_bayes import MultinomialNB as MNB, BernoulliNB as BNB from sklearn.metrics import accuracy_score path = 'ex6_prep/' X_trn_fn = join(path, 'train-features.txt') y_trn_fn = join(path, 'train-labels.txt') X_tst_fn = join(path, 'test-features.txt') y_tst_fn = join(path, 'test-labels.txt') nwords = 2500 def read_data(X_fn, y_fn): X = np.loadtxt(X_fn) y = np.loadtxt(y_fn) row = X[:,0] - 1 col = X[:,1] - 1 dat = X[:,2] X = cmat((dat, (row, col)), shape=(len(y), nwords)) return X, y X_trn, y_trn = read_data(X_trn_fn, y_trn_fn) X_tst, y_tst = read_data(X_tst_fn, y_tst_fn) print('train size: ', y_trn.shape) print('test size: ', y_tst.shape) model = MNB() model.fit(X_trn, y_trn) y_prd = model.predict(X_tst) score = accuracy_score(y_tst, y_prd) print('score: ', score)
[ "52270404+hnmspirit@users.noreply.github.com" ]
52270404+hnmspirit@users.noreply.github.com
8ead285ef7462584e08b05468fc7e005a53f560f
25ebf19f163e707f9adbac81503a65912248c614
/CompareView.pyw
fad96963b88809b8426bcbade5b5add21f5bfc0d
[]
no_license
clalanliu/CompareView
373bd2d40f7b7fa15225ab55b263d0d8efebba6b
a1f2e4b415d92260323d2c26e599b3a2182775a1
refs/heads/master
2020-03-18T06:14:51.055388
2019-10-07T06:38:14
2019-10-07T06:38:14
134,383,904
1
0
null
null
null
null
UTF-8
Python
false
false
3,562
pyw
import tkinter as tk from tkinter import ttk from tkinter.filedialog import askopenfilename import glob import Util, GlobalVar,ImgSeries,ThumbNailSeries # root and frame container GlobalVar.width = 540 GlobalVar.height =360 root = tk.Tk() root.title('CompareView') root.geometry("540x360") GlobalVar.DefClr = root.cget("bg") imgSeri = ImgSeries.ImgSeries(root) # Thumbnail window thumbWin = tk.Toplevel(root) thumbWin.geometry("%dx%d+%d+%d" % (240, root.winfo_screenheight(), root.winfo_screenwidth()-240, 0)) thumbWin.title('Thumbnails') thumbWin.protocol('WM_DELETE_WINDOW', lambda:None) thumbWin.resizable(False, False) thumbNails = ThumbNailSeries.ThumbNailSeries(thumbWin, imgSeri) ### mouse and keyboard event def HotkeySetRef(event): imgSeri.SetReference() def HotkeyMSE(event): imgSeri.CompareMSE() def HotkeyPSNR(event): imgSeri.ComparePSNR() def HotkeyOpenFile(event): thumbNails.AddTN(imgSeri.OpenFile()) def LeftKey(event): imgSeri.Last() thumbNails.Last() def RightKey(event): imgSeri.Next() thumbNails.Next() def DeleteKey(event): imgSeri.Delete() thumbNails.Delete() def Reload(event): imgSeri.Reload() thumbNails.Reload() def MouseWheel(event): global mouseCount # respond to Linux or Windows wheel event if event.num == 5 or event.delta == -120: RightKey(event) if event.num == 4 or event.delta == 120: LeftKey(event) # menu bar menubar = tk.Menu(root) filemenu = tk.Menu(menubar, tearoff=0) compmenu = tk.Menu(menubar, tearoff=0) filemenu.add_command(label = 'Open', command = lambda: thumbNails.AddTN(imgSeri.OpenFile()),accelerator='Ctrl+O') filemenu.add_command(label = 'Reload', command = lambda:Reload,accelerator='R') filemenu.add_command(label = 'Help', command = Util.HelpCallBack) filemenu.add_command(label = 'Exit', command = lambda:exit()) menubar.add_cascade(label = 'File', menu = filemenu) compmenu.add_command(label = 'ZoomIn', command = imgSeri.ZoomIn,accelerator='Z') compmenu.add_command(label = 'ZoomOut', command = imgSeri.ZoomBack) compmenu.add_command(label = 'SetReference', command = imgSeri.SetReference,accelerator='S') compmenu.add_command(label = 'MSE', command = imgSeri.CompareMSE,accelerator='M') compmenu.add_command(label = 'PSNR', command = imgSeri.ComparePSNR,accelerator='P') compmenu.add_command(label = 'SSIM', command = imgSeri.CompareSSIM) menubar.add_cascade(label = 'Compare', menu = compmenu) root.config(menu=menubar) ### Hot key root.bind_all('<Control-O>', HotkeyOpenFile) root.bind_all('<Control-o>', HotkeyOpenFile) root.bind_all('<S>', HotkeySetRef) root.bind_all('<s>', HotkeySetRef) root.bind_all('<M>', HotkeyMSE) root.bind_all('<m>', HotkeyMSE) root.bind_all('<P>', HotkeyPSNR) root.bind_all('<p>', HotkeyPSNR) ### switch root.bind_all('<Left>', LeftKey) root.bind_all('<Right>', RightKey) root.bind_all('<Up>', LeftKey) root.bind_all('<Down>', RightKey) root.bind_all('<Delete>', DeleteKey) root.bind_all('<R>', Reload) root.bind_all('<r>', Reload) root.bind_all('<MouseWheel>', MouseWheel) thumbWin.bind_all('<Left>', LeftKey) thumbWin.bind_all('<Right>', RightKey) thumbWin.bind_all('<Up>', LeftKey) thumbWin.bind_all('<Down>', RightKey) thumbWin.bind_all('<Delete>', DeleteKey) thumbWin.bind_all('<R>', Reload) thumbWin.bind_all('<r>', Reload) thumbWin.bind_all('<MouseWheel>', MouseWheel) ### zoom root.bind('<Double-Button-1>', imgSeri.ZoomBack) root.bind("<z>", imgSeri.ZoomIn) root.bind("<Z>", imgSeri.ZoomIn) for i in range(9): root.bind(str(i), imgSeri.ZoomClone) root.mainloop()
[ "b05901017@ntu.edu.tw" ]
b05901017@ntu.edu.tw
b3242bf14d3c53d2d0cb82d43a20ee2c7a29b957
1f0557882b8e545625ad3f6f33bfe62647a010b1
/main.py
0d5de2199e65b133821b8f6aabdaefe1ab2d90d4
[]
no_license
imdeepansht/DRS-Review-System
a026368960e5e6ea2e49b7b2d63cd64159996249
091675f21043b731e5e6eb1d509f10aff3c70097
refs/heads/main
2023-06-04T18:30:46.496304
2021-06-22T07:53:10
2021-06-22T07:53:10
379,182,675
1
0
null
null
null
null
UTF-8
Python
false
false
3,234
py
import tkinter import cv2 # pip install opencv-python import PIL.Image, PIL.ImageTk # pip install pillow from functools import partial import threading import time import imutils # pip install imutils stream = cv2.VideoCapture("VIDEO.mp4") flag = True def play(speed): global flag print("You clicked on play. Speed is ", speed) # Play the video in reverse mode frame1 = stream.get(cv2.CAP_PROP_POS_FRAMES) stream.set(cv2.CAP_PROP_POS_FRAMES, frame1 + speed) grabbed, frame = stream.read() if not grabbed: exit() frame = imutils.resize(frame, width=SET_WIDTH, height=SET_HEIGHT) frame = PIL.ImageTk.PhotoImage(image=PIL.Image.fromarray(frame)) canvas.image = frame canvas.create_image(0, 0, image=frame, anchor=tkinter.NW) if flag: canvas.create_text(134, 26, fill="black", font="Times 26 bold", text="Decision Pending") flag = not flag def pending(decision): # 1. Display decision pending image frame = cv2.cvtColor(cv2.imread("DECISIONPENDING.jpg"), cv2.COLOR_BGR2RGB) frame = imutils.resize(frame, width=SET_WIDTH, height=SET_HEIGHT) frame = PIL.ImageTk.PhotoImage(image=PIL.Image.fromarray(frame)) canvas.image = frame canvas.create_image(0, 0, image=frame, anchor=tkinter.NW) # 2. Wait for 1 second time.sleep(1.5) # 4. Wait for 1.5 second time.sleep(2.5) # 5. Display out/notout image if decision == 'out': decisionImg = ("out.png") else: decisionImg = ("NotOut.png") frame = cv2.cvtColor(cv2.imread(decisionImg), cv2.COLOR_BGR2RGB) frame = imutils.resize(frame, width=SET_WIDTH, height=SET_HEIGHT) frame = PIL.ImageTk.PhotoImage(image=PIL.Image.fromarray(frame)) canvas.image = frame canvas.create_image(0, 0, image=frame, anchor=tkinter.NW) def out(): thread = threading.Thread(target=pending, args=("out",)) thread.daemon = 1 thread.start() print("Player is out") cv2.imshow("out.png") def not_out(): thread = threading.Thread(target=pending, args=("not out",)) thread.daemon = 1 thread.start() print("Player is not out") cv2.imshow("NotOut.png") # Width and height of our main screen SET_WIDTH = 650 SET_HEIGHT = 368 # Tkinter gui starts here window = tkinter.Tk() window.title("DRS System") cv_img = cv2.cvtColor(cv2.imread("DRS.png"), cv2.COLOR_BGR2RGB) canvas = tkinter.Canvas(window, width=SET_WIDTH, height=SET_HEIGHT) photo = PIL.ImageTk.PhotoImage(image=PIL.Image.fromarray(cv_img)) image_on_canvas = canvas.create_image(0, 0, ancho=tkinter.NW, image=photo) canvas.pack() # Buttons to control playback btn = tkinter.Button(window, text="<< Previous (fast)", width=50, command=partial(play, -25)) btn.pack() btn = tkinter.Button(window, text="<< Previous (slow)", width=50, command=partial(play, -2)) btn.pack() btn = tkinter.Button(window, text="Next (slow) >>", width=50, command=partial(play, 2)) btn.pack() btn = tkinter.Button(window, text="Next (fast) >>", width=50, command=partial(play, 25)) btn.pack() btn = tkinter.Button(window, text="Give Out", width=50, command=out) btn.pack() btn = tkinter.Button(window, text="Give Not Out", width=50, command=not_out) btn.pack() window.mainloop()
[ "noreply@github.com" ]
imdeepansht.noreply@github.com
2ed84ab34e0aedb307ed52ec2436fdd561b03530
949c118b663b626ce8e9966b45226bb506da9939
/facebooklikes/__init__.py
f80d7b526864ccbe41d34c1ae91d7e776b6832ca
[ "MIT" ]
permissive
sloev/facebooklikes
6d4b3ecfcea854a72e6fee6829986d639e031359
1e9a29db63d5310ed27fdd9527878a53934dec68
refs/heads/master
2021-07-07T01:38:52.302443
2020-09-02T21:43:57
2020-09-02T21:43:57
170,492,814
4
0
null
null
null
null
UTF-8
Python
false
false
1,138
py
__author__='johannes.valbjorn+facebooklikes@gmail.com' __version__='0.1.1' import urllib.parse import urllib.request __unit_lookup = { 'k':1000, 'm':1000000 } def get_facebook_likes_for_page(page='OfficialEyeHateGod'): url = "https://www.facebook.com/plugins/like.php?locale=en_US&{}%2F&width=450&layout=standard&action=like&size=small&show_faces=false&share=false&height=35&appId" args = { 'href': 'https://www.facebook.com/{}'.format(page)} encoded_args = urllib.parse.urlencode(args) source = urllib.request.urlopen(url.format(encoded_args)).read().decode('ascii', 'ignore') likes = source[:source.index('people like')].rsplit('span>', 1)[1].strip().lower() unit = likes[-1] if not unit.isdigit(): likes, unit = likes[:-1], likes[-1:] multiplier = __unit_lookup[unit] likes = float(likes) * multiplier return likes return int(likes) def get_facebook_likes_from_facebook_url(facebook_url): if facebook_url.endswith('/'): facebook_url = facebook_url[:-1] page = facebook_url.rsplit('/', 1)[1] return get_facebook_likes_for_page(page)
[ "666@nabovarme.dk" ]
666@nabovarme.dk
f240b0a0fff15b9d505a726b8e0ac80da6530f31
70739cea3abb3dc45beb71d2df776830dce5e01d
/Tagger/taggersql.py
6d4ecd7375642ad09bb38c0213d088a61a698a0b
[ "MIT" ]
permissive
Jonas-Wennerstrom/Tagger
f5b6e6ab6cd0c653631dd74f8ed6c9ad9af62b6f
4720304a07e58c7c4d390ff0c0703d936d195187
refs/heads/main
2023-01-31T19:37:01.111265
2020-12-18T08:07:16
2020-12-18T08:07:16
317,174,833
0
0
null
null
null
null
UTF-8
Python
false
false
5,374
py
from sqlalchemy import insert, select, asc, func, exists from taggermodels import * ##Selection #Selects a subset of File def select_file(session, taglist): """Returns a list of all File entries with entries in Match matching all tags in taglist. Parameters: session: An SQLAlchemy database session. taglist (string list): A list of tag names. Returns: q (SQLAlchemy object): Information on entries in table File with entries in table Match corresponding to entries in table Tag corresponding to all 'tags' in taglist. """ q = session.query(File).join( File.contains).filter( Tag.name.in_(taglist)).group_by( File.title).having( func.count()==len(taglist)).all() return q def get_tags_from_names(session,taglist): """Returns all tag objects with Tag.name in taglist. """ return session.query(Tag).filter(Tag.name.in_(taglist)).all() def get_file(session,title): """Returns file object with File.title == title. """ return session.query(File).filter( File.title == title).scalar() def get_all_file_titles(session): """Returns all file.title fields in session. """ return session.query(File.title).all() def get_all_tag_names(session): """Returns all tag.name fields in session. """ return session.query(Tag.name).all() ##Insertion def insert_file(session, fileinfo, taglist): """Inserts fileinfo into table File in session and entries in table Match for each tag in taglist coupled with the new File entry. Parameters: session: An SQLAlchemy database session. fileinfo (list): Length, Title, Link to be entered into session. taglist (string list): A list of tag names. Returns: True if insertion was successful, else False. Side-effects: Entry in table File created with fileinfo. Entries in table Match created coupling new File entry with each 'tag' in taglist. """ unique = not file_exists(session,fileinfo[1]) if unique: q = get_tags_from_names(session,taglist) new_file = File(length=fileinfo[0], title=fileinfo[1], link=fileinfo[2]) for t in q: new_file.contains.append(t) session.add(new_file) session.commit() return True else: return False def insert_tag (session,taglist): """Inserts each 'tag' in taglist into table Tag in session. Parameters: session: An SQLAlchemy database session. taglist (string list): A list of tag names. Returns: q (list): A sorted list of all tags in taglist which already exist in table Tag. Side-effects: New entries created in table Tag in session for each non-duplicate tag in taglist. """ insert_list = [] skipped_list = [] for new_tag in taglist: if not tag_exists(session,new_tag): insert_list.append(new_tag) else: skipped_list.append(new_tag) session.execute(Tag.__table__.insert(), [{"name": t} for t in insert_list]) session.commit() return sorted(skipped_list) ##Deletion def delete_tag(session,taglist): """Deletes all 'tags' in taglist from session. Parameters: session: An SQLAlchemy database session. taglist (string list): A list of tag names. Side-effects: All entries in table Tag in session with name in taglist deleted. All entries in table Match in session matching tags in taglist deleted. """ for t in taglist: session.query(Tag.name==t).delete() session.commit() def delete_file(session,title): """Deletes File.title == title from session. Parameters: session: An SQLAlchemy database session. title (string): A title to be deleted. Side-effects: Any entry in table File in session with title==title deleted All entries in table Match in session matching File.title deleted. """ session.query(File).filter(File.title == title).delete() session.commit() def cleanup_files(session): """Deletes all entries in table File in session without any entry in table Match. Parameters: session: An SQLAlchemy database session. Side-effects: All entries in table File whose id do not exist in Match.file_id deleted. """ s = session.query(File.id).filter(~File.contains.any()).all() if s: session.execute(File.__table__.delete(), [{"id": t[0]} for t in s]) session.commit() ##Confirm functions #These functions check if data exists in db def file_exists(session,title): """Returns true if a file with title == title exists, else false.""" return session.query(exists().where(File.title == title)).scalar() def tag_exists(session,name): """Returns true if a tag with name == name exists, else false""" return session.query(exists().where(Tag.name == name)).scalar()
[ "noreply@github.com" ]
Jonas-Wennerstrom.noreply@github.com
b1160545d138dab92ee143df02286fc7352ef441
17a2401c7d61f0c57f94926ba74e58152fc6bf6e
/lstmcpipe/config/dl1ab_tuning.py
75efcce9e516b678a8c84510149ef5965dadeb49
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
cta-observatory/lstmcpipe
f2af8e06e8f1c0b0b1c1c70c83d4fc938ed0e7ce
c15c16fa60c437b8b018d2353cc8ea614d1c3677
refs/heads/master
2023-08-31T13:08:14.954315
2023-08-30T08:12:30
2023-08-30T08:12:30
207,280,754
4
12
MIT
2023-09-02T12:05:50
2019-09-09T10:09:24
Python
UTF-8
Python
false
false
2,120
py
import json import subprocess import logging log = logging.getLogger(__name__) def create_dl1ab_tuned_config(base_config_path, config_output_path, observed_data_path, mc_path): """ Create a new lstchain config with noise parameters added. If there are noise parameters in the input config, this will fail with an Exception. Parameters: ----------- base_config_path: str or Path-like object Input config. Will not be overwritten. config_output_path: str or Path-like object Where to save the new config file. observed_data_path: str or Path-like object Path to a dl1 file with observed data from which to calculate the parameters. observed_mc_path: str or Path-like object Path to a dl1 file with simulated data from which to calculate the parameters. Return: ------- config_output_path """ with open(base_config_path) as f: base = json.load(f) log.info("Running lstchain_tune_nsb to get the noise tuning parameters") log.info(f"Comparing mc file {mc_path} and observed file {observed_data_path}") cmd = [ "lstchain_tune_nsb", f"--config={base_config_path}", f"--input-mc={mc_path}", f"--input-data={observed_data_path}", ] res = subprocess.run(cmd, capture_output=True) # Log output is directed to stderr not stdout log_output = res.stderr.decode() # The script dumps the dict as the very last output dict_string = "{" + log_output.rsplit("{", -1)[-1].strip() # This should now load into json parameters = json.loads(dict_string) modifier_settings = base.get("image_modifier", {}) for key, value in parameters.items(): if key in modifier_settings: log.warning( f"Overwriting image modifier parameter {key} from the base config with " f"the new value {value}." ) modifier_settings[key] = value base["image_modifier"] = modifier_settings with open(config_output_path, "w") as f: json.dump(base, f, indent=2) return config_output_path
[ "noreply@github.com" ]
cta-observatory.noreply@github.com
d0add2b46580ce0c3ba728f98b030a8d847cc95a
307634b38988a23ecc560e5820ccd0ce02bc326f
/hog/tests/05.py
aca49047a1922d7256340ce3735456e4c7045f67
[]
no_license
wbailey1/CS61A
4c6c4b6a71d3f1f3b087646831d9d44f40046acc
130c0ff12ad62dbc1a36a9e947092b4f9139122e
refs/heads/master
2020-03-11T06:14:51.787442
2018-04-17T01:06:17
2018-04-17T01:06:17
129,825,422
1
0
null
null
null
null
UTF-8
Python
false
false
6,074
py
test = { 'name': 'Question 5', 'points': 3, 'suites': [ { 'cases': [ { 'answer': 'While score0 and score1 are both less than goal', 'choices': [ 'While score0 and score1 are both less than goal', 'While at least one of score0 or score1 is less than goal', 'While score0 is less than goal', 'While score1 is less than goal' ], 'hidden': False, 'locked': False, 'question': r""" The variables score0 and score1 are the scores for both players. Under what conditions should the game continue? """ }, { 'answer': 'strategy1(score1, score0)', 'choices': [ 'strategy1(score1, score0)', 'strategy1(score0, score1)', 'strategy1(score1)', 'strategy1(score0)' ], 'hidden': False, 'locked': False, 'question': r""" If strategy1 is Player 1's strategy function, score0 is Player 0's current score, and score1 is Player 1's current score, then which of the following demonstrates correct usage of strategy1? """ } ], 'scored': False, 'type': 'concept' }, { 'cases': [ { 'code': r""" >>> >>> # Play function stops at goal >>> s0, s1 = hog.play(always(5), always(3), score0=91, score1=10) >>> s0 106 >>> s1 10 """, 'hidden': False, 'locked': False }, { 'code': r""" >>> >>> # Goal score is not hardwired >>> s0, s1 = hog.play(always(5), always(5), goal=10) >>> s0 0 >>> s1 20 """, 'hidden': False, 'locked': False }, { 'code': r""" >>> >>> # Swine Swap >>> s0,s1 = hog.play(always(5), always(3), score0=36, score1=15, goal=50) >>> s0 15 >>> s1 51 """, 'hidden': False, 'locked': False } ], 'scored': True, 'setup': r""" >>> import hog >>> hog.four_sided = hog.make_test_dice(1) >>> hog.six_sided = hog.make_test_dice(3) >>> always = hog.always_roll """, 'teardown': '', 'type': 'doctest' }, { 'cases': [ { 'code': r""" >>> >>> # Swine swap applies to 3 digit scores >>> s0, s1 = hog.play(always(5), always(3), score0=98, score1=31) >>> s0 31 >>> s1 113 """, 'hidden': False, 'locked': False }, { 'code': r""" >>> >>> # Goal edge case >>> s0, s1 = hog.play(always(4), always(3), score0=88, score1=20) >>> s0 100 >>> s1 20 """, 'hidden': False, 'locked': False }, { 'code': r""" >>> >>> # Player 1 win >>> s0, s1 = hog.play(always(4), always(4), score0=87, score1=88) >>> s0 87 >>> s1 104 """, 'hidden': False, 'locked': False }, { 'code': r""" >>> >>> # Swine swap applies during Player 1 turn >>> s0, s1 = hog.play(always(3), always(5), score0=22, score1=98) >>> s0 113 >>> s1 31 """, 'hidden': False, 'locked': False }, { 'code': r""" >>> # Check strategies are actually used correctly >>> strat0 = lambda score, opponent: opponent % 10 >>> strat1 = lambda score, opponent: opponent // 10 >>> s0, s1 = hog.play(strat0, strat1, score0=40, score1=92) >>> s0 46 >>> s1 104 """, 'hidden': False, 'locked': False }, { 'code': r""" >>> >>> # Free bacon refers to correct opponent score >>> s0, s1 = hog.play(always(0), always(0), score0=11, score1=99) >>> s0 21 >>> s1 104 """, 'hidden': False, 'locked': False } ], 'scored': True, 'setup': r""" >>> import hog >>> always = hog.always_roll >>> hog.four_sided = hog.make_test_dice(1) >>> hog.six_sided = hog.make_test_dice(3) """, 'teardown': '', 'type': 'doctest' }, { 'cases': [ { 'code': r""" >>> random.seed(1337) >>> i = 0 >>> secret = 1 >>> while i < 100: ... s0, s1 = hog.play(make_random_strat(), make_random_strat()) ... secret = pow(s0 * s1, secret, 1234567891) ... i += 1 >>> secret 477587826 """, 'hidden': False, 'locked': False } ], 'scored': True, 'setup': r""" >>> # Fuzz Testing >>> # Plays a lot of random games, and calculates a secret value. >>> # Failing this test means something is wrong, but you should >>> # look at other tests to see where the problem might be. >>> # Hint: make sure you're only calling take_turn once per turn! >>> >>> import hog >>> import random >>> hog.four_sided = lambda: random.randrange(1, 5) >>> hog.six_sided = lambda: random.randrange(1, 7) >>> def make_random_strat(): ... seed = random.randint(1, 65535) ... def random_strat(score, opponent_score): ... return pow(score * opponent_score, seed, 11) ... return random_strat """, 'teardown': r""" >>> random.seed() """, 'type': 'doctest' } ] }
[ "williambailey97@berkeley.edu" ]
williambailey97@berkeley.edu
a20f3c7273117c730c78f820a3df633014a81ed4
a4de57b6d17fb35cde263c025ddb5ef93a5c3475
/src/robot_emulator/scripts/gate.py
1896c4c3736caf3ae65338a36fcc84ac442cfd35
[]
no_license
ericdanz/simpleRosG
99264dd4a7c2c49128cb2dc2200961799baeabd1
d06f81ff36fd798c859535eb2640e4ed89aabb06
refs/heads/master
2020-06-03T08:55:22.013337
2014-07-09T03:42:49
2014-07-09T03:42:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,165
py
#!/usr/bin/env python from robot_emulator.msg import * from modulemodel import * import moduleconnection as mc from geometry_msgs.msg import Twist import rospy import time, serial, sys import maketranslations as mt class Gate: def __init__(self, gnumber=0): rospy.Subscriber('reqs', Request, self.parseReq) self.number = gnumber self.module = Module() #is gnumber going to be port number as well? port = '/dev/ttyACM{}'.format(self.number) self.serPer = serial.Serial(port, baudrate=57600, timeout=.4) def parseReq(self,data): rospy.loginfo('this is parse Req') thisReq = data.request if thisReq == 'boot': rospy.loginfo(thisReq) self.bootResponder() if (self.module.mtype == "locomotion"): print 'gate is locomotion' rospy.Subscriber('locomotionInputs', Twist, self.doInput) #set up elifs eventually #else: # print "didn't get the type{}".format mc.readunreliable('b#',self.number)) def bootResponder(self): rospy.loginfo('inside boot responder') if ( mc.bootModule(self.serPer) == 'l' ): self.module.settype( "locomotion" ) print self.module.mtype bootPub = rospy.Publisher('boot', BootResponse, queue_size=1, latch=True) #need a name inside the boot message, so this module will #be able to identify messages sent to itself bootString = BootResponse() bootString.gatenumber = self.number bootString.gatetype = self.module.mtype bootPub.publish(bootString) def doInput(self,data): #check the name on the input, if it matches this module #do the input if possible or publish an error #inputs will become custom type - gatenumber, gatetype, and Twist #will add gate names later #print 'at input' #need more efficiency - only numbers transmitted #format is lx,ly,lz/ax,ay,az inputString = mt.makeLocInput(data) #inputString = 'i/{},{}#'.format(data.linear.x, data.angular.z) rospy.loginfo('instring {}'.format(inputString)) rospy.loginfo( mc.readunreliable(inputString, self.serPer) ) #mc.sendblind(inputString, self.serPer) if __name__ == '__main__': rospy.init_node('gate', anonymous=True) gate = Gate(0) rospy.loginfo("Gate Node Started") rospy.spin()
[ "ericdanziger@gmail.com" ]
ericdanziger@gmail.com
55108395c637ef48281003c0edffe500a4968d13
5d45364c56d80ceb63d4cea3bf37d2b7bc20710b
/Q4.py
b649ae2824326cae3430b0845188264e3a6e7197
[]
no_license
Anamikaswt/file
d3dcfee9817b6934c19f432287087e89c15750aa
7f870602e58acce71b013ba8ac60393516d45c05
refs/heads/master
2023-03-28T00:51:31.679507
2021-04-02T16:04:46
2021-04-02T16:04:46
354,066,693
0
0
null
null
null
null
UTF-8
Python
false
false
261
py
file1=open("question3.txt","r") for i in file1: if "delhi" in i: a=open("delhi.txt","a") a.write(i) elif "shimla" in i: e=open("simla.txt","a") e.write(i) else: p=open("other city.txt","a") p.write(i)
[ "you@example.com" ]
you@example.com
5cb325c3f33fcb2a31c628b28503a26b01429328
5d81c0293fc118fb15a5ba8dfd5a61689967c86b
/script.py
647580da0c26a2a879e0dc212968750abb396a74
[]
no_license
NatashaSay/car_price
5b0c5268decc376d499a1f531e2c06dec087b05a
4a9f7862e3d6bf3671f849bf56dd05b5fe98a9b1
refs/heads/main
2023-02-16T20:02:15.471534
2021-01-15T17:44:51
2021-01-15T17:44:51
329,974,040
0
0
null
null
null
null
UTF-8
Python
false
false
7,038
py
import os from datetime import datetime import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import xgboost from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import make_scorer, r2_score import warnings warnings.filterwarnings("ignore") import joblib # Year def change_years(df): df = df.copy() for var in df['registration_year']: if var < 20: df['registration_year'] = df['registration_year'].replace(var, var + 2000) elif var < 100: df['registration_year'] = df['registration_year'].replace(var, var + 1900) return df # Variable transformation def change_power(train, test): df = train.copy() df1 = test.copy() df['power'] = df['power'].replace(0, np.nan) mode = df['power'].mode(True) df['power'] = df['power'].replace(np.nan, int(mode)) df1['power'] = df1['power'].replace(0, np.nan) mode1 = df1['power'].mode(True) df1['power'] = df1['power'].replace(np.nan, int(mode1)) return df, df1 def change_capacity(train, test): df = train.copy() df1 = test.copy() df['engine_capacity'] = df['engine_capacity'].replace(0, np.nan) mode = df['engine_capacity'].mode(True) print(int(mode)) df['engine_capacity'] = df['engine_capacity'].replace(np.nan, int(mode)) df1['engine_capacity'] = df1['engine_capacity'].replace(0, np.nan) mode1 = df1['engine_capacity'].mode(True) df1['engine_capacity'] = df1['engine_capacity'].replace(np.nan, int(mode1)) return df, df1 def find_frequent_labels(df, var, rare_perc): df = df.copy() tmp = df.groupby(var)['price'].count() / len(df) return tmp[tmp > rare_perc].index def replace_categories(train, test, var, target, test_data): ordered_labels = train.groupby([var])[target].mean().sort_values().index ordinal_label = {k: i for i, k in enumerate(ordered_labels, 0)} train[var] = train[var].map(ordinal_label) test[var] = test[var].map(ordinal_label) test_data[var] = test_data[var].map(ordinal_label) def test_model(model, X_train, y_train): cv = KFold(n_splits=3, shuffle=True, random_state=45) r2 = make_scorer(r2_score) r2_val_score = cross_val_score(model, X_train, y_train, cv=cv, scoring=r2) score = [r2_val_score.mean()] return score # Data def pred(): data = pd.read_csv('./tables/train.csv') test_data = pd.read_csv('./tables/test_no_target1.csv') # Splitting X_train, X_test, y_train, y_test = train_test_split(data, data['price'], test_size=0.1, random_state=0) # Missing values vars_with_na = [ var for var in data.columns if X_train[var].isnull().sum() > 0 and X_train[var].dtypes == 'O' if test_data[var].isnull().sum() > 0 and test_data[var].dtypes == 'O' ] X_train[vars_with_na] = X_train[vars_with_na].fillna('Missing') X_test[vars_with_na] = X_test[vars_with_na].fillna('Missing') test_data[vars_with_na] = test_data[vars_with_na].fillna('Missing') test_data.head() X_train = change_years(X_train) test_data = change_years(test_data) # Numerical values vars_with_na = [ var for var in data.columns if X_train[var].isnull().sum() > 0 and X_train[var].dtypes != 'O' if test_data[var].isnull().sum() > 0 and test_data[var].dtypes != 'O' ] X_train[vars_with_na].isnull().mean() for var in vars_with_na: mode_val = X_train[var].mode()[0] mode_val_test = test_data[var].mode()[0] X_train[var + '_na'] = np.where(X_train[var].isnull(), 1, 0) X_test[var + '_na']=np.where(X_test[var].isnull(), 1, 0) test_data[var + '_na']=np.where(test_data[var].isnull(), 1, 0) X_train[var] = X_train[var].fillna(mode_val) X_test[var] = X_test[var].fillna(mode_val) test_data[var] = test_data[var].fillna(mode_val_test) X_train, X_test = change_power(X_train, X_test) test_data, X_test = change_power(test_data, X_test) X_train, X_test = change_capacity(X_train, X_test) test_data, X_test = change_capacity(test_data, X_test) for var in ['engine_capacity', 'insurance_price', 'price', 'power', 'mileage']: X_train[var] = np.log(X_train[var]) X_test[var] = np.log(X_test[var]) # for var in ['engine_capacity', 'insurance_price', 'power', 'mileage']: test_data[var] = np.log(test_data[var]) # Categorial variables cat_vars = [var for var in X_train.columns if X_train[var].dtype == 'O'] for var in cat_vars: frequent_ls = find_frequent_labels(X_train, var, 0.01) X_train[var] = np.where(X_train[var].isin(frequent_ls), X_train[var], 'Rare') X_test[var] = np.where(X_test[var].isin(frequent_ls), X_test[var], 'Rare') test_data[var] = np.where(test_data[var].isin(frequent_ls), test_data[var], 'Rare') for var in cat_vars: replace_categories(X_train, X_test, var, 'price', test_data) # Feature scaling train_vars = [var for var in X_train.columns if var not in ['Id', 'price', 'zipcode']] np.any(np.isnan(X_test)) np.all(np.isfinite(X_test)) scaler = MinMaxScaler() scaler.fit(X_train[train_vars]) X_train[train_vars] = scaler.transform(X_train[train_vars]) X_test[train_vars] = scaler.transform(X_test[train_vars]) test_data[train_vars] = scaler.transform(test_data[train_vars]) X_train.to_csv('./tables/xtrain.csv', index=False) X_test.to_csv('./tables/xtest.csv', index=False) test_data.to_csv('./tables/test_data.csv', index=False) # Step 2 X_train = pd.read_csv('./tables/xtrain.csv') X_test = pd.read_csv('./tables/xtest.csv') y_train = X_train['price'] y_test = X_test['price'] features = ['type', 'registration_year', 'gearbox', 'power', 'model', 'mileage', 'fuel', 'brand', 'damage', 'insurance_price'] X_train = X_train[features] X_test = X_test[features] xgb2_reg=xgboost.XGBRegressor(n_estimators=899, mon_child_weiht=2, max_depth=4, learning_rate=0.05, booster='gbtree') test_model(xgb2_reg, X_train, y_train) test_data = pd.read_csv('./tables/test_data.csv') test_data_id = pd.read_csv('./tables/test_data.csv') test_data = test_data[features] xgb2_reg.fit(X_train, y_train) y_pred = np.exp(xgb2_reg.predict(test_data)) submit_test = pd.concat([test_data_id['Id'], pd.DataFrame(y_pred)], axis=1) submit_test.columns=['Id', 'Predicted'] submit_test.to_csv('./tables/submission1.csv', index=False) file = f'v1-{datetime.now()}.model'.replace(' ', '_') joblib.dump(xgb2_reg, 'models/' + file) return y_pred pred()
[ "nataliia.saichyshyna@nure.ua" ]
nataliia.saichyshyna@nure.ua
8fbc882f62ae45fbd343faf3abb3bef1abf2a11d
8814c911f8ad490b712b3235d787abc8e930a2fc
/manage.py
fa6c0b453395ef88114c8c7d09a6a5812e90f514
[]
no_license
ronak007mistry/Django-Money-Management
6094890564796912e5229d0a16009b02ff5077dc
6e11a7b819f0443a60e5b0f5bf451059b04aadb7
refs/heads/main
2023-01-25T03:29:11.944350
2020-12-13T19:44:43
2020-12-13T19:44:43
320,367,010
0
0
null
null
null
null
UTF-8
Python
false
false
666
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'expenseapp.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "59952103+ronak007mistry@users.noreply.github.com" ]
59952103+ronak007mistry@users.noreply.github.com
a7619f22d79e104f13f14f5ad73685679f20016d
00c9f4c7e371fc8e48295a85aca5d347ae943fe2
/AviationSite/home/urls.py
3774752af6c9789a570b2cc1456e2316eb20ab02
[]
no_license
Marlster/AviationWebsite
19d06baf01efc305f580013524c5a060b6940171
2392405439fb406c70b386d3a72bba17be4aafd2
refs/heads/master
2021-06-19T15:27:50.149194
2019-11-06T23:08:47
2019-11-06T23:08:47
154,491,695
1
0
null
2021-06-10T21:11:54
2018-10-24T11:46:46
Python
UTF-8
Python
false
false
288
py
from django.conf.urls import url from django.urls import path from django.views.generic import RedirectView from . import views urlpatterns = [ # a blank url displays the home page url(r'^success$', views.success), url(r'^trials$', views.trials), url(r'^$', views.home) ]
[ "marley7898@gmail.com" ]
marley7898@gmail.com
39aa9b9ea6a9922048aef593dc626aed1f30a5eb
95db0a2b870a4eeb2ff906213e6038337c877e1e
/Module_system 1.134/header_mission_templates.py
05843a7abcae6afba6e16f183454ef7f4e7c4bc1
[]
no_license
mbw-economy/Economy-Mod-for-Mount-and-Blade--Warband
1a2e3e79d1e9a153b078011e2c8c9d4b4b5814f5
0c8109dc44226d451005aadce12ef8584f122979
refs/heads/master
2021-01-13T16:14:33.383950
2011-05-17T02:06:00
2011-05-17T02:06:00
1,758,841
6
3
null
null
null
null
UTF-8
Python
false
false
4,079
py
################################################### # header_mission_templates.py # This file contains declarations for mission templates # DO NOT EDIT THIS FILE! ################################################### from header_common import * from header_operations import * from header_triggers import * from header_troops import * from ID_scenes import * from ID_items import * from ID_strings import * from header_mission_types import * aif_group_bits = 0 aif_group_mask = 0xF aif_start_alarmed = 0x00000010 grc_infantry = 0 grc_archers = 1 grc_cavalry = 2 grc_heroes = 3 grc_everyone = 9 mordr_hold = 0 mordr_follow = 1 mordr_charge = 2 mordr_mount = 3 mordr_dismount = 4 mordr_advance = 5 mordr_fall_back = 6 mordr_stand_closer = 7 mordr_spread_out = 8 mordr_use_blunt_weapons = 9 mordr_use_any_weapon = 10 mordr_stand_ground = 11 mordr_hold_fire = 12 mordr_fire_at_will = 13 mordr_retreat = 14 rordr_free = 0 rordr_mount = 1 rordr_dismount = 2 wordr_use_any_weapon = 0 wordr_use_blunt_weapons = 1 aordr_fire_at_will = 0 aordr_hold_your_fire = 1 # Agent AI Simple Behaviors aisb_hold = 0 aisb_go_to_pos = 1 aisb_mount = 2 aisb_dismount = 3 aisb_melee = 4 aisb_ranged = 5 aisb_ranged_horseback = 6 aisb_charge_horseback = 7 aisb_maneuver_horseback = 8 aisb_flock = 9 aisb_race = 10 aisb_patrol = 11 aisb_no_enemies = 12 aisb_horse_hold = 13 aisb_horse_run_away = 14 # filter flags mtef_enemy_party = 0x00000001 mtef_ally_party = 0x00000002 mtef_scene_source = 0x00000004 mtef_conversation_source = 0x00000008 mtef_visitor_source = 0x00000010 mtef_defenders = 0x00000040 mtef_attackers = 0x00000080 mtef_no_leader = 0x00000100 mtef_no_companions = 0x00000200 mtef_no_regulars = 0x00000400 #mtef_team_0 = 0x00001000 mtef_team_0 = 0x00001000 mtef_team_1 = 0x00002000 mtef_team_2 = 0x00003000 mtef_team_3 = 0x00004000 mtef_team_4 = 0x00005000 mtef_team_5 = 0x00006000 mtef_team_member_2 = 0x00008000 mtef_infantry_first = 0x00010000 mtef_archers_first = 0x00020000 mtef_cavalry_first = 0x00040000 mtef_no_auto_reset = 0x00080000 mtef_reverse_order = 0x01000000 mtef_use_exact_number = 0x02000000 mtef_leader_only = mtef_no_companions | mtef_no_regulars mtef_regulars_only = mtef_no_companions | mtef_no_leader #alter flags af_override_weapons = 0x0000000f af_override_weapon_0 = 0x00000001 af_override_weapon_1 = 0x00000002 af_override_weapon_2 = 0x00000004 af_override_weapon_3 = 0x00000008 af_override_head = 0x00000010 af_override_body = 0x00000020 #af_override_leg = 0x00000040 af_override_foot = 0x00000040 af_override_gloves = 0x00000080 af_override_horse = 0x00000100 af_override_fullhelm = 0x00000200 #af_override_hands = 0x00000100 af_require_civilian = 0x10000000 #af_override_all_but_horse = 0x000000ff af_override_all_but_horse = af_override_weapons | af_override_head | af_override_body |af_override_gloves af_override_all = af_override_horse | af_override_all_but_horse af_override_everything = af_override_all | af_override_foot requires_third_party = 0x00000001 #mission template flags. also in mission_template.h #use only the lower 12 bits. Upper 20 is taken up by xsize and ysize. mtf_arena_fight = 0x00000001 #identify enemies through team_no mtf_team_fight = 0x00000001 #identify enemies through team_no mtf_battle_mode = 0x00000002 #No inventory access mtf_commit_casualties = 0x00000010 mtf_no_blood = 0x00000100 max_size = 1023 xsize_bits = 12 ysize_bits = 22 def xsize(n): return (n & max_size) << xsize_bits def ysize(n): return (n & max_size) << ysize_bits #Mission result flags. also in mission.h mc_loot = 0x0001 mc_imprison_unconscious = 0x0002
[ "Nicholas@.(none)" ]
Nicholas@.(none)
257c12eb61d44015157ebd96fee8c5366c00f03d
6e6a082325a9b38ce9b5258e6171a776636fdd68
/turtle-snake/snake.py
846ca34299b846e2bf22eef0a342ee8ee61b6b02
[]
no_license
bunja/python-100days
5d8d0e7739e642ab16289c6a1b371776a761370a
494e945a9e5d4cecff6583f5851ee18564a1f2e9
refs/heads/main
2023-08-30T17:12:41.244183
2021-11-04T13:45:28
2021-11-04T13:45:28
369,013,652
0
0
null
null
null
null
UTF-8
Python
false
false
1,477
py
from turtle import Turtle STARTING_POSITION = [(0, 0), (-20, 0), (-40, 0)] MOVE_DIST = 20 UP = 90 DOWN = 270 RIGHT = 0 LEFT = 180 class Snake: def __init__(self): self.segments = [] self.create_snake() self.head = self.segments[0] def create_snake(self): for pos in STARTING_POSITION: self.add_segment(pos) def add_segment(self, pos): sq = Turtle("square") sq.speed("slowest") sq.color("white") sq.penup() sq.goto(pos) self.segments.append(sq) def extend(self): self.add_segment(self.segments[-1].position()) def reset(self): for seg in self.segments: seg.goto(1000, 1000) self.segments.clear() self.create_snake() self.head = self.segments[0] def move(self): for seg in range(len(self.segments) - 1, 0, -1): new_x = self.segments[seg - 1].xcor() new_y = self.segments[seg - 1].ycor() self.segments[seg].goto(new_x, new_y) self.head.forward(MOVE_DIST) def up(self): if self.head.heading() != DOWN: self.head.setheading(UP) def down(self): if self.head.heading() != UP: self.head.setheading(DOWN) def left(self): if self.head.heading() != RIGHT: self.head.setheading(LEFT) def right(self): if self.head.heading() != LEFT: self.head.setheading(RIGHT)
[ "kos.lv@yandex.com" ]
kos.lv@yandex.com
1157bbc242bff1549e9e91e11094f5ef9e248a3a
fccb4ee993e9164fc3ca111505141f00c79a5534
/source code/session 2 - Text preprocessing/2-2-4-inception.py
1439f3e04cd20b2f42d95fc72544fd01a649e825
[]
no_license
buomsoo-kim/Sentiment-Analysis-with-Python
de8c99ceb9001c9ddb2483c08e4c150b605dfbc9
3281f8a4556cffc862a18a00dad56e92129e5bec
refs/heads/master
2021-07-03T13:15:02.239720
2017-09-25T02:09:26
2017-09-25T02:09:26
103,010,880
21
9
null
null
null
null
UTF-8
Python
false
false
1,930
py
# 텍스트 분석을 위해 nltk 모듈을 불러온다 import nltk # nltk 모듈에서 Stopwords를 직접 불러온다 from nltk.corpus import stopwords # nltk의 WordNetLemmatizer를 불러와 lemmatizer 변수에 저장한다 lemmatizer = nltk.wordnet.WordNetLemmatizer() # 영어의 stopwords를 불러와 변수에 저장한다 stopWords = stopwords.words('english') # open 함수를 통해 'result-1-3-5-inception.txt' 파일을 열고 이를 f로 지정한다 with open('result-1-3-5-inception.txt', 'r', encoding = 'utf-8') as f: # 읽기 형식('r')로 지정하고 인코딩은 'utf-8'로 설정한다 lines = f.readlines() # readlines 함수로 텍스트 파일의 내용을 읽어 리스트로 저장한다 f.close() # 파일을 닫는다 reviewProcessedList = [] # 처리된 결과를 담기 위한 리스트를 생성한다 # for문을 통해 각 줄을 전처리한다 for line in lines: reviewProcessed = '' # 한 줄을 전처리한 결과를 담기 위한 String 변수 생성 tokens = nltk.word_tokenize(line) # 리뷰를 tokenize한다 for token in tokens: if token.lower() not in stopWords: # 소문자로 변환한 token이 stopwords에 없으면: reviewProcessed += ' ' + lemmatizer.lemmatize(token) # lemmatize한 붙인다 reviewProcessedList.append(reviewProcessed) # 전처리가 끝난 리뷰를 리스트에 첨부한다 # open 함수를 통해 'result-2-2-4-inception.txt' 파일을 열고 이를 f로 지정한다 with open('result-2-2-4-inception.txt', 'w', encoding = 'utf-8') as f: # 쓰기 형식('w')로 지정하고 인코딩은 'utf-8'로 설정한다 for reviewProcessed in reviewProcessedList: # 각각의 리뷰를 파일에 쓴다 f.write(reviewProcessed + '\n') # 각 리뷰를 줄바꿈('\n')으로 구분한다 f.close() # 파일을 닫는다
[ "noreply@github.com" ]
buomsoo-kim.noreply@github.com
500ff4e5900396a5fbb390f58f1a83465f1e71c7
b6ede31e37d504b5c60d5b5e95d502808d868659
/src/svs/user_interaction.py
64e8b8768ecbb1bcf8d5e1d2fb865f564b6614f5
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
licehammer/svs
6c45530d947299f883e42bc9af3eaf6814979a03
b4e6af8e97761d13256e8ecd67ee5ba6f1dbd063
refs/heads/master
2021-01-18T18:49:51.454366
2016-06-14T14:38:23
2016-06-14T14:38:41
61,113,469
0
0
null
2016-06-14T10:22:48
2016-06-14T10:22:48
null
UTF-8
Python
false
false
2,137
py
import cherrypy from mako.lookup import TemplateLookup import pkg_resources from svs.i18n_tool import ugettext_lazy as N_ __author__ = 'regu0004' LOOKUP = TemplateLookup(directories=[pkg_resources.resource_filename("svs", "templates")], module_directory='modules/', input_encoding='utf-8', output_encoding='utf-8', imports=["from svs.i18n_tool import ugettext as _"]) class EndUserErrorResponse(cherrypy.HTTPError): def __init__(self, timestamp, uid, message, form_action="/error"): error = { "uid": uid, "timestamp": self._format_timestamp(timestamp), "message": message, } argv = { "error": error, "language": cherrypy.response.i18n.locale.language, "form_action": form_action } self.error_page = LOOKUP.get_template("error.mako").render(**argv) super(EndUserErrorResponse, self).__init__(400, self.error_page) def _format_timestamp(self, timestamp): return str(timestamp) def get_error_page(self, *args, **kwargs): return self.error_page class ConsentPage(object): """ Render the consent page. """ TEMPLATE = "consent.mako" @classmethod def render(cls, client_name, idp_entity_id, released_claims, relay_state, form_action="/consent"): client_name_display_string = "<strong>'{}'</strong>".format(client_name) question = N_("{client_name} requires the information below to be transferred:").format( client_name=client_name_display_string) state = { "idp_entity_id": idp_entity_id, "state": relay_state, } return LOOKUP.get_template(cls.TEMPLATE).render(consent_question=question, released_claims=released_claims, state=state, form_action=form_action, language=cherrypy.response.i18n.locale.language)
[ "rebecka.gulliksson@umu.se" ]
rebecka.gulliksson@umu.se
f3215469c3db9f1e25a2cce29c6512d71545aeed
783a300adcca3f7bbba47a786b0a557c6ada705e
/MPUtils/umxnet/transform.py
a7a5aa6120b79e105dbb9d97832ba3568ea5c892
[]
no_license
yinglang/MPUtils
81e1dc1012d4845a6bdabde662bd5282e7adab41
79329292c9454ea29d8e1a4658846124076b1003
refs/heads/master
2021-07-12T09:58:40.338541
2019-02-26T13:37:14
2019-02-26T13:37:14
150,934,903
1
0
null
null
null
null
UTF-8
Python
false
false
15,233
py
from mxnet import nd from random import uniform, randint import math class RandomPadCrop: def __init__(self, pad): """ pad: tuple of (lh, rh, lw, rw) of pading length """ self.pad = pad self.random_range = nd.array([pad[0]+pad[1], pad[2]+pad[3]]) def __call__(self, data): pad, h, w = self.pad, data.shape[1], data.shape[2] data = data.expand_dims(axis=0).pad(mode="constant", constant_value=0, pad_width=(0, 0, 0, 0, pad[0], pad[1], pad[2], pad[3])) x0, y0 = (nd.random.uniform(shape=(2,)) * self.random_range).astype('uint8') x0, y0 = x0.asscalar(), y0.asscalar() return data[0, :, x0:x0+h, y0:y0+w] class RandomErasing(object): """ Randomly selects a rectangle region in an image and erases its pixels. 'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/pdf/1708.04896.pdf used after transforms.ToTensor and transforms.Normalize Args: probability: The probability that the Random Erasing operation will be performed. sl: Minimum proportion of erased area against input image. sh: Maximum proportion of erased area against input image. r1: Minimum aspect ratio of erased area. mean: Erasing value. """ def __init__(self, probability = 0.5, sl = 0.02, sh = 0.4, r1 = 0.3): self.probability = probability self.sl = sl self.sh = sh self.r1 = r1 def __call__(self, img): if uniform(0, 1) > self.probability: return img for attempt in range(100): area = img.shape[1] * img.shape[2] target_area = uniform(self.sl, self.sh) * area aspect_ratio = uniform(self.r1, 1/self.r1) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < img.shape[2] and h < img.shape[1]: x1 = randint(0, img.shape[1] - h) y1 = randint(0, img.shape[2] - w) img[:, x1:x1+h, y1:y1+w] = 0 return img return img # from gluoncv.data.transforms.presets import experimental # import gluoncv.data.transforms.presets.experimental as experimental from gluoncv.data.transforms import presets import numpy as np from mxnet import nd import mxnet as mx import random def random_crop_with_constraints(bbox, size, min_scale=0.3, max_scale=1, max_aspect_ratio=2, constraints=None, max_trial=50): """Crop an image randomly with bounding box constraints. This data augmentation is used in training of Single Shot Multibox Detector [#]_. More details can be found in data augmentation section of the original paper. .. [#] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg. SSD: Single Shot MultiBox Detector. ECCV 2016. Parameters ---------- bbox : numpy.ndarray Numpy.ndarray with shape (N, 4+) where N is the number of bounding boxes. The second axis represents attributes of the bounding box. Specifically, these are :math:`(x_{min}, y_{min}, x_{max}, y_{max})`, we allow additional attributes other than coordinates, which stay intact during bounding box transformations. size : tuple Tuple of length 2 of image shape as (width, height). min_scale : float The minimum ratio between a cropped region and the original image. The default value is :obj:`0.3`. max_scale : float The maximum ratio between a cropped region and the original image. The default value is :obj:`1`. max_aspect_ratio : float The maximum aspect ratio of cropped region. The default value is :obj:`2`. constraints : iterable of tuples An iterable of constraints. Each constraint should be :obj:`(min_iou, max_iou)` format. If means no constraint if set :obj:`min_iou` or :obj:`max_iou` to :obj:`None`. If this argument defaults to :obj:`None`, :obj:`((0.1, None), (0.3, None), (0.5, None), (0.7, None), (0.9, None), (None, 1))` will be used. max_trial : int Maximum number of trials for each constraint before exit no matter what. Returns ------- numpy.ndarray Cropped bounding boxes with shape :obj:`(M, 4+)` where M <= N. tuple Tuple of length 4 as (x_offset, y_offset, new_width, new_height). """ # default params in paper if constraints is None: constraints = ( (0.1, None), (0.3, None), (0.5, None), (0.7, None), (0.9, None), (None, 1), ) if len(bbox) == 0: constraints = [] w, h = size candidates = [(0, 0, w, h)] for min_iou, max_iou in constraints: min_iou = -np.inf if min_iou is None else min_iou max_iou = np.inf if max_iou is None else max_iou for _ in range(max_trial): scale = random.uniform(min_scale, max_scale) aspect_ratio = random.uniform( max(1 / max_aspect_ratio, scale * scale), min(max_aspect_ratio, 1 / (scale * scale))) crop_h = int(h * scale / np.sqrt(aspect_ratio)) crop_w = int(w * scale * np.sqrt(aspect_ratio)) crop_t = random.randrange(h - crop_h) crop_l = random.randrange(w - crop_w) crop_bb = np.array((crop_l, crop_t, crop_l + crop_w, crop_t + crop_h)) # below 3 line add by hui if len(bbox) == 0: candidates.append((left, top, right-left, bottom-top)) break iou = presets.ssd.experimental.bbox.bbox_iou(bbox, crop_bb[np.newaxis]) if min_iou <= iou.min() and iou.max() <= max_iou: top, bottom = crop_t, crop_t + crop_h left, right = crop_l, crop_l + crop_w candidates.append((left, top, right-left, bottom-top)) break # random select one while candidates: crop = candidates.pop(np.random.randint(0, len(candidates))) if len(bbox) == 0: return bbox, crop new_bbox = presets.ssd.experimental.bbox.bbox_crop(bbox, crop, allow_outside_center=False) if new_bbox.size < 1: continue new_crop = (crop[0], crop[1], crop[2], crop[3]) return new_bbox, new_crop return bbox, (0, 0, w, h) def returned_value(res, args, kwargs): if len(args) > 0: res.append(args) if len(kwargs) > 0: res.append(kwargs) return res class TrainTransform(presets.ssd.SSDDefaultTrainTransform): """ reference to SSDDefaultTrainTransform """ def __init__(self, width, height, anchors=None, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), iou_thresh=0.5, box_norm=(0.1, 0.1, 0.2, 0.2), color_distort_kwargs={}, random_expand_kwargs={}, random_crop_kwargs={}, **kwargs): """ ?? presets.ssd.experimental.image.random_color_distort ?? presets.ssd.timage.random_expand ?? presets.ssd.experimental.bbox.random_crop_with_constraints """ super(TrainTransform, self).__init__(width, height, anchors, mean, std, iou_thresh, box_norm, **kwargs) self.color_distort_kwargs = color_distort_kwargs self.random_expand_kwargs = random_expand_kwargs self.random_crop_kwargs = random_crop_kwargs def __call__(self, src, label, *args, **kwargs): """Apply transform to training image/label.""" # random color jittering img = presets.ssd.experimental.image.random_color_distort(src, **self.color_distort_kwargs) # random expansion with prob 0.5 if np.random.uniform(0, 1) > 0.5: img, expand = presets.ssd.timage.random_expand(img, fill=[m * 255 for m in self._mean], **self.random_expand_kwargs) if label.shape[0] > 0: bbox = presets.ssd.tbbox.translate(label, x_offset=expand[0], y_offset=expand[1]) else: bbox = label else: img, bbox = img, label # random cropping h, w, _ = img.shape bbox, crop = random_crop_with_constraints(bbox, (w, h), **self.random_crop_kwargs) x0, y0, w, h = crop img = mx.image.fixed_crop(img, x0, y0, w, h) # resize with random interpolation h, w, _ = img.shape interp = np.random.randint(0, 5) img = presets.ssd.timage.imresize(img, self._width, self._height, interp=interp) if len(bbox) > 0: bbox = presets.ssd.tbbox.resize(bbox, (w, h), (self._width, self._height)) # random horizontal flip h, w, _ = img.shape img, flips = presets.ssd.timage.random_flip(img, px=0.5) if len(bbox) > 0: bbox = presets.ssd.tbbox.flip(bbox, (w, h), flip_x=flips[0]) # to tensor img = mx.nd.image.to_tensor(img) img = mx.nd.image.normalize(img, mean=self._mean, std=self._std) if self._anchors is None: if len(bbox) == 0: bbox = np.array([[-1] * 6]) return returned_value([img, bbox.astype(img.dtype)], args, kwargs) # generate training target so cpu workers can help reduce the workload on gpu if len(bbox) > 0: gt_bboxes = mx.nd.array(bbox[np.newaxis, :, :4]) gt_ids = mx.nd.array(bbox[np.newaxis, :, 4:5]) cls_targets, box_targets, _ = self._target_generator( self._anchors, None, gt_bboxes, gt_ids) else: cls_targets = nd.zeros(shape=(1, self._anchors.size//4)) box_targets = nd.zeros(shape=(1, self._anchors.size//4, 4)) return returned_value([img, cls_targets[0], box_targets[0]], args, kwargs) class ValidTransform(object): """Default SSD validation transform. Parameters ---------- width : int Image width. height : int Image height. mean : array-like of size 3 Mean pixel values to be subtracted from image tensor. Default is [0.485, 0.456, 0.406]. std : array-like of size 3 Standard deviation to be divided from image. Default is [0.229, 0.224, 0.225]. """ def __init__(self, width, height, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)): self._width = width self._height = height self._mean = mean self._std = std def __call__(self, src, label, *args, **kwargs): """Apply transform to validation image/label.""" # resize h, w, _ = src.shape img = presets.ssd.timage.imresize(src, self._width, self._height, interp=9) if label.shape[0] > 0: bbox = presets.ssd.tbbox.resize(label, in_size=(w, h), out_size=(self._width, self._height)) else: bbox=np.array([[-1]*6]) img = mx.nd.image.to_tensor(img) img = mx.nd.image.normalize(img, mean=self._mean, std=self._std) return returned_value([img, bbox.astype(img.dtype)], args, kwargs) class SSDTransform(presets.ssd.SSDDefaultTrainTransform): """ reference to SSDDefaultTrainTransform """ def __init__(self, width, height, anchors=None, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), iou_thresh=0.5, box_norm=(0.1, 0.1, 0.2, 0.2), color_distort_kwargs={}, random_expand_kwargs={}, random_crop_kwargs={}, level='image', **kwargs): """ ?? presets.ssd.experimental.image.random_color_distort ?? presets.ssd.timage.random_expand ?? presets.ssd.experimental.bbox.random_crop_with_constraints level: 'image' return [data, gt(pad_val=-1)], 'anchor' return [data, cls_target, bbox_target], 'image,anchor' return [data, gt, cls_target, bbox_target] """ super(SSDTransform, self).__init__(width, height, anchors, mean, std, iou_thresh, box_norm, **kwargs) self.color_distort_kwargs = color_distort_kwargs self.random_expand_kwargs = random_expand_kwargs self.random_crop_kwargs = random_crop_kwargs self.level = level = level.lower() assert level in ['image', 'anchor', 'image,anchor'], "level must be one of ['image', 'anchor', 'image,anchor']" assert (anchors is not None) or level=='image', "anchors must be specified when level != {}".format(level) def __call__(self, src, label, *args, **kwargs): """Apply transform to training image/label.""" # random color jittering img = presets.ssd.experimental.image.random_color_distort(src, **self.color_distort_kwargs) # random expansion with prob 0.5 if np.random.uniform(0, 1) > 0.5: img, expand = presets.ssd.timage.random_expand(img, fill=[m * 255 for m in self._mean], **self.random_expand_kwargs) if label.shape[0] > 0: bbox = presets.ssd.tbbox.translate(label, x_offset=expand[0], y_offset=expand[1]) else: bbox = label else: img, bbox = img, label # random cropping h, w, _ = img.shape bbox, crop = random_crop_with_constraints(bbox, (w, h), **self.random_crop_kwargs) x0, y0, w, h = crop img = mx.image.fixed_crop(img, x0, y0, w, h) # resize with random interpolation h, w, _ = img.shape interp = np.random.randint(0, 5) img = presets.ssd.timage.imresize(img, self._width, self._height, interp=interp) if len(bbox) > 0: bbox = presets.ssd.tbbox.resize(bbox, (w, h), (self._width, self._height)) # random horizontal flip h, w, _ = img.shape img, flips = presets.ssd.timage.random_flip(img, px=0.5) if len(bbox) > 0: bbox = presets.ssd.tbbox.flip(bbox, (w, h), flip_x=flips[0]) # to tensor img = mx.nd.image.to_tensor(img) img = mx.nd.image.normalize(img, mean=self._mean, std=self._std) if self._anchors is None or self.level == 'image': if len(bbox) == 0: bbox = np.array([[-1] * 6]) return returned_value([img, bbox.astype(img.dtype)], args, kwargs) # generate training target so cpu workers can help reduce the workload on gpu if len(bbox) > 0: gt_bboxes = mx.nd.array(bbox[np.newaxis, :, :4]) gt_ids = mx.nd.array(bbox[np.newaxis, :, 4:5]) cls_targets, box_targets, _ = self._target_generator( self._anchors, None, gt_bboxes, gt_ids) else: cls_targets = nd.zeros(shape=(1, self._anchors.size//4)) box_targets = nd.zeros(shape=(1, self._anchors.size//4, 4)) if level == 'anchor': return returned_value([img, cls_targets[0], box_targets[0]], args, kwargs) else: return returned_value([img, bbox.astype(img.dtype), cls_targets[0], box_targets[0]], args, kwargs)
[ "y19941010@126.com" ]
y19941010@126.com
0f7eb8486eb91647c6acab95fb94e10d4ecc1a1e
6d162c19c9f1dc1d03f330cad63d0dcde1df082d
/util/test/tests/Vulkan/VK_Dedicated_Allocation.py
c06da545539026efa6c1692bd928e9ca41a25124
[ "LicenseRef-scancode-unknown-license-reference", "MIT", "CC-BY-3.0", "BSD-3-Clause", "Apache-2.0" ]
permissive
baldurk/renderdoc
24efbb84446a9d443bb9350013f3bfab9e9c5923
a214ffcaf38bf5319b2b23d3d014cf3772cda3c6
refs/heads/v1.x
2023-08-16T21:20:43.886587
2023-07-28T22:34:10
2023-08-15T09:09:40
17,253,131
7,729
1,358
MIT
2023-09-13T09:36:53
2014-02-27T15:16:30
C++
UTF-8
Python
false
false
2,336
py
import renderdoc as rd import rdtest class VK_Dedicated_Allocation(rdtest.TestCase): demos_test_name = 'VK_Dedicated_Allocation' def check_capture(self): action = self.find_action("Draw") self.controller.SetFrameEvent(action.eventId, True) postvs_data = self.get_postvs(action, rd.MeshDataStage.VSOut, 0, action.numIndices) postvs_ref = { 0: { 'vtx': 0, 'idx': 0, 'gl_PerVertex_var.gl_Position': [-0.5, 0.5, 0.0, 1.0], 'vertOut.pos': [-0.5, 0.5, 0.0, 1.0], 'vertOut.col': [0.0, 1.0, 0.0, 1.0], 'vertOut.uv': [0.0, 0.0, 0.0, 1.0], }, 1: { 'vtx': 1, 'idx': 1, 'gl_PerVertex_var.gl_Position': [0.0, -0.5, 0.0, 1.0], 'vertOut.pos': [0.0, -0.5, 0.0, 1.0], 'vertOut.col': [0.0, 1.0, 0.0, 1.0], 'vertOut.uv': [0.0, 1.0, 0.0, 1.0], }, 2: { 'vtx': 2, 'idx': 2, 'gl_PerVertex_var.gl_Position': [0.5, 0.5, 0.0, 1.0], 'vertOut.pos': [0.5, 0.5, 0.0, 1.0], 'vertOut.col': [0.0, 1.0, 0.0, 1.0], 'vertOut.uv': [1.0, 0.0, 0.0, 1.0], }, } self.check_mesh_data(postvs_ref, postvs_data) rdtest.log.success('Mesh data is as expected') pipe: rd.PipeState = self.controller.GetPipelineState() self.check_pixel_value(pipe.GetOutputTargets()[0].resourceId, 155, 195, [1.0, 0.0, 0.09, 1.0], eps=1.0/255.0) self.check_pixel_value(pipe.GetOutputTargets()[0].resourceId, 190, 195, [0.0, 1.0, 0.09, 1.0], eps=1.0/255.0) self.check_pixel_value(pipe.GetOutputTargets()[0].resourceId, 255, 195, [1.0, 0.0, 0.09, 1.0], eps=1.0/255.0) self.check_pixel_value(pipe.GetOutputTargets()[0].resourceId, 230, 150, [0.723, 1.0, 1.0, 1.0], eps=1.0/255.0) self.check_pixel_value(pipe.GetOutputTargets()[0].resourceId, 190, 80, [0.2, 0.2, 0.2, 1.0], eps=1.0/255.0) self.check_pixel_value(pipe.GetOutputTargets()[0].resourceId, 200, 80, [0.723, 1.0, 1.0, 1.0], eps=1.0/255.0) self.check_pixel_value(pipe.GetOutputTargets()[0].resourceId, 210, 80, [0.2, 0.2, 0.2, 1.0], eps=1.0/255.0)
[ "baldurk@baldurk.org" ]
baldurk@baldurk.org
c49799e3184491bde60d8e62de727e4ff19198a4
84b8597b5fa1fba9d7859e048d245c327a8d2428
/tests/integration/cmor/_fixes/cmip5/test_cesm1_waccm.py
20023eebfaf03f12b0f9c75fc3977606c52cb216
[ "Apache-2.0" ]
permissive
ESMValGroup/ESMValCore
e648db4702e67f24b38db079c2839a6e75b64b7b
d5187438fea2928644cb53ecb26c6adb1e4cc947
refs/heads/main
2023-08-16T01:35:08.783000
2023-08-11T11:17:20
2023-08-11T11:17:20
190,192,145
41
36
Apache-2.0
2023-09-14T15:34:58
2019-06-04T11:58:08
Python
UTF-8
Python
false
false
415
py
"""Tests for CESM1-WACCM fixes.""" from esmvalcore.cmor._fixes.cmip5.cesm1_cam5 import Cl as BaseCl from esmvalcore.cmor._fixes.cmip5.cesm1_waccm import Cl from esmvalcore.cmor.fix import Fix def test_get_cl_fix(): """Test getting of fix.""" fix = Fix.get_fixes('CMIP5', 'CESM1-WACCM', 'Amon', 'cl') assert fix == [Cl(None)] def test_cl_fix(): """Test fix for ``cl``.""" assert Cl is BaseCl
[ "noreply@github.com" ]
ESMValGroup.noreply@github.com
e4d9df2c11e97a002bf4f75df361c351e7d66f56
1d1d46c4aeab8296c803456ad79f2bfadab5ed9c
/login-Pyramid/venv/login-app/login_app/views.py
25fa63bd2e843d9539678d7cb643c5bc38cc270c
[]
no_license
Chanpreet08/Login-Web-App
8be1f2ec3a1d854688d901909198bae8661e6a99
40efdc582139abeb4bb927c7402c7974bfb0dd84
refs/heads/master
2021-09-06T04:30:21.164878
2018-02-02T10:41:57
2018-02-02T10:41:57
119,503,806
0
0
null
null
null
null
UTF-8
Python
false
false
1,580
py
from pyramid.view import view_config from pymongo import MongoClient import bcrypt from pyramid.response import Response @view_config(route_name='home', renderer='templates/mytemplate.jinja2') def my_view(request): return {'project': 'cc'} @view_config(route_name='login', renderer='json') def login(request): if 'form.submitted' in request.params: username = request.params['username'] password = request.params['password'] loggedUser = request.db['users'].find_one({'username':username}) if loggedUser: hashpwd = loggedUser['password'].encode('utf-8') if bcrypt.checkpw(password.encode('utf-8'),hashpwd): request.session['username']= username return {'success':True,'msg':'successful login'} else: return {'success':False,'msg':'Wrong password'} return {'sucess':False,'msg':'No User'} @view_config(route_name='signup', renderer ='templates/registertemplate.jinja2') def signup(request): return '' @view_config(route_name='register', renderer ='json') def register(request): if 'form.submitted' in request.params: username = request.params['username'] password = request.params['password'] user = request.db['users'].find_one({'username':username}) if not user: hashpwd = bcrypt.hashpw(password.encode('utf8'), bcrypt.gensalt()) request.db['users'].insert({'username':username,'password':hashpwd}) request.session['username'] = username return {'success':True,'msg':'User created'} else: return {'sucess':False,'msg':'Username exist'}
[ "chanpreet.chhabra@gmail.com" ]
chanpreet.chhabra@gmail.com
4219e549ae8bbff7a57fd5fb2530e7fb85acd307
d1f19fe346b9d56416ea35b9e0a130b352b1f647
/youtube_clone/settings.py
beb5f0a39ce3b73ea54755fe67789054a5d1fcf5
[]
no_license
mark-okoth/django-youtube-clone
2fd714a36ae4065b16462c5912c05c62c7e74ff3
67590999bf1904672c60cacb064be3f8391af23d
refs/heads/master
2021-03-05T11:22:04.665873
2020-03-08T12:43:36
2020-03-08T12:43:36
246,118,742
0
0
null
null
null
null
UTF-8
Python
false
false
3,352
py
""" Django settings for youtube_clone project. Generated by 'django-admin startproject' using Django 2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '(@3k1s3ju52ehws!n%0(wgx+x1e@q8@26)+pjo9y!t^#v$y^h3' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'youtube_app', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'youtube_clone.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'youtube_clone.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'youtube_clone/static') ] MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/'
[ "markokoth96@gmail.com" ]
markokoth96@gmail.com
c5b74f1c6488586c41050831e9e7b65ac3d54aa5
caef0308b388eee0159e4a7184c22293e69690e8
/leetcode/674.py
0a4505e2eacbcb026f0fefbcfdc85627d7ee8dc1
[]
no_license
AlwaysOnline233/cookbook
440ca4325842482157484ca2df9d0f1932b0b29e
edebb0f98d88566977cc2514631818d8371b78dd
refs/heads/master
2022-12-14T20:03:26.527927
2020-09-06T16:57:36
2020-09-06T16:57:36
262,815,273
3
0
null
null
null
null
UTF-8
Python
false
false
1,009
py
# 最长连续递增序列 ''' 给定一个未经排序的整数数组,找到最长且连续的的递增序列,并返回该序列的长度。 示例: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/longest-continuous-increasing-subsequence ''' ''' 滑动窗口 每个(连续)增加的子序列是不相交的,并且每当 nums[i-1]>=nums[i] 时,每个此类子序列的边界都会出现。 当它这样做时,它标志着在 nums[i] 处开始一个新的递增子序列,我们将这样的 i 存储在变量 anchor 中。 ''' class Solution(object): def findLengthOfLCIS(self, nums): ans = anchor = 0 for i in range(len(nums)): if i and nums[i-1] >= nums[i]: anchor = i ans = max(ans, i - anchor + 1) return ans a = Solution() print(a.findLengthOfLCIS([1, 3, 5, 4, 7])) print(a.findLengthOfLCIS([2, 2, 2, 2, 2]))
[ "941906145@qq.com" ]
941906145@qq.com
05b4537bebdc1725ca8159bc11f0a78840762ede
fb9f061724925a2ac06948ae97ccfa02c5ffd366
/app/utils.py
443b843daa224f244857ee13285274cee1c40522
[]
no_license
manish2382/plivo
39e018360555519f86b8b561330dd97f4a3c933d
d25337242ea218c865f51e709f85487407c23652
refs/heads/master
2021-05-03T11:43:26.455487
2016-09-27T17:59:35
2016-09-27T17:59:35
69,380,870
0
1
null
null
null
null
UTF-8
Python
false
false
4,455
py
import redis from werkzeug import exceptions from models import Account, phone_number from config import REDIS_HOST, REDIS_PORT def get_redis_connection(): """ Returns redis connection :return: """ return redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, db=0) def register_stop_request(text, key, value, expiry): """ Checks for input text if it matches with STOP than register the key values pair for expiry interval :param text: incoming text :param key: key which will be registered :param value: value to be registered :param expiry: expiry in seconds :return: No return """ if text.strip() == "STOP": r = get_redis_connection() # set expiry time as 4 hours r.set(key, value, ex=expiry) def check_stop_request(key, from_number): """ Check if key and from_number has been registered for stop request and raise error :param key: key value :param from_number: :return: error statement if stop request is registered else none """ # check if stop request is registered in redis error = None r = get_redis_connection() if r.get(key) == from_number: error = "sms from %s to %s blocked by STOP request" return error def authenticate_account(request, number): """ Authenticates the account and raises error :param request: contains input parameter :param number: number belonging to some account :return: Error in case authentication fails """ error = None username = request.get('username', None) auth_id = request.get('password', None) # authenticate the request account_obj = Account.query.filter_by(auth_id=auth_id, username=username).first() if not account_obj: raise exceptions.Forbidden() # check if number belongs to the particular account number_object = phone_number.query.filter_by(number=number, account_id=account_obj.id).first() if not number_object: error = "%s parameter not found" return error def validate_input(request): """ Checks for mandatory parameters and validates each parameter :param request: contains the request data :return: it returns error if any otherwise it returns an account object """ # Get all the mandatory parameter from request from_number = request.get('from', None) to_number = request.get('to', None) text = request.get('text', None) result = None # check if all the parameters are present error = "parameter '%s' is missing" if not from_number: result = error % "from" if not to_number: result = error % "to" if not text: result = error % "text" # return error message if any parameter is missing if result: return result # check validity of each input error = "parameter '%s' is invalid" if not (6 <= len(from_number) <= 16): result = error % "from" if not (6 <= len(to_number) <= 16): result = error % "to" if not (1 <= len(text) <= 120): result = error % "text" return result def check_and_update_usage(key, limit, timeout): """ Checks for usage limit and raises error if limit is crossed. Updates the usage count as well as remaining time after which usage counter will be reset :param key: number that is being used for sending out smses :param limit: from same number this api can be invoked till limit after that error will be raised :param timeout: seconds after which counter will be reset :return: Error statement if usage limit has been crossed """ redis_conn = get_redis_connection() # lock the section so that multiple simultaneous request get correct count lock = redis_conn.lock("OUTBOUND", sleep=0.1, thread_local=True, timeout=10) # critical section starts lock.acquire() # check if the limit has crossed in last 24 hours count = redis_conn.get(key) if not count: # for expired/first time set expiry as 24 hours and count as 1 redis_conn.set(key, 1, timeout) else: count = int(count) if count >= limit: return "limit reached for from %s" else: # increment the count and set the expiry timer to previous value ttl = redis_conn.pttl(key) redis_conn.psetex(key, ttl, count + 1) # critical section over lock.release() return None
[ "noreply@github.com" ]
manish2382.noreply@github.com
c15882d22ea136a5878946d7fd4ffc4a7dfa12a7
575d197af5bbc31b89df37f8733e81707294948c
/Python2/examples/xml/xmldict1.py
126dbacf68b93b0a6e46b8d92085e7b1cb58c771
[]
no_license
tisnik/python-programming-courses
5c7f1ca9cae07a5f99dd8ade2311edb30dc3e088
4e61221b2a33c19fccb500eb5c8cdb49f5b603c6
refs/heads/master
2022-05-13T07:51:41.138030
2022-05-05T15:37:39
2022-05-05T15:37:39
135,132,128
3
2
null
2021-04-06T12:19:16
2018-05-28T08:27:19
Python
UTF-8
Python
false
false
104
py
import xmltodict with open("test5.xml", "r") as fin: s = xmltodict.parse(fin.read()) print(s)
[ "ptisnovs@redhat.com" ]
ptisnovs@redhat.com
f23056156e6da4aa3af19de37c89a96b86360bca
7fddea39cee2dc9a90b6c9cb44bff8bff6bdc8e1
/app.py
d0f5c5498320f72be988e387a28ecb3832a9ab27
[]
no_license
Uche-UJO/sqlalchemy-challenge
b781cafff2c0bcaadb9a1161a536c191eef53fbd
9ee1bea0db07134c63d5c14be425c4807c4672dc
refs/heads/master
2022-04-15T01:21:18.071906
2020-04-13T02:36:13
2020-04-13T02:36:13
255,174,340
0
0
null
null
null
null
UTF-8
Python
false
false
5,057
py
# Import all dependables import numpy as np import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func, inspect from flask import Flask, jsonify import datetime as dt # Setting up database engine = create_engine("sqlite:///Resources/hawaii.sqlite", connect_args={'check_same_thread': False}, echo=True) # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # Save reference to the table Measurement = Base.classes.measurement Station = Base.classes.station # Create our session (link) from Python to the DB session = Session(engine) # Setup Flask app = Flask(__name__) # Routes @app.route("/") def welcome(): """List all available api routes.""" return"""<html> <h1>List of all available Honolulu, HI API routes</h1> <ul> <br> <li> Return a list of precipitations from last year: <br> <a href="/api/v1.0/precipitation">/api/v1.0/precipitation</a> </li> <br> <li> Return a JSON list of stations from the dataset: <br> <a href="/api/v1.0/stations">/api/v1.0/stations</a> </li> <br> <li> Return a JSON list of Temperature Observations (tobs) for the previous year: <br> <a href="/api/v1.0/tobs">/api/v1.0/tobs</a> </li> <br> <li> Return a JSON list of tmin, tmax, tavg for the dates greater than or equal to the date provided: <br>Replace &ltstart&gt with a date in Year-Month-Day format. <br> <a href="/api/v1.0/2017-01-01">/api/v1.0/2017-01-01</a> </li> <br> <li> Return a JSON list of tmin, tmax, tavg for the dates in range of start date and end date inclusive: <br> Replace &ltstart&gt and &ltend&gt with a date in Year-Month-Day format. <br> <br> <a href="/api/v1.0/2017-01-01/2017-01-07">/api/v1.0/2017-01-01/2017-01-07</a> </li> <br> </ul> </html> """ @app.route("/api/v1.0/precipitation") def precipitation(): """Return a list of precipitations from last year""" # Design a query to retrieve the last 12 months of precipitation data and plot the results max_date = session.query(Measurement.date).order_by(Measurement.date.desc()).first() # Get the first element of the tuple max_date = max_date[0] # Calculate the date 1 year ago from the last data point in the database date_year_ago = dt.datetime.strptime(max_date, "%Y-%m-%d") - dt.timedelta(days=366) # Perform a query to retrieve the date and precipitation scores date_prcp_query = session.query(Measurement.date, Measurement.prcp).filter(Measurement.date >= date_year_ago).all() # Convert list of tuples into normal list date_prcp_dict = dict(date_prcp_query) return jsonify(date_prcp_dict) @app.route("/api/v1.0/stations") def stations(): """Return a JSON list of stations from the dataset.""" # Query stations results_stations = session.query(Measurement.station).group_by(Measurement.station).all() # Convert list of tuples into normal list stations_list = list(np.ravel(results_stations)) return jsonify(stations_list) @app.route("/api/v1.0/tobs") def tobs(): """Return a JSON list of Temperature Observations (tobs) for the previous year.""" # Design a query to retrieve the last 12 months of precipitation data and plot the results max_date = session.query(Measurement.date).order_by(Measurement.date.desc()).first() # Get the first element of the tuple max_date = max_date[0] # Calculate the date 1 year ago from the last data point in the database date_year_ago = dt.datetime.strptime(max_date, "%Y-%m-%d") - dt.timedelta(days=366) # Query tobs results_tobs = session.query(Measurement.date, Measurement.tobs).filter(Measurement.date >= date_year_ago).all() # Convert list of tuples into normal list tobs_list = list(results_tobs) return jsonify(tobs_list) @app.route("/api/v1.0/<start>") def start(start=None): """Return a JSON list of tmin, tmax, tavg for the dates greater than or equal to the date provided""" from_start = session.query(Measurement.date, func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start).group_by(Measurement.date).all() from_start_list=list(from_start) return jsonify(from_start_list) @app.route("/api/v1.0/<start>/<end>") def start_end(start=None, end=None): """Return a JSON list of tmin, tmax, tavg for the dates in range of start date and end date inclusive""" between_dates = session.query(Measurement.date, func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start).filter(Measurement.date <= end).group_by(Measurement.date).all() between_dates_list=list(between_dates) return jsonify(between_dates_list) if __name__ == '__main__': app.run(debug=True)
[ "uutchei@gmail.com" ]
uutchei@gmail.com
518fd1a0a4bf71eacac0439de1c651cd98d36c8f
e626396f4a254e960fe83a46ce026f34f4c69066
/controlled/urls.py
1f6bee6ca00b0b78e6cdfda9716d96ea72e79317
[]
no_license
aalshrif90/djsurvey
b22506af2678d38ce205bf324a8a2bafc0875cd1
f5b5fb48eae37aef43287440351c242394d0c604
refs/heads/master
2022-12-14T06:01:36.619699
2019-05-27T17:03:28
2019-05-27T17:03:28
156,228,731
1
0
null
2022-11-22T03:47:03
2018-11-05T14:13:56
CSS
UTF-8
Python
false
false
411
py
from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^pcode/$', views.pcode, name='pcode'), url(r'^background/$', views.background, name='background'), url(r'^question/$', views.question, name='question'), url(r'^showProgramCode/$', views.showProgramCode, name='showProgramCode'), url(r'^exit/$', views.exit, name='exit'), ]
[ "gxr199@gmail.com" ]
gxr199@gmail.com
e5f8064fbb82af59a4dd0144265b7a3fd9870f01
c9ad9ddd29f4e7a1dab339b23e014776dc4ade95
/src/users/templatetags/my_tags.py
b8ef0c032abdddda3f9b75228b351e4e9be2d8bd
[]
no_license
club11/Filippow_Wlad
ddc06e5f59c4e8cb29db81a93b5e43568826c03f
36b069635139fc6b344a3ab3939a5f8eaf1a7961
refs/heads/master
2023-06-19T04:02:17.047305
2021-07-14T11:34:46
2021-07-14T11:34:46
367,748,376
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
from django import template import requests register = template.Library() USD_ENDPOINT = 'https://www.nbrb.by/api/exrates/rates/431' @register.simple_tag def currency_rate(): res = requests.get(USD_ENDPOINT) return res.json().get('Cur_OfficialRate')
[ "club11@bk.ru" ]
club11@bk.ru
8fc1f9cede3267fb6223d0ce95a5db892a7799d1
84a3036916808c25ebdb8e3b1e72be178f6f196a
/lib/train/__init__.py
d817445dc52d31ca74dc3895cbed3bd0d887e06e
[]
no_license
kadir-gunel/the-story-of-heads
6675829521eb3f1013a58e8ba5a22de8e507dd99
efaa0dd520400baa760654b5b85396c203d3cbb7
refs/heads/master
2023-07-02T21:33:52.963465
2021-08-02T09:06:09
2021-08-02T09:06:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,396
py
# Training routine from collections import defaultdict import tensorflow as tf import sys import inspect import lib from lib.train.saveload import initialize_uninitialized_variables from . import algorithms, saveload, tickers from .problem import Problem, SimpleProblem from .tickers import Ticker, DistributedTicker, TrainService, LearningRateService, ModelService, \ LearningRateFn, SummaryWriterService, GlobalStepService from ..session import profile_scope from ..data import TfUploader from ..util import nested_map class DuplicateServiceError(Exception): pass class DuplicateMethodError(Exception): pass # Main train loop def train(problem, algorithm, iterator, tickers, tick_every_steps=0): uploader = TfUploader(iterator, capacity=5) if uploader.empty: raise RuntimeError("Trainset is empty") global_step_ticker = _GlobalStepService(tick_every_steps) train_ticker = _TrainTicker(problem, algorithm, uploader) tickers = [global_step_ticker, train_ticker] + sorted(tickers, key=lambda t: t.priority) if not lib.ops.mpi.is_master(): tickers = [t for t in tickers if isinstance(t, DistributedTicker)] real_tickers = [t for t in tickers if isinstance(t, Ticker)] session = tf.get_default_session() context = _TrainContext(uploader.iterator, tickers) initialize_uninitialized_variables() for ticker in sorted(real_tickers, key=lambda t: t.init_priority): ticker.on_started(context) # second loop because tickers can depend on each other for ticker in real_tickers: ticker.prepare_ingraph_ops() with uploader: try: while not context.should_stop: batch_evals = [] for ticker in real_tickers: batch_evals.append(ticker.before_train_batch()) with profile_scope(level=1): if tick_every_steps == 0: batch_results = session.run(batch_evals, feed_dict={ global_step_ticker.global_step_ingraph: global_step_ticker.global_step, global_step_ticker.batch_no_ingraph: global_step_ticker.batch_no }) else: batch_results = session.run(batch_evals, feed_dict={ global_step_ticker.global_step_ingraph: global_step_ticker.global_step, global_step_ticker.batch_no_ingraph: global_step_ticker.batch_no, global_step_ticker.tick_no_ingraph: global_step_ticker.tick_no }) for ticker, result in zip(real_tickers, batch_results): ticker.after_train_batch(result) except tf.errors.OutOfRangeError: pass for ticker in real_tickers: ticker.on_finished() ## ============================================================================ # Internal functions def _get_classes(cls, desired_cls): bases = cls.__bases__ if desired_cls in bases: yield cls else: for base in bases: yield from _get_classes(base, desired_cls) class _TrainContext(object): def __init__(self, iterator, objects): self._register_providers(objects) self.subscribers = self._register_subscribers(objects) self.iterator = iterator self.should_stop = False def stop_training(self, reason): print("Stopping because of %s" % reason, file=sys.stderr) self.should_stop = True def skip_train_data(self, batches): print("! Skipping %d batches..." % batches, file=sys.stderr, flush=True, end='') for i in range(batches): if i > 1000 and (i & (i - 1)) == 0: print(" %d" % i, file=sys.stderr, flush=True, end='') next(self.iterator) print(" done", file=sys.stderr, flush=True) def _register_providers(self, objects): service_providers = {} method_services = {} for obj in objects: for srv_class in _get_classes(type(obj), tickers.Service): if srv_class in service_providers: raise DuplicateServiceError("Multiple providers for service %s detected: %s and %s" % (srv_class, service_providers[srv_class], obj)) service_providers[srv_class] = obj for srv_method, _ in inspect.getmembers(srv_class, predicate=inspect.isfunction): if srv_method in method_services: raise DuplicateMethodError("Multiple services implementing %s detected: %s and %s" % (srv_method, method_services[srv_method], srv_class)) method_services[srv_method] = srv_class self.__dict__[srv_method] = getattr(obj, srv_method) def _register_subscribers(self, objects): subscribers = defaultdict(list) for obj in objects: for subscriber_class in _get_classes(type(obj), tickers.Subscriber): subscribers[subscriber_class].append(obj) return subscribers def get_subscribers(self, subscriber_cls): return self.subscribers[subscriber_cls] ## ============================================================================ # Internal tickers class _AnyProblem(Problem): def __init__(self, problem): self.problem = problem self.simple = isinstance(problem, SimpleProblem) def parse_batch(self, batch, is_train): return self.problem.parse_batch(batch, is_train) def batch_counters(self, parsed_batch, is_train, **kwargs): if self.simple: return self.problem.loss(parsed_batch, is_train, **kwargs) else: return self.problem.batch_counters(parsed_batch, is_train, **kwargs) def loss_multibatch(self, counters, is_train): if self.simple: return tf.reduce_mean(counters) else: return self.problem.loss_multibatch(counters, is_train) def summary_multibatch(self, counters, prefix, is_train): if self.simple: return [tf.summary.scalar('%s/loss' % prefix, tf.reduce_mean(counters))] else: op = self.problem.summary_multibatch(counters, prefix, is_train) if not isinstance(op, (list, tuple)): op = [op] return op def params_summary(self): if self.simple: return [] else: op = self.problem.params_summary() if not isinstance(op, (list, tuple)): op = [op] return op def make_feed_dict(self, batch): if self.simple: return super(_AnyProblem, self).make_feed_dict(batch) else: return self.problem.make_feed_dict(batch) def get_batch_cost_fn(self): if self.simple: return super(_AnyProblem, self).get_batch_cost_fn() else: return self.problem.get_batch_cost_fn() # - _GlobalStep - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - class _GlobalStepService( DistributedTicker, GlobalStepService ): def __init__(self, tick_every_steps): assert len(tf.get_collection(tf.GraphKeys.GLOBAL_STEP)) == 0, "Global step already registered!" self.global_step = 0 self.global_step_var = tf.get_variable( 'global_step', [], tf.int64, initializer=tf.constant_initializer(0), trainable=False ) self.batch_no = 0 self.batch_no_var = tf.get_variable( 'batch_no', [], tf.int64, initializer=tf.constant_initializer(0), trainable=False ) self.tick_every_steps = tick_every_steps if self.tick_every_steps > 0: self.tick_no = 0 self.tick_no_var = tf.get_variable( 'tick_no', [], tf.int64, initializer=tf.constant_initializer(0), trainable=False ) with tf.name_scope("step"): # In on_started global_step_ingraph and batch_no_ingraph should return current value self.global_step_ingraph = tf.placeholder_with_default(self.global_step_var, shape=[]) self.batch_no_ingraph = tf.placeholder_with_default(self.batch_no_var, shape=[]) tf.add_to_collection(tf.GraphKeys.GLOBAL_STEP, self.global_step_ingraph) if self.tick_every_steps > 0: self.tick_no_ingraph = tf.placeholder_with_default(self.tick_no_var, shape=[]) tf.add_to_collection("TICK_NO", self.tick_no_ingraph) self.tick_every_steps = tick_every_steps def on_finished(self): tf.get_collection_ref(tf.GraphKeys.GLOBAL_STEP).clear() def on_train_batch_ingraph(self): with tf.name_scope("step"): if self.tick_every_steps == 0: return [ tf.assign(self.global_step_var, self.global_step_var + 1), tf.assign(self.batch_no_var, self.batch_no_var + 1) ] else: is_it_time_yet = tf.equal(tf.mod(self.tick_no_var, self.tick_every_steps), self.tick_every_steps - 1) incr_global_step = tf.cond(is_it_time_yet, lambda: tf.assign(self.global_step_var, self.global_step_var + 1), lambda: tf.identity(self.global_step_var)) incr_batch_no = tf.cond(is_it_time_yet, lambda: tf.assign(self.batch_no_var, self.batch_no_var + 1), lambda: tf.identity(self.batch_no_var)) with tf.control_dependencies([incr_global_step, incr_batch_no]): incr_tick_no = tf.assign(self.tick_no_var, self.tick_no_var + 1) return [ incr_global_step, incr_batch_no, incr_tick_no ] def after_train_batch(self, ingraph_result): if self.tick_every_steps == 0: self.global_step, self.batch_no = ingraph_result else: self.global_step, self.batch_no, self.tick_no = ingraph_result def get_batch_no(self): return self.batch_no def get_batch_no_ingraph(self): return self.batch_no_ingraph def get_global_step(self): return self.global_step def get_global_step_ingraph(self): return self.global_step_ingraph def set_global_step(self, global_step): with tf.name_scope("step"): self.global_step = tf.get_default_session().run( tf.assign(self.global_step_var, global_step)) # - _TrainTicker - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - class _TrainTicker(DistributedTicker, ModelService, TrainService, LearningRateService): def __init__(self, problem, algorithm, uploader): # Bind to learning rate multiplier here LearningRateService.__init__(self, algorithm.learning_rate) self.problem = _AnyProblem(problem) self.algorithm = algorithm with tf.name_scope("counters"): self.local_counters = nested_map(lambda t: tf.expand_dims(t, 0), self.problem.batch_counters(uploader.get_next(), True)) with tf.name_scope("loss"): self.local_loss = self.problem.loss_multibatch(self.local_counters, True) with tf.name_scope("aggregate"): self.counters = nested_map(lambda t: lib.ops.mpi.allgather(t), self.local_counters) self.loss = lib.ops.mpi.allreduce(self.local_loss, name='TrainLoss') with tf.name_scope("update"): self.update_op = self.algorithm.create_update_ops(self.local_loss, self.loss) def on_train_batch_ingraph(self): return [self.local_loss, self.update_op, self.get_learning_rate_ingraph()] def after_train_batch(self, ingraph_result): # Print dot. lr = ingraph_result[-1] self.set_learning_rate(lr) print('.', end='', file=sys.stderr, flush=True) def get_problem(self): return self.problem def get_model(self, name): return self.problem.problem.models[name] def get_train_counters_ingraph(self): return self.counters def get_train_loss_ingraph(self): return self.loss
[ "voita-e-a@yandex.ru" ]
voita-e-a@yandex.ru
0c24ca66b1dbbb2192380a4100670313cb1f5bde
6572cd664a7bcc3820d83192922a0c789d56106a
/notebooks_for_development/logg3pt0only_find_layden_coeffs_for_synthetic_spectra_no_errors.py
f1f6fa4b9282c060cd7714ac50a4d4cdca0ca52a
[ "MIT" ]
permissive
mwanakijiji/rrlyrae_metallicity
3ac98d64595d73d1540cb428c7f08140d14617f3
e716a58443c015a1a209d78afb7728bdcdf1bd39
refs/heads/master
2023-01-07T04:17:08.671642
2022-01-09T23:10:04
2022-01-09T23:10:04
74,923,374
0
0
MIT
2022-12-27T15:35:49
2016-11-28T00:33:50
Jupyter Notebook
UTF-8
Python
false
false
14,910
py
#!/usr/bin/env python # coding: utf-8 # In[1]: # This tries a couple function-fitting routines to find the best-fit # Layden coefficients if the input data is synthetic data with no errors # Created 2020 Jan. 25 by E.S. # #### In the following, we plot fits in KH space and write out data including the BIC to select # #### the best model among variations that consider up to third-degree terms involving H (Balmer # #### EW) and F (Fe/H), viz. # # #### $K = a + bH + cF + dHF + f(H^{2}) + g(F^{2}) + h(H^{2})F + kH(F^{2}) $ # #### $+ m(H^{3}) + n(F^{3}) $ # # #### N.b. The BIC is # # #### $BIC = kln(n) -2ln(L)$ # # #### where # #### $k$: number of free parameters # #### $n$: number of data points # #### $L$: maximized likelihood function of model # In[2]: import pandas as pd import numpy as np import astropy import itertools import multiprocessing import random import string from astropy import stats from scipy import optimize import matplotlib matplotlib.use('Agg') # necessary in the cloud import matplotlib.pyplot as plt # In[3]: # read in data df = pd.read_csv("data/test_hk_data_winnowed_20200210_comparison.csv") # remove the three really bad datapoints index_names1 = df[ df["original_spec_file_name"]=="600025p00.smo" ].index df.drop(index_names1 , inplace=True) index_names2 = df[ df["original_spec_file_name"]=="625025p02.smo" ].index df.drop(index_names2 , inplace=True) index_names3 = df[ df["original_spec_file_name"]=="600030p02.smo" ].index df.drop(index_names3 , inplace=True) index_names4 = df[ df["logg"]==2.5 ].index # test of individual values of logg df.drop(index_names4 , inplace=True) df = df.reset_index(drop = True) df_choice = df # set name of csv written-out data to which we will append BIC info csv_file_name = "junk.csv" # In[4]: # figure out all subsets of coefficients beyond [a,b,c,d] coeffs_strings = ["f","g","h","k","m","n"] coeffs_strings_nan = ["NaN1"] new_coeffs_6 = list(itertools.combinations(coeffs_strings, 6)) new_coeffs_5 = list(itertools.combinations(coeffs_strings, 5)) new_coeffs_4 = list(itertools.combinations(coeffs_strings, 4)) new_coeffs_3 = list(itertools.combinations(coeffs_strings, 3)) new_coeffs_2 = list(itertools.combinations(coeffs_strings, 2)) new_coeffs_1 = list(itertools.combinations(coeffs_strings, 1)) baseline = list(itertools.combinations(coeffs_strings_nan, 1)) # original Layden [a,b,c,d] coefficients only # In[7]: # create the array of arrays, so we can map them across cores new_coeffs_mother_array = [baseline,new_coeffs_1,new_coeffs_2,new_coeffs_3,new_coeffs_4,new_coeffs_5,new_coeffs_6] # In[8]: def expanded_layden_all_coeffs(coeff_array,H,F): # definition of coefficients as of 2020 Mar 9: # K = a + bH + cF + dHF + f(H^{2}) + g(F^{2}) + hF(H^{2}) + kH(F^{2}) + m(H^{3}) + n(F^{3}) a_coeff = coeff_array[0] b_coeff = coeff_array[1] c_coeff = coeff_array[2] d_coeff = coeff_array[3] f_coeff = coeff_array[4] g_coeff = coeff_array[5] h_coeff = coeff_array[6] k_coeff = coeff_array[7] m_coeff = coeff_array[8] n_coeff = coeff_array[9] K_calc = a_coeff + b_coeff*H + c_coeff*F + d_coeff*H*F + f_coeff*np.power(H,2.) + g_coeff*np.power(F,2.) + h_coeff*F*np.power(H,2.) + k_coeff*H*np.power(F,2.) + m_coeff*np.power(H,3.) + n_coeff*np.power(F,3.) return K_calc # In[9]: def original_layden_abcd(coeff_array,H,F): # definition of coefficients as of 2020 Mar 9: # K = a + bH + cF + dHF + f(H^{2}) + g(F^{2}) + hF(H^{2}) + kH(F^{2}) + m(H^{3}) + n(F^{3}) a_coeff = coeff_array[0] b_coeff = coeff_array[1] c_coeff = coeff_array[2] d_coeff = coeff_array[3] K_calc = a_coeff + b_coeff*H + c_coeff*F + d_coeff*H*F return K_calc # In[10]: def find_bic_of_1_subarray(new_coeffs_array): for t in range(0,len(new_coeffs_array)): print("----------") print("coefficients being tested:") print(new_coeffs_array[t]) # initialize initial values to 1 pinit = np.ones(10, dtype=np.float) # initialize bounds # elements represent, in order, [a,b,c,d,f,g,k,h,m,n] bounds_upper_array = (np.inf,np.inf,np.inf,np.inf,np.inf,np.inf,np.inf,np.inf,np.inf,np.inf) bounds_lower_array = (-np.inf,-np.inf,-np.inf,-np.inf,-np.inf,-np.inf,-np.inf,-np.inf,-np.inf,-np.inf) # convert to a list so values can be changed bounds_upper_array_list = list(bounds_upper_array) bounds_lower_array_list = list(bounds_lower_array) # if certain coefficients don't appear, set them to effectively zero if (new_coeffs_array[t].count("f") == 0): pinit[4] = 0 bounds_upper_array_list[4] = 1e-40 bounds_lower_array_list[4] = 0 if (new_coeffs_array[t].count("g") == 0): pinit[5] = 0 bounds_upper_array_list[5] = 1e-40 bounds_lower_array_list[5] = 0 if (new_coeffs_array[t].count("k") == 0): pinit[6] = 0 bounds_upper_array_list[6] = 1e-40 bounds_lower_array_list[6] = 0 if (new_coeffs_array[t].count("h") == 0): pinit[7] = 0 bounds_upper_array_list[7] = 1e-40 bounds_lower_array_list[7] = 0 if (new_coeffs_array[t].count("m") == 0): pinit[8] = 0 bounds_upper_array_list[8] = 1e-40 bounds_lower_array_list[8] = 0 if (new_coeffs_array[t].count("n") == 0): pinit[9] = 0 bounds_upper_array_list[9] = 1e-40 bounds_lower_array_list[9] = 0 # convert back to tuple bounds_upper_array = tuple(bounds_upper_array_list) bounds_lower_array = tuple(bounds_lower_array_list) bounds_array = [bounds_lower_array,bounds_upper_array] print("----------") print("bounds array:") print(bounds_array) # the error function errfunc_coeffs = lambda p, H, F, K, err_K: (K - expanded_layden_all_coeffs(p, H, F)) / err_K # the least-squares fit out = optimize.least_squares(errfunc_coeffs, pinit, bounds=bounds_array, args=(df_choice["balmer"], df_choice["final_feh_center"], df_choice["K"], df_choice["err_K"])) pfinal = out.x print("----------") print("pfinal:") print(pfinal) ##################### # calculate BIC # N.b. astropy BIC assumes Gaussian distribution # retrieved K values, using best-fit params retrieved_K = expanded_layden_all_coeffs(pfinal, df_choice["balmer"], df_choice["final_feh_center"]) # 'sum of squared residuals between model and data' ssr = np.sum(np.power(np.subtract(df_choice["K"],retrieved_K),2.)) # number of parameters that were actually varying n_params = len(np.where(np.abs(pfinal) > 1e-15)[0]) # [a,b,c,d] + ... # number of datapoints n_samples = len(df_choice["balmer"]) bic = astropy.stats.bayesian_info_criterion_lsq(ssr, n_params, n_samples) print("----------") print("n_params:") print(n_params) print("n_samples:") print(n_samples) print("----------") print("BIC:") print(bic) print(pfinal[0]) print(pfinal[1]) print(pfinal[-1]) ##################### # generate random string to tag the plot N_string = 7 res = ''.join(random.choices(string.ascii_uppercase +string.digits, k = N_string)) # record in csv file_object = open(csv_file_name, 'a') file_object.write(str(new_coeffs_array[t])+";"+ str(bic)+";"+ str(n_params)+";"+ str(ssr)+";"+ str(n_samples)+";"+ str(pfinal[0])+";"+ str(pfinal[1])+";"+ str(pfinal[2])+";"+ str(pfinal[3])+";"+ str(pfinal[4])+";"+ str(pfinal[5])+";"+ str(pfinal[6])+";"+ str(pfinal[7])+";"+ str(pfinal[8])+";"+ str(pfinal[9])+";"+ str(res)+"\n") # Close the file file_object.close() # make some isometallicity lines for the plot isometal_balmer_abcissa = np.arange(2,12,0.2) retrieved_K_isometal_neg3pt0 = expanded_layden_all_coeffs(pfinal, isometal_balmer_abcissa, -3.0) retrieved_K_isometal_neg2pt5 = expanded_layden_all_coeffs(pfinal, isometal_balmer_abcissa, -2.5) retrieved_K_isometal_neg2pt0 = expanded_layden_all_coeffs(pfinal, isometal_balmer_abcissa, -2.) retrieved_K_isometal_neg1pt5 = expanded_layden_all_coeffs(pfinal, isometal_balmer_abcissa, -1.5) retrieved_K_isometal_neg1pt0 = expanded_layden_all_coeffs(pfinal, isometal_balmer_abcissa, -1.) retrieved_K_isometal_neg0pt5 = expanded_layden_all_coeffs(pfinal, isometal_balmer_abcissa, -0.5) retrieved_K_isometal_pos0pt0 = expanded_layden_all_coeffs(pfinal, isometal_balmer_abcissa, 0.0) retrieved_K_isometal_pos0pt2 = expanded_layden_all_coeffs(pfinal, isometal_balmer_abcissa, 0.2) # plot it plt.clf() plt.figure(figsize=(20,10)) # underplot isometallicity lines plt.plot(isometal_balmer_abcissa, retrieved_K_isometal_neg3pt0, linestyle="--", label="Isometal, Fe/H=-3.0") plt.plot(isometal_balmer_abcissa, retrieved_K_isometal_neg2pt5, linestyle="--", label="Isometal, Fe/H=-2.5") plt.plot(isometal_balmer_abcissa, retrieved_K_isometal_neg2pt0, linestyle="--", label="Isometal, Fe/H=-2.0") plt.plot(isometal_balmer_abcissa, retrieved_K_isometal_neg1pt5, linestyle="--", label="Isometal, Fe/H=-1.5") plt.plot(isometal_balmer_abcissa, retrieved_K_isometal_neg1pt0, linestyle="--", label="Isometal, Fe/H=-1.0") plt.plot(isometal_balmer_abcissa, retrieved_K_isometal_neg0pt5, linestyle="--", label="Isometal, Fe/H=-0.5") plt.plot(isometal_balmer_abcissa, retrieved_K_isometal_pos0pt0, linestyle="--", label="Isometal, Fe/H=+0.0") plt.plot(isometal_balmer_abcissa, retrieved_K_isometal_pos0pt2, linestyle="--", label="Isometal, Fe/H=+0.2") # data points #print(len(df_choice["final_feh_center"])) plt.errorbar(df_choice["balmer"], df_choice["K"], yerr=df_choice["err_K"], marker="o", markerfacecolor="orange", ecolor="k", ls="none", label="Empirical") plt.scatter(df_choice["balmer"], retrieved_K, label="Retrieved, Modified Layden eqn") # connect the empirical-retrieved dots, using list comprehension [plt.plot([df_choice["balmer"][j],df_choice["balmer"][j]], [df_choice["K"][j],retrieved_K[j]], color="k") for j in range(len(df_choice["final_feh_center"]))] plt.ylabel("K EW ($\AA$)") plt.xlabel("Balmer EW ($\AA$)") plt.title(str(new_coeffs_array[t]) + "\nBIC = " + str(bic)) plt.legend() plt.savefig("plot_"+res+".pdf") plt.close() print("----------") print("----------") # In[13]: # map the function across all available cores ncpu = multiprocessing.cpu_count() pool = multiprocessing.Pool(ncpu) pool.map(find_bic_of_1_subarray, new_coeffs_mother_array) # In[9]: # baseline check ''' abcd_older = [12.513685,-0.78716521,3.8778512,-0.24297523] abcd_now = [1.21768692e+01,-7.52340434e-01,3.76117382e+00,-2.30912220e-01] K_baseline = original_layden_abcd(coeff_array=abcd_older,H=df_choice["balmer"],F=df_choice["final_feh_center"]) ssr = np.sum(np.power(np.subtract(df_choice["K"],K_baseline),2.)) n_params = 4 n_samples = len(df_choice["balmer"]) bic = astropy.stats.bayesian_info_criterion_lsq(ssr, n_params, n_samples) print(bic) ''' # ### Compare BICs # In[6]: ''' BIC_orig = 245.1464970126952 BIC_1_f = 245.36213036898667 BIC_2_g = 197.42180787854656 BIC_3_h = 226.17141772986807 BIC_4_fg = 196.28752773438762 BIC_5_fh = 226.36328694853378 BIC_6_gh = 203.0216458555668 BIC_7_fgh = 116.29437000510694 print("$\Delta$ BIC_1_f, BIC_orig:") print(np.subtract(BIC_1_f,BIC_orig)) print("------") print("$\Delta$ BIC_2_g, BIC_orig:") print(np.subtract(BIC_2_g,BIC_orig)) print("------") print("$\Delta$ BIC_3_h, BIC_orig:") print(np.subtract(BIC_3_h,BIC_orig)) print("------") print("$\Delta$ BIC_4_fg, BIC_orig:") print(np.subtract(BIC_4_fg,BIC_orig)) print("------") print("$\Delta$ BIC_5_fh, BIC_orig:") print(np.subtract(BIC_5_fh,BIC_orig)) print("------") print("$\Delta$ BIC_6_gh, BIC_orig:") print(np.subtract(BIC_6_gh,BIC_orig)) print("------") print("$\Delta$ BIC_7_fgh, BIC_orig:") print(np.subtract(BIC_7_fgh,BIC_orig)) print("------") ''' # In[54]: # Find some metallicities ''' H = df_choice["balmer"] K = df_choice["K"] ## calculate retrieved Fe/H using solution with [a,b,c,d,f,g,h] modified_soln_7_abcdfgh = [16.92437966,-0.98640101,5.2261726,0.53344007,-0.06341921,0.27027538,-0.02034332] coeff_a = modified_soln_7_abcdfgh[0] coeff_b = modified_soln_7_abcdfgh[1] coeff_c = modified_soln_7_abcdfgh[2] coeff_d = modified_soln_7_abcdfgh[3] coeff_f = modified_soln_7_abcdfgh[4] coeff_g = modified_soln_7_abcdfgh[5] coeff_h = modified_soln_7_abcdfgh[6] A_cap = coeff_g*H + coeff_h*np.power(H,2) B_cap = coeff_c + coeff_d*H + coeff_f*np.power(H,2) C_cap = -K + coeff_a + coeff_b*H F_pos = np.divide(-B_cap + np.sqrt(np.power(B_cap,2.)-4*A_cap*C_cap),2*A_cap) F_neg = np.divide(-B_cap - np.sqrt(np.power(B_cap,2.)-4*A_cap*C_cap),2*A_cap) ## and calculate retrieved Fe/H using just [a,b,c,d] (the Layden fit, but with our best-fit values) original_layden_our_fit_soln_0_abcd = [12.51368502,-0.78716519,3.87785117,-0.24297523] coeff_a_original = original_layden_our_fit_soln_0_abcd[0] coeff_b_original = original_layden_our_fit_soln_0_abcd[1] coeff_c_original = original_layden_our_fit_soln_0_abcd[2] coeff_d_original = original_layden_our_fit_soln_0_abcd[3] F_original_our_fit = np.divide(K-coeff_a_original-coeff_b_original*H,coeff_c_original+coeff_d_original*H) plt.clf() plt.scatter(df_choice["final_feh_center"],F_original_our_fit,facecolors="none", edgecolors="k",label="Layden-style abcd") plt.scatter(df_choice["final_feh_center"],F_pos,facecolors="orange",edgecolors="r", label="Modified abcdfgh: positive soln") for i in range(0,len(df)): plt.annotate(df["original_spec_file_name"].iloc[i], xy=(df["final_feh_center"].iloc[i],F_pos.iloc[i]), xytext=(df["final_feh_center"].iloc[i],F_pos.iloc[i])) plt.scatter(df_choice["final_feh_center"],F_neg,label="Modified abcdfgh: negative soln") plt.plot([-3,2],[-3,2],linestyle="--") plt.xlabel("Injected Fe/H") plt.ylabel("Retrieved Fe/H") plt.legend() plt.show() '''
[ "spalding@email.arizona.edu" ]
spalding@email.arizona.edu
49a3c945fc0bb39a04e1e7830e495de0bffae069
2471db05fe8dc2b6186c7485f58217c7663f723e
/storage_table_demo_v3.py
06b586876d49d40492e88f1e8ec41e013073f24e
[]
no_license
psoe195/azurehw
b1d898ee7f634aea3366e731dbfa27056efe43c8
b3aa106272ebb5a32e28a4f51c501a4f0489070e
refs/heads/master
2021-08-15T19:10:26.133187
2017-11-18T05:17:13
2017-11-18T05:17:13
111,159,822
0
0
null
null
null
null
UTF-8
Python
false
false
7,209
py
import string,random,time,azurerm,json from azure.storage.table import TableService, Entity # here are psoe comments # Define variables to handle Azure authentication auth_token = azurerm.get_access_token_from_cli() subscription_id = azurerm.get_subscription_from_cli() print "subscription_id = " + subscription_id print "auth_token = "+ auth_token # Define variables with random resource group and storage account names resourcegroup_name = 'ps'+''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(6)) storageaccount_name = 'ps'+''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(6)) location = 'westus' print "resourcegroup_name = " + resourcegroup_name print "storageaccount_name = " + storageaccount_name print "location = " + location ### # Create the a resource group for our demo # We need a resource group and a storage account. A random name is generated, as each storage account name must be globally unique. ### response = azurerm.create_resource_group(auth_token, subscription_id, resourcegroup_name, location) if response.status_code == 200 or response.status_code == 201: print('Resource group: ' + resourcegroup_name + ' created successfully.') else: print('Error creating resource group') # Create a storage account for our demo response = azurerm.create_storage_account(auth_token, subscription_id, resourcegroup_name, storageaccount_name, location, storage_type='Standard_LRS') if response.status_code == 202: print('Storage account: ' + storageaccount_name + ' created successfully.') time.sleep(2) else: print('Error creating storage account') ### # Use the Azure Storage Storage SDK for Python to create a Table ### print('\nLet\'s create an Azure Storage Table to store some data.') raw_input('Press Enter to continue...') # Each storage account has a primary and secondary access key. # These keys are used by aplications to access data in your storage account, such as Tables. # Obtain the primary storage access key for use with the rest of the demo response = azurerm.get_storage_account_keys(auth_token, subscription_id, resourcegroup_name, storageaccount_name) storageaccount_keys = json.loads(response.text) storageaccount_primarykey = storageaccount_keys['keys'][0]['value'] # Create the Table with the Azure Storage SDK and the access key obtained in the previous step table_service = TableService(account_name=storageaccount_name, account_key=storageaccount_primarykey) response = table_service.create_table('itemstable') if response == True: print('Storage Table: itemstable created successfully.\n') else: print('Error creating Storage Table.\n') time.sleep(1) ### # Use the Azure Storage Storage SDK for Python to create some entries in the Table ### print('Now let\'s add some entries to our Table.\nRemember, Azure Storage Tables is a NoSQL datastore, so this is similar to adding records to a database.') raw_input('Press Enter to continue...') # Each entry in a Table is called an 'Entity'. # Here, we add an entry for first pizza with two pieces of data - the name, and the cost # # A partition key tracks how like-minded entries in the Table are created and queried. # A row key is a unique ID for each entity in the partition # These two properties are used as a primary key to index the Table. This makes queries much quicker. car = Entity() car.PartitionKey = 'carmenu' car.RowKey = '001' car.make = 'Toyota' car.model = 'Avalon' car.year = 2017 car.color = 'Blue' car.cost = 35000 table_service.insert_entity('itemstable', car) print('Created entry for Toyota Avalon...') car = Entity() car.PartitionKey = 'carmenu' car.RowKey = '002' car.make = 'Toyota' car.model = 'Corolla' car.year = 2017 car.color = 'White' car.cost = 18000 table_service.insert_entity('itemstable', car) print('Created entry for Toyota Corolla...') car = Entity() car.PartitionKey = 'carmenu' car.RowKey = '003' car.make = 'Honda' car.model = 'Accord' car.year = 2017 car.color = 'Red' car.cost = 25000 table_service.insert_entity('itemstable', car) print('Created entry for Honda Accord...\n') # A partition key tracks how like-minded entries in the Table are created and queried. # A row key is a unique ID for each entity in the partition # These two properties are used as a primary key to index the Table. This makes queries much quicker. coffee = Entity() coffee.PartitionKey = 'coffeestore' coffee.RowKey = '006' coffee.brand = 'Star bucks' coffee.flavor = 'dark' coffee.size = 'small' coffee.cost = 1.5 table_service.insert_entity('itemstable', coffee) print('Created entry for Star bucks dark small...\n') time.sleep(1) coffee = Entity() coffee.PartitionKey = 'coffeestore' coffee.RowKey = '007' coffee.brand = 'Star bucks' coffee.flavor = 'sweet' coffee.size = 'medium' coffee.cost = 2.5 table_service.insert_entity('itemstable', coffee) print('Created entry for Star bucks sweet medium...\n') time.sleep(1) coffee = Entity() coffee.PartitionKey = 'coffeestore' coffee.RowKey = '008' coffee.brand = 'Peets' coffee.flavor = 'Extra dark' coffee.size = 'Large' coffee.cost = 3.5 table_service.insert_entity('itemstable', coffee) print('Created entry for Peets extra dark large...\n') time.sleep(1) ### # Use the Azure Storage Storage SDK for Python to query for entities in our Table ### print('With some data in our Azure Storage Table, we can query the data.\nLet\'s see what the car menu looks like.') raw_input('Press Enter to continue...') # In this query, you define the partition key to search within, and then which properties to retrieve # Structuring queries like this improves performance as your application scales up and keeps the queries efficient items = table_service.query_entities('itemstable', filter="PartitionKey eq 'carmenu'", select='make,model,year, color,cost') for item in items: print('Make: ' + str(item.make)) print('Model: ' + str(item.model)) print('Year: ' + str(item.year)) print('color: ' + str(item.color)) print('Price: ' + str(item.cost) + '\n') items = table_service.query_entities('itemstable', filter="PartitionKey eq 'coffeestore'", select='brand,flavor,size,cost') for item in items: print('Brand: ' + str(item.brand)) print('Flavor: ' + str(item.flavor)) print('Size: ' + str(item.size)) print('Price: ' + str(item.cost) + '\n') time.sleep(1) ### # This was a quick demo to see Tables in action. # Although the actual cost is minimal (fractions of a cent per month) for the three entities we created, it's good to clean up resources when you're done ### print('\nThis is a basic example of how Azure Storage Tables behave like a database.\nTo keep things tidy, let\'s clean up the Azure Storage resources we created.') raw_input('Press Enter to continue...') response = table_service.delete_table('itemstable') if response == True: print('Storage table: itemstable deleted successfully.') else: print('Error deleting Storage Table') response = azurerm.delete_resource_group(auth_token, subscription_id, resourcegroup_name) if response.status_code == 202: print('Resource group: ' + resourcegroup_name + ' deleted successfully.') else: print('Error deleting resource group.')
[ "petersoe@gmail.com" ]
petersoe@gmail.com
77f354f61023fa4a42e61899214b2e46445fd876
0b842bcb3bf20e1ce628d39bf7e11abd7699baf9
/oscar/a/api/yang/modules/tech/common/qwilt_tech_platform_temperature/tech/platform/temperature/status/status_maapi_gen.py
03bc31a5274180986553996d0f3063aedcce7b29
[]
no_license
afeset/miner2-tools
75cc8cdee06222e0d81e39a34f621399e1ceadee
81bcc74fe7c0ca036ec483f634d7be0bab19a6d0
refs/heads/master
2016-09-05T12:50:58.228698
2013-08-27T21:09:56
2013-08-27T21:09:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
31,266
py
# Copyright Qwilt, 2012 # # The code contained in this file may not be used by any other entities without explicit written permission from Qwilt. # # Author: naamas from a.infra.misc.enum_with_value import EnumWithValue from a.infra.basic.return_codes import ReturnCodes from a.infra.misc.init_guard import InitGuard from a.sys.confd.pyconfdlib.tag_values import TagValues from a.sys.confd.pyconfdlib.value import Value from a.sys.confd.pyconfdlib.key_path import KeyPath from status_maapi_base_gen import StatusMaapiBase from a.api.yang.modules.tech.common.qwilt_tech_platform_temperature.qwilt_tech_platform_temperature_module_gen import TemperatureStatusType from a.api.yang.modules.tech.common.qwilt_tech_platform_temperature.qwilt_tech_platform_temperature_module_gen import TemperatureOperationalStatusReasonType from a.api.yang.modules.tech.common.qwilt_tech_platform_temperature.qwilt_tech_platform_temperature_module_gen import TemperatureOperationalStatusType class BlinkyStatusMaapi(StatusMaapiBase): def __init__ (self, logger): self.myInitGuard = InitGuard() self._log=logger.createLogger("sys-blinky-oper-example","blinky-maapi-status") self.domain = None self.operationalStatusRequested = False self.operationalStatus = None self.operationalStatusSet = False self.operationalStatusReasonRequested = False self.operationalStatusReason = None self.operationalStatusReasonSet = False self.temperatureStatusRawRequested = False self.temperatureStatusRaw = None self.temperatureStatusRawSet = False self.temperatureStatusRequested = False self.temperatureStatus = None self.temperatureStatusSet = False def init (self, domain): self.myInitGuard.crashIfInitDone() for logFunc in self._log('init').debug3Func(): logFunc('called. domain=%s', domain) self.domain = domain self.myInitGuard.initDone() def requestConfigAndOper (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('request-config-and-oper').debug3Func(): logFunc('called, PARAMS') self.requestOperationalStatus(True) self.requestOperationalStatusReason(True) self.requestTemperatureStatusRaw(True) self.requestTemperatureStatus(True) def requestConfig (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('request-config').debug3Func(): logFunc('called, PARAMS') self.requestOperationalStatus(False) self.requestOperationalStatusReason(False) self.requestTemperatureStatusRaw(False) self.requestTemperatureStatus(False) def requestOper (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('request-oper').debug3Func(): logFunc('called, PARAMS') self.requestOperationalStatus(True) self.requestOperationalStatusReason(True) self.requestTemperatureStatusRaw(True) self.requestTemperatureStatus(True) def clearAllRequested (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('clear-all-requested').debug3Func(): logFunc('called, PARAMS') self.requestOperationalStatus(False) self.requestOperationalStatusReason(False) self.requestTemperatureStatusRaw(False) self.requestTemperatureStatus(False) def clearAllSet (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('clear-all-set').debug3Func(): logFunc('called, PARAMS') def write (self , trxContext=None ): self.myInitGuard.isInitOrCrash() for logFunc in self._log('write').debug3Func(): logFunc('called, PARAMS') return self._internalWrite(trxContext) def read (self , trxContext=None): self.myInitGuard.isInitOrCrash() for logFunc in self._log('read').debug3Func(): logFunc('called, PARAMS') return self._internalRead( False, trxContext) def readAllOrFail (self , trxContext=None): self.myInitGuard.isInitOrCrash() for logFunc in self._log('read-all-or-fail').debug3Func(): logFunc('called, PARAMS') return self._internalRead( True, trxContext) def requestOperationalStatus (self, requested): self.myInitGuard.isInitOrCrash() for logFunc in self._log('request-operationalstatus').debug3Func(): logFunc('called. requested=%s', requested) self.operationalStatusRequested = requested self.operationalStatusSet = False def isOperationalStatusRequested (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('is-operationalstatus-requested').debug3Func(): logFunc('called. requested=%s', self.operationalStatusRequested) return self.operationalStatusRequested def getOperationalStatus (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('get-operationalstatus').debug3Func(): logFunc('called. self.operationalStatusSet=%s, self.operationalStatus=%s', self.operationalStatusSet, self.operationalStatus) if self.operationalStatusSet: return self.operationalStatus return None def hasOperationalStatus (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('has-operationalstatus').debug3Func(): logFunc('called. self.operationalStatusSet=%s, self.operationalStatus=%s', self.operationalStatusSet, self.operationalStatus) if self.operationalStatusSet: return True return False def setOperationalStatus (self, operationalStatus): self.myInitGuard.isInitOrCrash() for logFunc in self._log('set-operationalstatus').debug3Func(): logFunc('called. operationalStatus=%s, old=%s', operationalStatus, self.operationalStatus) self.operationalStatusSet = True self.operationalStatus = operationalStatus def requestOperationalStatusReason (self, requested): self.myInitGuard.isInitOrCrash() for logFunc in self._log('request-operationalstatusreason').debug3Func(): logFunc('called. requested=%s', requested) self.operationalStatusReasonRequested = requested self.operationalStatusReasonSet = False def isOperationalStatusReasonRequested (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('is-operationalstatusreason-requested').debug3Func(): logFunc('called. requested=%s', self.operationalStatusReasonRequested) return self.operationalStatusReasonRequested def getOperationalStatusReason (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('get-operationalstatusreason').debug3Func(): logFunc('called. self.operationalStatusReasonSet=%s, self.operationalStatusReason=%s', self.operationalStatusReasonSet, self.operationalStatusReason) if self.operationalStatusReasonSet: return self.operationalStatusReason return None def hasOperationalStatusReason (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('has-operationalstatusreason').debug3Func(): logFunc('called. self.operationalStatusReasonSet=%s, self.operationalStatusReason=%s', self.operationalStatusReasonSet, self.operationalStatusReason) if self.operationalStatusReasonSet: return True return False def setOperationalStatusReason (self, operationalStatusReason): self.myInitGuard.isInitOrCrash() for logFunc in self._log('set-operationalstatusreason').debug3Func(): logFunc('called. operationalStatusReason=%s, old=%s', operationalStatusReason, self.operationalStatusReason) self.operationalStatusReasonSet = True self.operationalStatusReason = operationalStatusReason def requestTemperatureStatusRaw (self, requested): self.myInitGuard.isInitOrCrash() for logFunc in self._log('request-temperaturestatusraw').debug3Func(): logFunc('called. requested=%s', requested) self.temperatureStatusRawRequested = requested self.temperatureStatusRawSet = False def isTemperatureStatusRawRequested (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('is-temperaturestatusraw-requested').debug3Func(): logFunc('called. requested=%s', self.temperatureStatusRawRequested) return self.temperatureStatusRawRequested def getTemperatureStatusRaw (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('get-temperaturestatusraw').debug3Func(): logFunc('called. self.temperatureStatusRawSet=%s, self.temperatureStatusRaw=%s', self.temperatureStatusRawSet, self.temperatureStatusRaw) if self.temperatureStatusRawSet: return self.temperatureStatusRaw return None def hasTemperatureStatusRaw (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('has-temperaturestatusraw').debug3Func(): logFunc('called. self.temperatureStatusRawSet=%s, self.temperatureStatusRaw=%s', self.temperatureStatusRawSet, self.temperatureStatusRaw) if self.temperatureStatusRawSet: return True return False def setTemperatureStatusRaw (self, temperatureStatusRaw): self.myInitGuard.isInitOrCrash() for logFunc in self._log('set-temperaturestatusraw').debug3Func(): logFunc('called. temperatureStatusRaw=%s, old=%s', temperatureStatusRaw, self.temperatureStatusRaw) self.temperatureStatusRawSet = True self.temperatureStatusRaw = temperatureStatusRaw def requestTemperatureStatus (self, requested): self.myInitGuard.isInitOrCrash() for logFunc in self._log('request-temperaturestatus').debug3Func(): logFunc('called. requested=%s', requested) self.temperatureStatusRequested = requested self.temperatureStatusSet = False def isTemperatureStatusRequested (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('is-temperaturestatus-requested').debug3Func(): logFunc('called. requested=%s', self.temperatureStatusRequested) return self.temperatureStatusRequested def getTemperatureStatus (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('get-temperaturestatus').debug3Func(): logFunc('called. self.temperatureStatusSet=%s, self.temperatureStatus=%s', self.temperatureStatusSet, self.temperatureStatus) if self.temperatureStatusSet: return self.temperatureStatus return None def hasTemperatureStatus (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('has-temperaturestatus').debug3Func(): logFunc('called. self.temperatureStatusSet=%s, self.temperatureStatus=%s', self.temperatureStatusSet, self.temperatureStatus) if self.temperatureStatusSet: return True return False def setTemperatureStatus (self, temperatureStatus): self.myInitGuard.isInitOrCrash() for logFunc in self._log('set-temperaturestatus').debug3Func(): logFunc('called. temperatureStatus=%s, old=%s', temperatureStatus, self.temperatureStatus) self.temperatureStatusSet = True self.temperatureStatus = temperatureStatus def _clearAllReadData (self): self.myInitGuard.isInitOrCrash() for logFunc in self._log('clear-all-read-data').debug3Func(): logFunc('called') self.operationalStatus = 0 self.operationalStatusSet = False self.operationalStatusReason = 0 self.operationalStatusReasonSet = False self.temperatureStatusRaw = 0 self.temperatureStatusRawSet = False self.temperatureStatus = 0 self.temperatureStatusSet = False def _getSelfKeyPath (self , junkForTemplate): for logFunc in self._log('get-self-key-path').debug3Func(): logFunc('called. PARAMS, junkForTemplate=%s', junkForTemplate) keyPath = KeyPath() xmlVal = Value() xmlVal.setXmlTag(("status", "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", "qt-pltf-temperature")) keyPath.addKeyPathPrefix(xmlVal) xmlVal = Value() xmlVal.setXmlTag(("temperature", "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", "qt-pltf-temperature")) keyPath.addKeyPathPrefix(xmlVal) xmlVal = Value() xmlVal.setXmlTag(("platform", "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform", "qt-pltf")) keyPath.addKeyPathPrefix(xmlVal) xmlVal = Value() xmlVal.setXmlTag(("tech", "http://qwilt.com/ns/yang/device/tech/qwilt-tech", "qt")) keyPath.addKeyPathPrefix(xmlVal) for logFunc in self._log('get-self-key-path-done').debug3Func(): logFunc('done. keyPath=%s. PARAMS', keyPath) return keyPath def _internalWrite (self, trxContext): self.myInitGuard.isInitOrCrash() for logFunc in self._log('internal-write').debug3Func(): logFunc('called. PARAMS') tagValueList = TagValues() res = self._fillWriteTagValues(tagValueList) if res != ReturnCodes.kOk: for logFunc in self._log('write-fill-write-tag-value-failed').errorFunc(): logFunc('_fillWriteTagValues() failed. PARAMS') return ReturnCodes.kGeneralError itemsToDelete = [] res = self._collectItemsToDelete( itemsToDelete) if res != ReturnCodes.kOk: for logFunc in self._log('write-collect-items-to-delete-failed').errorFunc(): logFunc('_collectItemsToDelete() failed. PARAMS') return ReturnCodes.kGeneralError keyPath = self._getSelfKeyPath( None) res = self.domain.writeMaapi(tagValueList, keyPath, trxContext, itemsToDelete) if res != ReturnCodes.kOk: for logFunc in self._log('write-domain-failed').errorFunc(): logFunc('domain.writeMaapi() failed. PARAMS') return ReturnCodes.kGeneralError for logFunc in self._log('internal-write-done').debug3Func(): logFunc('done. PARAMS') return ReturnCodes.kOk def _internalRead (self, readAllOrFail, trxContext): self.myInitGuard.isInitOrCrash() for logFunc in self._log('internal-read').debug3Func(): logFunc('called. PARAMS, readAllOrFail=%s', readAllOrFail) if readAllOrFail: self._clearAllReadData() tagValueList = TagValues() res = self._fillReadTagValues(tagValueList) if res != ReturnCodes.kOk: for logFunc in self._log('read-fill-read-tag-value-failed').errorFunc(): logFunc('_fillReadTagValues() failed. PARAMS') return ReturnCodes.kGeneralError keyPath = self._getSelfKeyPath( None) res = self.domain.readMaapi(tagValueList, keyPath, trxContext) if res != ReturnCodes.kOk: for logFunc in self._log('read-domain-failed').errorFunc(): logFunc('domain.readMaapi() failed. PARAMS') return ReturnCodes.kGeneralError res = self._readTagValues(tagValueList, readAllOrFail) if res != ReturnCodes.kOk: for logFunc in self._log('read-read-tag-values-failed').errorFunc(): logFunc('_readTagValues() failed. PARAMS') return ReturnCodes.kGeneralError for logFunc in self._log('internal-read-done').debug3Func(): logFunc('done. PARAMS, readAllOrFail=%s', readAllOrFail) return ReturnCodes.kOk def _collectItemsToDelete (self, itemsToDelete): self.myInitGuard.isInitOrCrash() for logFunc in self._log('collect-items-to-delete').debug3Func(): logFunc('called: itemsToDelete=%s. PARAMS', itemsToDelete) for logFunc in self._log('collect-items-to-delete-done').debug3Func(): logFunc('done: itemsToDelete=%s. PARAMS', itemsToDelete) return ReturnCodes.kOk def _fillWriteTagValues (self, tagValueList): self.myInitGuard.isInitOrCrash() for logFunc in self._log('fill-write-tag-values').debug3Func(): logFunc('called: tagValueList=%s', tagValueList) return ReturnCodes.kOk def _fillReadTagValues (self, tagValueList): self.myInitGuard.isInitOrCrash() for logFunc in self._log('fill-read-tag-values').debug3Func(): logFunc('called: tagValueList=%s', tagValueList) if self.isOperationalStatusRequested(): valOperationalStatus = Value() valOperationalStatus.setEmpty() tagValueList.push(("operational-status", "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature"), valOperationalStatus) if self.isOperationalStatusReasonRequested(): valOperationalStatusReason = Value() valOperationalStatusReason.setEmpty() tagValueList.push(("operational-status-reason", "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature"), valOperationalStatusReason) if self.isTemperatureStatusRawRequested(): valTemperatureStatusRaw = Value() valTemperatureStatusRaw.setEmpty() tagValueList.push(("temperature-status-raw", "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature"), valTemperatureStatusRaw) if self.isTemperatureStatusRequested(): valTemperatureStatus = Value() valTemperatureStatus.setEmpty() tagValueList.push(("temperature-status", "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature"), valTemperatureStatus) return ReturnCodes.kOk def _readTagValues (self, tagValueList, readAllOrFail): __pychecker__ = 'maxlines=300' __pychecker__ = 'maxreturns=30' self.myInitGuard.isInitOrCrash() for logFunc in self._log('read-tag-values').debug3Func(): logFunc('called. readAllOrFail=%s, tagValueList=%s', readAllOrFail, tagValueList) res = ReturnCodes.kOk for logFunc in self._log('read-tag-values-leaves').debug3Func(): logFunc('reading leaves. tagValueList=%s', tagValueList) if self.isOperationalStatusRequested(): ((tag, ns), tempValue) = tagValueList.popFront() if (tag != "operational-status") or \ (ns != "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature"): for logFunc in self._log('reag-tag-values-unexpected-tag-leaf-operationalstatus').errorFunc(): logFunc('got unexpected tag-value for leaf: %s. expected: (%s, %s), got: (%s, %s)', "operationalStatus", "operational-status", "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", tag, ns) self._clearAllReadData() return ReturnCodes.kGeneralError tempVar = None tempVar = tempValue.asEnum() if res != ReturnCodes.kOk or tempVar is None: for logFunc in self._log('read-tag-values-operational-status-bad-value').infoFunc(): logFunc('operationalStatus not read') if readAllOrFail: self._clearAllReadData() return ReturnCodes.kGeneralError if tempVar is not None: self.setOperationalStatus(tempVar) for logFunc in self._log('read-tag-values-operational-status').debug3Func(): logFunc('read operationalStatus. operationalStatus=%s, tempValue=%s', self.operationalStatus, tempValue.getType()) if self.isOperationalStatusReasonRequested(): ((tag, ns), tempValue) = tagValueList.popFront() if (tag != "operational-status-reason") or \ (ns != "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature"): for logFunc in self._log('reag-tag-values-unexpected-tag-leaf-operationalstatusreason').errorFunc(): logFunc('got unexpected tag-value for leaf: %s. expected: (%s, %s), got: (%s, %s)', "operationalStatusReason", "operational-status-reason", "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", tag, ns) self._clearAllReadData() return ReturnCodes.kGeneralError tempVar = None tempVar = tempValue.asEnum() if res != ReturnCodes.kOk or tempVar is None: for logFunc in self._log('read-tag-values-operational-status-reason-bad-value').infoFunc(): logFunc('operationalStatusReason not read') if readAllOrFail: self._clearAllReadData() return ReturnCodes.kGeneralError if tempVar is not None: self.setOperationalStatusReason(tempVar) for logFunc in self._log('read-tag-values-operational-status-reason').debug3Func(): logFunc('read operationalStatusReason. operationalStatusReason=%s, tempValue=%s', self.operationalStatusReason, tempValue.getType()) if self.isTemperatureStatusRawRequested(): ((tag, ns), tempValue) = tagValueList.popFront() if (tag != "temperature-status-raw") or \ (ns != "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature"): for logFunc in self._log('reag-tag-values-unexpected-tag-leaf-temperaturestatusraw').errorFunc(): logFunc('got unexpected tag-value for leaf: %s. expected: (%s, %s), got: (%s, %s)', "temperatureStatusRaw", "temperature-status-raw", "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", tag, ns) self._clearAllReadData() return ReturnCodes.kGeneralError tempVar = None tempVar = tempValue.asString() if res != ReturnCodes.kOk or tempVar is None: for logFunc in self._log('read-tag-values-temperature-status-raw-bad-value').infoFunc(): logFunc('temperatureStatusRaw not read') if readAllOrFail: self._clearAllReadData() return ReturnCodes.kGeneralError if tempVar is not None: self.setTemperatureStatusRaw(tempVar) for logFunc in self._log('read-tag-values-temperature-status-raw').debug3Func(): logFunc('read temperatureStatusRaw. temperatureStatusRaw=%s, tempValue=%s', self.temperatureStatusRaw, tempValue.getType()) if self.isTemperatureStatusRequested(): ((tag, ns), tempValue) = tagValueList.popFront() if (tag != "temperature-status") or \ (ns != "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature"): for logFunc in self._log('reag-tag-values-unexpected-tag-leaf-temperaturestatus').errorFunc(): logFunc('got unexpected tag-value for leaf: %s. expected: (%s, %s), got: (%s, %s)', "temperatureStatus", "temperature-status", "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", tag, ns) self._clearAllReadData() return ReturnCodes.kGeneralError tempVar = None tempVar = tempValue.asEnum() if res != ReturnCodes.kOk or tempVar is None: for logFunc in self._log('read-tag-values-temperature-status-bad-value').infoFunc(): logFunc('temperatureStatus not read') if readAllOrFail: self._clearAllReadData() return ReturnCodes.kGeneralError if tempVar is not None: self.setTemperatureStatus(tempVar) for logFunc in self._log('read-tag-values-temperature-status').debug3Func(): logFunc('read temperatureStatus. temperatureStatus=%s, tempValue=%s', self.temperatureStatus, tempValue.getType()) for logFunc in self._log('read-tag-values-done').debug3Func(): logFunc('done. readAllOrFail=%s, tagValueList=%s', readAllOrFail, tagValueList) return ReturnCodes.kOk """ Extracted from the below data: { "node": { "name": "status", "namespace": "status", "className": "StatusMaapi", "importStatement": "from a.api.yang.modules.tech.common.qwilt_tech_platform_temperature.tech.platform.temperature.status.status_maapi_gen import StatusMaapi", "baseClassName": "StatusMaapiBase", "baseModule": "status_maapi_base_gen" }, "ancestors": [ { "moduleYangNamespacePrefix": "qt", "yangName": "tech", "namespace": "tech", "isCurrent": false, "isList": false, "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech", "name": "tech" }, { "moduleYangNamespacePrefix": "qt-pltf", "yangName": "platform", "namespace": "platform", "isCurrent": false, "isList": false, "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform", "name": "platform" }, { "moduleYangNamespacePrefix": "qt-pltf-temperature", "yangName": "temperature", "namespace": "temperature", "isCurrent": false, "isList": false, "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", "name": "temperature" }, { "moduleYangNamespacePrefix": "qt-pltf-temperature", "yangName": "status", "namespace": "status", "isCurrent": true, "isList": false, "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", "name": "status" } ], "descendants": [], "conditionalDebugName": null, "operLeaves": [ { "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", "moduleYangNamespacePrefix": "qt-pltf-temperature", "typeHandler": "handler: EnumHandlerPy", "memberName": "operationalStatus", "yangName": "operational-status", "object": "", "leafrefPath": null, "defaultVal": null, "hasDefaultRef": false }, { "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", "moduleYangNamespacePrefix": "qt-pltf-temperature", "typeHandler": "handler: EnumHandlerPy", "memberName": "operationalStatusReason", "yangName": "operational-status-reason", "object": "", "leafrefPath": null, "defaultVal": null, "hasDefaultRef": false }, { "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", "moduleYangNamespacePrefix": "qt-pltf-temperature", "typeHandler": "handler: StringHandler", "memberName": "temperatureStatusRaw", "yangName": "temperature-status-raw", "object": "", "leafrefPath": null, "defaultVal": null, "hasDefaultRef": false }, { "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", "moduleYangNamespacePrefix": "qt-pltf-temperature", "typeHandler": "handler: EnumHandlerPy", "memberName": "temperatureStatus", "yangName": "temperature-status", "object": "", "leafrefPath": null, "defaultVal": null, "hasDefaultRef": false } ], "module": {}, "configLeaves": [], "env": { "namespaces": [ "a", "api", "yang", "modules", "tech", "common", "qwilt_tech_platform_temperature" ] }, "leaves": [ { "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", "moduleYangNamespacePrefix": "qt-pltf-temperature", "typeHandler": "handler: EnumHandlerPy", "memberName": "operationalStatus", "yangName": "operational-status", "object": "", "leafrefPath": null, "defaultVal": null, "hasDefaultRef": false }, { "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", "moduleYangNamespacePrefix": "qt-pltf-temperature", "typeHandler": "handler: EnumHandlerPy", "memberName": "operationalStatusReason", "yangName": "operational-status-reason", "object": "", "leafrefPath": null, "defaultVal": null, "hasDefaultRef": false }, { "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", "moduleYangNamespacePrefix": "qt-pltf-temperature", "typeHandler": "handler: StringHandler", "memberName": "temperatureStatusRaw", "yangName": "temperature-status-raw", "object": "", "leafrefPath": null, "defaultVal": null, "hasDefaultRef": false }, { "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-platform-temperature", "moduleYangNamespacePrefix": "qt-pltf-temperature", "typeHandler": "handler: EnumHandlerPy", "memberName": "temperatureStatus", "yangName": "temperature-status", "object": "", "leafrefPath": null, "defaultVal": null, "hasDefaultRef": false } ], "createTime": "2013" } """
[ "afeset@gmail.com" ]
afeset@gmail.com
4958347475528010f6f727089254a0e308ba70ba
d447d0b9287caeaf10714bb3c749acf9f8667538
/python/withstatement.py
f1f0d452c86437c2385c06ccec3feb5b7b1f2dd9
[]
no_license
zchen24/tutorial
cbcfc4d461869300ff7fc5c9d66337b7faf336f9
e323c7b1536915683ef7ad312af99012fec2e66c
refs/heads/master
2023-08-18T12:14:10.223230
2023-08-13T11:55:38
2023-08-13T11:55:38
122,897,217
13
1
null
null
null
null
UTF-8
Python
false
false
1,738
py
#!/usr/bin/env python """ Example shows how with statement works The example shows three approaches 1. manual approach: try / finally block 2. classic class approach 3. contextlib.contextmanager approach Paradigm: setup code try: user code finally: tear down (clean up) """ from contextlib import contextmanager import logging def my_function(): logging.debug('First debug data') logging.error('Error data') logging.debug('Second debug data') # standard class way class debug_logging_class(object): def __init__(self, level): self.level = level def __enter__(self): self.logger = logging.getLogger() self.old_level = self.logger.getEffectiveLevel() self.logger.setLevel(self.level) return def __exit__(self, exc_type, exc_val, exc_tb): self.logger.setLevel(self.old_level) @contextmanager def debug_logging(level): logger = logging.getLogger() old_level = logger.getEffectiveLevel() logger.setLevel(level) try: yield finally: logger.setLevel(old_level) if __name__ == '__main__': logging.warning('\n\n------ default -----') my_function() logging.warning('\n\n----- manual try -----') my_logger = logging.getLogger() my_old_level = my_logger.getEffectiveLevel() my_logger.setLevel(logging.DEBUG) try: my_function() finally: my_logger.setLevel(my_old_level) logging.warning('\n\n------ contextmanager -----') with debug_logging(logging.DEBUG): my_function() logging.warning('\n\n----- with class -----') with debug_logging_class(logging.DEBUG): my_function() logging.warning('\n\n----- after all -----') my_function()
[ "zihan.chen.jhu@gmail.com" ]
zihan.chen.jhu@gmail.com
2e99493bbffcbb5c8d7859d60518ed5de170707d
fed93c5054545d927f3695b51f3a8c9dafb90086
/Python/tagiofuns/gcite.py
86b01680c7c695dd462823bfbbe8101ad5d0acf2
[]
no_license
spluque/TagTools
34629e360afd3170aa167437cccfd72001b2c69c
5f150109114cbbdf551cbf8a02e335006613d332
refs/heads/master
2021-12-07T10:54:11.656760
2021-10-14T20:36:29
2021-10-14T20:36:29
233,162,704
0
0
null
2020-01-11T02:11:30
2020-01-11T02:11:29
null
UTF-8
Python
false
false
2,882
py
def gcite(doi=None, opage=False): """ Get citation (gcite) information from the web using an 'objects' doi number (digital object identifier). cite, bibf = gcite(doi) or cite, bibf = gcite(doi, opage) Inputs: doi number as a string. The doi number can be entered as a url ('https://doi.org/10.1109/JOE.2002.808212') or as a number ('10.1109/JOE.2002.808212'). The function checks for the mssing host address and appends it to the doi number opage is an optional boolean argument to open the project archive / webpage Outputs: cite APA-formatted citation bibf bibtex-formatted citation Examples cite,_ = gcite('https://doi.org/10.1109/JOE.2002.808212') print(cite) returns: Johnson, M. P., & Tyack, P. L. (2003). A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE Journal of Oceanic Engineering, 28(1), 3–12. doi:10.1109/joe.2002.808212 cite, bibf = gcite('10.1109/JOE.2002.808212') print(cite) returns: Johnson, M. P., & Tyack, P. L. (2003). A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE Journal of Oceanic Engineering, 28(1), 3–12. doi:10.1109/joe.2002.808212 print(bibf) returns: @article{Johnson_2003, doi = {10.1109/joe.2002.808212}, url = {https://doi.org/10.1109%2Fjoe.2002.808212}, year = 2003, month = {jan}, publisher = {Institute of Electrical and Electronics Engineers ({IEEE})}, volume = {28}, number = {1}, pages = {3--12}, author = {M.P. Johnson and P.L. Tyack}, title = {A digital acoustic recording tag for measuring the response of wild marine mammals to sound}, journal = {{IEEE} Journal of Oceanic Engineering} } Valid: Python rjs30@st-andrews.ac.uk Python implementation dmwisniewska@gmail.com last modified: 23 July 2021 """ import subprocess cite, bibf = ([] for i in range(2)) if not doi or not isinstance(doi, str): print(help(gcite)) return (cite, bibf) if not opage: opage = 0 # Check for missing host address if doi.find('https://doi.org/')<0: doi = 'https://doi.org/' + doi # Get formatted citation (APA style) command = 'curl -LH "Accept: text/x-bibliography; style=apa" ' + doi res = subprocess.check_output(command) cite = res.decode("utf-8") # Get bibtex-formatted citation info command = 'curl -LH "Accept: application/x-bibtex" ' + doi res = subprocess.check_output(command) bibf = res.decode("utf-8") # Open webpage if opage: import webbrowser webbrowser.open_new_tab(doi) return (cite, bibf)
[ "dmwisniewska@gmail.com" ]
dmwisniewska@gmail.com
35c0fadc45d6dc61d71f740259dd9338eb4c2c47
9399e4a5b1870b931625a2d5a1424e2a130e960e
/PyBer_Challenge.py
66a8a8e175b425be30b131b6a6616e087e78ea44
[]
no_license
ebskii52/PyberAnalysis
e4dba557414e846f683d2a2f3ae09e594bac44f6
3a7cc8d0bb53f4353eacd0eea434b6e01eb5e467
refs/heads/master
2020-11-26T06:52:42.835049
2019-12-24T09:23:56
2019-12-24T09:23:56
228,995,847
0
0
null
null
null
null
UTF-8
Python
false
false
7,504
py
#%% # Add Matplotlib inline magic command %matplotlib inline # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import os # %% # Files to load city_data_to_load = os.path.abspath("Resources/city_data.csv") ride_data_to_load = os.path.abspath("Resources/ride_data.csv") # %%## Module 5 Challenge ## Create a PyBer Summary DataFrame # Combine the data into a single dataset ride_data_df = pd.read_csv(ride_data_to_load) city_data_df = pd.read_csv(city_data_to_load) pyber_data_df = pd.merge(ride_data_df, city_data_df, on=["city", "city"]) # Display the DataFrame pyber_data_df.head() # %% # Create the Urban city DataFrame. urban_cities_df = pyber_data_df[pyber_data_df["type"] == "Urban"] urban_cities_df.head() # %% # Create the Suburban and Rural city DataFrames. suburban_cities_df = pyber_data_df[pyber_data_df["type"] == "Suburban"] rural_cities_df = pyber_data_df[pyber_data_df["type"] == "Rural"] # %% # Get the number of rides for urban cities. urban_ride_count = urban_cities_df.groupby(["city"]).count()["ride_id"] # %% # Create the suburban and rural ride count. suburban_ride_count = suburban_cities_df.groupby(["city"]).count()["ride_id"] rural_ride_count = rural_cities_df.groupby(["city"]).count()["ride_id"] # %% # Get average fare for each city in the urban cities. urban_avg_fare = urban_cities_df.groupby(["city"]).mean()["fare"] urban_avg_fare.head() # %% # Get average fare for each city in the suburban and rural cities. suburban_avg_fare = suburban_cities_df.groupby(["city"]).mean()["fare"] rural_avg_fare = rural_cities_df.groupby(["city"]).mean()["fare"] # %% # Total Number of Urban Drivers urban_driver_count = urban_cities_df.groupby(["city"]).mean()["driver_count"] suburban_driver_count = suburban_cities_df.groupby(["city"]).mean()["driver_count"] rural_driver_count = rural_cities_df.groupby(["city"]).mean()["driver_count"] #%% # Get the average number of drivers for each urban city. Total_Rides = pyber_data_df.groupby(["type"]).count()["city"] urban_driver_sum = urban_driver_count.sum() rural_driver_sum= rural_driver_count.sum() suburban_driver_sum = suburban_driver_count.sum() TotalDriverDF = pd.DataFrame({"type": ["Rural", "Suburban", "Urban"], "Total Drivers":[rural_driver_sum,suburban_driver_sum,urban_driver_sum]}) TotalDriverDF = TotalDriverDF.set_index(["type"])["Total Drivers"] Total_Fares = pyber_data_df.groupby(["type"]).sum()["fare"] Avg_PerRide = pyber_data_df.groupby(["type"]).mean()["fare"] Avg_FarePerDriver = Total_Fares/TotalDriverDF # %% #To create the summary DataFrame, follow these steps: #Get the total rides, total drivers, and total fares for each city type using the groupby() function on the city type using the merged DataFrame or separate DataFrames. #Calculate the average fare per ride and the average fare per driver by city type. #Delete the index name. #Create the summary DataFrame with the appropriate columns and apply formatting where appropriate. SummaryDF = pd.DataFrame({"Total Rides": Total_Rides, "Total Drivers":TotalDriverDF, "Total Fares": Total_Fares, "Average Fare per ride":Avg_PerRide, "Average Per Driver": Avg_FarePerDriver}) SummaryDF.index.name = None SummaryDF["Total Fares"] = SummaryDF["Total Fares"].map("${:.2f}".format) SummaryDF["Average Fare per ride"] = SummaryDF["Average Fare per ride"].map("${:.2f}".format) SummaryDF["Total Drivers"] = SummaryDF["Total Drivers"].map("{:.0f}".format) SummaryDF["Average Per Driver"] = SummaryDF["Average Per Driver"].map("${:.2f}".format) SummaryDF["Total Rides"] = SummaryDF["Total Rides"].map("{:,}".format) # %% ## Rename columns pyber_data_df.rename(columns={'city': 'City', 'date':'Date','fare':'Fare', 'ride_id': 'Ride Id','driver_count': 'No. Drivers', 'type':'City Type'}, inplace=True) pyber_data_df # %% ## Set the index to the Date column # Reorder the columns in the order you want them to appear. new_column_order = ['Date', 'City', 'Fare', 'Ride Id','No. Drivers', 'City Type'] pyber_data_df = pyber_data_df[new_column_order] pyber_data_df # %% # Create a new DataFrame for fares and include only the ##Date, City Type, and Fare columns using the copy() method on the merged DataFrame new_pyber_data_df = pyber_data_df[["Date", "City", "Fare", "City Type"]].copy() # %% new_pyber_data_df.set_index("Date") DateTypes = new_pyber_data_df["Date"].tolist() Date_fixed = [] for name in DateTypes: if len(name.split()) >= 1: Date_fixed.append(name.split()[0]) new_pyber_data_df["Date"] = Date_fixed # %% new_pyber_data_df.head() # %% # 7. Calculate the sum() of fares by the type of city and date using groupby() to create a new DataFrame. FaresDF = new_pyber_data_df.groupby(["City Type", "Date"]).sum()["Fare"] FaresDF = FaresDF.to_frame() FaresDF # %% ## 8. Reset the index, which is needed for Step 10. FaresDF.reset_index(inplace = True) FaresDF #%% #from datetime import datetime #FaresDF['Date'] = pd.to_datetime(FaresDF['Date']).dt.date FaresDF #FaresDF.index.name = "Date" #FaresDF #%% ## ## 9. Create a pivot table DataFrame with the Date as the index and columns = 'City Type' with the Fare for each Date in each row import numpy as np import scipy.stats as sts FarePVTable = pd.pivot_table(FaresDF, values='Fare', index=['Date'], columns=['City Type'], aggfunc=np.sum) FarePVTable #%% ## 10. Create a new DataFrame from the pivot table DataFrame on the given dates '2019-01-01':'2019-04-28' using loc . FarePVTableDF = FarePVTable.reset_index() FarePVTableDFTrial = FarePVTableDF.set_index("Date") FarePVTableDF = FarePVTableDFTrial.loc['2019-01-01':'2019-04-28'] FarePVTableDF #%% from datetime import datetime FaresDFDate = FarePVTableDF.copy() FaresDFDate = FaresDFDate.reset_index() FaresDFDate["Date"] = pd.to_datetime(FaresDFDate["Date"]) FaresDFDate = FaresDFDate.reset_index(drop=True) FaresDFDate = FaresDFDate.set_index(["Date"]) FaresDFDate #%% ## 11. Create a new DataFrame by setting the DataFrame you created in Step 11 ## with resample() in weekly bins, and calculate the sum() of the fares for each week. TotalFaresWeekly = FaresDFDate.resample("W").sum() TotalFaresWeekly # %% # Using the object-oriented interface method, plot the DataFrame you created in # Step 12 using the df.plot() function. Things to consider with your plotting: import numpy as np import scipy.stats as sts import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') plt.figure(figsize=(15,8)) plt.xlabel("Date") plt.ylabel("Fare($)") # Create a title. plt.title("PyBer Fare by Month") plt.plot((TotalFaresWeekly.index.to_pydatetime()).astype('datetime64[W]'), TotalFaresWeekly["Urban"], marker="*", color="green", linewidth=2, label='Urban') plt.plot((TotalFaresWeekly.index.to_pydatetime()).astype('datetime64[W]'), TotalFaresWeekly["Rural"], marker="*", color="black", linewidth=2, label='Rural') plt.plot((TotalFaresWeekly.index.to_pydatetime()).astype('datetime64[W]'), TotalFaresWeekly["Suburban"], marker="*", color="red", linewidth=2, label='Suburban') # Add a grid. plt.grid() #plt.xticks(RuralDateTrialType.index,Rotation="vertical") # Add the legend. # Create a legend lgnd = plt.legend(fontsize="12", mode="Expanded", scatterpoints=1, loc="best", title="City Types") lgnd.legendHandles[0]._sizes = [75] lgnd.legendHandles[1]._sizes = [75] lgnd.legendHandles[2]._sizes = [75] lgnd.get_title().set_fontsize(12) plt.savefig(os.path.abspath("analysis/module_challenge.png")) # %%
[ "ebskii52@users.noreply.github.com" ]
ebskii52@users.noreply.github.com
683ed72a45c224d95f506a1e8c1a5060eab42a12
2a9b4b0f9cfe7d32434128776037ea6b5ff9800b
/day14.py
6f91c0a4042e6d3f4df7d0a2360f664efaf895d2
[]
no_license
hacktoon/adventofcode
5d71fa6957397cf627adca048602fdda874c4ed0
810686eeb3b8c627fa75fb5010b63e1beaf909ba
refs/heads/master
2021-01-10T11:05:11.535312
2015-12-19T19:08:47
2015-12-19T19:08:47
47,684,730
0
0
null
null
null
null
UTF-8
Python
false
false
4,157
py
# Advent of code # Day 14: Reindeer Olympics ''' This year is the Reindeer Olympics! Reindeer can fly at high speeds, but must rest occasionally to recover their energy. Santa would like to know which of his reindeer is fastest, and so he has them race. Reindeer can only either be flying (always at their top speed) or resting (not moving at all), and always spend whole seconds in either state. For example, suppose you have the following Reindeer: Comet can fly 14 km/s for 10 seconds, but then must rest for 127 seconds. Dancer can fly 16 km/s for 11 seconds, but then must rest for 162 seconds. After one second, Comet has gone 14 km, while Dancer has gone 16 km. After ten seconds, Comet has gone 140 km, while Dancer has gone 160 km. On the eleventh second, Comet begins resting (staying at 140 km), and Dancer continues on for a total distance of 176 km. On the 12th second, both reindeer are resting. They continue to rest until the 138th second, when Comet flies for another ten seconds. On the 174th second, Dancer flies for another 11 seconds. In this example, after the 1000th second, both reindeer are resting, and Comet is in the lead at 1120 km (poor Dancer has only gotten 1056 km by that point). So, in this situation, Comet would win (if the race ended at 1000 seconds). Given the descriptions of each reindeer (in your puzzle input), after exactly 2503 seconds, what distance has the winning reindeer traveled? ''' import re TOTAL_SECONDS = 2503 def init_speed_info(line): name, kms, tm, rest = re.match('^([^\s]+).*?(\d+).*?(\d+).*?(\d+)', line).groups() return {'name': name, 'kms': int(kms), 'time': int(tm), 'rest': int(rest), 'resting': 0, 'distance': 0, 'limit': int(tm), 'points': 0} def update_speed_info(rd): if rd['resting'] > 0: rd['resting'] -= 1 return if rd['limit'] > 0: rd['limit'] -= 1 rd['distance'] += rd['kms'] else: rd['resting'] = rd['rest'] - 1 rd['limit'] = rd['time'] def update_points(reindeers): distances = sorted(reindeers, key=lambda x: x['distance'], reverse=True) winner = distances[0] leading_distance = winner['distance'] for d in distances: if d['distance'] == leading_distance: d['points'] += 1 with open('input/day14.txt') as f: speeds = f.readlines() reindeers = [] for i in speeds: reindeers.append(init_speed_info(i)) for i in range(TOTAL_SECONDS): for reindeer in reindeers: update_speed_info(reindeer) update_points(reindeers) winning_distance = sorted(reindeers, key=lambda x: x['distance'], reverse=True) winner_distance = winning_distance[0] print('The winning reindeer in first part is {} who traveled {} km'.format(winner_distance['name'], winner_distance['distance'])) ''' --- Part Two --- Seeing how reindeer move in bursts, Santa decides he's not pleased with the old scoring system. Instead, at the end of each second, he awards one point to the reindeer currently in the lead. (If there are multiple reindeer tied for the lead, they each get one point.) He keeps the traditional 2503 second time limit, of course, as doing otherwise would be entirely ridiculous. Given the example reindeer from above, after the first second, Dancer is in the lead and gets one point. He stays in the lead until several seconds into Comet's second burst: after the 140th second, Comet pulls into the lead and gets his first point. Of course, since Dancer had been in the lead for the 139 seconds before that, he has accumulated 139 points by the 140th second. After the 1000th second, Dancer has accumulated 689 points, while poor Comet, our old champion, only has 312. So, with the new scoring system, Dancer would win (if the race ended at 1000 seconds). Again given the descriptions of each reindeer (in your puzzle input), after exactly 2503 seconds, how many points does the winning reindeer have? ''' winning_points = sorted(reindeers, key=lambda x: x['points'], reverse=True) winner_points = winning_points[0] print('The winning reindeer in second part is {} who has {} points'.format(winner_points['name'], winner_points['points']))
[ "karlisson.bezerra@titansgroup.com.br" ]
karlisson.bezerra@titansgroup.com.br
1978ad9916a047e0be6f26fe06c4759fb69c63ff
e30b8b65a12253b323d847636a751f6ff75d757c
/Clientes.py
0acb82c90edc888c9ea15c47c9b50a0a0d0ae232
[]
no_license
C4RL0M/Sistema-de-Gestao
009d73dc3f75b4b0033ed76a53366e35b6041fa4
fab8b70d55fc0724f9ad0497323b2dcbfd07a8f3
refs/heads/main
2023-04-05T13:41:28.045247
2021-04-15T03:10:49
2021-04-15T03:10:49
345,491,871
0
0
null
null
null
null
UTF-8
Python
false
false
2,223
py
geral = [] pessoa = {} print("1-Cadastrar pessoa") print("2-Lista Cadastros") print("3-Procurar Pessoa Especifica") print("4-Encerrar") op = input("Digite a opção desejada: ") while op !="4": if op == '1': pessoa ['nome'] = input("informe o nome do cliente: ") pessoa ['idade'] = input("informe a idade do cliente: ") pessoa ['cep'] = input("informe o cep do cliente: ") perg = 's' perg = input("quer cadastrar outro? S/N ") geral.append(pessoa.copy()) if perg in 'sS': pessoa.clear() continue if perg in 'Nn': pessoa.clear() print("1-Cadastrar pessoa") print("2-Lista Cadastros") print("3-Procurar Pessoa Especifica") print("4-Encerrar") op = input("Digite a opção desejada: ") if op == '2': for pessoa in geral: print(pessoa) p = 's' p = input("quer escolher outra opção? S/N ") if p in 'Ss': print("1-Cadastrar pessoa") print("2-Lista Cadastros") print("3-Procurar Pessoa Especifica") print("4-Encerrar") op = input("Digite a opção desejada: ") if p in 'nN': break if op == '3': busca = input("Digite o nome do cliente que deseja buscar: ") for pessoa in geral: if busca == pessoa ['nome']: for k,v in pessoa.items(): print (f"{v}") p = 's' p = input("quer escolher outra opção? S/N ") if p in 'Ss': print("1-Cadastrar pessoa") print("2-Lista Cadastros") print("3-Procurar Pessoa Especifica") print("4-Encerrar") op = input("Digite a opção desejada: ") if p in 'nN': break if op not in '1234': print("digite apenas 1, 2, 3 ou 4") print("1-Cadastrar pessoa") print("2-Lista Cadastros") print("3-Procurar Pessoa Especifica") print("4-Encerrar") op = input("Digite a opção desejada: ") print("Obrigado!")
[ "noreply@github.com" ]
C4RL0M.noreply@github.com
99ee2513f8b245f847babb718f5a265872e2e7bb
c76c37611bf5b437f821efbfeb33fdc2e2bdd0ec
/scripts/solve_problems.py
160771036f8edb28e9d87a8f55f8764ae24ca362
[ "MIT" ]
permissive
LucasLeandro1204/PCCoder
618f84a27b2841cfb7b365c3480802ef38d81ca1
82bfc5a2c58e4d2f276a3ce2be3718ec19083142
refs/heads/master
2023-04-07T04:54:44.501309
2021-04-17T10:34:03
2021-04-17T10:34:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,735
py
import argparse import json import multiprocessing import torch import params from model.model import PCCoder from env.env import ProgramEnv from env.search import cab, dfs from dsl.example import Example from dsl.program import Program from dsl.value import Value def load_problems(path): problems = [] with open(path) as fh: for line in fh: problems.append(json.loads(line.rstrip())) return problems def init_worker(*args): global method, counter, fail_counter, model, timeout, max_program_len, max_beam_size method, counter, fail_counter, model, timeout, max_program_len, max_beam_size = args def solve_problems(problems, method, model, timeout, max_program_len, max_beam_size, num_workers): """ Attempts to predict programs for the given I/O sample sets. """ # Prevents deadlocks due to torch's problems with GPUs on multi processes. # This line is here for convenience, but it is recommended to solve problems on CPU since the overhead # in this case is minimal. torch.set_num_threads(1) counter = multiprocessing.Value('i', 0) fail_counter = multiprocessing.Value('i', 0) if num_workers is None or num_workers > 1: pool = multiprocessing.Pool(processes=num_workers, initializer=init_worker, initargs=(method, counter, fail_counter, model, timeout, max_program_len, max_beam_size)) return pool.map(solve_problem_worker, problems) else: # Don't run in pool to enable debugging init_worker(method, counter, fail_counter, model, timeout, max_program_len, max_beam_size) return [solve_problem_worker(data) for data in problems] def solve_problem_worker(data): examples = Example.from_line(data) env = ProgramEnv(examples) if method == 'beam': solution = cab(env, max_program_len, model, params.cab_beam_size, params.cab_width, params.cab_width_growth, timeout, max_beam_size=max_beam_size) elif method == 'dfs': solution = dfs(env, max_program_len, model, params.dfs_max_width, timeout) counter.value += 1 print("\rSolving problems... %d (failed: %d)" % (counter.value, fail_counter.value), end="") if solution['result'] is False: solution['result'] = "Failed" fail_counter.value += 1 else: values = [Value.construct(x) for x in data['examples'][0]['inputs']] value_types = [x.type for x in values] solution['result'] = Program(value_types, solution['result']).encode() return solution def main(): parser = argparse.ArgumentParser() parser.add_argument('input_path', type=str) parser.add_argument('output_path', type=str) parser.add_argument('model_path', type=str) parser.add_argument('timeout', type=int) parser.add_argument('max_program_len', type=int) parser.add_argument('--num_workers', type=int, default=None) parser.add_argument('--max_beam_size', type=int, default=819200) parser.add_argument('--search_method', choices=['beam', 'dfs'], default='beam') args = parser.parse_args() problems = load_problems(args.input_path) model = PCCoder() model.load(args.model_path) model.eval() res = solve_problems(problems, args.search_method, model, args.timeout, args.max_program_len, args.max_beam_size, args.num_workers) print("") solved = len([x for x in res if x['result'] != 'Failed']) print("Solved: %d\\%d:" % (solved, len(res)), str(100.0 * solved / len(res)) + '%') open(args.output_path, 'w').write('\n'.join([json.dumps(x) for x in res])) if __name__ == '__main__': main()
[ "amit.zhr@gmail.com" ]
amit.zhr@gmail.com
c42682f31c8b5151cf482f4dea52a56ae050c364
e16a51b35795956afa2d2b2c370ad6afb0d6ed7b
/pi_for_physicists.py
4310fd2caa685a6c6a94ed7964761389691889eb
[]
no_license
lgsteele/simple-python-programs
8bb88e088859bea658d9c7ab157f789641bc3270
e09c9503dc9a8f3d20a4b066b4a05ccc02fe6c2c
refs/heads/master
2021-05-31T16:57:44.111071
2016-05-05T18:58:32
2016-05-05T18:58:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
#This is a program that determines if you know the value of pi. It assumes you are a physicist. # To run in Notepad ++ type F5, then enter the following command C:\Python27\Lib\idlelib\idle.py "$(FULL_CURRENT_PATH)" def pi(): a = raw_input("You are a physicist, eh? What is the value of pi?\n") a = float(a) if a <= 5 and a >= 1: print "Eh, close enough..." else: print "*facepalm*" pi()
[ "louis.g.steele@gmail.com" ]
louis.g.steele@gmail.com
a02a0761414356e6711d7127dc1787b474585e81
363d4005947f7a69021488d75db1ae5c5897775f
/rabish/blazeLearn.py
308e90bf5e3dccdd8bc2aa0fa2c804d770c16e14
[]
no_license
anxu5829/MatrixCalculate
c09d87397edc6f26ee152783c186e13741161b5c
9e1d9f770082e5ac46dbda9a6f67ebde8b6235c8
refs/heads/master
2021-08-30T06:14:21.795069
2017-12-08T11:42:52
2017-12-08T11:42:52
111,750,588
1
1
null
null
null
null
UTF-8
Python
false
false
7,017
py
# use dask to cal and save data import numpy as np import dask.array as da import os os.chdir("D:") #os.chdir("C:\\Users\\22560\\Desktop\\recommand Sys\\recommand Sys") # generate test data z=np.arange(2e5) z = z.reshape((int(1e5),2)) # this will rise an memory error #z = z.dot(z.transpose()) #we can do it like this #change to da z = da.from_array(z,chunks=(10000,2)) # use da dot method # 秒算 zdot = z.dot(z.transpose()) # 可以很方便的从zdot中提取数据 arrayNeed = zdot[1,:].compute() # 存储和调用 # save data so that can be use repeatly # 真实数据大概是存不下的,可能需要>100g的存储空间, # 电脑水平不够 da.to_hdf5('data.hdf5','/zdata/zdot',zdot) # load data from hdf5 import h5py f = h5py.File("data.hdf5") # 似乎可以只读取局部数据? # d is a pointer to the data on disk d = f['/zdata/zdot'] # you can extract data in d like this data = d[1:20,:] # test big multiply dd = da.from_array(d,chunks=(10000,10000)) x = np.ones((2,100000)) y = x.dot(dd) # 关于hdf5 的管理 # remember : Groups work like dictionaries, # and datasets work like NumPy arrays import h5py import numpy as np f = h5py.File("mytestfile.hdf5", "w") # create an empty 'array' on your disk # (100,) is its shape # "mydatasets" is the name of this 'array' # dset is like a pointer so that you can manipulate it dset = f.create_dataset("mydataset", (100,), dtype='i') dset[:] = np.arange(100) # it has some attr dset.shape dset.dtype # you can use it like array dset[:10] # how hdf5 organize data? # it organize data using their 'name' , # like you organize your file on your pc dset.name # you can add some meta data on dset: dset.attrs['create Time'] = '2017-11-26' # you can obtain part of data from hdf5 # this will create a pointer pointer = f['mydataset'] # slice method will load data into mem pointer[:10] # and 'f' also has a name , point to the root f.name # you can use create_group to create a "folder": xuan = f.create_group("xuan") # now var xuan is point to the 'folder' '/xuan' z = np.arange(10) z_hdf5 = xuan.create_dataset("z",data = z ) # if you want to get the content under the 'folder': [i for i in f.items()] # if you want to drop a folder/dataset : del f['xuan'] # 关于odo import blaze as bz import pandas as pd x= bz.data("test.csv") x = bz.odo(x,pd.DataFrame) # 关于dask:一个强大的数据处理模块 # 1 array 方法 ## create and store # generate test data z=np.arange(2e4) z = z.reshape((int(1e4),2)) # this will rise an memory error #z = z.dot(z.transpose()) #we can do it like this #change to da z = da.from_array(z,chunks=(1000,2)) # store z.to_hdf5("z.hdf5","/z",z) # about sparse matrix: import dask.array as da import numpy as np import sparse from scipy.sparse import csr_matrix sprs = csr_matrix((1e4, 1e4)) sprs[1,1] = 1000 sprs_da = da.from_array(sprs,chunks=(10,2)) # 注意:map_blocks 本质是对于每一个chunk 做一个函数映射,理论上可以自定义各种复杂函数 sprs_da = sprs_da.map_blocks(sparse.COO) # 2 dataframe 方法 #A Dask DataFrame is a large parallel dataframe # composed of many smaller Pandas dataframes, # split along the index. # create and store import dask.dataframe as dd # dd 不会直接把数据读到内存中 train = dd.read_csv("train.csv") train.head() # dd 不仅有dataframe , 还有series # api # you need to learn it someday # http://dask.pydata.org/en/latest/dataframe-api.html#series # 3 delayed 方法:并行运算 # 实现了计算图 from dask import delayed def inc(x): return x + 1 def double(x): return x + 2 def add(x, y): return x + y data = [1, 2, 3, 4, 5] output = [] for x in data: a = delayed(inc)(x) b = delayed(double)(x) c = delayed(add)(a, b) output.append(c) total = delayed(sum)(output) total.compute() # 可以设计图: # 等待上一步的运算结果 import numpy as np def cal1(a,b): return a+b def cal2(c,d): return c*d a = np.array([1,2]) b = np.array([3,4]) d = 10 c = delayed(cal1)(a,b) e = delayed(cal2)(c,d) f = delayed(sum)(e) f.visualize() #delayed # future : 可以进行并行计算 from dask.distributed import Client # 使其满足多线程运算 # 4 bag 方法:用于处理一大群零碎的文件(暂略) # dask 的一个应用 from sklearn import linear_model from dask import delayed from dask import compute import numpy as np import dask reg = linear_model.LinearRegression() Y = np.random.random((50,4)) X = np.random.random((50,3)) result = [] def regression(X,Y): t = reg.fit(X,Y) return(t.coef_) def concat(result): return result for i in range(4): c = delayed(regression)(X,Y[:,i]) result.append(c) r = delayed(concat)(result) r.compute() r.visualize() # regression import dask.array as da y = d[10,:] xt = np.arange(20e4).reshape((2,int(10e4))) # about h5sparse import scipy.sparse as ss import h5sparse import numpy as np sparse_matrix = ss.csr_matrix([[0, 1, 0], [0, 0, 1], [0, 0, 0], [1, 1, 0]], dtype=np.float64) with h5sparse.File("test.h5") as h5f: h5f.create_dataset('sparse/matrix', data=sparse_matrix) with h5sparse.File("test.h5") as h5f: h5f.create_dataset('sparse/matrix2', data=h5f['sparse/matrix']) # read data h5f = h5sparse.File("C:\\Users\\22560\\Desktop\\dis.h5") h5f['sparse/matrix'][1:3] h5f['sparse']['matrix'][1:3].toarray() import h5py # allow us to use h5py to get data h5f = h5py.File("test.h5") h5sparse.Group(h5f)['sparse/matrix'] h5sparse.Dataset(h5f['sparse/matrix']) # test append method in h5sparse import h5sparse import h5py import scipy.sparse as ss import h5sparse import numpy as np x1 = np.array([[1,2,3,4],[5,6,7,8]]) x2 = np.array([[1,2,3,4],[5,6,7,8]]) *2 x1 = ss.csr_matrix(x1) x2 = ss.csr_matrix(x2) # you may use h5py to control data with h5py.File("test.h5") as h5f: del h5f['sparseData/data'] # use h5sparse to save data # 注意:从h5sparse 中取数据只允许一次取一堆行 # 简单讲一下思路: # 它把稀疏矩阵的indices,index,data,存放在了h5py的一个group中 # 使用它的h5sparse.Dataset方法可以把数据读取出来,处理为自定义的dataset类型 # attention: # 1 append method can only be used when the original data is a csr_matrix # you must set these two paras to ensure the data is chunked : # chunks = (100,),maxshape = (None,) with h5sparse.File("test.h5") as h5f: h5f.create_dataset("sparseData/data",data=x1,chunks = (100,),maxshape = (None,)) h5f['sparseData/data'].append(x2) # read data from it with h5py.File("test.h5") as h5f: print(h5sparse.Dataset(h5f['sparseData/data']).value.todense()) x= np.matrix( [ [1,2,3,4], [2,3,4,4] ] ) import scipy.sparse as ss x = ss.csc_matrix(x) y = ss.csc_matrix([1,2,3,4]) x.multiply(y) import numpy as np x = np.arange(20).reshape(10,2) y = -2 * x.dot(x.transpose()) z = (x*x).sum(1)
[ "anxu5829@gmail.com" ]
anxu5829@gmail.com
9645a78ec99d0413d31cd60d9b4e834ae1042679
141545126466a00f32247dfa40e067ec049b0fa4
/Programming Fundamentals Python/17 Lists Advanced Exercise/car race.py
e7f35427a8792f06507edeed4c607ebd6c79fba9
[]
no_license
RadkaValkova/SoftUni-Web-Developer
83314367172a18f001e182b4e57f7ca0502ad1fc
61d3414373498bb6009ae70e8d17f26cd2d88ea5
refs/heads/main
2023-06-01T02:11:06.606370
2021-06-29T19:39:19
2021-06-29T19:39:19
325,611,606
1
0
null
null
null
null
UTF-8
Python
false
false
1,252
py
time_needed = list(map(int, input().split())) finish = len(time_needed) // 2 left_range = time_needed[:finish] right_range = time_needed[-1:finish:-1] left_time = 0 right_time = 0 for time in left_range: if time == 0: left_time *= 0.8 left_time += time for time in right_range: if time == 0: right_time *= 0.8 right_time += time if left_time < right_time: winner = 'left' print(f'The winner is {winner} with total time: {left_time:.1f}') else: winner = 'right' print(f'The winner is {winner} with total time: {right_time:1f}') # left_car = [] # right_car = [] # # for time in time_needed[:len(time_needed)//2]: # if time == 0: # current_time = sum(left_car) # left_car.append(-(current_time * 0.2)) # left_car.append(time) # for time in time_needed[len(time_needed):len(time_needed)//2:-1]: # if time == 0: # current_time = sum(right_car) # right_car.append(-(current_time * 0.2)) # right_car.append(time) # # if sum(left_car) < sum(right_car): # winner = 'left' # print(f'The winner is {winner} with total time: {sum(left_car):.1f}') # else: # winner = 'right' # print(f'The winner is {winner} with total time: {sum(right_car):1f}')
[ "radka_valkova@abv.bg" ]
radka_valkova@abv.bg
a25a32d1e10c15d1c779c657ef58a0ceaf8c6b49
2e9a384cf365599d12341ff3ede54b74b2a23499
/Scripts/pip3-script.py
ec926ca2dda340e4b51d1f40c75114c139249587
[]
no_license
ztex10009090/WhatToEat_roadQuerys
b0fad05d651a53c995f2d4935aff2defac92aec7
fc57399d68bb818fe2bbc27aec94afe703705041
refs/heads/master
2020-05-23T05:42:14.629285
2019-05-14T15:57:18
2019-05-14T15:57:18
186,652,175
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
#!D:\temp\WhatToEat_roadQuerys\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3')() )
[ "ztex10009090@gmailcom" ]
ztex10009090@gmailcom
3b0148c66e9f4aa739d321648279cbc3af9a43f5
68990a9361d2a3e3a7526807b29cef405a9e337b
/main/admin.py
ce42a97d43b0a4899fea544272c4be5fa20211d1
[]
no_license
adalaw/TEA-Time
18fcbb10c361d565191633d5d7e84f0e7c71485f
554cd64cd9a4f9231c776ed1698d85fc1b99d56f
refs/heads/main
2023-03-18T02:56:12.868458
2021-03-11T04:11:44
2021-03-11T04:11:44
346,571,731
0
0
null
null
null
null
UTF-8
Python
false
false
819
py
from django.contrib import admin from .models import * class ProductAdmin(admin.ModelAdmin): list_display = ('id', 'name', 'code', 'price', 'category', 'hot', 'cold', 'date_created', 'active') class CategoryAdmin(admin.ModelAdmin): list_display = ('id', 'name', 'image', 'active') class CustomerAdmin(admin.ModelAdmin): list_display = ('id', 'name', 'phone', 'email') class OrderAdmin(admin.ModelAdmin): list_display = ('id', 'customer', 'store', 'date_created', 'status') class OrderItemAdmin(admin.ModelAdmin): list_display = ('id', 'order', 'product', 'hotOrCold', 'qty') admin.site.register(Product, ProductAdmin) admin.site.register(Category, CategoryAdmin) admin.site.register(Customer, CustomerAdmin) admin.site.register(Order, OrderAdmin) admin.site.register(OrderItem, OrderItemAdmin)
[ "freegirladalaw@hotmail.com" ]
freegirladalaw@hotmail.com
4423dc9f47cd61d0fa20a672528459528704914d
de3231d5e55674538f8888afe94b241eb884fd34
/dj4e/home/migrations/0002_auto_20190322_0417.py
6aaa72d8662aa67fff542d1947e0a1c794446f80
[]
no_license
hanacoon/django_projects
9e14371b71f5217b7e68799528825d48684881fe
eab1f948f339273f583bd35f7da81d17b333ba60
refs/heads/master
2020-04-18T01:13:25.816950
2019-04-18T04:37:01
2019-04-18T04:37:01
167,110,606
0
0
null
null
null
null
UTF-8
Python
false
false
961
py
# Generated by Django 2.1.7 on 2019-03-22 04:17 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('home', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='site', name='ISO', ), migrations.RemoveField( model_name='site', name='category', ), migrations.RemoveField( model_name='site', name='region', ), migrations.RemoveField( model_name='site', name='states', ), migrations.DeleteModel( name='Category', ), migrations.DeleteModel( name='ISO', ), migrations.DeleteModel( name='Region', ), migrations.DeleteModel( name='Site', ), migrations.DeleteModel( name='States', ), ]
[ "hanacoon@Hanas-MacBook-Pro-2.local" ]
hanacoon@Hanas-MacBook-Pro-2.local
356f041e1899bb712556a43afe67e2dbe40e7453
b7a8582f8bd8259d2a8cf794efab238c09c10e08
/pa3/mylex.py
af38607ceb8ca7ebf6aaf0fa9f8789057f5725c3
[]
no_license
ajvarshneya/pl
3f2e02fea96a031ec68a9506a32673681ae81d9e
33e76540acfc0895145ed673c33107c4717b461b
refs/heads/master
2021-05-31T13:11:30.519870
2016-04-02T00:02:17
2016-04-02T00:02:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
870
py
# Produces Token objects from input class Lexer(object): def __init__(self, tokens): self.tokens = tokens self.iterator = iter(tokens) def token(self): try: token = next(self.iterator) # print token if len(token) == 2: return Token(token[0], token[1], None) else: return Token(token[0], token[1], token[2]) except StopIteration: return None # A token class compatible with ply class Token(object): def __init__(self, token_lineno, token_type, token_value): self.lineno = int(token_lineno) self.type = token_type.upper() self.value = token_value self.lexpos = None def __str__(self): return "<line: " + str(self.lineno) + ", type: " + str(self.type) + ", value: " + str(self.value) + ">"
[ "aj@ajs-MacBook-Air.local" ]
aj@ajs-MacBook-Air.local
1f4d8ef6054bf7d36be215b980e3e271a6884841
2d9e23e9aac796a9514709fc9585e12a9d365810
/venv/bin/pip
341ef8c8329bf74c5b531bf5fd811d2dec6a7c7a
[]
no_license
EvelcNeerg/Jerry
a6ad923bf69e01c2ae646ead872c7255e78b4e0f
f97f3bfb59fa90f2e5efd7a31db6d6496e9c2c3a
refs/heads/master
2020-04-18T04:37:13.397852
2019-01-24T13:30:16
2019-01-24T13:30:16
167,245,741
0
0
null
null
null
null
UTF-8
Python
false
false
408
#!/Users/cgreen/PycharmProjects/JerrysProject/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip')() )
[ "cgreen@shipleyschool.org" ]
cgreen@shipleyschool.org
531e3867e6ed8774254ce503967e5f32c3ea8710
9a46907c545a3d2e09924d1431ade1cd448e1de6
/generate_distorted_images.py
bb978248468fa6042c5e39cde465b3cdef5d3842
[]
no_license
kazmiekr/GasPumpOCR
126cf1bce517c53b1bfe5fcda4b8a3a23adf90d4
3ef1386f853176b514708cc6b30d332b3b8d5e9f
refs/heads/master
2022-08-19T21:40:11.048720
2022-07-20T11:20:54
2022-07-20T11:20:54
86,585,608
154
57
null
2022-07-20T11:20:55
2017-03-29T13:30:13
Python
UTF-8
Python
false
false
2,522
py
import cv2 import os import sys from DisplayUtils.TileDisplay import show_img from ImageProcessing.OpenCVUtils import rotate_image def dilate_img(img, file_name, file_folder, show, write): for iterations in range(1, 4, 2): for dilate in range(1, 4, 2): kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (dilate, dilate)) dilated = cv2.dilate(img, kernel, iterations=iterations) for rot in range(-2, 3, 2): dst = rotate_image(dilated, rot) title = 'dilated-r-' + str(rot) + '-d-' + str(dilate) + '-i-' + str(iterations) if show: show_img(title, dst) if write: print 'Writing ' + file_folder + '/' + file_name + title + '.png' cv2.imwrite(file_folder + '/' + file_name + title + '.png', dst) def erode_img(img, file_name, file_folder, show, write): for iterations in range(1, 3): for erode in range(1, 4, 2): kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (erode, erode)) eroded = cv2.erode(img, kernel, iterations=iterations) for rot in range(-2, 3, 2): dst = rotate_image(eroded, rot) title = 'eroded-r-' + str(rot) + '-e-' + str(erode) + '-i-' + str(iterations) if show: show_img(title, dst) if write: cv2.imwrite(file_folder + '/' + file_name + title + '.png', dst) def process_image(path, show=True, write=False): print path img = cv2.imread(path) if show: show_img('orig', img) file_folder, full_file = os.path.split(path) file_name = full_file.split('.')[0] # erode_img(img, file_name, file_folder, show, write) dilate_img(img, file_name, file_folder, show, write) def show_distorted(path, show, write): process_image(path, show=show, write=write) cv2.waitKey(0) cv2.destroyAllWindows() def process_directory(folder): for file_name in os.listdir(folder): if not file_name.startswith('.'): process_image(folder + file_name, show=False, write=True) def main(): img_file = 'training/7/7_1079_crop_3.png' show = True if len(sys.argv) == 2: img_file = sys.argv[1] show = False show_distorted(img_file, show, True) # For use if you want to generate extra images for all files in a directory # process_directory('training/8/') if __name__ == "__main__": main()
[ "kazmiekr@gmail.com" ]
kazmiekr@gmail.com
03832ca41691bd1f684229de69ff9c9c70b06791
2a7597b443c5866d62f1fd3386e5699cbb3ccf5e
/firstproject/firstapp/forms.py
395e5aba181f96b226dd40f4d26c98f8a28a3aae
[]
no_license
neha-webllisto/All_projects
319b211360d50d3296d872ccff70627762657dbe
6bb6f2550b701f8bbdc026725f3db1d781fd69d1
refs/heads/master
2020-04-15T04:51:39.070851
2019-01-07T08:14:22
2019-01-07T08:14:22
164,398,876
0
0
null
null
null
null
UTF-8
Python
false
false
271
py
from django import forms class User_form(forms.Form): Username = forms.CharField(label='Name',max_length=20) Email = forms.EmailField(label='Email id') Contact = forms.CharField(label='Phone no.',max_length=12) Course = forms.CharField(label='Course',max_length=20)
[ "mansi@webllisto.com" ]
mansi@webllisto.com
c69d9a13942e8632f0e56c2c3af6de1f0ff2ce04
6974096eaf642a1c3dfbc4567d0f0776621261de
/pantalaimon/index.py
5c8e02bf60702704918aa491142f8a997272a5a8
[ "Apache-2.0" ]
permissive
thrrgilag/pantalaimon
29709e1231db7655e57685babad27094f68afe5c
d388a21b9b1f17b7f52790f79dd571d8e75a4543
refs/heads/master
2022-11-13T12:56:14.747072
2020-07-02T10:19:59
2020-07-02T10:19:59
277,380,106
0
0
Apache-2.0
2020-07-05T20:41:57
2020-07-05T20:41:56
null
UTF-8
Python
false
false
16,796
py
# Copyright 2019 The Matrix.org Foundation CIC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class InvalidQueryError(Exception): pass if False: import asyncio import datetime import json import os from functools import partial from typing import Any, Dict, List, Optional, Tuple import attr import tantivy from nio import ( RoomEncryptedMedia, RoomMessageMedia, RoomMessageText, RoomNameEvent, RoomTopicEvent, ) from peewee import ( SQL, DateTimeField, ForeignKeyField, Model, SqliteDatabase, TextField, ) from pantalaimon.store import use_database INDEXING_ENABLED = True class DictField(TextField): def python_value(self, value): # pragma: no cover return json.loads(value) def db_value(self, value): # pragma: no cover return json.dumps(value) class StoreUser(Model): user_id = TextField() class Meta: constraints = [SQL("UNIQUE(user_id)")] class Profile(Model): user_id = TextField() avatar_url = TextField(null=True) display_name = TextField(null=True) class Meta: constraints = [SQL("UNIQUE(user_id,avatar_url,display_name)")] class Event(Model): event_id = TextField() sender = TextField() date = DateTimeField() room_id = TextField() source = DictField() profile = ForeignKeyField(model=Profile, column_name="profile_id") class Meta: constraints = [SQL("UNIQUE(event_id, room_id, sender, profile_id)")] class UserMessages(Model): user = ForeignKeyField(model=StoreUser, column_name="user_id") event = ForeignKeyField(model=Event, column_name="event_id") @attr.s class MessageStore: user = attr.ib(type=str) store_path = attr.ib(type=str) database_name = attr.ib(type=str) database = attr.ib(type=SqliteDatabase, init=False) database_path = attr.ib(type=str, init=False) models = [StoreUser, Event, Profile, UserMessages] def __attrs_post_init__(self): self.database_path = os.path.join( os.path.abspath(self.store_path), self.database_name ) self.database = self._create_database() self.database.connect() with self.database.bind_ctx(self.models): self.database.create_tables(self.models) def _create_database(self): return SqliteDatabase( self.database_path, pragmas={"foreign_keys": 1, "secure_delete": 1} ) @use_database def event_in_store(self, event_id, room_id): user, _ = StoreUser.get_or_create(user_id=self.user) query = ( Event.select() .join(UserMessages) .where( (Event.room_id == room_id) & (Event.event_id == event_id) & (UserMessages.user == user) ) .execute() ) for _ in query: return True return False def save_event(self, event, room_id, display_name=None, avatar_url=None): user, _ = StoreUser.get_or_create(user_id=self.user) profile_id, _ = Profile.get_or_create( user_id=event.sender, display_name=display_name, avatar_url=avatar_url ) event_source = event.source event_source["room_id"] = room_id event_id = ( Event.insert( event_id=event.event_id, sender=event.sender, date=datetime.datetime.fromtimestamp(event.server_timestamp / 1000), room_id=room_id, source=event_source, profile=profile_id, ) .on_conflict_ignore() .execute() ) if event_id <= 0: return None _, created = UserMessages.get_or_create(user=user, event=event_id) if created: return event_id return None def _load_context(self, user, event, before, after): context = {} if before > 0: query = ( Event.select() .join(UserMessages) .where( (Event.date <= event.date) & (Event.room_id == event.room_id) & (Event.id != event.id) & (UserMessages.user == user) ) .order_by(Event.date.desc()) .limit(before) ) context["events_before"] = [e.source for e in query] else: context["events_before"] = [] if after > 0: query = ( Event.select() .join(UserMessages) .where( (Event.date >= event.date) & (Event.room_id == event.room_id) & (Event.id != event.id) & (UserMessages.user == user) ) .order_by(Event.date) .limit(after) ) context["events_after"] = [e.source for e in query] else: context["events_after"] = [] return context @use_database def load_events( self, search_result, # type: List[Tuple[int, int]] include_profile=False, # type: bool order_by_recent=False, # type: bool before=0, # type: int after=0, # type: int ): # type: (...) -> Dict[Any, Any] user, _ = StoreUser.get_or_create(user_id=self.user) search_dict = {r[1]: r[0] for r in search_result} columns = list(search_dict.keys()) result_dict = {"results": []} query = ( UserMessages.select() .where( (UserMessages.user_id == user) & (UserMessages.event.in_(columns)) ) .execute() ) for message in query: event = message.event event_dict = { "rank": 1 if order_by_recent else search_dict[event.id], "result": event.source, "context": {}, } if include_profile: event_profile = event.profile event_dict["context"]["profile_info"] = { event_profile.user_id: { "display_name": event_profile.display_name, "avatar_url": event_profile.avatar_url, } } context = self._load_context(user, event, before, after) event_dict["context"]["events_before"] = context["events_before"] event_dict["context"]["events_after"] = context["events_after"] result_dict["results"].append(event_dict) return result_dict def sanitize_room_id(room_id): return room_id.replace(":", "/").replace("!", "") class Searcher: def __init__( self, index, body_field, name_field, topic_field, column_field, room_field, timestamp_field, searcher, ): self._index = index self._searcher = searcher self.body_field = body_field self.name_field = topic_field self.topic_field = name_field self.column_field = column_field self.room_field = room_field self.timestamp_field = timestamp_field def search(self, search_term, room=None, max_results=10, order_by_recent=False): # type (str, str, int, bool) -> List[int, int] """Search for events in the index. Returns the score and the column id for the event. """ queryparser = tantivy.QueryParser.for_index( self._index, [self.body_field, self.name_field, self.topic_field, self.room_field], ) # This currently supports only a single room since the query parser # doesn't seem to work with multiple room fields here. if room: query_string = "{} AND room:{}".format( search_term, sanitize_room_id(room) ) else: query_string = search_term try: query = queryparser.parse_query(query_string) except ValueError: raise InvalidQueryError(f"Invalid search term: {search_term}") if order_by_recent: collector = tantivy.TopDocs( max_results, order_by_field=self.timestamp_field ) else: collector = tantivy.TopDocs(max_results) result = self._searcher.search(query, collector) retrieved_result = [] for score, doc_address in result: doc = self._searcher.doc(doc_address) column = doc.get_first(self.column_field) retrieved_result.append((score, column)) return retrieved_result class Index: def __init__(self, path=None, num_searchers=None): schema_builder = tantivy.SchemaBuilder() self.body_field = schema_builder.add_text_field("body") self.name_field = schema_builder.add_text_field("name") self.topic_field = schema_builder.add_text_field("topic") self.timestamp_field = schema_builder.add_unsigned_field( "server_timestamp", fast="single" ) self.date_field = schema_builder.add_date_field("message_date") self.room_field = schema_builder.add_facet_field("room") self.column_field = schema_builder.add_unsigned_field( "database_column", indexed=True, stored=True, fast="single" ) schema = schema_builder.build() self.index = tantivy.Index(schema, path) self.reader = self.index.reader(num_searchers=num_searchers) self.writer = self.index.writer() def add_event(self, column_id, event, room_id): doc = tantivy.Document() room_path = "/{}".format(sanitize_room_id(room_id)) room_facet = tantivy.Facet.from_string(room_path) doc.add_unsigned(self.column_field, column_id) doc.add_facet(self.room_field, room_facet) doc.add_date( self.date_field, datetime.datetime.fromtimestamp(event.server_timestamp / 1000), ) doc.add_unsigned(self.timestamp_field, event.server_timestamp) if isinstance(event, RoomMessageText): doc.add_text(self.body_field, event.body) elif isinstance(event, (RoomMessageMedia, RoomEncryptedMedia)): doc.add_text(self.body_field, event.body) elif isinstance(event, RoomNameEvent): doc.add_text(self.name_field, event.name) elif isinstance(event, RoomTopicEvent): doc.add_text(self.topic_field, event.topic) else: raise ValueError("Invalid event passed.") self.writer.add_document(doc) def commit(self): self.writer.commit() def searcher(self): self.reader.reload() return Searcher( self.index, self.body_field, self.name_field, self.topic_field, self.column_field, self.room_field, self.timestamp_field, self.reader.searcher(), ) @attr.s class StoreItem: event = attr.ib() room_id = attr.ib() display_name = attr.ib(default=None) avatar_url = attr.ib(default=None) @attr.s class IndexStore: user = attr.ib(type=str) index_path = attr.ib(type=str) store_path = attr.ib(type=str, default=None) store_name = attr.ib(default="events.db") index = attr.ib(type=Index, init=False) store = attr.ib(type=MessageStore, init=False) event_queue = attr.ib(factory=list) write_lock = attr.ib(factory=asyncio.Lock) read_semaphore = attr.ib(type=asyncio.Semaphore, init=False) def __attrs_post_init__(self): self.store_path = self.store_path or self.index_path num_searchers = os.cpu_count() self.index = Index(self.index_path, num_searchers) self.read_semaphore = asyncio.Semaphore(num_searchers or 1) self.store = MessageStore(self.user, self.store_path, self.store_name) def add_event(self, event, room_id, display_name, avatar_url): item = StoreItem(event, room_id, display_name, avatar_url) self.event_queue.append(item) @staticmethod def write_events(store, index, event_queue): with store.database.bind_ctx(store.models): with store.database.atomic(): for item in event_queue: column_id = store.save_event(item.event, item.room_id) if column_id: index.add_event(column_id, item.event, item.room_id) index.commit() async def commit_events(self): loop = asyncio.get_event_loop() event_queue = self.event_queue if not event_queue: return self.event_queue = [] async with self.write_lock: write_func = partial( IndexStore.write_events, self.store, self.index, event_queue ) await loop.run_in_executor(None, write_func) def event_in_store(self, event_id, room_id): return self.store.event_in_store(event_id, room_id) async def search( self, search_term, # type: str room=None, # type: Optional[str] max_results=10, # type: int order_by_recent=False, # type: bool include_profile=False, # type: bool before_limit=0, # type: int after_limit=0, # type: int ): # type: (...) -> Dict[Any, Any] """Search the indexstore for an event.""" loop = asyncio.get_event_loop() # Getting a searcher from tantivy may block if there is no searcher # available. To avoid blocking we set up the number of searchers to be # the number of CPUs and the semaphore has the same counter value. async with self.read_semaphore: searcher = self.index.searcher() search_func = partial( searcher.search, search_term, room=room, max_results=max_results, order_by_recent=order_by_recent, ) result = await loop.run_in_executor(None, search_func) load_event_func = partial( self.store.load_events, result, include_profile, order_by_recent, before_limit, after_limit, ) search_result = await loop.run_in_executor(None, load_event_func) search_result["count"] = len(search_result["results"]) search_result["highlights"] = [] return search_result else: INDEXING_ENABLED = False
[ "poljar@termina.org.uk" ]
poljar@termina.org.uk
3f3ae230f286e6f217bdaf35e1ea3c4fe7b84beb
b5c01c72929a2ee1dbe75fd57ff1850be2cdc542
/Hackerrank/Fibonacci/Solution.py
28c3db56f79f0ec845b2e79e57e975bbc035b635
[]
no_license
AnishM-8353/Coding_Questions_Hacktober21
9adc24298015f53aa0eea4c3e9269a8b18273ea9
5226f8001e6b9f388be671507e416b921b4f0d0d
refs/heads/main
2023-07-18T20:50:41.810143
2021-10-02T13:12:08
2021-10-02T13:12:08
412,789,563
0
0
null
2021-10-02T12:27:17
2021-10-02T12:27:16
null
UTF-8
Python
false
false
95
py
def fibonacci(n): if n is 0 or n is 1: return n return fibonacci(n - 1) + fibonacci(n - 2)
[ "noreply@github.com" ]
AnishM-8353.noreply@github.com
6164509e800a06dda453b4292ea669f5ee00614d
3ed89d8a9b626a383cf3aa40fe4c9e03c92eb35c
/pycodeexec/languages.py
261a90997543e154f217c4498d913093c1da1f19
[]
no_license
3jackdaws/pycodeexec
0644b186556fc10171baad90572c11f7721940ca
bc073075f7cf3e2af2cce330597ae57a29ec5066
refs/heads/master
2020-04-08T05:56:02.162418
2018-11-26T07:26:13
2018-11-26T07:26:13
159,079,238
0
0
null
null
null
null
UTF-8
Python
false
false
1,232
py
LANGUAGES = { "python": { "aliases": [ ], "versions": { "default": { "image": "python", "tag": "alpine", "command": 'python -c "{}"' }, "3.6": { "tag": "3.6-alpine" }, "2": { "tag": "2.7-alpine" } } }, "javascript": { "aliases": [ "js", "node", "nodejs" ], "versions": { "default": { "image": "node", "tag": "alpine", "command": 'node -e "{}"' }, } }, "ruby": { "aliases": [ "rb" ], "versions": { "default": { "image": "ruby", "tag": "alpine", "command": 'ruby -e "{}"' } } }, "c": { "aliases":[], "versions": { "default":{ "image": "frolvlad/alpine-gxx", "tag":"latest", "command":'sh -c \'echo "{}"|gcc -w -xc -o p - >/dev/null && chmod 700 p && ./p\'' } } } }
[ "3jackdaws@gmail.com" ]
3jackdaws@gmail.com
893240ec55751856141e0876c160e926e05aadf2
d6458a979207e00da6dc653c278b9bfb818ce18d
/Additional Stuff/Medium Stuff/Classes/Inheritance/Polymorphism/animals.py
0456abd6253f6846ad767427f47eded1419f4eff
[]
no_license
Hackman9912/05-Python-Programming
61ce7bb48188b4cd3cd8e585480325fdd02e579b
d03a319c952794b2f298a3ef4ddd09c253e24d36
refs/heads/master
2020-08-29T14:28:48.403323
2019-12-18T21:30:55
2019-12-18T21:30:55
218,061,276
0
0
null
2019-10-28T14:07:31
2019-10-28T14:07:31
null
UTF-8
Python
false
false
1,465
py
# The mammal class represents a generic mammal import time class Mammal: # The __init__ method accepts an argument for the mammals' species def __init__(self, species): self.__species = species # The show_species method displays a message indicating the mammals species def show_species(self): print('I am a', self.__species) # The make_sound method is the mammals way of making a generic sound def make_sound(self): print('Grrrrr') # The Dog class is a subclass of the Mammal class class Dog(Mammal): # The __init__ method calls the superclass's __init__ method passing Dog as the species def __init__(self): Mammal.__init__(self, 'Dog') # The make_sound method overrides the superclass's make_sound method def make_sound(self): print('Woof! Woof!') # The Cat class is a subclass of the Mammal class class Cat(Mammal): # The __init__ method calls the superclass's __init__ method passing Cat as the species def __init__(self): Mammal.__init__(self, 'Cat') # The make_sound method overrides the superclass's make_sound method def make_sound(self): print('Meow') # Define the main function def main(): mammal = Mammal('Bigfoot') mammal.show_species() mammal.make_sound() time.sleep(1) cat = Cat() cat.show_species() cat.make_sound() time.sleep(1) dog = Dog() dog.show_species() dog.make_sound() main()
[ "charleshackett89@gmail.com" ]
charleshackett89@gmail.com
fc262677dbd8e943479ae62b5a88260d2b44f1e0
fb936b0a98a6b54eb067e2aade2fde808615c901
/PeptideSequencingFunctions.py
f8c641dd3aa8af0c495a0bcb87e48ba2bf918618
[]
no_license
jmmichaud/BioinfoTools
e71bd4b89072d34efaa31703c947cbab5606c256
7b3040c9582530494009e072c2950d461fdb254b
refs/heads/master
2020-04-09T01:03:40.663127
2019-04-11T03:45:11
2019-04-11T03:45:11
159,890,489
1
0
null
null
null
null
UTF-8
Python
false
false
85,950
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue May 22 13:41:22 2018 @author: jennifermichaud """ import copy import collections import numpy as np def GenerateCycloSubstrings(proteinseq): """Inputs protein sequence of a cyclic peptide using single letter amino acid code. Outputs all possible substrings that would be generated by mass spectrometry includes empty frag('') and intact string. """ substrings = [''] doubleprotein = proteinseq + proteinseq l = 1 for i in range(1,len(proteinseq)): #i is size of fragment proteinlen = len(proteinseq) + i - l #accounts for reducing overlap as i increases l += 1 for j in range(0,proteinlen): #generates all frags of size i tempstring = doubleprotein[j:j+i] substrings.append(tempstring) substrings.append(proteinseq) return substrings def SubstringCycloMasses(proteinseq): """Inputs protein sequence using single letter amino acid code. Outputs list of integer masses of expected mass spec fragments (all possible substrings of inputted protein sequence including empty fragment and intact peptide).""" tempmass = 0 substringmasses = [] AAtoMassdict = {'': 0, 'A': 71, 'C': 103, 'D': 115, 'E': 129, 'F': 147, 'G': 57, 'H': 137, 'I': 113, 'K': 128, 'L': 113, 'M': 131, 'N': 114, 'P': 97, 'Q': 128, 'R': 156, 'S': 87, 'T': 101, 'V': 99, 'W': 186, 'Y': 163} substringlist = GenerateCycloSubstrings(proteinseq) for string in substringlist: if string == '': substringmasses.append(AAtoMassdict[string]) else: for i in range(0,len(string)): tempmass += AAtoMassdict[string[i]] substringmasses.append(tempmass) tempmass = 0 substringmasses.sort() return substringmasses def GenerateLinearSubstrings(proteinseq): """Inputs protein sequence of a cyclic peptide and outputs all possible substrings that would be generated by mass spectrometry includes empty frag('') and intact string""" substrings = [''] l = 1 for i in range(1,len(proteinseq)): #i is size of fragment proteinlen = len(proteinseq) + i - l #accounts for reducing overlap as i increases l += 1 for j in range(0, proteinlen): #generates all frags of size i tempstring = proteinseq[j:j+i] if len(tempstring) == i: substrings.append(tempstring) substrings.append(proteinseq) return substrings def SubstringLinearMasses(proteinseq): """inputs protein sequence and outputs list of integer masses of expected mass spec fragments (all possible substrings of inputted protein sequence including empty frag and intact peptide)""" tempmass = 0 substringmasses = [] AAtoMassdict = {'': 0, 'A': 71, 'C': 103, 'D': 115, 'E': 129, 'F': 147, 'G': 57, 'H': 137, 'I': 113, 'K': 128, 'L': 113, 'M': 131, 'N': 114, 'P': 97, 'Q': 128, 'R': 156, 'S': 87, 'T': 101, 'V': 99, 'W': 186, 'Y': 163} substringlist = GenerateLinearSubstrings(proteinseq) for string in substringlist: if string == '': substringmasses.append(AAtoMassdict[string]) else: for i in range(0,len(string)): tempmass += AAtoMassdict[string[i]] substringmasses.append(tempmass) tempmass = 0 substringmasses.sort() return substringmasses ## TEST DATA #protein_in = 'LEQN' #protein_in = 'YKVRLRCFHFSTEY' #protein_in = 'AHEWMFVKDGNE' # # #protein_in = 'FFNDGPHVRQIPQYAVSQASATYGRVCMIGVDPIGFWMCKDRQWAMAQPS' #print("Cyclospectrum") #print(" ".join(GenerateCycloSubstrings(protein_in))) #print(" ".join(list(map(str, SubstringCycloMasses(protein_in))))) # #print("Linearspectrum") #print(" ".join(GenerateLinearSubstrings(protein_in))) #print(" ".join(list(map(str, SubstringLinearMasses(protein_in))))) def CalcAAFragMass(frag): """Inputs an amino acid fragment, and outputs its integer mass. """ AAtoMassdict = {'': 0, 'A': 71, 'C': 103, 'D': 115, 'E': 129, 'F': 147, 'G': 57, 'H': 137, 'I': 113, 'K': 128, 'L': 113, 'M': 131, 'N': 114, 'P': 97, 'Q': 128, 'R': 156, 'S': 87, 'T': 101, 'V': 99, 'W': 186, 'Y': 163} mass = 0 for AA in frag: mass += AAtoMassdict[AA] return mass def Countfrags(peptidelength): """Inputs linear peptide length (peptidelength). Outputs number of fragments that can be generated. """ nfrags = peptidelength + 1 L = peptidelength - 1 while L > 0: nfrags += L L -= 1 return nfrags #print(Countfrags(1024)) def RemoveListDuplicates(listoflists): """Inputs a list of list of numbers and outputs a list with duplicates removed""" removedups = [] for slist in listoflists: removedups.append(" ".join(list(map(str, slist)))) removedups = set(removedups) removedups = list(removedups) correctedlist = [] for dlist in removedups: temp = list(map(int, dlist.split(' '))) correctedlist.append(temp) return correctedlist def Cyclize(linkedspectralist): """Inputs a list of ordered integer masses (linkedspectralist) representing peptides. Outputs all cyclic versions of the inputted masses as a list of lists. """ cyclizelist = [] L = len(linkedspectralist[0]) for peptide in linkedspectralist: cyclizelist.append(peptide) for i in range(1,L): cyclist = peptide[i:] cyclist.extend(peptide[:i]) cyclizelist.append(cyclist) return cyclizelist def SimpleCyclopeptideSequencing(spectrum): """Inputs a list of integer masses as that represent a mass spectrum. Outputs list of potential peptides represented by the mass spectrum using single letter AA codes. """ peptides = [] AAs = [] parentmass = max(spectrum) looper = 0 AAmasslist = [57, 71, 87, 97, 99, 101, 103, 113, 114, 115, 128, 129, 131, 137, 147, 156, 163, 186] if 0 in spectrum: #remove 0 from spectrum spectrum.remove(0) for mass in AAmasslist: #Build monopeptide list and start peptides list if mass in spectrum: peptides.append([mass]) AAs.append(mass) #generate strings consistent with spectra, add all possibilitiess from #monopeptide/AA list and then remove combinations whose mass isn't #consistent with the spectra duppeps = copy.deepcopy(peptides) peptides = [] for AA in AAs: # generate dipeptides subcopy = copy.deepcopy(AAs) for i in range(len(duppeps)): for frag in duppeps[i]: subcopy.remove(frag) if AA in subcopy: templist = copy.deepcopy(duppeps[i]) templist.append(AA) peptides.append(templist) subcopy = copy.deepcopy(AAs) peppeps = copy.deepcopy(peptides) for j in range(len(peppeps)): #remove dipeptides not consistent with mass in spectra sumpeps = sum(peppeps[j]) if sumpeps not in spectrum and sumpeps != parentmass: peptides.remove(peppeps[j]) if sumpeps == parentmass: looper += 1 # while the parentmass is not reached combine peptides consistent with mass #in spectrum to generate new peptide list and overlap excluding the first #element of one fragment and last element of another fragment. b=0 L=2 while looper == 0: print(b) b += 1 peptidesolve = [] for j in range(len(peptides)): for k in range(len(peptides)): if len(peptides[j]) == len(peptides[k]): if peptides[j][1:] == peptides[k][:-1]: plist = peptides[j][:] plist.append(peptides[k][-1]) if sum(plist) in spectrum: peptidesolve.append(plist) if sum(plist) == parentmass: #when sum of frags equals parent mass then looper is increased to break loop peptidesolve.append(plist) looper += 1 L += 1 #length of peptide increases with each loop biggestlist = [] dupps = copy.deepcopy(peptidesolve) for pep in dupps: if len(pep) == L: biggestlist.append(pep[:]) peptides = copy.deepcopy(biggestlist) peptides = RemoveListDuplicates(peptides) #remove duplicate peptides cyclicpeptides = Cyclize(peptides) #generate cyclized version of peptides outputlist = [] for cycle in cyclicpeptides: outputlist.append("-".join(list(map(str, cycle)))) return " ".join(outputlist) ##TEST DATA #Spectrum_in = '0 113 128 186 241 299 314 427' #Spectrum_in = '0 71 97 99 103 113 113 114 115 131 137 196 200 202 208 214 226 227 228 240 245 299 311 311 316 327 337 339 340 341 358 408 414 424 429 436 440 442 453 455 471 507 527 537 539 542 551 554 556 566 586 622 638 640 651 653 657 664 669 679 685 735 752 753 754 756 766 777 782 782 794 848 853 865 866 867 879 885 891 893 897 956 962 978 979 980 980 990 994 996 1022 1093' #Spectrum_in = [0, 113, 114, 128, 129, 227, 242, 242, 257, 355, 356, 370, 371, 484] Spectrum_in ='0 113 113 114 128 128 186 186 186 227 241 242 299 299 314 314 355 355 372 413 427 427 468 485 500 500 541 541 541 613 613 613 654 654 669 686 727 727 741 782 799 799 840 840 855 855 912 913 927 968 968 968 1026 1026 1040 1041 1041 1154' # Spectrum_in = list(map(int, Spectrum_in.split(" "))) # answer = SimpleCyclopeptideSequencing(Spectrum_in) print(answer) def CycloPeptideScoring(peptideseq, spectrum): """Inputs a cyclic peptide as an AA string (petideseq) and mass spectra as a list of integers (spectrum). Outputs the score of the peptide against the spectrum. Each match of spectrum to a theorectical spectrum generated from the peptide sequence yields one point. """ if peptideseq == []: return 0 else: theoreticalspectrum = SubstringCycloMasses(peptideseq) score = 0 for spec in spectrum: if spec in theoreticalspectrum: score += 1 theoreticalspectrum.remove(spec) return score def LinearPeptideScoring(peptideseq, Spectrum): """ Inputs a peptide as an AA string and mass spectra as a list of integers. Outputs the score of the peptide against the spectrum Each match of Spectrum to THeorectical spectrum yields one point.""" if peptideseq == []: return 0 else: theoreticalspectrum = SubstringLinearMasses(peptideseq) Score = 0 for spec in Spectrum: if spec in theoreticalspectrum: Score += 1 theoreticalspectrum.remove(spec) return Score #peptide_in = 'NQEL' #Spectrum_in = "0 99 113 114 128 227 257 299 355 356 370 371 484" #Spectrum_in = list(map(int, Spectrum_in.split(" "))) #peptide_in = 'PEEP' #Spectrum_in = "0 97 97 97 100 129 194 226 226 226 258 323 323 355 393 452" #Spectrum_in = list(map(int, Spectrum_in.split(" "))) #peptide_in ='QSSLNFQENVEYSVRNDFSDCIVSGQNEVRVAYYTADANGNPSHTMS' #Spectrum_in = '0 57 71 71 71 87 87 87 87 87 87 97 99 99 99 99 101 101 103 113 113 113 113 113 114 114 114 114 114 115 115 128 128 128 129 129 131 137 137 144 147 147 156 156 156 163 163 163 171 172 174 184 186 186 186 200 200 212 212 213 215 216 218 218 224 227 227 227 228 228 229 232 234 236 238 241 243 243 244 250 251 255 255 257 257 257 258 262 264 269 269 270 275 275 285 287 292 299 302 314 315 315 319 325 326 328 328 331 335 337 340 340 340 342 342 342 347 349 350 356 357 358 359 359 365 368 369 369 371 372 376 379 383 385 388 391 392 397 402 403 404 413 415 415 422 427 427 428 429 430 438 439 451 454 456 456 456 459 462 464 470 470 471 471 473 474 475 478 478 484 484 496 498 498 503 505 505 505 506 509 510 516 517 518 521 521 526 527 532 532 543 543 552 562 564 567 569 569 571 573 574 575 576 577 577 583 584 585 588 592 592 597 599 602 603 608 608 611 614 617 619 619 620 629 631 634 634 640 645 646 654 656 665 666 671 674 677 682 683 684 687 688 690 690 690 690 691 691 698 707 711 718 720 721 721 728 732 733 733 734 739 744 745 746 748 748 753 755 755 759 761 762 764 765 767 770 785 789 790 791 796 802 804 804 812 815 818 818 819 820 820 821 824 824 826 838 840 843 846 847 847 847 849 853 858 861 861 863 863 866 868 874 876 877 881 883 892 899 902 903 909 911 911 923 925 930 932 933 933 937 939 939 945 946 947 948 948 952 960 961 962 967 975 976 976 976 977 978 982 987 990 996 1003 1010 1012 1016 1023 1024 1024 1024 1032 1033 1036 1037 1038 1039 1046 1047 1047 1047 1048 1059 1059 1061 1074 1074 1076 1078 1079 1088 1089 1090 1093 1095 1095 1095 1095 1104 1107 1109 1110 1111 1117 1123 1124 1130 1135 1138 1146 1146 1149 1149 1150 1158 1160 1160 1161 1161 1161 1175 1183 1187 1188 1192 1194 1194 1196 1203 1205 1206 1208 1209 1209 1210 1218 1222 1223 1223 1231 1237 1237 1245 1245 1250 1251 1251 1251 1260 1263 1274 1275 1280 1282 1288 1289 1291 1296 1298 1302 1302 1307 1309 1312 1317 1320 1321 1322 1322 1323 1324 1324 1325 1331 1332 1333 1336 1338 1350 1352 1359 1364 1365 1367 1373 1374 1375 1378 1379 1381 1389 1397 1404 1408 1409 1411 1412 1413 1416 1423 1424 1426 1431 1435 1435 1438 1438 1445 1446 1449 1452 1463 1468 1474 1475 1475 1478 1480 1480 1486 1487 1488 1492 1493 1495 1503 1510 1511 1522 1530 1537 1537 1538 1539 1541 1544 1545 1545 1546 1551 1552 1553 1559 1564 1568 1576 1577 1577 1579 1587 1589 1591 1600 1601 1606 1608 1616 1617 1622 1624 1627 1631 1632 1636 1638 1638 1647 1651 1658 1659 1666 1666 1666 1667 1667 1667 1667 1678 1681 1690 1690 1692 1693 1703 1704 1707 1714 1714 1715 1721 1723 1724 1731 1737 1750 1754 1755 1760 1761 1766 1772 1777 1778 1780 1780 1780 1780 1780 1785 1794 1794 1795 1795 1801 1802 1805 1808 1815 1823 1827 1828 1828 1837 1839 1844 1851 1852 1853 1859 1865 1868 1876 1879 1885 1891 1894 1894 1895 1900 1902 1908 1908 1909 1914 1914 1915 1916 1917 1922 1936 1941 1942 1942 1947 1948 1955 1958 1965 1966 1967 1972 1973 1978 1999 2007 2007 2008 2008 2009 2014 2015 2016 2018 2023 2023 2028 2035 2042 2046 2047 2049 2051 2052 2055 2055 2062 2063 2070 2071 2071 2080 2086 2094 2106 2112 2120 2122 2122 2133 2134 2137 2139 2142 2145 2145 2146 2151 2152 2154 2159 2164 2165 2167 2170 2170 2172 2174 2177 2183 2183 2184 2185 2193 2199 2199 2230 2233 2235 2241 2244 2251 2254 2259 2265 2266 2267 2269 2270 2278 2279 2282 2283 2285 2286 2287 2289 2296 2298 2298 2298 2301 2306 2333 2336 2349 2356 2356 2357 2358 2369 2370 2377 2379 2380 2382 2383 2385 2386 2388 2395 2397 2400 2401 2402 2411 2412 2414 2421 2423 2426 2432 2434 2437 2470 2482 2482 2484 2485 2485 2487 2492 2498 2499 2505 2511 2513 2514 2514 2516 2516 2519 2519 2522 2524 2526 2533 2533 2535 2539 2540 2568 2569 2569 2584 2598 2598 2601 2604 2606 2613 2615 2620 2623 2626 2627 2629 2635 2643 2646 2648 2648 2653 2654 2655 2655 2656 2663 2682 2691 2691 2697 2698 2713 2716 2726 2736 2738 2740 2742 2747 2754 2756 2760 2761 2762 2762 2762 2767 2771 2783 2784 2790 2791 2811 2813 2827 2827 2839 2841 2841 2853 2854 2854 2861 2861 2867 2873 2875 2875 2877 2884 2890 2904 2910 2912 2918 2918 2941 2948 2950 2954 2954 2955 2955 2960 2970 2983 2988 2989 2990 2991 3003 3011 3017 3024 3031 3031 3040 3046 3051 3057 3069 3075 3078 3082 3085 3090 3097 3102 3102 3104 3111 3118 3125 3130 3145 3153 3159 3159 3169 3172 3177 3182 3189 3196 3198 3206 3212 3217 3230 3240 3244 3246 3254 3258 3265 3267 3268 3269 3272 3281 3305 3313 3325 3326 3329 3331 3333 3339 3343 3345 3357 3359 3380 3382 3382 3393 3396 3416 3427 3428 3430 3444 3444 3444 3446 3453 3453 3461 3482 3494 3495 3506 3509 3511 3517 3529 3531 3531 3556 3558 3574 3581 3582 3583 3593 3600 3607 3608 3609 3623 3639 3645 3645 3657 3668 3669 3680 3682 3694 3710 3714 3722 3722 3728 3736 3738 3756 3769 3770 3786 3801 3808 3813 3823 3831 3835 3836 3841 3843 3851 3857 3857 3866 3900 3900 3914 3922 3928 3932 3944 3949 3960 3965 3971 3979 3985 3987 4013 4015 4027 4036 4059 4061 4063 4072 4078 4093 4098 4114 4126 4141 4143 4150 4160 4165 4173 4185 4192 4201 4206 4240 4254 4254 4272 4274 4279 4291 4293 4302 4329 4341 4353 4367 4368 4378 4400 4403 4405 4428 4430 4440 4454 4481 4481 4492 4531 4534 4541 4556 4568 4568 4577 4594 4621 4655 4662 4669 4678 4681 4681 4705 4749 4768 4768 4783 4806 4809 4818 4855 4896 4896 4905 4919 4937 4983 4992 5006 5024 5050 5093 5120 5137 5137 5221 5224 5224 5311 5352 5439' # #Spectrum_in = list(map(int, Spectrum_in.split(" "))) #print(CycloPeptideScoring(peptide_in, Spectrum_in)) #print(LinearPeptideScoring(peptide_in, Spectrum_in)) def GenerateCycloSpectra(peptidemasses): """Inputs a list of integer masses (min 2 fragments) of a cyclic peptide. Outputs the expanded spectra (sums of adjacent fragments) as a list of masses. """ expandedspectra = [] L = len(peptidemasses) for peptide in peptidemasses: expandedspectra.append(peptide) expandedspectra.append(sum(peptidemasses)) i = 2 while i < L: # print(L) for n in range(L): mass = peptidemasses[n:n+i] # print(mass) # print(len(mass)) if len(mass) < i: # print("short") mass = peptidemasses[n:] # print(mass) frontneeded = i - len(mass) # print(frontneeded) mass.extend(peptidemasses[:frontneeded]) # print(mass) masssum = sum(mass) expandedspectra.append(masssum) # print(mass) # print(masssum) # for n in range(L): # try: # mass = peptidemasses[n:n+i] # masssum = sum(mass) # expandedspectra.append(masssum) # except: # print("except") # mass = peptidemasses[n:] # frontneeded = L - len(mass) + 1 # mass.extend(peptidemasses[:frontneeded]) # masssum = sum(mass) # expandedspectra.append(masssum) # print(mass) # print(masssum) i += 1 expandedspectra.sort() return expandedspectra def GenerateLinearSpectra(peptidemasses): """Inputs a list of integer masses (min 2 fragments) of a linear peptide. Outpus the expanded spectra (sums of adjacent fragments) as a list of masses""" expandedspectra = [] L = len(peptidemasses) for peptide in peptidemasses: expandedspectra.append(peptide) expandedspectra.append(sum(peptidemasses)) i = 2 while i < L: # print(L) for n in range(L): mass = peptidemasses[n:n+i] # print(mass) # print(len(mass)) if len(mass) == i: masssum = sum(mass) expandedspectra.append(masssum) i += 1 expandedspectra.sort() return expandedspectra #peptidemasses_in = [71, 113, 129] #print(GenerateLinearSpectra(peptidemasses_in)) def PeptideCycloScoring(peptideseq, spectrum): """Inputs a cyclic peptide (peptideseq) as a list of integers and mass spectra (spectrum) as a list of integers. Outputs the score of the peptide spectrum generated from peptideseq against the inputted spectrum. Each match of the peptide generated spectrum to the inputted spectrum yields one point. """ # MasstoAAdict = {0: '', 57: 'G', 71: 'A', 87: 'S', 97: 'P', 99: 'V', 101: 'T', 103: 'C', 113: '(I/L)', 114: 'N', 115: 'D', 128: '(K/Q)', 129: 'E', 131: 'M', 137: 'H', 147: 'F', 156: 'R', 163: 'Y', 186: 'W'} if peptideseq == []: return 0 else: peptidemasses = GenerateCycloSpectra(peptideseq) score = 0 # print(peptidemasses) specdup = copy.deepcopy(spectrum) for spec in peptidemasses: # print(spec) if spec in specdup: # print(spectrum) score += 1 # print("Score") # print(score) specdup.remove(spec) #remove mass from spectrum to avoid duplicates return score def PeptideLinearScoring(peptideseq, spectrum): """Inputs a linear peptide as a list of integers (peptideseq) and mass spectra as a list of integers (spectrum). Outputs the score of the peptide generated spectrum against the inputted spectrum. Each match of the peptide generated spectrum to the inputted spectrum yields one point. """ # MasstoAAdict = {0: '', 57: 'G', 71: 'A', 87: 'S', 97: 'P', 99: 'V', 101: 'T', 103: 'C', 113: '(I/L)', 114: 'N', 115: 'D', 128: '(K/Q)', 129: 'E', 131: 'M', 137: 'H', 147: 'F', 156: 'R', 163: 'Y', 186: 'W'} if peptideseq == []: return 0 else: peptidemasses = GenerateLinearSpectra(peptideseq) score = 0 # print(peptidemasses) specdup = copy.deepcopy(spectrum) for spec in peptidemasses: # print(spec) if spec in specdup: # print(Spectrum) score += 1 # print("Score") # print(score) specdup.remove(spec) #remove mass from spectrum to avoid duplicates return score def TrimPeptideLeaderboard(leaderboard, spectrum, N): """Inputs a list of lists of candidate peptides for an unknown peptide as a leaderboard for the spectrum of the unknown peptide. Outputs candidate peptides with N number of top scores. """ # print(leaderboard) toppeptides = [] scoredict = {} scorelist = [] scoreset = [] for peptide in leaderboard: # print(peptide) peptidejoin = ' '.join(list(map(str, peptide))) peptidescore = PeptideLinearScoring(peptide, spectrum) # if type(peptide) == list: ## print(peptide) scoredict[peptidejoin] = peptidescore scorelist.append(peptidescore) scoreset.append(peptidescore) # print(scoredict) scoredict = collections.OrderedDict(scoredict) scoredict = sorted(scoredict.items(), key=lambda t: t[1], reverse = True) # print(scoredict) scorelist.sort(reverse= True) scoreset = list(set(scoreset)) scoreset.sort(reverse= True) # print(scoreset) #Find number of items you need from dictionary (C) for top N scores including ties #create dictionary, countdict to count number of each score countdict = {} for sco in scorelist: if sco in countdict: countdict[sco] += 1 else: countdict[sco] = 1 # print(countdict) #Use set of scores and countdict to determine the number,C, of topscores to take Z = 0 C = 0 for sc in scoreset: Z += countdict[sc] if Z >= N: C = Z break if C != Z: C = Z # print(C) L = 0 for pep in scoredict: if L < C: toppeptide = pep[0] if ' ' in toppeptide: toppeptide = list(map(int, toppeptide.split(" "))) else: toppeptide = [int(toppeptide)] toppeptides.append(toppeptide) L += 1 # print(toppeptides) return toppeptides #leaderboard_in = ['LAST', 'ALST', 'TLLT', 'TQAS'] #Spectrum_in = '0 71 87 101 113 158 184 188 259 271 372' #N_in = 2 #leaderboard_in = 'IWAEQEMNHTEASPRRLTYHWSVAWFWEAFEYTYQADCM APFHLEMAVVDSWKYVTKNTYGEMMRATIIASEDDEMDT RCSIYGKFFVTYHHESMTIFIFEHDIHKYGQMFSIPLGE GDYMQKENDHPHETTQLWSCWWIPCWDCGTCLDKMHQST CTQMSWSTSRLFLSHLDDEWVEFYMKWDEVTVCAGVTPL FQCRAGVVIPVMTFCERGALMQGRAHDPDFLDANMQKEM RNSCKTAYIQHLHKQEKMVQLRNQSDHHHWEHDGRVIKP EINLHGGENMNTTKDTVVRQYTFFKSPIVKFCVGHHCSC DGHYGPNQGLPWRNIRYIKIGFDESMLMFGESEEKIPPK VMGKFMIGARQAPCPLQQPAGGEGLPFRIGQQKIEMNWC WVCIYHIMDQSYRGNPALLKLKWNDWRDRICGKPNKDWL LVAIPYYWQYYWAETYYNTADAWSPEVCISFSPDMNTTD NLFYDGMAQPLGFFCIHRYRRLYMRHNQVYAGNTKQWQN PVQVPHINQCEFQHCNWEDLNQWVDECNEMCLCWTMWHK HRVFWHLEMCKPQTRNIFFHVGNMSSCFQSMETIHKRFG QVCICEFHEYKWCIYHRFKWEKMYDYNWVKEFNFTWCTY PKKHKGHTTATVACKKFEIHKDPEMFEFGEYFDKNYLES KERFHIVVACQLQCFIYMQASYKDAYAMFHNHLHGVRWK' #Spectrum_in = '0 57 71 71 71 71 87 97 97 97 99 99 99 101 101 103 113 113 114 114 128 128 128 128 129 129 129 129 129 129 129 131 137 137 147 147 163 163 168 170 184 185 185 185 186 186 186 210 211 214 215 218 224 225 226 226 227 228 228 230 236 241 250 256 257 257 258 260 262 264 266 276 276 276 281 282 282 286 289 298 299 300 313 314 314 315 317 323 332 338 339 342 343 347 351 353 354 356 356 357 364 365 373 377 378 385 385 387 391 395 399 399 405 405 410 413 420 429 429 436 439 442 442 443 446 449 451 461 462 465 467 471 476 484 484 484 485 485 486 486 488 490 496 500 502 506 519 524 528 528 528 533 536 541 543 549 550 557 558 562 568 568 571 571 583 587 590 590 598 599 602 603 613 614 615 618 619 621 622 625 627 629 637 646 647 647 649 656 657 659 661 670 671 671 673 686 687 697 698 699 700 701 704 708 712 715 715 716 716 718 720 744 746 747 750 756 758 772 772 774 775 784 784 785 785 786 787 788 789 799 800 800 807 815 827 828 829 829 833 841 844 844 844 847 849 849 871 872 875 883 884 884 885 885 887 900 900 901 901 901 903 913 913 918 935 936 941 943 946 955 957 962 970 970 970 972 973 975 982 986 988 1000 1002 1012 1012 1012 1012 1013 1013 1014 1014 1015 1017 1022 1028 1032 1054 1064 1069 1070 1071 1071 1073 1083 1086 1086 1099 1099 1099 1104 1109 1110 1111 1111 1115 1117 1125 1129 1131 1140 1141 1141 1142 1149 1151 1157 1159 1161 1165 1180 1183 1185 1198 1199 1200 1200 1201 1228 1228 1236 1236 1239 1239 1240 1243 1246 1248 1252 1254 1256 1258 1264 1269 1269 1269 1270 1278 1288 1290 1294 1296 1299 1314 1314 1317 1326 1327 1335 1337 1340 1365 1367 1368 1368 1369 1375 1377 1385 1385 1386 1387 1387 1389 1391 1393 1397 1398 1399 1406 1425 1431 1446 1451 1454 1455 1462 1464 1466 1469 1474 1488 1490 1493 1496 1496 1498 1498 1499 1500 1500 1502 1503 1505 1515 1522 1528 1545 1545 1553 1560 1571 1572 1583 1584 1590 1592 1595 1595 1599 1599 1600 1601 1603 1614 1616 1616 1627 1630 1632 1633 1635 1643 1657 1659 1674 1682 1685 1685 1690 1701 1712 1713 1719 1720 1724 1727 1728 1728 1729 1729 1730 1731 1732 1742 1755 1756 1763 1772 1777 1784 1786 1788 1798 1802 1802 1811 1819 1826 1827 1827 1842 1850 1856 1856 1857 1859 1861 1871 1871 1873 1883 1889 1895 1897 1898 1906 1913 1915 1916 1930 1940 1948 1949 1954 1955 1958 1970 1972 1984 1986 1987 1994 2000 2008 2013 2024 2026 2029 2035 2036 2041 2041 2043 2044 2052 2069 2083 2084 2085 2086 2095 2098 2101 2114 2123 2123 2137 2139 2140 2141 2143 2154 2155 2166 2169 2170 2171 2173 2182 2198 2211 2212 2213 2214 2214 2226 2238 2240 2251 2252 2253 2269 2270 2272 2276 2280 2282 2284 2299 2300 2310 2311 2339 2340 2342 2345 2351 2355 2367 2375 2377 2379 2380 2399 2399 2400 2400 2401 2413 2416 2436 2439 2439 2446 2448 2464 2468 2471 2479 2484 2500 2503 2508 2514 2517 2527 2528 2530 2535 2560 2565 2565 2568 2570 2576 2586 2597 2613 2627 2629 2631 2631 2631 2642 2655 2656 2657 2689 2694 2694 2698 2699 2702 2705 2712 2728 2739 2741 2742 2744 2745 2756 2757 2760 2784 2799 2815 2816 2823 2836 2838 2841 2841 2841 2842 2859 2868 2870 2870 2885 2885 2912 2913 2913 2929 2942 2967 2967 2970 2970 2970 2984 2988 2998 2998 2999 3022 3026 3026 3041 3055 3071 3095 3096 3097 3098 3099 3117 3123 3125 3126 3155 3183 3184 3185 3188 3194 3200 3223 3224 3227 3246 3252 3280 3284 3288 3302 3312 3313 3317 3323 3347 3352 3355 3387 3399 3409 3409 3413 3418 3431 3441 3460 3470 3483 3516 3528 3531 3532 3538 3538 3540 3541 3588 3599 3629 3644 3645 3659 3667 3669 3669 3685 3700 3726 3742 3756 3772 3773 3798 3813 3814 3829 3855 3870 3870 3885 3941 3945 3958 3967 3984 3999 4016 4038 4087 4096 4130 4131 4167 4202 4227 4234 4298 4305 4316 4413 4419 4484 4516 4587' #N_in = 6 # #leaderboard_in = leaderboard_in.split(" ") #Spectrum_in = list(map(int, Spectrum_in.split(" "))) ## #print(' '.join(TrimPeptideLeaderboard(leaderboard_in, Spectrum_in, N_in))) #leaderboard_in = [[57, 57], [71, 57], [87, 57], [97, 57], [99, 57], [101, 57], [103, 57], [113, 57], [114, 57], [115, 57], [128, 57], [129, 57], [131, 57], [137, 57], [147, 57], [156, 57], [163, 57], [186, 57], [57, 71], [71, 71], [87, 71], [97, 71], [99, 71], [101, 71], [103, 71], [113, 71], [114, 71], [115, 71], [128, 71], [129, 71], [131, 71], [137, 71], [147, 71], [156, 71], [163, 71], [186, 71], [57, 87], [71, 87], [87, 87], [97, 87], [99, 87], [101, 87], [103, 87], [113, 87], [114, 87], [115, 87], [128, 87], [129, 87], [131, 87], [137, 87], [147, 87], [156, 87], [163, 87], [186, 87], [57, 97], [71, 97], [87, 97], [97, 97], [99, 97], [101, 97], [103, 97], [113, 97], [114, 97], [115, 97], [128, 97], [129, 97], [131, 97], [137, 97], [147, 97], [156, 97], [163, 97], [186, 97], [57, 99], [71, 99], [87, 99], [97, 99], [99, 99], [101, 99], [103, 99], [113, 99], [114, 99], [115, 99], [128, 99], [129, 99], [131, 99], [137, 99], [147, 99], [156, 99], [163, 99], [186, 99], [57, 101], [71, 101], [87, 101], [97, 101], [99, 101], [101, 101], [103, 101], [113, 101], [114, 101], [115, 101], [128, 101], [129, 101], [131, 101], [137, 101], [147, 101], [156, 101], [163, 101], [186, 101], [57, 103], [71, 103], [87, 103], [97, 103], [99, 103], [101, 103], [103, 103], [113, 103], [114, 103], [115, 103], [128, 103], [129, 103], [131, 103], [137, 103], [147, 103], [156, 103], [163, 103], [186, 103], [57, 113], [71, 113], [87, 113], [97, 113], [99, 113], [101, 113], [103, 113], [113, 113], [114, 113], [115, 113], [128, 113], [129, 113], [131, 113], [137, 113], [147, 113], [156, 113], [163, 113], [186, 113], [57, 114], [71, 114], [87, 114], [97, 114], [99, 114], [101, 114], [103, 114], [113, 114], [114, 114], [115, 114], [128, 114], [129, 114], [131, 114], [137, 114], [147, 114], [156, 114], [163, 114], [186, 114], [57, 115], [71, 115], [87, 115], [97, 115], [99, 115], [101, 115], [103, 115], [113, 115], [114, 115], [115, 115], [128, 115], [129, 115], [131, 115], [137, 115], [147, 115], [156, 115], [163, 115], [186, 115], [57, 128], [71, 128], [87, 128], [97, 128], [99, 128], [101, 128], [103, 128], [113, 128], [114, 128], [115, 128], [128, 128], [129, 128], [131, 128], [137, 128], [147, 128], [156, 128], [163, 128], [186, 128], [57, 129], [71, 129], [87, 129], [97, 129], [99, 129], [101, 129], [103, 129], [113, 129], [114, 129], [115, 129], [128, 129], [129, 129], [131, 129], [137, 129], [147, 129], [156, 129], [163, 129], [186, 129], [57, 131], [71, 131], [87, 131], [97, 131], [99, 131], [101, 131], [103, 131], [113, 131], [114, 131], [115, 131], [128, 131], [129, 131], [131, 131], [137, 131], [147, 131], [156, 131], [163, 131], [186, 131], [57, 137], [71, 137], [87, 137], [97, 137], [99, 137], [101, 137], [103, 137], [113, 137], [114, 137], [115, 137], [128, 137], [129, 137], [131, 137], [137, 137], [147, 137], [156, 137], [163, 137], [186, 137], [57, 147], [71, 147], [87, 147], [97, 147], [99, 147], [101, 147], [103, 147], [113, 147], [114, 147], [115, 147], [128, 147], [129, 147], [131, 147], [137, 147], [147, 147], [156, 147], [163, 147], [186, 147], [57, 156], [71, 156], [87, 156], [97, 156], [99, 156], [101, 156], [103, 156], [113, 156], [114, 156], [115, 156], [128, 156], [129, 156], [131, 156], [137, 156], [147, 156], [156, 156], [163, 156], [186, 156], [57, 163], [71, 163], [87, 163], [97, 163], [99, 163], [101, 163], [103, 163], [113, 163], [114, 163], [115, 163], [128, 163], [129, 163], [131, 163], [137, 163], [147, 163], [156, 163], [163, 163], [186, 163], [57, 186], [71, 186], [87, 186], [97, 186], [99, 186], [101, 186], [103, 186], [113, 186], [114, 186], [115, 186], [128, 186], [129, 186], [131, 186], [137, 186], [147, 186], [156, 186], [163, 186], [186, 186]] #Spectrum_in = '0 71 113 129 147 200 218 260 313 331 347 389 460' # #N_in = 10 #Spectrum_in = list(map(int, Spectrum_in.split(" "))) #print(TrimPeptideLeaderboard(leaderboard_in, Spectrum_in, N_in)) # I think this currently isn't working for these example data because I #likely adapted code to accept peptide spectra as masses not a single code AA peptide sequences as is in the examples. # it seems to work fine when called within other functions. def LeaderboardCyclopeptideSequencing(spectrum, N): """Inputs an integer (N) and a cyclopeptide spectrum as list of integer masses. Outputs a top scoring peptide as a list of integer masses which is the result of iterative building of a leaderboard spectrum list and trimming to keep entries with N top scores against the original spectrum. It is an efficient algorithm as it trims the list each iteration. """ leaderboard = [] leaderpeptide = [] # peptides = [] parentmass = max(spectrum) looper = 0 AAmasslist = [57, 71, 87, 97, 99, 101, 103, 113, 114, 115, 128, 129, 131, 137, 147, 156, 163, 186] if 0 in spectrum: #remove 0 from spectrum spectrum.remove(0) monocount = 0 for spec in spectrum: # the peptide sequence should be as long as monopeptides present in spectra (unless it is missing from spectra) if spec <= 186: monocount += 1 for mass in AAmasslist: #Build monopeptide list and start peptides list uses all AAs in case it is missing from spectra leaderboard.append([mass]) # print(leaderboard) # leaderboard = Trim(leaderboard, Spectrum, N) # print(leaderboard) # b=0 while looper == 0: #generate strings consistent with spectra, add all possibilitiess from monopeptide/AA list and then remove combinations whose mass isn't consistent with the spectra # print(b) # b += 1 duppeps = copy.deepcopy(leaderboard) leaderboard = [] for AA in AAmasslist: # generate extended peptides and add to leaderboard # subcopy = copy.deepcopy(Spectrum) for i in range(len(duppeps)): # for frag in duppeps[i]: # subcopy.remove(frag) templist = copy.deepcopy(duppeps[i]) templist.append(AA) leaderboard.append(templist) # print(leaderboard) # leaderboard = Trim(leaderboard, Spectrum, N) leadups = copy.deepcopy(leaderboard) for dup in leadups: # check peptide sum, if sum equal parent mass spectra reached. If it is greater than parent mass, remove. if sum(dup) == parentmass: # print(dup) # print(sum(dup)) # print(parentmass) if len(dup) >= monocount: #if number of AA in peptide reached (monocount) looper is increased to break loop. looper += 1 if PeptideCycloScoring(dup, spectrum) > PeptideCycloScoring(leaderpeptide, spectrum): leaderpeptide = copy.deepcopy(dup) elif sum(dup) > parentmass: leaderboard.remove(dup) # print(leaderboard) leaderboard = TrimPeptideLeaderboard(leaderboard, spectrum, N) # Trim list. Keep values of top N scores # print(leaderboard) # print(looper) # print(leaderpeptide) return leaderpeptide #Spectrum_in = '0 71 113 129 147 200 218 260 313 331 347 389 460' # #N_in = 10 #Sample out 113-147-71-129 its a cyclopeptide so adjacency is important but order isn't # #Spectrum_in = '0 71 71 99 113 113 113 114 114 115 128 128 128 131 131 137 137 137 147 147 156 156 163 184 184 199 213 227 230 234 241 246 251 251 259 260 260 262 265 268 284 284 293 293 297 298 310 312 331 344 350 362 364 367 374 375 381 388 393 396 407 407 411 415 421 421 421 423 435 444 459 475 481 481 494 494 495 503 506 506 509 520 521 530 535 535 548 552 552 558 558 565 574 591 607 609 618 622 622 622 634 634 634 637 648 651 666 667 672 677 678 689 693 695 704 705 719 721 735 737 746 762 765 765 765 769 774 781 785 788 790 792 803 806 806 814 832 833 851 856 858 868 880 882 884 896 902 902 902 902 902 916 918 919 920 927 928 929 953 969 979 987 989 996 997 1011 1014 1015 1015 1016 1027 1030 1033 1033 1039 1041 1055 1057 1058 1066 1068 1085 1086 1100 1116 1126 1128 1129 1140 1142 1143 1148 1152 1153 1158 1161 1169 1170 1180 1181 1186 1195 1199 1199 1200 1213 1213 1240 1247 1256 1266 1268 1271 1276 1279 1289 1295 1295 1299 1309 1312 1313 1317 1317 1323 1326 1327 1337 1339 1341 1346 1350 1399 1403 1408 1410 1412 1422 1423 1426 1432 1432 1436 1437 1440 1450 1454 1454 1460 1470 1473 1478 1481 1483 1493 1502 1509 1536 1536 1549 1550 1550 1554 1563 1568 1569 1579 1580 1588 1591 1596 1597 1601 1606 1607 1609 1620 1621 1623 1633 1649 1663 1664 1681 1683 1691 1692 1694 1708 1710 1716 1716 1719 1722 1733 1734 1734 1735 1738 1752 1753 1760 1762 1770 1780 1796 1820 1821 1822 1829 1830 1831 1833 1847 1847 1847 1847 1847 1853 1865 1867 1869 1881 1891 1893 1898 1916 1917 1935 1943 1943 1946 1957 1959 1961 1964 1968 1975 1980 1984 1984 1984 1987 2003 2012 2014 2028 2030 2044 2045 2054 2056 2060 2071 2072 2077 2082 2083 2098 2101 2112 2115 2115 2115 2127 2127 2127 2131 2140 2142 2158 2175 2184 2191 2191 2197 2197 2201 2214 2214 2219 2228 2229 2240 2243 2243 2246 2254 2255 2255 2268 2268 2274 2290 2305 2314 2326 2328 2328 2328 2334 2338 2342 2342 2353 2356 2361 2368 2374 2375 2382 2385 2387 2399 2405 2418 2437 2439 2451 2452 2456 2456 2465 2465 2481 2484 2487 2489 2489 2490 2498 2498 2503 2508 2515 2519 2522 2536 2550 2565 2565 2586 2593 2593 2602 2602 2612 2612 2618 2618 2621 2621 2621 2634 2635 2635 2636 2636 2636 2650 2678 2678 2749' # #N_in = 331 # # #Spectrum_in = list(map(int, Spectrum_in.split(" "))) ## #print("-".join(list(map(str, LeaderboardCyclopeptideSequencing(Spectrum_in, N_in))))) def TopLeaderboardCyclopeptideSequencing(spectrum, N): """Inputs an integer (N) and a mass spectrum as list of integer masses. Outputs all lead peptides of a maximized score as '\n' seperated entries where each peptide is '-' seperated mass values that represent a monopeptide structure. Allows for non-standard amino acids and takes advantage of both using a leader board to keep N top scoring peptides and scoring comparing the spectrum to each generated spectra of peptides from the leaderboard to generate a leader peptide list where each peptide is a maximal achieved score. Can be adjusted to generate linear peptide sequences by using different scoring algorithms indicated in the code. """ leaderboard = [] leaderpeptides = [] # monopeptides = [] parentmass = max(spectrum) looper = 0 # AAmasslist = [57, 71, 87, 97, 99, 101, 103, 113, 114, 115, 128, 129, 131, 137, 147, 156, 163, 186] AAmasslist = list(range(57,201)) #use to account for non-standard peptides) if 0 in spectrum: #remove 0 from spectrum spectrum.remove(0) # monocount = 0 # for spec in Spectrum: # if spec <= 200: # monocount += 1 # monopeptides.append(spec) # leaderboard.append([spec]) # for mass in AAmasslist: # if mass not in monopeptides: # monopeptides.append(mass) # leaderboard.append([mass]) # monopeptides.sort() monocount = 0 for spec in spectrum: #Build monopeptide list if spec <= 200: monocount += 1 for mass in AAmasslist: #Start leadboard peptide list leaderboard.append([mass]) # print(leaderboard) b=0 # while b < 1: while looper < 6: #generate strings consistent with spectra, add all possibilitiess from monopeptide/AA list and then remove combinations whose mass isn't consistent with the spectra #the looper adjusts tolerance, increases length of final peptide examined print(b) b += 1 duppeps = copy.deepcopy(leaderboard) leaderboard = [] for AA in AAmasslist: # generate extended peptides # subcopy = copy.deepcopy(spectrum) for i in range(len(duppeps)): # for frag in duppeps[i]: # subcopy.remove(frag) templist = copy.deepcopy(duppeps[i]) templist.append(AA) leaderboard.append(templist) leadups = copy.deepcopy(leaderboard) if len(leadups[0]) >= monocount: #if number of AA in peptide reached (monocount) looper is increased to break loop. In this algorithm it is allowed to loop for 5 additional times past the parent mass being reached to allow for further optimization looper += 1 for dup in leadups: if sum(dup) == parentmass: #if sum of peptides matches parent mass it is added to leaderpeptides list if leaderpeptides == []: leaderpeptides.append(copy.deepcopy(dup)) # print(dup) # print(sum(dup)) # print(parentmass) #Code can be adjusted to generate a linear peptide by altering scoring algorithms # dupscore = PeptideLinearScoring(dup, spectrum) # lpscore = PeptideLinearScoring(leaderpeptides[0], spectrum) dupscore = PeptideCycloScoring(dup, spectrum) lpscore = PeptideCycloScoring(leaderpeptides[0], spectrum) if dupscore > lpscore: #if the score of the current peptide list is better than the top scoring peptide list, list is started new with the new peptide list. leaderpeptides = [] leaderpeptides.append(copy.deepcopy(dup)) elif dupscore == lpscore: #if the score of the current peptide list is equal to those already in the leaderpeptide list it is appended. leaderpeptides.append(copy.deepcopy(dup)) elif sum(dup) > parentmass: #if sum of peptides is greater than the parent mass it is removed. leaderboard.remove(dup) # print(leaderpeptides) leaderboard = TrimPeptideLeaderboard(leaderboard, spectrum, N) # Trim list. Keep values of top N scores # print(leaderboard) # print(looper) # print(leaderpeptide) outputlist = [] for lead in leaderpeptides: outputlist.append("-".join(list(map(str, lead)))) print(len(outputlist)) return ' '.join(outputlist) #Spectrum_in = '0 97 99 113 114 115 128 128 147 147 163 186 227 241 242 244 244 256 260 261 262 283 291 309 330 333 340 347 385 388 389 390 390 405 435 447 485 487 503 504 518 544 552 575 577 584 599 608 631 632 650 651 653 672 690 691 717 738 745 770 779 804 818 819 827 835 837 875 892 892 917 932 932 933 934 965 982 989 1039 1060 1062 1078 1080 1081 1095 1136 1159 1175 1175 1194 1194 1208 1209 1223 1322' #Spectrum_in ='0 97 99 114 128 147 147 163 186 227 241 242 244 260 261 262 283 291 333 340 357 385 389 390 390 405 430 430 447 485 487 503 504 518 543 544 552 575 577 584 632 650 651 671 672 690 691 738 745 747 770 778 779 804 818 819 820 835 837 875 892 917 932 932 933 934 965 982 989 1030 1039 1060 1061 1062 1078 1080 1081 1095 1136 1159 1175 1175 1194 1194 1208 1209 1223 1225 1322' # #N_in = 1000 # # #Spectrum_in = list(map(int, Spectrum_in.split(" "))) # #tanswer = TopLeaderboardCyclopeptideSequencing(Spectrum_in, N_in) #print(tanswer) def AmendSpectrum(spectrum): """Inputs a mass spectrum as a list of integers. Outputs a convoluted list of masses (all non-zero products when elements of spectrum are subtracted from one another). Helpful to fill in missing masses from spectra. """ convoluted = [] if 0 not in spectrum: spectrum.append(0) spectrum.sort(reverse = True) for i in range(0,len(spectrum)-1): for j in range(i+1,len(spectrum)): newmass = spectrum[i] - spectrum[j] if newmass != 0: convoluted.append(newmass) convoluted.sort() return convoluted #Spectrum_in = '0 137 186 323' # ##Spectrum_in = '0 57 118 179 236 240 301' # ##Spectrum_in = '843 872 644 244 301 227 257 700 871 415 543 915 516 332 731 216 445 115 584 644 916 446 171 272 372 672 515 858 528 315 356 559 715 229 743 128 99 103 503 443 471 744 571 747 815 129 340 101 973 972 658 755 687 616 618 974 988 387 212 856 1087 860 572 642 114 429 959 1030 113 469 286 400 57 641 344 830 231 215 772 984 172 958 544 959 986 443 343 875 786 128 0 801' ## #Spectrum_in = list(map(int, Spectrum_in.split(" "))) ## #print(" ".join(list(map(str, AmendSpectrum(Spectrum_in))))) def CorrectedAAList(spectrum, M): """Inputs a mass spectrum as a list of integers and an integer (M). Generates a list of masses that represent the likely ammino acids present in the spectra. Uses all non-zero products when elements of spectrum are subtracted from one another and a dictionary to count the number of times a mass appears in the amended mass list. Ouputs a list of the top M masses (with ties) between 57-200 that appear a minimum of M times in the convoluted mass list. """ spectrum.sort(reverse = True) convoluted = [] #generate convoluted mass list for i in range(0,len(spectrum)-1): for j in range(i+1,len(spectrum)): newmass = spectrum[i] - spectrum[j] if newmass != 0: convoluted.append(newmass) convoluted.sort() cl = copy.deepcopy(convoluted) # Remove masses not between 57 - 200 for mass in cl: if mass < 57 or mass > 200: convoluted.remove(mass) convolutedcountd = {} #create dictionary, convolutedcountd to count number of each score for num in convoluted: if num in convolutedcountd: convolutedcountd[num] += 1 else: convolutedcountd[num] = 1 scorelist = [] for key in convolutedcountd: scorelist.append(convolutedcountd[key]) scoredict = collections.OrderedDict(convolutedcountd) #Use set of masses and countdict to determine the number,C, of topscores to take scoredict = sorted(scoredict.items(), key=lambda t: t[1], reverse = True) scorelist.sort(reverse= True) # print(scoredict) scoreset = list(set(scorelist)) scoreset.sort(reverse= True) countdict = {} #create another dictionary for sco in scorelist: if sco in countdict: countdict[sco] += 1 else: countdict[sco] = 1 Z = 0 C = 0 for sc in scoreset:#Find number of items you need from dictionary (C) for top N scores including ties Z += countdict[sc] if Z >= M: C = Z break if C != Z: C = Z #generate masses L = 0 AAmasslist = [] for AAmass in scoredict: if L < C: AAmasslist.append(AAmass[0]) L += 1 AAmasslist.sort() return AAmasslist #Spectrum_in = '0 57 118 179 236 240 301' # ##Spectrum_in = '843 872 644 244 301 227 257 700 871 415 543 915 516 332 731 216 445 115 584 644 916 446 171 272 372 672 515 858 528 315 356 559 715 229 743 128 99 103 503 443 471 744 571 747 815 129 340 101 973 972 658 755 687 616 618 974 988 387 212 856 1087 860 572 642 114 429 959 1030 113 469 286 400 57 641 344 830 231 215 772 984 172 958 544 959 986 443 343 875 786 128 0 801' ## #Spectrum_in = list(map(int, Spectrum_in.split(" "))) ## #print(" ".join(list(map(str, CorrectedAAList(Spectrum_in, 20))))) def CyclopeptideSequencing(spectrum, M, N): """Inputs two integers (M and N) and a mass spectrum of an unknown cyclopeptide as list of integer masses. Outputs all lead peptides of a maximal score using N as a cutoff for the Trim function including ties as a list of lists where each peptide is a list of integer masses. Uses an AA list generated from processing of the spectrum and returning M topscoring masses between 57 - 200 including ties. Allows for non-standard amino acids and takes advantage of both using a leader board to keep N top scoring peptides and scoring algorithsm that compare the spectrum to each generated spectra of peptides from the leaderboard to generate a leader peptide list where each peptide is maximal achieved score. Can be adjusted to generate linear peptide sequences by using different scoring algorithms indicated in the code. """ leaderboard = [] leaderpeptides = [] parentmass = max(spectrum) looper = 0 AAmasslist = CorrectedAAList(spectrum, M) if 0 in spectrum: #remove 0 from spectrum spectrum.remove(0) # monocount = 0 # for spec in Spectrum: # if spec <= 200: # monocount += 1 # monopeptides.append(spec) # leaderboard.append([spec]) # for mass in AAmasslist: # if mass not in monopeptides: # monopeptides.append(mass) # leaderboard.append([mass]) # monopeptides.sort() monocount = 0 monopeptides = [] for spec in spectrum: #Build AA list if spec <= 200: monocount += 1 leaderboard.append([spec]) monopeptides.append(spec) for mass in AAmasslist: #Start peptide list if mass not in monopeptides: leaderboard.append([mass]) # print(leaderboard) b=0 # while b < 1: while leaderboard != []: #generate strings consistent with spectra, add all possibilitiess from monopeptide/AA list and then remove combinations whose mass isn't consistent with the spectra # while looper < 6: #the looper adjusts tolerance, increases length of final peptide examined print(b) b += 1 duppeps = copy.deepcopy(leaderboard) leaderboard = [] for AA in AAmasslist: # generate extended peptides # subcopy = copy.deepcopy(Spectrum) for i in range(len(duppeps)): # for frag in duppeps[i]: # subcopy.remove(frag) templist = copy.deepcopy(duppeps[i]) templist.append(AA) leaderboard.append(templist) # print(leaderboard) leadups = copy.deepcopy(leaderboard) if len(leadups[0]) >= monocount: looper += 1 for dup in leadups: if sum(dup) == parentmass: if leaderpeptides == []: leaderpeptides.append(copy.deepcopy(dup)) # print(dup) # print(sum(dup)) # print(parentmass) #Code can be adjusted to generate a linear peptide by altering scoring algorithms # dupscore = PeptideLinearScoring(dup, Spectrum) # lpscore = PeptideLinearScoring(leaderpeptides[0], Spectrum) dupscore = PeptideCycloScoring(dup, spectrum) lpscore = PeptideCycloScoring(leaderpeptides[0], spectrum) if dupscore > lpscore: leaderpeptides = [] leaderpeptides.append(copy.deepcopy(dup)) elif dupscore == lpscore: leaderpeptides.append(copy.deepcopy(dup)) elif sum(dup) > parentmass: #this will result in the leader board being eventually empty. leaderboard.remove(dup) # print(leaderpeptides) leaderboard = TrimPeptideLeaderboard(leaderboard, spectrum, N) # Trim list. Keep values of top N scores # print(leaderboard) # print(looper) # print(leaderpeptides) # outputlist = [] # for lead in leaderpeptides: # outputlist.append("-".join(list(map(str, lead)))) # print(len(outputlist)) # return ' '.join(outputlist) return leaderpeptides def ConvertPeptideMassToAA(listofpeptidelists): """Inputslist of peptide list of list where each sublist is a list of interger masses representing a peptide. Outputs a list of peptides using one letter aminoacid code of corresponded peptides in AA code. Nonstandard or unknown amino acids will be shown as a number representing its integer mass enclosed in '()'. """ MasstoAAdict = {0: '', 57: 'G', 71: 'A', 87: 'S', 97: 'P', 99: 'V', 101: 'T', 103: 'C', 113: '(I/K)', 114: 'N', 115: 'D', 128: '(K/Q)', 129: 'E', 131: 'M', 137: 'H', 147: 'F', 156: 'R', 163: 'Y', 186: 'W'} newpeptides = [] for lst in listofpeptidelists: templist = [] for mass in lst: if mass in MasstoAAdict: templist.append(MasstoAAdict[mass]) else: templist.append('(' + str(mass) + ')') temppep = ''.join(templist) newpeptides.append(temppep) return newpeptides #Spectrum_in = '57 57 71 99 129 137 170 186 194 208 228 265 285 299 307 323 356 364 394 422 493' #M_in = 20 #N_in = 60 #Spectrum_in = '328 887 229 540 655 128 584 128 688 360 1143 889 832 532 129 483 1187 872 1013 1129 815 912 370 1116 412 372 559 584 418 172 584 916 1116 1059 1187 660 698 461 115 200 313 603 128 1002 1116 1015 428 469 1044 242 1115 647 1116 332 71 186 57 589 256 1001 1244 1015 556 712 114 532 185 229 315 1173 57 816 1017 303 456 784 826 1072 475 103 788 788 300 431 759 557 1145 460 660 232 101 229 546 227 889 485 227 769 1015 1141 355 641 712 357 813 597 355 874 231 1012 775 685 243 884 931 929 128 357 456 99 1130 660 687 1017 944 941 704 761 783 1058 429 0 887 988' # #M_in = 17 #N_in = 359 #Spectrum_in = '0 97 99 113 114 115 128 128 147 147 163 186 227 241 242 244 244 256 260 261 262 283 291 309 330 333 340 347 385 388 389 390 390 405 435 447 485 487 503 504 518 544 552 575 577 584 599 608 631 632 650 651 653 672 690 691 717 738 745 770 779 804 818 819 827 835 837 875 892 892 917 932 932 933 934 965 982 989 1039 1060 1062 1078 1080 1081 1095 1136 1159 1175 1175 1194 1194 1208 1209 1223 1322' # #M_in = 20 #N_in = 1000 # # #Spectrum_in = list(map(int, Spectrum_in.split(" "))) # #petideseq = CyclopeptideSequencing(Spectrum_in, M_in, N_in) #print(petideseq) #print(ConvertPeptideMassToAA(petideseq)) """CHALLENGE: Tyrocidine B1 is just one of many known NRPs produced by Bacillus brevis. A single bacterial species may produce dozens of different antibiotics, and even after 70 years of research, there are likely undiscovered antibiotics produced by Bacillus brevis. Try to sequence the tyrocidine corresponding to the real experimental spectrum below. Since the fragmentation technology used for generating the spectrum tends to produce ions with charge +1, you can safely assume that all charges are +1. Return the peptide as a collection of space-separated integer masses.""" def ProtonMassSpectrumToIntegerSpectrum1(spectrum): """Inputs a spectrum (as a list of floats) where ions are assumed to have a +1 charge and with a mass error of 0.3 Da. Outputs an integer mass spectrum.""" oneless = np.array(spectrum) oneless = oneless - 1 #remove +1 charge # print(oneless) # rounded = [] for mass in oneless: #resolve integermasses from uncharged spectrum:use three numbers, mass, mass +0.3, mass -0.3 if mass - int(mass) == 0.5: #if num is 0.5 from an int use two ints: rounded up and down rounded.append(int(mass)+1) rounded.append(int(mass)) else: #generate 3 ints, take the number repeated as the mass temp = [round(mass - 0.3), round(mass), round(mass + 0.3)] curr = [] for num in temp: if len(curr) == 0: curr.append(int(num)) elif curr[0] == int(num): top = curr[0] else: curr[0] = int(num) rounded.append(top) rounded.sort() return rounded def ProtonMassSpectrumToIntegerSpectrum2(spectrum): """Inputs a spectrum (as a list of floats) where ions are assumed to have a +1 charge and with a mass error of 0.3 Da. Outputs an integer mass spectrum.""" oneless = np.array(spectrum) oneless = oneless - 1 #remove +1 charge rounded = [] for mass in oneless:#resolve integermasses from uncharged spectrum:use three numbers, mass, mass +0.3, mass -0.3 if mass - int(mass) == 0.5: #if num is 0.5 from an int use two ints: rounded up and down rounded.append(int(mass)+1) rounded.append(int(mass)) else: #generate 3 ints, take the two ints generated temp = [round(mass - 0.3), round(mass), round(mass + 0.3)] temp = list(set(temp)) for num in temp: rounded.append(int(num)) rounded.sort() return rounded def ProtonMassSpecCyclopeptideSequencing(massspectrum, M, N): spectrum = ProtonMassSpectrumToIntegerSpectrum1(massspectrum) sequences = CyclopeptideSequencing(spectrum, M, N) return sequences massspec_in = '371.5 375.4 390.4 392.2 409.0 420.2 427.2 443.3 446.4 461.3 471.4 477.4 491.3 505.3 506.4 519.2 536.1 546.5 553.3 562.3 588.2 600.3 616.2 617.4 618.3 633.4 634.4 636.2 651.5 652.4 702.5 703.4 712.5 718.3 721.0 730.3 749.4 762.6 763.4 764.4 779.6 780.4 781.4 782.4 797.3 862.4 876.4 877.4 878.6 879.4 893.4 894.4 895.4 896.5 927.4 944.4 975.5 976.5 977.4 979.4 1005.5 1007.5 1022.5 1023.7 1024.5 1039.5 1040.3 1042.5 1043.4 1057.5 1119.6 1120.6 1137.6 1138.6 1139.5 1156.5 1157.6 1168.6 1171.6 1185.4 1220.6 1222.5 1223.6 1239.6 1240.6 1250.5 1256.5 1266.5 1267.5 1268.6' massspec_in = list(map(float, massspec_in.split(" "))) M_in = 20 N_in = 10000 #print(ProtonMassSpectrumToIntegerSpectrum1(massspec_in)) #print(ProtonMassSpectrumToIntegerSpectrum2(massspec_in)) pepseq = ProtonMassSpecCyclopeptideSequencing(massspec_in, M_in, N_in) print(pepseq) print(ConvertPeptideMassToAA(pepseq)) # #""" using proton mass 2 M20, N1000 -> 6 answers #147-112-130-164-98-113-131-146-145-82 146-113-130-164-98-113-131-146-145-82 130-114-130-131-131-146-96-129-164-97 114-130-131-131-146-96-129-164-97-130 114-129-164-98-113-130-147-145-97-131 114-129-164-98-113-130-128-164-97-131""" #using ProtonMassSpectrumToIntegerSpectrum1 #[[115, 146, 130, 113, 129, 163, 82, 163, 112, 115], [97, 164, 128, 116, 130, 113, 128, 164, 99, 129], [164, 98, 128, 145, 116, 129, 163, 82, 113, 130]] #['D(146)(130)(I/K)EY(82)Y(112)D', 'P(164)(K/Q)(116)(130)(I/K)(K/Q)(164)VE', '(164)(98)(K/Q)(145)(116)EY(82)(I/K)(130)'] #using ProtonMassSpectrumToIntegerSpectrum2 #[[147, 112, 130, 164, 98, 113, 131, 146, 145, 82], [146, 113, 130, 164, 98, 113, 131, 146, 145, 82], [130, 114, 130, 131, 131, 146, 96, 129, 164, 97], [114, 130, 131, 131, 146, 96, 129, 164, 97, 130], [114, 129, 164, 98, 113, 130, 147, 145, 97, 131], [114, 129, 164, 98, 113, 130, 128, 164, 97, 131]] #['F(112)(130)(164)(98)(I/K)M(146)(145)(82)', '(146)(I/K)(130)(164)(98)(I/K)M(146)(145)(82)', '(130)N(130)MM(146)(96)E(164)P', 'N(130)MM(146)(96)E(164)P(130)', 'NE(164)(98)(I/K)(130)F(145)PM', 'NE(164)(98)(I/K)(130)(K/Q)(164)PM'] # """""""""""""""""""""""""""""""""""""""""""""""""""""""""""" #def CalcAAFragMassDict(frag): # """inputs an amino acid fragment and outputs its integer mass # It uses a combination of a stored dictionary and a calculation""" # AAtoMassdict = {'': 0, 'A': 71, 'C': 103, 'D': 115, 'E': 129, 'F': 147, 'G': 57, 'H': 137, 'I': 113, 'K': 128, 'L': 113, 'M': 131, 'N': 114, 'P': 97, 'Q': 128, 'R': 156, 'S': 87, 'T': 101, 'V': 99, 'W': 186, 'Y': 163} # mass = 0 # with open("PeptideMassDict.txt", "r+") as textfile: # PeptideMassDict = textfile.read().split("\n") # if frag in PeptideMassDict: # return PeptideMassDict[frag] # else: # for AA in frag: # mass += AAtoMassdict[AA] # PeptideMassDict[frag] = mass # textfile.write(PeptideMassDict) # return mass #def CyclopeptideSequencing1(Spectrum): # """Inputs a Mass spectrum as list of integer masses of fragments. # Outputs a cyclic peptide consistent with the spectrum. # Note: Due to duplicated masses I represents both I and L and K # represents both K and Q in AAs list""" # AAs = 'GASPVTCINDKEMHFRYW' # peptides = [''] # foundmasses = [] ## remainingmasses = copy.deepcopy(Spectrum) # for AA in AAs: # peptides.append(AA) # while foundmasses.sort() != Spectrum: # for peptide in peptides: # peptidemass = CalcAAFragMass(peptide) # if peptidemass in Spectrum: #adds mass to masslist if found, removes peptide if no match in spectra # foundmasses.append(peptidemass) ## remainingmasses.remove(peptidemass) # else: # peptides.remove(peptide) # for pep in peptides: # if pep != '': # for AA in AAs: # peptides.append(pep+AA) # peptides.append(AA+pep) ## print(peptides) #Spectrum_in = '0 113 128 186 241 299 314 427' #Spectrum_in = Spectrum_in.split(" ") # #print(CyclopeptideSequencing1(Spectrum_in)) # while max(peptidemasses) != max(Spectrum): # for ma in peptidemasses: # for AAmass in AAmasses: # m = ma + AAmass # if m in Spectrum and ma != 0: # peptidemasses.append(m) # peptidemstr.append(str(ma)+"-" + str(AAmass)) # peptidemstr.append(str(AAmass)+"-" + str(ma)) # if AAmass in peptidemassdict: # for y in range(len(peptidemassdict[AAmass])): # if m not in peptidemassdict: # peptidemassdict[m] = [str(ma)+"-"+ peptidemassdict[AAmass][y], peptidemassdict[AAmass][y] +"-" + str(ma)] # else: # peptidemassdict.setdefault(m, []).append(str(ma)+"-"+ peptidemassdict[AAmass][y]) # peptidemassdict.setdefault(m, []).append(peptidemassdict[AAmass][y] +"-" + str(ma)) # #peptidemassdict[m].append(str(ma)+"-"+ peptidemassdict[AAmass][y]) # #peptidemassdict[m].append(peptidemassdict[AAmass][y] +"-" + str(ma)) # else: # peptidemassdict[m] = [str(ma)+"-" + str(AAmass), str(AAmass)+"-" + str(ma)] # ## peptidemasses = peptidemasses.sort() ## peptidemstr = peptidemstr.sort(key=int) # print("peptidemasses") # print(peptidemasses) # print("peptidemassdict") # print(peptidemstr) # raise SystemExit(0) # #def CyclopeptideMassFrags(Spectrum): # """Inputs a Mass spectrum as list of integer masses of fragments. # Outputs a cyclic peptide as masses of fragments """ ## AAs = 'GASPVTCINDKEMHFRYW' # AAmasses = [0, 57, 71, 87, 97, 99, 101, 103, 113, 114, 115, 128, 129, 131, 137, 147, 156, 163, 186] ## intactmass = max(Spectrum) # peptidemstr = [] # peptidemasses = [] # peptidemassdict = {} ## foundmasses = [] # for mass in AAmasses: # if mass in Spectrum: # peptidemasses.append(mass) # peptidemassdict[mass] = [str(mass)] # peptidemstr.append(str(mass)) # print("peptidemasses") # print(peptidemasses) # print("peptidemstr") # print(peptidemstr) # print("peptidemassdict") # print(peptidemassdict) # while max(peptidemasses) != max(Spectrum): # for ma in peptidemasses: # for AAmass in AAmasses: # m = ma + AAmass # if m in Spectrum and ma != 0: # peptidemasses.append(m) # peptidemstr.append(str(ma)+"-" + str(AAmass)) # peptidemstr.append(str(AAmass)+"-" + str(ma)) # if AAmass in peptidemassdict: # for y in range(len(peptidemassdict[AAmass])): # if m not in peptidemassdict: # peptidemassdict[m] = [str(ma)+"-"+ peptidemassdict[AAmass][y], peptidemassdict[AAmass][y] +"-" + str(ma)] # else: # peptidemassdict.setdefault(m, []).append(str(ma)+"-"+ peptidemassdict[AAmass][y]) # peptidemassdict.setdefault(m, []).append(peptidemassdict[AAmass][y] +"-" + str(ma)) # #peptidemassdict[m].append(str(ma)+"-"+ peptidemassdict[AAmass][y]) # #peptidemassdict[m].append(peptidemassdict[AAmass][y] +"-" + str(ma)) # else: # peptidemassdict[m] = [str(ma)+"-" + str(AAmass), str(AAmass)+"-" + str(ma)] # ## peptidemasses = peptidemasses.sort() ## peptidemstr = peptidemstr.sort(key=int) # print("peptidemasses") # print(peptidemasses) # print("peptidemassdict") # print(peptidemstr) # raise SystemExit(0) #def GenerateMassAAFragdictionary(k): # """ Generates a dictionary of all possible permuations of AA up to length k with their # integer masses. Note: Due to duplicated I represents both I and L, K # represents both K and Q""" # AAs = 'GASPVTCINDKEMHFRYW' # permslist = [] # MassAAFragdictionary = {} # for AA in AAs: # permslist.append(AA) # for i in range(1,k+1): #i is size of fragment # perms = list(itertools.permutations(AAs,i)) # for item in perms: # permslist.append(''.join(list(item))) # for frag in permslist: # MassAAFragdictionary[frag] = CalcAAFragMass(frag) # # return str(MassAAFragdictionary) # #with open("PeptideMassDict.txt", "w+") as textfile: # textfile.write(GenerateMassAAFragdictionary(4)) #def CyclopeptideMassFrags(Spectrum): # """Inputs a Mass spectrum as list of integer masses of fragments. # Outputs a cyclic peptide as masses of fragments """ ## AAs = 'GASPVTCINDKEMHFRYW' # MasstoAAdict = {0: '', 57: 'G', 71: 'A', 87: 'S', 97: 'P', 99: 'V', 101: 'T', 103: 'C', 113: 'I', 114: 'N', 115: 'D', 128: 'K', 129: 'E', 131: 'M', 137: 'H', 147: 'F', 156: 'R', 163: 'Y', 186: 'W'} # AAmasses = [57, 71, 87, 97, 99, 101, 103, 113, 114, 115, 128, 129, 131, 137, 147, 156, 163, 186] # intactmass = max(Spectrum) ## peptidemstr = [] # peptidemasses = [] # peptidemassdict = {} # if 0 in Spectrum: #remove 0 from spectrum # Spectrum.remove(0) # for mass in AAmasses: # if mass in Spectrum: # peptidemasses.append(mass) # peptidemassdict[mass] = MasstoAAdict[mass] ## peptidemstr.append(str(mass)) # L = len(peptidemasses) # for i in range(L,len(Spectrum)): # print(i) # specmass = Spectrum[i] # for AAmass in peptidemasses: # submass = specmass - AAmass # if submass in Spectrum: # peptidemassdict[specmass] = MasstoAAdict[submass] + MasstoAAdict[AAmass] # MasstoAAdict[specmass] = MasstoAAdict[submass] + MasstoAAdict[AAmass] # ## print("peptidemasses") ## print(peptidemasses) ## print("peptidemassdict") ## print(peptidemassdict) ## print(peptidemassdict) ## peptidemassdict[specmass] = set(peptidemassdict[specmass]) ## peptidemassdict[specmass] = list(peptidemassdict[specmass]) ## print(peptidemassdict) ## print("LAST") ## print(peptidemassdict) # completelist = peptidemassdict[intactmass] # print(completelist) # possibilities = [completelist] # first = completelist[:1] # firstreverse = first[::-1] # second = completelist[1] # third = completelist[2:] # thirdreverse = third[::-1] # inverse = thirdreverse + second + firstreverse # possibilities.append(inverse) # print(possibilities) ## for j in range(1,len(completelist)): # ## listdict = {} ## for j in range(len(completelist)): ## if isinstance(completelist[j], int): ## listdict[j] = 1 ## else: ## listdict[j] = len(completelist[j]) ## print(listdict) ## peptidemassfrags = [] ### for x in range(len(completelist)): ### if listdict[x] == # # return peptidemassdict[intactmass] #def CyclopeptideSequencing(Spectrum): # peptides = [] ## peptideseq = [] ## peptidemasses = [] # AAs = [] ## AAmasses = [] # parentmass = max(Spectrum) ## AAtoMassdict = {'': 0, 'A': 71, 'C': 103, 'D': 115, 'E': 129, 'F': 147, 'G': 57, 'H': 137, 'I': 113, 'K': 128, 'L': 113, 'M': 131, 'N': 114, 'P': 97, 'Q': 128, 'R': 156, 'S': 87, 'T': 101, 'V': 99, 'W': 186, 'Y': 163} # AAmasslist = [57, 71, 87, 97, 99, 101, 103, 113, 114, 115, 128, 129, 131, 137, 147, 156, 163, 186] ## MasstoAAdict = {0: '', 57: 'G', 71: 'A', 87: 'S', 97: 'P', 99: 'V', 101: 'T', 103: 'C', 113: 'I', 114: 'N', 115: 'D', 128: 'K', 129: 'E', 131: 'M', 137: 'H', 147: 'F', 156: 'R', 163: 'Y', 186: 'W'} # if 0 in Spectrum: #remove 0 from spectrum # Spectrum.remove(0) # for mass in Spectrum: # if mass in AAmasslist: # if len(str(mass)) < 3: # peptides.append('0'+str(mass)) # AAs.append('0'+str(mass)) # else: # peptides.append(str(mass)) # AAs.append(str(mass)) ## print("peptides") ## print(peptides) ## print("AAs") ## print(AAs) # i=1 # looper = 0 # while looper == 0: # duppeps = copy.deepcopy(peptides) ## print(duppeps) # print(i) # i += 1 # for pep in duppeps: ## print(pep) # if len(pep) > 3: # pepmass = 0 ## print("helll") # for t in range(0,len(pep),3): # pepmass += int(pep[t:t+3]) ## print(pepmass) # else: # pepmass = int(pep) ## print("else") # for AA in AAs: ## print(pepmass) ## print(AA) # if pepmass + int(AA) in Spectrum: ## print(pep+AA) # peptides.append(pep+AA) # peptides.append(AA+ pep) # L = len(pep+AA) ##INSTEAD OF USING STRINGS, USE NESTED LISTS IN PEPTIDES, THEN GET RID OF SMALLEST LISTS ## LAST LOOP WILL BE A LOOP OF "-".JOIN() MUCH FASTER. ## print(L) # if pepmass == parentmass: ## print(pepmass) ## print(parentmass) # looper += 1 ## print(peptides) # dupdup = copy.deepcopy(peptides) # for peptide in dupdup: # if len(peptide) < L: # peptides.remove(peptide) # # peptides = set(peptides) # peptides = list(peptides) ## print("peptides") ## print(peptidelist) # outputlist = [] # for p in peptides: # temp = "" # for t in range(0,len(p),3): # if p[t:t+3][0] == '0': # temp += p[t+1:t+3] + "-" # else: # temp += p[t:t+3] + "-" ## print(temp) # outputlist.append(temp[:-1]) # return " ".join(outputlist) #def pathchecker(spectrum, path1, path2): # # Takes two paths, and checks they are connected by a single AA overlap. # # The paths are represented as integers in lists. # # Returns the path if they are connected, or an empty list if not. # # path1 can be any length, path2 should be a dipeptide. # # Also makes sure that any amino acids are present in the spectrum the # # correct number of times. # if path1[-1] != path2[0]: # return [] # sublist = path1[:-1] # sublist = sublist + path2 # spec = copy.deepcopy(spectrum) # if sum(sublist) not in spec: # return [] # if sum(sublist) in spectrum: # for x in sublist: # if x in spec: # spec.remove(x) # else: # return [] # return sublist #def pathchecker(Spectrum, path1, path2): # # Takes two paths, and checks they are connected by a single AA overlap. # # The paths are represented as integers in lists. # # Returns True if they are connected, False if they are not. # if path1[-1] != path2[0]: # return [] # sublist = path1[:-1] # sublist = sublist + path2 # if sum(sublist) in Spectrum: # return sublist # if sum(sublist) not in Spectrum: # return [] #def CPeptideSequence(Spectrum): # peptides = [] # dipeptides = [] # AAs = [] # intactpeptide = max(Spectrum) # AAmasslist = [57, 71, 87, 97, 99, 101, 103, 113, 114, 115, 128, 129, 131, 137, 147, 156, 163, 186] # if 0 in Spectrum: #remove 0 from spectrum # Spectrum.remove(0) # specmasslist = copy.deepcopy(Spectrum) # specmasslist.remove(intactpeptide) # for mass in AAmasslist: # if mass in Spectrum: # peptides.append(mass) # AAs.append(mass) # looper = 0 # b= 0 # # Generates a list of all dipeptides present in spectrum. # for pep in peptides: # subcopy = copy.deepcopy(AAs) # subcopy.remove(pep) # for AA in AAs: # if AA in subcopy and pep + AA in Spectrum: # dipeptides.append([pep, AA]) # peptides = copy.deepcopy(dipeptides) # # while looper == 0: # print(b) # b += 1 # paths = [] # for peptide in peptides: # subcopy = copy.deepcopy(AAs) # for f in peptide: # subcopy.remove(f) # for frag in dipeptides: # if frag[1] in subcopy: # fragpath = pathchecker(Spectrum, peptide, frag) # if fragpath != []: # paths.append(fragpath) # if sum(fragpath) == intactpeptide: # looper = 1 # peptides = copy.deepcopy(paths) ## print(paths) # outputlist = [] # for path in paths: # outputlist.append("-".join(list(map(str, path)))) # return " ".join(outputlist) #def CyclopeptideMassFrags(Spectrum): # """Inputs a Mass spectrum as list of integer masses of fragments. # Outputs a cyclic peptide as masses of fragments """ ## AAs = 'GASPVTCINDKEMHFRYW' # AAmasses = [57, 71, 87, 97, 99, 101, 103, 113, 114, 115, 128, 129, 131, 137, 147, 156, 163, 186] # intactmass = max(Spectrum) ## peptidemstr = [] # peptidemasses = [] # peptidemassdict = {} # if 0 in Spectrum: #remove 0 from spectrum # Spectrum.remove(0) # for mass in AAmasses: # if mass in Spectrum: # peptidemasses.append(mass) # peptidemassdict[mass] = [str(mass)] ## peptidemstr.append(str(mass)) # L = len(peptidemasses) # try: # for i in range(L,len(Spectrum)): # print(i) # specmass = Spectrum[i] ## print(specmass) # for AAmass in peptidemasses: # submass = specmass - AAmass # if submass in Spectrum: # if submass in peptidemassdict: # for m in peptidemassdict[submass]: # peptidemassdict.setdefault(specmass, []).append(m+"-"+ peptidemassdict[AAmass][0]) # peptidemassdict.setdefault(specmass, []).append(peptidemassdict[AAmass][0]+"-"+ m) ## peptidemassdict[specmass] = [peptidemassdict[submass][m], peptidemassdict[AAmass]] # else: # print("Error: " + str(submass) +" submass not in peptide dictionary") # except Exception as ex: # template = "An exception of type {0} occurred. Arguments:\n{1!r}" # message = template.format(type(ex).__name__, ex.args) # print(message) # # ## peptidemassdict[specmass] = set(peptidemassdict[specmass]) ## peptidemassdict[specmass] = list(peptidemassdict[specmass]) # ## print("peptidemasses") ## print(peptidemasses) ## print("peptidemassdict") ## print(peptidemassdict) ## print("peptidemassdict") ## print(peptidemassdict) # # return peptidemassdict[intactmass] #def CyclopeptideSequencing(Spectrum): # peptides = [] # peptideseq = [] # peptidemasses = [] # AAs = [] # AAmasses = [] # parentmass = max(Spectrum) # AAtoMassdict = {'': 0, 'A': 71, 'C': 103, 'D': 115, 'E': 129, 'F': 147, 'G': 57, 'H': 137, 'I': 113, 'K': 128, 'L': 113, 'M': 131, 'N': 114, 'P': 97, 'Q': 128, 'R': 156, 'S': 87, 'T': 101, 'V': 99, 'W': 186, 'Y': 163} # AAmasslist = [57, 71, 87, 97, 99, 101, 103, 113, 114, 115, 128, 129, 131, 137, 147, 156, 163, 186] # MasstoAAdict = {0: '', 57: 'G', 71: 'A', 87: 'S', 97: 'P', 99: 'V', 101: 'T', 103: 'C', 113: 'I', 114: 'N', 115: 'D', 128: 'K', 129: 'E', 131: 'M', 137: 'H', 147: 'F', 156: 'R', 163: 'Y', 186: 'W'} # if 0 in Spectrum: #remove 0 from spectrum # Spectrum.remove(0) # for mass in AAmasslist: # if mass in Spectrum: # peptides.append(MasstoAAdict[mass]) # peptidemasses.append(str(mass)) # AAmasses.append(mass) # AAs.append(MasstoAAdict[mass]) ## print("peptides") ## print(peptides) ## print("AAs") ## print(AAs) ## L = len(AAs) # i=1 # while peptideseq == []: # duppeps = copy.deepcopy(peptides) # print(i) # i += 1 # for pep in duppeps: # for AA in AAs: # peptides.append(pep+AA) # peptides.append(AA+pep) # peptides = set(peptides) # peptides = list(peptideseq) ## print("peptides") ## print(peptides) # for p in peptides : ## print(p) # if p in AAtoMassdict: # fragmass = AAtoMassdict[p] # else: # fragmass = CalcAAFragMass(p) # AAtoMassdict[p] = fragmass # if fragmass not in Spectrum: # peptides.remove(p) # if fragmass == parentmass: # peptideseq.append(p) ## peptideseq = set(peptideseq) ## peptideseq = list(peptideseq) # return peptideseq #def SequenceCycloPeptide(Spectrum): # peptides = [] # AAs = [] # intactpeptide = max(Spectrum) # AAmasslist = [57, 71, 87, 97, 99, 101, 103, 113, 114, 115, 128, 129, 131, 137, 147, 156, 163, 186] # if 0 in Spectrum: #remove 0 from spectrum # Spectrum.remove(0) # for mass in AAmasslist: # if mass in Spectrum: # if len(str(mass)) < 3: # peptides.append([str(mass)]) # AAs.append(str(mass)) # else: # peptides.append([str(mass)]) # AAs.append(str(mass)) # # b=1 # looper = 0 # while looper == 0: ## while i < 3: # duppeps = copy.deepcopy(peptides) ## print(duppeps) # print(b) # b += 1 # for AA in AAs: # # for i in range(len(duppeps)): # # for peplist in duppeps: # # print(pep) # pepmass = 0 # # for pep in duppeps[i]: # pepmass += int(pep) # fragmass = pepmass + int(AA) # if fragmass in Spectrum: ## print(pep+AA) # reverse = duppeps[i][::-1] # reverse.insert(0,AA) # peptides[i].append(AA) # peptides.append(reverse) ##NEED TO FIND A WAY SO THAT SMALLEST ONE DOESN'T ALWAYS GO FIRST NEED 186-128-113 # L = len(peptides[i]) ## print(peptides[i]) # print(peptides) # num = len(peptides) # intactcount = 0 # for peptide in peptides: # sumpeps = sum(list(map(int, peptide))) # if sumpeps == intactpeptide: # intactcount += 1 # if intactcount == num: # looper += 1 # # dupdup = copy.deepcopy(peptides) # # for peptidelist in dupdup: # if len(peptidelist) < L: # peptides.remove(peptidelist) # print(peptides) # for peptidelist in dupdup: # peptides.append(peptidelist[::-1]) # dupdup = copy.deepcopy(peptides) # outputlist = [] # for peppep in peptides: # outputlist.append("-".join(peppep)) # outputlist = set(outputlist) # outputlist = list(outputlist) # return " ".join(outputlist) # b=1 # looper = 0 # while looper == 0: ## while i < 3: # duppeps = copy.deepcopy(peptides) ## print(duppeps) # print(b) # b += 1 # for i in range(len(duppeps)): ## for peplist in duppeps: ## print(pep) # pepmass = 0 # # for pep in duppeps[i]: # pepmass += int(pep) # for AA in AAs: ## print(pepmass) ## print(AA) # fragmass = pepmass + int(AA) # if fragmass in Spectrum: ## print(pep+AA) # reverse = duppeps[i][::-1] # reverse.insert(0,AA) # peptides[i].append(AA) # peptides.append(reverse) ##NEED TO FIND A WAY SO THAT SMALLEST ONE DOESN'T ALWAYS GO FIRST NEED 186-128-113 # L = len(peptides[i]) ## print(peptides[i]) # sumpeps = sum(list(map(int, peptides[i]))) # if sumpeps == intactpeptide: ## print(pepmass) ## print(parentmass) # looper += 1 # print(peptides) # dupdup = copy.deepcopy(peptides) ## for peptidelist in dupdup: ## peptides.append(peptidelist[::-1]) ## dupdup = copy.deepcopy(peptides) # for peptidelist in dupdup: # if len(peptidelist) < L: # peptides.remove(peptidelist) # print(peptides) ## outputlist = [] ## for peppep in peptides: ## outputlist.append("-".join(peppep)) ## return " ".join(outputlist) #def CyclopeptideSequencing1(Spectrum): # peptides = [] # AAs = [] # parentmass = max(Spectrum) # AAmasslist = [57, 71, 87, 97, 99, 101, 103, 113, 114, 115, 128, 129, 131, 137, 147, 156, 163, 186] # #remove 0 and parent mass from spectrum # Spectrum.remove(0) # Spectrum.remove(parentmass) # #Build monopeptide list and start peptides list # for mass in AAmasslist: # if mass in Spectrum: # peptides.append([mass]) # AAs.append(mass) # #generate strings consistent with spectra, add all possibilitiess from # #monopeptide/AA list and then remove combinations whose mass isn't # #consistent with the spectra # b=0 # looper = 0 # duppeps = copy.deepcopy(peptides) # peptides = [] ## while b < 1: # while looper == 0: # print(b) # b += 1 # if peptides != []: # duppeps = copy.deepcopy(peptides) # for AA in AAs: # subcopy = copy.deepcopy(AAs) # for i in range(len(duppeps)): ## reverse = duppeps[i][::-1] ## reverse.insert(0,AA) ## duppeps[i].append(AA) # for frag in duppeps[i]: # subcopy.remove(frag) # if AA in subcopy: # templist = copy.deepcopy(duppeps[i]) # templist.append(AA) # peptides.append(templist) # subcopy = copy.deepcopy(AAs) ## peptides.append(reverse) ## peptides = copy.deepcopy(duppeps) ## print(peptides) # peppeps = copy.deepcopy(peptides) # for j in range(len(peppeps)): # sumpeps = sum(peppeps[j]) # if sumpeps not in Spectrum and sumpeps != parentmass: # peptides.remove(peppeps[j]) # if sumpeps == parentmass: # looper += 1 # L = len(peppeps[j]) # # print(peptides) # peptidesolve = [] # for i in range(2, L): # for j in range(len(peptides)): # for k in range(len(peptides)): # if len(peptides[j]) == len(peptides[k]) == i: # if peptides[j][-1] == peptides[k][0]: # plist = peptides[j][:] # plist.extend(peptides[k][1:]) # peptidesolve.append(plist) # print(peptidesolve) # peptidetemp = copy.deepcopy(peptidesolve) # for pep in peptidetemp: # if pep in peptidesolve and len(pep) < L: # peptidesolve.remove(pep) # elif pep in peptidesolve and pep not in peptides: # peptidesolve.remove(pep) # print(peptidesolve) # outputlist = [] # for p in peptidesolve: # outputlist.append("-".join(list(map(str, p)))) # outputlist = set(outputlist) # outputlist = list(outputlist) # return " ".join(outputlist) ## sumpeps = sum(list(map(int, peppep[j])))
[ "jennifermichaud@Jennifers-MBP-5.hsd1.ca.comcast.net" ]
jennifermichaud@Jennifers-MBP-5.hsd1.ca.comcast.net
20bd26d012b69d5dfc6723ff2ae9d1f80631982a
22cb5739c017767afc8b55d2b3c72d9d92dd25bf
/rent/home/migrations/0008_auto_20200427_1928.py
16d654a882cabf6f94db105e8ef3431321a414e9
[]
no_license
Rochakdh/GetWheels
f2be91f688df9d58179adbf9248c663dfa9b044e
33dfffbf0c3de6c7c960d30b6f509c22fa07e440
refs/heads/master
2023-03-21T13:00:47.859683
2021-03-06T07:00:03
2021-03-06T07:00:03
276,622,563
2
2
null
null
null
null
UTF-8
Python
false
false
392
py
# Generated by Django 3.0.4 on 2020-04-27 13:43 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('home', '0007_vehicleavailable_user'), ] operations = [ migrations.AlterField( model_name='vehicleavailable', name='slug', field=models.SlugField(unique=True), ), ]
[ "rochakdh@gmail.com" ]
rochakdh@gmail.com
3f459c98571bce7eed53ccbf2f805857aae44171
1cdd95a72c9b253fe7f6fc3fe0fd87c5e055a632
/apps/operation/__init__.py
2a4e6d4d5d8908cb6f40fd6781153b7fe1dbaad5
[]
no_license
ShoutangYang/djangoOnline
b40d3d601b3c0096ae4e84a62b7ba5bffeeeaf0d
31838384d59e8b08561c17236151589276bef015
refs/heads/master
2020-03-14T22:28:17.491991
2018-06-25T16:12:11
2018-06-25T16:12:11
131,821,866
1
0
null
null
null
null
UTF-8
Python
false
false
81
py
# 设置用户显示的名称 default_app_config='operation.apps.OperationConfig'
[ "to_yst@163.com" ]
to_yst@163.com
219fdfefbdd96987c78fcb73a76f371345edb5ec
62745a26c8bb36c4e0e0f36328059aa99201850c
/Fix_files.txt.py
48865ffb64e46454c34555dc395a84082a00c2d0
[]
no_license
shubham1637/Orphan-CRISPR-project
134ccb0c01315db2e3b2e9af6269432c3729f7e7
549e343c7a0d835ed641c543501cd80af585ed80
refs/heads/master
2020-04-03T22:53:04.871620
2018-05-28T21:37:30
2018-05-28T21:37:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,830
py
import itertools import re # # Labels = ["merge", "labels", "height"] # # for uno in Labels: # with open("//panfs/pan1/orphancrispr/IslandsCluster/wg_output_" + str(uno) + ".txt","w") as File: # count = 0 # print(uno) # for line in open("//panfs/pan1/orphancrispr/IslandsCluster/wg_" + str(uno) + ".txt","r"): # count +=1 # if count == 1: # continue # LineValues = line[:-1].split(' ') # File.write('\t'.join(LineValues[1:]).replace('"', '') + '\n') # sum = 0 # count = 0 # wg = [] # for line in open('//panfs/pan1/orphancrispr/IslandsCluster/weights2003.output', "r"): # count +=1 # sum += float(line[:-1].split('\t')[1]) # wg.append(line[:-1].split('\t')[0]) # print(sum, ' ', count) # with open('/panfs/pan1/orphancrispr/Spacers_from_finalOrphans.txt', "w") as File: # for line in open('/panfs/pan1/orphancrispr/OrphanArrays_with_Spacers.txt', "r"): # count = 0 # ID = line[:-1].split('\t')[0] # Spacers = line[:-1].split('\t')[1].split(',') # for spacer in Spacers: # count+=1 # File.write('>' + ID + '_' + str(count) + '_' + "spacer" + '\n' + # spacer + '\n') # # with open("/panfs/pan1/orphancrispr/SpacersFromArraysCluster/IdentifiedSpacerHits_filtered90-90.hits", "w") as FilteredSpacerHitsFile: # for line in open("/panfs/pan1/orphancrispr/SpacersFromArraysCluster/Spacers_from_Identified_AllagainstAll.hits" ,"r"): # if line[0] == "#": # continue # LineValues = line[:-1].split('\t') # if float(LineValues[6]) >= 90.0 and float(LineValues[7]) >= 90.0: # #print('YES' , ID[0], ' ', identity, '% ', coverage, '%') # FilteredSpacerHitsFile.write(line) # # Set1 = set() # Set2 = set() # List = [] # for line in open("//panfs/pan1/orphancrispr/IslandsCluster/IslandsID_spacers_withNumber.txt", "r"): # Set1.add(line[:-1].split('\t')[0] ) # for line in open("//panfs/pan1/orphancrispr/IslandsCluster/IslandsID_pfam_withNumber.txt", "r"): # List.append(line[:-1].split('\t')[0]) # Set2.add(line[:-1].split('\t')[0]) # List = list(Set2 - Set1) # print(List) # # # SpacersBaseFileName = "/panfs/pan1.be-md.ncbi.nlm.nih.gov/prokdata/CRISPRicity/SpacerAnalysis/AllIteration/TmpFolder/Spacers.fna" # # with open('//panfs/pan1/orphancrispr/IslandsCluster/Missing31_arraySpacers.txt',"w") as File: # with open(SpacersBaseFileName, "r") as f: # for line1, line2 in itertools.zip_longest(*[f] * 2): # for ID in List: # Match = re.findall(ID, line1) # if Match: # print(Match) # File.write(line1 + line2)
[ "utkinaira@Irinas-MacBook-Pro.local" ]
utkinaira@Irinas-MacBook-Pro.local
e685a0cd0f729a503d834bf8df8e34a47a329fe2
8922075b4fd3179cec07f1b0f5dc47fc92533f8d
/task1.py
6954f1d5b22c93fe90c5d9e89ae5c2b0827adbf6
[]
no_license
akbeki21/week4_thursday_task
2d647ff72adf9e31347f3d658355a727ed1e471b
53a375d82c4704265d09d691b3d00937274c2ec6
refs/heads/master
2023-01-21T21:21:46.768467
2020-11-07T17:26:56
2020-11-07T17:26:56
310,597,513
0
0
null
null
null
null
UTF-8
Python
false
false
3,451
py
# Task 1 # def last_one(): # num =input("Enter any number:") # print(num[-1]) # last_one() # Task 2 # def isdigit(): # digit = input("Enter any number: ") # digit = int(digit) # if digit %2 ==0: # print("This number is even") # else: # print("This number is odd") # isdigit() # Task 4 # def palindrom(): # word = input("Enter any word: ") # if word[::-1] == word: # print("This word is palindrom") # else: # print("This is not palindrom") # palindrom() # Task 6 # def sum_ofnumbers(): # num = input ('Введите трехзначное число : ') # if len(num) < 3 or len(num) > 3 : # print('Введите трехзначное число!!!') # else: # num = str(num) # print(int(num[0]) + int(num[1]) + int(num[2])) # sum_ofnumbers() # Task 7 # def number_rank(): # num = input("Enter any number: ") # print('Количество разрядов ' + str(len(num))) # number_rank() # Task 3 # def square () : # num = input ('Введите число : ') # squares = [] # for number in range (int(num)): # number = number ** 2 # squares.append(str(number)) # print(','.join(squares)) # square() # Task 5 # import datetime # def check_date () : # day = int(input("Введите день : ")) # month = int(input("Введите месяц : ")) # year = int(input("Введите год : ")) # try: # data = datetime.date(year, month, day) # print (data) # print (True) # except: # print (False) # check_date() # Task 8 # def max_num () : # nums = [] # bol = -1 # while True: # try : # n = input('("exit" чтобы выйти) Введите число: ') # if n == 'exit': # print('Максимальное число : ' + bol) # break # nums.append(n) # for x in nums : # if int(x) > int(bol) : # bol = x # except ValueError : # raise TypeError ('Это программа принимает только числа!!') # max_num() # Task 9 def calculator () : try: operations = ['+', '-', '*', '/'] operation = input ('| + | - | * | / | ') while operation not in operations : raise TypeError ('Выбрана неверная операция!!') operation = input ('| + | - | * | / | ') num1 = input ('Введите первое число : ') num2 = input ('Введите второе число : ') if operation == '+' : res = int(num1) + int(num2) print(f'Ответ : {res}') elif operation == '-' : res = int(num1) - int(num2) print(f'Ответ : {res}') elif operation == '*' : res = int(num1) * int(num2) print(f'Ответ : {res}') elif operation == '/' : res = int(num1) / int(num2) print(f'Ответ : {res}') except ZeroDivisionError : raise TypeError ('На ноль делить нельзя !!!') except ValueError : raise TypeError ('Это программа принимает только цифры !!!') finally : print('Пока!') calculator()
[ "akmatovabeka21@gmail.com" ]
akmatovabeka21@gmail.com
10984f7273d2e462fc205946946f58747af35492
843136a88f04b9eb42dc967ea8cac7625cfaffef
/WDStartup/wsgi.py
cfd3c946f83b95707aaadb6259ce244f2cc3bb58
[]
no_license
skrulling/WDStartup
66fdef4a3a791cd7a200127507cea7c5108d91b0
ae4c19bdcb23e80c46fea226346ecf5560aa2a29
refs/heads/master
2020-05-21T07:50:08.872998
2018-09-27T18:35:32
2018-09-27T18:35:32
56,911,497
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
""" WSGI config for WDStartup project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "WDStartup.settings") application = get_wsgi_application()
[ "mikkeleb@gmail.com" ]
mikkeleb@gmail.com
f501d353de483ac071efcd002afb39410d8a1a5f
472d508190fd7167bd6dbd5d1680019dd7af993c
/Exercicios/Aula 12/036.py
d326128df61b915e8319094a24278c8ae0d7f557
[]
no_license
FefAzvdo/Python-Training
f3b8cca72d47f641c504b19b60864cde829b1935
0e97d64c7c00bc1eae721a18af7bd96c2484ca34
refs/heads/master
2022-12-25T22:23:49.802465
2020-09-30T03:00:47
2020-09-30T03:00:47
298,328,719
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
n1 = int(input("Digite um número :")) n2 = int(input("Digite outro número :")) if n1 > n2: print(f"{n1} é maior do que {n2}") elif n1 == n2: print(f"{n1} é igual a {n2}") else: print(f"{n2} é maior do que {n1}")
[ "wfernandoaugusto01@gmail.com" ]
wfernandoaugusto01@gmail.com
207e03c01c90dceb13e5e4fcc561d33cce794d0b
8439766cd9c4667f9cbd041baab9b6ef74312e1c
/BACKEND/main.py
61a4fad308bc52abe84cf27bfe4e94c7bdeab676
[]
no_license
ifigueroa065/PROYECTO2_201904013
3881224d68a5a759ea0191a7181cc351793c4dc1
65e947e31c3b55608155837ce042a001e8056539
refs/heads/main
2023-01-06T11:30:29.351811
2020-11-09T09:06:22
2020-11-09T09:06:22
303,919,819
1
0
null
null
null
null
UTF-8
Python
false
false
16,367
py
from flask import Flask,jsonify, request from flask_cors import CORS from Usuario import Us from Canciones import Cancion import json from Comentarios import Comentario from Playlist import Play import re app=Flask(__name__) CORS(app) #ARREGLOS PARA ALMACENAR DATOS cont_canciones=0 cont_solicitudes=0 PLAYLIST=[] COMENTARIOS=[] USERS=[] CANCIONES=[] SOLICITUDES=[] USERS.append(Us('Usuario','Maestro','admin','admin','0')) @app.route('/', methods=['GET']) def Rutainicial(): return('PAGINA INICIAL') #VISTA GENERAL @app.route('/Usuario', methods=['GET']) def ObtenerPersonas(): global USERS Temp = [] for i in USERS: Temp2 = { 'nombre': i.getNombre(), 'apellido': i.getApellido(), 'usuario': i.getUsuario(), 'password':i.getPassword(), 'tipo':i.getTipo() } Temp.append(Temp2) respuesta = jsonify(Temp) return(respuesta) #VISTA GENERAL CANCIONES @app.route('/CANCIONES', methods=['GET']) def MOSTRARCANCIONES(): global CANCIONES,cont_canciones TempZ = [] for i in CANCIONES: Temp3 = { 'nombre' : i.getNombre(), 'artista' : i.getArtista(), 'album' : i.getAlbum(), 'imagen' : i.getImagen(), 'fecha' : i.getFecha(), 'linkS' : i.getLinkS(), 'linkYT' : i.getLinkYT(), 'identificador' : i.getID() } TempZ.append(Temp3) res = jsonify(TempZ) return(res) #VISTA GENERAL DE SOLICITUDES @app.route('/SOLICITUDES', methods=['GET']) def MOSTRARSOLICITUDES(): global SOLICITUDES TempZ = [] for i in SOLICITUDES: Temp3 = { 'nombre' : i.getNombre(), 'artista' : i.getArtista(), 'album' : i.getAlbum(), 'imagen' : i.getImagen(), 'fecha' : i.getFecha(), 'linkS' : i.getLinkS(), 'linkYT' : i.getLinkYT(), 'identificador' : i.getID() } TempZ.append(Temp3) res = jsonify(TempZ) return(res) #VISTA GENERAL COMENTARIOS @app.route('/COMENTARIOS', methods=['GET']) def MOSTRARCOMENTS(): global COMENTARIOS TempZ = [] for i in COMENTARIOS: Temp3 = { 'comentario' : i.getComentario(), 'usuario' : i.getUsuario(), 'id' : i.getID() } TempZ.append(Temp3) res = jsonify(TempZ) return(res) #VISTA GENERAL PLAYLIST @app.route('/PLAYLIST', methods=['GET']) def MOSTRARPLAYLIST(): global PLAYLIST TempZ = [] for i in PLAYLIST: Temp3 = { 'usuario' : i.getUsuario(), 'id' : i.getID() } TempZ.append(Temp3) res = jsonify(TempZ) return(res) #BUSCAR NOMBRE ESPECIFICO @app.route('/Usuario/<string:usuario>', methods=['GET']) def ObtenerUsuario(usuario): global USERS for i in USERS: if i.getUsuario()==usuario: Temp2 = { 'nombre': i.getNombre(), 'apellido': i.getApellido(), 'usuario': i.getUsuario(), 'password':i.getPassword(), 'tipo':i.getTipo() } break respuesta = jsonify(Temp2) return(respuesta) #BUSCAR CANCION ESPECIFICA @app.route('/CANCIONES/<int:id>', methods=['GET']) def CANCIONESPE(id): global CANCIONES for i in CANCIONES: if i.getID()==id: Temp2 = { 'nombre' : i.getNombre(), 'artista' : i.getArtista(), 'album' : i.getAlbum(), 'imagen' : i.getImagen(), 'fecha' : i.getFecha(), 'linkS' : i.getLinkS(), 'linkYT' : i.getLinkYT() } break respuesta = jsonify(Temp2) return(respuesta) #MODIFICAR UN DATO ESPECIFICO @app.route('/Usuario/<string:usuario>', methods=['PUT']) def ActualizarUsuario(usuario): global USERS confirmar=True cor=False Muser= request.json['usuario'] confirm = request.json['password'] contra = request.json['contraM'] if contra==confirm: confirmar=False else: DAT = { 'message':'Failed', 'reason':'NO COINCIDEN CONTRASEÑAS' } for i in range(len(USERS)): if Muser==USERS[i].getUsuario() and Muser != usuario: cor=True break if cor==False: for i in range(len(USERS)): if usuario == USERS[i].getUsuario() and confirmar==False: USERS[i].setNombre(request.json['nombre']) USERS[i].setApellido(request.json['apellido']) USERS[i].setUsuario(Muser) USERS[i].setPassword(contra) DAT = { 'message':'Sucess' } break else: DAT = { 'message':'Failed', 'reason':'EL USUARIO YA ESTÁ EN USO' } respuesta = jsonify(DAT) return(respuesta) #BUSCAR COMENTARIOS ESPECÍFICOS @app.route('/COMENTARIOS/<int:id>', methods=['GET']) def COMENT(id): global COMENTARIOS Temp=[] for i in COMENTARIOS: if i.getID()==id: Temp2 = { 'comentario' : i.getComentario(), 'usuario' : i.getUsuario() } Temp.append(Temp2) respuesta = jsonify(Temp) return(respuesta) #BUSCAR PLAYLIST DE USUARIO ESPECÍFICO @app.route('/PLAYLIST/<string:usuario>', methods=['GET']) def VERPLAYLIST(usuario): global PLAYLIST,CANCIONES TEMP=[] for i in PLAYLIST: if i.getUsuario()==usuario: CANCION=i.getID() for j in CANCIONES: if CANCION==j.getID(): Temp3 = { 'nombre' : j.getNombre(), 'artista' : j.getArtista(), 'album' : j.getAlbum(), 'imagen' : j.getImagen(), 'fecha' : j.getFecha(), 'linkS' : j.getLinkS(), 'linkYT' : j.getLinkYT() } TEMP.append(Temp3) break res = jsonify(TEMP) return(res) #MODIFICAR CANCION ESPECÍFICA @app.route('/CANCIONES/<int:id>', methods=['PUT']) def ActualizarCANCION(id): global CANCIONES cor=True nombre = request.json['nombre'] artista = request.json['artista'] album = request.json['album'] imagen = request.json['imagen'] fecha = request.json['fecha'] linkSpotify = request.json['linkS'] linkYoutube = request.json['linkYT'] if cor==True: for i in range(len(CANCIONES)): if id == CANCIONES[i].getID(): CANCIONES[i].setNombre(nombre) CANCIONES[i].setArtista(artista) CANCIONES[i].setAlbum(album) CANCIONES[i].setImagen(imagen) CANCIONES[i].setFecha(fecha) CANCIONES[i].setLinkS(linkSpotify) CANCIONES[i].setLinkYT(linkYoutube) DAT = { 'message':'Sucess' } break else: DAT = { 'message':'Failed', 'reason':'EL USUARIO YA ESTÁ EN USO' } respuesta = jsonify(DAT) return(respuesta) #ELIMINAR UN USUARIO ESPECIFICO @app.route('/Usuario/<string:usuario>', methods=['DELETE']) def EliminarUsuario(usuario): global USERS for i in range(len(USERS)): if usuario == USERS[i].getUsuario(): del USERS[i] break respuesta = jsonify({'message':'se eliminó usuario correctamente'}) return(respuesta) #ELIMINAR UNA CANCION ESPECIFICA @app.route('/CANCIONES/<int:id>', methods=['DELETE']) def EliminarCancion(id): global CANCIONES for i in range(len(CANCIONES)): if id == CANCIONES[i].getID(): del CANCIONES[i] break respuesta = jsonify({'message':'se eliminó cancion correctamente'}) return(respuesta) #AGREGAR USUARIOS @app.route('/Usuarios/', methods=['POST']) def AgregarUsuario(): global USERS TempADD= Us(request.json['nombre'],request.json['apellido'],request.json['usuario'],request.json['password'],request.json['tipo']) USERS.append(TempADD) return('SE AGREGO EL USUARIO') #MÉTODO PARA LOGEAR USUARIOS @app.route('/Login/', methods=['POST']) def Login(): global USERS usuario = request.json['usuario'] password = request.json['password'] for i in USERS: if i.getUsuario() == usuario and i.getPassword() == password: Dato={ 'message': 'Sucess', 'usuario': i.getUsuario(), 'tipo':i.getTipo() } break else: Dato={ 'message': 'Failed', 'usuario': '' } respuesta=jsonify(Dato) return (respuesta) #MÉTODO RECUPERAR CONTRASEÑA @app.route('/Recuperar/', methods=['POST']) def Recuperar(): global USERS usuario = request.json['usuarioR'] for i in range(len(USERS)): if USERS[i].getUsuario() == usuario: Dato={ 'message': 'Sucess', 'lol': USERS[i].getPassword() } break else: Dato={ 'message': 'Failed', 'lol': 'no, no hay' } respuesta=jsonify(Dato) return (respuesta) #REGISTRAR TIPO USUARIO @app.route('/Registrar/', methods=['POST']) def SIGNUP(): global USERS condicion=True nombreR = request.json['nombreR'] apellidoR = request.json['apellidoR'] usuarioR = request.json['usuarioR'] contraR = request.json['contraR'] contrasR = request.json['contraRR'] tipo = "1" if contraR == contrasR: for i in range(len(USERS)): if USERS[i].getUsuario() == usuarioR: Dat={ 'message': 'Failed', 'motivo' : 'EL USUARIO YA EXISTE' } condicion=False break else: condicion=True if condicion==True: NUSER= Us(nombreR,apellidoR,usuarioR,contraR,tipo) USERS.append(NUSER) Dat = { 'message': 'Sucess' } else: Dat = { 'message': 'Failed', 'motivo': 'NO COINCIDEN CONTRASEÑAS' } respo=jsonify(Dat) return(respo) #REGISTRAR TIPO ADMINISTRADOR @app.route('/RegistrarADMIN/', methods=['POST']) def SIGNUPADMIN(): global USERS condicion=True nombreR = request.json['nombreR'] apellidoR = request.json['apellidoR'] usuarioR = request.json['usuarioR'] contraR = request.json['contraR'] contrasR = request.json['contraRR'] tipo = "0" if contraR == contrasR: for i in range(len(USERS)): if USERS[i].getUsuario() == usuarioR: Dat={ 'message': 'Failed', 'motivo' : 'EL USUARIO YA EXISTE' } condicion=False break else: condicion=True if condicion==True: NUSAD= Us(nombreR,apellidoR,usuarioR,contraR,tipo) USERS.append(NUSAD) Dat = { 'message': 'Sucess' } else: Dat = { 'message': 'Failed', 'motivo': 'NO COINCIDEN CONTRASEÑAS' } respo=jsonify(Dat) return(respo) #SOLICITAR UNA CANCION @app.route('/SOLICITAR/', methods=['POST']) def CrearSolicitud(): global SOLICITUDES,cont_solicitudes nombre = request.json['NombreS'] artista = request.json['ArtistaS'] album = request.json['AlbumS'] imagen = request.json['ImagenS'] fecha = request.json['FechaS'] linkSpotify = request.json['LinkSS'] linkYoutube = request.json['LinkYTS'] ident=cont_solicitudes NSOLI=Cancion(nombre,artista,album,imagen,fecha,linkSpotify,linkYoutube,ident) SOLICITUDES.append(NSOLI) cont_solicitudes+=1 respo=jsonify({'message':'SE CREÓ SOLICITUD'}) return(respo) #AGREGAR UNA CANCION @app.route('/CANCIONES/', methods=['POST']) def AGREGARCANCION(): global CANCIONES,cont_canciones nombre = request.json['NombreS'] artista = request.json['ArtistaS'] album = request.json['AlbumS'] imagen = request.json['ImagenS'] fecha = request.json['FechaS'] linkSpotify = request.json['LinkSS'] linkYoutube = request.json['LinkYTS'] ident=cont_canciones NSOLI=Cancion(nombre,artista,album,imagen,fecha,linkSpotify,linkYoutube,ident) CANCIONES.append(NSOLI) cont_canciones +=1 respo=jsonify({'message':'SE CARGÓ UNA CANCION'}) return(respo) #AGREGAR UNA CANCION DE SOLICITUDES @app.route('/SOLICITUDES/<int:id>', methods=['POST']) def AGREGARSOLICITUD(id): global CANCIONES,cont_canciones global SOLICITUDES,cont_solicitudes for i in SOLICITUDES: if i.getID()==id: nombre = i.getNombre() artista = i.getArtista() album = i.getAlbum() imagen = i.getImagen() fecha = i.getFecha() linkSpotify =i.getLinkS() linkYoutube =i.getLinkYT() break ident=cont_canciones NSOLI=Cancion(nombre,artista,album,imagen,fecha,linkSpotify,linkYoutube,ident) CANCIONES.append(NSOLI) cont_canciones +=1 for i in range(len(SOLICITUDES)): if id == SOLICITUDES[i].getID(): del SOLICITUDES[i] break respo=jsonify({'message':'SE ACEPTÓ UNA CANCION'}) return(respo) #RECHAZAR UNA SOLICITUD @app.route('/SOLICITUDES/<int:id>', methods=['DELETE']) def RECHAZARSOLICITUD(id): global SOLICITUDES,cont_solicitudes for i in range(len(SOLICITUDES)): if id == SOLICITUDES[i].getID(): del SOLICITUDES[i] break respo=jsonify({'message':'SE RECHAZÓ LA CANCION'}) return(respo) #AGREGAR COMENTARIOS @app.route('/COMENTARIO/<int:id>', methods=['POST']) def SAVECOMENT(id): global COMENTARIOS comen=request.json['comentario'] usuario=request.json['usuario'] NCOMENT=Comentario(comen,usuario,id) COMENTARIOS.append(NCOMENT) respo=jsonify({'message':'SE AGREGÓ EL COMENTARIO'}) return(respo) #AGREGAR CANCION A PLAYLIST @app.route('/PLAYLIST/<int:id>', methods=['POST']) def SAVECANCION(id): global PLAYLIST,CANCIONES val=True usuario=request.json['usuario'] for i in PLAYLIST: if i.getUsuario()==usuario: if i.getID()==id: val=False break if val==True: NCOMENT=Play(usuario,id) PLAYLIST.append(NCOMENT) DATO={ 'message':'Sucess' } else: DATO={ 'message':'Failed' } respo=jsonify(DATO) return(respo) #BUSCADOR @app.route('/BUSCAR/<string:word>', methods=['GET']) def BUSCADOR(word): global CANCIONES Temp=[] for i in CANCIONES: chain=i.getNombre() if chain.find(word)>=0: Temp2 = { 'nombre' : i.getNombre(), 'artista' : i.getArtista(), 'album' : i.getAlbum(), 'imagen' : i.getImagen(), 'fecha' : i.getFecha(), 'linkS' : i.getLinkS(), 'linkYT' : i.getLinkYT(), 'identificador' : i.getID() } Temp.append(Temp2) respuesta = jsonify(Temp) return(respuesta) if __name__ == "__main__": app.run(port=3000,debug=True)
[ "isaiimiff13@gmail.com" ]
isaiimiff13@gmail.com
a6fb847c0765aa03676507099ad81c8f60fdb6a0
fff64930b1cf4f1d99062903cc5bea941bc5eb95
/viikko2/verkkokauppa-1/src/varasto.py
cfe16e83bd0b556e93537999743a9fbdde64f659
[]
no_license
jpiiroin/ohtu-tehtavat
a2879053e9a42fea47ad289a273c37ef9234b0c1
2b205d7cc9d593ed73cf4a25c048bf942bb34e60
refs/heads/main
2023-04-02T00:30:53.535820
2021-04-09T15:26:27
2021-04-09T15:26:27
337,110,295
0
0
null
null
null
null
UTF-8
Python
false
false
1,285
py
from tuote import Tuote from kirjanpito import kirjanpito as default_kirjanpito class Varasto: def __init__(self, kirjanpito=default_kirjanpito): self._kirjanpito = kirjanpito self._saldot = {} self._alusta_tuotteet() def hae_tuote(self, id): tuotteet = self._saldot.keys() for tuote in tuotteet: if tuote.id == id: return tuote return None def saldo(self, id): tuote = self.hae_tuote(id) return self._saldot[tuote] def ota_varastosta(self, tuote): saldo = self.saldo(tuote.id) self._saldot[tuote] = saldo - 1 self._kirjanpito.lisaa_tapahtuma(f"otettiin varastosta {tuote}") def palauta_varastoon(self, tuote): saldo = self.saldo(tuote.id) self._saldot[tuote] = saldo + 1 self._kirjanpito.lisaa_tapahtuma(f"palautettiin varastoon {tuote}") def _alusta_tuotteet(self): self._saldot[Tuote(1, "Koff Portteri", 3)] = 100 self._saldot[Tuote(2, "Fink Bräu I", 1)] = 25 self._saldot[Tuote(3, "Sierra Nevada Pale Ale", 5)] = 30 self._saldot[Tuote(4, "Mikkeller not just another Wit", 7)] = 40 self._saldot[Tuote(5, "Weihenstephaner Hefeweisse", 4)] = 15 varasto = Varasto()
[ "jpiiroin@hotmail.com" ]
jpiiroin@hotmail.com
0275fc13ee1c1285d19946c7a42126d679e48c48
adb0dd445fe9dc72f7f940be12909769a422f0bb
/sample.py
731c0848870fcc51bf47f38ad503bc73f7762c37
[ "MIT" ]
permissive
yng87/Gasyori100knock
40fd5c20043dd3822b183b6a4fb9d33c5c497be2
cdf5e375e8f882420ceb54d170d9c015dcd50722
refs/heads/master
2020-12-27T04:30:33.106121
2020-02-05T02:55:55
2020-02-05T02:55:55
237,765,829
0
0
MIT
2020-02-02T12:11:23
2020-02-02T12:11:22
null
UTF-8
Python
false
false
368
py
import cv2 import numpy as np img = cv2.imread("assets/imori.jpg") img2= img.copy().astype(np.float32) img2[60:100, 60:100, 0] = 260 cv2.imshow("imori", img2.astype(np.uint8)) cv2.waitKey(0) cv2.destroyAllWindows() img2[np.where(img2 > 255)] = 255 cv2.imshow("imori", img2.astype(np.uint8)) cv2.waitKey(0) cv2.destroyAllWindows() cv2.imwrite("sample.jpg", img2)
[ "k.yanagi07@gmail.com" ]
k.yanagi07@gmail.com
a99571385b1152a602ec8571c137d01f376a98f9
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_212/ch11_2020_04_12_13_52_22_999006.py
63db066fd32828470eb88e06314bcd1d455f5303
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
def distancia_euclidiana (x1, y1, x2, y2): d1 = x1 - y1 d2 = x2 - y2 return d1, d2
[ "you@example.com" ]
you@example.com
b8d4164de6616526a5aee2128aa4ece67648f082
1b66406251b3480403e452352c17a0cccd009bf6
/PAT (Advanced Level) Practice/1003Emergency.py
59f8849c52d5184f2c54580c1cd72da47654b0eb
[]
no_license
NeoFantom/PAT
eb997166382e01006fb73b070e458bb6ead40a29
bd2fd76c40f7e1779240168dc87989685c295e8e
refs/heads/master
2023-03-14T10:39:09.010227
2021-03-03T15:49:36
2021-03-03T15:49:36
293,193,209
1
0
null
2020-09-06T03:05:16
2020-09-06T03:05:15
null
UTF-8
Python
false
false
1,603
py
from queue import PriorityQueue def inputs(): return [int(s) for s in input().split(' ')] def dijkstra(graph, rescues, s, d): lenG = len(graph) pathCount = [0] * lenG rescueCount = [0] * lenG dist = [0x4fffffff] * lenG visited = [False] * lenG q = PriorityQueue(lenG ** 2) pathCount[s] = 1 rescueCount[s] = rescues[s] dist[s] = 0 q.put((0, s)) while not q.empty(): _, city = q.get() if not visited[city]: visited[s] = True if city == d: return pathCount[d], rescueCount[d] for tocity, distance in graph[city].items(): if dist[city] + distance < dist[tocity]: pathCount[tocity] = pathCount[city] rescueCount[tocity] = rescueCount[city] + rescues[tocity] dist[tocity] = dist[city] + distance q.put((dist[tocity], tocity)) elif dist[city] + distance == dist[tocity]: if rescueCount[city] + rescues[tocity] > rescueCount[tocity]: rescueCount[tocity] = rescueCount[city] + rescues[tocity] pathCount[tocity] += pathCount[city] # =========================main========================= N, M, C1, C2 = inputs() numberOfRrescues = inputs() assert len(numberOfRrescues) == N graph = [{} for i in range(N)] for i in range(M): c1, c2, L = inputs() graph[c1][c2] = L graph[c2][c1] = L print(*dijkstra(graph, numberOfRrescues, C1, C2))
[ "neohuiqixue@foxmail.com" ]
neohuiqixue@foxmail.com
3c95a2c8629a2f7a82ff4e1e0db977aee608c498
681c7bd995adb41cf8400c4848f4be3c182ced47
/l2tteBE/chat/consumers.py
ccd22e6393b7258330a9016dc7bea075cbedbd1b
[]
no_license
imdangodaane/l2tte
fa201df4375bbe85fe2153f0989851f0d6b8dd3e
c582519e95492af57e4cf612b377967bb36e152a
refs/heads/master
2022-06-28T05:32:52.346823
2019-12-01T16:02:18
2019-12-01T16:02:18
225,188,690
0
0
null
2022-05-26T21:26:24
2019-12-01T16:01:52
Python
UTF-8
Python
false
false
1,572
py
from channels.generic.websocket import AsyncWebsocketConsumer from api.account.models import Login, Token from asgiref.sync import async_to_sync from .models import ChatBoxMessageModel import json class ChatConsumer(AsyncWebsocketConsumer): async def connect(self): # a = self.scope['url_route']['kwargs']['chat_room_type'] # print('chat_room_type: ', a) # self.room_name = 'latte-chat-room' self.room_name = self.scope['url_route']['kwargs']['chat_room_type'] self.room_group_name = 'chat_%s' % self.room_name # Join room group await self.channel_layer.group_add( self.room_group_name, self.channel_name ) await self.accept() async def disconnect(self, close_code): # Leave room group await self.channel_layer.group_discard( self.room_group_name, self.channel_name ) async def receive(self, text_data): text_data_json = json.loads(text_data) message = text_data_json['message'] print('Server received:', message) # Send message to room group await self.channel_layer.group_send( self.room_group_name, { 'type': 'chat_message', 'message': message } ) # Receive message from room group async def chat_message(self, event): message = event['message'] # Send message to WebSocket await self.send(text_data=json.dumps({ 'message': message }))
[ "imdangodaane@gmail.com" ]
imdangodaane@gmail.com
bf6ddec1223087c1b1cf8e30b49b6d980d81ac61
71e831b3cd97d027c3961ef735a141aaf6266be8
/setup.py
fdddc00670362ca2cd025105b920186d45c9ffee
[]
no_license
sokolovdp/translator
3b38ba9236923340f59bd2c6d17f14b1fbb41ff3
5d8a8a009bb0e11d40391367fbe1d95d45babc3b
refs/heads/master
2021-07-08T15:02:57.462824
2017-10-06T10:21:06
2017-10-06T10:21:06
105,991,194
0
0
null
null
null
null
UTF-8
Python
false
false
1,256
py
#!/usr/bin/env python # encoding: utf-8 # from distutils.core import setup from setuptools import setup long_description = 'This a simple text translator, which can use Yandex or MyMemory translation services' setup( name='translator', version="1.0.1", author='Dmitrii Sokolov', author_email='sokolovdp@gmail.com', description="Simple text translator", long_description=long_description, url=None, classifiers=['Development Status :: 5 - Production/Stable', 'Intended Audience :: Education', 'Intended Audience :: End Users/Desktop', 'License :: Freeware', 'Operating System :: POSIX', 'Operating System :: Microsoft :: Windows', 'Operating System :: MacOS :: MacOS X', 'Topic :: Education', 'Programming Language :: Python', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6'], install_requires=['requests',], scripts=['translator.py'], )
[ "sokolovdp@gmail.com" ]
sokolovdp@gmail.com
e6ce796941dee8ab5b65a845430c95a51b4abf11
048abdd7e0676cf5ed9134f23858e462bf954901
/day03_Matplotlib数据可视化/venv/bin/tensorboard
35118ca358abebaf3d2071b69f889cc41bc55508
[]
no_license
MirduSandy/Tersonflow2
0f6886021e95b85a04c7c592ee3f5a0b20c8dc75
7d380a9ae72d2bd5dac720ae4e6a28c409013560
refs/heads/master
2022-11-28T02:18:58.879018
2020-08-08T17:51:05
2020-08-08T17:51:05
273,542,070
1
0
null
null
null
null
UTF-8
Python
false
false
293
#!/Users/a1/Documents/Projects/Python/day03_Matplotlib数据可视化/venv/bin/python # -*- coding: utf-8 -*- import re import sys from tensorboard.main import run_main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run_main())
[ "2367738403@qq.com" ]
2367738403@qq.com
b025683518d73f680071522ffc13d707ebcf92cc
0518d2845240436fac9b34aa068dead635cede31
/test/test_add_project.py
2b36e924151c7b163e25e805beb08976e9da6a55
[]
no_license
bogdanova1/python_training_mantis
3e01a61d0a23b5e74479c4a28851053228b31483
508a71a49cebf6bc7fe9d7e861480a51e9548e82
refs/heads/master
2021-03-12T14:20:47.279070
2020-03-22T14:16:11
2020-03-22T14:16:11
246,628,713
0
0
null
null
null
null
UTF-8
Python
false
false
779
py
from model.project import Project def test_add_project(app, db): username = app.config["webadmin"]["username"] #administrator" password = app.config["webadmin"]["password"] #"root" app.session.login(username, password) name=app.random_string("Name",10) id = db.get_id_project_by_name(name) if id is not None: app.project.delete_project_by_id(id[0]) project = Project(name=name) old_projects = app.soap.get_project_list_from_soap(username, password) #db.get_project_list() app.project.create(project) new_projects = app.soap.get_project_list_from_soap(username, password) #db.get_project_list() old_projects.append(project) assert sorted(old_projects, key=Project.id_or_max) == sorted(new_projects, key=Project.id_or_max)
[ "Natalia.Bogdanova@firstlinesoftware.com" ]
Natalia.Bogdanova@firstlinesoftware.com
c0f4f9ad2aea75b19e5d011df5a178bc5d9e350d
79dab81736be472e94485ddc7c4a21c0aae07c07
/Backend/minProject/blog/serializers.py
39166b517bc9c83da3afb3756f6da7b45c3168b1
[]
no_license
Pjambhale01/LibraryManagementSystem
9076cdaa447cf1fde9b15918329ba9c4cd05cc2b
1a42b7b3f09b4d8f0e509a66412b60a7a9517e2c
refs/heads/master
2023-08-22T04:19:32.968782
2021-10-29T19:16:40
2021-10-29T19:16:40
422,687,771
0
0
null
null
null
null
UTF-8
Python
false
false
912
py
from django.contrib.auth import models from django.db.models import fields from rest_framework import serializers from django.contrib.auth.models import User from rest_framework.validators import UniqueValidator from .models import Blogs class UserSerializers(serializers.ModelSerializer): username = serializers.CharField(required=True,validators=[UniqueValidator(queryset=User.objects.all())]) email = serializers.EmailField(required=True,validators=[UniqueValidator(queryset=User.objects.all())]) password = serializers.CharField(required=True, write_only=True) class Meta: model = User fields = ['id','username','email','password'] # def get_first_name(self,obj): # return obj.username.capitalize() class BlogSerializers(serializers.ModelSerializer): class Meta: model = Blogs fields = ["id","title","discription","created_at","user"]
[ "jamble085@gmail.com" ]
jamble085@gmail.com
a9052cfede6cd3dfe1bef8ee2bdef09dd268cd4c
62dd63d1c0fab618575d00882122004b301d978d
/RTS/applyAlembicOnSelected_v03.py
178d7828e55c9a49d152ac5db1de6075a772a37c
[]
no_license
benjamintomad/modo-scripts
4cb241ce9b7614a597581d3f6bef9e8ad55f9c36
a1b27eb7c3f7e5b2671ab4e8e871dea0a5835abc
refs/heads/master
2021-01-16T19:16:51.897211
2016-01-13T16:33:36
2016-01-13T16:33:36
21,005,240
0
0
null
2015-03-24T16:27:02
2014-06-19T15:21:41
Python
UTF-8
Python
false
false
1,589
py
#python import modo import os import re scene = modo.scene.current() basepath = r'W:\RTS\Caches\tch' endpath = r'publish\maya\pcache' seq = scene.name.split('_')[0] shot = seq+'_'+scene.name.split('_')[1] versions = [] for i in scene.selected: cacheForMesh = {} # checks the caches on the drive if i.type == 'locator' or i.type == 'wtdloc': asset = i.name.split('_')[1] folder = os.path.join(basepath,seq,shot,endpath) for file in os.listdir(folder): if file.endswith(".abc") and asset in file: versions.append(int(file.replace('.abc', '').split('_')[-1].replace('v', ''))) lastversion = 'v'+str(max(versions)).zfill(3) for file in os.listdir(folder): if file.endswith(".abc") and asset in file and lastversion in file: abcfile = os.path.join(folder,file) # applies the cache abclist = lx.eval('alembicinfo "%s" ?' % abcfile) meshes = i.children(recursive=True, itemType="mesh") for alembic in abclist: shortname = alembic.replace('Deformed', "").replace('Shape', "").split('/')[-1].replace('_MSH', "") for mesh in meshes: if re.search(shortname, mesh.name, re.IGNORECASE) or shortname in mesh.name: cacheForMesh[mesh] = alembic for key, value in cacheForMesh.iteritems(): scene.select(key) if len(key.deformers) == 0: lx.eval('item.addDeformer ABCstreamDeform') for mesh in meshes: if len(mesh.deformers) == 1: abc = mesh.deformers[0] abc.channel('filePath').set(abcfile) abc.channel('scale').set(0.01) for key, value in cacheForMesh.iteritems(): if key == mesh: abc.channel('itemPath').set(value)
[ "benjamin.tomad@gmail.com" ]
benjamin.tomad@gmail.com
0509e5bf1e76eaa4213818e9501d2ba02ed8c58f
d9fa1e903ab6057b8841268a35c76fd2955b57f0
/no_live/utils_no_live.py
ad0b45a0493f69015b3f12d3f1152eb82ac41f49
[ "MIT" ]
permissive
mepearson/Dash
d4c770209d231218c9cc6a9d245718133fe8c21e
30257d8c6298bee32105f46207bf3dbfbda178c3
refs/heads/master
2020-07-20T06:52:15.512682
2020-04-06T19:26:42
2020-04-06T19:26:42
206,593,624
0
1
MIT
2019-09-10T13:20:02
2019-09-05T15:12:50
Python
UTF-8
Python
false
false
1,544
py
from urllib.parse import urlparse, parse_qs import os from sqlalchemy import create_engine import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate import dash_table as dt import pandas as pd import numpy as np import plotly.express as px from plotly.subplots import make_subplots import plotly.graph_objects as go ##New Libraries from sqlalchemy import create_engine def parse_search(search, key): query = urlparse(search).query query_dict = parse_qs(query) if key in query_dict: print("returing {}".format(query_dict[key][0])) return query_dict[key][0] return None DATABASES = { 'production':{ 'NAME': os.environ['DATABASE_NAME'], 'USER': os.environ['DATABASE_USER'], 'PASSWORD': os.environ['DATABASE_PASSWORD'], 'HOST': os.environ['DATABASE_HOSTNAME'], 'PORT': 5432, }, } # DATABASES = { # 'production':{ # 'NAME': 'publicingestion', # 'USER': 'testing', # 'PASSWORD': '', # 'HOST': 'aws1.mint.isi.edu', # 'PORT': 5432, # }, # } # choose the database to use db = DATABASES['production'] # construct an engine connection string engine_string = "postgresql+psycopg2://{user}:{password}@{host}:{port}/{database}".format( user = db['USER'], password = db['PASSWORD'], host = db['HOST'], port = db['PORT'], database = db['NAME'], ) con = create_engine(engine_string)
[ "maxiosorio@gmail.com" ]
maxiosorio@gmail.com
57b4f9c19b39642979779df10ecd081cde515fd3
edd75f46663df54ad9f73ea69119ef1717f40497
/Tuples.py
81e2bed0c931f67c1ade7f89bdc02f81826a16cf
[]
no_license
Titchy15/HackerRankPython
14de49ed632e0e81d23d56ba057d462a9c91612b
629ddfe8e68a1774dc67b79685311eafda425744
refs/heads/master
2022-10-26T22:16:20.653317
2020-06-18T07:36:56
2020-06-18T07:36:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
124
py
if __name__ == '__main__': n = int(input()) num = input().split() print(hash(tuple(int(i) for i in num)))
[ "noreply@github.com" ]
Titchy15.noreply@github.com
7dc02c16f177c0e093640dd68dd9b794b75d7b47
35a0480f0562a966daca155ac36b481fc2b6396f
/venv/Lib/site-packages/pipenv/patched/notpip/_vendor/urllib3/util/ssl_.py
ef320b35ac44f22a9cff36488e2b18337bf6ddc8
[ "MIT", "LicenseRef-scancode-unknown-license-reference", "Python-2.0", "Apache-2.0" ]
permissive
ryantan-sk/mudkip-discordbot
14cae2cdf8496bc610541f81b82def353ab8f7b3
2b7e9fd238636ec624996f6c54293e54795e26b4
refs/heads/master
2020-08-29T05:19:48.597640
2019-11-19T15:14:01
2019-11-19T15:14:01
217,940,688
1
0
null
null
null
null
UTF-8
Python
false
false
14,055
py
from __future__ import absolute_import import errno import warnings import hmac import socket from binascii import hexlify, unhexlify from hashlib import md5, sha1, sha256 from ..exceptions import SSLError, InsecurePlatformWarning, SNIMissingWarning from ..packages import six SSLContext = None HAS_SNI = False IS_PYOPENSSL = False IS_SECURETRANSPORT = False # Maps the length of a digest to a possible hash function producing this digest HASHFUNC_MAP = { 32: md5, 40: sha1, 64: sha256, } def _const_compare_digest_backport(a, b): """ Compare two digests of equal length in constant time. The digests must be of type str/bytes. Returns True if the digests match, and False otherwise. """ result = abs(len(a) - len(b)) for l, r in zip(bytearray(a), bytearray(b)): result |= l ^ r return result == 0 _const_compare_digest = getattr(hmac, 'compare_digest', _const_compare_digest_backport) try: # Test for SSL features import ssl from ssl import wrap_socket, CERT_NONE, PROTOCOL_SSLv23 from ssl import HAS_SNI # Has SNI? except ImportError: pass try: from ssl import OP_NO_SSLv2, OP_NO_SSLv3, OP_NO_COMPRESSION except ImportError: OP_NO_SSLv2, OP_NO_SSLv3 = 0x1000000, 0x2000000 OP_NO_COMPRESSION = 0x20000 # Python 2.7 and earlier didn't have inet_pton on non-Linux # so we fallback on inet_aton in those cases. This means that # we can only detect IPv4 addresses in this case. if hasattr(socket, 'inet_pton'): inet_pton = socket.inet_pton else: # Maybe we can use ipaddress if the user has urllib3[secure]? try: from pipenv.patched.notpip._vendor import ipaddress def inet_pton(_, host): if isinstance(host, six.binary_type): host = host.decode('ascii') return ipaddress.ip_address(host) except ImportError: # Platform-specific: Non-Linux def inet_pton(_, host): return socket.inet_aton(host) # A secure default. # Sources for more information on TLS ciphers: # # - https://wiki.mozilla.org/Security/Server_Side_TLS # - https://www.ssllabs.com/projects/best-practices/index.html # - https://hynek.me/articles/hardening-your-web-servers-ssl-ciphers/ # # The base intent is: # - Prefer TLS 1.3 cipher suites # - prefer cipher suites that offer perfect forward secrecy (DHE/ECDHE), # - prefer ECDHE over DHE for better performance, # - prefer any AES-GCM and ChaCha20 over any AES-CBC for better performance and # security, # - prefer AES-GCM over ChaCha20 because hardware-accelerated AES is common, # - disable NULL authentication, MD5 MACs and DSS for security reasons. DEFAULT_CIPHERS = ':'.join([ 'TLS13-AES-256-GCM-SHA384', 'TLS13-CHACHA20-POLY1305-SHA256', 'TLS13-AES-128-GCM-SHA256', 'ECDH+AESGCM', 'ECDH+CHACHA20', 'DH+AESGCM', 'DH+CHACHA20', 'ECDH+AES256', 'DH+AES256', 'ECDH+AES128', 'DH+AES', 'RSA+AESGCM', 'RSA+AES', '!aNULL', '!eNULL', '!MD5', ]) try: from ssl import SSLContext # Modern SSL? except ImportError: import sys class SSLContext(object): # Platform-specific: Python 2 & 3.1 supports_set_ciphers = ((2, 7) <= sys.version_info < (3,) or (3, 2) <= sys.version_info) def __init__(self, protocol_version): self.protocol = protocol_version # Use default values from a real SSLContext self.check_hostname = False self.verify_mode = ssl.CERT_NONE self.ca_certs = None self.options = 0 self.certfile = None self.keyfile = None self.ciphers = None def load_cert_chain(self, certfile, keyfile): self.certfile = certfile self.keyfile = keyfile def load_verify_locations(self, cafile=None, capath=None): self.ca_certs = cafile if capath is not None: raise SSLError("CA directories not supported in older Pythons") def set_ciphers(self, cipher_suite): if not self.supports_set_ciphers: raise TypeError( 'Your version of Python does not support setting ' 'a custom cipher suite. Please upgrade to Python ' '2.7, 3.2, or later if you need this functionality.' ) self.ciphers = cipher_suite def wrap_socket(self, socket, server_hostname=None, server_side=False): warnings.warn( 'A true SSLContext object is not available. This prevents ' 'urllib3 from configuring SSL appropriately and may cause ' 'certain SSL connections to fail. You can upgrade to a newer ' 'version of Python to solve this. For more information, see ' 'https://urllib3.readthedocs.io/en/latest/advanced-usage.html' '#ssl-warnings', InsecurePlatformWarning ) kwargs = { 'keyfile': self.keyfile, 'certfile': self.certfile, 'ca_certs': self.ca_certs, 'cert_reqs': self.verify_mode, 'ssl_version': self.protocol, 'server_side': server_side, } if self.supports_set_ciphers: # Platform-specific: Python 2.7+ return wrap_socket(socket, ciphers=self.ciphers, **kwargs) else: # Platform-specific: Python 2.6 return wrap_socket(socket, **kwargs) def assert_fingerprint(cert, fingerprint): """ Checks if given fingerprint matches the supplied certificate. :param cert: Certificate as bytes object. :param fingerprint: Fingerprint as string of hexdigits, can be interspersed by colons. """ fingerprint = fingerprint.replace(':', '').lower() digest_length = len(fingerprint) hashfunc = HASHFUNC_MAP.get(digest_length) if not hashfunc: raise SSLError( 'Fingerprint of invalid length: {0}'.format(fingerprint)) # We need encode() here for py32; works on py2 and p33. fingerprint_bytes = unhexlify(fingerprint.encode()) cert_digest = hashfunc(cert).digest() if not _const_compare_digest(cert_digest, fingerprint_bytes): raise SSLError('Fingerprints did not match. Expected "{0}", got "{1}".' .format(fingerprint, hexlify(cert_digest))) def resolve_cert_reqs(candidate): """ Resolves the argument to a numeric constant, which can be passed to the wrap_socket function/method from the ssl module. Defaults to :data:`ssl.CERT_NONE`. If given a string it is assumed to be the name of the constant in the :mod:`ssl` module or its abbreviation. (So you can specify `REQUIRED` instead of `CERT_REQUIRED`. If it's neither `None` nor a string we assume it is already the numeric constant which can directly be passed to wrap_socket. """ if candidate is None: return CERT_NONE if isinstance(candidate, str): res = getattr(ssl, candidate, None) if res is None: res = getattr(ssl, 'CERT_' + candidate) return res return candidate def resolve_ssl_version(candidate): """ like resolve_cert_reqs """ if candidate is None: return PROTOCOL_SSLv23 if isinstance(candidate, str): res = getattr(ssl, candidate, None) if res is None: res = getattr(ssl, 'PROTOCOL_' + candidate) return res return candidate def create_urllib3_context(ssl_version=None, cert_reqs=None, options=None, ciphers=None): """All arguments have the same meaning as ``ssl_wrap_socket``. By default, this function does a lot of the same work that ``ssl.create_default_context`` does on Python 3.4+. It: - Disables SSLv2, SSLv3, and compression - Sets a restricted set of server ciphers If you wish to enable SSLv3, you can do:: from pipenv.patched.notpip._vendor.urllib3.util import ssl_ context = ssl_.create_urllib3_context() context.options &= ~ssl_.OP_NO_SSLv3 You can do the same to enable compression (substituting ``COMPRESSION`` for ``SSLv3`` in the last line above). :param ssl_version: The desired protocol version to use. This will default to PROTOCOL_SSLv23 which will negotiate the highest protocol that both the server and your installation of OpenSSL support. :param cert_reqs: Whether to require the certificate verification. This defaults to ``ssl.CERT_REQUIRED``. :param options: Specific OpenSSL options. These default to ``ssl.OP_NO_SSLv2``, ``ssl.OP_NO_SSLv3``, ``ssl.OP_NO_COMPRESSION``. :param ciphers: Which cipher suites to allow the server to select. :returns: Constructed SSLContext object with specified options :rtype: SSLContext """ context = SSLContext(ssl_version or ssl.PROTOCOL_SSLv23) # Setting the default here, as we may have no ssl module on import cert_reqs = ssl.CERT_REQUIRED if cert_reqs is None else cert_reqs if options is None: options = 0 # SSLv2 is easily broken and is considered harmful and dangerous options |= OP_NO_SSLv2 # SSLv3 has several problems and is now dangerous options |= OP_NO_SSLv3 # Disable compression to prevent CRIME attacks for OpenSSL 1.0+ # (issue #309) options |= OP_NO_COMPRESSION context.options |= options if getattr(context, 'supports_set_ciphers', True): # Platform-specific: Python 2.6 context.set_ciphers(ciphers or DEFAULT_CIPHERS) context.verify_mode = cert_reqs if getattr(context, 'check_hostname', None) is not None: # Platform-specific: Python 3.2 # We do our own verification, including fingerprints and alternative # hostnames. So disable it here context.check_hostname = False return context def ssl_wrap_socket(sock, keyfile=None, certfile=None, cert_reqs=None, ca_certs=None, server_hostname=None, ssl_version=None, ciphers=None, ssl_context=None, ca_cert_dir=None): """ All arguments except for server_hostname, ssl_context, and ca_cert_dir have the same meaning as they do when using :func:`ssl.wrap_socket`. :param server_hostname: When SNI is supported, the expected hostname of the certificate :param ssl_context: A pre-made :class:`SSLContext` object. If none is provided, one will be created using :func:`create_urllib3_context`. :param ciphers: A string of ciphers we wish the client to support. This is not supported on Python 2.6 as the ssl module does not support it. :param ca_cert_dir: A directory containing CA certificates in multiple separate files, as supported by OpenSSL's -CApath flag or the capath argument to SSLContext.load_verify_locations(). """ context = ssl_context if context is None: # Note: This branch of code and all the variables in it are no longer # used by urllib3 itself. We should consider deprecating and removing # this code. context = create_urllib3_context(ssl_version, cert_reqs, ciphers=ciphers) if ca_certs or ca_cert_dir: try: context.load_verify_locations(ca_certs, ca_cert_dir) except IOError as e: # Platform-specific: Python 2.6, 2.7, 3.2 raise SSLError(e) # Py33 raises FileNotFoundError which subclasses OSError # These are not equivalent unless we check the errno attribute except OSError as e: # Platform-specific: Python 3.3 and beyond if e.errno == errno.ENOENT: raise SSLError(e) raise elif getattr(context, 'load_default_certs', None) is not None: # try to load OS default certs; works well on Windows (require Python3.4+) context.load_default_certs() if certfile: context.load_cert_chain(certfile, keyfile) # If we detect server_hostname is an IP address then the SNI # extension should not be used according to RFC3546 Section 3.1 # We shouldn't warn the user if SNI isn't available but we would # not be using SNI anyways due to IP address for server_hostname. if ((server_hostname is not None and not is_ipaddress(server_hostname)) or IS_SECURETRANSPORT): if HAS_SNI and server_hostname is not None: return context.wrap_socket(sock, server_hostname=server_hostname) warnings.warn( 'An HTTPS request has been made, but the SNI (Server Name ' 'Indication) extension to TLS is not available on this platform. ' 'This may cause the server to present an incorrect TLS ' 'certificate, which can cause validation failures. You can upgrade to ' 'a newer version of Python to solve this. For more information, see ' 'https://urllib3.readthedocs.io/en/latest/advanced-usage.html' '#ssl-warnings', SNIMissingWarning ) return context.wrap_socket(sock) def is_ipaddress(hostname): """Detects whether the hostname given is an IP address. :param str hostname: Hostname to examine. :return: True if the hostname is an IP address, False otherwise. """ if six.PY3 and isinstance(hostname, six.binary_type): # IDN A-label bytes are ASCII compatible. hostname = hostname.decode('ascii') families = [socket.AF_INET] if hasattr(socket, 'AF_INET6'): families.append(socket.AF_INET6) for af in families: try: inet_pton(af, hostname) except (socket.error, ValueError, OSError): pass else: return True return False
[ "32567080+Ryantansk@users.noreply.github.com" ]
32567080+Ryantansk@users.noreply.github.com
17e697b542e82af40f6684793faaf8f231bddf86
2ab2993c8695af6ecad97428b8f703c1af4708bf
/pages/migrations/0004_cart.py
5d5794d38aea5452a783f274636df3bb7a84592a
[]
no_license
gfdperez/LBYCPD2_Group5
fcaeba7bd17073448d49b92bcef306ad13f4a5ec
df627378e7e175c4849f8af6fd8811c4c197d947
refs/heads/main
2023-05-12T06:55:38.454682
2021-06-03T12:50:49
2021-06-03T12:50:49
350,992,170
0
0
null
null
null
null
UTF-8
Python
false
false
753
py
# Generated by Django 3.2 on 2021-05-20 08:41 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pages', '0003_drink_classname'), ] operations = [ migrations.CreateModel( name='Cart', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(max_length=30)), ('item_name', models.CharField(max_length=50)), ('quantity', models.PositiveIntegerField()), ('size', models.CharField(max_length=10)), ('price', models.PositiveIntegerField()), ], ), ]
[ "brendon_medrano@dlsu.edu.ph" ]
brendon_medrano@dlsu.edu.ph